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Preface

In 1931, the young Kurt Gödel published his First and Second Incompleteness
Theorems; very often, these are simply referred to as ‘Gödel’s Theorems’. His
startling results settled (or at least, seemed to settle) some of the crucial ques-
tions of the day concerning the foundations of mathematics. They remain of
the greatest significance for the philosophy of mathematics – though just what
that significance is continues to be debated. It has also frequently been claimed
that Gödel’s Theorems have a much wider impact on very general issues about
language, truth and the mind. This book gives outline proofs of the Theorems,
puts them in a more general formal context, and discusses their implications.

I originally intended to write a shorter book, leaving rather more of the formal
details to be filled in from elsewhere. But while that plan might have suited some
readers, I very soon decided that it would seriously irritate others to be sent
hither and thither to consult a variety of text books with different terminology
and different notations. So in the end, I have given more or less fully worked out
proofs of most key results.

However, my original plan still shows through in two ways. First, some proofs
are only sketched in, and some other proofs are still omitted entirely. Second, I
try to make it plain which of the proofs I do give can be skipped without too
much loss of understanding. My overall aim – rather as in a good lecture course
with accompanying hand-outs – is to highlight as clearly as I can the key formal
results and proof-strategies, provide details when these are important enough,
and give references where more can be found.1 Later in the book, I range over a
number of intruiging formal themes and variations that take us a little beyond
the content of most introductory texts.

As we go through, there is also an amount of broadly philosophical commen-
tary. I follow Gödel in believing that our formal investigations and our general
reflections on foundational matters should illuminate and guide each other. So
I hope that the more philosophical discussions (though certainly not uncon-
tentious) will be reasonably accessible to any thoughtful mathematician. Like-
wise, most of the formal parts of the book should be accessible even if you start
from a relatively modest background in logic.2 Though don’t worry if you find
yourself skimming to the ends of proofs – marked ‘�’ – on a first reading: I do
that all the time when tackling a new mathematics text.

1The plan is for there also to be accompanying exercises on the book’s website at
www.godelbook.net.

2Another plan is that the book will contain a short appendix of reminders about some
logical notions and about standard notation: and for those who need more, there will be a
more expansive review of the needed logical background on the website
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Preface

Writing a book like this presents a problem of organization. For example, at
various points we will need to call upon some background ideas from general
logical theory. Do we explain them all at once, up front? Or do we introduce
them as we go along, when needed? Another example: we will also need to call
upon some ideas from the general theory of computation – we will make use of
both the notion of a ‘primitive recursive function’ and the more general notion
of a ‘recursive function’. Again, do we explain these together? Or do we give the
explanations many chapters apart, when the respective notions first get put to
work?

I’ve adopted the second policy, introducing new ideas as and when needed.
This has its costs, but I think that there is a major compensating benefit, namely
that the way the book is organized makes it a lot clearer just what depends on
what. It also reflects something of the historical order in which ideas emerged
(a little more of the history emerges in footnotes).

I am already accumulating many debts. Many thanks to JC Beall, Hubie Chen,
Torkel Franzen, Andy Fugard, Jeffrey Ketland, Jonathan Kleid, Mary Leng, Fritz
Mueller, Tristan Mills, Jeff Nye, Alex Paseau, Michael Potter, Wolfgang Schwartz
and Brock Sides for comments on draft chapters, and for encouragement to keep
going with the book. I should especially mention Richard Zach both for saving
me from a number of mistakes, large and small, and for suggestions that have
much improved the book. Thanks too to students who have provided feedback,
especially Jessica Leech, Adrian Pegg and Hugo Sheppard. I’d of course be very
grateful to hear of any further typos I’ve introduced, especially in the later
chapters, and even more grateful to get more general feedback and comments,
which can be sent via the book’s website.

Finally, like so many others, I am also hugely grateful to Donald Knuth, Leslie
Lamport and the LATEX community for the document processing tools which
make typesetting a mathematical text like this one such a painless business.
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1 What Gödel’s First Theorem Says

1.1 Incompleteness and basic arithmetic

It seems to be child’s play to grasp the fundamental concepts involved in the
basic arithmetic of addition and multiplication. Starting from zero, there is a
sequence of ‘counting’ numbers, each having just one immediate successor. This
sequence of numbers – officially, the natural numbers – continues without end,
never circling back on itself; and there are no ‘stray’ numbers, lurking outside
this sequence. We can represent this sequence using (say) the familiar arabic
numerals. Adding n to m is the operation of starting from m in the number
sequence and moving n places along. Multiplying m by n is the operation of
(starting from zero and) repeatedly adding m, n times. And that’s about it.

Once these basic notions are in place, we can readily define many more arith-
metical concepts in terms of them. Thus, for natural numbers m and n, m < n

if there is a number k 6= 0 such that m+ k = n. m is a factor of n if 0 < m and
there is some number k such that 0 < k and m× k = n. m is even if it has 2 as
a factor. m is prime if 1 < m and m’s only factors are 1 and itself. And so on.

Using our basic and/or defined notions, we can then make various general
claims about the arithmetic of addition and multiplication. There are elementary
truths like ‘addition is commutative’, i.e. for any numbers m and n, we have
m + n = n + m. And there are yet-to-be-proved conjectures like Goldbach’s
conjecture that every even number greater than two is the sum of two primes.

That second example illustrates the truism that it is one thing to under-
stand the language of basic arithmetic (i.e. the language of the addition and
multiplication of natural numbers, together with the standard first-order logical
apparatus), and it is another thing to be able to answer the questions that can be
posed in that language. Still, it is extremely plausible to suppose that, whether
the answers are readily available to us or not, questions posed in the language
of basic arithmetic do have entirely determinate answers. The structure of the
number sequence is (surely) simple and clear: a single, never-ending sequence,
with each number followed by a unique successor and no repetitions. The opera-
tions of addition and multiplication are again (surely) entirely determinate: their
outcomes are fixed by the school-room rules. So what more could be needed to
fix the truth or falsity of propositions that – perhaps via a chain of definitions –
amount to claims of basic arithmetic?

To put it fancifully: God sets down the number sequence and specifies how the
operations of addition and multiplication work. He has then done all he needs
to do to make it the case that Goldbach’s conjecture is true (or false, as the case
may be!).

1



1. What Gödel’s First Theorem Says

Of course, that last remark is too fanciful for comfort. We may find it com-
pelling to think that the sequence of natural numbers has a definite structure,
and that the operations of addition and multiplication are entirely nailed down
by the familiar rules. But what is the real, non-metaphorical, content of the
thought that the truth-values of all basic arithmetic propositions are thereby
‘fixed’?

Here’s one initially rather attractive and plausible way of beginning to sharpen
up the thought. The idea is that we can specify a bundle of fundamental assump-
tions or axioms which somehow pin down the structure of the number sequence,1

and which also characterize addition and multiplication (it is entirely natural to
suppose that we can give a reasonably simple list of true axioms to encapsu-
late the fundamental principles so readily grasped by the successful learner of
school arithmetic). Second, suppose ϕ is a proposition which can be formulated
in the language of basic arithmetic. Then, the plausible suggestion continues,
the assumed truth of our axioms always ‘fixes’ the truth-value of any such ϕ in
the following sense: either ϕ is logically deducible from the axioms by a normal
kind of proof, and so is true;2 or ¬ϕ is deducible from axioms, and so ϕ is false.
(We mean, of course, that there exists a proof in principle: we may not stumble
on a proof one way or the other. But the picture is that the axioms contain the
information from which the truth-value of any basic arithmetical proposition can
in principle be deductively extracted by deploying familiar step-by-step logical
rules of inference.)

Logicians say that a theory T is (negation)-complete if, for every sentence ϕ in
the language of the theory, either ϕ or ¬ϕ is deducible in T ’s proof system. So,
put into this jargon, the suggestion we are considering is: we should be able to
specify a reasonably simple bundle of true axioms which taken together give us
a complete theory of basic arithmetic – i.e. we can find a theory in which we can
prove the truth or falsity of any claim of basic arithmetic. And if that’s right,
arithmetical truth could just be equated with provability in some appropriate
system.

In headline terms, what Gödel’s First Incompleteness Theorem shows is that
the plausible suggestion is wrong. Suppose we try to specify a suitable axiomatic
theory T that seems to capture the structure of the natural number sequence
and pin down addition and multiplication. Then Gödel gives us a recipe for
coming up with a corresponding sentence GT , couched in the language of basic
arithmetic, such that (i) we can show (on very modest assumptions) that neither
GT nor ¬GT can be proved in T , and yet (ii) we can also recognize that GT is
true (assuming T is consistent).

This is astonishing. Somehow, it seems, the class of basic arithmetic truths will
always elude our attempts to pin it down by a set of fundamental assumptions

1There are issues lurking here about what counts as ‘pinning down a structure’ using a
bunch of axioms: we’ll have to return to some of these issues in due course.

2‘Normal’ is vague, and later we will need to be more careful: but the idea is that we don’t
want to countenance, e.g., ‘proofs’ with an infinite number of steps!
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Incompleteness and basic arithmetic

from which we can deduce everything else.
How does Gödel show this? Well, note how we can use numbers and numer-

ical propositions to encode facts about all sorts of things (for example, I might
number off the students in the department in such a way that one student’s
code-number is less than another’s if the first student is older than the second;
a student’s code-number is even if the student in question is female; and so on).
In particular, we can use numbers and numerical propositions to encode facts
about what can be proved in a theory T . And what Gödel did, very roughly, is
find a coding scheme and a general method that enabled him to construct, for
any given theory T strong enough to capture a decent amount of basic arith-
metic, an arithmetical sentence GT which encodes the thought ‘This sentence is
unprovable in theory T ’.

If T were to prove its ‘Gödel sentence’ GT , then it would prove a falsehood
(since what GT ‘says’ would then be untrue). Suppose though that T is a sound
theory of arithmetic, i.e. T has true axioms and a reliably truth-preserving de-
ductive logic. Then everything T proves must be true. Hence, if T is sound, GT

is unprovable in T . Hence GT is then true (since it correctly ‘says’ it is unprov-
able). Hence its negation ¬GT is false; and so that cannot be provable either. In
sum, still assuming T is sound, neither GT nor its negation will be provable in
T : therefore T can’t be negation-complete. And in fact we don’t even need to as-
sume that T is sound: T ’s mere consistency turns out to be enough to guarantee
that GT is true-but-unprovable.

Our reasoning here about ‘This sentence is unprovable’ is reminiscent of the
Liar paradox, i.e. the ancient conundrum about ‘This sentence is false’, which
is false if it is true and true if it is false. So you might wonder whether Gödel’s
argument leads to a paradox rather than a theorem. But not so. Or at least,
there is nothing at all problematic about Gödel’s First Theorem as a result
about formal axiomatized systems. (We’ll need in due course to say more about
the relation between Gödel’s argument and the Liar and other paradoxes: and
we’ll need to mention the view that the argument can be used to show something
paradoxical about informal reasoning. But that’s for later.)

‘Hold on! If we can locate GT , a “Gödel sentence” for our favourite theory
of arithmetic T , and can argue that GT is true-but-unprovable, why can’t we
just patch things up by adding it to T as a new axiom?’ Well, to be sure, if we
start off with theory T (from which we can’t deduce GT ), and add GT as a new
axiom, we’ll get an expanded theory U = T + GT from which we can trivially
deduce GT . But we now just re-apply Gödel’s method to our improved theory U
to find a new true-but-unprovable-in-U arithmetic sentence GU that says ‘I am
unprovable in U ’. So U again is incomplete. Thus T is not only incomplete but,
in a quite crucial sense, is incompletable.

And note that since GU can’t be derived from T +GT , it can’t be derived from
the original T either. And we can keep on going: simple iteration of the same
trick starts generating a never-ending stream of independent true-but-unprovable
sentences for any candidate axiomatized theory of basic arithmetic T .
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1. What Gödel’s First Theorem Says

1.2 Why it matters

There’s nothing mysterious about a theory failing to be negation-complete, plain
and simple. For a very trite example, imagine the faculty administrator’s ‘theory’
T which records some basic facts about e.g. the course selections of group of
students – the language of T , let’s suppose, is very limited and can just be used
to tell us about who takes what course in what room when. From the ‘axioms’
of T we’ll be able, let’s suppose, to deduce further facts such as that Jack and
Jill take a course together, and at least ten people are taking the logic course.
But if there’s no axiom in T about their classmate Jo, we might not be able to
deduce either J = ‘Jo takes logic’ or ¬J = ‘Jo doesn’t take logic’. In that case,
T isn’t yet a negation-complete story about the course selections of students.
However, that’s just boring: for the ‘theory’ about course selection is no doubt
completable (i.e. it can be expanded to settle every question that can be posed in
its very limited language). By contrast, what gives Gödel’s First Theorem its real
bite is that it shows that any properly axiomatized theory of basic arithmetic
must remain incomplete, whatever our efforts to complete it by throwing further
axioms into the mix.

This incompletability result doesn’t just affect basic arithmetic. For the next
simplest example, consider the mathematics of the rational numbers (fractions,
both positive and negative). This embeds basic arithmetic in the following sense.
Take the positive rationals of the form n/1 (where n is an integer). These of
course form a sequence with the structure of the natural numbers. And the usual
notions of addition and multiplication for rational numbers, when restricted to
rationals of the form n/1, correspond exactly to addition and multiplication for
the natural numbers. So suppose that there were a negation-complete axiomatic
theory T of the rationals such that, for any proposition ψ of rational arithmetic,
either ψ or ¬ψ can be deduced from T . Then, in particular, given any proposition
ψ′ about the addition and/or multiplication of rationals of the form n/1, T
will entail either ψ′ or ¬ψ′. But then T plus simple instructions for rewriting
such propositions ψ′ as propositions about the natural numbers would be a
negation-complete theory of basic arithmetic – which is impossible by the First
Incompleteness Theorem. Hence there can be no complete theory of the rationals
either.

Likewise for any stronger theory that either includes or can model arithmetic.
Take set theory for example. Start with the empty set ∅. Form the set {∅}
containing ∅ as its sole member. Now form the set {∅, {∅}} containing the
empty set we started off with plus the set we’ve just constructed. Keep on going,
at each stage forming the set of sets so far constructed (a legitimate procedure
in any standard set theory). We get the sequence

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

This has the structure of the natural numbers. It has a first member (correspond-
ing to zero); each member has one and only one successor; it never repeats. We

4



What’s next?

can go on to define analogues of addition and multiplication. If we could have a
negation-complete axiomatized set theory, then we could, in particular, have a
negation-complete theory of the fragment of set-theory which provides us with a
model of arithmetic; and then adding a simple routine for translating the results
for this fragment into the familiar language of basic arithmetic would give us
a complete theory of arithmetic. So, by Gödel’s First Incompleteness Theorem
again, there cannot be a negation-complete set theory.

In sum, any axiomatized mathematical theory T rich enough to embed a
reasonable amount of the basic arithmetic of the addition and multiplication
of the natural numbers must be incomplete and incompletable – yet we can
recognize certain ‘Gödel sentences’ for T to be not only unprovable but true so
long as T is consistent.

This result, on the face of it, immediately puts paid to an otherwise attrac-
tive suggestion about the status of arithmetic (and it similarly defeats parallel
claims about the status of other parts of mathematics). What makes for the spe-
cial certainty and the necessary truth of correct claims of basic arithmetic? It is
tempting to say: they are analytic truths in the philosophers’ sense, i.e. they are
logically deducible from the very definitions of the numbers and the operations
of addition and multiplication. But what Gödel’s First Theorem shows is that,
however we try to encapsulate such definitions in a set of axioms giving us some
consistent deductive theory T , there will be truths of basic arithmetic unprov-
able in T : so it seems that arithmetical truth must outstrip what can be given
merely by logic-plus-definitions. But then, how do we manage somehow to latch
on to the nature of the un-ending number sequence and the operations of addi-
tion and multiplication in a way that outstrips whatever rules and principles can
be captured in definitions? It can seem that we must have a rule-transcending
cognitive grasp of the numbers which underlies our ability to recognize certain
‘Gödel sentences’ as correct arithmetical propositions. And if you are tempted to
think so, then you may well be further tempted to conclude that minds such as
ours, capable of such rule-transcendence, can’t be machines (supposing, reason-
ably enough, that the cognitive operations of anything properly called a machine
can be fully captured by rules governing the machine’s behaviour).

So there’s apparently a quick route from reflections about Gödel’s First The-
orem to some conclusions about arithmetical truth and the nature of the minds
that grasp it. Whether those conclusions really follow will emerge later. For the
moment, we have an initial if very rough idea of what the Theorem says and
why it might matter – enough, I hope, to entice you to delve further into the
story that unfolds in this book.

1.3 What’s next?

What we’ve said so far, of course, has been arm-waving and introductory. We
must now start to do better – though for the next three chapters our discussions

5



1. What Gödel’s First Theorem Says

will remain fairly informal. In Chapter 2, as a first step, we explain more carefully
what we mean by talking about an ‘axiomatized theory’ in general. In Chap-
ter 3, we introduce some concepts relating to axiomatized theories of arithmetic.
Then in Chapter 4 we prove a neat and relatively easy result – namely that
any so-called ‘sufficiently strong’ axiomatized theory of arithmetic is negation
incomplete. For reasons that we’ll explain, this informal result falls well short of
Gödel’s First Incompleteness Theorem. But it provides a very nice introduction
to some key ideas that we’ll be developing more formally in the ensuing chapters.
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2 The Idea of an Axiomatized Formal Theory

Gödel’s Incompleteness Theorems tell us about the limits of axiomatized the-
ories of arithmetic. Or rather, more carefully, they tell us about the limits of
axiomatized formal theories of arithmetic. But what exactly does this mean?

2.1 Formalization as an ideal

Rather than just dive into a series of definitions, it is well worth quickly remind-
ing ourselves of why we care about formalized theories.

So let’s get back to basics. In elementary logic classes, we are drilled in trans-
lating arguments into an appropriate formal language and then constructing for-
mal deductions of putative conclusions from given premisses. Why bother with
formal languages? Because everyday language is replete with redundancies and
ambiguities, not to mention sentences which simply lack clear truth-conditions.
So, in assessing complex arguments, it helps to regiment them into a suitable
artificial language which is expressly designed to be free from obscurities, and
where surface form reveals logical structure.

Why bother with formal deductions? Because everyday arguments often in-
volve suppressed premisses and inferential fallacies. It is only too easy to cheat.
Setting out arguments as formal deductions in one style or another enforces
honesty: we have to keep a tally of the premisses we invoke, and of exactly
what inferential moves we are using. And honesty is the best policy. For suppose
things go well with a particular formal deduction. Suppose we get from the given
premisses to some target conclusion by small inference steps each one of which
is obviously valid (no suppressed premisses are smuggled in, and there are no
suspect inferential moves). Our honest toil then buys us the right to confidence
that our premisses really do entail the desired conclusion.

Granted, outside the logic classroom we almost never set out deductive argu-
ments in a fully formalized version. No matter. We have glimpsed a first ideal
– arguments presented in an entirely perspicuous language with maximal clar-
ity and with everything entirely open and above board, leaving no room for
misunderstanding, and with all the arguments’ commitments systematically and
frankly acknowledged.1

Old-fashioned presentations of Euclidean geometry illustrate the pursuit of a
related second ideal – the (informal) axiomatized theory. Like beginning logic
students, school students used to be drilled in providing deductions, though

1For an early and very clear statement of this ideal, see Frege (1882), where he explains the
point of the first recognizably modern formal system of logic, presented in his Begriffsschrift
(i.e. Conceptual Notation) of 1879.
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2. The Idea of an Axiomatized Formal Theory

the deductions were framed in ordinary geometric language. The game was to
establish a whole body of theorems about (say) triangles inscribed in circles,
by deriving them from simpler results which had earlier been derived from still
simpler theorems that could ultimately be established by appeal to some small
stock of fundamental principles or axioms. And the aim of this enterprise? By
setting out the derivations of our various theorems in a laborious step-by-step
style – where each small move is warranted by simple inferences from propositions
that have already been proved – we develop a unified body of results that we
can be confident must hold if the initial Euclidean axioms are true.

On the surface, school geometry perhaps doesn’t seem very deep: yet making
all its fundamental assumptions fully explicit is surprisingly difficult. And giving
a set of axioms invites further enquiry into what might happen if we tinker with
these assumptions in various ways – leading, as is now familiar, to investigations
of non-Euclidean geometries.

Many other mathematical theories are also characteristically presented ax-
iomatically.2 For example, set theories are presented by laying down some basic
axioms and exploring their deductive consequences. We want to discover exactly
what is guaranteed by the fundamental principles embodied in the axioms. And
we are again interested in exploring what happens if we change the axioms and
construct alternative set theories – e.g. what happens if we drop the ‘axiom of
choice’ or add ‘large cardinal’ axioms?

However, even the most tough-minded mathematics texts which explore ax-
iomatized theories are typically written in an informal mix of ordinary language
and mathematical symbolism, with proofs rarely spelt out in every formal detail.
They fall short of the logical ideal of full formalization. That doesn’t make them
any the less proofs (the contents of a mathematics journal article can be entirely
clear and the arguments entirely compelling). But we might reasonably hope
that nothing stands in the way our more informally presented mathematical
proofs being turned into fully formalized ones – i.e. hope that they could be set
out in a strictly regimented formal language of the kind that logicians describe,
with absolutely every inferential move made fully explicit and checked as being
in accord with some acknowledged formal rule of inference, with all the proofs
ultimately starting from our explicitly given axioms. True, the extra effort of
laying out everything in this kind of fully formalized detail would almost never
be worth the cost in time and ink. In mathematical practice we use enough for-
malization to convince ourselves that our results don’t depend on illicit smuggled
premisses or on dubious inference moves, and leave it at that (‘sufficient unto
the day is the rigour thereof’).3 But still, it is essential for good mathematics to

2For a classic defence, extolling the axiomatic method in mathematics, see Hilbert (1918).
3Bourbaki (1968, p. 8) puts the point like this in a famous passage: ‘In practice, the

mathematician who wishes to satisfy himself of the perfect correctness or “rigour” of a proof
or a theory hardly ever has recourse to one or another of the complete formalizations available
nowadays, . . . . In general he is content to bring the exposition to a point where his experience
and mathematical flair tell him that translation into formal language would be no more than
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Axiomatized formal theories

achieve maximum precision and to avoid the use of unexamined inference rules
or unacknowledged assumptions. So, putting together the logician’s aim of per-
fect clarity and honest inference with the mathematician’s project of regimenting
a theory into a tidily axiomatized form, we can see the point of the notion of
an axiomatized formal theory, if not as a practical day-to-day working medium,
then at least as a composite ideal.

Mathematicians (and some philosophical commentators) are apt to stress that
there is a lot more to mathematical practice than striving towards the logical
ideal. For a start, they observe that mathematicians typically aim not merely for
formal correctness but for explanatory proofs, which not only show that some
proposition must be true, but in some sense make it clear why it is true. And
such observations are right and important. But they don’t affect the point that
the business of formalization just takes to the limit features that we expect to
find in good proofs anyway, i.e. precise clarity and lack of inferential gaps.

(b) It is certainly not being suggested that only fully regimented proofs – com-
pletely set out in some axiomatized formal system – are genuine mathematical
proofs. For that would make proofs rare indeed, and almost never to be found
in mathematics journals. Informal proofs but be clear and compelling by any
reasonably standard.

2.2 Axiomatized formal theories

So, putting together the ideal of formal precision and the ideal of regimentation
into an axiomatic system, we have arrived at the concept of an axiomatized
formal theory, which comprises (a) a formalized language, (b) a set of sentences
from the language which we treat as axioms characterizing the theory, and (c)
some deductive system for proof-building, so that we can derive theorems from
the axioms. We’ll now say a little more about these ingredients in turn.

(a) We’ll take it that the general idea of a formalized language is familiar from
elementary logic, and so we can be fairly brisk. Note that we will normally be in-
terested in interpreted languages – i.e. we will usually be concerned not just with
formal patterns of symbols but with expressions which have an intended signifi-
cance. We can usefully think of an interpreted language as a pair 〈L, I〉, where L
is a syntactically defined system of expressions and I gives the interpretation of
these expressions. We’ll follow the standard logicians’ convention of calling the
first component of the pair an ‘uninterpreted language’ (or sometimes, when no
confusion will arise, simply a ‘language’).

First, then, on the unintepreted language component, L. We’ll assume that
this has a finite alphabet of symbols – for we can always construct e.g. an un-
ending supply of variables by standard tricks like using repeated primes (to yield
‘x’, ‘x′’, ‘x′′’, etc.). We then need syntactic construction-rules to determine which
finite strings of symbols from the given alphabet constitute the vocabulary of

an exercise of patience (though doubtless a very tedious one).’
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individual constants (i.e. names), variables, predicates and function-expressions
in L. And then we need further rules to determine which finite sequences of these
items of vocabulary plus logical symbols for e.g. connectives and quantifiers make
up the well-formed formulae of L (its wffs, for short).

Plainly, given that the whole point of using a formalized language is to make
everything as clear and determinate as possible, we don’t want it to be a dis-
putable matter whether a given sign or cluster of signs is e.g. a constant or
one-place predicate of a given system L. And we don’t want it to be a dis-
putable matter whether a string of symbols is a wff of L. So we want there to be
clear and objective formal procedures, agreed on all sides, for effectively deciding
whether a putative constant-symbol is indeed a constant, etc., and likewise for
deciding whether a putative wff is a wff. We will say more about the needed
notion of decidability in Section 2.3.

Next, on the semantic component I. The details of how to interpret L’s wffs
will vary with the richness of the language. Let’s suppose we are dealing with
the usual sort of language which is to be given a referential semantics of the
absolutely standard kind, familiar from elementary logic. Then the basic idea
is that an interpretation I will specify a set of objects to be the domain of
quantification. For each constant of L, the interpretation I picks out an element
in the domain to be its referent. For each one-place predicate of L, I picks
out a set of elements to be the extension of the predicate; for each two-place
predicate, I picks out a set of ordered pairs of elements to be its extension; and
so on. Likewise for function-expressions: thus, for each one-place function of L,
the interpretation I will pick out a suitable set of ordered pairs of elements to
be the function’s extension;4 and similarly for many-place functions.

Then there are interpretation rules which fix the truth-conditions of every
sentence of L (i.e. every closed wff without free variables), given the interpreta-
tion of the L’s constants, predicates etc. To take the simplest examples, the wff
‘Fc’ is true if the referent of ‘c’ is in the extension of ‘F’; the wff ‘¬Fc’ is true if
‘Fc’ isn’t true; the wff ‘(Fc → Gc)’ is true if either ‘Fc’ is false or ‘Gc’ is true; the
wff ‘∀x Fx’ is true if every object in the domain is in the extension of ‘F’; and so
on. Note that the standard sort of interpretation rules will make it a mechanical
matter to work out the interpretation of any wff, however complex.5

(b) Next, to have a theory at all, some wffs of our theory’s language need to be

4A set is only suitable to be the extension for a function-expression if (i) for every element
a in the domain, there is some ordered pair 〈a, b〉 in the set, and (ii) the set doesn’t contain
both 〈a, b〉 and 〈a, b′〉, when b 6= b′. For in a standard first-order setting, functions are required
to be total and so associate each argument a with some unique value b – otherwise a term like
‘f(a)’ could lack a reference, and sentences containing it would lack a truth value (contrary
to the standard requirement that every first-order sentence is either true or false on a given
interpretation).

5We can, incidentally, allow a language to be freely extended by new symbols introduced
as definitional abbreviations for old expressions – so long as the defined symbols can always be
systematically eliminated again in unambiguous ways. Wffs involving definitional abbreviations
will, of course, inherit the interpretations of their unabbreviated counterparts.
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selected as axioms, i.e. as fundamental assumptions of our theory (we’ll take it
that these are sentences, closed wffs without variables dangling free).

Since the fundamental aim of the axiomatization game is to see what follows
from a bunch of axioms, we again don’t want it to be a matter for dispute whether
a given proof does or doesn’t appeal only to axioms in the chosen set. Given a
purported proof of some result, there should be an absolutely clear procedure
for settling whether the input premisses are genuinely instances of the official
axioms. In other words, for an axiomatized formal theory, we must be able to
effectively decide whether a given wff is an axiom or not.

That doesn’t, by the way, rule out axiomatized theories with infinitely many
axioms. We might want to say ‘every wff of such-and-such a form is an axiom’
(where there is an unlimited number of instances): and that’s permissible so long
as it is still effectively decidable what counts as an instance of that form.

(c) Thirdly, an axiomatized formal theory needs some deductive apparatus, i.e.
some sort of formal proof-system. Proofs are then finite arrays of wffs that con-
form to the rules of the relevant proof-system, and whose only assumptions
belong to the set of axioms (note, particular proofs – being finite – can only call
upon a finite number of axioms, even if the formal system in question has an
infinite number of axioms available).

We’ll take it that the core idea of a proof-system is familiar from elementary
logic. The differences between various equivalent systems of proof presentation
– e.g. old-style linear proof systems vs. natural deduction proofs vs. tableau (or
‘tree’) proofs – don’t matter for our present purposes. What will matter is the
strength of the system of rules we adopt. We will predominantly be working with
some version of standard first-order logic with identity: but whatever system
we adopt, it is crucial that we fix on a set of rules which enable us to settle,
without room for dispute, what counts as a well-formed proof in this system. In
other words, we require the property of being a well-formed proof from axioms
ϕ1, ϕ2, . . . , ϕn to conclusion ψ in the theory’s proof-system to be a decidable
one. The whole point of formalizing proofs is to set out the commitments of
an argument with absolute determinacy, so we certainly don’t want it to be
a disputable or subjective question whether a putative proof does or does not
conform to the rules for proof-building for the formal system in use. Hence there
should be a clear and effective procedure for deciding whether an array counts
as a well-constructed proof according to the relevant proof-system.

Be careful! The claim is only that it should be decidable whether an array of
wffs presented as a proof really is a proof. This is not to say that we can always
decide in advance whether a proof exists to be discovered. Even in familiar first-
order quantificational logic, for example, it is not in general decidable whether
there is a proof from given premisses to a certain conclusion (we’ll be proving
this undecidability result later).

To summarize then, here again are the key headlines:

11
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T is an (interpreted) axiomatized formal theory just if (a) T is
couched in a formalized language 〈L, I〉, such that it is effectively
decidable what counts as a wff of L, etc., (b) it is effectively decidable
which L-wffs are axioms of T , and (c) T uses a proof-system such
that it is effectively decidable whether an array of L-wffs counts as
a proof.

2.3 Decidability

If the idea of an axiomatized formal theory is entirely new to you, it might help
to jump forward at this point and browse through Chapter 5 where we introduce
some formal arithmetics. The rest of this present chapter continues to discuss
formalized theories more generally.

We’ve just seen that to explain the idea of a properly formalized theory in-
volves repeatedly calling on the concept of effective decidability.6 But what is
involved in saying that some question – such as whether the symbol-string σ is
a wff, or the wff ϕ is an axiom, or the array of wffs Π is a well-formed proof – is
decidable? What kind of decision procedures should we allow?

We are looking for procedures which are entirely determinate. We don’t want
there to be any room left for the exercise of imagination or intuition or fallible
human judgement. So we want procedures that follow an algorithm – i.e. follow a
series of step-by-step instructions (instructions that are pinned down in advance
of their execution, and that can be fully communicated), with each small step
clearly specified in every detail, leaving no room for doubt as to what does and
what does not count as following its instructions. Following the steps should
involve no appeal to outside oracles (or other sources of empirical information).
There is to be no resort to random methods (coin tosses). And – crucially – the
procedure of must be guaranteed to terminate and deliver a result after a finite
number of steps.

There are familiar algorithms for finding the results of a long division problem,
or for finding highest common factors, or (to take a non-arithmetical example)
for deciding whether a propositional wff is a tautology. These algorithms can be
executed in an entirely mechanical way. Dumb computers can be programmed to
do the job. Indeed it is natural to turn that last point into an informal definition:

An algorithmic procedure is a computable one, i.e. one which a suit-
ably programmed computer can execute and which is guaranteed to
deliver a result in finite time.

And then relatedly, we will say:
6When did the idea emerge that properties like being a wff or being an axiom ought to

be decidable? It was arguably already implicit in Hilbert’s conception of rigorous proof. But
Richard Zach has suggested that an early source for the explicit deployment of the idea is von
Neumann (1927).
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A function is effectively computable if there is an algorithmic proce-
dure which a suitably programmed computer could use for calculat-
ing the value of the function for a given argument.

An effectively decidable property is one for which there is an algo-
rithmic procedure which a suitably programmed computer can use
to decide whether the property obtains.

So a formalized language is one for which there are algorithms for deciding what
strings of symbols are wffs, proofs, etc.

But what kind of computer do we have in mind here when we say that an
algorithmic procedure is one that a computer can execute? We need to say
something here about the relevant kind of computer’s (a) size and speed, and (b)
architecture.

(a) A real-life computer is limited in size and speed. There will be some finite
bound on the size of the inputs it can handle; there will be a finite bound on
the size of the set of instructions it can store; there will be a finite bound on
the size of its working memory. And even if we feed in inputs and instructions
it can handle, it is of little practical use to us if the computer won’t finish doing
its computation for centuries.

Still, we are going to cheerfully abstract from all those ‘merely practical’
considerations of size and speed. In other words, we will say that a question
is effectively decidable if there is a finite set of step-by-step instructions which
a dumb computer could use which is in principle guaranteed – given memory,
working space and time enough – to deliver a decision eventually. Let’s be clear,
then: ‘effective’ here does not mean that the computation must be feasible for
us, on existing computers, in real time. So, for example, we count a numerical
property as effectively decidable in this broad, ‘in principle’, sense even if on
existing computers it might take more time to compute whether a given number
has it than we have left before the heat death of the universe, and would use
more bits of storage than there are particles in the universe. It is enough that
there’s an algorithm which works in theory and would deliver an answer in the
end, if only we had the computational resources to use it and could wait long
enough.

‘But then,’ you might well ask, ‘why on earth bother with these radically ideal-
ized notions of computability and decidability, especially in the present context?
We started from the intuitive idea of a formalized theory, one where the question
of whether a putative proof is a proof (for example) is not a disputable matter.
We made a first step towards tidying up this intuitive idea by requiring there to
be some algorithm that can settle the question, and then identified algorithms
with procedures that a computer can follow. But if we allow procedures that may
not deliver a verdict in the lifetime of the universe, what good is that? Shouldn’t
we really equate decidability not with idealized-computability-in-principle but
with some stronger notion of feasible computability?’

13
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That’s an entirely fair challenge. And modern computer science has much
to say about grades of computational complexity, i.e. about different levels of
feasibility. However, we will stick to our idealized notions of computability and
decidability. That’s because there are important problems for which we can show
that there is no algorithm at all which is guaranteed to deliver a result: so even
without any restrictions on execution time and storage, a finite computer still
couldn’t be programmed in a way that is guaranteed to solve the problem. Having
a weak ‘in principle’ notion of what is required for decidability means that such
impossibility results are exceedingly strong – for they don’t depend on mere
contingencies about what is practicable, given the current state of our software
and hardware, and given real-world limitations of time or resources. They show
that some problems are not mechanically decidable, even in principle.

(b) We’ve said that we are going to be abstracting from limitations on storage
etc. But you might suspect that this still leaves much to be settled. Doesn’t the
‘architecture’ of a computing device affect what it can compute?

The short answer is ‘no’. And intriguingly, some of the central theoretical
questions here were the subject of intensive investigation even before the first
electronic computers were built. Thus, in the 1930s, Alan Turing famously anal-
ysed what it is for a numerical function to be step-by-step computable in terms
of the capacities of a Turing machine (an idiot computer following a program
built from extremely simple steps: for explanations and examples, see Chap-
ter 15). Now, it is easy to spin variations on the details of Turing’s original
story. For example, a standard Mark I Turing machine has just a single ‘tape’
or workspace to be used for both storing and manipulating data: but we can
readily describe a Mark II machine which has (say) two tapes – one to be used
as a main workspace, and a separate one for storing data. Or we can consider a
computer with unlimited ‘Random Access Memory’ – that is to say, a computer
with an unlimited set of registers in which it can store various items of working
data ready to be retrieved into its workspace when needed.7 The details don’t
matter here and now. What does matter is that exactly the same numerical func-
tions are computable by Mark I Turing machines as are computable by Mark II
machines as are computable by register machines, etc. Equivalently, exactly the
same questions about whether some numerical property obtains are mechanically
decidable by a suitably programmed Mark I Turing machine or Mark II Turing
machine or by a register machine, etc. Indeed, all the definitions of algorithmic
computability by idealized computers that have ever been seriously proposed
turn out to be equivalent. In a slogan, algorithmic computability is architecture
independent. That’s a Big Mathematical Result – or rather, a cluster of results
– which can be conclusively proved.

This Big Mathematical Result supports the claim Turing famously makes in
his classic paper published in 1936, which we can naturally call

7The theoretical treatment of unlimited register machines is first given in (Shepherdson
and Sturgis, 1963); there is a very accessible presentation in the excellent (Cutland, 1980).
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Turing’s Thesis The numerical functions which are computable in
the intuitive sense are just those functions which are computable
by a Turing machine. Likewise, the numerical questions which are
effectively decidable in the intuitive sense are just those questions
which are decidable by a suitable Turing machine.

This claim – we’ll further explore its content in Chapter ?? – correlates an
intuitive notion with a sharp technical analysis. So you might perhaps think it is
not the sort of thing we can establish by rigorous proof. But be that as it may:
after some seventy years, no successful challenge to Turing’s Thesis has been
mounted. Which means that we can continue to talk informally about intuitively
computable numerical functions and effectively decidable properties of numbers,
and be very confident that we are indeed referring to fully determinate classes.

And what about the idea of being computable as applied to non-numerical
functions (like truth-functions) or the idea of being effectively decidable as ap-
plied to non-numerical properties (like the property of being an axiom of some
theory)? Are these ideas determinate too?

Well, think how a real-world computer can be used to evaluate a truth-function
or decide whether a wff is an axiom in a formal system. In the first case, we
code the truth-values true and false using numbers, say 0 and 1, and then do a
numerical computation. In the second case, we write a program for manipulating
strings of symbols, and again – though this time behind the scenes – these strings
get correlated with binary codes, and it is these numbers that the computer works
on. In the end, using numerical codings, the computations in both cases are done
on numbers after all.

Now generalize that thought. A natural suggestion is that any computation
dealing with Xs can be turned into an equivalent numerical computation via
the trick of using simple numerical codes for Xs. More carefully: by a trivial
algorithm, we can map Xs to numbers; we can then do the appropriate core
computation on the numbers; and then another trivial algorithm translates the
result back into a claim about X’s. Fortunately, however, we don’t need to
assess that suggestion in its full generality. For the purposes of this book, the
non-numerical computations we are interested in are cases where the Xs are wffs
from standard formal languages, or sequences of wffs, etc. And in those cases,
there’s no doubt that we can algorithmically map claims about wffs etc. to cor-
responding claims about numbers (see Sections 2.6, 10.1, 10.2). So the question
e.g. whether a certain property of wffs is a decidable one can be translated quite
uncontentiously into the question whether a corresponding numerical property
is a decidable one. Given the Turing Thesis that it is quite determinate what
counts as a decidable property of numbers, it follows that it is quite determinate
what counts as a decidable property of wffs. And similarly for the other cases
we are interested in.
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2.4 Enumerable and effectively enumerable sets

Suppose Σ is some set of items: its members might be numbers, wffs, proofs, sets
or whatever. Then we say informally that Σ is enumerable if its members can –
at least in principle – be listed off in some order, with every member appearing
on the list; repetitions are allowed, and the list may be infinite. (It is tidiest to
think of the empty set as the limiting case of an enumerable set: it is enumerated
by the empty list!)

We can make that informal definition more rigorous in various equivalent
ways. We’ll give just one – and to do that, let’s introduce some standard jargon
and notation that we’ll need later anyway:

i. A function, recall, maps arguments in some domain to unique values. Sup-
pose the function f is defined for all arguments in the set ∆; and suppose
that the values of f all belong to the set Γ. Then we write

f : ∆ → Γ

and say that f is a (total) function from ∆ into Γ.

ii. A function f : ∆ → Γ is surjective if for every y ∈ Γ there is some x ∈ ∆
such that f(x) = y. (Or, if you prefer that in English, you can say that
such a function is ‘onto’, since it maps ∆ onto the whole of Γ.)

iii. We use ‘N’ to denote the set of all natural numbers.

Then we can say:

The set Σ is enumerable if it is either empty or there is a surjective
function f : N → Σ. (We can say that such a function enumerates Σ.)

To see that this comes to the same as our original informal definition, just note
the following two points. (a) Suppose we have a list of all the members of Σ in
some order, the zero-th, first, second, . . . (perhaps an infinite list, perhaps with
repetitions). Then take the function f defined as follows f(n) = n-th member
of the list, if the list goes on that far, or f(n) = f(0) otherwise. Then f is a
surjection f : N → Σ. (b) Suppose conversely that f is surjection f : N → Σ.
Then, if we successively evaluate f for the arguments 0, 1, 2, . . . , we get a list
of values f(0), f(1), f(2) . . . which by hypothesis contains all the elements of Σ,
with repetitions allowed.

We’ll limber up by noting a quick initial result: If two sets are enumerable, so
is the result of combining their members into a single set. (Or if you prefer that
in symbols: if Σ1 and Σ2 are enumerable so is Σ1 ∪ Σ2.)

Proof Suppose there is a list of members of Σ1 and a list of members of Σ2. Then
we can interleave these lists by taking members of the two sets alternately, and
the result will be a list of the union of those two sets. (More formally, suppose f1
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enumerates Σ1 and f2 enumerates Σ2. Put g(2n) = f1(n) and g(2n+1) = f2(n);
then g enumerates Σ1 ∪ Σ2.) �

That was easy and trivial. Here’s another result – famously proved by Georg
Cantor – which is also easy, but certainly not trivial:8

Theorem 1 There are infinite sets which are not enumerable.

Proof Consider the set B of infinite binary strings (i.e. the set of unending
strings like ‘0110001010011 . . .’). There’s obviously an infinite number of them.
Suppose, for reductio, that we could list off these strings in some order

0 0110001010011 . . .
1 1100101001101 . . .
2 1100101100001 . . .
3 0001111010101 . . .
4 1101111011101 . . .
. . . . . .

Read off down the diagonal, taking the n-th digit of the n-th string (in our
example, this produces 01011 . . .). Now flip each digit, swapping 0s and 1s (in
our example, yielding 10100 . . .). By construction, this ‘flipped diagonal’ string
differs from the initial string on our original list in the first place, differs from the
next string in the second place, and so on. So our diagonal construction yields a
string that isn’t on the list, contradicting the assumption that our list contained
all the binary strings. So B is infinite, but not enumerable. �

It’s worth adding three quick comments.

a. An infinite binary string b0b1b2 . . . can be thought of as characterizing a
corresponding set of numbers Σ, where n ∈ Σ just if bn = 0. So our theorem
is equivalent to the result that the set of sets of natural numbers can’t be
enumerated.

b. An infinite binary string b0b1b2 . . . can also be thought of as characteriz-
ing a corresponding function f , i.e. the function which maps each natural
number to one of the numbers {0, 1}, where f(n) = bn. So our theorem
is also equivalent to the result that the set of functions from the natural
numbers to {0, 1} can’t be enumerated.

c. Note that non-enumerable sets have to be a lot bigger than enumerable
ones. Suppose Σ is a non-enumerable set; suppose ∆ ⊂ Σ is some enu-
merable subset of Σ; and let Γ = Σ − ∆ be the set you get by removing

8Cantor first established this key result in his (1874), using, in effect, the Bolzano-
Weierstrass theorem. The neater ‘diagonal argument’ we give here first appears in his (1891).
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the members of ∆ from Σ. Then this difference set must also be non-
emumerably infinite – for otherwise, if it were enumerable, Σ = ∆ ∪ Γ
would be enumerable after all (by the result we proved above).

Now, note that saying that a set is enumerable in our sense9 is not to say
that we can produce a ‘nice’ algorithmically computable function that does the
enumeration, only that there is some function or other that does the job. So we
need another definition:

The set Σ is effectively enumerable if it is either empty or there is
an effectively computable function which enumerates it.

In other words, a set is effectively enumerable if an (idealized) computer could
be programmed to start producing a numbered list of its members such that
any member will be eventually mentioned – the list may have no end, and may
contain repetitions, so long as every item in the set is correlated with some
natural number.

A finite set of finitely specifiable objects can always be effectively enumerated:
any listing will do, and – since it is finite – it could be stored in an idealized
computer and spat out on demand. And for a simple example of an effectively
enumerable infinite set, imagine an algorithm which generates the natural num-
bers one at a time in order, ignores those which fail the well-known (mechanical)
test for being prime, and lists the rest: this procedure generates a never-ending
list on which every prime will eventually appear. So the primes are effectively
enumerable. Later we will meet some examples of infinite sets of numbers which
are enumerable but which can’t be effectively enumerated.

2.5 More definitions

We now add four definitions more specifically to do with theories:

i. Given a proof of the sentence (i.e. closed wff) ϕ from the axioms of the
theory T using the background logical proof system, we will say that ϕ is
a theorem of the theory. And using the standard abbreviatory symbol, we
write: T ` ϕ.

ii. A theory T is decidable if the property of being a theorem of T is an
effectively decidable property – i.e. if there is a mechanical procedure for
determining whether T ` ϕ for any given sentence ϕ of the language of
theory T .

iii. Assuming theory T has a normal negation connective ‘¬’, T is inconsistent
if it proves some pair of wffs of the form ϕ, ¬ϕ.

