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Preface for Students

Quantum field theory is the basic mathematical language that is used to
describe and analyze the physics of elementary particles. The goal of this
book is to provide a concise, step-by-step introduction to this subject, one
that covers all the key concepts that are needed to understand the Standard
Model of elementary particles, and some of its proposed extensions.

In order to be prepared to undertake the study of quantum field theory,
you should recognize and understand the following equations:

do 9
a'ln) = Vn+1 [n+1)

Jx|j,m) = Vi(j+1)—m(m=1) |4, m+1)
A(t) — e-i—th/hAe—th/h

H=p¢—L
ct’ = y(ct — Bx)
E = (p2 + m2ch)/?
E=—-A/c—Vy

This list is not, of course, complete; but if you are familiar with these
equations, you probably know enough about quantum mechanics, classical
mechanics, special relativity, and electromagnetism to tackle the material
in this book.

Quantum field theory has a reputation as a subject that is hard to
learn. The problem, I think, is not so much that its basic ingredients are
unusually difficult to master (indeed, the conceptual shift needed to go
from quantum mechanics to quantum field theory is not nearly as severe
as the one needed to go from classical mechanics to quantum mechanics),
but rather that there are a lot of these ingredients. Some are fundamental,
but many are just technical aspects of an unfamiliar form of perturbation
theory.

In this book, I have tried to make the subject as accessible to beginners
as possible. There are three main aspects to my approach.

Logical development of the basic concepts. This is, of course, very differ-
ent from the historical development of quantum field theory, which, like the
historical development of most worthwhile subjects, was filled with inspired
guesses and brilliant extrapolations of sometimes fuzzy ideas, as well as its
fair share of mistakes, misconceptions, and dead ends. None of that is in
this book. From this book, you will (I hope) get the impression that the



whole subject is effortlessly clear and obvious, with one step following the
next like sunshine after a refreshing rain.

Hllustration of the basic concepts with the simplest examples. In most
fields of human endeavor, newcomers are not expected to do the most de-
manding tasks right away. It takes time, dedication, and lots of practice to
work up to what the accomplished masters are doing. There is no reason to
expect quantum field theory to be any different in this regard. Therefore,
we will start off analyzing quantum field theories that are not immediately
applicable to the real world of electrons, photons, protons, etc., but that
will allow us to gain familiarity with the tools we will need, and to practice
using them. Then, when we do work up to “real physics”, we will be fully
ready for the task. To this end, the book is divided into three parts: Spin
Zero, Spin One Half, and Spin One. The technical complexities associated
with a particular type of particle increase with its spin. We will therefore
first learn all we can about spinless particles before moving on to the more
difficult (and more interesting) nonzero spins. Once we get to them, we
will do a good variety of calculations in (and beyond) the Standard Model
of elementary particles.

User friendliness. Each of the three parts is divided into numerous sec-
tions. Each section is intended to treat one idea or concept or calculation,
and each is written to be as self-contained as possible. For example, when
an equation from an earlier section is needed, I usually just repeat it, rather
than ask you to leaf back and find it (a reader’s task that I've always found
annoying). Furthermore, each section is labeled with its immediate pre-
requisites, so you can tell exactly what you need to have learned in order
to proceed. This allows you to construct chains to whatever material may
interest you, and to get there as quickly as possible.

That said, I expect that most readers of this book will encounter it as
the textbook in a course on quantum field theory. In that case, of course,
your reading will be guided by your professor, who I hope will find the
above features useful. If, however, you are reading this book on your own,
I have two pieces of advice.

The first (and most important) is this: find someone else to read it with
you. I promise that it will be far more fun and rewarding that way; talking
about a subject to another human being will inevitably improve the depth
of your understanding. And you will have someone to work with you on
the problems. (As with all physics texts, the problems are a key ingredient.
I will not belabor this point, because if you have gotten this far in physics,
you already know it well.)

The second piece of advice echoes the novelist and Nobel laureate
William Faulkner. An interviewer asked, “Mr. Faulker, some of your read-
ers claim they still cannot understand your work after reading it two or
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three times. What approach would you advise them to adopt?” Faulkner
replied, “Read it a fourth time.”

That’s my advice here as well. After the fourth attempt, though, you
should consider trying something else. This is, after all, not the only book
that has ever been written on the subject. You may find that a different
approach (or even the same approach explained in different words) breaks
the logjam in your thinking. There are a number of excellent books that
you could consult, some of which are listed in the Bibliography. I have also
listed particular books that I think could be helpful on specific topics in
Reference Notes at the end of some of the sections.

This textbook (like all finite textbooks) has a number of deficiencies.
One of these is a rather low level of mathematical rigor. This is partly en-
demic to the subject; rigorous proofs in quantum field theory are relatively
rare, and do not appear in the overwhelming majority of research papers.
Even some of the most basic notions lack proof; for example, currently
you can get a million dollars from the Clay Mathematics Institute simply
for proving that nonabelian gauge theory actually exists and has a unique
ground state. Given this general situation, and since this is an introductory
book, the proofs that we do have are only outlined. those proofs that we
do have are only outlined.

Another deficiency of this book is that there is no discussion of the
application of quantum field theory to condensed matter physics, where
it also plays an important role. This connection has been important in
the historical development of the subject, and is especially useful if you
already know a lot of advanced statistical mechanics. I do not want this
to be a prerequisite, however, and so I have chosen to keep the focus on
applications within elementary particle physics.

Yet another deficiency is that there are no references to the original
literature. In this regard, I am following a standard trend: as the foun-
dations of a branch of science retreat into history, textbooks become more
and more synthetic and reductionist. For example, it is now rare to see a
new textbook on quantum mechanics that refers to the original papers by
the famous founders of the subject. For guides to the original literature
on quantum field theory, there are a number of other books with extensive
references that you can consult; these include Peskin & Schroeder, Wein-
berg, and Siegel. (Italicized names refer to works listed in the Bibliography.)
Unless otherwise noted, experimental numbers are taken from the Review
of Particle Properties, available online at http://pdg.lbl.gov. Experimen-
tal numbers quoted in this book have an uncertainty of roughly 41 in the
last significiant digit. The Review should be consulted for the most recent
experimental results, and for more precise statements of their uncertainty.

To conclude, let me say that you are about to embark on a tour of one of
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humanity’s greatest intellectual endeavors, and certainly the one that has
produced the most precise and accurate description of the natural world as
we find it. I hope you enjoy the ride.
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Preface for Instructors

On learning that a new text on quantum field theory has appeared, one is
surely tempted to respond with Isidor Rabi’s famous comment about the
muon: “Who ordered that?” After all, many excellent textbooks on quan-
tum field theory are already available. I, for example, would not want to be
without my well-worn copies of Quantum Field Theory by Lowell S. Brown
(Cambridge 1994), Aspects of Symmetry by Sidney Coleman (Cambridge
1985), Introduction to Quantum Field Theory by Michael E. Peskin and
Daniel V. Schroeder (Westview 1995), Field Theory: A Modern Primer by
Pierre Ramond (Addison-Wesley 1990), Fields by Warren Siegel (arXiv.org
2005), The Quantum Theory of Fields, Volumes I, II, and III, by Steven
Weinberg (Cambridge 1995), and Quantum Field Theory in a Nutshell by
my colleague Tony Zee (Princeton 2003), to name just a few of the more
recent texts. Nevertheless, despite the excellence of these and other books,
I have never followed any of them very closely in my twenty years of on-
and-off teaching of a year-long course in relativistic quantum field theory.

As discussed in the Preface for Students, this book is based on the no-
tion that quantum field theory is most readily learned by starting with the
simplest examples and working through their details in a logical fashion.
To this end, I have tried to set things up at the very beginning to antici-
pate the eventual need for renormalization, and not be cavalier about how
the fields are normalized and the parameters defined. I believe that these
precautions take a lot of the “hocus pocus” (to quote Feynman) out of the
“dippy process” of renormalization. Indeed, with this approach, even the
anharmonic oscillator is in need of renormalization; see problem 14.7.

A field theory with many pedagogical virtues is ¢? theory in six di-
mensions, where its coupling constant is dimensionless. Perhaps because
six dimensions used to seem too outre (though today’s prospective string
theorists don’t even blink), the only introductory textbook I know of that
treats this model is Quantum Field Theory by George Sterman (Cambridge
1993), though it is also discussed in some more advanced books, such as
Renormalization by John Collins (Cambridge 1984) and Foundations of
Quantum Chromodynamics by T. Muta (World Scientific 1998). (There is
also a series of lectures by Ed Witten on quantum field theory for math-
ematicians, available online, that treat > theory.) The reason > theory
in six dimensions is a nice example is that its Feynman diagrams have a
simple structure, but still exhibit the generic phenomena of renormalizable
quantum field theory at the one-loop level. (The same cannot be said for *
theory in four dimensions, where momentum-dependent corrections to the
propagator do not appear until the two-loop level.) Thus, in Part I of this
text, ¢? theory in six dimensions is the primary example. I use it to give
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introductory treatments of most aspects of relativistic quantum field theory
for spin-zero particles, with a minimum of the technical complications that
arise in more realistic theories (like QED) with higher-spin particles.

Although I eventually discuss the Wilson approach to renormalization
and effective field theory (in section 29), and use effective field theory exten-
sively for the physics of hadrons in Part III, I do not feel it is pedagogically
useful to bring it in at the very beginning, as is sometimes advocated. The
problem is that the key notion of the decoupling of physical processes at dif-
ferent length scales is an unfamiliar one for most students; there is nothing
in typical courses on quantum mechanics or electomagnetism or classical
mechanics to prepare students for this idea (which was deemed worthy of a
Nobel Prize for Ken Wilson in 1982). It also does not provide for a simple
calculational framework, since one must deal with the infinite number of
terms in the effective lagrangian, and then explain why most of them don’t
matter after all. It’s noteworthy that Wilson himself did not spend a lot
of time computing properly normalized perturbative S-matrix elements, a
skill that we certainly want our students to have; we want them to have
it because a great deal of current research still depends on it. Indeed, the
vaunted success of quantum field theory as a description of the real world is
based almost entirely on our ability to carry out these perturbative calcula-
tions. Studying renormalization early on has other pedagogical advantages.
With the Nobel Prizes to Gerard 't Hooft and Tini Veltman in 1999 and to
David Gross, David Politzer, and Frank Wilczek in 2004, today’s students
are well aware of beta functions and running couplings, and would like to
understand them. I find that they are generally much more excited about
this (even in the context of toy models) than they are about learning to
reproduce the nearly century-old tree-level calculations of QED. And ¢?
theory in six dimensions is asymptotically free, which ultimately provides
for a nice segue to the “real physics” of QCD.

In general I have tried to present topics so that the more interesting as-
pects (from a present-day point of view) come first. An example is anoma-
lies; the traditional approach is to start with the 7% — ~~ decay rate,
but such a low-energy process seems like a dusty relic to most of today’s
students. I therefore begin by demonstrating that anomalies destroy the
self-consistency of the great majority of chiral gauge theories, a fact that
strikes me (and, in my experience, most students) as much more interest-
ing and dramatic than an incorrect calculation of the 7° decay rate. Then,
when we do eventually get to this process (in section 90), it appears as a
straightforward consequence of what we already learned about anomalies
in sections 75-77.

Nevertheless, I want this book to be useful to those who disagree with
my pedagogical choices, and so I have tried to structure it to allow for
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maximum flexibility. Each section treats a particular idea or concept or
calculation, and is as self-contained as possible. Each section also lists
its immediate prerequisites, so that it is easy to see how to rearrange the
material to suit your personal preferences.

In some cases, alternative approaches are developed in the problems.
For example, I have chosen to introduce path integrals relatively early
(though not before canonical quantization and operator methods are ap-
plied to free-field theory), and use them to derive Dyson’s expansion. For
those who would prefer to delay the introduction of path integrals (but since
you will have to cover them eventually, why not get it over with?), problem
9.5 outlines the operator-based derivation in the interaction picture.

Another point worth noting is that a textbook and lectures are ideally
complementary. Many sections of this book contain rather tedious mathe-
matical detail that I would not and do not write on the blackboard during
a lecture. (Indeed, the earliest origins of this book are supplementary notes
that I typed up and handed out.) For example, much of the development of
Weyl spinors in sections 34-37 can be left to outside reading. I do encour-
age you not to eliminate this material entirely, however; pedagogically, the
problem with skipping directly to four-component notation is explaining
that (in four dimensions) the hermitian conjugate of a left-handed field is
right handed, a deeply important fact that is the key to solving problems
such as 36.5 and 83.1, which are in turn vital to understanding the struc-
ture of the Standard Model and its extensions. A related topic is computing
scattering amplitudes for Majorana fields; this is essential for modern re-
search on massive neutrinos and supersymmetric particles, though it could
be left out of a time-limited course.

While I have sometimes included more mathematical detail than is ideal
for a lecture, I have also tended to omit explanations based on “physical
intuition.” For example, in section 90, we compute the 7= — £~ D, decay
amplitude (where ¢ is a charged lepton) and find that it is proportional to
the lepton mass. There is a well-known heuristic explanation of this fact
that goes something like this: “The pion has spin zero, and so the lepton
and the antineutrino must emerge with opposite spin, and therefore the
same helicity. An antineutrino is always right-handed, and so the lepton
must be as well. But only the left-handed lepton couples to the W, so
the decay amplitude vanishes if the left- and right-handed leptons are not
coupled by a mass term.”

This is essentially correct, but the reasoning is a bit more subtle than
it first appears. A student may ask, “Why can’t there be orbital angular
momentum? Then the lepton and the antineutrino could have the same
spin.” The answer is that orbital angular momentum must be perpendicular
to the linear momentum, whereas helicity is (by definition) parallel to the
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linear momentum; so adding orbital angular momentum cannot change the
helicity assignments. (This is explored in a simplified model in problem
48.4.) The larger point is that intuitive explanations can almost always be
probed more deeply. This is fine in a classroom, where you are available to
answer questions, but a textbook author has a hard time knowing where
to stop. Too little detail renders the explanations opaque, and too much
can be overwhelming; furthermore the happy medium tends to differ from
student to student. The calculation, on the other hand, is definitive (at
least within the framework being explored, and modulo the possibility of
mathematical error). As Roger Penrose once said, “The great thing about
physical intuition is that it can be adjusted to fit the facts.” So, in this
book, I have tended to emphasize calculational detail at the expense of
heuristic reasoning. Lectures should ideally invert this to some extent.

I should also mention that a section of the book is not intended to
coincide exactly with a lecture. The material in some sections could easily
be covered in less than an hour, and some would clearly take more. My
approach in lecturing is to try to keep to a pace that allows the students to
follow the analysis, and then try to come to a more-or-less natural stopping
point when class time is up. This sometimes means ending in the middle
of a long calculation, but I feel that this is better than trying to artificially
speed things along to reach a predetermined destination.

It would take at least three semesters of lectures to cover this entire
book, and so a year-long course must omit some. A sequence I might
follow is 1-23, 2628, 3343, 4548, 51, 52, 54-59, 62—-64, 66-68, 24, 69, 70,
44, 53, 71-73, 7577, 30, 32, 84, 87-89, 29, 82, 83, 90, and, if any time was
left, a selection of whatever seemed of most interest to me and the students
of the remaining material.

To conclude, I hope you find this book to be a useful tool in working to-
wards our mutual goal of bringing humanity’s understanding of the physics
of elementary particles to a new audience.
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1 ATTEMPTS AT RELATIVISTIC QUANTUM
MECHANICS

PREREQUISITE: NONE

In order to combine quantum mechanics and relativity, we must first un-
derstand what we mean by “quantum mechanics” and “relativity”. Let us
begin with quantum mechanics.

Somewhere in most textbooks on the subject, one can find a list of the
“axioms of quantum mechanics”. These include statements along the lines
of

The state of the system is represented by a vector in Hilbert
space.

Observables are represented by hermitian operators.

The measurement of an observable yields one of its eigenvalues

as the result.

And so on. We do not need to review these closely here. The axiom we
need to focus on is the one that says that the time evolution of the state of
the system is governed by the Schrédinger equation,

. 0
ihocb,t) = HIi 1) (1)

where H is the hamiltonian operator, representing the total energy.
Let us consider a very simple system: a spinless, nonrelativistic particle
with no forces acting on it. In this case, the hamiltonian is

1

where m is the particle’s mass, and P is the momentum operator. In the
position basis, eq. (1.1) becomes

9 h?
ihaQﬁ(X,t) = _%V2¢(X7t) ’ (13)

where ¢ (x,t) = (x]1),t) is the position-space wave function. We would like
to generalize this to relativistic motion.
The obvious way to proceed is to take

H =44/ P2¢2 + m2ct | (1.4)
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which yields the correct relativistic energy-momentum relation. If we for-
mally expand this hamiltonian in inverse powers of the speed of light ¢, we
get

1
H=mc*+—P?+.... 15
me” + 5 P7 (1.5)
This is simply a constant (the rest energy), plus the usual nonrelativistic

hamiltonian, eq. (1.2), plus higher-order corrections. With the hamiltonian
given by eq. (1.4), the Schrédinger equation becomes

ih%?[)(x,t) = +\/—h202V2 + m2ct P(x,t) . (1.6)

Unfortunately, this equation presents us with a number of difficulties. One
is that it apparently treats space and time on a different footing: the time
derivative appears only on the left, outside the square root, and the space
derivatives appear only on the right, under the square root. This asymme-
try between space and time is not what we would expect of a relativistic
theory. Furthermore, if we expand the square root in powers of V2, we get
an infinite number of spatial derivatives acting on 1 (x, t); this implies that
eq. (1.6) is not local in space.

We can alleviate these problems by squaring the differential operators
on each side of eq. (1.6) before applying them to the wave function. Then
we get

—h?—(x,t) = (—h202V2 + m2c4)1/1(x,t) . (1.7)

This is the Klein-Gordon equation, and it looks a lot nicer than eq. (1.6).
It is second-order in both space and time derivatives, and they appear in a
symmetric fashion.

To better understand the Klein-Gordon equation, let us consider in
more detail what we mean by “relativity”. Special relativity tells us that
physics looks the same in all inertial frames. To explain what this means, we
first suppose that a certain spacetime coordinate system (ct,x) represents
(by fiat) an inertial frame. Let us define 2° = ct, and write z*, where
uw=0,1,2,3, in place of (ct,x). It is also convenient (for reasons not at all
obvious at this point) to define g = —2° and x; = 2%, where i = 1,2,3.
This can be expressed more elegantly if we first introduce the Minkowski
metric,

-1
w= | (18)
+1

where blank entries are zero. We then have z, = g, 2", where a repeated
index is summed.
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To invert this formula, we introduce the inverse of g, which is confusingly
also called g, except with both indices up:

-1
+1
o _
g = 1 . (1.9)

+1

We then have ¢g/g,, = 6", where 6", is the Kronecker delta (equal to one
if its two indices take on the same value, zero otherwise). Now we can also
write x# = g x,,.

It is a general rule that any pair of repeated (and therefore summed)
indices must consist of one superscript and one subscript; these indices are
said to be contracted. Also, any unrepeated (and therefore unsummed)
indices must match (in both name and height) on the left- and right-hand
sides of any valid equation.

Now we are ready to specify what we mean by an inertial frame. If the
coordinates z* represent an inertial frame (which they do, by assumption),
then so do any other coordinates z* that are related by

= At 2" +at (1.10)

where A*,, is a Lorentz transformation matriz and a* is a translation vector.
Both A*, and a* are constant (that is, independent of z#). Furthermore,
A*, must obey

A oA 5 = Gpo - (1.11)

Eq. (1.11) ensures that the interval between two different spacetime points
that are labeled by z# and z/* in one inertial frame, and by z# and Z'* in
another, is the same. This interval is defined to be

(2 —a')? = gu (2 —2')!(x — 2)"
= (x—x)2 -t —1)?. (1.12)

In the other frame, we have

(8- 3)? = gl — 7@ — )"

= gu A N o (z — 2)P(z — 2')°
= gpo(x —2")P(x —2')°
= (z—2)?, (1.13)

as desired.

When we say that physics looks the same, we mean that two observers
(Alice and Bob, say) using two different sets of coordinates (representing
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two different inertial frames) should agree on the predicted results of all
possible experiments. In the case of quantum mechanics, this requires Alice
and Bob to agree on the value of the wave function at a particular spacetime
point, a point that is called x by Alice and by Bob. Thus if Alice’s
predicted wave function is ¥(x), and Bob’s is (Z), then we should have
Y(x) = 9(Z). Furthermore, in order to maintain 1(z) = v(Z) throughout
spacetime, v(x) and ¢(z) should obey identical equations of motion. Thus
a candidate wave equation should take the same form in any inertial frame.

Let us see if this is true of the Klein-Gordon equation. We first introduce
some useful notation for spacetime derivatives:

_ 0 10
oy = o <+2E,V> , (1.14)
0 10
w—_Y _(_-2
ot = Je, ( c@t’v>’ (1.15)
Note that
otx¥ = g" | (1.16)

so that our matching-index-height rule is satisfied.
If z and x are related by eq. (1.10), then 0 and O are related by

ot = A", 0¥ . (1.17)
To check this, we note that

0Pz = (AP, 0M) (A7 ,a” + a*) = AP, A7, (0 ") = AP A7 g = g™,
(1.18)
as expected. The last equality in eq. (1.18) is another form of eq. (1.11); see
section 2.
We can now write eq. (1.7) as

—h22RY(x) = (—h*AV2 + micy(x) (1.19)
After rearranging and identifying 6% = 9*9, = —03 + V2, we have
(=0* + m2H/R*)Y(z) = 0. (1.20)
This is Alice’s form of the equation. Bob would write
(=02 +m2Z/h2))(z) =0 . (1.21)

Is Bob’s equation equivalent to Alice’s equation? To see that it is, we set
¥(Z) = (), and note that

0’ = gy 0"0” = gu N A5 0P07 = 07 . (1.22)
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Thus, eq. (1.21) is indeed equivalent to eq. (1.20). The Klein-Gordon equa-
tion is therefore manifestly consistent with relativity: it takes the same
form in every inertial frame.

This is the good news. The bad news is that the Klein-Gordon equation
violates one of the axioms of quantum mechanics: eq. (1.1), the Schrodinger
equation in its abstract form. The abstract Schrodinger equation has the
fundamental property of being first order in the time derivative, whereas the
Klein-Gordon equation is second order. This may not seem too important,
but in fact it has drastic consequences. One of these is that the norm of a
state,

W tlo,t) = [ ot (xlt) = [ dev™ @@, (123)

is not in general time independent. Thus probability is not conserved. The
Klein-Gordon equation obeys relativity, but not quantum mechanics.
Dirac attempted to solve this problem (for spin-one-half particles) by
introducing an extra discrete label on the wave function, to account for
spin: ¥4(x), a = 1,2. He then tried a Schréodinger equation of the form

z’h%%(a:) = (—ihC(aj)abaj + mc2(5)ab)¢b(x) : (1.24)

where all repeated indices are summed, and o/ and /3 are matrices in spin-
space. This equation, the Dirac equation, is consistent with the abstract
Schrodinger equation. The state |1, a,t) carries a spin label a, and the
hamiltonian is

Heay = cPj(a? )ap + me2(B)ap (1.25)

where P; is a component of the momentum operator.

Since the Dirac equation is linear in both time and space derivatives,
it has a chance to be consistent with relativity. Note that squaring the
hamiltonian yields

(H?)ap = P Pp(a? a®) gy + mcPPj(a? B+ Bl ) g, + (mc?)2(6%)ap - (1.26)

Since P; P} is symmetric on exchange of j and k, we can replace alak by
its symmetric part, %{oﬂ,ak}, where {A, B} = AB + BA is the anticom-
mutator. Then, if we choose matrices such that

{aja ak}ab = 25jk5ab s {Oéj,ﬁ}ab =0 s (62)ab = 5(11) s (127)

we will get
(H)ap = (P2 + m?c!)dgp . (1.28)

Thus, the eigenstates of H? are momentum eigenstates, with H? eigenvalue
p2c® + m2c*. This is, of course, the correct relativistic energy-momentum



1: Attempts at relativistic quantum mechanics 24

relation. While it is outside the scope of this section to demonstrate it, it
turns out that the Dirac equation is fully consistent with relativity provided
the Dirac matrices obey eq. (1.27). So we have apparently succeeded in
constructing a quantum mechanical, relativistic theory!

There are, however, some problems. We would like the Dirac matrices
to be 2 x 2, in order to account for electron spin. However, they must
in fact be larger. To see this, note that the 2 x 2 Pauli matrices obey
{o?,07} = 26" and are thus candidates for the Dirac o’ matrices. However,
there is no fourth matrix that anticommutes with these three (easily proven
by writing down the most general 2 x 2 matrix and working out the three
anticommutators explicitly). Also, we can show that the Dirac matrices
must be even dimensional; see problem 1.1. Thus their minimum size is
4 x 4, and it remains for us to interpret the two extra possible “spin” states.

However, these extra states cause a more severe problem than a mere
overcounting. Acting on a momentum eigenstate, H becomes the matrix
ca-p+mc?B3. In problem 1.1, we find that the trace of this matrix is zero.
Thus the four eigenvalues must be +E(p), +E(p), —E(p), —E(p), where
E(p) = +(p?c + m?c*)'/2. The negative eigenvalues are the problem:
they indicate that there is no ground state. In a more elaborate theory
that included interactions with photons, there seems to be no reason why
a positive energy electron could not emit a photon and drop down into
a negative energy state. This downward cascade could continue forever.
(The same problem also arises in attempts to interpret the Klein-Gordon
equation as a modified form of quantum mechanics.)

Dirac made a wildly brilliant attempt to fix this problem of negative
energy states. His solution is based on an empirical fact about electrons:
they obey the Pauli exclusion principle. It is impossible to put more than
one of them in the same quantum state. What if, Dirac speculated, all
the negative energy states were already occupied? In this case, a positive
energy electron could not drop into one of these states, by Pauli exclusion.

Many questions immediately arise. Why don’t we see the negative elec-
tric charge of this Dirac sea of electrons? Dirac’s answer: because we're
used to it. (More precisely, the physical effects of a uniform charge density
depend on the boundary conditions at infinity that we impose on Maxwell’s
equations, and there is a choice that renders such a uniform charge density
invisible.) However, Dirac noted, if one of these negative energy electrons
were excited into a positive energy state (by, say, a sufficiently energetic
photon), it would leave behind a hole in the sea of negative energy elec-
trons. This hole would appear to have positive charge, and positive energy.
Dirac therefore predicted (in 1927) the existence of the positron, a particle
with the same mass as the electron, but opposite charge. The positron was
found experimentally five years later.
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However, we have now jumped from an attempt at a quantum descrip-
tion of a single relativistic particle to a theory that apparently requires
an infinite number of particles. Even if we accept this, we still have not
solved the problem of how to describe particles like photons or pions or
alpha nuclei that do not obey Pauli exclusion.

At this point, it is worthwhile to stop and reflect on why it has proven
to be so hard to find an acceptable relativistic wave equation for a sin-
gle quantum particle. Perhaps there is something wrong with our basic
approach.

And there is. Recall the axiom of quantum mechanics that says that
“Observables are represented by hermitian operators.” This is not entirely
true. There is one observable in quantum mechanics that is not represented
by a hermitian operator: time. Time enters into quantum mechanics only
when we announce that the “state of the system” depends on an extra
parameter t. This parameter is not the eigenvalue of any operator. This is
in sharp contrast to the particle’s position x, which s the eigenvalue of an
operator. Thus, space and time are treated very differently, a fact that is
obscured by writing the Schrédinger equation in terms of the position-space
wave function 1(x,t). Since space and time are treated asymmetrically, it
is not surprising that we are having trouble incorporating a symmetry that
mixes them up.

So, what are we to do?

In principle, the problem could be an intractable one: it might be im-
possible to combine quantum mechanics and relativity. In this case, there
would have to be some meta-theory, one that reduces in the nonrelativistic
limit to quantum mechanics, and in the classical limit to relativistic particle
dynamics, but is actually neither.

This, however, turns out not to be the case. We can solve our problem,
but we must put space and time on an equal footing at the outset. There
are two ways to do this. One is to demote position from its status as an
operator, and render it as an extra label, like time. The other is to promote
time to an operator.

Let us discuss the second option first. If time becomes an operator, what
do we use as the time parameter in the Schrodinger equation? Happily, in
relativistic theories, there is more than one notion of time. We can use the
proper time T of the particle (the time measured by a clock that moves
with it) as the time parameter. The coordinate time T (the time measured
by a stationary clock in an inertial frame) is then promoted to an operator.
In the Heisenberg picture (where the state of the system is fixed, but the
operators are functions of time that obey the classical equations of motion),
we would have operators X*(7), where X = T. Relativistic quantum
mechanics can indeed be developed along these lines, but it is surprisingly
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complicated to do so. (The many times are the problem; any monotonic
function of 7 is just as good a candidate as 7 itself for the proper time, and
this infinite redundancy of descriptions must be understood and accounted
for.)

One of the advantages of considering different formalisms is that they
may suggest different directions for generalizations. For example, once
we have X*(7), why not consider adding some more parameters? Then
we would have, for example, X*(o,7). Classically, this would give us a
continuous family of worldlines, what we might call a worldsheet, and so
XH"(o,7) would describe a propagating string. This is indeed the starting
point for string theory.

Thus, promoting time to an operator is a viable option, but is compli-
cated in practice. Let us then turn to the other option, demoting position
to a label. The first question is, label on what? The answer is, on oper-
ators. Thus, consider assigning an operator to each point x in space; call
these operators ¢(x). A set of operators like this is called a quantum field.
In the Heisenberg picture, the operators are also time dependent:

o(x,t) = et/hp(x, 0)e HM (1.29)

Thus, both position and (in the Heisenberg picture) time are now labels on
operators; neither is itself the eigenvalue of an operator.

So, now we have two different approaches to relativistic quantum theory,
approaches that might, in principle, yield different results. This, however,
is not the case: it turns out that any relativistic quantum physics that can
be treated in one formalism can also be treated in the other. Which we
use is a matter of convenience and taste. And, quantum field theory, the
formalism in which position and time are both labels on operators, is much
more convenient and efficient for most problems.

There is another useful equivalence: ordinary nonrelativistic quantum
mechanics, for a fixed number of particles, can be rewritten as a quantum
field theory. This is an informative exercise, since the corresponding physics
is already familiar. Let us carry it out.

Begin with the position-basis Schrédinger equation for n particles, all
with the same mass m, moving in an external potential U(x), and inter-
acting with each other via an interparticle potential V' (x; — x2):

n 2 n j—1
ih§¢ = Z —h—V? +U(xj) | + Z Z Vixj —xp) (v, (1.30)
ot =\ 2m j=1k=1

where ¢ = 9 (x1,...,X,;t) is the position-space wave function. The quan-
tum mechanics of this system can be rewritten in the abstract form of
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eq. (1.1) by first introducing (in, for now, the Schrédinger picture) a quan-
tum field a(x) and its hermitian conjugate af(x). We take these operators
to have the commutation relations

[a(x), a(x)] = 0
[af (x),a’(x)] = 0,
[a(x),a’ (x)] = &3 (x — %), (1.31)

where 6%(x) is the three-dimensional Dirac delta function. Thus, a'(x) and
a(x) behave like harmonic-oscillator creation and annihilation operators
that are labeled by a continuous index. In terms of them, we introduce the
hamiltonian operator of our quantum field theory,

H = /d3x aT(X)(—%V2 + U(X))a(x)

+3 /d?’x By V(x —y)a' (x)a’ (y)aly)a(x) . (1.32)

Now consider a time-dependent state of the form

b, ) = /d3:n1...d3xn b1y xmstal(x1) . af(x0)[0),  (1.33)

where ¥(X1,...,Xp;t) is some function of the n particle positions and time,
and |0) is the vacuum state, the state that is annihilated by all the a’s,

a(x)|0) =0. (1.34)

It is now straightforward (though tedious) to verify that eq.(1.1), the ab-
stract Schrodinger equation, is obeyed if and only if the function v satisfies
eq. (1.30).

