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Preface to the Third Edition

Let me begin by thanking the readers of the second edition for their many
helpful comments and suggestions, with special thanks to Joe Kidd and Nam
Trang. For the third edition, I have corrected all known errors, polished and
refined some arguments (such as the discussion of reflexivity, the rational
canonical form, best approximations and the definitions of tensor products) and
upgraded some proofs that were originally done only for finite-dimensional/rank
cases. I have also moved some of the material on projection operators to an
earlier position in the text.

A few new theorems have been added in this edition, including the spectral
mapping theorem and a theorem to the effect that dim(V') < dim(V*), with
equality if and only if V' is finite-dimensional.

I have also added a new chapter on associative algebras that includes the well-
known characterizations of the finite-dimensional division algebras over the real
field (a theorem of Frobenius) and over a finite field (Wedderburn's theorem).
The reference section has been enlarged considerably, with over a hundred
references to books on linear algebra.

Steven Roman Irvine, California, May 2007



Preface to the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions. The second edition represents a major change from
the first edition. Indeed, one might say that it is a totally new book, with the
exception of the general range of topics covered.

The text has been completely rewritten. I hope that an additional 12 years and
roughly 20 books worth of experience has enabled me to improve the quality of
my exposition. Also, the exercise sets have been completely rewritten.

The second edition contains two new chapters: a chapter on convexity,
separation and positive solutions to linear systems (Chapter 15) and a chapter on
the QR decomposition, singular values and pseudoinverses (Chapter 17). The
treatments of tensor products and the umbral calculus have been greatly
expanded and I have included discussions of determinants (in the chapter on
tensor products), the complexification of a real vector space, Schur's theorem
and Gersgorin disks.

Steven Roman Irvine, California February 2005



Preface to the First Edition

This book is a thorough introduction to linear algebra, for the graduate or
advanced undergraduate student. Prerequisites are limited to a knowledge of the
basic properties of matrices and determinants. However, since we cover the
basics of vector spaces and linear transformations rather rapidly, a prior course
in linear algebra (even at the sophomore level), along with a certain measure of
“mathematical maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra that are
required for the sequel. This chapter should be skimmed quickly and then used
primarily as a reference. Chapters 1-3 contain a discussion of the basic
properties of vector spaces and linear transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a comparison
between the properties of modules and those of vector spaces. Chapter 5
provides more on modules. The main goals of this chapter are to prove that any
two bases of a free module have the same cardinality and to introduce
Noetherian modules. However, the instructor may simply skim over this
chapter, omitting all proofs. Chapter 6 is devoted to the theory of modules over
a principal ideal domain, establishing the cyclic decomposition theorem for
finitely generated modules. This theorem is the key to the structure theorems for
finite-dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces. The emphasis
here is on the finite-dimensional case, in order to arrive as quickly as possible at
the finite-dimensional spectral theorem for normal operators, in Chapter 10.
However, we have endeavored to state as many results as is convenient for
vector spaces of arbitrary dimension.

The second part of the book consists of a collection of independent topics, with
the one exception that Chapter 13 requires Chapter 12. Chapter 11 is on metric
vector spaces, where we describe the structure of symplectic and orthogonal
geometries over various base fields. Chapter 12 contains enough material on
metric spaces to allow a unified treatment of topological issues for the basic



xii Preface

Hilbert space theory of Chapter 13. The rather lengthy proof that every metric
space can be embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In order to motivate
the universal property of tensor products, without getting too involved in
categorical terminology, we first treat both free vector spaces and the familiar
direct sum, in a universal way. Chapter 15 (Chapter 16 in the second edition) is
on affine geometry, emphasizing algebraic, rather than geometric, concepts.

The final chapter provides an introduction to a relatively new subject, called the
umbral calculus. This is an algebraic theory used to study certain types of
polynomial functions that play an important role in applied mathematics. We
give only a brief introduction to the subject — emphasizing the algebraic
aspects, rather than the applications. This is the first time that this subject has
appeared in a true textbook.

One final comment. Unless otherwise mentioned, omission of a proof in the text
is a tacit suggestion that the reader attempt to supply one.

Steven Roman Irvine, California
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Preliminaries

In this chapter, we briefly discuss some topics that are needed for the sequel.
This chapter should be skimmed quickly and used primarily as a reference.

Part 1 Preliminaries

Multisets

The following simple concept is much more useful than its infrequent
appearance would indicate.

Definition Let S be a nonempty set. A multiset M with underlying set S is a
set of ordered pairs

M ={(s;,n;) | si € S,n; € Z",s; # s fori # j}

where Z = {1,2,... }. The number n; is referred to as the multiplicity of the
elements s; in M. If the underlying set of a multiset is finite, we say that the
multiset is finite. The size of a finite multiset M is the sum of the multiplicities
of all of its elements.(]

For example, M = {(a,2),(b,3),(c,1)} is a multiset with underlying set
S ={a,b,c}. The element a has multiplicity 2. One often writes out the
elements of a multiset according to multiplicities, as in M = {a, a,b,b,b, c}.

Of course, two mutlisets are equal if their underlying sets are equal and if the
multiplicity of each element in the common underlying set is the same in both
multisets.

Matrices

The set of m x n matrices with entries in a field F' is denoted by M, ,,(F') or
by M., , when the field does not require mention. The set M,, ,,(F) is denoted
by M, (F) or M,,. If A € M, the (i, j)th entry of A will be denoted by A; ;.
The identity matrix of size n X n is denoted by I,,. The elements of the base
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field F' are called scalars. We expect that the reader is familiar with the basic
properties of matrices, including matrix addition and multiplication.

The main diagonal of an m X n matrix A is the sequence of entries

A1, Asoy oo A

where k = min{m, n}.

Definition The transpose of A € M., ,, is the matrix A" defined by
(A"ij = Ajs
A matrix A is symmetric if A = A' and skew-symmetric if A' = —A.O0

Theorem 0.1 (Properties of the transpose) Let A, B € M, ,,. Then
I (A=A

2) (A+B)l=A"+B'

3) (rAY =rA'forallreF

4) (AB)! = B'A! provided that the product AB is defined

5) det(A") =det(A).O

Partitioning and Matrix Multiplication

Let M be a matrix of sizem x n. If BC {1,...,m} and C' C {1,...,n}, then
the submatrix M[B, C] is the matrix obtained from M by keeping only the
rows with index in B and the columns with index in C'. Thus, all other rows and
columns are discarded and M [B, C| has size | B| x |C!|.

Suppose that M € M, ,, and N € M,, .. Let

1) P={Bi,...,B,}beapartition of {1,...,m}
2) Q={C,...,C,} beapartition of {1,...,n}
3) R={D,...,D,} beapartition of {1,...,k}

(Partitions are defined formally later in this chapter.) Then it is a very useful fact
that matrix multiplication can be performed at the block level as well as at the
entry level. In particular, we have

[MN][B;, Dj) = Y M[Bi,C,]N[Cy, D)}
CreQ

When the partitions in question contain only single-element blocks, this is
precisely the usual formula for matrix multiplication

[MN];;= ZMNLNh,j
h=1
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Block Matrices

It will be convenient to introduce the notational device of a block matrix. If B; ;
are matrices of the appropriate sizes, then by the block matrix

Bii1 Bip -+ By,
M= : : :

Bm,l Bm,Q Bm,n, block

we mean the matrix whose upper left submatrix is By, and so on. Thus, the
B, j's are submatrices of M and not entries. A square matrix of the form

B, 0 - 0
0o - .
M=1. 7"y
0 -~ 0 B,

block

where each B; is square and 0 is a zero submatrix, is said to be a block
diagonal matrix.

Elementary Row Operations

Recall that there are three types of elementary row operations. Type 1
operations consist of multiplying a row of A by a nonzero scalar. Type 2
operations consist of interchanging two rows of A. Type 3 operations consist of
adding a scalar multiple of one row of A to another row of A.

If we perform an elementary operation of type k to an identity matrix I,,, the
result is called an elementary matrix of type k. It is easy to see that all
elementary matrices are invertible.

In order to perform an elementary row operation on A € M,, ,, we can perform
that operation on the identity I,,,, to obtain an elementary matrix £ and then take
the product F'A. Note that multiplying on the right by E has the effect of
performing column operations.

Definition 4 matrix R is said to be in reduced row echelon form if

1) All rows consisting only of 0's appear at the bottom of the matrix.

2) In any nonzero row, the first nonzero entry is a 1. This entry is called a
leading entry.

3) For any two consecutive rows, the leading entry of the lower row is to the
right of the leading entry of the upper row.

4)  Any column that contains a leading entry has 0's in all other positions.[]

Here are the basic facts concerning reduced row echelon form.
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Theorem 0.2 Matrices A, B € M,, , are row equivalent, denoted by A ~ B,
if either one can be obtained from the other by a series of elementary row

operations.
1) Row equivalence is an equivalence relation. That is,
a) A~A

by A~B=B~A
¢) A~B B~C=A~C.

2) A matrix A is row equivalent to one and only one matrix R that is in
reduced row echelon form. The matrix R is called the reduced row
echelon form of A. Furthermore,

R=EE,A

where E; are the elementary matrices required to reduce A to reduced row
echelon form.

3) A is invertible if and only if its reduced row echelon form is an identity
matrix. Hence, a matrix is invertible if and only if it is the product of
elementary matrices.[]

The following definition is probably well known to the reader.

Definition A square matrix is upper triangular if all of its entries below the
main diagonal are 0. Similarly, a square matrix is lower triangular if all of its
entries above the main diagonal are 0. A square matrix is diagonal if all of its
entries off the main diagonal are 0.01

Determinants

We assume that the reader is familiar with the following basic properties of
determinants.

Theorem 0.3 Let A € M, ,(F). Then det(A) is an element of F'. Furthermore,
1) Forany B € M, (F),

det(AB) = det(A)det(B)
2) A is nonsingular (invertible) if and only if det(A) # 0.
3) The determinant of an upper triangular or lower triangular matrix is the

product of the entries on its main diagonal.
4) If a square matrix M has the block diagonal form

B, 0 - 0
o . .
M=1" 0
0 -~ 0 B,

block

then det(M) = ] det(B;).O
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Polynomials

The set of all polynomials in the variable x with coefficients from a field F' is
denoted by F'[z]. If p(z) € F[x], we say that p(x) is a polynomial over F'. If

p(l‘) =a)t+axr+--+ afn-rn

is a polynomial with a,, # 0, then a, is called the leading coefficient of p(x)
and the degree of p(z) is n, written deg p(x) = n. For convenience, the degree
of the zero polynomial is —co. A polynomial is monic if its leading coefficient
is 1.

Theorem 0.4 (Division algorithm) Let f(z), g(x) € F|x] where deg g(z) > 0.
Then there exist unique polynomials q(x),r(x) € F[x] for which

f(@) = q(z)g(2) + ()
where r(xz) = 0 or 0 < deg r(x) < deg g(x).0d

If p(x) divides ¢(z), that is, if there exists a polynomial f(x) for which
q(z) = f(x)p(x)

then we write p(z) | ¢(x). A nonzero polynomial p(x) € F[z] is said to split
over F'if p(x) can be written as a product of linear factors

p(x) = (2 =7r1)--(x —7n)

where r; € F.

Theorem 0.5 Let f(x), g(x) € F[z]. The greatest common divisor of f(x) and
g(x), denoted by ged(f(x),g(x)), is the unique monic polynomial p(x) over F
Jfor which

D px) | f(z)and p(z) | g(x)

2) ifr(z) | f(x) and r(x) | g(x) then (x) | p(x).

Furthermore, there exist polynomials a(x) and b(x) over F for which
ged(f(z),9(x)) = a(x) f(z) + b(z)g(x) O

Definition The polynomials f(x),g(x) € F[z] are relatively prime if
ged(f(x), g(x)) = 1. In particular, f(x) and g(x) are relatively prime if and
only if there exist polynomials a(x) and b(x) over F for which

a(z) f(x) +b(x)g(x) = O

Definition A nonconstant polynomial f(x) € F[x] is irreducible if whenever
f(x) = p(x)q(x), then one of p(x) and q(x) must be constant..]

The following two theorems support the view that irreducible polynomials
behave like prime numbers.
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Theorem 0.6 4 nonconstant polynomial f(x) is irreducible if and only if it has
the property that whenever f(x)|p(x)q(x), then either f(x)|p(x) or

f(x) [ q(x).00

Theorem 0.7 Every nonconstant polynomial in F|x] can be written as a product
of irreducible polynomials. Moreover, this expression is unique up to order of
the factors and multiplication by a scalar.(]

Functions

To set our notation, we should make a few comments about functions.
Definition Let f: S — T be a function from a set S to a set T

1) The domain of f is the set S and the range of f is T.

2) Theimage of f is the set im(f) = {f(s) | s € S}.

3) [ is injective (one-to-one), or an injection, if v # y = f(x) # f(y).
4) f is surjective (onto T), or a surjection, if im(f) =T

5) f is bijective, or a bijection, if it is both injective and surjective.
6) Assuming that 0 € T, the support of f is

supp(f) = {s € S| f(s) # 0} g

If f: S — T is injective, then its inverse f':im(f) — S exists and is well-
defined as a function on im( f).

It will be convenient to apply f to subsets of S and 7. In particular, if X C .S
and if Y C T, we set

f(X)={f(z) |z € X}
and
FY)={seS|f(s)eY}

Note that the latter is defined even if f is not injective.

Let f: S — T.1If A C S, the restriction of f to A is the function f|4: A — T
defined by

flala) = f(a)

for all a € A. Clearly, the restriction of an injective map is injective.

In the othei direction, if f: .S _LT and if S C U, then an extension of f to U is
a function f: U — T for which f|s = f.
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Equivalence Relations

The concept of an equivalence relation plays a major role in the study of
matrices and linear transformations.

Definition Let S be a nonempty set. A binary relation ~ on S is called an
equivalence relation on S if it satisfies the following conditions:
1) (Reflexivity)

foralla €S.
2) (Symmetry)

a~b=b~a
foralla,b € S.
3) (Transitivity)

a~bb~c=an~c

forall a,b,c € S.00

Definition Let ~ be an equivalence relation on S. For a € S, the set of all
elements equivalent to a is denoted by

[a] ={be S|b~a}

and called the equivalence class of a.O]

Theorem 0.8 Let ~ be an equivalence relation on S. Then
1) bela] < acb) < a] =[b]
2) Foranya,b € S, we have either [a] = [b] or [a] N [b] = 0.00

Definition 4 partition of a nonempty set S is a collection {Ay,..., A} of
nonempty subsets of S, called the blocks of the partition, for which

1) A,,;ﬂAjz@foralli;éj

2) S=AU---UA,O

The following theorem sheds considerable light on the concept of an
equivalence relation.

Theorem 0.9

1) Let ~ be an equivalence relation on S. Then the set of distinct equivalence
classes with respect to ~ are the blocks of a partition of S.

2) Conversely, if P is a partition of S, the binary relation ~ defined by

a ~ bifaandb lie in the same block of P
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is an equivalence relation on S, whose equivalence classes are the blocks
of P.
This establishes a one-to-one correspondence between equivalence relations on
S and partitions of S.OJ

The most important problem related to equivalence relations is that of finding an
efficient way to determine when two elements are equivalent. Unfortunately, in
most cases, the definition does not provide an efficient test for equivalence and
so we are led to the following concepts.

Definition Let ~ be an equivalence relation on S. A function f: S — T, where
T is any set, is called an invariant of ~ if it is constant on the equivalence
classes of ~ , that is,

a~b= f(a) = f(b)

and a complete invariant if it is constant and distinct on the equivalence
classes of ~ , that is,

a~b< fla)=f(b)

A collection {fi,...,fn,} of invariants is called a complete system of
invariants if’

a~b<s fila)=fi(b) foralli=1,... ,n O

Definition Let ~ be an equivalence relation on S. A subset C' C S is said to be
a set of canonical forms (or just a canonical form) for ~ if for every s € S,
there is exactly one ¢ € C' such that ¢ ~ s. Put another way, each equivalence
class under ~ contains exactly one member of C.[J

Example 0.1 Define a binary relation ~ on F[z] by letting p(x) ~ ¢(«) if and
only if p(z) = aq(z) for some nonzero constant a € F. This is easily seen to be
an equivalence relation. The function that assigns to each polynomial its degree
is an invariant, since

p(x) ~ q(x) = deg(p(r)) = deg(q(z))

However, it is not a complete invariant, since there are inequivalent polynomials
with the same degree. The set of all monic polynomials is a set of canonical
forms for this equivalence relation.[]

Example 0.2 We have remarked that row equivalence is an equivalence relation
on M,, ,(F). Moreover, the subset of reduced row echelon form matrices is a
set of canonical forms for row equivalence, since every matrix is row equivalent
to a unique matrix in reduced row echelon form.[]
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Example 0.3 Two matrices 4, B € M,,(F) are row equivalent if and only if
there is an invertible matrix P such that A = PB. Similarly, A and B are
column equivalent, that is, A can be reduced to B using elementary column
operations, if and only if there exists an invertible matrix @ such that A = BQ).

Two matrices A and B are said to be equivalent if there exist invertible
matrices P and () for which

A= PBQ

Put another way, A and B are equivalent if A can be reduced to B by
performing a series of elementary row and/or column operations. (The use of the
term equivalent is unfortunate, since it applies to all equivalence relations, not
just this one. However, the terminology is standard, so we use it here.)

It is not hard to see that an m x n matrix R that is in both reduced row echelon
form and reduced column echelon form must have the block form

I Ok n—r

Jp =
Om—kt,k Om—k,n—k block

We leave it to the reader to show that every matrix A in M, is equivalent to
exactly one matrix of the form .J; and so the set of these matrices is a set of
canonical forms for equivalence. Moreover, the function f defined by
f(A) =k, where A ~ Ji, is a complete invariant for equivalence.

Since the rank of J;, is k and since neither row nor column operations affect the
rank, we deduce that the rank of A is k. Hence, rank is a complete invariant for
equivalence. In other words, two matrices are equivalent if and only if they have
the same rank.[]

Example 0.4 Two matrices A, B € M,,(F) are said to be similar if there exists
an invertible matrix P such that

A=pBp!

Similarity is easily seen to be an equivalence relation on M,,. As we will learn,
two matrices are similar if and only if they represent the same linear operators
on a given n-dimensional vector space V. Hence, similarity is extremely
important for studying the structure of linear operators. One of the main goals of
this book is to develop canonical forms for similarity.

We leave it to the reader to show that the determinant function and the trace
function are invariants for similarity. However, these two invariants do not, in
general, form a complete system of invariants.[]

Example 0.5 Two matrices A, B € M,,(F') are said to be congruent if there
exists an invertible matrix P for which
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A= PBP'

where P! is the transpose of P. This relation is easily seen to be an equivalence
relation and we will devote some effort to finding canonical forms for
congruence. For some base fields F' (such as R, C or a finite field), this is
relatively easy to do, but for other base fields (such as Q), it is extremely
difficult.0cd

Zorn's Lemma
In order to show that any vector space has a basis, we require a result known as

Zorn's lemma. To state this lemma, we need some preliminary definitions.

Definition A partially ordered set is a pair (P, <) where P is a nonempty set
and < is a binary relation called a partial order, read “less than or equal to,”
with the following properties.

1) (Reflexivity) Forall a € P,

a<a
2) (Antisymmetry) For all a,b € P,
a<bandb < aimpliesa=>b
3) (Transitivity) For all a,b,c € P,

a<bandb < cimpliesa < c

Partially ordered sets are also called posets.[]

It is customary to use a phrase such as “Let P be a partially ordered set” when
the partial order is understood. Here are some key terms related to partially
ordered sets.

Definition Let P be a partially ordered set.

1) The maximum (largest, top) element of P, should it exist, is an element
M € P with the property that all elements of P are less than or equal to
M, that is,

peEP=p< M

Similarly, the mimimum (least, smallest, bottom) element of P, should it
exist, is an element N € P with the property that all elements of P are
greater than or equal to N, that is,

peP=N<p

2) A4 maximal element is an element m € P with the property that there is no
larger element in P, that is,

peEP m<p=m=p
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Similarly, @ minimal element is an element n € P with the property that
there is no smaller element in P, that is,

peEP,p<n=p=n
3) Leta,b € P.Thenu € P is an upper bound for a and b if
a<wuandb <u

The unique smallest upper bound for a and b, if it exists, is called the least
upper bound of a and b and is denoted by lub{a, b}.
4) Leta,b € P.Then( € P is alower bound for a and b if

{<aandl <b

The unique largest lower bound for a and b, if it exists, is called the
greatest lower bound of a and b and is denoted by glb{a,b}.00

Let S be a subset of a partially ordered set P. We say that an element u € P is
an upper bound for S if s <wu for all s € S. Lower bounds are defined
similarly.

Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have =,y € P with the property
thatx L yandy € z.

Definition A partially ordered set in which every pair of elements is
comparable is called a totally ordered set, or a linearly ordered set. Any
totally ordered subset of a partially ordered set P is called a chain in P.[]

Example 0.6

1) The set R of real numbers, with the usual binary relation <, is a partially
ordered set. It is also a totally ordered set. It has no maximal elements.

2) The set N={0,1,...} of natural numbers, together with the binary
relation of divides, is a partially ordered set. It is customary to write n | m
to indicate that n divides m. The subset S of N consisting of all powers of 2
is a totally ordered subset of N, that is, it is a chain in N. The set
P ={2,4,8,3,9,27} is a partially ordered set under | . It has two maximal
elements, namely 8 and 27. The subset Q = {2,3,5,7,11} is a partially
ordered set in which every element is both maximal and minimal!

3) Let S be any set and let P(S) be the power set of S, that is, the set of all
subsets of S. Then P(S), together with the subset relation C , is a partially
ordered set.[]

Now we can state Zorn's lemma, which gives a condition under which a
partially ordered set has a maximal element.
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Theorem 0.10 (Zorn's lemma) I P is a partially ordered set in which every
chain has an upper bound, then P has a maximal element.[]

We will use Zorn's lemma to prove that every vector space has a basis. Zorn's
lemma is equivalent to the famous axiom of choice. As such, it is not subject to
proof from the other axioms of ordinary (ZF) set theory. Zorn's lemma has many
important equivalancies, one of which is the well-ordering principle. A well
ordering on a nonempty set X is a total order on X with the property that every
nonempty subset of X has a least element.

Theorem 0.11 (Well-ordering principle) Every nonempty set has a well
ordering..]

Cardinality
Two sets S and 7" have the same cardinality, written
S| = [T

if there is a bijective function (a one-to-one correspondence) between the sets.
The reader is probably aware of the fact that

|Z| = |NJ and |Q| = [N|

where N denotes the natural numbers, Z the integers and Q the rational
numbers.

If S is in one-to-one correspondence with a subset of T, we write |S| < |T|. If
S is in one-to-one correspondence with a proper subset of T but not all of T',
then we write |S| < |T'|. The second condition is necessary, since, for instance,
N is in one-to-one correspondence with a proper subset of Z and yet N is also in
one-to-one correspondence with Z itself. Hence, |N| = |Z|.

This is not the place to enter into a detailed discussion of cardinal numbers. The
intention here is that the cardinality of a set, whatever that is, represents the
“size” of the set. It is actually easier to talk about two sets having the same, or
different, size (cardinality) than it is to explicitly define the size (cardinality) of
a given set.

Be that as it may, we associate to each set S a cardinal number, denoted by |5
or card(.S), that is intended to measure the size of the set. Actually, cardinal
numbers are just very special types of sets. However, we can simply think of
them as vague amorphous objects that measure the size of sets.

Definition
1) A set is finite if it can be put in one-to-one correspondence with a set of the
form 7, = {0,1,... ,n — 1}, for some nonnegative integer n. A set that is
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not finite is infinite. The cardinal number (or cardinality) of a finite set is
just the number of elements in the set.

2) The cardinal number of the set N of natural numbers is W, (read “aleph
nought”’), where X is the first letter of the Hebrew alphabet. Hence,

IN| = |Z] = |Q] = Ro

3) Any set with cardinality W is called a countably infinite set and any finite
or countably infinite set is called a countable set. An infinite set that is not
countable is said to be uncountable.]

Since it can be shown that [R| > |NJ, the real numbers are uncountable.

If S and T are finite sets, then it is well known that

|S] < |T|and [T'] < |S| = [S] = |T|
The first part of the next theorem tells us that this is also true for infinite sets.
The reader will no doubt recall that the power set P(.S) of a set S is the set of

all subsets of S. For finite sets, the power set of S is always bigger than the set
itself. In fact,

S| =n=[P(S)] =2"

The second part of the next theorem says that the power set of any set S is
bigger (has larger cardinality) than S itself. On the other hand, the third part of
this theorem says that, for infinite sets S, the set of all finite subsets of .S is the
same size as S.

Theorem 0.12
1) (Schréder—Bernstein theorem) For any sets S and T,

S| <|T|and |T| <|S| = |S| = |T|

2) (Cantor's theorem) If P(S) denotes the power set of S, then

S| < [P(S)]
3) IfPo(S) denotes the set of all finite subsets of S and if S is an infinite set,
then
S| = [Po(5)]

Proof. We prove only parts 1) and 2). Let f: S — T be an injective function
from S into T and let g: 7' — S be an injective function from 7" into S. We
want to use these functions to create a bijective function from S to 7. For this
purpose, we make the following definitions. The descendants of an element
s €S are the elements obtained by repeated alternate applications of the
functions f and g, namely



14 Advanced Linear Algebra

f(s),9(f (), F(g(f(5))), ---

If ¢ is a descendant of s, then s is an ancestor of ¢. Descendants and ancestors
of elements of 7" are defined similarly.

Now, by tracing an element's ancestry to its beginning, we find that there are
three possibilities: the element may originate in S, or in 7', or it may have no
point of origin. Accordingly, we can write .S as the union of three disjoint sets

Ss = {s € S| s originates in S’}

Sy ={s €S| soriginates in T'}

So = {s € S| s has no originator}

Similarly, T is the disjoint union of 7g, 77 and 7.

Now, the restriction
flsg:Ss — T

is a bijection. To see this, note that if ¢ € 7g, then ¢ originated in S and
therefore must have the form f(s) for some s € S. But ¢ and its ancestor s have
the same point of origin and so ¢ € 7g implies s € Sg. Thus, f|s, is surjective
and hence bijective. We leave it to the reader to show that the functions

(g9l7) "+ Sr — Trand fls : S — T

are also bijections. Putting these three bijections together gives a bijection
between S and T'. Hence, |S| = |T|, as desired.

We now prove Cantor's theorem. The map ¢: .S — P(S) defined by ¢(s) = {s}
is an injection from S to P(S) and so |S| < |P(S)]. To complete the proof we
must show that no injective map f: S — P(S) can be surjective. To this end, let

X={seS|s¢ f(s)} € P(S)

We claim that X is not in im(f). For suppose that X = f(x) for some = € S.
Then if € X, we have by the definition of X that z ¢ X. On the other hand, if
x ¢ X, we have again by the definition of X that x € X. This contradiction
implies that X ¢ im(f) and so f is not surjective..cI

Cardinal Arithmetic

Now let us define addition, multiplication and exponentiation of cardinal
numbers. If S and T are sets, the cartesian product S x 7' is the set of all
ordered pairs

SxT={(st)|s€S,teT}

The set of all functions from 7" to S is denoted by S”.
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Definition Let x and )\ denote cardinal numbers. Let S and T be disjoint sets
Sfor which |S| = k and |T| = \.

1) The sum k + A is the cardinal number of S U T.

2) The product s\ is the cardinal number of S x T.

3) The power k* is the cardinal number of S*.01

We will not go into the details of why these definitions make sense. (For
instance, they seem to depend on the sets S and 7', but in fact they do not.) It
can be shown, using these definitions, that cardinal addition and multiplication
are associative and commutative and that multiplication distributes over
addition.

Theorem 0.13 Let «, A and u be cardinal numbers. Then the following
properties hold:
1) (Associativity)

k+A+p)=(k+ X))+ pand c(Ap) = (kA)p
2) (Commutativity)
K+ A=A+ kKand kA =k
3) (Distributivity)
KA+ 1) = kA + Kk

4) (Properties of Exponents)
a) K//\er, — H)\K//l
b) (FLA)“ — K./A}L

¢) (kA =riAO

On the other hand, the arithmetic of cardinal numbers can seem a bit strange, as
the next theorem shows.

Theorem 0.14 Let x and \ be cardinal numbers, at least one of which is
infinite. Then

K+ A = kA =max{x, \} O

It is not hard to see that there is a one-to-one correspondence between the power
set P(S) of a set S and the set of all functions from S to {0, 1}. This leads to
the following theorem.

Theorem 0.15 For any cardinal k
1) If|S| =k, then |P(S)| = 2~
2) k<20
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We have already observed that [N| = R. It can be shown that X, is the smallest
infinite cardinal, that is,

Kk < Ny = k is a natural number

It can also be shown that the set R of real numbers is in one-to-one
correspondence with the power set P(N) of the natural numbers. Therefore,

B| = 2%
The set of all points on the real line is sometimes called the continuum and so

2% is sometimes called the power of the continuum and denoted by c.

Theorem 0.14 shows that cardinal addition and multiplication have a kind of
“absorption” quality, which makes it hard to produce larger cardinals from
smaller ones. The next theorem demonstrates this more dramatically.

Theorem 0.16

1) Addition applied a countable number of times or multiplication applied a
finite number of times to the cardinal number N, does not yield anything
more than N. Specifically, for any nonzeron € N, we have

NO'NOZNoanng:NO

2) Addition and multiplication applied a countable number of times to the
cardinal number 2% does not yield more than 2. Specifically, we have

Rg - 2% = 2% gpg (2%0)R0 = 2N |
Using this theorem, we can establish other relationships, such as
M < (Ry)M < (20) = 2
which, by the Schroder—Bernstein theorem, implies that
(Rg)™ = 2%

We mention that the problem of evaluating £ in general is a very difficult one
and would take us far beyond the scope of this book.

We will have use for the following reasonable-sounding result, whose proof is
omitted.

Theorem 0.17 Let { A, | k € K} be a collection of sets, indexed by the set K,
with |K| = k. If |Ax| < A forall k € K, then

U A

keK

< Ak O

Let us conclude by describing the cardinality of some famous sets.
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Theorem 0.18
1) The following sets have cardinality N.
a) The rational numbers Q.
b) The set of all finite subsets of N.
¢) The union of a countable number of countable sets.
d) The set " of all ordered n-tuples of integers.
2) The following sets have cardinality 2™.
a) The set of all points in R™.
b) The set of all infinite sequences of natural numbers.
¢) The set of all infinite sequences of real numbers.
d) The set of all finite subsets of R.
e) The set of all irrational numbers.[]

Part 2 Algebraic Structures

We now turn to a discussion of some of the many algebraic structures that play a
role in the study of linear algebra.

Groups

Definition A group is a nonempty set G, together with a binary operation
denoted by *, that satisfies the following properties:
1) (Associativity) For all a,b,c € G,

(axb)xc = ax(bxc)

2) (Identity) There exists an element e € G for which
exa = axe = a
foralla € G.
3) (Inverses) For each a € G, there is an element a=' € G for which

axa ' =a lxa = ¢ O

Definition 4 group G is abelian, or commutative, if’
axb = bxa

for all a,b € G. When a group is abelian, it is customary to denote the
operation x by +, thus writing axb as a + b. It is also customary to refer to the
identity as the zero element and to denote the inverse a=' by —a, referred to as
the negative of a.O]

Example 0.7 The set F of all bijective functions from a set .S to S is a group
under composition of functions. However, in general, it is not abelian.[]

Example 0.8 The set M, ,(F') is an abelian group under addition of matrices.
The identity is the zero matrix 0,,, of size m x n. The set M,,(F') is not a
group under multiplication of matrices, since not all matrices have multiplicative
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inverses. However, the set of invertible matrices of size n X n is a (nonabelian)
group under multiplication.[]

A group G is finite if it contains only a finite number of elements. The
cardinality of a finite group G is called its order and is denoted by o(G) or
simply |G|. Thus, for example, Z,, = {0,1,...,n — 1} is a finite group under
addition modulo n, but M, ,(R) is not finite.

Definition 4 subgroup of a group G is a nonempty subset S of G that is a
group in its own right, using the same operations as defined on G.[J
Cyclic Groups

If a is a formal symbol, we can define a group G to be the set of all integral
powers of a:

G={d|ieZ}
where the product is defined by the formal rules of exponents:
ala’ = a't

This group is denoted by (a) and called the cyclic group generated by a. The
identity of (a) is 1 = a’. In general, a group G is cyclic if it has the form
G = (a) forsome a € G.

We can also create a finite group C),(a) of arbitrary positive order n by
declaring that " = 1. Thus,

Cula)={1=4d"a,d*...,a" '}
where the product is defined by the formal rules of exponents, followed by
reduction modulo n:

aiaj _ a(iJrj)modn

This defines a group of order n, called a cyclic group of order n. The inverse
ofak is a<’k> modn.
Rings
Definition A4 ring is a nonempty set R, together with two binary operations,
called addition (denoted by + ) and multiplication (denoted by juxtaposition),
for which the following hold:

1) R is an abelian group under addition
2) (Associativity) For all a,b,c € R,

(ab)e = a(be)
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3) (Distributivity) Forall a,b,c € R,
(a+b)c=ac+bcandc(a+b) =ca+cb

A ring R is said to be commutative if ab = ba for all a,b € R. If a ring R
contains an element e with the property that

ae = ea = a

for all a € R, we say that R is a ring with identity. The identity e is usually
denoted by 1.00

A field F' is a commutative ring with identity in which each nonzero element
has a multiplicative inverse, that is, if @ € F' is nonzero, then there is a b € F
for which ab = 1.

Example 0.9 The set Z, = {0,1,... ,n—1} is a commutative ring under
addition and multiplication modulo n

a®b=(a+b)modn, a®b=abmodn

The element 1 € Z,, is the identity.[]

Example 0.10 The set E of even integers is a commutative ring under the usual
operations on Z, but it has no identity.[J

Example 0.11 The set M,,(F') is a noncommutative ring under matrix addition
and multiplication. The identity matrix I,, is the identity for M,, (F').O0

Example 0.12 Let F be a field. The set F[z] of all polynomials in a single
variable z, with coefficients in F, is a commutative ring under the usual
operations of polynomial addition and multiplication. What is the identity for
F[z]? Similarly, the set F[zi1,...,z,] of polynomials in n variables is a
commutative ring under the usual addition and multiplication of polynomials.[]

Definition If R and S are rings, then a function o:R — S is a ring
homomorphism if
o(la+b)=0ca+ob

o(ab) = o(a)o(b)
ol=1

forall a,b € R.OI

Definition A subring of a ring R is a subset S of R that is a ring in its own
right, using the same operations as defined on R and having the same
multiplicative identity as R.C]
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The condition that a subring S have the same multiplicative identity as R is
required. For example, the set S of all 2 x 2 matrices of the form

a O
A(L_ |:O O:|

for a € F' is a ring under addition and multiplication of matrices (isomorphic to
F). The multiplicative identity in S is the matrix A;, which is not the identity I,
of My o(F). Hence, S is a ring under the same operations as My o(F') but it is
not a subring of M o(F).

Applying the definition is not generally the easiest way to show that a subset of
aring is a subring. The following characterization is usually easier to apply.

Theorem 0.19 4 nonempty subset S of a ring R is a subring if and only if
1) The multiplicative identity 1 of R is in S
2) S is closed under subtraction, that is,

a,beS=a-0bef

3) S is closed under multiplication, that is,

a,beS=abesS O

Ideals

Rings have another important substructure besides subrings.

Definition Let R be a ring. A nonempty subset I of R is called an ideal if
1) T is a subgroup of the abelian group R, that is, I is closed under
subtraction:

abel=a-beTl
2) T is closed under multiplication by any ring element, that is,
a€el,reR=arc€Zandracl O
Note that if an ideal Z contains the unit element 1, then Z = R.
Example 0.13 Let p(z) be a polynomial in F[z]. The set of all multiples of
p(z),
(p(x)) = {q(z)p(z) | q(x) € Fla]}

is an ideal in F'[x], called the ideal generated by p(x).0

Definition Let S be a subset of a ring R with identity. The set
(SY={risi+---+rus,|ri€R,s;,€S,n>1}
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of all finite linear combinations of elements of S, with coefficients in R, is an
ideal in R, called the ideal generated by S. It is the smallest (in the sense of set
inclusion) ideal of R containing S. If S = {s1,... ,s,} is a finite set, we write

(S1y-ee s Sn) ={rs1+ - +rps, | ri € R,s; €S} O

Note that in the previous definition, we require that R have an identity. This is
to ensure that S C (S).

Theorem 0.20 Let R be a ring.

1) The intersection of any collection {Z}. | k € K} of ideals is an ideal.

2) If7y C I, C --- is an ascending sequence of ideals, each one contained in
the next, then the union | JI), is also an ideal.

3) More generally, if

C=1{T|icl}

is a chain of ideals in R, then the union J = Uie]Ii is also an ideal in R.
Proof. To prove 1), let 7 = (\Zs. Then if a,b € J, we have a,b € T, for all
k€ K.Hence,a—b € Z, forall k € K and so a — b € J. Hence, 7 is closed
under subtraction. Also, if r € R, thenra € 7 forallk € K andsora € J. Of
course, part 2) is a special case of part 3). To prove 3), if a,b € J, thena € I;
and b € Z; for some 4, j € I. Since one of Z; and Z; is contained in the other, we
may assume that Z; C 7;. It follows that a,b € Z;and soa — b € Z; C J and if
r € R,thenra € Z; C J. Thus J is an ideal.[]

Note that in general, the union of ideals is not an ideal. However, as we have
just proved, the union of any chain of ideals is an ideal.

Quotient Rings and Maximal Ideals

Let S be a subset of a commutative ring R with identity. Let = be the binary
relation on R defined by

a=b & a—-bes

It is easy to see that = is an equivalence relation. When a = b, we say that a
and b are congruent modulo S. The term “mod” is used as a colloquialism for
modulo and a = b is often written

a=bmodS

As shorthand, we write a = b.
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To see what the equivalence classes look like, observe that
[a| ={reR|r=a}
={reR|r—aesS}
={reR|r=a+sforsomese S}
={a+s|seS}
=a+S

The set

a+S={a+s|seS}
is called a coset of S in R. The element a is called a coset representative for
a+S.
Thus, the equivalence classes for congruence mod S are the cosets a + .S of S
in R. The set of all cosets is denoted by

R/S={a+S|a€R}

This is read “R mod S.” We would like to place a ring structure on R/S.
Indeed, if S' is a subgroup of the abelian group R, then R/S is easily seen to be
an abelian group as well under coset addition defined by

(a+S)+b+S)=(a+b)+ S5
In order for the product
(a+S)b+S)=ab+ S
to be well-defined, we must have
b+S=b+S=ab+S=ab+S5
or, equivalently,
b—beS=ab-b)es
But b — b’ may be any element of S and a may be any element of R and so this

condition implies that S must be an ideal. Conversely, if S is an ideal, then
coset multiplication is well defined.

Theorem 0.21 Let R be a commutative ring with identity. Then the quotient
R/T is a ring under coset addition and multiplication if and only if T is an
ideal of R. In this case, R/ZT is called the quotient ring of R modulo Z, where
addition and multiplication are defined by

(a+S)+b+S)=(a+b)+ S5 a
(a+S)b+S)=ab+ S
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Definition An ideal T in a ring R is « maximal ideal if 7 # R and if whenever
J is an ideal satisfying T C J C R, then either 7 =T or J = R.O

Here is one reason why maximal ideals are important.

Theorem 0.22 Let R be a commutative ring with identity. Then the quotient
ring R/ T is a field if and only if T is a maximal ideal.

Proof. First, note that for any ideal Z of R, the ideals of R/Z are precisely the
quotients 7 /Z where J is an ideal for which Z C J C R. It is clear that J /T
is an ideal of R/Z. Conversely, if K’ is an ideal of R/Z, then let

K={reR|r+TIeck}

It is easy to see that /C is an ideal of R for whichZ C K C R.

Next, observe that a commutative ring .S with identity is a field if and only if S
has no nonzero proper ideals. For if S is a field and Z is an ideal of S
containing a nonzero element r, then 1 = r~!r € Z and so Z = S. Conversely,
if S has no nonzero proper ideals and 0 # s € S, then the ideal (s) must be S
and so there is an r € S for which rs = 1. Hence, S is a field.

Putting these two facts together proves the theorem.[d
The following result says that maximal ideals always exist.

Theorem 0.23 Any nonzero commutative ring R with identity contains a
maximal ideal.

Proof. Since R is not the zero ring, the ideal {0} is a proper ideal of R. Hence,
the set S of all proper ideals of R is nonempty. If

C=1{T|iecl}

is a chain of proper ideals in R, then the union J = J,.;Z; is also an ideal.
Furthermore, if 7 = R is not proper, then 1 € 7 and so 1 € Z;, for some ¢ € I,
which implies that Z; = R is not proper. Hence, J € S. Thus, any chain in §
has an upper bound in S and so Zorn's lemma implies that S has a maximal
element. This shows that R has a maximal ideal.[]

Integral Domains

Definition Let R be a ring. A nonzero element r € R is called a zero divisor if
there exists a nonzero s € R for which rs =0. A commutative ring R with
identity is called an integral domain if it contains no zero divisors.[]

Example 0.14 If n is not a prime number, then the ring Z,, has zero divisors and
so is not an integral domain. To see this, observe that if n is not prime, then
n = ab in Z, where a,b > 2. But in Z,,, we have
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a®b=abmodn =20
and so a and b are both zero divisors. As we will see later, if n is a prime, then

Z, is a field (which is an integral domain, of course).[]

Example 0.15 The ring F'[x] is an integral domain, since p(z)q(z) = 0 implies
that p(z) = 0 or g(x) = 0.00

If R is a ring and rz = ry where r,z,y € R, then we cannot in general cancel
the r's and conclude that x = y. For instance, in Z,, we have 2-3 =2 -1, but
canceling the 2's gives 3 = 1. However, it is precisely the integral domains in
which we can cancel. The simple proof is left to the reader.

Theorem 0.24 Let R be a commutative ring with identity. Then R is an integral
domain if and only if the cancellation law
re=ry,r0=x=y
holds.[]
The Field of Quotients of an Integral Domain

Any integral domain R can be embedded in a field. The quotient field (or field
of quotients) of R is a field that is constructed from R just as the field of
rational numbers is constructed from the ring of integers. In particular, we set

R™ ={(p,q) | p,q € R,q # 0}

where (p,q) = (p/,¢') if and only if p¢’ = p'q. Addition and multiplication of
fractions is defined by

(p,q) + (r,8) = (ps + qr,qs)
and
(p,q) - (r,8) = (pr,qs)

It is customary to write (p, ¢) in the form p/q. Note that if R has zero divisors,
then these definitions do not make sense, because ¢gs may be 0 even if ¢ and s
are not. This is why we require that R be an integral domain.

Principal Ideal Domains

Definition Let R be a ring with identity and let a € R. The principal ideal
generated by a is the ideal

(a) ={ra|r € R}

An integral domain R in which every ideal is a principal ideal is called a
principal ideal domain. ]
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Theorem 0.25 The integers form a principal ideal domain. In fact, any ideal T
in 7 is generated by the smallest positive integer a that is contained in 7.0]

Theorem 0.26 The ring F|x] is a principal ideal domain. In fact, any ideal T is
generated by the unique monic polynomial of smallest degree contained in I.
Moreover, for polynomials pr(z), ... , pn(x),

(pr(2), - pale)) = (ged{pr(2), ..., pu(@)})

Proof. Let Z be an ideal in F[z] and let m(z) be a monic polynomial of
smallest degree in Z. First, we observe that there is only one such polynomial in
Z.Forifn(x) € T is monic and deg(n(x)) = deg(m(z)), then

b(z) =m(x) —n(x) €T
and since deg(b(z)) < deg(m(z)), we must have b(x)=0 and so
n(x) = m(x).
We show that Z = (m(z)). Since m(z) € Z, we have (m(z)) C Z. To establish
the reverse inclusion, if p(x) € Z, then dividing p(x) by m(x) gives
p(x) = q(zx)m(z) + r(z)
where r(z) = 0 or 0 < deg r(x) < deg m(x). But since Z is an ideal,
r(z) = p(x) —q(z)m(z) € T
and so 0 < degr(x) < deg m(x) is impossible. Hence, r(x) = 0 and
p(x) = q(z)m(z) € (m(z))
This shows that Z C (m(x)) and so Z = (m(x)).

To prove the second statement, let Z = (p(x), ... , p,(x)). Then, by what we
have just shown,

= (pi(x),... ,pu(2)) = (M(2))

where m(x) is the unique monic polynomial m(x) in Z of smallest degree. In
particular, since p;(x) € (m(z)), we have m(z) | pi(x) for each i =1,... ,n.
In other words, m(x) is a common divisor of the p;(z)'s.

Moreover, if ¢(z) | p;(x) for all 4, then p;(z) € (g(z)) for all ¢, which implies
that

m(z) € (m(z)) = (p1(2), ., pa(@)) € (q(2))

and so g(z) | m(x). This shows that m(z) is the greatest common divisor of the
pi(z)'s and completes the proof.[]
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Example 0.16 The ring R = F[x, y] of polynomials in two variables = and y is
not a principal ideal domain. To see this, observe that the set Z of all
polynomials with zero constant term is an ideal in R. Now, suppose that Z is the
principal ideal Z = (p(x,y)). Since =,y € Z, there exist polynomials a(zx,y)
and b(z,y) for which

r = a(x,y)p(x,y) and y = b(x,y)p(x,y) (0.1)

But p(z,y) cannot be a constant, for then we would have Z = R. Hence,
deg(p(x,y)) > 1 and so a(x,y) and b(x,y) must both be constants, which
implies that (0.1) cannot hold.[J

Theorem 0.27 Any principal ideal domain R satisfies the ascending chain
condition, that is, R cannot have a strictly increasing sequence of ideals

I, CIy C -+

where each ideal is properly contained in the next one.
Proof. Suppose to the contrary that there is such an increasing sequence of
ideals. Consider the ideal

U=z

which must have the form U = (a) for some a € U. Since a € Z;; for some k,
we have 7j, = Z; for all j > k, contradicting the fact that the inclusions are
proper.[]

Prime and Irreducible Elements

We can define the notion of a prime element in any integral domain. For
r,s € R, we say that r divides s (written r | s) if there exists an « € R for
which s = zr.

Definition Let R be an integral domain.

1) An invertible element of R is called a unit. Thus, v € R is a unit if uv =1
for somev € R.

2) Two elements a,b € R are said to be associates if there exists a unit u for
which a = ub. We denote this by writing a ~ b.