9The qualification ‘in our sense’ is important as terminology isn’t stable: for some writers
use ‘enumerable’ to mean effectively enumerable, and use e.g. ‘denumerable’ for our wider
notion.
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iv. A theory T is negation complete if, for any sentence ϕ of the language of
the theory, either ϕ or ¬ϕ is a theorem (i.e. either T ` ϕ or T ` ¬ϕ).

Here’s a quick and very trite example. Consider a trivial pair of theories, T1

and T2, whose shared language consists of the propositional atoms ‘p’, ‘q’, ‘r’ and
all the wffs that can be constructed out of them using the familiar propositional
connectives, whose shared underlying logic is a standard propositional natural
deduction system, and whose sets of axioms are respectively {‘¬p’} and {‘p’, ‘q’,
‘¬r’}. Given appropriate interpretations for the atoms, T1 and T2 are then both
axiomatized formal theories. For it is mechanically decidable what is a wff of the
theory, and whether a purported proof is indeed a proof from the given axioms.
Both theories are consistent. Both theories are decidable; just use the truth-table
test to determine whether a candidate theorem really follows from the axioms.
Finally, T1 is negation incomplete, since the sole axiom doesn’t decide whether
‘q’ or ‘¬q’ holds, for example. But T2 is negation complete (any wff constructed
from the three atoms using the truth-functional connectives has its truth-value
decided).

This mini-example illustrates a crucial terminological point. You will be fa-
miliar with the idea of a deductive system being ‘(semantically) complete’ or
‘complete with respect to its standard semantics’. For example, a natural de-
duction system for propositional logic is said to be semantically complete when
every inference which is semantically valid (i.e. truth-table valid) can be shown
to be valid by a proof in the deductive system. But a theory’s having a (se-
mantically) complete logic in this sense is one thing, being a (negation) complete
theory is something else entirely.10 For example, by hypothesis T1 has a (seman-
tically) complete truth-functional logic, but is not a (negation) complete theory.
Later we will meet e.g. a formal arithmetic which we label ‘PA’. This theory
uses a standard quantificational deductive logic, which again is a (semantically)
complete logic: but we show that Gödel’s First Theorem applies so PA is not a
(negation) complete theory. Do watch out for this double use of the term ‘com-
plete’, which is unfortunately now entirely entrenched: you just have to learn to
live with it.11

10Putting it symbolically may help. To say that a logic is complete is to say that,

For any set of sentences Σ, and any ϕ, if Σ � ϕ then Σ ` ϕ
where ‘�’ signifies the relation of semantic consequence, and ‘`’ signifies the relation of formal
deducibility. While to say that a theory T with the set of axioms Σ is complete is to say that

For any sentence ϕ, either Σ ` ϕ or Σ ` ¬ϕ

11As it happens, the first proof of the semantic completeness of a proof-system for quan-
tificational logic was also due to Gödel, and indeed the result is often referred to as ‘Gödel’s
Completeness Theorem’ (Gödel, 1929). This is evidently not to be confused with his (First)
Incompleteness Theorem, which concerns the negation incompleteness of certain theories of
arithmetic.
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2. The Idea of an Axiomatized Formal Theory

2.6 Three simple results

Deploying our notion of effective enumerability, we can now state and prove
three elementary results. Suppose T is an axiomatized formal theory. Then:

1. The set of wffs of T can be effectively enumerated.

2. The set of proofs constructible in T can be effectively enumerated.

3. The set of theorems of T can be effectively enumerated.

Proof sketch for (1) By hypothesis, T has a finite basic alphabet; and we can
give an algorithm for mechanically enumerating all the possible finite strings of
symbols formed from a finite alphabet. For example, start by listing all the strings
of length 1, followed by all those of length 2 in some ‘alphabetical order’, followed
by those of length 3 and so on. By the definition of an axiomatized theory, there
is a mechanical procedure for deciding which of these symbol strings form wffs.
So, putting these procedures together, as we ploddingly generate the possible
strings we can throw away all the non-wffs that turn up, leaving us with an
effective enumeration of all the wffs. �

Proof sketch for (2) Assume that T -proofs are just linear sequences of wffs.
Now, just as we can enumerate all the possible wffs, we can enumerate all the
possible sequences of wffs in some ‘alphabetical order’. One brute-force way is
again to start enumerating all possible strings of symbols, and throw away any
that isn’t a sequence of wffs. By the definition of an axiomatized theory, there
is then an algorithmic recipe for deciding which of these sequences of wffs are
well-formed proofs in the theory (since for each wff it is decidable whether it
is either an axiom or follows from previous wffs in the list by allowed inference
moves). So as we go along we can mechanically select out the proof sequences
from the other sequences of wffs, to give us an effective enumeration of all the
possible proofs. (If T -proofs are more complex, non-linear, arrays of wffs – as in
tree systems – then the construction of an effective enumeration of the arrays
needs to be correspondingly more complex: but the core proof-idea remains the
same.) �

Proof sketch for (3) Start enumerating proofs. But this time, just record their
conclusions (when those are sentences, i.e. closed wffs). This mechanically gen-
erated list now contains all and only the theorems of the theory. �

Two comments about these proof sketches. (a) Our talk about listing strings
of symbols in ‘alphabetical order’ can be cashed out in various ways. In fact,
any systematic mechanical ordering will do here. Here’s one simple device (it
prefigures the use of ‘Gödel numbering’, which we’ll encounter later). Suppose,
to keep things easy, the theory has a basic alphabet of less than ten symbols
(this is no real restriction). With each of the basic symbols of the theory we
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correlate a different digit from ‘1, 2, . . . , 9’; we will reserve ‘0’ to indicate some
punctuation mark, say a comma. So, corresponding to each finite sequence of
symbols there will be a sequence of digits, which we can read as expressing a
number. For example: suppose we set up a theory using just the symbols

¬, →, ∀, (, ), F, x, c, ′

and we associate these symbols with the digits ‘1’ to ‘9’ in order. Then e.g. the
wff

∀x(Fx → ¬∀x′¬F′′cx′)

(where ‘F′′’ is a two-place predicate) would be associated with the number

374672137916998795

We can now list off the wffs constructible from this vocabulary as follows. We
examine each number in turn, from 1 upwards. It will be decidable whether the
standard base-ten numeral for that number codes a sequence of the symbols
which forms a wff, since we are dealing with an formal theory. If the number
does correspond to a wff ϕ, we enter ϕ onto our list of wffs. In this way, we
mechanically produce a list of wffs – which obviously must contain all wffs since
to any wff corresponds some numeral by our coding. Similarly, taking each num-
ber in turn, it will be decidable whether its numeral corresponds to a series of
symbols which forms a sequence of wffs separated by commas (remember, we
reserved ‘0’ to encode commas).

(b) More importantly, we should note that to say that the theorems of a
formal axiomatized theory can be mechanically enumerated is not to say that
the theory is decidable. It is one thing to have a mechanical method which is
bound to generate every theorem eventually; it is quite another thing to have a
mechanical method which, given an arbitrary wff ϕ, can determine whether it
will ever turn up on the list of theorems.

2.7 Negation complete theories are decidable

Despite that last point, however, we do have the following important result in
the special case of negation-complete theories:12

Theorem 2 A consistent, axiomatized, negation-complete formal the-
ory is decidable.

12A version of this result using a formal notion of decidability is proved by Janiczak (1950),
though it is difficult to believe that our informal version wasn’t earlier folklore. By the way,
it is trivial that an inconsistent axiomatized theory is decidable. For if T is inconsistent, it
entails every wff of T ’s language by the classical principle ex contradictione quodlibet. So all
we have to do to determine whether ϕ is a T -theorem is to decide whether ϕ is a wff of T ’s
language, which by hypothesis you can if T is an axiomatized formal theory.
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2. The Idea of an Axiomatized Formal Theory

Proof Let ϕ be any sentence (i.e. closed wff) of T . Set going the algorithm for
effectively enumerating the theorems of T . Since, by hypothesis, T is negation-
complete, either ϕ is a theorem of T or ¬ϕ is. So it is guaranteed that – within
a finite number of steps – either ϕ or ¬ϕ will be produced in our enumeration.
If ϕ is produced, this means that it is a theorem. If on the other hand ¬ϕ is
produced, this means that ϕ is not a theorem, for the theory is assumed to
be consistent. Hence, in this case, there is a dumbly mechanical procedure for
deciding whether ϕ is a theorem. �

We are, of course, relying here on our ultra-generous notion of decidability-in-
principle we explained above (in Section 2.3). We might have to twiddle our
thumbs for an immense time before one of ϕ or ¬ϕ to turn up. Still, our ‘wait
and see’ method is guaranteed in this case to produce a result eventually, in an
entirely mechanical way – so this counts as an effectively computable procedure
in our official generous sense.
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The previous chapter outlined the general idea of an axiomatized formal the-
ory. This chapter introduces some key concepts we need in describing formal
arithmetics. But we need to start with some quick . . .

3.1 Remarks on notation

Gödel’s First Incompleteness Theorem is about the limitations of axiomatized
formal theories of arithmetic: if a theory T satisfies some fairly minimal con-
straints, we can find arithmetical truths which T can’t prove. Evidently, in dis-
cussing Gödel’s result, it will be very important to be clear about when we are
working ‘inside’ a formal theory T and when we are talking informally ‘outside’
the theory (e.g. in order to establish things that T can’t prove).

However, (a) we do want our informal talk to be compact and perspicuous.
Hence we will tend to borrow the standard logical notation from our formal
languages for use in augmenting mathematical English (so, for example, we will
write ‘∀x∀y(x + y = y + x)’ as a compact way of expressing the ‘ordinary’
arithmetic truth that the order in which you sum numbers doesn’t matter).

Equally, (b) we will want our formal wffs to be readable. Hence we will tend
to use notation in building our formal languages that is already familiar from
informal mathematics (so, for example, if we want to express the addition func-
tion in a formal arithmetic, we will use the usual sign ‘+’, rather than some
unhelpfully anonymous two-place function symbol like ‘f23 ’).

This two-way borrowing of notation will inevitably make expressions of in-
formal arithmetic and their formal counterparts look very similar. And while
context alone should no doubt make it pretty clear which is which, it is best
to have a way of explicitly marking the distinction. To that end, we will adopt
the convention of using a sans-serif font for expressions in our formal languages.
Thus compare . . .

∀x∀y(x+ y = y + x) ∀x∀y(x + y = y + x)

∃y y = S0 ∃y y = S0

1 + 2 = 3 1 + 2 = 3

The expressions on the left will belong to our mathematicians’/logicians’ aug-
mented English (borrowing ‘S’ to mean ‘the successor of’): the expressions on
the right are wffs – or abbreviations for wffs – of one of our formal languages,
with the symbols chosen to be reminiscent of their intended interpretations.
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In talking about formal theories, we need to generalize about formal expres-
sions, as when we define negation completeness by saying that for any wff ϕ,
the theory T implies either ϕ or its negation ¬ϕ. We’ll mostly use Greek let-
ters for this kind of ‘metalinguistic’ role: note then that these symbols belong
to logicians’ augmented English: Greek letters will never belong to our formal
languages themselves.

So what is going on when we say that the negation of ϕ is ¬ϕ, when we
are apparently mixing a symbol from augmented English with a symbol from a
formal language? Answer: there are hidden quotation marks, and ‘¬ϕ’ is to be
read (of course) as meaning

the expression that consists of the negation sign ‘¬’ followed by ϕ.

Sometimes, when being really pernickety, logicians use so-called Quine-quotes or
corner-quotes when writing mixed expressions containing both formal and met-
alinguistic symbols (thus: p¬ϕq). But this is excessive: no one will get confused
by our more casual (and entirely standard) practice. In any case, we’ll need to
use corner-quotes later for a different purpose.

We’ll be very relaxed about ordinary quotation marks too. We’ve so far been
punctilious about using them when mentioning, as opposed to using, wffs and
other formal expressions. But from now on, we will normally drop them other
than around single symbols. Again, no confusion should ensue.

Finally, we will also be pretty relaxed about dropping unnecessary brackets
in formal expressions (and we’ll change the shape of pairs of brackets, and oc-
casionally insert redundant ones, when that aids readability).

3.2 LA and other languages

There is no single language which could reasonably be called the language for
formal arithmetic: rather, there is quite a variety of different languages, apt for
framing theories of different strengths.

However, the core theories of arithmetic that we’ll be discussing first are
mostly framed in the language LA, i.e. the interpreted language 〈LA, IA〉, which
is a formalized version of what we called ‘the language of basic arithmetic’ in
Section 1.1. So here let’s begin by characterizing LA:

1. Syntax: the non-logical vocabulary of LA is {0,S,+,×}, where

a) ‘0’ is a constant;

b) ‘S’ is a one-place function-expression1;

c) ‘+’ and ‘×’ are two-place function-expressions.

1In using ‘S’ rather than ‘s’, we depart from the normal logical and mathematical practice
of using upper-case letters for predicates and lower-case letters for functions: but this particular
departure is sanctioned by common usage.
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The logical vocabulary of LA involves at least a standard selection of con-
nectives, a supply of variables, the usual (first-order) quantifiers, and the
identity symbol. The details are not critical – though, for convenience, we’ll
take it that in this and other languages with variables, the variables come
in a standard ordered list starting x, y, z, u, v, . . .. If we want to use a nat-
ural deduction system where inferences can deploy parameters (‘arbitrary
names’), then we’ll need a stock of those too, e.g. a, b, c, . . .

2. Semantics: the interpretation IA assigns the set of natural numbers to
be the domain of quantification. And it gives items of LA’s non-logical
vocabulary their natural readings, so

a) ‘0’ denotes zero.

b) ‘S’ expresses the successor function (which maps one number to the
next one); so the extension of ‘S’ is the set of all pairs of numbers
〈n, n+ 1〉.

c) ‘+’ and ‘×’ are similarly given the natural interpretations.

Finally, the logical apparatus of LA receives the usual semantic treatment.

Variants on LA which we’ll meet later include more restricted languages
(which e.g. lack a multiplication sign or even lack quantificational devices) and
richer languages (with additional non-logical vocabulary and/or additional log-
ical apparatus). Details will emerge as we go along.

Almost all the variants we’ll consider share with LA the following two features:
they (a) include a constant ‘0’ which is to be interpreted as denoting zero, and
they (b) include a function-expression ‘S’ for the successor function which maps
each number to the next one. Now, in any arithmetical language with these two
features, we can form the referring expressions 0, S0, SS0, SSS0, . . . to pick out
individual natural numbers. We’ll call these expressions the standard numerals.
And you might very naturally expect that any theory of arithmetic will involve
a language with (something equivalent to) standard numerals in this sense.

However, on reflection, this isn’t obviously the case. For consider the following
line of thought. As is familiar, we can introduce numerical quantifiers as abbre-
viations for expressions formed with the usual quantifiers and identity. Thus, for
example, we can say that there are exactly two F s using the wff

∃2xFx =def ∃u∃v{(Fu ∧ Fv) ∧ u 6= v ∧ ∀w(Fw → (w = u ∨ w = v))}

Similarly we can define ∃3xGx which says that there are exactly three Gs, and
so on. Then the wff

{∃2xFx ∧ ∃3xGx ∧ ∀x¬(Fx ∧ Gx)} → ∃5x(Fx ∨ Gx)

says that if there are two F s and three Gs and no overlap, then there are five
things which are F -or-G – and this is a theorem of pure first-order logic.
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So here, at any rate, we find something that looks pretty arithmetical and
yet the numerals are now plainly not operating as name-like expressions. To
explain the significance of this use of numerals as quantifier-subscripts we do
not need to find mathematical entities for them to denote: we just give the rules
for unpacking the shorthand expressions like ‘∃2xFx’. And the next question to
raise is: can we regard arithmetical statements such as ‘2 + 3 = 5’ as in effect
really informal shorthand for wffs like the one just displayed, where the numerals
operate as quantifier-subscripts and not as referring expressions?

We are going to have to put this question on hold for a long time. But it is
worth emphasizing that it isn’t obvious that a systematic theory of arithmetic
must involve a standard, number-denoting, language. Still, having made this
point, we’ll just note again that the theories of arithmetic that we’ll be discussing
for the present do involve languages like LA which have standard numerals that
operate as denoting expressions.2

3.3 Expressing numerical properties and relations

A competent formal theory of arithmetic should be able to talk about a lot more
than just the successor function, addition and multiplication. But ‘talk about’
how? Suppose that theory T has a arithmetical language L which like LA has

2The issue whether we need to regiment arithmetic using a language with standard nu-
merals is evidently connected to the metaphysical issue whether we need to regard numbers
as in some sense genuine objects, there to be referred to by the numerals, and hence available
to populate a domain of quantification. (The idea – of course – is not that numbers are phys-
ical objects, things that we can kick around or causally interact with in other ways: they are
abstract objects.) But what is the relationship between these issues?

You might naturally think that we need first to get a handle on the metaphysical question
whether numbers exist; and only then – once we’ve settled that – are we in a position to
judge whether we can make literally true claims using a language with standard numerals
which purport to refer to numbers (if numbers don’t really exist, then presumably we can’t).
But another view – perhaps Frege’s – says that the ‘natural’ line gets things exactly upside
down. Claims like ‘two plus three is five’, ‘there is a prime number less than five’, ‘for every
prime number, there is a greater one’ are straightforwardly correct by everyday arithmetical
criteria (and what other criteria should we use?). And in fact we can’t systematically translate
away number-denoting terms by using numerals-as-quantifier-subscripts. Rather, ‘there is’ and
‘every’ in such claims have all the logical characteristics of common-or-garden quantifiers (obey
all the usual logical rules); and the term ‘three’ interacts with the quantifiers as we’d expect
from a referring expression (so from ‘three is prime and less than five’ we can infer ‘there is
a prime number less than five’; and from ‘for every prime number, there is a greater one’ and
‘three is prime’ we can infer ‘there is a prime greater than three). Which on the Fregean view
settles the matter; that’s just what it takes for a term like ‘three’ to be a genuine denoting
expression referring to an object.

We certainly can’t further investigate here the dispute between the ‘metaphysics first’ view
and the rival ‘logical analysis first’ position. And fortunately, later discussions in this book don’t
hang on settling this rather murky issue. Philosophical enthusiasts can pursue one strand of
the debate through e.g. (Dummett, 1973, ch. 14), (Wright, 1983, chs 1, 2), (Hale, 1987), (Field,
1989, particularly chs 1, 5), (Dummett, 1991, chs 15–18), (Balaguer, 1998, ch. 5), (Hale and
Wright, 2001, chs 6–9).
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standard numerals (given their natural interpretations, of course): and let’s start
by examining how such a theory can express various monadic properties.

First, four notational conventions:

1. We will henceforth use ‘1’ as an abbreviation for ‘S0’, ‘2’ as an abbreviation
for ‘SS0’, and so on.

2. And since we need to be able to generalize, we want some generic way of
representing the standard numeral ‘SS . . .S0’ with n occurrences of ‘S’: we
will extend the overlining convention and write n.3

3. We’ll allow ourselves to write e.g. ‘(1× 2)’ rather than ‘×(1, 2)’.

4. We’ll also abbreviate a wff of the form ¬α = β by the corresponding wff
α 6= β, and thus write e.g. 0 6= 1.

Consider, for a first example, formal L-wffs of the form

(a) ψ(n) =def ∃v(2× v = n)

So, for example, for n = 4, ‘ψ(n)’ unpacks into ‘∃v(SS0× v = SSSS0)’. It is
obvious that

if n is even, then ψ(n) is true,
if n isn’t even, then ¬ψ(n) is true,

where we mean, of course, true on the arithmetic interpretation built into L.
Relatedly, then, consider the corresponding open wff

(a′) ψ(x) =def ∃v(2× v = x)

This wff is satisfied by the number n, i.e. is true of n, just when ψ(n) is true,
i.e. just when n is even. Or to put it another way, the open wff ψ(x) has the set
of even numbers as its extension. Which means that our open wff expresses the
property even, at least in the sense that the wff has the right extension.

Another example: n has the property of being prime if it is greater than one,
and its only factors are one and itself. Or equivalently, n is prime just in case it
is not 1, and of any two numbers that multiply to give n, one of them must be
1. So consider the wff

(b) ψ′(n) =def (n 6= 1 ∧ ∀u∀v(u× v = n = → (u = 1 ∨ v = 1)))

This holds just in case n is prime, i.e.

if n is prime, then ψ′(n) is true,
if n isn’t prime, then ¬ψ′(n) is true.

3It might be said that there is an element of notational overkill here: we are in effect using
overlining to indicate that we are using an abbreviation convention inside our formal language,
so we don’t also need to use the sans serif font to mark a formal expression. But ours is a fault
on the good side, given the importance of being completely clear when we are working with
formal expressions and when we are talking informally.
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Relatedly, the corresponding open wff

(b′) ψ′(x) =def (x 6= 1 ∧ ∀u∀v(u× v = x → (u = 1 ∨ v = 1)))

is satisfied by exactly the prime numbers. Hence ψ′(x) expresses the property
prime, again in the sense of getting the right extension. (For more on properties
and their extensions, see Section 7.1.)

In this sort of way, any formal theory with limited basic resources can come
to express a whole variety of arithmetical properties by means of complex open
wffs with the right extensions. And our examples motivate the following official
definition:

A property P is expressed by the open wff ϕ(x) in an (interpreted)
arithmetical language L just if, for every n,

if n has the property P , then ϕ(n) is true,
if n does not have the property P , then ¬ϕ(n) is true.

‘True’ of course continues to mean true on the given interpretation built into L.
We can now extend our definition in the obvious way to cover relations. Note,

for example, that in a theory with language like LA

(c) ψ(m, n) =def ∃v(Sv + m = n)

is true just in case m < n. And so it is natural to say that the corresponding
open wff

(c′) ψ(x, y) =def ∃v(Sv + x = y)

expresses the relation less than, in the sense of getting the extension right. Gen-
eralizing again:

A two-place relation R is expressed by the open wff ϕ(x, y) in an
(interpreted) arithmetical language L just if, for any m,n,

if m has the relation R to n, then ϕ(m, n) is true,
if m does not have the relation R to n, then ¬ϕ(m, n) is true.

Likewise for many-place relations.

3.4 Case-by-case capturing

Of course, we don’t merely want various properties of numbers to be expressible
in the language of a formal theory of arithmetic in the sense just defined. We
also want to be able to use the theory to prove facts about which numbers have
which properties.

Now, it is a banal observation that some arithmetical facts are a lot easier to
establish than others. In particular, to establish facts about individual numbers
typically requires much less sophisticated proof-techniques than proving general
truths about all numbers. To take a dramatic example, there’s a school-room
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mechanical routine for testing any given even number to see whether it is the
sum of two primes. But while, case by case, every even number that has ever
been checked passes the test, no one knows how to prove Goldbach’s conjecture
– i.e. knows how to prove ‘in one fell swoop’ that every even number greater
than two is the sum of two primes.

Let’s focus then on the relatively unambitious task of proving that particular
numbers have or lack a certain property on a case-by-case basis. This level of
task is reflected in the following definition concerning formal provability:

A property P is case-by-case captured by the open wff ϕ(x) of the
arithmetical theory T just if, for any n,

if n has the property P , then T ` ϕ(n),
if n does not have the property P , then T ` ¬ϕ(n).

For example, in theories of arithmetic T with very modest axioms, the open
wff ψ(x) =def ∃v(2× v = x) not only expresses but case-by-case captures the
property even. In other words, for each even n, T can prove ψ(n), and for each odd
n, T can prove ¬ψ(n).4 Likewise, in the same theories, the open wff ψ′(x) from
the previous section not only expresses but case-by-case captures the property
prime.

As you would expect, extending the notion of ‘case-by-case capturing’ to the
case of relations is straightforward:

A two-place relation R is case-by-case captured by the open wff
ϕ(x, y) of the arithmetical theory T just if, for any m,n,

if m has the relation R to n, then T ` ϕ(m, n)
if m does not have the relation R to n, then T ` ¬ϕ(m, n).

Likewise for many-place relations.5

Now, suppose T is a sound theory of arithmetic – i.e. one whose axioms are
true on the given arithmetic interpretation of its language and whose logic is
truth-preserving. Then T ’s theorems are all true. Hence if T ` ϕ(n), then ϕ(n)
is true. And if T ` ¬ϕ(n), then ¬ϕ(n) is true. Which shows that if ϕ(x) captures
P in the sound theory T then, a fortiori, T ’s language expresses P .

4We in fact show this in Section 5.3.
5This note just co-ordinates our definition with another found in the literature. Assume

T is a consistent theory of arithmetic, and P is case-by-case captured by ϕ(x). Then by
definition, if n does not have property P , then T ` ¬ϕ(n); so by consistency, if n does not
have property P , then not-(T ` ϕ(n)); so contraposing, if T ` ϕ(n), then n has property P .
Similarly, if T ` ¬ϕ(n), then n doesn’t have property P . Hence, assuming T ’s consistency, we
could equally well have adopted the following alternative definition (which strengthens two
‘if’s to ‘if and only if’): A property P is case-by-case captured by the open wff ϕ(x) of theory
T just if, for any n,

n has the property P if and only if T ` ϕ(n),

n does not have the property P if and only if T ` ¬ϕ(n).
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3.5 A note on our jargon

A little later, we’ll need the notion of a formal theory’s capturing numerical
functions (as well as properties and relations). But there is a slight complication
in that case, so let’s not delay over it here; instead we’ll immediately press on
in the next chapter to apply the concepts that we’ve already defined.

However, I should just pause to note frankly that my talk of an open wff’s
‘case-by-case capturing’ a numerical property is a bit deviant. It is more usually
said that P is ‘numeralwise expressed’ or that it is ‘strongly represented’ by a
ϕ(x) satisfying our conditions for capture. But I’m unapologetic: the usual jargon
is in some danger of engendering confusion.

Whatever your favoured jargon, however, the key thing is to be absolutely clear
about the distinction we need to mark – so let’s highlight it again. Whether a
property P is expressible in a theory just depends on the richness of its language.
Whether a property P can be case-by-case captured by that theory depends
on the richness of its proof-system. It will turn out that for any respectable
theory of arithmetic T there are numerical properties that are expressible but
not capturable in T (see e.g. Section 12.6).
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Starting in Chapter 5, we’ll be examining some formal theories of arithmetic
‘from the bottom up’, in the sense of first setting down the axioms of the theories
and then exploring what the various theories are capable of proving. In this
present chapter, however, we proceed the other way about. We introduce the
concept of a sufficiently strong theory of arithmetic, which is a theory that
by definition can prove what we’d like any moderately competent theory of
arithmetic to be able to prove about decidable properties of numbers. We then
establish some easy but quite deep results about such theories.

4.1 The idea of a ‘sufficiently strong’ theory

Suppose that P is any decidable property of numbers, i.e. one for which we have
a mechanical algorithm for deciding, given a natural number n, whether n has
property P or not (see Section 2.3).

Now, when we construct a formal theory of the arithmetic of the natural
numbers, we will surely want deductions inside our theory to be able to track
any mechanical calculation that we can already perform informally. After all,
we don’t want going formal to diminish our ability to determine whether n has
property P . Formalization aims at regimenting what we can already do: it isn’t
supposed to hobble our efforts. So – while we might have some passing interest
in very limited theories – we will mainly want to aim for a formal theory T which
(a) is able to frame some open wff ϕ(x) which expresses the decidable property
P , and (b) is such that if n has property P , T ` ϕ(n), and if n does not have
property P , T ` ¬ϕ(n).

Let’s say, for short, that a theory T captures a numerical property P if there
is an open wff of the theory which case-by-case captures P (in the sense of
Section 3.4). Then the suggestion is that, if P is a decidable property of numbers,
we ideally want a competent theory of arithmetic T to be able to capture P .
And this thought motivates the following definition:

A formal theory of arithmetic T is sufficiently strong if it case-by-case
captures all decidable numerical properties.

The presumption is that it is a reasonable and desirable condition on a formal
theory of the arithmetic of the natural numbers that it be sufficiently strong.
Much later, when we’ve done some closer analysis of the idea of decidability, we’ll
be in a position to specify some theories that do indeed meet this condition,
and thereby show that the condition of being ‘sufficiently strong’ is actually
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easily met. This chapter, however, just supposes that there are such theories
and derives some consequences.

(It is in fact more usual to define being ‘sufficiently strong’ as a matter of
capturing not only all decidable properties but also all decidable relations and
all computable functions too. But since we haven’t yet defined what it is to
capture a function, and since the arguments of this chapter in any case don’t
depend on that notion, we might as well stick with our weaker definition of
sufficient strength.)

4.2 An undecidability theorem

A trivial way of a theory T ’s being sufficiently strong (i.e. proving lots of wffs
about properties of individual numbers) is by being inconsistent (i.e. proving
every wff about individual numbers). It goes without saying, however, that we
are interested in consistent theories.

We also like to get decidable theories when we can, i.e. theories for which
there is an algorithm for determining whether a given wff is a theorem (see
Section 2.5). But, sadly, we have the following key result:1

Theorem 3 No consistent, sufficiently strong, axiomatized formal
theory of arithmetic is decidable.

Proof We suppose T is a consistent and sufficiently strong axiomatized theory
yet also decidable, and derive a contradiction.

By Result 1 of Section 2.6, we know that the set of wffs of T can be effectively
enumerated. It is a mechanical business to select from this enumeration the open
wffs with (say) ‘x’ as the sole free variable, and discard the rest. This gives us
an effective enumeration of the wffs of T with this one free variable,

ϕ0(x), ϕ1(x), ϕ2(x), . . .

And now let’s fix on the following definition:

n has the property D if and only if wff T ` ¬ϕn(n)

where n is the standard numeral in T which denotes n. Note that the key con-
struction here involves linking the subscripted index with the numeral substi-
tuted for the free variable in ¬ϕn(x): so this is a cousin of the ‘diagonal’ con-
struction which we encountered in Section 2.4 (see the comment on the proof of
Theorem 1).

We next show that the supposition that T is a decidable theory entails that
the ‘diagonal’ property D is an effectively decidable property of numbers. For

1The undecidability of arithmetic was first proved in (Church, 1936). The direct proof
given here can be extracted from Theorem 1 of (Tarski et al., 1953, pp. 46–49), but the first
published version of our informal version which I know is (Hunter, 1971, pp. 224–225), though
the argument was certainly earlier folklore.
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given any number n, it will be a mechanical matter to enumerate the open wffs
with ‘x’ as the sole free variable until the n-th one, ϕn(x), is produced. Then it is
a mechanical matter to form the numeral n, substitute it for the free variable in
ϕn(x), and prefix a negation sign. Now we just apply the supposed mechanical
decision procedure for T to decide whether the resulting wff ¬ϕn(n) is a theorem.
Hence there is an algorithmic way of deciding whether n has the property D.

Since, by hypothesis, the theory T is sufficiently strong, it is can capture all
decidable numerical properties: so it follows that, in particular, D is capturable,
by some wff ϕ(x). This wff must of course occur somewhere in our enumeration
of all such wffs. Let’s suppose the d-th wff in the enumeration does the trick.
That is to say, property D is case-by-case captured by ϕd(x).

It is now entirely routine to get out a contradiction. For, by definition, to say
that ϕd(x) captures D means that for any n,

if n has the property D, T ` ϕd(n),
if n doesn’t have the property D, T ` ¬ϕd(n).

So taking in particular the case n = d, we have

(i) if d has the property D, T ` ϕd(d),
(ii) if d doesn’t have the property D, T ` ¬ϕd(d).

But now note that our initial definition of the property D implies in particular:

(iii) d has the property D if and only if T ` ¬ϕd(d).

From (ii) and (iii), it follows that whether d has property D or not, the wff
¬ϕd(d) is a theorem either way. So by (iii) again, d does have property D, hence
by (i) the wff ϕd(d) must be a theorem too. So a wff and its negation are both
theorems of T . Therefore T is inconsistent, contradicting our initial assumption
that T is consistent.

In sum, the supposition that T is a consistent and sufficiently strong axiom-
atized formal theory of arithmetic and decidable leads to contradiction. �

Which is a beautiful result: indeed it is one of the delights of our topic: we can
get exciting theorems fast!

There’s an old hope (which goes back to Leibniz) that can be put in modern
terms like this: we might one day be able to mechanize mathematical reasoning to
the point that a suitably primed computer could solve all mathematical problems
in a domain by deciding theoremhood in an appropriate formal theory. What
we’ve just shown is that this is a false hope: as soon as a theory is strong enough
to capture all boringly mechanical reasoning about individual numbers, it must
cease to be decidable.

4.3 An incompleteness theorem

Now let’s put together Theorem 2 (established in Section 2.7) and Theorem 3.
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Theorem 2 A consistent, axiomatized, negation-complete formal
theory is decidable.

Theorem 3 No consistent, sufficiently strong, axiomatized formal
theory of arithmetic is decidable.

These, of course, immediately entail

Theorem 4 A consistent, sufficiently strong, axiomatic formal the-
ory of arithmetic cannot also be negation complete.

That is to say, for any c.s.s.a. (consistent, sufficiently strong, axiomatic) theory
of arithmetic, there will be some pair of sentences ϕ and ¬ϕ, neither of which
are theorems. But one of these must be true on the given interpretation of T ’s
language. So, for any c.s.s.a. arithmetic T , there are true-but-unprovable wffs in
T .

And adding in new axioms won’t help. To re-play the sort of argument we
gave in Section 1.1, suppose T is a c.s.s.a. theory of arithmetic, and suppose GT

is a true sentence of arithmetic that T can’t prove or disprove. The theory U

which you get by adding GT as a new axiom to T will, of course, now trivially
prove GT , so we’ve plugged that gap. But note that U is consistent (for if U , i.e.
T + GT , were inconsistent, then by reductio, T ` ¬GT , contrary to hypothesis).
And U is sufficiently strong (since it can still prove everything T can prove).
It is still decidable which wffs are axioms of U , so the theory still counts as a
properly axiomatized formal theory. So Theorem 4 applies, and the new c.s.s.a.
theory U must therefore contain a wff GU (distinct from GT , of course) which is
again true-on-interpretation but unprovable. So T is not only incomplete but in
a good sense incompletable.

4.4 The truths of arithmetic can’t be axiomatized

Here’s another pair of definitions.

i. A set of wffs Σ is axiomatizable if there is an axiomatized formal theory T
such that, for any wff ϕ, ϕ ∈ Σ if and only if T ` ϕ.

ii. An interpreted language L is sufficiently rich if it can express every decid-
able property of numbers.

Then, as an immediate corollary of Theorem 4, we have

Theorem 5 The set of truths of a sufficiently rich language L is
unaxiomatizable.

Proof Suppose that L is sufficiently rich, and we’ll suppose – for reductio –
that the set of true wffs of L can be axiomatized by a theory T . Then T must
be negation complete – since for every wff ψ of L, either ψ or ¬ψ is true, and
by hypothesis the true one is a theorem.
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But what have we really shown?

But let P be any decidable property of numbers. Since L is sufficiently rich,
there is some open wff ϕ such that, for any n,

if n has the property P , ϕ(n) is true,
if n doesn’t have the property P , ¬ϕ(n) is true.

Since T entails all the truths, it follows that for any n

if n has the property P , T ` ϕ(n),
if n doesn’t have the property P , ¬ϕ(n).

Since P was an arbitrary decidable property, this means that T must be suffi-
ciently strong (by definition of the notion of sufficient strength). But T is con-
sistent, since by hypothesis it only contains truths. So, by Theorem 4, T is not
negation-complete after all. Contradiction! �

Now, the informal idea of (all) ‘the truths of arithmetic’ is no doubt not a sharp
one. But however we refine it, presumably we want it to include at least the
truths about the nice, decidable, properties of numbers. So in our jargon, the
truths of arithmetic, on any plausible sharpening of that idea, should be the
truths of a sufficiently rich language. So our new Theorem warrants the informal
claim expressed in the title of this section: the truths of arithmetic can’t be
axiomatized.

4.5 But what have we really shown?

Back to Theorem 4. This isn’t yet Gödel’s Theorem, but it is a terrific result.
Or is it? That depends, you might say, on the integrity of the very idea of

a sufficient strong theory of arithmetic, i.e. the idea of a theory that captures
all decidable properties of numbers. But is this idea even coherent? Maybe the
notion of capturing ‘all’ decidable properties is somehow problematic. Compare:
perhaps there is something problematic in talking about all sets – for it seems
that as soon as we have a lot of sets which together purport to be all of them,
we can in fact form another set, i.e. the new set containing all those prior sets.
Maybe there is something comparably troublesome about the idea of all decid-
able properties of numbers.

This initial worry, however, turns out to be groundless. As we’ve already briefly
indicated in Section 2.3, there are a number of standard, well-understood, fully
coherent ways of formally refining the intuitive notion of decidability, ways that
all turn out to locate the same entirely definite and well-defined class of numerical
properties (namely those whose application can be decided by a Turing machine).
And this formal result, as we noted, prompts what we called Turing’s Thesis,
namely that the intuitive notion of a decidable property does indeed successfully
pick out the determinate class of Turing-decidable properties.

We will later have to return to justify these claims: but for the moment,
suppose we buy into Turing’s Thesis. This means that the idea of a sufficiently
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strong theory is conceptually in good order. It also means that our argument for
Theorem 4 which invokes the informal notion of computation and of what can
be decided by a computer is cogent. However, couldn’t it still be the case that a
language for capturing all computable properties has to be very rich – involving
(say) an infinity of different fundamental predicates, all waiting to be governed
by their own axioms?2 So couldn’t the moral of our Theorem just be that there
can’t be complete theories of all the arithmetical truths expressible in certain
ultra-rich languages? That would still leave open the possibility that there could
be complete theories governing the propositions expressible in (say) the much
more restricted language of basic arithmetic. But we announced right back in
Section 1.1 that Gödel’s own result rules out complete theories even of the truths
of basic arithmetic. Hence, if our easy Theorem 4 is to have the reach of Gödel’s
Theorem, we’ll need to show that a theory with the restricted language of basic
arithmetic can still be sufficiently strong.

The state of play is therefore this: if our informal style of argument for The-
orem 4 is to be used establish something like Gödel’s own result, then it needs
to be augmented with (i) a defence of Turing’s Thesis, and (ii) a proof that
some axiomatized theory of basic arithmetic is indeed sufficiently strong. And
even with (i) and (ii) in play, there would still remain the very significant differ-
ence that our easy Theorem only tells us that there is (somewhere or other) an
unprovable sentence of a sufficiently strong arithmetic. The proof of the official
First Incompleteness Theorem actually tells us how to take a theory T and con-
struct a true but unprovable-in-T sentence of a simple form. And it does this –
albeit after an amount of hard work – without needing (i) and without needing
all of (ii) either.

In sum, there is a very significant gap between our intriguing, quickly-derived,
but informal Theorem 4 and the industrial-strength Theorem that Gödel proves.
So, while what we have shown in this chapter is highly suggestive, it is time to
start turning to Gödel’s own arguments. We need first to look at some formal
arithmetics in more detail and then to introduce the key notion of primitive
recursion.

2See Section 6.7 for a description of the theory PBA which has this kind of language.
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5 Three Formalized Arithmetics

In this chapter, we move on from the generalities of the previous chapters, and
look at three standard formal theories of arithmetic. These theories differ in
strength, but they share the following features:

1. Zero, the successor function, addition and multiplication are treated as
primitive notions governed by basic axioms, and are not defined in terms
of anything more fundamental.

2. The theories’ deductive apparatus is no stronger than familiar first-order
logic (and in particular doesn’t allow second-order quantification, i.e. quan-
tification over properties rather than objects).

It is absolutely standard to start by considering formal theories of arithmetic
with these features, though later we’ll be looking at some theories which lack
them.

5.1 BA – Baby Arithmetic

We begin with a very simple formal arithmetic which ‘knows’ about the addition
of particular numbers, ‘knows’ its multiplication tables, but can’t express general
facts about numbers at all because it lacks quantifiers and variables. Hence our
label baby arithmetic, or BA for short.

First, we describe BA’s language, LB = 〈LB , IB〉. LB ’s non-logical vocabulary
is the same as that of LA (Section 3.2): so there is a single individual constant
‘0’, the one-place function symbol ‘S’, and the two-place function symbols ‘+’
and ‘×’. But LB ’s logical apparatus comprises only the propositional connectives
and the identity sign.

The intended interpretation IB is the obvious one. ‘0’ denotes zero. ‘S’ sig-
nifies the successor function, and ‘+’ and ‘×’ are interpreted as addition and
multiplication.

Second, we need to give BA some deductive apparatus. Choose your favourite
system of propositional logic to deal with connectives. Then add some standard
rules to deal with the identity sign. In particular, we need some version of Leib-
niz’s Law. Let’s say that a term is either a numeral or an expression built up
from numerals by one or more applications of our three functions, as in S0 + S0,
S(S0× (SS0 + SSS0))), etc. Then, if τ and ρ are terms, the Law allows us to
infer ϕ(ρ) from the premisses ϕ(τ) and τ = ρ or ρ = τ .

Third, we have to fix the axioms of BA. To start with, we want to pin down at
least the following facts about the structure of the number sequence: (1) Zero is
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the first number, i.e. isn’t a successor; so for every n, 0 6= Sn. (2) The number se-
quence never circles back on itself; so different numbers have different successors
– or contraposing, for any m,n, if Sm = Sn then m = n.

We haven’t got quantifiers in BA’s language, however, so we can’t express these
general facts directly. Rather, we need to employ schemas, and say: any wff that
you get from one of the following schemas by substituting standard numerals for
the place-holders ‘ζ’, ‘ξ’ is an axiom.

Schema 1 0 6= Sζ

Schema 2 Sζ = Sξ → ζ = ξ

(It should go without saying that the substitution rule is: same place-holder,
same replacement numeral.)

We’ll quickly show that instances of these schemas do indeed entail that dif-
ferent terms in the sequence 0, S0, SS0, SSS0, . . . , pick out different numbers.
Recall, we use ‘n’ to represent the numeral SS . . .S0 with n occurrences of ‘S’:
so the result we need is that, for any m, n, if m 6= n, then BA ` m 6= n.

Proof Supposem 6= n (and let |m−n|−1 = j ≥ 0). And assume m = n as a tem-
porary supposition in BA (that’s a supposition of the form SS . . .S0 = SS . . .S0,
with m occurrences of ‘S’ on the left and n on the right). We can now use in-
stances of Schema 2 plus modus ponens to repeatedly strip off initial occurrences
of ‘S’, one on each side of the identity, until either (i) we derive 0 = Sj, or else
(ii) we derive Sj = 0 and then use the symmetry of identity to conclude 0 = Sj.
But 0 6= Sj is an axiom (an instance of Schema 1). Contradiction. So, m 6= n

follows by reductio. Which proves that if m 6= n, then BA ` m 6= n. �

Next we pin down the addition function by saying that any wff that you get
by substituting numerals in the following is also an axiom:

Schema 3 ζ + 0 = ζ

Schema 4 ζ + Sξ = S(ζ + ξ)

Instances of Schema 3 tell us the result of adding zero. Instances of Schema 4
with ‘ξ’ replaced by ‘0’ tell us how to add one (i.e. add S0) in terms of adding
zero and then applying the successor function to the result. Then, once we know
about adding one, we can use further instances of Schema 4 with ‘ξ’ replaced by
‘S0’ to tell us how to add two (SS0) in terms of adding S0. We can then invoke
the same Schema again to tell us how to add three (SSS0) in terms of adding
two: and so on and so forth, thus defining addition for every number.

We can similarly pin down the multiplication function by first defining mul-
tiplication by zero, and then defining multiplication by Sn in terms of multipli-
cation by n and addition. Thus we want every numeral instance of the following
to be axioms too:

Schema 5 ζ × 0 = 0
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Schema 6 ζ × Sξ = (ζ × ξ) + ζ

These, together with the previous axioms, can then be used to prove all the famil-
iar basic arithmetical truths about the addition and multiplication of particular
numbers.1

To illustrate, here’s a BA derivation of 2× 1 = 2, or rather (putting that in
unabbreviated form) of SS0× S0 = SS0.

1. SS0× 0 = 0 Instance of Schema 5
2 SS0× S0 = (SS0× 0) + SS0 Instance of Schema 6
3. SS0× S0 = 0 + SS0 From 1, 2 by LL

(‘LL’ of course indicates the use of Leibniz’s Law which allows us to intersub-
stitute identicals.) To proceed, we now need to show that 0 + SS0 = SS0 – and
note, this isn’t an instance of Schema 3. So

4. 0 + 0 = 0 Instance of Schema 3
5. 0 + S0 = S(0 + 0) Instance of Schema 4
6. 0 + S0 = S0 From 4, 5 by LL
7. 0 + SS0 = S(0 + S0) Instance of Schema 4
8. 0 + SS0 = SS0 From 6, 7 by LL

Which gives us what we want:

9. SS0× S0 = SS0 From 3, 8 by LL

That’s a bit laborious, but it works. And a little reflection on this short proof
reveals that similar proofs will enable us to derive the value of any sum or
product of two numerals.

