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Preface

In the fine arts, a master class is a small class where students and coaches
work together to support a high level of technical and creative excellence.
This book tries to capture the spirit of a master class while providing
coaching for readers who want to refine their skills as solvers of problems,
especially those problems dealing with mathematical inequalities.

The most important prerequisite for benefiting from this book is the
desire to master the craft of discovery and proof. The formal require-
ments are quite modest. Anyone with a solid course in calculus is well
prepared for almost everything to be found here, and perhaps half of the
material does not even require calculus. Nevertheless, the book develops
many results which are rarely seen, and even experienced readers are
likely to find material that is challenging and informative.

With the Cauchy—Schwarz inequality as the initial guide, the reader
is led through a sequence of interrelated problems whose solutions are
presented as they might have been discovered — either by one of his-
tory’s famous mathematicians or by the reader. The problems emphasize
beauty and surprise, but along the way one finds systematic coverage
of the geometry of squares, convexity, the ladder of power means, ma-
jorization, Schur convexity, exponential sums, and all of the so-called
classical inequalities, including those of Holder, Hilbert, and Hardy.

To solve a problem is a very human undertaking, and more than a little
mystery remains about how we best guide ourselves to the discovery of
original solutions. Still, as George Pdlya and others have taught us, there
are principles of problem solving. With practice and good coaching we
can all improve our skills. Just like singers, actors, or pianists, we have a
path toward a deeper mastery of our craft.

ix
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1
Starting with Cauchy

Cauchy’s inequality for real numbers tells us that

a1b1+a2b2+-~-+anbn§\/a§+a§+--~+ag\/b§+b§+~-+b,%,

and there is no doubt that this is one of the most widely used and most
important inequalities in all of mathematics. A central aim of this course
— or master class — is to suggest a path to mastery of this inequality,
its many extensions, and its many applications — from the most basic
to the most sublime.

THE TYPICAL PLAN

The typical chapter in this course is built around the solution of a
small set of challenge problems. Sometimes a challenge problem is drawn
from one of the world’s famous mathematical competitions, but more
often a problem is chosen because it illustrates a mathematical technique
of wide applicability.

Ironically, our first challenge problem is an exception. To be sure, the
problem hopes to offer honest coaching in techniques of importance, but
it is unusual in that it asks you to solve a problem that you are likely to
have seen before. Nevertheless, the challenge is sincere; almost everyone
finds some difficulty directing fresh thoughts toward a familiar problem.

Problem 1.1 Prove Cauchy’s inequality. Moreover, if you already know
a proof of Cauchy’s inequality, find another one!

COACHING FOR A PLACE TO START

How does one solve a problem in a fresh way? Obviously there cannot
be any universal method, but there are some hints that almost always
help. One of the best of these is to try to solve the problem by means
of a specific principle or specific technique.

Here, for example, one might insist on proving Cauchy’s inequality
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just by algebra — or just by geometry, by trigonometry, or by calculus.
Miraculously enough, Cauchy’s inequality is wonderfully provable, and
each of these approaches can be brought to a successful conclusion.

A PRINCIPLED BEGINNING

If one takes a dispassionate look at Cauchy’s inequality, there is an-
other principle that suggests itself. Any time one faces a valid propo-
sition that depends on an integer n, there is a reasonable chance that
mathematical induction will lead to a proof. Since none of the standard
texts in algebra or analysis gives such a proof of Cauchy’s inequality,
this principle also has the benefit of offering us a path to an “original”
proof — provided, of course, that we find any proof at all.

When we look at Cauchy’s inequality for n = 1, we see that the
inequality is trivially true. This is all we need to start our induction,
but it does not offer us any insight. If we hope to find a serious idea,
we need to consider n = 2 and, in this second case, Cauchy’s inequality
just says

(a1by + agbo)? < (a2 4 a3)(b3 + b3). (1.1)

This is a simple assertion, and you may see at a glance why it is true.
Still, for the sake of argument, let us suppose that this inequality is not
so obvious. How then might one search systematically for a proof?

Plainly, there is nothing more systematic than simply expanding both
sides to find the equivalent inequality

a3b? 4 2a1biazbs + a3bs < ab? + aib3 + a3bi + a3b3,

then, after we make the natural cancellations and collect terms to one
side, we see that inequality (1.1) is also equivalent to the assertion that

0 S (a1b2)2 - 2(&1[)2)(&2&)1) + (agbl)Q. (12)

This equivalent inequality actually puts the solution of our problem
within reach. From the well-known factorization 22 —2zy+y? = (z—y)?
one finds

(a1b2)2 — 2(@11)2)(&2[)1) + (a2b1)2 = ((leg - a2b1)2, (13)

and the nonnegativity of this term confirms the truth of inequality (1.2).
By our chain of equivalences, we find that inequality (1.1) is also true,
and thus we have proved Cauchy’s inequality for n = 2.

THE INDUCTION STEP

Now that we have proved a nontrivial case of Cauchy’s inequality, we
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are ready to look at the induction step. If we let H(n) stand for the
hypothesis that Cauchy’s inequality is valid for n, we need to show that
H(2) and H(n) imply H(n+1). With this plan in mind, we do not need
long to think of first applying the hypothesis H(n) and then using H(2)
to stitch together the two remaining pieces. Specifically, we have

a1by +agbs + -+ apby, + any1bnta
= (a1by + agby + -+ + anbn) + anr1bps1
<(ai+ad+-+ad2)T B3+ +b2)7 4 g1
<(af+ad 4+ +ad+al )P (4B bR D),

where in the first inequality we used the induction hypothesis H(n), and
in the second inequality we used H(2) in the form

1 1
af + any1bpyr < (a2 + ai+1)2 (ﬁg + bi+1>2
with the new variables
a=(ad+a3+--+a)? and B=(0F+5+-- b))%

The only difficulty one might have finding this proof comes in the
last step where we needed to see how to use H(2). In this case the
difficulty was quite modest, yet it anticipates the nature of the challenge
one finds in more sophisticated problems. The actual application of
Cauchy’s inequality is never difficult; the challenge always comes from
seeing where Cauchy’s inequality should be applied and what one gains
from the application.

THE PRINCIPLE OF QUALITATIVE INFERENCES

Mathematical progress depends on the existence of a continuous stream
of new problems, yet the processes that generate such problems may
seem mysterious. To be sure, there is genuine mystery in any deeply
original problem, but most new problems evolve quite simply from well-
established principles. One of the most productive of these principles
calls on us to expand our understanding of a quantitative result by first
focusing on its qualitative inferences.

Almost any significant quantitative result will have some immediate
qualitative corollaries and, in many cases, these corollaries can be derived
independently, without recourse to the result that first brought them to
light. The alternative derivations we obtain this way often help us to see
the fundamental nature of our problem more clearly. Also, much more
often than one might guess, the qualitative approach even yields new
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quantitative results. The next challenge problem illustrates how these
vague principles can work in practice.

Problem 1.2 One of the most immediate qualitative inferences from
Cauchy’s inequality is the simple fact that

Zai < 0o and Zbi < oo imply that Z lagby| < oo. (1.4)
k=1 k=1 k=1

Give a proof of this assertion that does not call on Cauchy’s inequality.

When we consider this challenge, we are quickly drawn to the realiza-
tion that we need to show that the product aiby is small when ai and
b7 are small. We could be sure of this inference if we could prove the
existence of a constant C' such that

vy < C(z? +y?) for all real z,y.

Fortunately, as soon as one writes down this inequality, there is a good
chance of recognizing why it is true. In particular, one might draw the
link to the familiar factorization

0< (z—y)? =2 —2ay+y°,
and this observation is all one needs to obtain the bound
xy < %x2 + %yz for all real z, y. (1.5)
Now, when we apply this inequality to « = |ax| and y = |bk| and then
sum over all k, we find the interesting additive inequality

> lawbi| < §Zaﬁ+52bﬁ. (1.6)
k=1 k=1 k=1

This bound gives us another way to see the truth of the qualitative
assertion (1.4) and, thus, it passes one important test. Still, there are
other tests to come.

A TEST OF STRENGTH

Any time one meets a new inequality, one is almost duty bound to
test the strength of that inequality. Here that obligation boils down
to asking how close the new additive inequality comes to matching the
quantitative estimates that one finds from Cauchy’s inequality.

The additive bound (1.6) has two terms on the right-hand side, and
Cauchy’s inequality has just one. Thus, as a first step, we might look
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for a way to combine the two terms of the additive bound (1.6), and a
natural way to implement this idea is to normalize the sequences {ay}
and {b} so that each of the right-hand sums is equal to one.

Thus, if neither of the sequences is made up of all zeros, we can intro-
duce new variables

&k:ak/(Za?) and Ek:bk/(zb?> y
J J

which are normalized in the sense that

and
S8 ::1{172/(21)3)} .

Now, when we apply inequality (1.6) to the sequences {aj} and {by},
we obtain the simple-looking bound

o) . 1 e8] S 1 e8] )
akbk S §Zak+§Zbk =
k=1 k=1 k=1

and, in terms of the original sequences {ay} and {b;}, we have

3 {ou() Hor(39) =

Finally, when we clear the denominators, we find our old friend Cauchy’s
inequality — though this time it also covers the case of possibly infinite
sequences:

g:lakbk < (izﬁ)%(ibi)% (1.7)

The additive bound (1.6) led us to a proof of Cauchy’s inequality
which is quick, easy, and modestly entertaining, but it also connects to
a larger theme. Normalization gives us a systematic way to pass from
an additive inequality to a multiplicative inequality, and this is a trip
we will often need to make in the pages that follow.

ITEM IN THE Dock: THE CASE OF EQUALITY

One of the enduring principles that emerges from an examination
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of the ways that inequalities are developed and applied is that many
benefits flow from understanding when an inequality is sharp, or nearly
sharp. In most cases, this understanding pivots on the discovery of the
circumstances where equality can hold.

For Cauchy’s inequality this principle suggests that we should ask
ourselves about the relationship that must exist between the sequences
{ax} and {b;} in order for us to have

gakbk: (iﬁ)%(gbi)%. (1.8)

k=1

If we focus our attention on the nontrivial case where neither of the
sequences is identically zero and where both of the sums on the right-
hand side of the identity (1.8) are finite, then we see that each of the
steps we used in the derivation of the bound (1.7) can be reversed. Thus
one finds that the identity (1.8) implies the identity

iakbk = ia iéi =1. (1.9)
k=1 k=1 k=1

By the two-term bound zy < (2% + 3?)/2 , we also know that

N =

+

N =
>~

1~
a§+§bi forall k=1,2,..., (1.10)

and from these we see that if strict inequality were to hold for even one
value of k then we could not have the equality (1.9). This observation
tells us in turn that the case of equality (1.8) can hold for nonzero series
only when we have a; = by, for all k = 1,2,.... By the definition of these
normalized values, we then see that

ar = Abg forall k=1,2,..., (1.11)

where the constant ) is given by the ratio

(54 /(5

j=1 j=1

Here one should note that our argument was brutally straightforward,
and thus, our problem was not much of a challenge. Nevertheless, the
result still expresses a minor miracle; the one identity (1.8) has the
strength to imply an infinite number of identities, one for each value of
k=1,2,...in equation (1.11).
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BENEFITS OF GOOD NOTATION

Sums such as those appearing in Cauchy’s inequality are just barely
manageable typographically and, as one starts to add further features,
they can become unwieldy. Thus, we often benefit from the introduction
of shorthand notation such as

b> = iajbj (1.12)

where a = (a1, az,...,a,) and b = (b1, ba,...,b,). This shorthand now
permits us to write Cauchy’s inequality quite succinctly as

(a,b) < (a,a)?(b,b)>. (1.13)

Parsimony is fine, but there are even deeper benefits to this notation
if one provides it with a more abstract interpretation. Specifically, if
V is a real vector space (such as R?), then we say that a function on
V x V defined by the mapping (a,b) — (a,b) is an inner product and
we say that (V, (,)) is a real inner product space provided that the pair
(V, {-,-)) has the following five properties:

(v,v) > for all vevV,

(v,v) = if and only if v =0,

(av, > (v, w) forall a € R and all v,w €V,
(u,v+w)=(u,v)+ (u,w) forallu,v,w €V, and finally,
(viw) =(w,v) forallv,weV.

One can easily check that the shorthand introduced by the sum (1.12)
has each of these properties, but there are many further examples of use-
ful inner products. For example, if we fix a set of positive real numbers
{w; : j=1,2,...,n} then we can just as easily define an inner product
on R™ with the weighted sums

b> = Z(ijj’wj' (114)
j=1

and, with this definition, one can check just as before that (a, b) satisfies
all of the properties that one requires of an inner product. Moreover, this
example only reveals the tip of an iceberg; there are many useful inner
products, and they occur in a great variety of mathematical contexts.
An especially useful example of an inner product can be given by
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considering the set V' = Cla,b] of real-valued continuous functions on
the bounded interval [a, b] and by defining (-,-) on V by setting

b
(f.9) = / f(@)g() de, (1.15)

or more generally, if w : [a,b] — R is a continuous function such that
w(zx) > 0 for all z € [a,b], then one can define an inner product on
Cla,b] by setting

(f.g) = / F(@)g(@ () dz.

We will return to these examples shortly, but first there is an opportunity
that must be seized.

AN OPPORTUNISTIC CHALLENGE

We now face one of those pleasing moments when good notation sug-
gests a good theorem. We introduced the idea of an inner product in
order to state the basic form (1.7) of Cauchy’s inequality in a simple
way, and now we find that our notation pulls us toward an interesting
conjecture: Can it be true that in every inner product space one has the
inequality (v, w) < (v,v)2 (w,w)2? This conjecture is indeed true, and
when framed more precisely, it provides our next challenge problem.

Problem 1.3 For any real inner product space (V,{-,-)), one has for all
v and w in V that

(v, w) < (v, V)2 (w,w)?; (1.16)
moreover, for nonzero vectors v and w, one has
(v,w) = (v,v)% (w,w)é if and only if v.=w
for a nonzero constant .

As before, one may be tempted to respond to this challenge by just
rattling off a previously mastered textbook proof, but that temptation
should still be resisted. The challenge offered by Problem 1.3 is impor-
tant, and it deserves a fresh response — or, at least, a relatively fresh
response.

For example, it seems appropriate to ask if one might be able to use
some variation on the additive method which helped us prove the plain
vanilla version of Cauchy’s inequality. The argument began with the
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observation that (x — y)? > 0 implies xy < 2?/2 + 3?/2, and one might
guess that an analogous idea could work again in the abstract case.
Here, of course, we need to use the defining properties of the inner
product, and, as we go down the list looking for an analog to (z—y)? > 0,
we are quite likely to hit on the idea of using property (i) in the form

(v—w,v—w)>0.

Now, when we expand this inequality with the help of the other proper-
ties of the inner product (-, -), we find that

1
(v,v) + §<W,W>. (1.17)
This is a perfect analog of the additive inequality that gave us our second
proof of the basic Cauchy inequality, and we face a classic situation where
all that remains is a “matter of technique.”

(v,w) <

N —

A RETRACED PASSAGE — CONVERSION OF AN ADDITIVE BOUND

Here we are oddly lucky since we have developed only one technique
that is even remotely relevant — the normalization method for convert-
ing an additive inequality into one that is multiplicative. Normalization
means different things in different places, but, if we take our earlier anal-
ysis as our guide, what we want here is to replace v and w with related
terms that reduce the right side of the bound (1.17) to 1.

Since the inequality (1.16) holds trivially if either v or w is equal to
zero, we may assume without loss of generality that (v,v) and (w,w)
are both nonzero, so the normalized variables

ff:v/(v,v)% and VAV:W/<W,W>% (1.18)

are well defined. When we substitute these values for v and w in the
bound (1.17), we then find (v, W) < 1. In terms of the original variables
v and w, this tells us (v,w) < (v,v)2(w,w)z, just as we wanted to
show.

Finally, to resolve the condition for equality, we only need to exam-
ine our reasoning in reverse. If equality holds in the abstract Cauchy
inequality (1.16) for nonzero vectors v and w, then the normalized vari-
ables v and w are well defined. In terms of the normalized variables,
the equality of (v, w) and (v,v)2(w,w)2 tells us that (¥, w) = 1, and
this tells us in turn that (v — W, v — W) = 0 simply by expansion of the
inner product. From this we deduce that v — w = 0; or, in other words,
v = Aw where we set A = (v, v)2 /(w, w)z.
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THE PACE OF SCIENCE — THE DEVELOPMENT OF EXTENSIONS

Augustin-Louis Cauchy (1789-1857) published his famous inequality
in 1821 in the second of two notes on the theory of inequalities that
formed the final part of his book Cours d’Analyse Algébrique, a vol-
ume which was perhaps the world’s first rigorous calculus text. Oddly
enough, Cauchy did not use his inequality in his text, except in some
illustrative exercises. The first time Cauchy’s inequality was applied
in earnest by anyone was in 1829, when Cauchy used his inequality in
an investigation of Newton’s method for the calculation of the roots of
algebraic and transcendental equations. This eight-year gap provides
an interesting gauge of the pace of science; now, each month, there are
hundreds — perhaps thousands — of new scientific publications where
Cauchy’s inequality is applied in one way or another.

A great many of those applications depend on a natural analog of
Cauchy’s inequality where sums are replaced by integrals,

[ tomas= ([ o) ([eme) o

This bound first appeared in print in a Mémoire by Victor Yacovlevich
Bunyakovsky which was published by the Imperial Academy of Sciences
of St. Petersburg in 1859. Bunyakovsky (1804-1889) had studied in
Paris with Cauchy, and he was quite familiar with Cauchy’s work on
inequalities; so much so that by the time he came to write his Mémoire,
Bunyakovsky was content to refer to the classical form of Cauchy’s in-
equality for finite sums simply as well-known. Moreover, Bunyakovsky
did not dawdle over the limiting process; he took only a single line to
pass from Cauchy’s inequality for finite sums to his continuous analog
(1.19). By ironic coincidence, one finds that this analog is labelled as in-
equality (C) in Bunyakovsky’s Mémoire, almost as though Bunyakovsky
had Cauchy in mind.

Bunyakovsky’s Mémoire was written in French, but it does not seem
to have circulated widely in Western Europe. In particular, it does not
seem to have been known in Gottingen in 1885 when Hermann Amandus
Schwarz (1843-1921) was engaged in his fundamental work on the theory
of minimal surfaces.

In the course of this work, Schwarz had the need for a two-dimensional
integral analog of Cauchy’s inequality. In particular, he needed to show
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that if SCR? and f: S — R and g : S — R, then the double integrals

Az//fgdmdy, B://fgdxdy, C://dexdy
s s s

must satisfy the inequality
|B| < VA-VC, (1.20)

and Schwarz also needed to know that the inequality is strict unless the
functions f and g are proportional.

An approach to this result via Cauchy’s inequality would have been
problematical for several reasons, including the fact that the strictness
of a discrete inequality can be lost in the limiting passage to integrals.
Thus, Schwarz had to look for an alternative path, and, faced with
necessity, he discovered a proof whose charm has stood the test of time.

Schwarz based his proof on one striking observation. Specifically, he
noted that the real polynomial

p(t) = //S (tf(x, y) + g(z, y))2 dxdy = At*> + 2Bt + C

is always nonnegative, and, moreover, p(t) is strictly positive unless f
and g are proportional. The binomial formula then tells us that the
coefficients must satisfy B2 < AC, and unless f and g are proportional,
one actually has the strict inequality B? < AC. Thus, from a single
algebraic insight, Schwarz found everything that he needed to know.

Schwarz’s proof requires the wisdom to consider the polynomial p(t),
but, granted that step, the proof is lightning quick. Moreover, as one
finds from Exercise 1.11, Schwarz’s argument can be used almost without
change to prove the inner product form (1.16) of Cauchy’s inequality,
and even there Schwarz’s argument provides one with a quick under-
standing of the case of equality. Thus, there is little reason to wonder
why Schwarz’s argument has become a textbook favorite, even though
it does require one to pull a rabbit — or at least a polynomial — out of
a hat.

THE NAMING OF THINGS — ESPECIALLY INEQUALITIES

In light of the clear historical precedence of Bunyakovsky’s work over
that of Schwarz, the common practice of referring to the bound (1.19) as
Schwarz’s inequality may seem unjust. Nevertheless, by modern stan-
dards, both Bunyakovsky and Schwarz might count themselves lucky to
have their names so closely associated with such a fundamental tool of
mathematical analysis. Except in unusual circumstances, one garners
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little credit nowadays for crafting a continuous analog to a discrete in-
equality, or vice versa. In fact, many modern problem solvers favor a
method of investigation where one rocks back and forth between dis-
crete and continuous analogs in search of the easiest approach to the
phenomena of interest.

Ultimately, one sees that inequalities get their names in a great variety
of ways. Sometimes the name is purely descriptive, such as one finds with
the triangle inequality which we will meet shortly. Perhaps more often,
an inequality is associated with the name of a mathematician, but even
then there is no hard-and-fast rule to govern that association. Sometimes
the inequality is named after the first finder, but other principles may
apply — such as the framer of the final form, or the provider of the best
known application.

If one were to insist on the consistent use of the rule of first finder, then
Hoélder’s inequality would become Rogers’s inequality, Jensen’s inequal-
ity would become Hélder’s inequality, and only riotous confusion would
result. The most practical rule — and the one used here — is simply to
use the traditional names. Nevertheless, from time to time, it may be
scientifically informative to examine the roots of those traditions.

EXERCISES

Exercise 1.1 (The 1-Trick and the Splitting Trick)
Show that for each real sequence aj,as,...,a, one has

a4 as+ - tan < vVn(d+ai+ - +a2)? (a)
and show that one also has
n n % n %
Sas (Llal?) (Llal) (b)
k=1 k=1 k=1

The two tricks illustrated by this simple exercise will be our constant
companions throughout the course. We will meet them in almost count-
less variations, and sometimes their implications are remarkably subtle.

Exercise 1.2 (Products of Averages and Averages of Products)

Suppose that p; > 0forall j =1,2,...,nand py +p2+---+p, = 1.
Show that if a; and b; are nonnegative real numbers that satisfy the
termwise bound 1 < a;b; for all j = 1,2,...,n, then one also has the
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aggregate bound for the averages,

1< {jﬁ:lpjaj}{ipjbj} (1.21)

This graceful bound is often applied with b; = 1/a;. It also has a subtle
complement which is developed much later in Exercise 5.8.

Exercise 1.3 (Why Not Three or More?)

Cauchy’s inequality provides an upper bound for a sum of pairwise
products, and a natural sense of confidence is all one needs to guess
that there are also upper bounds for the sums of products of three or
more terms. In this exercise you are invited to justify two prototypical
extensions. The first of these is definitely easy, and the second is not
much harder, provided that you do not give it more respect than it
deserves:

Exercise 1.4 (Some Help From Symmetry)

There are many situations where Cauchy’s inequality conspires with
symmetry to provide results that are visually stunning. Here are two
examples from a multitude of graceful possibilities.

(a) Show that for all positive x,y, z one has

1/2 1/2 1/2
5:<w_+y>/+(fc_+2)/+(y_+2)/ S~
r+y+z rT+y+z r+y+z

(b) Show that for all positive z,y, z one has

22 y2 22
rH+y+2<2 + + .
y+z xx+z xT+y

Exercise 1.5 (A Crystallographic Inequality with a Message)
Recall that f(z) = cos((z) satisfies the identity f?(z) = 3(1+ f(2z)),
and show that if ppy >0for 1 <k <nandp; +ps+---+p, =1 then

g(x) = Zpk cos(Bpx) satisfies g?(x) < %{1 +g(22)}.
k=1
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This is known as the Harker—Kasper inequality, and it has far-reaching
consequences in crystallography. For the theory of inequalities, there is
an additional message of importance; given any functional identity one
should at least consider the possibility of an analogous inequality for a
more extensive class of related functions, such as the class of mixtures
used here.

Exercise 1.6 (A Sum of Inversion Preserving Summands)
Suppose that p > 0 for 1 <k <nand p; +ps+---+p, =1. Show
that one has the bound

n

1\2
Z(pk+—) >n® 4+ 2n+1/n,
Pk

k=1
and determine necessary and sufficient conditions for equality to hold

here. We will see later (Exercise 13.6, p. 206), that there are analogous
results for powers other than 2.

Exercise 1.7 (Flexibility of Form)
Prove that for all real x, y, @ and 3 one has

(baz + ay + Bz + 3Py)*
< (502 + 203 + 368%) (522 + 2zy + 3y?). (1.22)

More precisely, show that the bound (1.22) is an immediate corollary
of the Cauchy—Schwarz inequality (1.16) provided that one designs a
special inner product (-,-) for the job.

Exercise 1.8 (Doing the Sums)

The effective use of Cauchy’s inequality often depends on knowing
a convenient estimate for one of the bounding sums. Verify the four
following classic bounds for real sequences:

oo

k 2
E apr” < ——— E a for 0 <z <1, a
il —W< ’“) = )

k=0
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z () < (2;)%@0@2)? "

Exercise 1.9 (Beating the Obvious Bounds)

Many problems of mathematical analysis depend on the discovery of
bounds which are stronger than those one finds with the direct appli-
cation of Cauchy’s inequality. To illustrate the kind of opportunity one
might miss, show that for any real numbers a;, j = 1,2...,n, one has
the bound

~—

2
4+

] 2
(=1)a;
1

aj
1

J

J

n

n

< (n+2) Za?.
j=1

Here the direct application of Cauchy’s inequality gives a bound with
2n instead of the value n + 2, so for large n one does better by a factor
of nearly two.

Exercise 1.10 (Schur’s Lemma — The R and C' Bound)

Show that for each rectangular array {c;x : 1 < j < m,1 < k < n},
and each pair of sequences {z; : 1 < j < m} and {yx : 1 <k < n}, we
have the bound

m n
chjkxjyk

j=1k=1

<m(§xj|2)1/2(§|yk|2)1/2 (1.23)

where R and C' are the row sum and column sum maxima defined by

n m
R= maxz lcjk| and C = maxz lcinl-
7 k=1 Foia
This bound is known as Schur’s Lemma, but, ironically, it may be the
second most famous result with that name. Nevertheless, this inequality
is surely the single most commonly used tool for bounding a quadratic
form. One should note in the extreme case when n =m, cj, =0 j # k,
and ¢;; = 1 for 1 < j < n, Schur’s Lemma simply recovers Cauchy’s
inequality.

Exercise 1.11 (Schwarz’s Argument in an Inner Product Space)
Let v and w be elements of the inner product space (V,(:,-)) and
consider the quadratic polynomial defined for ¢t € R by

p(t) = (v+itw,v +tw).



16 Starting with Cauchy

Observe that this polynomial is nonnegative and use what you know
about the solution of the quadratic equation to prove the inner product
version (1.16) of Cauchy’s inequality. Also, examine the steps of your
proof to establish the conditions under which the case of equality can
apply. Thus, confirm that Schwarz’s argument (page 11) applies almost
without change to prove Cauchy’s inequality for a general inner product.

Exercise 1.12 (Example of a Self-generalization)

Let (-,-) denote an inner product on the vector space V' and suppose
that x1,%9,...,x, and yi1,y2,...,¥, are sequences of elements of V.
Prove that one has the following vector analog of Cauchy’s inequality:

En:(xj,yj) < (i(xj,xﬁ);(i(yj,yj))%. (1.24)

Jj=1 Jj=1 Jj=1

Note that if one takes m = 1, then this bound simply recaptures the
Cauchy—Schwarz inequality for an inner product space, while, if one
keeps n general but specializes the vector space V' to be R with the trivial
inner product (x,y) = zy, then the bound (1.24) simply recaptures the
plain vanilla Cauchy inequality.

Exercise 1.13 (Application of Cauchy’s Inequality to an Array)
Show that if {ajx : 1 <j <m, 1 <k <n}is an array of real numbers
then one has

Z(Zaﬂf) +”Z(Z@jk) <iiajk)2+mn§:ia§k.

j=1k=1 j=1k=1

Moreover, show that equality holds here if and only if there exist a;; and
B such that ajr =a; + B forall 1 <j<mand 1<k <n.

Exercise 1.14 (A Cauchy Triple and Loomis—Whitney)

Here is a generalization of Cauchy’s inequality that has as a corollary
a discrete version of the Loomis—Whitney inequality, a result which in
the continuous case provides a bound on the volume of a set in terms
of the volumes of the projections of that set onto lower dimensional
subspaces. The discrete Loomis—Whitney inequality (1.26) was only
recently developed, and it has applications in information theory and
the theory of algorithms.

(a) Show that for any nonnegative a;;, bjk, cx; with 1 < 4,5,k < n one
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— 1@ Here we have a set A

with cardinality |A| = 27
with projections that satisfy
Ae] = 4, = AL = 9.

= —

Fig. 1.1. The discrete Loomis—Whitney inequality says that for any collection
A of points in R® one has 4| < |Az|%|Ay|%|AZ|%. The cubic arrangement
indicated here suggests the canonical situation where one finds the case of
equality in the bound.

has the triple product inequality

n L1 n % n % n %

> aheh <Y a} { T o) [Tl am
i,j,k=1 i,j=1 j,k=1 ki=1

(b) Let A denote a finite set of points in Z* and let 4,, 4,, A, denote
the projections of A onto the corresponding coordinate planes that are
orthogonal to the z, y, or z-axes. Let |B| denote the cardinality of a set
B C 7Z? and show that the projections provide an upper bound on the
cardinality of A:

Al < |A,]3|Ay|3]AL)5. (1.26)

Exercise 1.15 (An Application to Statistical Theory)
If p(k;0) > 0 for all k € D and 0 € © and if

Z p(k; ) =1 for all 0 € ©, (1.27)
keD
then for each § € © one can think of My = {p(k;0) : k € D} as
specifying a probability model where p(k;0) represents the probability

that we “observe k” when the parameter 6 is the true “state of nature.”
If the function g : D — R satisfies

> g(k)p(k;0) =0 forall 6 € ©, (1.28)

keD

then ¢ is called an unbiased estimator of the parameter . Assuming
that D is finite and p(k;0) is a differentiable function of 6, show that
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one has the lower bound
> (g(k) — 0)*p(k;0) > 1/1(6) (1.29)
keD

where [ : © — R is defined by the sum

2
110) = 3 {pat00)/o(ks) } ol5:0), (1.30)
keD

where pg(k;0) = Op(k;0)/00. The quantity defined by the left side of
the bound (1.29) is called the variance of the unbiased estimator g, and
the quantity I(6) is known as the Fisher information at 6 of the model
M. The inequality (1.29) is known as the Cramér—Rao lower bound,
and it has extensive applications in mathematical statistics.
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Cauchy’s Second Inequality:
The AM-GM Bound

Our initial discussion of Cauchy’s inequality pivoted on the application
of the elementary real variable inequality

2 2
xy < % + y? for all z,y € R, (2.1)

and one may rightly wonder how so much value can be drawn from a
bound which comes from the trivial observation that (z —y)? > 0. Is it
possible that the humble bound (2.1) has a deeper physical or geometric
interpretation that might reveal the reason for its effectiveness?

For nonnegative x and y, the direct term-by-term interpretation of
the inequality (2.1) simply says that the area of the rectangle with sides
x and y is never greater than the average of the areas of the two squares
with sides x and y, and although this interpretation is modestly interest-
ing, one can do much better with just a small change. If we first replace
x and y by their square roots, then the bound (2.1) gives us

4/xy < 2z + 2y for all nonnegative x # vy, (2.2)

and this inequality has a much richer interpretation.

Specifically, suppose we consider the set of all rectangles with area A
and side lengths = and y. Since A = zy, the inequality (2.2) tells us that
a square with sides of length s = /Ty must have the smallest perimeter
among all rectangles with area A. Equivalently, the inequality tells us
that among all rectangles with perimeter p, the square with side s = p/4
alone attains the maximal area.

Thus, the inequality (2.2) is nothing less than a rectangular version of
the famous isoperimetric property of the circle, which says that among
all planar regions with perimeter p, the circle of circumference p has the
largest area. We now see more clearly why 2y < x2/2 + 3?/2 might be

19
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powerful; it is part of that great stream of results that links symmetry
and optimality.

FROM SQUARES TO n-CUBES

One advantage that comes from the isoperimetric interpretation of
the bound /zy < (x + y)/2 is the boost that it provides to our intu-
ition. Human beings are almost hardwired with a feeling for geometri-
cal truths, and one can easily conjecture many plausible analogs of the
bound /zy < (x +y)/2 in two, three, or more dimensions.

Perhaps the most natural of these analogs is the assertion that the
cube in R? has the largest volume among all boxes (i.e., rectangular
parallelepipeds) that have a given surface area. This intuitive result is
developed in Exercise 2.9, but our immediate goal is a somewhat different
generalization — one with a multitude of applications.

A box in R™ has 2™ corners, and each of those corners is incident to
n edges of the box. If we let the lengths of those edges be a1, a9, ..., ay,
then the same isoperimetric intuition that we have used for squares and
cubes suggests that the n-cube with edge length S/n will have the largest
volume among all boxes for which a3 + a3 + -+ 4+ a, = S. The next
challenge problem offers an invitation to find an honest proof of this
intuitive claim. It also recasts this geometric conjecture in the more
common analytic language of arithmetic and geometric means.

