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FACETO
THE SECOND EDITION

This new edition contains considerable improvements over the first edition.
Much new material has been added. For example, in Chapter 2 there are two
new sections on model theory devoted to elementary equivalence and elemen-
tay extensions and to ultrapowers and nonstandard analysis. The greatest
change has been the addition of a large number o exercises. There are 389
exercises, many of them consisting of severa parts. Completely new is a section
at the end of the book, Answers to Selected Exercises, which should improve the
usefulness o the book as a textbook as well as for independent study. With all
these changes, | have attempted to preserve the spirit of the original book, which
was intended to be a simple, clear introduction to mathematical logic unencum-
bered by excessive notation and terminology.

| should like to thank the many people who have given me suggestions for
corrections and improvement. | am particularly indebted to Professor Frank
Cannonito for much helpful advice.

ELLIOTT MENDEL SON

iii



FACETO
THE HRST EDITION

In this book We have attempted to present a compact introduction to some of
the principa topics of mathematical logic. In order to give a full and precise
treatment of the moreimportant basic subjects, certain subsidiary topics, such as
modal, combinatory, and intuitionistic logics, and some interesting advanced
topics, such as degrees o recursive unsolvability, have had to be omitted.

In the bdief that beginners should be exposed to the most natural and easiest
proofs, free-swinging set-theoretic methods have been used. The significance of
a demand for constructive proofscan be evaluated only after a certain amount
o experience with mathematical logic has been obtained. After dl, if we are to
be expelled from "' Cantor's paradise” (as non-constructive set theory was called
by Hilbert), at least we should know what we are missing.

The five chapters of the book can be covered in two semesters, but, for a
one-semester course, Chapters 1 through 3 will be quite adequate (omitting, if
hurried, Sections5 and 6 of Chapter 1 and Sections 10, 11, and 12 of Chapter 2).
The convention has been adopted of prefixing a superscript ' D to any section
or exercisewhich will probably be difficult for a beginner, and a superscript™ A
to any section or exercise which presupposes familiarity with a topic that has not
been carefully explained in the text. Bibliographical references are given to the
best source of information, which is not always the earliest paper; hence these
referencesgive no indication as to priority. For example, Boone [1959] gives the
most complete account of his work on the word problem, which was actually
done independently of and about the same time as Novikov’s work [1955].

The present book is an expansion of lecture notes for a one-semester course in
mathematical logic given by the author at Columbia University from 1958 to
1960 and at Queens Collegein 1961 and 1962. The author hopes that it can be
read with ease by anyone with a certain amount of experience in abstract
mathematical thought, but there is no specific prerequisite. The author would
like to thank J. Barkley Rosser for encouragement and guidance during his
graduate studies in logic, and he would like to acknowledge also the obvious
debt owed to the books of Hilbert-Bernays, 1934, 1939; Kleene, 1952; Rosser,
1953; and Church, 1956.
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INTRODUCTION

One of the most popular definitions d logic is that it is the anayss o
methods Of reasoning. In studying these methods, logic is interested in the form
rather than the content o the argument. For example, consider the two deduc-
tions:;

1 All men are mortal. Socrates is a man. Hence Socrates is mortal.
2; All rabbits like carrots. Sebastian is a rabbit. Hence, Sebastian likes

carrots.

Both have the same form: All A are B. SisanA. Hence Sisa B. The truth or
falsity o the particular premisses and conclusions is d no concern to the
logician. He wants to know only whether the truth o the prernisses implies the
truth o the conclusion. The systematic formalization and cataloguing of valid
methods d reasoning isone d the main tasks d the logician. If his work uses
mathematical techniquesand if it is primarily devoted to the study of mathe-
matical reasoning, then it may be called mathematical logic. We can narrow the
domain o mathematical logic if we defineits principal aim to be a precise and
adequate definitiond the notion o " mathematical proof'.

Impeccable definitions have little value at the beginning o the study of a
subject. The best way to find out what mathematical logic is about is to start
doing it, and the student is advised to begin reading the book even though (or
+especially if) he has qualms about the meaning or purposes of the subject.

Although |ogic is basic to al other studies, its fundamental and apparently
sdif-evident character discouraged any deep logical investigationsuntil the late
nineteenth century. Then, under the impetus o the discovery d non-Euclidean
geometries and of the desire to provide a rigorous foundation for anaysis,
Interest in |ogic revived. This new interest, however, was ill rather unen-
thusiagtic until, around the turn o the century, the mathematical world was
shocked by the discovery of the paradoxes, i.e., arguments leading to contradic-
tions. The most important of these paradoxes are the following.
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4 INTRODUCTION

This approach, known as the theory d types and systematized and developed
by Russall-Whitehead [1910-1913), is successful in eliminating the known para-
doxes,? but it is clumsy in practice and has certain other drawbacks as wdl. A
different criticism o the logica paradoxesis aimed at their assumption that, for
every property P(x), there exists a corresponding set o al objects x which
satisfy P(x). If we rgect this assumption, then the logica paradoxes are no
longer derivable.} It is necessary, however, to provide new postulates that will
enable us to prove the existenced those sets which are a daily necessity to the
practicing mathematician. The first such axiomatic set theory was invented by
Zermelo[1908]. In Chapter 4 we shall present an axiomatictheory d sets which
is a descendant d Zermelo’s system (with some new twists given to it by von
Neumann, R. Robinson, Bernays, and Gadel). There are aso various hybrid
theories combining some aspects d type theory and axiomatic set theory, e.g.,
Quine’s system NF (cf. Rosser [1953]).

A more radical interpretation  the paradoxes has been advocated by
Brouwer and his intuitionist school (cf. Heyting [1956]). They refuse to accept
the universality of certain basic logicd laws, such as the law o excluded middle:
P or not-P. Such a law, they claim, is true for finite sets, but it is invalid to
extend it on a wholesdle basis to dl sets. Likewise, they say it is invalid to
conclude that "there exists an object x such that not-P(x)” follows from
"not-(for dl x, P(x))”; we are justified in asserting the existence d an object
having a certain property only if we know an effective method for constructing
(or finding) such an object. The paradoxesare, d course, not derivable (or even
meaningful) if we obey the intuitionist strictures, but, aas, so are many beloved
theorems d everyday mathematics, and, for this reason, intuitionism has found
few converts among mathematicians.

Whatever approach one takes to the paradoxes, it is necessary first to examine
the language d logic and mathematics to see what symbols may be used, to
determine the ways in which these symbols are put together to form terms,
formulas, sentences, and proofs, and to find out what can and cannot be proved
if certain axiomsand rules o inference are assumed. Thisisone d the tasks o
mathematica logic, and, until it is done, there is no basis for comparing riva
foundationsd logic and mathematics. The degp and devastating results o
Godel, Tarski, Church, Rosser, Kleene, and many others have been ample
reward for the labor invested and have earned for mathematical logic its status
as an independent branch & mathematics.

tRussell’s Paradox, for example, depends upon the existenceof the set A of all setswhich are not
membersof themselves. Because, according to the theory of types it is meaninglessto say that a set
beongs to itsdf, there can be no such set A.

$RussHl's Paradox then provesthat thereisno set A of dl setswhich do not belong to themsdlves;
the paradoxesof Cantor and Burali-Forti show that there is no universal s&t and no set containing
al ordinal numbers. The semantic paradoxescannot even be formulated, since they involve notions
not expressible within the system.

T —
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For the absolute novice a summary will be given here o some d the basic
ideas and results used in the text. The reader is urged to skip these explanations
now; and, if necessaxy, to refer to them later-on.

A ser is a collection o objects? The objects in the collection are called
elemients or members @ the set, and we shall write“x € y” for the statement that
x is a member Of y. (Synonymous expressions are "'x belongs to y” and “y
contains x”.) The negation d "'x €y will be written"'x & y".

By “x C y” We mean that every member of x isalso a member d vy, or, in
other words, that x is a subset of y (or, synonymoudy, that x is induded iny).
We shall write "'t = S" to mean that "'t"" and “s” denote the same object. As
usual, “z # s~ isthe negationd “t = S'. For setsx andy, weassumethat X =y
if and only if x cy andy C x; that is if and only if x andy have the same
members. A s&t x is called aproper subset d asety, written"x Cy”, if X Cy
but x = y.%

The union X Uy d satsx andy is defined to be the set o all elementswhich
are members o x or y or both. Hence, x U x=x, x Uy =y U X, and
(xuy)uz=xU(y Uz). Theintersection x Ny isthe set d eementswhich
x andy have in common. It isessy to verifythat X N X = x, x Ny =y N X,
xana=xny)nzxn(yuUz=(xnNy)u(xnz),and x Uy Nz
=X uUy)n (x Uz). Therdativecomplemet x —y isthe set d members d
x which are not members o y. We also postulate the existenced the empty set
(or null set) O, i.e., a set which has no members at dl. Then, x n 0 =0,
xUO0=x,x-0=x,0—- x=0,andx — x = 0. Two sets x andy arecalled
digontif x ny =0.

Given any objects by, . .. , b, the set which containsb,, .. ., b, as its only
membersisdenoted{b,, ..., b}. In particular,{ X,y) isaset havingx andy as
its only membersand, if x #v, is caled the unorderedpair d x andy. The set
{x, x} iswritten{ x) and is called the unit set d x. Noticethat{x,y) ={y, X).
On the other hand, by (b,, ..., b, we mean the ordered k-tupled b,, ..., b,.
The pasic property d ordered k-tuplesis that (b,, ..., 5> =(C,, «.., ¢ If
and only if b, = ¢}, b, = ¢y, ..., b, = . Thus, (b,, b,> = (b, b;> if and only
if b, = b,. Ordered 2-tuples are called ordered pairs. If X isa set and k is a

" positive jnteger, we denote by X* the set & al ordered k-tuples(b,, . . ., b,> of

eli“}cms by ..., b of X. We dso make the convention that X! stands for X.
X% is called the Cartesian product o X with itself k times. If Y and Z are sets,
then by ¥ X Z we denote the set o all ordered pairs (y, z> such thaty € Y

ZEZ. Y X Ziscdled the Cartesian product d Y and Z.

TWhich collections of Objectsform sets will not be specified here. Qe will be exercised to avoid
using any jdeasor procedures Which may lead to the paradoxes; all the results can be formalized n

€ axiomatic set theory of Chapter 4. The term " dass’ is sometimesused as a synonym for “set,,,
bit 1t will be avoided here because it has a differ entmeaning in Chapter 4. If the property P(x) does
determine a set, this set is often denoted {x|P(x)}.

{The notation x cy is often used ingtead of x Cy.
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An n-place rdation (or a rdation with » arguments) on a set X is a subset of
X", ie., asat d ordered n-tuples d elements o X. For example, the 3-place
relation d betweenness for points on a line is the sat o dl 3-tuples (X, Y, 2)
such that the point x lies between the pointsy and z. A 2-place relation is called
a binary reation, e.g., the binary relation o fatherhood on the set  human
beingsis the set o al ordered pairs (X, y) such that x andy are human beings
and x isthe father f y. A 1-placerelationon X isasubset d X, and iscalled a
property on X.

Given a binary relation R on a set X, the doman o R is defined to be the set
d ally such that (y, z) € R for somez; theranged Ristheset d al z such
that (y, z) € R for somey; and the field d R is the union d the domain and
ranged R. Theinverse rdation R™!  Ristheset d al ordered pairs (y, 2)
such that (z, y) € R. For example, thedomain o the relation < ontheset o o
non-negative integerst is w, its range is w — {0}, and the inverse d < is >.
Notation: Very often xRy iswritteninstead o (X, y) € R. Thus, in the example
just given, we usudly writex <y instead o (x,y) € <.

A binary relation R is said to be reflexive if xRx for dl x inthefiddd R. R
is symmetric if xRy impliesyRx, and R is trangitiveif xRy and yRz imply xRz.
Examples: The relation < on the set d integersiis reflexive and transitive but
not symmetric. The relation ""having at least one parent in common'* on the set
d human beingsis reflexive and symmetric but not transitive.

A binary relation which is reflexive, symmetric, and trandtive is caled an
equivaence rdation. Examples d equivalence relations. (1) the identity relation
I, on aset X consging o dl pairs (y, y), wherey € X; (2) the relation d
pardlelism between lines in a plane; (3) given a fixed pogtive integer n, the
relation x =y (mod n) holdswhen x andy areintegersand x — y isdivisble by
n; (4) the relation between directed line segments in three-dimensional space
which holds when and only when they have the same length and the same
direction; (5) the congruence relation on the set o trianglesin a plane; (6) the
similarity relation on the set d triangles in a plane. Given an equivalence
relation R on a set X, and given anyy < X, define[y] astheset o dl z in X
such that yRz. Then [y] is caled the R-equivdenceclass 0 y. It iseasy to check
that [y] =[Z] if and only if yRz and that, if [y] # [Z], then[y] n[Z] =0, i.e.,
different R-equivaenceclasses have no elementsin common. Hence, theset X is
completely partitioned into the R-equivalence dassss. For some d the examples
above: (1) the equivalence cdassss are just the unit sets{y), wherey € X; (2)
the equivaence classes can be considered to be the directions in the plane; (3)
there are n equivalence dasses, the k' equivdencedass (k=0,1,...,n - 1)
being the set o all numberswhich leave the remainder k upon division by n; (4)
the equivalence classes are the three-dimensiona vectors.

tw will also bereferred to as the set of natural numbers.
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A function T is @ binary relaion such that (x, y) =f and (x, z) =f imply
y = z. Thus, forany eement x of thedomaind afunctionf, thereisa uniquey
siich that (x, y) € f; thisuniqueelementy is denoted f(x). If X isin the domain
of f; then f(x) is said to be defined. A functionf with domain X and range Y is
said to be a function from X onto Y. If f is a function from X onto Y, and
y 8B then T is called afunction from X into Z. For example, if f(x) = 2x for
every integer x, fisa fl_Jnction from the Set o inte_gers onto the et d even
integers, and T is a function from the set o integersinto the set d integers. A
function the domain d which consists of n-tuples is said to be afunction d »
arguments. A (total) function d » arguments an a set X is a functionf whose
domain 1S X". We usudly write f(xy, ...,x,) instead d f({xp,...,X,). A
partial function d n arguments on a set X is a function whose domain is a
subset of X"; e.g. ordinary divison is a partial, but not total, function o two
arguments on the set d integers (since division by zero is not defined). I ff isa
function with domain X and range Y, then the restriction f, off toaset Z isthe
function f N (Z X Y). Clearly, f,(u) = v if and only if ¥ € Z and f(u) = v.
The image of ine set Z under the functionf is the range off,. The inverseimage
of a set W under the functionf is the set o al dementsu o the domain off
such that f(u) € W. We say thatf mgps X onto (into) Y if X isasubset o the
domain d f and the image d X under f is (a subset of) Y. By an n-place
operdion (or operaion with » arguments) on a set X we mean a function from X"
into X. For example, ordinary additionis a binary (i.e., 2-place) operation on the
st of natural numbers {0, 1, 2, ... }. But ordinary subtraction is not a binary
operation on the set & natural numbers, though it is a binary operation on the
st d integers.

Given two functionsf and g, the compaostionf < g (also sometimes denotedfq)
is the functionsuch that (f ¢ g)(x) = f(g(x)); (f ° g)(x) is defined if and only
if g(x) is defined and f(g(x)) is defined. For example, if g(x) = x2 and f(x) =
x + 1 for every integer x, then (f ° g)(x) = x>+ 1 and (g ° f)(x) = (x + i
Also, if h(x) = — x for every real number x and f(x) = Vx for every non-nega-
tive redl number x, then (f ° k)(x) is defined only for x < 0, and, for such x,
(f 2 B)(x) = V= x . A functionf such that f(x) = f(y) impliesx =y iscaled a
1-1 (one-one) function. Examples: (1) The identity relation I, on aset X isa
I=1 function, since I,(y) =y for anyy € X; (2) the function g(x) = 2x, for
every integer x, isa 1-1 function; (3) the function #(x) = x2, for every integer X,
Is not 1-1, gnce h(— 1) = A(1). Notice that a functionf is 1-1 if and only if its
g:ersc relaiionf ~' is a function. If the domain and range o a 1-1 functionf

X and v, respectively, thenf is said to be a 1-1 (one-one) corr

b"jﬂee" X and Y: thenf ~1is a 1-1 correspondence between Y and X, and
(]{ °H=1IL and (f -f ") =1, Iff isal-1 correspondencebetween X and

and g is 3 1-1 correspondence between Y and Z, then g of is a 1-1
eorrespondence petween X and Z. Sets X and Y are said to be equinumerous
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(written X = Y) if and only if thereis a 1-1 correspondence between X and Y.
Clearly, X = X; X =Y impliesY=X;and X =Yand Y= Z imply X = Z.
One can prove (cf. Schroder-Bernstein Theorem, page 194) that if X = Y, C Y
and Y=X, Cc X,thenX = Y. If X =Y, one sometimessaysthat X and Y have
the same cardinal number, and if X is equinumerouswith asubset o Y but Y is
not equinumerous with a subset o X, one says that the cardina number d X is
smdler than the cardinal number o 7.7

A set X isdenumerableif it is equinumerouswith the set o positiveintegers. A
denumerableset is said to have cardinal number &,, and any set equinumerous
with the set of all subsets d a denumerable set is said to have the cardina
number 2* (or to have thepower d the continuum). A set X isfiniteif it is empty
or if it is equinumerouswith the set o all positiveintegers (1, 2,. .., n) which
are less than or equal to some positiveinteger n. A set which is not finite is said
to beinfinite. A set iscountableif it is either finite or denumerable. Clearly, any
subset o a denumerableset is countable. A denumerablesequenceis a function s
whose domainisthe set o positiveintegers; one usualy writes s, instead o s(n).
A finite sequenceis a function whosedomainis (1, 2, . . ., n), for some postive
integer n.

Let P(x,Y,, ... ,y) be somerelation on the set of non-negative integers. In
particular, P may involve only the variable x and thus be a property. If
PQO,y,,...,y) holds, and, if, for any n, P(n,y,,...,») implies P(n + 1,
YY) then P(x,y,,...,») is true for dl non-negative integers x
(Principle d Mathematicd Induction). In applying this principle, one usudly
proves that, for any n, P(n,y,, ...,y impliesP(n + 1y,,...,») by assum-
ing P(n,Y,, ...,y) and then deducing P(n + 1,,, ..., ); in the course of
this deduction, P(n,y,, ...,y is called the inductive hypothess If the relation
P actually involves variablesy,, . . ., y; other than x, then the proof o "for all
X, P(x)” issaid to proceed by induction on x. A similar induction principle holds
for the set o integers greater than some fixed integer j. Example: to prove by
mathematical induction that the sum o the first n odd integers 1+3+5
+...+@n—1) is n? first show that 1= 12 (i.e., P(1)), and then, that if
1+3+5+ ... +@2n—-1)=rA then1+3+5+ ... +@2n - 1)+ (2n +1)
= (n t 1) (e, if P(n) then P(n + 1)). From the Principle  Mathematical
Induction one can prove the Principle d Complete Induction: if, for every
non-negativeinteger x the assumption that P(w,y,, . . ., y,) istruefor al u <x
implies that P(x,y,,...,») holds, then, for al non-negative integers X,
P(x,y,,...,») is true. (Exercise: show, by complete induction, that every
integer greater than 1isdivisible by a prime number.)

FOne can attempt to define the cardinal number of a set X as the collection [X] of all sets
eguinumerous with X. However, in certain sysemsof set theory, [X] does not exist, wheress in
others (cf. page 196), [X] exists but is not a set. For cardinal numbersfX] and [Y], one can define
[X] < [¥] to mean that X isequinumerouswith a subset of Y.

|
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A partial order is a binary relation R such that R istransitiveand, for every x
ini the field d R, xRx isfdse If R isa partial order, then the relation R' which
i§ the union d Rand theset d all ordered pairs(x, x), wherex isin thefield of
R, we shall call a reflexive partial order; in the literature, " partial order” is used
for either partial order or reflexive partial order. Notice that (xRy and yRx) is
impossible if R is a partial order, while (xRy and yRx) impliesx =y if Risa
teflexive partial order. A (reflexive) total order is a (reflexive) partial order R
such that, for any x andy in the fidd d R, either x =y or xRy or yRx.
Examples: (1) therelation < on the set of integersis a total order, while < isa
reflexive total order; (2) the relation C on the set of all subsets d the set o
positive integersis a partial order, but not a total order, whiletheréelation C isa
reflexive partial order but not a reflexive total order. If C is the fidd d a
relation R, and if B isasubset d C, then an lementy o B iscalled an R-least
element & B if yRz for every element z d B different fromy. A well-order (or
well-ordering rlation) isatotal order R such that every non-empty subset o the
field of R has an R-least element. Examples: (1) the relation < on the set o
non-negativeintegers is a well-order; (2) the relation < on the set of non-nega-
tive rational numbersis a total order but not a well-order; (3) therelation < on
the set o integersis a total order but not a well-order. Associated with every
well-order R having field X there is a corresponding Complete Induction Princi-
ple: if P is a property such that, for any # in X, whenever al z in X such that
zRu have the property P, then u has the property P, then it follows that all
members d X have the property P. If the set X is infinite, a proof using this
principleis caled a proof by transfiniteinduction. One says that aset X can be
wdl-ordered if there exists a well-order whose fidd includes X. An assumption
which is useful in modem mathematicsbut about the validity of which there has
been considerable controversy is the Well-Ordering Principle: every set can be
well-ordered. The Well-Ordering Principleis equivalent (given the usua axioms
of st theory) to the Axiom d Choice (Multiplicative Axiom): given any set X of
non-empty pairwise digoint sets, there is a set Y (called a choice set) which
contains exactly one element in common with each set in X.

21_1_‘3‘ B be 5 non-empty set,f a function from B into B, and g a function from
B%into B. | & uswritex’ for f(x), and x Ny for g(x,y). Then (B, f, g) iscaled
a Boolean ggebyra if and only if the following conditions are satisfied:

M) xNy=yn xforalx,yinB.

@ (xNy)Nz=xn(yn2foralx,y,zinB.

@([iii) x Ny' =znzifandonlyif x ny = x for any x,y, zin B.
We let x U y stand for (x’ n y’y; and wewritex <y forx Ny = x. Itis easily
proved thatz n 2z’ = w N w’ for any w, Zin B; wedenotethevaueof z N z’ by

0. (The symbols n, y, 0 should not be confused with the corresponding
symbols used in set theory.) We let 1 stand for 0. Then: z u Z = 1forall z in
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B; < isareflexivepartial order on B; and (B, f, U ) isa Boolean algebra. An
ideal in (B, f, g) isa non-empty subset 3 B such that: (1) if x £ Jandy € J,
thenxuy € J,and (2) if x € Jandy € B, thenx ny € J. Clearly, {0} and
B areideds. Anided different from B is caled a proper ideal. A maximal ideal
is a proper ideal which isincluded in no other proper idedl. It can be shown
that a proper ideal Jis maxima if and only if, forany « inB, « € Jor «’ € J.
From the Well-Ordering Principle (or the Axiom d Choice) it can be proved
that every Boolean algebra containsa maximal ideal, or, equivalently, that every
proper ideal isincluded in some maximal ideal. Example: let B be the set of all
subsetsof aset X; for Y EB,let Y' = X — Y,andfor Y, ZinB,let Y N Z be
the ordinary set-theoreticintersectiondf Y and Z. Then (B, ‘, N) isa Boolean
algebra. The0 o B istheempty set O, and 1isX. Given an elementu in X, letJ,
betheset o al subsetsd X which do not contain u. ThenJ, isa maximal ideal.
For a detailed study d Boolean algebras, cf. Sikorski [1960], Halmos [1963],
Mendel son [1970].

CHAPTER |

THE PROPOSTIONAL
CALCULUS

1. Propostional Connectives. Truth Tables.

Sentences may be combined in various ways to form more complicated
sentences. Let us consider only truth-functional combinations, in which the truth
or fasity d the new sentence is determined by the truth or fasity o its
component sentences.

Negation is one o the simplest operations on sentences. Although a sentence
in a natural language may be negated in many ways, we shall adopt a uniform
procedure, that o placing a sign for negation, the symbol ~, in front o the
entire sentence. Thus, if A is a sentence, then ~ 4 denotes the negation o A.

The truth-functional character of negation is made apparent in the following
truth table.

A —A
T F
F T

When A istrue, ~ A isfalse; when A isfalse, ~ 4 istrue Weuse T and F to
denote the truth values Truth and Falsity.

Another common truth-functional operation is conjunction: "'and". The con-
junction of sentences A and B will be designated by A A B and has the
following truth table.

ANB

Mm—=a114d>
MM w
mTm-

4 A B is true when and only when both A and B are true. A and B are called
the conjuncts of A A B. Note that there are four rowsin the table, corresponding
10 the number of possible assignments of truth valuesto A and B.
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In natural languages, there are two distinct usesd “or”, the inclusive and the
exclusve. According to the inclusive usage, "A or B" means"A or B or both",
wheresas according to the exclusive usage, the meaningis“4 or B, but not both".
We shall introduce a specid sign, \/, for the inclusive connective. Its truth table
is as follows:

A B AV B
T T T
F T T
T F T
F F F

Thus, A \/ B is fase when and only when both A and B arefdse.A \/ B" is
called a digunction, with the digunctsA and B.

EXERCISE
1.1. Write the truth table for the exclusive usage of “or”.

Another important truth-functional operation is the conditiond: *'If A, then
B.” Ordinary usage is unclear here. Surely, "If A, then B” is false when the
antecedent A is true and the consequent B is false. However, in other cases, there
is no well-defined truth value. For example, the following sentences would be
considered neither true nor false:

(1) If 1+ 1= 2 then Paisis the capital o France.
(2) If 1+ 1 2 then Parisis the capital d France.
(3 If 1+ 1% 2, then Romeis the capital o France.

Thelr meaning is unclear, since we are accustomed to the assertion o some sort
of relationship (usually causal) between the antecedent and the consequent. We
shall make the convention that "'If A, then B" isfalse when and only when A is
true and B fase. Thus, sentences (1)-(3) are assumed to be true. Let us denote
"If A, then B" by "A o B". An expresson "A 3 B" is cdled a conditiond.
Then 2 has the following truth table:

A B ADB
T T T
F T T
T F F
F F T

This sharpening d the meaning of "'If A, then B" involves no conflict with
ordinary usage, but rather only an extensiond that usage.?

FThere seems to be a common non-truth-functional interpretation of "If A, then B", connected
with causal laws. The sentence, " If this pieceof iron isplaced in water at time't, then theiron will
dissolve" , is regarded asfalseeven in the case that the pieceof iron isnot placed in water at time,
Le., even when the antecedent is false. Another non-truth-functional usage of " If..., then—"
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A justification o the truth tablefor O is the fact that we wish "'If A and B,
then B” to betruein all cases. Thus, the casein which A and B are truejustifies
the first line d our truth tablefor > , since (A and B) and B are both true. If A
i false and B true, then (A and B) isfalse while B is true. This correspondsto
the second line o the truth table. Finally, if A isfaseand B isfdse, (A and B)
is false and B is fase. This gives the fourth line o the truth table. Still more
support for our definition comes from the meaning o statements such as, "' For
every x, if x isan odd postiveinteger, then x? is an odd postiveinteger.” This
asserts that, for every x, the statement "'if x isan odd positiveinteger, then x2 is
an 0dd positiveinteger' is true. Now, we certainly do not want to consider cases
in which x is not an odd positive integer as counterexamples to our genera
assertion. This provides us with the second and fourth linesdf our truth table. In
addition, any case in which x is an odd positive integer and x? is an odd,
positiveinteger confirms our genera assertion. This corresponds to the first line
d thetruth table.

Let us denote™A if and only if B" by "A = B”. Such an expression is called
a biconditiond. Clearly, A = B is true when and only when 4 and B have the
same truth value. Its truth table, therefore, is

A B A=B
T T 1
F T F
i F F
E F T

The symbals ~, A, V, D, = will be called propositiona connectives$ Any
sentence built up by application o these connectives has a truth value which
depends on the truth values of the constituent sentences. In order to make this
dependence apparent, let us apply the name statement form to an expression
built up from the statement letters, A, B, C, €etc., by appropriate applications of
the propositional connectives. More precisdly,

(1) All statement letters (capital Roman letters) and such letters with
numerical subscriptst are statement forms.

occurs in so-called counterfactual conditionals, such as, " If Sr Walter Scott had not written any
novels, then there would have been no War Between the States.” (This was Mark Twain's contention
In | ifeon the Mississippi: “Sir Walter had so largea hand in making Southern character, as it existed
before the war, that he is in great measure responsiblefor thewar” ) This sentence might be asserted
to be falseeven though the antecedent is admittedly false. Fortunately, causal laws and counterfact-
ual conditionals are not needed in mathematics and logic. For a dlear treatment of conditionals and
other connectives, ¢f. Quine [1951]. (The quotation from Life on the Mississippi was brought to my
attention by Professor J. C. Owings, Jr.)

$We shall avoid the use of quotation marks to form names, whenever thisis not likely to cause
confusion. Strictly speaking, the given sentence should have quotation marks around each of the
connectives. Cf. Quine [1951], pages 23-27.

TFor example, 4y, 45, Apy, Bay, G - - .



14 THE PROPOSITIONAL CALCULUS S 1

(2) If @ andP arestatement forms, thenso are (~ @), (@ A ), (@ V 9),
(@> B) and (@ = B). (~ @), (

(3 Only those expressionsare statement formswhich are determined to be
s0 by means o (1) and (2).1

Examples d statement forms: B, (~ C,), (D3 A (~ B)), (~ B,) V By) 2 (A,
A CY), ((~A)=A)=(C DBV Q).

For every assignment o truth values T or F to the statement letters occurring
in a statement form, there corresponds, by virtue d the truth tables for the
propositional connectives, a truth value for the statement form. Thus, each
statement form determinesa truth function, which can be graphically represented
by a truth table for the statement form. For example, the statement form
(((~ A) \v B) o C) has the fallowing truth table:

(~4) (~AVB) ((~A)VB)3C)

mr i Bt e et e B e B
M4 ®
TTMTmTnHAH440
—Am—HTHT-m
e B e B R
M4 mn—a—4--

Each row representsan assignment o truth values to the letters A, B, C, and

the corresponding truth vaues assumed by the statement forms which appear in
the construction d (((~ A) \v B) o C).

The truth table for (A =B) > ((~ A) A B)) isasfollows

BUAZB) (-A) (=OAB) (A=5)2 (~HAB)
F

T

F

F

IR EE N
-
T4
mm-
m=—m

IThis can be rephrased as follows: € is a statement form if and only if there is a finite sequence
@,...,8 (n>1) such that @, =€, and if 1 <i<n, & is either a Satement letter or is a
negation, conjunction, digunction, conditional, or biconditional congtructed from previous expres-
sons in the sequence. Notice that we use sript letters @, %, C,... to gand for arbitrary
expressions, whereas Roman lettersare being used as satement letters.
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If there are n digtinct lettersin a statement form, then there are 2' possible
assignments o truth values to the statement letters and, hence, 2' rows in the
truth table.

EXERCISE

1.2. Construct ifuili tables for the statement forms (A o B) V/ (~A)) and
A>B3C)>UA4>B)D(4DC)).

A truth table can be abbreviated by writing only the full statement form,
putting the truth vaues of the statement letters underneath al occurrences of
these letters, and writing, step by step, the truth value  each component
gtatement form under the principal connective? o the form. As an example, for
(A =B) > ((~A) A B)), weobtain

(

L

nma4mA>
o
Tn—H-+4%
nma-ATWw
—AT-T
m-ETHA
mTm=1>
mmn—-- by

EXERCIS]

13 Write the abbreviated truth tablesfor (A 2 B) AA) and (A V (~ C)) =
B).

14 Write the following sentences as statement forms, using statement lettersto
stand for the atomic satences i.e., those sentences which are not built up out of
other sentences.

(@ If Mr. Jones is happy, Mrs Jones is unhappy, and if Mr. Jones is
unhappy, Mrs. Jones is unhappy.

(b) Either Sam will come to the party and Max will not, or Sam will not
come to the party and Max will enjoy himsalf.

(c) A necessary and sufficient condition for the sheik to be happy is that he
has wine, women, and song.

(d) Fiorellogoes to the moviesonly if a comedy is playing.

(e) A sufficientcondition for x to be odd is that x is prime.

(f) A necessary condition for a sequences to convergeis that s be bounded.

(&) The bribe will be paid if and only if the goods are ddlivered.

(h) The Giants will vin the pennant unless the Dodgerswin today.

@) If x is postive, x2 is positive.

formme principal connective of a statement form is the one which is applied last in constructing the
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(2) If @ and B are statement forms, then so are (~ &), (@ A B), (€ V D),
@>%B),and @ = D).

(3) Only those expressions are statement formswhich are determined to be
so by meansd (1) and (2).f

Examples o statement forms: B, (~ C,), (D3 A(~ B)),(~ B,)V By D (A,
AC)) ((~4)=4)=(C DBV Q).

For every assignment of truth values T or F to the statement letters occurring
in a statement form, there corresponds, by virtue of the truth tables for the
propositional connectives, a truth value for the statement form. Thus, each
statement form determinesa truthf unct i on, which can be graphically represented
by a truth table for the statement form. For example, the statement form
(((~ A)Vv B) D C) has the following truth table:

(~4) (=4AVB) ({(~4VB)DO)

T e 1 e B 1 B B 1 e BN
T4 >
T4 44d 0

“THTHATmAm
T4 dAT A
MmATT A

Each row representsan assignment o truth valuesto theletters A, B, C, and
the corresponding truth values assumed by the statement forms which appear in
the construction o (((--A) B)2> C).

The truth table for ((A=B)> ((~ A) A B))isasfdlows

A B (A=B) (--A) (~A)AB) (A=B)D (~A)N B))
TT T F F F
FT F T T T
TF F F F T
FF T T F F

1This can be rephrased as follows: @ is a statement form if and only if thereis a finite sequence
&,...,&, (n> ) such that @& =€, and if 1 <i <n, & is either a satement letter or is a
negation, conjunction, digunction, conditional, or biconditional congtructed from previous expres
sons in the sequence. Notice that we use soript letters @, B, @, ... to dand for arbitrary
expressions, whereas Roman lettersare being used as statement letters.
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If there are n distinct lettersin a statement form, then there are 2 possible
assignments o truth values to the statement letters and, hence, 2' rows in the
truth table.

EXERCISE

1.2. Construct truth tables for the statement forms ((A O B) \/ (~ A)) and
(AD(B 2 C)D(4>B)DADO)

A truth table can be abbreviated by writing only the full statement form,
putting the truth values o the statement letters underneath all occurrences of
these letters, and writing, step by step, the truth value d each component
statement form under the principal connectivet of the form. As an example, for
((A=B)3 ((~ A)A B)),weobtain

(A= B) D ((~ 4) A B)
TTTF FTFT
FFTT TFTT
TFFT FT FF
FTFF TF FF

EXERCISES

A3 Write the abbreviated truth tables for (A o B) A A) and (A VV/ (~ C)) =
B).

14. Write the following sentences as statement forms, using statement letters to
stand for the atomic sentences, i.e., those sentences which are not built up out of
other sentences.

(@ If Mr. Jones is happy, Mrs. Jones is unhappy, and if Mr. Jones is
unhappy, Mrs. Jones is unhappy.

(b) Either Sam will come to the party and Max will not, or Sam will not
come to the party and Max will enjoy himsalf.

£ (¢} A necessary and sufficient condition for the sheik to be happy is that he

has wine, women, and song.

(d) Fiorello goes to the movies only if a comedy is playing.

(e) A sufficient condition for x to be odd is that x is prime.

(f) A necessary condition for a sequence s to converge is that s be bounded.

(8) The bribe will be paid if and only if the goods are delivered.

(h) The Giants will win the pennant unless the Dodgers win today.

(@ If x is positive, x? is positive.

for'fn’fhe principal connective of a statement form iS the one which is applied last in congtructing the
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2. Tautologies.

A truth function of n arguments is defined to be a function o » arguments, the
arguments and values o which are the truth valuesT or F. As we have seen, any
statement form determines a corresponding truth function.

A statement form which is always true, no matter what the truth values o its
statement letters may be, is called a tautology. A statement form is a tautology if
and only if its corresponding truth function takes only the value T, or, equiv-
aently, if, in its truth table, the column under the statement form contains only
T's. Simple examples o tautologies are (A \/ (~ A)) (Law o the Excluded
Middle), (~ (4 N\ (~ ), (4 = (~(~A4)), (AN B) 34),(43(4V B)).

If (@ > %) isatautology, @ issaid to logically imply %, or, aternatively, ®
issaid to be a logical consequenced &. For example, (A A B) logically implies
A, (~ (-- A)) logicdly impliesA, and (A A (A 3 B)) logically implies B.

If (@ = %)isa tautology, @ and % are said to be logically equivalent. For
example, B and (~ (-- B)) are logically equivalent, as are (A 3 B) and ((--A)
V B).

By means o truth tables, we have effective procedures for determining
whether a statement form is a tautology and for determining whether a state-
ment form logically implies or is logically equivalent to another statement form.

EXERCISES

1.5. Determine whether the following are tautologies.
(@ ((4 > B)D B) > B)
®) (A=B)=(A=(B=A))
(©) (4 3(BD(BDA)
D (4NB)3(4V C)
€ (AV (~(BAC)YD(4=C)V B))
® ((B>C)3(4DB)D(A4DB)).

+If we wish to be precise, we should enumerate all statement letters as follows A, B, ..., Z,
A By, ...,Z;, Ay ... . |f a statement form contains the if%, . .., i statement letters in this
enumeration, where §; < ... <i,, then the corresponding truth function is to have x;, ..., x;, in

that order, as its arguments, where X, corresponds to the i}" satement letter. For example, A D B
generates the truth function.

X, Xz f(x;, %)
T T T
F T T
T F F
F F T
while B o A generates the truth function
X, X (X, X))
T T T
F T F
T F T
F F T
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1.6. Verify or disprove:
a = B) logically implies (A D B).
gb; E ~A)\/ B)islogically equivalent to ((~ B) \/ A).
17. Show that @ and 93 are logically equivalent if and only if,in their truth
tables, the columns under @ and 93 are the same.
1.8. Which of the following statement formsare logically implied by (A A B)?
(a) 4
() B
(© (4V B)
@ (— AV B)
© (~B)>A4)
H (4 =8B)
(&) (4 3 B)
@) (~ B) D (~4))
@) (AN (~B)
19. Same as Exercise 1.8, with (A A B) replaced by (A o B).
110. Same as Exercise 1.8, with (A A B) replaced by (A v/ B).
1.11. Sameas Exercise 1.8, with (A A B) replaced by (A = B).

A statement form which is false for all possible truth values of its statement
lettersis called a contradiction. Its truth table has only F's in the column under
the statement form.

Example. (A = (~A))

A -—A A = (~A)
T F F
F T F

Another example d a contradiction is (A A (~ A)).

Notice that a statement form @ is a tautology if and only if (~ @) is a
contradiction, and vice versa

A sentence (in some natural language like English, or in a formal theoryt)
which arises from a tautology by substitution of sentences for all the statement
letters, occurrences of the same letter being replaced by the same sentence, is
said to be logically true (according to the propositional calculus). Such a
sentence may be said to be true by virtue of its truth-functional structure alone.
An example is the English sentence, "'If it is raining or snowing, and it is not
snowing, then it is raining", which arises by substitution from the tautology
(((4 Vv B) A\ (~ B)) D A). A sentence which comes from a contradiction by

means of substitution is said to be logically false (according to the propositional
calculus).

1By a formal theory, we mean an artificial Ia_nguage in which the notions of “meaningful
€Xpression”, axjoms, and rules of inference are precisdly described; cf. pp. 29-30.
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Now let us prove a few general facts about tautologies.
ProrosiTioN 1.1. If @ and (€ D ®) are tautologies, then so is %

PROOF. Assumethat € and (& 3 D) are tautologies. If B took the value F
for some assignment of truth vaues to the statement letters o @ and %, then,
since & is a tautology, € would take the value T, and, therefore, (€ > %)
would have the value F for that assignment. This contradicts the assumption
that (€ > 9 ) is atautology. Hence %6 never takes the value F.

ProrosiTion 12 If @ is a tautology containing as statement |etters
A A, ...,A, and B arises from @ by substtuting statement forms
@, &, ...,Q, for A, A5, ..., A, respectively, then B is a tautology, i.e.,
substitution in a tautology yields a tautology.

Example. Let @ be (A, A 4,) D A), let @ be (B Vv C), and let @, be
(CAD). Then B is((BV C)A(CA D) D(BV C).

PROOF. Assumethat & isa tautology. For any assignment d truth valuesto
the statement lettersin 9 , the forms &,, . .., &, have truth vauesx,, ..., x,
(where each x; is T or F). If we assign the values x,, ..., x, tOA,, ..., A,
respectively, then the resulting truth value o @ is the truth valued % for the
given assignment d truth values. Since & is a tautology, this truth value must be
T. Thus, ¥ aways takes the value T.

ProrosiTiION 1.3.  If B, arises from &, by substitution of % for one or more
occurrencesd @, then (€ = 9 ) D (€, = B,)) is atautology. Hence, ¥ @ and
B are logically equivalent, then so are &, and ;.

PROOF. Consider any assignment o truth values to the statement letters. If
& and B have opposite truth values under this assignment, then (€ = B) takes
thevdue F,and so (€ = B) 3(&, =B,) isT. If @ and O take the same
truth values, then so do @, and ®,, since %, differsfrom @, only in containing
% in some places where &, contains @. Hence, in thiscase, (8 B)is T,
(@, = %) isT, and, therefore, (& = B) D (@, = B,))isT.

It would be profitable, at this point, to agree on some conventions to avoid
the use o so many parentheses in writing formulas. This will make the reading
d complicated expressionseasier. First, we may omit the outer pair  parenthe-
sesd a statement form. (In the case d a statement letter, thereis no outer pair
d parentheses.) Second, when a form contains only one binary connective
(namely, 3, =, A, or V), parentheses are omitted by association to the left.

Exampless. A > B 3 A D Cstandsfor (A 3B)>A) > C,andBVBYV
AV CV A standsfor (B v B) V A)V C)V A).

Third, the connectives are ordered as follows: 2, V., A\, ~, and
parentheses are eliminated according to the rule that, first, ~ applies to the
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"‘m.n.ﬂ statement form following it, then A isto connect the smallest statement

it, then V' connects the smallest forms surrounding it, and
gimilarly for 3 and =. In applying this rule to occurrences d the same
connective, we proceed from left to right.

Examples. Parentheses are restored toA \/ ~ B D € =4 in the following
steps.

AV (~B)DC=4

AV (~B)>DC=4
(AV(~B)D>C)=A
AV (~B)>C)=4)

As an exercise, show that D=C =4 ADAB\vV~D > B sands for
(O=C)=((AND)NB)V (~D))D> B).

Not every form can be represented without use of parentheses. For example,
parentheses cannot be further eliminated from A - (B 5 C), nor from
~ (A v B), nor fromA A (B 3C).

BEXERA SES

112 Eliminateas many parentheses as possible from the fallowing forms.
@ B=(~OVDAA))=(B 3B)
(®) (4 A(~B) AC)V D)
© (4>(BV C)V (~(C 3D))
@ (~(~(~BV O))) =B =0))
© (4> B)D(COD)YA(~A)VC)
® (4 =B)=(~(CV D)))
@® 4VV(BVCy

1.13. Restorethe parentheses to the forms C 3~ (A\/ C) A A =B and
COADA=~AVB.

114, Determine whether the following expressions are abbrevidions d state-
ment forms, and, if S0, restore dl parentheses.

B ~~4=ay=B\yC

©A=(~4VB)DAAEBVC)
Ed)) ~E4Avsv CAD=ANA~A
€) ~(4 D
LIS If we wrife f«)é/i(r:\st\éaij)c:f) f~ @); 3@ indead of (@ > B); NEB
instead of (@ A B); V@B indead d (@ V (8); and = &% instead of (€ = B),
then there is no necd of parentheses For example, ((~ A) 3 (B \V (~ D)) be
comes > A\ B~ D. Thisway of writing forms is caled Pdlish notation.
(a) Write (C'V (B A (~ D)) o C))in this notation.
) If we count 5, A, \/, = each as T1, esch Satement letter as -1,
and ~ as 0, prove that an expresson @ in this parenthesis-free
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notation is a statement form if and only if (i) the sum of the symbolsof
&€ is =1, and (ii) the sum of the symbolsin any proper initial segment
d @ is non-negative.
() Write the statement forms of Exercise 1.12 in Polish notation.
(d) Determine whether the following expressions are statement forms in
Polish notation. If so, write the statement forms in the standard way.
() ~>ABC\ AB~C
(i) 22 AB 2> BCO>~4AC
(1) VAV~A~BCAVACN ~C~ A4
116 Determine Whether each of the followingis a tautology, a contradiction, or
neither.
(@ B=(BVB)
@MADB)YD2(BDC)D(ADC)
() (ADB)A B)D A
d (~A)D(AAB)
@© AA(~(V B)
) (A>B)y=(~A)V B)
(8 (4 > B)y=~(4AN(~ B)
117. If A and B are true and C is false, what are the truth values o the
following statement forms?
(ay AV C
d)AANC
© ~AN~C
dA=~BVvVC
e BV~CDA4
® (BvA)>(B>~C)
@ B=~A)=A =0
M (BO>A)D(AD>~C)D(~CDB)
118 If A D BisT, what can be deduced about the truth values of:
@AVCDOBVC,
®MAANCDBAC,
(© ~AANB=AVB.
119 What further truth values can be deduced from those already given?
@ ~ 4V (4 > B)

@) ~(A[r\B)E~Av~B
@© (~4Vv B)E(A 2~0)

1.20. If A =B is F, what can be deduced about the truth values of:
(@ A4AB
@ 4VB
©ADB
DAAC=BAC
121. Sameas Exercise 1.20, except that A = B isassumed to be T.
122, What further truth values can be deduced from those given?

@) (4 /\B)i(é Vv 3)
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®) (4 3~3);—:)(CDB)

1.23. (a) Apply Proposition 1.2 when @ is A, D 4,\/ A4, &, is BA D, and &,
is ~ B. )

(b) Apply Proposition 13when &, is(B D C)V D, @ isB D C,and B is

~ BV C.

Show that the following pairs are logically equivalent:

(& ~ (4 \ B)and (~A) A (~ B)

(b) ~ (4 A B) and (~ 4) V (~ B)

© AABVCC)and (4 AB)V(ANC)

(d AV(BAC)and (4V B)A(4VC)

(e AV (AN B)and 4

() ADB and ~ B>—A (~B 5~ 4 is cdled the contrapostive o

AD B)

@® (AAB)V(~B)and 4/ (~ B)

@) AA(4V B)and 4

() ANBand BA A

G) AvBadBVA

(K) (AAB)ACand A A(BA C)

@) (AV B)V Cand 4\ (B \ C)

(mA=Band B=A4

(NN A=B)=Cand4d =(B =0C)

©WA3B)BAD>DCandAAB)DC

1.28, Show the logical equivalenced the following pairs.

@ AAB)V~BandAV ™ B

®(AVB)A~BandA AN\ ~B

(© 9 A A and A where 5is a tautology

(d) 9 v A and 9 where 9 is a tautology

(e 4 A and 5where 4 is a contradiction

(f) ¥V A and A where ¥ is a contradiction

126, (Duadlity) (a) If @ isastatement form involvingonly ~ , A, and V, and
@’ arisesfrom @ by replacingeach A by \/, and each \/ by A, show that @ isa
tautology if and only if ~ @’ isa tautology. Prove that, if @ 5 % isa tautology, so
88'>@, and, if @ =% isatautology,s0is@ = B".

(b) Derivethe logical equivaencein 1.24(d) from that in 1.24(c).

(¢) If @ isa statement form involving only ~, A, and V/, and @* results
from & by interchanging A and \/, and replacing every statement letter by its
Degation, show that @* is logicaly equivalent to ~ @. Find a statement form
logically equivalent to the negation d (A \/ ~ B) AA A(~ C V(4 A C)).

A statement form containing only the connective = is a tautology if and
only if each statement letter occurs an even number o times.

(Shannon [i935]) An electric circuit containing only on-off switches
(When a switch s on, it passes current; otherwise, not) can be represented by a

g‘u‘; : am in which, next to each switch, we put a letter representinga nec and

Clent condition for the switch to be on; see Fig. 1.1 The condition that a

A flows through this network can be given by a statement form: (A A B) \/
~ A).
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A B\

Fc. 11

A statement form representing the circuit shown in Fig. 12 is (A A B) \/
((C v A) A ~ B). Using Exercise 1.24(d, e, g, j, 1), we find that thisis logically
equivalent to (A AB)V(CVA)A((A N B)V ~ B), which, in turn, is
logically equivalent to (A AB) VA)V C)AA V ~B), thento (A \/ C) A
(A v ~ B), and findly to A\/ (C A ~ B). Hence, the given circuit is equiv-
dent to the smpler circuit shown in Fig. 1.3. (Two circuits are said to be
equivaent if current flows through one if and only if it flows through the other;
and one circuit is simpler if it contains fewer switches)

A\ B\
c\
B

At

FiG. 1.2

4\

c\ ~B\

FiG. 1.3
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(a) Find simpler equivalent circuits for those shown in Figs. 14, 15, and
16.

(b) Assume that each of the three members of a committee votesYeson a
proposal by pressing a button. Devise as simple a circuit as you can
which will allow current to pass when and only when at |least two of the
members vote in the affirmative.

(¢) We wish a light to be controlled by three different switchesin a room

in such a way that flicking any one of these switcheswill turn the light

on if it is off and will turn it off if it is on. Construct a simple circuit
which will do the required job.

4\
c\
~g \
~c\ a\
C\
~C\
g\
Fic. 14
B\ C\-—
a\ ~g \ C\
, 4\ e ek
FiG. 1.5
A\
\ \
S A A
¢ \
\
5} N— A G
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129, Determine whether the following arguments are Jogically correct by repre-
senting each sentence as a statement form and checking whether the conclusion is
logically implied by the conjunction of the assumptions.

(&) If Jonesisa Communist, Jones isan atheist. Jones isan atheist. Hence,
Jones is a Communist.

(b) If fallout shelters are built, other countries will feel endangered and our
people will get a false sense of security. If other countries will feel
endangered, they may start a preventive war. If our people will get a
false sense of security, they will put less effort into preserving peace. If
fallout shelters are not built, we run the risk of tremendous lossesin the
event of war. Hence, either other countries may start a preventive war
and our people will put less effort into preserving peace, or we run the
risk of tremendouslossesin the event of war.

(c) If Jones did not meet Smith last night, then either Smith was the
murderer or Jones is lying. If Smith was not the murderer, then Jones
did not meet Smith last night and the murder took place after mid-
night. If the murder took place after midnight, then either Smith was
the murderer or Jonesis lying. Hence, Smith was the murderer.

(d) If capital investment remains constant, then government spending will
increase or unemployment will result. If government spending will not
increase, taxes can be reduced. If taxes can be reduced and capital
investment remains constant, then unemployment will not result.
Hence, government spending will increase.

130. Which o the following sets of statement forms are consistent, in the sense
that thereis an assignment of truth values to the statement letters which makes dll
of the formsin the set true?

@ ADB b)) ~ (~BVA) (© AD o) BB
B =C A\ ~ C Vo~
CVD=~B B 3_C “-(%/\A)

131 Check each of the following sets of statements for consistency by represent-
ing the sentences as statement forms and then testing their conjunction to see
whether it is a contradiction.

(a) Either the witness was not intimidated, or, if Doherty committed
suicide, a note wasfound. If the witness was intimidated, then Doherty
did not commit suicide. If a note was found, then Doherty committed
suicide.

(b) Either love is blind and happiness is attainable or love is blind and
women are smarter than men. If happiness is attainable, then love is
not blind. Women are not smarter than men.

(c) If John loves Mary, Jane will marry Tom. If Jane marries Tom, Jane's
father will disinherit her or Jane's mother will obtain a divorce.
However, Jane's mother will not obtain a divorce.

(d) The contract is satisfied if and only if the building is completed by
November 30. The building is completed by November 30if and only
if the electrical subcontractor completes hiswork by November 10. The
bank loses money if and only if the contract is not satisfied. Yet the
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electrical subcontractor completes his work by November 10 if and
only if the bank loses money.

3. Adequate Satsof Connectives

Every Statement form containing » statement |etters generates a correspond-
ing truth function of n arguments. The arguments and vaues d the function are
T or F. Logically equivalent forms generate the same truth function. The
question naturally presents itsdf as to whether al truth functions are so
generated.

PROPOSITION 14. Every truth function is generated by a statement form
invelving the connectives ~, A, and /.

proor, (Refer to Examples (@) and (b) below for clarification.) Let
f(x,, + - + » X,) be atruth function. Clearly f can be represented by a truth table of
2 rows, Where each row represents some assignment o truth values to the
variables X,, . .., X, followed by the corresponding value d f(x,, ..., x,). If
1 <i <2 letC betheconjunction U{ A Uy A ... AUj, where U/ isA if, in
the it row oOf the truth table, x; takesthe value T, and U} is ~ 4; if x takesthe
value F. Let D bethe digunctiond al those C;’s such that f hasthe value T for
the it row o the truth table. (If there are no such rows, then f always takes the
vaue F, and we let D be A, A — A,, which satisfies the theorem.) As its
corresponding truth function, D has f. For, let there be given an assignment o
truth values to the statement letters A,, ..., A, and assume that the corre-
sponding assignment to the variablesx,, . . ., X, isrow k o the truth tablefor f.
Then G has the value T for this assignment, whereas every other C, has the
value F. If f has the value T for row k, then C, isadisunct d D. Hence, D
would also have the value T for this assignment. If f has the value F for row k,
then C, isnot adisjunct of D and al the disjunctsdf D take the value F for this
assignment. Therefore, D would also have the value F. Thus, D generates the
truth functionf.

7

Examples.
@ Xy Xa f(xy, x)
T T F
F T T
T F T
F F T

TE Dis(~ A A A) V(A A~ Ag) V (~ Ay A~ Ay)
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() X, X, X3 8(X, X, X3) { y equivalent to a statement form in only A and ~ (obtained by
T T T T acing al expressions @ V B by ~ (~ & A ~ B)). The other parts of the
F T T F are Similar consequences dof the following tautologies:
E g ¥ $ b ANB =~ (~4V~B)
T T F F ANV B =(~A4A)D B
F T F F AN B =~ (A>3~ B)
T F F F
F F F T in W3V URHERN Nab ey e RUAR BAYSPE CRATISHIER 5-ahe-sansd /df
Dis Corollary 15). It turns out that there is a single connective, | (joint denial),
(A A Ay A A3) V (A, A ~ A3 A\ A43) Vi(~A, AN~A, N\ A4y) which will do the same job. Its truth table is
A B AlB
V("“’Al/\““"AzA"‘"’A:i) T T E
F T F
EXERCISES T F F
132. Find a statement form in the connectives —, A, and \V which has the F F T

following truth function (fx, x;, X,). A| B istrue when and only when neither A nor B is true. Clearly, ~ A = (AJA)

X Xa X3 f(x1y X3, X3) and (A A B) = ((414)|(B] B)) are tautologies. Hence, the adequacy of | for
T T T T the construction of all truth functions follows from Corollary 1.5.
F T T T Another connective, | (alternative denial), is also adequate for this purpose. Its
T F T F truth tableis
F F T F A B A|B
T T F F T T =
F T F F
T F F F F T T
F F F T T F T
F F T

133. Find gat t f having the given truth tabl .
n ement forms having the given tru s A|B is true when and only when not both A and B are true. The adequacy of |

A B C f(xy, X2, X3) 8(X), Xp, X3) h(xy, Xg, X3) follows from the tautologies ~ A = (4|A) and (A \/ B) = ((4|4)[(B|B)).
T T T T T T
ET T T T T PROPOSITION 16.  The only binary connectives which alone are adequate for
TET T T = the construction of all truth functions are | and |.
.'? E IZ E ; ? PROOF. Assume that h(4, B) is an adequate connective. Now, if h(T, T)
F T F . F T were T, then any statement form built up using only h would take the value T
T F F = T F when all its statement letters take the value T. Hence, ~ A would not be
F F F T F T definable in terms of h. So, h(T, T) = F. Likewise, h(F, F) = T. Thus, we have
the truth table
CoroLLARY 1.5. Every truth function corresponds to a statement form contain- h(4, B)
ing as connectives only A and -, or only \/ and —-, or only 3 and —-. F

prooF. Notice that A \/B is logicaly equivalent to ~ (--A A ~ B).
Hence, by Proposition 1.3 (second part), any statement formin A, \/, and ~ 18

=T~
Mmoo~ W
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If the second and third entriesin the last column areF, For T, T, then his| or
|. If they are F, T, then h(4, B) =~ B would be a tautology; and if they are T,
F, then h(4, B) =~ A is a tautology. In both cases, h would be definable in
terms of ~ . But ~ isnot adequate by itself, because the only truth functions of
one variable definable from it are the identity function and negation itself,
whereas the truth function that is always T would not be definable.

EXERCISES

1.34. Prove that each o the pairs 3, V, and ~, =, is not alone adequate to
expressdl truth functions.

135. (@) Provethat A \/ B can be expressed in termsdf > aone.

(b) Prove that A A B cannot be expressed in terms o 3 alone.

(¢) Provethat A = B cannot be expressed in terms o 3 done.

1.36. (8) A statement form is said to be in digunctive normal form if it is a
digunction consisting of one or more diguncts, each o which is a conjunction of
one or more statement letters and negations o statement letters, e.g., (A A B) \/
(~ANC), (AANBA~AV(CA~B)NVAAN~C), A, ANB AV (BN
C). A form is in conjunctiw normal form if it is a conjunction o one or more
conjuncts, each d which is a digunction o one or more statement |letters and
negations o statement letters. For example, the following are in conjunctive
norma form: (B\/ ~CYA(AV D), ANBVAYN(~B\V A4), A, AAB,
AV ~ B. Note that we consider statement letters and their negations as (degener-
ate) conjunctions or digunctions. The proof o Proposition 1.4 shows that every
statement form @ is logicaly eguivalent to one in digunctive norma form. By
applying this result to ~ &, prove that @ is aso logicaly equivalent to a formin
conjunctive normal form.

(b) Find logicaly equivaent digunctiveand conjunctive normal forms for
~A 3B)V(~AAC) and A =(BA~A)VC). (Suggestion: Instead o
relying on Proposition 14, it is usualy easier to use Exercise 1.24(c, d).)

(c) Let uscdl a statement letter 4 and its negation —A literals with the
letter A. A digunctive (conjunctive) normal form is caled full if no digunct
(conjunct) contains two occurrencesd literals with the same letter and if a letter
occumng in one digunct (conjunct) also occurs in dl the others. For example,
(AA— AAB)V(AAB)(BABAC)V(BAC),and(BA C)V B are not
full, wheress A A~B)VV(BAA) and A ABA~C)VAANBACQC)V
(A A~ BA ~ C) arefull digunctivenormal forms. (i) Find full disunctive and
conjunctive normal forms for —(A 3B)V(—A AC) and A =((BA ~A)
V/ C). (ii) Prove that every non-contradictory (non-tautol ogous) statement form &
is logically equivaent to a full disunctive(conjunctive) normal form 8, and, if $
containsexactly n letters, then @ isa tautology (contradiction)if and only if 4 has
2" diguncts (conjuncts).

(d) For each of the following, find a logically equivaent statement form in
digunctive (conjunctive) normal form, and then find logicaly equivalent full
digunctive (conjunctive) normal forms. (i) (A vV B)A(~ BV C) (i) ~AV
B3—C)(i)(AAN~B)V(AAC)(ivv(4avB)=~C
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(e) Construct statement formsin ~ and A (respectively, in ~ and v/, or
— and D) logicaly equivalent to the statement formsin Part (d).
S, 137, (a) A certain country is inhabited only by people who either dways tell the
# c truth or always tell lies, and who will respond to questionsonly with a yesor no. A
e tourist comes t0 a fork in the road, where one branch leads to the capital and the
_ <other does not. There is no sign indicating which branch to take, but there is an
“ . inhabitant standing at the fork. What yes-or-noquestion should the tourist ask him
to determine Which branch to take? (Hint: Let A stand for "You dways tell the
truth”, and let B stand for " The left-hand branch leads to the capital™. Construct,
by means of a suitable truth table, a statement form involving A and B such that
the Native's answer to the question as to whether this statement form is true will be
* “yes” When and only when B is true)

() In a certain country, there are three kinds d people: workers (who
always tell the truth), capitalists (who never tell the truth), and students (who
sometimestdl the truth and sometimeslie). At afork in the road, one branch leads
to the capital. A worker, a capitdist, and a student are standing at the side of the
road, but are not identifiable by their speech or clothing. By asking two yes-or-no
questions, find out which fork leads to the capital. (Each question may be
addressed to any one d the three)

4. An Axiom System for the Propositional Calculus

Truth tables enable us to answer most of the significant questions concerning
the truth-functional connectives, such as whether a given statement form is a
tautology, contradiction, or neither, and whether it logically implies or is
logically equivalent to some other given statement form. The more complex
patsd logic which we shall treat later cannot be handled by truth tables, or by
any other similar effective procedure. Consequently, another approach, by
means d formal theories, will have to be tried. Although, as we have seen, the
Prépositional calculus surrenders completely to the truth table method, it will be
Instructive to illustrate the axiomatic method in this simple branch of logic.

A formal theory S is defined when the following conditions are satisfied.

* (1) A countable set of symbolst is given as the symbols of &. A finite
sequence of symbols d S is called an expression of S.

(2) There is a subset of the expressions of S called the set of well-formed
Jormulas (abbreviated “wfs”) of &. (Thereis usualy an effective procedure to
determine \hether a given expression is a wi.)

(3) A set of wfs is set aside and called the set of axioms of S. (Most often, one
©an effectively decide whether a given wf is an axiom, and, in such a case, & is

an axjomatic theory.)

o P I desired, these - symbols’ can be taken to be arbitrary objects rather than just linguistic
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(4) There is a finiteset R, ..., R, d relations among wfs, called rules of
inference. For each R,, there is a unique positive integer j such that, for every set
of j wfsand each wf @, one can effectively decide whether the givenj wfsarein
the relation R, to @, and, if so, & is called a direct consequenced the given wifs
by virtued R,

Aproof in & isasequence@,, . .., @, o wfssuch that, for eachi, either @, is
an axiom of & or @, is a direct consequence of some of the preceding wfs by
virtue d one of the rules d inference.

A theoremof & isawf @ d & such that thereis a proof the last wf of which
is @. Such a proof is caled aproof d @.

Evenif § isaxiomatic,i.e., if thereis an effective procedure for checking any
given wf to see whether it isan axiom, the notion d **theorem' is not necessarily
effective, since, in generd, there is no mechanical method (effective procedure)
for determining, given any wf @, whether there is a proof of @. A theory for
which there is such a mechanical method is said to be decidable; otherwise, it is
called undecidable. A decidable theory is, roughly speaking, one for which a
machine can be devised to test wfs for theoremhood, whereas, in an undecidable
theory, ingenuity is required to determine whether wfs are theorems.

AW @ issaid to be aconsequencein & of aset T o wfsif and only if thereis
asequence @, ..., @, of wissuch that @ = &, and, for each i, either @; isan
axiomor &;isinT, or @, is adirect consequence by some rule d inferenced
some d the preceding wfsin the sequence. Such a sequence is called aproof (or
deduction) d @ from T. The members of T are called the hypotheses or premisses
d the proof. We useT +- @ as an abbreviation for “@ isa consequenced I'”. In
order to avoid confusion when dealing with more than one theory, we write
T'+;@, adding the subscript & to indicate the theory in question. If T is a finite
st (B, ..., B}, wewrite By, ..., B, FQ instead o {B,,..., B, }FEIf
I'istheempty st O, then O+ @ if and only if @ isa theorem. It is customary to
omit the sign “0” and smply write + @. Thus, F @ is another way of asserting
that @ is a theorem.

The following are simple propertiesd the notion d consequence.

(1 FTcAandlt@, thenAt@.
(2) TFHe& if and only if thereis a finite subset A of T such that At @Q.

(3) If AF@,and, foreach® in A TH®, thenTH&.

Assertion (1) represents the fact that if @ is provable from a set T of
premisses, then, if we add still more premisses, @ is still provable. Half of (2)
followsfrom (1). The other hdlf is obvious when we notice that any proof of &
from T uses only a finite number d premisses from T'. Proposition (3) is also
quite smple: if @ is provable from premissesin A and each premissin A is
provable from the premissesin T, then & is provablefrom premissesin T.
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' Pow introduce a formal axiomatic theory L for the propositional calculus.

The Symbolsof L are ~, D, (, ), and theletters A, with positiveintegers
i as subscripts: A,, A3, 4;,... . The symbols ~ and > are called
.. primitive connectives, and the letters A, are called statement |etters.

(:‘:_('2) (a) All statement lettersare wfs. (b) If @ and @ are wfs, so are (~ @)
and (& D B).f Thus, awf of L isjust a statement form built up from the
statement letters 4; by means of the connectives ~ and o .

@) If @, %, and € are any wfs o L, then the followingare axioms o L.

(Al). (@D (B > Q)
A2 (ED2B2C))YD((@>%B)> (@ > Q)
A3). (B 2>2~@)D(~B > @) D).

(4) The only rule of inference of L is modus ponens. % is a direct con-
sequenced @ and @ D %. We shal abbreviate application  this rule
by MP.

We shall use our conventions for eliminating parentheses.

Notice that the infinite set of axiomsd L is given by means o three axiom
schemas (A1)—(A3), each schema standing for an infinite number o axioms.
e can easily check for any given wf whether or not it is an axiom; therefore, L
isaxiomatic. It isour intention, in setting up the system L, to obtain as theorems
precisaly the class d al tautologies.

Weintroduce other connectivesby definition.

D), @ AB)for ~(@ >~ B)
M2). (@ B)for(~@)D D
D3). @=B)for(@D B)A(D D @).

The meaning o D1, for example, is that, for any wis @ and B, “(& A ®)” is
an ghbreviationfor “~ (@ >~ B)”.i

1 To be precise, we should add the so-called extremal clause: (c) An expression isa wf only if it
can be shown to be a wf on the basis of clauses (a) and (b). This definition can be made rigorous
a8 & modd the definition in the footnote on page 14. )
. $When we say that “(@ A &y isan abbreviation for “~ (@ >~ &5?” we mean that “(@ A 8)”
"_‘“be taken as another name in the English language (or in whatever [anguage £ we happen to be
tsing to talk about the theory L) for the expression “~ (@ 5~ % )”. Notice that as a name of an
£y ' built up by juxtaposing various other expressions we use the expression in English (or in
) made "J_(Juxtaposing the names of these other expressions; in addition, we use parenthesesand
‘ as their own names except, of course, when this may cause confusion. For example,
'.;-'_:(E"Dna?;g of the expression (4, 3 4,) and “®” is the name of the expression (~ 4,), then
a¢ thename of theexpresson ((A, 3 4,) O (~ 4,)). Theseconventionsare quite
Surther and would not be noticed by most people if we fiad not explicitly pointed them out. For
tion, consult Quine’s discussionaf quasi-quotation (Quine [[951]); Carnap’s treatment
s 16' § symbols (Carnap [1934], $4, and $42); Rosser (1953], Chapter 1II; Suppes [1957],
s, 0 Chureh [1956), |ntr oduction and pages 74-77.




32 THE PROPOSITIONAL CALCULUS SeC.4

Lemma 1L7. Foranyw &, H @& o &.
PROOF.T  \ne ghall construct a proof inL of @ o @.

1) @2>2(E@2&@)>2&)>((€>2(E@>&)>(€ > @)

(Instance of Axiom Schema A2)
Axiom Schema Al

From 1,2 by MP

Axiom Schema Al

From 3,4 by MP

@ ¢€>5(@>8)>8@)

B E@>@>8&)>(E@>aQ)
4 €>32(@>8)

(5) @>@

EXERCISE

1.38. Prove:
@ ru(~€38)38.
®EDB,BoCHEDC
©a>®@>0r3>(a>e).
@) t(~B D~ @)3(@ 3 B).

In mathematical arguments, one often proves a statement ¥ on the assump-
tion of some other statement @ and then concludesthat "'If @ then % is true.
This procedure is justified for the system L by the followingtheorem.

PropPosiTION 1.8 (DeEbucTiON THEOREM).T If T is a set of wis, and @ and 9
are wfs, and T, @+, then T+F@ D %B. In particular, if &+ B, then
F@ o %. (Herbrand [19301)

PROOF. Let B,,...,% beaproof d ® fromT U (&), where B, = B.
Let us prove, by induction on i, that TFH& o B, for 1 < i < n. First o al, B,
must be in T or an axiom o L or @. By Axiom (Al), %, > (@ > B)) isan
axiom. Hence, in the first two cases, by MP, T'+ @ o %,. For the third case,
when B, is @, we havet @ o B,, by Lemma 1.7, and, therefore, T+ @ 2> %,.

+ The word " proof" is used in two distinct senses. First, it has a precise meaning defined above as
a certain kind of finite sequence of wis o L. However, in another sense, it also designates certain
sequences of sentencesof the English language (supplemented by various technical terms) which are
supposed to serve as an argument justifying some assertion about the language L (or other formal
theories). In general, the language we are studying (in thiscase L) is called the object language, while
the language in which we formulate and prove results about the object language is called the
metalanguage. The metalanguage might also be formalized and made the subject of study, which we
would carry out in a metametalanguage, etc. However, we shall use the English language as ouf
(unformalized) metalanguage, although, for a substantial part of this book, we employ only 8
mathematically wesk portion of the English language. The contrast between object language and
metalanguage is also present in the study o a foreign language; for example, in a German class,
German is the object language, while the metalanguage, the language we use, is English.
distinction between "proof* and "metaproof" (i.e., a proof in the metalanguage) leads to 2
distinction between theorems of the object language and metatheorems o the metalanguage. T0
avoid confusion, we generally use "' proposition' instead of "*metatheorem™. The word “metamathe-
matics” refers to the study of logica and mathematical object languages, sometimes the word 15
restricted to thoseinvestigationswhich use what appear to the metamathematician to be constructivé
(or so-called finitary) methods.

IWeueT, @t% tostandfor Tu {€}t%. Ingenerd, welet T, &, ...,&,t9 stand fO
Tu{(g,..., @,3t9.
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takes care of the case1 = 1. Assume now that T+ @ > %, for al k < i.
ther , is an axiom or B; isin T, or B, is €, or B; follows by modus ponens
ym some B; and B, wherej <i, m <i, and B,, has the form B; 5 ;. In
“the first three cases, TH@ D ®;, asin the casei = 1 above. In the last case, we

by inductive hypothesis, TF& > %; and T+ @& > (%; > 9,). But, by
Axiom (A2), H(@ 3(B; 39)) 3(@ 3‘15,-) 3(@ D B,)). Hence, by MP,T'+
wDa@)2 @3 ®;), and again by MP, ' F @ > %,. Thus, the inductive proof
{fwmp[ete. The casei = n is the desired result. (Notice that, given a deduction
of ® from I' and &, the proof just given enables us to construct a deduction of
@ - % from I'. Also note that only Axiom Schemas (A1)-(A2) are used in
proving the Deduction Theorem.)

COROLLARY 1.9.
@ €o>%,8>CFHEDC.

(i) €>(® 30C),%+a@>C.

PROOF. (1)

@ @>%® Hyp (abbreviation for ""Hypothesis™)
® BoC Hyp

© Hyp

@ B (a), (c), MP

(e € (b), (d), MP

Thus, @ > B, D o €, @+ C. So, by the Deduction Theorem,
@B, B >O>CHEDC.

(i) Exercise (Use the Deduction Theorem).

LeMma 110, For any wfs @, 93, the following are theorems of L.

@ ~~B 39 € @3B)D2(~B >~&)

Y ® Bo~~P ) @>5(~PB >~(@ 3'N)
© ~@&-(@33) & @235 e3ES a
@ ~2>5~)>@>%P)

PROOF,
(a) P~ &} O B
L (=B o5~~B)3(~B 2~B)> B) Axiom (A3)
g- ~Bo~B Lemma 1.77
" B o>~~B)5 B 1, 2, Corollary 1.9(ii)
s BO(~B 5~~B) Axiom (Al)
w ~~®B 5P 3, 4, Corollary 1.9(i)
 Instead of wriin

g down here the complete pmof of ~ C 5~ @, wesimply citeLemma 17. In

:sd‘:’ $0. This, of course, is nothing more than the ordinary application of previousy

Py
EE Spacedicate how the proof of ~~ % 5 B could be written down, if we wished to take the
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) FB >~~ B

. (m~m= B2~ B)D(~~~B 3B)D~~B) |

' Axiom (A3)

2 e~ B O~B Part (a) above

3 (~~~B 3B)D~~B 1,2 MP

4. (QB S (~~~B D B) Axiom (Al)

5 B o~~%B 3,4, Corollary 1.9()
(© F~@D2(@> D)

1. ~@ Hyp

2. @ Hyp

3. @>(~%>@&) Axiom (Al)

4, ~@>O(~B>~Q) Axiom (Al)

5. ~®o@€ 2,3, MP

6. ~%B H>~@ 1,4, MP

7. (~BO>~@>(~B>)> B) Axiom (A3)

8. (~BH@)>%P 6,7, MP

9. B 58 MP

Thus, by 1-9, ~ @, @ + % . Therefore, by the Deduction Theorem, ~ €+ @ 2
%, and, again by the Deduction Theorem, F~ & > (@ D ®).

(d H(~B >~&)D(@3%)

1. ~%o>~4 Hyp

2 @ Hyp

3. (=B o>~@)D(~B>&)> D) Axiom EAgg

4 @3(~B o> @ Axiom (Al

5 (~®28)>%B 13 MP ‘
6. @0D 4,5, Corollary 1.90)
7. B 2,6, MP

Thus, by 1-7, ~% >~ &, @ +%, and two applications o the Deduction
Theorem yield the desired resuilt.

® FHE@>B)D(~B >~Q)

@>o%B

~~@ D@
~—@ DB
B H~~ B

~—~E D ~~ B

e oA RL L ol n

(~%B D~ @)

(~~@2~~B)D(~B >~ @)

Hyp

Part (a)

1, 2, Corollary 1.9G)
Part (b)

3, 4, Corollary 1.9)
Part (d)

5 6, MP
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by 17, € > B +F~%B >~ @&, and, by the Deduction Theorem, (€)

FED(~B D~(@ > D)

~Clearly, @, @D AtFB by MP. Hence, F€ D (@ Da)> a) by two
uses of the Deduction Theorem. By Part (6), F(@ D B) D B)D(~B >
= (& D B)). Hence, using Corollary 1.9(i),

FE@ D> (~8 >~(€> %))
® F@O>B)D (=& D B)D>B)

. @>% Hyp

2 ~@>0% Hyp

3. @>B)D2(~B>o>~@) Part (€)

4, ~B oO~@Q 1,3 MP
5. (~@2B)D(~B o~~Q) Part (€)

6. ~B >~~@& 2,5 MP
7. (~BOX~~@)D(~B>~R)>B) Axiom (A3)
8. (~B HO~&)D> B 6,7, MP
9. B 4,8, MP

Thus, @ DB, ~@ > B +B. Two applications of the Deduction Theorem
yield (g).

EXERCISES

130, Show that the fallowing are theorems of L.
@ @>2@VvVD) ©end o>
®e&>(® Ve M @E@2C)2[(®>2E)>@VSB DR
©BVveoeva Y(@D>B)dD@)DdE
@d@ensdoa gﬁ)@:(% D@ ANAD)

140, Exhibit a complete proof in L d Lemma 1.10(c). (Hint: apply the proce-
dure usad in the proof o the Deduction Theorem to the demonstrationgiven above
of | emma 1.10(c).) Greater fondnessfor the Deduction Theorem will result if the
*eader tries to prove Lemma 110 without using the Deduction Theorem.

It isour purpose to show that a Wf of L is a theorem of L if and only if it is a
tautology. Half o thisis very easy.

PrOPOSITION 111. Every theorem of L is a tautology.

Pxogn.r. As an exercise, verify that al the axioms of L are tautologies. By
tion 1.1, modus ponens leads from tautologies to other tautologies.
t » every theorem of L is a tautology.

3 The following lemma is to b d in the proof that every tautology is a
th . r g 1S to be use p Yy gy
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LeMMA 112, Let @ be a wf, and let B,,..., B, be the statement letters
occurring in @. For a given assignment o truth valuesto By, . .., By, let B/ be
B, if B, takes the value T; and let B/ be ~ B, if B; takes the value F. Let @' be
@, if @ takes the value T under the assignment;and let @ be ~ @ if & takes
the value F. Then B, ..., B;+F @'

For example, let € be ~ (~ A, D A)). Then, for each row of the truth table

A, A ~(~ Ay D As)
T T F
F T F
T F F
F F T

Lemma 1.12 asserts a corresponding deducibility relation. For instance, corre-
sponding to the third row there is A, ~ Ast~~(~ A4, D 4;), and, to the
fourth row, ~ 4,, ~ A, b~ (- 4; D As).

PROOF. By induction on the number n of occurrences d primitive connec-
tivesin @. (We assume @ written without abbreviations.) If n = 0, then & isjust
a statement letter B,, and then the Lemma reduces to B, + B, and ~ B, ~ B,.
Assume now that the Lemma holds for al j <n.

Casel @ is ~%. Then 93 has fewer than n occurrences o primitive
connectives.

Subcase la. Let B take thevalue T under the given truth value assignment.
Then @ takes the value F. So, %’ is %, and @ is ~ @. By the inductive
hypothesis applied to 9 , B{, ..., B/ 3. Then, by Lemma 1.10(b) and MP,
Bl,...,B/t~~%.But ~~ B is @".

Subcase |b. Let % take the value F. Then B’ is ~ B, and &' is @. By
inductive hypothesis, B|, ..., B{F~9 . But ~ % is @'

Cae2 R is(® D €). Then % and € have fewer occurrencesd primitive
connectives than @. So, by inductive hypothesis, Bj,..., B{+ %' and
Bj,...,B}FC.

Case2a. % takesthevalue F. Hence, @ takesthevaueT. Then B’ is ~ %,
and @ is@. So, B}, ..., Bt~ %. By Lemma 1.10(c), By,...,B{F® > C.
But % > Cis@"

Case2b. C takes the value T. Hence @ takes the value T. Then € is € and
@ is@. Now, By, . .., B, C. Then, by Axiom (Al), B;, ..., B,+ ® D C-But
BoCis@".

Case2c. P takesthevalue T and @ the value F. Then @ has the value F,
D' is B, C'is~C,and @' is ~&@. Now, B,...,B/F% and B, ..., Bkt
~ €. So, by Lemma 1.10(f), B, ..., B,F~(9 > ). But~(9 > €)isa.
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osITION 1.13 (COMPLETENESS THEOREM). Ifawf € o L is a tautology,
KLy ;7 is A theorem of L.

fbor. (Kalmar) Assume @ a tautology, and let B,, . .., B, be the state-
&t letters in @ .For any truth value assignment to B,, . .., B,, we have, by
a 1.12, B),..., B+ @. (€ is @, because @ aways takes the value T.)
_if B, isgiven thevaueT, By,..., B{_;, B, &, and, if B, is given the
F.B,,...,Bi_1, ~ B, @ So, by the Deduction Theorem, B, ..., B;_,

'F,g, 5@ and Bf,...,B,_, F~ B, D & Then, by Lemma 1.10(g),

.., B{_F@. Similarly, B,_, may be chosen to be T or F, and, again
applying the Deduction Theorem and Lemma 1.10(g), we can eliminate By _,

. fust as We eliminated By. After k such steps, we finally obtain +- @.

Exercise 141. By A B, D B, is a tautology. By the method d the proof of
Proposition 1.13, show that + B, A B, O B,.

CoRrOLLARY 114. |f B is an expression involving the signs ~, O | A\, =
which is an abbreviation for awf @ of L, then 9 is a tautology if and only if @
. isatheoremof L.

prOoOF. In Definitions D1-D3, the abbreviating formulas replace wfs to
‘which they are logicaly equivalent. Hence, by Proposition 1.3, @ and $® are
Jpgically equivalent, and % is a tautology if and only if @ is. The corollary now
Jollows from Propositions 1.11 and 1.13.

,i,-‘ ;;@ROLLARY 115 The system L is consistent, i.e., there is no wf @ such that
:’?hrk @ and ~ @ are theorems o L.
L

,;?MF By Proposition 111, every theorem of L is a tautology. The negation
H 4 tautology cannot be a tautology, and, therefore, it isimpossible for both @

m ~ & to betheoremsd L.

iéiﬂoﬁee that L is consistent if and only if not all wfs d L are theorems. For,
mmely, if L is consistent, then there are wfs which are not theorems (e.g.,
# negations o theorems). On the other hand, by Lemma 1.10(c), kp ~ @>
D B), and o, if L wereinconsistent, i.e., if somew @ and its negation ~ @
were pProvable, then, by MP, any Wf ® would be provable. (This equivalence

i3 for any theory having modus ponens as a rule of inference and in which
1.10(c) is provable.) A theory in which not all wfs are theorems is often
o be absolutely consistent,and this definition is applicable even to theories
#ontaining a negation sign.

ERCISE 1.42. | o @ be a statement form which is not a tautology. Let L* be
Jormal theory obtained from L by adding as new axioms all formulas
“nable from @ by substituting arbitrary statement forms for the statement
TS in @, the same forms being substituted for all occurrences of a statement
- Show that | is inconsistent.
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5. Independence. Many-Valued Logics.

Given an axiomatic theory, a subset X of the axiomsis said to be independen;
if somewf in X cannot be proved by meansd the rulesd inference from the et
d those axioms not in X.

ProrosiTion 1.16.  Each of Axiom Schemas (A1)-(A3) is independent.
AROCE
(@ Independenced (Al). Consider the following tables.

A ~A

N
>~

ADB

- O
O - —

b= O = O —=O
RN ———0 00
OO O NO

Given any assignment d the values 0, 1, 2 to the statement letters o a wf @,
these tables determine a corresponding value d &. If it always takes the vaue0,
@ is cdled select. Now, modus ponens preserves selectness. Check that, if
@2 B and @ are sdect, 0 is B. Veify dso that dl instances d Axioms
(A2)-(A3) are salect. Hence, any wf derivablefrom (A2)-(A3) by modus ponens
is select. However, A, D (A, D A)), which is an instance o (Al), is not sdect,
sinceit takesthe vaue2 when A, isl1 and A, is2
(b) Independence d (A2). Consider the following tables.

A ~A A B ADB
0 1 0 0 0
1 0 1 0 0
2 1 2 0 0
0 1 2
1 1 2
2 1 0
0 2 1
1 2 0
2 2 0

Let us cal a w which aways takes the value 0 according to these tables
grotesque. Modus ponens preserves grotesqueness, and al instances o Axioms
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k1) and (A3) are grotesque. (Exercise)) However, the instance A, 5 (A, 3 4,)
(4, ~ A4,) 2 (A, D A)) of (A2 takesthe value 2 when A, is0, A, is0, and
is 1, and, therefore, s not grotesque.

Independence of (A3). If @ is any wf, let h(&) be the wf obtained by
© au negation signs in &. For each instance @ o Axioms (A1)—(A2),
13 a tautology. Also, modus ponens preserves the property of awf @ that

eais. UG e T ME) SRS RS TP
derivable from (A1)-(A2) by modus ponens has the property that h(@)
is a tautology. But h((~ 4, D~ 4)D(~4,0A)DA))is(A,DA)D
(4> 3A) > Ay, which is not a tautology. Hence, (~ A, D~ 4)) D
(~4, 2 A) D A,), aninstance of (A3), is not derivable from (A1)—(A2) by
modus ponens.

ExeRCISE 143, Prove the independence of Axiom Schema (A3) by constructing
tables for the connectives ~ and o .

The idea used in the proof o independence d Axiom Schemas (A1)-(A2)
may be generdlized to the notion o a many-vaued logic. Cdl the numbers
0,1,2...,n"truth vdues', and let 0 < m <n. The numbers0, 1,..., m are
caled designated values. Take a finite number o “truth tables" representing
functions from sets o the form (0, 1, ..., n}" into {0,1,...,n). For each
truth table, introduce a sign, caled the corresponding connective. Using these
connectives and statement letters, we may construct " statement forms”, and
every such statement form containing j distinct letters defines a " truth function™
from{o, 1, ..., n) into {0, 1,...,n).A statement form whose corresponding
truth function takes only designated values is said to be exceptional. The
nunber s m, n and the basic truth tables are said to define a (finite) many-valued
logic M. An axiomatic theory involving statement |etters and the connectives of
M issaid to be suitable for M if and only if the theoremsd the theory coincide
with the exceptiona statement formsof M. All these notions cbvioudy can be
generalized to the case of an infinite number o truth vaues If » =1 and
/M =0, and the truth tablesare those given for ~ and 3 in §1, the correspond-
ng 2-vaued logicis that studied in this chapter. The exceptional wfsin this case
Were called tautologies. The sysem L is suitable for this logic, as proved in
Propositions 111 and 1.13. In the proofsd the independencedf Axiom Schemas
(A1)~(A2), two three-valued logics were used.

EXERCISRS

"“f- (McKinsey-Tarski) Consider the axiom system P in which there is exactly

) ';ne binary connective *, the only rule of inferenceis modus ponens(i.e., % follows

'::m € and @+8), and the axiomsare all wfs of the form @«@. Show that Pis not
table for any (finite) many-valued logic.
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145. For any (finite) many-vaued logic M, prove that there is an axiomatic
theory suitable for M.

Further information about many-valued logics can be gained from the mono-
graph [1952] of Rosser and Turguette and from Rescher [1969).

6. Other Axiomatizations

Although the axiom system L is quite simple, there are many other systemg
which would do as well. We can use, instead of ~ and 3, any collection of

primitive connectives, so long as these are adequate for the definition o al other
truth-functional connectives.

Examples.

L,: v and ~ are the primitive connectives. We use @ 3 % as an abbre-
viation for ~@ \/ ®. We have four axiom schemas: (1) € v @ 3 @;
DE28VB;, RAEVRB3 BVE @) B2O)D2@VD 2 VO.
The only rule of inference is modus ponens. This system is developed in
Hilbert-Ackermann [1950].

L,: A and ~ are the primitive connectives. @ D % is an abbreviation for
~(®@ A ~B). There are three axiom schemas: (1) € D (@ A &); 2) @ A B
OD&; (3 (@ D%B)D(—(B AC)D~(C A ®)). Modus ponens is the only
rule. Consult Rosser [1953] for a detailed study.

L,: Thisisjust like our original system L except that, instead of the axiom
schemas (A1)-(A3), we have three specific axioms. (1) A, D (A, D A); (@
(4, 3(4;343)3(4,34)3(4,343); 3 (~4,0~4)3((~4;D
A)) D A In addition to modus ponens, we have a substitution rule; we may
substitute any wf for all occurrences of a statement letter in a given wf.

L, The primitive connectives are >, A, \/, and ~. Modus ponens is the
only rule, and we have ten axiom schemas:

H @B o8

2 @B o2E))2(E@>2%B)>(@>20C)
B3 AABDQ

@ C@AB3 %

5) @>2B 2@ AB)Y

© @>(@V3B)

N Bo2@VD)

@ @28)2(B2>2O)2(@ VB DO
@ €3B)3(@>2~%B)>~1)

(10) ~~&o@

We define, as usual, @ = % to be (€ D B) A (B D @). This system may be
found in Kleene [1952].

L.

147,
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RCISES
1.46. (Hilbert-Ackermann [1950]). Prove the following results about the theory

(@) QD%FL,QV&:’QV@’
®) F (@D B)D((C28)D(€E D D)
(C) QDQ,&,D%FLIQD%
@ H, &> e (e, by, ~ ey e
@ heV~E
b, D~~
Ry YT O
M HEVEBVEOS(BVEVE)VE)
() H@VEVEeYVEDSBVEVO)
NDhHEVEBVEe)O3VEVE)
® H@>®2C)>(B>(E@>C)
M HE>8)D(8D>8)D(CD D))
mME&>(®2C),808HED(EDC)
m@36326),805%8HEDC
(@ IfT, @+, B, then T+ @ O B (Deduction Theorem)
P BoE ~B3BD1EHE
(@ h,@ if and only if & is a tautology. (Hint: prove the analogues of
Lemma 112 and Proposition 1.13))
(Rosser [1953]). Prove the following assertionsabout the theory L,.
@EDB,BDOCH,~(~CAE)
®) Fi,~(~ € A @)
© F,~~&D08
@DH,~E@AB)D®B D>~&)
(e H,@ D~~@
® H@3%)3(— 3>0~@)
@ ~8383H3>8@
) Eo>BHCAEDB AC
() €28,% 50,09 EDD
() h,e 3@
KHLEABDOD A
M E>B,BHCHEDC
@ME>B,CODHELRACOIDBAD
@WBOCHERASD
©F@>(®>E)>(CAB)DC)
P H(EAB)DC)DE@D(B DC)
o9,
BEITEATRHE¢C
6 H,@>E3>8)
) ML, @H B, thenTH @ D B (Deduction Theorem)
hi~&8>@)>oe

v —
%WB E]_:& ﬁ and %n?y % é’“’?gﬂ a tautology. (Hint: prove analogues of Lemma
112 and Proposition 1.13)
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1.48. Show that the theory L; has the same theorems as the theory L.
149. (Kleene[1952)). Derive the following statements about the theory L,.
(@ +H&>@
® If T, &+ B, thenT+ & 5 D (Deduction Theorem)
@858, 9DCHEDC
@H@DB)D(~B D~R)
(€) B, ~BFH C
® LB DO~~%
®HrH,~83D2@>0)
®HBD(~CO~(B D)
@ F,~BD2(~CD~BVOC)
(Dh(~®8D08)D>(B>@)>18)
(k) kL@ if and only if & is a tautology. (Prove analogues of Lemma 1.12
and Proposition 1.13)
1.50.° Consider the following axiomatization of the propositional calculus £
(due to Lukasiewicz). £ has the same wfs as our system L. Itsonly rule of inference
is modus porens (MP). Itsaxiom schemasare: () (~ & 2 @)D &, (D& D> (~@&
DB)JAIM(E >B)> (% o C)D (@ D E)). Provethat awf & of Cis provable
in £ if and only if @ is a tautology. (Hint: Show that C and L have the same
theorems, and then use the result that the theorems of L are precisely the
tautologies. However, remember that none of the results proved about L (such as
Propositions 1.7-1.12) automatically carries over to C. In particular, the Deduction
Theorem is not available until it is proved for £.)

Axiomatizations can be found for the propositional calculus which contain only
one axiom schema. For example, if ~ and 3 are the primitive connectives and
modus ponens the only rule of inference, the axiom schema

[((ED>B)D2(~Co~D)DC)DE] D[(E>E)D(D > Q)]

is sufficient (C. A. Meredith [1953]). Another single-axiom formulation, due to
J. Nicod [1917), uses only alternative denial |. Its rule of inferenceis: € follows
from (% |C) and &, and its axiom schema is

(@B ICNI{[DUD DM ]I[(EIBN(@IE)(@IEN]}-

Further information, including historical background, may be found in
Church [1956] and in a paper by Lukasiewicz and Tarski [1956, IV].

EXERCISES

151 Show that Axiom Schema (A3) of the system L can be replaced by the
schema (~ @ o~ %) o (% > @) without altering the class of theorems.

152 If, in L,, Axiom Schema (10) is replaced by the schema (10—~ & D

(& D %) —then the new system L, is called the intuitionistic propositional calculus.

(a) Consider an n + 1-valued logic with these connectives: ~ @ is0 when

@ isn, and otherwiseitisn; @ A % has the maximum of the values of

@ and B, while @ \y B has the minimum o thesevalues, @ o % is0

if @ hasa value not less than that of €%, and, otherwise, it has the same
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value as B. If we take 0 as the only designated value, show that all
theorems of L, are exceptional.

O A4,/ ~A4,and ~~ A, D 4, are not theorems of L,.

(c) For any m, the wf
(A4=4) V...V (41 =4,)V (4 =43) /...

1‘ V(AZEAm)v---V(Am—IEAM)
is not a theorem of L;.
(d) (Go6del [1933]) L, is not suitable for any finite many-valued logic.
© ()T, @+, B, thenTH & > B (Deduction Theorem)
([HH@oB, BD>CHEDC
(ili) F,@ D~~@
(iv) FL@ D> ®)D(~B DT &)
(V) F,@ D2 (~8D>%B)
(Vi) b, ~~(~~€ > @)
(i) ~~(@ > B), ~~ @, ~~B
(viii) by, ~~~ @ D>~ @
D) +, ~~ @ if and only if @ isa tautology.
(@) ti, ~ @ if and only if ~ @ isa tautology.
D) If @ has A and ~ asits only connectives, + & if and only if @ isa
tautology.

For further information on intuitionist logic, cf. Heyting [1956], Kleene [1945],
Jaskowski [1936]. The latter paper shows that L; is suitable for a many-vaued
logic with denumerably many values.

1534 Let @ and & beintherelation Rif and only if F @ = % . Show that R
isan equivalence relation. Given equivalence classes[@] and [ ), let [2] U [%] =
[BV &1, [@]1Nn[%] =[@ AB] and [€]= [~ &] Show that the equivalence
classes under R form a Boolean algebra with respect to U, N, and, caled the
Lindenbaum algebra L* determined by L. The element 0 of L* is the equivalence
classconsisting of all contradictions (i.e., negations of tautologies). The element 1
of L* is the equivalence class consisting of al tautologies. Notice that F @ D b if
‘and only if [@] < [B]in L*, and that +,.@ = B if and only if [8] = [®]. Show
that 3 Boolean function f (built up from variables, 0 and 1, using U, N, _) is
equal to the constant function 1 in all Boolean algebras if and only if kf#, where
£# is obtained from f by changing Uy, n,, 0 linto\/, A, ~, 4, A ~ 4,
4,V ~ A,, respectively.




FQUANTIFICATION THEORY

1. Quantifiers
There are various kinds of logical inference which obviously cannot be
justified on the basis of the propositional calculus; for example:

m Any friend o Martin isa friend o John.
Peter is not John's friend.
Hence Peter is not Martin's friend.
(@ All men are immortal.
Socrates is a man.
Hence Socrates isimmortal.
(@ All men are animals.
Hence the head o a man is the head of an animal.