Thus we can interpret the state |0) as a state of “no particles”, the state
af(x1)|0) as a state with one particle at position x1, the state a'(x1)a’(x2)|0)
as a state with one particle at position x; and another at position x5, and
so on. The operator

N = /d3ac a’ (x)a(x) (1.35)

counts the total number of particles. It commutes with the hamiltonian,
as is easily checked; thus, if we start with a state of n particles, we remain
with a state of n particles at all times.

However, we can imagine generalizations of this version of the theory
(generalizations that would not be possible without the field formalism) in
which the number of particles is not conserved. For example, we could try
adding to H a term like

AH /d3:17 {aT(x)a2(x) +h.c.} . (1.36)
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This term does not commute with /N, and so the number of particles would
not be conserved with this addition to H.

Theories in which the number of particles can change as time evolves are
a good thing: they are needed for correct phenomenology. We are already
familiar with the notion that atoms can emit and absorb photons, and so
we had better have a formalism that can incorporate this phenomenon. We
are less familiar with emission and absorption (that is to say, creation and
annihilation) of electrons, but this process also occurs in nature; it is less
common because it must be accompanied by the emission or absorption of
a positron, antiparticle to the electron. There are not a lot of positrons
around to facilitate electron annihilation, while eTe™ pair creation requires
us to have on hand at least 2mc? of energy available for the rest-mass
energy of these two particles. The photon, on the other hand, is its own
antiparticle, and has zero rest mass; thus photons are easily and copiously
produced and destroyed.

There is another important aspect of the quantum theory specified by
egs. (1.32) and (1.33). Because the creation operators commute with each
other, only the completely symmetric part of 1 survives the integration
in eq.(1.33). Therefore, without loss of generality, we can restrict our
attention to 1’s of this type:

(oo X X t) =YX XL t) (1.37)

This means that we have a theory of bosons, particles that (like photons or
pions or alpha nuclei) obey Bose-Einstein statistics. If we want Fermi-Dirac
statistics instead, we must replace eq. (1.31) with

{a(x),a(x")} =0,
{o'(x),a'(x)} =0,
{a(x),a'(x)} = 8*(x —x) | (1.38)
where again {A, B} = AB+ BA is the anticommutator. Now only the fully

antisymmetric part of ¢ survives the integration in eq. (1.33), and so we
can restrict our attention to

Yoo X X t) = =YX XL t) (1.39)

Thus we have a theory of fermions. It is straightforward to check that
the abstract Schrodinger equation, eq. (1.1), still implies that 1) obeys the
differential equation (1.30).! Interestingly, there is no simple way to write

'Now, however, the ordering of the a and at operators in the last term of eq. (1.32)
becomes significant, and must be as written.
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down a quantum field theory with particles that obey Boltzmann statistics,
corresponding to a wave function with no particular symmetry. This is a
hint of the spin-statistics theorem, which applies to relativistic quantum
field theory. It says that interacting particles with integer spin must be
bosons, and interacting particles with half-integer spin must be fermions.
In our nonrelativistic example, the interacting particles clearly have spin
zero (because their creation operators carry no labels that could be inter-
preted as corresponding to different spin states), but can be either bosons
or fermions, as we have seen.

Now that we have seen how to rewrite the nonrelativistic quantum me-
chanics of multiple bosons or fermions as a quantum field theory, it is time
to try to construct a relativistic version.

REFERENCE NOTES

The history of the physics of elementary particles is recounted in Pais. A
brief overview can be found in Weinberg I. More details on quantum field
theory for nonrelativistic particles can be found in Brown.

PROBLEMS

1.1) Show that the Dirac matrices must be even dimensional. Hint: show
that the eigenvalues of § are all &1, and that Tr 3 = 0. To show that
Tr 3 = 0, consider, e.g., Tra23. Similarly, show that Tra; = 0.

1.2) With the hamiltonian of eq.(1.32), show that the state defined in
eq. (1.33) obeys the abstract Schrédinger equation, eq.(1.1), if and
only if the wave function obeys eq. (1.30). Your demonstration should
apply both to the case of bosons, where the particle creation and anni-
hilation operators obey the commutation relations of eq.(1.31), and
to fermions, where the particle creation and annihilation operators
obey the anticommutation relations of eq. (1.38).

1.3) Show explicitly that [N, H] = 0, where H is given by eq. (1.32) and
N by eq. (1.35).



2 LORENTZ INVARIANCE

PREREQUISITE: 1

A Lorentz transformation is a linear, homogeneous change of coordinates
from z* to ¥,
= A av (2.1)

that preserves the interval 22 between x* and the origin, where

22 = atx, = guatc’ = x? — 2t? . (2.2)
This means that the matrix A#, must obey

Gu NN 5 = gpo (2.3)
where
-1
+1
+1

is the Minkowski metric.

Note that this set of transformations includes ordinary spatial rotations:
take A% = 1, A% = A%y = 0, and A'; = R;j, where R is an orthogonal
rotation matrix.

The set of all Lorentz transformations forms a group: the product of
any two Lorentz transformations is another Lorentz transformation; the
product is associative; there is an identity transformation, A¥, = J§*,;
and every Lorentz transformation has an inverse. It is easy to demonstrate
these statements explicitly. For example, to find the inverse transformation
(A~1)#,, note that the left-hand side of eq. (2.3) can be written as A,,A”,,

and that we can raise the p index on both sides to get A,?AY, = §”,. On
the other hand, by definition, (A~1)?,, A", = §”,. Therefore

(A_l)pl/ = Aup . (25)
Another useful version of eq. (2.3) is
g AP AN, = g7l (2.6)

To get eq. (2.6), start with eq. (2.3), but with the inverse transformations
(A=1)#, and (A1)”,. Then use eq. (2.5), raise all down indices, and lower
all up indices. The result is eq. (2.6).

For an infinitesimal Lorentz transformation, we can write

Al = 6, + Swh, | (2.7)
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Eq. (2.3) can be used to show that dw with both indices down (or up) is
antisymmetric:

dwpe = —0wgp - (2.8)

Thus there are six independent infinitesimal Lorentz transformations (in
four spacetime dimensions). These can be divided into three rotations
(0w;j = —€i;,xN100 for a rotation by angle 66 about the unit vector i) and
three boosts (dw;g = 7n;0n for a boost in the direction @i by rapidity on).

Not all Lorentz transformations can be reached by compounding in-
finitesimal ones. If we take the determinant of eq. (2.5), we get (det A)~! =
det A, which implies det A = +1. Transformations with det A = +1 are
proper, and transformations with det A = —1 are improper. Note that the
product of any two proper Lorentz transformations is proper, and that
infinitesimal transformations of the form A = 1 + dw are proper. There-
fore, any transformation that can be reached by compounding infinitesimal
ones is proper. The proper transformations form a subgroup of the Lorentz
group.

Another subgroup is that of the orthochronous Lorentz transformations:
those for which A% > +1. Note that eq. (2.3) implies (A%)? — AfgA%y = 1;
thus, either A% > +1 or A% < —1. An infinitesimal transformation is
clearly orthochronous, and it is straightforward to show that the product
of two orthochronous transformations is also orthochronous.

Thus, the Lorentz transformations that can be reached by compounding
infinitesimal ones are both proper and orthochronous, and they form a
subgroup. We can introduce two discrete transformations that take us out
of this subgroup: parity and time reversal. The parity transformation is

+1
Pr, = (P, = o . (2.9)
-1
It is orthochronous, but improper. The time-reversal transformation is
-1
TH, = (T YHr, = . : (2.10)
+1

It is nonorthochronous and improper.

Generally, when a theory is said to be Lorentz invariant, this means
under the proper orthochronous subgroup only. Parity and time reversal
are treated separately. It is possible for a quantum field theory to be
invariant under the proper orthochronous subgroup, but not under parity
and/or time-reversal.
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From here on, in this section, we will treat the proper orthochronous
subgroup only. Parity and time reversal will be treated in section 23.

In quantum theory, symmetries are represented by unitary (or antiu-
nitary) operators. This means that we associate a unitary operator U(A)
to each proper, orthochronous Lorentz transformation A. These operators
must obey the composition rule

UNA) =UNYUA) . (2.11)

For an infinitesimal transformation, we can write
U(14+6w) = I + 56wy, M* (2.12)
where MH* = —M"" is a set of hermitian operators called the generators

of the Lorentz group. If we start with U(A)~1U(A)U(A) = U(A7LA'A), let
A =1+ 6w, and expand both sides to linear order in dw, we get

Swu UN)TMMU(A) = Sw AF )N o MP7 (2.13)

Then, since dw,, is arbitrary (except for being antisymmetric), the anti-
symmetric part of its coefficient on each side must be the same. In this
case, because M*" is already antisymmetric (by definition), we have

UA)TM™U(A) = A, A o MP (2.14)

We see that each vector index on M undergoes its own Lorentz trans-
formation. This is a general result: any operator carrying one or more
vector indices should behave similarly. For example, consider the energy-
momentum four-vector P*, where P is the hamiltonian H and P’ are the
components of the total three-momentum operator. We expect

U(A)PrU(A) = A*,P” . (2.15)

If we now let A = 1 4 dw in eq.(2.14), expand to linear order in dw,
and equate the antisymmetric part of the coefficients of dw,,, we get the
commutation relations

[, M7} = i (g M7 = ()] — (pesor) - (2.16)

These commutation relations specify the Lie algebra of the Lorentz group.
We can identify the components of the angular momentum operator J as
J; = %Eijijk, and the components of the boost operator K as K; = M.
We then find from eq. (2.16) that
[JZ',J]'] = ’ih&iijk s
[Ji, K] = iheij Ky
[KZ',KJ'] = —ih&iijk . (2.17)
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The first of these is the usual set of commutators for angular momentum,

and the second says that K transforms as a three-vector under rotations.

The third implies that a series of boosts can be equivalent to a rotation.
Similarly, we can let A =1+ dw in eq. (2.15) to get

[P, MP7) = it (g" P* — (po)) | (2.18)
which becomes
[Ji,H =0,
[Ji, Pj] = iheiiPr
[KZ',H] = ZhPZ' s
[K;, Pj| = iho; H (2.19)

[P, H] =0. (2.20)

Together, egs. (2.17), (2.19), and (2.20) form the Lie algebra of the Poincaré
group.

Let us now consider what should happen to a quantum scalar field ¢(z)
under a Lorentz transformation. We begin by recalling how time evolution
works in the Heisenberg picture:

UM (o, 0)e UM = (1) (2:21)
Obviously, this should have a relativistic generalization,
e~ iPe/h () PR — () | (2.22)

where Pr = Ptx, = P -x — Hct. We can make this a little fancier by
defining the unitary spacetime translation operator

T(a) = exp(—iP"a,/h) . (2.23)

Then we have
T(0) " p(@)T(a) = ¢ — a). (2:24)

For an infinitesimal translation,
T(6a) = I — £ba,P" . (2.25)
Comparing egs. (2.12) and (2.25), we see that eq. (2.24) leads us to expect
(M) @)U (A) = p(ha) (2.26)
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Derivatives of ¢ then carry vector indices that transform in the appropriate
way, e.g., B
U(AN) 10" p(z)U(A) = A“papgo(A_lzn) , (2.27)

where the bar on a derivative means that it is with respect to the argument
T = A"lz. Eq.(2.27) also implies
U(A)'0%p(x)U(A) = (A z) (2.28)

so that the Klein-Gordon equation, (—8? + m?/h?c?)¢ = 0, is Lorentz
invariant, as we saw in section 1.

REFERENCE NOTES

A detailed discussion of quantum Lorentz transformations can be found in
Weinberg 1.

PROBLEMS

2.1) Verify that eq. (2.8) follows from eq. (2.3).
2.2) Verify that eq. (2.14) follows from U(A)~'U(A)U(A) = U(AIA’A).

2.3
4

2.

)

2.16) follows from eq. (2.14

Verify that eq. (2.17) follows from eq. (2.16
)

Verify that eq. (2. :

(2. :

2.5 (2. .
2.6) Verify that eq. (2.19) follows from eq. (2.18

2.7) What property should be attributed to the translation operator T'(a)
that could be used to prove eq. (2.20)?

) (2.14).
) (2.16).
) Verify that eq. (2.18) follows from eq. (2.15).
) (2.18).
)

2.8) a) Let A =1+ dw in eq. (2.26), and show that
[p(2), MM] = L o(x) (2.29)

where
L = DL(hg” — Vo) . (2.30)
b) Show that [[¢(x), MH], MP?] = LIV LP7p(z).

¢) Prove the Jacobi identity, [[A, B],C] + [[B, C], A] + [[C, A], B] = 0.
Hint: write out all the commutators.

d) Use your results from parts (b) and (c) to show that

[p(2), M"Y, MP?]] = (LM LP7 = LP7 LM )p(x) - (2.31)
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e) Simplify the right-hand side of eq. (2.31) as much as possible.

f) Use your results from part (e) to verify eq. (2.16), up to the possi-
bility of a term on the right-hand side that commutes with ¢(z) and
its derivatives. (Such a term, called a central charge, in fact does not
arise for the Lorentz algebra.)

2.9) Let us write

AP =677 + 0w (SE7)°r (2.32)
where

(4P, = %(g”pé”T —g"Po* ;) (2.33)
are matrices which constitute the vector representation of the Lorentz
generators.

a) Let A =1+ 0w in eq. (2.27), and show that

[07p(x), MM] = LF0Pp(x) + (") -07p(x) . (2.34)

b) Show that the matrices S§” must have the same commutation
relations as the operators M*”. Hint: see the previous problem.

c¢) For a rotation by an angle 6 about the z axis, we have

1 0 0 0
0 cosf —sinf 0
no—
A 0 sinf cosf 0 (2.35)
0 O 0 1
Show that
A = exp(—ifSL2/n) . (2.36)
d) For a boost by rapidity n in the z direction, we have
coshn 0 0 sinhp
0 1 0 0
7
A, = 0 0 1 0 (2.37)
sinhn 0 0 coshn

Show that
A = exp(+inS3/n) . (2.38)
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3  CANONICAL QUANTIZATION OF SCALAR FIELDS

PREREQUISITE: 2

Let us go back and drastically simplify the hamiltonian we constructed in
section 1, reducing it to the hamiltonian for free particles:

where 3
~ £ —ip-x
a(p) = /W e "PXa(x) . (3.2)
Here we have simplified our notation by setting
h=1. (3.3)

The appropriate factors of i can always be restored in any of our formulas
via dimensional analysis. The commutation (or anticommutation) relations
of the @(p) and @'(p) operators are

N
—~
T
~
N
-
—~
ﬁ\
~
_H
I
(=)
w
T
|
Fc\
~

(3.4)

where [A, B+ is either the commutator (if we want a theory of bosons)
or the anticommutator (if we want a theory of fermions). Thus a'(p) can
be interpreted as creating a state of definite momentum p, and eq. (3.1)
describes a theory of free particles. The ground state is the vacuum |0); it
is annihilated by a(p),

a(p)|0) =0, (3.5)

and so its energy eigenvalue is zero. The other eigenstates of H are all of
the form @' (p1)...a'(pn)|0), and the corresponding energy eigenvalue is
E(p1) + ...+ E(py), where E(p) = 7-p>.

It is easy to see how to generalize this theory to a relativistic one; all we
need to do is use the relativistic energy formula E(p) = +(p?c? +m?2ct)!/2:

H= / & (p2¢* + m2c)2 G (p)a(p) . (3.6)

Now we have a theory of free relativistic spin-zero particles, and they can
be either bosons or fermions.
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Is this theory really Lorentz invariant? We will answer this question (in
the affirmative) in a very roundabout way: by constructing it again, from
a rather different point of view, a point of view that emphasizes Lorentz
invariance from the beginning.

We will start with the classical physics of a real scalar field ¢(x). Real
means that ¢(x) assigns a real number to every point in spacetime. Scalar
means that Alice [who uses coordinates z# and calls the field ¢(x)] and Bob
[who uses coordinates z#, related to Alice’s coordinates by z# = A¥,z" +a",
and calls the field ¢(Z)], agree on the numerical value of the field: p(z) =
@(Z). This then implies that the equation of motion for ¢(z) must be the
same as that for ¢(z). We have already met an equation of this type: the
Klein-Gordon equation,

(—0* +m?)p(z) =0. (3.7)
Here we have simplified our notation by setting
c=1 (3.8)

in addition to A = 1. As with A, factors of ¢ can restored, if desired, by
dimensional analysis.

We will adopt eq. (3.7) as the equation of motion that we would like
o(z) to obey. It should be emphasized at this point that we are doing
classical physics of a real scalar field. We are not to think of p(z) as a
quantum wave function. Thus, there should not be any factors of & in this
version of the Klein-Gordon equation. This means that the parameter m
must have dimensions of inverse length; m is not (yet) to be thought of as
a mass.

The equation of motion can be derived from variation of an action
S = [dt L, where L is the lagrangian. Since the Klein-Gordon equation is
local, we expect that the lagrangian can be written as the space integral of
a lagrangian density £: L = [d® L. Thus, S = [d*r L. The integration
measure d*z is Lorentz invariant: if we change to coordinates # = A*,z",
we have d*z = |det A|d%z = d*z. Thus, for the action to be Lorentz in-
variant, the lagrangian density must be a Lorentz scalar: L(z) = L(Z).
Then we have S = [d% L(z) = [d% L(z) = S. Any simple function of
@ is a Lorentz scalar, and so are products of derivatives with all indices
contracted, such as 0* 0, . We will take for £

L= —%8”<p<9u<p — %m2cp2 +Q, (3.9)

where Q) is an arbitrary constant. We find the equation motion (also known
as the Euler-Lagrange equation) by making an infinitesimal variation dp(x)
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in (), and requiring the corresponding variation of the action to vanish:

0=204S
= /d4:17 {—%8“5(,08“90 — %a’ﬂpﬁu&p —m?p 5@}
= /d4a: {—H‘)“(‘)ugo — ngp] dp . (3.10)

In the last line, we have integrated by parts in each of the first two terms,
putting both derivatives on ¢. We assume dp(x) vanishes at infinity in
any direction (spatial or temporal), so that there is no surface term. Since
d¢ has an arbitrary x dependence, eq.(3.10) can be true if and only if
(—0% +m?)p = 0.

One solution of the Klein-Gordon equation is a plane wave of the form
exp(ik-x £ iwt), where k is an arbitrary real wave-vector, and

w=—+(k>+m?)/2 (3.11)

The general solution (assuming boundary conditions that require ¢ to re-
main finite at spatial infinity) is then
d3k tk-x—iwt ik-x+iwt
o(x,t) = G la(k)e + bk)eriet] (3.12)
where a(k) and b(k) are arbitrary functions of the wave vector k, and f(k)
is a redundant function of the magnitude of k which we have inserted for
later convenience. Note that, if we were attempting to interpret p(z) as
a quantum wave function (which we most definitely are not), then the
second term would constitute the “negative energy” contributions to the
wave function. This is because a plane-wave solution of the nonrelativistic
Schrodinger equation for a single particle looks like exp(ip - x — iE(p)t),
with E(p) = ﬁp% there is a minus sign in front of the positive energy. We
are trying to interpret eq. (3.12) as a real classical field, but this formula
does not generically result in ¢ being real. We must impose ¢*(z) = ¢(x),
where
* d3k * —ik-x+iwt * —ik-x—iwt
o (x,t) = HO) [a (k)e Tl b (k)e }

-/ ;5:) [ (ke eorivt (ke i) (313)

In the second term on the second line, we have changed the dummy inte-
gration variable from k to —k. Comparing egs. (3.12) and (3.13), we see
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that ¢*(z) = ¢(x) requires b*(—k) = a(k). Imposing this condition, we
can rewrite ¢ as

p(x,1) = % :a(k)eik'x_m +a*(_k)eik~x+iwt]
Bk T ik-X—iw " KX
:/%_a(k)ek Lot (k)e kxt t}
d3k [ ikx * —ikx
- m _a(k)ek +a*(k)e k } , (3.14)

where kx = k-x — wt is the Lorentz-invariant product of the four-vectors
' = (t,x) and k* = (w,k): kx = ktx, = g, k'x”. Note that

k? = ktk, =k — w? = —m? . (3.15)

2 is said to be on the mass shell,

A four-momentum k* that obeys k? = —m
or on shell for short.

It is now convenient to choose f(k) so that d°k/f (k) is Lorentz invariant.
An integration measure that is manifestly invariant under orthochronous
Lorentz transformations is d% §(k*+m?) 0(k?), where §(x) is the Dirac delta
function, #(z) is the unit step function, and k° is treated as an independent

integration variable. We then have
1

/ T U0 S(km?) 0(°) = (3.16)

Here we have used the rule

/+°O dr 8(g(e)) =Y m , (3.17)

— o0

where g(x) is any smooth function of z with simple zeros at = z;; in our
case, the only zero is at £k = w.

Thus we see that if we take f(k) oc w, then d%/f(k) will be Lorentz
invariant. We will take f(k) = (27)32w. It is then convenient to give the
corresponding Lorentz-invariant differential its own name:

- 43
dk = (2m)32w

(3.18)

Thus we finally have

o(r) = /(/ﬁ{: [a(k)e““ —I—a*(k)e_““} . (3.19)
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We can also invert this formula to get a(k) in terms of p(x). We have

/d?’x e ’kxcp(a:) — ia(k) + Le2iwta*(_k) 7

2w 2w
/d3x e~k Php(x) = —fa(k) + te*™a*(—k) . (3.20)
We can combine these to get
alk) = [ d' e [i0yp(w) + wip(a)

= /d —ike 30 () (3.21)

where f<8_,;g = f(Oug) — (Ouf)g, and Oy = Op/0t = . Note that a(k) is
time independent.

Now that we have the lagrangian, we can construct the hamiltonian by
the usual rules. Recall that, given a lagrangian L(qg;,q;) as a function of
some coordinates ¢; and their time derivatives ¢;, the conjugate momenta
are given by p; = 0L/0¢;, and the hamiltonian by H = >, pigi — L. In
our case, the role of ¢;(t) is played by ¢(x,t), with x playing the role of a
(continuous) index. The appropriate generalizations are then

II(z) = &(Z(ﬁa:) (3.22)
and
H=Ip—-L, (3.23)

where H is the hamiltonian density, and the hamiltonian itself is H =
[ d® H. In our case, we have

I(z) = ¢(z) (3.24)

and
H =12+ L(Vp)? + Im%? — Q. (3.25)

Using eq. (3.19), we can write H in terms of the a(k) and a*(k) coefficients:
H:4mug/%%w%[
(—z'w a(k)eikx + iwa kx) ( i’ CL zk T 4G a*(k/)e—ik’x)
+ (+ika()e™™ — ika*( —Z’m) (+iK' a(K)e™s — ik a* (K')e'7)
+ m? (a(k)e““ +a*(k)e™ ’kx) (a(k')e’k T4a (k’)e_““'x)}
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= —QV + & 27r3/217<:217c'
5 (k — K)(+ww’ + k- k’ + m?)
x (0" (K)a(k)e = 4 g(k)a* (K)e+ =)
+ 3 (k 4+ K)(—ww' — k-K + m2)
< (a(a(k)e ) 4 a* (k)a™ (k) ")

— —QV + 3 / dk |
(+0? + K 4+ m?) (a" (K)a(k) + a(k)a* (k)
+(—w? + K+ mz)(a(k)a(—k)e_%“t + a*(k)a*(—k)e”i“tﬂ

-V +1 /Eﬁc w(a*(K)a(k) +a(k)a" (k) , (3.26)
where V is the volume of space. To get the second equality, we used

/ & 97 — (27)35%(q) . (3.27)

To get the third equality, we integrated over k’, using dk = & /(27m)32w'.
The last equality then follows from w = (k?>+m?)/2. Also, we were careful
to keep the ordering of a(k) and a*(k) unchanged throughout, in anticipa-
tion of passing to the quantum theory where these classical functions will
become operators that may not commute.

Let us take up the quantum theory now. We can go from classical
to quantum mechanics via canonical quantization. This means that we
promote ¢; and p; to operators, with commutation relations [¢;,q;] = 0,
[pi,p;] = 0, and [g;, p;] = ihd;;. In the Heisenberg picture, these operators
should be taken at equal times. In our case, where the “index” is continuous
(and we have set i = 1), we have

[SD(X’ t)’ @(le t)] =0,
[H(Xv t)v H(le t)] =0,
[o(x,1),TI(x,t)] = 63 (x — x') . (3.28)

From these canonical commutation relations, and from egs. (3.21) and (3.24),
we can deduce

la(k), a(k)] =0,
[a’(k), e’ (k)] = 0,
[a(k),a’ (K)] = (27)%2w % (k — K') . (3.29)
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We are now denoting a*(k) as af(k), since af(k) is now the hermitian
conjugate (rather than the complex conjugate) of the operator a(k). We
can now rewrite the hamiltonian as

H = /EZZ: wal (K)ak) + (& — Q)V , (3.30)

where

& = %(2w)—3/d3k: w (3.31)

is the total zero-point energy of all the oscillators per unit volume, and,
using eq. (3.27), we have interpreted (27)36%(0) as the volume of space V.

If we integrate in eq. (3.31) over the whole range of k, the value of & is
infinite. If we integrate only up to a maximum value of A, a number known
as the ultraviolet cutoff, we find

A4
T 16m2
where we have assumed A > m. This is physically justified if, in the real
world, the formalism of quantum field theory breaks down at some large
energy scale. For now, we simply note that the value of ) is arbitrary, and
so we are free to choose 0y = &. With this choice, the ground state has
energy eigenvalue zero. Now, if we like, we can take the limit A — oo, with
no further consequences. (We will meet more of these ultraviolet divergences
after we introduce interactions.)

The hamiltonian of eq. (3.30) is now the same as that of eq. (3.6), with
a(k) = [(27)%2w]"/? a(k). The commutation relations (3.4) and (3.29) are
also equivalent, if we choose commutators (rather than anticommutators)
in eq. (3.4). Thus, we have re-derived the hamiltonian of free relativistic
bosons by quantization of a scalar field whose equation of motion is the
Klein-Gordon equation. The parameter m in the lagrangian is now seen to
be the mass of the particle in the quantum theory. (More precisely, since
m has dimensions of inverse length, the particle mass is hcm.)

What if we want fermions? Then we should use anticommutators in
egs. (3.28) and (3.29). There is a problem, though; eq. (3.26) does not then
become eq. (3.30). Instead, we get H = —QV, a simple constant. Clearly
there is something wrong with using anticommutators. This is another hint
of the spin-statistics theorem, which we will take up in section 4.

Next, we would like to add Lorentz-invariant interactions to our theory.
With the formalism we have developed, this is easy to do. Any local func-
tion of ¢(z) is a Lorentz scalar, and so if we add a term like ¢® or ¢? to
the lagrangian density £, the resulting action will still be Lorentz invariant.
Now, however, we will have interactions among the particles. Our next task
is to deduce the consequences of these interactions.

&o (3.32)
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However, we already have enough tools at our disposal to prove the
spin-statistics theorem for spin-zero particles, and that is what we turn to
next.

PROBLEMS

3.1) Derive eq. (3.29) from egs. (3.21), (3.24), and (3.28).

3.2) Use the commutation relations, eq. (3.29), to show explicitly that a
state of the form

ki .. kp) = al(ky)...a'(ky)|0) (3.33)

is an eigenstate of the hamiltonian, eq.(3.30), with eigenvalue wy +
...+ wp. The vacuum |0) is annihilated by a(k), a(k)|0) = 0, and we
take Qo = & in eq. (3.30).

3.3) Use U(A)"Lp(x)U(A) = p(A~1z) to show that
UM a®)U(A) = a(A7'K)
UN)tal(K)U(A) = al(A7'K) (3.34)
and hence that
UA)|ky ... kp) = [Aky ... Aky) (3.35)

where |k ... k,) = af(k;)...a'(k,)[0) is a state of n particles with
momenta ki,...,ky,.

3.4) Recall that T'(a)"tp(z)T(a) = p(z — a), where T'(a) = exp(—iP"a,,)
is the spacetime translation operator, and P° is identified as the
hamiltonian H.

a) Let a* be infinitesimal, and derive an expression for [¢(z), P*].

b) Show that the time component of your result is equivalent to the
Heisenberg equation of motion i¢ = [p, H].

c) For a free field, use the Heisenberg equation to derive the Klein-
Gordon equation.

d) Define a spatial momentum operator

= —/d3x II(x)Ve(x) . (3.36)

Use the canonical commutation relations to show that P obeys the
relation you derived in part (a).

e) Express P in terms of a(k) and af (k).
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3.5) Consider a complex (that is, nonhermitian) scalar field ¢ with la-
grangian density

L= —8”4,0T8M<p —m2elp+ Q. (3.37)

a) Show that ¢ obeys the Klein-Gordon equation.

b) Treat ¢ and ¢! as independent fields, and find the conjugate mo-
mentum for each. Compute the hamiltonian density in terms of these
conjugate momenta and the fields themselves (but not their time
derivatives).

c) Write the mode expansion of ¢ as
o(z) = / dk [a(k)e™ 4 bf (1)e 7] (3.38)

Express a(k) and b(k) in terms of ¢ and ¢! and their time derivatives.

d) Assuming canonical commutation relations for the fields and their
conjugate momenta, find the commutation relations obeyed by a(k)
and b(k) and their hermitian conjugates.

e) Express the hamiltonian in terms of a(k) and b(k) and their her-
mitian conjugates. What value must €2y have in order for the ground
state to have zero energy?
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4  THE SPIN-STATISTICS THEOREM
PREREQUISITE: 3
Let us consider a theory of free, spin-zero particles specified by the hamil-

tonian

Hy — / dk w a' (K)a(k) , (4.1)

where w = (k? + m?)'/2, and either the commutation or anticommutation
relations

la(k),a(k)]z =0,
[at(k),a’ (k)] = 0,
la(k),a’ (K)]+ = 2m)%2w &3 (k — K/) . (4.2)

Of course, if we want a theory of bosons, we should use commutators, and
if we want fermions, we should use anticommutators.

Now let us consider adding terms to the hamiltonian that will result in
local, Lorentz invariant interactions. In order to do this, it is convenient to
define a nonhermitian field,

0T (x,0) = /EZZ: e** q(k) , (4.3)
and its hermitian conjugate
¢ (x,0) = /Efc e kX gl (k) . (4.4)
These are then time-evolved with Hy:
ot (x, 1) = oty (x, 0)eiHot — /Eﬁf ¢ a(k) |
©(x,t) = Moty (x,0)e 0t = /EZZ: e~k ol (k) . (4.5)

Note that the usual hermitian free field ¢(x) is just the sum of these:

p(z) =™ () + ¢~ (2).
For a proper orthochronous Lorentz transformation A, we have

UA) ™ o(2)U(A) = p(A™'2) . (4.6)

This implies that the particle creation and annihilation operators transform
as

UM taX)UA) = a(A k),
UM ta'(k)U(A) = af(A7'Kk) . (4.7)
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This, in turn, implies that ¢ (z) and ¢~ (z) are Lorentz scalars:
UN)'e™(@)UA) = ¢ (A 1a) . (4.8)

We will then have local, Lorentz invariant interactions if we take the in-
teraction lagrangian density £; to be a hermitian function of ¢ (z) and
¢ ().