3) A nonzero nonunit p € R is said to be prime if

plab=plaorp|b
4) A nonzero nonunit r € R is said to be irreducible if
r=ab = aorbis aunit O

Note that if p is prime or irreducible, then so is up for any unit u.

The property of being associate is clearly an equivalence relation.
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Definition We will refer to the equivalence classes under the relation of being
associate as the associate classes of R.[J

Theorem 0.28 Let R be a ring.

1) Anelement u € R is a unit if and only if (u) = R.

2) r~ sifandonlyif (ry = (s).

3) rdivides s if and only if (s) C (r).

4) r properly divides s, that is, s = xr where x is not a unit, if and only if

(s) C (r).0

In the case of the integers, an integer is prime if and only if it is irreducible. In
any integral domain, prime elements are irreducible, but the converse need not
hold. (In the ring Z[\/—5] = {a + b\/—=5 | a,b € Z} the irreducible element 2
divides the product (14 +/—=5)(1—+/=5) =6 but does not divide either
factor.)

However, in principal ideal domains, the two concepts are equivalent.

Theorem 0.29 Let R be a principal ideal domain.

1) Anr € Ris irreducible if and only if the ideal (r) is maximal.

2) An element in R is prime if and only if it is irreducible.

3) The elements a,b € R are relatively prime, that is, have no common
nonunit factors, if and only if there exist v, s € R for which

ra+sb=1

This is denoted by writing (a,b) = 1.

Proof. To prove 1), suppose that r is irreducible and that (r) C (a) C R. Then
r € (a) and so r = za for some x € R. The irreducibility of  implies that a or
2 is a unit. If @ is a unit, then (a) = R and if z is a unit, then (a) = (xa) = (r).
This shows that (r) is maximal. (We have (r) # R, since r is not a unit.)
Conversely, suppose that r is not irreducible, that is, 7 = ab where neither a nor
b is a unit. Then (r) C (a) C R. Butif (a) = (r), then r ~ a, which implies that
b is a unit. Hence (r) # (a). Also, if (a) = R, then a must be a unit. So we
conclude that (r) is not maximal, as desired.

To prove 2), assume first that p is prime and p = ab. Then p | a or p | b. We
may assume that p | a. Therefore, a = xp = xab. Canceling a's gives 1 = xb
and so b is a unit. Hence, p is irreducible. (Note that this argument applies in
any integral domain.)

Conversely, suppose that r is irreducible and let r | ab. We wish to prove that
r | aorr|b. The ideal (r) is maximal and so (r,a) = (r) or (r,a) = R. In the
former case, r | @ and we are done. In the latter case, we have

1=za+yr
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for some z,y € R. Thus,
b= xab+ yrb

and since r divides both terms on the right, we have r | b.

To prove 3), it is clear that if ra + sb = 1, then a and b are relatively prime. For
the converse, consider the ideal (a,b), which must be principal, say
(a,b) = (x). Then = | @ and = | b and so = must be a unit, which implies that
(a,b) = R.Hence, there exist , s € R for which ra + sb = 1.00

Unique Factorization Domains

Definition An integral domain R is said to be a unique factorization domain

if it has the following factorization properties:

1) Every nonzero nonunit element r € R can be written as a product of a finite
number of irreducible elements r = py- - -p,.

2) The factorization into irreducible elements is unique in the sense that if
r=pi---p, and v = q1---qy, are two such factorizations, then m = n and
after a suitable reindexing of the factors, p; ~ ¢;.11

Unique factorization is clearly a desirable property. Fortunately, principal ideal
domains have this property.

Theorem 0.30 Every principal ideal domain R is a unique factorization
domain.

Proof. Let r € R be a nonzero nonunit. If r is irreducible, then we are done. If
not, then » = ryry, where neither factor is a unit. If ; and r, are irreducible, we
are done. If not, suppose that r, is not irreducible. Then ry = r3ry, where
neither r3 nor r4 is a unit. Continuing in this way, we obtain a factorization of
the form (after renumbering if necessary)

r=rry = 7“1(7’37”4) = (7’17“3)(7"57"6) = (7"17"37"5)(7"77”8) =

Each step is a factorization of r into a product of nonunits. However, this
process must stop after a finite number of steps, for otherwise it will produce an
infinite sequence sy, Sz, ... of nonunits of R for which s;;; properly divides s;.
But this gives the ascending chain of ideals

(s1) C (s9) C (s3) C (s4) C -

where the inclusions are proper. But this contradicts the fact that a principal
ideal domain satisfies the ascending chain condition. Thus, we conclude that
every nonzero nonunit has a factorization into irreducible elements.

As to uniqueness, if r = p;---p, and r = q;---q,, are two such factorizations,
then because R is an integral domain, we may equate them and cancel like
factors, so let us assume this has been done. Thus, p; # ¢; for all 4, j. If there are
no factors on either side, we are done. If exactly one side has no factors left,
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then we have expressed 1 as a product of irreducible elements, which is not
possible since irreducible elements are nonunits.

Suppose that both sides have factors left, that is,
P1Pn =41 qm

where p; # ¢;. Then ¢, | p1---py,, which implies that g,,, | p; for some i. We can
assume by reindexing if necessary that p, = a,q,,. Since p, is irreducible a,
must be a unit. Replacing p,, by a,q,, and canceling g,,, gives

AnP1Pn—1 = 41" "dm—1

This process can be repeated until we run out of ¢'s or p's. If we run out of ¢'s
first, then we have an equation of the form up;---pr = 1 where w is a unit,
which is not possible since the p;'s are not units. By the same reasoning, we
cannot run out of ¢'s first and so n = m and the p's and ¢'s can be paired off as
associates.[]

Fields

For the record, let us give the definition of a field (a concept that we have been
using).

Definition A field is a set F', containing at least two elements, together with two

binary operations, called addition (denoted by +) and multiplication

(denoted by juxtaposition), for which the following hold.:

1) Fis an abelian group under addition.

2) The set F* of all nonzero elements in F is an abelian group under
multiplication.

3) (Distributivity) Forall a,b,c € F,

(a4+b)c =ac+bcand cla+b) =ca+ cb |

We require that F' have at least two elements to avoid the pathological case in
which 0 = 1.

Example 0.17 The sets Q, R and C, of all rational, real and complex numbers,
respectively, are fields, under the usual operations of addition and multiplication
of numbers.[]

Example 0.18 The ring Z,, is a field if and only if n is a prime number. We
have already seen that Z,, is not a field if n is not prime, since a field is also an
integral domain. Now suppose that n = p is a prime.

We have seen that Z,, is an integral domain and so it remains to show that every
nonzero element in Z, has a multiplicative inverse. Let 0 # a € Z,. Since
a < p, we know that a and p are relatively prime. It follows that there exist
integers u and v for which
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ua +vp =1
Hence,
ua = (1 —vp) = 1 mod p

and so v ® a = 1 in Z,, that is, u is the multiplicative inverse of a.[]

The previous example shows that not all fields are infinite sets. In fact, finite
fields play an extremely important role in many areas of abstract and applied
mathematics.

A field F is said to be algebraically closed if every nonconstant polynomial
over F' has a root in F'. This is equivalent to saying that every nonconstant
polynomial splits over F'. For example, the complex field C is algebraically
closed but the real field R is not. We mention without proof that every field F' is
contained in an algebraically closed field F', called the algebraic closure of F.
For example, the algebraic closure of the real field is the complex field.

The Characteristic of a Ring

Let R be a ring with identity. If n is a positive integer, then by n - r, we simply
mean

n-r=mr e
+ -+
n terms
Now, it may happen that there is a positive integer n for which
n-1=0

For instance, in Z,, we have n-1=mn = 0. On the other hand, in Z, the
equation n - 1 = 0 implies n = 0 and so no such positive integer exists.

Notice that in any finite ring, there must exist such a positive integer n, since the
members of the infinite sequence of numbers

1-1,2-1,3-1,...
cannot be distinct and soi -1 = j- 1 for some i < j, whence (j —4) -1 = 0.
Definition Let R be a ring with identity. The smallest positive integer c for

which ¢ - 1 = 0 is called the characteristic of R. If no such number c exists, we
say that R has characteristic 0. The characteristic of R is denoted by

char(R).O0
If char(R) = ¢, then for any r € R, we have

cor=r4+-+r=(1+-+1)r=0-r=0
c terms c terms
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Theorem 0.31 Any finite ring has nonzero characteristic. Any finite integral
domain has prime characteristic.

Proof. We have already seen that a finite ring has nonzero characteristic. Let F’
be a finite integral domain and suppose that char(F') = ¢ > 0. If ¢ = pq, where
p,q < ¢, then pg-1=0. Hence, (p-1)(¢-1) =0, implying that p-1 =0 or
q - 1 = 0. In either case, we have a contradiction to the fact that ¢ is the smallest
positive integer such that ¢ - 1 = 0. Hence, ¢ must be prime.[J

Notice that in any field F' of characteristic 2, we have 2a = 0 for all a € F.
Thus, in F',

a= —aforalla €

This property takes a bit of getting used to and makes fields of characteristic 2
quite exceptional. (As it happens, there are many important uses for fields of
characteristic 2.) It can be shown that all finite fields have size equal to a
positive integral power p" of a prime p and for each prime power p", there is a
finite field of size p”. In fact, up to isomorphism, there is exactly one finite field
of size p".

Algebras

The final algebraic structure of which we will have use is a combination of a
vector space and a ring. (We have not yet officially defined vector spaces, but
we will do so before needing the following definition, which is placed here for
easy reference.)

Definition An algebra A over a field F' is a nonempty set A, together with
three operations, called addition (denoted by + ), multiplication (denoted by
Juxtaposition) and scalar multiplication (also denoted by juxtaposition), for
which the following properties hold:

1) Ais a vector space over F under addition and scalar multiplication.

2) Ais a ring under addition and multiplication.

3) Ifre€ Fanda,b e A, then

r(ab) = (ra)b = a(rb) O

Thus, an algebra is a vector space in which we can take the product of vectors,
or a ring in which we can multiply each element by a scalar (subject, of course,
to additional requirements as given in the definition).
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Chapter 1
Vector Spaces

Vector Spaces

Let us begin with the definition of one of our principal objects of study.

Definition Let F be a field, whose elements are referred to as scalars. A vector
space over I is a nonempty set V, whose elements are referred to as vectors,
together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) of vectors in V a vector u+ v in V. The
second operation, called scalar multiplication and denoted by juxtaposition,
assigns to each pair (r,u) € F xV a vector ru in V. Furthermore, the
following properties must be satisfied:

1) (Associativity of addition) For all vectors u,v,w € V,

u+ (v+w) = (u+v)+w
2) (Commutativity of addition) For all vectors u,v € V,
utv=v+u
3) (Existence of a zero) There is a vector 0 € V' with the property that
O+u=u+0=u

for all vectors u € V.
4) (Existence of additive inverses) For each vector w € V, there is a vector
in 'V, denoted by —u, with the property that

u+ (—u)=(-u)+u=0
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5) (Properties of scalar multiplication) For all scalars a,b € F and for all
vectors u,v € V,

a(u 4+ v) = au+ av |
(a+b)u = au + bu
(ab)u = a(bu)
lu=wu

Note that the first four properties in the definition of vector space can be
summarized by saying that V' is an abelian group under addition.

A vector space over a field F' is sometimes called an F'-space. A vector space
over the real field is called a real vector space and a vector space over the
complex field is called a complex vector space.

Definition Let S be a nonempty subset of a vector space V. A linear
combination of vectors in S is an expression of the form

a1v; + - + a,v,
where vy,...,v, €S and ay,...,a, € F. The scalars a; are called the

coefficients of the linear combination. A linear combination is trivial if every
coefficient a; is zero. Otherwise, it is nontrivial.[]

Examples of Vector Spaces

Here are a few examples of vector spaces.

Example 1.1

1) Let F be a field. The set ¥ of all functions from F' to I is a vector space
over F', under the operations of ordinary addition and scalar multiplication
of functions:

(f+9)(z) = f(z) + g(z)
and
(af)(z) = a(f(2))

2) The set M,, ,(F) of all m x n matrices with entries in a field F is a vector
space over F, under the operations of matrix addition and scalar
multiplication.

3) The set F" of all ordered n-tuples whose components lie in a field F', is a
vector space over F, with addition and scalar multiplication defined
componentwise:

(ah... ,an)—l—(bh... ,bn) = (a1+b1,... 7an—|—bn)

and
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clag,... ,a,) = (cay,... ,cay)

When convenient, we will also write the elements of F" in column form.
When F is a finite field F; with q elements, we write V' (n, q) for F}]".

4) Many sequence spaces are vector spaces. The set Seq(F') of all infinite
sequences with members from a field F' is a vector space under the
componentwise operations

(Sn) + (tn) = (Sn + tn)
and
a(s,) = (asy)

In a similar way, the set ¢y of all sequences of complex numbers that
converge to 0 is a vector space, as is the set /> of all bounded complex
sequences. Also, if p is a positive integer, then the set /7 of all complex
sequences (s,,) for which

o0

Z [s,]” < 00

n=1

is a vector space under componentwise operations. To see that addition is a
binary operation on /7, one verifies Minkowski's inequality

s 1/p o 1/p o 1/p
<Z|Sn+tn|”> §<Z|sn|p> +<Ztn|p>

n=1 n=1 n=1
which we will not do here.[J

Subspaces

Most algebraic structures contain substructures, and vector spaces are no
exception.

Definition 4 subspace of a vector space V' is a subset S of V that is a vector
space in its own right under the operations obtained by restricting the
operations of V to S. We use the notation S <V to indicate that S is a
subspace of V and S <V to indicate that S is a proper subspace of 'V, that is,
S <V but S # V. The zero subspace of V is {0}.00

Since many of the properties of addition and scalar multiplication hold a fortiori
in a nonempty subset S, we can establish that S is a subspace merely by
checking that S is closed under the operations of V.

Theorem 1.1 4 nonempty subset S of a vector space V is a subspace of V' if
and only if S is closed under addition and scalar multiplication or, equivalently,
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S is closed under linear combinations, that is,
a,be F,u,ve S=au+bvesS O

Example 1.2 Consider the vector space V' (n,2) of all binary n-tuples, that is,
n-tuples of 0's and 1's. The weight WW(v) of a vector v € V (n, 2) is the number
of nonzero coordinates in v. For instance, WW(101010) = 3. Let E,, be the set of
all vectors in V' of even weight. Then E,, is a subspace of V'(n, 2).

To see this, note that
W(u+v) =W(u) + W(v) — 2W(uNo)

where u N v is the vector in V' (n, 2) whose ith component is the product of the
1th components of u and v, that is,

(uno); =u; - v

Hence, if W(u) and W(v) are both even, so is W(u + v). Finally, scalar
multiplication over F; is trivial and so E,, is a subspace of V' (n,2), known as
the even weight subspace of V(n,2).0

Example 1.3 Any subspace of the vector space V (n, q) is called a linear code.
Linear codes are among the most important and most studied types of codes,
because their structure allows for efficient encoding and decoding of
information.[]

The Lattice of Subspaces

The set S(V') of all subspaces of a vector space V' is partially ordered by set
inclusion. The zero subspace {0} is the smallest element in S(V') and the entire
space V' is the largest element.

If S,T € S(V), then SNT is the largest subspace of V' that is contained in
both S and T'. In terms of set inclusion, S NT is the greatest lower bound of S
and T

SNT = glb{S, T}

Similarly, if {S; |7 € K} is any collection of subspaces of V, then their
intersection is the greatest lower bound of the subspaces:

(S: = glb{S; |i € K}

€K

On the other hand, if S,T € S(V) (and F is infinite), then SUT € S(V) if
and only if S CT or T C S. Thus, the union of two subspaces is never a
subspace in any “interesting” case. We also have the following.
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Theorem 1.2 A nontrivial vector space V over an infinite field F' is not the
union of a finite number of proper subspaces.
Proof. Suppose that V' = S; U --- U 5),, where we may assume that

S1Z SyU---US,
Letw e S\ (SqU---US,) and let v ¢ Si. Consider the infinite set
A={rw+v|reF}

which is the “line” through v, parallel to w. We want to show that each S,
contains at most one vector from the infinite set A, which is contrary to the fact
that V' = S; U --- U S,,. This will prove the theorem.

If rw+ v €Sy for r #£ 0, then w € S; implies v € Sy, contrary to assumption.
Next, suppose that riw +v € S; and row + v € S, for i > 2, where r1 # 9.
Then

Si 3 (mw+v) — (rw+v) = (r —r)w
and so w € S;, which is also contrary to assumption.[]
To determine the smallest subspace of V' containing the subspaces S and 7', we
make the following definition.

Definition Let S and T be subspaces of V. The sum S + T is defined by
S+T={u+v|ueSveT}

More generally, the sum of any collection {S; | i € K} of subspaces is the set
of all finite sums of vectors from the union | JS;:

ZSi:{sl—k---—i—sn‘sjEUSi} O

€K €K

It is not hard to show that the sum of any collection of subspaces of V' is a
subspace of V" and that the sum is the least upper bound under set inclusion:

S+ T =1ub{S,T}
More generally,
> S =1ub{s; |ic K}
ieK

If a partially ordered set P has the property that every pair of elements has a
least upper bound and greatest lower bound, then P is called a lattice. If P has
a smallest element and a largest element and has the property that every
collection of elements has a least upper bound and greatest lower bound, then P
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is called a complete lattice. The least upper bound of a collection is also called
the join of the collection and the greatest lower bound is called the meet.

Theorem 1.3 The set S(V') of all subspaces of a vector space V' is a complete
lattice under set inclusion, with smallest element {0}, largest element V', meet

ghb{S; [ie K} =[S

ieK
and join
lub{S; [i€ K} =S, O
ieK
Direct Sums

As we will see, there are many ways to construct new vector spaces from old
ones.

External Direct Sums

Definition Let Vi, ..., V, be vector spaces over a field F'. The external direct
sum of Vi, ..., V,, denoted by

V=V8 -8V,

is the vector space V whose elements are ordered n-tuples:
V=A(vi,...,00) |v; €Vj,i=1,...,n}
with componentwise operations
(Upy oo yupn) + (U1, y0n) = (U + 01,00 Uy + )
and
r(v1, ... ,0) = (rog, ... ,T0,)

forallr € F.OI
Example 1.4 The vector space F™ is the external direct sum of n copies of F,
that is,

F'"=FH.--BF
where there are n summands on the right-hand side.[]
This construction can be generalized to any collection of vector spaces by
generalizing the idea that an ordered n-tuple (vi,...,v,) is just a function

f:A{1,... ,n} = JV; from the index set {1,...,n} to the union of the spaces
with the property that f(i) € V;.
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Definition Let F = {V; | i € K} be any family of vector spaces over F. The
direct product of F is the vector space

Hviz{f:KaUvi

ieK ieK

f(i)ew}

thought of as a subspace of the vector space of all functions from K to | JV;.OO

It will prove more useful to restrict the set of functions to those with finite
support.

Definition Let F = {V; | i € K} be a family of vector spaces over F. The
support of a function f: K — |JV; is the set
supp(f) = {i € K'| f(i) # 0}

Thus, a function f has finite support if f (i) = 0 for all but a finite number of
i € K. The external direct sum of the family F is the vector space

ext‘/i: {fK—)U‘/;
€K

€K

f(@) € V,, f has finite support}

thought of as a subspace of the vector space of all functions from K to | JV;.00

An important special case occurs when V; =V for all ¢ € K. If we let VE
denote the set of all functions from K to V and (VX), denote the set of all
functions in VX that have finite support, then

[TV =v" and @™V = (vE)
€K ieK

Note that the direct product and the external direct sum are the same for a finite
family of vector spaces.

Internal Direct Sums

An internal version of the direct sum construction is often more relevant.

Definition A4 vector space V is the (internal) direct sum of a family
F ={S; | i€ I} of subspaces of V, written

V=@Fr o V=S

el

if the following hold:
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1) (Join of the family) V' is the sum (join) of the family F:
V=>S
iel

2) (Independence of the family) For each i € I,

Sin |8 | = {0}

i

In this case, each S; is called a direct summand of V. If F = {Sy,...,S,}isa
finite family, the direct sum is often written

V=5Sa& &S,
Finally, if V.= S ® T, then T is called a complement of S in V.0

Note that the condition in part 2) of the previous definition is stronger than
saying simply that the members of F are pairwise disjoint:

SinsS; =10
foralli # je I.

A word of caution is in order here: If S and T are subspaces of V', then we may
always say that the sum S + T exists. However, to say that the direct sum of .S
and 7T exists or to write S @ 7T is to imply that S N7 = {0}. Thus, while the
sum of two subspaces always exists, the direct sum of two subspaces does not
always exist. Similar statements apply to families of subspaces of V.

The reader will be asked in a later chapter to show that the concepts of internal
and external direct sum are essentially equivalent (isomorphic). For this reason,
the term “direct sum” is often used without qualification.

Once we have discussed the concept of a basis, the following theorem can be
easily proved.

Theorem 1.4 Any subspace of a vector space has a complement, that is, if S is a
subspace of V., then there exists a subspace T for which V =5 ¢ T.00

It should be emphasized that a subspace generally has many complements
(although they are isomorphic). The reader can easily find examples of this in
R2.

We can characterize the uniqueness part of the definition of direct sum in other
useful ways. First a remark. If S and 7" are distinct subspaces of V and if
x,y € S NT,then the sum x + y can be thought of as a sum of vectors from the
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same subspace (say S) or from different subspaces—one from S and one from
T. When we say that a vector v cannot be written as a sum of vectors from the
distinct subspaces S and 7', we mean that v cannot be written as a sum = + y
where x and y can be interpreted as coming from different subspaces, even if
they can also be interpreted as coming from the same subspace. Thus, if
x,y € SNT, then v = x + y does express v as a sum of vectors from distinct
subspaces.

Theorem 1.5 Let F = {S; | i € I} be a family of distinct subspaces of V. The
following are equivalent:
1) (Independence of the family) For each i € I,

Sin | 8| =10}

J#i

2) (Uniqueness of expression for 0) The zero vector 0 cannot be written as a
sum of nonzero vectors from distinct subspaces of F.

3) (Uniqueness of expression) Every nonzero v € V has a unique, except for
order of terms, expression as a sum

v=5+ -+,

of nonzero vectors from distinct subspaces in F.

Hence, a sum
V=>S

iel

is direct if and only if any one of 1)-3) holds.
Proof. Suppose that 2) fails, that is,

0=sj++s
where the nonzero s,'s are from distinct subspaces Sj,. Then n > 1 and so
—5j, = sj, + -+ 55,
which violates 1). Hence, 1) implies 2). If 2) holds and
v=8+--+s, and v=1t1+ -+t

where the terms are nonzero and the s;'s belong to distinct subspaces in F and
similarily for the ¢;'s, then

0281+"'+8n—t1—"'—tm
By collecting terms from the same subspaces, we may write

0= (5171 _til)+"'+(sik_tik)+Sik+l+...+sin_tik+l —

m
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Then 2) implies that n = m =k and s;, = ¢;, for all u=1,..., k. Hence, 2)
implies 3).

Finally, suppose that 3) holds. If

0£vesSin|>S
J#i
then v = s; € S; and
$i = Sj 0+ 8,

where s;, € S, are nonzero. But this violates 3).[1
Example 1.5 Any matrix A € M,, can be written in the form

A=-(A+ A+ -(A-A)=B+C (1.1)

1 1
2 2
where A' is the transpose of A. It is easy to verify that B is symmetric and C is

skew-symmetric and so (1.1) is a decomposition of A as the sum of a symmetric
matrix and a skew-symmetric matrix.

Since the sets Sym and SkewSym of all symmetric and skew-symmetric
matrices in M,, are subspaces of M,,, we have
M,, = Sym + SkewSym

Furthermore, if S + T = S’ +T", where S and S’ are symmetric and 7" and T”
are skew-symmetric, then the matrix

U=S-8=1T-T

is both symmetric and skew-symmetric. Hence, provided that char(F') # 2, we
must have U = 0andso S =S and T = T". Thus,

M,, = Sym & SkewSym O

Spanning Sets and Linear Independence

A set of vectors spans a vector space if every vector can be written as a linear
combination of some of the vectors in that set. Here is the formal definition.
Definition 77e subspace spanned (or subspace generated) by a nonempty set

S of vectors in'V is the set of all linear combinations of vectors from S:

(S)y =span(S) = {rvy + - +rpv, | r; € Fyv; € S}
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When S = {v1,...,v,} is a finite set, we use the notation (vi,...,v,) or
span(vy, ..., v,). 4 set S of vectors in 'V is said to span V, or generate V, if
V = span(S).O

It is clear that any superset of a spanning set is also a spanning set. Note also
that all vector spaces have spanning sets, since V' spans itself.

Linear Independence

Linear independence is a fundamental concept.

Definition Let V' be a vector space. A nonempty set S of vectors in V is
linearly independent if for any distinct vectors sy, ..., s, in S,

ars1+--+aps, =0 = a; =0 foralli

In words, S is linearly independent if the only linear combination of vectors
from S that is equal to 0 is the trivial linear combination, all of whose
coefficients are 0. If S is not linearly independent, it is said to be linearly
dependent.[]

It is immediate that a linearly independent set of vectors cannot contain the zero
vector, since then 1 - 0 = 0 violates the condition of linear independence.

Another way to phrase the definition of linear independence is to say that S' is
linearly independent if the zero vector has an “as unique as possible” expression
as a linear combination of vectors from S. We can never prevent the zero vector
from being written in the form 0 = 0s; + -+ + 0Os,,, but we can prevent 0 from
being written in any other way as a linear combination of the vectors in S

For the introspective reader, the expression 0= s;+ (— 1s;) has two
interpretations. One is 0 = as; + bs; where a =1 and b = —1, but this does
not involve distinct vectors so is not relevant to the question of linear
independence. The other interpretation is 0 = sy +¢; where ¢, = —s1 # s1
(assuming that s; # 0). Thus, if S is linearly independent, then S cannot
contain both s; and —s;.

Definition Let S be a nonempty set of vectors in V. To say that a nonzero
vector v € V is an essentially unique linear combination of the vectors in S is
to say that, up to order of terms, there is one and only one way to express v as a
linear combination

v=a181 + -+ a,S,

where the s;'s are distinct vectors in S and the coefficients a; are nonzero. More
explicitly, v # 0 is an essentially unique linear combination of the vectors in S
if v € (S) and if whenever
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v=ai181 + -+ a,s, and v="bity+ -+ bytn,

where the s;'s are distinct, the t;'s are distinct and all coefficients are nonzero,
then m = n and after a reindexing of the b;t;'s if necessary, we have a; = b; and
s; =1t; for all 1=1,...,n. (Note that this is stronger than saying that
a;S; = biti.)D

We may characterize linear independence as follows.

Theorem 1.6 Let S # {0} be a nonempty set of vectors in V. The following are

equivalent:

1) S is linearly independent.

2) Every nonzero vector v € span(S) is an essentially unique linear
combination of the vectors in S.

3) No vectorin S'is a linear combination of other vectors in S.

Proof. Suppose that 1) holds and that

0Fv=ais1+ - +aps, =bity + -+ + bty

where the s;'s are distinct, the ¢;'s are distinct and the coefficients are nonzero.
By subtracting and grouping s's and t's that are equal, we can write

0= (ai, = bi,)si, + -+ (ai, — bi,)si,
+ Qi Sigyy T 000 G, 85,
P,

Ue+1 7 e+1 tm Y lm

and so 1) implies thatn =m =k anda;, = b;, and s;, =¢; foralli=1,... k.
Thus, 1) implies 2).
If 2) holds and s € S can be written as

S =ai81+ -+ apsy,

where s; € S are different from s, then we may collect like terms on the right
and then remove all terms with O coefficient. The resulting expression violates
2). Hence, 2) implies 3). If 3) holds and

181+ -+ apSp = 0

where the s;'s are distinct and a; # 0, then n > 1 and we may write

1
s1=——/(azs9 + - + ansn)
a

which violates 3).[]

The following key theorem relates the notions of spanning set and linear
independence.
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Theorem 1.7 Let S be a set of vectors in V. The following are equivalent:

1) S is linearly independent and spans V.

2) Every nonzero vector v € V' is an essentially unique linear combination of
vectors in S.

3) S is a minimal spanning set, that is, S spans V' but any proper subset of S
does not span' V.

4) S is a maximal linearly independent set, that is, S is linearly independent,
but any proper superset of S is not linearly independent.

A set of vectors in V' that satisfies any (and hence all) of these conditions is

called a basis for V.

Proof. We have seen that 1) and 2) are equivalent. Now suppose 1) holds. Then

S is a spanning set. If some proper subset S’ of S also spanned V/, then any

vector in S — S5’ would be a linear combination of the vectors in S’,

contradicting the fact that the vectors in S are linearly independent. Hence 1)

implies 3).

Conversely, if S is a minimal spanning set, then it must be linearly independent.
For if not, some vector s € S would be a linear combination of the other vectors
in S and so S — {s} would be a proper spanning subset of S, which is not
possible. Hence 3) implies 1).

Suppose again that 1) holds. If S were not maximal, there would be a vector
v €V — S for which the set S U {v} is linearly independent. But then v is not
in the span of S, contradicting the fact that S is a spanning set. Hence, S is a
maximal linearly independent set and so 1) implies 4).

Conversely, if S is a maximal linearly independent set, then S must span V, for
if not, we could find a vector v € V' — S that is not a linear combination of the
vectors in S. Hence, S U {v} would be a linearly independent proper superset of
S, which is a contradiction. Thus, 4) implies 1).01

Theorem 1.8 4 finite set S = {v1,...,v,} of vectors in V is a basis for V if
and only if

V={_v)® @ vy O

Example 1.6 The ith standard vector in F" is the vector e; that has 0's in all
coordinate positions except the ith, where it has a 1. Thus,

er=(1,0,...,0), e =(0,1,...,0) ,..., e,=1(0,...,0,1)

The set {ey, ..., e,} is called the standard basis for F".[0

The proof that every nontrivial vector space has a basis is a classic example of
the use of Zorn's lemma.
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Theorem 1.9 Let V' be a nonzero vector space. Let I be a linearly independent
set in'V and let S be a spanning set in' V' containing I. Then there is a basis B
for'V for which I C B C S. In particular,

1) Any vector space, except the zero space {0}, has a basis.

2) Any linearly independent set in V' is contained in a basis.

3) Any spanning set in V' contains a basis.

Proof. Consider the collection A of all linearly independent subsets of V'
containing I and contained in S. This collection is not empty, since I € A.
Now, if

C={I|keK}

is a chain in A, then the union

U:UL

keK

is linearly independent and satisfies I C U C S, that is, U € A. Hence, every
chain in A has an upper bound in A and according to Zorn's lemma, A must
contain a maximal element B, which is linearly independent.

Now, B is a basis for the vector space (S) =V, for if any s € S is not a linear
combination of the elements of B, then BU {s} C S is linearly independent,
contradicting the maximality of B. Hence S C (B) and so V' = (S) C (5).00

The reader can now show, using Theorem 1.9, that any subspace of a vector
space has a complement.

The Dimension of a Vector Space

The next result, with its classical elegant proof, says that if a vector space V' has
a finite spanning set .S, then the size of any linearly independent set cannot
exceed the size of S.

Theorem 1.10 Let V' be a vector space and assume that the vectors vy, ..., v,
are linearly independent and the vectors s, ..., Sy, span V. Then n < m.
Proof. First, we list the two sets of vectors: the spanning set followed by the
linearly independent set:

Sty SmsUly--0 3, Un

Then we move the first vector v; to the front of the first list:
U1y 81y -5 Sm3 V2, ..., Un
Since s1, ..., S, span V, vy is a linear combination of the s;'s. This implies that

we may remove one of the s;'s, which by reindexing if necessary can be s,
from the first list and still have a spanning set

V1y82y.ceySm3V2,y...,Up
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Note that the first set of vectors still spans V' and the second set is still linearly
independent.

Now we repeat the process, moving vs from the second list to the first list

V1,V2,82,.++,8m;V3,...,Un

As before, the vectors in the first list are linearly dependent, since they spanned
V' before the inclusion of vs. However, since the v;'s are linearly independent,
any nontrivial linear combination of the vectors in the first list that equals 0
must involve at least one of the s;'s. Hence, we may remove that vector, which
again by reindexing if necessary may be taken to be s, and still have a spanning
set

V1,0V2,83,.++,Sm;V3,...,Un

Once again, the first set of vectors spans V' and the second set is still linearly
independent.

Now, if m < n, then this process will eventually exhaust the s;'s and lead to the
list

V1,025« Ums Umt1, -+, Un
where vy, v, ..., v, span V, which is clearly not possible since v,, is not in the
span of vy, vs, ..., vy Hence, n < m.O

Corollary 1.11 If'V has a finite spanning set, then any two bases of V have the
same size.[]

Now let us prove the analogue of Corollary 1.11 for arbitrary vector spaces.

Theorem 1.12 If'V is a vector space, then any two bases for V have the same
cardinality.

Proof. We may assume that all bases for V' are infinite sets, for if any basis is
finite, then V" has a finite spanning set and so Corollary 1.11 applies.

Let B = {b; | i € I} be a basis for V' and let C be another basis for V. Then any
vector ¢ € C can be written as a finite linear combination of the vectors in 5,
where all of the coefficients are nonzero, say

Cc = erbj

icU,

But because C is a basis, we must have

Juv.=1

ceC



50 Advanced Linear Algebra

for if the vectors in C can be expressed as finite linear combinations of the
vectors in a proper subset B’ of B, then B spans V', which is not the case.
Since |U,.| < ¥y for all ¢ € C, Theorem 0.17 implies that

|B] = [I] < Ro[C| = [C]|
But we may also reverse the roles of 5 and C, to conclude that |C| < |B| and so
the Schréder-Bernstein theorem implies that |5 = |C|.0

Theorem 1.12 allows us to make the following definition.

Definition A vector space V is finite-dimensional if it is the zero space {0}, or
if it has a finite basis. All other vector spaces are infinite-dimensional. The
dimension of the zero space is 0 and the dimension of any nonzero vector
space V' is the cardinality of any basis for V. If a vector space V' has a basis of
cardinality k, we say that V is k-dimensional and write dim(V') = .0

It is easy to see that if S is a subspace of V, then dim(S) < dim(V'). If in
addition, dim(S) = dim(V') < oo, then S = V.

Theorem 1.13 Let V' be a vector space.
1) IfBis a basis for V and if B = By U By and By N By = 0, then
V = (B1) @ (By)

2) Let V=S&T. If By is a basis for S and By is a basis for T, then

BiNBy =0 and B =By U DBy is a basis for V.OO
Theorem 1.14 Let S and T be subspaces of a vector space V. Then

dim(S) + dim(7T) = dim(S + T') + dim(SNT)
In particular, if T is any complement of S in'V, then
dim(S) + dim(7") = dim(V)
that is,
dim(S @ T') = dim(S) + dim(7T")

Proof. Suppose that B = {b; | i € I} is a basis for S N T'. Extend this to a basis
AU B for S where A= {a;|je€ J} is disjoint from B. Also, extend B to a
basis BUC for T where C = {¢;, | k € K} is disjoint from B. We claim that
AUBUC isabasis for S + T.Itis clear that (AUBUC) = S + T.

To see that A U B U C is linearly independent, suppose to the contrary that



Vector Spaces 51

v + -+ auv, =0

where v; € AUBUC and «; # 0 for all 4. There must be vectors v; in this
expression from both A and C, since .A U B and B U C are linearly independent.
Isolating the terms involving the vectors from 4 on one side of the equality
shows that there is a nonzero vector in « € (A) N (BUC). Butthenz € SNT
and so z € (A) N (B), which implies that x =0, a contradiction. Hence,
A U B UC is linearly independent and a basis for S + 7.

Now,
dim(S) + dim(T) = AU B| + |[BUC(]|
= |A] + [B| + |B] +[C|
= |A|+ |B| +|C| + dim(SNT)
=dim(S +7T) + dim(SNT)
as desired.[]

It is worth emphasizing that while the equation

dim(S) 4+ dim(T") = dim(S + T) + dim(SN7T)
holds for all vector spaces, we cannot write

dim(S + T') = dim(S) + dim(T) — dim(SN7T)
unless S + 7' is finite-dimensional.
Ordered Bases and Coordinate Matrices

It will be convenient to consider bases that have an order imposed on their
members.

Definition Let V' be a vector space of dimension n. An ordered basis for V is
an ordered n-tuple (v1,...,v,) of vectors for which the set {v1,...,v,} is a
basis for V.OO

If B=(vy,...,v,) is an ordered basis for V, then for each v € V' there is a
unique ordered n-tuple (rq,...,r,) of scalars for which

v=rvy+ -+,

Accordingly, we can define the coordinate map ¢5: V' — F" by

¢p(v) =[vlp = | : (1.3)
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where the column matrix [v]g is known as the coordinate matrix of v with
respect to the ordered basis B. Clearly, knowing [v]z is equivalent to knowing v
(assuming knowledge of B).

Furthermore, it is easy to see that the coordinate map ¢p is bijective and
preserves the vector space operations, that is,

¢B(T1U1 + -+ Tnvn) = rl(bB(vl) +- rnd)B(vn)
or equivalently
[7"1111 + -+ Tnvn}B =T [UI]B +try [rUnJB

Functions from one vector space to another that preserve the vector space
operations are called linear transformations and form the objects of study in the
next chapter.

The Row and Column Spaces of a Matrix

Let A be an m x n matrix over F'. The rows of A span a subspace of F"" known
as the row space of A and the columns of A span a subspace of F"" known as
the column space of A. The dimensions of these spaces are called the row rank
and column rank, respectively. We denote the row space and row rank by
rs(A) and rrk(A) and the column space and column rank by cs(A) and crk(A).

It is a remarkable and useful fact that the row rank of a matrix is always equal to
its column rank, despite the fact that if m # n, the row space and column space
are not even in the same vector space!

Our proof of this fact hinges on the following simple observation about
matrices.

Lemma 1.15 Let A be an m x n matrix. Then elementary column operations do
not affect the row rank of A. Similarly, elementary row operations do not affect
the column rank of A.

Proof. The second statement follows from the first by taking transposes. As to
the first, the row space of A is

1s(A) = (e14,...,e,A)

where e; are the standard basis vectors in F". Performing an elementary
column operation on A is equivalent to multiplying A on the right by an
elementary matrix F. Hence the row space of AF is

1s(AE) = (e1AE, ..., e, AE)

and since F is invertible,
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rk(A) = dim(rs(A)) = dim(1s(AE)) = rrk(AE)
as desired.[d

Theorem 1.16 If A € M,, ,,, then 1rk(A) = ctk(A). This number is called the
rank of A and is denoted by tk(A).

Proof. According to the previous lemma, we may reduce A to reduced column
echelon form without affecting the row rank. But this reduction does not affect
the column rank either. Then we may further reduce A to reduced row echelon
form without affecting either rank. The resulting matrix M has the same row
and column ranks as A. But M is a matrix with 1's followed by 0's on the main
diagonal (entries M 1, Ms o, ...) and 0's elsewhere. Hence,

rrk(A) = rrk(M) = erk(M) = crk(A)
as desired.[]

The Complexification of a Real Vector Space

If W is a complex vector space (that is, a vector space over C), then we can
think of W as a real vector space simply by restricting all scalars to the field R.
Let us denote this real vector space by Wx and call it the real version of .

On the other hand, to each real vector space V, we can associate a complex
vector space V. This “complexification” process will play a useful role when
we discuss the structure of linear operators on a real vector space. (Throughout
our discussion V' will denote a real vector space.)

Definition I V is a real vector space, then the set VC =V x V of ordered
pairs, with componentwise addition

(u,v) + (2,y) = (u+z,0+y)
and scalar multiplication over C defined by
(a + bi)(u,v) = (au — bv,av + bu)

for a,b € R is a complex vector space, called the complexification of V' .[]

It is convenient to introduce a notation for vectors in VC that resembles the
notation for complex numbers. In particular, we denote (u,v) € VC by u + vi
and so

VE = {u+vi|uveV}
Addition now looks like ordinary addition of complex numbers,
(uvi) + (z+yi) = (u+2) + (v+y)i

and scalar multiplication looks like ordinary multiplication of complex numbers,
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(a+ bi)(u + vi) = (au — bv) + (av + bu)i
Thus, for example, we immediately have for a,b € R,

a(u + vi) = au + avi
bi(u + vi) = —bv + bui
(a 4+ bi)u = au + bui
(a + bi)vi = —bv + avi

The real part of z = u + vi is u € V and the imaginary part of z isv e V.
The essence of the fact that z = u + vi € VC is really an ordered pair is that z is
0 if and only if its real and imaginary parts are both 0.

We can define the complexification map cpx: V — VC by

cpx(v) = v+ 0i

Let us refer to v + 07 as the complexification, or complex version of v € V.
Note that this map is a group homomorphism, that is,

cpx(0) =0+ 0¢ and cpx(uxv) = cpx(u) £ cpx(v)
and it is injective:
cpx(u) = cpx(v) S u=w
Also, it preserves multiplication by real scalars:
cpx(au) = au + 0i = a(u + 0i) = acpx(u)
for a € R. However, the complexification map is not surjective, since it gives

only “real” vectors in VC,

The complexification map is an injective linear transformation (defined in the
next chapter) from the real vector space V to the real version (VC)g of the
complexification VC, that is, to the complex vector space VC provided that
scalars are restricted to real numbers. In this way, we see that VVC contains an
embedded copy of V.

The Dimension of VC

The vector-space dimensions of V and VC are the same. This should not
necessarily come as a surprise because although V¢ may seem “bigger” than V/,
the field of scalars is also “bigger.”

Theorem 1.17 If B={v;|je€ I} is a basis for V over R, then the
complexification of 53,

cpx(B) = {v; + 0i | v; € B}
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is a basis for the vector space V' over C. Hence,
dim(VC) = dim(V)

Proof. To see that cpx(B) spans VC over C, let  + iy € VC. Then z,y € V
and so there exist real numbers a; and b; (some of which may be 0) for which

J J
T+ yi= Z Z bjv;
=1

(ajvj + bjvji)

i

I
'Ma u

J=1

(aj + b;Z) (’Uj + Oi)

[
M)~

<.
Il
_

To see that cpx(B) is linearly independent, if

J
Z (a; 4+ bji)(v;+ 0i) = 04 0i

Jj=1

then the previous computations show that

J J
Zajvj =(0and Z bj’Uj =0
j=1 j=1

The independence of B then implies that a; = 0 and b; = 0 for all 4.J

IfveVand B={v; |i€I}isabasis for VV, then we may write

n
v = E a;V;
i=1

for a; € R. Since the coefficients are real, we have

n

v+ 0i =Y a;(v; + 0)

=1
and so the coordinate matrices are equal:

[v + Oi]cpx(B) = ['U]B

Exercises

1. Let V be a vector space over F'. Prove that 0ov =0 and 70 = 0 forallv € V'
and r € F. Describe the different 0's in these equations. Prove that if
rv = 0, then r = 0 or v = 0. Prove that rv = v implies that v = 0 or r = 1.
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Prove Theorem 1.3.

a) Find an abelian group V and a field F' for which V' is a vector space
over F' in at least two different ways, that is, there are two different
definitions of scalar multiplication making V' a vector space over F'.

b) Find a vector space V over F' and a subset S of V that is (1) a
subspace of V' and (2) a vector space using operations that differ from
those of V.

Suppose that V' is a vector space with basis B={b; |i € I} and S is a

subspace of V. Let { By, ..., By} be a partition of 5. Then is it true that

k
S =@ N(B))
i=1
What if S N (B;) # {0} for all i?

Prove Theorem 1.8.
Let S, T,U € S(V). Show that if U C S, then

SA(T+U)=(SNT)+U

This is called the modular law for the lattice S(V).
For what vector spaces does the distributive law of subspaces

SN(T+U)=(SNT)+(SNU)

hold?

A vector v = (ay,...,a,) € R" is called strongly positive if a; > 0 for all

1=1,...,n.

a) Suppose that v is strongly positive. Show that any vector that is “close
enough” to v is also strongly positive. (Formulate carefully what “close
enough” should mean.)

b) Prove that if a subspace S of R" contains a strongly positive vector,
then S has a basis of strongly positive vectors.

Let M be an m x n matrix whose rows are linearly independent. Suppose

that the k& columns ¢, ..., ¢;, of M span the column space of M. Let C' be

the matrix obtained from A by deleting all columns except ¢;,,...,¢,.

Show that the rows of C' are also linearly independent.

Prove that the first two statements in Theorem 1.7 are equivalent.

Show that if S is a subspace of a vector space V, then dim(S) < dim(V).

Furthermore, if dim(S) = dim(V') < oo then S = V. Give an example to

show that the finiteness is required in the second statement.

Let dim(V') < oo and suppose that V =U @ S; = U @ S,. What can you

say about the relationship between S; and S2? What can you say if

Sp C 59?

What is the relationship between S @71 and T'@® S? Is the direct sum

operation commutative? Formulate and prove a similar statement

concerning associativity. Is there an “identity” for direct sum? What about

“negatives”?
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Let V be a finite-dimensional vector space over an infinite field F'. Prove

that if S1,...,S) are subspaces of V' of equal dimension, then there is a

subspace T of V for which V = S; @ T forall: = 1,... k. In other words,

T is a common complement of the subspaces .5;.

Prove that the vector space C of all continuous functions from R to R is

infinite-dimensional.

Show that Theorem 1.2 need not hold if the base field F is finite.

Let S be a subspace of V. The set v+ .S ={v+s|s e S} is called an

affine subspace of V.

a) Under what conditions is an affine subspace of V' a subspace of V'?

b) Show that any two affine subspaces of the form v + S and w + S are
either equal or disjoint.

If V and W are vector spaces over F' for which |V'| = |[W]|, then does it

follow that dim(V') = dim(WW)?

Let V be an n-dimensional real vector space and suppose that S is a

subspace of V' with dim(S) = n — 1. Define an equivalence relation = on

the set V' \ S by v = w if the “line segment”

Lv,w)={rv+(1—-rw|0<r<1}

has the property that L(v,w)NS = (). Prove that=1is an equivalence

relation and that it has exactly two equivalence classes.

Let F' be a field. A subfield of F' is a subset K of I’ that is a field in its

own right using the same operations as defined on F'.

a) Show that F' is a vector space over any subfield K of F'.

b) Suppose that F' is an m-dimensional vector space over a subfield K of
F. If V is an n-dimensional vector space over F', show that V' is also a
vector space over K. What is the dimension of V' as a vector space
over K?