Problem 2.1 (Arithmetic Mean-Geometric Mean Inequality)
Show that for every sequence of nonnegative real numbers ay, az, ..., an

one has

(&1(12"'an)1/n < a1+a22...+an. (2.3)

FroM CONJECTURE TO CONFIRMATION

For n = 2, the inequality (2.3) follows directly from the elementary
bound /2y < (x + y)/2 that we have just discussed. One then needs
just a small amount of luck to notice (as Cauchy did long ago) that the
same bound can be applied twice to obtain

(alag)% + (a3a4)% < +as+as+ay
2 - 4 '

This inequality confirms the conjecture (2.3) when n = 4, and the new

bound (2.4) can be used again with /zy < (z +¥)/2 to find that

(a1a2a3a4)% < (2.4)

(a1a2a3a4)% + (a5a5a7a8)i < a1 +ag + -+ +ag
2 - ) )

(a1a2 . ..ag)% <
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which confirms the conjecture (2.3) for n = 8.
Clearly, we are on a roll. Without missing a beat, one can repeat this
argument k times (or use induction) to deduce that

(arag - - G/Qk)l/Zk <(ag+as+ -+ Clzk)/Qk forall k > 1. (2.5)

The bottom line is that we have proved the target inequality for all
n = 2% and all one needs now is just some way to fill the gaps between
the powers of two.

The natural plan is to take an n < 2* and to look for some way to use
the n numbers a1, as,...,a, to define a longer sequence oy, as, ..., Qgk
to which we can apply the inequality (2.5). The discovery of an effective
choice for the values of the sequence {«;} may call for some exploration,
but one is not likely to need too long to hit on the idea of setting a;; = a;
for 1 <i < n and setting

a a e a
a; = 1Lt 2; Jr”zA for n < i < 2k;

in other words, we simply pad the original sequence {a; : 1 < i < n} with
enough copies of the average A to give us a sequence {a; : 1 < i < 2F}
that has length equal to 2.

The average A is listed 2¥ —n times in the padded sequence {a;}, so,
when we apply inequality (2.5) to {«;}, we find

2k = =4
Now, if we clear the powers of A to the right-hand side, then we find

(a1a2 e an)1/2k S An/2k,

,
{a1a2_._a _Azkn}l/z < a1 +az+--+a, + (2" —n)A  2FA

and, if we then raise both sides to the power 2% /m, we come precisely to
our target inequality,

ar+az+---+an

(a1a2...an)1/n < -

(2.6)

A SELF-GENERALIZING STATEMENT

The AM-GM inequality (2.6) has an instructive self-generalizing qual-
ity. Almost without help, it pulls itself up by the bootstraps to a new
result which covers cases that were left untouched by the original. Under
normal circumstances, this generalization might seem to be too easy to
qualify as a challenge problem, but the final result is so important the
problem easily clears the hurdle.
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Problem 2.2 (The AM-GM Inequality with Rational Weights)

Suppose that p1,pa, ..., pn are nonnegative rational numbers that sum
to one, and show that for any nonnegative real numbers ay,as,...,a,
one has

ai*ab® ---abr < praj +paas + -+ pran. (2.7)

Once one asks what role the rationality of the p; might play, the
solution presents itself soon enough. If we take an integer M so that for
each j we can write p; = k;/M for an integer k;, then one finds that the
ostensibly more general version (2.7) of the AM-GM follows from the
original version (2.3) of the AM-GM applied to a sequence of length M
with lots of repetition. One just takes the sequence with k; copies of a;
for each 1 < j < n and then applies the plain vanilla AM-GM inequality
(2.3); there is nothing more to it, or, at least there is nothing more if we
attend strictly to the stated problem.

Nevertheless, there is a further observation one can make. Once the
result (2.7) is established for rational values, the same inequality follows
for general values of p; “just by taking limits.” In detail, we first choose
a sequence of numbers p;(t), 7 = 1,2,...,n and t = 1,2,... for which
we have

pj(t) >0, lej(t) =1, and tli)rgopj(t) =Dj-
j=

One then applies the bound (2.7) to the n-tuples (p1(t), p2(t), ..., pn(t)),
and, finally, one lets n go to infinity to get the general result.

The technique of proving an inequality first for rationals and then
extending to reals is often useful, but it does have some drawbacks. For
example, the strictness of an inequality may be lost as one passes to a
limit so the technique may leave us without a clear understanding of
the case of equality. Sometimes this loss is unimportant, but for a tool
as fundamental as the general AM-GM inequality, the conditions for
equality are important. One would prefer a proof that handles all the
features of the inequality in a unified way, and there are several pleasing
alternatives to the method of rational approximation.

Pérya’s DREAM AND A PATH OF REDISCOVERY

The AM-GM inequality turns out to have a remarkable number of
proofs, and even though Cauchy’s proof via the imaginative leap-forward
fall-back induction is a priceless part of the world’s mathematical in-
heritance, some of the alternative proofs are just as well loved. One
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e=271828--- ¢
4/_'1 I 5 §)

Fig. 2.1. The line y = 1+ z is tangent to the curve y = ¢” at the point x = 0,
and the line is below the curve for all z € R. Thus, we have 1 + z < e” for
all x € R, and, moreover, the inequality is strict except when x = 0. Here
one should note that the y-axis has been scaled so that e is the unit; thus, the
divergence of the two functions is more rapid than the figure may suggest.

particularly charming proof is due to George Pélya who reported that
the proof came to him in a dream. In fact, when asked about his proof
years later Polya replied that it was the best mathematics he had ever
dreamt.

Like Cauchy, Pdlya begins his proof with a simple observation about a
nonnegative function, except Pélya calls on the function z — e® rather
than the function z — 2. The graph of y = e® in Figure 2.1 illustrates
the property of y = e® that is the key to Pdlya’s proof; specifically, it
shows that the tangent line y = 1 4+ x runs below the curve y = €%, so
one has the bound

1+x<e” for all z € R. (2.8)

Naturally, there are analytic proofs of this inequality; for example, Ex-
ercise 2.2 suggests a proof by induction, but the evidence of Figure 2.1
is all one needs to move to the next challenge.

Problem 2.3 (The General AM-GM Inequality)
Take the hint of exploiting the exponential bound, and discover Pdlya’s
proof for yourself; that is, show that the inequality (2.8) implies that

P1 P2
aytas? - abt < pray +pagg + -+ ppan (2.9)
for nonnegative real numbers ay, as, ..., a, and each sequence p1,pa, ..., Pn

of positive real numbers which sums to one.
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In the AM-GM inequality (2.9) the left-hand side contains a product
of terms, and the analytic inequality 1+ = < e” stands ready to bound
such a product by the exponential of a sum. Moreover, there are two
ways to exploit this possibility; we could write the multiplicands aj in
the form 1+ and then apply the analytic inequality (2.8), or we could
modify the inequality (2.8) so that its applies directly to the ag. In
practice, one would surely explore both ideas, but for the moment, we
will focus on the second plan.

If one makes the change of variables x — x — 1, then the exponential
bound (2.8) becomes

r<e” ! for all z € R, (2.10)
and if we apply this bound to the multiplicands ax, k = 1,2, ..., we find
ap <e™ 1 and alF < ePrRTPE,

p1 P2

When we take the product we find that the geometric mean ay'ay” - - - ab»
is bounded above by

R(ay,aq,...,a,) = exp ({ Zpkak} — 1) (2.11)

We may be pleased to know that the geometric mean G = a}'ab? - - - al»

is bounded by R, but we really cannot be too thrilled until we understand
how R compares with the arithmetic mean

A =piar +peas + -+ ppan,
and this is where the problem gets interesting.

A MODEST PARADOX

When we ask ourselves about a possible relation between A and R,
one answer comes quickly. From the bound A < e“~! one sees that R
is also an upper bound on the arithmetic mean A, so, all in one package,
we have the double bound

p1 pz c-aPr ) praj + paas +"'+Pnan}

gexp<{§pkak}1). .

k=1

max{a

This inequality inequality now presents us with a task which is at least
a bit paradoxical. Can it really be possible to establish an inequality
between two quantities when all one has is an upper bound on their
maximum?
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MEETING THE CHALLENGE

While we might be discouraged for a moment, we should not give
up too quickly. We should at least think long enough to notice that the
bound (2.12) does provide a relationship between A and G in the special
case when one of the two maximands on the left-hand side is equal to the
term on the right-hand side. Perhaps we can exploit this observation.

Once this is said, the familiar notion of normalization is likely to come
to mind. Thus, if we consider the new variables oy, kK = 1,2,...,n,
defined by the ratios

ay

ap = —r where A = piaj + p2az + - + ppan,

and if we apply the bound (2.11) to these new variables, then we find

(a_/;y“ <E> (ﬂ < exp ({sz} _ 1) Y

After we clear the multiples of A to the right side and recall that one
has p; +p2 + - - - + pp, = 1, we see that the proof of the general AM-GM
inequality (2.9) is complete.

A FIrST LOOK BACK

When we look back on this proof of the AM-GM inequality (2.9),
one of the virtues that we find is that it offers us a convenient way to
identify the circumstances under which we can have equality; namely, if
we examine the first step we see that we have

a—; < elar/A)-1 unless aZk =1, (2.13)

and we always have

Ak o glar/a)-1
1 S

so we see that one also has

a )" ()" ()" Xn: Bl _q) =1, (214)
o1 =2 U (i X ELU 1) = )
0 1 " p kilpk 1 ,
unless ay = A for all kK = 1,2,...,n. In other words, we find that one
has equality in the AM-GM inequality (2.9) if and only if

a] = Qa2 = - = ddnp.

Looking back, we also see that the two lines (2.13) and (2.14) actually
contain a full proof of the general AM-GM inequality. One could even
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argue with good reason that the single line (2.13) is all the proof that
one really needs.

A LoNGER LoOK BACK

This identification of the case of equality in the AM-GM bound may
appear to be only an act of convenient tidiness, but there is much more
to it. There is real power to be gained from understanding when an
inequality is most effective, and we have already seen two examples of
the energy that may be released by exploiting the case of equality.

When one compares the way that the AM-GM inequality was ex-
tracted from the bound 14+ < e* with the way that Cauchy’s inequality
was extracted from the bound xy < x2/2 + y?/2, one may be struck by
the effective role played by normalization — even though the normaliza-
tions were of quite different kinds. Is there some larger principle afoot
here, or is this just a minor coincidence?

There is more than one answer to this question, but an observation
that seems pertinent is that normalization often helps us focus the appli-
cation of an inequality on the point (or the region) where the inequality
is most effective. For example, in the derivation of the AM-GM inequal-
ity from the bound 1 + x < €%, the normalizations let us focus in the
final step on the point x = 0, and this is precisely where 1 + x < €
is sharp. Similarly, in the last step of the proof of Cauchy’s inequality
for inner products, normalization essentially brought us to the case of
x =y = 1 in the two variable bound 2y < x2/2 + y?/2, and again this
is precisely where the bound is sharp.

These are not isolated examples. In fact, they are pointers to one of
the most prevalent themes in the theory of inequalities. Whenever we
hope to apply some underlying inequality to a new problem, the success
or failure of the application will often depend on our ability to recast
the problem so that the inequality is applied in one of those pleasing
circumstances where the inequality is sharp, or nearly sharp.

In the cases we have seen so far, normalization helped us reframe
our problems so that an underlying inequality could be applied more
efficiently, but sometimes one must go to greater lengths. The next
challenge problem recalls what may be one of the finest illustrations of
this fight in all of the mathematical literature; it has inspired generations
of mathematicians.
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PoLyA’s COACHING AND CARLEMAN’S INEQUALITY

In 1923, as the first step in a larger project, Torsten Carleman proved a
remarkable inequality which over time has come to serve as a benchmark
for many new ideas and methods. In 1926 George Pdlya gave an elegant
proof of Carleman’s inequality that depended on little more than the
AM-GM inequality.

The secret behind Pdlya’s proof was his reliance on the general prin-
ciple that one should try to use an inequality where it is most effective.
The next challenge problem invites you to explore Carleman’s inequality
and to see if with a few hints you might also discover Pélya’s proof.

Problem 2.4 (Carleman’s Inequality)
Show that for each sequence of positive real numbers ay,as, ... one has
the inequality

Z(alaguﬂk)l/k < eZak, (2.15)
k=1 k=1

where e denotes the natural base 2.71828 . . ..

Our experience with the series version of Cauchy’s inequality suggests
that a useful way to approach a quantitative result such as the bound
(2.15) is to first consider a simpler qualitative problem such as showing

Zak <oo = Z(alag ap) YR < oo (2.16)
k=1 k=1

Here, in the natural course of events, one would apply the AM-GM
inequality to the summands on the right, do honest calculations, and
hope for good luck. This plan leads one to the bound
n n 1 k
. 1/ k -
D _(@maz- - kz_: z E::

k=1

3

and — with no great surprise — we find that the plan does not work. As
n — oo our upper bound diverges, and we find that the naive application
of the AM-GM inequality has left us empty-handed.

Naturally, this failure was to be expected since this challenge problem
is intended to illustrate the principle of mazimal effectiveness whereby
we conspire to use our tools under precisely those circumstances when
they are at their best. Thus, to meet the real issue, we need to ask
ourselves why the AM-GM bound failed us and what we might do to
overcome that failure.
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PURSUIT OF A PRINCIPLE

By the hypothesis on the left-hand side of the implication (2.16), the
sum aq +ao +- -+ converges, and this modest fact may suggest the likely
source of our difficulties. Convergence implies that in any long block
ai,as,...,a, there must be terms that are “highly unequal,” and we
know that in such a case the AM-GM inequality can be highly inefficient.
Can we find some way to make our application of the AM-GM bound
more forceful? More precisely, can we direct our application of the AM-
GM bound toward some sequence with terms that are more nearly equal?

Since we know very little about the individual terms, we do not know
precisely what to do, but one may well not need long to think of mul-
tiplying each aj by some fudge factor c¢; which we can try to specify
more completely once we have a clear understanding of what is really
needed. Naturally, the vague aim here is to find values of ¢; so that the
sequence of products cjai, caas, . .. will have terms that are more nearly
equal than the terms of our original sequence. Nevertheless, heuristic
considerations carry us only so far. Ultimately, honest calculation is our
only reliable guide.

Here we have the pleasant possibility of simply repeating our earlier
calculation while keeping our fingers crossed that the new fudge factors
will provide us with useful flexibility. Thus, if we just follow our nose
and calculate as before, we find

o0 o0 1/k
Ok (arcrages - - - apcy)
Z ajag -+ = Z (0102 . Ck)l/k
k=1 k=1
oo
< Z a1c] + agC2 + -+ + agcg
= 1/k
Pt k(ciea -+ ck)
oo

:Z_: %Z oo o7 (2.17)

and here we should take a breath. From this formula we see that the
proof of the qualitative conjecture (2.16) will be complete if we can find
some choice of the factors cg, k = 1,2, ... such that the sums

Sk —ckz e e k=1,2,.... (2.18)

form a bounded sequence.
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NECESSITY, POSSIBILITY, AND COMFORT

The hunt for a suitable choice of the ¢, can take various directions,
but, wherever our compass points, we eventually need to estimate the
sum si. We should probably try to make this task as easy as possible,
and here we are perhaps lucky that there are only a few series with tail
sums that we can calculate. In fact, almost all of these come from the

telescoping identity
Sl
bj  bjy1 by

=k

that holds for all real monotone sequences {b; : 1,2,...} with b; — occ.
Among the possibilities offered by this identity, the simplest choice is
surely given by

;M;{JM}IC (2.19)

and, when we compare the sums (2.18) and (2.19), we see that s, may
be put into the simplest form when we define the fudge factors by the
implicit recursion

(crcg---c)) P =j4+1  forj=1,2,.... (2.20)

This choice gives us a short formula for sy,

k
Sk = ¢, Z (erea- 1/] = ¢y, Z , (2.21)

and all we need now is to estimate the size of ¢.

THE END OF THE TRAIL
Fortunately, this estimation is not difficult. From the implicit recur-
sion (2.20) for ¢; applied twice we find that

c162 - ¢y 1 =41 and 0162"'Cj:(j+1)j,

so division gives us the explicit formula

Gy 1\’

From this formula and our original bound (2.17) we find

o0

[e's) k
1
Y (araz - a)E < (1 + E) ks (2.22)
k=1

k=1
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and this bound puts Carleman’s inequality (2.15) in our grasp. In fact,
the bound (2.22) is even a bit stronger than Carleman’s inequality since
setting z = 1/k in the familiar analytic bound 1 + z < €® implies that

(1+1/k) <e  forallk=1,2,....

EFFICIENCY AND THE CASE OF EQUALITY

There is more than a common dose of accidental elegance in Pdlya’s
proof of Carleman’s inequality, and some care must be taken not to
lose track of the central idea. The insight to be savored is that there
are circumstances where one may greatly improve the effectiveness of
an inequality simply by restructuring the problem so that the inequal-
ity is applied in a situation that is close to the critical case of equality.
Pélya’s proof of Carleman’s inequality illustrates this idea with excep-
tional charm, but there are many straightforward situations where its
effect is just as great.

WHO WAS GEORGE POLYA?

George Pdlya (1887-1985) was one of the most influential mathemati-
cians of the 20th century, but his most enduring legacy may be the
insight he passed on to us about teaching and learning. Pdlya saw the
process of problem solving as a fundamental human activity — one filled
with excitement, creativity, and the love of life. He also thought hard
about how one might become a more effective solver of mathematical
problems and how one might coach others to do so.

Pélya summarized his thoughts in several books, the most famous
of which is How to Solve It. The central premise of Pdélya’s text is
that one can often make progress on a mathematical problem by asking
certain general common sense questions. Many of Pélya’s questions may
seem obvious to a natural problem solver — or to anyone else — but,
nevertheless, the test of time suggests that they possess considerable
wisdom.

Some of the richest of Pdlya’s suggestions may be repackaged as the
modestly paradoxical question: “What is the simplest problem that you
cannot solve?” Here, of course, the question presupposes that one al-
ready has some particular problem in mind, so this suggestion is perhaps
best understood as shorthand for a longer list of questions which would
include at least the following;:

e “Can you solve your problem in a special case?”
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e “Can you relate your problem to a similar one where the answer is
already known?” and

e “Can you compute anything at all that is related to what you would
really like to compute?”

Every reader is encouraged to experiment with Pélya’s questions while
addressing the exercises. Perhaps no other discipline can contribute
more to one’s effectiveness as a solver of mathematical problems.

EXERCISES

Exercise 2.1 (More from Leap-forward Fall-back Induction)
Cauchy’s leap-forward, fall-back induction can be used to prove more
than just the AM-GM inequality; in particular, it can be used to show
that Cauchy’s inequality for n = 2 implies the general result. For exam-
ple, by Cauchy’s inequality for n = 2 applied twice, one has
a1b1 + az2bs + asbs + asby

= {(llbl + a2b2} + {(lgbg + (l4b4}

< (aF +a3)E (0 + 03)% + (af +a})? (85 + 0’

< (a?+ad+ad+a2)z (b2 + b3+ b2 +b3)2,
which is Cauchy’s inequality for n = 4. Extend this argument to obtain
Cauchy’s inequality for all n = 2¥ and consequently for all n. This may

be the method by which Cauchy discovered his famous inequality, even
though in his textbook he chose to present a different proof.

Exercise 2.2 (Bernoulli and the Exponential Bound)
Pélya’s proof of the AM-GM inequality used the analytic bound

1+ax<e” for all z € R, (2.23)
which is closely related to an inequality of Jacob Bernoulli (1654-1705),
1+ne<(1+az)" for all z € [-1,00) and all n = 1,2,.... (2.24)

Prove Bernoulli’s inequality (2.24) by induction and show how it may
be used to prove that 1 + z < e® for all x € R. Finally, by calculus or
by other means, prove one of the more general versions of Bernoulli’s
inequality suggested by Figure 2.2; for example, prove that

1+pr<(1+z)? for all z > —1 and all p > 1. (2.25)
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y=(1+=)", p>1

g=1 | y=(1+4+2)? 0<p<l1
y=0
z=-1 z=0

Fig. 2.2. The graph of y = (1 + z)? suggests a variety of relationships, each
of which depends on the range of x and the size of p. Perhaps the most useful
of these is Bernoulli’s inequality (2.25) where one has p > 1 and z € [—1, 00).

Exercise 2.3 (Bounds by Pure Powers)

In the day-to-day work of mathematical analysis, one often uses the
AM-GM inequality to bound a product or a sum of products by a simpler
sum of pure powers. Show that for positive x,y, «, and 8 one has

«

and, for a typical corollary, show that one also has the more timely
bound 22004y + 712004 < 52005 4 42005

Exercise 2.4 (A Canadian Challenge)
Participants in the 2002 Canadian Math Olympiad were asked to
prove the bound
3 8 3

a
a+b+c< —+—+—
bc  ac ab

and to determine when equality can hold. Can you meet the challenge?

Exercise 2.5 (A Bound Between Differences)

Show that for nonnegative x and y and integer n one has

n(z —y)(zy) "2 <2y (2.27)
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The Geometry of the
Geometric Mean

a b
A B C

Fig. 2.3. The AM-GM inequality as Euclid could have imagined it. The circle
has radius (a 4+ b)/2 and the triangle’s height h cannot be larger. Therefore if
one proves that h = v/ab one has a geometric proof of the AM-GM for n = 2.

Exercise 2.6 (Geometry of the Geometric Mean)

There is indeed some geometry behind the definition of the geomet-
ric mean. The key relations were known to Euclid, although there is
no evidence that Fuclid specifically considered any inequalities. By ap-
pealing to the geometry of Figure 2.3 prove that h = v/ab and thereby
automatically deduce that vab < (a + b)/2.

Exercise 2.7 (One Bounded Product Implies Another)
Show that for nonnegative x, y, and z one has the implication

l1<zyz = 8<(1+z)(1+4+y)(1+2). (2.28)

Can you also propose a generalization?

Exercise 2.8 (Optimality Principles for Products and Sums)
Given positive {ay : 1 < k < n} and positive ¢ and d, we consider the
maximization problem P,

max{x1Ty Ty : @121 + a2 + - + apT, = c},
and the minimization problem Ps,
min{a121 + asa + -+ + ATy : T1T2 - Ty = d}.

Show that for both of these problems the condition for optimality is given
by the relation

a1y = Az%2 = -+ = Apln. (2.29)

These optimization principles are extremely productive, and they can
provide useful guidance even when they do not exactly apply.
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Exercise 2.9 (An Isoperimetric Inequality for the 3-Cube)

Show that among all boxes with a given surface area, the cube has
the largest volume. Since a box with edge lengths a,b, and ¢ has surface
area A = 2ab+ 2ac 4 2bc and since a cube with surface area A has edge
length (A/6)'/2, the analytical task is to show

abe < (A/6)%/?

and to confirm that equality holds if and only if a = b = c.

Exercise 2.10 (Akerberg’s Refinement)

Show that for any nonnegative real numbers ay,as,...,a, and n > 2
one has the bound

a{a1+a2+"'+an—1}n1<{a1+a2+"‘+an}n (2.30)
n — . .
n—1 n

In a way, this relation is a refinement of the AM-GM inequality since the
AM-GM inequality follow immediately by iteration of the bound (2.30).
To prove the recurrence (2.30), one might first show that

nfl)

y(n—y =ny—y"<n-1 for all y > 0.

The key is then to make a wise choice of y.

Exercise 2.11 (Superadditivity of the Geometric Mean)

Show that for nonnegative a; and bg, 1 < k < n, one has

(1) (1) " < (fTw o)™

k=1

This inequality of H. Minkowski asserts that the geometric mean is a su-
peradditive function of its vector of arguments. Show that this inequality
follows from the AM-GM inequality and determine the circumstances
under which one can have equality.

For a generic hint, consider the possibility of dividing both sides by
the quantity on the right side. Surprisingly often one finds that an
inequality may become more evident if it is placed in a “standard form”
which asserts that a given algebraic quantity is bounded by one.



The AM-GM Inequality 35

y
1.0F y=x/e"?
0.8
Po P1

06 0.80 [ 0.471-- [ 1.824. .
0.4F 0.90 | 0.608--- | 1.531. -
0.2 . ) 0.95 | 0.712--- | 1.355. .-

y/p . . ,/pl N 0.99 | 0.684..- | 1.148-

0 0.5 1.0 1.5 2.0

Fig. 2.4. The curve y = x/e” "' helps us measure the extent to which the
individual terms of the averages must be squeezed together when the two
sides of the AM-GM bound have a ratio that is close to one. For example, if
we have y > 0.99, then we must have 0.694 < x < 1.149.

Exercise 2.12 (On Approximate Equality in the AM-GM Bound)

If the nonnegative real numbers aq,as,...,a, are all approximately
equal to a constant A, then it is easy to check that both the arithmetic
mean A and the geometric mean G are approximately equal. There are
several ways to frame a converse to this observation, and this exercise
considers an elegant method first proposed by George Pdlya.

Show that if one has the inequality

A-G
A

0< =e<1, (2.32)

then one has the bound
pog%gpl forall k=1,2,....n, (2.33)

where pg € (0,1] and p; € [1,00) are two the roots of the equation

x
As Figure 2.4 suggests, one key to this result is the observation that
the map = +— x/e”~! is monotone increasing on [0,1] and monotone
decreasing on [1, 00).
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25 Any n points inside the
.2 complex right half plane
\ ¥ 22 are contained in a symmetric
. 23 cone with central angle 2y
26 with 0 < ¢ < 7.
° 24
[ Yrirg

Fig. 2.5. The complex analog of the AM-GM inequality provides a nontrivial
bound on the product |z122 - - - z,|Y/™ provided that z;, j = 1,2,...,n are in
the interior of the right half-plane. The quality of the bound depends on the
central angle of the cone that contains the points.

Exercise 2.13 (An AM-GM Inequality for Complex Numbers)
Consider a set S of n complex numbers z1, 29, ..., 2, for which the
polar forms z; = pjewj satisfy the constraints

0<p;j<oo and 0<L |9 <y <m/2, 1<j<n.
As one sees in Figure 2.5, the spread in the arguments of the z; € S is
bounded by 2¢. Show that for such numbers one has the bound
1/n 1
(cos¢)|2122~--zn| §;|21+22+"'+2n‘. (2.35)

Here one should note that if the z;, j = 1,2,...,n are all real numbers,
then one can take ¢ = 0, in which case the bound (2.35) recaptures the
usual AM-GM inequality.

Exercise 2.14 (A Leap-Forward Fall-Back Tour de Force)
One can use Cauchy’s leap-forward fall-back method of induction to

prove that for all nonnegative x1, xo,...,x, and for all integer powers
n =1,2,... one has the bound
{x1+x2+---+xm}" R R P
m m

This is a special case of the power mean inequality which we develop
at length in Chapter 8, but here the focus is on mastery of technique.
This exercise leads to one of the more sustained applications of Cauchy’s
method that one is likely to meet.
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Lagrange’s Identity
and Minkowski’s Conjecture

The inductive proof of Cauchy’s inequality used the polynomial identity
(a% + a%)(b% + bg) = (a1b1 + a2b2)2 + (ale - a2b1)2, (31)

but that proof made no attempt to exploit this formula to the fullest.
In particular, we completely ignored the term (a1by — asb;)? except for
noting that it must be nonnegative. To be sure, any inequality must
strike a compromise between precision and simplicity, but no one wants
to be wasteful. Thus, we face a natural question: Can one extract any
useful information from the castaway term?

One can hardly doubt that the term (ajby — a2b1)2 captures some
information. At a minimum, it provides an explicit measure of the dif-
ference between the squares of the two sides of Cauchy’s inequality, so
perhaps it can provide a useful way to measure the defect that one incurs
with each application of Cauchy’s inequality.

The basic factorization (3.1) also tells us that for n = 2 one has
equality in Cauchy’s inequality exactly when (aiby — azb)? = 0; so,
assuming that (b1, bs) # (0,0), we see that we have equality if and only
if (a1,a2) and (by,bs) are proportional in the sense that

a1 = A\b; and as = A\by for some real \.

This observation has far-reaching consequences, and the first challenge
problem invites one to prove an analogous characterization of the case
of equality for the n-dimensional Cauchy inequality.

Problem 3.1 (On Equality in Cauchy’s Bound)

Show that if (by,ba,...,b,) # 0 then equality holds in Cauchy’s in-
equality if and only if there is a constant \ such that a; = Ab; for all
i=1,2,...,n. Also, as before, if you already know a proof of this fact,
you are invited to find a new one.

37
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PASSAGE TO A MORE GENERAL IDENTITY

Since the identity (3.1) provides a quick solution to Problem 3.1 when
n = 2, one way to try to solve the problem in general is to look for a
suitable extension of the identity (3.1) to n dimensions. Thus, if we in-
troduce the quadratic polynomial Q,, = Q,(a1,as,...,a,;b1,b2,...,b,)
that is given by the difference of the squares of the two sides of Cauchy’s
inequality, then @, equals

(a7 + a5+ +al)(b] + b5+ +bp) — (arby + agbs + -+ + anby)?,

and @, measures the “defect” in Cauchy’s inequality in n dimensions,
just like Q2 = (a1by — by ag)2 measures the defect in two dimensions. We
have already seen that Q2 can be written as the square of a polynomial,
and now the challenge is to see if there is an analogous representation
of @, as a square, or possibly as a sum of squares.

If we simply expand @,,, then we find that it can be written as

n n n n
Qn = Z Z a?b? — Z Z aibiajbj. (32)
i=1j=1 i=1j=1
As it sits, this formula may not immediately suggest any way to make
further progress. We could use a nice hint, and even though there is no
hint that always helps, there is a general principle that often provides
useful guidance: pursue symmetry.

SYMMETRY AS A HINT

In practical terms, the suggestion to pursue symmetry just means that
we should try to write our identity in a way that makes any symmetry
as clear as possible. Here, the symmetry between ¢ and j in the second
double sum is forceful and clear, yet the symmetrical role of ¢ and j in
first double sum is not quite as evident. To be sure, symmetry is there,
and we can make it stand out better if we rewrite @,, in the form

Qn = % zn: zn:(aflﬁ +alb?) — En: i aibja;b;. (3.3)

=1 j=1 i=1j=1
Now both double sums display transparent symmetry in ¢ and j, and
the new representation does suggest how to make progress; it almost
screams for us to bring the two double sums together, and once this is
done, one quickly finds the factorization

Qn = %zn:zn: {aZQb? - 2aibjajbi + G/?b?} = %En:f:(alb] — ajbi)2.

i=175=1 i=1j=1
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The whole story now fits into a single, informative, self-verifying line
known as Lagrange’s Identity:
nb2 "27’b21”"b b)? 34
aib; | = a; i — 5 aib; — a;o;)”. .
(L) =Ly st =33 Sen-ap Gy

Our path to this identity was motivated by our desire to understand
the nonnegative polynomial @, but, once the identity (3.4) is written
down, it is easily verified just by multiplication. Thus, we meet one of
the paradoxes of polynomial identities.

One should note that Cauchy’s inequality is an immediate corollary of
Lagrange’s identity, and, indeed, the proof that Cauchy chose to include
in his 1821 textbook was based on just this observation. Here, we went
in search of what became Lagrange’s identity (3.4) because we hoped it
might lead to a clear understanding of the case of equality in Cauchy’s
inequality. Along the way, we happened to find an independent proof of
Cauchy’s inequality, but we still need to close the loop on our challenge
problem.

EQUALITY AND A GAUGE OF PROPORTIONALITY

If (by,ba,...,b,) # 0, then there exist some by # 0, and if equality
holds in Cauchy’s inequality, then all of the terms on the right-hand side
of Lagrange’s identity (3.4) must be identically zero. If we consider just
the terms that contain b, then we find

a;by = apb; forall 1 <i<mn,
and, if we take A = ay /b, then we also have
ai:)\bi foralllgign.

That is, Lagrange’s identity tells us that for nonzero sequences one can
have equality in Cauchy’s inequality if and only if the two sequences are
proportional. Thus we have a complete and precise answer to our first
challenge problem.

This analysis of the case of equality underscores that the symmetric
form

Qn = % DD (aibj —asbi)?
i=1 j=1

has two useful interpretations. We introduced it originally as a measure
of the difference between the two sides of Cauchy’s inequality, but we
see now that it is also a measure of the extent to which the two vectors
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(a1,az,...,a,) and (by,bs,...,by,) are proportional. Moreover, Q,, is
such a natural measure of proportionality that one can well imagine a
feasible course of history where the measure @,, appears on the scene
before Cauchy’s inequality is conceived. This modest inversion of history
has several benefits; in particular, it lead one to a notable inequality of
E.A. Milne which is described in Exercise 3.8.

RoOTS AND BRANCHES OF LAGRANGE’S IDENTITY

Joseph Louis de Lagrange (1736-1813) developed the case n = 3 of
the identity (3.4) in 1773 in the midst of an investigation of the geom-
etry of pyramids. The study focused on questions in three-dimensional
space, and Lagrange did not mention that the corresponding results for
n = 2 were well known, even to the mathematicians of antiquity. In
particular, the two-dimensional version of the identity (3.4) was known
to the Alexandrian Greek mathematician Diophantus, or, at least one
can draw that inference from a problem that Diophantus included in his
textbook Arithmetica, a volume whose provenance can only be traced
to sometime between 50 A.D. and 300 A.D.

Lagrange and his respected predecessor Pierre de Fermat (1601-1665)
were quite familiar with the writings of Diophantus. In fact, much
of what we know today of Fermat’s discoveries comes to us from the
marginal comments that Fermat made in his copy of the Bachet trans-
lation of Diophantus’s Arithmetica. In just such a note, Fermat asserted
that for n > 3 the equation 2™ + y™ = 2™ has no solution in positive
integers, and he also wrote “I have discovered a truly remarkable proof
which this margin is too small to contain.”

