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PREFACE TO 
THE SECOND EDITION 

This new edition contains considerable improvements over the first edition. 
Much new material has been added. For example, in Chapter 2 there are two 
new sections on model theory devoted to elementary equivalence and elemen- 
tary extensions and to ultrapowers and nonstandard analysis. The greatest 
change has been the addition of a large number of exercises. There are 389 
exercises, many of them consisting of several parts. Completely new is a section 
at the end of the book, Answers to Selected Exercises, which should improve the 
usefulness of the book as a textbook as well as for independent study. With all 
these changes, I have attempted to preserve the spirit of the original book, which 
was intended to be a simple, clear introduction to mathematical logic unencum- 
bered by excessive notation and terminology. 

I should like to thank the many people who have given me suggestions for 
corrections and improvement. I am particularly indebted to Professor Frank 
Cannonito for much helpful advice. 

ELLIOTT MENDELSON 



PREFACE TO 
THE FIRST EDITION 

In this book we have attempted to present a compact introduction to some of 
the principal topics of mathematical logic. In order to give a full and precise 
treatment of the more important basic subjects, certain subsidiary topics, such as 
modal, combinatory, and intuitionistic logics, and some interesting advanced 
topics, such as degrees of recursive unsolvability, have had to be omitted. 

In the belief that beginners should be exposed to the most natural and easiest 
proofs, free-swinging set-theoretic methods have been used. The significance of 
a demand for constructive proofs can be evaluated only after a certain amount 
of experience with mathematical logic has been obtained. After all, if we are to 
be expelled from "Cantor's paradise" (as non-constructive set theory was called 
by Hilbert), at least we should know what we are missing. 

The five chapters of the book can be covered in two semesters, but, for a 
one-semester course, Chapters 1 through 3 will be quite adequate (omitting, if 
hurried, Sections 5 and 6 of Chapter 1 and Sections 10, 11, and 12 of Chapter 2). 
The convention has been adopted of prefixing a superscript " D  to any section 
or exercise which will probably be difficult for a beginner, and a superscript " A  ' 
to any section or exercise which presupposes familiarity with a topic that has not 
been carefully explained in the text. Bibliographical references are given to the 
best source of information, which is not always the earliest paper; hence these 
references give no indication as to priority. For example, Boone [I9591 gives the 
most complete account of his work on the word problem, which was actually 
done independently of and about the same time as Novikov's work [19551. 

The present book is an expansion of lecture notes for a one-semester course in 
mathematical logic given by the author at Columbia University from 1958 to 
1960 and at Queens College in 1961 and 1962. The author hopes that it can be 
read with ease by anyone with a certain amount of experience in abstract 
mathematical thought, but there is no specific prerequisite. The author would 
like to thank J. Barkley Rosser for encouragement and guidance during his 
graduate studies in logic, and he would like to acknowledge also the obvious 
debt owed to the books of Hilbert-Bernays, 1934, 1939; Kleene, 1952; Rosser, 
1953; and Church, 1956. 
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INTRODUCTION 

One of the most popular definitions of logic is that it is the analysis of 
of reasoning. In studying these methods, logic is interested in the form 

rather than the content of the argument. For example, consider the two deduc- 
tions: 

(1) All men are mortal. Socrates is a man. Hence Socrates is mortal. 

(2) All rabbits like carrots. Sebastian is a rabbit. Hence, Sebastian likes 
carrots. 

Both have the same form: All A are B. S is an A. Hence S is a B. The truth or 
falsity of the particular premisses and conclusions is of no concern to the 
logician. He wants to know only whether the truth of the prernisses implies the 
truth of the conclusion. The systematic formalization and cataloguing of valid 
methods of reasoning is one of the main tasks of the logician. If his work uses 
mathematical techniques and if it is primarily devoted to the study of mathe- 
matical reasoning, then it may be called mathematical logic. We can narrow the 
domain of mathematical logic if we define its principal aim to be a precise and 
adequate definition of the notion of "mathematical proof'. 

Impeccable definitions have little value at the beginning of the study of a 
subject. The best way to find out what mathematical logic is about is to start 
doing it, and the student is advised to begin reading the book even though (or 

/especially if) he has qualms about the meaning or purposes of the subject. 
Although logic is basic to all other studies, its fundamental and apparently 

self-evident character discouraged any deep logical investigations until the late 
nineteenth century. Then, under the impetus of the discovery of non-Euclidean 
geometries and of the desire to provide a rigorous foundation for analysis, 
interest in logic revived. This new interest, however, was still rather unen- 
thusiastic until, around the turn of the century, the mathematical world was 
shocked by the discovery of the paradoxes, i.e., arguments leading to contradic- 
tions- The most important of these paradoxes are the following. 
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This approach, known as the theory of types and systematized and developed 
by Russell-Whitehead [1910-19131, is successful in eliminating the known para- 
doxes,? but it is clumsy in practice and has certain other drawbacks as well. A 
different criticism of the logical paradoxes is aimed at their assumption that, for 
every property P(x), there exists a corresponding set of all objects x which 
satisfy P(x). If we reject this assumption, then the logical paradoxes are no 
longer derivable.$ It is necessary, however, to provide new postulates that will 
enable us to prove the existence of those sets which are a daily necessity to the 
practicing mathematician. The first such axiomatic set theory was invented by 
Zermelo [1908]. In Chapter 4 we shall present an axiomatic theory of sets which 
is a descendant of Zermelo's system (with some new twists given to it by von 
Neumann, R. Robinson, Bernays, and Godel). There are also various hybrid 
theories combining some aspects of type theory and axiomatic set theory, e-g., 
Quine's system NF (cf. Rosser [19533). 

A more radical interpretation of the paradoxes has been advocated by 
Brouwer and his intuitionist school (cf. Heyting [1956]). They refuse to accept 
the universality of certain basic logical laws, such as the law of excluded middle: 
P or not-P. Such a law, they claim, is true for finite sets, but it is invalid to 
extend it on a wholesale basis to all sets. Likewise, they say it is invalid to 
conclude that "there exists an object x such that not-P(x)" follows from 
"not-(for all x, P(x))"; we are justified in asserting the existence of an object 
having a certain property only if we know an effective method for constructing 
(or finding) such an object. The paradoxes are, of course, not derivable (or even 
meaningful) if we obey the intuitionist strictures, but, alas, so are many beloved 
theorems of everyday mathematics, and, for this reason, intuitionism has found 
few converts among mathematicians. 

Whatever approach one takes to the paradoxes, it is necessary first to examine 
the language of logic and mathematics to see what symbols may be used, to 
determine the ways in which these symbols are put together to form terms, 
formulas, sentences, and proofs, and to find out what can and cannot be proved 
if certain axioms and rules of inference are assumed. This is one of the tasks of 
mathematical logic, and, until it is done, there is no basis for comparing rival 
foundations of logic and mathematics. The deep and devastating results of 
Godel, Tarski, Church, Rosser, Kleene, and many others have been ample 
reward for the labor invested and have earned for mathematical logic its status 
as an independent branch of mathematics. 

tRussell's Paradox, for example, depends upon the existence of the set A of aU sets which are not 
members of themselves. Because, according to the theory of types, it is meaningless to say that a set 
belongs to itself, there can be no such set A .  

$Russell's Paradox then proves that there is no set A of all sets which do not belong to themselves; 
the paradoxes of Cantor and Burali-Forti show that there is no universal set and no set containing 
all ordinal numbers. The semantic paradoxes cannot even be formulated, since they involve notions 
not expressible within the system. 

Foi the absolute novice a summary will be given here of some of the basic 
ideas and results used in the text. The reader is urged to skip these explanations 
now, and, if necessary, to refer to them lateran. 

A set is a collection of objects.? The objects in the collection are called 
elements or members of the set, and we shall write "X E y" for the statement that 

is a member of y. (Synonymous expressions are "x belongs to y" and "y 
contains x".) The negation of "x E y" will be written "x @ y". 

BY ux y" we mean that every member of x is also a member of y, or, in 
other words, that x is a subset of y (or, synonymously, that x is included in y). 
We shall write "t = s" to mean that "t" and "s" denote the same object. As 
usual, "t + s" is the negation of "t = s". For sets x and y, we assume that x = y 
if and only if x C y and y C x; that is, if and only if x and y have the same 
members. A set x is called aproper subset of a set y, written "x c y", if x C y 
but x # y.$ 

The union x u y of sets x and y is defined to be the set of all elements which 
are members of x or y or both. Hence, x U x = x, x u y = y u x, and 
(x u y) u z = x u (y u 2). The intersection x n y is the set of elements which 
x and y have in common. It is easy to verify that x n x = x, x n y = y n x, 
x n ( y n z ) = ( x n y ) n z ,  x n ( y u z ) = ( x n y ) u ( x n z ) ,  a n d x u ( y n z )  
= (x u y) n (X u I). The relative complement x - y is the set of members of 
x which are not members of y. We also postulate the existence of the empty set 
(or null set) 0, i.e., a set which has no members at all. Then, x n 0 = 0, 
X U  O =  X , X  - O =  X, 0 -  x =0 ,  andx - x = 0.Twosetsx andy arecalled 
disjoint if x n y = 0. 

Given any objects b,, . . . , b,, the set which contains b,, . . . , b, as its only 
members is denoted {b,, . . . , b,). In particular, {x, y )  is a set having x and y as 
its only members and, if x # y, is called the unorderedpair of x and y. The set 
{x, x) is written {x) and is called the unit set of x. Notice that {x, y )  = {y, x). 
On the other hand, by (b,, . . . , b,) we mean the ordered k-tuple of b,, . . . , 6,. 
The basic property of ordered k-tuples is that (b,, . . . , b,) = (c,, . . . , c,) if 
and only if b, = c,, b2 = c,, . . . , b, = c,. Thus, (b,, b,) = (b,, 6,) if and only 
if b1 = b2. Ordered Ztuples are called ordered pairs. If X is a set and k is a 
positive integer, we denote by xk the set of all ordered k-tuples (b,, . . . , 6,) of 

61, . . . , b, of X. We also make the convention that X' stands for X. 
xk is called the Cartesian product of X with itself k times. If Y and Z are sets, 
then by Y x Z we denote the set of all ordered pairs (y, z) such that y E Y 
and E Z.  Y X Z is called the Cartesian product of Y and 2. 

t w c h  collectiom of objects form sets fl not be specified here. Cue fl be exefcked to avoid 
wing my ideas or procedures which may lead to the paradoxes; al l  the results can be f0- 
the 50matic Set theory of Chapter 4. The term "class" is sometimes used as a Synonym for "set 9 

but It be avoided here because it has a different meaning in Chapter 4. If the property P(x) d m  
d e t e m e  a Set, this set is often denoted {x lP(x) ) .  
me notation x c y is often used instead of x c y .  

rC 
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An n-place relation (or a relation with n arguments) on a set X is a subset of 
Xn, i.e., a set of ordered n-tuples of elements of X. For example, the 3-place 
relation of betweenness for points on a line is the set of all 3-tuples (x, y, z) 
such that the point x lies between the points y and z. A 2-place relation is called 
a binary relation, e.g., the binary relation of fatherhood on the set of human 
beings is the set of all ordered pairs (x, y) such that x and y are human beings 
and x is the father of y. A 1-place relation on X is a subset of X, and is called a 
property on X. 

Given a binary relation R on a set X, the domain of R is defined to be the set 
of ally such that (y, z) E R for some z; the range of R is the set of all z such 
that (y, z) E R for some y; and thefield of R is the union of the domain and 
range of R. The inverse relation R -' of R is the set of all ordered pairs (y, z) 
such that (z, y) E R. For example, the domain of the relation < on the set w of 
non-negative integerst is w, its range is w - {O), and the inverse of < is > . 
Notation: Very often xRy is written instead of (x, y) E R. Thus, in the example 
just given, we usually write x < y instead of (x, y) E < . 

A binary relation R is said to be reflexive if xRx for all x in the field of R. R 
is symmetric if xRy implies yRx, and R is transitive if xRy and yRz imply xRz. 
Examples: The relation < on the set of integers is reflexive and transitive but 
not symmetric. The relation "having at least one parent in common" on the set 
of human beings is reflexive and symmetric but not transitive. 

A binary relation which is reflexive, symmetric, and transitive is called an 
equivalence relation. Examples of equivalence relations: (1) the identity relation 
I, on a set X consisting of all pairs (y, y), where y E X; (2) the relation of 
parallelism between lines in a plane; (3) given a fixed positive integer n, the 
relation x = y (mod n) holds when x and y are integers and x - y is divisible by 
n; (4) the relation between directed line segments in three-dimensional space 
which holds when and only when they have the same length and the same 
direction; (5) the congruence relation on the set of triangles in a plane; (6) the 
similarity relation on the set of triangles in a plane. Given an equivalence 
relation R on a set X, and given any y E X, define [y] as the set of all z in X 
such that yRz. Then [y] is called the R-equivalence class of y. It is easy to check 
that [y] = [z] if and only if yRz and that, if [y] # [z], then [y] n [z] = 0, i.e., 
different R-equivalence classes have no elements in common. Hence, the set X is 
completely partitioned into the R-equivalence classes. For some of the examples 
above: (1) the equivalence classes are just the unit sets {y), where y E X; (2) 
the equivalence classes can be considered to be the directions in the plane; (3) 
there are n equivalence classes, the kth equivalence class (k = 0, 1, . . . , n - 1) 
being the set of all numbers which leave the remainder k upon division by n; (4) 
the equivalence classes are the three-dimensional vectors. 

to will also be referred to as the set of natural numbers. 

on the s 

A function f is a binary relation such that (x, y) E f and (x, z) E f imply 
= z .  ~ h u s ,  for any element x of the domain of a function f, there is a unique y 

such that (x, y) E f; this unique element y is denoted f(x). If x is in the domain 
off, then f(x) is said to be defined. A function f with domain X and range Y is 
said to be a function from X onto Y. If f is a function from X onto Y, and 
y 2, then f is called a function from X into 2. For example, if f(x) = 2x for 
every integer x, f is a function from the set of integers onto the set of even 
integers, and f is a function from the set of integers into the set of integers. A 
function the domain of which consists of n-tuples is said to be a function of n 
arguments. A (total) function of n arguments on a set X is a function f whose 
domain is Xn. We usually write f(x,, . . . , xn) instead of f((x,, . . . , x,,)). A 

function of n arguments on a set X is a function whose domain is a 
subset of Xn; e.g. ordinary division is a partial, but not total, function of two 
arguments et of integers (since division by zero is not defined). Iff is a 
function m lin X and range Y, then the restriction f, off to a set Z is the 
function f Y). Clearly, f,(u) = v if and only if u E Z and flu) = v. 
The image 01 ulr; bet Z under the function f is the range off,. The inverse image 
of a set W under the function f is the set of all elements u of the domain off 
such that f(u) E W. We say that f maps X onto (into) Y if X is a subset of the 
domain of f and the image of X under f is (a subset of) Y. By an n-place 
operation (or operation with n arguments) on a set X we mean a function from Xn 

into X. For example, ordinary addition is a binary (i.e., 2-place) operation on the 
set of natural numbers (0, 1, 2, . . . ). But ordinary subtraction is not a binary 
operation on the set of natural numbers, though it is a binary operation on the 
set of integers. 

Given two functions f and g, the composition f g (also sometimes denoted fg) 
is the function such that (f 0 g)(x) = j(g(x)); (f g)(x) is defined if and only 
if g(x) is defined and f(g(x)) is defined. For example, if g(x) = x2 and f(x) = 
x + 1 for every integer x, then (f g)(x) = x2 + 1 and (g  n(x)  = (x + I ) ~ .  
Also, if h(x) = - x for every real number x and f(x) = fi for every non-nega- 
tive real number x, then (f h)(x) is defined only for x < 0, and, for such x, 
(f O, h)(x) = . A function f such that f(x) = f(y) implies x = y is called a 
l-1 (one-one) function. Examples: (1) The identity relation I, on a set X is a 

function, since Ix(y) = y for any y E X; (2) the function g(x) = 2x, for 
every integer x, is a 1-1 function; (3) the function h(x) = x2, for every integer x, 
is not 1-1, since h(- 1) = h(1). Notice that a function f is 1-1 if and only if its 
inverse relation f -' is a function. If the domain and range of a 1-1 function f 
are and Y, respectively, then f is said to be a 1-1 (one-one) correspondence 
between X and Y; then f - is a 1 - 1 correspondence between Y and X, and 
(f -' O n = Ix and (f f - I )  = I,. Iff is a 1- 1 correspondence between X and 
'7 and g is a 1- 1 correspondence between Y and Z, then g 0 f is a 1- 1 
cOmes~Ondence between X and Z. Sets X and Y are said to be equinumerous 
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(written X r Y) if and only if there is a 1-1 correspondence between X and Y. 
Clearly, X r X; X = Y implies Y = X; and X = Y and Y r Z imply X r 2. 
One can prove (cf. Schrijder-Bernstein Theorem, page 194) that if X = Y, G Y 
and Y = X, c X, then X r Y. If X = Y, one sometimes says that X and Y have 
the same cardinal number, and if X is equinumerous with a subset of Y but Y is 
not equinumerous with a subset of X, one says that the cardinal number of X is 
smaller than the cardinal number of Y.t  

A set X is denumerable if it is equinumerous with the set of positive integers. A 
denumerable set is said to have cardinal number No, and any set equinumerous 
with the set of all subsets of a denumerable set is said to have the cardinal 
number 2'0 (or to have the power of the continuum). A set X is finite if it is empty 
or if it is equinumerous with the set of all positive integers (1, 2, . . . , n) which 
are less than or equal to some positive integer n. A set which is not finite is said 
to be infinite. A set is countable if it is either finite or denumerable. Clearly, any 
subset of a denumerable set is countable. A denumerable sequence is a function s 
whose domain is the set of positive integers; one usually writes s, instead of s(n). 
Afinite sequence is a function whose domain is (1, 2, . . . , n), for some positive 
integer n. 

Let P(x, y,, . . . , y,) be some relation on the set of non-negative integers. In 
particular, P may involve only the variable x and thus be a property. If 
P(0, y,, . . . , y,) holds, and, if, for any n, P(n, y,, . . . , yk) implies P(n + 1, 
y,, . . . , y,), then P(x, y,, . . . , y,) is true for all non-negative integers x 
(Principle of Mathematical Induction). In applying this principle, one usually 
proves that, for any n, P(n, y,, . . . , y,) implies P(n + 1, y,, . . . , y,) by assum- 
ing P(n, y,, . . . , 7,) and then deducing P(n + 1, y,, . . . , yk); in the course of 
this deduction, P(n, y,, . . . , y,) is called the inductive hypothesis. If the relation 
P actually involves variables y,, . . . , y, other than x, then the proof of "for all 
x, P(x)" is said to proceed by induction on x. A similar induction principle holds 
for the set of integers greater than some fixed integer j. Example: to prove by 
mathematical induction that the sum of the first n odd integers 1 + 3 + 5 
+ . . . +(2n - 1) is n2, first show that 1 = l2 (i.e., P(l)), and then, that if 
1 + 3 + 5 + ...  +(2n - 1 ) =  n2, then 1 + 3  + 5  + . .  . +(2n - 1)+(2n +1) 
= (n + (i.e., if P(n) then P(n + 1)). From the Principle of Mathematical 
Induction one can prove the Principle of Complete Induction: if, for every 
non-negative integer x the assumption that P(u, y,, . . . , y,) is true for all u < x 
implies that P(x, y,, . . . , y,) holds, then, for all non-negative integers x, 
P(x, y,, . . . , y,) is true. (Exercise: show, by complete induction, that every 
integer greater than 1 is divisible by a prime number.) 

m e  can attempt to define the cardinal number of a set X as the wllection [XI of all sets 
equinumerous with X. However, in certain systems of set theory, [XI does not exist, whereas in 
others (cf. page 196), [XI exists but is not a set. For cardinal numbers [XI and [Y], one can define 
[XI < [Y] to mean that X is equinumerous with a subset of Y. 

order is a binary relation R such that R is transitive and, for every x 
in the field of R, xRx is false. If R is a partial order, then the relation R' which 
is the union of R and the set of all ordered pairs (x, x), where x is in the field of 
R, we shall call a reflexive partial order; in the literature, "partial order" is used 
for either partial order or reflexive partial order. Notice that (xRy and yRx) is 
impossible if R is a partial order, while (xRy and yRx) implies x = y if R is a 
reflexive partial order. A (reflexive) total order is a (reflexive) partial order R 
such that, for any x and y in the field of R, either x = y or xRy or yRx. 
Examples: (1) the relation < on the set of integers is a total order, while < is a 
reflexive total order; (2) the relation c on the set of all subsets of the set of 
positive integers is a partial order, but not a total order, while the relation C_ is a 
reflexive partial order but not a reflexive total order. If C is the field of a 
relation R, and if B is a subset of C, then an element y of B is called an R-least 
element of B if yRz for every element z of B different from y. A well-order (or 
well-ordering relation) is a total order R such that every non-empty subset of the 
field of R has an R-least element. Examples: (1) the relation < on the set of 
non-negative integers is a well-order; (2) the relation < on the set of non-nega- 
tive rational numbers is a total order but not a well-order; (3) the relation < on 
the set of integers is a total order but not a well-order. Associated with every 
well-order R having field X there is a corresponding Complete Induction Princi- 
ple: if P is a property such that, for any u in X, whenever all z in X such that 
zRu have the property P, then u has the property P, then it follows that all 
members of X have the property P. If the set X is infinite, a proof using this 
principle is called a proof by transfinite induction. One says that a set X can be 
well-ordered if there exists a well-order whose field includes X. An assumption 
which is useful in modem mathematics but about the validity of which there has 
been considerable controversy is the Well-Ordering Principle: every set can be 
well-ordered. The Well-Ordering Principle is equivalent (given the usual axioms 
of set theory) to the Axiom of Choice (Multiplicatiue Axiom): given any set X of 
non-empty pairwise disjoint sets, there is a set Y (called a choice set) which 
contains exactly one element in common with each set in X. 

k t  B be a non-empty set, f a function from B into B, and g a function from 
 into B. Let us write x' for f(x), and x n y for g(x, y). Then (B, f, g) is called 
a Boolean algebra if and only if the following conditions are satisfied: 

(i) x n y = y n x for all x, y in B. 
(ii) (x n y) n z = x n (y n z) for all x, y, z in B. 
(iii) x n y' = z n Z' if and only if x n y = x for any x, y, z in B. 

We let x U y stand for (x' n y')'; and we write x < y for x n y = x. It is easily 
Proved that z n zf = w n wf for any w, z in B; we denote the value of z n Z' by 
O. (The symbols n, U ,  0 should not be confused with the corresponding 
S~mbols used in set theory.) We let 1 stand for 0'. Then: z u z' = 1 for all z in 
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B; < is a reflexive partial order on B; and (B, f, u ) is a Boolean algebra. An 
ideal in (B, f, g )  is a non-empty subset J of B such that: (1) if x E J and y E J ,  
then x u y E J ,  and (2) if x E J and y E B, then x n y E J. Clearly, (0) and 
B are ideals. An ideal different from B is called a proper ideal. A maximal ideal 
is a proper ideal which is included in no other proper ideal. It can be shown 
that a proper ideal J is maximal if and only if, for any u in B, u E J or u' E J. 
From the Well-Ordering Principle (or the Axiom of Choice) it can be proved 
that every Boolean algebra contains a maximal ideal, or, equivalently, that every 
proper ideal is included in some maximal ideal. Example: let B be the set of all 
subsets of a set X; for Y E B, let Y' = X - Y, and for Y, Z in B, let Y n Z be 
the ordinary set-theoretic intersection of Y and Z. Then (B, ', n ) is a Boolean 
algebra. The 0 of B is the empty set 0, and 1 is X. Given an element u in X, let J, 
be the set of all subsets of X which do not contain u. Then J,  is a maximal ideal. 
For a detailed study of Boolean algebras, cf. Sikorski [1960], Halmos [1963], 
Mendelson [ 19701. 

CHAPTER I 

THE PROPOSITIONAL 
CALCULUS 

1. Propositional Connectives. Truth Tables. 
Sentences may be combined in various ways to form more complicated 

sentences. Let us consider only truth-functional combinations, in which the truth 
or falsity of the new sentence is determined by the truth or falsity of its 
component sentences. 

Negation is one of the simplest operations on sentences. Although a sentence 
in a natural language may be negated in many ways, we shall adopt a uniform 
procedure, that of placing a sign for negation, the symbol --, in front of the 
entire sentence. Thus, if A is a sentence, then --A denotes the negation of A. 

The truth-functional character of negation is made apparent in the following 
truth table. 

A --A 
T F 
F T 

When A is true, -Y A is false; when A is false, --A is true. We use T and F to 
denote the truth ualues Truth and Falsity. 

Another common truth-functional operation is conjunction: "and". The con- 
junction of sentences A and B will be designated by A A B and has the 
following truth table. 

A B A A B  
T T T 
F T F 
T F F 
F F F 

A A B is true when and only when both A and B are true. A and B are called 
the conjuncts of A B. Note that there are four rows in the table, corresponding 
to the number of possible assignments of truth values to A and B. 
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In natural languages, there are two distinct uses of "or7', the inclusive and the 
exclusive. According to the inclusive usage, "A or B" means "A or B or both", 
whereas according to the exclusive usage, the meaning is "A or B, but not both". 
We shall introduce a special sign, V, for the inclusive connective. Its truth table 
is as follows: 

A B A V B  
T T T 
F T T 
T F T 
F F F 

Thus, A V B is false when and only when both A and B are false. "A V B" is 
called a disjunction, with the disjuncts A and B. 

EXERCISE 

1.1. Write the truth table for the exclusive usage of "or". 

Another important truth-functional operation is the conditional: "If A, then 
B." Ordinary usage is unclear here. Surely, "If A, then B" is false when the 
antecedent A is true and the consequent B is false. However, in other cases, there 
is no well-defined truth value. For example, the following sentences would be 
considered neither true nor false: 

(1) If 1 + 1 = 2, then Paris is the capital of France. 
(2) If 1 + 1 # 2, then Paris is the capital of France. 
(3) If 1 + 1 # 2, then Rome is the capital of France. 

Their meaning is unclear, since we are accustomed to the assertion of some sort 
of relationship (usually causal) between the antecedent and the consequent. We 
shall make the convention that "If A, then B" is false when and only when A is 
true and B false. Thus, sentences (1)-(3) are assumed to be true. Let us denote 
"If A, then B" by "A 1 B". An expression "A 3 B" is called a conditional. 
Then 3 has the following truth table: 

A B A > B  
T T T 
F T T 
T F F 
F F T 

This sharpening of the meaning of "If A, then B" involves no conflict with 
ordinary usage, but rather only an extension of that usage.? 

+There seems to be a common non-truth-functional interpretation of "If A,  then B", connected 
with causal laws. The sentence, "If this piece of iron is placed in water at time t ,  then the iron will 
dissolve", is regarded as false even in the case that the piece of iron is not placed in water at time 2 
i.e., even when the antecedent is false. Another non-truth-functional usage of "If . .  . , then- 
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A justification of the truth table for 3 is the fact that we wish "If A and B, 
then B" to be true in all cases. Thus, the case in which A and B are true justifies 
the first line of our truth table for > , since (A and B) and B are both true. If A 
is false and B true, then (A and B) is false while B is true. This corresponds to 
the second line of the truth table. Finally, if A is false and B is false, (A and B) 
is false and B is false. This gives the fourth line of the truth table. Still more 
support for our definition comes from the meaning of statements such as, "For 
every x, if x is an odd positive integer, then x2 is an odd positive integer." This 
asserts that, for every x, the statement "if x is an odd positive integer, then x2 is 
an odd positive integer" is true. Now, we certainly do not want to consider cases 
in which x is not an odd positive integer as counterexamples to our general 
assertion. This provides us with the second and fourth lines of our truth table. In 
addition, any case in which x is an odd positive integer and x2 is an odd, 
positive integer confirms our general assertion. This corresponds to the first line 
of the truth table. 

Let US denote "A if and only if B" by "A B". Such an expression is called 
a biconditional. Clearly, A - B is true when and only when A and B have the 
same truth value. Its truth table, therefore, is 

The symbols - , A, V, , = will be called propositional connectives.$ Any 
sentence built up by application of these connectives has a truth value which 
depends on the truth values of the constituent sentences. In order to make this 
dependence apparent, let us apply the name statement form to an expression 
built up from the statement letters, A, B, C, etc., by appropriate applications of 
the propositional connectives. More precisely, 

( I )  All statement letters (capital Roman letters) and such letters with 
numerical subscriptst are statement forms. 

Occurs in so-called counterfactual conditionals, such as, "If Sir Walter Scott had not written any 
novels, then there would have been no War Between the States." (This was Mark Twain's contention 
in Life on the Mississippi: "Sir Walter had so large a hand in making Southern character, as it existed 
before the war, that he is in great measure responsible for the war".) This sentence might be asserted 
to be false even though the antecedent is admittedly false. Fortunately, causal laws and counterfact- 
"11 conditionals are not needed in mathematics and logic. For a clear treatment of conditionals and 
Other connectives, cf. Quine [1951]. (The quotation from Life on the Mississippi was brought to my 
attention by Professor J. C. Owings. Jr.) .-- - 

Twe shall avoid the use of qu&tioi marks to form names, whenever this is not likely to cause 
confusion. Strictly speaking, the given sentence should have quotation marks around each of the 
connectives. Cf. Qume [1951], pages 23-27. 

TFor example, A 1, A2, A ,7, B3,, C2, . . . . 
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(2) If & and 9 are statement forms, then so are (- &), (& A 9 ), (& V 9 ), 
((2 3 '331, and (& = 9 ) .  

(3) Only those expressions are statement forms which are determined to be 
so by means of (1) and (2).$ 

Examples of statement forms: B, (-- C,), (D ,  A (-- B)), ((-- B,) V B3  > (A, 
A Ch), (((-- A) - A) (C 3 (B V C))). 

For every assignment of truth values T  or F  to the statement letters occurring 
in a statement form, there corresponds, by virtue of the truth tables for the 
propositional connectives, a truth value for the statement form. Thus, each 
statement form determines a truth function, which can be graphically represented 
by a truth table for the statement form. For example, the statement form 
(((-- A) V B) 2 C) has the following truth table: 

A B C (--A) ((--A)V B) (((--A)VB) 3 C) 
T T T  F  T  T  
F T T  T  T  T  
T F T  F  F  T 
F F T  T  T  T 
T T F  F  T  F  
F T F  T  T  F  
T F F  F  F T  
F F F  T  T F  

Each row represents an assignment of truth values to the letters A, B, C, and 
the corresponding truth values assumed by the statement forms which appear in 
the construction of (((-- A) V B) > C). 

The truth table for ((A = B) II ((-- A) A B)) is as follows: 

A B (A EB)  (--A) ((--A)AB) ((A = B ) >  ((--A)AB)) 
T T  T  F  F  F 
F T  F  T  T  T  
T F  F  F  F  T  
F F  T  T  F  F 

$This can be rephrased as follows: (3 is a statement fonn if and only if there is a finite sequence 
4 ,  . . . , &,, (n > 1) such that &,, = e, and if 1 < i < n, &, is either a statement letter or is a 
negation, conjunction, disjunction, conditional, or biconditional constructed from previous expres- 
sions in the sequence. Notice that we use script letters &, 3, e, . . . to stand for arbitrary 
expressions, whereas Roman letters are being used as statement letters. 
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~f there are n distinct letters in a statement form, then there are 2" possible 
assignments of truth values to the statement letters and, hence, 2" rows in the 
truth table. 

EXERCISE 

1.2. Construc~ uuul ubles for the statement forms ((A 1 B) V (- A)) and 
((A 3 (B 3 C))  3 ( (A  2 B )  3 (A 3 C))). 

A truth table can be abbreviated by writing only the full statement form, 
putting the truth values of the statement letters underneath all occurrences of 
these letters, and writing, step by step, the truth value of each component 
statement form under the principal connective? of the form. As an example, for 
((A = B) > ((-- A) A B)), we obtain 

((A = B) 3 ((-- A) A B)) 
T T T F  F T  F T  
F F T T  T F  T T  
T F F T  F T  F F  
F T F  F  T F  F F  

13. Write the abbreviated truth tables for ((A 3 B) A A) and ((A V (-- C))  = 
B). 

1.4. Write the following sentences as statement forms, using statement letters to 
stand for the atomic sentences, i.e., those sentences which are not built up out of 
other sentences. 

(a) If Mr. Jones is happy, Mrs. Jones is unhappy, and if Mr. Jbnes is 
unhappy, Mrs. Jones is unhappy. 

(b) Either Sam will come to the party and Max will not, or Sam will not 
come to the party and Max will enjoy himself. 

. (c) A necessary and sufficient condition for the sheik to be happy is that he 
has wine, women, and song. 

(d) Fiorello goes to the movies only if a comedy is playing. 
(e) A sufficient condition for x to be odd is that x is prime. 
( f )  A necessary condition for a sequence s to converge is that s be bounded. 
(g) The bribe will be paid if and only if the goods are delivered. 
01) The Giants will win the pennant unless the Dodgers win today. 
(i) If x is positive, x2 is positive. 

tThe principal connectiue of a statement form is the one which is applied last in constructing the 
fonn. 
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(2)  If k2 and 91 are statement forms, then so are (- &), (& A $3 ), (& V '33 ), 
(k2 3 a) ,  and (& - 3).  

(3) Only those expressions are statement forms which are determined to be 
so by means of (1) and (2).$ 

Examples of statement forms: B ,  (-- C2), (D ,  A (-- B)) ,  ((-- B , )  V B2) 3 ( A ,  
A C,)), (((-- A )  - A  = ( C  3 ( B  V C)) ) .  

For every assignment of truth values T  or F  to the statement letters occurring 
in a statement form, there corresponds, by virtue of the truth tables for the 
propositional connectives, a truth value for the statement form. Thus, each 
statement form determines a truth function, which can be graphically represented 
by a truth table for the statement form. For example, the statement form 
(((-- A )  V B )  3 C )  has the following truth table: 

A  B  C  ( - - A )  ( ( - - A ) V B )  ( ( ( - - A ) V B ) > C )  
T T T  F  T  T  
F  T  T  T  T  T  
T F T  F  F  T  
F F T  T  T  T  
T T F  F  T  F  
F T F  T  T  F  
T F F  F  F  T  
F F F  T  T  F  

Each row represents an assignment of truth values to the letters A ,  B,  C ,  and 
the corresponding truth values assumed by the statement forms which appear in 
the construction of ( ( ( - - A )  V B )  3 C ) .  

The truth table for ( (A - B )  3 ((-- A )  A B ) )  is as follows: 

A  B  ( A - B )  ( - - A )  ( ( - - A ) A B )  ( ( A = B ) > ( ( - - A ) A B ) )  
T T  T  F  F  F  
F  T  F  T  T  T  
T  F  F F  F  T  
F F  T  T  F  F  

$This can be rephrased as follows: k? is a statement form if and only if there is a finite sequence 
@,, . . . , $ ( n  > 1) such that $ = e, and if 1 < i < n, &, is either a statement letter or is a 
negation, conjunction, disjunction, conditional, or biconditional constructed from previous expres- 
sions in the sequence. Notice that we use script letters @, 3 ,  e, . . . to stand for arbitrary 
expressions, whereas Roman letters are being used as statement letters. 

~f there are n distinct letters in a statement form, then there are 2" possible 
rn ipnen ts  of truth values to the statement letters and, hence, 2" rows in the 
m t h  table. 

EXERCISE 

1.2, Construct truth tables for the statement forms ((A > B) V (-- A)) and 
((A > (B > C)) 3 ((A 3 B) (A C))). 

A truth table can be abbreviated by writing only the full statement form, 
putting the truth values of the statement letters underneath all occurrences of 
these letters, and writing, step by step, the truth value of each component 
statement form under the principal connectivet of the form. As an example, for 
((A = B )  3 ((-- A )  A B)) ,  we obtain 

( (A = B) 3 ((-- A )  A B)) 
T T T F  F T F T  
F F T T  T F T T  
T F F T  F T  F F  
F T F  F  T F  F F  

EXERCISES 

13. Write the abbreviated truth tables for ((A > B) A A) and ((A V (- C)) - 
B ). 

1.4. Write the following sentences as statement forms, using statement letters to 
stand for the atomic sentences, i.e., those sentences which are not built up out of 
other sentences. 

(a) If Mr. Jones is happy, Mrs. Jones is unhappy, and if Mr. Jones is 
unhappy, Mrs. Jones is unhappy. 

(b) Either Sam will come to the party and Max will not, or Sam will not 
come to the party and Max will enjoy himself. 

1 (c) A necessary and sufficient condition for the sheik to be happy is that he 
has wine, women, and song. 

(d) Fiorello goes to the movies only if a comedy is playing. 
(e) A sufficient condition for x to be odd is that x is prime. 
(f) A necessary condition for a sequence s to converge is that s be bounded. 
(g) The bribe will be paid if and only if the goods are delivered. 
@) The Giants will win the pennant unless the Dodgers win today. 
(i) If x is positive, xZ is positive. 

principal connective of a statement form is the one which is applied last in constructing the 
form. 
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2. Tautologies. 
A truth function of n arguments is defined to be a function of n arguments, the 

arguments and values of which are the truth values T or F. As we have seen, any 
statement form determines a corresponding truth functi0n.t 

A statement form which is always true, no matter what the truth values of its 
statement letters may be, is called a tautologv. A statement form is a tautology if 
and only if its corresponding truth function takes only the value T, or, equiv- 
alently, if, in its truth table, the column under the statement form contains only 
T's. Simple examples of tautologies are (A V (-- A)) (Law of the Excluded 
Middle), (-- (A A (-- A))), (A = (-- (-- A))), ((A A B) 3 A), (A 3 (A V B)). 

If (@ 3 93 ) is a tautology, @ is said to logically imply 9, or, alternatively, 9 
is said to be a logical consequence of @. For example, (A A B) logically implies 
A, (-- (-- A)) logically implies A, and (A A (A 3 B)) logically implies B. 

If (@ = 93) is a tautology, @ and 93 are said to be logically equivalent. For 
example, B and (-- (-- B)) are logically equivalent, as are (A 3 B) and ((--A) 
v B). 

By means of truth tables, we have effective procedures for determining 
whether a statement form is a tautology and for determining whether a state- 
ment form logically implies or is logically equivalent to another statement form. 

EXERCISES 

1.5. Determine whether the following are tautologies. 
(a)  (((A 3 B )  3 B )  3 B )  
@) ( (A  = B )  = ( A  = ( B  = A)))  
(c) ( A  3 ( B  3 ( B  3 A)))  
( d )  ( (A A B )  3 ( A  V C ) )  
(e) ( (A V (- ( B  A '3)) 3 ( ( A  - C )  V B) )  
(0 ( ( (B 3 C )  3 ( A  3 B ) )  3 (A  3 B)) .  

tIf we wish to be precise, we should enumerate all statement letters as follows A, B, . . . , Z, 
A,, B,, . . . , Z,, A2, . . . . If a statement form contains the i?, . . . , i: statement letters in this 
enumeration, where i, < . . . < in, then the corresponding truth function is to have x,,, . . . , x,,, in 
that order, as its arguments, where xi, corresponds to the $!' statement letter. For example, A > B 
generates the truth function. 

X~ X2 f(x17x2) 
T T T 
F T T 
T F F 
F F T 

while B > A generates the truth function 
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1.7. 
tables, 
1.8. 

Verify or disprove: 
(a) ( A  B )  logically implies ( A  3 B) .  
(b) ( ( M A )  V B )  is logically equivalent to ((- B )  V A). 
Show that 6! and 93 are logically equivalent i f  and only i f ,  in their truth 
the columns under 6! and 93 are the same. 
Which o f  the following statement forms are logically implied by  ( A  A B)? 
(a)  A 
@) B 
(c) ( A  V B )  
(4 ( ( - A ) V  B )  
(4 ( ( -  B )  3 A )  
(0 ( A  - B )  
(g) ( A  3 B )  
0) ((- B )  3 (- A))  
(i) ( A  A (- B ) )  

1 9 .  Same as Exercise 1.8, with ( A  B )  replaced by  (A  3 B) .  
1.10. Same as Exercise 1.8, with (A  A B )  replaced by  (A  v B) .  
1.11. Same as Exercise 1.8, with ( A  B )  replaced by ( A  = B) .  

A statement form which is false for all possible truth values of its statement 
letters is called a contradiction. Its truth table has only F's in the column under 
the statement form. 

Example. (A = (- A)) 

A --A (A = (-- A)) 
T F F 
F T F 

Another example of a contradiction is (A A (-- A)). 

Notice that a statement form @ is a tautology if and only if (-- @) is a 
contradiction, and vice versa. 

A sentence (in some natural language like English, or in a formal theoryt) 
, which arises from a tautology by substitution of sentences for all the statement 

letters, occurrences of the same letter being replaced by the same sentence, is 
said to be logically true (according to the propositional calculus). Such a 
sentence may be said to be true by virtue of its truth-functional structure alone. 
An example is the English sentence, "If it is raining or snowing, and it is not 
Snowing, then it is raining", which arises by substitution from the tautology 
(((A V B) A (-- B)) > A). A sentence which comes from a contradiction by 
means of substitution is said to be logically false (according to the propositional 
calculu~). 

tBy formal theory, we mean an artificial language in which the notions of "meaningful 
expressl~n", axioms, and rules of inference are precisely described; cf. pp. 29-30. 
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Now let us prove a few general facts about tautologies. 

PROPOSITION 1 .I. If &? and (@ > 9 ) are tautologies, then so is 9 

PROOF. Assume that @ and (@ 3 3) are tautologies. If 9 took the value F 
for some assignment of truth values to the statement letters of @ and 9 ,  then, 
since 62 is a tautology, @ would take the value T, and, therefore, (@ 1 3 )  
would have the value F for that assignment. This contradicts the assumption 
that (62 3 9 )  is a tautology. Hence 9 never takes the value F. 

PROPOSITION 1.2. If @ is a tautology containing as statement letters 
A,, A,, . . . , A,, and 9 arises from &? by substituting statement forms 
a,, 4, . . . , @,, for A,, A*, . . . , A,, respectively, then 9 is a tautology, i.e., 
substitution in a tautology yields a tautology. 

Example. Let @ be ((A, A A J  3 A,), let &, be (B V C), and let @ , be 
(C A D). Then 9 is (((B V C) A (C A D)) 3 (B V C)). 

PROOF. Assume that &? is a tautology. For any assignment of truth values to 
the statement letters in 9 ,  the forms &, . . . , a,, have truth values x,, . . . , x,, 
(where each x, is T or F). If we assign the values x,, . . . , x, to A,, . . . , A,, 
respectively, then the resulting truth value of @ is the truth value of 3 for the 
given assignment of truth values. Since & is a tautology, this truth value must be 
T. Thus, 9 always takes the value T. 

PROPOSITION 1.3. If 3, arises from $ by substitution of 9 for one or more 
occurrences of @, then ((a -= 9 )  > (a, E 9 , ) )  is a tautology. Hence, if Q and 
9 are logically equivalent, then so are @, and 9,. 

PROOF. Consider any assignment of truth values to the statement letters. If 
&? and 3 have opposite truth values under this assignment, then (@ = 9 ) takes 
the value F, and so ((a = 3) 3 (e l  - a I ) )  is T. If 62 and 9 take the same 
truth values, then so do @, and a , ,  since 3, differs from $ only in containing 
9 in some places where &?, contains @. Hence, in this case, (&? 3 )  is T, 
(a, = 3,)  is T, and, therefore, ((@ r 3 )  3 (&, - a l ) )  is T. 

It would be profitable, at this point, to agree on some conventions to avoid 
the use of so many parentheses in writing formulas. This will make the reading 
of complicated expressions easier. First, we may omit the outer pair of parenthe- 
ses of a statement form. (In the case of a statement letter, there is no outer pair 
of parentheses.) Second, when a form contains only one binary connective 
(namely, 3 , - , A,  or V), parentheses are omitted by association to the left. 

Examples. A 3 B 3 A 3 C stands for ((A 3 B) II A )  3 C, and B V B V 
A V C V A stands for ((((B V B) V A) V C) V A). 

Third, the connectives are ordered as follows: , 1 , V, A, --, and 
parentheses are eliminated according to the rule that, first, -- applies to the 

d a t  statement form following it, then A is to connect the smallest statement 
it, then V connects the smallest forms surrounding it, and 

e l y  for 3 and = . In applying this rule to occurrences of the same 
oonoective, we proceed from left to right. 

f i I Imles .  Parentheses are restored to A V -- B 3 C = A  in the following 
steps. 

A V ( - B ) >  C s A  
( A V ( - B ) ) >  C = A  

((A V (- B)) 3 C) = A 
(((A V (- B)) 3 C) =A) 

As an exercise, show that D = C =A A D A B V - D 3 B stands for 
((D -= C) -= ((((A A D )  A B )  V (- D)) 3 B)). 

Not every form can be represented without use of parentheses. For example, 
parentheses cannot be further eliminated from A 2 (B 2 C), nor from 
-- (A V B), nor from A A (B 3 C). 

EXERCISES 

1.12. Eliminate as many parentheses as possible from the following forms. 
(a) ((B = ((- C )  V ( D  A A))) = ( B  3 B) )  
(b) (((A A (- B))  A C )  V D )  
(c) ((A 3 ( B  V C ) )  V (- ( C  3 D ))) 
( 4  ((- (- (- ( B  V 0)) = ( B  - C ) )  
(e) (((A 3 B )  3 ( C  3 D ) )  A (- A)) V C )  
(0 ((A = B )  = (- ( C  V D) ) )  
(g) (A  v (B v C)) 

1.U. Restore the to the fonns C 3 - (A V C )  A A r B and 
C > A > A s - A V B .  

1-14. Determine whether the following expressions are abbreviations of state- 
ment forms, and, if so, restore all parentheses. 

(a) 2 - A r A - B V C  
6 ( ~ ) * ( ~ z . A E A ) G B V C  

(c) A = ( - A  V B )  3 (A A ( B  v C ) ) )  
( ~ ) - A V B V C A D = A A - A  
(e) - - ( A ~ B ) V C V D  3 B  

l-15- If we write - & instead of (- &); 3 &(B instead of (& 3 (8); A&% 
"'Udof (@ A (8); V&(8 instead of (& V (8); and -- &(8 instead of (& -- (81, 

is no need of parentheses. For example, ((- A )  3 (B  V (- D ) ) )  be- 
'Ornes >, A V B - D. This way of writing forms is called Polish notation. 

(a) write ( C  V ((B /\  (- D )) 3 C ) )  in this notation. 
@) If we count 3 , A ,  V ,  E each as + 1, each statement letter as - 1, 

and .Y as 0, prove that an expression & in this ~arenthesis-free 
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notation is a statement form if and only if (i) the sum of the symbols of 
d is - 1, and (ii) the sum of the symbols in any proper initial segment 
of d is non-negative. 

(c) Write the statement forms of Exercise 1.12 in Polish notation. 
(d) Determine whether the following expressions are statement forms in 

Polish notation. If so, write the statement forms in the standard way. 
(i) - 3 A B C V A B - C  
(ii) >>  AB > >  BC 3 - A C  
(iii) v A V - A - B C A V A C V - C - A  

1.16. Determine whether each of the following is a tautology, a contradiction, or 
neither. 

(a) B = (B V B) 
(a) (A 3 B) 3 ((B C) 3 (A C)) 
( 4  ((A 3 B) A B) 3 A 
( 4  (- A) (A A B) 
( 4  A A (- (A V B )) 
( f )  (A 3 B ) r ( ( - A ) V B )  
(g) (A > B)=-(AA(--B)) 

1.17. If A and B are true and C is false, what are the truth values of the 
following statement forms? 

(a) A V C 
@ ) A A C  
(c) - A A - C  
( d ) A - - B V C  
(e) B V - C > A  
( f )  (B V A )  3 (B 3- C) 
(g) (B = - A) = (A E C) 
01) (B 3 A)>((A 3 - C ) 3  (-C 3 B)) 

1.18. If A > B is T, what can be deduced about the truth values of: 
( a ) A V C > B V C ,  
( b ) A A C 3 B A C ,  
(c) - A A B  = A V B .  

1.19. What further truth values can be deduced from those already given? 

(a) - A V ( A ~ B )  

(a) - ( A $ B ) ; - A ~ - B  

(c) (-A V B ) z ( A  2- C) 

1.20. If A = B is F, what can be deduced about the truth values of: 
(a) A A B 
(a) A V B  
(c) A 3 B 
( d ) A A C = B A C  

1.21. Same as Exercise 1.20, except that A = B is assumed to be T. 
1.22. What further truth values can be deduced from those given? 

( ~ ) ( A A B ) - ( A V B )  
F F 

is -- B. 
@) ~ p p l y  Proposition 1.3 when dl is (B > C) V D, is B 3 C, and 3 is 

- B V C .  
show that the following pairs are logically equivalent: 
(a) - ( A v B ) a n d ( - A ) A ( - B )  
@) - ( A A B ) ~ ~ ~ ( - A ) V ( - B )  
(c) A A ( B  ~ C ) a n d ( A  A B ) V ( A A C )  
(d) A V ( B A C ) ~ ~ ~ ( A V B ) A ( A V C )  
(e) A V ( A A B ) ~ ~ ~ A  
(0 A > B and - B >-A (- B 1 --A is called the contrapositive of 

A 3 B) 
(g) ( A A B ) v ( - B ) ~ ~ ~ A v ( - B )  
(h) A A (A V B) and A 
(i) A A B a n d B A A  
(1) A V B and B V A 
(k) ( A A B ) A C a n d A A ( B A C )  
(l) ( A V B ) V C a n d A V ( B  V C )  
(m)A = B a n d B  =A 
(n) (A = B ) = C a n d A  = ( B  = C )  
(0) (A 3 B) 3 (A 3 C) and (A A B) 3 C 

1.25. Show the logical equivalence of the following pairs. 
(a) (A A B) // -- B and A V - B 
(a) ( A v B ) / \ - - B a n d A A - B  
(c) 5 A A and A where 5 is a tautology 
(d) 5 v A and 5 where '5 is a tautology 
(e) 4 A A and 5 where 4 is a contradiction 
( f )  5 V A and A where 5 is a contradiction 

1%. (Duality) (a) If d is a statement form involving only -- , A, and V,  and 
@' arises from d by replacing each A by V, and each V by A,  show that d is a 
tautology if and only if -- d' is a tautology. Prove that, if d > 3 is a tautology, so 
is 9' > d', and, if d = 3 is a tautology, so is &' r 3 '. 

(b) Derive the logical equivalence in 1.2qd) from that in 1.2qc). 
(c) If d is a statement form involving only - , A, and V, and d* results 

from @ by interchanging A and V,  and replacing every statement letter by its 
negation, show that d* is logically equivalent to - d. Find a statement form 
logically equivalent to the negation of (A V - B) A A A (-- C V (A A C)). 

A statement form containing only the connective - is a tautology if and 
Only if each statement letter occurs an even number of times. 

(Shamon [1935]) An electric circuit containing only on-off switches 
(when a switch is on, it passes current; otherwise, not) can be represented by a 
&gram in which, next to each switch, we put a letter representing a necessary and 
suficient condition for the switch to be on; see Fig. 1.1. The condition that a 

flows through this network can be given by a statement form: (A A B) V 
(CA -A). 
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FIG. 1.1 

A statement form representing the circuit shown in Fig. 1.2 is (A /\ B) v 
((C V A) /\ -- B). Using Exercise 1.24(d, e, g, j, l), we find that this is logically 
equivalent to ((A /\ B) V (C V A)) /\ ((A /\ B) V -- B), which, in turn, is 
logically equivalent to (((A /\ B) V A) V C) /\ (A V -- B), then to (A V C) 
(A V -- B), and finally to A V ( C  /\ -- B). Hence, the given circuit is equiv- 
alent to the simpler circuit shown in Fig. 1.3. (Two circuits are said to be 
equivalent if current flows through one if and only if it flows through the other; 
and one circuit is simpler if it contains fewer switches.) 

TAUTOLOGIES 23 

, (8) Find simpler equivalent circuits for those shown in Figs. 1.4, 1.5, and 
-ew 

X i f  'L 1.6. 
@) Assume that each of the three members of a committee votes Yes on a 

proposal by pressing a button. Devise as simple a circuit as you can 
which will allow current to pass when and only when at least two of the 
members vote in the affirmative. 

(c) We wish a light to be controlled by three different switches in a room 
in such a way that flicking any one of these switches will turn the light 
on if it is off and will turn it off if it is on. Construct a simple circuit 
which will do the required job. 
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1.29. Determine whether the following arguments are logically correct by repre- 
senting each sentence as a statement form and checking whether the conclusion is 
logically implied by the conjunction of the assumptions. 

(a) If Jones is a Communist, Jones is an atheist. Jones is an atheist. Hence, 
Jones is a Communist. 

(b) If fallout shelters are built, other countries will feel endangered and our 
people will get a false sense of security. If other countries will feel 
endangered, they may start a preventive war. If our people will get a 
false sense of security, they will put less effort into preserving peace. If 
fallout shelters are not built, we run the risk of tremendous losses in the 
event of war. Hence, either other countries may start a preventive war 
and our people will put less effort into preserving peace, or we run the 
risk of tremendous losses in the event of war. 

(c) If Jones did not meet Smith last night, then either Smith was the 
murderer or Jones is lying. If Smith was not the murderer, then Jones 
did not meet Smith last night and the murder took place after mid- 
night. If the murder took place after midnight, then either Smith was 
the murderer or Jones is lying. Hence, Smith was the murderer. 

(d) If capital investment remains constant, then government spending will 
increase or unemployment will result. If government spending will not 
increase, taxes can be reduced. If taxes can be reduced and capital 
investment remains constant, then unemployment will not result. 
Hence, government spending will increase. 

130. Which of the following sets of statement forms are consistent, in the sense 
that there is an assignment of truth values to the statement letters which makes all 
of the forms in the set true? 

(a) A 3 B (b) - ( -BVA)  (c) D 3 B 
B r C  A V - B  

A V - C  
C V D  s - B  B 3- C - (D/\A) n - 

1.31. Check each of the following sets of statements for consistency by represent- 
ing the sentences as statement forms and then testing their conjunction to see 
whether it is a contradiction. 

(a) Either the witness was not intimidated, or, if Doherty committed 
suicide, a note was found. If the witness was intimidated, then Doherty 
did not commit suicide. If a note was found, then Doherty committed 
suicide. 

(b) Either love is blind and happiness is attainable or love is blind and 
women are smarter than men. If happiness is attainable, then love is 
not blind. Women are not smarter than men. 

(c) If John loves Mary, Jane will marry Tom. If Jane marries Tom, Jane's 
father will disinherit her or Jane's mother will obtain a divorce. 
However, Jane's mother will not obtain a divorce. 

(d) The contract is satisfied if and only if the building is completed by 
November 30. The building is completed by November 30 if and only 
if the electrical subcontractor completes his work by November 10. The 
bank loses money if and only if the contract is not satisfied. Yet the 
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electrical subcontractor completes his work by November 10 if and 
only if the bank loses money. 

3. AWuate Sets of Connectives 
Every statement form containing n statement letters generates a correspond- 

ing truth function of n arguments. The arguments and values of the function are 
T or F. Logically equivalent forms generate the same truth function. The 
question naturally presents itself as to whether all truth functions are so 
generated. 

PRopOsrno~ 1.4. Every truth fitnction is generated by a statement form 
imIuing the connectives - , A, and V. 

PROOF. (Refer to Examples (a) and (b) below for clarification.) Let 
f ( ~ , ,  . . . , x,,) be a truth function. Clearly f can be represented by a truth table of 
2" rows, where each row represents some assignment of truth values to the 
variables x,, . . . , x,, followed by the corresponding value of f(x,, . . . , x,,). If 
1 < i < 2", let be the conjunction U;' A Ui A . . . A Ui, where U,' is A, if, in 
the ih row of the truth table, 3 takes the value T, and U,' is - Aj if x, takes the 
value F. Let D be the disjunction of all those Ci's such that f has the value T for 
the ih row of the truth table. (If there are no such rows, then f always takes the 
value F, and we let D be A, A -A,, which satisfies the theorem.) As its 
corresponding truth function, D has f. For, let there be given an assignment of 
truth values to the statement letters A,, . . . , A,, and assume that the corre- 
sponding assignment to the variables x,, . . . , x, is row k of the truth table for f .  
Then Ck has the value T for this assignment, whereas every other Ci has the 
value F. If f has the value T for row k, then C, is a disjunct of D. Hence, D 
would also have the value T for this assignment. If f has the value F for row k, 
then Ck is not a disjunct of D and all the disjuncts of D take the value F for this 
assignment. Therefore, D would also have the value F. Thus, D generates the 
truth function f. 

1 

Emq les. 
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equivalent to a statement form in only A and -- (obtained 
all expressions 62 V $8 by -- (-- 62 A -- a ) ) .  The other parts of 
are similar consequences of the following tautologies: 

by 
the 

T F F F 
F F F T We have just seen that there are certain pairs of connectives, e.g., - and A, in terms of which all other truth functions are definable (in the sense of 

D is & f o l l ~  1.5). It turns out that there is a single connective, J (joint denial), 

( A I A A ~ A A ~ ) V ( A I A - - A , A A , ) V ( - - A , A - A ~ A A ~ )  
which will do the same job. Its truth table is 

V ( - A l  A-A2A--A3)  
A B AJB 
T T F 

EXERCISES 

132. Find a statement form in tile connectives -, /\, and V which has the 
following truth function (fx, ,  x,, x,). 

X I  x2 x3 f(x1, x29 x3) 
T T T T 
F T T T 
T F T F 
F F T F 
T T F F 
F T F F 
T F F F 
F F F T 

133. Find statement forms having the given truth tables. 

A B C f(x1, X2, ~ 3 )  g(x1, xz9 x3) h(x1, xz, x3) 
T T T T T T 
F T T  T T T 
T F T  T T F 
F F T  F 
T T F F 
F T F F 
T F F  F 
F F F T 

COROLLARY 1.5. Every truth function correspondr to a statement form contain- 
ing as connectives only A and -- , or only V and -- , or only 3 and -- . 
PROOF. Notice that A V B is logically equivalent to -- (-- A A - B ) .  

Hence, by Proposition 1.3 (second part), any statement form in A ,  V ,  and -- 1s 

AJB is true when and only when neither A nor B is true. Clearly, -- A = (AJA) 
and (A A B) = ((AJA)J(BJB)) are tautologies. Hence, the adequacy of J for 
the construction of all truth functions follows from Corollary 1.5. 

Another connective, ( (alternative denial), is also adequate for this purpose. Its 
truth table is 

A B 0 
T T F 
F T T 
T F T 
F F T 

AIB is true when and only when not both A and B are true. The adequacy of ( 
follows from the tautologies -- A - (A] A) and (A V B) = ((AIA)((B IB)). 

PROPOSITION 1.6. The only binary connectives which alone are adequate for 
d e  construction of all truth functions are J and I. 
PROOF. Assume that h(A, B) is an adequate connective. NOW, if h(T, T) 

were T, then any statement form built up using only h would take the value T 
when all its statement letters take the value T. Hence, - A would not be 
defhble  in terms of h. So, h ( ~ ,  q = F. Likewise, h(F, F) = T. Thus, we have 
the' truth table 
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If the second and third entries in the last column are F, F or T, T, then h is J or 
I. If they are F, T, then h(A, B) - - B would be a tautology; and if they are T, 
F, then h(A, B)  =- A is a tautology. In both cases, h would be definable in 
terms of - . But - is not adequate by itself, because the only truth functions of 
one variable definable from it are the identity function and negation itself, 
whereas the truth function that is always T would not be definable. 

EXERCISES 

1.34. Prove that each of the pairs 3 , V, and - , - , is not alone adequate to 
express all truth functions. 

135. (a) Prove that A V B can be expressed in terms of 3 alone. 
(b) Prove that A A B cannot be expressed in terms of 3 alone. 
(c) Prove that A - B cannot be expressed in terms of 3 alone. 

1.36. (a) A statement form is said to be in disjunctive normal form if it is a 
disjunction consisting of one or more disjuncts, each of which is a conjunction of 
one or more statement letters and negations of statement letters, e.g., (A A B) V 
( -AAC) ,  (AABA-A)V(CA-B)V(AA-C) ,A ,AAB,AV(BA 
C). A form is in conjunctiw normal form if it is a conjunction of one or more 
conjuncts, each of which is a disjunction of one or more statement letters and 
negations of statement letters. For example, the following are in conjunctive 
normal form: ( B V - C ) A ( A V D ) ,  A A ( B V A ) A ( - B V A ) ,  A, A A B ,  
A V - B. Note that we consider statement letters and their negations as (degener- 
ate) conjunctions or disjunctions. The proof of Proposition 1.4 shows that every 
statement form & is logically equivalent to one in disjunctive normal form. By 
applying this result to - &, prove that & is also logically equivalent to a form in 
conjunctive normal form. 

(b) Find logically equivalent disjunctive and conjunctive normal forms for - (A 3 B) V (- A C) and A - ((B - A) V C). (Suggestion: Instead of 
relying on Proposition 1.4, it is usually easier to use Exercise 1.24(c, d).) 

(c) Let us call a statement letter A and its negation -A literals with the 
letter A. A disjunctive (conjunctive) normal form is called f u N  if no disjunct 
(conjunct) contains two occurrences of literals with the same letter and if a letter 
occumng in one disjunct (conjunct) also occurs in all the others. For example, 
(A A- A A B)V(A A B) , (BA B A  C ) V ( B A C ) , a n d ( B A  C)VBarenot  
full, whereas (A A -- B) V (B A A) and (A A B A - C) V (A A B A C) V 
(A - B A - C) are full disjunctive normal forms. (i) Find full disjunctive and 
conjunctive normal forms for -(A 3 B) V (-A A C) and A = ((B A - A) 
V C). (ii) Prove that every non-contradictory (non-tautologous) statement form & 
is logically equivalent to a full disjunctive (conjunctive) normal form 8, and, if '43 
contains exactly n letters, then & is a tautology (contradiction) if and only if 4 has 
2" disjuncts (conjuncts). 

(d) For each of the following, find a logically equivalent statement form in 
disjunctive (conjunctive) normal form, and then find logically equivalent full 
disjunctive (conjunctive) normal forms. (i) (A V B) A (- B V C) (ii) - A V 
(B 3- C) (iii)(A A -B)V(A A C) (iv)(A V B) =- C. 
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(e) Construct statement forms in - and A (respectively, in - and V, or 
, a d  3 )  logically equivalent to the statement forms in Part (d). 

A certain country is inhabited only by people who either always tell the 
ways tell lies, and who will respond to questions only with a yes or no. A 

Fv*. &-At comes to a fork in the road, where one branch leads to the capital and the 
.n&er does not. There is no sign indicating which branch to take, but there is an 

i &bitant standing at the fork. What yes-or-no question should the tourist ask him 
"' to determine which branch to take? (Hint: Let A stand for "You always tell the 

truth", and let B stand for "The left-hand branch leads to the capital". Construct, 
by means of a suitable truth table, a statement form involving A and B such that 
the native's answer to the question as to whether this statement form is true will be 
*yaw when and only when B is true.) 

(b) In a certain country, there are three kinds of people: workers (who 
always tell the truth), capitalists (who never tell the truth), and students (who 
sometimes tell the truth and sometimes lie). At a fork in the road, one branch leads 
to the capital. A worker, a capitalist, and a student are standing at the side of the 
road, but are not identifiable by their speech or clothing. By asking two yes-or-no 
questions, find out which fork leads to the capital. (Each question may be 
addressed to any one of the three.) 

4. An Axiom System for the Propositional Calculus 
Truth tables enable us to answer most of the significant questions concerning 

the truth-functional connectives, such as whether a given statement form is a 
tautology, contradiction, or neither, and whether it logically implies or is 
logically equivalent to some other given statement form. The more complex 
parts of logic which we shall treat later cannot be handled by truth tables, or by 
any other similar effective procedure. Consequently, another approach, by 
%ns of formal theories, will have to be tried. Although, as we have seen, the 
prbpositional calculus surrenders completely to the truth table method, it will be 
instructive to illustrate the axiomatic method in this simple branch of logic. 

A formal theory S is defined when the following conditions are satisfied. 
' (1) A countable set of symbolst is given as the symbols of 5 .  A finite 
Sequence of symbols of S is called an expression of S . 

(2) There is a subset of the expressions of S called the set of well-formed 
fornula (abbreviated "wfsl') of 5. (There is usually an effective procedure to 
determine whether a given expression is a wf.) 

0) A Set of wfs is set aside and called the set of axioms of S . (Most often, one 
can decide whether a given wf is an axiom, and, in such a case, S is 

an a x i o m i c  theory.) 

+ U  these "symbols" can be taken to be arbitrary objects rather than just linguistic 
''bXz3. 
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(4) There is a finite set R,, . . . , R, of relations among wfs, called rules of 
inference. For each R,, there is a unique positive integer j such that, for every set 
of j wfs and each wf @, one can effectively decide whether the given j wfs are in 
the relation R, to @, and, if so, @ is called a direct consequence of the given wfs 
by virtue of R,. 

Aproof in S is a sequence $, . . . , @,, of wfs such that, for each i, either $ is 
an axiom of S or ai is a direct consequence of some of the preceding wfs by 
virtue of one of the rules of inference. 

A theorem of S is a wf @ of S such that there is a proof the last wf of which 
is @. Such a proof is called aproof of @. 

Even if S is axiomatic, i.e., if there is an effective procedure for checking any 
given wf to see whether it is an axiom, the notion of "theorem" is not necessarily 
effective, since, in general, there is no mechanical method (effective procedure) 
for determining, given any wf @, whether there is a proof of @. A theory for 
which there is such a mechanical method is said to be decidable; otherwise, it is 
called undecidable. A decidable theory is, roughly speaking, one for which a 
machine can be devised to test wfs for theoremhood, whereas, in an undecidable 
theory, ingenuity is required to determine whether wfs are theorems. 

A wf @ is said to be a consequence in S of a set r of wfs if and only if there is 
a sequence a,, . . . , @ , of wfs such that @ = @,, and, for each i, either @ is an 
axiom or @ is in r ,  or @ is a direct consequence by some rule of inference of 
some of the preceding wfs in the sequence. Such a sequence is called a proof (or 
deduction) of @ from r. The members of r are called the hypotheses or premisses 
of the proof. We use r t @ as an abbreviation for "& is a consequence of Y. In 
order to avoid confusion when dealing with more than one theory, we write 
T t,@, adding the subscript S to indicate the theory in question. If r is a finite 
set { a , ,  . . . , a , ) ,  we write a,, . . . , %,, t @ instead of {a,, . . . , 3,) t &. If 
r is the empty set 0, then 0 t @ if and only if @ is a theorem. It is customary to 
omit the sign "0" and simply write t @. Thus, t @ is another way of asserting 
that @ is a theorem. 

The following are simple properties of the notion of consequence. 

(1) If r c A and r t  @, then A t  @. 
(2) r t @ if and only if there is a finite subset A of r such that A t @. 
(3) If A t @, and, for each % in A, r t %, then r t @. 

Assertion (1) represents the fact that if @ is provable from a set r of 
premisses, then, if we add still more premisses, @ is still provable. Half of (2) 
follows from (1). The other half is obvious when we notice that any proof of 8 
from r uses only a finite number of premisses from r. Proposition (3) is also 
quite simple: if @ is provable from premisses in A, and each premiss in A is 
provable from the premisses in r ,  then @ is provable from premisses in r .  
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pow introduce a formal axiomatic theory L for the propositional calculus. 

symbols of L are -- , 3 , (, ), and the letters A, with positive integers 
q h  i as subscripts: A,, A,, A,, . . . . The symbols - and 3 are called 
7 -  

ig; pimiti= connectives, and the letters A, are called statement letters. 
kQ) (a) All statement letters are wfs. @) If @ and 93 are wfs, so are (- 8) 

and (@ 3 a ) . ?  Thus, a wf of L is just a statement form built up from the 
statement letters A, by means of the connectives - and 3 . 

(3) 1f @, 9 ,  and (2 are any wfs of L, then the following are axioms of L. 

(Al). (@ 3 (3 3 @)) 
( ~ 2 ) .  ((@ 3 (3 3 e) )  3 ((8 3 a )  3 (@ 3 e))) 
(A3). ((--a 3 - @ )  > ( ( - a  3 @) 3 a ) ) .  
(4) The only rule of inference of L is modus ponens: 3 is a direct con- 

sequence of @ and @ 3 %. We shall abbreviate application of this rule 
by MP. 

We shall use our conventions for eliminating parentheses. 
Notice that the infinite set of axioms of L is given by means of three axiom 

schemas (A1)-(A3), each schema standing for an infinite number of axioms. 
One can easily check for any given wf whether or not it is an axiom; therefore, L 
is axiomatic. It is our intention, in setting up the system L, to obtain as theorems 
precisely the class of all tautologies. 

We introduce other connectives by definition. 

(Dl), ( @ A % ) f o r  --(@ 3-93) 
(D2). (@ V 9 )  for (-- @) 3 % 
(D3). (@ = '3) for(@ 3 % ) A ( %  3 @). 

The meaning of Dl ,  for example, is that, for any wfs @ and % , "(@ A '3 )" is 
an abbreviation for "-- (@ 3 -- a)".$ 

t To be precise, we should add the so-called extremal clause: (c) An expression is a wf only if it 
an be ahown to be a wf on the basis of clauses (a) and (b). This definition can be made rigorous 
"line as a model the definition in the footnote on page 14. 

$When we say that "(@ 53)'' is an abbreviation for "- (@ 3 - 3)" we mean that "(@ A 9 )'; 
as another name in the English language (or in whatever language f2 we happen to be * b about the theory L) for the expression "- (@ - 3)". Notice that as a name of an 

built up by juxtaposing various other expressions we use the expression in English (or in 
e'* b . ~ w ~ p o s i n ~  the names of these other expressions; in addition, we use parentheses and 

as their own names except, of course, when this may cause confusion. For example, 
name of the expression ( A ~  3 and '$3 " is the name of the expression (- A I), then Te 3 9 ).. the name of the expression ((A, 3 A2) 3 (- A])). These conventions are quite 

noticed by most people if we had not explicitly pointed them out. For 
mnsult Quine's discussion of quasi-quotation (Quine [I951]); Carnap's treatment 

(Carnap [1934], $4, and $42); Rosser [1953], Chapter 111; Suppes [1957], 
Introduction and pages 74-77. 
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LEMMA 1.7. For any wf &, t,& @. 
takes care of the case i = 1. Assume now that t & > '43, for all k < i. 

 PROOF.^ We shall construct a proof in L of @ > @. 9, is an axiom or '43, is in r ,  or ai is &, or '43, follows by modus ponens 

(1) (@ >((a > @)> @))I((@ >(@ > @))I(@ > @)) and a,, where j < i, m < i, and 3, has the form aj 3 '43,. In 

(Instance of Axiom Schema ~ 2 )  cases, r t & 3 a,, as in the case i = 1 above. In the last case, we 

(2) @ 3 ((@ 3 @) 3 @) Axiom Schema A1 bve, by inductive hypothesis, r t @ 3 3. and r t & 3 (3, 3 3,). But, by 

(3) (@ >(& > @))I(@ > @) From 1,2 by MP from (A2), t (a 3 (a, 3 3,)) 3 ((@ 3 d,) 3 (& 3 ai)). Hence, by MP,r t 
(4) @ I(@ > &) Axiom Schema A1 te S j )  (& 3 a,), and again by MP, r t B 3 '43,. Thus, the inductive proof 

( 5 )  @ > & From 3, 4 by MP is complete. The case i = n is the desired result. (Notice that, given a deduction 
of 9 from r and &, the proof just given enables us to construct a deduction of 

EXERCISE g 3 3 from r. Also note that only Axiom Schemas (A1)-(A2) are used in 
1.38. Prove: proving the Deduction Theorem.) 

(a) kL(- 3 a) 3 a. 
~ ) ~ I B , B  >ek,a>e. COROLLARY 1.9. 
(c) a 3 (B 3 e) kL% 3 (a 3 e). (i) & > 3 , ' 4 3  > e t & ~ ~ t ? .  
(d) I,(- B 3- a) 3 (a 3 3). (ii) ti! 3 ( 3  3 e l ,  3 k t 2  3 e. 

In mathematical arguments, one often proves a statement 3 on the assump- PROOF. (i) 
tion of some other statement & and then concludes that "If & then 93 " is true. (a) & > '43 Hyp (abbreviation for "Hypothesis") 
This procedure is justified for the system L by the following theorem. (b) a > e  H w  

PROPOSITION 1.8 (DEDUCTION THEOREM).$ If r is a sel of wfs, and & and $8 (4 HW 
are wfs, and r ,  @ t '43, then r t & > '43. In parlicular, if & t 3 ,  then ( 4  3 (a), (c), MP 
t @ > 3 . (Herbrand [ 19301.) (el (2 (b), ( 4 ,  MP 

PROOF. Let a , ,  . . . , '43, be a proof of 3 from r u {a), where 93, = 9. Thus, & > 3 ,  3 > C?, @ t e. So, by the Deduction Theorem, 
Let us prove, by induction on i, that r t & > !Bi for 1 < i < n. First of all, q I  & > % , a  > e t & > e .  
must be in r or an axiom of L or &. By Axiom (Al), 3, > (& > 3 , )  is an (ii) Exercise (Use the Deduction Theorem). 
axiom. Hence, in the first two cases, by MP, r t & > 3,. For the third case, 
when 3, is &, we have t & > a , ,  by Lemma 1.7, and, therefore, r t & > %I.  LEMMA 1.10. For any wfs @, 93, the following are theorems of L. 

$ The word "proof" is used in two distinct senses. First, it has a precise meaning defined above as (a) -- 3 3 3 (e) (@ 3 a ) > ( - %  3-@) 
a certain kind of finite sequence of wfs of L. However, in another sense, it also designates certain " (b) 3 3 5 - 5 3  
sequences of sentences of the English language (supplemented by various technical terms) which are 

(f) >(-93 3-(@ 3 '43)) 
supposed to serve as an argument justifying some assertion about the language L (or other formal 

( 4  - a  I ( &  3 3 )  (8) ( @ I % ) > ( ( - - @ 3 9 3 ) > 9 3 )  
theories). In general, the language we are studying (in this case L) is called the object language, while ( a  ( - 3  3 - @ ) I ( & >  3 )  
the language in which we formulate and prove results about the object language is called the 

1 

metalanguage. The metalanguage might also be formalized and made the subject of study, which we 
PROOF. 

would carry out in a metametalanguage, etc. However, we shall use the English language as our (a) k--$8 3 %  
(unformalized) metalanguage, although, for a substantial part of this book, we employ only a 
mathematically weak portion of the English language. The contrast between object language and '. (- a 3%- 3 )  3 ((4.3 3% 93) 3 93) Axiom (A3) 
metalanguage is also present in the study of a foreign language; for example, in a German class, 2 -93-3 Lemma 1.77 
German is the object language, while the metalanguage, the language we use, is English. 3. (-3 3 - - 4 ) 3 3  
distinction between "proof" and "metaproof" (i.e., a proof in the metalanguage) leads to a 

1, 2, Corollary 1.9(ii) 
distinction between theorems of the object language and metatheorem of the metalanguage. To . v  4- --3 I ) ( - %  > - - a )  Axiom ( ~ 1 )  
avoid confusion, we generally use "proposition" instead of "metatheorem". The word "metamathe- 5. -- '43 3 3 

ti; r. 3, 4, Corollary 1.9(i) 
matics" refers to the study of logical and mathematical object languages; sometimes the word. Is 

restricted to those investigations which use what appear to the metamathematician to be construcfive 
(or so-called finitary) methods. down here the complete pmof of - C 3 - $3, we simply cite Lemma 1.7. In 

3 We use r, @ t 9 to stand for r u (@) t $3. In general, we let T, &, . . . , @,, t 9 stand for the proof of -- C 3 9 could be written down, if we wished to take the 
r u (@,, . . . , @,,) t 9. 

a space do so. This, of course, is nothing more than the ordinary application of previously 
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(b) t93 >---a 
1. (--- 9 3- 9 )  3 ((--- % 3 9 )  I-- 9 )  

Axiom (A3) 

2. ---933-a Part (a) above 

3. (---% 3 % ) > - - a  1, 2, MP 

4. 93 >(---% 3 9 )  Axiom (Al) 

5. %>---a 3, 4, Corollary 1.9(i) 

~ x i o m  (Al) 
Axiom (Al) 
2, 3, MP 
1, 4, MP 
Axiom (A3) 
6, 7, MP 
5, 8, MP 

)(1 by 1-7, @ 3 93 k- 93 3 -- 8, and, by the Deduction Theorem, 

-- 
,:aearly, @, 62 3 a t 93 by MP. Hence, t @ 3 ((@ 3 a )  3 a )  by two 

of the Deduction Theorem. By Part (e), t ((W 3 3 )  3 a )  3 (- % 3 
, (& 3 % )). Hence, using Corollary 1.9(i), 

HYP 
HYP 
Part (e) 
1, 3, MP 
Part (e) 
2, 5, MP 
Axiom (A3) 
6, 7, MP 
4, 8, MP 

Thus, by 1-9, - @, @ t 9. Therefore, by the Deduction Theorem, - @ t @ 3 Thus, & > 53, - @ 3 93 t 93. Two applications of the Deduction Theorem 

53, and, again by the Deduction Theorem, t- @ 3 (@ > 3 1. yield (g). 

(d) t ( - a  I - @ ) > ( @  3 % )  
1. -9  3-8 HYP 
2. @ HYP 
3. ( - 9  3 - @ ) I ) ( ( - %  3 @ ) 3  93) Axiom (A3) 
4. @ 3 (- 93 3 @) Axiom (Al) 

5 ( - 9 3 & ) 3 %  1, 3, MP 

6. 621% 4, 5, Corollary 1.96) 

7. 53 2, 6, MP 

Thus, by 1-7, - 93 3- @, @ k $8, and two applications of the Deduction 
Theorem yield the desired result. 

(e) I-(@ 3 5 3 ) 3 ( - %  3 - @ )  

HYP 
Part (a) 
1, 2, Corollary 1.9(i) 
Part (b) 
3, 4, Corollary 1.9(i) 
Part (d) 
5, 6, MP 

EXERCISES 

1.39. Show that the following are theorems of L. 
(a) @ > ( @ V % )  (e) @ A %  3 % 
(b) ~2 3 (9 v @ )  (4 (a 3 e )  3 [(a  3 e )  2 v 9 3 ell 
(c) % V @  3 @ v %  (g) ((@ 3 % ) 3  @ ) 3  @ 
(d) @ A %  3 @ 01)@ > ( @ A % ) )  

1 4 .  Exhibit a complete proof in L of Lemma 1.1qc). (Hint: apply the proce- 
dure used in the proof of the Deduction Theorem to the demonstration given above 
of Lemma l.lqc).) Greater fondness for the Deduction Theorem will result if the 
4eade.r tries to prove Lemma 1.10 without using the Deduction Theorem. 

It is our purpose to show that a wf of L is a theorem of L if and only if it is a 
Half of this is very easy. 

 SITION ION 1.1 1. Evev  theorem of L is a tautologv. 

PRoOp- As an exercise, verify that all the axioms of L are tautologies. By 
b i t i o n  I .  1, modus ponens leads from tautologies to other tautologies. 
be, eVeV theorem of L is a tautology. ' Ibe foUoaing lemma is to be used in the proof that every tautology is a 
%-In of L. 
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LEMMA 1.12. Let @ be a wf, and let B,, . . . , Bk be the statement letters 
occurring in @. For a given assignment of truth values to B,, . . . , Bk, let B; be 
Bi i f  Bi takes the value T; and let B,' be -- B, if Bi takes the value F. Let &' be 
@, i f  @ takes the value T under the assignment; and let @' be -- @ i f  @ takes 
the value F. Then B;, . . . , BL t @'. 

For example, let @ be -- (- A, > A,). Then, for each row of the truth table 
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p o s 1 n o N  1.13 (COMPLETENESS THEOREM). If a wf @ of L is a tautology, 
it is a theorem of L. 

p. (KalmBr) Assume @ a tautology, and let B,, . . . , Bk be the state- 
ters in @. For any truth value assignment to B,, . . . , B,, we have, by 
1.12, B,', . . . , B; t @. (a' is @, because @ always takes the value T.) 

if Bk is given the value T, B;, . . . , B;-,, Bk t @, and, if Bk is given the 
, B;, . . . , B;- ,, -- Bk t @. So, by the Deduction Theorem, B;, . . . , B;-, 

ub 2 & and B;, . . . , B;-, t-- Bk > @. Then, by Lemma 1.10(g), 
w - - -  I;, . . . , B;-, 1 @. Similarly, Bk-, may be chosen to be T or F, and, again 
~ l y i n g  the Deduction Theorem and Lemma 1.10(g), we can eliminate B;-, 

, jtrst as we eliminated B,'. After k such steps, we finally obtain t 8. 

' EXERCISE 1.41. BI A B, > Bl is a tautology. By the method of the proof of 
Pro~osition 1.13, show that t B, A B, > B,. - 

Lemma 1.12 asserts a corresponding deducibility relation. For instance, corre- COROLLARY 1.14. If 9 is an expression involving the signs -- , , A, V, sponding to the third row there is A,, --A, I----(-- A, > A,), and, to the which is an abbreviation for a wf @ of L, then '33 is a tautology i f  and only i f  d 
fourth row, --A2, -- A, t-- (-- A, > A,). 

, & a theorem of L. 

PROOF. By induction on the number n of occurrences of primitive connec- 
tives in @. (We assume @ written without abbreviations.) If n = 0, then @ is just 
a statement letter B,, and then the Lemma reduces to B, t B, and - B, t- B,. 
Assume now that the Lemma holds for all j < n. 

Case 1. @ is -- 9 .  Then 3 has fewer than n occurrences of primitive 
connectives. 

Subcase la. Let 9 take the value T under the given truth value assignment. 
Then @ takes the value F. So, 9' is 9 ,  and @' is -- @. By the inductive 
hypothesis applied to 9 ,  B;, . . . , B; t 3. Then, by Lemma 1.1qb) and MP, 
B;, . . . , Bit---- 9. But --- 3 is @'. 

Subcase lb. Let 9 take the value F. Then 3' is -- 9 ,  and @' is @. BY 
inductive hypothesis, B;, . . . , B; t-- 9 .  But - 3 is @'. 

Case 2. d is ( 9  > C?). Then 9 and C? have fewer occurrences of primitive 
connectives than @. So, by inductive hypothesis, B;, . . . , B; t 3' and 
B;, . . . , B; t C?'. 

Case 2a. 9 takes the value F. Hence, @ takes the value T. Then 9 ' is -- 3 ,  
and &' is &. So, B;, . . . , B; I--- 53. By Lemma 1.10(c), B;, . . . , B,'1 3 > e. 
But '% > C? is @'. 

Case 2b. C? takes the value T. Hence @ takes the value T. Then C?' is C? an* 
8' is @. Now, B;, . . . , B; t C?. Then, by Axiom (Al), B;, . . . , B; t 9 C?. But 

9 > C? is @'. 
Case 2c. 9 takes the value T and C? the value F. Then @ has the value F, 

9 ' is 9 ,  C?' is -- C?, and @' is - @. Now, B;, . . . , B,' t 9 and B;, . . . , Bi t- - C?. So, by Lemma 1.10(f), B;, . . . , B; I - - -  ( 9  > C?). But -- ( 9  > C?) is ar. 

PROOF. In Definitions Dl-D3, the abbreviating formulas replace wfs to 
' a c h  they are logically equivalent. Hence, by Proposition 1.3, @ and 9 are 
,l@Aly equivalent, and 9 is a tautology if and only if @ is. The corollary now 
,&ws from Propositions 1.1 1 and 1.13. 

'I I,COROLLARY 1.15. The system L is consistent, i.e., there is no wf d such that 
'i?ihth @ and -- @ are theorems of L. 
2&4' 
,$$'$W~F. By Proposition 1.1 1, every theorem of L is a tautology. The negation 

tautology cannot be a tautology, and, therefore, it is impossible for both @ 

9 & to be theorems of L. 
J . 
1gNotice that L is consistent if and only if not all wfs of L are theorems. For, 

if L is consistent, then there are wfs which are not theorems (e.g., 
negations of theorems). On the other hand, by Lemma 1. 10(c), 1, -- @ > 

and so, if L were inconsistent, i.e., if some wf @ and its negation -- @ 
LII* Provable, then, by MP, any wf '33 would be provable. p s  equivalence 
*(01 for any theory having modus ponens as a rule of inference and in which 
h a  1.1qc) is provable.) A theory in which not all wfs are theorems is often 

to be absolutely consistent, and this definition is applicable even to theories 
e k i n i n g  a negation sign. 
,a, 

ISE 1.42. Let @ be a statement form which is not a tautology. Let L+ be 
ry obtained from L by adding as new axioms all formulas 
@ by substituting arbitrary statement forms for the statement 
same forms being substituted for all occurrences of a statement 

Show that L + is inconsistent. 
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5. Independence. Many-Valued Logics. 
Given an axiomatic theory, a subset X of the axioms is said to be independent 

if some wf in X cannot be proved by means of the rules of inference from the set 
of those axioms not in X. 

PROPOSITION 1.16. Each of Axiom Schemas (A1)-(A3) is independent. 

PROOF. 
(a) Independence of (Al). Consider the following tables. 
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are grotesque. (Exercise.) However, the instance A ,  3 (A, 3 A 3  
3 (A, 3 A,)) of (A2) takes the value 2 when A ,  is 0, A, is 0, and 

is not grotesque. 

(C) 
Independence of (A3). If & is any wf, let h(&) be the wf obtained by 

dg negation signs in &. For each instance & of Axioms (A1)-(M), 

q&) a tautology. Also, modus ponens preserves the property of a wf & that 

h(&) is a tautology; for, if h(& 3 3 )  and h(&) are tautologies, then h (3 )  is a 
-1op~. (Just note that h(& 3 48) is h(&) 3 h(48).) Hence, every wf & 
derivable from (A1)-(A2) by modus ponens has the property that h(&) 
is a tautology. But h((--A, >--A,) 3 ((--A, 3 A,) 3 A,)) is (A, 3 A,) 3 
((A , 3 A ,) 3 A ,), which is not a tautology. Hence, (-- A ,  3 -- A ,) 3 
((- A ,  3 A,) 3 A,), an instance of (A3), is not derivable from (A1)-(A2) by 

modus ponens. 

EXERCISE 1.43. Prove the independence of Axiom Schema (A3) by constructing 
tables for the connectives -- and 3 . 
The idea used in the proof of independence of Axiom Schemas (A1)-(A2) 

may be generalized to the notion of a many-valued logic. Call the numbers 
0, 1,2, . . . , n "truth values", and let 0 < m < n. The numbers 0, 1, . . . , m are 
called desianated values. Take a finite number of "truth tables" representing 

u - 
functions from sets of the form (0, 1, . . . , n l k  into (0, 1, . . . , n ) .  For each Given any assignment of the values 0, 1, 2 to the statement letters of a wf &, 
truth table, introduce a sign, called the corresponding connective. Using these these tables determine a corresponding value of &. If it always takes the value 0, 
co~ectives and statement letters, we may construct "statement forms", and & is called select. Now, modus ponens preserves selectness. Check that, if 
every such statement form containing j distinct letters defines a "truth function" & 3 3 and & are select, so is 3 .  Verify also that all instances of Axioms 
from (0, 1, . . . , n)J into (0, 1, . . . , n ) .  A statement form whose corresponding (A2)-(A3) are select. Hence, any wf derivable from (A2)-(A3) by modus ponens 
truth function takes only designated values is said to be exceptional. The is select. However, A ,  3 (A, 3 A,), which is an instance of (Al), is not select, 
numbers m, n and the basic truth tables are said to define a (finite) many-valued since it takes the value 2 when A ,  is 1 and A, is 2. 
logic M. An axiomatic theory involving statement letters and the co~ectives of (b) Independence of (A2). Consider the following tables. is said to be suitable for M if and only if the theorems of the theory coincide 
with the exceptional statement forms o f  M. All these notions obviously can be 
gen~~alized to the case of an infinite number of truth values. If n = 1 and - 0, and the truth tables are those given for -- and 3 in 3 1, the correspond- 
W 2-valued logic is that studied in this chapter. The exceptional wfs in this case 
were called tautologies. The system L is suitable for this logic, as proved in 
R ~ s i t i o n ~  1.1 1 and 1.13. In the proofs of the independence of Axiom Schemas 
( * l b ( ~ ) ,  two three-valued logics were used. 

2 2 0 (McKimey-Tarski) Consider the axiom system P in which there is exactly 
; me connective *, the only rule of inference is modus ponens (i.e., '% follows 

Let us call a wf which always takes the value 0 according to these tables from @ and &*a), and the axioms are all wfs of the form &*&. Show that P is not 
grotesque. Modus ponens preserves grotesqueness, and all instances of Axioms . ~ b b l e  for any (finite) many-valued logic. 
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1.45. For any (finite) many-valued logic M, prove that there is an axiomatic 
theory suitable for M. 1 s  @ilbert-Ackermann [1950]). Prove the following results about the theory 

Further information about many-valued logics can be gained from the mono- 
graph [I9521 of Rosser and Turquette and from Rescher [1969]. 

(a) & 3 53 k L , e  V 3 e V 3 
ELI(& 3 3 )  3 ((e 3 3 ( e  3 9)) 

6. Other Axiomatizations (c) (? 3 a, 3 3 F L , ~  3 3 
,*, . 

i. 1 (d) tL,& 3 & (i.e., t ~ ,  - V a)  
Although the axiom system L is quite simple, there are many other systems (e) ELI@ V - 

which would do as well. We can use, instead of -- and 3 , any collection of ( f )  ELI& 3-- 
primitive connectives, so long as these are adequate for the definition of all other (g) ELI - B 3 ( 3  3 e )  
truth-functional connectives. @) kLl& v ( 3  v e> 3 ( ( 3  v (a v e>> v 

Examples. 
(i) kL,(% v ( @ V e ) ) V @  3 3 V < @ V e )  
( j )  ELI& V ( B  V e )  3 3 V (8 V e )  

L,: V and -- are the primitive connectives. We use @ 3 9 as an abbre- (k) EL,(& 3 (53 3 e>> 3 ( 3  3 (8 3 e)) 
viation for -- 62 V 9. We have four axiom schemas: (1) @ V @ 3 @; 0 kLl(e 3 a)  3 ((8 3 3 )  3 <e 3 3 ) )  

(2) @ > @ V Q ;  (3) @ V Q  3 %  v@; (4) (9 > e > > ( @ v %  ~ ~ v e ) .  ( a ) &  3 (53 3 e), a 3 3 k L 1 8  3 (8 3 e )  

The only rule of inference is modus ponens. This system is developed in (n) & 3 (53 3 e), a 3 3 kLl@ 3 e 
Hilbert-Ackermann [ 19501. (0) If r, & kL13, then T kLl& 3 3 (Deduction Theorem) 

L,: A and -- are the primitive connectives. @ 3 9 is an abbreviation for @) 53 3 8,  - 3 3 kL,& 

(q) kL,& if and only if & is a tautology. (Hint: prove the analogues of - (62 A - 9). There are three axiom schemas: (1) @ 3 (@ A a); (2) @ A 91 Lemma 1.12 and Proposition 1.13.) 
3 @; (3) (62 3 9) 3 (-- (9 e) 3 -- (e a)). Modus ponens is the only 1A7. (Rosser [1953]). Prove the following assertions about the theory b. 
rule. Consult Rosser [I9531 for a detailed study. (a) & 3 B , 4  > e k L 2 - ( - e r \ a >  

L,: This is just like our original system L except that, instead of the axiom @) FL,-(- 8 A 8 )  
schemas (A1)-(A3), we have three specific axioms: (1) A,  3 (A, 3 A,); (2) (c) kb  -- & 3 & 
(A, 3 (A2 3 A,)) 3 ((A1 3 A,) 3 (A1 3 A,)); (3) (--A, >--A,) 3 ((--A, 3 (d) k,,-(& A 4 )  3 ( 3  3 - 8 )  
A,) 3 A,). In addition to modus ponens, we have a substitution rule: we may (e) kb& I-- & 

substitute any wf for all occurrences of a statement letter in a given wf. ( f )  kL2(& 3 3 )  3 (- 3  3 - 8 )  

L,: The primitive connectives are 3 , A, V, and -- . Modus ponens is the Cg) - 8  3-53 kL253 3 62 

only rule, and we have ten axiom schemas: , ?. 
@) & 3 5 3 t L 2 e ~ a 3 3  ~e 
(i) 3 B, 53 3 e ,  e 3 9 tL,a 3 9 

(1) @ 3 (9 3 @) 
( j )  3 
(k) kL2& A 53 3 93 A 

(2) (@ 3 (9 3 el)> ((a 3 $1 3 (a 3 el) , rc (1) & 3 5 3 , 5 3  3ekL2&3e  
(3) @ A %  3 @  ( m ) & > % , e > 9 k L 2 & ~ e > % r \ " i ,  
(4) @ A %  3 %  ( n ) %  > e k , a ~ a  
(5) @ 3(9 ~ ( @ A Q ) )  (0) IL,(& 3 ( 3  3 e)) 3 ((a A 3 )  3 e )  
(6)  @ 3 ( @ v % )  @) FL,((@ A 3 )  3 e )  3 (a 3 ( 3  3 e)) 

(7) 3 3(@v9) ( 9 ) & 3 ~ , & 3 ( 3  3 e ) k L 2 & 3 e  
(8) (a 3 e) 3 ((3 3 e) 3 (@ VQ 3 el) (r) kba3 (B 3 8 A % )  

(9) (@ 3 9) 3 ((@ >--%)>--a) 6) k L p  3 (53 3 8 )  

(10) -- @ 3 @ (t) If r, & kL2B, then T kL2& 3 3 (Deduction Theorem) 
kb(- 62 3 8 )  3 62 

- ,i (v) & 3 % , - & >  %kL2% We define, as usual, @ = % to be (@ 3 %) A (9 3 a). This system may be (w) IL,& if and only if & is a tautology. (Hmt: prove analogues of Lemma 
found in Kleene [1952]. 1.12 and Proposition 1.13.) 
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1.48. Show that the theory L3 has the same theorems as the theory L. 
1.49. (Kleene [1952]). Derive the following statements about the theory L,. 