The correctness o these inferences rests not only upon the truth-functional
relations among the sentences involved, but also upon the internal structure of
these sentences as wdll as upon the meaning of such expressionsasdl", "any",
etc.
In order to make the structure of complex sentences more transparent, it is
convenient to introduce specia notation to represent frequently occurring ex-
Pressions. |f P(x) assertsthat x has the property P, then (x)P(x) is to mean that,
for evary x, property P holds, or, in other words, that everything has the
Property P. On the other hand, (Ex)P(x) shall mean that there is an x having
the property P, i.e., that there is at least one object having the property P- In
(X)P(x), the first "(x)" is called a universal quantifier; in (Ex)P(x), “(Ex)” is
°d_an exigtential quantifier. The study of quantifiers and related concepts is
the principal subject of this chapter; hence the title " Quantification Theory"'.

Examples. | o m, j.p, S, F(x,Y), M(x), I(x), A(x), h(x) stand, respectively,
,ff,’f Mmﬁn, John, Peter, Socrates, x is a friend of y, x isa man, x is immortal,
an animal, and the head o x.

45
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Then (1)-(3) above become:

(1) (x)(F(x, m) > F(x,)))
~ F(p,J)
-~ F(p, m)
(2) (x)(M(x) D I(x))
M(s)
I(s)
(3) (x)(M(x) D 4(x))
(X)((Ep)(x = h(y) A M(»)) D (Ey)(x = h(y) A A(»)))

Notice that the validity o these inferences does not depend upon the particular
meaningsof m, j,p, s, F, M, |, A, and h.

Just as statement forms were used to indicate logica structure dependent
upon the propositional connectives, so aso the form o inferences involving
quantifiers, such as (1)-(3), can be represented abstractly, asin (1)—(3). For this
purpose, we shall use commas, parentheses, the symbols ~ and o5 d the
propositional calculus, individual variables x, x,, ..., x,, . .. ; individual con-
stants @,, @y, ..., a, ... ;predicaelettersA|, 47,..., 44, ..., ; and junction
letters £, f& ..., fi,... . The positive integer which is a superscript d a
predicate or function letter indicates the number d arguments, whereas the
subscript is just an indexing number to distinguish different predicate o
function letters with the same number o arguments. In the examples aove,

m,j,p,s are individual constants, F and = are binary predicate letters (i.e.,
letters with two arguments), M, |, A are monadic predicate |etters (i.e., letters

with one argument), and h is a function letter with one argument.

The functionletters applied to the variablesand individual constants generate
the terms, that is,

(@) Variables and individual constants are terms.
(b) Iff: isafunction letter, and t,, ..., ¢, are terms, then f"(¢,, .. ., ¢,) isa
term.

(©) Anexpressionisatermonly if it can be shown to be a term on the bass
of clauses (a) and (b).

The predicate letters applied to terms yield the atomicjormulas, i.e., if A" isa
predicate letter and t,,..., s, are terms, then A4/ (¢, ...,¢,) is an atomiC
formula.

The well-formed formulas (wfs) o quantification theory are defined as
follows:

(a) Every atomic formulais a wt.

QUANTIFIERS a1

If @ and ® are wfs, and y is a variable, then (~ &), (& D %), and

((»)@) are wis. _— .
An expression is a wf only if 1t can be shown to be a wf on the basis of

6} clauses (a) and (b).

| @), “@” is called the scope d the quantifier “(y)”. Note that @ need

In (¥ )_ > yariable Y. In that case, we ordinarily understand ((»)@) to
’,}f&ﬁoﬂ:tglgagﬁg thing as @. The expressons € A B, €V B, € =D are
defined as in the sysem L d the propositional calculus (cf. page 31). It was

unnecessary for US to use the symbol E as a primitive symbol, because we can
define existential quantification as follows:

(Ex)@)stands for (~ ((x)(~ &)))

This definition iS obviously faithful to the meaning d the quantifiers: @(x) is
true for some x if and only if it isnot the case that @ (x) isfalsefor all x.

The same conventions Made in Chapter 1 as to omission d parentheses are
here, with the additional convention that quantifiers (y) and (Ey) rank in
srength between =, 3,and V, A, ~.

Examples.
(x,)A}(x)) D A¥(x,, x,) stands for (((x,)4{(x;)) D 4}(x,, x,))
(x,)4}(x,) V A%(x,, x,) stands for ((x,)(4](x,) V 4}(x,, x,)))

ExercisE 21. Restore parentheses to (x,) ~ 4](x;,) 3 A}(x), x;, X2) V
(xpA4(x), and to ~ (x))A4{(x}) D (Ex)A;(x)) 3 A4(x;, x) V 4 1(x2)-

As an additional convention, we also omit parentheses around quantified
formulaswhen they are preceded by other quantifiers.

Example.

() (Ex)(x)AY(x,, Xy, X,) stands for ((xl)((Exl)((xtt)A 10y, X2 x4))))
EXERCISES

22. Restore parenthesesto the following.
(@) ()X xA(xy) D AY(x) A = A4](x))
(®) (Ex)(x2)(Ex;)A}(x)) V (Exy) ~ (x3)A47(x3, x,)
© (x)A}(x)) V A)(xy)
@) (xpA](x) > Aj(xy)
(©) ()2 A7(xy, x2) A (¥) ~ A3(x), X))
Eliminate parenthesesfrom the following wfs as far as is posshble
(@) (((xl.)(“ll(xl) D AYx)) V (Ex))A4}(x)))
®) (~ (ExXA](x) \/ 4L(a))) = A}(x)
©) ()X~ (~ 4{(a3)))) 3 (4)(x) D AYxD)).
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The notions of free and bound occurrences of variablesin a wf are defined a4
follows: an occurrence of a variable x isbound in a wf if and only if either jt is
the variable of a quantifier "(x)" in the wf, or it is within the scope of ,
quantifier *(x)" in the wf. Otherwise, the ocurrence is said to be free in the ws

Examples.

(‘) A%(Xl’ X))
(i) Af(x;, xp) D (x,)A,'(x;)
(i) (x)(A7(x1 x2) D (x)4{(xy))

In (i), the single occurrence of x, is free. In (ii), the first occurrence of x, 1s free

but the second and third occurrences are bound. In (iii), all occurrences of x, are
bound. In @l three wfs, every occurrence of x, is free. Notice that, as in (i), a

variable may have both free and bound occurrences in a given wf. AlSO notjce
that an occurrence of a variable may be bound in some W @, but free p ,
subformula of &. For example, the first occurrence of X, is free in (ii), but is
bound in the larger wf (iii).

EXERCISES

24. A out the free and bound occurrencesd variables in the following:
(@) (X)(xDAT(x1, X2)) D Al(x3, ay))
() (x)Af(x3, X)) D (x3)47(x3, X3)
© _((xz]'(Exl)A 1(x1, X3, Sl X))V ~ (x)A¥(x, fll(}'i)) )
25. Indicate the free and bound occurrences d dl variables in the wfs d
Exercises 2.2-2.3.

A variable issaid to befree(bound) in awf if and only if it has a free (bound)
occurrence in the wf. Thus, a variable may be both bound and free in the same
wf, e.g., X, is bound and free in example (ii).

EXERCISES

26 Indicate the free varidbles and the bound variables in the wis o Exercises
2.2-2.4.
27. Writeawf in which x is both free and bound.

We shdll oftenindicate that a wf & has some of thefree variabIeSx,l, .
by writing it as @(x;,..., x;). This does not mean that @ contains these
variables as free variables nor does it mean that @ does not contain other free
variables. This notation is convenient because we then can agree to write as
@(ty, ..., 4) the result of substituting in @ the terms t,, ..., t, for all free
occurrences (if any) of x;, ..., x,, respectively.

If @ isawf and r isaterm, then t issaid to be free for x; in @ if and only if no
free occurrences of x; in @ lie within the scope of any quantifier (x,), where x; 15
avariablein t.
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wies.

'-:;Ihe term x; is free for x; in Al(x,), but x; is not freefor x; in (x,)4(x,).

rhe term fZ(x;, X,) is free for x, in (x)A¥(x,, x,) 3 A}(x;), but is not

free for x; in (Ex3)(x)A4 H(xp, x2) D A1(x))- _ _

Any term containing no variables is free for any variable in any wf.
term ! is free for any variable in @ if none o the variables of t is

. bound in &. _

is free for x; in any wi.

?3 ﬁny term isfreefor x, in @ if @ contains no free occurrences of x;.
ws

%c:sss
ai i@ Is the term f(x,, x,) free for x; in:

B (@) Af(x,, x2) D (x)A41(x2)

B, 00 (b) (x)43(x2, @) V (Exp)AT(xy, x2)
™. ©) ()AT(x1, x3)
e (d) (xDA5(xy; x2)
;', , x A;(xz) =) Af(x,, x2)
i’ 29. g)o&e e asserfions made In Examples (b)—(e) above.

2.10. Trandate the following sentences into wis.

(@ All fish except sharksare kind to children.

B (b) Either every wine-drinker is very communicative or some pawnbroker
3 is honest and doesn't drink wine

tva (© Not dl birds can fly.

i (d) Everyone loves somebody and no one loves everybody, or somebody
loves everybody and someone loves nobody.

(® You can fool somed the people dl the time, and you can fool al the
peoplesome d the time, but you can't fool dl the peopledl the time.

(f) Some people are witty only if they are drunk.

(9) No poalitician is honest.

() If anyone can do it, Jones can.

@ Anyone who is persistent can learn logic.

. (j) If dl clever philosophersare cynics and only women are dever philoso-

2 phers, then, if there are any clever philosophers, some women are

¥ nics.

B 8 Trancéllate the followinginto every-day English. (Note that every-day En-

, #lish does not use variables)

5. (@) (x)(P(x) D (Ey)(C(y) A (EzXT(z) A S(x,y, z)))), where P(x) means
x isa sudent, C(x) means x is @ course, T(x) meansx is a bed teacher,
and S(x,y, z) means x dudiesy with z.

®) (XY pNW)A}(x) A ANy, X) A AX(z, x) A Ai(w, x) A 43(», 2) A
A3y, w) A 43z, w)] D AXSHSIO). S@), fi(w), where Al(x)
means X is a triangle, A¥(x,y) means X is a Side of y, 43(x, y) means
x 5y, A3(x, y) means x is gregter than'y, f(x, y) meansx + y, and
f1(x) means the length oj x.

4

- F



50 QUANTIHCATION THEORY Skc. 5

(© (DI(Ep)A Hy, v) D (Ex) A,’z{x v)) A (z)(Az(z v) o Ai(x, )], whae
A¥(x,y) means X ey, A¥(x,y) MeansX < Y.
(d) In thefollowing, 4}(x) meansX isaperson and A3(x,y) Meas x loves Y.

@ (ExXAi(x) A (WX41(») D A}(x, y))
(i) (xNA4i(x) D {}')(Al(y) D Af(x, »))
(i)  (EyX4i(») N (ExXA{(x) A A}y, ).

2. Interpretations. Satisfiability and Truth. Models.

Wrfs have meaning only when an interpretation is given for the symbols. Ap
interpretation M consists of a non-empty set D, called the doman of the
interpretation, and an assignment to each predicate letter A" d an n-place
relation (A")M in D, to each function letter f” of an n-place operation (f") in
D (i.e. afunctlon from D" into D), and to each individual constant a; d some
fixed element (a)™ of D. Given such an interpretation, variablesare thought of
as ranging over the set D, and ~, o, and quantifiers are given their usual
meaning. (Remember that an n-place relation in D can be thought of asa subst
d D" theset of al n-tuplesd elementsd D. For example, if D is the set of
human beings, then the relation " father of" can be identified with the set d dl
ordered pairs (x, y) such that x is the father o y.)

For a given interpretation, a wf without free variables (called a dosed wf or a
sentence) representsa proposition which is true or fase, whereas a wWf with free
variablesstands for a relation on the domain o the interpretation which may be
satisfied (true) for some vaues in the domain d the free variables and nat
satisfied (false) for the others.

Examples.

() Af(xy, xy)
(i) (x)A43(x), xp)
(i)  (Exy)(x,)4 lz(xZ’ X))

If we take as domain the set of positiveintegersand interpret A7(y, z) asy < z,
then (i) represents the relation y < z which is satisfied by al the ordered pairs
(& b) of podtive integers such that a < b; (ii) represents the property (i.e-
relation with one argument) "For all positive integers y, z < Y, which is
satisfied only by theinteger 1; and (iii) is a true sentence asserting that thereis a
smallest positive integer. If we were to take as domain the set d all integers,
then (iii) would be false.

EXERCISES

212. For the falowing wfs 1-3 and for the following interpretations, indicate
for whet vaues the wis are satisfied (if they contain free variables) or whether they
are true or fase(if they contain no free variables).
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X fi(xp X2, al)

b . Ab(xn X2 2 A(x3 x1) ,

1 (x.}(xz)(x:s)(A (xp x2) D (A4 f(xz x3) D 4{(xy; x3))) )

The domain is the set of positive integers, Ay, 2)isy = z, f{y, z)isy - ,

i g, is 1.

: f' The domainisthe set o human bengsAl(y, 7)is“y lovesz”, fz(y, 2is?
is Hitler. \

a'ne domain is the set d dl sets o integers, AXy,2)isy 22, flz(y Z) 8

2,13, Describein evary-day English the assartions determined by the foltowing

“’&q sad interpretations.
T yA(x,)j Ez)(A}(2) A A¥x, 2) A ANz
T O P AT LG e

‘ meansz isa ratlond number.
- (®) (AAICx) O (By)Ax(y) A ANy, x), where D is the st d dl days

L ag and people, 4{(x) mears X is a day, A)(y) mearsy is a sucker, ad
oy Ay, X) meansy is bom on day x.

@i (©) Inthefdlowingwfs, D istheset d integers, and 43(u, U) meansu < u.
o

<k , (1) (X)(E)')A (x y)

ﬂf, M U&% 3(,4% ’3) A ~ (EzXAf(x, 2) A Az, Y))-

Fidt (d) In the fdlowing wfs, D is the st d dl people, and AF(u, v) means u
b loves u.

e i (Ex)(y)4i(x.y)

',d! . W E 42

L @ (ENOXEAN. 2 > Aice )

V) (ExXy) ~ A}(x, »).

Y notions d satisfiability and truth are intuitively clear, but, for the
Wcal they can be made precise in the following way. (Tarski [1936]) Let
MTe be given an interpretation M with domain D. Let = be the set of
o cmne:able sequences d elements of D. We shall definewhat it means for a
ces = (b, b, ...)in S tosaisty awf @ in M. Asa preliminary step we
¢ a function < of one argument, with terms as arguments and valuesin D-

If 1is x, let s*() be b,
Y "If ¢ is an individual constant, then s*(7) is the interpretation in D of this
. Constant.
I " is a function letter and (f)™ is the corresponding Operatlon
in D, and t,, ..., 1, are terms, then s*(ff(ty, ..., L) =

.(f")“(s*(:l), s*(ty), ..., s™(2,)).
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Thus, s* isa function, determined by the sequence s, from the set of terms into
D. Intuitively, for a sequences = (b,, b,, . . . ) and a term ¢, s*(¢) is the element
of D obtained by substituting, for each i, b, for al occurrencesd x; in t, and
then performing the operations of the interpretation corresponding to the
function letters of t. For instance, if ¢ isf2(xs, fi(x,, ), and the interpretation
has the set of integers as its domain, f; and f; are interpreted as ordinary
multiplication and addition, and a, is interpreted as 2, then, for any sequence
s = (b, by, ...) OF integers, s*(¢) is the integer b, X (b, + 2).
Now we proceed to the definition proper, which is an inductive definition.

(i) If @ isan aomic W A"(#,, ..., ) and (4" is the corresponding
relation of the interpretation, then the sequence s satisfies @ if and only
if (4Ms*(1), ..., s*(t,), ie., if the n-tuple (s*(ty), . . ., s*(¢,)) isin
the relation (4")M.+

(i) ssatisfies~ @ if and only if s does not satisfy @.

(iii) ssaisfies®@ o % if and only if either s does not satisfy @ or s satisfies
‘3.

(iv) ssatisfies(x,)@ if and only if every sequence o T which differsfrom s
in at most the i component satisfies @.

Intuitively, a sequences = (b,, b,, . . . ) satisfiesawf & if and only if, when
we substitute, for each i, a symbol representing b; for all free occurrences o x; in
@, the resulting proposition is true under the given interpretation.

DeriniTions. A wf @ is true for the interpretation M (written k@) if and
only if every sequencein = satisfies @.

@ isfalse for M if and only if no sequencein I satisfies@.

An interpretation M issaid to be a model for aset T of wfsif and only if every
wf in T is true for M.

Verification of the following consequences o the definitions above is left to
the reader. Most of the results are also obvious if one wishes to use only the
ordinary intuitive understanding o the notions of truth and satisfaction.

() @ isfalsefor agiveninterpretation M if and only if Fyy ~ @; and k@ if
and only if ~ @ isfasefor M.

T For example, if thedomain of theinterpretation is the st of real numbers, the inter pretation of
A} isthe rdation < and the interpretation of f(x) is €%, then a sequence s= (by, b, .. .) of real
numberssatisfies43( f](x,), xs) if and only if €™ < b,. If the domain isthe set of pointsin a plane,
the interpretation of 43(x, y, z) is“x and y are equidistant from z”, and the inter pretation of fZ(x, )
is" themidpoint of the line ssgment connectingx and y*, then a sequences = (by, by, . . . ) o points
in the plane satisfies A7(f(x,, X2), fi(x3, x1), x4) if and only if the midpoint of the line ssgment
between b, and b, isat the same distance from b, as the midpaint of the line ssgment between b,
and b,. If thedomain isthesat of integers, the interpretation of Af(x, y, &, v) is“x.v=u.y” and
the interpretation of a, is 2, then a sequences = (b,, b,, ...) of integerssatisfieA}‘(x,, a,, X,,xy) if
and only if (by)? = 2b,.
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I) Itis not the case that both F\y@ and Fy ~ &, that is, NO wf can be both
and false for M.

S 1 Fy@ and Fy@ 373, then Fu B,

@ o % isfasefor M if and only if k,,& and F ~€'3’-_ ]
b4 (i) A seauence s satisfies @ A ‘E%/ if and only If s sdtisfies @ and s
satisfies 9. A sequence s satisfies @ \/ B if and only if s satisfies @ or s
satisfies . A sequence s satisfies@ = B if and only if s satisfiesboth @ and
@ or s satisfies neither & nor 4 .
(i) A sequence s satisfies (Ex;)@ if and only if there is a sequence s
which differsfrom sin at most the i place such that s” satisfies @.

(V) Eu@ if and only if Fy(x;)@. We can extend this result in the following
way. By theclosure of @ we mean the closed Wi obtained from & by prefixing as
universal quantifiers those variables, in order of decreasing subscripts, which are
free in @, If @ has no free variables, the closure of & is defined to be & itself.
For example, if @ is A3(xy X) D~ (Ex)A¥(x;, X5, x,), its closure is
(x5)(x3)(x)(x))@. It follows from (VI) that a wf & is true if and only if its
closureis true.

(VIl) Every instance d a tautology is true for any interpretation. (An
ingtance o a statement form is a wf obtained from the statement form by
substituting wfs for al statement letters, all occurrences o the same statement
letter being replaced by the same wf. For example, an instance of A, 2= A,
A, is A¥(x}, x,) D (~ (x)A1(x) \V A¥(x,, x5).) To prove (VII), show that all
instances of the axioms o L are true, and then use (I11) and Proposition 1.13.

(VIII) If the freevariables (if any) of awf & occur in the ligt Xipowuaihh
and if the sequences s and s have the same components in the i,", ..., 1,
places, then s satisfies @ if and only if s’ satisfies @. (Hint: induction on the
number o connectives and quantifiers in €. First prove: Lemma If the
variablesin a term ¢ occur in the list Xis o e X and if sand s have the same
components in the i,™, ..., i,"™ places, then s*(f) = (s)*(#). In particular, if ¢
contains no variables at al, s;*(¢) = s,*(¢) for any sequencess, and s,.)

Although, by (VIII), a particular wi @ with k free variables is essentialy
satisfied or not only by k-tuples, rather than by denumerable sequences, it is
more convenient for a general treatment of satisfiability to deal with infinite
rather than finite sequences. If we were to define satisfiability using finite
sequences, clauses (iii) and (iv) o the definition of satisfiability would become
much more complicated.

The set of k-tuples(b; , . . ., b;) o thedomain D such that any sequence with
bi,...,b, inits i, ..., 5" places, respectively, satisfies a wf @ having
Yip ..., x, asitsonly free variables, is called the relation (or property) d the

t Remember that € A9, 8V 9, @ =9, (Ex)@ ae abbreviations for ~ (& > B),
~&59 (@>9)A® D B), ~(x)~ &, respectivdy.
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interpretation associated with @. Extending our terminology, We shall say that

every k-tuple (b;, ..., b)) in this relation satisfies @(x;, . . ., x;) in the inter-
pretation M; this will be written as Fy@[b;, ..., b, ].
Examples.

(1) If thedomain D of M istheset of human beings, 4%(x, y) isinterpreted as
"x isabrother o y", and 43(x,y) isinterpreted as"x is a parent of y”, then the
binary relation on D corresponding to the wf @(x,, x;) 1 (Exs)(A¥(x,, x3) A
A3(x,, x,)) is the relation of unclehood. Fy&[b, c] when and only when b is an
uncled c.

(2) If the domain is the set of positive integers, A7 is interpreted as =, f2 is
interpreted as multiplication, and a, is interpreted as 1, then the wf % (x,):

~ Af(xp, a)) A Co)((Exs) AT (xy, fl(xy x3)) o Af(xy x)) V Af(x,, a,))
determines the property o being a prime number. Thus, F\% k] if and only if k
is a prime number.

(1X) If & is a closed wf, then, for any interpretation M, either Fu@ or
Fu ~ @, that is, either @ istruefor M or @ isfasefor M. (Hint: Use (VIII).) O
course, @ may be true for some interpretations and false for others. (As an
example, consider A|(a,).)

If & isnot closed, i.e., if @ contains free variables, & may be neither true nor
false for some interpretations. For example, if @ is A7(x,, x,) and we consider
an interpretation in which the domain is the st o integers and A%(y, z) is
interpreted as y <z then @ is satisfied only by those sequences s=
(b,,b,,...) o integersin which b, < b,. Hence, & is neither true nor false for
this interpretation. On the other hand, there are wfs which are not closed, but
which, nevertheless, are true or false for every interpretation. An example o
such awf isA4{(x,) \/ ~ A4](x,), which is true for every interpretation.

(X) LemmA. Iftandu aretermsand sisa sequencein Z, and ¢’ results from
t by substituting « for all occurrences d x;, and s resultsfrom s by substituting
s*(u) for the i"™ component d s, then s*(¢) = (s)*(¢). (Hint: Induction on the
length d ¢.1)

COROLLARY. Let &(x;) bea wf,tatermfreefor x, in @(x,), and @(¢) the wf
obtainedfrom &(x;) by substituting ¢ for all free occurrencesd x; in @(x,).

(i) A sequences= (b,, b,,...) satisfies @) andonly i the sequences,
obtained from s by substituting s*(¢#) for &, in the i* place, satisfies
@(x,). (Hint: Induction on the number d connectivesand quantifiers in
&(x;), usng the lemma.)

(i) If (x)@(x;) issatisfied by the sequence s, then &(¢) also is satisfied by
S

1 The length of an expression is the number of occurrencesdf symbolsin the expression.
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@iy (D@(x) D @) is truefor all interpretations.

(XI) If @ does not contain x; free, then (x (& 2 B) 3(Q D (x)B) istrue
for all interpretations.

pROOF. Assume (X1) is not correct. Then (x)(@ > ®) D (€ D (x)®) isnot
true for some interpretation. By clause (iii) of the definition of satisfiability,
there is a sequence such that s satisfies (x)(€ D %) and s does not satisfy
@ o (x)®. From the latter and clause (iii), s satisfies @ and s does not satisfy
(x)® . Hence, by clause (iv), thereis a sequences differing fromsin at most the
it place such that s does not satisfy . Since x; is free in neither (x (& > B)
nor @, and since s satisfies both of these wfs, it follows by (VIII) that s also
satisfies both (x)(€ 2 9 ) and €. Since s’ satisfies (x}(& > D), it followsby
clause (iv) that s wtisf%gs@ D B. Sinces saisfies @ o P and @, clause (iii)
implies that s satisfies <, which contradicts the fact that s does not satisfy % .
Hence, (X1) is proved.

EXERCISES

2.14. Veify )-(X).

215. Provethat aclosedwf @ istruefor M if and only if & is satisfied by some
sequencesin Z. (Remember that Z is the set of denumerable sequencesd elements
d thedomain o M.)

216. Find the properties or relations determined by the following wfs and
interpretations.

@ [(Eu)A3(fi(x, U), y)} A (EAI(fi(x, V), 2)l. where the domain D is
theset o al integers, 4¥(u, V) meansu = v, and fi(«, V) means L.

(b) Here, D is the set o non-negative integers, A?(x,y) means x =Y, a,
denotes 0, a, denotes |, f(x,y) stands for X Ty, and fi(x,») stands
for xy.

() (Ez)(~ Ai(z, a)) A AT(fi(x, 2), )
(i) (EyX4i(x, (v, )

(©) (Ex3)A}(f(xy, x3), x,), Where D is the set of al positive integers,
A¥(x,y) means X =y, and f(x, y) means xy.

(d) AJ(x) A (x2) ~ A¥(x1, x3), where D is the set o dl living people,
A}(x,) means X isa man, and A}(x, y) means X is maried to y-

(&) (Ex\)XExX(Af(xy, x3) A Al(xp Xg) A AX(xy, X)), where D is the
domain of al people, 43(x, y) means X is a parent d y, and A3(x, »)
means X andy are shlings

() (x3)M(Exq)A O E x3), x1) A (Ex )4 %(f HEM X3), X3)) D A(x;3, @),
where D is the set d all positiveintegers, a, denotes 1, A%(x,) means
X =Y, and fi(x,y) means xy.

217. For each of the followingwfsand interpretations, write a trandation into
ordinary English and determineits truth or falsity.

(a) Here, D is the set of non-negative integers, A7(x, y) means x =y, 4
denotes 0, a, denotes 1, fi(x,Yy) means X + y, and f#(x,y) means X»-
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0 CNENANCx, [y, YDV Af(x Fi Sy, v), a2))
(i) DONATSE(x, ) a) D A(x, apV Ay, ar)
(i) (BnALfi(y, ) ay).

(b) Here, D is the st of all integers, 43(x,y) means x =y, and fi(x, )
means x +y.

D) (x4 Iz(flz(xl’ X3), f,z():z, x1))
() G x)ATTx fEx X3)), SHSE(x1 X2), X3))
(i)  (x )X Exa)AT(fEH(x ) x3), X))

(c) The same wfsas in Part (b), but the domain is the st of al postive
integers, A3(x, y) means x =y, and f3(x, y) is x’.

(d) The domain is the set of al rational numbers, A%(x, y) means x =y,
A¥(x,y) means x <Y, fi(x,y) isxy, fi(x)isx + 1, and a, is 0.

() (ExXANfi(x, x), f(fi(@)))
(i) (N NAXx, y) D (Ez2XA¥X(x, 2) AA¥z, )
(i) ()~ A¥(x, @) D (E0)AF(SH(x, ), fl (@)

(e) The domain is the set of non-negative integers, 4%, v) means u < v,
and A3(u, u,w)meansu t u = w.

(i) )NENANx, ¥, 2) D ANy, x, 2))
(i) (N yNAi(x, x, ) D Ai(x,y))
(i) () PHAHx,¥) D 4i(x, x, »))
(iv) (Ex)(»)Ai(x 7, )
V) (EyXx)A}(x, )
(vi) (N P)AN(x, y) = (E2)Ai(x, 2, ).

A wf @ is said to be logically valid if and only if & is true for every
interpretation. .

@ issaid to be satisfiable if and only if thereis an interpretation for which @
is satisfied by at least one sequencein Z.

It isobviousthat @ islogicdly vaid if and only if ~ @ isnot satisfiable; and
@ issatisfiableif and only if ~ @ isnot logicaly valid. |f @ isa dosed Wi, thel
we know that @ is either true or falsefor any given interpretation, i., &
satisfied by all sequences or by none; therefore, if @ is closed, then @ is
satisfiableif and only if @ is true for some interpretation.

We say that @ is contradictory if and only if ~ @ is logicaly valid, of
equivaently, if and only if @ isfdse for every interpretation.

@ is said to logically imply @ if and only if, in every interpretation, 3%
sequence satisfying @ ‘dso satisfies 3. More generdly, ® is a logical €?*
sequence d aset T o wfsif and only if, in every interpretation, every seque™®
which satisfiesevery wf in T also satisfies93. & and B are logically equivalent if
and only if they logicdly imply each other.
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The following assertions are easy consequences d these definitions.

@ @ logicaly implies 8 if and only if @ 3D islogicaly valid.

)
©
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@ and B are logicdly equivalent if and only if @ = 4 islogicdly vdid.
If @ logicaly implies 9B, and @ is truein a given interpretation, so is % .

(@ If B isalogica consequence of aset T' of wfs, and dl wisin T are truein

a given interpretation, so is B,

Any sentence o a formal or natural language which is an instance o

logically valid wf is caled logically true, and an instance d a contradictory wf is

said to be logically false.
Examples.

-1 Bvey instance of a tautology is logicdly vdid. (Vi)

a

2. If @ does not contain x free, then (XX(&@ 3 B) > (& D (x)D) islogicadly

valid. (XI)
‘3. Iftisfreefor x in @, then (x)@(x) 3 €(¢) is logicdly vdid. (X)

4. Thewf (x)(Ex))A(x,, x;) D (Ex,)(x,)A¥(x,, x,) is not logicaly valid. As
& counterexample, let the domain D be the set d integers, and let 43(y, z) be

¥ < z. Then (x,)(Ex,)A3(x,, x;) is true, but (Ex,)(x)4¥(x,, x,) isfdse.

@ islogicdly vdid if and only i (). ..(».)@ is logicdly vaid. (VI)

218 Show that the followingwfsare not logically valid.
(@) [(x)A1(x;) D (x)A3(x)] D [(x)(A(xy) D A3(x)]
ONCHCHENVAEN Y (ENHEMMVACHZEIEM)
Show that the following wfsare logically valid.
(@) @(r) 3 (Ex)@(x)iftis freefor x, in @(x;)
(®) (x)@ > (Ex)@
’ () (x;)({,)@ = (y)(x)@
@) (x)€ =~ (Ex,)~@
© (x)&@ > 8) D ((x)@ D (x)B)
® ()8 A(x)B)=(xXQ@ A8 )
® ((x)@) \/ (x)B > ()@ \/ 8 )
Ql) (Ex)(Ex))@ = (Ex;)(Ex)@
@) (Exl)(xj)& D ({.)(EI,-)@
is a closed wi, show that @ logically implies ® ifand only if 8 istrue

Y Wterpretation jnwhich @ js true. (This is not alwaysthe when
. i x| Thi (ase @ has
° variables. For exanple, let @ be 4{(x;) and % bey(xl)A.(x;}; 8 is true

; ﬁﬂ)& is (by VI); producean interpretation showing that @ does not logically
L. Show that the followingwfsare not logically valid.
- @ (Ex)(y)ai(x,y) A~ 430, x) O [4}(x, x) = A}y, %/)] )
) (NN AH(x, y) AAN(y, 2) D Al(x, 2)) A(x) = A¥(x, X)
D (Ex)(y) ~ Af(x, y)

. 219,
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©P (DNNAT(x, x) A (A1(x, 2) D A}(x, y) VV AXy, 2)))
D (EyX(2)41(», 2)

(@) [(Ex)A{(x) = (Ex)43(x)] D (xN(A{(x) = A}(x))

(&) (Ex)Ai(x) D A3(x)) D (Ex)A{(x) D (Ex)A3(x))

(O (ExXYINED(ANy, 2) D Af(x, 2)) D (Ai(x, x) D 4i(», X))

(® (NENAY(x,») D (ENAT(»,»)

() (ExXEy)Ai(x,y) D (E2)A{(z, 2)

O [(DNAT(x, ») D ATy, X)) A CXPNNAT(x, ) A A}y, 2) O

Af(x, 2))] D ()4i(x, x)

222 Prove: If thefreevariablesof @ arey,,...,y,, then & issatisfiable if and
only if (Ey,) ... (Ey,)Q issatisfiable.

223 Introducing appropriate abbreviations, write the sentences of the following
arguments as wfs, and determine whether the conclusion is logicaly implied by the
conjunction of the premisses.

(8 Everyone who is sane can understand mathematics. None of Hegel’s
sons can understand mathematics. No madmen are fit to vote. Hence
none of Hegel’s sons isfit to vote.

(b) For every set x, there is a set y such that the cardinality of y is greater
than the cardinality of x. If x isincluded iny, the cardinality of x isnot
greater than the cardinality of y. Every setisincluded in V. Hence, V is
not a set.

(©) If every ancestor of an ancestor of an individua isalso an ancestor of
the same individual, and no individua is his own ancestor, then there
must be a person who has no ancestor.

(d) Any barber in Jonesville shaves exactly those men who do not shave
themselves. Hence there is no barber in Jonesville.

(e) Kilroy was here. Therefore, someone was here.

(f) Some geniuses are celibate. Some students are not celibate. Therefore,
some students are not geniuses.

224. Determine whether the following sets of wfs or sentences are consistent,
i.e., whether their conjunction is satisfiable.

@ (ExX»)A3(x, )

(HyNEz)(AY(x, 2) A Ai(z, »))

(b) (XNEV)AF(», x)

(N NAT(x, ) D= A}(», X))
()YNNAT(x, ) A A1y, 2) D A(x, 2)

() All unicorns are animals
No unicorns are animals

225, Exhibit a logicaly valid wf which is not an instance of a tautology.
However, show that any logically valid open wf (i.e., awf without quantifiers) must
be an instance of a tautology.

3. Firg-Order Theories

In the case of the propositional calculus, the method of truth tables provides
an effectivetest as to whether any given statement form s a tautology. However,
there does not seem to be any effective process to determine whether a given wf
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% is logically valid, since, in general, one has to check the truth of a wf for
" interpretations with arbitrarily large finite or infinite domains. in fact, we shall

see later that, according to a plausible definition of " effective”, it may actually
pe proved that there is no effective way to test for logical validity. The axiomatic
method, which was a luxury in the study of the propositional calculus, thus
appears 10 be a necessity in the study of wfs involving quantifiers,? and we
therefore turn now to the consideration of first-order theoriesi.

The symbols of a first-order theory K are essentially those introduced earlier
in this chapter: the propositional connectives ~, O ; the punctuation marks
(, ), » (the comma is not strictly necessary but is convenient for ease in reading
formulas); denumerably many individual variables x,,x, ... ; a finite or
denumerable non-empty set of predicate letters A/'(n,a > 1); a finite or de-
numerable, possibly empty, set of function letters f"(n,a > 1); and a finite or
denumerable, possibly empty, set of individual constants a,(i > 1). Thus, in a
theory K, some or al of the function letters and individual constants may be
absent, and some (but not al) of the predicate letters may be absent. Different
theories may differ in which of these symbols they possess.

The definitions given in Section 1 for term, wf, and for the propositional
connectives A, \V, =, are adopted for any first-order theory. Of course, for a
particular theory K, only those symbols occurring in K are used in the forma-
tion of terms and wfs.

The axioms of K are divided into two classes: the logical axioms and the
proper (or non-logical) axioms.

Logical Axioms: If @, B, C are wfs of K, then the following are logical
axiomsdf K.

D @B o>E)
2 @oBoC)YD>W(ED>B)D(@ > )
B (~Bo2~@)D(~PB >R >DB)
@ (x)&(x) > Q) if @(x)isawf of K andtisatermof K freefor x; in
@(x;). Note here that t may be identical with x;, giving the axioms
L (X)) D Q(x).

? Thereis il another reason for a formal axiomatic approach. Concepts and propositionswhich
involve the notion of interpretation, and related ideas such as truth, model, etc., are often called
semantical to distinguish them from syntactical concepts, which refer to simple relations among
symbolsand expressions of precise formal languages. Since semantical notions are set-theoretic in
character, and since set theory, because of the paradoxes, is considered a rather shaky foundation
for the study of mathematical logic, many logicians consider a syntactical approach, consistingin a
study of formal axiomatic theories using only rather weak number-theoretic methods, to be much
safer. For further discussions, see the pioneeringstudy on semanticsby Tarski [1936], Kleene [1952],
Church [1956], and Hilbert-Ber nays{1934].

$ Theadjective" first-order" is used to distinguish the theorieswe shall study from thosein which

e are predicates having other predicates or functions as arguments or in which predicate
Quantifiers or function quantifiers are permitted, or both. Firg-order theories suffice for the
expression of known mathematical theories, and, in any case, most higher-order theories can be
auitably " trandated” into firs-order theories. Examples of higher-order theories may be found in
Church [1940], Godel [1931], Tarski [1933], Scholz-Hasenjaeger [1961: §§200-219].
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B) (XX >B)>(@D>(x)B) if & isaw o K containing no free
occurrencesd x;.

Proper Axioms. These cannot be specified, since they vary from theory totheory.

A first-order theory in which there are no proper axiomsis caled a
first-order predicate calculus.

Therulesd inferenced any first-order theory are

(i) Modus ponens: B followsfrom @ and € o B
(i) Generalization: (x,)&@ followsfrom &.

We shall use MP and Gen, respectively, to indicate applicationsd these rules.

By a moddl o a first-order theory K we mean an interpretation in which all
theaxiomsof K are true.} By (III) and (VI), p. 53, if the rulesdf modus ponens
and generalization are applied to wfs true in a given interpretation, then the
results of these applications are also true. Hence every theorem of K is truein
any model o K.

As we shall see, the logica axioms are so designed that the logical con-
sequences (in the semantic sense, cf. p. 56) o theclosure o theaxiomsd K are
precisaly the theoremsd K. In particular, if K isa first-order predicatecalculus,
it turns out that the theorems o K are precisdy those wfs & K which are
logicaly valid.

Some explanation is needed for the restrictionsin Axiom Schema (4) and (5).
In the case o (4), if ¢ were not freefor X, in &, the following unpleasant result
would arise. Let @(x,) be ~ (x,)4%(x,, x,) and let ¢ be x,. Notice that 7 is not
freefor x; in €(x,). Consider the instance o Axiom (4):

CF) ()~ (x47(x;, X)) D~ (x)A7(xz, X))

Now, take as interpretation any domain with at least two members and let 47
stand for the identity relation. Then the antecedent d (k) is true and the
consequent false.

In the case of (5), relaxationd the restriction that x; not be freein & would
lead to the following misfortune. Let @ and % both be 4](x,). Thus, x, is free
in @. Consider the instance of (5):

CEOF)  (xy)(A1(x)) D 45(x) D (41(x;) D (x)A{(x))

The antecedent o () is logicaly valid. However, if we take any interpreta
tion in which 4] holds for some but not al elements of the domain, then the
consequent will not be true.

1 In talking about an interpretation of K, we need only specify the interpretationsof the syniol s
of K. We shall use the notion of interpretation in this extended sense.
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e

Examples o first-order theories.

(i) Partia order. Let K have a single predicate letter 47 and no function
letters and individual constants. We shall write x; < x; instead of A¥(x;, x) and
x; € x; for ~ (x; <x). We have two proper axioms

(@) (xD(x; €xy) El rreflex,iv_ity;

(b) (D(x)(x3)x; < x5 A X3 < x3 D X1 < X3) Transitivity
A modd of this theory is called a partially-ordered structure.

(i) Group theory. Let K have one predicateletter A2, one function letter f2,
and one individual constant a,. (To conform with ordinary notation, we shall
writer = s instead of 4%, S),¢ T s instead of f(z,s) and 0 instead of a,.) As
proper axioms we have:

(@) (e )X3)x; + (x5 + x3) = (X1 + x3) + x3) (Associativity)
() (x)O + x; = x;) (Identity)

(©) ((Ex)(x; + x; = 0) (Inverse)

(@) (x)(x; = x) (Reflexivity d =)
©) (X)X = x; 3 Xy = x7) (Symmetry of =)

() (X)X, = x5 (%, = x3D %, = x3)) (Transitivity o =)
(8) (xD)(xDx )Xy = x3 D (x; + X = x; + X3 A x5 + X = x3 + X))
eSubstltutlvny ad =)

A modd for this theory, in which the interpretation of = is the identity relation,
is called a group. If, in addition, the wf (x,)(x)(x; T x, = x, T xp) istruein a
group, the latter is called abelian (or commutative).

Thetheoriesd partial order and o groups are both axiomatic. In general, any
theory with a finite number of proper axioms is axiomatic, since it is obvious
that one can effectively decide whether any given wf is a logical axiom (cf. pp.
59-60).

4. Propertiesd Firg-Order Theories

All the results in this section refer to an arbitrary first-order theory K, unless
otherwise stated. Notice that any first-order theory is a formal theory (cf. pp.
29-36). In addition, since we shall dea in this book only with first-order
theories, from now on we shall refer to first-order theories smply as theories.

ProrosiTioN 21. Every wf & of K which is an ingtance of a tautology is a
theorem d K, and it may beproved usng only Axioms (1)-(3) and MP.

PROOF. @& arisesfrom a tautology W by substitution. By Proposition 1.13,
thereis a proof of W in L. In such a proof, make the same substitutions of wfs
of K for statement letters as were used in obtaining € from W, and, for al
statement letters in the proof which do not occur in W, substitute an arbitrary

wf of K. Then the resulting sequence of wfsisa proof of &, and this proof uses
only Axiom Schemas (1)—(3) and MP.
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Application o Proposition 2.1 in a proof will be indicated by writing ** Tautol-
ProrPosiTION 22, Ary first-order predicate calculus K is consistent.

proorF. For each wf @ o K, let h(&) be the expression obtained by erasing
dl the quantifiers and terms in @ (together W|th the associated commas and
parentheses) Examples h((x)(A2(x, xz) O Al(xy) is A} D Af; and h(~
(x)A3(x4 @, X)) B A3(x,)) IS~ A3 D A3. Then h(®) is essentlally a statement
form, with the symbols A" playing the role of statement letters. Clearly
h(~ &)=~ (&) and h(& D 9)="h&) > h(®). Now, for every axiom @
given by Schemas (1)-(5), &) is a tautology. This is clear for (1)-(3). An
instance o (4), (x)&(x,) D &(2), is transformed by h into a tautology o the
form ¥ 3% ; and an instance d (5), (x}& D> B) D (@ O (x)B) is trans-
formed into a tautology o theform (9 2 &) 3(D 3 &). In addition, if h(®)
and h(& o %) are tautologies, then, by Proposition 1.1, h(%) is also a tautol-
ogy; and, if h(®) isa tautology, so is h((x;)&), which is the same as h(&). Hence,
h(®) is a tautology whenever @ is a theorem o K. If therewereawf ® o K
such that F¢ B and k¢ ~ 9, then both h(®) and ~ h(%) would be tautologies,
which is impossible. Thus, K is consistent. (The transformation h amounts to
interpreting K in adomain with a single element. All the theoremsd K are true
in such an interpretation, but no wf and its negation can be true in any
interpretation.)

The Deduction Theorem (Proposition 1.8) for the propositional calculus
cannot be carried over without modification to arbitrary theories K. For
example, for any wf &, & Fe(x))&, but it is not always the case that +¢&@ D
(x))&. Consider a domain containing at least two elementsc and d. Let K bea
predicate calculus, and let @ be 4](x,). Interpret Af as a property which holds
only for c. Then 4)(x,) is satisfied by any sequence s= (b, b,,...) where
b, =c, but (x)4](x,) is satisfied by no sequence at al. Hence, 4}(x)) D
(x4 ](x,)) isnot true in thisinterpretation, and so it is not logicaly valid. But it
is easy to see (Proposition 27) that every theorem o a predicate calculus is
logicdly valid.

However, a modified, but still useful, form of the Deduction Theorem may be
derived.

Let @ beawf inaset T o wfs assumegiven adeduction ®,, ..., 9, from
T, together with justification for each step of the deduction. We shall say that %,

depends upon @ in this proof if and only if:

(i) % is@ and thejustificationfor %, is that it belongsto T'; or

(i) B, isjustified as a direct consequenceby MP or Gen of some preceding
wfs of the sequence, where at least one d these preceding wfs depends upon &.
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Example.
@, (x)& > € Hx)C
(%) @ Hyp
(®) ()@ (%)), Gen
(%) (x)& > € Hyp
By € (B,), (B5), MP
(%) (x)€ (B,), Gen

Here, (9,) depends upon &; (B,) depends upon &@; (%B,) depends upon
(x)@ D C; (By) depends upon @ and (xp&@ 3 €, and (9,) depends upon &
and (x))& > C.

ProrosITION 23. if B does not depend upon @ in a deduction T, @ + B, then
T+,

PROOF. LetB,,...,9, =B beadeductiond % fromT and &, in which
% does not depend upon @. As inductive hypothesis, let us assume that the
proposition is true for al deductions o length less than n. If %% belongsto T or
isan axiom, then TF 9. If B isa direct consequenced one or two preceding
wfs, then, since 8 does not depend upon &, neither do these preceding wfs. By
the inductive hypothesis, these preceding wfs are deducible from T alone.
Consequently, sois .

ProrosiTION 2.4 (DEDUCTION THEOREM). Assume that T, @ + %, where, in
the deduction, no application d Gen to a wf which depends upon @ has as its
quantified varidble afree variabled @. ThenTHR o B .

PROOF. LetB,,...,9, = B beadeductiond B fromT, @ satisfying the
assumption of our proposition. Let us show by induction that TH® > %, for
eachi < n. If %, isan axiomor belongsto T, thenT+ @ 3 B,, since B, O (&
D B,) is an axiom. If B, is @, then T+Q 3 P,, since, by Proposition 2.1,
FE& 2 @. If there exist |, k less than i such that By is B; O B;, then, by
inductive hypothesis, TH@ 3 %; and T+ & 3(B; 3 B,). Hence Tt@ 3%,
by Axiom (2) and MP. FlnaIIy suppose there is some j <i such that %, is
(x)%;. By hypothesis, T+ @ 3 ®; and either %; does not depend upon & or x;
is not afree varigbleof €. If %; does not depend upon @, then, by Proposition
23, T+ %, and, consequently, by Gen, TH(x)%; Thus, T+%,. Now, by
AX|om(I) FB, 3(@ 0 B).So,THR 3D, by MP. If x, is notafreevarlable
of @, then, by Axiom (5), F (x,X@ 3%)3(@ 3(x)%,). SinceTHE O B,
we have, by Gen, TH(x)@ > 9)), and s0, by MP, TH@ D (x)%9,, 1e
't @ 5 ®,. Thiscompletes thelnductlon and our propositionisjust the special
caei = n.
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The hypothesis o Proposition 24 is rather cumbersome, and the following
weaker corollaries often prove to be more useful.

COROLLARY 25. If a deduction T, @ t % involves no application of Gen of
which the quantified variable is freein @, thenT+H& D B .

If @ isaclosedwf,andT,&FB,thenT+H& o B

In Propositions 2.3-2.6, the following additional conclusion can be drawn
from the proof. The new proof o T+H& 5 % (in the case o 23, o 't B)
involvesan application of Gen to a wf depending uponawf C of T only if there
isan application of Gen in the given proof o T, @ + B which involvesthe same
quantified variable and is applied to a wf which depends upon €. (In the proof
d Proposition 2.4, one should observe that ®; depends upon a premiss € of T in
the original proof if and only if @ > %; depends upon € in the new proof.)

This supplementary conclusion is useful when we wish to apply the Deduction
Theorem severd timesin a row to a given deduction, e.g., to obtain T'+ ¢ o
(@ > B)fromT, D, @+ B; from now on, it is to be considered as part of the
statements of Propositions 2.3-2.6.

COROLLARY 26.

Example. Fx)(x)@ 3 (x)(x)@
PROOF.

1. (x)(x,)@ Hyp

2. (x)x)& 3(x)@ Axiom (4)

3. ()@ 1,2, MP

4 (x)@ 3@ Axiom (4)

5 & 3,4, MP

6. (x)& 5, Gen

7. (x)(x)@ 6, Gen

Thus, by 1-7, we have (x)(x,)@ t (x,)(x;)&, where, in the deduction, no
application o Gen has as a quantified variable a free variable o (x,)(x)&.
Hence, by Corollary 2.5, F (xX(x)& D (x)(x)&.

EXERCISES

226. Show that

@ F(x)(@ D B)D ((x)& D (x)B).

®) F(x}& D 4) > (Ex)& D (Ex)B).

(©) F(xNE A D) = (0@ A(0)B.

@Frp)...(r)& D&

€ F~(x)% o (Ex)~B.

2.27°. Let K be a first-order theory, and let K# be an axiomatic theory having

the following axioms: (1) (y,) . . . (¥o)&@ where & isany axiomd K andyy, . ..,Y,
(n > 0) are any variables; (2) (V) ... WHE D B)D[(Y,) ... (W)€ D

¢ SEC. 5 COMPLETENESS THEOREMS 65

il

oD...(y)B] where @ and 4 are any wisand y, . ..,», are any variables.
Moreover, K# has the rule of modus ponens as its only rule d inference. Show
that K# has the same theorems as K.

5. CompletenessTheorems

PropPosiITION 27.  Every theorem o a first-order predicate calculusis logically
valid.

PROOF. By property (VII) d the notion o truth (cf. page53), Axioms(1)-(3)
are logicaly valid. By properties (X) (Corollary) and (XI), Axioms (4)—(5) are
logicaly valid. By (III) and (VI), the rules of inference MP and Gen preserve
logicd validity. Hence, every theorem o a predicate calculusis logicaly valid.

EXERCISES

228. For any first-order theory K, if T+¢x@ and each wf in T is true in a given
model M o K, then & isaso truein M.

229, If awf @ without quantifiersis provablein a predicate calculus, then it is
an instance d a tautology, and, hence, by Proposition 2.1, has a proof without
quantifiers using only Axioms (1)-(3) and MP. (Hint: if @& were not a tautology,
one could construct an interpretation having the set o termsoccumng in @ as its
domain, in which @ is not true, contradicting Proposition 27.) Note that this
implies the consistency o the predicate calculus and also provides a decision
procedurefor provability o wfs without quantifiers.

Proposition 2.7 establishes only haf o the completeness result that we are
seeking. The other haf will follow from a much more general proposition
established below. First, we must prove a few preliminary lemmeas.

If x; and x; are distinct, then @(x;) and &(x;) are said to be similar if and only
if X, isfreefor x; in @(x;) and @(x;) has no free occurrencesd x;. It is assumed
here that @(x;) arises from @(x;) by substituting x; for al free occurrencesd x;.
If @(x) and @(x)) are similar, then x; is free for x; in @(x;) and &(x;) has no
freeoccurrencesd x;. Thus, similarity is a symmetricrelation. Intuitively, €(x;)
and &(x;) are similar if and only if @(x;) has free occurrencesdf x in exactly
those places where @(x;) has free occurrencesd  x;.

LEmMMA 28, If @(x,) and &(x) are similar, then F (x)&(x;) = (x)@(x)).
F(x)@(x;) D &(x;) by Axiom (4). By Gen,

F (5)((x)@(x) > @(x)
and, by Axiom (5), F (x)@(x) 3 (x)@(x). In the same way, F(x)&(x) >

(x)@(x;). Hence, by the tautology A, D (A, D (4, AA)), and Proposition 2.1,
FO)@(x) = (x)@(x)-

Exercise 230. If @(x;) and @(x;) are similar, prove:
F(Ex)@(x) = (Ex,)& ().

PROOF.
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Lemma 29. If a dosed wf ~ & of K is nat provable in X, then the theary K',
obtained from K by adding & as an axiom, is consstent.

PROOF. Assume K' inconsistent. Then, for somew %, b B and Fy. ~ B .
Now, B 2 (~ 8 3 ~ @), by Propostion 21. So, by, ~ @. Hence, @ g ~
&. Since & isclosed, we have & 3~ @, by Corollary 26 of the Deduction
Theorem. However, by Proposition 2.1, F((@ 3~ &) 3~ &. Hence, by ~ @,
contradicting our hypothesis. (Smilarly,f € is not provable in K, then the new
theory obtained by adding ~ & as an axiom to K is consistent.)

LemmA 210. The set of expressons of a theory K is denumerable. (Hence the
sameis true of the set of terms, wfs, dosed wfs, etc.)

ProoF. First assign a distinct odd number g(u) to each symbol « as follows
g()=3,80)=528)=78~)=09, g(_l_a) = 11;g(x) =5 + 8k; g(a) =7 +
8k; g(fr) =9t 8(2"3%); g47) = 11 T 8(2°3%. Then, to an expresson
wu, . . . u, associate the number 28@)32w) | p&®) \where p; is the i prime
number. We can enumerate all expressions in the order of their associated
numbers.

Moreover, if we can effectively tel whether any given symbal is a symbol o
K, then this enumeration can be effectively carried out, and, in addition, we can
effectively decide whether any given number is the number of an expression o
K. Thesame holds true for terms, wfs, closed wfs, etc. If K isalsoaxiomatic, i.e.,
if we can effectively decide whether any given wf isan axiomd K, then we can
effectively enumerate the theoremsd K as follows. Starting with a list consist-
ing of thefirst axiom of K in the given enumeration (according to the associated
numbers) o the axioms, add all the direct consequences d this axiom by MP
and by Gen used only with x, as quantified variable. Add the second axiom to
this new lig (if it is not aready there), and write down al new direct con-
sequences of the wfs in this augmented ligt, this time with Gen used only with
xp, X, If at the k™ step, we add the k'™ axiom and restrict Gen to the variables
Xy, ..., X, We eventually obtain, in this manner, al theoremsof K. However, in
contradistinction to the case d expressions, wfs, terms, etc., it turns out that
there are theories K for which we cannot tdll in advance whether any given wf o
K will eventualy appear in thelist of theorems.

We sy that a theory K is complete if and only if, for any closed wf @ d K,
ether F @ or by ~ @.

A theory K' having the same symbols as a theory K is said to be an extension
d K if every theorem o K isa theorem o K'. (Obvioudy, it sufficesto prove
that every proper axiom o K is a theorem of K')

Lemma 211 (LINDENBAUM'S LEMMA). If K is a condstent theory, then there is
a condstent, complete extenson of K.
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PROOF. Let B, B,,..., be an enumeration o all closed wfs d K, by
Lemma 210. Definea sequence J,, J,, J,, . .. o theoriesin the following way.

J, isK. Assume J, defined, with n > 0. If it is not the case that Fy, ~ B, 41 then
let J,,., be obtained from J, by adding %, ., as an additional axiom. On the
other hand, if by ~ %, ., letJ, ., = J,. Let J be the theory obtained by taking
as axiomsadl the axiomsd dl the J;’s. Clearly, I, isan extensond J,, and J
is an extenson o dl the J;’s, including J, = K. To show that J is consistent, it
sufficesto prove that al the J;’s are consistent, because a proof o a contradic-
tionin J, involving asit does only a finite number of axioms, isalso a proof o a
contradiction in some J,,. We prove the consistency d the J;’s by induction. By
hypothesis, J, = K is consstent. Assume that J; is consistent. If J;,, = J,, then
J,.1isconsistent. If J; # J;,; and, therefore, by the definitiondf Ji,;, ~ B,,, is
not provablein J;, then, by Lemma 29, J;,, is also consistent. Hence, J,, , is
consgent if J; is, and, therefore, J is consistent. To prove the completenessof J,
let @ be any closed W o K. Then @ = ®,,, for some j > 0. Now, either
Fy,~ B41 OF F,”ﬁl?rjﬂ, since, if not by ~ B;,,, then B;,, is added as an
axiom in J;, . Therefore, dither +; ~ ®,,, or F;%®,,,. Thus, J is a complete
consistent extension o K.

Note that even if one can effectively determine whether any wf isan axiom o
K, it may not be possible to do the same with (or even to effectively enumerate)
the axioms o J, i.e., J may not be axiomatic even if K is This is due to the
possibility of not being able to determine, at each step, whether or not ~ B, |
is provable in J.

EXERCISES

23L Sow tha a theary K is completeif and anly if, for any dassd wfs @ and
B dK,if Fk@ V%, then (@ or F¢%.

232.° Povetha every condstent, decidable theory hes a congstant, decidable,
complete extension.

ProposiITION 2.12.§ Every consstent theory K has a denumerable modd (i.e.,
a modd in which the domain is denumerable).

PROOF. Add to the symbols of K a denumerable set {b,, b,, ...} d new
individual constants. Call this new theory K,. Its axioms are those d K plus
those logica axioms which involve the new constants. K, is consistent. For, if
not, F, @ A ~ @ for some wf 62 Replace each b, appearing in this proof by a
variable which does not appear in the proof. This transformsaxiomsinto axioms

+ The proof given here is due to Henkin [1949], as simplified by Hasenjaeger {1953]. The result
was originally proved by Godel [1930). Other proofs have been published by Rasiowa-Sikorski
[1951-52) and Beth [1951], using (Boolean) algebraic and topological methods, respectively. Still
other proofs may be found in Hintikka [1955a, b] and in Beth [1959).
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and preserves the correctnessd  the gpplications of the rules o inference. The
final wf in the proof is still a contradiction, but now the proof does not involve
any o the 4;’s and thereforeis a proof in K. This contradicts the consistency of
K. Therefore, K, is consistent.

By Lemma 2.10, let Fi(x;), Fy(x;), . .., Fi(x,), . .. beanenumerationd all
wfs of K, having at most one freevarrable (Let x; be the free variabled F, if
the latter has a free variable; otherwise, let x, “be x, .) Choose a sequence
b, b, ... d someof the new individual constantssuch that b, is not contained
in Fl(x) Fy(x;), - Fi(x,), and such that 4, is different from each of

b,b,..., b;;-.- Consider the wf:
(Sk) ™~ (xi*)Fk(xik) D~ Fk(bji)

Let K, be the theory obtained by adding (S)), ..., (S,) to the axiomsd K,,
and let K, bethe theory obtained by adding al the (S;)’s as axioms to K,. Any
proof in K, contains only a finite number of the (S;)’s, and will aso be a proof
in some K,,. Hence, if adl the K;’s are consistent, 0 isK,. To demonstrate that
all the K;’s are consistent, proceed by induction. We know that K, is consistent.
Assumethat K, _, isconsistent but that K, isinconsistent (n > 1). Then, aswe
know, any wf is provable in K, (by the tautology A, 3(--A, 34,) and
Proposition 2.1). In particular, k¢~ (S,). Hence, (S,) Fx _ ~(S,). Since(S,) is
closed, we have, by Corollary 26, k¢ (S,) 3~ (S,). But, by the tautology
(A, >74)>~A, and Proposmon21 ‘we then havety = (S,), ie,

I.Kn—r ~ (ﬁ' (xi,,)Fn(xf,) o~ Fﬂ(tﬁ’,))

Now, by the tautologies ~(4; 3A) D4, A~A); (A,AA)D A; (4 A
A) A, ~~A4,3A,, weobtainFy ~(x;)F,(x;) and Fx F,(b;). From
the latter and from the fact that b, Gos not" occur in (S), ' S’,, D, we
conclude g F,(x,), where x, is a vériable not occurring in the proof of
in K. _, (Slmply replace in the proof al occurrences o 4, by x,.) By éer'l)

e I(x) ,(x,), and, then by Lemma 28, k. (x,)F,(x,). (We use the fact that
F(x) and F(x) are smilar.) But kg ~(x )F(x) This contradicts the
assumed consrstency of K, _,. Hence K, ‘must also be consistent. In thisway, all
the K;’s are consistent,and so also isK, Note that K, isa consistent extension
of K,. Now, by Lemma 211, let J be a consistent, complete extension o K.

By a closed term, we mean a term which contains no variables. The denumer-
able interpretation M of K, shall have as its domain the set d closed terms o
K. (By Lemma 210, thisis a denumerableset.) If cis an individua constant of
K,, its interpretation shall be c itsdf. If £ is a function letter d K, then the
associated operation f™* in M shal have, for argumentst,, ..., ¢, (which are
closed terms of K), thevaluef"(tl, .+« 1), Which is a closed term of K, If 47
is a predicate letter of K, then the assocrated relation (4;")* in M shall hold, for
argumentst,, ..., 4, if and only if Fy4(¢), ..., ). TO ‘show that M is a model
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* for Ky, it sufficesto prove that a closed W @ o K, is true for M if and only if

k&, because al theorems of K, are theoremsd J. We prove this, by induction
on the number o connectives and quantifiersin @. Firdt, let @ be a closed
atomic wf. Then, by definition, & istruefor M if and only if +;&. Now, assume
that, for the induction step, if 8 is any closed wf with fewer connectives and
quantifiers than @, % istrue for M if and only if F,%.

Cael. @is~ 3.If @ istruefor M, then B is fdse for M, and so, by
inductive hypothesis, not-+;% . Since J is completeand % isclosed, +; ~ B, i.e.,
F,@. On the other hand, if & is not true for M, then % is true for M. Hence,
r % . Since Jis consistent, not-k; ~ B, i.e., not-1,&.

Cae2 @ is(® o C).Snced |scI0%d oae® and C. If @ isfasefor
M, then @ is true and € is false. Hence, by inductive hypothesis, F,% and
not-k,@. By the completeness o J, +; ~ €. Therefore, by the tautology A D
(~A; B~ (A, B4)), FH~(B 3C), ie, by~ @, and 0, by the consistency
of J, not-1,&. On the other hand, f not-1,&, then, by the completenessd J,
by~ @. By the tautologies ~(4, D 4,) 3A, and ~ (4, 34,) D~ 4, we
obtain +,% and +; ~ €. Hence, % is true for M. By the consistency o J,
not-F;C, and, therefore, € isfasefor M. Thus, & isfalsefor M.

Cae 3 @ is (x)@?) Let ® be F(x,)- We may assume that x, is x,.
(Otherwise, B is closed and does not contalnx free. But, in thiscase, @ istrye
if andonly if 9 istrue (by (VI) d page 53); moreover, | ,@ if and only if |7
Therefore, the result for @ follows fromthat for 9 ) Assume that @ is true for
M, but notH,&. By the completeness d J, by~ @, ie., ky ~ (x,)F(x;)- But,
F{(Sk)- Hence, |, ~ Fi(b,). Since @ = (x,)Fi(x,) is true for M, it follows (by
(X), Corollary, page 54) that F(b,) is true in M. So, by inductive hypothesis,
FFi(b;,), contradicting the consrstency of J. On the other hand, assume € fase
for M, but F,&. Since (x; ) Fi(x;) isfalsefor M, some sequence does not setlsfy
(x;, ) Fi(x, ). Hence, some sequence s does not satisfy Fi(x, ). Let 4, be the i
component d s Notice that s*(¢) = t for al closed terms t. Therefore s does
not satisfy F(f), by (X), Corollary (i) (p. 54). Hence, F.(t) is false for M. But

ki) Fi(x;,). Hence, by Axiom (4), FyF(#). By inductive hypothesis, Fi(?) is,
therefore, true for M, contradicting the falsity d F,(¢) for M.

Thus, M is a denumerable modd for J, and hence dso for Ky Since dl
theorems of K are theorems of K, M is aso a denumerable model for K.
(Notice that M is not necessarily effectively constructible. The interpretaton of
predicate |etters depends upon the concept of provability in J, and this, as was
noted at the end & Lemma 2.11, may not be effectively decidable.)

CorOLLARY 213. Ary logicdly valid W @ d a theory K is a theorem d K.

PROOF. We need only consider closed wfs@, sinceaw 9 islogicaly valid
if and only if itsclosureis logicaly valid, and 98 is provablein K if and only if
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its closure is provable in K. So, let @ be alogicaly valid closed wf of K. Now,
assume that @ is not a theorem of K. Then, if we add ~ & as an axiom to K,
the new theory K' is consistent (by Lemma 2.9). Hence, by Proposition 2.12, K'
hasamodel M. Since ~ € isan axiomd K', ~ @ istruein M; and, since & is
logicaly valid, @ istruein M. Hence, @ is both true and false in M, which is
impossible ((11), page 53). Thus, & must be a theorem o K.

COROLLARY 2.14 (GODEL’S COMPLETENESS THEOREM [1930]).
calculus, the theorems are precisely the logically valid wfs.

PROOF. By Proposition 2.7 and Corollary 2.13. (Goédel’s original proof runs
aong quite different lines. For a constructive proof o a related result, cf.
Herbrand [1930], [1970], and, for still other proofs, cf. Dreben [1952], Hintikka
[1955a, b], Beth [1951], and Rasiowa:Sikorski [1950, 1951].)

COROLLARY 2.15.

(&) @ istruein every denumerable model of K if and only if F¢@. Hence, & is
true in every model of K if and only if Fx@.

(b) If, in every model of K, every sequence, satisfying all wfsin a set T’ of wfs
also satisfies B, then T H B .

() Ifawf B of K isa logical consequence (cf.page 56) of a set I’ of wfs of K,
then T H¢B.

(d) If the wf B of K is a logical consequence of a W @ of K, then @ H¢B.

In any predicate

PROOF.

(@) We may assume @ closed. If not-H¢@, then the theory K' = K + {~ @}
is consistent.t Hence, K' has a denumerable model M. However, ~ &,
being an axiom of K', istruein M; and sinceM isalso a model for K, &
istruein M. Therefore, € istrueand fasein M, which is a contradiction.

(b) Consider the theory K + T. The wf % is true in every model o this
theory. Hence, by (a), Fx+r®. So, THB.

(c) isa consequence d (b), and (d) is a special case o (C).

Exercise 2.33. Show that +,@ if and only if there is a wf € which is the

closure of the conjunction o some axioms of K such that € D & is logically
valid.

Corollaries 2.13-2.15 show that the syntactical approach to quantification
theory by means o first-order theories is equivalent to the semantical approach
through the notions o interpretations, models, logical validity, etc. For the
propositional calculus, Corollary 1.14 demonstrated the analogous equivalence

t 1f K istheory and A isa st of wfsof K, then K + A denotes the theory obtained from K by
adding the wfs of A asadditional axioms.
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between the semantical notions (tautology, etc.) and the syntactical notions
(theorem of L, etc.). Notice also that, in the propositional calculus, completeness
of the system L (cf. Proposition 1.13) led to a solution of the decision problem.
However, for first-order theories, we cannot obtain a decision procedure for
logical validity, or, equivaently, for provability in a first-order predicate calcu-
lus. We shall prove thisand related resultslater on (Chapter 5).

There is another important classical result which falls out o Proposition 2.12.

COROLLARY 2.16 (SKOLEM-LOWENHEIM THEOREM [1919, 1915]). Any theory
K which has a model has a denumerable model.

ProorF. If K hasa model, then K is consistent (by (11), page 53). Hence, by
Proposition 212, K has a denumerable model.

We have another stronger consequence of Proposition 2.12.

ACOROLLARY 2.17. For any cardinal number a > &, any consistent theory K
has a model of cardinality a.

PrROOF. We know, by Proposition 212, that K has a denumerable model.
Therefore, for our result, it suffices to prove the following lemma.

Lemma. Ifa and B are two cardinal numbers such that a < S and if K hasa
model of cardinality a, then K has a mode of cardinality B.

PROOF. Let M bea modd o K withdomain D of cardinality a. Let D' bea
st of cardinality £ containing D. Extend the model M to an intepretation M'
having D' as domain in the following way. Let ¢ be a fixed element of D. We
stipulate that the elements of D' — D behave like c. For example, if B} is the
interpretation in M of the predicate letter 4", and (B’ is the new interpretation
in MY, then, forany d,,...,d,inD’, (BrYy holdsfor (d,,. .., d,) if and only if
B" holdsfor (u,, . . . , u,) wherey, = d,if 4 € Dandy, = cif 4, € D' — D. The
interpretation o the function letters is extended in an analogous way, and the
sameinterpretations asin M are taken for the individual constants. It isan easy
exergise to show, by induction on the number of connectivesand quantifiersin a
wi, that any wf @ is true in M"' if and only if it is true in M. Hence, M' is a
modd of K o cardinality 8.

EXERCISES

234, (Compactness) If all finite subsetsof the set of axiomsof a theory K have
models, prove that K hasa model.

2354 |If, for some cardinal & > ¥, a W & is true for every interpretation of
cardinality a, prove that @ is logically valid.

2362 If awf @ istruefor all interpretationsof cardinality a, provethat @ is
true for all interpretationsof cardinality < a.

237. (@) For any wf @, prove that thereareonly a finite number of interpreta-
tionsof @ on a given domain of finite cardinality K.
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(b) For any wf @, prove that there is an effective way of determining
whether @ is true for al interpretations with domain of some fixed finite cardinal-
ity k.

(©) Letawf @ becalled k-valid if it is true for al interpretations having k
elements. Call @ precisdly k-valid if it is k-valid but not (k + 1)-valid. Show that
(k + 1)-vaidity implies k-validity, and give an example of a wf which is precisely
k-valid. (Cf. Hilbert-Bernays | [1934, 34-51; Wajsberg [1933])

23 Show that the following wf is true for al finite domains, but is false in
some infinite domain.

(N[ 4}(x, x) A (4} (x, ) A A}(r, 2) D A¥(x, 2)) A
(A¥x. ) V 4i(y, 1)) ]} D (B)(x)A}(y. x)

239. Prove that there is no theory K whose models are exactly the interpreta-
tions with finite domains.

24) Let @ be any wf containing no quantifiers, function letters or individual
constants.

(@ Show that aclosed prenex W (X,) ... (x,}Ey)) ... (Ey,)&@ (withm >
0, n > 1) islogically valid if and only if it is true for every interpreta-
tion with a domain of n objects.

(b) Prove that a closed prenex wf (Ey,) . - . (Ey,,)@ islogicalyvalid if and
only if it is true for al interpretations with a domain of one element.

(c) Show that there is an effective procedure to determine the logical
validity of all wfsdf the forms given in Parts (@) and (b).

241 Let K, and K, be theories having the same set of symbols. Assume that
any interpretation of K, isa model of K, if and only if it is not a model of K,.
Prove that K, and K, are finitely axiomatizable, that is, there are finite sets of
sentences I' and A such that, for any sentence &, t¢ @ if and only if T+ &, and
Fg,@ if and only if At@.t

242.° A st T of sentencesis called an independent axiomatization of a theory
K if (i) al sentences in T aretheorems of K; (ii) T'+ & for every theorem @ of K;}
(iii) for every sentence @ o T, it isnot the case that T — {®) F $. Prove that
every theory K has an independent axiomatization.

6. Some Additional M etatheorems

For the sake o smoothness in working with particular theories later, it is
convenient to prove a few additional facts about theories. We assume in this
section that we are dealing with some arbitrary theory K.

In many cases, one has proved (x)& (x) and one wants &(¢), wheret isa term
freefor x in @(x). Thisis justified by the

T Here, an expression T + &, without any subscript attached to +, means that € is derivable from
T using only logical axioms(that is, within the predicate calculus).
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PARTICULARIZATION RULE A4. Iftisjreejor x in @(x),then (x)@(x)F @(t).

PROOF. From (x)&(x) and the instance (x)@(x) D @(¢) d Axiom (4), we
obtain €(#) by modus ponens.
ProrPosiTiON 218, If & and 9 are wfs and x is not free in @, the following

are theorems of K.

(@ @ > (x)@ (hence, by Axiom (4), F € = (x)@)

() (Ex)@> & (hence, by rule E4 below, - (Ex) @= @)
(© (xX@ > B)=(&@ D ()B)

(d) (XB 3 &)= ((Ex)% 3 @)

PROOF. EXxercise.

A useful derived rulewnhich isjust the contrapositived Rule A4 isobtained in

the following way.
Let t be a term which is free for x in awf @(x, t), and let &(s, t) arise from

@(x, t) by replacing al free occurrencesd x by .t

ExistenTiaAL RuLE E4. @(z, t)F (Ex)&(x, t). As special cases of Rule E4, we
haue

() B(t)F(Ex)%(x), whenever t isfreefor x in B (x).

(i) D (x)F(Ex)® (x).Thisfollows from (i) by taking t to be x.

To justify Rule E4 it sufficesto show that + &(1, t) D (Ex)&(x, t). But, by
Axiom (4), | (X)~ @(x, t) D~ &(, 1). Hence, by the tautology (A D~ B) D
(Bo~A)and MP, I @(t,t) 3~ (x)~ &(x, t),which, in abbreviated form is:
F&(L, ) D (Ex)&(x, 1)

Example. +(x)& D (Ex)@.

L. (& Hyp
2 & 1, Rule A4
3. (Ex)@ 2, Rule E4

"4, (0)@F(EX)@ 1-3
5 Fx)& o (Ex)@  1-4, Corollary 25

EXERCISES

2483 Justify the following derived rules.
(& Negation: Elimination ~~QFe
Introduction @F~~ @&
(b) Conjunction: Elimination & A®B F&
ENANBLED
Introduction &, BFE A B

+ @(x, t) may or may not contain occurrencesd t.
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(c) Digunction: Elimination

AR B W AVA W C
Introduction &+ @& \/ B
BrEVD
(d) Biconditional: Elimination @ =%3,Q8+4%® =B, ~Q+~B
E=9,%9raQ E=83,~BFr~@Q
=%

Introduction & 2 8,9 > &+E
(e) Proof by Contradiction: If aproof I, ~ @ F @ A ~ @ involvesno
application of Gen using a variable freein &, then T+ @. (Smilarly,

fromI, @ C A ~ @, oneobtainsTF~ &.)
244. Prove:

(@) F(X»)A¥(x, y) D (x)A¥(x, x)

() FI(x)AI(x)] Vv [()A43(x)] D (xXA{(x) v AX(x)
(© F(EVAI() D (M4

d)t—(Ex)& =(x)~@&

(® F(x)& > (xX& V B)

() FEYNAH(x,y) D~ AF(y, X)) D (x) ~ A}(x, x)
(®) FIEX)@ > (x)B] o (x(@ > B)

() F(xXE v B) D ((x)@] v (Ex)B)

ProPosITION 219, Forany wfs @, B : F(x}(@ = D) D ((x)& = (x)B).
PROOF.

. (X)€@ =%B) Hyp

2. (0@ Hyp

3. =% 1, Rule A4

4 & 2, Rule A4

5. B 3, 4, Tautology
E@=83)>(@ > B), MP

6. (x)%B 5, Gen

7. ()@ = D), (0@ F (0B 1-6

8. (x}@ = B)F(x)&@ D (x)B 1-7, Prop. 2.4

9. XNE=B)F(x)B O ()@ Proved in a way similar to
that for 8

10. (x}@ = B)F(0)Q = (x)D 8, 9, Conjunction Rule
1L Fx)(@ =B) D (x)@ = (x)B) 1-10, Prop 24

PROPOSITION 2.20 (EQUIVALENCE THEOREM). |f 93 js a subformula of @, and
@’ is the result of replacing zero or more occurrencesdof 9 in @ by awf €, and
every freevariable of B or € which is also a bound variable of @ occursin the
list Yis ..., ¥ then

t'[()’l) e = %)] D (@=8)
Example. (x)(41(x) = 4](x)) D [(Ex)A}(x) = (Ex)A3(x)).
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PROOF. Induction on the number n of connectives and quantifiers o &.

Note that if zero occurrences are replaced, then @’ is @, and the wf to be proved
isan instance o the tautology B 3 (A = 4). If B isidentical with &, and this
occurrence of % isreplaced by © the wf to be proved, (y,)... (NP =€) D

(B = C), is derivable (cf. page 64, Exercise 2.26(d)) from Axiom (4).Thus, we
may assume that % isa proper part d @ and that at least one occurrence of

is replaced. Also let us assume the theorem for all wfs with fewer connectives
and quantifiers than &.

Casel @ isan atomic wf. Then &3 cannot be a proper part of @.
Case2 @ is ~ 9. Let & be ~ 9'. By inductive hypothesis,
F(y,)e - (B =€) (9= 9'). Hence, by the tautology (A=B)D

(~A=~B),F(y)...0)B =C)D (@ = Q).

Cae 3. & is % 3&. Let @ be %’'D b&b’. By inductive hypothesis,
FOD - B =€)D (9=9")and F(y,)... (B =€) 3(b =6).

Using the tautology ((A=B)A(C=D))3((A3 C)= (B D> D)),weobtain
FOo...00(® =)o @ = Q).

Case 4. @ is (x)D. Let @ be (x)®’'. By inductive hypothesis,

FOO...0)B =C)3(D=9D). Now, x does not occur free in
) ... (IR = @), for, if it did, then it would be freein B or €, and,
since it is bound in &, it would be one o vy,,...,», and x would
not be free in (y,)... () =C(?). Hence, usng Axiom (5), we obtain
FOD - B =C)3(x)(D =9D). However, by Proposition 219,
FXD = D) 3 (0D = (x) D). Thus,

FO) ... ()@ =0¢) > (¢ =8)

COROLLARY 2.21 (REmSACEMENT THEmmeM). Let @, B, @', € be as in Pro-
position 220. If +% G, then +@ @. Also, if F% = (? and + @, then
t@.

‘COROLLARY 222 (CHANGE OF BOUND VARIABLES). If (x)B(x) is a subfor-
mula of @, and B (y)issimilar to % (x),and @ is the result of replacing one or
more occurrences of (x)® (x)in € by (»)B (y),thent @ = &".

Proor. Apply Lemma 2.8 and Corollary 2.21.

EXERCISES

245 Provet (ExX) ~ @ =~ (x)& and F (x)& =~ (Ex) ~ &.

246. L& @ beaw involving only quantifiersand A, V, ~, butnot O, =.
Exchange universal and existential quantifiers, and exchange A and V. The result
@* iscaled thedua o &.
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(i) In any predicate calculus, prove: (a) l- @ if andonly if F~@*; ) F@& D B if
and only if F®* > @*; (c) F€ =% if and only if F@ = ®*; (d) Using
Fx)(@AB)= ((x)(-B) A(x)B (cf. p 64, Exercise 2.26(c)), prove +F (EX)(@V/
®) = (EX)@V (Ex)B

(ii)y Show that theduahtyresultsof Part (i), (a)-(c), do not hold for arbitrary theories.
247. If 8 isobtained from @ by erasingall quantifiers(x) or (Ex) whose scope

does not contain x free, provethat F @ = 8.
2.48. Writeformulaslogically equivalent to the negations of the formulasbelow;
in the new formulas, all negationsare to apply to atomic formulas.
(@) ((YNEA}(x, ¥, 2)
(b) (e)(e > 0D (ES)S8 >0 A (x)|x — c] <8 D [f(x) — fe)| <ey)
() (e)e > 0D (En)(m)(m >n > |a, — b| <e))
249. Prove (@) F(EX)(@D~(8VE)=ENED(~B A~C)
®) H(EXNE() VOB () = (EyXE(») V (2)B(2)).
2.50. show by a counterexample that we cannot omit the quantifiers
(») ... (») in Proposition 2.20.

7 RuleC

It is very common in mathematics to reason in the following way. Assume
that we have proved awf of theform (Ex)&@(x). Then, we say, let b be an object
such that @ (6). We continue the proof, finaly arriving at a formula which does
not involve the arbitrarily chosen element b.

For example, let us say that we wish to show that (Ex)(%(x) 2 C(x)),
(x)B (x) F (Ex)C(x).

I (Ex)(®(x) D C(x)) Hyp

2. (0B (x) Hyp

3. B(b) > C(b) for someb 1

4. B(b) 2, Rule A4
5 C(b) 3,4, MP
6. (Ex)C(x) 5 Rule FA
7. (Ex)(B(x) D C(x)), (x)B () F (Ex)C(x) 1-6

Such a proof seems to be perfectly legitimate, on an intuitive basis. In fact, we
can achieve the same result without making an arbitrary choice o an element b
asin step 3. This can be done as follows:

L. (0% (x) Hyp

2. (x)~C(x) Hyp

3. B(x) 1, Rule A4
4. ~ C(x) 2, Rule A4
5. ~(®B(x) o C(x)

3,4, Tautology (A A ~B)>~ (A o B)

RULEC 7

(x) ~ (B(x) D C(x)) 5, Gen
()B(x), (x) ~ C(X)F (x) ~ (B (x) 3C(x)
8. ()BX)F(x) ~C(x0)] D [(x) ~(B(x) D @(x))l
Prop. 24
9. (B[~ (x)~(B(x)D C(x)]>D [~(x)~ C(x)]
, Tautology
AD>DB)D
(~B2>~A)
10. (x)B(x)F (Ex)(%(x) D C(x)) D (Ex)C(x) Abbreviation d 9
11 (Ex)(%(x) D C(x)), (x)B (X) F (Ex)C(x) 10, MP

In general, any wf which can be proved using arbitrary acts d choice, can
aso be proved without such acts o choice. We shall call the rule which permits
us to go from (Ex)&(x) to &(b), Rule C (“C” for "choice"). More precisdly, the
definition of a Rule C deduction in a first-order theory K is as follows:

TH@ if and only if thereisasequenced wfs®,, ..., B, = @ such that the
following four statements hold.

(1) For each i, either

(i) 9, isan axiomd K, or
(i) %;isinT, or
(iii) 9B, followsby MP or Gen from preceding wfs in the sequence, or
(iv) There is a preceding Wi (Ex)C(x) and B, is C(d), where d is a new
individual constant. (Rule C)

(I1) As axioms in (I)i), we can also use al logical axiomsinvolving the new
individual constants already introduced by applications of (I)(iv), Rule C.

(III) No application of Gen is made using a variable which is free in some
(Ex)C(x) to which Rule C has been previously applied.

(IV) @ contains none of the new individual constants introduced in any
application of Rule C.

A word should be said about the reason for including clause (IIT). Without
this clause, we could proceed as follows:

L (x)(E)Ai(x,») Hyp

2. (Ey)Ai(x,y) 1, Rule A4

3. AXx,b) 2, Rule C with b
4. (x)Ai(x, b) 3, Gen

5. (Ey)x)A4¥(x,y) 4, Rule E4

6. (X)(Ey)Ai(x,y) FAEyXx)Ai(x, ) 1-5

However, (cf. page 57, (4)), there is an interpretation for which (x)(Ey)Af(x,y)
is true but (Ey)(x)47(x,y) isfase.
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ProPosITION 223. I TH-@, thenT+ &. Moreover, from the proof below it
is easy to verify that if thereis an application d Gen in the new proof of @
from T" using a certain variable and applied to a wf depending upon a certain
wf o T, then there was such an application of Gen in the original proof.?

PROOF. Le&t (Eyv)C (¥ ..., (Evi)C.(y,) be the wfs in order o oc-
currence, to which Rule Cis applied in the proof o T'+-@, and let ¢y, ..., ¢, be
the corresponding new individual constants. Then T, C,(¢)), ..., C(c)F @;
but then, by clause (III) of the definition above, and the Deduction Theorem
24, T, C(e)s . .., G (e F Cilc) D @. Replace ¢, everywhere by a vari-
able z not occurring in the proof. Then

L Cley ..., Coi(a_DFCi(2) 38, and, by Gen,

L, Cy(ey), » Coile)  (2)(Ci(2) D @) Hence, by

Proposition 2.18(d),

L, Cle ..., GGt (Bn)Ci(m) D @ But,

Lo Cies . ., Cooi(a— D F (Bv) G (). Hence

Lo GHE) voxss @k—|(fk-|)|‘ @.

Repesting this argument, we can eliminate C, _, (¢,_,), - - - » €(¢,) one after the
other, obtaining T+ 62.

Example. +(x)}(@(x) D B (x)) D (Ex)&(x) D (Ex)B(x))

L (x)(@(x) 3B(x) Hyp

2. (Ex)&(x) Hyp

3 &w 2, RuleC with b

4. @(b)> B(b) 1, Rule A4

5. B(b) 3,4, MP

6. (Ex)%(x) _ 5, Rule E4

7. ()(€(x) D B(x)), (Ex)@(x) I"C(Ex)‘fiim (x) 1-6

8. (x)(@(x) D B(x), (Ex)&(x) | (Ex)B(x) 7, Prop. 2.23

9. ()(Q(x) D B(X)F (Ex)(x) D (E)D (%) 8, Prop. 24
10. F(x)@(X) D B(x) D (Ex)@(x) D (Ex)B(x)) 9, Prop. 24
EXERCISES

Use Rule C and Proposition 2.23 to prove Exercises 251-2.58 below.
251. F{Ex)(@(x) 3 B(x)) 3 (x)&(x) D (EX)B (x))
252, b~ (Ey)xXA}(x,y) =~ A}(x, X))

[191'5;]]16 first formulationof a verson o Rule C Smilar to that given here seems to be due to Rosser
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253, FI(x)(ANx) D ALx) V AL A ~ ()(A1(x) D A30)] D (ExNALx) A

A3(x)
254. | [(EX)@(x)] A [()B(x)] 3 (Ex)N@(x) A B(x))
255. - (Ex)® (x)D (Ex)(@(x) \V B (x))
2.56. |- (Ex)(Ey)&(x, y) = (EyEx)&(x, y)
2.57. | (Ex)(»)&(x, ) 3 (YNEX)&(x, )
258, F(Ex)(@(x) A B(x)) D [(Ex)@(x)] Al(Ex)S (x)]
259. What is wrong with the following alleged derivations?

(@) 1. (Ex)&(x) Hyp
2. &) 1 RuleC
3. (Ex)B(x) Hyp
4 B(b) 3, Rule C
5. @) A B 2, 4, Conjunction Rule
6. (Ex)@(x) AB(x)) 5 RueE4
7. (Ex)@(x), (Ex)B(x) | (Ex)(@(x) A B(x))

1-6, Proposition 2.23.

) L (Ex)@(x) D B(x)) Hyp
2. (Ex)&(x) Hyp
3 @b)3B(b) 1, RuleC
4. Q) 2, RuleC
5 %) 3,4, MP
6. (Ex)B(x) 5, Rule E4
7. (Ex}@(x) 3 B(x)), (Ex)@(x)|. (Ex)B (x)

1-6, Proposition 2.23.

8. Firgt-Order Theorieswith Equality

Let K be a theory which has as one o its predicate letters A}. Let us write
t = s asan abbreviation for 4%(t,s), and t # s as an abbreviation for ~ A41(t, s).
Then K is called afirst-order theory with equdity (or simply a theory with
equdity) if the following are theorems of K.

©)7F (x)(x; = x;) (Reflexivity of Equality)

(7 x =y D (&, x) D @(x,y)) (Substitutivity o Equality)

V4
where x andy are any variables, @(x, x) is any wf, and &(x,y) arises from
€ (x, X) by replacing some, but not necessarily al, free occurrences o x by y,

with the proviso that y is free for the occurrences d x which it replaces. Thus,
@(x,y) may or may not contain free occurrences o x.

ProPOsITION 224.  In any theory with equdity,
(@ for any tem t, Ft =t
by Fx=yDdy=x
©Fx=yd(y=zDdx=2)

+ The numbering here is a continuation o the numbering o the Logica Axiomson pp. 59-60.
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PROOF. (&) From (6), F (x)(x, = X,); hence, by Rule A4, +¢ =1t. (b) Let
&(x, x) bex = xand @(x, y) bey = x. Then, by (7), F X =y D (X= XDy =
x).But, by (a), F x = x. So, by the tautology B > ((AD (B> C))> (AD> C)),
we have F x=yD>y=X. (c) Let &(y,y) bey =1z and &(y, x) be x =z
Then, by (7), with x and y interchanged, Fy = x> (y=z2 x = 2). But, by
(), Fx=yDy=x Hence using the tautology (A> B)D>((B>C)>
(ADC)),wehave Fx=y2(y=22 x= 2.

EXERCISES

2.60. Show that (6)and (7) are true for any mode M in which (4HM is the
identity relation on the domain of the model.
2.61. Prove the followingin any theory with equality.
@ FOXB(x)= (By)(x =y A B(y)))fydoesnot occur in B (X).
® FO)®B(x)= )x=y D B(y)))f y doesnot occur in B(X).
(©) F(XXEy)(x = ).

We can reduce condition (7)for equality to a few simpler cases.

ProPosITION 2.25. Let K be a theory for which (6) holds and (7) holds for
atomic wfs &(x, x). Then K is a theory with equality, i.e., (7) holds for all wfs
®(x, x).

PROOF. We must prove (7)for al wfs @(x, x). It holds for atomic wfs by
assumption. Note that we have Proposition 2.24, since its proof used (7) only
with atomic wfs. Proceeding by induction on the number n o connectives and
guantifiersin @, we assume that (7) holds for al k < n.

Case 1l  @(x, x)is ~ B(x,x). By inductive hypothesis, we have ty = x D
(B (x,y) D B(x,X)), since B(x,x) arises from B (x,y) by replacing some
occurrences of y by x. Hence, by Proposition 2.24(b), and the tautologies
(ADB)D(~B>~A) and (A>B)D((BDC)D(ADC)), we obtain
Fx =y D (Q(x, x) D @(x,p)).

Case2. @(x, x)isB(x,x)D C(x, x). By inductive hypothesis, and Proposi-
tion 2.24(b), F x =y D (9(x,y) D B(x,x)) and F x=y D (C(x, x) D
C(x, y)). Hence, by the tautology (AD (B,D> B))D [(AD(C D C)) D
(AD (B DC)D(B,DCY), wehavelt x =y D (&(x, x) D &(x, y)).

Case 3. @(x,X) is (2)B(X,X,2). By inductive hypothess, F x =y D
(B(x,X,2)D B(X,y, 2)). Now, by Gen and Axiom (5), F x =y D
(2B (x,x, 2) D B(X,Y, 2)).By Exercise2.26(a) on page 64, F (z)(B (X, %, z) D
B(x, », 2)) D [(2NB (X, % 2)) D (2)(B(x,y,2)], and so, by the tautology
(AD>B)D((BDC)D(AD Q) kx=yD(&x x)D &KX, y).

The instances of (7)can be still further reduced.

ProrPosITION 226. Let K be a theary in which (6) holds and (7) holds for a//
atomic wfs @(x, x) such that no function letters occur in &(x, x) and &(x, y)

" SEC. 8 FIRST-ORDER THEORIESWITH EQUALITY 81

a——

comes from @(x, X) by replacing exactly one occurrence of x by y. In addition,

we assume the following: (*for any function letter f7, if z,, . . . , z, are variables
and f'(wy, ..., w,) aris&fromg'(z,. ..., z,) by replacing one occurrence of x
byy, thent x=y > (fz),...,2,)=f'(w,...,w,)). Then K is a theory
with equality.

PrROOF. Note, by repeated application, our assumptions can be extended to
replacements o more than one occurrence o x by y. Also, Proposition 224 is
still derivable. By Proposition 2.25, it sufficesto prove (7)only for atomic wfs
But, one can easily prove F(y1, =2/ A ... Ay, =2)D @y ...,y D
@z - - -5 2p) for al variablesy,,...,y, z,,...,z, and any atomic w &
without function letters. Hence, using Rule A4, we reduce the problem to
showing that if #(x, X) is a term and #(x, y) comes from #(x, x) by replacing
some occurrences o x by y, then F x =y D (¢(x, X) = #(x, y)).But, thiscan be
proved, using (*), by induction on the number o function lettersin t, and we
leave this as an exercise.

EXERCISES

2.62. Le K, be a theory having only = as a predicate letter, and no function
letters or individual constants; and let its proper axioms be (x)(x; = X,),
(x)O)x = X2 D Xy = X)), and (x)(x)(x3)(x; = x3 D (x3 = X3 D X1 = X3)).
Show that K, is a theory with equality. Hint: by Proposition 226, it suffices to
prove the following wfs:
=yo(x=xDy=x)
=yDd(x=xDx=y)
=y D(x=ydy=y)
=yDd(y=xDdDy=y)
=yd(x=zDy=2)

x =y D2 (z=xDz=y)
K, iscalled the firg-order theory of equality.
263. Le K, be a theory having only = and < as predicate letters, and no
function letters or individual constants. Let K, have the proper axioms;
@) (x)(x; = x1)
(®) (x)x(x) = x2) D (x2 = x1))
(©) (xD(xHx3)(x; = X3 D (X3 = x3 D X1 = X3))
(@) (X (Ex)Exz)(xy < x2 A\ x3 < x1)
(&) (x)(xHx3)(x) < Xz A X2 < x3 D X1 < X3)
() Ge)oead(xy = X2 D~ X1 < X))
(& (xp)x)(xy <XV xi = x2V x2 <xy)
() (x(x)(x; < X2 D (Exs)(xy < x3 A X3 < X))
Using Proposition 2.26, show that K, is a theory with equality. (K, is the theory
of densely-orderedsets with neither first nor last element.)
2.64. Let K be any theory with equality. () Provethat Fgx; =y, A ... A X, =
Ya D Xy ovo X)) = t(Yy, ...,y Whee (), ...,y arisss from a tem

o= o® o o® X
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t(xy, . .+, Xy) by substitution of yy, ... ,»y, fOorxg, ..., x,, respectively. (b) Prove
that Fgx; =N ... A X =»aD @(x1, ..., x) = &1, -..,Yn)) Where
&y, -+ ,yn) IS Obtained by substituting yy, ..., y, for one or more free oc-
currences of X,,..., x,, respectively, in thewf &(x,, ..., xy), and yp, ..., », are
freefor x,,..., X,, respectively, in thewf @(x, ..., X,).

Examples. (In the literature, ""elementary” is sometimes used instead of
"first-order".)

1. Elementary Theory G d Groups: predicate letter =, function letter f2,
and individua constant a,. We abbreviate f(, s)by t +s,and a, by 0. The
proper axiomsare:

(@) x; 4+ (x2 + x3) = (x; + X3) + X3

® x 0= x
© C)(Ex)(x, + x; =0)
@ x =x

(6) X1 =xD x3=x,
O xi=xD2(x=xD2x =x3
@x,=x232Xtx=xtxAxtx=x1x

From Proposition 2.26, one easily proves that G is a theory with equality. If one
adds to the axioms the following wf

(h)xl+x2:X! +xl

the new theory G is called the elementary theory of abelian groups.

2. Elementary Theory F d Fields: predicateletter = , function lettersf} and
f%, and individual constants a, and a. Abbreviate fi(1, s) by t + s and f3(¢, s)
by t.s and a, and a, by 0 and 1. As proper axioms, take (a)-(h) of (1) above,
plus

() X1 =2, 3B(x;"x3= X" X3 A\ X3° X = X3 X3)
0) (xp-xp) x5 = x;- (%7 x3)

(k) x;- (xy + x3) = (%7, xp) + (x;. %3)

@O xixy=xx

(m) xl.lle

(m) x, # 0D (Ex))(x;-x,=1)

0 0#1

F is a theory with equality. Axioms (8)—(m) define the elementary theory R o
commutative rings with unit. If we add to F the predicate letter 42, denoting
A3(1, 5) by t <s, and add the axioms (€), (f), (g) of Exercise 2.63 above, as well
as x; <x, 3x,Ft x;<x, T x;and x, <x; A0 <x; Bx;-x;3 <x,- x5, then
the new theory F_ is called the elementary theory of ordered fields.