As all the world knows now, this assertion eventually came to be
known as Fermat’s Last Theorem, or, more aptly, Fermat’s conjecture;
and for more than three centuries, the conjecture eluded the best efforts
of history’s finest mathematicians. The world was shocked — and at
least partly incredulous — when in 1993 Andrew Wiles announced that
he had proved Fermat’s conjecture. Nevertheless, within a year or so the
proof outlined by Wiles had been checked by the leading experts, and it
was acknowledged that Wiles had done the deed that many considered
to be beyond human possibility.

PERSPECTIVE ON A GENERAL METHOD

Our derivation of Lagrange’s identity began with a polynomial that
we knew to be nonnegative, and we then relied on elementary algebra
and good fortune to show that the polynomial could be written as a sum
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of squares. The resulting identity did not need long to reveal its power.
In particular, it quickly provided an independent proof of Cauchy’s in-
equality and a transparent explanation for the necessary and sufficient
conditions for equality.

This experience even suggests an interesting way to search for new,
useful, polynomial identities. We just take any polynomial that we know
to be nonnegative, and we then look for a representation of that poly-
nomial as a sum of squares. If our experience with Lagrange’s identity
provides a reliable guide, the resulting polynomial identity should have
a fair chance of being interesting and informative.

There is only one problem with this plan — we do not know any
systematic way to write a nonnegative polynomial as a sum of squares.
In fact, we do not even know if such a representation is always possible,
and this observation brings us to our second challenge problem.

Problem 3.2 Can one always write a nonnegative polynomial as a sum
of squares? That is, if the real polynomial P(xy,xa,...,x,) satisfies

P(zy,z9,...,2,) >0 for all (x1,22,...,2,) € R™,

can one find a set of s real polynomials Qp(x1, 2, ..., 2y,), 1 <k < s,
such that

P(x1,29,...,0,) = Q3 + Q3 +--- +Q*?

This problem turns out to be wonderfully rich. It leads to work that
is deeper and more wide ranging than our earlier problems, and, even
now, it continues to inspire new research.

A DEFINITIVE ANSWER — IN A SPEcCIAL CASE

As usual, one does well to look for motivation by examining some
simple cases. Here the first case that is not completely trivial occurs
when n = 1 and the polynomial P(z) is simply a quadratic az? + bz + ¢
with a # 0. Now, if we recall the method of completing the square that
one uses to derive the binomial formula, we then see that P(x) can be
written as

2
P(x):ax2+bx+c:a<x+2—ba>

dac —b?

—~, (3.5)

and this representation very nearly answers our question. We only need
to check that the last two summands may be written as the squares of
real polynomials.

If we consider large values of x, we see that P(x) > 0 implies that
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a > 0, and if we take g = —b/2a, then from the sum (3.5) we see that
P(zg) > 0 implies 4ac — b* > 0. The bottom line is that both terms on
the right-hand side of the identity (3.5) are nonnegative, so P(x) can be
written as Q? + Q% where Q1 and Q- are real polynomials which we can
write explicitly as

b2 — 4ac
2v/a

This solves our problem for quadratic polynomials of one variable, and

Q:(z)=a %(x+2b> and  Qs(z) =

even though the solution is simple, it is not trivial. In particular, the
identity (3.5) has some nice corollaries. For example, it shows that P(z)
is minimized when z = —b/2a and that the minimum value of P(x)
is equal to (4ac — b?)/4a — two useful facts that are more commonly
obtained by calculus.

EXPLOITING WHAT WE KNOW

The simplest nontrivial case of Lagrange’s identity is
(af + a3) (0] + b3) = (a1b1 + azb)? + (a1by — ashr)?,

and, since polynomials may be substituted for the reals in this formula,
we find that it provides us with a powerful fact: the set of polynomials
that can be written as the sum of squares of two polynomials is closed
under multiplication. That is, if P(z) = Q(x)R(z) where Q(x) and R(z)
have the representations

Q(x) = Q1(2) + Q3(x) and R(x) = Ri(x) + Ri(w),

then P(x) also has a representation as a sum of two squares. More
precisely, if we have

P(z) = Q(z)R(z) = (Qi(x) + Q3(2)) (R} (v) + R3(x)),

then P(x) can also be written as

{Q1(x)Ra(x) + Qa(2) Ro(2) }2+{Q1 (2)Ra(2) — Qu(2)By(2)}>. (3.6)

This identity suggests that induction may be of help. We have already
seen that a nonnegative polynomial of degree two can be written as a
sum of squares, so an inductive proof has no trouble getting started.
We should then be able to use the representation (3.6) to complete the
induction, once we understand how nonnegative polynomials can be fac-
tored.
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FACTORIZATION OF NONNEGATIVE POLYNOMIALS

Two cases now present themselves; either P(z) has a real root, or it
does not. When P(x) has a real root r with multiplicity m, we can write

P(x) = (x —r)™R(x) where R(r) # 0,

so, if we set x = r +¢, then we have P(r +¢€) = €™ R(r +¢€). Also, by the
continuity of R, there is a § such that R(r + €) has the same sign for all
e with |¢] < §. Since P(x) is always nonnegative, we then see that ™
has the same sign for all |e| < §, so m must be even. If we set m = 2k,
we see that

P(x) = Q*(@)R(z)  where Q(x) = ( — 1),

and, from this representation, we see that R(z) is also a nonnegative
polynomial. Thus, we have found a useful factorization for the case
when P(z) has a real root.

Now, suppose that P(x) has no real roots. By the fundamental theo-
rem of algebra, there is a complex root r, and since

0=P(r)  implies 0 = P(r) = P(7),

we see that the complex conjugate 7 is also a root of P. Thus, P has
the factorization

Pz) = (z —r)(z - 7)R(z) = Q(z)R(z).

The real polynomial Q(z) = (x — r)(xz — 7) is positive for large z, and
it has no real zeros, so it must be positive for all real x. By assump-
tion, P(x) is nonnegative, so we see that R(z) is also nonnegative. Thus,
again we find that any nonnegative polynomial P(x) with degree greater
than two can be written as the product of two nonconstant, nonnega-
tive polynomials. By induction, we therefore find that any nonnegative
polynomial in one variable can be written as the sum of the squares of
two real polynomials.

ONE VARIABLE DOWN — ONLY N VARIABLES TO GO

Our success with polynomials of one variable naturally encourages us
to consider nonnegative polynomials in two or more variables. Unfortu-
nately, the gap between the a one variable problem and a two variable
problem sometimes turns out to be wider than the Grand Canyon.

For polynomials in two variables, the zero sets {(z,y) : P(z,y) = 0}
are no longer simple discrete sets of points. Now they can take on a
bewildering variety of geometrical shapes that almost defy classification.
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After some exploration, we may even come to believe that there might
exist nonnegative polynomials of two variables that cannot be written
as the sum of squares of real polynomials. This is precisely what the
great mathematician Hermann Minkowski first suggested, and, if we are
to give full measure to the challenge problem, we will need to prove
Minkowski’s conjecture.

THE STRANGE POWER OF LIMITED POSSIBILITIES

There is an element of hubris to taking up a problem that defeated
Minkowski, but there are times when hubris pays off. Ironically, there are
even times when we can draw strength from the fact that we have very
few ideas to try. Here, for example, we know so few ways to construct
nonnegative polynomials that we have little to lose from seeing where
those ways might lead. Most of the time, such explorations just help
us understand a problem more deeply, but once in a while, a fresh,
elementary approach to a difficult problem can lead to a striking success.

WHAT ARE OUR OPTIONS?

How can we construct a nonnegative polynomial? Polynomials that
are given to us as sums of squares of real polynomials are always nonneg-
ative, but such polynomials cannot help us with Minkowski’s conjecture.
We might also consider the nonnegative polynomials that one finds by
squaring both sides of Cauchy’s inequality and taking the difference, but
Lagrange’s identity tells us that this construction is also doomed. Fi-
nally, we might consider those polynomials that the AM-GM inequality
tells us must be nonnegative. For the moment this is our only feasible
idea, so it obviously deserves a serious try.

THE AM-GM PLAN

We found earlier that nonnegative real numbers ai,as,...,a, must
satisfy the AM-GM inequality
ar+ag+ -+ ap

(araz - a,)'/" < " g (3.7)

and we can use this inequality to construct a vast collection of non-
negative polynomials. Nevertheless, if we do not want to get lost in
complicated examples, we need to limit our search to the very simplest
cases. Here, the simplest choice for nonnegative a; and ay are a; = 22
and as = y?; so, if we want to make the product ajasas as simple as

possible, we can take az = 1/2%y? so that ajasas just equals one. The
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AM-GM inequality then tells us that
1< %(:ﬂ +y? + 1/2%y?)
and, after the natural simplifications, we see that the polynomial
P(z,y) = z*y? + 2%y — 3222 + 1

is nonnegative for all choices of real x and y; thus, we find our first
serious candidate for such a polynomial that cannot be written in the
form

P(z,y) = Q3 (x,y) + Q3(x,y) + -+ + Q2 (z,y) (3.8)

for some integer s. Now we only need to find some way to argue that the
representation (3.8) is indeed impossible. We only have elementary tools
at our disposal, but these may well suffice. Even a modest exploration
shows that the representation (3.8) is quite confining.

For example, we first note that our candidate polynomial P(z,y) has
degree six, so none of the polynomials Q); can have degree greater than
three. Moreover, when we specialize by taking y = 0, we find

while by taking x = 0, we find

1=P(0,y) =Q7(0,y) + Q3(0,y) + - - + Q%(0,y),

so both of the univariate polynomials Q%(x,0) and Q%(0,y) must be
bounded. From this observation and the fact that each polynomial
Qk(x,y) has degree not greater than three, we see that they must be of
the form

Qr(z,y) = ar + bpxy + cpa®y + dpay® (3.9)

for some constants ag, by, cr, and dg.

Minkowski’s conjecture is now on the ropes; we just need to land a
knock-out punch. When we look back at our candidate P(x,y), we see
the striking feature that all of its coeflicients are nonnegative except for
the coefficient of x2y? which is equal to —3. This observation suggests
that we should see what one can say about the possible values of the
coefficient of z%y? in the sum Q3(z,y) + Q%(z,y) + -+ + Q3(z,y).

Here we have some genuine luck. By the explicit form (3.9) of the
terms Qr(x,y), 1 < k < s, we can easily check that the coefficient
of x2y? in the polynomial Q?(z,y) + Q3(x,y) + --- + Q?(x,y) is just
b? + b2 + --- + b2. Since this sum is nonnegative, it cannot equal —3,
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and, consequently, the nonnegative polynomial P(x,y) cannot be writ-
ten as a sum of squares of real polynomials. Remarkably enough, the
AM-GM inequality has guided us successfully to a proof of Minkowski’s
conjecture.

SOME PERSPECTIVE ON MINKOWSKI'S CONJECTURE

We motivated Minkowski’s conjecture by our exploration of Lagrange’s
identity, and we proved Minkowski’s conjecture by making good use of
the AM-GM inequality. This is a logical and instructive path. Never-
theless, it strays a long way from the historical record, and it may leave
the wrong impression.

While it is not precisely clear what led Minkowski to his conjecture, he
was most likely concerned at first with number theoretic results such as
the classic theorem of Lagrange which asserts that every natural number
may be written as the sum of four or fewer perfect squares. In any
event, Minkowski brought his conjecture to David Hilbert, and in 1888,
Hilbert published a proof of the existence of nonnegative polynomials
that cannot be written as a sum of the squares of real polynomials.
Hilbert’s proof was long, subtle, and indirect.

The first explicit example of a nonnegative polynomial that cannot be
written as the sum of the squares of real polynomials was given in 1967,
almost eighty years after Hilbert proved the existence of such polynomi-
als. The explicit example was discovered by T.S. Motzkin, and he used
precisely the same AM-GM technique described here.

HILBERT’S 17TH PROBLEM

In 1900, David Hilbert gave an address in Paris to the second Inter-
national Congress of Mathematicians which many regard as the most
important mathematical address of all time. In his lecture, Hilbert de-
scribed 23 problems which he believed to be worth the attention of the
world’s mathematicians at the dawn of the 20th century. The prob-
lems were wisely chosen, and they have had a profound influence on the
development of mathematics over the past one hundred years.

The 17th problem on Hilbert’s great list is a direct descendant of
Minkowski’s conjecture, and in this problem Hilbert asked if every non-
negative polynomial in n variables must have a representation as a sum
of squares of ratios of polynomials. This modification of Minkowski’s
problem makes all the difference, and Hilbert’s question was answered
affirmatively in 1927 by Emil Artin. Artin’s solution of Hilbert’s 17th
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problem is now widely considered to be one of the crown jewels of mod-
ern algebra.

EXERCISES

Exercise 3.1 (A Trigonometric Path to Discovery)
One only needs multiplication to verify the identity of Diophantus,

(a1b1 + a2b2)2 = (a? + ag)(b% + bg) — (albz - a2b1)2, (310)

yet multiplication does not suggest how such an identity might have
been discovered. Take the more inventive path suggested by Figure 3.1
and show that the identity of Diophantus is a consequence of the most
the famous theorem of all, the one universally attributed to Pythagoras
(circa 497 B.C.).

(a1,a2) The classic identity
1 = cos*(a+ B) +sin’(a + B)
permits one to deduce that
> (a2 + a3) (b3 + b3) equals
(a1b1 + azb2)? + (a1bz — azb1)>.

(b17 _bQ)

Fig. 3.1. In the right light, the identity (3.10) of Diophantus and the theorem
of Pythagoras can be seen to be fraternal twins, though one is algebraic and
the other geometric.

Exercise 3.2 (Brahmagupta’s Identity)

Brahmagupta (circa 600 A.D.) established an identity which shows
that for any integer D the product of two numbers which can be written
in the form a? — Db? with a,b € Z must be an integer of the same form.
More precisely, Brahmagupta’s identity says

(a? — DbV*)(a® — DB?) = (aa + DB)* — D(aB + ab)?.
(a) Prove Brahmagupta’s identity by evaluating the product

(a + bVD)(a — bWD)(a + VD) (o — BVD)
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in two different ways. Incidentally, the computation is probably more
interesting than you might guess.

(b) Can you modify the pattern used to prove Brahmagupta’s identity
to give another proof of the identity (3.10) of Diophantus?

Exercise 3.3 (A Continuous Analogue of Lagrange’s Identity)

Formulate and prove a continuous analogue of Lagrange’s identity.
Next, show that your identity implies Schwarz’s inequality and finally use
your identity to derive a necessary and sufficient condition for equality
to hold.

Exercise 3.4 (A Cauchy Interpolation)

Show for 0 < z < 1 and for any pair of real vectors (a1, as,...,ay)
and (b1, b, ..., b,) that the quantity

n n 2
[Saror 3 an
j=1

1<j<k<n

is bounded above by the product

n n

{zn:a?—kh > ajak}{zn:b +2a Y bjbk}. (3.11)
=1 j=1

1<j<k<n 1<j<k<n
The charm of this bound is that for x = 0 it reduces to Cauchy’s in-
equality and for x = 1 it reduces to the algebraic identity
{(ar+az+-- +an) (b +bz+-~-+bn)}2
= (a1 +ag+ -+ ap)*(by +by+---+by)2

Thus, we have an inequality that interpolates between two known results.

Exercise 3.5 (Monotonicity and a Ratio Bound)

Show that if f : [0,1] — (0, c0) is nonincreasing, then one has

Jo fvfz _h f2
1
Jozf ~ o
As a hint, one might consider the possibility of proving a Lagrange
type identity by beginning with a double integral on [0, 1] x [0, 1] whose
integrand is guaranteed to be positive by our monotonicity hypothesis.

(3.12)
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Exercise 3.6 (Monotonicity of the Product Defect)
Show that for a pair of monotone sequences 0 < a7 < ag < --- and
0 < by <by <--- the quantities defined by

Dn=n) ajb;—Y a;» b forn=12,. .. (3.13)
j=1 j=1  j=1

are also monotone nondecreasing. Specifically, show that for each integer
n=20,1,... one has D,, < D, 4.

Exercise 3.7 (The Four-Letter Identity via Polarization)
For any real numbers a;, b;,s; and t;, 1 < j < n, there is an identity
due independently to Binet and Cauchy which states that

n n n n

Zaijijtj —Zajijsjtj = Z (a]—bk —bjak)(sjtk—sktj).
j=1 j=1 j=1 j=1 1<j<k<n
This generalizes Lagrange’s identity, as one can check by setting s; = b;
and t; = a;, but it is much more informative to know that the Cauchy—
Binet identity may be obtained as a corollary of the much simpler result
of Lagrange.

In fact, the passage is quite straightforward, provided one knows how
to exploit the polarization transformation

Flu) v H{F 4 v) — flu—v)).

This transformation carries the function u — u? into the two-variable
function (u,v) — wwv, and it is devilishly effective at morphing identities
with squares into new ones where the squares are replaced by products.

To see how this works, check that the four-variable identity follows
from the two-variable Lagrange identity after two sequential polariza-
tions. To keep your calculation tidy, you may want to use the shorthand

a f
v 46
and the easily verified identity that follows from the definition (3.14),

’ = ad — By (3.14)

o B
N 5‘. (3.15)

a+a B
v+ 8

a
75+

This shorthand recalls the notation for the determinant of a two-by-two
matrix, but to solve this problem one does not need to know more about
determinants than the two self-evident relations (3.14) and (3.15).
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Exercise 3.8 (Milne and Gauges of Proportionality)
We have seen that the form

n n
Q= % DD (aib; —azby)?

i=1 j=1
provides a natural measure of proportionality for the pair of vectors
(a1,aa,...,a,) and (by,be,...,by,), but one can think of other measures
of proportionality that are just as reasonable. For example, if we restrict
our attention to vectors of positive terms, then one might equally well
use the self-normalized sum

R== ZZ b, ;)b) (3.16)

=17

Develop an identity containing R that will permit you to prove the
inequality of E.A. Milne:

S-S {Sa S} e
— — (a; +b;)
Jj=1 j=1 j=1

Next, use your identity to show that one has equality in the bound
(3.17) if and only if the vectors (a1,as,...,a,) and (b1, ba,...,b,) are
proportional. Incidentally, the bound (3.17) was introduced by Milne
in 1925 to help explain the biases inherent in certain measurements of
stellar radiation.
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On Geometry and Sums of Squares

John von Neumann once said, “In mathematics you don’t understand
things, you just get used to them.” The notion of n-dimensional space
is now an early entrant in the mathematical curriculum, and few of us
view it as particularly mysterious; nevertheless, for generations before
ours this was not always the case. To be sure, our experience with the
Pythagorean theorem in R? and R3 is easily extrapolated to suggest
that for two points x = (21, 22,...,24) and y = (y1,¥2,...,%q) in R?
the distance p(x,y) between x and y should be given by

p(x,y) =V (1 —21)2 + (y2 — 22)2 + -+ + (Ya — 2a)?, (4.1)

but, despite the familiarity of this formula, it still keeps some secrets.
In particular, many of us may be willing to admit to some uncertainty
whether it is best viewed as a theorem or as a definition.

With proper preparation, either point of view may be supported, al-
though the path of least resistance is surely to take the formula for
p(x,y) as the definition of the Euclidean distance in R?. Nevertheless,
there is a Faustian element to this bargain.

First, this definition makes the Pythagorean theorem into a bland
triviality, and we may be saddened to see our much-proved friend treated
so shabbily. Second, we need to check that this definition of distance
in R? meets the minimal standards that one demands of a distance
function; in particular, we need to check that p satisfies the so-called
triangle inequality, although, by a bit of luck, Cauchy’s inequality will
help us with this task. Third, and finally, we need to test the limits on
our intuition. Our experience with R? and R3 is a powerful guide, yet
it can also mislead us, and one does well to develop a skeptical attitude
about what is obvious and what is not.

Even though it may be a bit like having dessert before having dinner,

o1
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In R?, one places a unit circle in

each quadrant of the square [—2,2]°.

A non-overlapping circle of maximal

radius is then centered at the origin.

Fig. 4.1. This arrangement of 5 = 2% + 1 circles in [~2,2]* has a natural
generalization to an arrangement of 2% + 1 spheres in [—2,2]%. This general
arrangement then provokes a question which a practical person might find
perplexing — or even silly. Does the central sphere stay inside the box [—2, 2]d
for all values of d?

we will begin with the third task. This time the problem that guides us
is framed with the help of the arrangement of circles illustrated in Figure
4.1. This simple arrangement of 5 = 22 + 1 circles is not rich enough to
suggest any serious questions, but it has a d-dimensional analog which
puts our intuition to the test.

ON AN ARRANGEMENT IN R%

Consider the arrangement where for each of the 2¢ points denoted
by e = (e1,e2,...,¢eq) with ey, = 1 or e = —1 for all 1 < k < d, we
have a sphere Se with unit radius and center e. Each of these spheres
is contained in the cube [~2,2]? and, to complete the picture, we place
a sphere S(d) at the origin that has the largest possible radius subject
to the constraint that S(d) does not intersect the interior of any of the
initial collection of 2% unit spheres. We then ask ourselves a question
which no normal, sensible person would ever think of asking.

Problem 4.1 (Thinking Outside the Box)
Is the central sphere S(d) contained in the cube [—2,2]% for alld > 27

Just posing this question provides a warning that we should not trust
our intuition here. If we rely purely on our visual imagination, it may
even seem silly to suggest that S(d) might somehow expand beyond the
box [-2,2]?. Nevertheless, our visual imagination is largely rooted in
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our experience with R? and R?, and this intuition can easily fail us in
R?, d > 4. Instead, computation must be our guide.

Here we first note that for each of the 2¢ outside spheres the corre-
sponding center point e has distance v/d from the origin. Next, since
each outside sphere has radius 1, we see by subtraction that the radius of
the central sphere S(d) is equal to v/d — 1. Thus, we find that for d > 10
one has vd—1 > 2, and, yes, indeed, the central sphere actually extends
beyond the box [~2,2]¢. In fact, as d — oo the fraction of the volume
of the sphere that is inside the box even goes to zero exponentially fast.

REFINING INTUITION — FACING LIMITATIONS

When one shares this example with friends, there is usually a brief mo-
ment of awe, but sooner or later someone says, “Why should we regard
this as surprising? Just look how far away the point e = (e1,ea,...,€4)
is from the origin! Is it really any wonder that ....”. Such observations
illustrate how quickly (and almost subconsciously) we refine our intu-
ition after some experience with calculations. Nevertheless, if we accept
such remarks at face value, it is easy to become overly complacent about
the very real limitations on our physical intuition.

Ultimately, we may do best to take a hint from pilots who train them-
selves to fly safely through clouds by relying on instruments rather than
physical sensations. When we work on problems in R%, d > 4, we benefit
greatly from the analogy with R? and R3, but at the end of the day, we
must rely on computation rather than visual imagination.

MEETING THE MINIMAL REQUIREMENTS

The example of Figure 4.1 reminds us that intuition is fallible, but
even our computations need guidance. One way to seek help is to force
our problem into its simplest possible form, while striving to retain its
essential character. Thus, a complex model is often boiled down to a
simpler abstract model where we rely on a small set of rules, or axioms,
to help us express the minimal demands that must be met. In this way
one hopes to remove the influence of an overly active imagination, while
still retaining a modicum of control.

Our next challenge is to see how the Euclidean distance (4.1) might
pass through such a logical sieve. Thus, for a moment, we consider an
arbitrary set S and a function p : § x § — R that has the four following
properties:

(i) p(x,y) >0 for all x,y in S,
(ii) p(x,y) =0 if and only if x =y,
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(i) p(x,y) = p(y,x) for all x,y in S, and
(iv) p(x,y) < p(x,2) + p(z,y) for all x,y and z in S.

These properties are intended to reflect the rock-bottom minimal re-
quirements that p(-,-) must meet for us to be willing to think of p(x,y)
as the distance from x to y in S. A pair (5, p) with these properties
is called a metric space, and such spaces provide the simplest possible
setting for the study of problems that depend only on the notion of
distance.

When we look at the Euclidean distance p defined by the formula
(4.1), we see at a glance that properties (i)—(iii) are met. It is perhaps
less evident that property (iv) is also satisfied, but the next challenge
problem invites one to confirm this fact. The challenge is easily met,
yet along the way we will find a simple relationship between the triangle
inequality and Cauchy’s inequality that puts Cauchy’s inequality on a
new footing. Ironically, the aziomatic approach to Euclidean distance
adds greatly to the intuitive mastery of Cauchy’s inequality.

Problem 4.2 (Triangle Inequality for Euclidean Distance)
Show that the function p: R¢ x R — R defined by

p(x,y) = V(Y1 — 21)? + (g2 — 22)2 + - + (ya — 2a)? (4.2)

satisfies the triangle inequality

p(x,y) < p(x,2) + p(z,y) for all x,y and z in R%. (4.3)

To solve this problem, we first note from the definition (4.2) of p that
one has the translation property that p(x + w,y + w) = p(x,y) for all
w € R% thus, to prove the triangle inequality (4.3), it suffices to show
that for all u and v in R? one has

p(0,u+v) < p(0,u) + p(u,u+v) = p(0,u) + p(0,v). (4.4)

By squaring this inequality and applying the definition (4.2), we see that
the target inequality (4.3) is also equivalent to

d d d 1/2 . d 1/2 d
2 2 2
NUEEVED R PO IR DI D ot
j=1 j=1 j=1 j=1 j=1
and this in turn may be simplified to the equivalent bound

d d 1/2 , d 1/2
Z“j“j<{2“?} {ZU?} :
j=1

Jj=1 Jj=1
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Thus, in the end, one finds that the triangle inequality for the Euclidean
distance is equivalent to Cauchy’s inequality.

SOME NOTATION AND A MODEST (GENERALIZATION

The definition (4.2) of p can be written quite briefly with help from the
standard inner product (u, v) = ujvy +ugvg + - - - + uqvg, and, instead of
(4.2), one can simply write p(x,y) = (y — X,y — x)é. This observation
suggests a generalization of the Euclidean distance that turns out to
have far reaching consequences.

To keep the logic of the generalization organized in a straight line, we
begin with a formal definition. If V is a real vector space, such as R%,
we say that the function from V' to R™ defined by the mapping v — ||v||
is a norm on V provided that it satisfies the following properties:

(i) |Ivll =0 if and only if v = 0,
(ii) ||av|| = |a|||v]| for all @ € R, and
(iii) [[lu+v| < || + ||v|| for all u and v in V.

Also, if V is a vector space and || - || is a norm on V, then the couple
(VI - 1) is called a normed linear space. The arguments of the preced-
ing section can now be repeated to establish two related, but logically
independent, observations:

1

(I). If (V,(-,-)) is an inner product space, then ||v|| = (v,v)2 defines a
norm on V. Thus, to each inner product space (V, (-, -)) we can associate
a natural normed linear space (V|| - ||).

(IT). If (V, || - ) is a normed linear space, then p(x,y) = ||x — y|| defines
a metric on V. Thus, to each normed linear space we can associate a
natural metric space (V, p(-,-)).

Here one should note that the three notions of an inner product space,
a normed linear space, and a metric space are notions of strictly increas-
ing generality. The space S with just two points x and y where p is
defined by setting p(x,x) = p(y,y) = 0 and p(x,y) = 1 is a metric
space, but it certainly is not an inner product space — the set .S is not
even a vector space. Later, in Chapter 9, we will also meet normed linear
spaces that are not inner product spaces.

How MucH INTUITION?

According to an old (and possibly apocryphal) story, during one of
his lectures David Hilbert once wrote a line on the blackboard and said,
“It is obvious that ...,” but then Hilbert paused and thought for a
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moment. He then became noticeably perplexed, and he even left the
room, returning only after an awkward passage of time. When Hilbert
resumed his lecture, he began by saying “It is obvious that ....”

One of the tasks we assign ourselves as students of mathematics is to
sort out for ourselves what is obvious and what is not. Oddly enough,
this is not always an easy task. In particular, if we ask ourselves if the
triangle inequality is obvious in R? for d > 4, we may face a situation
which is similar to the one that perplexed Hilbert.

The very young child who takes the diagonal across the park shows an
intuitive understanding of the essential truth of the triangle inequality in
R?. Moreover, anyone with some experience with R? understands that
if we ask a question about the relationship of three points in R?, d > 3,
then we are “really” posing a problem in the two-dimensional plane that
contains those points. These observations support the assertion that the
triangle inequality in R? is obvious.

The triangle inequality is indeed true in R?, so one cannot easily refute
the claim of someone who says that it is flatly obvious. Nevertheless,
algebra can be relied upon in ways that geometry cannot, and we already
know from the example of Figure 4.1 that our experience with R? can be
misleading, or at least temporarily misleading. Sometimes questions are
better than answers and, for the moment at least, we will let the issue of
the obviousness of the triangle inequality remain a part of our continuing
conversation. A more pressing issue is to understand the distance from
a point to a line.

A CLOSEST POINT PROBLEM

For any point x # 0 in R? there is a unique line £ through x and the
origin 0 € R%, and one can write this line explicitly as £ = {tx : t € R}.
The closest point problem is the task of determining the point on £ that
is closest to a given point v € R?. By what may seem at first to be
very good luck, there is an explicit formula for this closest point that
one may write neatly with help from the standard the inner product
(v,x) = viwy + vowg + -+ - + VW,

Problem 4.3 (Projection Formula)

For each v and each x # 0 in R, let P(v) denote the point on the
line L = {tx : t € R} that is closest to v. Show that one has

(4.5)



On Geometry and Sums of Squares 57

The point P(v) € L is called the projection of v on £, and the formula
(4.5) for P(v) has many important applications in statistics and engi-
neering, as well as in mathematics. Anyone who is already familiar with
a proof of this formula should rise to this challenge by looking for a new
proof. In fact, the projection formula (4.5) is wonderfully provable, and
successful derivations may be obtained by calculus, by algebra, or even
by direct arguments which require nothing more than a clever guess and
Cauchy’s inequality.

A LocicaL CHOICE

The proof by algebra is completely elementary and relatively uncom-
mon, so it seems like a logical choice for us. To find the value of t € R
that minimizes p(v,tx), we can just as easily try to minimize its square

P2V, 1x) = (v — tx, v — tx),

which has the benefit of being a quadratic polynomial in ¢t. If we look
back on our earlier experience with such polynomials, then we will surely
think of completing the square, and by doing so we find

(v —tx,v —tx) = (v, v) — 2t(v,x) + t*(x, x)
:< ><t2—2t< X>+<V,V>>

(x,x) "~ (x,%)
el(-83) 13- 23

x) (x,x)?
Thus, in the end, we see that p?(v,tx) has the nice representation

{1 <v,x>>2 LR A

(x,x) (x,x

From this formula we see at a glance that p(v, tx) is minimized when we

take t = (v,x)/(x,x), and since this coincides exactly with the asser-
tion of projection formula (4.5), the solution of the challenge problem is
complete.

AN AcCIDENTAL COROLLARY — CAUCHY—SCHWARZ AGAIN
If we set t = (v,x)/(x,x) in the formula (4.6), then we find that

Itrgﬂg p2 (V, tx) — <V’ V) <X<7;i>x; <V’ X> (4.7)

and, since the left-hand side is obviously nonnegative, we discover that
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€2
L={tx:teR}

P(v)=1tx

v—Pv)=r where t = x(v, x)/(x, %)

Z1

Fig. 4.2. The closest point on the line £ to the point to v € R? is the point
P(v). It is called the projection of v onto L, and either by calculus, or by
completing of the square, or by direct arguments using Cauchy’s inequality,
one can show that P(v) = x(x,v)/(x,x). One way to characterize the pro-
jection P(v) is that it is the unique element of £ such that r = v — P(v) is
orthogonal to the vector x which determines the line L.

our calculation has provided a small unanticipated bonus. The numer-
ator on the right-hand side of the identity (4.7) must also be positive,
and this observation gives us yet another proof of the Cauchy—Schwarz
inequality.

There are even two further benefits to the formula (4.7). First, it
gives us a geometrical interpretation of the defect (v, v)(x,x) — (v,x)2.
Second, it tells us at a glance that one has (v, v)(x,x) = (v,x)?, if and
only if v is an element of the line £ = {¢x : ¢t € R}, which is a simple
geometric interpretation of our earlier characterization of the case of
equality.

How 1O GUESS THE PROJECTION FORMULA

Two elements x and y of an inner product space (V, (-, -)) are said to be
orthogonal if (x,y) = 0, and one can check without difficulty that if (-, -)
is the standard inner product on R? or R3, then this modestly abstract
notion of orthogonality corresponds to the traditional notion of orthog-
onality, or perpendicularity, which one meets in Euclidean geometry. If
we combine this abstract definition with our intuitive understanding of
R2, then, almost without calculation, we can derive a convincing guess
for a formula for the projection P(v).

For example, in Figure 4.2 our geometric intuition suggests that it is
“obvious” (that tricky word again!) that if we want to choose ¢ such
that P(v) is the closest point to v on £, then we need to choose t so
that the line from P(v) to v should be orthogonal to the line £. In
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symbols, this means that we should choose ¢ such that
(x,v—1tv)=0 or t=(x,v)/(x,x).

We already know this is the value of ¢t which yields the projection formula
(4.5), so — this time at least — our intuition has given us good guidance.

If we are so inclined, we can even turn this guess into a proof. Specif-
ically, we can use Cauchy’s inequality to prove that this guess for ¢ is
actually the optimal choice. Such an argument provides us with a sec-
ond, logically independent, derivation of the projection formula. This
would be an instructive exercise, but, it seems better to move directly
to a harder challenge.

REFLECTIONS AND PRODUCTS OF LINEAR FORMS

The projection formula and the closest point problem provide us with
important new perspectives, but eventually one has to ask how these
help us with our main task of discovering and proving useful inequalities.
The next challenge problem clears this hurdle by suggesting an elegant
bound which might be hard to discover (or to prove) without guidance
from the geometry of R™.