To proceed we need to recall some facts about time-dependent pertur-
bation theory in quantum mechanics. The transition amplitude 7y, to
start with an initial state |i) at time ¢ = —oo and end with a final state | f)
at time t = 400 is

Troo= U Tesp| i [ ar o] 1 (4.9)

[e.e]

where Hj(t) is the perturbing hamiltonian in the interaction picture,
Hi(t) = exp(+iHot) Hy exp(—iHot) , (4.10)

H is the perturbing hamiltonian in the Schrédinger picture, and T is the
time ordering symbol: a product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at earlier
times. We write H; = [ d® H1(x,0), and specify Hj(x,0) as a hermitian
function of p*(x,0) and ¢~ (x,0). Then, using egs. (4.5) and (4.10), we
can see that, in the interaction picture, the perturbing hamiltonian density
Hi(x,t) is simply given by the same function of p*(x,t) and ¢~ (x,t).
Now we come to the key point: for the transition amplitude 7;_; to
be Lorentz invariant, the time ordering must be frame independent. The
time ordering of two spacetime points x and 2’ is frame independent if
their separation is timelike; this means that the interval between them is
negative, (x—x' )2 < 0. Two spacetime points whose separation is spacelike,
(x — 2')% > 0, can have different temporal ordering in different frames. In
order to avoid 7y.; being different in different frames, we must then require

[Hi(z),H;(z')] =0 whenever (z—2')2>0. (4.11)

Obviously, [T (2), T (2")]5 = [¢~ (x), ¢ (2/)]+ = 0. However,

(@) @)l = [ dhdk ¢ oo, (K5

_ /(’1\]; eik(w—m’)
m

= gz Frlm)

C(r). (4.12)



4: The Spin-Statistics Theorem 47

In the next-to-last line, we have taken (z — 2/)? = r? > 0, and K;(z) is
a modified Bessel function. (This Lorentz-invariant integral is most easily
evaluated in the frame where ¢ = ¢.) The function C(r) is not zero for any
r > 0. (Not even when m = 0; in this case, C(r) = 1/472r2.) On the other
hand, Hy(z) must involve both ¢+ (z) and ¢~ (z), by hermiticity. Thus,
generically, we will not be able to satisfy eq. (4.11).

To resolve this problem, let us try using only particular linear combi-
nations of ¢t (z) and ¢~ (). Define

pa(a) = ot (@) + A~ (@)
cpi(a:) = () + Nt (2), (4.13)

where ) is an arbitrary complex number. We then have

[oa(@), o) (@)]g = [ (@), 0~ ()] + IMPle™ (@), ¢ (2))]5
= (1 AP)C(r) (4.14)

and

[pa(@), pa(a)]z = A" (2), 07 ()5 + Alp™ (2), ™ (¢)]5
= A1F1)C(r) . (4.15)

Thus, if we want ¢y (z) to either commute or anticommute with both ¢y (z')
and cpi(a;’ ) at spacelike separations, we must choose |A| = 1, and we must
choose commutators. Then (and only then), we can build a suitable H;(x)
by making it a hermitian function of @) (z).

But this has simply returned us to the theory of a real scalar field,
because, for A = e'@, e~ia/ 2pa(z) is hermitian. In fact, if we make the
replacements a(k) — e*/2q(k) and af(k) — e7/2at(k), then the com-
mutation relations of eq.(4.2) are unchanged, and e~**/2p,(z) = ¢(z) =
ot (x) + ¢~ (x). Thus, our attempt to start with the creation and annihila-
tion operators a'(k) and a(k) as the fundamental objects has simply led us
back to the real, commuting, scalar field ¢(x) as the fundamental object.

Let us return to thinking of ¢(z) as fundamental, with a lagrangian den-
sity given by some function of the Lorentz scalars ¢(z) and 0*¢(z)0,¢(x).
Then, quantization will result in [p(z), ¢(z)]5 = 0 for t = t'. If we choose
anticommutators, then [p(z)]? = 0 and [0,¢(z)]*> = 0, resulting in a trivial
L that is at most linear in ¢, and independent of . This clearly does not
lead to the correct physics.

This situation turns out to generalize to fields of higher spin, in any
number of spacetime dimensions. One choice of quantization (commuta-
tors or anticommutators) always leads to a trivial £, and so this choice
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is disallowed. Furthermore, the allowed choice is always commutators for
fields of integer spin, and anticommutators for fields of half-integer spin.
If we try treating the particle creation and annihilation operators as fun-
damental, rather than the fields, we find a situation similar to that of the
spin-zero case, and are led to the reconstruction of a field that must obey
the appropriate quantization scheme.

REFERENCE NOTES

This discussion of the spin-statistics theorem follows that of Weinberg I,
which has more details.

PROBLEMS

4.1) Verify eq. (4.12). Verify its limit as m — 0.
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5 TuE LSZ REDUCTION FORMULA

PREREQUISITE: 3

Let us now consider how to construct appropriate initial and final states
for scattering experiments. In the free theory, we can create a state of one
particle by acting on the vacuum state with a creation operator

k) = a'(k)|0) , (5.1)

where

= —z/d maogp (x) . (5.2)

The vacuum state |0) is annihilated by every a(k),

a(k)]0) =0, (5.3)

and has unit norm,

(0]0) = 1. (5.4)

The one-particle state |k) then has the Lorentz-invariant normalization
(kK'Y = 2m)? 2w (k — K') (5.5)

where w = (k? + m?)'/2,

Next, let us define a time-independent operator that (in the free theory)
creates a particle localized in momentum space near ki, and localized in
position space near the origin:

- / & f1(k)al (k) | (5.6)

where
f1(k) o exp[—(k — k;)?/40?] (5.7)

is an appropriate wave packet, and o is its width in momentum space.
Consider the state a“0>. If we time evolve this state in the Schrodinger
picture, the wave packet will propagate (and spread out). The particle is
thus localized far from the origin as t — 4oco. If we consider instead a
state of the form a1a£]0>, where ki # ko, then the two particles are widely
separated in the far past.

Let us guess that this still works in the interacting theory. One compli-
cation is that a'(k) will no longer be time independent, and so a];, eq. (5.6),
becomes time dependent as well. Our guess for a suitable initial state of a
scattering experiment is then

i) = lim_al(t)ab(®)[0) . (5.8)



5: The LSZ Reduction Formula 50

By appropriately normalizing the wave packets, we can make (i|i) = 1, and
we will assume that this is the case. Similarly, we can consider a final state

£y =, lim_al,(t)a} (1)]0) , (5.9)

where ki # Kk}, and (f|f) = 1. This describes two widely separated par-
ticles in the far future. (We could also consider acting with more creation
operators, if we are interested in the production of some extra particles in
the collision of two.) Now the scattering amplitude is simply given by (f|).

We need to find a more useful expression for (f|i). To this end, let us
note that

ol (+o0) —al(=o0) = [ at oval
- —z/d3k £k /da: A ’kx%w(x))
:—z/d?’kfl /d 7 (38 + w)p(x)
— _Z/di”k fi(k /d R (AR + K2 4+ m?)p(x)
— / & f1(k / d'z (B — V2 + m2)p(a)
— / &% f1(k / 'z % (R — V2 + m2)p(x)

= —i [ @ k) [ do (=07 4 mA)p(a) . (5.10)

The first equality is just the fundamental theorem of calculus. To get the
second, we substituted the definition of aJ{(t), and combined the d3r from
this definition with the dt to get d*z. The third comes from straightforward
evaluation of the time derivatives. The fourth uses w? = k? 4+ m?2. The fifth
writes k? as —V? acting on e’¥*. The sixth uses integration by parts to
move the V2 onto the field ¢(z); here the wave packet is needed to avoid a
surface term. The seventh simply identifies 93 — V2 as —9?.

In free-field theory, the right-hand side of eq. (5.10) is zero, since ¢(x)
obeys the Klein-Gordon equation. In an interacting theory, with (say)
Ly = %ggo?’ , we have instead (—0% + m?)p = % gp?. Thus the right-hand
side of eq. (5.10) is not zero in an interacting theory.

Rearranging eq. (5.10), we have

o} (=00) = al (+o0) +z/d3kf1 /d R (0% 4 mP)p(z) . (5.11)

We will also need the hermitian conjugate of this formula, which (after a
little more rearranging) reads

aj(400) = a1 (— —|—z/d3k‘ fik /d ek (9% + mPp(z) . (5.12)
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Let us return to the scattering amplitude,
(£1i) = {Olars (+00)az (+00)a} (~o0)ah(~00)[0) . (5.13)

Note that the operators are in time order. Thus, if we feel like it, we can
put in a time-ordering symbol without changing anything:

(f13) = (0] Tay (+o00)ax (+o0)al (—oo)al(—c0)|0) . (5.14)

The symbol T means the product of operators to its right is to be ordered,
not as written, but with operators at later times to the left of those at
earlier times.

Now let us use egs. (5.11) and (5.12) in eq. (5.14). The time-ordering
symbol automatically moves all a;(—o0)’s to the right, where they anni-
hilate |0). Similarly, all a;f (+00)’s move to the left, where they annihilate
(0.

The wave packets no longer play a key role, and we can take the ¢ — 0
limit in eq. (5.7), so that fi(k) = 63(k — ky). The initial and final states
now have a delta-function normalization, the multiparticle generalization
of eq. (5.5). We are left with

(Fli) = ¢n+n’/d4x1 R 4 m?) ..
d' e (02 + m?) ...
X (0| Tp(xy) ... o(x})...]0) . (5.15)

This formula has been written to apply to the more general case of n
incoming particles and n’ outgoing particles; the ellipses stand for similar
factors for each of the other incoming and outgoing particles.

Eq. (5.15) is the Lehmann-Symanzik-Zimmermann reduction formula,
or LSZ formula for short. It is one of the key equations of quantum field
theory.

However, our derivation of the LSZ formula relied on the supposition
that the creation operators of free field theory would work comparably in
the interacting theory. This is a rather suspect assumption, and so we must
review it.

Let us consider what we can deduce about the energy and momentum
eigenstates of the interacting theory on physical grounds. First, we assume
that there is a unique ground state |0), with zero energy and momentum.
The first excited state is a state of a single particle with mass m. This
state can have an arbitrary three-momentum k; its energy is then F =
w = (k? + m?)'/2. The next excited state is that of two particles. These
two particles could form a bound state with energy less than 2m (like the
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\E/
2m
m
0 P

Figure 5.1: The exact energy eigenstates in the (P, E) plane. The ground
state is isolated at (0,0), the one-particle states form an isolated hyperbola
that passes through (0,m), and the multi-particle continuum lies at and
above the hyperbola that passes through (0,2m).

hydrogen atom in quantum electrodynamics), but, to keep things simple, let
us assume that there are no such bound states. Then the lowest possible
energy of a two-particle state is 2m. However, a two-particle state with
zero total three-momentum can have any energy above 2m, because the
two particles could have some relative momentum that contributes to their
total energy. Thus we are led to a picture of the states of theory as shown
in fig. (5.1).

Now let us consider what happens when we act on the ground state
with the field operator ¢(z). To this end, it is helpful to write

o(z) = exp(—iP"xz,)p(0)exp(+iPrz,) , (5.16)

where P* is the energy-momentum four-vector. (This equation, introduced
in section 2, is just the relativistic generalization of the Heisenberg equa-
tion.) Now let us sandwich ¢(x) between the ground state (on the right),
and other possible states (on the left). For example, let us put the ground
state on the left as well. Then we have

(Olip(2)]0) = {0le™ " (0)e™**|0)

= (0]¢(0)[0) . (5.17)
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To get the second line, we used P#|0) = 0. The final expression is just
a Lorentz-invariant number. Since |0) is the exact ground state of the
interacting theory, we have (in general) no idea what this number is.

We would like (0|¢(0)]|0) to be zero. This is because we would like
a{(ioo), when acting on |0), to create a single particle state. We do not
want aJ{(ioo) to create a linear combination of a single particle state and
the ground state. But this is precisely what will happen if (0[¢(0)|0) is not
Z€ero.

So, if v = (0]p(0)|0) is not zero, we will shift the field p(z) by the
constant v. This means that we go back to the lagrangian, and replace
o(x) everywhere by @(z) + v. This is just a change of the name of the
operator of interest, and does not affect the physics. However, the shifted
@(x) obeys, by construction, (0]p(x)|0) = 0.

Let us now consider (p|p(x)|0), where |p) is a one-particle state with
four-momentum p, normalized according to eq. (5.5). Again using eq. (5.16),
we have

(ple" " (0)etF*|0)
= e P (p|(0)]0) (5.18)

where (p|¢(0)|0) is a Lorentz-invariant number. It is a function of p, but
the only Lorentz-invariant functions of p are functions of p?, and p? is just
the constant —m?2. So (p|¢(0)|0) is just some number that depends on m
and (presumably) the other parameters in the lagrangian.

We would like (p|¢(0)|0) to be one. That is what it is in free-field theory,
and we know that, in free-field theory, a];(ioo) creates a correctly normal-
ized one-particle state. Thus, for a{(:l:oo) to create a correctly normalized
one-particle state in the interacting theory, we must have (p|¢(0)[0) = 1.

So, if (p|p(0)|0) is not equal to one, we will rescale (or, one might say,
renormalize) ¢(x) by a multiplicative constant. This is just a change of the
name of the operator of interest, and does not affect the physics. However,
the rescaled ¢(z) obeys, by construction, (p|¢(0)|0) = 1.

Finally, consider (p,n|p(x)|0), where |p,n) is a multiparticle state with
total four-momentum p, and n is short for all other labels (such as relative
momenta) needed to specify this state. We have

(p,nlp(@)]0) = (p,nle™ " p(0)e|0)
= ¢ " (p,n|(0)[0)
= e 74, (p), (5.19)

(plep(2)[0)

where A, (p) is a function of Lorentz invariant products of the various
(relative and total) four-momenta needed to specify the state. Note that,
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from fig. (5.1), p° = (p? 4+ M?)'/? with M > 2m. The invariant mass M is
one of the parameters included in the set n.

We would like (p,n|o(2)|0) to be zero, because we would like ai(:l:oo),
when acting on |0), to create a single particle state. We do not want
aI(:l:oo) to create any multiparticle states. But this is precisely what may
happen if (p,n|p(x)|0) is not zero.

Actually, we are being a little too strict. We really need (p, n|a1(:|:oo)|0>
to be zero, and perhaps it will be zero even if (p, n|p(x)|0) is not. Also, we
really should test ai(:l:oo)|0> only against normalizable states. Mathemat-
ically, non-normalizable states cause all sorts of trouble; mathematicians
don’t consider them to be states at all. In physics, this usually doesn’t

bother us, but here we must be especially careful. So let us write
) = Z/d?’p Un(P)lp, 1) (5.20)

where the 1, (p)’s are wave packets for the total three-momentum p. Note
that eq. (5.20) is highly schematic; the sum over n includes integrals over
continuous parameters like relative momenta.

Now we want to examine

@lal 010) = =13 [ i) [ @k fu(k) [ d's b (oo nlie(@)0)
" (5.21)
We will take the limit ¢ — +oo in a moment. Using eq. (5.19), eq. (5.21)
becomes

el 010) = =i Y [ dpvie) [ % fk) [ dn(e™ 5 ) A, (p)

S [t vie) [ @ fik) [t R0, (p)
" (5.22)

Next we use [ d*z e ~P)* = (27)3§3(k — p) to get
@lal()10) = 3 [ db (2r) (k)11 () An(R) P " (5.29)

where p° = (p? + M?)"/2 and k° = (p? + m?)'/2.

Now comes the key point. Note that p® is strictly greater than k°,
because M > 2m > m. Thus the integrand of eq. (5.23) contains a phase
factor that oscillates more and more rapidly as t — +oo. Therefore, by
the Riemann-Lebesgue lemma, the right-hand side of eq. (5.23) vanishes as
t — t+oo.
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Physically, this means that a one-particle wave packet spreads out dif-
ferently than a multiparticle wave packet, and the overlap between them
goes to zero as the elapsed time goes to infinity. Thus, even though our
operator aJ{(t) creates some multiparticle states that we don’t want, we
can “follow” the one-particle state that we do want by using an appropri-
ate wave packet. By waiting long enough, we can make the multiparticle
contribution to the scattering amplitude as small as we like.

Let us recap. The basic formula for a scattering amplitude in terms of
the fields of an interacting quantum field theory is the LSZ formula, which

is worth writing down again:

R
d'zy e (=03 +m?) ...
X (0| Tp(xy) ... o(x})...]0) . (5.24)
The LSZ formula is valid provided that the field obeys
(0le(x)]0) =0 and (k|o(x)|0) = e~ (5.25)

These normalization conditions may conflict with our original choice of field
and parameter normalization in the lagrangian. Consider, for example, a
lagrangian originally specified as

L= —%8“(,08“90 — %m2<p2 + %9903 . (5.26)

After shifting and rescaling (and renaming some parameters), we will have
instead
L= —%Zspa"cp(‘)ucp - %me2cp2 + %Zgggog +Yp. (5.27)

Here the three Z’s and Y are as yet unknown constants. They must be
chosen to ensure the validity of eq. (5.25); this gives us two conditions in
four unknowns. We fix the parameter m by requiring it to be equal to the
actual mass of the particle (equivalently, the energy of the first excited state
relative to the ground state), and we fix the parameter g by requiring some
particular scattering cross section to depend on ¢ in some particular way.
(For example, in quantum electrodynamics, the parameter analogous to g
is the electron charge e. The low-energy Coulomb scattering cross section
is proportional to e?, with a definite constant of proportionality and no
higher-order corrections; this relationship defines e.) Thus we have four
conditions in four unknowns, and it is possible to calculate Y and the three
Z’s order by order in powers of g.

Next, we must develop the tools needed to compute the correlation
functions (0|Ty(z1)...|0) in an interacting quantum field theory.
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REFERENCE NOTES

Useful discussions of the LSZ reduction formula can be found in Brown,
Itzykson € Zuber, Peskin € Schroeder, and Weinberg I.

PROBLEMS

5.1) Work out the LSZ reduction formula for the complex scalar field that
was introduced in problem 3.5. Note that we must specify the type
(a or b) of each incoming and outgoing particle.
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6 PATH INTEGRALS IN QUANTUM MECHANICS

PREREQUISITE: NONE

Consider the nonrelativistic quantum mechanics of one particle in one di-
mension; the hamiltonian is

H(P,Q) = +=P*+V(Q), (6.1)

where P and ) are operators obeying [@Q,P] = i. (We set h = 1 for
notational convenience.) We wish to evaluate the probability amplitude for
the particle to start at position ¢’ at time ¢/, and end at position ¢” at time
t”. This amplitude is (¢”|e~ """ =¥)|¢'), where |¢') and |¢”) are eigenstates
of the position operator Q.

We can also formulate this question in the Heisenberg picture, where op-
erators are time dependent and the state of the system is time independent,
as opposed to the more familiar Schrodinger picture. In the Heisenberg pic-
ture, we write Q(t) = ¢*Qe~"*, We can then define an instantaneous
eigenstate of Q(t) via Q(t)|q,t) = qlq,t). These instantaneous eigenstates
can be expressed explicitly as |¢,t) = et|q), where Q|q) = ¢|¢). Then
our transition amplitude can be written as (¢”,t”|¢’,t') in the Heisenberg
picture.

To evaluate (¢",t"|¢',t'), we begin by dividing the time interval T' =
t” —t" into N 4 1 equal pieces of duration 6t = T//(N 4 1). Then introduce
N complete sets of position eigenstates to get

N

(q".t"|q 1) = / 1T da; (¢"le™ " lqn) (anle™ " lan—1) .. (qrle g .
j=1
(6.2)
The integrals over the ¢’s all run from —oo to 4oc0.
Now consider (gz|e™*#%|q;). We can use the Campbell-Baker-Hausdorf
formula

exp(A + B) = exp(A) exp(B) exp(—3[4, B] +...) (6.3)

to write
exp(—iH6t) = exp[—i(5t/2m)P?] exp[—idtV (Q)] exp[O(6t?)] . (6.4)

Then, in the limit of small é¢, we should be able to ignore the final expo-
nential. Inserting a complete set of momentum states then gives

(aale™ a1} = [ dpn (gole™ O ) e Y @)

= /dp1 e~ 10t/ 2m)pt =0tV (1) (@2|p1){(p1lqr)
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— /@ e i(0t/2m)p} —idtV(q1) gip1(a2—q1)
27
— @ e~ (p1,q1)dt Jip1(92—q1) (6.5)
27
To get the third line, we used (q|p) = (27) /2 exp(ipq).

If we happen to be interested in more general hamiltonians than eq. (6.1),
then we must worry about the ordering of the P and () operators in any
term that contains both. If we adopt Weyl ordering, where the quantum
hamiltonian H (P, Q) is given in terms of the classical hamiltonian H (p, q)
by
dx dk
o 21 ©
then eq. (6.5) is not quite correct; in the last line, H(p1,q1) should be
replaced with H(p1,q1), where ¢ = %(ql + ¢g2). For the hamiltonian of
eq. (6.1), which is Weyl ordered, this replacement makes no difference in
the limit 6t — O.

Adopting Weyl ordering for the general case, we now have

H(P,Q) = ioP+ikQ / dpdge= =" [ (p. q) |  (6.6)

N N o o
(@t ) = [ T]day [T 2 emom) Homalt | (G)
k=1 =0

where q; = %(qj + ¢j+1), o = ¢, and gn+1 = ¢”. If we now define ¢; =
(gj+1 — g5)/dt, and take the formal limit of 6t — 0, we get

(q//,t//‘q/,t/> = /Dqu exp|:1/
t

/

t”

(i) ~ Ho(0).a(t)|. (69

The integration is to be understood as over all paths in phase space that
start at q(t') = ¢’ (with an arbitrary value of the initial momentum) and
end at ¢(t") = ¢" (with an arbitrary value of the final momentum).

If H(p,q) is no more than quadratic in the momenta [as is the case for
eq. (6.1)], then the integral over p is gaussian, and can be done in closed
form. If the term that is quadratic in p is independent of ¢ [as is the case
for eq. (6.1)], then the prefactors generated by the gaussian integrals are
all constants, and can be absorbed into the definition of Dq. The result of
integrating out p is then

t”

("¢t = / Dq expli dt L(q(t),q(t))], (6.9)
t/

where L(q,q) is computed by first finding the stationary point of the p

integral by solving

0= (pi~ Hip.q)) = i - %Z’Q)

5 (6.10)
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for p in terms of ¢ and ¢, and then plugging this solution back into pg — H
to get L. We recognize this procedure from classical mechanics: we are
passing from the hamiltonian formulation to the lagrangian formulation.

Now that we have egs. (6.8) and (6.9), what are we going to do with
them? Let us begin by considering some generalizations; let us examine,
for example, (¢, t"|Q(t1)|¢’,t’), where t' < t; < t”. This is given by

(q”,t”\Q(tl)\q/,t/> _ <q//’e—iH(t”_tl)Qe_iH(h—t’)’q/> ) (611)

In the path integral formula, the extra operator () inserted at time ¢; will
simply result in an extra factor of ¢(¢1). Thus

(@ 1Q()Id 1) = [ PoDya(t) e (612

where S = ftfn dt (pg — H). Now let us go in the other direction; consider
[ DpDqq(t)q(ta)e. This clearly requires the operators Q(t;) and Q(t2),
but their order depends on whether ¢; < to or t9 < t1. Thus we have

/Dqu q(t1)q(t2) € = (¢" . ¢"|TQ(t1)Q(t2)ld' t') - (6.13)

where T is the time ordering symbol: a product of operators to its right is
to be ordered, not as written, but with operators at later times to the left
of those at earlier times. This is significant, because time-ordered products
enter into the LSZ formula for scattering amplitudes.

To further develop these methods, we need another trick: functional
derivatives. We define the functional derivative 6/ f(t) via

0
o)) f(t2) =6(t —t2) , (6.14)
where §(t) is the Dirac delta function. Also, functional derivatives are
defined to satisfy all the usual rules of derivatives (product rule, chain
rule, etc). Eq.(6.14) can be thought of as the continuous generalization of
(8/8:17@)33] = 52]
Now, consider modifying the lagrangian of our theory by including ex-
ternal forces acting on the particle:

H(p,q) — H(p,q) — f(t)q(t) — h(t)p(t) , (6.15)

where f(t) and h(t) are specified functions. In this case we will write

t//
<q”,t”|q/7t/>f,h — /Dqu exp lz/ dt (pq — H+ fq+ hp) . (6.16)
t/
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where H is the original hamiltonian. Then we have

1- 5f?t ) (@" t"ld ) = /Dqu q(tl)eifdt [pa—H+fathp]
t 1
e T i -
i 6f(t1) i 6f(t2) (" t"lq' ) s = /DPDQ q(t1)q(t2) e J dt [pg—H+ fq+hp] :
1 9 "oy 1l i [ dt [pg—H+fq+hp]
g (5h(t1) <q b ’q’t>f7h = /Dqup(tl)e pq q+hp 7

(6.17)

and so on. After we are done bringing down as many factors of ¢(t;) or
p(t;) as we like, we can set f(t) = h(t) = 0, and return to the original
hamiltonian. Thus,

(@, t"ITQ(t1) ... P(ty) ... |d", ')
1 5 1 6 /T A )
R ROy R AT PP
Suppose we are also interested in initial and final states other than
position eigenstates. Then we must multiply by the wave functions for
these states, and integrate. We will be interested, in particular, in the
ground state as both the initial and final state. Also, we will take the
limits ¥ — —oo and t” — +o00. The object of our attention is then

00y = Jim [ dg"dq ia") (@210 ) vold) . (619)

t" —+oo

where 19(q) = (g|0) is the ground-state wave function. Eq.(6.19) is a
rather cumbersome formula, however. We will, therefore, employ a trick to
simplify it.

Let |n) denote an eigenstate of H with eigenvalue E,,. We will suppose
that Ey = 0; if this is not the case, we will shift H by an appropriate
constant. Next we write

¢ty = g

oo
= > ™ n)(nl¢)
n=0

= " wi(d)e B [ny (6.20)
n=0

where ¥,(q) = (¢n) is the wave function of the nth eigenstate. Now,
replace H with (1—ie)H in eq. (6.20), where € is a small positive infinites-
imal. Then, take the limit ¢ — —oo of eq. (6.20) with € held fixed. Every
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state except the ground state is then multiplied by a vanishing exponential
factor, and so the limit is simply ¢§(¢’)|0). Next, multiply by an arbi-
trary function y(¢’), and integrate over ¢’. The only requirement is that
(0]x) # 0. We then have a constant times |0), and this constant can be
absorbed into the normalization of the path integral. A similar analysis of
(¢", 1" = (¢"|e ™" shows that the replacement H — (1—ie)H also picks
out the ground state as the final state in the ¢ — +oo limit.

What all this means is that if we use (1—ie)H instead of H, we can be
cavalier about the boundary conditions on the endpoints of the path. Any
reasonable boundary conditions will result in the ground state as both the
initial and final state. Thus we have

0[0) s = / DpDq exp

z/:o dt (pq — (1—ie)H + fq+ hp)] . (6.21)

Now let us suppose that H = Hy + Hi, where we can solve for the
eigenstates and eigenvalues of Hy, and H; can be treated as a perturbation.
Suppressing the ie, eq. (6.21) can be written as

010)f.p, = /Dqu exp

+oo
z‘/oo dt (pq‘—Ho(p,q) —Hl(pﬂ)‘i‘fQ‘th”

exp[—i/_:o dtHl(%%(t)’ %%(t))]

X/Dqu exp i/;oodt (pq'—Ho(p,Q) +fq+hp)] . (6.22)

To understand the second line of this equation, take the exponential prefac-
tor inside the path integral. Then the functional derivatives (that appear
as the arguments of H;) just pull out appropriate factors of p(t) and ¢(t),
generating the right-hand side of the first line. We assume that we can
compute the functional integral in the second line, since it involves only
the solvable hamiltonian Hy. The exponential prefactor can then be ex-
panded in powers of Hy to generate a perturbation series.

If Hy depends only on ¢ (and not on p), and if we are only interested
in time-ordered products of @’s (and not P’s), and if H is no more than
quadratic in P, and if the term quadratic in P does not involve @, then
eq. (6.22) can be simplified to

()

X / Dq exp|i /_ ;OO dt (Lo(d.q) + fq)} . (6.23)

(0]0)y = exp

where Li(q) = —H1(q).
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REFERENCE NOTES

Brown and Ramond I have especially clear treatments of various aspects
of path integrals. For a careful derivation of the midpoint rule of eq. (6.7),
see Berry & Mount.

PROBLEMS

6.1) a) Find an explicit formula for Dg in eq. (6.9). Your formula should
be of the form Dqg = C’H;-V:l dgj, where C is a constant that you
should compute.

b) For the case of a free particle, V(Q) = 0, evaluate the path integral
of eq. (6.9) explicitly. Hint: integrate over ¢, then ¢o, etc, and look
for a pattern. Express you final answer in terms of ¢/, ¢/, ¢”, t’, and
m. Restore i by dimensional analysis.

