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PREFACE

Every mathematician agrees that every mathematician must know some
set theory; the disagreement begins in trying to decide how much is some.
This book contains my answer to that question. The purpose of the book
is to tell the beginning student of advanced mathematics the basic set-
theoretic facts of life, and to do so with the minimum of philosophical
discourse and logical formalism. The point of view throughout is that
of a prospective mathematician anxious to study groups, or integrals, or
manifolds. From this point of view the concepts and methods of thig
book are merely some of the standard mathematical tools; the experf
specialist will find nothing new here.

Scholarly bibliographical credits and references are out of place in a
purely expository book such as this one. The student who gets interested
in set theory for its own sake should know, however, that there is much
more to the subject than there is in this book. One of the most beautiful
sources of set-theoretic wisdom is still Hausdorff’s Set theory. A recenl
and highly readable addition to the literature, with an extensive and
up-to-date bibliography, is Aziomatic set theory by Suppes.

In set theory “naive” and “‘axiomatic’” are contrasting words. The
present treatment might best be described as axiomatic set theory from
the naive point of view. It is axiomatic in that some axioms for set theory
are stated and used as the basis of all subsequent proofs. It is naive in
that the language and notation are those of ordinary informal (but for-
malizable) mathematics. A more important way in which the naive point
of view predominates is that set theory is regarded as a body of facts, of
which the axioms are a brief and convenient summary; in the orthodox
axiomatic view the logical relations among various axioms are the central
objects of study. Analogously, a study of geometry might be regarded
as purely naive if it proceeded on the paper-folding kind of intuition alone;
the other extreme, the purely axiomatie one, ig the one in which axioms
for the various non-Fuclidean geometries are studied with the same amount,
of attention as Iuelid’s.  The analogue of the point of view of this bool
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is the study of just one sane set of axioms with the intention of deseribing
Euclidean geometry only.

Instead of Naive set theory a more honest title for the book would have
been An outline of the elements of naive set theory. “Elements” would warn
the reader that not everything is here; “outline” would warn him that
even what is here needs filling in. The style is usually informal to the
point of being conversational. There are very few displayed theorems;
most of the facts are just stated and followed by a sketch of a proof, very
much as they might be in a general descriptive lecture. There are only a
few exercises, officially so labelled, but, in fact, most of the book is nothing
but a long chain of exercises with hints. The reader should continually
ask himself whether he knows how to jump from one hint to the next, and,
accordingly, he should not be discouraged if he finds that his reading rate
is eonsiderably slower than normal.

This is not to say that the contents of this book are unusually difficult
or profound. What is true is that the concepts are very general and very
abstract, and that, therefore, they may take sonie getting used to. Itisa
mathematical truism, however, that the more generally a theorem applies,
the less deep it is. The student’s task in learning set theory is to steep
himself in unfamiliar but essentially shallow generalities till they become
so familiar that they can be used with almost no conscious effort, In
other words, general set theory is pretty trivial stuff really, but, if you
want to be a mathematician, you need some, and here it is; read it, absorb
it, and forget it.

P.R. H.
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SECTION 1

THE AXIOM OF EXTENSION

A pack of wolves, a bunch of grapes, or a flock of pigeons are all examples
of sets of things. The mathematical concept of a set can be used as the
foundation for all known mathematics. The purpose of this little book is
to develop the basic properties of sets. Incidentally, to avoid terminologi-
cal monotony, we shall sometimes say collection instead of set. The word
“class” is also used in this context, but there is a slight danger in doing &0,
The reason is that in some approaches to set theory ‘‘class” has a special
technical meaning. We shall have occasion to refer to this again a little
later.

One thing that the development will not include is a definition of sets,
The situation is analogous to the familiar axiomatic approach to elemen-
tary geometry. That approach does not offer a definition of points and
lines; instead it deseribes what it is that one can do with those objectu.
The semi-axiomatic point of view adopted here assumes that the reador
has the ordinary, human, intuitive (and frequently erroneous) understand-
ing of what sets are; the purpose of the exposition is to delineate some of
the many things that one can correctly do with them.

Sets, as they are usually conceived, have elemenis or members. An
element of a set may be a wolf, a grape, or a pigeon. It is important to
know that a set itself may also be an element of some other set. Mathemat-
jes is full of examples of sets of sets. A line, for instance, is a set of points;
the set of all lines in the plane is a natural example of a set of sets (of points).
What may be surprising is not so much that sets may oceur as elements,
but that for mathematical purposes no other elements need ever be con-
gidered. In this book, in particular, we shall study sets, and sets of sots,
and similar towers of sometimes frightening height and complexity—and
nothing else. By way of examples we might occasionally speak of sets of

1




2 NAIVE SET THEORY Sec. 1

cabbages, and kings, and the like, but such usage is always to be construed
ag an illuminating parable only, and not as a part of the theory that is being
developed.

The principal concept of set theory, the one that in completely axiomatic
studies is the principal primitive (undefined) concept, is that of belonging.
If « belongs to A {z is an element of 4, x is contuined in A), we shall write

red.

This version of the Greek letter epsilon is so often used to denote belonging
that its use to denote anything else is almost prohibited. Most authors
relegate ¢ to its set-theoretic use forever and use & when they need the
fifth letter of the Greek alphabet.

Perhaps a brief digression on alphabetic etiquette in set theory might be
helpful. There is no compelling reason for using small and capital letters
as in the preceding paragraph; we might have written, and often will write,
things like 2 ey and A ¢ B. Whenever possible, however, we shall infor-
maelly indicate the status of a set in a particular hierarchy under considera-
tion by means of the convention that letters at the beginning of the alpha-
bet denote elements, and letters at the end denote sets containing them;
similarly letters of a relatively simple kind denote elements, and letters of
the larger and gaudier fonts denote sets containing them. Examples:
zed, AeX, X eC,

A possible relation between sets, more elementary than belonging, is
equality. The equality of two sets 4 and B is universally denoted by the

familiar symbol
A = B;

the fact that 4 and B are not equal is expressed by writing
A # B,

The most basic property of belonging is its relation to equality, which can
be formulated as follows.

Axiom of extension. Two sets are equal if and only if they have the same
elements.

With greater pretentiousness and less clarity: a set is determined by its
extension.

It is valuable to understand that the axiom of extension is not just a
logically necessary property of equality but a non-trivial statement about
belonging. One way to come to understand the point is to eonsider a par-
tially analogous situation in which the analogue of the axiom of extension
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does not hold. Suppose, for instance, that we consider human beings in-
stead of sets, and that, if x and A are human beings, we write 2 e A when-
ever z ig an ancestor of A. (The ancestors of a human being are his par-
ents, his parents’ parents, their parents, etc., etc.) The analogue of the
axiom of extension would say here that if two human beings are equal,
then they have the same ancestors (this is the ‘“‘only if”’ part, and it is
true), and also that if two human beings have the same ancestors, then
they are equal (this is the “if” part, and it is false).

1f A and B are sets and if every element of A is an element of B, we say
that 4 is a subset of B, or B includes A, and we write

AcB

or
B D A.

The wording of the definition implies that each set must be considered to
be included in itself (4 < A); this fact is described by saying that set in-
clusion is reflexive. (Note that, in the same sense of the word, equality also
is reflexive.) If A and B are sets such that 4 C B and 4 » B, the word
proper is used (proper subset, proper inclusion). If 4, B, and € are sels
such that 4 < Band B < C, then A C C; this faet is described by saying
that set inclusion is transitive. (This property is also shared by equality.)

If A and B are sets such that A € Band B © A, then 4 and B have the
same elements and therefore, by the axiom of extension, 4 = B. This facl
is described by saying that set inclusion is entisymmetric. (In this respecl
set inclusion behaves differently from equality. Equality is symmetric, in
the sense that if 4 = B, then necessarily B = A.) The axiom of extension
can, in fact, be reformulated in these terms: if A and B are sets, then n
necessary and sufficient condition that A = B is that both 4 < B and
B c A. Correspondingly, almost all proofs of equalities between two notn
A and B are split into two parts; first show that 4 C B, and then show
that B < 4.

Observe that belonging (¢) and inclusion () are conceptually very
different things indeed. One important difference has already manifested
itself above: inclusion is always reflexive, whereas it is not at all clear that
belonging is ever reflexive. That is: 4 C A is always true; is A e A evor
true? It is certainly not true of any reasonable set that anyone has ever
seen. Observe, along the same lines, that inclusion is transitive, whereay
belonging is not. Everyday examples, involving, for instance, super-organ-
izations whose members are organizations, will readily oceur to the intoers
ested reader.




SECTION 2

THE AXIOM OF SPECIFICATION

All the basie principles of set theory, except only the axiom of extension,
are designed to make new sets out of old ones. The first and most impor-
tant of these basic principles of set manufacture says, roughly speaking,
that anything intelligent one can assert about the elements of a set specifies
a subset, namely, the subset of those elements about which the assertion is
true.

Before formulating this principle in exact terms, we look at a heuristic
example. Let A be the set of all men. The sentence “z is married” is true
for some of the elements z of A and false for others. The principle we are
illustrating is the one that justifies the passage from the given set A to the
subset (namely, the set of all married men) specified by the given sentence.
To indicate the generation of the subset, it is usually denoted by

{® e A: x is married}.
Similarly
{® € A: x 35 not married}

is the set of all bachelors;
{z € A: the father of z is Adam)}
is the set that contains Cain and Abel and nothing else; and

{x € A: x is the father of Abel}

is the set that contains Adam and nothing else. Warning: & box that con-

tains & hat and nothing else is not the same thing as a hat, and, in the

same way, the last set in this list of examples is not to be confused with
4
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Adam. The analogy between sets and boxes has many weak points, but
gometimes it gives a helpful picture of the facts.

All that is lacking for the precise general formulation that underlies the
examples above is a definition of sentence. Here is a quick and informal
one. There are two basic types of sentences, namely, assertions of be-
longing,

Ted,

and assertions of equality,
A = B;

all other sentences are obtained from such atomic sentences by repeated
applications of the usual logical operators, subject only to the minimal
courtesies of grammar and unambiguity. To make the definition more
explicit (and longer) it is necessary to append to it a list of the “usual logi-
cal operators” and the rules of syntax. An adequate (and, in fact, redun-
dant) list of the former contains seven iterns:

and,

or (in the sense of “either—or—or both”),
not,

if—then—(or tmplies),

if and only if,

for some (or there exists),

for all.

As for the rules of sentence construction, they can be described as follows.
(i) Put “not” before a sentence and enclose the result between parentheses.
(The reason for parentheses, here and below, is to guarantee unambiguity.
Note, incidentally, that they make all cther punctuation marks unneces-
gary. The complete parenthetical equipment that the definition of sen-
tences calls for is rarely needed. We shall always omit as many parentheses
as it seems safe to omit without leading to confusion. In normal mathe-
matical practice, to be followed in this book, several different sizes and
shapes of parentheses are used, but that is for visual convenience only.)
(i) Put “and” or “or” or “if and only if”’ between two sentences and en-
close the result between parentheses. (iii) Replace the dashes in “if—then
—" by sentences and enclose the result in parentheses. (iv) Replace the

dash in “for some—" or in “for all—" by a letter, follow the result by a
gentence, and enclose the whole in parentheses. (If the letter used does
not oceur in the sentence, no harm is done. According to the usual and
natural convention “for some y (@ ¢ A)” just means “@ e A7, It is equally
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harmless if the letter used has already been used with “for some—"" or
“for all—."" Recall that “for some = (x e A)” means the same as “for
some y (y e A)Y’; it follows that a judicious change of notation will always
avert alphabetic collisions.)

We are now ready to formulate the major principle of set theory, often
referred to by its German name Aussonderungsaziom.

Axiom of specification. To every set A and fo every condition S(x)
there corresponds a set B whose elements are exactly those elements x of A
Jor which S(z) holds.

A “condition’ here is just a sentence. The symbolism is intended to indi~
cate that the letter x is free in the sentence S(z) ; that means that x ocecurs in
S(z) at least once without being introduced by one of the phrases “for some
&’ or “for all z.” Iiis an immediate consequence of the axiom of extension
that the axiom of specification determines the set B uniquely. To indicate
the way B is obtained from A and from S(z) it is customary to write

B = {xed:S(@)}.

To obtain an amusing and instructive application of the axiom of specifi-
cation, consider, in the role of S(z}, the sentence

not {z e x).

It will be convenient, here and throughout, to write ““x ¢ A" (alternatively
“r ¢ A”) instead of “not (x € A)”’; in this notation, the role of S(z) is now
played by

x e x.

It follows that, whatever the set A may be, if B = {2 ¢ A: « ¢ x}, then,
for all g,

(*) yeBifand only if (ye A and y € y).

Can it be that B¢ A? We proceed to prove that the answer is no. In-
deed, if B ¢ A, then either B ¢ B also {unlikely, but not obviously impos-
sible), or else B ¢ B. If B ¢ B, then, by (%), the assumption B ¢ 4 yields
B ¢ B—a contradiction, If B¢ B, then, by (¥) again, the assumption
B ¢ A yields B ¢ B—a contradiction again. This completes the proof that
B ¢ A is impossible, so that we must have B ¢ A. The most interesting
part of this conclusion is that there exists something (namely B) that does
not belong to A. The set A in this argument was quite arbitrary. We
have proved, in other words, that

nothing contains everything,

Sea. 2 THE AXIOM OF SPECIFICATION 7

or, more spectacularly,
there is no universe.

“Universe” here is used in the sense of “universe of discourse,” meaning,
in any partieular discussion, a set that contains all the objects that enter
into that discussion.

In older (pre-axiomatic) approaches to set theory, the existence of a
universe was taken for granted, and the argument in the preceding para~
graph was known as the Russell parador. The moral is that it is impossi-
ble, especially in mathematics, to get something for nothing. To specify
a set, it is not enough to pronounce some magic words (which may form a
gentence such as “x ¢ 2'’); it is neecessary also to have at hand a set to
whose elements the magic words apply.



SECTION 3

UNORDERED PAIRS

For all that has been said so far, we might have been operating in a
vacuum. To give the discussion some substance, let us now officially as-
sume that

there exists a sef.

Since later on we shall formulate a deeper and more useful existential
assumption, this assumption plays a temporary role only. One conse-
quence of this innocuous seeming assumption is that there exists a set
without any elements at all. Indeed, if A is a set, apply the axiom of
specification to 4 with the sentence ‘@ 7 2’ (or, for that matter, with
any other universally false sentence). The result is the set {z ¢ A: 2 = z},
and that set, clearly, has no elements. The axiom of extension implies
that there can be only one set with no elements. The usual symbol for
that set is
z;

the set is called the empty sef.

The empty set is a subset of every set, or, in other words, & < 4 for
every A. To establish this, we might argue as follows. It is to be proved
that every element in & belongs to A ; since there are no elements in &,
the condition is automatically fulfilled. The reasoning is correct but per-
haps unsatisfying. Since it is a typical example of a frequent phenomenon,
g, condition holding in the ‘“vacuous” sense, a word of advice to the inex-
perienced reader might be in order. To prove that something is true about
the empty set, prove that it cannot be false. How, for instance, could it
be false that & < A? It could be false only if @& had an element that did
not belong to A. Since @& has no elements at all, this is absurd. Conclu-

gion: & C A is not false, and therefore & < A for every A.
H)
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The set theory developed so far is still a pretty poor thing; for all we
know there is only one set and that one is empty. Are there enough sets
to ensure that every set is an element of some set? Is it true that for any
two sets there is a third one that they both belong to? What about three
sets, or four, or any number? We need a new principle of set eonstruction
to resolve such questions. The following principle is a good beginning,

Axiom of pairing. For any fwo sels there exists a sel that they both be-
long lo.