EXErcisE 265.  Show that the axioms (d)—(f) d equality (reflexivity, symme-
try, transitiuity), mentioned in Examples 1 and 2 above, can be replaced by (d)
and (f): x =y 3(z=y 3 x = 2).
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One often encounters first-order theories K in which = may be defined, i.e.,
there is a wf & (x,y) with two free variables x,y such that, if we abbreviate
&, 5) by t =s, then (6) and (7) are provable in K. We make the convention
that, if t and s are terms that are not freefor x andy, respectively, in & (x,y)
then we take t = s to be the abbreviation not o & (7, s) but rather o a wf
&*(t, s) obtained from &(1,5) by suitable changes o bound variables (cf.
Corollary 2.22) so that t and s are free for x andy, respectively, in &*(x,y).
Anadogues of Propositions 225 and 2.26 hold for such theories if, in the
propositions, we assume (7) also for suitable wis o the form &*(¢, s). (Exercise)
There is no harm in extending the name "theory with equality" to cover such
theories.

In first-order theories with equality, it is possible to define phrases using the
expression "' There exists one and only one x such that...” in the following

way.
DerINITION.  (Ex)E(x) for (Ex)&(x) A (O NE(x) A B(y) BX = y).F

EXERCISES

Prove:

2.66. F()E y)(x =)

267. HEX)E(x) = (Ex)(y)(x = y = &(»))

268. F(x)(@(x) = B(x))D [(Ejx)&(x) = éE,x)%(x)]
2.69. F(ExX@ V D) > (Ex)@)V (Ex)%.

In any model for a theory K with equality, the relation E in the modd
corresponding to the predicate letter = is an equivalence relation (by Proposi-
tion 2.24). If this relation E is the identity relation in the domain of the modd,
then the model is called normd.

Any model M for K can be contracted to a normal model M' for K by taking
the domain D' of M' to be the set o equivalence classes determined by the
relation E in the domain D of M. For a predicate letter A" with interpretation
(4")y* in M, we define the new interpretation (4,") in M' as follows: for any

equjvalence clases [b,], ..., [b,] in D' determined by the elementsb,, ..., b,
inD, @) holdsfor ([b,,...,[b,])if and only if (4/)* holdsfor b;,...,b,.
Notice that it makes no differencewhich representativesb,,. .., b, we select in
the given equivalence classes, for, by (7), FX, =y, A... Ax, =y, D
A'(x), ... x) = Al(yy, - -+, p,). Likewise if (f})* istheinterpretationin M
of f7, then we define the new interpretation (f7) in M' as follows: for any
equivalence classes [b,], . . ., [b,] in D' determined by the elements b,, ..., b,
inD, (ffY((by], - - ., [b.)) = [(f})*(by, . . ., by)]. Again note that thisisindepen-
dent of the choice b,,...,b, o representatives, since, by (7), Fx, =V,

t The new variable y is assumed to be the firg variable not occurring in @(x). A smilar
assumption is to be made in all other definitionswhere new variables are introduced.




84 QUANTIFICATION THEORY Sec. 8

A Xy =y, D fix oy x,) = (0 .-,y I C s the interpretation
in M d an individual constant a,, then we take the equwalenceclass[c] to be the
interpretation in M' o a,. Therelation E corresponding to = in the model M' is
theidentity relationin D" E’'([b,], [b,]) if and only if E(b,, b,), i.e., if and only if
[b,] = [b,]. Now, one can easily prove by induction the following lemma: if
s=(b,,b, ...) is a denumerable sequence d elements d D, [b] is the
equivalenceclassd b, and s = ([b,], [b,], . . . ), then & is satisfied by sin M if
and only if @ issatisfiedby s in M'. It follows that, for any wf &, & is truein
M if and only if @ is truein M'. Hence, because M isa model o K, M' isa
normal model for K.

ProrosiTION 2.27 (EXTENSION OF ProrPosITION 2.12; GODEL [1930]). Ary
consistent theory K with equality has afinite or denumerable normal mode.

PROOF. By Proposition 212, K has a denumerable model M. Hence the
contraction d M to a norma mode yields a finite or denumerable normal
model M', for the set o equivalenceclassesin a set D has cardinality less than
or equa to the cardinality o D.

COROLLARY 2.28 (EXTENSION OF THE SKOLEM-LOWENHEIM THEOREM). A
theory K with equdity which has an infinite normal modd M has a denumerable
normal moded.

PROOF. Add to K the denumerably many new individual constants
b, b, ... together with the axioms b, # b, for i = j. Then the new theory K' is
consistent. For, if K' were inconsistent, there would be a proof in K' o a
contradiction € A ~ € where we may assume that € isa wf d K. But this

proof uses only afinite number d the new axioms: b, # b, ..., b, #b;. Now
M can be extended to a model o K with the axiomsb,,l Fh, oo, b # b, for,
since M is an infinite norma model, we can choose interpretations o

b, b, . , b, b, sothat thewfsh, #b,, ..., 5 #b, aretruein M. But, since
C A~ @ |sder|vablefrom th&eewfsand theaxmmsd K, it would follow that
C A ~ € is true in M, which is impossible ((11), p. 53). Hence, K' must be
consistent. Now, by Proposition 2.27, K' has a finite or denumerable normal
model N. But, since the wis b, # b, for i # j, are axioms o K', they are truein
N. Hence the elementsin N which are the interpretations o b,, b,, ... must be
distinct, which implies that the domain of N isinfinite, and, therefore, denumer-
able.

EXERCISES

2.70. We define (E,x)@(x) by inductionon n > 1 The case n = 1 has already
been taken care of. Let (E, ., x)@(x) stand for (EyX&(¥) A\ (E,x}x #=y A €(x)).
(8) Show that (E,x)@(x) asserts that there are exactly n objectsfor which @ holds,
in the sense that in any normal modd for (E,x)&(x) there are exactly n objectsfor
which the property correspondingto €(x) holds. (b) (i) For each positiveinteger n,
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write a wf %, such that ®, holds in a normal modd when and only when that
model contains at least n elements. (ii) Prove that the theory K, whose axioms are
those of the theory d equality K, (cf. Exercise 2.62) plus the axioms ®,, ®,, ...,
is not finitely axiomatizable, i.e., there is no theory K' with a finite number o
axioms such that K and K' have the same theorems.

271. (@) Prove that, if a theory K with equality has arbitrarily large finite

normal models, then it has a denumerable normal mode.
(b) Prove that there is no theory with equality whose normal models are
precisely all finite normal interpretations.

2.72. Prove that any predicate calculus with equality is consistent. (A predicate
calculus with equality is assumed to have (6) and (7) as axioms.)

2.73. Prove the independence d Axioms (1)—(7) in any predicate calculus with
equdlity. (Hints: for the independencedf (1)-(3), replaceall ¢+ = s by the statement
form A D A; then erase al quantifiers, terms, and associated commas and
parentheses; Axioms (4)-(6) go over into statement forms of the form P 5 P, and
(7 into (P > P) 2 (Q > Q). Now, for (2)—(3), use the same proofs as for Axioms
(A2)-(A3) for the propositional calculus (cf. pp. 38-39).1 For (1), the three-valued
truth table used on p. 38 does not give the value 0 for P o P; instead, use the
followingfour-valued truth tables:

A - A A B ADB A B ADB
0 1 0 0 0 0 2 1
1 0 1 0 0 1 2 0
2 3 2 0 0 2 2 0
3 2 3 0 0 3 2 0
0 1 1 0 3 1
1 1 0 1 3 0
2 1 1 2 3 1
3 1 1 3 3 0

For (4), replaceall universal quantifiers(x) by existential quantifiers(Ex). For (5),
change dl terms ¢ to x, and replace all universal quantifiers by (x,). For (6),
replace all wfs 1 = s by the negation of some fixed theorem. For (7), consider an
interpretation in which the interpretation of = is a reflexive non-symmetric rela
tion.)

,2.74. If @ isawf not containing the = symbol and @ is provablein a predicate
calculus with equality K, show that @ is provablein K without using Axioms (6)
and (7).

9. Definitions of New Function Letters and Individual Constants
In mathematics, once we have proved, for anyy,,...,y, theexisenced a

 Unique object » having the property @(u,y,,...,Y,), We often introduce a new
# function f(y,,...,y) such that @Ay .--,Y.), ¥Ysr--.,»,) holds for all
Y1 ---,Y, In cases where we have proved the existence d a unique object u
§ satisfying @(u), and @(u) contains u as its only free variable, then we introduce

+ For (A42), however, we must use new truth tables for which P > P is exceptional.
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a new individual constant b. It is generally acknowledged that such definitions,
though convenient, add nothing realy new to the theory. This can be made
precise in the following way.

PROPOSITION 2.29. Let K be a theory with equaity. Assume that
Fe(E )& (u, yy, - . ., y,). Let K' be the theory with equaity obtained by adding
to K a new function letter f d n arguments, and the proper axiom
Uy sV Yis - - - s ¥,)T as wdl as all instances d (1)—(7) involving f.
Then there is an effective trandformation mapping each wf % d K' into a wf
%’ d K such that

(1) iff doesnaot occur in B, then B " is B
@ -B)is~(D)
3 (B>C)YiIsB DC
@) (()BY is (xND")
(5) kB =B’
(6) if B, then F D'
Hence, if B does not containf and F¢. B, then F % .

pPrOOF. A smplef-term is an expression f(¢;,...,t) wheret,,...,t, are
terms not containingf. Given an atomic wf % d K', let % * be the result d
replacing the left-most occurrence o a simplef-term f(¢,,..., ) in B by the
first variable u not in % . Cal the wf (Eu)(@(u, t,,...,t) A B*) thef-trans-
form of 93. If % does not containf, let B be its own f-transform. Clearly
b (Eu)(@(u, ty, .. ., t) A D)= B. (Here we use F(Ew)@(u,y,,...,Y,)
and the axiom @(A(y1, « + - 1 V) ¥Yrr+ - - »Y,) O K') Since thef-transform $* o
% contains one lessf than 93, and Fy . %* = 93, if we take successivef-trans-
forms, eventually we obtain a wf %’ which does not containf, and such that
Fe B = B. Cal B’ thef-less transform o 93. Extend the definition to all wfs
d K' by letting (—- )" be ~ (%", (% D> €)Y be B’ > ¢, and ((x)B) be
(x)(B"). Properties (1) through (5) d the theorem are then obvious. To prove
(6), it suffices, by (5), to show that, if %% does not containf and +¢. B, then
FxB. We may assume that % is a closed wf, since a wf and its closure are
deducible from each other.

Assumethat M isa model o K. Let M, be the corresponding norma model
of K (cf. p. 83). We know that aw is truein M if and only if it is true in M,.
Since Fg(E\u)@(u, yy, ... ,Y,), then, for any b,,..., b, in the domain of M,,
there is a unique c in the domain d M, such that ky, @[c, by, ..., b,]. If we
define f'(b,, ..., b) to be c, then, taking f' to be the interpretation o the
function letter f, we obtain from M, amodel M' o K'. For, the logical axioms of
K’ (including the equality axioms d K') are true in any interpretation, and the

axiom &(f(yy, . --,Ys), ¥p» - --,Y,) asoholdsin M' by virtue of the definition
t It is better to take this axiom in the form (u)(u = f(y,, . . - » V) 3@y, y,)), Snce
f(r1, ..., y,) might not be freefor uin @u, .. .,V.).
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% of f. Since the proper axioms of K do not contain f, and since they are true in

M,, they are also true in M. But % . Hence, B is true in M, but since ®
does not containf, B is true in M,, and hence also in M. Thus, % is truein
every model o K. Therefore, by Corollary 2.15(a) o the Completeness Theo-
rem, FxB . (In the case where Fy(E,u)@(u) and @(u) contains only u as a free
variable, we form K' by adding a new individual constant b and the axiom & (b).
Then the analogue o Proposition 2.29 follows from practically the same proof
as the one just given.)

Exercise 2.75. Find thef-less transforms d

() Ey)(AF(x, », f(x, 0, ..., YD) DS, x, %, ..., x) = x)
and d

ANy o Pav S 2 A (Ex)ANx, S5y, .o 9)-

Note that Proposition 2.29 also applies when we have introduced several new
symbols f,, . . ., f,, for we can assume that we have added each f; to the theory
already obtained by the addition o f,, ..., f_,; then n successve applications
of Proposition 2.29 are necessary. In addition, the wf %’ o K in Proposition
229 can be considered anf-free trandlation d % into the languaged K.

Examples.

1 In the elementary theory o groups G (cf. page 82), one can prove
(E\x,)(x, T x, = 0). Then introduce a new function letter f d one argument,
abbreviate f(¢) by (- t), and add the new axiom x, (- x,) = 0. By Proposition
229, we now cannot prove any wf d G which we could not prove before. Thus,
the definition o (—t) adds no redly new power to the original theory.

2. In the elementary theory o fields F (cf. page 82), one can prove
(Ex)(x, #= OA x;. %, = D/ (x, = 0\ x = 0)). We then introduce a new
function letter g of one argument, abbreviate g(¢) by ¢!, and introduce the
axiom (X, #0A x,.x;7'=1)\V(X,=0A x; ' =0), from which one can
provex, = 0D x,-x; ' =1

Ffom Proposition 229, we can see that, in theories with equality, only
predicate letters are needed; function letters and individual constants are dis-
pensable. Iff; is a function letter, we can replace it by a new predicate letter
A2V if we add the axiom (E,w)A*'(yy, - . .Y, U). Anindividua constant is to
be replaced by a new predicate letter 4, if we add the axiom (E,u)A, (x).

Example. In the elementary theory G o groups, we can replace + and 0 by
predicates 43 and A} if we add the axioms (x)(x;)(E,x3)47(x,, x5 x;) and
(E\x1)A4(x,), and if we replace Axioms (a), (b), (c), () by

@) Alj(xl! X3, 1) A A?(-"n)’n-)’z) A Af(x,, X2, ¥3) N\ Af(y3, X3 Ya)
3V2=vY4
() Al(y) A A}(x, 91,92 DYz = X,
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(<) (Exz)(}’i)(}’z)(fﬂ(}’l) A Alj(xp X»Y2) DY =y))
(&) [x1 = x3 A\ A (X}, X3, 1) N\ AN(xy, X3, 7)) N AT (x5, X1, ¥3)
NAT(xs, Xp Y DY =Y2 AYs =y,

Notice that the proof of Proposition 2.29 is highly non-constructive, sinceit uses
semantical notions (model, truth) and is based upon Corollary 2.15(a), which
was proved in a non-constructive way. Constructive, syntactical proofs have
been given for Proposition 229 (cf. Kleene [1952], § 74), but, in general, they are
quite complex.

Descriptive phrases d the kind "'the u such that @(u,y,, ...,y,)” are vey
common in ordinary language and in mathematics. Such phrases are called
definite descriptions. We let w(@(u, y,, ...,Y,) denote the unique object u
such that &(uw,Y,,...,y, if thereis such a unique object. If there is no such
unique object, we may either let w(@(w,y,,...,y,) stand for some fixed
object, say 0, or we may consider it meaningless. (For example, we may say that
the phrases "'the present king of France™ or "'the smallest integer are meaning-
less, or we may arbitrarily make the convention that they denote 0.) There are
various ways o incorporating these i-terms in formalized theories, but since in
most cases the same results are obtained by using new function letters as above,
and since they al lead to theorems similar to Proposition 2.29, we shall not
discuss them any further here. For details, cf. Hilbert-Bernays[1934] and Rosser
[1939a], [1953].

10. Prenex Normal Forms

AW (Qy,)...(Qy,)&, where each (Qy,) is a universal or existential
quantifier, y, # y; for i 5= j,and @ contains no quantifiers, issaid to beinprenex
normal form. (We include the case n = 0 when there are no quantifiers at al.)
We shall prove that for every wf we can construct an equivalent wf in prenex
normal form.

LemmA 230. In any theory, if y is not free in D, and C(x) and C(y) are
similar,
D FUx)E(x) D D) = (EyXC(y) D D)
(I F(Ex)C(x) D D) = (yXC(») D D)
) FD > ()C(x) = (yXD D C(»)
(IV) +D 5 (Ex)C(x) = (Ey)D D C(y))
V) F~(x)C =(Ex)~C
V) F~(Ex)C =(x)~C

PROOF. I(A)
L. ()C(x)> D Hyp
2. ~ (By)C(»)D D) Hyp
3~~~ (CHY)DD 2, Abbreviation

3, Tautologies

! * sec. 10
4
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COHIN~D) ----A 3A,
WX —A 3B)= (4 A~ B),
Corollary 221
5 G(y)/\,._,éD 4, Rule A4
6. C(») 5, Tautology
) (AANB)D A4
7. (MEW) 6, Gen
8. (0)C(x) 7, Lemma28
9. @ 1,8 MP
10. ~D 5, Tautologyt
1. DA~D 9, 10, Tautology
12 ()C(x) D D, ~ (Ey)C(y) D D)
ko /\ ~ 1-11
13 (X)C(x) D D F~ (EyXC(y) D D)
39D A~ 12, Prop. 24
14, ()C(x) D D+ (EyNC(») D D) 13, TautolQ

15, 1 ()C() > D) > (BNC(y) > @) 14 Proposton24

proor. I(B)

. (Ey)(C(y) D D) Hyp

2. (0)C(x) Hyp

3. Ch)yoD 1, RuleC

4. Cb) 2, Rule A4

5. 9 3,4, MP

6. (Ey)C(y) D D), (x)C(x)FcD 1-5

7. (Ey}C(y) D D), (x)C(x)F D 6, Prop. 223

8. F(EVC()D D)D (x)C(x) D D) 7, Prop. 24 twice
PrOOF. I(C)

F((x)E(x) D D) = (EyXC(y) D D) (A), (B), Tautology

Parts (IT) through (V1) are proved easily and left as an exercise. ((V1) is trividl,
and (V) appeared in Exercise 245, p. 75; (III) and (1V) follow easily from (II)
and (1), respectively.)

Lemma 2.30 alows us to move interior quantifiers to the front of awf. Thisis
the essential processin the proof o the following theorem.

PropPosITION 2.31.  Thereis an effective procedure for transforming any wf &
intoawf % inprenex norma form such that + @ = % .

Proor. We describe the procedure by induction on the number k of connec-
tives and quantifiersin @. (By Proposition 2.18 (a)-(b), we can assume that the

t From now on, application of obvious tautologies will merely be indicated by the word
“Tautology”.
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quantified variablesin the prefix that we shall obtain are distinct.) If k =0, B is
@ itself. Assume that we can find a corresponding 3 for all wfs with k < n.
Assume & has n connectivesand quantifiers.

Casel. If @ is~ €, then, by inductive hypothesis, we can construct a wf )
in prenex norma form such that + € = 9. Hence, F~C =~ D, ie, F @ =
~ 6D ; but, applying (V) and (VI) d Lemma 2.30 and Corollary 2.21, we can
find aw ¢ in prenex normal form such that -~ % = %. Hence, - @ = %,

Case2. If @ isC > &, then by inductive hypothesis, we can find wfs ¢, and
&, in prenex norma form such that € = ¢, and + & = &,. Hence, by a
tautology, H(€ D &)= (G, D &), i.e, & = (€, D &,). Now, applying (I)-
(Iv) o Lemma 2.30 and Corollary 2.21, we can move the quantifiers in the
prefixesof ©; and &, to thefront obtaining a wf B in prenex normal form with
FE=9.

Case 3. @ is (x)C. By inductive hypothesis, there is a wf C; in prenex
normal form such that + € = €. Hence I (x)C = (x)C,, ie., F @ = (x)C,. But
(x)C, isin prenex normal form.

Examples.

. Let @ be (x)(4](x) D (¥NA43(x,») D~ (2)AHy, 2)))-
By (V) of Lemma 2.30: (x)(4{(x) D (»)A43(x,y) D (Ez) ~ Ay, 2))).
By (IV): (x)(4](x) D (YNEu)A3(x,y) D~ Ay, w))).
By (IN): (x)(v)(4(x) D (Eu)(A43(x, v) D~ A(v, w))).
By (IV): (x)(0)(Ew)(A}(x) D (45(x, v) D ~ A3(v, W))).
Cglangi ng bound variables (Corollary 2.22): (x)(y)(Ez)(A4}(x) D (A3(x,y) D~
A;(y, Z)))
2. Let @ be A{(x, y) D (Ey)[4](») D (Ex)A}(x)) D A3(»)].
By (IN): A{(x, y) D (Ey)[4{(») D (u)(An'gu) o) Aéqy))l-
By (II): A}(x, y) D (Ey)(v)X(A4{(y) D (4;(v) D A;(»))).
By (IV): (Ew)(A{(x, y) D (0)(A{(w) D (4,(v) D AY(w))).
By (III): (Ew)(z)(A¥(x, y) D (A](w) D (4{(2) D A3(W)))).

EXERCISES

Find a prenex normd form equivaent to the falowing wfs

2.76. [(x)(A{(x) D Ai(x, »)] 3 ((E»)4](»)] D [(E2)A}(y, 2)))
2.77. (Ex)A¥(x,y) D (Al(x) D ~ (Eu)A%(x, u))

A predicate calculus in which there are no function letters or individual
constants and in which, for any positive integer n, there are infinitely many
predicate letters with n arguments is called a pure predicate calculus. For pure
predicate calculi, we can find a very simple prenex normal form theorem. A wf
in prenex normal form such that al existential quantifiers precede all universa
quantifiers is said to be in Skolem normalform.

fs
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ProrosiTiON 2.32. In a pure predicate calculus, there is an effective process
assigning to each Wi @ another wf % in Skolem normal form such that + @ if
and only if F % (or, equivaently, by Gédel’s Completeness Theorem 2.14, such
that @ is logically valid ¥ and only i % is logicaly valid).

PROOF. First we may assume that & is a closed wf, sincea wf is provable if
and only if itsclosureis provable. By Proposition 2.31, we may also assume that
@ is in prenex normal form. Let the rank r d @ be the number of universa
quantifiers in @ which precede existential quantifiers. By induction on the rank,
we shall describe the process for finding Skolem normal forms. Clearly, when
the rank r = 0, we already have the Skolem normal form. Let us assume that we
can construct Skolem normal forms when the rank isless than r, and let r be the
rank o @. @ can be written as follows: (Ey,)...(Ev)WB(yp ..., », U),

where B (y,, .. .,», U hasonlyy,,...,y, u asitsfreevariables. Let 4"*' be
thefirst predicate letter  n + 1 arguments not occurring in @. Construct the wf
(@’l) (E)’]) L (Eyﬂ)([(u)(%(yh + .. ,)’,,, u) 2 Ajn+l(y}’ CRCI :yns u))]
) (“)Ajnﬂ()’p SRS ] “))

Let usshow that F & if and only if + &,. Assumet &,. In the proof o &, replace
al occurrences of A" '(z,...,z, W) by B*(z), ..., 2, W), where B” is
obtained from % by replacing all bound variables having free occurrencesin the
proof by new variables not occurring in the proof. The result is a proof o the

W :
I 4) D BX(ypy s Yo 4)))
D (u)B*(yp -y I )

(® was replaced by 6(3* so that applications d Axiom (4) would remain
applications d the same axiom.) Now, by changing the bound variables back
.againby Corollary 2.22, we see that

(Eyy) - -- (Eyn)(((u)(%(yl‘ i

F (Eyl) o (Eyn)[(u)(@'(yl‘ - ,y,,, !.() 2 q"]"(y], “nu syr.-’ H))
2 (U)%(yp coes Vs ﬂ)]
Since k(X B(yyy « -2 Y ¥) D B(Y,, ...,V U), weobtain by Corollary 2.21,

F(Ey,) -« (Ev,Yw)B (Y15 - - . » Y U), 1€, I @ Conversdy, assumet @. By Rule
C, we obtain (0)® (b,, . .., b, U). But F (0)D D> (u)(D D F) O (0)F) (cf. Ex-

ercise 2.26(a), p. 64), for any wfs 9, 9. Hence, (W)(B(by,..., b, u)D
A" Nby, by W) O (AT by by Y. SO, by Rule E4,
(Ey)) (Ey )U()(B (55, Il D AT (L )] e
(WA (y1 -+ -5 Y W), Le, Fc@;. Now, by Proposition 223, +@&,. A prenex

normal form o @, has the form &,: (Ey)) . .. (Ey. ) EuXQ,z)) ... (@z)(v) (’J
where § has no quantifiers and (Q,z,) ... (Q,z,) is the prefix d B. (For, 1n
deriving the prenex normal form, first, by Lemma 2.30(I), we pull out the first
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(u), which changes to (Eu); then we pull out of the first conditional the
quantifiers in the prefix o <. By Proposition 2.30(II), this changes existential
and universal quantifiers, but then we again pull these out o the second
conditional of &, which brings the prefix back to its origina form. Finally, by
Proposition 2.30(III), we bring the second (u) out to the prefix, changing it to a
new variable (u).) Clearly, & has rank one less than the rank of &, and, by
Proposition 231, + &, = @,; but @ if and only if + @,. Hence, I @ if and only
if +@&,. By inductive hypothesis, we can find a Skolem normal form for @,,
which is aso a Skolem normal form for &.

Example. @: (x)»)(Ez)C(x,y, z), where € contains no quantifiers. @,:
CHN(PNE2)C(x,Y, 2) D A}(x)) D (x)4/(x), where A isnotin €. We obtain the
prenex normal form of @

(ExX)((yXE2)C(x, y, 2) D A/(x)] D (x)4](x)) (2.301)
(ExX)(EY(Ez)C(x,p,2) D A)(x)] D (0)4}(x)) (2.301)
(Ex)(EyXz)(C(x,p,2) D 4}(x)) D (0)A4}(x) (2.301)
(ExX)(D)(zXC(x, y, 2) D A}(x) D ()4} (x)) (2.3011)
(EX)yNEz)C(x,y,2) D 4/(x)) D (x)4,(x)) (2.301)
(Ex)(YNEz)(0)(C(x, y, 2) D A4}(x)) D 4}(v)) (2.30111)

We repeat this processagain: Let D (x,y, z, v) be (C(x,y, 2) 3 4/(x)) 3 4)(v).
Let 42 not occur in ). Form:

(EX)[ODI(E2) XD (%, , 2, v)) D AHx, )1 D (P)A(x, »)]
(Ex)Ep(Ez)(oXD (X, y, 2, v)) D AX(x, ) D (¥)AX(x, ¥)] (2.30(1))
(Ex)(Ep)(Ez)(o)([(D(x, y, 2, v) D AX(x, »)] D (P)AXx, »)) 2.30(1), (11))
(Ex)EpXE2Xo)w)(D (%, », 2, 0) 3 AX(x, y)] > AX(x, w) 2.3KIID)

Thus, a Skolem normal form of @ is
(Ex)(Ey)(Ez)(o)W)([((C(x, 7, 2) D 4/(x)) D 4](v)) D 4(x, )]

D AX(x, w))
EXERCISES

2.78. Find Skolem normal formsfor the wfs:
() ~ (Ex)A{(x) D (uNEy)(x)A3(u, X, »)
(®) (x)Ey)u)Ev)Ai(x,y, 1, v)

279. Show that thereis an effective process which gives, for eachwf @ of a pure
predicate calculus, another wf % of this calculus of the form (yy)...(»,)
(Ezy) ... (Ez,)C, such that @ is quantifier-free, n, m > 0, and @ is satisfiable if
and only if % issatisfiable. (Hint: apply Proposition 2.32 to ~ &.)

4 R
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280. Find a Skolem normal form @ for (x}Ey)A}(x,»), and show that
not-+ B = (x)}(Ey)A}(x, »). Hence a Skolem normal form for & is not necessarily
logically equivalent to &, in contradistinction to the prenex normal form given by
Proposition 2.31.

11. Isomorphism of Interpretations. Categoricity of Theories

We shall say that an interpretation M o the wfs o some first-order theory K
is isomorphic with another interpretation M' of K if and only if thereisa 1-1
correspondence g (called an isomorphism) o the domain D o M with the
domain D' of M’ such that:

(i) For any predicate letter 4" o K, and for any b,,...,5, in D,
Fmd/[bys . .., b,] if andonly if Fyped ”[g(b,) ., 8(b);

(ii) For any functlon letter f)(’; o K and for any b,,...,b, in D,
(DM, - .., b)) = (SN (gdy), . - -, (b))

(iii) For any individua congtant a; o K, g((a)“) = (a)"".

The notation M, ~ M, will be used to indicate that M, is isomorphic with M,.
Notice that, if M; ~ M,, the domains o M, and M, must be of the same
cardindity.

PropPosITION 2.33.  If g isan isomorphism & M with M' then (1)for any wf @
d K, any sequence s = (b,, by, ...) d dementsd D, and the corresponding
sequence g(s) = (g(b,), g(by), . . .), s satisfies @ F and only if g(s) satisfies @ ;
(2) hence, by @ F and only i Fy @

PROOF. (2) follows directly from (1). The proof of (1) is a simple induction
on the number o connectives and quantifiersin €, and is |eft as an exercise.

We see from Proposition 2.33 that isomorphic interpretations have the same
“structure” and, thus, differ in no essential way.

EXERCISES

Prove:

281. If M isan interpretation with domain D, and D' is a set having the same
cardinality as D, then one can define an interpretation M' with domain D' such
that M isisomorphic with M'.

282. M isisomorphic with M. If M is isomorphic with M', then M" is isomor-
phic with M. If M isisomorphic with M' and M" isisomorphic with M”, then M is
isomorphic with M".

A theory K with equality is said to be m-categorical, where m is a cardinal
number, if and only if (1) any two norma models of K o cardinaity m are
isomorphic; (2) K has at least one norma model of cardinality m (cf. Lo§
[1954c])).
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Examples.

1. Let K? bethe theory o equality K, (cf. p. 81) to which we have added the
axiom (E2):
(Ex )(Ex))(x; # x; A (x3)(x3 = x; V %3 = x3))
Then K2 is 2-categorical. Moreover, every normal model of K2 has exactly two
eements. More generally, define (En) to be

(Ex)(Exy) . (Ex)(| A % # x5 A
Si</<n

(X (X1 = x) VX =%V...VX4,= n))
where Den # x; is the conjunction of all wfs x; # x, with 1 6 <j < n.

Then, |f K“ is obtalned from K, by adding (En) as an axiom, K" is n-categorical,
and every normal model o K" has exactly n elements.

2. Thetheory K, (cf. p. 81) o densely-ordered sets with neither first nor last
element is tig-categorical (cf. Kamke [1950], page 71: every denumerable normal
model of K, is isomorphic with the model consisting o the set o rational
numbers under .their natural ordering). But one can prove that K, is not
rn-categorical for any m different from «,,.

EXERCISES

28324 Find afirst-order theory with equality which is not &y-categorical, but is
m-categorical for al m> &,. (Hint: consider the theory G, of commutativegroups
(cf. p. 82). For each integer n, let nx stand for the term (x + x) + ... +x.
Add to G, the new axioms (®,,): (x)(E,; yXny = x) for dl n > 2 TheWdlftheory is
the theory o uniquely divisible commutative groups. Its normal models are
essentially vector spaces over the field of rational numbers. However, any two
vector spaces over the rationals of the same non-denumerable cardinality are
isomorphic, and there are denumerable vector spaces over the rationals which are
not isomorphic (cf. Bourbaki [1947]).)

2.84* Find a theory with equality which is m-categorical for all infinite
cardinals m. (Hint: add to the theory G, d commutative groups the axiom
(x)(2x, = 0). The norma modedls o the new theory are just the vector spaces over
the field of integersmodulo 2. Any two such vector spaces o the same cardinality
are isomorphic (cf. Bourbaki [1947]).)

285 Show that the theoremsd the theory K" in Example 1 above are precisay
the set of al wfs d K" which are true in al norma models o cardinality n.

2.86.* Find two non-isomorphic densely-ordered sets of cardinality 2% with
neither first nor last element. (This shows that the theory K, of Example 2 is not
20-caegoricd.)

I's there a theory with equality which is rn-categorical for some non-countable
cardinal m but not n-categorical for some other non-countable cardinal n? In
Example 2 we found a theory which is only tig-categorical; in Exercise 2.83 we

" way. Add 4, new individual constants b,, b,, ..., b, ...

GENERALIZED FIRST-ORDER THEORIES 9%

R found a theory which is rn-categorical for all infinite m > &, but not x,-cate-
| gorical; and in Exercise 2.84, a theory which is rn-categorica for all infinite m

“The elementary theory G of groupsis not rn-categorical for any infinite m. The
¥ problem is whether these four cases exhaust all the possibilities. That this is so
¥ has been proved by M. D. Morley [1965].

B 12. Generalized First-Order Theories. Completenessand Decidabilityt

If, in the definition of the notion o first-order theory, we allow a noncount-
:able number of predicate letters, function letters, and individual constants, and

7, possibly a noncountable number d axioms, we arrive a the notion d a
t generalized first-order theory. First-order theories are special cases o gener-
alized first-order theories. The reader may easily check that al the results for
: first-order theories, through Lemma 2.9, hold also for generalized first-order
7 theories, without any changesin the proofs. Lemma 2.10 becomes Lemma 2.10:
- if theset d symbolsd a generalized theory K has cardinality ti,, then the set d
i+ expressons d K also can be well-ordered and has cardinality i, (First, order
. theexpressions by their length, which is some positiveinteger, and then stipulate
4 that if e, and e, are two distinct expressions o the same length k, and j is the
+ first place in which they differ, then e, "precedes” e, if the j» symbol o e,
i precedesthej™ symbol d e, according to the given well-ordering o the symbols
i ol K) Now, under the same assumption as for Lemma 2.10’, Lindenbaum'’s
- Lemma 2.11 can be proved for generalized theories much as before, except that

all the enumerations (of the wfs %, and of the theories J,) are transfinite, and the
proof that J is consistent and complete uses transfinite induction. The analogue

of Henkin’s Theorem 2.12 runs as follows:

ProrosiTION 2.34. If theset d symbols d a consstent generalized theory K
has cardinality ti, then K hasa modd d cardindlity ti,.

PrROOF. The original proof for Proposition 2.12 is modified in the following
. As before, the new
theory K, is consistent. Let Fi(x;),..., Fa(x;), ... & <w,) be a sequence
condisting o all wfs o K, with at most one free vanable Let (Sy) be the wf
~ (x,)E\(x;,) D~ Fa(8,). where the sequence b;, b, ..., b, ... d distinct
constants is chosen so that b, does not occur in Fﬁ(x ) for B < A The new
theory K, obtained by addlng al the wfs (S,) as axioms is consistent, by a
transfinite induction analogous to that o Proposition 2.12. Now, by the exten-
sion 211' of Lindenbaum's Lemma, there is a complete, consistent extension J
d K. The modd is defined now asin Proposition 2.12, and its domain, the set
of closed terms o K,, has cardinality t,

+ Presupposed in parts of this Sectionisa dender acquaintancewith ordinal and cardinal numbers
(cf. Chapter 4, or Kamke [1950], or Sierpinski [1958]).
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CoroLLARY 235. (1) If theset & symbols & a consistent generalized theory K
with equality has cardindity ,, then K has a normal modd d cardinality < x_.

(2) If, in addition, K has an infinite normal mode (or if K has arbitrarily large
finite normal models), then K has a normal model d any cardindity g > & .
(3) In particular, f K isan ordinary theory with equdity (i.e., 8, = &), and K
has an infinite normal model (or i K has arbitrarily largefinite normal models),
then K has a normal modd d any cardinality x4(8 > 0).

PROOF. (1) The model guaranteed by Proposition 2.34 can be contracted to 5
normal model (cf. p. 83) consisting of equivalenceclassesin a set o cardinality
R,. Such a set of equivalence classes has cardinality < 8,. (2) Assume g > &,
Let b,, b,,... beaset o new individual constants of cardinality g, and add
the axioms b, # b, for A # u. Asin the proof o Corollary 2.28, this new theory
is consistent, and so, by (1), has a normal model of cardinality < &, (since the
new theory has 8, symbols). But, because o the axioms by  b,, the normal
model has exactly x, elements. (3) is a speciad case of (2).

Exercise 2.87. If theset ¢ symbols d apredicate caculus K with equaity hes
cardindity &_, prove that thereis an extenson K’ d K (with the same symbols
as K) such that K' hasa normal modd d cardindity &, but K' has no normal
modd d cardinaity < x,.

From Lemma 29 and Corollary 2.35(1, 2), it follows easily that, if a gener-
alized first-order theory K with equality has &, symboals, is 8,-categorical for
some 8 > a, and has no finite models, then K is complete, in the sense that, for
any closed wf @, either tx@ or tx ~ @ (Vaught {1954])). For, if not-tx @ and
not-k ~ W then the theories K' =K + {— @} and K" =K *+ (@} are con-
sistent by Lemma 2.9’, and so, by Corollary 2.35(1), there are normal models M,
and M, of K' and K", respectively, d cardinality < w,. Since K has no finite
models, M; and M, are infinite. Hence, by Corollary 2.35(2), there are normal
models N, and N, o K' and K", respectively, o cardindity x4 By the
Rg-categoricity of K, N, and N, must be isomorphic. But, since ~ & is truein
N, and & istruein N,, thisis impossible. Therefore, either +,@ or g ~ W.

In particular, if K isan ordinary first-order theory with equality which has no
finite models and is ®,-categorical for some 8 > 0, then K is complete. As an
example, consider the theory K, o densely-ordered sets with neither first nor
last element (cf. p. 81, Example 2). K, has no finite models and is x,-categorical.

If an ordinary first-order theory K is axiomatic (i.e., one can effectivelydecide
whether any wf isan axiom) and complete, then K is decidable, that is, thereis
an effectiveprocedure to determine whether any given wf is a theorem. To see
this, remember (cf. p. 66) that if a theory is axiomatic, one can effectively
enumerate the theorems. Any wf @ is provable if and only if its closure is
provable. Hence, we may confine our attention to closed wfs W. Since K is
complete, either @ is a theorem or ~ & is a theorem, and, therefore, one or the

T
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B other will eventually turn up in our enumeration o the theorems. This provides
B an effective test for theoremhood. Notice that if K isinconsistent, then every wf
;_1 is a theorem, and there is an obviousdecision procedure; if K is consistent, then
& not both @ and ~ @ can show up as theorems, and we need only wait till one or
§ the other appears.

If an ordinary axiomatic theory K with equality has no finite models and is

", ng-categorical for some 8 > 0, then, by what we have proved above, K is

ecidable. Tn particular, the theory K, mentioned above is decidable.

In certain cases, there is a more direct method o proving completeness or
decidability. Let us take as an example the theory K, of densely-ordered sets
with neither first nor last element. Langford [1927] has given the following
procedure for K,. Consider any closed wf W. By Proposition 2.31, we can

"~ assume that @ isin prenex normal form (Qy,). .. (Qy,)%, where B contains

no quantifiers. If (Qy,) is (y,), replace (y,)® by ~ (Ey,) ~B. In al cases,
then, we have, at the right side d the wf, (Ey,)C, where € has no quantifiers.

- Any negation x #y can be replaced by x <y Vy <x, and x €y can be

replaced by x =y \Vy < x. Hence, all negation signs may be eliminated from

© @. We can now put € into digunctive normal form, ie., a disunction o

conjunctions of atomic wfs (cf. p. 28, Exercise 1.36). Now (Ey (G, Vv &
V... V&) isequivaentto(Ey,)C, V (Ev,) V ... V(Ey,)C. Consider each
(Ey,)C; separately. € isaconjunction d atomic wisd theformt <sandt = s.
If & doesnot containy,, just erase (Ey,). Note that, if aw % does not contain
Y., then (Ey, XD A &) may bereplacedby 9D A (Ey,)6 Hence, we are reduced
to the consideration of (Ey,)%, where 4 is a conjunction d atomic wfs, each of
which contains y,. Now, if one d the conjunctsisy, = z for some z different

. from y,, replacein 4 al occurrences of y, by z and erase (Ey,). If we have
£ y, =Y, done, then just erase (Ey,). If we havey, =y, asone conjunct among
"§ others erase y, =y, If 4 has a conjuncty, <y, replace al o (Ey,)% by
& y,<y. If § consists of y, <z, A ... AY, <z, orif ¥ consists of u, <y,

A AU, <y, where Zp . .. y 2y ..., U, are different fromy,, replace
(Eyg?f by y, = y.- If Aconsstsdf y, <z, A AV, <z Au; <y, A...A
u, <y, replace (Ey,)% by the conjunction d al thewfsy; <z, for 1 <i< m
and 1< 1< j. This exhausts dl posshilities, and, in every case, we have
replaced (Ey,)C by awf % containing no quantifiers, i.e., we have eliminated
the quantifier (Ey,). We are left with (Qy,) ... (Qy,_,)® where & contains no

& quantifiers. Now we apply the same procedure successively to
& (Q,_),...,(Qy). Findly, we are left with a wf without quantifiers built up
g out o wfs o the form x = x and x <x. Now, if we replace x = x by
B x=x>x=xand x<x by ~(x = x> x = X), then the result is either an
g instanced atautology or the negationdf such an instance (Exercise). Hence, by
g Proposition 2.1, either the result or its negation is provable. Now, one can easily

check that all the replacements we have made in this whole reduction process

i applied to @ have been replacements of wfs § by other wfs @ such that

FJ = . Hence, by Corollary 2.21, if our final result is provable, then so is



98 QUANTIFICATION THEORY SEC. 12

the original wf @, and, if the negation of our result is provable,sois ~ &. Thus,
K, is complete and decidable.

The method employed in this proof, the successive elimination of existential
quantifiers, has been applied to other theories. It yields a decision procedure (cf.
Hilbert-Bernays[1934]], § 5) for the elementary theory K, of equality (cf. p. 81).
It has been applied by Tarski [1951] to prove the completeness and decidability
o elementary algebra (i.e., o the elementary theory of real-closed fields; cf. van
der Waerden [1949]) and by Szmidew [1955] to prove the decidability of the
elementary theory of abelian groups. For more details and examples cf. Chang-
Keider [1973], Section 1.5.

EXERCISES

2.88. (Henkin [1955)) If an ordinary theory K with equality isfinitely axiomatiz-
able and #,-categorical for some a, prove that K is decidable.
2.89. (8 Prove the decidability of the theory K, of equality (cf. p. 81).
(b) Givean example of a theory with equality which is &,-categorical for
some a, but isincomplete.

Mathematical Applications

(1) LeFbe theelementary theory o fields (cf. p. 82). Welet n stand for the
term 1+ 1+ ... +1. Then the assertion that a field-has characteristic p can

be exprma tby thewf C,: p = 0. A field has characteristic zero if and only if it
does not have characteristic p for any primep. Then for any closed wf @ of F
which holds for al fields of characteristic zero, there is a prime number g such
that @ holds for all fields o characteristic > q. For, if F' isobtained from F by
adding as axioms ~ G, ~ &, ..., ~C,,... (for dl primesp), the normal
models of F' are the fields o characteristic zero. Hence, by Corollary 2.15(a),
noting that if @ holds in al normal models & F it holds in al models
of F, Fe@; but then, for some finite number of the new axioms ~ C,,
~ G ~G we have = G ,..., = C H@. Leiqbeapnmegreater
than aII q,,....qn In every fleld o‘ characteristic > q, the wis ~ C,,
~ G-, ~C,, aretrue; hence @ isaso true. (Other applicationsin algebra
may “be found in"A. Robinson [1951], Cherlin [1976].)

(2) A graph may be considered as a set partialy ordered by a symmetric
binary relation R (i.e., the relation which holds between any two vertices if and
only if they are connected by an edge). Call a graph k-colorableif and only if
the graph can be divided into k disjoint (possibly empty) sets such that no two
elements in the same set are in the relation R. (Intuitively, these k sets
correspond to k colors, each color being painted on the pointsin the correspond-
ing set, with the proviso that two points connected by an edge are painted
different colors) Notice that any subgraph o a k-colorable graph is also
k-colorable. Now, we can show that if every finite subgraph of a graph § is
k-colorable,and if 8 can be well-ordered, then the whole graph § is k-colorable.
To prove this, construct the following generalized theory K with equality (Beth

'gsgc. 12
[1953)). There are two binary predicate letters 47(=) and 43 (correspondlng to

_ the relation R on §); there are k monadic predicate letters 44,
- sponding to the k subsets into which we hope to divide the graph) “and fhere are
" individual constants a,, one for each element ¢ of the graph §. We have as

[
¥
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corre-

proper axioms, in addmon to the usual assumptions (6)-(7) for equality, the
following wfs:

@M ~ A3(x, x)

(N A3(x,y) D A3(y, x)
) (NA{(x) V A (x)V -

(irreflexivityd R)

(symmetry of R)
VA4;(x)

(division into k classes)
(X) ~ A )N A ) for1 <i<j<k

(d|510| ntnessd the k classes)

(V) For 1 <i <k, ()()A!(x) A A}(y) D~ AX(x, »))

(Two elementsin the same class are not in the relation R.)

For any two distinct elementsb, ¢ of §, a # a.
(VII) If R(b, ) holdsin 8, A%(a,, a).

Now, any finite st o these axioms involves only a finite number o the
individual constants a,,...,a,, and since the corresponding subgraph
{c,,...,¢,}is by assumptlon k-colorable, the given finite set of axioms has a
model and is, therefore, consistent. Since any finite set o axiomsis consistent,
K isconsistent. By Corollary 2.35(1), K hasa normal model of cardinality < the
cardinality of the graph $. Thismodel is a k-colorablegraph, and by (VI)-(VII),
has § as a subgraph. Hence, § is also k-colorable. (Compare this proof with a
standard mathematical proof o the same result by Bruijn and Erdos [1951].
Generaly, use of the method above replaces complicated applications of
Tychonoff's Theorem or Konig's Unendlichkeit's Lemma.)

(V)

(V1)

EXERCISES

2.90.* (Lo$ [1954b]). A group B is said to be orderable if there exists a binary
relation R on B which totally orders B such that, if x Ry, then (x + 2) R (y + 2)
and (z1+x) R (z+ y). Show, by a method similar to that used in Example (2)
above, that a group B is orderable if and only if every finitely-generated subgroup
is orderable (if we assume that the set B can be well-ordered).

2914 Set up a theory for algebraically-closed fields of characteristic p (= 0)
by adding to the theory F of fields the new axioms P,, where P, states that every
non-constant polynomial of degree < n hasa root, as well as axioms to determine
the characteristic. Show that every wf of F which holds for one algebraically closed
field o characteristic zero holdsfor all d them. (Hint: this theory is &g-categorical
for B > 0, axiomatizable, and has no finite models.) (Cf. A. Robinson [1952].)

2.92. By ordinary mathematical reasoning, solve the finite marriage problem:
given a finite set M of m men and a set N o women such that each man knows
only a finite number  women and, for 1 < k < m, any subset of M having k
elements is acquainted with at least k women o N (i.e., there are at least k women
in N acquainted with at least one of the k given men). Then it is possible to marry
(monogamously) al the men of M to womenin N so that every man is mamed to a
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woman with whom he is acquainted. (Hint—Halmos-Vaughn [1950): m =1 is
trivial. For m > 1, use induction, conddering the cases: (I) for all k with 1 < k <
m, every set of k men knows at least k + 1 women, and @I) for some k with
1 < k <m, thereisa st of k men knowingexactly k women.) Extend thisreault to
the infinite case, i.., when M is infinite and well-orderable and the assumptions
above hold for all finite k. (Hint: construct an appropriate generalized first-order
theory, analogous to that of Application (2) above and use Corallary 2.35(1).)

293. Prove that there is no generalized theory K with equality, having one
predicate letter < in addition to =, such that the normal modelsof K are exactly
those interpretationsin which the interpretation of < is a wel-ordering of the
domain of the interpretation.

Let @ be aw in prenex norma form, and form its closure, say, (Ey X y,)
(PN Ey N EvsXye)B (V1> Yo Y3 Yar V5o V), Where B contains no quantifiers.
Erase (Ey,) and replace y, in % by a new individual constant b,
(Y NEy )N Eys) (ye)® (by, y2, ¥3, Var Vs, ¥6). Erase (yy) and (y,;), obtaining
(B )(Eys)(ye)B (by, Y3 V3, V4 Vs, V6)- Now erase (Ey,) and replace y, in % by a
new function letter g(y,, ¥3): (Eys)(ye)B (b1, y2, v3, 8(¥2 ¥3), Vs, V) Erase (Eys)
and replace ys in % by a new function letter (s, y3): (¥6)B (by, Y2, 3, (¥,
¥3), h(y3, 73), ¥6). Finally, erase (y). The terminal wi B (b, v2, ¥3, (V2 V3),
h(y,, y3), y¢) contains no quantifiers, and is denoted by @*. Thus, by introduc-
ing new function letters, we can eliminate the quantifiers from a wf.

Examples.

L If @ is (P)(Ey )y )(ye(Eys)B (V1 V2 V3 Yo ys) Where B contains no
quantifiers, then € * may be taken to be

G'B(yls g(yl)s Y3 Va h(yl’ y3’y4))

2. I_f_@ is (Eyl)(E)’z)(.Vs)(y Y Ey)B (Y1, Y2, V3, Vs, ¥s) Where % contains no
quantifiers, then @* isd the?orm B (b, C, y3, Vs 8(V3r Va)-

Notice that @* + @, since we can put the quantifiers back on by several
applications d Gen and Rule E4. (To be more precise, in the process of
obtaining &*, we drop al universa quantifiers and all existential quantifiers,
and, for each existentially quantified variabley,, we substitute a function letter
g(zy, ..., 2), wherez,, ..., z, are the variableswhich were universaly quanti-
fied in the prefix preceding (Ey;). If there are no such variables zy, . . ., z,, we
replacey; by a new individual constant.)

ProPosITION 236 (Second e-Theorem. Rasiowa [1956], Hilbert-Bernays
[(1939]). Let K be a generalized theory. Replace each axiom @ of K by @*.
(The rew function letters and individua constants introduced for one wf are to
be different from those introducedfor another wf.) Let K* be the generalized
theory with the proper axioms @*. Then, (a) If € isawf of K and k., then
FxC; (b) K isconsgent if and only if K* is consistent.
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PROOF.

(@) Let € be a wf of K such that +¢.C. Consider the ordinary theory K,
whose axioms &,, ..., @, aresuch that & %, ..., @, * are the axioms used in
the proof of C. Let K;* be the theory whose axioms are &%, ..., @,*.
Assume that M is a denumerable modd o K,. We may assume that the domain
of M isthe set P of positive integers (cf. p. 93, Exercise 2.81). Let @ be any
axiomof Ky; say, @ is(Ev)(v)(y)Ev)B (), 2 Y3 va)s where® contains no
quantifiers. @* hastheform % (b, y,, ¥3, 8(,, ¥3)). Extend the model M step by

as follows (note that the domain aways remains the set P): since & is true
in M, (Ey )X XEv)B (v, ¥2 ¥3 Ya) iStruein M. Let the interpretation b
of b betheleast positiveinteger y, such that (y)(¥ ) Ev)® (¥, ¥4, ¥3 a) is true
in the model. Hence (Ey,)B (b, y,, ¥3, v,) istruein this extended model. For any
positive integers y,, y, let the interpretation o g(y,, ;) be the least positive
integer y, such that B (b, y,, v5,v,4) is true in the extended model. Hence,
B (b, ¥5, 3 8(¥5Y,)) is true in the extended modd. If we do this for all the
axioms & of K,, we obtain a model M* o K,*. Since by «C, C istruein M*.
Snce M* differsfrom M only in having interpretations d the new individual
constants and function letters, and since € does not contain any o these
constants or function letters, © is truein M. Thus, € is true in every denumer-
ablemodel of K;. Hence, k¢ C by Corollary 2.15(a). Since the axiomsd K, are
axioms of K, we have F¢C. (For a constructive proof d an equivalent result,
compare Hilbert-Bernays[1939].)

(b) Clearly, K* is an extenson d K, since @*+ &@. Hence, if K* is
consistent, so is K. Conversely, assume K consistent. Let C by any wf o K. If
K* isinconsistent, Fyx.C A ~ €. By Part (a), txC A ~ €, contradicting the
consistency of K.

Let us use the term Generalized Completeness Theorem for the proposition that
every consistent generalized theory has a moddl. Clearly, if we assumethat every
set can be well-ordered (or, equivaently, the axiom o choice), then the Gener-
dized Completeness Theorem is a consequenced Proposition 2.34.

By the Maximal Ideal Theorem (M.l.) we mean the proposition that every
Boolean algebra has a maximal ideal. This is equivalent to the Boolean Repre-
sentation Theorem, which states that every Boolean algebra is isomorphic to a
Boolean algebra of sets. (Compare Stone [1936). For the theory d Boolean
algebras, see Sikorski [1960).) The only known proof o the M.l. Theorem uses
the axiom o choice, but it is a remarkable fact that the M.l. Theorem is
equivalent to the Generalized Completeness Theorem, and this equivalence can
be proved without use of the axiom d choice.

PROPOSITION 237 (Lo$ [1954a], Rasiowa-Sikorski [1951-21).  The Generalized
Completeness Theorem is equivaent to the Maximal Ideal Theorem.
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PROOF.

() Assume the Generalized Completeness Theorem. Let B be a Boolean
algebra. Construct a generalized theory K with equality having the binary

function letters U and N, the singulary function letter f (we denote f!(¢) by 1),
predicate letters = and 4}, and, for each element b in B, an individual constant
a,. As axioms, we take the usual axioms for a Boolean algebra (cf. Sikorski
[1960)), the axioms (6)—-(7) for equality, a complete description o B (i.e., if b, c,
d, e, b, arein B, the axiomsa #a,if b#c,a Ua =a f bUc=dinB,
ana=aif bnc=einB;g=a,if b=Db,inB, where b denotes the
complement o b), and axmmsassertmg that 4| determinesa maximal ideal (i.e.,
Al(x 0 D), Al A AN) D Alx U y); Ax) D Alx 0 ) ANV AND:;
~A{(x U x)). Now K is consistent, for, if thereis a proof in K o a contradic-
tion, this proof contains only a finite number of the symbolsa, a, ..., say
a,...,a,.Theeementsb,, ..., b, generatea finitesubalgebra B of B. Every
finite Boolean algebra clearly hasa maX|maI ideal. Hence, B' is a model for the
wfsoccurring in the proof o the contradiction, and therefore the contradiction
istruein B, which isimpossible. Thus, K is consistent, and, by the Generalized
Completeness Theorem, K has a model, which is a Boolean algebra A with a
maximal ideal I. But B isa subalgebra o A and I n B isa maximal ideal in B.
(2) Assume the Maximal Ideal Theorem. Let K be a consistent generalized
theory. For each axiom @ o K, form the wf @* obtained by constructing a
prenex normal form for @ and then eliminating the quantifiers through the
addition of new individual constants and function letters. Let K' be a new
theory having the wfs @*, plus all instances o tautologies, as its axioms, such
that its wfs contain no quantifiers and its rules d inference are modus ponens
and a rule o substitution for variables (viz., substitution o termsfor variables).
Now K' is consistent, since the theorems o K' are also theorems o the
consistent theory K* of Proposition 2.36. Let B be the Lindenbaum algebra
determined by K’ (i.e., for any wfs@ and %, let @ Eq b meanthat +. @ = B ;
Eq is an equivalence relation; let [€] be the equivalence class o @; define
[RIU[B]=[@V B]IRIN[B]=[&@ A B, [€] = [~ @]; under these oper-
ations, the set o eguivalence classes is a Boolean algebra, caled the Linden-
baum algebra o K"). By the Maximal Ideal Theorem, let | be a maximal ideal in
B. Define a model M of K' having the set of terms o K' as its domain; the
individual constants and function letters are their own interpretations, and, for
any predicate letter 4, we say that 4°(¢, . .., ¢,) istrue in M if and only if
[47(1;, ..., )] isnotin |. Onecan show easily that awf @ of K'istruein M if
and only if [@]isnotin I. But, for any theorem ¢ of K’, [®] = 1, whichis not
in 1. Hence, M is a model for K’. For any axiom @ of K, every substitution
instancedf @*(y,, . ..,y,)isatheorem in K'; therefore, *(y,, ...,Y,) istrue
forally,, ..., y, inthemodd. It follows easily, by reversing the process through
which @ * arose from &, that & istrue in the model. Hence, M isa model for K.
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The Maximal Ideal Theorem (and, therefore, also the Generalized Complete-

_ ness Theorem) turns out to be strictly weaker than the Axiom o Choice (cf.
¥ Halpern [1964)).

K- EXERCISES

29, Show that the Generalized Completeness Theorem implies that every set
can be totally ordered (and, therefore, that the axiom of choice holds for any set of
non-empty digoint finite sets).

295. In the proof of Proposition 2.37(2), show that if K isan ordinary first-order
theory, then the Lindenbaum algebra B is countable and the Maximal Ideal
Theorem need not be assumed in the proof.

The natural algebraic structures corresponding to the propositional calculus
are Boolean algebras (cf. p. 43, Exercise 1.53, and Rosenbloom [1950], Chapters
1-2). For first-order theories, the presence d quantifiers introduces more
algebraic structure. For example, if K is a first-order theory, then, in the

corresponding Lindenbaum agebra B, [(Ex)@(x)] = 2, [@(f)] where D, indi-
| |

cates the least upper bound in B, and ¢ ranges over al terms of K which are free
for x in @(x). Two types dof algebraic structures have been proposed to serve as

. algebraic counterparts d quantification theory. The first, cylindrical algebras,

have been studied extensively by Tarski, Thompson, Henkin, Monk, and others
(cf. Henkin-Monk-Tarski [1971]). The other approach is the theory o polyadic
algebras, invented and developed by Halmos [1962].
13 Elementary Equivalence. Elementary Extensions.

Two interpretations M, and M, d a generalized first-order predicate calculus

& K aresaid to be elementarily equivaent (written M, = M, if the sentences of K
& truefor M, are the same as the sentences true for M,. Intuitively, M, =M, if
§ andonlyif M, and M, cannot be distinguished by means o the language of K.}
& O course K isa generalized predicate calculusand may have non-denumerably

many symbols.

Clearly, (i) M = M; (ii) if M, =M,, then M, =
M, = M,, then M, = M,

Two models o acomplete theory K must be elementarily equivalent, since the
sentences true in these models are precisely the sentences provable in K. This
applies, for example, to any two densely ordered sets without first or last
elements (cf. p. 81).

M,; (iii) f M; =M, and

¥This usedf = has nothing to do with the connective symbol = used for the biconditional "if and
only if'.

Notice that for M to bea model o a predicatecalculus K nothing more is required than that the
interpretations provided by M consgt only o interpretations of the symbols o K. M is then
automatically a model o K, since the only axiomsdf K are logical axioms.
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We already know, by Proposition 2.33(2), that isomorphic models are elemen-
tarily equivalent. The converse, however, is not true. Consider, for example, any
complete theory K which has an infinite normal model. By Corollary 2.35(2), K
has normal models of any infinite cardinal «,. If we take two normal models of
K of different cardinality, they are elementarily equivalent but not isomorphic.
A concrete example is the complete theory K, of densely ordered sets having
neither first nor last element. The rational numbers and the real numbers, under
their natural orderings, are elementarily equivalent models of K,, but are not
isomorphic.

EXERCISES

296. Let K, the theory d infinite sets, consst o the pwe theory K, o
equdity, plus the axioms %,,, where %,, asserts that there are at least n dements.
Show that any two modds o K, are eementarily equivaent (cf. Exercises 262
and 2.89(a)).

2970 If M, and M, are dementarily equivalent norma modds, and M, is
finite, prove that M, and M, are isomorphic.

298 Let K be a theory with equality having &, symbals.

() Prove that there are & mog 2% models o K, no two d which are
dementarily equivalent.

(b) Prove that there are at most 2% mutualy non-isomorphicmoddsd K
d cardinality x5, where y is the maximum o a and 8.

29 Let M beany infinite normal model o a theory with equal ity K having &,
symbols. Prove that, for any cardina &, > &,, thereisa norma modd M' o K o
cardinality », such that M = M".

A model M, of apredicatecalculus K issaid to be an extension of a model M,
of K (written M; C M,1) if the following conditions hold.

(& Thedomain D, of M, isa subset of the domain D, of M,.

(b) For any individua constant ¢ of K, cM: = ¢™1 where ¢™2 and ¢M! are the
interpretations of cin M, and M,, respectively.

(© For any function letter f; o K and any a,...,a, in Dy,
May, ..., a) =My, - . ., a,).

(d) For any predicate letter A" of K and any a,...,a, in Dy,
Fm A lay, ..., a] if andonly if Fy A[ay, ..., a].

When M, € M,, one also says that M, is a substructure (or submodel) of M,.
Examples.

(i) If K containsonly the predicate letters = and <, then the set of rational
numbers under its natural ordering is an extension of the set of integers under its
natural ordering.

(i) If K is the predicate calculus in the language of field theory (with the
predicate letter = , function letters + and x, and individual constants 0 and 1),

{The reader will have no occasion to confuse this use of ¢ with that for the inclusion relation.

f- Sec. 13 ELEMENTARY EQUIVALENCE AND EXTENSIONS 105

i then the field of real numbers is an extension of the field of rational numbers,
E the field of rational numbersis an extension of the ring of integers, and the ring
g d integers is an extension of the "semiring”™ of non-negative integers. For any
& ficlds F, and F,, F, CF, if and only if F, is a subfield of F, in the usual
i algebraic genge,

& EXERCISES

210 Prove (@ M c M. (b) If M; C M, and M; C M;, then M, C M;. () If
M, C M, and M; C M,, then M, = M,.
2101 Asume M, C M,.

@ Let B, ...,x,) be a w o the fom (»y)...(y)
Xy o vy X V- 0,Y,), Where @ contains no quantifiers. Show
that, for any a,, ..., a, in the domain d My, if ky,Bay,...,a],
then Fn,®[ay,...,a]. In particular, any sentence (y,)... ()
€Yy - . ., ym) Where @ contains no quantifiers, is true in M, if it is
true in M.

o) Let B(x;,...,x,) be a w o the fom (Ey) ... E)

@(xpy vy XY --.,Y), Where @ has no quantifiers. Show that,
for any a,...,a, in the doman & M,, if Fy%[a,...,a],
then Fp, B (ay, ..., 3] In particular, any sentence (Ey,) . .. (Eyy)
&y, - - . » V) Where @ contains no quantifiers, is true in M, if it is
true in M;.

2.102. ((a) Let K be the predicate calculusd the languaged field theory. Find
amodd M d K and a non-empty subset X o the domain D d M such that there
is no substructured M having domain X.

() If K isa predicatecaculuswith no individual constantsor function
letters, show that, if Misamodd d K and X isa subset o thedomain D d M,
then there is one and only one substructured M having domain X.

(g)gLet K beany predicatecalculus. Let M be any modd d K and let X
be any subset of thedoman D d M. L&t Y be theintersection o the domains d
al submodelsM' of M such that X € D,  the domain of M'. Show that there is
one and only one submodel of M having domain Y. (This submodel is called the
submodel generated by X))

/

A somewhat stronger relation between interpretations than 'extension™ is
useful in model theory. Let M, and M, be models of some predicate calculus K.
We say that M, is an elementaty extension of M, (written M, < M,) if:

(a) M, CM,, and

(b) Forany wi &(yy, - .
of M,,

.,y,) of K andforany a,,...,a inthe domain D,

Fm,@[ay, - ..,a] if andonly if Fy,&[ay,...,a].

(In particular, for any sentence @ of K, @ istruefor M, if and only if @ is true
for M;.) When M, <.M,, we shall also say that M, is an elementary substructure
(or elementaty submodel) of M,.



106 QUANTIFICATION THEORY Sec. 13

It is obviousthat, if M, < .M,, then M, € M, and M, = M,. The converse is
not true, as the following example shows. Let K be the first-order theory of
groups (cf. p. 82). K has the predicate letter =, function letter +, and
individual constant 0. Let | be the group o integers, and 21 the group o even
integers Then 21 ¢ | and | =~ 21. (The function g such that g(x) = 2x for al x
in | isan isomorphism d | with 21) Since | ~ 21, | = 2L Consider the wf @(y):
(Ex)(x t x =y). Then £ @[2], but not-Fy@[2]. Thus, | is not an elementary
extension of 2L (This example shows the stronger result that even assuming
M, c M, and M, =M, does not imply M, < _M,.)

The following theorem provides an easy method for showing that M, < M,,

ProrPoSITION 238 (TARskI-VAuGHT [1957]). Let M, c M,. Assume the
following condition:
($) For every wf % (x, , X) of theform (Ey)@(x,, ..., X, Yy)andfor al
a,,...,ain thedoman D of M, rf#M %Bla,...,a], thenthereissomeb
in D, such that k,, @[a,,...,a,, b].
Then M, <M,.

PROOF. Let us prove: (x) Fy Clay, ..., ] if and only if Fy Cla,, ..., 4]
for any wf C(x,, ..., x,) and any a,,...,a inD,. The proof is by induction
on the number m of connectives and quantifiersin €. If m = 0, then (*) follows
from clause (d) of the definition of M, C M,. Now assume that (*) holds true
for al wfs having fewer than m connectivesand quantifiers.

Case 1. € is ~ 9. By inductive hypothesis, Fy D[a,, ..., a] if and only if
kMGD[a,, .+ ., ) Using the fact that not-Fy, GD[a,, ...,a] ff and only if

~ GD[a,, ...,a], and smilarly for M,, we obtain (*).

Casez @ is% o 6. By inductive hypothesis, £y, Dia,, . . .
Fv,Dlay, - - -, &), and similarly for 6. () then followsessily.

Case 3. € is (Ey)&(x, ..., x,Y). By inductive hypothesis,

(*+) F\y Qlay,...,a, bl if and only if #Mz@[al, ...,a, b forany a,,...,
a, binD,.

(3a): Assume Fyy (Ey)@(x,, . xk,y)[ah ...,a] forsomea,,...,a inD,.
Then, ky @[a,, ..., a, b] for some bin D,. So, by (+%), Fy,&[a), ..., a, b].
Hence,

, q.}if and only ff

l:Mz(Ey)@’(xp ey xk»y)[ap ey ak]-

(3b): AssumeFy (EV)@(xy, ..., X, ¥)ay...,q]forsomea,,...,a inD,.
By assumption ($) ‘there exist b i |n D, such that t m,&la,, ..., 8, bl. Hence, by
(**), Fy,@[ay, . .., a, b],and, therefore F (Ey)éﬂ(x!, S Xelay, .., a)

Thiscompletes the induction proof since any W is Iogiwa equivalent to a wf
that can be built up from atomic wfs by forming negations, conditionals, and
exigtential quantifications.

EXERCISES

2.103. Prove (@) M < M; (D) If M; < M, and M, < M;, then M; < M.
2104. If M, < M, M, €M, and M, C M,, provethat M, < M.
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2.105. Let K be the theory of totally ordered sets with equality (Axioms (a)-(c),
(e)-(g) of Exercise 2.63, p. 81). Let M, and M, be the modelsfor K with domains
the st of non-negativeintegersand the st of positive integers, respectively (under
the natural orderings < in both cases). Prove that M; C M,, M, =M,, but
M, My

Let M be a model d a theory K. Extend K to a theory K' by adding a new
individual constant a, for every member d d the domain & M. We can extend
M toamodd d K' by takingd as the interpretation d a,. By the diagram o M
we mean the set o dl true sentences d M o the forms Ajn(ad,’ )
~Af(ay, ..., a,), and fi(ay, ..., a;) = a, . In particular, a; #a, belongsto
the diagram if d, # d,. By the complete diagran & M we mean the set d all
sentences d K' that are true for M.

Clearly, any model M' d the complete diagram d M determines an elemen-
tary extension M" of M,t and vice versa

EXERCISES

2.106. (a) Let M beadenumerablenormal model of an ordinary theory K with
equality such that every element of the domain of M is the interpretation of some
closed term of K.

(i) Show that,if MEM and M M/ then M < M.

(ii) Prove that there is a denumerable normal eementary extension M’
of M such that M and M' are not isomor phic.

() Le K be a predicate calculus with equality having two function
letters + and x, and two individual constants 0 and 1. Let M be the sandard
model of arithmetic, with domain the set of natural numbers, and +, %, 0, 1
having their ordinary meaning. Prove that M has a proper denumerable extension
which is not isomorphicto M, that is, there is a denumerable non-standard model
of arithmetic.

ProrosiTION 2.39 (Upward Lowenheim-Skolem-Tarski Theorem). Let K be
a theory with equdity having 8, symbols, and let M be a norma modd d K
with domain of cardinality &,. Let y be the maximum of « and 8. Then,for any
"8 >y, thereisa modd M' of cardindlity 8; such that M #= M'and M < M".

prooF. Add to the complete diagram of M a set of cardinality 85 of new
individual constants b, together with axioms b, # b, for distinct 7 and ¢ and
axiomsh  a, forall individual constants a, corresponding to membersd of the
domain o M. This new theory K' is consistent, since M can be used as a mode
for any finite number o axiomsof K'. (If b, ,..., b,,4a,4,...,a, arethe new
individua constants in these axioms, interpret cees by, as disti nct elements
of the domain of M differentfromd,, ..., d,.) Hence by Corollary 2.35(i), K’
has a normal model M o cardinality «, such that M C M'and M <M.

h*’l'hc elementary extension M" of M is obtained from M' by for gettingabout the inter pretationsof
thea,’s.
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ProposiTion 2.40 (DOoWNWARD LOWENHEIM-SKOLEM-TARsk1 1HEOREM).  Ler
K be a theoty with &, symbols, and let M be a modd & K d cardinaliy,
8, > 8, AssumeA is asubset d the domain D d& M having cardindity n, anqd
assume N, is such that &, > &g > max(x,, n). Then there is an elementary
submodel M' & M d cardinaity 85 and with domain D' 2 A.

PROOF. Sincen < Xg < &, We can add Ng elementsof D to A to obtain a
larger set B of cardinality &;. Consider any subset C of D having cardinality x,.
For evey wf &(y,,...,Y, 2) Of K and any a,, ...,a, in C such that
FM(ED)Q@(yy, - -+ 2V 24y, - - -, 8), add to C the first lement b of D (with
respect to some fixed well-orderingof D) such that k&(a,, . - - , &. b). Denote
the so-enlarged set by C*. Since K has &, symbols, there are 8, wfs. Since
&, < R;, thereare at most 8 NEW elementsin C*, and, therefore, the cardinal-
ity of C* is 8z. Form by induction a sequencedf sets Cy, C,,... by setting

C=BandC,,,=C* Le D = |J C, Then thecardinalityof D' isX. In

addition, D' is closed under dl the firfttions M. (Assume a,, . . .
We may assume a,, ..., a, in C; for some k. Now hM(Ez)(f/’.'(x,, cen
z)a,, ..., a]. Hence, (fH)M™(a,, . . ., a,), being thefirst and only member b of
D such that Fy(f}(xy, . . ., X,) = 2)[ay, .. ., &, b, must beong to C,* = G,
C D'.) Similarly, al interpretations (a;) of individual constants are in D’.
Hence, D' determinesa substructure M of M. To show that M' < M, consider
any W &y, ..-,¥»2) and any a,, ...,a, in D' such that
FM(ED)Q(yy, . -y Y 2@y, - - -, 8,1 There exists C, such thata,, ..., a, arein
C,- Let b be thefirst element o D such that ky@[a,,...,a, b. Thenbe C*
= G4 € D'. So, by the Tarski-Vaught Theorem (Proposition 2.38), M' < M.

14. Ultrapowers. Non-Standard Analysis.
By afilter on a non-empty set A we mean aset 5 o subsets o A such that

() AE5;
(i) BEFAC
B

i e %;
(i) BeF AN > 1

&0

ES O RBAN
cCCoHcCe

Examples.
l. F = (A) isafilter on A.
2. 5= 9P(4)isafilter on 4.7 It is said to beimproper and every other filter

on A issaid to be prover.

3. LetB CA. Theset ¥, = (C|BCC ; : & .
of all subsetsd A that inclugeB. Any filter 0 f?\w%fgr?nfgﬂeriggaﬁédjépﬁjﬁggg

*The notion of a filter isrdated to that of an ideal. A collection F € ¥ (4) is a filter on A if and
only if theset § = {A — B|B € ¥} of complements Of setSin & isan ideal in the Boolean algebra
P (4). Remember that @ (4) denotes the st of all subsetsof A.

| ! Sec. 14

~ filter. In particular, ¥, = (A) and ?(4) = ¥, are principa filters. (Remember
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that 0 denotes the empty st.)

EXERCISES

2,107. Show that afilter § on A is proper if and only if 0 4 F.

2.108. Show that afilter 9 on A isaprincipal filter if and only if theintersection
of al setsin ¥ isa member of 5.

2.108. Prove that evay finitefilter isa principa filter. In particular, any filter on
a finitesat A isa principal filter.

2110. Let A be infinite and let ¥ be the set d all subsets & A that are
complements o finitesets: § = ({CEWXC = A — W A Fin(W))). Show that §
is a non-principal filter on A.

2.111. Assume A has cardindity 8. Let &, < #5. Let F betheset of dl subsets
of A whose complements have cardinality < ¥,. Show that 5is a non-principal
filter on A.

2112. A collection § o sets is said to have the finite intersaction propaty i
BynBN...NnB, ~0forany sets By, ..., B, in 8. If § is a collection o
subsetsd A having the finite intersection property, and ¥ = {C{(EBXB € ¢ A

B £ C ¢ A)), show that & is gproper filter on A.

DerniTion. A filter F on a set A is caled an wltrafilter on A if ¥ isa

maximal proper filter on A, that is, Sis a proper filter on A and thereis no
proper filter § on A such that ¥ ¢ §.

Example. Let a € A. The principal filter 3, = (Bla€ BA B C A) isan
ultrafilter on A. For, assume that § is a filter on A such that %, C §. Let
cCeg-9,.ThenCcAandaé¢ C HenceeaE A — C.Thus,A — CE F,
c§. Since ¢ is a filter and C and A — C are both in §, then0=C n
A - C) e ®. Hence, § is not a proper filter.

EXERCISES

2113. Let § bea proper filter on A, and assume that B
Provethat thereis a proper filter ¥ 2  such that B € ¥".
2.114. Let F be a proper filter on A. Prove that % is an ultrefilter on A f and
only if, forevay B C A, éithee BE ForA - B € 4.

2115. Let 4 be a proper filteron A. Show that 5 is an ultrdfilter on A if and
only if, foral Band C in #(A4),if B & % andC &€ %,thenBuU C 4 4.

2116. (8 Show that evary principal ultrafilter on A is o the form %, =
{Blae BA B CA), wherea € A.

(b) Show that a non-principa ultrafilter on A contains no finite sets.

2117. Let F beafilter onaset A and let § bethecorrespondingided: B € § if
and only if A — B € 5. Prove that & is an ultrafilter on A if and only if 9 isa
maximal idedl.

2118. Let X beachaind proper filterson aset A, thatis, for Band (¢
gthe BC Coar C € B. Prox?etﬁgt the union U(X) = {aI(SEBX%WE XaR gén}'}

is a proper filteron A and B € U (X) for all Bin X.

cAandA-B 469.
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PROPOSITION 241 (ULTRAFILTER THEOREM). Everyfilter ¥ onaset A can be

extended to an w/trafilter on A.

PROOF. Let & be afilter on A. Let § be the correspondingideal: B = ¢ if
and only if A — B € %. By Proposition 2.37, every ideal can be extended to a
maximal ideal. In particular, 3 can be extended to a maximal ideal ¢. If we let
¢ ={BJ4d — B € §}, then § iseasily seen to be an ultr&filter,and § C 9.

The existenced an ultrafilterincluding & can be proved easily on the basisof
Zorn's Lemma (p. 210). (In fact, consider the set X o al proper filters % such
that ¥ ¢ 9. X is partialy ordered by C and any C -chain in X has an upper
bound in X, namely, by Exercise 2118, the union o dl filtersin the chain.
Hence, by Zorn's Lemma, there is a maximal element ¥* in X, which is the
required ultrafilter.) However, Zorn's Lemma is equivalent to the Axiom of
Choice, which is a stronger assumption than the Generalized Completeness
Theorem.

CoROLLARY 242.  If A isan infinite set, there exists a nun-principal witrafilter
o A.

PROOF. Let ¥ be the filter on A consisting of all complementsA — B d
finite subsets B o A (cf. Exercise 2110). By Proposition 2.41, there is an
ultrafilter 6 > 9. Assume § is a principa ultrefilter. By Exercise 2.116(a),
8 =9, for someacA. Then A —{a) € ¥ C 8. Als, {a) = 8. Hence,
0={a) n A -{a)) € G, contradicting the fact that an ultrafilter is proper.

Reduced Direct Products.  We shall now study an important way o construct-
ing moddls. Let K be any predicate calculus with equality. Let J be a non-empty

set, and, for each j in J, let M, be some normal modd d K. In other words,
consider a function F assigning to each j in / some norma model. We denote
F(j) by M..
Let & be an ultrafilter on J. For each j in J, let D, denote the domain d the
model M;. By the Cartesian product [[ p. we mean the set d dl functionsf
Jjed

with domain Jsuch that f(j) € D, for dl jinJ. Iff € T D,, we shall refer to

ieJ
f()) as the j'" component off. Let us define a binary rélation = Cin I D, as
follows: I jEJ

f =ggif andonlyif {j|f(j) = g(j)} € F.
If we think of the setsin % as being "'large’ sets, then, borrowing a phrase from
measure theory, we read f =5g as “f(j) = g(j) amost everywhere".
It is easy to see that = is an equivalencerelation: (i) f =gf; (ii) if f=4g,
then g =4f; (ili) iff =5g and g =g h, then f =z h. For the proof of (iii), observe
that {jIf)) = e} N (J1gU) = k() € (1A = k(D). X {jIf)) = g())}

*We assume the Generalized CompletenessTheorem (p. 101).

111
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s and {J1g(J) = h())} arein ¥, then o is their intersection, and, therefore, also

& (1) = h()-

On the basis o the equivalence relation =5, we can divide ,.LI,D into

equivalence classes: For any f in jLIJDj, we define its equivalenceclass f5 as

(glf =s8)- Clearly, () € fs (i) fo = hsif and only if f =% h; (iii) if fir # s,
then fs N hg = 0. We denote the set of al equivalence dasses f by ;H,/D,/%.

Intuitively, HD /% is obtained from jEJ D, by identifying (or merging)
dementsof HJD,- that are equal almost everywhere.
JjE
Now we shall definea model M d K with domain jH,Dj/‘.’T.

() Letcbeany individua constant d K, an? let ¢; be the interpretation of ¢
in M,. Then the interpretation of ¢ in M will be’?, wheref is the function such
that (/) = ¢ for al j in J. We denotef by {¢};e-

(ID Let f} be any function letter of K and let 4, be any predicate |etter of
K. Their interpretations (7)™ and (4)™ are defined in the following manner.

Let (g)s > - - » (8)s beany membersd 11, D,/ .

@ UDM(&)ss - - (89 = hs, Where h(j) = (FM(&0): - - &) for
aljind. _
® AOM(2)s . . ., (2.)e) holds if and only if
(i EmAc &), . . . 8D € 7
Intuitively, ( MM is calculated component-wise, and (4, ) holdsif and only if it
holds in amost al components. Definitions (a)-(b) have to be shown to be
independent d the choice o the representatives g, . .., & in the equivalence

dasses(g)s . . ., (8)s
* 5 * *N (MY o %] . *( ),
A P T TR A AT A
(A8 O). .., 8.0 € F.
(i) followsfrom theinclusion
Ulgi() = &) 0 --. 0 {lg() = &)}
c (UMD - - -2 80D = DM (&t 0D - &N}

(i) follows fromtheinclusions
(lg() =g} n...n (&)= g.* ()}
c 1] l'_MJAJ:[ g,(j), -+, g())] if and only if ?M;Aé'[gt"(j), L 2.0 ()])
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{Jls; satisfies 6§ j , F ince i i ition i
equ{valent, by%E;g(]:\lliée} ZEZI.ZI:Z, ?om’{jigcgat{s; Isefsin ~u16;}raf11teh,;, tl;: :;St condition is
Case 1. @ is B A €. By inductive hypothesis, s sat{s}fies % in M if and
only if {Is; satisfies B in M) € 9; s satisfies @ in M if and only if { e
_sau§f1es €@ in M;} € 9. Therefore, s satisfies B A € if and only if both of 'thé
indicated sets belong to 9. But this is equivalent to their intersection belongin
to(‘_:ff, which, in turn, is equivalent to {Jls, satisfiesB A @ in M} e, ¢
3¢ 1. @ is (Ex)®. Assume s salisfies (Ex)%. Then there exists 4 in
jl;[J D, such that s" satisfies % in M, wheres’ is the same as s except that kg is
the i component of s’. By inductive hypothesis, s satisfies % in M if and onl
if { j|s;" satisfies B in M,;} € F. Hence, {Jls, stisfies(Ex)B in M,) € & sincey
if :;wtisfiels% in M, then s satisfies (Ex)® in M,. ! ’ '
onversely, assume W = {jls. satisfies (Ex,)B in M. F j i
choose some s/ such that s’ g ]tﬁe same as( S é>)(CEpt irll\llzjlt} n(fo;.t}l:g F"’eigl;{p::-];efi
and s;” satisfies B. Now definehin ]| D, asfollows: For i in W, let h(}) be the

4 , . JjeJ

/i comp?nent of s/, and, for j & W, choose (/) to be an arbitrary element of

D, ];f" s” be the same as s except that itsi™" component is hg. Then W |

satisfies % in M;} € §. Hence, by the inductive hypothesis, s” satisfies 5 i 84
S : ) , ! §

Therefore,_s sat|Jsf|eS(Ex,)5J3 in M, P isfies % in ﬁd

_(B) TR follows from Part (a) by noting that asentence & is true in a model
if and only if some sequence satisfies g,

COROLLARY 244. If M isa modd, and & is an ultrafilter on J, and if M* is
the ultrapower M7 /%, then M* = M.

PROOF. Let @ be any sentence. Then by Proposition 2.43(b), @ ; :
:14* if and only if {|@ is true in M) E F. If @ is true in M, {}]GB :; g’ﬁz :E
}=J€eF.IfqisfdseinM, (/@ istruein M} =0 ¢ 4.

Corollary 2.44 can be strengthened considerably. For . -

of M, let ¢* stand for the co?’lstant function sucl)xl that : 32:)0:“;1]13 don}afn D
Define the function ¢ such that, for each ¢ in D, y(¢) = {e™); Ef%'? }1 F lgn{i
denote the range of by M*. M* obviously contains the interpretations jr; Mx*
of ) 'ﬂ‘-" individual _constants. Moreover, M' is closed under the operations
()™ 5 for, (FM((e,%)s .. ., (¢,%)g) is hg Where h(j) = (M, - c)
fox;all; i J, and (f))(c,, ..., ¢, is afixedelement b of D. S0 hg = (b¥). e
M?. Thus, M* s a substructure of M*. ’ ’

CoRrOLLARY 245,y isan isomorphism d M with M, andM' < M*

ProOOF. (i) By definitiond M, theranged  isM. (i) ¢ is one-one. (For
any ¢, d in D, (¢¥); =(d*)s if and only if ¢ =54 %, which is equivalent to
{Jlc®Gy=d*(HY €T, ie, {jlc=d)€F. If c#d, {jlc=d)=0¢ F,
and, therefore, 4(c) # Y(d). (ii)) For any c,...,c, in D,

n

:_-"'M #-,.._,"n‘ — ")M(C,. )
'fé’f,;;m((;j_ .(.j,)e,,))"’/@ 2 ‘z,(((ff):))’“(ct,(.f £ ) () FapAZTWe), - - e if

and only if (jlFyA(W(c )0, - - W)UN) & %, which is equivalent to

k. 14 ULTRAPOWERS 115

M ey, - o5 W) = UM Ue™s s - - -

,(¢,¥)e) = hg, where h(j) =
By Thus hg =

{jl E Ay <« s ¢} € F,1e., Fdllcy - s c,)- Thus, ¢ is an isomorphism of
with M*.
MTo see that M* <.M*, let @ be any wf, and (¢,%)g, ..., (¢ ")s € M.

Then, by Proposition 2.43(a), FM*@[(C!#)Q,‘, s (Cn#)@‘l if and only if
Ulhw@le*0), - -+ 6, ()]} € F, whichis equivalent to {JIFm@lens - 5 cal)
€ & which, in turn, iS equivalent to FM@{% coo Gab tbat 15, to
FMa;@’-[(C;*)@: -+, (c, %)), Sincey is an isomorphism of M with M™.

EXERCISES _ . N
2.119. (The Compactness Theorem agan; cf. Exerase 2.34.) If all finite subsets
of a set of sentences I' have amodd, prove that T hasa mod_el. ‘
2.120. (a) A class U of models Of a predicatecaculusK is called elementary if
: T of sentences of K Such that A is the class of all models of I. Prove
E:‘rthl}? ?sS:ltementary if and only if W is dosed under elementary equivalence and
e foma(fgng ::J:;i?)rﬁ?lfduc::ftsmodels of a predicate calculus K will be called
sentential if there is a sentence @ of K such that 9 is the class of all models of ®
Prove that a class 9 is sentential if and only if both U and its complement AU(all
models of K not in ) are dosed with respect to elementary equiValence and
ultraproducts.

(©) Prove that the theory K of fidlds of characteristic zero (cf. p. 98) is
axiometizable, but not finitely axiomatizable. .
Non-Standard Analysis. FTom the invention of the ca}culp§ until rela._twel};

recent times the idea of infinitesimals has been used as an intuitively me?{géll%fﬁs
tool for finding new results in anaysis. The fact that there was 10 )
foundation for infinitesimals Was a source of embarrassment and led mathemati-
cians to discard them in favor d the rigorous limit ideas of Ca(}}gggvea}tég
Weierstrass. However, about twenty years ago, Abraham Robinson °
that it was possible to resurrect infinitesimals in an entqely |egitimate apd
precise way. This can be done by constructing models which are elementarily
equivalent to, but not isomorphic to, the ordered field of real numbers. Si?rch
models can be produced €ither by using Proposition 2.34 (p. 95) or as ullra-
powers. We shall Sketch here the method based on ultrapowers.
Let R be the set of real numbers. Let K be a generalized pre

with equality having the following symboals.

f

dicate calculus

(1) For each real number r, thereis an individual constant a,;

EZ; For every n-ary operation ¢ on R, thereis a function letter f;

3) For every n-ary relation ® on R, thereis a predicate letter A,
We can think of R asforming the domain o a model % for K; wesimply let
@)*=r, (f)* = @, and (49)* = @.
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Let % be a non-principal ultrafilter on the set w o natural numbers. We can
then form the ultrapower | * = }«/%. We denote the domain R*/% o C*
by R*. By Corollary 2.44, R * = R, and, therefore, & * has al the properties
formalizable in K that ® possesses. Moreover, by Corollary 245, C* has an
elementary submodel ®%, which isan isomorphicimage o .. The domain R*
d R* condsts of al elements (¢ *),; corresponding to the constant function
c”(i) = ¢ foral i in w. We shall sometimes refer to the members of R* also as
real numbers, the elements f R* — R* will be called non-standard reals.

That there exist non-standard reals can be shown by explicitly exhibiting one.
Let «j) =j fordl j in w. Then ¢z € R*. However, (€), < foralcinR, by
virtue of Lo§’ Theorem and the fact that {j|c *(/) < «/)} = {Jj|c¢ <]}, being the
set of al natural numbers greater than a fixed rea number, is the complement of
afinite set, and is, therefore, in the non-principal ultrefilter %. .5 is an "infinitely
large"™ non-standard real. (The relation < used in the assertion (¢ *)s < iz isthe
relation on the ultrapower C* corresponding to the predicateletter < of K. We
use the symbol < instead of (<)*" in order to avoid excessive notation, and we
shall often do the same with other relations and functions, such asu T v, u X o,
and |u])

Since A * possesses al the properties of R formalizable in K, & % is an
ordered field having the real number field R* as a proper subfield. (R * is
non-Archimedean: the element «; defined above is greater than all the natural
numbers (n¥)s of R *.) Let R,, theset of "*finite” elements of R*, contain those
elements z such that |z] < u for some real number uin R. (R, iseasily seen to
form a subring d R*.) Let R, the set o "infinitesmals” of R*, contain those
elementsz such that |z[ <« for al positive real numbersu in R.  The reciprocal
1/t isan infinitesimal. (It is not difficult to verify that R, isan ideal in the ring
R,. In fact, since x € R, — R, implies that |/x € R, — R,, it can be easly
proved that R, is a maximal ideal in R,.)

EXERCISES
2.121. Prove that the cardindity d R* is 2™,
+2.122. Prove that the set R, d infinitesmasis cdlosed under the operaions d
, —,and X,
2.123. Prove that, if X € R; andy € Ry, then ¥y € R,
2.124. Prove that, f X € R, — R, then 1/x €R, — R,

Let x € R,. Let A = {u|u € R* < - #
Then (A, B) isa"cut", a%d, therefor{e\, gaax in%nsda %niq g%a% rlm?ﬁm erur>3tj(gh
that (i) (x)(x € A 3 x <) and (ii) (x)(x € B 3x > r).T The differencex — r
isan infinitesimal. (Proof: Assumex — risnot aninfinitesimal. Then [x — ] >
r, for some positive rea number r,. Case I: x >r. Then x — r >r,. So,

fCf. Mendelson [1973], Chapter 5.
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“ x>rtr, >r But then r+ r, € 4, contradicting (i). Case 2 x <r. Then

y—x>r,,and so, r >r — r, > x. Thus, r — r; € B, contradicting (ii).) The
real number r such that x — r isan infinitesimal is called the standardpart o x
and is denoted st(x). Note that, if x isitsdf areal number, then st(x) = x. We
shall use the notation x aay to mean that st(x) = st(y). Clearly, x ay if and
only if X — y isan infinitesimal. If x &y, we say that x andy are infinitely close.

EXERCISES
2125, If X € Ry, show that thereisa uniquered number r auch that x - risan
infinitesimal. (It is necessary to check this to ensure that st(x) is well-defined.)

2126, If x andy arein R, prove

(@ st(x +y) = st(x) T st(y);

(b) st(xy) = st(x)st(y);

(©) st(—x) = — st(x) Ast(y — x) = st(p) — st(x);

(d) x = 0D st(x) = 0

(® X <y Dstx) < st(y).

Theset w o natural numbersisasubset of the real numbers. Therefore, in the
theory K there is a predicate letter N corresponding to the property x € w.
Hence, in R*, thereisa set w* o elements satisfying the wf N(x). An element
fs & R* satisfies N(x) if and only if {j|f(j) € w} € 4. In particular, the
gements n*;, for n € w, are the "standard" members d w*, while «z, for
example, is a "' non-standard" natural number in R*.

Many o the properties o the real number system can be studied from the
viewpoint of non-standard analysis. For example, if s is an ordinary sequence of
real numbers, and c is a real number, one ordinarily says that lims, = c if

(&) ()e>00 (En)(n€wN(K)k€EwAK>n3]s, — c| <&))).

Since s € R, s is a relation and, therefore, the theory K contains a predicate
letter S(n, X) corresponding to the relation s, = x. Hence, R* will have a
relation of al pairs(n, x) satisfying S(n, x). Since 4 * 4 | thisrelation will be

, afunction which is an extension d the given sequence to the larger domain w*.
Then we have the following resuilt.

ProPOSITION 2.46. Let s bea sequence d real numbers and ¢ a real number.
Let s¢ denote thefunction from w* into R* corresponding to s in R *. Then
lim s, = c if and only if s*(n) = cfor all nin w*x — w. (The latter condition
can be paraphrased by saying that s*(n) is infinitely dose to ¢ when n is
infinitely large.)

PROOF. Assume lim s, = c. Consider any positive real e. By (&), there is a

natural number n, such that (k)(k € w Ak > ny 3 tn - ¢/ <e¢) holds in 4.
Hence, the corresponding sentence (k)(k € w* Ak > ny 3[sk(n) — c| <¢)

holds in /*. For any nEw — w, n>n, and, therefore, |s*(n) — c| <e.
Since this holds for al positiverease, s*(n) — c is an infinitesimal.
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_Conversely, assume s*(n) ~ ¢ for all n € w* — . Take any positive real ¢,

(k)(k|> ny D |s*(k) — c| <e). So, the sentence
n 2 s; — ¢| <e) is true for R *, and, there-
fore, also for .. So, there must be a natural number ng such that (k)(k € o A

k 2 n,D s, — ¢| <e). Since £ was an arbitrary positive real, we have proved

X some n, in w* ~ w. Then

(En)n € o \(k)k Ew Ak >

lims, = c.
EXERCISE

2127. Usng Proposition 246, prove the following limit theorems for the red
number system.

Let s and u be sequencesd red numbers, and ¢, and ¢, real numbers such that
lims, = ¢, and lim u, = ¢,. Then:
@ lim(s t W =c 1y
©) lim (s,u,) = cicp;
(© Ifeg#0anddl u =0, lim(s,/u,) =C,/c,.

Let us now consider another important notion o analysis, continuity. Let B
be a set of real numbers, let ¢ € B, and let f be a function defined on B and
taking real values. One says that f is continuous at ¢ if

(&&) (e)(e >0 (E8)(S >0
AN (xNx € BA|x = ¢ <8 2 |f(x) - flc)| <e))).

PROPOSITION 2.47. Let f be a real-valued function defined on a set B of real
numbers. Let ¢ € B. Let B* be the subset of R* corresponding to B, and let *
be the function corresponding to £. Then f is continuous at ¢ if and only if
(xX)(x € B* N\ x~ D f*X(x)~ flc)).

EXERCISES

2.128. Prove Propostion 247.

2129. Asumef and g are red-valued functions defined on a set B d red
numbers, and assume that f and g are continuous at a point ¢ in B. Using
Proposition 247, prove:

(@ f * giscontinuousat c;
{b) f- g iscontinuousat C.

2130. Leaf be a red-vaued function definedon a set B d red numbers and
continuousat a point ¢ in B, and let g be a red-vaued function defined on a st A
of real numbers containing theimege d B under f. Assume that g is continuous at
the point f(¢). Prove, by Proposition 247, that the composition gof is continuous at

C.

To be mMoe predss, f is represated in the theory K by a predicate letter 4,, whee 4, (x.y)

comesponds  the rdaion f(x) =y. Then the comesponding rdation 4 in R* detlemines a
functions* with doman B*.