¢) Compute (¢",t"|¢,t') = (¢"|e"H "= |¢) by inserting a complete
set of momentum eigenstates, and performing the integral over the
momentum. Compare with your result in part (b).
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7 THE PATH INTEGRAL FOR THE HARMONIC
OSCILLATOR

PREREQUISITE: 6
Consider a harmonic oscillator with hamiltonian
H(P,Q) = o= P? + imw?Q? . (7.1)

We begin with the formula from section 6 for the ground state to ground
state transition amplitude in the presence of an external force, specialized
to the case of a harmonic oscillator:

(010)f = /Dqu expi/

—0o0

+oo
dtlpq— (1=ie)H + fq] . (7.2)

Looking at eq. (7.1), we see that multiplying H by 1—ie is equivalent to
the replacements m = — (1—ie)m ™" [or, equivalently, m — (1+ie)m] and

mw? — (1—ie)mw?. Passing to the lagrangian formulation then gives

(00) s = / Dq expi /_ T: dt[%(l—i—ie)qu — 1(1—ie)mw?q® + fq] . (7.3)

From now on, we will simplify the notation by setting m = 1.
Next, let us use Fourier-transformed variables,

i) = [Taeman,  an= [ L emam). (14

o —oo 2m

The expression in square brackets in eq. (7.3) becomes

=5 5 G (0oEe - 0o

+ F(B)G(E) + F(ENG(E)|.  (75)

Note that the only ¢ dependence is now in the prefactor. Integrating over ¢
then generates a factor of 27§(F + E’). Then we can easily integrate over
E' to get

-1 / I (i) B - (1-i0)?) G E)G(~E)

0o 2T
+ f(B)i(—E) + f(-E)a(B)) . (7.6)
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The factor in large parentheses is equal to E? — w? + i(E? + w?)e, and we
can absorb the positive coefficient into € to get E? — w? + ie.
Now it is convenient to change integration variables to

I(E) = §(B) + % : (7.7)
Then we get

Furthermore, because eq. (7.7) is just a shift by a constant, Dg = Dx. Now
we have

(0]0); = exp [1 /de_E f(E)f(—E) ]

2 ) oo 21 —E?2 4+ w2 —je

[T dE
« / D exp[% / CHENE ~ o +ieF(-B)| . (19)
oo 2m

Now comes the key point. The path integral on the second line of
eq. (7.9) is what we get for (0|0); in the case f = 0. On the other hand,
if there is no external force, a system in its ground state will remain in its
ground state, and so (0[0) f—o = 1. Thus (0|0) is given by the first line of
eq. (7.9),

_ i (t>dE _f(E)f(-E)

<O‘O>f—expl2/_oo e (7.10)

We can also rewrite (0]0) ¢ in terms of time-domain variables as

i [t
(0/0); = exp{g / dtdt’ FOGE— 1) f(t’)] , (7.11)
where B(—)
too dF e~ tE=

t—1t') = / — . 12
G ) oo 2 — E? +w? — e (7.12)

Note that G(t—t') is a Green’s function for the oscillator equation of motion:

2
(@ tu ) Gt —t) =o(t—1). (7.13)

This can be seen directly by plugging eq. (7.12) into eq.(7.13) and then
taking the ¢ — 0 limit. We can also evaluate G(t —t’) explicitly by treating
the integral over E on the right-hand side of eq. (7.12) as a contour integral
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in the complex F plane, and then evaluating it via the residue theorem.
The result is

Gt —t) = i exp(—iwlt ) . (7.14)

Consider now the formula from section 6 for the time-ordered product
of operators. In the case of initial and final ground states, it becomes

1 4
OTQ(n) . 10) = 5 57 -+ <0|o>f]f:0 . (7.15)
Using our explicit formula, eq. (7.11), we have
1 6 1 4
1 5 +oo / / /
= 570 L @ ct =) ooy
= [1G(ta — 1) + (term with £'5)](0]0) f]fzo
=1G(ts —t1) . (7.16)

We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more Q(¢)’s. If the number of Q(¢)’s is odd,
then there is always a left-over f(t¢) in the prefactor, and so the result is
zero. If the number of Q(t)’s is even, then we must pair up the functional
derivatives in an appropriate way to get a nonzero result. Thus, for exam-

ple,

OITQU)Q()QUE)Q(10)10) = 5 [Gltr—2)Glts—t4)
+ Gt —t3)G(ta—t4)
G(h—t)G(ta—ts)|.  (7.17)

More generally,

OTQ(H) .- Qan)l0) = = 32 Gltr,~t1,) - Cltiy, 1) - (T.18)

pairings
PROBLEMS

7.1) Starting with eq. (7.12), do the contour integral to verify eq. (7.14).

7.2) Starting with eq. (7.14), verify eq. (7.13).
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7.3) a) Use the Heisenberg equation of motion, A= i[H, A], to find explicit
expressions for () and P. Solve these to get the Heisenberg-picture
operators Q(t) and P(t) in terms of the Schrédinger picture operators
Q@ and P.

b) Write the Schrodinger picture operators @ and P in terms of the
creation and annihilation operators a and af, where H = hw(afa+ %)
Then, using your result from part (a), write the Heisenberg-picture
operators Q(t) and P(t) in terms of a and af.

c¢) Using your result from part (b), and a|0) = (0la’ = 0, verify
egs. (7.16) and (7.17).

7.4) Consider a harmonic oscillator in its ground state at ¢ = —oo. It is
then then subjected to an external force f(¢). Compute the probabil-
ity [(0]0)¢|* that the oscillator is still in its ground state at ¢ = +o0.
Write your answer as a manifestly real expression, and in terms of
the Fourier transform f(E) = [ atePtf(t). Your answer should
not involve any other unevaluated integrals.
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8 THE PATH INTEGRAL FOR FREE FIELD THEORY

PREREQUISITE: 3, 7

Our results for the harmonic oscillator can be straightforwardly generalized
to a free field theory with hamiltonian density

Ho = %H2 + %(Vgo)2 + %m2<p2 . (8.1)
The dictionary we need is

q(t) — (x,t) (classical field)
Q(t) — w(x,t) (operator field)
f(t) — J(x,t) (classical source) (8.2)

The distinction between the classical field ¢(x) and the corresponding op-
erator field should be clear from context.

To employ the € trick, we multiply Hy by 1 — ie. The results are equiv-
alent to replacing m? in Hy with m? — ie. From now on, for notational
simplicity, we will write m? when we really mean m?

Let us write down the path integral (also called the functional integral)
for our free field theory:

— 1€.

Zo(J) = (0[0) = / Dy '] PalbotIel (83)
where
Lo = —%a‘ﬂpﬁu@ - %ngpz (8.4)

is the lagrangian density, and
Dy x Hd(p(:n) (8.5)

is the functional measure. Note that when we say path integral, we now
mean a path in the space of field configurations.

We can evaluate Zy(J) by mimicking what we did for the harmonic
oscillator in section 7. We introduce four-dimensional Fourier transforms,

B = [ate™ @), pla) = [ et (56)

where kx = —k% + k-x, and k° is an integration variable. Then, starting
with Sy = [ d*r [Lo + J], we get

4 ~
=5 [ %[_W(kz+m2><,z<_k>+J(k>¢<—k>+,]<—k>¢<k>], (8.7)
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where k% = k% — (k°)2. We now change path integration variables to

(1) _ s J(k)
X(k) = (k) = g5 s - (8.8)
Since this is merely a shift by a constant, we have Dy = Dyx. The action
becomes
L d% [JRI(=R) e o
5o = 5/ Crt | kR rm?2 X(k)(E* +m )X(=k)| . (8.9)

Just as for the harmonic oscillator, the integral over x simply yields a factor
of Zy(0) = (0|0) j=0 = 1. Therefore

i [ d%  Jk)J(—k
Fol) = e [é/ G EE )J

— exp [; / de d' J(2)A(z — x’)J(x’)] . (8.10)

Here we have defined the Feynman propagator,

d% eik(x—x’)
Alw—a') = / G R TR (8.11)

The Feynman propagator is a Green’s function for the Klein-Gordon equa-
tion,
(=2 +m?)A(x —2') =6z —2') . (8.12)

This can be seen directly by plugging eq. (8.11) into eq.(8.12) and then
taking the ¢ — 0 limit. We can also evaluate A(z — ') explicitly by
treating the k° integral on the right-hand side of eq.(8.11) as a contour
integral in the complex k° plane, and then evaluating it via the residue
theorem. The result is

Alw—1) = z/cﬁc ik (=) —iw|t—t'|

= if(t—t) / dk =) L ig('—t) / dk e~ ™@=2") (8.13)

where 6(t) is the unit step function. The integral over dk can also be
performed in terms of Bessel functions; see section 4.

Now, by analogy with the formula for the ground-state expectation
value of a time-ordered product of operators for the harmonic oscillator,
we have

{0[Te(z1)...10) = % 6J?xl)

...ZO(J)] (8.14)

J=0 "
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Using our explicit formula, eq. (8.10), we have

(
1 5 1 6
(

0Tp(z1)p(z2)]0) = —

:l 0 {/d A$2—$)J($/)} ZO(J)‘ _

J=0

_ 1

= ?A(LUQ - l‘l) . (8'15)
We can continue in this way to compute the ground-state expectation value
of the time-ordered product of more ’s. If the number of ¢’s is odd, then
there is always a left-over J in the prefactor, and so the result is zero. If

the number of ¢’s is even, then we must pair up the functional derivatives
in an appropriate way to get a nonzero result. Thus, for example,

(0]Tp(z1)p(z2)p(z3)p(24)[0) = %[A(ﬂfl—HJZ)A(l’s—x@
+ A(ml—xg) (LEQ x )
+ A(ml—x4) (LEQ xg)} (816)

More generally,
<O‘Ttp($1) 90(33271 ‘O Z A le xm A(mi2n71_‘ri2n)’ (8'17)
palrlngs

This result is known as Wick’s theorem.
PROBLEMS
8.1) Starting with eq. (8.11), verify eq. (8.12).
8.2) Starting with eq. (8.11), verify eq. (8.13).

8.3) Starting with eq. (8.13), verify eq. (8.12). Note that the time deriva-
tives in the Klein-Gordon wave operator can act on either the field
(which obeys the Klein-Gordon equation) or the time-ordering step
functions.

8.4) Use egs. (3.19), (3.29), and (5.3) (and its hermitian conjugate) to
verify the last line of eq. (8.15).

8.5) The retarded and advanced Green’s functions for the Klein-Gordon
wave operator satisfy Apet(z—y) = 0 for 2% > 3% and A.qy(z—y) =0
for ° < 4°. Find the pole prescriptions on the right-hand side of
eq. (8.11) that yield these Green’s functions.
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8.6) Let Zy(J) = expiWy(J), and evaluate the real and imaginary parts
of Wo(J)

8.7) Repeat the analysis of this section for the complex scalar field that was
introduced in problem 3.5, and further studied in problem 5.1. Write
your source term in the form Jfp+ Jof, and find an explicit formula,
analogous to eq. (8.10), for ZO(JT, J). Write down the appropriate
generalization of eq. (8.14), and use it to compute (0|Tp(x1)¢(x2)[0),
(0| Tl (x1)@(22)[0), and (0|Te! (1) (22)[0). Then verify your re-
sults by using the method of problem 8.4. Finally, give the appropri-
ate generalization of eq. (8.17).

8.8) A harmonic oscillator (in units with m = h = 1) has a ground-state
wave function (g|0) oc e™*4°/2, Now consider a real scalar field ¢(z),
and define a field eigenstate |A) that obeys

p(x,0)|4) = A(x)|4) , (8.18)

where the function A(x) is everywhere real. For a free-field theory
specified by the hamiltonian of eq. (8.1), Show that the ground-state
wave functional is

3 ~ ~
(A]0) o exp [—% / %w(k)A(k)A(—k) O (819)

where A(k) = [ d®z e ¥ *A(x) and w(k) = (k? + m?)'/2.
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9 THE PATH INTEGRAL FOR INTERACTING FIELD
THEORY

PREREQUISITE: 8

Let us consider an interacting quantum field theory specified by a la-
grangian of the form

L= —%Zwa“go@ugo - % mm2<,02 + %Zgggpg +Yp. (9.1)

As we discussed at the end of section 5, we fix the parameter m by requiring
it to be equal to the actual mass of the particle (equivalently, the energy
of the first excited state relative to the ground state), and we fix the pa-
rameter g by requiring some particular scattering cross section to depend
on g in some particular way. (We will have more to say about this after we
have learned to calculate cross sections.) We also assume that the field is
normalized by

(Op(2)|0) =0 and  (k[p(z)[0) = e~ (92)

Here |0) is the ground state, normalized via (0|0) = 1, and |k) is a state of
one particle with four-momentum k*, where k? = ktE, = —m?, normalized
via
(K'|k) = (2m)32K°83 (K’ — k) . (9.3)
Thus we have four conditions (the specified values of m, g, (0|¢|0), and
(klp]0)), and we will use these four conditions to determine the values of
the four remaining parameters (Y and the three Z’s) that appear in L.
Before going further, we should note that this theory (known as ¢3
theory, pronounced “phi-cubed”) actually has a fatal flaw. The hamiltonian
density is
H = %Z;ll_[z —Ypo+ %me2<,02 — %Zgggpg . (9.4)
Classically, we can make this arbitrarily negative by choosing an arbitrarily
large value for . Quantum mechanically, this means that this hamiltonian
has no ground state. If we start off near ¢ = 0, we can tunnel through the
potential barrier to large ¢, and then “roll down the hill”. However, this
process is invisible in perturbation theory in g. The situation is exactly
analogous to the problem of a harmonic oscillator perturbed by a ¢3 term.
This system also has no ground state, but perturbation theory (both time
dependent and time independent) does not “know” this. We will be inter-
ested in eq. (9.1) only as an example of how to do perturbation expansions
in a simple context, and so we will overlook this problem.
We would like to evaluate the path integral for this theory,

2(7) = (00} = [ Dy e [l 9.5)
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We can evaluate Z(J) by mimicking what we did for quantum mechanics
at the end of section 6. Specifically, we can rewrite eq. (9.5) as

Z(J) — e’ifd4x 51(%%) /DQO eifd4m[£0+Jg0] )

x eifd4x Ll(%&Jiw)) ZO(J) , (96)

where Zy(J) is the result in free-field theory,
Zo(J) = exp E / de db J(2) A — ) ()] 9.7)

We have written Z(J) as proportional to (rather than equal to) the right-

hand side of eq. (9.6) because the € trick does not give us the correct overall

normalization; instead, we must require Z(0) = 1, and enforce this by hand.
Note that, in eq. (9.7), we have implicitly assumed that

Lo = —%8“<p<9u<p — %m2cp2 , (9.8)

since this is the £y that gives us eq. (9.7). Therefore, the rest of £ must be
included in £1. We write

Ly = 1Z,90° + Loy
Loy = _%(Zso_l)au‘PauSD - %(Zm_l)m2@2 +Yp, (9.9)

where L is called the counterterm lagrangian. We expect that, as g — 0,
Y — 0 and Z; — 1. In fact, as we will see, Y = O(g) and Z; = 1 + O(g?).

In order to make use of eq. (9.7), we will have to compute lots and lots of
functional derivatives of Zy(J). Let us begin by ignoring the counterterms.
We define

i 3
Z1(J) ox exp léZgg/d‘lx (% 5J(zx)> ] Zo(J) , (9.10)

where the constant of proportionality is fixed by Z;(0) = 1. We now make
a dual Taylor expansion in powers of g and J to get

o [ )

o) i P
XPZZ:O% {§/d4yd4z J(y)A(y—z)J(z)} . (9.11)

v

If we focus on a term in eq. (9.11) with particular values of V and P, then
the number of surviving sources (after we take all the functional derivatives)
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00 ©

S=2x3!

Figure 9.1: All connected diagrams with £ =0 and V = 2.

OO0 O-Z0

SN

=23x 3

Figure 9.2: All connected diagrams with £ =0 and V = 4.

is E = 2P — 3V. (Here FE stands for external, a terminology that should
become clear by the end of the next section; V' stands for vertex and P for
propagator.) The overall phase factor of such a term is then " (1/4)3V i =
iV+TE=F “and the 3V functional derivatives can act on the 2P sources in
(2P)!/(2P—3V)! different combinations. However, many of the resulting
expressions are algebraically identical.

To organize them, we introduce Feynman diagrams. In these diagrams,
a line segment (straight or curved) stands for a propagator —A(:L" Y), a
filled circle at one end of a line segment for a source i [ d*r J(x), and a
vertex joining three line segments for iZ,g [ d*z. Sets of diagrams with
different values of E and V are shown in figs. (9.1-9.11).

To count the number of terms on the right-hand side of eq. (9.11) that
result in a particular diagram, we first note that, in each diagram, the num-
ber of lines is P and the number of vertices is V. We can rearrange the
three functional derivatives from a particular vertex without changing the
resulting diagram; this yields a counting factor of 3! for each vertex. Also,
we can rearrange the vertices themselves; this yields a counting factor of
V1. Similarly, we can rearrange the two sources at the ends of a particular
propagator without changing the resulting diagram; this yields a counting
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factor of 2! for each propagator. Also, we can rearrange the propagators
themselves; this yields a counting factor of P!. All together, these count-
ing factors neatly cancel the numbers from the dual Taylor expansions in
eq. (9.11).

However, this procedure generally results in an overcounting of the num-
ber of terms that give identical results. This happens when some rearrange-
ment of derivatives gives the same match-up to sources as some rearrange-
ment of sources. This possibility is always connected to some symmetry
property of the diagram, and so the factor by which we have overcounted
is called the symmetry factor. The figures show the symmetry factor S of
each diagram.

Consider, for example, the second diagram of fig. (9.1). The three prop-
agators can be rearranged in 3! ways, and all these rearrangements can
be duplicated by exchanging the derivatives at the vertices. Furthermore
the endpoints of each propagator can be simultaneously swapped, and the
effect duplicated by swapping the two vertices. Thus, S =2 x 3! = 12.

Let us consider two more examples. In the first diagram of fig. (9.6),
the exchange of the two external propagators (along with their attached
sources) can be duplicated by exchanging all the derivatives at one vertex
for those at the other, and simultaneously swapping the endpoints of each
semicircular propagator. Also, the effect of swapping the top and bottom
semicircular propagators can be duplicated by swapping the corresponding
derivatives at each vertex. Thus, the symmetry factor is S =2 x 2 = 4.

In the diagram of fig. (9.10), we can exchange derivatives to match swaps
of the top and bottom external propagators on the left, or the top and
bottom external propagators on the right, or the set of external propagators
on the left with the set of external propagators on the right. Thus, the
symmetry factor is S =2 x 2 x 2 =8.

The diagrams in figs. (9.1-9.11) are all connected: we can trace a path
through the diagram between any two points on it. However, these are
not the only contributions to Z(J). The most general diagram consists of
a product of several connected diagrams. Let C; stand for a particular
connected diagram, including its symmetry factor. A general diagram D
can then be expressed as

1 ny
D= 5 1;[ cn™ (9.12)

where ny is an integer that counts the number of C;’s in D, and Sp is the
additional symmetry factor for D (that is, the part of the symmetry factor
that is not already accounted for by the symmetry factors already included
in each of the connected diagrams). We now need to determine Sp.
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Figure 9.3: All connected diagrams with £ =1 and V = 1.

o« D e OO OT0

S=23

Figure 9.4: All connected diagrams with £ =1 and V = 3.

Figure 9.5: All connected diagrams with £ =2 and V = 0.

S=22

Figure 9.6: All connected diagrams with £ =2 and V = 2.
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Since we have already accounted for propagator and vertex rearrange-
ments within each C7, we need to consider only exchanges of propagators
and vertices among different connected diagrams. These can leave the total
diagram D unchanged only if (1) the exchanges are made among different
but identical connected diagrams, and only if (2) the exchanges involve all
of the propagators and vertices in a given connected diagram. If there are
ny factors of C7 in D, there are nj! ways to make these rearrangements.
Overall, then, we have

Sp=]]nt. (9.13)
1

Now Zi(J) is given (up to an overall normalization) by summing all dia-
grams D, and each D is labeled by the integers n;. Therefore

Z1(J) Z D
{nr}

{ni} 1
=1
— (O™
> 1;[7”2:0 nl! ( I)
x Hexp(C’I)
I

x exp (>°;Cr) . (9.14)

Thus we have a remarkable result: Z;(J) is given by the exponential of the
sum of connected diagrams. This makes it easy to impose the normalization
Z1(0) = 1: we simply omit the vacuum diagrams (those with no sources),
like those of figs. (9.1) and (9.2). We then have

Z1(J) = exp[iWr(J)] , (9.15)
where we have defined
i)=Y r, (9.16)
I#{0}

and the notation I # {0} means that the vacuum diagrams are omitted
from the sum, so that Wi (0) = 0.1

Were it not for the counterterms in £, we would have Z(J) = Z1(J).
Let us see what we would get if this was, in fact, the case. In particular, let
us compute the vacuum expectation value of the field ¢(x), which is given

We have included a factor of i on the left-hand side of eq. (9.16) because then W1 (J)
is real in free-field theory; see problem 8.6.
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Figure 9.7: All connected diagrams with £ =2 and V = 4.

s

Figure 9.8: All connected diagrams with £ =3 and V = 1.
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Figure 9.9: All connected diagrams with £ =3 and V = 3.

w
1

N
@

Figure 9.10: All connected diagrams with £ =4 and V = 2.

S=28
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S=22

L¥

Figure 9.11: All connected diagrams with £ =4 and V = 4.

8
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Figure 9.12: All connected diagrams with £ =1, X > 1 (where X is the
number of one-point vertices from the linear counterterm), and V + X < 3.

by

(Ol (2)[0) = = Z1(J)

0
= 57 Wi (J)

(9.17)

J=0

This expression is then the sum of all diagrams [such as those in figs. (9.3)
and (9.4)] that have a single source, with the source removed:

Olp@)0) = big [ dyIMa-pIAG-9) + 06" . (919)

Here we have set Z, = 1 in the first term, since Z, = 1+ O(g?). We see the
vacuum-expectation value of p(z) is not zero, as is required for the validity
of the LSZ formula. To fix this, we must introduce the counterterm Y ¢.
Including this term in the interaction lagrangian £; introduces a new kind
of vertex, one where a single line segment ends; the corresponding vertex
factor is 1Y [d%. The simplest diagrams including this new vertex are
shown in fig. (9.12), with a cross symbolizing the vertex.

Assuming Y = O(g), only the first diagram in fig. (9.12) contributes at
O(g), and we have

Olp@)0) = (i + i) 2a0)) [dyia@—y+06") . (9.19)
Thus, in order to have (0|p(z)|0) = 0, we should choose
Y = LigA(0) + O(g%) . (9.20)

The factor of 4 is disturbing, because Y must be a real number: it is the
coefficient of a hermitian operator in the hamiltonian, as seen in eq. (9.4).
Therefore, A(0) must be purely imaginary, or we are in trouble. We have

4
A(O):/(dk LI (9.21)

2m)4 k2 +m? — e
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From eq. (9.21), it is not immediately obvious whether or not A(0) is purely
imaginary, but eq. (9.21) does reveal another problem: the integral diverges
at large k. This is another example of an ultraviolet divergence, similar to
the one we encountered in section 3 when we computed the zero-point
energy of the field.

To make some progress, we introduce an ultraviolet cutoff A, which we
assume is much larger than m and any other energy of physical interest.
Modifications to the propagator above some cutoff may be well justified
physically; for example, quantum fluctuations in spacetime itself should
become important above the Planck scale, which is given by the inverse
square root of Newton’s constant, and has the numerical value of 10'? GeV
(compared to, say, the proton mass, which is 1 GeV).

In order to retain the Lorentz-transformation properties of the propa-
gator, we implement the ultraviolet cutoff in a more subtle way than we
did in section 3; specfically, we make the replacement

d*k eik(z—y) < A2 )2

Alw—y) = / (2m)* k2 4+ m? —ie \ k2 + A2 — ic (9.22)

The integral is now convergent, and we can evaluate the modified A(0)
with the methods of section 14; for A > m, the result is

? 2
A(0) = 75 A7 (9.23)
Thus Y is real, as required. If we like, we can now formally take the limit
A — oo. The parameter Y becomes infinite, but (0|¢(x)|0) remains zero,
at least to this order in g.

It may be disturbing to have a parameter in the lagrangian that is
formally infinite. However, such parameters are not directly measurable,
and so need not obey our preconceptions about their magnitudes. Also, it
is important to remember that Y includes a factor of g; this means that we
can expand in powers of Y as part of our general expansion in powers of g.
When we compute something measurable (like a scattering cross section),
all the formally infinite numbers will cancel in a well-defined way, leaving
behind finite coefficients for the various powers of g. We will see how this
works in detail in sections 14-20.

As we go to higher orders in ¢, things become more complicated, but
in principle the procedure is the same. Thus, at O(g3), we sum up the
diagrams of figs. (9.4) and (9.12), and then add to Y whatever O(g?) term
is needed to maintain (0|¢(x)|0) = 0. In this way we can determine the
value of Y order by order in powers of g.

Once this is done, there is a remarkable simplification. Our adjustment
of Y to keep (0]¢(z)|0) = 0 means that the sum of all connected diagrams
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oo o )0 oo
(e

Figure 9.13: All connected diagrams without tadpoles with £ < 4 and
V<4

with a single source is zero. Consider now that same infinite set of diagrams,
but replace the single source in each of them with some other subdiagram.
Here is the point: no matter what this replacement subdiagram 1is, the sum
of all these diagrams is still zero. Therefore, we need not bother to compute
any of them! The rule is this: ignore any diagram that, when a single line is
cut, falls into two parts, one of which has no sources. All of these diagrams
(known as tadpoles) are canceled by the Y counterterm, no matter what
subdiagram they are attached to. The diagrams that remain (and need to
be computed!) are shown in fig. (9.13).
We turn next to the remaining two counterterms. For notational sim-
plicity we define
A=Z,—-1, B=Z,-1, (9.24)
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and recall that we expect each of these to be O(g?). We now have

i 4 (1 6 9 o\ (1 6
Z(J) =exp {—E/dzn <;5J(:1:)) (—A@m + Bm ) <;W)] Z1(J) .

(9.25)

We have integrated by parts to put both 9,’s onto one 6/6.J(z). (Note that

the time derivatives in this interaction should really be treated by including

an extra source term for the conjugate momentum Il = ¢». However, the

space derivatives are correctly treated, and then the time derivatives must

work out comparably by Lorentz invariance.)

Eq. (9.25) results in a new vertex at which two lines meet. The corre-
sponding vertex factor is (—i) [ d*r (—A9? + Bm?); the 92 acts on the x in
one or the other (but not both) propagators. (Which one does not matter,
and can be changed via integration by parts.) Diagramatically, all we need
do is sprinkle these new vertices onto the propagators in our existing dia-
grams. How many of these vertices we need to add depends on the order
in g we are working to achieve.

This completes our calculation of Z(J) in 3 theory. We express it as

Z(J) = exp[iW (J)] , (9.26)

where W (J) is given by the sum of all connected diagrams with no tad-
poles and at least two sources, and including the counterterm vertices just
discussed.

Now that we have Z(J), we must find out what we can do with it.

PROBLEMS

9.1) Compute the symmetry factor for each diagram in fig. (9.13). (You
can then check your answers by consulting the earlier figures.)

9.2) Consider a real scalar field with £ = Lo + £, where
Lo = —50"p0up — gm°¢?
Ly = _ﬁZ)\)‘(P‘l + Let
Lot = —%(Zsp—l)(‘)“cp(‘)ucp — %(Zm—l)m2<,02 .

a) What kind of vertex appears in the diagrams for this theory (that
is, how many line segments does it join?), and what is the associated
vertex factor?

b) Ignoring the counterterms, draw all the connected diagrams with
1< FE<4and 0<V <2, and find their symmetry factors.

c¢) Explain why we did not have to include a counterterm linear in ¢
to cancel tadpoles.
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9.3) Consider a complex scalar field (see problems 3.5, 5.1, and 8.7) with
L =Ly+ Ly, where

Lo = 0" 0,0 —mPplep,
L1 = —1ZMp'0)? + Lot
Lop = —(Zp—1)0"0"0up — (Zm—1)m*¢l ..

This theory has two kinds of sources, J and J', and so we need a
way to tell which is which when we draw the diagrams. Rather than
labeling the source blobs with a J or J, we will indicate which is
which by putting an arrow on the attached propagator that points
towards the source if it is a JT, and away from the source if it is a J.

a) What kind of vertex appears in the diagrams for this theory, and
what is the associated vertex factor? Hint: your answer should involve
those arrows!

b) Ignoring the counterterms, draw all the connected diagrams with
1< FE<4and 0 <V <2, and find their symmetry factors. Hint:
the arrows are important!

9.4) Consider the integral

expW(g,J) dr exp —533 + ng +Ja:} . (9.27)

N

This integral does not converge, but it can be used to generate a joint
power series in g and J,

N=Y > Cupg's (9.25)

V=0FE=0

a) Show that
1
Cvg = — 9.29
v.e XI: S (9.29)

where the sum is over all connected Feynman diagrams with F sources
and V three-point vertices, and St is the symmetry factor for each
diagram.

b) Use egs. (9.27) and (9.28) to compute Cy g for V< 4 and E < 5.
(This is most easily done with a symbolic manipulation program like

Mathematica.) Verify that the symmetry factors given in figs. (9.1-
9.11) satisfy the sum rule of eq. (9.29).
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9.5)

c¢) Now consider W(g, J+Y'), with Y fixed by the “no tadpole” con-
dition

)
W Y =0. .
57 (9, J+Y) L 0 (9.30)
Then write o o
W(g, J+Y) =33 Cveg"J". (9.31)
V=0FE=0
Show that 1
Cve=Y —, 9.32
V,E XI: 5, (9.32)

where the sum is over all connected Feynman diagrams with F sources
and V three-point vertices and no tadpoles, and St is the symmetry
factor for each diagram.

d) Let Y = a1g + azg® + ..., and use eq. (9.30) to determine a; and
az. Compute Cy,g for V < 4 and F < 4. Verify that the symmetry
factors for the diagrams in fig. (9.13) satisfy the sum rule of eq. (9.32).

The interaction picture. In this problem, we will derive a formula for
(0|Te(xp) ... (x1)]|0) without using path integrals. Suppose we have
a hamiltonian density H = Ho + Hi, where Ho = II% + 3(V)? +
%m2<,02, and H; is a function of II(x,0) and ¢(x,0) and their spatial
derivatives. (It should be chosen to preserve Lorentz invariance, but
we will not be concerned with this issue.) We add a constant to H
so that H|0) = 0. Let |() be the ground state of Hy, with a constant
added to Hy so that Hy|()) = 0. (H; is then defined as H — Hy.) The
Heisenberg-picture field is

o(x,t) = eflp(x, 0)e (9.33)

We now define the interaction-picture field

o1(x,t) = etlotp(x, 0)etHot (9.34)

a) Show that ¢;(x) obeys the Klein-Gordon equation, and hence is a
free field.

b) Show that ¢(x) = UT(t)er(z)U(t), where U(t) = efote=iHt jg
unitary.

c¢) Show that U (t) obeys the differential equation i%U(t) = Hi(t)U(t),
where H(t) = e*Ho! [[;e~"H0ot is the interaction hamiltonian in the in-
teraction picture, and the boundary condition U(0) = 1.
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d) If H; is specified by a particular function of the Schrédinger-picture
fields II(x, 0) and ¢(x,0), show that H(¢) is given by the same func-
tion of the interaction-picture fields II;(x,t) and ¢;(x,t).

e) Show that, for ¢ > 0,

Ut) = Texp[—z' /0 "t Hj(t’)] (9.35)

obeys the differential equation and boundary condition of part (c).
What is the comparable expression for t < 0?7 Hint: you may need to
define a new ordering symbol.

f) Define U(ty,t1) = U(to)UT(t1). Show that, for ty > 1,

Ulte,t1) = Texp {—1 ’ dt’ Hf(t’)} : (9.36)

t1
What is the comparable expression for t1 > to?

g) For any time ordering, show that U(ts,t1) = U(ts, t2)U(te,t1) and
that Ut(ty,ts) = Ulta, t1).

h) Show that

p(@n) ... 1) = Ul(tn, 0)or(@n)U (tn, tn1)@r(zn-1)
. U(tg,tl)(p[(xl)U(tl,O) . (937)

i) Show that Uf(t,,0) = Uf(c0,0)U(c0,t,) and also that U(t;,0) =
U(ty, —00)U(—00,0).

j) Replace Hy with (1—ie)Hy, and show that (0|UT(c0,0) = (0|0) (0]
and that U(—o00,0)|0) = |0)(0]0).

k) Show that

(0’90(‘Tn)§0(x1)‘0> = (Q)’U( )@I(xn) (tnatn 1) I(‘Tn—l)---
U(t27t1)901($1) (t1, —00)|0)
{Blo)* . (9.38)

X

1) Show that

(O[Te(zn) ... p(@1)]0) = (D[ Tpr(zn) ... pr(z1)e —i [[d*sHr(x) |@>
< 1(0]0)? (9.3

m) Show that

1(00)|% = 1/(@|Te~" ] @7y (9.40)
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Thus we have

O Ter(xp) ... (p1($1)€_ifd4937'[1(x)|®>
<@|Te_ifd4$HI(x)|@>

(O[Te(zn) ... p(x1)]0) =

(9.41)
We can now Taylor expand the exponentials on the right-hand side
of eq. (9.41), and use free-field theory to compute the resulting corre-
lation functions.
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10 SCATTERING AMPLITUDES AND THE FEYNMAN
RULES

PREREQUISITE: 5, 9

Now that we have an expression for Z(J) = expiW (.J), we can take func-
tional derivatives to compute vacuum expectation values of time-ordered
products of fields. Consider the case of two fields; we define the exact
propagator via

%A(:El — x9) = (0| Tp(z1)p(x2)|0) . (10.1)
For notational simplicity let us define
1 4
0; =~ 10.2
J ) 5J($j) ( )

Then we have
O ()p(x2)10) = 61022(J)|
= 51522‘W(J)‘J_0 - 611'W(J)‘J:0 021 (J)|

(10.3)

= 51522‘W(J)‘J:O .