Note that this is just the affirmative answer to the second question above.

To reassure worriers, let us hasten to observe that words such as “two,”
‘“three,” and “four,” used above, do not refer to the mathematical concepts
bearing those names, which will be defined later; at present such words are
merely the ordinary linguistic abbreviations for “something and then some-
thing else” repeated an appropriate number of times. Thus, for instance,
the axiom of pairing, in unabbreviated form, says that if @ and b are sets,
then there exists a set 4 such that ¢ ¢ A and b ¢ A.

One consequence (in fact an equivalent formulation) of the axiom of
pairing is that for any two sets there exists a set that contains both of
them and nothing else. Indeed, if @ and b are sets, and if A is a set such
that a e A and b ¢ A, then we can apply the axiom of specification to 4
with the sentence “x = a or x = b.”” The result is the set

{eed:z=aorz =0},

and that set, clearly, contains just ¢ and b. The axiom of extension im-
plies that there can be only one set with this property. The usual symbol
for that set is

{a, b};

the set is called the pair (or, by way of emphatic comparison with a sub-
sequent concept, the unordered pair) formed by a and b,

If, temporarily, we refer to the sentence “z = @ or = b as S(z), we
may express the axiom of pairing by saying that there exists a set B such
that

(*) z ¢ B if and only if S(z).

The axiom of specification, applied to a set A, asserts the existence of a
set B such that

) x ¢ B if and only if (x ¢ A and S(z)).
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The relation between (+) and (#) typifies something that occurs quite
frequently. All the remaining principles of set construction are pseudo-
special cases of the axiom of specification in the sense in which () is a
pseudo-special case of (). They all assert the existence of a set specified
by a certain condition; if it were known in advance that there exists a set
containing all the specified elements, then the existence of a set containing
just them would indeed follow as a special case of the axiom of specification.

If @ is a set, we may form the unordered pair {a, ¢}. That unordered
pair is denoted by

{a}

and is called the singleton of a; it is uniquely characterized by the state-
ment that it has ¢ as its only element. Thus, for instance, & and { &}
are very different sets; the former has no elements, whereas the latter has
the unique element &. To say that a e A is equivalent to saying that
{a} C A,

The axiom of pairing ensures that every set is an element of some set
and that any two sets are simultaneously elements of some one and the
same set. (The corresponding questions for three and four and more sets
will be answered later.) Another pertinent comment is that from the as-
sumptions we have made so far we can infer the existence of very many
sets indeed. For examples consider the sets &, {&}, ({1}, {{{F}}),
ete.; consider the pairs, such as { @&, { &1}, formed by any two of them;
congider the pairs formed by any two such pairs, or else the mixed pairs
formed by any singleton and any pair; and proceed so on ad infinitum.

Exmrcige, Are all the sets obtained in this way distinet from one
another?

Before continuing our study of set theory, we pause for a moment to
discuss a notational matter. It seems natural to denote the set B deseribed
in (*} by {z:8(x)}; in the special case that was there considered

{z:2 =aorz=>0} = {a, b}.
‘We shall use this symbolism whenever it is convenient and permissible to
doso. If, that is, S(z) is a condition on x such that the 2’s that S(z) speci-
fies constitute a set, then we may denote that set by
{z: 8(z)}.

In case A is a set and S(z) is (x € A), then it is permissible to form {x: S(z)};
in fact

{xizedl = A.

SEc. 3 UNORDERED PAIRS 11

If A is a set and S(z) is an arbitrary sentence, it is permissible to form
{2:2 ¢ A and S(z)}; this set is the same as {x e 4: S(x)}. As further ex-
amples, we note that

riz#al =
and

{212 = a} = {al.

In case S(z) is (z ¢ x), or in case 8(z) is (z = z), the specified 2’s do not
constitute a set.

Despite the maxim about never getting something for nothing, it seems
a little harsh to be told that certain sets are not really sets and even their
names must never be mentioned. Some approaches to set theory try to
soften the blow by making systematic use of such illegal sets but just not
calling them sets; the customary word is “class.” A precise explanation
of what classes really are and how they are used is irrelevant in the present
approach. Roughly speaking, a class may be identified with a condition
(sentence), or, rather, with the “extension” of a condition.




SECTION 4

UNIONS AND INTERSECTIONS

If A and B are sets, it is sometimes natural to wish to unite their ele-
ments into one comprehensive set. One way of deseribing such a com-
prehensive set is to require it to contain all the elements that belong to at
least one of the two members of the pair {4, B}. This formulation sug-
gests a sweeping generalization of itself; surely a similar construction
should apply to arbitrary collections of sets and not just to pairs of them.
What is wanted, in other words, is the following principle of set construe-
tion.

Axiom of unions. For every collection of sets there exisls a set that con-

tains all the elements thal belong to al least one set of the given collection.,

Here it is again: for every collection € there exists a set {7 such that if
2 € X for some X in @, then z ¢ U. (Note that “at least one’ is the same
as “some.””)

The comprehensive set U7 described above may be too comprehensive; it
may contain elements that belong to none of the sets X in the collection €.
This is easy to remedy; just apply the axiom of specification to form the
set

{z e U:x e X for some X in @},

(The condition here is a translation into idiomatic usage of the mathemati-
cally more acceptable “for some X (x ¢ X and X € €).”) It follows that, for
every z, a necessary and sufficient condition that 2 belong to this set is
that = belong to X for some X in €. If we change notation and call the
new set U again, then

U= {z:zeX for some X in €}.

This set U is called the union of the collection @ of sets; note that the
12

Sec. 4 UNIONS AND INTERSECTIONS 13

axiom of extension guarantees its uniqueness. The simplest symbol for U
that is in use at all is not very popular in mathematical circles; it is

U e.
Most mathematicians prefer something like
U{X:Xee}
or
U Xaee X .

Further alternatives are available in certain important special cases; they
will be described in due course.

For the time being we restrict our study of the theory of unions to the
simplest facts only. The simplest fact of all is that

U (X: X e} = 4,
and the next simplest fact is that
UX:XefA)l} = A,

In the brutally simple notation mentioned above these facts are expressed
by

Ug =4

U (4} = A.

The proofs are immediate from the definitions.

There is a little more substance in the union of pairs of sets (which is
what started this whole discussion anyway). In that case special notation
is-used:

and

U(X:Xe{d, B}} =AUB.

The general definition of unions implies in the special case that x e A U B
if and only if « belongs to either A or B or both; it follows that

AUB={zizedoraxeB].
Here are some easily proved facts about the unions of pairs:
AU G =4,
A U B = B U A (commutativity),
AU BUCQO = (4 U B) U C (associativity),
A U A = A (idempotence),
Adc Bifandonlyif AU B = B,
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Every student of mathematics should prove these things for himself at
least once in his life. The proofs are based on the corresponding elemen-
tary properties of the logical operator or.

An equally simple but guite suggestive fact is that

{a} U {b] = {q, b}.
‘What this suggests is the way to generalize pairs, Specifically, we write
{a, b, ¢} = {a} U {b} U {c}.

The equation defines its left side. The right side should by rights have at
least one pair of parentheses in it, but, in view of the associative law, their
omission can lead to no misunderstanding. Since it is easy to prove that

la,bc} = {m:z=aorz=borz = ¢},

we know now that for every three sets there exists a set that contains them
and nothing else; it is natural to call that uniquely determined set the
(unordered) triple formed by them. The extension of the notation and
terminology thus introduced to more terms (quadruples, ete.) is obvious.
The formation of unions has many points of similarity with another set-

theoretic operation. If A and B are sets, the infersection of A and B is the
set

ANB
defined by

ANB={xed:aeB}
The definition is symmetrie in A and B even if it looks otherwise; we have
ANB={zeB:xed}

and, in fact, since £ ¢ 4 N B if and only if = belongs to both 4 and B, it
follows that

ANB={s:zed and xeB)}.

The basic facts about intersections, as well as their proofs, are similar to
the basie facts about unions:

AN G =g,
ANB=BN A4,
ANBNCO=ANBNC,
ANA=A,
ACBifandonlyif AN B = A,
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Pairs of sets with an empty intersection oceur frequently enough to justify
the use of a special word: if A N B = ¢, the sets A and B are called
disjoint. The same word is sometimes applied to a collection of sets to
indicate that any two distinct sets of the collection are disjoint; alterna-
tively we may speak in such a situation of a pairwise disjoint collection.

Two useful facts about unions and intersections involve both the opera-
tions at the same time:

ANBUCO=ANBUMANDO,
AUBNC =(AUB)NAUOQ.

These identities are called the distrtbutive laws. By way of a sample of a
get-theoretic proof, we prove the second one. If z belongs to the left side,
then z belongs either to 4 or to both B and C;if x is in 4, then  is in both
AU Band A U C, and if 2 is in both B and C, then, again, z is in both
A U Band 4 U C; it follows that, in any case, z belongs to the right side.
This proves that the right side includes the leit. To prove the reverse in-
clusion, just observe that if x belongs to both A U B and 4 U C, then z
belongs either to 4 or to both B and C.

The formation of the intersection of two sets 4 and B, or, we might as .
well say, the formation of the intersection of a pair {4, B} of sets, is a
gpecial case of a much more general operation. (This is another respect in
which the theory of intersections imitates that of unions.) The existence
of the general operation of intersection depends on the fact that for each
non-empty collection of sets there exists a set that contains exactly those
clements that belong to every set of the given collection. In other words:
for each collection €, other than &, there exists a set V such that « ¢ V' if
and only if # e X for every X in €. To prove this assertion, let A be any
particular set in € (this step is justified by the fact that € 7= ) and
write

V= {zed:xeX for every X in C}.

(The condition means “for all X (if X ¢ €, thenx ¢ X).”) The dependence
of V on the arbitrary choice of A is illusory; in fact

V = {z:7 e X for every X in €}.

The set V is called the dnfersection of the collection @ of sets; the axiom
of extension guarantees its uniqueness. The customary notation is similar
o the one for unions: instead of the unobjectionable but unpopular

Nne,
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the set V is usually denoted by
N{X:Xee}

nX¢EX-

Exercige. A necessary and sufficient condition that (4 N B) U ¢ =

AN (B UDC)is that ¢ © A. Observe that the condition has nothing
to do with the set B,

or

SECTION 5

COMPLEMENTS AND POWERS

If A and B are sets, the difference between A and B, more often known
as the relative complement of B in A, is the set 4 — B defined by

A—B={zxed:z¢ B}

Note that in this definition it is not necessary to assume that B C A. In
order to record the basic facts about complementation as simply as possi-
ble, we assume nevertheless (in this section only) that all the sets to be
mentioned are subsets of one and the same set F and that all complements
(unless otherwise specified) are formed relative to that E. In such situa-
tions (and they are quite common) it is easier to remember the underlying
set E than to keep writing it down, and this makes it possible to simplify
the notation. An often used symbol for the temporarily absolute (as op-
posed to relative) complement of A is A”. In terms of this symbol the
basic facts about complementation can be stated as follows:

(47) = 4,
g’ =E, E =g,
ANA =g, AUA =E,
AC Bifand only if B' C A’.

The most important statements about complements are the so-called De
Morgan laws:

(AUBY =A'NB, (ANBy =4'UB.

(We shall see presently that the De Morgan laws hold for the unions and

intersections of larger collections of sets than just pairs.) These facts about
17
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complementation imply that the theorems of set theory usually come in
pairs. If in an inclusion or equation involving unions, intersections, and
complements of subsets of F we replace each set by its complement, inter-
change unions and intersections, and reverse all inclusions, the result is
a1 other theorem. This fact is sometimes referred to as the principle of
dr ality for sets.

Here are some easy exercises on complementation.

A—-B=ANDJ.
AcBifandonlyif A — B = &,
A—(4—-B)y=A4ANB.
ANB-C)=(ANB)—(A4NCOC).
ANBcANCUBNCC).
[auven®BducecycAUB.

If A and B are sets, the symmelric difference (or Boolean sum) of A and B
is the set 4 - B defined by

A4 B=(4—B)U(B— A).

This operation is commutative (4 + B = B 4 A) and associative (4 4
(B+C) = (44 B)+ (), and is such that 4 + & = 4 and 4 + 4
= g.

This may be the right time to straighten out a trivial but occasionally
puzzling part of the theory of intersections. Recall, to begin with, that
intersections were defined for non-empty collections only. The reason is
that the same approach to the empty collection does not define a set.
Which 2's are specified by the sentence

x e X for every X in &5?

As usual for questions about @& the answer is easier to see for the corre-
sponding negative question. Which 2’s do not satisfy the stated condition?
If it is not true that x e X for every X in &, then there must exist an X in
¢ such that x ¢ X ; since, however, there do not exist any X’s in ¢J at all,
this is absurd. Conelusion: no « fails to satisfy the stated condition, or,
equivalently, every x does satisfy it. In other words, the &’s that the con-
dition specifies exhaust the (nonexistent) universe. There is no profound
problem here; it is merely a nuisance to be forced always to be making
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qualifications and exceptions just because some set somewhere along some
construction might turn out to be empty. There is nothing to be done
about this; it is just a fact of life.

"If we restrict our attention to subsets of a particular set F, as we have
temporarily agreed to do, then the unpleasantness described in the pre-
ceding paragraph appears to go away. The point is that in that case we
can define the intersection of a collection € (of subsets of E) to be the set

{veE:xeX for every X in C}.

This is nothing revolutionary; for each non-empty collection, the new def-
inition agrees with the old one. The difference is in the way the old and
the new definitions treat the empty collection; according to the new defini.
tion Nx. o X is equal to E. (For which clements z of ¥ can it be false
that z € X for every X in &?) The difference is just a matter of language.
A little reflection reveals that the “new’ definition offered for the inter-
gection of a collection @ of subsets of ¥ is really the same as the old defini-
tion of the intersection of the collection € U {&}, and the latter is never
empty.

We have been considering the subsets of a set E; do those subsets them-
gelves constitute a set? The following principle guarantees that the answer
is yes.

Axiom of powers. For each set there exists a collection of sets that con-
lains among iis elements all the subsets of the given sel.

In other words, if F is a set, then there exists a set (collection) @ such that
if X C E, then X ¢ ®.

The set ® described above may be larger than wanted; it may contain
elements other than the subsets of E. This is easy to remedy; just apply
the axiom of specification to form the set {X ¢ ®: X € E}. (Recall that
“X c B says the same thing as “for all © (if ¢ X then x ¢ E).”) Since,
for every X, a necessary and sufficient condition that X belong to this set
is that X be a subset of E, it follows that if we change notation and call
this set @ again, then

¢ ={X:XcE}

The set @ is called the power set of E; the axiom of extension guarantees its
uniqueness. The dependence of ® on E is denoted by writing ®(F) in-
ptead of just @.

Because the set ®(F) is very big in comparison with E, it is not easy to
give examples, If B = &, the situation is clear enough; the set ®(Z) is
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the singleton {@&}. The power sets of singletons and pairs are also easily
describable; we have
®({a}) = {J, {a}}

®(fa, b)) = {2, {a}, (b}, {a, b}}.

The power set of a triple has eight elements. The reader can probably
guess (and is hereby challenged to prove) the generalization that includes
all these statements: the power set of a finite set with, say, n elements has
2" elements. (Of course concepts like ‘‘finite’” and “2™”’ have no official
standing for us yet; this should not prevent them from being unofficially
understood.) The occurrence of n as an exponent (the n-th power of 2)
has something to do with the reason why a power set bears its name.