Sec. 14
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R. C is sdd to be dosed if (x)(e)e > 0D (By}y € CA
2131 Le)tc g %). Sl-(li)w that t(,‘ is dosed if and only if every real number
l\.\)fhl-cd)!ls?rff)lkﬁely close to a member of C* isin C.
(b) Let C TR, C is sad to be open if (xXx€ CD (ESYS8 > 0N
x| Dy € (). Show that C is open |f and only if evzrz non-stan-
:1'5}'( Treal whfcﬁ is infinitely dlose to a member of C is a member of ="

Many standard theorems of analysis turn out to have much simpler proofs
within non-standard analysis. Even stronger results can be obtained by starting
with a theory K which has symbols, not only for the elements, operations, and
relations on R, but also for sets of subsets of R, sets of sets of subsets of R, etc.
In this way, the methods of non-standard analysis can be applied to all areas of
modern analysis, sometimes with original and striking results. For further
development and applications, cf.A. Robinson [1966], Luxemburg [1969], Bern-
stein [1973], Stroyan-Luxemburg [1976], and Davis {1977]- A calculus textbook
based on non-standard analysis has been written by H. J. Keisler {1976] and has
been used in some experimental undergraduate courses.

EXERCISES

2132. A red-vaued functionf definedon adosad interva [a, b] =
{xla < x < b} issaid to be uniformly continuousif

(e)(e > 0D (E8)(8 > 0N (x)»)(@<x<bAa<y<bAlx-y/ <8
2 |f(x) — f(»)| < e

Prove that f is uniformly continuous if and only if, for dl x andy in [a,b]*,
xRy D fX(x) = f*(y)

2.133. Prove, via non-standard methods, that any function continuouson [a, b]
is uniformly continuouson [a, b.

2.134. (Bolzano-Weierstrass Theorem) A red number ¢ is sad to be a limit
point  a set A of reals if (e)(e > 02 (Eu)(u € A Alc - ul<g). Le s bea
bounded sequence of redls, that is, there is a number b such that |s,] < bfor dl n

in w. Prove that thesat d tams d s (i.e., the range d the functions € R") has a
limit point.



"CHAPTER 3

FORMAL NUMBER THEORY

1 An Axiom System

Together with geometry, the theory of numbers is the most immediately
intuitive of all branches of mathematics. It is not surprising then that attempts to
formalize mathematics and to establish a rigorous foundation for mathematics
should begin with number theory. The first semi-axiomatic presentation of this
subject was given by Dedekind in 1879 and has come to be known as Peano’s
Postulates.t It can be formulated as follows:

(P1) Oisanatural number.

(P2) If xisanatural number, there is another natural number denoted by X
(and called the successor of X).

(P3) 0= x for any natural number x.

(P4 If X =y, thenx =vy.

(P5) If Qisa property which may or may not hold of natural numbers, and
if (1) 0 has the property Q, and (II) whenever a natural number x has the
property Q, then X has the property Q, then all natural numbers have the
property Q (Principle of Induction).

These axioms, together with a certain amount of set theory, can be used to
develop not only number theory but also the theory o rational, real, and
complex numbers (cf. Mendelson [1973]). However, the axioms involve certain

s intuitive notions, such as ""property”, which prevent this system from being a
rigorous formalization. We therefore shall build a first-order theory S that is
based upon Peano’s Postulates and seems to be adequate for the proofs of all the
basic results of elementary number theory.

The first-order theory S has a single predicate letter 4% (as usual, we write

= s for A{(1, 9)); it hasoneindividua constant a, (written, as usual, 0); it has
three function lettersf}, f2, f2. We shall write instead o f}(z); ¢ T s instead of
fit,s); and ¢. s instead of f3(1,9. The proper axioms of Sare:

SI) x;=x,2 (xy=x3 D x, = x3)

(2 x,=x,2X =X

tFor higtorical information, see Wang [1957].

[21
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(83) 0% (x))

B4 x) =)' Dx;=x,

(5) x, T0=x,

(B x Tx=(x, txy

(S7) -0=0

(S8) x, (x3) = (x,-x) t x,

(89) For any wf éB(x) of S, (‘E(O) D ((N@(x) B3 E(x")) B(N)A(x))

Notice that Axioms (S1)-(S8) are particular wfs while (S9) is an axiom
schema providing an infinite number o axioms. However, (§9), which we shali
cal the Principled Mathematical Induction, cannot fully correspond to Peano’s
Postulate (PS), since the latter refers intuitively to the 2* properties d natural
numbers, while (S9) can only take care o the denumerable number o properties
defined by wis d S.

Axioms (S3) and ($4) correspond to the Peano Postulates (P3) and (P4),
respectively. Peano’s axioms (P1) and (P2) are taken care of by the presenced 0
as an individual constant and f|' as a function letter. Our axioms (S1)-(S2)
furnish some needed properties d equality; they would have been assumed as
intuitively obvious by Dedekind and Peano. Axioms (S5)—-(S8) are the recursion
eguations for addition and multiplication. Dedekind and Peano didn't have to
assume them because they alowed the use f intuitive set theory, from which the
existencedf operations T and - satisfying (S5)—(S8) is deducible (cf. Mendelson
[1973], Theorems 31 and 5.1).

From (S89), by MP, we can obtain the Induction Rule: from & (0) and
()(@(x) D @(x"), we can derive (x)@(x).

It will be our immediate aim to establish the usual rules of equality, i.e., we
shall show that the properties(6) and (7) o equality (cf. p. 79) are derivablein S,
and hence that Sis a first-order theory with equality.

First, for convenience and brevity in carrying out proofs, we cite some
immediate, trivial consequences of the axioms.

LEMwa 31 For awy termst, s, r & S, thefollowing wfs are theorems.

SIY t=ro(=s5>r=y)

(Sy) t=ror=r

(S3) 0=t

(S4) r=rot=r

(S5) tto=¢

S6) ttr=@tr

(87) t-0=0

(S8) t.r=(t.r)*t
PROOF.

(S1")-(S8) follow from (S1)—(S8) respectively by first forming the

closure by means of Gen, and then applying rule A4 with the appropriate terms
Lr,s.

fic. | AN-AXIOM SYSTEM

(b) t=rD>r=1!
(C) ;=r3[r'—-"SDI=S)
(d r=tD>(=tDr=y)

(e) t=r>t+s=r+ts
) t=0+1¢

@ rtr=(ttn

) t+r=r+t

(i) t=ros+t=s+r
G +n+s=t+(+s)
k) t=rDt-s=r-9§

M 0-1=0
m) ¢ -r=t-rtr
(n) t-r=r-t

() t=rDst=sr

ProposiTion 32, FOr any termsy, r, s thefollowing wfs are theorems d S.

PROOF. ’
@1l t+0=1¢ (55/)
2 ((+0=0HD@+0=1D1=1) (S1)
3. t+0=tDt=1 1,2, MP
4 t=t 13 MP
M1l t=r>@=tDr=1 (S1)
2. t=t>D(=rDr=1 1, Tautology
3. t=roOr=t ZS,Part(a),MP
= = 1)
©L r=td(r=sDt=35) (
2 t=r>Dr=t Part (b)
3. t=rolr=s5sDt=5) 1, 2, Tautology
(d1. r=tD(@=sDr=s) p
2. t=sD(r=tDr=ys) 1?51a{.|(i)ology
. s=tot=s Part (b)

4 s=tD(r=tDr=s) 2, 3, Tautology
5 r=tD(s=tDr=s) 4, Tautology
(e Apply the Induction Ruleto @(z): x =y D (x + z=y + 2).

1. x+0=x (35:)
2 y+0=y (S5)
3 x=y Hyp
5. x+0=y+0 2, 4, artid))
6. x=yoOx+0=y+0 1-5, Deduction Theorem

ie., F &(0).
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()L x=y>x+z=yp+: Hyp gy (85)
2 X=y Hyp . x=0+x Part (f)
3 X+z=(X zy (S6) x+0=0+ x 1, 2, Part (c)
g- ytz =(y+ 2y (S6") " ie. FQO). .
X¥rz=y+z 1, 2. MP yp
6. (x+2)=(+2) 5, (82') ) ; 1; —}Ex++xy) (S6")
I x+z=(y+2z) 36Partgdg Ly tx=(ytxy Part (g)
8 x+zZ=yp+7 4,7, Part (x+yy =+ 1, (52)
0. (x—y:)(x+z—y+z)):)(x—y:)(x+z—y+z’)) X+y'=(y+x)' 2, 4, Part (c)
1-8, Deduction Theorem x+y =y +x 3, 5, Part (d)

Le, F &(2) D @(2).
Hence, + (z2)@(z) by the Induction Rule, from (i) and (ii). Therefore, by Gen and
Rule Ad, br=r>t+s=r+s.
(f) Let @(x) bex =0+ x.
(i) 0=0*0, by (S53 and Part (b); i.e., F @(0).

x+y=y+xDdDx+y =y +x .
1-6, Deduction Theorem

ie, F&(y) D &)

So, by (i), (ii), and the Induction Rule, F (y)(x Ty =y + x), and, then by Gen

(i) L x=0+x Hyp and Rule A4, tt+r=r+tt.
2. (0+x)—(0+x) (S6)
3 =0t X) 1, (S2) ()1 t=rDt+s=r+s Part ()
4. X—0+ 2,3, Part (d 2 t+s=s+t Part (M)
5 x=04+xD2x =0+ x' 1-4, Deduction Theorem 3 r+s=s+r Part (h)
ie, F@(x) D &(x). 4 t=r Hyp
By (i)—(i) and the Induction Rule, F (x)(x = 0 T x). So, by Rule A4, B t+s=r+s 14, MP
Ft=0+1 6. s+t=r+s %g’(PSlt)()
7. s+t=s5+ » 5, Fart (C
(@) .Let @(y) bex ty =(x tyy. 8. i—£3i+:—s+r 1-7, Deduction Theorem
0 é f++00= X’ (S5) () Let @) be(xty)+z=x+( t 2.
: =X (85" 1 +y)+0=x+y (85)
3 (x+g =x 2, (S2) O 2. §x+ oyiy (53
4 X+0—(x+0 1, 3, Part (d) 3 x+(y+0)=x+y 2, Part (1)
ie., t @(0). 4, (x+y)+0=x+(+0) 1, 3, Part (d)
(ii)é x’ _+I_y —((x ++y)) Hyp ie., b @(0).
y =X Ty S6
3 (x +y) =(x + y)” § (S)Z’) (i) 1. x+P+z=x+(+2) I—;%p
= " ] 2 xty)ytz=(xty)t2y (86
4 x' +y (x+y) 2, 3, Part (¢ !
5 (xty)=(xFy) 56) 3 “"*”“”“”"“” b S
6 (ct3Y _(x+y) 5 () 451 (x+ y) (z+—()x+(y+z)) o art (C)
7. x+y (x ) Y =(y Tz ,
8 Sty s xty =ty 0@ 6 X+§y+2))—z<t(%/ J:Lz))) ?éﬁ'?)art(')
. x4+ (yt+z)y=(x y+z
e, t 20 5 G0, 1-7, Deduction Theorem 8 x+(v+)=(x+(+2) 6, 7, Part (d)
S0, by (i), (i), and the Induction Rule, F (»)(x' +y = (x +y)), and, then by 9 (x+y)+z=x+(y+7) 4, 8, Part (d)
Genand Rule A4, Ft +r=(Try. 10. (x+y)+z—x+(y+z)3(x+y)+z =x+(y+2)

M) Let @(»)bex ty =y tx.

ie, F@(2) D @)

1-9, Deduction Theorem
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by Genand Rule A4, F(t+ ) +s=1t+(r Ts).
Parts (k)-(o) are |eft as exercisesfor the reader.

COROLLARY 33. Sis a theory With equality, i.e., We have (6): t X, = x,, and
(): Fx =y D @(x, x) D &(x,y), where @(x,y) comesfrom &(x, X) by re
placing one or more occurrences d x by y, with the proviso that y isfree for
those occurrencesd x (cf. p. 79).

PROOF. By Proposition 2.26, this reduces to Proposition 32 (a)-(e), (i), (k),
(0), and (82%).

Notice that the interpretation in which

(& theset of non-negativeintegersis the domain,

(b) theinteger 0 is theinterpretation of the svmbol 0.

(c) the successor operation (addition of 1)7is the interpretation of the
function (e, o f}),

(d) ordinary addition and multiplication are the interpretations of + and -,

(e) theinterpretation of the predicate letter = is the identity relation,

isa normal mode for S. This mode is called the standard modd for S. Any
normal model for S which is not isomorphic to the standard mode will be called
a non-standard model for S.

If we recognize the standard interpretation to be a modd for S, then o
course, S is consistent. However, semantic methods, involving as they do a
certain amount of set-theoretic reasoning, are regarded by some as too precari-
ous to serve as a basis for consistency proofs; likewise, we have not proved in a
rigorous way that theaxiomsd S are true under the standard interpretation, but
have taken it as intuitively obvious. For these and other reasons, when the
consistency d S enters into the argument o a proof, it is common practice to
take the statement of the consistency d S as an explicit, unproved assumption.

Some important additional properties of addition and multiplication are
covered by the following result.

ProposiTion 34.  For any term ¢, r, s thefollowing wfs are theorem d S.
@ t.(rts)y=(t-r)+(t.s (Distributivity)
) rts-r=(-nt(.0 (Distributivity)
(© (n)s=1t-(r-9 (Associativity o .)
@ t+s=r+sot=r (Cancellation Law for +)
PROOF.
(@ Prover x.(y *2z)=(x-y) * (x.2) by induction on z.
(b) From (a) by Proposition 3.2(n).
(c) Provet(x.y).z= x-(y.z) byinduction on z.

(d) Provet x tz=y * 2z x =y byinduction on z. This requires, for the
firsttime, use d (S4").

Sec. 1
By (i), (ii), and the Induction Rule, F (z)((x +¥) +z=x*+(y t2), and then,

0 AN AXIOM SYSTEM e

The derms 0.0, 0 Q" ... We shdl cal numerals, and denote by
" 0,1,23,... in the usuad way. In general, if n is a non-negativeyi B98L
shall let i stand for the corresponding numeral 0 ' * ° "e'(’a%ﬁl\befm W

.. Strokes. We can define the numeralsrecursively by stating that 0 is a numeral
and, if ¥ isa numeral, then U is aso a numeral.

PropPOSITION 3.5
@ retl=vy
it L=k
EE)) Fe-2=1¢t+1(etc, for3,4,...)
@d Ft+s=0Dt=0As=0
e Ft#0D(s-t=0Ds5s=0) .
@ Ft+s=120=0As=DV(i=1As=0)
(2) be-s=1D(=1As=1)
by F1#0D(Ent=)Y)
@ Fs#0D({-s=rsOt=1)
G Fe#0D@#12(EN=Y")

PROOF. )
t+0=(t+0) :

(a)%.. t+0=t( (SS)(
3. tto =r 2,(82)
4, t+0 =1 13 Propqs_non 3.2(c)
5 t+i=t: 4, Abbreviation

)L -0=¢-0+t (88)
2. t-0=0 sy
3. -0 +1t=0+1¢ 2, Proposition 3.2(¢)
4, -0 =0+1¢ 1, 3, Proposition 3.2(c)
5. 04+1=1 Proposition 3.2(f), (b)
6. t-0 =1t 4, 5, Proposition 3.2(c)
7. t-1=t 6, Abbreviation

©1 - V=(@T)+1t (S8)

9 T = Part (b)
3. (D +t=1+1 2, Proposition 3.2(¢)
4, -1'=1+1 1, 3, Proposition 3.2(c)
5. t-2=1+1 4, Abbreviation

(d) Let @(y) be xTy=02>x=0Ay=0. It is essy to prove that

F@(0). Also, since F (x Ty) #= 0 by (S3), then, by (S6), it follows that
Fx+y #0. Hence +&() by the tautology ~ 4 D (A D B). So,
F&(y) D @) by the tautology A o (B D A). Thus, by the Induction
Rule, t (y)&(y), and then, by Gen and Rule A4, we obtain Part (d).

©) The proof is Smilar tn that for_(d) and ic left ac an avarrion _

Ef)) By ir[:duction onyinx+y=12((x=0Ay= DVE=TAy =0

(@) By inductiononyinx-y =15 (x=1Ay =1).

(h) Perform induction on x in x # 0 D (Ew)x = w).
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(i) Let @(y) be(x)(z# 0D (X-2=y.zD X=Y)).

M1 z#0 H
2. x:z=0-z Hzg
3. 0-z=0 Proposition 3.2(1)
4 x-z=0 2, 3, Proposition 3.2(c)
5. x=0 1, 4, Part (€) above
6. 2z#0D(x-z2=0-z2Dx=0)
1-5, Deduction Theorem
7. (x(z2# 0> (X.z=0-23x=0)) 6, Gen
ie., b @(0).
(i) . (xNz#0D(x-z=y.z>x=Y)) Hyp (Q(»))
2 z%#0 Hyp
3. x-z=y' -2 Hyp
4, y: #0 (53", Proposition 3.2(b)
5. 90-z#0 2, 4, Part (€) and a tautology
6. x-z#0 3, 5, (S1") and tautologies
7. x%#0 6, (87, Proposition 3.2(0).
(n), (SI"), and tautologies
8. (Ew)(?c =w) 7, (h) above
9. x’: b ’ 8, RuleC
10 o' -z=y" .- 3,9, Equality law (7)
I bez+z=p.74, 10, Proposition 3.2(m), (d)
12. boz=y-.; 11, Proposition 3.4(d)
3. 2z#0D((b-z=y-2)D(b=y)) 1RueAs
4. b-z=yp-zDb=y 2,13, MP
i3 b=y 14, MP
i(;. )t: =Y 15, (S2)
. =y 9, 16, Proposition 3.2(c)
B. @), z#0xz=y .zkx=y 1.7 Proposition 2.23
19 @)tz#0D(x-z=y -zDx =Y
19, Deduction Theorem twice
20 EWMFx)z#0D (X-z=Yy' .zDXx=Y)
19, Gen
2. FQ(») D Q) 20, Deduction Theorem

Hence, by (i) and (ii) and the Induction Rule, we obtain  (y)&(»), and then, by
Gen and Rule A4, we have the desired result.
(i) Exercise for the reader.

ProrPosITION 36. (a) Let m, n be any natural numbers. (i) If m # n, then
Fiii # ii. (i) Fm mtaand tm—n=mm.A. (b) Any modd for Sis
infinite. (C) For any cardinal number & 5, S has a normal modd d cardinality
LS
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:" PROOF.

' | (a) Assumem # n. Now, éither m<norn < m say, m<n.
m = , Hyp
M times n times
) =0T 1isan abbreviation of 2
(n—m) times
3. Apply (84) mtimesin arow. Then 0 = 0”---' .Lettbe
: ﬁ_——_l).Sincen> mn-m-13>0.Thus, 0=t"
4. 01 (83)
5 0=t A0#¢ 3, 4, Tautology
6. tm=n>0=¢AN0#7) 1-5, Deduction Theorem
7. Fm# 0 6, Tautology

A Similar proof holds in the case when n < m. (A more rigorous proof can be

given by induction in the metalanguage with respectton.) (i) We use induction
in the metalanguage. First, m + 0 isiii. Hence, tm + 0= iii T 0 by (§5). Now

assume tm + n=m tii. TheLe[Qr_e,_F (m + n) =@t (i) by (S2') and (S6).
But m (n 1)_is (m n) and 1 is (@)’. Hence,
tm + (nFT D)=iii* n+ 1 The proof that Fm - n= - @ is left as an ex-
ercise.

(b) By Part (a), (i), in a modd for S, the objects corresponding to the
numerals must be distinct. But there are denumerably many numerals.

(c) Thisfollowsfrom Corollary 2.35(3) and the fact that the standard mode is
an infinite normal model.

An order relation can be introduced by definitionin S,

DEFINITIONS
t<sfor (Eww#0Awtr=ys)
t<sfort <s\/t=ys
t>sfors <t
t>sfors <t
t4sfor ~(t<s), etc.
/In the first definition, to be precise, we can choose w to be the first variable not
intors.
ProrosiTiON 3.7. For any termst, r, s thefollowing wfs are theorems.

@ t<t Mer<r=e<r

(b)) t<sd(s<r>t<r) (mpe <t
(C t<s>Ds &t MO<T,A<DE<I...
d t<s=t+r<s+r @t#ro(<rvr<i

e t<t ONVt=r\vt<rvr<i

) t<sD2(<r>t<r) (p)t<rvVrs<t

Q t<s=@+r<s+rn Qet+r>t

(hy t<sD(s<rot<r) Nr#0D>t+r>t

i o0<t 9 r#0Dt-r>t

() o<t t) r#0=r>0

K) t<r=t<r WWr>0>(¢>00r-t>0)
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V) r#E0>@>1D1t-r>r) X)r#0>(<s=t-r<s-r
W) r<0o(<s=t-r<s-r) yWtr4o
(z) t<rAr<tD>t=r

PROOF.
(a) By Proposition 3.4(d).
® 1 r<s Hyp
2. s<r Hyp
3 (Eww#0AwT t=5) 1, Definition
4. (Eoo#0Avts=r) 2 Definition
5 b#0Ab+1t=35 3, RuleC
6. c#0Ac+s=r 4, RuleC
7 b+r=s 5, Tautology
8 c+s=r 6, Tautology
9 c+@B+=r 7, 8, Proposition 3.2(i), (c)
10. (c+b)y+t=r 9, Proposition 3.2(), (C)
11. 0 5, Tautology
12 c+b#0 11, Proposition 3.5(d)
13 c+b#0A(c+b)+t=r 10, 12, Tautology
14. (Ewyu#0Autt=r) 13, Rule E4
15 t<r 14, Definition
16, Ft<sD(s<rot<r 1-15, Deduction Theorem,

Proposition 223
Parts (c)-(z) are |eft as exercises. These theorems are not arranged in any specia
order, though, generaly, they can be proved more or less directly from preced-
ing ones in thelist.

ProPosITION 38. (@) For any natural number k,

Fx=0Vv...Vx=k=x <k
(@) For any natural number k and any wf &,

FRO)ARM A ... A BK = (x)(x < k> &(x)).
(b) For any natural number k = 0,

Fx=0V...Vx=(k-1)=x <k
(b) For any natural number k > 0, and any wf @,

FRO)AGM A...AQKk—-1) = (x)(x <k D Q(x))

(©) F((x)x <y 2 P A (xX(x >y D B(x))) D (xN@(x) V B(x)).
PROOF. (a) We proveFx =0\/ ...V x =k =x < k by induction in the
metalanguage on k. The case for k = 0, x = 0 =X < 0 is obvious from the
definitionsand Proposition 3.7. Assumet x =0\/ ... VX =k =X < k. Now,
assume x =0V ...Vx=kVx =k +T; but, x =K T 1D x <k+T; also,
x=0V...Vx=kox<k and x<kHDx<k+ 1 Hence x=0
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-':'v,,.\/x =k + 15 x <k * 1..On the other hand, assume x <k * 1 Then

y=kTIVx<k+ 1 If x=k+1 then x=0V...vVx=k+1 If
» <k T 1, then, sincek + 1is (ky, we have x < k, by Proposition 3.7()._By
inductive hypothesis x =0V ...V x =k andso,x =0V ... vx=k + 1
(This proof has been given in an informal manner that we shall generally use
from now on. | n particular, the Deduction Theorem, the dirninability o RuleC,
and the Replacement Theorem (Corollary 2.21) will be tacitly applied, and
tautologies used will not be explicitly mentioned.)

Parts (a), (b), (b)) follow easily from (a). Part (c) follows almost immediately
from Proposition 3.7(o), using obvious tautologies.

There are severd stronger forms of the induction principle which we can
prove at this point.

ProrosITION 3.9
(8 (Complete Induction)
F (x)((2)(z < x 2 @(2)) 2 &(x)) D (x)&(x)

(Consider a property P such that, for any x, if P holds for all natural numbers
less than X, then P holds for x also. Then P hdds for all natural numbers)
(b) (Least-number Principle)

F@(x) D (By)@(y) A(2)(z <y o~ &(2)))

(If a property P holds for some natural number, then there is a least number
saisfying P.)

PROOF.
(@) Let B(x) be(z)(z < x D &(2))-
D 1. )2z <x D &@2) D Ax) Hyp
2. (2X(z< 0D &) > &) 1, Rule A4
3 z450 Proposition 3.7(y)
"4 (X2 <0D 4@2) 3, Tautology, Gen
5. @(0) 2,4, Gen
6. (2)z<038(2) 5, Proposition 3.8(a")
ie., BO)
7. ()(2)z <x D &) D &) F B©O) e
i) 1. ()(2)Nz <x 3E(2) 3E(x) Hyp
2 B(X),ie, 20z < x D &) Hyp
3 @)z <x 3&2) 2, Proposition 3.7(1)
4 2Nz <X 3E2) 3&x) I, Rule A4
5 &) 3 4, MP
6. z<x' Dz<x'Vz=xX Definition, Tautology
7. z<x D& 3, Rule A4
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8 z=x'5 8(2)
9 (z<x'D &(2))
ie., B(x")
10. (x)((ZJ(Z <x D @(2) D )N FNB(X) D B(x))
1-9, Deduction Theorem, Gen
From (), (i), and the Induction Rule, we obtain € F (x)% (x), ie,
CF(x)z)(z < x D @(2)), where € is (X)(2)(z < x D &(2)) D A(x)). Hence
by Rule A4 twice, CF x < x O @(x); but, F X < X. So, € F @(x), and, by Gen
and the Deduction Theorem, F € 2 (x)@(x).

®) L ~(EyNC&(») A(2)z <y O~ &(2))

5, Equality Axiom (7)
6, 7, 8, Tautology, Gen

Hyp

2 Y ~(E@WA @) <Y D2~&@2) 1, Tautology

3. ON@E <Y D~@) 5~ @(y))

4. (- E&W) 3, Part (a) with ~ @ instead
Rl

5 ~ &(x) 4, Rule A4

6. ~(Ey)&() ANz <y 2~ &) D~ &(x)

1-5, Deduction Theorem
7. @(x) D (EP)@(p) D (2)(z <y D~ A(2))

6, Tautology

2, Tautology

Exercise 3.1. Show that
F ) (@(x) D (By)(y <x A @(»)) D (x) = &x)
(Method of Infinite Descent).

Another important notion in number theory is divisbility, which we now
define.

DEFINITION.  #]s for (Ez)(s = t. 1), where z is thefirst variablenot in t or s.
PROPOSITION 310.  Thefollowing wfs are theorems.

((E; %'II:, © s#0AlsDt<s
© 10 M fsAsltos=1

@ tsdir-s
(d) ts Aslrofr (h) f%s/\t}rj (s + 7)

PROOF. ()t =1t.T1. Hences|r. (b) t =1 .t. Hence IJt. (C) 0 = t- 0. Hence,
7§0. @) If s=t-zandr=s.w, thenr=t.(z-w). (6) If s 0 and s, then
s=¢-zforsome:z. If z =0, thens = 0. Hence, z # 0. S0, z = U for some u.
s=1.(U) =t.utt>t (H-(h) areleft as exercises.

EXERCISES
Prove the following:
2 FTot=1

3B busAdshor=1
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] 1t will be useful, for later purposes, to prove the existence of a unique quotient

nd remainder upon division of one number by another.
ProPOSITION 3.11. +y # 0D (EjuEw)(x=y-u+ v Av <y).

pROOF. Let @(x) bey # 0 O (Eu)l(Ev)x =y.u+ v A v <y).
L y=#0 Hyp
0=y-0+0 (85, (S7') .
3 0<y 1, Proposition 3.7(t)
4 0=y-0+0AN0<y 3 logy
5 (Eu)Ev)O0=y.ut vAv<y) Tglgg
6. y #0 D (Eu)(Ev)0=y- u+o/\v<y)

1-5, Deduction Theorem

(i) 1. @Cie.y # 0 S(ENENx =y.ut oA v <y)
yp
2 y#0 Hyp
3. (Eu)Ev)x=y-u+ovAv<y) 1,2, MP
4 x=y-a+bNb<y 3, Rule C twice
5 b<y 4, Tautology
6. b<y 5, Proposition 3.7(k)
7. b<y\Nb =y 6, Definition
8 bV <yod(x=y-a+b N0 <<y) 4, (6)
9 b <y>d(Ew(Eu)(x' =y u+ovAv<y)

8, Rule E4, Deduction
Theorem
=y-a+y-1 4, (S6"), Proposition 3.5(b)
y-(@+D+0A0<y)
10, Proposition 34, 2,
Proposition 3.7(t), (S5')
12. b=y D (Eu)Ev)x' =y -u+vAv<y)
11, Deduction Theorem,
Rule E4
13. (EufEv)(x'=y.ut oA v <y) 7,9, 12, Tautology
14. @(x) D (y # 0D (Eu)Ev)x' =y-ut v Av<y))
ie., @(x) D @(x") 1-13 Deduction Theorem

10. =y x' =
1. ¥=yD(x' =

By (i), (i), and the Induction Rule, - (x)@(x). This establishes the existence of a
guotient u and a remainder v. To prove uniqueness, proceed as follows. Assume
Y#0. Assume x = y-u, T o, Ao, <y and x =y .u, T v, A v, <y. Now,
U = u,oru, <u,oru, <u, If u, = u,, then v, = v, by Proposition 3.4d). If
u; < u,, thenu, = u, + wforsomew = 0. Theny ., + v, =y (u, + w) + v,
=Y, u ty.w* v, Hence, v, =y.w+ v,; but w # 0. Hence,y . w >y. So,
v, =y-wT g, >y, contradicting v, <y. Hence, u, ¢ u,. Similarly, u,"} u,.
Hence, u, = u,, and S0, v, = v,.

From this point on, one can generdly translate into S and prove the results
from any text on elementary number theory. There are certain number-theoretic



'sploy (,7) “o1

x ="V X = U/ VI =V X = Ix)(+x'q) 4

‘wontppe uf ‘spioy (1) ‘snyy
= V="V VA=B V=

oouapy N st Ty pue =T uem Ty =
' +u up _ e s -/ x = tx\/ 'x =X Im oy Aq
Uy ¢« » « shyy ! :..v\"_ H/\ H|k.< _<.
A x. 3 E..MW%QE A@Buons st x = ("x " x)iN ‘uonounj :osom,ﬂo.a wﬁ. (@)
s . {(('x) = L)' g) 4 ‘osv (DD =i uagy,
= (! 1 4y Aue 10 " ('x) =X
(x) st &y ‘ouay ] + = vy = (DN ¥
%.wwa .mlum_ ajquiussarda A[duons st ‘] + X = (XN ‘monounj .hommoow:m aylL AN.V .
N " spjoy () ‘snyp (0 =XV 'x = x) (') 4 oSV MEE_E o
0 =0V ="y pue 0 = vy = (WZ I ‘1Y Aue 104 0 nsw W\:M AM X
» u S@uons st ‘0 = (x)Z ‘wonouny o.
m oy A § Ul sjqriussaxdar A3 1 0 py o

(11 d uo gg'g asIXT P ‘a519AU00 A1 10,]) d[qrIussardar
os[e SI uopounj sjquiuasadar A[guons K1aas ‘90usy ¥V o__.,_m,_ pue uan £Aq
« sarduut (,7) 18y} 20NON °S Ul ajquiuasadas £Suolis 3q 03 pies S § uonounj u,ﬁ

O s e . gy p(i+4xig ) (7) OF (¢) 9BuwY> am ‘UORIUIIIP ST U1 ]
uayl A .A_ +iye E& PR T Lv@@ﬁ__ +:w._.m..v,m.._ ANV

ey e v T = (D
"IéM, e ,_ﬂ_aﬁonnﬁsc Kue 103 ey yons FHix X
sajqeleA 221y ) Pm § JO (Hix e Ix)p o' SRy g Kjuo pue

I § Ul ajquiuasaidai 3q O} pres Sl (™ ¢ - -+ *'x)j uonouNy onaIoayl-Rqunu Y

; dxa 51z = £ + X UONERI 3Y) 1By} MOYS "OT'E
§ ut QIqIIES % (g ur) djqssa1dxd os[e 218

suoneja1 a[qissaidxs JO uonounfsip pue ‘wonoun(uod ‘uonedau ay) 1ey) moys "6€
| | sASI0YAXd

s i Ay us w.l.“u\—u... .M.:.
(e)L'¢ vonsodog £Qq uay puE 1> B ‘380 IS - mw _ IxM oy Moﬁ o P
Ty > Ty U39S Jsnf ALY M SE U Ty > NI I="1107 o D 0
Tmon > 1 o1 Gr="1 + MV 0 # MY MmF) In omw S uE oA Ry
“aousy ‘0 # U+ ‘0 # U douis (g8) £q ‘osTy ‘U + D=5 QN.MMNN w%ﬁm.mwx S 1y
-uQu awos S i
hn— .BOZ_. ._u— 4+ U= Nv— .-.NL.— ._.#D—._m u uuﬂEﬂ.ﬂ— 013z > ay .Dmguuﬁm\—.
It 90g x> 'x pm Kq g w possaidx st UeU) $S3L, UONERL w%wf
(®)gc uomsodosg Kq ‘way O£ M I OSY A= o4 e .wo_mmwuoﬁm
£q ‘os vs.ﬁ.ﬁ_ sB ULI9] oures ay) ST N uay) O ="'y J1 e _E X Inom 4
a1y £q § ut passasdxa st Krenba jo uonE[a! 9131031 1-1quIny oY) ‘d[dwEX? ;

sel SNOLLY13d ANV SNOLLONNA OLLFHOFHL-YHgWAN t

O )P~ voy aster st (A Y I ()
G DR wey e st (DA B (D)
iy 0t Y sraquunu [einyeU

Kue JOJ :1BY) ONS SI[qeLIRA 321] U M § Jo (“x < -+ “Ix)p 1M ® s1 2191 J1 KJuo
PUE JI § Ur 9jqissa4dxa 9q 03 pres st ("X © * - “IX)y uones oneIoayl-AquUNY
"wasks reursoy Aue Yim dn punoq j10u a1e pue 2an
-INJUl 3I8 SUOTIB[2I PUB SUOLIIUNY J11AI0Y1-IaqUIny] ‘SjuswngIe 221y} Jo uonejal
O112109Y}-I3qWINU B SAUTULIAAP Z > A + X uoissaidxa o) pue ‘sjuswniie omy
JO uondunj 9NRI0AYI-1dqUINU B st noneordninur ‘oidurexs 104 ‘siequinu [einjeu
are sjuowndie oYM UONE[AI ® Sl UOIE[AI O12I0AY)-19qUINU B PUE ‘SIdquinu
[eINIBU SIE SIN[BA PUE SJUIWNFIE 9SOYm JUO ST UONIUN] IN2I0YI-I2qQUINU Y

SUONEB[IY PUE SUOTIUN Y IO [ -1dquInN] 7

*31qepIaap SI sIdyuenb noyim § JO jm paso]d K193 1BY) moys (q)
'§ 18430 8 = 1Sy
Joya “3f ‘I|qEPIIdP St § JO £ =] M JTWOIR PIsO[d A1aAd jB() MOUS (B) 'g'¢
ANqepioap pue
9jaidwos st +g woishs mou ay) 1Y) moys {(85)—(;S) sworxe sy} pue uoneddynw
oy Ff 1on9] uonduny ayy § woiy Neurwrp am JI ([6z61] 198ngsg) L€
'g K102ty 1opio-1suy o) 0) Kjdde jou saop
jooxd sip Aym uredxg onjdiowos: a1e  sjopour,, om) Aue JBY) J8USS 2Y) U] ‘Sa)Bm)
-S04 s,0ueaq jo Kuodaes Ay jo jooid [eINEWIYIRW PIEPUEBIS € JALD)  ,'O'E
‘g JO sjppow ajqeiawnuap diydiowosi-uou A[[EMINUI 4,7
21 2191} 1BY) 9582 Rads 3y aa01d ""n Anfeurpied jo § jo sPpow dydrowos-uou
A[feninu o,z 1SBA[ I8 JO 0UISIX3 Y] Umoys sey [gce]] 1onajusryg  (q)
"®8 Aji[eulpIed AUe jO § 10 S[POW PIBPUR]S-UOU ISIX3 313 18Y) MOYS (B) '€
'S
JO sworxe 19110 ay) jo yuspuadoput si (g8) 21diouLd wONINPU] 94} 1BY) MOYS “p'E
SASIOUAXA

‘[[@m se sauroay) Jayjo 03 A[dde yorgm
sasned Juik[Iepun 1ad2op seY INQ ‘UIOIXE [BIIUASSI JUWIOS JO UOISSTWO O] pajnque
3q jouued ¢ jo sseudnajdwioour sIy} 1BY} 235 OS[EB [[BYS Ay 'S Ul Jjqeacad
Jou s1 Jnq uonejaldiojur pIEpUEIS I} IAPUN M) SI YOIYM Jm B SI I3} 0UdY
Jua3sISUOD SI § JT1 ‘S Ul 9[qeAOIdSIp 10U 3[qeA0d Joy)IaU 218 YOIYM Sjm PIsO[d aIe
319) 1B} J9JE] UMOYS 2q [[M 11 o[durexs 104 ‘[onbas oYy Ul Pa[e3nas aq [[im § JO
siomod oaissardxa pue iSuans oY) INOGE UONBUWIOJUI IO 'S UI PIB[NULIOJ 3q
U343 Jouued ‘PaumIEIqo 3G UBD BJNUIIO] AJejuallapd judfealnbs ue a1aym sased ur
1daoxa ‘pue ‘uonouny sruyiredo[ 3y st yons ‘s1doduod Arejuallia[a-uou A[oAUT
K1031) 1oquInu Ul S}[NISaI SWOS JO JUIWIBYS Y SWAIOAY) Yons I0j udAId aq ueo
(S ut sjooud 10) sjoord ATejUsSWI[D IDYIAYM UMOUY JOU U1JO SI }I PUE ‘SI[QEBLIBA
Xadwoo jo A10ayl 2y Jo pie 3yl Yum paroid aIe ‘WLI0OY] SIJS[YOULI(] SE
Yons ‘10213 JaquInu JO S}[Nsal piepuels auwrog (“suonednduwod Apjarmun 01 Spes|
SIyy ‘surn j10ys B I93J€ ‘Inq ‘suonounj asay) Suruifep Apoidxa moyim Juore 193
ues suo ‘Suiseiydered s[qeins Aq ‘sesed jsour uj) “1adeys siy ur Io1e| Op [[BYS
9M STI) puE ‘G Ul UIJAP O) QB 3q 0] SABY am UDIYm ‘X PUE ,X SB Jons ‘suonounj

¢ oag AdOdHL ¥agINAN TYINIOd vl



136 FORMAL NUMBER THEORY

(d) Assume that the functions g(x;, . .., X)), hi(Xp « v s Xy o v 1,
bn(x,, . . ., X,) are (strongly) representablein S, by the wfs

QB(XI’ LI x"” x"'+l)’ @l(xl’ R n+!)’ ey @m(xl’ LR ?xn+l)9

respectively. Define a new function f by the equation f(x;, ..., x,) =
ghy(x, ..., x), ..., hy(x, ..., x)). f is sad to be obtained from
g, h,, ..., h, by substitution. Then f is also (strongly) representablein S, by the

W R(xp, .0y X, )
(Eyt) - (Ey,,,)(@,(x,, ety xn!yl) A ...
A@m(xb e wy xm.ym) A GB()’., v Vmo xn+]))

To prove (1), let f(k;, ..., k) =k, Let hyk,, ..., k) =1 for 1 <i<m;
then g(ry,...,r,) =Kk, ,,. By our assumption that P, &, ..., &, (strongly)

representg, h,, .. ., h,, respectively, we have l- @(k;, . . . ,k;, r)for 1 <i < m,
and I EB(H’ LI | :’ Kn+ ) Hence I @l(kl’ . . ‘)
an k,, INABC, ... k,.1). BY Rule FA |- a&“ /\ﬂ_n kn+l):

ie, (1) holds. Weshall prove (2') |n thecased strong representablllty the proof
of (2) in the case of representability is similar. Assume

("¥) (Ey\ )(Ep,) ... (Eym)(@I.(xl! ST A0
NCr(Xts . ooy Xy ) A B(Yiy . L,y 1))
and

(CFoF) (By)(B,) ... (By, )@y, - .-, o W8 1 I
/\@m(xp LR ] xn‘ym) A %(yh ‘et !yms U))
By (*¥), using Rule C m times,
@xps oy X B)A LA @y - -
By (*¥*¥), using Rule C again,

Xop bp) A Blby, ..y b, u)

@(xpp s X DA A (X Xy ) A Bey, - . c 1))
Since |- (El e D& ey Xy X, ), WE obtaln from @(x,,...,X, &) and
@(xy, ..., X, ,),thatb = ¢. From B(b,, ..., b,, U) and b, —c,,...,b,,,:
Cppr WE have B(eys - v s Oy u) Hence, from |- (E,x +.)€5(x,, cie s X,+) and
B(c, ...,Cn0), We obtan u=o. We have shown I (x,,.. , X U) A

@(xy, ..., X, W)Du=ult |salsoeawtoshow that - (Ex, . D@(xy, « -+ 5 Xpp )
(Exermse) From this, we have |- (Ex, . D)@(x,, . . ., X,y X,4), L€, (2).

EXERCISES

Show that the followingfunctions are strongly representablein S
311 Z (X ..., X =0 (Hint: Zy(xy, ..., %) = ZUNxy, - -+,
(©), (d).)

xp). Use (a),

".-;" Cp is strongly representable. Then g, 1(Xys . . -,
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3.12. For any givenk, C(x;, . .., x,) =k (Hint: by 311, we have C§; assume
Xy = N(Gi(X;5 . . ., x4)); use (D),
(@)

3.13. Addition.

3.14. Multiplication.

If R(x;, - - - » X,) IS @relation, then the characteristic function Cg(xy, . . ., X;)

is defined as follows:

o if R(x, ..., X,)istrue
Calxp -2 %) = 4 if R(x,, ...,X,)isfalse

ProrosSTION 312, R, ..., x,) is expressble in S if and ony if
Co(xps + - - » Xp) is (strongly) representablein S

PROOF. If R(x, ..., x,) isexpressblein Shy awf &(x,,...,X,), thenitis
ey to verify that Cr(x;, ..., x,) is strongly representable in S by the vvf
@xp. .oy X)) A X010 =0V (~E(x,,.. x,,) N Xpyy = 1. Conversely
Calxps ..., is representable in S by a (xu P S ) N hen
R(x;, ..., Xx,) isexpressiblein S by the wf %(x,, vy X, 0)

EXERCISES

3.15. The representing relaion (or graph) of a function f(x, ..., %x,) is the
relation f(xy, . . ., X3) = X,4,. Show that f(x;, ..., x,) is representablein Sif and
only if its representing relation is expressiblein S.

316. If R, and R, are relationsof n arguments, prove that Cyorr, = I — Cr,
C[R. or Ry = CRI CR:’ and C(R, and Ry) = CRI + CR - CRI C R,

3.17. Show that f(x,, ..., x,) is representable in S if and only if there is a wf
&(xy, . .., X,4 ) Such that, for any natural numbersk,, ..., %k, m, if fky ..., k)
=m, then FsGasr HEEK, . . ., Kpy Xpa 1) = Xppy = ).

3.18. Show that Proposmon 312 remains valid for any theory with equality K
containing dl the numerals 0, |, 2,..., except that the "if' part requires that
!'Kﬁ * 1.

3. Primitive Recursive and Recursive Functions

Thestudy d representability of functionsin Sleads to a classdf number-theo-
retic functions which turn out to be of great importance in mathematical logic.

DEFINITION
(1) The following functions are called initial junctions.
(I) The zero function: Z(x) = 0 for al x.
(IT) The successor function: N(x) = x + 1 for dl x.
(1I1) The projection functions: Ul(x;, ..., x,) = X for al Xy, ..., Xp
(2) The following are rules for obtaining new functions from given func-
tions.
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(IV) Substitution:

fO, X)) = g(hy(x ..o, x) o, (X e e ey X))
f is said to be obtained by substitution from the functions
g(yl’--.,)"m)’}'l[(xp...,Xn),.__,hm(xl’___’xn).
(V) Recursion:
(X 0) = gy 1)
fxp, o XY+ 1) = h(xp, .o, x, v f(Xp . el x,, Y))

Here, we alow n = 0, in which case we have
f(0) = k  (wherekisafixed integer)
fly + 1) = h(y, f(y)).

We shall say that f is obtained from g and h (or, in the case n = 0, from h
alone) by recursion. The parameters of the recursion are X;, + = X,. Notice
that f is well-defined: the value of f(x,,...,x_, 0) is given by the first
and if we already know the vaue f_(x,, +++5X,y), then we can

obtain f(x,, , .. x,, y + 1) by the second equation.
(VI) p-Operator: assume that g8(Xis ..., x, y)is afunction such that for
any x,, .., x, there is at |east one y such that gy, -5 x,,y) =0. We
py(gy, - .., %, ¥) = 0) the least number y such that
.. +»Xn ¥) = 0. In general, for any relation R(x,, - - ., x,, y), we denote
by uyR(x,, . . ., X,, y) the least y such that R(x,, . . . , X,, Y) is true, if there is

any y at all such that R(x,...,, y) holds. Let f(x,,...,x) =
ry(&(Xy, , . ., X,, ¥) = 0). Then f issaid to be obtained from g by means ¢ o
p-operator, if the given assumption about g holds: for any x,, - - - » X, there

is at least one y such that gXp - Xy, y) = 0.

(3) A function f is sgid to be primitive recursive if and only if it can be
obtained from the initial functions by any finite number of substitutions (Iv)
and recursions (V), ie., if there is a finite SequeNnce of functions f,, . . , £
such that f, = f, and, for 0 < i < n, either f; is an initial function or f;, come3
from preceding functions in the sequence by an application of Rule (v
(Substitution) or Rule (V) (Recursion).

(4) A function f is said to be recursive if and only if it can be obtained from

© initial functions by any finitenumber o applications of Substitution (IV),
Recursion (V), and the p-operator (VI). Thisdiffersfrom the definition above

plimitive recursive functions only in the addition of possible applications

the p-operator (Rule VI). Hence, every primitive recursive function is
recursive. We shall see later that the converse is false.
© shall show that the class of recursive fuNctions is identical with the
of functions representable in . (In the literature, the phrase “general
is sometimes used instead of “recursive”.)

class

@

First, let us prove that we can add dummy variables to and also p
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ermute and

i i i ining a
variables in any primitive recursive O recursive function, obtaining

e
b nc},li(;rn of the same type.

imiti jve (or recursive).

N 3.13.  Let g(yy, - - - » yi) be primitive recursive ( _
Pnopc?s’l';lobe distinct variaBl es,and, for 1 < i < k, let z; be one :)If rrmiv'e' ,:e,c ;:_
);“‘?;e;n the ?unction f such that f(x;,...,x,) =8z, ..., %) s p
sive (or recursive).

, X,). Thus,

= x, (Where 1 < j; < n). Then z, = Ujl(x,, . , -

prROOF. Let%

Up(xn -« 5 X))

By, - - o0 X)) = B(UR(Kys - oo Xa)s UR(Ky -+ o5 Xg)y oo

and therefore f is primitive recursive (or recursive), since it arises from g,
U, -+ -, U} by substitution.
n k

Examples. _ o _ _
1 (A(?ding dummy Vvariables) If g(x;, xy) 18 primitive r(?cursve and if
f(x,, X2, X3) = 8(Xy, X3), then f(x;, X5, X5) is also primitive recursive. In
1* ) ) )
ion 3.13, let z; = x; and z, = X;. - . ' _
HO; (Permutir;g vall'iablcs.) If g(x,, X,) IS primitive recursive and if f(x,, xl_)
g(x. x,), then f(x,, x,) is also primitive recursive. | n Proposition 3.13, let z, = x,
2y LS L]
e is primiti ive and if f(x}, x,) =
ifyi iables.) If g(x,, Xy, X3) IS primitiverecursive b Xa)
> (Ide)r{x t)lf}?l:ﬁxv?&? :S )is p%i(rﬁitivze recursive. In Proposition 3.13, let n =2
1/ Ll

%,Ié,zl = Xl, ZZ = Xz, and 33 = x,.

COROLLARY 3.14 (8 The zero junction Z (x,, . . ;

"co i i Ly =k, where

ive. (b) The congtant junction Ci(xy, . - ¥ ?Sn) >
f::t}: e(r )is primitive recursive. (c) The Substitution Rule (IV) can be extended to
h il where each h, may be a junction of some but not a!f.of the
tLiek:ﬁ:e in the Recursion Rule V), the function g may m‘or involve a
va 'ables’ Xy, + » « 5 X,; and h may not involve all of the variables x, . - -
ri ’ ’

O f(Xys - -+, X Y)-

= Q is primitive recur-
%) k is some fixed

1l of the
» xnv y’

iti function Z; then k =

F. In Proposition 313, let g be the zero Then

PRO?? to (g?e )1: . (b)pFor k = 0, this is part (a). Assume true for k.. les

Takc(xa . )‘= N(C(x,, - - - » X,)). (C) By Proposition 3.13, any va'mal e

%t);] 1;' - ,“,‘n not present in afunction can be addeq as “dummy \(anab ';s .

For egxa;nple if h(x,, x;) is given & primitive recurswe‘(or recursive), then
h#(x,, x,, x3), = h(x,, x3) = h(Ui(x;, X5, X3), U3(x), Xy, X3)) s also P

rimitive re.
cursive (or recursive).
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PROPOSITION 3.15.  The following functions gre primitive recursive.
(@ x+y; ®x-y; (©x; (d) k) :zxa 1 ifx>0,

x—y x> fx=0
= - fx>y. ol X—wW x>y,

_ ifx=0. — ifx=0,

(g) sg(x) (1 ifx =0 () sg(x)=(0 if x # 0’

M x5 () min (x, y) = minimum of x and y; (k) min (x,, - - - , X.);

() max (x, y) = maximum of xand ¥;  (m) max (x,,..., X,);

(n) rm(x, y) = remainder upon division of 'y &y x: ’

(0) qt(x, y) = quotient upon division of y by x.

PROOF.
(8) Recursion Rule (V).

X +0=x f(x, 0) = Ul
x4+ G+ D) =Nx+y) e, fx,y + 1) = N(f
) Xx-0=0 % 0 2 2y
x. G+ D =x-ytx e, gxy + 1) = f(g(x, y), %),
wheref isthe addition function
(c) X =1
X = ) | x
(d) 80) =0
3yt =y
(e) X =0 =x
x-@t1=2086x=y)
() K-—yl=x=y+F-=x (Substitution)
(8 sg(® =0
sey T1) =1
(h) sg(x) = 1 = sg(x)
(1) 0= 1
; GtiN=@H.¢ 1
(3 min (X, y) = X = (X ~Y)
(k) Assumemin (X,, . .., x,) aready shown primitive recursive.
min (X, ..., X, X,,,) = min (min (x, . . . , Xoh Xax 1)
M max (x,y) =y + (x = y)
(m) max (Xl, v, Xp4p) = max (max (X000 xn)* &rﬂ)
(n) rm(x, 0) = 0

m(x, y + 1) = N(rm(x, y)) . sg(|x — N(rm(x, y))|)
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qt(x,0) = 0
gty + 1) = qt(x, y) + s&(ix = Nim(x, y)I)
DEFINITIONS
0 ifz=20
) f(xp ..+, X Y) = f(Xpp o oes X O) F o F L X2 — 1)
y=e ifz>0
Sy eaaX ¥) = 2 Xy %, Y)
¥z y<z+1
1 ifz=0
f(Xpy o X ¥) = 1 F(Xp oo X 0) L H(Xyy e X 2 1)
y<z ifz>0
Hf(x,,...,X,, y)= H f(xh..-sxnIY)
y<z y<z+1
These bounded sums and products are functions of x,, . . . , X, 2. We can

define doubly bounded sumsand productsin terms of the ones already given,

e.g.,

f(xp .- s X ¥) = f(x‘,...,xn,u+1)+---+f(xis.--a7‘m"'—1)

u<y<v
f(xp, .., Xpy +u+1)
y<(v-u)-1
PROPOSITION 3.16. If f(X,, - -+, Xy, ¥) is primitiue recursive (or rectfrs{t{e),
all the bounded sums and products defined above are also primitive

recursive (or recursive).

ROOF. Let g(X;, ..., X 7) = E f(xy, - -
folfowi ng recursion. y<z
g(Xp .- -1 X, 0) = 0
g(xi,...,x_n,z-l-l) = g(xl,...,Xn,Z) + f{xli...$xn"z)
Eh(x,...,%y2) =2 f(Xp ..., Xy ), then
y<z
h(Xy .y X 2) = 8%y« .+, X, 2 T 1) (Substitution).
The proofs for bounded products and doubly bounded sums and products are
left as exercises.
Example. Leét D(x) be the number o divisorsd x, if x > 0; let D) = 1.
Then D(x) is primitive recursive, since

D(x) = s2x sg (rm(y. x)).

. X, y). Then, we have the
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Given number-theoretic relations, we can apply the connectives of the pro-
positional calculus to them to obtain new relations. We shall use the same
symbols (~, A, \V, 2, =) for them here, except where confusion may arise
between these symbols as they occur in our intuitive metalanguage and as they

occur in first-order theories. For examlgle, if Ry(xy, ..., X,) and Ry(xy, + + -, xdﬁ
are relations, then Ry(x,, ..., x,) V Ry(x,, ..., X,) iS @ new refation whi
holds for x,,...,x, when and only when R(x,,...,x,) holds or
Ry(xy, . . ., %) holds. We shall use (y)y,,R(x,, ..., X, Y) to express the rela-
tion: for all vy, if y is less than z, then R(x,, ..., X, y) holds. We shall use
My<o (EY)ycrr (Ey),¢, in an analogous way, e.g, (Ey), _,R(x,. )

means that there is some y < z such that R(x,, ..., x,, y) holds. We shal’f%;}ﬁ
OMy<o Oy<os (EY)y<nr (Ey)y<, bounded quantifiers. In addition, we define a

bounded u-operator:
theleast y < zfor which R(x,, . .

holdsif thereissuch ay;
z otherwise

Xy ¥)

myy o R(X, X, Y

(The value z is chosen in the second case because it is more convenient in later
proofs; this choice has no intuitive significance.)

A relation R(x,, . . ., x,) issaid to be primitive recursive (or recursive) if and
only if its characteristic function Cg(x,,...,X,) IS primitive recursive (or
recursive). In particular, a set A o natural numbers is primitive recursive (or
recursive) if and only if its characteristic function C,(x) is primitive recursive(or
recursive).

Examples,

(1) The relation x, = x, is primitive recursive. Its characteristic function is
sg(|x, — x,]), which is primitive recursive, by Proposition 3.15(f), (g).

(2) The relation x, < x, is primitive recursive, since its characteristic function
issg(x, = x;), which is primitive recursive, by Proposition 3.15(e), (h).

(3) The relation x, |x, is primitive recursive, since its characteristic function is
sg(rm(x,, X,)).

(4) The relation Pr(x), x is a prime, is primitive recursive, since Cp(x) =
sg(D(x) = 2) T sg(x — 1) T sg(lx — 0])). Remember that x is a prime if and
only if it has exactly two divisorsand is not equal to 0 or 1

PrRoOPOSITION 317. Relations obtainedfrom primitive recursive (or recursiue)

relations by means d the propositional connectivesand the bounded quantifiers

are aso primitive recursive (or recursive). Also, application d the bounded
p-operators py, ., OF py, ., leads from primitive recursive (or recursive) rela-
tions to primitive recursive (or recursive)functions.

PROOF. Assume R(x,, ..., x,) and Ry(x,, ..., x,) primitive recursive (or
recursive) relations. Then the characteristic functions Cy and Cy, are primitive
recursive (or recursive). But C_p (x, -+, %) =1 - Cg(x, .., Xy); hence

+ easy to verify that Co(x, . .
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R, is primitive recursve (or recursive). Also, Cryr,n ..., 3=
(Xyy o v vy Xp) & Cr(Xps - -5 %); S0, RiV Ry is primitive recursive (or recur-

give). Since al the propositional connectivesare definable in termsd -- and V/,

this takes care d them. Now, assume R(x,, ..., X,, y) primitive recursive (or
recursive). If Q(xy, . .., X, 2) is the relation (Ey),.R(xp, ..., x, y), then it is
X Z) = .Y];[:Ck(xp .« +, Xu» ¥)» Which, by Proposi-

tion 3.16, is primitive recursive (or recursive). The bounded quantifier (Ey), , is
equivalent to (Ey),,+,, whichis gptai nable from (Ey), ., by substitution. Also,
()<= is equivalent to ~ (Ey),<. , and (¥)y<. is equivalent to ~ (Ey),, -
Doubly bounded quantifiers, such as (Ey),<y<. can be defined by substitution
in the bounded quantifiers already mentioned. Finaly, uH\,Ck(xl, R S 1))

has the value 1 for al y such that R(x,, ..., x,, u) isfasefor dl u < y; it has
the value 0 as soon as there is some u < y such that R(x,, ..., x,, U) holds.

Hence, Y ( II Cr(x;, . - ., X, U)) counts the number o integersfrom 0 up to
y

<z u<
but not including the first y < z such that R(xy, ..., X, y) holds and is z if
there is no such y; thus, it is equal to py,,R(X;, ..., X, ¥) and so the latter
function is primitive recursive (or recursive), by Proposition 3.16.

Examples.
(1) Let p(x) be the x™ prime number in ascending order, with p(0) = 2. We
shdl write p, instead of p(x). Then p, is a primitive recursivefunction. For

Po = 2
Px+1 = “yy((p;)!-Fl(px < y /\Pl’(y))

Notice that the relation u < y A Pr(y) is primitive recursive. Hence, by Proposi-
tion 3.17, the function gy, .(u <y APr(y)) is a primitive recursive function
g(u, V). If we substitute the primitive recursive functions z and (2)! +1 for u and
v respectively in g(u, v), we obtain the primitive recursivefunction

h(z) = wyen+1@ <Y APIE)

and the right-hand side of the second equation is h(p,); hence we have an
application of the Recursion Rule (V). The bound (p,)! 1 on the first prime
after p, followsfrom Euclid’s proof of theinfinitude of primes(cf. Exercise 3.26,
p. 144).

(2) Every positive integer x has a unique factorization into prime powers:
X = po™p,™ . . . p™. Let us denote by (x); the exponent a; in this factorization. If
x=1,(x);isOfor al i. If x = 0, wearbitrarily let (x); = 0. Then the function (x);
is primitive recursive, since (x); = py, < (P1X A ~ (2 *'[%))-

(3) Let 1h(x) be the number of non-zero exponents in the factorization of x
into powers of primes. Let 1h(0) = 0. Then |h is primitive recursive. For, let
R(x, y) be the primitive recursve predicate Pr(y) AYx /A x#0. Then
h(x) = 3 sg(Cr(x, )

y<x
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(@) If x =23

a 1] (] o, .
o .. " "represents” the sequence of positive integers
(0] 1> y ak,

and y = 2% . . p b « .
o by, ...-,b,, thyen the mumber ;egr?eltsgaughf .s.eq.u;ni?
Pis1™Pes2” . .. Pasiem’™ “Tepresents” the new sequence a, a,, . )
b, ... b, obtained by juxtaposing the two sequences. But,
Ih(x), m + 1 = Ih(y), and b; = (y). Hence, xxy =x. []

v . . . 1< 1h(y) ‘h(x)+j)0)’; and
thus * is a primitive recursive function. We shall omit parentheses in

two or more applications of »,SiNCE X x (y * 2) = (x * y) * 7 (as longasy ¢
which will be the only case df interest to us). ="

T dy,
k+1$

EXERCISES

319. Udng Proposgtion 3.17, prove that, if R(x,,...,x, Y) iS a primitive

recursive (or recursive) relation, then (Ey),.,. R(x;, - - - Xy, Y),
Eyucy< R, . .., X ¥), and (Ey)yoy o R(xy, ..., Xy, Y) @€ primitive recur-
sive(or recursive) relations, and (uy)._._ . R(x,, - - -, *m» y)

(py)!.l{vaR(x[, a.nd

(BY)ucy <o R(Xs -+ « » Xny Y) ae pr}(mitive%gc;j'ré\’}e{(vor (réiflréiv'e)'fim’éﬁbr%lsz’

3.20. Show that the intersection, union, and complement d primitive recursve
(or recursve) sets are dso primitive recursve (or recursve). Prove that every finite
<t is primitive recursve.

321. Provethat afunctionf(x,, ..., %,) is recursveif and only if its represent-
ing relation f(x,, . - . , x,) = Y isarecurgverdétion.

322. Le [Vn] denote the greatest integer < Vn, and let I(n) denote the
number d primes < n. Show that [Vn ] and II(n) are primitive recursive.

3.23. Le e be the base d the naturd logarithms. Show thét [ne], the greatest
integer < ne is a primitive recursvefunction d n.

324. L& RP(y, z) holdif and only if yand z are rdatively prime, that is y and z
have no common factor grester than 1 Let g(n) be the number d podtive integers
< n which are relatively prime to n. Prove that RP and ¢ are primitive recursive.

3.25. Show tha, in the definition d the primitive recursve functions, one need
not assume that Z(x) = ¢ isoned theinitia functions.

3.26. Provethdl py,, < (Pop1 - - - Pt 1. Henoe pey | < p! 1.

For usein the further study o recursive functions, we prove the following
theorem on definition by cases.

ProPOSITION 3.18. Let

g(x, ..., %) ifR(X,...,%x holds
(..o x) = gz(xl,. o x,) if Ry(x,, ..., x%,) holds
g(Xp, ..., x,) if Ry(Xp, . .- X,) holds.

If the functions g,, . . . , g and the rlations R, , . .
(or recursive), and if, for any x,,.

., R, areprimitive recursive
., X, exactly one d the relations

l. 3
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L o (Or
Rixps "7 X ot o2 Ry, - v 0 %) is true, then f is primitive Tecursive (
1A 2 i

recursive).

_ PR
PROOF. f(Xy, =m-:%X,) = gl(xk}j)' LX) e sg(Cri(xy, s X)) + .

.Bk(xls res xn) ) Sg(ch(xl’ e '

EXERCISES

3.27. Show that in Proposition 318 it iS not necessary to assume that Ry is
primitive recursve (or recursive).
3.28. Let .
= x? X iseven
) (x +1 if Xisodd

Provethat f is primitive recursve.

329. Let _ , ,
h(x) = 2 if Fermat's Lagt Theorem is true
( 1 | Fermat’s Lag Theorem isfdse

Is h primitive recursve?

It is often important to have available a primitive recursive one-one corre-
spondence between the set d ordered pairs o natural numbers and the set o
natural numbers. We shall enumerate the pairs as follows:

(EAF) ; © 1), 0, (L1 (0,2),(20),(L,2),2 1,22 .- .

After we have enumerated all the pairs having components < k, we then add a
new group of al the new pairs involving components < k + 1 in the following
order: (O, k+1),&k*T1,0,Lk+TD,&+TLD,...,(kKkt+D&+1KkK),
&t 1,k * 1). Now, if x < y, then (X, y) occurs before (y, X) and both arein the
(v + )™ group. (Note that we start from one in counting groups.) The first y
groups contain y? pairs, and (X, y) is the (2x + 1) pair in the (y + 1)™ group.
Hence, (x,y) is the (y> + 2x + )™ pair in the ordering, and (y, x) is the
(2 T 2x + 2" pair. On the other hand, if x =, (x, y) is the (x T I))" pair.
This justifies the following definition, in which 0%(x, y) denotes the place of the
pair (x, y) in the above enumeration, with (0, 0) considered to bein the 0" place.

o2(x,y) = (sgx = y) - (2+2y+ 1)+ (sgx =) O + 2x)

Clearly o2 is primitive recursive.

Let us define inverse functions ¢? and o2 such that o¥(o(x,y)) = X,
02(6%(x, y)) = y, and 6*(0%(z), 0X(z)) = z. Thus, ¢3(z) and ¢3(2) are the first and
second components, respectively, d the z" ordered pair in the given enumera-
tion. Note first that 62(0) = 0, 03(0) = 0,

a3(n) if o}(n) < 03(n)
o(n+1) = {oin) + 1 ifoi(n) > o3(n)
0 if 03(n) = 03(n)
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022(1.] + ]) = { alz(n) if 0]2(1'1) ?"‘0%(11)
of(n) + 1 if o¥(n) = o(n)
Hence,

ai(n + 1) = o3(n) - (sg(oZ(n) = ai(n))) + (o2(n) + 1) - (sg(o?(n) ~ a3(n)))
= @(a{(n), 02(n))

sg(lof(n) — o3(n)]) - oX(n) + sg (lo3(n) — o3(n)|) - (o3(n) + 1)

Y(ai(n), oX(n)

where ¢ and y are primitive recursive functions. Thus, ¢7 and o2 are defined
recursively at the same time. We can show that o7 and o2 are primitive recursive
in the followingdevious way. Let r(u) = 2°1®3°%w) Now, 7 is primitiverecursive,
since 7(0) = 210390 =2°.3% =], and r(n * 1) = 200 +D . 3eIeHD -
2%(Eim), aXm) 3T, oHM) = JHN CONIFUC(MN. ()) R emembering that the func
tion (x), is primitive recursive (cf. Example 2, p. 143), we concl udge by Recursion
Rule (V) that r is primitive recursive. But o?(x) = ((x)), and o3(x) =
(7(x)),; by substitution, ¢f and o7 are primitive recursive.

One-one primitive recursive correspondences between al n-tuples of natural
numbers and al natural numbers can be defined step by step, using induction
on n. For n = 2, it has already been established. Assume that, for n = k, we
have primitive recursive functions o*(x,, . . ., X,), 6¥(X), - . ., of(x) such that
af(o*(x,, ..., X)) = X for | <i <k, and a*(oX(x), ..., a¥(x)) = x. Now, for
n=kt I, define a**'(x,, . . -, X Xy 1) = 00Xy, -+ 5 X Xy y ) 0F (X)) =
oX(a}(x)) for | <i<k and aiix) = azz(x)._ Then ok+! o’l‘_“, s Ok
are al primitive recursive, and we leave it as an exercise to verify
that of*'(o**'(x,, ..., X)) =X, for 1 <i<k*1, and
O!H-I(G}H'I(X), e oil(tl-ll(x)) =X.

It is often convenient to define functions by a recursion in which the value of
f(x;,...,x,y T 1) depends not only upon f(x,, ..., X,Yy) but also upon
several or al values o f(x,, ... x, U) with u <y. This type o recursion is

called a course-of-values recursion. Let f#(x;,...,x, y) = [] pSf® .=
Note that f can be obtained from f# as follows: fXg%..,x,Yy) =
(f#{xl, L) xn; y + l))y‘

ProrPosITION 3.19.  If h(x,, .Y, 2) is primitiue recursiue (or recursiue),

S -
and f(x;, ..., X, yY) =h(x, ..., X, Y, F#(x,, ..., X, Y)), then f is primitiue
recursiue (or recursiue).

al(n + 1)

i

]

SecC. 3 _ BC. 3
and | ]
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I:i PROOF‘
f#(xp C e ,xny 0) = 1
(XX, .., X0 )
f#(x,,.-.,xn,)"l'l):f#(xl""’xﬂ’Y)'py [#{ K)"))
ST (NN ) B (R

Thus, by the Recursion Rule (V), f# is primitive recursive (or recursive); but
f(xp s Xp y) = (f#(xl! e X Y + l))y

Example. The Fibonacci sequence is defined as follows: f(0) = I, f(1) = 2,
fk T 2 = f(x) T f(x + 1) for k > 0. Then f is primitive recursive, since '
f(k) = g (k) + 2 - sg(k — 1) + (# =1 + (#0h=2) - sglk = 1),

the function
h(y,2) = 8O T 2. 58y = 1) + (@1 + @) . 580~ §)

is primitive recursive, and
f(k) = h(k, f#(k))
Exercise 330. Let g(0) =2 g(1) =4, and gk T2 =3gk + 1) =
(2g(k) * 1). Show that g isprimitiue recursiue,

CoroLLARY 320. K H(x,,...,x,, Y, z) isaprimitiue recursiue (or recursive)
relation, and R(xy, ..., X,, ¥) holds if and only if
H(Xy, « -5 X V) (CRIF (X - -+, Xy, Y)), Where Cy is the characteristicfunction

of R, then R isprimitive recursive (or recursiue).

PROOF. Cr(Xps .., X ¥) = CuXps . . ., Xp ¥ (CRH# (X, . . ., X, Y)), Where
the characteristic function C,; o H is primitive recursive (or recursive). Hence,
by Proposition 3.19, C;, is primitive recursive (or recursive), and, therefore, sois
therelation R.

Proposition 3.19 and Corollary 3.20 will be drawn upon heavily in the sequel.
They are applicable whenever the value o a function or relation for y is defined
in terms o values for arguments less than y. Natice in this connection that

R(Xy, ..., X, U) is equivalent to Cg(xy, ..., X, U) =0, which, in turn, for
u <y, isequivaent to (CR)#(Xy, ..., Xu Y)u = 0.
EXERCISES

331. Provethat the set of recursivefunctions is denumerable.

332. If fy, f,, f,, .. . isan enumeration of all primitive recursivefunctions (or all
recursive functions) of one variable, prove that the function f,(y) is not primitive
recursive (or recursive).

PROPOSITION 321 (GODEL’S B-FUNCTION). Let B(xy, xp, x3) =
m(l * (x; T 1). x,, x,). Then B isprimitiue recursiue, by Proposition 3.15(n).
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Also, B(x;, x5, x5) IS strongly representablein S by the Wt Br(x,, x5, X,, X,):
(Ew)(x;, =(1F (5 + D) oxy) W xg Axy <UF (x, + 1) x)

PROOF. By Proposition 311, +(E,xg) Bt(x;, x,, X, x,). Assime B(k,, k, k;)
=k, Thenk, = (1 * (k, + 1). k;) k+k, forsomek, andk, < | + (k, + )

k, S0, Fk, = (1+ (k; T 1)- k;) - k + k,, by Proposition 3.6(a); and + k<T
+ (k1 1) - k; by the expressibility of < and Proposition 3.6(a). Hence, F k, =
T+t 0. k) K+ kak,<i+d;t Dk from which, by Rule Eq,
t Br(k,, ky, ks, k,). Thus, Br strongly represents 5 in S.

ProposITION 3.22.  For any sequenced  natural numberskg, K,, . . ., k. there

exigt natural numbers b, ¢ such that B(b, c, i) = kfor 0 <1<n,

PROOF. Letj=max (n, ky, ky, ..., k;)and let c = j!. Consider the numbers
w =17t e for 0 <i< n; they have no factors in common other than
one. For, if p were a prime dividing both 1 + (i + I)c and | + (m + 1)c with
0 < i <m < n, then p would divide their difference (m — i)c; now, p does not
divide ¢, since, in that case, p would divide both (i + I)cand | + (i + I)c, and
so would divide 1, which is impossible. Hence, p also does not divide (m — i);
form-i<n<j and so, m—i divides j!l=c; if p divided m - i, then p
would divide c. Hence, p does not divide (m - i), which yields a contra-
diction. Thus, the numbersu,, 0 4 i < n, are relatively primein pairs. Also, for
0<i<nk<j<jl=c<1+(*Dhec=u, ie, k <u. Now, by the
Chinese Remainder Theorem (cf. Exercise 3.33, p. 151), there is a number
b<ugu,...u, such that rm(y, b) =k for 0 <i<n But Bb,ci)=
m(l + (i + ¢, b) = rm(u,, b) = k..

Propositions 3.21 and 3.22 enable us to express within S assertions about finite
sequences of natural numbers and this ability is crucia in part of the proof d
the followingfundamental theorem.

ProPOSITION 323. Every recursivefunction is representablein S.

PrROOF. Theinitial functions Z, N, U!' are representablein S, by Examples
(&-(c) on p. 135. The Substitution Rule (IV) does not lead out of the class d
representable functions, by Example (d) on p. 136.

The Recursion Rule (V). assume that
h(x,,...,x, Y,z ae representable in S by wfs Q(x,, ..
B(xy, ... ,%,4,), respectively, and let

(,){ (1 -+ Xy 0) = gy, .. ., X.)

f(xp, .. Xy + 1) = h(Xps s oK ¥ H(X 010 %0 )

Now, f(x;,...,x,y) =zif and only if there is a finite sequence & numbers
by, ..., b, such that by = g(x, ..., x,), by,y=h(X,,...,%, wb,)forwt |
<y, and b, =z but, by Proposition 322, reference to finite sequences can be

that g(x,, ..., x,) and
-2 Xp4,y) and

|

Yew -
| (Eu)(Et?)[((Ew)(Bf(u, 0,0, w) A @(x, - -
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saraphrased in terms of the function B, and, by Proposition 3.21, 8 isrepresent-
b .j'_able in S‘

We shdl show that f(x,,...,x,, %+, is representable in S by the wf

L] xﬂ+2):
1 Xns W))) A Bf(u, Uy Xph1s xn+2)

A (W) (w < x,,; D (Ev)(Ez)(Bt(u, v, w, y)

AN Bf(u, v, w, Z) VAN %(xp Ceas Xy WL, Z))

(i)_First, assume that f(k, ..., %, p=m We wish to show that
FCky, .- -,k,p,m). K p=0 then m=gk,...,k) Consider the
sequence consisting d m alone. By Proposition 322, there exist b, c

that B(b,c,0) = m. Hence, t Bi(b. T, 0, m), Propositi 321.
T 000 s, A0 TOR) A M
43) + (Ew)(Bt(b, T, 0, w) A\ E(kys . . ., ko, W)
(R - Br(b, T, 0, m). By a tautology, the last conjunction (F¥¥) of
Clky - ey 0, m) is provable, since F w 4 0. Applying Rule E4 to the con-
junction d (%), (F0K), (F0¥oK), we obtain F C(k,, ..., k, 0, ™). Now, for
p>0, f(k,, ...,k p) is caculated from the equations (I) in p + 1 steps. Let
r, = f(k, . .., k,, i). For the sequence d numbers ro, 13, ..., Iy, there are, by
Proposition 3.22, numbers b, ¢ such that B(b,c,i) =r_for 0 <i<p.
Hence, by Proposition 3.21, F B#(b,, , r). In par-
ticular, Bb, ¢, 0) =1, =f(k, ..., k, 0) =gk, ..., k) _ ThereforR,
F Bt(b, T, 0,1) A @(kys ..., ky, o), and by Rule E4, (1) t (EwXBt(b, ¢, 0, w)
@k, ...k, w). Sincer, = fk;, ...,k p) = m, B(b, ¢, p) = m; hence, D+
Bi(b, ¢, p,M). For0<i < p-1LBMb ci)=r="Mk,...,k,1);

b,

B( Skai+ D)
ki) =hky, L Ky i)

We previousy obtained
(b,
K,

Qi+ D) =r,, =ik ..

= hky, . .., ko 1, fkys

Hence, F Bt(b,, , ty A Bi®:, 1,1, ) AD Ky ky b5 1y BY Rule

E4, + (Ey)(EZ)(Bt(ba <, :1'; y) N B!(b! g, 1, Z) AN %(kb A z)). Hence,
Proposition 3.8(b"), we have (3) t(w)Xw < p D (Ey)Ez)(Bi(Db, T, w, y)
Bi(b, &, w',z) A B(ky. .. .1 Ky Wy, 1))). Then, applying Rule E4 twice to the
conjunction d (1), (2), and (3), we obtain t €(k,, ..., k,, P, @). Thus, we have
verified clause (1) of the definition of representability in S (cf. p. 135).

(i) We must show that F(E,x,.+)Ck;s . .., ke P, x,,,). The proof is by
induction on p in the metalanguage. Notice that, by what we have proved above,

it sufficesto prove only tnianieness _The casefor p = 0 iseasy and,jis left
exercise. Now, assume t (E,x,+2)C Ky, , . ., Ky, Ps Xp42)- Let @ = gﬂl‘i’ . {ﬁ‘ﬁ]-
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ﬂ f(k[!...’knsp),and7= (kl’ knp+1)'—h(k[9"'

M FBE, L ERE k. p, B). Then,

2 *+ @(ﬁ, ook, @)

@) FCky ..., kP B)

4) tC(k,... l_(ﬂ,p+ 1,7

©) F(E1x,.+z)@(k., oy B R
Assume

© Ck,,..., E, p+1x.,))

We must provex,,, = ¥. Now from (6) by Rule C.
(@) (Ew)Bi(b, c,0, W) A Q(k,, ... K. '
(®) Bib,c,p + 1. x,.) . w W)
© (wy(w<p + ]3 (Ey)(Ez)(Bi(b, c, w V)N Bi(b, ¢, w V', 2)

» : -
From (C), /\ (kl‘ » km W, ,V» Z))
@ (wxw<p> (EyX Ez) Bt(b, c, w,¥) N\ B(b, c, w', z)

/\ %(k_p ey E} W,}G-Z)]'

From (c) by Rule C,
() Bi(b,c,p,d) N\ Bu(b,e,p + 1, e T
From @, @), (). B RS kel
H Cl,...,
From (f) and (5),
® d=F§
From (e), (g),
(h) %(kp ey ,,,p,,[)’, e)

Since % represents h, we obtain from (1) and (h)
N y=e
From (e), (i),
(J)) Bib,c,p+ 17
From (b), (j), and Proposition 3.21,
k) x, wt2 =Y
This completes the induction.

The p-operator (VI). Let us assume that, for any x,, ..., x,, there is somey
such that g(x;, . . ., X,, ¥) = 0, and let us assume g is representablein S by a wf

k. b, d)

D(xy, vy Xorg) LELEGKG, o0 X)) = 2YR(X), - - -5 Xg Y) = 0). Then f is repre-
sentable in S by thewf &(x,, ..., x,,1):

D(xy s x,,,00 A Ny <x w1 D~ D(xp, .- X, 0, 0)
First, assume f(k;, ..., k,) = m. Then gk, - , Kk, m) =0 and, for k <m,
8y ...k, k);&o So, F Dk, ... K, m 0) and, for k < m,
F~ 9k, ...,, |, 0) By Proposition 3.8(b%), F(y)}y < @ 2

I ;:.I- l’(u
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b~ Dy, . .., K.y, 00 Hence, F&(K...,k,m). We must also show:
'i-(E,x,,,,,)tE(T(_l, ey ks x, ). It suffices, by what. we have aready shown,
¥ to prove the_uniqueness.  If GD(kl_,_. ke u OA O <uD
-__~6D(k—1,. ke »,0), and if Dy ..., ke, 0 A Oy <P3
g . k., ¥, 0), then it follows that if v < u we obtain a contradiction
kn.v )N~ Dk, ...,k Vv, 0), and if u<wv, then we obtain a
» ko, U, 0)/\ Dk, ..., k, u 0). Hence since
)V u<v)V (u < u), we conclude u = v. This shows the uniqueness.
Thus, we have shown that al recursive functions are representablein S

COROLLARY 3.24. Every recursve relation is expressible in S

prOOF. Leét R(x,,...,x,) be a recursive relation. Then its characteristic
function Cy is recursive. By Proposition 3.23, Cg is representable in S and,
. therefore, by Proposition 3.12, R is expressible in S

hr

L SR

e

EXERCISES

3334, (a) Show that, if aand b are relatively prime natural numbers, then there
isa natural number c such that ac = 1 (mod b). (In general, x = y (mod z) means
that x and y leave the same remainder upon division by z, or, equivaently, that
X — y isdivisible by z. This exercise amounts to showing that there exist integers u
and v such that 1 = au *+ bv.)

(b) Prove the Chinese Remainder Theorem: If x,,..., % are relatively
primein pairs,andy,, ..., yx areany natural numbers, thereis a natural number z
such that z = y(mod x;),...,z=y, (mod x). Any two such Zs differ by a
multiple of x; . . . x. (Hint: Ietx =X, ... xandleex=wx =wx, = ,-- =
wiX, Then, for 1 < i <k, w; |srelat|vely prime to x;, and so, by part (a), there is
some z such that wgz; =1 (mod x). Now, let z = wyzyy; + wazay,
+ ... twazy, Then 2= way, = = yy(mod x;). In addition, the dlfference between
any two such solutions is divisible by x,, , X, and hence by x;x; - . . %)

3.34. Cdl arelation R(x), ... , Xp) arithmetical if it isthe interpretation of some
wi @(x,,...,x,) of S with respect to the standard model. Show that every
recursiverelation is arithmetical. (Hint: use Corollary 3.24.)

335. Prove that representability implies strong representability, and hence that
every recursive functionis strongly representable in S (Y. H. Dyson).

4. Arithmetization. Godel Numbers,

For an arbitrary first-order theory K, we correlate with each symbol # of K a
positive integer g(u), called the Gédel number of u, in the following way.

g(()=380)) =52() = T8~ = %8(3) =11
g(x,) =5+ 8kfork = 1,2,...
gla) = 7+ 8fork = 1,2,...

g(f) = 9t 82" fork,n > 1
g42) = 1 + 823 fork,n > 1
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Thus, different symbols have different Gédel numbers, and every Goédel number
isan odd positive integer.?

Examples. g(x,) = 21, g(ay) = 39, g(f3) = 105, g(A3) = 155.

Given an expresson uu, - - - u,, We define its Godel number to be
gluuy . - . ) = 28030 . pE) where p, is the i prime and p, = 2. For

example, g(AX(x,, X)) = 25(45. . 38O . sEx) . 780) L ppECx) . 380
21073351377 17171 {35 'Obgerve that different expressions have different Godel nur;.
bers, by the uniquenessof the factorization of integersinto primes. In addition,
expressions and symbols have different Gédel numbers, since the former have
even Godel numbers and the latter odd Godel numbers. (A single symbal,
considered as an expression, has a different number from its number as 3
symbol. This situation should cause no confusion.)

If we have an arbitrary finite sequence o expressionse,, e,, ..., e,, We can
assign a Godel number to this sequence by setting g(e,, €5, ...,¢€) =
280 38 | pee)  Different sequences o expressions have different

Gadel numbers. Since a Gédel number d a sequence o expressionsis even and
the exponent o 2 in its prime factorization is also even, it differs from Godel
numbers of symbols and expressions.

Thus, g is a one-one function from the set of symbols o K, expressionsd K,
and finite sequences o expressions o K, into the set o positive integers. The
range of g is not the whole set d positive integers; for example, 10 is not a
Godel number.

EXERCISES

3.36. Determine the objectswhich have the following Godel numbers. 1944, 47.
3.37. Show that if nisodd, 4n isnot a Gédel number.
3.38. Find the Gédel numbersof the expressons (a) fi(ay);

(b) (~ (47(a;, x3, x5))) D (4{(xp).

This correlation of numbers with symbols, expressions, and sequences of
expressions was originally devised by Godel [1931] in order to arithmetize
metamathematics.$ i.e., to replace assertions about a forma system by equiv-
alent number-theoretic statements, and then to express these statements within
the formal system. This idea turned out to be the key to a great number o
significant problemsin mathematical logic.

The assignment & Godel numbers given here is in no way unique. Other
methods may be found in Kleene[1952, Chap. X] and in Smullyan {1961, Chap.
I, §6].

TThe same numbering was used on p. 66 Lemma 2.10.

IAn arithmetization of a theory K is a one-one function g from the set of symbols of K
;’,;Eressmns of K, and finite sequences of expressonsof K into the set of positive integers. The
fof 0;;:25 vc:ndxtlons are to be sahsf@d by the function gy IS_c_ffeL:{iveiy computable; (ii) there is
i de:t‘ v¢ procedure which determines whether any given positive integer m is in the range of g

™ is in the range of g, the procedurefinds the object x such that g(x) = m. '
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ProPosiTION 3.25. Let K be a theory about which we make the assumption
that thefollowing relations are primitive recursive (Or recursive):

(@) IC(x) : x is the Gédel number d an individual constant d K;

(b) FL(x) : x is the Gddel number d a function |etter d K;

(c) PL(x) : x is the Godel number d a predicate letter d K.
Then thefallowing relations andfunctions are primitive recursive (or recursive).

(1) EVbl (x) : xisthe Godel number d an expression consistingd a variable.
€)1 <z A X = 2°¥8%), By Proposition 3.17, thisis primitiverecursive.

Eiax) : X is the Godel number o an expression consisting d an individual
constant. (E}’)K,((IC(F) A X = 2. (Proposition 3.17.)

EFL(x) : x Is the Gddel number of an expression consisting o a function
letter. (By)y«x(FLOY) A x = 2%). (Proposition 3.17.)

EPL(x) : x is the Gddel number of an expression consisting of a predicate
letter. (Ey), (PL(y) AX= 2%). (Proposition 3.17.)

(2) Argrd) = (U8, X — 9)), : If x iss the Godel number of a function letter f,
then Arg(x) = n.

Argp(x) = (qt(8, x — 11)), : If x is the Godel number d a predicate letter 4/,
then Argp(x) = n.

) Gd(x) - x is the Gddel niimher of an exnressionf K FVhI(x) \ 7 EIC(x
EigL)(x)\ﬁéPL(x)V" —Pyx=2Vx=2Vx=2Vx= 2’f?v ®) Vv
(Eu),«(EV)y (X = usv A Gd(u) n Gd(v)) (Corollary 3.20.)

(4) MP(x,y, 2): The expression with Godel number z is a direct conse-
gquence o the expressions with Gddel numbers x and y by modus ponens.
v =2 % x* 2"z 2% A Gd(x) A Gd(z). Here, * is the juxtaposition func-
tion defined on p. 144, Example (4).

(5) Gen (x, y): The expression with Gédel number y comes from the expres-
son with Goédel number x by the Generaization Rule. (Ev),.,(EVbI(v) A
y=2>+2+ v a2« X+ 2° A Gd(x)).

(6) Trm (x): x is the Gdédel number o a term o K. This holds when and only
when either x is the Gédel number of an expression consisting o a variable or

an individual constant or thereis a function letter f7 and terms ¢, ..., t,, such
that x is the Godel number of £(¢, . . ., £,)- The latter holdsif and only if there
is a sequence of expressions, the last o which having Godel number x, of T%]e
form SRty S0 oo il G oo oa gy (0 L, Gy 1)- THIS
sequenée of n+1 Iexpz)ronskcah be repregen![ed ’byl its' Godel 1number y-
Clearlyy < 2*3*- . . p* = (2.3 - .. p)* < (p.))* < (p})". Note that th(y) =

n * 1, and also that n = Arg((x)p), Since (x), is the Gddel number off;. Hence,
Trm(x) is equivalent to the following relation.

EVbI(x) V EICX) V (BY)y it = Mingy=1 A ThY) = Argr((x)p) + 1A

FL((Y)o)o) A (Do) = 3N Whycing ;Lz(E")v<x((y)u+ 1

= )+ v+ 7 ATIE) A EDacr@iny=1 = Dingy=z v+ ZATR
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Thus, Trm(x) is primitive recursive (or recursive), by Corollary 3.20, since the
formula above involves Trm(v) only for v < x. In fact, if we replace both
occurrences of Trm(v) in the formula by (z), = 0, then the new formula de.
fines a primitive recursive (or recursive) relation H(x, z), and Trm(x) =
H(x, (Cy,,) #(X)). Therefore, Corollary 3.20 is applicable.

(7) Atfml (x): x is the Godel number of an atomic wf of K. This holds if and
only if there are terms ¢, .. ., £, and a predicate letter 4, such that X is the
Godel number of 47(z, ..., ). The latter holds if and only if there is 3
sequence of expressions, the last o which having Godel number x, o the form

Akn(A;((p A:(tz: "2’ P A;({t, "2’ L I1-1—[;14,501, L In—-p tn)

This sequence of n + 1 expressions can be represented by its Gédel number y.
Clearly y < (p,!)* (as in (6) above) and n = Arg ((x),). Hence, Atfml (x) is
equivalent to the following relation.
(EY)y<purl® = Mingy=1 A They) = Ar 8:((X)o) A\ PL(((1)0)o) N\
O =3 A @ucingy =2 BV @y = O)y # v # 27 A Trm(v)) A
EVex@iney21 = Ding) 22 * v # 25 A Trm(v))]
Hence, by Proposition 3.17, Atfml (X) is primitive recursive(or recursive).

(8) Fm1 (y): y is the Godel number of awf of K.
Atim] Gy (B2, [(Fml @) Ay =2+2042+ W
Eml@o) A Fmi@) Ay =2+ @)y + 2+ (2), + 29) v/
Fml(@)o) AEVBU@)) Ay =22 2« (2), + 25 x (2), » o
As an exercise, check that Corollary 3.20 is now applicable.

(9) (a) Subst (x, Y, u, v): xis the Gédel number of the result of substituting in
the expression with Gédel number y the term with Gédel number u for al free
occurrences o the variable with Gédel number v.

Gd(y) A Trm(u) A VBV A[(y =2 AX =u) V
EWh o,y =2 Ay = 2" Ax=y)V
(Ez)z{y(ﬁw)w<y[Fm1(w) AY=222 s 225wz A

(Bat)y x(x = P*2+2Pxwea /A Subst (a, z, u, V) V
((~ (Ez)zq(EW)wQ(le W AYy=22+2"+2+wr2) A
(Ea)e ci(EB)g(E2), (1 <ZAY=(p*, Ax=a=*BA
Subst (a, (¥)o» u, v) A Subst (8, z, u, V)]

Check that Corollary 3.20 is applicabl e

_ (®) Sub (v, u, v): the Godel number of the result d substituting the term
with Godel number u for al free occurrences in the expression with Godel

s
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humber y o the variable with Godel number v. Then Sub(y, u,v) =
PXx<(poy)” Subst (X,V, U, V), and, therefore, Sub is primitive recursive (or

' recursive) by Proposition 3.17.

(10) (8) Fr(u, x): u is the Godel number o awf or aterm of K whichcontains
the Variable with Gddel number x free.
(Fmi(u) \/ Trm(u)) A Vbl(x) A ~ Subst(u, u, 2°*%, x)
at IS, substitution in the wf with Godel number u o avariable different from
that with Gédel number x for al free occurrences o the variable with Godel

number x yields a different expression.)
(b) Fr,(u, v, w): u is the Godel number of a term which is free for the

variable with Godel number v in the wf with Godel number w.

Trm(w) A VbI(v) A FmI(w) A [AUmMI(W) V/ (Ey)yculW =22+ 22 s y s 22 A\
FrW, v, y)) V EY)yculED,cuW = 22 % y % 21 5 2523 A

Fr(w, v, ) A Fri(u, v, 2)) V (Ey)Kw(Ez)Kw(w e BB a2 e y .2
AVbI2) A (2 # v 3Fry(u, v, y) A (Fr(u, 2) D~ Fr(y, v))))]

Use Corollary 3.20 again.
(') (d) Ax,(x): x is the Godel number of an instance of Axiom Schema(1).

(Bu)yx(EV)<x(Fml(W) AFmi(v) Ax =222 us 2"+ 225 v 2! v ax 22 2°)

(b) Ax,(x): x isthe Godel number of an instance d Axiom Schema (2).
(Eu)y <1 (EV)y A(EW)w(FMIWU) A Fml(v) A Fml(w) A x 5 2° *
Vaus2l e B ava2l a W,y 25,:20 BB %42 « 2!
s sus2l s w2262 425
(c) Ax;(x): x is the Godel number of an instance of Axiom Schema (3).
Fml 5® a1, 43, 99
R EI G DI AL < 2 2 g P 112, 20 B
(d) Axy(x): x is the Godel number d an instance of Axiom Schema (4).

E X E L2, E ) x(le(.Y) T u Vbl(V) Fr. (u, Vs y) A
i :)ﬁ E 2‘;)523( ...yzg(; By ibs\ * gﬂ(*)sefb(y, u, v')A\* 25)

(€) Axs(x): X is the Gédel number of an instance of Axion Schema (533
E Ew), (Fml(u) A Fml(w) A Vbi(¥) A ~ Fr(u, V) A x = 2"+
(.g%“f‘:gf?iﬂ(zﬂ 5‘52?:& s)v/t\? e B e sV aus2 e eBe2" 2
W 2% 5 2% & 2%
() LAX(y): y is the Godel number of alogical axiom.
Axy(Y) V Ax(y) V Axs(y) V Axy(y) V Axs(y)

Remark. The assumptions (8)-(c) of Proposition 3.25 hold for a first-order
theory K which has only a finite number of individual constants, function
letters, and predicate letters, since, in that case, IC(X), FL(x), and PL(X) are
primitive recursive. For example, if the individual constants o K are
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a,, a,...,a, then IC(x) if and only if x =7+ 8, Vx=7+8j,V.. Vv
x =7+ 8 . in particular, the assumptions (a)-(c) hold for S.

ProPosiTiON 3.26. If afirst-order theoty K not only sttisfies assumptiong
(8)-(c) of Proposition 3.25, but aso thefollowing assumption:

(d) the property PrAx(y), Y is the Gode! number d a proper axiom o K, js
primitive recursive (or recursiue)

then the following relations are primitive recursive (or recursive).
(12) Ax(y): y is the Godel number of an axiom o K.

LAx(y) V PrAx(y)
(13) (8 Prf(y): y is the Godel number of a proof in K. By Corollary 3.20,

(Ew)ucy(EV)y < y(Ez), < (Ew)o o ([Y = 2% A Ax(W)] V/
[Prf(u) A Fml((u),) Ay =u*2"A Gen((u),, v)] \Y
[Pri(u) \ Fmi((u),) A Fml((u),) Ay = u*2" A MP((u),, (U),, V)] v/

[Prf(u) Ay = u* 2 N AX(V)])
which is equivalent to Pri(y), is primitive recursive (or recursive).

(b) Pf(y, x): y is the Godel number of a proof of the wf with Gadel
number x. Pf(y, X) is equivalent to Prf(y) A X = (i) - 1-

Notice"lhat S satisfies assumption (d) o Proposition 3.26. Let a,, a,, ...
be the"Godel numbers of Axioms (S1)—(S8). It is easy 1O see that a number u o5
the Gédel number of an instance o Axiom Schema (89) if and only if

(EV)vu(Ey)yu(VDI(V) A Fml(y) A u= 2% » Sub(y, 2'%, V) * 211 x 23 , 3 , 3

=29¢25‘23‘y‘ZIItsub(y.zi'l*23*2\;*25,‘0‘25*25
« 2 e 2 a P a2 2552 ey 25429,
Denote the displayed formula by Ay(u). Then x is the Gédel number of a proper

axiom o Sif and only if x=a,\/x=a \V/-..\V X=a5\ Ayx). Thus,
PrAx(y) is primitiverecursivefor S.

ProrosiTiON 3.27. Let X hea theoty having among its symbols a// the symbols
of S. If therdationsIC, FL, and PL d Propodtion 3.25 areprimitive recursive
(or recursive), then (14) and (18) bdow are primitive recursiue (or recursiue). I f,
in addition, the property Pr4x d Propostion 3.26 is primitive recursive (or
recursive), then (15)-(17) bdow are primitive recursive (or recursiue). In
particular, for S all thefunctions and relations (1)—(18) are primitive recursiue.
(14) (a) Nu(y): y is the Gédel number d a numeral of S.
y=2"V(Ex), Nux) Ay = 2" 27 » x » 2°). Use Corollary 3.20.
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. (b) Num(y) = the Godel number o 3.

Num(0) = 2"
Num(y + 1) = 2% » 2> » Num(y) * 2°
(15) Bw(u, v, X, y): uisthe Gédel number of awf @, v isthe Godel number o
freein @, and y isa Goddel number o a proof in K o thew obtained

from & by subgtituting the numeral x for the free occurrences d the variable
with Godel number v.