Let F' be a finite field of size ¢ and let V' be an n-dimensional vector space

over F. The purpose of this exercise is to show that the number of

subspaces of V' of dimension & is

(n) B (¢"=1)---(¢—1)
k’q (" =1)(¢—1)(¢"*—1)(¢g—1)

The expressions (), are called Gaussian coefficients and have properties

similar to those of the binomial coefficients. Let S(n, k) be the number of

k-dimensional subspaces of V.

a) Let N(n,k) be the number of k-tuples of linearly independent vectors
(v1,...,v;) in V. Show that

N(n,k)=(¢"—1)(@"—q)(¢"— ")

b) Now, each of the k-tuples in a) can be obtained by first choosing a
subspace of V' of dimension k and then selecting the vectors from this
subspace. Show that for any k-dimensional subspace of V, the number
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of k-tuples of independent vectors in this subspace is
(@" = 1" = )" = d")
¢) Show that
N(n,k) = S(n,k)(¢" = 1)(q" —q)--(¢" = ")

How does this complete the proof?
Prove that any subspace S of R" is a closed set or, equivalently, that its set
complement S = R™\ S is open, that is, for any x € S° there is an open
ball B(x, €) centered at  with radius ¢ > 0 for which B(xz,¢) C S°.
Let B={by,...,b,} and C = {cy,...,¢,} be bases for a vector space V.
Let 1 < m < n — 1. Show that there is a permutation o of {1,...,n} such
that

b17 ceey brm Co(m+1)s -+ Co(n)
and
Co(1)s -+ Ca(m)> bm+1a ERE) by,

are both bases for V. Hint: You may use the fact that if M is an invertible
n x n matrix and if 1 <k < n, then it is possible to reorder the rows so
that the upper left & x & submatrix and the lower right (n — k) x (n — k)
submatrix are both invertible. (This follows, for example, from the general
Laplace expansion theorem for determinants.)

Let V be an n-dimensional vector space over an infinite field ' and
suppose that Sy, ..., Sy, are subspaces of V' with dim(S;) < m < n. Prove
that there is a subspace 7" of V of dimension n —m for which
TNS; = {0} forall .

What is the dimension of the complexification VC thought of as a real
vector space?

(When is a subspace of a complex vector space a complexification?) Let V/
be a real vector space with complexification V€ and let U be a subspace of
VC. Prove that there is a subspace S of V' for which

U=8={s+ti|stecS}

if and only if U is closed under complex conjugation y: VC — V' defined
by x(u + iv) = u — iv.



Chapter 2
Linear Transformations

Linear Transformations

Loosely speaking, a linear transformation is a function from one vector space to
another that preserves the vector space operations. Let us be more precise.

Definition Let V' and W be vector spaces over a field F. A function 7:V — W
is a linear transformation if

T(ru + sv) = r7(u) + s7(v)

for all scalars r,s € F and vectors wv €V. The set of all linear

transformations from V to W is denoted by L(V ,W).

1) A linear transformation from V to V is called a linear operator on V. The
set of all linear operators on V is denoted by L(V'). A linear operator on a
real vector space is called a real operator and a linear operator on a
complex vector space is called a complex operator.

2) A linear transformation from V to the base field F' (thought of as a vector
space over itself) is called a linear functional on V. The set of all linear
functionals on V' is denoted by V* and called the dual space of V.

We should mention that some authors use the term linear operator for any linear
transformation from V' to W. Also, the application of a linear transformation 7
on a vector v is denoted by 7(v) or by Tv, parentheses being used when
necessary, as in 7(u + v), or to improve readability, as in u(7u) rather than

p(T(w)).

Definition The following terms are also employed.:

1) 'homomorphism for linear transformation

2) endomorphism for linear operator

3) monomorphism (or embedding) for injective linear transformation
4) epimorphism for surjective linear transformation

5) isomorphism for bijective linear transformation.
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6) automorphism for bijective linear operator..c]

Example 2.1

1) The derivative D:V — V is a linear operator on the vector space V" of all
infinitely differentiable functions on R.

2) The integral operator 7: F[z] — F[z] defined by

Tf—/owf(t)dt

is a linear operator on F'[z].

3) Let A be an m x n matrix over F'. The function 74: " — F"" defined by
T4v = Av, where all vectors are written as column vectors, is a linear
transformation from £ to F. This function is just multiplication by A.

4) The coordinate map ¢:V — F" of an mn-dimensional vector space is a
linear transformation from V' to £".0

The set L(V, W) is a vector space in its own right and £(V) has the structure of
an algebra, as defined in Chapter 0.

Theorem 2.1

1) The set L(V,W) is a vector space under ordinary addition of functions
and scalar multiplication of functions by elements of F'.

2) Ifoe L(U,V)andT € L(V,W), then the composition Tc is in LU, W).

3) IfT € L(V,W) is bijective then T+ € LW, V).

4) The vector space L(V') is an algebra, where multiplication is composition
of functions. The identity map v € L(V') is the multiplicative identity and
the zero map 0 € L(V) is the additive identity.

Proof. We prove only part 3). Let 7:V — W be a bijective linear

transformation. Then 7=1: W — V is a well-defined function and since any two

vectors wy and wy in W have the form w; = 7v; and wy = Tv9, we have

7 Y aw; + bwy) = 7 aTv + bTVo)
=7 Y7(avy + buy))
= avy + bvy
=ar Ywy) + b7 (wy)

which shows that 7~ ! is linear.(]

One of the easiest ways to define a linear transformation is to give its values on
a basis. The following theorem says that we may assign these values arbitrarily
and obtain a unique linear transformation by linear extension to the entire
domain.

Theorem 2.2 Let V and W be vector spaces and let B = {v; | i € I} be a
basis for V. Then we can define a linear transformation T € L(V , W) by
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specifying the values of Tv; arbitrarily for all v; € B and extending T to V' by
linearity, that is,

T(avr + -+ apvy) = a17o1 + -+ apTU,

This process defines a unique linear transformation, that is, if T,0 € L(V , W)
satisfy Tv; = ov; for all v; € B then T = o.

Proof. The crucial point is that the extension by linearity is well-defined, since
each vector in V' has an essentially unique representation as a linear
combination of a finite number of vectors in B. We leave the details to the
reader.[]

Note that if 7 € £(V, W) and if S is a subspace of V/, then the restriction 7|g of
7 to S is a linear transformation from S to W.

The Kernel and Image of a Linear Transformation
There are two very important vector spaces associated with a linear
transformation 7 from V to W.
Definition Let 7 € L(V,W). The subspace

ker(t) ={ve V| rv=0}
is called the kernel of T and the subspace

im(7) ={rv|veV}

is called the image of 7. The dimension of ker(7) is called the nullity of T and is

denoted by null(r). The dimension of im(7) is called the rank of T and is
denoted by tk(7).00

It is routine to show that ker(7) is a subspace of V' and im(7) is a subspace of
W . Moreover, we have the following.

Theorem 2.3 Let 7 € L(V,W). Then

1) 7 is surjective if and only if im(17) = W

2) 7 isinjective if and only if ker(7) = {0}

Proof. The first statement is merely a restatement of the definition of
surjectivity. To see the validity of the second statement, observe that

Tu=T10 T(u—"0v) =0 u—v € ker(r)

Hence, if ker(7) = {0}, then 7u = 7v < w = v, which shows that 7 is injective.
Conversely, if 7 is injective and u € ker(7), then 7u = 70 and so v = 0. This
shows that ker(7) = {0}.00
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Isomorphisms

Definition A4 bijective linear transformation 7V — W is called an
isomorphism from V to W. When an isomorphism from V to W exists, we say
that V and W are isomorphic and write V ~ W.OO

Example 2.2 Let dim(V') = n. For any ordered basis B of V, the coordinate
map ¢p:V — F" that sends each vector v € V to its coordinate matrix
[v]g € F™ is an isomorphism. Hence, any n-dimensional vector space over F is
isomorphic to F".J

Isomorphic vector spaces share many properties, as the next theorem shows. If
7€ L(V,W)and S CV we write

7S ={rs|seS}

Theorem 2.4 Let T € L(V , W) be an isomorphism. Let S C V. Then

1) S spansV ifand only if TS spans W.

2) S is linearly independent in V if and only if 7S is linearly independent in
wW.

3) Sisabasis for V if and only if 7S is a basis for W.[1

An isomorphism can be characterized as a linear transformation 7: V' — W that
maps a basis for V' to a basis for W.

Theorem 2.5 A linear transformation T € L(V, W) is an isomorphism if and
only if there is a basis B for V for which 7B is a basis for W. In this case, T
maps any basis of V' to a basis of W.[O

The following theorem says that, up to isomorphism, there is only one vector
space of any given dimension over a given field.

Theorem 2.6 Let V and W be vector spaces over F. Then V-~ W if and only
if dim(V') = dim(W).0O

In Example 2.2, we saw that any n-dimensional vector space is isomorphic to
F". Now suppose that B is a set of cardinality x and let (F?), be the vector
space of all functions from B to F’ with finite support. We leave it to the reader
to show that the functions &, € (F'%), defined for all b € B by

1 ife=0
‘5”(”“"){0 ifzx£b

form a basis for (F'?)j, called the standard basis. Hence, dim((F?),) = |B.

It follows that for any cardinal number &, there is a vector space of dimension &.
Also, any vector space of dimension x is isomorphic to (FZ),.
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Theorem 2.7 If n is a natural number, then any n-dimensional vector space
over F is isomorphic to F". If k is any cardinal number and if B is a set of
cardinality K, then any k-dimensional vector space over F' is isomorphic to the
vector space (FB)y of all functions from B to F with finite support.(]

The Rank Plus Nullity Theorem
Let 7 € L(V,W). Since any subspace of V' has a complement, we can write
V = ker(7) & ker(7)°
where ker(7)¢ is a complement of ker(7) in V. It follows that
dim(V') = dim(ker(7)) + dim(ker(7)¢)
Now, the restriction of 7 to ker(7)°¢,
¢ ker(r) — W
is injective, since
ker(7¢) = ker(7) Nker(7)¢ = {0}

Also, im(7¢) C im(7). For the reverse inclusion, if 7v € im(7), then since
v=u+ w for u € ker(7) and w € ker(7)¢, we have

TV =TU+ TW = TW = T W € IM(T)
Thus im(7¢) = im(7). It follows that
ker(7)¢ &~ im(1)

From this, we deduce the following theorem.

Theorem 2.8 Let 7 € L(V,W).
1) Any complement of ker(7) is isomorphic to im(T)
2) (The rank plus nullity theorem)

dim(ker(7)) 4+ dim(im(7)) = dim(V)
or, in other notation,
tk(7) + null(7) = dim(V) O

Theorem 2.8 has an important corollary.

Corollary 2.9 Let 7 € L(V, W), where dim(V) = dim(W) < co. Then T is
injective if and only if it is surjective.(]

Note that this result fails if the vector spaces are not finite-dimensional. The
reader is encouraged to find an example to support this statement.
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Linear Transformations from ™ to F'™

Recall that for any m x n matrix A over F' the multiplication map
TA(v) = Av

is a linear transformation. In fact, any linear transformation 7 € L(F", F'") has
this form, that is, 7 is just multiplication by a matrix, for we have

(7'61 | | 7'6,7)67; = (7'61 | | Te,,,)(i) = T¢;
and so 7 = 74, where
A= (7'61 | | Ten)

Theorem 2.10
1) If Ais an m x n matrix over F then T4 € L(F",F™).
2) IfT e L(F", F™) then T = T4, where

A= (rer || Ten)

The matrix A is called the matrix of .00

Example 2.3 Consider the linear transformation 7: F3 — F defined by
T(.’E,y,Z) = (QL'— 2y,Z,£E+y+Z)

Then we have, in column form,

T x—2y 1 -2 0 x
Tyl = z =10 0 1 Y
z T4y+z 1 1 1 z
and so the standard matrix of 7 is
1 =2 0
A=10 0 1 O
1 1 1

If A € M,, ,, then since the image of 74 is the column space of A, we have
dim(ker(74)) + rtk(A) = dim(F")

This gives the following useful result.

Theorem 2.11 Let A be an m X n matrix over F.
1) 74: F" — F™ is injective if and only if tk(A) = n.
2) TA: F™ — F™ is surjective if and only if tk(A) = m. O
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Change of Basis Matrices

Suppose that B = (by,...,b,) and C = (¢y,...,¢,) are ordered bases for a
vector space V. It is natural to ask how the coordinate matrices [v]s and [v]¢ are

related. Referring to Figure 2.1,
/ ‘¢c(¢3

oy Y
Fn

Figure 2.1

the map that takes [v]g to [v]¢ is ¢pc = gbcq&gl and is called the change of basis
operator (or change of coordinates operator). Since ¢ is an operator on
F™, it has the form 74, where

A= (gscler) | -+ | pselen))
= (¢cdp' ([b1]B) | -+ | deds' ([bn]B))
= ([b]e | -+ [ [bule))

We denote A by Mpc and call it the change of basis matrix from 5 to C.
Theorem 2.12 Let B = (by,...,b,) and C be ordered bases for a vector space

V. Then the change of basis operator ¢pc = ¢C¢l§1 is an automorphism of F™",
whose standard matrix is

Mge = ([bile | -+ | [bnlc))
Hence
[vle = Mpc[v]s
and Mep = Myp.0

Consider the equation
A= Mg
or equivalently,
A= ([bi]e [ -+~ [ [bnlc))

Then given any two of A (an invertible n x n matrix), 5 (an ordered basis for
F™) and C (an ordered basis for F™), the third component is uniquely
determined by this equation. This is clear if B and C are given or if A and C are
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given. If A and B are given, then there is a unique C for which A~! = M 5 and
so there is a unique C for which A = Mp_.

Theorem 2.13 If we are given any two of the following:
1) an invertible n x n matrix A

2) an ordered basis B for I

3) an ordered basis C for F™.

then the third is uniquely determined by the equation

A= Mg O

The Matrix of a Linear Transformation

Let :V — W be a linear transformation, where dim(V)=mn and
dim(W) =m and let B = (by,...,b,) be an ordered basis for V and C an
ordered basis for WW. Then the map

0: [vlg — [Tv]e

is a representation of T as a linear transformation from F” to F', in the sense
that knowing 6 (along with B and C, of course) is equivalent to knowing 7. Of
course, this representation depends on the choice of ordered bases 3 and C.

Since 6 is a linear transformation from F™ to F'™, it is just multiplication by an
m X n matrix A, that is,

[Tvle = Alv]s
Indeed, since [b;]p = e;, we get the columns of A as follows:
A(t) = Aei = A[Ui]B = [Tbi]c

Theorem 2.14 Let 7 € L(V,W) and let B = (by,...,b,) and C be ordered
bases for V- and W, respectively. Then T can be represented with respect to B
and C as matrix multiplication, that is,

[Tvle = [7]sc[v]B
where
[Tlse = ([tbile | -+ | [7bulc)

is called the matrix of T with respect to the bases B and C. When V- =W and
B = C, we denote [T]|p by [T]s and so

[Tv]s = [7]B[v]B o

Example 2.4 Let D: P, — P, be the derivative operator, defined on the vector
space of all polynomials of degree at most 2. Let B = C = (1, x, 2%). Then
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o N O

0
[D(D)]e = [0]c = 8 ,[D(@)]e == |0|,[D(z*)]c = [2z]c =

o

and so Dp(x) =1+ 42.00

The following result shows that we may work equally well with linear
transformations or with the matrices that represent them (with respect to fixed
ordered bases B and C). This applies not only to addition and scalar
multiplication, but also to matrix multiplication.

Theorem 2.15 Let V and W be finite-dimensional vector spaces over F, with
ordered bases B = (by,...,b,) and C = (1, ..., cp), respectively.
1) Themap p: LV, W) — M,, ,(F) defined by

(1) = [lsc
is an isomorphism and so L(V, W) ~ M,,, ,(F'). Hence,
dim(L(V,W)) = dim(M,,,(F)) =m x n

2) Ifoe LU,V)and T € LIV, W) and if B, C and D are ordered bases for
U, V and W, respectively, then

[rolsp = [T]eplo]se

Thus, the matrix of the product (composition) To is the product of the
matrices of T and o. In fact, this is the primary motivation for the definition
of matrix multiplication.

Proof. To see that y is linear, observe that for all 7,

[so + tT|pclbils = [(so +t7)(b)]c

= [so(b;) + t7(bi)]c
s[o(bi)]e + t[r(bi)]e
slolclbils + tr]sclbils
= (slolsc + trlBe)bils
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and since [b;]5 = e; is a standard basis vector, we conclude that
[so +tT|pc = s[o]sc + t[T]Bc

and so p is linear. If A € M,,,,, we define 7 by the condition [rb;]¢ = A@,
whence p(7) = A and p is surjective. Also, ker(u) = {0} since [r]z =
implies that 7 = 0. Hence, the map p is an isomorphism. To prove part 2), w
have

[rolsp([v]s = [T(ov)]p = [Tleplov]e = [T]eplo]selv]s m|

Change of Bases for Linear Transformations

Since the matrix [7]p ¢ that represents 7 depends on the ordered bases B and C, it
is natural to wonder how to choose these bases in order to make this matrix as
simple as possible. For instance, can we always choose the bases so that 7 is
represented by a diagonal matrix?

As we will see in Chapter 7, the answer to this question is no. In that chapter,
we will take up the general question of how best to represent a linear operator
by a matrix. For now, let us take the first step and describe the relationship
between the matrices [7]g¢ and [7]p ¢ of 7 with respect to two different pairs
(B,C) and (B',C') of ordered bases. Multiplication by [7]z ¢ sends [v]p to
[Tv]er. This can be reproduced by first switching from 5’ to B, then applying
[7]B,c and finally switching from C to C’, that is,

[Tlg.c = MeclTlscMp s = Mce [T]B,cMz{lB/

Theorem 2.16 Let 7 € L(V,W) and let (B,C) and (B',C') be pairs of ordered
bases of V- and W, respectively. Then

[Tl = McclrlsecMs s (2.n0O

When 7 € L(V) is a linear operator on V, it is generally more convenient to
represent 7 by matrices of the form [r]g, where the ordered bases used to
represent vectors in the domain and image are the same. When B = C, Theorem
2.16 takes the following important form.

Corollary 2.17 Let 7 € L(V') and let B and C be ordered bases for V. Then the
matrix of T with respect to C can be expressed in terms of the matrix of T with
respect to B as follows:

[7)e = Mpc[r]s Mg (220

i

Equivalence of Matrices

Since the change of basis matrices are precisely the invertible matrices, (2.1) has
the form
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[Tlgc = PlrlecQ "

where P and @ are invertible matrices. This motivates the following definition.

Definition 7Two matrices A and B are equivalent if there exist invertible
matrices P and Q) for which

B=PAQ™! O

We have remarked that B is equivalent to A if and only if B can be obtained
from A by a series of elementary row and column operations. Performing the
row operations is equivalent to multiplying the matrix A on the left by P and
performing the column operations is equivalent to multiplying A on the right by

Q.

In terms of (2.1), we see that performing row operations (premultiplying by P)
is equivalent to changing the basis used to represent vectors in the image and
performing column operations (postmultiplying by Q') is equivalent to
changing the basis used to represent vectors in the domain.

According to Theorem 2.16, if A and B are matrices that represent T with
respect to possibly different ordered bases, then A and B are equivalent. The
converse of this also holds.

Theorem 2.18 Let V' and W be vector spaces with dim(V)=n and
dim(W') = m. Then two m x n matrices A and B are equivalent if and only if
they represent the same linear transformation T € L(V , W), but possibly with
respect to different ordered bases. In this case, A and B represent exactly the
same set of linear transformations in L(V,W).

Proof. If A and B represent 7, that is, if

A= [T]B,C and B = [T]B’,C’

for ordered bases B,C, B’ and C', then Theorem 2.16 shows that A and B are
equivalent. Now suppose that A and B are equivalent, say

B =PAQ!

where P and () are invertible. Suppose also that A represents a linear
transformation 7 € L(V', W) for some ordered bases 3 and C, that is,

A= [T]Bp

Theorem 2.9 implies that there is a unique ordered basis B’ for V' for which
() = Mg and a unique ordered basis C’ for W for which P = M. Hence

B = Mce(tlscMp s = [T|pc
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Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear transformations. This completes the proof..]

We remarked in Example 0.3 that every matrix is equivalent to exactly one
matrix of the block form

Ik Ok,nfk

Jy =
Omfk,k' Omfk,nfk block

Hence, the set of these matrices is a set of canonical forms for equivalence.
Moreover, the rank is a complete invariant for equivalence. In other words, two
matrices are equivalent if and only if they have the same rank.

Similarity of Matrices

When a linear operator 7 € £(V) is represented by a matrix of the form [7]g,
equation (2.2) has the form

[7]s = Plr]sP™
where P is an invertible matrix. This motivates the following definition.
Definition 7wo matrices A and B are similar, denoted by A ~ B, if there
exists an invertible matrix P for which
B=PAP™!
The equivalence classes associated with similarity are called similarity
classes.[]

The analog of Theorem 2.18 for square matrices is the following.

Theorem 2.19 Let V be a vector space of dimension n. Then two n X n
matrices A and B are similar if and only if they represent the same linear
operator 7 € L(V), but possibly with respect to different ordered bases. In this
case, A and B represent exactly the same set of linear operators in L(V').
Proof. If A and B represent 7 € £(V), that is, if

A= [T]B and B = [T]C

for ordered bases B and C, then Corollary 2.17 shows that A and B are similar.
Now suppose that A and B are similar, say

B=PAP!

Suppose also that A represents a linear operator 7 € L(V') for some ordered
basis B, that is,

A= [T}B

Theorem 2.9 implies that there is a unique ordered basis C for V' for which
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P = Mpc. Hence
B = Mgc[rlsMge = [7]c

Hence, B also represents 7. By symmetry, we see that A and B represent the
same set of linear operators. This completes the proof.[]

We will devote much effort in Chapter 7 to finding a canonical form for
similarity.

Similarity of Operators

We can also define similarity of operators.

Definition Two linear operators T,0 € L(V') are similar, denoted by T ~ o, if
there exists an automorphism ¢ € L(V') for which

o=¢Td

The equivalence classes associated with similarity are called similarity
classes.[]

Note that if B = (by,...,b,) and C = (¢4, ..., ¢,) are ordered bases for V, then
Mep = ([eag | -+ | [en]B)
Now, the map defined by ¢(b;) = ¢; is an automorphism of V' and
Me = ([¢(01)]s | -+ | [6(bn)]5) = [9]8

Conversely, if : V' — V is an automorphism and B = (b, ..., b,) is an ordered
basis for V, then C = (¢; = ¢(by), ..., ¢, = ¢(by,)) is also a basis:

[0l = ([¢(bV)]5 | -~ | [6(bn)]8) = Mes
The analog of Theorem 2.19 for linear operators is the following.
Theorem 2.20 Let V be a vector space of dimension n. Then two linear
operators T and o on 'V are similar if and only if there is a matrix A € M,, that
represents both operators, but with respect to possibly different ordered bases.

In this case, T and o are represented by exactly the same set of matrices in M,,.
Proof. If 7 and o are represented by A € M,,, that is, if

[7]s = A =[o]c
for ordered bases BB and C, then
[o]e = [7]s = Mc[T]cMpc

As remarked above, if ¢: V' — V is defined by ¢(c;) = b;, then
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[¢le = Mg
and so
[ole = [¢lc' [Tleldle = [0 Tdle

from which it follows that o and 7 are similar. Conversely, suppose that 7 and o
are similar, say

o=¢re !

where ¢ is an automorphism of V. Suppose also that 7 is represented by the
matrix A € M,,, that is,

A=|7|s
for some ordered basis B. Then [¢]z = M¢ 5 and so
o] = (976715 = [¢]5[7]5[¢l5" = Meslr]sMe g
It follows that
A = [r]g = Mgc[o]sMg} = [o]c

and so A also represents 0. By symmetry, we see that 7 and o are represented
by the same set of matrices. This completes the proof.[]

We can summarize the sitiation with respect to similarity in Figure 2.2. Each
similarity class S in £(V') corresponds to a similarity class 7 in M,,(F'): T is
the set of all matrices that represent any 7 € S and S is the set of all operators
in L(V') that are represented by any M € 7.

T, o, similarity classes
s T o, of L(V)
A
(
[tls |[os Similarity classes
7 [ty [o.ld of matrices
Figure 2.2

Invariant Subspaces and Reducing Pairs

The restriction of a linear operator 7 € £L(V') to a subspace S of V'is not
necessarily a linear operator on .S. This prompts the following definition.
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Definition Let 7 € L(V'). A subspace S of V' is said to be invariant under 7 or
T-invariant if 7S C S, that is, if s € S for all s € S. Put another way, S is
invariant under T if the restriction T|g is a linear operator on S.[]

If
V=SaeT

then the fact that S is 7-invariant does not imply that the complement 7" is also
T-invariant. (The reader may wish to supply a simple example with V' = R2))

Definition Let 7 € L(V). If V=S ® T and if both S and T are T-invariant,
we say that the pair (S, T) reduces 7.0J

A reducing pair can be used to decompose a linear operator into a direct sum as
follows.

Definition Let 7 € L(V). If (S, T) reduces T we write
T=Tls B TIr
and call T the direct sum of 7|s and 7|r. Thus, the expression
p=0dT
means that there exist subspaces S and T of V' for which (S,T) reduces p and
o= plsand T = p|r O

The concept of the direct sum of linear operators will play a key role in the
study of the structure of a linear operator.

Projection Operators

We will have several uses for a special type of linear operator that is related to
direct sums.

Definition Let V' = S © T'. The linear operator psr:V — V defined by
psr(s+1t)=s

where s € S and t € T is called projection onto S along T.[]
Whenever we say that the operator pgr is a projection, it is with the
understanding that V' = S @ T'. The following theorem describes a few basic

properties of projection operators. We leave proof as an exercise.

Theorem 2.21 Let V' be a vector space and let p € L(V).
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Iy IfV =S&T then
psT +prs =t
2) Ifp = psx then
im(p) =S5 and ker(p)=T
and so
V =im(p) @ ker(p)
In other words, p is projection onto its image along its kernel. Moreover,
veim(p) & pv=v
3) Ifo € L(V) has the property that
V =im(c) @ ker(o) and olimy) =t

then o is projection onto im(o) along ker(c).O

Projection operators are easy to characterize.

Definition A4 linear operator T € L(V) is idempotent if 7> = 7.0

Theorem 2.22 A linear operator p € L(V') is a projection if and only if it is
idempotent.
Proof. If p = pg r, then forany s € Sand ¢t € T,

PP(s+t)=ps=s=p(s+t)

and so p? = p. Conversely, suppose that p is idempotent. If v € im(p) N ker(p),
then v = pz and so

Ozpvszx:pwzv
Hence im(p) Nker(p) = {0}. Also, if v € V, then
v = (v—pv) + pv € ker(p) & im(p)

and so V =ker(p) ®im(p). Finally, p(pz) = p’z = pz and S0 plim(,) = ¢
Hence, p is projection onto im(p) along ker(p).O

Projections and Invariance

Projections can be used to characterize invariant subspaces. Let 7 € £(V') and
let S be a subspace of V. Let p = pg r for any complement 7" of S. The key is
that the elements of S can be characterized as those vectors fixed by p, that is,
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s € S if and only if ps = s. Hence, the following are equivalent:

TS CS
Ts € Sforalls € §
p(ts) =rtsforalls € S
p(tps) =Tpsforalls € S

Thus, S is T-invariant if and only if p7p = 7p for all vectors s € S. But this is
also true for all vectors in 7', since both sides are equal to 0 on 7. This proves
the following theorem.

Theorem 2.23 Let 7 € L(V'). Then a subspace S of V' is T-invariant if and only
if there is a projection p = pg 7 for which

pTP =Tp
in which case this holds for all projections of the form p = pg .1

We also have the following relationship between projections and reducing pairs.

Theorem 2.24 Let V =S ® T. Then (S,T) reduces 7 € L(V) if and only if T
commutes with pg .
Proof. Theorem 2.23 implies that S and 1" are T-invariant if and only if

psorTpsr = psoT and (v — psp)T(L — psr) = (¢ — psT)T

and a little algebra shows that this is equivalent to

psrTps;r = psaT and  pgrT =Tpsr
which is equivalent to pg 7 = Tpg 7.0
Orthogonal Projections and Resolutions of the Identity
Observe that if p is a projection, then

plb=p)=@—pp=0
Definition Two projections p,o € L(V') are orthogonal, written p L o, if
po=o0p=0 O
Note that p L o if and only if
im(p) C ker(o) and im(o) C ker(p)

The following example shows that it is not enough to have po =0 in the
definition of orthogonality. In fact, it is possible for po = 0 and yet op is not
even a projection.
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Example 2.5 Let V = F? and consider the X- and Y-axes and the diagonal:

X ={(z,0) |z € F}

Y ={(0,y) |y € I}
D={(z,z) |z € F}

Then
PD.XPDY = PDY 7 PD.X = PD,YPD.X

From this we deduce that if p and o are projections, it may happen that both
products po and op are projections, but that they are not equal. We leave it to
the reader to show that py xpx p = 0 (which is a projection), but that px ppy x
is not a projection.[]

Since a projection p is idempotent, we can write the identity operator ¢ as s sum
of two orthogonal projections:

p+(—=p)=t, pL(t—0p)

Let us generalize this to more than two projections.

Definition 4 resolution of the identity on V' is a sum of the form
prttpp=t

where the p;'s are pairwise orthogonal projections, that is, p; L p; for i # 5.0

There is a connection between the resolutions of the identity on V' and direct
sum decompositions of V. In general terms, if

o+ For=1
for any linear operators o; € L(V'), then forallv € V,
v=010+ -+ opv € im(o1) + -+ + im(oy)
and so
V =im(oy) + - + im(oy,)
However, the sum need not be direct.
Theorem 2.25 Let V be a vector space. Resolutions of the identity on V

correspond to direct sum decompositions of V as follows:
1) Ifp1+ -+ pr = v is a resolution of the identity, then

V =im(p;) & --- & im(p;)



Linear Transformations 77

and p; is projection onto im(p;) along

ker(p;) = €D im(p;)

i
2) Conversely, if
V — Sl @ e @ Sk‘

and if p; is projection onto S; along the direct sum GB#L.SJ-,, then
p1+ -+ pr = L is a resolution of the identity.
Proof. To prove 1), if p; + --- + pr = ¢ is a resolution of the identity, then

V =im(py) + -+ + im(py)
Moreover, if
p1&1 + -+ ppxn =0

then applying p; gives p;z; = 0 and so the sum is direct. As to the kernel of p;,
we have

im(p;) ® ker(p;) =V = im(p;) & @ im(p;)
i

and since p;p; = 0, it follows that

@ im(p;) C ker(p;)

J#i
and so equality must hold. For part 2), suppose that

V=5 &S5
and p; is projection onto .S; along @#iSj. If i # j, then

im(p;) = S € ker(p;)
and so p; L pj;. Also, if v =51 + --- + 54, for s; € S, then
v=8 4+ Fsp=pv+-+pv=_(p1+ -+ pp)v

and so ¢ = py + -+ + pg is a resolution of the identity.[]
The Algebra of Projections

If p and o are projections, it does not necessarily follow that p + o, p — o or po
is a projection. For example, the sum p + o is a projection if and only if

(p+o)i=p+to
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which is equivalent to
po = —op

Of course, this holds if po = op = 0, that is, if p L o. But the converse is also
true, provided that char(F') # 2. To see this, we simply evaluate pop in two
ways:

(po)p = —(op)p = —op
and

p(op) = —p(po) = —po
Hence, op = po = —op and so op = 0. It follows that poc = —op = 0 and so
p L o. Thus, for char(F') # 2, we have p + o is a projection if and only if
pLlo.
Now suppose that p + o is a projection. For the kernel of p + o, note that

(p+o)v=0 = plp+ov=0 = pv=0

and similarly, ov = 0. Hence, ker(p + o) C ker(p) Nker(c). But the reverse
inclusion is obvious and so

ker(p + o) = ker(p) Nker(o)
As to the image of p + o, we have
veim(p+o) = v=(p+o0)v=pv+ove€im(p)+ im(o)

and so im(p 4+ o) C im(p) + im(o). For the reverse inclusion, if v = pz + oy,
then

(pt+ojv=_(p+o)(px+oy) =px+oy=v

and so v €im(p+ o). Thus, im(p + o) = im(p) + im(o). Finally, po =0
implies that im(o) C ker(p) and so the sum is direct and

im(p + ) = im(p) & im(0)
The following theorem also describes the situation for the difference and

product. Proof in these cases is left for the exercises.

Theorem 2.26 Let V' be a vector space over a field F of characteristic # 2 and
let p and o be projections.
1) The sum p + o is a projection if and only if p 1 o, in which case

im(p + o) =im(p) ®im(c) and ker(p+ o) = ker(p) Nker(o)

2) The difference p — o is a projection if and only if

po=0p=o0
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in which case
im(p — o) = im(p) Nker(c) and ker(p — o) = ker(p) ® im(o)
3) If p and o commute, then po is a projection, in which case
im(po) =im(p) Nim(c) and ker(po) = ker(p) + ker(o)

(Example 2.5 shows that the converse may be false.)O]
Topological Vector Spaces
This section is for readers with some familiarity with point-set topology.
The Definition

A pair (V,7T) where V is a real vector space V and 7 is a topology on the set
V is called a topological vector space if the operations of addition

AV XV =V, Alww)=v+w
and scalar multiplication
M:RxV =V, M(rv)=rv
are continuous functions.
The Standard Topology on R™

The vector space R" is a topological vector space under the standard topology,
which is the topology for which the set of open rectangles

B ={I x --- x I, | I;'s are open intervals in R}

is a base, that is, a subset of R" is open if and only if it is a union of open
rectangles. The standard topology is also the topology induced by the Euclidean
metric on R", since an open rectangle is the union of Euclidean open balls and
an open ball is the union of open rectangles.
The standard topology on R" has the property that the addition function

A:R" x R" — R": (v,w) > v+ w
and the scalar multiplication function

M:R xR" = R": (r,v) — v

are continuous and so R” is a topological vector space under this topology.
Also, the linear functionals f: R" — R are continuous maps.
For example, to see that addition is continuous, if

(u1y ... un) + (v1,...,0,) € (a1,b1) X -+ X (ay,b,) € B
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then u; + v; € (a;, b;) and so there is an € > 0 for which
(u; — €,u; +€) + (vi —e,v; + €) C (a;,b;)

for all ¢. It follows that if

(ug, ..o up) € 1= (u; —€,u; +€) X - X (uy, — €,u, +¢) €B
and

(vi,...,v) €J = (1 —€,v1+€) X - X (v, —€,v, +€) €B
then

(Ury.ooyun) + (v, .. 0) € AL, J) C (ag,b1) X -+ X (an, by)

The Natural Topology on' V

Now let V' be a real vector space of dimension n and fix an ordered basis
B = (v,...,v,) for V. We wish to show that there is precisely one topology 7
on V for which (V,7) is a topological vector space and all linear functionals
are continuous. This topology is called the natural topology on V.

Our plan is to show that if (V,7) is a topological vector space and if all linear
functionals on V' are continuous, then the coordinate map ¢p:V ~R,, is a
homeomorphism. This implies that if 7 does exist, it must be unique. Then we
use Y = qﬁgl to move the standard topology from R" to V, thus giving V a
topology 7 for which ¢ is a homeomorphism. Finally, we show that (V,7) is
a topological vector space and that all linear functionals on V' are continuous.

The first step is to show that if (V,7) is a topological vector space, then 1) is
continuous. Since 1 = > 1); where 1);: R" — V is defined by

Yi(ar, ..., a,) = a;

it is sufficient to show that these maps are continuous. (The sum of continuous
maps is continuous.) Let O be an open set in 7. Then

MYO)={(r,z) eRx V | rx € O}

is open in R x V. This implies that if 7z € O, then there is an open interval
I C R containing r for which

Iz ={sx|sel}CO
We need to show that the set 1, 1(O) is open. But

Y7 10) = {(ay,...,a,) € R" | ajv; € O}
=Rx-xRx{ag;eR|aquv; €0} xRx--xR

In words, an n-tuple (a1, ..., a,) is in ¢; '(O) if the ith coordinate a; times v; is
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in O. But if a;v; € O, then there is an open interval I C R for which a; € I and
ITv; C O. Hence, the entire open set

U=Rx---xRxIxRx---xR
where the factor I is in the ith position is in ¢ 1 (O), that is,

(a1,...,a,) € U C ;1 (O)

Thus, ¥;° 1(0) is open and v;, and therefore also ), is continuous.

Next we show that if every linear functional on V' is continuous under a
topology 7 on V, then the coordinate map ¢ is continuous. If v € V' denote by
[v]g; the ith coordinate of [v]z. The map p: V' — R defined by pv = [v]p; is a
linear functional and so is continuous by assumption. Hence, for any open
interval I; € R the set

Ai = {1} eV | [U]B,i S IL}
is open. Now, if I; are open intervals in R, then
$ M (LxxL)={veV |plpel x - xI,} =4

is open. Thus, ¢ is continuous.

We have shown that if a topology 7 has the property that (V,7) is a
topological vector space under which every linear functional is continuous, then
¢ and ¢ = ¢! are homeomorphisms. This means that if 7 exists, its open sets
must be the images under ¢ of the open sets in the standard topology of R". It
remains to prove that the topology 7 on V' that makes ¢ a homeomorphism
makes (V,7) a topological vector space for which any linear functional f on V'
is continuous.

The addition map on V' is a composition
A=o o A o(9x0)
where A: R" x R” — R" is addition in R" and since each of the maps on the
right is continuous, so is A.
Similarly, scalar multiplication in V' is
M=¢"oMo(x0)

where M":R x R" — R™ is scalar multiplication in R". Hence, M is
continuous.

Now let f be a linear functional. Since ¢ is continuous if and only if f o ¢~ ! is
continuous, we can confine attention to V' = R". In this case, if ey, ..., e, is the
standard basis for R" and |f(e;)] <M for all 4, then for any
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z = (ay,...,a,) € R", we have

Dl =Y aifen] < 3 lallfe)) < MY lai

Now, if |z| < €¢/Mn, then |a;| < ¢/Mn and so |f(z)| < €, which implies that f
is continuous at z = 0.

According to the Riesz representation theorem (Theorem 9.18) and the Cauchy—
Schwarz inequality, we have

If @) < [IR¢Illl]

where R; € R". Hence, x,, — 0 implies f () — 0 and so by linearity, z,, — x
implies f(z,) — « and so f is continuous at all x.

Theorem 2.27 Let V' be a real vector space of dimension n. There is a unique
topology on V, called the natural topology, for which V' is a topological vector
space and for which all linear functionals on V' are continuous. This topology is
determined by the fact that the coordinate map ¢:V — R" is a
homeomorphism, where R" has the standard topology induced by the Euclidean
metric.c]

Linear Operators on V'C

A linear operator 7 on a real vector space /' can be extended to a linear operator
7C on the complexification V' by defining

TC(U + i) =7(u) + 7(v)i

Here are the basic properties of this complexification of 7.

Theorem 2.28 IfT, o€ L(V), then
D (ar)® = ar® & € R

2) (t+ U) =7C44C

3) (TO') = 7CoC

4 [r)¢ =7C0%).0

Let us recall that for any ordered basis B for V' and any vector v € V' we have
[v + Oilepe(s) = [v]B
Now, if B is an ordered basis for V, then the ith column of [7]p is
[Tbi]s = [Tbi + 0] epx(5) = [7€(b; + 07)]epx(B)

which is the ith column of the coordinate matrix of 7* with respect to the basis
cpx(B). Thus we have the following theorem.
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Theorem 2.29 Let 7 € L(V') where V is a real vector space. The matrix of ¢
with respect to the ordered basis cpx(B) is equal to the matrix of T with respect
to the ordered basis B:

[TC]CpX(B) = [T]B

Hence, if a real matrix A represents a linear operator T on 'V, then A also
represents the complexification 7€ of T on VC.01

Exercises

1.

10.

11.

Let A € M,,,, have rank k. Prove that there are matrices X € M,,; and
Y € My, both of rank k, for which A = XY Prove that A has rank 1 if
and only if it has the form A = x!'y where x and y are row matrices.

Prove Corollary 2.9 and find an example to show that the corollary does not
hold without the finiteness condition.

Let 7 € £L(V,W). Prove that 7 is an isomorphism if and only if it carries a
basis for V' to a basis for .

If 7€ L(V1,W)) and o € L(V,, W,) we define the external direct sum
THo e L(Vy BV, W, BW,) by

(’TEU)((’Ul,’Ug)) = (’7”01,0’1)2)

Show that 7 HH o is a linear transformation.

Let V=S @®T. Prove that S @ T ~ S HT. Thus, internal and external
direct sums are equivalent up to isomorphism.

Let V = A + B and consider the external direct sum E = A B B. Define a
map 7: ABH B — V by 7(v,w) = v+ w. Show that 7 is linear. What is the
kernel of 7?7 When is 7 an isomorphism?

Let 7 € Lp(V) where dim(V) =n < co. Let A € M,,(F). Suppose that
there is an isomorphism o: V' & F" with the property that o(7v) = A(ov).
Prove that there is an ordered basis B for which A = [7].

Let 7 be a subset of £(V'). A subspace S of V' is T -invariant if S is 7-
invariant for every 7 € 7. Also, V is 7 -irreducible if the only 7 -invariant
subspaces of V are {0} and V. Prove the following form of Schur's lemma.
Suppose that 7y C L£(V') and Ty C L(W) and V is 7y -irreducible and W
is Ty -irreducible. Let o € L(V, W) satisfy aTy = Ty a, that is, for any
1 € Ty there is a A € Ty such that o = A« and for any A € Ty there is a
i € Ty such that app = Aav. Prove that a = 0 or « is an isomorphism.

Let 7€ L(V) where dim(V) < oco. If rk(r%) =rk(r) show that
im(7) Nker(7) = {0}.

LetT € L(U,V)and o € L(V,W). Show that

tk(o7) < min{rk(7),rk(c)}
LetT € L(U,V)and o € L(V,W). Show that
null(o7) < null(7) + null(o)
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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Let 7,0 € L£(V) where 7 is invertible. Show that
tk(ro) = 1k(o7) = 1k(0)
Let 7,0 € L(V,W). Show that
k(7 + o) < 1k(7) + k(o)

Let S be a subspace of V. Show that there is a 7 € £(V) for which
ker(7) = S. Show also that there exists a 0 € L(V') for which im(c) = S.
Suppose that 7,0 € L(V).

a) Show that o = 7y for some p € L(V) if and only if im(o) C im(7).

b) Show that o = p7 for some 1 € L(V) if and only if ker(7) C ker(o).
Let dim(V') < oo and suppose that 7 € £(V) satisfies 72 = 0. Show that
2rk(7) < dim(V).

Let A be an m x n matrix over F'. What is the relationship between the
linear transformation 74: " — F" and the system of equations AX = B?
Use your knowledge of linear transformations to state and prove various
results concerning the system AX = B, especially when B = 0.

Let V' have basis B = {vy,...,v,} and assume that the base field F' for V'
has characteristic 0. Suppose that for each 1 <4, <mn we define
Tij € E(V) by

- ) Vg ifk;éi
”AW){W+W itk =i

Prove that the 7; ; are invertible and form a basis for £(V).

Let 7 € £(V). If S is a T-invariant subspace of V' must there be a subspace
T of V for which (S, T") reduces 7?2

Find an example of a vector space V' and a proper subspace S of V for
which V = S.

Let dim(V') < oo. If 7, 0 € L(V') prove that o7 = ¢ implies that 7 and o
are invertible and that o = p(7) for some polynomial p(z) € F[z].

Let 7 € L(V). If 70 = o7 for all 0 € L(V) show that 7 = a¢, for some
a € F, where ¢ is the identity map.

Let V be a vector space over a field F’ of characteristic # 2 and let p and o
be projections. Prove the following:

a) The difference p — o is a projection if and only if

po=op=o
in which case
im(p — o) = im(p) Nker(c) and ker(p — o) = ker(p) @ im(o)

Hint: p is a projection if and only if ¢« — p is a projection and so p — o
is a projection if and only if
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0=1—-(p-0)=0@—p)+o

is a projection.
b) If p and o commute, then po is a projection, in which case

im(po) = im(p) Nim(c) and ker(po) = ker(p) + ker(o)
Let f:R" — R be a continuous function with the property that
fle+y)=f(=)+ f(y)

Prove that f is a linear functional on R".

Prove that any linear functional f: R" — R is a continuous map.

Prove that any subspace S of R™ is a closed set or, equivalently, that

S¢=TR"\ S is open, that is, for any = € S¢ there is an open ball B(z,¢)

centered at x with radius € > 0 for which B(xz,¢) C S°.

Prove that any linear transformation 7: V — W is continuous under the

natural topologies of V' and W.

Prove that any surjective linear transformation 7 from V' to W (both finite-

dimensional topological vector spaces under the natural topology) is an

open map, that is, 7 maps open sets to open sets.

Prove that any subspace S of a finite-dimensional vector space V is a

closed set or, equivalently, that S¢ is open, that is, for any = € S¢ there is

an open ball B(z,e¢) centered at z with radius ¢ >0 for which

B(z,e) C S°.

Let S be a subspace of V' with dim(V') < oc.

a) Show that the subspace topology on S inherited from V' is the natural
topology.

b) Show that the natural topology on V' /S is the topology for which the
natural projection map m: V' — V' /S continuous and open.

If V is a real vector space, then VC is a complex vector space. Thinking of

V€ as a vector space (VC)g over R, show that (V©)g is isomorphic to the

external direct product V V.

(When is a complex linear map a complexification?) Let ' be a real vector

space with complexification V¢ and let o € £L(VC). Prove that ¢ is a

complexification, that is, o has the form 7€ for some 7 € £(V') if and only

if o commutes with the conjugate map x:V® — VC defined by

x(u+iv) = u — dv.

Let W be a complex vector space.

a) Consider replacing the scalar multiplication on W by the operation

(z,w) — Zw

where z € C and w € W. Show that the resulting set with the addition
defined for the vector space W and with this scalar multiplication is a
complex vector space, which we denote by W.

b) Show, without using dimension arguments, that (Wg)® ~ W BW.



Chapter 3
The Isomorphism Theorems

Quotient Spaces

Let S be a subspace of a vector space V. It is easy to see that the binary relation
on V defined by

u=v & wu—veSsS

is an equivalence relation. When u = v, we say that « and v are congruent
modulo S. The term mod is used as a colloquialism for modulo and u = v is
often written

u = vmod S

When the subspace in question is clear, we will simply write u = v.