If @ is a collection of subsets of a set & (that is, € is a subcollection of
®(E)), then write

and

D= {Xe®E): X' ee}.

(To be certain that the condition used in the definition of © is a sentence
in the precise technical sense, it must be rewritten in something like the
form

for some Y [Y ¢ @ and for all » (x ¢ X if and only if (x e B and x ¢ Y))].

Similar comments often apply when we wish to use defined abbreviations
instead of logical and set-theoretic primitives only. The translation rarely
requires any ingenuity and we shall usually omit it.) It is customary to
denote the union and the intersection of the collection D by the symbols

UX(QJKIir a‘nd nXeGX!'
In this notation the general forms of the De Morgan laws become

(Ux.cX)’ = nx-cX’

(ﬂx.eX)’ = UX:E X,

The proofs of these equations are immediate consequences of the appro-
priate definitions.

Exgrcise. Prove that ®(F) N ¢F) = ®(E N F) and ¢(E) U ¢F)
®(E U F). These assertions can be generalized to

nxw P(X) = CP(ﬂx.eX)

and

and

Uxee ®X) € 0(Uxee X);
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find a reasonable interpretation of the notation in which these generaliza-
tions were here expressed and then prove them. Further elementary

facts:
nx.(l’(m X =4®’J

if E C F, then ®(E) C ®(F).

A curious question concerns the commutativity of the operators @ and
U. Show that E is always equal to Ux.p@ X (that is E = | ®(&)),
but that the result of applying ® and |J to E in the other order is a set
that includes F as a subset, typically a proper subset.

and




SECTION 6

ORDERED PAIRS

What does it mean to arrange the elements of a set A in some order?
Suppose, for instance, that the set A.is the quadruple {a, b, ¢, d} of distinet
elements, and suppose that we want to consider its elements in the order

cbda.

Even without a precise definition of what this means, we can do something
set-theoretically intelligent with it. We can, namely, consider, for each
particular spot in the ordering, the set of all those elements that occur at or
before that spot; we obtain in this way the sets

{e} {e, b} {e,b,d} {eb,d, al
‘We can go on then to consider the set (or collection, if that sounds better)
C= “a’! b: C, d}} {b: C}, {b: c, d}s {c}}

that has exactly those sets for its elements. In order to emphasize that
the intuitively based and possibly unclear concept of order has succeeded
in producing something solid and simple, namely a plain, unembellished
set @, the elements of ©, and their elements, are presented above in & scram-
bled manner, (The lexicographically inclined reader might be able to see
a method in the manner of scrambling.)

Let us continue to pretend for a while that we de know what order
means. Suppose that in a hasty glance at the preceding paragraph all we
could catch is the set ©; can we use it to recapture the order that gave rise
to it? The answer is easily seen to be yes. Hxamine the elements of ©
(they themselves are sets, of course) to find one that is included in all the
others; since {¢} fills the bill (and nothing else does) we know that ¢ must
have been the first element. Look next for the next smallest element of €,

22
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i.e., the one that is included in all the ones that remain after {c} is removed;
since {b, ¢} fills the bill (and nothing else does), we know that b must have
been the second element. Proceeding thus (only two more steps are needed)
we pass from the sef @ to the given ordering of the given set A.

The moral is this: we may not know precisely what it means to order the
elements of a set A, but with each order we can associate a set © of subsets
of A in such a way that the given order can be uniquely recaptured from
@. (Here is a non-trivial exercise: find an intrinsic characterization of those
sets of subsets of A that correspond to some order in 4. Sinee “order”
has no official meaning for us yet, the whole problem is officially meaning-
less. Nothing that follows depends on the solution, but the reader would
learn something valuable by trying to find it.) The passage from an order
in A to the set €, and back, was illustrated above for a quadruple; for a
pair everything becomes at least twice as simple. If A = {a, b} and if, in
the desired order, @ comes first, then @ = {{a}, {e, b}}; if, however, b
comes first, then € = {{b}, {a, b}}.

The ordered pair of a and b, with first coordinale a and second coordinate
b, is the set (a, b) defined by

(a,b) = {{a}) {a:b”"

However convincing the motivation of this definition may be, we must
still prove that the result has the main property that an ordered pair must
have to deserve its name. We must show that if (e, b) and (z, y) are or-
dered pairs and if (a, b) = (2, y), then ¢ = & and b = y. To prove this,
we note first that if @ and b happen to be equal, then the ordered pair (g, b)
is the same as the singleton {{a}}. If, conversely, (a, b) is a singleton,
then {a} = {a, b}, so that b ¢ {a}, and therefore @ = b. Suppose now that
(@, b) = (z,y). If a = b, then both (a, b} and (x, y) are singletons, so that
@ = y; since {z} € (a, b) and {a} € (x, y), it follows that a, b, z, and y are
all equal. If @ ¢ b, then both (e, b) and (z, y) contain exactly one single-
ton, namely {a} and {x} respectively, so that a = x. Since in this case it
is also true that both (g, b) and (z, y) contain exactly one unordered pair
that is not a singleton, namely {a, b} and {x, y} respectively, it follows that
{a, b} = {z,y}, and therefore, in particular, b € {z, y}. Since b cannot be
@ (for then we should have ¢ =.z and b = z, and, therefore, a = b), we
must have b = y, and the proof is complete.

If A and B are sets, does there exist a set that contains all the ordered
pairs (a, b) with a in A and b in B? It is quite easy to see that the answer
is yes. Indeed, if @ ¢ A and b e B, then {a} C A and {b} C B, and there-
fore {a, b} © A U B. Since also {a} < A U B, it follows that both {a}
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and {a, b} are elements of ®(4 U B). This implies that {{a}, {a,b}} isa
subset of ®(4 U B), and hence that it is an element of ®(®(4 U B)); in
other words (@, b) e ®(®(4 U B)) whenever ¢ ¢ 4 and b ¢ B. Once this is
known, it is a routine matter to apply the axiom of specification and the
axiom of extension to produce the unique set 4 X B that consists exactly
of the ordered pairs (e, b) with @ in A and b in B. This set is called the
Cartestan product of A and B; it is characterized by the fact that

A X B = {x:z = (a,b) for some a in A and for some b in B}.

The Cartesian product of two sets is a set of ordered pairs (that is, a set
each of whose elements is an ordered pair), and the same is true of every
subset of a Cartesian product. It is of technical importance to know that
we can go in the converge direction also: every set of ordered pairs is a subset
of the Cartesian product of two sets. In other words: if K is a set such
that every element of R is an ordered pair, then there exist two sets 4 and
B such that B < A X B. The proof is elementary. Suppose indeed that
z e R, so that = {{a}, {g, b}} for some a and for some b. The problem
is to dig out @ and b from under the braces. Since the elements of R are
sets, we can form the union of the sets in ; since x is one of the sets in &,
the elements of z belong to that union. Since {a, b} is one of the elements
of #, we may write, in what has been called the brutal notation above,
{a,b) ¢ U R. One set of braces has disappeared; let us do the same thing
again to make the other set go away. Form the union of the sets in |J Z.
Since {a, b} is one of those sets, it follows that the elements of {a, b} belong
to that union, and hence both @ and b belong to |J |J R. This fulfills the
promise made above; to exhibit R as a subset of some 4 X B, we may take
both 4 and Btobe lJ U R. It is often desirable to take A and B as small
as possible. To do so, just apply the axiom of specification to produce the
sets

A = {a: for some b ((a, b) e R)}
and
B = {b: for some a ((a, b) e R)}.

These sets are called the projections of R onto the first and second eocordi-
nates respectively.

However important set theory may be now, when it began some scholars
considered it a disease from which, it was to be hoped, mathematics would
goon recover. For this reason many set-theoretic considerations were
called pathological, and the word lives on in mathematical usage; it often
refers to something the speaker does not like. The explicit definition of an
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ordered pair {((a, b) = {{a}, {a, b}}) is frequently relegated to pathological
get theory. TFor the benefit of those who think that in this case the name
is deserved, we note that the definition has served its purpose by now and
will never be used again. We need to know that ordered pairs are deter-
mined by and uniquely determine their first and second coordinates, that
Cartesian products can be formed, and that every set of ordered pairs is a
subset of some Cartesian product; which particular approach is used to
achieve these ends is immaterial,

It is easy to locate the source of the mistrust and suspicion that many
mathematicians feel toward the explicit definition of ordered pair given
above. The trouble is not that there is anything wrong or anything miss-
ing; the relevant properties of the concept we have defined are all correct
(that is, in aceord with the demands of intuition) and all the correet proper-
ties are present. The trouble is that the concept has some irrelevant prop-
erties that are accidental and distracting. The theorem that (a, ) =
(z, y) if and only if @ = z and b = y is the sort of thing we expeet to learn
about ordered pairs. The fact that {a, b} € (a, b), on the other hand, seems
accidental; it is a freak property of the definition rather than an intrinsic
property of the concept.

The charge of artificiality is true, but it is not too high a price to pay
for conceptual economy. The concept of an ordered pair could have been
introduced as an additional primitive, axiomatically endowed with just the
right properties, no more and no less. In some theories this is done. The
mathematician’s choice is between having to remember a few more axioms
and having to forget a few accidental facts; the choice is pretty clearly a
matter of taste. Similar choices oceur frequently in mathematics; in this
book, for instance, we shall encounter them again in connection with the
definitions of numbers of various kinds,

Exerose, If A, B, X, and Y are setg, then
@) (AUB) XX =(4xXX) U @BXX),
(M ANBXENY)=UXX)NBXY),
(i) (4 —B) X X = (4 X X) — (B X X).

If either A = & or B =, then 4 X B = &, and conversely. If
AcXand BC Y, then A X BC X X Y, and (provided 4 X B
&) conversely.



SECTION 7

RELATIONS

Using ordered pairs, we can formulate the mathematical theory of rela-
tions in set-theoretic language. By a relation we mean here something like
marriage (between men and women) or belonging (between elements and
sets). More explicitly, what we shall call a relation is sometimes called a
binary relation. An example of a ternary relation is parenthood for people
(Adam and Eve are the parents of Cain). In this book we shall have no
occasion to treat the theory of relations that are ternary, quaternary, or
WOrse.

Looking at any specific relation, such as marriage for instance, we might
be tempted to consider certain ordered pairs (z, ), namely just those for
which z is a man, ¥ is & woman, and » is married to y. We have not yet
gseen the definition of the general coneept of a relation, but it seems plausi-
ble that, just as in this marriage example, every relation should uniquely
determine the set of all those ordered pairs for which the first coordinate
does stand in that relation to the second. If we know the relation, we know
the set, and, better yet, if we know the set, we know the relation. If, for
instance, we were presented with the set of ordered pairs of people that
corresponds to marriage, then, even if we forgot the definition of marriage,
we could always tell when a man z is married to a woman y and when not;
we would just have to see whether the ordered pair (z, ) does or does not
belong to the set.

We may not know what a relation is, but we do know what a set is, and
the preceding considerations establish a close connection between relations
and sets. The precise set-theoretic treatment of relations takes advantage
of that heuristic connection; the simplest thing to do is to define a relation
to be the corresponding set. This is what we do; we hereby define a rela-
tion as a set of ordered pairs. Explicitly: a set R is a relation if each ele-
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ment of B is an ordered pair; this means, of course, that if 2 ¢ B, then there
exist « and y so that z = (=, ¥). If B is a relation, it is sometimes con-
venient to express the faet that (z, y) ¢ B by writing

Ry

and saying, as in everyday language, that x stands in the relation R to y.

The least exciting relation is the empty one. (To prove that & is a set
of ordered pairs, look for an element of @ that is not an ordered pair.)
Another dull example is the Cartesian product of any two sets X and Y.
Here is a slightly more interesting example: let X be any set, and let B be
the set of all those pairs (z, ¥) in X X X for which z = y. The relation B
is just the relation of equality between elements of X; if # and y are in X,
then z Ry means the same as ¢ = y. One more example will suffice for
now: let X be any set, and let R be the set of all those pairs (z, A) in X X
®(X) for which z ¢ A. This relation R is just the relation of belonging
between elements of X and subsets of X; if 2 ¢X and A4 ¢ ®(X), then
2 B A means the same as @ ¢ 4.

In the preceding section we saw that associated with every set B of
ordered pairs there are two sets called the projections of R onto the first
and second coordinates, In the theory of relations these sets are known
as the domain and the range of B (abbreviated dom R and ran R); we
recall that they are defined by

dom R = {x: for some y (z R y)}

and
ran 2 = {y: for some x (xR y)}.

If R is the relation of marriage, so that x B y means that « is a man, y is a
woman, and = and y are married to one another, then dom R is the set of
married men and ran B is the set of married women. Both the domain
and the range of & are equal to &. If R = X X Y, then dom R = X
and ran B = VY. If R is equality in X, then dom R =ranR = X, If B
is belonging, between X and ®(X), then dom £ = X and ran R = ®(X)
-~ {D}.

If R is a relation included in a Cartesian product X X ¥ (so that dom R
< X and ran B < V), it is sometimes convenient to say that R is a relation
from X to Y; instead of a relation from X to X we may speak of a relation
in X. Arelation B in X is reflexive if R  for every z in X; it is symmetric
if # R y implies that y R «; and it is transitive if 2 B y and y R z imply that
a7z (Exercise: for each of these three possible properties, find a relation
that does not have that property but does have the other two.) A relation
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in a set is an equivalence relation if it is reflexive, symmetric, and transitive.
The smallest equivalence relation in a set X is the relation of equality in
X; the largest equivalence relation in X is X X X,

There is an intimate connection between equivalence relations in a set
X and certain collections (called partitions) of subsets of X. A partition
of X is a disjoint collection € of non-empty subsets of X whose union is X.
If R is an equivalence relation in X, and if  is in X, the equivalence class
of x with respect to R is the set of all those elements i in X for which z R y.
(The weight of tradition makes the use of the word “class’ at this point
unavoidable.) Examples: if B is equality in X, then each equivalence class
is a singleton; if R = X X X, then the set X itself is the only equivalence
class. There is no standard notation for the equivalence class of z with
respect to ; we shall usually denote it by x/k, and we shall write X /R for
the set of all equivalence classes. (Pronounce X/E as “X modulo &, or,
in abbreviated form, “X mod R.” Exercise: show that X/R is indeed a
set by exhibiting a condition that specifies exactly the subset X/R of the
power set ®(X).) Now forget B for a moment and begin anew with a
partition € of X. A relation, which we shall call X/@, is defined in X by
writing

z X/e y

just in case x and y belong to the same set of the collection €. We shall
call X/@ the relation snduced by the partition €,

In the preceding paragraph we saw how to associate a set of subsets of
X with every equivalence relation in X and how to associate & relation in
X with every partition of X. The connection between equivalence rela-
tions and partitions can be deseribed by saying that the passage from @
to X /@ is exactly the reverse of the passage from B to X/R. More explic-
itly: if B is an equivalence relation in X, then the set of equivalence classes
is a partition of X that induces the relation R, and if € is a partition of X,
then the induced relation is an equivalence relation whose set of equivalence
classes is exactly ©.