Now we generalize. Let’s say that an equation of BA is a wff of the form τ = ρ,
where τ and ρ are terms. Then we have the following:

1. If τ = ρ is true, then BA ` τ = ρ.

2. If τ = ρ is false, then BA ` τ 6= ρ.

Proof sketch for (1) Our sample proof above illustrates the sort of BA derivation
that will prove any true simple equation of the type j + k = m or j× k = n.
Given a more complex term τ , involving nested additions and multiplications
(or applications of the successor function), we can then prove a true wff of the
form τ = t with a numeral on the right by repeated steps of evaluating inner-
most brackets.

To take a mini-example, suppose τ has the shape ((j + k) + S(j× k)). Then
we first prove identities evaluating the inner-most bracketed expressions; substi-
tuting the results using Leibniz’s Law will enable us to derive something like

(j + k) + S(j× k)) = (m + Sn)
1And note, it is evidently decidable whether a wff is an instance of one the six Schemas,

and so it is decidable whether a wff is an axiom of BA, as is required if BA is indeed to be an
axiomatized theory.
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Now evaluate the new, simpler, bracketed expression on the right by proving
something of the form m + Sn = t. Hence, using Leibniz’s Law again, we get

(j + k) + S(j× k)) = t

The method of repeated substitutions always works: for any complex term τ

we’ll be able to prove a wff correctly equating its value to that of some numeral.
So, generalizing further, given any two terms τ and ρ, if they have the same

value so τ = ρ is true, then we’ll be able to prove τ = ρ by proving each term
equal to the same numeral. �

Proof sketch for (2) Suppose that two complex terms τ and ρ have values m
and n, where m 6= n. By the argument for (1), we’ll then be able to prove a pair
of wffs of the form τ = m, ρ = n. But we’ve already shown earlier in this section
that if m 6= n, BA proves m 6= n. So, if m 6= n, a BA proof of τ 6= ρ follows using
Leibniz’s Law twice. �

These two results in turn imply

Theorem 6 BA is a negation-complete theory.

Proof sketch for Theorem 6 Note that LB has only one primitive predicate, the
identity relation. So the only ‘atomic’ claims expressible in BA are equations in-
volving terms; all other wffs are truth-functional combinations of such equations.
But we’ve just seen that we can (1) prove each true ‘atom’ and (2) prove the
negation of each false ‘atom’. So, by ordinary propositional logic, we can derive
any true truth-functional combination of atoms (equations), i.e. prove any true
wff. Hence, for any wff ϕ of BA, since either ϕ or ¬ϕ is true, either ϕ or ¬ϕ is a
theorem. So BA is negation-complete. �

Since BA is complete, it is decidable, by Theorem 2. But of course we don’t
need a brute-force search through possible derivations in order to determine
whether a wff ϕ is a BA theorem. For note that all BA theorems are true (since
the axioms are); and all true BA-wffs are theorems (as we’ve just seen). Hence
deciding whether the BA-wff ϕ is true decides whether it is a theorem. But any
such ϕ expresses a truth-function of equations, so we can mechanically work out
whether it is true or not by using school-room arithmetic for the equations and
then using a truth-table.

5.2 Q – Robinson Arithmetic

So far, then, so good. But the reason that Baby Arithmetic manages to prove
every correct claim that it can express – and is therefore negation complete by
our definition – is that it is can’t express very much. In particular, it can’t
express any generalizations at all. BA’s completeness comes at the price of being
expressively impoverished.
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The obvious way to start beefing up BA into something more exciting is to
restore the familiar apparatus of quantifiers and variables. So let’s keep the same
non-logical vocabulary, but now allow ourselves the full resources of first-order
logic, so that we are working with the full language LA = 〈LA, IA〉. of basic
arithmetic (see Section 3.2).

Since we now have the quantifiers available to express generality, we can re-
place each metalinguistic Schema (specifying an infinite number of particular
axioms) by a single object-language Axiom. For example, we can replace the
first two Schemas governing the successor function by

Axiom 1 ∀x(0 6= Sx)

Axiom 2 ∀x∀y(Sx = Sy → x = y)

Each instance our earlier Schemas 1 and 2 can be deduced from the corresponding
Axiom by one or two applications of Universal Instantiation.

Note, however, that while these Axioms tell us that zero isn’t a successor,
they leave it open that there are other objects in the domain of quantification
(pseudo-zeros, if you like) that aren’t successors either. Using quantifiers we can
now explicitly rule that out:

Axiom 3 ∀x(x 6= 0 → ∃y(x = Sy))

Next, we can similarly replace our previous Schemas for addition and multi-
plication by universally quantified Axioms:

Axiom 4 ∀x(x + 0 = x)

Axiom 5 ∀x∀y(x + Sy = S(x + y))

Axiom 6 ∀x(x× 0 = 0)

Axiom 7 ∀x∀y(x× Sy = (x× y) + x)

The formalized theory with language LA, Axioms 1 to 7, and a standard first-
order logic is called Robinson Arithmetic, or (very often) simply Q.2

Now, the syntactic system LB is contained in the syntactic system LA in the
sense that every LB-wff is an LA-wff (but not vice-versa). And since any BA
Axiom – i.e. any instance of one of our previous Schemas – can be derived from
one of our new Q Axioms, every LB-wff that can be proved in BA is equally an
LA-wff which can be proved in Q. Hence, for any such shared sentence ϕ, Q does
as well as BA; it can either prove ϕ or prove ¬ϕ.

However, Q can’t prove or disprove every sentence of its full language LA.
We’ve already announced that Gödel’s First Theorem is in fact going to show
that no axiomatized theory of basic arithmetic can be negation-complete. But

2This formal system was first isolated in (Robinson, 1952) and immediately became well-
known through the classic (Tarski et al., 1953); its particular interest will emerge in Chapter 9.
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we certainly don’t need to invoke Gödel to see that Q is incomplete, as we’ll now
demonstrate.

Given the quantified form of its Axioms, Q can prove some generalized claims,
such as ∀x∀y(x + SSy = SS(x + y)) or ∀x(x + S0 = S0 → x = 0). But there are
other equally simple generalizations about numbers that can’t be proved in
Q. For example, by Theorem 6* we can prove any particular wff of the form
m + n = n + m. But the universally quantified version ∀x∀y(x + y = y + x) can’t
be proved from our Axioms.

Proof sketch One standard procedure to show that a wff ϕ is not a theorem
of a given theory T is to find an interpretation (often a deviant, unintended
interpretation) for the T -wffs, which makes the axioms of T true and hence
all its theorems true, but which makes ϕ false. So we want to find a deviant,
unintended, interpretation of Q’s Axioms which would make them true but for
which ‘addition’ fails to commute. Here’s an artificial – but still legitimate –
example.

Take the domain of our deviant, unintended, interpretation of Q to be the set
N∗ comprising the natural numbers but with two other ‘rogue’ elements a and
b added (say Gwyneth Paltrow and Jude Law, or any other pair that takes your
fancy). Let ‘0’ still to refer to zero. And take ‘S’ now to pick out the successor*
function S∗ which is defined as follows: S∗n = Sn for any natural number in
the domain, while for our rogue elements S∗a = a, and S∗b = b. It is immediate
that Axioms 1 to 3 are still true on this deviant interpretation.

We now need to extend this model to re-interpret Q’s function ‘+’. Suppose
we take this to pick out addition*, where m +∗ n = m + n for any natural
numbers m, n in the domain, while a+∗ n = a and b+∗ n = b. Further, for any
x (whether number or rogue element), x +∗ a = b and x +∗ b = a. It is easily
checked that interpreting ‘+’ as addition* still makes Axioms 4 and 5 true. But
by construction, a+∗ b 6= b+∗ a, so this interpretation makes ∀x∀y(x + y = y + x)
false.

We are not quite done, however, as we still need to show that we can give a co-
ordinate re-interpretation of ‘×’ in Q by some deviant multiplication* function.
But we can leave it as an exercise to fill in suitable details. �

So Q cannot prove ϕ =def ∀x∀y(x + y = y + x); and since ϕ is true, and Q (having
true axioms and a truth-preserving logic) can only prove truths, Q cannot prove
¬ϕ either. So Q is indeed negation-incomplete.

5.3 Capturing properties and relations in Q

While Q is in some ways very weak since it can’t prove many of the true basic
generalizations about arithmetical operations, it can still case-by-case capture
lots of properties and relations in the sense of Section 3.4. Which shouldn’t be at
all surprising given that case-by-case capturing doesn’t require proving general,
quantified wffs: you only need to be able to derive wffs about particular numbers.
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To take a simple example, let’s show that the less than relation is not only
expressed but is case-by-case captured by the wff ∃v(Sv + x = y) in Q. That is
to say, for any particular pair of numbers, Q can prove that the first is less than
the second (if it is) or prove that it isn’t (if it isn’t).

Proof sketch (1) Suppose m < n, so for some k ≥ 0, Sk + m = n. We know
that Q can prove everything BA proves and hence, in particular, can prove every
true equation. So we have Q ` Sk + m = n. But Sk + m = n ` ∃v(Sv + m = n)
by existential quantifier introduction. Therefore Q ` ∃v(Sv + m = n), as was to
be shown.

(2) Suppose m 6< n. We need to show Q ` ¬∃v(Sv + m = n). We’ll first
demonstrate this in the case where m = 2, n = 1. And for illustrative purposes,
we will work with a standard Fitch-style natural deduction system (where we
can introduce ‘arbitrary names’ and always indent sub-proofs). So consider the
following outline argument with some inference steps slightly compressed:

1. ∃v(Sv + SS0 = S0) Supposition
2. Sa + SS0 = S0 Supposition
3. Sa + SS0 = S(Sa + S0) From Axiom 5
4. S(Sa + S0) = S0 From 2, 3 by LL
5. (Sa + S0) = S(Sa + 0) From Axiom 5
6. SS(Sa + 0) = S0 From 4, 5 by LL
7. (Sa + 0) = Sa From Axiom 4
8. SSSa = S0 From 6, 7 by LL
9. SSSa = S0 → SSa = 0 From Axiom 2
10. SSa = 0 From 8, 9 by MP
11. 0 = SSa From 10
12. 0 6= SSa From Axiom 1
13. Contradiction! From 11, 12
14. Contradiction! ∃E 1, 2–13
15. ¬∃v(Sv + SS0 = S0) RAA 1–14.

The only step to explain is at line (14) where we use a version of Existential
Elimination – the idea is that if the supposition ϕ(a) leads to contradiction, for
arbitrary a, then ∃vϕ(v) also leads to contradiction. And inspection of this proof
immediately reveals that we can use the same basic pattern of argument to show
that Q ` ¬∃v(Sv + m = n) whenever m 6< n. So we are done. �

That was straightforward. And with a little more effort, we could now go on to
show e.g. that the wff ∃v(2× v = x) not only expresses but captures the property
of being even. We won’t pause to demonstrate that, however. For we’ll see in
Chapter 9 that a certain very large class of properties and relations can all be
case-by-case captured in Q; it just isn’t worth giving further proofs in a piecemeal
way.
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5.4 Introducing ‘<’ and ‘≤’ into Q

Given our result in the last section, it is convenient henceforth to use the abbre-
viatory symbol ‘<’, defined so that α < β =def ∃v(Sv + α = β).3

We now can go on to prove inside Q various key facts about the less than rela-
tion captured by x < y. For example, we can readily show that Q ` ¬∃x x < 0, i.e.
Q ` ¬∃x∃v(Sv + x = 0). The strategy is to prove that the assumption Sa + b = 0
leads to contradiction. For by Axiom 3, either b = 0, or b = Sc for some c. But
we can’t have the first, or else Sa + 0 = Sa = 0, contradicting Axiom 1. And
we can’t have the second, or else Sa + Sc = S(Sa + c) = 0, again contradicting
Axiom 1.

Note also that we can show that ∃v(v + x = y) captures the relation less than
or equal to in Q. Which similarly motivates adding the abbreviatory symbol ‘≤’
with the definition α ≤ β =def ∃v(v + α = β).

The addition of ‘<’ and ‘≤’ thus defined does make for economy and read-
ability; so henceforth we’ll use these symbols in Q and stronger theories without
further ado. We should remark, though, that some presentations treat ‘<’ and/or
‘≤’ as primitive symbols built into these theories from the start, governed by
their own additional axioms. Nothing important hangs on the difference between
that approach and our policy of introducing these symbols by definition.

5.5 Induction and the Induction Schema

We saw that Q cannot prove ∀x∀y(x + y = y + x). To derive this wff, and prove
many other wffs of LA that are beyond Q’s reach, we need to add some further
formal principle for proving quantified wffs.

The obvious candidate is some version of the following induction principle:

Suppose (i) 0 has the numerical property P . And suppose (ii) for any
number n, if it has P , then its successor Sn also has P . Then we can
conclude that (iii) all numbers have property P .

Why does this hold? By hypothesis (i), 0 has P. By (ii), if 0 has P so does
S0. Hence S0 has P. By (ii) again, if S0 has P so does SS0. Hence SS0 has P.
Likewise, SSS0 has P. And so on and so forth, through all the successors of 0.
But the successors of 0 are the only natural numbers. So all natural numbers
have property P. (The induction principle is therefore underwritten by the basic
structure of the number sequence, and in particular by the absence of ‘stray’
numbers that you can’t get to step-by-step from zero.)

Now, our informal induction principle is a generalization covering any genuine
numerical property P . Hence to frame a corresponding formal version, we’d
ideally like to be able to generalize over all properties, which would mean using

3Depending exactly how we set up our formal languages, we might have to be careful
about clash of variables when using such an abbreviation; but we’re not going to fuss about
the details.
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a second-order quantifier. But at the moment, as we announced at the beginning
of this chapter, we are concentrating on formal theories whose logical apparatus
involves no more than the familiar first-order quantifiers which range over a
domain of numbers, not their properties. What to do?

We’ll have to use a schema again (compare BA where we had to use schemas
because we then couldn’t even quantify over objects: now we are using a schema
because even in a full first-order language we can’t quantify over properties). So
– as a first shot – let’s say that any instance of the

Induction Schema ({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x))

is to count as an axiom – where ϕ(x) stands in for some formula of LA with just
‘x’ free, and ϕ(0) and ϕ(Sx) are of course the results of replacing occurrences of
‘x’ in that formula with ‘0’ and ‘Sx’ respectively.

What is the motivation for this? Well, the wff ϕ(x) is constructed from just
the constant term ‘0’, the successor, addition and multiplication functions, plus
identity and other logical apparatus. So such a wff surely expresses a perfectly
determinate arithmetical property – a property to which the intuitive induction
principle therefore applies. Hence the relevant instance of the Induction Schema
will be true.

So far, so good. But we will want to use inductive arguments to prove general
results about relations as well as about monadic properties. So how can we
handle relations? Take, for example, the open wff ‘Rxyz’. Simply substituting
this into the Schema will yield the wff

({R0yz ∧ ∀x(Rxyz → R(Sx)yz} → ∀xRxyz)

which is still open, with the variables ‘y’, ‘z’ left dangling free. However, back
in Section 2.2, we stipulated that axioms for a formal theory should be closed
wffs (as they need to be if we are to talk without qualification about a bunch of
axioms being true on the intended interpretation). So our open wff won’t do as
an induction axiom. Consider, however, its universal closure – i.e. the wff which
we get by prefixing universal quantifiers to bind the free variables:

∀y∀z({R0yz ∧ ∀x(Rxyz → R(Sx)yz} → ∀xRxyz)

This is again true, given our informal induction principle. For consider ‘Rxab’
where ‘a’ and ‘b’ are arbitrary constants. Then this open wff will express a
monadic property, and induction will apply to this property. Hence the corre-
sponding instance of the Induction Schema where ‘Rxab’ is substituted will be
true. But ‘a’ and ‘b’ were arbitrary. So we can generalize into the places held
by them. Which gives us the universal closure of the instance of the Schema for
‘Rxyz’. And the argument evidently generalizes to to other relational wffs.

So that motivates our second shot at laying down a bunch of induction axioms.
We’ll say that the universal closure of any instance of the Induction Schema is
an axiom, where now ϕ(x) stands in for some formula with at least ‘x’ free, and
maybe other variables free as well.
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One comment. We will later consider arithmetics with a second-order Induc-
tion Axiom which quantifies over all properties of numbers. But what counts
as ‘all’? At the generous end of the spectrum of possible views here, we might
hold that any arbitrary set of numbers Σ corresponds to a genuine property PΣ

(where n is defined as having the property PΣ if and only if n ∈ Σ). But we
know from Theorem 1, comment (a), that there are non-enumerably many sets
of numbers Σ. So, on the generous view, a second-order Induction Axiom covers
non-enumerably many properties.

However, the open wffs ϕ(x) of LA are by contrast enumerable (we enumerate
the wffs, and as we go along retain a list of those with just x free). So, the
first-order Induction Schema covers only enumerably many numerical properties.
Hence we will expect an arithmetic which uses the first-order Schema to be
notably weaker than one that uses the second-order Axiom (at least if we take
the generous view about properties). This expectation will be confirmed later.

5.6 PA – First-order Peano Arithmetic

Our discussion in the last section motivates moving on from Q – and jumping
over some intermediate positions4 – to adopt the much richer formal theory of
arithmetic which we can initially define as follows:

PA – First-order Peano Arithmetic5 – is the result of adding to the
axioms of Q the universal closures of all instances of the Induction
Schema for formulae ϕ(x) of LA with at least ‘x’ free.

Plainly, it is decidable whether any given wff has the right shape to be one of
the new axioms, so PA is a legitimate formalized theory.

In PA, we can now establish generalities like the law ∀x∀y(x + y = y + x).
However, we’ll first illustrate the use of induction with a preliminary exam-
ple: consider ∀x(0 + x = x) – i.e. a mirror version of Axiom 4. This wff is again
unprovable in Q, as is shown by the fact that it is falsified on our deviant in-
terpretation with rogue elements (since 0 +∗ a 6= a). But we can prove it by
induction. To show this, we’ll again assume a Fitch-style natural deduction logic,
with the standard rules UI (Universal Instantiation), UG (Universal Generaliza-
tion on ‘arbitrary’ names) and CP (Conditional Proof). To derive our target wff
∀x(0 + x = x), we will evidently need to use an instance of the Induction Schema
with ϕ(x) replaced by (0 + x = x) and then aim to prove the two conjuncts in
the antecedent of that instance, so we can extract the desired conclusion by a
final modus ponens. Here’s a formal version:

4For a discussion of some theories of arithmetic with various restrictions on the Induction
Schema, see the wonderful (Hájek and Pudlák, 1983). These intermediate theories are techni-
cally interesting, but are not relevant for us at this point in the book, so we won’t delay over
them now.

5The name is conventional: Giuseppe Peano did publish a list of axioms for arithmetic in
Peano (1889) – but they weren’t first-order, only explicitly governed the successor relation,
and were in any case, as he acknowledged, already to be found in Dedekind (1888).
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1. ({0 + 0 = 0 ∧ ∀x(0 + x = x → 0 + Sx = Sx)}
→ ∀x(0 + x = x)) Instance of Induction

2. ∀x(x + 0 = x) Axiom 4
3. 0 + 0 = 0 From 2 by UI with 0

4. ∀x∀y(x + Sy = S(x + y)) Axiom 5
5. 0 + a = a Supposition
6. ∀y(0 + Sy = S(0 + y)) From 4, by UI with 0

7. 0 + Sa = S(0 + a) From 6 by UI with a

8. 0 + Sa = Sa From 5, 7 by LL
9. 0 + a = a → 0 + Sa = Sa From 5 to 8 by CP
10. ∀x(0 + x = x → 0 + Sx = Sx) From 9 by UG
11. {0 + 0 = 0 ∧ ∀x(0 + x = x → 0 + Sx = Sx)} From 3, 10 by ∧-intro.
12. ∀x(0 + x = x) From 10, 11 by MP

Now to show ∀x∀y(x + y = y + x). Put ϕ(x, y) =def (x + y = y + x), and note
we have the following induction axiom:

∀y({ϕ(0, y) ∧ ∀x(ϕ(x, y) → ϕ(Sx, y))} → ∀xϕ(x, y))

So given what we have just established, it will follow that ∀x∀yϕ(x, y) if we can
show that ∀x∀y(ϕ(x, y) → ϕ(Sx, y)). And we can indeed show this, by another
use of induction (hint: changing variables, put ψ(x) =def ∀u(ϕ(u, x) → ϕ(Su, x))
and then use the instance of the Induction Schema for this open wff).

To be sure, this all rapidly gets more than a trifle tedious. But the point of
the present exercise isn’t user-friendliness but austere formal rigour: the game is
to see what we really need by way of absolutely fundamental axioms in order to
get standard arithmetical results. And a little investigation and experimentation
should convince you that PA does indeed have the resources to establish all the
familiar general truths about the addition and multiplication of numbers. True
enough, we know – because we’ve repeatedly trailed the fact – that Gödel’s
First Theorem is going to show that PA (like any axiomatized theory of basic
arithmetic) fails to be negation complete. This time, however, unlike the case
with Q, there is no easy way of finding ‘ordinary’ arithmetic wffs which are
true-but-unprovable.

Finally, we should remark on another instance of induction. Suppose we put
ϕ(x) =def (x 6= 0 → ∃y(x = Sy)). Then ϕ(0) is trivial. Likewise, ∀xϕ(Sx) is also
immediate, and that entails ∀x(ϕ(x) → ϕ(Sx)). So we can use an instance of
the Induction Schema to derive ∀xϕ(x). But that’s just Axiom 3 of Q. So our
original presentation of PA – as having all the Axioms of Q plus the instances of
the Induction Schema – involves a certain redundancy.

Given the very natural motivation we have for accepting its unrestricted use
of the Induction Schema, PA is the benchmark axiomatized first-order theory
of basic arithmetic. So, for neatness, let’s bring together all the elements of its
specification in one place.
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First, the language of PA is LA, a first-order language whose non-logical vo-
cabulary comprises just the constant ‘0’, the one-place function symbol ‘S’, and
the two-place function symbols ‘+’, ‘×’, and whose interpretation is the obvious
one.

Second, PA’s deductive proof system is some standard version of classical first-
order logic with identity (differences between versions aren’t significant).

And third, its axioms – eliminating the redundancy from our original state-
ment of the axioms – are

Axiom 1 ∀x(0 6= Sx)

Axiom 2 ∀x∀y(Sx = Sy → x = y)

Axiom 3 ∀x(x + 0 = x)

Axiom 4 ∀x∀y(x + Sy = S(x + y))

Axiom 5 ∀x(x× 0 = 0)

Axiom 6 ∀x∀y(x× Sy = (x× y) + x)

plus the universal closures of all instances of the following

Induction Schema ({ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx))} → ∀xϕ(x))

where ϕ(x) is an open LA-wff with at least the variable ‘x’ free.

5.7 Is PA consistent?

PA proves a great deal more than Q. But it wouldn’t be much joy to discover
that PA’s much greater strength is due to the theory’s actually tipping over into
being inconsistent and so entailing every wff. So let’s briefly pause over the issue
of consistency – not because there is in fact a genuine concern that PA might be
in trouble, but because it gives us a chance to mention a topic that will occupy
us later.

Here’s an argument that our semantic interpretation of PA already implies its
consistency. For consider again the given interpretation IA which is built into
PA’s language LA = 〈LA, IA〉. On this interpretation, ‘0’ denotes zero; ‘S’ rep-
resents the successor function, etc.; and the domain of quantification comprises
just the natural numbers. Hence on this interpretation (1) the first three axioms
inherited from Q are core truths about the operation that takes one number to
its successor. And the next four axioms are equally fundamental truths about
addition and multiplication. (2) Further, the informal induction principle for
arithmetical properties and relations is warranted by our understanding of the
structure of the number sequence. So since open wffs of LA straightforwardly
express genuine numerical properties and relations, (the closures of) all the in-
stances of PA’s Induction Schema will be true too on the standard interpretation
IA. But (3) the classical first-order deductive logic of PA is truth-preserving so
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– given that the axioms are true and PA’s logical apparatus is in good order –
all its theorems are true on IA. Hence (4), since that all PA theorems are true
on IA, there cannot be pairs of theorems of the form ϕ and ¬ϕ (for these of
course couldn’t both be true together). So (5) not every wff is a theorem, and
the theory is therefore consistent.

This argument for the consistency of full PA appears to be compelling. But
some might still urge that – despite appearances – we ought be more cautious
here. They will want to emphasize the point that an argument for a theory’s
consistency which appeals to our supposed intuitive grasp of an intended inter-
pretation can lead us badly astray. And to support their point, they will refer
to one of the most famous episodes in the history of logic, which concerns the
fate of the German logician Gottlob Frege’s The Basic Laws of Arithmetic.6

Frege aimed to construct a formal system in which first arithmetic and then
the theory of the real numbers can be rigorously developed. He gives axioms for
what is in effect a theory of sets, so that the number sequence can be identi-
fied as a certain sequence of sets, and then rational and real numbers can be
defined via appropriate sets of these sets. Frege takes as one of his Basic Laws
the assumption that for every well-constructed predicate ϕ(x) of his language,
there is a set (possibly empty) of exactly those things that satisfy this predicate.
And indeed, what could be more plausible? If we can coherently express some
condition A, then we should surely be able to talk about the (possibly empty)
collection of just those things that satisfy condition A.

But, famously, the assumption is disastrous. As Bertrand Russell pointed out
in a letter which Frege received as the second volume of Basic Laws was going
through the press, the plausible assumption leads to contradiction.7 Take for
example the condition R expressed by ‘. . . is a set which isn’t a member of it-
self’. This is, on the face of it, a perfectly coherent condition (the set of people,
for example, satisfies the condition: the set of people contains only people, so it
doesn’t contain any sets, so doesn’t contain itself in particular). And certainly
condition R is expressible in the language of Frege’s system. So on Frege’s as-
sumption, there will be a set of things that satisfy R. In other words, there is
a set ΣR of all the sets which aren’t members of themselves. But now ask: is
ΣR a member of itself? A moment’s reflection shows that it is if it isn’t, and
isn’t if it is: contradiction! So there can be no such set as ΣR; hence Frege’s
assumption cannot be right, despite its intuitive appeal, and his formal system
which embodies that assumption is inconsistent.

This sad tale brings home to us vividly that intuitions of consistency can be
mistaken. But let’s not rush to make too much of this: the fact that we can make
mistakes in arguing for the cogency of a formal system on the basis of our sup-
posed grasp of an intended interpretation isn’t any evidence that we have made
a mistake in our argument for the consistency of PA. For a start, Peano Arith-

6The first volume of Basic Laws was published in 1893, the second in 1903. For a partial
translation, see Frege (1964).

7See (Russell, 1902).

49



5. Three Formalized Arithmetics

metic and many stronger theories that embed it have been intensively explored
for a century and no contradiction has been exposed.

‘But can’t we do better,’ you might still ask, ‘than make the negative point
that no contradiction has been found (yet): can’t we prove that PA is consistent
in some other way than by appealing to our supposed grasp of its interpretation?’

Well, let’s waive the misleading suggestion that our proof isn’t secure as it
stands. Then the answer is: yes, there are other proofs. However, we’ll have to put
further discussion of this intriguing issue on hold until after we have encountered
Gödel’s Second Incompleteness Theorem which does put some interesting limits
on the possibilities here. We’ll present this crucial result in Chapter 13.2.

5.8 More theories

We stressed at the outset of this chapter that our focus here was going to be
pretty narrow. We have, in particular, only looked at three theories which use (no
more than) first-order logic. We noted, however, that the intuitively compelling
induction principle is naturally read as being second-order (i.e. as involving a
generalization over all numerical properties). So one obvious project is to con-
sider what happens when we move to arithmetics constructed in a second-order
setting.

Another respect in which this present chapter is narrow is that it confines
itself to theories which treat zero, the successor function, addition and multi-
plication as undefined notions, and the axioms governing them as fundamental.
But theorists like Dedekind and Frege, Russell and Whitehead thought we ought
to do more: we should seek to justify the axioms of arithmetic in terms of fur-
ther definitions and logical principles. This points to another project, namely to
consider the classical attempts to ground Peano Arithmetic by something more
basic. And these two projects (considering second-order theories and consider-
ing deeper foundations for arithmetic) are related, because some of the classical
foundational enterprises essentially use at least second-order logic.

We’ll return to all this anon. The point to keep in mind in the meantime is
that the theories of arithmetic we’ve met in this chapter are a restricted sample:
there’s a lot more to be said.
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The formal theories of arithmetic that we’ve looked at so far have the successor
function, addition and multiplication built in. But why stop there? School arith-
metic acknowledges many more numerical functions. This chapter considers a
very wide class of computable numerical functions.

6.1 Introducing p.r. functions

We’ll start with two more functions from school arithmetic. First, take the fac-
torial – standardly symbolized by ‘!’ written after the function’s argument, as in
‘y!’ – where e.g. 4! = 1× 2× 3× 4. This function can be defined by the following
two equations:

0! = S0 = 1
(Sy)! = y!× Sy

The first clause tells us the value of the function for the argument y = 0; the
second clause tells us how to work out the value of the function for Sy once we
know its value for y (assuming we already know about multiplication). So by
applying and reapplying the second clause, we can successively calculate 1!, 2!,
3!, . . . . Hence our two-clause definition fixes the value of ‘y!’ for all numbers y.

For our second example – this time a two-place function – consider the ex-
ponential, standardly written in the form ‘xy’. This can be defined by a similar
pair of equations:

x0 = S0
xSy = (xy × x)

Again, the first clause gives the function’s value for a given value of x and y = 0,
and – keeping x fixed – the second clause gives the function’s value for the
argument Sy in terms of its value for y.

We’ve seen this two-clause pattern before, of course, in our formal Axioms for
the multiplication and addition functions. Informally, and now presented in the
style of everyday mathematics (i.e. without explicit quantifiers), we have:

x× 0 = 0
x× Sy = (x× y) + x

x+ 0 = x

x+ Sy = S(x+ y)

Three comments about our examples so far:
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1. In each definition, an instance of the second clause can invoke the result
of its own previous application to a smaller number, a kind of procedure
which is standardly termed ‘recursive’. So this sort of two-clause definition
of a function is called a definition by (primitive) recursion.1

2. Note, for example, that (Sn)! is defined as n! × Sn, so it is evaluated
by evaluating n! and Sn and feeding the results of these computations
into the multiplication function. This involves, in a word, the composition
of functions, where evaluating a composite function involves taking the
output(s) from one or more functions, and treating these as inputs to
another function.

3. Our examples illustrate chains of definitions by recursion and functional
composition. Thus addition is defined in terms of the successor function;
multiplication is defined in terms of successor and addition; the factorial (or
equally, exponentiation) is defined in terms of multiplication and successor.

Here’s another little definitional chain:

P (0) = 0
P (Sx) = x

x −· 0 = x

x −· Sy = P (x −· y)

|x− y| = (x −· y) + (y −· x)

‘P ’ signifies the predecessor function (with zero being treated as its own prede-
cessor); ‘−· ’ signifies ‘subtraction with cut-off’, i.e. subtraction restricted to the
non-negative integers (so m −· n is zero if m < n). And |m − n| is of course
the absolute difference between m and n. This time, our third definition doesn’t
involve recursion, only a simple composition of functions.

These examples motivate the following initial gesture towards a definition:

A primitive recursive function is one that can be similarly character-
ized by a chain of definitions by recursion and composition (a chain
ultimately starting with the successor function).2

But that is a rather quick-and-dirty characterization, even if it gets across the
basic idea. We ought to pause to do better.

6.2 Defining the p.r. functions more carefully

Consider the recursive definition of the factorial again:
1Strictly speaking, we need a proof of the claim that recursive definitions really do well-

define functions: the proof was first given by Dedekind (1888, §126).
2The basic idea is there in Dedekind and highlighted by Thoralf Skolem (1923). But the

modern terminology ‘primitive recursion’ seems to be due to Rósza Péter (1934); and ‘primitive
recursive function’ was first used in the Stephen Kleene’s classic (1936a).
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0! = 1
(Sy)! = y!× Sy

This is an example of the following general scheme for defining a one-place
function f :

f(0) = g

f(Sy) = h(y, f(y))

Here, g is just a number, while h is – crucially – a function we are assumed already
to know about prior to the definition of f (maybe because it is a ‘primitive’
function which we are allowed to take for granted like the successor function; or
perhaps because we’ve already given recursion clauses to define it; or perhaps
because it is a composite function constructed by plugging one known function
into another).

Likewise, with a bit of massaging, the recursive definitions of addition, mul-
tiplication and the exponential can all be treated as examples of the following
general scheme for defining two-place functions:

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

where now g and h are both functions that we already know about. To get the
definition of addition to fit this pattern, we have to take g(x) to be the trivial
identity function I(x) = x; and we have to take h(x, y, u) to be the function
Su. As this illustrates, we must allow h not to care what happens to some of
its arguments. A neat way of doing this is to allow more identity functions like
I ′(x, y, u) = u, and then we can put h(x, y, u) = SI ′(x, y, u). Finally, to get the
definition of multiplication to fit the pattern, g(x) has to be treated as the even
more trivial zero function Z(x) = 0.

We next want to generalize from the case of one-place and two-place functions.
There’s a (standard) notational device that helps to put things snappily: we’ll
henceforth write ~x as short for the array of n variables x1, x2, . . . , xn. Then we
can say

Suppose that the following holds:

f(~x, 0) = g(~x)
f(~x, Sy) = h(~x, y, f(~x, y))

Then f is defined from g and h by (primitive) recursion.

If we allow ~x to be empty, so g(~x) is a constant, that subsumes the case of
one-place functions like the factorial.

Now for definition by composition. The basic idea, to repeat, is that we form
a composite function f by treating the output value(s) of one or more given
functions g, g′, g′′ as the input argument(s) to another function h – as when, to
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take the simplest case, we set f(x) = h(g(x)). Or when, to take a slightly more
complex case, we set f(x, y, z) = h(g(x, y), g′(y, z)).

There’s a number of equivalent ways of generalizing this to cover the manifold
possibilities of compounding multi-place functions. One standard one is to define
what we might call one-at-a-time composition (where we just plug one function
g into another function h), thus:

If g(~y ) and h(~x, u, ~z ) are functions – with ~x and ~z possibly empty
– then f is defined by composition by substituting g into h just if
f(~x, ~y, ~z ) = h(~x, g(~y), ~z ).

Then we can think of generalized composition (where we plug more than one
function into another function), as just iterated one-at-a-time composition. For
example, we can substitute the function g(x, y) into h(u, v) to define the function
h(g(x, y), v) by composition. Then we can substitute g′(y, z) into the defined
function h(g(x, y), v) to get the composite function h(g(x, y), g′(y, z))

Finally, we informally defined the primitive recursive functions as those that
can be defined by a chain of definitions by recursion and composition. Working
backwards down the definitional chain, it must bottom out with members of an
initial ‘starter pack’ of trivially simple functions. In the previous section, we just
highlighted the successor function among these given functions. But we’ve since
noted that, if we are to get our examples to fit our official account of definition
by primitive recursion, we’ll have to acknowledge some other, even more trivial,
functions. So let’s now say that the full set of initial functions contains:

i. the successor function S;

ii. zero function, Z(x) = 0;

iii. and the identity functions, Ik
i (~x) = xi for each xi in the array

of k variables ~x.

Hence, putting that all together, we can offer this more formal characterization
of the p.r. functions:

1. The initial functions S,Z, and Ik
i are p.r.;

2. if f can be defined from the p.r. functions g and h by composi-
tion, substituting g into h, then f is p.r.;

3. if f can be defined from the p.r. functions g and h by primitive
recursion, then f is p.r.;

4. nothing else is a p.r. function.

Note, by the way, that the initial functions are total functions of numbers (i.e.
are defined for every numerical argument); and that primitive recursion and
composition both build total functions out of total functions. Which means that
all p.r. functions are total functions.
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6.3 Defining p.r. properties and relations

As well as talking of p.r. functions, we will also need to speak of p.r. properties
and relations.

We can tie talk of functions and talk of properties/relations together by using
the very handy notion of a characteristic function. Here’s a definition.

The characteristic function of the numerical property P is the one-
place function cP such that if m is P , then cP (m) = 0, and if m isn’t
P , then cP (m) = 1.

The characteristic function of the two-place numerical relation R is
the two-place function cR such that if m is R to n, then cR(m,n) = 0,
and if m isn’t R to n, then cR(m,n) = 1.

And similarly for many-place relations. The choice of values for the characteristic
function is, of course, entirely arbitrary: any pair of distinct numbers would do.
Our choice is supposed to be reminiscent of the familiar use of 0 and 1, one way
round or the other, to stand in for true and false. And our selection of 0 rather
than 1 for true is simply for later convenience.

The numerical property P partitions the numbers into two sets, the set of
numbers which have the property and the set of numbers which don’t. Its cor-
responding characteristic function cP also partitions the numbers into two sets,
the set of numbers the function maps to the value 0, and the set of numbers the
function maps to the value 1. And these are the same partition. So in a good
sense, P and its characteristic function cP contain exactly the same information
about a partition of the numbers: hence we can move between talk of a property
and talk of its characteristic function without loss of information. Similarly, of
course, for relations.

In what follows, we’ll frequently use this link between properties and relations
and their characteristic functions in order to carry over ideas defined for functions
and apply them to properties/relations. For example, we can now say that a
property is decidable – i.e. a suitably programmed computer can decide whether
the property obtains – just if its characteristic function is computable (compare
Section 2.3). And without further ado, we can now introduce the idea of a p.r.
property, meaning – of course – a property with a p.r. characteristic function,
and likewise a p.r. relation is a relation with a p.r. characteristic function.

6.4 Some more examples

We’ll now give a few more examples from the class of p.r. properties and func-
tions. Strictly speaking, you can skip this section since we only pick up its details
again in later sections which you can also skip. On the other hand, we will –
particularly in Section 10.3 – be making some crucial claims that various func-
tions are p.r.; and these claims will seem a lot more plausible if you have already
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worked through a handful of simpler cases and seen how to prove that various
other properties and functions are primitive recursive. So it is probably worth
at least browsing through what follows: but if you find yourself getting bogged
down, then just move on.

As a preliminary, we just remark that the functions

sg(y), where sg(n) = 0 for n = 0, and sg(n) = 1 otherwise
sg(y), where sg(n) = 1 for n = 0, and sg(x) = 0 otherwise

are both primitive recursive. To prove sg(y) is p.r. just note the p.r. definition

sg(0) = 0
sg(Sy) = SZ(sg(y))

where SZ(u) is p.r. by composition, and SZ(sg(y)) = S0 = 1. We prove sg(y)
is p.r. similarly.

And now we can note four very useful general facts:

Fact 1 Suppose f(~x) is an n-place p.r. function. Then the corresponding relation
expressed by f(~x) = y is an n+ 1-place p.r. relation.

Proof We illustrate with the case where f is a one-place function. The charac-
teristic function of the relation expressed by f(x) = y – i.e. the function c(x, y)
whose value is 0 when f(x) = y and is 1 otherwise – is given by

c(x, y) = sg(|f(x)− y|)

Here |u−v| is the absolute difference function we showed to be p.r. in Section 6.1,
and so the right-hand side is a composition of p.r. functions. �

Fact 2 Suppose p(x) is the characteristic function of the property P . It follows
that sg(p(x)) is the characteristic function of the property not-P, since sg simply
flips the two values 0 and 1. But by simple composition of functions, sg(p(x)) is
p.r. if p(x) is. Hence if P is a p.r. property, so is not-P .

Similarly, suppose that p(x) and q(x) are the characteristic functions of the
properties P and Q respectively. p(n)×q(n) takes the value 0 so long as either n
is P or n is Q, and takes the value 1 otherwise. So p(x)×q(x) is the characteristic
function of the disjunctive property of being either P or Q; and by composition,
p(x)× q(x) is p.r. if both p(x) and q(x) are. So the disjunction of p.r. properties
is another p.r. property.

But any truth-functional combination of properties is definable in terms of
negation and disjunction. So, generalizing, any truth-functional combination of
p.r. properties and relations is also p.r..

Fact 3 As is standard, we’ll henceforth use ‘(∀x ≤ n)Cx’ as an abbreviation for
‘∀x(x ≤ n → Cx)’, and ‘(∃x ≤ n)Cx’ as short for ‘∃x(x ≤ n ∧ Cx)’, where the
context C may contain other variables. Similarly, ‘(∀x < n)Cx’ is an abbreviation
for ‘∀x(x < n → Cx)’, and ‘(∃x < n)Cx’ is short for ‘∃x(x < n ∧ Cx)’. And
then we have the following: a property or relation defined from a p.r property
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or relation by bounded quantifications is also p.r. This shouldn’t be surprising
given Fact 2 and the observation that bounded quantifications are in effect finite
conjunctions or disjunctions.

To take the simplest case, suppose the monadic P is p.r.: then we’ll show that
the new property defined by

K(n) ≡ (∃x ≤ n)P (x)

is also primitive recursive. (Other cases are similar.)

Proof Suppose again that p(x) is P ’s p.r. characteristic function. And by com-
position define the p.r. function h(u, v) = (p(Su)× v). We put

k(0) = p(0)
k(Sy) = h(y, k(y))

so we have

k(n) = p(n)× p(n− 1)× . . .× p(1)× p(0)

Then k is K’s characteristic function – i.e. the function such that k(n) = 1 until
we get to an n such that n is P , and then k(n) goes to zero, and thereafter stays
zero. Since k is p.r., K is p.r. too by definition. �

Fact 4 We now introduce the standard minimization operator ‘µx’, to be read:
‘the least x such that . . . ’. Much later, we’ll be considering the general use of
this operator, but here we will be concerned with bounded minimization. So we
write, e.g.

f(n) = (µx ≤ n)P (x)

when f takes the number n as argument and returns as value the least number
x ≤ n such that P (x) if such an x exists, or returns n otherwise. Then a one-place
function defined from a p.r. property by bounded minimization is itself p.r.

Proof Again suppose p is the characteristic function of P , and define k as in
the last proof. Then consider the function defined by

f(0) = 0
f(n) = k(n− 1) + k(n− 2) + . . .+ k(1) + k(0), for n > 0

Since k(j) = 1 for each j which isn’t P , and k(j) goes to zero and stays zero as
soon as soon as we hit a j which is P , f(n) returns, exactly as we want, either
the least number which is P , or n, whichever is smaller. So we just need to show
that f so defined is indeed primitive recursive. Well, use composition to define
the p.r. function h′(u, v) = (k(u) + v), and then put

f(0) = 0
f(Sy) = h′(y, f(y))
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And we are done. An easy generalization shows that, if g is any p.r. function,
then

f(n) = (µx ≤ g(n))P (x)

is also primitive recursive. �

Given these general facts, we can now spring into action to extend our cata-
logue of particular p.r. properties and functions. Here are some quick examples,
mostly concerning prime numbers and prime factorization.

i. The relation m < n is primitive recursive.

ii. The relation m|n which holds when m is a factor of n is primitive recursive.

iii. Let prime(n) be true just when n is a prime number. Then prime is a p.r.
property.

iv. List the primes as π0, π1, π2, . . .. Then the function π(n) whose value is πn

is p.r. (and in future, we will keep writing ‘πn’ rather than ‘π(n)’, just for
symbolic neatness.)

v. Let exp(n, i) be the – possibly zero – exponent of the prime number πi in
the factorization of n (this value is determinate because of the so-called
Fundamental Theorem of Arithmetic, which says that numbers have a
unique factorization into primes). Then exp is a p.r. function.

vi. Let len(0) = 0, and let len(n) be the ‘length’ of n’s factorization, i.e. the
number of distinct prime factors of n, when n > 0 Then len is again a p.r.
function.

Proof for (i) This is an easy warm-up. For the characteristic function of m < n

is simply sg(Sm −· n), which is a composition of p.r. functions. �

Proof for (ii) We have

m|n ≡ (∃y ≤ n)(0 < y ∧ 0 < m ∧m× y = n)

The quantified relation on the right is a truth-functional combination of p.r.
relations, so is p.r. by Fact 2. Hence m|n is a p.r. relation by Fact 3. �

Proof for (iii) The property of being prime is p.r. because

prime(n) ≡ n 6= 1 ∧ (∀u ≤ n)(∀v ≤ n)(u×v = n → (u = 1∨v = 1))

and the r.h.s is built up from p.r. components by truth-functional combination
and restricted quantifiers. (Here we rely on the trivial fact that the factors of n
cannot be greater than n.) �

Proof for (iv) The function πn, whose value is the n-th prime (counting from
zero), is p.r. – for consider the definition

58



The p.r. functions are computable

π0 = 2
πSn = (µx ≤ n! + 1)(πn < x ∧ prime(x))

where we rely on the familiar fact that the next prime after n is no greater than
n! + 1 and use the generalized version of Fact 4. �

Proof for (v) No exponent in the prime factorization of n is larger than n itself,
so we have

exp(n, i) = (µx ≤ n){(πx
i |n) ∧ ¬(πx+1

i |n)}

That is to say, the desired exponent of πi is the number x such that πx
i divides n

but πx+1
i doesn’t: note that exp(n, k) = 0 when πk isn’t a factor of n. Again, our

definition of exp is built out of p.r. components by operations that yield another
p.r. function. �

Proof for (vi) (prime(m) ∧m|n) holds when m is a prime factor of n. This a
p.r. relation, and has a p.r. characteristic function pf (m,n). Now consider the
function

p(m,n) = sg(pf (m,n))

Then p(m,n) = 1 just when m is a prime factor of n and is zero otherwise. So

len(n) = p(0, n) + p(1, n) + . . .+ p(n− 1, n) + p(n, n)

So to give a p.r. definition of len, we can first put

l(x, 0) = p(0, x)
l(x, Sy) = (p(Sy, x) + l(x, y))

And then finally put len(n) = l(n, n). �

It will, by the way, emerge in Chapter 10 why it is of key importance that
such functions and properties connected with prime factorization are primitive
recursive.