To see what the equivalence classes look like, observe that

v ={ueV]u=v}
={ueVi]jiu—-ves}
={ueV]|u=v+sforsomes e S}
={v+s|seS}
=v+S

The set
V] =v+S={v+s|seS}

is called a coset of S in V' and v is called a coset representative for v + S.
(Thus, any member of a coset is a coset representative.)

The set of all cosets of S in V' is denoted by
V/S={v+S|veV}
This is read “V mod S and is called the quotient space of V' modulo S. Of
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course, the term space is a hint that we intend to define vector space operations
onV/S.

The natural choice for these vector space operations is
(u+S)+@w+9S)=(ut+v)+S
and
r(u+S) = (ru) + S

but we must check that these operations are well-defined, that is,

1) u1+S:uQ+S,v1—|—S:v2—|—S:>(u1+v1)+S=(u2+vg)+S
2) i+S=uw+S=ruu+S=rus+595

Equivalently, the equivalence relation = must be consistent with the vector
space operations on V/, that is,

3) up =ug,v1 =ve = (U +v1) = (ug + v9)
4) Uy = ug = rUl = Trus

This senario is a recurring one in algebra. An equivalence relation on an
algebraic structure, such as a group, ring, module or vector space is called a
congruence relation if it preserves the algebraic operations. In the case of a
vector space, these are conditions 3) and 4) above.

These conditions follow easily from the fact that S is a subspace, for if u; = us
and v; = v, then

up —ug € S,v1 —v9 €8 = r(u; —ug) +s(vy —wvg) €8
= (rug + svy) — (rug + svg) € S
= TU] + SV = rus + svs

which verifies both conditions at once. We leave it to the reader to verify that
V' /S is indeed a vector space over F' under these well-defined operations.

Actually, we are lucky here: For any subspace S of V, the quotient V' /S is a
vector space under the natural operations. In the case of groups, not all
subgroups have this property. Indeed, it is precisely the normal subgroups N of
G that have the property that the quotient G /N is a group. Also, for rings, it is
precisely the ideals (not the subrings) that have the property that the quotient is
aring.

Let us summarize.
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Theorem 3.1 Let S be a subspace of V. The binary relation
U=v < u—vES

is an equivalence relation on V', whose equivalence classes are the cosets
v+S={v+s|seS}

of S'in'V. The set V /S of all cosets of S in 'V, called the quotient space of V
modulo S, is a vector space under the well-defined operations

rlu+S)=ru+S
(u+S)+w+9)=(u+v)+95
The zero vector in V' /S is the coset 0 + S = S.00
The Natural Projection and the Correspondence Theorem

If S is a subspace of V, then we can define a map 7g: V — V' /S by sending
each vector to the coset containing it:

ms(v) =v+ S

This map is called the canonical projection or natural projection of V' onto
V' /S, or simply projection modulo S. (Not to be confused with the projection
operators pg r.) It is easily seen to be linear, for we have (writing 7 for 7s)

m(ru+ sv) = (ru+sv) + S =r(u+5) + s(v+ S) = ra(u) + sm(v)

The canonical projection is clearly surjective. To determine the kernel of 7, note
that

veker(n) & n(v) =0 v+S=5S<ves
and so
ker(m) = S
Theorem 3.2 The canonical projection wg: V — V' /S defined by
ms(v) =v+ S
is a surjective linear transformation with ker(ng) = S.0J
If S is a subspace of V/, then the subspaces of the quotient space V' /.S have the
form T'/S for some intermediate subspace T satisfying S C T C V. In fact, as
shown in Figure 3.1, the projection map mg provides a one-to-one
correspondence between intermediate subspaces S C T C V' and subspaces of

the quotient space V' /S. The proof of the following theorem is left as an
exercise.
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\Y%

T VIS
S T/S
{0} {0}

Figure 3.1: The correspondence theorem

Theorem 3.3 (The correspondence theorem) Let S be a subspace of V. Then
the function that assigns to each intermediate subspace S CT CV the
subspace T'/S of V' /S is an order-preserving (with respect to set inclusion)
one-to-one correspondence between the set of all subspaces of V containing S
and the set of all subspaces of V' /S.

Proof. We prove only that the correspondence is surjective. Let

X={u+S|uelU}
be a subspace of V'/S and let T' be the union of all cosets in X:

T:U(u—i-S)

uelU

We show that S <T <V and that T/S = X. If 2,y € T, then x + S and
y+ S are in X and since X < V' /S, we have

re+S,(x+y)+SeX

which implies that rz,z +y € T. Hence, T is a subspace of V' containing S
Moreover, if ¢+ S €T/S, then t €T and so ¢+ 5 € X. Conversely, if
u+ S € X, then u € T and therefore u + S € T'/S. Thus, X = 7'/5.00

The Universal Property of Quotients and the First
Isomorphism Theorem
Let S be a subspace of V. The pair (V /S, ms) has a very special property,

known as the universal property—a term that comes from the world of category
theory.

Figure 3.2 shows a linear transformation 7€ L£(V,W), along with the
canonical projection 7g from V' to the quotient space V'/S.
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vV ——>Ww

Figure 3.2: The universal property

The universal property states that if ker(r) 2 S, then there is a unique
7.V /S — W for which

Tomg =1

Another way to say this is that any such 7 € £(V, W) can be factored through
the canonical projection 7g.

Theorem 3.4 Let S be a subspace of V and let 7€ L(V,W) satisfy
S Cker(r). Then, as pictured in Figure 3.2, there is a unique linear
transformation 7': V' /S — W with the property that

Tomg =1

Moreover, ker(7') = ker(7)/S and im(7') = im(7).
Proof. We have no other choice but to define 7’ by the condition 7/ o 75 = T,
that is,

v+ 8)=1v
This function is well-defined if and only if
v+S=u+S=7w+S)=7(u+S9)
which is equivalent to each of the following statements:

v+S=u+S=>T1v="TU
v—u€eS=1lv—u)=0
reS=1r=0
S C ker(7)

Thus, 7:V /S — W is well-defined. Also,
im(7") ={7'"(v+5) [veV}={rv|veV}=im(r)

and
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ker(r') = {v+ S | (v + S) = 0}

={v+S|Tv=0}
={v+S|veker(r)}
= ker(7)/S

The uniqueness of 7’ is evident.[

Theorem 3.4 has a very important corollary, which is often called the first
isomorphism theorem and is obtained by taking S = ker(7).

Theorem 3.5 (The first isomorphism theorem) Let 7:V — W be a linear

transformation. Then the linear transformation 7':V [ker(7) — W defined by
7' (v +ker(7)) = Tv

is injective and

Vv
ker(7)

~ im(7) O

According to Theorem 3.5, the image of any linear transformation on V' is
isomorphic to a quotient space of V. Conversely, any quotient space V' /S of V
is the image of a linear transformation on V': the canonical projection mg. Thus,
up to isomorphism, quotient spaces are equivalent to homomorphic images.

Quotient Spaces, Complements and Codimension

The first isomorphism theorem gives some insight into the relationship between
complements and quotient spaces. Let S be a subspace of V and let T be a
complement of S, that is,

V=Sa&T
Applying the first isomorphism theorem to the projection operator pr g: V' — T'
gives

T~V/S

Theorem 3.6 Let S be a subspace of V. All complements of S in V are
isomorphic to V' /S and hence to each other.]

The previous theorem can be rephrased by writing
AeB=A¢C=B=C

On the other hand, quotients and complements do not behave as nicely with
respect to isomorphisms as one might casually think. We leave it to the reader to
show the following:
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1) Itis possible that
AepB=C®D

with A = C but B % D. Hence, A ~ C does not imply that a complement
of A is isomorphic to a complement of C'.
2) [Itis possible that V' ~ W and

V=S®BandW =S®D
but B 5 D. Hence, V ~ W does not imply that V /S ~ W /S. (However,
according to the previous theorem, if V' equals W then B ~ D.)
Corollary 3.7 Let S be a subspace of a vector space V. Then
dim(V') = dim(S) + dim(V'/S) O
Definition If'S is a subspace of V, then dim(V'/S) is called the codimension of
S in'V and is denoted by codim(S) or codimy (S).O
Thus, the codimension of S in V' is the dimension of any complement of .S in V'
and when V' is finite-dimensional, we have
codimy (S) = dim(V') — dim(S)

(This makes no sense, in general, if V' is not finite-dimensional, since infinite
cardinal numbers cannot be subtracted.)

Additional Isomorphism Theorems

There are other isomorphism theorems that are direct consequences of the first
isomorphism theorem. As we have seen, if V =S @ T then V /T ~ S. This can
be written

SeT 8
T T SnT
This applies to nondirect sums as well.
Theorem 3.7 (The second isomorphism theorem) Let V' be a vector space
and let S and T be subspaces of V. Then
S+T 5
T ~SNT
Proof. Let 7: (S +T) — S/(S NT) be defined by
T(s+t)=s+(SNT)
We leave it to the reader to show that 7 is a well-defined surjective linear

transformation, with kernel 7. An application of the first isomorphism theorem
then completes the proof.[]
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The following theorem demonstrates one way in which the expression V' /S
behaves like a fraction.

Theorem 3.8 (The third isomorphism theorem) Let V' be a vector space and
suppose that S C T C 'V are subspaces of V. Then
Vs VvV

T/S ™~ T

Proof. Let 7: V /S — V /T be defined by 7(v + S) = v+ T. We leave it to the
reader to show that 7 is a well-defined surjective linear transformation whose
kernel is T'/S. The rest follows from the first isomorphism theorem.[J

The following theorem demonstrates one way in which the expression V' /S
does not behave like a fraction.

Theorem 3.9 Let V' be a vector space and let S be a subspace of V. Suppose
thatV.=Vi & Voand S = S1 ® Sy with S; C V;. Then
vV_heh VW

S S1 6 Sy - ST Sy
Proof. Let 7: V' — (V1 /Sy) B (V2/Ss) be defined by
T(?)l + 1)2) = (’Ul -+ Sl,’UQ + Sg)

This map is well-defined, since the sum V =V} & V5 is direct. We leave it to
the reader to show that 7 is a surjective linear transformation, whose kernel is
St @ Ss. The rest follows from the first isomorphism theorem.[]

Linear Functionals

Linear transformations from V' to the base field F' (thought of as a vector space
over itself) are extremely important.

Definition Let V be a vector space over F. A linear transformation
f € L(V, F) whose values lie in the base field F is called a linear functional
(or simply functional) on V. (Some authors use the term linear function.) The
vector space of all linear functionals on 'V is denoted by V" and is called the
algebraic dual space of V.[OJ

The adjective algebraic is needed here, since there is another type of dual space
that is defined on general normed vector spaces, where continuity of linear
transformations makes sense. We will discuss the so-called continuous dual
space briefly in Chapter 13. However, until then, the term “dual space” will
refer to the algebraic dual space.
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To help distinguish linear functionals from other types of linear transformations,
we will usually denote linear functionals by lowercase italic letters, such as f, g
and h.

Example3.1 The map f:F[z] — F defined by f(p(z)) =p(0) is a linear
functional, known as evaluation at 0.[]

Example 3.2 Let Cla, b] denote the vector space of all continuous functions on
[a,b] CR. Let f:C[a,b] — R be defined by

b
fla(z)) = / o(z) da
Then f € Cla, b]*.0

Forany f € V", the rank plus nullity theorem is
dim(ker(f)) + dim(im(f)) = dim(V)

But since im(f) C F', we have either im(f) = {0}, in which case f is the zero
linear functional, or im(f) = F, in which case f is surjective. In other words, a
nonzero linear functional is surjective. Moreover, if f # 0, then

codim(ker(f)) = dim(key(f)> =1

and if dim(V") < oo, then
dim(ker(f)) = dim(V) — 1

Thus, in dimensional terms, the kernel of a linear functional is a very “large”
subspace of the domain V.

The following theorem will prove very useful.

Theorem 3.10

1) For any nonzero vector v € V, there exists a linear functional f € V" for
which f(v) # 0.

2) Avectorv €V is zero if and only if f(v) = 0 forall f € V.

3) Let f € V. If f(x) # 0, then

V = (x) @ ker(f)

4) Two nonzero linear functionals f,g € V* have the same kernel if and only
if there is a nonzero scalar X\ such that f = \g.

Proof. For part 3), if 0+# v € (z) Nker(f), then f(v) =0 and v = az for

0# a € F, whence f(z) =0, which is false. Hence, (x) Nker(f) = {0} and

the direct sum S = (z) @ ker(f) exists. Also, for any v € V' we have
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 flz)
and so V' = (z) & ker(f).

—f(v):v v—Mx T er
+( o )e< ) + ker(/)

For part 4), if f=MAg for A #0, then ker(f)=ker(g). Conversely, if
K = ker(f) = ker(g), then for x ¢ K we have by part 3),

V=@ K

Of course, f|x = Ag|x for any A. Therefore, if A = f(z)/g(x), it follows that
Ag(z) = f(z) and hence f = \g.O0

Dual Bases

Let V' be a vector space with basis B = {v; | i € I'}. For each i € I, we can
define a linear functional v} € V" by the orthogonality condition

v; (v)) = bij

where ¢; ; is the Kronecker delta function, defined by

s _[1 ifi=
MT0 ifi#

Then the set B* = {v! |i € I} is linearly independent, since applying the
equation

— . * .« e . k
0= a;,v; + + a;,v;

to the basis vector v;, gives

n n
0= E :al‘yvi‘;(vwr;) - E aljél‘jﬂk =
=1 =1

for all 7.

Theorem 3.11 Let V' be a vector space with basis B = {v; | i € I'}.

1) Theset B* = {v} | i € I} is linearly independent.

2) If'V is finite-dimensional, then B* is a basis for V*, called the dual basis of
B.

Proof. For part 2), for any f € V*, we have

Z f(vj)vj(vi) = Z f(vj)6i; = f(vi)

and so f = ) f(v;)v] is in the span of B*. Hence, B’ is a basis for V*.00
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It follows from the previous theorem that if dim(V') < oo, then
dim(V*) =dim(V)

since the dual vectors also form a basis for I*. Our goal now is to show that the
converse of this also holds. But first, let us consider an example.

Example3.3 Let V be an infinite-dimensional vector space over the field
F =7, = {0, 1}, with basis B. Since the only coefficients in F" are 0 and 1, a
finite linear combination over F' is just a finite sum. Hence, V' is the set of all
finite sums of vectors in B and so according to Theorem 0.12,

VI < |Po(B)| = |B

On the other hand, each linear functional f € V* is uniquely defined by
specifying its values on the basis 5. Since these values must be either 0 or 1,
specifying a linear functional is equivalent to specifying the subset of 5 on
which f takes the value 1. In other words, there is a one-to-one correspondence
between linear functionals on V' and all subsets of 3. Hence,

V[ =IP(B)| > [B| = V]|

This shows that V* cannot be isomorphic to V', nor to any proper subset of V.
Hence, dim(V*) > dim(V").O0

We wish to show that the behavior in the previous example is typical, in
particular, that

dim(V') < dim(V™)
with equality if and only if V' is finite-dimensional. The proof uses the concept

of the prime subfield of a field K, which is defined as the smallest subfield of
the field K. Since 0,1 € K, it follows that K contains a copy of the integers

0,1,2=1+1,3=1+1+1,...
If K has prime characteristic p, then p = 0 and so K contains the elements
Z,=4{0,1,2,,...,p—1}
which form a subfield of K. Since any subfield F' of K contains 0 and 1, we see
that Z,, C I and so Z,, is the prime subfield of K. On the other hand, if K has
characteristic 0, then K contains a “copy” of the integers Z and therefore also
the rational numbers Q, which is the prime subfield of K. Our main interest in
the prime subfield is that in either case, the prime subfield is countable.
Theorem 3.12 Let V' be a vector space. Then
dim(V) < dim(V'™)

with equality if and only if 'V is finite-dimensional.
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Proof. For any vector space V', we have
dim(V) < dim(V'™)

since the dual vectors to a basis B for V' are linearly independent in V*. We
have already seen that if V' is finite-dimensional, then dim(V') = dim(V*). We
wish to show that if V' is infinite-dimensional, then dim(V') < dim(V*). (The
author is indebted to Professor Richard Foote for suggesting this line of proof.)

If B is a basis for V' and if K is the base field for V, then Theorem 2.7 implies
that

V &~ (KP),
where (K5)j is the set of all functions with finite support from B to K and
V*~ KB

where KZ is the set of all functions from B to K. Thus, we can work with the
vector spaces (K5), and K5.

The plan is to show that if F' is a countable subfield of K and if B is infinite,
then

dimg ((K%)o) = dimp ((FP)g) < dimp(FF) < dimy (K°)

Since we may take F' to be the prime subfield of K, this will prove the theorem.
The first equality follows from the fact that the K -space (%), and the F-space

(F B Jo each have a basis consisting of the “standard” linear functionals
{fi |i € B} defined by

fivi =i

for all v; € B, where ¢; ; is the Kronecker delta function.

For the final inequality, suppose that { f;} C F% is linearly independent over F'

and that
> aifi=0

where o; € K. If {k;} is a basis for K over F, then o; = ZJ a; k; fora; ; € F

and so
0= Z aifi = Z Z ai,jmjfl-
i j

i

Evaluating at any v € B gives
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O—ZZa“n,fz _Z <Zawf1 >

and since the inner sums are in F' and {k;} is F-independent, the inner sums

must be zero:
Z aiv]-f,; (’U) = O

Since this holds for all v € B, we have
Z a;jfi =0

which implies that a; ; = 0 for all ¢, j. Hence, {f;} is linearly independent over
K. This proves that dimp(F5) < dimy (K5).

For the center inequality, it is clear that
dimp ((F%)) < dimp(FP)

We will show that the inequality must be strict by showing that the cardinality
of (FB)y is |B| whereas the cardinality of FZ is greater than |B|. To this end, the
set (F'8), can be partitioned into blocks based on the support of the function. In
particular, for each finite subset S of B, if we let

={f € (F®) | supp(f) = S}

then

(F%) = | As

SCB
S finite

where the union is disjoint. Moreover, if S| = n, then
|As| < [F|" <R
and so

[(F®)o] = > [As| < B] - Ro = max(|B|, %) = |B]
S faie
But since the reverse inequality is easy to establish, we have
[(F®)o| = |B]

As to the cardinality of F'3, for each subset 7' of B, there is a function f; € F®
that sends every element of 7' to 1 and every element of 5\ 7" to 0. Clearly,
each distinct subset T gives rise to a distinct function fr and so Cantor's
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theorem implies that
|[F2] > 28] > 18] = [(F)o|
This shows that
dimp ((F%)y) < dimp(F5)
and completes the proof.[]

Reflexivity

If V is a vector space, then so is the dual space V* and so we may form the
double (algebraic) dual space V**, which consists of all linear functionals
0:V* — F. In other words, an element o of V" is a linear functional that
assigns a scalar to each linear functional on V.

With this firmly in mind, there is one rather obvious way to obtain an element of
V**. Namely, if v € V, consider the map v: V* — F defined by

o(f) = f(v)

which sends the linear functional f to the scalar f(v). The map v is called
evaluation at v. To see thatv € V**,if f,g € V*and a,b € F, then

v(af +bg) = (af +bg)(v) = af(v) + bg(v) = av(f) + bv(g)

and so v is indeed linear.

We can now define amap 7: V' — V** by
TV =1
This is called the canonical map (or the natural map) from V' to V**. This

map is injective and hence in the finite-dimensional case, it is also surjective.

Theorem 3.13 The canonical map 7:V — V** defined by Tv =7, where v is
evaluation at v, is a monomorphism. If V is finite-dimensional, then T is an
isomorphism.

Proof. The map 7 is linear since

au+ bu(f) = f(au+bv) = af(u) + bf (v) = (e + b0)(f)
for all f € V*. To determine the kernel of 7, observe that

Tv=0=7v=0
=7(f)=0forall f € V"
= f(v)=0forall f € V*
= v=0

by Theorem 3.10 and so ker(7) = {0}. In the finite-dimensional case, since
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dim(V*") = dim(V"*) = dim(V)
it follows that 7 is also surjective, hence an isomorphism.O]
Note that if dim(1") < oo, then since the dimensions of V' and V** are the same,
we deduce immediately that V' ~ V**. This is not the point of Theorem 3.13.
The point is that the natural map v — v is an isomorphism. Because of this, V'
is said to be algebraically reflexive. Theorem 3.13 and Theorem 3.12 together

imply that a vector space is algebraically reflexive if and only if it is finite-
dimensional.

If V is finite-dimensional, it is customary to identify the double dual space V**
with V' and to think of the elements of V** simply as vectors in V. Let us
consider a specific example to show how algebraic reflexivity fails in the
infinite-dimensional case.
Example 3.4 Let V' be the vector space over Z, with basis

er = (0,...,0,1,0,...)

where the 1 is in the kth position. Thus, V' is the set of all infinite binary
sequences with a finite number of 1's. Define the order o(v) of any v € V' to be
the largest coordinate of v with value 1. Then o(v) < oo forallv € V.

Consider the dual vectors e;,, defined (as usual) by
er(ej) = on;
For any v € V/, the evaluation functional v has the property that
v(er) = e(v) = 0ifk > o(v)

However, since the dual vectors e are linearly independent, there is a linear
functional f € V** for which

fle) =1

for all £ > 1. Hence, f does not have the form v for any v € V. This shows that
the canonical map is not surjective and so V' is not algebraically reflexive.[]

Annihilators

The functions f € V* are defined on vectors in V, but we may also define f on
subsets M of V' by letting

fM) ={f(v)[ve M}
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Definition Let M be a nonempty subset of a vector space V. The annihilator
MY of M is

M= {f e V" | f(M) = {0} O

The term annihilator is quite descriptive, since M° consists of all linear
functionals that annihilate (send to 0) every vector in M. It is not hard to see
that M" is a subspace of V*, even when M is not a subspace of V.

The basic properties of annihilators are contained in the following theorem.
Theorem 3.14
1) (Order-reversing) If M and N are nonempty subsets of V', then
MCN=N'CM
2) Ifdim(V') < oo, then for any nonempty subset M of V' the natural map
r:span(M) ~ M

is an isomorphism from span(M) onto M. In particular, if S is a
subspace of V, then S ~ S.
3) If S and T are subspaces of V, then

(SNT)Y =8 +71and (S+T)" =S"nT"
Proof. We leave proof of part 1) for the reader. For part 2), since
M = (span(M))"

it is sufficient to prove that 7:S ~ S% is an isomorphism, where S is a
subspace of V. Now, we know that 7 is a monomorphism, so it remains to prove
that 7S = SY_If s € S, then 75 = 5 has the property that for all f € S°,

5(f)=fs=0

and so 7s = 5 € S, which implies that 7.5 C S°. Moreover, if 7 € S, then
for all f € S° we have

f@) =(f) =0

and so every linear functional that annihilates S also annihilates v. But if v ¢ .S,
then there is a linear functional g € V* for which ¢(S) = {0} and g(v) # 0.
(We leave proof of this as an exercise.) Hence, v € S and so v = 7v € 75 and
so S C 78.

For part 3), it is clear that f annihilates S + 7" if and only if f annihilates both
S and T. Hence, (S +7)"=S°NT° Also, if f=g+h e S*+T" where
geS%and h € T, theng,h € (SNT)"andso f € (SNT)°. Thus,
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S'+1Cc(SnT)°
For the reverse inclusion, suppose that f € (S N T)°. Write
Vv=SaSnT)aeT aU

where S = 5" @ (SNT)and T = (SNT) DT Define g € V* by

gls=f, glsar = flsor =0, glv =0, gluv=f
and define h € V* by

hlss =0, hlsnr = flsor =0, hlp=f, hlp=0
It follows that g € T°, h € S® and g + h = f.O0
Annihilators and Direct Sums

Consider a direct sum decomposition

V=S¢T
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Then any linear functional f € T can be extended to a linear functional fonV
by setting f(.S) = 0. Let us call this extension by 0. Clearly, f € S° and it is
easy to see that the extension by 0 map f — f is an isomorphism from 7™ to

S9 whose inverse is the restriction to 7.

Theorem 3.15Let V =S & T.
a) The extension by 0 map is an isomorphism from T* to S° and so

T~ S°
b) If'V is finite-dimensional, then
dim(S") = codimy (S) = dim(V') — dim(9S)

O

Example 3.5 Part b) of Theorem 3.15 may fail in the infinite-dimensional case,
since it may easily happen that S” ~ V*. As an example, let V' be the vector
space over Zs with a countably infinite ordered basis B = (e, ea,...). Let
S ={(e;) and T = (eq, e3,...). It is easy to see that S ~ T* ~ V* and that

dim(V*) > dim(V).00

The annihilator provides a way to describe the dual space of a direct sum.

Theorem 3.16 A linear functional on the direct sum V' =S & T can be written
as a sum of a linear functional that annihilates S and a linear functional that

annihilates T, that is,

SeT) =S"aT1°
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Proof. Clearly S’ NT° = {0}, since any functional that annihilates both S and
T must annihilate S @7 = V. Hence, the sum S° + 79 is direct. The rest
follows from Theorem 3.14, since

Vi={0}'=(SnT)°’ =8"+1" =53 T1°

Alternatively, since pr + ps = ¢ is the identity map, if f € V*, then we can
write

f="Ffolpr+ps)=(fopr)+ (fops)eS'®T°

andso V* = S' ¢ 7.0

Operator Adjoints

If 7 € L(V,W), then we may define a map 7°: W" — V* by
T(f)y=for=fr

for f € W". (We will write composition as juxtaposition.) Thus, for any v € V,
[T () = f(7v)

The map 7 is called the operator adjoint of 7 and can be described by the

phrase “apply 7 first.”

Theorem 3.17 (Properties of the Operator Adjoint)
1)y Fort,o0€ L(V,W)anda,b€F,

(aT +bo)* = at™ 4+ bo™

2) Foroe LV ,W)andT e LIW,U),
(to)* ="
3) For any invertible T € L(V),
(1% = (7)L
Proof. Proof of part 1) is left for the reader. For part 2), we have for all f € U*,
(10)*(f) = f(r0) = o7 (f7) = 0" (7"(f)) = (" 7")(f)
Part 3) follows from part 2) and
P = () = =

and in the same way, (77!)*7* = 1. Hence (77!)* = (r*)~1.00

If 7€ L(V,W), then 7 € L(W*,V*) and so 7** € L(V**, W*™). Of course,
7** is not equal to 7. However, in the finite-dimensional case, if we use the

natural maps to identify V** with V and W** with W, then we can think of 7**
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as being in L(V,W). Using these identifications, we do have equality in the
finite-dimensional case.

Theorem 3.18 Let V and W be finite-dimensional and let T € L(V ,W). If we
identify V** with V. and W** with W using the natural maps, then 7> is
identified with .

Proof. For any x € V let the corresponding element of V** be denoted by = and
similarly for W. Then before making any identifications, we have forv € V,

T @) = ()] = o(f7) = f(rv) = T0(f)
for all f € W" and so
@) =T e W
Therefore, using the canonical identifications for both V** and W** we have
7 (v) =10
forallv e V.O

The next result describes the kernel and image of the operator adjoint.

Theorem 3.19 Let 7 € L(V,W). Then
1) ker(7*) = im(7)°

2) im(7*) = ker(7)"

Proof. For part 1),

ker(7%) = {f e W | 7°(f) = 0}
{0

={few"| f(=V) ={0}}
={few"| f(im(r)) = {0}}
= im(T)O

For part 2), if f=gr=7"g¢€im(r*), then ker(r) C ker(f) and so
f € ker(7)".

For the reverse inclusion, let f € ker(7)’ C V*. We wish to show that
f=1%g=gr for some g € W*. On K = ker(7), there is no problem since f
and 77g = g7 agree on K for any g € W*. Let S be a complement of ker(7).
Then 7 maps a basis B = {b; | i € I'} for S to a linearly independent set

B ={1b; | i €I}
in W and so we can define g € W* on 7B by setting
g(tbi) = fbi

and extending to all of W. Then f = g7 = 7*¢ on B and therefore on S. Thus,
f=1"¢g€im(r*).0



106 Advanced Linear Algebra

Corollary 3.20 Let 7€ L(V,W), where V and W are finite-dimensional.
Then tk(7) = tk(7>).0

In the finite-dimensional case, 7 and 7™ can both be represented by matrices.
Let

B=(bi,...,b,) and C = (c1,...,¢m)
be ordered bases for V' and W, respectively, and let
B* = (by,...,b;)and C* = (cy,...,cp)
be the corresponding dual bases. Then
([Tlsc)ig = ([rbjle)i = ¢i[7by]
and
([T )iy = (7 ()]s )i = b7 [T (c))] = 77 (c}) (bi) = ¢j(7hi)

Comparing the last two expressions we see that they are the same except that the
roles of 7 and j are reversed. Hence, the matrices in question are transposes.

Theorem 3.21 Let 7 € L(V, W), where V and W are finite-dimensional. If B
and C are ordered bases for V. and W, respectively, and B* and C* are the
corresponding dual bases, then

[ le- 5 = ([T]B.e)'

In words, the matrices of T and its operator adjoint T are transposes of one
another.]

Exercises

1. If V is infinite-dimensional and S is an infinite-dimensional subspace, must
the dimension of V' /S be finite? Explain.

Prove the correspondence theorem.

Prove the first isomorphism theorem.

Complete the proof of Theorem 3.9.

Let S be a subspace of V. Starting with a basis {si,...,s;} for S, how
would you find a basis for V' /S?

6. Use the first isomorphism theorem to prove the rank-plus-nullity theorem

tk(7) + null(7) = dim(V')

nkhwn

for7 € L(V,W) and dim(V') < oo.
7. Let 7€ L(V) and suppose that S is a subspace of V. Define a map
VS —V/S by



11.

12.

13.

14.

15.

16.
17.

18.
19.

20.
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v+ 8)=71v+ S

When is 7 well-defined? If 7 is well-defined, is it a linear transformation?
What are im(7’) and ker(7/)?

Show that for any nonzero vector v € V, there exists a linear functional
f € V* for which f(v) # 0.

Show that a vector v € V' is zero if and only if f(v) = 0 forall f € V*.

. Let S be a proper subspace of a finite-dimensional vector space V' and let

veV \S. Show that there is a linear functional f € V* for which
f(v) =1and f(s) =0foralls € S.
Find a vector space V' and decompositions

V=AeB=C®D

with A =~ C but B # D. Hence, A ~ C does not imply that A° ~ C°.
Find isomorphic vectors spaces V and W with

V=S@BandW =S&D

but B % D. Hence, V ~ W does not imply that V' /S ~ W /S.
Let V be a vector space with

V=Se6Tl=55&T

Prove that if S; and S5 have finite codimension in V/, then so does S1 N Sy
and

codim(S; N Sy) < dim(7y) + dim(T3)
Let V be a vector space with
V=85&T =80T

Suppose that S} and S5 have finite codimension. Hence, by the previous
exercise, so does S; N Sy. Find a direct sum decomposition V =W & X
for which (1) W has finite codimension, (2) W C S1NSs and (3)
XDT + T

Let B be a basis for an infinite-dimensional vector space V' and define, for
all b € B, the map b’ € V* by b/(c) =1 if ¢ = b and 0 otherwise, for all
¢ € B. Does {0’ | b € B} form a basis for V*? What do you conclude about
the concept of a dual basis?

Prove that if S and T" are subspaces of V, then (S & T)* ~ S*H T*.

Prove that 0* = 0 and +* = ¢ where 0 is the zero linear operator and ¢ is
the identity.

Let S be a subspace of V. Prove that (V' /S)* ~ S°.

Verify that

a) (t1+o0) =7+ forr,0€ L(V,W).

b) (rr)* =rr*foranyr € Fand7 e L(V,W)

Let 7€ L(V,W), where V and W are finite-dimensional. Prove that
tk(7) = k(7).



Chapter 4
Modules I: Basic Properties

Motivation

Let V be a vector space over a field F' and let 7 € £L(V). Then for any
polynomial p(z) € F[z], the operator p(7) is well-defined. For instance, if
p(z) =1+ 2z + 2°, then

p(r)=t+2r+7°

where ¢ is the identity operator and 72 is the threefold composition 7o 7 o 7.

Thus, using the operator 7 we can define the product of a polynomial
p(x) € Fx] and a vector v € V by

p(x)v = p(7)(v) (4.1)

This product satisfies the usual properties of scalar multiplication, namely, for
all r(z), s(x) € Flz] and u,v € V,

r(z)(u+v) =r(z)u+ r(z)v
(r(z) + s(x)u = r(x)u + s(x)u
[r(x)s(x)u = r(z)[s(x)u]
lu=u

Thus, for a fixed 7 € £(V'), we can think of V' as being endowed with the
operations of addition and multiplication of an element of V' by a polynomial in
F[z]. However, since F'[z] is not a field, these two operations do not make V'
into a vector space. Nevertheless, the situation in which the scalars form a ring
but not a field is extremely important, not only in this context but in many
others.

Modules

Definition Let R be a commutative ring with identity, whose elements are
called scalars. An R-module (or a module over R) is a nonempty set M,
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together with two operations. The first operation, called addition and denoted
by +, assigns to each pair (u,v) € M x M, an element uw+v € M. The
second operation, denoted by juxtaposition, assigns to each pair
(r,v) € Rx M, an element rv € M. Furthermore, the following properties
must hold:

1) M is an abelian group under addition.

2) Forallr,s € Randu,v e M

r(u4v) =ru+rv
(r+s)u=ru+ su
(rs)u = r(su)
lu=wu

The ring R is called the base ring of M .0

Note that vector spaces are just special types of modules: a vector space is a
module over a field.

When we turn in a later chapter to the study of the structure of a linear
transformation 7 € £(V'), we will think of V' as having the structure of a vector
space over F as well as a module over F'[z] and we will use the notation V;.. Put
another way, V; is an abelian group under addition, with two scalar
multiplications—one whose scalars are elements of F' and one whose scalars are
polynomials over F'. This viewpoint will be of tremendous benefit for the study
of 7. For now, we concentrate only on modules.

Example 4.1

1) If R is aring, the set R" of all ordered n-tuples whose components lie in R
is an R-module, with addition and scalar multiplication defined
componentwise (just as in F),

(a1, . an) + (b1, ... b)) = (a1 + by, ... ,a, + by)
and
r(ai,...,a,) = (ray,...,ray,)

for a;, b;, m € R. For example, Z" is the Z-module of all ordered n-tuples
of integers.

2) If R is a ring, the set M,, ,(R) of all matrices of size m X n is an R-
module, under the usual operations of matrix addition and scalar
multiplication over R. Since R is a ring, we can also take the product of
matrices in M,,,,(R). One important example is R = F[z], whence
M0 (F[z]) is the F[z]-module of all m X n matrices whose entries are
polynomials.

3) Any commutative ring R with identity is a module over itself, that is, R is
an R-module. In this case, scalar multiplication is just multiplication by
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elements of R, that is, scalar multiplication is the ring multiplication. The
defining properties of a ring imply that the defining properties of the R-
module R are satisfied. We shall use this example many times in the
sequel.d

Importance of the Base Ring

Our definition of a module requires that the ring R of scalars be commutative.
Modules over noncommutative rings can exhibit quite a bit more unusual
behavior than modules over commutative rings. Indeed, as one would expect,
the general behavior of R-modules improves as we impose more structure on
the base ring R. If we impose the very strict structure of a field, the result is the
very well behaved vector space.

To illustrate, we will give an example of a module over a noncommutative ring
that has a basis of size n for every integer n > 0! As another example, if the
base ring is an integral domain, then whenever wvy,...,v, are linearly
independent over R so are rvi,...,7v, for any nonzero r € R. This can fail
when R is not an integral domain.

We will also consider the property on the base ring R that all of its ideals are
finitely generated. In this case, any finitely generated R-module M has the
property that all of its submodules are also finitely generated. This property of
R-modules fails if R does not have the stated property.

When R is a principal ideal domain (such as Z or F[z]), each of its ideals is
generated by a single element. In this case, the R-modules are “reasonably” well
behaved. For instance, in general, a module may have a basis and yet possess a
submodule that has no basis. However, if R is a principal ideal domain, this
cannot happen.

Nevertheless, even when R is a principal ideal domain, R-modules are less well
behaved than vector spaces. For example, there are modules over a principal
ideal domain that do not have any linearly independent elements. Of course,
such modules cannot have a basis.

Submodules

Many of the basic concepts that we defined for vector spaces can also be
defined for modules, although their properties are often quite different. We
begin with submodules.

Definition 4 submodule of an R-module M is a nonempty subset S of M that
is an R-module in its own right, under the operations obtained by restricting the
operations of M to S. We write S < M to denote the fact that S is a submodule
of M.OO
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Theorem 4.1 A nonempty subset S of an R-module M is a submodule if and
only if it is closed under the taking of linear combinations, that is,

rse€RuveS=rut+sves O

Theorem 4.2 If'S and T are submodules of M, then S N'T and S + T are also
submodules of M .1

We have remarked that a commutative ring R with identity is a module over
itself. As we will see, this type of module provides some good examples of non-
vector-space-like behavior.

When we think of a ring R as an R-module rather than as a ring, multiplication
is treated as scalar multiplication. This has some important implications. In
particular, if S is a submodule of R, then it is closed under scalar multiplication,
which means that it is closed under multiplication by all elements of the ring R.
In other words, S is an ideal of the ring R. Conversely, if Z is an ideal of the
ring R, then 7 is also a submodule of the module R. Hence, the submodules of
the R-module R are precisely the ideals of the ring R.

Spanning Sets
The concept of spanning set carries over to modules as well.
Definition 7%e submodule spanned (or generated) by a subset S of a module
M is the set of all linear combinations of elements of S':
(SH ={ruvi+-+ryw,|r € Rv,eS,n>1}
A subset S C M is said to span M or generate M if M = ((S)).00
We use a double angle bracket notation for the submodule generated by a set
because when we study the F-vector space/F[z]-module V;, we will need to

make a distinction between the subspace (v) = Fv generated by v € V' and the
submodule ((v)) = F[z]v generated by v.

One very important point to note is that if a nontrivial linear combination of the
elements vy, ..., v, in an R-module M is 0,
rvr+ - v, = 0

where not all of the coefficients are 0, then we cannot conclude, as we could in
a vector space, that one of the elements v; is a linear combination of the others.
After all, this involves dividing by one of the coefficients, which may not be
possible in a ring. For instance, for the Z-module Z x Z we have

2(3,6) — 3(2,4) = (0,0)

but neither (3, 6) nor (2,4) is an integer multiple of the other.
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The following simple submodules play a special role in the theory.

Definition Let M be an R-module. A submodule of the form
{(v) = Rv={rv|r e R}

forv € M is called the cyclic submodule generated by v.[]

Of course, any finite-dimensional vector space is the direct sum of cyclic
submodules, that is, one-dimensional subspaces. One of our main goals is to
show that a finitely generated module over a principal ideal domain has this
property as well.

Definition An R-module M is said to be finitely generated if it contains a
finite set that generates M. More specifically, M is n-generated if it has a
generating set of size n (although it may have a smaller generating set as

well).(]

Of course, a vector space is finitely generated if and only if it has a finite basis,
that is, if and only if it is finite-dimensional. For modules, life is more
complicated. The following is an example of a finitely generated module that
has a submodule that is not finitely generated.

Example 4.2 Let R be the ring F[z1,9,...] of all polynomials in infinitely
many variables over a field F. It will be convenient to use X to denote
X1, T, ... and write a polynomial in R in the form p(X). (Each polynomial in
R, being a finite sum, involves only finitely many variables, however.) Then R
is an R-module and as such, is finitely generated by the identity element
p(X) =1.

Now consider the submodule S of all polynomials with zero constant term. This
module is generated by the variables themselves,

S = <<.’E1,(E2,...>>

However, S is not finitely generated. To see this, suppose that G = {pi, ..., p,}
is a finite generating set for S. Choose a variable z;, that does not appear in any
of the polynomials in GG. Then no linear combination of the polynomials in G
can be equal to . For if

o — iampi(X)
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then let a;(X) = xpq;(X) + r;(X) where ;(X) does not involve x. This gives

o= 3 lonai () + (0l (X)

=

=1
= ) a(X)n () + Y (X (X)

The last sum does not involve z; and so it must equal 0. Hence, the first sum
must equal 1, which is not possible since p;(X) has no constant term.]

Linear Independence

The concept of linear independence also carries over to modules.

Definition A subset S of an R-module M is linearly independent if for any
distinct vy, ...,v, € Sandry,...,r, € R, we have

rvr+ -+, =0=1r;, =0foralli
A set S that is not linearly independent is linearly dependent.[]

It is clear from the definition that any subset of a linearly independent set is
linearly independent.

Recall that in a vector space, a set S of vectors is linearly dependent if and only
if some vector in S is a linear combination of the other vectors in S. For
arbitrary modules, this is not true.

Example 4.3 Consider Z as a Z-module. The elements 2,3 € Z are linearly
dependent, since

3(2) —2(3) =0

but neither one is a linear combination (i.e., integer multiple) of the other..]

The problem in the previous example (as noted earlier) is that
v+ v, =0
implies that
TIV] = — ToUs — -++ — Uy

but in general, we cannot divide both sides by r;, since it may not have a
multiplicative inverse in the ring R.
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Torsion Elements

In a vector space V' over a field F, singleton sets {v} where v # 0 are linearly
independent. Put another way, r # 0 and v # 0 imply rv # 0. However, in a
module, this need not be the case.

Example 4.4 The abelian group Z, = {0,1,...,n—1} is a Z-module, with
scalar multiplication defined by za = (z - a) mod n, for all z € Z and a € Z,.
However, since na =0 for all a € Z,, no singleton set {a} is linearly
independent. Indeed, Z,, has no linearly independent sets.[]

This example motivates the following definition.

Definition Let M be an R-module. A nonzero element v € M for which rv =0
for some nonzero r € R is called a torsion element of M. A module that has no
nonzero torsion elements is said to be torsion-free. If all elements of M are
torsion elements, then M is a torsion module. The set of all torsion elements of
M, together with the zero element, is denoted by M,,.[]

If M is a module over an integral domain, it is not hard to see that M, is a
submodule of M and that M /M, is torsion-free. (We will define quotient
modules shortly: they are defined in the same way as for vector spaces.)

Annihilators

Closely associated with the notion of a torsion element is that of an annihilator.

Definition Let M be an R-module. The annihilator of an element v € M is
ann(v) = {r € R | rv =0}
and the annihilator of a submodule N of M is
ann(N) = {re R|rN = {0}}
where rN = {rv | v € N'}. Annihilators are also called order ideals.d
It is easy to see that ann(v) and ann(N) are ideals of R. Clearly, v € M is a

torsion element if and only if ann(v) # {0}. Also, if A and B are submodules of
M, then

A<B = anmn(B)<ann(A)
(note the reversal of order).
Let M = ((uy,...,u,)) be a finitely generated module over an integral domain
R and assume that each of the generators w; is torsion, that is, for each ¢, there is

a nonzero a; € ann(u;). Then, the nonzero product a = a;- - -a,, annihilates each
generator of M and therefore every element of M, that is, a € ann(M). This
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shows that ann(M) # {0}. On the other hand, this may fail if R is not an
integral domain. Also, there are torsion modules whose annihilators are trivial.
(We leave verification of these statements as an exercise.)

Free Modules

The definition of a basis for a module parallels that of a basis for a vector space.

Definition Let M be an R-module. A subset B of M is a basis if B is linearly
independent and spans M. An R-module M is said to be free if M = {0} or if
M has a basis. If B is a basis for M, we say that M is free on 5.0]

We have the following analog of part of Theorem 1.7.

Theorem 4.3 4 subset B of a module M is a basis if and only if every nonzero
v € M is an essentially unique linear combination of the vectors in B.0J

In a vector space, a set of vectors is a basis if and only if it is a minimal
spanning set, or equivalently, a maximal linearly independent set. For modules,
the following is the best we can do in general. We leave proof to the reader.

Theorem 4.4 Let B be a basis for an R-module M. Then
1) B is a minimal spanning set.
2) B is a maximal linearly independent set.[]

The Z-module Z, has no basis since it has no linearly independent sets. But
since the entire module is a spanning set, we deduce that a minimal spanning set
need not be a basis. In the exercises, the reader is asked to give an example of a
module M that has a finite basis, but with the property that not every spanning
set in M contains a basis and not every linearly independent set in M is
contained in a basis. It follows in this case that a maximal linearly independent
set need not be a basis.

The next example shows that even free modules are not very much like vector
spaces. It is an example of a free module that has a submodule that is not free.

Example 4.5 The set Z x Z is a free module over itself, using componentwise
scalar multiplication

(n,m)(a,b) = (na,mb)

with basis {(1,1)}. But the submodule Z x {0} is not free since it has no
linearly independent elements and hence no basis.[]

Theorem 2.2 says that a linear transformation can be defined by specifying its
values arbitrarily on a basis. The same is true for firee modules.
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Theorem 4.5 Let M and N be R-modules where M is free with basis
B ={b; | i € I}. Then we can define a unique R-map 7: M — N by specifying
the values of Tb; arbitrarily for all b; € B and then extending T to M by
linearity, that is,

T(a1vy + - + ayv,) = arTor + - + @, TV, O

Homomorphisms
The term linear transformation is special to vector spaces. However, the

concept applies to most algebraic structures.

Definition Let M and N be R-modules. A function 7:M — N is an R-
homomorphism or R-map if it preserves the module operations, that is,

T(ru+ sv) = rr(u) + s7(v)
forallr,s € R and w,v € M. The set of all R-homomorphisms from M to N is
denoted by homp (M, N). The following terms are also employed:
1) An R-endomorphism is an R-homomorphism from M to itself.
2) An R-monomorphism or R-embedding is an injective R-homomorphism.
3) An R-epimorphism is a surjective R-homomorphism.
4) An R-isomorphism is a bijective R-homomorphism.O]

It is easy to see that homp(M, N) is itself an R-module under addition of
functions and scalar multiplication defined by
(r7)(v) = r(Tv) = 7(rv)

Theorem 4.6 Let 7 € homp (M, N). The kernel and image of T, defined as for
linear transformations by

ker(r) ={ve M | v =0}
and
im(7) ={rv|ve M}
are submodules of M and N, respectively. Moreover, T is a monomorphism if

and only ifker(7) = {0}.0

If N is a submodule of the R-module M, then the map j: N — M defined by
Jj(v) = v is evidently an R-monomorphism, called injection of N into M.

Quotient Modules

The procedure for defining quotient modules is the same as that for defining
quotient vector spaces. We summarize in the following theorem.
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Theorem 4.7 Let S be a submodule of an R-module M. The binary relation
u=veu—veS
is an equivalence relation on M, whose equivalence classes are the cosets
v+S={v+s|seS}

of S'in M. The set M /S of all cosets of S in M, called the quotient module of
M modulo S, is an R-module under the well-defined operations

(u+S)+@w+S)=(u+v)+S
r(u+S)=ru+9S

The zero element in M /S is the coset 0 + S = S.O0

One question that immediately comes to mind is whether a quotient module of a
free module must be free. As the next example shows, the answer is no.