For the proof, let us start with an equivalence relation E. Since each «
belongs to some equivalence class (for instance « € z/R), it is clear that the
union of the equivalence classes is all X. If z ex/R N y/R, then z R z and
zR y, and therefore # B y. This implies that if two equivalence classes
have an element in common, then they are identical, or, in other words,
that two distinet equivalence classes are always disjoint. The set of
equivalence classes is therefore a partition. To say that two elements be-
long to the same set (equivalence class) of this partition means, by defini-
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tion, that they stand in the relation R to one another. This proves the
first half of our assertion.,

The second half is easier. Start with a partition € and consider the
induced relation. Since every element of X belongs to some set of €, re-
flexivity just says that x and z are in the same set of €. Symmetry says
that if # and ¥ are in the same set of @, then ¥ and x are in the same set of
@, and this is obviously true. Transitivity says that if £ and y are in the
same set of @ and if y and z are in the same set of @, then z and 2z are in the
same set of €, and this too is obvious. The equivalence class of each z in
X is just the set of @ to which x belongs. This completes the proof of every-
thing that was promised.




SECTION 8

FUNCTIONS

If X and ¥ are sets, a function from (or on) X fo (or into) Y is a relation
f such that dom f = X and such that for each x in X there is a unique ele-
ment y in ¥ with (z, 4) ¢f. The uniqueness condition can be formulated
explicitly as follows: if (z, ¥) ef and (z, 2) ¢ f, then y = 2. For each z in
X, the unique y in Y such that (z, y) ¢f is denoted by f(z). For functions
this notation and its minor variants supersede the others used for more
general relations; from now on, if f is a function, we shall write f(z) = y
instead of (x,4) ¢f or o fy. The element y is called the value that the
function f assumes (or {akes on) at the argument x; equivalently we may
say that f sends or maps or transforms x onto y. The words map or map-
ping, transformation, correspondence, and operafor are among some of the
many that are sometimes used as synonyms for function. The symbol

X —>Y

is sometimes used as an abhreviation for “f is a funetion from X to ¥.”
The set of all functions from X to ¥ is a subset of the power set #(X X Y);
it will be denoted by Y%,

The connotations of activity suggested by the synonyms listed above
make some scholars dissatisfied with the definition according to which a
function does not do anything but merely ¢s. This dissatisfaction is re-
flected in a different use of the vocabulary: funciion is reserved for the un-
defined object that is somehow active, and the set of ordered pairs that
we have called the funetion is then called the graph of the function. It is
easy to find examples of functions in the precise set-theoretic sense of the
word in both mathematics and everyday life; all we have to look for is
information, not necessarily numerical, in tabulated form. One example
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is a eity directory; the arguments of the function are, in this case, the in-
habitants of the city, and the values are their addresses.

For relations in general, and hence for functions in particular, we have
defined the concepts of domain and range. The domain of a function f
from X into Y is, by definition, equal to X, but its range need not be equal
to ¥; the range consists of those elements ¢ of ¥ for which there exists an
2 in X such that f(z) = y. If the range of f is equal to Y, we say that f
maps X onto Y. If A is a subset of X, we may want to consider the set of
all those elements i of Y for which there exists an 2 in the subset 4 such
that f(z) = y. This subset of ¥ is called the image of A under f and is
frequently denoted by f(A). The notation is bad but not catastrophic.
What is bad about it is that if A happens to be both an element of X and
a subset of X (an unlikely situation, but far from an impossible one), then
the symbol f(4) is ambiguous. Does it mean the value of f at 4 or does it
mean the set of values of f at the elements of A? Following normal math-
ematical custom, we shall use the bad notation, relying on context, and,
on the rare oceasions when it is necessary, adding verbal stipulations, to
avoid confusion. Note that the image of X itself is the range of f; the
“onto” character of f can be expressed by writing f(X) = V.

If X is a subset of a set Y, the function f defined by f(x) = x for each
z in X is ecalled the dnclusion map (or the embedding, or the injection) of
X into Y. The phrase “the function f defined by . . .” is a very common
one in such contexts. It is intended to imply, of course, that there does
indeed exist a unique function satisfying the stated condition. In the spe-
cial case at hand this is obvious enough; we are being invited to consider
the set of all those ordered pairs (z, ) in X X ¥ for which 2 = y. Similar
considerations apply in every case, and, following normal mathematical
practice, we shall usually describe a function by describing its value y at
each argument x. Such a description is sometimes longer and more cum-
bersome than a direct description of the set (of ordered pairs) involved,
but, nevertheless, most mathematicians regard the argument-value de-
geription as more perspicuous than any other.

The inclusion map of X into X is called the identtly map on X. (In the
language of relations, the identity map on X is the same as the relation of
equality in X.) If, as before, X < Y, then there is a connection between
the inclusion map of X into ¥ and the identity map on Y'; that connection
is a special case of a general procedure for making small functions out of
large ones. If f is a function from Y to Z, say, and if X is a subset of ¥,
then there is a natural way of constructing a function g from X to Z; de-
fine g(&) to be equal to f(x) for each  in X. The function g is called the
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restriction of f to X, and f is called an extension of g to ¥'; it is customary to
write ¢ = f| X. The definition of restriction can be expressed by writing
(f | X)(x) = f(z) for each  in X; observe also that ran (f | X) = f(X).
The inclusion map of a subset of ¥ is the restriction to that subset of the
identity map on Y.

Here is a simple but useful example of a function. Consider any two
sets X and ¥, and define a function f from X X Y onto X by writing
f(x, ¥) = 2. (The purist will have noted that we should have written
f((z, ¥)) instead of f(z, ¥), but nobody ever does.) The function f is called
the projection from X X Y onto X; if, similarly, g(z, ) = y, then g is the
projection from X X Y onto ¥. The terminology here is at variance with
an earlier one, but not too badly. If B = X X Y, then what was earlier
called the projection of B onto the first coordinate is, in the present lan-
guage, the range of the projection f.

A more complicated and correspondingly more valuable example of a
function can be obtained as follows. Suppose R is an equivalence relaticn in
X, and let f be the function from X onto X/R defined by f(z) = z/R.
The function f is sometimes called the canonical map from X to X/R.

If f is an arbitrary function, from X onto Y, then there is a natural way
of defining an equivalence relation R in X; write ¢ & b (where a and b are
in X) in case f(a) = f(b). For each element y of Y, let g(y) be the set of
all those elements x in X for which f(z) = y. The definition of £ implies
that g(y) is, for each y, an equivalence class of the relation R; in other
words, g is a funetion from Y onto the set X /R of all equivalence classes
of B. The function g has the following special property: if » and v are
distinet elements of ¥, then g{u) and g(v) are distinct elements of X/R.
A function that always maps distinet elements onto distinet elements is
called one-to-one (usually a one-fo-one correspondence). Among the exam-
ples above the inclusion maps are one-to-one, but, except in some trivial
special cases, the projections are not. (Exercise: what special cases?)

To introduce the next aspect of the elementary theory of funetions we
must digress for a moment and anticipate a tiny fragment of our ultimate
definition of natural numbers. We shall not find it necessary to define all
the natural numbers now; all we need is the first three of them. Since this
is not the appropriate occasion for lengthy heuristic preliminaries, we shall
proceed directly to the definition, even at the risk of temporarily shocking
or worrying some readers. Here it is: we define 0, 1, and 2 by writing

0=¢, 1={g], and 2={g,{J}}.
In other words, 0 is empty, 1 is the singleton {0}, and 2 is the pair {0, 1}.
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Observe that there is some method in this apparent madness; the number
of elements in the sets 0, 1, or 2 (in the ordinary everyday sense of the
word) is, respectively, zero, one, or two.

If A is a subset of a set X, the characteristic function of A is the function
x from X to 2 such that x(z) = 1 or 0 according as x e A or z e X — A.
The dependence of the characteristic function of A on the set A may be
indicated by writing x4 instead of x. The function that assigns to each
subset A of X (that is, to each element of ®{X)) the characteristic function
of A (that is, an element of 2%) is a one-to-one correspondence between
®(X) and 2%, (Parenthetically: instead of the phrase “the function that
assigns to each A in ®(X) the element x4 in 2% it is customary to use the
abbreviation “the function 4 — x4.” In this language, the projection
from X X Y onto X, for instance, may be called the function (z, y) — =z,
and the canonical map from a set X with a relation B onto X/R may be
called the function z — x/R.)

Exprcise. (1) Y% has exactly one element, namely &, whether Y is
empty or not, and (i) if X is not empty, then &% is empty.
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FAMILIES

There are occasions when the range of a function is deemed to be more
important than the function itself. When that is the case, both the ter-
minology and the notation undergo radical alterations. Suppose, for in-
stance, that z is a function from a set  to a set X. (The very choice of
letters indicates that something strange is afoot.) An element of the do-
main 7 is called an éndex, I is called the index sef, the range of the function
is called an indexed set, the function itself is called a family, and the value
of the function z at an index , called a term of the family, is denoted by ;.
(This terminology is not absolutely established, but it is one of the standard
choices among related slight variants; in the sequel it and it alone will be
used.) An unacceptable but generally accepted way of communicating the
notation and indicating the emphasis is to speak of a family {2} in X, or
of a family {z;} of whatever the elements of X may be; when necessary,
the index set 7 is indicated by some such parenthetical expression as (¢ e I).
Thus, for instance, the phrase “a family {A.} of subsets of X" is usually
understood to refer to a function A, from some set I of indices, into ®(X).

If {A,} is a family of subsets of X, the union of the range of the family
is called the union of the family [A4;}, or the union of the sets A;; the
standard notation for it is

Ui 4: or U: 4,

according as it is or is not important to emphasize the index set I. It

follows immediately from the definition of unions that = € U: 4; if and

only if  belongs to A, for at least one ¢. If I = 2, so that the range of

the family {A;} is the unordered pair {Aq, 4}, then J; 4; = 4o U 4;.

Observe that there is no loss of generality in considering families of sets

instead of arbitrary collections of sets; every collection of sets is the range
34
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of some family. 1If, indeed, € is a collection of sets, let @ itself play the
role of the index set, and congider the identity mapping on € in the role
of the family.

The algebraic laws satisfied by the operation of union for pairs can be
generalized to arbitrary unions. Suppose, for instance, that {I;} is a fam-
ily of sets with domain J, say; write K = |, I;, and let {43} be a family
of sets with domain K. It is then not difficult to prove that

Usex 4 = Ujer User, 49);

this is the generalized version of the associative law for unions. Exercise:
formulate and prove a generalized version of the commutative law,

An empty union makes sense (and is empty), but an empty intersection
does not make sense. Except for this triviality, the terminology and nota-
tion for intersections parallels that for unions in every respeet. Thus, for
instance, if {A4;} is a non-empty family of sets, the intersection of the range
of the family is called the intersection of the family {A;}, or the intersec-
tion of the sets A;; the standard notation for it is

Miez 45 or [): 4y

according as it is or is not important to emphasize the index set I. (By a
“non-empty family” we mean a family whose domain 7 is not empty.) It
follows immediately from the definition of intersections that if 7 = &,
then a necessary and sufficient condition that & belong to [): 4, is that =
belong to 4; for all <.

The generalized commutative and associative laws for intersections can
be formulated and proved the same way as for unions, or, alternatively,
De Morgan’s laws can be used to derive them from the facts for unions.
This is almost obvious, and, therefore, it is not of much interest. The in-
teresting algebraic identities are the ones that involve both unions and
intersections. Thus, for instance, if {4} is a family of subsets of X and
B c X, then

BN U:4:=U, BN 4)
and ;
BU ;4= (BU A4;

these equations are a mild generalization of the distributive laws.
Exsrcise. If both {A4;} and {B;} are families of sets, then
(U: 49 N (U;By) = Ui (4: N By)

(N: 49 U (N By) = N4, (4: U By).

and
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Explanation of notation: a symbol such as {;,; is an abbreviation for
U @ayel X J+

The notation of families is the one normally used in generalizing the
concept of Cartesian product. The Cartesian product of two sets X and
Y was defined as the set of all ordered pairs (z, ) with @ in X and y in Y.
There is a natural one-to-one correspondence between this set and a cer-
tain set of families. Consider, indeed, any particular unordered pair
{a, b}, with @ # b, and consider the set Z of all families z, indexed by
{a, b}, such that 2z, ¢ X and 2, ¢ Y. If the function f from Z to X X Y is
defined by f(2) = (24, 2), then f is the promised one-to-one correspond-
ence. The difference between Z and X X Y is merely a matter of nota-
tion. The generalization of Cartesian products generalizes Z rather than
X X Y itself. (As a consequence there is a little terminological friction
in the passage from the special case to the general. There is no help for
it; that is how mathematical language is in fact used nowadays.) The
generalization is now straightforward. If {X,} is a family of sets (i e I),
the Cartesian product of the family is, by definition, the set of all families
{a;) with 2; e X, for each i in I. There are several symbols for the Carte-
sian product in more or less current usage; in this book we shall denote it by

Xier Xs or Xi X

Tt is clear that if every X; is equal to one and the same set X, then X: X,
= X!, If I is a pair {a, b}, with a £ b, then it is customary to identify
X s X; with the Cartesian product X, X X as defined earlier, and if T
is a singleton {a}, then, similarly, we identify X;.r X; with X, itself.
Ordered triples, ordered quadruples, etc., may be defined as families whose
index sets are unordered triples, quadruples, ete.

Suppose that {X,} is a family of sets (i ¢ I) and let X be its Cartesian
product. If J is a subset of 7, then to each element of X there corresponds
in a natural way an element of the partial Cartesian product Kies Xo.
To define the correspondence, recall that each element » of X is itself a
family {x;}, that is, in the last analysis, a function on I; the corresponding
element, say ¥, of X;.s X; is obtained by simply restricting that function
to J. Explicitly, we write y; = x; whenever ¢ eJ. The correspondence
x — y is called the projection from X onto X;.s X;; we shall temporarily
denote it by fy. If, in particular, J is a singleton, say J = {j}, then we
shall write f; (instead of f;) for fy. The word “projection”” has a multiple
use; if « ¢ X, the value of f; at x, that is x;, is also called the projection of
x onto X, or, alternatively, the j-coordinate of z. A function on a Carte-
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sian product such as X is called a function of several variables, and, in par-
ticular, a funection on a Cartesian product X, X X3 is called a function of
two variables.

Exzrcise. Prove that (UJ; 4:) X (U, B} = U:,; (4; X By), and that
the same equation holds for intersections (provided that the domains
of the families involved are not empty). Prove also (with appropriate
provisos about empty families) that (); X; < X; < U; X, for each in-
dex j and that interseetion and union can in fact be characterized as the
extreme solutions of these inclusions. This means that if X; < Y for
each index §, then |J; X; C ¥, and that |J; X; is the only set satisfying
this minimality condition; the formulation for intersections is similar.



SECTION 10

INVERSES AND COMPOSITES

Associated with every function f, from X to Y, say, there is a function
from ®(X) to ®(Y), namely the function (frequently called f also) that
assigns to each subset A of X the image subset f(A) of ¥. The algebraic
behavior of the mapping A — f(4) leaves something to be desired. It is
true that if {A;} is a family of subsets of X, then f(LJ: 45) = U, 5(45)
(proof?), but the corresponding equation for intersections is false in gen-
eral (example?), and the connection between images and complements is
equally unsatisfactory.

A correspondence between the elements of X and the elements of ¥
does always induce a well-behaved correspondence between the subsets of
X and the subsets of ¥, not forward, by the formation of images, but
backward, by the formation of inverse images. Given a function f from
X to 7, let 7, the ¢nverse of f, be the function from ®(Y) to @(X) such
that if B < ¥, then

fIB) = {x e X:f(x) e B}.