Problem 4.4 (A Bound for the Product of Two Linear Forms)
Show that for all real uj, vj, and x;, 1 < j < n, one has the following
upper bound for a product of two linear forms:

n n n n n n
>y Y v < (Y w () () Yo 49
j=1 Jj=1 j=1 Jj=1 j=1 Jj=1
The charm of this inequality is that it leverages the presence of two
sums to obtain a bound that is sharper than the inequality which one
would obtain from two applications of Cauchy’s inequality to the individ-
ual multiplicands. In fact, when (u, v) < 0 the new bound does better by
at least a factor of one-half, and, even if the vectors u = (uy,us, ..., uy,)
and v = (vq,vs,...,v,) are proportional, the bound (4.8) is not worse
than the one provided by Cauchy’s inequality. Thus, the new inequality
(4.8) provides us with a win-win situation whenever we need to estimate
the product of two sums.

FOUNDATIONS FOR A PROOF

This time we will take an indirect approach to our problem and, at
first, we will only try to deepen our understanding of the geometry
of projection on a line. We begin by noting that Figure 4.2 strongly
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suggests that the projection P onto the line £ = {tx : t € R}, must
satisfy the bound

1PV < vl for all v e R (4.9)

and, moreover, one even expects strict inequality here unless v € L.
In fact, the proof of the bound (4.9) is quite easy since the projection
formula (4.5) and Cauchy’s inequality give us

vl < vl

|P)] = HX<X’ v)

(x,x)

‘ |

FrOM PROJECTION TO REFLECTION

We also face a similar situation when we consider the reflection of the
point v through the line £, say as illustrated by Figure 4.3. Formally,
the reflection of the point v in the line £ is the point R(v) defined by
the formula R(v) = 2P(v) — v. In some ways, the reflection R(v) is an
even more natural object than the projection P(v). In particular, one
can guess from Figure 4.2 that the mapping R : V' — V has the pleasing
length preserving property

IRV)] = vl for all v € R (4.10)

One can prove this identity by a direct calculation with the projection
formula, but that calculation is most neatly organized if we first observe
some general properties of P. In particular, we have the nice formula

v V) — (x,v)x (x,v)x :<X,v>2
<P( )’P( )> < HXH2 ? ||X||2 > ||X||2 s

while at the same time we also have

(P = (S ) - B

so we may combine these observations to obtain

(P(v), P(v)) = (P(v),V).

B

This useful identity now provides a quick confirmation of the length-
preserving (or isometry) property of the reflection R; we just expand
the inner product and simplify to find
IR(WV)|[* = (2P(v) = v,2P(v) = V)
= 4P(v), P(v)) = 4P(v),v) + (v, v)

= (v,Vv).
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R(v L={tx:teR}

Ty R(v) is the reflection of the
point v € R™ in the line £

Fig. 4.3. When the point v is reflected in the line £ one obtains a new point
R(v) which is the same distance from the origin as v. More formally, the
reflection of v is the point R(v) defined by the formula R(v) = 2P(v) — v.
One can then use the projection formula for P to prove that ||R(v)|| = ||v]|.

RETURN TO THE CHALLENGE

The geometry of the reflection through the line £ = {tx : t € R}
is easily understood, but sometimes the associated algebra can offer a
pleasant surprise. For example, the isometry property of the reflection
R and the Cauchy—Schwarz inequality can be combined to provide an
almost immediate solution of our challenge problem.

From the Cauchy—Schwarz inequality and the isometry property of
the reflection R we have the bound

(B(u),v) < [[R)[[lv]| < [[ul[[[v]], (4.11)

while on the other hand, the definition of R and the projection formula
give us the identity

(R(u),v) = (2P(u) —u,v) = 2(P(u),v) — (u,v)

2
= W@(a u)(x,v) — (u,v).
Thus, from Cauchy—Schwarz and the isometry bound (4.11) we have
2
W<X’ u)(x,v) = (u,v) < [[uf|v],

and this may be arranged more naturally as
1 2
(0 (x,v) < 5 ((av) + [[ullvi) 1] (4.12)

If we now interpret these inner products as the standard inner products
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on R™, then we see that the bound (4.12) is precisely the inequality (4.8)
of the challenge problem.

Thus, almost by accident, we find that the geometry of reflection has
brought us to a new and informative refinement of Cauchy’s inequal-
ity. Such accidents are common, and they form a thread from which
Scheherazade could spin a thousand tales, all with the name symme-
try and its applications. We will revisit this theme, but first we seek a
different kind of contribution from a different kind of geometry.

THE LiGHT CONE INEQUALITY

The preceding examples suggested how Euclidean geometry helps to
deepen our understanding of the theory of inequalities, but the tradi-
tional geometry of Euclid is not the only one that helps in this way.
Other geometries, or geometric models, can do their part.

One especially attractive example calls on the famous space-time ge-
ometry of Einstein and Minkowski. The physical background of this
model is not needed here, but, for motivation, it is useful to recall one
fundamental principle of special relativity: no information of any kind
can travel faster than the speed of light.

If we scale space so that the speed of light is 1, this principle tells
implies that each point x = (¢; 21, 22,...,24) of time and space where
one can have knowledge of an event that takes place at the origin at
time 0 must satisfy the bound

\/x%+x§+-~-+:c3§t- (4.13)

The set C of all such points in RTx R? is called Minkowski’s light cone,
and it is illustrated in Figure 4.4.

The only further notion that we need is the Lorentz product, which is
the bilinear form defined for pairs of elements x = (¢; x1, z2, ..., z4) and
v = (4;y1, Y2, - - -, Yq) in the light cone C by the formula

(%, y] = tu — 2191 — T2y2 — -+ — TaYa- (4.14)

This quadratic form was introduced by the Dutch physicist Hendrick
Antoon Lorentz (1853-1928), who used it to simplify some of the formu-
las of special relativity, but for us the interesting feature of the Lorentz
product is its relationship to the Cauchy—Schwarz inequality. It turns
out that the Lorentz product satisfies an inequality which has a su-
perficial resemblance to the Cauchy—Schwarz inequality, except for one
remarkable twist — the inequality is exzactly reversed!
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Minkowski’s Light Cone

€2

x1

N

C = {(t;m,wz,...,xd):(a:f—l—a:§+~~~+a:§)1/2§t}

Fig. 4.4. Minkowski’s light cone C is the region of space-time R* x R? where
one can have knowledge of an event that takes place at the origin at time zero.
Here time is scaled so that the speed of light is equal to one.

Problem 4.5 (Light Cone Inequality)

Show that if x and 'y are points of Rt x R? that are elements of the
light cone C defined in Figure 4.4, then the Lorentz product satisfies the
inequality

=
SIS

< [xy] (4.15)

[x,x]2[y,y]

Show, moreover, that if x = (t;x1, T2, ..., 2,) andy = (W y1,Y2, -+, Yn)
then the inequality (4.15) is strict unless ux; = ty; for all 1 < j <d.

DEVELOPMENT OF A PLAN

If the Cauchy—-Schwarz Master Class were to have a final exam, then
the light cone inequality would provide fertile ground for the develop-
ment of good problems. One can prove the light cone inequality with
almost any reasonable tool — induction, the AM-GM inequality, or even
a Lagrange-type identity will do the job. Here we will explore a lazy and
devious route, precisely the kind favored by most mathematicians.

Since our goal is to prove a reversal of the Cauchy—-Schwarz inequality,
a pleasantly outrageous plan would be to look for some way to invert the
famous polynomial argument of Schwarz (say, as described in Chapter 1,
on page 11). In Schwarz’s argument, one constructs a quadratic polyno-
mial, makes an observation about its roots, and then draws a conclusion
about the coefficients of the polynomial. That is just what we will try
here — with some necessary changes. After all, we want a different con-
clusion about the coefficients, so we need to make a different observation
about the roots.

In imitation of Schwarz’s argument, we introduce the quadratic poly-
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p(\) A Parabola with both
negative and positive
values must have two

Ao = u/t real roots.

Fig. 4.5. Schwarz’s proof of the Cauchy—Schwarz inequality exploited the
bound on the coefficients of a polynomial without real roots; in contrast,
Minkowski’s light cone inequality cone exploits the information that one gets
from knowing a quadratic polynomial has two real roots.

nomial
p(A) =[x — Ay, x — Ay] = [x,x] — 2A[x,y] + N[y, y] (4.16)
d
(-2 3 (g ), (4.17)

and we immediately address ourselves to understanding its roots. To
side-step trivialities, we first note that if £ = 0 then our assumption that
x = (t;z1,22,...,24) € C tells us that x = 0. In this case, the light
cone inequality (4.15) is trivially true, so, without loss of generality, we
can assume that ¢ # 0.

Next, for space-time vectors x and y in C one sees from Cauchy’s in-
equality and the definition of the light cone that the spatial components
(z1,22,...,25,) and (y1,Y2, .- .,Y,) must satisfy the bound

n nooNEbyal R
o< (at) (L) <o
k=1 k=1 k=1
In the language of the Lorentz product, this says [x,y] > 0, and as a
consequence we see that the light cone inequality is trivially true when-
ever [x,x] = 0 or [y,y] = 0. Thus, without loss of generality, we can
assume both of these Lorentz products are nonzero.

Now, we are ready for the main argument. For u # 0, we may then
take A9 = t/u, and the first sum of the expanded polynomial (4.17)
vanishes. We then see that either (i) uz; = ty; for all 1 < j < d or
else we have (ii) p(Ag) < 0. In the first situation, we have the case of
equality which was suggested by the challenge problem, so to complete
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the solution we just need to confirm that in the second situation we have
required strict inequality.

Since we have assumed that [y, y] > 0, we see from the product form
(4.16) that p(A) — oo as A — oo or A — —oo and we know that p(Ag) < 0
so the equation p(\) = AN? + 2B\ + C = 0 must have two distinct real
roots. The binomial formula for the quadratic equation then tells us that
AC < B. When we identify the coefficients of p(\) from its product form
(4.16) we find A = [x,x], B = [x,y], and C = [y,y], so AC < B gives
us the strict inequality [x,x][y,y] < [x,y]?, which we hoped to show.

COMPLEX INNER PRODUCT SPACES

If V is a complex vector space, such as C? or the set of complex valued
continuous functions on [0, 1], then we say that a function on V x V
defined by the mapping (a,b) — (a,b) € C is an complex inner product
and we say that (V,(-,-)) is a complex inner product space provided
that the pair (V, (-,-)) has five basic properties. The first four of these
perfectly parallel those required of a real inner product space:

) (v,v)>0 forallveV,

(ii) (v,v) =0 ifand only if v=20
) {
) {

v,w)=a(v,w) foralla € Candv,weV,

Q

u,v+w)=(u,v)+ (u,w) forallu,vandweV,

but the fifth property requires a modest change; specifically, for a com-
plex inner product space we assume that

(v) (v,w) =(w,v) forallv,weV.

Problem 4.6 (Cauchy—Schwarz for a Complex Inner Product)

Show that in a complex inner product space (V7 (-, >) one has

=
=

[(v,w)| < (v,v)2({w,w)z. (4.18)

Furthermore, show that v # 0 then one has equality in the bound (4.18)
if and only if w = Av for some A € C.

A NATURAL PLAN AND A NEW OBSTACLE

A natural plan for proving the Cauchy—Schwarz inequality for a com-
plex inner product space is to mimic the proof for a real inner product
space while paying attention to any changes which may be required by
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the new “property (v).” Thus, we compute
0<(v—w,v—w)=(v,v)+ (w,w) — (v, W) — (W, V)
= (v, v) + (w,w) — {{v,w) + (v,w)}
— (v,v) + (w,w) — 2Re (v, w),

and we deduce that

1 1
Re (v,w) < §<v,v> + §<w,w>, (4.19)

where we have strict inequality unless v = w.
The additive bound (4.19) must be converted to one that is multi-
plicative. If we call on the familiar normalization method and introduce

v = v/<v,v>% and w = w/(w,wﬁ,
then arithmetic brings us quickly to the bound
Re (v, w) < (v,v)? (w, w)?. (4.20)

Unfortunately, this starts to look worrisome. We hoped to obtain a
bound on |[(v,w)| but we have only found bound on Re (v, w), a term
which may be arbitrarily smaller than |[(v,w})|. Is it possible that this
approach has failed?

SAVED BY A SELF-IMPROVEMENT

The saving grace of inequality (4.20) is that it is of the self-improving
kind. If we exploit its generality appropriately, we can derive an appar-
ently stronger inequality.

If we write (v, w) = pe?® with p > 0 and if we set v = e~ v, then the
properties of the complex inner product give us the identities

(v,v) =(v,v) and (vV,w)=Re(v,w)=|(v,w),
so the real part bound (4.20) for the pair v and w gives us
(v, w)| = Re (v, w) < (v, V)2 (w,w)? = (v, V)2 (w, w)Z.

The outside terms yield the complex Cauchy—Schwarz inequality in the
precisely the form we expected, so the bound (4.20) was strong enough
after all.

THE TRICK OF “MAKING IT REAL”

In this argument, we faced an inequality which was made more compli-
cated because of the presence of a real part. This is a common difficulty,
and it is often addressed by the trick used here: one pre-multiplies by
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a well-chosen complex number in order to guarantee that some critical
quantity will be real. This is one of the most widely used maneuvers
in the theory of complex inequalities, and it should never be far out of
mind.

Finally, to complete the solution of the challenge problem, we should
confirm the alleged necessary and sufficient conditions for equality. Here
it is honestly easy to retrace the steps of our argument to confirm the
stated conditions, but, as we will discuss later (page 138), such backtrack
arguments are not always trouble free. For the standard complex inner
product one also has another option which is perhaps more satisfying;
one can simply use the complex Lagrange identity (4.23) as suggested
by Exercise 4.4.

EXERCISES

Exercise 4.1 (Triangle Inequality “Pot Shots”)

The triangle inequality in R% may seem obvious, but some of its con-
sequences can be puzzling when they are presented out of context. Here,
the next three exercises are not at all hard, but you might ask yourself,
“Would these have been so easy yesterday?”

(a) Show for nonnegative x,y, z that
(z+y+2)V2< Va2 + 92+ V2 + 22 + Va2 + 22
(b) Show for 0 < z <y < z that
V2 + 22 <av2+/(y—2)?+ (z — 2)2.
(¢) Show for positive x,y, z that
2B Va2 2+ 22+ a2y 2422

This list can be continued almost without limit, yet there is really only
one theme: any time you see a sum of square roots in an inequality,
you should give at least a moment’s thought to the possibility that the
triangle inequality may help.

Exercise 4.2 (The Geometry of “Steepest Ascent”)
If f:R® — R is a differentiable function, then one often hears that
the gradient

_(9of of of
Vf(x) = (axlvaxzw-waxn)
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y=y(t)

y(t) = (v —tw,v — tw)
= (v,v) = 2t{v,w) + t*(w, w)

to = (v,w)/(w,w)

Fig. 4.6. By calculus, or by completing the square, one finds that the quadratic
polynomial P(t) = (v — tw, v — tw) takes it minimum at to = (v, w)/(w, w).
The nonnegativity of h is enough to prove Cauchy’s inequality for the nth
time, but geometry adds details which can be critical.

points in the direction of steepest ascent of f provided that Vf # 0. In
longhand, this says for any unit vector u one has the bound

d d

%f(x + tu) . < Ef(x +tv) . (4.21)
where v = Vf(x)/||Vf(x)||. Prove this inequality and show that it is
strict unless u = v.

Exercise 4.3 (Cauchy via Another Identity)

Lagrange’s identity is not the only formula that gives an instant proof
of Cauchy’s inequality. Check that in any real inner product space the
difference (v,v)(w,w) — (v, w)? can be written as

<w,w>{<v (W,V) oy V) w>} (4.22)

(W, w) (W, w)

and explain why this also implies the general Cauchy—Schwarz inequality.

Incidentally, one does not need a flash of algebraic insight to discover
the representation (4.22). As Figure 4.6 suggests, this formula cannot
remain hidden for long once we ask ourselves about minimization of the
polynomial P(t) = (v — tw,v — tw).

Exercise 4.4 (Lagrange’s Identity for Complex Numbers)
Prove that for complex ax and by, 1 < k < n, one has
2

Zak byl = Z Z ‘@jbk — ag Bj
k=1

1<j<k<n
and show that this identity yields the complex Cauchy inequality as

n n

> ar > bel® -

k=1 k=1

2
)

(4.23)
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D
Fig. 4.7. Ptolemy’s inequality and the condition for equality.

well as the necessary and sufficient conditions for equality. Here one
should note that this identity does not follow from direct substitution
of complex numbers into the Lagrange’s identity for real numbers; those
pesky absolute values get in the way. A slightly more sophisticated
approach is required.

Exercise 4.5 (A Vector-Scalar Melange)

Consider real weights p; > 0, j = 1,2,...,n, arbitrary real numbers
aj, j =1,2,...,n, and an inner product space (V, (-,-)). Find an analog
of Lagrange’s identity which suffices to prove that one has the inequality

n 2 n n
Y vl < il Y pilxl? (4.24)
j=1 j=1 k=1

for all xg, 1 <k <mn,in V. Also, check that your identity implies that
equality holds if and only if we have a;x; = agx; for all 1 < 5, k < n.

Exercise 4.6 (Ptolemy’s Inequality)

Ptolemy may be best known for founding a theory of planetary motion
which was overturned by Copernicus, but parts of Ptolemy’s legacy have
stood the test of time. Among these, Ptolemy has a namesake inequality
which even today is a workhorse of the theory of geometric inequalities.
Ptolemy’s inequality asserts that in a convex quadrilateral “the product
of the diagonals is bounded by the sum of the products of the opposite
sides,” or, in the notation of Figure 4.7,

pq < ac+ bd. (4.25)

Prove this inequality and show that equality holds if and only if the four
vertices A, B,C, D are all on the circumference of a circle.
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Exercise 4.7 (Representations of Complex Inner Products)

(a) If (-,-) is a complex inner product and if & € C and o =1 but
a? # 1, then show that one has the representation

L V-1 ,
= e safier -
where, as usual, ||w| = (w,w)'/2.

(b) Similarly show that for any complex inner product one has

_1 " 0, ||2,i0
(x,y) = 277/7r |+ e y||"e do. (4.27)

One benefit of identities such as these is that they may help us convert
facts for || - || into facts for (-,-) or vice-versa. One can say that these
are “just” variants of the polarization identity, but there are times when
they are just the variant one needs.

Exercise 4.8 (A Concrete Model of an Abstract Space)

If x1,X2,...,Xy, are linearly independent elements of the (real or com-
plex) inner product space (V, (-, -)), we define a new sequence eg, ea, ..., e,
by setting e; = x1/||x1]| and by applying the two-part recursion

k—1
Zp = Xp — Z<Xk,ej>ej and e, = ”zk” (4.28)
; Zy
j=1

for k = 2,3,...,n. This algorithm is known as the Gram—-Schmidt pro-
cess, and it provides a systematic tool for reducing questions in an inner
product space to questions for real or complex numbers. In this exercise
we develop the most basic properties of this process, and in the next
four exercises we show how these properties are used in practice.

(a) Show that {e; : 1 < k < n} is an orthonormal sequence in the
sense that for all 1 < j,k < n one has

1 ifj=k
(ej,er) = L
0 ifj+#k.

(b) Show that {x; : 1 < k < n} and {e; : 1 < k < n} satisfy the
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triangular system of linear relations

X1 = <X1>el>el

X = (X2,€1)e; + (X2, €2)€

Xp = (Xn,€1)€1 + (Xn,€2)€2 + - - + (Xp, €4)€p.

Exercise 4.9 (Gram—Schmidt Implies Cauchy—Schwarz)

Apply the Gram—Schmidt process to the two term sequence {x,y} and
show that it reduces the inequality |(x,y)| < (x,x)2(y,y)2 to a bound
that is obvious. Thus, the Gram—Schmidt process gives an automatic
proof of the Cauchy—Schwarz inequality.

Exercise 4.10 (Gram—Schmidt Implies Bessel)

If {yx : 1 < k < n} is an orthonormal sequence from a (real or
complex) inner product space (V,(-,-)), then Bessel’s inequality asserts
that

Syl < (x,x)  forallx e V. (4.29)
k=1

Show that the Gram—Schmidt process yields a semi-automatic proof of
Bessel’s inequality. Incidentally, one should also note that the case n = 1
of Bessel’s inequality is equivalent to the Cauchy—Schwarz inequality.

Exercise 4.11 (Gram—Schmidt and Products of Linear Forms)

Use the Gram—Schmidt process for the three-term sequence {x,y,z}
to show that in a real inner product space one has

(x,y)(x2) < %(<y,Z> +lyllllzl) 1], (4.30)

a bound which we used earlier (page 61) to illustrate the use of isometries
and projections.

Exercise 4.12 (A Gram—Schmidt Finale)

Show that if x,y,z are elements of a (real or complex) inner product
space V and if ||x|| = ||y|| = ||z]| = 1, then one has the inequality

|<X7 X><Yaz> - <XDY><X’ Z>|
< {(x,%)? = [(x,y) P H(x, %) — [(x,2)|*} (4.31)
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and the inequality

(x,%)?(I(y,2)]* + [{y, %) |* + |(x,2)]*)
< (x,%)* + (%, x) (2, ¥){y, %) (x, 2)
+ (% x)(y, 2)(x,y)(2,%). (4.32)

At first glance, these bounds may seem intimidating, but after one uses
the Gram—Schmidt process to strip away the inner products, they are
just like the kind of bounds we have met many times before.

Exercise 4.13 (Equivalence of Isometry and Orthonormality)

This exercise shows how an important algebraic identity can be proved
with help from the condition for equality in the Cauchy—Schwarz bound.
The task is to show that if the n X n matrix A preserves the Euclidean
length of each v in R™ then its columns are orthonormal. In the useful
shorthand of matrix algebra, one needs to show

|Av| = ||v]| forallveR? <« ATA=1,

where I is the identity matrix, A7 is the transpose of A, and ||v|| is the
Euclidean length of v.

As a hint, one might first show that [|A7v|| < ||v|); that is, one might
show that the transpose AT does not increase length. One can then
argue that if Cauchy—Schwarz inequality is applied to the inner product
(v, AT Av) then equality actually holds.
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Consequences of Order

One of the natural questions that accompanies any inequality is the
possibility that it admits a converse of one sort or another. When we
pose this question for Cauchy’s inequality, we find a challenge problem
that is definitely worth our attention. It not only leads to results that
are useful in their own right, but it also puts us on the path of one
of the most fundamental principles in the theory of inequalities — the
systematic exploitation of order relationships.

Problem 5.1 (The Hunt for a Cauchy Converse)
Determine the circumstances which suffice for nonnegative real num-
bers ai, by, k=1,2,...,n to satisfy an inequality of the type

<iai>%(§bi>% Spéakbk (5.1)

k=1

for a given constant p.

ORIENTATION

Part of the challenge here is that the problem is not fully framed —
there are circumstances and conditions that remain to be determined.
Nevertheless, uncertainty is an inevitable part of research, and practice
with modestly ambiguous problems can be particularly valuable.

In such situations, one almost always begins with some experimenta-
tion, and since the case n = 1 is trivial, the simplest case worth study
is given by taking the vectors (1,a) and (1,b) with @ > 0 and b > 0. In
this case, the two sides of the conjectured Cauchy converse (5.1) relate
the quantities

(1+a*)2(1+b%)2 and 1+ ab,

73
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and this calculation already suggests a useful inference. If a and b are
chosen so that the product ab is held constant while a — oo, then
one finds that the right-hand expression is bounded, but the left-hand
expression is unbounded. This observation shows in essence that for a
given fixed value of p > 1 the conjecture (5.1) cannot hold unless the
ratios ay /by are required to be bounded from above and below.

Thus, we come to a more refined point of view, and we see that it is
natural to conjecture that a bound of the type (5.1) will hold provided
that the summands satisfy the ratio constraint

mS%ﬁM forall k=1,2,...n, (5.2)
k

for some constants 0 < m < M < oo. In this new interpretation of the
conjecture (5.1), one naturally permits p to depend on the values of m
and M, though we would hope to show that p can be chosen so that
it does not have any further dependence on the individual summands
ar and by. Now, the puzzle is to find a way to exploit the betweenness
bounds (5.2).

EXPLOITATION OF BETWEENNESS

When we look at our unknown (the conjectured inequality) and then
look at the given (the betweenness bounds), we may have the lucky
idea of hunting for clues in our earlier proofs of Cauchy’s inequality. In
particular, if we recall the proof that took (a — b)? > 0 as its depar-
ture point, we might start to suspect that an analogous idea could help
here. Is there some way to obtain a useful quadratic bound from the
betweenness relation (5.2)7

Once the question is put so bluntly, one does not need long to notice
that the two-sided bound (5.2) gives us a cheap quadratic bound

(M - Z-i) (‘b‘—: - m> > 0. (5.3)

Although one cannot tell immediately if this observation will help, the
analogy with the earlier success of the trivial bound (a—b)? > 0 provides
ground for optimism.

At a minimum, we should have the confidence needed to unwrap the
bound (5.3) to find the equivalent inequality

az + (mM) b2 < (m + M) apby forall k =1,2,...,n. (5.4)

Now we seem to be in luck; we have found a bound on a sum of squares
by a product, and this is precisely what a converse to Cauchy’s inequality
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requires. The eventual role to be played by M and m is still uncertain,
but the scent of progress is in the air.

The bounds (5.4) call out to be summed over 1 < k < n, and, upon
summing, the factors mM and m + M come out neatly to give us

zn:ai—i— mM) ZbQ (m+ M) Zakbk, (5.5)
k=1

k=1

which is a fine additive bound. Thus, we face a problem of a kind we
have met before — we need to convert an additive bound to one that is
multiplicative.

PASSAGE TO A ProDUCT

If we cling to our earlier pattern, we might now be tempted to intro-
duce normalized variables a;, and l;k, but this time normalization runs
into trouble. The problem is that the inequality (5.5) may be applied
to ap and bk only if they satisfy the ratio bound m < ak/bk < M, and
these constraints rule out the natural candidates for the normalizations
ar, and by,. We need a new idea for passing to a product.

Conceivably, one might get stuck here, but help is close at hand pro-
vided that we pause to ask clearly what is needed — which is just a
lower bound for a sum of two expressions by a product of their square
roots. Once this is said, one can hardly fail to think of using the AM-
GM inequality, and when it is applied to the additive bound (5.5), one
finds

IN

(£) (megn)

k=1

%{iai—&-(mM)ibi}
k=1 k=1
%{(m+M)§:akbk}.

k=1

IN

Now, with just a little rearranging, we come to the inequality that com-
pletes our quest. Thus, if we set

A=(m+M)/2 and G=+vVmM, (5.6)
then, for all nonnegative ay, by, k = 1,2,...,n with

0<m<ag/bpy <M < oo,
we find the we have established the bound

(Z ) (sz) §§zn:akbk; (5.7)

k=1
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thus, in the end, one sees that there is indeed a natural converse to
Cauchy’s inequality.

ON THE CONVERSION OF INFORMATION

When one looks back on the proof of the converse Cauchy inequality
(5.7), one may be struck by how quickly progress followed once the two
order relationships, m < ay /by and a /by < M, were put together to
build the simple quadratic inequality (M — ay/b)(ar/by —m) > 0. In
the context of a single example, this could just be a lucky accident, but
something deeper is afoot.

In fact, the device of order-to-quadratic conversion is remarkably ver-
satile tool with a wide range of applications. The next few challenge
problems illustrate some of these that are of independent interest.

MONOTONICITY AND CHEBYSHEV'S “ORDER INEQUALITY”

One way to put a large collection of order relationships at your fin-
gertips is to focus your attention on monotone sequences and monotone
functions. This suggestion is so natural that it might not stir high hopes,
but in fact it does lead to an important result with many applications,
especially in probability and statistics.

The result is due to Pafnuty Lvovich Chebyshev (1821-1894) who
apparently had his first exposure to probability theory from our earlier
acquaintance Victor Yacovlevich Bunyakovsky. Probability theory was
one of those hot new mathematical topics which Bunyakovsky brought
back to St. Petersburg when he returned from his student days studying
with Cauchy in Paris. Another topic was the theory of complex variables
which we will engage a bit later.

Problem 5.2 (Chebyshev’s Order Inequality)

Suppose that f : R — R and g : R — R are nondecreasing and
suppose p; > 0, j = 1,2,...,n, satisfy p1 +p2 + -+ + pn = 1. Show
that for any mondecreasing sequence r1 < xo < --- < x,, one has the
inequality

{ 3 f<xk>pk}{ ng)pk} <3 feng@m.  (68)
k=1 k=1 k=1

CONNECTIONS TO PROBABILITY AND STATISTICS

The inequality (5.8) is easily understood without relying on its connec-
tion to probability theory, and it has many applications in other areas of
mathematics. Nevertheless, the probabilistic interpretation of the bound
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(5.8) is particularly compelling. In the language of probability, it says
that if X is a random variable for which one has P(X = xj) = pj, for
k=1,2,...,n then

E[f(X)]E[g(X)] < E[f(X)g(X)], (5.9)

where, as usual, P stands for probability and E stands for the mathe-
matical expectation. In other words, if random variables Y and Z may
be written as nondecreasing functions of a single random variable X,
then Y and Z must be nonnegatively correlated. Without Chebyshev’s
inequality, the intuition that is commonly attached to the statistical
notion of correlation would stand on shaky ground.

Incidentally, there is another inequality due to Chebyshev that is even
more important in probability theory; it tells us that for any random
variable X with a finite mean y = E(X) one has the bound

PUX ~ > 3) < 35 B(1X ). (5.10)

The proof of this bound is almost trivial, especially with the hint offered
in Exercise 5.11, but it is such a day-to-day workhorse in probability
theory that Chebyshev’s order (5.9) inequality is often jokingly called
Chebyshev’s other inequality.

A PROOF FROM OUR POCKET

Chebyshev’s inequality (5.8) is quadratic, and the hypotheses provide
order information, so, even if one were to meet Chebyshev’s inequality
(5.8) in a dark alley, the order-to-quadratic conversion is likely to come
to mind. Here the monotonicity of f and g give us the quadratic bound

0 < {f(zx) = fz;) H{og(zx) — glz5)},

and this may be expanded in turn to give

F@r)g(as) + f(z5)g(zr) < flx)g9(x;) + f(x)g(zr). (5.11)

From this point, we only need to bring the p;’s into the picture and
meekly agree to take whatever arithmetic gives us.

Thus, when we multiply the bound (5.11) by p;px and sum over 1 <
j<nand 1<k <n, we find that the left-hand sum gives us

n

> {f@n)glay) + Fa;)g(ae) ik = 2{ > f(xk)pk}{ Zg(xk)pk},
k=1 P

J.k=1
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while the right-hand sum gives us

> {flea(as) + flandaan) Yo =2{ 3 flanatam |
Jik=1 k=1

Thus, the bound between the summands (5.11) does indeed yield the
proof of Chebyshev’s inequality.

ORDER, FACILITY, AND SUBTLETY

The proof of Chebyshev’s inequality leads us to a couple of observa-
tions. First, there are occasions when the application of the order-to-
quadratic conversion is an automatic, straightforward affair. Even so,
the conversion has led to some remarkable results, including the versa-
tile rearrangement inequality which is developed in our next challenge
problem. The rearrangement inequality is not much harder to prove
than Chebyshev’s inequality, but some of its consequences are simply
stunning. Here, and subsequently, we let [n] denote the set {1,2,...,n},
and we recall that a permutation of [n] is just a one-to-one mapping
from [n] into [n].

Problem 5.3 (The Rearrangement Inequality)
Show that for each pair of ordered real sequences
—o<a<a<---<a, <00 and —oo<b <by<---<b, <0

and for each permutation o : [n] — [n], one has
Zakbn—k-H < Zakba(k) < Zakbk- (5.12)
k=1 k=1 k=1

AuTtoMATIC — BUT STILL EFFECTIVE

This problem offers us a hypothesis that provides order relations and
asks us for a conclusion that is quadratic. This familiar combination
may tempt one to just to dive in, but sometimes it pays to be patient.
After all, the statement of the rearrangement inequality is a bit involved,
and one probably does well to first consider the simplest case n = 2.

In this case, the order-to-quadratic conversion reminds us that

a1 <ay and by <by imply 0< (az—ay)(bs—b1),
and when this is unwrapped, we find

a1ba 4 azby < a1by + agbo,
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which is precisely the rearrangement inequality (5.12) for n = 2. Nothing
could be easier than this warm-up case; the issue now is to see if a similar
idea can be used to deal with the more general sums

S(O’) = Z akbg(k).
k=1

INVERSIONS AND THEIR REMOVAL

If o is not the identity permutation, then there must exist some pair
j < k such that (k) < o(j). Such a pair is called an inversion, and
the observation that one draws from the case n = 2 is that if we switch
the values of o(k) and o(j), then the value of the associated sum will
increase — or, at least not decrease. To make this idea formal, we first
introduce a new permutation 7 by the recipe

o(i) ifi#jandi#k
(i) =S o(j) ifi=k (5.13)
ok) ifi=j

which is illustrated in Figure 5.1. By the definition of 7 and by factor-
ization, we then find

S(T) — S(O’) = aij(j) + aka(k) - ajbg(j) — akbg(k)
= ajbr(j) + arbrr) — ajbrr) — akbr(y)
= (ar — a;)(brr) — br(j)) = 0
Thus, the transformation o — 7 achieves two goals; first, it increases .S,
so S(o) < S(7), and second, the number of inversions of 7 is forced to
be strictly fewer than the number of inversions of the permutation o.
REPEATING THE PROCESS — CLOSING THE LOoP

A permutation has at most n(n — 1)/2 inversions and only the iden-
tity permutation has no inversions, so there exists a finite sequence of
inversion removing transformations that move in sequence from o to the
identity. If we denote these by o = 0q, 01, ..., 0., where o, is the iden-
tity and m < n(n —1)/2, then, by applying the bound S(o;_1) < S(o;)
for j=1,2,...,m, we find

S(CT) § Zakbk.
k=1

This completes the proof of the upper half of the rearrangement inequal-
ity (5.12).
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ai a2 a; ag An—1 an
boy boz - bogh) ... bok)y -+ bomo1)  bo(n)
=
bray bry - br) e brey 0 brn-1) br(w)

Fig. 5.1. An interchange operation converts the permutation o to a permu-
tation 7. By design, the new permutation 7 has fewer inversions than o; by
calculation, one also finds that S(o) < S(7).