(a) t L 4 @  3 
(b) If r, & t 4 % ,  then r tL4& 3 % (Deduction Theorem) 
(c) & > % , a  3etL4e.3e 
(d) k 4 ( @  3 % ) I ( - %  I-&?) 
( 4  3 ,  - 93 FL4e 
( 0  tL4% 3%- % 
(g) t L 4  - 3 3 (3 3 e> 
01) tL4% 3 ( - e  > - ( a  3 e)) 
(i) tL4-93 3 ( - e 3 - ( %  v e ) )  
(j) tL4(- 3 3 a) 3 ((9 3 &) 3 &) 
(k) t 4 & ?  if and only if @ is a tautology. (Prove analogues of Lemma 1.12 

and Proposition 1.13.) 
1.50.~ Consider the following axiomatization of the propositional calculus C 

(due to Lukasiewicz). !? has the same wfs as our system L. Its only rule of inference 
is modus popens (MP). Its axiom schemas are: (I) (- &? 3 &) 3 &, (11) & 3 (- & 
3 a), (111) (a 3 %) 3 ((3 3 e )  3 (& 3 e)). Prove that a wf &? of C is provable 
in C if and only if &? is a tautology. (Hint: Show that C and L have the same 
theorems, and then use the result that the theorems of L are precisely the 
tautologies. However, remember that none of the results proved about L (such as 
Propositions 1.7- 1.12) automatically carries over to C . In particular, the Deduction 
Theorem is not available until it is proved for !?.) 

Axiomatizations can be found for the propositional calculus which contain only 
one axiom schema. For example, if - and 3 are the primitive connectives and 
modus ponens the only rule of inference, the axiom schema 

[(((a 3 Q) 3 (--e 3-9)) 3 e) 3 GI 3 (9 3 a)] 
is sufficient (C. A. Meredith [1953]). Another single-axiom formulation, due to 
J. Nicod [1917], uses only alternative denial I. Its rule of inference is: e follows 
from &I(% l6?) and &, and its axiom schema is 

(@I(% l e ) ) l { [ g  l(Q IW] I [ (G  l Q ) I ( ( ~ l ~ ) I ( ~ I ~ ) ) ] ) -  
Further information, including historical background, may be found in 

Church [I9561 and in a paper by Lukasiewicz and Tarski [1956, IV]. 

EXERCISES 

1.51. Show that Axiom Schema (A3) of the system L can be replaced by the 
schema (- & 3 - 93) 3 (93 3 &) without altering the class of theorems. 

1.52. If, in L,, Axiom Schema (10) is replaced by the schema (lo)'-- @ 3 
(&? 3 %)-then the new system L1 is called the intuitionistic propositional calculus 

(a) Consider an n + 1-valued logic with these connectives: - &? is 0 when 
& is n, and otherwise it is n; & A % has the maximum of the values of 
& and 9, while & V % has the minimum of these values; & 3 % is 0 
if & has a value not less than that of $3, and, otherwise, it has the same 

value as 3. If we take 0 as the only designated value, show that all 
theorems of L, are exceptional. 

(b) A, V - Al and -- A, 3 A, are not theorems of L,. 
(c) For any m, the wf 

(Al -A2) V . . . V ( A l  - A , ) V ( A 2 ~ A 3 )  V . . .  

is not a theorem of L,. 
(d) (Godel [1933]) L1 is not suitable for any finite many-valued logic. 

(e) (i) If r, &? tLl%,  then r t,,@ 3 % (Deduction Theorem) 
(ii) &? 3 93, 93 3 e t L , &  3 E? 

(iii) tLl&? 3-- &? 
(iv) tLl(&? 3 93) 3 (- % 3 - &) 
(v) tLl@ 3 (- &? 3 3 )  

(vi) tLl -- (-- &? 3 &?) 
(vii) --(a 3 a), -- &? tLI -- % 

(viii) tLI --- &? 3 - &? 
D(f) tLl -- & if and only if &? is a tautology. 
(g) tLl - & if and only if - &? is a tautology. 

D(h) If has A and - as its only connectives, tL l& if and only if &? is a 
tautology. 

For further information on intuitionist logic, cf. Heyting [1956], Kleene [1945], 
Jaskowski [1936]. The latter paper shows that L, is suitable for a many-valued 
logic with denumerably many values. 

Let &? and % be in the relation R if and only if tL&? -- 3 .  Show that R 
is an equivalence relation. Given equivalence classes [&?I and [%I, let [&?I U [%] = 

V 3 I, [@I n [%] = [&? A $31 and = [- &?I. Show that the equivalence 
classes under R form a Boolean algebra with respect to u , n, and , called the 
Lindenbaum algebra L* determined by L. The element 0 of L* is the equivalence 
class consisting of all contradictions (i.e., negations of tautologies). The element 1 
of L* is the equivalence class consisting of all tautologies. Notice that t L & ?  3 % if 

'and only if [ a ]  < [%I in L*, and that tL& = $8 if and only if [ a ]  = [ a ] .  Show - 
that a Boolean function f (built up from variables, 0 and 1, using U ,  n, ) is 
equal to the constant function 1 in all Boolean algebras if and only if tLf#, where 
f #  is obtained from f by changing u , n , , 0, 1 into V ,  A, - , A A - A I ,  

* I  V - A , ,  respectively. 
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1. Quantifiers 
There are various kinds of logical inference which obviously cannot be 

jurtified on the basis of the propositional calculus; for example: 

(1) Any friend of Martin is a friend of John. 
Peter is not John's friend. 
Hence Peter is not Martin's friend. 

(2) All men are immortal. 
Socrates is a man. 
Hence Socrates is immortal. 

(3) All men are animals. 
Hence the head of a man is the head of an animal. 

The correctness of these inferences rests not only upon the truth-functional 
relations among the sentences involved, but also upon the internal structure of 

sentences as well as upon the meaning of such expressions as "all", "any", 
etc. 

In order to make the structure of complex sentences more transparent, it is 
convenient to introduce special notation to represent frequently occurring ex- ' 
W-~O~S. If P(x) asserts that x has the property P, then (x)P(x) is to mean that, 
for every x, property P holds, or, in other words, that everything has the 
Property P. On the other hand, (Ex)P(x) shall mean that there is an x having 
the Property P, i.e., that there is at least one object having the property P. In 
( ~ ) ~ ( x ) ,  the first "(x)" is called a universal quantifier; in (Ex)P(x), ''(ExY9 is 

an existential quantifier. The study of quantifiers and related concepts is 
principal subject of this chapter; hence the title "Quantification Theory". 

E x a ~ l e s .  Let m, j, p, s, F(x, y), M(x), I(x), A(x), h(x) stand, respectively, 
!Q MMin, John, Peter, Socrates, x is a friend of y, x is a man, x is immortal, " animal, and the head of x. 

45 
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Then (1)-(3) above become: le, then (- a), (@ 3 a ) ,  and 
(1') (x)(F(x, m) 3 f'(x,j)) 

own to be a wf on the basis of - f'(p,j) - F(P, m) 

(2') (x)(M(x) 3 I(x)) In ((,,)a), ..@l, is called the scope of the quantifier "(y)". Note that @ need 

M(s) not contain the 
y. In that case, we ordinarily understand ((Y)@) to 

I(s) 
mean he same thing as @. The expressions @ A a ,  @ V 3 ,  @ 3 are 
defined as in the system L of the propositional calculus (cf. page 31). It was 

(x)(M(x) 3 A(x)) unnecessary for us to use the symbol E as a primitive symbol, because we can 
(3' 

(x)((EY)(x = h(y) A M(Y)) 3 (EY)(X = h(y) A A(Y))) define quantification as follows: 

((Ex)@) stands for (-- ((x)(- 8))) 
Notice that the validity of these inferences does not depend upon the particular  hi^ definition is obviously faithful to the meaning of the quantifiers: @(x) is meanings of m, j, p, s, F, M, I,  A, and h. We for some x if and only if it is not the case that @(x) is false for all x. Just as statement forms were used to indicate logical structure dependent 
upon the propositional connectives, so also the form of inferences involving The same conventions made in Chapter 1 as to omission of parentheses are 
quantifiers, such as (1)-(3), can be represented abstractly, as in (1')-(3'). For this here, with the additional convention that quantifiers (y) and (Ey) rank in 
purpose, we shall use commas, parentheses, the symbols -- and 3 of the strength between = , 3 , and V ,  A ,  -- . 
propositional calculus, individual variables xl ,  x2, . . . , x,, . . . ; individual con- Examples. stants a,, a,, . . . , a,, . . . ; predicate letters A f ,  A:, . . . , A;I, . . . , ; and junction 
letters j,', j:, . . . , f;I, . . . . The positive integer which is a superscript of a (X,)A:(X,) > A:(x,, x2) stands for (((x,)~:(xl))  3 A:(x1? ~ 2 ) )  
predicate or function letter indicates the number of arguments, whereas the 
subscript is just an indexing number to distinguish different predicate or (X,)A:(X,) v A:(xl, x2) stands for ((x~)(A :(xi) V A:(xlY ~ 2 ) ) )  

function letters with the same number of arguments. In the examples above, EXERCISE 2.1. Restore parentheses to (x,) -- A:(xl) 3 A:(xl, XI, x2) V 
m, j , p ,  s are individual constants, F and = are binary predicate letters (i.e., (xl)~:(x,), and to -- (xl)A:(xl) > (Ex2)A:(x2) 3 A:(x,, x 3  V A,'(xJ. 
letters with two arguments), M, I ,  A are monadic predicate letters (i.e., letters 
with one argument), and h is a functlon letter with one argument. As an additional convention, we also omit parentheses around quantified 

The function letters applied to the variables and individual constants generate formulas when they are preceded by other quantifiers. 
the terms, that is, Example. 

(a) Variables and individual constants are terms. (x1)(Ex2)(x4)~:(x1, x2, x4) stands for ((x1)((~x2)((x4)A:(x13 x29 ~4))) )  
(b) Iff: is a function letter, and t,, . . . , t, are terms, then f;"(tl, . . . , t,) is a I 

term. EXERCISES 

(c) An expression is a term only if it can be shown to be a term on the basis 2.2. Restore parentheses to the following. 
of clauses (a) and (b). (a) (xI)(x~XXI)A ;(XI) 3 A:(x3 A - A ;(X:) 

The predicate letters applied to terms yield the atomic jormulas, i.e., if A," is a @) ( E ~ I ) ( X ~ ( E X ~ ) A  ;(XI) V (Ex,) - (x3)A x2) 

predicate letter and t,, . . . , t, are terms, then A,"(t,, . . . , t,) is an atomlc (c) (xI)A ;(XI) V A i(x2) 

(d) ( ~ I ) A  ,'(XI) 3 A;(x2) 
formula. (e) (xlXxdA?(x,, ~ 2 )  A (XI) - A?(xl, XI) 

The well-formed formulas (wfs) of quantification theory are defined as Eliminate parentheses from the following wfs, as far as is possible. 
follows: (a) (((xIXA,'(XI) 3 A:(X,))) v ( ( ~ x l ) ~  ;(XI))) 

(a) Every atomic formula is a wf. @) ((- ((Ex2XA,'(x2) V A,'(a,)))) - A:(x2)) 
(c) (((xtX-(- A,'(a3)))) 3 (A,'(x,) 3 A:(x2))). 
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The notions of free and bound occurrences of variables in a wf are defined as 
follows: an occurrence of a variable x is bound in a wf if and only if either it is not free for x, in (xJ)A,'(x,). the variable of a quantifier "(x)" in the wf, or it is within the scope of a 

(x,, x2) 3 A ,'(XI), but is not quantifier "(x)" in the wf. Otherwise, the ocurrence is said to be free in the wf. 

Examples. r any variable in any wf. 

A t is free for any variable in & if none of the variables of t is 
(0 ~ 3 x 1 9  x2) 

(ii) ~ : ( x , ,  x2) 3 (x,)A:(x,) 
(lii) (xl)(A;(xl? x2) 3 @,)A ;(XI)) , (d) xi 

free for x, in any wf. 
my tern is free for x, in d if & contains no free occurrences of x,. 

In (i), the single occurrence of x ,  is free. In (ii), the first occurrence of x,  1s free, L. . 
but the second and third occurrences are bound. In (iii), all occurrences of X,  are & 

m C I S E S  bound. In all three wfs, every occurrence of x2 is free. Notice that, as in (ill, a 
"'1 28 Is the termj:(xl, x2) free for X I  in: variable may have both free and bound occurrences in a given wf. Also notice 

that an occurrence of a variable may be bound in some wf &, but free In a a,* A (a) A :(XI, ~ 2 )  2 (x2)A f(x2) 
11, a L (b) ((x2)A2;(x2, (11)) V (EX~)A?(XI~ ~ 2 )  subformula of &. For example, the first occurrence of x, is free in (ii), but is (c) (XI)AI(XI, ~ 2 )  

bound in the larger wf (iii). (d) (xJA ;(XI, ~ 2 )  1 9 1  

EXERCISES 

2.4. Pick out the free and bound occurrences of variables in the following: 
(a) (x3)(((xl)~:(xl, ~ 2 ) )  2 AXx39 a1)) 
@) ~ 2 )  2 (x3)~?(x39 xJ 
(c) ((x~)(ExI)A:(xI, ~2?j:(xI, ~2)))  V - (~1)~: (~2l f , ' (~ l ) )  

2.5. Indicate the free and bound occurrences of all variables in the wfs of 
Exercises 2.2-2.3. 

A variable is said to be free (bound) in a wf if and only if it has a free (bound) 
occurrence in the wf. Thus, a variable may be both bound and free in the same 
wf, e.g., x ,  is bound and free in example (ii). 

EXERCISES 

I I 

1 1 1, (el ( x 2 ) ~  2 ~ 2 ) .  u. Prove the assertions made in Examples @)-(e) above. 
I!' Ll0. Translate the following sentences into wfs. 

(a) All fish except sharks are kind to children. 
:; 7 (b) Either every wine-drinker is very communicative or some pawnbroker 
$5 . a is honest and doesn't drink wine. 
? 1'") (c) Not all birds can fly. 

tr,n (d) Everyone loves somebody and no one loves everybody, or somebody 
loves everybody and someone loves nobody. 

(e) You can fool some of the people all the time, and you can fool all the 
people some of the time, but you can't fool all the people all the time. 

( f )  Some people are witty only if they are drullk. 
(g) NO politician is honest. 
(h) If anyone can do it, Jones can. 

2.6. Indicate the free variables and the bound variables in the wfs of Exercises (i) Anyone who is persistent can learn logic. 
, 

2.2-2.4. . ( j) If all clever philosophers are cynics and only women are clever philoso- 

2.7. Write a wf in which x is both free and bound. 1 ',-I ,: phers, then, if there are any clever philosophers, some women are 
. r,: cynics. 
., . tll. Translate the following into every-day English. (Note that every-day En- 

We shall often indicate that a wf & has some of the free variables x,,, . . . , x, 
1. . does not use variables.) 

by writing it as &(x,,, . . . , x,). This does not mean that & contains these 
.?'I 4 . (a) (x)(P(x) 2 (Ey)(C(y) A (Ez)(T(z) A S(x, Y, z)))), where P(x) means 

variables as free variables nor does it mean that & does not contain other free x is a student, C(X) means x is a course, T(x) means x is a bad teacher, 
variables. This notation is convenient because we then can agree to write as and S(x, y, Z) means x studies y with z. 
&(t,, . . . , tk) the result of substituting in & the terms t,, . . . , tk for all free (b) (X)(Y)(Z)(W)([A:(X) A A:(Y, x) A A:(z, x) A A:(w, x) A A;(Y? Z) A 
occurrences (if any) of x,,, . . . , x,, respectively. 

&&- . A ~ ( Y ,  w) A A ~ ( z ,  w)] 3 ~f(j?(j~(~),j~(z)),j~(w))), where AKx) 
If & is a wf and t is a term, then t is said to be free for x, in & if and only if no 3 +.c:' means x is a trrangle, A:(x, y) means x is a side ojy, A;(x,Y) means 

free occurrences of x, in & lie within the scope of any quantifier (x,), where xJ 1s x Zy ,  A:(x, y) means x is greater than y, jf(x, y) means x + y, and 
a variable in t. fi'(x) means the length o j  x. 
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(c) (u)[(EY)A:(Y, 0) 3 (Ex)(A:(x, u) A (z)(A:(z, 0) 3 A ~ x ,  z)))l, where 
A~(x ,  y) means x E y, and Af(x, y) means x < y. 

(d) In the following, A:(x) means x is a person and Af(x, y) means x lows y. 

2. Interpretations. Satisfiability and Truth. Models. 

The domain is the set of human beings, ~ : ( y ,  z) is "y loves z", j:(y, z) is 

The domain is the set of all sets of integers, A:(y, z) is y > z, j,2(y, Z) 
and a, is the empty Set 0. 

Wfs have meaning only when an interpretation is given for the symbols. A, 
interpretation M consists of a non-empty set D, called the domain of the 
interpretation, and an assignment to each predicate letter A," of an n-place 
relation (A,")~ in D, to each function letter & of an n-place operation (f)M in 
D (i.e., a function from Dn into D), and to each individual constant a; of some 
fixed element of D. Given such an interpretation, variables are thought of 
as ranging over the set D, and -, 1 , and quantifiers are given their usual 
meaning. (Remember that an n-place relation in D can be thought of as a subset 
of Dn, the set of all n-tuples of elements of D. For example, if D is the set of 
human beings, then the relation "father of" can be identified with the set of all 
ordered pairs (x, y) such that x is the father of y.) 

For a given interpretation, a wf without free variables (called a closed wf or a 
sentence) represents a proposition which is true or false, whereas a wf with free 
variables stands for a relation on the domain of the interpretation which may be 
satisfied (true) for some values in the domain of the free variables and not 
satisfied (false) for the others. 

If we take as domain the set of positive integers and interpret A?(y, z) as y 4 z ,  
then (i) represents the relation y < z which is satisfied by all the ordered pairs 
(a, b) of positive integers such that a < b; (ii) represents the property (i.e., 
relation with one argument) "For all positive integers y, z < y", which is 
satisfied only by the integer 1 ; and (iii) is a true sentence asserting that there is a 
smallest positive integer. If we were to take as domain the set of all integers, 
then (iii) would be false. 

EXERCISES 

2.12. For the following wfs 1-3 and for the following interpretations, indicate 
for what values the wfs are satisfied (if they contain free variables) or whether they 
are true or false (if they contain no free variables). 

I&;: .;+a Describe in every-day English the assertions determined by the followng g a r 1  ,& ~d interpretations. 

@ 
(a) (xXv)(A:(x. Y) 3 (EZ)(A~(Z) A -I#% z) A A:(z, Y))), where the 

domain D is the set of real numbers, A:(x, y) means x < y, and A :(z) 
.*? 

means z is a rational number. 
: i 

(b) (x)(~f(x) 3 (EyXA:(y) A A:(Y, x))), where D is the set of all days 
ng.4: and people, A:(x) means x is a day, A:(y) means y is a sucker, and 
C'ir A?(y, x) means y is born on day x. 
8 k (c) In the following wfs, D is the set of integers, and A:(u, u) means u < u. 
n, 
.O f (i) (x)(Ev)A:(x, Y) 
$!? ' (10 (EY)(~)A:(~,Y) 
pi . s 

(iii) (x)(Ey)(A :(x, y) A - (EZ)(A f(x9 Z) A A f(z, Y))). 

.t,.:, I (d) In the following wfs, D is the set of all people, and A;(U, o) means u 

k ~ k  loves u. 
oe;* (i) (Ex)(y)A:(x,y) , . - . - . . $,& , 
v. .pp;.. (iij ~Y)(E~)A:(x,Y) 

(iii) (Ex)((yX(z)A;(y, z) 3 ~ f ( x ,  Y))) 
-it,, .. . (iv) (EXMY) - A ;(x, Y). 
; '>, <$$'. *, 6 

% ,.!:a. 

Q k b  notions of satisfiability and truth are intuitively clear, but, for the 
they can be made precise in the following way. (Tarski [19361) Let 
given an interpretation M with domain D. Let Z be the set of 

sequences of elements of D. We shall define what it means for a 
b,, . . . ) in Z to satisfy a wf in M. As a preliminary step we 
s* of one argument, with terms as arguments and values in D. 

stant, then s*(t) is the interpretation in D of this 

ter and ( f ' )M is the corresponding operation 
nd t,, . . . ' ,  t,, are terms, then s*(-$"(t,, . . . , 1,)) = 
I), s*(t2), . . . , sf(t,,)). 
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Thus, s* is a function, determined by the sequence s, from the set of terms into 
D. Intuitively, for a sequence s = (b,, b,, . . . ) and a term t, s*(t) is the element 
of D obtained by substituting, for each i, bi for all occurrences of xi in t, and 
then performing the operations of the interpretation corresponding to the 
function letters of t. For instance, if t is f;(x,, f?(xI, a,)), and the interpretation 
has the set of integers as its domain, f; and f: are interpreted as ordinary 
multiplication and addition, and a,  is interpreted as 2, then, for any sequence 
s = (b,, b,, . . . ) of integers, s*(t) is the integer b, x (b, + 2). 

Now we proceed to the definition proper, which is an inductive definition. 

(i) If @ is an atomic wf Ay(tl, . . . , tn) and (A;)~ is the corresponding 
relation of the interpretation, then the sequence s satisfies @ if and only 
if (A;)~(S*(~,), . . . , s*(t,,)), i.e., if the n-tuple (sf(t1), . . . , s*(tn)) is in 
the relation 

(ii) s satisfies i d  I and only if s does not satisfy @. 
(iii) s satisfies @ > b if and only if either s does not satisfy @ or s satisfies 

'3. 
(iv) s satisfies (xi)@ if and only if every sequence of Z which differs from s 

in at most the ith component satisfies @. 

Intuitively, a sequence s = (b,, b,, . . . ) satisfies a wf @ if and only if, when 
we substitute, for each i, a symbol representing bi for all free occurrences of xi in 
&, the resulting proposition is true under the given interpretation. 

DEFINITIONS. A wf @ is true for the interpretation M (written kM@) if and 
only if every sequence in Z satisfies &. 

@ is false for M if and only if no sequence in Z satisfies &. 
-.- --. 

An interpretation M is said to be a rnbdel for a set r of wfs if and only if every 
wf in r is true for M. 

Verification of the following consequences of the definitions above is left to 
the reader. Most of the results are also obvious if one wishes to use only the 
ordinary intuitive understanding of the notions of truth and satisfaction. 

(I) @ is false for a given interpretation M if and only if kM -- @; and I=,@ if 
and only if -- @ is false for M. 

t For example, if the domain of the interpretation is the set of real numbers, the interpretation of 
A: is the relation < and the interpretation of f,'(x) is e, then a sequence s = (b,, bu . . . ) of real 
numbers satisfies ~ ; ( f , ' ( x , ) ,  x,) if and only if ebl < b,. If the domain is the set of points in a plane, 
the interpretation of A ~ X ,  y ,  i )  is "x and y are equidistant from z9', and the interpretation of f;(x., y )  
is "the midpoint of the line segment connecting x and y", then a sequence s = (b,, b2, . . . ) of points 
in the plane satisfies ~ : ( f : ( x , ,  xJ ,  f:(x3, x,), x4) if and only if the midpoint of the line segment 
between b, and 4 is at the same distance from b4 as the midpoint of the line segment between b, 
and b,. If the domain is the set of integers, the interpretation of A ~ ( x ,  y ,  u, v )  is "X . v = u . y", and 
the interpretation of a ,  is 2, then a sequence s = (b,, b2, . . . ) of integers satisfies Af(x , ,  a , ,  x , ,  x,) if 
and only if (b,)' = 2b,. 

(111) If kM@ and kM@ 3 '3, then k,'3 . 
(In & 3 b is false for M if and only if k M @  and kM - 
M ti\ A seauence s satisfies @ /\ '33 if and only if s 
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no wf can be both 

93. 
satisfies @ and s 

I-, - -  

=(islies 9. A sequence s satisfies d V b if and only if s satisfies @ or s 
=tisfies 9. A sequence s satisfies @ = b if and only if s satisfies both @ and - 

9 or s satisfies neither @ nor '3.3 t. 
(ii) A sequence s satisfies (Exi)@ if and only if there is a sequence s' 

which differs from s in at most the ith place such that sf satisfies @.t 
~ 1 )  kM@ if and only if kM(xi)@. We can extend this result in the following 

way. By the closure of @ we mean the closed wf obtained from @ by prefixing as 
universal quantifiers those variables, in order of decreasing subscripts, which are 
free in &. If @ has no free variables, the closure of @ is defined to be @ itself. 
For example, if @ is A?(X,, x,) 3 -- (Ex,)A?(x,, x,, x,), its closure is 
(xs)(xs)(x2)(~1)& It follows from (VI) that a wf & is true if and only if its 
closure is true. 

(VII) Every instance of a tautology is true for any interpretation. (An 
instance of a statement form is a wf obtained from the statement form by 
substituting wfs for all statement letters, all occurrences of the same statement 
letter being replaced by the same wf. For example, an instance of A, 3 - A, V 
A,  is A;(X,, x,) 3 (- (x,)A:(x,)) V A;(X,, x,).) To prove (VII), show that all 
instances of the axioms of L are true, and then use (111) and Proposition 1.13. 

(VIII) If the free variables (if any) of a wf @ occur in the list xi , . . . , xi . t h  , 
and if the sequences s and sf have the same components in the iti, . . . , I, 
places, then s satisfies @ if and only if sf satisfies @. (Hint: induction on the 
number of connectives and quantifiers in &. First prove: Lemma. If the 
variables in a term t occur in the list xil, . . . , xik, and if s and sf have the same 
components in the i,th, . . . , ikth places, then s*(t) = (sf)*(t). In particular, if I 
contains no variables at all, s,*(t) = s,*(t) for any sequences s, and s,.) 

Although, by (VIII), a particular wf & with k free variables is essentially 
satistied or not only by k-tuples, rather than by denumerable sequences, it is 
more convenient for a general treatment of satisfiability to deal with infinite 
rather than finite sequences. If we were to define satisfiability using finite 
sequences, clauses (iii) and (iv) of the definition of satisfiability would become 
much more complicated. 

The set of k-tuples (bil, . . . , bil) of the domain D such that any sequence with 
bi,, . . . , bik in its illh, . . . , ikth places, respectively, satisfies a wf @ having 
xi,, . . . , xik as its only free variables, is called the relation (or property) of the 

t Remember that A 9 ,  B  v 9 ,  B  = 9 ,  (Exi)@ are abbreviations for - (& > - a ) ,  
- @  3 9 ,  (& 9 )  A(% 1 B),  - ( x i )  - B ,  respectively. 
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interpretation associated with &. Extending our terminoloa, we shall say that 
every k-tuple (b,,, . . . , bik) in this relation satisfies &(xi,, . . . , xi&) in the inter- 
pretation M; this will be written as k,@[bi,, . . . , bi,]. 

Examples. 

(1) If the domain D of M is the set of human beings, A;(x, y) is interpreted as 
"x is a brother of y", and A;(X, y) is interpreted as "x is a parent of y", then the 
binary relation on D corresponding to the wf &(xi, x,) : (Ex3)(A :(x,, x3) r\ 
A,2(x3, x2)) is the relation of unclehood. kM&[b, c] when and only when b is an 
uncle of c. 

(2) If the domain is the set of positive integers, A: is interpreted as = , f: is 
interpreted as multiplication, and a ,  is interpreted as 1, then the wf % (x,): 

- r\ (x2)((~x3)A;(x1,f:(x2, ~ 3 ) )  V ~ 1 ) )  
determines the property of being a prime number. Thus, EM% [k] if and only if k 
is a prime number. 

(IX) If & is a closed wf, then, for any interpretation M, either kM& or 
kM -- &, that is, either & is true for M or & is false for M. (Hint: Use (VIII).) Of 
course, & may be true for some interpretations and false for others. (As an 
example, consider A :(a,).) 

If & is not closed, i.e., if & contains free variables, & may be neither true nor 
false for some interpretations. For example, if @ is A:(x,, xJ and we consider 
an interpretation in which the domain is the set of integers and A:(y, z) is 
interpreted as y < z, then & is satisfied only by those sequences s = 
(b,, b,, . . . ) of integers in which b, < b,. Hence, @ is neither true nor false for 
this interpretation. On the other hand, there are wfs which are not closed, but 
which, nevertheless, are true or false for every interpretation. An example of 
such a wf is A:(x,) V - A;(x1), which is true for every interpretation. 

(X) LEMMA. If t and u are terms and s is a sequence in 2, and t' results from 
t by substituting u for all occurrences of xi, and s' results from s by substituting 
s*(u) for the ith component of s, then s*(t') = (sf)*(t). (Hint: Induction on the 
length of t.t) 

COROLLARY. Let &(xi) be a wf, t a term free for xi in &(xi), and &(t) the wf 
obtained from &(xi) by substituting t for all free occurrences of xi in &(xi). 

(i) A sequence s = (b,, b2, . . . ) satisfies &(t) if and only if the sequence s', 
obtained from s by substituting s*(t) for bi in the ith place, satisfies 
@(xi). (Hint: Induction on the number of connectives and quant$ers in 
&(xi), using the lemma.) 

(ii) If (xi)&(xi) is satisfied by the sequence s, then &(t) also is satisfied by 
S. 

t The length of an expression is the number of occurrences of symbols in the expression. 
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7; (iii) (xi)&(x,) 3 &(t) is true for all interpretations. 

@I) If & does not contain xi free, then (xi)(& 3 3) 3 (& 3 (xi)%) is true 
for all interpretations. 

PROOF. Assume (XI) is not correct. Then (xi)(@ 3 %) (& 3 (xi)%) is not 
true for some interpretation. By clause (iii) of the definition of satisfiability, 
bere is a sequence such that s satisfies (xi)(& > %) and s does not satisfy 
@ 2 (xi)%. From the latter and clause (iii), s satisfies & and s does not satisfy 

Hence, by clause (iv), there is a sequence s' differing from s in at most the 
i~ place such that s' does not satisfy % . Since xi is free in neither (xi)(& 3 3) 
nor @, and since s satisfies both of these wfs, it follows by (VIII) that s' also 
satisfies both (xi)(& 3 %) and &. Since s' satisfies (xi)(& > a), it follows by 
clause (iv) that s' satisfies & > %. Since s' satisfies & > % and &, clause (iii) 
implies that s' satisfies % , which contradicts the fact that s' does not satisfy 3 .  
Hence, (XI) is proved. 

EXERCISES 

2.14. Verify (I)-@). 
2.15. Prove that a closed wf & is true for M if and only if & is satisfied by some 

sequence s in Z. (Remember that Z is the set of denumerable sequences of elements 
of the domain of M.) 

2.16. Find the properties or relations determined by the following wfs and 
interpretations. 

(a) [(Eu)~:(f?(x, u), y)] [(Ev)A:( f:(x, v), z)], where the domain D is 
the set of all integers, A;(U, v) means u = v, and ft(u, v) means uv. 

(b) Here, D is the set of non-negative integers, A:(x, y) means x = y, a ,  
denotes 0, a2 denotes I ,  ft(x, y) stands for x + y, and f&x, y) stands 
for xy. 

(1) (Ez)(- A&, 0,) A ~:(f?(x, z),Y)) 
(ii) -(EYXA:(X, f;(~, Y))) 

(c) (Ex3)A:(f~(x1, x3), xZ), where D is the set of all positive integers, 
A;(X, y) means x = y, and f?(x, y) means xy. 

I (d) A;(X,) A (x,) - A:(xl, x2), where D is the set of all living people, 
A:(x,) means x is a man, and A:(x, y) means x is married to y. 

(e) (Ex,)(Ex,)(A :(XI, ~ 3 )  A A:(x~, ~ 4 )  A A:(xI, XZ)), where D is the 
domain of all people, A:(x, y) means x is a parent of y, and A:(x, Y) 
means x and y are siblings. 

(f) (x~)((Ex~)A:(~?(x~, ~ 3 ) ~  xi) A (Ex4)(A:(f?(x4, ~ 3 ) ~  ~2)) 3 AKx3, a,)), 
where D is the set of all positive integers, a, denotes 1, A:(x,y) means 
x = y, and f?(x, y) means xy. 

2.17. For each of the following wfs and interpretations, write a translation into 
ordinary English and determine its truth or falsity. 

(a) Here, D is the set of non-negative integers, A:(x, y) means x = Y, a1 
denotes 0, a2 denotes 1, j:(x, y) means x + y, and f;(x, y) means xy. 
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(1) ( x ) ( ~ y ) ( A ? ( x ,  f?(y, Y ) )  V A:(x, f ? ( f ? ( ~  1 ~ ) r  ad)) e following assertions are easy consequences of these definitions. 

(ii) (x)(y)(A:(f;(x, Y ) ,  a,) 3 A :(x, a,) V AXY,  a,)) 
(iii) (EY)A :(f?(y , Y ) ,  a,). :a $ & logically implies '3 if and only if & 3 '3 is logically valid. ?&) & and 93 are logically equivalent if and only if & = '3 is logically valid. 

(b) Here, D is the set of  all integers, A:(x, y )  means x = y,  and f?(x, y)  (c) If & logically implies '3, and @ is true in a given interpretation, so is '3. 
means x + y. (d) If 9 is a logical consequence of a set r of wfs, and all wfs in r are true in 

( 0  (x,)(x2)A :(f:(xl, x21, f?<x2, X I ) )  
8 given interpretation, so is '3. 

(ii) ( x I ) ( x ~ H x ~ ) A : ( ~ ? ( x I ,  f?(x2, xj)), f ? ( f ? ( ~ ~ ,  -4, ~ 3 ) )  
(iii) ( X I ) ( X ~ H E X ~ ) A ? ( ~ ? ( X I ,  x3)r ~ 2 ) .  ~ n y  sentence of a formal or natural language which is an instance of a 

lo&ally valid wf is called logically true, and an instance of a contradictory wf is 
(c) The same wfs  as in Part (b), but the domain is the set o f  all positive S d  tobe logical& false. 

integers, A;(X,  y )  means x = y,  and f?(x, y )  is xY. 
(d) The domain is the set o f  all rational numbers, A:(x, y )  means x = y, Examples. 

A;(X, y )  means x < y,  f?(x, y )  is xy, f:(x) is x + 1 ,  and a ,  is 0. ,. 1. Every instance of a tautology is logically valid. (VI I )  
~2. If & does not contain x free, then ( x ) (& 3 '3) 3 (& 3 ( x ) %  ) is logically 

(i) (~x)(~:(f?(x,x),f:(f:(a~)))) 
(ii) (xXy)(A%x, Y )  3 (EZXA;(X,  z )  A A;(Z, Y ) ) )  

valid. ( X I )  

(iii) (x)(- A:(x, a,) 3 (EY)A :(f?(x, Y ) ,  f:(a~))). 
'3. I f  t is free for x in &, then ( x ) & ( x )  3 &(t )  is logically valid. (X) 
4. The wf ( x , ) ( ~ x , ) ~ ~ ( x , ,  x,) 3 ( E X , ) ( X , ) A ~ ( X , ,  x,) is not logically valid. As 

(e) The domain is the set o f  non-negative integers, A:(u, u) means u < v, a counterexample, let the domain D be the set of integers, and let z) be 
and A?(u, u, w) means u + u = w. Y.< 2. Then ( x 2 ) ( E x l ) ~ : ( x , ,  x,) is true, but ( E x , ) ( x , ) ~ : ( x , ,  x,) is false. 

3. is logically valid if and only if ( y , )  . . . (y,)& is logically valid. NI) 

A wf & is said to be logically valid if and only if & is true for every 

2.18. Show that the following wfs are not logically valid. 
(a) [(xl)A:(x,)  3 (xl)A:(xl)l 3 [(xl)(A:(x,) 3 A:(xl))l 
(b) [(x,)(A:(xl) V ~ : ( x l ) ) l  3 [((xl)A:(x,)) V ((xl)A:(xl))l 

X19. Show that the following wfs are logically valid. 
" 

(a) @(t)  3 (Exi)@(xi) if  t is free for xi in @(xi) 
(xi)@ 3 (EX,)@ 

interpretation. t (4 (xi)(x,)@ = (x,)(xi)@ 
& is said to be satisfiable if and only if there is an interpretation for which 8 (d) (xi)@ r - (Ex,) - @ 

is satisfied by at least one sequence in Z. (e) (xi)(@ 3 8 ) 3 ((xi)@ 3 (xi)%) 
It is obvious that & is logically valid if and only if -- & is not satisfiable; and (9 ((xi)@ A (xi)%) = (xi)(@ A 8 )  

& is satisfiable if and only if -- & is not logically valid. I f  & is a closed wf, then @) ((xi)@) V (xi)% 3 (xi)(@ v 8 )  
we know that & is either true or false for any given interpretation, i.e., is Exi)(Ex,)@ - (Ex,)(Exi)@ 

satisfied by all sequences or by none; therefore, if d is closed, then a is Exi)(xj)@ 3 (x,)(Exi)@ 

satisfiable if and only if & is true for some interpretation. is a closed w f ,  show that @ logically implies 8 if and only i f  8 is true 

We say that & is contradictory if and only if -- & is logically valid, Or, retation in which @ is true. (This is not always the case when @ has 
For example, let @ be A:(x,) and 8 be (xl)A, '(x,);  8 is true 

equivalently, if and only if & is false for every interpretation. (by VQ; produce an interpretation showing that @ does not logically 
& is said to logically imply '3 i f  and only if, in every interpretation, any 

sequence satisfying & also satisfies 9. More generally, '3 is a logical con- that the following wfs are not logically valid. 
sequence of a set r of wfs if and only if, in every interpretation, every sequence 

E x X ~ ) ( A : ( x , ~ )  A - A:(Y, x )  3 [A:(x, x )  = A:(y, y ) ] )  
which satisfies every wf in r also satisfies 93. & and 93 are logically equivalent if xXYXZ)(A :(x, Y )  A A :(Y, z )  3 A:(x, z)) A ( x )  - A:(x, x )  
and only if they logically imply each other. 
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( c ) ~  (x)(Y)(z)(A ?(x, x) A (A?(x, z) 2 Y) V A ?(Y, 4))  
2 (EY)(~)A?(Y, z) 

( 4  [(Ex)Ai(x) = (Ex)A:(x)l 2 (x)(Ai(x) = A:(x)) 
( 4  (~x)(A:(x) 2 A:(x)) 2 ((Ex)Ai(x) 2 (Ex)A:(x)) 
(0 (Ex)(y)(Ez)((A?(y, z) 2 A?(% z)) 2 (A?(% x) 2 A?(Y> x))) 
(g) (x)(~y)A?(x, Y) 2 (EY)A?(Y, Y) 
01) (~x)(Ey)A?(x, Y) 3 (Ez)A:(z> z) 
(1) [(x)(y)(A?(x,y) 2 A?(Y, 4 )  A (xXy)(z)(A?(x,y) A A?(Y, z) 2 

A?(% z))l 3 (x)A?(x, x) 
2.22. Prove: If the free variables of @ are y,, . . . , y,, then @ is satisfiable if and 

only if (Ey,) . . . (Ey,,)@ is satisfiable. 
2.23. Introducing appropriate abbreviations, write the sentences of the following 

arguments as wfs, and determine whether the conclusion is logically implied by the 
conjunction of the premisses. 

(a) Everyone who is sane can understand mathematics. None of Hegel's 
sons can understand mathematics. No madmen are fit to vote. Hence 
none of Hegel's sons is fit to vote. 

(b) For every set x, there is a set y such that the cardinality of y is greater 
than the cardinality of x. If x is included in y, the cardinality of x is not 
greater than the cardinality of y. Every set is included in V. Hence, V is 
not a set. 

(c) If every ancestor of an ancestor of an individual is also an ancestor of 
the same individual, and no individual is his own ancestor, then there 
must be a person who has no ancestor. 

(d) Any barber in Jonesville shaves exactly those men who do not shave 
themselves. Hence there is no barber in Jonesville. 

(e) Kilroy was here. Therefore, someone was here. 
( f )  Some geniuses are celibate. Some students are not celibate. Therefore, 

some students are not geniuses. 
2.24. Determine whether the following sets of wfs or sentences are consistent, 

i.e., whether their conjunction is satisfiable. 
(a) ( E ~ x Y ) A ? ( ~ >  Y) 

(x)(~)(Ez)(A?(x, z) A A?(z,Y)) 
(b) (x)(Ey)A?(y, x) 

(x)(y)(A ?(x, Y) 2 - A?(Y, x)) 
(x)(y)(z)(A ?(x, Y) A A ?(Y, z) 2 A ?(x, 4 )  

(c) All unicorns are animals 
No unicorns are animals 

2.25. Exhibit a logically valid wf which is not an instance of a tautology. 
However, show that any logically valid open wf (i.e., a wf without quantifiers) must 
be an instance of a tautology. 

3. First-Order Theories 
In the case of the propositional calculus, the method of truth tables provides 

an effective test as to whether any given statement form is a tautology. However, 
there does not seem to be any effective process to determine whether a given wf 

m2 3 FIRST-ORDER THEORIES 

, 6 is logically valid, since, in general, one has to check the truth of a wf for 
interpretations with arbitrarily large finite or infinite domains. i n  fact, we shall 
see later that, according to a plausible definition of "effective", it may actually 
be proved that there is no effective way to test for logical validity. The axiomatic 
method, which was a luxury in the study of the propositional calculus, thus 
appears to be a necessity in the study of wfs involving quantifiers,? and we 
therefore turn now to the consideration of first-order theories$. 

The symbols of a first-order theory K are essentially those introduced earlier 
in this chapter: the propositional connectives -, 3 ; the punctuation marks 
(, ), , (the comma is not strictly necessary but is convenient for ease in reading 
formulas); denumerably many individual variables x,,  x,, . . . ; a finite or 
denumerable non-empty set of predicate letters Ay(n, J > 1); a finite or de- 
numerable, possibly empty, set of function letters Jn(n, J > 1); and a finite or 
denumerable, possibly empty, set of individual constants ai(i 2 1). Thus, in a 
theory K, some or all of the function letters and individual constants may be 
absent, and some (but not all) of the predicate letters may be absent. Different 
theories may differ in which of these symbols they possess. 

The definitions given in Section 1 for term, wf, and for the propositional 
connectives A, V, - , are adopted for any first-order theory. Of course, for a 
particular theory K, only those symbols occurring in K are used in the forma- 
tion of terms and wfs. 

The axioms of K are divided into two classes: the logical axioms and the 
proper (or non-logical) axioms. 

Logical Axioms: If @, 3 ,  t? are wfs of K, then the following are logical 
axioms of K. 

(1) 62 3 ( 3  3 @) 
(2) (a 3 ( 3  e l )  3 ((a 3 )  3 (a 3 e l )  
(3) ( - 3  3 - @ ) > ( ( - a  3 @ ) 3 3 )  
(4) (xi)@(xi) 3 @(t), if @(xi) is a wf of K and t is a term of K free for xi in 

@(xi). Note here that t may be identical with xi, giving the axioms 

I (x;)@(x;) 3 @(xi)- 
? There is still another reason for a formal axiomatic approach. Concepts and propositions which 

involve the notion of interpretation, and related ideas such as truth, model, etc., are often called 
semntical to distinguish them from vniaciical concepts, which refer to simple relations among 
symbols and expressions of precise formal languages. Since semantical notions are set-theoretic in 
character, and since set theory, because of the paradoxes, is considered a rather shaky foundation 
for the study of mathematical logic, many logicians consider a syntactical approach, consisting in a 
study of formal axiomatic theories using only rather weak number-theoretic methods, to be much 
safer. For further discussions, see the pioneering study on semantics by Tarski [1936], Kleene [1952], 
Church [1956], and Hilbert-Bernays [1934]. 

$ The adjective "first-order" is used to distinguish the theories we shall study from those in which 
there are predicates having other predicates or functions as arguments or in which predicate 
quantifiers or function quantifiers are permitted, or both. First-order theories suffice for the 
expression of known mathematical theories, and, in any case, most higher-order theories can be 
suitably "translated" into first-order theories. Examples of higher-order theories may be found in 
Church [1940], Giidel [1931], Tarski [1933], Scholz-Hasenjaeger [1961: 55200-2191. 
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(5) (xi)(& > 9) 3 (& 3 (xi)%) if 6? is a wf of K containing no free 
occurrences of xi. 

Proper Axioms: These cannot be specified, since they vary from theory to theory. 
A first-order theory in which there are no proper axioms is called a 
first-order predicate calculus. 

The rules of inference of any first-order theory are 

(i) Modus ponens: % follows from & and & 2 3 
(ii) Generalization: (xi)& follows from &. 

We shall use MP and Gen, respectively, to indicate applications of these rules. 
By a model of a first-order theory K we mean an interpretation in which all 

the axioms of K are true.t By (111) and (VI), p. 53, if the rules of modus ponens 
and generalization are applied to wfs true in a given interpretation, then the 
results of these applications are also true. Hence every theorem of K is true in 
any model of K. 

As we shall see, the logical axioms are so designed that the logical con- 
sequences (in the semantic sense, cf. p. 56) of the closure of the axioms of K are 
precisely the theorems of K. In particular, if K is a first-order predicate calculus, 
it turns out that the theorems of K are precisely those wfs of K which are 
logically valid. 

Some explanation is needed for the restrictions in Axiom Schema (4) and (5). 
In the case of (4), if t were not free for x, in &, the following unpleasant result 
would arise. Let @(x,) be -- (x2)A:(x1, x,) and let t be x,. Notice that t is not 
free for x, in &(x,). Consider the instance of Axiom (4): 

Now, take as interpretation any domain with at least two members and let A: 
stand for the identity relation. Then the antecedent of ( e )  is true and the 
consequent false. 

In the case of (5), relaxation of the restriction that xi not be free in & would 
lead to the following misfortune. Let @ and $8 both be A,'(x,). Thus, x, is free 
in &. Consider the instance of (5): 

The antecedent of ( B e )  is logically valid. However, if we take any interpreta- 
tion in which A: holds for some but not all elements of the domain, then the 
consequent will not be true. 

t In talking about an interpretation of K, we need only specify the interpretations of the symbols 
of K. We shall use the notion of interpretation in this extended sense. 

'w Examples of first-order theories. 
*i 
' (i) Partial order. Let K have a single predicate letter A: and no function 

letters and individual constants. We shall write xi < x, instead of A;(X,, x,) and 
xi 4: x, for - (xi < x,). We have two proper axioms: 

(a) (XI)(XI + XI) (Irreflexivity) 
(b) ( ~ 1 ) ( ~ 2 ) ( ~ 3 ) ( ~ 1  < x2 A X2 < X3 3 X1 < ~ 3 )  (Transitivity) 

A model of this theory is called a partially-ordered structure. 
(ii) Group theory. Let K have one predicate letter A:, one function letter f;. 

and one individual constant a,. (To conform with ordinary notation, we shall 
write t = s instead of A:(t, s), t + s instead of j:(t, s) and 0 instead of a,.) As 
proper axioms we have: 

(a) ( ~ 1 ) ( ~ 2 ) ( ~ 3 ) ( ~ 1  + (x2 + x3) = (xl + x2) + x3) (Associativity) 

(b) (XI)(" + X1 =: XI)  (Identity) 

(c) (XI)(EXZ)(XZ + X I  = 0) (Inverse) 

( 4  (x,)(x, = XI) (Reflexivity of = ) 

(e) (xi)(x3(x1 = X2 3 X2 = xi) (Symmetry of = ) 

(f) (x,)(x3(x,)(x, = x, 3 (x, = X3 3 X1 = ~ 3 ) )  (Transitivity of =) 

(g) ( x I ) ( x ~ ( x ~ ) ( x ~  = X3 3 (XI + X2 = X1 + X3 /\ X2 + X1 = X3 + XI)) 
(Substitutivity of =) 

A model for this theory, in which the interpretation of = is the identity relation, 
is called a group. If, in addition, the wf (x,)(xd(x, + x2 = x, + x,) is true in a 
group, the latter is called abelian (or commutative). 

The theories of partial order and of groups are both axiomatic. In general, any 
theory with a finite number of proper axioms is axiomatic, since it is obvious 
that one can effectively decide whether any given wf is a logical axiom (cf. pp. 
59-60). 

4. Properties of First-Order Theories 
All the results in this section refer to an arbitrary first-order theory K, unless 

otherwise stated. Notice that any first-order theory is a formal theory (cf. pp. 
29-36). In addition, since we shall deal in this book only with first-order 
theories, from now on we shall refer to first-order theories simply as theories. 

PROPOSITION 2.1. Evey wf & of K which is an instance of a tautology is a 
theorem of K, and it may be proved using only Axioms (1)-(3) and MP. 

PROOF. 6? arises from a tautology W by substitution. By Proposition 1.13, 
there is a proof of W in L. In such a proof, make the same substitutions of wfs 
of K for statement letters as were used in obtaining & from W, and, for all 
statement letters in the proof which do not occur in W, substitute an arbitrary 
wf of K. Then the resulting sequence of wfs is a proof of &, and this proof uses 
only Axiom Schemas (1)-(3) and MP. 
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Application of Proposition 2.1 in a proof will be indicated by writing "Tautol- 
ogy". 

PROPOSITION 2.2. Any first-order predicate calculus K is consistent. 

PROOF. For each wf & of K, let h(&) be the expression obtained by erasing 
all the quantifiers and terms in & (together with the associated commas and 
parentheses). Examples: h((xI)(A~(xl, x,) 3 A f(x3)) is A: 3 A f ; and h(- 
(x,)A~(x,, a,, x,) 3 A;(X,))) is -- A; 3 A:. Then h(&) is essentially a statement 
form, with the symbols A; playing the role of statement letters. Clearly, 
h(-- &) = -- @(&)) and h(& 3 9 )  = h(&) 3 h(9).  Now, for every axiom & 
given by Schemas (1)-(5), h(&) is a tautology. This is clear for (1)-(3). An 
instance of (4), (xi)&(xi) 3 W(t), is transformed by h into a tautology of the 
form $21 3 9 ; and an instance of (9 ,  (xi)(& 3 9 )  3 (& 3 (xi)%) is trans- 
formed into a tautology of the form ( 9  3 &)  3 ( 9  3 &). In addition, if h(&) 
and h(& 3 9 ) are tautologies, then, by Proposition 1.1, h ( 9 )  is also a tautol- 
ogy; and, if h(&) is a tautology, so is h((xi)&), which is the same as h(&). Hence, 
h(&) is a tautology whenever & is a theorem of K. If there were a wf 9 of K 
such that tK9 and I-, -- 9 ,  then both h ( 9 )  and -- h ( 9 )  would be tautologies, 
which is impossible. Thus, K is consistent. (The transformation h amounts to 
interpreting K in a domain with a single element. All the theorems of K are true 
in such an interpretation, but no wf and its negation can be true in any 
interpretation.) 

The Deduction Theorem (Proposition 1.8) for the propositional calculus 
cannot be carried over without modification to arbitrary theories K. For 
example, for any wf &, & t,(x,)&, but it is not always the case that t,& 3 
(x,)&. Consider a domain containing at least two elements c and d. Let K be a 
predicate calculus, and let & be A,'(x,). Interpret Af as a property which holds 
only for c. Then A,'(x,) is satisfied by any sequence s = (b,, b,, . . . ) where 
b, = c, but (x,)A,'(x,) is satisfied by no sequence at all. Hence, A,'(x,) 3 
(x,)A,'(x,) is not true in this interpretation, and so it is not logically valid. But it 
is easy to see (Proposition 2.7) that every theorem of a predicate calculus is 
logically valid. 

However, a modified, but still useful, form of the Deduction Theorem may be 
derived. 

Let & be a wf in a set r of wfs; assume given a deduction 9 , ,  . . . , 9, from 
r ,  together with justification for each step of the deduction. We shall say that 9, 
depends upon & in this proof if and only if: 

(i) gi is & and the justification for CBi is that it belongs to r ;  or 
(ii) Gi is justified as a direct consequence by MP or Gen of some preceding 

wfs of the sequence, where at least one of these preceding wfs depends upon &. 

Example. 

Here, ( 9 , )  depends upon &; (9,) depends upon &; ($8,) depends upon 
(x,)& > C?; (9,) depends upon & and (x,)& 3 C?, and (9,)  depends upon & 
and (xl)& 3 C?. 

PROPOSITION 2.3. If $8 does not depend upon & in a deduction J?, & t 9 ,  then 
r t s .  
PROOF. Let 9 , ,  . . . , 9, = 9 be a deduction of 9 from r and &, in which 

B does not depend upon &. As inductive hypothesis, let us assume that the 
proposition is true for all deductions of length less than n. If 9 belongs to r or 
is an axiom, then r t 9. If 9 is a direct consequence of one or two preceding 
wfs, then, since 9 does not depend upon &, neither do these preceding wfs. By 
the inductive hypothesis, these preceding wfs are deducible from r alone. 
Consequently, so is 9 . 

PROPOSITION 2.4 (DEDUCTION THEOREM). Assume that r ,  & t 9 ,  where, in 
the deduction, no application of Gen to a wf which dependr upon & has as its 
quantified variable a free variable of &. Then r t & 3 9 .  

PROOF. Let 9 , ,  . . . , 9, = 9 be a deduction of 9 from T, & satisfying the 
assumption of our proposition. Let us show by induction that T t & > ai for 
each i < n. If 9i is an axiom or belongs to r ,  then r t & 3 g i ,  since Qi > (8 
3 $8,) is an axiom. If 5ji is 8 ,  then J? t & 3 9 , ,  since, by Proposition 2.1, 
k (2 3 &. If there exist j, k less than i such that 9, is 9, 3 >,, then, by 
inductive hypothesis, r t & 3 9, and t 8 3 (9, 3 CBi). Hence, r t & 3 %i, 
by h i o m  (2) and MP. Finally suppose there is some j < i such that %i is 
(xk)%,. By hypothesis, r t & 3 9, and either 93, does not depend upon & or xk 
is not a free variable of &. If 9, does not depend upon &, then, by Proposition 
2.3, I' t 9 , ,  and, consequently, by Gen, r t (xk)9,. Thus, J? t %i. Now, by 
Axiom (I), t gi 3 (& 3 a i ) .  So, r t & 3 CBi, by MP. If xk is not a free variable 
of &, then, by Axiom (5), t (xk)(& 3 9,) 3 (& 3 (xk)9,). Since r t & 3 %,, 
we have, by Gen, r t (xk)(& 3 9,), and so, by MP, r t & 3 (xk)gj, i.e., 
r k & 3 gi. This completes the induction, and our proposition is just the special 
case i = n. 
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The hypothesis of Proposition 2.4 is rather cumbersome, and the following 
weaker corollaries often prove to be more useful. 

COROLLARY 2.5. If a deduction T, & t 3 involves no application of Gen of 
which the quantified variable is free in &, then T t & 2 3. 

COROLLARY 2.6. If & is a closed wf, and I', & t 3 ,  then T t & 3 3 

In Propositions 2.3-2.6, the following additional conclusion can be drawn 
from the proof. The new proof of T 1 & 3 3 (in the case of 2.3, of T t '43) 
involves an application of Gen to a wf depending upon a wf (2 of r only if there 
is an application of Gen in the given proof of T, & t 3 which involves the same 
quantified variable and is applied to a wf which depends upon (2. (In the proof 
of Proposition 2.4, one should observe that 3, depends upon a premiss (2 of T in 
the original proof if and only if & 3 3, depends upon (2 in the new proof.) 

This supplementary conclusion is useful when we wish to apply the Deduction 
Theorem several times in a row to a given deduction, e.g., to obtain T t Gi) 3 
(& 3 3 )  from T, 9, & t 3 ; from now on, it is to be considered as part of the 
statements of Propositions 2.3-2.6. 

Example. 1 (xi)(x2>& 3 (x~)(xI)& 

PROOF. 

1. (~I)(x,)& HYP 
2. (xl)(x2)@ 3 x )  Axiom (4) 
3- (x2)& 1, 2, MP 
4. (x2)@ 3 & Axiom (4) 
5. & 3, 4, MP 
6- (XI)@ 5, Gen 
7. (x~)(xI)@ 6, Gen 

Thus, by 1-7, we have (x,)(x,)& t (x,)(x,)@, where, in the deduction, no 
application of Gen has as a quantified variable a free variable of (x1)(x2)@. 
Hence, by Corollary 2.5, t (x,)(x2)& 2 (x2)(x,)&. 

EXERCISES 

2.26. Show that 
(a) (XI)(@ 3 4 )  3 ((XI)@ 3 (XI)%). 
(b) t (x)(@ 3 4 )  3 ((Ex)@ 3 (Ex)%). 
( 4  t- (xN@ A 93 ) = (x)& A (x)%. 

2.27D. Let K be a first-order theory, and let K# be an axiomatic theory having 
the following axioms: (1) (y,) . . . (y,,)@ where 6! is any axiom of K and y ,, . . . , y, 
(n > 0) are any variables; (2) (y,) . . . (Y,)(@ 3 53) 3 [(y,) . . . (yn)@ 3 

vsEc. 5 COMPLETENESS THEOREMS 

' (y,) . . . (yn)4]  where @ and 4 are any wfs and y,, . . . , y,, are any variables. 
Moreover, K# has the rule of modus ponens as its only rule of inference. Show 
that K# has the same theorems as K. 

5. Completeness Theorems 

PROPOSITION 2.7. Every theorem of a first-order predicate calculus is logically 
valid. 

PROOF. By property (VII) of the notion of truth (cf. page 53), Axioms (1)-(3) 
are logically valid. By properties (X) (Corollary) and (XI), Axioms (4)-(5) are 
logically valid. By (111) and (VI), the rules of inference MP and Gen preserve 
logical validity. Hence, every theorem of a predicate calculus is logically valid. 

EXERCISES 

2.28. For any first-order theory K, if r t,& and each wf in r is true in a given 
model M of K, then 6! is also true in M. 

2.29. If a wf 6! without quantifiers is provable in a predicate calculus, then it is 
an instance of a tautology, and, hence, by Proposition 2.1, has a proof without 
quantifiers using only Axioms (1)-(3) and MP. (Hint: if 6! were not a tautology, 
one could construct an interpretation having the set of terms occumng in 6! as its 
domain, in which 6! is not true, contradicting Proposition 2.7.) Note that this 
implies the consistency of the predicate calculus and also provides a decision 
procedure for provability of wfs without quantifiers. 

Proposition 2.7 establishes only half of the completeness result that we are 
seeking. The other half will follow from a much more general proposition 
established below. First, we must prove a few preliminary lemmas. 

If xi and 3 are distinct, then &(xi) and &(xi) are said to be similar if and only 
if x, is free for xi in @(xi) and @(xi) has no free occurrences of 5. It is assumed 
here that @(+) arises from &(xi) by substituting + for all free occurrences of xi. 
If &(xi) and &(xi)  are similar, then xi is free for + in @(x,) and &(xi) has no 
free occurrences of xi. Thus, similarity is a symmetric relation. Intuitively, &(xi) 
and @(xi) are similar if and only if &(xi) has free occurrences of x, in exactly 
those places where &(xi) has free occurrences of xi. 

LEMMA 2.8. If &(xi) and @(+) are similar, then t (xi)&(xi) (+)&(+). 

PROOF. t (xi)@(xi) 3 &(3) by Axiom (4). By Gen, 

(xj)((xi)@(xi) 3 @(+I) 
and, by Axiom ( 3 ,  t (xi)&(xi) 3 (+)a(+). In the same way, t (x,)@(x,) 2 
(xi)&(xi). Hence, by the tautology A, 3 (A, 3 (Al A A,)), and Proposition 2.1, 
1 (x;)&(x;) = (x,)&(x,). 

EXERCISE 2.30. If &(xi) and a(+) are similar, prove: 
1 (Exi)&(xi) = (Ex,)&(+). 
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LEMMA 2.9. I f a  closed wf -- @ of K is not provable in K, then the theory K', 
obtained from K by adding @ as an axiom, is consistent. 

PROOF. Assume K' inconsistent. Then, for some wf 9 ,  kK% and t,. - 93. 
Now, k K 9  3 (-- $3 3 @), by Proposition 2.1. So, k K  -- @. Hence, @ k, - 
@. Since @ is closed, we have k K @  3 - 8, by Corollary 2.6 of the Deduction 
Theorem. However, by Proposition 2.1, k,(@ 3 -- @) 3 -- @. Hence, k, -c @, 
contradicting our hypothesis. (Similarly, if @ is not provable in K, then the new 
theory obtained by adding -- @ as an axiom to K is consistent.) 

LEMMA 2.10. The set of expressions of a theory K is denumerable. (Hence the 
same is true of the set of term, wfs, closed wfs, etc.) 

PROOF. First assign a distinct odd number g(u) to each symbol u as follows: 
g ( ( ) = 3 , g ( ) ) = 5 , g ( ~ ) = ~ , g ( % ) = g , g ( > ) =  11;g(xk)=5 +8k ;g (ak )=7+  
8k; g(f,") = 9 + 8(2n3k); g(A;) = 11 + 8(2n3k). Then, to an expression 
u,u, . . . u,, associate the number 2g("1)3g("2) . . . p$~),  where pi is the ith prime 
number. We can enumerate all expressions in the order of their associated 
numbers. 

Moreover, if we can effectively tell whether any given symbol is a symbol of 
K, then this enumeration can be effectively carried out, and, in addition, we can 
effectively decide whether any given number is the number of an expression of 
K. The same holds true for terms, wfs, closed wfs, etc. If K is also axiomatic, i.e., 
if we can effectively decide whether any given wf is an axiom of K, then we can 
effectively enumerate the theorems of K as follows: Starting with a list consist- 
ing of the first axiom of K in the given enumeration (according to the associated 
numbers) of the axioms, add all the direct consequences of this axiom by MP 
and by Gen used only with x, as quantified variable. Add the second axiom to 
this new list (if it is not already there), and write down all new direct con- 
sequences of the wfs in this augmented list, this time with Gen used only with 
x,, x,. If at the k" step, we add the kth axiom and restrict Gen to the variables 
x,, . . . , xk, we eventually obtain, in this manner, all theorems of K. However, in 
contradistinction to the case of expressions, wfs, terms, etc., it turns out that 
there are theories K for which we cannot tell in advance whether any given wf of 
K will eventually appear in the list of theorems. 

We say that a theory K is complete if and only if, for any closed wf @ of K, 
either k,@ or k, -- @. 

A theory K' having the same symbols as a theory K is said to be an extension 
of K if every theorem of K is a theorem of K'. (Obviously, it suffices to prove 
that every proper axiom of K is a theorem of K'.) 

LEMMA 2.11 (LINDENBAUM'S LEMMA). If K is a consistent theory, then there is 
a consistent, complete extension of K. 

SEC. 5 r COMPLETENESS THEOREMS 

PROOF. Let a,, a,,  . . . , be an enumeration of all closed wfs of K, by 
Lemma 2.10. Define a sequence Jo, J,, J,, . . . of theories in the following way. 
J, is K. Assume J, defined, with n > 0. If it is not the case that tJn -- a,,, then 
let J,,, be obtained from J, by adding a,,, as an additional axiom. On the 
other hand, if tJn -- a,+ ,, let J,+, = J,. Let J be the theory obtained by taking 
as axioms all the axioms of all the Ji7s. Clearly, J,+, is an extension of J,, and J 
is an extension of all the Ji7s, including Jo = K. To show that J is consistent, it 
suffices to prove that all the J,'s are consistent, because a proof of a contradic- 
tion in J, involving as it does only a finite number of axioms, is also a proof of a 
contradiction in some J,. We prove the consistency of the J,'s by induction. By 
hypothesis, Jo = K is consistent. Assume that Ji is consistent. If Ji+ = Ji, then 
Ji+, is consistent. If Ji # Ji+, and, therefore, by the definition of Ji+ ,, -- ai+ , is 
not provable in Ji, then, by Lemma 2.9, Ji+, is also consistent. Hence, Ji+, is 
consistent if Ji is, and, therefore, J is consistent. To prove the completeness of J, 
let @ be any closed wf of K. Then @ = a,+, for some j > 0. Now, either 
k,, --. aj+, or kJ,+,aj+ ,, since, if not kJ, -- a,+, , then a,+, is added as an 
axiom in J,,,. Therefore, either k, -- a,+, or k,%,+,. Thus, J is a complete 
consistent extension of K. 

Note that even if one can effectively determine whether any wf is an axiom of 
K, it may not be possible to do the same with (or even to effectively enumerate) 
the axioms of J, i.e., J may not be axiomatic even if K is. This is due to the 
possibility of not being able to determine, at each step, whether or not -- a,,, 
is provable in J,. 

EXERCISES 

2.31. Show that a theory K is complete if and only if, for any closed wfs @ and 
9 of K, if k K &  V 3, then kK&! or k K 3 .  
2.32.D Prove that every consistent, decidable theory has a consistent, decidable, 

complete extension. 

P~OPOSITION 2.12.j- Every consistent theory K has a denumerable model (i.e., 
a model in which the domain is denumerable). 

PROOF. Add to the symbols of K a denumerable set {b,,  b,, . . . ) of new 
individual constants. Call this new theory K,. Its axioms are those of K plus 
those logical axioms which involve the new constants. K, is consistent. For, if 
not, kKo@ A -- @ for some wf 6?. Replace each bi appearing in this proof by a 
variable which does not appear in the proof. This transforms axioms into axioms 

t The proof given here is due to Henkin [1949], as simplified by Hasenjaeger [1953]. The result 
was originally proved by Godel [1930]. Other proofs have been published by Rasiowa-Sikorski 
[I%-521 and Beth [1951], using (Boolean) algebraic and topologcal methods, respectively. Still 
other proofs may be found in Hintikka [1955a, b] and in Beth [1959]. 
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and preserves the correctness of the applications of the rules of inference. The 
final wf in the proof is still a contradiction, but now the proof does not involve 
any of the 4's and therefore is a proof in K. This contradicts the consistency of 
K. Therefore, & is consistent. 

By Lemma 2.10, let F,(x,,), F2(xi,), . . . , Fk(xjk), . . . be an enumeration of all 
wfs of K, having at most one free variable. (Let x, be the free variable of Fk if 
the latter has a free variable; otherwise, let xjk be x,.) Choose a sequence 
4,. 0,2, . . . of some of the new individual constants such that bjk is not contained 
in F,(xi,), F,(x,,), . . . , Fk(x,), and such that b, is different from each of 
bil, bj2, . . . , b j *_ , .  Consider the wf: 

Let K,, be the theory obtained by adding (S,), . . . , (S,) to the axioms of &, 
and let K, be the theory obtained by adding all the (S,)'s as axioms to &. Any 
proof in K, contains only a finite number of the (Si)'s, and will also be a proof 
in some K,,. Hence, if all the K,'s are consistent, so is K,. To demonstrate that 
all the K,'s are consistent, proceed by induction. We know that & is consistent. 
Assume that K,,-, is consistent but that K,, is inconsistent (n 2 1). Then, as we 
know, any wf is provable in K,, (by the tautology A, 3 (--A, 3 AJ and 
Proposition 2.1). In particular, I," -- (S,). Hence, (S,) I,"-] -- (S,). Since (S,) is 
closed, we have, by Corollary 2.6, IKn_,(Sn) 3 -- (S,). But, by the tautology 
(A, 3 - A,) 3 - A, and Proposition 2.1, we then have I&-, - (S,), i.e., 

Now, by the tautologies -- (Al 3 A,) 3 (Al A - A,); (A, A A2) 3 A,; (A, A 
AJ 3 A,; --- A, 3 A,, we obtain -- (%)Fn(xjn) and IKn-lFn(bjn). From 
the latter and from the fact that 4" does not occur in (S,), . . . , (S,- ,), we 
conclude IK?-lFn(xp), where xp is a variable not occurring in the proof of 
in K,,- ,. (Slmply replace in the proof all occurrences of 4 by x,.) By Gen, 
IKn-l(~p)Fn(~p) ,  and, then by Lemma 2.8, tK.,(xin)Fn(xjn). (We use the fact that 
Fn(xjn) and Fn(xp) are similar.) But I,"-, - (xjn)Fn(xjn). This contradicts the 
assumed consistency of K,,- ,. Hence, K, must also be consistent. In this way, all 
the K,'s are consistent, and so also is K,. Note that K, is a consistent extension 
of &. Now, by Lemma 2.1 1, let J be a consistent, complete extension of K,. 

By a closed term, we mean a term which contains no variables. The denumer- 
able interpretation M of K, shall have as its domain the set of closed terms of 
&. (By Lemma 2.10, this is a denumerable set.) If c is an individual constant of 
&, its interpretation shall be c itself. If J" is a function letter of K, then the 
associated operation F *  in M shall have, for arguments t,, . . . , tn (which are 
closed terms of K,), the valueF(t,, . . . , t,), which is a closed term of &. If A,!' 
is a predicate letter of K, then the associated relation (A;)* in M shall hold, for 
arguments t,, . . . , t,, if and only if IJA;(tl, . . . , I,). To show that M is a model 

SEC. 5 COMPLETENESS THEOREMS ' for 4, it suffices to prove that a closed wf 62 of K, is true for M if and only if 
I,@, because all theorems of K, are theorems of J. We prove this, by induction 
on the number of connectives and quantifiers in &. First, let & be a closed 
atomic wf. Then, by definition, & is true for M if and only if I,&. Now, assume 
that, for the induction step, if % is any closed wf with fewer connectives and 
quantifiers than &, 3 is true for M if and only if I,%. 

Case 1. & is - 3. If & is true for M, then 9 is false for M, and so, by 
inductive hypothesis, not-I,%. Since J is complete and 9 is closed, tJ -- 9, i.e., 
I,&. On the other hand, if & is not true for M, then 9 is true for M. Hence, 
I J 9 .  Since J is consistent, not+, -- 3 ,  i.e., not-I,&. 

Case 2. & is (91 3 C). Since & is closed, so are B and C. If & is false for 
M, then '31 is true and C is false. Hence, by inductive hypothesis, I,% and 
not-t,C?. By the completeness of J, t, -- C. Therefore, by the tautology A ,  3 
(M  A2 3 -- (A, 3 A2)), I, - ( 3  3 e), i.e., I, -- d ,  and so, by the consistency 
of J, not-I,&. On the other hand, if not-I,&, then, by the completeness of J, 
I,-- &. By the tautologies -(A, 3 AJ 3 A ,  and -(A, 3 A 3  >-A2, we 
obtain t,B and I, -- C?. Hence, '3I is true for M. By the consistency of J, 
not-IJe, and, therefore, C? is false for M. Thus, & is false for M. 

Case 3. & is (x,)B. Let 9 be Fk(xik). We may assume that x, is xi*. 
(Otherwise, B is closed and does not contain x, free. But, in this case, & is true 
if and only if B is true (by (VI) of page 53); moreover, I j& if and only if I ,B . 
Therefore, the result for & follows from that for % .) Assume that & is true for 
M, but not t,&. By the completeness of J, tJ -- &, i.e., t, -- (xi*)Fk(xik). But, 
Idsk). Hence, I, -- Fk(4k). Since & = (x,)Fk(xjk) is true for M, it follows (by 
(X), Corollary, page 54) that Fk(b,) is true in M. So, by inductive hypothesis, 
IJFk(b,), contradicting the consistency of J. On the other hand, assume & false 
for M, but I,&. Since (xik)Fk(xik) is false for M, some sequence does not satisfy 
(xik)Fk(xjk). Hence, some sequence s does not satisfy Fk(xik). Let t, be the ik' 
component of s. Notice that s*(t) = t for all closed terms t. Therefore, s does 
not satisfy Fk(t), by (X), Corollary (i) (p. 54). Hence, Fk(t) is false for M. But 
IJ(*~)F,(X;~). Hence, by Axiom (4), kJFk(t). By inductive hypothesis, Fk(t) is, 
therefore, true for M, contradicting the falsity of Fk(t) for M. 

Thus, M is a denumerable model for J, and hence also for K,. Since all 
theorems of K are theorems of K,, M is also a denumerable model for K. 
(Notice that M is not necessarily effectively constructible. The interpretaton of 
predicate letters depends upon the concept of provability in J, and this, as was 
noted at the end of Lemma 2.11, may not be effectively decidable.) 

COROLLARY 2.13. Any logically valid wf & of a theory K is a theorem of K. 

PROOF. We need only consider closed wfs &, since a wf 3 is logically valid 
if and only if its closure is logically valid, and 3 is provable in K if and only if 
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its closure is provable in K. So, let 6? be a logically valid closed wf of K. Now, 
assume that 6? is not a theorem of K. Then, if we add - 6? as an axiom to K, 
the new theory K' is consistent (by Lemma 2.9). Hence, by Proposition 2.12, K' 
has a model M. Since -- & is an axiom of K', -- 6? is true in M; and, since & is 
logically valid, & is true in M. Hence, & is both true and false in M, which is 
impossible ((11), page 53). Thus, & must be a theorem of K. 

COROLLARY 2.14 (GODEL'S COMPLETENESS THEOREM [1930]). In any predicate 
calculus, the theorem are precisely the logically valid wfs. 

PROOF. By Proposition 2.7 and Corollary 2.13. (Godel's original proof runs 
along quite different lines. For a constructive proof of a related result, cf. 
Herbrand [1930], [1970], and, for still other proofs, cf. Dreben [1952], Hintikka 
[1955a, b], Beth [I95 11, and Rasiowa-Sikorski [1950, 195 11.) 

COROLLARY 2.15. 
(a) & is true in every denumerable model of K i f  and only if tK&. Hence, 62 is 

true in every model of K i f  and only i f  tK&. 
(b) If, in every model of K, every sequence, satisfying all wfs in a set r of wfs, 

also satisfies % , then r tK% . 
(c) If a wf % of K is a logical consequence (cf. page 56) of a set r of wfs of K, 

then I? tK%. 
(d) If the wf % of K is a logical consequence of a wf & of K, then & tK% . 

PROOF. 

(a) We may assume & closed. If not-tK&, then the theory K' = K + {- &) 
is c0nsistent.t Hence, K' has a denumerable model M. However, - &, 
being an axiom of K', is true in M; and since M is also a model for K, & 
is true in M. Therefore, & is true and false in M, which is a contradiction. 

(b) Consider the theory K + r. The wf % is true in every model of this 
theory. Hence, by (a), tK+ ,% . So, r tK% . 

(c) is a consequence of (b), and (d) is a special case of (c). 

EXERCISE 2.33. Show that t,& if and only i f  there is a wf e which is the 
closure of the conjunction of some axioms of K such that e > & is logically 
valid. 

Corollaries 2.13-2.15 show that the syntactical approach to quantification 
theory by means of first-order theories is equivalent to the semantical approach 
through the notions of interpretations, models, logical validity, etc. For the 
propositional calculus, Corollary 1.14 demonstrated the analogous equivalence 

t If K is theory and A is a set of wfs of K, then K + A denotes the theory obtained from K by 
adding the wfs of A as additional axioms. 

between the semantical notions (tautology, etc.) and the syntactical notions 
(theorem of L, etc.). Notice also that, in the propositional calculus, completeness 
of the system L (cf. Proposition 1.13) led to a solution of the decision problem. 
However, for first-order theories, we cannot obtain a decision procedure for 
logical validity, or, equivalently, for provability in a first-order predicate calcu- 
lus. We shall prove this and related results later on (Chapter 5). 

There is another important classical result which falls out of Proposition 2.12. 

COROLLARY 2.16 (SKOLEM-LOWENHEIM THEOREM [19 19, 19 151). Any theory 
K which has a model has a denumerable model. 

PROOF. If K has a model, then K is consistent (by (11), page 53). Hence, by 
Proposition 2.12, K has a denumerable model. 

We have another stronger consequence of Proposition 2.12. 

A C o ~ o ~ ~ ~ ~ ~  2.17. For any cardinal number a > N,, any consistent theory K 
has a model of cardinality a .  

PROOF. We know, by Proposition 2.12, that K has a denumerable model. 
Therefore, for our result, it suffices to prove the following lemma. 

LEMMA. If a and ,B are two cardinal numbers such that a < ,B and i f  K has a 
model of cardinality a ,  then K has a model of cardinality ,B. 

PROOF. Let M be a model of K with domain D of cardinality a. Let D' be a 
set of cardinality ,B containing D. Extend the model M to an intepretation M' 
having D' as domain in the following way. Let c be a fixed element of D. We 
stipulate that the elements of D' - D behave like c. For example, if B," is the 
interpretation in M of the predicate letter A;, and (Bj")' is the new interpretation 
in M', then, for any d,, . . . , d,, in D', (Bj")' holds for (d,, . . . , dJ if and only if 
Bj" holds for (u,, . . . , u,,) where ui = di if 4 E D and ui = c if 4 E D' - D. The 
interpretation of the function letters is extended in an analogous way, and the 
same interpretations as in M are taken for the individual constants. It is an easy 
exer~ise to show, by induction on the number of connectives and quantifiers in a 
wf, that any wf & is true in M' if and only if it is true in M. Hence, M' is a 
model of K of cardinality ,B. 

EXERCISES 

234. (Compactness) If all finite subsets of the set of axioms of a theory K have 
models, prove that K has a model. 

235.A If, for some cardinal a tto, a wf & is true for every interpretation of 
cardinality a, prove that & is logically valid. 

2.36.* If a wf & is true for all interpretations of cardinality a, prove that & is 
true for all interpretations of cardinality < a. 

237. (a) For any wf 8 ,  prove that there are only a finite number of interpreta- 
tions of & on a given domain of finite cardinality k. 
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(b) For any wf 8, prove that there is an effective way of determining 
whether 6! is true for all interpretations with domain of some fixed finite cardinal- 
ity k. 

(c) Let a wf 6! be called k-valid if it is true for all interpretations having k 
elements. Call 6! precisely k-valid if it is k-valid but not (k + 1)-valid. Show that 
(k + 1)-validity implies k-validity, and give an example of a wf which is precisely 
k-valid. (Cf. Hilbert-Bernays I [1934, 34-51; Wajsberg [1933]) 
2.38. Show that the following wf is true for all finite domains, but is false in 

some infinite domain. 

239. Prove that there is no theory K whose models are exactly the interpreta- 
tions with finite domains. 
2.40. Let 6! be any wf containing no quantifiers, function letters or individual 

constants. 
(a) Show that a closed prenex wf (x,) . . . (x,)(Ey ,) . . . (Eym)6! (with m > 

0, n > 1) is logically valid if and only if it is true for every interpreta- 
tion with a domain of n objects. 

(b) Prove that a closed prenex wf (Ey ,) . . . (Eym)6! is logically valid if and 
only if it is true for all interpretations with a domain of one element. 

(c) Show that there is an effective procedure to determine the logical 
validity of all wfs of the forms given in Parts (a) and (b). 

2.41. Let K, and K2 be theories having the same set of symbols. Assume that 
any interpretation of K, is a model of K1 if and only if it is not a model of K,. 
Prove that K, and K2 are finitely axiomatizable, that is, there are finite sets of 
sentences r and A such that, for any sentence 8,  t K l &  if and only if T t 8,  and 
tK26! if and only if A t  6!.t 
2.42.D A set r of sentences is called an independent axiomatization of a theory 

K if (i) all sentences in r are theorems of K; (ii) r t 6! for every theorem 6! of K ; t  
(iii) for every sentence '33 of r, it is not the case that r - ( 3  ) t 93. Prove that 
every theory K has an independent axiomatization. 

6. Some Additional Metatheorems 
For the sake of smoothness in working with particular theories later, it is 

convenient to prove a few additional facts about theories. We assume in this 
section that we are dealing with some arbitrary theory K. 

In many cases, one has proved ( x ) @ ( x )  and one wants @(t ) ,  where t  is a term 
free for x  in @(x) .  This is justified by the 

t Here, an expression r t &, without any subscript attached to k , means that is derivable from 
r using only logical axioms (that is, within the predicate calculus). 
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7 ~ A R T ~ C ~ A R J Z * T I O N  RULE A4. I j  t  is jree jor x  in @ (x ) ,  then ( x ) @  ( x )  k @ ( t ) .  

PROOF. From ( x ) @ ( x )  and the instance ( x ) @ ( x )  3 @ ( t )  of Axiom (4),  we 
obtain @ ( t )  by modus ponens. 

PROPOSITION 2.18. If @ and % are wfs and x  is not jree in @, the jollowing 
are theorems of K. 
(a) @ 3 ( x ) @  (hence, by Axiom (4), t @ = ( x ) @ )  
@) (Ex)@ 3 @ (hence, by rule E4 below, t (Ex)@ = @) 
(c) (x ) (@ 3 % ) = (@ 3 (x)% ) 
(d) ( X I ( %  3 @) = ((Ex)% 3 @) 

PROOF. Exercise. 

A  useful derived rule which is just the contrapositive of Rule A4 is obtained in 
the following way. 

Let t  be a term which is free for x  in a wf @ ( x ,  t) ,  and let @ ( t ,  t )  arise from 
@ ( x ,  t )  by replacing all free occurrences of x  by t.7 

EXISTENTIAL RULE E4. @ ( t ,  t )  t ( E x ) @ ( x ,  t) .  As special cases of Rule E4, we 
haue 

(i) $8 ( t )  t (Ex)% ( x ) ,  whenever t  is free for x  in '28 ( x ) .  
(ii) $8 ( x )  t (Ex)% ( x ) .  This follows from (i) by taking t  to be x.  

To justify Rule E4 it suffices to show that t @ ( t ,  t )  3 (Ex)@(x ,  t) .  But, by 
Axiom (4),  t ( x )  - @ ( x ,  t )  3 - @ ( t ,  t ) .  Hence, by the tautology ( A  3 - B )  3 
( B  3 - A )  and MP, t @ ( t ,  t )  3 - ( x )  - @ ( x ,  t) ,  which, in abbreviated form is: 
k @ ( t ,  t )  3 ( E x ) @ ( x ,  t ) .  

Example. t (x)@ 3 ( E x ) @ .  

1. ( x ) @  HYP 
2. @ 1, Rule A4 
3. (Ex)@ 2, Rule E4 
' 4. ( x ) @  t (Ex)@ 1-3 

5. t ( x ) @  3 (Ex)@ 1-4, Corollary 2.5 

EXERCISES 

2.43. Justify the following derived rules. 
(a) Negation: Elimination -- 6! t 6! 

Introduction 6! t-- 6! 
(b) Conjunction: Elimination 6! A 3 t 6! 

6 ! ~ 9 3 t 3  
Introduction 8, 93 t 6! A 3 

t & ( x ,  t) may or may not contain occurrences of t. 
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(c) Disjunction: Elimination @ > e, (33 2 e, @ V $3 t 
Introduction @ t @ V B 

9 3 k @ V Q  
(d) Biconditional: Elimination @ = 3 ,  @ t 93 @ = 4U ,- t -- Q 

@ = B , B t @  a = % , - B t - @  
Introduction @ > 3 ,  93 > @ t @ = 93 

(e) Proof by Contradiction: If a proof of r, - @ t e - &? involves no 
application of Gen using a variable free in @, then r t @. (Similarly, 
from r, @ t C? - e, one obtains r t - @.) 

2.44. Prove: 
(a) t (x)(Y)A:(x?Y) 3 (x)A:(x, x) 
(b) t f(x)l V [(x)A:(x)l (x)(A:(x) V A:(x)) 
( 4  t (EY)(A :(Y) (Y)A ll(Y)) 
(d) t- (EX)@ = (x) - @ 
( 4  1 (x)@ (x)(@ v 3 )  
(0 k (x)(Y)(A:(x,Y) 1- A:(Y? x)) (x) - A:(x? x) 
(g) t [(Ex)@ 3 ( 4 %  I 3 (x)(@ 3 Q 

t (x)(@ V 93 ) @)@I V (Ex)% 

PROPOSITION 2.19. For any wfs @, $8 : t (x ) (@ = $8) 3 ((x)@ = (x )%) .  

PROOF. 

HYP 
H w  
1, Rule A4 
2, Rule A4 
3, 4, Tautology 

( @ = ' 3 3 ) 3 ( @ 3 % ) , M P  
5, Gen 
1-6 
1-7, Prop. 2.4 
Proved in a way similar to 

that for 8 
8, 9, Conjunction Rule 
1 - 10, Prop 2.4 

PROPOSITION 2.20 (EQUIVALENCE THEOREM). If 93 is a subformula of 8, and 
@' is the result of replacing zero or more occurrences of % in @ by a wf C?, and 
every free variable of % or (2 which is also a bound variable of @ occurs in the 
list y , ,  . . . , y,, then 

Example. ( x ) ( ~ : ( x ) r ~ : ( x ) ) >  [ ( ~ x ) ~ : ( x ) = ( E x ) ~ : ( x ) l .  
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PROOF. Induction on the number n of connectives and quantifiers of @. 
Note that if zero occurrences are replaced, then @' is @, and the wf to be proved 
is an instance of the tautology B 3 (A = A ) .  If % is identical with 8, and this 
occurrence of % is replaced bv C? the wf to be proved, ( y , )  . . . (y,)(% r C?) > '' 
(3 - e), is derivable (cf. page 64, Exercise 2.26(d)) from Axiom (4). Thus, we 
may assume that % is a proper part of @ and that at least one occurrence of % 
is replaced. Also let us assume the theorem for all wfs with fewer connectives 
and quantifiers than @. 

Case 1. @ is an atomic wf. Then $8 cannot be a proper part of @. 
Case 2. @ is - 9 .  Let @' be -- 9 ' .  By inductive hypothesis, 
t ( y , )  . . . (y,)(% = C?) 3 (9 -- 9 ' ) .  Hence, by the tautology ( A  E B )  > 

( - A  =- B ) ,  t ( ~ , )  . . . ( y k ) ( g  = c?) (@ = at). 
Case 3. @ is 9 3 & .  Let @' be 9' 1 6'. By inductive hypothesis, 

t ( y , )  . . . (yk)(% = e )  3 (9 - 9 ' )  and t ( y , )  . . . (yk)(% = e )  3 (6 = 6'). 
Using the tautology ( ( A  = B )  /\ (C = D ) )  3 ( (A 3 C )  = ( B  3 D)) ,  we obtain 
1 ( y l )  . . (yk)(% e )  3 (@ @'). 

Case 4. @ is ( x ) 9 .  Let @' be ( x ) 9 ' .  By inductive hypothesis, 
t ( y )  . . . ( , ) (  ) 3 (9 = 9 ' ) .  Now, x does not occur free in . 
( y , )  . . . (yk)(% - e), for, if it did, then it would be free in % or e ,  and, 
since it is bound in @, it would be one of y , ,  . . . , y,, and x would 
not be free in ( y , )  . . . (yk)('33 = C?) .  Hence, using Axiom (9, we obtain 
1 ( y )  . . . ( y )  = C?) 3 ( ( 9  9 ' ) .  However, by Proposition 2.19, 
t ( x ) ( 9  = 9 ') 3 ( ( x ) 9  = ( x )  9 '). Thus, 

t ( y l ) .  ( y k ) ( %  C?) 3 (@ - @')* 

COROLLARY 2.21 (REPLACEMENT THEOREM).  Let @, 9, a', (2 be as in Pro- 
position 2.20. If t % - (2, then t @ - @'. Also, if  t % = (? and t @, then 
t @'. 

'COROLLARY 2.22 (CHANGE OF BOUND VARIABLES). If ( x ) % ( x )  is a subfor- 
mula of @, and $8 ( y )  is similar to % ( x ) ,  and @' is the result of replacing one or 
more occurrences of (x)% ( x )  in @ by ( y ) %  ( y ) ,  then t @ = @'. 

PROOF. Apply Lemma 2.8 and Corollary 2.21. 

EXERCISES 

2.45. Prove k (Ex) - @ =- (x)@ and k (x)@ -- (Ex) - @. 
2.46. Let @ be a wf involving only quantifiers and A, V, -, but not > , = . 

Exchange universal and existential quantifiers, and exchange A and V. The result 
@* is called the dual of @. 
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(i) In any predicate calculus, prove: (a) k @ if and only if k-- @; (b) k @ 3 3 if 
and only if k Q* 3 @; (c) k @ = Q if and only if k 6? = a * ;  (d) Using 
k (x)(@ 3 )  = ((x)a) (x)Q (cf. p. 64, Exercise 2.26(c)), prove k (Ex)(@ V 
93) = (Ex)@ V (Ex)%. 

(ii) Show that the duality results of Part (i), (a)-(c), do not hold for arbitrary theories. 

2.47. If 8 is obtained from @ by erasing all quantifiers (x) or (Ex) whose scope 
does not contain x free, prove that k @ = 8 .  

2.48. Write formulas logically equivalent to the negations of the formulas below; 
in the new formulas, all negations are to apply to atomic formulas. 

(a) (X)(Y)(EZ)A?(~, Y, 4 
(b) > 0 3 (E6)(6 > 0 A (x)(lx - cl < 6 3 IfG) - f(c)l < 
(c) (E) (E  > 0 3 (En)(m)(m > n 3 la, - bl < 4) 

2.49. Prove: (a) t (Ex)(@ 3 -- ( 8  V C?)) = (Ex)(@ 3 (-- 8 A -- C?)) 
(b) k (EY)(@(Y) v (Y)4 (Y)) - (EY)(@(Y) v ( 4 %  (4).  

2.50. Show by a counterexample that we cannot omit the quantifiers 
(yl)  . . . (yk) in Proposition 2.20. 

7. Rule C 
It is very common in mathematics to reason in the following way. Assume 

that we have proved a wf of the form (Ex)&?(x). Then, we say, let b be an object 
such that &?(b). We continue the proof, finally arriving at a formula which does 
not involve the arbitrarily chosen element b. 

For example, let us say that we wish to show that (Ex)(%(x) 3 C?(x)), 
( ~ 1 %  (x) (Ex)e(x). 

1- (Ex)(% (x) 3 W ) )  HYP 
2. (x)%(x) HYP 
3. %(b) 3 e(b) for some b 1 
4. % (b) 2, Rule A4 
5. e(b) 3, 4, MP 
6. (Ex)C?.(x) 5, Rule FA 
7- (EX)(% ( 4  3 e(x)), ( 4    EX)^) 1-6 

Such a proof seems to be perfectly legitimate, on an intuitive basis. In fact, we 
can achieve the same result without making an arbitrary choice of an element b 
as in step 3. This can be done as follows: 

1. (x)%(x) HYP 
2. (x)- e(x) HYP 
3. %(x) 1, Rule A4 
4. - e(x)  2, Rule A4 
5. - (3 (x) 3 C? (x)) 3, 4, Tautology (A A - B) 1 - (A 3 B) 

RULE C 

6. (XI - (3 ( 4  3 e(x)) 5, Gen 
7. ( 4 ,  (x) - e(x)  t (x) - (9-3 (x) 3 e(x)) 

1-6 
8. ( ~ 1 %  (XI [(XI - e ( ~ ) l  3 [(XI - (9 (XI 3 ~ ( x ) ) I  

7; Prop. 2.4 
9. ( 4 %  ( 4  [- (x) - ( 9  ( 4  3 a x ) ) ]  3 [- (XI - %)I 

8, Tautology 
(A 3 B) 3 
(- B 3- A) 

lo. (x)% (x) t (Ex)(% (x) 3 C?(x)) 3 (Ex)C?(x) Abbreviation of 9 
1 1. (Ex)(% (x) 3 C?(x)), (x)% (x) I- (Ex)C?(x) 10, MP 

In general, any wf which can be proved using arbitrary acts of choice, can 
also be proved without such acts of choice. We shall call the rule which permits 
us to go from (Ex)&?(x) to &?(b), Rule C ("C" for "choice"). More precisely, the 
definition of a Rule C deduction in a first-order theory K is as follows: 

r I,&? if and only if there is a sequence of wfs %,, . . . , 9, = &? such that the 
following four statements hold. 