6.5 The p.r. functions are computable

We now turn back from particular examples to general points about primitive
recursion.

A p.r. function f must be specifiable by a chain of definitions by recursion
and composition leading back ultimately to initial functions. But (a) the initial
functions S,Z, and Ik

i are trivially computable. (b) The composition of two
computable functions g and h is computable (just feed the output from whatever
routine evaluates g as input into the routine that evaluates h). And (c) – the key
point – if g and h are computable, and f is defined by primitive recursion from
g and h, then f is computable too. So as we build up longer and longer chains
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of definitions for p.r. functions, we always stay within the class of computable
functions.

To illustrate (c), return once more to our example of the factorial. Here’s its
p.r. definition again:

0! = S0 = 1
(Sy)! = y!× Sy

The first clause gives the value of the function for the argument 0; then you
can repeatedly use the second recursion clause to calculate the function’s value
for S0, then for SS0, SSS0, etc. So the definition encapsulates an algorithm for
calculating the function’s value, and corresponds exactly to a certain simple kind
of computer routine. Thus compare the definition with the following schematic
program:

1. factorial := 1
2. For y = 0 to n− 1
3. factorial := (factorial × Sy)
4. Loop

Here factorial is a memory register that we initially prime with the value of 0!.
Then the program enters a loop, and on the k-th iteration (counting from 1) it
replaces the value in that register with k times the previous value – we’ll assume
the computer already knows how to do that. When the program exits the loop
after n iterations, the value in the register factorial will be n!.

Generalizing, for a one-place function f defined by recursion in terms of g and
the computable function h, the same program structure always does the trick
for calculating f(n):

1. f := g

2. For y = 0 to n− 1
3. f := h(y, f)
4. Loop

Thus the one-place function f will be computable by the use of a ‘for’ loop, as-
suming that g and h are already computable. Similarly for many-place functions.

Our mini-program for the factorial calls the multiplication function which can
itself be computed by a similar ‘for’ loop (invoking addition). And addition can
in turn be computed by another ‘for’ loop (invoking the successor). So as we
unpick the chain of recursive definitions

factorial ⇒ multiplication ⇒ addition ⇒ successor

we can write a program for the factorial function containing nested ‘for’ loops
which ultimately call the primitive operations of setting the contents of a register
to zero, or of applying the successor operation of incrementing the contents of
a register by one. Evidently the point generalizes: primitive recursive functions
are computable by nested ‘for’ loops.
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And the point holds conversely. We can describe a simple programming lan-
guage loop where the only important programming structure is the ‘for’ loop,
which initiates an iterative procedure that is repeated some given number of
times (a number which is fixed before the loop is started). Loops can be nested.
And commands can be concatenated so that e.g. a loop for evaluating a function
g is followed by a loop for evaluating h – so given input n, executing the concate-
nated loops yields the output h(g(n)). Thus a loop corresponds to a definition by
primitive recursion, and concatenation corresponds to composition of functions.
Hence it is easy to see that every loop program defines a p.r. function.3

6.6 Not all computable numerical functions are p.r.

So, any p.r. function is mechanically computable. But not all computable numer-
ical functions are primitive recursive.4 In this section, we first make the claim
that there are computable-but-not-p.r. numerical functions look plausible. Then
we’ll actually cook up an example.5

First, then, some plausibility considerations. We’ve just seen that a primitive
recursive function f can be computed by a program involving ‘for’ loops as its
main programming structure. Each loop goes through a specified number of
iterations. So, just by examining the program for f , we can derive a function f̃ ,
where f̃(n) gives the number of steps it takes to compute f(n). Moreover, to put
it crudely, f̃ will be definable in terms of repeated additions and multiplications
corresponding to the way that ‘for’ loops are chained together and/or embedded
inside each other in the program for f : so f̃ will itself be a p.r. function. In sum,
the length of the computation of a p.r. function is given by a p.r. function.

However, back in Section 2.3 we allowed procedures to count as computational
even when don’t have nice upper bounds on the number of steps involved. In
particular, we allowed computations to involve open-ended searches, with no
prior bound on the length of search. We made essential use of this permission
in Section 2.7, when we showed that negation complete theories are decidable –
for we allowed the process ‘enumerate the theorems and wait to see which of ϕ
or ¬ϕ turns up’ to count as a computational decision procedure.

And standard computer languages of course have programming structures
which implement just this kind of unbounded search. Because as well as ‘for’
loops, they allow ‘do until’ loops (or equivalently, ‘do while’ loops). In other
worlds, they allow some process to be iterated until a given condition is satisfied
– where no prior limit, and so in particular no p.r. limit, is put on the the number

3For a proper specification of loop and a proof that every loop program does define a
p.r. function see Tourlakis (2002); the idea of loop programs goes back to Meyer and Ritchie
(1967).

4We mean of course functions f : N → N, whose arguments and values are natural numbers.
5Probably no one will regard our cooked-up example as one that might be encountered

in ordinary mathematical practice: in fact, it requires a bit of ingenuity to come up with a
‘natural’ example, though we’ll give one later, in the Section 14.2.
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of iterations to be executed.
If we count what are presented as unbounded searches as computations, then

it looks very plausible that not everything computable will be primitive recur-
sive. However, that is as yet only a plausibility consideration: for all we’ve so
far strictly proved, it might still be the case that computations presented as
unbounded searches can always somehow be turned into procedures with a p.r.
limit on the number of steps. But in fact that’s false:

Theorem 7 There are algorithmically computable numerical func-
tions which aren’t primitive recursive.

Proof sketch The set of p.r. functions is effectively enumerable. That is to say,
we can mechanically produce a list of functions f0, f1, f2, . . . , such that each of
the fi is p.r., and each p.r. function appears somewhere on the list.

This holds because, by definition, every p.r. function has a ‘recipe’ in which
it is defined by primitive recursion or composition from other functions which
are defined by recursion or composition from other functions which are defined
. . . ultimately in terms of some primitive starter functions. So choose some stan-
dard formal specification language for representing these recipes. Then we can
effectively generate ‘in alphabetical order’ all possible strings of symbols from
this language; and as we go, we select the strings that obey the rules for being a
recipe for a p.r. function (that’s a mechanical procedure). That generates a list
of recipes which effectively enumerates the p.r. functions.

Now take such an effective enumeration f0, f1, f2, . . . , of the p.r functions
and construct a corresponding diagonal function, defined as d(n) = fn(n) + 1
– cf. Section 2.4, and compare the table below. Down the table we list off the

0 1 2 3 . . .

f0 f0(0) f0(1) f0(2) f0(3) . . .

f1 f1(0) f1(1) f1(2) f1(3) . . .

f2 f2(0) f2(1) f2(2) f2(3) . . .

f3 f3(0) f3(1) f3(2) f3(3) . . .

. . . . . . . . . . . . . . . ↘

p.r. functions. An individual row then gives the values of the p.r. function fn

for each argument. To compute d(n), we just run our effective enumeration of
the p.r. functions until we get to fn. We evaluate that function for the argument
n. We then add one. Each step is an entirely mechanically one. So our diagonal
function is algorithmically computable.

By construction, however, the function d can’t be primitive recursive. For
suppose otherwise. Then the function d must appear somewhere in the enumer-
ation of p.r. functions, i.e. be the function fd for some index number d. But now
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ask what the value of d(d) is. By hypothesis, the function d is none other than
the function fd, so d(d) = fd(d). But by the initial definition of the diagonal
function, d(d) = fd(d) + 1. Contradiction.

Hence d is a computable function which is not primitive recursive. �

‘But hold on! Why is the diagonal function not a p.r. function?’ Well, as we just
noted, if f is a p.r. function, then – as we compute f(n) for increasing values of
n – the lengths of the successive computations will be given by the successive
values of some function f̃(n), where f̃ is also primitive recursive. Now contrast
evaluating d(n) for increasing values of n. For each new argument, we have to
evaluate a different function fn for that argument (and then add 1). We have no
reason to expect there will be a nice pattern in the lengths of these successive
computations of different functions fn. In particular, we have no reason to expect
there will be a single p.r. function which gives the length of all those different
computations. And our diagonal argument in effect shows that there isn’t one.

6.7 PBA and the idea of p.r. adequacy

The value of a p.r. function for any given argument(s) is computable – in p.r.
bounded time – in accordance with a step-by-step algorithm. But, as we’ve said
before, the whole aim of formalization is to systematize and regiment what we
can already do. And if we can informally calculate the value of a p.r. function for
a given input in an entirely mechanical way – ultimately by just repeating lots
of school-arithmetic operations – then we will surely want to aim for a formal
arithmetic which is able to track these informal calculations. So let’s say that
a theory T is p.r. adequate if it indeed has the resources to express any p.r.
function and prove, case-by-case, the correct results about the function’s values
for specific arguments (we will tidy up that definition in the next chapter).6

Here’s one way of constructing a p.r. adequate theory. Start from BA, our
theory of Baby Arithmetic, again (see Section 5.1). This, recall, is a quantifier
free theory which has schemas which reflect the p.r. definitions of addition and
multiplication. As we showed, we can use instances of these schemas to prove any
true equation using successor, addition and multiplication. Hence BA is adequate
for those three functions in the sense that it can evaluate them correctly case-
by-case for specific arguments. So far, so good. But suppose we start expanding
BA by adding new vocabulary and new schemas. As a first step, we can add the
symbol ‘↑’, intended to express the exponential function, and then say that all
numeral instances of the following are axioms too:

Schema 7 ζ ↑ 0 = 1

Schema 8 ζ ↑ Sξ = (ζ ↑ ξ)× ζ

6Compare and contrast the informal idea of being ‘sufficiently strong’ that we met in
Section 4.1.
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Instances of those schemas enable us to prove the correct result for the value of
the exponential function for any arguments. So that makes four functions which
can be captured in our expanded BA. For tidiness, let’s resymbolize these using
the function symbols ‘f0’, ‘f1’, ‘f2’, ‘f3’. And now let’s keep going: we will add a
symbol ‘fn’ for each n, with the plan that ‘fn’ should express the n-th p.r. function
fn in a ‘good’ effective enumeration of the recipes for p.r. functions (where an
enumeration is ‘good’ if the p.r. definition of fn only involves functions earlier
in the enumeration). Then for each ‘fn’, we write down schemas involving that
function expression which reflect fn’s definition in terms of earlier functions. Call
the resulting theory PBA.7

PBA is still a properly axiomatized theory, because it will be effectively decid-
able whether any given wff is an instance of one of axiom schemas. Plainly, its
language is much richer than BA’s, since it has a separate function expression
for each primitive recursive function: but for all that, its language remains im-
poverished in other ways – for it still can’t express any general claims. Because
it is quantifier-free, we can show that PBA is a negation-complete theory like BA
(in fact we just generalize the argument we used to show BA can either prove
or disprove every sentence in its limited language). And by construction, PBA is
p.r. adequate.

Which all goes to show that we can readily construct a p.r. adequate arithmetic
by the brute-force method of pumping up the vocabulary of arithmetic and
throwing in axioms for every p.r. function. But do we need to do this?

It turns out that we don’t. We only need the language of basic arithmetic in
order to frame a p.r. adequate theory. To put it very roughly, the ground we lose
by going back to a language with successor, addition, and multiplication as the
only built-in functions, we can make up again by having quantification available.
In essence, that was first proved by Gödel in his epoch-making (1931), where he
showed in effect that PA is p.r. adequate. Raphael Robinson later (1952) noted
that all we need to extract from the induction principle to prove PA’s adequacy
is the claim that every number is either zero or a successor number. So we can
drop all the instances of the Induction Schema and replace them by Q’s Axiom
3 and the resulting induction-free arithmetic Q is still p.r. adequate.

We will outline a proof of Q’s – and hence PA’s – p.r. adequacy in Chapter 9:
it is one of the crucial stages in a Gödel-style proof of the First Incompleteness
Theorem. But before doing that, we need to pause to say a bit more about
functions and relations, and to give an official definition of what it is for a
theory to case-by-case capture a function. Then we give an official definition of
two grades of p.r. adequacy. That’s business for the following chapter.

7You can think of that as ‘Pumped-up Baby Arithmetic’. I’d call it ‘Primitive Recursive
Arithmetic’ were that label not already standardly used for a rather stronger theory which
includes an induction schema as well.

64



7 More on Functions and P.R. Adequacy

This chapter is rather unexciting housekeeping. But it is brief, and we are going
to need the very straightforward notions defined here, so bear with me!

7.1 Extensionality

Throughout this chapter, we are going to be talking about total numerical func-
tions f : N → N: every such function maps each natural number argument n to
some unique numerical value f(n).

Two general points:

1. By definition, the extension of a numerical function f is the set of ordered
pairs of the form 〈n, f(n)〉.

2. We treat f and g as the same function just so long as they map the same
arguments to the same values, i.e. just so long as, for each n, f(n) = g(n).

Putting those points together, f and g are the same function if they have the
same extension. In a word, then, we are construing talk of functions extensionally.

Of course, one and the same function can be presented in different ways, e.g.
in ways that reflect different rules for calculating it. For a trivial example, the
function 2n+1 is the same function as (n+1)2−n2; but the two different modes
of presentation indicate different routines for evaluating the function for a given
argument.

Now, a p.r. function is one that can be specified by a certain sort of chain
of definitions; and one way of presenting such a function is by giving this def-
initional chain (and thereby making it transparent that the function is indeed
p.r.). But the same function can be presented in other ways; and some modes of
presentation can completely disguise the fact that the function is recursive. For
a dramatic example, consider the function

fermat(n) = n if there are integer solutions to xn+3 + yn+3 = zn+3;
fermat(n) = 0 otherwise.

This definition certainly doesn’t reveal whether the function is primitive re-
cursive. But we know now – thanks to Andrew Wiles’s proof of Fermat’s Last
Theorem – that fermat is in fact the very same function as the trivially p.r.
function Z(n) = 0.

Other modes of presentation may make it clear that a function is p.r., but still
not tell us which p.r. function is in question. Consider, for example, the function
defined by
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j(n) = n if Julius Caesar ate grapes on his third birthday;
j(n) = 0 otherwise.

There is no way (algorithmic or otherwise) of settling what Caesar ate on his
third birthday! But despite that, the function j(n) is plainly primitive recursive.
Why so? Well, either it is the trivial identity function I(n) = n, or it is the zero
function Z(n) = 0. So we know that j(n) must be a p.r. function, though we
can’t determine which function it is from this mode of presentation.

Similar points can be made about numerical properties.1 So, talk about nu-
merical properties is also to be construed extensionally throughout. In other
words, we are to treat F and G as being the same numerical property just in
case Fn holds if and only if Gn, i.e. just in case the properties have the same
extension. Of course, just as the same function can be presented in very different
ways, so one and the same property may be presented in very different ways, by
predicates with different senses. For example, as far as we know, the properties
of being even and greater than two and the property of being even and the sum
of two primes are the same property – i.e. the italicized phrases pick out the
same extension, though they have different senses.

7.2 Expressing and capturing functions

Suppose that ‘f(x)’ specifies some one-place total numerical function. Then con-
sider the expression ‘f(x) = y’; this is a two-place relational expression, and we’ll
say that it picks out f ’s corresponding relation. So if f is a function and Rf is
its corresponding relation, f(m) = n if and only if m has relation Rf to n.
Functions and their corresponding relations match up pairs of things in just the
same way: hence f and Rf have exactly the same extension, namely the set of
ordered pairs 〈m, f(m)〉. The idea generalizes in the obvious way to many-place
functions. And just as the characteristic function trick (Section 6.3) allows us to
take ideas defined for functions and apply them to properties and relations, this
simple tie between functions to their corresponding relations allows us to carry
over ideas defined for relations and apply them to functions.

For a start, consider how we can use this tie to extend the idea of expressing
a relation to cover functions. Here again is the now familiar definition:

A two-place numerical relation R is expressed by the open wff ϕ(x, y)
in an (interpreted) arithmetical language L just if, for any m,n,

if m has the relation R to n, then ϕ(m, n) is true,
if m does not have the relation R to n, then ¬ϕ(m, n) is true.

1If you accept the thesis of Frege (1891), then these are the same points. For Frege urges
us to treat properties as just a special kind of function – so a numerical property, in particular,
is a function which maps a number to the truth-value true (if the number has the property)
or false (otherwise) – which comes very close to identifying a property with its characteristic
function.
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We can now naturally say that a one-place function f is expressed by the open
wff ϕ(x, y) so long as that wff equally expresses the relation Rf which corresponds
to f . Which comes to the following:

A one-place numerical relation f is expressed by the open wff ϕ(x, y)
in an (interpreted) arithmetical language L just if, for any m,n,

if f(m) = n, then ϕ(m, n) is true,
if f(m) 6= n, then ¬ϕ(m, n) is true.

The generalization to many-place functions is immediate.
Similarly, we can extend the idea of case-by-case capturing from relations to

functions. Here is the definition for a two-place relation:

A two-place numerical relation R is case-by-case captured by the
open wff ϕ(x, y) of theory T just if, for any m,n,

if m has the relation R to n, then T ` ϕ(m, n)
if m does not have the relation R to n, then T ` ¬ϕ(m, n).

And we can naturally say that a one-place function f is case-by-case captured
by the open wff ϕ(x, y) so long as that wff captures the corresponding relation
Rf . Which comes to the following:

A one-place function relation f is case-by-case captured by the open
wff ϕ(x, y) of theory T just if, for any m,n,

if f(m) = n, then T ` ϕ(m, n)
if f(m) 6= n, then T ` ¬ϕ(m, n).

Again, the generalization to many-place functions is immediate.

7.3 ‘Capturing as a function’

So far so good. However, although our definition in the last section of what it is
for a theory to capture a function will serve perfectly well, it is in fact convenient
(and standard) to work with a slightly stronger notion of capturing. This section
explains the stronger notion.

Our previous definition might be said to be weak in the following sense. It tells
us that T captures a function f if there is some ϕ which captures the relation
that holds between m and n when f(m) = n. But it doesn’t require that ϕ – so
to speak – captures the function as a function, i.e. it doesn’t require that T can
prove that the capturing wff ϕ relates a given m to exactly one value n. We will
now impose this extra requirement, and say:

The one-place function f is captured as a function by the wff ϕ(x, y)
in T just if

(i) for every m, T ` ∃!yϕ(m, y)
and for any m,n:
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(ii) if f(m) = n then T ` ϕ(m, n),
(iii) if f(m) 6= n, then T ` ¬ϕ(m, n).

Here ‘∃!u’ is the standard uniqueness quantifier, to be read ‘there is exactly one
u such that . . . ’.2. So clause (i), as we want, insists that the putative capturing
relation can be proved to relate each numerical argument to some unique value:
in a phrase, the relation is (provably) functional.

Now, suppose f(m) 6= n because f(m) = k, where n 6= k. Suppose further
that (i) and (ii) hold, so ϕ(x, y) is provably functional, and also T ` ϕ(m, k).
Then by simple logic, (i) and (ii) imply that T ` (n 6= k → ¬ϕ(m, n)). But
as we saw in Section 5.1, in any theory T containing Baby Arithmetic, if n 6= k,
then T ` n 6= k. Hence if f(m) 6= n then T ` ¬ϕ(m, n). So clauses (i) and (ii)
imply (iii), in even the most modest theory of arithmetic. So to confirm that ϕ
captures f as a function, we only need to check that conditions (i) and (ii) hold.

Assuming T is consistent and contains Baby Arithmetic, our new definition
is now easily seen to be equivalent to the following:

The one-place function f is captured as a function by the wff ϕ(x, y)
in T just if for all m,n,

T ` ∀y(ϕ(m, y) ≡ y = n) if and only if f(m) = n.

Likewise, we’ll say

The two-place function f is captured as a function by the wff ϕ(x, y, z)
in T just if for all m,n, o,

T ` ∀z(ϕ(m, n, z) ≡ z = o) if and only if f(m,n) = o.

Similarly for the case of many-place functions.
Trivially, if ϕ captures f as a function in T , then ϕ captures f in the weaker

sense of the previous section. The strict converse doesn’t obtain. For example,
consider a quantifier-free theory like BA or PBA: that can capture some functions
but obviously can’t capture them as functions (since the latter involves proving a
quantified wff). However, suppose T is at least as strong as Q: then if ϕ captures
f in T , then there will always be a closely related wff ϕ′ which does capture f
as a function in T . For we just have to set

ϕ′(x, y) =def {ϕ(x, y) ∧ ∀z(z < y → ¬ϕ(x, z))}

Then, for given m, ϕ′(m, n) holds as we want for a unique n, i.e. the smallest n
such that ϕ(m, n) is true.

Finally, we should just confirm that our various definitions hang together in
the following way: suppose T can prove that 0 6= 1, then a property is capturable
by T if and only if its characteristic function is capturable as a function:

Proof sketch (i) Suppose P is case-by-case captured in T by the predicate ϕ(x),
and consider the wff

2‘∃!u’ can be defined by taking ‘∃!uϕ(u)’ as short for ‘∃u(ϕ(u) ∧ ∀v(ϕ(v) → v = u))’
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((ϕ(x) ≡ y = 0) ∧ (¬ϕ(x) ≡ y = 1))

It is easily seen that this relational wff captures cP , the characteristic function of
P , and captures it as a function. Conversely, (ii) suppose the wff ϕ(x, y) captures
the characteristic function cP ; then the wff ϕ(x, 0) captures the corresponding
property P . �

So instead of laying down separate conditions for properties/relations and func-
tions being capturable, we could have initially just given conditions for the case
of functions, and then let properties and relations look after themselves by saying
that they are capturable if their characteristic functions are.

7.4 Two grades of p.r. adequacy

In Section 6.7, we informally said that a theory is p.r. adequate if it can express
any p.r. function and prove, case-by-case, the correct results about the function’s
values for specific arguments. Now we can sharpen up that informal idea in two
ways:

A theory T is weakly p.r. adequate if, for every p.r. function f , there
is a corresponding open wff ϕ in T that captures it.

A theory T is strongly p.r. adequate if for every p.r. function f , there
is a corresponding open wff ϕ in T that captures it as a function.

And here are four claims involving these notions:

1. PBA is weakly p.r. adequate.

2. PBA is not strongly p.r. adequate

3. Q is strongly p.r. adequate.

4. PA is strongly p.r. adequate.

The first claim is trivially true, since we explicitly defined PBA in Section 6.7
in order to make the first of these claims true. (Suppose fk is the k-th p.r.
function, and for simplicity suppose it is one-place. Form the corresponding wff
fk(x) = y. Then this case-by-case captures fk in PBA.) The second claim is also
trivially true because being strongly p.r. adequate involves being able to prove
a quantified claim, and PBA can’t do that. The third claim is far from being
trivial: proving that it is true is work for Chapter 9. And given the third claim
is true, the fourth immediately follows: PA can prove everything Q can prove, so
if Q can prove enough to be p.r. adequate, so can PA.
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8 Gödel’s Proof: The Headlines

In the last three chapters, we have put in place some necessary background, by
setting out some formal theories of arithmetic, defining the notion of a primi-
tive recursive function, and explaining what it takes for a theory to be strongly
p.r.adequate. We can now turn to proving Gödel’s First Incompleteness Theo-
rem. The business of this very short chapter is to give the headline news about
the overall shape of (our reconstruction of) Gödel’s proof: the details are for the
following three chapters.

We start, though, with . . .

8.1 A very little background

Kurt Gödel published his epoch-making paper ‘On formally undecidable propo-
sitions of Principia Mathematica and related systems I’ in 1931. He was not yet
25 when it appeared.

We’ll discuss the general context of Gödel’s paper – and the group of problems
in the foundations of mathematics that give his paper its significance – in more
detail later. But we ought perhaps to pause before then at least to explain the
paper’s title, and here is as good a place as any.

As we noted in Section 5.7, Frege set out in The Basic Laws of Arithmetic
to reconstruct arithmetic and classical analysis (the mathematics of the real
numbers) on a secure logical footing. His attempt was sabotaged by its reliance
on his fifth ‘Basic Law’ which postulates the existence of so many sets as to lead
to contradiction. And the fatal contradiction that Russell exposed in Frege’s
system was not the only one to beset various early treatments of the theory of
sets (Georg Cantor and Cesare Burali-Forti had already found other paradoxes).

Various responses to these set-theoretic paradoxes were proposed at the be-
ginning of the twentieth century. One suggestion is, in effect, to keep much of
Frege’s logic but to avoid making the further move that gets him into trouble.

Frege’s logical system involves a type hierarchy. His system very carefully dis-
tinguishes ‘objects’ (things, in a broad sense) from properties from properties-
of-properties from properties-of-properties-of-properties, etc, and every item be-
longs to a determinate level of the hierarchy. Then the claim is – plausibly enough
– that it only makes sense to attribute properties which belong at level l to items
at level l−1. For example, the property of being wise is a level 1 property, while
Socrates is an item at level 0; and it makes sense to attribute that property to
Socrates, i.e. to claim that Socrates is wise. Likewise, the property of applying
to people is a level 2 property, and it makes sense to attribute that property to
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the level 1 property of being wise, i.e. to claim that the property of being wise
applies to people. But you get nonsense if, for example, you try to apply that
level 2 property to Socrates and claim that Socrates applies to people.

Note that this strict stratification of items into types blocks the derivation
of the property analogue of Russell’s paradox about sets. That paradox, recall,
concerned the set of all sets that are not members of themselves. So now consider
the putative property of being a property that doesn’t apply to itself. Does this
property apply to itself? It might seem that the answer is that it does if it
doesn’t, and it doesn’t if it does – contradiction! But on Frege’s theory of types,
there is no real contradiction here. For on such a theory, every genuine property
belongs to some particular level of the hierarchy; and a level l property can
only sensibly be attributed to items at level l − 1, the next level down. So no
property can be attributed to itself. (True, every level l property in fact has the
property of being a property at level l that doesn’t apply to itself – but that is
a respectable level l + 1 property, which only applies to level l properties and
cannot paradoxically apply to itself.)

We can avoid set-theoretic paradox if we stratify the universe of sets in the way
that Frege stratifies the universe of properties. So suppose we now distinguish
sets from sets-of-sets from sets-of-sets-of-sets, and so forth; and on one version of
this approach we then insist that sets at level l can only have as members items
at level l−1.1 Frege himself doesn’t take this line, for his disastrous Basic Law V
in effect flattens the hierarchy and puts all sets on the same level. But Bertrand
Russell and Alfred North Whitehead adopt this hierarchical view of sets in their
monumental Principia Mathematica (1910 –13). They retain and develop Frege’s
stratification of properties and then link this to the stratification of sets in a very
direct way, by treating talk about sets as just lightly disguised talk about their
corresponding defining properties. Like Frege in his Basic Laws, Russell and
Whitehead set out to re-construct all of arithmetic and classical analysis on a
secure, paradox-free, footing. And as far as we know, their formal system, unlike
Frege’s, is indeed consistent.

But now, enter Gödel. He shows that, despite its great power, Russell and
Whitehead’s system in Principia still can’t capture all arithmetic truths. As
Gödel puts it in the opening words of his paper:

The development of mathematics toward greater precision has led,
as is well known, to the formalization of large tracts of it, so that one
can prove any theorem using nothing but a few mechanical rules. The
most comprehensive formal systems that have been set up hitherto
yet are the system of Principia Mathematica on the one hand and
the Zermelo-Fraenkel axiom system for set theory . . . on the other.
These two systems are so comprehensive that in them all methods of

1An alternative approach – the now dominant Zermelo-Fraenkel set theory – is more liberal:
it allows sets at level l to contain members from any lower level. But we still get a paradox-
blocking hierarchy.
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proof today used in mathematics are formalized, that is, reduced to
a few axioms and rules of inference. One might therefore conjecture
that these axioms and rules of inference are sufficient to decide any
mathematical question that can at all be formally expressed in these
systems. It will be shown below that this is not the case, that on the
contrary there are in the two systems mentioned relatively simple
problems in the theory of integers which cannot be decided on the
basis of the axioms. This situation is not in any way due to the
special nature of the systems that have been set up, but holds for a
very wide class of formal systems; . . . . (Gödel, 1931, p. 145)

Now, Russell and Whitehead’s system, to repeat, is a theory of types: it allows
us to talk of, and quantify over, properties, properties-of-properties, properties-
of-properties-of-properties, and so on up the hierarchy. Hence the language of
Principia is immensely richer than the language LA of first-order PA (where
we can only quantify over individuals, and which has no way of representing
properties-of-properties-of-properties or higher types). It wouldn’t be a great
surprise, then, to learn that Russell and Whitehead’s axioms don’t settle every
question that can be posed in their very rich formal language. What is a surprise
is that there are ‘relatively simple’ propositions which are ‘formally undecidable’
in Principia – by which Gödel means just that there are arithmetic wffs ϕ such
that we can’t prove either ϕ or ¬ϕ from the axioms.2 And similarly, there are
arithmetical propositions which are ‘formally undecidable’ in ZF set theory.

As Gödel himself notes, his incompleteness proof only needs to invoke some
very modest features of Principia and of ZF, and the features are equally shared
by PA. So it will do no harm, for our purposes, to indulge in a mild historical
fiction and henceforth pretend that he was really talking about PA all along. In
what follows, there are also some other deviations from the details of Gödel’s
original proof; but the basic lines of argument in the next three chapters are all
in his great paper. Not surprisingly, other ways of establishing his results (and
generalizations and extensions of them) have been discovered since 1931, and we
will be looking at some of these later. But there remains a good deal to be said
for first introducing the incompleteness theorems by something close to Gödel’s
own arguments.

8.2 Gödel’s proof outlined

There are five main stages in (our reconstruction of) Gödel’s proof of his First
Incompleteness Theorem:

2Don’t confuse this sense of undecidability with our earlier talk of algorithmic undecid-
ability. To help see the distinction, consider the mini-theory T1 we met in Section 2.5. In that
theory, ‘q’ is formally undecidable, i.e. we have neither T1 ` q nor T1 ` ¬q. But T1 is an
algorithmically decidable theory: we can use truth-tables to determine, for any ϕ, whether
T1 ` ϕ
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1. He introduces a system of Gödel numbering, which systematically asso-
ciates expressions of PA with numerical codes. Any sensibly systematic
coding scheme will do: Gödel’s choice is designed, however, to make it
relatively easy to prove arithmetical results about the codings.

2. With a coding scheme in place, we can reflect properties and relations of
strings of symbols of PA by properties and relations of their Gödel numbers.
For example, we can define the numerical properties term and wff which
hold of a number when it is the code number for a symbol sequence which
is, respectively, a term or a wff of PA. And we can, crucially, define the
numerical relation prfseq(m,n) which holds when m codes for an array of
wffs that is a PA proof, and n codes the closed wff that is thereby proved.
This project of coding up various syntactic relationships is often referred
to as the arithmetization of syntax. And what Gödel shows next is that
– given a sane system of Gödel numbering – these and a large family of
related arithmetical properties and relations are all what he calls ‘rekursiv ’,
i.e. are (in modern parlance) primitive recursive.

3. He proves, in effect, that PA is p.r. adequate. In other words, Gödel shows
that every p.r. function f(~x) can be captured by a relational wff ϕ(~x, y)
such that, if f(~m) = n then, PA ` ∀y(ϕ(~m, y) ≡ y = n).

4. Next – the exciting bit! – Gödel uses the fact that relations like prfseq are
p.r. and hence capturable in PA to construct a wff G which, given the coding
scheme, ‘says’ there is no number which is the Gödel number of a proof in
PA of the wff which results from a certain substitution construction – where
the wff which results from that construction is none other than G itself.
So in effect G ‘says’ of itself ‘I am unprovable in PA’. Gödel then shows
that G is indeed unprovable, assuming PA is consistent. So we’ve found an
arithmetical wff which is true but unprovable in PA. (And given a slightly
stronger assumption than PA’s consistency, ¬G must also be unprovable
in PA.) Moreover, this unprovable wff is, in an important sense, relatively
simple.

5. Finally, Gödel notes that the true-but-unprovable sentence G for PA is gen-
erated by a method that can be applied and re-applied to other arithmetics
that satisfy some modest conditions. So adding G as a new axiom to PA
just gives us a revised theory for which we can generate another true-but-
unprovable wff G′. So PA is therefore not only incomplete but essentially
incompletable.

We’ll take the stages of this proof as follows. In the next chapter, we’ll prove that
Q (and hence PA) is p.r. adequate, which gets stage (3) done. In Chapter 10, we
consider the arithmetization of syntax, i.e. stages (1) and (2). Stages (4) and (5)
are dealt with in Chapter 11.
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9 Q is P.R. Adequate

Back in Section 5.3 we showed that we can case-by-case capture the primitive
recursive less than relation in Q. But that was just one example. In this chapter,
we are going to outline a proof that any p.r. function – and hence (via its
characteristic function) any p.r. property and relation – can be captured in Q
(and hence in PA). This result is interesting for its own sake; but we are looking
at it here because it is a main load-bearing component in our Gödel-style proof
of the First Incompleteness Theorem.

Note, however, that the key proof idea (we can call it ‘the β-function trick’)
is not used again in this book, so it is not necessary to master the argument of
this chapter in order to grasp what follows. One option, therefore, is to take a
quick look at the first two sections in order to get the basic picture, and leave
it at that. Another option is simply to take Q’s p.r. adequacy on trust for the
moment, and skip this chapter entirely (at least until you’ve read Chapter 11
and really understand why the result matters).

By the way, the β-function trick is due to Gödel; so the following proof is in
essence his. But Gödel, of course, didn’t know about Q in his (1931); he gave a
proof – in effect – that PA is p.r. adequate: it was Raphael Robinson who first
remarked in his (1952) that the proof only depends on that part of PA which
follows from the axioms of Q.

9.1 The proof strategy

Recall that a p.r. function is one that can be specified by a chain of defini-
tions by composition and/or primitive recursion, building up from functions in
the ‘starter pack’ of initial functions. Suppose, then, that the following three
propositions are all true (and take ‘captures’ throughout this chapter to mean
‘captures-as-a-function’):

1. Q captures the initial functions.

2. If Q captures the functions g and h, then it also captures a function f

defined by composition from g and h.

3. If Q captures the functions g and h, then it also captures a function f

defined by primitive recursion from g and h.

Now take any p.r. function f. As we follow through the chain of definitions which
specifies f, we start with initial functions which are capturable. And – by (2)
and (3) – each successive definitional move takes us from capturable functions
to capturable functions. So f must be capturable.
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Hence: to show that every p.r. function can be captured in Q it is enough to
prove (1) to (3).

Proof sketch for (1) Evidently, the successor function is captured by the wff
Sx = y. (It is trivial that, for any m, Q ` ∃!y Sm = y, and it is equally trivial
that for any m, n, if Sm = n, then Q ` Sm = n.) Similarly, the zero function
Z(x) = 0 is captured by the relational wff (x = x ∧ y = 0). Thirdly, the identity
function I(x, y) = y, for example, is captured by (x = x ∧ y = z); likewise for
other identity functions. �

Proof sketch for (2) Suppose g and h are one-place functions, captured by the
wffs G(x, y) and H(x, y) respectively. Then, we claim, the function f(x) = g(h(x))
is captured by the relational wff ∃z(H(x, z) ∧ G(z, y)).

It is straightforward to check that that wff is provably functional for numerals.
So it remains to show that if f(m) = n, then Q ` ∃z(H(m, z) ∧ G(z, n)). But
if f(m) = g(h(m)) = n there must be some number o such that h(m) = o and
g(o) = n, so f(m) = g(h(m)) = n. Then, by assumption, we have Q ` H(m, o),
and Q ` G(o, n). And the desired result follows by simple logic.

The argument obviously generalizes to the case where g and h are multi-place
functions. �

Starting the proof sketch for (3) Now for the fun part. Consider the primitive
recursive definition of the factorial function again:

0! = 1
(Sx)! = Sx× x!

The multiplication and successor functions involved on the right of the equations
here are of course capturable: but how can we capture our defined function by
a relational wff F(x, y) in Q?

Think about the p.r. definition for the factorial in the following way. It tells us
how to construct a sequence of numbers 0!, 1!, 2!, . . . , x!, where we move from the
u-th member of the sequence (counting from zero) to the next by multiplying
by Su. So, putting x! = y, the p.r. definition says

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if
u < x then kSu = Su× ku, and kx = y.

So the question of how to reflect the p.r. definition of the factorial inside Q comes
to this: how can we express facts about finite sequences of numbers using the
limited resources of Q?

9.2 The idea of a β-function

Let’s pause the proof sketch for (3), and think about the kind of trick we could
use here (understand this and you understand the difficult bit of adequacy proof).

Suppose π0, π1, π2, π3, . . . is the series of prime numbers 2, 3, 5, 7, . . . . Now
consider the number
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b = πk0
0 · πk1

1 · πk2
2 · · ·πkn

n

This single number b can be thought of as encoding the whole sequence k0, k1, k2,
. . . , kn. For we can extract the coded sequence again by using the (primitive
recursive) decoding function exp(b, i) which we met in Section 6.4, which returns
the exponent of the prime number πi in the factorization of b. By the construction
of b, then, exp(b, i) = ki for i ≤ n.

Now let’s generalize. We’ll say

A two-place β-function is a function of the form β(b, i) such that,
for any finite sequence of natural numbers k0, k1, k2, . . . , kn there is
a code b such that for every i ≤ n, β(b, i) = ki.

So the idea is that – for any finite sequence of numbers you choose – you can
select a corresponding code number b to be the first argument for β, and then
the function will decode it and spit out the members of the required sequence in
order as its second argument is increased.1 We’ve just seen that there is nothing
in the least magical or mysterious about the idea of such a function: exp is a
simple example.

It turns out, however, to be convenient to generalize our notion of a β-function
just a little. So we’ll also consider three-place β-functions, which take two code
numbers c and d, as follows:

A three-place β-function is a function of the form β(c, d, i) such that,
for any finite sequence of natural numbers k0, k1, k2, . . . , kn there is
a pair of code numbers c, d such that for every i ≤ n, β(c, d, i) = ki.

Continuing the proof sketch for (3) Suppose we have a β-function to hand –
and we’ll use a three-place function, simply to make a smooth connection with
our key example of β-function in the next section. Then we can reformulate

A. There is a sequence of numbers k0, k1, . . . , kx such that: k0 = 1, and if
u < x then kSu = Su× ku, and kx = y,

as follows:

B. There is some pair c, d such that: β(c, d, 0) = 1, and if u < x then
β(c, d, Su) = Su× β(c, d, u), and β(c, d, x) = y.

Now let’s make another assumption: suppose that our three-place β-function can
be captured by a four-place open wff of Q which we will abbreviate B. Then we
can translate (B) into Q as follows:2

1For the record, referring to such a function as a ‘beta-function’ is absolutely standard.
The notation was in fact introduced by Gödel himself in his Princeton Lectures (1934, p. 365).

2For readability, we temporarily recruit ‘c’ and ‘d’ as variables. ‘∃!’ is the familiar unique-
ness quantifier again.
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C. ∃c∃d{B(c, d, 0, 1) ∧
∀u[u < x → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ w = Su× v}] ∧

B(c, d, x, y)}

Let’s abbreviate all that by ‘F(x, y)’: then this relational wff evidently expresses
the factorial function. But more than that, we can show that this wff captures
the factorial function (by proving that the relation is functional, and proving
that if m! = n, then Q ` F(m, n)). That takes a bit of effort, but the checking
is basically pretty routine, and we won’t give the boring details here.

In sum, then, we noted that the p.r. definition of n! tells us that there is a
sequence of (n + 1) numbers satisfying a certain condition. Then we used the
β-function trick to re-write this as the claim that there is a code number for the
sequence – or rather, two code numbers – satisfying a related condition. We can
then render this re-written version into Q. But what goes for our p.r. definition
of the factorial will fairly obviously go likewise for the p.r. definitions of other
functions. Which gives us the desired result (3). �

9.3 Filling in a few details

We’ll just quickly round out our proof-sketch for (3) in two ways. First (A), we
indicate how to warrant our assumption that there is a β-function that can be
captured in Q. Then for the record (B), we’ll spell out how to generalize the
argument that showed that the factorial can be captured in Q.

(A) Our initial example of a β-function – namely exp – is defined in terms
of exponentiation, which isn’t available (yet) in Q. So we need to find another
β-function that can be defined using just addition and multiplication, so that
we can readily capture it in Q.

Gödel solves our problem like this. Put

β(c, d, i) =def the remainder left when c is divided by (d(i+ 1) + 1).

Then it can be shown – by appeal to what is known as the Chinese Remainder
Theorem – that, given any sequence k0, k1, . . . , kn, we can find a suitable pair
of numbers c, d such that for i ≤ n, β(c, d, i) = ki.3 However, the concept of a
remainder on division can be elementarily defined in terms of multiplication and
addition. We can therefore render this β-function into Q by the following open
wff:

B(c, d, i, y) =def ∃u[c = {S(d× Si)× u}+ y ∧ y < S(d× Si)]

3This claim should look intrinsically quite plausible. As we divide c by (d(i + 1) + 1) for
different values of i for i ≤ n, we’ll get a sequence of n + 1 remainders. We just need show
that, if we make c big enough, we can find a d that makes the sequence of remainders match
a given sequence. This is a fairly straightforward arithmetical result: enthusiasts can consult
the classic text by Mendelson (1997, pp. 186–189), where the other claims in this section also
get iron-clad proofs, though the details are inevitably tiresome.
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And it can again be routinely checked that this wff does capture our three-place
β-function in Q.

(B) As we claimed, our neat β-function trick – or rather, Gödel’s neat β-
function trick – generalizes. For the record, suppose the function f is defined
from the functions g and h by the standard p.r. recursion equations:

f(~x, 0) = g(~x)
f(~x, Sy) = h(~x, y, f(~x, y))

This definition amounts to fixing the value of f(~x, y) = z thus:

A* There is a sequence of numbers k0, k1, . . . , ky such that: k0 = g(~x), and if
u < y then ku+1 = h(~x, u, ku), and ky = z.

So using a three-place β-function again, that comes to

B* There is some c, d, such that: β(c, d, 0) = g(~x), and if u < y then
β(c, d, Su) = h(~x, u, β(c, d, u)), and β(c, d, y) = z.

Suppose we can already capture the n-place function g by a (n + 1)-place re-
lational expression G, and the (n + 2)-place function h by the (n + 3)-place
expression H. Then – using ‘~x’ to indicate a suitable sequence of n variables –
(B*) can be rendered into Q by

C* ∃c∃d{∃w[B(c, d, 0,w) ∧ G(~x,w)] ∧
∀u[u < y → ∃v∃w{(B(c, d, u, v) ∧ B(c, d,Su,w)) ∧ H(~x, u, v,w)}] ∧

B(c, d, y, z)}

It can then again be checked that this defined wff ϕ(~x, y, z) will serve to capture
the p.r. defined function f .

9.4 The adequacy theorem refined

We have now outlined proofs of the three propositions (1) to (3) which we stated
at the beginning of Section 9.1. Which suffices to establish

Theorem 8 Q is strongly p.r. adequate – i.e. can capture-as-a-function
every p.r. function.

But in fact we have proved rather more than we set out to do. For we’ve just
shown not only that every p.r. function is captured by some relational Q wff,
but that every such function is captured by a wff which transparently reveals it
to be a p.r. function.

To repeat once more, a p.r. function f can always be defined by a chain of
definitions by composition and primitive recursion, starting from some initial
function s. And we’ve just shown that we can capture f by a corresponding
wff which is built up by steps which recapitulate the definitions. So we therefore
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end up with a wff from which we can read back f ’s p.r. definition. Let’s say
that a wff which captures a p.r. function in this revealing way is a perspicuous
representation of the function. Then we can refine our theorem: Q can capture
every p.r. function in a perspicuous way. And we’ll take it henceforth that when
we talk of a p.r. function being captured by a wff in a formal arithmetic, we have
in mind this sort of revealing representation.

Finally, here’s an immediate corollary of Theorem 8:

Theorem 8* Q can capture every p.r. property and relation.

That’s because, a property is p.r. if it has a p.r. characteristic function; and this
characteristic function, being p.r., can be captured in Q; but by the result we
noted in Section 7.3, if a property’s characteristic function is capturable, so is
that property itself. Likewise for relations.

Finally, we remark again – as we did at the end of Chapter 7 – that if Q is
strongly p.r. adequate, then of course PA, which can prove everything that Q
proves, must be strongly adequate too.
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This chapter introduces the key idea that we can associates numbers (the osten-
sible subject matter of PA wffs) with wffs and proofs from our formal arithmetic,
and thereby reflect facts about wffs and proofs by numerical claims expressible
in arithmetic.

10.1 Gödel numbering

We’ve already encountered one numbering device in Section 2.6; there we mapped
symbols from the alphabet of a theory’s language to (base ten) digits, and as-
sociated a concatenation of symbols with (the number expressed by) the corre-
sponding concatenation of digits. This sort of thing would work for our present
purposes too, but here we’ll describe something more like Gödel’s original num-
bering scheme.