In words: f~*(B) consists of exactly those elements of X that f maps into
B; the set f 1(B) is called the inverse ¢mage of B under f. A necessary and
sufficient condition that f map X onto Y is that the inverse image under
f of each non-empty subset of ¥ be a non-empty subset of X. (Proof?)
A necessary and sufficient condition that f be one-to-one is that the inverse
image under § of each singleton in the range of f be a singleton in X,

If the last condition is satisfied, then the symbol 1 is frequently as-
signed a second interpretation, namely as the function whose domain is
the range of f, and whose value for each ¥ in the range of f is the unique
g in X for which f(z) = . In other words, for one-to-one functions f we
may write f () = = if and only if f(z) = y. This use of the notation is
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mildly inconsistent with our first interpretation of f~', but the double
meaning is not likely to lead to any confusion.

The connection between images and inverse images is worth a moment’s
consideration.

If BC Y, then

fF(B)) € B.
Proof. If y e f(f 7 (B)), then y = f(x) for some z in f~*(B); this means that

y = f(x) and f(z) ¢ B, and therefore y ¢ B.
If f maps X onto Y, then

f¢(B)) = B.

Proof. If y ¢ B, then y = f(x) for some z in X, and therefore for some
in f7'(B); this means that y ¢ f(f 7 (B)).

If A < X, then
4 < fHf(4)).

Proof. If x e A, then f(x) ef(A); this means that x e f1(f(4)).
I fis one-to-one, then

4 = f7Hf(A)).

Proof. If z e f71(f(4)), then f(z) e f(A), and therefore f(z) = f(u) for
some % in A ; this implies that £ = % and hence that = ¢ A.
The algebraic behavior of f~ is unexceptionable. If {B,} is a family of

subsgets of Y, then
FH Ui By) = U ~(B)

I B = N f(BY.
The proofs are straightforward. If, for instance, x ¢~ ({): B,), then
f(x) € B; for all 4, so that » € f~(B;) for all 4, and therefore x ¢ [); f~*(B));
all the steps in this argument are reversible. The formation of inverse
images commutes with complementation also; i.e.,

JY —~ B) = X ~ f~Y(B)

for each subset B of Y. Indeed:if z ef~(¥ ~ B), then f(z) ¢ ¥ — B, so
that = ¢ f(B), and therefore x ¢ X — f~(B); the steps are reversible.
(Observe that the last equation is indeed a kind of commutative law: it
says that complementation followed by inversion is the same as inversion
followed by complementation.)

The discussion of inverses shows that what a function does can in a cer-

and
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tain sense be undone; the next thing we shall see is that what two funetions
do can sometimes be done in one step. If, to be explicit, f is a function
from X to Y and ¢ is a function from Y to Z, then every element in the
range of f belongs to the domain of g, and, consequently, g(f(z)) makes
sense for each z in X. The function h from X to Z, defined by h(z) =
g(f(x)) is called the composite of the functions f and g; it is denoted by
g« f or, more simply, by gf. (Since we shall not have occasion to consider
any other kind of multiplication for functions, in this book we shall use
the latter, simpler notation only.)

Observe that the order of events is important in the theory of functional
composition. In order that gf be defined, the range of f must be included
in the domain of g, and this can happen without it necessarily happening
in the other direction at the same time. Iiven if both fg and gf are defined,
which happens if, for instance, f maps X into ¥ and ¢ maps Y into X, the
functions fg and gf need not be the same; in other words, functional compo-
gition is not necessarily commutative.

Functional composition may not be commutative, but it is always asso-
ciative. If f maps X into Y, if ¢ maps Y into Z, and if 2 maps Z into U,
then we can form the composite of k with gf and the composite of hg with
{; it is a simple exercise to show that the result is the same in either case.

The connection between inversion and composition is important; some-
thing like it crops up all over mathematics. If f maps X into ¥ and g
maps Y into Z, then f~! maps ®(Y) into ®(X) and ¢~ maps ®(Z) into
®(Y). In this situation, the composites that are formable are gf and
§71g™; the assertion is that the latter is the inverse of the former. Proof:
if 2 ¢ (gf)HC), where ¥ ¢ X and C C Z, then g(f(z)) e C, so that f(z) e
g(C), and therefore z ef (g7 (C)); the steps of the argument are
reversible,

Inversion and composition for functions are special cases of similar opera~
tions for relations. Thus, in particular, associated with every relation &
from X to Y there is the inverse (or converse) relation R~ from Y to X; by
definition y R~ & means that x R y. Example: if R is the relation of be-
longing, from X to ®(X), then R is the relation of containing, from ®(X)
to X. It is an immediate consequence of the definitions involved that
dom R~ =ranR and ran R~ = dom R.. If the relation R is a function,
then the equivalent assertions * By and y R™ 2 can be written in the
equivalent forms R(z) = y and z e R({y}).

Because of difficulties with commutativity, the generalization of func-
tional composition has to be handled with care. The composite of the rela-
tions R and S is defined in case R is a relation from X to ¥ and S is a rela-
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tion from Y to Z. The composite relation 7, from X to Z, is denoted by
Se R, or, simply, by SE; it is defined so that = T 2 if and only if there exists
an element y in Y such that z R y and y S z. For an instructive example,
let B mean “son” and let S mean ‘“brother” in the set of human males,
say. In other words, B y means that z is a son of y, and % 8 z means
that y is a brother of z. In this case the composite relation SR means
“nephew.” (Query: what do R, S™, RS, and RS mean?) If both
R and 8 are functions, then # B y and y S 2z can be rewritten as R(z) = y
and S(y) = #, respectively. It follows that S(R(x)) = 2if and only if x T ¢,
so that funetional composition is indeed a special case of what is sometimes
called the relative product.

The algebraic properties of inversion and composition are the same for
relations as for functions. Thus, in particular, composition is commuta-
tive by accident only, but it is always associative, and it is always con-
nected with inversion via the equation (SR) ™ = R™'S™. (Proofs?)

The algebra of relations provides some amusing formulas. Suppose that,
temporarily, we consider relations in one set X only, and, in particular, let
I be the relation of equality in X (which is the same as the identity map-
ping on X). The relation I acts as a multiplicative unit; this means that
IR = RI = R for every relation B in X. Query: is there a connection
among I, RR™, and R™'R? The three defining properties of an equiv-
alence relation can be formulated in algebraic terms as follows: reflexivity
means I C R, symmetry means R B, and transitivity means RR c R.

FExurcise. (Assume in each case that f is a function from X to Y.)
(1) If g is a function from ¥ to X such that gf is the identity on X, then
f is one-to-one and ¢ maps ¥ onto X. (ii) A necessary and sufficient
condition that f(4 N B) = f(4) N f(B) for all subsets 4 and B of X is
that f be one-to-one. (iii) A necessary and sufficient condition that
(X — Ay C Y — f(4) for all subsets 4 of X is that f be one-to-one.
(iv) A necessary and sufficient condition that ¥ — f(4) € f(X — A)
for all subsets 4 of X is that f map X onto V.



SECTION 11

NUMBERS

How much is two? How, more generally, are we to define numbers?
To prepare for the answer, let us consider a set X and let us form the col-
lection P of all unordered pairs {a, b}, with e in X, bin X, and @ 5 b. It
seems clear that all the sets in the collection P have a property in com-
mon, namely the property of consisting of two elements. It is tempting
to try to define “twoness” as the common property of all the sets in the
collection P, but the temptation must be resisted; such a definition is,
after all, mathematical nonsense. What is a “property”’? How do we
know that there is only one property in common to all the sets in P?

After some cogitation we might hit upon a way of saving the idea behind
the proposed definition without using vague expressions such as *‘the com-
mon property.” It is ubiquitous mathematical practice to identify a
property with a set, namely with the set of all objects that possess the
property; why not do it here? Why not, in other words, define “two” as
the set P? Something like this is done at times, but it is not completely
satisfying. The trouble is that our present modified proposal depends on
P, and hence ultimately on X. At best the proposal defines twoness for
subsets of X; it gives no hint as to when we may attribute twoness to a
set that is not included in X,

There are two ways out. One way is to abandon the restriction to a
particular set and to consider instead all possible unordered pairs {a, b}
with @ 5 b. These unordered pairs do not constitute a set; in order to
base the definition of “two’’ on them, the entire theory under consideration
would have to be extended to include the “unsets’ (classes) of another
theory. This can be done, but it will not be done here; we shall follow a
different route.

How would a mathematician define a meter? The procedure analogous
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to the one sketched above would involve the following two steps. First,
select an object that is one of the intended models of the concept being
defined—an objeet, in other words, such that on intuitive or practical
grounds it deserves to be called one meter long if anything does. Becond,
form the set of all objects in the universe that are of the same length as the
selected one (note that this does not depend on knowing what a meter
is), and define a meter as the set so formed.

How in fact is a meter defined? The example was chosen so that the
answer to this question should suggest an approach to the definition of
numbers. The point is that in the customary definition of a meter the
second step is omitted. By a more or less arbitrary convention an object
is selected and its length is called a meter. If the definition is accused of
circularity (what does “length” mean?), it can easily be converted into an
unexceptionable demonstrative definition; there is after all nothing to stop
us from defining a meter as equal to the selected objeet, If this demon-
strative approach is adppted, it is just as easy to explain as before when
“one-meter-ness’”’ shall be attributed to some other obhject, namely, just
in case the new object has the same length as the selected standard, We
comment again that to determine whether two objects have the same
length depends on a simple act of comparison only, and does not depend
on having a precise definition of length.

Motivated by the considerations deseribed above, we have earlier defined
2 as some particular set with (intuitively speaking) exactly two elements.
How was that standard set selected? How should other such standard sets
for other numbers be selected? There is no compelling mathematical rea-
son for preferring one answer to this question to another; the whole thing
is largely a matter of taste. The selection should presumably be guided
by considerations of simplicity and economy. To motivate the particular
selection that is usually made, suppose that a number, say 7, has already
been defined as a set (with seven elements). How, in this case, should we
define 82 Where, in other words, can we find a set consisting of exactly
eight elements? We can find seven elements in the set 7; what shall we use
as an eighth to adjoin to them? A reasonable answer to the last question
is the number (set) 7 itself; the proposal is to define 8 to be the set consist-
ing of the seven elements of 7, together with 7. Note that according to this
proposal each number will be equal to the set of its own predecessors.

The preceding paragraph motivates a set-theoretic construction that
makes sense for every set, but that is of interest in the construction of
numbers only. For every set @ we define the successor 2+ of & to be the
get, obtained by adjoining @ to the elements of #; in other words,
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et =z U {z].

(The successor of % is frequently denoted by z'.)
We are now ready to define the natural numbers. In defining 0 to be a
set with zero elements, we have no choice; we must write (as we did)

0= g.

If every natural number is to be equal to the set of its predecessors, we
have no choice in defining 1, or 2, or 3 either; we must write

1=0%(= {0}),
2=1% (= {0! 1})!
3 =2%(={0,1,2}),

efc. The “etc.” means that we hereby adopt the usual notation, and, in
what follows, we shall feel free to use numerals such as “4" or 956" with-
out any further explanation or apology.

From what has been said so far it does not follow that the construction
of suceessors can be carried out ad infinitum within one and the same set.
What we need is a new set-theoretic principle.

Axiom of infinity. There exisis a set containing 0 and confaining the
stccessor of each of ils elements.

The reason for the name of the axiom should be clear, We have not yet
given a precise definition of infinity, but it seems reasonable that sets such
as the ones that the axiom of infinity deseribes deserve to be ealled infinite.

We shall say, temporarily, that a set A is a successor sel if 0 ¢ A and if
" e A whenever x e A. In this language the axiom of infinity simply says
that there exists a successor set 4. Since the intersection of every (non-

empty) family of successor sets is a successor set itself (proof?), the inter-

section of all the successor sets included in A is a successor set w. The set
w is a subset of every successor set. If, indeed, B is an arbitrary successor
get, then sois A N B. Since A N B C A, the set 4 N B is one of the
sets that entered into the definition of w; it follows that w < 4 N B, and,
consequently, that « < B. The minimality property so established
uniquely characterizes w; the axiom of extension guarantees that there
can be only one successor set that is included in every other successor set.
A natural number is, by definition, an element of the minimal successor
set w. This definition of natural numbers is the rigorous counterpart of
the intuitive deseription according to which they consist of 0, 1, 2, 3, “and
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so on.” Incidentally, the symbol we are using for the set of all natural
numbers («) has a plurality of the votes of the writers on the subject, but
nothing like a clear majority. In this book that symbol will be used sys-
tematically and exclusively in the sense defined above.

The slight feeling of discomfort that the reader may experience in con-
nection with the definition of natural numbers is quite common and in
most cases temporary. The trouble is that here, as once before (in the
definition of ordered pairs), the object defined has some irrelevant struec-
ture, which seems to get in the way (but is in fact harmless). We want
to be told that the successor of 7 is 8, but to be told that 7 is a subset of 8
or that 7 is an element of 8 is disturbing. We shall make use of this super-
structure of natural numbers just long enough to derive their most impor-
tant natural properties; after that the superstructure may safely be for-
gotien.

A family {z;} whose index set is either a natural number or else the set
of all natural numbers is called a sequence (finite or infinite, respectively).
If {A;} is a sequence of sets, where the index set is the natural number n ¥,
then the union of the sequence is denoted by

Urod; or 4oU-.-U 4,.
If the index set is w, the notation is
Uimod; or 4oU 4; U 4, U,
Intersections and Cartesian products of sequences are denoted similarly by
Mo 4, 4o N---N A,
Xiwo Ay Ao X+ X Ay,

n?_ko', Ag ﬂ Al ﬂ Az ﬂ---,
X?ﬁ_OAi: AOX Al XAz HKeen,

The word “‘sequence” is used in a few different ways in the mathematical
literature, but the differences among them are more notational than con-
ceptual. The most common alternative starts at 1 instead of 0; in other
words, it refers to a family whose index set is w — {0} instead of w.

and




SECTION 12

THE PEANO AXIOMS

We enter now into a minor digression. The purpose of the digiession is
to make fleeting contact with the arithmetic theory of natural numbers
From the set-theoretic point of view this is a pleasant luxury. .

The most important thing we know about the set w of all natural num-
bers is that it is the unique successor sef that is a subset of every sucecessor
set. To say that w is a successor set means that

D Dew
(where, of course, 0 = &), and that
(I1) ifnew, then nt ew

(where-n"' = n-U {n}). The minimality property of w can be expressed
by saying that if a subset S of  is a successor set, then S = w. Alterna~
tively, and in more primitive terms,

(IID) i 8 C w, if 0 8, and if n* ¢S whenever n ¢, then S = w.

Property (I1I) is known as the principle of mathematical induction
We shall now add to this list of properties of » two others:

(Iv) nt 5 0 for all n in w,
and
) if nand m are in w, and if n = m* then n = m.

The proof of (IV) is trivial; since n* always contains n, and since 0 is
empty, it is clear that a1 is different from 0. The proof of’(\f) ishnotJtriv-
ial; it depends on a couple of auxiliary propositions, The first one a,ssleri-s
that something that ought not to happen indeed does not happgn. Exen
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if the considerations that the proof involves seem to be pathological and
foreign to the arithmetic spirit that we expect to see in the theory of nat-
ural numbers, the end justifies the means. The second proposition refers
to behavior that is quite similar to the one just excluded. This time, how-
ever, the apparently artificial considerations end in an affirmative result:
something mildly surprising always does happen. The statements are as
follows: (i) no natural number is a subset of any of its elements, and (ii)
every element of a natural number is @ subset of . Sometimes a set with
the property that it includes (C) everything that it contains (¢) is called
a iransitive set. More precisely, to say that E is transitive means that if
¢ ey and y e B, then z ¢ . (Recall the slightly different use of the word
that we encountered in the theory of relations.) In this language, (i) says
that every natural number is transitive.