(I) For each i, either 

(i) 93, is an axiom of K, or 
(ii) 9, is in T, or 

(iii) ai follows by MP or Gen from preceding wfs in the sequence, or 
(iv) There is a preceding wf (Ex)C?(x) and ai is C?(d), where d is a new 

individual constant. (Rule C) 

(11) As axioms in (I)(i), we can also use all logical axioms involving the new 
individual constants already introduced by applications of (I)@), Rule C. 

(111) No application of Gen is made using a variable which is free in some 
(Ex)C?(x) to which Rule C has been previously applied. 

(IV) 62 contains none of the new individual constants introduced in any 
applidation of Rule C .  

Ar word should be said about the reason for including clause (111). Without 
this clause, we could proceed as follows: 

HYP 
1, Rule A4 
2, Rule C with b 
3, Gen 
4, Rule E4 
1-5 

However, (cf. page 57, (4)), there is an interpretation for which (X)(E~)A?(X, y) 
is true but (~y)(x)A?(x, y) is false. 
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PROPOSITION 2.23. If r kc@, then I? 1 @. Moreover, from the proof below it 
is easy to verify that if there is an application of Gen in the new proof of 62 
from r using a certain variable and applied to a wf depending upon a certain 
wf of I?, then there was such an application of Gen in the original proof.? 

PROOF. Let (Eyl)el(yl), . . . , (Eyk)ek(yk) be the wfs, in order of oc- 
currence, to which Rule C is applied in the proof of r kc@, and let c,, . . . , ck be 
the corresponding new individual constants. Then r ,  el(c1), . . . , ek(ck) t a; 
but then, by clause (111) of the definition above, and the Deduction Theorem 
2.4, r ,  el(cl),  . . . , (2,- ,(,-,) t ek(ck) 3 62. Replace ck everywhere by a vari- 
able z not occurring in the proof. Then 

r, . .  . , ek-,(ck-~)tek(z) 3 @, and, by Gen, 
9 l c  - I c -  1 z e z  3 @ Hence, 

Proposition 2.18(d), 
r ,  e,(cl), . . . , ek- l(ck-l) 1 ( E Y ~ ) ~ ~ ( Y ~ )  3 @. But, 
r ,  el (~11, . - . , e k -  I ( ~ k -  (Eyk)ek(yk). Hence 

Repeating this argument, we can eliminate (2,-, (ck- ,), . . . , el(cl) one after the 
other, obtaining I? 1 62. 

Example. 1 (x)(@ (x) 3 9 (x)) 3 ((Ex)@ (x) 3 (Ex)% (x)) 

1. (x)(@(x) 3 93 (XI) 
2. (Ex)@(x) 
3. @(b) 
4. @(b) 3 %(b)  
5. %(b) 
6. (Ex)% (x) 
7. (x)(@(x) 3 3 (x)), (Ex)@(x) tc(Ex)% (x) 
8. (x)(@(x) 3 9 (XI), (Ex)@(x) (Ex)% (x) 
9. (x)(@(x) 3 3 (x)) 1 (Ex)@(x) 3 (Ex)% (x) 

10. 1 (x)(62 (x) 3 % (x)) 3 ((Ex)@(x) 3 (Ex)% (x)) 

EXERCISES 

HYP 
HYP 
2, Rule C with b 
1, Rule A4 
3, 4, MP 
5, Rule E4 
1-6 
7, Prop. 2.23 
8, Prop. 2.4 
9, Prop. 2.4 

Use Rule C and Proposition 2.23 to prove Exercises 2.51-2.58 below. 
2.51. I- (Ex ) (@(x )  3 93 ( x ) )  3 ( (x )@(x )  3 (Ex)% (x) )  
2.52. I-- ( E ~ ) ( X ) ( A ? ( X ,  y )  = - A;(X,  x) )  

t The first formulation of a version of Rule C similar to that given here seems to be due to Rosser 
119531. 

SEC. 8 FIRST-ORDER THEORIES WITH EQUALITY 

~ : ( x ) )  
2.54. I- [(Ex)@(x)l  A [ ( x )B  (x)1 3 (Ex)(@(x)  A 3 (4) 
2.55. I- (Ex)% ( x )  3 (Ex)(@(x)  V ( x ) )  
2.56. I- (Ex)(Ey)@(x,  y )  = (Ey) (Ex)@(x ,y )  
2.57. I- (Ex ) (Y )@(x ,Y )  3 (Y ) (Ex)@(x ,Y )  
2.58. k (Ex)(@(x)  A 3 (4) 3 [(Ex)@(x)l  A [(Ex)$ (x)l 
2.59. What is wrong with the following alleged derivations? 

(a) 1. (Ex )@(x )  HYP 
2. @(b)  1, Rule C 
3. (E x )%(x )  HYP 
4. 93 ( b )  3, Rule C 
5. @ ( b )  A B ( b )  2, 4, Conjunction Rule 
6. (Ex ) (@(x )  A B ( x ) )  5, Rule E4 
7. (Ex)@(x) ,  (Ex)% (4 I- (Ex ) (@(x )  A 93 ( x ) )  

1-6, Proposition 2.23. 
(b) 1. (Ex ) (@(x )  3 (4) HYP 

2. (Ex )@(x )  HYP 
3. @ ( b )  3 B ( b )  1, Rule C 
4. @ ( b )  2, Rule C 
5. B ( b )  3, 4, MP 
6. (Ex)% ( x )  5, Rule E4 
7. (Ex)(@(x)  3 B (x) ) ,  (Ex )@(x )  I- (Ex)% ( x )  

1-6, Proposition 2.23. 

8. First-Order Theories with Equality 
Let K be a theory which has as one of its predicate letters A:. Let us write 

t = s as an abbreviation for ~ : ( t ,  s), and t # s as an abbreviation for -- A?(t, s). 
Then K is called a first-order theory with equality (or simply a theory with 
equality) if the following are theorems of K. 

(6)t (x,)(x, = x,) (Reflexivity of Equality) 
(7) x = y 3 (@(x, x) 3 @(x, y)) (Substitutivity of Equality) 

whlre x and y are any variables, @(x, x) is any wf, and @(x, y) arises from 
@(x, x) by replacing some, but not necessarily all, free occurrences of x by y ,  
with the proviso that y is free for the occurrences of x which it replaces. Thus, 
@(x, y) may or may not contain free occurrences of x. 

PROPOSITION 2.24. In any theory with equality, 
(a) for any term t, t = t 
(b) t x = y > y = x  
(c) t x = y > ( y = z > x = z ) .  

t The numbering here is a continuation of the numbering of the Logical Axioms on pp. 59-60. 
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PROOF. (a) From (6), t (x,)(x,  = x,);  hence, by Rule A4, t t = t. (b) Let 
& ( x , x )  b e x  = xand  & ( x , y )  bey = x.Then, by(7),  t x = y  3 ( x  = x 3 y  = 
x). But, by (a), t x = x. So, by the tautology B 3 ((A 3 ( B  3 C ) )  > ( A  3 C)),  
we have k x = y 3 y = x. (c) Let & ( y ,  y )  be y = z and @ ( y ,  x )  be x = z. 
Then, by (7), with x and y interchanged, t y = x 3 ( y  = z 3 x = z). But, by 
(b), t x = y 3 y = x. Hence, using the tautology ( A  3 B )  3 ( ( B  3 C )  3 
( A  3 C)) ,  we have: t x = y 3 ( y  = z 3 x = z). 

EXERCISES 

2.60. Show that (6) and (7) are true for any model M in which ( A : ) ~  is the 
identity relation on the domain of the model. 

2.61. Prove the following in any theory with equality. 
(a) t (x)(93 ( x )  - (Ey)(x = y A 3 (y)) )  i f  y does not occur in 93 (x). 
(b) t ( x ) ( 3  ( x )  - (y)(x = y > 93 (y ) ) )  if y does not occur in 93 (x). 
( 4  l- (x)(Ey)(x = Y ) .  

We can reduce condition (7) for equality to a few simpler cases. 

PROPOSITION 2.25. Let K be a theory for which (6) holh and (7) holds for 
atomic wfs &(x ,  x) .  Then K is a theory with equalio, i.e., (7) holds for all wfs 
a x ,  x). 

PROOF. We must prove (7) for all wfs &(x ,  x). It holds for atomic wfs by 
assumption. Note that we have Proposition 2.24, since its proof used (7) only 
with atomic wfs. Proceeding by induction on the number n of connectives and 
quantifiers in &, we assume that (7) holds for all k < n. 

Case 1. &(x ,  x )  is -- 93 ( x ,  x). By inductive hypothesis, we have t y = x 3 
(93 ( x ,  y )  3 '33 ( x ,  x)),  since '33 ( x ,  x )  arises from 93 ( x ,  y )  by replacing some 
occurrences of y by x. Hence, by Proposition 2.24(b), and the tautologies 
( A  3 B )  3 (-- B 3- A )  and ( A  3 B )  3 ( ( B  3 C )  3 ( A  3 C)),  we obtain 

x = y 3 (&(x ,  X )  3 @(x,y) ) .  
Case 2. &(x ,  x )  is 9 ( x ,  x )  C?(x, x). By inductive hypothesis, and Proposi- 

tion 2.24(b), t x = y 3 (93 ( x ,  y )  3 9 ( x ,  x ) )  and t x = y 3 (C?(x, x )  3 
e ( x ,  y)). Hence, by the tautology (A  3 ( B ,  3 B ) )  3 [(A 3 ( C  3 C,))  3 
( A  3 ( ( B  3 C )  3 ( B ,  3 C,))), we have t x = y 3 ( @ ( x ,  x )  3 @ ( x ,  y)). 

Case 3. &(x ,  x )  is (z)% ( x ,  x ,  z). By inductive hypothesis, t x = y 3 
('33 ( x ,  x, z )  > '33 ( x ,  y ,  z)). Now, by Gen and Axiom (9, t x = y 3 
(z)('33 ( x ,  X ,  z )  3 '33 ( x ,  y ,  z)). By Exercise 2.26(a) on page 64, t (z)(% ( x ,  x ,  z )  3 
93 ( x ,  Y ,  z ) )  3 [(z)(93 ( x ,  X ,  z))  3 ( x ,  Y ,  z) ) ] ,  and so, by the tautology 
( A  3 B )  3 ( ( B  3 C )  3 ( A  3 C) ) ,  t x = Y 3 (@(x ,  x )  3 @(x,y)) .  

The instances of (7) can be still further reduced. 

PROPOSITION 2.26. Let K be a theory in which (6) holds and (7) holds for all 
atomic wfs &(x ,  x )  such that no function letters occur in &(x,  x )  and & ( x , y )  
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comes from &(x ,  x )  by replacing exact& one occurrence of x by y.  In addition, 
we assume the following:(*) for any function letterfi", i f z , ,  . . . , z, are variables 

+ and?;"(w,, . . . , w,) arises from ?;"(zl,  . . . , z,) by replacing one occurrence of x 
by y,  then t x = y 3 ( f : ( z , ,  . . . , z,) = f:(w,, . . . , w,)). Then K is a theory 
with equali&. 

PROOF. Note, by repeated application, our assumptions can be extended to 
replacements of more than one occurrence of x by y. Also, Proposition 2.24 is 
still derivable. By Proposition 2.25, it suffices to prove (7) only for atomic wfs. 
But, one can easily prove t ( y ,  = z ,  A . . . A y, = z,) 3 (@(y , ,  . . . , y,,) > 
@(z,, . . . , z,)) for all variables y,, . . . , y,, z,, . . . , z, and any atomic wf 62 
without function letters. Hence, using Rule A4, we reduce the problem to 
showing that if t (x ,  x )  is a term and t (x ,  y )  comes from t (x ,  x )  by replacing 
some occurrences of x by y ,  then t x = y 3 ( t ( x ,  x )  = t (x ,  y)). But, this can be 
proved, using (*), by induction on the number of function letters in t ,  and we 
leave this as an exercise. 

EXERCISES 

2.62. Let K, be a theory having only = as a predicate letter, and no function 
letters or individual constants; and let its proper axioms be (x,)(x, = x,), 
(xI)(x2)(xI = x2 3 x2 = xI) ,  and ( x ~ ) ( x ~ ) ( x ~ ) ( x ~  = x2 3 (x2 = ~3 3 X I  = 4). 
Show that K, is a theory with equality. Hint: by Proposition 2.26, it suffices to 
prove the following wfs: 

x = y > ( x = x > y = x )  

x = y > ( z = x > z = y )  

KI is called the first-order theory of equality. 
2.63. Let K2 be a theory having only = and < as predicate letters, and no 

function letters or individual constants. Let K2 have the proper axioms: 
(a) (x,)(x, = X I )  

(b) (x,)(x,X(x, = x3 2 (x2 = X I ) )  

(c) ( ~ I ) ( x ~ X X ~ ) ( X I  = x2 3 (x2 = x3 X I  = ~ 3 ) )  

(d) (x1)(Ex2)(Ex3)(xl < x2 A x3 < 
(e) ( x l ) ( x 2 X x 3 ) ( x l  < X 2  A X 2  < X 3  < ~ 3 )  

(f) (x,)(x,)(x, = x2 I-- X I  < x2) 
(g) (x,)(x2)(x, < x2 v X I  = x2 v x2 < X I )  

01) (~l)(x2)(xI < X 2  3 (Ex3)(~1 < X 3  X 3  < ~ 2 ) )  

Using Proposition 2.26, show that K, is a theory with equality. (K,  is the theory 
of densely-ordered sets with neither first nor last element.) 

2.64. Let K be any theory with equality. (a) Prove that t,xl = yl  A . . . A x, = 
yn > t (xl ,  . . . , x,,) = t(y,, . . . , y,,), where t (y l ,  . . . , y,,) arises from a term 
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t (x , ,  . . . , x 3  b y  substitution o f  y , ,  . . . , y ,  for x , ,  . . . , x,, respectively. (b) Prove 
that t ,x ,  = y ,  /*\ . .  . /*\ x,  = y ,  3 ( @ ( x , ,  . . . , x,) - & ( y , , .  . . , y d )  where 
&(y , ,  . . . , y 3  is obtained by  substituting y , ,  . . . , y ,  for one or more free oc- 
currences o f  x , ,  . . . , x,, respectively, in the w f  @ ( x , ,  . . . , x 3 ,  and y , ,  . . . , y, are 
free for x , ,  . . . , x,, respectively, in the w f  &(xl ,  . . . , x,). 

Examples. (In the literature, "elementary" is sometimes used instead of 
"first-order".) 

1.  Elementary Theory G of Groups: predicate letter = , function letter f:, 
and individual constant a,.  We abbreviate f:(t, s) by t + s, and a ,  by 0. The 
proper axioms are: 

(a) X I  + ( ~ 2  + ~ 3 )  = ( X I  + ~ 2 )  + X 3  
(b) X I  + 0 = X I  

(4 (x1)(Ex2)(x1 + x2 = 0 )  
(4 X I  = X I  

(e)  x ,  = x2 > x2 = x ,  
(f) X I  = x2 3 (x2 = X j  3 X ,  = x3) 
(g) x ,  = x, 3 ( x ,  + X j  = X 2  + x 3 A x 3  + X I  = X 3  + x2) 

From Proposition 2.26, one easily proves that G is a theory with equality. If one 
adds to the axioms the following wf 

(h) X I  + x, = x, + X I  

the new theory Gc is called the elementary theory of abelian groups. 
2. Elementary Theory F of Fields: predicate letter = , function letters f: and 

f22, and individual constants a,  and a,. Abbreviate f:(t, s) by t + s and f;(t, s) 
by t . s and a, and a, by 0 and 1. As proper axioms, take (a)-@) of (1) above, 
plus 

(i) x, = X, 3 (x, .x3 = x2.x3 A x j e x I  = x3-x,) 
(i) ( ~ 1 . ~ 2 )  OX3 = X I .  ( ~ 2 . ~ 3 )  
O<) X I  (x2 + ~ 3 )  = (XI . ~ 2 )  + (x1 . x3) 
(1) XI-x,  = x,.x,  
(m) x , .  1 = x, 
(n) x, # 0 3 (Ex,)(x, - x, = 1) 
(0) 0 # 1 

F is a theory with equality. Axioms (a)-(m) define the elementary theory R, of 
commutative rings with unit. If we add to F the predicate letter A:, denoting 
~ : ( t ,  S) by t < s, and add the axioms (e), (f), (g) of Exercise 2.63 above, as well 
as x, < x, 3 x, + x, < x, + x, and x, < x, A 0 < x, 3 x, - x, < x, x,, then 
the new theory F< is called the elementary theory of ordered fields. 

EXERCISE 2.65. Show that the axioms (d)-(n of equality (refexiuity, Jymme- 
try, transitiuity), mentioned in Examples 1 and 2 abuue, can be replaced by (d) 
and(f'): x = y  3 (Z = y  3 x = z). 

SEC. 8 a FIRST-ORDER THEORIES WITH EQUALITY 

6' One often encounters first-order theories K in which = may be defined, i.e., 
there is a wf & (x, y) with two free variables x, y such that, if we abbreviate 
&(t, S) by t = s, then (6) and (7) are provable in K. We make the convention 
that, if t and s are terms that are not free for x and y, respectively, in & (x, y) 
then we take t = s to be the abbreviation not of &(t, s) but rather of a wf 
&*(t, S) obtained from &(t, s) by suitable changes of bound variables (cf. 
Corollary 2.22) so that t and s are free for x and y, respectively, in &*(x, y). 
Analogues of Propositions 2.25 and 2.26 hold for such theories if, in the 
propositions, we assume (7) also for suitable wfs of the form &*(t, s). (Exercise) 
There is no harm in extending the name "theory with equality" to cover such 
theories. 

In first-order theories with equality, it is possible to define phrases using the 
expression "There exists one and only one x such that . . . " in the following 
way. 

DEFINITION. (E,x)&(x) for (Ex)&(x) (x)(y)(&(x) /I\ &(y) 3 x = y).? 

EXERCISES 

Prove: 
2.66. t ( ~ ) ( E I  Y ) ( X  = Y )  
2.67. t (E,x)&(x)  (Ex)(Y)(x = y - &(y))  
2.68. t (x) (&(x)  FE B ( x ) )  > [ ( E , x ) @ ( x )  ( E l x ) B  ( x ) ]  
2.69. t (E,x) (& V B )  > ( ( E I x ) ~ )  V ( E l x ) B .  

In any model for a theory K with equality, the relation E in the model 
corresponding to the predicate letter = is an equivalence relation (by Proposi- 
tion 2.24). If this relation E is the identity relation in the domain of the model, 
then the model is called normal. 

Any model M for K can be contracted to a normal model M' for K by taking 
the domain D' of M' to be the set of equivalence classes determined by the 
relation E in the domain D of M. For a predicate letter A: with interpretation 
(A;)* in M, we define the new interpretation (A;)' in M' as follows: for any 
equkalence classes [b,], . . . , [b,] in D' determined by the elements b,, . . . , b, 
in D, (A;)' holds for ([b,, . . . , [b,]) if and only if (A;)* holds for b,, . . . , b,. 
Notice that it makes no difference which representatives b,, . . . , b, we select in 
the given equivalence classes, for, by (7), t x, = y ,  A . . . A x, = y, 3 
(A;(x,, . . . , x,) -- A;(y,, . . . , y,)). Likewise, if (f;)* is the interpretation in M 
of f;, then we define the new interpretation (f;)' in M' as follows: for any 
equivalence classes [b,], . . . , [b,] in D' determined by the elements b,, . . . , b, 
in D, (f;)'([b,], . . , , [b,]) = [(f;)*(b,, . . . , b,)]. Again note that this is indepen- 
dent of the choice b,, . . . , b, of representatives, since, by (7), t x, = y ,  

t The new variable y is assumed to be the first variable not occurring in B(x).  A similar 
assumption is to be made in all other definitions where new variables are introduced. 
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r\ . . . r\ X, = y, 3 f;(x,, . . . , x,) = f?(y,, . . . , y,). If c is the interpretation 
in M of an individual constant a,, then we take the equivalence class [c] to be the 
interpretation in M' of a,. The relation E' corresponding to = in the model M' is 
the identity relation in D': E'([b,], [b,]) if and only if E(b,, b,), i.e., if and only if 
[b,] = [b,]. Now, one can easily prove by induction the following lemma: if 
s = (b,, b,, . . . ) is a denumerable sequence of elements of D, [b,] is the 
equivalence class of bi, and s' = ([b,], [b,], . . . ), then @ is satisfied by s in M if 
and only if @ is satisfied by s' in M'. It follows that, for any wf a ,  @ is true in 
M if and only if @ is true in M'. Hence, because M is a model of K, M' is a 
normal model for K. 

PROPOSITION 2.27 (EXTENSION OF PROPOSITION 2.12; GODEL [1930]). Any 
consistent theory K with equality has a finite or denumerable normal model. 

PROOF. By Proposition 2.12, K has a denumerable model M. Hence the 
contraction of M to a normal model yields a finite or denumerable normal 
model M', for the set of equivalence classes in a set D has cardinality less than 
or equal to the cardinality of D. 

COROLLARY 2.28 (EXTENSION OF THE SKOLEM-LOWENHEIM THEOREM). Any 
theory K with equality which has an infinite normal model M has a denumerable 
normal model. 

PROOF. Add to K the denumerably many new individual constants 
b, b,, . . . together with the axioms b, # bj for i # j. Then the new theory K' is 
consistent. For, if K' were inconsistent, there would be a proof in K' of a 
contradiction C? r\ - C? where we may assume that C? is a wf of K. But this 
proof uses only a finite number of the new axioms: b,, # b,,, . . . , bin # b,". Now 
M can be extended to a model of K with the axioms b,, # b,,, . . . , bin # b,, for, 
since M is an infinite normal model, we can choose interpretations of 
b,,, b,,, . . . , bin, b," so that the wfs bil # b,,, . . . , bin # bjn are true in M. But, since 
C? r\ - C? is derivable from these wfs and the axioms of K, it would follow that 
C? r\ - C? is true in M, which is impossible ((11), p. 53). Hence, K' must be 
consistent. Now, by Proposition 2.27, K' has a finite or denumerable normal 
model N. But, since the wfs b, # b,, for i # j, are axioms of K', they are true in 
N. Hence the elements in N which are the interpretations of b,, b,, . . . must be 
distinct, which implies that the domain of N is infinite, and, therefore, denumer- 
able. 

EXERCISES 

2.70. We define (E,,x)&(x) by induction on n > 1. The case n = 1 has already 
been taken care of. Let (En+ ,x)&(x) stand for (Ey)(&(y) (Enx)(x f y  A &(x))). 
(a) Show that (E,x)&(x) asserts that there are exactly n objects for which & holds, 
in the sense that in any normal model for (E,x)&(x) there are exactly n objects for 
which the property corresponding to &(x) holds. (b) (i) For each positive integer n, 
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write a wf 3, such that $8, holds in a normal model when and only when that 
model contains at least n elements. (ii) Prove that the theory K, whose axioms are 
those of the theory of equality K, (cf. Exercise 2.62) plus the axioms B, ,  Bz, . . . , 
is not finitely axiomatizable, i.e., there is no theory K' with a finite number of 
axioms such that K and K' have the same theorems. 

2.71. (a) Prove that, if a theory K with equality has arbitrarily large finite 
normal models, then it has a denumerable normal model. 

(b) Prove that there is no theory with equality whose normal models are 
precisely all finite normal interpretations. 

2.72. Prove that any predicate calculus with equality is consistent. (A predicate 
calculus with equality is assumed to have (6) and (7) as axioms.) 

2.73. Prove the independence of Axioms (1)-(7) in any predicate calculus with 
equality. (Hints: for the independence of (1)-(3), replace all I = s by the statement 
form A  > A ;  then erase all quantifiers, terms, and associated commas and 
parentheses; Axioms (4)-(6) go over into statement forms of the form P > P, and 
(7) into ( P  > P )  > (Q > Q). Now, for (2)-(3), use the same proofs as for Axioms 
(A2)-(A3) for the propositional calculus (cf. pp. 38-39).t For (I), the three-valued 
truth table used on p. 38 does not give the value 0 for P > P; instead, use the 
following four-valued truth tables: 

A  - A A  B  A > B  A  B  A > B  
0 1 0 0 0 0 2 1 
1 0 1 0  0 1 2  0 
2 3 2 0 0 2 2 0 
3 2 3 0 0 3 2 0 

0 1 1 0 3 1 
1 1  0 1 3  0 
2 1 1 2 3 1 
3 1 1 3 3 0 

For (4), replace all universal quantifiers (x) by existential quantifiers (Ex). For (5) ,  
change all terms f to x, and replace all universal quantifiers by (x,). For (6), 
replace all wfs f = s by the negation of some fixed theorem. For (7), consider an 
interpretation in which the interpretation of = is a reflexive non-symmetric rela- 
tion.) 

,2.74. If & is a wf not containing the = symbol and & is provable in a predicate 
calculus with equality K, show that & is provable in K without using Axioms (6) 
and (7). 

9. Definitions of New Function Letters and Individual Constants 

! In mathematics, once we have proved, for any y,, . . . , y,, the existence of a 
' unique object u having the property @(u, y,,  . . . , y,), we often introduce a new 

function f(y,, . . . , y,) such that @(f(y,, . . . , y,), y,, . . . , y,) holds for all 
y,, . . . , y,. In cases where we have proved the existence of a unique object u 
satisfying @(u), and @(u) contains u as its only free variable, then we introduce 
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a new individual constant b. It is generally acknowledged that such definitions, 
though convenient, add nothing really new to the theory. This can be made 
precise in the following way. 

PROPOSITION 2.29. Let K be a theory with equality. Assume that 
IK(Elu)@(u, y,, . . . , y,). Let K' be the theory with equality obtained by adding 
to K a new function letter f of n arguments, and the proper axiom 
@( f(yI, . . . , y,), y ,, . . . , y,),t as well as all instances of (1)-(7) involving f. 
Then there is an effective transformation mapping each wf 93 of K' into a wf 
93 ' of K such that 

(1) iff does not occur in 93, then 9 ' is 93 
(2) (-- 93 )' is - (93 ') 
(3) (93 3 C?)' is 93' 3 C?' 
(4) ( ( ~ 1 %  1' is '1 
(5) tK,93 = 93' 
(6) if tK,93, then I,% ' 

Hence, if 93 does not contain f and I,,%, then I,%. 

PROOF. A simple f-term is an expression f(t,, . . . , t,) where t,, . . . , t, are 
terms not containing f. Given an atomic wf 93 of K', let 93 * be the result of 
replacing the left-most occurrence of a simple f-term f(t,, . . . , t,) in 93 by the 
first variable u not in 93. Call the wf (Eu)(@(u, t,, . . . , t,) A 93 *) the f-trans- 
form of 93. If 93 does not contain f, let 93 be its own f-transform. Clearly 
I K r ( E ~ ) ( @ ( ~ ,  t,, . . . , t,) % *) = 93. (Here we use IK(EIu)@(u, y,, . . . , y,) 
and the axiom @(f(y,, . . . , y,), y,,  . . . , y,) of K'.) Since the f-transform 93# of 
93 contains one less f than 93, and I,,%# - 93, if we take successive f-trans- 
forms, eventually we obtain a wf 93' which does not contain f, and such that 
IK%' = 93. Call 9' the f-less transform of 93. Extend the definition to all wfs 
of K' by letting (-- 93 )' be -- (3 '), ( 9  3 C?)' be 9 ' 3 C?', and ((x)% )' be 
(x)(%'). Properties (1) through (5) of the theorem are then obvious. To prove 
(6), it suffices, by (9 ,  to show that, if 53 does not contain f and I,,%, then 
I,%. We may assume that 93 is a closed wf, since a wf and its closure are 
deducible from each other. 

Assume that M is a model of K. Let MI be the corresponding normal model 
of K (cf. p. 83). We know that a wf is true in M if and only if it is true in MI.  
Since IK(EIu)@(u,yl, . . . , y,), then, for any b,, . . . , b, in the domain of-M,, 
there is a unique c in the domain of MI such that t,,@[c, b,, . . . , b,]. If we 
define f'(b,, . . . , b,) to be c, then, taking f'  to be the interpretation of the 
function letter f, we obtain from MI a model M' of K'. For, the logical axioms of 
K' (including the equality axioms of K') are true in any interpretation, and the 
axiom @(f(y,, . . . , y,), y!, . . . , y,) also holds in M' by virtue of the definition 

t It is better to take this axiom in the form (u)(u = f (y , ,  . . . ,Y,) 3 d(u ,y , ,  . . . , y,)), since 
f ( y I ,  . . . , y,) might not be free for u  in d(u, y , ,  . . . , y,). 
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of f'. Since the proper axioms of K do not contain f, and since they are true in 
MI, they are also true in M'. But t,,%. Hence, 93 is true in M', but since 93 
does not contain f, 9 is true in MI, and hence also in M. Thus, % is true in 
every model of K. Therefore, by Corollary 2.15(a) of the Completeness Theo- 
rem, I,%. (In the case where tK(E,u)@(u) and @(u) contains only u as a free 
variable, we form K' by adding a new individual constant b and the axiom @(b). 
Then the analogue of Proposition 2.29 follows from practically the same proof 
as the one just given.) 

EXERCISE 2.75. Find the f-less transforms of 

(x)(~y)(A:(x, y,f(x, Y, . . . , Y)) 3 f(y,  x, x, . . . , x) = x) 
and of 

~ i ( f ( ~ 1 7  , ~ n -  I ~ f ( ~ 1 ~  . . . 9 ~ n ) ) )  A ( ~ x ) A ? ( ~ , f ( ~ l ~  . . , ~ n ) ) -  
Note that Proposition 2.29 also applies when we have introduced several new 

symbols f,, . . . , f,, for we can assume that we have added each f; to the theory 
already obtained by the addition of f,,  . . . , f;- ,; then n successive applications 
of Proposition 2.29 are necessary. In addition, the wf 3' of K in Proposition 
2.29 can be considered an f-free translation of 93 into the language of K. 

Examples. 

1. In the elementary theory of groups G (cf. page 82), one can prove 
(E,x,)(x, + x, = 0). Then introduce a new function letter f of one argument, 
abbreviate f(t) by (-  t), and add the new axiom x, + (- x,) = 0. By Proposition 
2.29, we now cannot prove any wf of G which we could not prove before. Thus, 
the definition of (- t) adds no really new power to the original theory. 

2. In the elementary theory of fields F (cf. page 82), one can prove 
(EIxJ((xl # 0 A x, . x, = 1) V (x, = 0 X, = 0)). We then introduce a new 
function letter g of one argument, abbreviate g(t) by t-', and introduce the 
axiom (x, # 0 A x, . x;' = 1) V (x, = 0 A x;' = 0), from which one can 
prove x, # 0 3  x,.x; '  = 1. 

Ffom Proposition 2.29, we can see that, in theories with equality, only 
predicate letters are needed; function letters and individual constants are dis- 
pensable. Iff; is a function letter, we can replace it by a new predicate letter 
A[+ '  if we add the axiom (E,U)A,"+'(~,, . . . y,, u). An individual constant is to 
be replaced by a new predicate letter A: if we add the axiom (E,U)A;(U). 

Example. In the elementary theory G of groups, we can replace + and 0 by 
predicates A: and A if we add the axioms (x , ) (x , ) (~ ,x , )~~(x , ,  x,, x,) and 
(E,x,)A~(x,), and if we replace Axioms (a), (b), (c), (g) by 

(a') A:(x,, x,, y,) A A:(xl,y,,y2) A A : ( ~ I ,  x2,~3) A A:(Y,~ ~ 3 9 ~ 4 )  
3 Y2 = Y4 

(b') A:(Y,) A Y,, y 3  3 Y* = X I  
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Notice that the proof of Proposition 2.29 is highly non-constructive, since it uses 
semantical notions (model, truth) and is based upon Corollary 2.15(a), which 
was proved in a non-constructive way. Constructive, syntactical proofs have 
been given for Proposition 2.29 (cf. Kleene [1952], § 74), but, in general, they are 
quite complex. 

Descriptive phrases of the kind "the u such that @(u, y,, . . . , y,)" are very 
common in ordinary language and in mathematics. Such phrases are called 
definite descriptions. We let lu(@(u, y,, . . . , y,)) denote the unique object u 
such that @(u, y,, . . . , y,) if there is such a unique object. If there is no such 
unique object, we may either let lu(@(u, y,, . . . , y,)) stand for some fixed 
object, say 0, or we may consider it meaningless. (For example, we may say that 
the phrases "the present king of France" or "the smallest integer" are meaning- 
less, or we may arbitrarily make the convention that they denote 0.) There are 
various ways of incorporating these I-terms in formalized theories, but since in 
most cases the same results are obtained by using new function letters as above, 
and since they all lead to theorems similar to Proposition 2.29, we shall not 
discuss them any further here. For details, cf. Hilbert-Bernays [1934] and Rosser 
[1939a], [1953]. 

10. Prenex Normal Forms 
A wf (Q, y,) . . . (Q,J,)@, where each (Qy;) is a universal or existential 

quantifier, y, # yj for i # j, and @ contains no quantifiers, is said to be inprenex 
normal form. (We include the case n = 0 when there are no quantifiers at all.) 
We shall prove that for every wf we can construct an equivalent wf in prenex 
normal form. 

LEMMA 2.30. In any theory, if y is not free in 9 ,  and e(x)  and e (y )  are 
similar, 

PROOF. I(A) 

HYP 
HYP 
2, Abbreviation 
3, Tautologies 
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----A 3 A, 
-(A 3 B) = (A A - B), 

Corollary 2.2 1 
4, Rule A4 
5, Tautology 

( A A B l I A  
6, Gen 
7, Lemma 2.8 
1, 8, MP 
5, Tautologyt 
9, 10, Tautology 

13. (x)e(x) 3 9 k- (Ey)(e(y) 3 9 )  
3 9 A - 9 12, Prop. 2.4 

14. (x)e(x) 3 9 k (EY)(~(Y)  3 9 )  13, Tautology 
15. k ((x)e(x) 3 9 )  3 (Ey)(e(y) 3 9 )  14, Proposition 2.4 

PROOF. I(B) 

PROOF. I(C) 

HYP 
HYP 
1, Rule C 
2, Rule A4 
3, 4, MP 
1-5 
6, Prop. 2.23 
7, Prop. 2.4 twice 

1 ((x)e(x) 3 9 )  - (EY)(~(Y)  3 9 )  (A), (B), Tautology 

Parts (11) through (VI) are proved easily and left as an exercise. ((VI) is trivial, 
and (V) appeared in Exercise 2.45, p. 75; (111) and (IV) follow easily from (11) 
and (I), respectively.) 

Lemma 2.30 allows us to move interior quantifiers to the front of a wf. This is 
the essential process in the proof of the following theorem. 

PROPOSITION 2.31. There is an ejjectiue procedure for transforming any wf @ 
into a wf 93 in prenex normal form such that k @ = 3. 

PROOF. We describe the procedure by induction on the number k of connec- 
tives and quantifiers in @ . (By Proposition 2.18 (a)-(b), we can assume that the 

t From now on, application of obvious tautologies will merely be indicated by the word 
'Tautology". 
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quantified variables in the prefix that we shall obtain are distinct.) If k = 0, 93 is 
@ itself. Assume that we can find a corresponding '33 for all wfs with k < n. 
Assume & has n connectives and quantifiers. 

Case 1. If & is -- C?, then, by inductive hypothesis, we can construct a wf 9 
in prenex normal form such that t C? = 9. Hence, t-- C? = - 9, i.e., t & 
-- 9 ; but, applying (V) and (VI) of Lemma 2.30 and Corollary 2.21, we can 
find a wf % in prenex normal form such that I-- 9 = $6. Hence, t & = 3.  

Case 2. If @ is C? > &, then by inductive hypothesis, we can find wfs C?, and 
6 ,  in prenex normal form such that t C? = C?, and t & = 6,. Hence, by a 
tautology, t (C? 3 6 )  = (C?, 3 GI) ,  i.e., t & = ('2, 3 6,).  Now, applying (1)- 
(IV) of Lemma 2.30 and Corollary 2.21, we can move the quantifiers in the 
prefixes of C?, and 6 ,  to the front obtaining a wf % in prenex normal form with 
t & = % .  

Case 3. & is (x)C?. By inductive hypothesis, there is a wf C?, in prenex 
normal form such that t C? C?,. Hence t (x)C? = (x)C?,, i.e., t & = (x)C?,. But 
(x)C?, is in prenex normal form. 

Examples. 

1. Let 62 be (x)(A I(x) 3 (r)(A22(x3 Y) 3 -- (z)A;(Y> z))). 
By (V) of Lemma 2.30: (x)(~:(x) 3 (y)(Ag(x, y) (Ez) -- A;(Y, z))). 
BY (IV): (x)(A:(x) 3 (Y)(EU)(A~~(X, Y) 3 -- A ~ ( Y ?  u))). 
BY (111): (x)(v)(A,'(x) 3 (E~)(A,~(x,  0) 3 -- ~,2(v ,  u))). 
BY (IV): (x)(v)(Ew)(A:(x) 3 (A;(X, v) 3 -- ~ f ( v ,  ~ 1 ) ) .  
Changing bound variables (Corollary 2.22): (x)(y)(Ez)(~:(x) 3 (A;(x, y) 3 -- 
A;(Y, z))). 

2- Let be A:(x,Y) 3 (EY)[A:(Y) 3 (((~x)Af(x))  3 A:(y))l. 
BY (11): A: (~ ,Y)  3 (EY)[A:(Y) 3 Xu) 3 AXY))l. 
BY (111): A:(x,Y) 3 (Ey)(v)(A:(Y) 3 (A:@) 3 Ai(Y)))). 
BY (IV): ( E ~ ) ( A : ( ~ ? Y )  3 (v)(A:(w) 3 (Af(v) 3 A$(w)))). 
BY (111): (Ew)(z)(~?(x,y) 3 3 (Al'(z) 3 A:(w)))). 

EXERCISES 

Find a prenex normal form equivalent to the following wfs: 
2-76. [ (x) (A:(x)  3 A?(x,y))l 3 ([(Ey)A:(y)l  3 [(Ez)A?(y,  z)l) 
2.77. (EX)A:(X,  y )  3 ( A  f ( x )  3 - (EU)A:(X,  u)) 

A predicate calculus in which there are no function letters or individual 
constants and in which, for any positive integer n, there are infinitely many 
predicate letters with n arguments is called a pure predicate calculus. For pure 
predicate calculi, we can find a very simple prenex normal form theorem. A wf 
in prenex normal form such that all existential quantifiers precede all universal 
quantifiers is said to be in Skolem normal form. 

PRENEX NORMAL FORMS 9 1 

PROPOSITION 2.32. In a pure predicate calculus, there is an effective process 
assigning to each wf & another wf 9 in Skolem normal form such that t & if 
and only if t 9 (or, equivalently, by Godel's Completeness Theorem 2.14, such 
that & is logically valid if and only if % is logically valid). 

PROOF. First we may assume that & is a closed wf, since a wf is provable if 
and only if its closure is provable. By Proposition 2.31, we may also assume that 
& is in prenex normal form. Let the rank r of & be the number of universal 
qantifiers in & which precede existential quantifiers. By induction on the rank, 
we shall describe the process for finding Skolem normal forms. Clearly, when 
the rank r = 0, we already have the Skolem normal form. Let us assume that we 
can construct Skolem normal forms when the rank is less than r, and let r be the 
rank of &. & can be written as follows: (Ey,) . . . (Ey,)(u)%(y,,. . . ,y,, u), 
where % (y,, . . . , y,, u) has only y,, . . . , y,, u as its free variables. Let A,"+' be 
the first predicate letter of n + 1 arguments not occurring in &. Construct the wf 

Let us show that t & if and only if t &, . Assume t a,. In the proof of &, replace 
all occurrences of A;+ '(z,, . . . , z,, w) by '43 *(z,, . . . , z,, w), where '33 * is 
obtained from '33 by replacing all bound variables having free occurrences in the 
proof by new variables not occurring in the proof. The result is a proof of the 
wf : 

(% was replaced by 9 * so that applications of Axiom (4) would remain 
applications of the same axiom.) Now, by changing the bound variables back 
.again by Corollary 2.22, we see that 
1 (Ey,) . . . ( E ~ , ) [ ( U ) ( ~ ~ ( Y , ,  . . . , Y,,, u) 3 91 (Y,, . . . ,Y,, u)) 

Since t (u)(% (y,, . . . , y,, u) 3 $6 (y,, . . . , y,, u)), we obtain by Corollary 2.21, 
t (Ey,) . . . (Ey,)(u)% (y,, . . . , y,, u), i.e., t &. Conversely, assume 1 a. BY Rule 
C, we obtain (u)% (b,, . . . , b,, u). But t (u)D > ((u)(q 3 9 )  3 (u)%) (cf. Ex- 
ercise 2.26(a), p. 64), for any wfs 9 ,  9 .  Hence, (u)(%(b,, . . . , b,, u) 3 

~,"+ ' (b , ,  . . . , b,, u)) 3 (u)~,"+'(b,, . . . , b,, u). So, by Rule E4, 
(Ey,) . . . ( E n ) ( [ ( ) (  ( y  . . . , y,, u) 3 A,"+ '(Y 1, . . . , Yny u))] 3 

, (u)A,"+ '(y,, . . . , y,, u)), i.e., kc&, . Now, by Proposition 2.23, t &, . A prenex 
normal form of &, has the form $: (Ey ,) . . . (Ey,)(Eu)(Qlzl) . . . (Q,zs)(V) 
where '3 has no quantifiers and (Q,z,) . . . (Q,zs) is the prefix of 3 .  (For, in 

3 deriving the prenex normal form, first, by Lemma 2.30(1), we pull out the first 
d 
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(u), which changes to (Eu); then we pull out of the first conditional the 
quantifiers in the prefix of $6. By Proposition 2.30(11), this changes existential 
and universal quantifiers, but then we again pull these out of the second 
conditional of $, which brings the prefix back to its original form. Finally, by 
Proposition 2.30(III), we bring the second (u) out to the prefix, changing it to a 
new variable (u).) Clearly, & has rank one less than the rank of @, and, by 
Proposition 2.31, t a, = &; but t @ if and only if t @,. Hence, t @ if and only 
if t &. By inductive hypothesis, we can find a Skolem normal form for q, 
which is also a Skolem normal form for @. 

Example. @: (x)(y)(Ez)C?(x,y, z), where C? contains no quantifiers. $: 
(x)((y)(Ez)e(x, y, z) 3 A](X)) 3 (x)A,'(x), where A,' is not in e. We obtain the 
prenex normal form of $ : 

We repeat this process again: Let q ( x ,  y ,  z, u) be (C?(x, y ,  z) 3 A,'(x)) 3 A,'(u). 
Let A: not occur in q.  Form: 

Thus, a Skolem normal form of @ is 

EXERCISES 

2.78. Find Skolem normal forms for the wfs: 
(a) - (Ex)A:(x)  3 (u ) (~y ) (x )A: (u ,  x, Y )  
(b) (x)(Ey)(u)(Eu)Af(x, Y ,  u9 u)  

2.79. Show that there is an effective process which gives, for each wf & of a pure 
predicate calculus, another wf B of this calculus of the form ( y , )  . . . (y , )  
( E L I )  . . . ( E z , , , ) ~ ,  such that C? is quantifier-free, n, m > 0, and & is satisfiable if 
and only if B is satisfiable. (Hint: apply Proposition 2.32 to - &.) 
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2.80. Find a Skolem normal form B for (X)(EY)A?(X,Y), and show that 
not-1 3 - (x)(Ey)A:(x, y ) .  Hence a Skolem normal form for @ is not necessarily 
logically equivalent to &, in contradistinction to the prenex normal form given by 

$: Proposition 2.3 1. :? 
11. Isomorphism of Interpretations. Categoricity of Theories 

We shall say that an interpretation M of the wfs of some first-order theory K 
is isomorphic with another interpretation M' of K if and only if there is a 1-1 
correspondence g (called an isomorphism) of the domain D of M with the 
domain D' of M' such that: 

(i) For any predicate letter A; of K, and for any b,, . . . , b, in D, 
kMA;[b,, . . . , b,] if and only if kMrAy[ g(b,), . . . , g(b,)]; 

(ii) For any function letter f" of K and for any b,, . . . , b,, in D, 
h, 

g((fi">M(bl, . . 7 6,)) = (f;) (g(b,), . 9 g(bn)); 
(iii) For any individual constant 9 of K, g((aj)M) = 

The notation M, = M, will be used to indicate that MI is isomorphic with M,. 
Notice that, if MI = M,, the domains of MI and M, must be of the same 
cardinality. 

PROPOSITION 2.33. If g is an isomorphism of M with M' then (1) for any wf @ 
of K, any sequence s = (b,, b2, . . . ) of elements of D, and the corresponding 
sequence g(s) = (g(b,), g(b,), . . . ), s satisfies @ if and only if g(s) satisfies @ ; 
(2) hence, k M @  if and only if kM.@. 

PROOF. (2) follows directly from (1). The proof of (1) is a simple induction 
on the number of connectives and quantifiers in @, and is left as an exercise. 

We see from Proposition 2.33 that isomorphic interpretations have the same 
bbstructure" and, thus, differ in no essential way. 

EXERCISES 

Prove: 
2.81. If M is an interpretation with domain D, and D' is a set having the same 

cardinality as D, then one can define an interpretation M' with domain D' such 
that M is isomorphic with M'. 

2.82. M is isomorphic with M. If  M is isomorphic with M', then M' is isomor- 
phic with M. If M is isomorphic with M' and M' is isomorphic with Mu, then M is 
isomorphic with M". 

A theory K with equality is said to be m-categorical, where m is a cardinal 
number, if and only if (1) any two normal models of K of cardinality m are 
isomorphic; (2) K has at least one normal model of cardinality m (cf. LoS 
[ 1954~1). 
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Examples. 

1 .  Let K, be the theory of equality K, (cf. p. 81) to which we have added the 
axiom (E2): 

(Ex,)(Ex,)(x, # x2 A (x3)(x3 = X I  V x3 = ~ 2 ) )  
Then K2 is Zcategorical. Moreover, every normal model of K~ has exactly two 
elements. More generally, define (En) to be 

where A xi # x, is the conjunction of all wfs xi # x, with 1 6 i < j < n. 
I <i+ '<n  

Then, if Kn is obtained from K, by adding (En) as an axiom, Kn is n-categorical, 
and every normal model of Kn has exactly n elements. 

2. The theory K2 (cf. p. 81) of densely-ordered sets with neither first nor last 
element is tio-categorical (cf. Kamke [1950], page 71 : every denumerable normal 
model of K2 is isomorphic with the model consisting of the set of rational 
numbers under .their natural ordering). But one can prove that K, is not 
rn-categorical for any rn different from ti,. 

EXERCISES 

2.83.A Find a first-order theory with equality which is not N,-categorical, but is 
m-categorical for all m > N,. (Hint: consider the theory Gc of commutative groups 
(cf. p. 82). For each integer n, let nx stand for the term (x + x) + . . . +x. 

n-times Add to Gc the new axioms (93,): (x)(El y)(ny = x) for all n > 2. The new theory is 
the theory of uniquely divisible commutative groups. Its normal models are 
essentially vector spaces over the field of rational numbers. However, any two 
vector spaces over the rationals of the same non-denumerable cardinality are 
isomorphic, and there are denumerable vector spaces over the rationals which are 
not isomorphic (cf. Bourbaki [1947]).) 

2.84.A Find a theory with equality which is m-categorical for all infinite 
cardinals m. (Hint: add to the theory G, of commutative groups the axiom 
(x,)(2xl = 0). The normal models of the new theory are just the vector spaces over 
the field of integers modulo 2. Any two such vector spaces of the same cardinality 
are isomorphic (cf. Bourbaki [1947]).) 

2.85. Show that the theorems of the theory Kn in Example 1 above are precisely 
the set of all wfs of Kn which are true in all normal models of cardinality n. 

2.86.A Find two non-isomorphic densely-ordered sets of cardinality 2% with 
neither first nor last element. (This shows that the theory K2 of Example 2 is not 
2'0-categorical.) 

Is there a theory with equality which is rn-categorical for some non-countable 
cardinal rn but not n-categorical for some other non-countable cardinal n? In 
Example 2 we found a theory which is only tio-categorical; in Exercise 2.83 we 
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Jound a theory which is rn-categorical for all infinite rn > No, but not tio:cate- 
gorical; and in Exercise 2.84, a theory which is rn-categorical for all infilute rn. 
,The elementary theory G of groups is not rn-categorical for any infinite rn. The 
woblem is whether these four cases exhaust all the possibilities. That this is so 

been proved by M. D. Morley [1965]. 

2. Generalized First-Order Theories. Completeness and Decidabilityt 
If, in the definition of the notion of first-order theory, we allow a noncount- 

ble number of predicate letters, function letters, and individual constants, and 
ossibly a noncountable number of axioms, we arrive at the notion of a 

generalized first-order theory. First-order theories are special cases of gener- 
alized first-order theories. The reader may easily check that all the results for 
first-order theories, through Lemma 2.9, hold also for generalized first-order 
theories, without any changes in the proofs. Lemma 2.10 becomes Lemma 2.10': 
if the set of symbols of a generalized theory K has cardinality ti,, then the set of 
expressions of K also can be well-ordered and has cardinality ti,. (First, order 
the expressions by their length, which is some positive integer, and then stipulate 
that if el and e, are two distinct expressions of the same length k, and j is the 
first place in which they differ, then e, "precedes" e, if the jth symbol of el 
precedes the jth symbol of e, according to the given well-ordering of the symbols 

f K.) Now, under the same assumption as for Lemma 2.10f, Lindenbaum's 
mma 2.1 1' can be proved for generalized theories much as before, except that 
the enumerations (of the wfs CBi and of the theories Ji) are transfinite, and the 

roof that J is consistent and complete uses transfinite induction. The analogue 
f Henkin's Theorem 2.12 runs as follows: 

PROPOSITION 2.34. If the set of symbols of a consistent generalized theory K 
has cardinality ti,, then K has a model of cardinality ti,. 

PROOF. The original proof for Proposition 2.12 is modified in the following 
way. Add ti, new individual constants b,, b,, . . . , b,, . . . . As before, the new 
theory K, is consistent. Let Fl(xi,), . . . , F,(xjA), . . . (A < a,) be a sequence 
confisting of all wfs of K, with at most one free variable. Let (S,) be the wf - ( x ; ~ ) F ~ ( x ~ ~ )  1 - where the sequence b,,, bj2, . . . , b,&, . . . of distinct 
constants is chosen so that bjA does not occur in Fp(xip) for /3 < A. The new 
theory K, obtained by adding all the wfs (S,) as axioms is consistent, by a 
transfinite induction analogous to that of Proposition 2.12. Now, by the exten- 
sion 2.11' of Lindenbaum's Lemma, there is a complete, consistent extension J 
of K,. The model is defined now as in Proposition 2.12, and its domain, the set 
of closed terms of K,, has cardinality ti,. 

t Presupposed in parts of this Section is a slender acquaintance with ordinal and cardinal numbers 
(cf. Chapter 4, or Kamke [1950], or Sierpinski [1958]). 
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COROLLARY 2.35. (1) If the set of symbols of a consistent generalized theory K 
with equality has cardinality N,, then K has a normal model of cardinality < N,, 

(2) If, in addition, K has an infinite normal model (or if K has arbitrarily large 
finite normal models), then K has a normal model of any cardinality up > N,. 
(3) In particular, if K is an ordinary theory with equality (i.e., N, = N,), and K 
has an infinite normal model (or if K has arbitrarily large finite normal models), 
then K has a normal model of any cardinality ~ ~ ( / 3  > 0). 

PROOF. (I) The model guaranteed by Proposition 2.34 can be contracted to a 
normal model (cf. p. 83) consisting of equivalence classes in a set of cardinality 
N,. Such a set of equivalence classes has cardinality < N,. (2) Assume sp > N,. 

Let b,, b,, . . . be a set of new individual constants of cardinality up, and add 
the axioms bA # b,, for X Z p. As in the proof of Corollary 2.28, this new theory 
is consistent, and so, by ( I ) ,  has a normal model of cardinality < N~ (since the 
new theory has up symbols). But, because of the axioms b, # b,, the normal 
model has exactly N~ elements. (3) is a special case of (2). 

EXERCISE 2.87. If the set of symbols of a predicate calculus K with equality has 
cardinality N,, prove that there is an extension K' of K (with the same symbols 
as K) such that K' has a normal model of cardinality u,, but K' has no normal 
model of cardinality < u,. 

From Lemma 2.9' and Corollary 2.35(1, 2), it follows easily that, if a gener- 
alized first-order theory K with equality has u, symbols, is N~-categorical for 
some /3 > a, and has no finite models, then K is complete, in the sense that, for 
any closed wf &, either t K W  or tK -- W (Vaught [1954]). For, if not-tKW and 
not-t, -- W, then the theories K' = K + {- @ )  and K" = K + {a) are con- 
sistent by Lemma 2.9', and so, by Corollary 2.35(1), there are normal models M, 
and M, of K' and K", respectively, of cardinality < N,. Since K has no finite 
models, M, and M, are infinite. Hence, by Corollary 2.35(2), there are normal 
models N, and N, of K' and K", respectively, of cardinality up. By the 
Np-categori~ity of K, N, and N, must be isomorphic. But, since -- @ is true in 
N, and W is true in N,, this is impossible. Therefore, either t K W  or tK -- W .  

In particular, if K is an ordinary first-order theory with equality which has no 
finite models and is N~-categorical for some /3 > 0, then K is complete. As an 
example, consider the theory K, of densely-ordered sets with neither first nor 
last element (cf. p. 81, Example 2). K, has no finite models and is N,-categorical. 

If an ordinary first-order theory K is axiomatic (i.e., one can effectively decide 
whether any wf is an axiom) and complete, then K is decidable, that is, there is 
an effective procedure to determine whether any given wf is a theorem. To see 
this, remember (cf. p. 66) that if a theory is axiomatic, one can effectively 
enumerate the theorems. Any wf W is provable if and only if its closure is 
provable. Hence, we may confine our attention to closed wfs W. Since K is 
complete, either W is a theorem or -- W is a theorem, and, therefore, one or the 
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other will eventually turn up in our enumeration of the theorems. This provides 
an effective test for theoremhood. Notice that if K is inconsistent, then every wf 
is a theorem, and there is an obvious decision procedure; if K is consistent, then 
not both & and -- & can show up as theorems, and we need only wait till one or 
the other appears. 

If an ordinary axiomatic theory K with equality has no finite models and is 
$-categorical for some /3 > 0, then, by what we have proved above, K is 
decidable. In particular, the theory K, mentioned above is decidable. 

In certain cases, there is a more direct method of proving completeness or 
decidability. Let us take as an example the theory K, of densely-ordered sets 
with neither first nor last element. Langford [I9271 has given the following 
procedure for K,. Consider any closed wf W .  By Proposition 2.31, we can 
assume that & is in prenex normal form (Qy,) . . . (@,)a, where 3 contains 
no quantifiers. If ( 9 , )  is (y,), replace (y,)% by -- (Ey,) -- 3 .  In all cases, 
then, we have, at the right side of the wf, (Ey,)C?, where C? has no quantifiers. 
Any negation x # y can be replaced by x < y V y < x, and x { y can be 
replaced by x = y V y < x. Hence, all negation signs may be eliminated from 
C!. We can now put C? into disjunctive normal form, i.e., a disjunction of 
conjunctions of atomic wfs (cf. p. 28, Exercise 1.36). Now (Ey,)(C?, V G 
V . . . VC?,,) is equivalent to (Ey,)C?, V (Ey,)G V . . . v(Ey,)C?,,. Consider each 
(Ey,)ei separately. is a conjunction of atomic wfs of the form t < s and t = s. 
If does not contain y,, just erase (Ey,). Note that, if a wf 9 does not contain 
y,,, then (Ey,)(9 A &)  may be replaced by 9 A (Ey,)& . Hence, we are reduced 
to the consideration of (Ey,)4, where 4 is a conjunction of atomic wfs, each of 
which contains y,. Now, if one of the conjuncts is y, = z for some z different 

y,, replace in 4 all occurrences of y, by z and erase (Ey,). If we have 
, - y, alone, then just erase (Ey,). If we have y, = y, as one conjunct among 

hers, erase y, = y,. If 4 has a conjunct y, < y,, replace all of (Ey,)g by 
< y,. If 4 consists of y, < z, . . . y, < z,, or if '% consists of u, < y, 
. . . Au,,, < y,, where z,, . . . , z,,u1, . . . , urn are different from y,, replace 
SF by yn = y,. If 4 consists of y, < z, A . . . A y, < z, A U, < y, A . . . A 

urn < y,, replace (Ey,)4-by the conjunction of all the wfs ui < zi for 1 < i < m 
and 1 < 1 < j. This exhausts all possibilities, and, in every case, we have 
replaced (Ey,)C? by a wf 3 containing no quantifiers, i.e., we have eliminated 
the quantifier (Ey,). We are left with ( 9 , )  . . . ( 9 , -  ,)S where S contains no 
quantifiers. Now we apply the same procedure successively to 
(Qyn- ,), . . . , ( 9 , ) .  Finally, we are left with a wf without quantifiers built up 
out of wfs of the form x = x and x < x. Now, if we replace x = x by 
x = x 1 x = x and x < x by -- (x = x 1 x = x), then the result is either an 
instance of a tautology or the negation of such an instance (Exercise). Hence, by 
Proposition 2.1, either the result or its negation is provable. Now, one can easily 
check that all the replacements we have made in this whole reduction process 
applied to @ have been replacements of wfs 5 by other wfs % such that 
tK5 = %. Hence, by Corollary 2.21, if our final result is provable, then so is 
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the original wf &, and, if the negation of our result is provable, so is -- &. Thus, 
K, is complete and decidable. 

The method employed in this proof, the successive elimination of existential 
quantifiers, has been applied to other theories. It yields a decision procedure (cf. 
Hilbert-Bernays [1934]I, § 5) for the elementary theory K, of equality (cf. p. 8 1). 
It has been applied by Tarsh [I95 11 to prove the completeness and decidability 
of elementary algebra (i.e., of the elementary theory of real-closed fields; cf. van 
der Waerden [1949]) and by Szmielew [1955] to prove the decidability of the 
elementary theory of abelian groups. For more details and examples cf. Chang- 
Keisler [1973], Section 1.5. 

EXERCISES 

2.88. (Henkin [1955]) If an ordinary theory K with equality is finitely axiomatiz- 
able and N,-categorical for some a, prove that K is decidable. 

2.89. (a) Prove the decidability of the theory K ,  of equality (cf. p. 81). 
(b) Give an example of a theory with equality which is N,-categorical for 

some a, but is incomplete. 

Mathematical Applications 

(1) Let F be the elementary theory of fields (cf. p. 82). We let n stand for the 
term 1 + 1 + . . . + 1. Then the assertion that a field-has characteristic p can 

n-times 
be expressed by the wf C,: p = 0. A field has characteristic zero if and only if it 
does not have characteristic p for any prime p. Then for any closed wf 62 of F 
which holds for all fields of characteristic zero, there is a prime number q such 
that @ holds for all fields of characteristic 2 q. For, if F' is obtained from F by 
adding as axioms - G, -- e, . . . , -- G, . . . (for all primes p), the normal 
models of F' are the fields of characteristic zero. Hence, by Corollary 2.15(a), 
noting that if & holds in all normal models of F' it holds in all models 
of F', I,.@; but then, for some finite number of the new axioms -- Cql. 
-- Cq2, . . . , - Cqn, we have - Cql, . . . , - Cqn IF&. Let q be a prime greater 
than all q,, . . . . qn. In every field of characteristic > q, the wfs -- Cql, 
-- Cq2, . . . , -- %, are true; hence, 62 is also true. (Other applications in algebra 
may be found in A. Robinson [1951], Cherlin [1976].) 

(2) A graph may be considered as a set partially ordered by a symmetric 
binary relation R (i.e., the relation which holds between any two vertices if and 
only if they are connected by an edge). Call a graph k-colorable if and only if 
the graph can be divided into k disjoint (possibly empty) sets such that no two 
elements in the same set are in the relation R. (Intuitively, these k sets 
correspond to k colors, each color being painted on the points in the correspond- 
ing set, with the proviso that two points connected by an edge are painted 
different colors.) Notice that any subgraph of a k-colorable graph is also 
k-colorable. Now, we can show that if every finite subgraph of a graph P is 
k-colorable, and if P can be well-ordered, then the whole graph 9 is k-colorable. 
To prove this, construct the following generalized theory K with equality (Beth 
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q [1953]). There are two binary predicate letters A:(=) and A: (corresponding to 
the relation R on 8) ;  there are k monadic predicate letters A:, . . . , A: (corre- 

the graph), and there are 
e graph P .  We have as 

assumptions (6)-(7) for equality, the 

(irreflexivity of R) 

(division into k classes) 
(IV) (x) -- (A,'(x) A A,'(x)) for 1 < i < j < k 

(disjointness of the k classes) 

(V) For 1 < i < k, (x)(y)(A,'(x) A A:(Y) 3 -- A:(x, Y)) 
(Two elements in the same class are not in the relation R.) 

(VI) For any two distinct elements b, c of P, a, # a,. 
, (VII) If R(b, c) holds in 9 ,  A;(a,, a,). 

Now, any finite set of these axioms involves only a finite number of the 
individual constants acl, . . . , a,", and since the corresponding subgraph 
{c,, . . . , c,) is, by assumption, k-colorable, the given finite set of axioms has a 
model, and is, therefore, consistent. Since any finite set of axioms is consistent, 
K is consistent. By Corollary 2.35(1), K has a normal model of cardinality < the 
cardinality of the graph P . This model is a k-colorable graph, and by (V1)-(VII), 
has 8 as a subgraph. Hence, P is also k-colorable. (Compare this proof with a 
standard mathematical proof of the same result by Bruijn and Erdos [1951]. 
Generally, use of the method above replaces complicated applications of 
Tychonoff's Theorem or Konig's Unendlichkeit's Lemma.) 

I. EXERCISES 
'n 
ii 2.90.A (Lo4 [1954b]). A group B is said to be orderable if there exists a binary 

relation R on B which totally orders B such that, if x R y, then (x + z) R (y + Z) 
and (z + x) R (z + y). Show, by a method similar to that used in Example (2) 

8 above, that a group B is orderable if and only if every finitely-generated subgroup 
is orderable (if we assume that the set B can be well-ordered). 

'Z 
f 2.91.* Set up a theory for algebraically-closed fields of characteristic p ( 2  0) 

by adding to the theory F of fields the new axioms P,, where P, states that every 

6 
non-constant polynomial of degree < n has a root, as well as axioms to determine 

$ the characteristic. Show that every wf of F which holds for one algebraically closed 
B field of characteristic zero holds for all of them. (Hint: this theory is N~-categorical 

for p > 0, axiomatizable, and has no finite models.) (Cf. A. Robinson [1952].) 
1 2.92. By ordinary mathematical reasoning, solve the finite marriage problem: 1 given a finite set M of m men and a set N of women such that each man knows 

$s only a finite number of women and, for 1 < k < m, any subset of M having k 
elements is acquainted with at least k women of N (i.e., there are at least k women 
in N acquainted with at least one of the k given men). Then it is possible to marry 
(monogamously) all the men of M to women in N so that every man is mamed to a 
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woman with whom he is acquainted. (Hint-Halmos-Vaughn [1950]: m = 1 is 
trivial. For m > 1, use induction, considering the cases: (I) for all k with 1 < k < 
m, every set of k men knows at least k + 1 women, and (II) for some k with 
1 < k < m, there is a set of k men knowing exactly k women.) Extend this result to 
the infinite case, i.e., when M is infinite and well-orderable and the assumptions 
above hold for all finite k. (Hint: construct an appropriate generalized first-order 
theory, analogous to that of Application (2) above and use Corollary 2.35(1).) 

2.93. Prove that there is no generalized theory K with equality, having one 
predicate letter < in addition to = , such that the normal models of K are exactly 
those interpretations in which the interpretation of < is a well-ordering of the 
domain of the interpretation. 

Let & be a wf in prenex normal form, and form its closure, say, (Ey1)(yJ 
(Y~)(EY~)(EY 5)(y6)% (Y 1, Y,, ~ 3 ,  ~ 4 ,  ~ 5 ,  Y 61, where 93 contains no quantifiers. 
Erase (Ey,) and replace y,  in % by a new individual constant b,: 
( ~ 2 ) ( ~ 3 ) ( ~ ~ 4 ) ( ~ ~ 5 ) ( ~ 6 ) ~  (bl, y29 y39 Y49 Y59 ~ 6 ) .  Erase ( ~ 2 )  and (~317 obtaining 
(EY,)(EY~)(Y,)~J (b,, Y,, Y3, Y,, Y5, Y,). Now erase (EY,) and replace Y4 in 93 by a 
new function letter g(y2, y3): (E~5)(~6)3 (bl, y2, ~ 3 ,  g(y27 ~31,  ~ 5 ,  ~ 6 ) .  Erase (Ey5) 
and replace y, in 3 by a new function letter h(y2, y,): ( ~ ~ 1 %  (bl, y,, y3, g(y2, 
y,), h(y2, y,), y,). Finally, erase (y,). The terminal wf 3 ( 4 ,  ~ 2 ,  ~ 3 ,  g(y2, Y,), 
h(y,, y,), y,) contains no quantifiers, and is denoted by a*. Thus, by introduc- 
ing new function letters, we can eliminate the quantifiers from a wf. 

Examples. 

1. If Q is (Y,)(EY~)(Y,)(Y~)(EY~)~ (YI,  ~ 2 ,  ~ 3 ,  ~ 4 ,  ~ 5 )  where 3 contains no 
quantifiers, then &* may be taken to be 

9 (~19 g(y I), Y3, Y4, h(Y 1, ~ 3 9 ~ 4 ) )  

2. If is (EY,)(EY,)(Y,)(Y,)(EY,)~ (Y 1, Y,, Y,, Y4, Y,) where 93 contains no 
quantifiers, then &* is of the form 3 (b, c, y3, y,, g(y3, y,)). 

Notice that &* t &, since we can put the quantifiers back on by several 
applications of Gen and Rule E4. (To be more precise, in the process of 
obtaining &*, we drop all universal quantifiers and all existential quantifiers, 
and, for each existentially quantified variable y,, we substitute a function letter 
g(zl, . . . , z,), where z,, . . . , z, are the variables which were universally quanti- 
fied in the prefix preceding (Ey,). If there are no such variables z,, . . . , z,, we 
replace yi by a new individual constant.) 

PROPOSITION 2.36 (Second &-Theorem. Rasiowa [1956], Hilbert-Bernays 
[1939]). Let K be a generalized theory. Replace each axiom & of K by &*. 
(The new function letters and individual constants introduced for one wf are to 
be different from those introduced for another wf.) Let K* be the generalized 
theory with the proper axioms a*. Then, (a) If C? is a wf of K and I-,,(?, then 
kKC?; (b) K is consistent if and only if K* is consistent. 

.? - -  
of M is the set P 
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wf of K such that t,,C?. Consider the ordinary theory K, 
. . . , &" are such that &, *, . . . , Rn * are the axioms used in 
Let K,* be the theory whose axioms are &,*, . . . , Rn*. 
a denumerable model of K,. We may assume that the domain 

I of positive integers (cf. p. 93, Exercise 2.81). Let & be any -- 
axiom of K,; say, is (Eyl)(y2)(y3)(Ey4)3 (Y ,, y2, Y,, y4), where 9 contains no 
quantifiers. &* has the form B (b, y,, y,, g(y,, y,)). Extend the model M step by 
step as follows (note that the domain always remains the set P): since & is true 
in M, (EY1)(y~(y3)(Ey4)% (y,, y,, y,, y,) is true in M. Let the interpretation b* 
of b be the least positive integer y, such that (y2)(y3)(~y4)'% (y,, y,, y,, y,) is true 
in the model. Hence (Ey,)% (b, y,, y,, y,) is true in this extended model. For any 
positive integers y,, y, let the interpretation of g(y,, y,) be the least positive 
integer y4 such that 3 ( b ,  y,, y,, y,) is true in the extended model. Hence, 
%(b, y,, y3, g(y,, y,)) is true in the extended model. If we do this for all the 
axioms & of K,, we obtain a model M* of K,*. Since t,,*C?, C? is true in M*. 
Since M* differs from M only in having interpretations of the new individual 
constants and function letters, and since C? does not contain any of these 
constants or function letters, C? is true in M. Thus, C? is true in every denumer- 
able model of K,. Hence, tKIC? by Corollary 2.15(a). Since the axioms of K, are 
axioms of K, we have tKC?. (For a constructive proof of an equivalent result, 
compare Hilbert-Bernays [ 19391.) 
(b) Clearly, K* is an extension of K, since &* t &. Hence, if K* is 

consistent, so is K. Conversely, assume K consistent. Let C? by any wf of K. If 
K* is inconsistent, tK,C? A -- C?. By Part (a), t,C? A -- C?, contradicting the 
consistency of K. 

Let us use the term Generalized Completeness Theorem for the proposition that 
every consistent generalized theory has a model. Clearly, if we assume that every 
set can be well-ordered (or, equivalently, the axiom of choice), then the Gener- 
alized Completeness Theorem is a consequence of Proposition 2.34. 

By the Maximal Ideal Theorem (M.I.) we mean the proposition that every 
Boolean algebra has a maximal ideal. This is equivalent to the Boolean Repre- 
sentation Theorem, which states that every Boolean algebra is isomorphic to a 
Boolean algebra of sets. (Compare Stone [1936]. For the theory of Boolean 
algebras, see Sikorski [1960].) The only known proof of the M.I. Theorem uses 
the axiom of choice, but it is a remarkable fact that the M.I. Theorem is 
equivalent to the Generalized Completeness Theorem, and this equivalence can 
be proved without use of the axiom of choice. 

P R O P ~ S I ~ O N  2.37 (Lo6 [1954a], Rasiowa-Sikorski [195 1-21). The Generalized 
Completeness meorem is equivalent to the Maximal Ideal Theorem. 
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PROOF. 

(1) Assume the Generalized Completeness Theorem. Let B be a Boolean 
algebra. Construct a generalized theory K with equality having the binary 
function letters u and n, the singulary function letter j,' (we denote j,'(t) by i), 
predicate letters = and A:, and, for each element b in B, an individual constant 
a,. As axioms, we take the usual axioms for a Boolean algebra (cf. Sikorski 
[1960]), the axioms (6)-(7) for equality, a complete description of B (i.e., if b, c, 
d, e, b, are in B, the axioms a, #a, if b # c; a, u a, = a, if b u c = d in B; 
a, n a, = a, if b n c = e in B; il, = a,,, if 6 = b, in B, where 6 denotes the 
complement of b), and axioms asserting that A ;  determines a maximal ideal (i.e., 
A:(x n 3, A:(x) A A ~ ( Y )  3 A,'(x u Y); A:(x) 2 A ~ ( X  n Y); A:(x) v A,'(%); 
-- A;(X u F)). Now K is consistent, for, if there is a proof in K of a contradic- 
tion, this proof contains only a finite number of the symbols a,, a,, . . . , say 
a,,, . . . , a,". The elements b,, . . . , b, generate a finite subalgebra B' of B. Every 
finite Boolean algebra clearly has a maximal ideal. Hence, B' is a model for the 
wfs occurring in the proof of the contradiction, and therefore the contradiction 
is true in B', which is impossible. Thus, K is consistent, and, by the Generalized 
Completeness Theorem, K has a model, which is a Boolean algebra A with a 
maximal ideal I .  But B is a subalgebra of A and I n B is a maximal ideal in B. 

(2) Assume the Maximal Ideal Theorem. Let K be a consistent generalized 
theory. For each axiom & of K, form the wf &* obtained by constructing a 
prewx normal form for & and then eliminating the quantifiers through the 
addition of new individual constants and function letters. Let K' be a new 
theory having the wfs a*, plus all instances of tautologies, as its axioms, such 
that its wfs contain no quantifiers and its rules of inference are modus ponens 
and a rule of substitution for variables (viz., substitution of terms for variables). 
Now K' is consistent, since the theorems of K' are also theorems of the 
consistent theory K* of Proposition 2.36. Let B be the Lindenbaum algebra 
determined by K' (i.e., for any wfs & and 3 ,  let & Eq 93 mean that kK& = 93 ; 
Eq is an equivalence relation; let [&I be the equivalence class of &; define 
[@I U [ a  I = [a V '43 1, [&I n [% ] = [a A 93 1, [ a ]  = [-- a ] ;  under these oper- 
ations, the set of equivalence classes is a Boolean algebra, called the Linden- 
baum algebra of Kt). By the Maximal Ideal Theorem, let I be a maximal ideal in 
B. Define a model M of K' having the set of terms of K' as its domain; the 
individual constants and function letters are their own interpretations, and, for 
any predicate letter A;, we say that A,"(t,, . . . , t,) is true in M if and only if 
[A;([,, . . . , t,)] is not in I. One can show easily that a wf 62 of K' is true in M if 
and only if [&I is not in I. But, for any theorem 93 of Kt, 1931 = 1, which is not 
in I. Hence, M is a model for Kt. For any axiom & of K, every substitution 
instance of &*(y,, . . . , y,) is a theorem in K'; therefore, &*(y,, . . . , y,) is true 
for ally,, . . . , y, in the model. It follows easily, by reversing the process through 
which &* arose from &, that & is true in the model. Hence, M is a model for K. 
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The Maximal Ideal Theorem (and, therefore, also the Generalized Complete- 
ness Theorem) turns out to be strictly weaker than the Axiom of Choice (cf. 

EXERCISES 

2.94. Show that the Generalized Completeness Theorem implies that every set 
. can be totally ordered (and, therefore, that the axiom of choice holds for any set of 

non-empty disjoint finite sets). 
2.95. In the proof of Proposition 2.37(2), show that if K is an ordinary first-order 

theory, then the Lindenbaum algebra B is countable and the Maximal Ideal 
Theorem need not be assumed in the proof. 

The natural algebraic structures corresponding to the propositional calculus 
are Boolean algebras (cf. p. 43, Exercise 1.53, and Rosenbloom [1950], Chapters 
1-2). For first-order theories, the presence of quantifiers introduces more 
algebraic structure. For example, if K is a first-order theory, then, in the 
corresponding Lindenbaum algebra B, [(Ex)&(x)] = 2 [@(t)] where 2 indi- 

I I 

cates the least upper bound in B, and t ranges over all terms of K which are free 
for x in &(x). Two types of algebraic structures have been proposed to serve as 

i algebraic counterparts of quantification theory. The first, cylindrical algebras, 
have been studied extensively by Tarski, Thompson, Henkin, Monk, and others 

I (cf. Henkin-Monk-Tarski [1971]). The other approach is the theory of polyadic 
. algebras, invented and developed by Halmos 119621. 

13. Elementary Equivalence. Elementary Extensions. 
Two interpretations M, and M, of a generalized first-order predicate calculus 

K are said to be elementarily equivalent (written MI = M,t) if the sentences of K 
true for M, are the same as the sentences true for M2. Intuitively, M, -- M2 if 

1 and only if M, and M, cannot be distinguished by means of the language of K? 
d 

Of course, K is a generalized predicate calculus and may have non-denumerably ! many symbols. 
Clearly, (i) M = M; (ii) if M, = M,, then M, = MI;  (iii) if MI = M, and 

M, = M,, then M, -- M,. 
Two models of a complete theory K must be elementarily equivalent, since the 

sentences true in these models are precisely the sentences provable in K. This 
applies, for example, to any two densely ordered sets without first or last 
elements (cf. p. 81). 

+This use of = has nothing to do with the connective symbol = used for the biconditional "if and 
only if'. 

$Notice that for M to be a model of a predicate calculus K nothing more is required than that the 
interpretations provided by M consist only of interpretations of the symbols of K. M is then 
automatically a model of K, since the only axioms of K are logical axioms. 
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We already know, by Proposition 2.33(2), that isomorphic models are elemen- 
tarily equivalent. The converse, however, is not true. Consider, for example, any 
complete theory K which has an infinite normal model. By Corollary 2.35(2), K 
has normal models of any infinite cardinal U,. If we take two normal models of 
K of different cardinality, they are elementarily equivalent but not isomorphic. 
A concrete example is the complete theory K, of densely ordered sets having 
neither first nor last element. The rational numbers and the real numbers, under 
their natural ordering, are elementarily equivalent models of K,, but are not 
isomorphic. 

EXERCISES 

2.96. Let K,, the theory of infinite sets, consist of the pwe theory K, of 
equality, plus the axioms a, ,  where 3, asserts that there are at least n elements. 
Show that any two models of K, are elementarily equivalent (cf. Exercises 2.62 
and 2.89(a)). 
2.97.D If MI and M2 are elementarily equivalent normal models, and MI is 

finite, prove that M, and M2 are isomorphic. 
2.98. Let K be a theory with equality having N, symbols. 

(a) Prove that there are at most 2". models of K, no two of which are 
elementarily equivalent. 

(b) Prove that there are at most 2'7 mutually non-isomorphic models of K 
of cardinality tip, where y is the maximum of a and 8. 

2.99. Let M be any infin~te normal model of a theory with equality K having n, 
symbols. Prove that, for any cardinal N, > N,, there is a normal model M' of K of 
cardinality N, such that M r M'. 

A model M2 of a predicate calculus K is said to be an extension of a model MI 
of K (written MI c M,$) if the following conditions hold. 

(a) The domain D l  of MI is a subset of the domain D, of M,. 
(b) For any individual constant c of K, cM2 = cM1, where cM2 and cMl are the 

interpretations of c in M, and M,, respectively. 
(c) For any function letter fJ of K and any a,, . . . , a,, in Dl,  

(f,")M2(al, . . . , a,) = (fi")Ml(al, - - , a,). 
(d) For any predicate letter A," of K and any a,, . . . , a,, in Dl,  

kMIA,"[a,, . . . , a,] if and only if kMpy[a l ,  . . . , a,]. 
When M, c M,, one also says that MI  is a substructure (or submodel) of M,. 

Examples. 

(i) If K contains only the predicate letters = and < , then the set of rational 
numbers under its natural ordering is an extension of the set of integers under its 
natural ordering. 

(ii) If K is the predicate calculus in the language of field theory (with the 
predicate letter = , function letters + and x, and individual constants 0 and I), 

$The reader will have no occasion to confuse this use of c with that for the inclusion relation. 
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then the field of real numbers is an extension of the field of rational numbers, - 
the field of rational numbers is an extension of the ring of integers, and the ring 
of integers is an extension of the "semiring" of non-negative integers. For any 
fields F, and F,, F ,  F, if and only if F ,  is a subfield of F, in the usual 

~ g e b r a i c  sense. 
- 

EXERCISES 

2.100. Prove: (a) M c M. (b) If M, c M2 and M2 c M3, then MI c M3. (c) If 
MI c M2 and M1 C MI, then MI = M2. 
2.101. Assume MI c M2. 

(a) Let 93 (x,, . . . , x,) be a wf of the form (y,) . . . (y,) 
Q.(x,, . . . , x,, y,, . . . , y,), where Q. contains no quantif~ers. Show 
that, for any a,, . . . ,a, in the domain of MI, if kM2B[al, . . . , a,], 
then kM1% [a,, . . . , a,]. In particular, any sentence (y,) . . . (y,) 
Q.(yI, . . . , y,), where Q. contains no quantifiers, is true in M, if it is 
true in M,. 

(b) Let B(xl,  . . . , x,) be a wf of the form (Ey,) . . . (Ey,) 
Q.(x,, . . . , x,, y ,, . . . , y,), where Q. has no quantifiers. Show that, 
for any a,, . . . , a, in the domain of MI, if kMl% [a,, . . . , a,], 

i then kM2% [al, . . . , a,]. In particular, any sentence (Ey,) . . . (Ey,) 
Q.(yl, . . . , y,,,), where Q. contains no quantifiers, is true in M2 if it is 

t true in MI. 
y . 1 0 2 .  a Let K be the predicate calculus of the language of f~eld theory. Find 

) a model M of K and a non-empty subset X of the domain D of M such that there 
is no substructure of M having domain X. 

(b) If K is a predicate calculus with no individual constants or function 
letters, show that, if M is a model of K and X is a subset of the domain D of M, 
then there is one and only one substructure of M having domain X. 

(c) Let K be any predicate calculus. Let M be any model of K and let X 
be any subset of the domain D of M. Let Y be the intersection of the domains of 
all submodels M' of M such that X C D,, the domain of M'. Show that there is 
one and only one submodel of M having domain Y. (This submodel is called the 
submodel generated by X.) 
I 

A somewhat stronger relation between interpretations than "extension" is 
useful in model theory. Let M, and M, be models of some predicate calculus K. 
We say that M, is an elementaty exlension of M, (written M, d .M2) if: 

(a) M I  c M,, and 
(b) For any wf @(y , , . . . , y,) of K and for any a, ,  . . . , a, in the domain D l  

of MI, 

kM,@[a,, . . . , a,] if and only if kM2@[a,, . . . , a,]. 

(In particular, for any sentence @ of K, @ is true for M, if and only if @ is true 
for M,.) When M, < .M,, we shall also say that M, is an elementav substructure 
(or elementaty submodel) of M,. 
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It is obvious that, if M1 < ,M,, then MI c M, and MI = M,. The converse is 
not true, as the following example shows. Let K be the first-order theory of 
groups (cf. p. 82). K has the predicate letter = , function letter +, and 
individual constant 0. Let I be the group of integers, and 21 the group of even 
integers. Then 21 I and I -- 21. (The function g such that g(x) = 2x for all x 
in I is an isomorphism of I with 21.) Since I -- 21, I r 21. Consider the wf @(y): 
(Ex)(x + x = y). Then k,@[2], but not-k2,@[2]. Thus, I is not an elementary 
extension of 21. (This example shows the stronger result that even assuming 
MI c M, and MI -- M, does not imply M, < .M,.) 

The following theorem provides an easy method for showing that MI <,M2. 

PROPOSITION 2.38 (TARSKI-VAUGHT [1957]). Let MI M,. A~.rume the 
following condition : 

($) For aery wf 93 ( x , ,  . . . , x,) of the form (Ey)@(x,, . . . , x,, y)  and for all 
a,, . . . , a, in the domain Dl of MI, if kMZ% [a,, . . . , a,], then there is some b 
in D, such that kMZ@[al,. . . , a,, b]. 
Then MI <,M,. 

PROOF. Let us prove: (*) kM,C[a,, . . . , a,] if and only if PuzC[a,, . . . , ak] 
for any wf e(x, ,  . . . , x,) and any a,, . . . , a, in Dl. The proof is by induction 
on the number m of connectives and quantifiers in C. If m = 0, then (*) follows 
from clause (d) of the definition of M, c M,. Now assume that (*) holds true 
for all wfs having fewer than m connectives and quantifiers. 

Case 1. C is -- 9. By inductive hypothesis, kM19[a,, . . . , a,] if and only if 
k M z q  [a,, . . . , a,]. Using the fact that not-kMlq [a,, . . . , a,] if and only if 
kM,  - 9 [ a , ,  . . . , a,], and similarly for M,, we obtain (*). 

Case 2. C is 9 3 6. By inductive hypothesis, kM,9[a I ,  . . . , a,] if and only if 
kMz9[a,, . . . , a,], and similarly for 6 .  (*) then follows easily. 

Case 3. 6? is (Ey)&(x,, . . . , x,, y). By inductive hypothesis, 
(**) kMl  @[a,, . . . , a,, b] if and only if kM2@[a,, . . . , a,, b] for any a,, . . . , 
a,, b in D,. 

(3a): Assume kM1(Ey)@(x,, . . . , x,, y)[a,, . . . , a,] for some a,, . . . , a, in Dl.  
Then, kMl@[a,, . . . , a,, b] for some b in D,. So, by (**), kM2@[a,, . . . , ah, b]. 
Hence, 

kMZ(E~)@(xI, . . . , x, ,Y)[~, ,  . . . , a,]. 
(3b): Assume kMZ(Ey)@(xl, . . . , x,, y)[a,, . . . , a,] for some a,, . . . , a, in Dl. 

By assumption (S), there exist b in Dl such that kM2@[a,, . . . , a,, b]. Hence, by 
(**), kMl@[a,, . . . , a,, b], and, therefore, kMI(Ey)@(~I,  . . . , x,, y)[aI, . . . , ah]. 

This completes the induction proof since any wf is logically equivalent to a wf 
that can be built up from atomic wfs by forming negations, conditionals, and 
existential quantifications. 

EXERCISES 

2.103. Prove: (a) M <,M; (b) If MI G ,M2 and M, < ,M3, then MI < ,M3. 
2.104. If MI < .M, M, < ,M, and MI c M,, prove that MI < ,M,. 
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2.105. Let K be the theory of totally ordered sets with equality (Axioms (a)-(c), 
(e)-(g) of Exercise 2.63, p. 81). Let MI and M2 be the models for K with domains 
the set of non-negative integers and the set of positive integers, respectively (under 
the natural orderings < in both cases). Prove that MI C M,, MI -- M,, but 

Let M be a model of a theory K. Extend K to a theory K' by adding a new 
7 individual constant ad for every member d of the domain of M. We can extend 
M to a model of K' by taking d as the interpretation of ad. By the diagram of M 
we mean the set of all true sentences of M of the forms A,"(adl, . . . , ad"), - A,"(adl, . . . , ad"), and j;(adl, . . . , ad") = adm. In particular, adl #ad, belongs to 
the diagram if dl # d,. By the complete diagram of M we mean the set of all 
sentences of K' that are true for M. 

Clearly, any model M' of the complete diagram of M determines an elemen- 
tary extension M" of M,+ and vice versa. 

EXERCISES 

2.106. (a) Let M be a denumerable normal model of an ordinary theory K with 
equality such that every element of the domain of M is the interpretation of some 
closed term of K. 

(i) Show that, if M M' and M M', then M < ,Mf. 
(ii) Prove that there is a denumerable normal elementary extension M' 

of M such that M and M' are not isomorphic. 
(b) Let K be a predicate calculus with equality having two function 

letters + and X, and two individual constants 0 and 1 .  Let M be the standard 
model of arithmetic, with domain the set of natural numbers, and +, x, 0, 1 
having their ordinary meaning. Prove that M has a proper denumerable extension 
which is not isomorphic to M, that is, there is a denumerable non-standard model 
of arithmetic. 

PROPOSITION 2.39 (Upward Lowenheim-Skolem-Tarski Theorem). Let K be 
a theory with equality having n, symbols, and let M be a normal model of K 
with domain of cardinality np. Let y be the maximum of a and P. Then, for any 
' 6 > y, there is a model M' of cardinality n, such that M # M' and M <,MI. 

PROOF. Add to the complete diagram of M a set of cardinality n, of new 
individual constants b,, together with axioms b, # b, for distinct r and p and 
axioms b, # ad for all individual constants ad corresponding to members d of the 
domain of M. This new theory K' is consistent, since M can be used as a model 
for any finite number of axioms of K'. (If bTl, . . . , bTk, adl, . . . , adm are the new 
individual constants in these axioms, interpret bTl, . . . , b,& as distinct elements 
of the domain of M different from dl, . . . , dm.) Hence, by Corollary 2.35(i), K' 
has a normal model M of cardinality ns such that M S M' and M < ,M'. 

+The elementary extension M" of M is obtained from M' by forgetting about the interpretations of 
the ad's. 
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PROPOSITION 2.40 (DOWNWARD LOWENHEM-SKOLEM-Tuslo THEOREM). Let 
K be a theoty with ti, symbols, and let M be a model of K of cardinalit,, 
n, > x,. Assume A b a subset of the domain D of M having cardinality n, and 
assume XI, is such that X, > X, >  ma^(^,, n). Then there is an  element^^ 
submodel M' of M of cardinality N, and with domain D' > A. 

PROOF. Since n < ti, < x,, we can add X, elements of D to A to obtain a 
larger set B of cardinality ng. Consider any subset C of D having cardinality x,. 
For every wf d(y, ,  . . . , y,,, z) of K and any a,, . . . , an  in C such that 
kM(Ez)@(yI, . . . , y,,, z)[a,, . . . , a,,], add to C the first element b of D (with 
respect to some fixed well-ordering of D )  such that kM&[al, . . . , a,,, b]. Denote 
the so-enlarged set by CY. Since K has nu symbols, there are X, wfs. Since 
X~ < 4, there are at most ns new elements in CX,  and, therefore, the cardinal- 
ity of C' is x,. Form by induction a sequence of sets C ,  C,, . . . by setting 
Co = B and Cn+ , = CnX. Let D' = U C,,. Then the cardinality of D' is x.. In 

n Eo P --- 
addition, D' is closed under all the functions (f;)". (Assume a,, . . . , an in D'. 
We may assume a,, . . . , a,, in Ck for some k. Now kM(Ez)(flxl, . . . , x,,) = 
z)[a, ,  . . . , a,,]. Hence, (J')M(al, . . . , a,,), being the first and only member b of 
D such that kM(f;(xI, . . . , xn) = z)[aI, . . . , a,,, b], must belong to Ck

X = Ck+, 
C D'.) Similarly, all interpretations (+)M of individual constants are in Dr .  
Hence, D' determines a substructure M' of M. To show that M' 6 ,M, consider 
any wf &(y,, . . . , y,,, z) and any a, ,  . . . , a,, in D' such that 
kM(Ez)@(yI, . . . , yn, z)[al. . . ., a,, I. There exists Ck such that a,, . . . , a,, are in 
Ck. Let b be the first element of D such that kM&[a,, . . . , a,,, b]. Then b E c,# 
= Ck+, G D'. So, by the Tarski-Vaught Theorem (Proposition 2.38), M' ieM. 

14. Ultrapowem. Non-Standard Analysis. 
By a filter on a non-empty set A we mean a set 5 of subsets of A such that 

(i) A E 5 ;  
(ii) B E ~ / . \ C E ~ > B ~ C E ~ ;  

(iii) B E $ T / \ B ~ C ~ C E ~ . ~  

Examples. 

1. 5 = (A) is a filter on A. 
2. 5 = 9 ( ~ )  is a filter on A ?  It is said to be improper and every other filter 

on A is said to be prover. 
3. Let B C_ ~. -Th 'e  set FB = {CIB C C A) is a filter on A. TB consists 

of all subsets of A that include B. Any filter of the form $ is called a principal 

 he notion of a filter is related to that of an ideal. A mUection % d E ( A )  is a filter on A if and 
only if the set 9 = {A - BIB € b} of mmplemcots of sets in b is an ideal lo the Boolean algebra 
9 ( A ) .  Remember that E ( A )  denotes the set of all subsets of A .  

fgter. In particular, FA = (A) and 9(A)  = '?& are principal filters. (Remember 
bat 0 denotes the empty set.) 

mRCISES 

2.107. Show that a filter 45 on A is proper if and only if 0 4 5. 
2.108. Show that a filter 9 on A is a principal filter if and only if the intersection 

of all sets in 5 is a member of 5. 
2109. Prove that every finite filter is a principal filter. In particular, any filter on 

a finite set A is a principal filter. 
2.110. Let A be infinite and let 5 be the set of all subsets of A that are 

complements of finite sets: 9 = { C \ ( E  W X C  = A - W A Fin( W ) ) ) .  Show that 5 
is a non-principal filter on A .  

2.111. Assume A has cardinality up. Let 8, < up. Let 5 be the set of all subsets 
of A whose complements have cardinality < 8,. Show that 5 is a non-principal 
filter on A. 

2.112. A collection g of sets is said to have the finite intersection property if 
B , n B 2 n  ... n Bk + 0 for any sets B1, . . . , Bk in B .  If B is a collection of 
subsets of A having the finite intersection property, and 5 = { C ( ( E B ) ( B  E 4 A - .  

B c C c A)) ,  show that '3 is aproper filter on A .  

DEFINITION. A filter '3 on a set A is called an ultrafilter on A if T is a 
maximal proper filter on A, that is, 5 is a proper filter on A and there is no 
proper filter G on A such that 5 c 9. 

Example. Let a E A. The principal filter Ta = (Bla E B /.\ B C A) is an 
ultrafilter on A. For, assume that 9 is a filter on A such that Fa c 9 .  Let 
C E 9 - Ta. Then C c A and a @ C. Hence, a E A - C. Thus, A - C E To 
C 9. Since 9 is a filter and C and A - C are both in g ,  then 0 = C n 
(A - C) E 9 . Hence, 4 is not a proper filter. 