Suppose then that our version of PA has the usual logical symbolism (connec-
tives, quantifier symbols, identity, brackets), and symbols for zero and the succes-
sor, addition and multiplication functions: associate all those with odd numbers
(different symbol, different number, of course). We also need a never-ending sup-
ply of variables, say x, y, z, u, . . . which we’ll associate with even numbers. So, for
example, we might have this preliminary series of symbol codes:

¬ ∧ ∨ → ∀ ∃ = ( ) 0 S + × x y z u . . .

1 3 5 7 9 11 13 15 17 19 21 23 25 2 4 6 8 . . .

If our logical apparatus uses parameters (‘arbitrary names’) then we’ll need
symbol codes for them too.

A Gödelian numbering scheme for expressions of PA is now defined in terms
of this table of preliminary symbol codes as follows:

Suppose the expression e is a sequence of k symbols s0, s1, s2, . . . , sk.
Then its Gödel number (g.n.) is calculated by taking the symbols’
correlated code-numbers, using them in turn as exponents for the
prime numbers π0, π1, π2, . . . , πk, and then multiplying the results.

For example, the single symbol ‘S’ has the g.n. 221 (the first prime raised to the
appropriate power as read off from our correlation table of symbol codes). The
standard numeral SS0 has the g.n. 221 · 321 · 519 (the product of the first three
primes raised to the appropriate powers). While the wff

∃y((S0 + y) = SSS0)
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has the g.n.

211 · 34 · 515 · 715 · 1121 · 1319 · 1723 · 194 · 2317 · 2913 · 3121 · 3721·
4121 · 4319 · 4717

Which is, of course, enormous. So when we say that it is elementary to decode
the resulting g.n. again by taking the exponents of prime factors, we don’t mean
that the computation is quick and easy. We mean that the computational routine
required for the task – namely, repeatedly extracting prime factors – involves no
more than the mechanical operations of school-room arithmetic.

Two remarks. First, we’ve allowed the introduction of abbreviatory symbols
in PA (like ‘ ≤’ and ‘3’); take the g.n. of an expression including such symbols
to be the g.n. of the unabbreviated version.

Second, we will later be assuming there are similar Gödel numbering schemes
for the expressions of other theories T with possibly different languages. We can
imagine each of these numbering schemes to be built up in the same way but
from a different table of preliminary symbol codes to cope with the different
basic symbols of T ’s language. We won’t spell out the details.

10.2 Coding sequences

As we said in Section 8.2, the relation prfseq(m,n) will be crucial to what follows,
where this relation holds just when m codes for an array of wffs that is a PA
proof, and n codes for the closed wff that is thereby proved. But how do we code
for proof-arrays?

The details will depend on the kind of proof-system we’ve adopted for our ver-
sion of PA. To keep things simple, let’s assume that the proof-system is a rather
old-fashioned linear one (not a tree system), so proof-arrays are simply sequences
of wffs. Then a nice way of coding these is by what we’ll call super Gödel num-
bers. So, given a sequence of PA wffs or other expressions e0, e1, e2, . . . , en, we
first code each ei by a regular g.n. gi, to yield a resulting sequence of regular
Gödel numbers. We then encode this sequence into a super g.n by repeating
the trick of taking powers of primes. For example, the sequence of regular g.n.
g0, g1, g2, . . . , gn is wrapped up into the super g.n. 2g0 ·3g1 ·5g2 · · · · ·πgn

n . Hence,
decoding a super g.n. involves two steps of taking prime factors: first find the
exponents of the prime factors of the super g.n.; then treat those exponents as
themselves regular g.n., and take their prime factors to arrive back at a sequence
of PA expressions.

We can now define prfseq more carefully:

prfseq(m,n) is true just if m is the super g.n. of a sequence of wffs
that is a PA proof of the closed wff with regular g.n. n.
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10.3 prfseq is p.r.

Gödel’s next main target is to prove that prfseq(m,n) and some cognate func-
tions and relations are primitive recursive.

Writing at the very beginning of the period when concepts of computation
were being forged, Gödel couldn’t really expect his audience to take anything
on trust about what was or wasn’t p.r., and he therefore had to do all the hard
work of explicitly showing how to define prfseq(m,n) by a chain of definitions
by composition and primitive recursion. Assuming, however, that we have even
a pretty modest familiarity with the idea of computer programs, we now can
perhaps short-cut all that effort and be persuaded by

A very sketchy argument To determine whether prfseq(m,n), proceed as follows.
First decode m: that’s a mechanical exercise. Now ask: is the result a sequence
of PA wffs? That’s algorithmically decidable. If it does decode into a sequence of
wffs, ask: is this sequence a properly constructed proof? That’s decidable too. If it
is a proof, ask: is the last wff in the sequence, i.e. the wff proved, a sentence – i.e.
does it lack free variables? That’s decidable. If it is a sentence, ask: does that final
wff have the g.n. n? That’s again decidable. So, putting all that together, there is
a computational procedure for telling whether prfseq(m,n) holds. Moreover, the
computation involved is at each stage a straightforward, bounded procedure that
doesn’t involve any open-ended search. Suppose then that we set out to describe
the algorithm a computer could use to determine whether prfseq(m,n). We will
be able to do this using nothing more complex than bounded ‘for’ loops (we
don’t need to use any open-ended ‘do while’/‘do until’ structure).

That means we should be able to turn our informal algorithm into a numerical
loop program in the sense of Section 6.5 (a program that – where appropriate –
operates on number codes for expressions rather than on the expressions them-
selves). However, we noted that what a numerical loop program computes is
primitive recursive. Hence prfseq is primitive recursive. �

That is indeed all pretty sketchy, but the argument may well strike you as con-
vincing enough all the same. And if you are then happy to take it on trust that
we can make all this rigorous, that’s fine. If you aren’t, then read Section 10.6!

10.4 The idea of diagonalization

To introduce the next results we want, we need to pause to take a quick look
ahead. Gödel is going to tell us how to construct a formal wff G in PA that –
putting it crudely – says ‘I am unprovable’. We now have an inkling of how he
might be able to do that: wffs can contain numerals which refer to Gödel-numbers
which are in turn correlated with wffs.

The key step in Gödel’s own construction involves taking an open wff that
we’ll abbreviate U(y), which contains just ‘y’ free, and substituting the numeral
for that wff’s g.n. for the free variable. So if the g.n. of ‘U(y)’ is u, which is
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denoted by the standard numeral ‘u’, then the key step involves forming the wff
U(u).1

This involves something quite closely akin to the ‘diagonal’ constructions we
encountered in e.g. Sections 4.2, 6.6. In the first case, we matched the index of
a wff ϕn(x) (in an enumeration of wffs with one free variable) with the numeral
substituted for its free variable, to form ϕn(n). In the second case, we matched
the index of a function fn (in an enumeration of p.r. functions) with the number
the function takes as argument, to form fn(n). Here, in our Gödelian construc-
tion, we match U(y)’s Gödel number – and we can think of this g.n. as indexing
the wff in a list of wffs – with the numeral substituted for its free variable,
and this yields the Gödel sentence G. Hence the standard claim that Gödel’s
construction again involves a type of diagonalization.

Now just note the following additional point. Given the wff ‘U(y)’ with g.n.
u, it can’t matter much whether we do the ‘diagonalization’ construction by
forming (i) U(u) (as Gödel himself does) or by forming (ii) ∃y(y = u ∧ U(y)). For
(i) and (ii) are trivially equivalent. But it makes things go very slightly easier
if we do things the second way. So here’s an official definition, which applies to
any expression:

The diagonalization of ϕ is ∃y(y = n ∧ ϕ), where ‘n’ is numeral for
ϕ’s g.n.

10.5 diag and gdl are p.r.

We next note a couple more results about p.r. functions. First:

There is a p.r. function diag(n) which, when applied to a number n
which is the g.n. of some wff, yields the g.n. of that wff’s diagonal-
ization.

Another very sketchy argument Decode the g.n. n to get some expression ϕ.
Then form its diagonalization, ∃y(y = n ∧ ϕ). Then work out the g.n. of the
result. That is a very simple mechanical procedure to compute diag(n), which
doesn’t involve any unbounded searches. So we again we should be able to turn
the procedure into a loop program. Hence diag is p.r. �

Second, let’s consider the numerical relation which we’ll dub ‘gdl ’ (and which
will play a starring role in the next chapter):

gdl(m,n) holds when m is the super g.n. for a PA proof of the diag-
onalization of the wff with g.n. n.

Again, gdl is intuitively computable (without unbounded searches) and so again
we expect it to be primitive recursive. And assuming that prfseq and diag are
indeed p.r., then we can actually prove in a couple of lines that gdl is p.r.:

1There’s no special significance to using the variable ‘y’ for the free variable here! But we’ll
keep this choice fixed, simply for convenience.
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Proof Evidently, we can just put

gdl(m,n) =def prfseq(m, diag(n))

Then gdl is defined by the composition of p.r. functions, so is itself p.r. �

10.6 Gödel’s proof that prfseq is p.r.

We’ve given, then, an informal but hopefully entirely persuasive argument that
prfseq is primitive recursive. Gödel, however, gives a proper proof of this result
by showing how to define a sequence of more and more complex functions and
relations by composition and primitive recursion, ending with a p.r. definition of
prfseq. Inevitably, this is a laborious job: Gödel does it with masterly economy
and compression but, even so, it takes him 45 steps of function-building to get
there.

We’ve in fact already traced some of the first steps in Section 6.4. We showed,
in particular, that extracting exponents of prime factors – the key operation
used in decoding Gödel numbers – involves a p.r. function exp. We now need
to keep going in the same vein, defining ever more complex functions. What I
propose to do here is fill in the next few steps fairly carefully, and then indicate
more briefly how the rest go. This should be enough to give you a genuine feel
for Gödel’s construction and convince you that it can be completed, even though
I don’t go into every last detail.

Needless to say, you are very welcome to skip the rest of this section and jump
to the next chapter: you’ll miss nothing of wider conceptual interest.2

Our discussion is divided into stages marked (A) to (D).

(A) Preliminaries If you are still reading, first quickly revisit Section 6.4. Recall
two facts in particular:

v. The function exp(n, i) is p.r., where this returns the exponent of πi in the
prime factorization of n.

vi. The function len(n) is p.r., where this returns the number of distinct prime
factors of n.

Note, then, that if n is the g.n. of an expression e which is a sequence of symbols
s0, s1, s2, . . . , sk, then exp(n, i) gives the symbol code of si. And if n is the super
g.n. of a sequence of wffs or other expressions e0, e1, e2, . . . , ek, then exp(n, i)
gives the g.n. of ei. Further, note that if n is a g.n., then it consists in multiples
of the first n primes: hence – since we count the primes from π0 – the highest
prime factor of n is πlen(n)−1

Now let’s introduce a rather cute bit of new notation:
2Look at it like this. We argued on general grounds in the previous section that there is

a loop program for determining whether prfseq(m,n) holds. This section in effect describes
how to write the program. Which is fun in its way. But once you are are convinced that the
programming tricks can be done, you can cheerfully forget how they are done.
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If ϕ is an expression of PA, then we’ll use ‘pϕq’ to denote ϕ’s Gödel
number,

So, for example: ‘∧’ and ‘SS0’ are both PA expressions. And on our numbering
scheme, p∧q, the g.n. of ‘∧’, is 23, and pSS0q is 221 · 321 · 519.

We will now add two more examples of p.r. properties and functions to the
six we met before:

vii. Let var(n) be true just when n is the g.n. of a variable. Then var is a p.r.
property.

viii. We can define a p.r. function ‘star’ function such that (m ? n) is the g.n.
of the expression which results from stringing together the expression with
g.n. m followed by the expression with g.n. n.

Proof for (vii) We just note that

var(n) ≡ (∃x ≤ n)(n = 22x)

The exponential function is p.r., and a definition by bounded quantification
preserves primitive recursiveness, so var is p.r. too. Of course, this definition of
var depends on our particular coding scheme: alternative methodical schemes
will generate other p.r. functions. �

Proof for (viii) Suppose m and n are Gödel numbers, and that len(m) = j

and len(n) = k. We then want the function (m ? n) to yield the value obtained
by taking the first j + k primes, raising the first j to powers that match the
exponents (taken in order) of the j primes in the prime factorization of m and
then raising the next k primes to powers that match the k exponents in the prime
factorization of n. Then (m ? n) will indeed yield the g.n. of the expression
which results from stringing together the expression with g.n. m followed by
the expression with g.n. n. To take a simple example, if m = 211 · 34 and n =
24 · 313 · 519, then (m ? n) = 211 · 34 · 54 · 713 · 1119. But m is the g.n. of the
expression ‘∃y’, and n is the g.n. of ‘y = 0’, and (m ? n) is, as we want, the g.n.
of their concatenation ‘∃y y = 0’.

Again, suppose a is the g.n. of the wff ‘∃x(x = S0)’; then p¬q ? a is the g.n. of
‘¬∃x(Sx = 0)’. And suppose b is the g.n. of ‘S0 = 0’. Then p(q ? a ? p→q ? b ? p)q
is the g.n. of ‘(∃x(Sx = 0) → S0 = 0)’.3

It is readily seen we can define a p.r. (m?n) which applies to Gödel numbers
in the right way. Just put

(m ? n) = (µx ≤ Bm,n)[(∀i < len(m)){exp(x, i) = exp(m, i)} ∧
(∀i ≤ len(n)){exp(x, i+ len(m)) = exp(n, i)}]

To finish, we just need to fix on a suitableBm,n to keep the minimization operator
finitely bounded: πm+n

m+n is certainly big enough to cover all eventualities! �

3Note that ((m ? n) ? o) = (m ? (n ? o)), which is why we can suppress internal bracketing
with the star function.
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(B) Showing termseq(m,n), term(n), and atomic(n) are p.r. Formal proofs are
sequences of wffs; wffs are defined as built up from atomic wffs. And since the
only primitive predicate of PA is the identity relation, the atomic wffs of PA are
defined as expressions of the kind ‘τ1 = τ2’ where the τi are terms. So let’s focus
first on the definition of that last fundamental notion.

A term of PA (cf. Section 5.1) is either ‘0’, or a variable, or is built up from
those using the function-symbols ‘S’, ‘+’, ‘×’ – to give us, for example, the
complex term (S0× (SS0 + x)).

Now, let’s say that a ‘constructional history’ for a term, or a term-sequence,
is a sequence of expressions 〈τ0, τ1, . . . , τn〉 such that each expression τk in the
sequence either (i) is ‘0’, or else (ii) is a variable, or else (iii) has the form
Sτj , where τj is an earlier expression in the sequence, or else (iv) has the form
(τi + τj), where τi and τj are earlier expressions in the sequence, or else (v) has
the form (τi× τj), where τi and τj are earlier expressions. Since any well-formed
term must have the right kind of constructional history, we can adopt as our
official definition: a term is an expression which is the last expression in some
term-sequence.

That last observation motivates our being interested in the numerical relation
termseq(m,n), which holds when m is the super g.n. for a term-sequence, and n
is the g.n. of the last expression in that term-sequence. And we can easily prove
the following interim result: termseq is primitive recursive.

Proof We can define termseq by something of the following shape:

termseq(m,n) =def {(∀k < len(m))[. . . exp(m, k) . . . ] ∧
exp(m, len(m)− 1) = n}

The second conjunct here, i.e. exp(m, len(m) − 1) = n, ensures that the last
expression in the sequence with super g.n. m indeed has g.n. n. And we now
need to fill out the square brackets in the first conjunct in a way that reflects the
fact for each k < len(m), exp(m, k) – the g.n. of τk in our putative term-sequence
– is the g.n. of an expression satisfying one of the five defining conditions for
belonging to a term-sequence. So, in those square brackets, we therefore need to
say that exp(m, k) is either

(i) the g.n. of ‘0’, so exp(m, k) = p0q;
or (ii) the g.n. of a variable, so var(exp(m, k));
or (iii) the g.n. of ‘Sτj ’ where τj occurs earlier in the term sequence, so

(∃j < k)(exp(m, k) = pSq ? exp(m, j));
or (iv) the g.n. of ‘(τi + τj)’ where τi and τj occur earlier, so

(∃i < k)(∃j < k)(exp(m, k) = p(q ? exp(m, i) ? p+q ? exp(m, j) ? p)q);
or (v) the g.n. of ‘(τi × τj)’ where τi and τj occur earlier, so

(∃i < k)(∃j < k)(exp(m, k) = p(q ? exp(m, i) ? p×q ? exp(m, j) ? p)q)

All the clauses are p.r. conditions, so their disjunction is a p.r. condition, so
termseq is p.r., as we wanted to show. �
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It is an immediate corollary of this that the property term(n) – which holds
when n is the g.n. of a term of PA – is also primitive recursive.

Proof Since a term has to be the final member of some term sequence, we can
give the following definition:

term(n) =def (∃x ≤ Bn)termseq(x, n)

where Bn is a suitably large bound. Given a term with g.n. n, and hence with
l = len(n) symbols, its term-sequence will be at most l long: so the super g.n.
of any term-sequence constructing it must be less than (πn

l )l. So we can set
Bn = (πn

l )l. �

And that leads to another quick result: define atomic to be the property of being
the g.n. of an atomic wff of PA – then, atomic(n) is again primitive recursive:

Proof In PA, the only atomic wffs are expressions of the kind τ1 = τ2. So put

atomic(n) =def

(∃x ≤ n)(∃y ≤ n)[term(x) ∧ term(y) ∧ n = (x ? p=q ? y)]

It is then immediate that atomic(n) is p.r. �

(C) Showing formseq(m,n) and wff (n) are p.r. We can now proceed to define
the idea of a formula-sequence analogously to the idea of a term-sequence. So: a
formula-sequence is a sequence of expressions 〈ϕ0, ϕ1, . . . , ϕn〉 such that each ϕk

in the sequence either (i) is an atomic wff, or else (ii) is of the form ¬ϕj where
ϕj is an earlier expression in the sequence, or else (iii) is of one of the forms
(ϕi ∧ ϕj) or (ϕi ∨ ϕj) or (ϕi → ϕj) where ϕi and ϕj are earlier expressions in
the sequence, or else (iv) is of one of the forms ∀ξϕj , or ∃ξϕj where ϕj is an
earlier expression in the sequence and ξ a variable.

We now define the corresponding numerical relation formseq(m,n) which
holds when m is the super g.n. of a formula-sequence, and n is the g.n. of the
last expression in that sequence. This too is primitive recursive. And to show
that, we use exactly the same strategy as in our proof that termseq is p.r. – i.e.
we put

formseq(m,n) =def {(∀k < len(m))[. . . exp(m, k) . . . ] ∧
exp(m, len(m)− 1) = n}

and this time we fill in the square brackets with clauses that reflect the conditions
(i) to (iv) on being members of a formula sequence.

Since a wff by definition is constructed by some formula sequence, then – again
by choosing a new suitable bound Bn – we can define the p.r. property

wff (n) =def (∃x ≤ Bn)formseq(x, n).

We can also show in similar ways that e.g. closed is p.r., where closed(n) holds
just when n is the g.n. of a wff with no free variables.
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(D) Showing prfseq(m,n) is p.r. And now the end is in sight. We outline a
proof that prfseq is primitive recursive as claimed.

Proof sketch The details here will depend on the type of proof system we are
dealing with. To keep things particularly simple, suppose again we’ve adopted
an old-fashioned linear proof-system for PA (which therefore doesn’t allow tem-
porary suppositions and sub-proofs). In this kind of system there are logical
axioms – e.g. instances of the schemas ‘(ϕ → (ϕ ∨ ψ))’ and ‘(∀ξϕ(ξ) → ϕ(τ))’
– and usually just two rules of inference, modus ponens and universal quantifier
introduction. We can then define a PA proof as a sequence of wffs, each one of
which is either (i) an axiom (a PA axiom or a logical axiom), or follows from
previous wffs in the sequence by (ii) MP or (iii) UI.

The relation modusponens(m,n, o) – which holds when the wff with g.n. o
follows from the wffs with g.n. m and n by modus ponens – is obviously p.r., for
it is immediate that modusponens(m,n, o) just when

m = p(q ? n ? p→q ? o ? p)q ∧ wff (n) ∧ wff (o).

Likewise univintro(m,n) is p.r., where this relation holds if n numbers a universal
quantification of the wff numbered by m.

Suppose axiom(n) is true just so long as n is the g.n. of an axiom of PA or
a logical axiom. Then – following the pattern of our definition of termseq – we
can say:

prfseq(m,n) =def ∀k < len(m), exp(m, k) – i.e. the g.n. of the k-th
expression of the sequence – is either

(i) the g.n. of an axiom, so axiom(exp(m, k));
or (ii) the g.n. of a wff that follows from two earlier wffs by MP, so

(∃i ≤ k)(∃j ≤ k)modusponens(exp(m, i), exp(m, j), exp(m, k));
or (iii) the g.n. of a wff that follows from an earlier wff by UI, so

(∃j ≤ k)univintro(exp(m, j), exp(m, k)):
and exp(m, len(m)− 1) = n and closed(n).

Which is p.r. if axiom is. �

So it just remains to check that the property of being the g.n. of a PA axiom is
primitive recursive. Which it is – though showing this is just a bit tricky because
we have to deal with the idea of being an instance of the induction schema. But
we won’t go on to nail down all the details here: enough is probably already
more than enough!

One final point in this section. prfseq(m,n) holds when m is the super g.n.
of a proof of the wff with g.n. n. So prov(n) =def ∃x prfseq(x, n) holds when
the wff with g.n. n is provable. But note that we can’t read off from n some
upper bound on the length of possible proofs for the wff with g.n. n. So we
can’t define the provability property by some bounded quantification of the kind
(∃x ≤ B)prfseq(x, n). If we could, the the provability probability would be p.r.:
but it isn’t – as we will show in Section 12.6.
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10.7 Proving that diag is p.r.

We are almost done. But the numerical relation which will play a pivotal role
when we prove Gödel’s First Incompleteness Theorem is not prfseq itself but gdl,
where

gdl(m,n) =def prfseq(m, diag(n))

This relation is p.r. if the following function is:

diag(n) = the g.n. of the result of diagonalizing the expression with
g.n. n.

We gave an informal argument that diag is indeed p.r. in Section 10.3: to round
out this chapter, we can now give a quick proof.

We just need to add one last item to our catalogue of results about p.r.
functions:

ix. The function num(n) whose value is the g.n. of the standard numeral for
n is p.r.

Proof for (ix) Note that the standard numeral for Sn is of the form ‘S’ followed
by the standard numeral for n. So we have

num(0) = p0q = 219

num(Sx) = pSq ? num(x) = 221 ? num(x)

And we are done. �

Proof that diag is p.r. We now just note that we can put

diag(n) = p∃y(y =q ? num(n) ? p∧q ? n ? p)q

And we get a p.r. function which does the desired job. �
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11 The First Incompleteness Theorem

The pieces we need are now all in place: so we can at last give Gödel’s central
construction which first delivers a true-but-unprovable sentence for PA and then
can be generalized to show that this theory – and any other formal arithmetic
satisfying some modest constraints – is not only incomplete but incompletable.

11.1 Constructing G

We’ve already trailed the headline news: Gödel constructs a PA sentence G that,
when read in the light of the Gödel coding, says ‘I am unprovable in PA’. But
how does he do this?

First, two reminders. Recall (from Section 10.4):

The diagonalization of ϕ is ∃y(y = n ∧ ϕ), where ‘n’ is numeral for
ϕ’s g.n.

And recall (from Section 10.5):

gdl(m,n) is true when m is the super g.n. for a PA proof of the
diagonalization of the wff with g.n. n.

We have shown that this numerical relation gdl is primitive recursive. So by
Theorem 8*, there must be an open wff of Q, and hence of PA, which captures
it. Further, there will be a wff which captures the relation in a perspicuous way,
so that we can read off the relation’s (or rather, its characteristic functions’s)
p.r. definition (see Section 9.4). So let Gdl(x, y) abbreviate some such perspicuous
representation of gdl . Now consider the PA wff

∀x¬Gdl(x, y)

Abbreviate this wff as U(y), and let its g.n. be u. Now diagonalize U(y); that
yields

∃y(y = u ∧ ∀x¬Gdl(x, y))

This is the ‘Gödel sentence’ we’ve been aiming for: we’ll abbreviate it G. And
we immediately have the trivial logical equivalence

G ≡ ∀x¬Gdl(x, u)

Consider what it takes for G to be true, in the light of the fact that the
formal predicate Gdl captures – and hence (assuming PA is sound) expresses –
the numerical relation gdl . By the trivial equivalence, G is true if and only if
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there is no number m such that gdl(m,u). That is to say, given the definition of
gdl , G is true if and only if there is no number m such that m is the code number
for a PA proof of the diagonalization of the wff with g.n. u. But by construction,
the wff with g.n. u is the wff U(y); and its diagonalization is G. So, G is true if
and only if there is no number m such that m is the code number for a PA proof
of G. But if G is provable, some number would be the code number of a proof of
it. Hence G is true if and only if it is unprovable in PA. Wonderful!

11.2 Interpreting G

It is often claimed – incautiously – that G is not merely true if and only if
unprovable in PA, but it actually says that it is unprovable in PA (indeed, for
vividness, we have occasionally put it that way).

But we must be very careful here! The wff G is just another sentence of PA’s
language LA, the language of basic arithmetic. It is an enormously long wff
involving the first-order quantifiers, the connectives, the identity symbol, and
‘S’, ‘+’ and ‘×’, which all have the standard interpretation built into LA. And
on that interpretation, G is strictly speaking a complex claim about the results
of ordinary arithmetical operations, no more and no less.

Now, when we summarily claim that G ‘says’ it is unprovable, this is not to
invoke some radical re-interpretation of its symbols (for doing that would just
make the claim trivial: if we are allowed radical re-interpretations – like spies
fixing on a secret code – then any string of symbols can mean anything). No,
it is because the symbols are being given their standard interpretation that we
can recognize Gdl (when unpacked) as perspicuously expressing gdl , given the
background framework of Gödel numbering which is involved in the definition of
the relation gdl . And therefore we can recognize G as holding when no number
m is such that gdl(m,u): so we can immediately see, without further argument,
that G is constructed in such as way as to make it true just when it is unprovable
in PA. That is the limited sense in which it ‘says’ – with very heavy scare quotes
– that it is unprovable.

11.3 G is unprovable in PA: the semantic argument

The argument now runs along the lines we sketched right back in Section 1.1.
Assume that the axioms of PA are true on the standard interpretation (which
they are, of course). We know that PA’s logic – i.e. some version of classical
first-order logic – is necessarily truth-preserving. Hence all its theorems are true.
But if G (which is true if and only if it is unprovable) can be proved in PA, the
theory proves a false theorem. Contradiction! Hence, G is not provable in PA.
Hence G is true. So ¬G is false. Hence ¬G cannot be proved in PA either. In
Gödel’s words, G is a ‘formally undecidable’ wff of PA. So that gives us
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Theorem 9 If PA has true axioms, then there is a closed wff ϕ of
LA such that neither PA ` ϕ nor PA ` ¬ϕ.

If we are happy with the semantic assumption that PA’s axioms are true on
interpretation, the argument for incompleteness is as simple as that, once we
have constructed G.1 However, for reasons that will become clearer when we
consider ‘Hilbert’s programme’, it was important to Gödel that incompleteness
can be proved without supposing that PA is sound: as he puts it, ‘purely formal
and much weaker assumptions’ suffice.

11.4 ‘G is of Goldbach type’

Before showing how weaker assumptions suffice, let’s pause to remark that the
unprovable Gödel sentence G, while in one way very complicated when spelt out
in all its detail, is in another sense very simple.

Recall Goldbach’s conjecture that ∀xP (x), where P (x) expresses the property
of being even and the sum of two primes. There is a simple mechanical routine
for determining of any given number n whether it is has that property. You just
check whether n is even and then look through the n/2 different pairs of (non-
zero) numbers that which sum to n and test their members for being prime.
A simple loop program will do the trick. Unsurprisingly, then, the property
of being even and the sum of two primes in question is p.r.: i.e. there is a p.r.
function which, for the argument n, returns the value 0 if P (n) is true and
returns 1 if it isn’t. To put it another way, there is a p.r. function which decides
whether P (n).

Let’s now say more generally that a formal proposition is of ‘Goldbach type’
if it is equivalent to one of the form ∀xϕ(x) where ϕ(x) similarly expresses a
p.r. property. And now note that G is of Goldbach type. For G ≡ ∀xϕ(x), where
ϕ(x) = ¬Gld(x, u). But Gld(x, y) expresses a p.r. relation, so Gld(x, u) for fixed u
expresses a p.r. property: and recall that applying negation takes us from a p.r.
property to a p.r. property. So ϕ(x) does indeed express a p.r. property. Hence
our Gödel sentence is in one sense no more complex than a familiar arithmetical
claim such as Goldbach’s conjecture. And we can strengthen our statement of
Theorem 9, to give us

Theorem 9* If PA has true axioms, then there is a closed LA-wff
ϕ of Goldbach type such that neither PA ` ϕ nor PA ` ¬ϕ.

11.5 G is unprovable in PA: the syntactic argument

We next show, without assuming PA’s truth, that
1Note that Theorem 9 does not require the result that the numerical relation gdl is captured

by some open wff Gdl(x, y): we so far only need the weaker claim that gdl can be expressed by
some Gdl(x, y).
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G is unprovable in PA: the syntactic argument

A. If PA is consistent, G is unprovable.

Proof Suppose G is provable in PA. If G has a proof, then there is some super
g.n. m that codes its proof. But by definition, G is the diagonalization of the
wff with g.n. u. Hence, by definition again, gdl(m,u). Since Gdl captures gdl , it
follows that (i) PA ` Gdl(m, u).

But since G is logically equivalent to ∀x¬Gdl(x, u), the assumption that G is
provable comes to this: PA ` ∀x¬Gdl(x, u). However, ∀x¬Gdl(x, u) ` ¬Gdl(m, u).
Hence (ii) PA ` ¬Gdl(m, u).

So, combining (i) and (ii), the assumption that G is provable entails that PA
is inconsistent. Hence, if PA is consistent, there can be no PA proof of G. �

We can also show that ¬G is unprovable, again without assuming PA’s axioms
are true. But to do this, we need a somewhat stronger assumption than the mere
consistency of PA. This takes a bit of explaining.

Let’s say

A theory of arithmetic T is ω-inconsistent if, for some wff ϕ(x),
T ` ∃xϕ(x), yet for each number n we have T ` ¬ϕ(n).

(‘ω’ – omega – is the logicians’ label for the natural numbers taken in their
natural order.) Note that ω-inconsistency, like ordinary inconsistency, is a syn-
tactically defined property – i.e. a property characterized in terms of what wffs
can be proved, not in terms of what they mean. Note also that ω-consistency –
defined of course as not being ω-inconsistent! – implies plain consistency: that’s
because T ’s being ω-consistent is a matter of its not being able to prove a cer-
tain combination of wffs, which entails that T can’t be inconsistent and prove
all wffs.

On reflection, it should be clear that ω-inconsistency in a theory of arithmetic
is a Very Bad Thing (not as bad as outright inconsistency, maybe, but still bad
enough). For suppose that the axioms of an arithmetic theory T are true on
a ‘normal’ interpretation (by which we mean an interpretation whose domain
comprises just zero and its successors, and on which T ’s standard numerals are
correctly assigned to the corresponding natural numbers). Assuming T has a
sound logic, T ’s theorems will then all be true on this interpretation. So suppose
that, for some ϕ(x), T proves ¬ϕ(0),¬ϕ(1), . . . ,¬ϕ(n), . . . for each and every
number n. All these theorems will then be true on the given normal interpre-
tation; so this means that every natural number must satisfy ¬ϕ(x). So there
is no object in the domain left over to satisfy ϕ(x). So ∃xϕ(x) will be false on
this interpretation. Therefore it can’t be a theorem. Hence, contraposing, if T is
ω-inconsistent – i.e. each of ¬ϕ(n) is a theorem and yet ∃xϕ(x) is a theorem too –
then T cannot have a normal arithmetic interpretation. Given we want a theory
of arithmetic to have theorems which are all true on a normal interpretation, we
therefore want a theory to be ω-consistent.

With that preamble, we now prove

B. If PA is ω-consistent, ¬G is unprovable.
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Proof Suppose that PA is ω-consistent but ¬G is provable in PA. If PA is ω-
consistent, it is consistent. So if ¬G is provable, G is not provable. Hence take
any m you like, m cannot code for a proof of G. But G is (again!) the wff you get
by diagonalizing the wff with g.n. u. Therefore, by definition, our assumptions
imply ¬gdl(m,u), for each m. Hence, by the requirement that Gdl captures gdl ,
we have PA ` ¬Gdl(m, u) for each m. But we are assuming that ¬G is provable
in PA, which is equivalent to assuming PA ` ∃xGdl(x, u). And that makes PA
ω-inconsistent after all, contrary to hypothesis. Hence, if PA is ω-consistent, ¬G
is unprovable. �

Putting results (A) and (B) together, we have the following:

Theorem 10 If PA is consistent, then there is a closed LA-wff ϕ of
Goldbach type such that ϕ is not provable; if PA is ω-consistent, ¬ϕ
is not provable either.

And note, by the way, the important point that this existence claim is proved
‘constructively’ – i.e. by giving us a recipe for actually producing the ‘formally
undecidable’ wff ϕ.

11.6 Gödel’s First Theorem

As we said at the very outset, however, the real bite of Gödelian incompleteness
results isn’t in the claim that this or that particular theory such as PA happens
to be incomplete, but in the fact that his proof-method is general, and applies
to any theory satisfying modest conditions.

Looking again at our proof for Theorem 10, we can see that the essential facts
underpinning our incompleteness proof are:

1. The relation gdl is primitive recursive.

2. PA is (at least weakly) p.r. adequate, so there is an open wff Gdl such that if
gdl(m,u) then PA ` Gdl(m, u), and if not-gdl(m,u) then PA ` ¬Gdl(m, u).

And – we mustn’t forget –

3. We have quantification available in order to form the quantified wff G.2

Now, gdl can be defined in terms of prfseq (and diag). And showing prfseq to
be p.r. essentially requires just that we don’t need to do an open-ended search to
check whether the candidate wff is an axiom or an array of wffs is a proof. To put
it another way, we require the following: the property of being the code number
of a PA axiom (whether a logical axiom or a special axiom) is p.r., and the

2In Section 6.7, we outlined the construction of the p.r. adequate theory PBA. Yet, as we
remarked, that theory is negation-complete. How can that possibly be, given Gödelian results?
Well, note how that the absence of quantifiers in the language of PBA blocks our forming a
Gödel sentence for that weak theory.
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Gödel’s First Theorem

relation that holds between the code numbers of wffs when one is the immediate
consequence of the other(s) is p.r. too. We will call a theory that satisfies this
condition p.r. axiomatized. So the fundamental fact underlying (1) is

G1. PA is p.r. axiomatized.3

Next, recall our definition: a theory is strongly p.r. adequate if it captures
each p.r. function as a function – where capturing as a function is defined using
the universal quantifier (see Sections 7.3, 7.4). So we can in fact can wrap up
conditions (2) and (3) into one:

G2. PA is strongly p.r. adequate.

Our argument for PA’s incompleteness therefore generalizes to cover any other
axiomatized formal theory T which satisfies the same conditions (G1) and (G2).
Of course, when we move to consider a different theory T , the set of axioms
and/or the set of rules of inference will change. So the details of the corresponding
relation gdlT (m,n) – which holds when m codes for a T -proof of a certain wff –
will change too. Hence we’ll need a new GT as the G-style unprovable sentence for
T . But we construct this new Gödel sentence in the same way as before, from an
open wff which captures the gdlT relation for T : and this open wff – like any wff
for capturing a p.r. relation – need only use basic arithmetical vocabulary. So,
even though our construction method produces a different formally undecidable
sentence as we change the theory, it will always be the case that

Theorem 11 If T is an ω-consistent, strongly p.r. adequate, p.r. ax-
iomatized theory, then there is an arithmetic T -sentence ϕ of Gold-
bach type such that neither T ` ϕ nor T ` ¬ϕ.

It is this very general result has as much historical right as any to be called
Gödel’s First Incompleteness Theorem. Since we now know that Q is p.r. ade-
quate, we can also assert

Theorem 11* If T is a consistent, strongly p.r. adequate, which
includes the axioms of Q, then there is an arithmetic T -sentence ϕ
of Goldbach type such that neither T ` ϕ nor T ` ¬ϕ.

Though, for the record, these two versions are not quite equivalent because there
are other weak p.r. adequate arithmetics which neither contain nor are contained
in Q.4

3Our intuitive characterization of a properly formalized theory said that properties like
that of being an axiom of the theory should be decidable ones (Section 2.2) – or, as we later
put it, should be properties with computable characteristic functions (Section 6.3). Now, we
know that not all computable functions are p.r. (Section 6.6). So in principle, we could have an
axiomatized theory (according to our intuitive characterization) which isn’t p.r. axiomatized.
We’ll say more about this later. But for the moment, just note that such a theory would have
to be very unwieldy if e.g. checking that a wff is an axiom requires a non-p.r. open-ended
search. Any ordinary kind of axiomatized theory will certainly be p.r. axiomatized.

4For some details, see (Boolos et al., 2002, §§16.2, 16.4), comparing the theories they call
Q and R.
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Suppose we beef up theory T by adding new axioms: still, so long as the theory
remains p.r. axiomatized and ω-consistent (and hence a candidate for having
true axioms on a normal arithmetic interpretation), the new theory will also be
incomplete. So Theorem 11 implies not just that our theory T is incomplete, but
that it is in a good sense incompletable.

Take the particular case where the sentence G, constructed as described above,
is added to PA as a new axiom. If the axioms of PA are all true on the normal
interpretation built into LA, so too are the axioms of PA + G, so the augmented
theory remains ω-consistent. The augmented theory also remains p.r. adequate
(since it can prove everything the original theory proved). It now trivially proves
G. But Theorem 11 applies again. So there is a similarly constructed new Gödel
sentence G′ for our extended theory. Neither G′ nor ¬G′ follows from PA + G.
So neither can follow from the unaugmented original theory, hence G′ will be
another true-but-unprovable sentence of PA, independent of the original Gödel
sentence. Repeating the argument gives us an unending stream of such indepen-
dent unprovable sentences. And we can never ‘fix up’ PA by adding on enough
new axioms to get a p.r. axiomatized, ω-consistent, negation-complete theory:
PA is not just incomplete but incompletable. Likewise for any p.r. axiomatized
theory that includes Q and is therefore strongly p.r. adequate.

11.7 The idea of ω-incompleteness

We’ll finish this chapter by pausing to bring out a key feature of PA revealed by
our proof of the First Theorem, and then – in the last section – we’ll note an
important corollary of the Theorem.

Given PA is consistent,

1. For each m, ¬Gdl(m, u) is provable. (We noted this halfway through the
proof for (B) in Section 11.5; to repeat, if G is unprovable, then for any m,
m cannot code a proof of G, so ¬gdl(m,u), so PA proves ¬Gdl(m, u).)

2. But G – i.e., equivalently, ∀x¬Gdl(x, u) – is unprovable.

A theory T which, for some open wff ϕ(x), can prove each ϕ(m) but can’t prove
∀xϕ(x) is said to be ω-incomplete.5 So the case where ϕ(x) =def ¬Gdl(x, u) shows
that PA is ω-incomplete.

In Section 5.2, we noted that Q exhibits a radical case of ω-incompleteness:
although it can prove case-by-case all true equations involving numerals, it
can’t prove most of their universal generalizations. For a simple example, put
Kx =def (0 + x = x); then for every n, Q ` Kn; but we don’t have Q ` ∀xKx.
In moving from Q to PA by adding the induction axioms, we vastly increase

5Compare and contrast: Suppose T can prove each ϕ(m). T is ω-incomplete if it can’t
prove something we’d like it to prove, namely ∀xϕ(x). While – equivalently to our definition
in Section 11.5 – T is ω-inconsistent if it can actually prove the negation of what we’d like it
to prove, i.e. it can prove ¬∀xϕ(x), i.e. ∃x¬ϕ(x).
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our ability to prove generalizations. But we now see that some ω-incompleteness
must remain.

And to stress the point we made in Section 11.4, this incompleteness remains
at the most basic level. To repeat, the property expressed by ϕ(x) =def ¬Gdl(x, u)
is p.r.: so we’ve shown that PA isn’t even ω-complete for wffs ϕ(x) expressing
p.r. properties. Generalizing the argument, as in the proof of the Theorem 11,
shows that this basic level of ω-incompleteness is ineliminable.

11.8 First-order True Arithmetic can’t be p.r. axiomatized

Finally, let’s draw out an immediate corollary of Theorem 11 (in order to make
good another claim we made in informal terms back in Section 1.1, and sharpen
the result of Section 4.4).

Suppose LA is, as before, the language of basic arithmetic (i.e. the first-order
language of successor/addition/multiplication, i.e. the language of Q and PA).
And let TA be the set of true sentences of LA, i.e. closed wffs which are true
on the standard interpretation built into LA. So TA is True (Basic) Arithmetic.
Then we have

Theorem 12 There is no consistent, p.r. axiomatized theory T whose
set of theorems in the language LA is exactly TA.

Proof Suppose T entails all of TA. Then it must in particular prove the truths
of basic arithmetic required for it to be p.r. adequate (for even Q does that). But
then, if T is also consistent and p.r. axiomatized, we can use the Gödel construc-
tion to yield a sentence G in the language LA which is true but unprovable-in-T ,
so there is a sentence in TA that T can’t prove after all, contrary to hypothesis.
So if T is consistent, it can’t be p.r. axiomatized. �
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12 Extending Gödel’s First Theorem

Further theorems now come thick and fast. By all means, skim and skip through
this chapter on a first reading (as it is rather action-packed with technicalities),
though it is worth returning later to explore some of the proofs.

We start by noting a clever trick due to Barkley Rosser, which enables us to
weaken the assumption of ω-consistency which Gödel needed in proving his First
Incompleteness Theorem.

But our main business here is to generalize the construction underlying the
Gödel-Rosser results by proving the Diagonalization Lemma. We then use this
elegant result in proving two new results: on the usual kind of assumptions about
T , the property of being a provable wff of the arithmetical theory T can’t be
captured in T ; and the property of being a true wff of T can’t even be expressed
in T ’s language.

12.1 Rosser’s theorem

The headline news is that Rosser (1936) defines the Gödel-Rosser sentence R by
an ingenious variation on the construction of the original Gödel sentence, and
then shows that we only need to assume PA’s consistency to prove that both R
and ¬R are underivable in PA.

And frankly, that is all you need really to know. How the trick is done isn’t
that important. But here’s a quick introduction just for the record.

First recall our now familiar definition:

gdl(m,n) holds when m is the super g.n. for a PA proof of the diag-
onalization of the wff with g.n. n.

And let’s next introduce a companion definition:

gdl(m,n) holds when m is the super g.n. for a PA proof of the nega-
tion of the diagonalization of the wff with g.n. n.

Both relations are p.r.; so both are capturable in PA, by a pair of wffs that we’ll
abbreviate by Gdl(x, y) and Gdl(x, y) respectively.

Now consider the wff

(Gdl(x, y) → (∃v ≤ x)Gdl(v, y))

where ‘(∃v ≤ x)φ’ of course abbreviates ‘∃v(v ≤ x ∧ φ)’. Roughly, this wff says
that if a number x codes a proof of a certain wff, then there is a smaller number
v that codes a proof of the negation of the same wff.
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Rosser’s theorem

And, from this point, we simply echo the Gödel construction. So, first step,
we quantify to get

∀x(Gdl(x, y) → (∃v ≤ x)Gdl(v, y))

Abbreviate this open wff as P(y), and suppose its g.n. is p. Then, second step,
diagonalize P(y) to get

R =def ∃y(y = p ∧ P(y))

This is the Rosser sentence; it is trivially equivalent to

∀x(Gdl(x, p) → (∃v ≤ x)Gdl(v, p))

Which reveals that the Rosser sentence is again of Goldbach type.1

Let’s consider what R ‘says’ in the light of the fact that the formal predicates
Gdl and Gdl express the numerical relations gdl and gdlneg . As the trivial equiva-
lence shows, R is true when, for every number m, if gdl(m, p) is true then there’s
a smaller number n such that gdlneg(n, p). But by construction, gdl(m, p) is true
if m codes for a PA proof of R (think about it!). Similarly, gdlneg(n, p) is true
if n codes for a proof of ¬R. Therefore R says that, for every number m, if m
codes for a proof of R, there’s a smaller number n that codes for a proof of ¬R.
Hence, R says (roughly) ‘if R is provable, so is ¬R’.

In the light of this interpretation, R must be unprovable, assuming PA has true
axioms and hence is consistent. For if R were provable, then it would be true.
In other words, ‘if R is provable, so is ¬R’ would be true; and this conditional
would have a true antecedent, and so we can infer that ¬R is provable, which
makes PA inconsistent, contrary to hypothesis. Therefore R is unprovable. Hence
the material conditional ‘if R is provable, so is ¬R’ has a false antecedent, so is
true. In other words, R is true. Hence its negation ¬R is false, and therefore also
unprovable (still assuming PA is sound). Hence R is another true-but-formally-
undecidable wff.