The proof of (i) is a typical application of the principle of mathematical
induction. Let S be the set of all those natural numbers n that are not
mcluded in any of their elements. (Explicitly: n ¢S if and only if n ew
and n is not a subset of z for any z in».) Since 0 is not a subset of any of
its elements, it follows that 0 eS. Suppose now that n eS. Since n is &
gubset of n, we may infer that n is not an element of %, and hence that n*
is not & subset of 7. What can n be a subset of? Ifn* C 2, thenn C «,
and therefore (since n €S) ¢ n. It follows that nt cannot be a subset of
n, and nt cannot be a subset of any element of n. This means that n T
cannot be a subset of any element of nT, and hence that nt eS. The de-
sired conclusion (i) is now a consequence of (ILL).

The proof of (i) is also induetive. This time let S be the set of all
transitive natural numbers. (Explicitly: n ¢S if and only if n ew and 2 is
a subset of n for every x in ».) The requirement that 0 €8 is vacuously
satisfied. Suppose now that neS. If ze nT, then either x en or z = n.
In the first case * C n (sinee n €.S) and therefore x C nT; in the second
case © C nT for even more trivial reasons. It follows that every element
of n is a subset of nT, or, in other words, that n* ¢8. The desired con-
clusion (ii) is a consequence of (11I).

We are now ready to prove (V). Suppose indeed that » and m are
natural numbers and that n+ = m™. Sincen en™, it follows that n e m™,
and hence that either n em or n = m. Similarly, either m en or m = n.
If n # m, then we must have n e m and m en. Since, by (i), » is transi-
tive, it follows that n en. Since, however, n C n, this contradicts (i), and
the proof is complete.

The assertions (I)—(V) are known as the Peano axioms; they used to
be considered as the fountainhead of all mathematical knowledge. Ifrom
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them (together with the set-theoretic principles we have already met) it
is possible fo define integers, rational numbers, real numbers, and complex
numbers, and to derive their usual arithmetic and analytic properties.
Such a program is not within the scope of this book; the interested reader
should have no difficulty in locating and studying it elsewhere.

Induetion is often used not enly to prove things but also to define things.
Suppose, to be specific, that f is a function from a set X into the same set
X, and suppose that @ is an element of X. 1t seems natural to try to define
an infinite sequence {%(n)} of elements of X (that is, & function % from w
to X) in some such way as this: write w(0) = a, u(l) = f(u(0)}, uw(2) =
flw (1)), and so on. If the would-be definer were pressed to explain the
“and so on,” he might lean on induction, What it all means, he might say,
is that we define u(0) as @, and then, inductively, we define u(n™) as
S (n)) for every n. This may sound plausible, but, as justification for an
existential assertion, it is insufficient. The principle of mathematical in-
duetion does indeed prove, easily, that there can be at most one function
satisfying all the stated conditions, but it does not establish the existence
of such a funection. What is needed is the following result.

Recursion theorem, If a ts an element of a set X, and if f is a function
from X into X, then there exists a function u from w into X such that w(0)
= a and such that u(n™) = f(u®)) for all n in w.

Proor. Recall that a function from w to X is a certain kind of subset
of w X X; we shall construet « explicitly as a set of ordered pairs. Con-
sider, for this purpose, the collection € of all those subsets A of w X X for
which (0, a) e 4 and for which (n™, f(x)) ¢ A whenever (n,z) ¢ A. Since
w X X has these properties, the collection @ is not empty, We may, there-
fore, form the intersection w of all the sets of the collection €. Since it is
easy to see that u itself belongs to @, it remains only to prove that  is a
function. We are to prove, in other words, that for each natural number
n there exists at most one element « of X such that (n, ) e w. (Explicitly:
if both (n, ) and (n, ¥) belong to u, then x == y.) The proof is inductive.
Let S be the set of all those natural numbers » for which it is indeed true
that (n, 2) ¢ u for at most one . We shall prove that 0 ¢8 and that if
neS, then nt eS.

Does 0 belong to 8?7 If not, then (0, ) e u for some b distinct from a.
Consider, in this case, the set w — {(0, b)}. Observe that this diminished
set still contains (0, @) (since @ £ b), and that if the diminished set con-
tains (n, «), then it contains (n™, f(z)) also. The reason for the second
assertion is that since n™ 7 0, the discarded element is not equal to
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(nF, f(z)). In other words, w — {(0,b)} ¢ €. This contradiets the faet
that w is the smallest set in @, and we may conclude that 0 ¢ S.

Suppose now that » eS; this means that there exists a unique element
@ in X such that (n, z) ew. Since (n, x) e, it follows that (v, f(z)) e .
If nT does not belong to 8, then (n, y) e u for some y different from f(x).
Consider, in this case, the set u — {(n™, y)}. Observe that this diminished
set contains (0, @) (since n™ 5% 0), and that if the diminished set containg
(m, 1), say, then it contains (m™, f(1)) also. Indeed, if m = n, then { must
be z, and the reason the diminished set contains (n™, f(z)) is that f(z) = y;
if, on the other hand, m # n, then the reason the diminished set contains
(m™, 7(£)) is that m* s o+, In other words, u — {(nt, )} e@. This
again contradicts the fact that « is the smallest set in €, and we may
conclude that nt ¢S.

The proof of the recursion theorem is complete. An application of the
reeursion theorem is called definition by induction.

Exurcisn. Prove that if n is a natural number, then n ¢ 2 if n 5 0,
then n = mt for some natural number m. Prove that » is transitive,
Prove that if & is a non-empty subset of some natural number, then
there exists an element % in B such that & ¢ m whenever m is an element
of I distinet from k.
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ARITHMETIC

The introduction of addition for natural numbers is a typical example of
definition by induetion. Indeed, it follows from the recursion theorem
that for each natural number m there exists a function s, from w to @
such that s,(0) = m and such that s,(n™) = (sm(n)) T for every natural
number n; the value s,(n) is, by definition, the sum m + n. The general
arithmetic propertics of addition are proved by repeated applications of
the principle of mathematical induetion. Thus, for instance, addition is
associative. This means that

k+m)+n==kE+ (m-+n)

whenever k, m, and n are natural numbers. The proof goes by induction
on n as follows. Since (k+m) +0 =%k -+mand k4 (m -+ 0) = k + m,
the equation is true if n = 0. If the equation is true for n, then (k -+ m)
+nt = ((k +m) + n)* (by definition) = (k + (m + a)})* (by the in-
duction hypothesis) = & -+ (m + n)* (again by the definition of addition)
=k 4 (m 4 n™1) (ditto), and the argument is complete. The proof that
addition is commutative (i.e., m 4+ n = n + m for all m and =) is a little
tricky; a straightforward attack might fail. The trick is to prove, by in-
duction on n, that () 0 + » = nand (i) m™ + n = (m 4+ n) T, and then
to prove the desired commutativity equation by induction on m, via (i)
and (ii).

Similar techniques are applied in the definitions of products and expo-
nents and in the derivations of their basic arithmetic properties. To define
multiplication, apply the recursion theorem to produce functions p,, such
that p,(0) = 0 and such that p,(n™) = pu(n) + mfor every natural num-
ber n; then the value p,(n) is, by definition, the product m-n. (The dot is
frequently omitted.) Multiplication is associative and commutative; the
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proofs are straightforward adaptations of the ones that worked for addi-
tion. The distributive law (i.e., the assertion that k- (m + =) = k-m +
% -n whenever &, m, and n are natural numbers) is another easy consequence
of the prineiple of mathematical induction. (Use induction onn.) Anyone
who has worked through sums and products in this way should have no
trouble with exponents. The recursion theorem yields functions e,, such
that €,(0) = 1 and such that e,(n™) = e,(®) m for every natural number
n; the value ¢,,(n} is, by definition, the power m™, The discovery and estab-
lishment of the properties of powers, as well as the detailed proofs of the
statements about products, can safely be left as exercises for the reader,
The next topic that deserves some attention is the theory of order in the
set of natural numbers. For this purpose we proceed to examine with
some care the question of which natural numbers belong to which others.
Formally, we say that two natural numbers m and n are comparable if
men, Or m =mn, or nem. Assertion: two natural numbers are always
comparable. The proof of this assertion consists of several steps; it will be
convenient to introduce some notation. For each n in w, write S(n) for
the set of all m in w that are comparable with n, and let S be the set of all
those n for which S(») = w. In these terms, the assertion is that S = w.
We begin the proof by showing that S(0) = o (i.e., that 0 ¢8). Clearly
8(0) containg 0. If m ¢ S(0), then, since m € 0 is impossible, either m = 0
(in which case 0 em™), or 0 e m (in which case, again, 0 em™). Hence, in
all cases, if m € 8(0), then m™ ¢ S(0); this proves that S(0) = w. We com-
plete the proof by showing that if S(n) = w, then S(n*) = w. The fact
that 0 ¢ S(n™T) is immediate (since n™ €S(0)); it remains to prove that if
m eS(nT), then m™ e S(n™). Since m e S(n1), therefore either nt ¢ m (in
which case nt em™), or nt = m (ditto), or m ent. In the latter case,
either m = # (in which case m™ = n™), or m en. The last case, in turn,
splits according to the behavior of m™ and n: since m™ e S(n), we must
have either n em™, or n = m™, or m™ en. The first possibility is incom-
patible with the present situation (i.e., with m en). The reason is that if
n em™, then either n em or n = m, so that, in any case, » < m, and we
know that no natural number is a subset of one of its elements. Both the
remaining possibilities imply that m™ e n™t, and the proof is complete.
The preceding paragraph implies that if m and # are in w, then at least
one of the three possibilities (m ¢ n, m = n, n e m) must hold; it is easy to
see that, in fact, always exactly one of them holds. (The reason is another
application of the fact that a natural number is not a subset of one of its
clements.) Another consequence of the preceding paragraph is that if »
and m are distinet natural numbers, then a necessary and sufficient condi-
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tion that m en is that m C n. Indeed, the implication from m en to
m C n is just the transitivity of n. If, conversely, m C n and m # n,
then % e m cannot happen (for then m would be a subset of one of its ele-
ments), and therefore m en. If m en, or if, equivalently, m is a proper
subset of n, we shall write m < n and we shall say that m is less than n. If
m is known to be either less than n or else equal to n, we write m = n.
Note that = and < are relations in w. The former is reflexive, but the
latter is not; neither is symmetric; both are transitive. If m = n and
n < m, then m = n,

Exercise. Prove that if m < n, then m -+ & < n + k, and prove that
ifm <mand k 5 0, then m+k < n-k. Prove that if E is & non-empty
set of natural numbers, then there exists an element & in B such that
kE £ mfor all m in A.

Two sets E and F (not necessarily subsets of «) are called equivalent, in
symbols E ~ F, if there exists a one-to-one correspondence between them.
It is easy to verify that equivalence in this sense, for subsets of some par-
ticular set X, is an equivalence relation in the power set @{X).

Every proper subset of a natural number  is equivalent to some smaller
natural number (i.e., to some element of n). The proof of this assertion
is induetive. For n = 01it is trivial. If it is true for n, and if E is a proper
subset of #nt, then either ¥ is a proper subset of n and the induction hy-
pothesis applies, or B = n and the result is trivial, or n ¢ . Inthe latter case,
find a number % in n but not in £ and define a function f on & by writing
f(#) = ¢ when ¢ 5 n and f(n) = k. Clearly f is one-to-one and f maps E
into n. It follows that the image of I under f is either equal to » or (by
the induction hypothesis) equivalent to some element of #, and, conse-
quently, B itself is always equivalent to some element of n™t.

It is a mildly shocking fact that a set can be equivalent to a proper sub-
set of itself. If, for instance, a function f from « to « is defined by writing
f(n) = n™ for all n in w, then f is a one-to-one correspondence between the
set of all natural numbers and the proper subset consisting of the non-zero
natural numbers. It is nice to know that even though the set of all natural
numbers has this peculiar property, sanity prevails for each particular nat-
ural number. In other words, if n ¢ w, then » is not equivalent to a proper
subset of n. For n = 0 this is clear. Suppose now that it is true for », and
suppose that f is a one-to-one correspondence from n ™t to a proper subset
Eof nt. If n ¢ E, then the restriction of f to n is a one-to-one correspond-
ence between n and a proper subset of n, which contradicts the induction
hypothesis. If n ¢ B, then n is equivalent to E — {n}, so that, by the in-
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duction hypothesis, n = I — {n}. This implies that ¥ = »™, which con-
tradicts the assumption that I is a proper subset of nt.

A set E is called findle if it is equivalent to some natural number; other-
wise E is infiniie.

Exzmrcige., Use this definition to prove that o is infinite.

A set can be equivalent to at most one natural number. (Proof: we
know that for any two distinet natural numbers one must be an element
and therefore a proper subset of the other; it follows from the preceding
paragraph that they cannot be equivalent.) We may infer that & finite
set is never equivalent to a proper subset; in other words, as long as we
stick to finite sets, the whole is always greater than any of its parts.

Exmreise. Use this consequence of the definition of finiteness to prove
that w is infinite.

Bince every subset of a natural number is equivalent to a natural num-
ber, it follows also that every subset of a finite set is finite.

The number of elements in a finite set B is, by definition, the unique
natural number equivalent to E; we shall denote it by #(E). It is clear
that if the correspondence between E and #(E) is restricted to the finite
subsets of some set X, the result is a function from a subset of the power
set ®(X) to w. This function is pleasantly related to the familiar set-
theoretic relations and operations. Thus, for example, if F and F are
finite sets such that £ C F, then #(£) < #(F). (The reason is that since
E ~ #(E) and F ~ §(F), it follows that #(F) is equivalent to a subset of
#(F).) Another example is the assertion that if E and F are finite sets,
then £ U F is finite, and, moreover, if E and F are disjoint, then #(E U F)
= #(E) + #(F). The crucial step in the proof is the fact that if m and n
are natural numbers, then the complement of m in the sum m + 7 is equiv-
alent to n; the proof of this auxiliary fact is achieved by induction on 7.
Similar techniques prove that if B and F are finite sets, then so also are
E X F and EF, and, moreover, #(E X F) = #(E)-#(F) and #ET) =
#(E)#(F)'

Exgercise. The union of a finite set of finite sets is finite. If F is finite,
then ®(E) is finite and, moreover, $(®(E)) = 2*®_ If F is a non-empty
finite set of natural numbers, then there exists an element & in B such
that m = k for all m in K.
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ORDER

Throughout mathematics, and, in particular, for the generalization to
infinite sets of the counting process appropriate to finite sets, the theory
of order plays an important role. The basic definitions are simple. The
only thing to remember is that the primary motivation comes from the
familiar properties of “less than or equal to” and not “less than.” There
is no profound reason for this; it just happens that the generalization of
“less than or equal to” oceurs more frequently and is more amenable to
algebraic treatment.