Fml(u) A VbI(v) A Fr(u, v) A Pf(y, Sub(u, Num(x), v))

(16) Let Qxy, , x,) be afixed w o K containing x,, ..., x, as itsonly
free variables, and let m be the Godel number o &(x;,...,Xx,). Let
Bwg(uy, ..., u,y) mean: y is the Godel number o a proof in K of
@@, - - ., Uy). Then Bwg(u,, ..., u,, y) is equivalent to:

Pf(y, Sub- . (Sub(Sub(m, Num(y,), 5 + 8), Num(u,), 5 + 16). . . )).

(17) (@) W,y(u, y): uis the Godel number o a wf &(x,) containing the free
variable x,, and y is the Gédel number of a proof o @(T). Thisis equivaent to:

Fml(u) A Fr(u, 13) A Pf(y, Sub(y, Num(u), 13)).

b) Walu, v): U 18 the Godel number of a wf @(x,) cont?.iging ﬂjle free
variablé )2,, ey 'yyis' the Godel number of a proof of ~ @(1). This 1s equivalent
to:

Fmi(u) A Fr(u, 13) A Pf(y, Sub(2* » 2° » u » 2°, Num(u), 13)).

(18) We wish to define a function D(u) such that, if u isthe Godel number of
aw @(x)) with freevariable x,, then D(u) is the Gddel number of @(T). Let
D(u) = Sub(u, Num(u), 13).

The relations and functions of Propositions 3.25-3.27 which relate to the
system S should have the subscript “S” attached to the corresponding signs to
indicate the dependence upon S. If we were considering another first-order
theory §" with the same symbolsas S, then, in general, we would obtain different
relations and functions in Propositions 3.25-3.27.

ProposiTION 3.28. Any function f(x,, ..., x,) which is representable in S is

recursiue.

PROOF. Let @(x;,...,x,, 2) beawf o Srepresentingf. Censider natural
numbersKk,, ..., k,. Let fk;,..., k) = m Then F,@(k, ..., K, ) Let] be
the Goédel number o a proof in S of @k, ..., Kk, @m). Then

Bwy(k,,. .., k, m, j) (cf. Propostion 3.27(16)). So, for any Xy, . . . , X, thereis
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some y such that Bwgx, .., X, g ). Then f(x, ..., x) =
(yBwgX;, -« + 5 X5 o, 1)) By Proposition 3.27(16), Bw is primitive re-
cursive. Hence, by the p-operator Rule (VI), py(Bwy(x,, - - - » %0, ()0, ¥)))) is
recursive, and, therefore, so isf.

Proposition 3.28, together with Proposition 3.23, shows that the class of
recursive functionsis identical with the class of functions representablein S. Iy
Chapter 5, it will be made plausible that the notion of recursive function is a
precise mathematical equivalent of the intuitiveidea of effectively computable
function.

Cororrary 329. A number-theoretic relation R(x,, . .
and only i R(x,, ..., x,) iSexpressblein S,

PROOF. R is recursive if and only if Cg is recursive, by definition. R is
expressiblein Sif and only if Cy is representablein S, by Proposition 3.12.

., X,) IS recursiue if

5. Godels Theorem for S

Let K be any theory with the same symbols as S Then K is said to be
o-consistent if and only if, for every wf @(x) of K, if tx@(@) for every natura
number n, then it is not the case that g (Ex) ~ &(x). If weaccept the standard
interpretation as a modd of S then S is w-consistent, but we shal aways
explicitly state the assumption that S is w-consistent whenever it is used in a
proof (compare the remarks about consistency on p. 126).

ProrosiTion 3.30. If K is o-consistent, then K is consistent.

PROOF. Assume K o-consistent. Consider any W @(x) which is provablein
K, eg,x =x 2 x = x Inparticular, bgsi =i 3ii = # for dl natural numbers
n. Hence, (Ex) ~ (X =x 2> X = x) is not provable in K. Therefore, K is
consistent (since, by the tautology ~ 4 o (A D B), if K were inconsistent,
every wf would be provable in K).

By Proposition 327, (17a), the relation W (u,y) is primitive recursve
and so, by Corollary 3.24, W, is expressiblein S by a w9 (x,, x,) With
two free variables x,, x,, i.e., if W,(k,, k;), then
U (), ), and, if not-W,(k,, k,), then k-, ~ 0, (k,, k). Let us consider the wf

OF) (x) ~ UW,(x,, xy)

Let m be the Godel number of the wf (o%). Substituteiii for x; in (¥) to obtain
the closed wf

OFF)  (x,) ~ U, (m, x,)

Remember that W, (u, y) holds if and only if u is the Gédel number o a wf
@(x,) containing the free variable x,, and y is the Gédel number of a proof in S
of @(1). Now, m is the Gédel number of (%), and (% Q) comes from (") by
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bstituting m for the variablex,. Hence,
" (1) Wy(m, y) holds if and only if y is the Gédel number of a proof in S dof

R0,

ProrosiTION 331 (Godel’s Theorem for S [1931)).

() If Sisconsigtent, then the wf (*"F*K) is not provable in S.

Q) If S is w-consgent, then the wf ~ (*¥¥) is not provablein S
(Hence, by Propostion 3.30, if Sis o-consistent, the closed wf ("¥¥) is neither
provable nor disprovablein S. Such a dosed wf is said to be an undecidable
sentence of S)

PROOF.

(1) Assume S consistent, and assume that Fg(x,) ~ U, (M, x,). Let k be the
Gédel number of a proof in S of this wi. By (I) above, W(m, k). Since U,
expresses W, in S, we have kW, (M, k). From (xp) ~ U, (A, x,), by Rule A4, we
deduce ~ W, (iii, k). Thus, U, (iii, k) and ~ U, (ii, k) are provablein S, con-
tradicting the consistency d S.

(2) Assume S o-consistent, and assume that kg ~ (x;) ~ W, (M, x,), ie.,
ks ~ (QQ). By Proposition 3.30, Sis consistent, so that not-+5(*"F Q). Therefore,
for every natural number n, nisnot the Gédel number of aproof inSd (¥°K),
i.e, by (1), for every n, W (m, n) is fase. So, for every n, bg ~ W, (@, ii). If we
let @(x;) be ~ AU, (m, x,), then, by the w-consstency d S, it followsthat not-
Fo(Ex;) —--- %0, (iii, X.); hence, not- +¢( Ex,)W, (M, x,). But this contradicts our
assumption that Fs(Ex,)W, (T, x,).

The standard interpretation of the undecidable sentence (¥¥): (x,) =
U, (M, x,) is rather remarkable. Since W, expressesthe relation W, in S, ()
states, according to the standard interpretation, that W,(m, x,) is falsefor every
natural number x,. Now, by (1), this means that thereisno proof inSd (¥¢H).
In other words, (k) affirms its own unprovability in S. Now, by Godel’s
Theorem, if S is consistent, then (QQ) is, in fact, unprovablein S, and o,
(¥K) is true under the standard interpretation. Thus, (*¥¥) is true for the
natural numbers according to the usual interpretation, but is unprovablein S.
This might lead us to believe that Godel’s Theorem holds only because the
axiom system S that we initialy chose just happens to be too wesk and that, if
we strengthen S by adding new axioms, then the new system might be complete.

For example, we might add the true wf (*¥¥) to S to obtain a stronger axiom
system S,. However, every recursive function, being representablein S, is also
representablein S,; likewise, Propositions 3.25-3.27 obviously hold when S, is
substituted everywherefor S. But thisis all we need for the derivationof Godel’s
result; hence, if S, is o-consistent, then S, aso has an undecidablestatement B .
(B isd the form (xy) ~ (UW))s,k, x), but, d course, B will be different from
(oK), since the relation W, for S, is different from the relation W, for S, and
hence the wf (U, )5, and the numeral k enteringinto % are different from W,
and the numeral m o (QQ).)

+Thus, (F¥) is an analogue of the Liar Paradox (cf. Wang [1955))-



160 FORMAL NUMBER THEORY

EXERCISES

3.39. Let S, be the extension of S obtained by adding ~ () as a new axiom.
Show that, if S is consistent, then §, is consistent and w-inconsistent.

3.40. A theory K having the same symbolsas S issaid to be w-incompleteif there
isawf @(x) such that Fx@(@) for al non-negative integersn, but it is not the case
that Fx(x)@(x). Show that, if Sis consistent, then Sis w-incomplete.

341. Prove that w-inconsistency implies w-incompleteness for consistent theo-
ries.

342. Using the"fact” that every theorem of Sis true in the standard model, and
that, according to the standard interpretation, (*k9 ) says that ( 99) is unprovable
in S, prove that (*¥#) is undecidable in S.

Gdodel’s Theorem involves the assumption of w-consistency, but, as Rosser
[1936b} has shown, at the cost of complicating the argument we need only

assume consistency.

In Proposition 3.27, (17b), the relation W,(u, y) was shown to be primitive

recursive, and so, by Corollary 324, W, is expressiblein S by a wf &f,(x,, x,).
Now, consider the wf

Q) (W, (x), x) D (Exy)(x; € x; A sz(xl, x3)))

Let n be the Gédel number o (7). Substitute 1 for x, in () to obtain the closed
wf

0D W, (B x5) D (Exy)(x; < x; A W7, x)))

Notice that Wy(u, y) (respectively, W,(u, y)) holdsif and only if u is the Godel
number of a wf €(x,) containing thefreevariablex,, and y isthe Gdel number
o aproof in Sof @(u) (respectively, ~ @(w)). Since n is the Godel number o
(M, we have:
(ID) W, (n, y) holdsif and only i y is the Gédel number d a proof in Sd (1Y).
(IIT) W,(n, y) holds if and only if y is the Gédel number of a proof in S of
~ (1.

ProPOSITION 3.32 (GOpEL-Rosser THEOREM [1936b]).  /f Siis consistent, then

(1) and ~ (19) are both unprovable in S; hence, S contains an undecidable
sentence.

PROOF. AssumeS consistent.

(1) Assume (11) provable in S, ie., F(o)W,@@, x;) D (Ex3)(x; < x, A
%, (@, x,))). Let k be the Godel number of a proof in Sof (19). By (II), W,(n, K).
Since U, expresses W, in S, s, (7, k). But, from (19), we obtain by Rule A4,
W, (@, k) O (Exy)(x, < k A W,(@, x)), and then by MP, Fs(Exy)(x; < kA
W,(@, x,)). Now, since S is consistent, and (1Y), it follows that there is no
proof in 8 of ~ (11). So, by (III), W,(n, y) is false for al natural numbers Y.
Since W, expresses W, in' S, F¢ = AW,(@, j) for every natural number j. In
particular, we deduce kg~ U,@A, O) A ~ UW,\ DA - -+ A ~ Gllfzz(l——l, E)_

SEC. 5
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.i{ence, by Proposition 3.8(a’), Fg(x3)(x; < k o= A,([@, x,;)), and so,
B+ ~ (Exs3)(x; < k A Wy(D, x3)) by the Replacement Theorem (Corollary 221).
i put thisis the negation of awf we I‘:uave already derived above, contradicting the
B consistency of N.
@ Assume Fs ~ (19), ie, Fs ~ (W@, xp) O (Ex3)(x3 < xp A
a5, (T, x5)))- Let r be the Godel number o a proof of ~ (19). By (11D, Wy(n, r);
therefore, FsW,(@, 7). Since Sis consistent, there is no proof in Sd (19), i.e., by
(N, W,n.y) is falsefor al natural numbers y. Hence, +s ~ UW,(@, j) for all
natural numbersj. In particular,

| s ~ W(EO A~ WA A+ A~ W@
Then, by Proposition 3.8(a"),

(i) Fsx; < T D~ W, (@, x,). On the other hand, consider the following deduc-
tion.

- Hyp
1) t<x
8 Elsz('ﬁz, 7) Already proved above
(3) f < x, \UWyH, 1) (1), (2), Tautology
(4 (Ex;)xs € x; A W,(3, x3)) (3), Rule E4

From (1)-(4), by the Deduction Theorem, we obtain
(i) FsT < x, D (Ex3)(x3 < X3 A Wy(T, x3))
But, by Proposition 3.7(p),
(i) Fgx, S T VT < xy
Now. from (@i)-(iii), we obtain, by the appropriate tautology,
bs ~ UW,(@, x,) V (Exz)(xs < x5 A WH(T, x3))
and then by a tautology, MP and Gen,
Fs(x)(W, (@, x,) D (Exs)(x5 < x, A Wy(T, x,)))

Thus, F4(17). But, since ks~ (1Y) has been assumed, this contradicts the
consistency o S.

Rosser's undecidable sentence (11) also has an interesting standard interpreta-
tion. By (IT) and (III), W,(n, x,) means that x, is the Gédel number of a proof in
S of (IT), and Wy(n, x,) means that x, is the Godel number of a proof in S of
~ (M. Thus, (§9) asserts that, if thereis a proof in Sd (1), then thereis a
proof in S, with even a smaller Godel number, of ~ (19). Now, Proposition 3.32
shows that, if S is consistent, then (%) is not provable; therefore, if S is
consistent, (1) is true under the standard interpretation.

The application of the Godel-Rosser Theorem is not limited to S. Let K be
any first-order theory with the same symbols as S If we analyze the proof

above, we obtain the followingsufficient conditions for the applicability of the
Gédel-Rosser Theorem to K.
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by K in the definitions) should be expressiblein K.
(b) Thereisawf « < v such that

(i) for any wf @(x) and any natural number Kk,

@O A M A -+ A &K) 3 (x)(x < kD Qx))
(ii) and for any natural number K,

Notice that, if K is a theory with equality, then (i) may be replaced by (i'):
Fkx <ko(x=0yvx=1V--:Vx=k.

The condition (a) that W, and W, be expressiblein K will be satisfied if W,
and W, are recursive and every recursiverelation is expressiblein K. From the
proofsd Proposition 3.25-3.27, it is obvious that W, and W, will be recursiveif
the assumption (d) of Proposition 3.26 holdsfor K, i.e., if the property PrAx, d
being a Godel number of a proper axiom of K is recursive(or, in other words, if
the sat of Godel numbersd proper axiomsd K is recursive). Thus, we have the
following result.

ProposriTion 3.33. Let K be a theory hauing the same symbals as S Assume
aso that thefallowing conditions holdfor K.

(1) Every recursive relation is expressible in K.

(2) Theset PrAxg d Géodel numbers d proper axioms d K IS recursive.

(3) Conditions (b), (1)-(ii) above, hold.
Then the Godel-Rosser Theorem holdsfor K, i.e., if K is consgtent, then K fas
an undecidable sentence. (Observe that (1) holds if every recursive function is
representable in K, by Proposition 3.12; condition (i) o (3) can be replaced
by (i) aboveif K isa first-order theory with equality.)

Let uscal atheory K recursively axiomatizableif and only if thereis a theory
K’ having the same theorems as K such that the set PrAxy. o Gédel numbers d
proper axioms of K" is recursive.

CoRoLLARY 334.  Every consstent recursively axiomatizableextensond Sis
subject to the Gadel- Rosser Theorem, and therefore has an undecidablesentence.

PROOF. Since all recursive relations are expressible in S, they are dso
expressiblein any extension o S Likewise, since conditions (i)-(ii) hold in S,
they also hold in any extension of S So, by Proposition 3.33, the Godel-Rosser
Theorem applies to any consistent recursively axiomatizable extension d S,

An effectively decidable set of objectsis a set for which there is a prescribed
mechanical procedure which determines, for any given object, whether or not
that object belongs to the set. A mechanical procedure is one which is carried

SEC. 5
(@) The relations W, and W, (cf. Proposition 3.27(17); replace S everywhere
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lu automatically without any need for originaity or ingenuity in its application.

will appear plausible after Chapter 5 that the precise notion o a recursive set
rresponds to the intuitive idea o an effectively decidable set o natural
umbers. This hypothesisis known as Church's Thess.

EXERCISE 3.43. Sometimes Church's Theds is taken in the form that a
number-theoretic function is effectively computable  and only if thefunction is
recursive. Prove that this is equivdent to theform d Church's Thess giuen
above.

Remember that a theory is said to be axiomatic if the set o its axioms is
4 effectivelydecidable. If we accept Church's Thesis, Corollary 3.34 asserts that S

is essentidly incomplete, i.e., that every consistent axiomatic extension o S has
% an undecidable sentence.

EXERCISES

3.44. Provethat thesst Tr d Godel numbersd dl wisd Swhich are true in the
gandard modd is not recursve

345. From Coradllary 3.34, prove that there is no recurdvely axiomdtizable
theory having Tr as the sat of Godel numbersd its theorems,

346. Le K be a theory with equdity satisfying conditions (b), (i)-(i) (p. 162),
and such that evary recurdve rdaionis expressiblein K. Prove that evary recursive
function is representablein K.

Let Neg(x) =2* « 2° « x « 2°. Then if x is the Godel number o a w &,
Neg(x) is the Godel number of (~ @). Clearly Neg is recursive, and, hence, is
representable in S by a wf Reg(x;, x,). Remember that Pf(y, x) is the relation
which holds when and only when x is the Godel number of awf € o Sandy is
the Godel number of a proof in Sdo @. By Proposition 326. H is primitive
recursive; hence, by Corollary 3.24, Pf isexpressiblein S by some wf Bf(x;, x5).

Let Cong be the wf:

(x)(x)(x3)(xa) ~ (BF(x1, x3) A PBi(x5, x4) A Reg(x3, X4))-

Intuitively, according to the standard interpretation, Cong assertsthat thereis no
proof in S d any wf and its negation, and this is true if and only if S is
consistent. Thus, Cong can be interpreted as asserting the consistency d S Now,
Godel’s undecidable sentence ("#*¥) (cf. p. 158) means, according to the
standard interpretation, that (") is not provablein S Hence, the wf Cong D
(IoX) assertsthat if Sis consistent, then (%) is not provablein S. But thisis
just the first hdf d Godel’s Theorem. The metamathematical reasoning used in
Gadel’s Theorem can be expressed and carried through within S itsalf, so that
one abtains a proof in S of Cong D (*X*R). (For a proof d this assertion, see
Hilbert-Bernays [1939], pages 285-328; Feferman [1960).) Thus, FgCong D

&
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(*¥0¥). But, by Godel’s Theorem, if Sis consistent, then (*¥X) is unprovable in
S. Therefore, if S is consistent, then Con, iS unprovable in S, ie., if S is
consistent, a wf which asserts the consistency of § is unprovable in S. This is
Godel’s Second Theorem [1931]. One can very roughly paraphrase it by stating
that if S is consistent, the consistency d S cannot be proved within S; or,
equivalently, a consistency proof of § must use ideas and methods which go
beyond those available in S. In fact, the consistency proofs for S given by
Gentzen [1936, 1938] and Schiitte [195 1] do employ notions and methods (eg,a
portion of the theory of denumerable ordinal numbers) that apparently are not
formalizable in S,
We can state Godel’s Second Theorem approximately as follows: If Con, is
an arithmetization of the statement that the theory K is consistent (where K is a
possessing the symbols of S), then, if K is sufficiently strong and
consistent, Cony is not provable in K. Actualy, the theorem applies to much
general theories (not necessarily first-order). Aside from the vagueness due
w the phrase “sufficiently strong" (which can be made precise without much
the way in which Con s constructed also adds an element of
This ambiguity is dangerous, because, a8 Feferman has shown
(Feferman {1960}, Corollary 5.10), there is a way o defining Cong so that
FsCong. Therefore, it is necessary to make the statement of the theorem more
precise. This has been done by Feferman (1960} roughly in the following way.t
For any primitive recursive function f(x,, . . ., x,), We showed in the proof of
Proposition 3.23 (pp. 148-151) how to find a wf @(x;, - 5 X, ¥) representing f
i S. The wfs @(x,, .. , X,» 0) obtained in this way are called PR-formulas. A
wf B is said to be an RE-formula if, and only if, for some PR-formula Q. § is
of the form (Ey)) . . . (Ey )& (with k > 0). In particular, every PR-formula is
an RE-formula. If we think of agiven wf &(x) as representing the theory K, the
axioms of which are those wfs whose Gédel numbers satisfy @, then we can
a proof predicate for K as follows: Prify, x) is the wf obtained from
= O Ay > TA()z < Th(y) 3(Fml((»),) A (LAX(»),) V/
v (EOXEWN® <3 A\ <2 A MP(),, (D) (5 V Genl(y)y, (D)D), by
all the primitive recursive functions and predicates by the wfs which
repres )
TG R PRERd o BB, SRS e SRS
S the relation that y is the Godel number of a proof in the theory K of a wf
having Godel number x. (See pp. 143, 153154 for definitionsd the relations
and functions Fml, 1h, (¥).» Gen, MP appearingin B e formula above.) We now
can construct a wf corresponding to the notion d a theorem of K: Let Prx)
stand for (Ey)Prf(y, x). We then can construct a wf expressing the consistency
v K Cong for (x)(Fml(x) D= Prg(x) \/ (Ey)Jteg(x, YIN T Prg»)). One of
the consequences of Feferman’s work is the following precise version of Gédel's

lg;gor further clarification and development of Godel’s Second Theorem, cf. Jeroslow [1971, 1972,

RECURSIVE UNDECIDABILITY 165

second Theorem: Let K be a consistent e?(tension of .S. Let K, ?)e arzy the:;ﬁ
'such that K is an extension of K, and K, isan extension of Rabinso’s systen
" IR DREGRA T 0oy e e K@I(ts)el_f.)ake lt{g?o?-;tul: i?hich expresses Ty in
% i theorems of K, and assume that @(x) is o b :

4 of the b Cong. (The assumption that @(x) is an RE-formula is down _
. K, Then not "« o i f 3 (x) which expresses Tg in
4 ];,.;-,l necessary by Feferman’s proof that thereis a wf % (x) %

4
" § such that sCong.)

6. Recursive Undecidability. Tarski’s Theorem. Robinson’s System. -
i i i bols as S. If u 1§ the
h with equality having the same sym >
Galaeetl Iﬁul;?bzrto?ofv}; @(x,) with free variable x,, then” the function ?iﬁl’ :;
defined in Proposition 3.27(18), has as its _value the Godf:l m_xm_b_er o o
! @(@). Since D(u) = Sub(y, Num(u), 13), it isclear that D 1s primitive recursive.
Let T, be the set & Godel numbers of theorems of K.
’ Pr on 335 IfK is consistent and thejunction D is representable in K,
OPOSITION O-00.  £f
‘ then Ty is not expressible in K.

¢, Assume D representable in K and Ty expressible in K. Then there
PROOF.

| are wfs D (x;, x,) and T(x,) SUEh _that
‘ () 1f D(k) = i, then F¢D(k, )
2 F(Ex)D(k x) ~
| (3) If kisin T, then FeT(R)
§ @ I k isnot in Ty, then Fx ~ S(k). ) .
! Consider the wf @(x,) : (x(D(x, X) D~ T(xp). Letp be the Godel number
of thiswf. Construct the wf &(p):

| (XD (B, x5) 3~ T(x).
5 = fore, by (1),
Let 4 be the Godel number o &(p). Hence, D(p) = q. Therefore Y

5. i 5 - _If not- F@(7), then.q i
'EKGD (anridq )'syo‘%}m(l}t%r FF"",? 5.‘? %?%)hobhx%g) Othgr0 haﬁd,_( 1_f Fﬁ@gpz ‘ tl}l)f:lnt
I-K(’xz)(@(ﬁ, ‘xZ)D-‘ET(xz)). Hence, by Rule A4, "KGD(P,%)?)‘WNJO(\E)’ﬁom
F:@(ﬁ 7). Hence, t¢x ~ J(g). Thus, In both cases, %Kﬂs-(q-p ° g i

7 D(p = g. But, since by ~ 9(g), " **

FD (7, 7) and (2), FxD (P, X)) D x, = g. But, K e 0
! Kt"r(p Hence, @ (5, x;) ~ J0x) and, by Gen, ;K(x%(l?cgp‘-v:z;lso
' - “’gih' e, b 5). Therefore, 4 is in Ty, and, By (3), 13 (9)- Si
| have Fy Jbﬁ”('q)'f% 153) incons stent. o
If K is consistent and every recursive function is represeﬁt_
gﬁ??f%LﬁR¥hgh3§fK is not expressiblein K. Hence, Tk is not recursive.

D e e et o Poprion 13
. : xpressible IN K. BY
By Proposition 335, Ty is not ©

i ' in K. Hence is not
! the characteristic function Cy, IS not representable in K Cry
recursive, and SO, Ty IS nOt recursive.



166 FORMAL NUMBER THEORY

SEC. 6

We shall say that K is recursively undecidable if and only if Ty is not
recursive; and K is called essentially recursively undecidableif and only if K and
evary consistent extenson o K is recursively undecidable. (If we accept
Church'sThesis, then recursive undecidability is equivaent to effective undecid-
ability, i.e., non-existence d a mechanical decision procedurefor theorernhood.
The non-existence o such a mechanical procedure means that ingenuity is
required for determining whether any given w is a theorem.)

COROLLARY 3.37.

If Sis consistent, then S is essentially recursively undecid-
able.

pProor. If K isany consgtent extension d S (possibly S itsdf), then, since
every recursive function is representable in S, the same holds true for K, and,
therefore, by Corollary 3.36, Ty is not recursive.

COROLLARY 338 (Tarski's Theorem [1936]). The set Tr of Gédel numbers o
wfsd Swhich are true in the standard model is not arithmetical, i.e., thereis no
w @(x) o Ssuch that Tr is the set o numbersk for which @(k) is true in the
standard model.

Proor. Let K be the extenson o S having asits axiomsal those wfs which
are true in the standard modd. Then T = Tr. We assume that K is consistent,
sinceit has the standard moddl. By Corallary 3.36, since every recursivefunction
is representablein K, Tr is not expressiblein K. But a relation is expressiblein
K if and only if it is the standard interpretationd somewf of S. Hence Tr is not
arithmetical. (This result can be roughly paraphrased by saying that the notion
d arithmetical truth is not arithmetically definable.)

EXERCISES

347. (a) If nisthe Godel number of a wf &, let Cl(n) be the Gédel number o
the closured @ ; otherwise, let Cl(n) = n. Using Proposition 3.25, show that C1 is
primitive recursive.

(b) Show that if the theory K is recursively axiomatizableand complete,
then K isrecursively decidable, i.e., the set Ty is recursive; or, equivadently, if K is
recursively axiomatizableand recursively undecidable, then K isincomplete.

348. Show that, if K is not recursively axiomatizable, then K is recursively
undecidable.

349. (@) (Fixed Point Theorem) Let K be a theory with equality, with the same
symbolsas S in which every recursive functionis representable. For any W &(x;)
d K, show how to construct a sentence 9, with Gédel number k, such that
FeF = @&). (Intuitively, § says that “@ is true of me") Hint: Let the primitive
recursive function D(x) be representable in K by the wf @ (x;,, x,). Construct the
W ($) (x2) (D(xy, x3) O @(xp). If m is the Gédel number o ($), let F be
(x2) (D(M, x3) D Q(xy)).

(b) Prove Tarski’s Theorem (Corollary 3.38) from the Fixed Point Theorem
(Part (a)).

(c) Prove that the set Tr is not recursive. (This aready has been proved in
another manner in Exercise 344.) Hence, by Church's Thesis, arithmetical truth is
not decidable.
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(d) Let K be any recursively axiomatizable theory with equdity, with the
same symbols as S, such that dl theoremsd K are true in the standard modd, i.e.,
Tx € Tr. Prove that K has an undecidable sentence.

(&) Let K be a consistent theory with equality, with the same symbolsas S
in which every recursive function is representable. Let Ref, be the set o Gadel
numbers o refutable wis of K, that is, {x|Neg(x) € Tg}. Prove that there is no
recursive set A such that Tx € A and Refg C A (the complement o A).

Robinson's System: Consider the first-order theory with the same symbolsas S

and having the followingfinite number d axioms.

1 x=x
(2) X = X3 D Xy = X
3) x,-xz:)(x2=x33x|=x3)
@ xi=x2X=X
B X,=x2 tTxs=x+xAx, tx,=x, 1 x)
(6) x;=x,D(x)" X3 =%X3" X3\ X3" X = x3° X))
@ xi=x3D%x,=x,
®) 0% (x)
9) x; # 0D (Ex))(x; = x3)
- (10) x, +0=x,
A x +(xy) = (x; + x))f
(1) x,-0=0
(13) X1.(x) = (x;"x) * x
(14 (xp= %1 %3 F X Axg <X A Xy = xp0 X6 T xs Axs <x)) D xg = x5

it .‘.!
&l

(Uniguenessd remainder

We shadll call this theory RR. (The sygem Q o Axioms (1)-(13) is due to
Raphael Robinson[1950]. Axiom (14) has been added to makeoned the proofs
bdow easier.) Clearly, RR is a subtheory of S, since dl the axiomsd RR are
theoremsd S In addition, it follows from Proposition 226 and Axioms (1)—(6)
that RR is a theory with equality.

ProrosiTioN 3.39.  In RR, the following are theorems.

(@ ii tiii =n_* m for any natural numbers m and n.

(b) ii . @ =n - m for any ratural numbers m and n.

(©) i #iii if n#= m, for any natural numbers n and m.

(d) x<iiox=0Vvx=1V-.-VXx=iifor any natural number n.
(e X< ii \/ii € X, for any natural number n.

PROOF. Parts (a)—(c) are proved jus as in Propostion 3.6(a). Parts (d) and
(e) are proved by induction on n in the metalanguage, making strong use of
Axiom (9). The proofsare left as exardises

EXERCISES

350. Show that RR is a proper subtheory o S. Remark: not only is S different
from RR, but it is not finitely axiomatizable at al (i.e., thereis no theory K having
only afinite number d proper axioms, whose theorems are the same as those o S).
This has been proved by Ryll-Nardzewski {1953] and Rabin {1961].
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351. Show that Axiom (14) is not provable from Axioms (1)-(13). (Hint: let
be an object which isnot a natural number. Let oo’ = =00,0Tx=xTo=o0w

forallx, 0-0=0-0 =0,and 0 - x = x- oo—ooforallx?&O)
ProPOsITION 340.  Every recursive junction is representable in RR.

PROOF. For the initial functions and the rules of substitution and the
p-operator, essentially the same proof holds as was given for S in Proposition
3.23. For the recursion rule, inspection o the proof given for Proposition 3.23
shows that it is ill valid for RR if we note that, for the wf Bt defined in
Proposition 321, if B(k,, k,, k;) = m, then ke Bt(k,, k;, ks, iii), and also, by
Axiom (14), bgeBt(u, v, X, Y) A Bt(u, v, X,2) Dy = 2

Exercise 3.52. Carry through the details of the proof of Proposition 3.40.

We shall take for granted that RR is consistent, since it has the standard
interpretation asa model. However, more constructive consistency proofscan be
given along the same lines as the proofs in Beth [1959, §84] or Kleene [1952,
§79].

PROPOSITION 3.41

(@ RRis essentially recursively undecidable.
(b) RR is essentially incomplete.

PROOF. (@) By Corollary 3.36 and Proposition 3.40. (b) By Propositions 3.33
and 3.40 (or, from (8), by Exercise 3.47(b), p. 166).

O course, we aready had these results for the theory S. The reason that we
have gone to the trouble d obtaining them again for RR is that RR is finitely
axiomatizable. It can be shown that Proposition 340, and therefore also Pro-
position 341, holds for Robinson's system Q (Axioms (1)-(13)). However, the
proof for Proposition 340 is more complex (cf. Tarski-Mostowski-Robinson
[1953), pages 56-59) than the one given above for RR.

Let K, and K, be any two theories having the same symbols. K, is called a
finiteextension o K, if and only if thereisa st A o wfsand a finite set B of
wfs such that (1) the theorems of K, are precisaly the wfs derivablefrom A; (2)
the theorems of K, are precisely the wfs derivable from A U B.

We say that K, and K, are compatible if and only if the theory K, U K,, the
set of axioms of which is the union o the set o axioms of K, and the set of
axioms d K,, is consistent.

ProPOSITION342.  Le K, and K, be theories having the same symbols as S. If
K, is a finite extenson oj K, and if K, is recursively undecidable, then K, is
also recursively undecidable.

PROOF. Let A bea sst o axioms o K, and AU {&,,..., &,) a set of
axioms for K,. We may assume that &,, ..., &, are closed wfs. Then, by the

‘peduction Theorem, awf % is provablein K, if and only if (€, A ...
ép is provablein K,. Let ¢ be a Godel number of (&, A ..
b Godel number o a theorem of K, when and only when2® « ¢ * 2" « b * 2°isa
: 'Godel number o a theorem o K, ie.,

L 22+ Cx 2"« b+ 2%isin Ty, Hence, Cr, ® =
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A&, D
.A&). Thenbisa

b is in Tg, if and only if
Cr, (23*C*2”*Xt25)80|f

T Were recursive, Ty, would also be recursive, contradlctlng the recursive

undemdablhty d K.
PropPOsITION 343. Let K be a theory having the same symbols as S. If K is
compatible with RR, then K is recursively undecidable.

prooF. Since K is compatible with RR, the theory K U RR is a consistent
extenson o RR. Therefore, by Proposition 3.41(a), K U RR is recursively
undecidable. But K U RRisafiniteextensiond K. Hence, by Proposition 3.42,
K is recursively undecidable.

COROLLARY 344. Let K be a theory with the same symbols as S such that all

the axioms oj K are true in the standard model. Then K is recursively
undecidable.

prooF. K U RR has the standard interpretation as a model, and is, there-
fore, consistent, i.e., K is compatible with RR. Now apply Proposition 3.43.

COROLLARY 345, Let P, be the predicate calculus having the same symbols as
S Then P, is recursively undecidable.

P, U RR = RR. Hence, P, is compatible with RR, and, therefore, by
Proposition 3.43, recursively undecidable.

By PF we mean the full first-order predicate calculus containing all predicate
letters 4", function letters £, and individua constants a;. Let PP be the pure
first- order predicate calculus containing dl predicate Ietters, but no function
lettersor individual constants.

PROOF.

LEMMA 3.46. There is a recursive junction h such that, for any wf @ of PF
having Gédel number u, there is a wf @’ oj PP having Godel number h(u) such
that @ is provable in PF if and only it @ is provable in PP.

PROOF. Let & be a wf o PF. With the distinct function letters £ in &,
associatedistinct predicate letters 4"* ' not occumngin @, and with the distinct
individual constants @, in @, associate distinct predicate letters 4¢ not occurring
in &. Find the first individual constant @, in & ; let z be the first variable not in
@; and let @ * result from & by replacing al occurrencesd @, in @ by z. Form
the W @,: (Ez)4}(2) D (Ez)(4i(z) A\ @%), where A4} is the predicate letter
associated with a,. It is easy to check (cf. proof o Proposition 2.29) that @ is
logicdly valid if and only if &, islogicdly valid. Keep on performing similar
transformations until awf % is reached without individual constants such that
@ is logically vaid if and only if % is logicaly valid. Take the left-most term
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Sty .o, ) in 1 ,where ¢, .., ¢, do not contain function letters. Let w be
thefirst variable notin I ,let %™ result from I by replacing £7(¢,, - - - » £,) by
w, and let B, be the Wt (Ew)4"*(w, ., ..., 4,) D (Ew)A*(w, L, - - o L) A

1), whereA"“ is the predicate letter correspondlng to f7. It is easy to verify
that 3 is Ioglcally valid if and only if %, islogicaly valid. Repeat the same
transformation on %,, etc., until awf @ is reached which contains no function
letters. Then & isa wf of PP and &’ is logicaly vdid if and only if & is
logically valid. By Godel’s Completeness Theorem (Corollary 2.14), & is logi-
caly valid if and only if Fpe@, and @’ is logicaly valid if and only if F,.@".
Hence, Fpe@ if and only if Fpp@’. In addition, if uis not the Gédel number of a
wf of PF, we define h(u) to be 0; if u is the Godel number of a wf @ of PF, we
let h(u) be the Gadel number of @', Clearly, h is effectively computable, and we
leave it as an exercise for the diligent reader to show that h is recursive.

ProrPosiTION 3.47 (Church's Theorem [1936a]). PF and PP are recursively
undecidabfe.

PROOF.

(1) By Godel's Completeness Theorem, awf @ of P, is provablein P, if and
only if @ islogicaly vaid, and & is provablein PFif and only if @ islogicaly
vaid. Hence, tp @ if and only if Fp.@. However, the set Fml, of Godel
numbers of wfsof Pg isrecursive. Then, Tp = Tpr N Fml, , Where "fps and Tpg
are, respectively, the sets of Gédel numbers of the theorems of Pgand PF; and,
if Tpr were recursive, T, would be recursive, contradicting CoroIIary 3.45.
Therefore, PF is recursuvely undecidable.

(2) By Lemma 346, u is in Ty if and only if h(u) is in T, Since h is
recursive, the recursiveness of Tpp would imply the recursiveness of Ty, con-
tradicting (I). Thus, Tpp is not recursive, i.e., PP is recursively undecidable.

If we accept Church's Thesis, then "'recursively undecidable™ can be replaced
everywhere by " effectively undecidable™. In particular, Proposition 3.47 asserts
that there is no decision procedure for the pure predicate calculus PP, nor for
the full predicate calculus PF. This implies that there is no effective method for
determining whether any given wf islogicaly valid.

EXERCISE 3.53.

a Show that, in contrast to Church's Theorem, the pure monadic predicate
calculusis effectively decidable. The pure monadic predicate caculus consists d
those wfsd the pure predicate calculus which contain only predicate lettersdf one
argument.

Hint: let By, . .., B, bethedidtinct predicatelettersin awf @. Then @ isvdid if
and only if @ istruein every interpretation with at most 2% elements. For, assume
@ true in every interpretation with at most 2% elements, and let M be any
interpretation. For any dements b, c of thedomain D o M, cdl b and ¢ equivalent
if the truth vdues o B,(b), By(b), . - - , By(b) in M are respectively the same as
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B,(c), By(c), . .., By(c). This defines an equivalence relation in D, and the corre-
sponding set I equivalence classes has < 2¥ members and can be made the
domaind an interpretation M’ of @ by defmmg interpretationsd By, ..., By, in
the obvious way, on the equivalence classes. By induction, one can show that @is
true in M if and only if it istruein M'. Since & istruein M, it isalso truein M.
Hence, @ is true in every interpretation, and is, therefore, by Corollary 214,
provable. Note also that whether @ is truein every interpretation having at most 2*

elements can be effectively determined. _ , i .
(b) Provethat awf € the pure monadic predicate caculusis logicdly valid if

and only if @ is true for all finite interpretations. This contrastswith the situation
in the pure predicate calculus (cf. Exercise 238 on p. 72).

The result in thisexercise is, in a sense, the best possible. For, by a theorem of
Kalmar [1936), there is an effective procedure producing, for each wf & o the
pure predicate calculus, another wf @* of the pure predicate calculus such that
@* contains only one predicate letter, a binary one, and such that & islogically
valid if and only if @ * islogically valid. (For another proof, cf. Church [1956, §
47].) Hence, by Church's Theorem, there is no decision procedure for logica
vaidity (or provability) of wfs containing only binary predicate letters. (For
another proof, cf. Exercise 4.74 on p. 206.)

EXERCISES® (TARSKI-MOSTOWSKI-ROBINSON [1953], 1)

354 If atheory K* iscongdent, if every theorem o an essentialy recursively
undecidable theory X, is a theorem o K*, and, i the property Fmig (x) is
recursive, prove that K* is essentidly recursvely undecidable.

3% Leé K be a thwry with equdity. If a predicateletter 47, a function letter

#, and an individua constant a are not symbolsd K, then by possible definitions

d Af f7oand a; in K we mean, respectively, expressonsd the form

(a) (xi} (x )(A (x\, i o } = é}l(xl, xn)]s

®) (x). - G Cr s Xp) =y = %(x“ ceon X YD

© g =y =CW)
where @, @, @ are wfs of K, and, in case (b), Fx(x)) ... (x)
(Ey)B(xp, ..., %, Y), ad, in case (C), F(E; »)C(»). If K is consistent, prove
that the addition of any possble definitionsto K as new axioms (using only one
possible definition for each symbol) yields a condgtent theory K, and K' is
recursively undecidableif and only if K 1s.

35%. By a non-logicd constant, we mean a predicate letter, function letter, or
individual constant. Let K, be a theory with equality having a finite number of
non-logica constants. Then K issaid to be interpretablein a theory with equality
K if we can associate with each non-logical constant d K, which is not a
non-logica constant of K a possible definitionin K such that, if K* is the theory
obtained from K by adding these possible definitionsas axioms, then every axiom
(and hence every theorem) of K, is a theorem o K*. Notice that, if K, is
interpretablein K, then it isinterpretablein every extenson d K. Provethat, if K,
is interpretable in K and K is consstent, and if K, is essentialy recursvely
undecidable, then so isK.
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35/. Let K be a theory with equdity. and 4;' a monadic predicate |etter not in
K. Givenadosed W @, let @4” (caled the relativization d @ With respect to 4})
be the wi obtained from @ by replacing every subformula (Siarting from the
smallest subformulas) o the form (x)B (X) by (x)(4/'(x) > B (X)). Let the proper

. . . 4 - .
Foe § Gy promsHibh o KA (o aTsl &GS Tor S Sniviauns
congtant a,, o K; (4) 4'x) A .« .. A A4}x) 2 A4 f(x,, -+ -5 x,)) for any func-
tion letter 7 of K. Prove (a) As proper axiomsd® K#4' we could have taken al wfs
@4", where @ isthedosured any theorem of K. (b) K#' isinterpretablein K. (0)
K4 is consgent if and only if K is condstent. (d) K#' is essantidly recursively
undecidableif and only if K is (Tarski-Mostowski-Robinson{1953], pp. 27-28)

3.58. K is sad to be relatively interpretablein K' if there is some predicateletter
A} not in K such that K% isinterpretablein K'. If K is relatively interpretablein
K' and K is essetidly recursvely undecidable, prove that K’ is essentidly
recursively undecidable.

359, Cdl a theory K in which RR is rdativey interpretable sufficientty strong.
Prove that any sufficiently strong consistent theory K is essentially recursively
undecidable, and, if in addition K is recursvely axiomatizable, prove that K is
incomplete. Roughly spegking, we may say that K is sufficiently strong if the
notions d natural number, O, 1, addition, and multiplication are "'definable”" in K
in such a way that the axioms of RR (relativized to “natural numbers’ d K) are
provable in K. Clearly, any theory adequate for present-day mathematics will be
sufficiently strong, and o, if it is consistent, it Will be recursively undecidable, and,
if it is recursvely axiomatizable, it will be incomplete. If we accept Church's
Thesis, thisimplies that any consistent sufficiently strong theory will be effectively
undecidable, and, if it is axiomatic, it will have undecidable sentences. (Smilar
results also hold for higher-order theories; for example, cf. Gédel [1931), Scholz-
Hasenjaeger [1961], § 237-238.) This seems to destroy al hopefor a consstent and
complete axiomatization of mathematics.
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[CHAPTER 4

1 An Axiom System
A prime reason for the increase in importance o mathematical logic in this
century was the discovery of the paradoxes o set theory and the need for a

* revision d intuitive (and contradictory) set theory. Many different axiomatic

theories have been proposed to serve as a foundation for set theory, but, no
matter how they differ at the fringes, they al have as a common core the
fundamental theorems which mathematicians need in their daily work. A choice
among the available theories is primarily a matter d taste, and we make no
claim about the system we shall use except that it is an adequate basis for
present-day mathematics.

We shall describe a first-order theory NBG, which is basically a system o the
same type as one originally proposed by von Neumann {1925, 1928] and later
thoroughly revised and simplified by R. Robinson [1937], Bernays 19371954},
and Gaodel [1940]. (We shall follow Godel’s monograph to a great extent, though
there will be some important differences.) NBG has a single predicate letter A3,
but no function letters or individual constants. In order to conform to the
notation in Bernays [1937-1954] and Gaédel [1940], we shall use capital Latin
letters X,, X5, X5,... as variables, instead d X,, X3 X3, ... . (As usual, we
shall use X, VY, Z,... to represent arbitrary variables.) We shall abbreviate
AXX, Y)by X € Y, and ~ 43(X, Y) by X & Y; intuitively, € is thought of as
the membership relation.

Let us define equality in the following way.

DeriniTIoN. X=Yfor (ZXZ EX =Z €Y)

Thus, two objects are equal when and only when they have the same members.
DeriniTion. X € Yfor(ZXZ E X D Z E Y) (Inclusion)
DEFINITION. X C Y for X € Y/A X # Y (Proper inclusion)

As easy consequences of these definitions, we have the following.

173
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ProposiTION 4.1F

(@ FY=Y=WXCYAYCX)
(b) FX=X

© tX=YovY=%

(d FX=YD(Y=Z>Xx=2)
e FX=Y>(Zex=Zcy)

We shall now present the proper axioms of NBG, interspersing among the
statement of the axioms some additional definitions and various consequences
of the axioms. First, however, notice that in the "interpretation” we have in
mind the variables take classes as values. Classes are the totalities corresponding
to some, but not necessarily all, properties.i (This " interpretation” is as impre-
cise as the notions of "totdity", ""property". etc.)

We define a class to be a st if it is a member d some class, whereas those
classes which are not sets are calledproper classes.

DeriNniTION.  M(X) for (EYXX € Y). (X isaset.)
DeriNniTION.  Pr(X) for ~ M(X). (X isa proper class)

It will be seen later that the usual derivations d the paradoxes now no longer
lead to a contradiction, but only yield the result that various classes are proper
classes, not sets. The sets are intended to be those safe, comfortable classes
which are used by mathematicians in their daily lifeand work, whereas proper
classes are thought of as monstrously large collectionswhich, if permitted to be
sets (i.e., allowed to belong to other classes), would engender contradictions.

Exercise 4.1. Prove: F Y E X D M( Y)

The system NBG is designed to handle classes, not individuals. The reason for
this is that mathematics has no need for non-classes, like cows or molecules; all
mathematical objects and relations can be formulated in terms of classes alone.
If non-classes are required for applications to other sciences, then the system
NBG can be modified dightly so as to apply to both classes and non-classes
alike (cf. Mostowski [1939)).

Let us introduce small letters x,, X, ... as specia, restricted variables for
sets. In other words, (x;)@(x;) stands for (X)(M(X) D &(X)), i.e., & holds for
al sets, (Ex;)@(x;) stands for (EX }(M(X) A\ &€(X)), i.e, @ holds for some set.
Note that the variable X used in this definition should be one which does not
occur in &(x;). (As usua, we use X,Y,z, ... to stand for arbitrary set vari-
ables.)

1The : . . -
$ThosDscript N Eh"mtl;l be omitted from kg in the rest of this chapter.
ps pp 1¢h actually do determine classes will be partially specified in the axioms.

axioms provide us with the classes we need in mathemati
Y atics a odes!
enough so that contradictions are not derivable from them. nd appear (we hope) m t
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Example. (XXx)EyYXEZ)&(X. x,y, Z) stands for
(X)W M(W) 3 (EY)M(Y) A (EZ)EX, W, ¥; Z))

ExercisE 42. Prove FX =Y =()zeE X =z €Y)

Axiom T (Axiom o Extensiondlity). X = Y3(x ez=" €%)

ProrPOsITION 4.2. NBG is afirst-order theory with equality.
PROOF. By Proposition 4.1 and Axiom T, and the discussion on p. 83.
EXercisE 4.3, Prove: F M(ZYANZ = Y D M(Y)

AxIOM P (Pairing Axiom). (x}yXEzXuXu € z=u =X\ u =Y), i.e,for
any sets X,y thereis aset z such that z hasx andy as its only members.

EXERCISES

Prove: , . .
44 ONEDWu e 2 =4 = XV u=Y),ie., thereisa uniques z, caled

the unorder_ed?al* r d x andy, such that z has x andy asits only members This
folowseasgly from Axiom P and the definition o equdity.
45 F (XXM(X) = (ByXX £vy))

AMOM N (Null Set). (Ex)XyX» € X), i.e., there is a set which has no
members.

Obvioudly, from Axiom N and the definition o equality, thereis a unique set

which has no members, i.e., F(E;xXy)(¥ & x). Therefore, we can introduce a
new individual constant 0 by means of the following condition.

DerINITION.  (¥)X» € 0)

Since we have the uniqueness condition for the unordered pair, we can
introduce a new function letter g(x,y) to designate the unordered pair of x and
y. We shall write{ x, y} for g(x,y). Notice that we have to definea unique value
for {X, Y) for any classes X and Y, not only for sets x and y. We shall let
(X, Y)=0 whenever X is not a set or Y is not a set. One can prove:
FEZXMIDAMINDIAWUEZ =u=X\Vu=Y)V{(~MX)V ~
M(Y) A Z = 0)). Thisjustifiesthe introduction of { X, Y}:

—_ = = Y
DEFINITION.  (M(X) A M(Y) A (ufu € (X, Y} =" XVu DAY
(~MX)V ~MINA{X,Y}=0).
_u=x\ u=y) and
One can then prove: F ()X € {x,y} =

FyNM{ %, y}))- . te
In oﬁnnectmn with these definitions, the reader should review § 9 ot [Emper

2, and, in particular, Proposition 2.29, which assures us that the introductiondgi
new individual constants and function letters, such as 0 and {X, Y}, a

nothing essentially new to the theory NBG.
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EXERCISES
46 H{X,Y)= (Y, X).
47. Define: { X) for { X, X). Prove I (x)(»)({x} = {¥} D X=Y).
DeriniTION. (X, Y) ={{X),{X, Y))
(X, Y) iscaled the orderedpair of X and Y.

The definition of (X, Y) does not have any intrinsic intuitive meaning. It is
just a convenient way (discovered by Kuratowski) to defineordered pairs so that
one can prove the characteristic property of ordered pairs expressed in the

following proposition.

PROPOSITION 4.3, F ()(»)(u)(0)((x, y> = (4, 0) D x = u Ay = v).

PROOF. Assume <x, y> =<u, 0). Then {{x}, {x,»}} = {{u}, {u, v}}.

Since {x} € {{x}, {x,y}}, {x} € ({u}, {u, v}}. Hence, {x} = {u} or {x) =
{u,v}. In both cases, x = u. Now, {u, v} €{{u),{u,v}}; s0, {u,v} <
{{x}, {x,»}}). Then {u, v} = {x} or {u,v} ={x,y). Smilaly, {x,y) = {u)
or {x,y) ={u,v). If {u,v) ={x) and {x,y) ={u), thenx =u=y =o; I
not. {u, v} = {x,y}. Hence, {u, v) ={u,y). So, if v u, theny = v; if v=u
theny = ». Thus, in al cases)y = v.

We now extend the definition of ordered pairs to ordered n-tuples.
DEFINITION.
X) =X

<X1’ e ’Xn+l> = <<Xl’ ey Xn>’ Xn+l>
Thus,

X, Y,Z) = KX, Y}, Z), and <X, Y,Z,U) =KX, Y), 25U
One can eadly establish the following generalization of Proposition 4.3:
I— (‘xl) e (xﬂ')(yl) e (yn)(<x[| | xn) = <y]7 L !J"n) 3

J':| =yIA"'/\xn=yn)

Axioms d Class Existence. These axioms state that, for certain properties
expressed by wfs, there are corresponding classes of al those sets satisfying the
property.

AxioM B, (EX)(u)(o)(<{u,v) €EX = (u € v)) (E-relation)
AxtoM B2, (XNYNEZNuNu € Z=u€c X Au€ey) (Intersection)
AXIOM B3, (XNEZNuuE Z=u ¢ X) (Complement)

AXIOM B4. (XNEZ)u)u € Z = (Ev)(Ku, v) € X)) (Domain)
AXIOM BS. (XX EZ)(u)o)(<u, v) € Z =u € X)

AXIOM BS. (XY EZ)u)v)w)((u, v, w) € Z = (o, w, u) € X)

AXioM BT, (XWEZ)(u)(v)(w)(u, v, w) € Z = (u,w,v) € X)

SEC. 1
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- From Axioms B2-B4 and the definition of equality,

F(XNYNEZ)u(uEZ=uEXNUE Y)
FXWEZ)w)(u€EZ =u & X)
F(X)EZ)u)(u € Z = (Ev)({u, v € X))

3 These results justify the introduction of new function letters: N, =, 9D

DEFINITIONS
WueXnNY=ueEXAUEY)
WU € X =ué&X) !
(W) (u € D(X) = (Ev){u, v) € X)) (Domain d X)
XuY=(XnY) (Uniond X and Y)

V=0 (Universal Class)
X—-Y=XnY (Differenced X and Y)

(Intersection d X and Y)
(Complement o X)

EXERCISES

Prove )
48 tw(use XU Y =z=u€EXVuUEY
I'Eu;EuEV) FuuEX - Y=u€EXNu&Y)
490 I X NYy=Ynx FXUY=YUX
I (XnY)NnZ=XNn(¥YNnZ) I}XuY)uZ=Xu(YuZ)
FXUX=X

FXNnX=X
FXN0=0 FXU0=X
FXN V=X |- XU V=V
IX n(Y U 2) FXU((YNZ

— (X NY)u (X NZ) =((xu_\2)rl(xu2)
FX U Y=XnY X n Y=XU 7Y
FX—-X=0 FV—-—X=X

410. (Q)F (XNEZ)u)v)Ku, V) € Z = (V,u) € ). (Hint: apply successively
BS, B7, B6, B4.)
(b) - (X)EZ Y u)0)w)Ku, v,w) € Z = {u, w) € X).(Hint: use B5 and

B7.)

© FOOEZOHE) .. (o )xy, -2 ¥ ) € Z =Gy X) € XD
(Hint: use BS.) -

@ -(XUEZ)o1) ... (X)) .. ()X X O L O EZ T
{xy ..., %) € X).(Hint: by iteration of (c).)

©) F(XXEZ) o) ... (0 )(x) ... (X5 )Xps oL, Xy Oy L L Oy Xn) €
Z ={x) ..., % € X).(Hint: for m = 1, from(b), substituting {x,, . . . , Xx—17
foru and x, for w; the general case then followsby iteration.)

(f) FNEZYX)(0) ... (0)0h ..., 0w X) € Z =X € X). (Hint:
fromBb and Part (a)above.)

® FXNEZ)x) ... ()Cxn ..., %) € 2 = BN X p) €

X)).(Hint: fromB4, substituting (X, , ..., x,> foru, and y forv.)
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(h) F(XNEZ)u)v)w){v,U, W) € Z = (u, w) € X). (Hint: subtitute
(u, w) for uin Axiom B5, and apply Axiom B6.)

() FXNEZ)v) ... oXu)w)oy, ..., 0% u,w) € Z = (u, w) E X).
(Hint: substitute {v;, ..., vz for v in (h).)

Now we can derive a general class existence theorem.

PROPOSITION 44. Let (X,...,X,, Y, ...,Y,) beaw the variables of
which occur among X,, ..., X,, Y, ..., Y, and in which only set variables
are quantified (i.e., ¢ can be abbreviated in such a way rhar only set variables
are quantified). We call such a wf predicative. Then,

F(EZ)(x) - () (x> EZ =@xy, X, Yy Y,))

PROOF. We shall consider only wfs ¢ in which no wf o the form Y, € W
occurs, since Y, € W can be replaced by (Ex)(x = Y; A X € W), which is
equivalent to (Ex)((z)(z € X =z € Y)) A X € W). Also, we may assume that ¢
contains no wf of theform X & X, since this may be replaced by (Eu)(u = X A
u € X), which is equivalent to (Eu)((z)(z € U=z € X) A ue€ X). We shal
proceed now by induction on the number k o connectivesand quantifiersin ¢
(written with restricted set variables).

Case L k=0. Then ¢ has the form x; € x; 0r x €x, or x;, €Y, where
l<i<j<n For x €x, there is by Axiom BI, some W, such that
(x)(x)({x, 4) € W, =x, € x). For x € x,, thereis, by Axiom BI, some W,
such that (x)(x){x;, x> € W, =x; € x;), and then, by Exercise4.10(a), there
issome 3 such that (x)(x)(x;, x> € W3 =X € x,). So, in both cases, thereis

i

some W such that ()X, %) € W=o(x), .5 %, Yyoon, 1)) Then,
by Exercise4.10(i) with W = X, there is some Z, such that
(xp) ... (xi—l)(xj)(-"})«xlv e Xien X X €EZ) =

P(x1s .oy % Vi, V).
Hence, by Exercise 4.10(e) with Z, = X, there is some 2, such that
(xl) e (xl')(xi-t—I) L ()9)(<x19 ret 'xj> = ZZ = (P(xi" cee g Xy Y]’ R Ym))
Then, by Exercise 4.10(d) with Z, = X, there is some Z such that

() ) (xps e, x> EZ=0(xy L, X, Yy, T)

In the remaining case, x; € Y, the theorem follows by application of Exercise
4.10(f) and 4.10(d).

Case2. Let the theorem be provable tor dl k < m. and assume that ¢ hasm
connectives and quantifiers.

(a) ¢ is ~ y. By inductive hypothesis, there is some W such that

(x) . (x5 )Kxp x> EW =Y(x,, ... Y., )
Let Z = W,

X,

¥ SeC. 1
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(b) ¢ isy D 8. By inductive hypothesis, there are classes Z, and Z, such that
(x) o (X)(xp e x> € Zi =0y - X Yoo, Y)

(xy) o s () Kxps s . Yw)

Let Z =(Z, n Z,).

(©) @ is (x)¥. By inductive hypothesis, there is some W such that

(xl) e w (xn)(x)(<xl’ "y xn’ x> E W = ‘ab(xh Ay x"’ x’ Yl’ ey Ym))
Apply Exercise 4.10(g) with X = W to obtain a class Z, such that

(-’-‘1) e (}.‘,J((Xt, - ,xn> € Zl = (Ex) ~ \{’(xp R ) Yp R Ym))
Now, let Z = Z,, noting that (x)y is equivalent to ~ (Ex) ~ ¢.

Examples. 1. Let @(X, Y|, Y,) be (Eu)(Ev)(X = (u, o) ANu€ Y Av EY)).
The only quantifiers in ¢ involve set variables. Hence, by the Class Existence
Theorem, + (EZ)(x)(x € Z = (Eu)(Ev)(x ={u,v) Au€ Y, AvE Y,). By

the definition o equality, + (E,Z)x)x € Z = (Eu)(Ev)(x = (u, v) A
uc Y, A v E Y,) S0, we can introduce a new function letter X:

and

-,xn>Ezzfg(xp...,xn,Y,,__

DEFINITION.
(x)(x € Y, X Y, =(Eu)(Ev)(x =(u, V) AuE€ Y, AvEY,)
(Cartesian Product o Y, and Y,)
DEFINITIONS

X2 for X X X, (In particular, V2 is the classof al ordered pairs.)
X" forx"'x x, (Thus, V"istheclassd all ordered n-tuples.)

Rel(X) for X € ¥? (X isarelation).
2. Let o(X, Y) be X C V.

By the Class Existence Theorem and the definition of equality, + (E,Z)(x)(x E
Z =X C Y).Thus, thereisa class Z which has as its members all subsets of Y.

(XNxeP(ry=xC Y) (F(Y): thepower classd Y)
3. Let (X, Y) be (Ev)(X €vAvEY).

By the Class Existence Theorem and the definition of equality, F (E,Z)(x)(x E
Z =(Ev)(x € v A v € Y)). Thus, there is a class Z which contains al the

elementsd the elements of .

DEFINITION. (x)(x € J(Y) = (Ev)(x EVA L E Y)).
(UCY): thesum class d Y)

4. Let @(X) be (Eu)(X = (u, u)).

By the Class Existence Theorem and the definition of equality, there isa unique
class Z such that (x)(x € Z = (Eu)(x = (u, u))).

DEFINITION.
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DerinrTiON. (x)x € I = (Eu)(x = (u, u)) (Identity Relation).

COROLLARY 45, Gjyen apredicative wf @(Xyy o1 X, Yy oo o0 Y,). Then
(EsW) W Vi A(x) ... Co)({xy o, x) €W
=g(x, - .

By Proposition 4.4, there is some Z such that
() )X, x> EZ =e(xp .., x, Y., Y,)

Clearly, W= 7 A p» oicfi :
’ satisfies the corollary, and the uniqueness foll
the definition of equality. 4 olows from

DEfFINITION.  Given any predicative wf ¢(X' s

-,x’n Y)s...

PROOF,

-’Xn, Yl,---,Ym),we

us;e {l(x,, Xo o X |00y, L, X, YL Y,)} to denote the class of all
n-tuples (x,, || x5 satisfying ¢(x,, . . . , X., Yy ... Y,), that is

{<xl’ T x,,>l¢l(xp " eomy xn; Yl’ LR | Ym)} E

(Ex)) .. (Ex,)u = (o o) A@(Xpy oo %o Ve s X)),

This definition is justified by Corollary 45. In particular, when n = |,
(H)(u € {xlqj(x’ Yl’ "ty Ym)} = @(u, Yl? LEEEL | Ym))'

Examples.

1. Take ¢ to be (x,, x> € Y. Let ¥ be an abbreviation for { (x,, X% %5
€ T} Hence, F ¥ ¢ 2 A (x)(x,X(xp ) € ¥ = (x,, x> € Y). Cdl Y the
inverse relation o Y.

2. Take ¢ to be (Ev)<v, X) € Y). Let R(Y) stand for {x|(Ev){v, X) € Y)).
Then F (u)u € R(Y) = (Ev)({v, U) € Y)). K(Y) is called the range of Y.
Clearly, F R(Y) = D(Y).

Notice that Axioms B1-B7 are special casesd the Class Existence Theorem,
Proposition 4.4. Thus, instead of having to assume Proposition 4.4 as an axiom
schema, we need only take a finite number o instancesd that schema.

Until now, although we can prove, via Proposition 4.4, the existence of a great
many classes, the existence d only a few sets, such as O, {0}, {0, {0}}, {{0}},
etc., isknown to us. To guarantee the existenced sats of greater complexity, we
require more axioms.

Axiom U (Sum Set). (x)(Ey)(u)u €Y = (Eo)u € VAV € X)).
This axiom asserts that the sum class {J(x) of aset x (cf. Example 3, p. 179) is

aso a set, which we shall call thesum set df X, i.e., b (x)(M({J(x))). The sum set
U(x) is usualy referred to as the union o al the setsin the set x, and is often
denoted {J u.

vEX
EXERCISES
411 Show that F ()Y x, Y}) = X Uy). Hencg, F (x)(y)(M(x U »)).

412 @+ YO =0. (b)F Yoy =0. (0 FEXYUx) = X).
@ FRDUKx P2) = {x, ).

. Sec. 1
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4.13. We can define by induction, {x,, ... *n} foF i"'gj- o ed M XY
Prove: F (x)(x2) + .. (x)(W)u € (X1, - - o X} =Y T 01V U o

= x,). Thus, for any given sets x,, - - - , X,, thereisaset which has x,, .., x, as
its only members

Another means of generating new Sets from old is the formation of the g&t

" all subsetsof a given set.

AxioM W (Power Set). (X)X Ey)u)Xu €y u C x).

This axiom asserts that the power class P (x) of aset x (cf. Example 2, p. 179) is
also a Set, called the power set of x, i.e., b (XHM(P (x)).

Examples. F % (0) = {0}
F 9 ({0} = {0, {0}}
9 ({0, {0}}) = {0. {0}, (0. {0}}, {{0}}}

A much more general way to produce sets is the followi ngAxiom of Subsets.

AxioM S. (XN YNE)w)u € z=uEXNUET)

Thus, for any set x and class Y, thereis a set consisting of. the common g|€ments
§ X and Y. Hence, F (x) Y)(M(x N Y)), ie., theintersection of a set and a class

fSa st

ProPOSITION 4.6, F(xXYXY C x o M(Y)) (i.e, any subclass

set).

prooE. 1Ny € x 2 Y A x=Y) andr PDMy ),

Since any predicativew @ (y) generatesa corresponding class (cf. Proposition
4.4), Axiom Simplies that, given any set x, theclass of al elementsy o x which
saisfy &(y) is a set.

A stronger axiom than the Axiom d Subsets (S) will be necessary for the full
development o set theory. First, we introduce a few definitions.

of a setis a

DEFINITIONS
Un(X ) for (X)(y ()X y) EX Alx,2) €EX 3y = 2)
(X is uniuocal.)

Fne(X ) for X C V2 A Un(X).(Xisafunction.)
X: Y- Zfor Fnc(X) A\ D(X)= YA\ R(x) C Z

(X isafunction from Y into Z).)
Yqxfor X n (Y x V). (Restriction of X to thedomain Y)
Uni(X ) for Un(X) A Un(X).(Xisone-one)

- {Z if ()Y, u) €X=u=2),

X )
0 othewise
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If there is a unique z such that (y, z) € X, then z = X*‘y; otherwise,
X'y = 0.1f Xisafunctionandy isasetinitsdomain, X<y isthevaued the
function applied to y.t

X“Y = R(Y4X) (If X isa function, XY is the range o X restricted to Y)

EXercise 4.14. Prow: F Fnc(X) D (v)(v € X“Y = (Eu)(u € Y 1 D(X)
A u= X'u)).

Axiom R (Replacement).

()Un(X) > (By)(u)(u € y = (Ev)((v, u> € X A p € X))
Axiom R asserts that if X is univocal, then the class of second components of
ordered pain in X whose first components are in x is a set (or, equivalently,
M(R. (x4 X))). When X is a function, this implies that the range of the restric-
tion of the function X to a domain which is a set is also a set.

EXERCISES

4.15, Show that the Axiom d Replacement (R) impliesthe Axiomd Subsets (S).
416. Prove F(x)(M(D(x)) A M(R(x))).

417. (@) Prove Fx Xy C 2(P(x U y)).

(b)Prove: F(x)}(y)M(x X y).

Prove: E M(D(X)) A\ M(R(X)) A Rel(X) 3 M(X).

Prove: H(y)(Frc(X) 5 M(X“y)).

4.18.
4.19.

To insure the existence of an infinite set, we add the following axiom.
Axiom | (Axiom of Infinity).

(Ex)(0€ x A(w)(usxDdul{u} €x)
Axiom | states that there is a set x which contains 0 and such that, whenever

u €x, then u U{u) aso belongs to x. Clearly, for such a set x,
{0} € x, {0, {0}} E x, {0, {0}, (O, {0}}} € x, etc. Intuitively, if we let 1 stand
for {0}, 2 for (0, 1},3for (0,1, 2},...,nfor {0, 1,2,...,n = 1},..., then,
for dl integers n >0, n € x; and 0= 1,02 1%#2 03 1=#=3
2%#3,....

Exercise 4.20. (@) Prove that any formula which implies (EX)M(X) would,
together with Axiom S, imply Axiom N.

(b) Show that Axiom (I) is equivalent to the following sentence (¢):
(Ex)(Ey)(y € x A ()(u & y) A(u)(u € x D u U {u} € x)), and then
prove that (¢) impliesAxiom M. (Hence, f we assumed (¢) instead d Axiom I,
Axiom N would become superfluous.)

tFrom here on, we Sl introducenew function lettersor individual constantswherever it is made
dear that the definition is based upon a uniqueness theoram. In this casg, we have introduced a new
function letter #(X, Y) abbreviated X'Y.
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This completes the list of axioms of NBG, and we see that NBG has only a

i finite number of axioms. namely, Axiom T (Extensionality), Axiom P (Pairing),
F Axiom N (Null Set), Axiom S (Subsets), Axiom U (Sum Set), Axiom W (Power
f Set), Axiom R (Replacement), Axiom | (Infinity), and the seven class existence
k. axioms B1-B7. We have also seen that Axioms N and S are provable from the
b other axioms; however, they have been included here because they are o

interest in the study o certain weaker subtheories of NBG.

Let us verify now that Russell's Paradox is not derivable in NBG. Let
Y = {x}x & X). Hence. (x)(x € Y =x & x). (Such a class Y exists by the
Class Existence Theorem, Proposition 4.4, since x & x isa predicative wf.) This,
in unabbreviated notation, is (X)(M(X) D (X € Y =X & X)). Assume M(Y).
Then Y € Y Y & Y, which by the tautology (A=~ A4)D> (A A —A),im-
pliesY € YA Y & Y. Hence, by the Deduction Theorem, F M(Y) > (Y € Y
AY &Y) and so, by the tautology (B D (A/A\ ~A)) D~ B, b~ M(Y).
Thus, in NBG, the argument for Russell's Paradox merely shows that Russell's

class Y is a proper class, not a set. Thisis typical of the way NBG avoids the
usual paradoxes (Cantor, Burali-Forti).

Exercise 4.21. Prove: b~ (V). (The uniuersal class is not a set.)

2. Ordinal Numbers
Let usfirst define some familiar notions concerning relations.

DEFINITIONS
XlrrY for (O € Y 2(y,Y” ¢ X) A Rel(X).
(X isan irreflexive relation on Y.)
XTrY for Rel(X)A(@o)w)ue YANue YAweE YA
u,u) € X AN <o, w) € X D u,w) € X).
(X isatransitiverelation on Y)
XPartyY for (XIrr YAXTrY). (Xpartially orders Y.)
XConY for ReA(X)A (o) u&E YANvE YAu#0vD
{uy, ) EX V (v, u) € X).
(X isa connected relation on Y.)
X Tot Y for (XIrrY X Tr Y) A (X Con Y).
? ( I A ) (X totally orders Y.)
XWey for (XIrr YAZXZEYAZ#0D(B)y € ZA

(v EZAvFy Dy, v) EXAlv,y) & X))
(X well-orders Y, i.e., the relation X is irreflexive on Y

and every non-empty subclass o Y has a least element with respect to X.)
EXERCISES

Prove

422. F(X We Y)3 (X Tot Y). (Hint: toshow X Con VY, l& x,» € Y with
x #=Yy.Then (x,y} hesalesst dement, say x. Then (x,»> € X. Toshow X Tr ¥,
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let x,y,z € Y With<x,y> € X A<y, 2> € X.Then {x,y, z} hasaleast dlement,
which mugt bex.)
423 FH(XWeY)A(Z C V)2 (X WeZ).

Examples. (From intuitive set theory.)

|. The relation < on the set o positiveintegers P well-orders P.

2. The relation < on the set o dl integers totally orders, but does not
well-order, this set. The set has no least element.

3 The relation C on the st W d al subsets o the set d integers partialy
orders W, but does not totally order W. For example, {1} ¢ (2) and {2} & {I).

DErINITION.  Sim(Z, W\, W) for (Ex,)(Ex,)(Er,)(Er,)(Rel(r,) A Rel(ry)) A
Wy = <rxp AW, = (ry %30 A Fne(Z) A Un(Z) A\ D(Z) = x, A R(Z)
=AM ExAvex D(u v Er=(Zv, Z'U) En))). (Zis
a similarity mapping of the relation r, on x, onto the relaion r, on x,.)

DEFINITION.  Sim(W,, W,) for (Ez)Sim(z, W,, W,). (W, and W, are similar
ordered structures.)

Example. Letr, betherelation < on theset d non-negativeintegersA, and
let r, be the relation < on the set of positive integers B. Let z be the set of al

ordered pairs (x, x T |) for x € A. Then z isasimilarity mapping o (r,, A}
onto {r,, B).

EXERCISES

Prove
4.24, F Sim(Z, X, Y) o Sim(Z, Y, X).
4.25. + Sim(Z, X, Y)Y D M(Z) A M(X) A\ M(Y).

DEFINITIONS

Fldx) for D(X) U RX). (The field o X.)
TOR(X) for Rel(X) A (X Tot (Fld(X))). (X isatotal order.)
WOR(X) for Rel(X) N (X We(Fld(X))). (Xisawell-ordering

relation.)
EXERCISES
Prove:

426. F(Sim(X, Y)D Sim(Y, X)) A (Sim(X, Y . U)o Sim(Xx, U)).
427+ Sim(<X, FUQOY, <Y, Fid(1)) o TORNT Z5BRYD A (FORCE
= WOR(Y)).

If X is atotal-order, then, the class of al total orders smilar to x is called the
order type of x. We are especialy interested in the order types o well-ordering

relations, but, since, in NBG, it turns out that al order types are proper classes
(except the order type {0} of 0), it is convenient to find a class W d
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well-ordered structures such that every well-ordering is similar to a unique
element o W. This leads us to the study o ordinal numbers.

DEFINITIONS
E for ({x,yy[x € y}. (The membership relation)
. . -
EL??,S(S%)Z) ;gp %)g)t(i />\< @)&%u E) Y AP EZ (X istrangtive.)
AU, o) EYDUEZ). (ZisaY-sctiond X.)

Segy(X, U) for {xlx € XA (x, U €Y).

(The Y-segment of X determined by U.)
' EXERCISES
Prove

428. + Trans(X) = (u)(o}(v Eu AN u E X D v E X).

429. } Trans(X) = JY(X) C X.

430. F Trans(X) A\ Trans(Y ) D Trans(X U Y) A\ Trans(X 0 Y).

431. F Sege(X, u)= X N u A\ M(Segg(X, u)).

432, + Trans(X) = (u)u € X D Sege(X, u) = u).

433. t EWe X A Sectg(X, Z) AN Z = X D (Eu)(u E X N\ Z = Segel(X, u)).

DEFINITIONS
Ord(X) for (E We X) A Trans(X).
(x isan ordinal class if and only if the &-relation well-orders X and any
member d X isa subset d X.)

On for { x| Ord(x)}. (Thus, I (x)(x € On = Ord(x)).)

An ordinal class whichis a set is called an ordina number. On is the class of
al ordinal numbers. Notice that a W X € On is equivalent to a predicative

wf, namely, the conjunction o the following wfs.

(@ @)(u€ x> u€u);

(b) (T x Au#0D>(Ev)v EUAWXwE UAWFVIVEWA
w & v)));

(€) (u)lu € x D ucC x)

(The conjunction of (&) and (b) is equivalent to E We x, and (c) is Trans(x).)
Hence, any W which is predicativeexcept for the presence d "'On" is equivaent
to a predicative wf, and, therefore, can be used in connection with the Class
Existence Theorem. (Any wf On € Y can be replaced by (Ey)(y € YA (z2(z €
y =z € 0n))

EXERCISES

434, Prove +0 € On.

435. Let | stand for (0). Prove: H1 & On-
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We shall use small Greek letters a, B8,y, 8, 7, ... as restricted variables for
ordinal numbers. Thus, ()@ () stands for (x}(x € On 5 &(x)), and (Ea)Q (a)
stands for (Ex)(x € On A @(x)).

PROPOSITION 4.7

(1) FOrd(X) D (X ¢ X A(u)(u € X 3 u & u))

2) FOrd(X)ANY CX A\ Trans(Y)D Y E X

3) FOrd(X)NOrd(Y)) D(YCX=Y € X)

4) FOrdX)YNOrd(Y)D (X s YV X=YVYEX)A
~(XEYANYEXNDA~XETYAX=Y)

(5) FOrd(X)yAY € X3Y €0n

(6) FEWeOn

(7) F Ord(0On)

(8) F~ M(On)

9 FOrd(X)> X=0n\y X € On

(10) Fy COnA Trans(y) Dy € On.

FROCK

() If Ord(X), then E is irreflexive on X; o, (uu € X D u & u); and if
X € X, X & X.Hence, X ¢ X.

(2)Assume Ord(X) A Y C X N\ Trans(Y). It iseasy to see that Y is a proper
E-section of X. Hence, by Exercises 4.32-4.33 (p. 185), Y € X.

(3) Assume Ord(X) A\ Ord(Y). If Y € X, then Y C X, since X is transitive;
but Y # X by (1); so, Y C X. Conversely, if Y C X, then, since Y is transitive,
wehave Y € X, by (2).

(4) Assume Ord(X) \ Ord(Y) A X =Y. Now, X N Y C Xand X NY C
YSmceXandYaretranstwesmsXﬂYIthYC'X XnYCV,
then, by (2), XNYeXand XNY €€Y; hence XNY € XNY, con
tradicting the irreflexivityof E on X. Hence, either X N Y= Xor X NY=Y,

ie, X CYorYc X But XsY.Hence by 3), Xe Yor Y € X. Also, if
XeYandYEX,then by 3, XCY and Y C X, which is impossible.
Clearly, X € Y A X = Y isimpossible, by (1).

(5) Assume Ord(X) A\ Y € X. We must show: E We Y and Trans(Y). Since
Y € X and Trans(X), Y C X. Hence, since E We X, E We Y. Moreover, if
u € Yandv € u, then, by Trans(X),v € X.SinceECon Xand Y € X Av €
X,thenveEe Yorv=YorY € v.If eitherv= YorY € v, then, since E Tr X
andu € Y A\ v € u, wewould have u € u, contradicting (1). Hence, v € Y. So,
ifue Y, thenu C Y, ie., Trans(Y).

(6) By (1), E Irr On. Now, assume X C On A X 0. Leta € X. If aisthe
least element o X, we are done. (By least dement of X, we mean an element
v € X such that (u)(u € XA u+#v>ve€EuU).)lf not, then E We a, and
X N as0; let B be the least element of X N a. It is obvious, using (4), that 8
is the least element of X.
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(7) We must show E We On and Trans(On). The first part is (6). For the
second, if # € On and v € u, then, by (5), u € On. Hence, Trans(On).

(8) If M(On), then, by (7), On € On, contradicting (1).

(9) Assume Ord(X). Then X € On. If X # On, then, by (3), X € On.

(10) Substitute On for X andy for Y in (2).By (8), y C On.
We see, from Proposition 4.7(9), that the only ordinal class which is not an

. ordinal number is the class On itsdlf.

DEFINITION. X <oy forx € On Ay € On Ax €Yy
x <oy fory € On A(x =y V x <oy)

Thus, for ordinals, <o is the same as €; so, <o well-orders On. In particular,
from Proposition 4.7(5), we see that any ordinal x is equal to the set of smaller

ordinals.

ProrosiTION 4.8 (Transfinite |nduction)
F(B)[(@(aeBDa€X)DBEX]DOnCX

(If, for any B, whenever al ordinals <of arein X, then B isin X, then al
ordinals arein X))

PROOF. Assume that (B)[(a)}(a € B D a € X)D B € X]. Assume there is
an ordinal in On — X. Then, since On is well-ordered by E, there is a least
ordinal Bin On — X. Henceadl ordinas <pB arein X. So, by our hypothesis, B
isin X, which is a contradiction.

Proposition 48 is used to prove that al ordinals have a given property & (a).
We let X = {x|@(x) A x € On) and show that (B)(a)}a € B D & (a))>

&(B)].

DerINITION.  x” for X U {x}

PROPOSITION 4.9

6y F(x)(x € On =x" € On)
2) F(a)~ (EB)a <of <oa)
(3) H(a)(BXa' =B D a=B)

PROOF.

(1) x € x’. Hence, if X € On, then x € On, by Proposition 4.7(5). Con-
versaly, assume x € On, We must prove E We (xU { x))and Tranrs(x U {x}).
Since E We x and x & x, E Irr (xU {x)).Also, if y #0Ay C(xU {x})
then either y = { x) ,in which case the least element of y isx, ory N x # 0; the
least element d y N X is then the least element of y. Hence, E We (x U {x})-
Also, ify € x U {x)andue then # € x. Thus, Trans(x U {x))

(2) Assume a <oB <ga'. Thena € BAB €@ Since a € €58 & a and
B # a, by Proposition 4.7(4), contradicting 8 € a'.
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(3) Assumea' = 1) Thenl) <o &, and, by Part (2), I) <o a Similarly, a <,
Hence, a = 8.

DEFINITION.  Suc(X) for X E On A (Ea)(X = &). (X isa successor ordinal)

DerNITION. K, for {x|x =0 \/ Suc(x)}. (The class of ordinals of the first

kind)

DerINITION.  w for {x|x € K; A (uX(u € X D u € K)). w is the class of al|

ordinals a o the first kind such that dl ordinals <, a are also of the first
kind.

Examples. t0 € w A 1 €w. Remember that 1 = (0).

ProPoOSITION 4.10.

) t@ecw=a ew

(2 FMw)

3) PUEX/\(H)(REXDM'EX)DQ}QX
4 Fafa€wAp<oadf Ew).

PROOF.

(1) Assumea € w. Now, Suc(a’). Hence, a' € K. Also,if B8 € &, then 8 € a
or 8 =a. Hence, B £ K,. Thus, a € w Conversdly, if a & w, then, since
a€d, and (BB €ad B <d),itfdlowstha a € w.

(2 By the Axiom o Infinity (1), there is a set x such that 0 € x and
(u) (v € x D U € x). We shdl prove @ C Xx. Assume not. Let a be the least
ordinal in w — X. Clearly, a # 0, since0 € x. Hence, Suc(a). SO, (E8)(a = 1)).
Let S be an ordinal such that a = 8. Then S<, a, and, by Part (1), § €w.
Therefore, S € x. Hence, 8§ € x. But a = 8’, Therefore, a € x, which yidds a
contradiction. Thus, w C x. S0, M(w), by Proposition 4.6.

(3) Thisis proved by a procedure similar to'that used for Part (2). (4) is left as
an easy exercise.

Th; elements of w are caled finite ordinals. We shall use the standard
notation: 1 for 0; 2for 15 3for 2, etc. Thus, 0 € w, j e w2 € 3w, . - - -

T_'he non-zero ordinals which are not successor ordinals are called Jimit
ordinds, or ordinals of the second kind.

DEFINITION.  Lim(x) for x € On A x & K,.
Exercise 436. Prove: T Lim(w).
ProrPosITION 4.11

(DF O € On > (U(x) € 0n A (@)a € x 5 a <o Y) A (B)(a)a

xD % <0B) D Ux) <oB))). (If x is a set of ordinals, then i dinal
which is the least upper bound of x.) ’ U ()1s an ordina
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| @) C OnAx#0A (@€ x D (EBNB E* A« <oB) >

¥ Lim(@U(x)))- (If x is a non-empty set of ordinals without a maximum, then U()
} 35 a limit ordinal.)

PROOF.
(1) Assume x C On. Y(x), asaset o ordinals, is well-ordered by E. Also, if

a € YX)A D) € a, then thereissomey withy € X A a € y. Thenl) € aand

g a = yt; since every ordinal is transitive, 8 € y. So, 8 € |J(x). Hence, U(x) is
i trangiti

ve, and therefore J(x) € On. In addition, if a € X, then a c Ux); o,

a <o [J(x), by Proposition 4.7(3). Assume now that (a)(« € x D a <op).
Clearly, if 8 € |J(x), then there is some y such that S € y A y € X. Hence,
Y <0b and o, & <o B- Therefore, {J(x) € 1), and, by Proposition 4.7(3), J(x)

cop.
(2 Assume x #0 A X C OnA(a)a € x D (EB)B Ex Na<of) If
Ux) =0, then, a € x impliesa = 0. So, x = 0 or x = |, which contradicts our

assumption. Hence, {J(x) # 0. Assume that Suc(UJ(x)). Then U(x) = y' for
somey. By Part (1), J(x) is a least upper bound o x. Therefore, v is not an
upper bound o x; there is some S € x with y <o 8. But then 8 = {J(x), since
U(x) is an upper bound of x. Thus, {J(x) is a maximum element o X,
contradicting our hypothesis. Hence, ~ Suc((x)), and Lim(x) is the only
possibility |€ft.

Exercise 4.37. Prove: t(a)((Suc(a) D (J(@)) = a) A\ (Lim(a) D {J(a) = a)).

We can now state and prove another form o transfinite induction.

ProrosiTiON 4.12 (Transfinite Induction: Second Form)

Mtoe XA e € X Da € X)A (a)Lim(e) A (BB <oa D
BEX)DaEX)DONCKX

(2) (Induction up to 8) FOE X AfaXa' <oSAa€E X Da EX)A
(afa <o 8 A Lim(e) A(BXB<oa> B EX)DacX)DdCX
PrROOF.
(1) Assume the antecedent o the proposiitlion.( ;Eel <Y = D{x IxEEY())’;/:'

i t(a)a <o Y o
XD aE X)). !t_ is then easy to prove tha
(é‘)(# H%nce, by Proposition4.8,0n C Y. But ¥ C X. Hence, On C X.

(2) is l€ft as an exercise.

Set theory depends heavily upon definitions by transfinite induction, which
are justified by the following theorems.

ProrosiTION 4.13

Y) = On A (a)(Y ‘a =X ‘(a1Y))). (Given
1) t(X)E,Y X Fne( D (
X ,(t]Zere( is)a(. ulni(;ue funYc)ti{;;l ¥ defined on al ordinals such that the value of
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Y at a is the value of X applied to the restriction of Y to the set of ordinals
<ga.)

@) F X )XNE, Y)(Fre(Y) A D(Y) = On A YO = x A (a)(Y(a)
= X, (Y'a)) A\ (e)(Lim(a) D Y'a= X, (a1Y))).

(3) (Induction up to 8) F (X)X WX NE Y Frc(Y)A D(¥)=8A Y 0=x
N@(a <ogdDY '@ =X, (Y Q) A@Lima) Na<ed DY a=
X, ‘(a1 Y))).

PROOF. Let Y, = {u|Fnc(u) A\ D(u) € On A (a)a € D(u) D u'a =
X ‘(aqu)). Now, if 4, € Y, and u, € Y, then u, C u, or u, C u,. For, let
v = D(u;) and v, = D(u,). Either y, < v, 0r v, <o Y,, Sy v, <oy, Let wbe
the set o all ordinals a <o v, such that u, 'a # u, 'a; assume w + 0, and let 4
be the least ordinal in w. Then for al B8 <o q, u, ‘8 = u, ‘B. Hence, n{u, =
n{u. But uy ' =X ‘(m{u) and u, ‘p = X ‘(n{uy); and so, U, n = u, “y,
contradicting our assumption. Therefore w= 10, i.e,, for dl a<o y,, ¥, 'a =
u,‘a. Hence, #; = v,1u, = v,14, C »,. Thus, any two functionsin Y, agree in
their common domain. Let Y = Y(Y,). Weleaveit to the reader to prove that Y
is a function the domain o which is either an ordina or the class On, and
(a)a € D(Y)D Y'a= X (aqY)). That D(Y) = On follows easily from the
observation that, if D(Y)=4 and if we let W= Y y ({8, X 'Y)), then
WeE Y,;s0,WC Yandé € 9 (Y) = §, which contradicts the fact that § ¢ 6.
The uniqueness of Y follows by a simple transfinite induction (Proposition 4.12).
The proof of (2) issimilar to that o (1), and (3) followsfrom (2).

Using Proposition 4.13, one can introduce new function letters by transfinite
induction.
Examples
1. Ordinal addition. In Proposition 4.13(2), take
x =B X, ={(u v=1u), andX, = {(u, v>lv = U(R(w))}.
Hence, for each ordinal B, there isa unique function Y, such that ¥, 0 = 8 A

(a)(Y,;'(@) =(Y,;'a)) A (a)(Lim(a) D Yﬂ2 'a = (Y, "a)). Hence, thereisa
unique binary function +, with domain On? such that, for any ordinals 8 and v,
+o(B, v) = Y5 *y. As usud, we write 8 +,y instead of + (B, v). Notice that

B+0 =28
B +o(v) = (B +oy)
Lim(a) D B +oa = y (B *+aT)-
In particular,
B +ol = B +(0) = (B +0) = B

2. Ordinal multiplication. In Proposition 4.13(2), take x =0, X, = {<u, v)|
U= u+,8)}, and X, = ((u, v)Jo = Y(R(w). Then, as in Example 1, one
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obtains a function 8 X4y with the properties

B X,0 =0
B *o(Y) = (B Xo7) +oB
Lim(a) D B8 Xoa = U (B X, 7)

T<oo

EXERCISE 4.38. Justify the following definition d ordinal exponentiation.t

exp(B.0) = 1
exp(B,y) = exp(B,y) X8
Lim(a) D exp(B,a) = U exp(B, 7).

For any set X, let E, be the membership relation restricted to X, that is,

Ey — ({x,»)|x€Epy AxEX A EX])

ProPoSITION 4.14.f Let R be a well-ordering relation on a class Y, that is,

R We Y. Let F be afunction from Y into Y such that, for awy u, v in Y,

if (u u €R, then (F %, F ‘o) € R. Then, for all v in Y, u=F 'u

o{u, F'u) €R.

PROOF. Lé&t X = {u(<F 'u, u) € R). We wish to show that X = 0. Assume
X # 0. Since X C Y and R well-orders Y, there is an R-least element u,  X.
Hence, (F ‘uy, 45> € R. Therefore, (F'(F ‘1), F‘upy € R. Thus, F ‘up € X,
but F ‘u, is R-smaller than u,, contradicting the definition of .

As a specia case of Proposition 4.14, if Y isa class of ordinals, F: Y — Y,
and Fisincreasingon Y (that is a€ YAB € YA a<oB D F'a<o F*B),
then a <o F'a foral « in Y.

COROLLARY 4.15. Leta <of andy C a,i.e. lety beasubset d a segment of

B. Then {Eg, B is not similar to <E,.,y).

PrROOF. Assumef is a function from 8 ontoy such that, for u, uin 8, if
u <o v, then f'u <p f ‘v. Sincethe range of f isy,f 'a €y. Buty € a. Hence,
f 'a < a. But, by the special case o Proposition 4.14 mentioned above (with
y = B and R = Ejp), a <of 'a, which yields a contradiction.

CoroLLARY 4.16. (1) For a # B, <E, &) and {Es ) are not similar.

(2) For any a, iff isa similarity mapping of (E,, a) with (E,, a), thenf is the

identity mapping, i.e.f ‘B = Bfor all 8 <o a.

X Y

tWe use the notation exp( 8, @) instead of 82 in order to avoid confusion with the notation 1o
be introduced later (p. 193).

tFrom this point on we shall expressmany theorems o NBG in English by using the cOtre_SPO“d‘
ing informal English translations. This is done to avoid writing mile-long wfs which are difficult to

\c/{,feci ?hﬁrégnd only in cases where the reader can easily produce from the English version the precise
0 .
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PROOF. (1) By Corollary 4.15. (2) By Proposition 4.14, f ‘B >oB for all
B <o a. But, again by Proposition 4.14, (f) ‘B >0 for al B <¢ a. Hence, B =
(H) ¢ “B) >of ‘B >o0pB, and, therefore,f ‘B = B.

ProPosITION 417. Assumethat R isa well-ordering d a non-emply set u, i.e.
R Weu A u = Fld(R) N\ u # 0. Then there isa unique ordina y and a unique
similarity mappingd (E,, y) with (R, U), i.e. every non-emply well-ordered set
issimilar to a unique ordznd.

PROOF. Lé&t Z = (do,wilwEu - o A2z Eu—-0vD{z,Ww) & R). Z is
a function such that, if v isa subset of ¥ and u — v % 0, then Z “p is the R-least
element of u — v. Let X = ((v, w)|{R (v), W) € Z)).Now we use a definition
by transfiniteinduction (Proposition 4.13) to obtain a function Y with On asits
domain such that (a)(Y 'a = X(@1Y)). Lt W= {a|Y“a CuANu— Y¢a
0}. Clearly, if a€ W and 8 € a, then 8 € W. Hence, either W= On or W
is some ordinal y. (For, if W# On, let y be the least ordinal in On — W)
Ifac W, then Y 'a=X “aqY) is the R-least element of « — Y"a; s0,
Y'a € uand, if 8 € a, then Y'a %= Y*B. Thus, Yisaone-onefunctionon W
and therange o Y restricted to W isa subset of u. Now, letf = (W1 Y), i.e. let
f be theinversed Y restricted to W. Thenf is a one-one function with domain a
subset o « and range W. So, by the Replacement Axiom (R), Wisa set. Hence,
W issomeordinal y. Letg = yq Y. Then g is aone-one function with domain y
and range a subset ¥, of u. We must show that #, = « and that, if aand g arein
yand 8 <o a, then (g ‘8,9'a) € R. Assumea and 8 areiny and B <o a.
Theng “B C g'aand,sinceg'a € u — g “a,g'a € u — g* 8. Butg ‘B isthe
R-least element o « — g" B. Hence, (g ‘8,9 'a > € R. It remains to prove
that «; = u. Now, u; = Y" y. Assume u— u; # 0. Theny € W. But W =y,
which yields a contradiction. Hence « = u,. That y is unique follows from
Corollary 4.16.

PROPOSITION 4.18.  Ler R be a well-ordering d a proper class X such that, for
eachy EX, theclass d all R-predecessorsd y in X (i.e. the R-segment in X
determined by y) isa set. Then R is similar to E,,, i.e. there is a one-one
mapping h d On onto X such that a € B implies(h 'a, h‘8> € R.

PROOF. Proceed as in the proof o Proposition 4.17. Here, however, W =
On; aso, one proves that A (Y) = X by usng the hypothesis that every
R-segment of X isa set. (If X — R.(Y) # 0, then, if w is the R-least element of

X — R(Y), the proper class On is the range of Y, while the domain o ¥ is the
R-segment of X determined by w, contradicting the Replacement Axiom.)

3. Equinumerosity. Finite and Denumerable Sets

We say that two classes X and Y are equinumerous if and only if there is a
one-one function Fwith domain X and range Y. We shall denote thisby X = Y.
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3 EQUINUMEROSITY

DEFINITIONS
X = Y for (Fnc(F) N\ Un(F) N\ Sy =

: X=Y for (EF)X=Y)

& Notice that F(R(ON(x =y = (E2)x ). Hence, a

(ie., is equivalent toa wf using only set quantifiers).
" Clearly, if X = ¥, then Y=X; and f X 5 Yand Y=

XN\RF)=7Y;

W X =y is predicative
= Z, then X = Z, where
3 H is the composmon G°F of Fand G, that is, G F= (X, yOI(Ez)Kx,2) €

F A<z, y) € G)). Hence, we have the following theorem.
PROPOSITION 4.19. (N X =X. QX =YD y=X.3)X=YANY=ZD

X=Z
PROPOSITION 420. (1) (X =Y AXi=¥ Axn X —0A v ny. 3
SXUX,=YUY, @ X=YAX, =)D XXX =

R XX {(y)=X@XXY=YXXBXXYV)XZ= XX(YXZ)

proOF. (1) Let X=Y and X'= VY, Then X U X, r56Y U Y, (2 Let
XYand X'5 V, Let

= {Cu, O(Ex)NEy)(x €X Ay € X, Au={xp> Av=(Fx, G}

ThenX X X, Y X Y.
@) Let F={(u,v)ju € X Ao = <u,y>}.ThenX%X x {»}.
@) Let
F = {(u, o (E)E)x € XAy EYAu=C{xy) A=y x)
Then X X Y=Y X X.
(5) Let
= (U DIENENENE S X Ay € YAZEZNu=S xr> 5

Then (X X Y)X Z= X X (Y X Z).
}

. Y
DeriNiTioN. X = {ulu:Y->X" X
functions from Y into X.

is the class d all sets which are

EXERCISES
¢ Prove:
439, F (XNYXEX XEYYX =X AY =Y AX,Nn Y, =0)
440. + P (x) = 2~ Srememberthamz— {0, 1})
441 F~ M(Y)D 0.
4.42. v M(x”).
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PROOF. (1) By Corollary 4.15. (2) By Proposition 4.14, f ‘8 >¢f for all
B <o a. But, again by Proposition 4.14, (f) ‘8 >¢f8 for dl B <, a. Hence, B =

(H'(fB) >of ‘B 0B, and, therefore, f ‘B = B.