To get the last line we used §;W(J)|j=0 = (0|¢(x;)|0) = 0. Diagramat-
ically, 01 removes a source, and labels the propagator endpoint x1. Thus
%A(ml—a:g) is given by the sum of diagrams with two sources, with those
sources removed and the endpoints labeled 21 and zo. (The labels must be
applied in both ways. If the diagram was originally symmetric on exchange
of the two sources, the associated symmetry factor of 2 is then canceled by
the double labeling.) At lowest order, the only contribution is the “barbell”
diagram of fig. (9.5) with the sources removed. Thus we recover the obvious
fact that TA(z1—22) = TA(z1—22) + O(g%). We will take up the subject
of the O(g?) corrections in section 14.

For now, let us go on to compute

(0ITp(x1)p(w2)p(23)(24)|0) = 01020304 Z(T)
= | 81628504V
+ (0102tW)(6304iW)
+ (0103tW)(6204iW)
+ (5164W) (3851 | . (10.4)
We have dropped terms that contain a factor of (0|¢(x)|0) = 0. According

to eq. (10.3), the last three terms in eq. (10.4) simply give products of the
exact propagators.
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Let us see what happens when these terms are inserted into the LSZ
formula for two incoming and two outgoing particles,

f‘ =1 /dazld /1d4£/2 ei(k1m1+k2m2—ki$i—kém’2)
(=0} +m?)(=08 +m?)(=3F, + m*)(~05 +m?)
T o)y < Deela)[0) (105)

If we consider, for example, >A(z1—z})1A(z2—12%) as one term in the
correlation function in eq. (10.5), we get from this term

/d Tl d i) d d4:E/2 ei(k1m1+k2m2_kllxll_kéxlz)F(l‘lll)F($22/)
= (2m)* 6% (k1 —K}) (2m)46% (ka—kb) F(k11/) F (k) (10.6)

where F(x”) (=07 +m?) (=05 +m?) A(zy), F(k) is its Fourier transform,
Ty = xi—7, and kijo = (ki +k")/2 The important point is the two delta
functions: these tell us that the four-momenta of the two outgoing particles
(1" and 2') are equal to the four-momenta of the two incoming particles
(1 and 2). In other words, no scattering has occurred. This is not the
event whose probability we wish to compute! The other two similar terms
in eq. (10.4) either contribute to “no scattering” events, or vanish due to
factors like §*(k1-+ko) (which is zero because kY+k9 > 2m > 0). In general,
the diagrams that contribute to the scattering process of interest are only
those that are fully connected: every endpoint can be reached from every
other endpoint by tracing through the diagram. These are the diagrams
that arise from all the §’s acting on a single factor of W. Therefore, from
here on, we restrict our attention to those diagrams alone. We define the
connected correlation functions via

(0| Tp(z1) ... p(zE)|0)c = 6 ... 5Ez‘W(J)‘J:0 : (10.7)
and use these instead of (0|Ty(z1)...¢(xg)|0) in the LSZ formula.
Returning to eq. (10.4), we have
(0 Tp(x1)p(w2) o2 (wh) [0 = 818201, 8iW| (10.8)

The lowest-order (in g) nonzero contribution to this comes from the diagram
of fig. (9.10), which has four sources and two vertices. The four §’s remove
the four sources; there are 4! ways of matching up the §’s to the sources.
These 24 diagrams can then be collected into 3 groups of 8 diagrams each;
the 8 diagrams in each group are identical. The 3 distinct diagrams are
shown in fig. (10.1). Note that the factor of 8 neatly cancels the symmetry
factor S = 8 of the diagram with sources.
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1 vl 1 1 g

2 2/ 2 2/

Figure 10.1: The three tree-level Feynman diagrams that contribute to the
connected correlation function (0|Ty(z1)e(z2)e(x])e(x5)]|0)c.

This is a general result for tree diagrams (those with no closed loops):
once the sources have been stripped off and the endpoints labeled, each
diagram with a distinct endpoint labeling has an overall symmetry factor
of one. The tree diagrams for a given process represent the lowest-order (in
g) nonzero contribution to that process.

We now have

(0T (21 )p(x2) (2 )p(25)]0)c
2

+0(g") . (10.9)

Next, we use eq. (10.9) in the LSZ formula, eq. (10.5). Each Klein-Gordon
wave operator acts on a propagator to give

(—8Z-2 +m?)A(x; —y) = 6z —y) . (10.10)

The integrals over the external spacetime labels xy 1/ 9/ are then trivial,
and we get

(1) = (i9)? (1) [ dlyd's Aly—2) [ etttz

+ ei(lﬂl/-l-kzz—k&y—kéz)

1 eilkrythaz—k 2—kyy) ] +0(gY) . (10.11)
This can be simplified by substituting

d% eik(y—z)
Aly—2) = 10.12
(y —2) /(2ﬂ)4 K2+ m2 — e (10.12)
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into eq. (10.9). Then the spacetime arguments appear only in phase factors,
and we can integrate them to get delta functions:

'k
ig® (2m)* k2 + m2 — e
x [(277)45 (ky+ho+k) (2m) 64 (K, 4K +k)
+ (2m) 404 (ky — k) +k) (2m) 264 (kb —ko+F)
+ (2m) 6 (ki —kh+k) (2m) 64 (K —ka-+k) | + O(g?)

(fli) =

= ig? (2m) 26 (ky+-ko— k| —K))

1
X {(kﬁ/@)? e oy ) e R (v mQ}
+0(g") . (10.13)

In eq. (10.13), we have left out the ie’s for notational convenience only; m?

is really m? — ie. The overall delta function in eq. (10.13) tells that that
four-momentum is conserved in the scattering process, which we should, of
course, expect. For a general scattering process, it is then convenient to
define a scattering matrix element 7 via

<f|Z> = (27T)454(kin_k70ut)i7 9 (1014)

where ki, and kqyt are the total four-momenta of the incoming and outgoing
particles, respectively.

Examining the calculation which led to eq.(10.13), we can take away
some universal features that lead to a simple set of Feynman rules for
computing contributions to ¢7 for a given scattering process. The Feynman
rules are:

1. Draw lines (called external lines) for each incoming and each outgoing
particle.

2. Leave one end of each external line free, and attach the other to a
vertex at which exactly three lines meet. Include extra internal lines
in order to do this. In this way, draw all possible diagrams that are
topologically inequivalent.

3. On each incoming line, draw an arrow pointing towards the vertex.
On each outgoing line, draw an arrow pointing away from the vertex.
On each internal line, draw an arrow with an arbitrary direction.

4. Assign each line its own four-momentum. The four-momentum of
an external line should be the four-momentum of the corresponding
particle.



10: Scattering Amplitudes and the Feynman Rules 91

Figure 10.2: The tree-level s-, t-, and u-channel diagrams contributing to
1T for two particle scattering.

10.

. Think of the four-momenta as flowing along the arrows, and conserve

four-momentum at each vertex. For a tree diagram, this fixes the
momenta on all the internal lines.

. The value of a diagram consists of the following factors:

for each external line, 1;
for each internal line with momentum k, —i/(k? +m? — ie);

for each vertex, iZ,g.

. A diagram with L closed loops will have L internal momenta that are

not fixed by rule #5. Integrate over each of these momenta ¢; with
measure d*/;/(2m)%.

. A loop diagram may have some leftover symmetry factors if there are

exchanges of internal propagators and vertices that leave the diagram
unchanged; in this case, divide the value of the diagram by the sym-
metry factor associated with exchanges of internal propagators and
vertices.

. Include diagrams with the counterterm verter that connects two prop-

agators, each with the same four-momentum k. The value of this
vertex is —i(Ak* + Bm?), where A = Z, — 1 and B = Z,,, — 1, and
each is O(g?).

The value of i7 is given by a sum over the values of all these diagrams.

For the two-particle scattering process, the tree diagrams resulting from
these rules are shown in fig. (10.2).

Now that we have our procedure for computing the scattering amplitude
7, we must see how to relate it to a measurable cross section.

PROBLEMS
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10.1) Use eq. (9.41) of problem 9.5 to rederive eq. (10.9).

10.2) Write down the Feynman rules for the complex scalar field of prob-
lem 9.3. Remember that there are two kinds of particles now (which
we can think of as positively and negatively charged), and that your
rules must have a way of distinguishing them. Hint: the most direct
approach requires two kinds of arrows: momentum arrows (as dis-
cussed in this section) and what we might call “charge” arrows (as
discussed in problem 9.3). Try to find a more elegant approach that
requires only one kind of arrow.

10.3) Consider a complex scalar field ¢ that interacts with a real scalar
field x via £1 = gx¢'e. Use a solid line for the ¢ propagator and
a dashed line for the y propagator. Draw the vertex (remember the
arrows!), and find the associated vertex factor.

10.4) Consider a real scalar field with £ = % gpotpd,p. Find the associ-
ated vertex factor.

10.5) The scattering amplitudes should be unchanged if we make a field
redefinition. Suppose, for example, we have

L= —%8“(;78u<p — %m2cp2 ) (10.15)
and we make the field redefinition
© — @+ Ap? . (10.16)

Work out the lagrangian in terms of the redefined field, and the cor-
responding Feynman rules. Compute (at tree level) the pp — @p
scattering amplitude. You should get zero, because this is a free-field
theory in disguise. (At the loop level, we also have to take into ac-
count the transformation of the functional measure Dy; see section
85.)
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11 CROSS SECTIONS AND DECAY RATES

PREREQUISITE: 10

Now that we have a method for computing the scattering amplitude 7, we
must convert it into something that could be measured in an experiment.

In practice, we are almost always concerned with one of two generic
cases: one incoming particle, for which we compute a decay rate, or two
incoming particles, for which we compute a cross section. We begin with
the latter.

Let us also specialize, for now, to the case of two outgoing particles as
well as two incoming particles. In ¢? theory, we found in section 10 that
in this case we have

1 1 1
(k1+k2)% + m? * (k1—K})? 4+ m? * (k1—k5)? +m

_ 2 4
T=g 5| +0(9"),

(11.1)
where k1 and kg are the four-momenta of the two incoming particles, &} and
k% are the four-momenta of the two outgoing particles, and ki +ko = ki +kb.
Also, these particles are all on shell: kf = —m?. (Here, for later use, we
allow for the possibility that the particles all have different masses.)

Let us think about the kinematics of this process. In the center-of-
mass frame, or CM frame for short, we take ki + ko = 0, and choose ky
to be in the 4z direction. Now the only variable left to specify about the
initial state is the magnitude of k. Equivalently, we could specify the total
energy in the CM frame, F1 + F». However, it is even more convenient to
define a Lorentz scalar s = —(k; + k). In the CM frame, s reduces to
(E1 + F»)?; s is therefore called the center-of-mass energy squared. Then,
since By = (k3 +m3)Y/? and By = (k} + m3)"/2, we can solve for |k| in
terms of s, with the result

kq| = %g\/sz —2(m2 +m3)s + (m? —m2)2 (CM frame) . (11.2)

Now consider the two outgoing particles. Since momentum is conserved,
we must have ki + k), = 0, and since energy is conserved, we must also
have (E} + E})? = s. Then we find

1
k| = 2—\/5\/82 —2(m% +m2)s+ (m} —m3)? (CM frame) . (11.3)

Now the only variable left to specify about the final state is the angle 6
between kj and k). However, it is often more convenient to work with the
Lorentz scalar t = — (k1 — k})?, which is related to 6 by

t=m?+m? — 2F, E; + 2|kq||K}| cos 6 . (11.4)
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This formula is valid in any frame.
The Lorentz scalars s and ¢ are two of the three Mandelstam variables,
defined as

s = —(k1tke)? = — (K +k5)?
t = —(ki—k))? = —(ka—kp)*
u = —(ki—kh)? = —(ka—k})%. (11.5)

The three Mandelstam variables are not independent; they satisfy the linear
relation
s+t+u=mi+ms+md +md. (11.6)

In terms of s, t, and u, we can rewrite eq. (11.1) as

1 1 1
+ +0(g"), (11.7)

_ 9
T=y9 m2—8+m2—t m2 —u

which demonstrates the notational utility of the Mandelstam variables.

Now let us consider a different frame, the fized target or FT frame (also
sometimes called the lab frame), in which particle #2 is initially at rest:
ko = 0. In this case we have

1
k| = 2—m2\/s2 —2(m2 +m3)s+ (m} —m2)2 (FT frame).  (11.8)
Note that, from eqgs. (11.8) and (11.2),

ma|kiler = Vs [Kifow - (11.9)

This will be useful later.

We would now like to derive a formula for the differential scattering
cross section. In order to do so, we assume that the whole experiment is
taking place in a big box of volume V', and lasts for a large time T. We
should really think about wave packets coming together, but we will use
some simple shortcuts instead. Also, to get a more general answer, we will
let the number of outgoing particles be arbitrary.

Recall from section 10 that the overlap between the initial and final
states is given by

(fli) = (2m)*6" (kin—Kout )iT . (11.10)
To get a probability, we must square (f|i), and divide by the norms of the
initial and final states:
[(f]2) >

P = TR (11.11)
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The numerator of this expression is
[(£1i))> = [(2m)* 0" (kin—kout )] [T . (11.12)

We write the square of the delta function as

[(2m) 464 (kin—kow))* = (27)40% (kin—kous) x (27)26%(0) (11.13)

and note that
(2m)46%(0 /d . (11.14)

Also, the norm of a single particle state is given by

(k|k) = (2m)32k°53(0) = 2k°V . (11.15)

Thus we have
(ili) = 4E1E2V2 (11.16)
(f1f) = H 2KV (11.17)

where n’ is the number of outgoing particles.
If we now divide eq. (11.11) by the elapsed time T, we get a probability

per unit time

. 454(7.. 2
b (2m)8 (ki out)‘/:’,]-’ _ (11.18)
4B B V2T, 2KV

This is the probability per unit time to scatter into a set of outgoing par-
ticles with precise momenta. To get something measurable, we should sum
each outgoing three-momentum k;- over some small range. Due to the box,
all three-momenta are quantized: k;- (2m/ L)n where V = L3, and nj is
a three-vector with integer entries. (Here we have assumed periodic bound-
ary conditions, but this choice does not affect the final result.) In the limit
of large L, we have

(11.19)

Thus we should multiply P by a factor of Vd3/<;;- /(27)3 for each outgoing
particle. Then we get

(2m) 6% (kin—k

out) 2 i 37
VNG IT1* T] dk} (11.20)

J=1

P =
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where we have identified the Lorentz-invariant phase-space differential

—~ d%k
dk = ——=—=
(27)32k0

(11.21)

that we first introduced in section 3.

To convert P to a differential cross section do, we must divide by the
incident flux. Let us see how this works in the FT frame, where particle
#2 is at rest. The incident flux is the number of particles per unit volume
that are striking the target particle (#2), times their speed. We have one
incident particle (#1) in a volume V with speed v = |k;|/E7, and so the
incident flux is |k;|/E1V. Dividing eq. (11.20) by this flux cancels the last
factor of V', and replaces E; in the denominator with |ki|. We also set
Es = m9 and note that eq. (11.8) gives |kj|mz as a function of s; do will
be Lorentz invariant if, in other frames, we simply use this function as the
value of |kq|ms. Adopting this convention, and using eq. (11.9), we have

1
do = ———— |T|? dLIPS,, (k1+k2) , 11.22
4k1)omy/s 171 (hitk2) ( )

where |kj|cy is given as a function of s by eq. (11.2), and we have defined
the n/-body Lorentz-invariant phase-space measure

n’

LIPS, (k) = (2m)*6* (k=12 K)) H (11.23)

Eq. (11.22) is our final result for the differential cross section for the scat-
tering of two incoming particles into n’ outgoing particles.
Let us now specialize to the case of two outgoing particles. We need to

evaluate o
dLIPSy (k) = (2m)*6% (k—K} —kb) K dkY (11.24)

where k = k1 + ko. Since dLIPSs(k) is Lorentz invariant, we can compute
it in any convenient frame. Let us work in the CM frame, where k =
ki + ks =0 and k* = E; + Ey = /s; then we have

1

dLIPSy(k) = ———
S2(k) 4(27)2E! E

§(E,+Ey—/5) 6% (Ky+Kkb) dkydky . (11.25)

We can use the spatial part of the delta function to integrate over d®kb,
with the result

1

LIP SR —
dLIPS; (k) 4(27)2E! F}

S(E1+FEY—/5)dk) , (11.26)
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where now

E| = /K2 +m? and FE)=/kj2+m3 . (11.27)

Next, let us write
k) = |K))? dKy| dQ0ey (11.28)

where dQ2qy = sin8df d¢ is the differential solid angle, and 6 is the angle
between k; and k] in the CM frame. We can carry out the integral over the
magnitude of k] in eq. (11.26) using [ dz 6(f(z)) = ;| f/(z;)| 7L, where ;
satisfies f(z;) = 0. In our case, the argument of the delta function vanishes
at just one value of k)|, the value given by eq. (11.3). Also, the derivative
of that argument with respect to |kj| is

9 KK
E E =
gl (B + B2 = Vs) = T
E| + E}
=rkr(1 )
E1E2
Ki|\/s
= . 11.2
Bl 7 (11.29)

Putting all of this together, we get

_ K]
dLIPSy(k) = T6m 2\/_ (11.30)
Combining this with eq. (11.22), we have
d 1 K
A Ly (11.31)

dQen 64725 |k

where |ki| and |[k)| are the functions of s given by eqs. (11.2) and (11.3),
and dQcy is the differential solid angle in the CM frame.

The differential cross section can also be expressed in a frame-independent
manner by noting that, in the CM frame, we can take the differential of
eq. (11.4) at fixed s to get

dt = 2 |kq| |k}| dcos 6 (11.32)
dQCM

= 2|kq| [K}] (11.33)

Now we can rewrite eq. (11.31) as

do 1

_ 2
Fiat e A AR (11.34)
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where |kq| is given as a function of s by eq. (11.2).

We can now transform do/dt into do/d) in any frame we might like
(such as the FT frame) by taking the differential of eq. (11.4) in that frame.
In general, though, |kj| depends on 6 as well as s, so the result is more
complicated than it is in eq. (11.32) for the CM frame.

Returning to the general case of n’ outgoing particles, we can define a
Lorentz invariant total cross section by integrating completely over all the
outgoing momenta, and dividing by an appropriate symmetry factor S. If
there are n) identical outgoing particles of type 4, then

S=]]ni, (11.35)

and

o= %/da , (11.36)

where do is given by eq.(11.22). We need the symmetry factor because
merely integrating over all the outgoing momenta in dLIPS, treats the
final state as being labeled by an ordered list of these momenta. But if
some outgoing particles are identical, this is not correct; the momenta of
the identical particles should be specified by an unordered list (because, for
example, the state a{a£]0> is identical to the state aga“@). The symmetry
factor provides the appropriate correction.
In the case of two outgoing particles, eq. (11.36) becomes

1 do
= — Qo — 11.
7 S /d M dQcem (11.37)
o [+l do
= — — 11.
5/, dcos@dQCM, (11.38)

where S = 2 if the two outgoing particles are identical, and S = 1 if they
are distinguishable. Equivalently, we can compute ¢ from eq. (11.34) via

1 [tmex  do
= — t— 11.
7 S/ d dt’ (11.39)

tmin

where tyin and tyax are given by eq. (11.4) in the CM frame with cos§ = —1
and +1, respectively. To compute o with eq. (11.38), we should first express
t and u in terms of s and 6 via egs. (11.4) and (11.6), and then integrate
over 6 at fixed s. To compute o with eq. (11.39), we should first express u
in terms of s and ¢ via eq. (11.6), and then integrate over t at fixed s.

Let us see how all this works for the scattering amplitude of ¢? theory,
eq. (11.7). In this case, all the masses are equal, and so, in the CM frame,
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E = %\/5 for all four particles, and |kj| = |ki| = %(s — 4m?)Y/2. Then
eq. (11.4) becomes
t=—1(s—4m?)(1 — cosf) . (11.40)

From eq. (11.6), we also have
u=—1(s—4m?)(1 + cosb) . (11.41)

Thus |7? is quite a complicated function of s and #. In the nonrelativistic
limit, |ki| < m or equivalently s — 4m? < m?, we have

_ 5g° 8 (s—4m? 5 27 s —4m?\?
+0(g") . (11.42)

Thus the differential cross section is nearly isotropic. In the extreme rela-
tivistic limit, |ki| > m or equivalently s > m?, we have

2 2 )2 2
g 9 (34 cos®6) m
T = 3 0—|————-16| — +...
ssin? 6 eos ( sin? 6 s *
+0(gY) . (11.43)

Now the differential cross section is sharply peaked in the forward (6 = 0)
and backward (6 = 7) directions.

We can compute the total cross section o from eq. (11.39). We have in
this case tyin = —(s — 4m?) and tya = 0. Since the two outgoing particles
are identical, the symmetry factor is S = 2. Then setting v = 4m? — s — t,
and performing the integral in eq. (11.39) over t at fixed s, we get

gt 2 s —4m? 2
o=-—"
32ms(s — 4m?)

+ 4m? nl 2= 3m?
(s —m?)(s — 2m?) m?

In the nonrelativistic limit, this becomes

m?2 " (s—m2)2  s—3m2

+0(¢% . (11.44)

25¢g* 79 (s —4m? 6
=—|1—-—=[——— (@) . 11.45
7~ 11527m® l 60 ( m? >+ 0l (11.45)
In the extreme relativistic limit, we get
4 2
9 Tm 6
=—=|14+=-—+... (@) . 11.46
16mm2s2 + 2 s * +0(g) ( )




11: Cross Sections and Decay Rates 100

These results illustrate how even a very simple quantum field theory can
yield specific predictions for cross sections that could be tested experimen-
tally.

Let us now turn to the other basic problem mentioned at the beginning
of this section: the case of a single incoming particle that decays to n’ other
particles.

We have an immediate conceptual problem. According to our develop-
ment of the LSZ formula in section 5, each incoming and outgoing particle
should correspond to a single-particle state that is an exact eigenstate of
the exact hamiltonian. This is clearly not the case for a particle that can
decay. Referring to fig. (5.1), the hyperbola of such a particle must lie above
the continuum threshold. Strictly speaking, then, the LSZ formula is not
applicable.

A proper understanding of this issue requires a study of loop corrections
that we will undertake in section 25. For now, we will simply assume that
the LSZ formula continues to hold for a single incoming particle. Then we
can retrace the steps from eq. (11.11) to eq. (11.20); the only change is that
the norm of the initial state is now

(i|i) = 2B,V (11.47)

instead of eq. (11.16). Identifying the differential decay rate dI’ with P then
gives

1
dl' = — |T|? dLIPS,, (k1) , (11.48)
2F,

where now s = —k? = m?. In the CM frame (which is now the rest frame of
the initial particle), we have Fy = myq; in other frames, the relative factor
of F1/my in dI' accounts for relativistic time dilation of the decay rate.

We can also define a total decay rate by integrating over all the outgoing
momenta, and dividing by the symmetry factor of eq. (11.35):

1
I'=— [dI'. 11.49
5/ (149
We will compute a decay rate in problem 11.1
REFERENCE NOTES

For a derivation with wave packets, see Brown, Itzykson & Zuber, or Peskin
& Schroeder.

PROBLEMS
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11.1) a) Consider a theory of a two real scalar fields A and B with an
interaction £; = gAB?. Assuming that m, > 2mj, compute the
total decay rate of the A particle at tree level.

b) Consider a theory of a real scalar field ¢ and a complex scalar field
x with £; = gox'x. Assuming that my > 2m,, compute the total
decay rate of the ¢ particle at tree level.

11.2) Consider Compton scattering, in which a massless photon is scattered
by an electron, initially at rest. (This is the FT frame.) In problem
59.1, we will compute |7 |? for this process (summed over the possible
spin states of the scattered photon and electron, and averaged over
the possible spin states of the initial photon and electron), with the
result

m*+m2(3s +u) —su  m*+m?(3u+s) - su
(2 — 37 (2 —w?

2m2(s +u + 2m?)

(m? — s)(m? —u)

IT|? = 321202

+0(a*) (11.50)

where @ = 1/137.036 is the fine-structure constant.

a) Express the Mandelstam variables s and w in terms of the initial
and final photon energies w and w’.

b) Express the scattering angle 0y between the initial and final pho-
ton three-momenta in terms of w and w'.

c) Express the differential scattering cross section do/dQpr in terms
of w and w’. Show that your result is equivalent to the Klein-Nishina

formula

do a2 W?Tw !

w . 9

— =——F |5+ — —sin“ 0| . 11.51

dQer  2m?2 W? W @ w o ( )

11.3) Consider the process of muon decay, = — e D.v,. In section 88,
we will compute |7 |2 for this process (summed over the possible spin
states of the decay products, and averaged over the possible spin
states of the initial muon), with the result

TP = 64GE (k- k) (K, -K) (11.52)

where Gy is the Fermi constant, ki is the four-momentum of the
muon, and k"172,3 are the four-momenta of the 7., v,, and e™, respec-
tively. In the rest frame of the muon, its decay rate is therefore

r_ 32G2

/(kl-kg)(k:’l-kg) LIPS, (k1) | (11.53)
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where k; = (m,0), and m is the muon mass. The neutrinos are
massless, and the electron mass is 200 times less than the muon mass,
so we can take the electron to be massless as well. To evaluate I', we
perform the following analysis.

a) Show that

32G% 37 ! L% /
/ dkY ki, kY, / kiyk dLIPSy (ki —k}) . (11.54)
m

r=

b) Use Lorentz invariance to argue that, for my = mo = 0,
/ KR LIPS, (k) — AR?g" + BRMR” (11.55)

where A and B are numerical constants.

c¢) Show that, for my = my =0,

/dLIPSQ(k:) _ Si . (11.56)

Uus

d) By contracting both sides of eq. (11.55) with g,, and with k,k,,
and using eq. (11.56), evaluate A and B.

e) Use the results of parts (b) and (d) in eq. (11.54). Set k1 = (m, 0),
and compute dI'/dE.; here E, = Ef is the energy of the electron.
Note that the maximum value of E. is reached when the electron
is emitted in one direction, and the two neutrinos in the opposite
direction; what is this maximum value?

f) Perform the integral over E, to obtain the muon decay rate I'.

g) The measured lifetime of the muon is 2.197 x 107%s. The muon
mass is 105.66 MeV. Determine the value of G in GeV~2. (Your
answer is too low by about 0.2%, due to loop corrections to the decay
rate.)

h) Define the energy spectrum of the electron P(E,) = I'"1dl'/dE..
Note that P(E.)dE, is the probability for the electron to be emit-
ted with energy between E. and E. + dE.. Draw a graph of P(E.)
vs. Ee/my,.

11.4) Consider a theory of three real scalar fields (A, B, and C) with
L= —30"A0,A — Im? A?
— 10"BO,B — $m%B?
—10"C9,C — m2C?
+gABC . (11.57)



11: Cross Sections and Decay Rates 103

Write down the tree-level scattering amplitude (given by the sum of
the contributing tree diagrams) for each of the following processes:

AA — AA,
AA — AB,
AA — BB,
AA — BC,
AB — AB,
AB — AC. (11.58)

Your answers should take the form

Cs Ct Cu

T =g* , 11.59
g m§—8+m%—t+m3—u ( )

where, in each case, each c¢; is a positive integer, and each m? is m?

or m2 or m2. Hint: 7 may be zero for some processes.
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12 DIMENSIONAL ANALYSIS WITH h=c=1

PREREQUISITE: 3

We have set h = ¢ = 1. This allows us to convert a time T to a length L
via T = ¢ 'L, and a length L to an inverse mass M ! via L = he " 'M 1.
Thus any quantity A can be thought of as having units of mass to some
power (positive, negative, or zero) that we will call [A]. For example,

[m] = +1, (12.1)
[z4] = -1, (12.2)
[0"] = +1, (12.3)
[d%] = —d . (12.4)

In the last line, we have generalized our considerations to theories in d
spacetime dimensions.

Let us now consider a scalar field in d spacetime dimensions with la-
grangian density

N
L= —%Gucpaucp — %m2g02 — Z %gncp" . (12.5)
n=3
The action is
S = /ddxﬁ, (12.6)

and the path integral is

Z(J) = /Dgo exp[i/ d% (L + J@)] . (12.7)

From eq. (12.7), we see that the action S must be dimensionless, because
it appears as the argument of the exponential function. Therefore

[S]=0. (12.8)
Combining egs. (12.4) and (12.8) yields
L] =d. (12.9)

Then, from egs. (12.9) and (12.3), and the fact that 0*¢0,¢ is a term in L,
we see that we must have

[p] = 2(d—2). (12.10)
Then, since g, " is also a term in £, we must have

[9n) = d — n(d - 2) . (12.11)
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In particular, for the ¢3 theory we have been working with, we have
93] = 1(6 —d) . (12.12)

Thus we see that the coupling constant of ¢? theory is dimensionless in
d = 6 spacetime dimensions.

Theories with dimensionless couplings tend to be more interesting than
theories with dimensionful couplings. This is because any nontrivial de-
pendence of a scattering amplitude on a coupling must be expressed as a
function of a dimensionless parameter. If the coupling is itself dimension-
ful, this parameter must be the ratio of the coupling to the appropriate
power of either the particle mass m (if it isn’t zero) or, in the high-energy
regime s > m?, the Mandelstam variable s. Thus the relevant parame-
ter is gs~19/2. If [g] is negative [and it usually is: see eq.(12.11)], then
gs_[g]/ 2 blows up at high energies, and the perturbative expansion breaks
down. This behavior is connected to the nonrenormalizability of theories
with couplings with negative mass dimension, a subject we will take up in
section 18. It turns out that such theories require an infinite number of
input parameters to make sense; see section 29. In the opposite case, [g]
positive, the theory becomes trivial at high energy, because gs~[9/2 goes
rapidly to zero.

Thus the case of [g] = 0 is just right: scattering amplitudes can have a
nontrivial dependence on g at all energies.

Therefore, from here on, we will be primarily interested in 2 theory in
d = 6 spacetime dimensions, where [g3] = 0.

PROBLEMS

12.1) Express fic in GeV fm, where 1fm = 1 Fermi = 10713 cm.

12.2) Express the masses of the proton, neutron, pion, electron, muon, and
tau in GeV.