A relation R in a set X is called antisymmetric if, for every  and ¢ in X,
the simultaneous validity of & B y and ¢ R 2 implies that x = y. A partial
order (or sometimes simply an order) in a set X is a reflexive, antisymmetric,
and transitive relation in X. It is customary to use only one symbol (or
some typographically close relative of it) for most partial orders in most
sets; the symbol in common use is the familiar inequality sign. Thus a
partial order in X may be defined as a relation = in X such that, for all 2,
y,and zin X, wehave )z S o, () f 2 £ yand y < x, then 2 = y, and
(iii} if # = y and y < 2, then z £ 2. The reason for the qualifying “par-
tial” is that some questions about order may be left unanswered. If for
every x and y in X either z < y or ¥ =< x, then =< is called a total (some-
times also simple or linear) order. A totally ordered set is frequently
called a chain. :

Exmrcise, Express the conditions of antisymmetry and totality for a
relation B by means of equations involving E and its inverse.

The most natural example of a partial {and not total) order is inclusion,
Explicitly: for each set X, the relation C is a partial order in the power set
®(X); it is a total order if and only if X is empty or X is a singleton. A
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well known example of a total order is the relation “less than or equal t0”
in the set of natural numbers. An interesting and frequently seen partial
order is the relation of extension for funetions. Explicitly: for given sets
X and Y, let F be the set of all those functions whose domain is included
in X and whose range is included in ¥. Define a relation R in F by writing
JRB g in case dom f < dom ¢ and f(z) = g(z) for all z in dom f; in other
words, f R g means that f is a restriction of g, or, equivalently, that g is an
extension of f. If we recall that the functions in F are, after all, certain
subsets of the Cartesian product X X ¥, we recognize that f R g means
the same as f C g; extension is a special case of inclusion.

A partially ordered sef is a set together with a partial order in it. A pre-
cise formulation of this “togetherness” goes as follows: a partially ordered
set is an ordered pair (X, <), where X is a set and < is a partial order in
X. 'This kind of definition is very common in mathematics; a mathemati-
cal structure is almost always a set “together” with some specified other
sets, functions, and relations. The accepted way of making such defini-
tions precise is by reference to ordered pairs, triples, or whatever is appro-
priate. That is not the only way. Observe, for instance, that knowledge
of a partial order implies knowledge of its domain. If, therefore, we de-
scribe a partially ordered set as an ordered pair, we are being quite re-
dundant; the second coordinate alone would have conveyed the same
amount of information. In matters of language and notation, however,
tradition always conquers pure reason. The accepted mathematical be-
havior (for structures in general, illustrated here for partially ordered sets)
is to admit that ordered pairs are the right approach, to forget that the
second eoordinate is the important one, and to speak as if the first coordi-
nate were all that mattered. Following custom, we shall often say some-
thing like “let X be a partially ordered set,” when what we really mean is
“let X be the domain of a partial order.” The same linguistic conventions
apply to totally ordered sets, i.e., to partially ordered sets whose order is
in fact total,

The theory of partially ordered sets uses many words whose technical
meaning is so near to their everyday connotation that they are almost self-
explanatory. Suppose, to be specific, that X is a partially ordered set and
that z and y are elements of X. We write ¥ = z in case ¢ < ¥; in other
words, 2 is the inverse of the relation <. If z £ y and z 5 ¥, we write
& < yand we say that x is less than or smaller than y, or that « is a predeces-
sor of y. Alternatively, under the same circumstances, we write ¥ > x and
we say that y is greater or larger than «, or y is a successor of z. The relation
< is such that (i) for no elements » and y do # < y and ¥ <  hold simul-
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taneously, and (i) if * < y and ¥ < 2, then & < 2z (le.,, < is transitive).
If, conversely, < is a relation in X satisfying (i) and (i), and if ¢ = y is
defined to mean that either 2 < y or = y, then £ is a partial order in X.

The connection between < and < can be generalized to arbitrary rela-
tions. That is, given any relation R in a set X, we can define a relation S
in X by writing xS ¥ in case x R y but x > y, and, vice versa, given any
relation § in X, we can define a relation R in X by writing R y in case
either 2 Sy or 2 = y. To have an abbreviated way of referring to the
passage from R to S and back, we shall say that S is the strict relation
corresponding to R, and R is the weak relation corresponding to S. We
shall say of a relation in a set X that it “partially orders X’ in case either
it is a partial order in X or else the corresponding weak relation is one.

If X is a partially ordered set, and if @ ¢ X, the set {x ¢ X: z < a} is the
initial segment determined by a; we shall usually denote it by s(a). The
set {2 ¢ X: 2 = a) is the weak initial segment determined by a, and will be
denoted by 8(a). When it is important to emphasize the distinction be-
tween initial segments and weak initial segments, the former will be called
striet initial segments. In general the words “striet” and “weak’ refer to
< and < respectively. Thus, for instance, the initial segment determined
by a may be described as the set of all predecessors of a, or, for emphasis,
as the set of all strict predecessors of a; similarly the weak initial segment
determined by @ consists of all weak predecessorsof a. If 2 = y and ¥ = 2,
we may say that y is between z and 2; if 2 < y and y < 2, then y is stirictly
between © and z. If < y and if there is no element strictly between z and
y, we say that z is an immediate predecessor of y, or y is an immediale suc-
cessor of x.

If X is a partially ordered set (which may in particular be totally or-
dered), then it could happen that X has an element a such that e = « for
every zin X. In that case we say that a is the least (smallest, first) element
of X. The antisymmetry of an order implies that if X has a least element,
then it has only one. If, similarly, X has an element a such that x = a for
every z in X, then a is the greatest (largest, last) element of X; it too is
unique (if it exists at all). The set  of all natural numbers (with its cus-
tomary ordering by magnitude) is an example of a partially ‘ordered set
with a first element (namely 0) but no last. The same set, but this time
with the inverse ordering, has a last element but no first.

In partially ordered sets there is an important distinction between least
elements and minimal ones. If, as before, X is a partially ordered set, an
element a of X is called a minimal element of X in case there is no element
in X strictly smaller than a. Equivalently, a is minimal if z = @ implies
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that # = . For an example, consider the collection € of non-empty sub-
sets of a non-empty set X, with ordering by inclusion. Fach singleton is
a minimal element of €, but clearly € has no least element (unless X itself
is a singleton). We distinguish similarly between greatest and maximal
elements; a maxtmal element of X is an element a such that X contains
nothing strictly greater than a. Kquivalently, ¢ is maximal if ¢ £ x im-
plies that 2 = a.

An element ¢ of a partially ordered set is said to be a lower bound of a
subset F of X in case @ £ x for every & in E; similarly a is an upper bound
of £incasex = aforeveryzin E. A set ¥ may have no lower bounds or
upper bounds at all, or it may have many; in the latter case it could happen
that none of them belongs to E. (Examples?) Let F, be the set of all
lower bounds of E in X and let £* be the set of all upper bounds of K in X.
What was just said is that E, may be empty, or E, N E may be empty.
If B, N E is not empty, then it is a singleton consisting of the unique least
element of F. Similar remarks apply, of course, to E*. If it happens that
the set E, contains a greatest element ¢ (necessarily unique), then a is
called the greaiest lower bound or infimum of E. The abbreviations ¢.l.b.
and nf are in common use. Because of the difficulties in pronouncing the
former, and even in remembering whether g.lb. is up (greatest) or down
(lower), we shall use the latter notation only. Thus inf £ is the unique
element in X (possibly not in E) that is a lower bound of £ and that
dominates (i.e., is greater than) every other lower bound of £, The defini-
tions at the other end are completely parallel. If E* has a least element ¢
(necessarily unique), then a is called the least upper bound (L.u.b.) or supre-
mum (sup) of B,

The ideas connected with partially ordered sets are easy to express but
they take some time to assimilate. The reader is advised to manufacture
many examples to illustrate the various possibilities in the behavior of
partially ordered sets and their subsets. To aid him in this enterprise, we
proceed to describe three special partially ordered sets with some amusing
properties. (i) The set is @ X w. To avoid any possible confusion, we
shall denote the order we are about to introduce by the neutral symbol .
If (o, b) and (z, y) are ordered pairs of natural numbers, then (a, &) B (z, 3)
means, by definition, that (2¢ + 1)-2¥ £ (22 + 1)-2°. (Here the inequal-
ity sign refers to the customary ordering of natural numbers.) The reader
who is not willing to pretend ignorance of fractions will recognize that,

€

2 1
except for notation, what we just defined is the usual order for _a_;;_ and

a0~ clE S R ; :
R (ii) The set is @ X w again. Once more we use a neutral symbol
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for the order; say 8. If (e, b) and (z, y) are ordered pairs of natural num-
bers, then (a, b) 8 (z, ¥) means, by definition, that either a is strictly less
than z (in the customary sense), or else @ = 2 and b = y. Because of its
resemblance to the way words are arranged in a dictionary, this is called
the lexscographical order of w X w. (iii) Once more the set is @ X w. The
present order relation, say 7T, is such that (a, b) 7' (2, ¥) means, by defini-
tion, that ¢ £ z and b = y.

SECTION 15

THE AXIOM OF CHOICE

For the deepest results about partially ordered sets we need a new set-
theoretic tool; we interrupt the development of the theory of order long
enough to pick up that tool.

We begin by observing that a set is either empty or it is not, and, if it is
not, then, by the definition of the empty set, there is an element in it.
This remark can be generalized. If X and ¥ are sets, and if one of them is
empty, then the Cartesian product X X Y is empty. If neither X nor ¥V
is empty, then there is an element x in X, and there is an element % in ¥;
it follows that the ordered pair (x, ) belongs to the Cartesian product
X X Y, so that X X Y is not empty. The preceding remarks constitute
the cases n = 1 and »n = 2 of the following assertion: if {X;} is a finite
sequence of sets, for ¢ in n, say, then a necessary and sufficient condition
that their Cartesian product be empty is that at least one of them be empty.
The assertion is easy to prove by induetion on #. (The cage n = 0 leads to
a slippery argument about the empty function; the uninterested reader may
start his induction at 1 instead of 0.)

The generalization to infinite families of the non-trivial part of the asser-
tion in the preceding paragraph (necessity) is the following important prin-
ciple of set theory.

Axiom of choice. The Cartesian product of a non-empty family of non-
emply sets 18 non-emply.

In other words: if {X;} is a family of non-empty sets indexed by a non-
empty set I, then there exists a family {«;}, ¢ ¢ I, such that z; ¢ X; for each
¢2in 1.

Suppose that € is a non-empty collection of non-empty sets. We may
regard € as a family, or, to say it better, we can convert € into an indexed
get, just by using the collection € itself in the role of the index set and
using the identity mapping on € in the role of the indexing. The axiom
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of choice then says that the Cartesian product of the sets of © has at least
one element. An element of such a Cartesian product is, by definition, a
function (family, indexed set) whose domain is the index set (in this case @)
and whose value at each index belongs to the set bearing that index. Con-
clusion: there exists a function f with domain @ such that if 4 ¢ €, then
f(A) e A. This conclusion applies, in particular, in case € is the collection
of all non-empty subsets of a non-empty set X. The assertion in that case
is that there exists a function f with domain ®@(X) — {&} such that if 4
is in that domain, then f(A4) ¢ A. In intuitive language the function f can
be described as a simultaneous choice of an element from each of many
sets; this is the reason for the name of the axiom. (A function that in this
sense “‘chooses’” an element out of each non-empty subset of a set X is
called & choice function for X.) We have seen that if the collection of sets
we are choosing from is finite, then the possibility of simultaneous choice
is an easy consequence of what we knew before the axiom of choice was
even stated; the role of the axiom is to guarantee that possibility in infinite
cases.

The two consequences of the axiom of choice in the preceding paragraph
(one for the power set of a set and the other for more general collections of
sets) are in fact just reformulations of that axiom, It used to be considered
important to examine, for each consequence of the axiom of choice, the ex-
tent to which the axiom is needed in the proof of the consequence. An
alternative proof without the axiom of choice spelled victory; a converse
proof, showing that the consequence is equivalent to the axiom of choice
(in the presence of the remaining axioms of set theory) meant honorable
defeat. Anything in between was considered exasperating. As a sample
(and an exercise) we mention the asserfion that every relation includes a
function with the same domain. Another sample: if © is a collection of
pairwise disjoint non-empty sets, then there exists a set Asuchthat 4 N C
is a singleton for each €' in ©. Both these assertions are among the many
known to be equivalent fo the axiom of choice.

As an illustration of the use of the axiom of choice, consider the assertion
that if a set is infinite, then it has a subset equivalent to w. An informal
argument might run as follows. If X is infinite, then, in particular, it is
not empty (that is, it is not equivalent to 0); hence it has an element, say
xo. Since X is not equivalent to 1, the set X — {@o} is not empty; henece it
has an element, say ;. Repeat this argument ad infinitum; the next stel?,
for instance, is to say that X — {x, #;} is not empty, and, therefore, it
has an element, say a3, The result is an infinite sequence {z,] of distillmt
elements of X;q.e.d. This sketch of a proof at least has the virtue of being
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honest about the most important idea behind it; the act of choosing an
element from a non-empty set was repeated infinitely often. The mathe-
matician experienced in the ways of the axiom of choice will often offer
such an informal argument; his experience enables him to see at a glance
how to make it precise. For our purposes it is advisable to take a longer
lock.

Let f be a choice Tunction for X'; that is, f is a function from the collec-
tion of all non-empty subsets of X to X such that f(A) ¢ A for all 4 in
the domain of f, Let @ be the collection of all finite subsets of X. Since X
is infinite, it follows that if 4 e @, then X — A is not empty, and hence
that X — A belongs to the domain of f. Define a function ¢ from @ to @
by writing g(A) = A U {f(X — A)}. In words: g{A4) is obtained by ad-
joining to A the element that f chooses from X — A. We apply the re-
cursion theorem to the function g; we may start it rolling with, for in-
stance, the set &, The result is that there exists a function U from
into € such that U(0) = & and Un™) = Un) U {f(X — Un)} for
every natural number n. Assertion: if v(n) = f(X — U(n)), then v is a
one-to-one correspondence from w to X, and hence, indeed, o is equivalent
to some subset of X (namely the range of »). To prove the assertion, we
make a series of elementary observations; their proofs are easy conse-
quences of the definitions. First: v(n) ¢ U(n) for all n. Second: v(n) ¢
U(n™) for all n. Third: if n and m are natural numbers and n < m, then
U(n) € U{m). Fourth: if » and m are natural numbers and » < m, then
v(n) == v(m). (Reason: v(n) ¢ U(m) but v(m) ¢ U(m).) The last observa«
tion implies that v maps distinet natural numbers onto distinct elements
of X ; all we have to remember is that of any two distinet natural numbers
one of them is strictly smaller than the other.

The proof is complete; we know now that every infinite set has a subset
equivalent to w. This result, proved here not so much for its intrinsic in-
terest as for an example of the proper use of the axiom of ¢hoice, has an
interesting corollary. The assertion is that a set is infinite if and only if
it is equivalent to a proper subset of itself. The “if” we already know;
it says merely that a finite set cannot be equivalent to a proper subset,
To prove the “only if,” suppose that X is infinite, and let » be a one-to-one
correspondence from w into X. If « is in the range of v, say « = v(n), write
h(z) = v(n); if  is not in the range of v, write h(z) = z. It is easy to
verify that  is a one-to-one correspondence from X into itself. Since the
range of h is a proper subset of X (it does not contain »(0)}, the proof of
the corollary is complete. The agsertion of the corollary was used by Dede-
kind ag the very definition of infinity,




SECTION 16

ZORN'S LEMMA

An existence theorem asserts the existence of an object belonging to a
certain set and possessing certain properties. Many existence theorems
can be formulated (or, if need be, reformulated) so that the underlying set
is a partially ordered set and the crucial property is maximality. Our next
purpose is to state and prove the most important theorem of this kind.