EXERCISES 

2.113. Let 5 be a proper filter on A,  and assume that B A and A - B 4 5. 

Prove that there is a proper filter 9' 2 9 such that B e 9'. 
2.114. Let 5 be a proper filter on A .  Prove that 5 is an ultrafilter on A if and 

only if, for every B A ,  either B E 5 or A - B E 5. 
2.115. Let 45 be a proper filter on A .  Show that 5 is an ultrafilter on A if and 

only if, for all B and C in 9 ( A ) ,  if B 4 5 and C B 4 ,  then B U C  4 5. 
2.116. (a) Show that every principal ultrafilter on A is of the form To = 

{ B ( a  E B A B A ) ,  where a e A .  
(b) Show that a non-principal ultrafilter on A contains no finite sets. 

2.117. Let 45 be a filter on a set A and let f be the corresponding ideal: B E 4 if 
and only if A - B E 5. Prove that 5 is an ultrafiiter on A if and only if f is a 
maximal ideal. 

2.118. Let X be a chain of proper filters on a set A ,  that is, for any B and C in X ,  
either B c C or C  B .  Prove that the union u ( X )  = {a l (EBXB E X a E B )  

is a proper filter on A and B u ( X )  for aU B i n  X .  
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PROPOSITION 2.41 (ULTRAFILTER THEOREM). Every filter 9 on a set A can be 
extended to an ultrafilter on A.+ 

PROOF. Let 9 be a filter on A. Let g be the corresponding ideal: B E g if 
and only if A - B E 9'. By Proposition 2.37, every ideal can be extended to a 
maximal ideal. In particular, g can be extended to a maximal ideal &. If we let 
Q = {B IA - B E $1, then Q is easily seen to be an ultrafilter, and 9 C 9. 

The existence of an ultrafilter including 5 can be proved easily on the basis of 
Zorn's Lemma (p. 210). (In fact, consider the set X of all proper filters 9 such 
that J (; B'. X is partially ordered by c and any c -chain in X has an upper 
bound in X, namely, by Exercise 2.1 18, the union of all filters in the chain. 
Hence, by Zorn's Lemma, there is a maximal element T* in X, which is the 
required ultrafilter.) However, Zorn's Lemma is equivalent to the Axiom of 
Choice, which is a stronger assumption than the Generalized Completeness 
Theorem. 

COROLLARY 2.42. If A is an infinite set, there exists a nun-principal ultrafilter 
on A. 

PROOF. Let J be the filter on A consisting of all complements A - B of 
finite subsets B of A (cf. Exercise 2.110). By Proposition 2.41, there is an 
ultrafilter C? > 9. Assume 9 is a principal ultrafilter. By Exercise 2.116(a), 
8 = % for some a E A. Then A - {a)  E 5 C 9. Also, {a) E 9 .  Hence, 
0 = {a) n (A - {a)) E 9, contradicting the fact that an ultrafilter is proper. 

Reduced Direct Products. We shall now study an important way of construct- 
ing models. Let K be any predicate calculus with equality. Let J be a non-empty 
set, and, for each j in J, let M, be some normal model of K. In other words, 
consider a function F assigning to each j in J some normal model. We denote 
F(j) by M ,. . . 

Let '3 be an ultrafilter on J. For each j in J, let D, denote the domain of the 
model M,. By the Cartesian product Dj we mean the set of all functions f 

J E J  

with domain J such that f(j) E D, for all j in J .  Iff E D ,  we shall refer to 
j E J  - 

f(j) as the jth component off. Let us define a binary relation = in n D, as 
~ O ~ ~ O W S :  J E J  

f = ~g if and only if ( j l f ( j )  = g(j ) )  E '3. 
If we think of the sets in B as being "large" sets, then, borrowing a phrase from 
measure theory, we read f = %g as "f(j) = g(j) almost everywhere". 

It is easy to see that = is an equivalence relation: (i) / = rf; (ii) if j = ,g, 
then g = ,f; (iii) i ff  = ,g and g =. h, then f =, h. For the proof of (iii), observe 
that {jlf(j) = g(j)) n {A g(j) = 4 ~ ) )  (; {ilfci, = MJ)). If { jlf(j) = g(j)) 

+we assume the Generalized Completeness Theorem @. 101). 
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(j)) are in 9, then so is their intersection, and, therefore, also 

of the equivalence relation = 9 ,  we can divide n D, into iEJ  

I ' 
(. equivalence classes: For any f in n D,, we define its equivalence class fr as 

J E J  

{ g1 f = %g). Clearly, (i) f E fr; (ii) fr = hr if and only if f = h ; (iii) if fr # hr , 
then fr n hr = 0. We denote the set of all equivalence classes f9 by n D,/9. J E J  

intuitively, iE./  D,/S is obtained from n D, by identifying (or merging) 
j E J  

elements of TI Di that are equal almost everywhere. 
j t J  - 

Now we shall define a model M of K with domain n Dj/J .  J E J  

(I) Let c be any individual constant of K, and let e, be the interpretation of c 
in M,. Then the interpretation of c in M will be fr , where f is the function such 
that f(j) = 9 for all j in J. We denote f by (e,)jEJ. 

(11) Let f; be any function letter of K and let A; be any predicate letter of 
K. Their interpretations ( f;lM and ( A ; ) ~  are defined in the following manner. 
Let (gl)r ,  . . . , (gn)% be any members of n D,/T. 

J E J  

(a) (f />M((g~>r,  - .  - ,  (,),) = hl, where h(j) = (/l)M(gl(j), - - 7 gn(~)) lor 

all j in J. 
@) ( ~ ; ) ~ ( ( g , ) % ,  . . . , ( gn))g)h holds if and only if 

{,I kMIA:[gl(j)' . . . 5 gn(~)I) 

Intuitively, ( is calculated component-wise, and ( A ; ) ~  holds if and only if it 

holds in almost all components. Definitions (a)-@) have to be shown to be 
independent of the choice of the representatives gl, . . . , gn in the equivalence 
classes (gt)4, . . . , (gn),: - 

, lf g, =Fg,*, . . . , gn igg,,* and h*(j) = (/l)M~(gl*(j), . - - , gn*(j))y then 
(i) hr = , h a ;  and (ii) { j (  kMjA;(gIO), . . . , gn(j)l) E 9 if and 

if 

{j(kMjA;[gl*(j), . - . , gn*Ol) E 6. 

(i) follows from the inclusion 

(ii) follows from the inclusions 

{ j \g , ( j )  = gl*(j)} n . . - n {jl gn(j) = gn*(j)} 

c { j  I tM,~;[gl ( j ) ,  . . . , gn(j)] if andonly if k~,A;[g,*(j), . - 3 gn*(~)I)  
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{jl% 3 in M,) e 9. But, since 9 is an ultrafilter, the 1 s t  condition is = (f"k)"'((~,")g, . . . 9 (cn')F) = h ~ ,  where h(j) = 
equivalent, by Exercise 2.1 14, to: { jJs, satisfies J in M,) E 9. c,"(j)) = ( f g " ( c I ,  . . . 3 c,). T h u s  A %  = 

Case 11* @ is 3 A e. By inductive hypothesis, s satisfies Q in M if and = I)((E)~(C~, . . . , en))- (iv) k~*AkR[#(c~)9 ' a . ' ICI('n)l if 
o n b  if {jl% satisfies J in M,) E 9 ;  s satisfies c in M if and only if {,Is, {jl kM~;(4(c I )u ,  . . . , $(en)(,))) E 9 ,  which is equivalent to 
satisfies C in M,) E 9. nerefore, S satisfies "B A e if and only if both of th< 9, i.e., k,A,"[c,, . . . , c,]. Thus, \r, is an isomorphism Of 

indicated sets belong to 9. But this is equivalent to their intersection belonging 
to g, which, in turn, is equivalent to { jls, satisfies J A e in M,) E 9. To see that atM' (.M*, let & be any wf, and (cI')s, . . - 7  (en'), E MC- 

Case @ is (Ex.)$. Assume s satisfies (Exi)%. Then there exists h in nen, by Proposition 2.43(a), kM*@[(cl"), . . . (cn")d if and only if 
11 Dj such that s' satisfies '??J in M, where sf is the same as s except that h, is {jl k ,~[cl#( j ) ,  . . . , ,--'(j)]} E 9 ,  which is equivalent to {jl k ~ @ [ c ~ ,  . . 9 

; € J  9, which, in turn, is equivalent to k ~ & [ c , ,  . . . 7 cA that is, 
the i'" component of sf. By inductive hypothesis, sf satisfies Q in M if and only k,*a[(c,#)s, . . . , (cnP)4, since I) is an isomorphism of M with I@. 
if {~Isj' satisfies 93 in M,) E 9 .  Hence, {jls, satisfies (EX,)% in M,) E 9 ,  since, 
if S' satisfies 9 in M, then s, satisfies (Ex,)$ in M,. 

assume w = {j]% satisfies (Exi)% in M,) E 9. For each, in W, EXERCISES 
2.119. (y-he Compactness Theorem again; cf. Exercise 2.34.) If all finite subsets choose some s,' such that s,' is the same as s, except in at most the ith component 

of a set of sentences f have a model, prove that f has a model. and sj' satisfies 9. Now define h in D, as follows: For j in W, let h(j) be the 2.1~). (a) A class w of models of a predicate calculus K is called elementary if 
J E J  

component of sjl, and, for j (3 W ,  choose h(j) to be an arbitrary element of there is a set of sentences of K such that W is the class of all models of r. Prove 

Dj. Let st' be the same as s except that its ith component is h,. Then w 
{ jls," 

that qj is elementary if and only if is closed under elementary equivalence and 

3 in M,) E 9. Hence, by the inductive hypothesis, so satisfies (K in M. the formation of ultraproducts. 
Therefore, s satisfies (EX,)% in M. (b) A class a of models of a predicate calculus K will be 

senlenlial if there is a sentence @ of K such that % is the class of all @. 

@) This from Part (a) by noting that a sentence & is true in a model prove that a class w is sentential if and only if both % and its complement 
if and only if some sequence satisfies @. of K not in w) are closed with respect to elementary equivalence and 

COROLLARY 2.44. If M is a model, and 9 is an ultrafilter on J, and if M* is 
the ultrapower MJ/T, then M* = M. 

ultraproducts. 
(c) Prove that the theory K of fields of characteristic zero (cf. p. 98) is 

axiomatizable, but not finitely axiomatizable. 

Let @ be any sentence. Then, by Proposition 2.43@,), is true in ~ ~ ~ - ~ t ~ ~ d ~ ~ d  Analysis. From the invention of the calculus until 
M* if and only if {jl@ is true in M) E 9. If @ is true in M, { jl@ is true in recent times the idea of jnfinjtesimals has been used as an intuitively 

= J E 9. If @ is false in M, {jl& is true in M)  = 0 e 9- tool for finding new results in analysis. The fact that there was rigorous 

foundation for infinitesimals was a source of embarrassment and led mathemati- 

2.44 can be strengthened considerably. For each in the domain D cians to discard them in favor of the rigorous limit ideas of Cauchy and 
of M, let c' stand for the constant function such that c'(j) = for all in J.  

,Weierstrass. However, about twenty years ago, Abraham discovered 

Define the function 4 such that, for each e in D, #(c) = (c'), E D J / ~ ,  and that it was possible to resurrect inlinitesima~s in an entirely legitimate and 

denote the range of 4 by M'. M' obviously contains the interpretations in M* precise way. This can be done by constructing models which are elementarily 
of the individual constants. Moreover, M' is closed under he operations equivalent to, but not isomorphic to, the ordered field of real ~ - ~ u m ~ ~ ~ ~ .  Such 
(fZ)M'; for, (fZ)"*((c,L),, - .  . , (en'),) is h,, where h(j) = (fi)M(C,, . , . , models can be produced either by using Proposition 2-34 (P. 95) Or as 
for allj in J ,  and ( f i ) " ( ~ ~ ,  . . . , c,) is a fixed element b of D s o  h, = (b*), powers. w e  shall sketch here the method based on ultra~owers. 
Mff. Thus, M' is a substructure of M+. Let R be the set of real numbers. Let K be a generalized predicate 

COROLLARY 2.45. 4 is an isomotphism of M with M', and M' < .M* 

PROOF. (i) By definition of M', the range of J. is M'. (ii) + is one-one. (For 
any c, d in D, (c ' )~  = (d'), if and only if c' =,dP, which is equivalent to 
{jlc'(j) = d'(j)} E '3, i.e., { j J c  = d )  E 5. If e # d, {jlc = d) = 0 B 9 ,  
and,  therefore, #(c) -+ + ( d )  (iii) For  any c,, . . . , c in D, 

with equality having the following symbols. 

(1) For each real number r, there is an individual constant a,; 
(2) For every n-ary operation p on R, there is a function letter f,; 
(3) For every n-ary relation on R, there is a predicate letter A,. 

We can think of R as forming the domain of a model '% for K; we simply let 
(ar)" = r, (f,)" = p, and (A@)" = O. 
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Let 9 be a non-principal ultrafilter on the set w of natural numbers. We can 
then form the ultrapower a* = Ca/9. We denote the domain R w / 9  of C* 
by R*. By Corollary 2.44, "n* -- 3 ,  and, therefore, %* has all the properties 
formalizable in K that "n possesses. Moreover, by Corollary 2.45, C* has an 
elementary submodel a', which is an isomorphic image of a. The domain RQ 
of 9%' consists of all elements (c'), corresponding to the constant function 
cP(i) = c for all i in w. We shall sometimes refer to the members of R' also as 
real numbers; the elements of R* - R' will be called non-standard reals. 

That there exist non-standard reals can be shown by explicitly exhibiting one. 
Let r(j) = j for all j in a. Then 1, E R*. However, (c'), < 1, for all c in R, by 
virtue of Lo? Theorem and the fact that {jlcx(j) < LG)} = {jlc < j}, being the 
set of all natural numbers greater than a fixed real number, is the complement of 
a finite set, and is, therefore, in the non-principal ultrafilter 9. lgis an "infinitely 
large" non-standard real. (The relation < used in the assertion ( c ' ) ~  < I, is the 
relation on the ultrapower C* corresponding to the predicate letter < of K. We 
use the symbol < instead of (<)" in order to avoid excessive notation, and we 
shall often do the same with other relations and functions, such as u + v, u x a, 
and Iul.) 

since 4* possesses all the properties of a forrnalizable in K, "n* is an 
ordered field having the real number field 3' as a proper subfield. (a* is 
non-Archimedean: the element 1% defined above is greater than all the natural 
numbers (n')a of a*.)  Let Rl, the set of "finite" elements of R*, contain those 
elements z such that / z /  < u for some real number u in R'. (RI is easily seen to 
form a subring of R*.) Let %, the set of "infinitesimals" of R*, contain those 
elements z such that 121 < u for all positive real numbers u in R'. The reciprocal 
l/rg is an infinitesimal. (It is not difficult to verify that & is an ideal in the ring 
Rl .  In fact, since x E Rl - R,, implies that l/x E R, - % it can be easily 
proved that R,, is a maximal ideal in R,.) 

EXERCISES 

2.121. Prove that the cardinality of R* is 2no.  
2.122. Prove that the set Ro of infinitesimals is closed under the operations of 

+, -, and X .  

2.lG. Prove that, if x E RI and y E R 0, then xy E Ro. 
2.124. Prove that, if x E R, - Ro, then l/x E R, - Ro. 

Let x E Rl. Let A = {ulu E R P  u < X) and B = {ulu E R T  A u > x}. 
Then (A, B) is a "cut", and, therefore, determines a unique real number r such 
that (i) (x)(x E A 3 x < r) and (ii) (x)(x E B 3 x > r).? The difference x - r 
is an infinitesimal. (Proof: Assume x - r is not an infinitesimal. Then lx - r] > 
rI  for some positive real number r,. Case 1: x > r. Then x - r > r,. So, 

+ ~ f .  Mendelson [1973], Chapter 5. 
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19 > r + r,  > r. But then r + r, E A, contradicting (i). Case 2: x < r. Then , - x > r,, and so, r > r - r, > x. Thus, r - r, E B, contradicting (ii).) The 
real number r such that x - r is an infinitesimal is called the standardpart of x 
and is denoted st(x). Note that, if x is itself a real number, then st(x) = x. We 
&all use the notation x a y to mean that st(x) = st(y). Clearly, x a y if and 
wly if x - y is an infinitesimal. If x a y, we say that x and y are infinitely close. 

EXERCISES 

2.125. If x E R,, show that there is a unique real number r such that x - r is an 
infinitesimal. (It is necessary to check this to ensure that st(x) is well-defined.) 

2.126. If x and y are in R,, prove: 
(a) st(x + y) = st(x) + st(y); 
(b) st(xv) = st(x)st(y); 
(c) st(-X) = - s~(x) A st(y - X) = st(y) - st(x); 
(d) x 2 0 3 st(x) > 0; 
(e) x & y 3 st(x) & st(y). 

The set w of natural numbers is a subset of the real numbers. Therefore, in the 
theory K there is a predicate letter N corresponding to the property x E w. 
Hence, in R*, there is a set a* of elements satisfying the wf N(x). An element 
f, of R* satisfies N(x) if and only if {jl f(j) E w) E 4. In particular, the 
elements n*,, for n E w, are the "standard" members of w*, while L,, for 
example, is a "non-standard" natural number in R*. 

Many of the properties of the real number system can be studied from the 
viewpoint of non-standard analysis. For example, if s is an ordinary sequence of 
real numbers, and c is a real number, one ordinarily says that lim s, = c if 

(a) (E) ( .E  > 0 3 (En)(. E w A (k)(k E w A k > n 3 1s. - el < r ) ) ) .  

Since s E Rw, s is a relation and, therefore, the theory K contains a predicate 
letter S(n, x) corresponding to the relation s, = x. Hence, R* will have a 
relation of all pairs (n, x) satisfying S(n, x). Since a* 4 ,  this relation will be 
a function which is an extension of the given sequence to the larger domain w*. ' Then we have the following result. 

PROPOSITION 2.46. Let s be a sequence of real numbers and c a real number. 
Let s* denote the function from w* into R* corresponding to s in a*. Then 
lim s, = c i j  and only i j  s*(n) c for all n in w* - o.  (The latter condition 
can be paraphrased by saying that s*(n) is infinitely close to c when n is 
infinitely large.) 

PROOF. Assume lim s, = c. Consider any positive real E .  By (&), there is a 
natural number no such that (k)(k E w A k > no 3 IS,, - cl < c) holds in "n. 
Hence, the corresponding sentence (k)(k E w* k > no 3 ls*(n) - cl < &) 

holds in a*. For any n E w* - w, n > no, and, therefore, Is*(n) - cl < &. 

Since this holds for all positive reals E, s*(n) - c is an infinitesimal. 
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Conversely, assume s*(n) ,-- C for all n E a* - 0. Take any positive real E .  2.131. (a) Let C R. C is said to be closed if (x)((€)[€ > O 1 ( E ~ ) ( ~  A 
Fix n~ in a* - a- Then ( k ) ( k  > n ,  3 (s*(k) - cl < E). So, the sentence 1, - y l  < €)I 2 E c). show that C is closed if and only if eveV real number 

(En)(n A (k)(k  E a A k n 3 Is, - cl < E )  is true for q*, and, there- which is infinitely close to a member of C* is in C. 

fore? also for a. So, there must be a natural number no such that (k ) (k  E a /\ @) Let C c R. C is said to be open if (x)(x E C 2 (E6)(6 > O A 

(,)(lY - < 6 
E c))) show that C is open if and only if everi non-stan- 

% 3 1% - cl < &). Since E Was an arbitrary positive real, we have proved I [  

lirn s, = c .  dard real which is infinitely close to a member of C is a member C*. 

EXERCISE 

2.127. Using Proposition 2.46, prove the following limit theorems for the real 
number system. 

Let s and u be sequences of real numbers, and c, and c2 real numbers such that 
lirn s, = c ,  and lirn u,, = c,. Then: 

(a) lirn (s, + u,) = c ,  + c,; 
(b) lim (s,u,) =. c ,  c,; 
(c) If c2 # 0 and all u, # 0, lirn (s,/u,) = c, /c2 .  

Let us now consider another important notion of analysis, continuity. Let B 
be a set of real numbers, let c E B, and let f be a function defined on B and 
taking real values. One says that f is continuous at c if 

PROPOSITION 2.47. Let f be a real-valued function defined on a set B of real 
numbers. Let c E B. Let B* be the subset of R* corresponding to B,  and let f* 
be the function corresponding to f.+ Then f is continuous at  c if and only if 
( x ) ( x  E B* A x = c 3 f*(x) w f(c)). 

EXERCISES 

2.128. Prove Proposition 2.47. 
2.129. Assume f and g are real-valued functions defined on a set B of real 

numbers, and assume that f and g are continuous at a point c in B. Using 
Proposition 2.47, prove: 

(a) f + g is continuous at c ;  
(b) f .  g is continuous at c. 

2.130. Let f be a real-valued function defined on a set B of real numbers and 
continuous at a point c in B, and let g be a real-valued function defined on a set A 
of real numbers containing the image of B under) Assume that g is continuous at 
the point f(c). Prove, by Proposition 2.47, that the composition g o  f is continuous at 
C .  

Many standard theorems of analysis turn out to have much simpler proofs 
d th in  non-standard analysis. Even stronger results can be obtained by starting 
d t h  a theory K which has symbols, not only for the elements, operations, and 

on R, but also for sets of subsets of R, sets of sets of subsets of R, etc. 
this way, the methods of non-standard analysis can be applied to all areas of 

modern analysis, sometimes with original and strilang results. For further 
development and applications, cf. A. Robinson [1966], Luxemburg 119691, Bern- 
stein [1973], Stroyan-Luxemburg [1976], and Davis 119771. A calculus textbook 
based on non-standard analysis has been written by H. J. Keisler 11976) and has 
been used in some experimental undergraduate courses. 

EXERCISES 

2.132. A real-valued function f defined on a closed interval [a, b] = 
{xla < x < b) is said to be uniformly continuous if 

(E)(E > 0 3 (E6)(6 > 0 A (x)(y)(a c x c b A a < y < b A lx - yl < 8 
3 If@> - f(Y>l < E) ) ) .  

Prove that f is uniformly continuous if and only if, for all x and y in [a ,  b]*, 
x = y 3 ff(x) = f*(y). 

2.133. Prove, via non-standard methods, that any function continuous on [a, b] 
is uniformly continuous on [a, b]. 

2.134. (Bolzano-Weierstrass Theorem) A real number c is said to be a limit 
point of a set A of reals if ( E ) ( E  > 0 3 (Eu)(u E A A I C  - U I  < E)). Let s be a 
bounded sequence of reals, that is, there is a number b such that Is,\ < b for all n 
in a. Prove that the set of terms of s (i.e., the range of the function s E Rw) has a 
limit point. 

/ 

*TO be more precise, f  is represented in the theory K by a predicate letter AJ, where AJ ( x ,  y )  
corresponds to the relation f (x)  = y. Then the corresponding relation A/* in R* determines a 
function fk with domain B*. 



* CHAPTER 3 

FORMAL NUMBER THEORY 

1. An Axiom System 
Together with geometry, the theory of numbers is the most immediately 

intuitive of all branches of mathematics. It is not surprising then that attempts to 
formalize mathematics and to establish a rigorous foundation for mathematics 
should begin with number theory. The first semi-axiomatic presentation of this 
subject was given by Dedekind in 1879 and has come to be known as Peano's 
Postu1ates.t It can be formulated as follows: 

(Pl) 0 is a natural number. 
(P2) If x is a natural number, there is another natural number denoted by x' 

(and called the successor of x). 
(P3) 0 # x' for any natural number x. 
(P4) If x' = y', then x = y. 
(P5) If Q is a property which may or may not hold of natural numbers, and 

if (I) 0 has the property Q, and (11) whenever a natural number x has the 
property Q, then x' has the property Q, then all natural numbers have the 
property Q (Principle of Induction). 

These axioms, together with a certain amount of set theory, can be used to 
develop not only number theory but also the theory of rational, real, and 
complex numbers (cf. Mendelson [1973]). However, the axioms involve certain 

/intuitive notions, such as "property", which prevent this system from being a 
rigorous formalization. We therefore shall build a first-order theory S that is 
based upon Peano's Postulates and seems to be adequate for the proofs of all the 
basic results of elementary number theory. 

The first-order theory S has a single predicate letter A: (as usual, we write 
t = s for A?(t, s)); it has one individual constant a, (written, as usual, 0); it has 
three function letters f,', f:, f,Z. We shall write t' instead of f,'(t); t + s instead of 
f:(t, s); and t . s instead of fi(t, s). The proper axioms of S are: 

(Sl) X ,  = X2 3 (x, = X3 3 X2 = x3) 
(S2) x ,  = x, 3 x; = x; 

?For historical information, see Wang 119571. 
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(S3) 0 # (XI)' 
(S4) (x,)' = (x,)' 3 X I  = x, 
(S5) x, + 0 = x, 
(S6) x, + xi = (x, + x,)' 
(S7) x , . o = o  
(S8) X I .  (xi) = ( x , - x 3  + X I  

(S9) For any wf @(x) of S, @(O) 3 ((x)(&(x) 3 @(x')) 3 (x)&(x)) 
Notice that Axioms (S1)-(S8) are particular wfs while (S9) is an axiom 

schema providing an infinite number of axioms. However, (S9), which we shall 
call the Principle of Mathematical Induction, cannot fully correspond to P e a n ~ ' ~  
Postulate (P5), since the latter refers intuitively to the 2'0 properties of natural 
numbers, while (S9) can only take care of the denumerable number of properties 
defined by wfs of S. 

Axioms (S3) and (S4) correspond to the Peano Postulates (P3) and (P4), 
respectively. Peano's axioms (Pl) and (P2) are taken care of by the presence of 0 
as an individual constant and f,' as a function letter. Our axioms (S1)-(S2) 
furnish some needed properties of equality; they would have been assumed as 
intuitively obvious by Dedekind and Peano. Axioms (S5)-(S8) are the recursion 
equations for addition and multiplication. Dedekind and Peano didn't have to 
assume them because they allowed the use of intuitive set theory, from which the 
existence of operations + and - satisfying (S5)-(S8) is deducible (cf. Mendelson 
[1973], Theorems 3.1 and 5.1). 

From (S9), by MP, we can obtain the Induction Rule: from &(0) and 
(x)(@(x) 3 @(XI)), we can derive (x)&(x). 

It will be our immediate aim to establish the usual rules of equality, i.e., we 
shall show that the properties (6) and (7) of equality (cf. p. 79) are derivable in S, 
and hence that S is a first-order theory with equality. 

First, for convenience and brevity in carrying out proofs, we cite some 
immediate, trivial consequences of the axioms. 
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PROPOSITION 3.2. For any terms t, r, s the following wfs are theorems of S. 

(a) t = t 
(b) t = r > r = t  

, (c) t = r 3 ( r = s 3 t = s )  
(d) r = t > ( s =  t > r = s )  
(e) t = r > t + s = r + s  
(f) t = O + t  
(g) t' + r = (t + r)' 
(h) t + r = r + t  
(i) t = r > s + t S s + r  
(i) ( t + r ) + s = t + ( r + s )  
(k) t = r > t - s = r - s  
0) o a t  = o  
(m) t ' - r  = t - r  + r 
(n) t - r  = r - t  
(0) t = r > s - t = s - r  

PROOF. 

(a) 1. t + O = t  
2. ( t + O = t ) > ( t + O = t > t = t )  
3. t + o = t > t = t  
4. t = t  

(b) 1. t = r > ( t = t > r = t )  
2. t = t > ( t = r > r = t )  
3. t = r > r = t  

(c) 1. r = t > ( r = s > t = s )  
2. t = r > r = t  
3. t = r ~ ( r = s 3 t = s )  

(S5') 
(S 1') 
1, 2, MP 
1, 3, MP 
(S1') 
1, Tautology 
2, Part (a), MP 
(S 1') 
Part (b) 
1, 2, Tautology 

LEMMA 3.1. For any terms t, s, r of S, the following wfs are theorems. 
(SI') t = r > ( t = s > r = s )  
(S2') t = r 3 t' = r' 
(S3') 0 # t' 

(S4') t' = r' > t = r 
(S5') t + 0 = t 
(S6') t + r' = (t + r)' 
(ST) t .  0 = 0 

- 

(d) 1. r = t > ( t = s > r = s )  Part (c) 
2. t = s > ( r = t > r = s )  1, Tautology 

3. s = t > t = s  Part (b) 

4. s = t 3 ( r = t > r = s )  2, 3, Tautology 

5. r = t > ( s = t > r = s )  4, Tautology 

(e) Apply the Induction Rule to @(z): x = y > (x + z = Y + z). 
(i) 1. x + O = x  (S5') 

2. y + o = y  (S5') 
3. x = y  HYP 

(S8') t . r' = (t . r) + t I 4. x + O = Y  1, 3, Part (c) 
P n o o r .  (S 1')-(S8' follow from (S I)-(%) respectively by first forming the 5. x + O = y + o  2, 4, Part (d) 

6. x = y > X + o = Y + o  1-5, Deduction Theorem closure by means of Gen, and then applying rule A4 with the appropriate terms 
t, r, S. i.e., k @(O). 
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(ii) 1. x = y > x + z = y + z  
2. x = y  

HYP 

3. x + 2' = (x + 2)' 
HYP 

4. y + 2' = (y + 2)' 
(S6') 

5. x + z = y + z  
(S6') 
1, 2, MP 

6. ( x + z ) ' = ( y + z ) *  5, (S2') 
7. x + z f = ( y + z ) '  3, 6, Part (c) 
8. x + z ' = y + z '  4, 7, Part (d) 
9. ( x = y 3 ( x + z = y + z ) ) > ( x = y > ( x + z f = Y + z ' ~ ~  

,, 
1-8, ~educiion Theorem 

Hence, t (z)&(z) by the Induction Rule, from (I) and (ii). Therefore, by Gen and 
R u l e A 4 , t t = r > t + s = r + s .  
(f) Let @(x) be x = 0 + x. 

(i) 0 = 0 + 0, by (S53 and Part (b); i.e., t @(0). 
(ii) 1. x = 0 +  x 

2. ( 0+x1 )= (O+x) '  
HYP 

3. x1 = (0 + x)' 
(S6') 
1, (S2') 

4. x' = 0 + x' 2, 3, Part (d) 
5. x = O + x > x ' = O + x '  1-4, Deduction Theorem 

i.e., t @(x) 3 @(x'). 
By (i)-(ii) and the Induction Rule, k (x)(x = 0 + x). So, by Rule A4, 
t t = o + t .  

(g) Let @(y) be x' + y = (x + y)'. 
(i) 1. x ' + O = x '  

2. x + o = x  
3. (x + 0)' = x' 
4. x ' +  O=(x  + 0)' 

i-e., t @(O). 

(S5') 
(S5') 
2, (ST) 
1, 3, Part (d) 

. , 
(ii) 1. x ' + y  = ( x  +y)' 

2. x' + y' = (x' + y)' 
HYP 

3. ( x ' + y ) ' = ( x + y ) "  
(S6') 
1, (ST) 

4. x l + y ' = ( x + y ) "  2, 3, Part (c) 
5. (X + y') = (x + y)' 
6. ( x + y ' ) ' = ( x + y ) "  

(S6') 

7. x' + y' = (x + y')' 
5,  (ST) 
4, 6, Part (d) 

8. x' + y = (x + y)' > x' + y' = (x + y')' 

1-7, Deduction Theorem 
i.e., t @(y) 3 @(fl). 

So, by (i), (ii), and the Induction Rule, t (y)(x' + y = (x + y)'), and, then by 
Gen and Rule A4, t t' + r = (t + rY. 
(h) Let @(y) be x + y = y + x. 

i.e,, t @(O). 
x + y = y + x  
x + y' = (x + y)' 
y' + x = (y + x)' 
(x + y)'= (y + x)' 
x + y' = (y + x)' 
x + y ' = y f + x  
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(S5') 
Part (f) 
1, 2, Part (c) 

HYP 
(S6') 
Part (g) 
1, (ST) 
2, 4, Part (c) 
3, 5, Part (d) 

7. x + y = y + x 3 x + y f = y ' + x  
1-6, Deduction Theorem 

So, by (i), (ii), and the Induction Rule, t (y)(x + y = y + x), and, then by Gen 
and Rule A4, t t + r = r + t. 

(i) 1. t = r X t + s = r + s  
2. t + s = s + t  
3. r + s = s + r  
4. t = r  
5. t + s = r + s  
6. s + t = r + s  
7. s + t = s + r  
8. t = r > s + t = s + r  

Part (e) 
Part (h) 
Part (h) 
HYP 
1, 4, MP 
2, 5, (S1') 
3, 6, Part (c) 
1-7, Deduction Theorem 

(j) Let @(z) be(x + y) + z = x + ( y  + z). 
(i) 1. ( x + y ) + O = x + y  (SS1> 

2. y + o = y  (S5') 
3. x + ( y + O ) = x + y  2, Part (i) 
4. ( x + y ) + O = x + ( y + O )  1, 3, Part (d) 

t i.e., t- @(O). 
(ii) 1. ( x + y ) + z = x + ( y + z )  HYP 

2. (x + y) + 2' = ((x + y) + 2)' (S6') 
3. ( ( x + y ) + z ) ' = ( x + ( y + z ) ) '  1, (ST) 
4. (x + y) + z' = (x + (y + 2))' 2, 3, Part (c) 

5. y + 2' = (y + 2)' (S6') 
6. x + (y + z') = x + (y + z)' 5, Part (i) 

7. x + ( y + z ) ' = ( x + ( y + z ) ) '  (S6') 
8. x + ( y + z ' ) = ( x + ( y + z ) ) '  6, 7, Part (d) 
9. ( x + y ) + z l = x + ( y + z ' )  4, 8, Part (d) 

10. (x + y ) + z  = x + ( y  + z ) 3 ( x  + y ) +  z ' =  x + ( y  + 2') 
1-9, Deduction Theorem 
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By (i), (ii), and the Induction Rule, t (z)((x + y) + z = x + (y + z)), and then, 
by Gen and Rule A4, t- (t + r) + s = t + (r + s). 

Parts (k)-(0) are left as exercises for the reader. 

COROLLARY 3.3. S is a theoy with equaliq, i.e., we have (6): t x, = x,, and 
(7): t x = y 3 62 (x. x) 3 &(x, y), where &(x, y) comes from & (x, x) by re- 
placing one or more occurrences of x by y, with the proviso that y is free for 
those occurrences of x (cf. p. 79). 

PROOF. By Proposition 2.26, this reduces to Proposition 3.2 (a)-(e), (i), (k), 
(o), and (S2'). 

Notice that the interpretation in which 

(a) the set of non-negative integers is the domain, 
(b) the integer 0 is the interpretation of the svmbol 0. . - -  - 7 

(c) the successor operation (addition of 1) is the interpretation of the ' 
function (i.e., of f?). . . " , ,* 

(d) ordinary addition and multiplication are the interpretations of + and -, 
(e) the interpretation of the predicate letter = is the identity relation, 

is a normal model for S. This model is called the standard model for S. Any 
normal model for S which is not isomorphic to the standard model will be called 
a non-standard model for S. 

If we recognize the standard interpretation to be a model for S, then of 
course, S is consistent. However, semantic methods, involving as they do a 
certain amount of set-theoretic reasoning, are regarded by some as too precari- 
ous to serve as a basis for consistency proofs; likewise, we have not proved in a 
rigorous way that the axioms of S are true under the standard interpretation, but 
have taken it as intuitively obvious. For these and other reasons, when the 
consistency of S enters into the argument of a proof, it is common practice to 
take the statement of the consistency of S as an explicit, unproved assumption. 

Some important additional properties of addition and multiplication are 
covered by the following result. 

PROPOSITION 3.4. For any term t, r, s the following wfs are theorem of S. 

(a) t . (r + S) = (t - r) + (t . S) (Distributivity) 
(b) (r + s) - t = (r t) + (s t) (Distributivi ty) 
(c) ( t .  r) - s  = t .  (r - s) (Associativity of . ) 
(a) t + s = r + s > t = r  (Cancellation Law for +) 

PROOF. 

(a) Prove t- x . (y + z) = (x - y) + (x . z) by induction on z. 
(b) From (a) by Proposition 3.2(n). 
(c) Prove t (x . y) . z = x - (y . z) by induction on z. 
(d) Prove t x + z = y + z 2 x = y by induction on z. This requires, for the 
first time, use of (S4'). 

c. 1 AN AXIOM SYSTEM 
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The _ - -  terms 0, Of, 0 ,  0', . . . we shall call numerals, and denote by 

I 0, I, 2, 3, . . . in the usual way. In general, if n is a non-negative integer, we 
&all let E stand for the corresponding numeral 0 '  - . ', i.e., for 0 followed by 

strokes. We can define the numerals recursively by stating that 0 is a numeral .- - 
and, if u is a numeral, then u' is also a numeral. 

PROPOSITION 3.5 
(a) t t + = t' 

PROOF. 

(a) 1. t + O f  = (t + 0)' 
2. t + O = t  
3. (t + 0)' = t' 
4. t + 0 ' =  t' 
5. t + i = t f  

(b) 1. t - 0 ' =  t . 0 +  t 

(S6') 
(S5') 
2, (S2') 
1, 3, Proposition 3.2(c) 
4, Abbreviation 
(S8') 
(ST) 
2, Proposition 3.2(e) 
1, 3, Proposition 3.2(c) 
Proposition 3.2(f), (b) 
4. 5. Proposition 3.2(c) , , 

6, Abbreviation 
(SSf) 
Part (b) 
2, Proposition 3.2(e) 
1, 3, Proposition 3.2(c) 

5. t . Z = t + t  4, Abbreviation 
(d) Let be x + y = 0 3 x = 0 A y = 0. It is easy to prove that 

t &(O). Also, since t (x + y)' # 0 by (S3'), then, by (S6'), it follows that 
t x + y' # 0. Hence, t- &(Y') by the tautology --A > ( A  > B). So, 
t @(y) 3 &(y') by the tautology A 3 (B 3 A). Thus, by the Induction 
Rule, t (y)&(y), and then, by Gen and Rule A4, we obtain Part (d). 

(e) The proof is similar to that for (d) and is left as an exercise. - 
(f) B y i n d u c t i o n o n y i n x + y = ~ 3 ( ( x = 0 ~ ~ = ~ ) ~ ( ~ = 1 ~ y = 0 ) ) .  - 
(g) Byinductiononyinx.y = i > ( x  = 1 A y  =I). 
(h) Perform induction on x in x f 0 > (Ew)(x = w'). 
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(i) Let @(y) be (x)(z # 0 > (x - z = y . z > x = y)). 

HYP 
HYP 
Proposition 3.2(1) 
2, 3, Proposition 3.2(c) 
1, 4, Part (e) above 

1-5, Deduction Theorem 
7. (x)(z # 0 > (x . z = 0 - z 3 x = 0)) 6, Gen 

i.e., t @(O). 

(ii) 1. 
2. 

(x)(z # 0 > (X - 2  = y . z > x = y)) 
z # O  
x . 2  = y' . z  
y '#O 
y ' . z  # O  
x - z  # 0 
X # O  

(Ew)(x = w') 
x = b' 
b ' . z  = y ' . z  
b . z + z = y . z + z  
b . z  = y . z  
~ + O > ( ( b . z = y . z ) > ( b = y ) )  
b . z = y . z > b = y  

HYP (@(Y)) 
HYP 
HYP 
(S3'), Proposition 3.2(b) 
2, 4, Part (e) and a tautology 
3, 5, (Sl') and tautologies 
6, (ST), Proposition 3.210). 

, - 7 ,  

(n), (S l'), and tautologies 
7, (h) above 
8, Rule C 
3, 9, Equality law (7) 
10, Proposition 3.2(m), (d) 
11, Proposition 3.4(d) 
1, Rule A4 
2, 13, MP 

13. b = y 12, 14, MP 
16. b' = y' 15, (S2') 
17. x = y' 9, 16, Proposition 3.2(c) 
18. @(Y), z # 0, x - z = y' z 1 x = y' 1-17, Proposition 2.23 
19. &(y) t z # 0 3  ( x - z  = y' - 2  > x = y') 

19, Deduction Theorem twice 
20. @(y) t (x)(z # 0 > (x - z = y' . z > x = y') 

19, Gen 
20, Deduction Theorem 

Hence, by (i) and (ii) and the Induction Rule, we obtain t (y)@(y), and then, by 
Gen and Rule A4, we have the desired result. 

- - -  -. 

(j) Exercise for the reader. 

PROPOSITION 3.6. (a) Let m, n be any natural numbers. (i) If m # n, then 
t iii # ii. (ii) km + n = Til + a and t m  - n = 61 . A. (b) Any model for S is 
injinite. (c) For any cardinal number N g, S has a normal model of cardinalily 

0. 

Assume m # n. 
1. 5qii 

m t~mes - 
r - 2. O " . . .  - 

3. Apply (S4') 

AN AXIOM SYSTEM 

Now, either m < n or n < m; say, m < n. 
HYP 

n times - 
0"'. . . ' 1 is an abbreviation of 

(n - m) tlmes 

%??. Let t be 
1 m times in a row. Then 0 = 0 
> m, n - m - 1 > 0. Thus, 0 = t'. 

(S3') 7. ' l .  

5. O = t ' A O # t '  3, 4, Tautology 
6. t i i i = i i > ( O =  t t A O # t ' )  1-5, Deduction Theorem 
7. k m # i i  6, Tautology 

A similar proof holds in the case when n < m. (A more rigorous proof can be 
&en by induction in the metalanguage with respect to n.) (ii) We use induction 
in the metalanguage. First, m + 0 is iii. Hence, t m  + 0 = iii + 0 by (S5'). Now 
assume t m  + n = iii + ii. Therefore, t (m + n)' = W + (ii)' by (S2') and (S6'). 
But m + (n  + 1) is (m + n)' and  n + 1 is ( )  Hence,  
tm + (n + I )=  iii + n + 1. The proof that t m  - n =  a. a is left as an ex- 
ercise. 

(b) By Part (a), (i), in a model for S, the objects corresponding to the 
numerals must be distinct. But there are denumerably many numerals. 

(c) This follows from Corollary 2.35(3) and the fact that the standard model is 
an infinite normal model. 

An order relation can be introduced by definition in S. 

DEFINITIONS 

t < s for (Ew)(w # 0 A w + t = S) 
t < s f o r t < s v t = s  
t > s f o r s < t  
t > s f o r s < t  
t 4 s for -- (t < s), etc. 

~ 1 n  the first definition, to be precise, we can choose w to be the first variable not 
in t or s. 

PROPOSITION 3.7. For any terms t, r, s the following wfs are theorems. 

(a) t 4 t 
(b) t < s > ( s < r >  t < r )  
(c) t < s > s $ t  
(d) t < s = t + r < s + r  
(e) t < t 
(f) t < s > ( s S r > t < r )  
(g) t < s = ( t + r < s + r )  
(h) t < s r , ( s < r > t < r )  
(i) 0 < t 
(j) 0 < t' 
(k) t < r = t t < r  

(m)t < t' 
(n) (0 < T), (T < Z), (2 < 3), . . . 
( o ) t # r > ( t  < r V r < t )  
(o')t = r V t  < r V r  < t  
(p)t  S r V r  < t  
( q ) t + r > t  
(r) r # 0 >  t + r > t  
(s) r # O >  t a r  a t  
(t) r # O r r > O  
( u ) r > O > ( t > O > r - t > 0 )  
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(v) r # O > ( t  > I 3  t - r > r )  ( x ) r # O 3 ( t  < s = t - r  < s - r )  
(w) r # O > ( t  < s = t . r < s . r )  (y) t B O  

(2) t < r A r i t > t = r  

PROOF. 

(a) By Proposition 3.4(d). 
(b) 1. t < s  HYP 

2. s < r  HYP 
3. (Ew)(w # 0 A w + t = s) 1, Definition 
4. (Ev)(v # 0 A v + s = r) 2, Definition 
5. b # O A b + t = s  3, Rule C 
6. c # O A c + s = r  4, Rule C 
7. b + t = s  5, Tautology 
8. c + s = r  6, Tautology 
9. c + ( b + t ) = r  7, 8, Proposition 3.2(i), (c) 

10. ( c + b ) + t = r  9, Proposition 3.2(j), (c) 
11. b # O  5, Tautology 
12. c +  b # O  11, Proposition 3.5(d) 
13. c + b # O / \ ( c + b ) + t = r  10, 12, Tautology 
14. (Eu)(u # OA u + t = r) 13, Rule E4 
15. t < r  14, Definition 
16. t t < s > ( s < r > t < r )  1 - 15, Deduction Theorem, 

Proposition 2.23 
Parts (c)-(z) are left as exercises. These theorems are not arranged in any special 
order, though, generally, they can be proved more or less directly from preced- 
ing ones in the list. 

PROPOSITION 3.8. (a) For any natural number k, 

t x = o v  . . . v  x = E r x  < E. 
(a') For any natural number k and any wf @, 

(b) For any natural number k > 0, 

(b') For any natural number k > 0, and any wf @, 

PROOF. (a) We prove t x = 0 v . . . v x = E - x < E by induction in the 
metalanguage on k. The case for k = 0, t x = 0 = x < 0 is obvious from the 
definitions and Proposition 3.7. Assume t x = 0 V . . . V x = x < k. Now, 
assumex-0 V . . . V  x = k ~ x = k  + 1; bu t , x=k  + 1 > x  <k  + l;also, 
x = O V  . . . V  x = k > x < k ,  and x < E > x < k +  1. Hence, x = O  
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1 vr  v. .  . V x  =k + 1 3  x < k  + 1. On theother hand, assumex < k  + 1. Then 
.=k - + 1 V x < k  + 1. If x = k  + 1, then x = O V  . . .  V x = k  + 1. If 
, <k + 1, then, since k + 1 is (k)', we have x < k, by Proposition 3.7(1). By " - 

inductive hypothesis, x = 0 V . . . V x = k, and SO, x = 0 V . . . V x =k  + 1. 
p i s  proof has been given in an informal manner that we shall generally use 
from now on. In particular, the Deduction Theorem, the elirninability of Rule C, 
and the Replacement Theorem (Corollary 2.21) will be tacitly applied, and 
tautologies used will not be explicitly mentioned.) 

Parts (a'), (b), (b') follow easily from (a). Part (c) follows almost immediately 
from Proposition 3.7(0), using obvious tautologies. 

There are several stronger forms of the induction principle which we can 
prove at this point. 

PROPOSITION 3.9 
(a) (Complete Induction) 

(Consider a property P such that, for any x, if P holds for all natural numbers 
less than x, then P hold for x also. Then P holds for all natural numbers.) 
(b) (Least-number Principle) 

(If a property P holdr for some natural number, then there is a least number 
satisfying P.) 

PROOF. 

(a) Let 9 (x) be (z)(z < x > @(z)). 

(i) 1. (x)((z)(z < x 3 @(z)) 3 @(XI) HYP 
2. (z)(z < 0 3 @(I)) 3 @ (0) 1, Rule A4 
3. z 4 50 Proposition 3.701) 

f 
4. (ZXZ < 0 3 @(z)) 3, Tautology, Gen 
5.  &(O) 2, 4, Gen 
6. (z)(z < 0 3 @(I)) 5, Proposition 3.8(a1) 

i.e., a ( 0 )  
7. (x)((z)(z < x 3 @(I)) 3 @(x)) t 3 (0) 

1-6 
(ii) 1. (x)((z)(z < x 3 @(z)) 3 @(x)) HYP 

2. 53 (x), i.e., (z)(z d x 3 &(z)) HYP 
3. (z)(z < x' 3 @(z)) 2, Proposition 3.7(1) 
4. (z)(z < x' 3 @(z)) 3 @(xJ) I, Rule A4 
5. @(xl) 3, 4, MP 
6. z < x 1 3  z < x ' V z =  x' Definition, Tautology 
7. z < x ' > @ ( z )  3, Rule A4 
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8. Z = X ' - J @ ( I )  5, Equality Axiom (7) 
9. (z)(z < X' 1 @(z)) 6, 7, 8, Tautology, Gen 

i.e., 91 (x') 
10. (x)((z)(z < x 3 @(z)) 3 @(XI) k (x)(% (x) 3 3 (x')) 

1-9, Deduction Theorem, Gen 
From (i), (ii), and the Induction Rule, we obtain (2 k (x)%(x), i.e., 

(2 k (x)(z)(z < x > &(z)), where C is (x)((z)(z < x 3 @(I)) 3 a(,)). Hence, 
by Rule A4 twice, (2 1 x < x 2 @(x); but, k x < x. SO, (2 k &(x), and, by Gen 
and the Deduction Theorem, k (2 3 (x)@(x). 

(b) 1- - ( E Y ) ( @ ( Y ) A ( ~ X ~ < Y  3-&(z))) HYP 

2. Y - Y A ( 2 )  < Y 3 - @ I )  1, Tautology 

3. (Y)((~XZ < Y 3 -- 3 - Q (Y)) 2, Tautology 

4- (Y)+ @(Y) 3, Part (a) with -- & instead 
of & 

5. -- &(x) 4, Rule A4 
6. - (EY)(@(Y) A (z)(z < Y 3 -- @(z))) 3 -. @(x) 

1-5, Deduction Theorem 
7. @(x) 2 (EY)(@(Y) 3 (ZXZ < Y  3 -- d(z))) 

6, Tautology 
EXERCISE 3.1. Show that 

t (x)(&(x) 3 (EY)(Y < x A @(Y))) 3 (XI - @(x) 
(Method of Infinite Descent). 

Another important notion in number theory is divisibility, which we now 
define. 

DEFINITION. 11s for (Ez)(s = t . I), where z is the first variable not in t or s. 

PROPOSITION 3.10. The following wfs are theorem. 

PROOF. (a) t = t . 7. Hence tlt. (b) t = i . t. Hence ill. (c) 0 = t - 0. Hence, 
t10. (d) If s = t - z and r = s w, then r = t . (z - w). (e) If s # 0 and tJs, then 
S = t - z for some z. If z = 0, then s = 0. Hence, z # 0. So, z = u' for some u. 
s ' t . (u') = t . u + t > t. (0-01) are left as exercises. 

EXERCISES 

Prove the following: 
3.2. t t J T 3  t = I  
33. ( t ls  /\ tJsl) 1 t = T 
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will be useful, for later purposes, to prove the existence of a unique quotient 
remainder upon division of one number by another. 

p ~ o ~ o s 1 ~ 1 0 ~ 3 . 1 1 .  t y  # O 3  (EIu)(E1u)(x = y - u  + v A v  <Y). 

q q  ' PROOF. Let &(x) bey # 0 3 (Eu)(Ev)(x = y . u + u A u < y). 
(i) 1. y # O  HYP 

2. O = y . O + O  650,  (S7') 
3. o < y  I ,  Proposition 3.7(t) 

4. O = y . O + O A O < y  2, 3, Tautology 
5. (Eu)(Eu)(O = y . u + u A u < y) 4, Rule E4 

6. y # O  3 (Eu)(Eu)(O = y - u  + u A u < Y )  
1-5, Deduction Theorem 

(ii) 1. @(x), i.e., y # 0 3 (Eu)(Ev)(x = y . u + u A u < y) 
HYP 

2. y # O  HYP 
3. ( E u ) ( E u ) ( x = y . u + u A v < y )  1 ,2 ,MP 
4. x = y . a + b A b < y  3, Rule C twice 
5. b < y  4, Tautology 
6. b' < y 5, Proposition 3.7(k) 
7. b f < y v b ' = y  6, Definition 
8. b f < y > ( x ' = y - a + b ' A b f < y )  4,(S6') 
9. b ' < y ~ ( E u ) ( E v ) ( x ' = y . u + u A v < y )  

8, Rule E4, Deduction 
Theorem 

10. b ' = y > x f = y - a + y - 1  4, (S6'), Proposition 3.5(b) 
11. b f = y 3 ( x ' = y . ( a + T ) + O A O < y )  

10, Proposition 3.4, 2, 
Proposition 3.7(t), (S5') 

12. b ' = y > ( E u ) ( E u ) ( x ' = y ~ u + v A u < y )  
1 1, Deduction Theorem, 

Rule E4 
13. (EuXEu)(x' = y . u + u A v < y) 7, 9, 12, Tautology 
14. &(x) 3 (y # 0 3 (Eu)(Eu)(xl = y + u + v v < y)) 

i.e., &(x) ZI & ( X I )  
1 - 13 Deduction Theorem 

By (i), (ii), and the lnduction Rule, t (x)@(x). This establishes the existence of a 
quotient u and a remainder u. To prove uniqueness, proceed as follows. Assume 
Y # 0. Assume x = ye u, + u, u, < y and x = y . u, + v2 A v2 < y. Now, 
ul = u, or u, < u, or u, < u,. If u, = u,, then u, = u2 by Proposition 3.4(d). If 
ul < u,, then u, = u, + w for some w # 0. Then y . u, + u, = ye (u, + w) + v2 
= y . u, + y . w + u,. Hence, u, = y . w + u,; but w # 0. Hence, y . w > y. So, 
0,  = y - w + u, > y, contradicting v, < y .  Hence, u, Q u,. Similarly, u;? u,. - .  
Hence, u, = u,, and so, u, = 0,. 

From this point on, one can generally translate into S and prove the results 
from any text on elementary number theory. There are certain number-theoretic 
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(d) Assume that the functions g(x,, . . . , x,,,), hl(xl, . . . , xJ, . . . , 
hm(x,, . . . , xJ are (strongly) representable in S, by the wfs 

%(XI,  - . . r Xm, x ~ + I ) ,  @,(XI, - r xn+I), . . . , @,(XI, . . . xn+l), 
respectively. Define a new function f by the equation f(x,, . . . , xJ = 
g(hl(xl, . . . , Xn), . . . , h,(xl, . . . , Xn)). f is said to be obtained from 
g, h,, . . . , h, by substitution. Then f is also (strongly) representable in S, by the 
wf &(x,,.  . .,x,,+,): 

(EYI) . . . (EY,)(@I(XI, . . - x,,,YI) A . . . 
A@m(xl, * - 9  xn, ~ rn)  A P ( Y  1, . * - 9  ~rn,  xn+ 1)) 

To prove (I), let f&,, . . . , kJ = k,,+ ,. Let h,&,, . . . , kJ = ri for 1 < i < m; 
then g(r,, . . . , r 3  = lc,,,,. By our assumption that P ,  d l ,  . . . , Qm (strongly) 

- - represent g, h,, . . . , h,, respectively, we have I- 4 6 ,  . . . , k,,, ri) for 1 d i < m, 
- -  - - and I- 9 ( . . . , r m , k n +  ) Hence, I- . . . , kn, rl) A . . . A --  -- -- am*;, . . . , k. r 3 A  a ( r l , .  . . , rm, k,+,). BY Rule FA, I- a & , .  . . , lh, k,,,), 

i.e., (1) holds. We shall prove (2') in the case of strong representability; the proof 
of (2) in the case of representability is similar. Assume 

A@m(xi, . - - 9  xn, Y,) A 3 ( y 1 ,  . - 9  Y,, u)) 
and 

A @ ~ ( x ~ ,  * - 7 xn, Y ~ )  A %(~17 * . * ,~mp 0)) 
By (m), using Rule C m times, 

 XI, . . .  Yxn, 61) A A gm(x,, ,xn,bm) A P(bl,  . .  b , , ~ )  
BY (m @), using Rule C again, 

Since I- (E,x,,+ ,)&(x,, . . . , x,,, x,,+ ,), we obtain, from 4(x1, . . . , x,,, b,) and 
$(x,, . . . , x,,, c,), that b, = c,. From 93 (b,, . . . , b,, u) and b, = c,, . . . , b, = 
c,, we have P (c,, . . . , c,, u). Hence, from I- (E,x,,+ , ) a  (x,, . . . , x,, + ,) and 
9 (c, ,  . . . , c,, v), we obtain u = u. We have shown I- C(xl, . . . , x,,, u) A 
&(x,, . . . , x,,, u) 3 u = u. It is also easy to show that I- (Ex,,+,)&(x,, . . . , x,,,,) 
(Exercise). From this, we have I- (E,x,,+ ,)@(x,, . . . , x,, x,,+ ,), i.e., (2'). 

EXERCISES 

Show that the following functions are strongly representable in S. 
3.11. Zn(xl, . . . , x,,) = 0 (Hint: Z,(x,, . . . , x d  = Z(U;(x,, . . . , x,,)). Use (a), 

(49 (4.1 
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3.12. For any given k, CI(xI, . . . , x,,) = k (Hint: by 3.1 1, we have q; assume 
C; is strongly representable. Then Cg+ ,(x,, . . . , x,,) = N(Ci(x,, . . . , xd); use (b), Ft (dl.) 

. 3.13. Addition. 
3.14. Multiplication. 

1f R ( ~ , ,  . . . , %) is a relation, then the characteristic function CR(xl, . . . , x,,) 
is defined as follows: 

0 if R(x,, . . . , %) is true 
CR(x1, - .  9 x,) = 1 if R(x,, . . . , %) is false 

PROPOSITION 3.12. R(xl, . . . , %) is expressible in S if and only if 
CR(xI, . . . , x,) is (strongly) representable in S. 

PROOF. If R(xI, . . . , q,) is expressible in S by a wf @(x,, . . . , x,), then it is 
easy to verify that CR(xl, . . . , %) is strongly representable in S by the wf 
(&(x,, . . . , x,,) A x,,+ I = 0) V (- &(x,, . . . , x,,) A x,,+] = i). Conversely, if 
CR(x,, . . . , 3 is representable in S by a wf ( x ,  . . . , x ,  + )  then 
R(x,, . . . , x,) is expressible in S by the wf P (x,, . . . , x,,, 0). 

EXERCISES 

3.15. The representing relation (or graph) of a function f(x,, . . . , x,,) is the 
relation f(xl, . . . , x,,) = x,+ ,. Show that f(x,, . . . , x,,) is representable in S if and 
only if its representing relation is expressible in S. 

3.16. If R, and R2 are relations of n arguments, prove that Cnot-Rl = 1 - CR~.  
C ( ~ I  or R2) = CRI ' CR2, and C ( ~ l  and R2) = C ~ I  + 'R2 - 'RI ' 'R2. 

3.17. Show that f(x,, . . . , x,) is representable in S if and only if there is a wf 
@(xi, . . . , x,,,,) such that, for any - natural numbers k,, . . . , k,, m, if f(kl, . . . , k,,) 
= m, then FS(xn+ I)(W(G, . . . , k,, xn+ = xn+, = B). 

3.18. Show that Proposition - - -  3.12 remains valid for any theory with equality K 
containing all the numerals 0, I, 2, . . . , except that the "if' part requires that 
kKi i  # 1. . 

3. Primitive Recursive and Recursive Functions 
The study of representability of functions in S leads to a class of number-theo- 

retic functions which turn out to be of great importance in mathematical logic. 

DEFINITION 

(1) The following functions are called initial junctions. 
(I) The zero function: Z(x) = 0 for all x. 
(11) The successor function: N(x) = x + 1 for all x. 
(111) The projection functions: UB(x,, . . . , %) = xi for all x,, . . . , x,. 

(2) The following are rules for obtaining new functions from given func- 
tions. 
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(IV) Substitution: First, let us prove that we can add dummy variables and permute and 

tify in any primitive recursive or recursive function, obtaining a 
f(x~p - - 9 X,,) = ~ ( ~ I ( x I ,  . . - , x,,), . . . , hm(x1, . . . , x,,)) 

tion of the same type. 
f is said to be obtained by substitution from the functions 
~ ( Y I ?  - s . , ym), ~ I ( X I ,  . . . , x,,), . . , hm(xl, . . . , XJ. pRowsITIoN 3-13. ~~t go.,, . . . , yJ be primitive recursive (or recursive). 

(V) Recursion: . , x, be distinct variables, and, for 1 < i < k, let 2, be one of x ~ ,  . 9 %. 

f(xlt . .  ,xn, 0) = g(xl,. . .  , x,,) ., irhen the junction f such that f(XI, . . . , %) = g(z1, . - . 9 %) is primitive recur- 
sive (or recursive). 

f(x19 . . - 9 X,,? Y + 1) = h(x,, . . . , X,,, y, f(x,, . . . , x,,, y)) 
Here, we allow n = 0, in which case we have pnooF. Let = 5, (where 1 < j, < n). Then Z = Ui(x17 . . - 7 %)- Thus, 

f(O) = k (where k is a fixed integer) 

fb + 1) = MY, f(y)). 
We shall say that f is obtained from g and h (or, in the case n = 0, from h and therefore f is primitive recursive (or recursive), since it arises from g, 
alone) by recursion. The parameters of the recursion are XI, . . , %.  ti^^ u;, . . . , U; by substitution. 
that f is well-defined: the value of f(x,, . . . , %, 0) is given by the first 

and if we already know the value f(x,, . . . , x,,, y), then we can Examples. 
Obtain f(x17 . a . , x,, Y + 1) by the second equation. 1. (Adding dummy variables.) If g(x,, X 3  is primitive recursive and if 

w l )  p-Operator: assume that . . . , X,,, y) is a function such that for I (~ , ,  x2, x3) = g(x,, x3), then f(x,, x,, x,) is also primitive recursive. In 
xb - - . , %-, there is at least one y such that g(x,, . . . , %, Y) = 0. we tion 3.13, let z, = x, and z, = x3. 

P Y ( ~ ( ~ I ,  - . - , X,,, y) = 0) the least number y such that 2. (Permuting variables.) If g(xl, x,) is primitive recursive and if f (x~ ,  ~ 2 )  = 

. . - 3  %, Y) = 0. In general, for any relation ~ ( x , ,  . . . , s, y), we denote g(x2, x,), then qx,, x,) is also primitive recursive. In Proposition 3-13, let ZI  = 12 

by ~ ~ ~ ( ~ 1 9  . - 9 $ 9  Y) the least y such that R(x,, . . . , x,,, y) is true, if there is and 2, = xI. 
any y at all such that ( X  . . . , , 1 holds. Let f(xl, . . . , = 3. (Identifying variables.) ~f g(xl, x,, x,) is primitive recursive and if f(x17 x 3  = 
p ~ ( g ( ~ 1 3  . . 9 X,,. Y) = 0). Then f is said to be obtained from g by means of the g(x,, x2, then f(x,, x 3  is primitive recursive. In Proposition 3.133 let n = 2 
pdperator, if the given a~~umption about g holds: for any x,, . . . , %, there and let z, = x,, 22  = x2, and 23 = XI. 

is at least one y such that g(x,, . . . , x,,, y) = 0. 
0 )  A function f is said to be primitive recursive if and only if it can be COROLLARY 3.14. (a) The zero junction Zn(xl, . . . , %) = 0 is primitive recur- 

obtained from the initial functions by any finite number of substitutions (IV) sive. (b) The constant junction G(xl ,  . - - , X,,) = k, where is some frxed 

and recursions 0, i.e., if there is a finite sequence of functions I,, . , f n  
integer, js primitive recursive. (c) The Substitution Rule (IV) can be extended lo  

such that f n  = f y  and, for 0 < i ( n, either f, is an initial function or f, comes the case where each h, be a junction of Some but not all of the 

from preceding functions in the sequence by an appbcation of Rule (IV) Likewise, in the Recursion Rule 0, the f~nction g m V  not involve of lhe 

(Substitution) or Rule (V) (Recursion). variables . , , %; and h m q  not involve all of the variables XI, . 9 'n, Y, 

(4) A function f is said to be recursive if and only if it can be obtained from or f(xl, . . . , xn, Y). 
the by any finite number of applications of Substitution (IV), 
Recursion gr)? and the P-oPerator (VI). This differs from the definition above (a) ~n proposition 3.13, let g be the zero function Z; then = 

primitive recursive functions only in the addition of possible applications Take to be x,. (b) For k = 0, this is part (a). kX3ume true Then 

the Poperator (Rule VI). Hence, every primitive recursive function is c;, . , = N ( ~ ( x , ,  . . . , XJ). (c) By Proposition 3.13, any variables 

recursive. We shall see later that the converse is false. among x, ,  . . . , x, not present in a function can be added as ''dummy variables". 
We show that the class of recursive functions is identical with the liar example, if h(xl, x,) is given as primitive recursive (or recursive), then 

'lass functions representable in S. (In the literature, the phrase "general h ~ ( ~ , ,  x,, x,) = h(x,, x,) = h(u:(x1, X2, ~31, U$(XI. $9 13)) is primitive re- 

is sometimes used instead of "recursive9'.) cursive (or recursive). 
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P R ~ P ~ ~ I T I ~ N  3-15. The following functions are primitive recursive. qt(x, 0) = 0 
(a) X + Y ;  (b) X . Y ;  (c) x

y
; (d) S(X) = (  x -  1 i f x > o .  qt(x, y + 1) = qt(x, y) + - N(m(x, ~ ) ) l )  0 i f x = O '  

( x - y  i f x > y .  
(e) x y = x - y  i f x > y .  

(f) lx - Y I  = ( y - x  i f x  < y ,  0 i f x < y '  
0 i f x = O .  - 1 i f x = O .  i 0 i f z = O  

0 sg(x) = ( 1 i f x + O '  (h) sg(x) = ( o i f x # O '  2 f(x1, . . , xn, Y) = f(xl,.  . . , x,,, O) + . . . + f(x1,. . . , x,, z - 1) 

(i) x!; 0) min (x, y) = minimum of x and y; (k) min (x,, . . . , a); Y < z  i f z > O  
(1) max (x, Y) = maximum of x and y; (m) max (x,, . . . , a ) ;  2 f(xl, . . . , x,, y) = C f(x,, . 9 x,,, Y) 
(n) rm(x, Y) = remainder upon division of y by X; 

Y < Z  y < z + l  
(0) qt(x, Y) = quotient upon division of y by x. 

[ 
1 i f z = O  

( x l ,  y )  = f(xl , . . . ,  x,,,O). . . .  . f  ( x , , . . . , x , , z -  1) 
Y cZ i f z > O  

PROOF. 

(a) Recursion Rule (V). 11 f(xl, . . . , x,, y) = II f(x1, . . - 9 Xn, Y) 
Y < z  y < z + l  

x + o = x  f(x, 0) = U((x) These bounded sums and products are functions of XI, . . . , %, z. We can 
x + 6 + 1) = N(x + y) i.e., f(x, Y + 1) = N(f(x, y)) define doubly bounded sums and products in terms of the ones already given, 

('4 x . 0  = 0 g(x, 0) = Z(x) e.g., 
X . 6' + 1) = (x * y) + x i.e., g(x, Y + 1) = f(g(x, y), x), f(x, , .  . . , ,',,y) = f(xl.. . . , X",U + I) + + fb,, . - ,xn, v - 1) 

where f is the addition function 
(c) 

u < y < v  
xO = 1 = f(xl, . . . , x,, y + U + 1) 

x Y + l  = 

(4 
(xY> . x y<(vLu)-1 

S(0) = 0 
S(y + 1) = y ~ ~ o p o s 1 ~ 1 o ~  3.16. ~f f(x,, . . . , x,,, y) is primitiue recursive (or recursiue), 

( 4  X ' O  = X then the bounded sums and products defined above are also primitive 

x ' (y + 1) = 6(x 2 y) recursive (or recursive). 

(0 Ix - Y I  = (x ' Y) + (y x) (Substitution) PROOF. ~ e t  g(x,, . . . , x,,, Z) = C f(x1, - - , %, Y). Then, we have the 
(g) sg(0) = 0 following recursion. Y < z  

sg(y + 1) = 1 
01) 

- g(xl,. - - ,%,O) = 0 
sg (x) = 1 - sg(x) 

0 O!= 1 g(xl, . . . , x,,, z + 1) = g(xl, . . . , x,,, 2) + f(x1, . . . X n p  Z) 

(y + I)! = (y!) . (y + 1) 
min (x, y) = x - (x ' y) 

(k) Assume min (x,, . . . , x,,) already shown primitive recursive. 
min (x,, . - 7 x,,, x,,+l) = min (min (XI, - , x,,), %+I) 

(1) max (x, Y) = Y + (x y) 

(m) max (x,,. . . , %+I)  = max (max (xl , .  . . ,  a ) ,  a + , )  
(4 rm(x, 0) = o 

r N . 9  Y + 1) = N(rm(x, Y)) . sg(lx - N(rm(x, y))l) 

h(x,, . . . , x,,, z) = g(xl, . . . , x,,, z + 1) (Substitution). 

The proofs for bounded products and doubly bounded sums and products are 
left as exercises. 

Example. Let D(x) be the number of divisors of x, if x > 0; let D(0) = I. 
Then D(x) is primitive recursive, since 

D(x) = Y < X  C Z MY, x)). 
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Given number-theoretic relations, we can apply the connectives of the pro- 
positional calculus to them to obtain new relations. We shall use the same 
symbols (-- , A ,  V , 3 , E) for them here, except where confusion may arise 
between these symbols as they occur in our intuitive metalanguage and as they 
occur in first-order theories. For example, if R,(x,, . . . , and R2(x1, . . . , Q 
are relations, then RI(xl, . . . , x,,) V R2(x,, . . . , 3 is a new relation which 
holds for x,, . . . , x,, when and only when R,(xI, . . . , x,,) holds or 
R2(xl, . . . , x,,) holds. We shall use (y),,,R(x,, . . . , x,,, y) to express the rela- 
tion: for all y, if y is less than z, then R(x,, . . . , x,,, y) holds. We shall use 
(Y), <,. (EY), < ,  (EY),,, in an analogous way, e4.9 (EY)~<,R(XI, . 

9 x,,, y) means that there is some y < z such that R(x,, . . . , x,,, y) holds. We shall call 
Cy), <,, Cy), ,,, (Ey),.,,, (Ey), <, bounded quantifiers. In addition, we define a 
bounded p-operator : 

the least y < z for which R(x,, . . . , xn, y)  
P Y ~  7 % Y = holds if there is such a y; 

z otherwise 

(The value z is chosen in the second case because it is more convenient in later 
proofs; this choice has no intuitive significance.) 

A relation R(x,, . . . , x,,) is said to be primitive recursive (or recursive) if and 
only if its characteristic function ( X ,  . . . , ) is primitive recursive (or 
recursive). In particular, a set A of natural numbers is primitive recursive (or 
recursive) if and only if its characteristic function C,(x) is primitive recursive (or 
recursive). 

Examp les. 
(I) The relation x, = x, is primitive recursive. Its characteristic function is 

- x,(), which is primitive recursive, by Reposition 3.15(f), (g). 
(2) The relation x, < x2 is primitive recursive, since its characteristic function 

is G(x2 x,), which is primitive recursive, by Proposition 3.15(e), (h). 
(3) The relation x,/x2 is primitive recursive, since its characteristic function is 

sg(rm(x 1, ~7)). . . &,, 

(4) The relation Pr(x), x is a prime, is primitive recursive, since C,(x) = 

sg((D(x) 2) + @(lx - 11) + @(lx - 01)). Remember that x is a prime if and 
only if it has exactly two divisors and is not equal to 0 or 1. 

PROPOSITION 3.17. Relations obtained from primitive recursive (or recursiue) 
relations by means of the propositional connectives and the bounded quantiJiers 
are also primitive recursive (or recursive). Also, application of the bounded 
p-operators py,.,, or pyy<, leah from primitive recursive (or recursive) rela- 
tions to primitive recursive (or recursive) functions. 

PROOF. Assume RI(xl, . . . , x,,) and R2(xl, . . . , q )  primitive recursive (or 
recursive) relations. Then the characteristic functions C,, and CR2 are primitive 
recursive (or recursive). But C - R I ( ~ I ,  . . . , x,,) = 1 - CR,(xI, . . . , q ) ;  hence 
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R, is primitive recursive (or recursive). Also, CRlVR2(xl: . . . , 3 = 
(x,, . . . , xJ . CR2(xl, . . . , xJ; so, R, V R2 is primitive recursive (or recur- 
). Since all the propositional connectives are definable in terms of -- and V ,  
takes care of them. Now, assume R(x,, . . . , x,,, y) primitive recursive (or 
rsive). If Q(x,, . . . , q ,  z) is the relation (Ey),<,R(xI, . . . , q ,  y), then it is 

.. 10 verify that CQ(xl, . . . , q ,  Z) = . n ,- CR(x,, . . . , x,,, y), which, by Proposi- 
Y L.L 

tion 3.16, is primitive recursive (or recursive). The bounded quantifier (Ey), <, is 
pquivalent to (Ey),,,, ,, which is obtainable from (Ey),.,, by substitution. Also, 
(y),,, is equivalent to -- (Ey),<, -- , and Cv),<, is equivalent to -- (EY)~,, - . 
Doubly bounded quantifiers, such as (Ey)uo,v can be defined by substitution 
in the bounded quantifiers already mentioned. Finally, n CR(x,, . . . , x,,, u) u < v 

has the value 1 for all y such that R(xl, . . . , x,,, u) is false for all u < y; it has 
the value 0 as soon as there is some u < y such that R(x,, . . . , x,,, u) holds. 
Hence, 2 ( CR(x1, . . . , x,,, u)) counts the number of integers from 0 up to 

y < z  U < Y  

but not including the first y < z such that R(x,, . . . , x,,, y) holds and is z if 
there is no such y; thus, it is equal to p~,,~R(x,, . . . , x,,, y) and so the latter 
function is primitive recursive (or recursive), by Proposition 3.16. 

Examples. 
(I) Let p(x) be the xt" prime number in ascending order, with p(0) = 2. We 

shall write p, instead of p(x). Then p, is a primitive recursive function. For 

P ~ + I  = PY~<(~.)!+I(P, < Y A P ~ Y ) )  

Notice that the relation u < y A P r o  is primitive recursive. Hence, by Proposi- 
tion 3.17, the function pyYy,,,(u < y A Prb)) is a primitive recursive function 
g(u, v). If we substitute the primitive recursive functions z and (z)! + 1 for u and 
v respectively in g(u, v), we obtain the primitive recursive function 

h(z) = PY~,~! + < Y A P~(Y)) 

and the right-hand side of the second equation is h(pX); hence we have an 
application of the Recursion Rule (V). The bound (pA! + 1 on the first prime 
after p, follows from Euclid's proof of the infinitude of primes (cf. Exercise 3.26, 
p. 144). 

(2) Every positive integer x has a unique factorization into prime powers: 
x = p0'"PIa1 . . . p p .  Let us denote by (x), the exponent ai in this factorization. If 
X = 1, (x), is 0 for all i. If x = 0, we arbitrarily let (x)~ = 0. Then the function (x)i 
is primitive recursive, since (x), = py,<,(p,'lx A -- (p?+llx)). 

(3) Let lh(x) be the number of non-zero exponents in the factorization of x 
into powers of primes. Let lh(0) = 0. Then lh is primitive recursive. For, let 
R(x, y) be the primitive recursive predicate Prb) A ylx /, x f 0. Then 
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(4) If x = 2 9 a '  . . . pkak "represents" the sequence of positive integers 
0 I 

9 k and J' = 2b03b' . . . pmbm "represents" the sequence Rl(x,, . . . , %), . . , , R ~ ( ~ ~ ,  . . . , G) is true, then f is primitive (or 
o I . . , b ,  then the n u m b e r  x * y = 2aa3a1 . . . 
P*+ lb~k+2b '  . . . pk+ 1 +,b. "representsv the new sequence a,, a,, . . . 

bij - . . 9 bm obtained by juxtaposing the two sequences. ~ u t ,  k + I , , p ~ o o s .  f(x,, , . , x,,) = g,(x,, . - . , %) ' ~ ( C ~ I ( x ~ y  . . s)) + 
* ' + 

lh(x)j m + 1 = l h O ,  and bJ = (yh. Hence, x * y = x . 
h(x) +J)~)J ,  and &(x,, . . . 7 xn) * s%(C~k(x19 - . xJ)* 

J < lh(y) thus * is a primitive recursive function. We shall omit parentheses in EXERCISES 
two or more applications of * , since x * (y * z) = (x * y) * (as long as 

+ 3.27. show that in Proposition 3.18 it is not necessary to assume that Rk is 
which will be the only case of interest to us). Drimitive recursive (or recursive). 

r ~ 

EXERCISES 3.28. Let 

3.19. Using Proposition 3.17, prove that, if R(x,, . . . , x,,, y) is a primitive 
recursive (or recursive) relation, then (Ey)u<y<vR(x,, . . . , xn, y), 
(E~)u<y<vR(xi, . . . , xn, y), and (Ey)"<yCvR(~i, . . . , x,,, y) are primitive recur- 
sive(or recursive) relations, and (py)uCyCvR(x, ,  . . . X n ,  Y), 
P Y ~ I  n Y Y ~ ~ ~ (  . . . , X ,  Y ,  and 
(py)uCyvR(xl, . . . , x,,, y) are primitive recursive (or recursive) functions. 
3.20. Show that the intersection, union, and complement of primitive recursive 

(or recursive) sets are also primitive recursive (or recursive). Prove that every finite 
set is primitive recursive. 

3.21. Prove that a function f(xl, . . . , x J is recursive if and only if its represent- 
ing relation f(x,, . . . , xn) = y is a recursive relation. 

3.22. Let [ f i ]  denote the greatest integer < 6, and let H(n) denote the 
number of primes < n. Show that [ f i  ] and II(n) are primitive recursive. 
3.23. Let e be the base of the natural logarithms. Show that [ne], the greatest 

integer < ne, is a primitive recursive function of n. 
3.24. Let RP(y, z) hold if and only if y and z are relatively prime, that is, y and z 

have no common factor greater than 1. Let p,(n) be the number of positive integers 
< n which are relatively prime to n. Prove that RP and p, are primitive recursive. 

3.25. Show that, in the definition of the primitive recursive functions, one need 
not assume that Z(x) = 0 is one of the initial functions. 

3.26. Prove that &+ , ( (popl . . . pJ + 1. Hence, &+ < h! + 1. 

For use in the further study of recursive functions, we prove the following 
theorem on definition by cases. 

PROPOSITION 3.1 8. Let 

g (  . . . , ) if R(xI, . . . , x,) holds 

g (  . , . , x,, if R2(xl, . . . , x,,) holds 
f(x,, . . . , x,,) = . . .  

. . .  
gk(xI,.  . .,x,,) if Rk(xI,.  . .,x,)holds. 

If the functions g,, . . . , & and the relations R,, . . . , R, are primitive recursive 
(or rec~.sive), and for any x,, . . . , x,,, exactly one of the relations 

if x is even 
f(x) = ( x f 1 if x is odd 

Prove that f is primitive recursive. 
3.29. Let 

2 if Fermat's Last Theorem is true 
h(x) = ( 1 if Fermat9s Last Theorem is false 

Is h primitive recursive? 

It is often important to have available a primitive recursive one-one corre- 
spondence between the set of ordered pairs of natural numbers and the set of 
natural numbers. We shall enumerate the pairs as follows: 

A ,  

(0, 0) , (0, I), (1, O), (1, 1) (0,2), (2, O), (1,2), (2, 11, (292) . - . . . .  , 
After we have enumerated all the pairs having components < k, we then add a 
new group of all the new pairs involving components < k + 1 in the following 
order: (0, k + l), (k + 1, 0), (1, k + l), (k + 1, l), . . . , (k, k + I), (k + 1, k), 
(k + 1, k + 1). Now, if x < y, then (x, y) occurs before (y, x) and both are in the 
(y + 1)" group. (Note that we start from one in counting groups.) The first y 
groups contain y2 pairs, and (x, y) is the (2x + I)" pair in the (y + 1)lh group. 
Hence, (x, y) is the ~ i '  + 2x + I)" pair in the ordering, and (y, x) is the 
0$ + 2x + 2)" pair. On the other hand, if x = y, (x, y) is the ((x + I)')" pair. 
This justifies the following definition, in which 02(x, y) denotes the place of the 
pair (x, y) in the above enumeration, with (0, 0) considered to be in the Oth place. 

Clearly o2 is primitive recursive. 
Let us define inverse functions o: and o: such that o:(02(x, y)) = X, 

ui(02(x, y)) = y, and 02(o~(z), oi(z)) = z. Thus, oi(z) and og(z) are the first and 
second components, respectively, of the zth ordered pair in the given enumera- 
tion. Note first that u?(o) = 0, oi(0) = 0, 
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and 

Hence, 

where cp and $ are primitive recursive functions. Thus, o: and o; are defined 
recursively at the same time. We can show that o: and o: are primitive recursive 
in the following devious way. Let r(u) = 2a~(u)302u). NOW, I is primitive recursive, 
since r(0) = 2"!(O)3"%" = 20 . 3O = 1, and r(n + I) ;. 2d(n+ 1) . T%"*') - 

- 
2*:(n)* "%n))33":d(n)9 03.)) = 2V'((r(n))@ tr(n))~)3#((<"))a (r(n)),). Remembering that the func- 
tion (x), is primitive recursive (cf. Example 2, p. 143), we conclude by Recursion 
Rule (V) that r is primitive recursive. But o:(x) = ( r ( ~ ) ) ~  and o:(x) = 
(~(x)),; by substitution, a: and a: are primitive recursive. 

One-one primitive recursive correspondences between all n-tuples of natural 
numbers and all natural numbers can be defined step by step, using induction 
on n. For n = 2, it has already been established. Assume that, for n = k, we 
have primitive recursive functions ok(xl, . . . , x,), o:(x), . . . , o:(x) such that 
u:(ok(x1, . . . , xk)) = % for I < i < k, and ok(o:(x), . . . , o,*(x)) = x. Now, for 
n = k + I, define ok+'(x,, . . . , xk, xk+ ,) = 02(ok(x,, . . . , x,), xk+ ,), o:+'(x) = 

k +  1 O:(O:(X)) for I C i < k, and o::i(x) = o:(x). Then ok+ ', o: + ', . . . , ok+ , 
are all primitive recursive, and we leave it as an exercise to verify 
that o?+ ' (ok+ ' (x , ,  . . . , xk+, ) )  = xi, for 1 < i c k + 1, and 
.k+l(o:+l(x), . . . ,o,"=:(x)) = x .  

It is often convenient to define functions by a recursion in which the value of 
f(xl, . . . , x,,, y + I) depends not only upon f x  . . . , x,, y) but also upon 
several or all values of f(x,, . . . . x,,, u) with u < y. This type of recursion is 

called a course-of-values recursion. Let f # (x,, . . . , x,,, y) = n p..nX1. . %, "). 
. - - - 

U < Y  Note that f can be obtained from f #  as follows: f(xl, . . . , x,,, y) = 

( f # ( ~ l >  - .  . 9 x,,, y + l))y. 

PROPOSITION 3.19. If h(x,, . . . , x,,. y, z) is primitiue recursiue (or recursiue), 
and f(x,. . . . , x,,, y) = h(xl, . . . , x,,, y, f#(xI, . . . , x,,, y)), then f is primitiue 
recursiue (or recursiue). 
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f#(x,,.  . . , Xn, 0) = 1 

r f#(x,, . .  . ,%,Y + 1) = f#(xl, . .  . , x , , , ~ ) .  Py 
f@,> x2. . . . , X", Y) 

n u s ,  by the Recursion Rule (V), f #  is primitive recursive (or recursive); but 
f(xl,. . . ,x,, ,y) = (f+(x,, . . . ,Xn,Y + I)),. 

Example. The Fibonacci sequence is defined as follows: f(0) = I, f(l) = 2, 
f& + 2) = f(k) + f(k + I) for k > 0. Then f is primitive recursive, since 

the function - 
h(y, z) = (y) + 2 . sg ((y - 11) + ( ( z ) ~  r i + ( z ) ~  '2) . ~ g ( y  ' I )  

is primitive recursive, and 
f(k) = h(k, f#(k)) 

EXERCISE 3.30. Let g(0) = 2, g(l) = 4, and g(k + 2) = 3g(k + 1) - 
(2g(k) + 1). Show that g is primitiue recursiue. 

COROLLARY 3.20. If H(x1, . . . , x,,, y, z) is a primitiue recursiue (or recursive) 
relat ion,  a n d  R ( x l ,  . . . , xn,  y) holds if a n d  only if 
H(x,, . . . , x,,, y, (CR)#(x,, . . . , x,,, y)), where . CR . is the characteristic function 
of R, then R is primitive recursive (or recursiue). 

PROOF. CR(xl, . . , Xn, Y) = CH(xI, . . . , X,,, y, (CR)#(xl, . a . 9 %, Y)), where 
the characteristic function CH of H is primitive recursive (or recursive). Hence, 
by Proposition 3.19, CR is primitive recursive (or recursive), and, therefore, so is 
the relation R. 

Proposition 3.19 and Corollary 3.20 will be drawn upon heavily in the sequel. 
They are applicable whenever the value of a function or relation for y is defined 
in terms of values for arguments less than y. Notice in this connection that 
R(x,, . . . , x,,, u) is equivalent to CR(x1, . . . , x,,, u) = 0, which, in turn, for 
u < y, is equivalent to ((CR)#(x,, . . . , x,, Y ) ) ~  = 0. 

EXERCISES 

331. Prove that the set of recursive functions is denumerable. 
332. If f,,, f,, f,, . . . is an enumeration of all primitive recursive functions (or all @ 

recursive functions) of one variable, prove that the function fXb) is not primitive 
recursive (or recursive). 

PROPOSITION 3.21 (GODEL'S B-FUNCTION). Let P(x,, x2, x,) = 

rm(l + (x, + I) . x,, x,). Then P is primitiue recursiue, by Proposition 3.15(n). 
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Also, p(x,, x ,  x,) is strong@ representable in S by the wf Bt(x,, x,, x,, x,): 

(Ew)(x, = (1 + ( x 3  + 1) - x,) w + X, A x4 < 1 + (x? + 1).  x,) 
. < z LI 

PROOF. By Proposition 3.1 1, k (El x,) Bt(x ,, x,, x3, x,). Assume ,f?(kl. k,, k,) 
= k,. Then k, = (1 + (k, + 1) . k,) k + k4 for some k, and k4 < I + (k, + 1) 
k So, t = (7 + (6 + i) - %) - k + 2 by Proposition 3.6(a); and t F4 i 

+ :$ + i) the expressibility of < and Proposition 3.6(a). Hence, k k, = 
( i  + (& + i) . k,) k + 6 < i + (& + i)g from which, by Rule ~ 4 ,  - - - -  
t Bt(k,, k,, k,, k,). Thus, Bt strongly represents j3 in S. 

PROPOSITION 3.22. For any sequence of natural numbers b, k,, . . . , &, there 
exist natural numbers b, c such that P(b, c, i) = for 0 , i C n .  < . 
PROOF. Let j = max (n, 16, k,, . . . , &) and let c = j!. Consider the numbers I ui = I + (i + 1)c for 0 C i < n; they have no factors in common other than 

one. For, if p were a prime dividing both 1 + (i + 1)c and I + (m + 1)c with 
0 < i < m < n, then p would divide their difference (m - i)c; now, p does not 
divide c, since, in that case, p would divide both (i + I)c and I + (i + I)c, and 
so would divide 1, which is impossible. Hence, p also does not divide (m - i); 
for m - i < n < j, and so, m - i divides j! = c; if p divided m - i, then p 
would divide c. Hence, p does not divide (m - i)c, which yields a contra- 
diction. Thus, the numbers u,, 0 4 i C n, are relatively prime in pairs. Also, for 
0 < i < n,k, < j  <j!= c < l  + ( i  + I )c=  u,, i.e., k, <u,.  Now, by the 
Chinese Remainder Theorem (cf. Exercise 3.33, p. 151), there is a number 
b < %u, . . . un such that rm(u,, b) = k, for 0 < i < n. But P(b, c, i) = 
rm(l + (i + l)c, b) = rm(u,, b) = k,. 

Propositions 3.21 and 3.22 enable us to express within S assertions about finite 
sequences of natural numbers and this ability is crucial in part of the proof of 
the following fundamental theorem. 

PROPOSITION 3.23. Every recursive function is representable in S. 
PROOF. The initial functions Z, N, U: are representable in S, by Examples 

(a)-(c) on p. 135. The Substitution Rule (IV) does not lead out of the class of 
representable functions, by Example (d) on p. 136. 

The Recursion Rule (V): assume that that g(x,, . . . , xn) and 
h(xl. . . . , xn, y, z) are representable in S by wfs @(x,, . . . , %+,) and 
'21 (xi, . . . , xn+&, respectively, and let 

Now7 f(x,, . . . , \, y) = z if and only if there is a finite sequence of numbers 
bo, . . . , by such that b, = g(x,, . . . , h), b,+ , = h(x,, . . . , s, w, bJ for w + I 
< Y, and by = z; but, by Proposition 3.22, reference to finite sequences can be 
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raphrased in terms of the function 8 ,  and, by Proposition 3.21, /3 is represent- 

We shall show that f(x,, . . . , x,,, %+ ,) is representable in S by the wf 

(i) First, assume that f(k,, . . . , &, p) = m. We wish to show that 
e@,, . . . , kn, p, fii). If p = 0, then m = g(k,, . . . , b). Consider the 

swuence consisting of m alone. By Proposition 3.22, there exist b, c 
such that J(b, c, 0) = m. Hence, t Bt(6, T, 0, m)), by Proposition 3.21. 
~ l s o ,  t @(k,. . . . , k,,, iii) since m = g(kL. . . , kn). Hence, by Rule E4, 

(43) k (EW)(B~@, r ,  0, W )  A @&, . . . , k,,, w)). We previously obtained 
( 4 3 )  t B T, 0 ) By a tautology, the last conjunction (am m) of 
e(kI, . . . , &, 0, S) is provable, since k w Q 0. Applying Rule E4 to the con- - 
junction of (5), (++). (+a a ) ,  we obtain t C(F, . . . , k,,, 0, El), Now, for 
p > 0, f(k,, . . . , b, p) is calculated from the equations (I) in p + 1 steps. Let 
ri = E(k,, . . . , kn, i). For the sequence of numbers r ,  r,, . . . , r,, there are, by 
Proposition 3.22, numbers b, c such that b(b, c, i) = ri-for 0 C i < p. 
H e n c e ,  by  P r o p o s i t i o n  3.21,  t B , , r ) .  In  p a r -  
ticular, &b, c, 0) = ro = - f(k,, - . . . , &, 0) = g(k,, . . . , &). Therefore, 
t ~ t ( 6 ,  E,  0, - ro) A @(&, . . . , &, r,,), and by Rule E4, (1)  t (EW)(B~(~,  $ 0, W) 
Lg, . . . , &, w)) Since r, = f(k,, . . . , &, p) = m, P(b, c, p) = m; hence, (2) t 
Bt(b,E,j5,iX). For 0 4 i < p - 1, P@, c,i) = r, = f(k,, . . ., kn,i); 

P ( b , c , i +  l ) = r i + ]  = f ( k  , , . . . ,  k,,i + 1) 

= h(kl, . . . , k,,, i, f&,, . . . , k,,, i)) = hg1 ,  . . . , kn, i. r,). 

'- - - - - - 
Hence, B ,  , , ) ( 6  , i f ,  r )  A 9 ,  . . . , k i  r r i  BY Rule 

Ea, t (Ey)(~z)(Bt(b, 0, i, y) n ~ t ( 6 ,  c, i', Z) A 93 (6, . . . , +, 5 y, 11). Hence, by 
Proposition 3.8(b'), we have (3) t (w)(w < p II (Ey)(Ez)(Bt(b, C, w, Y )  A - 
Bt@, E, wl, Z) A J (K, . . . . k,,, w, y, r))). Then, applying Rule E4 twice to the - 
conjunction of (I), (2), and (3), we obtain t L3&, . . . , k,, p, iii). Thus, we have 
verified clause (1) of the definition of representability in S (cf. p. 135). - 

(ii) We must show that k (E,xn+3e&, . . . , kn. P, x,, +3. The proof is by 
induction on p in the metalanguage. Notice that, by what we have proved above, 
it suffices to prove only uniqueness. The case for p = 0 is easy and is left as an 
exercise. NOW, assume k (E,x,,+,)C(~;, , . . , &, P, xn+3 .  Let a = . . . 9 k,,h 
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B = f(k1, . . . ,16, P), and Y = f@,, . . . , k,,, p + I) = h ~ , ,  . . . - 
(1) ' a K , * . - , k n , ~ , B , g )  - 
(2) t & ( F , . . . , k " , i T )  

Assume 
-- 

(6) e ( k , . . . > k n , p  + l , ~ n + 2 )  
We must prove xn+, = 7. Now from (6) by Rule C. 

16, P, B). Then, 

From (c), 

From (c) by Rule C, 

. . 