Example 4.6 As a module over itself, Z is free on the set {1}. For any n > 0,
the set Zn = {zn | z € Z} is a free cyclic submodule of Z, but the quotient Z-
module Z/Zn is isomorphic to Z,, via the map

T(u+ Zn) = umodn
and since Z,, is not free as a Z-module, neither is Z/Zn.0]

The Correspondence and Isomorphism Theorems

The correspondence and isomorphism theorems for vector spaces have analogs
for modules.

Theorem 4.8 (The correspondence theorem) Let S be a submodule of M.
Then the function that assigns to each intermediate submodule S C'T' C M the
quotient submodule T /S of M /S is an order-preserving (with respect to set
inclusion) one-to-one correspondence between submodules of M containing S
and all submodules of M /S.0O0

Theorem 4.9 (The first isomorphism theorem) Let 7: M — N be an R-
homomorphism. Then the map 7': M /ker(7) — N defined by

7' (v +ker()) = v

is an R-embedding and so

ker(7) ~ im(r) =
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Theorem 4.10 (The second isomorphism theorem) Let M be an R-module
and let S and T be submodules of M. Then

S+T 8
T T SNnT
Theorem 4.11 (The third isomorphism theorem) Let M be an R-module and
suppose that S C T are submodules of M. Then

M/S M
— o~ — O
T/S © T

O

Direct Sums and Direct Summands
The definition of direct sum of a family of submodules is a direct analog of the
definition for vector spaces.
Definition 77e external direct sum of R-modules M, ..., M, denoted by
M=MHB---BM,
is the r-module whose elements are ordered n-tuples
M ={(vi,...,v5) |v; € M;,i=1,... ,n}
with componentwise operations
(Uty .oy up) + (V1o y0,) = (U + 01,000 up +05)
and
r(v1, ... y0n) = (Pog, ..., T0,)
forre RO
We leave it to the reader to formulate the definition of external direct sums and

products for arbitrary families of modules, in direct analogy with the case of
vector spaces.

Definition An R-module M is the (internal) direct sum of a family
F ={S;| i € I} of submodules of M, written

M:@f or M:@Si
1€

if the following hold:
1) (Join of the family) M is the sum (join) of the family F:

V=>S

i€l
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2) (Independence of the family) For eachi € I,

Sin >8] =10}

J#i

In this case, each S; is called a direct summand of M. If F = {Si,...,S,} is
a finite family, the direct sum is often written

M:Sl@...@sn

Finally, if M =S & T, then S is said to be complemented and T is called a
complement of S in M.

As with vector spaces, we have the following useful characterization of direct
sums.

Theorem 4.12 Let F = {S; | i € 1} be a family of distinct submodules of an R-
module M. The following are equivalent:
1) (Independence of the family) For each i € I,

Sin | 8| ={0}

J#i

2) (Uniqueness of expression for 0) The zero element 0 cannot be written as
a sum of nonzero elements from distinct submodules in F.

3) (Uniqueness of expression) Every nonzero v € M has a unique, except for
order of terms, expression as a sum

v=8+--+58,

of nonzero elements from distinct submodules in F.

Hence, a sum
M=>"s

i€l

is direct if and only if any one of 1)-3) holds..J

In the case of vector spaces, every subspace is a direct summand, that is, every
subspace has a complement. However, as the next example shows, this is not
true for modules.

Example 4.7 The set Z of integers is a Z-module. Since the submodules of Z
are precisely the ideals of the ring Z and since Z is a principal ideal domain, the
submodules of Z are the sets

() =Zn={zn|zeZ}
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Hence, any two nonzero proper submodules of Z have nonzero intersection, for
ifn # m > 0, then

In N Zm = Zk

where k& = lem{n, m}. It follows that the only complemented submodules of Z
are Z and {0}.00

In the case of vector spaces, there is an intimate connection between subspaces
and quotient spaces, as we saw in Theorem 3.6. The problem we face in
generalizing this to modules is that not all submodules are complemented.
However, this is the only problem.

Theorem 4.13 Let S be a complemented submodule of M. All complements of
S are isomorphic to M /S and hence to each other.

Proof. For any complement 7" of .S, the first isomorphism theorem applied to
the projection pr g: M — T gives T ~ M /S.00

Direct Summands and Extensions of Isomorphisms

Direct summands play a role in questions relating to whether certain module
homomorphisms o: N — M can be extended from a submodule N < M to the
full module M. The discussion will be a bit simpler if we restrict attention to
epimorphisms.

If M = N & H, then a module epimorphism o: N — M, can be extended to an
epimorphism o: M — M simply by sending the elements of H to zero, that is,
by setting

g(n+h)=on
This is easily seen to be an R-map with
ker(c) = ker(o) & H

Moreover, if 7 is another extension of o with the same kernel as &, then 7 and &
agree on H as well as on N, whence 7 = . Thus, there is a unique extension of
o with kernel ker(o) © H.

Now suppose that o: N =~ M is an isomorphism. If NV is complemented, that is,
if
G=Na&oH

then we have seen that there is a unique extension @ of o for which ker(z) = H.
Thus, the correspondence

H — 3, whereker(c)=H

from complements of N to extensions of ¢ is an injection. To see that this
correspondence is a bijection, if o: M — M is an extension of o, then
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M = N @ ker(c)
To see this, we have
N nker(z) = ker(o) = {0}
and if a € M, then there isab € N for which ob = 7a and so
gla—b)=ca—0cb=0
Thus,
a=b+ (a—b) e N +ker(d)
which shows that ker (@) is a complement of V.
Theorem 4.14 Let M and M, be R-modules and let N < M.

1) If M =N®&H, then any R-epimorphism o:N — M, has a unique
extension o: M — M, to an epimorphism with

ker(c) = ker(o) ® H
2) Leto: N ~ M be an R-isomorphism. Then the correspondence

Hw— 757, whereker(c)=H

is a bijection from complements of N onto the extensions of o. Thus, an
isomorphism o: N ~ M, has an extension to M if and only if N is
complemented.[]

Definition Let N < M. When the identity map v: N =~ N has an extension to
o:M — N, the submodule N is called a retract of M and o is called the
retraction map.]

Corollary 4.15 A submodule N < M is a retract of M if and only if N has a
complement in M.OJ

Direct Summands and One-Sided Invertibility

Direct summands are also related to one-sided invertibility of R-maps.

Definition Let 7: A — B be a module homomorphism.
1) A left inverse of 7 is a module homomorphism T1: B — A for which

TL OT = L.
2) A right inverse of 7 is a module homomorphism Tr: B — A for which
TOTR = L.

Left and right inverses are called one-sided inverses. An ordinary inverse is
called a two-sided inverse.[]

Unlike a two-sided inverse, one-sided inverses need not be unique.
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A left-invertible homomorphism o must be injective, since
ca=cb=o0p,00a=0,00b=a=0»>

Also, a right-invertible homomorphism o: A — B must be surjective, since if
b € B, then

b= olor(b)] € im(0)

For set functions, the converses of these statements hold: ¢ is left-invertible if
and only if it is injective and o is right-invertible if and only if it is surjective.
However, this is not the case for R-maps.

Let o: M — M, be an injective R-map. Referring to Figure 4.1,

H
e —
) o™ !im(c)
ey
Figure 4.1

the map o|™): M ~ im(c) obtained from o by restricting its range to im(c) is
an isomorphism and the left inverses o of o are precisely the extensions of
(o™@)~1:im(c) ~ M to M,;. Hence, Theorem 4.14 says that the
correspondence

H +— extension of (¢|™))~! with kernel H

is a bijection from the complements H of im(o) onto the left inverses of o.

Now let 0: M — M be a surjective R-map. Referring to Figure 4.2,

ker(c)

oly

oo

—— -1
M GR_(GlH) M1

Figure 4.2
if ker(o) is complemented, that is, if

M = ker(o)® H
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then o|gy: H ~ M, is an isomorphism. Thus, a map 7: M; — M is a right
inverse of o if and only if 7 is a range-extension of (o|g)~': My ~ H, the only
difference being in the ranges of the two functions. Hence, (o|g)~': My — M
is the only right inverse of o with image H. It follows that the correspondence

H i (o|lg)™ My — M

is an injection from the complements H of ker(o) to the right inverses of o.
Moreover, this map is a bijection, since if or: M} — M is a right inverse of o,
then op: My ~im(og) and o is an extension of oy':im(cg) ~ M), which
implies that

M = im(og) @ ker(o)

Theorem 4.16 Let M and M, be R-modules and let o: M — M, be an R-map.
1) Leto: M — M, be injective. The map

H — extension of (o™ )~ with kernel H

is a bijection from the complements H of im(o) onto the left inverses of o.
Thus, there is exactly one left inverse of o for each complement of im(o)
and that complement is the kernel of the left inverse.

2) Leto: M — M, be surjective. The map

Hw (o|lg)™ My — M

is a bijection from the complements H of ker(o) to the right inverses of o.
Thus, there is exactly one right inverse of o for each complement H of
ker(o) and that complement is the image of the right inverse. Thus,

M =ker(o) ® H =~ ker(c) B im(c) |

The last part of the previous theorem is worth further comment. Recall that if
7:V — W is a linear transformation on vector spaces, then

V & ker(7) B im(7)
This holds for modules as well provided that ker() is a direct summand.

Modules Are Not as Nice as Vector Spaces

Here is a list of some of the properties of modules (over commutative rings with
identity) that emphasize the differences between modules and vector spaces.

1) A submodule of a module need not have a complement.

2) A submodule of a finitely generated module need not be finitely generated.

3) There exist modules with no linearly independent elements and hence with
no basis.

4) A minimal spanning set or maximal linearly independent set is not
necessarily a basis.
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6)
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There exist free modules with submodules that are not free.
There exist free modules with linearly independent sets that are not
contained in a basis and spanning sets that do not contain a basis.

Recall also that a module over a noncommutative ring may have bases of
different sizes. However, all bases for a free module over a commutative ring
with identity have the same size, as we will prove in the next chapter.

Exercises

1.

2.

10.

11.

Give the details to show that any commutative ring with identity is a
module over itself.

Let S = {vy,...,v,} be a subset of a module M. Prove that N = ((.5)) is
the smallest submodule of M containing S. First you will need to formulate
precisely what it means to be the smallest submodule of M containing S'.
Let M be an R-module and let I be an ideal in R. Let I M be the set of all
finite sums of the form

USROS R ol O

where r; € I and v; € M. Is IM a submodule of M?
Show that if S and 7' are submodules of M, then (with respect to set
inclusion)

ST =gb{S,T}and S + T = lub{S, T}

Let 51 C S5 C--- be an ascending sequence of submodules of an R-
module M. Prove that the union J.S; is a submodule of M.

Give an example of a module M that has a finite basis but with the property
that not every spanning set in M contains a basis and not every linearly
independent set in M is contained in a basis.

Show that, just as in the case of vector spaces, an R-homomorphism can be
defined by assigning arbitrary values on the elements of a basis and
extending by linearity.

Let 7 € homp(M, N) be an R-isomorphism. If B is a basis for M, prove
that 78 = {7b | b € B} is a basis for N.

Let M be an R-module and let 7 € homp (M, M) be an R-endomorphism.
If 7 is idempotent, that is, if 72> = 7, show that

M = ker(7) @ im(7)

Does the converse hold?

Consider the ring R = F[x,y] of polynomials in two variables. Show that
the set M consisting of all polynomials in R that have zero constant term is
an R-module. Show that M is not a free R-module.

Prove that if R is an integral domain, then all R-modules M have the
following property: If vy, ..., v, is linearly independent over R, then so is
rvy, ..., T, for any nonzero r € R.
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12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.
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Prove that if a nonzero commutative ring R with identity has the property
that every finitely generated R-module is free then R is a field.
Let M and N be R-modules. If S is a submodule of M and T is a
submodule of N show that
Me&N M __N
SN g

SeT ~ S T

If R is a commutative ring with identity and Z is an ideal of R, then 7 is an

R-module. What is the maximum size of a linearly independent set in Z?

Under what conditions is Z free?

a) Show that for any module M over an integral domain the set M, of all
torsion elements in a module M is a submodule of M.

b) Find an example of a ring R with the property that for some R-module
M the set M, is not a submodule.

c) Show that for any module M over an integral domain, the quotient
module M /M, is torsion-free.

a) Find a module M that is finitely generated by torsion elements but for
which ann(M) = {0}.

b) Find a torsion module M for which ann(M) = {0}.

Let N be an abelian group together with a scalar multiplication over a ring

R that satisfies all of the properties of an R-module except that 1v does not

necessarily equal v for all v € N. Show that N can be written as a direct

sum of an R-module N and another “pseudo R-module” N;.

Prove that homp(M, N) is an R-module under addition of functions and

scalar multiplication defined by

(r7)(v) = r(rv) = 7(rv)

Prove that any R-module M is isomorphic to the R-module homp(R, M).
Let R and S be commutative rings with identity and let f: R — S be a ring
homomorphism. Show that any S-module is also an R-module under the
scalar multiplication

rv= f(rjv

Prove that homy,(Z,,, Z,,) =~ Z; where d = ged(n, m).

Suppose that R is a commutative ring with identity. If Z and 7 are ideals of
R for which R/ ~ R/J as R-modules, then prove that Z = 7. Is the
result true if R/Z ~ R/J as rings?



Chapter 5
Modules II: Free and Noetherian Modules

The Rank of a Free Module

Since all bases for a vector space V' have the same cardinality, the concept of
vector space dimension is well-defined. A similar statement holds for free R-
modules when the base ring is commutative (but not otherwise).

Theorem 5.1 Let M be a free module over a commutative ring R with identity.
1) Then any two bases of M have the same cardinality.

2) The cardinality of a spanning set is greater than or equal to that of a basis.
Proof. The plan is to find a vector space V' with the property that, for any basis
for M, there is a basis of the same cardinality for V. Then we can appeal to the
corresponding result for vector spaces.

Let 7 be a maximal ideal of R, which exists by Theorem 0.23. Then R/Z is a
field. Our first thought might be that M is a vector space over R/Z, but that is
not the case. In fact, scalar multiplication using the field R/Z,

(r+Zv=rv

is not even well-defined, since this would require that ZM = {0}. On the other
hand, we can fix precisely this problem by factoring out the submodule
IM ={ayv1+ -+ ayv, | a; € T,v; € M}
Indeed, M /I M is a vector space over R/Z, with scalar multiplication defined
by
(r+I2Y(u+ZIM)=ru+IM
To see that this is well-defined, we must show that the conditions
r+Z=1r+71
u+IM=u+IM

imply
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ru+IM =7v +IM
But this follows from the fact that
ru—7r'v =r(u—u)+(r—rW eIM

Hence, scalar multiplication is well-defined. We leave it to the reader to show
that M /T M is a vector space over R/Z.

Consider now a set B = {b; | i € I} C M and the corresponding set

M
B+IM={b+IM|icl}C ——
+ {b; + |ie }_IM

If B spans M over R, then B + ZM spans M /ZM over R/Z. To see this, note
that any v € M has the form v = Xr;b; for r; € R and so

v+ IM = (Z r,,;jb,,;j> +IM
J
— Z 7i,(bs, + TM)
J

= Z (ri, + I)(bi, + IM)

which shows that B + ZM spans M /T M.

Now suppose that B = {b; | i € I} is a basis for M over R. We show that
B+ IM is a basis for M /ZM over R/Z. We have seen that B+ ZM spans
M /IM. Also, if

Z (ri, + I)(bi, + IM) = IM

J

then Z} 7;;b;; € TM and so
> ribi, =D aibi
J k

where a;, € Z. From the linear independence of B we deduce that r;, € 7 for all
jand so 7, +Z =T. Hence B+ IM is linearly independent and therefore a
basis, as desired.

To see that |B| = |B + ZM]|, note that if b; + ZM = b, + ZM, then
bi — bk = Z aijbij
J

where a;; € Z. If b; # by, then the coefficient of b; on the right must be equal to
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1 and so 1 € Z, which is not possible since 7 is a maximal ideal. Hence,
b; = by.
Thus, if B is a basis for M over R, then

|B|=|B+IM|= dimR/I(M/IM)

and so all bases for M over R have the same cardinality, which proves part 1).

Finally, if B spans M over R, then B+ ZM spans M /ZM and so
dimp,7(M/IM) < |B+IM| < |B]

Thus, B has cardinality at least as great as that of any basis for M over R.[0

The previous theorem allows us to define the rank of a free module. (The term
dimension is not used for modules in general.)

Definition Let R be a commutative ring with identity. The rank tk(M) of a
nonzero free R-module M is the cardinality of any basis for M. The rank of the
trivial module {0} is 0.00

Theorem 5.1 fails if the underlying ring of scalars is not commutative. The next
example describes a module over a noncommutative ring that has the
remarkable property of possessing a basis of size n for any positive integer n.

Example5.1 Let V' be a vector space over F' with a countably infinite basis
B = {by,b1,...}. Let L(V) be the ring of linear operators on V. Observe that
L(V') is not commutative, since composition of functions is not commutative.

The ring £(V') is an £(V')-module and as such, the identity map ¢ forms a basis
for L(V'). However, we can also construct a basis for £(V') of any desired finite
size n. To understand the idea, consider the case n = 2 and define the operators

p1 and (2 by

Bi(bar) = bk, B1(bar1) =0
and

Ba(bar) = 0, Ba(bor+1) = by

These operators are linearly independent essentially because they are surjective
and their supports are disjoint. In particular, if

fB1+96:=0
then

0= (fB1+ 90B2)(bax) = f(br)
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and

0= (fB1+ gB2)(bars1) = g(br)

which shows that f = 0 and g = 0. Moreover, if h € £(V'), then we define f
and g by

from which it follows easily that

h = fB1+ 9B
which shows that {31, B2} is a basis for L(V).

More generally, we begin by partitioning B into n blocks. For each
s=0,...,n—1,let

Bs ={b; | i = smod n}
Now we define elements 3, € L(V') by
ﬂs(bkﬂH-t) = 6t7sbk

where 0 < ¢ < n and where ¢, , is the Kronecker delta function. These functions
are surjective and have disjoint support. It follows that C,, = {fo, ..., Bn-1} is
linearly independent. For if

0= 04060 + -+ anflﬁnfl
where a; € L(V'), then, applying this to by, gives
0= Oétﬂt(bknﬁ) = at(bk)

for all k. Hence, a; = 0.

Also, C,, spans L(V), forif 7 € L(V'), we define oy € L(V') by
s (b)) = T(bpss)
to get
(@oBo + -+ + an-180-1) (brnst) = B (brn+t) = a(br) = T(brn+t)
and so
T=apfo+ -+ an-18m1
Thus, C, = {fo, ..., Bn—1} is a basis for L(V) of size n.O

Recall that if B is a basis for a vector space V' over F', then V' is isomorphic to
the vector space (F'?), of all functions from B to F that have finite support. A
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similar result holds for free R-modules. We begin with the fact that (R?), is a
free R-module. The simple proofis left to the reader.

Theorem 5.2 Let B be any set and let R be a commutative ring with identity.
The set (RP)q of all functions from B to R that have finite support is a free R-
module of rank | B| with basis B = {6y} where

|1 ifz=b
‘5”(”5){0 ifz#b

This basis is referred to as the standard basis for (R”),.0]

Theorem 5.3 Let M be an R-module. If B is a basis for M, then M is
isomorphic to (R?),.
Proof. Consider the map 7: M — (R?), defined by setting

Tb:5b

where ¢ is defined in Theorem 5.2 and extending 7 to M by linearity. Since 7
maps a basis for M to a basis B = {8} for (R?)g, it follows that 7 is an
isomorphism from M to (R?),.00

Theorem 5.4 Two free R-modules (over a commutative ring) are isomorphic if
and only if they have the same rank.

Proof. If M ~ N, then any isomorphism 7 from M to N maps a basis for M to
a basis for N. Since 7 is a bijection, we have k(M) = rk(/N). Conversely,
suppose that rk(M) = rk(N). Let B be a basis for M and let C be a basis for N.
Since |B| = |C|, there is a bijective map 7: B — C. This map can be extended by
linearity to an isomorphism of M onto N and so M ~ N.O

We have seen that the cardinality of a (minimal) spanning set for a free module
M is at least equal to rk(M). Let us now speak about the cardinality of maximal
linearly independent sets.

Theorem 5.5 Let R be an integral domain and let M be a free R-module. Then
all linearly independent sets have cardinality at most tk(M).

Proof. Since M = (R"), we need only prove the result for (R")o. Let ) be the
field of quotients of R. Then (Q"), is a vector space. Now, if

B={vi|iel} C(R") < (Q)o

is linearly independent over () as a subset of (Q")y, then B is clearly linearly
independent over R as a subset of (R"),. Conversely, suppose that 3 is linearly
independent over R and

r T

ivil —+ 4 ivik =0

S1 S
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where s; # 0 for all ¢ and r; # 0 for some j. Multiplying by s = s1---5;, # 0
produces a nontrivial linear dependency over R,

s s

—rv;, + -+ —rpv;, =0

S1 Sk
which implies that r; = 0 for all ¢. Thus B is linearly dependent over R if and
only if it is linearly dependent over (). But in the vector space (Q")y, all sets of
cardinality greater than ~ are linearly dependent over ) and hence all subsets of
(R") of cardinality greater than « are linearly dependent over R.[]

Free Modules and Epimorphisms

If o: M — F is a module epimorphism where F' is free on 3, then it is easy to
define a right inverse for o, since we can define an R-map op: ' — M by
specifying its values arbitrarily on B and extending by linearity. Thus, we take
or(b) to be any member of o1 (b). Then Theorem 4.16 implies that ker(o) is a
direct summand of M and

M = ker(o) B F

This discussion applies to the canonical projection 7m: M — M /S provided that
the quotient M /S is free.

Theorem 5.6 Let R be a commutative ring with identity.
1) If o:M — F is an R-epimorphism and F is free, then ker(c) is
complemented and

M =ker(c) ® N = ker(c) B F

where N ~ F'.
2) If'Sis a submodule of M and if M /S is free, then S is complemented and
M
M~ SH—
S

If M, S and M /S are free, then

ruM):&wy+m<¥)

and if the ranks are all finite, then

w<¥>_&mn—ww) O

Noetherian Modules

One of the most desirable properties of a finitely generated R-module M is that
all of its submodules be finitely generated:
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M finitely generated, S < M = S finitely generated

Example 4.2 shows that this is not always the case and leads us to search for
conditions on the ring R that will guarantee this property for R-modules.

Definition An R-module M is said to satisfy the ascending chain condition
(abbreviated ACC) on submodules if every ascending sequence of submodules

S1C 85 CS;C -
of M is eventually constant, that is, there exists an index k _for which
Sk = Sk1 = Sgr2 =+

Modules with the ascending chain condition on submodules are also called
Noetherian modules (after Emmy Noether, one of the pioneers of module
theory).]

Since a ring R is a module over itself and since the submodules of the module R
are precisely the ideals of the ring R, the preceding definition can be formulated
for rings as follows.

Definition 4 ring R is said to satisfy the ascending chain condition
(abbreviated ACC) on ideals if any ascending sequence

LhCL,CI3C -
of ideals of R is eventually constant, that is, there exists an index k for which

Ly =Iip1 = Lig2 = -+~

A ring that satisfies the ascending chain condition on ideals is called a
Noetherian ring.[J

The following theorem describes the relevance of this to the present discussion.

Theorem 5.7

1) An R-module M is Noetherian if and only if every submodule of M is
finitely generated.

2) In particular, a ring R is Noetherian if and only if every ideal of R is
finitely generated.

Proof. Suppose that all submodules of M are finitely generated and that M

contains an infinite ascending sequence

51 CS5CSC--- (5.1

of submodules. Then the union
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s=UJs
J
is easily seen to be a submodule of M. Hence, S is finitely generated, say

S = {(uy,...,u,). Since u; € S, there exists an index k; such that u; € Sj.
Therefore, if K = max{ky, ..., k,}, we have

{ula"'yun} g Sk
and so
S = <<u1a---7un>> gSk gSk+1 C SkJrQ C - gS

which shows that the chain (5.1) is eventually constant.

For the converse, suppose that M satisfies the ACC on submodules and let S be
a submodule of M. Pick u; € S and consider the submodule S} = ((u;)) C S
generated by uy. If S; = 5, then S is finitely generated. If S; # S, then there is
aug €S —51. Now let Sy = ((u1,us)). If S = S, then S is finitely generated.
If Sy#S5, then pick u3; €S —95; and consider the submodule
S3 = ((ug,u9,u3)).

Continuing in this way, we get an ascending chain of submodules
(ur)) € (ur, ug)) € (ur,ug,ug) ©--- €

If none of these submodules were equal to S, we would have an infinite
ascending chain of submodules, each properly contained in the next, which
contradicts the fact that M satisfies the ACC on submodules. Hence,
S = ((u1,...,u,) for some n and so S is finitely generated..I

Our goal is to find conditions under which all finitely generated R-modules are
Noctherian. The very pleasing answer is that all finitely generated R-modules
are Noetherian if and only if R is Noetherian as an R-module, or equivalently,
as a ring.

Theorem 5.8 Let R be a commutative ring with identity.

1) R is Noetherian if and only if every finitely generated R-module is
Noetherian.

2) Let R be a principal ideal domain. If an R-module M is n-generated, then
any submodule of M is also n-generated.

Proof. For part 1), one direction is evident. Assume that R is Noetherian and

let M = ((u1,...,u,) be a finitely generated R-module. Consider the

epimorphism 7: R" — M defined by

T(ri,...,m) = rup + -+ Ty,

Let S be a submodule of M. Then
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7 1(S)={ue R"|Tue S}

is a submodule of R" and 7(771S) = S. If every submodule of R" is finitely
generated, then 771(S) is finitely generated and so 771(S) = (v1,...,vx).
Then S is finitely generated by {7v1, ..., 7v; }. Thus, it is sufficient to prove the
theorem for R", which we do by induction on n.

If n =1, any submodule of R is an ideal of R, which is finitely generated by
assumption. Assume that every submodule of R* is finitely generated for all
1 <k < nandlet S be a submodule of R".

If n > 1, we can extract from S something that is isomorphic to an ideal of R
and so will be finitely generated. In particular, let S be the “last coordinates” in
S, specifically, let

S1=1(0,...,0,a,) | (a1,...,an_1,a,) € S for some ay,...,a,_1 € R}

The set .S; is isomorphic to an ideal of R and is therefore finitely generated, say
= {(G1)), where G = {g1, ..., gi} is a finite subset of 5.

Also, let
Sy={veS|v=(ay,...,a,-1,0) for someay,...,a, 1 € R}

be the set of all elements of S’ that have last coordinate equal to 0. Note that Sy
is a submodule of R" and is isomorphic to a submodule of R"~'. Hence, the
inductive hypothesis implies that S5 is finitely generated, say So = ((G2)), where
G, 1s a finite subset of S.

By definition of Sy, each g; € G; has the form
9 =1(0,...,0,9in)
for g; , € R where there is a g; € S of the form
G = (9ips---s Gin-1,Gin)

Let G = {gy,...,0:}. We claim that S is generated by the finite set G; U Gs.

To see this, let v = (ay,...,a,) € S. Then (0,...,0,a,) € S; and so

( 0, an Z Tigi

for r; € R. Consider now the sum
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k
w = Zr@: € (G1)

The last coordinate of this sum is

k
E TiGin = An
1=1

and so the difference v — w has last coordinate 0 and is thus in Sy = {(G).
Hence

v=(v—w)+we(Gi) + (G) = (G1UG))

as desired.

For part 2), we leave it to the reader to review the proof and make the necessary
changes. The key fact is that S is isomorphic to an ideal of R, which is
principal. Hence, S is generated by a single element of M .01

The Hilbert Basis Theorem

Theorem 5.8 naturally leads us to ask which familiar rings are Noetherian. The
following famous theorem describes one very important case.

Theorem 5.9 (Hilbert basis theorem) If a ring R is Noetherian, then so is the
polynomial ring R[x].

Proof. We wish to show that any ideal Z in R[z] is finitely generated. Let L
denote the set of all leading coefficients of polynomials in Z, together with the 0
element of R. Then L is an ideal of R.

To see this, observe that if o € L is the leading coefficient of f(x) € Z and if
r € R, then either ra = 0 or else r« is the leading coefficient of rf(z) € Z. In
either case, ra € L. Similarly, suppose that § € L is the leading coefficient of
g(z) € 7. We may assume that deg f(x) = i and deg g(z) = j, with ¢ < j. Then
h(x) = 297" f(x) is in Z, has leading coefficient o and has the same degree as
g(x). Hence, either a« — (3 is 0 or a«— [ is the leading coefficient of
h(z) — g(x) € Z.In either case « — 3 € L.

Since L is an ideal of the Noetherian ring R, it must be finitely generated, say
L = {(ay,...,ay). Since a; € L, there exist polynomials f;(x) € Z with leading
coefficient a;. By multiplying each f;(x) by a suitable power of x, we may
assume that

deg fi(x) = d = max{deg f;(z)}

forall: =1,...,m.
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Now for k=0,...,d —1 let L; be the set of all leading coefficients of
polynomials in Z of degree k, together with the 0 element of R. A similar
argument shows that L, is an ideal of R and so Lj is also finitely generated.
Hence, we can find polynomials P, = {pr1(z),...,ppn(x)} in T whose
leading coefficients constitute a generating set for Lj,.

Consider now the finite set
d—1
P = (U Pk) U {fl(l')a LR fm(w)}
k=0

If J is the ideal generated by P, then J C Z. An induction argument can be
used to show that 7 =Z. If g(x) € Z has degree 0, then it is a linear
combination of the elements of P, (which are constants) and is thus in 7.
Assume that any polynomial in Z of degree less than k is in 7 and let g(z) € T
have degree k.

If k < d, then some linear combination h(z) over R of the polynomials in P
has the same leading coefficient as g(z) and if k > d, then some linear
combination i (z) of the polynomials

{xkﬂlfl(x)v 7xk7dfm($)} cJ

has the same leading coefficient as g(x). In either case, there is a polynomial
h(z) € J that has the same leading coefficient as g(x). Since g(z) — h(z) € 7
has degree strictly smaller than that of g(z) the induction hypothesis implies that

glx) —h(r) e J
and so
g9(x) = [g(x) = h(@)| + h(z) € T
This completes the induction and shows that Z = 7 is finitely generated.[]
Exercises

1. If M is a free R-module and 7: M — N is an epimorphism, then must NV
also be free?

2. Let Z be an ideal of R. Prove that if R/Z is a free R-module, then Z is the

zero ideal.

Prove that the union of an ascending chain of submodules is a submodule.

4. Let S be a submodule of an R-module M. Show that if M is finitely
generated, so is the quotient module M /S.

5. Let S be a submodule of an R-module. Show that if both S and M /S are
finitely generated, then so is M .

6. Show that an R-module M satisfies the ACC for submodules if and only if
the following condition holds. Every nonempty collection S of submodules

[08)
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12.
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14.

15.
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of M has a maximal element. That is, for every nonempty collection S of

submodules of M there is an S &S with the property that

TeS=TCS.

Let 7: M — N be an R-homomorphism.

a) Show that if M is finitely generated, then so is im(7).

b) Show that if ker(r) and im(r) are finitely generated, then
M =ker(7) + S where S is a finitely generated submodule of M.
Hence, M is finitely generated.

If R is Noetherian and 7 is an ideal of R show that R/Z is also Noetherian.

Prove that if R is Noetherian, then so is R[z1, ..., ;).

Find an example of a commutative ring with identity that does not satisfy

the ascending chain condition.

a) Prove that an R-module M is cyclic if and only if it is isomorphic to
R/T where 7T is an ideal of R.

b) Prove that an R-module M is simple (M # {0} and M has no proper
nonzero submodules) if and only if it is isomorphic to R/Z where Z is
a maximal ideal of R.

¢) Prove that for any nonzero commutative ring R with identity, a simple
R-module exists.

Prove that the condition that R be a principal ideal domain in part 2) of

Theorem 5.8 is required.

Prove Theorem 5.8 in the following way.

a) Show that if T C S are submodules of M and if T and S/T are
finitely generated, then so is S.

b) The proof is again by induction. Assuming it is true for any module
generated by n elements, let M = ((v1,...,v,41)) and let
M’ = {(v1,...,v,)). Thenlet T'= S N M’ in part a).

Prove that any R-module M is isomorphic to the quotient of a free module

F. If M is finitely generated, then F' can also be taken to be finitely

generated.

Prove that if S and 7" are isomorphic submodules of a module M it does

not necessarily follow that the quotient modules M /S and M /T are

isomorphic. Prove also that if S ® T ~S ® T, as modules it does not
necessarily follow that 77 ~ T5. Prove that these statements do hold if all
modules are free and have finite rank.



Chapter 6
Modules over a Principal Ideal Domain

We remind the reader of a few of the basic properties of principal ideal
domains.

Theorem 6.1 Let R be a principal ideal domain.

1) An element r € R is irreducible if and only if the ideal (r) is maximal.

2) An element in R is prime if and only if it is irreducible.

3) R is a unique factorization domain.

4) R satisfies the ascending chain condition on ideals. Hence, so does any
finitely generated R-module M. Moreover, if M is n-generated, then any
submodule of M is n-generated.

Annihilators and Orders

When R is a principal ideal domain, all annihilators are generated by a single
element. This permits the following definition.

Definition Let R be a principal ideal domain and let M be an R-module.

1) If N is a submodule of M, then any generator of ann(N) is called an order
of N.

2) Anorder of an element v € M is an order of the submodule ((v)).0O]

For readers acquainted with group theory, we mention that the order of a
module corresponds to the smallest exponent of a group, not to the order of the

group.

Theorem 6.2 Let R be a principal ideal domain and let M be an R-module.

1) If o is an order of N < M, then the orders of N are precisely the
associates of a. We denote any order of N by o(N) and, as is customary,
refer to o(N) as “the” order of N.

2) IfM =A® B, then

o(M) =lem(o(A),o(B))
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that is, the orders of M are precisely the least common multiples of the
orders of A and B.
Proof. We leave proof of part 1) for the reader. For part 2), suppose that

o(M)=16, o(A)=a, o(B)=p, I=Ilm(q,p)

Then 6 A = {0} and 6B = {0} imply that « | 6 and 5 | 6 and so A | 6. On the
other hand, A annihilates both A and B and therefore also M = A & B. Hence,
6| Aand so A ~ ¢ is an order of M.

Cyclic Modules

The simplest type of nonzero module is clearly a cyclic module. Despite their
simplicity, cyclic modules will play a very important role in our study of linear
operators on a finite-dimensional vector space and so we want to explore some
of their basic properties, including their composition and decomposition.

Theorem 6.3 Let R be a principal ideal domain.

1) If {v)) is a cyclic R-module with annihilator (), then the multiplication
map 7: R — ((v)) defined by Tr = rv is an R-epimorphism with kernel {c).
Hence the induced map

_ R
o: E — ((v)
defined by
o(r+(a)) =rv
is an isomorphism. In other words, cyclic R-modules are isomorphic to
quotient modules of the base ring R.

2)  Any submodule of a cyclic R-module is cyclic.
3) If {(v)) is a cyclic submodule of M of order «, then for 3 € R,

o({(Bv)

~ ged(B,a)
Also,
(Bu) =(v) < (o(v),B)=1 <« o(Bv)=o(v)

Proof. We leave proof of part 1) as an exercise. For part 2), let S < ((v)). Then
I={reR|rve S}isanideal of R and so I = (s) for some s € R. Thus,

S = Tv= Rsv= (sv))

For part 3), we have r(v) = 0 if and only if (r3)v = 0, that is, if and only if
« | 3, which is equivalent to
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(67

" ged(a,8) |

Thus, r € ann(fv) if and only if r € () and so ann(Sv) = (7). For the second
statement, if (o, 5) = 1 then there exist a,b € R for which aae + b3 = 1 and so

v = (ac+bB)v =bfv € (Bv)) C (v)

and so {(fv)) = ((v)). Of course, if {(Bv)) = ((v)) then o(Bv) = . Finally, if
o(fBv) = a, then

v

«

“= o= eda B

and so («a, 5) = 1.0
The Decomposition of Cyclic Modules
The following theorem shows how cyclic modules can be composed and

decomposed.

Theorem 6.4 Let M be an R-module.
1) (Composing cyclic modules) If uy,...,u, € M have relatively prime
orders, then

o(ur + -+ +uy) = o(ur)---o(uy)
and
(ur) @ ® (un) = {ur + - + un))
Consequently, if
M=A+--+A4,

where the submodules A; have relatively prime orders, then the sum is
direct.

2) (Decomposing cyclic modules) If o(v) = ay---a, where the «;'s are
pairwise relatively prime, then v has the form

V=
where o(u;) = «; and so
(V) = (i + -+ u) = (u) & & (un)

Proof. For part 1), let o, = o(uy), it == o+, and v := uy + -+ + u,,. Then
since x4 annihilates v, the order of v divides u. If o(v) is a proper divisor of y,
then for some index k, there is a prime p | oy for which ;/p annihilates v. But
1/ p annihilates each u; for i # k. Thus,
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0= Py iy = (M)
p p P\

Since o(uy) and p/ay, are relatively prime, the order of (u/ay)uy is equal to
o(uy) = ay, which contradicts the equation above. Hence, o(v) = p.

It is clear that ((u;+ -4 u,) C (u1) ®--- & ((u,)). For the reverse
inclusion, since oy and i/ are relatively prime, there exist r, s € R for which

rog —l—sﬁ =1
aq

Hence
up = <ra1 —|—5M>u1 = sﬂul = sﬁ(ul +ooFuy) € (ur+ - Fuy))
(03] (03] (675]

Similarly, uy, € {(uq + -+ + u,)) for all k and so we get the reverse inclusion.

Finally, to see that the sum above is direct, note that if
v+--+v,=0

where v; € A;, then each v; must be 0, for otherwise the order of the sum on the
left would be different from 1.

For part 2), the scalars 3, = i1/, are relatively prime and so there exist a; € R
for which

aifi+ - +afp=1
Hence,
v=(a161+ -+ anfy)v=a11v + -+ + an v

Since o(frv) = p/ged(p, Br) = oy and since ay and «y are relatively prime,
we have o(ay,0,v) = ay. The second statement follows from part 1).00

Free Modules over a Principal Ideal Domain

We have seen that a submodule of a free module need not be free: The
submodule Z x {0} of the module Z x Z over itself is not free. However, if R
is a principal ideal domain this cannot happen.

Theorem 6.5 Let M be a free module over a principal ideal domain R. Then
any submodule S of M is also free and rk(S) < tk(M).

Proof. We will give the proof first for modules of finite rank and then
generalize to modules of arbitrary rank. Since M ~ R" where n = rk(M) is
finite, we may in fact assume that M = R". Foreach 1 < k < n, let
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I, ={reR]|(ay,...,a;-1,7,0,...,0) € S for some ay,...,a,-1 € R}

Then it is easy to see that I is an ideal of R and so I;; = (r};) for some r; € R.
Let

up = (a1,...,a5-1,7%,0,...,0) € S
We claim that

B={u;|k=1,...,nandr; # 0}
is a basis for S. As to linear independence, suppose that

B={u;,...,u; }
and that
ajuj + - +aju;, =0

Then comparing the j,th coordinates gives ajr; = 0 and since 7; # 0, it

follows that a;, = 0. In a similar way, all coefficients are 0 and so B is linearly
independent.

To see that B spans .S, we partition the elements x € S according to the largest
coordinate index i(x) with nonzero entry and induct on i(x). If i(z) = 0, then
x = 0, which is in the span of 5. Suppose that all © € S with i(x) < k are in
the span of B and let i(x) = k, that is,

z:(al,...,ak,o,...,O)

where aj, #0. Then aj € I, and so 7, #0 and aj, = cry, for some ¢ € R.
Hence, i(x — cup) < k and so y = x — cuy, € (B)) and therefore = € ((B)).
Thus, B is a basis for S.

The previous proof can be generalized in a more or less direct way to modules
of arbitrary rank. In this case, we may assume that M = (R") is the R-module
of functions with finite support from « to R, where x is a cardinal number. We
use the fact that  is a well-ordered set, that is, x is a totally ordered set in which
any nonempty subset has a smallest element. If « € &, the closed interval [0, o]
is

0,0 ={zer|0<z<a}
Let S < M.Foreach0 < a < g, let
Mo = {f €5 |supp(f) € [0, ]}
Then the set
Lo ={f(a) [ f € Mo}
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is an ideal of R and so 1, = (f,(c)) for some f, € S. We show that
B={fa|0<a<k, fola)#0}
is a basis for S. First, suppose that
Mfoy + -+ rnfa, =0
where a; < o for ¢ < j. Applying this to o, gives
Tnfa,(an) =0

and since R is an integral domain, r,, = 0. Similarly, r; = 0 for all 7 and so B is
linearly independent.

To show that B spans S, since any f € S has finite support, there is a largest
index ay = i(f) for which f(ay) # 0. Now, if (B)) < S, then since « is well-
ordered, we may choose a g € S\ (B)) for which o = oy = i(g) is as small as
possible. Then ¢ € M,. Moreover, since 0 # g(«a) € I,, it follows that
fo(a) # 0and g(a) = c¢f,(a) for some ¢ € R. Then

supp(g — cfa) € [0,
and
(9 —cfo)(a) = g(a) —cfa(a) =0
and so i(g — ¢f,) < a, which implies that g — ¢ f,, € (B)). But then
g=(9—cfa) +cfa €(B)

a contradiction. Thus, B is a basis for S.[]

In a vector space of dimension n, any set of n linearly independent vectors is a
basis. This fails for modules. For example, Z is a Z-module of rank 1 but the
independent set {2} is not a basis. On the other hand, the fact that a spanning set
of size n is a basis does hold for modules over a principal ideal domain, as we
now show.

Theorem 6.6 Let M be a free R-module of finite rank n, where R is a principal
ideal domain. Let S = {s1,...,s,} be a spanning set for M. Then S is a basis
for M.

Proof. Let B = {by,...,b,} be a basis for M and define the map : M — M by
7b; = s; and extending to a surjective R-homomorphism. Since M is free,
Theorem 5.6 implies that

M = ker(7) Bim(7) = ker(7) B M

Since ker(7) is a submodule of the free module and since R is a principal ideal
domain, we know that ker(7) is free of rank at most n. It follows that
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tk(M) = rk(ker(7)) + rk(M)

and so rk(ker(7)) = 0, that is, ker(7) = {0}, which implies that 7 is an R-
isomorphism and so S is a basis.[J

In general, a basis for a submodule of a free module over a principal ideal
domain cannot be extended to a basis for the entire module. For example, the set
{2} is a basis for the submodule 2Z of the Z-module Z, but this set cannot be
extended to a basis for Z itself. We state without proof the following result
along these lines.

Theorem 6.7 Let M be a free R-module of rank n, where R is a principal ideal
domain. Let N be a submodule of M that is free of rank k < n. Then there is a
basis B for M that contains a subset S = {vi,...,v;} for which
{rivi,...,rpor} is a basis for N, for some nonzero elements 1, ..., r; of R.O]

Torsion-Free and Free Modules

Let us explore the relationship between the concepts of torsion-free and free. It
is not hard to see that any free module over an integral domain is torsion-free.
The converse does not hold, unless we strengthen the hypotheses by requiring
that the module be finitely generated.

Theorem 6.8 A finitely generated module over a principal ideal domain is free
if and only if'it is torsion-free.

Proof. We leave proof that a free module over an integral domain is torsion-free
to the reader. Let G = {v1,...,v,} be a generating set for M. Consider first the
case n = 1, whence G = {v}. Then G is a basis for M since singleton sets are
linearly independent in a torsion-free module. Hence, M is free.

Now suppose that G = {u, v} is a generating set with u, v # 0. If G is linearly
independent, we are done. If not, then there exist nonzero r,s € R for which
ru = sv. It follows that sM = s{(u,v)) C ((u)) and so sM is a submodule of a
free module and is therefore free by Theorem 6.5. But the map 7: M — sM
defined by 7v = sv is an isomorphism because M is torsion-free. Thus M is
also free.

Now we can do the general case. Write
G = {ul, ey, U, U1y - ,’l)”,k}

where S = {uy,...,u;} is a maximal linearly independent subset of G. (Note
that S is nonempty because singleton sets are linearly independent.)

For each v;, the set {uj,...,ug, v;} is linearly dependent and so there exist
a; € Rand ry,...,r; € R for which
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a;v; +ru + -+ rpup =0
Ifa =ay---a,_, then
aM = al{lug, ..., up, V1, .y Upg ) C (ury ..., ug)
and since the latter is a free module, so is aM, and therefore so is M .[1

The Primary Cyclic Decomposition Theorem

The first step in the decomposition of a finitely generated module M over a
principal ideal domain R is an easy one.

Theorem 6.9 Any finitely generated module M over a principal ideal domain R
is the direct sum of a finitely generated free R-module and a finitely generated
torsion R-module

M = Mfree 3] Mtor

The torsion part My, is unique, since it must be the set of all torsion elements of
M, whereas the free part My, is unique only up to isomorphism, that is, the
rank of the free part is unique.

Proof. It is easy to see that the set M., of all torsion elements is a submodule of
M and the quotient M /M, is torsion-free. Moreover, since M is finitely
generated, so is M /M. Hence, Theorem 6.8 implies that M /M, is free.
Hence, Theorem 5.6 implies that

M = Mtor D F
where F' ~ M / My, is free.
As to the uniqueness of the torsion part, suppose that M =T @& G where T is

torsion and G is free. Then T' C M,,. But if v=1¢+4+ g € My, for t € T and
geG,theng=v—1t € M andsog=0andv € T. Thus, T = M.

For the free part, since M = My, @ F = M, @ G, the submodules F' and G
are both complements of M, and hence are isomorphic.[]
Note that if {wy, ..., w,} is a basis for Mge We can write

M = <<U)1>> SO RERNSS] <<wm>> ¥ Mtor

where each cyclic submodule ((w;)) has zero annihilator. This is a partial
decomposition of M into a direct sum of cyclic submodules.

The Primary Decomposition

In view of Theorem 6.9, we turn our attention to the decomposition of finitely
generated torsion modules M over a principal ideal domain. The first step is to
decompose M into a direct sum of primary submodules, defined as follows.
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Definition Let p be a prime in R. A p-primary (or just primary) module is a
module whose order is a power of p..