The easy way to get the lower half is then to notice that it is an
immediate consequence of the upper half. Thus, if we consider b} =
—bp, by = —bp_1,...,b

n = —b1 we see that

/ / /
Wy <by<---<b,

and, by the upper half of the rearrangement inequality (5.12) applied to
the sequence b, b, ..., b, we get the lower half of the inequality (5.12)
for the sequence by, bo, ..., b,.

LOOKING BACK — TESTING NEW PROBES

The statement of the rearrangement inequality is exceptionally natu-
ral, and it does not provide us with any obvious loose ends. We might
look back on it many times and never think of any useful variations
of either its statement or its proof. Nevertheless, such variations can
always be found; one just needs to use the right probes.

Obviously, no single probe, or even any set of probes, can lead with
certainty to a useful variation of a given result, but there are a few
generic questions that are almost always worth our time. One of the
best of these asks: “Is there a nonlinear version of this result?”

Here, to make sense of this question, we first need to notice that the
rearrangement inequality is a statement about sums of linear functions
of the ordered n-tuples

{bn—ks1ti<k<ns  {bok)fr1<k<n and {brx}i<p<n,
where the “linear functions” are simply the n mappings given by
T apx k=1,2,...,n.

Such simple linear maps are usually not worth naming, but here we have
a higher purpose in mind. In particular, with this identification behind
us, we may not need long to think of some ways that the monotonicity
condition aj < ag41 might be re-expressed.
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Several variations of the rearrangement inequality may come to mind,
and our next challenge problem explores one of the simplest of these.
It was first studied by A. Vince, and it has several informative conse-
quences.

Problem 5.4 (A Nonlinear Rearrangement Inequality)
Let f1, fa, ..., fu be functions from the interval I into R such that

frer1(z) — fu(z) 18 nondecreasing for all 1 < k < n. (5.14)

Let by < by < --- < b, be an ordered sequence of elements of I, and
show that for each permutation o : [n] — [n], one has the bound

ka(bn—k+1) < ka(ba(k)) < ka(bk)' (5.15)
=1 k=1 =1

TESTING THE WATERS

This problem is intended to generalize the rearrangement inequality,
and we see immediately that it does when we identify fi(z) with the
map r — agz. To be sure, there are far more interesting nonlinear
examples which one can find after even a little experimentation.

For instance, one might take a; < ay < --- < a, and consider the
functions x +— log(ax + x). Here one finds

(aps1 + 33))7

log(agy1 + x) — log(ax + x) = log ( (ax 1 2)
and if we set r(z) = (ax+1 + x)/(ax + ), then direct calculation gives

/ ar — Ag+1
r = — 7 <0,
(x) e

so, if we take
fe(z) = —log(ax + ) for k=1,2,...,n,

then condition (5.14) is satisfied. Thus, by Vince’s inequality and expo-
nentiation one finds that for each permutation o : [n] — [n] that

I Cax +00) < T (an +bory) < T (ar +bnrsr)- (5.16)
k=1 k=1 k=1

This interesting product bound (5.16) shows that there is power in
Vince’s inequality, though in this particular case the bound was known
earlier. Still, we see that a proof of Vince’s inequality will be worth our
time — even if only because of the corollary (5.16).
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RECYCLING AN ALGORITHMIC PROOF
If we generalize our earlier sums and write

n

S(@) = filbog)),

k=1

then we already know from the definition (5.13) and discussion of the
inversion decreasing transformation o +— 7 that we only need to show

S(o) < S(7).
Now, almost as before, we calculate the difference

S(1) = S(a) = fi(brs)) + frlbray) = fi(boi)) — fr(bor))
= filbr()) + frlbrry) — fi(bry) — fu(brs)
= {fu(brry) = filbre)} = {fu(bri)) = fi(br())} =0,

and this time the last inequality comes from b,y < b;(x) and our hy-
pothesis that fy(z) — f;(x) is a nondecreasing function of z € I. From
this relation, one then sees that no further change is needed in our earlier
arguments, and the proof of the nonlinear version of the rearrangement
inequality is complete.

EXERCISES

Exercise 5.1 (Baseball and Cauchy’s Third Inequality)

In the remarkable Note II of 1821 where Cauchy proved both his
namesake inequality and the fundamental AM-GM bound, one finds a
third inequality which is not as notable nor as deep but which is still
handy from time to time. The inequality asserts that for any positive
real numbers hy, ho, ..., h, and by, bs,...,b, one has the ratio bounds

hj hi+ha+---+hy, h;

" 1gljlgnbj T bi+by+---+b, _121]a§xﬂbj ( )

Sports enthusiasts may imagine, as Cauchy never would, that b; denotes
the number of times a baseball player j goes to bat, and h; denotes the
number of times he gets a hit. The inequality confirms the intuitive fact
that the batting average of a team is never worse than that of its worst
hitter and never better than that of its best hitter.

Prove the inequality (5.17) and put it to honest mathematical use by
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proving that for any polynomial P(z) = co + c1o + cox? + -+ + 2™
with positive coeflicients one has the monotonicity relation

ocrse = (5)' 55

Exercise 5.2 (Betweenness and an Inductive Proof of AM-GM)

One can build an inductive proof of the basic AM-GM inequality
(2.3) by exploiting the conversion of an order relation to a quadratic
bound. To get started, first consider 0 < a1 < as < --- < ayp, set
A= (a1 +az+ -+ ay)/n, and then show that one has

aran/A < aj +a, — A.

Now, complete the induction step of the AM-GM proof by considering
the n — 1 element set S = {as,as,...,an—1} U{a1 +a, — A}

Exercise 5.3 (Cauchy—Schwarz and the Cross-Term Defect)
If w and v are elements of the real inner product space V' for which
on has the upper bounds

(u,u) < A% and (v,v) < B?

then Cauchy’s inequality tells us (u,v) < AB. Show that one then also
has a lower bound on the cross-term difference AB — (u,v), namely,

{A2—<u,u)};{B2—<v,v>}2 < AB - (u,v). (5.18)

Exercise 5.4 (A Remarkable Inequality of I. Schur)
Show that for all values of x,y, z > 0, one has for all o > 0 that

(@ —y)(z —2) +y*(y —2)(y = 2) +2%(z —z)(x —y) 2 0. (5.19)

Moreover, show that one has equality here if and only if one has either
x =y = x or two of the variables are equal and the third is zero.

Schur’s inequality can sometimes saves the day in problems where the
AM-GM inequality looks like the natural tool, yet it comes up short.
Sometimes the two-pronged condition for equality also provides a clue
that Schur’s inequality may be of help.

Exercise 5.5 (The Pélya—Szegl Converse Restructured)
The converse Cauchy inequality (5.7) is expressed with the aid of
bounds on the ratios ag /by, but for many applications it is useful to know
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that one also has a natural converse under the more straightforward
hypothesis that

O0<a<ap,<A and 0<b<b,<B forall k =1,2,...,n.

Use the Cauchy converse (5.7) to prove that in this case one has

n n n 2 2
1 AB ab
2 2
< iy = — 5.
{22}/ (e} =i+ i)
k=1 k=1 k=1

Exercise 5.6 (A Competition Perennial)
Show that if @ > 0, b > 0, and ¢ > 0 then one has the elegant

symmetric bound
3 a b c
<

2 . 5.20
2_b+c+a+c+a—|—b ( )

This is known as Nesbitt’s inequality, and along with several natural
variations, it has served a remarkable number of mathematical compe-
titions, from Moscow in 1962 to the Canadian Maritimes in 2002.

Exercise 5.7 (Rearrangement, Cyclic Shifts, and the AM-GM)

Skillful use of the rearrangement inequality often calls for one to ex-
ploit symmetry and to look for clever specializations of the resulting
bounds. This problem outlines a proof of the AM-GM inequality that
nicely illustrates these steps.

(a) Show that for positive cg, k = 1,2,...,n one has

ey c c

R = SRET A

Cn, C1 C2 Cn—1

(b) Specialize the result of part (a) to show that for all positive zy,
k=1,2,...,n, one has the rational bound
T
n< ———+zo+a3+---+ Ty
T1XT2 Ty

(c) Specialize a third time to show that for p > 0 one also has

T
n < pPT1

S —————— +pr2atprzt+ -+ pan,
p 1T Ty

and finally indicate how the right choice of p now yields the AM-GM
inequality (2.3).
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y:x+x_1

The mapf(z) =z + 2"
decreases on (0,1] and
increases on [1,00)

m 1 M=m!

Fig. 5.2. One key to the proof of Kantorovich’s inequality is the geometry
of the map z »— x + 2~ *; another key is that a multiplicative inequality is
sometimes proved most easily by first establishing an appropriate additive
inequality. To say much more would risk giving away the game.

Exercise 5.8 (Kantorovich’s Inequality for Reciprocals)

Show that if 0 < m = 21 < 29 < -+- < 2, = M < oo then for
nonnegative weights with p; + ps + - -+ + p, = 1 one has

{épjxj}{épj%j} <5—z (5.21)

where = (m + M)/2 and v = v/mM. This bound provides a natural
complement to the elementary inequality of Exercise 1.2 (page 12), but it
also has important applications in numerical analysis where, for example,
it has been used to estimated the rate of convergence of the method of
steepest ascent. To get started with the proof, one might note that by
homogeneity it suffices to consider the case when v = 1; the geometry
of Figure 5.2 then tells a powerful tale.

Exercise 5.9 (Monotonicity Method)

Suppose ax > 0 and by > 0 for £k = 1,2,...,n and for fixed § € R
consider the function

folx) = {Zafﬂbﬁ—z}{ Za?_zngrx}, zeR.
j=1 j=1

If we set @ = 1, we see that f1(0)Y/2 gives us the left side of Cauchy’s
inequality while f1(1)'/2 gives us the right side. Show that fy(z) is a
monotone increasing of x on [0, 1], a fact which gives us a parametric
family of inequalities containing Cauchy’s inequality as a special case.
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Exercise 5.10 (A Proto-Muirhead Inequality)
If the nonnegative real numbers a1, as, by, and by satisfy

max{ai,as} > max{by,b2} and a3+ az = by + ba,
then for nonnegative z and y, one has
xblybg + beybl S xalyag _|_ xaanl. (522)

Prove this assertion by considering an appropriate factorization of the
difference of the two sides.

Exercise 5.11 (Chebyshev’s Inequality for Tail Probabilities)

One of the most basic properties of the mathematical expectation E(-)
that one meets in probability theory is that for any random variables
X and Y with finite expectations the relationship X < Y implies that
E(X) < E(Y). Use this fact to show that for any random variable Z
with finite mean p = E(Z) one has the inequality

P(IZ-ul =) < %E(IZ — uf?). (5.23)

This bound provides one concrete expression of the notion that a random
variable is not likely to be too far away from its mean, and it is surely
the most used of the several inequalities that carry Chebyshev’s name.



6
Convexity — The Third Pillar

There are three great pillars of the theory of inequalities: positivity,
monotonicity, and convexity. The notions of positivity and monotonicity
are so intrinsic to the subject that they serve us steadily without ever
calling attention to themselves, but convexity is different. Convexity
expresses a second order effect, and for it to provide assistance we almost
always need to make some deliberate preparations.

To begin, we first recall that a function f : [a,b] — R is said to be
convez provided that for all ,y € [a,b] and all 0 < p <1 one has

flpz+ (1 —p)y) <pf(z)+ (1 —p)f(y). (6.1)

With nothing more than this definition and the intuition offered by the
first frame of Figure 6.1, we can set a challenge problem which creates
a fundamental link between the notion of convexity and the theory of
inequalities.

Problem 6.1 (Jensen’s Inequality)
Suppose that [ : [a,b] — R is a convex function and suppose that the
nonnegative real numbers p;, j =1,2,...,n satisfy

prtpet-tpn=1
Show that for all x; € [a,b], j =1,2,...,n one has

f(ipﬂ?j) < épjf(l”j)- (6.2)

When n = 2 we see that Jensen’s inequality (6.2) is nothing more than
the definition of convexity, so our instincts may suggest that we look for
a proof by induction. Such an approach calls for one to relate averages
of size n — 1 to averages of size n, and this can be achieved several ways.

87
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Three faces of
convexity

8

~
4
8

»

(B) (©)

Fig. 6.1. By definition, a function f is convex provided that it satisfies the
condition (6.1) which is illustrated in frame (A), but a convex function may
be characterized in several other ways. For example, frame (B) illustrates that
a function is convex if and only if its sequential secants have increasing slopes,
and frame (C) illustrates that a function is convex if and only if for each point
p on its graph there is line through p that lies below the graph. None of these
criteria requires that f be differentiable.

One natural idea is simply to pull out the last summand and to renor-
malize the sum that is left behind. More precisely, we first note that
there is no loss of generality if we assume p,, > 0 and, in this case, we

can write
n n—1 D
ijszpn$n+(1—pn)zl ;.
i=1 =1 Pn

Now, from this representation, the definition of convexity, and the in-
duction hypothesis — all applied in that order — we see that

f(ipﬂj) < puf(an) + (1 —pn) J‘(TLZ::1 pjffj)

n—1

fmmum+uﬂm§ji%4@»

j=1

= Yo pifay).
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This bound completes the induction step and thus completes the solution
to one of the easiest — but most useful — of all our challenge problems.

THE CASE OF EQUALITY

We will find many applications of Jensen’s inequality, and some of
the most engaging of these will depend on understanding the conditions
where one has equality. Here it is useful to restrict attention to those
functions f : [a,b] — R such that for all z,y € [a,b] and all 0 < p < 1
and x # y one has the strict inequality

flpr+ (1 —ply) <pf(z)+ 1 —-p)fly). (6.3)

Such functions are said to be strictly conver, and they help us frame the
next challenge problem.

Problem 6.2 (The Case of Equality in Jensen’s Inequality)
Suppose that f : [a,b] — R is strictly convex and show that if

f<§pm) - épjfm) (6.4)

where the positive reals pj, j = 1,2,...,n have sum p1 +pa+---+p, = 1,
then one must have

T1=1Tg="+ =Ty (6.5)

Once more, our task is easy, but, as with Jensen’s inequality, the
importance of the result justifies its role as a challenge problem. For
many inequalities one discovers when equality can hold by taking the
proof of the inequality and running it backwards. This approach works
perfectly well with Jensen’s inequality, but logic of the argument still
deserves some attention.

First, if the conclusion (6.5) does not hold, then the set

S={iem # s o)
is a proper subset of {1,2,...,n}, and we will argue that this leads one
to a contradiction. To see why this is so, we first set

pzij, xzz%mj, and yzzlp_j Zj,

jES jES j¢s
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from which we note that the strict convexity of f implies
n
H(Smes) = 1+ 0 =) <p@) + A-D)fW. (60)
j=1

Moreover, by the plain vanilla convexity of f applied separately at x and
y, we also have the inequality

PI@)+HA=p) () < 3 2Ly +(1-p) 3 ) = 3 pif (a5):

jes jés =

Finally, from this bound and the strict inequality (6.6), we find
f(ijxj) <Y pif(z)),
j=1 j=1

and since this inequality contradicts the assumption (6.4), the solution
of the challenge problem is complete.

THE DIFFERENTIAL CRITERION FOR CONVEXITY

A key benefit of Jensen’s inequality is its generality, but before Jensen’s
inequality can be put to work in a concrete problem, one needs to es-
tablish the convexity of the relevant function. On some occasions this
can be achieved by direct application of the definition (6.1), but more
commonly, convexity is established by applying the differential criterion
provided by the next challenge problem.

Problem 6.3 (Differential Criterion for Convexity)
Show that if f: (a,b) — R is twice differentiable, then

1" (x) >0 for all x € (a,b) implies f(-) is convez on (a,b),
and, in parallel, show that
1" (x) >0 for all x € (a,b) implies f(-) is strictly convex on (a,b).

If one simply visualizes the meaning of the condition f”(z) > 0, then
this problem may seem rather obvious. Nevertheless, if one wants a
complete proof, rather than an intuitive sketch, then the problem is not
as straightforward as the graphs of Figure 6.1 might suggest.

Here, since we need to relate the function f to its derivatives, it is
perhaps most natural to begin with the representation of f provided
by the fundamental theorem of calculus. Specifically, if we fix a value
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xo € [a,b], then we have the representation

f(x) = f(zo) + /w f'(u)du  for all z € [a,b], (6.7)

and once this formula is written down, we may not need long to think
of exploiting the hypothesis f”(-) > 0 by noting that it implies that
the integrand f’(-) is nondecreasing. In fact, our hypothesis contains
no further information, so the representation (6.7), the monotonicity of
f'(+), and honest arithmetic must carry us the rest of the way.

To forge ahead, we take a < z < y < band 0 < p < 1 and we
also set ¢ = 1 — p, so by applying the representation (6.7) to z, y, and
xo = pxr + qy we see A = pf(x) + qf(y) — f(px + qy) may be written as

A= q/py f(u) du — p/Pﬂf-Hw 1 (u) du. (6.8)

T+qy z

For w € [z, px + qy] one has f'(u) < f'(px + qy), so we have the bound

pPT+qyY
p / F(w) du < gply — ) f' (b + qu), (6.9)

while for u € [px + qy,y] one has f'(u) > f'(pr + qy), so we have the
matching bound

Yy

0 rdezaty - o o+ ). (6.10)
pT+qy

Therefore, from the integral representation (6.8) for A and the two

monotonicity estimates (6.9) and (6.10), we find A > 0, just as we

needed to complete the solution of the first half of the problem.

For the second half of the theorem, we only need to note that if
f"(z) > 0 for all x € (a,b), then both of the inequalities (6.9) and
(6.10) are strict. Thus, the representation (6.8) for A gives us A > 0,
and we have the strict convexity of f.

Before leaving this challenge problem, we should note that there is an
alternative way to proceed that is also quite instructive. In particular,
one can rely on Rolle’s theorem to help estimate A by comparison to an
appropriate polynomial; this solution is outlined in Exercise 6.10.

THE AM-GM INEQUALITY AND THE SPECIAL NATURE OF z +— €%

The derivative criterion tells us that the map =z — e” is convex, so
Jensen’s inequality tells us that for all real y1,ys2,...,y, and all positive
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pj, j=1,2,...,n with p; + p2 +--- +p, =1, one has

n n
exp (ijyj> < ijeyj.
j=1 j=1

Now, when we set x; = €%, we then find the familiar relation

Thus, with lightning speed and crystal clear logic, Jensen’s inequality
leads one to the general AM-GM bound.

Finally, this view of the AM-GM inequality as a special instance of
Jensen’s inequality for the function x — e® puts the AM-GM inequal-
ity in a unique light — one that may reveal the ultimate source of
its vitality. Quite possibly, the pervasive value of the AM-GM bound
throughout the theory of inequalities is simply one more reflection of the
fundamental role of the exponential function as an isomorphism between
two most important groups in mathematics: addition on the real line
and multiplication on the positive real line.

How 1O USE CONVEXITY IN A TYPICAL PROBLEM

Many of the familiar functions of trigonometry and geometry have
easily established convexity properties, and, more often than not, this
convexity has useful consequences. The next challenge problem comes
with no hint of convexity in its statement, but, if one is sensitive to the
way Jensen’s inequality helps us understand averages, then the required
convexity is not hard to find.

Problem 6.4 (On the Maximum of the Product of Two Edges)
In an equilateral triangle with area A, the product of any two sides
is equal to (4/v/3)A. Show that this represents the extreme case in the

sense that for a triangle with area A there must exist two sides the lengths
of which have a product that is at least as large as (4/v/3)A.

To get started we need formulas which relate edge lengths to areas,
and, in the traditional notation of Figure 6.2, there are three equally

viable formulas:

1 1
A= iabsin'y = iacsinﬁ = ibcsina.
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The area A of the generic triangle
has three basic representations:

A = jabsiny = jacsin 3 = 5bcsina

Fig. 6.2. All of the trigonometric functions are convex (or concave) if their
arguments are restricted to an appropriate domain, and, as a consequence,
there are many interesting geometric consequences of Jensen’s inequality.

Now, if we average these representations, then we find that

1 1 ! . :
3(a + ac + C) ( )3{Sina+sinﬂ+sin7}’ (6 )

and this is a formula that almost begs us to ask about the convexity of
1/sinz. The plot of x — 1/sinx for x € (0,7) certainly looks convex,
and our suspicions can be confirmed by calculating the second derivative,

1\ 1 cos? x
( ) = +2——5—>0 forallzc (0,7). (6.12)

sinx sinx sin® x

Therefore, since we have (o + 8+ 7)/3 = 7/3, we find from Jensen’s
inequality that

LS TR S U W
3\sina  sinB  sinyf T sinw/3 /3’
so, by inequality (6.11), we do obtain the conjectured bound

1 4
ax(ab, ac,bc) > =(ab+ ac+ bc) > —=A. 6.13
max(ab, ac, be) 3(a ac + be) 7 (6.13)

CONNECTIONS AND REFINEMENTS

This challenge problem is closely related to a well-known inequality
of Weitzenbock which asserts that in any triangle one has

4
a4+ b+ > _3A' (6.14)

7

In fact, to pass from the bound (6.13) to Weitzenbock’s inequality one
only has to recall that

ab + ac+ be < a® + b + 2,

which is a familiar fact that one can obtain in at least three ways —
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Cauchy’s inequality, the AM-GM bound, or the rearrangement inequal-
ity will all do the trick with equal grace.

Weitzenbock’s inequality turns out to have many instructive proofs —
Engel (1998) gives eleven! It also has several informative refinements,
one of which is developed in Exercise 6.9 with help from the convexity
of the map = — tanx on [0,7/2].

How 1O DO BETTER MUCH OF THE TIME

There are some mathematical methods which one might call generic
improvers; broadly speaking, these are methods that can be used in
a semi-automatic way to generalize an identity, refine an inequality, or
otherwise improve a given result. A classic example which we saw earlier
is the polarization device (see page 49) which often enables one to convert
an identity for squares into a more general identity for products.

The next challenge problem provides an example of a different sort. It
suggests how one might think about sharpening almost any result that
is obtained via Jensen’s inequality.

Problem 6.5 (Hélder’s Defect Formula)
If f : [a,b] — R is twice differentiable and if we have the bounds

0<m< f'(x) <M  forallx € [a,b], (6.15)

then for any real values a < x1 < x9 < -+ < x,, < b and any nonnegative
reals pi, k = 1,2,...,n with py +ps + --- + p, = 1, there exists a real
value p € [m, M| for which one has the formula

S pefan) f(Zpkxk) =Y e -t (6.16)

k=1 k=1 j=1k=1

CONTEXT AND A PLAN

This result is from the same famous 1885 paper of Otto Ludwig Holder
(1859-1937) in which one finds his proof of the inequality that has
come to be know universally as “Holder’s inequality.” The defect for-
mula (6.16) is much less well known, but it is nevertheless valuable. It
provides a perfectly natural measure of the difference between the two
sides of Jensen’s inequality, and it tells us how to beat the plain vanilla
version of Jensen’s inequality whenever we can check the additional hy-
pothesis (6.15). More often than not, the extra precision does not justify
the added complexity, but it is a safe bet that some good problems are
waiting to be cracked with just this refinement.
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Holder’s defect formula (6.16) also deepens one’s understanding of
the relationship of convex functions to the simpler affine or quadratic
functions. For example, if the difference M — m is small, the bound
(6.16) tells us that f behaves rather like a quadratic function on [a, b].
Moreover, in the extreme case when m = M, one finds that f is exactly
quadratic, say f(z) = a + Bz + yx? with m = M = pu = 27, and the
defect formula (6.16) reduces to a simple quadratic identity.

Similarly, if M is small, say 0 < M < ¢, then the bound (6.16)
tells us that f behaves rather like an affine function f(z) = a + fSz.
For an exactly affine function, the left-hand side of the bound (6.16)
is identically equal to zero, but in general the bound (6.16) asserts a
more subtle relation. More precisely, it tells us that the left-hand side
is a small multiple of a measure of the extent to which the values z;,
j=1,2,...,n are diffused throughout the interval [a, b].

CONSIDERATION OF THE CONDITION

This challenge problem leads us quite naturally to an intermediate
question: How can we use the fact that 0 < m < f”(x) < M? Once this
question is asked, one may not need long to observe that the two closely

related functions
1 1
g(z) = isz — f(z) and h(x)= f(z)— ime

are again convex. In turn, this observation almost begs us to ask what
Jensen’s inequality says for these functions.
For g(z), Jensen’s inequality gives us the bound

1

§Mi2— Szn: {Mxk f(xk)}

where we have set £ = p1x1 +paxa+- - -+ pny, and this bound is easily
rearranged to yield

{Zpkf Th } f(@) S% {(Zm%) } ;Mépk(xkfy

The perfectly analogous computation for h(z) gives us a lower bound

n

{ Zpkfm)} CF@) 2 -
k=1

k=1

and these upper and lower bounds almost complete the proof of the
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assertion (6.16). The only missing element is the identity

n

Zpk(xk—x Zzpﬂ?k ‘—fEk)

k=1 ] 1k=1
which is easily checked by algebraic expansion and the definition of z.

PREVAILING AFTER A NEAR FAILURE

Convexity and Jensen’s inequality provide straightforward solutions to
many problems. Nevertheless, they will sometimes run into a unexpected
roadblock. Our next challenge comes from the famous problem section of
the American Mathematical Monthly, and it provides a classic example
of this phenomenon.

At first the problem looks invitingly easy, but, soon enough, it presents
difficulties. Fortunately, these turn out to be of a generous kind. After
we deepen our understanding of convex functions, we find that Jensen’s
inequality does indeed prevail.

Problem 6.6 (AMM 2002, Proposed by M. Mazur)

Show that if a,b, and ¢, are positive real numbers for which one has
the lower bound abc > 29, then

! <l{ ! + ! + ! } (6.17)
+(abc)t/? ~ 3 V1+a V1i+b VIi4c) '

The average on the right-hand side suggests that Jensen’s inequal-
ity might prove useful, while the geometric mean on the left-hand side
suggests that the exponential function will have a role. With more ex-
ploration — and some luck — one may not need long to guess that the
function

1
V1+e*

might help bring Jensen’s inequality properly into play. In fact, once

fz) =

this function is written down, one may check almost without calculation
that the proposed inequality (6.17) is equivalent to the assertion that

HE5E) < @+ £ + 161} (6.18)

for all real z, y, and z such that exp(z +y + 2) > 2°.
To see if Jensen’s inequality may be applied, we need to assess the
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The new convex function g

S

agrees with f on [3log 2, 00),
and it agrees with the tangent
of f on [0,3log 2].

S
W

1

T

1o'g 2 3 fog 2

Fig. 6.3. Effective use of Jensen’s inequality calls for one to find a function
that is convex on all of [0, co) and that is never larger than f. (Note: To make
the concavity of f on [0,log?2) visible, the graph is not drawn to scale.)

convexity properties of f, so we just differentiate twice to find

@)=~

ex

2(1 + e*)3/2
and

1 3
f//(l‘) _ _5(1 +em)—3/26m + 1(1 —|—6$)_5/2€2£.

The second formula tells us that f”(x) > 0 if and only if we have e* > 2,
so by Jensen’s inequality one finds that the target inequality (6.17) holds
provided that each of the terms a, b, and c is at least as large as 2.

DIFFICULTIES, EXPLORATIONS, AND POSSIBILITIES

The difficulty we face here is that the hypothesis of Problem 6.6 only
tells us that product abe is at least as large as 2°; we are not given any
bounds on the individual terms except that a > 0, b > 0, and ¢ > 0.
Thus, Jensen’s inequality cannot complete the proof all by itself, and we
must seek help from some other resources.

There are many ideas one might try, but before going too far, one
should surely consider the graph of f(z). What one finds from the plot
in Figure 6.3 is that the f(z) looks remarkably convex over the interval
[0,10] despite the fact that calculation that shows f(x) is concave on
[0,10g 2] and convex on [log2,00). Thus, our plot holds out new hope;
perhaps some small modification of f might have the convexity that we
need to solve our problem.
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THE IDEA OF A CONVEX MINORANT

When we think about the way we hoped to use f with Jensen’s in-
equality, we soon realize that we can make our task a little bit easier.
Suppose, for example, that we can find a convex function g : [0,00) — R
such that we have both the condition

g(z) < f(z) for all x € [0, 00) (6.19)
and the complementary condition
g(x) = f(x) for all x > 3log 2. (6.20)

For such a function, Jensen’s inequality would tell us that for z,y, and
z with exp(x +y + 2) > 2 we have the bound

f(x+y—|—z> B (x+y—|—z>
3 —9 3

3o+ 900 +90)

1

< {0+ s

IA

The first and last terms of this bound recover the inequality (6.18) so the
solution of the challenge problem would be complete except for one small
detail — we still need to show that there is a convex g on [0, 00) such
that g(z) < f(x) for € [0,3log2] and f(x) = g(z) for all z > 3log 2.

CONSTRUCTION OF THE CONVEX MINORANT

One way to construct a convex function g with the minorization prop-
erties describe above is to just take g(z) = f(z) for x > 3log 2 and to de-
fine g(x) on [0, 3log 2] by linear extrapolation. Thus, for z € [0, 31og 2],
we take

f(3log2) + (z — 3log 2) f'(3log 2)

= % + (3log2 — x)(4/27).

g9(z)

Three simple observations now suffice to show that g(z) < f(x) for
all z > 0. First, for x > 3log2, we have g(x) = f(x) by definition.
Second, for log2 < z < 3log2 we have g(x) < f(z) because in this
range ¢g(x) has the value of a tangent line to f(z) and by convexity of f
on log2 < z < 3log2 the tangent line is below f. Third, in the critical
region 0 < z < log2 we have g(z) < f(z) because (i) f is concave, (ii)
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g is linear, and (iii) f is larger than g at the end points of the interval
[0,log 2]. More precisely, at the first end point one has

9(0) = 0.641--- < £(0) = % _0.707...

while at the second end point one has

1
g(log2) =0.538--- < f(log2) = 7 =0.577....

Thus, the convex function g is indeed a minorant of f which agrees with
f on [3log2,00), so the solution to the challenge problem is complete.

JENSEN’S INEQUALITY IN PERSPECTIVE

Jensen’s inequality may lack the primordial nature of either Cauchy’s
inequality or the AM-GM inequality, but, if one were forced to pick a
single result on which to build a theory of mathematical inequalities,
Jensen’s inequality would be an excellent choice. It can be used as a
starting point for the proofs of almost all of the results we have seen so
far, and, even then, it is far from exhausted.

EXERCISES

Exercise 6.1 (A Renaissance Inequality)
The Renaissance mathematician Pietro Mengoli (1625-1686) only needed
simple algebra to prove the pleasing symmetric inequality

1 1 1

3
— for all 1 21
z-1 2z 711 @ oraltr =t (6:21)

yet he achieved a modest claim on intellectual immortality when he used
it to give one of the earliest proofs of the divergence of the harmonic
series,
1 1 1 .
H,=1+-+4+-4+-+—- = lim H, =oo0. (6.22)
2 3 n n— 00
Rediscover Mengoli’s algebraic proof of the inequality (6.21) and check
that it also follows from Jensen’s inequality. Further, show, as Mengoli
did, that the inequality (6.21) implies the divergence of H,,.

Exercise 6.2 (A Perfect Cube and a Triple Product)
Show that if z,y,2z > 0 and = + y + z = 1 then one has

64§<1+%)(1+§)<1+%>.
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An inscribed polygon
can be decomposed into
triangles like the shaded one

which has area %sin 0.

Fig. 6.4. If a convex polygon with n sides is inscribed the unit circle, our visual
imagination suggests that the area is maximized only by a regular polygon.
This conjecture can be proved by methods which would have been familiar to
Euclid, but a modern proof by convexity is easier.

Exercise 6.3 (Area Inequality for n-gons)

Figure 6.4 suggests that among all convex n-sided convex polygons
that one can inscribed in a circle, only the regular n-gon has maximal
area. Can Jensen’s inequality be used to confirm this suggestion?

Exercise 6.4 (Investment Inequalities)

If 0 < 7, < 00, and if our investment of one dollar in year k grows
to 1 4+ ri dollars at the end of the year, we call r; the return on our
investment in year k. Show that the value V = (1+r1)(1+r2)--- (1+7ry)
of our investments after n years must satisfy the bounds

+re)" < [ +m) <@ +ra)m, (6.23)
k=1

where rg = (7"17‘2"'Tn)1/n and r4 = (r1 + 719+ -+ +7,)/n. Also
explain why this bound might be viewed as a refinement of the AM-GM
inequality.