( f )  e&,. . . , < , P , d )  
From ( f )  and (9, 
(g) d = B 
From (9,  (g), - 
(h) 3 &, . . . , k,, P, P7 e) 

Since "H represents h, we obtain from (1) and (h) 
(i) F = e 

Fmm (el, (0, 
(j) Bt(b, c, p + 1, 7) 
From (b), (j), and Proposition 3.21, 
(k) xn+2= 7. 
This completes the induction. 
The p-operator (VI). Let us assume that, for any x,, . . . , x,,, there is some y 

such that g(x,, . . . , x,,, y) = 0, and let us assume g is representable in S by a wf 
9(x1,  . . . , xn+'). Let f(x,, . . . . h) = py(g(x,, . . . , x,, y) = 0). Then f is repre- 
sentable in S by the wf &(x,, . . . , xn+ ,): 

'(XI, * .  * , ~ n + i , O )  A (Y)(Y <xn+1 ~ - Q ( x I , .  . .  .xn,y,O)) 
First, assume f(k,, . . . , 16) = m. Then g(k,, . . . , k,,, m) = 0 and, for k < m, 

- .,,k,, k ) # O .  So, 1 .  . . k n , 0 )  and, for k < m, 
9 k ,  . . . , , , 0 )  By Proposition 3.8(bf), k (y)(y < iii 3 
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- - - Q K ,  . . . , k, y, 0)). - Hence, 1 6 6 ,  . . . , k,,, S). We must also show: 
1 (Elxn+,)&&, . . . , +, xn+,). It suffices, by what - we have already shown, 
to prove the - uniqueness. If 9 (G, . . . , kn, - u, 0) A (y)(y < u > 
-Q&, . . . - , k,,y, 0)), and if 9 6 , .  . . , kn,v,O) A (Y)(Y 3 

k,,, y, 0)), then it follows - that if u < u we obtain a contradiction 
v, 0 ) ~  N q(k7,. - . . , k,, v, O), and if u - <v,  then we obtain a 

contradiction 9 & ,  . . . , +, u, 0) A N Gi)&, . . . , k,, u, 0). Hence, since 
1 (u = v) V (U < v) V (v < u), we conclude u = v. This shows the uniqueness. 

Thus, we have shown that all recursive functions are representable in S. 

I $ COROLLARY 3.24. Evety recursive relation is expressible in S. 
I 

a t~ 
PROOF. Let R(x,, . . . , x,,) be a recursive relation. Then its characteristic 

5 function C, is recursive. By Proposition 3.23, C, is representable in S and, 
1 b therefore, by Proposition 3.12, R is expressible in S- 

3.33*. (a) Show that, if a and b are relatively prime natural numbers, then there 
is a natural number c such that ac r 1 (mod b). (In general, x = y (mod z) means 
that x and y leave the same remainder upon division by z, or, equivalently, that 
x - y is divisible by z. This exercise amounts to showing that there exist integers u 
and v such that 1 = au + bv.) 

(b) Prove the Chinese Remainder Theorem: If x,, . . . , xk are relatively 
prime in pairs, and y,, . . . , yk are any natural numbers, there is a natural number z 
such that z = y,(mod x,), . . . , z = yk (mod xk). Any two such z's differ by a 
multiple of x, . . . xk. (Hint: let x = x, . . . xk and let x = wlxl = w2x2 = . - - = 
wkxk. Then, for 1 < i < k, wi is relatively prime to xi, and so, by part (a), there is 
some q such that wizi - 1 (mod xi). Now, let z = wlzlyl + w2zzy2 
+ .  . . + wkz,yk. Then z wiz,yi yi(mod xi). In addition, the difference between 
any two such solutions is divisible by x,, . . . , xk, and hence by xlx2 - . . xk) 

3.34. Call a relation R(x,, . . . , xJ arithmetical if it is the interpretation of some 
wf &(x,, . . . , x,) of S with respect to the standard model. Show that every 
recursive relation is arithmetical. (Hint: use Corollary 3.24.) 

335. Prove that representability implies strong representability, and hence that 
every recursive function is strongly representable in S (V. H. Dyson). 

4. Arithmetization. Giidel Numbers. 
For an arbitrary first-order theory K, we correlate with each symbol u of K a 

positive integer g(u), called the Godel number of u, in the following way. 

g ( ( ) = 3 ; g ( ) )  = 5;g(,) = 7;g(--) = 9 ; g ( 3 )  = 11 
g(xk) = 5 + 8kfork = 1, 2 , .  . . 
g(ak) = 7 + 8k for k = 1, 2 , .  . . 
g( f,") = 9 + 8(2n3k) for k, n > 1 

g(A,") = 1 1  + 8(2n3k) for k, n > 1 
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Thus, different symbols have different Godel numbers, and every Godel number 
is an odd positive integer.? 

Given an expression u,u2. - - u,, we define its Godel number to be 
g(ulu2 . . ur) = 2"1)3~"2) - . p:?~), where pi is the ilh prime and po = 2. For 
example, g(~:(x,, x2)) = 2g(":) . 3g(( ) . 5g(~l) . 7g(,) . 1 lg(x2) . 13M )) 

2'0733513771 1,' 13' . Ob serve that different expressions have different Godel num. 
bers, by the uniqueness of the factorization of integers into primes. In addition, 
expressions and symbols have different Godel numbers, since the former have 
even Godel numbers and the latter odd Godel numbers. (A single symbol, 
considered as an expression, has a different number from its number as a 
symbol. This situation should cause no confusion.) 

- - 
If we have an arbitrary finite sequence of expressions el,  e,, . . . , er, we can 

assign a Godel number to this sequence by setting g(e,, e2, . . . , er) = 
2g(e1) . 3g(e2) . . . p:?~!. Different sequences of expressions have different 
Godel numbers. Since a Godel number of a sequence of expressions is even and 
the exponent of 2 in its prime factorization is also even, it differs from Godel 
numbers of symbols and expressions. 

Thus, g is a one-one function from the set of symbols of K, expressions of K, 
and finite sequences of expressions of K, into the set of positive integers. The 
range of g is not the whole set of positive integers; for example, 10 is not a 
Godel number. 

EXERCISES 

3.36. Determine the objects which have the following Godel numbers: 194.4, 47. 
337. Show that if n is odd, 4n is not a Godel number. 
3.38. Find the Godel numbers of the expressions (a) f,'(al); 

(b) (- (A:(a,* X39 ~5))) 2 (Ai(x2)). 

This correlation of numbers with symbols, expressions, and sequences of 
expressions was originally devised by Godel [I9311 in order to arithmetize 
metamathematics.$ i.e., to replace assertions about a formal system by equiv- 
alent number-theoretic statements, and then to express these statements within 
the formal system. This idea turned out to be the key to a great number of 
significant problems in mathematical logic. 

" - 
The assignment of Godel numbers given here is in no way unique. Other 

methods may be found in Kleene 11952, Chap. X] and in Smullyan 11961, Chap. 
1, $61. 
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PROPOSITION 3.25. Let K be a theory about which we make the assumption 

, that the following relations are primitive recursive (or recursive): 
(a) IC(x) : x is the Godel number of an individual constant of K; 
(b) FL(x) : x is the Godel number of a function letter of K; 
(c) PL(x) : x is the Godel number of a predicate letter of K. 

Then the following relations and functions are primitive recursive (or recursive). 

I (1) EVbl (x) : x is the G a e l  number of an expression consisting of a variable. 

( ~ ~ ) , , ~ ( l  < z x = z~+''). By Proposition 3.17, this is primitive recursive. 
FTC(xh : x is the Gijdel number of an expression consisting of an individual -* -\- -, 

constant. (Ey),<,(IC(Y) x = 2,). (Proposition 3.17.) 
EFL(x) : x is the Godel number of an expression consisting of a function 

letter. (Ey),<,(FL(y) A x = 29. (Proposition 3.17.) 
F.PL(x) : x is the Godel number of an expression consisting of a predicate - - . / 

letter. (Ey),<,(PL(y) x = 29. (Proposition 3.17.) 
(2) ArgT(x) = (qt(8, x - 9)), : If x is the Godel number of a function letter$', 

then ArgT(x) = n. 
Argp(x) = (qt(8, x - 1 I)), : If x is the Godel number of a predicate letter A:, 

then Argp(x) = n. 
(3) Gd(x) : x is the Godel number of an expression of K. EVbl(x) v EIC(x) V 

, E F L ( X ) V E P L ( X ) V ~ = ~ ~ V X = ~ ~ V ~ = ~ ~ V X = ~ ~ V X = ~ ~ V  
(EU),<~(EV)~<~(X = u*v A Gd(u) II Gd(v)) (Corollary 3.20.) 

(4) MP(x, y, z): The expression with Godel number z is a direct conse- 
quence of the expressions with Godel numbers x and y by modus ponens. 
v = 23 * x * 2'' * z * 25 A Gd(x) A Gd(z). Here, * is the juxtaposition func- 
tion defined on p. 144, Example (4). 

(5) Gen (x, y): The expression with Godel number y comes from the expres- 
sion with Godel number x by the Generalization Rule. (EV)~<,(EV~~(V) A 
y = 23 * 23 * * 25 * * 25 G~(x)). 

(6) Trm (x): x is the Godel number of a term of K. This holds when and only 
when either x is the Godel number of an expression consisting of a variable or 
an individual constant or there is a function letter f; and terms tl, . . . , t,, such 
that x is the GMel number ofR(t l ,  . . . , tn). The latter holds if and only if there 
is a sequence of expressions, the last of which having Godel number X, of the 
form f$(f;(tI, f$(tl, t2, . . . , f;(tl, tr, . . . . 4 -  1, f;(tl, . . . , 4 -  I ,  4). This 

1 sequence of n + 1 expressions can be represented by its Godel number y. 
Clearly y < 2'3'. - . pi = (2 . 3 - . . p,)' < @.!)" < (p,!)". Note that 1 h O  = 
n + 1, and also that n = ArgT((x)o), since (x), is the Godel number off;. Hence, 
Trm(x) is equivalent to the following relation. 

tThe same numbering was used on p. 66 Lemma 2.10. E V ~ ~ ( X )  v EIC(X) v (~y),<,!~[x = (Y),~@)L 1 A lh(y) = Arg~((x)~) + )+l A 
tk arirhmer"arion of a theory K is a one-one function g fmm the set of symbols of K, 

expressions Of K* and finite sequences of expressions of K into the set of positive integers, me FL(((Y)~),) A ((Y)~) 1 = 3 A (u)u< I 16): 2(Ev)~<~((Y)u + 

fO"owing Conditions are to be satisfied by the function g: (i) g is effetively mmpuhble; (ii) there is 
an pmcedure which determines whether any given positive integer m is in the range of g, and lf is in the range of g, the procedure finds the object x such that g(i) = m. = (y)u * v * 27 A Trm(v)) A ( ~ ~ ) ~ < , ( ( Y ) l h ~ ) - i  ' b)lh&):2 * * 25 A Trm(v))l 
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Thus, Trm(x) is primitive recursive (or recursive), by Corollary 3.20, since the 
formula above involves Trm(v) only for v < x. In fact, if we replace both 
occurrences of Trm(v) in the formula by (z). = 0, then the new formula de- 
fines a primitive recursive (or recursive) relation H(x, z), and Trm(x) s 
H(x, (q,) # (x)). Therefore, Corollary 3.20 is applicable. 

(7) Atfml (x): x is the Godel number of an atomic wf of K. This holds if and 
only if there are terms t,, . . . , tn and a predicate letter A; such that x is the 
Godel number of A;(t,, . . . , t,). The latter holds if and only if there is a 
sequence of expressions, the last of which having Godel number x, of the form 

A;(A;(~~, Al(tl,  t2, . - . A;(tl, tz9 - . , tn-17A;((l, - . . , tn-l, t,,) 
- .  
rhls sequence of n + 1 expressions can be represented by its Godel number y. 
Clearly y < (p,!)" (as in (6) above) and n = A~$((X)~). Hence, Atfml (x) is 
equivalent to the following relation. 

Hence, by Proposition 3.17, Atfml (x) is primitive recursive (or recursive). 
(8) Fml (y): y is the Godel number of a wf of K. 

As an exercise, check that Corollary 3.20 is now applicable. 
(9) (a) Subst (x, y, u, v): x is the Godel number of the result of substituting in 

the expression with Godel number y the term with Godel number u for all free 
occurrences of the variable with Godel number v. 
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of the variable with Godel number v. Then Sub@, u, v) = 
Subst (x, y, u, v), and, therefore, Sub is primitive recursive (or 

y Proposition 3.17. 
(10) (a) Fr(u, x): u is the Godel number of a wf or a term of K which contains 

h e  variable with Godel number x free. 

(Fml(u) V Trm(u)) A Vbl(x) A -- Subst(u, u, 2IIgX, x) 

m a t  is, substitution in the wf with Godel number u of a variable different from 
that with Godel number x for all free occurrences of the variable with Godel 
number x yields a different expression.) 

@) Frl(u, v, w): u is the Godel number of a term which is free for the 
variable with Godel number v in the wf with Godel number w. . ~~ 

Trm(u) A Vbl(v) A Fml(w) A [Atfml(w) V (Ey),<,(w = 2) * 29 * y * 2' A 

Frl(u, v, y)) V (Ey)y,w(E~)z<w(w = 2' * Y * 2" * * Z5 A 

Fr,(u, v, y) A Fr,(u, v, 2)) V (EY),<,(E~),<, (W = 23 * 23 * z2 * 25 * * 25 

1 Vbl(z) A (z + v 3 Fr,(u, v, y) A (Fr(u, 2) 3 -- Fr@, v)))ll 
I 

Use Corollary 3.20 again. 
i (I I) (a) Ax,(x): x is the Godel number of an instance of Axiom Schema (I). 

( E ~ ) ~ , ~ ( E v ) ~ , ~ ( F m l ( u )  A Fml(v) A x  = 23 * u * 2" * 23 * v * 2" * a * Z5 * 2') 

Gd(y) A Trm(u) Vbl(v) A My = 2' A x = u) V 
( E w ) w < y ( y = 2 W A y f  ~ A x = Y ) v  

( E ~ ~ z ~ y ( E w ) w ~ y ( F m l ( w )  A y = 23 * 2' * 25 * w + z A 
(Eala<,(x = 2' * 2' * Z5 * w * a Subst (a, z, u, v))) V 
((-- (Ez)z<y(Ew)w~y(Fml (w) y = 23 * 2' * 25 * w * z)) A 
(Eff)a<x(E8)p<x(Ez)z<y(1 < z A y = (Y)O * A x = a * 8 A 
Subst (a, (y)o, u, v) A Subst (8 ,  z, u, v)))] 

Check that Corollary 3.20 is applicable. 
- - 

@) Sub (y, u, v): the Godel number of the result of substituting the term 
with Godel number u for all free occurrences in the expression with Godel 

. . 

(b) Ax2(x): x is the Godel number of an instance of Axiom Schema (2). 
(E~).,x(Ev)v,x(Ew)w,x(Fm~(~) A Fml(v) A F m l ( w )  A x = 23 * 
23 * * 2.11 * 23 * * 211 * * 25 * 25 * 211 * 2' * 23 * * 211 * . * 211 
*23 * * 21, * * 25 * 25 * 25) 

(c) Ax3($: x is the Godel number of an instance of k u o m  Schema (3). 
(Eu),,x(Ev)v<x(Fml(u) n F d ( v )  A x = 23 * 23 , 23 , z9 * v * 25 2" * 23 * 2° 
* * 25 * 25 * 211 * 2.3 * 23 * 23 * z9 * * 25 * 211 * * 25 * 211 * * 25 * 25) 

(d) AX,($: x is the Godel number of an instance of Axiom .%hema (4). 

(E~)u~x(Ev)v~x(Ey)y~X(Fml@) A Trm(u) A Vbl(v) A Fr,(u9 5 
v7 Y) A 

x = 23 * 23 * 23 * 2' * 25 * * 25 * 211 * sub@, U, V) * 2 ) 

(e) Ax5(x): x is the GMel number of an instance of Axion Schema (5). 

w * 25 * 25 * 25) 
( f )  LAX().): y is the Godel number of a logical axiom. 

a \ - ,  . - .~ . 

Remark. The assumptions (a)-(c) of Proposition 3.25 hold for a first-order 
theory K which has only a finite number of individual constants, function 
letters, and predicate letters, since, in that case, IC(x), FL(x), and PL(x) are 
primitive recursive. For example, if the individual constants of K are 
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a,,, aj2, . . . , a,", then IC(x) if and only if x = 7 + 8j, V x = 7 + 8j, V . . - v 
x = 7 + 8j,. In particular, the assumptions (a)-(c) hold for S. 

PROPOSITION 3.26. If a first-order theoty K not on& satisfies assurnptiom 
(a)-(c) of Proposition 3.25, but also the following assumption: 

(d) the property PrAx(y), y is the Godel number of a proper axiom of K, is 
primitive recursiue (or recursiue) 

then the following relations are primitive recursive (or recursive). 
(12) Ax&): y is the Godel number of an axiom of K. 

LA~(Y)  V PrAx(y) 
(13) (a) Prf(y): y is the Godel number of a proof in K. By Corollary 3.20, 

(Eu)u<Y(Ev)v<Y(Ez)z<Y(Ew)w<Y( [Y  = ZW A Ax(w)] v 
[Prf(u) A Fml((u)w) A Y = u * 2' A Gen((u)w, v) 1 V 

. . 
' 3 

[Prf(u) v Fml((u)~) A Fml((u),) A Y = u * 2' A MP((u), (u),, v)] v 
[ Prf(u) A y = u * 2' A Ax(v) 1) 

which is equivalent to Prfb), is primitive recursive (or recursive). 
(b) Pfb,  x): y is the Godel number of a proof of the wf with Godel 

number x. Pf(y, x) is equivalent to Prf(y) r\ x = (y),h&I,, 

, (b) Numb) = the Godel number of 7. 

Num(0) = 215 

Num(y + 1) = 257 * 23 * Num(y) * 2' 

(15) Bw(u, v, x, y): u is the Godel number of a wf d ,  v is the Godel number of 
free in &, and y is a Godel number of a proof in K of the wf obtained 

from & by substituting the numeral i for the free occurrences of the variable 
with Godel number v. 

(16) Let d(x,, . . . , x,,) be a fixed wf of K containing x,, . . . , x,, as its only 
free variables, and let m be the Godel number of d(x,, . . . , x,,). Let 
Bwdu,, . . . , u,, y) mean: y is the Godel number of a proof in K of 
&(aI, . . . , Un). Then Bwdu,, . . . , u,, y) is equivalent to: 

~ f ( y ,  Sub - . ( ~ u b ( ~ u b ( m ,  Num(u,), 5 + 8), Num(u2), 5 + 16) . . . )). 
I 

(17) (a) W,(u, y): u is the Godel number of a wf @(x,) containing the free 
variable x,, and y is the Godel number of a proof of &(ti). This is equivalent to: 

that S satisfies assumption (d) of Proposition 3.26. Let a,, a,, . , a, (b) w , ( ~ ,  y): is the Godel number of a wf @(XI) containing the lree 
be the Godel numbers of Axioms (S1)-(S8). It is easy to see that a number u is and y is the Godel number of a proof of -- @(a). This is 
Ihe Godel number of an instance of Axiom Schema (S9) if and only if to: 

(Ev>V<u(E~)y<,(~bl(v) A Fml(y) A u = 23 * Sub(y, 215, v) * 2" 23 * 23 * 23 I 
~ ~ l ( ~ )  A Fr(u, 13) A ~ f ( ~ ,  Sub(Z3 * 29 * u * 2'9 Num(')* 13)). 

Denote the displayed formula by &(u). Then x is the Godel number of a proper 
axiom of S if and only if x = a, V x = a, V - . . V x = a, V b(x) .  Thus, 
PrAx(y) is primitive recursive for S. 

PROPOSITION 3.27. Let K be a theoty having among its symbols all the symbols 
of S.  If the relations IC, FL, and PL of Proposition 3.25 are primitive recursive 
(or recursive), then (14) and (18) below are primitiw recursiue (or recursiue). If, 
in addition, the property PrAx of Proposition 3.26 is primitive recursive (or 
recursive), then (15)-(17) below are primitive recursive (or recursiue). In 
particular, for S all the functions and relations (1)-(18) are primitive recursiue. 
(14) (a) Nub): y is the Godel number of a numeral of S. 

Y = 2" \/ (Ex).<,(Nu(x) A y = 2" * 2' * x * 25). Use Corollary 3.20. 

(18) We wish to define a function D(u) such that, if u is the Godel number of 
a wf B.(x,) with free variable x,, then D(u) is the Godel number of &(Q Let 
D(u) = ~ i b ( u ,  Num(u), 13). 

The relations and functions of Propositions 3.25-3.27 which relate to the 
system S should have the subscript "S" attached to the corresponding s i p s  to 
indicate the dependence upon S. If we were considering another first-order 
theory S' with the same symbols as S, then, in general, we would obtain different 
relations and functions in Propositions 3.25-3.27. 

PROPOSITION 3.28. Any function f(x,, . . . , x,,) which is representable in S is 
recursiue. 

PROOF. Let d(x,, . . . , x,,, z) be a wf of S representing f. Consider natural - 
numbers k,, . . . , kn. Let f(k,, . . . , k,) = m. Then kSd(G, . . . , k,, m). Let j be - 
the Godel number of a proof in S of d l ,  . . . , k f i  Then 
Bwdk,, . . . , kn, m, j) (cf. Proposition 3.27(16)). So, for any x,, . . . , xn, there is 
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some y such that B W ~ X ~ ,  . . . , xn, 0 ,  0,). Then f(x,, . . . , %) = 
(py(Bwe(x,, . . . , x,, 0, (Y),)))~. By Proposition 3.27(16), Bwa is primitive re- 
cursive. Hence, by the p-operator Rule (VI), py(BwdxI, . . . , %, (y),, 0,)) is 
recursive, and, therefore, so is f. 

Proposition 3.28, together with Proposition 3.23, shows that the class of 
recursive functions is identical with the class of functions representable in S. In 
Chapter 5, it will be made plausible that the notion of recursive function is a 
precise mathematical equivalent of the intuitive idea of effectively computable 
function. 

COROLLARY 3.29. A number-theoretic relation R(x,, . . . , x,,) is recursiue jj 
and only if R(x,, . . . , x,) is expressible in S. 

PROOF. R is recursive if and only if C, is recursive, by definition. R is 
expressible in S if and only if C, is representable in S, by Proposition 3.12. 

5. Giidel's Theorem for S 
Let K be any theory with the same symbols as S. Then K is said to be 

o-consistent if and only if, for every wf @(x) of K, if kK@(ii) for every natural 
number n, then i t  is not the case that kK(Ex) - &(x).  If we accept the standard 
interpretation as a model of S, then S is vconsistent, but we shall always 
explicitly state the assumption that S is w-consistent whenever i t  is used in a 
proof (compare the remarks about consistency on p. 126). 

P R o ~ o s l n o ~  3.30. If K is o-consistent, then K is consistent. 

PROOF. Assume K o-consistent. Consider any wf Q(x) which is provable in 
K, e.g., x = x 3 x = X. In particular, kKil = ii 3 ii = ii for all natural numbers 
n. Hence, (Ex) - (x = x 3 x = x) is not provable in K. Therefore, K is 
consistent (since, by the tautology - A  2 (A 1 B),  if K were inconsistent, 
every wf would be provable in K). 

By Proposition 3.27, (17a), the relation W,(u, y) is primitive recursive 
and so, by Corollary 3.24, W, is expressible in S by a wf %,(x,, xJ with 
t w o  f r ee  v a r i a b l e s  x , ,  x, ,  i . e ,  if W ( k ,  k ) ,  t h e n  - 
k,%l(kl, k2), and, if not-Wl(kl, k,), then k, - @J,(K, G). Let us consider the wf 

Let m be the Godel number of the wf (b ) .  Substitute iii for x ,  in ( b )  to obtain 
the closed wf 

Remember that W,(u, y) holds if and only if u is the Godel number of a wf 
@(x,) containing the free variable x,, and y is the Godel number of a proof in S 
of @(Ti). Now, m is the Godel number of ( a ) ,  and (+ Q) comes from (+) by 
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bstituting B for the variable x , .  Hence, 
(I) W,(m, y) holds if and only if y is the Godel number of a proof in S of 

PROPOSITION 3.3 1 (Godel's Theorem for S [I93 I]). 
(1) If S is consistent, then the wf (Qm) is not provable in S. 
(2) If S is w-consistent, then the wf - ( b  b )  is not provable in S. 

(Hence, by Proposition 3.30, if S is o-consistent, the closed wf ( @ a )  is neither 
prmable nor disprovable in S. Such a closed wf is said to be an undecidable 
sentence of S.) 
PROOF. 

(I) Assume S consistent, and assume that ts(x2) -- %,(fii, xJ. Let k be the 
Godel number of a proof in S of this wf. By (I) above, W,(m, k). Since 05, 
expresses W, in S, we have ksDdl(Tii, E). From (x,) -- Ddl(iii, x,), by Rule A4, we 
deduce -- %, (iii, E). Thus, %, (iii, E) and -- Wl (iii, E) are provable in S, con- 
tradicting the consistency of S. 

(2) Assume S o-consistent, and assume that Is - (xd - W,(fi, x2), i.e., 
Is - (QQ). By Proposition 3.30, S is consistent, so that not-kXQ Q). Therefore, 
for every natural number n, n is not the Godel number of a proof in S of ( m a ) ,  
i.e., by (I), for every n, Wl(m n) is false. So, for every n, ks -- GU(,(iE, ii). If we 
let Q.(x,) be - W1(=, x,), then, by the w-consistency of S, it follows that not- 
IJEx,) -- -- %, (iii, x,); hence, not- ks(~x2)'%fI(m, x3. But this contradicts our 

U \  *I . . 
assumption that ks(~~,)%,(fii, xJ. 

The standard interpretation of the undecidable sentence (Qb) :  (xJ - 
%, (Ei, x,) is rather remarkable. Since I, expresses the relation W, in S, ( a m )  
states, according to the standard interpretation, that W,(m, xJ is false for every 
natural number x,. Now, by (I), this means that there is no proof in S of (am) .  
In other words, ( 8 % )  affirms its own unprovability in S.t Now, by Godel's 
Theorem, if S is consistent, then (QQ)  is, in fact, unprovable in S, and so, 
( b e )  is true under the standard interpretation. Thus, (Q*) is true for the 
natural numbers according to the usual interpretation, but is unprovable in S. 
This might lead us to believe that Godel's Theorem holds only because the 
axiom system S that we initially chose just happens to be too weak and that, if 
we strengthen S by adding new axioms, then the new system might be complete. 
For example, we might add the true wf ( b e )  to S to obtain a stronger axiom 
system S,. However, every recursive function, being representable in S, is also 
representable in S,; likewise, Propositions 3.25-3.27 obviously hold when Sl is 
substituted everywhere for S. But this is all we need for the derivation of Gael's 
result; hence, if S, is o-consistent, then S, also has an undecidable statement 3 . 
( 3  is of the form (x,) - (W,),,&, xJ, but, of course, 3 will be different from 
( a @ ) ,  since the relation W, for S, is different from the relation W, for S, and 
hence the wf and the numeral E entering into 3 are different from %I 
and the numeral Ifi of (Q Q).) 

?Thus, (m 0 )  is an analogue of the Liar Paradox (cf. Wang [1955]). 
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EXERCISES 

3.39. Let S, be the extension of S obtained by adding - ( a @ )  as a new axiom. 
Show that, if S is consistent, then S, is consistent and w-inconsistent. 

3.40. A theory K having the same symbols as S is said to be w-incomplete if there 
is a wf @(x) such that kK&(n) for all non-negative integers n, but it is not the case 
that kK(x)@(x). Show that, if S is consistent, then S is w-incomplete. 

3.41. Prove that w-inconsistency implies a-incompleteness for consistent theo- 
ries. 

3.42. Using the "fact" that every theorem of S is true in the standard model, and 
that, according to the standard interpretation, ( a  9 )  says that ( 9  9 )  is unprovable 
in S, prove that ( % a )  is undecidable in S. 

Godel's Theorem involves the assumption of a-consistency, but, as Rosser 
[1936b] has shown, at the cost of complicating the argument we need only 
assume consistency. 

In Proposition 3.27, (17b), the relation W2(u, y) was shown to be primitive 
recursive, and so, by Corollary 3.24, W2 is expressible in S by a wf W2(x,, x,). 
Now, consider the wf 

(7) (x,)(W1(x17 x2) 3 (Ex,)(x, 6 X2 A %,(XI, ~3)))  

Let n be the Godel number of (7). Substitute ii for x, in (7) to obtain the closed 
wf 

(77) (x2)('W (5, ~ 2 )  3 (Ex3)(~3 4 ~2 A %2(% ~3)))  

Notice that W,(u, y) (respectively, W2(u, y)) holds if and only if u is the Godel 
number of a wf &(x,) containing the free variable x,, and y is the Godel number 
of a proof in S of &(u) (respectively, - d(ii)). Since n is the Godel number of 
(TI), we have: 

(11) Wl(n, y) holds if and only if y is the Godel number of a proof in S of (77). 
(111) W2(n, y) holds if and only if y is the Godel number of a proof in S of 

-- (77). 

PROPOSITION 3.32 (GODEL-ROSSER THEOREM [1936b]). If S is consistent, then 
(77) and -- (77) are both unprovable in S; hence, S contains an undecidable 
sentence. 

PROOF. Assume S consistent. 

(1) A~sume (77) provable in S, i.e., t-dx2)('Wl(ii, x2) 2 (Ex,)(x, < x2 
%2(fl, 5))). Let k be the Godel number of a proof in S of (77). By (I]), W,(q k). 
Since %I expresses W, in S, kS%,(ii. k). But, from (7v, we obtain by Rule A4, 
F S ~ I  (fl, E) 3 (Ex3)(x3 < E A W2(ii, x,)), and then by MP, ks(Ex3)(x3 < E /\ 
%(5, 5)). Now, since S is consistent, and kS(TD, it follows that there is no 
proof in S of -(IT). So, by (III), W2(n, y) is false for all natural numbers y. 
Since w2 expresses W, in S, k, - W2(ii,j) for every natural number j. In 
particular, we deduce Is - W 2 ( ~ ,  0) A - W2(li, 1) A . . . A - II( - - 

2(n, k). 
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ence, by Proposition 3.8(a1), ts(x,)(x3 < ii 2 - w2(fi, x,)), and so, 
-- (Ex,)(x, < I; A W2(ii, x,)) by the Replacement Theorem (Corollary 2.2 1). 
t this is the - negation - of a wf we have already derived above, contradicting the 

of S. 7 (2) Assume Is - ((I), i.e., k, - (x2)('W,@, ~ 2 )  3 (EX,)(*-, < 12 A 
$(a, x,))). Let r be the Godel number of a proof of -- (7%. By (III), W2(n, r); 
therefore, l-sW2(ii, i). Since S is consistent, there is no proof in S of (Ty), i.e., by 
r m  W.(n. y) is false for all natural numbers y. Hence, is - %,(a, 3 for all (.*,, . . , , , 
natural numbers j. In particular, 

Then, by Proposition 3.8(a1), 

I (i) ksx, < i 3 -- W1(ii, x2). On the other hand, consider the following deduc- 
1 tion. 

(1) f < x, HYP 
(2) %2(fl, f) Already proved above 

(3) f 4 x, A %-,(a, f)  (I), (2), Tautology 
(4) ( Ex,)(x, 1 2  A w2 (fi, ~ 3 ) )  (3), Rule E4 

From (1)-(4), by the Deduction Theorem, we obtain 

(ii) kSi. 4 x2 2 (Ex3)(x3 4 x2 A %,(R, x3)) 

But, by Proposition 3.7(p), 

(iii) ksx2 < f V f < x, 

Now. from (i)-(iii), we obtain, by the appropriate tautology, 

and then by a tautology, MP and Gen, 

1s(x2)(w,(fi, x2) 2 (~x3)(x3 < ~2 A qfi2(fir ~ 3 ) ) )  

Thus. h(77). But, since ( 7 )  has been assumed, this contradicts the , a. 

consistency of S. 
Rosser's undecidable sentence (77) also has an interesting standard interpreta- 

tion. By (11) and (III), Wl(n, x,) means that x, is the Godel number of a proof in 
S of (IT), and W2(n, x,) means that x, is the Godel number of a proof in S of 
--((ID. Thus, (Tl) asserts that, if there is a proof in S of (TI), then there is a 
proof in S, with even a smaller Godel number, of -- (70. Now, Proposition 3.32 
showc that, if S is consistent, then (77) is not provable; therefore, if S is - - - - . . - -- 
consistent, (78) is true under the standard interpretation. 

The application of the Godel-Rosser Theorem is not limited to S. Let K be 
any first-order theory with the same symbols as S. If we analyze the proof 
above, we obtain the following sufficient conditions for the applicability of the 
Godel-Rosser Theorem to K. 
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(a) The relations W, and W2 (cf. Proposition 3.27(17); replace S everywhere 
by K in the definitions) should be expressible in K. 

(b) There is a wf u < v such that 
(i) for any wf &(x) and any natural number k, 

~K&(O) A @(i) A * - A @(E) 3 (x)(x < k 3 &(XI) 

(ii) and for any natural number k, 
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automatically without any need for originality or ingenuity in its application. 
I1 appear plausible after Chapter 5 that the precise notion of a recursive set 

onds to the intuitive idea of an effectively decidable set of natural 
s. This hypothesis is known as Church's Thesis. 

EXERCISE 3.43.Sometimes Church's Thesis is taken in the form that a 
number-theoretic function is efiectively computable if and only if the function is 

iue. Prove that this is equivalent to the form of Church's Thesis giuen I above. FKx < E V E < X  
Notice that, if K is a theory with equality, then (i) may be replaced by (if): - F , X < E - J ( X = O V X =  I V . . . V X = D .  

The condition (a) that W, and W2 be expressible in K will be satisfied if W, 
and W2 are recursive and every recursive relation is expressible in K. From the 
proofs of Proposition 3.25-3.27, it is obvious that W, and W2 will be recursive if 
the assumption (d) of Proposition 3.26 holds for K, i.e., if the property P r h ,  of 
being a Godel number of a proper axiom of K is recursive (or, in other words, if 
the set of Godel numbers of proper axioms of K is recursive). Thus, we have the 
following result. 

PROPOSITION 3.33. Let K be a theory hauing the same symbols as S. Assume 
also that the following conditions hold for K. 

(1) Every recursive relation is expressible in K. 
(2) The set P r h ,  of Godel numbers of proper axiom of K is recursiue. 
(3) Conditions (b), (i)-(ii) above, hold. 

Then the Godel-Rosser Theorem holds for K, i.e., if K is consistent, then K has 
an undecidable sentence. (Observe that (1) holds if every recursive function is 
representable in K, by Proposition 3.12; condition (i) of (3) can be replaced 
by (i') above if K is a first-order theory with equality.) 

Let us call a theory K recursive$ axiomatizable if and only if there is a theory 
K' having the same theorems as K such that the set Prh,. of Godel numbers of 
proper axioms of K' is recursive. 

COROLLARY 3.34. Ewry consistent recursiueb axiomatizable extension of S is 
subject to the Gael-Rosser Theorem, and therefore has an undecidable sentence. 

PROOF. Since all recursive relations are expressible in S, they are also 
expressible in any extension of S. Likewise, since conditions (i)-(ii) hold in S, 
they also hold in any extension of S. So, by Proposition 3.33, the Godel-Rosser 
Theorem applies to any consistent recursively axiomatizable extension of S. 

An eflectively decidable set of objects is a set for which there is a prescribed 
mechanical procedure which determines, for any given object, whether or not 
that object belongs to the set. A mechanical procedure is one which is carried 

,! 
i 

Remember that a theory is said to be axiomatic if the set of its axioms is 
i; effectively decidable. If we accept Church's Thesis, Corollary 3.34 asserts that S 

is essentially incomplete, i.e., that every consistent axiomatic extension of S has 
't an undecidable sentence. 

EXERCISES 

3.44. Prove that the set Tr of Godel numbers of all wfs of S which are true in the .. 

, standard model is not recursive. 
3.45. From Corollary 3.34, prove that there is no recursively axiomatizable 

theory having Tr as the set of Godel numbers of its theorems. 
3.46. Let K be a theory with equality satisfying conditions (b), (i)-(ii) @. 162), 

and such that every recursive relation is expressible in K. Prove that every recursive 
function is representable in K. 

Let Neg(x) = 23 * z9 * x * Z5. Then if x is the Godel number of a wf @, 
Neg(x) is the Godel number of (-- &). Clearly Neg is recursive, and, hence, is 
representable in S by a wf We~(x,, x2). Remember that PfCy, x) is the relation 
which holds when and only when x is the Godel number of a wf @ of S and y is 
the Godel number of a proof in S of @. By Proposition 326. Pf is primitive 
recursive; hence, by Corollary 3.24, Pf is expressible in S by some wf $f(x,, xJ. 

Let Cons be the wf: 

Intuitively, according to the standard interpretation, ConS asserts that there is no 
proof in S of any wf and its negation, and this is true if and only if S is 
consistent. Thus, Cons can be interpreted as asserting the consistency of S. Now, 
Godel's undecidable sentence ( l a )  (cf. p. 158) means, according to the 
standard interpretation, that ( r i t l )  is not provable in S. Hence, the wf Cons > 
( I + )  asserts that if S is consistent, then (rit l )  is not provable in S. But this is 
just the first half of Godel's Theorem. The metamathematical reasoning used in 
Godel's Theorem can be expressed and carried through within S itself, so that 
one obtains a proof in S of Cons > ( l l ) .  (For a proof of this assertion, see 
Hilbert-~erna~s [1939], pages 285-328; Feferman [1960].) Thus, FsCons 3 
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(@m). But, by Godel's Theorem, if S is consistent, then (9 @) is unprovable in Second meorem: Let K be a consistent extension of S. Let Kl be any theory 
S. Therefore, if S is consistent, then Con, is unprovable in S, i.e., if s is bYCh (hat K is an extension of K, and K, is an extension of robin son'^ system 
consistent, a wf which asserts the consistency of S is unprovable in S. m i s  is gn particular, K, may be S or K itself.) Let TK be the set of Oode1 numben 
G&del's Second Theorem 119311. One can very roughly paraphrase it by stating af theorems of K, and assume that &(x) is an RE-fomula which expresses T~ in 
that if S is consistent, the consistency of S cannot be proved within S; or, K,. ~h~~ not- kK con, m e  assumption that @(x) is an RE-formula is shown 

equivalently, a ~onsistency proof of s musf use ideas and methods which go necessary by Fefeman3s proof that there is a wf 3 (x) which expresses Ts in 
beyond those available in S. In fact, the consistency proofs for s even by 
Gentzen 11936, 19381 and Schutte I195 11 do employ notions and methods (eSg., a 
portion of the theory of denumerable ordinal numbers) that apparently are not 6. Recursive Undecidability. Tarski's Theorem. Robinson's System. 
formalizable in S. L~~ K be a theory with equality having the Same symbols as S. If is the 

We can state GMel's Second Theorem appmfimately as follows: 1f con, is j G + J ~ ~  number of wf &(x,) with free variable XI, then the function D("), as 
an arithmetization of the statement that the theory K is consistent (where K is a 1 defined in proposition 3.27(18), has as its value the Godel number the wf 

possessing the symbols of S), then, if K is sufficiently strong and &(G). since D ( ~ )  = sub(u, Num(u), 13), it is clear that D is ~rifitive recursive. 
consistent,  con^ is not provable in K. Actually, the theorem applies to much 

! 
k t  T, be the set of Godel numbers of theorems of K. 

general theories (not necessarily first-order). Aside from the vagueness due 
pRopos~~~oN 3.35. K is consistent and the junction D is representable in K, 

the phrase "sufficiently strong" (which can be made precise without much , 
the way in which Con, is constructed also adds an element of then TK is not expressible in K. 

This ambiguity is dangerous, because, as Feferman has shown I PROOF, Assume D representable in K and T K  expressible in K- Then there 
(Feferman [19601, Corollary 5.10), there is a way of defining Cons so (hat I are wfs 9(x1, x2) and bi(x2) such that 
ksCons. Therefore, it is necessary to make the statement of the theorem more i (1) ~f D(k)  = j ,  then t -Kq(KJ)  
precise. This has been done by Feferman 119601 roughly in the following way.? 

F O ~  any primitive recursive function f(x,, . . . , x,,), we showed in the proof of 1 (2) k K ( ~ l ~ 2 ) q ( E ,  ~ 2 )  
(3) If k is in TK, then ~KY(K) 

Proposition 3-23 @P. 148-151) how to find a wf Q,(x,, . . . , x,, y) representing f - 
(4) ~f k is not in TK, then bK - y ( 6  

in S. The ~ f s  @(XI.  . . . , x,, 0) obtained in this way are called f'R-jormu/as. A 1 
wf 93 is said to be an RE-formula if, and only if, for some PR-formula Q,, 9 is Consider the wf &(x,) : ( x J ( ~ ( x , ,  x2) 3% Y(x2)). Let P be the Godel number 

of the form (EYI) . . . (EY~)@ (with k > 0). In particular, every PR-formula is 1 of this wf. Construct the wf @(F): 
an RE-formula. If we think of a given wf @(x) as representing the theory Y the 

I axioms of which are those w f ~  whose Godel numben satisfy @, then we can , (x2)(9 (p, x,) 3 - 5(x3). 

a proof predicate for K as follows: Prfdy, x) is the wf obtained from 
Let be the Giidel number of &(p )  Hence, D(P) = q. by ('1, 

= (y)lrY)- 1 A Y  > 1 A (z)(z < WY) 3 (Fml ( (~ )~ ) )  A   LAX((^),) v 
kK4(p, q). Now, either k,&(p) or not- kK@(p). If not- k ~ @ ( f l ,  then q is 

in 
(Ev)(Ew)(a < A < A (MP((Y),, ( Y ) ~ ,  (Y),) V Gen((y)". ( y )~ ) ) ) ) ,  by T,, and so, by (4), k K  - 5(q). On the other hand, if K then 

all the primitive recursive functions and predicates by the wfs which kK,x2)(9 (p, x2) 3 - bi(x2)). Hence, by Rule A4. k,q(F> q) 2- 5(q); but 
represent or express them. (For example, if e(u, 0) represents lhb), then k K 9  (p, 3. Hence, k K  - ~ ( q ) .  n u s ,  in both cases, IK -- 5(q). Now7 from ' < IhO is replaced by (EvXC(y, v )  A 2 < u).) The wf Prfdy, x) expresses in 

kK9(p,  q) and (2), kK4(p, x2) > x2 = q. B U ~ ,  since 1, -- 9(q), = q 3 
G the relation that Y is the Godel number of a proof in the theory K of a wf 1 - y(x2), Hence, l K q ( p ,  x2) - J ( x j ,  and, by Gen, kK(x3(9(F, ~ 2 )  3 

having GMel number x. (See pp. 143. 153-154 for definitions of the relations 1 , i.e., kK&(p3. Therefore, is in TK, and, by (3,  kKT(3. Since we also and Fml, lh, w,, Gen, MP appearing in B e  formula above.) We now have tK - Y(q), K is inconsistent. 
can construct a wf corresponding to the notion of a theorem of K: Let Prdx) 
stand for (Ey)Prfa(~, *)- We then can construct a wf expressing the consistency coRoLLARy 3.36. ~j K is consistent and evev recursioe function is represent- 

K: 'On@ for ( ~ ) ( ~ m l ( x )  3 - Prdx) V (E~)(YIP~(x,~)  A - ~rdy) ) ) .  one of able in K, then TK is not expressible in K. Hence, TK is not recursiue. 
the of Feferman's work is the following precise version of G6ders D is pfimi~ive recursive, and, therefore, would be representable in K. 

B~ propos,tion 3.35, T, is not in K. By the proof of proposition 3.127 

the charactenstic function G~ is not representable in K. Hence q K  is not tFor fumer cldication and development of Gdel's S w n d  Themew d Jeroslou (1971, 1972, 1 
19731. recursive, and so, TK is not recursive. 



166 FORMAL NUMBER THEORY 

We shall say that K is recursiwly undecidable if and only if TK is not 
recursive; and K is called essentially recursiwly undecidable if and only if K and 
every consistent extension of K is recursively undecidable. (If we accept 
Church's Thesis, then recursive undecidability is equivalent to effective undecid- 
ability, i.e., non-existence of a mechanical decision procedure for theorernhood. 
The non-existence of such a mechanical procedure means that ingenuity is 
required for determining whether any given wf is a theorem.) 

COROLLARY 3.37. If S is consistent, then S is essentially recursively undecid- 
able. 

PROOF. If K is any consistent extension of S (possibly S itself), then, since 
every recursive function is representable in S, the same holds true for K, and, 
therefore, by Corollary 3.36, TK is not recursive. 

COROLLARY 3.38 (Tarski's Theorem [1936]). The set Tr of Godel numbers of 
wfs of S which are true in the standard model is not arithmetical, i.e., there is no 
wf @(x) of S such that Tr is the set of numbers k for which @(E) is true in the 
standard model. 

PROOF. Let K be the extension of S having as its axioms all those wfs which 
are true in the standard model. Then TK = Tr. We assume that K is consistent, 
since it has the standard model. By Corollary 3.36, since every recursive function 
is representable in K, Tr is not expressible in K. But a relation is expressible in 
K if and only if it is the standard interpretation of some wf of S. Hence Tr is not 
arithmetical. (This result can be roughly paraphrased by saying that the notion 
of arithmetical truth is not arithmetically definable.) 

EXERCISES 

3.47. (a) If n is the Godel number of a wf &, let Cl(n) be the Godel number of 
the closure of &; otherwise, let Cl(n) = n. Using Proposition 3.25, show that C1 is 
primitive recursive. 

(b) Show that if the theory K is recursively axiomatizable and complete, 
then K is recursively decidable, i.e., the set TK is recursive; or, equivalently, if K is 
recursively axiomatizable and recursively undecidable, then K is incomplete. 

3.48. Show that, if K is not recursively axiomatizable, then K is recursively 
undecidable. 

3.49. (a) (Fixed Point Theorem) Let K be a theory with equality, with the same 
symbols as S, in which every recursive function is representable. For any wf &(xl) 
of K, show how to construct a sentence 9, with Godel number k, such that 
k K 9  = &@). (Intuitively, 9 says that "& is true of me".) Hint: Let the primitive 
recursive function D(x) be representable in K by the wf 9 (x l ,  x,). Construct the 
wf ($) (x2) (q(x,,  x2) > &(x,)). If m is the Godel number of ($), let '-3 be 
( ~ 2 )  ( q ( m  x2) 2 W2)). 

(b) Prove Tarski's Theorem (Corollary 3.38) from the Fixed Point Theorem 
(Part (a)). 

(c) Prove that the set Tr is not recursive. (This already has been proved in 
another manner in Exercise 3.44.) Hence, by Church's Thesis, arithmetical truth is 
not decidable. 
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(d) Let K be any recursively axiomatizable theory with equality, with the 
same symbols as S, such that all theorems of K are true in the standard model, i.e., 
TK G Tr. Prove that K has an undecidable sentence. 

(e) Let K be a consistent theory with equality, with the same symbols as S, 
in which every recursive function is representable. Let Ref, be the set of Gijdel 
numbers of refutable wfs of K, that is, {xlReg(x) E T,). Prove that there is no 
recursive set A such that TK C A and RefK C_ A (the complement of A). 

Robinson's System: Consider the first-order theory with the same symbols as S 
and having the following finite number of axioms. 

(4) X I  = x2 > x; = x; 
(5) x, = x, > (x, + x3 = x2 + x3 Ax ,  + x, = x, + xJ 
(6) x, = x2 > (x1.x3 = x2.x3/ \x3 .xI  = x3-XJ  
(7) x ; = x ; > x 1 = x 2  

(13) X,  . (xJ' = (XI xz) + xl 
(14) (x2 = x I V x 3  + x 4 A x 4  < X I  A x 2  = x, .x6 + x5 A x 5  <x , )  > x4 = x5 

(Uniqueness of remainder) 

We shall call this theory RR. (The system Q of Axioms (1)-(13) is due to 
Raphael Robinson [1950]. Axiom (14) has been added to make one of the proofs 
below easier.) Clearly, RR is a subtheory of S, since all the axioms of RR are 
theorems of S. In addition, it follows from Proposition 2.26 and Axioms (1)-(6) 
that RR is a theory with equality. 

PROPOSITION 3.39. In RR, the following are theorems. 

(a) ii + iii =n  + m for any natural numbers m and n. 
(b) ii . fii =n  - m for any natural numbers m and n. 
(c) ii # iii if n # m, for any natural numbers n and m. 
(d) x < ii > x = 0 V x = 1 V - . - V x = ii for any natural number n. 

- 

(e) x < ii V ii < x, for any natural number n. 

PROOF. Parts (a)-(c) are proved just as in Proposition 3.6(a). Parts (d) and 
(e) are proved by induction on n in the metalanguage, making strong use of 
Axiom (9). The proofs are left as exercises. 

EXERCISES 

3.50. Show that RR is a proper subtheory of S. Remark: not only is S different 
from RR, but it is not finitely axiomatizable at all (i.e., there is no theory K having 
only a finite number of proper axioms, whose theorems are the same as those of S). 
This has been proved by Ryll-Nardzew~ki [I9531 and Rabin [1961]. 



168 FORMAL NUMBER THEORY 

3.51. Show that Axiom (14) is not provable from Axioms (1)-(13). (Hint: let co 
be an object which is not a natural number. Let co' = co, co + x = x + co = co 
f o r a l l x , c o ~ O = O ~ c o = O , a n d c o ~ x = x ~ c o = c o f o r a l l x # 0 . )  

PROPOSITION 3.40. Every recursive junction is representable in RR. 

PROOF. For the initial functions and the rules of substitution and the 
p-operator, essentially the same proof holds as was given for S in Proposition 
3.23. For the recursion rule, inspection of the proof given for Proposition 3.23 
shows that it is still valid for RR if we note that, for the wf Bt defined in - - -  Proposition 3.21, if P(k,, k,, k,) = m, then kRRBt(k,, k2, k3, iii), and also, by 
Axiom (14), FRRBt(u, u, x, y )  A Bt(u, u, x, z) 2 y = z. 

EXERCISE 3.52. Carry through the details of the proof of Proposition 3.40. 

We shall take for granted that RR is consistent, since it has the standard 
interpretation as a model. However, more constructive consistency proofs can be 
given along the same lines as the proofs in Beth [1959, $841 or Kleene [1952, 
$791. 

(a) RR is essentially recursively undecidable. 
(b) RR is essentially incomplete. 

PROOF. (a) By Corollary 3.36 and Proposition 3.40. (b) By Propositions 3.33 
and 3.40 (or, from (a), by Exercise 3.47(b), p. 166). 

Of course, we already had these results for the theory S. The reason that we 
have gone to the trouble of obtaining them again for RR is that RR is finitely 
axiomatizable. It can be shown that Proposition 3.40, and therefore also Pro- 
position 3.41, holds for Robinson's system Q (Axioms (1)-(13)). However, the 
proof for Proposition 3.40 is more complex (cf. Tarski-Mostowski-Robinson 
[1953], pages 56-59) than the one given above for RR. 

Let K, and K2 be any two theories having the same symbols. K, is called a 
finite extension of Kl if and only if there is a set A of wfs and a finite set B of 
wfs such that (I) the theorems of K, are precisely the wfs derivable from A; (2) 
the theorems of K, are precisely the wfs derivable from A u B. 

We say that Kl and K, are compatible if and only if the theory Kl u K,, the 
set of axioms of which is the union of the set of axioms of K, and the set of 
axioms of K,, is consistent. 

PROPOSITION 3.42. Let K, and K2 be theories having the same Jymbols as S. If 
K, is a finite extension oj K, and if K2 is recursively undecidable, then Kl is 
also recursively undecidable. 

PROOF. Let A be a set of axioms of K,, and A U {a,, . . . , @,,) a set of 
axioms for K,. We may assume that &,, . . . , $ are closed wfs. Then, by the 
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eduction Theorem, a wf '33 is provable in K2 if and only if (a, A . . . A@,,) 2 
is provable in K,. Let c be a Gijdel number of (a, A . . . A&,,). Then b is a 

Gadel number of a theorem of K2 when and only when 2, * c * 211 * b * 25 is a 
Godel number of a theorem of Kl,  i.e., b is in TK2 if and only if 
23 r c * 2" * b * 2' is in T,,. Hence, GKJx) = GK,(2, * c * 2" * x * 2'). So, if 
T~ were recursive, T,, would also be recursive, contradicting the recursive I @ u&!lecidability of K,. 

- 

PROPOSITION 3.43. Let K be a theory having the same vmbols as S. If K is 
compatible with RR, then K is recursively undecidable. 

PROOF. Since K is compatible with RR, the theory K u RR is a consistent 
extension of RR. Therefore, by Proposition 3.41(a), K u RR is recursively 
undecidable. But K u RR is a finite extension of K. Hence, by Proposition 3.42, 1 K is recursively undecidable. 

1 COROLLARY 3.44. Let K be a theory with the same ~ymbols as S such that all 
the axioms o j  K are true in the standard model. Then K is recursively 
undecidable. 

PROOF. K u RR has the standard interpretation as a model, and is, there- 
fore, consistent, i.e., K is compatible with RR. Now apply Proposition 3.43. 

I '  COROLLARY 3.45. Let P, be the predicate calculus having the same Jymbols as 
S. Then P, is recursively undecidable. 

PROOF. P, u RR = RR. Hence, P, is compatible with RR, and, therefore, by 
Proposition 3.43, recursively undecidable. 

1 By PF we mean the full first-order predicate calculus containing all predicate 
letters A;, function letters f;, and individual constants aj. Let PP be the pure 
first-order predicate calculus containing all predicate letters, but no function 
letters or individual constants. 

LEMMA 3.46. There is a recursive junction h such that, for any wf & of PF 
having Godel number u, there is a wf &' oj PP having Godel number h(u) such 
that & is provable in PF if and only if &' is provable in PP. 

PROOF. Let & be a wf of PF. With the distinct function letters f; in a, 
associate distinct predicate letters A:+' not occumng in &, and with the distinct 
individual constants a, in &, associate distinct predicate letters A: not occurring 
in &. Find the first individual constant a, in @; let z be the first variable not in 
a; and let &* result from & by replacing all occurrences of a, in & by z. Form 
the wf &,: (EZ)A:(Z) 2 (EZ)(A:(Z) A a*), where A: is the predicate letter 
associated with a,. It is easy to check (cf. proof of Proposition 2.29) that & is 
logically valid if and only if &, is logically valid. Keep on performing similar 
transformations until a wf 3 is reached without individual constants such that 
& is logically valid if and only if '33 is logically valid. Take the left-most term 
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J'(t,. . . . , tn) in I, where t , ,  . . . , tn d o  not contain function letters. Let w be 
the first variable not in I, let 5% * result from I by replacingf;(t,, . . . , tn) by 
w, and let 9, be the wf (Ew)A:+'(w, t,, . . . , tn) 3 (Ew)(A:+'(w, t,, . . . , tn) p, 
I *), where A:+' is the predicate letter corresponding tof;. It is easy to verify 
that "U is logically valid if and only if 93, is logically valid. Repeat the same 
transformation on J,, etc., until a wf d' is reached which contains no function 
letters. Then 8' is a wf of PP and d' is logically valid if and only if d is 
logically valid. By Godel's Completeness Theorem (Corollary 2.14), d is logi- 
cally valid if and only if I-,,@, and B' is logically valid if and only if kPpdf. 
Hence, kpFd if and only if kpPdf. In addition, if u is not the Godel number of a 
wf of PF, we define h(u) to be 0; if u is the Godel number of a wf d of PF, we 
let h(u) be the Godel number of B'. Clearly, h is effectively computable, and we 
leave it as an exercise for the diligent reader to show that h is recursive. 

PROPOSITION 3.47 (Church's Theorem [1936a]). PF  and PP are recursively 
undecidabfe. 

PROOF. 

(I) By Godel's Completeness Theorem, a wf d of P, is provable in P, if and 
only if B is logically valid, and d is provable in PF  if and only if d is logically 
valid. Hence, d if and only if I,@. However, the set Fmlps of Godel 
numbers of wfs of Ps is recursive. Then, Tps = TpF n Fmlps, where Tps and Tp, 
are, respectively, the sets of Godel numbers of the theorems of PS and PF; and, 
if TpF were recursive, Tps would be recursive, contradicting Corollary 3.45. 
Therefore, PF  is recursively undecidable. 

,-. - 
(2) By Lemma 3.46, u is in TpF if and only if h(u) is in Tpp. Since h is 

recursive, the recursiveness of Tpp would imply the recursiveness of TpF, con- 
tradicting (I). Thus, Tpp is not recursive, i.e., PP is recursively undecidable. 

If we accept Church's Thesis, then "recursively undecidable" can be replaced 
everywhere by "effectively undecidable". In particular, Proposition 3.47 asserts 
that there is no decision procedure for the pure predicate calculus PP, nor for 
the full predicate calculus PF. This implies that there is no effective method for 
determining whether any given wf is logically valid. 

EXERCISE 3.53. 

(a) Show that, in contrast to Church's Theorem, the pure monadic predicate 
calculus is effectively decidable. The pure monadic predicate calculus consists of 
those wfs of the pure predicate calculus which contain only predicate letters of one 
argument. 

Hint: let B,, . . . , B, be the distinct predicate letters in a wf 8. Then & is valid if 
and only if B is true in every interpretation with at most 2' elements. For, assume 

true in every interpretation with at most 2' elements, and 1st M be any 
interpretation. For any elements b, c of the domain D of M, call b and c equivalent 
if the truth values of Bl(b), B&), . . . , Bk@) in M are respectively the same as 
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B,(c), B,(c), . . . , Bk(c). This defines an equivalence relation in D, and the corre- 
sponding set of equivalence classes has < 2k members and can be made the 

. domain of an interpretation M' of & by defining interpretations of BI, . . . , Bk, in 
the obvious way, on the equivalence classes. By induction, one can show that & is ' true in M if and only if it is true in M'. Since & is true in M', it is also true in M. 
Hence, B is true in every interpretation, and is, therefore, by Corollary 2.14, 
movable. Note also that whether & is true in every interpretation having at most 2* r - 

f elements can be effectively determined. 
(b) Prove that a wf of the pure monadic predicate calculus is logically valid if 

and only if is true for all finite interpretations. This contrasts with the situation 
in the pure predicate calculus (cf. Exercise 2.38 on p. 72). 

The result in this exercise is, in a sense, the best possible. For, by a theorem of 
Kalmar 119361, there is an effective procedure producing, for each wf d of the 
pure predicate calculus, another wf B* of the pure predicate calculus such that 
&* contains only one predicate letter, a binary one, and such that 6? is logically ' valid if and only if d* is logically valid. (For another proof, cf. Church [1956, 8 
471.) Hence, by Church's Theorem, there is no decision procedure for logical 
validitv (or vrovability) of wfs containing only binary predicate letters. (For -- J \  . 

i another proof, cf. ~xe ic i se  4.74 on p. 206.) 

EXERCISES~ (TARSKI-MOSTOWSKI-ROBINSON [1953], I) 

3.54. If a theory K* is consistent, if every theorem of an essentially recursively 
undecidable theory KI is a theorem of K*, and, if the property FmlK,(x) is 
recursive, prove that K* is essentially recursively undecidable. 

3.55. Let K be a thwry with equality. If a predicate letter A;, a function letter 
fl, and an individual constant a, are not symbols of K, then by possible dejnitionr 
of A?. fn. and a; in K we mean, respectively, expressions of the form 

( 4  (y)(a, = Y -- e(y))? 
where B ,  3 ,  C? are wfs of K, and, in case (b), kK(xI) . . . (x,) 

I (El y)B (xl, . . . , x,, y), and, in case (c), kK(EI y)e(y). If K is consistent, prove 
that the addition of any possible definitions to K as new axioms (using only one 
possible definition for each symbol) yields a consistent theory K', and K' is ' \ &ursively undecidable if and only if K 1s. 

3.56. By a non-logical constant, we mean a predicate letter, function letter, or 
individual constant. Let K, be a theory with equality having a finite number of 
non-logical constants. Then K, is said to be interpretable in a thwry with equality 

1 " , K if we can associate with each non-logical constant of K, which is not a 
non-logical constant of K a possible definition in K such that, if K* is the theory 
obtained from K by adding these possible definitions as axioms, then every axiom 
(and hence every theorem) of K, is a theorem of K*. Notice that, if Kl is I 

interpretable in K, then it is interpretable in every extension of K. Prove that, if K, 
I is interpretable in K and K is consistent, and if K, is essentially recursively 
I 

undecidable, then so is K. 
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3.57. Let K be a theory with equality. and A: a monadic predicate letter not in 
K. Given a closed wf &, let M) (called the relatihtion of & with respect to A:) 
be the wf obtained from & by replacing every subformula (starting from the 
smallest subforrnulas) of the form (x)% (x) by (x)(A)(x) 2 '33 (x)). Let the proper 
axioms of a new thmry with equality K*) be: (1) all wfs where & is the 
closure of any proper axiom of K; (2) (Ex)A)(x); (3) A1(am) for each indindual 
constant am of K; (4) A)(x,) r\ . . . A A](xn) 3 A](+'(<, . . . , x.)) for any func- 
tion letter ff of K. Prove: (a) As proper axioms of K 4  we could have taken all wfs 

where & is the closure of any theorem of K. (b) K"? is interpretable in K. (c) 
K*: is consistent if and only if K is consistent. (d) K*) is essentially recursively 
undecidable if and only if K is. (Tarski-Mostowski-Robinson (19531, pp. 27-28.) 
3.58. K is said to be reZatiwb interpretable in K' if there is some predicate letter 

A] not in K such that ~4 is interpretable in K'. If K is relatively interpretable in 
K' and K is essentially recursively undecidable, prove that K' is essentially 
recursively undecidable. 

3.59. Call a theory K in which RR is relatively interpretable mf3ciennrly strong. 
Prove that any sufficiently strong consistent theory K is essentially recursively 
undecidable, and, if in addition K is recursively axiomatizable, prove that K is 
incomplete. Roughly speaking, we may say that K is sufficiently strong if the 
notions of natural number, 0, 1, addition, and multiplication are "definable" in K 
in such a way that the axioms of RR (relativized to "natural numbers'' of K) are 
provable in K. Clearly, any theory adequate for present-day mathematics will be 
sufficiently strong, and so, if it is consistent, it will be recursively undecidable, and, 
if it is recursively ariomatirable, it will be incomplete. If we accept Church's 
Thesis, this implies that any consistent sufficiently strong theory will be effectively 
undecidable, and, if it is axiomatic, it will have undecidable sentences. (Similar 
results also hold for higher-order theories; for example, cf. Godel [1931], Schoh- 
Hasenjaeger [1961], 8 237-238.) This seems to destroy all hope for a consistent and 
complete axiomatization of mathematics. 

HAPTER 4 

AXIOMATIC SET THEORY 

1. An Axiom System 
' 

A prime reason for the increase in importance of mathematical logic in this 
century was the discovery of the paradoxes of set theory and the need for a 
revision of intuitive (and contradictory) set theory. Many different axiomatic 
theories have been proposed to serve as a foundation for set theory, but, no 
matter how they differ at the fringes, they all have as a common core the 
fundamental theorems which mathematicians need in their daily work. A choice 
among the available theories is primarily a matter of taste, and we make no 
claim about the system we shall use except that it is an adequate basis for 
present-day mathematics. 

We shall describe a first-order theory NBG, which is basically a system of the 
same type as one originally proposed by von Neumann [1925, 19281 and later 
thoroughly revised and simplified by R. Robinson [1937], Bemays (1937-19541, 
and Godel [1940]. (We shall follow Godel's monograph to a great extent, though 
there will be some important differences.) NBG has a single predicate letter A:, 
but no function letters or individual constants. In order to conform to the 
notation in Bernays (1937-19541 and Godel [1940], we shall use capital Latin 
letters X,, X,, X,, . . . as variables, instead of x,, x,, x,, . . . . (As usual, we 
shall use X, Y, 2, . . . to represent arbitrary variables.) We shall abbreviate 
A:(x, Y) by X E Y, and -- A:(X, Y) by X B Y; intuitively, E is thought of as 

$' the membership relation. 
' Let us define equality in the following way. 

DEFINITION. X = Y for (Z)(Z E X 3 2 E Y) 

Thus, two objects are equal when and only when they have the same members. 
Y 
%e 4JI DEFINITION. X Y for (Z)(Z E X 3 2 E Y) (Inclusion) 
1 
1'1 DEFINITION. X c Y for X Y r\ X + Y (Proper inclusion) 
i( 
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(a) t X = Y = ( X c Y A Y c X )  
(b) t X = X 
(c) t X = Y > Y - X  
(d) t X =  Y > ( Y = Z > X = Z )  
(e) t X = Y > ( Z E X - Z E Y )  

We shall now present the proper axioms of NBG, interspersing among the 
statement of the axioms some additional definitions and various consequences 
of the axioms. First, however, notice that in the "interpretation" we have in 
mind the variables take classes as values. Classes are the totalities corresponding 
to some, but not necessarily all, properties.$ (This "interpretation" is as impre- 
cise as the notions of "totality", "property". etc.) 

We define a class to be a set if it is a member of some class, whereas those 
classes which are not sets are calledproper classes. 

DEFINITION. M(X) for (EY)(X E Y). (X is a set.) 

DEFINITION. Pr(X) for - M(X). (X is a proper class.) 

It will be seen later that the usual derivations of the paradoxes now no longer 
lead to a contradiction, but only yield the result that various classes are proper 
classes, not sets. The sets are intended to be those safe, comfortable classes 
which are used by mathematicians in their daily life and work, whereas proper 
classes are thought of as monstrously large collections which, if permitted to be 
sets (i.e., allowed to belong to other classes), would engender contradictions. 

EXERCISE 4.1. Prme: t Y E X 1 M( Y) 

The system NBG is designed to handle classes, not individuals. The reason for 
this is that mathematics has no need for non-classes, like cows or molecules; all 
mathematical objects and relations can be formulated in terms of classes alone. 
If non-classes are required for applications to other sciences, then the system 
NBG can be modified slightly so as to apply to both classes and non-classes 
alike (cf. Mostowski 119391). 

Let us introduce small letters x,, x,, . . . as special, restricted variables for 
sets. In other words, (x,)@(x,) stands for (X)(M(X) 3 Q(X)), i.e., & holds for 
all sets; (Exi)&(xi) stands for (EX)(M(X) A &(X)), i.e., & holds for some set. 
Note that the variable X used in this definition should be one which does not 
occur in @(xi). (As usual, we use x, y, z, . . . to stand for arbitrary set van- 
ables.) 

AN AXIOM SYSTEM 

Example. (X)(x)(Ey)(EZ)&(X, x, y, Z )  stands for 

( x ) (  w)(M(W) 3 (EY)(M( Y) A (EZ)@(X, W, Y, 

EXERCISE 4.2. Prove: t X = Y r (z)(z E X G Z  E Y) 

AXIOM T (Axiom of Extensionality). X = Y 3 (X E Z = 
PROPOSITION 4.2. NBG is a first-order theory with equality. 

I 1 PROOF. By Proposition 4.1 and Axiom T, and the discussion on p. 83, I f $  EXERCISE 4.3. Prooe: t M(Z) A Z = Y 3 M(Y) 
;"' 

f 
AXIOM P (Pairing Axiom). (x)(y)(Ez)(u)(u E z = u = x V u = y), i.e., for 
any sets x, y there is a set z such that z has x and y as its onh members. 

1 EXERCISES 

Prove: 
4.4. k (x)(y)(E,z)(u)(u E z u = x V u = y), i.e., there is a unique set z, called 

the unordered pair of x and y, such that z has x and y as its only members. This 
,I . follows easily from Axiom P and the definition of equality. 

, k >  4.5. t (X)(M(X) - (Ey)(X E y)) 
r 
ij 

AXIOM N (Null Set). (Ex)(y)(y @ x), i.e., there is a set which hm no d! 
i ' 
4 members. 
I' 

Obviously, from Axiom N and the definition of equality, there is a unique set 
which has no members, i.e., t (E,x)(y)(y @ x). Therefore, we can introduce a 

i new individual constant 0 by means of the following condition. 

DEFINITION. (y)(y @ 0) 

Since we have the uniqueness condition for the unordered pair, we can 
introduce a new function letter g(x, y)  to designate the unordered pair of x and 
y. We shall write {x, y} for g(x, y). Notice that we have to define a unique value 

I for {X, Y) for any classes X and Y, not only for sets x and y. We shall let 
(X, Y) = 0 whenever X is not a set or Y is not a set. One can prove: 

I 1 (EIZ)((M(X) A M(Y) A (u)(u E Z - u = X V u = Y)) V ((w M(X) V - 
M(Y)) A Z = 0)). This justifies the introduction of {X, Y}: 

I 

DEFINITION. (M(X) A M(Y) A (u)(u E {X, Y) u = X V U = Y)) V 
I ((- M(X) V - M(Y)) A {X, Y) = 0). 

One can then prove: t (x)(y)(u)(u E {x, y }  
u = x V u = Y) and 

1 
1 (x)(y)(M({x, Y 1)). 

I 
with these definitions, the reader should review 3 of Chapter 

tThe NBG will be omitted from k,,, in the rest of this chapter, 2, and, in particular,  ition ion 2.29, which assures us that the introduction of 
fThose properties 

a c t u l l ~  do determine classes 4 1 1  be partially specified in *be auoms. 1 new individual consfants and function letters, such as O and (X, '1' adds These proide us 4 t h  the classes we need in mathematics and appar (we hop) modest 
enough so that contradictions are not derivable from them. 

I 
nothing essentially new to the theory NBG. 
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EXERCISES 

4.6. t { X ,  Y )  = { Y ,  X ) .  
4.7. Define: { X )  for { X ,  X ) .  Prove: I- ( x ) ( y ) ( { x )  = { y )  1 x = y). 

DEFINITION. (X, Y) = {{X), {X, Y)) 

(X, Y) is called the orderedpair of X and Y. 

The definition of (X, Y) does not have any intrinsic intuitive meaning. It is 
just a convenient way (discovered by Kuratowski) to define ordered pairs so that 
one can prove the characteristic property of ordered pairs expressed in the 
following proposition. 

PROOF. Assume (x, y) = (u, 0). Then {{x), {x, y ) )  = {{u), {u, v)). 
since {x) E {{x), { x , ~ ) ) ,  {x) E {{u), {u, v)) .  Hence, {x) = {u) or {x) = 
{u, 0). In both cases, x = u. Now, {u, u) E {{u), {u, v));  so, {u, V) E 
{{XI, { x , ~ ) ) .  Then {u, v) = {x) or {u, v) = {x, y).  Similarly, {x, y )  = { u )  
or {x, y )  = {u, v). If {u, V)  = {x) and {x, y )  = {u), then x = u = y = u; if 
not. {u. V )  = {x,Y). Hence, {u, v) = {u, y) .  So, if v # u, theny = u; if v = u, 
then y = u. Thus, in all cases, y = v. 

We now extend the definition of ordered pairs to ordered n-tuples. 

DEFINITION. 

(X) = X 

(XI. . . . > x,+,> = ((XI, . . . , X,), X,,,) 
Thus, 

( X  Y, Z )  = ((X, Y), Z), and (X, Y, Z, U) = ( ( ( X ,  Y), Z) ,  U) 
One can easily establish the following generalization of Proposition 4.3: 

t (x,) . . - (~,)(YI) . . (~,)((x, .  . . . . 4,) = (Y,, - . . ,Y,) 3 

X I = Y I A . . . A X , = Y ~ )  

Axiom of C/ms Existence. These axioms state that, for certain properties 
expressed by wfs, there are corresponding classes of all those sets satisfying the 
property. 

( E -relation) 
(Intersection) 
(Complement) 
(Domain) 

I 
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From Axioms B2-B4 and the definition of equality, 

These results justify the introduction of new function letters: n ,  -, q 

( u ) ( u ~ X  n Y E U E X A U E  Y) (Intersection of X and Y) 

(u)(u E X = u G X) (Complement of X) 

(u)(u E 9 (X) -- (Eu)((u, v) E X)) (Domain of X) 

x u  Y =  ( d n F )  (Union of X and Y) 

V = O  (Universal Class) 
X - Y = x ~ Y  (Difference of X and Y) 

EXERCISES 

Prove: 
4.8. t (u)(u E X U Y - u E X V u E Y )  

t (u)(u E V )  I - ( u ) ( u E X -  Y E u E X A u e  Y )  

4.9. I-X n Y = Y n X k X u Y = Y u X  
I -( X n  Y ) n Z = X n ( Y n Z )  I - ( X u  Y ) u Z = X u ( Y u Z )  
t X n X = X  I - X u X = X  

I - X n O = O  I - X u O = X  
I - X n V = X  I -X U  V =  V 
I-X n ( Y  u z) I - x u ( Y n z )  

= (X n Yl_u (X n z )  = (X u Y )  n (X u Z )  

k T y = F n  Y I - ~ Y = , T u  Y 
I X - X = O  I - v - x = %  

- - - 
I - K = X  I- v=o 

4.10. (a) k (X)(EZ)(u)(v)((u, v )  E Z - ( v ,  u )  E X). (Hint: apply successively . . 
B5, B7, ~ 6 ,  ~ 4 . )  

(b) I- (X)(EZ)(u)(v)(w)((u, v,  w )  E Z - (u ,  w) E X). (Hint: use B5 and 
B7.) 

(c) k (X ) (EZ) (V ) (X I )  - - . ( x ~ ) ( ( x I >  . . 7 xn, 0 )  E Z ( X I ,  . - . t x,) E X). 

(Hint: use BS.) 
(4 I- (X ) (EZ) (V I )  . . . (vm)(x1) . . . (x,)((xI,  . . . , xn, 01,  . . . , om) E Z 

(x , ,  . . . , x,) E X). (Hint: by iteration o f  (c).) 
(e) I- (X)(EZ)(v , )  . . . (vm)(xl)  . . . (X , ) ( (XI ,  . . . , xn- 01,  . . . , urn, x,) E 

Z r ( x , ,  . . . , x,) E X). (Hint: for m = 1, from (b), substituting ( x , ,  . . . , x,-,) 
for u and x, for w; the general case then follows by iteration.) 

( f )  1 (X)(EZ)(x)(u,) . . . (um)((ul, . . . , om, x )  E Z = x E X).  (Hint: 
from B5 and Part (a) above.) 

(g)  k (X)(EZ)(x , )  . . . (x,)((x,, . . . , x,) E Z (Ey)((xl, . . . , x,, Y )  E 

X)). (Hint: from B4, substituting ( x , ,  . . . , x,) for u, and y for v.) 



178 AXIOMATIC SET THEORY 

(h) k (X)(EZ)(u)(v)(w)((o, u, w) E Z r (u, w) E X ) .  (Hint: substitute 
(u, w) for u in Axiom B5, and apply Axiom B6.) 

(i) k (X)(EZ)(v,) . . . (o,)(u)(w)((u,, . . . , u,, u, w) E Z = (u, w) E X ) .  
(Hint: substitute (u,, . . . , Q) for o in (h).) 

Now we can derive a general class existence theorem. 

PROPOSITION 4.4. Let p,(X,, . . . , Xn, Y,, . . . , Y,) be a wf the variables of 
which occur among XI, . . . , X,, YI, . . . , Y,,, and in which only set variables 
are quantified (i.e., p, can be abbreviated in such a way that only set variables 
are quantified). We call such a wf predicative. Then, 

1 ( ) ( ) ( ( .  , x n )  E 2 Ev(x1 , .  . . , Xn, yl, 
3 y,)) 

PROOF. We shall consider only wfs QI in which no wf of the form Y, E W 
occurs, since Y, E W can be replaced by (Ex)(x = Y, /\ x E W), which is 
equivalent to (Ex)((z)(z E x = z t Y,) A x E W). Also, we may assume that p, 
contains no wf of the form X E X, since this may be replaced by (Eu)(u = X /\ 
u E X), which is equivalent to (Eu)((z)(z E u = z E X) /I\ u E X). We shall 
proceed now by induction on the number k of connectives and quantifiers in p, 
(written with restricted set variables). 

Case 1. k = 0. Then p, has the form xi E 3 or x, E x, or x, E Y,, where 
1 i i < j < n. For x, E x,, there is, by Axiom BI, some W, such that 
(x;)(x,)((x,, 4) E WI G xi E 4).  For x, E x,, there is, by Axiom B1, some W2 
such that (x,)(x,)((x,, xi) E W2 = 4 E xi), and then, by Exercise 4.10(a), there 
is some W, such that (x,)(x,)((x;, x,) E W, = x, E x;). So, in both cases, there is 
some W such that (x,)(+)((x,, 4) E W - cp(x,, . . . , x,, Y,, . . . , Y,)). Then, 
by Exercise 4.10(i) with W = X, there is some Z, such that 

(x,) . . . (x,- l)(x,)(x,)((~l, . . , X ,  I. Xjr 4) E Z,  = 

p,(x,, . . . , x,, YI, . , Y,)). 
Hence, by Exercise 4.10(e) with Z,  = X. there is some Z, such that 

(XI) . . . (xi)(x;+,) . .. (x,)((x,, . . - , x,) E z2 - p,(x,, . . . , Xn, Y , ,  . - . . Y,)). 

Then, by Exercise 4.10(d) with Z2 = X, there is some Z such that 

(x,) . . . (x.)((x,, . . . , x.) E Z = p,(xll - . . , xll, YI, . . . , Y,)). 
In the remaining case, x, E Y,, the theorem fo l lo~~s  by application of Exercise 
4.10(f) and 4.1 O(d). 

Case 2. Let the theorem be provable tor all k < m. and assume that p, has m 
connectives and quantifiers. 

(a) p, is -- 4. By inductive hypothesis, there is some W such that 

(XI) . - . (xn)((x,. . . , xn) E W = #(XI, . . . , XI,> YI, . . . , Y,)) 
Let Z = W. 
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(b) p, is I) 3 8. By inductive hypothesis, there are classes Z, and Z2 such that 

(x,) . . . (x,)((x,, . . . , x,) E ZI = #(XI, - . , X,, Y,, - - . , Y,)) 
and 

. . . (x,)((x,, . . . , x,) E z2 -- @(XI, . . . , X,, Y,, . . . , Y,)) 

Let z =(z, n &). 
(c) p, is (x)#. By inductive hypothesis, there is some W such that 

(x,) . . . (x,)(x)((x,, . . . , x,, X) E W -- #(xI, . . . , x,, X, Y1, . . . , Y,)) 

Apply Exercise 4.10(g) with X = W to obtain a class Z, such that 

(XI) . . . (X,)((X~, . . . , x,) E 2 1  -- (EX) -- #(XI, . . . , x,, X, Y1, . . . , Y,)) 

Now, let Z = z, noting that (x)# is equivalent to -- (Ex) -- #. 

Examples. 1. Let p(X, Y,, Y2) be (Eu)(Eu)(X = (u, u) A u E Y, A u E Y2). 
The only quantifiers in p, involve set variables. Hence, by the Class Existence 
Theorem, t (EZ)(x)(x E Z -- (Eu)(Ev)(x = (u, u) A u E Y, A u E Y2). By 
the definition of equality, t (E,Z)(x)(x E Z (Eu)(Ev)(x = (u, u) /\ 
u E Y, /\ u E Y,)). So, we can introduce a new function letter X :  

DEFINITION. 

(x)(x E Y, X Y2 -- (Eu)(Eu)(x = (u, v) A u E Y, /\ u E Y2) 

I (Cartesian Product of Y, and Y2) 
DEFINITIONS 

x2 for X X X, (In particular, v2 is the class of all ordered pairs.) 
t Xn for Xn-I x X, (Thus, Vn is the class of all ordered n-tuples.) 

Rel(X) for X v2 (X is a relation). 

I 2. Let p,(X, Y) be X G Y. 

By the Class Existence Theorem and the definition of equality, t (EIZ)(x)(x E 
Z = x c Y). Thus, there is a class Z which has as its members all subsets of Y. 

DEFINITION. (x)(x E 9 ( Y) = x C Y). (9 ( Y): the power class of Y.) 
I 

3. Let p,(X, Y) be (Eu)(X E u A u E Y). 

By the Class Existence Theorem and the definition of equality, t (E,Z)(x)(x E 
I Z (Eu)(x E v /\ v E Y)). Thus, there is a class Z which contains all the 

elements of the elements of Y. 

DEFINITION. (x)(x E U(Y) r (Eu)(x E v A u E Y)). 
(U( Y): the sum class of Y.) 

4. Let p,(X) be (Eu)(X = (u, u)). 

By the Class Existence Theorem and the definition of equality, there is a unique 
class Z such that (x)(x E Z = (Eu)(x = (u, u))). 
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DEFINIT1ON- (x)(x E I E (Eu)(x = (u, u)) (Identity Relation). 4.13. We can define by induction, {XI,  . . . xn) for { X I ,  . . . 9 Ixn}' 

C~ROLLARY 4.5. Given a predicative wf q(X,, . . . , x,,, y,, . . , y,). men prove: t ( x ~ x x ~ )  . . . (x,)(u)(u E {XI ,  - - . xn) u = X~ V = '2 V . . . V 
= xn). ~ h ~ ~ ,  for any given sets XI, . . . , x,, there is a set which has XI, . . . 7 xn as 

( E ~ w ) ( w  C Vn A (xi ) .  . . (x,)((x,, . . . , x,,) E w its only members. 
-- Q)(XI, - . , xn, Y1, . . . , Y,))) 

Another means of generating new sets from old is the formation of the set 
PROOF. By Proposition 4.4, there is some Z such that ,11 subsets of a given set. 

(XI) . . (x~)((xI ,  . . . xn) E Z q(xl,  . . . , x,,, Y,, . . . , Y,)) AXIOM W (Power Set). (x)(Ey)(u)(u E Y u C x). 
Clearly, W = fl Vn satisfies the corollary, and the uniqueness follows from 
the definition of equality.  hi^ axiom asserts that the power class 9 (x) of a set x (cf- Example 2, Pa 179) is 

also a set, called the power set of x, i.e., (x)(M(y(x))). 
D E F I N 1 ~ ~ ~ ~ .  Given any predicative wf q(X,, . . . , X,, Y,, . . . , y,), we 
use {(XI, x 2 9  . . - 7 xn)I9(~1, . - - x,, Yl, . . . , Y,)) to denote the class of all Examples. k 9 (0) = (0) 
n- tu~les  (XI, . - , xn) satisfying q(x,, . . . , x,,, Y,, . . . , Y,,,), that is k 9 ((0)) = {o, {o)} 

t 9({0, (0))) = {O, {O), (0, {O)}, {{O})) 
{(XI, . . xn) I~(x l3  . . . , Xn, YI, . . . , Y,,,)} E 

A more general way to produce sets is the following Axiom of Subsets. 
('XI) * * . (Exn)(u = (XI, . . - 3 xn) A q(xI, . . . , x,,, Y,, . . . , Y,))). 

This definition is justified by Corollary 4.5. In particular, when n = 1, AXIOM S. (x)( Y)(Ez)(u)(u E z F= U X A U E Y). 

(u)(u E {x/q(x, Y1, . . , Y,)) E p(u, Y1, . . . , Y,)). ~ h ~ ~ ,  for any set x and class Y, there is a set consisting of the common elements 

Examples. of and y. Hence, t (x)( Y)(M(x n Y)), i.e., the intersection of a set and a class 

2. Take 9 to be (Ev)((u, x) E Y). Let R(Y) stand for {xl(Ev)((u, x) E Y)). 
Then I- (u)(u E R (  Y) = (Eu)((v, u) E Y)). %(Y) is called the range of Y. 
Clearly, t a( Y) = CD(?). 

Notice that Axioms B1-B7 are special cases of the Class Existence Theorem, 
Proposition 4.4. Thus, instead of having to assume Proposition 4.4 as an axiom 
schema, we need only take a finite number of instances of that schema. 

Until now, although we can prove, via Proposition 4.4, the existence of a great 
many classes, the existence of only a few sets, such as 0, {O), (0, {O)), {{O)), 
etc., is known to us. To guarantee the existence of sets of greater complexity, we 
require more axioms. 

1- Take 9 to be ( ~ 2 ,  x,) E Y. Let Y be an abbreviation for {(x,, x2)/(x2? XI)  

Y)-  Hence* 1 f v2 A (xl)(x2)((~1, x2) E f (x,, x i )  E Y). Call Y the 
inverse relation of Y. 

AXIOM U (Sum Set). (x)(Ey)(u)(u E y = (Ev)(u E v A v E x)). 
This axiom asserts that the sum class U(x) of a set x (cf. Example 3, p. 179) is 
also a set, which we shall call the sum set of x, i.e., I- (x)(M(U(x))). The sum set 
U(x) is usually referred to as the union of all the sets in the set x, and is often 
denoted U u. 

V E X  

is a set. 

PROPOSITION 4.6. t (x)(Y)(Y C x 3 M(Y)) (i.e., any of a set is a 

set). 

EXERCISES 

4.11. Show that 1 (x)(y)(U({x, y}) = x u y). Hence, t (xXy)(M(x u Y)). 
4.12. (a) 1 U(0) = 0. (b) t U({O)) = 0. (c) t (x)(U({x)) = x). 

(4 t (x)(y)(Ut(x, Y)) = {x, Y)). 

PROOF. t (x)( Y x 3 Y n x = Y), and k (x)M( Y n x). 

Since any predicative wf generates a corresponding class (cf. Proposition 

4.4), Axiom S implies that, given any set x, the class of all elements y of x which 
satisfy @(y) is a set. 

A stronger axiom than the Axiom of Subsets (S) will be necessary for the full 
development of set theory. First, we introduce a few definitions. 

DEFINITIONS 

Un(x) for (x)(y)(z)((x, y)  E X A (x, z) E X 3 Y = z) 
(X is uniuocal.) 

Fnc(X)forX c v2 /\ Un(X). (Xis a function.) 

X: Y + Z for Fnc(X) A g(X) = Y A %(x) C Z. 
(X is a function from Y into Z).) 

Y l  X for X n (Y x V). (Restriction of X to the domain Y.) 

Unl(X) for Un(X) /\ u ~ ( x ) .  (Xis one-one.) 

z if (u)((Y, u) E X E u = z), 
0 otherwise. 
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If there is a unique z such that (y, z)  E X  then z = X ' y  otherwise, 
X'y = 0. If X is a function and y is a set in its domain, X'y is the value of the 
function applied to y . t  

X"Y = & ( Y 1  X) (If X is a function, X"Y is the range of X restricted to Y.) 

EXERCISE 4.14. Prow: t Fnc(X) 3 (u)(v E X"Y = (Eu)(u E Y n 9 ( X )  
u = X'u)). 

AXIOM R (Replacement). 

(x)(Un(X) 3 (Ey)(u)(u E Y = (Eu)((u, u) E X A E x))) 
Axiom R asserts that if X is univocal, then the class of second components of 
ordered pain in X whose first components are in x is a set (or, equivalently, 
M(&(xl  X))). When X is a function, this implies that the range of the restric- 
tion of the function X to a domain which is a set is also a set. 

EXERCISES 

4.15, Show that the Axiom of Replacement (R) implies the Axiom of Subsets (S). 
4.16. Prove: k ( x ) ( M ( g  ( x ) )  A M(%(x))). 
4.17. (a) Prove: k x X y  c 9 (9 ( x  u y)). 

(b) Prove: k ( x ) ( y ) M ( x  X y) .  
4.18. Prove: k M ( q ( X ) )  A M(%(X))  Rel(X) 3 M ( X ) .  
4.19. Prove: t (y)(Fnc(X) > M(X '3)). 

To insure the existence of an infinite set, we add the following axiom. 

AXIOM I (Axiom of Infinity). 

(Ex)(O E x A (u)(u E x 3 u u ( u )  E x)) 
Axiom I states that there is a set x which contains 0 and such that, whenever 
u E x, then u u {u) also belongs to x. Clearly, for such a set x, 
(0) E x, (0, (0)) E x, (0, (01, (0, (0)))  E x, etc. Intuitively, if we let 1 stand 
for {0 ) ,2 fo r  (0, 11, 3 for (0, 1, 21,. . . , n for (0, 1 , 2 , .  . . , n  - 11,. . . , then, 
for all integers n > 0, n E x;  and 0 # 1, 0 # 2, 1 # 2, 0 # 3, 1 # 3, 
2 # 3 ,  . . .  . 

EXERCISE 4.20. (a) Prove that any formula which implies (EX)M(X) would, 
together with Axiom S, imply Axiom N. 

(b) Show that Axiom ( I )  is equiualent to the following sentence ( 4 :  
(EX)((EY)(Y E x A (u)(u @ y)) A (u)(u E x 3 u u {u) E XI), and then 
prove that ( 4  implies Axiom N .  (Hence, if we assumed ( 4  instead of Axiom I, 
Axiom N would become superfluous.) 

F r o m  here on, we shall introduce new function letters or individual constants wherever it is made 
clear that the definition is based upon a uniqueness theorem. In this case, we have introduced a new 
function letter h(X,  Y) abbreviated X'Y. 

ORDINAL NUMBERS 183 

This completes the list of axioms of NBG, and we see that NBG has only a 
finite number of axioms: namely, Axiom T (Extensionality), Axiom P (Pairing), 
Axiom N (Null Set), Axiom S (Subsets), Axiom U (Sum Set), Axiom W (Power 
Set), Axiom R (Replacement), Axiom I (Infinity), and the seven class existence 
axioms B1-B7. We have also seen that Axioms N and S are provable from the 
other axioms; however, they have been included here because they are of 
interest in the study of certain weaker subtheories of NBG. 

Let us verify now that Russell's Paradox is not derivable in NBG. Let 
Y = {xlx B x). Hence. (x)(x E Y = x @ x). (Such a class Y exists by the 
Class Existence Theorem, Proposition 4.4, since x @ x is a predicative wf.) This, 
in unabbreviated notation, is (X)(M(X) 3 (X E Y X @ X)). Assume M(Y). 
m e n  Y E Y Y @ Y, which by the tautology ( A  --A) 3 (A A -A), im- 
plies Y E Y A Y @ Y Hence, by the Deduction Theorem, t M(Y) 3 (Y E Y 

Y @ Y), and so, by the tautology (B 3 ( A  A - A)) 3 -- B, t-- M ( Y ) .  
Thus, in NBG, the argument for Russell's Paradox merely shows that Russell's 
class Y is a proper class, not a set. This is typical of the way NBG avoids the 
usual paradoxes (Cantor, Burali-Forti). 

EXERCISE 4.21. Prove: t- M( V). (The uniuersal class is not a set.) 

2. Ordinal Numbers 
Let us first define some familiar notions concerning relations. 

DEFINITIONS 

X Irr Y for (y)(y E Y 3 (Y, y )  @ X) A Rel(X). 
(X is an irreflexiue relation on Y.) 

X Tr Y for Rel(X) (u)(v)(w)(u E 'Y  u E Y A w E Y 
(u, u) E X A (0, w) E X 3 (24, w) E X). 

(X is a transitive relation on Y.) 
X Part Y for (X Irr Y) A (X Tr Y). (Xpartially orders Y.) 
X Con Y for Rel(X) A (u)(u)(u E Y A u E Y A u # o 3 

(4  0) E X V (0 ,  u) E X). 
(X is a connected relation on Y.) 

X Tot Y for (X Irr Y) A (X Tr Y) (X Con Y). 
(X totally orders Y.) 

X We Y for (X Irr Y) A (Z)(Z Y A Z # 0 2 (Ey)(y E Z A 
(v)(u E Z A u ZY 3 (Y, 6) E X A ( 0 , ~ )  4 X)). 
(X well-orders Y, i.e., the relation X is irreflexive on Y 

and every non-empty subclass of Y has a least element with respect to X.) 

EXERCISES 

Prove: 
4.22. k (X We Y )  3 (X Tor Y ) .  (Hint: to show X Con Y ,  let x , y  E Y  with 

x  # y .  Then ( x ,  y ]  has a least element, say x .  Then ( x ,  y )  E X. To show X  Tr y, 
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let x ,  y, z E Y with (x, y )  E X A ( y ,  z )  E X.  Then { x ,  y ,  z )  has a least element, 
which must be x. )  

4.23. t ( X  W e  Y )  (2 C Y )  > ( X  W e  Z ) .  

Examples. (From intuitive set theory.) 

I. The relation < on the set of positive integers P well-orders P. 
2. The relation < on the set of all integers totally orders, but does not 

well-order, this set. The set has no least element. 
3 The relation c on the set W of all subsets of the set of integers partially 

orders W, but does not totally order W. For example, {I)  e (2) and (2) e {I). 

DEFINITION. Sim(Z, W,, W2) for (ExI)(Ex2)(ErI)(Er2)(Rel(rl) A Rel(r2) A 
WI = (r,. x,) A W2 = (1,- 4) A Fne(Z) A Un,(Z) A 4 ( Z )  = x, A q(2) 
= x2 A (u)(u)(u E x, A u E x ,  > ((u, v) E r, r (Z'U, Z'u) E r2))). (Z is 
a similarity mapping of the relation r, on x, onto the relation r, on x,.) 