Theorem 6.10 (The primary decomposition theorem) Let M be a torsion
module over a principal ideal domain R, with order

€n

p=py"p,

where the p;'s are distinct nonassociate primes in R.
1) M is the direct sum

M =M, & &M,
where

My =M = {v € M |5 v =0}

(2

is a primary submodule of order p'. This decomposition of M into primary
submodules is called the primary decomposition of M.

2) The primary decomposition of M is unique up to order of the summands.
That is, if

M:qu@...@]\f

m

where N, is primary of order q;' and qi, ..., qy are distinct nonassociate
primes, then m = n and, after a possible reindexing, N, = M, Hence,
fi=eandq; ~p;, fori=1,... n

3) Two R-modules M and N are isomorphic if and only if the summands in
their primary decompositions are pairwise isomorphic, that is, if

M =M, & &M,

and

N=N,®--- &N,

m

are primary decompositions, then m = n and, after a possible reindexing,
M, ~ N, fori=1,...,n.
Proof. Let us write 4, = p/p;" and show first that

My, = M = {pv | ve M}

Since p;’ (M) = pM = {0}, we have p;M C M,,. On the other hand, since
i and p* are relatively prime, there exist a,b € R for which

ap; +bp; =1

and so if x € M, then
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z = (ap; +bp; )z = apix € M
Hence M, = p; M.

For part 1), since ged(p1, ..., 14n) = 1, there exist scalars a; for which
arpr + -+ app, =1

and so for any z € M,

n
= (apy + -+ anpin)x € ZmM
i=1

Cit

Moreover, since the o(p; M) | p;' and the p;’'s are pairwise relatively prime, it

follows that the sum of the submodules y; M is direct, that is,
M=uM®- & p,M=M, & &M,
As to the annihilators, it is clear that (p;") C ann(p,;M). For the reverse

inclusion, if r € ann(w; M), then rp; € ann(M) and so p;'p; | rp;, that is,
p;' | rand sor € (p{'). Thus ann(p; M) = (p').

As to uniqueness, we claim that ¢ = qlll- --q/m is an order of M. It is clear that q
annihilates M and so p | g. On the other hand, N,, contains an element wu; of

order qu and so the sum v = wu; + --- 4+ w,, has order ¢, which implies that
q | n. Hence, ¢ and p are associates.

Unique factorization in R now implies that m =n and, after a suitable
reindexing, that f; = e; and ¢; and p; are associates. Hence, IV, is primary of
order p;'. For convenience, we can write N, as N,,. Hence,

N, C{ve M |piv=0} =DM,
But if
Np @ ®Np, =M, &S M,

and N,, € M,, for all i, we must have N,, = M,, for all ¢.

For part 3), if m = n and 0;: M), = N, then the map o: M — N defined by
U(al _|_ e + an) — 0—1(0’1) + _|_ a-n(an)

is an isomorphism and so M ~ N. Conversely, suppose that o: M ~ N. Then
M and N have the same annihilators and therefore the same order

Cn

p=pi--p

Hence, part 1) and part 2) imply that m = n and after a suitable reindexing,
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q; = p;- Moreover, since

a€ M, s pa=0%o(ua) =04 poa=0%4 oa €N,
it follows that o: M), = N,,.0]

The Cyclic Decomposition of a Primary Module

The next step in the decomposition process is to show that a primary module
can be decomposed into a direct sum of cyclic submodules. While this
decomposition is not unique (see the exercises), the set of annihilators is unique,
as we will see. To establish this uniqueness, we use the following result.

Lemma 6.11 Let M be a module over a principal ideal domain R and let

p € R be a prime.

1) If pM = {0}, then M is a vector space over the field R/(p) with scalar
multiplication defined by

(r+ (p)o =10

forallve M.
2) For any submodule S of M the set

S ={veS|pv=0}
is also a submodule of M and if M = S ® T, then
M®P = 8w g 70

Proof. For part 1), since p is prime, the ideal (p) is maximal and so R/(p) is a
field. We leave the proof that M is a vector space over R/(p) to the reader. For
part 2), it is straightforward to show that S is a submodule of M. Since
S C S and T C T we see that S®) N T® = {0}. Also, if v € M), then
pv=0. But v=s+1 for some s € .S and t € T and so 0 = pv = ps + pt.
Since ps € S and pt € T we deduce that ps = pt = 0, whence v € S®) @ T®),
Thus, M®) C S @ T But the reverse inequality is manifest.(]

Theorem 6.12 (The cyclic decomposition theorem of a primary module) Let
M be a primary finitely generated torsion module over a principal ideal domain
R, with order p°.

1) M is a direct sum

M = (v1)) & - & (vn) (6.1)

of cyclic submodules with annihilators ann({(v;))) = (p®), which can be
arranged in ascending order

ann(((v1))) C --- C ann({(v,,))
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or equivalently,

e=e e > 2e
2) As to uniqueness, suppose that M is also the direct sum
M = (ur)) & - & {um))

of cyclic submodules with annihilators ann({(u;))) = (¢%), arranged in
ascending order

ann(((u1))) € -+ C ann({(u;n)))
or equivalently
L2z 2> fn
Then the two chains of annihilators are identical, that is, m = n and
ann(((u;))) = ann({v:)))

for alli. Thus, p ~ q and f; = e; for all i.
3) Two p-primary R-modules

M= () @ D (vn)
and

are isomorphic if and only if they have the same annihilator chains, that is,
if and only if m = n and, after a possible reindexing,

ann(((u;))) = ann({(v;)))
Proof. Let v; € M have order equal to the order of M, that is,
ann(vy) = ann(M) = (p°)

Such an element must exist since o(v;) < p€ for all v € M and if this inequality
is strict, then p®~! will annihilate M .

If we show that ((v;)) is complemented, that is, M = ((v1)) © S; for some
submodule 51, then since \S; is also a finitely generated primary torsion module
over R, we can repeat the process to get

M = (1)) ® (va2)) ® 5>
where ann(v;) = (p“). We can continue this decomposition:
M = (1)) @ (v2)) © - © ((vn)) © Sy

as long as S,, # {0}. But the ascending sequence of submodules
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(o)) € (1)) & ((v2)) € -
must terminate since M is Noetherian and so there is an integer n for which

eventually S, = {0}, giving (6.1).

Let v = v;. The direct sum M; = ((v)) @ {0} clearly exists. Suppose that the
direct sum

M, = <<’U>> ® Sk

exists. We claim that if M} < M, then it is possible to find a submodule Sy
for which Sj, < Sy, and for which the direct sum M1 = {(v)) & Sy, also
exists. This process must also stop after a finite number of steps, giving
M = ((v)) @ S as desired.

If My < M and u € M \ My, let
Skr1 = (Sk,u — av))

for « € R. Then Sy < Ski1 since u ¢ M. We wish to show that for some
a € R, the direct sum

{(v) ® Sk
exists, that is,
z e (W) N{Sku—av) =x=0
Now, there exist scalars a and b for which
x=av=s+blu—av)
for s € S;. and so if we find a scalar « for which
b(u — aw) € Sy (6.2)

then ((v)) NS, = {0} implies that z = 0 and the proof of existence will be
complete.

Solving for bu gives
bu = (a+ ab)v—s € (v) & Sy = My,
so let us consider the ideal of all such scalars:
I={reR|rue M}
Since p® € 7 and 7 is principal, we have
T=)
for some f < e. Also, f > 0 since u ¢ M}, implies that 1 ¢ 7.
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Since b € 7, we have b = 3p/ and there exist d € R and ¢t € S}, for which
plu=dv+t
Hence,
bu = Bpu = B(dv +t) = Bdv + Gt

Now we need more information about d. Multiplying the expression for p/u by
p~! gives

0=pu=p~T(pu)=pTdo+pIt

and since ((v)) N Sy, = {0}, it follows that p°~/dv = 0. Hence, p° | p°~/d, that
is, p/ | dand so d = 6p! for some 6 € R. Now we can write

bu = B6pTv+ ft

and so

b(u — év) = pt € Sy,
Thus, we take o = 6 to get (6.2) and that completes the proof of existence.
For uniqueness, note first that A/ has orders p® and ¢* and so p and ¢ are

associates and e; = fi. Next we show that n = m. According to part 2) of
Lemma 6.10,

M® — <<v1>>(p) DD <<vn>>(p)
and
M® = (u )P @ - @ ()P

where all summands are nonzero. Since pM®) = {0}, it follows from Lemma
6.10 that M) is a vector space over R/(p) and so each of the preceding
decompositions expresses M) as a direct sum of one-dimensional vector
subspaces. Hence, m = dim(M®) = n.

Finally, we show that the exponents e; and f; are equal using induction on e;. If
e; =1, then e; = 1 for all 7 and since f; = e;, we also have f; =1 for all .
Suppose the result is true whenever e; < k — 1 and let e; = k. Write

(e1,...,en) = (e1,... €5, 1,...,1),es > 1

and

(fl;---;f’n) = (f17~~~7ft717~~~71);ft>1
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Then

pM = p{{or)) © - © p((vs)
and

pM = p{(ur)) @ --- @ pllur))

But p{(v1)) = ((pv1)) is a cyclic submodule of M with annihilator (p®~!) and so
by the induction hypothesis

s=tande; = fi,...,e5 = fs

which concludes the proof of uniqueness.

For part 3), suppose that o: M =~ N and M has annihilator chain

ann(((v1))) C -+ C ann({(v,,)))

and NV has annihilator chain
ann({(u1))) € --- € ann(((up)))
Then
N=0M = {(ov1)) @ --- @ {ov,)
and so m = n and after a suitable reindexing,
ann({(v;))) = ann(((ov;))) = ann(((u;))

Conversely, suppose that

M = (v)) & - & (vn)
and

N = () - ® (um)
have the same annihilator chains, that is, m = n and

ann(((u;))) = ann({(vi)))
Then

The Primary Cyclic Decomposition

Now we can combine the various decompositions.

Theorem 6.13 (The primary cyclic decomposition theorem) Let M be a
finitely generated torsion module over a principal ideal domain R.
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1) If M has order

€n

= pil Py

where the p;'s are distinct nonassociate primes in R, then M can be
uniquely decomposed (up to the order of the summands) into the direct sum

M =My, & & M,
where
M, =M ={veM|pv=0}

is a primary submodule with annihilator (p'). Finally, each primary
submodule M, can be written as a direct sum of cyclic submodules, so that

M= [(ora) & & (o) ] @@ [(vir) & & (vus,)]

N j[’n

M,

€ j

where ann({(v; ;))) = (p;,"”’) and the terms in each cyclic decomposition can
be arranged so that, for each i,

ann({(v;,1))) C -+ € ann({(v; )

or, equivalently,
€ =€l > €32> 2> C
2) As for uniqueness, suppose that
M = [{ura) & - & (ui; )] & - & [{um1) & - & (um,,)]

Ny Ny

is also a primary cyclic decomposition of M. Then,

a) The number of summands is the same in both decompositions, in fact,
m = n and after possible reindexing, k, = j, for all u.

b) The primary submodules are the same; that is, after possible
reindexing, q; ~ p; and Ny, = M),

¢) For each primary submodule pair N, = M, the cyclic submodules
have the same annihilator chains; that is, after possible reindexing,

ann(((u; ;))) = ann(((v; ;)))

forall i, j.
In summary, the primary submodules and annihilator chains are uniquely
determined by the module M.
3) Two R-modules M and N are isomorphic if and only if they have the same
annihilator chains.C]
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Elementary Divisors

Since the chain of annihilators

ann(((v;3)) = (p;")

is unique except for order, the multiset {p;”} of generators is uniquely
determined up to associate. The generators p:f are called the elementary
divisors of M. Note that for each prime p;, the elementary divisor p?’"’ of largest
exponent is precisely the factor of (M) associated to p;.

Let us write ElemDiv(M) to denote the multiset of a/l elementary divisors of
M. Thus, if r € ElemDiv(M ), then any associate of r is also in ElemDiv(M).
We can now say that ElemDiv(M) is a complete invariant for isomorphism.
Technically, the function M +— ElemDiv(M) is the complete invariant, but this
hair is not worth splitting. Also, we could work with a system of distinct
representatives for the associate classes of the elementary divisors, but in
general, there is no way to single out a special representative.

Theorem 6.14 Let R be a principal ideal domain. The multiset ElemDiv(M) is
a complete invariant for isomorphism of finitely generated torsion R-modules,
that is,

M~N <« ElemDiv(M) = ElemDiv(N) O
We have seen (Theorem 6.2) that if
M=A®B
then
o(M) =lem(o(A),o(B))

Let us now compare the elementary divisors of M to those of A and B.

Theorem 6.15 Let M be a finitely generated torsion module over a principal
ideal domain and suppose that

M=AeB

1) The primary cyclic decomposition of M is the direct sum of the primary
cyclic decompositons of A and B; that is, if

A=Plais) and B=(bi;)

are the primary cyclic decompositions of A and B, respectively, then

M= (Plaish) @ (i)

is the primary cyclic decomposition of M.
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2) The elementary divisors of M are
ElemDiv(M) = ElemDiv(A) U ElemDiv(B)

where the union is a multiset union; that is, we keep all duplicate
members.[]

The Invariant Factor Decomposition

According to Theorem 6.4, if S and T are cyclic submodules with relatively
prime orders, then S & T is a cyclic submodule whose order is the product of
the orders of S and 7. Accordingly, in the primary cyclic decomposition of M,

M= [{or) @ @ Lorp) ] D [{vn1) © - D (oar)]
My, My,

with elementary divisors pf” satisfying
€ = €1 2> €9 > > e (6.3)
we can combine cyclic summands with relatively prime orders. One judicious

way to do this is to take the leftmost (highest-order) cyclic submodules from
each group to get

Dy = (1) & - & (on1))
and repeat the process

Dy = ((v12)) & -+ ® (vn2)
Dy = (v13) © -+ D (vn3)

Of course, some summands may be missing here since different primary
modules M, do not necessarily have the same number of summands. In any
case, the result of this regrouping and combining is a decomposition of the form

M=D & & D,

which is called an invariant factor decomposition of M.

For example, suppose that
M = [(vi1)) @ (vi2)] & [(v2a)] © [(vs1)) & (v32))  (vs,3)]
Then the resulting regrouping and combining gives

M = [(v11) © (o) © {o3) ] ® [{v12) @ (v32) | @ [(w33) ]

v .

D, D, Dy

As to the orders of the summands, referring to (6.3), if D; has order d;, then
since the highest powers of each prime p; are taken for d;, the second—highest
for dy and so on, we conclude that
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dm | dm—l | | d2 | dl (64)
or equivalently,
ann(D;) C ann(Ds) C ---

The numbers d; are called invariant factors of the decomposition.

For instance, in the example above suppose that the elementary divisors are
32 3 3
P1,P1s P2, P3, P33, P3
Then the invariant factors are

di = pipopi
d> = pip}
d3 = p3

The process described above that passes from a sequence pf“‘j of eclementary
divisors in order (6.3) to a sequence of invariant factors in order (6.4) is
reversible. The inverse process takes a sequence di,...,d,, satisfying (6.4),
factors each d; into a product of distinct nonassociate prime powers with the
primes in the same order and then “peels off” like prime powers from the left.
(The reader may wish to try it on the example above.)

This fact, together with Theorem 6.4, implies that primary cyclic
decompositions and invariant factor decompositions are essentially equivalent.
Therefore, since the multiset of elementary divisors of M is unique up to
associate, the multiset of invariant factors of M is also unique up to associate.
Furthermore, the multiset of invariant factors is a complete invariant for
isomorphism.

Theorem 6.16 (The invariant factor decomposition theorem) Let M be a
finitely generated torsion module over a principal ideal domain R. Then

M :Dl @"'@Dm
where D; is a cyclic submodule of M, with order d;, where

A | dp—1 | - | do | du

This decomposition is called an invariant factor decomposition of M and the

scalars d; are called the invariant factors of M.

1) The multiset of invariant factors is uniquely determined up to associate by
the module M.

2)  The multiset of invariant factors is a complete invariant for isomorphism.O]

The annihilators of an invariant factor decomposition are called the invariant
ideals of M. The chain of invariant ideals is unique, as is the chain of
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annihilators in the primary cyclic decomposition. Note that d; is an order of M,
that is,

ann(M) = (d1)
Note also that the product
v =dy-dp

of the invariant factors of M has some nice properties. For example, v is the
product of all the elementary divisors of M. We will see in a later chapter that
in the context of a linear operator 7 on a vector space, v is the characteristic
polynomial of 7.

Characterizing Cyclic Modules

The primary cyclic decomposition can be used to characterize cyclic modules
via their elementary divisors.

Theorem 6.17 Let M be a finitely generated torsion module over a principal
ideal domain, with order

€n

M:pi]...pn

The following are equivalent:
1) M is cyclic.
2) M is the direct sum

M= {v) & & (vr)

of primary cyclic submodules ((v;)) of order p;'.
3) The elementary divisors of M are precisely the prime power factors of [i:

ElemDiV(M) = {pfl, . 7p2n}

Proof. Suppose that M is cyclic. Then the primary decomposition of M is a
primary cyclic decomposition, since any submodule of a cyclic module is cyclic.
Hence, 1) implies 2). Conversely, if 2) holds, then since the orders are relatively
prime, Theorem 6.4 implies that M is cyclic. We leave the rest of the proof to
the reader.[]

Indecomposable Modules

The primary cyclic decomposition of M is a decomposition of M into a direct
sum of submodules that cannot be further decomposed. In fact, this
characterizes the primary cyclic decomposition of M. Before justifying these
statements, we make the following definition.

Definition A module M is indecomposable if it cannot be written as a direct
sum of proper submodules.[]
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We leave proof of the following as an exercise.

Theorem 6.18 Let M be a finitely generated torsion module over a principal
ideal domain. The following are equivalent:

1) M is indecomposable

2) M is primary cyclic

3) M has only one elementary divisor:

ElemDiv(M) = {p°} O

Thus, the primary cyclic decomposition of M is a decomposition of M into a
direct sum of indecomposable modules. Conversely, if

M:A1®"'@Am

is a decomposition of M into a direct sum of indecomposable submodules, then
each submodule A; is primary cyclic and so this is the primary cyclic
decomposition of M.

Indecomposable Submodules of Prime Order

Readers acquainted with group theory know that any group of prime order is
cyclic. However, as mentioned earlier, the order of a module corresponds to the
smallest exponent of a group, not to the order of a group. Indeed, there are
modules of prime order that are not cyclic. Nevertheless, cyclic modules of
prime order are important.

Indeed, if M is a finitely generated torsion module over a principal ideal
domain, with order u, then each prime factor p of p gives rise to a cyclic
submodule W of M whose order is p and so W is also indecomposable.
Unfortunately, W need not be complemented and so we cannot use it to
decompose M. Nevertheless, the theorem is still useful, as we will see in a later
chapter.

Theorem 6.19 Let M be a finitely generated torsion module over a principal
ideal domain, with order p. If p is a prime divisor of p, then M has a cyclic
(equivalently, indecomposable) submodule W of prime order p.

Proof. If i = pq, then there is a v € M for which w = qv # 0 but pw = 0.
Then W = ((w)) is annihilated by p and so o(w) | p. But p is prime and
o(w) # 1 and so o(w) = p. Since W has prime order, Theorem 6.18 implies
that W' is cyclic if and only if it is indecomposable.[]

Exercises

1. Show that any free module over an integral domain is torsion-free.

2. Let M be a finitely generated torsion module over a principal ideal domain.
Prove that the following are equivalent:
a) M is indecomposable
b) M has only one elementary divisor (including multiplicity)
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10.

11.

12.

13.
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¢) M is cyclic of prime power order.

Let R be a principal ideal domain and R™ the field of quotients. Then R™ is
an R-module. Prove that any nonzero finitely generated submodule of R™
is a free module of rank 1.

Let R be a principal ideal domain. Let M be a finitely generated torsion-
free R-module. Suppose that IV is a submodule of M for which N is a free
R-module of rank 1 and M /N is a torsion module. Prove that M is a free
R-module of rank 1.

Show that the primary cyclic decomposition of a torsion module over a
principal ideal domain is not unique (even though the elementary divisors
are).

Show that if M is a finitely generated R-module where R is a principal
ideal domain, then the free summand in the decomposition M = F' & My,
need not be unique.

If ((v)) is a cyclic R-module of order a show that the map 7: R — ((v))
defined by 77 = rv is a surjective R-homomorphism with kernel (a) and so

R
V) A —
) ~ 75
If R is an integral domain with the property that all submodules of cyclic
R-modules are cyclic, show that R is a principal ideal domain.
Suppose that F' is a finite field and let £ be the set of all nonzero elements
of F.
a) Show that if p(x) € F|x] is a nonconstant polynomial over F' and if
r € Fisaroot of p(z), then x — r is a factor of p(z).
b) Prove that a nonconstant polynomial p(x) € F[z] of degree n can have
at most 7 distinct roots in F'.
¢) Use the invariant factor or primary cyclic decomposition of a finite Z-
module to prove that F™* is cyclic.
Let R be a principal ideal domain. Let M = {(v)) be a cyclic R-module
with order a. We have seen that any submodule of M is cyclic. Prove that
for each § € R such that § | « there is a unique submodule of M of order
B.
Suppose that M is a free module of finite rank over a principal ideal
domain R. Let N be a submodule of M. If M /N is torsion, prove that
tk(N) = rk(M).
Let F[x] be the ring of polynomials over a field F' and let F”[x] be the ring
of all polynomials in F/[z] that have coefficient of x equal to 0. Then F[z]
is an F'[z]-module. Show that F'[x] is finitely generated and torsion-free
but not free. Is F’[z] a principal ideal domain?
Show that the rational numbers QQ form a torsion-free Z-module that is not
free.

More on Complemented Submodules

14.

Let R be a principal ideal domain and let M be a free R-module.



15.

16.

17.

18.
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a) Prove that a submodule N of M is complemented if and only if M /N
is free.

b) If M is also finitely generated, prove that N is complemented if and
only if M /N is torsion-free.

Let M be a free module of finite rank over a principal ideal domain R.

a) Prove that if N is a complemented submodule of M, then
tk(N) = tk(M) ifand only if N = M.

b) Show that this need not hold if N is not complemented.

c) Prove that N is complemented if and only if any basis for N can be
extended to a basis for M.

Let M and N be free modules of finite rank over a principal ideal domain

R.Let7: M — N be an R-homomorphism.

a) Prove that ker(7) is complemented.

b) What about im(7)?

c) Prove that

k(M) = rk(ker(r)) + rk(im(r)) = rk(ker(r)) + rk(mﬁ))

d) If 7 is surjective, then 7 is an isomorphism if and only if
k(M) = rk(N).
e) If Lisasubmodule of M and if M /L is free, then

rk(]\f> = rk(M) — rk(L)

A submodule N of a module M is said to be pure in M if whenever

v¢ M\ N,thenrv ¢ N for all nonzero r € R.

a) Show that N is pure if and only if v € NV and v = rw for r € R implies
w € N.

b) Show that NV is pure if and only if M /N is torsion-free.

c) If R is a principal ideal domain and M is finitely generated, prove that
N is pure if and only if M /N is free.

d) If L and N are pure submodules of M, then so are LN and L U N.
What about L + N?

e) If N is pure in M, then show that LN N is pure in L for any
submodule L of M.

Let M be a free module of finite rank over a principal ideal domain R. Let

L and N be submodules of M with L complemented in M . Prove that

k(L + N) + tk(L N N) = tk(L) + rk(N)



Chapter 7
The Structure of a Linear Operator

In this chapter, we study the structure of a linear operator on a finite-
dimensional vector space, using the powerful module decomposition theorems
of the previous chapter. Unless otherwise noted, all vector spaces will be
assumed to be finite-dimensional.

Let V' be a finite-dimensional vector space. Let us recall two earler theorems
(Theorem 2.19 and Theorem 2.20).

Theorem 7.1 Let V' be a vector space of dimension n.

1) Two n x n matrices A and B are similar (written A ~ B) if and only if
they represent the same linear operator T € L(V'), but possibly with
respect to different ordered bases. In this case, the matrices A and B
represent exactly the same set of linear operators in L(V').

2) Then two linear operators T and o on V' are similar (written T ~ o) if and
only if there is a matrix A € M, that represents both operators, but with
respect to possibly different ordered bases. In this case, T and o are
represented by exactly the same set of matrices in M,,.00

Theorem 7.1 implies that the matrices that represent a given linear operator are
precisely the matrices that lie in one similarity class. Hence, in order to uniquely
represent all linear operators on V', we would like to find a set consisting of one
simple representative of each similarity class, that is, a set of simple canonical
forms for similarity.

One of the simplest types of matrix is the diagonal matrix. However, these are
too simple, since some operators cannot be represented by a diagonal matrix. A
less simple type of matrix is the upper triangular matrix. However, these are not
simple enough: Every operator (over an algebraically closed field) can be
represented by an upper triangular matrix but some operators can be represented
by more than one upper triangular matrix.
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This gives rise to two different directions for further study. First, we can search
for a characterization of those linear operators that can be represented by
diagonal matrices. Such operators are called diagonalizable. Second, we can
search for a different type of “simple” matrix that does provide a set of
canonical forms for similarity. We will pursue both of these directions.

The Module Associated with a Linear Operator

If 7 € L(V), we will think of V' not only as a vector space over a field F' but
also as a module over F'[x], with scalar multiplication defined by
px)v = p(7)(v)

We will write V. to indicate the dependence on 7. Thus, V. and V,, are modules
with the same ring of scalars F'[z], although with different scalar multiplication
if T #£ 0.

Our plan is to interpret the concepts of the previous chapter for the module V.
First, if dim(V') = n, then dim(£(V)) = n?. This implies that V; is a torsion
module. In fact, the n? + 1 vectors

are linearly dependent in £(V'), which implies that p(7) = 0 for some nonzero
polynomial p(z) € Flz]. Hence, p(x) € ann(V;) and so ann(V;) is a nonzero
principal ideal of F'[x].

Also, since V is finitely generated as a vector space, it is, a fortiori, finitely
generated as an F[z]-module. Thus, V is a finitely generated torsion module
over a principal ideal domain F'[z] and so we may apply the decomposition
theorems of the previous chapter. In the first part of this chapter, we embark on
a “translation project” to translate the powerful results of the previous chapter
into the language of the modules V.

Let us first characterize when two modules V; and V,, are isomorphic.

Theorem 7.2 If 7,0 € L(V), then
VeV, & 71~0

In particular, ¢: V. — V, is a module isomorphism if and only if ¢ is a vector
space automorphism of V' satisfying

o=¢r¢!
Proof. Suppose that ¢: V; — V, is a module isomorphism. Then forv € V,
¢(zv) = z(¢v)

which is equivalent to
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p(Tv) = o(¢v)
and since ¢ is bijective, this is equivalent to
(¢r¢™ v =ov
that is, 0 = ¢7¢~'. Since a module isomorphism from V; to V, is a vector space

isomorphism as well, the result follows.

For the converse, suppose that ¢ is a vector space automorphism of V' and
o =¢rd~", thatis, ¢7 = 5¢. Then

6(x"v) = g(r"v) = 0" (¢v) = 2" (9v)
and the F-linearity of ¢ implies that for any polynomial p(x) € F[z],
¢(p(1)v) = p(o)pv
Hence, ¢ is a module isomorphism from V. to V.00
Submodules and Invariant Subspaces

There is a simple connection between the submodules of the F'[x]-module V;
and the subspaces of the vector space V. Recall that a subspace S of V' is 7-
invariantif 75 C S.

Theorem 7.3 A subset S CV is a submodule of V; if and only if S is a -
invariant subspace of V.1
Orders and the Minimal Polynomial
We have seen that the annihilator of V.,
ann(V;) = {p(x) € Fla] | p(z)V; = {0}}
is a nonzero principal ideal of F'[z], say
ann(V;) = (m(x))

Since the elements of the base ring F'[z] of V; are polynomials, for the first time
in our study of modules there is a logical choice among all scalars in a given
associate class: Each associate class contains exactly one monic polynomial.

Definition Let 7 € L(V'). The unique monic order of V; is called the minimal
polynomial for 7 and is denoted by m.,(x) or min(7). Thus,

ann(V;) = (m-(z)) .

In treatments of linear algebra that do not emphasize the role of the module V,
the minimal polynomial of a linear operator 7 is simply defined as the unique
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monic polynomial m,(x) of smallest degree for which m,(7) = 0. This
definition is equivalent to our definition.

The concept of minimal polynomial is also defined for matrices. The minimal
polynomial 1, () of matrix A € M,,(F) is defined as the minimal polynomial
of the multiplication operator 74. Equivalently, m(z) is the unique monic
polynomial p(z) € F|[x] of smallest degree for which p(A) = 0.

Theorem 7.4

1) If T ~ o are similar linear operators on V., then m.(x) = m,(x). Thus, the
minimal polynomial is an invariant under similarity of operators.

2) If A~ B are similar matrices, then ma(x) = mp(x). Thus, the minimal
polynomial is an invariant under similarity of matrices.

3) The minimal polynomial of T € L(V) is the same as the minimal
polynomial of any matrix that represents T.C1

Cyclic Submodules and Cyclic Subspaces
Let us now look at the cyclic submodules of V.
(v) = Flz]v = {p(7)(v) | p(z) € Flx]}

which are T-invariant subspaces of V. Let m(z) be the minimal polynomial of
7| vy and suppose that deg(m(z)) = n. If p(z)v € ((v)), then writing

p(x) = q(z)m(z) + r(z)
where deg r(z) < deg m(z) gives
p(z)v = [q(z)m(z) + r(z)]v = r(z)v
and so
(v) = {r(x)v | degr(z) < n}
Hence, the set
B = (man "0} = {7, 0}

spans the vector space ((v)). To see that B is a basis for ((v)), note that any linear
combination of the vectors in B has the form r(z)v for deg(r(z)) < n and so is
equal to 0 if and only if () = 0. Thus, B is an ordered basis for (v})).

Definition Let 7 € L(V). A T-invariant subspace S of V is T-cyelic if S has a
basis of the form

B={v,1v,...,7" v}

for some v € V andn > 0. The basis B is called a T-cyclic basis for V.[J
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Thus, a cyclic submodule ((v)) of V, with order m(x) of degree n is a T-cyclic
subspace of V' of dimension n. The converse is also true, for if

B={v,rv,.., 7™}

is a basis for a 7-invariant subspace S of V, then S is a submodule of V.
Moreover, the minimal polynomial of 7|s has degree n, since if

T = —agv — a1 TV — ++ — ap T

then 7|g satisfies the polynomial

m(z) = ap+ ax 4 +a,_ 12" + 2"
but none of smaller degree since B is linearly independent.
Theorem 7.5 Let V be a finite-dimenional vector space and let S C V. The
following are equivalent:
1) Sis a cyclic submodule of V; with order m(x) of degree n
2) Sis a T-cyclic subspace of V' of dimension n.[]

We will have more to say about cyclic modules a bit later in the chapter.

Summary

The following table summarizes the connection between the module concepts
and the vector space concepts that we have discussed so far.

F[z]-Module V, F-Vector Space V
Scalar multiplication: p(x)v Action of p(7): p(7)(v)
Submodule of V; T-Invariant subspace of V'
Annihilator: Annihilator:
i) = (o) [PV = (0} | (V) = {pte) L()(V) = (01
Monic order m(z) of Minimal polynomial of 7:
ann(V;) = (m(x)) m(z) has smallest deg with m(7) =0
Cyclic submodule of V;: T-cyclic subspace of V':

(W) = {p(z)v | degp(z) < degm(x)} | (v, 7v, ..., 7" '(v)), m = deg(p(z))

The Primary Cyclic Decomposition of V.

We are now ready to translate the cyclic decomposition theorem into the
language of V.

Definition Let 7 € L(V).

1) The elementary divisors and invariant factors of 7 are the monic
elementary divisors and invariant factors, respectively, of the module V..
We denote the multiset of elementary divisors of T by ElemDiv(7) and the
multiset of invariant factors of T by InvFact(7).
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2) The elementary divisors and invariant factors of a matrix A are the
elementary divisors and invariant factors, respectively, of the multiplication
operator Ty:

ElemDiv(A) = ElemDiv(74) and InvFact(A) = InvFact(4) O

We emphasize that the elementary divisors and invariant factors of an operator
or matrix are monic by definition. Thus, we no longer need to worry about
uniqueness up to associate.

Theorem 7.6 (The primary cyclic decomposition theorem for V') Let V be
finite-dimensional and let 7 € L(V') have minimal polynomial

m,(z) = py'(x)---piy ()

where the polynomials p;(x) are distinct monic primes.
1) (Primary decomposition) The F'[x|-module V. is the direct sum

Vi=V,®---®V,
where

m,(x)
v’ (x)

Vp = V={veV|p(r)(v)=0}

is a primary submodule of V. of order p; (). In vector space terms, V,, is a
T-invariant subspace of V' and the minimal polynomial of T|Vm is

min(7ly, ) = pj*(«)

2) (Cyclic decomposition) Each primary summand V), can be decomposed
into a direct sum

Vo = (i) @ -+~ @ (i)
of T-cyclic submodules ((v; ;)) of order p;” () with
€ =612 €22 2 €C
In vector space terms, ((v; ;)) is a T-cyclic subspace of V), and the minimal
polynomial of 7|y, y is
min(7] ) = p;” (2)

3) (The complete decomposition) This yields the decomposition of V. into a
direct sum of T-cyclic subspaces

Vo= ((vi) @ @ (vin) © - @ ((0n1)) @ - © (vn, )

4) (Elementary divisors and dimensions) The multiset of elementary divisors
{p;"(x)} is uniquely determined by 7. If deg(p;"”(x)) = d; j, then the T-

3
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cyclic subspace ((v; j)) has T-cyclic basis
Bz‘,j = (Um‘, TUZ‘_’]‘, ceey Td"’j_lvz‘_’j)

and dim({(v; ;))) = deg(p;"’). Hence,
ki
dim(V;,) =) _ deg(p;")
=1

We will call the basis
R=JBi;
i,J

for'V the elementary divisor basis for V..

Recall that if V' = A & B and if both A and B are 7-invariant subspaces of V',
the pair (A, B) is said to reduce 7. In module language, the pair (A, B) reduces
7 if A and B are submodules of V, and

V;':AT@BT

We can now translate Theorem 6.15 into the current context.

Theorem 7.7 Let T € L(V) and let

1)

2)

3)

VT = AT S BT
The minimal polynomial of T is
m7<x) = lcm(mT\A (JJ), mT\B(‘r))

The primary cyclic decomposition of V; is the direct sum of the primary
cyclic decompositons of A, and B;; that is, if

A = P(ai) and Br = EPbis)

are the primary cyclic decompositions of A, and B., respectively, then

v, = (D) © (Bio)

is the primary cyclic decomposition of V.
The elementary divisors of T are
ElemDiv(7) = ElemDiv(7|4) U ElemDiv(7|p)

where the union is a multiset union, that is, we keep all duplicate
members.]



170 Advanced Linear Algebra

The Characteristic Polynomial

To continue our translation project, we need a definition. Recall that in the
characterization of cyclic modules in Theorem 6.17, we made reference to the
product of the elementary divisors, one from each associate class. Now that we
have singled out a special representative from each associate class, we can make
a useful definition.

Definition Let 7 € L(V). The characteristic polynomial c.(x) of 7 is the
product of all of the elementary divisors of T:

er(r) =[] (@)

Hence,
deg(c(x)) = dim(V)
Similarly, the characteristic polynomial c);(x) of a matrix M is the product of

the elementary divisors of M ..

The following theorem describes the relationship between the minimal and
characteristic polynomials.

Theorem 7.8 Let T € L(V).
1) (The Cayley—Hamilton theorem) The minimal polynomial of T divides the
characteristic polynomial of T:

m(z) | e-(x)
Equivalently, T satisfies its own characteristic polynomial, that is,
e (1) =0
2)  The minimal polynomial
my(z) = pi" (z)--pi ()
and characteristic polynomial

(o) = [T ()

of T have the same set of prime factors p;(x) and hence the same set of
roots (not counting multiplicity).(J

We have seen that the multiset of elementary divisors forms a complete
invariant for similarity. The reader should construct an example to show that the
pair (m.(z), c;(x)) is not a complete invariant for similarity, that is, this pair of
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polynomials does not uniquely determine the multiset of elementary divisors of
the operator 7.

In general, the minimal polynomial of a linear operator is hard to find. One of
the virtues of the characteristic polynomial is that it is comparatively easy to
find and we will discuss this in detail a bit later in the chapter.

Note that since m,(z) | ¢.(x) and both polynomials are monic, it follows that
m(r) = ¢ (x) & deg(m(z)) = deg(c:())

Definition A4 linear operator T L(V') is nonderogatory if its minimal
polynomial is equal to its characteristic polynomial:

m(z) = c-(x)
or equivalently, if
deg(m-(x)) = deg(c;(z))
orif
deg(m-(z)) = dim(V')
Similar statements hold for matrices..]
Cyclic and Indecomposable Modules

We have seen (Theorem 6.17) that cyclic submodules can be characterized by
their elementary divisors. Let us translate this theorem into the language of V;
(and add one more equivalence related to the characteristic polynomial).

Theorem 7.9 Let T € L(V') have minimal polynomial
my(z) = py'(x)---py (z)

where p;(x) are distinct monic primes. The following are equivalent:
1) V. iscyclic.
2) V. is the direct sum

Vi = (i) @ & (ur))

of T-cyclic submodules ((v;)) of order p;'(x).
3) The elementary divisors of T are

ElemDiv(7) = {p{' (z), ..., p; ()}
4) 7 is nonderogatory, that is,
m,(z) = c.(x) a
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Indecomposable Modules

We have also seen (Theorem 6.19) that, in the language of V., each prime factor
p(2) of the minimal polynomial m,(x) gives rise to a cyclic submodule W of V/
of prime order p(x).

Theorem 7.10 Let 7 € L(V') and let p(x) be a prime factor of m.(x). Then V;
has a cyclic submodule W, of prime order p(x).0]

For a module of prime order, we have the following.

Theorem 7.11 For a module W, of prime order m.(x), the following are
equivalent:

1) W, is cyclic

2) W, is indecomposable

3) ¢ () is irreducible

4) T is nonderogatory, that is, c;(x) = m,(x)

5)  dim(W;) = deg(p(x)).00

Our translation project is now complete and we can begin to look at issues that
are specific to the modules V.
Companion Matrices

We can also characterize the cyclic modules V- via the matrix representations of
the operator 7, which is obviously something that we could not do for arbitrary
modules. Let V; = ((v)) be a cyclic module, with order

my(z) = ag + a1z + -+ 4 ap_yx" " + 3"
and ordered 7-cyclic basis
B=(v,Tv,..., 7" v)
Then
r(rlv) = 7w
for0 <i<n—2and

(") = 7"
=—(ap+arT+ -+ a, 17"

= —apu— a1 TV — - — ap_ 7"

and so
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0 0 0 —ap

1 0 0 —aq
[T]B =10 1

0 —0p—2

0 0 1 —ay_

This matrix is known as the companion matrix for the polynomial m ().

Definition The companion matrix of a monic polyomial
p(ﬂf) =ag+a1x+ -+ a7171x7171 Sy

is the matrix

00 -+ 0 =—a
10 - 0 -—a
Clp(x)] =10 1 " : O
L0 —ans
0 0 1 —Qp—1

Note that companion matrices are defined only for monic polynomials.
Companion matrices are nonderogatory. Also, companion matrices are precisely
the matrices that represent operators on 7-cyclic subspaces.

Theorem 7.12 Let p(x) € F[z].
1) A companion matrix A = C[p(x)] is nonderogatory, in fact,
ca(x) = ma(z) = p(x)

2) V. is cyclic if and only if T can be represented by a companion matrix, in
which case the representing basis is T-cyclic.

Proof. For part 1), let £ = (ey,...,e,) be the standard basis for F". Since

e; = A" tey fori > 2, it follows that for any polynomial f(x),

f(A)=0 & f(Ae,=0foralli < f(A)e1 =0
If p(z) = ap + 12 + -+ + a,_12" ' + 2", then

n—1 n—1 n—1
p(A)er = Z%’Aiel + Aey = Zai€i+l - Zai€i+1 =0
=0 =0 =0
and so p(A)e; = 0, whence p(A) = 0. Also, if
Q(x) = bO +oiw+ -+ bmflmm_1 + bmwm

is nonzero and has degree m < n, then

Q(A)el =boe; +biea + -+ by_iem + bmem-H 3& 0
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since & is linearly independent. Hence, p(z) has smallest degree among all
polynomials satisfied by A and so p(z:) = m4(x). Finally,

deg(ma(z)) = deg(p(x)) = deg(ca(x))

For part 2), we have already proved that if V. is cyclic with 7-cyclic basis B,
then [r]g = C[p(x)]. For the converse, if 7]z = C[p(z)], then part 1) implies
that 7 is nonderogatory. Hence, Theorem 7.11 implies that V. is cyclic. It is
clear from the form of C'[p(z)] that B is a 7-cyclic basis for V.OO

The Big Picture

If 0,7 € L(V), then Theorem 7.2 and the fact that the elementary divisors form
a complete invariant for isomorphism imply that

o~1T & V,=V, <« ElemDiv(7) = ElemDiv(0)

Hence, the multiset of elementary divisors is a complete invariant for similarity
of operators. Of course, the same is true for matrices:

A~B & Fi~Fp < ElemDiv(A) = ElemDiv(B)
where we write /) in place of F7'.
The connection between the elementary divisors of an operator 7 and the
elementary divisors of the matrix representations of 7 is described as follows. If

A = [7]s, then the coordinate map ¢p:V &~ F" is also a module isomorphism
¢p: V, — F. Specifically, we have

o5(p(1)v) = [p(r)v]s = p([7]8)[v]8 = P(A)d5(V)
and so ¢ preserves F'[z]-scalar multiplication. Hence,
A=Irlgpforsome B = V.= F)

For the converse, suppose that o: V, ~ F. If we define b; € V' by ob; = ¢;,
where e; is the ith standard basis vector, then B = (by,...,b,) is an ordered
basis for V' and o = ¢p is the coordinate map for . Hence, ¢p is a module
isomorphism and so

¢5(Tv) = Ta(PBV)
for all v € V, that is,
[Tv]s = Ta([v]B)

which shows that A = [7]g.

Theorem 7.13 Let V be a finite-dimensional vector space over F. Let
o,7€ L(V)andlet A, B € M, (F).
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1) The multiset of elementary divisors (or invariant factors) is a complete
invariant for similarity of operators, that is,
o~TES VxRV,
< ElemDiv(7) = ElemDiv(0)
< InvFact(7) = InvFact(o)

A similar statement holds for matrices.
A~B& Fy = Fp
< ElemDiv(A) = ElemDiv(B)
< InvFact(A) = InvFact(B)
2) The connection between operators and their representing matrices is

A = [1]p for some B < V. ~ F
< ElemDiv(7) = ElemDiv(A)
< InvFact(7) = InvFact(A) |

Theorem 7.13 can be summarized in Figure 7.1, which shows the big picture.

similarity classes
e of L(V)
A
Vv Vv isomorphism classes
T ° of F[x]-modules
Multisets of
{ED;} {ED,} elementary divisors
[l |[ols Similarity classes
[tlk| [olk of matrices

Figure 7.1

Figure 7.1 shows that the similarity classes of L£(V) are in one-to-one
correspondence with the isomorphism classes of F'[z]-modules V; and that these
are in one-to-one correspondence with the multisets of elementary divisors,
which, in turn, are in one-to-one correspondence with the similarity classes of
matrices.

We will see shortly that any multiset of prime power polynomials is the multiset
of elementary divisors for some operator (or matrix) and so the third family in
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the figure could be replaced by the family of all multisets of prime power
polynomials.

The Rational Canonical Form

We are now ready to determine a set of canonical forms for similarity. Let
7 € L(V). The elementary divisor basis R for V; that gives the primary cyclic
decomposition of V.,

Ve= (o) @ & (vip) @ & ((va) @+ & (vn,)
is the union of the bases

i,’_yj*l

Bij = (vijs Tijy ..., T 0y )

and so the matrix of 7 with respect to R is the block diagonal matrix
[rlr = diag(Clp;" (@)],..., Clp, " (@)], .., Clpi" (@), .., Clpi*" (x)])

with companion matrices on the block diagonal. This matrix has the following
form.

Definition A matrix A is in the elementary divisor form of rational canonical
form if

A= diag(C[rT‘ (@)],...,Clre (x)])
where the r;(x) are monic prime polynomials.(]

Thus, as shown in Figure 7.1, each similarity class S contains at least one matrix
in the elementary divisor form of rational canonical form.

On the other hand, suppose that M is a rational canonical matrix
: 1, Jij fm, . m
M = diag(Clg/" (2)], .-, Clay"" (@), .., Clai (&), ..., Claii ™" ()

of size d x d. Then M represents the matrix multiplication operator 7, under
the standard basis £ on F?. The basis £ can be partitioned into blocks Eik
corresponding to the position of each of the companion matrices on the block
diagonal of M. Since

Enlen = Cla™ (@)]

it follows from Theorem 7.12 that each subspace (&; ;) is Tas-cyclic with monic

[T
order qlf’(x) and so Theorem 7.9 implies that the multiset of elementary
divisors of 7/ is {q;"" (z)}.

This shows two important things. First, any multiset of prime power
polynomials is the multiset of elementary divisors for some matrix. Second, M
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lies in the similarity class that is associated with the elementary divisors
{¢;"(x)}. Hence, two matrices in the elementary divisor form of rational
canonical form lie in the same similarity class if and only if they have the same
multiset of elementary divisors. In other words, the elementary divisor form of
rational canonical form is a set of canonical forms for similarity, up to order of
blocks on the block diagonal.

Theorem 7.14 (The rational canonical form: elementary divisor version) Let
V' be a finite-dimensional vector space and let T € L(V) have minimal
polynomial

m.(z) = pi'(z)---py ()

where the p;(x)'s are distinct monic prime polynomials.
1) If R is an elementary divisor basis for V., then [T|g is in the elementary
divisor form of rational canonical form:

(7l = diag(Clp{" @), .., O @), ., Cloi @), .., I ()] )

where pi’“"(x) are the elementary divisors of T. This block diagonal matrix
is called an elementary divisor version of a rational canonical form of 7.

2) Each similarity class S of matrices contains a matrix R in the elementary
divisor form of rational canonical form. Moreover, the set of matrices in S
that have this form is the set of matrices obtained from M by reordering the
block diagonal matrices. Any such matrix is called an elementary divisor
verison of a rational canonical form of A.