However, to show that neither R nor ¬R is provable, we don’t need the se-
mantic assumption that PA is sound; and this time – as we said – we don’t even
need to assume that PA is ω-consistent. Assuming the mere consistency of PA
is enough. And, as with Gödel’s original result, all that is required for the proof
to go through is that we are dealing with a theory which is p.r. adequate and
p.r. axiomatized. Which means that we can generalize, to get the Gödel-Rosser
Theorem:

Theorem 13 If T is a consistent, strongly p.r. adequate, p.r. axiom-
atized theory, then there is an arithmetic T -sentence ϕ of Goldbach
type such that neither T ` ϕ nor T ` ¬ϕ.

1See Section 11.4. For R is equivalent to a quantification of an open wff which expresses a
p.r. property – since both Gdl(x, p) and Gdl(x, p) separately express p.r. properties, and applying
the conditional truth-function and bounded quantification preserves primitive recursiveness
(see Section 6.4).
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12. Extending Gödel’s First Theorem

The detailed proof is a close cousin of the proof of Gödel’s Theorem. However,
it is messier and less intuitive. We really won’t miss anything of broader math-
ematical interest by omitting it here.2

Rosser’s work nicely sharpens Gödel’s original result. But it doesn’t really
give us any additional insight into the underlying structure of his argument. So
now we turn to digging rather deeper.

12.2 Another bit of notation

It is convenient and standard to introduce a really pretty bit of notation (if you
tackled Section 10.6, then this is in part a re-introduction):

If ϕ is an expression of a formal theory T , then we’ll use ‘pϕq’ in our
logicians’ augmented English to denote ϕ’s Gödel number.

Here we mean, of course, ϕ’s Gödel number with respect to a given scheme for
numbering expressions from T ’s language (see the end of Section 10.1). Borrow-
ing a species of quotation mark is appropriate because the expression ‘pϕq’ can
be read, via our coding scheme, as referring to the expression ϕ.

We are also going to use this same notation as a placeholder for numerals
inside a formal theory T , so that (in our second usage)

In formal shorthand for T -wffs, ‘pϕq’ holds the place for T ’s standard
numeral for the g.n. of ϕ.

In other words, inside formal expressions ‘pϕq’ stands in for the numeral for the
number pϕq.

A simple example to illustrate:

1. ‘SS0’ is a PA expression, the standard numeral for 2.

2. On our numbering scheme pSS0q, the g.n. of ‘SS0’, is 221 · 321 · 519.

3. So, by our further convention, we can also use the expression ‘pSS0q’ inside
(a definitional extension of) PA, as an abbreviation for the standard nu-
meral for that g.n., i.e. as an abbreviation for ‘SSS . . .S0’ with 221 ·321 ·519

occurrences of ‘S’ !

This double usage – outside our formal language to denote a g.n. of a formal
expression and inside our formal language to take the place of a standard numeral
for that g.n. – should by this stage cause no confusion. We could have continued
our earlier practice of overlining place-holders for standard numerals, where –
for example – the numeral for n is signified by ‘n’: we could then indicate the
numeral for the g.n. number pSS0q by ‘pSS0q’. But both aesthetics and common
convention count against this.

2If you must have the gory details, then you can find them in e.g. (Mendelson, 1997, pp.
208–210).
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12.3 Diagonalization again

Let’s think again about how our Gödel sentence for PA was constructed. Working
backwards, we defined G by diagonalizing the open wff U which contains ‘y’ as
it sole free variable. In other words,

G =def ∃y(y = pUq ∧ U)

where, using our new notation, ‘pUq’ in this formal wff holds the place of the
standard numeral for U’s g.n. pUq. Here,

U =def ∀x¬Gdl(x, y)

In turn, Gdl(x, y) captures the relation gdl , where – as we saw in Section 10.5 –
we can put

gdl(m,n) =def prfseq(m, diag(n))

Now, the one-place p.r. function diag can be captured in PA by some two-place
open wff Diag(x, y); and the two-place p.r. relation prfseq can be captured by a
two-place open wff Prf(x, y). So we can therefore give the following definition:

Gdl(x, y) =def ∃z(Prf(x, z) ∧ Diag(y, z))

Putting these steps together, we therefore have

U =def ∀x¬Gdl(x, y)
=def ∀x¬∃z(Prf(x, z) ∧ Diag(y))
≡ ∀x∀z¬(Prf(x, z) ∧ Diag(y, z))
≡ ∀z∀x¬(Prf(x, z) ∧ Diag(y, z))
≡ ∀z(Diag(y, z) → ¬∃x(Prf(x, z))
≡ ∀z(Diag(y, z) → ¬∃v(Prf(v, z))
=def ∀z(Diag(y, z) → ¬Prov(z))
=def U′

Here, the penultimate step simply introduces a new abbreviation, Prov(z) =def

∃v Prf(v, z).
Three remarks about this: (1) Prov(n) is true just so long as there is a number

v such that prfseq(v, n), i.e. just so long n is the g.n. of wff that has a PA
proof. In particular, Prov(pϕq) is true just so long as PA ` ϕ. That means
Prov(x) expresses the provability property prov (where prov(n) is true just when
n numbers a theorem: cf. the end of Section 10.6).

(2) When abbreviatory definitions are unpacked, our equivalences are provable
within PA, since we’ve just derived them by simple logical manipulation. So,
given that G is equivalent to the result of substituting ‘pUq’ for ‘y’ in U, we have

PA ` G ≡ ∀z(Diag(pUq, z) → ¬Prov(z))
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(3) Since U and U′ are trivially equivalent, then it shouldn’t matter whether
we consider G, the diagonalization of U, or G′, the diagonalization of U′. Those
diagonalizations involve different numerals (denoting the different Gödel num-
bers pUq and pU′q): but it is a very easy exercise to check that, indeed, G′ will
do just as well as G for proving Gödel’s theorem.

For example, suppose that G′ is provable. Then some number m is the g.n. of
a proof of the diagonalization of U′, i.e. gdl(m, pU′q). So PA ` Gdl(m, pU′q). But
to suppose G′ provable is — by our equivalences – tantamount to to supposing
PA ` ∀xGdl(x, pU′q), and contradiction is immediate.

12.4 The Diagonalization Lemma

Our chain of equivalences, together with the fact that Diag captures diag, quickly
gives us

Theorem 14 PA ` G ≡ ¬Prov(pGq).

Proof Since diagonalizing U yields G, diag(pUq) = pGq, by the definition of
diag . Hence, since by hypothesis Diag captures diag , we have

PA ` ∀z(Diag(pUq, z) ≡ z = pGq)

But we have just seen that

PA ` G ≡ ∀z(Diag(pUq, z) → ¬Prov(z))

Hence, substituting a proven equivalent for ‘Diag(pUq, z)’, it follows that

PA ` G ≡ ∀z(z = pGq → ¬Prov(z)).

From which the desired theorem is immediate. �

What this shows is that the informal claim ‘G is true if and only if it is unprovable’
can itself be formally proved within PA. Very neat!

A little reflection now shows that the basic construction that allows us to prove
Theorem 14 can be generalized radically to yield the following much broader
result – standardly called The Diagonalization Lemma:3

Theorem 15 If T is a strongly p.r. adequate, p.r. axiomatized, the-
ory and ϕ(z) is an open wff with one free variable, then there is some
sentence γ such that T ` γ ≡ ϕ(pγq)

Proof Since T is a nicely axiomatized theory, we can define a p.r. function
diagT which takes us from the g.n. of a T -wff to the g.n. of its diagonalization.4

3In a footnote added to later reprintings of his (1934), Gödel says that this Lemma ‘was
first noted by Carnap (1934)’: first noted in print, yes; but Gödel himself had probably already
got there in 1930.

4Of course, we are now talking in the context of some appropriate scheme for Gödel-
numbering expressions of T – see the final remark of Section 10.1.
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Since T is p.r. adequate and can capture any p.r. function, we can construct a
two-place T -predicate DiagT which captures the function diagT in T .

We can assume without loss of generality that ϕ(z) doesn’t contain occur-
rences of ‘y’. And now let’s do to ‘ϕ(z)’ what the Gödelian construction does to
‘¬Prov(z)’. So, first step, put ψ =def ∀z(DiagT(y, z) → ϕ(z)).

Next, construct γ, the diagonalization of ψ. So γ ≡ ∀z(DiagT(pψq, z) → ϕ(z)).
Our theorem now follows speedily. Note that diagT (pψq) = pγq. Hence, T `

∀z(DiagT(pψq, z) ≡ z = pγq), since by hypothesis DiagT captures diagT . Hence
T ` ∀z(DiagT(pψq, z) → ϕ(z)) ≡ ∀z(z = pγq → ϕ(z)), since the antecedents of
the two conditionals are proven equivalents. But the left-hand side of our new
biconditional is equivalent to γ, and the right-hand side is in turn equivalent to
ϕ(pγq). So T ` γ ≡ ϕ(pγq). �

We will use this beautiful Lemma three times over in the next three sections, first
in revisiting the incompleteness result, and then to prove two further results.

But first a quick remark about jargon. Suppose that function f maps the
argument a back to a itself, so that f(a) = a, then a is said to be a fixed-point
for f ; and a theorem to the effect that, under certain conditions, there is fixed
point for f is a fixed-point theorem. By analogy, Theorem 15 is often also referred
to as a fixed point theorem, with γ as (so to speak) a fixed-point for the predicate
ϕ(z).

12.5 Incompleteness again

We can think of the Incompleteness Theorem as derived by combining the very
general Diagonalization Lemma with the following specific result:

Theorem 16 Let T be a p.r. axiomatized, p.r. adequate theory, and
let γ be any fixed point for ¬ProvT(z). Then, if T is consistent, γ is
unprovable, and if T is ω-consistent, then ¬γ is unprovable.

Here, ProvT of course expresses provability in T – i.e. ProvT(x) =def ∃vPrfT(v, x),
where PrfT captures the p.r. prfseqT relation (and where prfseqT (m,n) is true
when m is the super g.n. of at T -proof of the closed wff with g.n. n, on our
chosen scheme for numbering T -expressions).

For future reference, it is useful first to separate out two simple preliminary
results (and simply to promote readability, we’ll now suppress subscript T ’s for
the rest of this section, so for the moment read ‘Prov’ as ‘ProvT’ etc.):

P1. For any sentence ϕ, if T ` ϕ, then T ` Prov(pϕq).

P2. For any sentence ϕ, if not-(T ` ϕ), then, for all n, T ` ¬Prf(n, pϕq).

Proof for (P1) Suppose T ` ϕ. Then there is a T proof of the wff with g.n.
pϕq. Let this proof have the super g.n. m. Then, by definition, prfseq(m, pϕq).
Hence, since prfseq for T is captured by Prf, it follows that T ` Prf(m, pϕq). So
by existential quantifier introduction, T ` ∃v Prf(v, pϕq), i.e. T ` Prov(pϕq). �
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12. Extending Gödel’s First Theorem

Proof for (P2) Suppose ϕ is not provable in T , so no number is the g.n. of
its proof – and therefore, by definition, for all n not-prfseq(n, pϕq). Then, since
prfseq for T is captured by Prf, it follows that for all n, T ` ¬Prf(n, pϕq). �

Proof for Theorem 16 γ is a fixed point for ‘¬Prov’, i.e. T ` γ ≡ ¬Prov(pγq).
But by (P1), we also have if T ` γ then T ` Prov(pγq). So, if T is consistent,
we can’t have T ` γ.

Now assume T is ω-consistent (and hence consistent). Suppose T ` ¬γ. Since
T ` γ ≡ ¬Prov(pγq), it follows that T ` Prov(pγq), i.e. (a): T ` ∃vPrf(v, pγq).
By consistency, T cannot also prove γ. So, by (P2), we have (b): for all n,
T ` ¬Prf(n, pγq). But (a) and (b) together make T ω-inconsistent after all.
Contradiction. So, assuming T is ω-consistent, we can’t have T ` ¬γ. �

In sum, Theorem 16 tells us that if there is a fixed point for ¬ProvT , then T

can’t be negation-complete (assuming it is ω-consistent); and Theorem 15 tells
us that such a fixed point must exist. Put the results together and we are back
with Gödel’s First Theorem.

12.6 Provability

Consider again the T -wff ProvT(x) which expresses the property provT of being
the g.n. of a T -theorem. The obvious next question to ask is: does this wff also
case-by-case capture that property? The following theorem shows that it can’t:

Theorem 17 No open wff in a consistent, p.r. adequate theory T

can capture the numerical property provT .

Proof Suppose for reductio that P(x) abbreviates an open wff – not necessarily
identical to Prov(x)T – which captures provT . By the Diagonalization Lemma
applied to ¬P(z), there is some wff γ such that

(i) T ` γ ≡ ¬P(pγq).

By the general assumption that P captures provT , we have in particular

(ii) if T ` γ, i.e. provT (pγq), then T ` P(pγq)
(iii) if not-(T ` γ), i.e. not-provT (pγq), then T ` ¬P(pγq)

Contradiction quickly follows. By (iii) and (i), if not-(T ` γ), then T ` γ. Hence
T ` γ. So by (ii) and (i) we have both T ` P(pγq) and T ` ¬P(pγq) making T
inconsistent, contrary to hypothesis. �

Hence provT cannot be captured in T , although T – being p.r. adequate –
can capture any p.r. property. So provT isn’t a p.r. property. In particular, our
original prov property for PA is not primitive recursive.

To say that provT isn’t a p.r. property is to say that there is no p.r. function
of n which returns 0 if provT (n) is true, and 1 otherwise. In other words, there
is no p.r. function which decides what is a theorem of T .
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Now in fact, we can actually show that a consistent, p.r. adequate theory T

isn’t decidable at all, whether by a p.r. computation or by any other kind of
algorithmic procedure. But we aren’t yet in a position to establish this stronger
claim, because we haven’t yet got a general theory of algorithmic procedures.5

Later we’ll see how to beef up the argument in this section in order to get the
stronger result.

12.7 Tarski’s Theorem

Suppose L is any interpreted language, and suppose that we have some system
for Gödel-numbering expressions of L. Then there is a corresponding numerical
property trueL such that trueL(n) if and only if n is the g.n. of a true L-sentence.

Now, suppose we are dealing with the language LA (the language of basic
arithmetic), which can express numerical properties. Then a natural question
arises: is there an LA-wff T(x) which expresses the numerical property trueLA?

Well suppose there is. Suppose that, for all ϕ, T(pϕq) is true if and only
if trueLA

(pϕq), i.e. if and only if ϕ is true. In other words, suppose that each
instance of

1. T(pϕq) ≡ ϕ

is true. Now, since Q satisfies the conditions of the Diagonalization Lemma, then
– applying the Lemma to the negation of T(x) – we know that there must be
some LA wff L such that Q ` L ≡ ¬T(pLq).6 But everything Q proves is true
(since Q’s axioms are of course true), so

2. L ≡ ¬T(pLq)

would then be true. But as a special case of (1), we have

3. T(pLq) ≡ L

is also true. But (2) and (3) immediately lead to L ≡ ¬L and hence contradiction.
So our supposition that (1) is always true has to be rejected. Hence no predicate
of LA can express the numerical property trueLA

.
And now the argument evidently generalizes. Take any language L rich enough

for us to be able to formulate in L something equivalent to the very elementary
arithmetical theory Q (that’s so we can use the Diagonal Lemma again): call
that an adequate arithmetical language. Then by the same argument, we have

Theorem 18 No predicate of an adequate arithmetical language L
can express the numerical property trueL (i.e. the property of num-
bering a truth of L).

5Though compare our informal Theorem 3 back in Section 4.2, which shows that, for
any consistent sufficiently strong T , provT can’t be an algorithmically decidable property of
numbers.

6‘L’ is for Liar!
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In short: while you can express syntactic properties of a sufficiently rich formal
theory of arithmetic (like provability) inside the theory itself via Gödel number-
ing, you can’t express some key semantic properties (like arithmetical truth)
inside the theory.7 This is Tarski’s Indefinability Theorem.8

We’ll return to issues about truth later. But for the moment, just note that
we have the following situation. Take Q as an example of a sound, p.r. adequate
theory, then (1) there are some numerical properties that Q can capture (the
p.r. ones for a start); (2) there are some properties that Q can express but not
capture (for example provQ); and (3) there are some properties that Q’s language
cannot even express (for example trueQ).

It is not, we should hasten to add, that the property trueQ is mysteriously
ineffable, and escapes all formal treatment: a richer theory with an extended
language may perfectly well be able to capture trueQ. But the point remains
that, however rich a given theory of arithmetic is, there will be limitations, not
only on what numerical properties it can capture but even on which numerical
properties that particular theory’s language can express.

7An observation which of course gives us incompleteness again: truth isn’t provability in
some fixed formal theory T – so assuming that T is sound and everything provable in it is
true, this means that there must be truths which it can’t prove.

8Named in honour of Alfred Tarski who proved this in his (1933); though Gödel again had
already noted the result, e.g. in a letter to Zermelo written in October, 1931 (Gödel, 2003, pp.
423–429).
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In this chapter, we continue our review of the swathe of results that follow once
we’ve got the First Theorem – and the Diagonalization Lemma that underlies it
– in place. In particular, we (at last!) introduce Gödel’s Second Incompleteness
Theorem.

13.1 Formalizing the First Theorem

Six initial points (the first four are definitions which will either be reminders or
news, depending on how much of the last chapter you skipped):

1. We define prov(n) to be true just when n is the g.n. of a PA theorem, i.e.
just when ∃m prfseq(m,n).1

2. We use pϕq in our logicians’ English to denote ϕ’s g.n.: so prov(pϕq) just
when PA ` ϕ.2

3. We use Prf(x, y) as an abbreviation for the wff of PA’s language that cap-
tures the relation prfseq . And we define Prov(y) =def ∃vPrf(v, y). Hence
Prov(y) expresses the numerical property prov .3

4. We also use pϕq inside a formal language as a place-holder for the standard
numeral for ϕ’s g.n.: thus Prov(pϕq) is true if and only if PA ` ϕ.

5. PA’s Axiom 1 immediately entails the wff 0 6= 1; so if PA also proved 0 = 1,
it would be inconsistent. Contraposing, if PA is consistent, it can’t prove
0 = 1. On the other hand, if PA is inconsistent, we can derive anything, and
hence derive 0 = 1 in particular. So the statement that PA is consistent is
equivalent to the claim that it can’t prove 0 6= 1. But that’s equivalent to
saying it isn’t the case that prov(p0 = 1q).

6. Finally, the consistency claim that it is isn’t the case that prov(p0 = 1q)
can be expressed inside PA by the wff ¬Prov(p0 = 1q). So that motivates
the following new definition:4

Con =def ¬Prov(p0 = 1q)

1See the end of Section 10.6, and the end of Section 12.3, (v).
2For a little more explanation, see Section 12.2.
3See Section 12.3, (v) again.
4If your preferred system of first-order logic for PA has the absurdity constant ‘⊥’, then

you could instead put Con =def ¬Prov(p⊥q).
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Now to put these definitions to work. In Section 11.5 we proved Gödel’s First
Theorem, i.e. showed that

A. If PA is consistent then G is not provable in PA.

But the claim (A) is straightforwardly equivalent to

B. If it’s not the case that prov(p0 = 1q), then it’s not the case that prov(pGq).

And this numerical proposition (B) can now be expressed inside PA by the formal
wff

C. Con → ¬Prov(pGq)

So far, however, this doesn’t really tell us anything new. The exciting claim is the
next one: the formal wff (C) is itself a PA theorem. In other words, the content
of the First Theorem is not merely expressible in PA but is actually provable in
PA too.

Gödel, in his classic paper, invites us to observe the following:

All notions defined or statements proved [in establishing the First
Theorem] are also expressible or provable in P . For throughout, we
have used only the methods of definition and proof that are custom-
ary in classical mathematics, as they are formalizable in P . (Gödel,
1931, p. 193)

Here, however, the system P is Gödel’s simplified version of Russell and White-
head’s theory of types, which is much richer than first-order PA (see Section 8.1).
It perhaps isn’t so obvious that all the reasoning needed in the proof of the First
Theorem can be formally reflected in our weaker system. To check that we can
indeed formalize the proof inside PA requires a lot of work. But let’s suppose
the hard work has been done. Then we will have arrived at the Formalized First
Theorem, i.e. established (FFT):

PA ` Con → ¬Prov(pGq)

13.2 The Second Incompleteness Theorem

Assuming the Formalized First Theorem, suppose now (for reductio) that

PA ` Con

Then, from (FFT) by modus ponens, we’d have

PA ` ¬Prov(pGq)

But we know that

PA ` G ≡ ¬Prov(pGq)
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(that’s Theorem 14, Section 12.4). So it would follow that

PA ` G

contradicting the First Theorem. Therefore our supposition must be false, unless
PA is inconsistent. Hence, assuming (FFT), we have

Theorem 19 If PA is consistent, the wff Con which expresses its
consistency is not provable in PA.

Which is Gödel’s Second Incompleteness Theorem for PA. Assuming that the
axioms of PA are true on the standard interpretation and hence that PA is
consistent (Section 5.7), Con is another true-but-unprovable wff.

And like the First Theorem, the result generalizes. Here’s one version:

Theorem 20 If T is a p.r. axiomatized theory which includes the
axioms of PA, then the wff ConT which expresses its consistency is
not provable in T .

This holds because including the axioms of PA is enough to for T to be able to
prove the Formalized First Theorem for T (we’ll say a bit more about this at the
end of Section 13.5). And then – by the same argument as above – the Second
Theorem will follow.

13.3 Con and ω-incompleteness

How surprising is the Second Theorem?
We know that – once we have introduced Gödel numbering – lots of arithmeti-

cal truths coding facts about provability-in-PA can themselves be proved in PA.
So, initially, it is at least on the cards that Con should turn out to be provable
too.

Now, assuming PA is consistent, 0 = 1 can’t be a theorem: so no number is the
super g.n. of a proof of it – i.e. for all n, it isn’t the case that prfseq(n, p0 = 1).
Since Prf captures prfseq , we therefore have – still assuming consistency –

(i) for any n, PA ` ¬Prf(n, p0 = 1q)

If we could prove Con, then (unpacking the abbreviation) we’d have

(ii) PA ` ∀v¬Prf(v, p0 = 1q)

The unprovability of Con means, however, that we can’t get from (i) to (ii) –
which is another example of the failure of ω-completeness.5

In so far as the ω-incompleteness of PA was originally unexpected, the unprov-
ability of Con in particular might be deemed to have been unexpected too. But
now we know that examples of ω-incompleteness are endemic in p.r. axiomatized,
p.r. adequate theories, Theorem 19 is perhaps no surprise.

5See Section 11.7: indeed, since Con is of Goldbach type, in the sense of Section 11.4, this
is another example of the failure of ω-completeness for wffs of Goldbach type.
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13.4 The significance of the Second Theorem

You might think: ‘Suppose that for some reason we hold that there is a genuine
question about the consistency of PA. Still, the fact that we can’t derive Con is
no new evidence against consistency, since the First Theorem tells us that lots of
true claims about provability are underivable. While if, per impossibile, we could
have given a PA proof of the consistency of the theory, that wouldn’t really have
given us special evidence for its consistency – for we could simply reflect that
if PA were inconsistent we’d be able to derive anything from the axioms, and
so we’d still be able to derive Con! Hence the derivability or otherwise of PA’s
consistency inside PA itself isn’t especially interesting.’

But in fact, on reflection, the Theorem does tell us two evidently important
and interesting things. It tells us (1) that even PA isn’t enough to derive the
consistency of PA so we certainly can’t derive the consistency of PA using a
weaker theory. And it tells us (2) that PA isn’t enough to derive the consistency
of even PA so we certainly can’t use PA to demonstrate the consistency of stronger
theories. We’ll comment on those points in turn.

(1) Here’s an immediate corollary of our Theorem:

Theorem 19* If T is a consistent sub-theory of PA then the wff
Con which expresses the consistency of PA is not provable in T .

A sub-theory of PA is any theory which shares some or all of the language of
PA, shares some or all of the axioms, and shares some or all of the standard
first-order deductive system.

Evidently, if the sub-theory T doesn’t have all the language of basic arithmetic,
then it won’t even be able to frame the PA-wff we’ve abbreviated Con; so it
certainly won’t be able to prove it. The more interesting case is where T is a
theory which does share the language of PA but doesn’t have all the induction
axioms and/or uses a weaker deductive system than classical first-order logic.
Such a theory T can’t prove more than PA. So, by Theorem 19, assuming it is
consistent, T can’t prove Con either.

Recall our brief discussion in Section 5.7, where we first raised the issue of
PA’s consistency. We noted that arguing for consistency by appealing to the ex-
istence of an apparently coherent intended interpretation might be thought to
be risky (the appeal is potentially vulnerable to the discovery that our intuitions
are deceptive and that there is a lurking incoherence in the interpretation). So
the question naturally arises whether we can give a demonstration of PA’s con-
sistency that depends on something supposedly more secure. And once we’ve got
the idea of coding up facts about provability using Gödel numbering, we might
perhaps wonder whether we could, so to speak, lever ourselves up to establish-
ing PA’s consistency by assuming the truth of some weaker and supposedly less
problematic arithmetic.

Let’s take an example. Suppose we are tempted by radically constructivist
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reservations about classical mathematics,6 and think e.g. that we get into prob-
lematic territory once we start considering quantified propositions ∃xP (x) or
∀xP (x) when P isn’t a decidable property of numbers. Then we might feel more
comfortable starting with an arithmetic CA which drops the classical law of ex-
cluded middle and uses only intuitionistic logic, and which only allows instances
of the Induction Schema which use open wffs ϕ(x) which express decidable prop-
erties of numbers. But could we then use the constructively ‘safe’ arithmetic CA
to prove that classical PA is at least consistent? Our Theorem shows that we
can’t.

(2) Here’s another corollary of our Theorem:

Theorem 19** If T is a stronger theory which includes PA as a
sub-theory, then the wff ConT which expresses the consistency of T
is not provable in PA.

That’s because, if PA could establish the consistency of the stronger theory T ,
it would thereby establish the consistency of PA as part of that theory, contrary
to the Second Theorem.

We’ll later be returning to consider the significance of this corollary at some
length: it matters crucially for the assessment of ‘Hilbert’s Programme’, about
which much more anon. But the basic point is this. Suppose that we are faced
with some classical ‘infinitary’ mathematical theory T into which arithmetic can
be embedded as some some small part. For example T might, at the extreme,
be the standard set theories ZF or ZFC with their staggeringly huge ontology of
sets.7 We may reasonably enough have anxieties about the very consistency of
T , let alone its veracity. But Hilbert’s hope is that we should be able to prove
at least the consistency of T by using some modest and relatively uncontentious
reasoning.8 Given the idea of coding up facts about provability using Gödel num-
bering, we might try to make this hope come true by showing that T is consistent
using relatively uncontentious arithmetical reasoning in (say) PA, applying it to
provability facts about T . Theorem 19** shows that this can’t be done either.

13.5 The Hilbert-Bernays-Löb derivability conditions

The rest of this chapter concerns technicalities: you can skip them (though some
of the details are rather intriguing, especially Löb’s Theorem in Section 13.7).
We’ll break this section into three parts.

(i) We haven’t yet proved the Second Incompleteness Theorem, for we haven’t
proved the Formalized First Theorem (FFT):

PA ` Con → ¬Prov(pGq)

6As in, for example, (Bishop and Bridges, 1985, ch. 1).
7For a provocative response to that level of ontological commitment, see (Boolos, 1997).
8See, for example, his classic paper Hilbert (1925).
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And Gödel himself didn’t fill in the details to warrant his corresponding claim
that P ` ConP → ¬ProvP (pGPq), where GP is the Gödel sentence for his original
system of arithmetic P , ConP is the consistency statement for that system, and
so on. David Hilbert and Paul Bernays first gave a full proof in their Grundlagen
der Mathematik : as we noted, this takes a lot of (rather tedious!) work, which
we certainly won’t reproduce here.9

However it is worth bringing out a key feature of the Hilbert and Bernays
proof. As before (in Section 12.5), we use ProvT as the provability predicate for
whatever formal system T is in question – so n satisfies ProvT(x) just in case
there is the wff with g.n. n is provable in T . And Hilbert and Bernays isolated
three conditions on the predicate ProvT, conditions whose satisfaction is enough
for T to prove (FFT), so the Second Incompleteness Theorem applies to T . In
his (1955), Martin H. Löb gave a rather neater version of these conditions. Here
they are in Löb’s version:

C1. if T ` ϕ, then T ` ProvT(pϕq)

C2. T ` ProvT(pϕ→ ψq) → (ProvT(pϕq) → ProvT(pψq))

C3. T ` ProvT(pϕq) → ProvT(pProvT(pϕq)q)

Condition (C1) says that T can ‘reflect’ about its own proofs in the following
minimal sense – if T can prove ϕ, then it ‘knows’ that ϕ is provable. Condition
(C2) says that T can also ‘reflect’ on its own statements about provability, and
can establish that if ϕ→ ψ and ϕ are both provable, then so is ψ. Condition
(C3) again says that T can ‘reflect’ on its own provability claims, and show that
if ϕ is provable, then it is provable that it is provable.

(ii) We’ll next show that (for any T strong enough to prove the Diagonalization
Lemma), conditions (C) do indeed together entail the corresponding version of
(FFT). In fact, we’ll do just a bit better than that, and we’ll actually prove (E)

T ` ConT ≡ ¬ProvT(pGTq)

which strengthens (FFT)’s one-way conditional to a biconditional. GT is of course
the Gödel sentence for T constructed by following the same route we used in
constructing the Gödel sentence for PA; and ConT =def ProvT(p0 = 1q).

However, before we give the proof, two notational matters. First, for the rest
of this chapter – to improve readability – we’ll drop subscripts from ProvT, GT,
etc., leaving it to context to make clear which formal system is in question. And

9Gödel’s (1931) is entitled ‘On formally undecidable propositions of Principia Mathematica
and related systems I’: the plan was for a part II, giving a detailed proof of (FFT) for his logical
system P , but Gödel never wrote it. Hilbert and Bernays do the job – though for a rather
different logical system – in their (1939). For a modern proof of (FFT) for PA itself, see
Tourlakis (2003).
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second, to improve readability further, we’ll introduce some even snappier (and
now conventional) notation: we’ll henceforth abbreviate ‘Prov(pϕq)’ by ‘�ϕ’.10

With this new notation available, Con (i.e. ¬Prov(p0 = 1q)) is ¬� 0 = 1, and
we can rewrite the Hilbert-Bernays-Löb (HBL) conditions as follows:

C1. if T ` ϕ, then T ` �ϕ

C2. T ` �(ϕ→ ψ) → (�ϕ→ �ψ)

C3. T ` �ϕ→ ��ϕ

And in the same notation, the result to be proved from these conditions is (E):

T ` Con ≡ ¬�G

Proof Let’s note that – given T ` 0 6= 1 – simple logic shows that, for any wff
ϕ, T proves both

0 = 1 → ϕ (∗)
¬ϕ→ (ϕ→ 0 = 1)

Given the latter and (C1), this means that T proves

�(¬ϕ→ (ϕ→ 0 = 1))

So given (C2) and using modus ponens, it follows that T also proves each instance
of the following:

�¬ϕ → �(ϕ→ 0 = 1) (∗ ∗)

Hence we can argue as follows (where these are truncated versions of arguments
to be spelt out inside our formal theory T ). We assume T is strong enough for
us to show (1), e.g. because it contains Q and is therefore p.r. adequate:

1. (G ≡ ¬�G) (See Thm. 14)
2. (G → ¬�G) From 1
3. �(G → ¬�G) From 2, given C1
4. �G → �¬�G From 3, given C2
5. �¬�G → �(�G → 0 = 1) Instance of (∗ ∗)
6. �G → �(�G → 0 = 1) From 4 and 5
7. �G → (��G → � 0 = 1) From 6, given C2
8. �G → ��G Instance of C3
9. �G → � 0 = 1 From 7 and 8
10. ¬� 0 = 1 → ¬�G Contraposing
11. Con → ¬�G Defn. of Con

10If you are familiar with modal logic, then you will recognize the standard symbol for
the necessity operator: and the parallels and differences between ‘ϕ is provable (in T )’ and
‘ϕ is necessarily true’ are highly suggestive. These parallels and differences are the topic of
‘provability logic’, the subject of a contemporary classic, namely (Boolos, 1993).
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And to get the reverse conditional, we argue

1. (0 = 1 → G) Instance of (∗)
2. �(0 = 1 → G) From 1, given C1
3. � 0 = 1 → �G From 2, given C2
4. ¬�G → ¬� 0 = 1 Contraposing
5. ¬�G → Con Defn. of Con

Which demonstrates (E). �

So, assuming T proves the Diagonalization Lemma (and so T ` G ≡ ¬�G),
and assuming its provability predicate satisfies the HBL derivability conditions,
then T proves (E), and hence (FFT), and so we get the Second Incompleteness
Theorem for T .11

(iii) Given the HBL conditions get us to the Second Theorem, the natural next
question to ask is: what does it take to prove those conditions hold for a given
theory T?

Well, it is easy to see that (C1) holds so long as T can capture the appropriate
numerical relation prfseq for T – to show this, we just generalize the argument for
(P1) in Section 12.5. However, (C2) and (C3) are significantly more troublesome
to prove. We aren’t going to go into details, except to make one observation.

Consider (C3), which is equivalent to

T ` ∀v(Prf(v, pϕq) → ∃w Prf(w, pProv(pϕq)q)

where Prf captures the relation prfseq for T . So to prove (C3), we need to show
that a certain universally quantified expression is a T -theorem: and it turns
out that to demonstrate this we need to use induction inside T . Which means
that (C3) isn’t derivable in an induction-free system like Q. Similarly for (C2).
However, since induction is freely available in PA, the conditions (C2) and (C3)
can (and do) obtain there. That’s why our current statement of Theorem 20,
the general version of Gödel’s second Theorem, applies to theories that include
PA.12

13.6 G, Con, and ‘Gödel sentences’

The Diagonalization Lemma established (in our new notation) that there is a G
such that

(D) PA ` G ≡ ¬�G.

11We set aside for the present the question whether satisfying the HBL conditions are also
necessary for the unprovability of consistency.

12In fact, to get (C2) and (C3), we just need to be able to use induction for predicates like
Prf that express p.r relations – so we can in fact get versions of the Second Theorem which
apply to theories in between Q and PA: but we won’t pause over this question of fine tuning
here.
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And – assuming we can make good the claim that the HBL conditions hold for
provability in PA – we’ve just established

(E) PA ` Con ≡ ¬�G

So it follows trivially that

(F) PA ` Con ≡ G

Now consider the following pair of outline arguments within PA:

1. (Con → G) Given F
2. �(Con → G) From 1, given C1
3. �Con → �G From 2, given C2
4. ¬�G → ¬�Con Contraposing
5. Con → ¬�Con From 4 and E

1. (G → Con) From F
2. �(G → Con) From 1, given C1
3. �G → �Con From 2, given C2
4. ¬�Con → ¬�G Contraposing
5. ¬�Con → Con From 4 and E

So we have

(K) PA ` Con ≡ ¬�Con

In other words, we have PA ` Con ≡ ¬Prov(pConq), so Con is also a ‘fixed point’
for ¬Prov (see Section 12.4 again for the notion of a fixed point).

Suppose we keep the phrase ‘Gödel sentence’ for a wff which is constructed in
the standard way and (in a reasonable sense) ‘says’ it is unprovable. We have now
established that there are fixed points for ¬Prov that are not Gödel sentences.

13.7 Löb’s Theorem

(i) Suppose T is a sound theory of arithmetic with true axioms. Then if ϕ is a
provable wff, then it is true. We can express this inside T by the wff �ϕ → ϕ.
Such a wff will always be true on interpretation, for any ϕ. Hence we’d like T
to be able to prove all such wffs (since we’d like T to prove as many arithmetic
truths as possible). The obvious next question is: can it?

This is answered by Löb’s Theorem:

Theorem 21 If ‘�’ for T satisfies the Hilbert-Bernays-Löb deriv-
ability conditions, then if T ` �ϕ→ ϕ then T ` ϕ.
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But, if T is sound, it isn’t always the case that T ` ϕ (indeed, it won’t prove
any false ϕ). So it isn’t always the case that T ` �ϕ→ ϕ.13

(ii) We can prove Löb’s Theorem theorem as a consequence of the Second In-
completeness Theorem.14 But it is a lot more fun to proceed the other way
around – i.e. to use the HBL derivability conditions to prove Löb’s Theorem
directly, and then re-establish the Second Incompleteness Theorem as a simple
corollary.

Proof Assume that, for some particular ϕ,

1. �ϕ→ ϕ

is already a T -theorem. Now consider the wff (Prov(z) → ϕ). By the Diagonal-
ization Lemma, for some wff γ, T proves γ ≡ (Prov(pγq) → ϕ). So, in our new
notation,

2. γ ≡ (�γ → ϕ)

is also a theorem. Continuing to argue within T (imagine particular fillings for
‘γ’ and ‘ϕ’), we have

3. γ → (�γ → ϕ) From 2
4. �(γ → (�γ → ϕ)) From 3, given C1
5. �γ → �(�γ → ϕ) From 4, given C2
6. �γ → (��γ → �ϕ) From 5, given C2
7. �γ → ��γ Given C3
8. �γ → �ϕ From 6 and 7
9. �γ → ϕ From 1 and 8
10. γ From 2 and 9
11. �γ From 10, given C1
12. ϕ From 9 and 11

Hence, assuming T ` �ϕ→ ϕ, we can conclude T ` ϕ. But ϕ was an arbitrarily
selected wff; so the result generalizes, giving us Löb’s Theorem �

13Löb’s Theorem also settles a question asked by Henkin (1952). By the Diagonaliza-
tion Lemma applied to the unnegated wff Prov(z), there is a sentence H such that T `
H ≡ Prov(pHq) – this will be a sentence that ‘says’ that it is provable. Henkin asked: is it prov-
able? Löb’s Theorem shows that it is. For by hypothesis, T ` Prov(pHq) → H, i.e. T ` �H → H;
and the Theorem tells us that this entails T ` H.

14Here’s the idea. Assume we are dealing with an arithmetic to which the Second Theorem
applies. We’ll suppose T ` ProvT(pϕq) → ϕ, and derive T ` ϕ. So make that supposition and
now consider the theory T ′ you get by adding ¬ϕ as an axiom to T . Then trivially T ′ ` ¬ϕ,
and T ′ ` ProvT(pϕq) → ϕ, so T ′ ` ¬ProvT(pϕq). But to prove that ϕ is unprovable in T is to
prove that adding ¬ϕ to T doesn’t lead to contradiction, i.e. is to prove that T ′ is consistent.
So for T ′ to prove ` ¬ProvT(pϕq) is tantamount to proving its own consistency. But by the
Second Incompleteness Theorem, T ′ can’t prove its own consistency if it is itself consistent.
So T ′ is inconsistent. So adding ¬ϕ to T leads to inconsistency. So T ` ϕ.
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(iii) Now, we noted at the very outset that the reasoning for Gödel’s First
Theorem has echoes of the Liar Paradox; the proof of Löb’s theorem echoes
another logical paradox.

For suppose we temporarily reinterpret the symbol ‘�’ as expressing the truth-
predicate, so we read �S as ‘S’ is true. And let ϕ express any proposition you
like, e.g. Santa Claus exists. Then

1′. �ϕ→ ϕ

is a truism about truth. And thirdly, suppose that the sentence γ says: if γ is
true, then Santa Claus exists. Then we have

2′. γ ≡ (�γ → ϕ)

holding by definition.
From here on, we can argue exactly as before – though this time we are not

working within the formal theory T , but are reasoning informally, appealing to
conditions (C1) to (C3) reinterpreted as intuitive principles about truth, i.e.

C1′. If we can establish ϕ that establishes that ϕ is true.

C2′. If ϕ→ ψ is true, then if ϕ is true, so is ψ.

C3′. If ϕ is true, then it is true that it is true.

Using these evidently sound principles we again arrive by the same route at

12′. ϕ

which is the conclusion that Santa Claus exists. So, from truisms about truth and
a definitional equivalence like (2′) we can, it seems, conclude anything! This line
of reasoning is nowadays usually known as ‘Curry’s Paradox’ (after Haskell B.
Curry who presented it in his (1942)) though close relations of it were certainly
known to medieval logicians such as Albert of Saxony.

It isn’t obvious what the best way is to block Curry’s paradox (any more that
it is obvious what the best way is to block the Liar). There is something fishy
about allowing a sentence γ such that (2′) holds: but what exactly? Fortunately
answering that question is not our business. We merely remark that Löb’s The-
orem, like Gödel’s, is not a paradox but a limitative result, this time another
result about a theory’s ability to prove propositions about its own provability
properties.

(iv) Finally, we quickly apply Löb’s Theorem to re-derive the Second Incom-
pleteness Theorem. Note that if T ` Con then, as an immediate consequence,
T ` ¬Con → 0 = 1, i.e. T ` �0 = 1 → 0 = 1 But then, by Löb’s Theorem, we
can conclude T ` 0 = 1. But for any relevant T , T ` 0 6= 1. Hence, if T ` Con,
T is inconsistent.
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We have now given a proof – at least in detailed outline – of Gödel’s First
Incompleteness Theorem and explained the content of the Second Theorem.
What next? Five topics fairly immediately suggest themselves.

(1) In the arguments of Chapters 3 and 4, we relied on informal notions of
computability and decidability. We showed, for example, that any consistent,
sufficiently strong, axiomatized formal theory of arithmetic is undecidable – i.e.
no algorithmic procedure can be used to settle what’s a theorem (see Theorem 3,
Section 4.2). In our later presentation of Gödel’s First Theorem and its impli-
cations, we proved that no consistent, p.r. adequate, p.r. axiomatized formal
theory of arithmetic is decidable by a p.r. function – i.e. there is no p.r. function
which returns the output 0 if the input n is the g.n. of a theorem, and returns 1
otherwise (see Section 12.6). But as we noted there is an interesting gap between
the informal result and the technical one. For we now know that there are al-
gorithmic procedures that aren’t p.r.; so an obvious question is whether we can
beef up the technical result to show that no algorithm (whether or not p.r.) can
decide whether an arbitrary wff is the theorem of a p.r. adequate arithmetic.

Exploring that issue involves reconsidering the notion of an algorithmic pro-
cedure, and coming up with a formal account which – unlike our story about
p.r. functions – covers the whole class of intuitively computable functions. We
have already signalled that such an account is available (see Section 2.3, and
recall our brief remarks about Turing’s Thesis). We didn’t need to invoke this
account in proving Gödel’s Theorems; but if we are to press on and prove further
limitative results about algorithmic undecidability, then we need to deal with
general notions of computation.

(2) It is familiar that standard deductive systems for first-order logic are sound
and complete. That means, in particular, that PA ` ϕ if and only if every
interpretation of PA’s language which makes the axioms true makes ϕ true.1 So
if PA doesn’t prove ϕ, there must in particular be some interpretation which
makes the axioms of PA true and yet ϕ false. Since PA proves neither G nor
¬G (assuming consistency), it follows there must be a interpretation of PA’s
language which makes the axioms all true and makes the Gödel sentence G false
and another which also makes the axioms true and makes G true. Here there must
be variant interpretations which agree in making all the axioms of PA true, but
which diverge enough to give different truth-values to the ‘formally undecidable’
sentences. Hence, the first-order theory PA doesn’t pin down a unique type of

1Recall, the language of PA is LA, i.e. the interpreted language 〈LA, IA〉 (Section 3.2): so
we are talking here about spinning variations on the built-in interpretation IA.
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interpretative structure as the only possible one which makes its axioms true.2

On the other hand, it’s a familiar result – encountered early in a university
mathematics course – that (what mathematicians usually call) Peano Arithmetic
does pin down a single type of structure. The argument is essentially this. Take
the property R of being either zero or a successor of zero. Zero has the property
R. If any number is R, so is its successor. So by induction, every number is R.
So the domain of interpretation for Peano Arithmetic must contain a zero, its
successors, and nothing else. The axioms for addition and multiplication then
completely define the addition and multiplication functions on this domain. So
that completely fixes the structure of any interpretation for Peano Arithmetic.

How do we reconcile these results? By noting that our formal theory PA and
the mathematicians’ informal Peano Arithmetic are crucially different theories.
The former is a first-order theory (i.e. involves only quantification over a do-
main of numbers). The latter is second-order (i.e. is presented as embodying the
intuitive second-order induction principle which quantifies over all properties of
numbers – see Section 5.5).

An obvious task, then, is to explore further the differences between the first-
order and the – perhaps more natural – second-order versions of Peano Arith-
metic; and we’ll also want to consider some theories of arithmetic of intermediate
strength. We’ll need to reflect on the impact of the Gödelian limitative results
on these various theories.

(3) We’ve found a whole flotilla of true wffs that are unprovable in PA (assuming
it is sound and therefore consistent). There’s the original Gödel sentence G.
There’s the Gödel sentence G′ that you construct by adding G as a new axiom and
running the Gödel construction on the new theory PA +G. Then there are all the
further sentences G′′, G′′′, . . . that you get by repeating that procedure. We also
know that Con is unprovable. And for every false ϕ, the true wff Prov(pϕq) → ϕ

is unprovable too (by Löb’s Theorem).
Now, these various wffs are (when everything is unpacked) just enormously

convoluted sentences of basic arithmetic. But faced with the fully unpacked ver-
sions, they surely wouldn’t strike us as being of intrinsic arithmetic interest.
The wffs are interesting for a different reason – i.e. because, via a given Gödel-
numbering scheme, they encode meta-arithmetical claims about provability-in-
PA. We might naturally ask, however, whether there are other truths of arith-
metic which can also be shown to be independent of PA, where these other
truths are of more purely arithmetical interest to number theorists. (To put
the question rather tendentiously: are there incompleteness results of concern to
mathematicians, or is this just a game for logicians?)