12.3) The proton is a strongly interacting blob of quarks and gluons. It
has a nonzero charge radius rp, given by rg = [ d3 p(r)r?, where p(r)
is the quantum expectation value of the electric charge distribution
inside the proton. Estimate the value of r,, and then look up its
measured value. How accurate was your estimate?
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13 THE LEHMANN-KALLEN FORM OF THE EXACT
PROPAGATOR

PREREQUISITE: 9

Before turning to the subject of loop corrections to scattering amplitudes,
it will be helpful to consider what we can learn about the exact propagator
A(z — y) from general principles. We define the exact propagator via

Az —y) = i(0]Te(x)e(y)[0) - (13.1)

We take the field ¢(z) to be normalized so that
(0]p(x)]0) =0 and (k|o(x)|0) = e~k (13.2)
In d spacetime dimensions, the one-particle state |k) has the normalization
(k|k') = (2m) 1 2w 69 (k — K') (13.3)

with w = (k? + m?)!/2. The corresponding completeness statement is

[ itk =11 (13.4)
where I; is the identity operator in the one-particle subspace, and

N dd_lk
dk = ————— 13.5
(2m)d-12w (13.5)
is the Lorentz invariant phase-space differential. We also define the exact
momentum-space propagator A (k?) via

d ~
Alx—y) = / (;Z:);d e* =Y A(K?) . (13.6)

In free-field theory, the momentum-space propagator is

< 1

A(k?) = R —— (13.7)
It has an isolated pole at k> = —m? with residue one; m is the actual, phys-
ical mass of the particle, the mass that enters into the energy-momentum
relation.

We begin our analysis with eq. (13.1). We take z° > 4°, and insert

a complete set of energy eigenstates between the two fields. Recall from
section 5 that there are three general classes of energy eigenstates:
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1. The ground state or vacuum |0), which is a single state with zero
energy and momentum.

2. The one particle states |k), specified by a three-momentum k and
with energy w = (k? +m?)Y/2.

3. States in the multiparticle continuum |k, n), specified by a three-
momentum k and other parameters (such as relative momenta among
the different particles) that we will collectively denote as m. The
energy of one of these states is w = (k?+ M?)'/2, where M > 2m; M
is one of the parameters in the set n.

Thus we get
Olp(@)p(y)10) = Olp()|0)(0le(1)]0)
+ [ dk Ol )kl 0)]0)

+ 30 [ @k Ol ks lo(w)l0) - (138)

The sum over n is schematic, and includes integrals over continuous pa-
rameters like relative momenta.

The first two terms in eq. (13.8) can be simplified via eq. (13.2). Also,
writing the field as p(x) = exp(—iP*x,)p(0)exp(+iP* x,), where P is the
energy-momentum operator, gives us

(k, nle(x)]0) = e (k,n|©(0)]0) (13.9)

where k0 = (k? + M?)Y/2. We now have
Olp@)p()|0) = [ dke e 4 3 [ dke @) nlp(©)0) . (13.10

Next, we define the spectral density

p(s) =D [k, nle(0)|0)* 6(s — M?) . (13.11)
Obviously, p(s) > 0 for s > 4m?, and p(s) = 0 for s < 4m?. Now we have

Olp@)p@0) = [dbe™e 4 [ dspis) [dRete . 31

4m?

In the first term, k% = (k2+m?)'/2, and in the second term, k* = (k% +s)/2.
Clearly we can also swap x and y to get

Olew)e(@)0) = [ e e 1 [~ asp(s) [dhe M 3.1

4m?
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as well. We can then combine egs. (13.12) and (13.13) into a formula for
the time-ordered product

(0[Tp(2)(y)|0) = Bz —y°)(0l(2)p(y)|0) + 8y —2°)(0lp(y)p(2)[0),
(13.14)
where 6(t) is the unit step function, by means of the identity

d% ety 000N [ 37 ik(z—
/(27T)d K2+ m2—ie iz —y )/dke o

—|—i9(y0—x0)/cjfc6_ik(x_y) ;o (13.15)

the derivation of eq. (13.15) was sketched in section 8. Combining egs. (13.12—
13.15), we get

T e@pl0) = [ A oo | o L
PRSI = (2m)d k2 +m?2 — ie
© 1
—_— . 13.1
* 4m2d8p(8)k2+s—z‘e] (13.16)
Comparing eqgs. (13.1), (13.6), and (13.16), we see that
ARy = — o [T dsp(s) (13.17)
k2 4+m?2 —ie  Jam2 k2 + s —ie

This is the Lehmann-Killén form of~the exact momentum-space propagator
A(k?). We note in particular that A(k?) has an isolated pole at k? = —m?
with residue one, just like the propagator in free-field theory.

PROBLEMS
13.1) Consider an interacting scalar field theory in d spacetime dimensions,
L= —%Zwaugoﬁugo - %me2<,02 —Li(p) , (13.18)

where L£1(p) is a function of ¢ (and not its derivatives). The exact
momentum-space propagator for ¢ can be expressed in Lehmann-
Kallén form by eq. (13.17). Find a formula for the renormalizing fac-
tor Z, in terms of p(s). Hint: consider the commutator [p(z), $(y)].
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14 LoorP CORRECTIONS TO THE PROPAGATOR
PREREQUISITE: 10, 12, 13

In section 10, we wrote the exact propagator as

LA (21—w2) = (0| Tep (1) p(2)]0) = 51522'W(J)’ , (14.1)

where iWW (J) is the sum of connected diagrams, and J; acts to remove a
source from a diagram and label the corresponding propagator endpoint
z;. In ¢3 theory, the O(g?) corrections to 1A (z1—x2) come from the di-
agrams of fig. (14.1). To compute them, it is simplest to work directly in
momentum space, following the Feynman rules of section 10. An appro-
priate assignment of momenta to the lines is shown in fig. (14.1); we then
have

2

LA(K?) = LAMK?) + LAGR?) [k LA(R?) + O(g") (14.2)

where 1
A= —— 14.
(k%) k2 +m? — e (14.3)

is the free-field propagator, and

d ~ ~
M) = b (1) [ e AUEDDAE)

—i(Ak* + Bm?) + O(g") (14.4)

is the self-energy. Here we have written the integral appropriate for d
spacetime dimensions; for now we will leave d arbitrary, but later we will
want to focus on d = 6, where the coupling g is dimensionless.

In the first term in eq. (14.4), the factor of one-half is the symmetry
factor associated with exchanging the top and bottom semicircular prop-
agators. Also, we have written the vertex factor as ig rather than iZ,g
because we expect Z, = 1+ O(g?), and so the Z4 — 1 contribution can
be lumped into the O(g?) term. In the second term, A = Z, — 1 and
B = Z,, — 1 are both expected to be O(g?).

It will prove convenient to define IT1(k?) to all orders via the geometric
series
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Figure 14.1: The O(g?) corrections to the propagator.

Figure 14.2: The geometric series for the exact propagator.

This is illustrated in fig. (14.2). The sum in eq. (14.5) will include all the
diagrams that contribute to A(k?) if we take iII(k?) to be given by the sum
of all diagrams that are one-particle irreducible, or 1PI for short. A diagram
is 1PI if it is still connected after any one line is cut. The 1PI diagrams
that make an O(g*) contribution to iI1(k?) are shown in fig. (14.3). When
writing down the value of one of these diagrams, we omit the two external
propagators.
If we sum up the series in eq. (14.5), we get

Ak = k2 -+ m? —12'6 “T(k2) (14.6)

In section 13, we learned that the exact propagator has a pole at k2 = —m?

with residue one. This is consistent with eq. (14.6) if and only if

(-m? =0, (14.7)
' (—m?) =0, (14.8)

where the prime denotes a derivative with respect to k2. We will use
eqs. (14.7) and (14.8) to fix the values of A and B.

48—+4©+®+x

Figure 14.3: The O(g*) contributions to iII(k?).
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Next we turn to the evaluation of the O(g?) contribution to iII(k?) in
eq. (14.4). We have the immediate problem that the integral on the right-
hand side diverges at large £ for d > 4. We faced a similar situation in
section 9 when we evaluated the lowest-order tadpole diagram. There we
introduced an wultraviolet cutoff A that modified the behavior of A(¢2) at
large ¢2. Here, for now, we will simply restrict our attention to d < 4,
where the integral in eq. (14.4) is finite. Later we will see what we can say
about larger values of d.

We will evaluate the integral in eq. (14.4) with a series of tricks. We
first use Feynman’s formula to combine denominators,

1

where the integration measure over the Feynman parameters x; is

/dF — (n—1)! /01 dy .. dwn 5(z1 4+ 20— 1) . (14.10)
This measure is normalized so that
/an 1=1. (14.11)
We will prove eq. (14.9) in problem 14.1.

In the case at hand, we have

1

@& w7 )
VAN (€4 k)2 +m?) + (1) (2 + m?) ] -

A(k+0?)A(2) =

0
1 - -2
= dx €2+2x€'k+xk2+m2}
0 L
1 - -2
= [ dx|(L+xk)? +2(1—2)k? —i—mz]
0 L
1 - -2
= [ dx qz—l—D} : (14.12)
0 L

where we have suppressed the ie’s for notational convenience; they can be
restored via the replacement m? — m2—ie. In the last line we have defined

q=0+zk (14.13)

and
D =z(1—2)k* + m? . (14.14)
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Im QO

X ‘ R Re qO

4 S

Figure 14.4: The ¢° integration contour along the real axis can be rotated
to the imaginary axis without passing through the poles at ¢° = —w + ie
and ¢ = +w — ie.

We then change the integration variable in eq. (14.4) from ¢ to g; the jaco-
bian is trivial, and we have d% = d%.

Next, think of the integral over ¢ from —oo to 400 as a contour integral
in the complex ¢° plane. If the integrand vanishes fast enough as |¢°| — oo,
we can rotate this contour clockwise by 90°, as shown in fig. (14.4), so that
it runs from —ioco to +ico. In making this Wick rotation, the contour
does not pass over any poles. (The ie’s are needed to make this statement
unambiguous.) Thus the value of the integral is unchanged. It is now
convenient to define a euclidean d-dimensional vector ¢ via ¢° = ig; and
qj = qj; then ¢*> = @2, where

F=G+...+3. (14.15)

Also, d% = id%. Therefore, in general,

/d f(q*—ie) —z/d (14.16)

as long as f(g?) — 0 faster than 1/¢% as § — oc.
Now we can write

I(k?) = 1% I(k?) — AK* — Bm? + O(g") (14.17)

I(k?) /d:n/ ddi @ +D) (14.18)

It is now straightforward to evaluate the d-dimensional integral over ¢ in
spherical coordinates.

Before we perform this calculation, however, let us introduce another
trick, one that can simplify the task of fixing A and B through the impo-
sition of eqs. (14.7) and (14.8). Here is the trick: differentiate I1(k?) twice
with respect to k% to get

"(k?) = 36°1"(K*) + O(g") , (14.19)

where
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where, from eqgs. (14.18) and (14.14),

d,
(k) = /0 i 622 (1—2)? / (jﬂ‘id (q2+1 ok (14.20)

Then, after we evaluate these integrals, we can get II(k?) by integrating with
respect to k%, subject to the boundary conditions of eqs. (14.7) and (14.8).
In this way we can construct II(k?) without ever explicitly computing A
and B.

Notice that this trick does something else for us as well. The integral
over ¢ in eq. (14.20) is finite for any d < 8, whereas the original integral in
eq. (14.18) is finite only for d < 4. This expanded range of d now includes
the value of greatest interest, d = 6.

How did this happen? We can gain some insight by making a Taylor

expansion of II(k?) about k? = —m?:

M(k?) = [1g*1(-m?) + (A - B)m? |
+ [%gzl’(—mz) + A} (K> + m?)
+ 3 3620 (—m?) | (B + m?)? +
+0(gh) . (14.21)

From egs. (14.18) and (14.14), it is straightforward to see that I(—m?)
is divergent for d > 4, I'(—m?) is divergent for d > 6, and, in general,
I (—m?) is divergent for d > 4 4 2n. We can use the O(g?) terms in
A and B to cancel off the $¢°I(—m?) and 1g?I’(—m?) terms in II(k?),
whether or not they are divergent. But if we are to end up with a finite
I1(k?), all of the remaining terms must be finite, since we have no more free
parameters left to adjust. This is the case for d < 8.

Of course, for 4 < d < 8, the values of A and B (and hence the la-
grangian coefficients Z = 1+ A and Z,,, = 1 4+ B) are formally infinite, and
this may be disturbing. However, these coefficients are not directly mea-
surable, and so need not obey our preconceptions about their magnitudes.
Also, it is important to remember that A and B each includes a factor of
g%; this means that we can expand in powers of A and B as part of our
general expansion in powers of g. When we compute II1(k?) (which enters
into observable cross sections), all the formally infinite numbers cancel in
a well-defined way, provided d < 8.

For d > 8, this procedure breaks down, and we do not obtain a finite
expression for I1(k2?). In this case, we say that the theory is nonrenormaliz-
able. We will discuss the criteria for renormalizability of a theory in detail
in section 18. It turns out that ¢® theory is renormalizable for d < 6. (The
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problem with 6 < d < 8 arises from higher-order corrections, as we will see
in section 18.)

Now let us return to the calculation of IT1(k%). Rather than using the
trick of first computing IT”(k?), we will instead evaluate IT(k?) directly
from eq. (14.18) as a function of d for d < 4. Then we will analytically
continue the result to arbitrary d. This procedure is known as dimensional
reqularization. Then we will fix A and B by imposing eqs. (14.7) and (14.8),
and finally take the limit d — 6.

We could just as well use the method of section 9. Making the replace-

ment
< 1 A?

2
A7) _)p2—|—m2—ie p2+ A2 —ie’
where A is the ultraviolet cutoff, renders the O(g?) term in TI(k?) finite
for d < 8; This procedure is known as Pauli—Villars reqularization. We
then evaluate II(k?) as a function of A, fix A and B by imposing eqs. (14.7)
and (14.8), and take the A — oo limit. Calculations with Pauli-Villars
regularization are generally much more cumbersome than they are with
dimensional regularization. However, the final result for I1(k?) is the same.
Eq. (14.21) demonstrates that any regularization scheme will give the same
result for d < 8, at least as long as it preserves the Lorentz invariance of
the integrals.
We therefore turn to the evaluation of I(k?), eq.(14.18). The angu-
lar part of the integral over ¢ yields the area 23 of the unit sphere in d
dimensions, which is

(14.22)

27Td/2

r(ld)’

d= (14.23)
this is most easily verified by computing the gaussian integral [ d% e in
both cartesian and spherical coordinates. Here I'(z) is the Euler gamma
function; for a nonnegative integer n and small z,

I'(n+1) = n!, (14.24)
I(n+3) = %ﬁ (14.25)
M(—ntz) = (_711!)” E 4+ Yk row| . (1426

where v = 0.5772. .. is the Euler-Mascheroni constant.
The radial part of the ¢ integral can also be evaluated in terms of gamma
functions. The overall result (generalized slightly) is

/ dq (@) _ I'(b—a—3d)T'(a+3d) D—(b-a—d/2)
(2m)4 (g2 + D) (4m)?/2T(b)T (34)

. (14.27)
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We will make frequent use of this formula throughout this book. In the
case of interest, eq. (14.18), we have a = 0 and b = 2.

There is one more complication to deal with. Recall that we want to
focus on d = 6 because in that case g is dimensionless. However, for general
d, g has mass dimension ¢/2, where

e=6-d. (14.28)

To account for this, we introduce a new parameter [ with dimensions of
mass, and make the replacement

g — g% . (14.29)

In this way g remains dimensionless for all €. Of course, i is not an actual
parameter of the d = 6 theory. Therefore, nothing measurable (like a cross
section) can depend on it.

This seemingly innocuous statement is actually quite powerful, and will
eventually serve as the foundation of the renormalization group.

We now return to eq. (14.18), use eq. (14.26), and set d = 6 — ¢; we get

I(2) = %/ dz D (‘g)m . (14.30)

Hence, with the substitution of eq. (14.29), and defining

O= (14.31)
for notational convenience, we have
1 ~9\&/2
(k) = %af(—H%)/O dz D <47g‘ )
— Ak* — Bm? + 0(a?) . (14.32)
Now we can take the ¢ — 0 limit, using eq. (14.26) and
A2 =14+ EmA+0(?). (14.33)

The result is

(k%) = —ta

(2+1) (182 +m?) /deln(t:?;)

— Ak* — Bm? 4+ 0(a?) . (14.34)
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Here we have used fol dx D = %kz +m?. Tt is now convenient to define
p=Vare 2 (14.35)
and rearrange things to get
TI(k?) — %a/ol dz D1n(D/m?)
—{La[t +m(u/m) + 1] + A} #?
—{ a[L+mn(u/m)+ 1]+ B}m? +0(a?) . (1430)
If we take A and B to have the form
A= —%a[% +In(p/m) + 5 + IQA} +0(a?), (14.37)
B=-— a[% +In(p/m) + 5 + HB} +0(a?), (14.38)
where k4 and kp are purely numerical constants, then we get
(k%) = %a/ol dz DIn(D/m?) + a(%tmkz2 + /{Bm2) +0(a?) . (14.39)

Thus this choice of A and B renders II(k?) finite and independent of u, as
required.

To fix k4 and kg, we must still impose the conditions ITI(—m?) = 0 and
I'(—m?) = 0. The easiest way to do this is to first note that, schematically,

1
I(k?) = %a/ dz D1n D + linear in k% and m? + O(a?) . (14.40)
0
We can then impose II(—m?) = 0 via
1
M(#?) = la / dz DIn(D/Dy) + linear in (K2 +m?) + O(a?) . (14.41)
0

where

Dy=D = [1—z(1—z)m? . (14.42)

k2=—m2

Now it is straightforward to differentiate eq. (14.41) with respect to k2, and
find that II'(—m?) vanishes for

I(k?) = %a/ol dz DIn(D/Dy) — a(k* + m?) + O(a?) . (14.43)

The integral over x can be done in closed form; the result is

(k) = Sa [c1k2 + com? + 2k> f(r)} +0(a?), (14.44)
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10 20 30 n?

Figure 14.5: The real and imaginary parts of I1(k?)/(k? + m?) in units of
a.

where ¢; = 3—7V/3, ¢o = 3—271/3, and

f(r) = r3tanh~1(1/7) , (14.45)
r = (1+4m?/k*)/? . (14.46)
There is a branch point at k? = —4m?, and II(k?) acquires an imaginary

part for k%2 < —4m?; we will discuss this further in the next section.
We can write the exact propagator as

~ 1 1
AW = (= TR2) /(R + m2)> Erm? i (14.47)

In fig. (14.5), we plot the real and imaginary parts of II1(k?)/(k% 4+ m?) in
units of a. We see that its values are quite modest for the plotted range.
For much larger values of |k?|, we have

(k%)

2 mZ o %a[ln(k:?/mQ) - q} +0(a?) . (14.48)

If we had kept track of the ie’s, k2 would be k% — ie; when k? is negative,
we have In(k? — i¢) = In |k?| — iw. The imaginary part of II(k?)/(k* + m?)
therefore approaches the asymptotic value of —1—127Ta + O(a?) when k2 is
large and negative. The real part of I1(k?)/(k? + m?), however, continues
to increase logarithmically with |k%| when |k?| is large. We will begin to
address the meaning of this in section 26.
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PROBLEMS

14.1) Derive a generalization of Feynman’s formula,

1 (Z al Oél 1
dF, 14.49
AT AT T T T () (n—1)! / le Z)Zaz (14.49)
Hint: start with r -
(a) _ / dt t2~t e At (14.50)
Ao 0

which defines the gamma function. Put an index on A, «, and ¢, and
take the product. Then multiply on the right-hand side by

- /Ooo ds (s — Sit) . (14.51)

Make the change of variable t; = sz;, and carry out the integral over
s.

14.2) Verify eq. (14.23).
14.3) a) Show that

[ daas@) =o. (14.52)
/d "¢’ f(¢*) = Oy g””/ d% *f(¢%) (14.53)

and evaluate the constant C in terms of d. Hint: use Lorentz symme-
try to argue for the general structure, and evaluate Cy by contracting
with g,,.

b) Similarly evaluate [ d% ¢"q"q”q° f(q?).
14.4) Compute the values of k4 and kp.

14.5) Compute the O(\) correction to the propagator in ¢? theory (see
problem 9.2) in d = 4 — ¢ spacetime dimensions, and compute the
O()) terms in A and B.

14.6) Repeat problem 14.5 for the theory of problem 9.3.

14.7) Renormalization of the anharmonic oscillator. Consider an anhar-
monic oscillator, specified by the lagrangian

L=124-17 0% — Z\)\3¢h . (14.54)
2 2

We set h =1 and m = 1; X is then dimensionless.
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a) Find the hamiltonian H corresponding to L. Write it as H =
Hy + Hy, where Hy = %Pz + %wQQQ, and [Q, P] = 1.

b) Let |0) and |1) be the ground and first excited states of Hp, and
let |©2) and |I) be the ground and first excited states of H. (We
take all these eigenstates to have unit norm.) We define w to be the
excitation energy of H, w = E; — Fq. We normalize the position
operator @ by setting (I|Q|Q) = (1|Q|0) = (2w)~'/2. Finally, to
make things mathematically simpler, we set Z) equal to one, rather
than using a more physically motivated definition. Write Z =1+ A
and Z, = 1+ B, where A = ka\ + O(\?) and B = kA + O()\?).
Use Rayleigh—Schroédinger perturbation theory to compute the O(\)
corrections to the unperturbed energy eigenvalues and eigenstates.

c¢) Find the numerical values of k4 and kp that yield w = E; — Eq
and (I|Q|Q) = (2w)~ /2.

d) Now think of the lagrangian of eq. (14.54) as specifying a quantum
field theory in d = 1 dimensions. Compute the O(\) correction to
the propagator. Fix k4 and kp by requiring the propagator to have a
pole at k? = —w? with residue one. Do your results agree with those
of part (¢)? Should they?
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15 THE ONE-LOOP CORRECTION IN
LEEMANN-KALLEN FORM

PREREQUISITE: 14

In section 13, we found that the exact propagator could be written in
Lehmann-Kéllén form as

- 1 o0 1
AR = ——— / d _— 15.1
(%) k‘2—|—m2—ie+ 42 Sp(s)k‘2—|—8—ie ( )
where the spectral density p(s) is real and nonnegative. In section 14, on
the other hand, we found that the exact propagator could be written as
1

Ak = K2+ m? —ie — (k%) (15:2)

and that, to O(g?) in > theory in six dimensions,

(k%) = %a/ol dz DIn(D/Dy) — ok + m?) + O(a?) (15.3)
where

a=g*/(4n)3 (15.4)

D = z(1—2)k* + m* —ie (15.5)

Dy = [1—z(1—z)m? . (15.6)

In this section, we will attempt to reconcile egs. (15.2) and (15.3) with
eq. (15.1).

Let us begin by considering the imaginary part of the propagator. We
will always take k% and m? to be real, and explicitly include the appropriate
factors of ie whenever they are needed.

We can use eq. (15.1) and the identity

1 x 1€
; 2 2+ 2 2
T — 1€ T4+ € T4+ €

1
=P - +imd(x) , (15.7)
where P means the principal part, to write

Im A (k%) = n6(k* +m?) + ds p(s) wo(k* + s)

4m?

= 76(k* + m?) + np(—k?) , (15.8)
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where p(s) = 0 for s < 4m?. Thus we have
7p(s) =Im A(—s) for s>4m?. (15.9)

Let us now suppose that Im IT(k?) = 0 for some range of k%. (In section
14, we saw that the O(a) contribution to II(k?) is purely real for k2 >
—4m?.) Then, from egs. (15.2) and (15.7), we get

Im A(k?) = 76 (k* + m? —T1(k?)) for ImII(k?) =0. (15.10)

From TI(—m?) = 0, we know that the argument of the delta function van-
ishes at k? = —m?, and from II'(—m?) = 0, we know that the derivative of
this argument with respect to k? equals one at k> = —m?. Therefore

Im A(k?) = m6(k* + m?) for ImII(k*)=0. (15.11)

Comparing this with eq. (15.8), we see that p(—k?) = 0 if Im I1(k?) = 0.

Now suppose Im I1(k?) is not zero for some range of k2. (In section 14,
we saw that the O(a) contribution to I1(k?) has a nonzero imaginary part
for k2 < —4m?2.) Then we can ignore the ie in eq. (15.2), and

Im IT(k?)

Im A (k%) = for TmTI(k? :
mAR) = G Rel(2) 2 + () o ) #0
(15.12)
Comparing this with eq. (15.8) we see that
ImII(—
mp(s) = m I1(—s) . (15.13)

(—s+m2+ Rell(—s))2 + (ImII(—s))?

Since we know p(s) = 0 for s < 4m?, this tells us that we must also have
ImTII(—s) = 0 for s < 4m?, or equivalently ImII(k?) = 0 for k? > —4m?.
This is just what we found for the O(a) contribution to ITI(k?) in section
14.

We can also see this directly from eq. (15.3), without doing the integral
over x. The integrand in this formula is real as long as the argument of the
logarithm is real and positive. From eq. (15.5), we see that D is real and
positive if and only if z(1—z)k? > —m?. The maximum value of z(1—x)
is 1/4, and so the argument of the logarithm is real and positive for the
whole integration range 0 < x < 1 if and only if k2 > —4m?2. In this
regime, ImI1(k?) = 0. On the other hand, for k¥ < —4m?, the argument
of the logarithm becomes negative for some of the integration range, and
so ImTI(k?) # 0 for k* < —4m?. This is exactly what we need to reconcile
egs. (15.2) and (15.3) with eq. (15.1).

PROBLEMS
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15.1) In this problem we will verify the result of problem 13.1 to O(«).

a) Let Ioop(k?) be given by the first line of eq. (14.32), with £ > 0.
Show that, up to O(a?) corrections,

A =TI, (—m?) . (15.14)
Then use Cauchy’s integral formula to write this as

A o dw Hloop( )

2i (w+m2) (15.15)

where the contour of integration is a small counterclockwise circle
around —m? in the complex w plane.

b) By examining eq. (14.32), show that the only singularity of Ijo0p (k%)
is a branch point at k> = —4m?. Take the cut to run along the neg-
ative real axis.

c) Distort the contour in eq. (15.15) to a circle at infinity with a detour
around the branch cut. Examine eq. (14.32) to show that, for ¢ > 0,
the circle at infinity does not contribute. The contour around the
branch cut then yields

am? -y 1 ,
A= / 2t G P 7 [ Moop (wti€) — Moo (w—ie)| ,  (15.16)

where € is infinitesimal (and is not to be confused with £ = 6—d).

d) Examine eq. (14.32) to show that the real part of IIj,op(w) is con-
tinuous across the branch cut, and that the imaginary part changes
sign, so that

Moop (w-ti€) — Migop (w—i€) = —2i Im Mooy (w—i€) . (15.17)
e) Let w = —s in eq. (15.16) and use eq. (15.17) to get

1 [o© Im ITjo0p (—s—ie€)
A=—= d P ) 15.1
/4m2 § (s — m2)?2 (15.18)

Use this to verify the result of problem 13.1 to O(«).

15.2) Dispersion relations. Consider the exact II(k?), with ¢ = 0. Assume
that its only singularity is a branch point at k? = —4m?, that it obeys
eq. (15.17), and that I1(k?) grows more slowly than |k?|? at large |k?|.
By recapitulating the analysis in the previous problem, show that

2 ro°  ImII(—s—ie)

(k) = = ds

15.19
T Jam2 (k% + s)3 ( )
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This is a twice subtracted dispersion relation. It gives I1”(k?) through-
out the complex k2 plane in terms of the values of the imaginary part
of TI(k?) along the branch cut.
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16 LoorP CORRECTIONS TO THE VERTEX

PREREQUISITE: 14

Consider the O(g®) diagram of fig. (16.1), which corrects the 3 vertex. In
this section we will evaluate this diagram.

We can define an exact three-point vertex function iVs(ky, k2, k3) as the
sum of one-particle irreducible diagrams with three external lines carrying
momenta kq, ko, and ks, all incoming, with ki + ke + k3 = 0 by momentum
conservation. (In adopting this convention, we allow kY to have either sign;
if k; is the momentum of an external particle, then the sign of k¥ is positive
if the particle is incoming, and negative if it is outgoing.) The original
vertex iZ,g is the first term in this sum, and the diagram of fig. (16.1) is
the second. Thus we have

3 d
Valki, ke k) = iZ,9 + 9 (1) [ (;f;d

+0(g°) . (16.1)

A((0=k1)*)A((E+k2)?) A6

In the second term, we have set Z, = 1 + O(g?). We proceed immediately
to the evaluation of this integral, using the series of tricks from section 14.
First we use Feynman’s formula to write

A((L=k1)*)A((t4k2)*) A (%)
/ng[ (k) + wa(Cke) + a3 +m? ] (162)

1
/ng = 2/ dxq dxo dzs 5(3)1—1—3)2—1—3}3—1) . (16.3)
0

where

We manipulate the right-hand side of eq. (16.2) to get
A((=k1)") A((E+k2)*)A(6)
- -3
= /dF3 52 — 25'($1k‘1 — :EQICQ) + l‘lk‘% + IEQk% + mﬂ
= /dF3 —(f — l‘llﬁ + £E2k72)2 + :El(l—l‘l)k’% + :Eg(l—l‘Q)k‘%
-3
+ 2331332]€1 -kg + mﬂ

_ /dF3 2+D]". (16.4)

In the last line, we have defined ¢ = ¢ — z1k1 + x2ks, and
D = xl(l—xl)k% + xg(l—xg)k% + 2x129k1 ko + m?

= x301k? + x320ks + T120kE + M? (16.5)
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I+ Kk,

Figure 16.1: The O(g3) correction to the vertex iVs(ki, ko, k3).

where we used k3 = (k1 + k2)? and 1 + 22 + 23 = 1 to simplify the second
line.

After making a Wick rotation of the ¢" contour, we have
d% 1
2m) (@ + D)
where ¢ is a euclidean vector. This integral diverges for d > 6. We therefore
evaluate it for d < 6, using the general formula from section 14; the result

d% 1 I'(3—1d)
= D—(3=d/2) 16.7

/ (2m)d (g2 + D)3 2(4m)/2 ( )
Now we set d = 6 — . To keep g dimensionless, we make the replacement

g — gfif/2. Then we have

Vil ks k) = Zo+ o [ B [ - +0(g") . (166)

1S

4 fi?
D

£/2
Vg(kl,kg,kg)/g = Zg + %a P(%)/ng < ) + O(a2) R (168)

where a = ¢?/(47)%. Now we can take the ¢ — 0 limit. The result is
2 4 ji?
- dF; 1

€ * / s < evD )

where we have used [dF3 = 1. We now let u? = 4me~7ji%, set

Z,=1+4C, (16.10)

Vi(ki, ko, ks)/g = Zy + $a +0(a?), (16.9)

and rearrange to get
Vi(kt, ko, ks) /g = 1+ {a|L +In(u/m)| + C}
- %a/ng In(D/m?)
+ 0(a?) . (16.11)
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If we take C to have the form
C =—alL+m(u/m)+rc| +0(?) (16.12)
where k¢ is a purely numerical constant, we get
Vs(ky, ko, ks)/g=1— %a/ng In(D/m?) — kca +0(a?) . (16.13)

Thus this choice of C renders V3 (kq, ko, k3) finite and independent of y, as
required.

We now need a condition, analogous to II(—m?) = 0 and II'(—m?) = 0,
to fix the value of xc. These conditions on II(k?) were mandated by known
properties of the exact propagator, but there is nothing directly comparable
for the vertex. Different choices of k¢ correspond to different definitions of
the coupling g. This is because, in order to measure g, we would measure
a cross section that depends on g; these cross sections also depend on k¢.
Thus we can use any value for k¢ that we might fancy, as long as we all
agree on that value when we compare our calculations with experimental
measurements. It is then most convenient to simply set ko = 0. This
corresponds to the condition

V3(0,0,0) =g . (16.14)

This condition can then also be used to fix the higher-order (in g) terms in
Zy.