ProrPosITION4.17.  Assume that R isa well-ordering of a non-empty st U, i.e.
RWeu A u = Fld(R) \ u # 0. Then thereisa unique ordinal yand a unigue
similarity mapping of (E,, y) with (R, U), i.e. every non-empty well-ordered se
is smilar to a unique ordznal.

PROOF. Let Z = (v, whlw Eu ~v ANz E€Eu—-Vv D(2,wy € R). Zis
afunction such that, if visasubset of wand u — v = 0, then Z'v is the R-least
element of u — v. Let X = {(v,w)|{R(v), W) € Z)).Now we use a definition
by transfinite induction (Proposition 4.13) to obtain a function Y with On asits
domain such that (a)}(Y'a = X(aqY)).Let W= {a|Y*a CuAu— Y +*
0}. Clearly, if a € W and B € a, then 8 € W. Hence, either W = On or w
is some ordinal y. (For, if W # On, let y be the least ordinal in On — W.)
If ae W, then Y'a= X “(aqV) is the R-least element o « — Y"a; S0,
Y'aeu,and, if 8 € a,thenY'a =Y ‘8. Thus, Y isaone-onefunctionon W
and the rangedof Y restricted to W is a subset of . Now, let f = (W4Y),ie l&
f betheinversed Y restricted to W. Then f is a one-one function with domain a
subset o « and range W. So, by the Replacement Axiom (R), W isa set. Hence,
W issomeordinal y. Let g= y4 Y. Then g isa one-one function with domain y
and range a subset u, of u. We must show that #; = » and that, if a and g arein
yand 8 <o a,then (g ‘B,g'a) € R. Assumea and 8 arein yand 8 <o a.
Theng“B Cc d' aand,sinceg'a€u —g'a,g'asu—g“p Bug‘gisthe
R-least element d » — d" B. Hence, (g ‘B,9'a > € R. It remains to prove
that u; = u. Now, ; = Y" y. Assumeu — u; = 0. Then y e W. But W =y,
which yields a contradiction. Hence # = u,. That y is unique follows from
Corollary 4.16.

ProrosiTioN 4.18. Let R be a well-ordering of a proper class X such that, for
eachy EX, the class of all R-predecessorsof y in X (i.e. the R-segment in X
determined by y) is a set. Then R is smilar to E,,, i.e. there is a one-one
mapping h of On onto X such that a & g implies(h'a, h ‘8> € R.

PROOF. Proceed as in the proof of Proposition 4.17. Here, however, W =
On; aso, one proves that R (Y)= X by using the hypothesis that every
R-segment of X isaset. (If X — R(Y) # 0, then, if wis the R-least element of

X — R(Y), the proper class On is the range of Y, while the domain of ¥ is the
R-segment of X determined by w, contradicting the Replacement Axiom.)

3. Equinumerosity. Finite and Denumerable Sets

We say that two classes X and Y are equinumerous if and only if there is a
one-one function F with domain X and range Y. We shall denote thisby X =Y.

- Notlce that F (x)y)(x =y = (Ez)(x =y)). Hence, a
: 3 (ie. is equivalent to a wf us ng only set quantifiers).
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DEFINITIONS
Y=Y for (Fne(F)A Un(F)ADF)=XN\R(E)=T]
x=v for (EFXX ~=; v)
wf x =y is predicative

Clearly,;fX_a Y, thenY X;and if X = YandY?Z'thenxﬁZ’Where

' H is the composition G ° F of F and G, that is, G F= { (X I(ENx, 2) €

FNA<z,Y) € G)).Hence, we have the following theorem.
PropOSITION 419, (DX =X. ()X =Y o Y=X. 3X=YAY=Z>
X = Z.

ProrPosiTION 4.20. (1) (X = YAX‘—YAXﬂX._OAYrW{x_O)
SXUX, =YUY,. 2 X=YAX, =Y)DX XX =¥ Xy’

A XX{(y)=X.DX XY= Y x X.5) (X X Y)X Z = Xx(YxZ)
PROOF. (1) Let X&=Y and X' G Y,. Then X U X,r8cY U Y,. (2) Let
X=Yand X'® Y, Let

= {(Cu, 0)|(Ex)(Ey)(x E X Ay € X, Au=(x,7) Av = (F'x, Gy))}.
Then X X X, # Y X Y,.
(3)Let F = {(u,0)|u € X Av=<uyd). Then X = X X (y).
(4)Let
= {(u, Y[(Ex)Ey)(x € X Ay E ¥ Au={6y) Ao =<y, )}
Then X X Y% Y X X.
(5) Let

F = (Cu, o Ex)EYNE)x g X Ny EYAZEZNU=Sxy>.122

AU = <I, <.y’ Z>>)]

. Then (X X Y)x Z = X X (Y X Z).
x¥ = (!l - v x). x” is the dass d all sets which are

¥
DEFINITION.
functions from Y into X.

EXERCISES

| Prove
439 | XXYNEXXEY X XA Y

440. |- P(x) = 2%, (Remerrberthatz
441 F~ M(Y)D XV =0.
442 + M(x”).
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443 + X°= (0)=1.
444 tY £ 050" =0.
4-45-|‘X=EY/\Z ch£~YZJ
446. F X NY=0> Z%Y ZX X Z7,
447. (XYY = xV*Z except when ¥ =0
448, F(X X YZ = X% X YZ N~M(Z).
449. F(x)}(R)R WeXx D (Ea)(x = a)).(Every well-ordered st is equinumerous

with some ordinal.)

One can define a partial order < on classes such that, intuitively, X < Yif x

has the same number or fewer elements than Y.

DeFiNimioN. . X<y for (EZ)(Z C
asubclassd ).

DEFINITION. X < Y for X <
Hencg, FE X< Y=(X<Y

EXERCISES

C YA X =2Z) (ie, X is eQUINUMEroUSwith

Prove:
450. t X <Y A~ M(X) D~ M(Y).
451, t X <Y A (EZ)Z We Y):) (EZ)(Z We X).

PropPOsITION 4.21

) FXSXA~X=<X)

@ FXCYDoX<vY

B FX<YAY<ZHX=<Z

(4) (Schroder-Bernstein) F X< YA Y< XD X =Y

PROOF.

(3) AssumeX = Y, A Y, C YA Y=Z, A Z, C Z. Let H be the composi-
tion of Fand G. Then R(H) C Z A 6= R(H).

(4) There are many proofsd this non-ffivial theorem. The followingis a new

one devised by Hellman [1961]. Lemma Assume X N Y =0, X N1 Z =0,
YNnZ=90andlg X=Xy Y UZ Then thereisaG suchthat X = X ¢ Y.

(Roof. Definea functidh H on asubclassd X X « asfollows: ((u, ki a) € H
if and only if # € X and k &€ » and there is a functionf with domain k' such
thatf 0= F'u and, if j €k, thenf € X AT () =F ‘f H Al 'k =v.
Thus, H '((u, 0>) = Fu, H Ky, 1)) = F(F ‘w)if Fr'ue X, and H ‘((u, 2))
= F'(F'(F‘'w)if F'u and F'(F'u) arein X, etc. Let X* betheclassd al
u € X such that (Ey)(y € w A<u,y) € DHYN H (u,y)) € Z). Let Y* be
the classdf all ¥ € X such that (y)(y € w A (U, y) € D(H) D H (Ku,y)) &
Z). Then X = X* U Y*. Now define G as follows: & (G) = X, and, if « €

X*, then G ‘u=F‘u. Then X=Xy Y

then G ‘u = u, whereasif u € Y*,
G

!g_!
T
A

" function D such that A = X, (since(X, — A) UA = X,). Let T be the composi-

y, CYAY=X AX CX Letd =
0, A n(X - %) =0, and (X - X) N (X, - A)=0" Al%, X
(X T
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3. xercise).) Now, to prove the Schroder-Bernstem Theorem: assume X £ Y. A
E g G Y,cX,gXButAﬂ(AG A)=

V — (Y —— YY1
=X-xpu
A) U A, and the composition H d F and G 1s a one-one function with
domain X and range A. Hence, A & X. So, by the Lemma, there is a one-one

n Alnn

let T u=(G)'(D ‘(H ‘w)). Then X % Y,

tion of the functions H, D, G, i.e.,
Y.

since/\’ﬁAandA;DXl anXmf

EXERCISES

452. Carry out the details of the following proof (due to J. Whitaker) of the
Schroder-Bemstein Theorem in the case where X and Y are sets. Let X &= Y} A

Y,C YA Y= x, A Xi CX Wewishtofindaset Z & X such that G, restricted

to Y — F“Z, isa one-onefunctionof Y —F “Z onto X — Z. (If wehave such q
st Z leeH= Z1F)U ((X=2)1G)ieHx=F‘xfor xEzandH ‘x =
'xfor x€ X —Z. Then X = Y) Let Z = {x}(Eu)u T X AX EupG" (Y_

F”u) € X — u). Notice that this proof doesnot presuppose the definition of « nor
any other part of the theory of ordinals. For ill another proof, cf. Kleene [1952,

§ 4].
ProPOSITION 422. Assume X < Y and A < B. Then,
(1) YnB=0DXUA<YUB
2 XXA<YXB
3 X*=<YPiBisasetanditisnot the casethat X=A=Y=0A

B #0.

PrROOF. (1) Assumex = ¥, € YandA s B, c B.LetH beafunction with

domain X U 4 such that H *x = F'xifx € XandH'x = G'xifx € A - X.
Thenx yA=H“(XuA)c YU B. (2 and (3) are |eft as exercises.
H

EXERCISES

Prove

453 FX=<XUY.

454 FX <Y 5~ (Y < X).
455 FX < YANY<Z>HX<Z

PropPosiTION 4.23 (Cantor's Theorem).

(a) ks (ED (Fnc(f) A (’D(f) =X /A qﬂx(f) = G_P(X))- (There is mfunction
from x onto F (x).)

() Fx=<P(x)
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PROOF. (@) Assume Frc(f) A\ D(f) = X A\ R(f) = P(x). Lty = {u|u =
Au€f'u). Theny € P(x). Hence, there is some z in x such that f 'z = ,*
But, (uuey=ucs x A\Nu&f'u).Hence, (ufu € f'z=uc x Au&f‘y),
By RueA4, zEf 2=z xAzef'z. Sinceze x, weobtain ze€ f*; =

z & f 'z, which yields a contradiction.

(b) Letf be the function with domain x such that f'u = {u)for each uin x,
Thenf" x ¢ 9 (x)and f isone-one. Hence, x < P (x). By Part (a), X = P (X)is
impossible. Hence, x < 9(x).

Observe that we have not proved F (x)(»)(x < y \/ Y < X). This proposition
is, in fact, not yet provable, since it turns out to be equivalent to the Axiom of
Choice.

ExercisE 456. Notice that, if NBG is consistent, then it has a denumerable
model (Proposition 2.12). Explain why this does not contradict Cantor's
Theorem, which implies that there exist non-denumerable infinite sets (e.g., 2¢).
(This apparent, but not real, contradiction is sometimes called Skolem’s Para-
dox.)

The equinumerosity relation = has all the properties & an equivalence
relation. We are inclined, therefore, to partition the class o al sets into
equivalenceclasses under this relation. The equivalenceclassof aset x would be
the class of al sets equinumerous with x. The equivalence classes are called
cardinal numbers. For example, if « isa set, and x = {u), then the equivalence
class of x is the class of al unit sets {v} and is called the cardinal number 1..
Likewise, if u = v,andy = {u, u), then the equivalenceclassd vy is the classd
al sets containing exactly two elements, and is called the cardinal number 2.
1e., 2, = {z|(Ex X Ey,)(x, #»1 Az = {x1,Y,))).Now, noticethat all the cardi-
nal numbers, except the cardinal number o 0 (which is {0}), are proper classes.
For example, V = 1., where V' is the universal class. (Let F' x = { x) for each x
in V. Then V f 1..) But ~ M(¥); hence, by the Replacement Axiom, ~ M(1,).

EXERCISE 4.57.  Prove: b~ MQ2).

Because the cardinal numbers are proper classes, we cannot talk about classes
of cardinal numbers, and it is difficult or impossible to say and prove many
interesting things about them. Most assertions one should like to make about
cardinal numbers can be paraphrased by suitable use of = and <. In addition,
we shall see later that, given certain additional plausible axioms, there are other
ways of defining a notion which does the same job as that o cardinal number.

To see how everything we want to say about cardinal numbers can be said
without explicit mention d cardinal numbers, consider the following treatment
d the"sum" o cardinal numbers.

DEFINITION. X 1,Y = (X X {0}) U (Y x {1}). Since X x {0} and Y X
{1} are digoint, their unionis a classwhose'sze" is the"'sum" o the “sizes”
o Xand Y.
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'.- EXERCISE 4.58. Prove:

@ FX<X+ YAY<X+.Y.

(b) FX=AAY=BDOX+ Y=A+B
) FX+ Y=Y+ X.

(@ FM(X+.Y)=MX) A\ M)

© FX+ (Y +.2)=(X+.7)+.2Z

(H FX<S YD X+ Z<XY+.Z

@ FX+. X=X X2

) LvY+.Z o vY v VvZ x
(ﬁh Fxsx+, 102+ x=2%

Finite Sets. Remember that w is the set of al ordinals a such that « and all

" smaller ordinals are successor ordinals or 0. The elements of « will be called

finite ordinals. A set will be called finite if and only if it is equinumerous with a
finiteordinal.

DEFINITION. Fin(X) = (Ea)a Ew A X = a).
Clearly, by the Replacement Axiom, + Fin(X) 3 M(X). Trivialy, dl finite

ordinals are finite sets, and + Fin(X) A X =Y D Fin(Y).

ProPosiTioN424. (DF(afa€EOn-wDa=a). o _
@ FaBagwNBF B >~ a=p). (No finite ordinal is equi-
numerous with any other ordinal. Hence, a finite set is equinumerous with
exactly one finite ordinal, and a non-finite ordinal, that is, a member of On — w,
is not finite)
() F(a)(x}a € w A\ x C @a D~ a =X). (No finite ordinal is equinumerous
with a proper subset of itself.)

PROOF. (1) Assume a € On — w. Define a function f with domain & as

follows f6=8"ifsewfd=8ifd€a NdZwl{a);f'a=0. Then

et = a.

i

i
i

(f} Assumefalse, and let a be theleast ordinal such that a € w, and thereisa
B # a such that a = 8. Hence, a <o 8. (Otherwise, 8 would be a smaller ordinal

- than a, and 8 would be equinumerous with some ordinal # B.) Let a & B. If

' a=0, then f=0 and B =0, contradicting a # B. So, a # 0. Since « € w,
- a=§"for somes € w. Wemay assumethat 8 = y for somey. (For, if B € ,
© thenpB #0; and if B & o, then, by Part (1), B = B’, and we can take 8’ instead
. of B) Thus 8" =a=%y. Also, 8§ #y, Sncea#B. Case |I: f'S=1y. Then

i
| % such B. Clearly, a # 0; hence, a = y for somey; but, asin the proof of Part (2),

) ﬁ y. Case 2. f ‘6 #y. Then there is some p € § such thatf ‘e =vy. Let

e

"8=f((51ﬂ— {(‘?, YU, f 48D}, ie, lee h'r=1‘t if & {§ p};

h‘p = f*§. Then 6 ="y, In both cases, § is a finite ordinal smaller than « which

is equi numerous with a differentordinal v, contradicting the minimality of a.
(3)AssumeB 6 w A X C B\ B = x holds for some B, and let a be the |east
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one can then show that y is also equinumerous with a proper subset o itself,
contradicting the minimality of a

Exercise 4.59. Prove that the Axiom d Infinity (1) is equivalent to the
following sentence:

(*) (Ex)((Eu)(u € x) A (¥)(y € x D (Ez)(z € x Ay C 2))).
PrOPOSITION 4.25.

() FEn(X)A Y C X D Fin(Y).
(2) t Fin(X)>D Fin(X U {Y))-

(3 t Fin(X) A Fin(Y) > Fin(X U Y). 1

(4) A set issaid to be Dedekind-finiteif and only if it is equinumerous with
a proper subset d itsdf. Then every finite set is Dedekind-finite. (The converse
is not provable without use of an additional axiom, the Axiom d Choice.)

PROOF.

(1) Assume Fin(X) A Y C X. Then X = a, wherea € w. Let g = Y{f and

W=g*“Y C a Wisasetof ordinals, and %0, £, is a well-ordering of W. By
Proposition 4.17, (E,,, W) is similar to (Eg,, > for some ordinal B. Hence,
W= g. In addition, B <¢a. (For, if B >0 0, then (E B) is similar to
{Ey, W), contradicting Corollary 415) Sincea€w, f € w. From Y= WA
W = f it follows that Fin (Y). &

(2 Ify € X, then X U {y} = X and the result is trivial. So, assumey 4 X.
From Fin(X') it follows that there is a finite ordinal a and a functionf such that
a“fa X. Letg=f U{(a y)}. Thend = X U{y). Hence, Fin(x U {y)).

4

(3) Let Z = {u|u € o A (XXX (x = UA Fin(y) D Fin(x Uy))}. We must
show that Z = w. Clearly, 0 € Z, for,fif x=0,then x=0and x Uy =Y.

Assume that a € Z. Let x = a' and Fin(y). Letf w =aand x, = x — {w}.

Then x; = a. Since a € Z, fFin(xl Uy). But x Uy =(x, Uy) U{w). Hence,
by Part (2), Fin(x Uy). Thus, a € Z. Hence, by Proposition 4.10(3), Z = w.
(4) This follows from Proposition 4.24(3).

Inf(X) for ~ Fin(X). (X isinfinite.)
Den(X)for X =w. (X is denumerable.)
Clearly, t Inf(X) A X =Y 3 Inf(Y) and F Den(X) A X = Y D Den(Y). By

the Replacement Axiom and the fact that M(w), it follows that + Den(X) 3
M(X).

DEFINITIONS.

PrROPOSITION 4.26

(DFInf(X) AN X C Y D Inf(Y)
@) b Inf(X) = Inf(X U {y})
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(3) A class is called Dedekind-infinite § and only it is equinumerous with a

: ' proper subset d itself. Then every Dedekind-infinite class is infinite.

@) + Inflw)
PROOF.

(1) From Proposition 4.25(1).

() t Inf(X) > Inf(X U {y}) by Part (1). By Proposition 4.25(3),
FIniX L {¥}) D Inf(X).

(3) Use Proposition 4.25(4).

(4) tw 4 w and Proposition 4.24(2).

ProOPOSITION 427. F Den(v) Az C v D (Den(z) \/ Fin(z))

PrOOF. |tsufficesto prove: z C w D (Den(z) \/ Fin(z)). Assumez Cw A\~
Fin(z). Since ~ Fin(z), for any a € z, there is some B € z with a <¢B.
(Otherwise, z C a' and, since Fin(a’), Fin(z).) Let X be a function such that, for
any a € w, X 'a is the least ordina B in z with a <. Then, by Proposition
4.13(3) (with 6 = w), there is a function Y with domain « such that Y ‘0 is the
least ordinal in z, and for any y in w, Y'(y") is the least ordinal 8 in z with
B >uo(Y'y). Clearly, Y is one-one, D(Y) = w, and Y “w C z. Also, Y “w = z;
for,if z — Y “w 7 0, § istheleast ordinal inz — Y "w, and 7 isthe least ordinal
inY "w with 7 >¢ 8, then 7= Y 'o for some o in w. Since 6 <o 7, 0 # 0. So,
o =y forsomepinw Thenr = Y ‘6 = theleast ordinal in z which is greater
than Y'p. Butd >eY ‘u, sincer istheleast ordinal in Y “w which is greater than
6. Hence r <o 6, which contradicts 6 <o 7.

EXERCISES

Prove:

4.60. + Fin(x) D Fin(?(X)).

461 t(Fin(x) A () € x 3 Fin(y)) D Fin(UJ(x))-

462. + X <y A Fin(y) D Fin(x)

463. + Fin(?(x)) D Fin(x)

4.64. + Fin(UJ(x)) D (Fin(x) A Xy € x 3 Fin(y))

465 FFin(x) D (X< yVy=<x)

466. t Fin(x) AInf(Y) > x <Y

467. F Fin(x) Ay CX2y<x

468. + Fin(x) A Fin(y) D Fin(x X y)

4.69. t Fin(x) A Fin(y) D Fin(x”)

470. F Fin(x) Ay 4 XD X <(x U (y))

4.71. Definex to bea minimd (respectively, maximd) element d Y if and only
if Xe Yand(y}y € Y D~y C X) (respectivey, (»}(y € Y =~ X Cy)). Prove
that a st Z is finitef and only if every non-empty sst d subsetsd Z has a
minima (respectively, maxima) eement (Tarski [1925]).

472. () v Fin(x) A Den(y) D Den(x U Y).

(b) F Fin(x) A\ Den(y) A X # 0 D Den(x X y).
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© Af_se@ x contains a denumerable subset if and only if x is Dedekind-
infinite.

(d) If y & x, then x is Dedekind-infiniteif and only if x = x U {»}.

@te<x>dx+,1=x

4. Hartogs Theorem. Initial Ordinals. Ordinal Arithmetic.

An unjustly neglected proposition with manifold uses in set theory is Hartogs’
Theorem.

ProrosiTION 4.28 (Hartogs[1915]).  For any set X, thereisan ordinal which ig
not equinumerous with any subset d x (and hence there is a least such ordinar),

PROOF. Assume that every ordinal a is equinumerous with some subset ,, of
X. Hence, y = a for somef. Define a relation R ony by stipulating that
s

{u, yy € R if and only if (f ‘u) € (f 'U). Then R is a well-ordering o y such
that (R, > is similar to {E,, a). Now, define a function F with domain On
such ‘that, for any a, F'a is the set w d @l pairs (z,y) such that'y ¢ X,

is a well-ordering of y, and {E,, a) is smilar to (z, y). (w is a set, since y
P(x X x) X P(x).) Hence, F "On C P (P (x X X) X ?(x)), and therefore
F"(On) is a set. Fis one-one; hence, On = F *(E "(On)) is a s, by the
Replacement Axiom, contradicting Proposition 4.7(8).

Let IC be the functionwhich assigns to each set x the least ordinal a which is
not equinumerous with any subset d x. Notice that, to each 8 <(IC < we can
associate the set of relationsr such that r C X X X, r is a well—orderi;'lg of its
field y, and <r, y) is gmilar to (Eg, B>. This defines a one-one function from
I “x into PP(x X x). Hence H 'x < PP(x X x), and, since x X x C
9 9 (x) by Exercise 4.17(a), p. 182, we obtain I ‘x < 9 9 P P (x). -

By an initial ordinal we mean an ordina which is not equinumerous with any
smaller ordinal. By Proposition 4.24(2), every finiteordinal is an initial ordinal,

and  is the smallest infiniteinitial ordinal. It is obvious that, for any x, 9 ‘% is
an initial ordinal. Moreover, for any ordina a, 9C 'a is theleast initid ordinal

greater than a.
transfinite induction (Proposition 4.13(2)), there is a function G wi

dor?ﬁyain On such that (Prop @) with

GO0 =uw

G (a) = X (G'a)

GA = U(G"A) if Aisalimit ordinal.
G is an increasing function, i.e, a € B O G 'a € G *B; therefore, if A is a limit
ordinal, and each G 'a, for a <o A is an initial ordinal, then UG "A) isalsoan
g’ltlal ordinal. (For, 8§ = J(G "A) is the least upper bound d G "A. Assume

=7v with y <o 8. Hence, there is some a <o A such that y <, G ‘o, But

g‘(a') <o 8. So, by the Schroder-Bernstein Theorem (Proposition 4.21(4)), using
) <G '@ and G(a)<8=y<G'a Wehave G ‘a =G @)= K 4G
a), contradicting the definition o 9C.) Hence G 'a iS an initial ordinal, for all a.
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3 . . ‘a for some a. (Assume
4 infinite initial ordinal is equal to G ¢

1n addition, every infinite 1n1t1a1. Qr _ d #

) ,'3 Let @ be the least infinite initial ordinal not in G “On. By the Replacef;l;m
. nol; eR G “On is not a set; hence thereis some ordinal greater than ¢ 1 G
hﬂom >

- be the least such ordinal, and let p = G ‘B. Clearly, B # 0; if ﬁ = Y
o Let® 0 <o G “(¥) = I “(G “y), contradicting the d‘efmétlon
5 Ef(f:r?te ﬁ ’isﬂﬁcfi‘m{ft Erd/iﬁal, then thereissome a <o f3 such thfat ou'<0 G @ ‘0 G
1 contradicting the definition of p.) Thus, G is an &-preserving isomorphism
‘B, . class of infiniteinitial ordinals. o ,
"f@" ‘gétr?o{ge(? ‘a by w,. Thus, Wp = @5 @y is the least initial ordinal greater
¢ « i . .

: limit ordinals A, @, is the initial ordinal which is the least Upper
::i?nga‘;fa Ii:;fggt 1:f11 aﬁriljl%v?th ah<o \. It follows from Proposition 4.14 that
w. 20 o for all a. Also, any infinite ordinal a is equinumerous with a unique
i;itial ordinal wz <o a, namely, with the least ordinal equinumerous with a.

Let us turn now to ordinal aithmetic. We have already defined (see pp.
190-191) addition, multiplication, and exponentiation:
M B+0=28
B +oy = (B +o1)
Lim(@) D B+ = U (B +o7)
T,
(I B x0=0
B Xo(¥) = (B Xo¥) +oB
Lim(a) D B Xoa = U (B Xo7)
T<pa
(1) exp(fB,0) =1
exp(B, ¥) = exp(B, v) XoB
Lim(a) D exp(B,a) = U exp(f3, 7).

Q<pr<ga
ProposITION 420. The following wfs are theorems.

B+.1=p8
2123 DIOB'—'%
B) B>0Da+,B >aNat+oB >p
4 B<0Y30+DB<OB‘I+607
5 +B=at+tdDB=
EG)) g <gB - ?EISU)(CI +8=8)
@ 0£AxCOnda+o Y B= U (a+B)
pEX BEx
(8) 0<oa Al <oB 3aXB
9 0<oaAO <o,33a><aB<>uﬁx "
10 <oBANO0<oa3aXgy <oa
511)) oS axe 0B U @ Xod)

BEX BEX
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PROOF.

(D) B+l =B +40) = (B +0y =(B). -

(2) Prove 0 +48 = B by transfinite induction (Proposition 4.12). L&t X =
{BI0 +o8 = B}. First, 0 € X,since0 +,0 = 0. If 0 +4y = v, then 0 +(y") »
O+, =y. If Lima) and 0+4r=17 for dl r<oa, then 0+ a =

y O +or)= U 7=a,snce Y ristheleast upper bound of the set of

d| . <0 a. T<pga r<pa
(3) Let X = {B|B >0 0D a+48 >0 a).ProveX = On by transfiniteindue-

tion. Clearly, 0 € X. If v € X, then a +4y 20 @; hence, a +(y") = (a +.,?).

>0a +oy 20a. If LimA) and 7 € X for al r <gA, then a +,\ = U («

+,o7) 20 @ +4l = @ >0 a. The second part is left as an exercise.
(4) Use transfinite induction. Let

X = {7l(a)(B)(B <oy D a +,8 <o a +,7)}

Clearly, 0 € X. Assumey € X. Assume 8 <o y. Then 8 <oy or B = y. If
B <o v, then, since y € X, a+y8 <oa +oy <o (atoy) =a+,y. If B=17,
then @ +o8 = a +5y <o(a +47) = @ +,7. Hence, v € X. Assume Lim(A
and r € X for dl ¢D<o>\. Assﬁn%eﬂ <0>\‘.ﬂThen B <’01 for some 7 <pA, tsrlnrgc%
Lim(\). Hence, since 1 € X, a +OB <od 4
Hence, A € X.

(5) Assume a+oB8 =a+.5. Now. either B <o6 Of S<o B or 6=8.

If B <06, thena +,8 <ox +.8, and if & <q B, then a +.8 <o a + Pt
(4), contradicting a[il—nﬁ =a 3—06. Hence, gﬁ B, od <oa +¢pB, by

(6) The uniqueness followsfrom Part (5). Prove the existence by induction on
B. Let X = {Bla <oB D (E\8)(a +,6 = B). Clearly. 0 € X. Assume y € X
and a <o Y. Hence,a = yor a <o v. If a = v, then (E8)(a +,8 = ¥’), namely
8 =1 1fa <oy, then (E,8)(a T4 = y). Take an ordinal o such that a + g0 =
Y- Thena +,0" = (a+,0) =y thus, (E§)(a +,6 = y), i.e. ¥ € X. Assume
now that Lim(A) and r € X for dl  <gA. Assume a <pA. Now define a
function f such that, for a <eu <oA, f ‘¢ is the unique ordinal 6 such that
a+@ld=upu ButA= U wu= U ((@+f‘p.Letp= I (f‘w.
Notice that, if & <op <o A, then f 4 27 w); hence, p is alimif 6f8indl. Then
A= U (ax +of ‘@)= U (a+40) = a +4 p.

a<opu<g

< A a<y i
(7) Assume 0 # x C On.<§§/ Part (6), there is some 6 such that a +,6
0
= U (a+oB). We must show that 6 = |J B. If B € x, a+,pB <ol &
U -

B B
Hengé, B <o 8, by Part (4). Therefore, 6 ish upper bound o the set o all
BE€x. So, Y B<o6. On the other hand, if B € x, then a +,8 <o

BEX

a +o |J B. Hence, a+¢8 = 1] (a+oB) <oa+, U 8. and so, by Part (4),
BExX BEXx BEx

§ <o U B. Therefore, 6 = |y B.
BEx BEX
(8)-(11)are left as exercises.

T<gA

T < +.7) = +
0 \OTE!A(a 0) a QA.
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ProrOSITION 4.30.  The fdlowing wfs are theorens.

(1) B Xol =B AlxoB=p

(2) 0 XOB =0

(3) (a +oB) +oy = @ +¢(8 +¢7)

(4) (e XoB) XY = a X(B XoY)

(5) a X(B +oY) = (@ X B) +ola XqY)

(6) exp(B,1) =B Aexp(l, B) = |

(7) exp(exp(B, v), §) = exp(B, v X¢8)

(8) exp(B, v +o8) = exp(B, v) Xqexp(B, 8)
(9) a >0l AB <oy 2 expla, B) <o exp(a, v).

PROOF.

(1) B Xol = B X0 = (B X0 +,D =0 fyp =8, by Proposition 4
Prove 1 Xy 8 = B by transfinite induction on B.

(2) Prove 0 X, = 0 by transfiniteinduction on . :

(3) Let X = (y(@)(B)(@ +¢B) +qy = a +o(B +o)}. 0 & x, I
(a+,8) +0=a+,8=a™t 00). Now, assume y € X. Then (a+o[f)
4oy = (@ +oB) +q1)" = (a +o(B +o7)) = a +¢(B +ov) = a +(B TI_Og)'
Hence, ¥ € X. Assume now that Lim(A) and r € X for al r <oA. +en
(@ +0B) +oA = U ((a +oB) +o1) = U, (a +o(B To) o @ Fo

T<0 o

U (B *om (by Proposition4.29(7), and thisis equal to a +o(B +4M).
T<pA

(4)-(9re left as exercises.

We should like to consider for a moment the properties d ordinal addition
and multiplication when restricted to w.

ProrPosiTiION 4.31. Assume a, 8,y arein o. Then

(1) a+,8Ew

(2) aXgBEwW

3) exp(a,B) Ew

4) at+oB=B+p«

(5) aXeB=p8X%Xoa

(6) (a +oB) Xor = (a Xo7) +o(B Xq7)
(1) expla XoB,7) = exp(a, v) X exp( B, Y)-

PROOF.

(1) Induction on B. Let X = { B{(ale € w D a +08 € w)}. Clearly 0 € X.
Assume B € X and a €E w. Then a +,8 € w. Hence, a +4(B) = (a+,8) €
by Proposition 4.10(1). So, by Proposition 4.103), w & *-

(2) and (3) are I€eft as exercises.

ALemma tac€w AB EwDd +o8=2a+,8".

Let Y= ({B|B Eco/\fa)(ol EwD d +¢B8=a+,B")}., Observe that 0 €
Y Asume 8 € Y and let a€w. So, @ +4,8 =a tof - Then a +,8" =

(a +oB) = (a+oB) =a +(B). Hence, B’ € Y.

29(2).
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Now, to prove Part (4), let

X = {3iﬂ EwA(a)aEwra +gﬁ=ﬁ+ua)},
Then 0 € X, and, it iseasy to prove, using the Lemma, that 8 € X D ' € x.
(5)-(7) are left as exercises.

The reader will have noticed that we have not stated for ordinals certajn
well-known laws which hold for other familiar number systems, e.g., the com-
mutative laws for addition and multiplication. In fact, these laws fal for
ordinas, as the following examples show.

Examples.
L. (Ea)(EBXa +oB # f +4)

l+50 = U (I+50) =
a<gw
W+l = >0

2. (Ea)(EBXa XoB # B Xpat)
2 Xow = y (ZXO(X) = w

wXp2 =g Xo(1 +o1) = (0 Xpl) +4(w Xel) = @ 450 >o @
3. (Ey)NEa)EB)(a +oB) Xor # (a Xgy) +o(B XoY))

(L+o]) Xgw =2 Xyw = w
(1><0w) +[)(I Xow)z w+0w >0 w

4. (Ea)fEB)EyXexp(a XoB,Y) # expla, ¥) Xq exp(f, v))

P2X02W) = eplh) = Y (et a)= o

exp,W) = U exp(2,2) = W
algw

S0, exp(2, W) Xpexp(2, W) = w Xy w >p w.

Given any wf @ of formal number theory S (cf. Chapter 3), we can associate
with & awf @* of NBG asfollows: first, replace every “+ by “+,”, and every
“7by " xi'; then, if @ - i
found B * and O%, & 3 2 §P'5C (FReTiyely and e lreecy have
(x)B (x), replace it by (x)}x € w O B *(x)). This completes the definition of
&*. Now, if x,, ..., x, are the free variables of @, prefix (x, € w A X, Ew
A ... Ax, €Ew) D to &*, obtaining a wf & #. This amounts to restricting al
variables to w and interpreting addition, multiplication, and the successor
function on integers as the corresponding operations on ordinals. Then every

axiom € of Sis transformed into a theorem @ # of NBG. (Axioms (S1)~($3)

are obviously transformed into theorems. (S4)# is a theorem, by Proposition

| E 4.12(2). (In fact, assume & #(0) A (x)(x €w D (8#(x) D
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.'4,9(3), and (55) # —(S8)# are properties d ordinal addition and multiplication
h (cf. p- 201). Now, for any wf @ of S, @ # is predicative. Hence, by Proposition
B 44, dl instances of (S9)# are provable by transfinite induction (Proposition
H (D). Let X =
{(»ly € @\ € #(»)}. Then, by Proposition 4.12(2), (x)(x € © D @ #(x)))

£ Applications d modus ponens are easily seen to be preserved under the

transformation o @ into @ #. As for the Generalization Rule, consider a wf
@(x), and assume that @ #(x) is provable n NBG. But & #(x) 15 o the form
XECAVI EQOA ... \V, EwD &*(X). Hence, yy,EwA ... IV E0D
(x)(x € w D @*(x)) isprovable in NBG. But thiswf isjust ()& (x)#¥. Hence,
application of Gen leads from theorems to theorems. Therefore, for every
theorem @ o S, & # is a theorem d NBG, and we can trandate into NBG all

% the theoremsdf S proved in Chapter 3.

One can check that the number-theoretic function h such that, if x is the
Godel number  awf @ d S, then h(x) is the Godel number f & # in NBG,
and if x isnot the Godel number d awf of S, then h(x) = 0, is recursive (in fact,
primitive recursive). Let K be any consistent extension & NBG. As we saw
above, if x isthe Godel number d atheorem of S, h(x) is the Gédel number o a
theoremd NBG, and, hence, also a theorem o K. Let S be the extension d S
obtained by taking as axiomsall wfs @ of S such that & # is a theorem d K.
Since K is consistent, S must be consistent. Therefore, since S is essentially
recursively undecidable (by Corollary 3.37), S is recursively undecidable, i.e.,
the set Ty of Godel numbers of theoremsd S is not recursive. Now, assume K
is recursively decidable, i.e., the set Ty of Godel numbers d theoremsof K is
recursive. But, Cy (x) = C; (h(x)) for any x, where C, and C;, are the
characteristic functions d Tg and Ty. Hence Tg would be recursive, contradict-
ing the recursive undecidability of § Therefore K is recursively undecidable,
and, thus, f NBG is consistent, NBG is essentially recursively undecidable.
Recursive undecidability o a recursively axiomatizable theory implies incom-
pleteness (cf. Exercise 347 (b), p. 166). Hence NBG is also essentially incom-
plete. Thus, we have the following result: If NBG is consgtent, then NBG is
essentially recursively undecidable and essentidly incomplete. (It is possible to
pmve this result directly in the same way that the corresponding result was
proved for S in Chapter 3. Also cf. Exercises on page 172) Since NBG
apparently can serve as a foundation for al d present-day mathematics (ie., it
is clear to every mathematician that every mathematical theorem can be trans-
lated and proved within NBG, or within extensionsd NBG obtained by adding
various extra axioms such as the Axiom of Choice), the essential incompleteness
d NBG seems to indicate that the "axiomatic approach to mathematics" is
inadequate. This conclusion does not depend upon the peculiaritiesof the theory
NBG. Any other consistent theory (including ' higher-order theories” as wel as
first-order theories) in which the theory d natural numbers can be developed far
enough so as to include all the theorems o S (or even d RR) must also be

essentially recursively undecidable and essentially incompl ete, as the proof given
above for NBG shows.
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EXERCISES

473. Veify that the function h defined above is recursive. (Natice that, because
+4, X, 0 ae introduced into NBG as additiond function letters and individud

congtant, one has to prove that the transformation gven in Proposition 2.29 jg
recursve)

474. Prove that a predicate cdculus with a sngle binary predicate letter i
recursvely undecidable. (Hint: Use Proposition 3.42.)

There are a few facts about the "cardinal arithmetic' of ordinals that we
should like to deal with now. By "cardinal arithmetic”, we mean properties
connected with the operations of union (u) and Cartesian product (x) and x ¥,
as opposed to the propertiesd +, and x, and ordinal exponentiation. Observe
that X isdistinct from x; aso notice that ordinal exponentiation exp(a, 8), in
spite of the ambiguousnotation, has nothing to do with the operation o forming
XY, theclassd al functionsfrom Y into X. (From Example 4 on p. 204, we see
that exp(2, 0), in the sense of ordinal exponentiation, is w; while, from Cantor's

Theorem, w < 2“, where, in the latter formula, we mean by 2* the set of
functions from w into 2.

Prorosition 4.32
@ fFoXw=ow

(b) If each of X and Y contains at least two elements, then X ¥ <
X XY

(©)  Den(x) \ Den(y) > Den(x U y)
PROOF.

(8) Let f be afunction with domain » such that, if a € w, then f'a =(a, 0.
Then f is a one-onefunction from w into a subset o w X 0. Hence, w < w X w.
Conversely, let g be a functionwith domain w x « such that, for any (a, 8> &
wXw g'a B)=2"X%X,38 We leave it as an exercise to show that g is
one-one. Hence, w X « < 0. S0, by the Schroder-Bernstein Theorem, w X o =
W

(b) Assumea, € X, 4, € X, a #a,and b, € ¥, b, € ¥, and b, # b,. De-
fine:

J(x,b,) if x € X
fx = 4<a, x> ifxe Y- Xandxfb,

l(az, b,> ifx=bjandxe Y- X
Thenf isa one-onefunction with domain X U Y and rangeasubset o x X V.
Hence, X U Y<X X Y.

(¢) Assume Den(A) and Den(B). Hence, each d A and B contains at least two
elements. Then, by Part (b), AUB<A X B. ButA =« and B = «. Hence,
AXB=wXw Theaefore A UB < w X w =, By Propostion 4.27,
either Den(4 U B) or Fin(4 U B). But A C A UB and Den(4); hence,
~ Fin(4 U B).

;
L]
o
s
4
%
&
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;
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© For the further study of ordinat addition and multiplication, it is quite useful
b 1o Obtain concrete interpretations of these operations.

PropPOsiTION 4.33 (Addition). Assume thaf (R, A) issimilar to (E,, a), that
(S, B) is similar to {Eg, 87, and that A N B = 0. Define the relation T on
AU B as follows: {x,y)ET=(XEAAYEBINV(XxEANYy e AN
(x, > ER)V(Xx EBAy EBA(X,Y) €ES); (i-e., Tisthesomeas R in
the St A, the same as Sin the set B, and every dlement of A T-precedes every
& element of B). Then T isawell-orderingof A U B, and (T, A U B) is similar
to <Ea+gﬂ’ a +Dﬁ>

proOOF. Firgt, it is simple to verify that T is a well-ordering of A U B, since
R is a well-ordering of A and S is a well-ordering d B. To show that
(T, A U B) issmilarto {E, p a+,B>, perform transfinite induction on .
For  =0,B=0.Hence, T=R, AUuB=A,anda+,8=a So, (T, AU
B> issimilar to (E,, g a +¢B8>. Assume the proposition for y, and let 8 = y..
Since (S, B) is similar to (Eg, 85, we have a function f with domain B and
range B such that, for any x, y in B, {x,y> € Sif and only iff ‘x €f “y. Let
b=(f) ‘v, let B,=B —{b), and let S,=Sn (B, X B)). Since b is the
Smaximum d B, it follows easlly that S, well-orders B,. Also, B{f is a
similarity mapping o B, onto y. Let Ty = T N (A U B) X (A U B))). By
inductive hypothesis, (T,, A U B, is similar to {E, 4+, « +4Y), by means of
some similarity mapping g with domain A U B, and range a +,y- Extend g to
% =g U {(b, a+,y)}, which isa similarity mapping d A U B onto (a + o)’
- a+,y = a+,B. Findly, if Lim(B), and our proposition holds for dl
T <o f, assume that f is a similarity mapping & B onto 8- Now, for each 7 <oB,
let B, =(f)“r,S, =N (B XB),adT, =T n (A UB) XA U B)) By
inductive hypothesis, and Corollary 4.16(2), thereis a unique similarity mapping
g, o (T, AuUB) with (E,+pa+o7); dso, if T3 <o, <oB, then, since
A U B, 1g,, is a smilarity mapping of <., 4 U B, with {E,.,, & +oT0
and, by the uniqueness of g, A U B, 18, = &, ie, g, isan extension of g, .
Hence, if g = Ha(g,), thengisa similarity mapping o (T, rlc:B(A u B)

R AT

T<op
) AU B)=AU B, and
with (E 1) s U (@ +or). But U ( ’
rgﬂ( i T<qf T<oB
U (a +47) = a +,8. This completes the transfinite induction.

<o

PrOPOSITION 4.34 (Multiplication). Assumethat (R, A) issimilar to {E,, @)
and that (S, B) is similar to {Eg, B). Define the relation W on A X B as
folows <{x,y>, <u, )y EW=(xXEAANUEAAYyEBALEBA

Ky, > ESHV(Yy=0vA(X, U €R). Then W is a wel-ordering of
A X B and (W, A X B) issimilar to {E,x g a XoB>-1

1The ordering W is called an inperse lexicographical ordering because it orders pairs as fellows:
first, according to the sue d ther second components, and, then, if thdr second components aré
equal, according to the size of the firs components.




28 AXIOMATIC SET THEORY Sec. 4

PROOF. Exercise. (Proceed asin the proof o Proposition4.33)

Examples.

1 2Xgw=w Let (R, A) =(E, 2), and (S, B) = (E,, wy. Then the pairs
in 2 X w can be well-ordered as follows: (0, 0>, (1, 0>, (O, 1>, (1, 1>, (O, 2>,
L2)...,40,n3,<,ny, O,n+ 15, ,n+ 1. ...

2. By Proposition4.30(5),  X¢2 = w +qw. Let (R, A) = {E,, w) and (S, B>
= (E,, 2). Then w x 2 can be well-ordered (cf. Proposition 4.34) as follows:
0,05,<1,05, 2,05, ....,<0, 15, <L, 1}, 2, D, ....

PrROPOSITION4.35.  For all a, w, X &, = ,.

PROOF. (Sierpinski [1958]). Assume fase, and let a be the least ordina
such that = (w, X @, = w,). Then w; X wp = wy for al g <o a. By Proposition
432(1), @ >00. Now, let P = w, X w,, and, for 5 <o w,, let Py = ((y, 8|y +,8
= B}. First, we wish to show that P= U P Now, if ¥ +8 =B <o w,

ﬁ'( W
then y <oB <o w, and 6 <o <o w,; hence, (y, 6) €w, Xw, =P. Thus,

1l PSP Toshowtha PC 1y p, it sufficesto show that, if v <o «,
B< o, B<ow,

and & <o w,, then y +48 <, w,. Now, y and & are equinumerous with initial
ordinalsw, < oy and w, < 08,respectively. Let { be the larger of a and p. Since
Y <ow, and & <o w,, then w; <o w,. Hence, by the minimdity o a, o, X «, =
w. Let A =y x{0),B=4 x (1). Then, by Proposition4.33,A U B = y +,8.
Since y = w, and 6=w, A=w, X {0} and B = w, X {1}. Hence, since
ANB=0 A UB= (v, X {0}) U(w, x{1}). But, by Proposition 4.32(b),
@, X (0D U (@, X (1)< (w0, X (0)) X (@, X {IP =00, X, <y Xy =
qg. Hence, vy +48 < w, <o w,. Sincew, isan initial ordina, y 4 <o w.. (For
if @, <oy +,6, then w, <o, and w; < w,; 20, by the Schroder-B&mstein
Theorem, w, = w;, contradicting w; <o Yy.)Thus P= Y P,. Consider P,

for any B <o w,. By Proposition 4.29(6), for each vy <o ﬁ,(‘tﬁ’ére is exactly one
ordinal & such that y +,8 = 8. Hence there is a similarity mapping from g’
onto g, where P, is ordered according to the size of the first component
y of the pars (y, 6). Define the following relation R on P. For any
Y <o Wy 6 <o w,, b <o w, ¥ <o w,, Ky, 07, (,v) E R if and only if either
Y 00 <op +o¥ Or (y +o8 = p+or Ay <op). Thus, if B, <oB, <o w,, the
pairs in Fg R-precede the pairs in Py, and, within each P, the pairs are
R-ordered according to the size d their first components. One easily verifiesthat
R well-orders P. Since P = w, X w,, it suffices now to show that (R, P) is
similar to <Ewﬂ, w,>. By Proposition 417, (R, P> is similar to some {E,, £),
where £ isan ordinal. Hence, P = {. Assume that ¢ >¢ w,. Thereis a similarity
mapping f between (£, £ and (R, P). Let b =T ‘w,; thenb isan ordered pair
v, 8> with v <o w,, 8 <o w,, and w,4f is a similarity mapping between
(E,, w,» and the R-segment Y = Segr(P, (y, 8>) of P determined by (y, §).
Then Y = w,. Also, letting B =y +,6, if (& p) € Y, wehaveo 4+, <oy +,0
= B; hence, o <of and p <oB. Therefore, Y ¢ B’ X B’. But 8’ <o w,. Hence,
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= w, With p <o a. By the minimality o a, w, X @, = w,. S0, 0, = Y < @,

contraéicting w, <@, Thus, £ <ow,, and, therefore, P<<w,. Let h be the
1 function with domain w, such that h ‘g8 = {8, 0> for every 8 <o w,. Thenhisa

one-one correspondence between w, and the subset «, x {0}, and, therefore,

I «, < P. By the Schroder-Bemstein Theorem, «, = P, contradicting the defini-

tion o a. Hence. wg X wg = wg for dl B.

COROLLARY 4.36. If A = w, and B = wg, and if v is the maximum d a and
B, then A X B=w andA U B = w,. In particular, w, X wg = w,.

PrROOF. By Proposition 435 and 4.32(2), @, A UB <A X B =, X w,
< w, X ©, = @, Hence, by the Schréder-Bernstein Theorem, A X B = «, and
AU B= w,.

This isreally only the beginning d ordinal arithmetic. For further study, cf.
Sierpinski [1958] and Bachmann [1955].

EXERCISES

Prove that the following are theorems d NBG.
475, (A X <w, DX U, =w,
(b) Wy T oo = 0,

476. 0# X S w, D X X Wy = @,

477. 0# x <@ D 0} = w,

478. () F(wa) X P (wa) = F(wa)

) x < 9(wa) D x U O(we) = F(wa)
(€0 =x < Pw,) D x X ‘?(wgy) E)‘J’(Uu)
0+ X < 0 D (F(wa))" = Flo,
ES)) I <X=<w,D Ec“’“ = whe = (@)™ = F(wa)

479. ASUmey = OAy =y +.v. Remambe that y +ov = (v X {0Dy (¥ X
{1)). (This assumption holds fory = w, by Corollary 436, and fory = % (w.) by
Exerdse 4.78(b). It will turn out to hold for dl infinite setsy if the Axiom of
Choice holds)

(a)) fnf{y?
= +cy
E:){E::){Ev)(y-= uUs Aunv=0Au=yAv=y)
@{zlzCcyAz=y) =20
) {z|lz Sy A Inf(2)} = F())
(0 (Ef(y =y A (u)u €y D flu#u).

4.80. Agjmy JE), XyAl =<y (Thls f‘ddS Wheny = W, by PfOpOS'[IOﬂ 4.35
and for y = 9(w,) by Exerdse4.78(a). It is truefor dl infinitesstsy if the Mom
of Choice holds)

(@ vy =Y+t
(®)° Let Perm(y) = { f|ly 2y). Then Perm(») = F ().

5. The Axiom of Choice. The Axiom of Regularity.

The Axiom o Choiceisone d the most celebrated and contested statements
d the theory o sets. We shall state it in the next proposition and show its
equivaenceto severa other important assertions.
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ProPOSITION 4.37. Thefollowing wfs are equivaent.

(1) Axiom of Choice (AC): For any set X, thereis a function f such that, f,,
any non-empyy SUbsety ofx, f v €y (f is called a choicefunctionfor x).

(2) MultiplicativeAxiom (Mult): If x isaset d digoint non-empry SEts, they,
there is a set y (called a choice set for x) such rthat y contans exactly ope
element of ech st in x. W EXDu#0A W EXALFuUuDOnN
= 0)) B(Ey)u)(u € x 3(E,w)(w € u N »)). u

(3 Weél-ordering Principle (W.0.): Every set can be well-ordered
(NEy)(y We x).

(4) Trichotomy (Trich): (x)(y)}(x <Yy VY < X).

(5) Zorn's Lemma (Zorn): Ary non-empty partially-ordered St x, in Which
every chain (i.e., evay totaly-ordered subset) has an upper bound, hes 4
maximal element. (x)(y)((y Part x) A (u)}u € X , y Totu > (Ev)(v € X A
(Ww Eu 5 w= 0\ <w, 0> E ) 3(Eo)o XA MWW E x > o, w

& y))-

PROOF.

(1) F(W.0O) 3 Trich. Given sdts x, vy, then, by (W.0), x andy can be
well-ordered; hence, by Proposition 417, x = a andy = 8 for some ordinals a,
B.Buta< gorg=<a Hence x<yory <x.

(2) + Trich > (W.0.). Given a s&t X, then, by Hartogs’ Theorem, there is an
ordinal a such that a is not equinumerouswith any su%set of x. By Trich, x is
equinumerous with some subsety d a. Hence, by translating the well-ordering
E, ofy to x, x can be well-ordered.

3 F(W.0) > Mulr. Let x be a set of non-empty digoint sets. By (W.0),
thereis a well-ordering R d |J(x). Hence, thereis a function j with domain x
such that, forany z inx,f ‘u isthe R-least element of u. (Notice that « C (J(x).)

(4) F Muir 3 AC. For any set x, we may define a one-one function g such
that, for each non-empty subset « of X, g ‘u = u X {u). Let x, betheranged g.
Then x, isa set of non-empty digoint sets. Hence, by Mui:, thereis a choice set
y for x,. Therefore,if 0 =z and u C X, thenu X {u} isinx,, and so, y contains
exactly oneelement (v, u) inu x {u). Then thefunction f such thatf ‘4 = v is
a choice function for x.

(5 FAC D Zorn. Lety partia-order a non-empty set x such that every
y-chain in x has an upper bound in x. By AC, there is a choice function f for x.
Let & beany element d x. By transfiniteinduction (Proposition4.13), we define
a function Fsuch that FO = b, and, for any a > 0, F'a isf ‘u, where y is the
=t of y-upper bounds v in x  F"a such that o ¢ F"a. Let 8 be the least
ordinal such that the set o y-upper boundsin x of F“A which are not in F“g is
empty. (There must be such an ordinal; otherwise, Fis a one-onefunction with
domain On and range a subset of x. which, by the Replacement Axiom R,
impliesthat Onisaset) Letg = BqF. Thenitisan easy exerciseto check that
gisone-one and, if a <oy <0fB,(9'a, g'y) €y.Hence g*“Bisay-chaininx;
by hypothesis, thereis an upper bound w o g 8. Since the set of upper bounds
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L of F“B (=g “B) whichare not in g “g is empty,w € g S and w is the only
i Upper bound d g “B (because a set can contain at most one upper bound).
. Hence, w is ay-maximal element. (For, if (w, z) €y and z € x, then z isa

-upper bound d g “8, which isimpossble)

(6) + Zorn o (W.0.). Givenaset z, let X be the classd al one-one functions
with domain an ordinal and range a subset o z. By Hartogs’ Theorem, X is a
set. Clearly, 0 € X. X is partialy-ordered by the proper inclusion relation C.
Given any chain of functionsin X, of any two, one is an extension o the other.
Hence, the union d al the functions in the chain is aso a one-one function
from an ordina into z, which is an C -upper bound o the chain. Hence, by
Zorn, X hasa maximal element g, which is a one-one function from an ordinal a
into z. Assumez—g“a#0, and let b€z~ g “a. Let f=g U {{a, B}
Thenf & X and g C f, contradicting the maximality of g. So, g''a = z. Thus,
a=z We can transfer by means d g the well-ordering £, o a to a well-order-

ing of z.
EXERCISES

481. Sow that the fdlowing are equivdent to the Axiom d Choice.

(@ Any st x is equinumerous with some ordind.

(b) (Spedd cae d Zorn’s Leavimg) If x is a nonempty s, and if the
union d eech nonempty < -chain in x is do in x, then X has a
C -maximd dement.

(©) (Hausdorff Maximd Principle) If x isaset, then every C -chanin X is
asubsat d some maximd < -chain in x.

(d) (Teichmiiller-Tukey Lemma) Ary st d finite character has gn C -
maxima dement. (A non-empty st x is sad to be of finitecharecter if
and only if (i) evay finitesubset & an dement d x isdso an demat
d r; (i) if evary finitesubsat of a sty isamamba d X, theny € x.)

(©) (x)(Rel(x) > (Ep)(Fre(») A D(x) = DAy € x)

(H For any nonrempty setsx andy, either there isa function with domain
x and rangey o thereis a function with domainy and range x.

4.82. Show that thefdlowing Finite Axiom of Choiceis provadlein NBG: if x is
afinite st d nonrempty digoint sets, then thereis a choice sty for . (Hint:
aumex = awhae a € w. U inductionona.)

ProprosiTION 4.38. Thefdllowing are consequences d the Axiom d Choice.

(I) Any infinite set has a denumerable subset.
(i) Ary infiniteset is Dedekind-infinite.
(1) If X is a denumerable set whose dements are denumerable sets, then
U(x)is denumerable.

FROC

(1) Assume AC. Let x be an infinite set. By Exercise 4.81(2), x is equ:-
numerous with some ordinal a. Since x is infinite, 0 is a. Hence, w <o &;
therefore, w is equinumerous with some subset of x.

(I1) By (1) and Exercise 4.72(c), p. 200.
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(IIT) Assume x isa denumerable set of denumerable sets. Let f be a function
assigning to each # € x theset of dl one-one correspondences between « and o,
Let z be the union of the range of f. Then, by AC applied to z, there is a
function g such that g ‘v € u for each non-empty u C z. In particular, if u € x,

then g “(f'u) isa one-one correspondence between ¥ and o. Let h be a one-one

correspondence between » and x. Define a function F on {J(x) as follows: Let
y € Y(x) and let n be the smallest element of « such that y € h'n. Now,
k'n e x; so,g%f'(h'n)) is a one-one correspondence between h ‘2 and .

Define Fy = (n, (g‘(f'(h 'n)))'y). Then F isa one-one function with domain
U(x) and range a subset o w X w. Hence, YJ(x) <w X 0. But 0 X o = w and,

therefore, |J(x) <o. Ifu € X, thenu ¢ Y(x) andu = o. Hence, w < YY(x). By
the Schroc!'e,r-B)ernstein Theorem, J(x) *eur..(;. ) U

EXERCISES

4.83. If x is a s, the Cartesian product [] u is the s&t df functions f with

domain x such thet f ‘v € » for dl » € x.*S®ow that AC is equivdent to the
proposition that the Cartesian product d any set x d non-empty sts is dso
non-empty.

4.84. Show that AC implies that any partid ordering d a st x isincluded in a
totd ordering d x.

4.85. Provethat thefollowingassartion is a consequenced 4¢: for any ordina
a, If x is a st auch that x <«, and such tha (u)u € X D u < w,), then
U < w,. (Hint: proof is analogous to that d Propostion 4.38(T1T).)

486. (a) Provery < x 2 (Ef)(Fne(f) A D(f) = XA R() =V).

() Prove that AC implies the conversed Pat (a):

(Ef)(Fne(f) AD(f) = x AR(N)=y) DY < x.
(@) Prove (U+.0 =u? +.2 X (UX V) +,02%
() Asumey is awdl-ordered st such that X Xy = x +y and
~(y=<x).Poethax<y.
() A=umey =y xy for dl infinite sats y. Prove that, if Inf(x) and
x, thenx Xz=x +_z.
(d) Prove that AC is eguivdent to (y)(Inf(y) DY =y XY). (Tarski
[1923))

487"

z=9(¢

A stronger form of the Axiom of Choice is the following sentence. (UCF):
(EXY Fnc(X) N (u)(u # 0 O X‘u € u)).(Thereis a universal choice function, i.e.
a function which assigns to every non-empty set » an element of u.) UCF
obviously implies AC, but it was proved by W. B. Easton in 1964 that UCF is
not provable from AC if NBG is consistent. However, Felgner [1971] proved
that, for any sentence @ in which all quantifiers are restricted to sets, if @ is
provable from NBG * (UCF), then @ is also provable in NBG + (AC). (See
Felgner [1976] for a thorough treatment o the relations between UCF and AC.)

The theory of cardinal numbers is simplified if we assume AC; for, AC
implies that every set is equinumerous with some ordinal, and, therefore, that
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every Set x is equinumerous with a uniqueinitia ordinal, which we shall call the
cardinal number of x. Thus, the cardinal numbers are identified with the initia

- ordinals. To conform with the standard notation for ordinals, welet &, stand for
. w,. Propositions 4.35-4.36 establish some d the basic propertiesd addition and

multiplication of cardinal numbers.

The status of the Axiom of Choice has become less controversial in recent
ears. TO most mathematicians it seems quite plausible and it has so many
Important applications in practically all branches o mathematics that not to
accept it would seem to be a wilful hobbling o the practicing mathematician.
We shall discussits consistency and independence later in this section.

Another hypothesis which has been proposed as a basic principled set theory
is the so-called Axiom of Regularity (Axiom D):

(X)X =02 (By)(y € XAy N X =0)).
(Every non-empty class X contains a member which is digjoint from X.)

PropPosiTION 4.39

(1) The Axiom of Regularity implies the Fundierungsaxiom:

~ (ExX(Fnc(x) A D(x) =w A(u)(u € w3 x"(U) E X'U))

i.e., there is no infinitely-descending & -sequence x;, 3 x, 3 x; 3. ...

(2) 1f we assume the Axiom o Choice, then the Fundierungsaxiomimplies the
Axiom of Regularity.

(3) The Axiom of Regularity implies the non-existence o finite E-cycles, i.e.,

of functions f on a non-zero finite ordinal & such that f ‘0 € fl e ... €
f'a € f0; in particular, it implies thar thereisnoset y suchthaty € y.

PROOF. (1) Assume Frc(x) A\ D (x) = w A (u)u = w 3 X (W) E X 'U). Let
Z = X" 0. By the Axiom of Regularity, there is some element y in z such that
VN z=0. Sncey &€ z, thereissome finiteordina a such thaty = x'a. Then
x'(a')&€ yn z, contradictingy N z = 0.

(2) First, we define the transitive closure of a set u. Define by induction a
function g on « such that g ‘0= {u),and g'(a') = Y(g'a) for each a € o.
Thus, g ‘1 = u, g'2 = YY(u), etc. Let TC(u) = Y(g “w) be called the transitive
closure of u. For any u, TC(u) is trangitive, i.e., (v)}(v € TC(¥) D u C TC(w)).
Now, assume AC and the Fundierungsaxiom; also, assume X # 0 but thereis no
y € X such thaty n X = 0. Let b be someelement of X; hence,b N X # 0. Let
¢ = TC(b) n X. By AC, let h be a choice function for ¢. Define a function f on
w such that f 0 = b, and, for any a €0, f'(a') = h “((f'a) N X). It follows
easily that, for each a € o, f'(a') € f 'a, contradicting the Fundierungsaxiom.
(The proof can be summarized as follows. westart with an elementb d X; then,
using h, we pick an element f'l in b N X; since, by assumption, f ‘1 and X
cannot be digjoint, we pick an element f2in f ‘1 N X, etc.)

(3) Assume given a finite e-cycle: fOefle .., €f‘n €f 0. Let X be
the range of f: {f 0, f “1,...,f ‘n}. By the Axiom o Regularity, there is some
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f'i € X such that f “n X =0. But each element of X has an element in
common with X.

Remark: The use of the Axiom of Choicein deriving the Axiom of Regularit
from the Fundierungsaxiomis necessary. It can be shown (cf. Mendelson [1958))
that, if NBG is consistent, and if we add the Fundierungsaxiom as an axiom,
then the Axiom of Regularity is not provable in this enlarged theory.

EXERCISES

4.88. If visatrandtive s¢t auch thet u = v, prove that TC(u) C v
4.89. By the Principle ¢ Depandat Choices (PDC) We meen the falowing
assertion: If r isa nonempty relation whose rangeis a subset d its domain, then
thereisafunction f : w — @ (r) such that (u}(u € w > (S, /{(U)) & ). (Mostow-
i [1948))
(a) Prove t AC D PDC.
(b) Sowv tha PDC implies the following Denumaable Axion ¢ Chaice
(DAC) Den(x) AN(u)u € x D u # 0) D (ENH)(f: X - UX)A
© (};4)(u IS ;c ofu e u)).
c) Prove: + ppe .
PDC imples thit & o iintet ant Sy Tt i Deasreise, 472(¢)
(d) Prove that the conjunction of 2D¢ and the Fundiemngsaxiomimpli
the Axiom d Regularity.

Let us define by transfiniteinduction afunction ¥, which was originally devised
by von Neumann.

¥YOo0=20
¥(@)= 9(¥a)
Lim) 5 ¥\ = Y (¥B)
B<pA

Let H = (¥ " On), and let H, stand for ¥ { B"). Definea function p on H
such that, for any x in 4, p 'x istheleast ordinal a such that x & ¥ ‘a. p ‘x is
called therank d x. Observe that p 'x must be a successor ordinal.

EXERCISES

Prove

490, + (@) Trans(¥ 'a).

491 F Trans(H).

492. t¥'a C ¥ (d).

493. Fa <o 09'a C¥B
49, FrOnC H. B
495. Fp'a=4.

496. Fue H ‘ .
497 14 gﬂgzgf{'/\uet::)p u< p'o

Proposimion 4.40. The Axiom of Regularity is equivalent to the assertion that
V = H, i.e., that every set isa member of H.
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PROOF.

(1) Asume V= H, and let X # 0. Let a be theleast d theranks o all the

. dements & X, and let b be an element o X such that p ‘4 = a. Then

bn X =0; for, if ue bn X, then, by Exercise 4.96 above, p'u €p'b = a

- contradicting the minimality of «.

(2) Assume the Axiom o Regularity, and assume that V — H # 0. By the
Axiom of Regularity, there is somey € V — H such thaty n (V — H) = 0.
Hence, y € H, and so, by Exercise 497 above, y € H, contradictingy € V —
H.

EXERCISES

498 Sow that the Axiom d Regularity is equivdent to the soedid case
x# 02 (Ep)(» ExAYnx=0)

49, Sow that, if we assume the Axiom d Regularity, then Ord(X) is equiv-
dent to; Trans(X) A E Con X, that is, to the wi

(u)(ur:'X:)ugX)/\(u)(v)(HEX/\vEX/\uaév:)uEvvau).

Thus, with the Axiom of Regularity, a much smpler definition d the notion o
ordind classis possble a definition in which dl quantifiers are redtricted to sets

4100. Sow tha the Axiom of Regulaity implies thet every non-empty transi-
tive class containso.

Proposition 440 certainly increases the attractiveness o adding the Axiom of
Regularity as a new axiom to NBG. The proposition V = H asserts that every
set can be obtained by starting with 0 and applying the power set and union
operations any transfinite number of times, and the assumption that thisis so
would clarify our rather hazy ideas about sets. By Exercise 499 above, the
Axiom o Regularity would also simplify the definition of ordinal numbers. |n
addition. we can develop the theory d cardina numbers on the basis o the
Axiom d Regularity: namely, just define the cardinal number d a set x to be
the set o all thosey of lowest rank such thaty = x. (The basic requirement o
the theory o cardinal numbersisthat there be a function Card whosedomain is
V such that Card 'x = Card ‘y = x =y.) There is no unanimity among
mathematicians about whether we have sufficient grounds for adding the Axiom
d Regularity as a new axiom, for, athough it has great simplifying power, it
does not have the immediate plausibility that even the Axiom of Choice has, nor
hasit had any mathematical applications.

The class H defined above determinesan inner model o NBG in the following
sense. For any wWf @ (written in unabbreviated notation) containing the free
variablesY,, ..., Y,, let Rel (&) be the wf obtained from & by replacing every
subformula (X)% (X) by (XXX € H 3% (X)) (in making the replacemeng
we start with the innermost subformulas), and then prefixing(Y;, S H A Y, =
HA...ANY,CH)>. In other words, in forming Rel, (&), we interpret
"dass" as"'subclassaf H". Then, for any theorem & o NBG, Rely(@)isdsoa
theorem d NBG.
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EXerCISE 4101.  Verify that,for each axiom @ d NBG, Rel,,(Q) is a theorem
d NBG. Notice that Rel,((x)®) is equivalent 10 (x)(x € H o B*), where
B* is Rely(B). In particular, Rel,( M(X)) iS{EY)YY € H A X € Y), which
is equivalent to X € H; thus, the "sets” d the modd are the dementsd A. If
we adopt a semantic approach, then one need only observe that, if N is a model
for NBG (in the usua sense d "*modd'), then theobjects X d N that satisfy the
w X € H asoform a mode for NBG. In addition, one can verify that the
Axiom d Regularity holdsin this model; thisisjust Part (1) d Proposition 4.40.
A direct consequenced thisfact is the consistency d the Axiom d Regularity,
i.e, f NBG is consistent, S0 is the theory obtained by adding the Axiom d
Regularity as a new axiom. That the Axiom d Regularity iS independent d
NBG can also beproved (cf. Bernays [1954], Part VII') by means of a suitable
model, though the model is more complex than that giuen above for the
consistency proof. Thus, the Axiom d Regularity iS both consistent and indepen-
dent with respect to NBG: we can consistently add either it or its negation as an
axiom to NBG, if NBG is consistent. (Practically the sameproofs a/se show the
independence and consistency d the Axiom d Regularity with respect o
NBG * (AC))

EXERCISES

41® Condder the modd whose domain is H, and whoseinterpretetiond € is
£y, the membership relation restricted to #,. Notice that the"sets™ d this modd
are the sets of rank <¢ a, and the "proper dasses” are thesets d rank a. Show
that the modd H, satidfies dl axioms d NBG (except possbly the Axioms o
Infinity and Replacement) if and only if Lim(a). Prove aso that H satisfies the
Axiom d Infinity if and only if a >¢ w.

413 Show that the Axiom d Infinity is not provable from the other axioms o
NBG, if the latter are consistent.

4104 Show that the Axiom of Replacement R is not provable from the other
axioms(T, P, N, Bl — B7, U, W, S if theselatter are consistent.

4.105.° An ordina a such that H, is a modd for NBG is caled inaccessible.
Since NBG has only a finite number o proper axioms, the assartion that a is
inaccessible can be expressed by the conjunction o the relativization to H, of the
proper axioms of NBG. Show that the exigence d inaccessible ordinds is not
provablein NBG if thelatter is consstent, and the same is true even if the Axiom
of Choice and the Generdized Continuum Hypothesis are added as axioms
(Compare Shepherdson [1951-1953}, Montague-Vaught [1959], and, for related
results, Bernays(1961] and Levy [1960].) Inaccessibleordinals have been shown to
have connections with problems in messure theory and agebra (cf. Ulam [1930),
Zeeman [1955), and Erdos-Tarski [1961]).+ The consstency d the theory obtained
fromNBG hy adding an axiom asserting the existenced an inaccessibleordinal is
till an open question.

tInaccessible ordinals are involved also with attempts to providea suitable set-theor etic founda-

;il(;léé;lr category theory (cf. Maclane [1971], Gabriel [1962], Sonner [1962], Kruse [1966], Isbell

€ NBG T (AO)
'.j:'% (GCH) stands for the Generalized Continuum Hypothesis:

.. below.) The unprovability of AC from (NBG)
% is consistent, has been proved by P. J. Cohen [1963], who also has shown the

"
]

PROOF. ‘ ; .
7 obtainw < 9(v) for dl k in w. Hence, P*(v) +.1 = P*(v) for al k in «, by

27
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f  The Axiom of Choice turns out to be consistent and independent with respect
k 1o NBG t (Axiom of Regularity); more precisely, if NBG is consistent, AC is
.’Zan undecidable sentence of the theory NBG + (Axiom d Regularity). In fact,
b Godel ([1938], _ﬁ_1939], [1940}) showed that, if NBG is consistent, then the theory

(Axiom of Regularity) T (GCH) is also consistent, where

(x)(Inf(x) D~ (Ey)(x < y A < P(x)))-

. (Our statement of Gddel’s result is a bit redundant, since - (GCH) 3 (AC) has
been proved by Sierpinski [1947]) and Specker !|_1954]. This result will be proved
(Axiom of Regularity), if NBG

independence of the special Continuum Hypothesis,
2" = w, fromNBG * (AC) * (Axiom of Regularity).

For expositions d the ingenious work of Cohen and itsfurther development, see
Cohen [1966] and Shoenfield [1971) (as well as Rosser {1969}, Felgner (19711,

Jech [1971), Takeuti-Zaring [1973)).
We shall present here a modified form o the proof in Cohen [1966] of

Sierpinski's proof that (GCH) implies (AC).
DEFINITION.  For any set v, let ¥v) = v, P'(v) = P(v), P(v) =
PP ..., F*1(v) = P(F*(v)) for al Kk inw.

LEMMA 441, If w < v, then $*(v) + F*(v) = F¥(v)for all k »ol.
Remember that % (x) = 2* (Exercise 4.40, p. 193). From « < v, we

Exercise 4.72(¢). Now, for any k >ol, o
() +,94v) = P(v) x 2 = (P ') x 2= 27 %2
~ 7' x 2! = FH = 2770 = @(FP(0) = PHo).
4 LEMMA 4.42. Ify t x = P(x + x) then P(x) < y.

# ProOF. Notice that P (x T x) = 2% =2* X 2* = P(x) X P(x). Let y*
=y x {0} and x* =x x {1}. Since y +.x = P(x +.x) = P(x) X P(x),
there is a function j such that y* U x* 5 P(x) X ¥ (x). Let h be the function
which takes each u in x* into the first component w of the pair f 'u. Thus,
h:x* > @(x). By Proposition 4.23(a), there must exist c € P (x) — h“x*.
Then, for all zin @ (x), there existsa unique v in y* such that f ‘v = (¢, z). This
determines a one-one function from ?(x) intoy. Hence, ¥ (x) < y.

ProPOSITION 4.43. Assume GCH.

(8 For any ordinal B, if u cannot be well-ordered, # + u = u, and B =< 2
then B8 < «.
(b) The Axiom d Choice AC holds.
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PROOF.

(a) Notice that » + .4 = u implies 1 +.u = u, by Exercise 4.79(b); therefore,
by Exercise 4.58G), 2' +.u=2". Now, u < B+.u<2' +,u=2" By
GCH, either (i) u = B + .u or (ii) 8 + u = 2“. If (i) holds, B + u = 2* + .u -
P(u +,u). Hence, by Lemma 442, ¥ (u) < B, and, therefore, u < B. Then,
since » would be equinumerous with a subset  an ordinal, ¥ could be
well-ordered, contradicting our assumption. Hence, (i) must hold. But then,
BB+ u=u

(b) We shall prove AC by proving the equivalent sentence (W.O.) asserting
that every set can be well-ordered. To that end, consider any set X, and assume,
for thesake d contradiction, that x cannot be well-ordered. Let v = 2*““, Then
w=< X U w= v. Hence, by Lemma 441, P*(v) +,9*(v) = P*(v) for al k >ol.
Also, since X< X Uw<Vv<P) < PP(v)<..., and x cannot be wdl-
ordered, each %* (v) cannot bewell-ordered,for k >¢ 0. Let 8 = IC ‘v. We know
that 8 < 9*(v) (p. 200). Hence, by Part (a),with « = 9*(v), we obtain 8 <
P3(v). Using Part (a) twice more (successively with u = $*(v) and u = F(v)),
weobtain X ‘v = B < v. But this contradicts the definitiond X 'v as the least
ordinal not equinumerous with a subset of v.

Exercise 4.106. An asequence is afunction w whose domain is a. If the
range d w condsts d ordinals, w is cdled an ordina a-sequence, and if, in
addition, B <o y <o a implies w(B) <o w(y), w is cdled an increasing ordinal
asequence. By Propostion 411, f w is an increasing ordinal a-sequence, then
U(w “a) is the least upper bound d the range d w. An ordinal 6 issaid to be
regular if, for any increasing ordinal a-sequence w such that a < § and the
ordinalsin theranged w are al <o 6, then Y(w "a) +,1 <o 6. Non-regular
ordinalsare caled singular ordinals.

() Which finite ordinas are regular?
(i) Show that w, is regular and that w_, issingular.

(iii) Prove that evary regular ordinal is an initial ordinal.

(iv) Assuming the Axiom d Choice (AC), prove that every ordinal of the
fom o, , isregular.

(V) If w, isregular and Lim(a), prove that w, = a. (A regular ordinal w, such
that Lim(a) is called a weskly inaccessible ordinal.)

(vi) Show that, f w, has the property that ¥ <o w, implies ?(y) < w,, then
Lim(a). The converseis implied by the Generdized Continuum Hypothesis. A
regular ordina w, such that a >o 0, and y <o w, implies ?(y) < w,, is caled
srongly inaccessible. Thus, every strongly inaccessible ordinal is weekly inacces
sible, and, if the (GCH) holds, the Strongly inaccessible ordinds coincide with
the weekly inaccessible ordinals.

(vii) (Shepherdson [1951-53], Montague- Vaught [1959)) (a) If v is inaccess-
ble (i.e., if H, isa modd d NBG), then y is weekly inaccessible. P(b) In the
theory NBG + (AC), y isinaccesshle f and only f vy is strongly inaccessible.
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(vii) If (NBG) is congistent, then in the theory NBG t (AC) + (GCH) it is

impossible to prove the existence of weekly inaccessible ordinals.

We have chosen to develop axiomatic st theory on the basisd NBG because
it is Smple and convenient for the practicing mathematician. Of course, there
are many other varietiesd axiomatic set theory.

(1) Strengthening NBG, we can replace Axioms B1-B7 by the Axiom
Schema: (EX)(»)(22) ... )V ov a0 € X = 0(V1 ..., 00)), Where ¢ is
any wf (not necessarily predicative) & NBG. This new theory MK, called
Morse-Kélley set theory because it was originally proposed by A. Morse (cf.
Morse [1965]) and became widdy known through its publication in Kelley
[1955], is a proper extension d NBG. Although MK is simpler and more
powerful than NBG, its strength makes its consistency a riskier gamble. (How-
ever, if we add to NBG * (AC) the axiom In asserting the existence d a
strongly inaccessible ordinal 4, then the modd H, is a modd of MK. Hence,
MK involves no more risk than NBG + (AC) * (In).) Mostowski [1951] proved
that MK is stronger than NBG; in fact, the consistency d NBG is provablein
MK. A development d set theory based upon MK may be found in Rubin
[1967), and Chuquai [1972] has extended Cohen's independence results to MK.

(2) Zermelo-Skolem-Fraenkel (ZSF) set theory is essentiadly the part o NBG
which refers only to sets. We use X,, X, ... as variablesin ZSF. There is a
single binary predicate €. The axioms are Axioms T (Extensiondlity), P (Pair-
ing), N (Null Set), U (Sum Set), W (Power Set), | (Infinity), plus an axiom
schema corresponding to Axiom R (Replacement): for any wi (v, u), the
following is an axiom.

(D) (w) (@) g(o, u) A @(v, W) Du = w))
D (Ey)(u)(u € y = (Ev)(v € x A ¢(v, 4)))

Every wf of ZSF can be considered a W o NBG, with the variables d ZSF
playing the role of restricted set variables in NBG. It has been proved (cf.
Novak-Gal [1951], Rosser-Wang [1950], Shoenfield [1954]) that, for any closed
W @ o ZSF, if Fags®, then b ee@; therefore, ZSF is consistent if and only if
NBG is consistent. For a detailed development of ZSF, consult Suppes [1960],
Zuckerman [1974], Krivine [1971].

For asurvey d various axiomatic set theories, cf. Fraenkel-Bar Hillel [1958]
and Hatcher [1968]. To obtain more detailed treatments o the theory of types,
consult Church [1940] and Quine [1938]; for Quine's New Foundations (NF), cf.
Rosser [1953] and Specker [1953] (where it is shown that the strong Axiom of
Choice is disprovable in NF), and, for Quine's system ML, cf. Quine {1951].
Drake[1974] is an account d many recent developmentsin axiomatic set theory.



‘CHAPTER 5
' EFFECTIVE. COMPUTABILITY

1. Markov Algorithms

A function f(x,, . . ., x,) is thought of as being effectively computableif there
is a mechanical procedure for determining the value f(k,,..., k) when the
argumentsk,, . . . , k, aregiven. The phrase " mechanical procedure’ is not at all

precise; what we mean is a process which requires no ingenuity for its perfor-
mance. An obvious example is the addition of two integers expressed in decimal
notation. Another well-known case is the Euclidean algorithm for obtaining the
greatest common divisor o two integers. In these two examples, it seems
intuitively clear that the given functions are effectively computable. This is
generdly the case when an effective procedure has aready been discovered.
However, more and more in mathematics, we are faced with the task o showing
that there is no effectively computable function o a certain kind or that thereis
no effective procedure for solving a large class o problems. To illustrate, we can
cite on the one hand the well-known effective way o determining whether or
not any given polynomia f(x) in one variable with integral coefficients has an
integral root.§ On the other hand, the famous Tenth Problem o Hilbert asked
whether there is an effective procedure for determining whether or not any given
polynomia f(x;,...,x,) with integral coefficients, in any finite number of
variables, has integral roots. This problem recently has been solved by
Matiyasevich [1970], whose proof was the culmination of previous work by
M. Davis, J. Robinson, and H. Putnam. (Cf. Davis[1973] for a complete exposi-
tion.) If we attempt to prove that there is no effective procedure or operation of
a certain kind, it is apparent that we have to give a precise, mathematical
definition o the notion of effective computability. The situation is analogous to
that which prevailed in mathematics before notions like continuity, curve,
surface, and area were explicated.

Any particular problem of a general class o problems can be formulated as
an expression of some language. Any expression d a language can be consid-
ered as a sequence of symbolsd that language, provided that the blank which is

Hf fx) = a.x"+ a,_ x>+ ... + ax T g, then any integral solution of f(x) = 0 must be a
(fjivisor of @ Each of the finite number of divisors of ay can be tested to see whether it satisfies
(x) = 0.

221
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usualy used to separate words is assumed to be a symbol in its own right. By an
aphabet we mean a non-empty finiteset & symbols. Most natural languages use
only a finite number o symbols, and, for our purposes, it also suffices to treat
only such alphabets. (Indeed, anything that can be done with an infinite
alphabet a,, a, ... can be accomplished with a two-symbol alphabet {b, ¢}, if
we let bec . ..cch play the role d @) For uniformity, we assume that the

symbols & g'f | aphabets are taken from the denumerable sequence
Ss» S.. S5, ..., though, sometimes, for convenience, we shall use other letters.

A word in an alphabet A is any finite sequence d symbolsd A. The empty
sequenced symbolsis called the empty word, and isdenoted by A. If P denotes
aword §, ... S, and Q denotes aword S, ... S, , then we use PQ to denote
the Juxtaposm on S, S o the two words In particular, PA = AP
= P; dso, (P, P2)P3 P(P2P3)

An alphabet A is an extension o an aphabet B if and only if BC A. If A'is
an extenson o B, any word d B isaword d A.

By an dgorithm in an aphabet A, we mean an effectively computable
function % whose domain is a subset of the set  wordsd A and the values o
which are also wordsin A. If Pisaword in A, ¥ issaid to be gpplicable to P if
Pisin thedomain d %; if A isapplicable to P, we denote itsvalue by A(P). By
an algorithm over an alphabet A we mean an algorithm % in an extension B d
A. O course, the notion d algorithmis as hazy asthat o effectively computable
function.

Most familiar algorithmscan be broken down into a few simple steps. Starting
from this observation, and following Markov [1954], we sdlect a particularly
simple operation, substitution d one word for another, as the basic unit from
which algorithmsare to be constructed. To thisend, if Pand Q are wordsd an
aphabet A, then we call the expressions P— Q and P — . Q productions in the
aphabet A. We assume here that “— ” and the dot “-” are not symbolsd A.
Notice that Por Q can be the empty word. P— Q is called a simple production,
while P— . Q is a termina production. Let us use P— (-)Q to denote either
P—- Qor P--Q. A finitelist  productionsin A

P(“’-’(')Ql
Pz-_*(')Qz

Pr — (‘ )Qr
is called an agorithm schema and determines the following algorithm 2 in A. As
a preliminary definition, we say that a word T occurs in a word Q if there are
words U, V (possibly empty) such that Q = UTV. Now, given a word Pin A:
(1) We writeX: P 3 if noned thewords P,, ..., P, occursin P. (2) Otherwise,
if mistheleast integer, with 1 < m < r, such that P,, occursin P, and if R isthe
word which results from replacing the left-most occurrence o P,, in P by Q,,,
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B then we write

(a) A:PF+FR

3 if P, — ()Q,, is smple (and we say that A smply transforms P into R);

(b) %:PF-R

' if P, — (-)Q,, is terminal (and we say that % terminally transforms P into R).

We then define : PF R to meen that thereis a sequence Ry, Ry, . .., R, such
that P=Ry; R=R;if0<j<k-2%: RFRH,andelther%I Rk IFR
or¥A:R_,F.R.(In thesecond case, we write 9 : Pk ° R.) We st A(P) =
if and only if either ¥ : PF-R, or %A : PF Rand A : R . The algorithm thus
defined is called a norma algorithm (or Markov algorithm) in the alphabet A.

The action d U can be described as follows: given a word P, we find the first
production P,, — (-)@,, in the schema such that P, occurs in P. We then
substitute @,, for the left-most occurrenced P,, in P. Let R, be the new word
obtained in thisway. If P,, — (-)@,, is a terminal production, the process stops
and thevalue d the algorithmisR,. If P, — (-)Q,, issmple, then we apply the
same processto R, aswas just applied to P, and so on. If we ever obtain a word
R, such that A : R; T}, i.e., no P,, occurs in R, for 1 < m < r, then the process
dopsand the valued A isR,. It is possible that the process just described never
dops. In that case, % is not applicable to the given word P.

Our exposition d the theory of normal algorithmswill closdly follow that o
Markov [1954].

Examples.

1. Let A be the aphabet {5, c). Consider the schema
b— -A
c —> C

The normal algorithm % defined by this schematransforms any word containing
at least one occurrence d b into the word obtained by erasing the left-most
occurrenced b. A transforms the empty word A into itself. U is not applicable
to any non-empty word not containing b.

2. Let A betheaphabet {a, a,,..., a,}. Consider the schema

a,—>A
a,—A

a SA
We can abbreviate this schema as follows;
£t > A (¢inA)

(Whenever we use such abbreviations, the productionsintended may be listed in
any order.) The corresponding normal algorithm transforms every word into the
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empty word. For example, U : aa,a,a;a,t a,a,a,a,t aya,a,F ayask a, + A and
8: A7 Hence A(a,a,a,a;a,) = A.

3. Let A be an alphabet containing the symbol §,, which we shall abbreviate
1 For natural numbers n, we define ii inductively as follows: 0 =1 and
n+ 1=iil. Thus, T = 11, 2 = 111, etc. The words ii are called numerals. Now
consider the schema A — . 1, defininga normal algorithm 8. For any word Pin
A, %(P) = 1P- } In particular, for every natural number n, %(n) = +T.

4, Let A be an arbitrary aphabet {a, a,,...,a,). Given a word P =
aa; .. ,etP= a;...a; a betheinverseof P. We seek a normal algorithm
91 such that A(P) —P Consrder the following (abbreviated) algorithm schema
in the alphabet B = A U { &, 8}.

(a) ax > f

b  pEeB ¢in A)
©  pa—p

(@ B

(e) ané — £am (§,nin A)
(® A-a

This determinesa normal algorithm % inB. Let P =g, q; . ..

LR |

a, beany word in

A. Then, A : PF aP by production (f); aPtaaaa, ...q t
ana'naq,oa . aa, by productlon (e) Thus A:PE
aa . aa ‘fhen by productlon (f) aa A oza55 Applying, as

before productlon (e, A:Pka aa; ara Iteratmg this Tgrocess, PWE

obtain 8: PF ag, ag, a. a:f E?a T’ hen! y production (
aaq; aq, _ a...oq, aam, and, by producnon (a), QI PFBa,aa, «...aq aq,
applylng productlons(b) and (c), and, finally, (d), we arrive at 8 PI: P. Thus

% is a normal algorithm over A which inverts every word of A.f

EXERCISES

51 Let A bean aphabet. Describe the action d the normal algorithmsgiven by
the following schemeas.
(8 Let Q beafixed wordin A, and let the agorithm schemabe A - . Q. ,
() Let Q be a fixed word in A, and let a be a symbal not in A. Let
B=A U (a). Consder the schema

af = a

a—-Q

A-sa

(§in A)

1To see this, observe that A occursat the beginning of any word P, since P = AP.

1The digtinction between a normal algorithm in A and a normal algorithm over A isimportant. A
normal algorithm in A uses only symbols of A, while a normal algorithm over A may employ
additional symbolsnot in A. Every nonnal algorithm in A isa normal algorithm over A, but there
arealgorithmsin A which are determined by normal algorithms over A but which are not normal |
algorithmsin A (cf. Exercise 5.9(d), p. 240).
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(¢) Let Q beafixed word in A. Take the schema

¢ A (¢in A)
A—-Q
(d) Let B=A U (1}. Consider the schema
[ | (¢inA- (1))
A+ -1

52 L& A be an aphabet not containingthe symbolsa, 8,y. La B=A u (a)
andC=A U {a, B, v}

(@ Construct a normal agorithm % in B such that %(A) = A and A(¢P) =
P for any symbal ¢ in A and any word P in A. Thus, % erases the first
letter & any non-empty word in A.

(b) Construct a normal agorithm 6 in B such that D(A) = A and D(P§) =
P for any symbol ¢ in A and word P in A. Thus, 6 erasesthe last |etter
of any non-empty word in A.

(©) Construct a normal algorithm € in B such that €(P) = A if P contains
exactly two occurrencesd a, and €(P) is defined and 7& A in dl other

Cases.
(d) Congtruct a norma agorithm B in C such that, for any word P d A,
B(P) = PP

53. Let A and B be aphabets, and let a be a symboal in neither A nor B. For
certain symbals a,,...,a, in A, let 0y, ..., @ be corresponding words in B.
Consider the dgorithm which associates with each word o A the word
‘‘‘‘‘ a(P) obtained by smultaneous substitution d each Q; for a; (i=
1, ..., k). Show that thisis given by a normal dgorithmin AuB U (a).

54. Le H = (1} and M = (1, * }. Evary natural number n is represented by
its numeral 1, which isa word in H. We represent every k-tuple(n,, ny, . .., m) of
natural numbersby theword i, « fi, « ... ® i, in M. We shal denote this word

by (n,,...,ny). For example, (3, 1, 2) is 1111 = 11 = 111
(@ Show that the schema
*+*
all - al
al = -1
Ao a -

defines a normal dgorithm % over M such that %z(m) = 0 for any n,
and ¥ is applicableonly to numerasin M.

(b) Show that the schema

*+*

al — -11

A->a

defines a normal agorithm 2z over M such that %n(m) =n + 1 for all
n, and A is applicableonly to numeralsin M.
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© Lga,...

If 1 <j <k, condder
the dgorithm schema
51

S

Dj—1

ay_, ¥

2Zi—-1 —»azjﬂ ¥

a1 — ayl
ayl = lay
azj: —>a2j+1

S.

N+ 1

EFFECTIVECOMPUTABILITY

Apie | * Dy g »
azi—l]_’ﬂz,'!
oyl — ay

Q2i % = dgiy

Ifj = 1, consicer
the schema
a * > qp»
ﬂ|l—){x21
(\'2] —blaz
ay * — 0y

S,

S -1
k-1 * =y | »
al‘k-l]'—’ﬂzkl

SEc, |
, ay besymbolsnot in M. Let 1 <j 6 k. Let §; bethe lig

If j = k, consider
the
S

T
Aok—1 * = A«
ay ;1 - ayl
QZRI—DI(X&
a;k E ] —> ayy #

azk E ] —)(Izk *

S: Ay — A
k=1 axl— ay, A=a
Qo1 * Sy * Qg * — 0y
k-1l = ayl ay — A
gl — ay A aq
Uy » — Qyy *
ay; —-A

Sow that the corresponding norma agorithm %k is such that
U((ny, ..., ny)) =n; and A¥ is gpplicable only to words d the form

n . »

(d (% rudné)sdm\afor anormd dgorithm in M transforming (n;,n,)
inton, — ngl.

(e Constr'uct anormal dgorithm in M for addition.

(f) Congruct a normd agorithm over M for multiplication.

Given agorithms 1 and 8 and aword P, we write 9(( P) ~ B(2P) if and only if
either I and B are both applicableto P and %(P) = B(P) or neither 1 nor BVis
applicable to P. More generdly, if ¢ and D are expressions, then Cx~ D is to
hold if and only if neither C nor D is defined or both C and D are defined and
denote the same object. If 1 and B are algorithms over an alphabet A, then we
say that % and B are fully equivalent relative to A if and only if A(P) ~ B(P)
for every word Pin A; we say that % and B are equivalent relative to A if and
only if, for any word Pin A, whenever 3(P) or B(P) exists and isin A, then
A(P) ~ B(P).

Let M be the alphabet (I, * ), asin Exercise 5.4 above; let w be the st of
natura numbers. Given a partid effectively computable number-theoretic

i

. More precisaly, py(r(x,, . . .
i such that, if 0 <i <Kk, n(x,,...,Xx, i)existssand is not 0, and 7(x;, . .

MARKOV ALGORITHMS 22
ion g of k arguments, i.e., a function from a subset o «* into w, we de-
by %y the corresponding algorithm in M; that is,

...» 1)) =¢(n,, ..., n) Whenever either o the two sidesd the equa-
ition is defined; B is assumed to be inapplicable to words not o the form
{0, . - - » M)- The function g is said to be partially Markov-computable if and

' relative to M.1 If the function ¢ is total, i.e., if ¢ is defined for all k-tuples of

’only if there is a normal agorithm 8 over M which is fully equivalent to %8,

8 natural numbers, and if ¢ is partialy Markov-computable, then ¢ is said to be
i Markov-computable.

Let us generdize the notion d recursive function (cf. p 138). A partia

function ¢ of k arguments is called partial recursive if and only if ¢ can

be obtained from the initial functions Z (zero function), Uj' (projection func-
tions), and N (successor function) by means of substitution, recursion, and the
unrestricted p-operator. (We say that ¢ comes from 7 by means d the unre-
sricted p-operator if and only if (X, ..., x) = py(r(x;, ..., x, ¥)=0).
, X, Y) = 0) is the least number k (if such exists)
% K)
= 0. Notice that ¥ may not be defined for certain n-tuples; in particular, for
those n-tuples (x,, . . . , x,) for which thereisno y such that 7(x;, . .., X, y) =

. 0.) Clearly, every recursive function is partial recursive. The assertion that every

total partial recursivefunctionisrecursiveis true, but not at al obvious, and will
be proved later. We shall show that the partial recursive functions coincide with
the partially Markov-computable functionsand that the recursive functions are
identical with the Markov-computablefunctions.