(4) The First Incompleteness Theorem shows that there is a gap between truth
and provability in PA (and between truth and provability in any other p.r. ade-

2In fact, we don’t need Gödel’s Theorems to show that: as we’ll explain later, the
Löwenheim-Skolem Theorem is already enough. But as we’ll also explain, Gödelian incom-
pleteness does give an extra bite to this result.
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quate, p.r. axiomatized theory). Is this because truth is somehow ineffable, and
we can’t theorize about it?

Tarksi’s theorem (Section 12.7) tells us, for example, that the notion of truth-
in-PA can’t be expressed in the arithmetical language of PA. But that doesn’t
mean that it is inexpressible. There is nothing to stop us enriching PA’s language
with a truth predicate, i.e. a predicate T(x) which is such that T(n) just when
the wff with g.n. n is a truth of PA. And now suppose that we lay down some
appropriate collection of axioms – call them Tr – governing the use of this truth-
predicate. Then we might wonder whether we might not be able to show that
PA + Tr ` T(pGq). And since we’d expect any competent theory of the truth-
predicate to be such that Tr ` T(pGq) ≡ G, that would mean PA + Tr ` G.

In sum, although the PA can’t prove its Gödel-sentence G, perhaps PA plus a
suitable theory of truth can prove G.3 So an obvious question to ask is: does any
kind of theory of truth enable us to prove this? An answer should throw some
light on the issue of just what we are committing ourselves to when we say that
the Gödel-sentence is indeed true-but-unprovable-in-PA.

(5) That takes us to questions about the broader implications of Gödel’s Theo-
rems. Recall the speculations in Section 1.2 to the effect that a rule-transcending
cognitive grasp of the numbers is needed to explain our ability to recognize the
truth of Gödel sentences, and – since we have such a rule-transcending cognitive
ability – minds like ours can’t be machines. What should we make of such ideas?

We have also mentioned in a fleeting way the Frege-Russell programme for
putting arithmetic and classical analysis on a secure logical footing (see Sec-
tions 5.7 and 10): just how do Gödel’s Theorems impact on that programme?
Gödel himself was rather more concerned to exhibit difficulties for Hilbert’s Pro-
gramme, which we haven’t so far only fleetingly mentioned. So something, finally,
needs to be said about that.

That gives us, then, the following menu of topics for discussion:

1. Computability and decidability

2. First-order vs. second-order and other arithmetics

3. Arithmetically interesting claims unprovable in PA

4. Truth and Gödel’s Theorems

5. Wider philosophical implications

Which will be more than enough to keep us going!

3Of course, PA + T can’t prove its own new Gödel-sentence GPA+T!
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We have now sketched a proof of Gödel’s First Incompleteness Theorem (Chap-
ter 11), and explained the content of the Second Theorem (Chapter 13). Yet the
ingredients used in our discussions so far have been very modest. We needed the
basic idea of capturing properties and functions in a formal axiomatized theory
of arithmetic like PA, the idea of a primitive recursive function, and the idea
of coding up claims about relations between wffs into claims about relations
between their code-numbers. And we needed to show that various numerical re-
lations coding proof relations among PA wffs are p.r., and hence can be captured
in PA. We then worked Gödelian wonders with these very limited ingredients,
and we haven’t yet had to make use of any of the more sophisticated tools from
the mathematical logician’s bag of tricks. Nor have we had to call upon a general
theory of computable functions.

However, if we are to press on to get some sense of how the two Theorems fit
into the wider mathematical landscape and discuss their broader implications,
then we really do need to fill in some additional technical background. So in
the next few chapters, we’ll say some more about ideas of computability, and
then we’ll explain a few rather more advanced ideas from logical theory. We’ll be
concentrating on those topics which are eventually most relevant to developing
our understanding of Gödel’s Theorems; proofs will often be pretty sketchy.

14.1 Minimization and µ-recursive functions

We’ve so far explored one (very large) class of computable functions, namely the
primitive recursive ones. But we’ve also proved, by a neat diagonal argument,
that these aren’t the only computable functions defined over the natural numbers
(see Chapter 6, especially Section 6.6).1

The p.r. functions are those which can be defined using composition and prim-
itive recursion, starting from the successor, zero, and identity functions. So the
next question to ask is: what other mode(s) of definition should we throw into
the mix in order to get a broader class of computable functions (hopefully, to
get all of them)? And given our earlier discussions, it is obvious what our first
candidate answer should be. As we explained in Section 6.6, p.r. functions are
calculated using bounded computational procedures using ‘for’ loops (as we enter
each loop, we put a limit in advance on how many iterations are required). How-
ever, we also count unbounded search procedures – implemented by ‘do until’

1We won’t keep repeating: we are concerned throughout this chapter with functions whose
arguments and values are natural numbers.
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14. µ-Recursive and Partial Recursive Functions

loops – as computational. So, the obvious way to try extending the class of p.r.
functions is by allowing functions to be defined by means of some sort of ‘do
until’ procedure. We’ll explain how to do this, in four steps.

(a) Let’s start with the simplest case. Suppose we know that G is a decidable
numerical property, and that it has at least one instance. Or, what comes to the
same, suppose that G’s characteristic function g is computable and, for some n,
g(n) = 0. Then we can do a systematic search to find a number f which has the
property G by running the following program:

1. y := 0
2. Do until g(y) = 0
3. y := y + 1
4. Loop
5. f := y

Here, the memory register y is initially set to contain 0. We then enter a loop.
At each iteration, we compute g(y) to see if its value is zero; if it does, we exit
the loop and put f equal to the current value of y; otherwise we increment y by
one and do the next test. By hypothesis, we do eventually hit a value for y such
that g(y) = 0: so the program is bound to terminate. This ‘do until’ program
plainly calculates the number f which is the least y such that g(y) = 0.

(b) Now generalize this idea. Recall the notational device we introduced in
Section 6.2, where we wrote ~x as short for the array of n variables x1, x2, . . . , xn.
We’ll say that

The (n + 1)-place function g(~x, y) is regular if it is a total function
and for all values of ~x, there is a y such that g(~x, y) = 0.

Then here’s the key definition:

Suppose g(~x, y) is an (n + 1)-place regular function. Let f(~x) be
the n-place function which, for each ~x, takes as its value the least
y such that g(~x, y) = 0. Then we say that f is defined by regular
minimization from g.

(If we allow n to be zero so ~x is empty, our general definition covers our intro-
ductory case where f is a zero-place function, i.e. a constant!)

The crucial observation is this: if f is defined from the computable function
g by regular minimization, then f is computable too. For we can set out to
compute f(~x) for any particular arguments using the kind of simple ‘do until’
loop that we just illustrated. And our stipulation that g is regular ensures that
a computation of the value of f(~x) terminates for each ~x. In other words, f is a
total computable function, defined for all arguments.

(c) We’ll introduce some standard symbolism. When f is defined from g by
minimization, we’ll write

122



Minimization and µ-recursive functions

f(~x) = µy[g(~x, y) = 0]

where the minimization operator ‘µy’ can be read ‘the least y such that . . . ’.2

Compare the operation of bounded minimization which we met in Section 6.4:
we are now concerned with a species of unbounded minimization.

(d) Now we put these ideas together. We said that we can expect to expand
the class of computable functions beyond the p.r. ones by considering functions
that are computed using a ‘do until’ search procedure. We’ve just seen that
when we define a function by regular minimization, this in effect specifies that
its value is to be computed by just such a search procedure. Which suggests that
a third mode of definition to throw into the mix for defining computable (total)
functions, alongside composition and primitive recursion, is definition by regular
minimization.

With that motivation, let’s say:

The µ-recursive functions are those that can defined from the initial
functions by a chain of definitions by composition, primitive recursion
and/or regular minimization.3

Or putting it more carefully, in the style of our official account of the p.r. func-
tions in Section 6.2, we can say

1. The initial functions S,Z, and Ik
i are µ-recursive;

2. if f can be defined from the µ-recursive functions g and h by
composition, then f is µ-recursive;

3. if f can be defined from the µ-recursive functions g and h by
primitive recursion, then f is µ-recursive;

4. if g is a regular µ-recursive function, and f can be defined from
g by regular minimization, then f is µ-recursive;

5. nothing else is a µ-recursive function.

Since regular minimization yields total functions, the µ-recursive functions – as
we’ve just defined them – are always total computable functions.4

2We follow a fairly common convention in inserting the square brackets to promote read-
ability, even though they are strictly speaking redundant.

3Most writers nowadays use plain ‘recursive’ instead of ‘µ-recursive’. But for an important
warning about the variable terminology hereabouts, see Section 14.5, footnote 12.

4Note that a ‘for’ loop – i.e. a programming structure which instructs us to iterate some
process as a counter increments from 0 to n – can be recast as a ‘do until’ loops: just iterate
the same process while incrementing the counter until its value equals n. So definitions by
primitive recursion, which call ‘for’ loops, can be subsumed under definitions by minimization,
which call ‘do until’ loops. Hence you might well expect that clause (4) in our definition is
redundant. And you’d almost be right. By a theorem of Kleene’s (1936b), if you add addition,
multiplication and the characteristic function of the less-than relation to the list of initial
functions, then indeed you can drop (4). And some books define recursive functions this way;
see e.g. (Shoenfield, 1967, 109). Still, I don’t find this approach as illuminating, so I stick to
the more conventional mode of presentation as given here.
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14. µ-Recursive and Partial Recursive Functions

14.2 The Ackermann-Péter function

Every primitive recursive function is, of course, a µ-recursive function: but are
there µ-recursive functions which aren’t primitive recursive?

Yes. For a start, the computable-but-not-p.r. function d(n) that we con-
structed by the diagonalization trick in Section 6.6 is an example. But in this
section we’ll look at another example, which is both more tractable and also
mathematically more natural. The basic idea of the example is due to Wilhelm
Ackermann (in his 1928).

First a simple observation. Any p.r. function f can be specified by a chain
of definitions in terms of primitive recursions and compositions leading back to
initial functions. This definition won’t be unique: there will always be various
ways of defining f (for a start, by throwing in unnecessary detours). But take
the shortest definitional chain – or, if there are ties for first place, take one of the
shortest. Now, the length of this shortest definitional chain for f will evidently
put a limit on how fast f(n) can grow as n grows (and likewise for two-place
functions). That’s because it puts a limit on how complicated the computation
can be – in particular, the number of loops-within-loops-within-loops that we
have to play with – and so limits the number of times we can get to apply the
successor function depending on the initial input argument n.

For example, consider the two-place functions f1, i.e. sum (repeated appli-
cations of the successor function), f2, i.e. product (repeated sums), f3, i.e. ex-
ponentiation (repeated products). These functions have increasingly long full
definitional chains, and the full programs for computing them involve ‘for’ loops
nested increasingly deeply. And as their respective arguments grow, the value of
f1 of course grows slowly, f2 grows faster, f3 faster still.

This sequence of functions can obviously be continued. Next comes f4, the
super-exponential, defined by repeated exponentiation:

x ↑ 0 = x

x ↑ Sy = xx↑y

Thus, for example, 3 ↑ 4 is 3333
3

with a ‘tower’ of 4 exponents. Similarly, we can
define f5 (super-duper-exponentiation, i.e. repeated super-exponentiation), f6
(repeated super-duper-exponentiation), and so on. The full chain of definitions
for each fk gets longer and longer as k increases – and the values of the respective
functions grow faster and faster as their arguments are increased.5

But now consider the function a(x) = fx(x, x). The value of a(n) grows explo-
sively, running away ever faster as n increases. So take any given p.r. function:
this has a maximum rate of growth determined by the length of its definition,
and a(x) eventually grows faster. Hence a(x) isn’t primitive recursive: but it is
evidently computable.

5NB The claim, of course, isn’t that longer definitions always entail faster growth, only
that our examples show how longer definitions permit faster growth.
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The Ackermann-Péter function

This idea of Ackermann’s is very neat, and is worth pausing over. So consider
again the recursive definitions of our functions f1 to f4 (compare Section 6.1,
and our definition of ‘↑’ above). We can rewrite the second clauses in each of
those definitions as follows:

f1(y, Sz) = Sf1(y, z)
= f0(y, f1(y, z)) – if we cunningly define f0(y, z) = Sz

f2(y, Sz) = f1(y, f2(y, z))
f3(y, Sz) = f2(y, f3(y, z))
f4(y, Sz) = f3(y, f4(y, z))

There’s a pattern here! So now suppose we put

f(x, y, z) =def fx(y, z)

Then the value of f gets fixed via a double recursion:

f(Sx, y, Sz) = f(x, y, f(Sx, y, z))

However, nothing very exciting happens to the second variable, ‘y’. So we’ll let
it drop out of the picture, to get a variant on the Ackermann’s construction due
to Rósza Péter (1935). Consider, then, the function p governed by the clause

p(Sx, Sz) = p(x, p(Sx, z))

Of course, this single clause doesn’t yet fully define p – it doesn’t tell us, e.g.,
the value of p(0, 0). So we will round out the definition to yield the following
three equations

p(0, z) = Sz

p(Sx, 0) = p(x, S0)
p(Sx, Sz) = p(x, p(Sx, z))

To see how these equations work together to determine the value of p for given
arguments, consider the following calculation:

p(2, 1) = p(1, p(2, 0))
= p(1, p(1, 1))
= p(1, p(0, p(1, 0)))
= p(1, p(0, p(0, 1)))
= p(1, p(0, 2))
= p(1, 3)
= p(0, p(1, 2))
= p(0, p(0, p(1, 1)))
= p(0, p(0, p(0, p(1, 0))))
= p(0, p(0, p(0, p(0, 1))))
= p(0, p(0, p(0, 2)))
= p(0, p(0, 3))
= p(0, 4)
= 5
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14. µ-Recursive and Partial Recursive Functions

To evaluate the function, the recipe is as follows. At each step look at innermost
occurrence of p, and apply whichever of the definitional clauses pertains (only
one can); keep on going until at last you reach something of the form p(0,m) and
can apply the first clause one last time and halt. A little reflection will convince
you that this procedure does always terminate (hint: look at the pattern of
numbers in each vertical column, and also down diagonals). And note that our
recipe involves a do until procedure: so it shouldn’t be a surprise to hear that
we have the following

Theorem 22 The Ackermann-Péter function is µ-recursive but not
primitive recursive.

Sketch of a proof sketch: p(x, z) is not p.r. We’ll not pause long over this as
we’ve already indicated the main proof idea. Given the function p’s origin in
the sequence of functions sum, product, exponential, . . . , it is evident that the
functions p(0, z), p(1, z), p(2, z), . . . grow faster and faster as z increases. And
we can fairly easily confirm that for any primitive recursive function f(z) there
is some n such that p(n, z) grows faster – i.e. after some threshold d, then for
all z > d, f(z) > p(n, z). Hence p can’t be primitive recursive.

For suppose otherwise: then q(z) = p(z, z) is p.r. too. Hence there is some n
and some d such that, if z > d and z > n, then q(z) < p(n, z) < p(z, z) < q(z).
Contradiction! �

Proof sketch: p(x, z) is µ-recursive We’ll take longer over this result as the proof
illustrates a very important general idea that we’ll make use of in later chapters.
The proof has three stages.

(i) Introducing more coding Consider the successive terms in our calculation of
the value of p(2, 1). We can introduce code numbers representing these terms by
a simple, two-step, procedure:

1. Transform each term like p(1, p(0, p(1, 0))) into a corresponding sequence
of numbers like 〈1, 0, 1, 0〉 by the simple expedient of deleting the brackets
and occurrences of the function-symbol ‘p’.

2. Code the resulting sequence 〈1, 0, 1, 0〉 by Gödel numbering, e.g. by using
powers of primes. So we put e.g.

〈l,m, n, o〉 ⇒ 2l+1 · 3m+1 · 5n+1 · 7o+1

(where we need the +1 in the exponents to handle the zeros).

Thus, step (1), we can think of our computation of p(2, 1) as generating in turn
the sequences

〈2, 1〉, 〈1, 2, 0〉, 〈1, 1, 1〉, 〈1, 0, 1, 0〉, . . .

Then, step (2), we code up each sequence; so the successive steps in the calcu-
lation of p(2, 1) will respectively receive the code numbers
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72, 540, 900, 2100, . . .

(ii) Coding/decoding functions So far, that’s just routine coding. Now we put it
to work by defining a couple of coding/decoding functions as follows:

1. c(x, y, z) is the code number of the sequence of numbers corresponding
to the z-th term (counting from zero) in the calculation of p(x, y) if the
calculation hasn’t yet halted by step z; and otherwise c(x, y, z) = 0. So,
for example, c(2, 1, 3) = 2100; and c(2, 1, 20) = 0.

2. fr(x) = one less than the exponent of 2 in the prime factorization of x.
Hence, if n codes a sequence of numbers, fr(n) recovers its first member.

(iii) Facts about our coding functions Next, some claims about our coding func-
tions, which together establish the desired result that the Ackermann-Péter func-
tion is µ-recursive.

1. The coding function c is primitive recursive. That’s a little tedious though
not difficult to prove.6 But the claim should in any case look entirely
plausible, because the evaluation of c for given arguments involves a step-
by-step computation using a simple rule that takes us from one step to the
next. No step-to-step move involves flying off on an open-ended search.
So a loop program will suffice to give an algorithm for the computation
(compare Section 6.5), and such a program will always determine a p.r.
function.

2. The calculation of the function p for given arguments x, y eventually halts
at the z-th step for some z, and then c(x, y, Sz) = 0. Therefore g is regular.

3. µz[c(x, y, Sz) = 0] is therefore the step-number of the step in the calcula-
tion which delivers the value of p(x, y).

4. Hence c(x, y, µz[c(x, y, Sz) = 0]) is the code number of the final value of
p(x, y).

5. Hence, decoding, p(x, y) = fr(c(x, y, µz[c(x, y, Sz) = 0])).

6. But the function fr is primitive recursive (in fact fr(x) =def exp(x, 0) −· 1,
where exp is as introduced in Section 6.4).

Hence, putting those facts together, since c and fr are p.r., and the minimization
in our redefinition of p(x, y) in (5) is regular, p(x, y) is µ-recursive.7 �

6We won’t do it here; but we do give details of how prove that a similar coding function
is p.r. in Section 16.5.

7The proof that the computable-but-not-p.r. diagonal function d(n) is µ-recursive is similar.
Details can be found e.g. in Péter’s classic book (1951, with a revised edition rather badly
translated as her 1967). The key trick is to use double recursion again to define a function
ϕ(m,n) such that, for a given m, ϕ(m,n) = fm(n), where running through the fi gives us the
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14.3 Diagonalizing out?

So: there are computable functions which are µ-recursive but not primitive recur-
sive. The obvious next question is: are there computable functions which aren’t
µ-recursive either?8

Familiarity with some programming languages may well suggest that the an-
swer should be ‘no’. For when things are reduced to basics, we see that the main
programming structures available in such languages are (in effect) ‘for’ loops and
‘do until’ loops, which correspond to definitions by primitive recursion and min-
imization. So – given that our modern general-purpose programming languages
have proved sufficient for specifying algorithms to generate any computable func-
tion we care to construct – it doesn’t seem a big leap to conjecture that every
computable function should be definable in terms of composition (corresponding
to the chaining of program modules), primitive recursion, and minimization.

That rough and ready argument certainly gives some initial plausibility to
the following Thesis: a function is an intuitively computable total function just
in case it is µ-recursive. For reasons that will emerge in Chapter ??, we can call
this ‘Church’s Thesis’ in honour of Alonzo Church.9

However, don’t we already have materials for a knock-down argument against
this Thesis? For in Section 6.6, we proved that not every computable function
is primitive recursive by ‘diagonalizing out’ – that is to say, we used a diagonal
construction which took us from a list of all the p.r. functions to a further
computable function which isn’t be on the list. Well, why shouldn’t we now just
use the same trick again?

The argument would go:

desired effective enumeration of the p.r. functions. Since ϕ is definable by a double recursion
it is µ-recursive – by the same kind of argument which showed that that Ackermann-Péter
function is µ-recursive. Hence d(n) = ϕ(n, n) + 1 is µ-recursive too.

By the way, it would be quite wrong to take away from our discussion above the impression
that the µ-recursive-but-not-p.r. functions must all suffer from explosive growth. Péter gives
a beautiful counter-example. Take our enumeration fi of p.r. functions, and now consider the
functions gi(n) =def sg(fi(n)), where sg is as defined in Section 6.4 (i.e. sg(n) = 0 for n = 0,
and sg(n) = 1 otherwise). Evidently, running through the gi gives us an effective enumeration
– with many repetitions of course – of all the p.r. functions which only take the values 0 and
1. Now consider the µ-recursive function ψ(n) = |1− sg(ϕ(n, n))|. This function too only takes
the values 0 and 1; but it can’t be primitive recursive. For suppose otherwise. Then for some
k, ψ(n) = gk(n) = sg(ϕ(k, n)). So we’d have

sg(ϕ(k, n)) = ψ(n) = |1− sg(ϕ(n, n))|
and hence

sg(ϕ(k, k)) = ψ(k) = |1− sg(ϕ(k, k))|
Which is impossible. Therefore there are µ-recursive-but-not-p.r. functions which only ever
take the values 0 and 1, and hence do not suffer value explosion!

8Note, we are still – for the moment – talking about computable total functions from N
into N.

9Compare ‘Turing’s Thesis’ which we introduced in Section 2.3. Over the next chapters, it
will become clear that these two Theses are in fact equivalent – but we aren’t in a position to
show that yet, so (for the moment) we must distinguish them.

128



Diagonalizing out?

Take an effective enumeration of the µ-recursive functions, f0, f1, f2,
. . . , and define the diagonal function D(n) = fn(n) + 1. Then D dif-
fers from each fj (at least for the argument j). But D is computable
(since to evaluate it for argument n, you just set a computer to enu-
merate the fj until it reaches the n-th one, and then by hypothesis
the value of fn(n) + 1 is computable). So D is computable but not
µ-recursive.

But this argument fails, and it is very important to see why. The crucial point
is that we are not entitled to its initial assumption. While the p.r. functions are
effectively enumerable, we have no reason to suppose that there is an effective
enumeration of the µ-recursive functions (and, it will transpire, every reason to
suppose that there isn’t one).

But what makes the critical difference between the cases? Well, remind your-
self of the informal argument (in Section 6.6) that shows that the p.r. functions
are effectively enumerable. If we now try to run a parallel argument argument
for the claim that the µ-recursive functions are effectively enumerable, things go
just fine at the outset:

Every µ-recursive function has a ‘recipe’ in which it is defined by
primitive recursion or composition or regular minimization from other
functions which are defined by recursion or composition or regular
minimization from other functions which are defined . . . ultimately in
terms of some primitive starter functions. So choose some standard
formal specification language for representing these recipes. Then we
can effectively generate ‘in alphabetical order’ all possible strings of
symbols from this language . . .

But at this point the parallel argument breaks down, since we can’t continue

. . . and as we go, we can mechanically select the strings that obey
the rules for being a recipe for a µ-recursive function.

To determine mechanically whether a series of definitions obey the rules for being
the recipe for a µ-recursive function we would need to determine, in particular,
whether each application of the minimization operator is a regular minimization.
Take the first occurrence of the minimization operator in the chain of definitions
for a function. Up to that point, the definitions are characterizing a p.r. function:
so to tell whether this minimization operator is correctly applied to a regular
function we must be able to tell whether a p.r. function is regular. Hence, in sum,
in order to have an effective algorithm for telling whether a set of definitions obey
the rules for being the recipe for a µ-recursive function, we’d need already to
have an effective algorithm for telling whether a p.r. function given by a certain
definition is regular. But is there such an algorithm?

We can put this question in another, equivalent, way. Suppose f0, f1, f2, . . .
is an effective enumeration of p.r. functions; and suppose we define the test
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function reg , where reg(n) = 0 if fn is regular and reg(n) = 1 otherwise (thus
reg is the characteristic function of the property of numbering a regular function
in the enumeration). There is an algorithm for testing regularity just in case reg
is a computable function. But is it?

Well, as we’ll see in Section ??, we can in fact conclusively prove at least
that reg isn’t a µ-recursive function. So this means that in order to use the
diagonalization argument against Church’s Thesis, we must first show that reg
is computable even though not µ-recursive. But there isn’t a smidgen of evi-
dence for that – and of course, if we could show that the reg is computable
even though not µ-recursive, this would already give us a direct counterexample
against Church’s Thesis, and we wouldn’t need to use the diagonal argument!

Perhaps we should summarize, as the dialectical situation here is a bit del-
icate. We asked: can we argue against the Thesis that every intuitively com-
putable (total) function is µ-recursive by using a diagonal argument modelled
on our arguments against the claim that every computable function is primitive
recursive? We saw that such a diagonal argument would only be available if the
function reg is computable in the intuitive sense. But we also claimed – and will
prove – that that function is not µ-recursive. So we can only use the diagonal
argument against Church’s Thesis if we already have demonstrated that reg is a
counterexample to the Thesis. In short, we can’t use the diagonal argument to
get any independent purchase against Church’s Thesis where we hadn’t produced
a counterexample before.

The Thesis lives to fight another day.

14.4 Partial computable functions

The use of ‘do until’ loops is potentially dangerous. Suppose we set out to iterate
some loop until condition C obtains, but in fact C never obtains. Then our
computation gets stuck in an infinite cycle and never terminates.

Likewise – indeed, it is the same point – the use of unbounded minimization
is potentially dangerous. Suppose we set out to search for the least y such that
g(~x, y) = 0, but g isn’t regular. Then, for some arguments ~x, our search may not
terminate.

Our insistence so far that we use only regular minimization was precisely to
guarantee that we wouldn’t ever get stuck in a never-ending loop. Still, you
might say,

the intuitive notion [of a computation] does not require that a me-
chanical procedure should always terminate or succeed. A sometimes
unsuccessful procedure, if sharply defined, is still a procedure, i.e. a
well determined manner of proceeding.10

10The quotation is from Hao Wang (1974, p. 84), who is reporting Gödel’s views in con-
versation. The earliest discussions of computable functions did, however, concentrate on total
functions: partial computable functions first step into the limelight in Kleene (1938).
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Suppose then that we relax the notion of a definition by minimization to allow
us (roughly) to define f(~x) as the least y such that g(~x, y) = 0, even though g

isn’t regular. Then f(~x) may be undefined for some values, yet be defined and
computable by a ‘do until’ procedure for some other values. So f , in short, could
be a partial computable function.

A general account of computability ought, it seems, to cover such partial com-
putable functions. In the rest of this section, we gather together some preliminary
definitions. Then in next section we extend the notion of minimization to allow
for partial recursive functions. There are some subtleties.

Here then are the initial definitions that we’ll need: we first give them for one-
place functions:

1. f is a partial numerical function – in standard symbols, we write f : N ⇁ N
– if f is defined for arguments just in some domain ∆ ⊆ N, and for each
n ∈ ∆, it returns a value f(n) ∈ N. Note that we allow the case where
∆ = N, so f is in fact total, i.e. defined for all numbers n. But . . .

2. f is strictly partial if it is partial but not total, i.e. is undefined for some
n ∈ N.

3. f is the same partial function as g if f and g are defined for the same
domain ∆, and for all n ∈ ∆, f(n) = g(n).

4. fc is the completion of f – where f is a partial function with domain
∆ ⊆ N – if, for all n ∈ ∆, fc(n) = f(n), and for all n 6∈ ∆, fc(n) = 0.11 So
fc is a total function which – so to speak – fills in the gaps left by places
where f is undefined by setting the value of the function to zero in those
cases.

The generalizations to many-place functions are immediate. For example,

1′. f is a two-place partial numerical function – in standard symbols, we write
f : N2 ⇁ N – if there is some domain ∆ which is a subset of N2, the set
of ordered pairs of natural numbers, and for each pair 〈m,n〉 ∈ ∆, f is
defined and returns a value f(m,n) ∈ N.

Finally, we have the following key definition (which again we give first for the
case of a one-place function):

5. The partial function f is computable if there is some algorithm which
delivers the output f(n) for each n in f ’s domain ∆, and which delivers
no output otherwise.

In other words, a partial function f is computable if there is an algorithmic
procedure which we can follow to calculate the right value whenever f is de-
fined, and which doesn’t properly terminate when f isn’t defined. Again, the
generalization to many-place functions is obvious.

11‘n 6∈ ∆’ is of course the negation of ‘n ∈ ∆’.
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14.5 Partial recursive functions

We are now going to move on from the intuitive notion of a partial computable
function to introduce the formally defined notion of a partial recursive function.
To do this, we need to liberalize the use of minimalization as follows:

Suppose g(~x, y) is an (n+1)-place partial function. Then we say that
f is defined by minimization from g just in case

either (i) f(~x) is the least y such that: g(~x, y) = 0 and for all
z < y, g(~x, z) is defined and non-zero;

or else (ii) if such a y doesn’t exists, f(~x) is undefined.

Again, we allow the case where n = 0, so f is just a constant.
A definition by regular minimization is, a fortiori, also a definition by mini-

mization in this broader sense. Henceforth, then, we’ll extend our use of the ‘µ’
notation so that we write f(~x) = µy[g(~x, y) = 0] when f is defined by minimiza-
tion from g, whether g is regular or not.

Why don’t we just say that f ′(~x) is defined by minimization from g(~x, y)
if either (i′) it yields the least y such that g(~x, y) = 0 if that exists, or else
(ii′) is undefined? Well, to take the simplest example, suppose g is a partial
computable function such that g(0) is undefined but g(1) = 0. Then f ′ = 1 (the
least y such that g(y) = 0). But we can’t compute f ′ by any search procedure:
that’s because, if when we put y = 0 and try to test whether g(y) = 0, we get
stuck since g(0) is undefined. The moral is: if we want minimization applied to
a computable function g to give us another computable function f , we must
ensure that, when f(~x) is defined, we can indeed find its value by repeatedly
testing whether g(~x, y) = 0, incrementing y until we hit a value which passes
the test without getting stuck en route. That’s precisely what we ensure by the
two-pronged clause (i).

And now here is the key definition (the natural one, given what’s gone before):

The partial recursive functions are those that can defined from the
initial functions by a chain of definitions by composition, primitive
recursion and/or minimization.

Or putting it more carefully in the now familiar style, we can say

1. The initial functions S,Z, and Ik
i are partial recursive;

2. if f can be defined from the recursive functions g and h by
composition, then f is partial recursive;

3. if f can be defined from the recursive functions g and h by
primitive recursion, then f is partial recursive;

4. if g is a partial recursive function, and f can be defined from g

by minimization, then f is partial recursive;
5. nothing else is a partial recursive function.
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Since, in particular, a function defined by minimization from a (partial) com-
putable function is itself partial computable, the partial recursive functions are
all partial computable.

Four more comments:

(i) The point should be stressed again: the so-called partial recursive functions
needn’t be strictly partial. For a start, all p.r. functions also count as partial
recursive functions.

(ii) In addition, the µ-recursive functions (obtained when minimization is ap-
plied to regular functions) are also total partial recursive functions. That’s imme-
diate from our definitions. And the converse also holds: the total partial recursive
functions are all µ-recursive. However, that isn’t trivial, it’s a theorem! – in fact
it’s Theorem 25, Section 16.3.12

Why isn’t it trivial? Well, suppose that g(n) is a total partial recursive function
whose values all belong to the set ∆. And suppose that h(n) is a strictly partial
recursive function defined just for values n ∈ ∆ (and, let’s imagine, h is given to
us by a definition that involves the application of minimization to a non-regular
function). Then (a) the function f(n) = h(g(n)) is partial recursive (since it is
a composition of two partial recursive functions). But (b) f is in fact a total
function (since h is defined for every output from g). However, (c) the total
partial recursive function f , defined as the composition of g and h, is not given
to us by a definition that involves only regular minimizations. So (d), if f is
to be µ-recursive by our definition in Section 14.1, then we need to prove that
it can always be given some other definition which reveals it to be µ-recursive.
And that is certainly non-trivial.

(iii) You might think, all the same, that the issue of partial functions is of
no great interest, speculating that we could always in principle tidy things up
by replacing a partial function f with e.g. its completion fc. But not so: a
function’s partiality often can’t be eliminated while retaining computability. Or
more precisely – as we’ll show later – there can be strictly partial recursive
functions whose completion is not µ-recursive.

(iv) As we noted before, a partial recursive function f is evidently partial com-
putable. But what about the converse claim?

Corresponding to the Church’s Thesis for total functions, we have the Thesis
for partial functions: computable partial functions are partial recursive functions.

12This is the point, perhaps, for an important warning about terminology, to aid comparison
with other treatments. So note that a majority of writers use ‘recursive function’ (plain and
simple) to mean µ-recursive function: see e.g. Cutland (1980, pp. 49–50), Cohen (1987, pp.
60–61), or Mendelson (1997, p. 175). But others use ‘recursive function’ to mean ‘total partial
recursive function’: see for example Cooper (2004, p. 18). That’s why we’ve stuck to our
unambiguous terminology.

Note also a more superficial difference in terminology that might still confuse the unwary
browser glancing at other books: some writers – e.g. (Cooper, 2004) again – use the abbreviation
‘p.r. function’ to mean not primitive recursive, but partial recursive.
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We’ll argue for this generalized Thesis over the coming chapters. But for the
moment, we make just one observation.

Note that – in contrast to the µ-recursive functions – recipes for partial recur-
sive functions are effectively enumerable. The argument is as before in the case
of p.r. functions. We can choose some standard formal specification language for
representing chains of definitions in terms of composition, recursion and mini-
mization. We can effectively enumerate the possible strings of symbols from this
language and, as we do so, we can effectively select out the strings that obey
the rules for being a recipe for a partial recursive function (because this time,
we don’t need to decide whether minimization is applied to a regular function).
But if partial recursive functions can be specified in some effectively enumerable
sequence f0, f1, f2, . . ., why can’t we continue the argument as we did for the
primitive recursive functions and ‘diagonalize out’?

Well, how is the diagonal function supposed to be constructed? If, as before,
we put D(n) = fn(n) + 1, then D is indeed a partial computable function, but
we can’t prove that D is a new function, not already on our list. Perhaps it is
none other than fk, where fk(k) is undefined, so D(k) is also undefined, which
allows D and fk to be the same function, agreeing on the values for which they
are defined.

If, alternatively, we put D(n) = fn(n) + 1 if fn(n) is defined, and otherwise
put D(n) = 0 (for example), then D must indeed be distinct from each of the
fi, but now – by observation (iii) – we don’t know that D is computable.

So either way, we can’t diagonalize out of the class of partial recursive func-
tions.

In sum, the situation is this. The double-pronged Church’s Thesis is that the
intuitively computable total functions and the intuitively computable partial
functions are respectively just the µ-recursive and partial recursive functions. In
each case, there is a potential challenge: can’t we diagonalize out to construct
a computable but not recursive function? And in each case, we have a blocking
response – but the lines of the responses are different in the two cases.
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Our overall project is to get clear about the content and implications of Gödel’s
Theorems: and, as far ideas of computability are concerned, the concepts of prim-
itive recursive, µ-recursive, and partial recursive functions are all we need for the
job. However, having reached this point, it is well worth saying something about
Alan Turing’s classic analysis of computability,1 and then establishing the cru-
cial result that the Turing computable total functions are exactly the µ-recursive
functions. This result is interesting in its own right, is historically important,
and enables us later to establish some further results about recursiveness in a
particularly neat way. Further, it warrants us running together Turing’s Thesis
(Section 2.3: the computable functions are those computable by a Turing ma-
chine) with Church’s Thesis (Section 14.3: the computable functions are just the
µ-recursive ones). These pay-offs make the next three chapters worth the effort.

15.1 The basic conception

Think of executing an algorithmic computation ‘by hand’, using pen and paper.
We follow strict rules for writing down symbols in various patterns. To keep
things tidy, let’s write the symbols neatly one-by-one in the squares of some
suitable square-ruled paper. Eventually – if all goes well, and we don’t find our-
selves spiralling around in a circle, or marching off to infinity – the computation
halts and the result of the computation is left written down in some block of
squares on the paper.

Now, using a two-dimensional grid for writing down the computation is not of
the essence. Imagine cutting up the paper into horizontal strips a square deep,
and pasting these together into one long tape. We could use that as an equivalent
work-space.

Using a rich repertoire of symbols is not of the essence either. Suppose some
computational system uses 27 different symbols. Number these off using a five-
binary-digit code (so the 14th symbol, for example, gets the code ‘01110’). Then
divide each of the original squares on our work-space tape into a row of 5 small
cells. Instead of writing one of original symbols into one of the original big
squares, we could just as well write its binary code digit-by-digit into a block of
5 cells.

So – admittedly at some cost in user-friendliness – we can think of our original
hand computation as essentially equivalent to following an algorithm (a set of

1See his (1936), which is handily reprinted with a very useful long introduction in
(Copeland, 2004).
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0 1 0 0 1 1 1 1 1 0

N

instructions) for doing a computation by writing down or erasing binary digits
one-at-a-time in the cells on a linear tape, as in our diagram. The arrow-head
indicates the position of the scanned cell, i.e. the one we are examining as we are
about to apply the next computational instruction. (We’ll assume, by the way,
that we can paste on more work-space as and when we need it – so, in effect,
the tape is unlimited in length in both directions).

Let’s now consider the instructions governing our computation. We will list
them as labelled or numbered lines, where each line tells us what to do depending
on the contents of the scanned cell. So we can think of a single line from our
algorithm as having the form

q : if the scanned cell contains ‘0’, do action A0, then go to q0;
if the scanned cell contains ‘1’, do action A1, then go to q1;
if the scanned cell is blank, do action AB , then go to qB .

where q and the qj are line-numbers or labels (and perhaps one or two of the
conditional clauses are redundant).

It is convenient to distinguish two special labels, 1 and 0: the first will be used
to mark the initial line of a program, while the second is really a pseudo-label
and ‘go to 0’ will actually mean ‘end the execution of the program’. Note, by the
way, that program execution can stop for two reasons: we can get that explicit
instruction to stop, or we can run out of program lines to tell us what to do next.
In the first case, we’ll say that the execution halts; in the second case, we’ll say
that it freezes.

What are the possible actions Aj here? There are two types. We can write in
the scanned cell – i.e. over-write any contents in the scanned cell with ‘0’ or ‘1’,
or ‘write a blank’ (i.e. erase the current contents). Or else we can move along the
tape so that a new cell becomes the scanned cell. We’ll take it that any moving
is to be done step-wise, one cell at a time; and more complex actions – like e.g.
copying the contents of the scanned cell into the next four cells to the right – are
to be performed as a sequence of basic actions. There are five possible minimal
actions A, which we can indicate as follows:

0: write a ‘0’ in the scanned cell (overwriting any scanned content);
1: write a ‘1’;
B: write a blank;
L: make the next cell to the left the scanned cell;
R: make the next cell to the right the scanned cell.

Let’s now say, as a first shot, that a Turing program is just a collection of
program lines of the very simple three-clause form we illustrated, which tell us
which action to perform and which line to jump to next.
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In executing such a program, we typically start with some number or numbers
written as input on the work-tape (written in binary digits, of course). And we
begin by following the relevant instruction given at the program line labelled 1.
We then follow the further instructions we encounter as we are told to jump from
line to line. If and when the execution halts because we get to the instruction
‘go to 0’, we look at the block of binary digits containing the scanned cell, and
those digits give the numerical output of our calculation.

So we can say, e.g., that a one-place function f is computed by a Turing
program Π if, given n on the tape as input, executing the program eventually
yields f(n) as output just in case f(n) is defined. In the general case, we’d expect
a Turing program to compute a partial function. Indeed, it will often be the null
function, which is nowhere defined: but even if program execution halts properly
for some inputs it may freeze or go into an infinite loop for other inputs.

The idea of a Turing computation, then, is extraordinarily simple – it’s basi-
cally a matter of running a program whose sole programming structure is the ‘go
to line q’ instruction. In Section 15.3, we’ll give some mini-examples of Turing
programs in operation. But first we really need to refine the ideas we’ve just
sketched. By the end of the next section, then, we will have introduced some
sharper terminology and also cleaned up some details. Along the way, there’s
a number of fairly arbitrary and non-significant choices to be made. We won’t
comment on these, but don’t be surprised to find other choices made in other
treatments: the basic conception, however, always stays much the same. (Sug-
gestion: it might help to read the next two sections in tandem, using theory and
practice to illuminate each other.)

15.2 Turing computation defined more carefully

(i) I-quadruples We define an instruction-quadruple (or ‘i-quadruple’ for short)
to be an ordered quadruple of the form

〈q1, S,A, q2〉

whose elements are as follows:

1. q1 is a numeral other than ‘0’; we’ll refer to this first element of an i-
quadruple as its label – to emphasize the point that the numerals here
aren’t doing arithmetical work. An i-quadruple labelled ‘1’ is an initial
quadruple.

2. S – representing the contents of the scanned cell – is one of the symbols
{0, 1, B}. ‘B’, of course, represents a blank cell.

3. A is one of the symbols {0, 1, B, L,R}: these represent the five possible
minimal actions.

4. q2 is a numeral.
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An i-quadruple is to be read as giving a labelled, conditional, two-part instruction
as follows:

q1: if the scanned cell contains S, do the action indicated by A, then go to the
instructions with label q2 – unless q2 is ‘0’, in which case halt the program.

Evidently, we can now compress our verbose instruction line

q: if the scanned cell contains ‘0’, do action A0, then go to q0;
if the scanned cell contains ‘1’, do action A1, then go to q1;
if the scanned cell is blank, do action AB , then go to qB .

into three i-quadruples which share the same initial label, thus:

〈q, 0, A0, q0〉, 〈q, 1, A1, q1〉, 〈q,B,AB , qB〉

(ii) Turing programs We will say that a set Π of i-quadruples is consistent
if it doesn’t contain i-quadruples with the same label which issue inconsistent
instructions. More formally:

A set Π of i-quadruples is consistent if there’s no pair of i-quadruples
〈q1, S,A, q2〉, 〈q1, S,A′, q′2〉 in Π such that A 6= A′ or q2 6= q′2.

Which leads to the following sharpened official definition:

A Turing program is a finite consistent set of i-quadruples.2

(iii) Executing Turing programs We execute a Turing program Π as follows:

1. We start with the work-tape in some initial configuration – i.e. with digits
occupying a finite number of cells, and with some particular cell being
scanned. Suppose the content of that initial scanned cell is S.

2. We then look for some appropriate initial quadruple to execute. That is to
say, we look for an i-quadruple in Π of the form 〈1, S,A, q2〉: by consistency
there is at most one distinct such i-quadruple. We perform action A and
jump to the instructions with label q2.

2Some presentations say that Turing programs are sets of i-quintuples. The idea is that we
can wrap up e.g. the pair of instructions

〈10, 1, 0, 11〉
〈11, 0, R, 12〉

into a single instruction of the form

〈10, 1, 0, R, 12〉
For consider: executing the two quadruples involves first replacing the digit ‘1’ in the scanned
cell by ‘0’ and jumping to instruction 11, and secondly – since we now have ‘0’ in the scanned
cell – moving on to scan the next cell to the right and then jumping to instruction 12. That
has the same effect as executing the more complex single instruction ‘10: if there is ‘1’ in
the scanned cell, then replace it with ‘0’, move right, and jump to instruction 12’, which is
summarized by our quintuple. There is really nothing to chose between presenting Turing
programs as sets of quadruples or sets of quintuples other than aesthetics.
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3. We next look for an i-quadruple in Π of the form 〈q2, S′, A′, q3〉, where S′ is
the content of the currently scanned cell. We perform action A′ and jump
to the instructions with label q3. And we keep on going . . .

4. . . . unless and until either (a) the execution halts because we are explicitly
told to halt – i.e. we encounter a ‘jump to 0’ instruction – or (b) the
execution freezes because we have simply run out of instructions we can
apply.

We will be particularly interested in cases where we run a program starting and
finishing in what we’ll call standard modes. To explain:

a. We start with the work-tape in a standard initial configuration if the tape
is blank except for containing as input one or more blocks of binary digits,
with the blocks separated by single blank cells, and the initial scanned cell
is the left-most cell of the left-most block.

b. A run of the program is said to halt gracefully if (a) it halts properly (rather
than freezes), and (b) it leaves the work-tape cleaned up and blank apart
from a single block of binary digits, with (c) the scanned cell being the
left-most cell of this block.

(iv) Turing computable functions Suppose that f : N ⇁ N, i.e. f is a one-place
partial function, which is defined for numbers in some domain ∆ (where ∆ is
either N, the set of natural numbers, or some proper subset of N). Then,

The Turing program Π computes the function f just if, for all n,
when Π is executed starting with the tape in a standard initial con-
figuration with n in binary digits on the tape (and nothing else),
then (i) if n ∈ ∆, the execution halts gracefully with f(n) in binary
digits on the tape, and (ii) if n 6∈ ∆, the execution never halts.