DEFINITION. Sim( W,, W2) for (Ez)Sim(z, W,, W,). (W, and W, are similar 
ordered structures.) 

Example. Let r, be the relation < on the set of non-negative integers A ,  and 
let r, be the relation < on the set of positive integers B. Let z be the set of all 
ordered pairs (x, x + I )  for x E A .  Then z is a similarity mapping of (r,, A )  
onto (r,, B ) . 

EXERCISES 

Prove: 
4.24. 1 Sim(Z, X ,  Y )  2 ~ i m ( i ,  Y ,  X ) .  
4.25. k S;m(Z, X ,  Y )  3 M ( Z )  A M ( X )  A M( Y ) .  

Fld(X) for 9 (X) u 9 (X). (The Jeld of X.) 
TOR(X) for Rel(X) A (X Tot (Fld(X))). (X is a total order.) 

WOR(X) for Rel(X) A (X We (Fld(X))). (X is a well-ordering 
relation.) 

EXERCISES 

Prove: 
4.26. t (Sim(X, Y )  > Sim(Y, X ) )  (Sim(X, Y )  A Sim( Y ,  U )  3 Sim(X, U)) .  
4.27. t Sim(<X, FId(X)), < Y, FId(Y)))  3 ( T O R ( X )  E TOR(Y))  A ( W O R ( X )  

s WOR( Y ) ) .  

ORDINAL NUMBERS 185 

I 
b 
1 well-ordered structures such that every well-ordering is similar to a unique 
/ element of W. This leads us to the study of ordinal numbers. 

' DEFINITIONS 

j E  for ((x, Y ) ( X  E Y 1. (The membership relation) 
! Trans (X) for (u)(u E X > u C X). (X is transitive.) 
I Sect,(X, Z )  for Z C_ X A (u)(u)(u E X u E Z 

(u, u) E Y 3 u E Z). (Z is a Y-section of X.) 

Seg,(X, U) for {xlx E X A (x, (I) E Y). 
(The Y-segment of X determined by U.) 

I EXERCISES 

Prove: 
4.28. k Tram(X) - (u)(o)(o E u A u E X > u E X ) .  
4.29. t Tram(X) = u ( X )  C X .  
430. t Tram(X) A Trans( Y )  1 Tram(X u Y )  A Trans(X fl Y ) .  
431. t SegE(X, u)  = X fl u A M(Seg,(X, u)). 
432. t Tram(X)  z (uxu E X 3 SegE(X, u)  = u). 
433. t E W e  X A SectE(X, 2 )  A Z # X > (Eu)(u E X A Z = SegdX,  u)). 

- -- 

Ord(X) for (E We X) A Trans(X). 
(X is an ordinal class if and only if the €-relation well-orders X and any 1-- -- 

member of X is a subset of X.) 

An ordinal class which is a set is called an ordinal number. On is the class of 
all ordinal numbers. Notice that a wf x E On is equivalent to a predicative .... - ~ 

wf, namely, the conjunction of the following wfs. 

(a) (u)(u E x 3 u @ u); 
(b) (u)(u g x A u # 0 3 (Ev)(v E u A (w)(w E u A w + v 3 v E w A 

. ,  . 

(The conjunction of (a) and (b) is equivalent to E We x, and (c) is Trans(x).) 
Hence, any wf which is predicative except for the presence of "On" is equivalent 
to a predicative wf, and, therefore, can be used in connection with the Class 
Existence Theorem. (Any wf On E Y can be replaced by (Ey)(y E Y A (I)(/ E 
y E z E On)).) If x is a total-order, then, the class of all total orders similar to x is called the 

order type of x.  We are especially interested in the order types of well-ordering EXERCISES 

relations, but, since, in NBG, it turns out that all order types are proper classes 434. Prove: t 0 E On. 
(except the order type (0) of 0), it is convenient to find a class W of 435. ~ e t  I stand for (0). Prove: On. 
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We shall use small Greek letters a ,  P,  y, 6, 7, . . . as restricted variables for 
ordinal numbers. Thus, (a)B(a)  stands for ( x ) (x  E On 3 B(x)) ,  and (Ea)B(a) 
stands for (Ex)(x E On A B(x)). 

t Ord(X) (X  @ X A (u)(u E X 3 u B u))  
t O r d ( X ) A  Y c X A  T r a n s ( Y ) ~  Y E  X 
t (Ord(X) A Ord(Y)) > ( Y  c X = Y E X )  
t O r d ( X ) A O r d ( Y ) > ( X  E Y V X =  Y V  Y E X ) A  

--(X E Y A Y  E X ) A - ( X E  Y A X =  Y )  
t Ord(X) A Y E X 3 Y E On 
t E We On 
1 Ord(0n) 
t- M(0n)  
I- Ord(X) > X = On V X E On 
t y C On A Trans(y) > y E On. 

PROOF. 

(1) If Ord(X), then E is irreflexive on X ;  so, (u)(u E X 3 u B u); and if 
X E X, X @ X. Hence, X @ X. 

(2) Assume Ord(X) A Y c X A Trans(Y). It is easy to see that Y is a proper 
E-section of X. Hence, by Exercises 4.32-4.33 (p. 185), Y E X. 

(3) Assume Ord(X) A Ord(Y). If Y E X, then Y C X, since X is transitive; 
but Y # X by (1); so, Y c X. Conversely, if Y c X, then, since Y is transitive, 
we have Y E X, by (2). 

(4) Assume Ord(X) A Ord(Y) X # Y.  Now, X n Y C X and X n Y C 
Y. Since X and Yare transitive, so is X n Y.  If X n Y c X and X n Y c Y ,  
then, by (2), X n Y E X and X n Y E Y ;  hence, X n Y E X n Y,  con- 
tradicting the irreflexivity of E on X. Hence, either X n Y = X or X n Y = Y, 
i.e., X C Y or Y X. But X # Y.  Hence, by (3), X E Y or Y E X. Also, if 
X E Y and Y E X, then, by (3), X c Y and Y c X, which is impossible. 
Clearly, X E Y A X = Y is impossible, by (1). 

(5) Assume Ord(X) A Y E X. We must show: E We Y and Trans(Y). Since 
Y E X and Trans(X), Y c X. Hence, since E We X, E We Y .  Moreover, if 
u E Y and v E u, then, by Trans(X), v E X. Since E Con X and Y E X A v E 
X, then v E Y or v = Y or Y E v .  If either v = Y or Y E v,  then, since E Tr X 
and u E Y A v E u, we would have u E u, contradicting (1). Hence, v E Y. So, 
if u E Y, then u c Y ,  i.e., Trans(Y). 

(6) By (I), E Irr On. Now, assume X C On A X # 0. Let a E X. If a is the 
least element of X, we are done. (By least element of X, we mean an element 
v E X such that (u)(u E X A u # v 3 v E u).) If not, then E We a,  and 
X n a # 0; let P be the least element of X n a.  It is obvious, using (4), that p 
is the least element of X. 
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I 
(7) We must show E We On and Tranr(0n). The first part is (6). For the 

second, if u E On and v E u, then, by (9, u E On. Hence, Trans(0n). 
(8) If M(On), then, by (7), On E On, contradicting (1). 
(9) Assume Ord(X). Then X On. If X # On, then, by (3), X E On. 

(10) Substitute On for X and y for Y in (2). By (8) ,  y c On. 

We see, from Proposition 4.7(9), that the only ordinal class which is not an 
ordinal number is the class On itself. 

I 
, DEFINITION. x <O y for x E On A Y E On A x E y 

x Goyfory  € O n A ( x = y V x  COY) 

Thus, for ordinals, <o is the same as E ;  so, <o well-orders On. In particular, 
from Proposition 4.7(5), we see that any ordinal x is equal to the set of smaller 
ordinals. 

PROPOSITION 4.8 (Transfinite Induction) 

k ( P ) [ ( a ) ( a  E p  3 a E X ) 3  p E XI 3 On C X 

(If, for any p, whenever all ordinals <oP are in X,  then P is in X,  then all 
ordinals are in X.) 

PROOF. Assume that (p ) [ (a ) (a  E P 3 a E X )  3 P E XI. Assume there is 
an ordinal in On - X. Then, since On is well-ordered by E, there is a least 
ordinal /3 in On - X. Hence all ordinals C O P  are in X. So, by our hypothesis, p 
is in X, which is a contradiction. 

Proposition 4.8 is used to prove that all ordinals have a given property &(a). 
We let X = {x l&(x )  A x E On) and show that (p ) [ (a ) (a  E /3 3 &(a))  3 

@,( 011. 
I 

DEFINITION. X' for x u { x )  

i (1) t ( x ) ( x  E On = xf  E On) 1 (2) 1 ( a )  -- (E,8)(a <o p <oaf) 
(3) t (a)( P)(af = P' 3 a = P )  

'1 
I f  PROOF. 1: 
I (I) x E x'. Hence, if x' E On, then x E On, by Proposition 4.7(5). Con- 

, versely, assume x E On, We must prove E We ( x  u { x ) )  and Trans(x u { x ) ) .  
Since E We x and x @ x,  E Irr ( x  u { x ) ) .  Also, if y # 0 A y  C_ ( X  U { x ) ) ,  
then either y = { x ) ,  in which case the least element of y is x ,  or y n x # 0; the 
least element of y n x is then the least element of y. Hence, E We ( x  U { x ) ) .  
Also, if y E x u { x )  and u E y, then u E x. Thus, Trans(x u { x ) ) .  

(2) Assume a Then a E P P E a'. Since a E P,  P B a ,  and 

p # a,  by Proposition 4.7(4), contradicting P E a'. 
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(3) Assume a' = I)'. Then I) <o a', and, by Part (Z), I) <o a. Similarly, a <OD. 
Hence, a = p. 

DEFINITION. Suc(X) for X E On (Ea)(X = a'). (X is a successor ordinal) 

DEFINITION. K, for (X/X = 0 V SUC(X)}. (The class of ordinals of the first 
kind) 

DEFINITION. w for (XIX E K, A (u)(u E x 3 u E Kl). w is the class of all 
ordinals a of the first kind such that all ordinals <o a are also of the first 
kind. 

Examples. t 0 E w /\ 1 E w. Remember that 1 = (0). 

(I) t (a)(a E W - a' E '0) 
(2) t M(u) 
(3) ~ O E X A ( U ) ( U E X > U ' E X ) > ~ C X  
(4) t- (a)(a E A p <o a 3 P E w). 

PROOF. 

(I) Assume a E w. Now, Suc(a'). Hence, a' E K,. Also, if /3 E a', then p E a 
or /3 = a .  Hence, p E K,. Thus, a' E w. Conversely, if a' E w, then, since 
a E a', and (/3)(p E a 3 p E a'), it follows that a E w. 

(2) By the Axiom of Infinity (I), there is a set x such that 0 E x and 
(u) (U € x 3 u' E x). We shall prove w c x. Assume not. Let a be the least 
ordinal in w - x. Clearly, a # 0, since 0 E x. Hence, Suc(a). So, (EP)(a = I)'). 
Let S be an ordinal such that a = Sf. Then S <O a ,  and, by Part (l), 6 E w. 
Therefore, S E x. Hence, S' c x. But a = 8'. Therefore, a t x, which yields a 
contradiction. Thus, w C x. So, M(u),  by Proposition 4.6. 

.- - - 
(3) This is proved by a procedure similar to'that used for Part (2). (4) is left as 

an easy exercise. 
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# 0 A (a)(a E x 3 (EP)(P 
-empty set of ordinals without a 

~ x A a  
maximum, 

<oP)) 2 
then U(x) 

PROOF. 

(1) Assume x On. U(x), as a set of ordinals, is well-ordered by E. Also, if 
a E ~ ( x )  A I) E a,  then there is some y with y E x A a E y. Then I) E a and 
a E y; since every ordinal is transitive, /3 E y. So, /3 E U(x)  Hence, U(x) is 
transitive, and therefore U(x) E On. In addition, if a E x, then a U(x); so, 

, a co U(x), by Proposition 4.7(3). Assume now that (a)(& E x 2 a Go/.?). 
Clearly, if S E U(x), then there is some y such that S E y A y E x. Hence, 
Y < O D  and so, 8 <oP. Therefore, U(x) I), and, by Proposition 4.7(3), U(x) 

cop. 
(2) Assume x # 0 A x C On A (a)(& E x > (EI))(I)  E x A a <o&. If 

; U(x) = 0, then, a E x implies a = 0. So, x = 0 or x = I ,  which contradicts our 
assumption. Hence, U(x) # 0. Assume that Suc(U(x)). Then U(x) = y' for 
some y. By Part (I), U(x) is a least upper bound of x. Therefore, y is not an 
upper bound of x ;  there is some S E x with y <o 6. But then S = U(x), since 
U(x) is an upper bound of x. Thus, U(x) is a maximum element of x, 
contradicting our hypothesis. Hence, -- Suc(U(x)), and Lim(x) is the only 
possibility left. 

EXERCISE 4.37. Proue: t- (a)((Suc(a) > (U(a))' = a )  A (Lim(a) > U(a) = a)). 

We can now state and prove another form of transfinite induction. 

) PROPOSITION 4.12 (Transfinite Induction: Second Form) 

(1) t 0 € X /\ (a)(& E X > a' E X) A (a)(Lim(a) A ( P ) ( I )  <o a 3 
I ) E X ) > a € X ) > O n C X  

(2) (Induction up to 6) t- 0 E X A (a)(al <o S A a E X > a' E X) A 
1 (a)(a < o S ~ L i m ( a ) / / ( / 3 ) ( P < o a  3/3 E X ) >  a E X ) >  8 C X  . , .  . . 

The ekments of w are called finite ordinals. We shall use the standard PROOF. 
notation: 1 for 0'; 2 for 1'; 3 for 2', etc. Thus, o r 1 E w, 2 E 3 c w, . . . (1) Assume the antecedent of the proposition. Let = On A 

The non-zero ordinals which are not successor ordinals are called limit 
ordinals, or ordinals of the second kind. (a)(a (O 3 a E x)). It is then easy to prove that (a)(a <o y 3 a 

E Y. Hence, by Proposition 4.8, On C Y. But Y X. Hence, On c X. 
DEF~N~TION. Lim(x) for x E On AX 4 K,. (2) is left as an exercise. 
EXERCISE 4.36. Prove: t Lim(w). 

PROPOSITION 4.1 1 
Set theory depends heavily upon definitions by transfinite induction, which 

are justified by the following theorems. 

(I) ' (x)(x c on 2 (U(X) E on A (aXa E x 2 a (0 U(x)) A ( P)((a)(a E 
PROPOSITION 4.13 

a 3 U(X) GOB))). (If x is a set of ordinals, then U (x) is an ordinal (1) t (X)(E, Y)(Fnc( Y) A ( Y) = On A (a)( Y 'a = X '(a1 Y))). (Given 
which is the least upper bound of x.) X, there is a unique function Y defined on all ordinals such that the value 
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Y at a is the value of X applied to the restriction of Y to the set of ordinals 
<O a.) 

(2) (*)(X1)(X2)(E, Y)(Fnc( Y) A 9 ( Y) = On A Y'O = x A (a)( Y'(ar) 
= XI '( Y 'a)) A (a)(Litn(a) > Y 'a = X2 '(a1 Y))). 

(3) (Induction up to 6)  t (x)(X,)(X2)(EI Y)(Fnc( Y) A q ( Y )  = 6 A Y '0 = x 
A (a)(at <O S > Y '(a') = XI '(Y 'a)) A (a)(Lim(a) A a <O 6 > Y 'a = 
x2 '(a1 Y))). 

PROOF. Let Y, = {ulFnc(u) A q ( u )  E On A (a)(& E %(u) 3 u'a = 
X '(a1 u)). Now, if u, E Y, and u2 E Y,, then u, c u2 or u2 C u,. For, let 
y, = Q(u,) and y2 = 9(u2). Either y, < y2 or y, CO y,, say y, Coy2. Let w be 
the set of all ordinals a <O y, such that u, 'a # u2 'a; assume w f 0, and let q 
be the least ordinal in w. Then for all B <O q, u, '/3 = u2 'P. Hence, TJI u ,  = 
q l  u2. But u, 'q = X '(ql u,) and u2 'q = X '(ql u,); and so, u, 'q = u, 'q, 
contradicting our assumption. Therefore w = 0, i.e., for all a <O y,, u, 'a = 
uZ6a. Hence, u, = y , l  u, = y,) u2 C u2. Thus, any two functions in Y, agree in 
their common domain. Let Y = U(Y,). We leave it to the reader to prove that Y 
is a function the domain of which is either an ordinal or the class On, and 
(.)(a E q (Y) > Y 'a = X '(a1 Y)). That 9 (Y) = On follows easily from the 
observation that, if Q(Y) = S and if we let W = Y u ( ( 8 ,  X 'Y)), then 
W E Y,; so, W C Y and 6 E 9 (Y) = 6, which contradicts the fact that 6 B 6. 
The uniqueness of Y follows by a simple transfinite induction (Proposition 4.12). 
The proof of (2) is similar to that of (I), and (3) follows from (2). 

Using Proposition 4.13, one can introduce new function letters by transfinite 
induction. 

Exanqo les. 

1. Ordinal addition. In Proposition 4.13(2), take 

x = P, XI = {(u, u)Io = u'), and X, = {(u, u)lu = ~ ( l ( u ) ) ) .  
Hence, for each ordinal /3, there is a unique function Yp such that YB '0 = /3 A 
(a)(YB '(a') = (YB 'a)') (a)(Lim(a) 3 Yp 'a = U(Yp "a))). Hence, there is a 
unique binary function +, with domain o n 2  such that, for any ordinals P and y, 
+o(P, y) = YB 'y. As usual, we write p +,y instead of +,(p, y). Notice that 

P +oO = P 
P +O(Y? = ( P  +oY)' 

Lim(a) > P +,a = U ( P  
T < g U  

In particular, 

p +ol  = p +o(o') = ( p  +,O)' = P'. 
2. Ordinal multiplication. In Proposition 4.13(2), take x = 0, XI = ((u, u)l 

u = u + o  P)), and X, = ((u, u)] u = U(%(u)). Then, as in Example 1, one 
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obtains a function p x ,y with the properties 
p x o o = o  

P ~ O ( Y ' )  = i P  xo Y) +oP 

EXERCISE 4.38. Justijj the following definition of ordinal exponentiation.+ 

.xp(P, 0) = 1 

exp(P, Y') = exp(P, Y) X O P  

Lim(a) 3 exp(P, a )  = U expi P, 7). 
O < , T < ~ ~  

For any set X, let Ex be the membership relation restricted to X, that is, 
Ex = ( (x ,y) (x  E Y A x E X AY XI. 

PROPOSITION 4.14.x Let R be a well-ordering relation on a class Y, that is, 
R We Y. Let F be a function from Y into Y such that, for any u, u in Y, 
I/ (u ,  u) E R, then (F 'u, F '0) E R. Then, for all u in Y ,  u = F 'u 
u(u, F 'u) E R. 

PROOF. Let X = {u((F 'u, u) E R ) .  We wish to show that X = 0. Assume 
X # 0. Since X c Y and R well-orders Y, there is an R-least element uo of X. 
Hence, (F 'u,, uo) E R. Therefore, (F '(F 'uo), F 'uo) E R. Thus, F 'uo E X, 
but F 'uo is R-smaller than u,, contradicting the definition of u,. 

As a special case of Proposition 4.14, if Y is a class of ordinals, F : Y + Y, 
and F is increasing on Y (that is, a E Y A P E Y A a < o B  2 F 'a <o F '8). 
then a 90 F 'a for all a in Y. 

COROLLARY 4.15. Let a <o j3 and y C a, i.e. let y be a subset of a segment of 
p.  Then ( E p ,  /3) is not similar to (E,, y). 

PROOF. Assume f is a function from /3 onto y such that, for u, u in P. if 
u <O u, then f 'u <o f 'u. Since the range off  is y, f 'a E y. But y c a. Hence, 
f 'a <o a .  But, by the special case of Proposition 4.14 mentioned above (with 
y = p and R = Ep), a (0 f 'a, which yields a contradiction. 

COROLLARY 4.16. (1) For a # P, (E,, a) and (Ep, B )  are not similar. 
(2) For any a ,  iff is a similarity mapping of (Ea, a) with (Ea, a) ,  then f is the 
identity mapping, i.e. f 'P = /3 for all P <o a .  

t ~ e  UY the notation erp( 8, a) instead of pa in order to avoid confusion with the notation X ' to 
be introduced later (p. 193): 

$From this point on we shall express many theorems of NBG in English by using the cornspond- 
in, informal English translations. This is done to avoid writing mile-long wfs which are difficult,to 
decipher, and only in cases where the reader can easily produce from the English version the precise 
wf o f  NBG. 
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PROOF. (1) By Corollary 4.15. (2) By Proposition 4.14, f 'P >oB for all 
/3 <O a. But, again by Proposition 4.14, (j) 'j3 > O D  for all B <o a. Hence, /3 = 
(j) '(f '8)  >of '/3 >oP, and, therefore, f 'B = B. 

PROPOSITION 4.17. Assume that R is a well-ordering of a non-emply set u, i.e. 
R We u A u = Fld(R) r\ u # 0. Then there is a unique ordinal y and a unique 
similarily mapping of ( E,,, y) with ( R, u), i.e. every non-emply well-ordered set 
is similar to a unique ordznal. 

PROOF. Let = {(v, w)lw E u - V/I\(z)(z E u - V 3 (z, w) @ R). z is 
a function such that, if v is a subset of u and u - v + 0, then Z 'v is the R-least 
element of u - v. Let X = ( ( v ,  w)((%(v), w) E Z)). Now we use a definition 
by transfinite induction (Proposition 4.13) to obtain a function Y with On as its 
domain such that (a)(Y 'a = X L ( a l  Y)). Let W = (a1 Y"a c u A u - Y"a # 
0). Clearly, if a E W and /3 E a ,  then P E W. Hence, either W = On or W 
is some ordinal y. (For, if W # On, let y be the least ordinal in On - W.) 
If a E W, then Y 'a = X '(a1 Y) is the R-least element of u - Y"a; so, 
Y 'a E u, and, if p E a ,  then Y 'a # Y 'P. Thus, Y is a one-one function on W 
and the range of Y restricted to W is a subset of u. Now, let f = ( W 1  Y), i.e. let 
f be the inverse of Y restricted to W. Then f is a one-one function with domain a 
subset of u and range W. So, by the Replacement Axiom (R), W is a set. Hence, 
W is some ordinal y. Let g = y l  Y. Then g is a one-one function with domain y 
and range a subset u, of u. We must show that u, = u and that, if a and P are in 
y and p <o a ,  then ( g  'p, g 'a) E R. Assume a and p are in y and p <o a .  
Then g "B C g" a and, since g 'a E u - g "a, g 'a E u - g" P. But g 'P is the 
R-least element of u - g" P. Hence, ( g  '8, g 'a > E R. It remains to prove 
that u, = u. Now, u, = Y" y. Assume u -  u,#O. Then y E W. But W =  y, 
which yields a contradiction. Hence u = u,. That y is unique follows from 
Corollary 4.16. 

PROPOSITION 4.18. Let R be a well-ordering of a proper class X such that, for 
each y EX,  the class of aN R-predecessors of y in X (i.e. the R-segment in X 
determined by y)  is a set. Then R is similar to Eon, i.e. there is a one-one 
mapping h of On onto X such that a E P implies (h 'a, h 'P) E R. 

PROOF. Proceed as in the proof of Proposition 4.17. Here, however, W = 
On; also, one proves that %(Y) = X by using the hypothesis that every 
R-segment of X is a set. (If X - %(Y) # 0, then, if w is the R-least element of 
X - %(Y), the proper class On is the range of p, while the domain of is the 
R-segment of X determined by w, contradicting the Replacement Axiom.) 

3. Equinumerosity. Finite and Denumerable Sets 
We say that two classes X and Y are equinumerous if and only if there is a 

one-one function F with domain X and range Y. We shall denote this by X = Y. 

X r Y for 

:y)(x = y E (Ez)(x = y)). Hence, a z 

to a wf using only set quantifiers). 
Y, then Y r X; and if X = Y and Y - F 

% ( F )  = Y) 

wf x r y  is 

= G Z, then X 

predicative 

= 2, where 
H 

I ' H is the composition G F Lf F and G, that is, G F = ((x, y)\(Ez)((x, z) E 
FA (2, y)  E G)). Hence, we have the following theorem. 

I p~owSlT10~4.19.  ( ~ ) X = X . ( ~ ) X G Y ~  Y I X . ( ~ ) X = Y / \ Y Z Z ~  
I x = z. 

PROPOSITION 4.20. (1) (X = Y A XI = Y, A X n X, = 0 A Y n Y , = 0) 

1 I , 

3 x u x , = Y ~  Y,. (2) ( x - - Y A x I = Y , ) ~ x x X , = ~ x ~ , .  
(3) X x ( y )  = X. (4) X x Y = Y x X. (5) (X x Y) x Z = X x (Y x 2) .  . , 
PROOF. (I) Let X =  F Y and X I2 -- Y,. Then X u XI = Y u Y,. (2) Let F U  G 

XG= F Y a n d X  I T  - Y,. Let 

w = {(u, v)I(Ex)(Ey)(x E x A Y  E X, A u = (x,Y) A v = (F'x, G)))). 

Then X x XI = w Y X Y,. 
(3) Let F = {(u, v)Ju E X r\ v = (u, Y)). Then X 7 X x {Y). 

I (4) Let 
F = {(u, v)l(Ex)(Ey)(x E X A y E Y A u = ( x , ~ )  A 0 = (Y. x))) 

T h e n X x  Y s Y X X .  F 

' ( 5 )  Let 
\- T 

I F = {(u, v)/(Ex)(Ey)(Ez)(x t X /\ y E Y A z E Z A u =<< x,Y > , z > 
A 0 = (x, (Y, z)>)}+ 

Then (X X Y) X Z r F X X (Y X 2). 
t 

DEFINITION. x = { U / U  : Y + X ). X is the class of all sets which are 
, functions from Y into X. 

EXERCISES 

,% Prove: 
439. t (X)(Y)(EXIXEYI)(X XI A Y -- Y1 A XI n Yl = 0). 
4.40. t 9(x) - 2". (Remember that 2 = (0, 11.) 
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PROOF. (1) By Corollary 4.15. (2) By Proposition 4.14, f '/? >OD for all 
/? <O a. But, again by Proposition 4.14, (jj '/? >oB for all p <o a. Hence, p = 
(A ' ( f  ' p )  >of ' B  >oB, and, therefore, f 'b = /3. 

PROPOSITION 4.17. Assume that R is a well-ordering of a non-empQ set u, i.e. 
R We u A u = Fld(R) A u # 0. Then there is a unique ordinal y and a unique 
similari$ mapping of (E,, y )  with (R, u) ,  i.e. evety non-empQ well-ordered set 
is similar to a unique ordznal. 

PROOF. Let = ( ( v ,  W ) ~ W  E U - V A ( Z ) ( Z  E U - V 3 (2 ,  W )  @ R). z is 
a function such that, if v is a subset of u and u - v f 0, then Z ' v  is the R-least 
element of u - v. Let X = { ( v ,  w)I(%(v), w )  E Z ) ) .  Now we use a definition 
by transfinite induction (Proposition 4.13) to obtain a function Y with On as its 
domain such that (a)(Y  ' a  = X'(a1 Y) ) .  Let W = {a1 YL'a t u A u - YL'a + 
0 ) .  Clearly, if a E W and P E a,  then P E W. Hence, either W = On or W 
is some ordinal y. (For, if W # On, let y be the least ordinal in On - W.) 
If a E W ,  then Y ' a  = X ' (a1  Y )  is the R-least element of u - Y " a ;  so, 
Y ' a  E u, and, if p E a ,  then Y ' a  # Y ' p .  Thus, Y is a one-one function on W 
and the range of Y restricted to W is a subset of u. Now, let f = ( W 1  Y ) ,  i.e. let 
f be the inverse of Y restricted to W. Then f is a one-one function with domain a 
subset of u and range W. So, by the Replacement Axiom (R), W is a set. Hence, 
W is some ordinal y. Let g = y l  Y .  Then g is a one-one function with domain y 
and range a subset u, of u. We must show that u, = u and that, if a and p are in 
y and p <O a ,  then ( g  ' p ,  g ' a )  E R. Assume a and p are in y and p <o a. 
Then g " p  c g" a and, since g ' a  E u - g "a,  g ' a  E u - g" 8. But g '/3 is the 
R-least element of u - g" 8. Hence, ( g  'P. g ' a  > E R. It remains to prove 
that u, = u. Now, u,  = Y" y. Assume u - u, # 0. Then y E W. But W = y, 
which yields a contradiction. Hence u = u,. That y is unique follows from 
Corollarv 4.16. 

~ROPOSITION 4.18. Let R be a well-ordering of a proper class X such that, for 
each y E X ,  the class of all R-predecessors of y in X (i.e. the R-segment in X 
determined by y )  is a set. Then R is similar to Eon, i.e. there is a one-one 
mapping h of On onto X such that a E /3 implies ( h  ' a ,  h ' P )  E R. 

PROOF. Proceed as in the proof of Proposition 4.17. Here, however, W = 
On; also, one proves that % ( Y )  = X by using the hypothesis that every 
R-segment of X is a set. (If X - % ( Y )  + 0, then, if w is the R-least element of 
X - % ( Y ) ,  the proper class On is the range of f, while the domain of is the 
R-segment of X determined by w, contradicting the Replacement Axiom.) 

3. Equinumerosity. Finite and Denumerable Sets 
We say that two classes X and Y are equinumerous if and only if there is a 

one-one function F with domain X and range Y.  We shall denote this by X = Y. 

EQUINUMEROSITY 

' y)(x = y r (Ez)(x = y)). Hence, a 
to a wf using only s;t quantifiers). 
Y,  then Y = X; and if X = Y and Y 

c F 

% ( F )  = Y )  

wf x = y  is 

= Z ,  then X 
G 
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pr edicative 

= Z ,  where 
H 

I : H is the compo;ition G F i f  F' and G, that is, G F = { ( x ,  ~ ) ( ( E z ) ( ( x ,  z )  E 
F A  (2,  y )  E G ) ) .  Hence, we have the following theorem. 

I 
~ O P O S ~ O N  4.19. (1) X 3 X. (2) X = Y 3 Y = X. (3) X = Y A Y = Z 3 
x = z. 
PROPOSITION 4.20. (1) (X = Y A XI  = Y ,  A X n X,  = 0 A Y n Y , = 0)  

1 1 - 
, X u X , - Y u  Y,. (2) ( X = Y A X , = Y , ) 3 X x X l = Y x  Y,. 
( 3 ) X x { y ) r X . ( 4 ) X  X Y = Y  X X . ( 5 ) ( X  X Y ) x Z = X  x ( Y  x Z ) .  
\ <  

PROOF. (I) Let X = F Y and X l Z  Y,. Then X u X ,  = Y u Y,. (2) Let F u G  

X =  F Y and X I 2  -- Y,. Let 

W = { ( u ,  v)I(Ex)(Ey)(x E X A y E X I  A U = ( x , Y )  A V = (F 'x .  G 1 ) ) ) -  

Then X X XI  = w Y X Y, .  

(3) Let F =  { ( u ,  v ) ( u  E X A v  = ( u , y ) ) .  Then X =  X x ( y ) .  F 

(4) Let 

F = { ( u ,  v ) ( (Ex)(Ey)(x  E X A y E Y A U = ( x . Y )  r\ 0 = ( Y ,  x ) ) ) .  

' (5 )  Let 

F = { ( u ,  v)I(Ex)(EY)(Ez)(x E X Y E Y i E Z /I u = 4 X ,  Y > . z > 
A v = ( x ,  ( Y .  z ) ) ) ) .  

, Then (X x Y )  x Z = F X X ( Y  X Z ) .  
I 

' DEFINITION. X = { U( u : Y + X ) . X is the class of all sets which are 

functions from Y into X. 

EXERCISES 

I Prove: 
439. I- ( X ) (  Y)(EX,)(EY,)(X = X I  r\ Y = Yl r\ X I  n Yl = 0). 
A 4. I- 9 ( x )  - 2*. (Remember that 2 = (0, 1) .) 
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4.43. t x0 = ( 0 )  = 1 .  
4.44. t Y  # 0 3  or = 0. 
4.45. X  -- Y  A Z 22 ,  c X z  ,-- Y Z ] .  
4.46. t X  n Y = O >  ZxuY,zX x zY. 
4.47. t (X Y)Z = X Y X Z .  except when Y  = 0  - M(z) .  4.48. t ( X  x Y ) ~  - x Z  x y Z .  
4.49. t ( X ) ( R X R  We x  3 ( E a ) ( r  = a) ) .  (Every well-ordered set is equinumerous 

with some ordinal.) 

One can define a partial order S on classes such that, intuitively, X S Y if x 
has the same number or fewer elements than Y. 

DEFINITION. X Y for (EZ)(Z i Y /\ X = 2 )  (i.e., Xis equinumerous with 
a subclass of Y). 

DEFINITION. X i Y for X < Y /\ - (X = Y) 
Hence, k X < Y = (X i Y V X = Y). 

EXERCISES 

Prove: 
4.50. t X 4 Y  A-- M ( X )  > - M ( Y ) .  
4.51. t X 4 Y  /\ ( E Z ) ( Z  We Y )  ( E Z ) ( Z  We X). 

(1) k X < X A - ( X I X )  
(2) k X G Y > X S Y  
(3) k x < Y / \ Y < z > X < Z  
(4) (Schroder-Bernstein) t X S Y A Y < X 2 X - Y 

PROOF. 

(3) Assume X = Y, A Y,  L Y /\ Y = 2, A 2, C 2. Let H be the composi- 
F G tion of F and G. Then %(H) C Z /\ X -- %(H) .  

H - '  (4) There are many proofs of this non-trivial theorem. The following is a new 
one devised by Hellman [1961]. Lemma: Assume X n Y = 0, X n Z = 0, 
Y n Z = 0, and let X = X u Y u Z. Then there is a G such that X = X u Y. 

F 
G (Roof. Define a function H on a subclass of X x o as follows: ((u, k), a) E H 

if and only if u E X and k E o and there is a function f with domain k' such 
that f '0 = F 'u and, if j E k, then f 'j 6 X /\ f '(I) = F '( f 'j) A f 'k = v .  
Thus, H '((u, 0)) = F 'u, H '((u, I))  = F ' (F 'u) if F 'u E X, and H '((u, 2)) 
= F '(F '(F 'u)) if F 'u and F '(F 'u) are in X, etc. Let X* be the class of all 
u E X such that (Ey)(y E o A (u, y)  E 9 ( H )  A H ' ( (u ,  y)) E Z). Let Y* be 
the class of all u E X such that (y)(y E w A (u, y)  E Q ( H )  Y H '((u, y)) ~2 
Z).  Then X = X* u Y*. Now define G as follows: 9 ( G )  = X, and, if u E 

X*, then G 'u = u, whereas if u E Y*, then G 'u  = F 'u. Then X X u Y 
G 

EQUINUMEROSIW 
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Exercise).) Now, to prove the Schrbder-Bernstein Theorem: assume X = Y, r\ F 

y , ~ Y ~ Y ; a X l / \ X l ~ X . L e t ~ = G " Y I L X , L X . B u t A n ( X , - A ) =  
0, A n (X - X,) = 0, and (X - X,) n (XI - A )  = O .  Also, X = (X - XI) u 
(x1 - A) u A, and the composition H of F and G IS a one-one function with 

, domain X and range A. Hence, A = H X. So, by the Lemma, there is a one-one 

' function D such that A = n X, (since (X, - A) u A = X,). Let T be the composi- 
+im of the functions H ,  D, G, i.e., let T 'u = (6) '(D ' ( H  'u)). Then X n Y, T .- - - 
since X zz A and A = XI and X, Y. 

H D G 

EXERCISES 

4.52. Carry out the details of the following proof (due to I. Whitaker) of the 
Schroder-Bemstein Theorem in the case where X  and Y  are sets. Let X - Y I  A F 

Y, c Y  p, Y  - G XI  XI c X. We wish to find a set Z X such that G, restricted 

to Y - F  " Z ,  is a one-one function of Y - F " Z  onto X - Z .  (If we have such a 
set Z ,  let H = ( Z  1 F )  u ( ( X  - Z ) l  G ) ,  i.e. H ' x  = F ' x  for x E i and H 'x = G 
' x  for x E X - Z. Then X -- H Y.) Let Z  = {xl(Eu)(u c X A x E u  A G" ( Y  - 

F"u) C X - u). Notice that this proof does not presuppose the definition of o nor 
any other part of the theory of ordinals. For still another proof, cf. Kleene [1952. 
S 41. 

PROPOSITION 4.22. Assume X 6 Y and A < B. Then, 

(1) Y n B = O s X u A < Y u B  

(2) X X A < Y X B  

(3) X" < y B  I f B  is a set and ir is not [he case that X = A = Y = O r \  

PROOF. ( I )  Assume X = F Y, Y and A - G B ,  5 B. Let H be a function with 

domainX u AsuchthatH'x  = F ' x i f x  E X a n d H ' x  = G ' x i f x  E A - X. 
Then X u A H" (X u A) c Y u B. (2) and (3) are left as exercises. 

EXERCISES 

Prove: 
4.53. t X  4 X u Y. 
4.54. t X <  Y 3 - ( Y 4 X ) .  
4.55. 1 x 4  Y A  Y S Z  > X < Z .  

PROPOSITION 4.23 (Cantor's Theorem). 

(a) 1- ( E n  (Fnc(n A = x A %(j) = $(x)). (There is no function 

from x  onto 9 ( x ) . )  

1 (b) t x i $(x). 
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PROOF. (a) Assume Fnc(f)  A 9 (f) = x A %(a = T ( x ) .  Let y = { ulu E 
A u f£ f 'u). Then y E 9 ( x ) .  Hence, there is some z in x such that f 'z = Y .  
But, (u)(u E y = u E x A u B f 'u).  Hence, (u)(u E f ' Z  = u E x /\ u f£ f 'u). 
By Rule A4, z E f ' z  = z E x A z B f ' z .  Since z E x ,  we obtain z E f 'Z s 
z B f 'z, which yields a contradiction. 

- 

(b) Let f be the function with domain x such that f ' u  = { u )  for each u in x. 
Then f " x  c 9 ( x )  and f is one-one. Hence, x S 9 ( x ) .  By Part (a), x = 9 ( x )  is 
impossible. Hence, x < 9 (x) .  

Observe that we have not proved k ( x ) ( y ) ( x  S y V y S x). This proposition 
is, in fact, not yet provable, since it turns out to be equivalent to the Amom of 
Choice. 

EXERCISE 4.56. Notice that, if NBG is consistent, then it has a denumerable 
model (Proposition 2.12). Explain why this does not contradict Cantor's 
Theorem, which implies that there exist non-denumerable injinite sets (e.g., 2"). 
(This apparent, but not real, contradiction is sometimes called Skolem's Para- 
dox.) 

The equinumerosity relation z has all the properties of an equivalence 
relation. We are inclined, therefore, to partition the class of all sets into 
equivalence classes under this relation. The equivalence class of a set x would be 
the class of all sets equinumerous with x.  The equivalence classes are called 
cardinal numbers. For example, if u is a set, and x = {u) ,  then the equivalence 
class of x is the class of all unit sets { v )  and is called the cardinal number 1,. 
Likewise, if u # v, and y = {u, u ) ,  then the equivalence class of y is the class of 
all sets containing exactly two elements, and is called the cardinal number 2,. 
i.e., 2, = {zl(Ex,)(Ey,)(xl # y ,  A z = { x , ,  y , ) ) ) .  Now, notice that all the cardi- 
nal numbers, except the cardinal number of 0 (which is {O)), are proper classes. 
For example, V = I,, where V is the universal class. (Let F ' x  = { x )  for each x 
in V. Then V = I,.) But -- M ( V ) ;  hence, by the Replacement Axiom, -- M(1,). 

F 

Because the cardinal numbers are proper classes, we cannot talk about classes 
of cardinal numbers, and it is difficult or impossible to say and prove many 
interesting things about them. Most assertions one should like to make about 
cardinal numbers can be paraphrased by suitable use of = and < . In addition, 
we shall see later that, given certain additional plausible axioms, there are other 
ways of defining a notion which does the same job as that of cardinal number. 

To see how everything we want to say about cardinal numbers can be said 
without explicit mention of cardinal numbers, consider the following treatment 
of the "sum" of cardinal numbers. 

DEFINITION. X + , Y = ( X  x ( 0 ) )  u ( Y x { 1)). Since X x ( 0 )  and Y X 
{ l )  are disjoint, their union is a class whose "size" is the "sum" of the "sizes" 
of X and Y.  

. EXERCISE 4.58. Proue: 
(a) t X S X + , Y A Y S X + , Y .  
(b) ~ X = A A Y Y B B X + + , Y ~ A + , B .  
(c) k X + , Y - -  Y +,X. 
(d) k M(X +, Y )  E M ( X )  A M(Y) .  
(e) k X +,(Y + , Z )  C= ( X  +,Y)  + , Z .  

8 (f) t X < Y , X + , Z s Y + , Z .  , r 
(g) t x + , x = x x 2 .  

4 01) ~ x ~ + ~ ~ = x ~  X xZ. 
(i) k ~ ~ x + ~ l > 2 ~ + , ~ ~ 2 ~ .  

Finite Sets. Remember that w is the set of all ordinals a such that n and all 
' mailer ordinals are successor ordinals or 0. The elements of w will be called 

finite ordinals. A set will be calledfinite if and only if it is equinumerous with a 
finite ordinal. 

, DEFINITION. Fin(X) (Ea)(a E w A X a). 
Clearly, by the Replacement Axiom, k Fin(X) 3 M(X) .  Trivially, all finite 

ordinals are finite sets, and k Fin(X) A X = Y > Fin(Y). 
" PROPOSITION 4.24. (1) t (a)(a E On - w > a = a'). 

(2) k (a)(/?)(n E w a # p 2 - a - P) .  (NO finite ordinal is equi- 

numerous with any other ordinal. Hence, a finite set is equinumerous with 
exactly one finite ordinal, and a non-finite ordinal, that is, a member of On - w, 
is not finite.) 

(3) t (a)(x)(a E w r\ x c a 2 - a zz x). (No finite ordinal is equinumerous 
with a proper subset of itself.) 

PROOF. (1)  Assume a E On - w. Define a function f with domain a' as 
follows: f '6 = S f  if S E w; f '6 = S if S E a' A S B w u { a ) ;  f ' a  = 0. Then 

me false, and let a be the least ordinal such that a E w, and there is a 
that a = p. Hence, a <o& (Otherwise, /3 would be a smaller ordinal 

than a ,  and f l  would be equinumerous with some ordinal # P.) Let a = f 0. If 
f = 0 and f l  = 0,  contradicting a # P So, a # 0. Since a E w, 

r some S E w. We may assume that f l  = y' for some y. (For, if p E o, 
then I( # 0 ;  and if p B o, then, by Part (I), I( = P', and we can take P' instead 

us, S t  = a s f y'. Also, S # y, since a # P. Case I :  f ' S  = y. Then 

8 -- v.  Case 2: f ' S  # y. Then there is some p E S such that f 'p = y. Let 
,: 81,' 
, h = ( ( s l f l  - { ( p ,  y ) ) )  u {(p, '.( ' 8 ) ) .  i.e., let h 'r = f 'T if r B (6, p); 

h 'u = f '6.  Then y ,  In both cases, 6 is a finite ordinal smaller than a which 
" r J -  

I h a  
is equinumerous with a different ordinal y, contradicting the minimality of a.  

I (3) Assume p 6 w x c ,B A B = x holds for some 8, and let a be the least 
such 8. Clearly, a # 0;  hence, a = y' for some y;  but, as in the proof of Part (2), 
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one can then show that y is also equinumerous with a proper subset of itself, 
contradicting the rninimality of a. 

EXERCISE 4.59. Prove that the Axiom of Infinity ( I )  is equivalent to the 
following sentence: 

(1) t- Fin(X) Y C X 3 Fin(Y). 
(2) t Fin(X) 3 Fin(X u { y)). 
(3) t Fin(X) A Fin( Y) 3 Fin(X u Y). 
(4) A set is said to be Dedekind-finite if and only if it is equinumerous with 

a proper subset of itself. Then every finite set is Dedekind-finite. (The converse 
is not provable without use of an additional axiom, the Axiom of Choice.) 

PROOF. 

(1) Assume Fin(X) A Y G X. Then X 7 a ,  where a E w. Let g = Y l  f and 

W = g " Y c a .  W is a set of ordinals, aLd so, E, is a well-ordering of W. By 
Proposition 4.17, (E,, W) is similar to (Ep, P) for some ordinal P. Hence, 
W = p. In addition, P GO a. (For, if P >o 0, then (El,, P)  is similar to 
(E,, W), contradicting Corollary 4.15.) Since a E w, P E w. From Y = W A 

g W = p it follows that Fin (Y). 
(2) If y E X, then X u { y} = X and the result is trivial. So, assume y 4 X. 

From Fin(X) it follows that there is a finite ordinal a and a function f such that 
a = X. Let g = f u {(a, y)}. Then a' = X u {y).  Hence, Fin(X u {y)). 

f g 
(3) Let Z = {ulu E w A (x)(y)(j)(x -- u /\ Fin(y) II Fin(x u y))}. We must 

f show that Z = w. Clearly, 0 E Z, for, if x = 0, then x = 0 and x u y = y. 
Assume that a E Z. Let x = a '  and Fin(y). Let f 'w = a and x ,  = x - {w}. 

f Then x, = a.  Since a E Z, Fin(x, u y). But x u y = (x, u y) u {w). Hence, 
by Part (2), Fin(x u y). Thus, a' E Z. Hence, by Proposition 4.10(3), Z = w. 

(4) This follows from Proposition 4.24(3). 

DEFINITIONS. Inf(X) for - Fin(X). (X is infinite.) 
Den(X)for X = w. (X is denumerable.) 

Clearly, t Inf(X) A X -- Y 3 Inf(Y) and I- Den(X) A X = Y 3 Den(Y). By 
the Replacement Axiom and the fact that M(w), it follows that k Den(X) 3 

M(X). 

EQUINUMEROSITY 

j (3) A class is called Dedekind-infinite if and only if it is equinumerous with a 
i proper subset of itsev. Then every Dedekind-infinite class is infinite. 

I ' 
(I)  From Proposition 4.25(1). 
(2) t Inf(X) 3 Inj(X u {y}) by Part (1). By Proposition 4.25(3), 
inf(x u {Y}) 3 Inf(X). 
(3) Use Proposition 4.25(4). 
(4) t w 4 w and Proposition 4.24(2). 

PROOF. It suffices to prove: z C_ w 3 (Den(z) V Fin(z)). Assume z c w A - 
Fin(z). Since - F n ( z )  for any a E z ,  there is some P E z with a <oP. 
(Otherwise, z c a' and, since Fin(a'), Fin(z).) Let X be a function such that, for 
my a E o,  X 'a is the least ordinal P in z with a <OD. Then, by Proposition 
4.13(3) (with S = w), there is a function Y with domain w such that Y '0 is the 
least ordinal in z, and for any y in w, Y '(y') is the least ordinal 6 in z with 
fl >O(Y 'y). Clearly, Y is one-one, OU(Y) = w, and Y "w C z. Also, Y "o = z; 
for, if 1 - Y ''a + 0, S is the least ordinal in z - Y "w, and 7 is the least ordinal 
in Y "w with 7 >O 6, then 7 = Y 'o for some o in w. Since 6 <o 7, u # 0. SO, 
o = p' for some p in w. Then 7 = Y 'u = the least ordinal in z which is greater 
than Y 'p .  But S >oY 'p ,  since r is the least ordinal in Y"w which is greater than 
6. Hence 7 Go 6, which contradicts 6 <o 7. 

) EXERCISES 

Prove: 
4.60. 1 Fin(x) 3 Fin(9 (x)). 
4.61. t (Fin(x) A (y)(y E x 3 Fin(y)) 3 Fin(U(x)). 
4.62. 1 x S y A Fin(y) > Fin(x) 
4.63. 1 Fin(9 (x)) > Fin(x) 
4.64. 1 Fin(U(x)) 3 (Fin(x) (y)(y E x 3 Fin(y))) 
4.65. 1 Fin(x) > (x =S y V y s X) 
4.66. t Fin(x) A Znf( Y) > x < Y 
4.67. 1 Fin(x) A y C x 3 y < x 
4.68. 1 Fin(x) r\ Fin(y) > Fin(x x y) 
4.69. t Fin(x) A Fin(y) > Fin(xY) 
4.70. 1 Fin(x) A y 4 x > x < (x U (y)) 
4.71. Define x to be a minimal (respectively, maximal) element of Y if and only 

if x E Y and (y)(y E Y 3 -y c x) (respectively, (y)(y E Y z - x c y)). Prove 
that a set Z is finite if and only if every non-empty set of subsets of Z has a I 

minimal (respectively, maximal) element (Tarski [1925]). 
4.72. (a) 1 Fin(x) A Den(y) > Den(x U y). 

I (b) t Fin(x) Den(y) A x # 0 > Den(x x y).  
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(c) A set x contains a denumerable subset if and only if x is Dedekind- In addition, every infinite initial ordinal is equal to 'a lor some a. (Assume 
infinite. pot. ~~t be the least infinite initial ordinal not in G "On. the 

(d) If Y 4 x, then x is Dedekind-infinite if and only if x -- x u ( y  1. &iom R, G ..on is not a set; hence there is some ordinal greater than in 
( e ) k w < x > x + , l ~ x .  

~~t be the least such ordinal, and let p = G 'b- Clearly. P * O; if P = y' 

for some y, then G .y <o 
<o G 6(Yr) = % '(G 'Y), contradicting the definition 4. Hartogs' Theorem. Initial Ordinals. Ordinal Arithmetic. 

of X. ~f P is a limit ordinal, then there is some a <o fi such that <o 'a <o 
An unjustly neglected proposition with manifold uses in set theory is Hartogs' 

rS,  the definition of p.) Thus, G is an €-preserving 
Theorem. 

I of on with the class of infinite initial ordinals. 
PROPOSITION 4.28 (Hartogs [1915]). For any set x, there is an ordinal which is We denote by w,. ~ h ~ ~ ,  = a,, is the least initial ordinal greater 

not equinumerous with any subset of x (and hence there is a least such ordinal). than aa; and, for limit ordinals A, a, is the initial ordinal which is the least 
bound of the set of all with a <o A. It follows from P r o ~ o s ~ ~ ~ o ~  4.14 that 

PROOF. Assume that every ordinal a is equinumerous with some subset y of 
a for all a. ~ l ~ ~ ,  any infinite ordinal a is equinumerous with a unique x. Hence, y = a for some f. Define a relation R on y by stipulating that 

f initial ordinal aB (o a ,  namely, with the least ordinal equinumerous with a. 
(u, U)  E R if and only if (f 'u) E (f 'u). Then R is a well-ordering of y such Let us turn now to ordinal arithmetic. We have already defined (see PP- 
that (R, Y) is similar to (E,, a). Now, define a function F with domain on 190- 19 1) addition, multiplication, and exponentiation: such that, for any a ,  F 'a is the set w of all pairs (z, y)  such that y c X, 

is a well-ordering of y, and (E,, a )  is similar to (z, y). (w is a set, since w (1) P + o O = P  

9 ( x  x x) x 9 (XI.) Hence, F "On C_ 9 ( 9  (x X x) X 9 (x)), and therefore ,!? +,y' = ( P  +oY)' 

F "(On) is a set. F is one-one; hence, On = "(F "(On)) is a set, by the Lim(a) 3 P +oa = U ( P  +or) 
Replacement Axiom, contradicting Proposition 4.7(8). T < ,  a 

p x o o = o  
Let 3C be the function which assigns to each set x the least ordinal a which is 

not equinumerous with any subset of x. Notice that, to each p bx, we can ,8 x0(y') = ( P  XOY) +oP 
associate the set of relations r such that r C_ x x x, r is a well-ordering of its Lim(a) 3 0 xoa = U ( P  Xor) 
fieldy, and ( r , ~ )  is similar to (Ep, P). This defines a one-one function from T < O U  

3C ' x  into 9 9 ( x  x x). Hence % 'x < 9 9 ( x  x x), and, since x x x c exp(P, 0) = 1 
9 9 (x) by Exercise 4.17(a), p. 182, we obtain 3C 'X S 9 9 9 9 (x). 

BY an initial ordinal we mean an ordinal which is not equinumerous with any exp(P, Y') = exp(P, Y) xop 
smaller ordinal. By Proposition 4.24(2), every finite ordinal is an initial ordinal, I L i m ( a ) > e ~ p ( / ? , a ) =  U exp(P77). 
and a is the smallest infinite initial ordinal. It is obvious that, for any x, 

6x is 
O < o r < o a  

an initial ordinal. Moreover, for any ordinal a ,  3C 'a is the least initial ordinal 
greater than a. p~oposIT1oN 4.29. The following wfs are theorems. 

By transfinite induction (Proposition 4.13(2)), there is a function G with (1) P +01 = P' 
domain On such that (2) O + o P =  P 

G ' O =  w (3) p > O O > a  + o P > o a A a + o P ~ o P  
G ' (a f)  = 3C ' (G 'a) (4) / ? < o y > a + 0 P < o a + o Y  

(5) a + o / ? =  a +,a 3 P = 8  G 'A = U(G "A) if A is a limit ordinal. 
(6) a <oP 3 (E,G)(a +os = P) 

G is an increasing function, i.e., a E /? 2 G 'a E G 'P; therefore, if A is a limit 
(7) 0 f x ~ 0 n 3 a + o  U P =  U [ " f o p )  

ordinal, and each G 'a, for a <O A, is an initial ordinal, then U(G "A) is also an p ~ ~  P E X  

initial ordinal. (For, 8 = U(G "A) is the least upper bound of G "A. Assume (8) O < o a A l  <oP 3 ~ X O P  
8 Y with y <o 8. Hence, there is some a <O A such that y <O G 'a. But (9) 0 <o a A 0  <oP 3 a X O P  ZoP 
G '(a') <o 8. So, by the Schroder-Bernstein Theorem (Proposition 4.21(4)), using (10) y <OP r \ O  <o a 3 a XOY <o a xop 
G 'a G '(a') and G '(a') S 6 - y S G 'a, we have G 'a '(a') = % '(G ( 1 1 )  x c On 3 a xo  U P = U (a X ~ P )  
'a), contradicting the definition of 3C.) Hence G 'a is an initial ordinal, for all a .   EX p ~ x  
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PROOF. 

( I )  p +,I = p +,(O') = ( p  +,oy = ( p ) ' .  
(2) Prove 0 +,p = p by transfinite induction (Proposition 4.12). Let X = 

(810 +,p = 8 ) .  First, 0 E X, since 0 COO = 0. If 0 +,y = y, then 0 + d y ' )  , 
(0 +,y)' = y'. If Lim(a) and 0 +Or = r for all r <O a, then 0 +,  a = 

U (0 + 0 ~ )  = U r = IY, since U r is the least upper bound of the set of 
7 < 0  a  r C o  a r < o a  

all r <O a. 
(3) Let X = { PI P >o 0 3 a +o P >o a ) .  Prove X = On by transfinite indue- 

tion. Clearly, 0 E X. If y E X, then a +,y 20 a ;  hence, a + d y ' )  = ( a  +,?). 
>o a +,y 20 a. If Lim(h) and r E X for all r < .A, then a +,  h = U ( ,  
+Or) > O  a +01 = a' >O a. The second part is left as an exercise. 

r c O A  
(4) Use transfinite induction. Let 

Clearly, 0 E X. Assume y E X. Assume p <o y'. Then p <o y or p = y. If 
0 <O y, then, since y E X, a +,  ,8 <oa +,y <a ( a  + ,y)' = a +,y'. If B = y, 
then a + ,  P = a <o(a +,y)' = a Hence, y' E X. Assume Lim(A) 
and r E X for all r <oh. Assume 0 <oh. Then P <O r for some r <oh, since 
Lim(h). Hence, since 7 E X, a + 8 <O a 

C O  U ( a  = a +o A. 
Hence, h E X .  T < O A  

(5) Assume a +,p = a Now. either /3 <O 6 or S <O p or 6 = p. 
If B <O 6, then a +, f i  <oa and if 6 <O p, then a +06 <O a +,P, by Part 
(4), contradicting a +, /3 = a + ,  6. Hence, 6 = P. 

(6) The uniqueness follows from Part (5) .  Prove the existence by induction on 
8. Let X = { p la <o @ > (E,S)(a + ,  6 = 8). Clearly. 0 E X. Assume y E X 
and a <o y'. Hence, a = y or a <o y. If a = y, then (ES)(a +,S = y'), namely 
6 = 1 .  If a <o y, then (E,S)(a + ,6 = y) .  Take an ordinal o such that a +,u = 
y .  Then a +, u' = ( a  +, a)' = y'; thus, (ES)(a + o  6 = y'), i.e. y' E X. Assume 
now that Lim(A) and r E X for all r <oh. Assume a <oh. Now define a 
function f such that, for a <op <oh, f ' p  is the unique ordinal 6 such that 
a + 0 6 = p . B u t A =  U p =  U ( a + O f ' p ) . L e t p =  11 ( f b h ) .  

. 4  HARTOGS THEOREM 203 

PROPOSITION 4.30. The following wfs are theorems. 

(1) P Xol = P A 1 X o P  = p 
(2) o x 0 p = o  
(3) ( a  + O N  +0Y = + o ( P  +OY> 

(4) (c-w X O P )  X o Y  = a xo(P XOY)  

( 5 )  a X o ( P  +OY) = (a  X O P )  +o(a X O Y )  
(6) exp(P, 1 )  = P A exp(1, P )  = 1 
(7) exp(exp(P, Y ) ,  8 )  = exp(P, Y X O S )  
(8) exp(P, Y + o S )  = exp(P, Y )  Xoexp(P, 6 )  
(9) a >ol A P <o y > exp(a, B )  <o exp(a, y). 

1 PROOF. 

- .  
a < o ~ < o h  a <o.p 

(7) Assume 0 # x c On. By Part (6), there is some 6 such that a +, 6 
= U (a  +,P). We must show that 6 = U 8. If 0 E X, a + o p  <O a 

P E x  P 
Hence, B <o S, by Part (4). Therefore, 6 is an upper bound of the set of all 
P E x. So, U B Co 6. On the other hand, if f l  E x, then a +,P C o  

b' E x  

- .-- 

( 1 )  P X o l  = 10 XoO' = ( p  XoO)  + O D  = 0 f o p  = P, by Proposition 4 
Prove 1 X p = p by transfinite induction on p. 

(2) Prove 0 X o B  = 0 by transfinite induction on p. 
(3) Let x = (ul(a)(P)((f f  + O D )  +OY = f f  +o(P +or))). 0 E X ,  

( a  + ,  p )  +,O = a +. 8 = a + oO). Now, assume y E X. Then ( a  
+oyf = ( (a  +08)  +OY)' = ( a  +o(P +oy))' = a + d B  +Oy)' = a +o(O 
Hence, y' E X. Assume now that Lim(h) and r E X for all r <o A. 
( a  + o 8 )  + O  = U ( ( a  +oB)  +or) = U ( a  +o(P = 

r<nh . .".. 

U ( p  (by Proposition 4.29(7)), and this is equal to a +oh). 

- \- 0 ,  

a < o p < o h  a < o p < o A  a  < O Q < O  A 
Notice that, if a < ~ p  <oh, then f ' p  <of  ' (p ' ) ;  hence, p is a limit ordinal. Then 
A =  U ( a+ , f  ' p ) =  U ( a  + ,a)=a+,p .  

+ O  U P Hence, a = U (a  + o P )  Co  a f o  U B, and so, by Part (4), 
P E x  b'E x  13 E x  6 Go U /3. Therefore, 6 = U p. 

P E x  P E x  
(8)-(11) are left as exercises. 

.29(2). 

since 
+oB> 
+ 0 ~ ' ) .  

Then 
a + o  

I (4)-(9) are left as exercises. 
We should like to consider for a moment the properties of ordinal addition 

1 and multi~lication when restricted to w. 

I PROPOSITION 4.31. Assume a ,  P ,  y are in o. Then 

1 PROOF. 

( 1 )  Induction on P. Let X = ( @/(.)(a E o 3 a + P E a ) ) .  Clearly 0 E X. 
Assume /3 E X and a E o. Then a +, f i  E w. Hence, a +o(,f3') = ( a  +o P)' E 

I w b y  Proposition 4.10(1). So, by Proposition 4.10(3), w X. 
I 
1 (2) and (3) are left as exerases. 

(4) Lemma: t- a E w A p E w > a' +o f l  = a +oP'. 
Let Y = ( B I B  E o A  (a)(a E o 3 a' +,p = a +,p l ) ) .  O b s e ~ e  that 0 E 

Y.  Assume @ E Y and let a E w. So, a' +, p = a Then a' +,B' = 

(a' = ( a  +,Pt)' = a +o(P')'. Hence, p' E Y. 
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Now, to prove Part (4), let 

X - { P I P  E w A ( a ) ( a E w 2 a + o f l = ~ + o a ) ) .  

Then 0 E X, and, it is easy to prove, using the Lemma, that P E X 3 8' E X .  
(5)-(7) are left as exercises. 

The reader will have noticed that we have not stated for ordinals certain 
well-known laws which hold for other familiar number systems, e.g., the com- 
mutative laws for addition and multiplication. In fact, these laws fail for 
ordinals, as the following examples show. 

Examples. 

2 XOw = U (2 Xoa) = o 
a < o w  

0 xo 2 = xO( l  +,I) = (0  x01) +,(a xo l )  = 0 +,w >o w 

3- (EYXE~XEB)( (~  +oP) XOY + (a X ~ Y )  + o( P x ~ Y ) )  

(1 +Ol) Xo  w = 2 xo  w = w 

(1 X, w) +,(I X o  0)  = w C0 w >o w 

4. (Ea)(EPXErXexp(a XOP, y )  f exp(a, Y) x0 exp(P, I)) 

exp(2 X 0  2, w )  = exp(4, w )  = U (exp(4, a) = o 
o < o  w  

exp(2, w) = U exp(2, a )  = w. 
a < o  o 

So, exp(2, w) Xoexp(2, w) = w x0  w >O W .  

Given any wf & of formal number theory S (cf. Chapter 3), we can associate 
with & a wf &* of NBG as follows: first, replace every "+" by "+,", and every 
6 6 .  9 9  by "xi ' ;  then, if is 4 s C, or -- 93 , respectively, and we already have 
found 9 * and C*, let &* be 93 * 3 C*, or - (9 *), respectively; if & is 
(x)% (x), replace it by (x)(x E o 2 J *(x)). This completes the definition of 
&*. Now, if x,, . . . , x,, are the free variables of &, prefix (x, E w A x, E o 
A . . . AX,, E 0) 3 to &*, obtaining a wf d #. This amounts to restricting all 
variables to w and interpreting addition, multiplication, and the successor 
function on integers as the corresponding operations on ordinals. Then every 
axiom & of S is transformed into a theorem & #t of NBG. (Axioms (S1)-(S3) 
are obviously transformed into theorems. (S4)# is a theorem, by Proposition 
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4.9(3), and (S5) # -(S8) # are properties of ordinal addition and multiplication 
(ef. p. 201). Now, for any wf Q of S, Q # is predicative. Hence, by Proposition 
4.4, all instances of (S9)# are provable by transfinite induction (Proposition 
4.12(2)). (In fact, assume & #(0) A (x)(x E w 3 ( 8  # ( x )  3 #(xt))). Let X = 

(yl  y E o A d #(y))). Then, by Proposition 4.12(2), (x)(x E w 3 & #(x)),) 
Applications of modus ponens are easily seen to be preserved under the 
transformation of & into & #. As for the Generalization Rule, consider a wf 
@(X), and assume that #(x) is provable in NBG. But @ #(x) 1s of the form 
x ~ w / \ y l  E w  A . . . M ,  Ew>&*(x) .  Hence, y , E w r \ . . . / V , ~ w 2  
( x ) ( r  E w 2 &*(x)) is provable in NBG. But this wf is just ((x)&(x))#. Hence, 

of Gen leads from theorems to theorems. Therefore, for every 
theorem & of S, B # is a theorem of NBG, and we can translate into NBG all --- - 

, the theorems of S proved in Chapter 3. 
One can check that the number-theoretic function h such that, if x is the 

Godel number of a wf 6? of S, then h(x) is the Godel number of & # in NBG, 
and if x is not the Godel number of a wf of S, then h(x) = 0, is recursive (in fact, 
primitive recursive). Let K be any consistent extension of NBG. As we saw 
above, if x is the Godel number of a theorem of S, h(x) is the Godel number of a 
theorem of NBG, and, hence, also a theorem of K. Let S' be the extension of S 
obtained by taking as axioms all wfs Q of S such that & #  is a theorem of K. 
Since K is consistent, S' must be consistent. Therefore, slnce S is essentially 
recursively undecidable (by Corollary 3.37), S' is recursively undecidable, i.e., 
the set Ts of Godel numbers of theorems of S' is not recursive. Now, assume K 
is recursively decidable, i.e., the set T, of Godel numbers of theorems of K is 
recursive. But, Gs(x)  = Gx(h(x)) for any x, where Gs and GK are the 
characteristic functions of Ts and T,. Hence Ts would be recursive, contradict- 

: ing the recursive undecidability of s'. Therefore K is recursively undecidable, 
and, thus, if NBG is consistent, NBG is essentially recursively undecidable. 

i Recursive undecidability of a recursively axiomatizable theory implies incom- 
pleteness (cf. Exercise 3.47 @), p. 166). Hence NBG is also essentlally incom- 

1 plete. Thus, we have the following result: If NBG is consistent, then NBG is 
1 essenriall) recursivel) undecidable and essentially incomplete. (It is possible to 

pmve this result directly in the same way that the corresponding result was 
proved for S in Chapter 3. Also cf. Exercises on page 172.) Since NBG 
apparently can serve as a foundation for all of present-day mathematics (i.e., it 
is clear to every mathematician that every mathematical theorem can be trans- 
lated and proved within NBG, or within extensions of NBG obtained by adding 
various extra axioms such as the Axiom of Choice), the essential incompleteness 
of NBG seems to indicate that the "axiomatic approach to mathematics" is 
inadequate. This conclus~on does not depend upon the peculiarities of the theory 
NBG. Any other consistent theory (including "higher-order theories" as well as 
first-order theories) in which the theory of natural numbers can be developed far 
enough so as to include all the theorems of S (or even of RR) must also be 
essentially recursively undecidable and essentlally incomplete, as the proof given 
above for NBG shows. 
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EXERCISES 

4.73. Verify that the function h defined above is recursive. (Notice that, because 
+ o ,  x ,  0 are introduced into NBG as additional function letters and individual 
constant, one has to prove that the transformation given in Proposition 2.29 is 
recursive.) 

4.74. Rove that a predicate calculus with a single binary predicate letter . 
recursively undecidable. (Hint: Use Proposition 3.42.) 

There are a few facts about the "cardinal arithmetic" of ordinals that we 
should like to deal with now. By "cardinal arithmetic", we mean properties 
connected with the operations of union ( u )  and Cartesian product ( x )  and X ', 
as opposed to the properties of +, and x, and ordinal exponentiation. Observe 
that X is distinct from Xo; also notice that ordinal exponentiation exp(a, P), in 
spite of the ambiguous notation, has nothing to do with the operation of forming 
X ", the class of all functions from Y into X. (From Example 4 on p. 204, we see 
that exp(2, o), in the sense of ordinal exponentiation, is w; while, from Cantor's 
Theorem, o < 2", where, in the latter formula, we mean by 2w the set of 
functions from o into 2.) 

(a) t w X o = o  

(b) I j  each of X and Y contains at least two elements, then X u Y < 
X X Y  

(c) Den@) /\ Den(y) 3 Den(x u y) 

PROOF. 

(a) Let j be a function with domain o such that, if a E o, then j 'a - (a, 0). 
Then/ is a one-one function from o into a subset of o x o. Hence, o S w x w. 
Conversely, let g be a function with domain o X o such that, for any (a, B)  E 
o X o, g '(a, B) = 2" x03P. We leave it as an exercise to show that g is 
one-one. Hence, o x o < o. So, by the Schroder-Bernstein Theorem, o x o = 
a .  

(b) Assume a, E X, a, E X, a, Z a, and b, E Y,  b2 E Y, and b, P b,. De- 
fine: 

(x, 6,) if x E X 
( a , , ~ )  i f x E  Y- X a n d x f b ,  

(a,,b,) i fx  = b ,andx  E Y -  X 
Then f is a one-one function with domain X u Y and range a subset of X x Y. 
Hence, X u Y < x x Y. 

(c) Assume Den(A) and Den(B). Hence, each of A and B contains at least two 
elements. Then, by Part @), A u B S A x B. But A = o and B = o. Hence, 
A X B = o X o. Therefore A u B =S o x w = w. By Proposition 4.27, 
either Den(A u B) or Fin(A u B). But A 2 A u B and Den(A); hence, - En(A u B). 

c. 4 HARTOGS' THEOREM - LV I 

For the further study of ordinal addition and multiplication, it is quite useful 
u, obtain concrete interpretations of these operations. 

PROPOSITION 4.33 (Addition). Assume thaf (R, A )  is similar to (En, a), that 
(S, B)  is similar to (EP, P),  and that A n B = 0. Defne the relation T on 
A u B as jo!!ows: (x,y) E T = ( x E  A A y  E B ) V ( x E A A y  E A A  
(.x,-v) E R) V (x E B y E B A (x, y)  E S); (i.e., T is the some as R in 
the set A ,  the same as S in the set B, and every element o j  A T-precedes every 
element of B). Then T is a well-ordering of A u B, and (T, A u B) is similar 
to a + a @ > .  

PROOF. First, it is simple to verify that T is a well-ordering of A u B, since 
R is a well-ordering of A and S is a well-ordering of B. To show that 
( T ,  A u B) is similar to (Ea+oB, a +,/3), perform transfinite induction on 8. 
For p = 0, B = 0. Hence, T = R, A u B = A, and a +,P = a. So, (T, A u 
B )  is similar to (Ea+oP, a +o,8). Assume the proposition for y, and let P = y'. 
Since (S, B )  is similar to (EP, p),  we have a function / with domain B and 
range 8 such that, for any x, y in B, ( x , ~ )  E S if and only i f f  'x E f 'Y. Let 
b = (jj .y, let B, = B - {b), and let S ,  = S n (B, X 8,). Since b is the 
S-maximum of B, it follows easily that S, well-orders B,. Also, B,1 f is a 
similarity mapping of B, onto y. Let TI = T n ((A u Bl) X (A u B,)).  BY 
inductive hypothesis, (T,, A u B,) is similar to (Em+,, n +,y), by means of 
some similarity mapping g with domain A u B, and range a t o y .  Extend g to 
g, - = g u {(b, a +,y)], which is a similarity mapping of A U B onto (a  +,yY 
- a +,y' = a +,P. Finally, if Lm( P), and our proposition holds for all 
7 assume that / is a similarity mapping of B onto P. Now, for each 7 <oP, 
let B, = (h "7, S, = S n (B, x B,), and T, = T n ((A u B,) X (A U 8,)). BY 
inductive hypothesis, and Corollary 4.16(2), there is a unique sifilarity mapplng 
g, of (T,, A u B,) with (Ea+,,  a +,r); also, if 7, <O q <oP, then, since 
A u B,,I g,, is a similarity mapping of (T,,, A u B,,) with (En+,!, a + a l l )  

l and, by the uniqueness of g,,, A U B,,l g,, = g,,, i.e., g,, is an extension of g,,. 
Hence, if g = U d o (&), then g is a similarity mapping of (T, U ( A  U B,) , < O D  

. .". 
U (a +,7) = a +,P. This completes the transfinite induction. 

r<oP 

PROPOSITION 4.34 (Multiplication). Assume that (R, A )  is similar to (Ea. a) 
and that (S, B)  is similar to (Eb, P). Dejne [he relation W on A X B as 
follows: ( ( x , ~ ) ,  (u,u)) E W ~ ( x  E A A u  E A A y  E B A u  E B ) A  
( ( (y,  u )  E S )  V (y = u A (x, u) E R)). Then W is a well-ordering of 
A x B and (W, A x B) is similar to (EaXoP, a x0P).1- 

?The ordering W is called an h u e m  lexicogrqhicol ordering because it orders pairs as follows: 
first, according to the sue of their second comwnents, and, then, if their second components are 
equal, according to the size of the first components. 
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PROOF. Exercise. (Proceed as in the proof of Proposition 4.33.) 

Exanlples. 

1. 2 Xow = w. Let (R, A )  = (E,, 2), and (S, B) = (Ew, w ) .  Then the pairs 
in 2 x w can be well-ordered as follows: (0, O), (1, O), (0, l), (1, l), (0, 2),' 
(1,2), . . . , (0, n), (1, n), (0, n + I>, (1, n + l), . . . . 

2. By Proposition 4.30(5), w Xo2 = w +,,u. Let (R, A) = (E,, a) and (S, B) 
= (E , ,  2). Then w x 2 can be well-ordered (cf. Proposition 4.34) as follows: 
(0, O), (1, O), (2, O), . . 9 (0, I )?  (1, (2, I), . . 

PROPOSITION 4.35. For all a, w, X w, r w,. 

PROOF. (Sierpinski [1958]). Assume false, and let a be the least ordinal 
such that - (a, x a, -- w,). Then wp X op = oS for all ,B <o a. By Proposition 
4.32(1), a >oO. Now, let P = w, x o,, and, for ,B <O w,, let PB = ((y, S)jy +,S 
= P) .  First, we wish to show that P = U Pp. Now, if y +,8 = P <O w,, 

PC0 
then y cop <O w, and 6 <O w,; hence, (y, 6 )  E w, x o, = P. Thus, 
U Pp P. To show that P C U Pp, it suffices to show that, if y <O y 

P<owa PC* 
and 6 <O w,, then y <O a,. Now, y and 8 are equinumerous with initial 
ordinals w, < oy and o, < 08, respectively. Let 1 be the larger of a and p. Since 
y Coo, and S <O w,, then wi <O q,. Hence, by the minimality of a, q x 9 = 
y. Let A = y x {0), B = S x (1). Then, by Proposition 4.33, A u B -- y +,a. 
Since y = a,, and 6 = a,, A = a, x (0) and B = op x {I). Hence, since 
A n B = 0, A u B =. (q, x (0)) u (w, x 11)). But, by Proposition 4.32(b), 
(a,, x ( 0 ) ) u  (up x { l ) ) S ( o ,  x (0)) x (,, x (1)) =, x u ,  4 w i  x q = 
q. Hence, y +,6 S y <O w,. Since o, is an initial ordinal, y <O w,. (For, 
if w, <o y +, 6, then w, 4 wf and wf 4 a,; so, by the Schroder-Bernstein 
Theorem, u, = wi, contradicting c+ <O y.) Thus, P = U PB. Consider PS 

P<o 0, for any P <O o,. By Proposition 4.29(6), for each y <oP, there is exactly one 
ordinal S such that y = p. Hence there is a similarity mapping from j3' 
onto Po. where Pp is ordered according to the size of the first component 
y of the pairs (y, 6). Define the following relation R on P. For any 
Y <o w,, 6 <o w,, p <O W,Y <O w,, ((7, S), ( p, Y)) E R if and only if either 
Y +,6 <or + o  v or (y +oS = p +, v y <OF). Thus, if P, <oS, <O w,, the 
pairs in Po, R-precede the pairs in Pg,, and, within each Pg, the pairs are 
R-ordered according to the size of their first components. One easily verifies that 
R well-orders P. Since P = % x w,, it suffices now to show that (R, P) is 
similar to (E,, w,). By Proposition 4.17, (R, P) is similar to some (Et, 0, 
where E is an ordinal. Hence, P = 6. Assume that 6 >O w,. There is a similarity 
mappingf between ( E E ,  t )  and (R, P). Let b = f 'w,; then b is an ordered pair 
(Y, 6 )  with y <0 y, S <o wa, and o,l f is a similarity mapping between 
( E , , ,  w,) and the R-segment Y = Seg,(P, (y, 6)) of P determined by (y, 8 ) .  
Then Y = o,. Also, letting P = y +,6, if (a, p )  E Y, we have o +g <oy +,S 
= P; hence, o COB and p GOB. Therefore, Y E 8' x 8'. But 8' <O a,. Hence, 
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8' = a, with p <o a. By the minimality of a, o, X 0, = a,. SO, o, = Y < w,, 
contradicting w, < a,. Thus, [ <o w,, and, therefore, P < a,. Let h be the 
function with domain w, such that h 'p = (P,  0) for every /3 <o w,. Then h is a 
one-one correspondence between q, and the subset w, x {O), and, therefore, 

S P. By the Schroder-Bemstein Theorem, 0, z P, contradicting the defini- 
tion of a. Hence. wp X up = wB for all P. 

COROLLARY 4.36. If A - q, and 3 = wp, and $ y is the maximum of a and 
p, then A X 3 2 a, and A u 3 = o,. In particular, q, X wg = w,. 

PROOF. By Proposition 4.35 and 4.32(2), w, 5 A u B 4 A X B = o, x 9 
< q x o, = o,. Hence, by the Schroder-Bernstem Theorem, A x B = w, and 
A U  B = w y .  

This is really only the beginning of ordinal arithmetic. For further study, cf. 
Sierpinski 119581 and Bachmann [1955]. 
EXERCISES 

Prove that the following are theorems of NBG. 
4.75. (a) x < w, 2 x u w, = w, 

(b) wa +cwa I= @a 

4.76. 0 f x < w, 1 x X w, = w, 
4.77. 0 # x < w > w," = a, 
4.78. (a) 9 (a,) X 9 (aa) - 9(w,) 

(b) x < 9 (a,) 3 x U 9 (a,) = 9 (w,) 
(c) 0 f x 4 9(w,) 3 X X 9(w,) - 9(wa) 
(d) 0 z x S w, 2 (9(w,))" - 9(w,) 

, (9(w,))"- -- 09(w,). (e) 1 < x S w, 2 xW- = wW- -- 
4.79. Assume y + 0 r\ y = y +cy. Remember that y +Y = (Y X (0)) U (Y X 

{I)). (This assumption holds for y = w, by Corollary 4.36, and for y = q(ua) by 
Exercise 4.78(b). It will turn out to hold for all infi~te sets y if the Axiom of 
Choice holds.) 

(a) In f (y )  

J 

4.80. Assume y = y x y A 1 y .  (This holds when y = oa by Proposition 4.35 

and for y = 9(wa) by Exercise 4.78(a). It is true for all infinite sets y if the Mom 
of choice holds.) 

(a) Y = Y ++,ye 
@)D ~ e t  Perm(y) = { j Jy  -- I y). Then Perm(y) = 9 (Y), 

5. The Axiom of Choice. The Axiom of Regularity. 
The Axiom of Choice is one of the most celebrated and contested statements 

of the theory of sets. We shall state it in the next proposition and show its 
equivalence to several other important assertions. 
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PROPOSITION 4.37. The following wfs are equivalent. 
(I) Axiom of Choice (AC): For any set x, there is a function j such that, for 

any non-empry subset y ofx, j 'y E y (f b called a choice function for x). 
(2) Multiplicative Axiom (Mult): If x is a set of disjoint non-emp& sets, then 

there is a set y (called a choice set for x) such that y contains exact& om 
element o j  each set in x. (u)(u E x 3 u + 0 A (v)(v E x A o f u 2 o n 
= 0)) 3 (Ey)(u)(u E x 3 (Elw)(w E u n Y)). 

(3) Well-ordering Principle (KO.):  Every set can be well-ordered 
(~)(EY)(Y we x). 

(4) Trichotomy (Trich): (x)(y)(x < y V y 4 x). 
(5) Zorn's Lemma (Zorn): Any non-empp partiafb-ordered set x ,  in which 

every chain (i.e., every totally-ordered subset) has an upper bound, has a 
maximal element. (x)(y)((y Part X) A ((u)(u Z x y Tot u 3 (Ev)(v E x A 
(wXw E u 3 w = v V (w, V} E Y))) 3 (EV)(V E x A (w)(w E x 3 (v, W) 

e Y))). 
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of F "P (= g "8)  which are not in g "/? is  empty,^ € g "/? and w is the only 
Upper bound of g ''8 (because a set can contain at most one upper bound). 
Hence, w is a y-maximal element. (For, if (w, z) E y and z E x ,  then z is a 
~Yppe r  bound of g "B, which is impossible.) 

(6) t- Zorn 3 (W.O.). Given a set z, let X be the class of all one-one functions 
.with domain an ordinal and range a subset of I. By Hartogs' Theorem, X is a 
set. Clearly, 0 E X. X is partially-ordered by the proper rnclusion relation c . 
Given any chain of functions in X, of any two, one is an extension of the other. 
Hence, the union of all the functions in the chain is also a one-one function 
from an ordinal into z, which is an c -upper bound of the chain. Hence, by 

' Zorn, X has a maximal element g, which is a one-one function from an ordinal a 
intoz, Assumez- g " a # 0 ,  andlet  b E z - g 6 ' a .  Let f i g U { ( a , b ) ) .  

I I 
Then f E X and g c f, contradicting the maximality of g. So, g "a = z. Thus, 
a 3; z. We can transfer by means of g the well-ordering Ea of a to a well-order- 

g 
I ing of z. 

PROOF. I : 
( I )  I ( W.O.) 3 Trich. Given sets x, y, then, by ( W.O.), x and y can be 

well-ordered; hence, by Proposition 4.17, x = a and y s /3 for some ordinals a, 
P But a < p or B <  a.  Hence, x =S y or y =S x. 

(2) 1 Trich 2 (W.O.). Given a set x, then, by Hanogs' Theorem, there is an 
ordinal a such that a is not equinumerous with any subset of x. By Trich, x is 
equinumerous with some subset y of a. Hence, by translating the well-ordering 
E, of y to x, x can be well-ordered. 

(3) 1 (W. 0.) 3 Mu&. Let x be a set of non-empty disjoint sets. By ( W. O.), 
there is a well-ordering R of U(x). Hence, there is a function j with domain x 
such that, for any u in x, f 'u is the R-least element of u. (Notice that u C U(x).) 

(4) 1 Mull 3 AC. For any set x, we may define a one-one function g such 
that, for each non-empty subset u of x, g 'u = u X {u). Let x ,  be the range of g. 
Then x ,  is a set of non-empty disjoint sets. Hence, by Mult, there is a choice set 
Y for X I .  Therefore, if 0 # u and u c x, then u x (u) is in x,, and so, y contains 
exactly one element (v, u) in u X {u). Then the function j such that f 'u = v is 
a choice function for x. 

(5) 1 AC 3 Zorn. Let y partial-order a non-empty set x such that every 
y-chain in x has an upper bound in x. By AC, there is a choice function j for x. 
Let b be any element of x. By transfinite induction (Proposition 4.13), we define 
a function F such that F '0 = b, and, for any a > 0, F 'a is f 'u, where u is the 
set of y-upper bounds u in x of F "a such that o P F "a. Let 8 be the least 
ordinal such that the m of y-upper bounds in x of F ''p which are not in F "4 is 
empty. (There must be such an ordinal; otherwise, F is a one-one function with 
domain On and range a subset of x. which, by the Replacement Axiom R, 
implies that On is a set.) Let g = 8 1 F. Then it is an easy exercise to check that 
g is one-one, and, if a <oy <08, ( g  'a, g 'y) E y. Hence, g ''8 is ay-chain in x; 
by hypothesis, there is an upper bound w of g ''8. Since the set of upper bounds 

4.81. Show that the following are equivalent to the Axiom of Choice. 
(a) Any set x is equinumerous with some ordinal. 
(b) (Special case of Zom's Lemma) If x is a non-empty set, and if the 

union of each non-empty c -chain in x is also in x, then x has a -- - - 

c -maximal element. 
(c) (Hausdorff Maximal Principle) If x is a set, then eveq c -chain in x is 

a subset of some maximal c -chain in x. 
(d) (Teichmiiller-Tukey Lemma) Any set of finite charactsr  ha^ an C - 

maximal element. (A non-empty set x is said to be of finite character if 
and only if (i) every finite subset of an element of x is also an element 
of r; (ii) if every finite subset of a set y is a member of x, then y E x.) 

(e) (x)((Rel(x) 3 (Ey)(Fnc(y) A Q (4 = 9 (Y) A Y  G x). 
(f) For any non-empty sets x andy, either there is a function with domain 

x and range y or there is a function with domain y and range x. 
4.82. Show that the following Finite Axiom of Choice is provable in NBG: if x is 

a finite set of non-empty disjoint sets, then there is a choice set y for x. (Hint: 
assume x = a where a E a. Use induction on a.) 

The following are consequences of the Axiom of Choice. 

(I) Any infinite set has a denumerable subset. 
(11) Any infinite set is Dedekind-infinite. 
(111) If x is a denumerable set whose elements are denumerable see, then 

~ ( x )  i s  denumerable. 

PROOF. 

(1) Assume AC. Let x  be an infinite set. By Exercise 4.81(a), x is equl- 
numerous with some ordinal a. Since x is infinite, so is a. Henee, o Go a; 

a therefore, o is equinumerous with some subset of x .  
(11) By (I) and Exercise 4.72(c), p. 200. 
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(111) Assume x is a denumerable set of denumerable sets. Let f be a function 
assigning to each u E x the set of all one-one correspondences between u and o. 
Let z be the union of the range of f. Then, by AC applied to z ,  there is a 
function g such that g ' u  E u for each non-empty u C z. In particular, if u E x, 
then g '( f ' u )  is a one-one correspondence between u and o. Let h be a one-one 
correspondence between o and x. Define a function F on U ( x )  as follows: Let 
y E U ( x )  and let n be the smallest element of o such that y E h 'n. NOW, 
h ' n  E x ;  so, g ' ( f  ' (h 'n))  is a one-one correspondence between h ' n  and U. 

Define F 'y = ( n ,  ( g  '( f ' (h 'n)))  'y). Then F is a one-one function with domain 
U ( x )  and range a subset of o X a. Hence, U ( x )  .S o X o. But o X o = o and, 
therefore, U ( x )  < o. If u E x, then u U ( x )  and u n o. Hence, o < U ( x ) .  By 
the Schroder-Bernstein Theorem, U ( x )  = a. 
EXERCISES 

461. If x is a set, the Cartesian product TI u is the set of functions f with 
U E X  domain x such that f 'u E u for all u E x. Show that AC is equivalent to the 

proposition that the Cartesian product of any set x of non-empty sets is also 
non-empty. 

4.84. Show that AC implies that any partial ordering of a set x is included in a 
total ordering of x. 

4.S. Prove that the following assertion is a consequence of AC: for any ordinal 
a, if x is a set such that x < oq and such that (u)(u E x 2 u <we), then 
U ( x )  4 u.. (Hint: proof is analogous to that of Proposition 4.38011).) 

4.86. (a) Prove: y < x 3 (Ef)(Fnc(f) A 9(f) = x A %(f) = y). 
(b) Prove that AC implies the converse of Part (a): 

(Ej)(Fnc(f) A 9 ( f )  = x A % ( f )  = Y )  3 Y < x. 
4.87." (a) Prove: (u + c ~ ) 2  = u2 +c2 x (u  x U) +.u2. 

(b) Assume y is a well-ordered set such that x x y r x + y and - (y < x). Prove that x 4 y. 
(c) Assume y = y x y for all infinite sets y.  Prove that, if Znf(x) and 

Z = 3 C  'x,  then x x z = x  +,z. 
(d) Prove that AC is equivalent to (y)(Inj(y) 2 y =y x y). (Tanki 

I 19231) 

A stronger form of the Axiom of Choice is the following sentence. (UCF): 
(EX) (Fm(X)  A (u)(u # 0 3 X ' u  E u)). (There is a universal choice functton, i.e. 
a function which assigns to every non-empty set u an element of u.) UCF 
obviously implies AC, but it was proved by W. B. Easton in 1964 that UCF is 
not provable from AC if NBG is consistent. However, Felgner [I9711 proved 
that, for any sentence Q. in which all quantifiers are restricted to sets, if Q. is 
provable from NBG + (UCF), then d is also provable in NBG + (AC) .  (See 
Felgner ( 1  9761 for a thorough treatment of the relations between UCF and A C.) 

The theory of cardinal numben is simplified if we assume AC; for, AC 
implies that every set is equinumerous with some ordinal, and, therefore, that 
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every set x is equinumerous with a unique initial ordinal, which we shall call the 
cardinal number of x. Thus, the cardinal numbers are identified with the initial 
.rdinals. TO conform with the standard notation for ordinals, we let U, stand for 

Propositions 4.35-4.36 establish some of the basic properties of addition and 
multiplication of cardinal numbers. 

The status of the Axiom of Choice has become less controversial in recent 
years. To most mathematicians it seems quite plausible and it has so many 
important applications in practically all branches of mathematics that not to 
accept it would seem to be a wilful hobbling of the practicing mathematician. 
We shall discuss its consistency and independence later in this section. 

2' Another hypothesis which has been proposed as a basic principle of set theory 
4 is the so-called Axrom of Reguluriry (Axiom D): 
.x ( X ) ( X  # 0 EI ( E y ) ( y  E X A y n X = 0)). 
* ,  

(Every non-empty class X contains a member which is disjoint from X.) $2 
PROPOSITION 4.39 

(1) The Axiom of Regulari~ implies the Fundierungsaxlom: 

-. (Ex)(Fnc(x)  A 9 ( x )  = o A (u ) (u  E o 3 x ' (u') E x ' u ) )  

i.e., there is no inpinitely-descending E-sequence x, 3 x2 3 x3 3 . . . . 
(2) If we assume the Axiom of Choice, (hen the Fundierungsaxiom implies the I 

Axiom of Regularity. 
(3)  The Axiom of Regulari~ implies the non-existence of finite E -cycles, i.e., 

, of functions f on a non-zero finite ordinal a' such that f ' 0  E f '1 t . . . E 

f ' a  E f '0;  in particular, it implies that there is no set y such that y E y.  

PROOF. (I) Assume Fnc(x) A 6D(x) = o A (u)(u E o 3 x '(u') E x 'u). Let 
z = x "o. By the Axiom of Regularity, there is some element y in z such that 

, 

v n z = 0. Since y E z, there is some finite ordinal a such that y = x ' a .  Then 
x ' (a ' )  E y n z ,  contradicting y n z = 0. 

(2) First, we define the transitive closure of a set u. Define by induction a 
function g on o such that g '0 = { u ) ,  and g ' (a ')  = U ( g  ' a )  for each a E o. 
Thus, g '1 = U ,  g '2 = U(U),  etc. Let TC(u) = U ( g  "o) be called the transitive 
closure of u. For any u, TC(u) is transitive, i.e., (u)(u E TC(u) > u C_ TC(u)). 
Now, assume AC and the Fundierungsaxiom. also, assume X # 0 but there is no 
y E X such that y n X = 0. Let b be some element of X ;  hence, b n X # 0. Let 
c = TC(b) n X. By AC, let h be a choice function for c. Define a function f on 
o such that f '0  = b, and, for any a E o, f ' (a ' )  = h '((f ' a )  n X).  It  follow^ 
easily that, for each a E o, f ' (a') E f 'a, contradicting the Fundierungsaxiom. 
(The proof can be summarized as follows: we start with an element b of X;  then, 
using h, we pick an element f 'I in b n X; since, by assumption, f 'I  and X 
cannot be disjoint, we pick an element f '2 in f '1 n X, etc.) 

(3) Assume given a finite €-cycle: f '0  E f 'I E . . . E f ' n  E f '0. Let X be 
the range off :  { f '0, f 'I, . . . , f 'n). By the Axiom of Regularity, there is some 
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f ' i  E X such that f ' i  n X = 0. But each element of X has an element in 
common with X. 

Remark: The use of the Axiom of Choice in deriving the Axiom of Regularity 
from the Fundierungsaxiom is necessary. It can be shown (cf. Mendelson (19581) 
that, if NBG is consistent, and if we add the Fundierungsaxiom as an axiom, 
then the Axiom of Regularity is not provable in this enlarged theory. 

EXERCISES 

4.278. If v is a transitive set such that u t v, prove that TC(u) c u 
4.B. By the Principe of Dependent Choices (PDC) we mean the following 

assertion: If r is a non-empty relation whose range is a subset of its domain, then 
there is a function f : o + (ir (r) such that (uXu E o 2 (/'u, f (u')) E r). (Mostow- 
ski [1948]) 

(a) Prove: t AC 3 PDC. I f  
(b) Show that PDC implies the following Denumerable Axiom of Choice: 

( m e )  Den(x) A (u)(u E x 3 u # 0) 3 ( E ' f  : x -t u (x) A 
(u)(u E x 3 f 'u E u)). 