The integrals over the Feynman parameters in eq.(16.13) cannot be
done in closed form, but it is easy to see that if (for example) |k?| > m?,
then

Vi, b, ks)/g = 1= Sa[In(k}/m?) + O(1)] + 0(a?) . (16.15)

Thus the magnitude of the one-loop correction to the vertex function in-
creases logarithmically with |kZ| when |kZ| > m?2. This is the same behavior
that we found for I1(k?)/(k? 4+ m?) in section 14.

PROBLEMS

16.1) Compute the O(A\?) correction to V4 in ¢? theory (see problem 9.2) in
d = 4 — ¢ spacetime dimensions. Take V4 = A when all four external
momenta are on shell, and s = 4m?. What is the O()\) contribution
to C?

16.2) Repeat problem 16.1 for the theory of problem 9.3.
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17 OTHER 1PI VERTICES

PREREQUISITE: 16

In section 16, we defined the three-point vertex function iVs(ky, ko, k3) as
the sum of all one-particle irreducible diagrams with three external lines,
with the external propagators removed. We can extend this definition to
the n-point vertex iV, (ki,...,ky).

There are two key differences between V,,~3 and V3 in 2 theory. The
first is that there is no tree-level contribution to V,,~3. The second is that
the one-loop contribution to V,,~3 is finite for d < 2n. In particular, the
one-loop contribution to V>3 is finite for d = 6.

Let us see how this works for the case n = 4. We treat all the external
momenta as incoming, so that ki + ks + k3 + k4 = 0. One of the three
contributing one-loop diagrams is shown in fig. (17.1); in this diagram, the
ks vertex is opposite to the k; vertex. Two other inequivalent diagrams are
then obtained by swapping ks < ko and k3 < k4. We then have

. 4 dﬁg ~ 2\ X 2\ X 2\ A (92
Vi = 0 [ e MER)AEHk))A(E k) AE)

+ (k‘g — k‘g) + (kg — k4)
+0(¢%) . (17.1)

Feynman’s formula gives

_ 2 —4
—/dF4 q +D1234} , (172)

where ¢ = £ — x1k1 + x2ky + x3(k2+k3) and, after making repeated use of
r1+wo+r3+x4 = 1 and ki+ko+ks+ky = 0,

D1234 = x1x4k‘% + $2$4]€% + xgxgkg + xla;gkz
+ $1l‘2(k’1—|—k’2)2 + $3l‘4(k‘2—|—k‘3)2 + m2 . (17.3)
We see that the integral over ¢ is finite for d < 8, and in particular for

d = 6. After a Wick rotation of the ¢° contour and applying the general
formula of section 14, we find

d% 1 1
/ 2m)6 (2+ D)* ~ 6(4m)3D (17.4)
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k
Kook, 4

I+ Ky + Kg
Ky I +k, Ky

Figure 17.1: One of the three one-loop Feynman diagrams contributing
to the four-point vertex V4 (ky, ko, k3, k4); the other two are obtained by
swapping ks < ko and ks < ky.

Thus we get

4
g | | | ) ;
V, = / dF. ( + + + 0% 17.5

* 6(4m)3 “\Disss ' Disss = Dims (g") (175)

This expression is finite and well-defined; the same is true for the one-loop
contribution to V,, for all n > 3.

PROBLEMS

17.1) Verify eq. (17.3).
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18 HIGHER-ORDER CORRECTIONS AND
RENORMALIZABILITY

PREREQUISITE: 17

In sections 14-17, we computed the one-loop diagrams with two, three, and
four external lines for 3 theory in six dimensions. We found that the first
two involved divergent momentum integrals, but that these divergences
could be absorbed into the coefficients of terms in the lagrangian. If this is
true for all higher-order (in g) contributions to the propagator and to the
one-particle irreducible vertex functions (with n > 3 external lines), then
we say that the theory is renormalizable. If this is not the case, and further
divergences arise, it may be possible to absorb them by adding some new
terms to the lagrangian. If a finite number of such new terms is required,
the theory is still said to be renormalizable. However, if an infinite number
of new terms is required, then the theory is said to be nonrenormalizable.
Despite the infinite number of parameters needed to specify it, a nonrenor-
malizable theory is generally able to make useful predictions at energies
below some ultraviolet cutoff A; we will discuss this in section 29.

In this section, we will deduce the necessary conditions for renormaliz-
ability. As an example, we will analyze a scalar field theory in d spacetime
dimensions of the form

00
L= —%Z¢8“g08“g0 - %mez(,ﬁz - Z %ann(’pn : (18'1)

n=3

Consider a Feynman diagram with E external lines, I internal lines, L
closed loops, and V,, vertices that connect n lines. (Here V}, is just a num-
ber, not to be confused with the vertex function V,.) Do the momentum
integrals associated with this diagram diverge?

We begin by noting that each closed loop gives a factor of d%;, and each
internal propagator gives a factor of 1/(p? + m?), where p is some linear
combination of external momenta k; and loop momenta ¢;. The diagram
would then appear to have an ultraviolet divergence at large ¢; if there are
more {’s in the numerator than there are in the denominator. The number
of £’s in the numerator minus the number of £’s in the denominator is the
diagram’s superficial degree of divergence

D=dL-2I, (18.2)
and the diagram appears to be divergent if

D>0. (18.3)
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Next we derive a more useful formula for D. The diagram has E external
lines, so another contributing diagram is the tree diagram where all the lines
are joined by a single vertex, with vertex factor —iZggg; this is, in fact,
the value of this entire diagram, which then has mass dimension [gg]. (The
Z’s are all dimensionless, by definition.) Therefore, the original diagram
also has mass dimension [gg], since both are contributions to the same
scattering amplitude:

[diagram] = [gg] . (18.4)

On the other hand, the mass dimension of any diagram is given by the sum
of the mass dimensions of its components, namely

[diagram] = dL — 21 + i Valgn] - (18.5)

n=3

From egs. (18.2), (18.4), and (18.5), we get

D= lgs)— " Valau] (18.6)
n=3

This is the formula we need.

From eq. (18.6), it is immediately clear that if any [g,,] < 0, we expect
uncontrollable divergences, since D increases with every added vertex of
this type. Therefore, a theory with any [g,] < 0 is nonrenormalizable.

According to our results in section 12, the coupling constants have mass
dimension

[gn] = d — $n(d—2), (18.7)
and so we have d
g <0 if n> % . (18.8)
Thus we are limited to powers no higher than ¢? in four dimensions, and
no higher than ¢? in six dimensions.

The same criterion applies to more complicated theories as well: a the-
ory is nonrenormalizable if any coefficient of any term in the lagrangian
has negative mass dimension.

What about theories with couplings with only positive or zero mass
dimension? We see from eq. (18.6) that the only dangerous diagrams (those
with D > 0) are those for which [gg] > 0. But in this case, we can absorb
the divergence simply by adjusting the value of Zg. This discussion also
applies to the propagator; we can think of II(k?) as representing the loop-
corrected counterterm vertex Ak% + Bm?, with A and Bm? playing the
roles of two couplings. We have [A] = 0 and [Bm?] = 2, so the contributing
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Figure 18.1: The one-loop contribution to V.

_|_

Figure 18.2: A two-loop contribution to V4, and the corresponding coun-
terterm insertion.

diagrams are expected to be divergent (as we have already seen in detail),
and the divergences must be absorbed into A and Bm?.

D is called the superficial degree of divergence because a diagram might
diverge even if D < 0, or might be finite even if D > 0. The latter can
happen if there are cancellations among £’s in the numerator. Quantum
electrodynamics provides an example of this phenomenon that we will en-
counter in Part III; see problem 62.3. For now we turn our attention to the
case of diagrams with D < 0 that nevertheless diverge.

Consider, for example, the diagrams of figs. (18.1) and (18.2). The one-
loop diagram of fig. (18.1) with E' = 4 is finite, but the two-loop correction
from the first diagram of fig. (18.2) is not: the bubble on the upper prop-
agator diverges. This is an example of a divergent subdiagram. However,
this is not a problem in this case, because this divergence is canceled by
the second diagram of fig. (18.2), which has a counterterm vertex in place
of the bubble.

This is the generic situation: divergent subdiagrams are diagrams that,
considered in isolation, have D > 0. These are precisely the diagrams whose
divergences can be canceled by adjusting the Z factor of the corresponding
tree diagram (in theories where [g,] > 0 for all nonzero gy,).

Thus, we expect that theories with couplings whose mass dimensions
are all positive or zero will be renormalizable. A detailed study of the
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properties of the momentum integrals in Feynman diagrams is necessary
to give a complete proof of this. It turns out to be true without further
restrictions for theories that have spin-zero and spin-one-half fields only.

Theories with spin-one fields are renormalizable for d = 4 if and only if
these spin-one fields are associated with a gauge symmetry. We will study
this in Part III.

Theories of fields with spin greater than one are never renormalizable
for d > 4.

REFERENCE NOTES

Explicit two-loop calculations in ¢? theory can be found in Collins, Muta,
and Sterman.

PROBLEMS

18.1) In any number d of spacetime dimensions, a Dirac field ¥, (z) car-
ries a spin index «, and has a kinetic term of the form z@’y“@,ﬂ/,
where we have suppressed the spin indices; the gamma matrices v*
are dimensionless, and ¥ = W40,

a) What is the mass dimension [¥] of the field ¥?

b) Consider interactions of the form g,(¥W¥)", where n > 2 is an
integer. What is the mass dimension [g,] of g,?

c) Consider interactions of the form gy, ,™ (¥W)™, where ¢ is a scalar
field, and m > 1 and n > 1 are integers. What is the mass dimension
[9m,n] Of gm.n?

d) In d = 4 spacetime dimensions, which of these interactions are
allowed in a renormalizable theory?
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19 PERTURBATION THEORY TO ALL ORDERS

PREREQUISITE: 18

In section 18, we found that, generally, a theory is renormalizable if all
of its lagrangian coefficients have positive or zero mass dimension. In this
section, using ¢ theory in six dimensions as our example, we will see how
to construct a finite expression for a scattering amplitude to arbitrarily
high order in the ¢? coupling g.

We begin by summing all one-particle irreducible diagrams with two
external lines; this gives us the self-energy II(k?). We next sum all 1PI
diagrams with three external lines; this gives us the three-point vertex
function Vs(k1, ko, ks). Order by order in g, we must adjust the value
of the lagrangian coefficients Z,, Z,,, and Z; to maintain the conditions
I(—m?) =0, II'(—m?) = 0, and V3(0,0,0) = g.

Next we will construct the n-point vertex functions V,(ki,...,k,) with
4 < n < F, where F is the number of external lines in the process of
interest. We compute these using a skeleton expansion. This means that
we draw all the contributing 1PI diagrams, but omit diagrams that include
either propagator or three-point vertex corrections. That is, we include
only diagrams that are not only 1PI, but also 2PI and 3PI: they remain
connected when any one, two, or three lines are cut. (Cutting three lines
may isolate a single tree-level vertex, but nothing more complicated.) Then
we take the propagators and vertices in these diagrams to be given by the
exact propagator A(k?) = (k* + m? — II(k?))~" and vertex Vs (ki, ko, k3),
rather than by the tree-level propagator A(k?) = (k2 + m?)~! and vertex
g. We then sum these skeleton diagrams to get V,, for 4 < n < E. Order
by order in g, this procedure is equivalent to computing V,, by summing
the usual set of contributing 1PI diagrams.

Next we draw all tree-level diagrams that contribute to the process
of interest (which has E external lines), including not only three-point
vertices, but also n-point vertices for n = 3,4,...,E. Then we evaluate
these diagrams using the exact propagator A(kzz) for internal lines, and
the exact 1PI vertices V,; external lines are assigned a factor of one.! We
sum these tree diagrams to get the scattering amplitude; loop corrections
have all been accounted for already in A(kzz) and V,,. Order by order in
g, this procedure is equivalent to computing the scattering amplitude by
summing the usual set of contributing diagrams.

Thus we now know how to compute an arbitrary scattering amplitude

IThis is because, in the LSZ formula, each Klein-Gordon wave operator becomes (in
momentum space) a factor of kZ + m? that multiplies each external propagator, leaving
behind only the residue of the pole in that propagator at k2 = —m?; by construction,
this residue is one.
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to arbitrarily high order. The procedure is the same in any quantum field
theory; only the form of the propagators and vertices change, depending
on the spins of the fields.

The tree-level diagrams of the final step can be thought of as the Feyn-
man diagrams of a quantum action (or effective action, or quantum effective
action) T'(p). There is a simple and interesting relationship between the ef-
fective action I'(p) and the sum of connected diagrams with sources iW (J).
We derive it in section 21.

REFERENCE NOTES

The detailed procedure for renormalization at higher orders is discussed in
Coleman, Collins, Muta, and Sterman.
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20 TwO-PARTICLE ELASTIC SCATTERING AT ONE
Loor

PREREQUISITE: 19

We now illustrate the general rules of section 19 by computing the two-
particle elastic scattering amplitude, including all one-loop corrections, in
3 theory in six dimensions. Flastic means that the number of outgoing
particles (of each species, in more general contexts) is the same as the
number of incoming particles (of each species).

We computed the amplitude for this process at tree level in section 10,
with the result

Tiree = 1i0)*[A(=3) + A(=1) + A(-u)] (20.1)

where A(—s) = 1/(—s +m? — i€) is the free-field propagator, and s, ¢, and
u are the Mandelstam variables. Later we will need to remember that s is
positive, that ¢t and u are negative, and that s+t + u = 4m?2.

The exact scattering amplitude is given by the diagrams of fig. (20.1),
with all propagators and vertices interpreted as exact propagators and ver-
tices. (Recall, however, that each external propagator contributes only the
residue of the pole at k> = —m?2, and that this residue is one; thus the fac-
tor associated with each external line is simply one.) We get the one-loop
approximation to the exact amplitude by using the one-loop expressions
for the internal propagators and vertices. We thus have

iTitoop = +([IVa(s)2A(=5) + [iVs()PA(~1) + [iV3(u)2A(~u))

+iVa(s,t,u), (20.2)
where, suppressing the ie€’s,
~ 1

AC) = T (20.3)

M(—s) = a /0 Cda Dy(s)In(Da(s)/ D) — fa(—s+m?),  (204)

Vi(s)/g=1-— %a/ng ln(Dg(s)/mz) , (20.5)

! L ! } C(206)

a(s,t,u) = g7 Y Da(s, ) + Dy(t,u) * Dy(u, s)

Here a = ¢%/(47)3, the Feynman integration measure is

1
/an flz) = (n_1)!/0 dry .. den §(x1+ . .. +an—1)f ()
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1 1—x1 l—-z1—...—xp_2o
= (n—l)!/ da:l/ da:g.../ dxn_1
0 0 0
x f(x

) i1 (20.7)
and we have defined
Dy(s) = —z(1—z)s +m? (20.8)
Dy = +[1—z(1—2z)]m?, (20.9)
Ds(s) = —a1725 + [1—(21+x9)z3)m? (20.10)
Dy(s,t) = —x1295 — 2324t + [1— (21 +22) (23+24)]M> . (20.11)

We obtain V3(s) from the general three-point function Vs(ky, k2, k3) by set-
ting two of the three k? to —m?, and the third to —s. We obtain V4(s,t,u)
from the general four-point function Vy(ky,...,ks) by setting all four k2
to —m?, (k1 + k2)? to —s, (k1 + k3)? to —t, and (k1 + k4)? to —u. (Recall
that the vertex functions are defined with all momenta treated as incoming;
here we have identified —k3 and —k, as the outgoing momenta.)

Egs. (20.2-20.11) are formidable expressions. To gain some intuition
about them, let us consider the limit of high-energy, fixed angle scattering,
where we take s, |t|, and |u| all much larger than m?. Equivalently, we are
considering the amplitude in the limit of zero particle mass.

We can then set m? = 0 in Ds(s), D3(s), and Dy(s,t). For the self-
energy, we get

II(—s) = —%as/ol dr z(1—x) {ln<;l—(;) +ln<%)] + Las

= —lias[ln(—s/m2)+3—77\/§} . (20.12)
Thus,
A =~y

- 1(1+%a[1n(—s/m2)+3—m/§})+0(a2). (20.13)

s
The appropriate branch of the logarithm is found by replacing s by s + ie.
For s real and positive, —s lies just below the negative real axis, and so

In(—s) =Ins —in. (20.14)
For ¢ (or u), which is negative, we have instead
In(—t) = In|t|,
Int = In|t| +im . (20.15)
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Figure 20.1: The Feynman diagrams contributing to the two-particle elastic
scattering amplitude; a double line stands for the exact propagator %A(k‘),
a circle for the exact three-point vertex Vs(ky, k2, k3), and a square for the
exact four-point vertex Vy(kq, ko, k3, kq). An external line stands for the

unit residue of the pole at k2 = —m?.
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For the three-point vertex, we get
Vs(s)/g =1— %a/ng {ln(—s/mz) +ln(a:1x2)} ,
= 1-la[In(=s/m?) - 3], (20.16)
where the same comments about the appropriate branch apply.

For the four-point vertex, the integral over the Feynman parameters
can be done in closed form, with the result

dF. 3
D4(s‘ft) - s +t <F2 * [ln(s/t)r)

_ +% (H 4 [1n(s/t)]2> , (20.17)

where the second line follows from s + ¢+« = 0.
Putting all of this together, we have

Titoop = 6| F(s,t,0) + F(t,u,5) + F(u,s,1) |, (20.18)

where
F(s,t,u) = — % <1 - %a{ln(—s/m2) + c} - %a{ln(t/u)r) . (20.19)

and ¢ = (672 + /3 — 39)/11 = 2.33. This is a typical result of a loop
calculation: the original tree-level amplitude is corrected by powers of log-
arithms of kinematic variables.

PROBLEMS
20.1) Verify eq. (20.17).

20.2) Compute the O(«) correction to the two-particle scattering amplitude
at threshold, that is, for s = 4m? and t = u = 0, corresponding to
zero three-momentum for both the incoming and outgoing particles.
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21 THE QUANTUM ACTION

PREREQUISITE: 19

In section 19, we saw how to compute (in > theory in d = 6 dimensions) the
1PT vertex functions V,(kq,...,k,) for n > 4 via the skeleton expansion:
draw all Feynman diagrams with n external lines that are one-, two-, and
three-particle irreducible, and compute them using the exact propagator
A(k?) and three-point vertex function Vi(ky, kg, k3).

We now define the quantum action (or effective action, or quantum
effective action)

d
Ne) = 5 [ Gy PR (K + m? =10 3(8)

1 [ d% d%,, e
+,;H/W 2n)d 2m) 46 (ky+ . . . +ky)

Vi, kn) @(k1) ... 3(kn) | (21.1)

where @(k) = [ d% e~**p(x). The quantum action has the property that
the tree-level Feynman diagrams it generates give the complete scattering
amplitude of the original theory.

In this section, we will determine the relationship between I'(¢) and the
sum of connected diagrams with sources, iW(J), introduced in section 9.
Recall that W (J) is related to the path integral

Z(J):/Dgo exp[z’S(g@)—l—i/ddegp} , (21.2)
where S = [ d% L is the action, via

Z(J) = exp[iW (J)] . (21.3)

Consider now the path integral

Zr(J)

/Dgo exp[if(go) —I—i/ddx Jgp} (21.4)

= exp[iWp(J)] . (21.5)

Wr(J) is given by the sum of connected diagrams (with sources) in which
each line represents the exact propagator, and each n-point vertex rep-
resents the exact 1PI vertex V,,. Wr(J) would be equal to W(J) if we
included only tree diagrams in Wr(J).
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We can isolate the tree-level contribution to a path integral by means of
the following trick. Introduce a dimensionless parameter that we will call
h, and the path integral

Zrn(J) = /Dgp exp [% <F(<p) + /ddx Jgp)] (21.6)

= expliWr x(J)] . (21.7)

In a given connected diagram with sources, every propagator (including
those that connect to sources) is multiplied by h, every source by 1/h, and
every vertex by 1/h. The overall factor of 7 is then RY=E=V \where V is the
number of vertices, E is the number of sources (equivalently, the number of
external lines after we remove the sources), and P is the number of prop-
agators (external and internal). We next note that P—E—V is equal to
L—1, where L is the number of closed loops. This can be seen by counting
the number of internal momenta and the constraints among them. Specif-
ically, assign an unfixed momentum to each internal line; there are P—F
of these momenta. Then the V vertices provide V constraints. One lin-
ear combination of these constraints gives overall momentum conservation,
and so does not constrain the internal momenta. Therefore, the number of
internal momenta left unfixed by the vertex constraints is (P—FE)—(V—1),
and the number of unfixed momenta is the same as the number of loops L.
So, Wr 4(J) can be expressed as a power series in 7 of the form

Wrn(J) = i YW () (21.8)
L=0

If we take the formal limit of 7 — 0, the dominant term is the one with
L = 0, which is given by the sum of tree diagrams only. This is just what
we want. We conclude that

W(J) = Wi i—olJ) - (21.9)

Next we perform the path integral in eq. (21.6) by the method of station-
ary phase. We find the point (actually, the field configuration) at which
the exponent is stationary; this is given by the solution of the gquantum
equation of motion

0
dp()
Let ¢ (2) denote the solution of eq. (21.10) with a specified source function
J(z). Then the stationary-phase approximation to Zr 5(J) is

L(p)=—J(z) . (21.10)

Zrw(J) = exp [% (r(ng) + / d Jng) + O(ho)] . (21.11)
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Combining the results of egs. (21.7), (21.8), (21.9), and (21.11), we find

W(J)=T(er) /d:EJ<pJ (21.12)

This is the main result of this section.
Let us explore it further. Recall from section 9 that the vacuum expec-
tation value of the field operator ¢(z) is given by

0
Olp(x)|0) = ——W(J . 21.13
{0l ()[0) 57(0) ()J:O (21.13)
Now consider what we get if we do not set J = 0 after taking the derivative:
0
= . 21.14
{Ole(@)0)s = 57 p W(J) (21.14)

This is the vacuum expectation value of ¢(z) in the presence of a nonzero
source function J(z). We can get some more information about it by using
eq. (21.12) for W(J). Making use of the product rule for derivatives, we
have

Q@0 = =Tl + este) + [Ea) 2B 1)

We can evaluate the first term on the right-hand side by using the chain

rule,
o' (¢ 5<PJ( )
d° . 21.16

Then we can comblne the first and third terms on the right-hand side of
eq. (21.15) to get

(0]¢p()[0).; = /dﬁy {iiﬁi + J(y)] 55(’3"(%) +(@) . (21.17)

Now we note from eq. (21.10) that the factor in large brackets on the right-
hand side of eq. (21.17) vanishes, and so

(0lp(@)[0)y = ws(x) . (21.18)

That is, the vacuum expectation value of the field operator ¢(x) in the
presence of a nonzero source function is also the solution to the quantum
equation of motion, eq. (21.10).

We can also write the quantum action in terms of a derivative expansion,

_ /ddx [—u(p) - 12(9)0" 00+ .., (21.19)
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where the ellipses stand for an infinite number of terms with more and more
derivatives, and U(yp) and Z(p) are ordinary functions (not functionals)
of p(x). U(yp) is called the quantum potential (or effective potential, or
quantum effective potential), and it plays an important conceptual role in
theories with spontaneous symmetry breaking; see section 31. However, it
is rarely necessary to compute it explicitly, except in those cases where we
are unable to do so.

REFERENCE NOTES

Construction of the quantum action is discussed in Coleman, Itzykson &
Zuber, Peskin & Schroeder, and Weinberg II.

PROBLEMS
21.1) Show that
T(p) =W (J,) — /ddx Jop (21.20)
where J, () is the solution of
i W(J) = p(x) (21.21)
5.7 () A '

for a specified ¢(x).

21.2) Symmetries of the quantum action. Suppose that we have a set of
fields ¢, (x), and that both the classical action S(p) and the integra-
tion measure Dy are invariant under

pale) = [ % Rl )en(y) (21.22)

for some particular function Ru,(x,y). Typically Rep(x,y) is a con-
stant matrix times §%(x—y), or a finite number of derivatives of
§%(x—1y); see sections 22, 23, and 24 for some examples.

a) Show that W (J) is invariant under
Tolw) = [ % T Ria(y,2) (21.23)

b) Use egs. (21.20) and (21.23) to show that the quantum action I'(y)
is invariant under eq. (21.22). This is an important result that we will
use frequently.
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21.3) Consider performing the path integral in the presence of a background
field ¢(x); we define

exp[iW (J;9)] = /Dcp exp[iS(g@—Hp) —i—i/ddx Jcp] . (21.24)

Then W (J;0) is the original W (J) of eq. (21.3). We also define the
quantum action in the presence of the background field,

T(p;0) =W (Jy;0) — /ddx Jo (21.25)

where J, () is the solution of

J
0J(x)

W(J;¢) = p(x) (21.26)
for a specified ¢(z). Show that

L(p;0) = T(p+;0) , (21.27)

where I'(p; 0) is the original quantum action of eq. (21.1).
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22 CONTINUOUS SYMMETRIES AND CONSERVED
CURRENTS

PREREQUISITE: 8

Suppose we have a set of scalar fields ¢,(z), and a lagrangian density
L(z) = L(pa(x),0upa(x)). Consider what happens to L(z) if we make
an infinitesimal change ¢, (z) — @a(z) + dpa(x) in each field. We have
L(z) — L(x) + dL(x), where 6L(z) is given by the chain rule,

oL oL

) = Fo@ ) 5 Epat@)

0u0pa(x) . (22.1)

Next consider the classical equations of motion (also known as the Euler-
Lagrange equations, or the field equations), given by the action principle

08
dpq ()

where S = [ d* L(y) is the action, and §/5¢, () is a functional derivative.
(For definiteness, we work in four spacetime dimensions, though our re-
sults will apply in any number.) We have (with repeated indices implicitly
summed )

5S [ 4 0Ly
Spalx) /d 4 dpa ()

_/fl Spn(y) | OL(y) &@%@w
Oep(y) dpa(z) — ODupp(y))  Gpalx)

=0, (22.2)

. 4 4 —r 8£(y) 4 —r
= / dy [a% Spad (y Hi@(@uwb(y)) 0ba0ud” (y )]

_ OL(z) OL(x)
= D@ B Opa@) (22.3)

We can use this result to make the replacement

OL(x) . OL(x) dS
Opa(z) g a(au‘lpa(x)) dpa(T)

in eq. (22.1). Then, combining two of the terms, we get

(22.4)

0L(x) = 8,;(% (54,%(95)) + 5(2?33)64,0@(95) . (22.5)
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Next we identify the object in large parentheses in eq. (22.5) as the Noether
current

. _ 0L(x)
jH(x) = m dpa(x) . (22.6)
Eq. (22.5) then implies
0" (x) = 6L(x) — 550 (o). (22.7)

If the classical field equations are satisfied, then the second term on the
right-hand side of eq. (22.7) vanishes.

The Noether current plays a special role if we can find a set of in-
finitesimal field transformations that leaves the lagrangian unchanged, or
invariant. In this case, we have 6L = 0, and we say that the lagrangian has
a continuous symmetry. From eq. (22.7), we then have 0,j* = 0 whenever
the field equations are satisfied, and we say that the Noether current is
conserved. In terms of its space and time components, this means that

20@ﬁ+v&@ﬂ:0. (22.8)

ot

If we interpret jO(z) as a charge density, and j(z) as the corresponding cur-

rent density, then eq. (22.8) expresses the local conservation of this charge.
Let us see an example of this. Consider a theory of a complex scalar

field with lagrangian

L=—-0"p'0,0 —mPplp — IA(pTe)? . (22.9)

We can also rewrite £ in terms of two real scalar fields by setting ¢ =
(01 +ip2)/V2 to get

L= —10"010,01 — 10 020,00 — Am? (0 + 03) — EA(PT +¢3)% . (22.10)

In the form of eq. (22.9), it is obvious that £ is left invariant by the trans-
formation

() (22.11)
where « is a real number. This is called a U(1) transformation, a transfor-
mation by a unitary 1x 1 matrix. In terms of ¢ and s, this transformation

reads .
(gpﬂx)) ~ < oS o Slnoz> <<,01(:17)> ' (22.19)
wa(z) —sina  cos« pa(z)

If we think of (¢1,¢2) as a two-component vector, then eq. (22.12) is just
a rotation of this vector in the plane by angle a. Eq.(22.12) is called an

p(z) — e
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S0O(2) transformation, a transformation by an orthogonal 2 x 2 matrix with
a special value of the determinant (namely +1, as opposed to —1, the only
other possibility for an orthogonal matrix). We have learned that a U(1)
transformation can be mapped into an SO(2) transformation.

The infinitesimal form of eq. (22.11) is

p(x) = o(z) —iap(z) ,
cpT(a;) — ng(a:) + iacp*(x) , (22.13)

where « is now infinitesimal. In eq. (22.6), we should treat ¢ and ¢! as in-
dependent fields. It is also conventional to scale the infinitesimal parameter
out of the current, so that we have

oL 50+ oL 5t
0(0up) A(Opuel)

= (=0l (—iagp) + (—0"p)(+iayp')

= aIm(@Tg‘w) , (22.14)

ajt =

where AJ"B = A9"B — (0*A)B. Canceling out «, we find that the Noether

current is

j* = Im(p! o) . (22.15)
We can also repeat this exercise using the SO(2) form of the trans-
formation. For infinitesimal «, eq.(22.12) becomes dp; = +aps and
dpo = —apy. Then the Noether current is given by
. oL oL
ajt = ==y +

R
= (—0"p1)(Fagpz) + (=0 p2)(—apr)
= a(p10Mpy) (22.16)

which is (hearteningly) equivalent to eq. (22.14).
Let us define the Noether charge

Q= /d3xj0(x) = /d?’x Im(p'80p) | (22.17)
and investigate its properties. If we integrate eq. (22.8) over d°z, use Gauss’s

law to write the volume integral of V-j as a surface integral, and assume
that the boundary conditions at infinity fix j(x) = 0 on that surface, then
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we find that @ is constant in time. To get a better idea of the physical
implications of this, let us rewrite ) using the free-field expansions

= [k [at)e 1 5 oeie]
_ / ks [b()e™ + a* (k)e ] (22.18)

We have written a*(k) and b*(k) rather than af(k) and bf(k) because so
far our discussion has been about the classical field theory. In a theory
with interactions, these formulae (and their first time derivatives) are valid
at any one particular time (say, t = —o0). Then, we can plug them into
eq. (22.17), and find (after some manipulation similar to what we did for
the hamiltonian in section 3)

Q= / dk [a — ()b (K)] . (22.19)

In the quantum theory, this becomes an operator that counts the number
of a particles minus the number of b particles. This number is then time-
independent, and so the scattering amplitude vanishes identically for any
process that changes the value of (). This can be seen directly from the
Feynman rules, which conserve @) at every vertex.