Now suppose that g: N2 ⇁ N, i.e. g is a two-place partial function, which is
defined for pairs of numbers in some domain ∆ (where ∆ is either N2, the set of
all ordered pairs of natural numbers, or some proper subset of N2). Then,

The Turing program Π computes the function g just if, for all m,n,
when Π is executed starting with the tape in a standard initial
configuration with m in binary digits on the tape, followed by a
blank cell, followed by n in binary digits (and nothing else), then
(i) if 〈m,n〉 ∈ ∆, the execution halts in standard configuration with
f(m,n) in binary digits on the tape; and (ii) if 〈m,n〉 6∈ ∆ the exe-
cution never halts.

The generalization to many-place functions is obvious. And we say

A function is Turing computable if there is a Turing program that
computes it.
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(v) Not all programs compute functions Finally, note that we’ve said that a
program Π is to count as computing some monadic function (say) when, for
any input n, Π either halts gracefully or never halts. Suppose however that Π
sometimes halts but not gracefully. Then by our definition, Π doesn’t compute
a function.

15.3 Some simple examples

(i) The successor function We’ll now construct a little Turing program that
computes the successor function. So suppose the initial configuration of the tape
is as follows

1 0 1 1 1

N

Then the program needs to deliver the result ‘11000’. The program task can be
broken down into three stages:

Stage A We need to make the scanned cell the last cell in the initial block of
digits. Executing the following i-quadruples does the trick:

〈1, 0, R, 1〉
〈1, 1, R, 1〉
〈1, B, L, 2〉

These initial instructions move the scanned cell to the right until we overshoot
and hit the blank at the end of the initial block of digits; then we shift back one
cell, and look for the instructions with label ‘2’:

1 0 1 1 1

N

Stage B Now for the core computation of the successor function. So if the
scanned cell contains ‘0’ (or is blank), we change it to ‘1’, and then go to the
final Stage C. If the scanned cell contains ‘1’, we change that to ‘0’, and ‘carry
1’ – i.e. we move to the next cell to the left, and repeat Stage B:

〈2, 0, 1, 4〉
〈2, 1, 0, 3〉
〈3, 0, L, 2〉
〈2, B, 1, 4〉

Note that we only jump to a quadruple with label ‘3’ if we’ve just written ‘0’ in
the scanned cell, so we only need the quadruple that starts 〈3, 0, , 〉. The fourth
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quadruple is to deal with the case where we keep on ‘carrying 1’ until we hit the
blank at the front of the initial block of digits. Executing these instructions gets
the tape in our example into the following state:

1 1 0 0 0

N

And we now look for instructions with label ‘4’.

Stage C Finishing up. We need to ensure that the scanned cell returns to be at
the front of the block, so that the computation halts in standard configuration.
Analogously to Stage A, we can write:

〈4, 0, L, 4〉
〈4, 1, L, 4〉
〈4, B,R, 0〉

Following these instructions, the scanned cell moves leftwards until it overshoots
the block and moves right one cell, and then the execution halts gracefully.

1 1 0 0 0

N

The scanned cell is now the first in the block of digits. There is nothing else on
the tape. So we have halted gracefully.

Thus our i-quadruples together give us a program which computes the suc-
cessor function.

(ii) Another program for the successor function We’ll give two more examples of
Turing programs in this section. First, note that our successor program, applied
to ‘111’, changes those digits to ‘000’, then prefixes a ‘1’ to give the correct
output ‘1000’. So in this case, the output block of digits starts one cell to the left
of the position of the original input block. We’ll now – for future use – describe a
variant of the successor program, which this time always neatly yields an output
block of digits starting in exactly the same cell as the original input block.

What we need to do, clearly, is to prefix a routine at the beginning of the
program which, if but only if it detects an unbroken block of ‘1’s, shifts that
block one cell to the right (by adding a ‘1’ at the end, and deleting a ‘1’ at
the beginning). The following will do the trick, and also – like Stage A of our
previous program – it moves the current cell to the end of the block:

〈1, 0, R, 20〉
〈1, 1, R, 1〉
〈1, B, 1, 10〉
〈10, 1, L, 10〉
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〈10, B,R, 11〉
〈11, 1, B, 11〉
〈11, B,R, 20〉
〈20, 0, R, 20〉
〈20, 1, R, 20〉
〈20, B, L, 2〉

The initial instructions start us off scanning through the input block to the right.
If we encounter a ‘0’ then we continue by following the instructions labelled ‘20’
(which take the scanned cell to the end of the block). If all we meet are ‘1’s
then we put another ‘1’ at the end of the block, and then follow the instructions
labelled in the tens, which first take us back to the beginning of the block, and
then get us to delete the initial ‘1’ and move one cell right. You can check that
executing the program up to this point changes the state of the tape from the
first to the second state illustrated here:

1 1 1 1 1

N

1 1 1 1 1

N

We then just follow the instructions labelled ‘20’ again, so we end up scanning
the cell at the end of the block (and now looking for instructions labelled ‘2’).

Since we’ve used new labels in these revised i-quadruples, we can now add on
the same Stage B i-quadruples from our previous successor program to perform
the task of adding one, and the same Stage C i-quadruples to get the scanned
cell back to the beginning of the resulting block. Putting all those together gives
us the desired program.

Phew! That’s a lot of effort — but then, programming at the level of ‘machine
code’ (which is in effect what we are doing) is hard work. That’s why we or-
dinarily use high-level programming languages and rely on compilers that work
behind the scenes to translate our perspicuous and manageable programs into
the necessary instructions for manipulating binary bits.

(iii) Our remaining example is a simple copying program which takes a block of
input digits, and produces as output the same block (in the same place), followed
by a blank, followed by a duplicate of the original block.

We need somehow to keep track of where we are in the copying process. We
can do this by successively deleting a digit in the original block, going to the new
block and writing a copy of the deleted digit, returning to the ‘hole’ we made
to mark our place, replacing the deleted digit, and then moving on to copy the
next digit.

Our program for doing all this can be broken down into four sub-programs:
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1. Choosing what to do Examine the scanned cell. If it contains a ‘0’, delete
it, and go to sub-program (2). If it contains a ‘1’, delete it, and go to sub-
program (3). If it is blank, then we’ve got to the end of the digits in the
original block, so we just need to call sub-program (4) to ensure that we
halt gracefully.

2. Copying a ‘0’ This routine ‘remembers’ that we’ve just deleted a ‘0’. We
scan on to the right until we find the second blank – which marks the end
of our duplicate block (if and when it exists) – and write a ‘0’. Then we
scan back leftwards until we again find the second blank (the blank created
when we deleted the ‘0’). Rewrite a ‘0’ there, which finishes copying that
digit. So now move on to scan the next cell to the right, and return to
sub-program (1).

3. Copying a ‘1’ Just like sub-program (2), except that this routine ‘remem-
bers’ that we’ve just deleted a ‘1’.

4. Finish up Move the scanned cell back to the beginning.

To illustrate, suppose the current state of the tape is like this:

1 0 0 1 1 1 0

N

Sub-program (1) instructs us to delete the currently scanned digit and start
executing sub-program (2):

1 0 1 1 1 0

N

Sub-program (2) then takes us through the following stages: (a) we scan to the
right to find the end of the second block), (b) we write ‘0’ there, (c) we scan
back to the left to find the ‘hole’ in the first block that we just created, (d) we
rewrite ‘0’ there, (e) we move one cell right. So these five stages produce these
successive states of the tape:

1 0 1 1 1 0

N

1 0 1 1 1 0 0

N
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1 0 1 1 1 0 0

N

1 0 0 1 1 1 0 0

N

1 0 0 1 1 1 0 0

N

And we’ve thereby copied another digit.
Here – just for the fun of it – is how to code up our outlined program strategy

into i-quadruples (we’ve marked the beginnings of the four sub-programs):

〈1, 0, B, 10〉 (1)
〈1, 1, B, 20〉
〈1, B, L, 30〉

〈10, 0, R, 10〉 (2)
〈10, 1, R, 10〉
〈10, B,R, 11〉
〈11, 0, R, 11〉
〈11, 1, R, 11〉
〈11, B, 0, 12〉
〈12, 0, L, 12〉
〈12, 1, L, 12〉
〈12, B, L, 13〉
〈13, 0, L, 13〉
〈13, 1, L, 13〉
〈13, B, 0, 14〉
〈14, 0, R, 1〉

〈20, 0, R, 20〉 (3)
〈20, 1, R, 20〉
〈20, B,R, 21〉
〈21, 0, R, 21〉
〈21, 1, R, 21〉
〈21, B, 1, 22〉
〈22, 0, L, 22〉
〈22, 1, L, 22〉
〈22, B, L, 23〉
〈23, 0, L, 23〉
〈23, 1, L, 23〉
〈23, B, 1, 24〉
〈24, 0, R, 1〉

〈30, 0, L, 30〉 (4)
〈30, 1, L, 30〉
〈30, B,R, 0〉

Which all just reinforces the point that writing Turing programs for perform-
ing even simple tasks very quickly becomes very painful. So we won’t give any
more detailed examples.3 After all, our concern here isn’t with practical comput-
ing but rather with Turing’s analysis of what a computation, at bottom, consists
in. If he is right, then any genuinely algorithmic step-by-step computation can
be replicated using a Turing program (compare ‘Turing’s Thesis’ as we stated it
in Section 2.3).

3Masochists can try their hands at programming one of the many on-line Turing machine
simulators which are available: but it is a game that quickly palls!
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15.4 ‘Turing machines’ and their ‘states’

A final remark. We have so far imagined a human ‘computer’ executing a Turing
program ‘by hand’, writing and erasing symbols from a paper tape, mechanically
following the program’s instructions. Evidently, a machine could be programmed
to do the same job. And any mechanism for running a Turing program might
naturally be referred to as a ‘Turing machine’ (at least if we pretend that its
‘tape’ is inexhaustible).

But the theory of Turing computations doesn’t care about the hardware im-
plementation. What matters about a Turing machine is always its program.
Hence one standard practice is to think of a Turing machine as an idealized
computer individuated by the Turing program it is running (i.e. same program,
same Turing machine: different program, different Turing machine). Another,
equally standard, practice is simply to identify a Turing machine with its pro-
gram (it is common enough to read ‘A Turing Machine is a set of quadruples
such that . . . ’). Nothing at all hangs on this. When we occasionally talk of Tur-
ing machines we’ll in fact be thinking of them in the first way. But mostly – for
clarity’s sake – we’ll keep talking about programs rather than machines.

Suppose that a Turing machine (in our sense) is in the middle of executing a
program. The state-of-play is that it is about to execute some i-quadruple in its
program, while scanning a particular cell on a tape which has some configuration
of cells filled with digits. We can think of this overall state-of-play as character-
ized by the ‘internal’ state of the machine (it is about to execute a quadruple
with label q) combined with the ‘external’ state of the tape (the configuration
of the tape, with one cell picked out as the ‘current’ cell). That’s why q labels
are standardly said to identify internal states of the Turing machine. Again, it
is fine to talk this way for vividness: but don’t read too much into it.
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16 Turing Computability and Recursiveness

We are not going to write any more programs to show, case by case, that this or
that particular function is Turing computable, not just because it gets painfully
tedious, but because we can easily establish that every partial recursive func-
tion is Turing computable and, conversely, every Turing computable function
is partial recursive. (It follows from our proofs that the µ-recursive functions
are also just the total Turing computable functions.) This equivalence between
our two different characterizations of computable functions is of key importance,
and we’ll be discussing its significance in Chapter 17. In the present chapter, we
outline proof-strategies for both halves of our result, and note a corollary of our
proofs: we then – mostly for enthusiasts – indicate how to fill in the outlines.

16.1 Partial recursiveness entails Turing computability

Every µ-recursive function can be evaluated ‘by hand’, using pen and paper, pre-
scinding from issues about the size of the computation. But we have tried to build
into the idea of a Turing computation the essentials of any hand-computation.
So we should certainly hope and expect that µ-recursive functions will turn out
always to be Turing computable. And indeed – as just announced – we can prove
something stronger:

Theorem 23 Every partial recursive function is Turing computable

Since every µ-recursive function is a partial recursive function – see Section 14.5,
(ii) – it immediately follows that the µ-recursive functions are Turing com-
putable.

Proof outline We’ll say that a Turing program is dextral (i.e. ‘on the right’) if

a. in executing the program, we never have to write in any cell to the left of
the initial scanned cell (or scan any cell more than one to the left of that
initial cell);

b. if and when the program halts gracefully, the final scanned cell is the same
cell as the initial scanned cell (in other words, the input block(s) of digits
at the beginning of a computation and final the output block start in the
same cell);

The key point about a dextral program, then, is that we can run it while storing
data safely on a leftwards portion of the tape, because the program doesn’t
touch that portion. So complicated computations can proceed by running a

146



Turing computability entails partial recursiveness

series of dextral sub-programs using leftwards portions of the tape to preserve
data between sub-programs.

If a function is computable by a dextral Turing program, we’ll say it is d-
Turing computable. Suppose now that the following four propositions are all
true:

1. The initial functions are d-Turing computable.

2. If the functions g and h are d-Turing computable, then so is a function f

defined by composition from g and h.

3. If the functions g and h are d-Turing computable, then so is a function f

defined by primitive recursion from g and h.

4. If the function g is d-Turing computable, so is the function f defined by
minimization.

Then take any partial recursive function f . This can be defined by some chain
of definitions by composition and/or primitive recursion and/or minimization,
beginning with initial functions. So as we follow through f ’s chain of definitions,
we start with initial functions which are d-Turing computable – by (1) – and
each successive definitional move takes us from d-Turing computable to d-Turing
computable functions – by (2), (3), and (4). So f must be d-Turing computable.
So a fortiori, the partial recursive function f must be plain Turing computable.

Hence to establish Theorem 23, it is enough to establish (1) to (4). But each
of those is more or less easy to prove. �

If this overall proof strategy seems familiar, that’s because we used the same
proof idea in Chapter 9 when showing that PA is p.r. adequate. The details
needed to fill in the proof outline are given in Section 16.4 – though these are
technicalities without much conceptual interest, so by all means skip them.

16.2 Turing computability entails partial recursiveness

As we said, it was only to be hoped and expected that we could show that all
µ-recursive functions are Turing computable. What about the converse claim
that the Turing computable total functions are all µ-recursive?

This is a more substantial and perhaps rather surprising result. For Turing
computability involves entirely ‘free form’, unstructured, computation (at the
level of ‘machine code’): we place no restrictions on the way we stack up i-
quadruples into a program, other than brute consistency. By contrast, µ-recursive
functions are defined (in effect) in terms of the algorithms that can be described
by a higher-level computer language where programs have to be structured using
just ‘for’ loops and ‘do until’ loops. So we might well wonder whether every
function which is computable using an arbitrarily structured Turing program
can also be computed using just our two types of looping structure. But we can
now show the following:
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Theorem 24 All Turing computable functions are partial recursive

So, in particular, the Turing computable total functions will be total partial
recursive, and hence (as we’ll prove in the next section) µ-recursive.

Proof outline Take the case where f is a monadic Turing computable function.
Consider a computation of f(n) by the program Π: we’ll execute the instructions
in one i-quadruple after each tick of the clock: the clock keeps ticking, however,
even if the program’s execution has stopped because it has halted or frozen.

At the j-th tick of the clock, the current ‘state-of-play’ of the Turing compu-
tation is given by (i) a description of the contents of the tape; (ii) a specification
of which cell is the currently scanned cell; (iii) the label for the i-quadruple we
will execute next. Note that we start with only a finite number of occupied cells
on the tape, and each step makes only one modification; so at every step there
are only a finite number of occupied cells; so giving the description (i) is always
a finite task.

Suppose we use some kind of sensible Gödel-style numbering in order to en-
code the state-of-play by a single code-number s. And now consider the coding
function

c(n, j) = s, where s is the code describing the state-of-play at time
j of the computation which starts at time 0 with input n. There
are three possibilities. The program is still running, so s > 0 is the
code describing the state as we enter the jth step in our Turing
computation of f(n). Or the execution of the program has already
halted, in which case we put c(n, j) = 0. Or the program has already
frozen in which case c(n, j) is frozen in time too, i.e. we put c(n, j) =
c(n, j − 1).

Then we can show that the function c(n, j) is primitive recursive. By this stage in
the game, this shouldn’t at all be a surprising claim. Just reflect that getting your
laptop computer to simulate a Turing computation step by step involves getting
it at each step to check through a finite list of instructions (so any searches are
bounded by the length of the Turing program): and a loop program suffices for
that.

If the computation halts at step j, then for all t ≤ j, c(n, t) > 0 and c(n, Sj) =
0. So c(n, µz[c(n, Sz) = 0]) gives the code describing the state-of-play – and in
particular the contents of the tape – at the point where the computation halts,
if it ever does. Therefore,

f(n) = decode(c(n, µz[c(n, Sz) = 0]))

where decode is a function that decodes a state-of-play description s and returns
the number encoded in the output block of binary digits on the tape at the end of
the computation (both sides of the equation will be undefined if the computation
doesn’t halt gracefully for input n). Assuming the Gödel numbering is sensible
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so that decode is also primitive recursive, it follows immediately that f is partial
recursive. �

The argument generalizes in the obvious way to many-place functions. And if
the strategy of our proof-outline here also seems familiar, that’s because we
used much the same proof idea in Section 14.2 when sketching a proof that the
Ackermann-Péter function is µ-recursive. We fill in the proof outline in Sec-
tion 16.5. Again, you can certainly just skim through the details – especially as
this time there’s no way of making them particularly pretty. What matters most
is that you grasp the strategy in our proof outline above.

16.3 A corollary – and a general observation

Suppose f(n) is a one-place partial recursive function. By Theorem 23, f is
computed by some Turing program. But then, as we noted in the proof of The-
orem 24, there is a two-place p.r. function c(n, j) whose value codes for the
state-of-play as we enter the jth step in the Turing computation for input n.
And f(n) = decode(c(n, µz[c(n, Sz) = 0])), where decode is also a p.r. function.

Suppose now that f(n) is also a total function. Then µz[c(n, Sz) = 0] must
yield a value for each n. But c(x, Sz) – being a composition of p.r. functions –
is a total function. Hence the application of the minimization operator here is
regular. Which shows that f has a definition involving regular minimization, and
is µ-recursive. Generalizing to many-place functions, it follows – as promised in
Section 14.5 – that

Theorem 25 Every total partial recursive function is µ-recursive.

And hence, combining Theorems 24 and 25, the total Turing computable func-
tions are just the µ-recursive ones.

So much for our corollary, now for the general observation. We’ve defined
Turing machines as dealing with binary symbols, using a one-tape work-space,
moving its focus of operations one cell at a time, and also reading/writing one
cell at a time. Variations are evidently possible. For example, we could use a
larger repertoire of symbols, or we could consider a machine with more than
one tape. But such changes don’t make any difference to what our machines
can compute – i.e. they don’t take us outside the class of recursive functions.
We’ve already argued for that informally in the case of changing the size of the
symbol set (see Section 15.1); and we can similarly argue, case by case, that
e.g. working with two tapes doesn’t make a difference either, by sketching a way
of transforming a program for our two-tape Turing machine into an equivalent
Turing program of the original type.

However, such transformations can be rather messy to effect. So note that the
proof-strategy of the last section can adopted to get nicer equivalence proofs.
For all we need to show is that the appropriate coding function cT (n, j) = s is
primitive recursive, where s is now a suitable code describing the state-of-play
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at time j of the computation of a given f(n) on our modified machine T . And
then it follows by just the same reasoning that f will still be recursive.

16.4 Showing that recursiveness entails Turing computability

We’ll now explain how to fill in the details of our proof-sketch for Theorem 23
by establishing points (1) to (4) as listed in Section 16.1.

Proof sketch for (1) We proved in Section 15.3 (ii) that the successor function is
not just Turing computable but is d-Turing computable. It’s trivial that the zero
function Z(x) is computable by a dextral program – just write a program that
takes any block of digits, erases it from the right, and leaves a single ‘0’ on the
tape. It’s also easily seen that the identity functions are d-Turing computable
by erasing and moving blocks of digits. �

Proof sketch for (2) For simplicity, we’ll just consider the case of monadic
functions. Suppose the program Πg d-Turing computes g, and the program Πh

d-Turing computes h. Then to d-Turing compute the composite function f(n) =
h(g(n)), we can just run Πg on the input n to give g(n), and then run Πh on
that output to calculate h(g(n)). (The computation will halt, as we want, just
when h(g(n)) has a value and so f(n) is defined.)

How exactly do we chain together two programs Πg and Πh into one composite
program? We need to do two things. We first ensure that there is no clash of labels
by changing the q-numbers in the i-quadruples in Πh (doing it systematically, of
course, to preserve the all-important cross-references between quadruples). And
then we must just ensure that – rather than using the ‘halt’ label – Πg ends by
telling us to process the first instruction in our re-labelled Πh. �

Proof sketch for (3) We’ll suppose f is defined by the recursion clauses

f(x, 0) = g(x)
f(x, Sy) = h(x, y, f(x, y))

where both g and h are d-Turing computable. We need to show that f is d-Turing
computable. (Simplifying the discussion for the case where the x-variable drops
out of the picture, or generalizing it to cover the case where we have an array of
variables ~x, is straightforward.)

It is convenient to introduce an abbreviated way of representing the contents
of a tape. We’ll use n to indicate a block of cells containing the binary digits for
n, we’ll use ‘B’ to indicate a single blank cell, and then e.g. m B n represents
a tape which is blank except for containing m in binary followed by a blank
followed by n. So, what we need to describe is a dextral program that takes
m B n as input and delivers f(m,n) as output. Here’s a sketch:

1. Given the input m B n , use a combination of a copying program and a
program for subtracting one to get the tape eventually to read as follows:
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m B n B m B n− 1 B m B n− 2 B . . .

. . .B m B 2 B m B 1 B m B 0 B m

2. Now move to scan the first cell of the last block of digits m . Run our
program for evaluating g starting in that position. Since this program is by
hypothesis dextral, it doesn’t visit the portion of the tape any further left
than the blank before that last block. So it is just as if the preceding tape
is completely empty. Hence the program for evaluating g will run normally
on the input m, and it will calculate g(m) – i.e. calculate f(m, 0). So after
running g the tape will end up reading

m B n B m B n− 1 B . . . B m B 1 B m B 0 B f(m, 0)

3. Scan the first cell of the concluding three blocks m B 0 B f(m, 0) . Run
our program for evaluating h starting in that position. Since this program
too is by hypothesis dextral, it ignores the leftwards contents of the tape
and the program will run normally on the three inputs m, 0, f(m, 0) to
calculate h(m, 0, f(m, 0)) – i.e. calculate f(m, 1). So after running h this
first time, the tape will end up reading

m B n B m B n− 1 B . . . B m B 1 B f(m, 1)

Now repeat the same operation. So next, scan the first cell of the last three
blocks m B 1 B f(m, 1) ). Run the program for evaluating h again, and
the tape will end up containing the shorter row of blocks

m B n B m B n− 1 B . . . B f(m, 2)

Keep on going, each time running h using the last three blocks of digits as
input, and eventually we will – as desired – be left with just

f(m,n)

on the tape if f(m,n) is defined – or else executing the program will have
got stuck somewhere en route.

So we’ve outlined the shape of a program that gives a d-Turing computation of
the recursively defined f . �

Proof sketch for (4) It remains to show that if the function g(x, y) is d-Turing
computable, then so is the function f(x) = µy g(x, y). Hence we want to specify
a program that takes m as input and delivers the output µy g(m, y) .

Our task is to run the program g with successive inputs of the form m B n ,
starting with n = 0 and incrementing n by one on each cycle; and to keep on
going unless and until we get the output ‘0’, when we return the value of n. But
note, we need to do this while ‘remembering’ at each stage the current values of
m and n. So here’s a four-stage strategy for doing the job. (Again, simplifying
to cover the case where the x-variable drops out of the picture, or generalizing
to cover the case where we have an array of variables ~x, is straightforward.)
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1. We are given m on the tape. Use a modified copier to produce

m B 0 B m B 0

to be fed into Stage (2).

2. Given any input of the kind

m B n B m B n

move to scan the first occupied cell of the second block m . Now run the
dextral program for g from that starting point, i.e. on the input m B n .
See whether the result is 0. If it isn’t, go to Stage (3). If it is, finish up
with Stage (4).

3. The state of the tape is now

m B n B g(m,n)

Delete the final block, so we are left with just m B n on the tape. Next
increment the n block by one, and then use a copier to yield

m B Sn B m B Sn

And repeat Stage (2) on this input.

4. The state of the tape is now

m B n B 0

We need, in effect. to delete the blocks of digits either side of n , and shift
the remaining block to the left (so it starts in the position where the m

block started). Exercise: write a d-Turing program that does the trick!

These stages can clearly be combined into a composite d-Turing program so,
once more, we are done. �.

Which is, all in all, a really rather pretty proof – which is why I couldn’t resist
giving it here!

16.5 Showing that Turing computability entails recursiveness

To fill in the proof details for Theorem 24 for masochists, we need to confirm
that the state-of-play coding function c which we introduced in Section 16.2 is
primitive recursive. The details will depend on how we code up a description
of the state-of-play in a computation. So after (i) proving an important general
fact about p.r. functions which we’ll need, we’ll (ii) illustrate one method of
coding, and then (iii) sketch a proof that the corresponding c is indeed primitive
recursive.
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(i) Definition by cases Here, then, is another key fact about p.r. functions to
add to those we met in Sections 6.4, 10.6. Suppose the function f is defined by
cases from k other p.r. functions fi, i.e.

f(n) = f0(n) if C0(n)
f(n) = f1(n) if C1(n)

...
f(n) = fk(n) if Ck(n)
f(n) = 0 otherwise

where the conditions Ci are exclusive and express p.r. properties (i.e. have p.r.
characteristic functions ci). Then f is also primitive recursive.

Proof Just note that

f(n) = sg(c0(n))f0(n) + sg(c1(n))f1(n) + . . .+ sg(ck(n))fk(n)

since sg(ci(n)) = 1 when Ci(n) and is otherwise zero (cf. Section 6.4 for the
definition of the p.r. function sg). �

(ii) Coding We’ll divide the work-tape into three (non-overlapping) parts – the
left part, the scanned cell, the right part – and then we’ll code up the contents
of the cells in these three parts using the following revised, all-numerical, code
(which is sadly less memorable than the one we used before when we introduced
i-quadruples, but is now more convenient):

1: indicates a cell containing 0;
2: indicates a cell containing 1;
3: indicates a blank cell.

So, firstly, the contents of the single current scanned cell can be indicated by the
code cc = 1, 2 or 3.

Next, the right part of the tape contains a finite number of occupied cells:
suppose that the r-th cell to the right of the scanned cell is the last occupied
one. We’ll code for the contents of these r cells in the now familiar Gödelian way
– we take the first r primes, and raise the n-th prime to the power of the basic
code for the contents of the n-th cell counting rightwards. Multiply the results
to give the Gödel number rt . For example, if the current state of the tape is

1 0 0 1 1 1 0 0

N

then cc = 2 and rt = 22 · 33 · 52 · 71 · 111 = 7700. We set rt = 0 if the right part
of the tape is empty.

Thirdly, lt is the Gödel-number for the contents of the occupied cells in the
left part of the tape. Take the first l primes (where l is such that the l-th cell
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to the left is the last occupied one): raise the n-th prime to the power of the
numerical code for the contents of the n-th cell, now counting leftwards, and
multiply the results. Hence, in our example, lt = 21 · 31 · 52 = 150. Again, we set
lt = 0 if the left part of the tape is empty.

Suppose, then, that the state-of-play is as follows (while we are executing the
program before it halts): we are about to execute an i-quadruple with label lb,
and the tape contents are describable by the triplet of codes cc, lt , rt . We can
code this overall state-of-play by one super-Gödel number s:

s = plb, cc, lt , rtq =def 2lb · 3cc · 5lt · 7rt

To round out our definition of s there are two more cases to consider. First,
suppose the computation has halted. Then we’ll set the state-of-play code to be

s = 0

and further ‘steps’ have no effect. And second suppose that the computation
freezes (we run out of i-quadruples to execute). Then we freeze the value of s at
the value it had when the program ‘hung’.

(iii) Defining the state-of-play function To repeat, we want to show that the
function c is primitive recursive, where c(n, j) returns the state-of-play code at
time j in computing f(n).

To prove that c(n, j) is p.r., it is enough to find two p.r. functions, initial and
trans such that we can set

c(n, 0) = initial(n)
c(n, Sj) = trans(c(n, j))

c(n, 0) gives the code for the state-of-play at the very beginning of the computa-
tion of f(n): so initial(n) needs to encode, in particular, the initial configuration
of the tape. Whilst trans needs to encode the transition from the j-th to the
Sj -th step in our computation of f(n).

Let’s think a little bit more about trans. Consider the following four functions

label(lb, cc, lt , rt) yields the value lb giving the label in the next state-
of-play, i.e. the one we move on to after the current state coded by
plb, cc, lt , rtq. (If the program freezes at this point because it gives us
no instruction for what to do, then the ‘next’ state-of-play is identical
to the current one.)

scan(lb, cc, lt , rt) yields the value of cc coding the contents of the
scanned cell in the next state of play.

left(lb, cc, lt , rt) yields the value of lt coding the contents of the left
part of the tape in the next state of play.

right(lb, cc, lt , rt) yields the value of rt coding the contents of the left
part of the tape in the next state of play.
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It is relatively routine to define the transition function trans in terms of these
four functions, and thereby show that trans is p.r. if the new functions are.

Proof We have to consider cases:

1. c(n, j) > 0. Then use the p.r. function exp to extract the exponents of
c(n, j)’s prime factors, i.e. the current values of lb, cc, lt , rt . Then there
are two sub-cases:

a) lb > 0: Apply our four new functions to calculate the updated values
of our four code numbers. Use these updated values as exponents of
the first four primes and multiply to get c(n, Sj).

b) Otherwise we’ve just halted so put c(n, Sj) = 0

2. Otherwise c(n, j) = 0, so put c(n, Sj) = 0 too.

So trans is defined by cases in a way that makes it p.r if our four new functions
are. �

(iv) Completing the proof that the state-of-play function is p.r. To complete the
proof, we need to show that five simpler functions are p.r., namely initial and
the additional functions we’ve just introduced. You may very well be prepared
to take that on trust – but if not, here are some proof sketches:

(1) Proof sketch that initial(n) is p.r. Suppose bi(n) is the number of digits in
the binary representation of n; and digit(m,n) returns 2 if the (m+ 1)-th digit
of n in binary is ‘1’, returns 1 if the (m+1)-th digit is ‘0’, and returns ‘0’ if there
is no such digit. Both these functions are easily shown to be primitive recursive.

Now, we start a computation of f(n) with the work-tape in a standard initial
configuration – i.e. with n in binary on the tape, and scanning the first digit,
with the rest of n’s binary digits to the right – and about to execute an initial
i-quadruple with label ‘1’. So we have the initial values

labeli = 1
cci = digit(0, n)
lti = 0
rti = (µx ≤ B)(∀k < bi(n))(exp(k, x) = digit(k + 1, n))

for some suitable bound B. So, we can put

initial(n) = p1, cci, 0, rt iq = 21 · 3cci · 50 · 7rti

where on the right we have a p.r. function of n. �

(2) Proof sketch that the label function is p.r. The way that the state-of-play of
our computation changes as we compute f(n) will depend on the Turing program
Π which, by hypothesis, computes f . Now, each of its i-quadruples 〈q1, S,A, q2〉
can be thought of as contributing to the definition of two functions:
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16. Turing Computability and Recursiveness

action(q1, S) which takes a label number and (the number code for)
the contents of the scanned cell, and yields (a number code for) the
next action A if 〈q1, S,A, q2〉 is in Π, and yields zero otherwise – take
the action codes to be 1, 2, 3 for writing ‘0’, ‘1’ or a blank; 4 for
moving right, 5 for moving left;

jump(q1, S) which similarly takes a label number and (the number
code for) the contents of the scanned cell and yields q2 if 〈q1, S,A, q2〉
is in Π, and yields q1 if there is no quadruple 〈q1, S,A, q2〉 is in Π

Since the program is finite, we can write down a finite set of conditions for
defining action(q1, S) and for defining jump(q1, S). Hence these functions are
p.r., by the general fact we established in (i). But trivially,

label(lb, cc, lt , rt) = jump(lb, cc)

So label is also p.r. �

(3) Proof sketch that the scan, left and right functions are p.r. We’ll deal ex-
plicitly with scan and left ; the case of right is exactly similar to left . There are
three cases to consider, depending on the next action we are told to perform:

1. action(lb, cc) = 0 indicating that no ‘next action’ is defined, and the pro-
gram freezes. So we freeze the state-of-play code by putting

scan(lb, cc, lt , rt) = cc
left(lb, cc, lt , rt) = lt

2. action(lb, cc) yields a code for writing a blank, ‘0, or ‘1’ in the scanned
cell. Then the left part of the tape is not touched. So,

scan(lb, cc, lt , rt) = action(lb, cc)
left(lb, cc, lt , rt) = lt

3. action(lb, cc) = 4, i.e. codes for moving the scanned cell right. Then the
new scanned contents will be the current contents of the first cell on the
right; and contents of the new leftwards portion of the tape after we’ve
moved are the contents of the old leftwards portion prefixed by the contents
of the current scanned cell. So we can put

scan(lb, cc, lt , rt) = exp(0, rt)
left(lb, cc, lt , rt) = 2cc ? lt

For recall, exp(0, rt) returns the exponent of π0 = 2 in the factorization
of rt – i.e. returns, as we want, the code for the current contents of the
first cell on the right. And the ‘star’ function is the one we introduced in
Section 10.6 precisely for the job of coding up the results of adding symbols
to a string.
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4. action(lb, cc) = 5, i.e. codes for moving the scanned cell left. Then

scan(lb, cc, lt , rt) = exp(0, lt)
left(lb, cc, lt , rt) = (µx ≤ lt)(∃y ≤ 3)(lt = 2y ? x)

Hence, putting all that together, we can define each of scan and left by cases.
So, again by the result (i), they are primitive recursive. �

Phew! Finally, we’ll leave it as an exercise to explain how to define the decoding
function decode, which reads the final state of a tape, so we can put f(n) =
decode(c(n, µz[c(n, Sz) = 0])). If all has gone well, and the program has just
halted gracefully at step h = µz[c(n, Sz) = 0], the scanned cell contains the first
of a single block of binary digits. So we want a function that extracts the codes
cc and rt from the final value of c(n, h), and then reconstructs the number whose
binary digits are in the scanned cell followed by the occupied rightward cells.
If you’ve been really following this far, then that’s left as a fairly easy exercise:
enough is enough!
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17 Universal Turing Machines

This chapter introduces a further key idea already in Turing’s great 1936 paper,
namely the idea of universal Turing machines which can simulate the operation of
any Turing machine. En route to showing that there are such universal machines,
we prove a famous theorem due to Kleene.

17.1 Effectively enumerating Turing programs

Turing programs (or equivalently, the Turing machines identified by their pro-
grams) can be effectively enumerated by using Gödel-numbers to code sets of
consistent quadruples.

Here’s one way of doing this. Recall, an i-quadruple has the form 〈q1, S,A, q2〉
where S is one of {0, 1, B}, A is one of {0, 1, B, L,R}, and q1 and q2 are numerals
(which can of course include ‘0’ and ‘1’ again). So suppose first we set up the
following basic coding relating these elements and the integers:

bc(B) = 1
bc(L) = 2
bc(R) = 3
bc(q) = 4 + q for each number q

Then we form the g.n. of a quadruple 〈q1, S,A, q2〉 in the obvious way:

gn(〈q1, S,A, q2〉) = 2bc(q1) · 3bc(S) · 5bc(A) · 7bc(q2)

And we can form the super g.n. of a collection of i-quadruples {i0, i1, i2, . . . , in}
as follows:

sgn({i0, i1, i2, . . . , in}) = 2gn(i0) · 3gn(i1) · 5gn(i2) · · · · · πgn(in)
n

where πn is the n+ 1-th prime.
For any number e, it’s a mechanical matter to check whether e is the super

g.n. of a Turing program Π (just take prime factors of e, then prime factors
of the exponents; and if this reveals that e is the super g.n. of a finite set of
i-quadruples, then check that it is a consistent set and hence a Turing program).
So here’s how we can construct an effective enumeration of Turing programs Πe:

If e is the super g.n. of a Turing program Π, put Πe = Π; otherwise
put Πe = ∅ (i.e. the empty program with no i-quadruples in it).
Then Π0,Π1,Π2, . . . is an effectively generated list of all the Turing
programs (with repetitions allowed).

158



Kleene’s Normal Form Theorem

17.2 Kleene’s Normal Form Theorem

In Section 16.2, we considered the computation of a particular one-place function
f by a given Turing machine Π. At each stage of the computation, we can
characterize the state-of-play by a single code-number s. And we defined the
two-place coding function

c(n, j) = s, where s > 0 is the code describing the state-of-play
at time j – i.e is the code describing the state as we enter the jth
step in our Turing computation of f(n), unless the computation has
already halted in which case c(n, j) = 0, or it has frozen in which
case c(n, j) = c(n, j − 1).

Now we are going to define a more general three-place coding function:

c′(e, n, j) = s, where s > 0 is the code describing the state-of-play at
time j – i.e is the code describing the state as we enter the jth step
in a run of the Turing program Πe given the initial input n, unless
the computation has already halted in which case c′(e, n, j) = 0, or
it has frozen in which case c′(e, n, j) = c′(e, n, j − 1).

The two-place coding function c is primitive recursive: we gave a very brief
motivating argument for that claim in Section 16.2, and proved it in rather
gruesome detail in Section 16.5. Similarly, the three-place coding function c′ is
primitive recursive.

Here’s a motivating argument. To evaluate c′(e, n, j) we first need to decode
the index number e to find the corresponding program Πe. But that’s just a
matter of taking prime factors twice over, which is a p.r. procedure. Then we need
to evaluate the corresponding two-place function ce(n, j) which codes the stay-
of-play as we enter the jth step in a run of the Turing program Πe from initial
input n; and we’ve already shown that such a function is primitive recursive.
Hence, given that both stages in evaluating c′(e, n, j) are p.r., so is the overall
function.1

Given c(n, j) = s is the state-of-play coding function for the computation of
f(n) via a particular Turing program, we saw that we can put

f(n) = decode(c(n, µz[c(n, Sz) = 0]))

1That motivating argument can be pumped up into another full-dress proof; but we won’t
do that here. Let’s just give the merest hint of how to proceed. To show that c(n, j) is p.r.,
we needed to show e.g. that the function action(q1, S) is p.r., where action(q1, S) takes a
label number and the contents of the scanned cell, and yields the next action if 〈q1, S, A, q2〉
is defined, and yields zero otherwise. Similarly, to show that c′(e, n, j) is p.r., we need to show
that action ′(e, q1, S) is p.r., where action ′(e, q1, S) takes a label number and the contents of
the scanned cell, and yields the next action if 〈q1, S, A, q2〉 is an i-quadruple in the program
Πe, and yields zero otherwise. But we can readily give a p.r. condition which is satisfied just
if 〈q1, S, A, q2〉 is an i-quadruple in the (consistent) program with code number e. And so it
goes.
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where decode is a p.r. function which decodes a state-of-play description s and
returns the number encoded in the output block of binary digits. Now let’s use
the symbol fe(x) for the one-place function Turing-computed by Πe, if there
is one. (By Theorem 23, every partial recursive function is computed by some
Turing machine. So every monadic partial recursive function is one of the fe.)
Then exactly similarly, we have

fe(n) = decode(c′(e, n, µz[c′(e, n, Sz) = 0]))

Let’s define two functions by composition as follows:

t(x, y, z) =def c
′(x, y, Sz)

u(x, y, z) =def decode(c′(x, y, z))

Both t and u are p.r. functions: hence we have established the following result:

There is a pair of three-place p.r. functions t and u such that any
one-place partial recursive function can be given in the standard form

fe(n) =def u(e, n, µz[t(e, n, z) = 0])

Which is almost, but not quite, Kleene’s Normal Form theorem (first proved in
his 1936a). For here’s the official version for one-place functions:

Theorem 26 There is a three-place p.r. function T and a one-place
p.r. function U such that any one-place partial recursive function can
be given in the standard form

fe(n) =def U(µz[T (e, n, z) = 0])

So the only difference in the official version is that, by a bit of not-quite-trivial
juggling, we can get all the dependence on e and n packed into the function T ,
allowing U to be a one-place function. This difference between our almost-Kleene
version and the real thing is a distinction which doesn’t matter at all in most
applications, and the rationale for almost-Kleene is probably more transparent.
However, just for the record, here’s a

Proof of the official version Consider the four-place relation R(e, n, r, j) which
holds when the Turing program Πe, run with input n initially on the tape, halts
gracefully with the result r on the tape, no later than time j. This relation is
p.r., since it holds when t(e, n, j) = 0, and r = u(c, n, (µz ≤ j)[t(e, n, z) = 0]) –
and both those conditions are p.r.

Now put T (e, n, z) = 0 when (∃r ≤ z)(∃j ≤ z)(z = 2r · 3t ∧ R(e, n, r, j)) and
put T (e, n, z) = 1 otherwise. Then T is p.r. (see Section 16.5 on definition by
cases). The computation halts at the least value of z such that T (e, n, z) = 0.
And we can extract the value of r, i.e. the result of the computation, by using
the familiar factorizing function exp(z, 0) which gives the exponent of π0, i.e.
2, in the factorization of z. So put U(z) =def exp(z, 0). Then, as we wanted,
f(n) = U(µz T (e, n, z)), with U and T p.r. functions. �
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We can readily generalize the argument to get a Normal Form theorem to cover
many-place partial recursive functions. But we won’t bother with the details.2

Note, by the way, that U(µz T (e, n, z)) is a partial recursive function for every
index number e. So, running through the indices e gives us an effective enumer-
ation of the one-place partial recursive functions (it includes all the monadic
partial recursive functions since, to repeat, every such function is computed by
some Turing machine with some index e, and fe(n) is the function that machine
computes).

17.3 Universal machines

‘Turing machines’, as we noted in Section 15.4, are identified by their programs:
machines running different programs count as different machines (thus we can
talk of the machine with program Πe, or simple the machine Πe). You might
suppose that this makes for a big gap between Turing machines and the ‘general
purpose’ computers you are familiar with (where the same machine can load and
run many programs). However, we can close the apparent gap with a remark and
a theorem.

The remark is that, if a general purpose computer is to be able to interpret the
programs it loads, it must of course already be running an interpreter program.
And even if it e.g. loads up the interpreter from its hard disk when booting
up, the computer has to start with some software hard-wired in (to enable it
to load the interpreter). Our general purpose computers, too, can in effect be
individuated by their necessary built-in software.

The theorem is that there are Turing machines – universal machines, in the
jargon – which function as general purpose machines. That is to say, there are
Turing machines which can ‘load’ arbitrary programs and then ‘interpret’ and
run them. More carefully, there are Turing machines which, given a specification
of the machine Πe together with one or more numbers ~n as input (on its tape),
delivers just the same output as the machine Πe itself running on input ~n.

How are we going to specify a machine on the input tape? There are various
ways, but one is just to use its program’s code-number e. Taking that line, and
concentrating on the case where we are computing monadic functions, we have
the following:

Theorem 27 There is a universal Turing machine which, given num-
bers e and n as input, yields as output (if any) the result of machine
Πe operating on n.

Proof Consider the two-place function U(µz[T (x, y, z) = 0]) used in Kleene’s
Normal Form theorem. This is partial recursive. Hence, by Theorem 23, there is
a Turing machine Πu which computes it. Think how Πu behaves. Run it from

2Note that we can prove Kleene’s theorem about recursive functions more directly, i.e.
without going via the different idea of a Turing program. But our indirect proof is more
accessible.
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the initial state where the super g.n. for Πe is on the tape followed by n; then
the output will be U(µz[T (e, n, z) = 0]), i.e. will be the same as the output of
Πe run from the initial state where just n is on the tape. So Πu is the desired
‘universal’ program.3 �

Again, we can readily generalize this result to the case of machines computing
many-place functions. But again we won’t bother with the details.

That’s a beautiful (and perhaps surprising) Theorem: it emphasizes how pow-
erful a Turing machine can be. Here’s a way of putting the point dramatically.
Given a Turing program Πe, then we can follow the program instructions, using
paper and pencil, for some given input argument n (of course, there may be no
final output, if we get stuck in a loop and e.g. find ourselves writing an infinite
sequence of ‘1’s on the tape). A universal Turing machine can do the same, given
(the code for) Πe on its tape: it too can follow the instructions for applying Πe

to some argument n. Hence, at least as far as our ability to follow algorithmic
instructions like Turing programs is concerned, we are no better than universal
Turing machines. So maybe – to raise a question that will concern us later – we
just are embodied Turing machines?

3Just as we proved Kleene’s theorem about recursive functions by going via Turing ma-
chines, now we’ve proved the existence of a universal machine for computing all monadic
Turing-computable functions by going via a theorem about recursive function. And just as
we can prove Kleene’s theorem more directly, we can prove the existence of universal ma-
chines more directly – as Turing himself did (or almost did – there were some bugs in his
original version). But having done all the hard work earlier of relating recursiveness to Turing
computability, why make use of that now to give our very neat, if less direct, derivations?
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Péter, R., 1934. Über den zusammenhang der verschiedenen Begriffe der rekursiven

Funktionen. Mathematische Annalen, 110: 612–632.

Péter, R., 1935. Konstruktion nichtrekursiver Funktionen. Mathematische Annalen,

pp. 42–60.
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