I (c) Prove: 1 3 (x)(~nflx) 3 w < x). (Hence, by Exercise 4+72(c), 
PDC implies that a set is infinite if and only if it is DedeUnd-infinite.) 

(d) Prove that the con~unction of PDC and the Fundiemngsaxiom implies 
the Axiom of Regularity. 

Let us define by transfinite induction a function .Y, which was onginally devised 
by von Neumann. 

.Y ' (a') = 9(+ 'a )  

Let H = U(O "On), and let Hfl stand for t '(8'). Define a function p on H 
such that, for any x in H, p 'x is the least ordinal a such that x E + 'a. p 'x is 
called the rank of x. Observe that p 'x must be a successor ordinal. 

EXERCISES 

Prove: 
4.90. t (a) Tram(* 'a). 
4.91. t Trans(H). 
492. t 9 'a 9 '(a'). 
493. t a <oP > 9 'a P 'p. 
4.94. t On E H. 
4.95. t p 'a = a'. 

P R ~ ~ O S I T I O N  4.40. The Axiom of RegulariQ is equivalent to the assertion that 
V = H ,  i.e., that ewty set is a member of H .  
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PROOF. 

(1) Assume V = H ,  and let X # 0. Let a be the least of the ranks of all the 
elements of X, and let b be an element of X such that p 'b  = a. Then 
h n X = 0; for, if u E b n X ,  then, by Exercise 4.96 above, p 'u E p ' b  = a - , ,  

contradicting the minimality of a. 
(2) Assume the Axiom of Regularity, and assume that V - H Z 0. By the 

Axiom of Regularity, there is some y E V - H such that y n (V - H )  = 0. 
Hence, y H, and so, by Exercise 4.97 above, y E H, contradicting y E V - 

EXERCISES 

4.98. Show that the Axiom of Regularity is equivalent to the special case: 
x # O = ~ ( E y ) ( y ~ x ~ y  n x=0) .  

4.99. Show that, if we assume the Axiom of Regularity, then Ord(X) is equiv- 
alent to: Trans(X) /\ E Con X, that is, to the wf 

( U ) ( U E X ~ ~ C _ X ) / \ ( ~ ) ( ~ ) ( U E X ~ U E X / \ U + V ~ U E U V U E U ) .  
Thus, with the Axiom of Regularity, a much simpler definition of the notion of 
ordinal class is possible, a definition in which all quantifiers are restricted to sets. 

4.100. Show that the Axiom of Regularity implies that every non-empty trand- 
tive class contains 0. 

Proposition 440 certainly increases the attractiveness of adding the Axiom of 
Regularity as a new axiom to NBG. The proposition V = H asserts that every 
set can be obtained by starting with 0 and applying the power set and union 
operations any transfinite number of times, and the assumption that this is so 
would clarify our rather hazy ideas about sets. By Exercise 4.99 above, the 
Axiom of Regularity would also simplify the definition of ordinal numben. In 
addition. we can develop the theory of cardinal numbers on the basis of the 
Axiom of Regularity: namely, just define the cardinal number of a set x to be 
the set of all those y of lowest rank such that y 2 X. (The basic requirement of 
the theory of cardinal numbers is that there be a function Card whose domain is 
V such that Card ' x  = Card ' y  E X  zz y.) There is no unanimity among 
mathematicians about whether we have sufficient grounds for adding the Axiom 
of Regularity as a new axiom, for, although it has great simplifying power, it 
does not have the immediate plausibility that even the Axiom of Choice has, nor 
has it had any mathematical applications. 

The class H defined above determines an inner model of N B G  in the following 
sense. For any wf & (written in unabbreviated notation) containing the free 
variables Y,, . . . , Y,,, let RelH(&) be the wf obtained from & by replacing every 
subformula (X) J (X) by (X)(X c H 3 J (X)) (in making the replacements, 
we start with the innermost subfomulas), and then prefixing (Y, C H  /\ Y2 
H A  . . . Y,, C H) 2 . In other words, in forming Rel,(&), we interpret 
"class" as "subclass of H". Then, for any theorem 3. of NBG, Rel,(&) is also a 
theorem of NBG. 
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EXERCISE 4.101. Verify that, for each axiom & of NBG, RelH(&) is a theorem 
of NBG. Notice that RelH((x)%) is equivalent to (x)(x t H 3 %*), where 
%* is RefH(%). Inporticular, RelH(M(X)) is (EY)(Y C H A X E Y), which 
is equivalent to X E H; thus, the "sets" of the model are the elements of H .  If 
we adopt a semantic approach, then one need only observe that, if N is a model 
for NBG (in the usual sense of "model"), then the objects X of N that satisfy the 
wf X H also form a model for NBG. In addition, one can verify that the 
Axiom of Regularity holds in this model; this is just Part (1) of Proposition 4.40. 
A direct consequence of this fact is the consistency of the Axiom of Regularity, 
i.e., if NBG is consistent, so is the theoty obtained by adding the Axiom of 
Regulario as a new axiom. That the Axiom of Regulariv is independent of 
NBG can also be proved (cf. Bernays 119541, Part VII) by means of a suitable 
model, though the model is more complex than that giuen above for the 
consistency proof. Thus, the Axiom of Regulari@ is both consistent and indqen- 
dent with respect to N3G: we can consistently add either it or its negation as an 
axiom to NBG, if NBG is consistent. (Practically the same proofs aho show the 
independence and consistency of the Axiom of Regularity with respect lo 
NBG + (AC).) 

4.102. Consider the model whose domain is Ha and whose interpretation of E is 
EHo, the membership relation restricted to Ha. Notice that the "sets" of this model 
are the sets of rank <o a, and the "proper classes" are the sets of rank a'. Show 
that the model Ha satisfies all axioms of NBG (except possibly the Axioms of 
Infinity and Replacement) if and only if Lim(a). Prove also that H satisfies the 
Axiom of Infinity if and only if a >o a. 
4.103. Show that the Axiom of Infinity is not provable from the other axioms of 

NBG, if the latter are consistent. 
4.104. Show that the Axiom of Replacement R is not provable from the other 

axioms (T, P, N, B1 - B7, U, W, S) if these latter are consistent. 
4.10!kD An ordinal a such that Ha is a model for NBG is called inaccessible. 

Since NBG has only a finite number of proper axioms, the assertion that a is 
inaccessible can be expressed by the conjunction of the relativization to H, of the 
proper axioms of NBG. Show that the existence of inaccessible ordinals is not 
provable in NBG if the latter is consistent, and the same is true even if the Axiom 
of Choice and the Generalized Continuum Hypothesis are added as axioms. 
(Compare Shepherdson [1951-19531, Montague-Vaught [1959], and, for related 
results, Bernays 119611 and Levy [1960].) Inaccessible ordinals have been shown to 
have connections with problems in measure theory and algebra (cf. Ulam [1930], 
Zeeman [1955], and Erdos-Tarski [1961]).? The consistency of the theory obtained 
from NBG by adding an axiom asserting the existence of an inaccessible ordinal is 
still an open question. 

?Inaccessible ordinals are involved also with attempts to provide a suitable set-theoretic founda- 
lion for CategOV theory (cf. Maclane 119711, Gabriel [1962], Somer [1%2], Krvse [1966] Isbell 
1 19661). 
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The Axiom of Choice turns out to be consistent and independent with respect 
to NBG + (Axiom of Regularity); more precisely, if NBG is consistent, AC is 
an undecidable sentence of the theory NBG + (Axiom of Regularity). In fact, 
Godel ([1938], 119391, [1940]) showed that, if NBG is consistent, then the theory 
NBG + (AC) + (Axiom of Regularity) + (GCH) is also consistent, where 
(C;CH) stands for the Generalized Continuum Hypothesis: 

P 
,, 0 .  

I (Our statement of Godel's result is a bit redundant, since I (GCH) 3 (AC) has I been proved by Sierpinski 119471 and Specker [1954]. This result will be proved 
below.) The unprovability of AC from (NBG) + (Axiom of Regularity), if NBG 

h;. consistent, has been oroved by P. J. Cohen [1963], who also has shown the 
I ;dependence of the spkial Continuum Hypothesis, 

2" s w , ,  from NBG + (AC) + (Axiom of Regularity). 

For expositions of the ingenious work of Cohen and its further development, see 
Cohen (19661 and Shoenfield 1197 11 (as well as Rosser (19691, Felgner (19711, 
Jech 1197 11, Takeuti-Zaring 119731). 

We shall present here a modified form of the proof in Cohen [I9661 of 
Sierpinski's proof that (GCH) implies (AC). 

DEFINITION. For any set v, let p ( u )  = v, J ' (v)  = "V(v), T2(u) = 
9 (9(v)), . . . , '?I)k "(v) = 9 (qk(v)) for all k in w. 

' LEMMA 4.41. Ij w < U, then Yk(v) + ,$*(u) a gk(v) for all k 201. 

PROOF. Remember that J(x) - 2' (Exercise 4.40, p. 193). From o 4 v, we 
' obtain w 4 qk(u) for all k in w. Hence, qk(v) +,1 - Tk(v) for all k in w,  by 

1 Exercise 4.72(e). Now, for any k 201, 
q y u )  + , q k ~ * ( ~ )  = ~ k ( ~ )  x 2 = J(qk- ' (0) )  X 2 = 2"-'(" X 2 

- - 2p-yu' 21 = 2~~-lro)+.l = 24-'(u) = $(Tk-l(u)) = qk(0). 

'; LEMMA 4.42. If y + .X - q ( x  +,x), then 9 (x) < y. . 

PROOF. Notice that "V (x + ,x) - 2x 'cx  = 2' X 2' = J ( x )  x 9 (x). Let y* 
= y X {O) and x* = x x {I) .  Since y +,x = J ( x  +,x) = $(x) X 9(x), 
there is a function j such that y* u x* r 9(x )  x 9(x) .  Let h be the function f 
which takes each u in x* into the first component w of the pair f 'u. Thus, 
h : x* 4 9(x) .  By Proposition 4.23(a), there must exist c E 9 (x) - h"x*. 
Then, for all z in 9 (x), there exists a unique u in y* such that j 'u = (c, z). This 
determines a one-one function from 9 (x) into y. Hence, 9 (x) 4 y .  

PROPOSITION 4.43. Assume GCH. 

(a) For any ordinal P ,  $ u cannot be well-ordered, u + ,u = u, and p S 2". 
then p S u. 

(b) The Axiom of Choice AC holds. 
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PROOF. 

(a) Notice that u + ,u = u implies 1 + ,u = u, by Exercise 4.79(b); therefore, 
by Exercise 4.58(i), 2" +,u = 2". Now, u < /3 +,u < 2" +cu = 2". By 
GCH, either (i) u - /3 +,u or (ii) /3 +,u = 2". If (ii) holds, /3 +,u = 2" +,u ,- 

T(u +,u). Hence, by Lemma 4.42, 9 (u)  < P, and, therefore, u < P. Then, 
since u would be equinumerous with a subset of an ordinal, u could be 
well-ordered, contradicting our assumption. Hence, (i) must hold. But then, 
p <  p + , u = u .  
(b) We shall prove AC by proving the equivalent sentence (W.O.) asserting 

that every set can be well-ordered. To that end, consider any set x, and assume, 
for the sake of contradiction, that x cannot be well-ordered. Let v = lXU". Then 
w < x u w < u. Hence, by Lemma 4.4 1, Tk(v) + , Tk(v) = Tk(v) for all k >01. 
Also, since x < x u u < v u) 9(v)  u) 9 9 ( v )  u) . . . , and x cannot be well- 
ordered, each Tk(v) cannot be well-ordered, for k >,o 0. Let /3 = X '0. We know 
that p < T4(u) @. 200). Hence, by Part (a), with u = T3(u), we obtain /3 < 
T3(v). Using Part (a) twice more (successively with u = T2(u) and u = T(v)), 
we obtain X 'u = p < u. But this contradicts the definition of X ' v  as the least 
ordinal not equinumerous with a subset of v. 

EXERCISE 4.106. An a-sequence is a function w whose domain is a. I f  the 
range of w consists of ordinals, w is called an ordinal a-sequence, and if, in 
addition, /3 <O y <o a implies w(P) <o w(y), w is called an increasing ordinal 
a-sequence. By Proposition 4.1 1, if w is an increasing ordinal a-sequence, then 
U(w "a) is the least upper bound of the range of w. An ordinal 6 is said to be 
regular if, for any increasing ordinal a-sequence w such that a <o S and the 
ordinals in the range of w are all <o 6, then U(w "a) +,1 <o 6. Non-regular 
ordinals are called singular ordinals. 

(i) Which finite ordinals are regular? 
(ii) Show that wo is regular and that wo is singular. 

(iii) Prove that every regular ordinal is an initial ordinal. 
(iv) Assuming the Axiom of Choice (AC), prove that every ordinal of the 

form w , + ~ ,  is regular. 
(v) If wa is regular and Lim(a), prove that wa = a .  (A regular ordinal wa such 

that Lim(a) is called a weakly inaccessible ordinal.) 
(vi) Show that, if wa has the property that y <O wa implies T(y) u) ma, then 

Lim(a). The converse is implied by the Generalized Continuum Hypothesis. A 
regular ordinal wa such that a >O 0, and y <O wa implies T(y) u) wa, is called 
strongly inaccessible. Thus, every strongly inaccessible ordinal is weakly inacces- 
sible, and, if the (GCH) hold, the strongly inaccessible ordinals coincide with 
the weakly inaccessible ordinals. 

(vii) (Shepherdon [I 95 1-53], Montague- Vaught [1959]) (a) If y is inaccessi- 
ble (i.e., if H, is a model of NBG), then y is weakly inaccessible. D(b) In the 
theory NBG + (AC), y is inaccessible if and on[y if y is strongly inaccessible. 
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(viii) If (NBG) is consistent, then in the theory NBG + (AC) + (GCH) it is 
impossible to prove the existence of weakly inaccessible ordinals. 

We have chosen to develop axiomatic set theory on the basis of NBG because 
it is simple and convenient for the practicing mathematician. Of course, there 
are many other varieties of axiomatic set theory. 

(1) Strengthening NBG, we can replace Axioms B1-B7 by the Axiom 
Schema: (EX)(yl)(y2) . . . (yn)((y ,. . . . , yn) E X r +(yl, . . . , Y,,)), where + is 
any wf (not necessarily predicative) of NBG. This new theory MK, called 
Morse-Kelley set theory because it was originally proposed by A. Morse (cf. 
Morse [1965]) and became widely known through its publication in Kelley 
[1955], is a proper extension of NBG. Although MK is simpler and more 1 powerful than NBG, its strength makes its consistency a riskier gamble. (How- 
ever, if we add to NBG + (AC) the axiom In asserting the existence of a 
strongly inaccessible ordinal 0, then the model H, is a model of MK. Hence, 1 MK involves no more risk than NBG + (AC) + (In).) Mostowski (19511 proved 

( that MK is stronger than NBG; in fact, the consistency of NBG is provable in 
I MK. A development of set theory based upon MK may be found in Rubin 

[1967], and Chuquai [I9721 has extended Cohen's independence results to MK. 
1 (2) Zermelo-Skolem-Fraenkel (ZSF) set theory is essentially the part of NBG 

which refers only to sets. We use x,, x,, . . . as variables in ZSF. There is a 
single binary predicate E.  The axioms are Axioms T (Extensionality), P (Pair- 
ing), N (Null Set), U (Sum Set), W (Power Set), I (Infinity), plus an axiom 

1 schema corresponding to Axiom R (Replacement): for any wf ~ ( v ,  u), the 
following is an axiom. 

I 
I 3 (Ey)(u)(u E Y = (Ev)(v E x A cp(v, u))) 

Every wf of ZSF can be considered a wf of NBG, with the variables of ZSF 
playing the role of restricted set variables in NBG. It has been proved (cf. 
Novak-Gi1 [[1951], Rosser-Wang [1950], Shoenfield [1954]) that, for any closed 
wf & of ZSF, if t,,,&, then t,,,&; therefore, ZSF is consistent if and only if 

I NBG is consistent. For a detailed development of ZSF, consult Suppes [1960], 

I I 
Zuckerman [1974], Krivine [1971]. 

I 

For a survey of various axiomatic set theories, cf. Fraenkel-Bar Hillel [I9581 
and Hatcher [1968]. To obtain more detailed treatments of the theory of types, 
consult Church [I9401 and Quine [1938]; for Quine's New Foundations (NF), cf. 
Rosser [I9531 and Specker [I9531 (where it is shown that the strong Axiom of 
Choice is disprovable in NF), and, for Quine's system ML, cf. Quine [1951]. 

( Drake [I9741 is an account of many recent developments in axiomatic set theory. 



I 1. Markov Algorithms 
A function f(x,, . . . , x,,) is thought of as being effectively computable if there 

is a mechanical procedure for determining the value f(k,, . . . , k,) when the 
arguments k,, . . . , k,, are given. The phrase "mechanical procedure" is not at all 
precise; what we mean is a process which requires no ingenuity for its perfor- 
mance. An obvious example is the addition of two integers expressed in decimal 
notation. Another well-known case is the Euclidean algorithm for obtaining the 
greatest common divisor of two integers. In these two examples, it seems 
intuitively clear that the given functions are effectively computable. This is 
generally the case when an effective procedure has already been discovered. 
However, more and more in mathematics, we are faced with the task of showing 
that there is no effectively computable function of a certain kind or that there is 
no effective procedure for solving a large class of problems. To illustrate, we can 
cite on the one hand the well-known effective way of determining whether or 
not any given polynomial f(x) in one variable with integral coefficients has an 
integral root.? On the other hand, the famous Tenth Problem of Hilbert asked 
whether there is an effective procedure for determining whether or not any given 
polynomial f(x,, . . . , x,,) with integral coefficients, in any finite number of 
variables, has integral roots. This problem recently has been solved by 
Matiyasevich [1970], whose proof was the culmination of previous work by 
M. Davis, J. Robinson, and H. Putnam. (Cf. Davis [1973] for a complete exposi- 
tion.) If we attempt to prove that there is no effective procedure or operation of 
a certain kind, it is apparent that we have to give a precise, mathematical 
definition of the notion of effective computability. The situation is analogous to 
that which prevailed in mathematics before notions like continuity, curve, 
surface, and area were explicated. 

Any particular problem of a general class of problems can be formulated as 
an expression of some language. Any expression of a language can be consid- I ered as a sequence of symbols of that language, provided that the blank which is 

?If f(x) = a,,xn + a,- ,xn-' + . . . + alx  + no, then any integral solution of f(x) = 0 must be a 
1 divisor of a,,. Each of the finite number of divisors of a. can be tested to see whether it satisfies 

f(x) = 0. 
22 1 
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usually used to separate words is assumed to be a symbol in its own right. By an 
alphabet we mean a non-empty finite set of symbols. Most natural languages use 
only a finite number of symbols, and, for our purposes, it also suffices to treat 
only such alphabets. (Indeed, anything that can be done with an infinite 
alphabet a,, a,, . . . can be accomplished with a two-symbol alphabet {b, c}, if 
we let b ~ c  . . cc,b play the role of a,.) For uniformity, we assume that the 

n times 
symbols of all alphabets are taken from the denumerable sequence 
So, S,, S,, . . . , though, sometimes, for convenience, we shall use other letters. 

A word in an alphabet A is any finite sequence of symbols of A. The empty 
sequence of symbols is called the empty word, and is denoted by A. If P denotes 
a word q, . . . S, and Q denotes a word SrI . . . Srm, then we use PQ to denote 
the juxtaposition TI . . . S,Sr, . . . Sr of the two words. In particular, PA = AP 
= P; also, (P,P2)P3 = P,(P2P3). 

* 

An alphabet A is an extension of an alphabet B if and only if B C A. If A is 
an extension of B, any word of B is a word of A. 

By an algorithm in an alphabet A, we mean an effectively computable 
function B whose domain is a subset of the set of words of A and the values of 
which are also words in A. If P is a word in A, B is said to be applicable to P if 
P is in the domain of %; if B is applicable to P, we denote its value by B(P). By 
an algorithm over an alphabet A we mean an algorithm B in an extension B of 
A. Of course, the notion of algorithm is as hazy as that of effectively computable 
function. 

Most familiar algorithms can be broken down into a few simple steps. Starting 
from this observation, and following Markov [1954], we select a particularly 
simple operation, substitution of one word for another, as the basic unit from 
which algorithms are to be constructed. To this end, if P and Q are words of an 
alphabet A, then we call the expressions P + Q and P + . Q productions in the 
alphabet A. We assume here that "+ " and the dot "-" are not symbols of A. 
Notice that P or Q can be the empty word. P + Q is called a simple production, 
while P + . Q is a terminal production. Let us use P + (-)Q to denote either 
P + Q or P + Q. A finite list of productions in A 

is called an algorithm schema and determines the following algorithm B in A. AS 
a preliminary definition, we say that a word T occurs in a word Q if there are 
words U ,  V (possibly empty) such that Q = UTV. Now, given a word P in A :  
(1) We write B: P 7 if none of the words PI ,  . . . , Pr occurs in P. (2) Otherwise, 
if m is the least integer, with 1 < m < r, such that P, occurs in P, and if R is the 
word which results from replacing the left-most occurrence of P, in P by Q,, 

write 

<.>Qm simple 

B : P k R  

(and we say that B simply transforms P into R); 

9 l : P k . R  

if p, + (.)Qm is terminal (and we say that B terminally transforms P into R). I 
We then define B : P 1 R to mean that there is a sequence R,, R,, . . . , Rk such 
that P = R,; R = R,; if 0 < j < k - 2, B : R, k R,,,; and either B : Rk-, k R, 
or B : R k ,  k . R,. (In the second case, we write B : P b R.) We set B(P) = R 
if and only if either B : P b - R, or B : P 1 R and B : R 1. The algorithm thus 
defined is called a normal algorithm (or Markov algorithm) in the alphabet A. 

The action of '21 can be described as follows: given a word P, we find the first 
production P, + (-)Q, in the schema such that P, occurs in P. We then 
substitute Q, for the left-most occurrence of P, in P. Let Rl be the new word 
obtained in this way. If P, -t (.)Qm is a terminal production, the process stops 
and the value of the algorithm is R,. If P, + ( - ) Q m  is simple, then we apply the 
same process to R, as was just applied to P, and so on. If we ever obtain a word 
Ri such that 8 : R,7, i.e., no P, occurs in R, for 1 < m < r, then the process 
stops and the value of B is R,. It is possible that the process just described never 
stops. In that case, I is not applicable to the given word P. 

Our exposition of the theory of normal algorithms will closely follow that of 
Markov [1954]. 

I Examples. 

( 1. Let A be the alphabet { b ,  c). Consider the schema 
6 + -A 
C + C  

The normal algorithm B defined by this schema transforms any word containing 
at least one occurrence of 6 into the word obtained by erasing the left-most 
occurrence of 6. B transforms the empty word A into itself. '21 is not applicable 
to any non-empty word not containing 6. 

2. Let A be the alphabet {a,, a,,  . . . , a,). Consider the schema 
a, + A 
a,  + A  

I 
I a, > A  

We can abbreviate this schema as follows: 
5 + A (SinA) 

I 

I (Whenever we use such abbreviations, the productions intended may be listed in 
any order.) The corresponding normal algorithm transforms every word into the 
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empty word. For example, 8 : ala2ala3ao I- ala2a,a3 t a2a,a3 I- a2a3 I- a, I- A and 
8 : A 7 .  Hence 8(a,a2ala,ao) = A. 

3. Let A be an alphabet containing the symbol S,,  which we shall abbreviate 
1. For natural numbers n, we define ii inductively as follows: 8 = 1 and 
n + 1 = iil. Thus, i = 11, 2 = 11 1, etc. The words ii are called numerals. NOW 
consider the schema A -+ . 1, defining a normal algorithm 8. For any word P in 
A, 8 ( P )  = 1 P t In particular, for every natural number n, %(;) = n + 1. 

4. Let A be an arbitrary alphabet {a,, a,, . . . , a,,). Given a word P = 
ajoa,, . . . a,*, let P = 5. . . ajlfio be the inverse of P. We seek a normal algorithm 
8 such that 8 ( P )  =P. Cons~der the following (abbreviated) algorithm schema 
in the alphabet B = A u {a, P I .  

This determines a normal algorithm 8 in 8. Let P = ajOa,, . . . o, be any word in 
A. Then, 8 : P k aP by production (f); a P  I- aj1aa,pj2 . . . a, t 
a .  11 a.  J Z  aajoaj3 . . . ajk . . . t a,,q2 . . . a. &ajo by production (e). Thus, 8 : P 1 

Jk 

a,,aj2 . . . ajkaajo. Then, by production (f), 8 : P 1 aaj,aj2 . . . ajkaa. Applying, as 
J? before, production (e), X : P k q2q3 . . . Iterating this process, we 

obtain 8 : P k aqkaajk-,a . . . aailaqo. Then, by production (f), 8 : P k 
aao, o a  a . . . aqlaqo ,  and, by production (a), 8 : P 1 /3qkaqk- ,a . . . aa,, aq"; Jk- I 
applying productions (b) and (c), and, finally, (d), we arrive at  8 : P 1 . P. Thus, 
8 is a normal algorithm over A which inverts every word of A.$ 

EXERCISES 

5.1. Let A be an alphabet. Describe the action of the normal algorithms given by 
the following schemas. 

(a) Let Q be a fixed word in A, and let the algorithm schema be: A + . Q. 
(b) Let Q be a fixed word in A, and let a be a symbol not in A. Let 

B = A u (a). Consider the schema 

tTo see this, observe that A occurs at the beginning of any word P, since P = AP. 
$The distinction between a normal algorithm in A and a normal algorithm over A is important. A 

nonnal algorithm in A uses only symbols of A, while a normal algorithm over A may employ 
additional symbols not in A. Every nonnal algorithm in A is a normal algorithm over A, but there 
are algorithms in A which are determined by normal algorithms over A but which are not normal 
algorithms in A (cf. Exercise 5.9(d), p. 240). 
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(c) Let Q be a fixed word in A. Take the schema 

t + A  (5 in A) 
A + * Q  

(d) Let B = A u ( 1 ). Consider the schema 

5 +  1 (5inA- (1)) 
A+ . l  

5.2. Let A be an alphabet not containing the symbols a ,  P, y. Let B = A u (a)  
and C = A  U (a ,B,u) .  

(a) Construct a normal algorithm 8 in B such that %(A) = A and P(6P) = 
P for any symbol 5 in A and any word P in A. Thus, '2l erases the first 
letter of any non-empty word in A. 

@) Construct a normal algorithm 6 in B such that %)(A) = A and D(P8 = 
P for any symbol [ in A and word P in A. Thus, 6 erases the last letter 
of any non-empty word in A. 

I 
(c) Construct a normal algorithm & in B such that &(P) = A if P contains 

exactly two occurrences of a, and B(P) is defined and f A in all other 

I cases. 
(d) Construct a normal algorithm 23 in C such that, for any word P of A, 

%(P) = PP. 
53. Let A and B be alphabets, and let a be a symbol in neither A nor B. For 

certain symbols a,, . . . , ak in A, let Q,,  . . . , Qk be corresponding words in B. 
Consider the algorithm which associates with each word of A the word 

sub::;: ',: ;:k(~) obtained by simultaneous substitution of each Qi for ai (i = 
1, . . . , k). Show that this is given by a normal algorithm in A u B U (a) .  

5.4. Let H = ( I ) and M = ( 1, * ). Every natural number n is represented by 
its numeral n, which is a word in H. We represent every k-tuple (n,, n2, . . . , n 3  of 
natural numbers by the word n, * n2 t . . . nk in M. We shall denote this word 
by (n,, . . . , nk). For example, (3, 1, 2) is 11 11 * 11 * 11 1. 

(a) Show that the schema 
* + *  

a l l  +a1  

A + a  - 

defines a normal algorithm %, over M such that %,(Ti) = 0 for any n, 
and 8, is applicable only to numerals in M. 

(b) Show that the schema 
* + *  

A + a  

defines a normal algorithm 8, over M such that SN(n) =n  + 1 for all 
n, and S, is applicable only to numerals in M. 
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(c) Let a,, . . . , azk be symbols not in M. Let I L j 6 k. Lst S i  be the list 

If 1 < j < k, consider 
the algorithm schema 

s l 
Sj- 1 

a2j-1  * +azj-l * 
a2j- l l  + aZjl 

a2, 1 + l azj 

a ~ j  * + a2j + I 
Sj+ 1 

If j = I ,  consider 
the schema 

If j = k, consider 
the schema 

S 1 

Show that the corresponding normal algorithm 8: is such that 
8?((nI, . . . , 4 ) )  = 5;  and 8; is applicable only to words of the form 
@I>. . . ,Ilk), 

(d) Construct a schema for a normal algorithm in M transforming (n,, n2) 
into - n,l. 

(e) Construct a iormal algorithm in M for addition. 
(0 Construct a normal algorithm over M for multiplication. 

Given algorithms I and B and a word P, we write q P ) ,  B(P) if and only if 
either I and W are both applicable to P and B(P) = B(P) or neither I nor B is 
applicable to P. More generally, if C and D are expressions, then C - - D is to 
hold if and only if neither C nor D is defined or both C and D are defined and 
denote the same object. If I and W are algorithms over an alphabet A, then we 
say that B and 23 are fully equivalent relative to A if and only if %(P) m W(P) 
for every word P in A; we say that B and 23 are equimlent relative to A if and 
only if, for any word P in A, whenever B(P) or B(P) exists and is in A, then 
%(P) x 23(P). 

Let M be the alphabet ( I ,  * ), as in Exercise 5.4 above; let w be the set of 
natural numbers. Given a partial effectively computable number-theoretic 
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arguments, i.e., a function from a subset of ok into w, we de- 
the corresponding algorithm in M ;  that  is, 

= cp(n,, . . . , nk) whenever either of the two sides of the equa- 
Wv is assumed to be inapplicable to words not of the form 

. The function cp is said to be partially Markov-coqutable if and 
normal algorithm 8 over M which is fully equivalent to Wv 

to M.t If the function cp is total, i.e., if cp is defined for all k-tuples of 
natural numbers, and if cp is partially Markov-computable, then cp is said to be 
~arkou-computable. 

Let us generalize the notion of recursive function (cf. p 138). A partial 
function cp of k arguments is called partial recursive if and only if rp can 
be obtained from the initial functions Z (zero function), U," (projection func- 
tions), and N (successor function) by means of substitution, recursion, and the 
unrestricted p-operator. (We say that + comes from T by means of the unre- 
stricted p-operator if and only if #(x,, . . . , x,,) = py(~(x,, . . . , h, y) = 0). 
More precisely, py(~(x,, . . . , x,,, y) = 0) is the least number k (if such exists) 
such that, if 0 < i < k, r(x,, . . . , x,,, i) exists and is not 0, and ~ ( x , ,  . . . , x,,, k) 
5 0. Notice that # may not be defined for certain n-tuples; in particular, for 
those n-tuples (x,, . . . , x,,) for which there is no y such that r(x,, . . . , x,,, y) = 
0.) Clearly, every recursive function is partial recursive. The assertion that every 
total partial recursive function is recursive is true, but not at all obvious, and will 
be proved later. We shall show that the partial recursive functions coincide with 
the partially Markov-computable functions and that the recursive functions are 
identical with the Markov-computable functions. 

A normal algorithm is said to be closed if and only if one of the productions in 
its schema has the form A + - Q. Such an algorithm can only end terminally, 
i.e., by an application of a terminal production. Given an arbitrary normal 
algorithm 8, add on at the end of the schema for 8 the new production 
A + . A, and denote by B the normal algorithm determined by this enlarged 
schema. '21 is closed, and '21 is fully equ~valent to 'U relative to the alphabet 
of 8. 

Let us show now that the composition of two normal algorithms is again a 
normal algorithm. Let 8 and B be normal algorithms in an alphabet A. For 
each symbol b in A, form a new symbol 6, called the correlate of b. Let be the 
alphabet consisting of the correlates of the symbols of A. Let a and f l  be two 
symbols not in A u A. Let 5, be the schema of B . except that the terminal dot 
in terminal productions is replaced by a. Let S, be the schema of B . except 
that every symbol is replaced by its correlate, every terminal dot by P, produc- 
tions of the form A -, Q are replaced by a + aQ, and productions A + Q are 

t l n  this and in all other definitions in this chapter, the existential quantifier "there is" is meant in 
the ordinary, "classical" sense. When we assert that there exists an object of a certain kind, we do 
not necessarily imply that any human being has found or ever will find such an object. Thus, a 
function p, may be partially Markov-computable without our ever knowing it to be so. 
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(1) Let (5 be a normal algorithm in an alphabet A and let a be any symbol. 
Then there is a normal algorithm 6 over A u { a )  such that 

aP if P is a word in A such that O ( P )  = A 
P i f P i s a w o r d i n A s u c h t h a t C ( P ) f  A 

and 6 applies only to those worh to which (5 applies. 
(2) If 1 and B are normal algorithms in an alphabet A and a is a symbol 

not in A ,  then there is a normal algorithm @ over A u { a )  such that 

@(P) w 'U(P) if P is a word in A, and 
@(aP) % B(P) if P is a word in A. 

PROOF. 

(1) There is a normal algorithm $5, over A u { a )  taking A into a and any 
other word of A u { a )  into A. Let B be any symbol not in A u { a ) .  Consider 
the abbreviated schema for $5, 

a 4 0  (a in A u { a ) )  
PP -+ P 

p 4 . A  
A-+.a 

Let Q2 = $5, o O. For any word P in A, if 6 ( P )  = A, then Q2(P) = a and if 
B(P)  f A, then $5,(P) = A. Let $ be the identity algorithm in A (with the 
schema A -+ . A). Let 50 be the juxtaposition of $5, and 3. If O(P)  = A, then 
Q ( P )  = aP, and, if O(P)  # A, then B ( P )  = P. 

(2) For each,symbol a of A, let a be a new symbol, and let be the alphabet 
consisting of these 5's. Let B = A u A u { a ,  p ) ,  where p is not in A u u 
{ a } .  If we replace in the schema of algorithm B . all symbols a by the 
corresponding symbols a, all terminal dots by f i ,  every production A -+ Q by 
a -+ aQ, and every production A -+ . Q by a -+ aPQ, we obtain a new algorithm 
schema S,-. Let S, be the schema for 1 . Form the schema 

aa -+ aa (a  in A) 
ab -+ a6 (a,  b in A )  
iip -+ pa ( a  in A) 
@-+pa (a  in A) 
a$-+ ab (a,  b in A) 
cup-+ . A  

This determines a normal algorithm QI over A u { a )  such that B ( P )  = 1 ( P )  
and @(cup) w 9 ( P )  if P is a word in A. 

c. I MARKOV ALGORITHMS 23 1 

PROPOSITION 5.4. Let a, 23, be normal algorithms and A the union of their 
alphabets. Then there is a normal algorithm E over A such that 

i f  P is a word in A and B ( P )  = A 
( )  { if P is a word in A and O ( P )  f A 

and E applies only to those words in A to which 0: is applicable. The algorithm E 
is called the ramification of 1 and B governed by 0:. 

PROOF. Let a,, %,, O, be the propagations of 'U, '23, O to A. Let a be a 
symbol not in A. By Lemma 5.3(1), there is a normal algorithm 6 over A u { a )  
such that 

aP if P is a word in A and B ( P )  = A 
B ( P )  = 

P if P is a word in A and O ( P )  f A 

, By Lemma 5.3(2), there is a normal algorithm @ over A u { a )  such that 
@(P) = %,(P) ,  and @(UP) ~ t :  B 1 ( P )  if P is a word in A. Let E = QI iD. 

Suppose that % and 6 are algorithms in an alphabet A and that Po is a word 
in A. First, apply % to Po, and, if a word PI results, apply O to PI. If O(P,) = A, 
stop; if O(P,) f A, apply 1 to PI .  If a word P2 results, test P2 by 0:: if 
&(P2) = A, stop; if O(P2) f A, apply 'U to P2, and so on. The algorithm B 
defined in this way is called the iteration of 'U governed by 0:. Clearly, 
b(Po) = Q when and only when there is a sequence of words Po, P I ,  . . . , Pn 
(n > 0)  such that Pn = Q, (5(Pn) = A, PI = %(PI- ,)  if 0 < i I n, and O(P1) f A 
i f O < i < n .  

PROPOSITION 5.5. Let 1 and 0: be normal algorithms, A the union of their 
alphabets, and 'U, and 0, the propagations of 1 and (5 to A .  Then the iteration of 
3,  gooerned by O, is a normal algorithm over A. 

PROOF. It clearly suffices to prove the result when 1 and 0: have the same 
alphabet A ,  in which case 1, = 1 and 0, = B. Let a be a symbol not in A. By 
Lemma 5.3(1), there is a normal algorithm iD over B = A u { a )  such that 

aP if P is a word in A such that O ( P )  = A 
Q ( P )  = 

P if P is a word in A such that O ( P )  f A 

Let 3 = 6 1. 3 is a normal algorithm in an extension F of B. Let P be a 
symbol not in the alphabet F. Consider the following schema. 

where S,, is a schema for 3 . in which all terminal dots are replaced by /(. The 
normal algorithm @ defined by this schema is the desired normal algorithm. 
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COROLLARY 5.6. Let and (5 be normal algorithms and A the union of their Let E be the alphabet of @. By Corollary 5.6, let 8 be a normal algorithm over E 
alphabets. Then there is a normal algorithm @ over A such that, for any word P,, such that %(Po) = Q if and only if there is a sequence Po, . . . , Pk O( > 0) with 
in A, @(Po) = Q if and only if there is a sequence Po, . . . , P, (n > 0) such that pk = Q, @,(P,) = A, P, = @(PI-,) for O <  i < k, and @, (P , )ZA for 0 < i < 
P, = Q, G(P,) = A, PI+, = %(P,) and B(P,) # A for 0 < i < n. k. Now let %' = @, 0 8. We leave as an exercise the verification that this is the 

required normal algorithm. 
PROOF. Let 3 be the identity algorithm and 23 the iteration of % governed by 

(5. Take @ to be the ramification of 23 and $ governed by (5 (cf. Proposition 5.4). PROPOSITION 5.8. Every partial recursive function is partially Markov-comput- 
This algorithm Q is called the full iteration of % governed by (5. able, and every recursive function is Markov-computable. 

PROPOSITION 5.7. Let % be a normal algorithm in an alphabet A. Then there is 
a normal algorithm %' over the alphabet B = A u M (where M = ( * , 1)) 
such that, for any word Po in A and any natural number n, X1(ii * Po) = Q if 
and only if there is a sequence Po, . . . , P, (n > 0) with P, = Q and Pi = 
%(Pi- ,) for 0 < i S n. 

PROOF. Let a be a symbol not in B, and let C = B u (a}. Consider the 
normal algorithms in C given by the following schemas. 

I a l l  + el 
a l * + a  * 

@, : a*[-+ a* (6 in B) 
a* + .A 
A + a  

Clearly, @,(a * P )  = A and $&(Ti * P )  # A, for n > 0, where P is any word in 
B. 

If P does not contain * , then Q2(P * Q) = P. 

Then @,(ii* P )  = P. 

1 

PROOF. 

(1) The initial functions Z, N, IF (1 S j < k) are Markov-computable (cf. 
Exercise 5.4, pp. 225-226). 

(2) Substitution. Assume that + arises from 7, cp,, . . . , cp, by substitution: 
+(xI, . . . , x,) = r(cpl(xI, . . . , x,,), . . . , cpk(xI, . . . , x,)), where 7, cp,, . . . , cpk are 
partial recursive. Suppose that there are normal algorithms a,, . . . , BVk 
over M = (1, * } which partially compute the functions 7, cp,, . . . , cp,. By 
Corollary 5.2, there is an algorithm 23 over M such that B(P) = 
%,I(P) * %,2(P) * . . - * %,k(P) for any word P in M. In particular, 

8( (x l r  . . . xn)) (PI(xI, . . . , x,) * (P~(xI ,  . - G) * . - . * ( P ~ ( X I >  . . 9 x,) 

for any natural numbers x,, . . . , x,. Now, let (5 = 8, 0 23. Then 

@((XI, . . . 3 x,)) z ??IT (cpI(xI, . . . , %) * . . . * q k ( ~ ] ,  . . , x,)) 

= ~ ( ( P , ( X , ,  . . . %I> . - . , cpk(~I, . . . 9 X,)) 

Clearly, @,(ii * P)  = (n - 1)* P if n > 0, and Q,(G * P)  = * P. Also, @,(a * P )  
= P. 

Let @ be the normal algorithm given by Corollary 5.2 such that @(P) = 

@,)(P) * (% @,)(P) for any word P in C. For any word P in A, 
I 

@(ii * P )  = 
n - 1 * %(P) if n is a positive integer 
* % ( P ) i f n = O  (-  

for any natural numbers x,, . . . , x,,. 
(3) Recursion. Assume that + arises from 7 and cp by recursion: 

Suppose that 7 and cp are partial recursive and that %, and %, are normal 
algorithms over M which partially compute 7 and cp. Let ??Iz be the normal 
algorithm computing the zero function, ??I, the normal algorithm computing the 
successor function, and let %: be the normal algorithm computing the projection 
function u;. By Corollary 5.2, using the algorithms %!+I, there is a normal 
algorithm 23, over M such that 23,(rt, * . . . * Xk * 9) = XI * . . . * Xk. Let 
R = %, 0 BI. Again by Corollary 5.2, applied to %:: 1, %!+I, . . . , %:+I, %,, Q, 
there is a normal algorithm - 23, over M such that * . . . * Xk * y) z 
9 * f l *  . . .  * Xk * 0 * 7(x1,. . . , x,). Let 23, = %, %:::. Thus, 
2 3  * . . . * R, * y * X) = y  + 1. By Corollary 5.2, applied to 

. . . , B,, %,, we obtain the juxtaposition algorithm 23, over M such 
1 that 

B4(x1 * . . . * Xk * y * Z) X I  * . . . * xk * Y + 1 * (P(x,, . . Xkr Y, Z) 
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By Proposition 5.7, there is a normal algorithm Bi such that, if n > 0, B:(A * Po) 
= Q when and only when there is a sequence Po, . . . , P,, such that Q = P,, and 
Pi = %,(Pi-,) for 0 < i < n. Then B = 23: 0 B2 is a normal algorithm 
over M computing I). Notice that 

I f  we then apply B:, this produces a y-fold iteration of B4 starting with 
X, * . . . * jZk * 6 * r(x,,. . . , xk). It is easy to see that the result is then 
x, * . . . * jt, * 9 * I)(x,, . . . , xk, y). Then, applying %,k:;, we obtain 
$(XI, . . 9 Xk, Y). 

(4) p-operator. Suppose that I)(xl, . . . , x,,) = py(cp(x,, . . . , x,,, y) = 0) and 
assume that cp is partially computable by a normal algorithm '2[, over M. By 
Corollary 5.2, applied to the algorithms By+', . . . , a",+', B, %zzf, 
there is a normal algorithm such that ZQ (XI * . . . * ri, * y) = 
XI * . . . * ri, * y + 1. Let 6 be the normal algorithm over M given by the 
schema 

11 + .11 
l + A  

Then 6(ii) = A if n = 0 and 6(ii) # A if n > 0. Let 0 = 6 Up. Then 

= A ifcp(x,, . . . , x,,,y) = 0 0 * . . * f  * 9 ) (  
# A  ifcp(x , , . . . , x , , , y )  # O  

Let 9 be a normal algorithm over M such that 

By Corollary 5.6, applied to ZQ and 0 ,  there is a normal algorithm 8 over M 
such that @(Po) = Q if and only if there is a sequence Po, . . . , P,, (n > 0) such 
that P,, = Q, 0(P,,) = A, Pi+ , = D(Pi) and @(Pi) # A for 0 < i < n. Let B = 

Bt:! o 8 Q. Then 

B(X, * . . . * x,) = py(cp(x,, . . . , x,, y) = 0) = I)(x,,. . . , x,,) 
From Parts (1)-(4), if 4 is a partial recursive function of k arguments, there is 

a normal algorithm over M such that 

Let 'Jt be a normal algorithm over M such that 'Jt is defined only for words of M 
of the form X, * . . . * Xk, where x,, . . . , xk are natural numbers, and 
%(XI * . . . * Xk) = XI * . . . * Tt,. (We leave the construction of a schema for 
W as an exercise.) Take O+ = 8, 0 W. Then C+(X, * . . . * Xk) wI)(xl, . . , , xk) 
and O+ is defined only for those words of M of the form X, * . . . * Xk such that 
4(xI, . . . , xk) is defined. Hence, every partial recursive function is partially 
Markov-computable. Every recursive function is, a fortiori, partially Markov- 
computable, and, since it is total, it is Markov-computable. 
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We shall now assign Godel numbers to the symbols S,, S,, S,, . . . out of 
which alphabets are constructed: g(Si) = 2i + 3. Then, to any word P = 
sjo. . . SJk we assign the number 

,(p) = ~ P ( S , ~ ) ~ ~ ( S . I ~ )  . . Pf(s,k ir) = 22~o+332~~t3 . . . P2t3 
where pl is the kth prime number; we define g(A) = 1. To a sequence of words 
p ,  . . . , P,, we assign the number 2g(Po)3g(P~) . . . pfPk? 

We make the convention that S, is abbreviated by 1, and S2 by * . Consider- 
ing the numerals as words, we have g(O) = 2'; g(i) = 2'. 3', and, in general, 
g(ii) = n:=o p:. - 

There are normal algorithms XI, X2 over - A u M such that B,(P) =g(P) for 
any word P in the alphabet A, and E2(g(P)) = P for any word P in A. First, 
there is a normal algorithm B, over A u M such that, for any non-empty word 

~f A = {qo, . . . , S,}, then the schema for BI  is 

1 
' 

Second, there is a normal algorithm 8, such that q(ii * Q) = 0 * F * Q. 
(Exercise. Note that the function 2' is recursive; so, by Proposition 5.8, there is a 
normal algorithm computing it.) Let B3 = B2 Bl. Then, for any non-empty 

I word P = Smo . . . S,, 

Let '2[ be a normal algorithm such that 

B ( i i * i i * v *  Q) = n +  1 * u-(p,,,)' * Q 

(Exercise. Notice that the function f(x, y, n) = x . (p,, ,Y is recursive and hence 
computable by a normal algorithm.) Let 0 be a normal algorithm such that 
0(P)  = A when and only when P contains exactly two occurrences of * . Using 
Corollary 5.6, let 8 be the full iteration of B governed by 6; let C be a normal 
algorithm such that O(R * 9 * ) = 7, and let 5 = O 0 @ 0 B3. Then, for any 
non-empty word P of A, MP)  =g(P). Hence, if we use Proposition 5.4 to take 

- 

care of the case P = A, there is a normal algorithm B, over A u M such that 
X,(P) =g(P) for any word P in A. (Remember that g(A) = 1.) 
- 
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EXERCISES 

- 5.5. Prove that there is a normal algorithm over A u M such that X2(g(P)) 
= P for any word P in A. 

Hint: construct a normal algorithm ID such that Q(2i + 3) = Si for each symbol 
Si of A, but 5D is not defined for any other words. Construct a normal algorithm 
Q such that Q(ii) = 6 * ii * , for any positive integer u but B is not defined for any 
other words. Construct a normal algorithm 5 such that 

\ 

S(n * o * P) = n + 1 * Qt(p?)n, U) * P B ( ~ )  
for any non-negative integers n, u and any word P. Let Q be a normal algorithm 
such that Q(n * T * P) = A for any non-negative integer n and word P, and 4 is 
defined but not equal to A for words not of the form n * I * P. By Proposition 5.5, 
let % be the normal algorithm which is the iteration of 5 governed by 4. Let ($5 be a 
normal algorithm such that @(R * * P) = P for any non-negative integer n and 
any word P of A. Let 2 = @ o % ST. Then 2(g(Q)) - = Q for any non-empty word 
Q of A. Use Proposition 5.4 to take care of the empty word. 

Let P be any algorithm (not necessarily normal) over an alphabet A. We can 
associate with P a partial function I), such that +ha(") = m if and only if either n 
is not the Godel number of a word of A and m = 0 or n and m are Godel 
numbers of words P and Q of A such that P(P) = Q. Suppose that & is partial 
recursive. (We then call 8 a recursiue algorithm.) By Proposition 5.8, there is a - normal algorithm B over M such that b(ii) a+h,(n) for any natural number n 
and b is defined only for those ii for which I)@(n) is defined. Let %' be the 
normal algorithm & 23 8,. Then %' is a normal algorithm over A which is 
fully equivalent to I relative to A. Thus: 

PROPOSITION 5.9. (j % is any algorithm owr  A, and & is partial reeursirv, 
then P is ful& equivalent relative to A to some normal akorithm over A. 

PROPOSITION 5.10. If PI is a normal algorithm ouer A, then $, is partial 
recursiue, and, if I is applicable to all words in A, \I/, is recursiue. 

PROOF. Given a simple production P+ Q, we call 2'3g(')5g(Q) its index; 
given a terminal production P + - Q, we let 223g(P)5g(Q) be its index. If Po + 
(.)Qo, . . . , PI + (.)QI is an algorithm schema, we let its index be the number 
2*03*1 . . . p:,, where ki is the index of Pi + ( . ) a .  Let Word (u) be the recursive 
predicate which holds if and only if u is the Godel number of a word: 
u = 1 V (z)(z < lh(u) 3 (Ey)(y < u A ( u ) ~  = 2y + 3)). Let Sl(u) be the recur- 
sive predicate which holds if and only if u is the index of a simple production: 
lh(u) = 3 A (u), = 1 A Word((u),) A Word((u)A. Similarly, let Tl(u) be the 
recursive predicate which holds if and only if u is the index of a terminal 
production: Ih(u) = 3 A ( u ) ~  = 2 A Word((u),) A Word(@),). Let Ind(u) be 
the recursive predicate which holds if and only if u is the index of an algorithm 
schema: u > I A (z)(z < Ih(u) 3 SI((u),) V TI(@)&. Let x y stand for the 
recursive function which we denoted x * y on p. 144(4). Then, if x = n?=, prr 
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and each ai > 0, and y = II?&, pfi, x 0 y = II:,,P? . IIf",opi+,+f~. In addition, 
x n l =  l n x = x .  

corresponds to the juxtaposition operation on words. Let Lsub(x, y, e) be 
the recursive predicate which holds if and only if e is the index of a production 
p + ( - )Q and x and y are Godel numbers of words U and V such that P occurs 
in 0, and V is the result of substituting Q for the left-most occurrence of P in 
U : Word(x) A W o r d 0  A V TI(e)) A (Eu)u,x(Ev)v,x(x = u (ell v A 
y =  u (e)2 v A -  (Ew),,, (EZ)~,. (X = w o (el, z A W  < u)). Let 
Occ(x, y) be the recursive predicate which holds if and only if x and y are Godel 
numbers of words W and V, and V occurs in U: Word(x) A W o r d 0  A 
(EV)~~~(EZ),,,(X = v y z). Let End(e, z) be the recursive predicate holding 
if and only if z is the Godel number of a word P, e is the index of an algorithm 
schema, and any algorithm 41 defined by this schema cannot be applied to P 
( i . .  8: P O ) :  Ind(e) A Word(z) A ( w ) , < ~ ~ ~ ) ( -  OCC(Z, ((e),)~)). Let 
SCons (e, y, x) be the recursive predicate which holds ~f and only if e is the index 
of an algorithm schema and y and x are Godel numbers of words V and U such 
that V arises from U by a simple production of the schema: 

Similarly, one defines the recursive predicate TCons(e, y, x) which differs 
from SCons(e, y, x) only in that the production in question is terminal. Let 
Der(e, x, y) be the recursive predicate which is true when and only when e is the 
index of an algorithm schema, x is the Godel number of a word Ua, y is the 
Godel number of a sequence of words Uo, . . . , Uk (k > 0) such that, for 
0 < i < k 1, Ui+, arises from Ui according to an algorithm % determined by 
the schema, and, either I: Uk;l b . Uk, or 8: U k ~ I  1 U; and 8: U k l  (or, if 
k = 0, just 9l: Uk 3: Ind(e) Word(x) A ( ~ ) , < ~ ~ ~ ) ( W 0 r d ( 0 >  A 

Let A be any alphabet ( 3 ,  . . . , Sjm}, and let WA(u) be the recursive predicate 
which holds if and only if u is the Godel number of a word of A: u = I V 
(z)).,!,,d(u), = 2jo + 3 V . . . V(u), = 2jm + 3). Now, let I be any normal 
algor~thm over the alphabet A, and let e be the index of the algorithm schema 
for P. Define the partial recursive function cp(x) = py((W,(x) A Der(e, x, y)) V - WA(x)). But, &(x) = ( p ( ~ ) ) ~ ~ ~ ~ ~ ) ) ~ ~ :  and so, $, is partial recursive. If P is 
applicable to every word in A, then cp IS recursive; hence, so is h. 
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EXERCISES of course, because of the vagueness of the intuitive notions of 

5.6* Let A be an alphabet. Show that there is a normal a lgof i th  '8 over A ,, M computable function and algorithm, it is impossible to Prme the of 

such for any lKIfmal algorithm % in A determined by an algorithm Thesis or Markov9s Principle. Nor is there any a priori reason to 
with index e, B@ * P)  B(P) for any word P in A. (B be considered a 

support these hypotheses. There is no apparent  ason on why the use of produc- 
universal algorithm for A.) tions alone should account for all effective operations. One can Only expect 

incomplete confirmation, not a rigorous proof. It is clear that every partial 
C O ~ o n * ~ y  5.1 I -  k t  o be a partial function. I/ p is partial& Markm-com- recursive function is a partial effectively computable functional- The converse 

' putable, then P is Partial renrrsiue, and, ij cp is Markou-computab/e, then cp 
' recursice. assertion, that every partial effectively computable function is partial recursive 

(Or, equivalently, that every algorithm in an alphabet A is fully equivalent 
'Roore Let 3 be a normal algorithm over M such that p(n,, . . 

, nk) = if 
relative to A to some normal algorithm) has been confirmed for every known 

and if x((n~, . . nk)) = 8. By Proposition 5.10, the function +a is partial 
partial effectively computable function. There is some additional evidence in 

recursive. Define the recursive function y(x) = ~h(x) L 1. ~f 
= c d p i ) 5 ,  then 

favor of Church's Thesis, namely, the odd fact that quite dissimilar attempts to 
n = ~ ( x ) .  Let precisely define the notion of partial effectively computable function have 

proved to be equivalent. We have seen this already for partial recursiveness and 
I . . , = ( n ,  . . . , n )  ) = g(lnl+' * in2+' . . . . . I.,+]) partial Markov-computability. Other approaches, by Turing and Herbrand 

and G6del, will be shown later to lead to the Same result. In addition, Church's 
theory of X-computability [I941 1 and Post's theory of normal systems 
yield notions equivalent to that of partial-recursive function or normal aka- 
fithm, (Arguments for Church's Thesis may be found in Kleene [19521, $3  62, 70. 

i=o Also consult Hermes I19651.) 
is recursive. Then c = yO#aO( is partial recursive. If cp is Markov-com- 

putable, then can be assumed applicable to every word in M. (set up the EXERCISES 

schema for '% so that it takes every word in M not of the form 5.8. show that the Nofmalization Principle is equivalent to the assertion that 

"I * . . * 4 into the empty word.) Then, by Proposition 5.10, is recursive. 
every algorithm in an alphabet A is equivalent relative to A to some 

Fknce cp = Y 4% t is recursive. algorithm over A. 
5.9. Given an alphabet B and an alphabet A = (at, . . , a k )  disjoint from B. 

Exn~clsE 5.7- Show that eWV total partial recursiw function is recursjue. ~~t b, be distinct symbols not in B U A. For any symbol a, we denote by the 

word aa . . a.  The tramfation T(ai) of a, is defined to be the word cb'c* and the 
the beb+kxXl partial recursivenen and partial Markov-com- w 

putability (and between recursiveness and Markov-computability) has been translation i times T ( ~ )  of any symbol u in B is u itself; the translation T ( P )  Of a word 
by Corollary 5.1 1 and Proposition 5.8. Church's Thesis asserts that p , d, . . . d, in B u A is defined to be T(d1) . . . T(d,), while T(A) = A. Note that 

recursiveness is equivalent to effective computabdity (and, in an extended form, ~ ( p )  s P for any word P in B. 
that partial recursiveness is equivalent to partial effective computability). I~ (a) Show that the schema 
terms of algonthms, Markov has formulated the corresponding Norma/jrarion a[ -+ T ( 0 a  (5 in B U A) 
Princ*e: Every algorithm in A is fully equivalent relative to A to some normal a 4 . A  

Over A- Now, Church's Thesis (in the extended form) and Markov.s A - t a  
are equivalent. First, aSsurne Church's Thesis. Let $ be an algorithm in 

defines a normal algorithm Over B U A U { b ,  C }  such that '(') = an *. Then & is a partial effectively computable function. Hence, by ~ ( p )  for any word P in B u A. (Assume that a is not in l3 U A U Church's mesis, &I is partial recursive, and so, by Propaition 5.9, 
is fully 

to A to some normal algorithm 8, i.e.,  mark^^'^ Principle ( 6 ,  c ) . )  

assume Markov's Principle. Let cp be a partial effectively 
function. Let %p be the corresponding algorithm in M. By Markov's tne reader should notice that partial effective computability does not necessarily imply human 

computabfiity. partial effective means that the values of the function can be 'Om- 
%v equivalent to a normal algorithm relative to M. Hence, is puted, according to a fixed procedure, in a finite number of steps. Some of the needed 

partially Markov-computable, and, by Corollary 5.1 1, cp is partial recursive. to the values of a partial recursive function involve so many steps that the ''ma' race may 
Thus? Church's Thesis holds. : not exist long enough to carry them out. 
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(b) Give the schema for a normal algorithm B over B u A u { b ,  c) such 
that B(T(P)) = P for any word P in B u A. 

(c) Let B be any normal algorithm in B u A. For any production P -+ (.)Q 
of the schema for B, the translation of this production is taken to be the 
production T(P) -+ (-)T(Q). The translation of all the productions in 
the schema for B gives an algorithm schema defining a normal algo- 
rithm T(B) in B u { b ,  c). If E is the algorithm of Part (a), show that 
(T(Q)(E(P)) = E(&(P))- 

\ 

(d) Prove that any normal algorithm over B is fully equivalent relative to B 
to some normal algorithm in B u { b ,  c). (That the number of additional 
symbols can be reduced from two to one has been shown by Nagornyi 
[1953]. However, in the sap.e paper, Nagornyi states that there is a 
normal algorithm over B, the doubling algorithm (Exercise 5.2(d), page 
225), which is not equivalent relative to B to any normal algorithm in B 
itself. This is an easy exercise for the reader.) 

2. Turing Algorithms 
Attempting to give a precise definition of effective computability, Turing 

[I9361 proposed that a certain class of abstract machines could perform any 
"mechanical" computing procedure. Such machines are now called Turing 
machines in honor of their inventor, and can be described in the following way. 

There is a two-way potentially infinite tape divided up into squares. 

The tape is said to be potentially infinite in the sense that, although at any 
moment it is finite in length, additional squares always can be added to the 
right- and left-hand ends of the tape. There is a finite set of tape symbols 
So, S,, . . . , S,, called the alphabet of the machine; at every moment, each square 
of the tape is occupied by at most one symbol. The machine has a finite set of 
internal states {go, q,, . . . , 9,). At any given moment, the machine is in exactly 
one of these states. Finally, there is a reading head which, at any given time, 
stands over some square of the tape. The machine does not act continuously, but 
only at discrete moments of time. If, at any moment t, the reading head is 
scanning (i.e., is standing over) a square containing a symbol Si and the machine 
is in the internal state qi, then the action of the machine is determined, and it 
will do one of four things: (1) it may erase the symbol S,. and print a new symbol 
Sk; (2) it may move left one square; (3) it may move right one square; (4) it may 
stop. In cases (1)-(3), the machine goes into a new internal state qr, and is ready 
to act again at time t + 1. We shall assume that the symbol So represents a 
blank, so that the reading head may always be assumed to be scanning a symbol. 
The first three actions of the machine just described can be represented by 
quadruples: either (1) %SiSkqr, or (2) eS,.Lqr, or (3) %S,.Rq,. The first two 
symbols stand for the present internal state and scanned symbol, the third 
symbol represents the action of the machine (print Sk, or move left, or move 
right one square), and the fourth symbol gives the internal state of the machine 
after the action has been performed. 

TURING ALGORITHMS 24 1 

I 
I If a tape is put into a Turing machine and the reading head is placed on a 
: certain square, and if the machine is started off in one of its internal states, then 

the machine begins to operate on the tape: printing and erasing symbols and 
moving from one square to an adjacent one. If the machine ever stops, the 
resulting tape is said to be the output of the machine applied to the given tape. 
Now we can associate with any Turing machine T the following algorithm 23 in 
the alphabet A of T. Take any word P in the alphabet A and print it from left to 
right in the squares of an empty tape. Place this tape in the machine with the 
reading head scanning the left-most square. Start the machine in the internal 
state go. If the machine ever stops, the word of A appearing on the tape is the 
value of the algorithm %. % is called a Turing algorithm. (The word appearing on 
the tape is defined to be the sequence of symbols beginning with the left-most 
symbol and moving right to the right-most symbol. Remember that a blank 
square encountered in this motion is assumed to have the symbol So printed in 
it.) We have not specified yet the mechanism by which a machine knows when 
to stop; this will be done below. 

Any Turing machine can be determined precisely by a finite set of quadruples 
of the three kinds: (1) $ s , s k a ;  (2) q,S,Lqr; (3) q,S,Rqr, such that no two 
quadruples have the same first two symbols. In fact, we now shall define a 
Turing machine to be such a finite set of quadruples. The alphabet of any Turing 
machine T is the set of tape symbols S, appearing in any of the quadruples. The 
internal states of the machine are the symbols qs appearing in the quadruples. 
We assume that qo is an internal state of every Turing machine. 

An instantaneous tape description of a Turing machine T is a word such that (i) 
all symbols in the word but one are tape symbols S,; (ii) the only symbol which 
is not a tape symbol is an internal state qs; (iii) qs is not the last symbol of the 
word.? We say that T moves one instantaneous tape description a into another 
one p (abbreviated a + T P) if and only if either (a) a is of the form PqJS,Q, P is 

r of the form PqrSk Q, and q,S,Skqr is one of the quadruples of T; or @) a is of the 
form PSsq,S,Q, P is PqrSsS,Q, and q,S,Lq, is one of the quadruples of T; or (c) 
a is of the form q,S,Q, p is qrSoS,Q, and q,S,Lq, is one of the quadruples of T; 
or (d) a is of the form PqJSISkQ, P is PS,qrSkQ, and qJS, Rqr is one of the 
quadruples of T; or (e) a is of the form Pq,S,, P is PS,qrSo, and q,S, Rqr is one of 
the quadruples of T.$ 

?An instantaneous tape description describes the condition of the machine and the tape at a given 
moment. When read from left to right, the tape symbols in the description represent the symbols on 
the tape at the moment. The internal state q, in the description is the internal state of the machine at 
the moment, and the tape symbol occurring immediately to the right of q, in the tape description 
represents the symbol being scanned by the machine at the moment. 

$Observe that, according to our intuitive picture, 'T moves a into P" implies that if the condition 
at time t of the Turing machine and tape is described by a, then the condition at time t + 1 1s 
described by 8. Notice that, according to clause (c), whenever the machine reaches the left-hand end 
of the tape and is ordered to move left, a blank square is attached to the tape on the left; similarly, 
by clause (e), a blank square is added on the right when the machine reaches the right-hand end of 
the tape and has to move right. 
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We say that T stops at an instantaneous tape description a if and only if there 
is no instantaneous tape description P such that a + P. (This happens when qjSi 

T 
occurs in a but q,Si are not the first two symbols of a quadruple of T.) 

A computation of a Turing machine T is a finite sequence of instantaneous 
tape descriptions a,, . . . , a, (m > 0) such that the internal state occurring in a, 
is go; for 0 < i < m, a ,+  a ,+ , ;  and T stops at a,. This computation is said to 

T 
with a, and end with a,. The algorithm BTSC in any alphabet C 

containing the alphabet A of T is defined as follows: for any words P, Q in C, 
B,, .(P) = Q if and only if there is a computation of T which begins with the 
instantaneous tape description qoP and ends with an instantaneous tape descrip- 
tion of the form R, qR,, where Q = R, R,. An algorithm B in an alphabet D is 
called Turing-computable if and only if there is a Turing machine T with 
alphabet A and an alphabet C containing A u D such that B ,  and B are fully 
equivalent relative to D. 

We let 1 stand for S,. Remember that iii stands for I"+', for any natural 
number m. Also, let * be an abbreviation of S2. Given a partial number-theoret- 
ic function f(x,, . . . , %), we say that a Turing machine T (whose alphabet A 
includes {I, * )) computes f if and only if, for any natural numbers k,, . . . , k,, - 
and any word Q, B,, ,(F * & * . . - * k,,) = Q if and only if Q is 
Rlf(kl, . . . , k,,)R,, where both Rl and R, are certain (possibly empty) words 
consisting only of So's. (The form Rlf(kl, . . . , k,,)R, is allowed for the result 
since So is interpreted as a blank.) The function f is called Turing-computable if 
and only if there is a Turing machine T which computes f.  

Examples 

1. Consider the Turing machine T defined by the following quadruples. 

401L9, 

q1solq2 
The alphabet of T is (1, So). T computes the successor function, since 
qok + q, sok + q2k + 1. In general, T takes any q,l P into q2 1 1 P, and T takes 

T T 
any word not beginning with 1 into itself. 

2. The machine defined by the quadruples 

901L91 

41 Sol90 
when started on a word beginning with 1 keeps on adding 1's to the left and 
never stops. 

3. The Turing machine given by the quadruples 

qoSoR90 

q0S2~qo 

40s; ~ 9 0  
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moves right until it locates the first occurrence (if any) of the symbol 1 and then 
stops. 

4. Let us find a Turing machine T which computes the addition function. 
Take as the quadruples for T: 

40 1 so90 

Then 
qoiii * a = qol - + I  * 1n+13qoSolm . ~ n + ~ 7 ~ 0 q 1 1 m  * i n + l + ~ o l q l ~ m ~ l  T * In" 

j . . .  ;rSolmq, * ln+I + S o l m ~ l  l n + '  + ~ ~ l " ' + ~ ~ , l ~ + l  +Solm+llq21n+ 
T T T T T 

. . . + s ~ ~ ~ + ~ ~ ~ + I ~ ~ s ~ +  s ~ ~ ~ + I I ~ ~ ~ ~ s ~ - ~  Solm+'lnq 3 0 0  S S = 
T T T 

S ~ I ~ + " + ~ ~  3 s 0 s 0 = Sam + nq,SoS,. 

EXERCISES 

5.10. What function f(x) is computed by the following Turing machine? 

5.11. Show that the initial primitive recursive functions U ~ ( X , ,  . . . , x,) are 
Turing computable. 

5.12. Write down the quadruples of a Turing machine which computes the 
function f(x) = [x/2], the greatest integer < x/2. 

5.13. Show that the function rn ' n is Turing-computable. (For more examples, 
cf. Davis [1958, Chapter 11.) 

PROPOSITION 5.12. Let T be a Turing machine with alphabet A. Let C be an 
extension of A, i.e., C.> A. Then there is a normal algorithm B over C which is 
fully equivalent to the Turing algorithm %,, relative to C. 

PROOF. Let D = C LJ {qko, . . . , qh), where qko, . . . , qkm are the internal 
states of T, and qko = q,. Write down the algorithm schema for B as follows: 
first, for all quadruples q,S,Skqr of T, take the productions q,Si -+ qrSk. Second, 
for each quadruple q,S,Lq,, take the productions Slq,Si + qrS,Si for all symbols 
S, of C; then take the production q,Si + qrSoSi. Third, for each quadruple 
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qjSiRqr, take the productions qjSiS, + SiqrS, for all symbols S, of C; then take 
the production %Si + SjqrSo. Fourth, write down the productions q, +- - A for 
each internal state q ,  of T, and, finally, take A + 4,. This schema defines an 
algorithm B over C, and it is easy to see that, for any word P of C, Br d P )  m 
WP). 

COROLLARY 5.13. Every Turing-computable function f is partially Markou- 
, computable; hence (by Corollary 5.1 I) ,  f is partial recursive, and, i f f  is total, 

' then f is recursiue. 

PROOF. Let f(xl, . . . , G) be Turing-computable by a Turing machine T with 
alphabet A 2 (1, * ). Then by Proposition 5.12, there is a normal algorithm B 
over A such that '% is fully equivalent to !BT,, relative to A, where - 
B * . . * k,,) = R,f(k,, . . . , k.) R2, R, and R2 being (possibly empty) 
sequences of So's. Let GI be a normal algorithm over (1, * , So) such that (15, 

erases all S,'s occurring before the first 1 or * ; as a schema for (15, we may take 

Also, let O, be a normal algorithm over {I, * , So) such that 6, erases all S,'s 
occurring after the last 1 or * of a word in {I, * ); a schema for C2 is 

a* + *a 

a1 + l a  

Now, let C be - the normal algorithm (15206J0%. Then for any k,, . . . , h, - a& * . . . * k,,) = BT, ,& * . . . * k,) rz R ,f(k,, . . . , k,,) R2, where R, and 
R2 are sequences of S,'s. Then 

- - 

and $(f(k~, . . . , k,,)~,)  =f(kl, . . . , k,). Hence, f is partially Markov-comput- 
able by 6. 

PROPOSITION 5.14. Let 3 be a normal algorithm in an alphabet A no1 
containing So or 6 .  Then there is a Turing machine T such that the Turing 
algorithm B = BT,(A,(so,,j) in the alphnbet A u {So, 6 )  has the following 
property: for any word W in A, B is applicable to W i f  and only if % is, and 

B(W) is of the form S;g(W)S:, where m and n are non-negatiue integers. 
(The reason for the difference between YI and B is that, while we agree to 
consider So as a blank on a Turing machine tape, So is treated like any other 
symbol in the theory of algorithms.) 

PROOF. We may assume, by suitable reindexing, that A = {S,, S2, . . . , Sk). 
Let P + (.)Q be an arbitrary production. We shall construct Turing machine 
quadruples which will have the effect of replacing the left-most occurrence (if 
any) of P in a word W by Q. If P # A, let P be bo. . . br. Then, take the 
following quadruples. 

40 Si R 40 (Si E A, Si # bo) 

43 b2 R 44 

43 Si si qr+2 (Si E A U {So) S; # b2) 

4r br- I R 4r+ I 

4r 'i si 4r+2 (Si E A U {So), Si #br-1) 

%+I  br R qr+4 

4r+ I 'i si qr+2 (Si E A u {So), Si # br) 

4r+2 si L Qr+2 (Si A U {SO)) 

4r+5 s o  R 4u (where Y is an integer greater 
than all the other indices, 
to be specified later) 

These quadruples have the following effect on a word W. (Notice that we have 
not used 4,; ql will have a special purpose later on.) If W has no occurrence of 
P, then we wind up with the instantaneous tape description 4, W; if W has an 
occurrence of P, and W = WlPW2, where the indicated P is the left-most 
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occurrence of P in W ,  then we wind up with W,Pqr+, W2. In the latter case, we 
must now add some quadruples which will replace the indicated occurrence of P 
by Q. Let Q be c0 . . . cs. There are three cases: 

(1) s = r, i.e., P and Q have the same length. Then we add: 

9r+4 Si L 9 (si E A U { S O ) )  

\ 9r+7 ' r  ' r  qr+8 

9r+8 ' r  L 9r+9 

9r+9 I c r - l  %+lo 

qr+10 ' r - I  L qr+ll 

R 0 if P + ( . )Q is simple 
9% + 8 ' 0  qu 

1 if P + ( . )Q is terminal 

Then, applying these quadruples to W ,  Pqr+, W2,  we obtain q,, W ,  Q W2. 
(2) s < r. Q is shorter than P. Add the quadruples 

9r+4 Si L 9r+7 (si E A U { S O ) )  

9r+7 ' r  cs qr+8 

9r+7+& ' r - s  C~ qr+7+2r+l 

qr+7+2~+1 CO L qr+7+2s+2 

qr+7+2+2 ' r - s -  1 so qr+7+2r+2 

qr+7+2r+2 So L qr+7+2r+3 

qr+7+2r+3 ' r - s - 2  So 9r+7+2r+3 

qr+7+~+3 SO L 9r+7+a+4 

q2r+s+8 60 So 42r+s+8 

After these quadruples work on W ,  Pqr+, W2,  we have 

w192r+s+~SL-~QW2 
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I Now we must provide some quadruples which will move W ,  r - s squares to the 
, right to obtain W,  QW2 @receded by some S,'s). Let M be an integer larger than 

all the indices of the 9,'s and S,'s above, say, M = 3r + 9. i 
I 

\ q~r+s+8 ' 0  qhf 
. qhf 5 M (3 A) 

9M +J 8 R q ~ + j  

qM+j ~ M + J  

~ M + J  SI L (?~M+J ( S I  E A) 

Oif P + ( - ) Q  
is simple 

1 if P + ( . )Q 
is terminal 

Beginning with W ,  q2, +, + ,S,'-"Q W2,  these quadruples produce (So)Pqu W ,  Q W 2  
(where p is a positive integer). 

(3) s > r, i.e., Q is longer than P. This is left to the reader as an exercise. The 
treatment is analogous to that of case (2). (If P or Q is empty, the slight 
modifications necessary in the above constructions are left to be filled in by the 
reader.) 

Now, let us assume that X is a normal algorithm in the alphabet A = 
{ S , ,  . . . , S,) not containing So or 8, and that the algorithm X is defined by the 
algorithm schema P, + ( . )Q, ,  . . . , Ph + (.)Qh. We define a Turing machine T 
as follows: in the work above, take P + ( . ) Q  to be PI +(.)el and list the 
appropriate quadruples (it will suffice to take Y to be a number 100 times 
greater than the sum of k and the number of occurrences of symbols in the 
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schema). These quadruples have the following effect: given q, W, if W does not 
contain P I ,  we wind up with q, W; if W = WlPW2, and this indicates the 
left-most occurrence of P in W, then we finally obtain (So)"qu W,QW, (where u 
is a non-negative integer; and u = 0 if P, +(- )Q,  is simple, and u = 1 if 
PI + (.)Q, is terminal). Next, we consider P, + (-)Q, and form the quadruples 
for this production as indicated above, except that we raise the subscripts on all 
9,'s by the amount Y (but q, is left untouched). The subscripts are raised by Y so 

) that these quadruples will not interfere with the action of the quadruples 
corresponding to PI + ( . ) e l .  The new quadruples will go into action only after 
a word W has been found not to contain P I ;  they have the effect of searching W 
for an occurrence of P,, and, if one is found, replacing the left-most occurrence 
of P, by Q,, and winding up back in the initial state q0 ready for action again by 
the first group of quadruples if P, +(-)Q, is simple or winding up in the 
terminal state q, if P, -+ (-)Q, is terminal. We now repeat the same process with 
P3 + (.)Q3, this time adding 2Y to the subscripts of the q,'s, etc. It should be 
clear that the Turing machine T so defined mimics the action of the normal 
algorithm % in such a way that, for any word W in A, B = BT,,,(so,,) is 
applicable to W if and only if % is, and B( W) is of the form (So)"%( W)(So)", 
where m and n are non-negative integers. (For a similar proof, cf. Asser [1959]. 
An indirect proof could have been given by showing that every partial recursive 
function is Turing-computable and then using Corollary 5.1 1. Study of Hermes' 
method of linking Turing machines and his flow-charts (cf. Hermes [1965], 5 7) 
would clarify the procedures used in the proof above). 

COROLLARY 5.1 5. Euey partially Markou-computable function is Turing-com- 
putable. (Hence, every partial recursive function is Turing-computable. For 
another proof, cf. Kleene [1952], 5 68.) 

PROOF. From Proposition 5.14 and the definition of Turing-computable 
function. 

Thus, the Turing-machine approach to effective computability is equivalent to 
that by means of normal algorithms or by recursive functions. A Turing 
machine seems to be an abstract form of a digital computer (except that no 
attention is given to speed or convenience of operation). Intuitively, then, the 
fact that Turing-computable functions are identical with partial recursive func- 
tions further substantiates Church's Thesis. In addition, one can show that 
making additional complications in the structure of Turing machines (such as 
adding more tapes and reading heads, or using a two-dimensional tape) does not 
change the class of Turing-computable functions. (Further arguments along 
these lines may be found in Kleene [1952], pp. 3 17-323 and 376-381.) 

3. Herbrand-Giidel Computability. Recursively Enumerable Sets. 
The idea of defining all computable functions in terms of fairly simple 

systems of equations was proposed by Herbrand and developed by Godel [1934]. 
The exposition given here is a version of the presentation in Kleene [1952], 
Chapter XI. 

HERBRAND-G~~DEL COMPUTABILITY 

define first the terms. 

All variables are terms. 
0 is a term. 
If t is a term, then (t)' is a term. 
If t,, . . . , t, are terms and r is a function letter, f ( t  ,, . . . , t,,) is a 
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term. 

q. 
f For every natural number n, we define the corresponding numeral ii as 

follows: (I) b is 0; (2) n + 1 is (ii)'. Thus, every numeral is a term. 
An equation is a formula r = s where r and s are terms. A system E of 

equations is a finite sequence r,  = s,, r, = s ,  . . . , rk = sk of equations such 
that r, is of the form f:(t,, . . . , tn). The function letter f: is called the principal 
letter of the system E. Those function letters (if any) which appear only on the 
right side of equations of E are called the initial letters of E; any function letter 
other than the principal letter which appears on the left side of some equations 
and also on the right side of some equations is called an auxiliary letter of E. 

We have two rules of inference: 

R,: An equation e, is a consequence of an equation el  by R, if and only if e, 
arises from el by substituting any numeral ii for all occurrences of a variable. - 

R,: An equation e is a consequence by R2 of equations f?(fi,, . . . , n,) = p 
and r = s if and only if e arises from r = s by replacing one or more 

# occurrences of j;(ii,, . . . , ii,,,) in s by 0, and r = s contains no variables. 

A proof of an equation e from a set B of equations is a sequence e ,  . . . , eq of 
equations such that eq = e and, if 0 < i C q, then either (I) e, is an equation of 
B, or (2) ei is a consequence by R ,  of a preceding equation ej ( j  < i), or (3) e, is a 
consequence by R, of two preceding equations r; and em ( j  < i, m < i). We use 
the notation B k e to state that there is a proof from B of e (or, in other words, 
that e is derivable from B). 

Example. Let E be the system 

jI'<x,) = (XI)' 

f:(x,, x2) = f:(Z x,,fI'(x,)) 
The principal letter of E is j;; f,' is an auxiliary letter, and f: an initial letter. The 
sequence of equations 

f:(x,, x2) = j?(Z, x,, fl'(x1)) 

f:(Z x 3  = f:(Z x2.j,'(5)) 

f;(Z, T) = jf(Z, T,jI'(Z)) 

f,'(x,) = ( X I ) '  

f,'(Z) = (2)' (i.e., f,'(f) = 3) 
f:(Z, T) = f:(Z, T, 3) 

I is a proof of j:(Z, T) = f:(Z, 1, 3) from E. 
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A number-theoretic partial function cp(x,, . . . , x,,) is said to be computable by 
a system E of equations if and only if the principal letter of E is a letter$ with n 
arguments, and, for any natural numbers k,, . . . , k,,, p, 

E t f l(E,,  . . . , En) = p if and only if cp(kl, . . . , +) = p. 

The function cp is called Herbrand-Godel computable (for short, HG-computable) 
if and only if there is some system E of equations by which (p is computable. 

Examples. 

I .  Let E be the system f,'(x,) = 0. Then E computes the zero function Z. 
Hence, Z is HG-computable. 

2. Let E be the sysiem j,'(xl) = (x,)'. Then E computes the successor function 
N. Hence, N is HG-com~utable. . - - - - -  

3. Let E be the system i;"(xl, . . . , x,,) = xi. Then E computes the projection 
function U:. Hence, Un is HG-com~utable. 

4. Let E be the system 

f?(x,, (~2) ' )  = (f:(xI? ~ 2 ) ) '  
Then E computes the addition function. 

5. Let E be the system 

The function cp(x,) computed by E is the partial function with domain {0) such 
that cp(0) = 0. For every k # 0, E t f,'(E) = 6 and E t f,'(E) = IF. Hence, p(x,) is 
not defined for x, # 0. 

EXERCISES 13 

I 
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: 
, (2 )  S u b s t i t u t i o n  ( R u l e  I V ) .  L e t  p ( x 1 , .  . . , x , ) =  
j .r1(~.1(~19 . . . . ,  +m(xI,. . . , x,,)) where q, +,, . . . ,+, have been shown to 

f be HGamputable. Let E, be a system of equations computing J.,, with principal 
1 letter ff, and let Em+,  be a system of equations computing q, with ~rincipal 
* letter f:+,. By changing indices, we may assume that no two of E,, . . . , 

Em, Em +, have any function letters in common. Construct a system E for cp by 
' 1 listing El, . . . , Em+,, and then adding the equation f;+2(x,, . . . , x,,) = 
i j;+ ,( j ; ( ~ , ,  . . . , x.), . . . , f;(x,, . . . , x,,)). (We may assume that jG+,  does not 

b in E ,  . . . , E m + . )  It is clear that, if cp(k,, . . . , k,J = p, then E t  - 
yU(j;, . . ,  iQ = I. Conversely, if E t f ~ + ~ & ,  . . . , k,) = fi then E I- - 

f;(k,, . . . , k,) = P,. . . . , E tfl(k;, . ,, k.) = P, and E . . . , R)=J. - 

Hence, it readily follows that El t f;(kl, . . . , k,,) = PI, . . . , Em t f;(k;, . . . , kd 
= pm and Em+, t j:+ . . . , A) = P. Conxquently, +,(k1, . . . , kn) = 

PI, .  . . , , . . . , k )  = p and q(p,, . . . , p,) = P- SO, ~ & 1 .  - . . , kn) = P. 
(The details of this proof are left as an exercise. Hints may be found in Kleene 
119521. Chapter XI, especially pages 262-270.) Hence cp is HG-computable- 
' (3).~ec&sion (Rule V). Let 

cp(x,,. . . ,X,,O) = J.(x,,. . . ,%) 

cp(x,,. . . , x,,, ( % + I )  + 1) = @(XI, . - . , %,+I,  cp('1.. - - 7 ~ n + l ) )  

where J. and 8 are HG-computable. Assume that E, is a system of equations 
computing J. with principal letter fl, and that E, is a system of equations 
computing 8, with principal letter (;+'. Then form a system for computing cp by 
adding to El and E2 

j;+'(x,,. . . , x,, 0) = f;(x1, - . . , x,,) 

f:+](x,, . . . , xn, (x.,,)') = f;+'(x,, - .  7 x, ,+~,f :+~(xI , .  - .  7 xn+l)) 

5.14. What functions are HG-computable by the following systems of equations? 
(a) fl'(0) = 0 fl'((x,Y) = x, 
@) 1 0) = 1 ff(0, x2) = 0 f;((x,)', ( ~ 2 ) ~ )  = f?(x,, x2) 
(4 fi(x1) = 0 f,'(x,) = 0' 
(dl f?(x:? 0) = XI -$(XI, (xzY) = (.f:(x,, ~2))' j;(f;(xl, XI)) = O 5.15. Show that the following functions are HG-computable. 
. , 

(a) 1x1 - x2I 
@) x1- x2 
(4  d x )  = ( 0 when x is even 

1 when x is odd ' 
PROPOSITTON 5.16. Ewy partial recursive function is HG-conputable. 

PROOF. 

" .  . - 

(We assume that El and E$ have no function letters in common.) Clearly, if 
cp(k~, . . . , k,,, k) = p, then ~t f;+'&, . . . , G, k) = 5 Convgs$y, one can 
prove easily by induction on k that, if E t /;+l(k,, . . . , k,, k) = p, then 
q(kl, . . . , k,,, k) = p. Therefore, cp is HG-computable. (The case when the 
recursion has no parameters is even easier to handle, and is left as an exercise.) 

(4) p-operator (Rule VI). Let p(x,, . . . . x,,) = py(J.(x,, . . . , x,,, y) = 0) and 
assume that $ is HG-computable by a system El of equations with principal 
letter f:". By Parts (1)-(3), we know that every primitive recursive function is 
HG-computable. In particular, multiplication is HG-computable; hence there is 
a system E$ of equations, having no function - - letters in common with El, and 
with principal letter f: such that E, t f:(k,, k2) = p if and only if k, . k, = p. We 
form a system Ej  by adding to El and E, the equations 

( I )  Examples 1-3 above have shown that the initial functions Z ,  N, are 
f;+l(x,, . . . , x,,, 0) = 1 

HG-computable. j;+i(x,, . . . , xn, ( x n + , ) f )  = j:(f;+'(xl,. . . , x., x , , + I ) ~ ~ ; + ~ ( x I ~  - . Xn. ~ n + l ) )  
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One can prove by induction that E3 computes the function 
&,<zlC/(xl, . . . , h ,  y), i.e., E3 k f;+'(k,, . . . , K, E) = p if and only if 
II,<k+(kl, . . . , k,, y) = p. Now construct the system E by adding to E3 the 
equations 

Then E computes the function p(x,, . . . , h )  = py(lC/(xl,. . , h ,  y) = 0). For, if 
py(+(k,, . . . , k,,, y) = 0) = q, then E3 t f f + '  (6, . . . , k ,  q) = p', where p + I 
= UY q ( k l ,  . . . , k ,  y), and E3 t f;+'(K, . . . , G, q') = 0. Hence E k - - f f (6 ,  . . . , k,) = f : ~ ,  0, q). But, E k f;@', 0, tj) = q and so, E k f;(G, . . . , kJ - 
= 9. Conversely, if E t f:(F, . . . , k,) = q, then El- f:(iiit, 0, O,q) = q, where E, k - 
f;+'(K, . . . , kn, q) = (in)' and E3 t f;*'(&, . . . , 6, q') = 0. Hence 
Ily<qlC/(kl, . . . , k,,, Y) = m + 1 # 0 and IIy<q+lNkl, .  . . , k ,  Y) = 0. So, 
( k ,  . . . , k ,  y) # 0 for y < q, and ( k ,  . . . , k ,  q = 0 Thus, 
py(+(kl, . . . , k,, y) = 0) = q. Therefore, rp is HG-computable. 

We now shall proceed to show that every Herbrand-Godel computable 
function is partial recursive, by means of an arithmetization of the apparatus of 
Herbrand-Godel computability. We shall use the same arithmetization that was 
used for first-order theories (cf. Chapter 3, 5 4). (We take the symbol ' to be an 
abbreviation for f,'. Remember that r = s is an abbreviation for A:(r, s). The 
only individual constant is 0.) In particular (cf. pp. 153-154), the following 
relations and functions are primitive recursive: 

FL(x): x is the Godel number of a function letter. 

EVbl(x): x is the Godel number of an expression consisting of a variable. 
EFL(x): x is the Godel number of an expression consisting of a function letter. 
Nu(x): x is the Godel number of a numeral. 
Trm(x): x is the Godel number of a term. 
Num(x) = the Godel number of the numeral X. 
ArgT(x) = the number of arguments of a function letter f, if x is the Godel 

number of f. 
x * y = the &del number of an expression AB if x is the Godel number of the 

expression A and y is the Godel number of the expression B. 
Subst(a, b, u, v): v is the Godel number of a variable xi, u is the Godel number 

of a term t, b is the Godel number of an expression Q., and a is the Godel 
number of the result of substituting t for all occurrences of xi in d?. 
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The following are also primitive recursive. 

Eqt(x): x is the Godel number of an equation: 
lh(x) = 3 A Trm((xh) A Trm((x)2) A ( x ) ~  = 107 

(Remember that = is A:, whose Godel number is 107.) 

Syst(x): x is the Godel number of a system of equations: 

(Y)Y < lh(x)Eqt((x)y) A FL((((x) lh(x):l)l)o) 
1 
; Occ(u, v): u is the G a e l  number of a term t or equation B and v is the GMel 

number of a term which occurs in t or B. 

Cons,(u, v): u is the G a e l  number of an equation el, and v is the Godel number 
of an equation e,, and e, is a consequence of e, by Rule R,: 

I Eqt(u) A Eqt(v) A ( E x ) x c u ( E ~ ) y c v ( N ~ ( ~ )  A Subst(v, u, Y, x) A Occ(u, x)) 
Cons2(u, z, v): u, z, v are G a e l  numbers of equations el, e ,  e3, respectively, and 

e3 is a consequence of el and e, by Rule R,. 

Ded(u, z): u is the Godel number of a system of equations E, and z is the Godel 
number of a proof from E. 

Syst(u) A (x)x< ih (z ) ( (E~)~<  ~h(~)(u)w = (z)x V 

(EY), < xConsl((z)y, (z)x) V ( E Y ) ~  < x(Ev)v < xCon~i((z)~, (z)v, (')XI) 

Sn(u, x,, . . . , h ,  z): u is the Godel number of a system of equations E whose 
principal letter is of the formfl, and z is the Godel number of a proof from E - 

1 of an equation of the formJ'(X,, . . . , x,,) = I. 

Ded(u, z) A ArgT((((u)1h(.)- I )~ )o  = n A (((Z)I~(=)-I)I)O = 

(((u)lh(,): l)l)o A ( Y ) o < ~ <  lh(((z)~h(z)- ill) - FL((((z)lh(Z): 1)l)Y) 
) )  23*2~um(x1)*27* 

ANU(((Z)I~(,): I ) ~ )  A ((z)lrZ): I ) ~  = 2('(")lh*)-I O * 
2Num(x2) * 27 * . . . * 27 * 2Num(xn) * 25 

f Remember that g(( ) = 3, g( ) ) = 5, g( , ) = 7- 
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u(x) = py,<,(Nurn(y) = ((x),,.,(,,: ,),). (If x is the Godel number of a proof of an 
equation r = p, then U(x) = p.) 

PROPOSITION 5.17 (Kleene [1936a]). If p(x,, . . . , x,,) is HG-computable by a 
system of equations E with Godel number e, then 

Hence, mery HG-computable function p is partial recursive, and, if p is total, 
then p is recursive. 

PROOF. p(kI . . . . ,  & ) = p i f  andonly if EIJ& . . . ,  G ) = p p ,  wherefis 
the principal letter of E. cp(k,, . . . , k,,) is defined if and only if (Ey)S, 
(e, k,, . . . , k,, y). If cp(k,, . . . , k,,) is defined, py(S,(e, k,, . . . , k,, y)) is the - Godel number of a proof from E of an equation f&, . . . , k,,) = p. Hence, 
U(py(S,(e, kl, . . . , k,, y))) = p = cp(k,, . . . , k,,). Also, since S, is primitive re- 
cursive, py(S,(e, x,, . . . , x,,, y)) is partial recursive. If p, is total, then 
(xI) . . . (x,)(Ey)S,(e, XI, . . . , x,,, Y); hence, py(S,(e, XI, . . . , x,,, y)) is recursive, 
and then, so is U(py(S,(e, x,, . . . , x,,, y))). 

Thus, the class of Herbrand-Godel computable functions is identical with the 
class of partial recursive functions. This is further evidence for Church's Thesis. 

It is sometimes more convenient to use instead of S, the primitive recursive 
predicate 

Tn(z, XI, . , %, Y): Sn(z, xl, . - x,, Y) A (u),<, Sn(z, xI, . - . 9 x,, U) 
Clearly, if T,,(z, XI,  . . . , x,,, y), then S,(z, x,, . . . , x,,, y). In addition, in contrast 
to Sn, if T,(z, xl, . . . , x,,, y) and T,(z, x,, . . . , x,,, v), then y = v. It is obvious 
that 

(EY)s,(z, XI, . . . , ~7 Y) (Ey)T,(z, XI, . . , %7 Y) 
and 

whenever either side is defined. From Propositions 5.16 and 5.17, it follows 
that every partial recursive function is expressible in the form 
U(pyT,(e, x,, . . . , x,,, y)) where e is the Godel number of a system of 
equations computing the function. Conversely, for any natural number e, 
U(pyT,(e, x,, . . . , x,, y)) is a partial recursive function. Thus, as z varies over 
all natural numbers, U(pyT,(z, x,, . . . , x,,, y)) gives an enumeration (with repe- 
titions) of all partial recursive functions of n arguments. A number e such that 
cp(x,, . . . , x,,) = U(pyT,(e, x,, . . . , x,,, y)) is called an index of the function cp. 
The GMel number of any system of equations computing p is an index of p; 
there are infinitely many indices of cp. (Exercise.) 
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By an index of a recursive relation R we mean an index of the characteristic 
function of R. Then 

R(x,, . . . , x,) = (Ey)(T,(e, x,, . . . , x,, Y) A U(Y) = 0) 

' where e is an index of R. 