To better understand the implications of the Noether current in the
quantum theory, we begin by considering the path integral,

J) = /D(p el [d'y Jupa] (22.20)

The value of Z(J) is unchanged if we make the change of variable p,(z) —
©a(z) + dpq(x), with dp,(z) an arbitrary infinitesimal shift that (we as-
sume) leaves the measure Dy invariant. Thus we have

0=62(J)

= /Dgﬁe i[S+ [dYy Jyey) /d4 (5cpa @ + Ja(x)> dpa(z) . (22.21)

We can now take n functional derivatives with respect to J,(z;), and then
set J =0, to get

0—/D<,pels/d

+ Z Vaq(1) Saa; 54(x—a;j) e cpan(a;n)] dpq(x) . (22.22)

SDa1( 1)+ Pan(Tn)

5%
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Since ¢, () is arbitrary, we can drop it (and the integral over d*z). Then,
since the path integral computes the vacuum expectation value of the time-
ordered product, we have

0 z‘wﬁm GanlE1) - PanlEn)|0)

+ > (0| Ta,(1) - - - baa, 0 (x—25) . .. Pa,(x)[0) . (22.23)
j=1

These are the Schwinger-Dyson equations for the theory.
To get a feel for them, let us look at free-field theory for a single real
scalar field, for which 6S/dp(x) = (02 — m?)p(x). For n = 1 we get

(=02 + m?)i{0| Tp(a)p(21)]0) = 6" (1) . (22.24)

That the Klein-Gordon wave operator should sit outside the time-ordered
product (and hence act on the time-ordering step functions) is clear from
the path integral form of eq. (22.22). We see from eq. (22.24) that the free-
field propagator, A(z—z1) = i(0|Te(x)p(x1)|0), is a Green’s function for
the Klein-Gordon wave operator, a fact we first learned in section 8.

More generally, we can write

5S
<0|TW Var(T1) - an(xn)]|0) =0 for x#x1  p. (22.25)

We see that the classical equation of motion is satisfied by a quantum field
inside a correlation function, as long as its spacetime argument differs from
those of all the other fields. When this is not the case, we get extra contact
terms.

Let us now consider a theory that has a continuous symmetry and a
corresponding Noether current. Take eq. (22.22), and set dp4(z) to be the
infinitesimal change in ¢, (z) that results in 0£(z) = 0. Now sum over the
index a, and use eq. (22.7). The result is the Ward (or Ward-Takahashi)
identity

0 = 0, (0|T5" (@) par(1) - - - Pan(wn)]0)
+i > (0|Tqy(w1) ... 6pa)(@)8* (z—25) ... Par(2n)|0) . (22.26)
j=1

Thus, conservation of the Noether current holds in the quantum theory,
with the current inside a correlation function, up to contact terms with a
specific form that depends on the details of the infinitesimal transformation
that leaves £ invariant.
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The Noether current is also useful in a slightly more general context.
Suppose we have a transformation of the fields such that 6£(z) is not zero,
but instead is a total divergence: 0L(x) = 0, K*(x) for some K*(zx). Then
there is still a conserved current, now given by

. 0L(x
J*(x) = _Oklz)
9(Oupa())
An example of this is provided by the symmetry of spacetime translations.
We transform the fields via ¢, () — @4 (2 —a), where a* is a constant four-
vector. The infinitesimal version of this is ¢, () — @u(z) —a”0yp4(x), and

0pq(r) — KM (x) . (22.27)

so we have dg,(z) = —a”0y,pq(x). Under this transformation, we obviously
have L(z) — L(x — a), and so 0L(x) = —a’0,L(x) = —0,(a”L(x)). Thus
in this case K" (x) = —a”L(x), and the conserved current is
. OL(x)
M (x) = =—=—F—=(—a"0ypq(x)) — " L(x
(%) = G g o) 0 Ooele) — L)
= a,T"(x) , (22.28)
where we have defined the stress-energy or energy-momentum tensor
0L (x)
T (g) = — — v, () 4 g*L(x) 92.29
()=~ gy o) + 9 E) (22.20)

For a renormalizable theory of a set of real scalar fields ¢, (z), the
lagrangian takes the form

L =—30"pa0u0a — V(p), (22.30)
where V() is a polynomial in the ¢,’s. In this case
TH = 9lpadpq + g™ L . (22.31)
In particular,
T = 12 + 2(Vpa)* + V() (22.32)

where II, = 9yp, is the canonical momentum conjugate to the field ¢,.
We recognize T as the hamiltonian density H that corresponds to the
lagrangian density of eq. (22.30). Then, by Lorentz symmetry, 7% must be
the corresponding momentum density. We have

TY = 8000, = —,Vig, . (22.33)

To check that this is a sensible result, we use the free-field expansion for
a set of real scalar fields [the same as eq. (22.18) but with b(k) = a(k) for
each field]; then we find that the momentum operator is given by

pi— / P T(2) = / dk ¥ af (K)a, (k) | (22.34)
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which is just what we would expect. We therefore identify the energy-
momentum four-vector as

PH = / d>z T(x) . (22.35)

Recall that in section 2 we defined the spacetime translation operator
as
T(a) = exp(—iP"a,) , (22.36)

and announced that it had the property that
T(a)" pa(2)T(a) = palz — a) . (22.37)

Now that we have an explicit formula for P¥, we can check this. This is
easiest to do for infinitesimal a; then eq. (22.37) becomes

[pa(2), P*] = ;0" pa(2) . (22.38)

This can indeed be verified by using the canonical commutation relations
for ¢, (z) and I, (z).

One more symmetry we can investigate is Lorentz symmetry. If we make
an infinitesimal Lorentz transformation, we have ,(x) — ¢q(x + dw- ),
where dw-x is shorthand for dw”,z”. This case is very similar to that of
spacetime translations; the only difference is that the translation parameter
a” is now x dependent, a” — —dw” ,x”. The resulting conserved current is

MHPP(g) = 2" THP(x) — 2PTH (x) (22.39)

and it obeys 0,M"P = 0, with the derivative contracted with the first
index. MM? is antisymmetric on its second two indices; this comes about
because dw"? is antisymmetric. The conserved charges associated with this
current are

MYP = / a3z MP(z) (22.40)

and these are the generators of the Lorentz group that were introduced
in section 2. Again, we can use the canonical commutation relations for
the fields to check that the Lorentz generators have the right commutation
relations, both with the fields and with each other.

REFERENCE NOTES

The path-integral approach to Ward identities is treated in more de-
tail in Peskin € Schroeder. An operator-based derivation can be found in
Weinberg 1.
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PROBLEMS

22.1) For the Noether current of eq. (22.6), and assuming that dp, does not
involve time derivatives, use the canonical commutation relations to
show that

[pa, Q] = i6pq , (22.41)
where @ is the Noether charge.

22.2) Use the canonical commutation relations to verify eq. (22.38).

22.3) a) With T* given by eq. (22.31), compute the equal-time (z° = )
commutators [T9%(xz), T%(y)], [T%(x), T®(y)], and [T%(x), T%(y)].

b) Use your results to verify egs. (2.17), (2.19), and (2.20).
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23  DISCRETE SYMMETRIES: P, T, C, AND Z
PREREQUISITE: 22
In section 2, we studied the proper orthochronous Lorentz transformations,

which are continuously connected to the identity. In this section, we will
consider the effects of parity,

+1
pr, — (P, = o . (23.1)
-1
and time reversal,
—1
TH, = (T, = +1+1 . (23.2)
+1

We will also consider certain other discrete transformations such as charge
conjugation.

Recall from section 2 that for every proper orthochronous Lorentz trans-
formation A*, there is an associated unitary operator U(A) with the prop-
erty that

U(A) " p(@)U(A) = p(A"2) . (23.3)

Thus for parity and time-reversal, we expect that there are corresponding
unitary operators

P=U(P), (23.
T =U(T), (23.5)
such that
P lo(z)P =

o(Px) , (23.6)
T ()T = o(Tx) . (23.7)

There is, however, an extra possible complication. Since the P and
7 matrices are their own inverses, a second parity or time-reversal trans-
formation should transform all observables back into themselves. Using
eqs. (23.6) and (23.7), along with P? =1 and 7?2 = 1, we see that

P~ 2p(z)P
T 2p(x)T

2 (), (23.8)
2 .

@
p(x) (23.9)
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Since ¢(z) is a hermitian operator, it is in principle an observable, and so
egs. (23.8) and (23.9) are just what we expect. However, another possibility
for the parity transformation of the field, different from egs. (23.6) and
(23.7) but nevertheless consistent with egs. (23.8) and (23.9), is

P lo(x)P = —p(Pzx), (23.10)
T o(x)T = —p(Tx) . (23.11)

This possible extra minus sign cannot arise for proper orthochronous Lorentz
transformations, because they are continuously connected to the identity,
and for the identity transformation (that is, no transformation at all), we
must obviously have the plus sign.

If the minus sign appears on the right-hand side, we say that the field
is odd under parity (or time reversal). If a scalar field is odd under parity,
we sometimes say that it is a pseudoscalar.!

So, how do we know which is right, egs. (23.6) and (23.7), or egs. (23.10)
and (23.11)7 The general answer is that we get to choose, but there is a
key principle to guide our choice: if at all possible, we want to define P
and T so that the lagrangian density is even,

P 'L(x)P = +L(Px), (23.12)
T'L(x)T = +L(Tx) . (23.13)

Then, after we integrate over d*z to get the action S, the action will be
invariant. This means that parity and time-reversal are conserved.

For theories with spin-zero fields only, it is clear that the choice of
egs. (23.6) and (23.7) always leads to egs. (23.12) and (23.13), and so there is
no reason to flirt with egs. (23.10) and (23.11). For theories that also include
spin-one-half fields, certain scalar bilinears in these fields are necessarily odd
under parity and time reversal, as we will see in section 40. If a scalar field
couples to such a bilinear, then egs. (23.12) and (23.13) will hold if and only
if we choose egs. (23.10) and (23.11) for that scalar, and so that is what we
must do.

There is one more interesting fact about the time-reversal operator 7T
it is antiunitary, rather than unitary. Antiunitary means that T—1iT = —i.

To see why this must be the case, consider a Lorentz transformation of
the energy-momentum four-vector,

U(A)"LPHU(A) = A*, PV . (23.14)

Tt is still a scalar under proper orthochronous Lorentz transformations; that is,
eq. (23.3) still holds. Thus the appellation scalar often means eq.(23.3), and either
eq. (23.6) or eq.(23.10), and that is how we will use the term.
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For parity and time-reversal, we therefore expect

P7lprp = PP (23.15)
T-'PHT = TH,PY . (23.16)

In particular, for 1 = 0, we expect P"'HP = +H and T"'HT = —H.
The first of these is fine; it says the hamiltonian is invariant under parity,
which is what we want.? However, eq. (23.16) is a disaster: it says that the
hamiltonian is invariant under time-reversal if and only if H = —H, which
is possible only if H = 0.

Can we just put an extra minus sign on the right-hand side of eq. (23.16),
as we did for eq.(23.11)7 The answer is no. We constructed P* explicitly
in terms of the fields in section 22, and it is easy to check that choosing
eq. (23.11) for the fields does not yield an extra minus sign in eq. (23.16)
for the energy-momentum four-vector.

Let us reconsider the origin of eq. (23.14). We first recall that the space-
time translation operator

T(a) = exp(—iP-a) . (23.17)

(which should not be confused with the time-reversal operator T') trans-
forms a scalar field according to

T(a) p(2)T(a) = p(z — a) . (23.18)

The spacetime translation operator is a scalar with a spacetime coordinate
as a label; by analogy with eq. (23.3), we should have

UM T (a)UA) = T(A ta) . (23.19)
Now, treat a* as infinitesimal in eq. (23.19) to get
UN) I —ia,P"YUA) = T —i(A),"a,P”
=1 —iAN')a,P" . (23.20)
For time-reversal, this becomes
T - ia,P")T = I —iT",a,P" . (23.21)

If we now identify the coefficients of —ia, on each side, we get eq. (23.16),
which is bad. In order to get the extra minus sign that we need, we must
impose the antiunitary condition

74T = —i. (23.22)

2When spin-one-half fields are present, it may be that no operator exists that satisfies
either eq.(23.6) or eq.(23.10) and also eq.(23.15); in this case we say that parity is
explicitly broken.
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We then find
TP = —TH, P (23.23)

instead of eq.(23.16). This yields T-'HT = +H, which is the correct
expression of time-reversal invariance.

We turn now to other unitary operators that change the signs of scalar
fields, but do nothing to their spacetime arguments. Suppose we have a
theory with real scalar fields ¢,(x), and a unitary operator Z that obeys

Z_l@a(x)z = NaPa(T) , (23.24)

where 7, is either +1 or —1 for each field. We will call Z a Z operator, be-
cause Zo is the additive group of the integers modulo 2, which is equivalent
to the multiplicative group of +1 and —1. This also implies that Z? = 1,
and so Z~! = Z. (For theories with spin-zero fields only, the same is also
true of P and T', but things are more subtle for higher spin, as we will see
in Part II.)

Consider the theory of a complex scalar field ¢ = (¢ + ip2)/v/2 that
was introduced in section 22, with lagrangian

L= —d"pd 1 — m? olp— 1/\(90 ©)? (23.25)
= —30"010,01 — 50"P20,pa — 5P (PF + 93) — 1A #T + 93)%. (23.26)

In the form of eq. (23.25), £ is obviously invariant under the U(1) transfor-
mation

o(x) — e “p(x) . (23.27)

In the form of eq.(23.26), £ is obviously invariant under the equivalent
SO(2) transformation,

e1(z) cosa  sina v1(x)
— . (23.28)
a(x) —sina cosa /) \ p2(x)
However, it is also obvious that £ has an additional discrete symmetry,

o(z) < ¢l () (23.29)

in the form of eq. (23.25), or equivalently

¢1(2) +1 0 [pi(z)
< ) — < . (23.30)
p2(x) 0 -1/ \¢2(2)
in the form of eq.(23.26). This discrete symmetry is called charge conju-

gation. It always occurs as a companion to a continuous U(1) symmetry.
In terms of the two real fields, it enlarges the group from SO(2) (the group
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of 2 x 2 orthogonal matrices with determinant +1) to O(2) (the group of
2 x 2 orthogonal matrices).

We can implement charge conjugation by means of a particular Zy op-
erator C' that obeys

Clo(x)C = ¢l (2) | (23.31)
or equivalently
C7 o1 (2)C = +oi (), (23.32)
Cla(x)C = —pa(x) . (23.33)
We then have
CL(z)C = L(z), (23.34)

and so charge conjugation is a symmetry of the theory. Physically, it implies
that the scattering amplitudes are unchanged if we exchange all the a-type
particles (which have charge +1) with all the b-type particles (which have
charge —1). This means, in particular, that the a and b particles must have
exactly the same mass. We say that b is a’s antiparticle.

More generally, we can also have Zs symmetries that are not related
to antiparticles. Consider, for example, ¢* theory, where ¢ is a real scalar
field with lagrangian

L= _%au(pau(p — %m2902 - i)\gpﬂ‘ . (23.35)
If we define the Zy operator Z via
27 p(2)Z = (@) | (23.36)

then £ is obviously invariant. We therefore have Z~'HZ = H, or equiva-
lently [Z, H] = 0, where H is the hamiltonian. If we assume that (as usual)
the ground state is unique, then, since Z commutes with H, the ground
state must also be an eigenstate of Z. We can fix the phase of Z [which is
undetermined by eq. (23.36)] via

Z|0) = Z710) = +0) . (23.37)
Then, using egs. (23.36) and (23.37), we have

(Ole(2)[0) = (012Z p(x)2Z1|0)
= —(0[(2)[0) . (23.38)

Since (0|¢(x)|0) is equal to minus itself, it must be zero. Thus, as long as
the ground state is unique, the Zy symmetry of ¢? theory guarantees that
the field has zero vacuum expectation value. We therefore do not need to
enforce this condition with a counterterm Y, as we did in ¢® theory. (The
assumption of a unique ground state does not necessarily hold, however, as
we will see in section 30.)
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24 NONABELIAN SYMMETRIES

PREREQUISITE: 22

Consider the theory (introduced in section 22) of a two real scalar fields ¢,
and o with

L= —50"010up1 — 50" 020 pa — §m* (] + 03) — 15 A (T +93)° . (24.1)
We can generalize this to the case of N real scalar fields ; with
L= —10"0;0up; — EmPpip; — N\ pipi)? (24.2)

where a repeated index is summed. This lagrangian is clearly invariant
under the SO(N) transformation

pi(z) = Rijpj(z) (24.3)

where R is an orthogonal matrix with a positive determinant: RT = R™!,
det R = +1. This largrangian is also clearly invariant under the Zs trans-
formation ¢;(z) — —p;(x), which enlarges SO(N) to O(N); see section
23. However, in this section we will be concerned only with the continuous
SO(N) part of the symmetry.

Next we will need some results from group theory. Consider an infinites-
imal SO(N) transformation,

Rij = 0;5 + 05 + 0(92) . (24.4)

Orthogonality of R;; implies that 0;; is real and antisymmetric. It is con-
venient to express 6;; in terms of a basis set of hermitian matrices (7%);;.
The index a runs from 1 to $N(N—1), the number of linearly independent,
hermitian, antisymmetric, N x N matrices. We can, for example, choose
each T to have a single nonzero entry —i above the main diagonal, and
a corresponding +i below the main diagonal. These matrices obey the
normalization condition

Te(T9T?) = 26% . (24.5)
In terms of them, we can write
O = —i0°(T) i , (24.6)

where 6% is a set of %N (N—1) real, infinitesimal parameters.
The T%s are the generator matrices of SO(NN). The product of any two
SO(N) transformations is another SO(NN) transformation; this implies (see
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problem 24.2) that the commutator of any two generator matrices must be
a linear combination of generator matrices,

(7%, T = ifebere (24.7)

The numerical factors f®¢ are the structure coefficients of the group, and
eq. (24.7) specifies its Lie algebra. If fo%¢ = 0, the group is abelian. Other-
wise, it is nonabelian. Thus, U(1) and SO(2) are abelian groups (since they
each have only one generator that obviously must commute with itself),
and SO(N) for N > 3 is nonabelian.

If we multiply eq.(24.7) on the right by T? take the trace, and use
eq. (24.5), we find

o = i (e, 7)) (24.8)

Using the cyclic property of the trace, we find that f*¢ must be completely

antisymmetric. Taking the complex conjugate of eq. (24.8) (and remember-

ing that the T%’s are hermitian matrices), we find that f*¢ must be real.
The simplest nonabelian group is SO(3). In this case, we can choose

(T")ij = —ie® | where €% is the completely antisymmetric Levi-Civita,
symbol, with ¢'?3 = +1. The commutation relations become
(7%, T = ieeTe (24.9)

That is, the structure coefficients of SO(3) are given by f¢ = g,
Consider now a theory with N complez scalar fields ¢;, and a lagrangian

L= 8" 8,p0i — m*ploi — I\plpi)? (24.10)

where a repeated index is summed. This lagrangian is clearly invariant
under the U(N) transformation

vi(x) — Uipj(x) , (24.11)

where U is a unitary matrix: UT = U~'. We can write Ui = e‘ieﬁij,
where 0 is a real parameter and det ﬁij =+1; Ij}j is called a special unitary
matrix. Clearly the product of two special unitary matrices is another
special unitary matrix; the N x N special unitary matrices form the group
SU(N). The group U(N) is the direct product of the group U(1) and the
group SU(N); we write U(N) = U(1) x SU(N).

Consider an infinitesimal SU(N) transformation,

Uij = 6 — i04(T%)i; + O(6?) (24.12)

where 0 is a set of real, infinitesimal parameters. Unitarity of U implies
that the generator matrices T® are hermitian, and detU = +1 implies
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that each T* is traceless. (This follows from the general matrix formula
Indet A = Trln A.) The index a runs from 1 to N2—1, the number of lin-
early independent, hermitian, traceless, N x N matrices. We can choose
these matrices to obey the normalization condition of eq. (24.5). For SU(2),
the generators can be chosen to be the Pauli matrices; the structure coeffi-
cients of SU(2) then turn out to be f%¢ = 2¢%%¢, the same as those of SO(3),
up to an irrelevant overall factor [which could be removed by changing the
numerical factor on right-hand side of eq. (24.5) from 2 to 3].

For SU(N), we can choose the T%s in the following way. First, there
are the SO(IV) generators, with one —i above the main diagonal a corre-
sponding +:¢ below; there are %N (N—1) of these. Next, we get another set
by putting one +1 above the main diagonal and a corresponding +1 below;
there are %N (N—1) of these. Finally, there are diagonal matrices with n
1’s along the main diagonal, followed a single entry —n, followed by zeros
[times an overall normalization constant to enforce eq. (24.5)]; the are N—1
of these. The total is N2—1, as required.

However, if we examine the lagrangian of eq. (24.10) more closely, we
find that it is actually invariant under a larger symmetry group, namely
SO(2N). To see this, write each complex scalar field in terms of two real
scalar fields, ¢; = (p;1 + ip;2)/v2. Then

ploj =Ll + o+ ..+ dn + oha) - (24.13)
Thus, we have 2N real scalar fields that enter £ symmetrically, and so
the actual symmetry group of eq. (24.10) is SO(2N), rather than just the
obvious subgroup U(N).

We will, however, meet the SU(IN) groups again in Parts II and III,
where they will play a more important role.

PROBLEMS

24.1) Show that 6;; in eq. (24.4) must be antisymmetric if R is orthogonal.

24.2) By considering the SO(N) transformation R'~"'R™'R'R, where R
and R’ are independent infinitesimal SO(N) transformations, prove
eq. (24.7).

24.3) a) Find the Noether current j% for the transformation of eq. (24.6).
b) Show that [p;, Q%] = (T)i;j;, where Q% is the Noether charge.

c¢) Use this result, eq. (24.7), and the Jacobi identity (see problem 2.8)
to show that [Q?, Q°] = if®eQ°.
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24.4) The elements of the group SO(NV) can be defined as N x N matrices
R that satisfy

The elements of the symplectic group Sp(2N) can be defined as 2N x
2N matrices S that satisfy

Siir Sy = nij (24.15)
where the symplectic metric n;; is antisymmetric, 7;; = —nj;, and
squares to minus the identity: 72 = —I. One way to write 7 is

(! 24.16
n—(_I 0>, (24.16)

where [ is the NV x N identity matrix. Find the number of generators
of Sp(2N).
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25 UNSTABLE PARTICLES AND RESONANCES

PREREQUISITE: 14
Consider a theory of two real scalar fields, ¢ and y, with lagrangian
L= —%a“cpaucp — %micﬁ — %8“)(8,0( — %mixz + %gcpxz + %hg@g . (25.1)

This theory is renormalizable in six dimensions, where g and h are dimen-
sionless coupling constants.

Let us assume that my, > 2m,. Then it is kinematically possible for
the ¢ particle to decay into two y particles. The amplitude for this process
is given at tree level by the Feynman diagram of fig. (25.1), and is simply
T = g. We can also choose to define g as the value of the exact ¢x? vertex

function V(k, k{, k) when all three particles are on shell: k* = —m2,
ki? = k4* = —m?2. This implies that

T=g (25.2)
exactly.

According to the formulae of section 11, the differential decay rate (in
the rest frame of the initial ¢ particle) is

1
dl' = —— dLIPS, |T|?, (25.3)
2my,

where dLIPSs is the Lorentz invariant phase space differential for two out-
going particles, introduced in section 11. We must make a slight adaptation
for six dimensions:

dLIPS, = (2m)06% (K} +-ky—k) dk'y dk) . (25.4)
Here k = (my, 0) is the energy-momentum of the decaying particle, and

d%

k= Gryaw

(25.5)
is the Lorentz-invariant phase-space differential for one particle. Recall that
we can also write it as

dSk

dk = oo 2o (k% +m?2) 0(k°) (25.6)

where 0(z) is the unit step function. Performing the integral over k" turns
eq. (25.6) into eq. (25.5).
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Figure 25.1: The tree-level Feynman diagram for the decay of a ¢ particle
(dashed line) into two x particles (solid lines).

Repeating for six dimensions what we did in section 11 for four dimen-
sions, we find
[y

ds) , (25.7)
where [K)j| = %(mfo - 4mi)1/ 2 is the magnitude of the spatial momentum
of one of the outgoing particles. We can now plug this into eq. (25.3), and
use [dQ = Q5 = 21%/2/T'(3) = 872, We also need to divide by a symmetry
factor of two, due to the presence of two identical particles in the final state.
The result is

1 1
— . — [ dLIPS, |T|? 25.
3 g | LIPS T (25.8)

= Lra(l - 4mi/mi)3/2 My , (25.9)

where a = g2 /(47)3.

However, as we discussed in section 11, we have a conceptual problem.
According to our development of the LSZ formula in section 5, each incom-
ing and outgoing particle should correspond to a single-particle state that
is an exact eigenstate of the exact hamiltonian. This is clearly not the case
for a particle that can decay.

Let us, then, compute something else instead: the correction to the ¢
propagator from a loop of x particles, as shown in fig. (25.2). The diagram
is the same as the one we already analyzed in section 14, except that the
internal propagators contain m, instead of my. (There is also a contri-
bution from a loop of ¢ particles, but we can ignore it if we assume that
h < g.) We have

1
TI(k2) = %a/ de DInD — A'K? — B'm? (25.10)
0

where
D = z(1—z)k* + mi — i€, (25.11)



25: Unstable Particles and Resonances 163

Figure 25.2: A loop of x particles correcting the ¢ propagator.

and A’ and B’ are the finite counterterm coefficients that remain after the
infinities have been absorbed. We now try to fix A’ and B’ by imposing
the usual on-shell conditions H(—m?o) =0 and IT' (—m?p) =0.

But, we have a problem. For k? = —mi and my, > 2m,, D is negative
for part of the range of x. Therefore In D has an imaginary part. This
imaginary part cannot be canceled by A’ and B’, since A’ and B’ must be
real: they are coefficients of hermitian operators in the lagrangian. The
best we can do is ReIl(—m?) = 0 and RelIl'(—m2) = 0. Imposing these

gives
1
T(k2) = %Q/O dz DIn(D/|Dy|) — Sa(k? +m2) (25.12)

where
Dy = —z(1—z)m? +m}, . (25.13)

Now let us compute the imaginary part of II(k?). This arises from the
integration range x_ < x < x4, where z4 = %j: %(1 + mi/kzz)l/2 are
the roots of D = 0 when k? < —4m§<. In this range, ImIn D = —in; the
minus sign arises because, according to eq. (25.11), D has a small negative
imaginary part. Now we have

2 1 o
ImII(k*) = —iwa/ dx D

= —Sma(l+ 4mi/kz2)3/2 k2 (25.14)
when k% < —4mi. Evaluating eq. (25.14) at k? = —m?p, we get
ImII(—m2) = Hra(l — 4m2 /m2)*/? m? . (25.15)

From this and eq. (25.9), we see that
ImII(—m2) = myT . (25.16)

This is not an accident. Instead, it is a general rule. We will argue
this in two ways: first, from the mathematics of Feynman diagrams, and
second, from the physics of resonant scattering in quantum mechanics.
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We begin with the mathematics of Feynman diagrams. Return to the
diagrammatic expression for IT1(k?), before we evaluated any of the integrals:

[ e
1) = -4is” | )t s 27 (+ah

1 1
X
03 +m?2 —ie 13+ m2 —ie

— (AK® + Bm?) . (25.17)

Here, for later convenience, we have assigned the internal lines momenta
¢1 and ¢, and explicitly included the momentum-conserving delta function
that fixes one of them. We can take the imaginary part of I1(k?) by using

the identity
1

T — 1€

= P% +imd(z) , (25.18)

where P means the principal part. We then get, in a shorthand notation,
ImI(k?) = — L’ /(P1P2 —n%16) (25.19)

Next, we notice that the integral in eq. (25.17) is the Fourier transform
of [A(z—y)]?, where

dSk eik(m—y)

is the Feynman propagator. Recall (from problem 8.5) that we can get the
retarded or advanced propagator (rather than the Feynman propagator)
by replacing the € in eq. (25.20) with, respectively, —se or +se, where s =
sign(kY). Therefore, in eq.(25.19), replacing d; with —s;8; and o with
458909 yields an integral that is the real part of the Fourier transform of
Avet(x—y)Auav(z—y). But this product is zero, because the first factor
vanishes when 2 > 4°, and the second when z° < 3°. So we can subtract
the modified integrand from the original without changing the value of the
integral. Thus we have

ImH(kz2) = %9271'2/(1 + 8182)5152 . (25.21)

The factor of 1+ 5152 vanishes if £ and £3 have opposite signs, and equals 2
if they have the same sign. Because the delta function in eq. (25.17) enforces
0+ 03 = k9 and k° = my, is positive, both £ and ¢J must be positive.
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So we can replace the factor of 1 + sy1s9 in eq.(25.21) with 26(£9)6(¢9).
Rearranging the numerical factors, we have
d%,  d%
2y _ 1.2 1 2 6 56 _
ImTI(K?) = 1g / 5 g 2k
x 2m6 (07 +m3)0(07) 2m5(5 + m3)0(63) . (25.22)

If we now set k? = —mi, use eqgs. (25.4) and (25.6), and recall that 7 = ¢

is the decay amplitude, we can rewrite eq. (25.22) as
T TI(—m2) = L / dLIPS, | T2 . (25.23)

Comparing eqs. (25.8) and (25.23), we see that we indeed have
ImII(—m2) = myI . (25.24)

This relation persists at higher orders in perturbation theory. Our anal-
ysis can be generalized to give the Cutkosky rules for computing the imag-
inary part of any Feynman diagram, but this is beyond the scope of our
current interest.

To get a more physical understanding of this result, recall that in non-
relativistic quantum mechanics, a metastable state with energy Ey and
angular momentum quantum number ¢ shows up as a resonance in the
partial-wave scattering amplitude,

1
E)~v —M— . 25.2
If we imagine convolving this amplitude with a wave packet ¢(E)e "Et, we
will find a time dependence
1 - ,
t) ~ [ dE —————p(E)eF!
V() /d F-m B
~ e E0t=T2 (25.26)

Therefore |¢(t)]? ~ e and we identify T' as the inverse lifetime of the
metastable state.

In the relativistic case, consider the scattering process xx — xx. The
contributing diagrams from the effective action are those of fig.(20.1),
where the exact internal propagator can be either ¢ or x. Suppose that
the center-of-mass energy squared s is close to m?o. Since the ¢ progator
has a pole near s = m?p, s-channel ¢ exchange, shown in fig. (25.3), makes

the dominant contribution to the yyx scattering amplitude. We then have

2

g
T ~ . 25.27
—s+m2 —TI(—s) ( )
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Figure 25.3: For s near mi, the dominant contribution to yy scattering is
s-channel ¢ exchange.

Here we have used the fact that the exact @xx vertex has the value g when
all three particles are on-shell. Now let us write

s=(my+e)?~ mfo + 2mye , (25.28)

where ¢ < m,, is the amount of energy by which our incoming particles are
off resonance. We find

~ —g*/2my,
e+ TI(=m2)/2m,

(25.29)

Recalling that Re H(—m?p) = 0, and comparing with eq. (25.25), we see that
we should make the identification of eq. (25.24).

REFERENCE NOTES

The Cutkosky rules are discussed in more detail in Peskin € Schroeder.
More details on resonances can be found in Weinberg I.
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26 INFRARED DIVERGENCES

PREREQUISITE: 20

In section 20, we computed the pp — @@ scattering amplitude in 3 theory
in six dimensions in the high-energy limit (s, ||, and |u| all much larger
than m?). We found that

T =Ty |1 - Ha(in(s/m?) + 0(m?)) + 0(a?)] , (26.1)

where Ty = —¢?(s™! +t~! + u™!) is 