Exercise 6.5 (Superadditivity of the Geometric Means)

We have seen before in Exercise 2.11 that for nonnegative a; and b;,
j=1,2,...,n one has superadditivity of the geometric mean:

(aras -+~ an)"+(biba - bp) /™ < {(ay + by)(az + ba) -+~ (an + b))}/

Does this also follow from Jensen’s inequality?
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Exercise 6.6 (Cauchy’s Technique and Jensen’s Inequality)

In 1906, J.L.W.V. Jensen wrote an article that was inspired by the
proof given by Cauchy’s for the AM-GM inequality, and, in an effort to
get to the heart of Cauchy’s argument, Jensen introduced the class of
functions that satisfy the inequality

f(a:;ry) _ f(x);f@/) for all z,y € [a,b]. (6.:24)

Such functions are now called J-convex functions, and, as we note below
in Exercise 6.7, they are just slightly more general than the convex
functions defined by condition (6.1).

For a moment, step into Jensen’s shoes and show how one can modify
Cauchy’s leap-forward fall-back induction (page 20) to prove that for all
J-convex functions one has

(A n) <23 s foran 1<k <n} ol (629

— T | < — Tk orall {zx : 1 <k <nj} Cla,b|. .

"= "=
Here one might note that near the end of his 1906 article, Jensen ex-
pressed the bold view that perhaps someday the class of convex function
might seen to be as fundamental as the class of positive functions or the
class of increasing functions. If one allows for the mild shift from the
specific notion of J-convexity to the more modern interpretation of con-
vexity (6.1), then Jensen’s view turned out to be quite prescient.

Exercise 6.7 (Convexity and J-Convexity)

Show that if f : [a,b] — R is continuous and J-convex, then f must
be convex in the modern sense expressed by the condition (6.1). As a
curiosity, we should note that there do exist J-convex functions that are
not convex in the modern sense. Nevertheless, such functions are wildly
discontinuous, and they are quite unlikely to turn up unless they are
explicitly invited.

Exercise 6.8 (A “One-liner” That Could Have Taken All Day)
Show that for all 0 < z,y,z < 1, one has the bound

LL‘Q y2 22

= + +
14y 142 1+z+y

L(z,y,z) + 22y - 1) (2% - 1) <2
Placed suggestively in a chapter on convexity, this problem is not much
more than a one-liner, but in a less informative location, it might send
one down a long trail of fruitless algebra.
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Exercise 6.9 (Hadwiger—Finsler Inequality)

For any triangle with the traditional labelling of Figure 6.2, the law of
cosines tells us that a? = b2 + ¢ — 2bc cos . Show that this law implies
the area formula

a®> = (b —¢)* + 4Atan(a/2),
then show how Jensen’s inequality implies that in any triangle one has
A+ 4+ >(a—b)2%+(b—c)?+ (c—a)®+4V3A.

This bound is known as the Hadwiger—Finsler inequality, and it provides
one of the nicest refinements of Weitzenbock’s inequality.

Exercise 6.10 (The f” Criterion and Rolle’s Theorem)

We saw earlier (page 90) that the fundamental theorem of calculus
implies that if one has f”(z) > 0 for all z € [a,b], then f is convex on
[a,b]. This exercise sketches how one can also prove this important fact
by estimating the difference f(px1+qza)—pf(z1)—qf(z2) by comparison
with an appropriate polynomial.

(a) Take 0 <p <1, ¢ =1 — p and set p = pxy + gxo where z1 < xa.
Find the unique quadratic polynomial @Q(z) such that

Q(w1) = f(x1), Qx2) = f(x2), and Q(u) = f(p).

(b) Use the fact that A(z) = f(z) — Q(z) has three distinct zeros in
[a,b] to show that there is an x* such that A”(z*) = 0.

(¢) Finally, explain how f”(z) > 0 for all € [a,b] and A" (z*) =0
imply that f(pz1+ qz2) — pf(21) — qf(22) > 0.

Exercise 6.11 (Transformation to Achieve Convexity)
Show that for positive a, b, and ¢ such that a + b + ¢ = abc one has
1 n 1 n 1 < §

Vita? VI+b¥ i+ T2
This problem from the 1998 Korean National Olympiad is not easy, even
with the hint provided by the exercise’s title. Someone who is lucky may
draw a link between the hypothesis a + b + ¢ = abc and the reasonably
well-known fact that in a triangle labeled as in Figure 6.2 one has

tan(a) + tan(8) + tan(y) = tan(«) tan(3) tan(y).

This identity is easily checked by applying the addition formula for the
tangent to the sum v = 7 — (a4 3), but it is surely easier to remember
than to discover on the spot.
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A point z outside of
a closed bounded set H
determines a natural
“viewing angle” 2.

Fig. 6.5. The viewing angle 2¢ of the convex hull of the set of roots
r1,72,...,7n of P(z) determines the parameter ¢ that one finds in Wilf’s
quantitative refinement of the Gauss—Lucas Theorem.

Exercise 6.12 (The Gauss—Lucas Theorem)

Show that for any complex polynomial P(z) = ag +a1z+ -+ a, 2",
the roots of the derivative P’(z) are contained in the convex hull H of
the roots of P(z).

Exercise 6.13 (Wilf’s Inequality)
Show that if H is the convex hull of the roots of the complex polyno-
mial P =ap+ a1z + -+ an 2™, then one has

an

P(z)

L/ 1 |P(z2)
ncos | P(z)

where the angle 1 is defined by Figure 6.5. This inequality provides both
a new proof and a quantitative refinement of the classic Gauss—Lucas

for all z ¢ H, (6.26)

Theorem of Exercise 6.12.

Exercise 6.14 (A Polynomial Lower Bound)
Given that the zeros of the polynomial P(z) = a,2™ + -+ 4+ a1z + ag
are contained in the unit disc U = {z : |z| < 1}, show that one has

nlan| V™| P(2)|("D/" /1 =272 < |P'(2)| forall 2 ¢ U. (6.27)

Exercise 6.15 (A Complex Mean Product Theorem)

Show that if 0 < r < 1 and if the complex numbers z1, 23, ..., z, are
in the disk D = {z : |z| < r}, then there exists a zg € D such that

[T +2) =0 +z)" (6.28)

j=1
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Exercise 6.16 (Shapiro’s Cyclic Sum Inequality)
Show that for positive a1, as, az, and a4, one has the bound
aiq a9 as a4

2 < + + + . (6.29)
as + as as + aq as + ay a1 + as

Incidentally, the review of Bushell (1994) provides a great deal of infor-

mation about the inequalities of the form

x1 €2 Tp—1 Tn

n/2 < + .- .
To+2x3 X3+ T4 Tn+2x1 X1+ T2

This bound is known to fail for n > 25, yet the precise set of n for which
it is valid has not yet been determined.

Exercise 6.17 (The Three Chord Lemma)
Show that if f : [a,b] — R is convex and a < x < b, then one has

F@) = @) _ f0) = @) _ f0) = f)

Tr—a - b—a - b—x

(6.30)

As the next two exercises suggest, this bound is the key to some of the
most basic regularity properties of convex functions.

Exercise 6.18 (Near Differentiability of Convex Functions)
Use the Three Chord Lemma to show that for convex f : [a,b] — R
and a < x < b one has the existence of the finite limits
def

of 1. z+h)— flx , ] x—h) — f(z
ﬁwgﬁﬂi%igamLm:%ﬁ_%iQ

Exercise 6.19 (Ratio Bounds and Linear Minorants)
For convex f :[a,b] — R and a < x < y < b, show that one has

rw @I <y <pw. ey
In particular, note that for each 6 € [f’ (), f/ (x)] one has the bound
fy) > fl@)+ (y—=x) for all y € [a, b]. (6.32)

The linear lower bound (6.32) is more effective that its simplicity would
suggest, and it has some notable consequences. In the next chapter
we will find that it yields and exceptionally efficient proof of Jensen’s
inequality.
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Integral Intermezzo

The most fundamental inequalities are those for finite sums, but there
can be no doubt that inequalities for integrals also deserve a fair share
of our attention. Integrals are pervasive throughout science and engi-
neering, and they also have some mathematical advantages over sums.
For example, integrals can be cut up into as many pieces as we like, and
integration by parts is almost always more graceful than summation by
parts. Moreover, any integral may be reshaped into countless alternative
forms by applying the change-of-variables formula.

Each of these themes contributes to the theory of integral inequalities.
These themes are also well illustrated by our favorite device — concrete
challenge problems which have a personality of their own.

Problem 7.1 (A Continuum of Compromise)
Show that for an integrable f : R — R, one has the bound

/O;f(m)|dxé8%</(:mf(x)Qda:>%(/o;|f(x)2da:>4, 71)

A QUICK ORIENTATION AND A QUALITATIVE PLAN

The one-fourth powers on the right side may seem strange, but they
are made more reasonable if one notes that each side of the inequality is
homogenous of order one in f; that is, if f is replaced by Af where X is
a positive constant, then each side is multiplied by A. This observation
makes the inequality somewhat less strange, but one may still be stuck
for a good idea.

We faced such a predicament earlier where we found that one often
does well to first consider a simpler qualitative challenge. Here the nat-

105



106 Integral Intermezzo

ural candidate is to try to show that the left side is finite whenever both
integrals on the right are finite.

Once we ask this question, we are not likely to need long to think
of looking for separate bounds for the integral of |f(z)| on the interval
T = (—t,t) and its complement T¢. If we also ask ourselves how we
might introduce the term |z f(x)|, then we are almost forced to think of
using the splitting trick on the set T°. Pursuing this thought, we then
find for all ¢ > 0 that we have the bound

@l = [ 1f@)dr+ [ Lefe)de
/. A L

<ent( [ If(x)lzdx)% ¥ (%)( [ etpa)’. @2

where in the second line we just applied Schwarz’s inequality twice.

This bound is not the one we hoped to prove, but it makes the same
qualitative case. Specifically, it confirms that the integral of |f(z)| is
finite when the bounding terms of the inequality (7.1) are finite. We
now need to pass from our additive bound to one that is multiplicative,
and we also need to exploit our free parameter ¢.

We have no specific knowledge about the integrals over T and T, so
there is almost no alternative to using the crude bound

[ls@Pdr< [ 1f@P s 4
T R
and its cousin

[ f@Pds< [ fof@)P i b

Te R

The sum (7.2) is therefore bounded above by ¢(t) fosts As 42313 Bz,
and we can use calculus to minimize ¢(t). Since ¢(t) — oo ast — 0 or
t — oo and since ¢/(t) = 0 has the unique root ty = B2 /A, we find
ming;so ¢(t) = ¢(tg) = 82 A1 B%, and this gives us precisely the bound
proposed by the challenge problem.

DISSECTIONS AND BENEFITS OF THE CONTINUUM

The inequality (7.1) came to us with only a faint hint that one might
do well to cut the target integral into the piece over T' = (—t,t) and the
piece over T, yet once this dissection was performed, the solution came
to us quickly. The impact of dissection is usually less dramatic, but on
a qualitative level at least, dissection can be counted upon as one of the
most effective devices we have for estimation of integrals.
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Here our use of a flexible, parameter-driven, dissection also helped us
to take advantage the intrinsic richness of the continuum. Without a
pause, we were led to the problem of minimizing ¢(¢), and this turned
out to be a simple calculus exercise. It is far less common for a discrete
problem to crack so easily; even if one finds the analogs of ¢ and ¢(t),
the odds are high that the resulting discrete minimization problem will
be a messy one.

BEATING SCHWARZ BY TAKING A DETOUR

Many problems of mathematical analysis call for a bound that beats
the one which we get from an immediate application of Schwarz’s in-
equality. Such a refinement may require a subtle investigation, but
sometimes the critical improvement only calls for one to exercise some
creative self-restraint. A useful motto to keep in mind is “Transform-
Schwarz-Invert,” but to say any more might give away the solution to
the next challenge problem.

Problem 7.2 (Doing Better Than Schwarz)

Show that if f :]0,00) — [0,00) is a continuous, nonincreasing func-
tion which is differentiable on (0,00), then for any pair of parameters
0 < a, 0 < oo, the integral

= Ooxo”rﬁ ) dx .
1_/0 fa)d (73)

satisfies the bound
I* < {1— (aa%ﬁﬂ“)z}/Oooxmf(x)dm/omx%f(:c)dx. (7.4)

What makes this inequality instructive is that the direct application
of Schwarz’s inequality to the splitting

et f(2) = 2V f(z) 2°/f()

would give one a weaker inequality where the first factor on the right-
hand side of the bound (7.4) would be replaced by 1. The essence of
the challenge is therefore to beat the naive immediate application of
Schwarz’s inequality.

TAKING THE HINT

If we want to apply the pattern of “Transform-Schwarz-Invert,” we
need to think of ways we might transform the integral (7.3), and, from
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the specified hypotheses, the natural transformation is simply integra-
tion by parts. To explore the feasibility of this idea we first note that
by the continuity of f we have 27+ f(x) — 0 as # — 0, so integration
by parts provides the nice formula

oo 1 o0
D f)de = —— [ 2| f (@) de, (7.5)
/0 L+v Jo
provided that we also have
2T f(x) =0 as r — 00. (7.6)

Before we worry about checking this limit (7.6), we should first see if
the formula (7.5) actually helps.

If we first apply the formula (7.5) to the integral I of the challenge
problem, we have v = a + [ and

(a+p+1)I= / TP ()| da.
0
Thus, if we then apply Schwarz’s inequality to the splitting
xa+ﬁ+1|f/(x)| _ {x(2"+1)/2|f’(x)|1/2} {$(2’6+1)/2‘fl(x)‘1/2}

we find the nice intermediate bound

(1+a+pB)** < /Oox%‘“\f'(x)\d:c/ooxz'@“\f'(m)\dm.

0 0

Now we see how we can invert; we just apply integration by parts (7.5)
to each of the last two integrals to obtain

I’ < Qa+1)@25+1) /Oo z°° f(z) dz /Do 2 f(z) dz.
(a+B+1)* Jo 0
Here, at last, we find after just a little algebraic manipulation of the first
factor that we do indeed have the inequality of the challenge problem.
Our solution is therefore complete except for one small point; we still
need to check that our three applications of the integration by parts
formula (7.5) were justified. For this it suffices to show that we have
the limit (7.6) when 7 equals 2«, 203, or a + 3, and it clearly suffices
to check the limit for the largest of these, which we can take to be
2. Moreover, we can assume that in addition to the hypotheses of the
challenge problem that we also have the condition

/0C><J 22 f(z) dx < oo, (7.7)

since otherwise our target inequality (7.4) is trivial.
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A POINTWISE INFERENCE

These considerations present an amusing intermediate problem; we
need to prove a pointwise condition (7.6) with an integral hypothesis
(7.7). It is useful to note that such an inference would be impossible
here without the additional information that f is monotone decreasing.

We need to bring the value of f at a fixed point into clear view, and
here it is surely useful to note that for any 0 < ¢ < co we have

t 20+1 t
2a _ f(t)t _ 1 / 2a+1 g1
/Ox f(z)dx = o - 1 o 1 Ox f(x) dx

f(t)t2a+1 1

t
— 2a+1 ! d
20+ 1 +20z+1/0 @) (78)

[ s @lar
0

By the hypothesis (7.7) the first integral has a finite limit as ¢ — oo, so
the last integral also has a finite limit as ¢ — co. From the identity (7.8)
we see that f(¢)t>*T1/(2a + 1) is the difference of these integrals, so we
find that there exists a constant 0 < ¢ < oo such that

>
~ 2a+1

Jim t2oT () = c. (7.9)

Now, if ¢ > 0, then there is a T such that t2*T1f(t) > ¢/2 for t > T,
and in this case one would have

/OO 22 f(x) dx > /OO % dx = oco. (7.10)

0 T

Since this bound contradicts our assumption (7.7), we find that ¢ = 0,
and this fact confirms that our three applications of the integration by
parts formula (7.5) were justified.

ANOTHER POINTWISE CHALLENGE

In the course of the preceding challenge problem, we noted that the
monotonicity assumption on f was essential, yet one can easily miss the
point in the proof where that hypothesis was applied. It came in quietly
on the line (7.8) where the integration by parts formula was restructured
to express f(t)t2**! as the difference of two integrals with finite limits.

One of the recurring challenges of mathematical analysis is the ex-
traction of local, pointwise information about a function from aggregate
information which is typically expressed with the help of integrals. If
one does not know something about the way or the rate at which the
function changes, the task is usually impossible. In some cases one can
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succeed with just aggregate information about the rate of change. The
next challenge problem provides an instructive example.

Problem 7.3 (A Pointwise Bound)
Show that if f :[0,00) — R satisfies the two integral bounds

/Oom2|f(x)’2dm<oo and /Oo|f’(x)’2d:r<oo,
0 0

then for all x > 0 one has the inequality

f(2)]” < %{/w t2\f(t)|2dt}1/2{/:o |f'(t)y2dt}1/2 (7.11)

and, consequently, \/z|f(z)| — oo as x — oo.

ORIENTATION AND A PLAN

In this problem, as in many others, we must find a way to get started
even though we do not have a clear idea how we might eventually reach
our goal. Our only guide here is that we know we must relate f’ to f,
and thus we may suspect that the fundamental theorem of calculus will
somehow help.

This is The Cauchy-Schwarz Master Class, so here one may not need
long to think of applying the 1-trick and Schwarz’s inequality to get the

bound
+t 5 1/2
<t1/2{/ |f/ (u)| du} .

In fact, this estimate gives us both an upper bound

’f:E—f—f ’—’/ 1 (u) du

00 1/2
e+ 0] < (@) +t1/2{ / |f’<u>|2du} (7.12)

and a lower bound

) 1/2
saraizis@l-of [Crwlfad . @

and each of these offers a sense of progress. After all, we needed to find
roles for both of the integrals

P [l a0 [ |7

and now we at least see how D(x) can play a part.
When we look for a way to relate F'(x) and D(x), it is reasonable to
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think of using D(z) and our bounds (7.12) and (7.13) to build upper and
lower estimates for F'(z). To be sure, it is not clear that such estimates
will help us with our challenge problem, but there is also not much else
we can do.

After some exploration, one does discover that it is the trickier lower
estimate which brings home the prize. To see how this goes, we first
note that for any value of 0 < h such that h2 < f(z)/D(z) one has

h h
Pz [ lPdu= [ @02 o d

Oh 0

> [ @171 - D@
0

> ha?{f(z) — h* D(2)}?,

or, a bit more simply, we have

F(x) > h2a{f(z) — h> D(x)}.

To maximize this lower bound we take h2z = f(z)/{2D(z)}, and we find

af?(x) 2
> 1D(0) or xf(x) <AF(x)D(z),

—~

just as we were challenged to show.

PERSPECTIVE ON LOCALIZATION

The two preceding problems required us to extract pointwise estimates
from integral estimates, and this is often a subtle task. More commonly
one faces the simpler challenge of converting an estimate for one type
of integral into an estimate for another type of integral. We usually do
not have derivatives at our disposal, yet we may still be able to exploit
local estimates for global purposes.

Problem 7.4 (A Divergent Integral)
Given f: [1,00) — (0,00) and a constant ¢ > 0, show that if

t [ee] 1
/ f(z)dx < ct?> foralll <t<oo then / —— dzr = 0.
1 1 fl=)

AN IDEA THAT DOES NoT QUITE WORK

Given our experiences with sums of reciprocals (e.g., Exercise 1.2,
page 12), it is natural to think of applying Schwarz’s inequality to the
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splitting 1 = \/f(z) - {1/+/f(x)}. This suggestion leads us to

(t—1)2=(/ 1d:10> /f d:c/ —d:c (7.14)

80, by our hypothesis we find

e /f

and when we let ¢ — oo we find the bound

<1
-1 — ax. .
¢ g/l ok (7.15)

Since we were challenged to show that the last integral is infinite, we
have fallen short of our goal. Once more we need to find some way to
sharpen Schwarz.

FocusiING WHERE ONE DOES WELL

When Schwarz’s inequality disappoints us, we often do well to ask
how our situation differs from the case when Schwarz’s inequality is
at its best. Here we applied Schwarz’s inequality to the product of
¢(z) = f(x) and ¢¥(z) = 1/ f(x), and we know that Schwarz’s inequality
is sharp if and only if ¢(x) and ¢ (x) are proportional. Since f(z) and
1/f(z) are far from proportional on the infinite interval [0, c0), we get
a mild hint: perhaps we can do better if we restrict our application of
Schwarz’s inequality to the corresponding integrals over appropriately
chosen finite intervals [A, B].

When we repeat our earlier calculation for a generic interval [A, B]
with 1 < A < B, we find

) B B 4
S/A f(x)dm/A mdm, (7.16)

and, now, we cannot do much better in our estimate of the first integral
than to exploit our hypothesis via the crude bound

B B
/ fz)dx < / f(z)dx < cB?,
A 1

after which inequality (7.16) gives us

2 B 4
S/A @) dx. (7.17)

The issue now is to see if perhaps the flexibility of the parameters A and
B can be of help.
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This turns out to be a fruitful idea. If we take A = 29 and B = 2911,
then for all 0 < j < co we have
2i+1 1

1
ICS/W Fa) ™

and if we sum these estimates over 0 < j < k we find

k 2 > 1

Since k is arbitrary, the last inequality does indeed complete the solution
to our fourth challenge problem.
A FINAL PROBLEM: JENSEN’S INEQUALITY FOR INTEGRALS

The last challenge problem could be put simply: “Prove an integral
version of Jensen’s inequality.” Naturally, we can also take this oppor-
tunity to add something extra to the pot.

Problem 7.5 (Jensen’s Inequality: An Integral Version)
Show that for each interval I C R and each convex ® : I — R, one
has the bound

@( /D hz)w(z) da:) < /D &(h(z)) w(z) dr, (7.19)

for each h: D — I and each weight function w: D — [0,00) such that

/D w(z)de = 1.

THE OPPORTUNITY TO TAKE A GEOMETRIC PATH

We could prove the conjectured inequality (7.19) by working our way
up from Jensen’s inequality for finite sums, but it is probably more
instructive to take a hint from Figure 7.1. If we compare the figure to
our target inequality and if we ask ourselves about reasonable choices
for p, one candidate which is sure to make our list is

p= /D h(w)w() da;

after all, ®(u) is already present in the inequality (7.19).

Noting that the parameter t is still at our disposal, we now see that
®(h(x)) may be brought into action if we set ¢t = h(z). If § denotes the
slope of the support line pictured in Figure 7.1, then we have the bound

D(p) + (h(z) — )8 < @(h(z)) for all z € D. (7.20)
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The linear

lower bound

is often more
powerful than
one might guess.

Fig. 7.1. For each point p = (i, ®(n)) on the graph of a convex function ,
there is a line through p which never goes above the graph of ®. If & is
differentiable, the slope 6 of this line is ®' (1), and if ® is not differentiable,
then according to Exercise 6.19 one can take 6 to be any point in the interval
[®" (u), @’ (u)] determined by the left and right derivatives.

If we multiply the bound (7.20) by the weight factor w(z) and integrate,
then the conjectured bound (7.19) falls straight into our hands because
of the relation

/D(h(x) — pw(z)ddx = 9{ /D h(z)w(z) dz — ,u} =0.

PERSPECTIVES AND COROLLARIES

Many integral inequalities can be proved by a two-step pattern where
one proves a pointwise inequality and then one integrates. As the proof
of Jensen’s inequality suggests, this pattern is particularly effective when
the pointwise bound contains a nontrivial term which has integral zero.

There are many corollaries of the continuous version of Jensen’s in-
equality, but probably none of these is more important than the one we
obtain by taking ®(z) = e* and by replacing h(z) by logh(z). In this
case, we find the bound

eXp< /D log {h(z)} w(x) dx) < /D h@yw(@)de,  (7.21)

which is the natural integral analogue of the arithmetic-geometric mean
inequality.

To make the connection explicit, one can set h(z) = ax > 0on [k—1, k)
and set w(x) =pr > 0on [k —1,k) for 1 <k < n. One then finds that
for p1 + p2 + -+ + pp = 1 the bound (7.21) reduces to exactly to the
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classic AM-GM bound,

H apt < Zpkak. (7.22)
k=1 k=1

Incidentally, the integral analog (7.21) of the AM-GM inequality (7.22)
has a long and somewhat muddy history. Apparently, the inequality was
first recorded (for w(x) = 1) by none other than V. Y. Bunyakovsky. It
even appears in the famous Mémoire 1859 where Bunyakovsky intro-
duced his integral analog of Cauchy’s inequality. Nevertheless, in this
case, Bunyakovsky’s contribution seems to have been forgotten even by
the experts.

EXERCISES

Exercise 7.1 (Integration of a Well-Chosen Pointwise Bound)
Many significant integral inequalities can be proved by integration of
an appropriately constructed pointwise bound. For example, the integral
version (7.19) of Jensen’s inequality was proved this way.
For a more flexible example, show that there is a pointwise integration
proof of Schwarz’s inequality which flows directly from the symmetrizing
substitutions

u— f(z)g(y) and v f(y)g(z)

and familiar bound 2uv < u? + v2.

Exercise 7.2 (A Centered Version of Schwarz’s Inequality)

If w(x) > 0 for all z € R and if the integral w over R is equal to 1,
then the weighted average of a (suitably integrable) function f: R — R
is defined by the formula

A= [ @

Show that for functions f and g, one has the following bound on the
average of their product,

{A(f9) = A(HA9)}” < {A(f?) - A2()}H{A(g?) - A%(9)},

provided that all of the indicated integrals are well defined.
This inequality, like other variations of the Cauchy and Schwarz in-
equalities, owes its usefulness to its ability to help us convert information



116 Integral Intermezzo

on two individual functions to information about their product. Here
we see that the average of the product, A(fg), cannot differ too greatly
from the product of the averages, A(f)A(g), provided that the variance
terms, A(f?) — A2(f) and A(g?) — A%(g), are not too large.

Exercise 7.3 (A Tail and Smoothness Bound)

Show that if f : R — R has a continuous derivative then

[ u@par<e( [ x2f<x>|2dx)%(/°;f’<x>2dx)%.

Exercise 7.4 (Reciprocal on a Square)
Show that for ¢ > 0 and b > 0 one has the bound

1 a+1 b+1dxdy
) | vy
a+b+1 o y THy

which is a modest — but useful — improvement on the naive lower
bound 1/(a + b + 2) which one gets by minimizing the integrand.

Exercise 7.5 (Estimates via Integral Representations)

The complicated formula for the derivative

d* sint sint N 2cost 12sint 24cost N 25sint

drt t  t 12 13 4 t5

may make one doubt the possibility of proving a simple bound such as

d* sint

- <
det t | —

1
R for all t € R. (7.23)

Nevertheless, this bound and its generalization for the n-fold derivative
are decidedly easy if one thinks of using the integral representation

: 1
smi :/ cos(st) ds. (7.24)
t 0

Show how the representation (7.24) may be used to prove the bound
(7.23), and give at least one further example of a problem where an
analogous integral representation may be used in this way. The moral
of this story is that many apparently subtle quantities can be estimated
efficiently if they can first be represented as integrals.
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Exercise 7.6 (Confirmation by Improvement)

Confirm your mastery of the fourth challenge problem (page 111) by
showing that you can get the same conclusion from a weaker hypothesis.
For example, show that if there is a constant 0 < ¢ < oo such that the
function f : [1,00) — (0, 00) satisfies the bound

/t f(z)dx < ct*logt, (7.25)
1

then one still has divergence of the reciprocal integral

/:oﬁdxzoo.

Exercise 7.7 (Triangle Lower Bound)
Suppose the function f : [0,00) — [0,00) is convex on [T, 00) and
show that for all ¢ > T one has

S0/ < / ) (7.26)

This is called the triangle lower bound, and it is often applied in proba-
bility theory. For example, if we take f(u) = e‘“2/2/\/ 27 then it gives
the lower bound

e=t'/2 1

L <«
22 N2 St

although one can do a little better in this specific case.

e~ 2y fort > 1,

Exercise 7.8 (The Slip-in Trick: Two Examples)
(a) Show that for all n = 1,2, ... one has the lower bound

2n+1 -1

/2
I, = 1 )" dt >
/0 (14 cost) Z =

(b) Show that for all > 0 one has the upper bound
I = /00 eV dy < Lo 2,
= T

No one should pass up this problem. The “slip-in trick” is one of the
most versatile tools we have for the estimation of integrals and sums; to
be unfamiliar with it would be to suffer an unnecessary handicap.
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A favorite example of

y = g(z)
J.E. Littlewood which
illustrates the legitimacy
0 Z  of pictorial arguments

Fig. 7.2. Consider a function g(z) for which |¢'(z)] < B, so g cannot change
too rapidly. If g(zo) = P > 0 for some zo, then there is a certain triangle
which must lie under the graph of g. This observation reveals an important
relation between g, ¢’, and the integral of g.

Exercise 7.9 (Littlewood’s Middle Derivative Squeeze)
Show that if f : [0,00) — R is twice differentiable and if |f”(z)| is
bounded, then
lim f(z) =0 implies lim f'(z)=0.

xr—00

In his Miscellany, J.E. Littlewood suggests that “pictorial arguments,
while not so purely conventional, can be quite legitimate.” The result
of this exercise is his leading example, and the picture he offered is
essentially that of Figure 7.2.

Exercise 7.10 (Monotonicity and Integral Estimates)

Although the point was not stressed in this chapter, many of the
most useful day-to-day estimates of integrals are found with help from
monotonicity. Gain some practical experience by proving that

1
dt 11—z
log(1 — 2log2)—— for all 1
/x og( +t)t<( 0g)1+x orall 0 <z <

and by showing that 2log2 cannot be replaced by a smaller constant.
Incidentally, this particular inequality is one we will see again when it
helps us with Exercise 11.6.

Exercise 7.11 (A Continuous Carleman-Type Inequality)
Given an integrable f : [a,b] — [0,00) and an integrable weight func-
tion w : [a, b] — [0, 00) with integral 1 on [a, b], show that one has

b b
exp/ {log f(z)}w(z)dx < e/ f(z)w(r) dz. (7.27)
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Exercise 7.12 (Griiss’s Inequality — Integrals of Products)
Suppose that —oco < a < A < 0o and —oc0 < 3 < B < oo and suppose
that functions f and g satisfy the bounds

a< f(r)<A and B<g(r)<B forall0 <z < 1.

Show that one has the bound

\ / ' f(@)g(a) dz - / () de / (o) d

and show by example that the factor of 1/4 cannot be replaced by a
smaller constant.

1
< Z(A—O‘)(B - B),




8
The Ladder of Power Means

The quantities that provide the upper bound in Cauchy’s inequality are
special cases of the general means

M, = My[x;p| = {Zpkxk} v (8.1)

where p = (p1,pe, ..., pn) is a vector of positive weights with total mass
of py+pa+---+p, = land x = (z1, 9, ..., z,) is a vector of nonnegative
real numbers. Here the parameter ¢ can be taken to be any real value,
and one can even take t = —oo or t = oo, although in these cases and
the case t = 0 the general formula (8.1) requires some reinterpretation.
The proper definition of the power mean M is motivated by the natural
desire to make the map ¢ — M; a continuous function on all of R. The
first challenge problem suggests how this can be achieved, and it also
adds a new layer of intuition to our understanding of the geometric
mean.

Problem 8.1 (The Geometric Mean as a Limit)

For nonnegative real numbers xi, k = 1,2,...,n, and nonnegative
weights pr, k = 1,2,...,n with total mass p1 +p2 +---+pn = 1, one
has the limit

n

n 1/t
: t — Pk
tIE)I(lJ { ;pkxk} = kl:[lsck . (8.2)

APPROXIMATE EQUALITIES AND LANDAU’S NOTATION

The solution of this challenge problem is explained most simply with
the help of Landau’s little o and big O notation. In this useful shorthand,
the statement lim; .o f(¢)/g(t) = 0 is abbreviated simply by writing

120
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f(t) = o(g(t)) as t — 0, and, analogously, the statement that the ratio
f(t)/g(t) is bounded in some neighborhood of 0 is abbreviated by writing
ft) = O(g(t)) as t — 0. By hiding details that are irrelevant, this
notation often allows one to render a mathematical inequality in a form
that gets most quickly to its essential message.

For example, it is easy to check that for all x > —1 one has a natural
two-sided estimate for log(1 + z),

T
1+

14+x d
S/ —uzlog(1+m)§x,
1 u

yet, for many purposes, these bounds are more efficiently summarized
by the simpler statement

log(1+4z) = 2 + O(2?) as ¢ — 0. (8.3)

Similarly, one can check that for all |z| < 1 one has the bound

2z i
1+z<e” :Zf < 1+x+z22% <14z + ex?
g , 7!
7=0 Jj=2
though, again, for many calculations we only need to know that these
bounds give us the relation

e’ =1+x+O0(a?) as xz — 0. (8.4)

Landau’s notation and the big-O relations (8.3) and (8.4) for the log-
arithm and the exponential now help us calculate quite smoothly that
as t — 0 one has

()

1 - t1
i e
k=1
1 - 5
Elog { Zpk(l +tlogxy + O(t ))}

k=1

1 n
tlog{l +t2pk log . +O(t2)}

k=1

= Zpk log zx + O(t).
k=1

This big-O identity is even a bit stronger than one needs to confirm the
limit (8.2), so the solution of the challenge problem is complete.
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A COROLLARY

The formula (8.2) provides a general representation of the geometric
mean as a limit of a sum, and it is worth noting that for two summands
it simply says that

p
lim {Gal/p +(1- 9)5”?} = a’b~Y, (8.5)

p—00

all nonnegative a, b, and 6 € [0,1]. This formula and its more compli-
cated cousin (8.2) give us a general way to convert information for a sum
into information for a product.

Later we will draw some interesting inferences from this observation,
but first we need to develop an important relation between the power
means and the geometric mean. We will do this by a method that is
often useful as an exploratory tool in the search for new inequalities.