3) The dimension of 'V is the sum of the degrees of the elementary divisors of
T, that is,

n ki

dim(V) = > > " deg(p;™) ]

=1 j=

Example 7.1 Let 7 be a linear operator on the vector space R and suppose that
7 has minimal polynomial

me(@) = (@ — 1) + 1)

Noting that  — 1 and (2? + 1)? are elementary divisors and that the sum of the
degrees of all elementary divisors must equal 7, we have two possibilities:

) o—1, (2> +1)% 22 +1
2) x—1,2—1,z—1, (z2+1)?

These correspond to the following rational canonical forms:
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(1 0 00 00 O]
0000 10 0
0100 00 0
D (oo 10 -20 o0
0001 00 0
0000 00 -1
0000 01 0
(1 0 00 00 0]
010000 0
001000 0
2) 000000 —1 O
000100 0
000010 —2
000O0O0OT1 0

The rational canonical form may be far from the ideal of simplicity that we had
in mind for a set of simple canonical forms. Indeed, the rational canonical form
can be important as a theoretical tool, more so than a practical one.

The Invariant Factor Version

There is also an invariant factor version of the rational canonical form. We
begin with the following simple result.

Theorem 7.15 If p(z), q(x) € F[x] are relatively prime polynomials, then
Clp(x)] 0 )
Clp(z)q(x)] ~
[p(z)q(z)] ( 0 Clq(x)] ek
Proof. Speaking in general terms, if an m X m matrix A has minimal
polynomial
m-(z) = py' (z)---p (2)
of degree equal to the size m of the matrix, then Theorem 7.14 implies that the
elementary divisors of A are precisely
P (), P ()

Since the matrices C'[p(x)q(x)] and diag(C[p(z)], C[q(x)]) have the same size
m x m and the same minimal polynomial p(z)q(x) of degree m, it follows that
they have the same multiset of elementary divisors and so are similar.[]

Definition A matrix A is in the invariant factor form of rational canonical
form if
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A= diag(C[sl(az)], ey C[sn(w)])
where sp1(x) | sp(x) fork=1,...,n—1.0

Theorem 7.15 can be used to rearrange and combine the companion matrices in
an elementary divisor version of a rational canonical form R to produce an
invariant factor version of rational canonical form that is similar to R. Also, this
process is reversible.

Theorem 7.16 (The rational canonical form: invariant factor version) Let
dim(V') < oo and suppose that 7 € L(V') has minimal polynomial

m.(z) = pi'(z)-py(z)

where the monic polynomials p;(x) are distinct prime (irreducible) polynomials
1) 'V has an invariant factor basis B, that is, a basis for which

[r]s = diag(C’[sl(x)], " ,0[5,,(35)])

where the polynomials si(x) are the invariant factors of T and
Skt1(x) | sk(x). This block diagonal matrix is called an invariant factor
version of a rational canonical form of 7.

2) Each similarity class S of matrices contains a matrix R in the invariant
factor form of rational canonical form. Moreover, the set of matrices in S
that have this form is the set of matrices obtained from M by reordering the
block diagonal matrices. Any such matrix is called an invariant factor
verison of a rational canonical form of A.

3) The dimension of 'V is the sum of the degrees of the invariant factors of T,
that is,

dim(V) = ideg(si) O
=1

The Determinant Form of the Characteristic Polynomial

In general, the minimal polynomial of an operator 7 is hard to find. One of the
virtues of the characteristic polynomial is that it is comparatively easy to find.
This also provides a nice example of the theoretical value of the rational
canonical form.

Let us first take the case of a companion matrix. If A = C[p,(x)] is the
companion matrix of a monic polynomial

. _ n—1 n
pn(xva()a"'aanfl) *ao+a15ﬂ+"'+anf1$ +x

then how can we recover p(x) = c4(x) from C[p(x)] by arithmetic operations?
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When n = 2, we can write py(x) as
(2500, 01) = ap + a1z + 22 = z(x + ay) + ag

which looks suspiciously like a determinant:

-1 2+

=se(er- [} Z2])

— det(a] — Clpo(a))

po(;ap,a1) = det[ t @0 }

So, let us define

A(z;ag, ... ,ap—1) = I — Clpy(x)]

€T 0 0 ap

-1 = 0 ay
=0 -1 :

: T ap—o

0 0 - =1 z4ay,_

where x is an independent variable. The determinant of this matrix is a
polynomial in = whose degree equals the number of parameters ay, ..., G,—1.
We have just seen that

det(A(z; ag, a1)) = pa(; ap, ar)
and this is also true for n = 1. As a basis for induction, if
det(A(z;ag, ..., an-1)) = pu(z;ag,...,an-1)
then expanding along the first row gives

det(A(z, ag, ..., a,))

-1 =z 0
=zdet(A(z,aq,...,a,)) + (—1)"ap det _:1 .

0 0 -1

nxn

=zdet(A(z,a1,...,a,)) + ag
= mpn(x;alv"' 7an) +a0
=z +ayx’ + -+ a2" + 2" 4 ag
= pn-‘rl(x; agp, .- -, an)

We have proved the following.
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Lemma 7.17 For any p(z) € F[x],
det(z] — Clp(x)]) = p(z) O

Now suppose that R is a matrix in the elementary divisor form of rational
canonical form. Since the determinant of a block diagonal matrix is the product
of the determinants of the blocks on the diagonal, it follows that

det(z] — R) Hp‘f” ()

Moreover, if A ~ R, say A = PRP~!, then
det(x] — A) = det(z] — PRP™)
=det[P(x] — R)P']
= det(P)det(z] — R)det(P™")
=det(z] — R)
and so

det(zl — A) = det(xl — R) = cp(x) = ca(x)

Hence, the fact that all matrices have a rational canonical form allows us to
deduce the following theorem.

Theorem 7.18 Let 7 € L(V). If A is any matrix that represents T, then
e () = cq(x) = det(z] — A) O

Changing the Base Field

A change in the base field will generally change the primeness of polynomials
and therefore has an effect on the multiset of elementary divisors. It is perhaps a
surprising fact that a change of base field has no effect on the invariant factors—
hence the adjective invariant.

Theorem 7.19 Let F and K be fields with F' C K. Suppose that the elementary
divisors of a matrix A € M,,(F) are

€11 €1,k Cn,1 Cn, kn}

_{p yeeesPr sy Pnoy oo P

Suppose also that the polynomials p; can be further factored over K, say

R (1,71 . .adz,mi
Dbi 7,1 i,m;

where a; j is prime over K. Then the prime powers

B— { dy. le] 1 dimie1 dy1€nky, [ En,kn}
O A R i

are the elementary divisors of A over K.
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Ci.j

Proof. Consider the companion matrix C'[p,"(z)] in the rational canonical form

of A over F'. This is a matrix over K as well and Theorem 7.15 implies that

€ij . i€ d; m;€ij
Clp ()] ~ diag(Clafi™],..., Clag ™))

i i,m;

Hence, B is an elementary divisor basis for A over K.[J

As mentioned, unlike the elementary divisors, the invariant factors are field
independent. This is equivalent to saying that the invariant factors of a matrix
A € M, (F) are polynomials over the smallest subfield of F' that contains the
entries of A.

Theorem 7.20 Let A € M, (F) and let E C F be the smallest subfield of F

that contains the entries of A.

1) The invariant factors of A are polynomials over E.

2) Two matrices A, B € M,,(F) are similar over F if and only if they are
similar over E.

Proof. Part 1) follows immediately from Theorem 7.19, since using either A or

B to compute invariant factors gives the same result. Part 2) follows from the

fact that two matrices are similar over a given field if and only if they have the

same multiset of invariant factors over that field..]

Example 7.2 Over the real field, the matrix
0 -1
()
is the companion matrix for the polynomial 22 + 1, and so

ElemDivg(A) = {2 + 1} = InvFactg(A)

However, as a complex matrix, the rational canonical form for A is

and so

ElemDive(A) = {z — i,z +i} and InvFactc(A) = {z? +1} O

Exercises

1. We have seen that any 7 € £(V') can be used to make V' into an F[x]-
module. Does every module V' over F[z] come from some 7€ L(V)?
Explain.

2. LetT € L(V) have minimal polynomial

my(z) = pi'(x)---pi (z)
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11.

12.

13.
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where p;(z) are distinct monic primes. Prove that the following are
equivalent:

a) V,is r-cyclic.

b) deg(m.(z)) = dim(V).

¢) The elementary divisors of 7 are the prime power factors p;’(z) and so

V= (i) @ & (or)

is a direct sum of 7-cyclic submodules ((v;)) of order p{*(z).
Prove that a matrix A € M,,(F’) is nonderogatory if and only if it is similar
to a companion matrix.
Show that if A and B are block diagonal matrices with the same blocks, but
in possibly different order, then A and B are similar.
Let A € M, (F). Justify the statement that the entries of any invariant
factor version of a rational canonical form for A are “rational” expressions
in the coefficients of A, hence the origin of the term rational canonical
form. Is the same true for the elementary divisor version?
Let 7 € L(V') where V is finite-dimensional. If p(x) € F|x] is irreducible
and if p(r) is not one-to-one, prove that p(z) divides the minimal
polynomial of 7.
Prove that the minimal polynomial of 7€ £(V) is the least common
multiple of its elementary divisors.
Let 7 € L(V) where V is finite-dimensional. Describe conditions on the
minimal polynomial of 7 that are equivalent to the fact that the elementary
divisor version of the rational canonical form of 7 is diagonal. What can
you say about the elementary divisors?
Verify the statement that the multiset of elementary divisors (or invariant
factors) is a complete invariant for similarity of matrices.
Prove that given any multiset of monic prime power polynomials

M = {p({l'l (z),... ,p?’kl (T)yeeey.nn ! (x),... , pan (x)}

and given any vector space V' of dimension equal to the sum of the degrees

of these polynomials, there is an operator 7 € £L(V') whose multiset of

elementary divisors is M.

Find all rational canonical forms (up to the order of the blocks on the

diagonal) for a linear operator on R® having minimal polynomial

(x —1)%(z+1)%

How many possible rational canonical forms (up to order of blocks) are

there for linear operators on R® with minimal polynomial (z — 1)(z + 1)2?

a) Show that if A and B are n X n matrices, at least one of which is
invertible, then AB and BA are similar.
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14.

15.

16.
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b) What do the matrices

1 0 0 1
A—[O O] and B_[O 0]

have to do with this issue?
¢) Show that even without the assumption on invertibility the matrices
AB and BA have the same characteristic polynomial. Hint: Write

A=PIl,,Q

where P and () are invertible and [, , is an n x n matrix that has the
r X r identity in the upper left-hand corner and 0's elsewhere. Write
B'=QBP. Compute AB and BA and find their characteristic
polynomials.

Let 7 be a linear operator on F* with minimal polynomial
m,(z) = (2® + 1)(2® — 2). Find the rational canonical form for 7 if
F=Q,F=RorF=C.

Suppose that the minimal polynomial of 7 € £(V) is irreducible. What can

you say about the dimension of V'?

Let 7 € L(V) where V is finite-dimensional. Suppose that p(z) is an

irreducible factor of the minimal polynomial m(x) of 7. Suppose further

that w,v € V' have the property that o(u) = o(v) = p(z). Prove that

u = f(7)v for some polyjomial f(z) if and only if v = g(7)u for some

polynomial g(z).



Chapter 8
Eigenvalues and Eigenvectors

Unless otherwise noted, we will assume throughout this chapter that all vector
spaces are finite-dimensional.

Eigenvalues and Eigenvectors

We have seen that for any 7€ £(V), the minimal and characteristic
polynomials have the same set of roots (but not generally the same multiset of
roots). These roots are of vital importance.

Let A = [7]g be a matrix that represents 7. A scalar A € F' is a root of the
characteristic polynomial ¢, (z) = c4(z) = det(z] — A) if and only if
det(A\T—A)=0 (8.1)

that is, if and only if the matrix A\I — A is singular. In particular, if dim(V') = n,
then (8.1) holds if and only if there exists a nonzero vector = € F" for which

(M —-A)x=0
or equivalently,
TAT = AT
If [v]p = x, then this is equivalent to
[7]5[vls = Alv]s
or in operator language,
TV = Av
This prompts the following definition.
Definition Let V' be a vector space over a field F and let T € L(V).

1) A scalar \ € F is an eigenvalue (or characteristic value) of 7 if there
exists a nonzero vector v € V for which
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TV = AU

In this case, v is called an eigenvector (or characteristic vector) of 7
associated with \.

2) A scalar A € F is an eigenvalue for a matrix A if there exists a nonzero
column vector x_for which

Ar = Az

In this case, x is called an eigenvector (or characteristic vector) for A
associated with \.

3) The set of all eigenvectors associated with a given eigenvalue \, together
with the zero vector, forms a subspace of V', called the eigenspace of \ and
denoted by E. This applies to both linear operators and matrices.

4) The set of all eigenvalues of an operator or matrix is called the spectrum
of the operator or matrix. We denote the spectrum of T by Spec(7).O

Theorem 8.1 Let 7 € L(V') have minimal polynomial m,(x) and characteristic

polynomial c.(x).

1) The spectrum of T is the set of all roots of m.(x) or of ¢.(x), not counting
multiplicity.

2) The eigenvalues of a matrix are invariants under similarity.

3) The eigenspace £\ of the matrix A is the solution space to the homogeneous
system of equations

(M — A)(z) =0 O

One way to compute the eigenvalues of a linear operator 7 is to first represent 7
by a matrix A and then solve the characteristic equation

det(xI —A)=0

Unfortunately, it is quite likely that this equation cannot be solved when
dim(V') > 5. As a result, the art of approximating the eigenvalues of a matrix is
a very important area of applied linear algebra.

The following theorem describes the relationship between eigenspaces and
eigenvectors of distinct eigenvalues.

Theorem 8.2 Suppose that \i,...,\, are distinct eigenvalues of a linear

operator T € L(V).

1) Eigenvectors associated with distinct eigenvalues are linearly independent;
that is, if v; € E,,, then the set {v1, ..., v} is linearly independent.

2) Thesum Ey + --- + &), is direct; that is, £y, @ -+ @ E,, exists.

Proof. For part 1), if {vy, ..., v} is linearly dependent, then by renumbering if

necessary, we may assume that among all nontrivial linear combinations of
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these vectors that equal 0, the equation
v+ ;=0 (8.2)
has the fewest number of terms. Applying 7 gives
T+ TiAv; =0 (8.3)
Multiplying (8.2) by A; and subtracting from (8.3) gives
ro(Ae — Ap)vg + -+ +7j(Aj — AM)v; =0

But this equation has fewer terms than (8.2) and so all of its coefficients must
equal 0. Since the \;'s are distinct, ; = 0 for ¢ > 2 and so r; = 0 as well. This
contradiction implies that the v;'s are linearly independent.[]

The next theorem describes the spectrum of a polynomial p(7) in 7.

Theorem 8.3 (The spectral mapping theorem) Let V' be a vector space over
an algebraically closed field F'. Let T € L(V') and let p(x) € F[x]. Then

Spec(p(7)) = p(Spec(7)) = {p(A) | A € Spec(7)}

Proof. We leave it as an exercise to show that if A is an eigenvalue of 7, then
p(A) is an eigenvalue of p(7). Hence, p(Spec(7)) C Spec(p(7)). For the reverse
inclusion, let A € Spec(p(7)), that is,

(p(T) - /\)U — O
forv # 0. If
p(l') — A= (CL‘ — 7“1)51- . (:L‘ _ Tn)E"

where r; € F, then writing this as a product of (not necessarily distinct) linear
factors, we have

(tr—r1)-(r—r1)(r=1p)(T—1)v=0

(The operator 7yt is written r;, for convenience.) We can remove factors from
the left end of this equation one by one until we arrive at an operator o (perhaps
the identity) for which ov # 0 but (7 — r;)ov = 0. Then ov is an eigenvector
for 7 with eigenvalue 7. But since p(ry) —A =0, it follows that

A = p(ri) € p(Spec()). Hence, Spec(p(7)) € p(Spec(7)).0I
The Trace and the Determinant

Let F' be algebraically closed and let A € M, (F) have characteristic
polynomial

calz) =a" + Co1" T e+
=(x—=X\)(x—=N\)
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where Aq, ..., A\, are the eigenvalues of A. Then
ca(x) = det(al — A)
and setting x = 0 gives
det(A) = —co = (=1)" ' Ai--- A,

Hence, if F is algebraically closed then, up to sign, det(A) is the constant term
of ¢4 (x) and the product of the eigenvalues of A, including multiplicity.

The sum of the eigenvalues of a matrix over an algebraically closed field is also
an interesting quantity. Like the determinant, this quantity is one of the
coefficients of the characteristic polynomial (up to sign) and can also be
computed directly from the entries of the matrix, without knowing the
eigenvalues explicitly.

Definition 7/e trace of a matrix A € M,,(F'), denoted by tr(A), is the sum of
the elements on the main diagonal of A.C]

Here are the basic propeties of the trace. Proof is left as an exercise.

Theorem 8.4 Let A, B € M, (F).

Iy tr(rd) =rte(A), forr € F.

2) tr(A+ B) =tr(A) + tr(B).

3) tr(AB) =tr(BA).

4) tr(ABC) =tu(CAB) =tr(BCA). However, tr(ABC) may not equal
tr(ACB).

5) The trace is an invariant under similarity.

6) If F is algebraically closed, then tr(A) is the sum of the eigenvalues of A,
including multiplicity, and so

tr(A) = —cp 1

where ca(z) = 2" + ¢, 12"+ + 1w + .00

Since the trace is invariant under similarity, we can make the following
definition.

Definition The trace of a linear operator 7 € L(V') is the trace of any matrix
that represents T.[1

As an aside, the reader who is familar with symmetric polynomials knows that
the coefficients of any polynomial

p(x) =2"+cp2" -zt
=(x—X)(x—A\)
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are the elementary symmetric functions of the roots:

Cp—1 = (_1)12 Ai
Cp—9 = (—1)22A7)\]

1<j

Cp—3 = (—1)32 /\i/\j>\k

i<j<k

C = (‘UHH/\i
i1

The most important elementary symmetric functions of the eigenvalues are the
first and last ones:

Ch1 =M+ -+ A\ = tl‘(A) and ¢y = (_1)77,/\1_ Ay = det(A)

Geometric and Algebraic Multiplicities

Eigenvalues actually have two forms of multiplicity, as described in the next
definition.

Definition Let \ be an eigenvalue of a linear operator T € L(V).

1) The algebraic multiplicity of \ is the multiplicity of \ as a root of the
characteristic polynomial ¢ ().

2) The geometric multiplicity of \ is the dimension of the eigenspace £).[1

Theorem 8.5 The geometric multiplicity of an eigenvalue X of T € L(V) is less
than or equal to its algebraic multiplicity.

Proof. We can extend any basis By = {vy,...,v;} of £, to a basis B for V.
Since &) is invariant under 7, the matrix of 7 with respect to B has the block

form
7] ( M A >
B f—
0 B block

where A and B are matrices of the appropriate sizes and so
cr(z) = det(zI — [7]p)
= det(x]k — )\Ik;)det(mfn_k - B)
= (z — N)¥det(zI,_ — B)

(Here n is the dimension of V'.) Hence, the algebraic multiplicity of X is at least
equal to the the geometric multiplicity & of 7.01
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The Jordan Canonical Form

One of the virtues of the rational canonical form is that every linear operator on
a finite-dimensional vector space has a rational canonical form. However, as
mentioned earlier, the rational canonical form may be far from the ideal of
simplicity that we had in mind for a set of simple canonical forms and is really
more of a theoretical tool than a practical tool.

When the minimal polynomial m. (x) of 7 splits over F,
me(x) = (& — X)) (. — Ap)™
there is another set of canoncial forms that is arguably simpler than the set of

rational canonical forms.

In some sense, the complexity of the rational canonical form comes from the
choice of basis for the cyclic submodules ((v; ;)). Recall that the 7-cyclic bases
have the form

d; j—1

Bij = (vijs i, T i)

Ci,j

where d; ; = deg(p;"”’). With this basis, all of the complexity comes at the end,

so to speak, when we attempt to express

T(Td"fl(vi,j)) = Tdi._z(vi,j)

as a linear combination of the basis vectors.

However, since B; ; has the form
(v, TV, 7'211, ceey Tdflv)
any ordered set of the form
(po(T)v, p1(T)v, ..oy pa—1(T)V)

where deg(py;(z)) = k will also be a basis for ((v; ;)). In particular, when m(z)
splits over F', the elementary divisors are

P() = (= M)
and so the set
Cij = (Vijs (T = N)vigy ooy (T = X)) My )

is also a basis for ((v; ;)).

If we temporarily denote the kth basis vector in C;; by by, then for
k:ZO,...,em-—Q,
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by = 7[(T = X)* (v )]
= (7= X + 2)[(1 = X)*(vi )]
= (7= M) (i) + Xi(r = X)) (viy)
= b1+ \iby
For k = e; ; — 1, a similar computation, using the fact that
(r— )\i)k+l(vz,j) =(r— )\i)ei’](vi,]‘) =0
gives

7(be,,~1) = Aibe, ;1

Thus, for this basis, the complexity is more or less spread out evenly, and the
matrix of 7| (v, Withrespect to C; ; is the e; j X e; ; matrix

N 0 e e 0
N :
J(Niseij) =10 1 :
o o 0
o --- 0 1 N

which is called a Jordan block associated with the scalar )\;. Note that a Jordan
block has \;'s on the main diagonal, 1's on the subdiagonal and 0's elsewhere.
Let us refer to the basis

c={Jc,

as a Jordan basis for 7.

Theorem 8.6 (The Jordan canonical form) Suppose that the minimal
polynomial of T € L(V) splits over the base field F, that is,

mr (@) = (2 = A)e+-(z = A

where \; € F.
1)  The matrix of T with respect to a Jordan basis C is

diag(j()\laeLl)a ey j()\la el,kl)a ey j(>\7m en,l)a ey j()\m en,k,,))

where the polynomials (x — \;)“ are the elementary divisors of T. This
block diagonal matrix is said to be in Jordan canonical form and is called
the Jordan canonical form of .

2) If F is algebraically closed, then up to order of the block diagonal
matrices, the set of matrices in Jordan canonical form constitutes a set of
canonical forms for similarity.

Proof. For part 2), the companion matrix and corresponding Jordan block are

similar:
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Cllz = X)) ~ T (Niseig)

since they both represent the same operator 7 on the subspace ((v; ;)). It follows
that the rational canonical matrix and the Jordan canonical matrix for 7 are
similar.[]

Note that the diagonal elements of the Jordan canonical form J of 7 are
precisely the eigenvalues of 7, each appearing a number of times equal to its
algebraic multiplicity. In general, the rational canonical form does not “expose”
the eigenvalues of the matrix, even when these eigenvalues lie in the base field.

Triangularizability and Schur's Lemma

We have discussed two different canonical forms for similarity: the rational
canonical form, which applies in all cases and the Jordan canonical form, which
applies only when the base field is algebraically closed. Moreover, there is an
annoying sense in which these sets of canoncial forms leave something to be
desired: One is too complex and the other does not always exist.

Let us now drop the rather strict requirements of canonical forms and look at
two classes of matrices that are too large to be canonical forms (the upper
triangular matrices and the almost upper triangular matrices) and one class of
matrices that is too small to be a canonical form (the diagonal matrices).

The upper triangular matrices (or lower triangular matrices) have some nice
algebraic properties and it is of interest to know when an arbitrary matrix is
similar to a triangular matrix. We confine our attention to upper triangular
matrices, since there are direct analogs for lower triangular matrices as well.

Definition 4 linear operator T € L(V') is upper triangularizable if there is an
ordered basis B = (vi,...,v,) of V for which the matrix [T|p is upper
triangular, or equivalently, if

TU; € (U1, ..., ;)

foralli=1,...,n.0

As we will see next, when the base field is algebraically closed, all operators are
upper triangularizable. However, since two distinct upper triangular matrices
can be similar, the class of upper triangular matrices is not a canonical form for
similarity. Simply put, there are just too many upper triangular matrices.

Theorem 8.7 (Schur's theorem) Let V' be a finite-dimensional vector space

over a field F'.

1) If the characteristic polynomial (or minimal polynomial) of T € L(V') splits
over F, then T is upper triangularizable.

2) If Fis algebraically closed, then all operators are upper triangularizable.
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Proof. Part 2) follows from part 1). The proof of part 1) is most easily
accomplished by matrix means, namely, we prove that every square matrix
A € M, (F) whose characteristic polynomial splits over F' is similar to an upper
triangular matrix. If n = 1 there is nothing to prove, since all 1 x 1 matrices are
upper triangular. Assume the result is true for n — 1 and let A € M,,(F).

Let v; be an eigenvector associated with the eigenvalue \; € F' of A and extend
{v1} to an ordered basis B = (v1,...,v,) for R". The matrix of 74 with respect
to BB has the form

o[
1 1block
for some A; € M,,_;(F). Since [74]p and A are similar, we have
det (zI — A) = det(z] — [T4]g) = (x — Ay) det (x] — Ay)

Hence, the characteristic polynomial of A; also splits over F' and the induction
hypothesis implies that there is an invertible matrix P € M,,_;(F') for which

U=PAP!
is upper triangular. Hence, if
1 0
@-[s 7]
0 P block

then (@ is invertible and
-1 _ 1 0 Al * 1 0 o )\1 *
QAlsQ [0 PO Ajlo P |0 U
is upper triangular.[]

The Real Case

When the base field is F' = R, an operator 7 is upper triangularizable if and
only if its characteristic polynomial splits over R. (Why?) We can, however,
always achieve a form that is close to triangular by permitting values on the first
subdiagonal.

Before proceeding, let us recall Theorem 7.11, which says that for a module W,
of prime order m. (), the following are equivalent:

1) Wi, iscyclic

2) W, is indecomposable

3) ¢, () is irreducible

4) T is nonderogatory, that is, ¢, (z) = m,(x)
5)  dim(W;) = deg(p(x)).
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Now suppose that F' = R and ¢,(z) = 2% + sz + t is an irreducible quadratic.
If B is a 7-cyclic basis for W, then

[7]5 = [(1) :ﬂ

However, there is a more appealing matrix representation of 7. To this end, let
A be the matrix above. As a complex matrix, A has two distinct eigenvalues:

V4t — 52

S
A=—2 4
27" 9

Now, a matrix of the form

has characteristic polynomial ¢(z) = (z — a)? + b* and eigenvalues a & ib. So
if we set

V4t — 52

S
a 2 an )

then B has the same two distinct eigenvalues as A and so A and B have the
same Jordan canonical form over C. It follows that A and B are similar over C
and therefore also over R, by Theorem 7.20. Thus, there is an ordered basis C
for which [7]¢ = B.

Theorem 8.8 If ' = R and W is cyclic and deg(c,(x)) = 2, then there is an
ordered basis C for which

[7]e = [Z _b] O

a

Now we can proceed with the real version of Schur's theorem. For the sake of
the exposition, we make the following definition.

Definition 4 matrix A € M, (F") is almost upper triangular if it has the form

Al k
Ay
0 Ay, block

where
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Ai=la] or AZ:[Z _ab]

for a,b € F. A linear operator T € L(V') is almost upper triangularizable if
there is an ordered basis B for which 7]z is almost upper triangular.C]

To see that every real linear operator is almost upper triangularizable, we use
Theorem 7.19, which states that if p(x) is a prime factor of ¢ (z), then V; has a
cyclic submodule W, of order p(x). Hence, W is a 7-cyclic subspace of
dimension deg(p(x)) and 7|y has characteristic polynomial p(z).

Now, the minimal polynomial of a real operator = € L£(V') factors into a product
of linear and irreducible quadratic factors. If ¢,(z) has a linear factor over F,
then V. has a one-dimensional 7-invariant subspace W. If c¢.(z) has an
irreducible quadratic factor p(x), then V; has a cyclic submodule W, of order
p(z) and so a matrix representation of 7 on W is given by the matrix

a —b
=l
This is the basis for an inductive proof, as in the complex case.

Theorem 8.9 (Schur's theorem: real case) If'V is a real vector space, then
every linear operator on 'V is almost upper triangularizable.

Proof. As with the complex case, it is simpler to proceed using matrices, by
showing that any n x n real matrix A is similar to an almost upper triangular
matrix. The result is clear if n = 1. Assume for the purposes of induction that
any square matrix of size less than n x n is almost upper triangularizable.

We have just seen that /" has a one-dimensional 74-invariant subspace W or a
two-dimensional 74-cyclic subspace W, where 74 has irreducible characteristic
polynomial on . Hence, we may choose a basis B for F" for which the first
one or first two vectors are a basis for . Then

[T ] |:A1 * :|
AlB =
0 A block

where

Ay =la] or Al—[g _ab}

and A, has size k x k. The induction hypothesis applied to A, gives an
invertible matrix P € M, for which

U=PA,P!
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is almost upper triangular. Hence, if

I, 0
o-[5 3
0 P block

then @ is invertible and

_ In,~ 0 A * Infk 0
ot = [ )[4 L[ A

is almost upper triangular.[]

I
o =
= %

Unitary Triangularizability

Although we have not yet discussed inner product spaces and orthonormal
bases, the reader may very well be familiar with these concepts. For those who
are, we mention that when V is a real or complex inner product space, then if an
operator 7 on V can be triangularized (or almost triangularized) using an
ordered basis 3, it can also be triangularized (or almost triangularized) using an
orthonormal ordered basis O.

To see this, suppose we apply the Gram—Schmidt orthogonalization process to a
basis B = (v1,...,v,) that triangularizes (or almost triangularizes) 7. The
resulting ordered orthonormal basis O = (uy, ..., u,) has the property that

(V1,00 0) = (U, ..., u;)
for all i < n. Since [7]p is (almost) upper triangular, that is,
TU; € (U1, ..., V)
for all 7 < n, it follows that
TU; € (TU1, ..., 7V;) C (v1,...,0;) = (U1, ...,u;)
and so the matrix [7]o is also (almost) upper triangular.
A linear operator 7 is unitarily upper triangularizable if there is an ordered
orthonormal basis with respect to which 7 is upper triangular. Accordingly,
when V is an inner product space, we can replace the term ‘“‘upper

triangularizable” with “unitarily upper triangularizable” in Schur's theorem. (A
similar statement holds for almost upper triangular matrices.)

Diagonalizable Operators

Definition A linear operator 7 € L(V') is diagonalizable if there is an ordered
basis B = (v1,...,v,) of V for which the matrix [r|g is diagonal, or
equivalently, if
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TV, = )\ﬂ)i

foralli=1,...,n.0

The previous definition leads immediately to the following simple
characterization of diagonalizable operators.

Theorem 8.10 Let 7 € L(V'). The following are equivalent:
1) 7 is diagonalizable.

2) 'V has a basis consisting entirely of eigenvectors of T.
3) 'V has the form

V:g/\l@...@&k

where A1, ..., A\, are the distinct eigenvalues of 7.1

Diagonalizable operators can also be characterized in a simple way via their
minimal polynomials.

Theorem 8.11 A linear operator T € L(V') on a finite-dimensional vector space
is diagonalizable if and only if its minimal polynomial is the product of distinct
linear factors.

Proof. If 7 is diagonalizable, then

V= ®--®E,
and Theorem 7.7 implies that m,(z) is the least common multiple of the
minimal polynomials 2 — \; of 7 restricted to &;. Hence, m(x) is a product of

distinct linear factors. Conversely, if m,(x) is a product of distinct linear
factors, then the primary decomposition of V' has the form

V=Ve ol
where
Vi={veV|(r—XN)v=0}=¢&,
and so 7 is diagonalizable.[d
Spectral Resolutions

We have seen (Theorem 2.25) that resolutions of the identity on a vector space
V' correspond to direct sum decompositions of V. We can do something similar
for any diagonalizable linear operator 7 on V' (not just the identity operator).
Suppose that 7 has the form

T=XAp1++ Nepr

where p; +--- 4+ pr = is a resolution of the identity and the \; € F' are
distinct. This is referred to as a spectral resolution of 7.
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We claim that the \;'s are the eigenvalues of 7 and im(p;) = &£,,. Theorem 2.25
implies that
V =im(p,) & --- $ im(py)

If p;v € im(p;), then

7(piv) = (A1p1 + -+ + Appr) piv = Ni(piv)
and so p;v € &,.. Hence, im(p;) C &, and so

V=im(p)) ®---@im(p,) CE, G- DE,CV
which implies that im(p;) = £,, and
V=@ D&,
The converse also holds, for if V =&, & --- @ &), and if p; is projection onto
&), along the direct sum of the other eigenspaces, then
prt+-tpp =t

and since 7p; = \;p;, it follows that

T=T(p1+ - F pr) = Apr e A

Theorem 8.12 A linear operator 7 € L(V) is diagonalizable if and only if it
has a spectral resolution

T=XAp1+ 4+ \ppr

In this case, {\1, ..., \¢ } is the spectrum of T and

im(p;) =&\ and ker(p;) = EBE,\J O
J#i

Exercises

1. Let J be the n x n matrix all of whose entries are equal to 1. Find the
minimal polynomial and characteristic polynomial of J and the
eigenvalues.

2. Prove that the eigenvalues of a matrix do not form a complete set of

invariants under similarity.

Show that 7 € £(V) is invertible if and only if 0 is not an eigenvalue of 7.

4. Let A be an n x n matrix over a field F' that contains all roots of the
characteristic polynomial of A. Prove that det(A) is the product of the
eigenvalues of A, counting multiplicity.

5. Show that if A is an eigenvalue of 7, then p(\) is an eigenvalue of p(7), for
any polynomial p(z). Also, if A # 0, then A~! is an eigenvalue for 7.

6. Anoperator 7 € L(V) is nilpotent if 7* = 0 for some positive n € N.

W



10.

1.

12.

13.
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a) Show that if 7 is nilpotent, then the spectrum of 7 is {0}.

b) Find a nonnilpotent operator 7 with spectrum {0}.

Show that if 0,7 € £(V') and one of ¢ and 7 is invertible, then o7 ~ 70
and so o7 and 7o have the same eigenvalues, counting multiplicty.
(Halmos)

a) Find a linear operator 7 that is not idempotent but for which

(1 —71)=0.
b) Find a linear operator 7 that is not idempotent but for which
(L —7)2=0.

¢) Provethatif 7*(: — 7) = 7(¢v — 7)? = 0, then 7 is idempotent.

An involution is a linear operator # for which 6% = .. If 7 is idempotent
what can you say about 27 — ¢? Construct a one-to-one correspondence
between the set of idempotents on V' and the set of involutions.

Let A, B € My(C) and suppose that A? = B*=1,ABA = B! but
A # I and B # I. Show that if C' € M5(C) commutes with both A and B,
then C' = rI for some scalar rr € C.

Let7 € £(V) and let

S = (v,7v,..., 7% )

be a 7-cyclic submodule of V; with minimal polynomial p(z)¢ where p(z)
is prime of degree d. Let o = p(7) restricted to (v). Show that S is the
direct sum of d o-cyclic submodules each of dimension e, that is,

S=T1¢---dTy
Hint: For each 0 < i < d, consider the set
B; = {Tiv,p(T)Ti’U,... ,p(T)e’lTiv)

Fix € > 0. Show that any complex matrix is similar to a matrix that looks
just like a Jordan matrix except that the entries that are equal to 1 are
replaced by entries with value e, where € is any complex number. Thus, any
complex matrix is similar to a matrix that is “almost” diagonal. Hint:
consider the fact that

1 0 0 A0 O 1 0 0 A0 O
0 ¢ O 1 X 0 0 ¢! 0|l=]e X O
0 0 ¢ 0 1 X||0 0 €2 0 € A

Show that the Jordan canonical form is not very robust in the sense that a
small change in the entries of a matrix A may result in a large jump in the
entries of the Jordan form .J. Hint: consider the matrix

e 0
a=[5 3]

What happens to the Jordan form of A, as € — 0?
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14. Give an example of a complex nonreal matrix all of whose eigenvalues are
real. Show that any such matrix is similar to a real matrix. What about the
type of the invertible matrices that are used to bring the matrix to Jordan
form?

15. Let J = [7]p be the Jordan form of a linear operator 7 € £L(V'). For a given
Jordan block of J(A,e) let U be the subspace of V' spanned by the basis
vectors of B associated with that block.

a) Show that 7|y has a single eigenvalue A with geometric multiplicity 1.
In other words, there is essentially only one eigenvector (up to scalar
multiple) associated with each Jordan block. Hence, the geometric
multiplicity of A for 7 is the number of Jordan blocks for A\. Show that
the algebraic multiplicity is the sum of the dimensions of the Jordan
blocks associated with .

b) Show that the number of Jordan blocks in .J is the maximum number
of linearly independent eigenvectors of 7.

¢) What can you say about the Jordan blocks if the algebraic multiplicity
of every eigenvalue is equal to its geometric multiplicity?

16. Assume that the base field F' is algebraically closed. Then assuming that the
eigenvalues of a matrix A are known, it is possible to determine the Jordan
form J of A by looking at the rank of various matrix powers. A matrix B is
nilpotent if B" = 0 for some n > 0. The smallest such exponent is called
the index of nilpotence.

a) Let J =J(\,n) be a single Jordan block of size n x n. Show that
J — A is nilpotent of index n. Thus, n is the smallest integer for
which tk(J — AT)" = 0.

Now let J be a matrix in Jordan form but possessing only one eigenvalue

A

b) Show that J — A[ is nilpotent. Let m be its index of nilpotence. Show
that m is the maximum size of the Jordan blocks of .J and that
rk(J — AI)™~! is the number of Jordan blocks in .J of maximum size.

¢) Show that rk(J — AI)™? is equal to 2 times the number of Jordan
blocks of maximum size plus the number of Jordan blocks of size one
less than the maximum.

d) Show that the sequence rtk(J — AI)* for k=1,...,m uniquely
determines the number and size of all of the Jordan blocks in .J, that is,
it uniquely determines .JJ up to the order of the blocks.

e) Now let J be an arbitrary Jordan matrix. If A is an eigenvalue for .J
show that the sequence rk(J — AI)* for k = 1,...,m where m is the
first integer for which rk(J — AI)™ =tk(J — AI)™" uniquely
determines J up to the order of the blocks.

f) Prove that for any matrix A with spectrum {\,..., \;} the sequence
tk(A — \I)¥ fori=1,...,s and k = 1,...,m where m is the first
integer for which tk(A — \I)" =1k(A — N\I)™ ! uniquely
determines the Jordan matrix J for A up to the order of the blocks.

17. Let A € M, (F).



Eigenvalues and Eigenvectors 201

a) If all the roots of the characteristic polynomial of A lie in F' prove that
A is similar to its transpose A’. Hint: Let B be the matrix

10
B=|g . :
10 0

with 1's on the diagonal that moves up from left to right and 0's
elsewhere. Let J be a Jordan block of the same size as B. Show that
BJB™ ' =J'.

b) Let A, B € M, (F). Let K be a field containing F'. Show that if A and
B are similar over K, that is, if B = PAP~! where P € M,,(K), then
A and B are also similar over F, that is, there exists Q € M,,(F) for
which B = QAQ .

¢) Show that any matrix is similar to its transpose.

The Trace of a Matrix

18.

19.

20.

Let A € M, (F). Verify the following statements.

a) tr(rA) = rtr(A), forr e F.

b) tr(A+ B) =tr(A) 4 tr(B).

c) tr(AB) =tr(BA).

d) tr(ABC)=1tr(CAB)=tr(BCA). Find an example to show that

tr(ABC') may not equal tr(AC'B).

e) The trace is an invariant under similarity.

f) If F is algebraically closed, then the trace of A is the sum of the
eigenvalues of A.

Use the concept of the trace of a matrix, as defined in the previous exercise,

to prove that there are no matrices A, B € M,,(C) for which

AB—-BA=1

Let T: M,,(F) — F be a function with the following properties. For all
matrices A, B € M, (F)andr € F,

1) T(rA) =rT(A)

2) T(A+B)=T(A)+T(B)

3) T(AB) = T(BA)

Show that there exists s € F for which T(A) =str(A), for all
Ae M, (F).

Commuting Operators

Let

F={nelV)|iel}

be a family of operators on a vector space V. Then F is a commuting family if
every pair of operators commutes, that is, o7 = 7o for all o, 7 € F. A subspace
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U of V is F-invariant if it is 7-invariant for every 7 € F. It is often of interest
to know whether a family F of linear operators on V has a common
eigenvector, that is, a single vector v € V' that is an eigenvector for every
o € F (the corresponding eigenvalues may be different for each operator,
however).

21. A pair of linear operators o, 7 € L(V') is simultaneously diagonalizable if
there is an ordered basis B for V' for which [7]z and [o]p are both diagonal,
that is, 53 is an ordered basis of eigenvectors for both 7 and o. Prove that
two diagonalizable operators ¢ and 7 are simultaneously diagonalizable if
and only if they commute, that is, o7 = 7o. Hint: If o7 = 70, then the
eigenspaces of 7 are invariant under o.

22. Let o,7 € L(V). Prove that if o and 7 commute, then every eigenspace of
o is T-invariant. Thus, if F is a commuting family, then every eigenspace
of any member of F is F-invariant.

23. Let F be a family of operators in £(V') with the property that each operator
in F has a full set of eigenvalues in the base field F', that is, the
characteristic polynomial splits over F'. Prove that if F is a commuting
family, then F has a common eigenvector v € V.

24. What do the real matrices

1 1 1 2
A[—l 1] andB{_2 1]

have to do with the issue of common eigenvectors?

Gersgorin Disks

It is generally impossible to determine precisely the eigenvalues of a given
complex operator or matrix A € M,,(C), for if n > 5, then the characteristic
equation has degree 5 and cannot in general be solved. As a result, the
approximation of eigenvalues is big business. Here we consider one aspect of
this approximation problem, which also has some interesting theoretical
consequences.

Let A € M,,(C) and suppose that Av = Av where v = (by, ..., b,)". Comparing
kth rows gives

S Auib = Aby
i=1

which can also be written in the form
(A — Agr) ZAM i

L;ék
If k has the property that |b;| > |b;| for all 4, we have
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n

[bi|| A — Ag| < Z\Amef\ < |bk;|Z|Almt|

i=1 i=1
1#£k i#k

and thus

A= Api| < Z|Aki| (8.7)
iZh

The right-hand side is the sum of the absolute values of all entries in the kth row
of A except the diagonal entry Aj;.. This sum Ry (A) is the kth deleted absolute
row sum of A. The inequality (8.7) says that, in the complex plane, the
eigenvalue A lies in the disk centered at the diagonal entry Ay, with radius equal
to Ri(A). This disk

GRk(A) = {Z eC | |Z — Akkl < Rk(A)}

is called the GerSgorin row disk for the kth row of A. The union of all of the
Gersgorin row disks is called the Ger$gorin row region for A.

Since there is no way to know in general which is the index k& for which
|br| > |b:], the best we can say in general is that the eigenvalues of A lie in the
union of all Ger$gorin row disks, that is, in the Ger§gorin row region of A.

Similar definitions can be made for columns and since a matrix has the same
eigenvalues as its transpose, we can say that the eigenvalues of A lie in the
Gersgorin column region of A. The GerSgorin region G(A) of a matrix
A € M, (F) is the intersection of the Ger§gorin row region and the Ger§gorin
column region and we can say that all eigenvalues of A lie in the GerS$gorin
region of A. In symbols, cA C G A.

25. Find and sketch the GerSgorin region and the eigenvalues for the matrix
1 2 3
A=1{4 5 6
7T 8 9

26. A matrix A € M, (C) is diagonally dominant if foreach k = 1,...,n,
[Api| = Ry(A)

and it is strictly diagonally dominant if strict inequality holds. Prove that
if A is strictly diagonally dominant, then it is invertible.

27. Find a matrix A € M,,(C) that is diagonally dominant but not invertible.

28. Find a matrix A € M, (C) that is invertible but not strictly diagonally
dominant.



Chapter 9
Real and Complex Inner Product Spaces

We now turn to a discussion of real and complex vector spaces that have an
additional function defined on them, called an inner product, as described in the
following definition. In this chapter, F will denote either the real or complex
field. Also, the complex conjugate of r € C is denoted by 7.

Definition Let V' be a vector space over F' =R or F' = C. An inner product
onV is a function {,): V x V' — F with the following properties:
1) (Positive definiteness) For allv €V,

(v,v) >0 and (v,v) =0&v=0

2) For I' = C: (Conjugate symmetry)

(u,v) = (v, u)
For F = R: (Symmetry)
(u,v) = (v, u)
3) (Linearity in the first coordinate) For all u,v € V andr,s € F
(ru + sv,w) = r(u, w) + s(v, w)

A real (or complex) vector space V, together with an inner product, is called a
real (or complex) inner product space.[]

If X,Y CV, then we let
(X, V) ={{z,y) |z e X,yeY}
and
(v, X) ={{(v,x) | x € X}

Note that a vector subspace S of an inner product space V' is also an inner
product space under the restriction of the inner product of V to S.
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We will study bilinear forms (also called inner products) on vector spaces over
fields other than R or C in Chapter 11. Note that property 1) implies that (v, v)
is always real, even if V' is a complex vector space.

If F = R, then properties 2) and 3) imply that the inner product is linear in both
coordinates, that is, the inner product is bilinear. However, if F' = C, then

(w,ru + sv) = (ru + sv,w) = T(u, w) + 5(v, w) = 7{w, u) + 5{w, v)

This is referred to as conjugate linearity in the second coordinate. Specifically,
a function f: V' — W between complex vector spaces is conjugate linear if

flu+v)= f(u) + f(v)
and
f(ru) =7f(u)

for all u,v € V and r € C. Thus, a complex inner product is linear in its first
coordinate and conjugate linear in its second coordinate. This is often described
by saying that a complex inner product is sesquilinear. (Sesqui means “one and
a half times.”)

Example 9.1
1) The vector space R" is an inner product space under the standard inner
product, or dot product, defined by

<(T1,...,Tn),(Sl,...,Sn>> =7r181+ -+ 1S,

The inner product space R" is often called n-dimensional Euclidean
space.

2) The vector space C" is an inner product space under the standard inner
product defined by

<(T1, "')r7L)7 (517 ---73n>> =781+ -+ TSy

This inner product space is often called n-dimensional unitary space.

3) The vector space C'la, b] of all continuous complex-valued functions on the
closed interval [a,b] is a complex inner product space under the inner
product

b
(f.g) = / f(2)9(@) dz X

Example 9.2 One of the most important inner product spaces is the vector space
% of all real (or complex) sequences (s,,) with the property that

Z|3“'|2 < 00
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under the inner product
((sn)s (tn)) = ana
n=0

Such sequences are called square summable. Of course, for this inner product
to make sense, the sum on the right must converge. To see this, note that if
(8n), (t,) € £2, then

0< (|5n| - |tn|)2 = |57l‘2 - 2|5n||tn| + |tn|2
and so
2|Sntn| < |Sn|2 + |tn|2

which implies that (s,t,) € ¢>. We leave it to the reader to verify that ¢* is an
inner product space.[]

The following simple result is quite useful.