Zorn’s lenama. If X is a partially ordered sel such that every chain in X
has an upper bound, then X contains a maximal element,

Discussion. Recall that a chain is a totally ordered set. By a chain
“in X7 we mean a subset of X such that the subset, considered as a par-
tially ordered set on its own right, turns out to be totally ordered. If 4 is
a chain in X, the hypothesis of Zorn’s lemma guarantees the existence of
an upper bound for 4 in X; it does not guarantee the existence of an upper
bound for 4 in A. The conclusion of Zorn’s lemma is the existence of an
element @ in X with the property that if @ = =z, then necessarily ¢ = 2.

The basic ides of the proof is similar to the one used in our preceding
discussion of infinite sets. Since, by hypothesis, X is not empty, it has an
element, say @o. If %, is maximal, stop here. If it is not, then there exists
an element, say @, strictly greater than xp. If 2, is maximal, stop here;
otherwise continue. Repeat this argument ad infinitum; ultimately it
must lead to a maximal element,

The last sentence is probably the least convincing part of the argument;
it hides a multitude of difficulties. Observe, for instance, the following
possibility. It could happen that the argument, repeated ad infinitum,
leads to a whole infinite sequence of non-maximal elements; what are we
to do in that case? The answer is that the range of such an infinite se-
quence is a chain in X, and, consequently, has an upper bound; the thing
to do is to start the whole argument all over again, beginning with that
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upper bound. Just exactly when and how all this comes to an end is ob-
scure, to say the least. There is no help for it; we must look at the precise
proof. The structure of the proof is an adaptation of one originally given
by Zermelo.

Proor. The first step is to replace the abstract partial ordering by the
inclusion order in a suitable collection of sets. More precisely, we consider,
for each element  in X, the weak initial segment §(x) consisting of ¢ and
all its predecessors. The range § of the function 3 (from X to ®(X)) is a
certain collection of subsets of X, which we may, of course, regard as (par-
tially) ordered by inclusion. The function § is one-to-one, and a necessary
and sufficient condition that 8(x) < 8(y) is that # £ y. In view of this,
the task of finding a maximal element in X is the same as the task of find-
ing a maximal set in 8. The hypothesis about chains in X implies (and is,
in fact, equivalent to) the corresponding statement about chains in 8.

Let & be the set of all chains in X; every member of & is included in
5(x) for some z in X. The collection & is a non-empty collection of sets,
partially ordered by inclusion, and such that if @ is a chain in 9, then the
union of the sets in € (i.e., {J4.e 4) belongs to . Since each set in % is
dominated by some set in 8, the passage from 8§ to % cannot introduce any
new maximal elements, One advantage of the collection X is the slightly
more specific form that the chain hypothesis assumes; instead of saying
that each chain @ has some upper bound in 8, we can say explicitly that
the union of the sets of @, which is clearly an upper bound of €, is an cle-
ment of the collection . Another technical advantage of & is that it con-
taing all the subsets of each of its sets; this makes it possible to enlarge
non-maximal sets in % slowly, one element at a time.

Now we can forget about the given partial order in X, In what follows
we consider a non-empty collection X of subsets of a non-empty set X,
subject to two conditions: every subset of each set in % is in &, and the
union of each chain of sets in % is in X. Note that the first condition im-
plies that & e . Our task is to prove that there exists in & a maximal set.

Let f be a choice function for X, that is, f is a funetion from the collection
of all non-empty subsets of X to X such that f(4) ¢ A for all 4 in the
domain of f. For each set A in &, let A be the set of all those elements
z of X whose adjunction to A produces a set in ; in other words, 4 =
[zxeX: AU {2} ex}. Define a function g from X to X as follows: if P
A 5% &, then g(4) = A U {f(4 — A)};if A — 4 = &, then g(4d) = A.
It follows from the definition of A that 4 — A = & if and only if A4 is
maximal. In these terms, therefore, what we must prove is that there
exists in & a set A such that g(A) = A. Itturns out that the crucial prop-
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erty of ¢ is the fact that g(A4) (which always includes 4) contains at most
one more element than A.

Now, to facilitate the exposition, we introduce a temporary definition.
We shall say that a subcollection J of X is a tower if

(i) ey,
(i) #f A €3, then g(4) €3,
(iii) of @ is @ chain in 3, then s e 4 €5.

Towers surely exist; the whole collection & is one. Since the intersec-
tion of a collection of towers is again a tower, it follows, in particular, that
if 3, is the intersection of all towers, then 3, is the smallest tower. Our
immediate purpose is to prove that the tower Jo is a chain.

Let us say that a set C in %o is comparable if it is comparable with every
set in J,; this means that if A ¢ Jp, then either A < C or C < A. To say
that % is a chain means that all the sets in Jp are comparable. Comparable
sets surely exist; & is one of them. In the next couple of paragraphs we
concentrate our attention on an arbitrary but temporarily fixed comparable
set C.

Suppose that A ¢ 3y and A is a proper subset of C. Assertion: g(4) < C.
The reason is that since C is eomparable, either g(4) < C or C is a proper
subset of g(4). In the latter case A is a proper subset of a proper subset
of g(4), and this contradicts the fact that g(4) — A cannot be more than
a singleton,

Consider next the collection U of all those sets A in 5y for which either
A Cor g(C) < A. The collection U is somewhat smaller than the col-
lection of sets in %, comparable with g(C); indeed if A eql, then, since
C < ¢(0), either A C ¢(C) or g(C) < A. Assertion: U is a tower. Since
& < C, the first condition on towers is satisfied. To prove the second
condition, ie., that if 4 e, then g(4) €U, split the discussion into three
cases. First: A is a proper subset of C. Then g(4) < C by the preceding
paragraph, and therefore g(A) e U. Second: A = C. Then g(4) = ¢(C),
so that g(C) C ¢(4), and therefore g(A) e w. Third: g(C) < A. Then
¢(C) < g(A), and therefore g(4) e . The third condition on towers, ie.,
that the union of a chain in U belongs to 4L, is immediate from the defini-
tion of U. Conelusion: U is a tower included in %y, and therefore, since
o is the smallest tower, U = Jp.

The preceding considerations imply that for each comparable set €' the
set g(C) is comparable also. Reason: given C, form U as above; the fact
that U = I, means that if A €3, then either A < € (in which case 4 <
g(C)) or g(C) < A.
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We now know that & is comparable and that ¢ maps comparable sets
onto comparable sets. Since the union of a chain of comparable sets is
comparable, it follows that the comparable sets (in Jy) constitute a tower,
and hence that they exhaust Jp; this is what we set out to prove about .

Since 5, is a chain, the union, say A, of all the sets in 3, is itself a set in
Jo. Since the union includes all the sets in Jy, it follows that g(4) < A.
Since always 4 C g(4), it follows that A = g(4), and the proof of Zorn’s
lemma is complete.

Exercise. Zorn’s lemma is equivalent to the axiom of choice. [Hint
for the proof: given a set X, consider functions f such that dom f
@(X), ranf C X, and f(A) € A for all A in dom f; order these functions
by extension, use Zorn's lemma to find a maximal one among them, and
prove that if f is maximal, then dom f = ®(X) — {@&}.] Consider each
of the following statements and prove that they too are equivalent to
the axiom of choice. (i) Every partially ordered set has a maximal
chain (i.e., a chain that is not a proper subset of any other chain). (ii)
Every chain in a partially ordered set is included in some maximal chain,
(iii) Every partially ordered set in which each chain has a least upper
bound has a maximal element.




SECTION 17

WELL ORDERING

A partially ordered set may not have a smallest element, and, even if it
has one, it is perfectly possible that some subset will fail to have one. A
partially ordered set is called well ordered (and its ordering is called a well
ordering) if every non-empty subset of it has a smallest element. One
consequence of this definition, worth noting even before we look at any
examples and counterexamples, is that every well ordered set is totally
ordered. Indeed, if z and y are elements of a well ordered set, then {z, y}
is a non-empty subset of that well ordered set and has therefore a first ele~
ment; according as that first element is  or y, we havez S yory = .

For each natural number n, the set of all predecessors of n (that is, in
accordance with our definitions, the set n) is a well ordered set (ordered
by magnitude), and the same is true of the set w of all natural numbers.
Theset e X o, with (a,b) = (=, y) defined tomean (2¢ + 1)2¥ < (2z + 1)2°
is not well ordered. One way to see this is to note that (a, b + 1) = (a, b)
for all @ and b; it follows that the entire set @ X « has no least element.
Some subsets of w X « do have a least element. Consider, for example, the
set E of all those pairs (a, b) for which (1, 1) = (a, b); the set F has (1, 1)
for its least element. Caution: E, considered as a partially ordered set on
its own right, is still not well ordered. The trouble is that even though ¥
has a least element, many subsets of & fail to have one; for an example
consider the set of all those pairs {(a,b) in B for which (a, b) # (1, 1).
One more example: o X w is well ordered by its lexicographical ordering.

One of the pleasantest facts about well ordered sets is that we can prove
things about their elements by a process similar to mathematical induc-
tion. Precisely speaking, suppose that S is a subset of a well ordered set
X, and suppose that whenever an element & of X is such that the entire
initial segment s(z) is included in S, then 2 itself belongs to S; the principle
of transfinite induction asserts that under these circumstances we must
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have S = X. KEquivalently: if the presence in a set of all the strict pred-
ecessors of an element always implies the presence of the element itself,
then the set must contain everything,

A few remarks are in order before we look at the proof. The statement
of the ordinary principle of mathematical induction differs from that of
transfinite induction in two conspicuous respects. One: the latter, ingtead
of passing to each element from its predecessor, passes to each element
from the set of all its predecessors. Two: in the latter there is no assump-
tion about a starting element (such as zero). The first difference is impor-
tant: an element in a well ordered set may fail to have an immediate pred-
ecessor. The present statement when applied to « is easily proved to be
equivalent to the principle of mathematical induction; that principle,
however, when applied to an arbitrary well ordered set, is not equivalent
to the principle of transfinite induction. To put it differently: the two
statements are in general not equivalent to each other; their equivalence
in @ is a happy but special circumstance.

Here is an example. Let X be wt, ie.,, X = o U {w}. Define order in
X by ordering the elements of w as usual and by requiring that n < w for
all # in w. The result is a well ordered set. Question: does there exist a
proper subset S of X such that 0 ¢S and such that » 4 1 ¢S whenever
n eS? Answer: yes, namely S = w,

The second difference between ordinary induction and {ransfinite induc-
tion (no starting element required for the latter) is more linguistic than
conceptual. If xg is the smallest element of X, then s(zp) is empty, and,
consequently, s(zy) C S; the hypothesis of the prineiple of transfinite in-
duction requires therefore that 2 belong to S.

The proof of the principle of transfinite induction is almost trivial, If
X — 8 is not empty, then it has a smallest element, say «. This implies
that every element of the initial segment s(z) belongs to S, and hence, by
the induction hypothesis, that = belongs to 8. This is a contradiction
(z cannot belong to both S and X — 8); the conclusion is that X — 8 is
empty after all.

We shall say that a well ordered set A is a continuation of a well ordered
set B, if, in the first place, B is a subset of 4, if, in fact, B is an initial seg-
ment of A, and if, finally, the ordering of the elements in B is the same as
their ordering in A, Thus if X is a well ordered set and if @ and b are ele-
ments of X with b < q, then s(a) is a continuation of s(b), and, of course,
X is a continuation of both s{a) and s(b).

If @ is an arbitrary collection of initial segments of a well ordered sef,
then @ is & chain with respect to continuation; this means that @ ig a collec-
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tion of well ordered sets with the property that of any two distinet mem-
bers of the collection one is a continuation of the other. A sort of converse
of this comment is also true and is frequently useful. If a collection € of
well ordered sets is a chain with respeet to continuation, and if U is the
union of the sets of €, then there is a unique well ordering of U such that
U is a continuation of each set (distinet from U itself) in the collection €.
Roughly speaking, the union of a chain of well ordered sets is well ordered.
This abbreviated formulation is dangerous because it does not explain that
“chain’” is meant with respect to eontinuation. If the ordering implied
by the word “chain’ is taken to be simply order-preserving inclusion, then
the conclusion is not valid.

The proof is straightforward. If @ and b are in U, then there exist sets
A and Bin € with a ¢ A and b ¢ B. Since either 4 = B or one of 4 and
B is a continuation of the other, it follows that in every case both ¢ and b
belong to some one set in @; the order of U is defined by ordering each
pair {a, b} the way it is ordered in any set .of € that contains both a and
b. Since € is a chain, this order is unambiguously determined. (An alter-
native way of defining the promised order in U is to recall that the given
orders, in the sets of @, are sets of ordered pairs, and to form the union of
all those sets of ordered pairs.)

A direct verification shows that the relation defined in the preceding
paragraph is indeed an order, and that, moreover, its construction was
forced on us at every step (i.e., that the final order is uniquely determined
by the given orders). The proof that the result is actually a well ordering
is equally direct. Fach non-empty subset of U must have a non-empty
intersection with some set in €, and hence it must have a first element in
that set; the fact that @ is a continuation chain implies that that first ele-
ment is necessarily the first element of U also.

Exercise. A subset A of a partially ordered set X is cofinal in X in case
for each element 2 of X there exists an element @ of 4 such that ¢ < a.
Prove that every totally ordered set has a cofinal well ordered subset.

The importance of well ordering stems from the following result, from
which we may infer, among other things, that the principle of transfinite
induetion is much more widely applicable than a casual glance might
indicate.

Well ordering theorem. Every sef can be well ordered.

Discussion. A better (but less traditional) statement is this: for each
set X, there is a well ordering with domain X. Warning: the well ordering
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is not promised to have any relation whatsoever to any other structure
that the given set might already possess. If, for instance, the reader knows
of some partially or totally ordered sets whose ordering is very definitely
not a well ordering, he should not jump to the conclusion that he has dis-
covered a paradox. The only conclusion to be drawn is that some sets can
be ordered in many ways, some of which are well orderings and others are
not, and we already knew that.

Proor. We apply Zorn'’s lemma. Given the set X, consider the eollec-
tion ‘W of all well ordered subsets of X. Explicitly: an element of W is a
subset A of X together with a well ordering of A. We partially order W
by continuation.

The collection W is not empty, because, for instance, &f ¢ W. U X = o,
less annoying elements of ‘W can be exhibited; one such is {(z, 2)}, for any
particular element x of X. If € is a chain in W, then the union U of the
gets in @ has a unique well ordering that makes U “larger” than (or equal
to) each set in €; this is exactly what our preceding discussion of continua-
tion has accomplished. This means that the principal hypothesis of Zorn’s
lemma has been verified ; the conclusion is that there exists a maximal well
ordered set, say M, in W, The set M must be equal to the entire set X.
Reason: if z is an element of X not in M, then M can be enlarged by putting
z after all the elements of M. The rigorous formulation of this unambigu-
ous but informal deseription is left as an exercise for the reader. With that,
out of the way, the proof of the well ordering theorem is complete.

Exercise. Prove that a totally ordered set is well ordered if and only
if the set of strict predecessors of each element is well ordered. Does any
such condition apply to partially ordered sets? Prove that the well order-
ing theorem implies the axiom of choice (and hence is equivalent to that
axiom and to Zorn's lemma). Prove that if B is a partial order in a set
X, then there exists a total order S in X such that B C §; in other
words, every partial order ean be extended to a total order without
enlarging the domain.
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