A normal algorithmissaid to be closed if and only if one d the productionsin
its schema has the form A — - Q. Such an algorithm can only end terminaly,
i.e, by an application o a termina production. Given an arbitrary normal
algorithm 8, add on at the end o the schema for % the new production
A — . A, and denote by % - the normal algorithm determined by this enlarged
schema. U - isclosed, and 21 - is fully equivalent to % relative to the alphabet
d o

Let us show now that the composition d two normal agorithms is again a
normal algorithm. Let % and B8 be normal agorithms in an alphabet_A. For
each symbol 4 in A, forma new symbol 5, called the correlate d b. Let A be the
alphabet consisting of the correlates of the symbols of A. Let a and B be two
symbolsnot in A U A. Let 5, be theschemad % . except that the terminal dot
in terminal productions is replaced by a. Let 54 be the schemad B . except

that every symbol is replaced by its correlate, every terminal dot by B, produc-
tions of t¥1§¥orm A eeg are rggla:ed by a —» aQ%d producti ongyA —>p- Qare

tIn thisand in al_other definitionsin this chapter, the existential quantifier "thereis" is meant in
the ordinary, "dassicd" s When we assert that there exists an object o a certain kind, we do
not necessarily imply that any human being has found or ever will find such an object. Thus, a
function ¢ may be partially Markov-computablewithout our ever knowing it to be 0.
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LEMMA 5.3

(1) Let € be a normal algorithmin an alphabet A and let a be any symbol.
Then there is a normal algorithm& over A U { a) such that

D(P) = { aP if Pisawordin Asuchthat G(P) =
P ifPisaword in A such that E(P) +# A
and 6 applies only to those words to which s applies.
(2)If 1 and B are normal algorithms in an alphabet A and a is a symbol
not in A, then there is a normal algorithm & over Au { a)such that

&(P) =~ AP) if Pisawordin A and
&(aP) ~B(P) if Pisawordin A.

PROOF.

(1) There is a normal algorithm %, over A U{a) taking A into a and any
other word o A U {a)into A. Let 8 be any symbol not in AU {a).Consider
the abbreviated schema for $5,

a—»B
BB — B
B—-A
A—> a

Let §, =% ° €. For any word P in A if €P)= A then §,(P)=a and ff
C(P) # A, then §,(P) = A. Let ¥ be the identity agorithm in A (with the
schema A — . A). Let D be the juxtaposition d £, and . If €(P) = A, then
D(P) = aP, and, if G(P)# A, then D(P) = P.

(2) For eachysymbol a o A, let @ be a new symbol, and let & pe the alphabet
consisting of these @’s. Let B= Ay A U {a,B}, where g is not in AB u
{a}. If we replace in the schema o algorithm 8. all symbols a by the
corresponding symbols a, al termina dots by 8, every production A— Q by
a - a, and every production A — . Q by a — «BQ, we obtain a new algorithm
schema &g. Let &y be the schemafor 1. . Form the schema

(anA U {a))

aa— ad (ain A)
ab — ab (a,bin A)
ap - pa (ain A)
pa — a (ain A)
ab — ab (a,bin A)
af — <A

R

Sy.

This determines a normal algorithm & over AU { a) such that B(P) ~ A(P)
and &(aP) ~ B(P) if Pisawordin A

Y

sc. |
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PROPOSITION 5.4. Ler 91, B, € be normal algorithms and A the union of their
alphabets. Then there is a normal algorithm € over A such that
&(P) {?B(P) if Pisawordin Aand ©(P) =
A(P) if Pisawordin Aand G(P) # A
and € applies only to thosewords in A to which € is applicable. The algorithm &
is called the ramification o 1 and B governed by O.

i proor. Let %, B,, €, be the propagations ad %, B, € to A Let a be a
__5__; symbol not in A. By Lemma 5.3(1), thereisa normal algorithm 6 over Au { a)
£ such that o _
Py - | oP if Pisawordin A and €(P) =
AP = P if Pisawordin Aand €(P) # A

By Lemma 5.3(2), there is a norma agorithm & over AU {a) such that
®(P) ~ A,(P), and &(aP) ~B,(P)if Pisawordin A Let€ =6 °*

Suppose that A and € are agorithmsin an alphabet A and that P, is a word
in A First, apply % to P,, and, if aword P, results, apply € to P,. If €&(P) = A
stop; if G(P,) # A, apply 1 to P,. If a word P, results, test P, by @: fif
C(P,) = A, stop; if G(Py) # A, apply ¥ to P,, and so on. The algorithm 3
defined in this way is called the iteration o % governed by O. Clearly,
B(Py) = Q when and only when there is a sequence & words Py, Py, ..., P,
(n>0)suchthaIP =Q,82P)=AP =%P_)if 0<i <n, andCS.(P)#A
ifo<i<n

ProrosiTion 55. Let 1 and € be normal algorithms, A the union of their
alphabets, and %, and €, the propagations of 1 and € to A. Then the iteration of
U, governed by €, is a normal algorithm over A.

PRoOF. It clearly sufficesto prove the result when 1L and G have the same
aphabet A, in whichcase 1,= 1. and €, = €. Let a be asymbol not in A. By
Lemma 5.3(1), there is a normal algorithm © over B = Au { a) such that

o(P) = aP if Pisawordin Asuchthat €(P) =
~ | p ifPisawordin A suchthat &(P) = A
Let % = 6+ 1. & is a normal agorithm in an extension F o B. Let 8 be a
symbol not in the alphabet F. Consider the following schema.

£ — BE (§inF)

Ba— A

B—-A

53!‘

where &g, is a schemafor 3. in which al terminal dots are replaced by 8. The
normal agorithm & defined by this schema is the desired normal agorithm.
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COROLLARY 56. Let U and 5 be normal algorithms and A the union of their
alphabets. Then there is a normal algorithm & over A such that, for any word p,
in A, 9(Py) = Qi andonly if thereis a sequence Py, . . ., P, (n > 0) such thay
P,=0Q,6&P)=A P, =AP)and &(P) * Afor 0 <i<n.

PROOF. Let 3 be theidentity algorithm and 23 the iteration of % governed by
. Take © to be the ramification of 23 and ¥ governed by s (cf. Proposition 5.4).
This algorithm & is called the full iteration of % governed by 6.

PropPOSITIONS.7.  Let A be a normal algorithm in an alphabet A. Then there js
a normal algorithm A" over the alphabet B=A U M (where M = ( x, 1})
such that, for any word P, in A and any natural number n, A\@ * Py) = Q if
and only if there is a sequence Py, ..., P, (n > 0) with P, = Q and P, =
AP,_)) for 0 <i < n.

PROOF. Let a be a symbol not in B, and let C = B U (a}. Consider the
normal algorithms in C given by the following schemas.
all - -1
alx > a*
O, :| ax¢—sa* (£inB)
a*— A
Asa

A and §,@ * P) = A, for n > 0, where P is any word in

Clearly, £,(0 * P) =
B.

2 5=

e[ €D

If P does not contain *, then §,(P * Q) = P.

{al —>a
2 ax A
A-a
Then $,(n*P) =
0 1-5-A
s e oA

Clearly, §,@ * P) =0 = D*P if n> 0, and £,0 * P) = * P. Also, 0 * P)
=P

Let € be the normal agorithm given by Corollary 52 such that &(P) =
(9, ° DI(P) * (A ° ©3)(P) for any word P in C. For any word Pin A,

@(ﬁ*P) — ( n—l*.%(P)
¥X(P)ifn=0

if nisa positiveinteger

: Sec. 1
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i Let E be the alphabet of . By Corollary 56, let % bea normal agorithm over E
§ such that F(Py) =
i P,=Q, 9 (Pk)

oy Now let =
% required normal algorlthm

Qif and only if thereis a sequence Py, . .., Pr (k > 0) with
A P, = &(P,_,) for 0 <i <k, and @.(P)%AforOél
o . We leave as an exercise the verification that this is the

ProrosiTION 58.  Every partial recursive function is partially Markov-comput-
able, and every recursive function is Markov-computable.

PROOF.

(1) The initia functions Z, N,
Exercise 5.4, pp. 225-226).
(2) Substitution. Assume that ¢ arises from 7, ¢y, ..., ¢, by substitution:

l,t!()(', D] xn) = T(‘P](xp ey Xn), ey ‘pk(xl! Py xn))’ where T Pp... ’ Py are
partial recursive. Suppose that there are norma algorithms ., A, ..., %

I (1 <j < k) are Markov-computable (cf.

P

over M = (1, »} which partially compute the functions 7, ¢, ..., ¢. By
Corollary 5.2, there is an adgorithm 23 over M such that B(P) =~
A, (P)x A (P)» .. A (P)forany word Pin M. In particular,
%(m...’xnj) ~ ‘P|(Xp...,xn) * ‘Pz(xh--'lxn) * * @k(xh..',xn)
for any natural numbers x,, ..., x,. Now, let € =%, 23 Then
@((xn...sxn)) ~ A (pi(xy, .. ,xn)* ...*‘Pk(xp..',m)
~ T(‘pl(xl’ - xn)» -ty (pk(xlv - xn))

for any natural numbersx,, ..., X;.
(3) Recursion. Assume that ¢ arises from 7z and ¢ by recursion:

WK - %0 0) = T(X -5 )
Y(Xyy oo h X Y+ 1) = P(Xp -+ vy Xio ¥ WXy - - -5 X Y))
Suppose that 7 and ¢ are partial recursive and that %, and ¥, are normal
algorithms over M which partially compute = and ¢. Let %, be the normal
agorithm computing the zero function, %y the normal agorithm computing the

successor function, and let 91“ be the normal algorithm computing the projection
function UF. By Corollary 52 using the algorithms A***, there is a normal

algorithm 23, over M such that B,(%, = ... * % * y)—x oo ¥ XL Let
& =9, o B,. Again by Corollary 5.2, applied to AL+, Ak*1, EEI;“ A, &,
there is a normal algorithm 23 over M such that %2(){, LI *y) ~
J+x = + X+ 0 7(x,...,%). Let B; = A, ° AT Thus,
‘Be(i, * + X *y*X)=y T 1 By Corollary 5.2, applied to
AKF2 L, AKT2, B, A, weobtain the juxtaposition algorithm B, over M such
that

(%) *?*Z)“il* Fy+ LR olxn .., X Y 2)
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By Proposition 5.7, thereis a normal algorithm %8} such that, if n > 0, Bi(® * P,)
= Q when and only when thereisa sequence P,, . . ., P, such that Q = P, and
P,=ByP,_) for 0<i< n Then B = Y2 B, o B, is a normal algorithm
over M computing 1). Notice that

By(Ry* ... +X *§) A F*X, * ... «X 20 7(x;, ..., x)

If we then apply B}, this produces a y-fold iteration of 8, starting with
Rj* ... *% *0x7(x;, .., X). It is easy to see that the result is then

X * ... xX *y =X, ...,%,Yy). Then, applying %ki3, we obtain
V(X ot s X Y)-

(4) p-operator. Suppose that ¥(x,, ..., X,) = uy(e(x;, . .., X, ¥) = 0) and
assume that o is partially computable by a normal algorithm % over M. By
Corollary 52, applied to the algorithms A}*+!, . .., o*! A, o unt)
there iS a normal agorithm g such that (X, * ... *X, *y) =
Xj* oo, X xYy + 1 Let 6 be the norma algorithm over M given by the
schema

11— -11
1 5 A
Then @) = Aif n=0and D@) = Aif n > 0. Let0=6c.u¢_-|-hen
< - Loy =A ife(x, ... y=0
6y L. PLXy » Xpo ¥
&+ ”"'”{;&A Fo(x, ..., x,y) %0
Let & be a normal agorithm over M such that
R, * ... *X) =X * ... *anﬁ
By Corollary 5.6, applied to 8 and 0, there is a normal algorithm & over M
such that $(Py) = Qif and only if thereisa sequence Py, . .., P, (n > 0) such

that P, = Q &(P) = A, P, = B(P)and G(P) = Afor0<i<n. Let® =
Anti e 9 o & Then
BE, * ... "%) =~ wylox, - - X Y) =0) ~ Y(X,, 7., %)

From Parts (1)-(4), if ¢ isa partia recursive function of k arguments, there is
a normal algorithm 9 , over M such that

UKy » ol *# %) =~ Yoo ouxy)
Let & be a normal algorithmover M such that ® is defined only for words of M
of the form x,* ... *%, where X,,...,x, are natura numbers, and
RE, * ... *%)=%,* ... *x. (We leave the construction o a schema for
R as an exercise) Take €, = U, o W. Then €,(X, » ... * %) ~d(x, 5 X
and €&, is defined only for thosewordsof M o theformx, » ... * X, such that
Y(X;, ..., x) is defined. Hence, every partial recursive function is partialy
Markov-computable. Every recursive function is, a fortiori, partially Markov-
computable, and, sinceit is total, it is Markov-computable.

| Sec. 1
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We shall now assign Gédel numbers to the symbols Sy, S,, S, . out o

¢ which alphabets are constructed: g(S;) = 2i + 3. Then, to any word P=
: Sj

. S; we assign the number
g(P) = 28(5;,)38(S;,) |

.
1]

[ p%(s"l) = 22jﬂ+332jl+3 P piji+3

§ where p, isthe k™ prime number; we define g(A) = 1. To a sequence of words
‘P, - - Py, Weassign the number 2893870 | pfFo),

We make the convention that S is abbreviated by 1, and S, by * . Consider-
ing the numerals as words, we have g©0) = 2% g(1) = 2°- 3%, and, in general,
There are normal agorithms¥,, €, over A U M such that ,(P) =g(P) for
any word P in the alphabet A, and Z,(g(P)) = P for any word Pin A. Firgt,
there is a normal algorithm B, over A U M such that, for any non-empty word
P=a,a, . ..a, of A
B,(P) = g(a,,) * 8(a,) * ---
IfA={S,. .S} then the schema for B, is

aS}u—->2jG+3 * o

+ gla,) » and B,(a,) = gla,) *

a.S:jl—92j1+3 *qQ

a.S}k—»ij+3 * X
a— A
A-a

Second, there is a normal algorithm B, such that B,@ * Q) =0*2"« Q.
(Exercise. Note that the function 2* is recursive; so, by Proposition5.8, thereisa
normal algorithm computing it.) Let B, = B, ° B,. Then, for any non-empty
word P= Sp,... S

"(r,
By(P) = 0+ 2(S,) * &(Sm) * ---
Let % be a normal algorithm such that
AM*+T* 7+ Q) = n+1 * u-(pas))” *Q

(Exercise. Notice that the function f(x, y, n) = X . (p, +,) is recursive and hence
computable by a normal agorithm.) Let O be a normal agorithm such that
€(P) = A when and only when P contains exactly two occurrencesdf * . Using
Corollary 5.6, let £ be the full iteration of % governed by €; let € be a normal
algorithm such that OR* ¥ *) =¥, and let 5= € - $ o B,. Then, for any
non-empty word P o A, &(P) =g(P). Hence, if we use Proposition 5.4 to take
care o the case P = A, thereisa normal algorithm ¥, over A U M such that
Z,(P) =g(P) for any word Pin A. (Remember that g(A) = 1)

« 8(S,) *
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55 Prove tha thereis a normd dgorithm 0
_ P for ay word Pin A oMM ¢, over A U M such that ,(z(P))

Hint; construct a normd agorithm © such that ©2i—+-3) = s, for eech symbol
S, d A, but © is not definedfor any other words Construct a normd agorithm
# such that f(i) = 6* @ » , for any podtive integer « but & is not defined for any
other words Congtruct a normd dgorithm 5 such that

Fa+0xP) = NF1» Qt(pﬂ"]",ﬁ * P‘D((u_):)

for any norn-negativeintegers n, v and any word P. Let € be a normd dgorithm
such that €(m* T* P) = A for ay nonnegative integer n and word P, and 4 is
defined but not equd to A for words not o theformn » T » P. By Propostion 5.5,
let % be the normd dgorithm which is theiterationd Sgovemed by 4. Let & bea
normd agorithm such that &m * T« P) = Pfor non-negativeinteger n and
anyword%ord A lLgg= (@@:(SR 0 ﬁle‘)lenQ(g\LQ;e)mzl Qfor ay norre?%&yword
Qd A. Use Propostion 5.4 to take care d the empty word.

Let & be any agorithm (not necessarily normal) over an aphabet A. We can
associate with 9 a partial function ¢, such that ¢g(n) = mif and only if either n
is not the Godel number of a word d A and m=0 or n and m are Godel
numbers of wordsP and Q d A such that 2(P) = Q. Suppose that Y is partial
recursive. (We then call 8 a recursiue algorithm.) By Proposition 5.8, thereis a
normal algorithm 8 over M such that B(n) ~¥x(t) for any natural number n
and B is defined only for those ii for which yy(n) is defined. Let 9’ be the

normal algorithm ¥, - 9 - & . Then %’ is a normal agorithm over A which is
fully equivalentto I reativeto A. Thus:

PropPosiTION 5.9. If U is any algorithm over A, and y is partial recursive,
then U is fully equivalent relative to A to some normal algorithm over A.

ProrPosiTiION 5.10. If N is a normal algorithm over A, then Yy is partial
recursiue, and, if | is applicable to all wordsin A, ¢, is recursiue.

PROOF. Given a smple production P - Q, we call 2'38”55@) jts index;
given a terminal production P— - Q, we let 2?38M58@) pe its index. If P, —
()0 ..., P, — ()0, is an dgorithm schema, we let its index be the number
23k pk, where k; istheindex d P, — (-)Q,. Let Word (u) be the recursive
predicate which holds if and only if u is the Gédel number o a word:
u =1V @)z < lhu) > Ey)y < uA (w), =2y T 3). Let Si(u) be the recur-
sve predicate which holdsif and only if u is the index d a smple production:
Ih(u) = 3A (u), = 1 A Word((w)) A Word((u),). Similarly, let TI(u) be the
recursive predicate which holds if and only if u is the index d a terminal
production: Th(u) = 3 (u), = 2\ Word((u),) A Word((u),). Let Ind(u) be
the recursive predicate which holdsif and only if uistheindex of an algorithm
schema: u> 1 A @)z < 1h(u) D SI((w),) \V TI((u),). Let X _y stand for the
recursive function which we denoted x + y on p. 144¢4). Then, if x = [T, p"

237
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| and each o, >0, and y = 1%, pf, xOy = e ops - 1™ oPisns o In addition,
F xnl=1ox=x

O corresponds to the juxtaposition operation on words. Let Lsub(x, y, €) be

the recursive predicate which holdsif and only if e istheindex d a production
P - (-)Q and x and y are Godel numbersdof words U and V such that P occurs

L in U, and V is the result of substituting @ for the left-most occurrence Pin
U Word(x) A Word(y) A (SI(e) \/ TI(e)) A (Eu),<(Ev),

ifl(x =ull(e),EvA
y=u0O €y O VA~ EWhyex (E2),ox x =wD(e) zAW<W). Le
Occ(x, y) be the recursive predicate which holds if and only if x and y are Godel
numbers of words U and V, and V occurs in U: Word(x) A Word(y) A
(Ev), <(E2),<x(x = vO y O 2). Let End(e, 2) be the recursive predicate holding
if and only if z is the Godel number  aword P, eistheindex o an algorithm
schema, and any algorithm % defined by this schema cannot be gpplied to P
(e, 8: P[1): Ind(e) A Word(z) A (w)w<lh(e}(~ Occ(z, ((e),)1)). Let
SCons (e, y, X) be the recursive predicate which holdsif and only if e istheindex
of an algorithm schemaand y and x are Godel numbers o words V and U such
that V arisesfrom U by a smple production d the schema:

Ind(e) A Word(x) A Word(y) A (Ev)v< ince)(S1((E))
A Lsub(x, ¥, (€)s) A (2)e<v(~ Occ(x, ((€))1)))

Smilarly, one defines the recursive predicate TCons(e, y, x) which differs
from SCons(e, y, x) only in that the production in question is terminal. Let
Der(e, x, ¥) be the recursive predicate which is true when and only when eisthe
index of an agorithm schema, x is the Goédel number of a word Uy, ¥ is the
Godel number o a sequence of words Up, ..., U, ( > 0) such that, for
0<i<k=1,U,,, aisesfrom U, according to an algorithm % determined by
the schema, and, either | U, -, . U, or %: U=, F Uy ?nd A: U, ] (or, if
k =0, just %: U, J): Ind(e) A Word(x) A (@), niy(Word((¥)) A

(Y)o = X A (2),<1n(y) = 2(SCons(e, e+ WD A
((h(y) =1 A End(e, (¥)o) V (Ihy) > I A (TCons(e, (¥) )= 1> Min) =2

\V (SCons(e, Ming - 1» Mingy=2) A End(®, (e D))

Let A be any alphabet {Sj . . ., S} and let W ,(u) be the recursive predicate
which holds if and only if u is the Godel number  aword d A: u=1V
@)y, = 2o T3V ... V), =2j, 1 3. Now, let I be any normal
algorithm over the alphabet A, and let e be the index o the algorithm schema
for P. Define the partial recursivefunction g(x) = py((Wa(x) A Der(e, x, y)) V
= WL(X)): But, Yg(x) = (@(X)inen=1> and so, ¥y is partia recursive. If ¥ is
applicable to every word in A, then ¢ Is recursive; hence, so is ¥y
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EXERCISES

sugfl& Let A be an alphabet. Show that thereis anormal algorithm B over A U M
that, for any normal algorithm % in A determined by an algorithm ~~*-na

with index e, B(e + P) ~ 9(P) !
) * for any word p in A, .
universal algorithm for A) (B 4N be considered a

COROLLARY 5,11, Let @ be a partial function. If ¢ is partially Markov-com.

- putable, then ¢ is partial recursive, and, if pis Markov-computable, then
' recursive, , v

PROOF. Let A be a normal algorithm over M such that o(n,, - -

and ; . , ~m.
only if U((m,, . ", 1)) = 1. By Proposition 510, the function | ™ = if
recursive. Define the recursive function y(x) = lh(x) = 1. If x Yy is partial

n = y(x). Let = [[.o(p))’, then
| "'ink) = g((Tl;'-'ynk)-) = g(ln‘+l‘1n,+l. e .ln"+l)
ny+1 1 ny+ |
=[ |£J;J (pi)sJ ' (pnr+2)? { iI:I(J (pi+n1+3)5} ! (pn.+n;+5)? tee
n+ 1

LA (pn|+ ..,+nk_[+2k;3)?‘

jg) (pi+n,+ “'ﬂh—|-‘-2k;2)5]

f) lllsta%ieeaﬂa’“r:gcursive. Then @ = yoyyo£ is partial recursive. If ¢ is Markov-com-

e A can be assumed applicable to every word in M. (Set up the
Elgom.hm sche_ma for A so that it takes every word in M not of the form
T * .. » M into the empty word.) Then, by Proposition 5.10, y,

- - 1 r H
Hence ¢ = y o y4 o £ is recursive, 1s recursive.

EXERCISE 5.7. Show that every total partial recursive function is recursive.

3 the equivalence between partial recursiveness and partial Markov-com-
putability (and between recursiveness and Markov-computability) has been

_ b){ Corollary 5.11 and Proposition 5.8. Church’s Thesis asserts that
recursiveness is equivalent to effective computability (and, in an extended form
:hat pa;tlall recursiveness is equivalent to partial effective computability). In’
erms of algo i izati
Principle: Exery algortiom in A'S oy Seieihe coresponding Normalization

over A. Now, Church's Thesis (in the extended fo :
runcipie are equivalent. First, assume Chu(rch's Thess. Let % ggﬁ:ﬂgﬁiﬁ‘iﬁ

an
alphabet A, Then Uy is a partial effectivelyc i
Church’s Thesis, ¥y is“partia}) recursive, angI ¥10,0 glflf}%%gsggg%tlgb, IéIIex?ce;, ;)y
. - . S
equivalent relative 19 A to some normal algorithm B, j.e., Markov’s P;inc‘ilplz
~ assume Markov’s Principle. Let ¢ be a partial effectively
;’fuy_uuwu: function. Let B, be the corresponding algorithm in M. By Markov’s
p:rltlf:lﬁ]e,]\%]}w E fully equivalent to a normal algorithm relative to M. Hence, ~ is
1ally Markov-computable, and, by Corollary 511, ¢ is partial re ur’
Thus, Church's Thesisholds, P cswe.
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Of course, because of the vagueness of the intuitive notions of of

computable function and algorithm, it is impossible to prove the vahdity

Thesis or Markov’s Principle. Nor is there any a priori r€3S0N to

b support these hypotheses. There is no apparent reason why the use of produc-
b tions alone should account for all effective operations. One can only expect
incomplete confirmation, not a rigorous proof. It is clear_ that every partial
L ccursive function iS a partial effectively computable function.f The converse
k. assertion, that every partial effectively computable function Is partial recursive
ot equivalently, that every algorithm in an alphabet A is fully equivalent

relative to A to some normal algorithm) has been confirmeq.for every known
partial effectively computable function. There is some additional evidence in
favor of Church’s Thesis, namely, the odd fact that quite dissimﬂar’ attempts to
precisely define the notion of partial effectively computable function have
proved to be equivalent. \We have seen this already for partial fecursweklllgrsgrggg
partial Markov-computability. Other approaches, by Turing and. by ’
and Godel, will be shown later to lead to the same result. In addition, Church’s
theory of A-computability {1941] and Post’s theory of norma} systems

yield notions equivalent to that of partial-recursive function or normal gkg-
rithm. (Arguments for Church's Thesismay be foundin Kleene [1952], §§ 62, 70.
Also consult Hermes {1965].)

EXERCISES .
5.8. Show that the Normalization Principle is equivalent to the gssertion that
every algorithm in an alphabet A is equivdent redive to A to some

dgorithm over A. . trom B.
5.9. Given an alphabet B and an aphabet A = {a, .- ., a} disjoint =~ ",
Let 5, ¢ be distinct symbolsnot in B U A. For any symbol a, we denot? by a
word’na _+.a. The translation T(a) d @, is defined to be the word cb’c, and the
M
in Bis uitAf; ion T(P) of a word
translatiBBeT(u) of any symbol u IN BIS U itsdf; the tran§latxon
P=>d---d,inBUAIis definedto be T(d)) . . . T(d,), while T(A) = A. Note that
T(P) = P for ay word P in B.
(@) Show that the chema
at - T(Ha (¢inBUA)
a— A
A—a

defines a normal agorithm & over BU A U {5, ¢} such that Z(P) =
T(P) for any word P in B U A. (Assume tha a is not in BUAU

{b,c})

i ial effective computability does not necessarily imply human
¥k reafier s;wu.ld‘ n;)ft::‘ maéorr’;;i:abimy means tRaI the \)r/alues of the fynCtion can b; ;:%I:I&
1 A . . . -
Sﬁﬁﬁ“ﬂﬂﬁ{ng%‘i ﬁied plrot(:;cdure, in a finitenumber of steps. Some of the comﬁulabons .
to obtain the values of a partial recursivefunction involve so many steps that the human race may

not exist long enough to carry them out.
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(b) Give the schema for a normal algorithm % over B U A U {b,c) such
that B(T(P)) = Pfor any word Pin B u A.

(c) Let € beany normal agorithmin B U A. For any production P— (-)Q
o the schemafor @, the tranglation d this productionis taken to be the
production T(P) — (-)T(Q). The trandlation of all the productions in
the schema for € gives an algorithm schema defining a normal ago-
rithm T(€) in B u {b,c). If ¥ is the algorithmd Part (a), show that
(TENE(P)) =~ TE(P)).

(d) Provethat any norma algorithm over B isfully equivaent relative to B
to some normal algorithmin B u {b,c). (That the number o additional
symbols can be reduced from two to one has been shown by Nagornyi
(1953]. However, in the same paper, Nagornyi states that there is a
normal algorithm over B, the doubling algorithm (Exercise 5.2(d), page
225), which is not equivalent relative to B to any normal algorithmin B
itself. Thisis an easy exercise for the reader.)

2. Turing Algorithms

Attempting to give a precise definition d effective computability, Turing
[1936] proposed that a certain class o abstract machines could perform any
"mechanical™ computing procedure. Such machines are now called Turing
machines in honor of their inventor, and can be described in the following way.

There is a two-way potentialy infinite tape divided up into squares.

o L s]sds s [s]T [T -
The tape is said to be potentially infinite in the sense that, although at any
moment it is finite in length, additional squares aways can be added to the
right- and left-hand ends o the tape. There is a finite set o tape symbols
S» S,y ..., S, caled thealphabet d the machine; at every moment, each square
o the tape is occupied by at most one symbol. The machine has a finite set of
internal states {qq, 4, - - . » 9,,}- At any given moment, the machineis in exactly
one o these states. Finally, there is a reading head which, at any given time,
stands over some square d the tape. The machine does not act continuously, but
only at discrete moments o time. If, at any moment t, the reading head is
scanning (i.e., is standing over) a square containing a symbol S; and the machine
isin the internal state g then the action o the machine is determined, and it
will do one o four things: (1) it may erase the symbol S.and print a new symbol
Se; (2) it may moveleft one square; (3) it may move right one square; (4) it may
stop. In cases (1)~ (3), the machine goesinto a new internal state g,, and is ready
to act again at time t + 1. We shall assume that the symbol S, represents a
blank, so that the reading head may always be assumed to be scanning a symbol.
The first three actions o the machine just described can be represented by
quadruples: either (1) ¢;S;S,q,, or (2) ¢;S;Lq, or (3) ¢;S;Rq,. The first two
symbols stand for the present internal state and scanned symbol, the third
symbol represents the action o the machine (print S,, or move left, or move

right one sguare), and the fourth symbol gives the internal state d the machine
after the action has been performed.
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If a tapeis put into a Turing machine and the reading head is placed on a
certain square, and if the machineis started off in one o itsinternal states, then
the machine begins to operate on the tape: printing and erasing symbols and
moving from one square to an adjacent one. If the machine ever stops, the
resulting tape is said to be the output of the machine applied to the given tape.
Now we can associate with any Turing machine T the following algorithm 8 in
thealphabet A o T. Take any word Pin the alphabet A and print it from left to
right in the squares o an empty tape. Place this tape in the machine with the
reading head scanning the left-most square. Start the machine in the internal
state g, If the machine ever stops, the word o A appearing on the tape is the
vaued theagorithm B. B iscalled a Turing algorithm. (The word appearing on
the tape is defined to be the sequence d symbols beginning with the left-most
symbol and moving right to the right-most symbol. Remember that a blank
square encountered in this motion is assumed to have the symbol S, printed in
it.) We have not specified yet the mechanism by which a machine knows when
to stop; this will be done below.

Any Turing machine can be determined precisely by afinite set o quadruples
d the three kinds: (1) ¢S54, (2) ¢S:Lqg,; (3) ¢;S:Rq,, such that no two
quadruples have the same first two symbols. In fact, we now shal define a
Turing machine to be such a finiteset o quadruples. The alphabet d any Turing
machine T isthe set d tape symbolsS,, appearing in any o the quadruples. The
internal states d the machine are the symbols ¢, appearing in the quadruples.
We assume that ¢, is an internal state o every Turing machine.

An instantaneoustape description o a Turing machine T is a word such that (1)
al symbolsin the word but one are tape symbols S,,; (ii) the only symbol which
is not a tape symbol is an internal state g,; (iii) g, is not the last symbol d the
word.t We say that T moves one instantaneous tape description a into another
one B (abbreviated a+ B) if and only if either (a) aisd theform Pg;S;Q, B is

d theform Pg,S, Q, and ¢;S;S,q, isoned the quadruplesd T; or (b) aisof the
form PS;q;S;Q, B is Pq,S,S;Q, and ¢;S;Lq, isone d the quadruplesd T; or (c)
aisd theform ¢;S;Q, B is ¢,5,S;Q, and ¢;S;Lq, isone o the quadruples of T;
or (d) ais d the form Pg;S;S,Q, B is PS;q,5.Q, and ¢;S;Rq, is one o the
quadruples of T; or (€) aisd theform Pg;S;, B is PS;q,S,, and g;S;Rgq, is one of
the quadruples o T.I

tAn instantaneous tape description describesthe condition of the machineand the tape at a given
moment. When read from left toright, the tape symbolsin the description represent the symbolson
thetape at the moment. Theinternal stateq, in the description is the internal stateof the machine at
the moment, and the tape symbol occurring immediately to the right of g, in the tape description
represents the symbol being scanned by the machine at the moment.

$Observe that, according to our intuitivepicture, “T movesa into 8” impliesthat if the condition
at time t of the Turing machine and tape is described by a, then the condition at time t + 1 18
described by 8. Notice that, according to clause (c), whenever the machinereachestheleft-hand end
of the tape and isordered to move left, a blank sguare is attached to the tape on the left; smilarly,
by clause (€), a blank squareis added on the right when the machine reachesthe right-hand end of
the tape and has to moveright.
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We say that T stops at an instantaneous tape description a if and only if there
is no instantaneous tape description 8 such that a — 8. (This happens when g;S;

occursin a but ¢;S; are not the first two symbols& a quadruple o T.)

A computation of a Turing machine T is a finite sequence o instantaneous
tape descriptions ag, . . . , @, (M > 0) such that the internal state occurringin
iSge; for 0 <i<m,a,+ a;,,; and T stops at 8. This computation is said to

begin with «, and end with a. The algorithm By  in any alphabet C
containing the alphabet A o T is defined as follows. for any words P, Q in C,
Br «(P) = Qif and only if there is a computation of T which begins with the
instantaneous tape description g,P and ends with an instantaneous tape descrip-
tion of theform R,g;R,, where Q = R, R,. An algorithm 9l in an alphabet D is
caled Turing-computable if and only if there is a Turing machine T with
aphabet A and an alphabet C containing A U D such that By, . and % are fully
equivaent relative to D.

We let 1 stand for S,. Remember that iii stands for 1™*!, for any natural
number m. Also, let * be an abbreviation of §,. Given a partial number-theoret-
ic function f(x,, ..., x,), we say that a Turing machine T (whose alphabet A
includes {1, *)) computesf if and only if, for any natural numbersk,, ...,k
and any word Q, By .k, *ky;* .. xk)=Q if and only f Q is
R, ..., k,)R, where both R, and R, are certain (possibly empty) words
consisting only o Sy's. (The form Rf(k,, . .., kK,)R, is alowed for the result
since S, isinterpreted as a blank.) The function f is called Turing-computable if
and only if there isa Turing machine T which computes f.

Examples

1. Consider the Turing machine T defined by the following quadruples.
4ol Lq,
15014,

The aphabet o T is {1, S;}. T computes the successor function, since
qok? q,Sok? g,k T 1. In general, T takes any gy1P into ¢,11P, and T takes

any word not beginning with 1 into itself.
2. The machine defined by the quadruples

91Lq,

49,5019,
when started on a word beginning with 1 keeps on adding I's to the left and
never stops.

3. The Turing machine given by the quadruples
90SoRqy
905>Rqo

qOSI; Rqq
%ol 1g,
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moves right until it locates the first occurrence (if any) of the symbol 1 and then
stops.

4. Let us find a Turing machine T which computes the addition function.
Take as the quadruples for T:

9015090
90SoR4)
4,1Rq,
q* 19,
7,1 Rq,
750143
4318043

Then 4o
gom *» &= golm+1 ln+l__,q05'u]m " [“”?Soqll'“ « 1"t 3 5lq,

o —’Sulmql * 1n+l_)Sglmq2]1n+l?Sglm+lqzln+l‘:I—:)Sglm-"l]qz‘ln?

T T
. —)SD|m+|1n+lq;So:3'Solxm+lan3lSu'_F’Solm+llnq3-gOSO=

Im-'-i x N
_»
T

T I
Splm* "+ 19355, = Sem + ng3SSo

EXERCISES
5.10. What function f(x) is computed by the following Turing machine?
401 Sod0
qoSoRq,
q,114o
7150142
511. Show that the initial primitive recursive functions U(xy, ..., x,) are

Turing computable.

5.12. Write down the quadruples of a Turing machine which computes the
function f(x) = [x /2], the greatest integer < x/2.

5.13. Show that the function m = n is Turing-computable. (For more examples,
cf. Davis[1958, Chapter 1].)

ProPosiTiON 5.12. Let T be a Turing machine with alphabet A. Let C be an

extension of A, i.e., CD A. Then there is a normal algorithm % over C which is
fully equivalent to the Turing algorithm %8 c relative to C.

PROOF. Let D=CuU {4, ..., 4, )} where g, ..., 4, ae the interna
states o T, and g, = ¢o. Write down the algorithm schema for % as follows:
first, for al quadruples ¢;S;S,q, d T, take the productions ¢;S; — ¢,S,. Second,
for each quadruple ¢;S;Lq,, take the productions S,¢;S; — ¢,5,S; for al symbols
S, d C; then take the production g;S; — ¢,8,S;. Third, for each quadruple
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g;S;Rq,, take the productions g;S;S; — S;q,S, for al symbols S, d C; then take
the production ¢;S; — S;q,S,. Fourth, write down the productions ¢, — - A for
each internal state g, of T, and, finally, take A — q,. This schema defines an

algorithm 91 over C, and it is easy to see that, for any word P of C, By (P) ~
A(P).

COROLLARY 5.13.  Every Turing-computable function f is partially Markoo-

, computable; hence (by Corollary 5.11), f is partial recursive, and, iff is total,
' then f isrecursiue.

PROOF. Let f(x), ..., x,) be Turing-computableby a Turing machine T with
alphabet A 2 {1, * }. Then by Proposition 5.12, there is a normal agorithm 9
over A such that % is fully equivalent to B, , relative to A, where

B Ak » - - * k)~ Rk, ..., k)R, R, and R, being (possibly empty)
sequences o Sy’s. Let €, be a normal agorithm over {1, =, S,} such that s
erases al Sy’s occurring before thefirst 1or » ; asa schemafor €, we may take

aS, — a
al — -1
ax — - x
a—-A
Asa

Also, let €, be a normal agorithm over {1, =, S,} such that €, erasesdl S;’s
occurring after the last 1 or » o awordin {1, » }; aschemafor g, is

a* »*a
al - la
aS, - a
a—-A
Asa
Now, let € be the normal agorithm @,°€,9%. Then for any k,,...,k,,
M(k]*- '*kn)%%T,A(_kl*"'*k_n)%Rl 1o == 5y Rz, Whel'e R, and
R, are sequences of Sy’s. Then
(R, TG, LRI Ry) = Ty k) R,
and Gy(f(k,, ..., k) R,) =f{k,, ..., k,). Hence, f is partially Markov-comput-
able by €.

ProPOSITION 5.14. Let % be a normal algorithm in an alphabet A #or
containing S, or 6. Then there is a Turing machine T such that the Turing
algorithm B = By x (s, 5)) N the alphabet A U {Sq, 6) has the following
property: for any word Win A, 8is applicable to W if and only if % is, and

Sec. 2
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B(W) is of the form S§A(W)Sg, where m and n are non-negatiue integers.
(The reason for the differencebetween % and B is that, while we agree to
consider §, asa blank on a Turing machine tape, S, is treated like any other
symbol in the theory o agorithms.)

PROOF. We may assume, by suitablereindexing, that A = {S,, Sy, . .., S}
Let P — (-)Q be an arbitrary production. We shall construct Turing machine
quadruples which will have the effect of replacing the left-most occurrence (if

any) of P inaword W by Q. If P# A, let P be by...b,. Then, take the
followingquadruples.

‘(] S,' R 9o (Sn S A, S,' H bo)

9o by 8 9o

do ) R q;

q> b, R 4,

92 S‘i Sf qr+2 (S; EAU {SQ}, S‘: + b])
g b, R 4

q3 S,‘ Si qr+2 (S, = A U {So}, S,' ?& b2)
9 b" I R I+

9 S; S; 9ri2 (S; €A U {So}, S #b,-)
r+1 br R q,.+4

qr+1 Si S; 942 (S; EA U {S0),S; #b)
9r+2 S; L 9r+2 (5; EA U {So))

qr+2 8 bO qr+3

4, +3 by R do

do So L Gr+s

qr+s S; L 9r+s (S; €A

qr+s 6 by Gr+s

qr+5 SO R dy

OIS S BEhigH R csater

to be specified later)

These quadruples have the following effect on a word W. (Notice that we have
not used ¢,; g, will have a special purposelater on.) If W has no occurrence of

P, then we wind up with the instantaneous tape description g, W; if W has an
occurrence o P, and W= W,PW,, where the indicated P is the left-most
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occurrence P in W, then we wind up with W, Pg, . ,W,. In the latter case, we
must now add some quadruples which will replace the indicated occurrence of P

by Q. Let Q bec, ..., There are three cases:
() s=r,ie, P and Q have the same length. Then we add:
(S; €A U {So))

9r+a
qr+7
qry8
9rv9

9 v10

q3r 47

9348

43,43

(2) s <r. Q is shorter than P. Add the quadruples

qr+4
qr+7

qr+3

qr+'?+1;

DrvT42541
Qr+?+lf+2
Q742542
A r742543

A +7425+3

q2r+s+8

After these quadruples work on W, Pg, , ,W,, we have

Si L qr+7
br Cr qr+8
C" L qr+9
b,_, Cr—1 9r+10
Cr—l L qr+ll
by €o 93, +8
\Y L 93, +8
S R dy

S; L
b, C
C; L
b,_, o
Co L

by So
So L

b5y So
So L
by So

(S, € A)

Sec. 2

u = 0if P>()Qissmple
1if P> ()Qisterminal
Then, applying these quadruples to W, Pg, . ,W,, we obtain ¢q,W,QW,.

qr+7

qr+8

Qr-i-s

Tre7425+1
742542
Qre7425+2
4742543
Drs74+25+3

Fr+7425+4

Q2r 4548

W41, 44 +85; ‘OW,

(SieAU {Sy)
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Now we must provide some quadruples which will move W, r — s squares to the
right to obtain W, QW, (preceded by some Sy’s). Let M be an integer larger than
al theindices o the ¢;’s and S;’s above, say, M = 3r + 9,

Grres+s S0 L Im

S 8 aye (SEA
du+;, O R gy
v+ So R gy
M+ S, L qys; (S EA)
Gom+j So 5} oM +j
Danm+j 5:, L qyps;
Tims;  So L G3me,

Gim+e; O So Gam+
G=12,...,k4 Qam+j Sy L qsM+j
Ism+j So Jorr+j

Tom +j So R deum+j

om+; Si Si 4, (S, €A)
Of P> (-)Q
issmple
1if P> ()Q
is terminal
sm+; S Si A (S, € A)

Beginning with W ,g,, , ,+S§ ~*@W,, these quadruples produce (Sq¥'q, W ,QW,
(where p is a positive integer).

(3) s >, ie., Qislonger than P. Thisisleft to the reader as an exercise. The
treatment is analogous to that of case (2). (If P or Q is empty, the dight
modifications necessary in the above constructions are left to be filled in by the
reader.)

Now, let us assume that % is a normal agorithm in the alphabet A =
{S,,..., S} not containing S, or 8, and that the algorithm % is defined by the
algorithm schema P, - (*)Q,. . .., P, = (*)Q,. We define a Turing machine T
as follows: in the work above, take P —» ()@ to be P, — (-)@, and lis the
appropriate quadruples (it will suffice to take Y to be a number 100 times
greater than the sum o k and the number o occurrences of symbols in the
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schema). These quadruples have the following effect: given g, W, if W does not
contain P, we wind up with ¢, W; if W= W,PW,, and this indicates the
left-most occurrence of P in W, then we finally obtain (Sy)*g, W,QW, (Where v
is a non-negative integer; and u=0 if P,—(-)Q, issimple, and u=1 if
P, — (-)Q, isterminal). Next, we consider P, — (-)Q, and form the quadruples
for this production as indicated above, except that we raise the subscripts on all
g’s by theamount Y (but ¢, isleft untouched). The subscripts are raised by Y so
that these quadruples will not interfere with the action of the quadruples
corresponding to P, — (-)@Q,. The new quadruples will go into action only after
aword W has been found not to contain P,; they have the effect of searching W
for an occurrenced P, and, if oneisfound, replacing the left-most occurrence
d P, by Q,, and winding up back in the initia state g, ready for action again by
the first group o quadruples if P, —» (-)Q, is simple or winding up in the
terminal state ¢, if P, - (-)Q, isterminal. We now repeat the same process with
Py — ()Q,, thistime adding 2Y to the subscripts o the g¢,’s, etc. It should be
clear that the Turing machine T so defined mimics the action of the normal
agorithm % in such a way that, for any word W in A, B =By 5 (s, ) IS
applicable to W if and only if % is, and B(W) isd the form (Sy)"W( W)X Sy",
where m and n are non-negative integers. (For a similar proof, cf. Asser [1959].
An indirect proof could have been given by showing that every partial recursive
function is Turing-computable and then using Corollary 5.11. Study of Hermes
method of linking Turing machines and his flow-charts (cf. Hermes [1965], § 7)
would clarify the procedures used in the proof above).

COROLLARY 515.  Every partially Markov-computablefunction is Turing-com-
putable. (Hence, every partial recursive function is Turing-computable. For

another proof, cf. Kleene[1952], § 68.)

PROOF.
function.

From Proposition 514 and the definition o Turing-computable

Thus, the Turing-machine approach to effective computability isequivalent to
that by means of norma algorithms or by recursive functions. A Turing
machine seems to be an abstract form of a digital computer (except that no
attention is given to speed or convenience o operation). Intuitively, then, the
fact that Turing-computable functions are identical with partial recursive func-
tions further substantiates Church's Thesis. In addition, one can show that
making additional complications in the structure d Turing machines (such as
adding more tapes and reading heads, or using a two-dimensional tape) does not
change the class o Turing-computable functions. (Further arguments along
these lines may be found in Kleene [1952], pp. 317-323 and 376-381.)

3. Herbrand-Godel Computability. Recursively Enumerable Sets.

The idea of defining all computable functions in terms o fairly simple
systems of equations was proposed by Herbrand and developed by Godel [1934].
The exposition given here is a version of the presentation in Kleene [1952],
Chapter XI.

__: sec. 3 HERBRAND-GODEL COMPUTABILITY 249

We definefirst the terms.

(a) All variables are terms.

(b) Oisaterm.

(c) If tisaterm, then (t)' isa term.

(d) If¢,...,t,aetermsand f isafunctionletter, f(¢), ...,

For every natural number n, we define the corresponding numeral  as
follows: (1) 0is0; (2) n +1 is(M). Thus, every numeral is a term.

An equation is a formula r = s where r and s are terms. A sysem E of
equations is a finite sequence r, =s,, r, = 55, ..., I = 8 Of equations such
that r, is of the form (¢, . . ., t,). The functionletter f is called the principal
letter of the system E. Those function letters (if any) which appear only on the
right side of equations of E are called theinitial lettersdf E; any function letter
other than the principal letter which appears on the left side of some equations
and also on the right side of some equationsis called an auxiliary letter o E.

We have two rules o inference:

R,: An equation e, is a consequence of an equation e, by R, if and only if e,
arises from e, by substituting any numeral 1 for al occurrences of a variable.

R,: An equation e is a consequence by R, o equations fi"(f;, ..., ) =P
and r=s if and only if e arises from r=s by replacing one or more
occurrences of fi"(my, ..., 0,) ins by §, and r = s contains no variables.

A proof o an equation e from a set B of equationsis a sequenceey, . . . , €, of
equations such that e, = e and, if 0 < 1 < g, then either (1) g is an equation of
B, or (2) ¢; isa consequence by R, of a preceding equation e; (j <), or (3) ¢ isa
consequence by R, of two preceding equations ¢; and e, (j < 1, m <i). We use
the notation Bt e to state that there is a proof from B of e (or, in other words,
that e is derivablefrom B).

Let E be the system
fitx) = ()
fﬁ(-"tv xX;) = ff(-z’ xz&fil(xl))
The principal letter of E is f2; ;' is an auxiliary letter, and f} an initial letter. The
sequence of eguations

flz(xis X;) = f?(i, X2 fﬂ(x,))
fnz(i xz) = fﬁ(is X2 fl[(i))
R = 2. 1402)
filx) = (x))
fll(i) = (2), (i'e"fll(i) = §)
12D = 2. T3)
is a proof of f22, T) = f@2, 1, 3) from E.

Example.
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A number-theoretic partial function ¢(x,, . . . , x,,) iS said to be computable by
asystem E of equationsif and only if the principal letter of Eisaletter$ withn
arguments, and, for any natural numbersk,, ..., k_, p,

Etf{k,...,k) = pifandonly if gk, ..., k) = p.
The function ¢ is called Herbrand-Godel computable (for short, HG-computabl €)
if and only if thereis some system E of equations by which ¢ is computable.

Examples.

|. Let E be the system f(x,) = 0. Then E computes the zero function Z.
Hence, Z is HG-computable.

2. Let E be the system f(x,) = (x,)". Then E computes the successor function
N. Hence, N is HG-computable.

3. Let E be the system f*(x,, . . ., x,) = X;. Then E computes the projection
function U, Hence, U? is HG-computable.

4. Let E be the system
fiz(xlio) = J":'|

fiz[xl- (xz)') = (f]l(xp xz))'
Then E computes the addition function.
5. Let E be the system

flx) =0

fi(x) = x,.
The function ¢(x,) computed by E is the partial function with domain {0) such
that @(0) = 0. For every k # 0, Et f'(k) = 0 and E t f'(k) = k. Hence, ¢(x,) is
not defined for x, # O.

EXERCISES

5.14. What functionsare HG-computable by the followingsysemsd equations?
@ flO =0  fl(x)) = x
®) f(x, 0) = x; _},2(0, xz)lz 0
Gimat, s
x,0)=x 2 4
Show thét the followirdy fhct
(@) [xy — x)f
(®) x; - x,
@ o0 = (

2(xy), (x9)) = fHxy, x2)
S e A x) = 0

5.15.

0 whenx iseven
1 whenxisodd

ProposiTiON 5.16.  Every partial recursivefunction is HG-computable.

PROOF.

(1) Examples 1-3 above have shown that the initial

functions Z, N, U
HG-computable, Ul are

 letter fm, ,. By changing indices, we may assume that no two o Ej,..
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2) Substitution (Rule 1V). Let @(x;, ..., Xx,) =
'n(s(b.&., T e S whefen, 5. ., e besh shwn o

| be HG-computable. L et E, be a system o equations computing ¥i» with principal
letter f7, and let E, ., be a system of equations computing 7, with principal

E,.., En., have any function lettersin common. Construct a system E for @ by

listing E,, ..., Eq., and then adding the equation fn+o*p...,X,) =
A X s X - SmOie Lo, X,)). (We may assume that f7 ., does not
occur it Ep ..., Eq,) It is clear that, if ok, ..., k) =p, then Et
f;ﬂ(l_(_t, ..., k) =p. Conversely, if Etfr.k,.., k)=7, tht?_ﬂ)f_l-
fikp .. K) =Pr... EFfiKy ... k) =P, and ET JeeiPre. o, P ii)
- Hence, it readily follows that E, b fi(k;, . .., K) =Py ..., Bt ik, ...,
By A Byt Bn- B 2 Emsellenity, 7,000 1) 2
L P, k) =pn and 7Py ..., Pn) =P So, ek, . .  k)=p.

(The details of 'tﬁi's’proof are left as an exercise. Hints may be found in Kleene

© 119521, Chapter X1, especially pages 262-270) Hence ¢ is HG-computable.

(3) Recursion (Rule V). Let

‘P(xl’---’xmo) = WYXy .03 Xp)
<y Xp» (xn+l)+ 1) = g(xl'-'.,xnﬂ’?’(xn--»

where  and 4 are HG-computable. Assume that E, is a system o eguations
computing ¢ with principal letter f7, and that E, is a sysem d equations
computing 8, with principal letter f*2. Then form a system for computing ¢ by
adding to E; and E,

i e ooy % 0) = (g -, )
f;ﬁl(.xb ey Xp (xnﬁ-l)/) = f!n+2(xl’ e xn+l’fr+t(xls e xn+|))

(We assume that E, and E, have no function letters in common.) Clearly, if
ek, ..., k,k) =p, then Et f"*!(k,,..., k, k) = p. Conversely, one can
prove easll(f} b)y iIn)duction onflk ?t::at if lI(E“t fit' k..., % k) =P then
ok, - .., %, k) =p. Therefore, ¢ is HG-computable. (The case when the
recursion has no parameters is even easier to handle, and is |eft as an exercise)

(4) p-operator (Rule VI). Let @(X;s .. .1 Xy) = py((xp ..., X ¥} =0) and
assume that ¢ is HG-computable by a system E,; d equations with principal
letter f7+!. By Parts (1)-(3), we know that every primitive recursive function is
HG-computable. In particular, multiplication is HG-computable; hence thereis
a system E, o equations, having no function letters in common with E,, and
with principal letter fZ such that E, t £k, k,) = pif and only if k,. k; = p. We
form a system E, by adding to E, and E, the equations

Fr 5 O) = )

"X, (x,,.H)’) = %(f;“(xh cres X xﬂ+l)‘f;l+l(x" T

q](xls L ’ X1I+l))

Il xn’ xﬂ'l’ l))

f;+'|(xl’ ..
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One can prove by induction that E; computes the function
M (X, - e s Xy Y), e, By b ff%0(k,, ..., k, k) =p if and only if
[ cxpiky, - - - s k, y) = p. Now construct the system E by adding to E, the
equations
L), 0, x3) = X5

j‘jﬂ(_.‘(], e W x") = ff(f;*’l(_xlg s ey I”, xﬂl'l),f;-‘-l(xl! P S (xn+|)'), xnﬂ)
Then E computes the function e(x,, . . . , X,) =_;_Ly(\p(x|,_._. X, Y) = 0). For, if
py(ky, -+ ., k) =0)=q, thenEyt i+ ¢k, ..., Kk, @ =P, wherep + |
=¥k, .-, k,y), and E;tfrt'k, ..., k, @ =0 Hence E+
7(ky, ..., K) =30, 0,9. But, EF (9, 0,9 = g, and s0, EF fi(ky, . . ., k)
=g (ZDnverser;if Etf5k, ..., k) =3 then EF fm, 0, @) = g, where E, -
%k, .-k, @ = @) and E; k', ..., k, @) = 0. Hence
Hy<q‘1€’(k|; ey km )’) =m+1#0 and ﬂy<q+|!}l¢(k|s ey km )') =0. SO,
Wk oo,k y) =0 for y<q, and ¥k, ..., k, @ =0 Thus,
py(Y(k,, . - ., K, y) = 0) = . Therefore, ¢ is HG-computable.

We now shall proceed to show that every Herbrand-Godel computable
function is partial recursive, by means d an arithmetization o the apparatus o
Herbrand-Godel computability. We shall use the same arithmetization that was
used for first-order theories (cf. Chapter 3, § 4). (We take the symbol ' to be an
abbreviation for f!. Remember that r = s is an abbreviation for 4%(r, ). The
only individual constant is 0.) In particular (cf. pp. 153-154), the following
relations and functions are primitive recursive:

FL(x): x is the Gédel number of a function letter.

(Ey)y<x(Ez),c(x =9 + 8(2¥- 3 Ay > 0 Az > 0)

EVbl(x): X is the Gédel number of an expression consisting of a variable.

EFL(x): x is the Godel number of an expression consistingd a function letter.

Nu(x): X is the Godel number of a numeral.

Trm(x): X is the Gédel number o a term.

Num(x) = the Gédel number o the numeral x.

Arg.(x) = the number o arguments of a function letter f, if x is the Godel
number of f.

x ¥ y = the Goédel number of an expression AB if x is the Gédel number o the
expresson A and y is the Godel number o the expression B.

Subst(a, b, u, v): v is the Gédel number of a variable x,, u is the Gédel number
of aterm 1, bis the Gédel number of an expression &, and a is the Goédel
number o the result of substituting t for all occurrencesd x; in @.

o

i
i
!

ISEC.?:
|

| The following are also primitive recursive.
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Eqt(x): X is the Gddel number of an equation:

Ih(x) = 3 A Trm((x)1) A Trm((x)2) A (x)o = 107

. (Remember that = is 4}, whose Godel number is 107.)

Syst(x): X is the Goédel number of a system d equations:
(¥)y < meoEat((®)y) A FLI(((®) incy=1)1)0)

Occ(u, Vv): U isthe Godel number of a term ¢ or equation B and v is the Gédel
number of a term which occursin r or 8.

(Trm(u) \V Eqi(u)) A Trm(v) A (Ex)xcu By cu(u =X sV 2y V
u=x*vVu=vry\u=yv)
Cons,(u, v): uisthe Godel number of an equation e;, and v is the Godel number
o an equation e,, and e, is a consequence d e, by Rule R;:
Eqt(u) A Eqt(v) A (Ex)y.o(Ey)y<v(Nu(y) A Subst(v, u, y, x) A Oce(y, x))

Cons,(u, z, V): u, z, v are Godel numbers o equations ey, e,, e, respectively, and
e, iSa consequence d e, and e, by Rule R,.

Eqt(u) A Eqt(z) A Eq(v) A ~ (Ex)x < (EVBI(x) A Oce(z, X)) A
FL(((2)1)0) A\ (X)o<x<im@n ~ FL(((2)1)x) A
(X)x< @) ~ FL(((2)2):) A Oce((u), (z)) A ((Ey)y<u

(Ew)w{_u((u)l =y (Z)I * W /\ V= 210?3(u)15y . (z)z.,) \/
(W) = @) Av = 2'73¢15%2)))
Ded(u, 2): uisthe Gédel number of a system of equations E, and z is the Godel
number o a proof from E.
Syst(u) A (x)x-:Ih(z)((Ew)W(.lh(u](u)w =2V
(Ey)y <xCons ((2)y, (2)x) V (Ey)y<(EV)y <xConsy(2)ys (2. (2)))

S.(W, X;5 .+ -+, Xy, 2): U IS the Godel number of a system of equations E whose
principal letter isof the form £, and z is the Godel number o a proof from E
of an equation o the form f*(X,, ..., %) = p.

Ded(u, 2) A Argr((((W)inw - |)1)n =n/ (((Z)Jh(z)él):)o =
(((u)lh(u);l)l)ﬂ A (Yo<y < ih((@we - o)~ FL((((Z)"‘(Z); 1)!)!*)

((()rnewy - l)l) * 23 * 2Nurn{xll + 2 »
ANu((@)in@ = 1)) A (@D =1), =2 Yo
2Num(x1) 2T o . 27 " zNumfln) 2

Remember that g(() = 3. 8() ) =518(,) =7
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U(X) = PYy{x(Num(y) = ((x)]h{x)-'—l)l)- (|f X is the Gédel number of a prOOf o an
equation r = p, then Uxx) = p.)

ProrPosITION 5.17 (Kleene{1936a)]). If ¢(x,, . .
system d equations E with Géddel/ number e, then

(X - . -, X5) = U(py(Sa(e %y, - .., X, ¥))

Hence, every HG-computablefunction ¢ ispartial recursive, and, if ¢ is total,
then ¢ is recursive,

PROOF. @(ky, . .., k,) = p if and only if EF f'(k,, ..., k;) = p, where f7 is
the principal letter of E. ¢(k,, ..., k;) is defined if and only if (Ey)S,
ekp..., koY) If @k,..., k) is defined, py(S,(e, ky, ..., Kk, ¥)) is the
Gaodel number of a proof from E o an equation f'(k,, ..., K, = p. Hence,
U(pyS,(e, k..., K, V) =p= ok, ..., k). Also, since S is primitive re
cursive, py(S,(e, X,, ..., X, Y)) is patia recursve. |f ¢ is total, then
(x) ... ()(EY)Sye, X, . . ., X5 ¥); hence, py(S(e, Xy, ..., X, ¥)) is recursive,
and then, so is U(py(S,(e, X, « -+, X ¥)))-

Thus, the classd Herbrand-Godel computable functionsis identical with the
class of partial recursive functions. This s further evidence for Church's Thesis.

., X,) is HG-computable by g

It is sometimes more convenient to use instead o S the primitive recursive
predicate
Ta(z Xy ..., X, ¥): Su(z, Xy,

Clearly, if T,(z, xy, .
to S, if T (z, x,,.

e Xy y) A (u)l-l*i)" -~ Sn(zr Xpo-uos xn) U)
.y X, Y), then S.(z, x,, ..., x,, y). In addition, in contrast
X Y) and Tz, X,,. .., X, V), theny = v. It is obvious

that

(EY)So(z Xps ..., X ¥) = (BN, (2. Xy ., Xy ¥)
and

UlwS,(z, X1, ... s %, ) = UlwT,(z, % ..., x,»))

whenever either side is defined. From Propositions 5.16 and 5.17, it follows
that every partial recursive function is expressible in the form
U(pyT,(e, X,y - -+ 5 X, Y)) Where e is the Godel number o a system of
equations computing the function. Conversely, for any natura number e,
U(pyT (e, X,, ..., X, Y)) is a partia recursive function. Thus, as z varies over
al natural numbers, U(pyT,(z, X,, - - - , X, Y)) Qives an enumeration (with repe-
titions) of all partial recursive functions d n arguments. A number e such that
Py, e, X)) = U(pyTo(e, Xy, - - ., Xy, Y)) is called an index o the function ¢.
The Godel number o any system of equations computing ¢ is an index of g;
there are infinitely many indices of ¢. (Exercise.)
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By an index of a recursive relation R we mean an index o the characteristic

R(xp, ..., %) = EV(T(ex, ..., %, ¥) AUy) = 0)

-j whereeisan index of R.

LEMwA 518
(1) For n> 0, If R(x,, ..., X, y) is a recursive predicate, then there exist
natural numbers ¢;, ¢, such that
(EyR(xXpr ..., %, y) = (EY)Ty(en X ..., %0 Y)
and
Ry, o, X ¥) = (y) ~ Tolen X - ., X0 Y)
(2 For n>0, If Rx,,...,x.,2Y) is a recursive predicate, there exist
natural numbers g, e, such that
@)(EYREX, ..., X2, Y) = (@)(EY)Thsi(en xy, -0 X0 s y)
and
(E) MRy, . .., % 2, Y) = (EZ)(y) ~ Tass(es Xy,

and so on, for three or more quantifiers.

Cax, DY)

AROCF

(1) Let g(xy, - . -, X, Y) be the characteristic function o R; then ¢ is recur-

sve, and py(e(x,, - .., %, Y) =0) is partia recursive. Let e, be the Godel
number of a syslem o equations computing aY(e(Xp ..., X, Y) = 0).
Then, (Ey)R(X;,...,X%,Yy)  and only if py(e(X, ..., X,y) =0 is
defined: hence, (Ey)R(,,...,x,, y) = ENTu(en Xy, ..., X, ¥). Applying
this result to ~ R, we obtain a number e, such that (Ey) ~
R ooy X ) = ENTolen X, ..., X0 ¥)- Hence, RK,L.L, Xp Y) =
) ~ T,(es X,, .. ., X,,¥). (2) follows from (1), taking n + linstead of n.

Thus, as u varies, (Ey)T,(w X,, ..., X, y) enumerates al relations
(Ey)R(x;, - - -, X, ¥), where R is recursive, and (y) ~ To(w, Xy, . . ., X, Y) enu-
merates al relations (y)R(x,, . . ., X,, ¥), where R is recursive; etc.

ProposiTION 5.19 (Kleene[1943; 1952, § 57], Mostowski [1947])
(1) f R(x, y) is recursive, there are natural numbers e,, €, such that
~ ((Ey)R(ep, y) = (y) ~ Ty(e), &1, )
and
~ ((Y)R(ep y) = (Ey)T (ep €2 )
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(2) If R(x) is recursive, there are natural numbers e,, e, such that
~ (R(e) = (y) ~Ti(ey, €1, y)
and
~ (R(e)) = (Ey)T\(e,, &5, ¥))
(3) Both (y) ~ T\nx, X, y) and (Ey)T,(x, X, y) are not recursive.
(4) Consider the following list (where R is any recursive relation):
Rxp ... %) (Ey)R(xps -« 5 X0 ¥1)  (Ey)(Y)R(Xy, - - -4 X, ¥y ¥2)
I (YOR(Xy - s Xn Y1) (VDEYIR(X, .oy Xy, ¥y, ¥5)
(Ey )(y)(Ey)R(X), - - - s X0, ¥is Yoy ¥3) - - -

(.YI)(EYI)(Y:!)R(XD o X Yo Yoo y:;) e

If welet IIj = 2§ = the set o all recursive relations with n arguments; and, for
k >0, 20 = theset d al relations with n arguments expressible in the ** prenex
form” (Ey, )(¥y) - - - QY IRX, « + + 5 X Vs Y20 - - - 5 Yi), CONSISting of K alternat-
ing quantifiers beginning with an existential quantifier and followed by a
recursive relation R; and I} = theset d all relations with n arguments express-
ible in "prenex form” (y,)Ey,) ... (Qy)RX;, .., %, VY,, Y5 - - -, ¥i)» CONSISt-
ing d k aternating quantifiers beginning with a universal quantifier and
followed by a recursive relation R, then the list above can be written

23 %3

I I3 I

(In the "prenex form,"” (Qy,) represents either a universal or existential quanti-
fier.)

(@) Every relation d any form listed above is expressible in any form
indicated in any df the succeeding columns on theright, i.e., Zf € =" n 11} and
[k €2 NI} for al j > k.

(b) There is a relation o each form, except the left-most, which is not
expressiblein the other form indicated in the same column, and, hence, by (a),
not in any of the previouscolumnson the left, i.e., 2§ — II; ## 0 and [I} — 2p #+
0fork > 0.

(c) Every arithmetic relation (cf. p. 151, Exercise 3.34) is expressiblein at least
one d these forms.

(d) (Post) For any relation Q(x,, . . . , x,), Q isrecursive if and only if both Q
and ~ Q are both expressiblein the form (Ey,)R(x,, - .., x,, ¥,), where R is
recursive, i.e., 2F N I} = Z§.

25
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©1fQ, € Spand Q, € 3¢, then Q, V Q, and Q, A Q, are in =f; if Q and

' Q aeinll}, then Q,\/ Q, and Q, A Q, are in Ilg.

(f) In contradistinction to (d), if k > O,
CranTiyy) - GRull) # 0

PROOF.

(1) Assume R(x, y) recursive. Then, by Lemma 5.18, there are numberse,, e,
such that (Ey)R(x, y) = (Ey)Ty(e), X, y) and (R(x, y) = () ~ Ty(ep, x, ). In
the first equivalence, let x = ¢,, and, in the second, let X = e,.

(20 Assume R(x) recursive. Then R(x) Ay =Yy is recursive, clearly,
(Ey)R(x) AY = y) = R(x) and ()(R(x) Ay = y) = R(x). Apply (I).

(3) Assume(y) ~ T,(x, X, y) is recursive. By (2), thereisan integer e, such that
~((y) ~T,(e,, €1, ) = (v) ~T,(e;, €, ¥)), which is a contradiction. Similarly,
if (Ey)T,(x, X,y) is recursive, then, by (2), there is an integer e, such that
~ ((EY)T,(e,, €5, Y) = (Ey)T,(e,, €,, ¥)), which is a contradiction.

4 @ Ez)YDEZR)Y) ... E)GIRE, . X Zp Yo, L, 20 YW =
U(Ez)y)) . - - EZ)OIREy, ..., X0 Zis Yo oo o> Zo Vi) AU = u) =
(Ez))y)) - . . Ez))EDREXy, - - ., Xy Zps Yo . - ., Zo i) A u = u). Hence
any relation expressible in one d the forms in the list is expressible in both

+ formsin any succeeding column.

(b) Let wus just take a typical case. Consider
EV@)EYT, (X, X X5 - - -5 X V, 2, Y). ASSUme that thisis expressiblein the
form (V)(Ez)(y)R(x,, . . ., X,, V, Z, ¥), where R is recursive. By Lemma 518, this
relation is equivalent to (VY(Ez)(y) ~ T,,J(e, X,, ..., X, V, 2, Y) for some e. But
when X, = e, thisis a contradiction.

(c) Every wf o the first-order theory S can be put into prenex normal
form. It suffices to note that, if R isrecursive, then (Eu)(Ev)R(u, V) is equivalent

' to (Ez)R(?(2), 63(2)), Where o}, 07 are the recursive inverse mappings of the
. one-one correspondence a? between pairs d natural numbers and natural

numbers (cf. 145-146). Also, (W)(V)R(y, V) is equivaent to (2)R(s3(2), 03(2))-

'l:._ Hence, successive quantifiers of the same kind (existential or universal) can be

T e G TS

condensed into one such quantifier.

(d) If Q is recursive, so is ~Q; if P(x;,...,x,) is recursive, then
P(x;, ..., %) = ENPE, ..., %) Ay =Y). Conversely, assume Q is express-
ible as (Ey)R,(x, - - -, X5, ¥), and — Q as (Ey)R,(x,, . . ., %, ¥), where R, and
R, are recursive. Hence, (x,) . . . KIEDR, Xy, . . ., X0 V) V Ry(Xys . . ., Xop Y))-
SO, p(xy, - -+ X)) = mYR(X, .., X, V) V RY(X,, - . L, Xy, Y)) IS Tecursive. Then
Qxy, s X)) = RyXpy e - ., Xy @(Xps .+« ., X)), and, therefore, Q is recursive.

(e) Use the following facts;, If x is not free in %, F(Ex)(%\V B) =
AV (Ex)B), F(EX)AA D)= A A (Ex)B), F(x)@AV B) =@V (0)B),
FO@AAB) = U A (X))
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(f) We shall suggest here a proof in the case n = 1; the other cases are
then easy conseiuences. Let Q(x) € I} - [I.. Define P(x) as (Ez)(gx =2z
Q@) V (x =2z T 1A ~Q(2)). It is easy to prove that P& =! U II; and that
Pe 3!, .. Toshow that P € II;, 5 note that P(x) holds if and only if

(Ez)(x =22 A Q(2)) V (Ez,ei(x = 22 + 1) A(2)(x = 22 + 1 D~Q(2)))
(Cf. Rogers [1959)).

EXERCISES

516 Thisexercisewill show the existencedf a recursive, non-primitive recursive
function.

1. Let [Vn ] be the largest integer < V. Show that [Vn ] is defined by the
recursion

[

k(0 =0

k(n+ 1) = x(n) + @](n + 1) — (k(n) + l)zl
Hence, [Vn ] is primitive recursive.
2. The function Quadrem(n) = n = [Vn ]* is primitive recursive and represents
the difference between n and the largest square < n.
3. Let p(x,y) = (x ty? T y? +x pn) = Quadrem(n) and pyn) =
Quadrem({V'n ]). These functions are primitive recursive. Prove:
@) pilp(x, y)) = x and py(p(x, y)) = y.
(®)  plpi(n), p2(n)) = n.
(¢) pisa one-onefunction from w? onto w.
(@) pi(0) = po(0) =0 and

[

pin+ 1) = py(m) +1) .
pan + 1) = pa(n) } SR S

(€) Definefor each n > 3, p™(Xys -+« , X)) = p(P" " '(Xp + + -, Xp_1)s Xp)- Let
p? = p. Then each p” is primitiverecursive. Define pfik) = pf ~(p,(k)) for 1 < i <
n -1 and pik) = pxk). Then each pP(l < i < n) is primitive recursive,
plP"(Xy, . . ., Xp)) = x and p"(p{(K), p3(K), . . . , pp(k)) = k. Hence, p" is a one-one
mapping o «" onto w, and the p™s are the corresponding "inverse™ functions. The
p™s and p™’s are obtained from p, p;, p, by substitution.

4. The recursion rule (V) (cf. page 138) can be limited to the form

‘;’(xb--'vxnd-l’o) = Xn4| (1'1 30)

q’(xl’ e xn'I-|! y + I) = q)(xh LB xn'fl' y’ l\b(xl’ ey xn+l? y))
Suggestion: given

B(Kh e ,Kn,o) = T(xb +oue !xn)

0%, .o, X Y+ 1) = 8(Xp o, X ¥, 0Ky .0, X, Y))
Define ¢ as above, letting (xy, .. -, Xgs1, Vs 2) = 68Xy, - .., %, Y, 2). Then
g(xl! ) xn) )’) = ‘P(xl, ey Xn, Y(x]’ "y xn), y)
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5. Assuming p, p,, p, as additional initial functions, we can limit uses of the
recursion rule (V) to the one-parameter form:

¥(x,0) = a(x)
Y Y + D = By, ¥(x y)
Hint: Let n > 2. Given
0(x, ..., % 0) = (X1, ..., %)
0xp, ..., x, y+ 1 S(Xxp ... X Y, 00Xy, L X, Y)
Let n(u, y) = 8(p}(v), . . ., pa(u), y). Define n by a permissiblerecursion.

6. Assuming p, p;, p, as additional initial functions, we can use 8(y, ¥(x, y))
instead of B(x, Y, ¥(x, y)) in Part (5). (Hint: given

Y(x,0) = a(x)
yx, y+ 1) = B, y, ¥(x,¥)

let Yy (x, y) = p(X, ¥(%, y)). Then x = pi(¥1(X, ¥)) and Y(X, y) = pa(¥(X, y)). Define
¥, by an appropriate recursion.)

7. Assuming p, p,, p, as additional initial functions, we can limit uses of the
recursion rule (V) to the form

¥(x,0) = x

Y(x v + 1) = By, ¥(x. ¥))
Hint: use Part (6). Given
o(x,0) = a(x)

e(x, Y + 1) = By, 9(x, y))
Definey as above. Then ¢(x, y) = Y(a(x), y).
8. Assuming p, py, ps +,°, S0, & additional initial functions, we can limit all
usessd the recursion rule (V) to those with one parameter of the form
f(0) =0

f(y + 1) = h(y, f(¥))
Hint: given, by Part (7),
¢¥(x,0) = x
Y Y + 1) = By, ¥(x )
Let f(n) = ¥(pa(n), py(n)). Then
f(0) = ¥(p2(0), p1(0)) = ¥(0,0) = 0
f(n+ 1) = Y(pa(n + 1), pi(n + 1))
pn T Dif p(nt1=0
- [ Bloy(n + 1) = Lo + 1), pm + 1) = D) if o+ 1) =0
po(n + 1) if py(n + 1) =0
{ B(p(n), ¥(py(n), p2(n))) if py(n + 1) # 0
pi(n + 1)ifpy(n+ 1) =0
B [ Bloy(n), () if py(n + 1) # 0
pa(n + 1) - sg(py(n + 1)) + Blpy(n), f(n)) - sg(es(n + 1))
h(n, f(n))
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(Note that g is obtainable by a recursion of the appropriate kind.)
Then y(x, y) = f(p(y, x)).
9. All primitiverecursve functionsare obtainablefrom theinitia functionsz, N,
U, p, p1» 02, +,-, sg by subgtitution and the recursion rule (vy in the form

f(0) = 0
fly + 1) = h(y, 1(y))
(Restatement o Part (8).)
10. In Part (9), h(y, f(y)) can be replaced by h(i(y)). Hint: given
f(0) = 0

iy + 1) = h(y, {(y))
Let g(u) = p(u, f(u)), and p(w) = p(p,(w) + 1, h(p)(w), p2(w))). Then

g0) =0

gy +1) = o(gy)
and

f(w) = pa(g(w))
11. Show that the equations
Y(n,0) = n + 1
YO0, m+ 1) = y(1, m)
y(n+ 1L, m+1) = Y(y(n, m + 1), m)

define a recursve function. (Hint: show that y is Herbrand-Godel computable by
the given equations, and then use Proposition 5.17.) In addition, prove:

(D ¥ m)>n

(II) ¢ is monotonic in each variable, ie., if x <z then y(x,y) <¥(z, y) and
Wy, X) <y, 2).

) Yo m+1) >y¢mt 1 m).

(IvV) For every primitive recursive function f(x,, . . . , x,), there is some fixed m
such that f(x, ..., x,) <¢(max(x,, ..., %), M) for dl x;,...,x, (Hint
prove thisfirstfor the initial functionsz, N, U, p, p,, p,, +,+, 3, and then
show that it is preserved by substitution and the recurson d Part (10)
above.,) Hence, for every primitive recursve function f(x) o one argument,
there is some m such that f(x) < y(x, m) for al x.

W) gr%ve that ¥(x, X) + 1 is recursive, but not primitive recursive. (Hint: Part

)
For other proofsd the exisence d recursive, non-primitive recursive functions,

cf. Ackermann [1928], Peter [1935, 1951], R. Robinson [1948].

I

A very important metamathematical notion is that of recursively enumerable
set. A set of natural numbers is called recursively enumerable (r.e.) if and only if
it is either empty or the range of a recursive function. Intuitively, if we accept
Church's Thesis, then a recursively enumerable set is a collection of natural
numbers which is generated by some mechanical process.
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ProPosiTION 5.20

(I) A set Bisr.e. if and only ifx € Bis expressible in the form (Ey)R(x, y),
where R is recursive. (Wecan also allow R here to be primitiue recursive.)

(2)A set Bisr.e. if and only if it is empty or the range o a partial recursive
function (or of a primitiue recursive function).

(3) A set Bisr.e. if and only if it is the domain o definition of a partial
recursive function.

(4)A st Bis recursive if and only if both B and its complement B are r.e.

(5) The st {x|(Ey)T (%, X, y)) is r.e., but not recursive.i

PROOF.

(1) Assume B is re. If B is empty, then x EB = (Ey)(x # X A Y # V).
If B is non-empty, it is the range of a recursive function ¢. Then x € B =
(Ey)(¢(y) = X). Conversely, assume x € B = (Ey)R(x, y). If Bisempty, Bisr.e.

2 If B is non-empty, let k be a fixed element of B. Define:

[k i ~R(@)e @)
0(z) = [(2)0 if R((2)o, (z)1)

Clearly, B isthe range of 8, and 8isrecursive. (By Lemmab5.18, if R isrecursive,
(Ey)R(x, y) = (Ey)T,(e, x, y) for some e; but T,(e, X, y) is primitive recursive.)

(2) Assume Bis the rangedf a partial recursive function ¢. If B isempty, then
Bisr.e. If Bisnon-empty, let k be a fixedelement of B. Now, there is a number
e such that @(x) = U(uyT,(e, X, y)). Let

_ ] U((2h) if T,(e, (2)o» (2)1)
e '[ k if ~Tye, @0 @)

Then 8 is primitive recursive and B is the range of 8. Hence, B isr.e. This proof
L also shows that every non-empty r.e. set is the range of a primitive recursive
t  function.

(3) Assume B r.e. If B is empty, B is the domain of the partial recursive

function py(x Ty + 1 =0). If B is non-empty, B is the range o a recursive
| function f. Let g be the partial recursive function such that g(y) = px(f(x) = y).
, Then B is the domain of g. Conversely, assume B is the domain of a partial

recursive function ¢. Then there is a number e such that ¢(x) =
U(pyT,(e, X, ¥)). Hence ¢(x) = z= (Ey)T,(e, X, y) AU(y) =2). But x € B =
(Ez)(e(x) = 2). So, x E B if and only if (Ez)(EyXT,(e, x,y) A U(y) = 2), and
the latter is equivalent to (Eu)(T,(e, X, (u),) A\ U((u),) = (u)y); moreover,

T,(e, x, (u),) A U((w);) = (u), isrecursive. Thus, by (1), Bisr.e.

(4) From (1) and Proposition 5.19(4(d)). (The intuitive meaning of Part (4) is
the following: if there are mechanical procedures for generating B and B, then to

l.e., w — B, where w is the set of non-negative integers.
tRemember that {x|P(x)} stands for the set of all x such that P(x) holds.
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determine whether any number n isin B we need only wait until n is generated
by one of the machines and then observe which machine produced it.)
(5) From (1) and (4), and Proposition 5.19(3).

EXERCISES

Prove:

5.17. Theinverseimage of an r.e. set under a recursivefunctionisr.e. (i.e., if f is
recursive and B r.e., then {x|f(x) € B) isr.e.). Theinverseimage o a recursive set
under a recursive function is recursive. The image of an r.e. set under a recursive
function is r.e., but the image of a recursive set under a recursive function is not
necessarily a recursive set.

5.18. An infinite set is recursive if and only if it is the range of a strictly
increasing recursive function. (g is strictly increasing if x <y implies g(x) < g(y).)

5.19. Any infinite set is r.e. if and only if it is the range of a one-one recursive
function.

5.20. Every infinite r.e. set contains an infinite recursive subset.

521. If Aand B arer.e. sets, soare A U Band A n B, but thereexistsan r.e. set
A such that o — A isnot re.

5.22. Show that the assertion

({)A set Bisr.e. if and only if B is effectively enumerable
(i.e., there is a mechanical procedure for generating all the
elements of B)

is equivaent to Church's Thesis.

523. Let K be a first-order theory with equality containing all the symbols of
formal number theory S. A relation B(x,, . . . , x,,) issaid to be weakly expressible in
K if and only if there isa Wwf B (x, ..., x,) o K such that, for any natural
numbersk, ..., k, Bk,,...,ky) if andonly if FgB (&, ..., k).

(a) If K is consistent, show that every relation expressible in K is weakly
expressiblein K.

(b) If every recursive relation is expressible in K and K is o-consistent,
prove that every r.e. set is weakly expressible in K. (Remember that,
when we refer here to an r.e, set B, we mean the corresponding relation
“x € B")

(¢) If K issuch that the relations (a)-(d) o Propositions 3.25-3.26 are
recursive, prove that any set which is weakly expressiblein K isr.e.

(d) If formal number theory S is o-consistent, prove that a set B isr.e. if
and only if Bisweakly expressiblein S.

524. (a) (Craig [1953)) Let K be a first-order theory such that the set T, o

Godel numbers of theorems of K is r.e. Show that K is recursively axiomatizable.

(b) For any wf @ o formal number theory S, let @4 represent its
trandation into axiomatic set theory NBG (cf. p. 204). Let K be the set of wfs @
such that Fypg@ # Prove that K is a (proper) recursively axiomatizable extension
of S. (However, no "natural” set of axioms for K is known.)
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i By Proposition 5.20(3), a set is r.e. if and only if it is the domain §, of the
partial recursive function U(pyT,(n, x, ¥)) for somen; hence, x € {, if and only
'if (Ey)T)(n, X, y). We call n an index d the re. set §,. We thus have an
enumeration (with repetitions) ¢, {1, ... o all r.e. sets.

i An example d an r.e. set which is not recursive is the set d all x such that
"(Ey)T,(x, X, y). That it is r.e. follows from Proposition 5.20(2), and that it is not
“ recursive follows from Proposition 5.19(3). By Proposition 5.20(4), it also follows
g that (y) ~ Ty(x, x, y) is not re.

4

EXERCISES

5.25. A set B is called creative if and only if B is r.e. and there is a partial
recursive function ¢ such that, for any n, if 5, C B, then ¢(n) € B — §,. Prove that
{(x|(Ey)Ti(x, x, y)) is creative. Show that every creative set is non-recursive.

526. A partia recursive function ¢ is caled potentially recursive if and only if
there is a recursive function ¥ such that ¢(x,, ..., x;) = ¥(X}, . .., Xy) whenever
@(xy, . .., X) isdefined. Prove that pyT,(x, X, y) is not potentially recursive.

5§27.° A set B is caled simple if and only if B is r.e., B is infinite, and B
contains no infinite r.e. set. Every simple set is non-recursive. Show that a simple
Set exists.

5.28. A recursive permutation is a one-one recursive function from o onto o. Sets
X and Y are called isomorphic (written X =) if there is a recursive permutation
which maps X onto Y. Prove:

A(a) The recursive permutations form a group under the operation of
composition.
(b) = isan equivalence relation.
(c) If X isrecursive(r.e., creative, simple) and X =Y, then Y is recursive
(r.e., creative, simple).

Mvhill [1955] has shown that any two creative sets are isomorphic. (Also cf.
Bernays [1957].)

5.29. X is many-one reducible to Y (written X R Y) if there is a recursive
function f such that u € X if and only if f(u) €Y. X and Y are caled many-one
equivalent (written X =m Y) if X R Y and Y R, X. X is one-one reducible to Y
(written X R; Y) if there is a one-one recursive function f such that u € X if and
only if f(u) €Y. X andY are called one-one equivalent (written X =Y) if X R; Y
andY R, X. Prove:

(8 =m and = are equivalence relations.

(b) If X is credtive, Y isre., and X R, Y, then Y is creative. It can be
shown (Myhill [1955]) that if X is creativeand Y isr.e. then Y R X.

() (Myhill {1955]) If X R, Y then X R,Y, and if X =Y then X =nY.
However, many-one reducibility does not imply one-one reducibility,
and many-one equivalence does not imply one-one equivalence. (Hint:
let X be a simple set, Z an infinite recursive subset o X, and
Y=X-Z Then X R; Y, Y R, X, but not (Y R; X).) It can be
proved that X =Y if andonly if X =Y.
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5.30. (Dekker [1955]) X is said to be productive if there is a partial recursive
function f such that if {, C X then f(n) € X — {,.. Prove: () If X is productive,
then X is not r.e.; hence, both X and X areinfinite. P(b) If X is productive, then X
has an infinite r.e. subset. Hence, if X is productive, X isnot simple. (c) If X isr.e.,
then X is creative if and only if X is productive. B(d) There exist 2% productive
sets.

531. (Dekker-Myhill [1960]) X is recursively equivalent to Y (written X ~ Y) if
there is a one-one partial-recursive function which maps X onto Y. Prove: (&) ~ is
an equivalence relation. P(b) X is said to be immune if X isinfinite and X has no
infinite r.e. subset. X is said to be isolated if X is not recursively equivalent to a
proper subset of X. (The isolated sets may be considered the recursive counterparts
of the Dedekind-finite sets.) An infinite set isisolated if and only if it is immune,
D(c) There exist 2% immune sets.

Recursively enumerable sets are also important because, if we assume
Church's Thesis, the set T, of Goédel numbers of theorems d any axiomatizable
first-order theory K is r.e. (The same holds true d arbitrary formal axiomatic
systems.) For, the relation Pi(y, X) (y is the Gédel number d a proof in K d a
wf with Gédel number x, cf. p. 156) is recursive, if the set o Gédel numbers of
the axiomsis recursive, i.e., if the theory is axiomatic and Church's Thesis holds.
Hence, x € Ty if and only if (Ey)Pf(y, X), and therefore, Ty isrt.e. If we accept
Church's Thesis, then K is effectively decidable if and only if ther.e. set T is
recursive. We showed in Corollary 3.41 that every consistent extension K o the
theory RR is recursively undecidable, i.e., Ty is not recursive.

Much more genera results along these lines can be proved (cf. Smullyan
[1961], Feferman [1957], Putnam [1957], Ehrenfeucht and Feferman [1960],
Myhill [1955]). For example, (1) if every recursive set is expressiblein K, then K
is essentially recursively undecidable, i.e., for every consistent extension d K,
T is not recursive (cf. Exercise 5.33 below); (2) for any consistent first-order
theory with equality K in which every recursive function is representable and
which satisfies (i) and (ii) o p. 162, the set Ty is creative. (We assume that K
has among its terms the numerals0, 1, 2, ... .) For further study o r.e. sets, cf.
Post [1944] and Rogers[1967].

EXERCISES

532. Given a set A of natural numbers, define A* as follows: u € A* if and
only if uisa Godel number of awf &(x,) and the Godel number of @(1) isin A.
Prove that, if A isrecursive, then A* is recursive.

533. Let K be a consistent theory having the same symbolsas S.

(8 Let Tx be the set of Godel numbers of theorems of K. Prove that
(Ty)* is not weakly expressible in K (cf. Exercise’5.23, p. 262).

(b) If every recursive set is weakly expressible in K, show that K is
recursively undecidable.

(c) If every recursive set is expressible in K, prove that K is essentialy
recursively undecidable.
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, Undecidable Problems

kA general classdf problemsis said to be undecidable if and only if thereis no
fgeneral effective (or mechanical) procedure for solving each problem in the
given Class. For example, given any polynomial in any number of variableswith
integral coefficients, is there a set of integral values o the variables for which
the polynomial has the value @ We may be able to answer this question for
certain special polynomials, but it turns out that there is no general procedure
which will solve this problem for all polynomials (cf. Matiyasevich [1970]).
& If we can arithmetize the formulation of a general classdf problemsand thus
#* asign to each problem a natural number, then this class is undecidable if and
. only if there is no effectively computable function h such that, if nisthe number
i’ d a given problem, then h(n) gives the solution o the problem. If we accept
I! Church’s Thesis (as we shall do-in this section) the function h has to be partial
recursive, and we then have a precise mathematica question. Examples o
important mathematical decision problems which have been solved (negatively)
are the word problem for semi-groups (Post [1947], Kleene [1952], § 71), and the
* very difficult word problem for groups (Boone [1959], Novikov [1955], Britton
© [1958], Higman [1961]). In addition, the decision problem for various first-order
theories has been shown to have a negative solution, i.e., the general problem as
to whether any given wf is provable in the theory is undecidable (cf. Corollary
3.36, Corollary 3.37, Proposition 341, Corollary 3.45, Proposition 3.46). We shall
now present some more examplesdf undecidable problems.

The sequence of functions y,(x) = U(uyT,(n, X, y)) gives an enumeration of
- dl partial recursive functions o one variable. Is there an effective procedure to
determinefor any n whether ¥, is recursive (i.e., whether , is defined for all x)?
A positiveanswer is equivalent to the recursivenessd the set A o all numbersn
such that , is recursive. We shall show that A is not even r.e. Assume A r.e.,
and let h be a recursive function with range A. Define a new function f(x) =
(763 + 1 = [U(pyT,(h(x), X, ¥))] + 1. Hence, f is recursive and so there is
some m such that f = y,, and m'€ A. Then ¢, (x) = Yy,(x) T L Since m € A,
there is some k such that m = h(k). Taking x = k, we have y (k) = (k) +1
which is a contradiction. Thus, there is no effective procedure by which we can
tell whether any system of equations determines a recursivefunction.

We can obtain a "loca™ form o this result. Is there an effective procedure
determining for any given m, n whether ¢, (m) is defined? The answer is
negative. For, assume that 8(x, y) is a recursive function such that

S

s

i

st

SRS

\

0 if ,(y) isdefined
] =
, ) [ 1 if y,(y) is not defined
. Now, let a(z) = py(8(z, 2) = 1 Ay = ). Clearly,

@) = 0 if ¢,(z) is undefined
*2) = | undefined  if y,(z) isdefined
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But a is partial recursive, and so, a = y, for some k. Then

0 if Yy (k) is undefined
wlk) = alk) = {undefined i g, (k) is defined

which is a contradiction. (Other undecidable problems can be found in Rogers
[19671)

EXERCISES

5.34. Given a Turing machine T, can one effectively decide, given any instanta-
neous description a, whether or not there is a computation d T beginning with a?
(Halting problem for T.) Show that there is a Turing machine with undecidable
halting problem. For further discussion of this and smilar problems, cf. Davis
[1958], Chapter 5.

535. Prove: There is no normal algorithm B over M = {1, « } such that B is
applicable to exactly those wordsa such that nisan index o anormal agorithm %
over M such that % is not applicable to .

For further examples d undecidable problems in the theory d agorithms, cf.
Markov [1954], Chapter V. Because d the essential equivalence d norma ago-
rithms, Turing machines, and Herbrand-Godel sysemsd equations, any undecida-
bility result established in teems o one o these approaches usualy can be
translated into corresponding results for the other two.

536. The function f such that

f(x) = {0 if ¢x(x) is defined
1 otherwise
is not recursive.

537.0 Show that thereis a recursive function n(x) such that, for any x, n(x) is
theindex d the partial recursvefunction v, where

) [0 i g.(x) i defined
) = | undefined i y,(x) is undefined

538.° (Rogers{1967]) Show that the following relations are not recursive (and,
therefore, by Church's Thes's, are undecidable).
(@ yisintheranged y,.

®) ¥(y) = z.
(© ¥ = ¢y (Hint: use 537 and 5.36)

The reader should not get the impression that all decision problems have a
negative solution. In Chapter 1 it was shown that truth tables provide an
effectiveprocedure to determine whether any given statement form is a tautol-
ogy. On p. 170, it was shown that the pure monadic predicate calculus is
effectively decidable (cf. Ackermann [1954] and Suranyi [1959] for many posi-
tive results of a similar kind). Presburger [1929] showed that the first-order

: SEC. 4
. theory obtained from first-order theory number theory S by omitting the
. multiplication symbol and the recursion axioms for multiplication is decidable
- (cf. p. 134, Exercise 3.7); Szmielew [1955] proved the decidability of the
. first-order theory of abelian groups; and Tarski [1951] established the decidabil-
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ity of the first-order theory of real-closed fields, which is the elementary part of

#  the theory of real numbers.
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ANSWERS TO SELECTED
| EXERCISES

Chapter 1
11 A B
T T F
F T T
T F T
F F F
12. A B —A ADB (AD> BV ~4
T T F T T
F T T T T
T F F F F
F F T T T
13. (42 B)N\A)
TTTTT
FTT FF
TFF FT
FTF FF
14. (a) (AD~B)A(~AD~B))
(d)A > B. A : Fiorello goes to the movies.
(e) AD B. A xis prime.
® A>B. A : 5 converges.

(h) = A>B. A:The Dodgerswin today.
B : The Giants will win the pennant.

15. (a) No. (c)Yes. (e) No.

18. All except (i).

110. Yes: (c)and (e).

112. (a) All parentheses may be dropped.
(c)(ADBVC)V~(CDD).
(e)(4D>BDO(CODYN~AVC.

113. ((C > (~(AV C))A A))= B).

114. (a) ((~(~A))=4) = (BV C)).

(c) No. Extra right parenthesis.
© (((~(4 > B)V C)V D)> B).
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ANSWERSTO SELECTED EXERCISES

115 (@ vC > A B~ DC.

(b) To prove that (i)~(ii) imply that it is a statement form, use induction
with respect to the number of symbolsin @. (A proper initial segment of @ is,
definition, an expression made up o all the symbolsin @ to the left of some
specific symbol.)

d ({iHADI>B)D2(BDC)D(~ADCO))

118. @ T () T (¢) Nothing
119. (@

~AV(A % B)
T F

F
F

120. () If & isa tautology, replaceadl statement letters by their negations, and
then move all the new negation signsoutward by using Exercise 1.24(a). The result
is~@&"

If ~ @ isatautology, let % be ~ @’. By thefirst part, —~ %' isa tautology. But
--%'is~~ Q.

128. (&) For Figure 14:

N

A

N

~—

1.29. (a) Not logically correct:

(Copa4)oC
F
T F
T T

LetA beT, and let C be F.
(b) Logicdly correct. Assume all the premises true and the conclusion
false, and show that thisleads to a contradiction.
1.30. (a) Consistent.Let A, B, Cbe F, and let D be T.
131. (b) Inconsistent.
(BAH)V(B A'W) HD~B ~W
T T T
F
F

T F
F

132, (A NA2 N AN (~ A N Ay NAY N (~ A A\~ Ay A ~ A3).
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134. (a) Any statement form built up using > and \/ will aways take the
value T when the statement lettersin it are T.
(b) Using only the statement lettersA and B, find all the truth functions o
two variablesthat can be generated by applying ~ and = any number
d times. o ) )
136. (b) For ~ (A 2 B)V (~ A A C), a digunctive normal form is
AAN~B)\V(~AAC), and a conjunctive norma form s
AVON(~BV~A)AN(~BVC)
(0 For ~(A o B)V (~A A C), afull digunctive normal form is
AAN~BACNVAA~BA~C)V(~ANBAC)V
(—A A~ B A C),and a full conjunctive normal form is (A \v B \/
CYANAUNV ~BV OA(~AN ~BV CON(~AV ~BV ~ Q).
© O —(—AA~B)A~(BA~C).