Lemma 9.1 [f'V is an inner product space and (u,z) = (v,x) for all v € V,
then v = v.0d

The next result points out one of the main differences between real and complex
inner product spaces and will play a key role in later work.

Theorem 9.2 Let V' be an inner product space and let T € L(V).
1)

(to,w) =0forallv,weV = 7=0

2) If'V is a complex inner product space, then
(to,v)y =0forallveV = 71=0

but this does not hold in general for real inner product spaces.
Proof. Part 1) follows directly from Lemma 9.1. As for part 2), let v = rz + v,
forxz,y € V andr € F. Then

0= (r(rz +y),rz +y)
|7'|2<7'1:, x) + (ty,y) + r{rz,y) + 7Ty, )
=r(rz,y) +7(Ty,z)

Setting = 1 gives
(rz,y) + (ry,2) =

and setting r = ¢ gives
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<T$,y> - <Ty7 x> =0

These two equations imply that (rz,y) =0 for all 2,y € V and so part 1)
implies that 7 = 0. For the last statement, rotation by 90 degrees in the real
plane R? has the property that (v, v) = 0 for all v.OJ

Norm and Distance
If V' is an inner product space, the norm, or length of v € V' is defined by
[0l = v/ (v, v) ©.1)

A vector v is a unit vector if ||v|| = 1. Here are the basic properties of the norm.

Theorem 9.3
1) ||v|]| = 0and ||v|| = 0 if and only if v = 0.
2) Forallr € Fandv eV,

[lroll = Ir{flol
3) (The Cauchy—Schwarz inequality) For all u,v € V,
[(w, )| < ull[]v]l

with equality if and only if one of w and v is a scalar multiple of the other.
4) (The triangle inequality) For all u,v € V,

l[u+ ol < flull + o]

with equality if and only if one of u and v is a scalar multiple of the other.
5) Forallu,v,xz €V,

l[u = vl < llu—zf| + ||z — ol
6) Forallu,veV,
[l = llvllf < flu — ol
7) (The parallelogram law) For all u,v € V,
lu + o) + u = o)* = 2]jul* + 2|o]|*

Proof. We prove only Cauchy—Schwarz and the triangle inequality. For
Cauchy—Schwarz, if either u or v is zero the result follows, so assume that
u,v # 0. Then, for any scalar r € F',

0< flu—rolf?
= (u—rv,u—rv)
= <ua u> - ?<u7 'U> - T[<'U7 u> - ?<'U7 UH

Choosing 7 = (v,u)/(v, v) makes the value in the square brackets equal to 0
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and so

[(u, v)[?

2
o]l

(v, u)(u, v)

(v, 0)

which is equivalent to the Cauchy—Schwarz inequality. Furthermore, equality
holds if and only if ||u — 7v||* = 0, that is, if and only if u — rv = 0, which is
equivalent to u and v being scalar multiples of one another.

0< (u,u) — = |lull® ~

To prove the triangle inequality, the Cauchy—Schwarz inequality gives
lu+v)* = (u+ v, u+v)
= (u,u) + (u,v) + (v, u) + (v, v)
2 2
< lull” + 2[lulll[off + o]
= (llull + [lvll)*

from which the triangle inequality follows. The proof of the statement
concerning equality is left to the reader.[]

Any vector space V, together with a function |- ||:V — R that satisfies
properties 1), 2) and 4) of Theorem 9.3, is called a normed linear space and the
function || - || is called a norm. Thus, any inner product space is a normed linear
space, under the norm given by (9.1).

It is interesting to observe that the inner product on V' can be recovered from the
norm. Thus, knowing the length of all vectors in V' is equivalent to knowing all

inner products of vectors in V.

Theorem 9.4 (The polarization identities)
1) If'V is a real inner product space, then

1
(w,0) = 7 (lu+ ol = llu = ]*)
2) If'V is a complex inner product space, then
1 2 oy 1. 2 2
(w,0) = Z(lu+ 0" = llu = ol") + Zilllu+ wl]” ~ [lu — [

The norm can be used to define the distance between any two vectors in an
inner product space.

Definition Let V' be an inner product space. The distance d(u,v) between any
two vectors uw and vin 'V is

d(u,v) = |lu— || .20

Here are the basic properties of distance.
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Theorem 9.5
) d(u,v) > 0and d(u,v) = 0ifand only ifu = v
2) (Symmetry)

d(u,v) = d(v,u)
3) (The triangle inequality)
d(u,v) < d(u,w) + d(w,v) O

Any nonempty set V, together with a function d: V' x V' — R that satisfies the
properties of Theorem 9.5, is called a metric space and the function d is called
a metric on V. Thus, any inner product space is a metric space under the metric
9.2).

Before continuing, we should make a few remarks about our goals in this and
the next chapter. The presence of an inner product, and hence a metric, permits
the definition of a topology on V, and in particular, convergence of infinite
sequences. A sequence (v,,) of vectors in V' converges to v € V' if

lim ||v, —v]| =0
n—oo

Some of the more important concepts related to convergence are closedness and
closures, completeness and the continuity of linear operators and linear
functionals.

In the finite-dimensional case, the situation is very straightforward: All
subspaces are closed, all inner product spaces are complete and all linear
operators and functionals are continuous. However, in the infinite-dimensional
case, things are not as simple.

Our goals in this chapter and the next are to describe some of the basic
properties of inner product spaces—both finite and infinite-dimensional—and
then discuss certain special types of operators (normal, unitary and self-adjoint)
in the finite-dimensional case only. To achieve the latter goal as rapidly as
possible, we will postpone a discussion of convergence-related properties until
Chapter 12. This means that we must state some results only for the finite-
dimensional case in this chapter.

Isometries

An isomorphism of vector spaces preserves the vector space operations. The
corresponding concept for inner product spaces is the isometry.

Definition Let V' and W be inner product spaces and let 7 € L(V,W).
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1) 7 is an isometry if it preserves the inner product, that is, if
(Tu, Tv) = (u,v)

forallu,veV.

2) A bijective isometry is called an isometric isomorphism. When 7:V — W
is an isometric isomorphism, we say that V and W are isometrically
isomorphic.]

It is clear that an isometry is injective and so it is an isometric isomorphism
provided it is surjective. Moreover, if

dim(V) = dim(W) < oo

injectivity implies surjectivity and 7 is an isometry if and only if 7 is an
isometric isomorphism. On the other hand, the following simple example shows
that this is not the case for infinite-dimensional inner product spaces.

Example 9.3 The map 7: (> — ¢? defined by
7(z1, 22, 23,...) = (0,21, 29, ...)

is an isometry, but it is clearly not surjective.[]

Since the norm determines the inner product, the following should not come as a
surprise.

Theorem 9.6 A linear transformation T € L(V , W) is an isometry if and only if
it preserves the norm, that is, if and only if
[7oll = [lvll

forallveV.
Proof. Clearly, an isometry preserves the norm. The converse follows from the
polarization identities. In the real case, we have

1
(Tu, TV) = Z(Hru + 70| = ||ru — 10?)
1 2 2
= U@+ " = lir(u=v)[")
1 2 2
= qUlu+ol” = flu =2l
= (u, )
and so 7 is an isometry. The complex case is similar.[]

Orthogonality

The presence of an inner product allows us to define the concept of
orthogonality.
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Definition Let V' be an inner product space.
1) Two vectors u,v € V are orthogonal, written v L v, if

(u,v) =0

2) Two subsets X,Y CV are orthogonal, written X LY, if (X,Y) = {0},
that is, if © Ly for all x € X and y €Y. We write v L X in place of
{v} L X.

3) The orthogonal complement of a subset X C V is the set

Xt={veV|vlX} O
The following result is easily proved.
Theorem 9.7 Let V' be an inner product space.

1) The orthogonal complement X of any subset X C V is a subspace of V.
2) For any subspace S of V,

SnS+t=1{0} O
Definition An inner product space V is the orthogonal direct sum of
subspaces S and T if
V=SeT, SLT
In this case, we write
SoT

More generally, V is the orthogonal direct sum of the subspaces Si,..., Sy,
written

S=50---005,

V=8&--®S, and S; L S;fori#j O

Theorem 9.8 Let V' be an inner product space. The following are equivalent.

Iy V=SoT

2) V=S®TandT = S+

Proof. If V = S ® T, then by definition, 7" C S*. However, if v € S*, then
v=s+twheres € S andt € T. Then s is orthogonal to both ¢ and v and so s
is orthogonal to itself, which implies that s = 0 and so v € T Hence, T = S*.
The converse is clear.[d

Orthogonal and Orthonormal Sets

Definition 4 nonempty set O = {u; | i € K} of vectors in an inner product
space is said to be an orthogonal set if u; L u; for all i # j€ K. If, in
addition, each vector u; is a unit vector, then O is an orthonormal set. Thus, a



Real and Complex Inner Product Spaces 213

set is orthonormal if
(ui, uj) = bi;
foralli,je K, where b, j is the Kronecker delta function.[]

Of course, given any nonzero vector v € V, we may obtain a unit vector u by
multiplying v by the reciprocal of its norm:

1
U= 70
]

This process is referred to as normalizing the vector v. Thus, it is a simple
matter to construct an orthonormal set from an orthogonal set of nonzero
vectors.

Note that if © L v, then
2 2 2
llw+ol” = [lull” + v

and the converse holds if F' = R.
Orthogonality is stronger than linear independence.

Theorem 9.9 Any orthogonal set of nonzero vectors in V is linearly
independent.
Proof. If O = {u, | ¢ € K} is an orthogonal set of nonzero vectors and

riug + -+, =0
then
0= (riug + -+ rouy, ug) = re{ug, ug)
and so . = 0, for all k. Hence, O is linearly independent.[]
Gram—Schmidt Orthogonalization

The Gram—Schmidt process can be used to transform a sequence of vectors into
an orthogonal sequence. We begin with the following.

Theorem 9.10 (Gram—Schmidt augmentation) Let V' be an inner product
space and let O = {uy,...,u,} be an orthogonal set of vectors in V. If
v & (u1,...,uy,), then there is a nonzero u €'V for which {us, ... ,uy,u} is
orthogonal and

(Upy ey Uy t) = (Upy.eny Uy, V)

In particular,
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n
uUu=v— E T
i=1

where

Proof. We simply set

U=vV—T"ruy — - - —Tply
and force u L wu; for all 7, that is,
0= (u,u;) = (V—riug — - =y, w;) = (V,u;) — 73(U;, ;)
Thus, if u; = 0, take r; = 0 and if u; # 0, take
o <Uv U'i> O

T (g, ug)

The Gram-Schmidt augmentation is traditionally applied to a sequence of
linearly independent vectors, but it also applies to any sequence of vectors.

Theorem 9.11 (The Gram-Schmidt orthogonalization process) Let

B = (v1,v,...) be a sequence of vectors in an inner product space V. Define a
sequence O = (uy,us, ... ) by repeated Gram—Schmidt augmentation, that is,

k=1
Uk = Vg — E Tl il
i=1

where uy = v, and

T w0

Then O is an orthogonal sequence in V with the property that
(ugy .o up) = (U1, ..o, Up)

forall k > 0. Also, ur, = 0 if and only if vi, € (v1,...,Vp-1).
Proof. The result holds for k=1. Assume it holds for k£ —1. If
v € (v1,...,Up-1), then

U € (U1, oy k1) = Uy Up-1)

Writing
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k—1
U = § iU
i=1

we have

gy = { © if u; =0
ko Tl = aZ'(ui,u,;) 1fu17£0

Therefore, a; = rj,; when u; # 0 and so u;, = 0. Hence,
(upy ooy ug) = (U1, up—1,0) = (U1, vp—1) = (U1, ..., V)
Ifvp & (v1,...,v5-1) then
(ury oo up) = (U1, U1, ug) = (U1, .., Vg1, Ug) O

Example 9.4 Consider the inner product space R|[x] of real polynomials, with
inner product defined by

Applying the Gram-Schmidt process to the sequence B = (1,x, 2% 2%,...)
gives

u(z) =1
1
d
us(z) = — Ly dx =
1
S dx
L) 1.3
d d 1
’LL3(.T): 2 _ f—llx x o f—llx x .T—Zli?—*
S dx J o jzdx 3
fjldm fllx dz fil(aﬂ—l)?d:c 3
=g — gm

and so on. The polynomials in this sequence are (at least up to multiplicative
constants) the Legendre polynomials.[]

The QR Factorization

The Gram—Schmidt process can be used to factor any real or complex matrix
into a product of a matrix with orthogonal columns and an upper triangular
matrix. Suppose that A = (vy |ve | -+ | v,) is an m X n matrix with columns
v;, where n < m. The Gram—Schmidt process applied to these columns gives
orthogonal vectors O = (uy | ug | -+ | u,) for which
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(U, ooy ugy = (U1, .00, vg)

for all £ < n. In particular,
k—1
U = U + Z Th,iUi
i=1

where

In matrix terms,

1 rmq o rpa
1 “ e r
(v [va |-+ [vn) = (ur [ug |- | up) : "2

1
that is, A = OB where O has orthogonal columns and B is upper triangular.

We may normalize the nonzero columns u; of O and move the positive
constants to B. In particular, if a; = ||u;|| for u; # 0 and a; = 1 for u; = 0, then

ay airey vt A1Tpa
Uy | U2 Unp as DY)
(r |vg |- |von) = (=] 2] | = . :
ap a2 ap, .
aﬂ,
and so
A=QR

where the columns of () are orthogonal and each column is either a unit vector
or the zero vector and R is upper triangular with positive entries on the main
diagonal. Moreover, if the vectors vy, ..., v, are linearly independent, then the
columns of @) are nonzero. Also, if m =n and A is nonsingular, then @ is
unitary/orthogonal.

If the columns of A are not linearly independent, we can make one final
adjustment to this matrix factorization. If a column w;/a; is zero, then we may
replace this column by any vector as long as we replace the (7, ¢)th entry a; in R
by 0. Therefore, we can take nonzero columns of (), extend to an orthonormal
basis for the span of the columns of () and replace the zero columns of ) by the
additional members of this orthonormal basis. In this way, @ is replaced by a
unitary/orthogonal matrix Q" and R is replaced by an upper triangular matrix R’
that has nonnegative entries on the main diagonal.
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Theorem 9.12 Let A € M, ,,(F), where F =C or F =R. There exists a
matrix Q € M,,,(F) with orthonormal columns and an upper triangular

matrix R € M,,(F) with nonnegative real entries on the main diagonal for
which

A=QR

Moreover, if m = n, then Q is unitary/orthogonal. If A is nonsingular, then R
can be chosen to have positive entries on the main diagonal, in which case the
factors @QQ and R are unique. The factorization A = QR is called the QR
factorization of the matrix A. If A is real, then QQ and R may be taken to be
real.

Proof. As to uniqueness, if A is nonsingular and QR = Q1 Ry then

Q'Q=R R

and the right side is upper triangular with nonzero entries on the main diagonal
and the left side is unitary. But an upper triangular matrix with positive entries
on the main diagonal is unitary if and only if it is the identity and so Q1 = Q
and Ry = R. Finally, if A is real, then all computations take place in the real
field and so @) and R are real.l]

The QR decomposition has important applications. For example, a system of
linear equations Az = u can be written in the form

QRx=u
and since Q! = Q*, we have
Rr = Q"u

This is an upper triangular system, which is easily solved by back substitution;
that is, starting from the bottom and working up.

We mention also that the QR factorization is associated with an algorithm for
approximating the eigenvalues of a matrix, called the QR algorithm.
Specifically, if A = Ay is an n X n matrix, define a sequence of matrices as
follows:

1) Let Ay = QoRy be the QR factorization of Ay and let Ay = RyQy.
2) Once A; has been defined, let A, = QR be the QR factorization of Ay
and let Ak+1 = RiQy.

Then Ay, is unitarily/orthogonally similar to A, since

Qr1A41Q51 = Qr—1(Rp—1Qr-1)Q1 = Qr—1Rp—1 = Ay

For complex matrices, it can be shown that under certain circumstances, such as
when the eigenvalues of A have distinct norms, the sequence Aj converges
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(entrywise) to an upper triangular matrix U, which therefore has the eigenvalues
of A on its main diagonal. Results can be obtained in the real case as well. For
more details, we refer the reader to [48], page 115.

Hilbert and Hamel Bases

Definition 4 maximal orthonormal set in an inner product space V' is called a
Hilbert basis for V.[J

Zorn's lemma can be used to show that any nontrivial inner product space has a
Hilbert basis. We leave the details to the reader.

Some care must be taken not to confuse the concepts of a basis for a vector
space and a Hilbert basis for an inner product space. To avoid confusion, a
vector space basis, that is, a maximal linearly independent set of vectors, is
referred to as a Hamel basis. We will refer to an orthonormal Hamel basis as an
orthonormal basis.

To be perfectly clear, there are maximal linearly independent sets called
(Hamel) bases and maximal orthonormal sets (called Hilbert bases). If a
maximal linearly independent set (basis) is orthonormal, it is called an
orthonormal basis.

Moreover, since every orthonormal set is linearly independent, it follows that an
orthonormal basis is a Hilbert basis, since it cannot be properly contained in an
orthonormal set. For finite-dimensional inner product spaces, the two types of
bases are the same.

Theorem 9.13 Let V be an inner product space. A finite subset
O ={uy,...,u;} of V is an orthonormal (Hamel) basis for V' if and only if it is
a Hilbert basis for V.

Proof. We have seen that any orthonormal basis is a Hilbert basis. Conversely,
if O is a finite maximal orthonormal set and O C P, where P is linearly
independent, then we may apply part 1) to extend O to a strictly larger
orthonormal set, in contradiction to the maximality of O. Hence, O is maximal
linearly independent.[]

The following example shows that the previous theorem fails for infinite-
dimensional inner product spaces.
Example 9.5 Let V' = (2 and let M be the set of all vectors of the form

e; =(0,...,0,1,0,...)

where e; has a 1 in the ith coordinate and 0's elsewhere. Clearly, M is an
orthonormal set. Moreover, it is maximal. For if v = (z,,) € £? has the property
that v 1L M, then
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x; = (v,e;) =0
for all ¢ and so v = 0. Hence, no nonzero vector v ¢ M is orthogonal to M.

This shows that M is a Hilbert basis for the inner product space £2.

On the other hand, the vector space span of M is the subspace S of all
sequences in ¢? that have finite support, that is, have only a finite number of
nonzero terms and since span(M) = S # (%, we see that M is not a Hamel
basis for the vector space ¢2.00

The Projection Theorem and Best Approximations

Orthonormal bases have a great practical advantage over arbitrary bases. From a
computational point of view, if B = {vy,...,v,} is a basis for V, then each
v € V has the form

V=701 + T,
In general, determining the coordinates r; requires solving a system of linear
equations of size n X n.
On the other hand, if O = {uy, ..., u,} is an orthonormal basis for V" and
v=riur + o rpuy
then the coefficients r; are quite easily computed:
(v, u;) = (riug + - 4 roug, ui) = ri{ug, ) = r;

Even if O = {uy,...,u,} is not a basis (but just an orthonormal set), we can
still consider the expansion

V= <'U, u1>u1 + 4+ <'U, un>un

Theorem 9.14 Let O = {uy,...,u;} be an orthonormal subset of an inner
product space V and let S = (O). The Fourier expansion with respect to O of
a vectorv € V is

V= (v,u)ur + - + (v, up)up

Each coefficient (v,u;) is called a Fourier coefficient of v with respect to O.

The vector v can be characterized as follows:

1) U is the unique vector s € S for which (v —s) L S.

2) 7 is the best approximation fo v from within S, that is, U is the unique
vector s € S that is closest to v, in the sense that

lo =2l < v - s

Jorall s € S\ {v}.
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3) Bessel's inequality holds for all v € V, that is
1ol < ]l
Proof. For part 1), since
(v =70, u;) = (v, u;) — (T,u;) =0
it follows that v — % € S*. Also, ifv — s € S+ fors € S, then s — 9 € S and
s—0=(-2)—(v—s) €St

and so s=79. For part 2), if s€ S, then v—o€ St implies that
(v—70) L (0—s) and so

2 ~ 2 SN2 L 1 2
lo=slI" =llv=0+2 =" = lo=2[" + [[0 - 5]
Hence, ||v — s|| is smallest if and only if s =7 and the smallest value is
|lv —||. We leave proof of Bessel's inequality as an exercise.]
Theorem 9.15 (The projection theorem) If S is a finite-dimensional subspace
of an inner product space V, then
S=8568*"
In particular, if v € V, then
v=0+0w-0) €SOt
1t follows that
dim(V') = dim(S) + dim(S™)
Proof. We have seen that v — 9 € S+ and so V = S + S+. But SN S+ = {0}
andsoV =S50 s+.0

The following example shows that the projection theorem may fail if S is not
finite-dimensional. Indeed, in the infinite-dimensional case, S must be a
complete subspace, but we postpone a discussion of this case until Chapter 13.

Example 9.6 As in Example 9.5, let V = ¢? and let S be the subspace of all
sequences with finite support, that is, S is spanned by the vectors

e;i=(0,...,0,1,0,...)

where e; has a 1 in the ith coordinate and 0's elsewhere. If 7 = (z,,) € S+, then
x; = (x,e;) = 0 for all i and so = = 0. Therefore, S* = {0}. However,

SOSt=8#£" O

The projection theorem has a variety of uses.
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Theorem 9.16 Let V' be an inner product space and let S be a finite-
dimensional subspace of V.

I Stt=¢
2) If X CVanddim((X)) < oo, then

XLL — <X>

Proof. For part 1), it is clear that S C S+, On the other hand, if v € S+, then
the projection theorem implies that v = s + s’ where s € S and s’ € S*. Then
s’ is orthogonal to both s and v and so s’ is orthogonal to itself. Hence, s’ = 0
andv = s € Sandso S = S**. We leave the proof of part 2) as an exercise.[]

Characterizing Orthonormal Bases

We can characterize orthonormal bases using Fourier expansions.

Theorem 9.17 Let O = {uy,...,u;} be an orthonormal subset of an inner
product space V and let S = (O). The following are equivalent:

1) O is an orthonormal basis for V.

2) (0)* = {0}

3) Every vector is equal to its Fourier expansion, that is, for allv € V,
v=w
4) Bessel's identity /olds for all v € V, that is,
12l = [|v]]
5) Parseval's identity holds for all v,w € V, that is,
(v, w) = [P0 - [W]o

where

[Plo - [@]o = (v, un){w, 1) + - + (v, up) (w, ug)

is the standard dot product in F*.
Proof. To see that 1) implies 2), if v € (O)* is nonzero, then O U {v/||v]|} is
orthonormal and so O is not maximal. Conversely, if O is not maximal, there is
an orthonormal set P for which @ C P. Then any nonzero v € P\ O is in
(O)*. Hence, 2) implies 1). We leave the rest of the proof as an exercise.[]

The Riesz Representation Theorem

We have been dealing with linear maps for some time. We now have a need for
conjugate linear maps.

Definition A function o:V — W on complex vector spaces is conjugate linear
if it is additive,

o(vy + v9) = ovy + ovy
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and
o(rv) =TFov

for all r € C. A conjugate isomorphism is a bijective conjugate linear map.C]

If x € V, then the inner product function ( - ,z): V' — F defined by
()= (v,z)
is a linear functional on V. Thus, the linear map 7: V' — V* defined by
T =(-,x)

is conjugate linear. Moreover, since (-, x) = (-,y) implies x = y, it follows
that 7 is injective and therefore a conjugate isomorphism (since V is finite-
dimensional).

Theorem 9.18 (The Riesz representation theorem) Let V be a finite-
dimensional inner product space.
1) Themap 7:V — V* defined by

Tr={-,x)

is a conjugate isomorphism. In particular, for each f € V*, there exists a
unique vector x € V for which [ = (-, x), that is,

Jv= <va>

forallv e V. We call x the Riesz vector for f and denote it by R;.
2) Themap R:V* — V defined by

Rf =Ry

is also a conjugate isomorphism, being the inverse of T. We will call this
map the Riesz map.
Proof. Here is the usual proof that 7 is surjective. If f = 0, then By = 0, so let
us assume that f # 0. Then K = ker(f) has codimension 1 and so

V={w oK
for w € K*. Letting z = aw for o € F, we require that
f(v) = (v, aw)

and since this clearly holds for any v € K, it is sufficient to show that it holds
for v = w, that is,

fw) = (w, aw) = @(w, w)

Thus, o = f(w)/|wl|* and
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p, - I

- 2
[[]

For part 2), we have

(0, Rypisg) = (rf + sg)(v)
=rf(v) + sg(v)
= (v,TRy) + (v,5Ry)
= (v,FR; + SRy)

forall v € V and so

Royisg =TR; +35R, O

Note that if V' =R", then R; = (f(e1),..., f(en)), where (ey,...,e,) is the
standard basis for R".

Exercises

1.

B

10.
11.

12.

Prove that if a matrix M is unitary, upper triangular and has positive entries
on the main diagonal, must be the identity matrix.

Use the QR factorization to show that any triangularizable matrix is
unitarily (orthogonally) triangularizable.

Verify the statement concerning equality in the triangle inequality.

Prove the parallelogram law.

Prove the Apollonius identity

1 1 ’
2 2 2
o=l + oo = ol = = o+ 20 = 5w+ 0

Let V' be an inner product space with basis 3. Show that the inner product
is uniquely defined by the values (u, v), for all u,v € B.

Prove that two vectors u and v in a real inner product space V are
orthogonal if and only if

2 2 2
[+ ol = flul” + o

Show that an isometry is injective.

Use Zorn's lemma to show that any nontrivial inner product space has a
Hilbert basis.

Prove Bessel's inequality.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if ¥ = v, forallv e V.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if Bessel's identity holds for all v € V/, that is, if
and only if
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13.

14.

15.

16.

17.
18.

19.

20.

Advanced Linear Algebra

1ol = ol

forallv e V.

Prove that an orthonormal set O is a Hilbert basis for a finite-dimensional
vector space V' if and only if Parseval's identity holds for all v,w € V, that
is, if and only if

(v, w) = [lo - [@]o

forallv,w e V.
Let w = (r1,...,r,) and v = (s1,...,s,) be in R". The Cauchy—Schwarz
inequality states that

Irisy 4 A rasal” < (FF 4 4 r2) (T4 4 52)
Prove that we can do better:
(Irsi| 4 -+ |rosal)? < (rF -+ 77) (57 + -+ + 53)

Let V be a finite-dimensional inner product space. Prove that for any subset
X of V, we have X+ = span(X).

Let P5 be the inner product space of all polynomials of degree at most 3,
under the inner product

(vle).a@) = [ po)a(a)e " da
Apply the Gram-Schmidt process to the basis {1,z,2% 2}, thereby
computing the first four Hermite polynomials (at least up to a
multiplicative constant).
Verify uniqueness in the Riesz representation theorem.
Let V' be a complex inner product space and let S be a subspace of V.
Suppose that v € V' is a vector for which (v, s) + (s,v) < (s,s) for all
s € S. Prove thatv € S+,

If V and W are inner product spaces, consider the function on V W
defined by

(v, wr), (v2,w2)) = (v1,v2) + (w1, wa)

Is this an inner product on VB W?

A normed vector space over R or C is a vector space (over R or C)
together with a function ||||: V' — R for which for all u,v € V and scalars r
we have

a) |[Jrv]| = [r[lv]

b) u+ vl <flull + o]

¢) |lv|| =0ifand onlyifv =0

If V is a real normed space (over R) and if the norm satisfies the
parallelogram law
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lu+o))” + lu = o* = 2]Jul* + 2]}

prove that the polarization identity

defines an inner product on V. Hint: Evaluate 8(u,z) + 8(v,x) to show
that (u, 2z) = 2(u,z) and (u,z) + (v, ) = (u + v, x). Then complete the
proof that (u, rx) = r{u, ).

21. Let S be a subspace of a finite-dimensional inner product space V. Prove
that each coset in V'/S contains exactly one vector that is orthogonal to S.

Extensions of Linear Functionals

22. Let f be a linear functional on a subspace S of a finite-dimensional inner
product space V. Let f(v) = (v, Ry). Suppose that g € V* is an extension
of f, thatis, g|¢ = f. What is the relationship between the Riesz vectors R
and I,?

23. Let f be a nonzero linear functional on a subspace S of a finite-dimensional
inner product space V' and let K = ker(f). Show that if g € V* is an
extension of f, then R, € K*+\S*. Moreover, for each vector
u € K+ \ S* there is exactly one scalar A for which the linear functional
9(X) = (X, Au) is an extension of f.

Positive Linear Functionals on R™

A vector v = (ay,...,a,) in R" is nonnegative (also called positive), written
v >0, if a; > 0 for all i. The vector v is strictly positive, written v > 0, if v is
nonnegative but not 0. The set R of all strictly positive vectors in R" is called
the nonnegative orthant in R". The vector v is strongly positive, written
v > 0, if a@; > 0 for all ¢. The set R}, of all strongly positive vectors in R" is
the strongly positive orthant in R".

Let f: S — R be a lincar functional on a subspace S of R”. Then f is
nonnegative (also called positive), written f > 0, if

v>0= f(v) >0
forall v € S and f is strictly positive, written f > 0, if
v>0= f(v)>0

forallv e S.

24. Prove that a linear functional f on R" is positive if and only if Ry > 0 and
strictly positive if and only if Ry > 0. If S is a subspace of R" is it true
that a linear functional f on S is nonnegative if and only if Ry > 0?
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25. Let f: S — R be a strictly positive linear functional on a subspace S of R".
Prove that f has a strictly positive extension to R”. Use the fact that if

U NRY = {0}, where
R} ={(ai,...,a,) | a; > 0all ¢}

and U is a subspace of R", then U contains a strongly positive vector.

26. If V is a real inner product space, then we can define an inner product on its
complexification VC as follows (this is the same formula as for the ordinary
inner product on a complex vector space):

<u + i,z + yl> = <U,,.’L‘> + <1), y> + (<Ua .Z‘) - <uay>)Z
Show that
(u+ i) |* = [Jull* + [|v]?

where the norm on the left is induced by the inner product on V' and the
norm on the right is induced by the inner product on V.



Chapter 10
Structure Theory for Normal Operators

Throughout this chapter, all vector spaces are assumed to be finite-dimensional
unless otherwise noted. Also, the field F' is either R or C.

The Adjoint of a Linear Operator

The purpose of this chapter is to study the structure of certain special types of
linear operators on finite-dimensional real and complex inner product spaces. In
order to define these operators, we introduce another type of adjoint (different
from the operator adjoint of Chapter 3).

Theorem 10.1 Let V' and W be finite-dimensional inner product spaces over F
and let T € L(V,W). Then there is a unique function 7:W — V, defined by
the condition

(rv,w) = (v, 7"w)

forallv eV and w € W. This function is in LW, V') and is called the adjoint
of T.

Proof. If 7* exists, then it is unique, for if
(T, w) = (v, ow)

then (v, cw) = (v, 7*w) for all v and w and so o = 7*.

We seek a linear map 7%: W — V' for which
(v, T"w) = (Tv, W)

By way of motivation, the vector 7w, if it exists, looks very much like a linear
map sending v to (7v,w). The only problem is that 7*v is supposed to be a
vector, not a linear map. But the Riesz representation theorem tells us that linear
maps can be represented by vectors.
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Specifically, for each w € W, the linear functional f,, € V* defined by
Sfuwv = (T, W)
has the form
fuv = (v, Ry,)
where Ry € V is the Riesz vector for f,,. If 7°: W — V' is defined by
T'w = Ry, = R(fu)
where R is the Riesz map, then
(0, 7°w) = (v, Ry,) = fuv = (T0,0)

Finally, since 7% = R o f is the composition of the Riesz map R and the map
frw— f, and since both of these maps are conjugate linear, their composition
is linear.[d

Here are some of the basic properties of the adjoint.

Theorem 10.2 Let V and W be finite-dimensional inner product spaces. For
everyo, 7€ L(V,W)andr € F,

D (oc+7) =c"+7"

2) (rr)*=7r"

3) 7 =71 andso

(", w) = (v, Tw)
4 IfV =W, then (o7)* = 770"
—1\*

5) If T is invertible, then (171)* = (7%)7!
6) IfV =W and p(x) € Rlz], then p(7)" = p(7).

Moreover, if T € L(V) and S is a subspace of V, then

7) S is T-invariant if and only if S* is T*-invariant.

8) (S,S*) reduces T if and only if S is both T-invariant and T*-invariant, in
which case

(rls)" = (7")Is
Proof. For part 7), let s € S and z € S+ and write
(T"z,8) = (z,7s)

Now, if S is T-invariant, then (7*2,s) = 0 for all s € S and so 7"z € S+ and
S+ is r*-invariant. Conversely, if S* is 7*-invariant, then (z,7s) = 0 for all
z € S*tandso s € ST = S, whence S is T-invariant.

The first statement in part 8) follows from part 7) applied to both S and S*. For
the second statement, since S is both 7-invariant and 7*-invariant, if s,z € S,
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then
(s, (T)]5(t)) = (s, 7"t) = (7s,t) = (7]s(s), 1)

Hence, by definition of adjoint, (7%)|s = (7]g)*.0

Now let us relate the kernel and image of a linear transformation to those of its
adjoint.

Theorem 10.3 Let 7 € L(V, W), where V and W are finite-dimensional inner

product spaces.
1)

ker(7*) = im(7)* and im(7*) = ker(7)*

and so
T surjective < T" injective
T injective < T" surjective

2)

ker(7"7) = ker(r) and ker(r7") = ker(7")
3)

im(7°7) = im(7*) and im(77") =im(T)

)

(ps)" = pre gt
Proof. For part 1),
u € ker(7") & 7'u =0

& (r'u, V) = {0}

& (u,7V) = {0}

& ucim(t)"
and so ker(7*) = im(7)*. The second equation in part 1) follows by replacing 7
by 7* and taking complements.

For part 2), it is clear that ker(7) C ker(7*7). For the reverse inclusion, we have
Tru=0 = (Tfru,u)=0 = (tu,7u)=0 = Tu=0

and so ker(7*7) C ker(r). The second equation follows from the first by
replacing 7 with 7*. We leave the rest of the proof for the reader.C]
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The Operator Adjoint and the Hilbert Space Adjoint

We should make some remarks about the relationship between the operator
adjoint 7 of 7, as defined in Chapter 3 and the adjoint 7" that we have just
defined, which is sometimes called the Hilbert space adjoint. In the first place,
if 7: V' — W, then 7* and 7* have different domains and ranges:

W —=V* and W —V

The two maps are shown in Figure 10.1, along with the conjugate Riesz
isomorphisms RV:V* — V and RW: W* — W.

Figure 10.1
The composite map o: W* — V* defined by
o= (RV)—l or* ORW
is linear. Moreover, for all f € W*andv € V,

(= f(ro)
= (ro, RY (1)

= (v, T*RW( )
=[(R") (T RY(f))](v)
= (af)v

and so 0 = 7. Hence, the relationship between 7 and 7* is
X _ (RV)fl o7* o RW

Loosely speaking, the Riesz functions are like “change of variables” functions
from linear functionals to vectors, and we can say that 7* does to Riesz vectors
what 7 does to the corresponding linear functionals. Put another way (and just
as loosely), 7 and 7" are the same, up to conjugate Riesz isomorphism.

In Chapter 3, we showed that the matrix of the operator adjoint 7 is the
transpose of the matrix of the map 7. For Hilbert space adjoints, the situation is
slightly different (due to the conjugate linearity of the inner product). Suppose
that B = (b1,...,b,) and C = (c1, ..., ¢;,) are ordered orthonormal bases for V'
and W, respectively. Then
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([T les)is = (T7¢j; bi) = (¢j; 7bi) = (7hi, ¢;) = ([7].c)j
and so [7%]|cz and [7]g¢ are conjugate transposes. The conjugate transpose of a
matrix A = (a;;) is
A" = (@)
and is called the adjoint of A.

Theorem 10.4 Let 7 € L(V, W), where V and W are finite-dimensional inner
product spaces.
1) The operator adjoint T and the Hilbert space adjoint T* are related by

TX _ (RV)—I o7 ORW

where RV and R™ are the conjugate Riesz isomorphisms on V. and W,
respectively.
2) If B and C are ordered orthonormal bases for V and W, respectively, then

[T*]es = ([7]Bc)"

In words, the matrix of the adjoint T* is the adjoint (conjugate transpose) of
the matrix of .00

Orthogonal Projections

In an inner product space, we can single out some special projection operators.

Definition A projection of the form pgg. is said to be orthogonal
Equivalently, a projection p is orthogonal if ker(p) L im(p).Od

Some care must be taken to avoid confusion between orthogonal projections and
two projections that are orthogonal to each other, that is, for which
po=op=0.

We have seen that an operator p is a projection operator if and only if it is
idempotent. Here is the analogous characterization of orthogonal projections.

Theorem 10.5 Let V' be a finite-dimensional inner product space. The following
are equivalent for an operator p on'V:

1) pis an orthogonal projection

2) pis idempotent and self-adjoint

3) pis idempotent and does not expand lengths, that is

lpvll < ol

forallveV.
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Proof. Since
(psr)" = prist
it follows that p = p* if and only if S* =T, that is, if and only if p is
orthogonal. Hence, 1) and 2) are equivalent.
To prove that 1) implies 3), let p = pg g:. Then if v=s+1¢ for s € S and
t € S1, it follows that
2 2 2 2 2
[0l = llslI™ + ll£lI = [Is]” = llovl
Now suppose that 3) holds. Then
im(p) & ker(p) = V = ker(p)" © ker(p)

and we wish to show that the first sum is orthogonal. If w € im(p), then
w = x + y, where x € ker(p) and y € ker(p)*. Hence,

w=pw = pz+ py = py
and so the orthogonality of « and y implies that
l]” 4+ liyl* = llwl® = lloyll” < lly®
Hence, = = 0 and so im(p) C ker(p)=*, which implies that im(p) = ker(p)+.00
Orthogonal Resolutions of the Identity
We have seen (Theorem 2.25) that resolutions of the identity
pr+-tpp=1t

on V correspond to direct sum decompositions of V. If, in addition, the
projections are orthogonal, then the direct sum is an orthogonal sum.

Definition An orthogonal resolution of the identity is a resolution of the
identity p1 + -+ + pr = ¢ in which each projection p; is orthogonal.(]

The following theorem displays a correspondence between orthogonal direct
sum decompositions of V' and orthogonal resolutions of the identity.

Theorem 10.6 Let V' be an inner product space. Orthogonal resolutions of the

identity on V' correspond to orthogonal direct sum decompositions of V as
follows:
1) Ifpy+ -+ pr = tis an orthogonal resolution of the identity, then

V =im(p1) ©--- © im(py)

and p; is orthogonal projection onto im(p;).
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2) Conversely, if
V=505

and if p; is orthogonal projection onto S;, then py + -+ pr = is an
orthogonal resolution of the identity.
Proof. To prove 1), if p; 4+ -+ pr = ¢ is an orthogonal resolution of the
identity, Theorem 2.25 implies that

V =im(p1) @ --- @ im(py)
However, since the p;'s are pairwise orthogonal and self-adjoint, it follows that
{piv, pjw) = (v, pipjw) = (v,0) =0
and so
V =im(p) ® --- © im(py,)

For the converse, Theorem 2.25 implies that p; + -+ + p; = ¢ is a resolution of
the identity where p; is projection onto im(p;) along

ker(p;) le (p;) = im(p;)*
JF#i
Hence, p; is orthogonal.[]
Unitary Diagonalizability

We have seen (Theorem 8.10) that a linear operator 7 € £(V') on a finite-
dimensional vector space V' is diagonalizable if and only if

V= &--®E,

Of course, each eigenspace &), has an orthonormal basis O;, but the union of
these bases need not be an orthonormal basis for V.

Definition A linear operator T € L(V') is unitarily diagonalizable (when V is
complex) and orthogonally diagonalizable (When V is real) if there is an
ordered orthonormal basis O = (uq, ..., uy,) of V for which the matrix [T]o is
diagonal, or equivalently, if

Tui:/\iui
foralli=1,...,n.00

Here is the counterpart of Theorem 8.10 for inner product spaces.

Theorem 10.7 Let V be a finite-dimensional inner product space and let
7 € L(V). The following are equivalent:

1) 7 is unitarily (orthogonally) diagonalizable.

2) 'V has an orthonormal basis that consists entirely of eigenvectors of T.
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3) 'V has the form
V = g/\l OREE @f/‘)\k
where A1, ..., A\ are the distinct eigenvalues of .01
For simplicity in exposition, we will tend to use the term unitarily
diagonalizable for both cases. Since unitarily diagonalizable operators are so

well behaved, it is natural to seek a characterization of such operators.
Remarkably, there is a simple one, as we will see next.

Normal Operators
Operators that commute with their own adjonts are very special.
Definition

1) A linear operator T on an inner product space V' is normal if it commutes
with its adjoint:

* *
TT =TT

2) A matrix A € M,,(F) is normal if A commutes with its adjoint A*.]

If 7 is normal and O is an ordered orthonormal basis of V', then
[Tlolrlo = [Tlolr"]o = [r7]0

and
[Tlolrlo = [T"]olr]o = [7"7]o

and so 7 is normal if and only if [7]p is normal for some, and hence all,
orthonormal bases for V. Note that this does not hold for bases that are not
orthonormal.

Normal operators have some very special properties.

Theorem 10.8 Let 7 € L(V') be normal.
1) The following are also normal:

a) Tls, if T reduces (S, St)

by T

c) 77\ if T is invertible

d) p(T), for any polynomial p(z) € F|x]
2) Foranyv,w eV,

(tv, Tw) = (77, TMW)
and, in particular,

[[Toll = {I7"l]
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and so
ker(7*) = ker(7)
3) For any integer k > 1,
ker(7") = ker(7)

4) The minimal polynomial m.(x) is a product of distinct prime monic
polynomials.
5)

=M & Tu= )\

6) If'S andT are submodules of V. with relatively prime orders, then S 1. T.
7) If X and i are distinct eigenvalues of T, then £\ L E,,.
Proof. We leave part 1) for the reader. For part 2), normality implies that

(T, Tw) = (T*TV,0) = (TT "V, V) = (T7V, T V)
We prove part 3) first for the operator o = 7*7, which is self-adjoint, that is,
ocf=")"=71"r=0
If oFv = 0 for k > 1, then
0 = (oFv, 0" %) = (o" 1o, ")

k—

and so 0"~y = 0. Continuing in this way gives ov = 0. Now, if 7%v = 0 for

k > 1, then
v = (1) = (7P =0
and so ov = 0. Hence,

0 = (ov,v) = (T"1v,0) = (TV, TV)

and so 7v = 0.

For part 4), suppose that
m-(x) = p*(z)q()
where p(z) is monic and prime. Then for any v € V,
p(m)lg(r)v] =0
and since p(7) is also normal, part 3) implies that
p(m)lg(r)v] = 0

for all v € V.. Hence, p(7)q(7) = 0, which implies that e = 1. Thus, the prime
factors of m. () appear only to the first power.
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Part 5) follows from part 2):
ker(T — \) = ker[(T — \)*] = ker(7* — X)

For part 6), if o(S) = p(x) and o(T') = ¢(z), then there are polynomials a(x)
and b(z) for which a(z)p(x) + b(z)q(x) = 1 and so
a(7)p(r) + b(T)q(T) =+

Now, a = a(7)p(7) annihilates S and 5 = b(7)q(7) annihilates T". Therefore
(% also annihilates 7" and so

(5,T) = ((a+ )5, T) = (85,T) = (5,8°T) = {0}

Part 7) follows from part 6), since o(€y) =z — A and o(€,) =z — p are
relatively prime when A # pi. Alternatively, for v € £, and w € £, we have

Ao, w) = (Tv,w) = (v, 7"w) = (v, Iw) = (v, w)
and so A # p implies that (v, w) = 0.00
The Spectral Theorem for Normal Operators

Theorem 10.8 implies that when F' = C, the minimal polynomial m(x) splits
into distinct linear factors and so Theorem 8.11 implies that 7 is diagonalizable,
that is,

V,=E, @ ®Ey

Moreover, since distinct eigenspaces of a normal operator are orthogonal, we
have

Vi=8&,0---0&,

and so 7 is unitarily diagonalizable.

The converse of this is also true. If V' has an orthonormal basis O =
{vi,...,v,} of eigenvectors for 7, then since [r]p and [T*]p = [7]}, are
diagonal, these matrices commute and therefore so do 7* and 7.

Theorem 10.9 (The spectral theorem for normal operators: complex case)
Let V' be a finite-dimensional complex inner product space and let 7 € L(V).
The following are equivalent:

1) T is normal.

2) 7 is unitarily diagonalizable, that is,

‘/T:g/\l@...@g/\k
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3) 7 has an orthogonal spectral resolution
T=Mp1+ -+ Nepr (10.1)

where p1 4+ ---+ p, =t and p; is orthogonal for all i, in which case,
{1, ..., \p } is the spectrum of T and

im(p;) =&\ and ker(p;) = @5’,\1
i

Proof. We have seen that 1) and 2) are equivalent. To see that 2) and 3) are
equivalent, Theorem 8.12 says that
Vi=E6,& @&
if and only if
T=Mp1+ -+ Mepr

and in this case,

im(p;) =&, and ker(p;) = @5,\]
J#i
But &), L &), fori # jifand only if
im(p;) L ker(p;)

that is, if and only if each p; is orthogonal. Hence, the direct sum V. =
En @~ DE), 1s an orthogonal sum if and only if each projection is
orthogonal.[J

The Real Case

If F = R, then m,(x) has the form

me(x) = (x — M)--(z = Xp)p1(z)--pp ()

where each p;(z) is an irreducible monic quadratic. Hence, the primary cyclic
decomposition of V. gives

Vi=E6,0-06,0W0--0W,

where W; is cyclic with prime quadratic order p;(x). Therefore, Theorem 8.8
implies that there is an ordered basis B; for which

i —bi
[Tlw]5 = {Z ]

Qi

Theorem 10.10 (The spectral theorem for normal operators: real case) 4
linear operator T on a finite-dimensional real inner product space is normal if
and only if
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V=E6,0-00W 00 W,

where {1, ..., \;} is the spectrum of T and each W is an indecomposable two-
dimensional T-invariant subspace with an ordered basis B; for which

=[]

Proof. We need only show that if V' has such a decomposition, then 7 is normal.
But

(715 (7], = (a} + 7)o = [1]}3[7]5,
and so [7]p, is normal. It follows easily that 7 is normal.[]

Special Types of Normal Operators

We now want to introduce some special type