SIEGEL’S METHOD OF HALVES

Carl Ludwig Siegel (1896-1981) observed in his lectures on the geome-
try of numbers that the limit representation (8.2) for the geometric mean
can be used to prove an elegant refinement of the AM-GM inequality.
The proof calls on nothing more than Cauchy’s inequality and the limit
characterization of the geometric mean, yet it illustrates a sly strategy
which opens many doors.

Problem 8.2 (Power Mean Bound for the Geometric Mean)

Follow in Siegel’s footsteps and prove that for any nonnegative weights
Pr, k= 1,2,...,n with total mass p1 +ps + -+ pn = 1 and for any
nonnegative real numbers xy, k =1,2,...,n, one has the bound

n n 1/t
H ahr < { Zpka:i} for allt > 0. (8.6)
k=1 k=1

As the section title hints, one way to approach such a bound is to
consider what happens when ¢ is halved (or doubled). Specifically, one
might first aim for an inequality such as

M, < Moy, for all ¢ > 0, (8.7)

and afterwards one can then look for a way to draw the connection to
the limit (8.2).
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As usual, Cauchy’s inequality is our compass, and again it points us

to the splitting trick. If we write pyal = pk pk z! we find

M} Zpkxk—Zpl/Q J2al,

n § n %
< (z) (z) s
k=1 k=1

and now when we take the tth root of both sides, we have before us the
conjectured doubling formula (8.7).

To complete the solution of the challenge problem, we can simply
iterate the process of taking halves, so, after j steps, we find for all real
t > 0 that

Mijai < Myjgi—r < -+ < Myjp < M. (8.8)

Now, from the limit representation of the geometric mean (8.2) we have

hm Mt/Qg —MO— HI'
k=1

so from the halving bound (8.8) we find that for all £ > 0 one has
n n 1/t
H = My < My = { Zpkxi} for all t > 0. (8.9)
k=1 k=1

MONOTONICITY OF THE MEANS

Siegel’s doubling relation (8.7) and the plot given in Figure 8.1 of the
two-term power mean (pzt + qyt)/* provide us with big hints about the
quantitative and qualitative features of the general mean M;. Perhaps
the most basic among these is the monotonicity of the map ¢t — M,
which we address in the next challenge problem.

Problem 8.3 (Power Mean Inequality)

Consider positive weights pr, k = 1,2,...,n which have total mass
p1+p2+ -+ p, =1, and show that for nonnegative real numbers xy,
k=1,2,...,n, the mapping t — M; is a nondecreasing function on all

of R. That is, show that for all —oo < s <t < co one has

n 1/s n 1/t
{ Zpkmi} < { Zpkx;} . (8.10)
k=1 k=1

Finally, show that then one has equality in the bound (8.10) if and only
ifry=x9 =" =x,.
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= M,
Y ! Mo = max(z,y)
My = \/px? + qy?
My =px+qy
The Power Mean Curve
Moy = xPy?
M-y =1/(p/x + q/y)
M_ = min(z,y)
: : : t
—1 0 1 2

Fig. 8.1. Ifz >0,y >0,0<p<1andqg=1-p, then a qualitative plot
of My = (pz' + qy*)¥/*! for —oo < t < oo suggests several basic relationships
between the power means. Perhaps the most productive of these is simply the
fact that M; is a monotone increasing function of the power t, but all of the
elements of the diagram have their day.

THE FUNDAMENTAL SITUATION: 0 < s <t

One is not likely to need long to note the resemblance of our target
inequality (8.10) to the bound one obtains from Jensen’s inequality for
the map x — xP with p > 1,

n P n
{Zpkﬂ%} < Zpkl‘i-
k=1 k=1

In particular, if we assume 0 < s < ¢ then the substitutions y; = 3 and
p=t/s>1 give us

n t/s n
{zpky;;} <3 mat, (s.11)
k=1 k=1

so taking the ¢th root gives us the power mean inequality (8.10) in the
most basic case. Moreover, the strict convexity of x +— xP for p > 1 tells
us that if pp > 0 for all k = 1,2,...,n, then we have equality in the
bound (8.11) if and only if z1 = z9 = -+ = x,,.

THE REST OF THE CASES

There is something aesthetically unattractive about breaking a prob-
lem into a collection of special cases, but sometimes such decompositions
are unavoidable. Here, as Figure 8.2 suggests, there are two further cases
to consider. The most pressing of these is Case II where s < ¢ < 0, and
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it I Case : 0 <s<t
CaseIl: s<t<0
Case IIl: s<0<t

II

Fig. 8.2. The power mean inequality deals with all —co < s < t < oo and
Jensen’s inequality deals directly with Case I and indirectly with Case II.
Case III has two halves s = 0 < t and s < t = 0 which are consequences of
the geometric mean power mean bound (8.6).

we cover it by applying the result of Case I. Since —t > 0 is smaller than
—s > 0, the bound of Case I gives us

n -1/t n —1/s
{Zpkx?} S{ZPW?} :
k=1

k=1
Now, when we take reciprocals we find

1/t

n 1/s n
{ Zpkl';s} < {Zpkm;j} :
k=1 k=1

so when we substitute z; = y;l, we get the power mean inequality for
s<t<0.

Case III of Figure 8.2 is the easiest of the three. By the PM-GM
inequality (8.6) for x;t, 1 < k < n, and the power 0 < —s, we find after
taking reciprocals that

n 1/s n
{ Zpka} < H b for all s < 0. (8.12)

Together with the basic bound (8.6) for 0 < t, this completes the proof
of Case III.

All that remains now is to acknowledge that the three cases still leave
some small cracks unfilled; specifically, the boundary situations 0 = s < t
and s < t = 0 have been omitted from the three cases of Figure 8.2.
Fortunately, these situations were already covered by the bounds (8.6)
and (8.12), so the solution of the challenge problem really is complete.
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In retrospect, Cases II and III resolved themselves more easily than
one might have guessed. There is even some charm in the way the
geometric mean resolved the relation between the power means with
positive and negative powers. Perhaps we can be encouraged by this
experience the next time we are forced to face a case-by-case argument.

SOME SPECIAL MEANS

We have already seen that some of the power means deserve special
attention, and, after t = 2, ¢ = 1, and ¢t = 0, the cases most worthy of
note are t = —1 and the limit values one obtains by taking ¢ — oo or by
taking ¢ — —oo. When ¢t = —1, the mean M_; is called the harmonic
mean and in longhand it is given by

1

p1/T1+p2/ra+ -+ pn/Tn
From the power mean inequality (8.10) we know that M_; provides a
lower bound on the geometric mean, and, a fortiori, one has a bound on
the arithmetic mean. Specifically, we have the harmonic mean-geometric
mean inequality (or the HM-GM inequality)
1
p1/x1+p2/T2+ 4 pn/Ty

M_y = M_41[x;p] =

< gitab? .. abe (8.13)

and, as a corollary, one also has the harmonic mean-arithmetic mean
inequality (or the HM-AM inequality)

1
p1/x1 +p2/xe+ -+ ppfTn

<piwy 4+ pozo + -+ pup. (8.14)

Sometimes these inequalities come into play just as they are written,
but perhaps more often we use them “upside down” where they give us
useful lower bounds for the weighted sums of reciprocals:

1 p1 b2 Pn

L o SR R
otk b x1+x2+ ern’ (8.15)
1
< B PP (316
D1Z1 + p2a + -+ + Pnn T1 T2 Tn

GOING TO EXTREMES

The last of the power means to require special handling are those for
the extreme values t = —oo and t = oo where the appropriate definitions
are given by

M_s|x;p] = m]jnxk and My [x;p| = mAX L. (8.17)
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With this interpretation one has all of the properties that Figure 8.1
suggests. In particular, one has the obvious (but useful) bounds

M_o[x;p] < My[x;p] < Mo[x;p]  forall t € R,
and one also has the two continuity relations
tlg)(f)lo M,[x;p] = M[x;p] and t—léI—noo M;[x; p] = M_[x;P]-
To check these limits, we first note that for allt >0 and all 1 < k <n
we have the elementary bounds
przy, < Mi[x;p] < ML [x;p),

and, since pi > 0 we have p,lc/t — 1 ast — 00, so we can take roots and
let t — oo to deduce that for all 1 < k < n we have

xp < litrgiorgf M;[x; p] < limsup M;[x; p] < M[x; p]-

t—o0
Since maxy xr = My [X; p], we have the same bound on both the extreme
left and extreme right, so in the end we see

Jim Mi[x; p] = Moo [x; p.

This confirms the first continuity relation, and in view of the general
identity M_(x1, 2o, ..., 2n;p) = M; Y (1/x1,1/2s,...,1/2,;P), the sec-
ond continuity relation follows from the first.

THE INTEGRAL ANALOGS

The integral analogs of the power means are also important, and their
relationships follows in lock-step with those one finds for sums. To make
this notion precise, we take D C R and we consider a weight function
w : D — [0, 00) which satisfies

/ w(z)dr =1 and w(xz)>0 for all z € D,
D

then for f : D — [0, 00] and ¢ € (—00,0)U (0, 00) we define the tth power
mean of f by the formula

M, = My[f;u] = { /D F (@) da:}m. (8.18)

As in the discrete case, the mean Mj requires special attention, and for
the integral mean the appropriate definition requires one to set

Molf; w] = exp (/D{logf(x)}w(x) dz). (8.19)
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Despite the differences in the two forms (8.18) and (8.19), the defini-
tion (8.19) should not come as a surprise. After all, we found earlier
(page 114) that the formula (8.19) is the natural integral analog of the
geometric mean of f with respect to the weight function w.

Given the definitions (8.18) and (8.19), one now has the perfect analog
of the discrete power mean inequality; specifically, one has

M| f;w] < My[f;w) for all —oo < s <t < o0. (8.20)

Moreover, for well-behaved f, say, those that are continuous, one has
equality in the bound (8.20) if and only if f is constant on D.

We have already invested considerable effort on the discrete power
mean inequality (8.10), so we will not take the time here to work out a
proof of the continuous analog (8.20), even though such a proof provides
worthwhile exercise that every reader is encouraged to pursue. Instead,
we take up a problem which shows as well as any other just how effective
the basic bound My[f;w] < Mi[f;w] is. In fact, we will only use the
simplest case when D = [0,1] and w(z) =1 for all z € D.

CARLEMAN’S INEQUALITY AND THE CONTINUOUS AM-GM BOUND

In Chapter 2 we used Pdlya’s proof of Carleman’s geometric mean
bound,

Z(a1a2~--ak)1/k < eZak, (8.21)
= k=1

k=1

as a vehicle to help illustrate the value of restructuring a problem so
that the AM-GM inequality could be used where it is most efficient.
Pélya’s proof is an inspirational classic, but if one is specifically curious
about Carleman’s inequality, then there are several natural questions
that Pdélya’s analysis leaves unanswered.

One feature of Pélya’s proof that many people find perplexing is that
it somehow manages to provide an effective estimate of the total of all
the summands (ajas - - - ax)*/* without providing a compelling estimate
for the individual summands when they are viewed one at a time. The
next challenge problem solves part of this mystery by showing that there
is indeed a bound for the individual summands which is good enough so
that it can be summed to obtain Carleman’s inequality.
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Problem 8.4 (Termwise Bounds for Carleman’s Summands)
Show that for positive real numbers ay, k =1,2,..., one has

(araz---a 1/”_ Z%fl forn=1,2,..., (8.22)

and then show that these bounds can be summed to prove the classical
Carleman inequality (8.21).

A REASONABLE FIRST STEP

The unspoken hint of our problem’s location suggests that one should
look for a role for the integral analogs of the power means. Since we
need to estimate the terms (ajas - - - an)l/ " it also seems reasonable to
consider the integrand f : [0,00) — R where we take f(z) to be equal
to aj on the interval (k—1,k] for 1 < k < co. This choice makes it easy
for us to put the left side of the target inequality (8.22) into an integral
form:

n 1/n 1 n
{Hak} = exp EZlogak
k=1 k=1

_ exp{%/onlogf(x) dx}
~ exp {/01 log f(ny) dy} . (8.23)

This striking representation for the geometric mean almost begs us to
apply continuous version of the AM-GM inequality.

Unfortunately, if we were to acquiesce, we would find ourselves embar-
rassed; the immediate application of the continuous AM-GM inequality
to the formula (8.23) returns us unceremoniously back at the classical
discrete AM-GM inequality. For the moment, it may seem that the nice
representation (8.23) really accomplishes nothing, and we may even be
tempted to abandon this whole line of investigation. Here, and at similar
moments, one should take care not to desert a natural plan too quickly.

A DEEPER LOOK

The naive application of the AM-GM bound leaves us empty handed,
but surely there is something more that we can do. At a minimum, we
can review some of Pélya’s questions and, as we work down the list,
we may be struck by the one that asks, “Is it possible to satisfy the
condition?”
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Here the notion of condition and conclusion are intertwined, but ulti-
mately we need a bound like the one given by the right side of our target
inequality (8.22). Once this is said, we will surely ask ourselves where
the constant factor e is to be found. Such a factor is not in the formula
(8.23) as it stands, but perhaps we can put it there.

This question requires exploration, but if one thinks how e might be
expressed in a form that is analogous to the right side of the formula
(8.23), then sooner or later one is likely to have the lucky thought of
replacing f(ny) by y. One would then notice that

1
e = exp {—/ logydy} , (8.24)
0

and this identity puts us back on the scent. We just need to slip logy
into the integrand and return to our original plan. Specifically, we find

exp 1 log f(ny) dy ¢ = exp 1 log{y f(ny)} —logydy
U s} e | |
= eexp { /O 1 log{yf(ny)} dy}

<e /O yf (ny) dy, (8.25)

where in the last step we finally get to apply the integral version of the
AM-GM inequality.

Two FINAL STEPS

Now, for the function f defined by setting f(z) = ay, for x € (k—1, k],
we have the elementary identity

k/n
/ yf(ny dy—Z/ yakdy— ZQk—lak, (8.26)
0

—-1)/n -1

so, in view of the general bound (8.25) and the identity (8.23), the proof
of the first inequality (8.22) of the challenge problem is complete.

All that remains is for us to add up the termwise bounds (8.22) and
check that the sum yields the classical form of Carleman’s inequality
(8.21). This is easy enough, but some care is still needed to squeeze out
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exactly the right final bound. Specifically, we note that

> iz (2k — Dag = (2k—)ag » %
n=1 k=1 k=1 n==k n
g;_‘:(zknak;{ - n+%}
o0 o0
Y a2y
k=1 2 k=1

and, when we insert this bound in the identity (8.26), we see that the
estimate (8.25) does indeed complete the proof of Carleman’s inequality.

EXERCISES

Exercise 8.1 (Power Means in Disguise)

To use the power mean inequality effectively one must be able to pick
power means out of a crowd, and this exercise provides some practice.
Prove that for positive z, y, and z, one has

9 1 1 1
<

+ + 8.27
20@4+y+z2) x4ty z+z y+z (8.27)
and prove that for p > 1 one also has

1 2P yP P

T Pl < . 8.28

2 (@+y+2) _y+z+x+z+:17+y ( )

Incidentally, one might note that for p = 1 the second bound reduces to
the much-proved Nesbitt inequality of Exercise 5.6.

Exercise 8.2 (Harmonic Means and Recognizable Sums)

Suppose z1, s, ..., T, are positive and let S denote their sum. Show
that we have the bound
n? < S . S T L
(2n—1) — 28 —21 28— a9 28—z,

In this problem (and many like it) one gets a nice hint from the fact
that there is a simple expression for the sum of the denominators on the
right-hand side.
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Exercise 8.3 (Integral Analogs and Homogeneity in X))

(a) Show that for all nonnegative sequences {a : 1 < k < n} one has

{Za,ﬁ/z} < {Zai/?’} , (8.29)
k=1 k=1

and be sure to notice the differences between this bound and the power
mean inequality (8.10) with s =1/3 and ¢t = 1/2.

(b) By analogy with the bound (8.29), one might carelessly guess that
for nonnegative f that one has an integral bound

{/o1 7@ dl’}Q - {/01 (@) dl’}g- (8.30)

Show by example that the bound (8.30) does not hold in general.

The likelihood of an integral analog can often be explained by a heuris-
tic principle which Hardy, Littlewood, and Pdlya (1952, p. 4) describes
as “homogeneity in 3.” The principle suggests that we consider ¥ in a
bound such as (8.29) as a formal symbol. In this case we see that the left
side is “homogeneous of order two in X7 while the right side is “homo-
geneous of order three in ¥.” The two sides are therefore incompatible,
and one should not expect any integral analog. On the other hand, in
Cauchy’s inequality and Holder’s inequality, both sides are homogeneous
of order one in 3. It is therefore natural — even inevitable — that we
should have integral analogs for these bounds.

Exercise 8.4 (Pd6lya’s Minimax Characterization)

Suppose you must guess the value of an unknown number z in the
interval [a,b] C (0,00) and suppose you will be forced to pay a fine
based on the relative error of your guess. How should you guess if you
want to minimize the worst fine that you would have to pay?

If you guess is p, then the maximum fine you would have to pay is

F(p) = max {M} , (8.31)

so your analytical challenge is to find the value p* such that

F(p*) = min F(p) = min max {'79_—“"”'} (8.32)

p P x€la,b] x

One expects p* to be some well-known mean, but which one is it?
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Exercise 8.5 (The Geometric Mean as a Minimum)
Prove that the geometric mean has the representation

n 1/n n
1
[] —mind = : .z)eDY (833
{k=1ak} mm{nk:laka:k (x1,29,...,2,) € } ( )

where D is the region of R™ defined by

n
D= {(xl,mg,...,xn) : HI’C =1,z >0,k = 1,2,...,n}.
k=1
For practice with this characterization of the geometric mean, use it to
give another proof that the geometric mean is superadditive; that is,
show that the formula (8.33) implies the bound (2.31) on page 34.

Exercise 8.6 (More on the Method of Halves)

The method of halves applies to more than just inequalities; it can
also be used to prove some elegant identities. As an illustration, show
that the familiar half-angle formula sinz = 2sin(z/2) cos(z/2) implies
the infinite product identity

oo

sin.z H s(a/2%), (8.34)

and verify in turn that this implies the poignant formula

2 V2 V2+V2 V2HV24V2
= YR .

™

Incidentally, the product formula (8.34) for sin(z)/x is known as Viete’s
identity, and it has been known since 1593.

Exercise 8.7 (Differentiation of an Inequality)

In general one cannot differentiate the two sides of an inequality and
expect any meaningful consequences, but there are special situations
where “differentiation of an inequality” does make sense. There are even
times when such differentiations have lead to spectacular new results.
The aspirations of this exercise are more modest, but they point the way
to what is possible.

(a) Consider a function f that is differentiable at ¢y and that satisfies
the bound f(t9) < f(t) for all t € [to,to + A) and some A > 0. Show
that one then has 0 < f/(to).
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(b) Use the preceding observation to show that the power mean in-
equality implies that for all z; > 0 and all nonnegative p; with total
p1+p2+ -+ p, =1, one has

{ zn:pkiﬂk} log { ipkfk} < { zn:pka:k log mk} (8.35)
k=1 k=1

k=1

Exercise 8.8 (A Niven—Zuckerman Lemma for pth Powers)
Consider a sequence of n-tuples of nonnegative real numbers

(a1k, G2k - -« Gnk) k=1,2,....
Suppose there is a constant u > 0 for which one has
a1x + asg + -+ apnk — np as k — oo, (i)
and suppose for some 1 < p < oo such that one also has
al, +ab 4+ +ad, —np? as k — oo. (i)
Show that these conditions imply that one then has the n-term limit
klirr()lo ajr = forall 1 <j<n.

This exercise provides an example of a consistency principle which in this
case asserts that if the sum of the coordinates of a vector and the sum
of the corresponding pth powers have limits that are consistent with the
possibility that all of the coordinates converge to a common constant,
then that must indeed be the case. The consistency principle has many
variations and, like the optimality principle of Exercise 2.8, page 33, it
provides useful heuristic guidance even when it does not formally apply.

Exercise 8.9 (Points Crowded in an Interval)

Given n points in the interval [—1,1], we know that some pairs must
be close together, and there are many ways to quantify this crowding.
An uncommon yet insightful way once exploited by Paul Erdés is to look
at the sum of the reciprocal gaps.

(a) Suppose that —1 <1 < 29 < -+ <z, <1, and show that

1 1
S L L
1<j<k<n Tk T

(b) Show that for any permutation o : [n] — [n] one has the bound

>lnlon
gl iosn



9
Holder’s Inequality

Four results provide the central core of the classical theory of inequal-
ities, and we have already seen three of these: the Cauchy—Schwarz
inequality, the AM-GM inequality, and Jensen’s inequality. The quartet
is completed by a result which was first obtained by L.C. Rogers in 1888
and which was derived in another way a year later by Otto Holder. Cast
in its modern form, the inequality asserts that for all nonnegative ay
and by, kK =1,2,...,n, one has the bound

n n 1/ n 1/
Sancs () (o) 9.1)
k=1 k=1

k=1
provided that the powers p > 1 and ¢ > 1 satisfy the relation

1 1
-+-=1 (9.2)
p q
Ironically, the articles by Rogers and Holder leave the impression that
these authors were mainly concerned with the extension and application
of the AM-GM inequality. In particular, they did not seem to view
their version of the bound (9.1) as singularly important, though Rogers
did value it enough to provide two proofs. Instead, the opportunity fell
to Frigyes Riesz to cast the inequality (9.1) in its modern form and to
recognize its fundamental role. Thus, one can argue that the bound (9.1)
might better be called Rogers’s inequality, or perhaps even the Rogers—
Holder—Riesz inequality. Nevertheless, long ago, the moving hand of
history began to write “Hdélder’s inequality,” and now, for one to use
another name would be impractical, though from time to time some
acknowledgment of the historical record seems appropriate.
The first challenge problem is easy to anticipate: one must prove the
inequality (9.1), and one must determine the circumstances where equal-
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ity can hold. As usual, readers who already know a proof of Holder’s
inequality are invited to discover a new one. Although, new proofs of
Holder’s inequality appear less often than those for the Cauchy—Schwarz
inequality or the AM-GM inequality, one can have confidence that they
can be found.

Problem 9.1 (Holder’s Inequality)

First prove Riesz’s version (9.1) of the inequality of Rogers (1888) and
Hélder (1889), then prove that one has equality for a nonzero sequence
a1, g, . ..,a, if and only if there exists a constant A € R such that

xa/? =0/ forall1 <k <n. (9.3)

BUILDING ON THE PAST

Surely one’s first thought is to try to adapt one of the many proofs
of Cauchy’s inequality; it may even be instructive to see how some of
these come up short. For example, when p # 2, Schwarz’s argument is
a nonstarter since there is no quadratic polynomial in sight. Similarly,
the absence of a quadratic form means that one is unlikely to find an
effective analog of Lagrange’s identity.

This brings us to our most robust proof of Cauchy’s inequality, the
one that starts with the so-called “humble bound,”

1 1
zy < §£U2 + §y2

for all z,y € R. (9.4)

This bound may now remind us that the general AM-GM inequality
(2.9), page 23, implies that

a,B < @ a+4 p a+4 9.5
G +a+ﬂy (9.5)

forallz >0,y >0, a >0, and 3 > 0. If we then set u = 2%, v = P,
p=(a+0)/a, and ¢ = (a+ 3)/8, then we find for all p > 1 that one
has the handy inference
11 1, 1 .
—+-=1 = w -+ -0 for all u,v € R™. (9.6)
p q p q
This is the perfect analog of the “humble bound” (9.4). It is known as
Young’s inequality, and it puts us well on the way to a solution of our
challenge problem.
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ANOTHER ADDITIVE TO MULTIPLICATIVE TRANSITION

The rest of the proof of Hélder’s inequality follows a familiar pattern.
If we make the substitutions u — aj and v — by in the bound (9.6) and
sum over 1 < k < n, then we find

> axby < l2a£+12bz7 (9.7)
k=1 pk:l qk:l

and to pass from this additive bound to a multiplicative bound we can
apply the normalization device with which we have already scored two
successes. We can assume without loss of generality that neither of our
sequences is identically zero, so the normalized variables

n 1/p R n 1/q
ak:ak/<zag) and bk:bk/(ZbZ> :
k=1 k=1

are well defined. Now, if we simply substitute these values into the
additive bound (9.7), we find that easy arithmetic guides us quickly to
the completion of the direct half of the challenge problem.

LOOKING BACK — CONTEMPLATING CONJUGACY

In retrospect, Riesz’s argument is straightforward, but the easy proof
does not tell the whole story. In fact, Riesz’s formulation carried much
of the burden, and he was particularly wise to focus our attention on the
pairs of powers p and ¢ such that 1/p+ 1/¢g = 1. Such (p,q) pairs are
now said to be conjugate, and many problems depend on the trade-offs
we face when we choose one conjugate pair over another. This balance
is already visible in the p-q generalization (9.6) of the “humble bound”
(9.4), but soon we will see deeper examples.

BACKTRACKING AND THE CASE OF EQUALITY

To complete the challenge problem, we still need to determine the cir-
cumstances where one has equality. To begin, we first note that equality
trivially holds if by = 0 for all 1 < k < n, but in that case the identity
(9.3) is satisfied A = 0; thus, we may assume with loss of generality that
both sequences are nonzero.

Next, we note that equality is attained in Hélder’s inequality (9.1) if
and only if equality holds in the additive bound (9.7) when it is applied
to the normalized variables d;, and by. By the termwise bound (9.6), we
further see that equality holds in the additive bound (9.7) if and only if
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n n n n n
ML I ol O af = BH{(C B0V (L a)) 77
n > ~
o Qb =1 ab =0l k=12...,n

n ~ n o~ ~ ~
Sarby=3 00+ 130 D abe=al/p+H/gk =120

Fig. 9.1. The case for equality in Holder’s inequality is easily framed as a
blackboard display, and such a semi-graphical presentation has several advan-
tages over a monologue of “if and only if” assertions. In particular, it helps
us to see the argument at a glance, and it encourages us to question each of
the individual inferences.

we have

1, 1,

arby = —ay + —bj forall k=1,2,...,n.

p q

Next, by the condition for equality in the special AM-GM bound (9.5),
we find that for each 1 < k < n we must have a}, = b}. Finally, when we
peel away the normalization indicated by the hats, we see that Aa} = b}
for all 1 < k < n where X is given explicitly by

= (E0)"/(5)

This is characterization that we anticipated, and the solution of the
challenge problem is complete.

A BLACKBOARD TOOL FOR BETTER CHECKING

Backtracking arguments, such as the one just given, are notorious for
harboring gaps, or even outright errors. It seems that after working
through a direct argument, many of us are just too tempted to believe
that nothing could go wrong when the argument is “reversed.” Unfor-
tunately, there are times when this is wishful thinking.

A semi-graphical “blackboard display” such as that of Figure 9.1 may
be of help here. Many of us have found ourselves nodding passively to
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a monologue of “if and only if” statements, but the visible inferences
of a blackboard display tend to provoke more active involvement. Such
a display shows the whole argument at a glance, yet each inference is
easily isolated.

A CONVERSE FOR HOLDER

In logic, everyone knows that the converse of the inference A = B
is the inference B = A, but in the theory of inequalities the notion
of a converse is more ambiguous. Nevertheless, there is a result that
deserves to be called the converse Holder inequality, and it provides our
next challenge problem.

Problem 9.2 (The Holder Converse — The Door to Duality)
Show that if 1 < p < oo and if C is a constant such that

n n 1/p
k=1 1

k=

for all zi, 1 <k <n, then for ¢ =p/(p — 1) one has the bound
n 1/q
{Z |ak|‘1} <C. (9.9)
k=1

How TO UNTANGLE THE UNWANTED VARIABLES

This problem helps to explain the inevitability of Riesz’s conjugate
pairs (p,q), and, to some extent, the simple conclusion is surprising.
Nonlinear constraints are notoriously awkward, and here we see that we
have z-variables tangled up on both sides of the hypothesis (9.8). We
need a trick if we want to eliminate them.

One idea that sometimes works when we have free variables on both
sides of a relation is to conspire to make the two sides as similar as
possible. This “principle of similar sides” is necessarily vague, but here
it may suggest that for each 1 < k < n we should choose x; such that
aprr = |Ty|P; in other words, we set xp = sign(a)|ar|?/ @1 where
sign(ag) is 1 if a > 0 and it is —1 if ap < 0. With this choice the
condition (9.8) becomes

n n 1/p
Sl < o S japro0} (9.10)
k=1 k=1

We can assume without loss of generality that the sum on the right is
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nonzero, so it is safe to divide by that sum. The relation 1/p+1/¢ =1
then confirms that we have indeed proved our target bound (9.9).

A SHORTHAND DESIGNED FOR HOLDER’S INEQUALITY

Holder’s inequality and the duality bound (9.9) can be recast in several
forms, but to give the nicest of these it will be useful to introduce some
shorthand. If a = (aj,as,...,a,) is an n-tuple of real numbers, and
1 < p < o we will write

n 1/p
lall, = (Z |aw) , (0.11)
k=1

while for p = oo we simply set ||al|cc = maxi<k<n |ar|. With this nota-
tion, Holder’s inequality (9.1) for 1 < p < oo then takes on the simple
form

< llallp[Ibllq;

n
E ayby,
k=1

where for 1 < p < oo the pair (p,q) are the usual conjugates which are
determined by the relation

1 1
4+ =1 when 1 < p < oo,
p q

but for p = 1 we just simply set ¢ = oc.

The quantity ||a|,, is called the p-norm, or the P-norm, of the n-tuple,
but, to justify this name, one needs to check that the function a — ||al|,
does indeed satisfy all of the properties required by the definition a norm;
specifically, one needs to verify the three properties:

(i) |lall, = 0 if and only if a = 0,
(ii) |leall, = |af|lall, for all & € R, and

(iii) |la+bll, < |lal|p + ||b]|, for all real n-tuples a and b.

The first two properties are immediate from the definition (9.11), but
the third property is more substantial. It is known as Minkowski’s in-
equality, and, even though it is not difficult to prove, the result is a
fundamental one which deserves to be framed as a challenge problem.
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Problem 9.3 (Minkowski’s Inequality)
Show that for each a = (a1,as9,...,a,) and b = (by,be,...,b,) one
has

la+bl, < [all, + (b, (9.12)

or, in longhand, show that for all p > 1 one has the bound
1/ 1/p

Moreover, show that if ||al|, # 0 and if p > 1, then one has equality in
the bound (9.12) if and only if (1) there exist a constant A € R such that
|bk| = Mag| for all k =1,2,...,n, and (2) ax and by, have the same sign
for each k =1,2,...,n.

RI1ESZ’S ARGUMENT FOR MINKOWSKI’S INEQUALITY

There are many ways to prove Minkowski’s inequality, but the method
used by F. Riesz is a compelling favorite — especially if one is asked to
prove Minkowski’s inequality immediately after a discussion of Holder’s
inequality. One simply asks, “How can Holder help?” Soon thereafter,
algebra can be our guide.

Since we seek an upper bound which is the sum of two terms, it is
reasonable to break our sum into two parts:

n n

> ak +bel” <> Jallan + 0P forlla + bkPH (9.14)

k=1 k=1 k=1

This decomposition already gives us Minkowski’s inequality (9.13) for
p = 1, so we may now assume p > 1. If we then apply Holder’s inequality
separately to each of the bounding sums (9.14), we find for the first sum
that

n n 1/p , n (p—1)/p
D lallar +bpfPt < <Z|aklp) (Z“k+bk|”>
k=1 k=1 k=1
while for the second we find
n n /p , n (p=1)/p
> Jbellax + be[P7H < (Z|bk|”) (Zakerkp) ~
k=1 k=1 k=1

Thus, in our shorthand notation the factorization (9.14) gives us

la + [} < flall, - la+ b5~ + bl - [|a+ bl5~". (9.15)
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Since Minkowski’s inequality (9.12) is trivial when |la+b||, = 0, we can
assume without loss of generality that ||a + bl|, # 0. We then divide
both sides of the bound (9.15) by [|a+ b[[2~! to complete the proof.

A HIDDEN BENEFIT: THE CASE OF EQUALITY

One virtue of Riesz’s method for proving Minkowski’s inequality (9.12),
is that his argument may be worked backwards to determine the case of
equality. Conceptually the plan is simple, but some of the details can
seem fussy.

To begin, we note that equality in Minkowski’s bound (9.12) implies
equality in our first step (9.14) and that |ar + bx| = |ax| + |bg| for each
1 < k < n. Thus, we may assume that ay and by are of the same sign
for all 1 < k < n, and in fact there is no loss of generality if we assume
ar > 0and by >0forall 1 <k <n.

Equality in Minkowski’s bound (9.12) also implies that we have equal-
ity in both of our applications of Holder’s inequality, so, assuming that
la+bl|, # 0, we deduce that there exists A > 1 such that

)\|ak|p = {|ak -+ bk|P*1}q = |0,k —+ bk|p
and there exists A’ > 1 such that
>\I|bk|p = {|ak + bk|p*1}q = |0,k + bk|p.

From these identities, we see that if we set A = A/)\ then we have
Nag|P = |bg|P for all k=1,2,...,n.

This is precisely the characterization which we hoped to prove. Still,
on principle, every backtrack argument deserves to be put to the test;
one should prod the argument to see that it is truly airtight. This is
perhaps best achieved with help from a semi-graphical display analogous
to Figure 9.1.

SUBADDITIVITY AND QUASILINEARIZATION

Minkowski’s inequality tells us that the function h : R™ — R defined
by h(a) = ||al|, is subadditive in the sense that one has the bound

h(a+b) < h(a) + h(b) for all a,b € R".