138. b) 1. % D C Hypothesis
2809 Hypothesis
3@o@>))D(EB>B)D(@DC) (AY)

4 (20 >@>D(® D Q) (Al

5@>5(%>50) 1, 4, MP
6.(E>2RB)D@DG) 3,5 MP
7.€>5¢€ 1,6,MP

139. @ 1L & >~~@& Lemma 1.10(b)
2 ~~8>2(~&229) Lemma 110(c)
385(~€29D) 1, 2, Cor. 1.9(i).
4. 825(@ VD) 3, Abbreviation

©1L~%>0@¢ Hypothesis
2 (~83>58&)>(~&812~~%) Lemma 1.10(e)
3 ~&8D>~~% 1,2, MP
4 ~~B OB Lemma 110(a)
5 ~@>% 3, 4, Cor. 1.9¢).
6. ~B DE&H~E&DB 1-5
7 HFH~B>8)D(~8D>MW 1-6, Deduction Theorem
B FB®VEDEVDR) 7, Abbreviation

142. Hint: Take an assignment of truth values to the statement letters of &
which makes @ false. Replacein @ each letter having the value T by 4; VV ~ 44,

and each letter having thevalue F by A, A ~ A,. Cal the resulting statement form
B.

Chapter 2

21 () (~ A1) D (A3(xy, xy, x9) V ((x)A(x )
2.2. (@) () (x3)((xA4{(x))) D (43(x3) A (~ Ai(x))
(0) (ExX(x)(Exs)A1(x1) V ((Exp)(~ ((x3)A7(x3, x0)))

23. (a) (x)(A{(x1) D 43(x)) V (Ex))A}(x)).
24. (a) The only free occurrenced a variable is that d x,.
(b) The first occurrenced x; isfree, asis thelast occurrenced x,.



ANSWERSTO SELECTED EXERCISES

26. In2.2(a), x, and x, are both freeand bound, while x, isbound. In 2.2(b), all
variables are bound; no variableis free.
28. Yes: (a),(c),(e). No: (b), (d).
2.10. (@) (x)(F(x) A ~ S(x) > (»XC(») D K(x, y)))
(©) ~(x)B(x) > F(y))
(d) [(OCXEY)L(x, y)) A~ (Ex)»)L(x, )]V [(Ex)y)L(x,»)) A

(Ex)(y) ~ L(x,y)]
2.11. (a) Every student has at least one course with a bad teacher.

(b) The sum of two sdes of a triangleis greater than the third.
212 (a) (1) is satisfied by al ordered pairs of positive integers. (2) trandates
into X, > x, 3 x, » x;, and is satisfied by &l pairs of positiveintegers
(n,k) such that n < k. (Remember that awf @ > % istrue when & is
falseor % istrue.) (3)is true; it assertsthe transitivity of the relation
> inthe st of pogtive integers.

213. (c) (i) Thereisno largest integer. (ii) There is an integer greater than every

integer. (iii) Every integer has an"immediate successor™.

2.14. (1) A sequences satisfies~ @ if and onlyif sdoesnot satisfy @. Hence, dl
sequences satisfy —~ @ ifand only if no sequence satisfies@, i.e., ~ @ istrueifand
onlyif & is false.

(II) Thereis at least one sequences in 2. | f s satisfies@, @ cannot be false for
M. I'f s does not satisfy €, @ cannot be true for M.

(III) If a sequences satisfiesboth @ and @ o %, then s satisfies®, by clause
(iii) of the definition.

(V) (i)s satisfies@ A % ifand only if ssatisfies~ (@ >~ B)

ifand only ifs does not satisfy@ > ~ %
ifand onlyifs satisfies@ but not ~ %
ifand onlyifs satisfies@ and s satisfies®

(VI) (a) Assume ky@. Then every segquence satisfies €. In particular, every
sequence differing froma sequences in at most the /™ place satisfies@. So, every
sequence satisfies(x;)@, that is, Fy(x)@.

(b) Assume Fp(x)&. 1f s isa seguence, then any sequence differing from
s in at most the ith place satisfies@, and, in particular,s satisfies@. Then every
sequence satisfies@, that is, Fy@.

(VII) Lemva A, If al the variablesin a term t occur in the list x;, ..., x,
k>0, wenk=0,t hasnovanabl&s) and if the sequences s and s havethem
components in the ith, & places, then s*(£) = (s")*(2).

Proof. Induction on the number m of function lettersin t. Assume the result
holds for all integers < m.

Case L tisanindividual constant 3 Then s*(a,) = (g, = (s)*(a,).

Case 2. tisavariable x;. Then s*(x;) =s; =5 = (s)*(x,).

Case 3. t is of the formf(s, ..., ). For q < n, each ¢, has fewer than m
function letters and al its variables occur among x;, ..., x,. By inductive
hypothesis, s*(z,) = (s)*(z,). Then s*(f(¢,, ..., 1,)) = (f")”(S*(f;) -, S*(8,))

= (M )*(n) co (8 )*(f D= )*({f’(h. 82
Proof d (VII1). Induction on the number r of connectives and quantifiersin @.
Assume the result holds fordl g <r.
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Case 1, @ is of the form A/, ..., t,), i.e. r = 0. Al the variables of each
occur among x;, . . ., ;- Hence, by Lemma A, s*() = (s)*(f). But s satisfies
Aty ooty ifand only if (s*(t,), , 8*(1,)) isin (4™, that is, ifand only if
(Y1), . . ., (Y*(1,)) is in (4 ")M which is equwalent to $ satisfying
F: Fi (ST )

Case 2. @ isof the form = 3.

Case 3. @ isofthe form % o €. Both cases2 and 3 are easy.

Case 4. @ isofthe form(x,)® . The freevariables of % occur among x; , . . .
and x;. Assumes satisfies@. Then every %quencedlfferlngfroms inat most thej‘f’
plaoe satisfiesB . Let s# be any sequence differingfroms’ in at most thej** place.
Let & be a sequence which has the same components as s in all but the /* place,
where it has the same component as s#. Hence, s® satisfies ®. Snce € and s#
agreeintheith, ..., ! and j" places, it followsby inductive hypothesis, that &
satisfies® if and only if s# satisfies®. Hence, s# satisfies®. Thus, $ satisfies
&. By symmetry, the converse also holds.

(IX) Assume @ closed. By (VII11), for any sequencess and ¢/, s satisfies® if and
only if s’ satisfies@. If ~ @ isnot true for M, some sequences’ does not satisfy
~ @, ie, s satisfies@. Hence, every sequences satisfies @, i.e. Fy&.

(X) Proof of the Lemma. Induction on the number m of functionlettersint.

Case l. tisa Thent isg Hence

s*(¢') = s*(a) = (a)™ = (s)*(a) = (s)*().

Case 2.t isx;, wherej = i. Thent isx;. By Lemma A of (VIII),s*(¢') = (s')*(z),
sinces and s’ havethe same component inthe " place

Case 3.t isx;. Thent is u. Hence, s*(¢') = s*(u), while (s)*(s) = (s)*(x;) = s}
= s*(u).

Case 4.t isofthe form f7(¢), ..., #,). For 1 < < n, let £ result fromy, by the
substitution of » for x;. By inductive hypothesis, s*(t;) = (s )*(t) But s*(¢) =
S* (- 1) = (ME*), .., s*(8) = (f”)”((s M*(0), - (X)) =
G (1, ., ) = (%)

Proof of Corollary (i). Induction on the number m of connectives and quanti-
fiersin &(x).,

Case 1. m=0.Then &Z(x) iISA(ty, ..., t,). Let £, be the result of substituting t
for al occurrences of x; in ¢, Thus &(1) is Af(ty, - - ., t;). By the Lemma above,
s*(t) = s)*(t,). Now, s aansn&e@(t) it and only if (s*(#y), ..., s*(z)) belongsto

(4", which is equivalent to ((s")*(¢y), - . ., (s')*(z,)) belonging to (4™, that is,
to $ satisfying @(x;).

Case 2. &(x;) is ~ B (x;). Sraightforward.

Case 3. €(x;) is B (x;) D C(x;). Sraightforward.

Case 4. @(x;) is (x)B (x;).

Caseda. x; isx;. Then x; isnot freein &(x,), and €(#) is @(x;). Sncex; isnot free
in &(x;), it followsby (VIII)that s satisfies@(¢) if and only if s’ satisfies@(x;).

Case 4b. x; isdifferentfromx;. Sncet is freefor x; in @(x), t isalso freefor x;
in B (x,).

Assume s satisfies (x)B (t). We must show that $ satisfies (x)®B (x,). Let s#
differ froms’ in at most the j'" place. It sufficesto show that s# aansnes%(x)
Let € be the same ass# except that it has the same it component as s Hence, s°
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is the same as s except in its /™ component. Since s satisfies (x)B (¢), & satisfies
B(#). Now, since t is free for x; in (x)® (x;), t does not contain x;. (The other
possibility, that x; is not free in  (x;), is handled asin Case 4a) Hence, by Lemma
A o (VIID), (&9)*(t) = s*(¢). Hence, by the inductive hypothesisand the fact that
s# is obtained from &° by substituting ()*(t) for the /" component o <°, it
follows that s# satisfies ® (x;) if and only if s satisfies B(r). Since $° satisfies
% (1), s# satisfies B (x;).

Conversely, assume s’ satisfies (x)B (x;). Let s differ from s in at most the j*
place. Let s# be the same as s’ except in the /™ place, where it is the same as .
Then s# satisfies B (x;). As above, s*(f) = ()*(t). Hence, by the inductive
hypothesis, s satisfies % (¢) if and only if s# satisfies B (x,). Since s# satisfies
D (x;), s° satisfies B (t). Therefore, s satisfies (x)RB (t).

Proof of Corollary (ii). Assumes satisfies(x,)@(x;). We must show that s satisfies
@(2). Let s arise from s by substituting s*(¢) for the i component of s. Since s
satisfies (x;)@(x;) and s’ differsfrom s in at most theit" place, s satisfies@(x;). By
Corollary (i), s satisfies &(¢).

2.15. Assume & issatisfied by a sequence s Let s’ be any sequence. By (VIII), '
also satisfies @, Hence, @ is satisfied by all sequences, i.e., Fy@&.

2.16. (a) x isa common divisor of y and z.

(d) x, is a bachelor.

217. () (i) Every non-negativeinteger iseven or odd. True.

(i) If the product of two non-negative integersis zero, at least one of
them is zero. True.
(iii) liseven. Fase.

218. (a) Consider an interpretation with domain the set of integers. Let 4}(x)
mean that x iseven, and let 43(x) mean that x isodd. Then (x;)4}(x,)
isfalse, and so, (x;)4](x,) D (x,)43(x,) is true. However, (x,}(A4}(x,)
D Aj(x)) isfase sinceit asserts that all even integers are odd.

219. (@) [(x) ™ €(x) D~ &(N] D [&(f) D~ (x;) — @(x;)] is logically valid be-
cause it is an instance of the tautology A >~ B)> (B >T A). By
X), (x) ~ @(x;) D~ @(¢) is logicaly valid. Hence, by (111), &(2) 5
~ (%)~ Q(x)) islogically valid.

() Intuitive proof: If & is true for dl x;, then & is true for some x;.
Rigorous proof: Assume (x;)@ 2 (Ex;)@ is not logically valid. Then
thereis an interpretation M for which it is not true. Hence, thereis a
sequence s in £ such that s satisfies (x;)& and s does not satisfy
~ (%)~ @. From the latter, s satisfies(x,) ~ @. Since s satisfies(x)@,
s satisfies@, and, since s satisfies(x;) ~ 8, s satisfies~ €. But then, s
satisfies@ and s satisfies = @, which isimpossible.

221. (a) Let the domain be the set of integers, and let 4%(x,y) mean that either
x <y or (x =y and x iseven). Veify that the negation of the given wf
is true for this interpretation.

(b) Let A¥(x,y) mean that x <y in the domain of integers.

223. (8) The premises are: (i) (xXS(x) D U(x)), (ii) (x)}H(x) D~ U(x)), (iii)
(x)(~ S(x) >~ V(x)), and the conclusion is (iv) (x)}(H(x) D~ V(x)).
Intuitive proof: Assume H(x). By (i), ~ U(x), and, therefore, by (i),
~ S(x). Hence, by (iii), ~ ¥(x). Thus, ~ ¥(x) followsfrom H(x), and
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(iv) holds. A more rigorous proof can be given along the lines o
(D-(X1), but a better proof will become available after the study o

predicate calculi.
224. (8) Leeljtat'the domain consist of just one object, and let A7 be the identity
relation.
226. (@ 1 (xX@ D B) Hyp
2, (x)@ Hyp
3(xXE€D>B)DEDD) Axiom (4)
4. 8> % 1,3 MP
5(x)@>¢e Axiom (4)
6. @ 2,5 MP
7. B 4,6, MP
8. ()@ 7, Gen
9. (x)@ D B), (x)& F (x)B 1-8
10. (xX@ D B)F(x)&@ > (x)% 1-9, Cor. 25

11 H(xX€ D 4)D (x)E D (x)®) 110, Cor. 25

227. Hint: Assume g @. By induction on the number of stepsina proof of & in
K, provethat, for any variablesyy, .. .,y, (n = 0), Fx«(¥) ... ()E.

231. (@) Assume K complete, and let & and 8 be closed wfs of K such that
Fk@ V B. Assume not-+¢@. Then, by completeness, Fx = €. Hence,
by the tautology ~ 4 O (A \/ B) D B), Fx®.

(b) Assume K is not complete. Then thereisa sentence € o K such that
not-tx@ and not-r¢ = 8. However, tx@ \v = 8.

232. See Tarski-Mostowski-Robinson[1953], pp. 15-16.

235. Assume @ not logicaly valid. Then the closure 4 o @ is not logicaly
valid. Hence, the theory K with = 9@ asitsonly proper axiom has a model. By the
Skolem-LowenheimTheorem, K has a denumerable model, and, by the Lemmain
the proof of Corollary 2.17, K hasa model o cardinality a. Hence, ® isfalsein
this model, and, therefore, @ is not true in some model o cardindlity a.

237. (b) It sufficesto assume & isa closed wi. (Otherwise, look at the closure o
d.) We can effectively write down all the interpretations on a finite
domain {h,, ..., b}. (We need only specify the interpretations of the
symbols occurring 1in d.) For every such interpretation, replace every
wf (x)% (x), where % (x) has no quantifiers, by D&)A ... AB b,
and continue until no quantifiers are left. One can then evaluate the

truth of the resulting wf for the given interpretation.

241. Assume K; not finitely axiomatizable. Let the axioms of K; be

@, @,..., and let the axioms of K, be ®,, @5 ... . Then
(@, By, &, B,,...) is consistent. (For, if not, some finite subset
(@, 8, ..., %, B,...,B,)} isinconsstent. Since K| is not finitely axiomatiz-
able, there is a theorem @ o K, such that &, @, ..., @& F@& does not hold.
Hence, the theory with axioms {&, &,,..., &, ~ &} has a model M. Since
Fe,& M must be a model o K, and, therefore, M is a model of
(@, &, ..., %, ®,...,B,), contradicting the inconsistency o this set of wfs.)

Since {@,, By, @, B,,...) is consistent, it has a model, which must be a model
of both K, and K,.
242. Hint: Let the closures o the axioms of K be &, &, ... . Choose a
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subsequence &, &,, ... such that @,  is the first sentence (if any) after @,
which is not deducible from@ A ... A . Let B, be & A&, A ... NE,.
Then the ®,’s forman axiom st for the theorems of K such that + B,.,, D %,
but not-I- B D By, ;- Then {B,, B, 3 B, By D Bs,...) is an independent
axiomatization of K.

244. (c) Use Proof by Contradiction (Exercise 2.43(e)).

L () ~ (4{(») D (NAI(») Hyp

2. ~(4{(») > N4 1, Rule A4
3. A{(») 2, Tautology
4. ~(»Ai(y) 2, Tautology
5. (nA4I(») 3, Gen

6. (NAI) N ~(NAL(Y)

4, 5, Conjunction Introduc-

tion
By Proof by Contradiction, F~ (y)~ (A}(y¥) D (0A}(), ie.,
F(Ey)(4{(») D (NA](»).

246. (i) (a) Assume |- @. By moving the negation step-by-step inward to the
atomic wfs, show that ~ @* is logically equivalent to the wf %
obtained from@ by replacing al atomic wfsby their negations.
But, fromtF & it can be shown that I- %. Hence, t— @*. The
converse followsby noting that (£ *)* is &.

() Apply Part (a)to ~ @ v .
248, (b) (EeXe > 0 A (B)(8 > 0D (Ex)|x — c| <8 A= |f(x) - f()| <))
252 1 (Ey)(x)(A}(x,y) =~ Af(x, X)) Hyp

2. (x)(A}(x, b) =~ A¥(x, X)) 1, RuleC
3. A%(b, b) =~ A¥b, b) 2, Rule A4
4. CA~C 3, Tautology

(€ isany wf not containing b.)
Use Proposition2.23 and Proof by Contradiction.
259. (a) In step 4, bis not a new individual constant. It was used in step 2.

261 (c) L x=x Proposition 2.24(a)
2. (By)x=y) 1, Rule E4
3. (xNEy)x =y) 2,Gen

264. (a) The problem obviously reduces to the case of substitution for a single
variable at a time:

Fxi =y D t(x) = t(y1). From(7),
Fx, =y, D (t(x)) = t(x;) D t(x;) = #(y,)). By Proposition 2.24(a),
F o(x)) = #(x;). Hence k x; = y; 3 (#(x)) = t(»))-

266. By Exercise 2.61(c), F (Ey}(x = Y). By Proposition 2.24(b), (c), |- (y)(z)(x

=yAX=1zDYy=2).Hencetr (E y)x =Y).ByGen, |- (x}E,y}x =Y).
270. (b) (i)Let A x; =X stand for the conjunction of al wfsof the form
AN

<i<j<n
% #% where 1 <i <j <n. Let B, be(Ex)...(EX) A x %
X:. | Si<jan
(ii) Assume there is a theory with axioms &,, ..., &,, having the
same theorems as K. Each of @,, .. ., @, is provable fromK, plus a
finitenumber of the wfs®,, ,, ... . Hence, K; plusa finite number
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of the wfs®, ,..., B, sufficesto prove al theorems of K. We may
assumej, < ... <j, Then an interpretation whose domain consists
of j, objects would be a model of K, contradicting the fact that ®; .1
is an axiomof K.

2.75.

(D E)(ENE(z, x, 5 . . .,¥) N ANX, », 2))

O (Ez)&(z, y,X,...,X) N Zz=X)).
2.76.

(E2)(w)(Ex)([41(x) D 4}(x,»)] D[ 41(w) D 4}(1, 2)])-

280. ® has the form(Ex)Ey)(2)(A3(x,y) D Al(x)] D AX(2)). Let the domain
D be {1, 2), let A? be <, and let Al(x) stand for u = 2. Then 9 is true, but
() E)Ad(x, y)is false.

2.81. Let g be a one-one correspondence between D' and D. Define: (@)™ =
gU@™); (M (b, . .-, b,) = g7 [ (g(b) . . ., g(b)]

EmAl by, ..., bl ifand only if EyA[g(b), . . ., g(b)]

288. Hint: Extend K by adding axioms 8,, where %, assertsthat there are at
least n elements. The new theory has no finite models.

2.89. Hint: Consider the wfs %,, where b, asserts that there are at least n
elements. Use elimination of quantifiers, treating the %,’s asif they were atomic
wfs.

294. Let W beany set. For eachbin W, let g, be an individual constant. Let the
theory K have asits proper axioms: g, = a, for al b, ¢ in W suchthat b # ¢, plus
the axioms for a total order. K is consistent, since any finite subset of its axioms
has a model. (For, any such finite subset contains only a finite number of
individual constants. One can definea total order on any finite st B by using the
one-one correspondence between B and a st {1, 2, 3, ..., n} and carrying over to
B the total order < on {1, 2,3,...,n).) Snce K is consistent, K has a model M
by the Generalized Completeness Theorem. The domain D of M istotally ordered
by the relation <M; hence, the subset Dy, of D consisting of the objects (a)™ is
totally ordered by <M. This total ordering of Dw can then be carried over to a
total ordering of W: b <wc ifand only if @, <Ma,.

297. Assume M, finite and M; = M,. Let the domain D; of M; have »
elements. Then, since the assertion that a model has exactly n elements can be
written as a sentence, the domain D, of M, must also have n elements. Let
D, ={by,...,b,) and Dy ={ey, ..., ¢,}. Assume M, and M; not isomorphic.
Let ¢ be any one of the n! one-one correspondencesbetween D; and D,. Snceo is
not an isomor phism, either: (1) thereis an individual constant a and an element &;
of D, such that either (i)b = a™' A @(8) = a™z, or (ii) b, # a™ A (8) = a2
or (2)thereisa functionletter £ and b;, b;, . .., b, in Dy suchthat

b = (fF(b..., b )and@(b) = (M (e(8) ..., o(5.))

or (3) there is a predicate letter A* and b;,...,5; in D; such that either
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() FmAL(8y,, . - ., b ) and Fy, ~ A7[9(b), . - ., @(5)));
or (ii)Ep, ~ AL[By,, - - - oy ] ad g AT [@(By), - - -, @(b; )] Condtruct awf B, as
follows:

x, = aif (1), (i)holds

x; # aif (1), (i) holds

B, id x =fr(x, ..., x,)if(2)holds
AP(x, - -+, x, ) if@3), (i)holds

~ AP(x;, -+ -, x,) iT(3), (ii)holds

Let ¢y, - - -, @, be the one-one correspondencesbetween D, and D,. Let @ bethe
wf

(EX[)___(EX,,)( A "I,‘ :/:1} A%WI A%‘Pz A A%%!)'

| €i<yje
Then @ is true for M, but not for M,.
2.98. (a) There are &, sentences of K. Hence, there are 2% s4s of sentences.If
M, = M,, then the st of sentencestrue for M, is differentfromthe s
of sentences true for M.

299. Let K be the theory with ®, new symbols b, and, as axioms, &l sentences
true for M and @l b, # b, forr = p. Prove K' consistent and apply Corollary 2.35.

2102. (a) Let M be the field of rational numbers,and x = {-1).

2.105. Consider the wf (Ex;)(x; < xy).

2.106. (a) (ii) Introduce a new individual constant b, and forma new theory by

adding to the complete diagramof M al the sentencesb = t for all
closed terms of K.

2107. 1f 04 F, F = P(4). Conversely, if 0 € 4, then, by dause (iii) of the
definitionof filter, § = 9(A).

2108. If 4= %y, then M C=B € 9.Conversdly,if B= M C € 9,then
F = Fp. ce€o9 ces

2.109. Use Exercise 2.108.

2110. ()A€ F,snceA=A-0.(il)IfB=A-W,cFandC=A- W,
€ 4, where W, and W, are finite,then BN C= A — (W, U W,) € 4, dnce
W, U W, is finite.(iii) I B= A — W € 9,where W is finite,and if B C C, then
C=A-(W-C)eF,dnce W — Cisfinite.(iv) Let B € ¥.S0, B= A — W,
where W is finite. Let b € B. Then W y {b)is finite. Hence, C =
A—_(WU{b))EF. But B¢ C, sinceb ¢ C.Therefore,J  F.

2113 Let 5 = {DID C 4 A(ECXC €FABN CCD)).

2114. Assumethat, forevery B ¢ A, eithere BeFor A- Be F. Let § bea
filter suchthat ¥ c 8. Lee BE § — 5. Then 4 — B € 9. Hence A — B € 8.
S0,0=B N (A- B)= §,and § isimproper.The converse followsfromExercise
2113

2115. Assume % is an ultrafilter,and B¢ &%, C ¢ . By Exercise 2.114,
A-BeFadA-Ce4d.Hence A- (BuC)=(A-B)n(A-C)eY.
Snce 4 is proper,B U C 4 4.

Conversely, assume B4 5 AC49>3BUCg%F, Snce Bu(4—B)=
A € 9,thisimpliesthat, if B 4 ¥, then A — B € ¥. Use Exarcise 2114.
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2.116. (a) Assume F¢ a principal ultrafilter. Let a = C, and assume C = {a).
Then {a)4 % and C -{a)4 9.. By Exadse 2115 C =
{a)u (C - {a))4 F, which yields a contradiction.
(b) Assumea non-principal ultrafilter & contains a finiteset, and let B be
a finite st in 9 of least cardinality. Snce 4 is non-principal, the
cardinalityofBis> 1. Letb € B.Then B — {b}+ 0. Both{b)and
B — { b) are finite sats of lower cardinality than B. Hence, {b) 4 9
ad B-{b)4 9. By Exercise 2115, B={b)u(B-{b))4 ¥,
which contradicts the definitionof B.

2.119. Let J bethe st ofdl finitesubsets of . For each AinJ, choose a model
M, of A For AinJ, let & = {A'|[A” € J AA C A'). The collection 8 of dl A*'s
has the finite-intersection property. By Exercise 2112, there is a proper filter
% o §. By the Ultrafilter Theorem, there is an ultrafilter 9 D § D 9. Consider

Il M,/9". Let @ €T. Then {@)}* = § C 9. Therefore, {@)* C {A|]A € J A
AeJd

Fm,@) € . By Los’s Theorem, & istruein [] M,/%".

A
2.120. (a) Assume 9 is closed under elerrm‘tie{ry equivalenceand ultraproducts.
Let Abethe st of al sentencesof K which aretruein every modd in
9. Let M be any model of AWe must show that Misinl. Let T be
the st of all sentencestrue for M. Let J be the s of finite subsets of
I For I"={@&,...,&,} = J, choose a model Ni- € 9 such that
& A...A\@&, istruein Np. (If there were no such model, ~ (&,
A -« A G,), athough falsein M, would be in A) Asin Exercise
2119, thereisan ultra-filter ¥’ such that N* = r’HJNr,/GJ" isa model

of . Now, N* < 9. Moreover, M = N*. Hencg, M e 9.

(b) Use Part (a)and Exercise 241.

(c) Let U be the dass of dl fieldsof characteridtic zero. Let J be a
non-principal ultrafilter on the st P of primes and consder
M= ]] Z,/%, where Z, isthe field of integers modulop. Apply Part

PEP
().

2121. R¥ € R*.Hence, the cardinalityof R* is » 2%. Onthecother hand, R" is
equinumerous with 2%, and, therefore,has cardinality 2*. But the cardinality of R*
is a most that of R".

2122. Assume x and y are infinitesimals. Let ¢ be any postive real. Then
|x| <e/2 and || <e/2. So, |x + y| < |x| + |y] <e/2 + e/2 = ¢ lay| = |x] )]
<lee=eglx—yl<|x+]|-y<e/2+e/2=c

2123. Assume x| <r,, and |y| <& for al postivered e. Let ¢ be a podtive
real. Then &/r, is a postive real. Hence |yl <e/r,, and so, || = |x| |yl <
ri(e/n) = &.

2125, Assume x — r, and X — r, are infinitesimals, with r, and r, real. Then
(X=r,) = (X=r) =1, — 1, isinfinitesimal and real. Hence,r, — r, = 0.

2126. (a) x — st(x) and y — st(y) are infinitesimals. Hence, their sum (x + »)

— (st(x) + st(¥)) is an infinitesimal. Snce st(x) * st(y) is redl,
st(x) * st(y) = st(x T y) by Exercise 2125,
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2127. (a) By Proposition 246, s*(n) = ¢; and u*(n) ~ ¢, for dl n € w* — w.
Hence, s*(n) T u*(n)~¢; T ¢, for al n € w* —w But s*(n) +
u*(n) = (st u)*(n). Apply Proposition 2.46.

2128. Assumef continuous at c. Take any positive real e Then there is a
positivereal § such that (x}(x € B A |x — ¢| <82 |Ax) — fc)] <€) holds in ..
Therefore, (x}x € B* A |x — ¢| <& 2 |f*(x) — f(c)] <E) holds in }*. So, if
x € B* and x ~ ¢, then |x — ¢] <§, and, therefore, | f*(x) — fc)] <e Sincee
was arbitrary, f*(x) = f(c).

Conversdly, assume x € B* A x =~ C o f*(x) = f(c). Take any positive real e
Let 8 be a postive infinitesmal. Then (x)}(x € B* A [x — ¢| <& D |M(x) -
Ko)| < e) holdsfor R*. Hence, (E8X8 > O A (x)(x € B* Ajx — ¢| <8 D |f(xn)
— f(o)] <€) holds for R* and so, (ESYS > OA(x}(x €EBA|x—¢| <8 >
|A(x) — )| <)) holdsin X..

2129. Since x € B* A x =~ C D (*(x) = fc) N\ g*(x) ~ g(c)) by Proposition
247, we can conclude x € B* Ax=~c > (f T g)*(x)=(f T g)c), and so, by
Proposition 247,f + g is continuousat c.

2134. Consider s; € R*. Since s is bounded by b, |sgf <b. So, ss € R,. Let
r = st(sg). Let e beany positiverea. Then |r — sl <E, sincer — s isan infinitesi-
mal. Hence, {/] s, — r| < e} € 5(remembering that r stands for (*)s). Since the
empty set does not belong to 5, there existsj such that [s;, — r| <e.

Chapter 3

34. Consider theinterpretation having asits domain the set o polynomialswith
integral coefficients such that the leading coefficient is non-negative. The usual
operations d addition and multiplication are the interpretations & + and . .
Veify that (S1)-(S8) hold, but that Proposition 3.11 is false (substituting the
polynomia x for x and 2 fory).

35. (a) Form a new theory S by adding to S a new individual constant b and
the axioms b= 0, b=T1, b=2..., b=a,... . Show that S is
consistent, and apply Proposition 227 and Corollary 2.35(3).

(b) By acortége let us mean any denumerablesequenced 0’s and 1’s. There
are 2" corttges. An element ¢ d a denumerable modd M o S de
termines a cortege (so, sy, sy, - . - ) asfollows: s; = 0 if Fyy pije, and s, = 1
if Fyg ~ (pilc). Consider now any cortége s. Add a new constant bto S,
together with the axioms ®,(b), where %,(b) is p;|b if s; = 0, and B;(b)
is ~(p;|b) if s, =1 This theory is consistent and, therefore, has a
denumerable model M, in which the interpretation of b determines the
cortége S Thus, each o the 2% cortéges is determined by an element of
some denumerable model. Every denumerable model determines de-
numerably many cortéges. Therefore, if a maximal collection o mutu-
ally non-isomorphicdenumerable models had cardinality m < 2%, then
the total number o cortéges represented in all denumerable models
would be € m X 8y < 2%. (We use the fact that the lements o a
denumerable model determine the same corteges as the elements o an
isomorphic model.)
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36. Let (D, 0,) be one model o Peano’s Postulates, with 0 € D, and ’ the
successor operation, and let (D#, O#, *) be another such modd. For each x in D,
by an x-mapping we mean a functionf from S, = {u|lu € D A u < x} into D#
such that A0) = 0# and () = (fw)* for all u < x. Show by induction that, for
every x in D, thereis a uniquex-mapping (which will be denoted f,). It is easy to
seethat, if x; < x,, then theredtrictiond £ to S, must bef, . Define F(x) = f(x)
for all x in D. Then Fis a function from D into D# such that F(0) = 0# and
F(x") = (F(x))* for dl x in D. It is easy to prove that F is one-one. (If not, a
contradiction results when we consider the least x in D for which thereis somey in
D such that x #y and F(x) = F(y).) To see that F is an isomorphism, it only
remainsto show that theranged FisD#. If not, let z be theleast element of D#
not in theranged F. Clearly z = 0#. Hence,z = w* for somew. Then wisin the
ranged F, and sow = Fu) for someu in D. Therefore, F(¥') = (Fw))* = w* =
z, contradicting the fact that z is not in the ranged

The reason that thisproof does not work for models o first-order number theory
Sisthat the proof employs mathematical induction and the least number principle
severd times, and these usesinvolve properties which cannot be formulated within
the language of S. Since the validity o mathematical induction and the least
number principlein models o S is guaranteed to hold, by virtue d Axiom (S9),
only for wfs of S the categoricity proof is not applicable. For example, in a
non-standard model for S, the property o being the interpretation o one o the
standard integers0, 1,2, 3, ... isnotexpressbleby awf o S If it were then, by
Axiom (S9), one could prove that {0, 1, 2, 3, ...} constitutes the whole model.

38. (a) Hint: Show that, for any term r not containing variables, there is a

natural number m such that Fgr = m. (b) Use Part (a) and Proposition

112
315. Assume f(x;, ..., Xx,) = X,4+; isexpressblein Sby B(x, ..., Xp+1)- Let
G(xlo PECELEE ] xn-i-]) be %(xl’ “eay xn+l) A (Z)(Z < Xn+1 o~ §B(xl' “ea? xn+l))'
Show that € representsf(x,, ..., X,) in S. (Use Proposition 3.8(b).)
Assume, conversdly, that f(x,, . . ., x,) isrepresentablein S by @(xy, ..., X,41)-
Show that the same wf expresses f(xy, . . ., X,) = X,4;iN S,

3.18. To see that 40 = 1 is necessary, consider the consistent theory K with
equality having the same symbols as S and with (x)(y)(x =y) as its only other
axiom. Then al functionsare representablein K, but x; = x, is not expressible in
K

319. (EY)ucy<oR{xy, ..., x,Y) isequivalent to
(E2);co-@syR(Xy, - ., X, T ut 1), and similarly for the other cases. ‘

321. If therdation R(xy, ..., X»Y) : f(X1, .. ., X,) =Y isrecursive, then Cr is
recursive, and, therefore, so is f(xi, . . ., x2) = w(Ca(X1 ..., X ¥) = 0). =
versaly, if f(x1, ..., %) iS recursive, C(xy, . . . , %m ») = sg|f(xXp, ..., %) — ¥l 1s
recursive.

3.22.

[VH] = 8([—‘)"y(n+'ﬂ(y2 >n))‘
I(n) = 3 sg(Cply))

yen
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3.23. [ne] = [n(l + 1 + -21!—4- -;Tq- -t %)] since
1 1 1 1 1 _g(n)
"((n+1)z M R R T R - o
Then g(0) = 1, and g(n + 1) = (n+ 1)g(n) + 1. Hence, g is primitive recursive.
Therefore, so is [ne] =[ ﬂg—;’—'ﬂ—] = qt(n!, ng(n)).

324. RP(y, z) dands for (x), ¢, (x|y A x|z > x=1).
@(n) = 3 sg(Crply, n)).

yan

325. Z(0) =0, Z(y + 1) = U3(y, Z(y)).

326. Let V= (pyp;-..p) T 1. Some prime q is a divisor of v. Hence q < .
But q is differentfrompy, py, .. ., px- For,if g=p then pjv and plpop: . . . pi
would imply that p;|1, and, thereforep; = 1. Thus, prs1 < ¢ < (popr...p) T L

3.29. If Femat's Lagt Theoremistrue, h is the constant function2. | f Fermat's
Lag Theoremis false h is the constant function 1. In either case h is primitive
recursive.

331. Lig the recursive functions step-by-stepin the followingway. In the first
step, dart with the finitelist consisting of Z(x), N(x), add Ulx). At the (n+ 1"
step, make one application of substitution, recursion, and the p-operator to all
appropriate sequences of functionsalready in the list after the n™ step, and then
add then 1 functionsU; *!(x,, . .., x,,,) to the list. Every recursive function
eventually appearsin the list.

332. Assume f(y) is primitive recursive (or recursive). Then 0 is f(x) + 1.
Hence, f,(x) + 1isequal to f(x) for somek. Thereforefi(x) = f.(x) + 1 forall x,
and, in particular, f (k) = f(k) T 1.

333. (a) Let d be the least postiveinteger in the s Y of integers of the form

au t by, where « and o are arbitrary integers, say, d = auy T bu,.
Then d|a and d|b. (Tose this fora, leta= cd + r,where 0 < r <d.
Then r =a- qd=a- glauy T bog) = (1 — qug)a T (—gqug)b = V.
Sncedistheleast podtiveinteger in Y and r <d,r must be 0. Hence
dla.) |f aand b arerdatively prime,thend = 1. Hence, | = aug + by,.
Therefore,au, = 1 (mod b).

335. Assume that a function f(x,, ..., X)) is representable in S by the wf
@y vn, x,Y). Thenthewf B (xp, ..., X, V) -

[((E|}’)&(x|, EE xmy)) A\ @'(xly e me’)] V
[(~(Ey)&(x), . .. , XY Ay = 0]
srongly represents f(xy, . - . , x,).
336. 1944 = 2°3°, Hence, 1944 is the Godel number of the expression ().
47 = 7 + (8- 5). So, 47 isthe Godel number of the symbol a.
338. () g(f) =91 8(2'- 3') = 57 and g(a)) = 15 S0, g(fl(ay)) = 23’57,
339. Assume S consistent. By Propodtion 3.31(1), (%) is not provable in S.
Hence, by Lemma 2.9, the theory S, is consistent. Now, ~ (") is equivalent to
(EX,) ~~ W,(m, x,). Snce thereis no proof of (¥ k) in S, W (m, k) is falsefor
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al natural numbers k, by (1) on p. 159, Hence, ks ~ U@, k) for al natural
numbers k.Therefore, kg ~ U, (m, k). But, bs (Exg) ~~ Uy (m, x,;). Thus, S, is
W-inconsi stent.

340. Assume S consistent. By Proposition 3.31(1), (x)~ @, (m, x,) is not prov-
ablein S Asin the ansver to Exercise 3.39, kg ~ U, (M, k) fordl natural numbers
k. Thus, S isw-incomplete.

342. (a) Assume +g("FK). Hence, (%K) is true for the standard model. Thus,
snce (¥k) says that (%) is unprovable in S, (¥*K) is actually
unprovablein S contradicting our assumption that Fg(*¥ ).

(b) Assume tg ~ (FOK). Hence, ~ (k) is true for the sandard model.
Snce (¥0¥k) saysthat (F0k) isunprovablein S, (¥0¥) must actually be
provable in S. But then, what (k%) asserts is false, and (%) is a
theoremof S which is falsein the standard model.

343. (a) Assume the "function” form of Church's Thesis, and let A be an
effectivelydecidable st of natural numbers. Then the characteridtic
functionC, is effectivel ycomputable, and, ther efore,recursive. Hence,
by definition, A is a recursve .

(b) Assumethe"set" formof Church'sThesis,and let f(x,, .. ., x,) beany
effectivelycomputable function.Then the relation f(x,, - . . , Xx,) = yis
effectivel ydecidable. Using the functionsoX, ¢ of p. 146, let A be the
st of dl z such that f(e?*'(@), ..., 62 (2)) = ¢"Flz). Then A isan
effectivelydecidable set, and, therefore,recursve. Then f(xy, . .., X)
= T (px(C4(z) = 0)) is recursive.

344. Let K bethe extension of S having as proper axiomsdl wifs which aretrue
in the sandard model. Apply Corollary 3.34.

346. Let f(x,, ..., Xx,) be arecursve function. o, f(x,, . . ., x,) = y isarecur-
svereation, expressiblein K by awf @(x, .. ., x,, y).Then f is representable by

@(xp, s X ¥) N @2 <yD~&(xy, .. -, Xy 2))s
whaez< ydandsforz< yAz#y.
347. (a) Let
the Godel number of (x;)@ ifn isthe Godel
number of awf @ and x; is the first (inorder
of subscripts) variable freein @

n, otherwise.

G(n) =

Let A(n, 0) = n and A(n,y T 1) = G(h(n, y)).Then Cl(n) = h(n, n). It
suffices to show that G(n) is primitive recursve. Let o(n) =
Wy <n(Fml(n) A Vbl(y) A Fr(n, y)). Then
G(n) — { 2+ 2« 24 4+ 2°if Fml(n)
n otherwise.

() If n isthe Godel number of awf @, then there is a proof ether of the
closure of @ a of the negation of the dosure of &, ie., (Ey)(Pf
(y, Cln)) \/ Pi(y, 2% « 2° « Cl(n) » 2%) Vv =~ Fml(n)). (Here, the



308

ANSWERST O SELECTED EXERCISES

proof predicate Ff is defined with respect to a theory K' which, by the
recursive axiomatizability of K, has the same theorems as K and has a
recursive set of axioms. By Proposition 3.26(13(b)), this insures that F
is recursive.) Abbreviating this last formula by (Ey)% (y, n), we know,
by the p-operator Rule (VI), that py(%(y, n)) is a recursive function.
Therefore, Pi(uw(% (Y, n)), Cl(n)) is recursive, but it is equivaent to
Cl(n) being in Ty, which, in turn, is equivalent to n being in Tgx. An
intuitive result corresponding to the one just proved, namely, that any
complete, axiomatic theory is effectively decidable, aready has been
proved on pp. 96-97. Of course, if one assumes Church's Thesis, this
intuitive result and the result of Exercise3.47(b) are equivalent.

348, If K isrecursively decidable, the set of Godel numbers of theoremsof K s
recursive. Taking the theorems of K as axioms, we obtain a recursive axiomatiza-
tion.

349. (a) Let k be the Godel number of the wf %, Then D(m) = k. Hence,
Fx D (@, k) and Fx(E1x,)® (m, x,). Then, Fg(e)(D (@, x5) D x, = k).
It is now easy to prove b = & (k).

(b) Let K be the theory whose axioms are al true sentences of arithmetic.
Assume & is awf such that @(q) is true if and only if n € Tr. By Part
(a), take a "fixed point™ 5, with Godel number k, for ~ @(x,). Then
F =~ Q(k) istrue. Hence, ¥ istrueif and only if @(k)isfalse, that is,
F istrueif and only if k € Tr. Thus, ¥ istrueif and only if ¥ isfalse.

(c) Use Tarski’s Theorem and Exercise 3.34.

(d) Assume K complete. Then Tx = Tr. By Exercise 3.47(b), K is recur-
sively decidable. Hence, Tr is recursive, contradicting Part (a).

() Assume thereissuch arecursiveset A, and let it be expressed in K by
@(x). Let ¥, with Godel number k, be a fixed point for ~ &(x). Then
FxF =~ @(k). Since &(x) expressesA in K, FKGE(k) or Fg ~ &(K). (0]
If Fc@(K), then tx ~ F. Therefore, k € Ref, C A. Hence, bx ~ @(k),
contradicting the consistency o K. (i) If +x ~ @(k), then +F. So,
k € Tk C A, and, therefore, F¢@(k), contradicting the consistency of
K.

350. Take asanormal model for RR, but not for S the set of polynomials with
integral coefficients such that the leading coefficient is non-negative. Note that
(Ey)x =y tywvwx =y ty+1l)isfasein thismodel but is provablein S.

354. Let K; be the theory whose axioms are those wfs of K, which are provable
in K*. The theorems of K, are the axioms of K,. Hence, x € T, if and only if
Fmig (x) A x € Tg*. So, if K* were recursvely decidable, ie., if Tga were
recursive, Tx, would be recursive. Since K, is a consistent extension of K, this
would contradict the essential recursive undecidability of K,.

355, Compare the proof of Proposition 2.29 (p. 86).

356. Hint: By Exercise 355, K* is consistent. So, by Exercise 3.54, K* is
essentially recursively undecidable. Hence, by Exercise 355, K is recursively
undecidable.
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357. (b) Take (x)(4}(x) = x = X) as a possible definition of 4}
358 Use Exercises356-357.
359. Use Proposition 3.41(a), Exercise 3.58, and Exercise 3.47(b).

Chapter 4

415 Let X = ((Y ,y2lY, =¥2AY, € Y), ie. X is the class o al ordered
pairs (u, u) with u £ Y. Clearly Un(X) and, for any set x, (Ev)({ov, u) € X A\
vEX)=u € Y N x. so, by AXiom R, M(Y N x).

416. D(x) € PYWUJ)) and (x) € YWJ(x))- Apply Proposition 4.6.

417. (@) Assumeu € X Xy.Thenu = (v, w) = ((v), (v, w)) for somev € x,

weEy. Then vEXxuUy and we€ x Uy. So, (v) € P(x Uy) and
{0, w} € @(x U y) Hence, {{o}; (v, w}} € (P (x U ).
(b) Use Part (a), Exercise 411, Axiom W, and Proposition 4.6.

4W. If Rel(X), then X € D(X) X R (X). Use Exercise4.17(b) and Proposition
4.6.

419. Assume Fne(X). Then Fne(y1X) and D(y1X) Cy. By Axiom R,

M(X“y).

4.20. (a) Let 0 be the class {u|u == u). Assume M(X). Then 0 C X. So, 0 =

0 N X. By Axiom S, M(0).

421. Assume M(V). Let Y = {x|x & x). It was proved above that ~ M(Y).
But Y C V. Hence, by Proposition 4.6, ~ M(V).

433. Let u betheleast €-element cf X — Z.

4.36. By Proposition 4.10(4), Trans (w). By Proposition 4.10(2) and Proposition
4.7(10), w € On. If w € K;, then w € w, contradicting Proposition 4.7(1). Hence,
w & K.

439. Let X; = X X (0) and ¥, = Y X (1).

440. For any u C X, let the characteristic function C, be the function with
domain x such that C,y =0ify € u and C,'y = 1 ify € x — u. Let F be the
function with domain 9 (x), taking « into C,. Then @(x) =2

441 For any set u, 9 (u) isa set, by Exercise 4.16.

442 If u € xY, thenu Cy X x. So, XY € F(y X X).

443 (a) 0 isthe only function with domain 0.

(b) Define a function Fwith domain X such that, for any xg in X, F(xg) is
the function g in X such that g ‘u = x,- Then X & X ().

444, If D(u) # 0, then R (u) = 0.

445, Assume X = Yand Z = Zl If ~M(Z), then ~M(Z)and XZ =Y* =
0, by Exercise4.41. Hence, we may assume M(Z) and M(Z) Define a function ®
on XZ: Iffe X% let®‘f=FofoG ' Then X% & Y2

446. If X or Y is not a set, then ZXv¥ and ZX¥ X zY are both 0. We may
assume then that X and Y are sets. Define a function ¥ v}wth domain ZXvY as
follows: iff € ZXV", let ¥ f = (Xqf, Y4f). Then Z¥Xv" % zX x ZT.
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447. (a)When Y =0 A ~ M(Z), (X¥)? = 0and X ¥*Z = X° = {0}.

(b) When Y # 0 A ~M(Z), then ~M(Y X Z) and (X)Z =0 =
XYXZ

(c)When ~M(Y)AZ=0,(X")¥? =1=X%= x¥*Z

(d)When ~M(Y)AZ#0, ~MY XZ) and (XT)¥ =0 =0=
XYXZ'

(e) Finally, when M(Y) AM(Z), definea function® with domain (x ¥)Z
as follows: For any f € (XY)Z,

®8'f isthe functionin X ¥*Z such that (@' f)'(y, z) = (f'2)'y
foral (y,z) € Y x Z.Then (X1)Z = X¥*2,

e
448 1f ~M(Z), (XX Y2 =0=0x0= X% x Y% Assume then that
M(Z). Definea functionF : X% x Y% — (X x Y)? as follows: For any f € XZ,
g<s YZ,(F<409))'z=(f'z9'z) foral zinZ.Then X% x Y% = (X x Y)Z.
F

4.49. Thisis a direct consequence of Proposition4.17.

454. Use the Schroder-BernsteinTheorem (Proposition 42 1(4)).

455, Use Proposition 421((3)-(4)).

456. Assume M is a model of NBG with denumerable domain D. Let z be the
element of D satisfying the W x = 2“. Hence, z satisfiesthe W ~ (x= w). This
means that thereis no object in D which satisfiesthe condition of being a one-one
correspondence between z and w. Snce D is denumerable, there is a one-one
correspondence between the set of"elements™ of z(that is, the set of objectsvin D
such that kyv € z) and the set of natural numbers. However, no such one-one
correspondence exists within M.

457. Define a function F fromV into 2, as follows: Fu = {u,0} if u+0;
F0 = {1,2). Snce F is one-one, V < 2. Hence, by Exercises 421 and 4.50,
~ M(2).

458. (h) Use Exercise 4.46.

()2 <2 +x<2 +22=2 x 2=2% x 2! =2**! = 2'. Hence, by the
Schroder-Bernstein Theorem, 2' + x = 2",

459. Under the assumption of the Axiom of Infinity, w is a s&t such that
(Bu)(u € w) ANy € wD (E2)(z € w Ay C 2z)).Conversely, assume (*) and let
b be a st such that (i) (Eu)(u € b), and (ii Sbo(E)z<EDb C 2)).
Let d = {u|(Ez)(z k()}\(u é( z)).gnced (; )'?‘{ {b)), d iszglse%.( Define/z;}Felatic)))n
R={nvdlncwAv={uusdAu=n)).Thus, (n,u) € Rif and only if
n € w and o consists of al eements of d that are equinumerous with n. R is a
one-one function with domain w and range a subset of ¥ (d). Hence, by the
Replacement Axiom applied to R™}, w is a set, and, therefore. Axiom | holds.

460. Inductiononain(x)(x=a A a € w O Fin(?(x))).

461 Induction on a in (x}x ~aAa€wA O < x> Fin(y) >
Fin(UJ(x))).

462. Use Proposition 4.25(1).

464 x CP(UY(xpandy = x>y ¢ U).

465. Inductiononain(x}x ~aAacw2(X<yVyx x)).
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466. Induction onain (¥)(x =~ a A a € 0w ANInf(¥) D x <Y).

467. Use proposition 4.24(3).

468. Use Exercise 4.17(2).

469. x¥ C P(y X X).

4.71. (a) Let Z be a st such that every non-empty set of subsets of Z has a
minimal e ement. Assume Inf(Z). Let Y be the sat of al infinite subsets
of Z. ThenY is a non-empty set of subsets of Z without a minimal
element.

(b) Prove by induction that, for al a in w, any non-empty subset of ¥ (a)
has a minimal element. The result then carries over to non-empty
subsets of 9(z), where zis any finite set.

472. (a) Inductiononain(x)(x ~a A a € w A Den(y) D Den(x U Yy)).

() Inductiononain{x)(x = a A x # 0 A Den(y) > Den(x X y)).

(c) Assume z € x and Den(z). Let Z=w. Define a function g on x:

gu=ull uc x -z gu=POWw)ifu< z (i) Assume x Dede-
kind-infinite. Assume z ¢ x and X = z. Let v € X — z. Definea func-

tion h on w such that #0 = » and ;l‘(a’) =f'(h'a)ifa€w. Then his
one-one; so, Den(h“w) and A“w C X.
(d) Assumey & x. (i) Assume X U { y )= x. Define by induction a func-

tion g on w such that g0 = y and g‘(n + 1) = f*(g*n). g is a one-one
function frome into x. Hence, x contains a denumerable subset, and,
by Part (c), x is Dedekind-infinite. (i) Assume x Dedekind-infinite.
Then, by Part (c),thereis a denumerable subset z of x. Assume z z« .

Let ¢o = (f~Y)'0. Definea functionF as follows; F'u = u foru < x —
Z, Fleo=y; Flu=(")f'w) - 1) foru s z—- {cp}. Thenx = x U
{y).If zis {cp ¢}, €3, ... }, F takes ¢;4; into ¢; and moves ¢, into y.

(e) Assume w < X. By Part (c) x is Dedekind-infinite. Choose y ¢ x. By
Part (d),x =~ xu {y). Hence, x +.1 = (xxX {0 U {0, 1>} = x U
{y} ~ X.

474. NBG is finitely axiomatizable and has only the binary predicate letter 43.
The argument on p. 205 shows that NBG is recursively undecidable. Hence, by
Proposition 3.47, the predicate calculus with A2 as its only predicate letter is
recursively undecidable.

475. (a) Assume X < w,. | f 2= X, then, by Proposition4.32(b) and Proposition

435, w, < XU w, < XX w, T w, X w0, =w, |f X contains one ele-
ment, use Exercise4.72(c), (d).

(b) Use Corallary 4.36.
478. (2) P (wy) X P(wy) = 2% X 2% == 2%+ = 2% = P(w,).
(0) (NMwg)y* = 2%y = 27 = 2% = P (a,).
4.79. (a) If y were non-empty and finite,y =y +_.» would contradict Exercise
4.67.
(d)ByPat (c)lety=uuyuov,unov=0u=y,ovo=y. Letyﬁ:u. Define
a functiong on ¥ (y) as follows: for x C Yy, let g'x = u U (f“x). Then
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gx Cy andy ~u < gXx <Yy. Hence, gx =y. S, g is a one-one
function from @(y) into A = {z]z Ty A z=y). Thus, P(y) <A.
SinceA C FP(y), & < P(y).

(6) UsePart (d). {zlz Cy Az=y) C {z]z Cy AInf(2)}.
@ ByPat(),leey=uUuuvnu=0u=y, u=>y. Let u=u. Define

f ony asfollowsfx = h'x if x € ¥ andfx = (B~ ")x if Xeu

480. (a) Use Proposition 4.32(b).
) ?) Perm(y) €V’ < (2)) =270 =2 = 9(y).

1) By Part (a), we may use Exercise4.79(c). Lety = u U u,u N u =0,
u~y v~y Let u~v and y =u. Define a function F: #(y) —
Perm(y) in the foIIovving way. AGssumez E P(y). Let §, 1y >y be
defined as follows: y,'x = H'x if x € G“z; ¢,'x = (H "y'x if
(H Yx € G“z; §,'x = x otherwise. Then y, € Perm(y). Let F'z =
¥,. Fisone-one. Hence, ? (y) < Perm(y).

481. (d) Use (W.0.) and Proposition 4.17.
(b) The proof of + Zorn 5 (W.O.) in Proposition 4.37 uses only this special

case of Zorn's Lemma.

(©) To provethe Hausdorff Maximal Principle (HMP) from Zorn, consider

some  -chain G, in X. Lety be the set of all ¢ -chainsC in x such
that Cy € C, and apply Part (b) toy.

Conversdly, assume (HMP). To prove (b), assume that the union of
each non-empty C -chain in a given non-empty set x isaso in x. By
(HMP) applied to the < -chain 0, there is some maximal < -chain C
inx. Then J(C) isan c -maximal element o x.

(d) Assume the Teichmiiller-Tukey Lemma (TT). To prove Part (b),

C)

assume that the union of each non-empty C-chain in a given non-
empty set x isalsoin x. Lety betheset o all ¢ -chainsinx.y iseasily
seen to be a set of finite character. Therefore, y contains an c -
maximal element C. Then {J(C) isan ¢ -maximal element of x.

Conversdly, let x be any set of finite character. In order to prove

(TT) by means of Part (b), we must show that, if Cisan C -chain in x,
then |J(C) € x. By the finite character o X, it suffices to show that
every finitesubsetz o |J(C) isin x. Now, sincez isfinite, z isa subset
d the union of afinite subset W of C. Since Cisan ¢ -chain, W has
an C-greatest element w € X, and z is a subset d w. Since x is of
finite character, z € x.
AssumeRel(x). Let u = {z|(Ev)(v € D(x) Az = {v}lx}, thatis z
uif zistheset o al ordered pairs(u, w) in x, for some fixed u. Apply
the Multiplicative Axiom to u. The resulting choice sety C x is a
function with domain  (x).

Conversdly, the given property easly yields the Multiplicative
Axiom. If x isa set o digoint non-empty sets, let r be the set of all
ordered pairs (u, u) such that ¥ € x and u € u. By Part (e), thereisa
function f € r such that 9D(f) = D(r) = X. The range R(f) is the
required choice set for x.

(f)
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By Trichotomy, either x <y ory < x. If x <y, there is a function
with domain y and range x. (Assume x =y, Cy. Take ¢ € x. Define
gu=cifuey —y,andgu = Nuifu € y,) Smilarly, f y < x,
there is a function with domain x and rangey.

Conversdly, to prove (W.0.), apply the assumption (f) to x and
IC(P (x)). Note that, if (EN)(fiu — uA R(f) = u), then P(v) < P (u).
Therefore, if there were a functionf from x onto IC*(?(x)), we would
have 3P (x)) < (I (X)) < F(x), contradicting the definition
o (P (x)). Hence, there is a function from (P (x)) onto x. Since
(%P (X)) isan ordinal, one can define a one-one function from x into
J(P (). Thus, x < HYP (x)), and, therefore, x can be well-ordered.

484, If < isa partial ordering of x, use Zorn's Lemma to obtain a maximal
partial ordering < * o x with < < *, But a maximal partial ordering must be a
total ordering. (For, if u, uwere distinct elementsd x unrelated by < *, we could
add to < * al pairs {u;, v;> such that «; < *u and u < *v,. The new relation
would be a partial ordering properly containing < *)

487. (b)

©

(d)

489. (a)

Sincex X y~=x+ .y, xXy=aubwithanb=0,a=x,b=y.
Let r be a well-ordering o y. (i) Assume there exists« in x such that
(u, u) € afordluiny. Theny <a. Sincea= X,y =< X, contradict-
ing = (y < x). Hence, (ii) for any u in x, there exists uin y such that
(u, u) € b. Define j: x - b such that f'u = (u, u), where u is the
r-least element o y such that (u, u) € b. Sincef isone-one, x =< b=
y.

Clearly Inf(z) and Inf(x +.z). Then

X4+zx(x+ 2P =2x?+2X(xX2)+2t=x+2 X (x X 2) +.2.

Therefore, X X z<2X (X X 2Z) <X + 2 X (X X 2) +.z =X +.2.
Conversdly, X +.z < X X z by Proposition 4.32(b).

If (AC) holds, (»)(Inf(y) oy =y Xy) follows from Proposition 4.35
and Exercise 4.81(a). Conversdy, if we assumey =~y Xy for al
infinitey, then, by Parts (c) and (b), it follows that x < 3(‘x for any
infinite set x. Since ¥‘x is an ordina, x can be well-ordered. Thus,
(W.0) holds.

Let < be a well-ordering of the range o r. Let f0 be the < -least
element of R (r), and let fi(n") be the < -least element of those u in
R(r) such that {f'n,u) €r.

(b) Assume Den(x) A (u)(u € X D u = 0). Let w2 X. Let r be the set of

all pairs (a, b) such that a and b are finite sequences {vg, v}, . . . » Ua)
and {vg, Vy, ..., 041y Such that, for 0 <i <n+t 1 v €di. Since
R(r) C D(r), (PDC) produces a function h: w—D(r) such that
(h*n, K(n')) € rfor al n ino. Definethe choice functionf by taking,
for each u in x, fu to be the (g‘uw)™ component of the sequence

h'(g‘u).
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(¢) Assume (PDC) and Inf(x). Let r consist of al ordered pairs (u, » U
(a)), whereu U (a) C x, Fin(u U (a)),and a &€ u. By (PDC), there
is a function f: w — D (r) such that (f'n, f(n)> €r for Al n in w.
Define g: w— x by setting gn equal to the unique element of
Si(n) —f'n. Then g isone-one, and 0, w < X.
(d) In the proof of Proposition 4.39(2), instead of using the choicefunction
h, apply (PDC) to obtain the function f. As the relation r, use the set of
al pairs{u,0) suchthat u€ c,0€ c,e € un X
490. Use transfinite induction.
493. Induction on 8.
4.94.-4.95. Use transfinite induction and Proposition 4.90.

497. Assume uC H. Let o be the set of ranks px of elementsx in u Let
B = (). Then ucC ¥B. Hence, u € P(¥'B) = ¥(B) C H.

498. Assume X = 0 A ~(Ey)(y € X Ay N X =0). Choose u € X. Define a
functiong: g0 = u N X, g'(n) = (Y(g'n)) N X. Let x = J(R(g)). Then x = 0
and (P)(y € x Dy N x #D0).

4.103. Hint: Assume that the other axiomsof NBG are consistent and that the
Axiom of Infinity is provable from them. Show that H_, is a model for the other
axioms but not for the Axiom o Infinity.

104. Use H, 4 -

Chapter 5

51 (d) Any word Pis transformed into QP.
(b) Any word P in A is transformed into PQ.
(c) Any word Pin A is transformed into Q.
(d) Any word P in A is transformed into 11, where n is the number of
symbolsin P.
52 (@ at—>A (¢inA)
a+-A
A->a

(®) af - fa (€in 4)
fa— A (§in A)
a— A
A-sa

(© §->A ((inA)
aa — A
A—-a

(d) B — B¢ (£ nin A)
af > {Béa (£in 4)
B—oy
y—=A

—a
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53. aa; — Qa (i=1...,k)
at — éa (¢(ind — {ay,....a))
a—-A
A-sa

54. (d) lel— e
Py |
(e) Lel+1

() Leta, B, & be new symbols.

Bl —18
al - 18«
a—A
118 —» 18
16 -1
811 =481
8l -1
d-1
B—1
lel—>4§

56. In the notation of the proof o Proposition 5.10, let (e, X) = py(W, (x) A
Der(e, X, ¥)) V ~ W, (x)) and (e, X) = (p(€, X)Din(ge, xpy—»+ If € is the index of an
algorithm schemafor an algorithm % in A and if X is the Gédel number of a word
Pin A, then (e, X) is the Godel number of the word A(P) if A(P) is defined,;
otherwise, Y(e, X) is not defined. Let 6 be a normal algorithm over M computing
Y(e, x). Let T, be the normal algorithm over M of p. 235, and let § be the identity
agorithm in A U M. By Corollary 5.2, there is a juxtaposition agorithm 3 such
that, for any natural number e and any word Pin A, J(€ e P) =€ ¢ g(P). Let X,
be the algorithm of Exercise 55. Let B be the composition £, c 6° 3,

57. Letg(xy, ..., x,) beatota partial recursivefunction. By Proposition5.8, ¢
is Markov-computable. Hence, by Corollary 511, ¢ is recursive.

58. Since two fully equivalent algorithms are equivalent, one direction is easy.
Assume that every algorithm in A is equivalent relative to A to some normal
algorithm over A. Let % be an algorithmin A. Then % is equivalent relative to A to
some normal algorithm b. Let the alphabet of B be B 2 A. Let 3 be a normal
algorithm in B such that (P) is defined only for words Pin A, and 3(P) = Pfor
al words Pin A. (Its schemais £ — ¢ (¢ in B — A).) Then % is fully equivaent
relativeto A to 'y » 8.

59. (b)
af - fa (¢in B)
aT(§) - ta ((in A)
a— A
A-=a

5.10. &(x).
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5.11. For example, U3 is computable by the Turing machine

5.12.

513

5.14. (a) 8(x)
(®) x; =~ x;

(c) The function with empty domain.

(d) The function with domain the set of even natural numbers and with

5.15. (a)

(b)

(©

vaue 0.

901 Soqo
90So Rq,
@111 g

q1 S0 Rq

q01 S2q,
91 5; Rqy
a1 1 Rq,
91 S0 Lgy
921 Soqz

901800
g0 So R q,
@1 1Rq
915 Rq;
g2 1 Rgs
@814
gs | R gq
qs So 1 g9
1Ry
BSoL A
unlSon

flz(xh 0

921 Rq,
g2 So Rq3
g3 1 Soqs
nllg;

4280 Lgy
731 Lg;
q:5; lgy
q41 Rqq
9o So Lgs

nSLgp
w1l
gs So L gs
91 L gy
9s So R q10
g0 So R ¢y
qu 1 S gy,
a2 So R qy,
911 So R @
olLyg
97 So R g9

=xl

f10, x;) = x,
H(x)s (x2)) = fHxy x3)

12(-’% 0 = x

fi, (x2)) = (fi(x, x))

fx, 0= 0

xn, (x2)) = f(f2(xy, x2), x,)

fi(x1,0) = x,

Gy, (x2)) = (fi(xe, x)Y

1l(f12(x::xl)) =0
S fxy, x))) =0
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517. Let f(x) be a recursivefunction.

(@) Assume B r.e., and let C be the inverse image of B under f. By
Proposition 5.20(1), (u)(u € B = (Ey)R(u,Y)), for some recursive rela-
tion R. Then R(f(x),y) is recursive, and (x)(x € C =
(Ey)(R(f(x),Y))). By Proposition 5.20(1), C is r.e.

() Let B be a recursive set, and let D be the inverseimage o B under f.
Then x € D if and only if Cg(f(x)) =0, and Cg(f(x)) = 0 isa recur-
sve relation.

(©) Let B ber.e., andlet A betheimaged B under f, that is, the range of f
restricted to B. If B isempty, soisA. If B is non-empty, then B is the
range d a recursive function g. Then A is the range of the recursive
function f(g(x)).

(d) Any non-empty r.e. set which is not recursive (such as that of Proposi-
tion 5.20(5)) is therange o a recursivefunction g, and is, therefore, the
image of the recursive set w of dl natural numbers under the function
8.

518. (a) Let A be an infinite recursive set. Then A is the range o a recursive
function £, by Proposition 5.20(4). Since A isinfinite, h(x) = w(f(y) >
u) is recursive. Let a, be the least element of A. Define g(0) = ay,
g(n * 1) = f(h(g(n)). Then g is a strictly increasing function with
rangeA.

(b) Let A be the range dof a strictly increasing recursive function g. Then
g(x) = x for dl x (by the special case of Proposition 4.14, p. 191).
Hence, x € A if and only if (Eu),<.g(4) = X. So, A is recursive by
Proposition 3.17.

519. AssumeA isaninfiniter.e. set. Let A be therange of the recursive function
g(x). Define the functionf by the following course-of-values recursion (p. 146):

J(n) = g(w((2):<n 8(») #f(2))) = g(w((2):<n 8(y) # (f#(n)))).
Then A is the range of h, his one-one, and h is recursive by Propositions3.17 and
3.19. Intuitively, f(0) = g(0) and, for n >0, f(n) = g(y), wherey is the least
number for which g(y) is different from f(0), f(1), . .. ,f(n - 1).

5.20. Let A beaninfiniter.e. set, and let A betherange of therecursivefunction
g. Since A isinfinite, F(u) = wy(g(y) = u) is a recursive function. Define G(0) =
g(0), G(n + 1) = g(w(g(y) > G(n)) = g(F(G(n))). G is a strictly increasing re-
cursive function whose range is infinite and included in A. By Exercise 518, the
rangedf G isan infinite recursive subset of A.

521. Assume A and B are re. Then, by Proposition 520(1), x € A =
(Ey)R(x,y) and x € B = (Ey)S(x,y), where R and S are recursive relations.
Then x € A U B = (BY)(R(x,y) VV S(x,»)), and so, A U B isr.e. by Proposition
5.20(1). Moreover,x € A N B = (Ey)(Ez)(R(x,y) N S(x, 2)), and the right-hand
side df this equivalenceis equivalent to (Eu)(R(x, (4)g) A S(x, (U),)). SO,A N Bis
r.e. by Proposition 5.20(1). The existenced an r.e. set A for whichw — A isnot r.e.
follows from Proposition 5.20(4, 5).

522. Assume (}). Let f(xy, ..., x,) be effectively computable. Then the set
B = {u|f((u), ..., W)y) = (Ways1} is effectively enumerable, and, therefore,
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by (1), r.e. Hence, u € B = (Ey)R(u, y) for some recursive relation R. Then
fxpy o ooixy) = ([po(((0)0)1 = X3 A .- A((0)0)n = Xz A R((0)o, (©)1))]0)n41-

So, fis recursive. Conversely, assume Church's Thesis and let W be an effectively
enumerable set. If Wisempty, then Wisr.e. If Wisnon-empty, let W be the range
o the effectively computable function g. By Church's Thesis, g is recursive. But
X € W = (Fu)(g(u) = X).Hence, W isr.e. by Proposition 5.20(1).
523 (b) Let A be r.e. Then x € A = (Ey)R(x,y), where R is recursive. Let
R (x,y) express R(x,y) in K. Then

k € A =k(Ey)R(K, ).

(c) Assume k € A =Fg&(k) for all natural numbers k.Then k € A =
(Ey)Bwg (k,Y),and Bwg(x, y)isrecursive (cf. p. 157).

524. (a) Clearly Ty is infinite. Let f(x) be a recursive function with range Tx.
Let By, A,,... bethe theorems of K, where ; is the wf of K with
Gaodel number f(/). Let g(x, y) be the recursive function such that, if x
is the Godel number of awf €, then g(x, j) is the Godel number of the
conjunction € A C A ... A € consisting of J conjuncts; and, other-
wise, g(x, /) =0. Then g(f()), ) is the Godel number of the j-fold
conjunction A, A A, A --. A A,. Let K bethetheory whose axioms
are all these j-fold conjunctions, fora=0, 1, 2,... . Then K' and K
have the same theorems. Moreover, the set of axiomsdf K' is recursive.
In fact, x is the Gédel number of an axiom of K' if and only if
X 7 0 A (Ey),<.(g(f(¥), y) = x). From an intuitive standpoint using
Church's Thesis, we observe that, given any wf &, one can decide

whether @ isa conjunction @ A C A - .. A C;if itissuch aconjunc-
tion, one can determine the number s of conjuncts and check whether
CisA,

Part (b) follows from Part (a).
525 Let ¢(n) = n for al n.
526. If Y(x) were a recursive function which is an extension of wT(x, X,V),
then (Ey)T,(x, x,y) would be equivalent to T,(x, X, ¥(x)), which is recursive.
527. Let ¢(2) = of( w[T(z, o}(¥) 03(»)) A af(y) > 2z]), and let B be the
range of ¢.
533 (a) Assume A(x,)weakly expresses (T)* in K. Then, for any n, Fx® (a)
if and only if n € (Tg)*. Let p be the Gédel number o A (x,). Then
FxB @) if and only if p € (Tg)*. Hence, FxB () if and only if the
Gédel number of A@) is in Tk. Le, FB @) if and only if not-
Fx® @) -
() If K is recursively decidable, Ty is recursive. Hence, Ty is recursive,
and, by Exercise 5.32, (Tk)* is recursive. So, (Tg)* is weakly express-
ible in K, contradicting Part (a).
(©) Use Part (b); everyrecursive set is expressible, and, therefore, weakly
expressible, in everv consistent extension of K.
534. Let T be a Turing machine which computes py T, (x, X, y). Use Proposition
5.19(3).
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536. Assume f is recursive. Let A(z) = w(y < z). Then h is partial recursive,
and A(z) =0 if z+ 0, and A(z) is undefined if z =0. Hence, the composition
h(f(2)) is partia recursive, and

undefined if ¥, (z) is defined

A .
(A=) is [ 0if ¥,(z) is undefined
Then A(f(z)) = yx(z) for some k. So, we obtain the contradiction:

undefined if y, (k) is defined,

W(k) = h(f(k)) = {gif Y (k) is undefined.



INDEX

abbreviated truth table, 15
abbreviations, 31 (f.n.)
abelian group, 82
absolute consistency, 37
AC, see Axiom of Choice
Ackermann, W., 40, 41, 260, 266
addition, ordinal, 190
adequate sets of connectives, 25-28
algebra, Boolean, 43
cylindrical, 103
Lindenbaurn, 43, 103
polyadic, 103
agorithm, 222
closed, 227
doubling, 225, 240
(fully) equivalent, 226
Iteration, 231
juxtaposition, 229
Markov, 223
normal, 223
projection, 228
ramification, 218
recursive, 236
schema, 222
Turing-computable, 242
universal, 238
alphabet, 222
of a Turing machine, 240, 241
alternative denial. 27
and, 11
antecedent, 12
applicable, 222 )
arguments, o arelation, 6
of afunction, 7
arithmetica relation, 151
arithmetization, 152
atomic formula, 46
atomic sentence, 15
autological, 3
autonomous symbols, 31 (f.n.)
auxiliary letter, 249
axiom, 29
of choice, 9, 210
o extensionality, 175
finite, of choice, 211
Fundierungs-, 213
of infinity, 182
logical, 59-60
multiplicative, 9, 210

of null set, 175

pairing, 175

power set, 181

proper (non-logical), 59-60

replacement, 182

d regularity, 213

schemas, 31

o subsets, 181
axiomatic set theory, 4, 173
axiomatic theory, 29
axiomatizable, recursively, 162

finitely, 167
axiomatization, independent, 72
axjomatizations d _the propositional calculus, 40
axioms o class existence, 176

Bachmann, H,, 209

Bar-Hillel, Y., 219

Bernays, P., 4, 59, 72, 88, 98, 100, 101, 163, 173,
216, 263

Bernstein, A. R. 119

Bernstein, ., see Schroder-Bernstein Theorem

Berry's Paradox, 3

beta function of Godel, 147

Beth, E. W., 67, 70, 98, 168

bicohebtiohal, 13

binary predicate letter, 46
binary relation, 6
Bolzano-Weierstrass Theorem, 119
Boolean algebra, 9, 43
Boolean Representation Theorem, 100
Boone, W., 265
bounded quantifiers, 142
bounded sums and products, 141
bounded p-operator, 142
bound occurrence, 48
bound variable, 48
change of, 75
Bourbaki, N., 94
Britton, J, 265
Brouwer, L. E. J, 4
Bruijn, N. de, 99
Burali-Forti’s Paradox, 2, 4, 183

Cantor's Paradox, 2, 4, 183
Cantor's Theorem, 2, 195
cardinal number, 2, 8, 196, 215



322

INDEX

Carnap, R, 31 (f.n.

Cartesiant product, 5, 110, 179

categorical, 93, 134

causal laws, 12 (f.n.)

chain, 210

Chang, C. C., 98

changed bound variables, 75

characteristicd afield, 98

characteristicfunction, 137

Cherlin, G., 98

Chinese Remainder Theorem, 151

choice, axiom of, 9, 210
denumerableaxiom of, 214
finiteaxiom of, 211
fu_nct_ioln, él(()j g )

rinciple endent, 214

get 9p210 P

universal, function, 212
Chuquai, R, 219
Church, A, 42, 59, 171, 219, 239
Church's Theorem, 170
Church's Thesis, 163, 238, 239
circuit, eectric, 21
class, 5 (f.n.), 174
existence axioms, 176
neral, existence theorem, 178
“classical” sense, 227 (f.n.)
closed normal agorithm, 227
closed set, 119
closed term, 68
closed wf, 50
closure, 53
trangitive, 213
Cohen, P. J,, 217
compactness, 71, 115
compatible theories, 168
complement, 176, 177
relative, 5
completediagram, 107
complete induction, 8, 9, 131
completeness theorem, for L, 37
Godel’s, 70
generalized, 101
complete theory, 66
component, 110
composition, 7, 193
(normal) o agorithms, 228
computable, 221
Herbrand—Godel, 250
glpartially) Markov-, 227
uring-, 242
computation of a Turing machine, 242
conditional, 12
counter-factual, 13 (f.n.)
conjunct, 11
conjunction, 11
rule, 73
conjunctive normal form, 28
connected relation, 183
connective, 11, 13, 39
primitive, 31
principal, 15
conseguence, 30
logicd, 16, 56
consequent, 12

consigtency, of L, 37
absolute, 37
omega-cons stencY, 158
of predicatecaculus, 62, 85
o S, 126, 163

constant, individual, 46
non-logical, 171

continuous, 118
uniformly, 119

continuum, 8
hypothesis, 217

contracted modd, 83

contradiction, 17
proof by, 74

contradictory, 56

contrapositive, 21

correspondence, one-one, 7

countable, 8

counter-factual conditional, 13 (f.n.)

course-of-valuesrecursion, 146

Craig, W., 262

céreatlve, 26360! 5
retan "' paradox™, 2 (f.n.

cylindrical algebra, 1& )

Davis, M,, 119, 221, 243, 266
decidable, 30

effectively, 162
decision problem, 265
Dedekind-finite, 198
Dedekind-infinite, 199
Dedekind, R., 103, 121
deduction, 30

theorem for first-order theories, 62-63

theorem for L, 32
definite description, 88
definition, by cases, 144

by transfiniteinduction, 189
Dekker, J., 264
densely-ordered sets, theory of, 81
denumerable, 8, 198

axiom o choice, 214

modd, 67

sequence, 8
dependent choice, principleof, 214
depends, 62
derivable, 249
derived rules, 73-74
designated values, 39
diagram (cor%)I ete), 107
difference, I
direct consequence, 30
direct product, 113

reduced, 112
Dirichlet's Theorem, 134
digoint sets, 5
disunct, 12
digunction, 12

rules, 74
digunctive normal form, 28

divisibilig/, 132
domain, 6, 176, 177

d an interpretation, 50
doubling algorithm, 225, 240

downward Lowenheim-Skolem—Tarski Theo-

rem, 108
Drake, F., 219
Dreben, B., 70
dual, 75
duality, 21, 76
dummy variables, 139
Dyson, V. H., 151

Easton, W. B, 212
effective,30, 59, 221
effectively computable, 221
effectively decidable, 30, 162
Ehrenfeucht, A., 134, 264
electric circuit, 21
eement, 5
elementarily equivalent, 103
elementary, extension, 105
submodel, 105
substructure, 105
theory, 82 . . .
elimination of existential quantifiers. 97-98
empty set, 5
empty word, 222
Epimenides, 2 (f.n.)
epsilon, 5, 173
relation, 176
sealc_ond,stheorem, 100
uaity,
eqm st theory, 173
theorieswith, 79, 83
theory of, 81
equation, 249
equinumerous, 2, 7, 192

logical, 16, 56

recursive, 264

theorem, 74
equivaent algorithms, 226
equivalent, elementarily, 103
Erdos, P, 99, 216
essential Incompleteness, 163
essential undecidability, 151
essentially recursively ‘undecidable, 151
exceptional statement form, 39
exclusve"or", 12
existentia quantifier, 45, 47, 227
exisentia rule E4, 73
exponentiation,ordinal, 191
expressible relation,

weakly, 262
expression, 29
extension

d an alphabet, 222

finite, 168

o a model, 104

natural, 228

d a theory, 66
extensionality axiom, 175
extremal clause, 31 (f.n.)

fase, logicdly, 17, 57
falso Wl 52

INDEX

fasity (F), 12

Feferman, S, 163-164,264
Felgner, U., 212, 217
Fermat's Last Theorem, 145
]!:ld bé)nacm sequence, 147

i

algebraicaly closed, 99
elementary theory of, 82, 98
real-closed, 267
of arelation, 6, 184
filter, 108
proper, improper, principal, 108
ultra-, 109
finitary, 32 (f.n.)
finite
,axiom o choice, 211
character, 211
Dedekind-, 198
extension, 168
ordinal, 188, 197
uence, 8
g 8, 197
finitely axiomatizable, 167
first-order predicate calculus, 60
first-order theory, 59-60
of densely ordered sets, 81
of equali;?/_, 77
with equality, 79
generaized, %
Fixed-Point Theorem, 166
form, statement, 13
formal theory, 17, 29
formula, well-formed, 29, 46-47
atomic, 46
Fraenkel, A. A., 219
free
occurrence, 48
variable, 48
for x; in @, 48
full iteration, 232
full normal forms, 28
fully equivalent algorithms, 226
fuchtcat@ri $8t, 137

definition of, letters, 85
initial, 137

letter, 46

partial, 7
primitive-recursive, 138
recursive, 138

(strongly) representable, 135
total,

truth, 14, 16
Fundierungsaxiom, 213

Gabriel, P, 216

GCH, see generalized continuum hypothesis
Gen, see generaization

general class existence theorem, 178

general recursive, see recursive
generalization (Gen), 60

generalized completeness theorem, 101
generalized conhnuum hypothesis, 217
generalized first-order theories, 95

323



324 INDEX

Gentzen, G., 164
Godelé4|§., 4, 43,59, 67, 152, 172, 173, 217, 239,
Godel

number 151-152. 235
Herbrand-, computable, 250

Godel’s
beta function, 147
Completeness Theorem, 70, 84
Second Theorem, 163-164
Theorem for S, 159

graph, 98

Grelling’s Paradox, 3

group, orderable, 99

group theory, 61, 82

Halmos, P, 10, 100, 103
Halpern, J. D., 103
halting problem, 266
Hartogs Theorem, 200
Hasen]a%r, G., 59, 67, 172
Hatcher, Y., 219
Hausdorff Maximal Principle, 211
Hellman, M., 194
Henkin, L., 67 (f.n.), 95, 98, 103
Herbrand, J,, 32, 70, 239, 248
Herbrand-Godel computable, 250
Hermes. H.. 239. 248
heterological, 3
Heyting, A., 4. 43
higher-order theories, 59 (f.n.)
Higman, G., 265
Hi berféyl?., 40, 41, 59 (f.n.), 72, 88, 98, 100, 101,
Hilbert’s Tenth Problem, 221
Hintikka, J, 67 (fn.), 70
hypothesis, 30, 33

Inductive, 8
Hyp, 33

ideal (maximal, proper), 10
identity relation,pﬁ,pleéo
image, 7
inverse, 7
immune, 264
implication, logical, 16, 56
inaccessible ordinal, 216
weakly, strongly, 218
included, 5
inclusion, 173
inclusive"or", 12
incompl eteness
essential, 163
omega-, 160
independence, 38
independent axiomatization, 72
index, 236, 255, 263
individual, 160
individual constants, 46
individual variables, 46
induction
complete, 8, 9, 131
mathematical, 8, 121, 122
rule, 122
transfinite, 9, 187, 189

inductive hypothesis, 8
inference, rules of, 30, 249
infinite, 8, 198

Dedekind-, 199
infinitely close, 117
infinitesimal, 116, 117
infinity, axiom of, 182
initial

functions, 137

letter, 249

ordinal, 200
inner model, 215
instance, 53
instantaneous tape description, 241
internal states, 240, 241
interpretable, 171

relatively, 172
interpretations, 50
_ isomorphic, 90
intersection, 5, 176, 177
intuitionism, 4
intuitionistic propositional calculus, 42
inverse algorithm, 210
inverse image, 7
inverse of a word, 224
inverse relation, 6, 180
jota term, 88
irreflexive, 183
Isbell, J, 216
isolated, 264
isomorphic interpretations, 93
iteration, 231

full, 232

Jaskowski, S, 43

Jech, T., 217

Jerodow, R. G., 164 (f.n.)

joint denial, 27

Juxtaposition, 144
algorithm, 229

Kalmar, L, 37, 171

Kamke, E. %4. 95

Keisler, H.' J, 98, 119

Kelley, J., 219

Kleene, S. C, 40, 42, 43, 59 (f.n.), 88, 152, 168,
195, 239, 248, 251, 254, 255,265

Konig's Unendlichkeitslemma, 99

Krivine, J. L. 219

Kruse, A. H.' 216

Kuratowski, K., 176

k-valid, 72

L, 31
lambda-computability, 239
Langford, C. H., 97
language (object and meta-), 32 (f.n.)
least element, 9
least number principle, 131
length of an expression, 54 (f.n.)
letter

auxiliary, 249

function, 46

initial, 249

INDEX 325

predicate, 46

principal, 249

Statement, 13, 31
llilevly A.h 216

ength), 143

Lia(r Pgrazfox, 2
limit ordinal, 188
limit point, 119
Lindenbaum algebra, 43, 103
Lindenbaum’'s Lemma, 66, 93
literal, 28
logic, 1

many-valued, 38-39

mathematical, 1, 4
logical axioms, 59-60
logical consequence, 16, 56
logical implication, 16, 56
logically

correct, 24

uivalent, 16, 56

false, 17, 57

true. 17. 57

valid,-56
Los, J, 93, 99, 113
Los’s Theorem, 113
Lowenheim, L.,

Downward Skolem-, —Tarski Theorem, 108

Skolem-, Theorem, 71, 84

Upward Skolem—, —Tarski Theorem, 107
Lukasiewicz, J., 42
Luxemburg, W. A. J, 119

Maclane, S, 216
many-one reducible, 263
many-valued logic, 38-39
maps, 7
Markov, A. A., 222, 223, 238, 266
Markov algorithm, 223
Markov-computable(gartially), 227
Markov's Principle, 238
marriage problem, 99-100
mathematical induction, 8, 122
Matiyasevich, Yu., 221, 265
maximal element, 199
maximal ideal, 10

theorem, 101
maximum, 140
McKinsey, J. C. C, 39
member, 5
membership relation, 173, 185
Mendelson, E., 10, 116, 121, 122, 214
Meredith, C. A., 42
metalanguage, 32 (f.n.)
metamathematics, 32 (f.n.)
method of infinite descent, 132
minimal element, 199
minimum, 140
model, 52, 60

contracted, 83

denumerable, 67

inner, 215

non-standard, 126, 134

normal, 83

standard, 126

modus ponens, 31
monadic predicate calculus, pure, 170
monadic predicate |etter, 46
Monk, J. D., 103
Montague, R., 216, 218
Morley, M. D., 95
Morse, A., 219
Morse-Kelley set theorih 219
Mostowski, A., 168, 171, 172, 174, 214, 219, 255
moves, 241
MP, see modus ponens
multiplication, ordinal, 190
multiplicative axiom, 9, 210
mu-operator, 138

bounded, 142

unrestricted, 227
Myhill, J,, 263, 264

Nagornyi, N, 240
natural extension, 228
natural number, 6 (f.n.)
NBG, 173
negation, ||

rules, 73
Neumann, J. von, 4, 173, 214
NF (Quine's New Foundations), 4, 219
Nicod, J, 42
non-class, 174
non-logical axioms, 59-60
non-logical constant, 171
non-standard analysis, 116-119
non-standard model. 126, 134
non-standard natural numbers, 117
non-standard reals, 116
normal

algorithm, 223

composition, 228

forms, 28

model, 83

prenex, forms, 88-92

Shaitem, 288m, 90

Normalization Principle, 238
Novak-Gal, I. L., 21
Novikov, P. S, 265

null set, 5, 175
axiom, 175
number

cardinal, 2, 8, 196, 215
Godel, 151, 235
natural, 6 (f.n.)
ordinal, 185

numeral, 127, 224, 249

object language, 32 (f.n.

occurrence (free, bound;, 48, 222

omega, 188
-consistency, 158
-incompleteness, 160

one-one, 7, 181
correspondence, 7
reducible, 263

onto function, 7

open set, 119

open wf, 58



326

INDEX

operation, 7
or, 12
order
partial, 9, 61, 183
total, 9, 183, 184
well, 9, 183
orderable group, 99
ordered k-tuple, 5, 176
ordered pair, 5, 176
ordinal
addition, 190
class, 185
exponentiation, 191
finite, 188, 197
of first kind, 188
inaccessible, 216, 218
initial, 200
limit, 188
multiplication, 190
number, 185
regular, singular, 218
successor, 188
Owings, J. C,, Jr., 13

@(unordered, ordered), 5, 175, 176
pairing axiom, 175
paradox

logicd, 2, 183

semantic, 2-5

Skolem's, 196
parameters of a recursion, 138
parentheses, 18-19, 47
partial function, 7
partially Markov-computable, 227
partial order, 9, 61, 1
partial recursive, 227
particularization rule A4, 73
Peano’s Postulates, 121, 122, 134
Peter, R., 260
PF, 169
Polish notation, 19
polyadic algebras, 103
%s'bled Initions, 171

st, E. L., 239, 256, 264, 265
potentialy recursive, 263
power class, 179
power of the continuum, 8
power set, 181

axiom, 181
PP, 169
precisely k-valid. 72
predecessor, 260
predicate

calculus, 60

|etter, 46

pure, calculus, 90, 169

pure monadic, calculus, 170
predicative wi, 178
premiss, 30

renex normal form, 88-92

esburger, M., 134, 266
PR-formula, 164
prime number, 142, 143
prime power factorization, 143

primitive connectives, 31
primitive recursive function, 138
primitive recursive relation, 142
principal
connective, 15
filter, 108
letter, 249
principle
o completeinduction, 8, 9, 131
of dependent choice. 214
least-;umber, 1
of mathematical induction, 8, 121, 122
normalization, 238
well-ordering, 9, 210
product, Cartesian, 5, 110, 179
production (smple, terminal), 222
productive, 264
projection, 228
projection functions, 135
proof, 30, 32 (f.n.)
contradiction, 74
an eguation, 249
ropagation, 228
Broger axiom, 59-60
proper class, 174
proper ideal, 10
proper inclusion, 173
proper subset, 5
property, 6, 174
proposition, 31, 32 (f.n.)
propositional calculus, 12-44
intuitionistic, 42
Bropositional connective, 11, 13
s, 169

pure first-order predicate calculus gIPP), 90, 169
pure monadic predicate calculus, 170
Putnam, H. 221, 264

quantifiers, 45
bounded, 142
uasi-quotation, 31 (f.n.)
8uine, W. V, 4,13 (f.n.), 219
quotation marks, 13 (f.n.)
quotient (qt), 133, 140

Rabin, M., 167
ramification, 231
range, 6, 180
rank, 214
Rasiowa, H., 67 (f.n.), 70, 100, 101
r.e., see recursivly enumerable
recursion, 138
course-of-values, 146
recursive
agorithm, 236
function, 138
partial, 227
permutation, 263
potentially, 263
relation, 142
recursively axiomatizable, 162
recursively enumerable, 260
recursively equivalent, 264

INDEX 327
recursively (essentially) undecidable, 166 Schiitte, K., 164
reduced direct product, 112 scope, 47
reflexive, 6 Second e-Theorem, 100
partial order, 9 section, 185
total order, 9 segment, 185
RE-formula, 164 semantical, 59 (f.n.), 70
regularity, axiom of, 213 sentence, 50
regular ordinal, 205 atomic, 15
relation sequence (denumerable, finite), 8
arithmetical, 151 s, 2,5, 174
binary, 6, 179 Dedekind-finite, 198
connected, 183 denumerable, 8, 198

equivalence, 6

expressible, 134

identity, 6, 180

irreflexive, 183

membership, 173, 185

n-place, 6

primitive recursive, 142

recursive, 142

reflexive, 6

representing, 137

symmetric, 6

trangitive, 6, 183

weakly expressible, 262
relative complement, 5
relatively interpretable, 172
relativization, 172
remainder (rm), 133, 140
replacement axiom, 182
replacement theorem, 75
representable function, 135
representing relation, 137
Rescher, N., 40
restriction of a function, 7, 181
Richard's Paradox, 3
rin%s, elementary theory of, 82
Robinson, A., 98, 99, 115, 119
Robinson, J, 221
Robinson, R. M., 4, 167, 168, 171, 172, 173, 260
Robinson's System, 167
Rogers, H., J., 258, 264, 266
Rosenbloom, P, 103
Rosser, J. B, 4, 40, 41, 78, 88, 160, 217, 219
Rosser, Godel-, Theorem, 160, 162
RR, 167

Rule E4, 73

rules of inference, 30, 249
Rus=l, B, 3,4

Russl's Paradox, 2, 4, 183
Ryll-Nardzewski, C., 167

S (first-order arithmetic), 121-122
consistency of, 126, 163
Godel’s Theorem for, 159
satisfaction relation, 51-52, 54
satisfiable, 56,
schema, algorithm, 222
schema, axiom, 31
Scholz, H., 59 (f-n), 172
Schroder-Bernstein Theorem, 2, 194

empty (null), 5, 175

finite, 197

infinite, 8, 198

power, 181

sum, 180

unit, 5
sets, digoint, 5
sg, sg, 122
Shannon, C., 21
Shepherdson, J., 216, 218
Shoenfield, J.,, 217, 219
Sierpinski, W., 95 (f.n.), 208, 209, 217
Sikorski, R., 10, 67, 70, 101. 102
similarity mapping, 184
similar ordered structures. 184
similar wfs, 65
simple production, 222
simple set, 263
simply transforms, 223
singular ordinal, 218
Skolem-Lowenheim Theorem, 71, 84

Downward, 108

Upward, 107
Skolem normal form, 90
Skolem's Paradox, 196
Skolem, T., 219
Smullyan, R., 152, 264
Sonner, J.,, 216
Specker, E., 217, 219
standard model, 126
standard part, 117
state, internal, 240, 241
statement form, 13
statement letter, 13, 31
Stone, M., 101
strongly inaccessible ordinal, 218
strongly representable function, 135
Stroyan, K. D., 119
submodel, 104
subset, 5 c

roper,

su setpseraxiom of, 181
substitution, 138
substructure, 104
successor, 121
successor ordinal, 188
successor function, 135
sufficiently strong theory, 172
suitable, 39
sum class, 179
sum of cardinals, 196



328 INDEX

Suranyl J, 266 Ulam, S, 216
symbol, 29 ultrafilter, 109
wmmetrlc 6 theorem, 110
syntactical, 59 (f.n.), 70 ultrapower, 112
?/sxemd equations, 249 ultraproduct, 112
zmielew, W, 98, 267 undecidable problems, 265-266
undecidable, recursively, 166
Ty, 165 undecidable sentence, 159
table, truth, 11 undecidable theory, 30
Takeuti, G., 217 uniformly continuous, 119
tape, 240 union, 5, 177
instantaneous, description, 241 unit set, 5
symbols, 240 universal agorithm, 238
Tarski, A, 39, 42, 59 (f.n.), 98, 103, 106, 107, universal choice function, 212
108, 168, 171, 172, 212, 216, 267 universal class, 177
Tarski’s Theorem, 166 universal quantifiers, 45
Tarski-Vaught Theorem, 106 univocal, 181
tautology, 1 unordered pair, 5, 175 -
ichmuller—T unrestricted mu-operator, 227
’tI('; r;hrze 529 ukey Lemma, 211 Upward Lowenheim—Skolem—Tarski Theorem, —
closed, 68 S 107 o D
terminally transforms, 23 0 ” L)
terminal production, 222" - . ~" 2p v
mg;gm e . vdid, logicaly, 4 Miivenrn B )
axiomatic, 29 variable, free(bound) 48 [ ¢ OF tosica y O
vanable |nd|V|duaI 46
(c:fomplglte 66 Vaughn, H., 100 " .ETGM{OG“ m
wn%ngdgllft;ﬂm 83 Vaio R96, 106, 108, 216, 218 2, a"
first-order, 59-60, 61 A o
formaé]I 1Zd %9 g N - wT,
generalized first-order, 95 T
recursively axiomatizable, 162 w:f:g:“’ BM va?Zder, 98
recursively undecidable, 166 |_f 151 (f.n), 150 (f.n), 219

%Jgéchmé%grong’ 172 Weak y exprmmb]e relation, 262

inaccessible ordinal, 218
I)Tgln}%s;l%rt]i’oﬁ I? 108 WeII ormed formula (wf), 20. 46-47

total order, 9, 183, 184 closed, 50
transfinite induction, 9, 187, 189 °P§Ti cgtﬁve 178
transitive class, 185 eFI)I dered &t
transitive closure, 213 we-oraer
i ; well-ordering, 9, 183, 184

transitive relation, 6, 183
trandlation. 239 principle, 9, 210
Trichotomﬂl, 210 wf, see well-formed formula
true, logicaly, 17, 57 wagtaker, J, 195
true VVf, 52 |td’]em, A. N., 4
truth function, 14, 16 Word,b%ZZ 265
truth-functional combination, 11 problem,
truth table, 11-15

abbreviated, 15
truth values, 11 Zaring, W, 217
Turing, A. M., 239, 240 Zeeman, C., 216
Turing algorlthms 241 Zermelo, E.,, 219
Turing-c utable, 242 Zero function, 135
Turing machine, 240-242 Zom’s Lemma, 210
Turquette, A. R, 40 ZSF (Zermelo-Skolem-Fraenkel Set Theory),

Tychonoff's Theorem, 99 219
types, theory of, 4, 219 Zuckerman, M., 219