Subadditive relations are typically much more obvious than Riesz’s proof,
and one may wonder if there is some way to see Minkowski’s inequality
at a glance. The next challenge problem confirms this suspicion and
throws added precision into the bargain.
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Problem 9.4 (Quasilinearization of the /¥ Norm)
Show that for all 1 < p < co one has the identity

|la]|, = max { > apwy x| = 1}, (9.16)

k=1

where a = (a1, asg, . ..,a,) and where p and q are conjugate (so one has
qg=p/(p—1) when p > 1, but ¢ = oo when p = 1 and ¢ = 1 when
p = 00). Finally, explain why this identity yields Minkowski’s inequality
without any further computation.

QUASILINEARIZATION IN CONTEXT

Before addressing the problem, it may be useful to add some context.
If V is a vector space (such as R™) and if L : V x W — R is a function
which is additive in its first variable, L(a + b,w) = L(b,w) + L(b, w),
then the function h : V' — R, defined by

h(a) = max L(a,w), (9.17)

weWw

will always be subadditive simply because two choices are always at least
as good as one:

h(a+b) = max La+b,w)= max {L(a,w)+ L(b,w)}

< L L(b =h h(b).
< max L(a,wo) + max L(b,w) = h(a) + (b)
The formula (9.17) is said to be a quasilinear representation of h, and
many of the most fundamental quantities in the theory of inequalities
have analogous representations.

CONFIRMATION OF THE IDENTITY

The existence of a quasilinear representation (9.16) for the function
h(a) = ||a||, is an easy consequence of Hélder’s inequality and its con-
verse. Nevertheless, the logic is slippery, and it is useful to be explicit.
To begin, we consider the set

S = {iakxk : i |{L‘k‘q S 1},
k=1 k=1

and we note that Holder’s inequality implies s < ||a||, for all s € S.
This gives us our first bound, max{s € S} < ||lal|,. Next, just by the
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definition of .S and by scaling we have

n

Zakyk < |ly|lq max{s € S} for all y € R". (9.18)

k=1
Thus, by the converse Holder bound (9.9) for the conjugate pair (g, p)
— as opposed to the pair (p,q) in the statement of the bound (9.9) —
we have our second bound, ||al|, < max{s € S}. The first and second

bounds now combine to give us the quasilinear representation (9.16) for
h(a) = |lal|,.

A STABILITY RESULT FOR HOLDER’S INEQUALITY

In many areas of mathematics one finds both characterization results
and stability results. A characterization result typically provides a con-
crete characterization of the solutions of some equation, while the asso-
ciated stability result asserts that if the equation “almost holds” then
the characterization “almost applies.”

There are many examples of stability results in the theory of inequal-
ities. We have already seen that the case of equality in the AM-GM
bound has a corresponding stability result (Exercise 2.12, page 35), and
it is natural to ask if Holder’s inequality might also be amenable to such
a development.

To make this suggestion specific, we first note that the 1-trick and
Holder’s inequality imply that for each p > 1 and for each sequence of

nonnegative real numbers a1, as, ..., a, one has the bound
n n 1/p
S 4y < nw—wp(zag) .
j=1 j=1

If we then define the difference defect §(a) by setting

n n P
d(a) £ a? nlp(zaj) , (9.19)
j=1 j=1
then one has §(a) > 0, but, more to the point, the criterion for equality
in Holder’s bound now tells us that §(a) = 0 if and only if there is
a constant p such that a; = p for all j = 1,2,...,n. That is, the
condition d(a) = 0 characterizes the vector a = (aj,as,...,a,) as a
constant vector.

This characterization leads in turn to a variety of stability results,
and our next challenge problem focuses on one of the most pleasing of
these. It also introduces an exceptionally general technique for exploiting
estimates of sums of squares.
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Problem 9.5 (A Stability Result for Holder’s Inequality)

Show that if p > 2 and if a; > 0 for all 1 < j < n, then there exists a
constant A = A(a,p) such that

a; €[((A=062)2/P, (AN+62)2P)  forallj=1,2,....n.  (9.20)

In other words, show that if the difference defect § = 6(a) is small, then
the sequence ai,as,...,a, is almost constant.

ORIENTATION

There are many ways to express the idea that a sequence is almost
constant, and the specific formula (9.20) used here is just one of several
possibilities. Nevertheless, this choice does give us a hint about how we
might proceed.

The relation (9.20) may be written more sensibly as (af/2 —))2 < é(a),
and we can prove all of the individual bounds (9.20) in a single step if
we can prove the stronger conjecture that there exists a constant A for
which we have the bound

n

S (@? —\)? < 6(a). (9.21)

Jj=1

It is possible, of course, that the inequality (9.21) asks for too much, but
it is such a nice conjecture that it deserves some attention.

Wny Is IT NICE?

First of all, if p = 2, then one finds by direct computation from the
definition of d(a) that the bound (9.21) is actually an identity, provided
that one takes A = (a1 + a2 +---+a,)/n. It is always a good sign when
a conjecture is known to be true in some special case.

A more subtle charm of the conjecture (9.21) is that it asks us indi-
rectly if a certain quadratic polynomial has a real root. Namely, if the
inequality (9.21) holds for some real A, then by continuity there must
also exist a real A\ that satisfies the equation

n

Y@ AP =d(a) Y zi:la§ _ n1p(z”:aj>p’

j=1 j=1

After algebraic expansion and simplification, we therefore find that
the conjecture (9.21) is true if and only if there is a real root of the



146 Hoélder’s Inequality

equation
n n D
=AY et (o) =o. (9.22)
j=1 j=1

Since a quadratic equation AX? + 2B\ 4+ C = 0 has a real root if and
only if AC < B?, we see that the solution to the challenge problem will
be complete if we can show

nQP(zn:aj>p < <i1a§/2>2. (9.23)

j=1

Fortunately, it is easy to see that this bound holds; in fact, it is a just
another corollary of Holder’s inequality and the 1-trick. To be explicit,
one just applies Holder’s inequality with p’ = p/2 and ¢’ = p/(p — 2) to
thesuma;-1+ag-14+---4+a,- 1.

INTERPOLATION

The ¢ norm and the > norm represent the two natural extremes
among the /P norms, and it is reasonable to guess that in favorable
circumstances one should be able to combine an ¢! inequality and an
£°° inequality to get an analogous inequality for the ¢/ norm where
1<p<oo.

Our final challenge problem provides an important example of this
possibility. It also points the way to one of the most pervasive themes
in the theory of inequalities — interpolation.

Problem 9.6 (An Illustration of /!-/> Interpolation)
Let cji, 1 < j <m, 1<k < n, be an array of nonnegative real
numbers such that

n
E CikTk

k=1

m

D

< B max |xg]
— 1<k<n
J_

1<j<m

n
< AZ |zg] and  max
k=1

n
g CikTk
k=1

forallxg, 1 <k <mn. If1 <p< oo and ¢ =p/(1 —p) show that one
also has the interpolation bound

P\ 1/p n 1/p
) SAl/pBl/q<Z$k|p> (9.24)

k=1

forall xp, 1 <k <n.
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SEARCH FOR A SIMPLER FORMULATION

The feature of the inequality (9.24) which may seem troublesome is
the presence of the pth roots; one quickly starts to hunger for a way to
make them disappear. The root on the right side is not a problem since
by scaling x we can assume without loss of generality that ||x||, < 1,
but what can we do about the pth root on the left side?

Luckily, we have a tool that is well suited to the task. The converse
of Holder’s inequality (page 139) tells us that to prove the bound (9.24)
it suffices to show that, for all real vectors x and y such that ||x|, <1
and |ly|lq <1, one has

Z Z CikTrYj S Al/pBl/q. (925)

j=1k=1

Moreover, since we assume that c;i > 0 for all j and k, it suffices to
prove the bound just for ||x[|, <1 and ||y||; < 1 with 2 > 0 and y; > 0
for all j and k.

The reformulation (9.25) offers signs of real progress; in particular,
the pth roots are gone. We now face a problem of the kind we have met
several times before; we simply need to estimate a sum subject to some
nonlinear constraints.

FrROM FORMULATION TO FINISH

In the past, the splitting trick has been a great help with such bounds,
and here it is natural to take a clue from the relation 1/p+1/g = 1. By
splitting and by Holder’s inequality we find

m n m n
DD canany; = 3 > (emal) P emny))
=1 k=1 =1 k=1
m n 1/p m n 1/q
( Z%xk) (zzcjkyg) o (926)
j=1k=1 j=1k=1

and now we just need to estimate the last two factors.
The first factor is easy, since our first hypothesis and the assumption
Ix]l, <1 give us the bound

iZ%xﬁ < Aixi <A (9.27)

Estimation of the second is not much harder since after one crude bound
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our second hypothesis and the assumption ||y, < 1 give us

m n

> D ey < ny{ 1ga<§anjk} <BY y!<B.  (9.28)
j j T k=1

Finally, when we use the estimates (9.27) and (9.28) to estimate the
product (9.26), we get our target bound (9.25), and thus we complete
the solution of the first challenge problem.

EXERCISES

Exercise 9.1 (Doing the Sums for Holder)

In Exercise 1.8 we saw that the effective use of Cauchy’s inequality
may depend on having an estimate for one of the bounding sums and, in
this respect, Holder’s inequality is a natural heir. As a warm-up, check
that for real a;, j =1,2,..., one has

4/5

Z < {k( k+1 )Hi/5 (kz_l |ak|5/4) ' (a)

n n 3/4

ag —1/4 4/3
g — <6 \/7_r<§ |a| ) , and (b)
k=1 vk k=1

2/3

o0 oo
Zakxk <(1- x3)1/3<z |ak|3/2> for0<z<1l. (¢
k=0 k=0

Exercise 9.2 (An Inclusion Radius Bound)

For a polynomial P(z) = 2" + a,_12"" ' + -+ + a1z + ap with real
or complex coefficients, the smallest value r(P) such all roots of P are
contained in the disk {z : |z| < r(P)} is called the inclusion radius for
P. Show that for any conjugate pair p > 1 and ¢ = p/(p — 1) > 1 one
has the bound

n—1 1/p
r(P) < (1+ Ag)l/q where A, = <Z ajp> . (9.29)

n=0
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Exercise 9.3 (Cauchy Implies Hélder)

Prove that Cauchy’s inequality implies Holder’s inequality. More
specifically, show that Cauchy’s inequality implies Holder’s inequality
for p € {8/1,8/2,8/3,...,8/6,8/7} by first showing

{Zn:ajbjcjdjejfjgjhj}S = {i“f}{ibf}{ihi}

j=1 j=1

By the same method, one can prove Holder’s inequality for all p = 2% /3,
1 < j < 2F. One can then call on continuity to obtain Holder’s inequality
for all 1 < p < oc.

This argument serves as a reminder that an £2-result may sometimes
be applied iteratively to obtain an ¢P-result. The inequalities one finds
this way are often proved more elegantly by other methods, but iteration
is still a remarkably effective tools for the discovery of new bounds.

Exercise 9.4 (Interpolation Bound for Moment Sequences)
If ¢ : [0,00) — [0,00) is an integrable function and ¢ € (0, 00), then
the integral

pe= [ oo
0
is called the tth moment of ¢. Show that if ¢ € (¢o,¢1) then
e < ,u%o_o‘u?l where t = (1 —a)tg+at; and 0 <a < 1.

In other words, the linearly interpolated moment is bounded by the
geometric interpolation of two extreme moments.

Exercise 9.5 (Complex Holder — and the Case of Equality)

Holder’s inequality for real numbers implies that for complex numbers
ai,as,...,a, and by, bs, ..., b, one has the bound
1/q

g:lakbk < (é akp>1/p<§:1|bk|q> (9.30)

when p > 1 and ¢ > 1 satisfy 1/p + 1/¢ = 1. What conditions on
the complex numbers ay,as,...,a,, and by, b, ..., b, are necessary and
sufficient equality to hold in the bound (9.30)? Although this exercise is
easy, it nevertheless offers one useful morsel of insight that should not
be missed.
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Exercise 9.6 (Jensen Implies Minkowski)

By Jensen’s inequality, we know that for a convex ¢ and positive
weights wq, wa, ..., w, one has

w11 + WaT2 + -+ WnTn
(b( wy +wz 4+ wy )
< wi(x1) + wep(x2) + -+ + wn¢($n).
B wy +wz + -+ Wy

(9.31)

Consider the concave function ¢(x) = (1 + 2'/P)? on [0, 00], and show
that by making the right choice of the weights w; and the values xj in
Jensen’s inequality (9.31) one obtains Minkowski’s inequality.

Exercise 9.7 (Ho6lder’s Inequality for Integrals)

Naturally there are integral versions of Holder’s inequality and, in
keeping with the more modern custom, there is no cause for a name
change when one switches from sums to integrals.

Let w : D — [0,00) be given, and reinforce your mastery of Holder’s
inequality by checking that our earlier argument (page 137) also shows
that, for all suitably integrable functions f and g from D to R,

[ st de < ([ 1@t d)/(/ l9(@)] >dx)1/q

where, as usual, 1 < p <ocoand p~! +¢7 1t = 1.

Exercise 9.8 (Legendre Transforms and Young’s Inequality)
If f:(a,b) — R, then the function g : R — R defined by

gly) = sup {zy — f(z)} (9.32)
z€(a,b)

is called the Legendre transform of f. It is used widely in the theory of
inequalities, and part of its charm is that it helps us relate products to
sums. For example, the definition (9.32) gives us the immediate bound

xy < f(x) + g(y) for all (z,y) € (a,b) x R. (9.33)

(a) Find the Legendre transform of f(x) = zP /p for p > 1 and compare
the general bound (9.33) to Young’s inequality (9.6).

(b) Find the Legendre transforms of f(z) = €* and ¢(x) = xlogx —x.

(c) Show that for any function f the Legendre transform g is convex.
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Exercise 9.9 (Self-Generalizations of Holder’s Inequality)

Holder’s inequality is self-generalizing in the sense that it implies sev-
eral apparently more general inequalities. This exercise address two of
the most pleasing of these generalizations.

(a) Show that for positive p, g, bigger than r one has

1 1 1 n 1/r n 1/p n 1/q
AR PICTS S DIC) SRDIL
j=1

Jj=1 j=1
(b) Given p,q, and r are bigger than 1, show that if

111
—4+-+=-=1,
p oq T

then one has the triple produce inequality

n n 1/p n 1/q n 1/r
Sabe<{a) {Suf {Xa)
j=1 j=1 j=1 j=1

Exercise 9.10 (The Historical Hélder Inequality)

The inequality which Holder actually proved in his 1889 article asserts
that for wg > 0, yxr > 0, and p > 1 one has

n n (—1)/p ¢ n 1/p
Zwkyk < { Zwk} { Zwkyi} ) (9.34)
k=1 k=1

k=1

Show, as Holder did, that this inequality follows from the weighted ver-
sion (9.31) of Jensen’s inequality. Finally close the loop by showing that
the historical version (9.34) of Holder’s inequality is equivalent to the
modern version that was introduced by F. Riesz. That is, check that
inequality (9.34) implies inequality (9.1), and vice versa.

Exercise 9.11 (Minkowski Implies Ho6lder)

The triangle inequality implies Cauchy’s inequality, so it surely seems
reasonable to guess that Minkowski’s inequality might also imply Holder’s
inequality. The guess is true, but the confirmation is a bit subtle. As
a hint, consider what Minkowski’s inequality (9.12) for ¢° says for the
vectors G(af/s,ag/s7 e ,af/s) and (1 — (9)(1)‘{“7 bg/s, e b%/s) when s is

very large.
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A cjls

\s G

W,
S T et < Tl (7 )

Fig. 9.2. Holder’s inequality for an array (9.35) is easier to keep in mind if one
visualizes its meaning. In fact, it asserts a natural commutativity relationship
between the summation operation S and the geometric mean operation G. As
the figure suggests, if we let G act on rows and let S act on columns, then the
inequality (9.35) tells us that by acting first with the geometric mean G we
get a smaller number than if we act first with S.

Exercise 9.12 (Holder’s Inequality for an Array)

Any formula that generalizes Holder’s inequality to an array is likely
to look complicated but, as Figure 9.2 suggests, it is still possible for
such a formula to be conceptually simple.

Show that for nonnegative real numbers a;z, 1 <j<m,1 <k <n

and positive weights wy, ..., w, that sum to 1, we have the bound
m n n m wy,
S Ta <T1(Xon) - (9:39)
j=1k=1 k=1 j=1

Prove this inequality, and use it to prove the mixed mean inequality
which asserts that for nonnegative z, y, z one has

@+ (2y)* + (oy2) _ ( Tty w+y+z)“3. (0.36)

3 2 3

Exercise 9.13 (Rogers’s Inequality — the Proto-Hoélder)

The inequality that L.C. Rogers proved in this 1888 article asserts
that for 0 < r < s < t < oo and for nonnegative ag, by, k =1,2,...,n,
one has the bound

—S S—r

n t—r n t n
(Zaka) < (Za;&}v) (Zaﬂ)}i) ,
k=1 k=1 k=1
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which we may write more succinctly as

(Ss) " < (S) (ST where S, = Zakbi for p>0. (9.37)
k=1
Rogers gave two proofs of his bound (9.37). In the first of these he
called on the Cauchy—Binet formula [see (3.7), page 49], and the second
he used the AM-GM inequality which he wrote in the form

W11 + Wk + - - + WpTy
wy +wz + -+ Wy

witwz+t+Wn
w1 ., W2 W,

where the values wy, ws,...,w, are assumed to be positive but which
are otherwise arbitrary.

Now, follow in Rogers’s footsteps and use the very clever substitutions
wg = agb], and xy = bZ_S to deduce the bound

s s s\ t—s
(B0 ) < (S50 (9.38)
and use the substitutions wy = abj, and xp = b};*s to deduce the bound
s s s r—S
(btiegh i) < (57805 (9.39)
Finally, show how these two relations imply Rogers’s inequality (9.37).
Exercise 9.14 (Interpolation for Positive Matrices)
Let 1 < sg,tg,51,t1 < oo be given and consider an m X n matrix T

with nonnegative real entries cji, 1 < j < m, 1 <k < n. Show that if
there exist constants My and M; such that

1Txle, < Mollx[ls, and [ Tx][le, < M|x]]s, (9.40)
for all x € R™, then for each 0 < § < 1, one has the bound
ITx||: < Mpy||x||s for all x € R™ (9.41)

where My is defined by My = MY M(%*e and where s and ¢ are given by
1 6 1-60 1 6 1-6
_|_

- - )

s 5 S0 L‘:E to

(9.42)

This problem takes some time to absorb, but the result is important,
and it pays generous interest on all invested effort. Figure 9.3 should help
one visualize the condition (9.42) and the constraints on the parameters
1 < s9,to, 51, t1 < 00. One might also note that the bound (9.41) would
follow trivially from the hypotheses (9.40) if 6 = 0 or # = 1. Moreover,
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(1/50,1/to)

—

8~

e
—

\i | W
T e
(% %) (1:)

Fig. 9.3. The constraints 1 < s, to, $1,t1 < 0o mean that the reciprocals are
contained in the unit square S = [0,1] x [0, 1], and the exponent relation
(9.42) tells us that (1/s,1/t) is on the line from (1/s1,1/t1) to (1/s0,1/t0).
The parameter 0 is then determined by the explicit interpolation formula

(1/s,1/t) = 0(1/s1,1/t1) + (1 — 0)(1/s0, 1/t0).

the bound (9.41) automatically recaptures the inequality (9.24) from
Challenge Problem 9.6; one only needs to set t; =1, s1 =1, My = A,
tg = 00, o = 00, My = B, and 6 = 1/p.

Despite the apparent complexity of Exercise 9.14, one does not need
to look far to find a plan for proving the interpolation formula (9.41).
The strategy which worked for Problem 9.6 (page 146) seems likely to
work here, even though it may put one’s skill with the splitting trick to
the test.

Finally, for anyone who may still be hesitant to take up the challenge
of Exercise 9.14, there is one last appeal: first think about proving the
more concrete inequality (9.43) given below. This inequality is typical of
a large class of apparently tough problems which crumble quickly after
one calls on the interpolation formula (9.41).

Exercise 9.15 (An /2 Interpolation Bound)
Let cji, 1 < j < m, 1 <k < n be an array of nonnegative real
numbers for which one has the implication

X; = chkxk forallj=1,2,...,m = Z|Xj\2 < Z|xk|2
k=1 j=1 k=1

Show that for all 1 < p < 2 one then has the bound

m 1/q n 1/p
<Z|Xj’q> < M(Qp)/P<Z|xkp> (9.43)
j=1

k=1

where and ¢ = p/(p — 1) and M = max|c;x|.
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Hilbert’s Inequality
and Compensating Difficulties

Some of the most satisfying experiences in problem solving take place
when one starts out on a natural path and then bumps into an unex-
pected difficulty. On occasion this deeper view of the problem forces us
to look for an entirely new approach. Perhaps more often we only need
to find a way to press harder on an appropriate variation of the original
plan.

This chapter’s introductory problem provides an instructive case; here
we will discover two difficulties. Nevertheless, we manage to achieve our
goal by pitting one difficulty against the other.

Problem 10.1 (Hilbert’s Inequality)

Show that there is a constant C' such that for every pair of sequences
of real numbers {a,} and {b,} one has

Sy eco(sa)(Tn).

m=1n=1 m=1

SOME HISTORICAL BACKGROUND

This famous inequality was discovered in the early 1900s by David
Hilbert; specifically, Hilbert proved that the inequality (10.1) holds with
C' = 27. Several years after Hilbert’s discovery, Issai Schur provided a
new proof which showed Hilbert’s inequality actually holds with C' = .
We will see shortly that no smaller value of C' will suffice.

Despite the similarities between Hilbert’s inequality and Cauchy’s in-
equality, Hilbert’s original proof did not call on Cauchy’s inequality; he
took an entirely different approach that exploited the evaluation of some
cleverly chosen trigonometric integrals. Nevertheless, one can prove

155
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Hilbert’s inequality through an appropriate application of Cauchy’s in-
equality. The proof turns out to be both simple and instructive.

If S is any countable set and {as} and {35} are collections of real
numbers indexed by S, then Cauchy’s inequality can be written as

3 3
S (Sat) (L) (102)
seS sES seS
This modest reformulation of Cauchy’s inequality sometimes helps us
see the possibilities more clearly, and here, of course, one hopes that
wise choices for S, {a;}, and {85} will lead us from the bound (10.2) to
the Hilbert’s inequality (10.1).

AN OBvious FIRST ATTEMPT

If we charge ahead without too much thought, we might simply take
the index set to be S = {(m,n):m >1,n > 1} and take os and S, to
be defined by the splitting

_Om and 57b7n
vm—+n Si\/ern

By design, the products «s0s recapture the terms one finds on the
left-hand side of Hilbert’s inequality, but the bound one obtains from
Cauchy’s inequality (10.2) turns out to be disappointing. Specifically, it
gives us the double sum estimate
am n o o agn oo o0 bi 10 3
<sz+n) ;Zm—knzzm—i—n (10:3)

m=1n=1

s = where s = (m,n).

but, unfortunately, both of the last two factors turn out to be infinite.

The first factor on the right side of the bound (10.3) diverges like a
harmonic series when we sum on n, and the second factor diverges like
a harmonic series when we sum on m. Thus, in itself, inequality (10.3)
is virtually worthless. Nevertheless, if we look more deeply, we soon
find that the complementary nature of these failings points the way to
a wiser choice of {as} and {fs}.

EXPLOITING COMPENSATING DIFFICULTIES
The two sums on the right-hand side of the naive bound (10.3) diverge,
but the good news is that they diverge for different reasons. In a sense,
the first factor diverges because
U

vm—+n

Qg =
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is too big as a function of n, whereas the second factor diverges because
bn
vm—+n

is too big as a function of m. All told, this suggests that we might
improve on ay and [, if we multiply «, by a decreasing function of n
and multiply s by a decreasing function of m. Since we want to preserve
the basic property that

ﬁs:

b
mn
asfBs = e

we may not need long to hit on the idea of introducing a parametric
family of candidates such as

A A
A m by n
g = —— | — d s = —(— | , 10.4
“ \/m—l-n(n) an h \/m—i-n(m) ( )

where s = (m,n) and where A > 0 is a constant that can be chosen
later. This new family of candidates turns out to lead us quickly to the
proof of Hilbert’s inequality.

EXECUTION OF THE PLAN

When we apply Cauchy’s inequality (10.2) to the pair (10.4), we find

(sz+n> ZZm—HL( )QAiimﬁ—n( >2A7

m=1n=1 m=1n=1 n=1m=1

so, when we consider the first factor on the right-hand side we see

Yy (m) - ray (n)

m=1

By the symmetry of the summands a,,b,,/(m+n) in our target sum, we
now see that the proof of Hilbert’s inequality will be complete if we can
show that for some choice of A there is a constant B) < oo such that

o) 22

1
E <@> < B, for all m > 1. (10.5)
—_ m+n\n

Now we just need to estimate the sum (10.5), and we first recall that
for any nonnegative decreasing function f :[0,00) — R, we have the
integral bound

>t < [ fa)ds
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In the specific case of f(z) = m**2?*(m + x)~!, we therefore find

oo 2 o0 2 0
1 1 1 1
—m+n\n 0o mtzz o I+yy

where the last equality comes from the change of variables z = my. The
integral on the right side of the inequality (10.6) is clearly convergent
when A satisfies 0 < A < 1/2 and, by our earlier observation (10.5), the
existence of any such A would suffice to complete the proof of Hilbert’s
inequality (10.1).

SEIZING AN OPPORTUNITY

Our problem has been solved as stated, but we would be derelict in
our duties if we did not take a moment to find the value of the constant
C that is provided by our proof. When we look over our argument, we
actually find that we have proved that Hilbert’s inequality (10.1) must
hold for any C' = C'y with

C)\:/o ﬁy%dy for 0 < A< 1/2. (10.7)
Naturally, we should find the value of A that provides the smallest of
these.

By a quick and lazy consultation of Mathematica or Maple, we discover
that we are in luck. The integral for C turns out to both simple and
explicit:

< 1 1 0
———r dy = for 0 < A <1/2. 10.8

/0 1+y) y> Y~ sin2ma or0 <A</ (108)
Now, since sin 27\ is maximized when A = 1/4, we see that the smallest
value attained by C with 0 < A < 1/2 is equal to

e 1 1
C=Cinu= ——dy = . 10.9
1/4 /o (1+y)\/§ y=m ( )

Quite remarkably, our direct assault on Hilbert’s inequality has almost
effortlessly provided the sharp constant C' = 7 that was discovered by
Schur.

This is a fine achievement for Cauchy’s inequality, but it should not
be oversold. Many proofs of Hilbert’s inequality are now available, and
some of these are quite brief. Nevertheless, for the connoisseur of tech-
niques for exploiting Cauchy’s inequality, this proof of Hilbert’s inequal-
ity is a sweet victory.

Finally, there is a small point that we should note in passing. The
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integral (10.8) is actually a textbook classic; both Bak and Newman
(1997) and Cartan (1995) use it to illustrate the standard technique for
integrating R(z)/x® over [0,00) where R(z) is a rational function and
0 < a < 1. This integral also has a connection to a noteworthy gamma
function identity that is described in Exercise 10.8.

OF MIRACLES AND CONVERSES

For a Cauchy—Schwarz argument to be precise enough to show that
one can take C' = 7 in Hilbert’s inequality may seem to require a miracle,
but there is another way of looking at the relation between the two sides
of Hilbert’s inequality that makes it clear that no miracle was required.
With the right point of view, one can see that both 7 and the special
integrals (10.8) have an inevitable role. To develop this connection, we
will take on the challenge of proving a converse to our first problem.

Problem 10.2 Suppose that the constant C' satisfies

i i ;mf,; < C( i afn); <§;bi) (10.10)

m=1n=1 m=1

for all pairs of sequences of real numbers {an} and {b,}. Show that
C >

If we plug any pair of sequences {a,} and {b,} into the inequality
(10.10) we will get some lower bound on ¢, but we will not get too
far with this process unless we find some systematic way to guide our
choices. What we would really like is a parametric family of pairs {a, (€)}
and {by,(e)} that provide us with a sequence of lower bounds on C that
approach m as € — 0. This surely sounds good, but how do we find
appropriate candidates for {a,(e)} and {b,(€)}?

STRESS TESTING AN INEQUALITY

Two basic ideas can help us narrow our search. First, we need to be
able to calculate (or estimate) the sums that appear in the inequality
(10.10). We cannot do many sums, so this definitely limits our search.
The second idea is more subtle; we need to put the inequality under
stress. This general notion has many possible interpretations, but here it
at least suggests that we should look for sequences {a,(¢)} and {b,(€)}
such that all the quantities in the inequality (10.10) tend to infinity
as € — 0. This particular strategy for stressing the inequality (10.10)
may not seem too compelling when one faces it for the first time, but
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experience with even a few examples is enough to convince most people
that the principle contains more than a drop of wisdom.

Without a doubt, the most natural candidates for {a,,(¢)} and {b,(¢)}
are given by the identical twins

N

—€

an(€) =bp(e) =n~

For this choice, one may easily work out the estimates that are needed
to understand the right-hand side of Hilbert’s inequality. Specifically,
we see that as € — 0 we have

(i ai(e)f(ibﬁ(@f - i nl% ~ /100 % = % (10.11)

m=1 n=1

CLOSING THE Loopr

To complete the solution of Problem 10.2, we only need to show
that the corresponding sum for the left-hand side of Hilbert’s inequality
(10.10) is asymptotic to 7/2¢ as e — 0. This is indeed the case, and the
computation is instructive. We lay out the result as a lemma.

Double Sum Lemma.

™
~ — as € — 0.

,_.

3
I

-

m=

For the proof, we first note that integral comparisons tell us that it
suffices to show

<1 1 1
I(e):/ / —_ dacdyw1 as € — 0,
1 J1 oxrteystexr 4y 2e

and the change of variables u = y/x also tells us that

oo oo d
I(e):/ xl%U uie }dx. (10.12)
1 1/ I+u

This integral would be easy to calculate if we could replace the lower
limit 1/x of the inside integral by 0, and, to estimate how much damage
such a change would cause, we first note that

1/x d 1/x —l-l,-e
0</ u e Y </ u_%_edu:glj : .
0 1+U 0

|

When we use this bound in equation (10.12) and write the result using
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big O notation of Landau (say, as defined on page 120), then we find

I(f):/ 33_1_26{/ w3 du }da:+0</ x‘%—eda:)
1 0 1+u 1

1 > 1 du
== —5-e o).
2 ), v Tyl TOM

Finally, for ¢ — 0, we see from our earlier experience with the integral
(10.9) that we have

/oo _1_. du /oo _ 1 du
u 2 — u 2 =T,
0 14+u 0 1+u

so the proof of the lemma is complete.

FINDING THE CIRCLE IN HILBERT’S INEQUALITY

Any time 7w appears in a problem that has no circle in sight, there is
a certain sense of mystery. Sometimes this mystery remains without a
satisfying resolution, but, in the case of Hilbert’s inequality, a geomet-
ric explanation for the appearance of m was found in 1993 by Krysztof
Oleszkiewicz. This discovery is a bit off of our central theme, but it does
build on the calculations we have just completed, and it is too lovely to
miss.

Quarter Circle Lemma. For all m > 1, we have the bound
1
3

i — 1+ - (%) < (10.13)

n=1

For the proof, we first note that the shaded triangle of Figure 10.1
is similar to the triangle T' determined by (0,0), (v/m,v/n —1), and

(v/m,y/n), and the area of T is simply 2/m(y/n —+/n — 1). Thus, one

finds by scaling that the area A,, of the shaded triangle is given by

(VN
An—<\/n+_m> 2\/_(\/_ Vvn —1). (10.14)

Since 1/+/z is decreasing on [0, 00), we have

T

so, in the end, we find

1 m vVm
n> - . 10.1
>4m+n\/_ (10.15)

Finally, what makes this geometric bound most interesting is that all
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(V)
. (Vm,vn—1)
The shaded triangles
Th,n=1,2,...
explain the 7
in Hilbert’s inequality.
(0,0) (v/m,0)

Fig. 10.1. The shaded triangle is similar to the triangle determined by the

three points (0, 0), (v/m,vn — 1), and (y/m, v/n) so we can determine its area

by geometry. Also, the triangles T, have disjoint interiors so the sum of their
areas cannot exceed m/4. These facts give us the proof of the Quarter Circle
Lemma.

of the shaded triangles are contained in the quarter circle. They have
disjoint interiors, so we find that the sum of their areas is bounded by
mm/4, the area of the quarter circle with radius v/m that contains them.

EXERCISES

Exercise 10.1 (Guaranteed Positivity)

Show that for any real numbers aq,as,. .., a, one has

2 Qi

> 2= >0 (10.16)
=

and, more generally, show that for positive A1, As,..., A, one has

ajak

10.17

Z /\ + )\k ( )

Obviously the second inequality implies the first, so the bound (10.16)
is mainly a hint which makes the link to Hilbert’s inequality. As a
better hint, one might consider the possibility of representing 1/\A; as
an integral.
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Exercise 10.2 (Insertion of a Fudge Factor)

There are many ways to continue the theme of Exercise 10.1, and this
exercise is one of the most useful. It provides a generic way to leverage
an inequality such as Hilbert’s.

Show that if the complex array {a;x : 1 < j <m,1 < k < n} satisfies

the bound
> ajeajyn| < Malallyl2, (10.18)
7,k
then one also has the bound
> ajehjraiyr| < afM|zallyll (10.19)
7.k

provided that the factors h;, have an integral representation of the form

b Z/ij(x)gk(a:) dx (10.20)

for which for all j and k£ one has the bounds
/ |fi(z)]?dz < o