LEMMA 5.18 

(1) For n > 0, if R(x,, . . . , x,,, y) is a recursive predicate, then there exist 
natural numbers el, e, such that 

(Ey)R(x,, . . . , x,, y) = (Ey)T,(e,, XI ,  . . . , x,,, Y) 

and 

(y)R(x,,. . . , x,,y) = (y) - Tn(e2, X I , .  . . , x,,Y) 

(2) For n > 0, if R(x,, . . . , x,,, z, y) is a recursive predicate, there exist 
natural numbers e,, e, such that 

(z)(Ey)R(x,, . . . , h, Z, y) (z)(Ey)T,+,(e,, XI, . . x,, z, Y) 

and 

(Ez)(y)R(xl, . . . , x,, Z, y) E (Ez)(y) - Tn+l(e,, XI,  . . x.7 Y) 

and so on, for three or more quantifiers. 

PROOF. 

(I) Let cp(x,, . . . , x,,, y) be the characteristic function of R; then cp is recur- 
sive, and py(cp(x,, . . . , x,,, y) = 0) is partial recursive. Let el be the Godel 
number of a system of equations computing py(p(x,, . . . , x,, y) = 0). 
Then, (Ey)R(xI, . . . , x,,, y) if and only if py(cp(x,, . . . , x,,, y) = 0) is 
defined; hence, (Ey)R(x,, . . . , x,,, y) (Ey)(T,(e,, XI,  . . . , x,,, Y)). Applying 
this result to - R, we obtain a number e, such that (Ey) - 
R(x,, . . . , x,,, y) -- (Ey)T,(e,, x,, . . . , x,,, y). Hence, OR(x,, . . . , x,,, Y) = 
(y) - T,(e,, x,, . . . , x,, y). (2) follows from (I), taking n + 1 instead of n. 

Thus, as u varies, (Ey)T,(u, x,, . . . , x,,, y) enumerates all relations 
(Ey)R(x,, . . . , x,,, y), where R is recursive, and (y) - T,(u, xl, . . . , x,, y) enu- 
merates all relations (y)R(x,, . . . , x,,, y), where R is recursive; etc. 

P R ~ P ~ S I T I ~ N  5.19 (Kleene [1943; 1952, $ 571, Mostowski [1947]) 
1 (1) If R(x, y) is recursive, there are natural numbers e,, e, such that 

- ((Ey)R(e,, Y) -- (Y) -Tl(e17 el, Y)) 

and 

- ((y)R(e,, Y) (EyITt(e2, e2, Y)) 
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(2) If R(x) is recursive, there are natural numbers el, e2 such that 

and 

(3) Both (y) -- T,nx, x, y) and (Ey)TI(x, x, y) are not recursive. 
(4) Consider the following list (where R is any recursive relation): 

If we let = Xg = the set of all recursive relations with n arguments; and, for 
k > 0, C; = the set of all relations with n arguments expressible in the "prenex 
form" (Ey,)(y,) . . . (Qy,JR(x,, . . . , x,,, y,, y,, . . . , y,), consisting of k alternat- 
ing quantifiers beginning with an existential quantifier and followed by a 
recursive relation R; and II," = the set of all relations with n arguments express- 
ible in "prenex form" (y,)(Ey,) . . . (Qy,)R(x,, . . . , %, y,, y,, . . . , y,J, consist- 
ing of k alternating quantifiers beginning with a universal quantifier and 
followed by a recursive relation R, then the list above can be written 

c c c; . . .  
=: IIy II; II; . . . 

(In the "prenex form," (Qy,) represents either a universal or existential quanti- 
fier.) 

(a) Every relation of any form listed above is expressible in any form 
indicated in any of the succeeding columns on the right, i.e., Z," c CT n II,? and 
II; c X,? n II; for all j > k. 

(b) There is a relation of each form, except the left-most, which is not 
expressible in the other form indicated in the same column, and, hence, by (a), 
not in any of the previous columns on the left, i.e., - II; # 0 and II," - Xg # 
0 fork  > 0. 

(c) Every arithmetic relation (cf. p. 151, Exercise 3.34) is expressible in at least 
one of these forms. 

(d) (Post) For any relation Q(x,, . . . , x,,), Q is recursive if and only if both Q 
and -- Q are both expressible in the form (EyI)R(xl, . . . , x,,, y,), where R is 
recursive, i.e., Xy n IIy = Xi. 

(e) If QI E Z," and Q, E Z,", then Q1 V Qz and Q, A Qz are in if Q, and 
Q, are in II,", then Q, v Q2 and Q, A Qz are in n;. 

(f) In contradistinction to (d), if k > 0, 

(C;+, n IIi+,) - (Ekn u f 0 

# PROOF. 

(1) Assume R(x, y) recursive. Then, by Lemma 5.18, there are numbers el, e, 
such that (Ey)R(x, Y) - (Ey)TI(el, x, Y) and (y)R(x, Y) = 01) -- T,(e,, x, Y). In 
the first equivalence, let x = el, and, in the second, let x = e,. 

(2) Assume R(x) recursive. Then R(x) A y = y is recursive; clearly, 
(Ey)(R(x) A Y = Y) R(x) and (y)(R(x) A Y = Y) - R(x). Apply (1). 

(3) Assume (y) -- T,(x, x, y) is recursive. By (2), there is an integer e, such that - ((y) - T,(e,, el, y) - (y) -- T,(e,, el, y)), which is a contradiction. Similarly, 
if (Ey)T,(x, x, y) is recursive, then, by (2), there is an integer e, such that - ((Ey)T,(e,, e,, y) - (Ey)T,(e,, e,, y)), which is a contradiction. 

(4) (a) (Ezl)(yl)(E~)(y2) . . . (Ezk)(yk)R(xl, . . . , x,,, ZI, YI, . . . , zk, Y,) 
(u)(Ez,)(y,) . (Ezk)(yk)(R(x,, . . . , x,, zl, y1, . . . zk, Y,) A u = u) - 
(Ez,)(yl) . . (Ezk)(y,)(Eu)(R(x,, - , %, zl, yl, . . , zk, Y,) A u = u). Hence 
any relation expressible in one of the forms in the list is expressible in both 
forms in any succeeding column. 

( b )  L e t  u s  jus t  t a k e  a t y p i c a l  case .  C o n s i d e r  
(Ev)(z)(Ey)T,+,(xI, x,, x,, . . . , x,, V, Z, y). Assume that this is expressible in the 
form (v)(Ez)(y)R(x,, . . . , x,,, v, z, y), where R is recursive. By Lemma 5.18, this 
relation is equivalent to (v)(Ez)(y) -- T,+,(e, x,, . . . , x,,, v, z, y) for some e. But 
when x, = e, this is a contradiction. 

(c) Every wf of the first-order theory S can be put into prenex normal 
form. It suffices to note that, if R is recursive, then (Eu)(Ev)R(u, v) is equivalent 
to (~z)R(a:(z), a;(z)), where a:, a; are the recursive inverse mappings of the 
one-one correspondence a 2 between pairs of natural numbers and natural 
numbers (cf. 145-146). Also, (u)(v)R(u, v) is equivalent to (z)~(a:(z), az(z)). 
Hence, successive quantifiers of the same kind (existential or universal) can be 
condensed into one such quantifier. 

(d) If Q is recursive, so is -- Q; if P(x,, . . . , x,,) is recursive, then 
P(x,, . . . , x,,) -- (Ey)(P(x,, . . . , x,,) A y = y). Conversely, assume Q is express- 
ible as (Ey)R,(x,, . . . , x,,, y), and -- Q as (Ey)R,(x,, . . . , %, y), where R, and 
R, are recursive. Hence, (x,) . . . (%)(Ey)(R,(x,, . . . , x,,, y) V R,(x,, . . . , x,,, Y)). 
So, cp(x,, . . . , x,,) = py(R,(x,, . . . , x,,, y) V R,(x,, . . . , x,, y)) is recursive. Then 
Q(xI, . . . , x,,) = RI(xI, . . . , x,,, q(xI, . . . , x,,)), and, therefore, Q is recursive. 

(e) Use the following facts; If x is not free in %, 1 (Ex)(% V B )  
( a  V (Ex)B)? 1 (EX)(% A 8 )  (a A   EX)^), 1 (XI(% V B) (3 V (xP) ,  
1 A B) - (a A ( ~ 1 8 ) .  



(f) We shall suggest here a proof in the case n = 1; the other cases are 
then easy consequences. Let Q(x) E - DL. Define P(x) as  (Ez)((x = 22 A 
Q(z)) V (X = 22 + 1 A - Q(z))). I t  is easy to  prove that P t2 2: U II: and that 
P E Xi+ ,. T o  show that P E II:, ,, note that P(x) holds if and only if 

(Cf. Rogers [1959]). 

EXERCISES 

5.16. This exercise will show the existence of a recursive, non-primitive recursive 
function. 

1. Let [ f i  ] be the largest integer < fi . Show that [ 6  ] is defined by the 
recursion 

Hence, [ fi ] is primitive recursive. 
2. The function Quadrem(n) = n '- [6 l2 is primitive recursive and represents 

the difference between n and the largest square < n. 
3. Let p(x, y) = ((x + y)' + y)' + x; pl(n) = Quadrem(n) and p2(n) = 

~ u a d r e m ( [ 6  I). These functions are primitive recursive. Prove: 
(a) P I (P(~ ,  Y)) = x and p,@(x, Y)) = Y. 
(b) dpl(nX pz(n)) = n. 
(c) p is a one-one function from w2 onto w. 
( 4  P I P )  = P~(O) = 0 and 

(e) Define for each n >, 3, pn(xl, . . . , x,,) = p(pn- I (x1, . . . , x,-~), x,,). Let 
p2 = p. Then each pn is primitive recursive. Define p:(k) = p:-l(pl(k)) for 1 < i < 
n - 1, and pi*) = p2(k). Then each pr(l < i < n) is primitive recursive, 
p:(pn(x1, . . . , x,,)) = x, and pn(p;(k), p;(k), . . . , p,"(k)) = k. Hence, pn is a one-one 
mapping of wn onto w, and the pys are the corresponding "inverse" functions. The 
pn's and p:'s are obtained from p, p,, p2 by substitution. 

4. The recursion rule (V) (cf. page 138) can be limited to the form 

Suggestion: given 

@(XI, . . . , xn, Y + 1) = 6(x,, . . . , x,, y, @(XI, . . . , x,, y)) 

Define # as above, letting cp(x,, . . . , x,+ ,, y, z) = 6(xl, . . . , x,, y, 2). Then 
@(XI, . . . 7 x,, Y) = #(XI, . . . , x,, ~ ( ~ 1 3  . . . , x,,), Y). 
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5. Assuming p, p,, p2 as additional initial functions, we can limit uses of the 
recursion rule (V) to the one-parameter form: 

i #(x, 0) = a(x) 
B +(x, Y + 1) = B(X, YY #(x, Y)) 

Hint: Let n > 2. Given 

@(XI, . . . , x,, O) = Y ( x ~ ,  . . . , x,) 

@(XI, . . . , x,, y + 1) = 6(~1,  . . . , x,, Y, @(XI, . . . , x,,, Y) 

Let ~ ( u ,  y) = B(pp(u), . . . , p,"(u), y). Define 7 by a permissible recursion. 
6. Assuming p, pl, p2 as additional initial functions, we can use 6(y, #(x, y)) 

instead of B(x, y, #(x, y)) in Part (5). (Hint: given 

#(x, 0) = a(x) 

#(x, y + 1) = B(x, Y, #(x. Y)) 

let lCll(x, y) = Ax, #(x, y)). Then x = p,(#l(x, y)) and #(x, Y) = PZ(#I(~,  Y)). Define 
#, by an appropriate recursion.) 

7. Assuming p, pl ,  p2 as additional initial functions, we can limit uses of the 
recursion rule (V) to the form 

#(x, 0) = x 

#(x, Y + 1) = P(Y, $ 6 ,  Y)) 
Hint: use Part (6). Given 

cp(x, 0) = a(x) 

cp(x9 Y + 1) = B(Y, (P(x, Y)) 

Define # as above. Then q(x, y)= #(a(x), y). 
8. Assuming p, p,, p2, +;, sg, as additional initial functions, we can limit all 

uses of the recursion rule (V) to those with one parameter of the form 
f(0) = 0 

f(y + 1) = MY, f(y)) 
Hint: given, by Part (7), 

#(x,O) = x 

#(x, Y + 1) = P(Y, #(x, Y)) 

Let f(n) = +@An), p1(n)). Then 

f(O) = #(~2(0), ~ l ( 0 ) )  = #(O, 0) = 0 

f(n + 1) = #(p2(n + 11,  PI(^ + 1)) 

p2(n + 1) if pl(n + 1) = 0 
B(p,(n + 1) A 1, #(p2(n + I), pl(n + 1) 1)) if pl(n + 1) # 0 



260 EFFECTIVE COMPUTABILITY 

(Note that sg is obtainable by a recursion of the appropriate kind.) 
Then #(x, Y) = f W ,  x)). 

9. All primitive recursive functions are obtainable from the initial functions Z, N, 
- 

U:, p, PI,  p2, +;, sg by substitution and the recursion rule (V) in the form 

f(0) = 0 

f(y + 1) = h(y, f(y)) 
(Restatement of Part (8).) 

10. In Part (9), h(y, f(y)) can be replaced by h(f(y)). Hint: given 

f(0) = 0 

f(y + 1) = h(y, f(y)) 
Let g(u) = P(U, f(u)), and v(w) = P(PI(W) + 1, ~(PI(w) ,  P~(w))). Then 

g(0) = 0 
g(y + 1) = v(gOl)) 

and 

f(u) = p2(g(u)) 
11. Show that the equations 

#(o, m + 1) = #(I, m) 
#(n + 1, m + 1) = #(#(n, m + I), m) 

define a recursive function. (Hint: show that # is Herbrand-Godel computable by 
the given equations, and then use Proposition 5.17.) In addition, prove: 

(1) #(n, m) > n. 
(11) # is monotonic in each variable, i.e., if x < z, then #(x, y) < #(z, y) and 

#b, x) < #b9 z). 
(111) #(n, m + 1) > #(n + 1, m). 
(IV) For every primitive recursive function f(xl, . . . , x3, there is some fixed m 

such that f(xl, . . . , x,,) < #(max(x,, . . . , xa, m) for all x,, . . . , x,. (Hint: 
- prove this first for the initial functions Z, N, U:, p, p,, p2, +;, sg, and then 

show that it is preserved by substitution and the recursion of Part (10) 
above.) Hence, for every primitive recursive function f(x) of one argument, 
there is some m such that f(x) < #(x, m) for all x. 

(V) Prove that #(x, x) + 1 is recursive, but not primitive recursive. (Hint: Part 
(IV).) 

For other proofs of the existence of recursive, non-primitive recursive functions, 
cf. Ackermann [1928], Peter [1935, 19511, R. Robinson [1948]. 

A very important metamathematical notion is that of recursively enumerable 
set. A set of natural numbers is called recursively enumerable (r.e.) if and only if 
it is either empty or the range of a recursive function. Intuitively, if we accept 
Church's Thesis, then a recursively enumerable set is a collection of natural 
numbers which is generated by some mechanical process. 
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PROPOSITION 5.20 

( I )  A set B is r.e. i f  and only i f x  E B is expressible in the form (Ey)R(x, y), 
where R is recursive. (We can also allow R here to be primitiue recursive.) 

(2) A set B is r.e. if and only if it is empty or the range of apartial recursive 
function (or of a primitiue recursive function). 

(3) A set B is r.e. i f  and only if it is the domain of definition of a partial 
recursive function. 

(4) A set B is recursive if and only if both B and its complement B t  are r.e. 
(5) The set {xl(Ey)T,(x, x, y)) is r.e., but not recursive.$ 

PROOF. 

1 (1) Assume B is r.e. If B is empty, then x E B r (Ey)(x # x /\ y # y). 
"f B is non-empty, it is the range of a recursive function cp. Then x E B = 

(Ey)(cpQ = x). Conversely, assume x E B 7 (Ey)R(x, y). If B is empty, B is r.e. 
fh If B is non-empty, let k be a fixed element of B. Define: 

Clearly, B is the range of 8, and 8 is recursive. (By Lemma 5.18, if R is recursive, 
(Ey)R(x, y) -- (Ey)T,(e, x, y) for some e; but T,(e, x, y) is primitive recursive.) 

(2) Assume B is the range of a partial recursive function cp. If B is empty, then 
B is r.e. If B is non-empty, let k be a fixed element of B. Now, there is a number 
e such that cp(x) = U(pyT,(e, x, y)). Let 

F 
1 Then 8 is primitive recursive and B is the range of 8. Hence, B is r.e. This proof 

also shows that every non-empty r.e. set is the range of a primitive recursive 
function. ' (3) Assume B r.e. If B is empty, B is the domain of the partial recursive 

I function py(x + y + 1 = 0). If B is non-empty, B is the range of a recursive 
function f. Let g be the partial recursive function such that g@) = px(f(x) = y). 

, Then B is the domain of g. Conversely, assume B is the domain of a partial 
recursive function cp. Then there is a number e such that cp(x) = 

' U(pyT,(e, x, y)). Hence cp(x) = z -- (Ey)(T,(e, x, y) A U w  = z). But x E B - 
(Ez)(cp(x) = z). So, x E B if and only if (Ez)(Ey)(T,(e, x, y) /\ U@) = z), and 
the latter is equivalent to (Eu)(T,(e, x, (u),) /\ U((u),) = (u),); moreover, 
Tl(e, x, (u),) /\ U((u),) = (u), is recursive. Thus, by (I), B is r.e. 

(4) From (1) and Proposition 5.19(4(d)). (The intuitive meaning of Part (4) is 
the following: if there are mechanical procedures for generating B and B, then to 
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determine whether any number n is i n  B we need only wait until n is generated 
by one of the machines a n d  then observe which machine produced it.) 

(5) From (1) and  (4), a n d  Proposition 5.19(3). 

EXERCISES 

Prove: 
5.17. The inverse image of an r.e. set under a recursive function is r.e. (i.e., if f is 

recursive and B r.e., then (xlf(x) E B) is r.e.). The inverse image of a recursive set 
under a recursive function is recursive. The image of an r.e. set under a recursive 
function is r.e., but the image of a recursive set under a recursive function is not 
necessarily a recursive set. 

5.18. An infinite set is recursive if and only if it is the range of a strictly 
increasing recursive function. (g is strictly increasing if x < y implies g(x) < gb).) 

5.19. Any infinite set is r.e. if and only if it is the range of a one-one recursive 
function. 

5.20. Every infinite r.e. set contains an infinite recursive subset. 
5.21. If A and B are r.e. sets, so are A u B and A n B, but there exists an r.e. set 

A such that o - A is not r.e. 
5.22. Show that the assertion 

( $ ) A  set B is r.e. if and only if B is effectively enumerable 
(i.e., there is a mechanical procedure for generating all the 
elements of B) 

is equivalent to Church's Thesis. 
5.23. Let K be a first-order theory with equality containing all the symbols of 

formal number theory S. A relation B(xl, . . . , x,,) is said to be weakly expressible in 
K if and only if there is a wf %(x,, . . . , x 3  of K such that, for any natural 
numbers k,, . . . , k,, B(kl, . . . , k,,) if and only if t,% (El, . . . , Q. 

(a) If K is consistent, show that every relation expressible in K is weakly 
expressible in K. 

(b) If every recursive relation is expressible in K and K is o-consistent, 
prove that every r.e. set is weakly expressible in K. (Remember that, 
when we refer here to an r.e. set B, we mean the corresponding relation 
''x E B".) 

(c) If K is such that the relations (a)-(d) of Propositions 3.25-3.26 are 
recursive, prove that any set which is weakly expressible in K is r.e. 

(d) If formal number theory S is o-consistent, prove that a set B is r.e. if 
and only if B is weakly expressible in S. 

5.24. (a) (Craig [1953]) Let K be a first-order theory such that the set Tk of 
Gijdel numbers of theorems of K is r.e. Show that K is recursively axiomatizable. 

(b) For any wf d of formal number theory S, let d# represent its 
translation into axiomatic set theory NBG (cf. p. 204). Let K be the set of wfs & 
such that t,,& #. Prove that K is a (proper) recursively axiomatizable extension 
of S. (However, no "natural" set of axioms for K is known.) 
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By Proposition 5.20(3), a set is r.e. if and  only if it is the domain 5, of the 
partial recursive function U(pyTl(n, x, y)) for some n ;  hence, x E 5, if a n d  only 
if (Ey)T,(n, x, y). We  call n a n  index of the r.e. set 5,. W e  thus have an 
enumeration (with repetitions) lo, 11, . . . of all r.e. sets. 

An example of a n  r.e. set which is not recursive is the set of all x such that 
(Ey)T,(x, x, y). Tha t  it is r.e. follows from Proposition 5.20(2), and  that it is not 
recursive follows from Proposition 5.19(3). By Proposition 5.20(4), it also follows 
that (y) - T,(x, x, y) is not  r.e. 

EXERCISES 

5.25. A set B is called creative if and only if B is r.e. and there is a partial 
recursive function cp such that, for any n, if 5, c B, then cp(n) E B - 5,. Prove that 
(x((Ey)T,(x, x, y)) is creative. Show that every creative set is non-recursive. 

5.26. A partial recursive function cp is called potentially recursive if and only if 
there is a recursive function J ,  such that cp(x,, . . . , x 3  = #(xi, . . . , x,,) whenever 
cp(x,, . . . , x,) is defined. Prove that /.LYT,(X, x, y) is not potentially - recursive. 

S.27.D A set B is called simple if and only if B is r.e., B is infinite, and B 
contains no infinite r.e. set. Every simple set is non-recursive. Show that a simple 
set exists. 

5.28. A recursiue permutation is a one-one recursive function from o onto o. Sets 
X and Y are called isomorphic (written X Y) if there is a recursive permutation 
which maps X onto Y. Prove: 

A(a) The recursive permutations form a group under the operation of 
composition. 

(b) - is an equivalence relation. 
(c) If X is recursive (r.e., creative, simple) and X - Y, then Y is recursive 

(r.e., creative, simple). 
Mvhill 119551 has shown that any two creative sets are isomorphic. (Also cf. 

~ e r & ~ s  ii9571.j 
3 5.29. X is many-one reducible to Y (written X R, Y) if there is a recursive 
11 

- 

r function f such that u E X if and only if f(u) E Y. X and Y are called many-one 
' equivalent (written X E, Y) if X R, Y and Y R,,, X. X is one-one reducible to Y 

1 t 
(written X Ri Y) if there is a one-one recursive function f such that u E X if and 
only if f(u) E Y. X and Y are called one-one equivalent (written X -1Y) if X Rl Y 

1 and Y R, X. Prove: 
t (a) =, and I are equivalence relations. 

(b) If X is creative, Y is r.e., and X R, Y, then Y is creative. It can be 
shown (Myhill [1955]) that if X is creative and Y is r.e. then Y R,X. 

(c) (Myhill [1955]) If X R1 Y then X R,Y, and if X z1Y then X - m y -  

However, many-one reducibility does not imply one-one reducibility, 
and many-one equivalence does not imply one-one equivalence. (Hint: 
let X be a simple set, Z an infinite recursive subset of X, and 
Y = X - Z. Then X R1 Y, Y R, X, but not (Y R, X).) It can be 
proved that X =IY if and only if X -- Y. 
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530. (Dekker [1955]) X is said to be productive if there is a partial recursive , Undecidable Problems 
function f such that if l, C X then f(n) E X - 5,. Prove: (a) If X is productive, 
then X is not r.e.; hence, both X and X are infinite. "(b) If X is productive, then X A general class of problems is said to be undecidable if and only if there is no 

has an infinite r.e. subset. Hence, if X is productive, X is not simple. (c) If X is r.e., a1 effective (or mechanical) procedure for solving each problem in the 
then X is creative if and only if X is productive. D(d) There exist 2'0 productive class. For example, given any polynomial in any number of variables with 
sets. ,integral coefficients, is there a set of integral values of the variables for which 

531. (Dekker-Myhill [1960]) X is recursively equivalent to Y (written X -- Y) if 
there is a one-one partial-recursive function which maps X onto Y. Prove: (a) -- is 
an equivalence relation. D(b) X is said to be immune if X is infinite and X has no 
infinite r.e. subset. X is said to be isolated if X is not recursively equivalent to a 
proper subset of X. (The isolated sets may be considered the recursive counterparts 
of the Dedekind-finite sets.) An infinite set is isolated if and only if it is immune. 
D(c) There exist 2'0 immune sets. 

Recursively enumerable sets are also important because, if we assume 
Church's Thesis, the set TK of Godel numbers of theorems of any axiomatizable 
first-order theory K is r.e. (The same holds true of arbitrary formal axiomatic 
systems.) For, the relation Pf(y, x) (y is the Godel number of a proof in K of a 
wf with Godel number x, cf. p. 156) is recursive, if the set of Godel numbers of 
the axioms is recursive, i.e., if the theory is axiomatic and Church's Thesis holds. 
Hence, x E TK if and only if (Ey)Pf(y, x), and therefore, TK is r.e. If we accept 
Church's Thesis, then K is effectively decidable if and only if the r.e. set T, is 
recursive. We showed in Corollary 3.41 that every consistent extension K of the 
theory RR is recursively undecidable, i.e., T, is not recursive. 

Much more general results along these lines can be proved (cf. Smullyan 
[196 11, Feferman [ 19571, Putnam [ 19571, Ehrenfeucht and Feferman [1960], 
Myhill [1955]). For example, (1) if every recursive set is expressible in K, then K 
is essentially recursively undecidable, i.e., for every consistent extension of K, 
TK is not recursive (cf. Exercise 5.33 below); (2) for any consistent first-order 
theory with equality K in which every recursive function is representable and 
which satisfies (i') and (ii) of p. 162, the set TK is creative. (We assume that K - - -  
has among its terms the numerals 0, 1, 2, . . . .) For further study of r.e. sets, cf. 
Post [ 19441 and Rogers [ 19671. 

EXERCISES 

532. Given a set A of natural numbers, define A* as follows: u E A* if and 
only if u is a Godel number of a wf &(x,) and the Godel number of &(n) is in A. 
Prove that, if A is recursive, then A* is recursive. 

533. Let K be a consistent theory having the same symbols as S. 
(a) Let TK be the set of Godel numbers of theorems of K. Prove that 

@,)*-is not weakly expressible in K (cf. Exercise 5.23, p. 262). 
(b) If every recursive set is weakly expressible in K, show that K is 

recursively undecidable. 
(c) If every recursive set is expressible in K, prove that K is essentially 

recursively undecidable. 

the polynomial has the value O? We may be able to answer this question for 
certain special polynomials, but it turns out that there is no general procedure 
which will solve this problem for all polynomials (cf. Matiyasevich [1970]). 

If we can arithmetize the formulation of a general class of problems and thus 
assign to each problem a natural number, then this class is undecidable if and 
only if there is no effectively computable function h such that, if n is the number 

1 of a given problem, then h(n) gives the solution of the problem. If we accept 
i; church's Thesis (as we shall do-in this section) the function h has to be partial 
;: recursive, and we then have a precise mathematical question. Examples of 
I /  ;. important mathematical decision problems which have been solved (negatively) 
$ are the word problem for semi-groups (Post [1947], Kleene [1952], 8 71), and the zk very difficult word problem for groups (Boone [1959], Novikov [1955], Britton 

[1958], Higman [1961]). In addition, the decision problem for various first-order 
theories has been shown to have a negative solution, i.e., the general problem as 
to whether any given wf is provable in the theory is undecidable (cf. Corollary 
3.36, Corollary 3.37, Proposition 3.41, Corollary 3.45, Proposition 3.46). We shall 

' now present some more examples of undecidable problems. 
The sequence of functions $,(x) = U(pyT,(n, x, y)) gives an enumeration of 

all partial recursive functions of one variable. Is there an effective procedure to 
determine for any n whether 4, is recursive (i.e., whether $, is defined for all x)? 

Yri A positive answer is equivalent to the recursiveness of the set A of all numbers n 
such that $,, is recursive. We shall show that A is not even r.e. Assume A r.e., 

\ and let h be a recursive function with range A. Define a new function f(x) = 
$ [$$,(,)(x)] + 1 = [U(pyT,(h(x), x, y))] + 1. Hence, f is recursive and so there is 
$, some m such that f = $, and m E A. Then $,(x) = $,(,,(x) + 1. Since m E A, 
/ there is some k such that m = h(k). Talung x = k, we have $,(k) = $,(k) + 1, $ which is a contradiction. Thus, there is no effective procedure by which we can 

' tell whether any system of equations determines a recursive function. 
We can obtain a "local" form of this result. Is there an effective procedure 

determining for any given m, n whether $,(m) is defined? The answer is 
negative. For, assume that O(x, y) is a recursive function such that 

0 if $,(y) is defined 
1 if $,(y) is not defined 

Now, let a(z) = py(O(z, z) = 1 A y = y). Clearly, 

if $,(z) is undefined 
a(z) = 

undefined if $,(z) is defined 
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But a is partial recursive, and so, a = 4, for some k. Then 

if $,(k) is undefined 
4k(k) = a(k) = undefined if +,(k) is defined 

which is a contradiction. (Other undecidable problems can be found in Rogers 
[ 19671.) 

EXERCISES 

5.34. Given a Turing machine T, can one effectively decide, given any instanta- 
neous description a, whether or not there is a computation of T beginning with a? 
(Halting problem for T.) Show that there is a Turing machine with undecidable 
halting problem. For further discussion of this and similar problems, cf. Davis 
[1958], Chapter 5. 
535. Prove: There is no normal algorithm B over M = (1, * ) such that B is 

applicable to exactly those words TI such that n is an index of a normal algorithm % 
over M such that % is not applicable to fl. 

For further examples of undecidable problems in the theory of algorithms, cf. 
Markov [1954], Chapter V. Because of the essential equivalence of normal algo- 
rithms, Turing machines, and Herbrand-Godel systems of equations, any undecida- 
bility result established in terms of one of these approaches usually can be 
translated into corresponding results for the other two. 
536. The function f such that 

f(x) = 
0 if $,(x) is defined 
1 otherwise 

is not recursive. 
537.D Show that there is a recursive function q(x) such that, for any x, q(x) is 

the index of the partial recursive function v, where 

if $,(x) if defined 
= {:ndefined if $,(x) is undefined 

538.D (Rogers [1967]) Show that the following relations are not recursive (and, 
therefore, by Church's Thesis, are undecidable). 

(a) y is in the range of $,. 
(b) $ X b )  = z. 
(c) $, = $,. (Hint: use 5.37 and 5.36.) 

The reader should not get the impression that all decision problems have a 
negative solution. In Chapter 1 it was shown that truth tables provide an 
effective procedure to determine whether any given statement form is a tautol- 
ogy. On p. 170, it was shown that the pure monadic predicate calculus is 
effectively decidable (cf. Ackermann [1954] and Suranyi [I9591 for many posi- 
tive results of a similar kind). Presburger [I9291 showed that the first-order 
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theory obtained from first-order theory number theory S by omitting the 
multiplication symbol and the recursion axioms for multiplication is decidable 
(cf. p. 134, Exercise 3.7); Szmielew [I9551 proved the decidability of the 
first-order theory of abelian groups; and Tarski [195 11 established the decidabil- 

' itv of the first-order theory of real-closed fields, which is the elementary part of 
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290 NOTATION 

st(x) 117 
t', +, S 121 
ii 127,224 
< , < , > , >  129 
4s 132 
Z, N, Up 135 
CR 137 
P 138 
6, ' , I X  - Y I  140 
sg, G, rnin, max, rm, qt 140 
z, z, II, II 141 
y<z y < z  Y<Z Y < Z  

z 141 
U<Y<V 
(Y)~<,, (Y), <z 142 
(EY),<,~ (EY)~,, 142 
PYY <z 142 
Pr 142 
Px, (x)i, 'h 143 
x; Y 1 44 
0 ,o:, (722 145 
ok, OF 146 
f #  146 
P 147 
Bt 148 
IC, FL, PL, Trm 153 
A r g ~ ,  Argp, Gd 153 
MP(x, Y, 4 ,  Gen (x, Y) 153 
EIC, EFL, EPL, EVbl 153 
Atfml, Fml, Subst, Sub 154 
Fr, Fr,, Ax,, LAX 155 
PrAx, Ax, Prf, Pf, Nu 156 
Num, Bw, Bwa , W,, W2, D 157 
qg, ,  q 2  158, 160 
(m), (##) 158 
(n), (nn) 160 
Try Neg, 8e0, 8f 163 
Con, 163 
TK 165 
C1 166 
RR, Q 167 
Ps, PF, PP 169 
NBG 173 

174 
176 
177 

Re[, U 179 
~ , f , % ,  U u  180 

o E X  

{(XI, . . - 2  %)I 
QOI, . . . xn, Y1, . . - , Y,)) 180 
Un, Un,, Fnc 181 
X :  Y + Z , I , X ' Y  181 
X"Y 182 
Zrr, Tr, Part, Con, Tot, We 183 
Sim, Fld, TOR, WOR 184 
E, Trans, Sect, Seg 185 
Ord, On 185 
<o, So, x' 187 
Suc, K , ,  1, 2, 3, Lim 188 

I + o  190 
xo, exp( P, a), Ex 191 

1 = , X Y  
F 

193 

<,<  
I x + c y  

Fin 
Znf, Den 
3C 
Wa 

AC, Mult, W.O., Trich, Zorn 
UCF 
N,, TC 
PDC, DAC *, H, H,, P 
qk(x),  GCH 
ZSF, MK, In, NF, ML 
A, + (-), 3 
a :  P k R , % :  P 1 . R  
P 

L, R, 9, 
3 
T 

BT, C 

Rl, R2 
HG 
Eqt, Syst, Occ 
Cons,, Cons,, Ded 
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ANSWERS TO SELECTED 
EXERCISES 

Chapter 1 
1.1. A B 

T T F 
F T T 
T F T 
F F F 

1.2. A B -A A > B  (A > B) V - A  

T T F T T 
F T T T T 
T F F F F 
F F T T T 

13. ( ( A  3 B ) A A )  
T T T  T T  
F T T  FF  
T F F  F T  
F T F  FF  

1.4. (a)  ( ( A  - B )  A (- A - B ) )  
( d )  A > B. A : Fiorello goes to the movies. 
(e)  A B. A : x is prime. 
(f) A > B. A : s converges. 
(h) - A > B. A : The Dodgers win today. 

B : The Giants will win the pennant. 
1.5. (a)  No.  (c)  Yes. (e)  No. 
1.8. All except (i). 
1.10. Yes:  (c )  and (e). 
1.12. (a)  All parentheses may be dropped. 

(c) ( A  > B V C ) V - ( C >  D).  
(e )  ( A >  B > ( C >  D ) ) A - A V C .  

1.13. ( (C  > ((- ( A  V C ) )  A A))  = B) .  
1.14. (a)  (((- (- A ) )  = A )  EE ( B  V C)).  

(c)  No. Extra right parenthesis. 
(e)  ( ( ( ( - (A  B ) )  V C )  V D )  B) .  

293 



294 ANSWERS TO SELECTED EXERCISES 

1.15. (a) V C  > A B - DC. 
(b) To prove that (i)-(ii) imply that it is a statement form, use induction 

with respect to the number of symbols in &. (A proper initial segment of is, by 
definition, an expression made up of all the symbols in & to the left of some 
specific symbol.) 

(d) (ii) (A 3 B) 3 ((B 3 C) 3 (- A 3 C)). 
1.18. (a) T (b) T (c) Nothing 
1.19. (a) 

1.20. (a) If & is a tautology, replace all statement letters by their negations, and 
then move all the new negation signs outward by using Exercise 1.2qa). The result 
is - & I .  

If - 8' is a tautology, let % be - a'. By the first part, - $8 ' is a tautology. But 
- - %' i s  --&. 

1.28. (a) For Figure 1.4: 

1.29. (a) Not logically correct: 

((C>A)AA)> C 
F 

T F 
T T 

Let A be T, and let C be F. 
(b) Logically correct. Assume all the premises true and the conclusion 

false, and show that this leads to a contradiction. 
130. (a) Consistent. Let A, B, C be F, and let D be T. 
131. (b) Inconsistent. 

(BAH)V(B A W) HI-B - W 
T T T 

F 
F 

T 
T T 

T F 
F 
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, 
i 

134. (a) Any statement form built up using and v will always take the 
value T when the statement letters in it are T. 

(b) Using only the statement letters A and B, find all the truth functions of 
two variables that can be generated by applying - and - any number 

1 of times. 
136. (b) For - (A > B) V (- A A C), a disjunctive normal form is 

(A A - B) V (- A C), and a conjunctive normal form 1s 
( A V C ) A ( - B V - A ) A ( - B V C ) .  

(c) For - (A > B) V (- A A C), a full disjunctive normal form is 
( A A - B A C ) V ( A A - B A - C ) V ( - A A B A C ) V  
(-A A - B A C), and a full conjunctive normal form is (A V B V 
C ) A ( A V - B V C ) A ( - A V - B V C ) A ( - A V - - B V - C ) .  

(e) (i) -(-A A - B ) A - ( B A -  C). 
138. (b) 1 . 3  e Hypothesis 

2 .6!>% Hypothesis 

I 
3. ( a  (3 e)) 3 ((a 3 )  3 ( a  3 e) )  ( ~ 2 )  
4. (3 3 e )  ( a  (3 3 e)) (A]) 

I. 5. ( 9  e )  1, 4, MP 
6. ( a  II % ) > ( a  e )  3, 5, MP 

i 7 . & > e  1, 6, MP 

1 
139. (a) 1. & I-- & Lemma 1.10@) 

2. --& >( -& > 3 )  Lemma 1. lqc) 
3. @ > ( - & > % )  1, 2, Cor. 1.9(i). 
4. @ > ( & V % )  3, Abbreviation 

(c) 1. - % > & Hypothesis 

I 2. (-3 > & ) > ( - & > - - a )  Lemma 1.1qe) 
3. -a>---a 1, 2, MP 

I 4. -- % 3 a Lemma 1. lqa)  
5. - & > %  3, 4, Cor. 1.9(i). 
6. - 3  > & I - & > %  1-5 I 7. I ( - %  I&)>( -&> 93) 1-6, Deduction Theorem 

1 8. I ( %  v & ) > ( & V % )  7, Abbreviation 
I 1.42. Hint: Take an assignment of truth values to the statement letters of 8 

which makes & false. Replace in each letter having the value T by A ,  V - A,, 
and each letter having the value F by A, A - A,. Call the resulting statement form 

I 3 .  

Chapter 2 

2.3. (a) (x,)(A:(xl) A:(xl)) V (Exl)A:(xl). 
2.4. (a) The only free occurrence of a variable is that of x2. 

(b) The first occurrence of x3 is free, as is the last occurrence of x2. 
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2.6. In 2.2(a), xl  and x,  are both free and bound, while x4 is bound. In 2.2(b), all 
variables are bound; no variable is free. 

2.8. Yes: (a), (c), (e). No: (b), (d). 
2-10. (a) (x)(F(x) A - S ( x )  3 (Y)(C(Y) 1 K(x, Y ) ) )  

( 4  - (x)(B(x)  1 F(Y )) 
(4 [((x)(Ey)L(x, Y ) )  A - (EX) (Y)L(X ,  Y ) I  V [((Ex)(y)L(x,  Y ) )  A 

(Ex)(Y) - L(x9 Y )I 
2.11. (a) Every student has at least one course with a bad teacher. 

(b) The sum o f  two sides o f  a triangle is greater than the third. 
2.12. (a) (1) is satisfied by all ordered pairs of  positive integers. (2) translates 

into x ,  2 x2 3 x2 2 xl ,  and is satisfied by all pairs of  positive integers 
(n, k )  such that n < k. (Remember that a wf & > 3 is true when & is 
false or B is true.) (3) is true; it asserts the transitivity of  the relation 
2 in the set o f  positive integers. 

2.13. (c) (i) There is no largest integer. (ii) There is an integer greater than every 
integer. (iii) Every integer has an "immediate successor". 

2.14. ( I )  A sequence s satisfies - & i f  and only if s does not satisfy &. Hence, all 
sequences satisfy - & i f  and only i f  no sequence satisfies &, i.e., - & is true if and 
only i f  is false. 

(11) There is at least one sequence s in Z. I f  s satisfies 8,  & cannot be false for 
M .  I f  s does not satisfy &, & cannot be true for M .  

(111) I f  a sequence s satisfies both & and & > B ,  then s satisfies 3 ,  by clause 
(iii) o f  the definition. 

(V) (i) s satisfies & B i f  and only i f  s satisfies - (& > - B )  

if and only i f  s does not satisfy & > - 3 
i f  and only i f  s satisfies & but not - 3 
if and only i f  s satisfies & and s satisfies B 

(VI) (a) Assume kM&. Then every sequence satisfies &. In particular, every 
sequence differing from a sequence s in at most the iih place satisfies &. So, every 
sequence satisfies (xi)&, that is, kM(xi)&. 

@) Assume kM(xi)&. I f  s is a sequence, then any sequence differing from 
s in at most the ith place satisfies &, and, in particular, s satisfies 8. Then every 
sequence satisfies &, that is, kM&. 

(VIII) LEMMA A. If all the variables in a term t occur in the list xil, . . . , xik 
(k 2 0; when k = 0, t has no variables), and if the sequences s and sf have the same 
components in the iih, . . . , iLh places, then s*(t) = (sf)*(t). 

Proof. Induction on the number m o f  function letters in t. Assume the result 
holds for all integers < m. 

Case 1. t is an individual constant a,. Then s*(a,) = = (sl)*(a,). 
Case 2. t is a variable xi/. Then s*(x$) = si/ = si = (sf)*(x5). 
Case 3. t is o f  the form &"(t,, . . . , t,). For q < n, each tq has fewer than m 

function letters and all its variables occur among xi,, . . . , xi*. By inductive 
hypothesis, s*(tq) = (sl)*(tq). Then s*($'(t,, . . . , t,)) = (&")M(s*(tl), . . . , s*(t,)) 
= ($')M((s?*(t1)9 . . . (~')*(tn)) = (sf)*(J"(tl, . . . tn)). 

Proof of ( V I I I ) .  Induction on the number r o f  connectives and quantifiers in 8. 
Assume the result holds for all q < r. 
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t 
I Case 1. @. is o f  the form Ay(tl, . . . , t,), i.e. r = 0. All the variables o f  each t, 

occur among x,,, . . . , x,~. Hence, by Lemma A,  s*(t,) = (sl)*(t,). But s satisfies 
Ay(t1, . . . , t,) i f  and only i f  (s*(t,), . . . , s*(t,)) is in (A,")M, that is, i f  and only i f  
((s')*(t,), . . . , (sl)*(tn)) is in (A,")M, which is equivalent to s' satisfying 
AY(t,, . . . , t,). 

Case 2. & is of  the form - 3.  
Case 3. & is of  the form 3 > C?. Both cases 2 and 3 are easy. 
Case 4. & is o f  the form (x,)B . The free variables of  B occur among x I l ,  . . . , X ,  

and x,. Assume s satisfies 8. Then every sequence differing from s in at most the jtk 
place satisfies B . Let s# be any sequence differing from sf in at most the jth place. 
Let sb be a sequence which has the same components as s in all but the jth place, 

i where it has the same component as s#. Hence, sb satisfies 3. Since sb and s# 
I 

agree in the ilh, . . . , iih, and jth places, it follows by inductive hypothesis, that sb 

satisfies B i f  and only if s# satisfies B .  Hence, s# satisfies 3. Thus, s' satisfies 
8. By symmetry, the converse also holds. 

( IX)  Assume & closed. By (VIII), for any sequences s and s', s satisfies & if and 
only i f  s' satisfies 8. I f  - & is not true for M ,  some sequence sf does not satisfy - 8,  i.e., s' satisfies 8. Hence, every sequence s satisfies 8,  i.e. kM&. 

(X) Proof of the Lemma. Induction on the number m o f  function letters in t. 
Case 1 .  t is a,. Then t' is a,. Hence 

Case 2. t is xj, where j # i. Then t' is xj. By Lemma A of (VIII), s*(tf) = (s')*(t), 
since s and s' have the same component in the jth place. 

Case 3. t is xi. Then t' is u. Hence, s*(tf) = s*(u), while (sl)*(t) = (sl)*(xi) = S;  

= s*(u). 
Case 4. t is o f  the fom$'(t l ,  . . . , t,). For 1 < q < n, let ti result from t, by the 

substitution o f  u for xi. By inductive hypothesis, s*(ti) = (sl)*(tq). But s*(tl) = 
s*($'(ti, . . . , t;)) = ($')M(s*(t;), . . . , s*(t;)) = (f)M((s ')*(t ,) ,  . . . , (sl)*(tn)) = 

(sl)*($'(t,, . . . , t,)) = (sl)*(t). 
Proof of Corollary (i). Induction on the number m of connectives and quanti- 

fiers in &(xi)., 
Case 1. m = 0. Then &(xi) is AY(t,, . . . , t,). Let ti be the result o f  substituting t 

for all occb-rences o f  xi in tq. Thus, &(t)  is Aj"(t;, . . . , t;). By the Lemma above, 
s*(t') = sr)*(tq). Now, s satisfies &(t)  if and only i f  (s*(t;), . . . , s*(t;)) belongs to 
( A Y ~ ,  which is equivalent to ((s1)*(t1), . . . , (st)*(tn)) belonging to that is, 
to s' satisfying &(xi). 

Case 2. &(xi) is - B ( x i )  Straightforward. 
Case 3. &(xi) is B (xi)  > 6?(xi). Straightforward. 
Case 4. &(xi) is ( x j )B  (xi). 
Case 4a. 5 is xi. Then xi is not free in &(xi), and &(t)  is &(xi). Since xi is not free 

in &(xi), it follows by (VIII) that s satisfies &(t )  i f  and only if s' satisfies &(xi). 
Case 4b. xj is different from xi. Since t is free for xi in &(xi), t is also free for xi 

in B (xi). 
Assume s satisfies (xj)% (t). W e  must show that s' satisfies (xi)% (xi). Let s# 

differ from s' in at most the jth place. It suffices to show that s# satisfies %(xi). 
Let sb be the same as s# except that it has the same ith component as s. Hence, sb 
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is the same as s except in its jth component. Since s satisfies (%)%(t), sb satisfies 
%(t). Now, since t is free for xi in (xi)% (xi), t does not contain 3. (The other 
possibility, that xi is not free in % (xi), is handled as in Case 4a.) Hence, by Lemma 
A of (VIII), (sb)*(t) = s*(t). Hence, by the inductive hypothesis and the fact that 
s# is obtained from sb by substituting (sb)*(t) for the ith component of sb, it 
follows that s#  satisfies % (xi) if and only if sb satisfies 4(t). Since sb satisfies 
% (t), s # satisfies 4 (xi). 

Conversely, assume sf satisfies (xi)% (xi). Let sb differ from s in at most the jth 
place. Let s# be the same as s' except in the jth place, where it is the same as sb. 
Then s# satisfies %(xi). As above, s*(t) = (sb)*(t). Hence, by the inductive 
hypothesis, sb satisfies %(t) if and only if s#  satisfies %(xi). Since s# satisfies 
% (xi), sb satisfies 4 (t). Therefore, s satisfies (xi)% ( t ) .  

Proof of CoroIIaty (ii). Assume s satisfies (x,)d(xi). We must show that s satisfies 
d(t). Let s' arise from s by substituting s*(t) for the i& component of s. Since s 
satisfies (xi)&(x,) and sf differs from s in at most the ith place, s' satisfies @(xi). By 
Corollary (i), s satisfies &(t). 

2.15. Assume & is satisfied by a sequence s. Let s' be any sequence. By (VIII), s' 
also satisfies &. Hence, d is satisfied by all sequences, i.e., I,@. 

2.16. (a) x is a common divisor of y and z. 
(d) x, is a bachelor. 

2.17. (a) (i) Every non-negative integer is even or odd. True. 
(ii) If the product of two non-negative integers is zero, at least one of 

them is zero. True. 
(iii) 1 is even. False. 

2.18. (a) Consider an interpretation with domain the set of integers. Let A,'(x) 
mean that x is even, and let Ai(x) mean that x is odd. Then (xl)A:(x,) 
is false, and so, (x,)A((x,) (x,)A;(x,) is true. However, (xI)(A((xl) 
3 Ai(x,)) is false, since it asserts that all even integers are odd. 

2.19. (a) [(xi) - &(xi) 3 - &(t)] [d(t) > - (xi) - @(xi)] is logically valid be- 
cause it is an instance of the tautology (A 3 - B) 3 (B > - A). By 
(X), (xi) - @(xi) II - d(t) is logically valid. Hence, by (111), d(t) - (xi) - &(xi) is logically valid. 

(b) Intuitive proof: If & is true for all xi, then d is true for some xi. 
Rigorous proof: Assume (xi)@ > (Exi)@ is not logically valid. Then 
there is an interpretation M for which it is not true. Hence, there is a 
sequence s in Z such that s satisfies (xi)& and s does not satisfy - (xi) - &. From the latter, s satisfies (x,) - d. Since s satisfies (xi)@, 
s satisfies &, and, since s satisfies (xi) - 8 ,  s satisfies - d .  But then, s 
satisfies & and s satisfies - d ,  which is impossible. 

2.21. (a) Let the domain be the set of integers, and let A;(X, y) mean that either 
x < y or (x = y and x is even). Verify that the negation of the given wf 
is true for this interpretation. 

(b) Let A:(x, y) mean that x < y in the domain of integers. 
2.23. (a) The premises are: (i) (x)(S(x) > U(x)), (ii) (x)(H(x) > - U(x)), (iii) 

(x)(- S(X) > - V(X)), and the conclusion is (iv) (x)(H(x) 3 - V(x)). 
Intuitive proof: Assume H(x). By (ii), - U(x), and, therefore, by (i), 
-- S(x). Hence, by (iii), - V(x). Thus, - V(x) follows from H(x), and 

i (iv) holds. A more rigorous proof can be given along the lines of i 
; 

(I)-(XI), but a better proof will become available after the study of 
predicate calculi. 

\ 2.24. (a) Let the domain consist of just one object, and let At  be the identity 
relation. 

2.26. (a) 1. (xi)(@ > $8 ) HYP 
2. (x,)@ HYP 
3. (x,)(@ > % ) I ( @  3 '3) Axiom (4) 
4. d 3 %  1, 3, MP 
5. (x,)d 3 d Axiom (4) 
6. d 2, 5, MP 
7. 93 4, 6, MP 
8. (XI)% 7, Gen 
9. (xi)(@ 4 ), (x,)@ t ( 4 %  1-8 

lo. (xi)(@ > % ) t (x,)d 3 (xi)% 1-9, Cor. 2.5 
11. t (x,)(d II 4 )  ((xi)@ 3 (xi)%) 1-10, Cor. 2.5 

2.27. Hint: Assume tKd. By induction on the number of steps in a proof of d in 
K, prove that, for any variables y,, . . . , y, ( n  > 0), tKSL(yI) . . . (yn)d. 

231. (a) Assume K complete, and let d and % be closed wfs of K such that 
, tKd v $8 . Assume not-tKd. Then, by completeness, tK - d. Hence, 
I by the tautology -A > ((A v B) II B), tK% . 

(b) Assume K is not complete. Then there is a sentence d of K such that 
not+,(%! and not-tK - 8. However, tK8 V - 8. 

232. See Tarski-Mostowski-Robinson [1953], pp. 15- 16. 
I 235. Assume d not logically valid. Then the closure 4 of d is not logically 

valid. Hence, the theory K with - % as its only proper axiom has a model. By the 
Skolem-Lowenheim Theorem, K has a denumerable model, and, by the Lemma in 
the proof of Corollary 2.17, K has a model of cardinality a. Hence, % is false in 
this model, and, therefore, d is not true in some model of cardinality a. 

237. (b) It suffices to assume d is a closed wf. (Otherwise, look at the closure of 
d.) We can effectively write down all the interpretations on a finite 
domain {b,,  . . . , bk). (We need only specify the interpretations of the 
symbols occurring In d.) For every such interpretation, replace every 
wf (x)4 (x), where % (x) has no quantifiers, by 4 (b,) r\ . . . A% (bk), 
and continue until no quantifiers are left. One can then evaluate the 
truth of the resulting wf for the given interpretation. 

2.41. Assume K, not finitely axiomatizable. Let the axioms of KI  be 
d l ,  $ . . . , and let the axioms of K, be a,, 4,, . . : . Then 

{ d l ,  $, %,, . . . ) is consistent. (For, if not, some finite subset 
{ d l ,  $, . . . , dk, %,, . . . , 3,) is inconsistent. Slnce Kl  is not finitely axiomatiz- 
able, there is a theorem d of K, such that d l ,  $, . . . , dk t d does not hold. 
Hence, the theory with axioms {d l ,  $, . . . , dk, - a )  has a model M. Since 
t K , d ,  M must be a model of K,, and, therefore, M is a model of 
{d l ,  $, . . . , dk , % , . . . , a,), contradicting the inconsistency of this set of wfs.) 
Since {dl ,  $, FB2, . . . ) is consistent, it has a model, which must be a model 
of both K, and K,. 

2.42. Hint: Let the closures of the axioms of K be d l ,  $, . . . . Choose a 
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subsequence $2,  . . . such that is the first sentence (if any) after qn 
which is not deducible from 4, . . . $". Let '33, be $, &,, . . . $ k .  

Then the 3,'s form an axiom set for the theorems o f  K such that t  a,+, 3 3, 
but not-I- $8, 3 a,+ Then { a , ,  3, 3 a2, a2 3 a,, . . . ) is an independent 
axiomatization o f  K. 

2.44. (c) Use Proof by Contradiction (Exercise 2.43(e)). 
1 -  ( Y )  - (A:(Y)  3 (Y)A{(Y))  HYP 
2. - (A:(Y) 3 (Y)A:(Y)) 1 ,  Rule A4 
3. A:(Y) 2, Tautology 
4. - (Y)A:(Y)  2, Tautology 
5 .  (Y)A:(Y) 3, Gen 
6- (Y)A:(Y) r\ - (Y)A:(Y) 4, 5, Conjunction Introduc- 

tion 
By Proof by Contradiction, I-- ( y )  - ( ~ : ( y )  3 ( y )A; (y ) ) ,  i.e., 
t  (EY)(A ,l(Y) 3 (Y)A:(y)). 

2.46. (i) (a) Assume I- &. By moving the negation step-by-step inward to the 
atomic wfs, show that - &* is logically equivalent to the wf 93 
obtained from & by replacing all atomic wfs by their negations. 
But, from t  & it can be shown that I- $8. Hence, t- &*. The 
converse follows by noting that (&*)* is &. 

(b) Apply Part (a) to - & V 91. 
2.48. (b) (E&)(& > 0 A  (6)(6 > 0 3 (Ex)(lx - cl < 6 A  - If(x) - f(c)l < e) ) )  
2.52. 1. (E~) (x ) (A: (x ,  y )  = - A:(x, x ) )  HYP 

2. (x)(A:(x, b) = - A:(x, x ) )  1 ,  Rule C 
3. A:(b, b)  =- A:(b, b)  2, Rule A4 
4. e r \ - e  3, Tautology 

(e is any wf  not containing b.) 
Use Proposition 2.23 and Proof by Contradiction. 

2.59. (a) In step 4, b is not a new individual constant. It was used in step 2. 
2.61. (c) 1 .  x = x Proposition 2.24(a) 

2- (EY)(x = Y )  1 ,  Rule W 
3. ( ~ ) ( E Y ) ( x  = Y )  2, Gen 

2.64. (a) The problem obviously reduces to the case o f  substitution for a single 
variable at a time: 

!- x,  = y l  3 t (x , )  = t(y,) .  From (7), 

I- x,  = y l  3 ( t ( x l )  = t (x , )  3 t (x , )  = t ( y l ) ) .  By Proposition 2.24(a), 

t  t ( x l )  = t ( x l ) .  Hence, t  x ,  = y ,  3 ( t ( x l )  = t ( y l ) ) .  

2.66. By Exercise 2.61(c), t  (EyXx = y). By Proposition 2.24(b), (c), I- ( y ) ( z ) (x  
= y A  x = z 3 y = z). Hence, t  (E l  y) (x  = y). By Gen, I- ( x ) ( E I y ) ( x  = y). 

2.70. (b) (i) Let A  xi f x, stand for the conjunction of  all wfs o f  the form 
I <i<j<n 

xi f x,, where 1 < i < j < n. Let 3, be ( E X , ) .  . . (Ex,) A  xi f 
xi. I <;a<, 

(ii) Assume there is a theory with axioms &,, . . . , &,, having the 
same theorems as K. Each o f  a , ,  . . . , &,, is provable from Kl plus a 
finite number o f  the wfs a, ,  a2, . . . . Hence, K ,  plus a finite number 
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o f  the wfs  ajl,  . . . , 3," suffices to prove all theorems o f  K. W e  may 
assume jl < . . . < j,. Then an interpretation whose domain consists 
o f  j, objects would be a model o f  K, contradicting the fact that a,"+ 
is an axiom o f  K. 

2.75. 

3 (Ez)(&(z,  y ,  x ,  . . . , x )  A  z = x)) .  

2.80. 3 has the form (Ex)(Ey)(z)aA:(x, y )  3 A i(x)] 3 A:(z)). Let the domain 
D be (1,  2 ) ,  let A: be < , and let A l(u) stand for u = 2. Then 53 is true, but 
(x)(Ey)A:(x, y )  is false. 

2.81. Let g be a one-one correspondence between D' and D. Define: (a,)M' = 

s((+)M); (f-jl)M'(b17 . . , b,) = g-'[(f-jl)MCg(bl), . . . , g(b,))l 
kM,Ay[bl, . . . , b,] i f  and only i f  kMAy[g(bl) ,  . . . , g(b,)]. 

2.88. Hint: Extend K by adding axioms a , ,  where 3, asserts that there are at 
least n elements. The new theory has no finite models. 

2.89. Hint: Consider the wfs a,, where '33, asserts that there are at least n 
elements. Use elimination o f  quantifiers, treating the 3,'s as if they were atomic 
wfs. 

2.94. Let W be any set. For each b in W ,  let ab be an individual constant. Let the 
theory K have as its proper axioms: ab f a, for all b, c in W such that b # c, plus 
the axioms for a total order. K is consistent, since any finite subset o f  its axioms 
has a model. (For, any such finite subset contains only a finite number o f  
individual constants. One can define a total order on any finite set B by using the 
one-one correspondence between B and a set { 1,2,3, . . . , n )  and carrying over to 
B the total order < on (1,  2, 3, . . . , n).) Since K is consistent, K has a model M 
by the Generalized Completeness Theorem. The domain D o f  M is totally ordered 
by the relation < M ;  hence, the subset Dw o f  D consisting o f  the objects is 
totally ordered by < M .  This total ordering o f  Dw can then be carried over to a 
total ordering o f  W :  b <wc if  and only i f  ab <Mac. 

2.97. Assume MI finite and MI = M2. Let the domain Dl o f  MI  have n 
elements. Then, since the assertion that a model has exactly n elements can be 
written as a sentence, the domain D2 o f  M2 must also have n elements. Let 
D, = {b , ,  . . . , b,) and D2 = {c l ,  . . . , c,). Assume MI  and M2 not isomorphic. 
Let cp be any one o f  the n! one-one correspondences between Dl and D2. Since cp is 
not an isomorphism, either: ( 1 )  there is an individual constant a and an element bj 
o f  Dl such that either (i) b, = aMl A  cp(b,) f aM2, or (ii) b, f a M 1  A  cp(bj) = aM2; 
or (2) there is a function letter fF and bl, bjl, . . . , bjm in Dl such that 

= ( f ~ ) ~ l ( b ~ ~ ,  . . . , b i_ )  and cp(bl) f ( f l " ) M 2 ( ~ ( b j l ) l  . . . , cp(bjm)); 

or (3)  there is a predicate letter A," and b,,, . . . , bjm in Dl such that either 



302 ANSWERS TO SELECTED EXERCISES 

(i) k~~Akm[bj,, . - . , bjml and \M, 5Akm[~(bjl) ,  . - . ( ~ ( b j ~ ) ] ,  
or (ii) k,, - A,"[bj,, . . . , bjm] and kM@,"[rp(bj,), . . . , cp(bjm)]. Construct a wf 3, as 
follows: 

I xj = a if  (I), ( i )  holds 

xj # a if  ( I ) ,  (ii) holds 

3, is x, = f k m ( ~ j , ,  . . . , xjm ) i f  (2) holds 

A k m ( ~ , ,  . . . , xjm) if (3), (i)  holds - Akm (xj l ,  . . . , xi_ ) i f  (3), (ii) holds 

Let cp,, . . . , cp,! be the one-one correspondences between Dl and D,. Let & be the 
wf 

1 )  . . . ( A xi i 5 A \8,, A 3, A . . . A a,".). 
I < i ( i < n  

Then & is true for M, but not for M,. 
2.98. (a) There are n, sentences o f  K.  Hence, there are 2'0 sets o f  sentences.If 

MI r M,, then the set of  sentences true for M, is different from the set 
of sentences true for M,. 

2.99. Let K' be the theory with n, new symbols b, and, as axioms, all sentences 
true for M and all b ,  # b, for 7 # p. Prove K' consistent and apply Corollary 2.35. 

2.102. (a) Let M be the field o f  rational numbers, and x = { - 1 ) .  
2.105. Consider the wf (Ex2)(xZ < x,). 
2.106. (a) (ii) Introduce a new individual constant b, and form a new theory by 

adding to the complete diagram o f  M all the sentences b # t for all 
closed terms of K. 

2.107. I f  0 4 9 ,  9 # 9 (A) .  Conversely, if 0 E 4 ,  then, by clause (iii) of  the 
definition o f  filter, 9 = 9 (A). 

2.108. I f  4 = GB, then 0 C = B E 9. Conversely, if B = 0 C E 9, then 
9 = TB. c €9 C€9 

2.109. Use Exercise 2.108. 
2.110. (i) A E 9, since A = A - 0. (ii) I f  B = A - W ,  E 9 and C = A - W, 

E 4 ,  where W ,  and W, are finite, then B n C = A - ( W ,  u W,) E 4, since 
W ,  u W, is finite. (iii) I f  B = A - W E 9, where W is finite, and i f  B c C, then 
C = A - ( W  - C )  E 9, since W - C is finite. (iv) Let B E 9. So, B = A - W, 
where W is finite. Let b E B. Then W u { b )  is finite. Hence, C = 
A - ( W  u { b ) )  E 4. But B $ C, since b 4 C. Therefore, 9 # TB. 

2.113. Let %'= {DID c A A ( E C ) ( C  E 9 A B  n C c D)). 
2.114. Assume that, for every B A, either B E 9 or A - B E 5. Let 9  be a 

filter such that 9 c Q .  Let B E g  - 9. ThenA - B E 9. Hence, A -  B € 9 .  
So, 0 = B n (A  - B )  E g , and g is improper. The converse follows from Exercise 
2.1 13. 

2.115. Assume 9 is an ultrafilter, and B 4 9, C 4 9. By Exercise 2.114, 
A - B E 9 and A - C E 4. Hence, A - ( B  u C )  = ( A  - B )  n (A  - C )  E 9. 
Since 4 is proper, B u C 4 4. 

Conversely, assume B 4 4 A C 4 9 3  B u C 4 9 .  Since B u ( A -  B ) =  
A E 9, this implies that, i f  B 4 9, then A - B E 9. Use Exercise 2.1 14. 

2.116. (a) Assume Fc a principal ultrafilter. Let a E C, and assume C # {a) .  
Then { a )  4 GC and C - { a )  4 gc. By Exercise 2.115, C = 
{ a )  U (C  - { a ) )  4 FC, which yields a contradiction. 

(b) Assume a non-principal ultrafilter 9 contains a finite set, and let B be 
a finite set in 9 of  least cardinality. Since 4 is non-principal, the 
cardinality o f  B is > 1 .  Let b E B. Then B - { b }  f 0. Both { b )  and 
B - { b )  are finite sets of  lower cardinality than B. Hence, { b )  4 9 
and B - { b )  4 9. By Exercise 2.115, B = { b )  U ( B  - { b ) )  4 9, 
which contradicts the definition o f  B. 

2.119. Let J be the set of all finite subsets o f  T. For each A in J ;  choose a model 
MA of A. For A in J ,  let A* = {A'lA' E J / \ A  c A'). The collection g of all A*'s 
has the finite-intersection property. By Exercise 2.112, there is a proper filter 
9 2 9 .  By the Ultrafilter Theorem, there is an ultrafilter 9' _> 9 > 9.  Consider 
II MA/%'. Let & E T. Then {&)* E Q c 9'. Therefore, {@)* c {AlA E J A 

A E J  

kML&) E 9'. By LoS's Theorem, @ is true in 11 MA/9' .  
A E J  

2.120. (a) Assume W is closed under elementary equivalence and ultraproducts. 
Let A be the set of  all sentences o f  K which are true in every model in 
W. Let M be any model o f  A. We  must show that M is in W. Let T be 
the set of  all sentences true for M. Let J be the set of finite subsets of 
T. For r' = {&,, . . . , &,,} E J ,  choose a model N, E W such that 
&, A . . . A a,, is true in N,. ( I f  there were no such model, -(&, 
A . . . A a,,), although false in M, would be in A.) As in Exercise 
2.1 19, there is an ultra-filter 5' such that N* = II N,/Y is a model 

T ' E J  
of  T. Now, N* E W. Moreover, M = N*. Hence, M E W. 

(b) Use Part (a) and Exercise 2.41. 
(c) Let W be the class of  all fields o f  characteristic zero. Let J be a 

non-principal ultrafilter on the set P of  primes, and consider 
M = II Z p / 9 ,  where Zp is the field of  integers modulop. Apply Part 

P E P  

(b). 
2.121. Re c R*. Hence, the cardinality o f  R* is > 2'0. On the other hand, Rw is 

equinumerous with 2", and, therefore, has cardinality 2'0. But the cardinality of  R* 
is at most that of Rw. 

2.122. Assume x and y are infinitesimals. Let E be any positive real. Then 
1x1 < E/2 and lyl < &/2. SO, I X  + y)  < 1x1 + l y l  < & / 2  + & / 2  = E ;  \ X Y I  = 1x1 1 ~ 1  
< 1 . E = E ;  I X  - ) ' I  < 1x1 + I  - ) ' I  < & / 2 +  &/2=E.  

2.123. Assume 1x1 < r,, and lyl < E for all positive real E .  Let E be a positive 
real. Then ~ / r ,  is  a positive real. Hence 1 y 1 < e/rl ,  and so, Ixyl = 1x1 I y 1 < 
r , ( ~ / r , )  = E .  

2.125. Assume x - r, and x - r, are infinitesimals, with r, and r,  real. Then 
( x  - r,) - ( x  - r2) = r2 - r, is infinitesimal and real. Hence, r2 - r, = 0. 

2.126. (a) x - st(x) and y - st(y) are infinitesimals. Hence, their sum ( x  + Y )  
- (st(x) + st(y)) is an infinitesimal. Since st(x) + st(y) is real, 
st(x) + st(y) = st(x + y)  by Exercise 2.125. 
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2.127. (a) By Proposition 2.46, s*(n) = cl and u*(n) m c2 for all n E w* - w. 
Hence, s*(n) + u*(n) = cl + c2 for all n E w* - w. But s*(n) + 
u*(n) = (s + u)*(n). Apply Proposition 2.46. 

2.128. Assume f continuous at c. Take any positive real E. Then there is a 
positive real S such that (x)(x E B A Ix - cl < 3'1 I f(x) - f(c)l < E) holds in 9,. 
Therefore, (x)(x E B* A (x  - cl < S > IfC(x) - f(c)l < E) holds in q*. SO, if 
x E B* and x = C, then (x  - cl < 6, and, therefore, IfC(x) - f(c)J < E. Since E 

was arbitrary, fC(x) = f(c). 
Conversely, assume x E B* A x = c fC(x) = f(c). Take any positive real E. 

Let So be a positive infinitesimal. Then (x)(x E B* A (x  - cl < So > IfC(x) - 
f(c)l < E) holds for a*. Hence, (ES)(S > 0 (x)(x E B* A Jx  - cJ < 6 > J f'(x) 
- f(c)l < E)) holds for 9, *, and so, (ES)(S > 0 A (x)(x E B A I x - cl < S II 
I f(x) - f(c)l < E)) holds in 9,. 

2.129. Since x E B* A x --, c > (fC(x) = f(c) A g*(x) m g(c)) by Proposition 
2.47, we can conclude x E B* A x = c II (f + g)*(x) = (f + g)(c), and so, by 
Proposition 2.47, f + g is continuous at c. 

2.134. Consider s9 E R*. Since s is bounded by b, Is4 < b. So, s9 E Rl. Let 
r = st&). Let E be any positive real. Then Ir - s4 < E, since r - s is an infinitesi- 
mal. Hence, (jl 13 - rl < E) E 5 (remembering that r stands for (r'),). Since the 
empty set does not belong to 5, there exists j such that Isj - r( < E .  

Chapter 3 
3.4. Consider the interpretation having as its domain the set of polynomials with 

integral coefficients such that the leading coefficient is nonnegative. The usual 
operations of addition and multiplication are the interpretations of + and . . 
Verify that (S1)-(S8) hold, but that Proposition 3.1 1 is false (substituting the 
polynomial x for x and 2 for y). 

3.5. (a) Form a new theory S' by adding to S a new individual constant b and 
the axioms b # 0, b # 1, b # 2 .  . . , b # i, . . . . Show that S' is 
consistent, and apply Proposition 2.27 and Corollary 2.35(3). 

(b) By a cortsge let us mean any denumerable sequence of 0's and 1's. There 
are 2'0 corttges. An element c of a denumerable model M of S de- 
termines a cortege (s,,, s,, % . . . ) as follows: s, = 0 if kMpilc, and si = 1 
if k M  - (p,(c). Consider now any corttge s. Add a new constant b to S, 
together with the axioms %,(b), where B,(b) isp,lb if s, = 0, and %,(b) 
is --(p,(b) if s, = 1. This theory is consistent and, therefore, has a 
denumerable model M,, in which the interpretation of b determines the 
corttge s. Thus, each of the 2'0 corttges is determined by an element of 
some denumerable model. Every denumerable model determines de- 
numerably many corttges. Therefore, if a maximal collection of mutu- 
ally non-isomorphic denumerable models had cardinality m < 2'0, then 
the total number of corttges represented in all denumerable models 
would be < m x no < 2'0. (We use the fact that the elements of a 
denumerable model determine the same corteges as the elements of an 
isomorphic model.) 
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3.6. Let (D, 0, ') be one model of Peano's Postulates, with 0 E D, and ' the 
successor operation, and let (D#, 0#, *) be another such model. For each x in D, 
by an x-mapping we mean a function f from S, = (ulu E D A  u < x} into D# 
such that f(0) = 0# and f(ul) = (f(u))* for all u < x. Show by induction that, for 
every x in D, there is a unique x-mapping (which will be denoted f,). It is easy to 
see that, if x, < x2, then the restriction of fXl to S,, must be f,,. Define F(x) = f,(x) 
for all x in D. Then F is a function from D into D# such that F(0) = 0# and 
F(xl) = (F(x))* for all x in D. It is easy to prove that F is one-one. (If not, a 
contradiction results when we consider the least x in D for which there is some y in 
D such that x # y and F(x) = F(y).) To see that F is an isomorphism, it only 
remains to show that the range of F is D#. If not, let z be the least element of D# 
not in the range of F. Clearly z + O#. Hence, z = w* for some w. Then w is in the 
range of F, and so w = F(u) for some u in D. Therefore, F(ut) = (F(u))* = w* = 
z, contradicting the fact that z is not in the range of F. 

The reason that this proof does not work for models of first-order number theory 
S is that the proof employs mathematical induction and the least number principle 
several times, and these uses involve properties which cannot be formulated within 

I 
the language of S. Since the validity of mathematical induction and the least 

I c number principle in models of S is guaranteed to hold, by virtue of Axiom (S9), 

2 only for wfs of S, the categoricity proof is not applicable. For example, in a 
non-standard model for S, the property of being the interpretation of one of the i - - - - 
standard integers 0, 1, 2, 3, . . . is not - - - -  expressible by a wf of S. If it were, then, by 

I Axiom (S9), one could prove that (0, 1, 2, 3, . . . } constitutes the whole model. 
3.8. (a) Hint: Show that, for any term r not containing variables, there is a 

! natural number m such that ksr = iii. (b) Use Part (a) and Proposition 
1.12. 

1 3.15. Assume f(xl, . . . , xn) = x,+, is expressible in S by %(x,, . . . , x,+~). Let 
 XI, . . xn+l) be %(XI, . . . , ~ n +  I )  A (z)(z < X ~ + I  3- %(XI, . . . r ~n+l)) .  
Show that e represents f(x,, . . . , x,) in S. (Use Proposition 3.8(b).) 

Assume, conversely, that f(xl, . . . , x,) is representable in S by @(XI, . . . , xn+ 1). 
Show that the same wf expresses f(x,, . . . , xn) = xn+ in S. 

3.18. To see that kKO # 1 is necessary, consider the consistent theory K with 
i equality having the same symbols as S and with (x)(y)(x = y) as its only other 

i axiom. Then all functions are representable in K, but xl  = x2 is not expressible in 

I K. 
I 3.19. (Ey),e<,R(xl, . . . , xn, y) is equivalent to 

(Ez),<,-(,+ ,)R(xl, . . . , xn, z + u + l), and similarly for the other cases. 
3.21. If the relation R(x,, . . . , x,, y) : f(xl,  . . . , x,) = y is recursive, then CR is 

recursive, and, therefore, so is f(x1, . . . , x,) = ~ ~ ( C R ( X I ,  . . . , 4x9~) = 0). an- 
versely, if f(xl,  . . . , x,) is recursive, CR(xI, . . . , xn,y) = ~ g l f ( ~ 1 ,  . . . , %,) - Y I  1s 
recursive. 

3.22. 

[GI = S ( P Y ~ < ~ + \ ( Y ~  >'I). 



306 ANSWERS TO SELECTED EXERCISES 

+ L) 1, since 
n !  

1 1 1 g(n) + . . . )  <z. Let 1 + 1 + - + . . .  + ,=- 
2! n. n! ' 

(n + l)g(n) + 1. Hence, g is' primitive recursive. 

3.24. RP(y, z )  stands for ( X ) , < ~ + , ( X ( ~  A x(z 3 x = 1) .  

3.25. Z(0) = 0, Z(y + 1 )  = ~:(y, Z(y)). 
3.26. Let v = (pop1 . . .pk) + 1. Some prime q is a divisor of v. Hence q < v. 

But q is different from po, pl, . . . ,pk. For, i f  q = p,, then p,Ju and p,Jpopl . . . pk 
would imply that pill, and, therefore, p, = 1. Thus, pk+ 1 < q < (popI . . . pk) + 1. 

3.29. I f  Fermat's Last Theorem is true, h is the constant function 2. I f  Fermat's 
Last Theorem is false, h is the constant function 1 .  In either case, h is primitive 
recursive. 

331. List the recursive functions step-by-step in the following way. In the first 
step, start with the finite list consisting of Z(x), N(x), and U:(x). At the (n  + 1)"' 
step, make one application of substitution, recursion, and the p-operator to all 
appropriate sequences of functions already in the list after the nIh step, and then 
add the n + 1 functions U;+'(xl, . . . , x,+,) to the list. Every recursive function 
eventually appears in the list. 

332. Assume fx(y) is primitive recursive (or recursive). Then so is fx(x) + 1.  
Hence, fx(x) + 1 is equal to fk(x) for some k. Therefore, fk(x) = fx(x) + 1 for all x, 
and, in particular, f ,(k) = f,(k) + 1. 

333. (a) Let d be the least positive integer in the set Y of integers o f  the form 
au + bv, where u and u are arbitrary integers; say, d = auo + boo. 
Then dla and dlb. (To see this for a, let a = qd + r, where 0 < r < d. 
Then r = a - qd = a - q(auo + boo) = ( 1  - quo)a + (- qvo)b E Y. 
Since d is the least positive integer in Y and r < d, r must be 0. Hence 
dla.) I f  a and b are relatively prime, then d = 1. Hence, 1 = auo + boo 
Therefore, auo = 1 (mod b). 

335. Assume that a function f (x l ,  . . . , x,) is representable in S by the wf 
@(x,,  . . . , x,, y). Then the wf 53 (x,, . . . , x,, y )  : 

[ ( (E IY)@(x I?  - . - 9 xn, Y ) )  A @ ( X I ,  . . . 9 X,?Y 11 v 
[(- (El Y ) @ ( X I ,  . - . , x,, Y ) )  A Y = 01 

strongly represents f (x l ,  . . . , x,). 
336. 1944 = 2335. Hence, 1944 is the Godel number of  the expression ( ). 

47 = 7 + (8 - 5). So, 47 is the G d e l  number of the symbol a,. 
338. (a) g(f:) = 9 + 8(2l. 3') = 57 and g(a,) = 15. So, g(f,'(al)) = 2573351575. 
339. Assume S consistent. By Proposition 3.31(1), ($9)  is not provable in S. 

Hence, by Lemma 2.9, the theory S, is consistent. Now, - (a E c )  is equivalent to 
(Ex,) --- W,(iii, x,). Since there is no proof of ( 9  E c )  in S ,  Wl(m, k )  is false for 

all natural numbers k, by ( I )  on p. 159. Hence, bs - W,(iii, I;) for all natural 
numbers k.Therefore, bsB - Wl(iii, I;). But, bs,(Ex2) -- W,(iii, x2). Thus, Ss is 
w-inconsistent. 

3.40. Assume S consistent. By Proposition 3.31(1), ( x )  - W,(iii, x,) is not prov- 
able in S. As in the answer to Exercise 3.39, bs - W,(iii, E) for all natural numbers 
k. Thus, S is w-incomplete. 

3.42. (a) Assume bs($ Ec). Hence, ( E c  E c )  is true for the standard model. Thus, 
since ( E c E c )  says that (ma) is unprovable in S, ( E c E c )  is actually 
unprovable in S, contradicting our assumption that IS($  a). 

(b) Assume bs - ( E c  Ec). Hence, - ( E c  Ec)  is true for the standard model. 
Since ( E c  E c )  says that (8  E c )  is unprovable in S ,  ( E c  Ec)  must actually be 
provable in S. But then, what ( E c  Ec)  asserts is false, and ( a@)  is a 
theorem of S which is  false in the standard model. 

3.43. (a) Assume the "function" form of  Church's Thesis, and let A be an 
effectively decidable set of natural numbers. Then the characteristic 
function C, is  effectively computable, and, therefore, recursive. Hence, 
by definition, A is a recursive set. 

(b) Assume the "set" form of Church's Thesis, and let f(x,, . . . , x,,) be any 
effectively computable function. Then the relation f(x,, . . . , x,,) = y is 
effectively decidable. Using the functions o k,  oik of  p. 146, let A be the 
set of all z such that f(o;+ l(z), . . . , a,"+ '(z)) = 0,": f(z). Then A is an 
effectively decidable set, and, therefore, recursive. Then f(xl, . . . , x,) 
= a,": f (  pz(C,(z) = 0)) is  recursive. 

3.44. Let K be the extension of S having as proper axioms all wfs which are true 
in the standard model. Apply Corollary 3.34. 

3.46. Let f(xl,  . . . , x,,) be a recursive function. So, f(xl, . . . , x,,) = y is a recur- 
sive relation, expressible in K by a wf @(x,,  . . . , x,, y). Then f is representable by 

where z < y stands for z < y A z # y. 
3.47. (a) Let 

the Godel number of (xi)@ if n is the Godel 

I number of a wf @ and 5 is the first (in order 
G(n) = 

of subscripts) variable free in @ 

[ n, otherwise. 

Let h(n, 0) = n and h(n, y + 1 )  = G(h(n, y)). Then Cl(n) = h(n, n). It 
suffices to show that G(n) is primitive recursive. Let v(n) = 

pyY<,(Fml(n) A VblOr) A Fr(n, y)). Then 

G(n) = 
23 + 23 + 20(") * n * 25 i f  Fml(n) 
n otherwise. 

(b) I f  n is the Godel number of a wf @, then there is a proof either of  the 
closure of @ or of the negation of the closure of  @, i.e., (Ey) (Pf 
( y ,  Cl(n)) V Pf(y, 23 + 29 + Cl(n) * 25) V - Fml(n)). (Here, the 
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proof predicate Pf is defined with respect to a theory K' which, by the 
recursive axiomatizability of K, has the same theorems as K and has a 
recursive set of axioms. By Proposition 3.26(13(b)), this insures that Pf 
is recursive.) Abbreviating this last formula by (Ey)%(y, n), we know, 
by the p-operator Rule (VI), that py(93 (y, n)) is a recursive function. 
Therefore, Pf(py(% (y, n)), Cl(n)) is recursive, but it is equivalent to 
Cl(n) being in TK, which, in turn, is equivalent to n being in TK. An 
intuitive result corresponding to the one just proved, namely, that any 
complete, axiomatic theory is effectively decidable, already has been 
proved on pp. 96-97. Of course, if one assumes Church's Thesis, this 
intuitive result and the result of Exercise 3.47(b) are equivalent. 

3.48. If K is recursively decidable, the set of Godel numbers of theorems of K is 
recursive. Taking the theorems of K as axioms, we obtain a recursive axiomatiza- 
tion. 

3.49. (a) Let k be the Gijdel number of the wf 3. Then D(m) = k. Hence, 
tK9(iii, I;) and tK(Elx2)9(iZ, x,). Then, tK(x,)(9(ili, x,) 1 x, = G). 
It is now easy to prove k K 3  - @&). 

(b) Let K be the theory whose axioms are all true sentences of arithmetic. 
Assume @ is a wf such that @(ii) is true if and only if n E Tr. By Part 
(a), take a "fixed point" 5 ,  with Godel number k, for -- @(xl). Then 
5 = -- @&) is true. Hence, S is true if and only if @&) is false, that is, 
3 is true if and only if k @ Tr. Thus, S is true if and only if 3 is false. 

(c) Use Tarski's Theorem and Exercise 3.34. 
(d) Assume K complete. Then TK = Tr. By Exercise 3.47@), K is recur- 

sively decidable. Hence, Tr is recursive, contradicting Part (a). 
(e) Assume there is such a recursive set A, and let it be expressed in K by 

@(x). Let 3 ,  with Godel number k, be a fixed point for - &(x). Then 
tKd =- @(i;). Since @(x) expresses A in K, tKg(E) or tK -- @(i;). (i) 
If tK@&), then tK -- 5. Therefore, k E RefK C A. Hence, tK -- a&), 
contradicting the consistency of K. (ii) If tK -- @G), then tK5. SO, 
k E TK C A, and, therefore, t,@(i;), contradicting the consistency of 
K. 

3.50. Take as a normal model for RR, but not for S, the set of polynomials with 
integral coefficients such that the leading coefficient is non-negative. Note that 
(Ey)(x = y + y V x = y + y + 1) is false in this model but is provable in S. 

3.54. Let K2 be the theory whose axioms are those wfs of K1 which are provable 
in K*. The theorems of K2 are the axioms of K,. Hence, x E TK2 if and only if 
FmlK,(x) A x E TK*. So, if K* were recursively decidable, i.e., if TK* were 
recursive, TK2 would be recursive. Since K, is a consistent extension of Kl ,  this 
would contradict the essential recursive undecidability of K,. 

3.55. Compare the proof of Proposition 2.29 (p. 86). 
3.56. Hint: By Exercise 3.55, K* is consistent. So, by Exercise 3.54, K* is 

essentially recursively undecidable. Hence, by Exercise 3.55, K is recursively 
undecidable. 
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3.57. (b) Take (x)(A:(x) = x = x) as a possible definition of A:. 
3.58. Use Exercises 3.56-3.57. 
3.59. Use Proposition 3.41(a), Exercise 3.58, and Exercise 3.47@). 

Chapter 4 
4.15. Let X = ((y ,, y,) 1 y ,  = y, l\ y , E Y), i.e. X is the class of all ordered 

pairs (u, u) with u E Y. Clearly Un(X) and, for any set x, (Ev)((u, u) E X /\ 
u E x) - u E Y n x. so, by Axiom R, M(Y n x). 

4.16. 9 ( x )  C U(U(x)) and %(x) C U(U(x)). Apply Proposition 4.6. 
4.17. (a) Assume u E x x y. Then u = (v, w) = ((v), (v, w)) for some v E x, 

w E y. Then u E x u y and w E x u y. So, (v) E 9 ( x  u y) and 
(0, W)  E T ( x  u Y). Hence, ({o), (v, w)) E 9 ( 9 ( x  u Y)). 

(b) Use Part (a), Exercise 4.1 1, Axiom W, and Proposition 4.6. 
4.W. If Rel(X), then X C 9 ( X )  X %(X). Use Exercise 4.17(b) and Proposition 

4.6. 
4.19. Assume Fnc(X). Then Fnc(y1X) and 9 ( y l X )  C y .  By Axiom R, 

I M(X6'y). 
4.20. (a) Let 0 be the class (ulu # u). Assume M ( X ) .  Then 0 C X. So, 0 = 

0 n X. By h o m  S, M(0). 
4.21. Assume M(V). Let Y = (x(x  @ x). It was proved above that - M(Y). 

But Y C V. Hence, by Proposition 4.6, -- M( V). 
433. Let u be the least E-element cf X - Z. 
4.36. By Proposition 4.10(4), Trans (w). By Proposition 4.10(2) and Proposition 

I 4.7(10), o E On. If w E K,, then o E w, contradicting Proposition 4.7(1). Hence, 
1 
I w e KI. 

439. LetX1 = X  x (0) and Yl = Y x (1). 

1 4.40. For any u C x, let the characteristic function C, be the function with 
domain x such that C,'y = 0 if y E u and C,'y = 1 if y E x - u. Let F be the 

I function with domain T(x), taking u into C,. Then 9 (x) -- 2. 
I 

4.41. For any set u, q (u )  is a set, by Exercise 4.16. 
I 4.42. If u € xY, then u C y X x. So, xY C T(y X x). 

4.43. (a) 0 is the only function with domain 0. 
(b) Define a function F with domain X such that, for any x, in X, F(x,) is 

the function g in x(") such that g 'u = XD. Then X = F X("). 

4.44. If 9 ( u )  # 0, then %(u) # 0. 
4.45. Assume X = Y and Z -- Z,.  If - M(Z,), then -- M(Z) and xZ = YZ1 = 

F G 
O, by Exercise 4.41. Hence, we may assume M(Z,) and M(Z). Define a function 
o n x Z :  1ff ~ ~ ~ , l e t @ ' f =  F o f a   then^^-- cp yZ1. 

4.46. If X or Y is not a set, then zXU and zX X Z are both 0. We may 
assume then that X and Y are sets. Define a function \k with domain zXU as 

follows: iff E zXUY,  let 'k 'j = ( X I  f, Y l  f). Then zXU - .4' Z X  x zY. 
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4.47. (a) When Y = 0 A -- M ( Z ) ,  (X Y ) Z  = 0 and x y x z  = x0 = (0) .  
(b) When Y # O A - - M ( Z ) ,  then - M ( Y  x Z )  and ( x ' ) ~  = 0 = 

x Y X Z  

(c) When -- M ( Y )  A Z = 0, ( x ~ ) ~  = 1 = X O  = x Y x Z .  

(d) When - M ( Y ) A Z  # 0, - - M ( Y  x Z )  and ( x ' ) ~  = OZ = 0 = 
xyxz .  

(e) Finally, when M ( Y )  A M(Z) ,  define a function O with domain ( X  Y)Z 

as follows: For any f E ( X  Y)Z ,  

8 ' f  is the function in X X Z  such that (O ' f )  ' ( y ,  z )  = ( f  ' z )  'y 

for all ( y ,  z )  E Y X Z.  Then ( X  Y)Z - X Y x Z .  
8 

4.48. I f  -- M(Z), (X  x Y)' = 0 = 0 x 0 = X Z  x Y Z .  Assume then that 
M(Z) .  Define a function F : X Z  x Y Z  + ( X  x Y)Z  as follows: For any f E X Z,  
g E Y Z ,  ( F  '( f, g) )  ' z  = ( f  ' z ,  g ' z )  for all z in Z .  Then xZ x Y Z  -- (X x Y)Z .  

r 
I. 

4.49. This is a direct consequence o f  Proposition 4.17. 
4.54. Use the Schroder-Bernstein Theorem (Proposition 4.2 l(4)). 
455. Use Proposition 4.2 l((3)-(4)). 
4.56. Assume M is a model o f  NBG with denumerable domain D. Let z be the 

element o f  D satisfying the wf x = 2O. Hence, z satisfies the wf -- (x -- a). This 
means that there is no object in D which satisfies the condition o f  being a one-one 
correspondence between z and w. Since D is denumerable, there is a one-one 
correspondence between the set o f  "elements" o f  z (that is, the set o f  objects v in D 
such that kMv E z) and the set o f  natural numbers. However, no such one-one 
correspondence exists within M. 

4.57. Define a function F from V into 2, as follows: F'u = {u, 0 )  if u + 0; 
F'O = { 1 ,  2). Since F is one-one, V S 2,. Hence, by Exercises 4.21 and 4.50, - M(2c). 

4.58. (h) Use Exercise 4.46. 
(i) 2" S 2" +,x S 2" +,2" = 2" x 2 --. 2" x 2' 1: 2"+c1 1: 2". Hence, by the 

Schroder-Bernstein Theorem, 2" +,x -- 2". 
4.59. Under the assumption o f  the Axiom o f  Infinity, w is a set such that 

(Eu)(u E w) A ( y ) ( y  E w > (Ez)(z E w A y c z)). Conversely, assume (*) and let 
b be a set such that (i) (Eu)(u E b), and (ii) ( y ) ( y  E b > (Ez)(z E b y c z)). 
Let d = {uI(Ez)(z E b A u C z)) .  Since d c T ( U ( b ) ) ,  d is a set. Define a relation 
R = { (n ,  u)ln E w A u = {ulu E d A u 1: n ) ) .  Thus, (n ,  u )  E R if and only i f  
n E w and u consists o f  all elements o f  d that are equinumerous with n. R is a 
one-one function with domain w and range a subset o f  9 ( d ) .  Hence, by the 
Replacement Axiom applied to R- ' ,  w is a set, and, therefore. Axiom I holds. 

4.60. Induction on a in ( x ) (x  -- a A a E w > Fin(9 (x))) .  
. . ... 

4.61. Induction on a in ( x ) (x  1: a A a E w A ( y ) ( y  E x > Fin(y)) > 
Fin(U(x))). 

4.62. Use Proposition 4.25(1). 
4.64. x C T ( U ( x ) )  and y E x y C U ( x ) .  
4.65. Induction on a in ( x ) (x  -- a A a E w > ( x  < y V y x)). 
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4.66. Induction on a in ( x ) (x  -- a A a E w Inf(Y)  > x S Y) .  
4.67. Use proposition 4.24(3). 
4.68. Use Exercise 4.17(2). 
4.69. xy c 9 ( y  X x). 
4.71. (a) Let Z be a set such that every non-empty set o f  subsets o f  Z has a 

minimal element. Assume Inf(Z). Let Y be the set o f  all infinite subsets 
o f  Z. Then Y is a non-empty set o f  subsets o f  Z without a minimal 
element. 

(b) Prove by induction that, for all a in w, any non-empty subset of  T ( a )  
has a minimal element. The result then cames over to non-empty 
subsets o f  9 ( z ) ,  where z is any finite set. 

4.72. (a) Induction on a in ( x ) (x  1: a A a E w A Den(y) > Den(x u y)). 
(b) Induction on a in (x)(x  -- a A x # 0 A Den(y) 3 Den(x x y)). 
(c)  Assume z x and Den(z). Let z 7 a.  Define a function g on x: 

g'u = u if u E x - z ;  g'u = n(Cf';)') if u E z. (ii) Assume x Dede- 
kind-infinite. Assume z c x and x -- c z. Let u E x - z. Define a func- 

J 

tion h on w such that h'O = u and h6(a') = f'(h6a) if a E w. Then h is 
one-one; so, Den(h"o) and h"w C x. 

(d)  Assume y @ x. ( i)  Assume x u { y )  7 x. Define by induction a func- 

tion g on w such that g'O = y and g'(n + 1) = f'(g6n). g is a one-one 
function from w into x. Hence, x contains a denumerable subset, and, 
by Part (c), x is Dedekind-infinite. (ii) Assume x Dedekind-infinite. 
Then, by Part (c), there is a denumerable subset z o f  x. Assume z --a. f 

Let co = Cf-'YO. Define a function F as follows: F'u = u for u E ; - 
z ;  FLcO = y ;  F'u = Cf-l)'(Cf'u) - 1 )  for u E z - {c0). Then x -- F x u 
{ y ) .  I f  z is {c0, cl, c2, . . . ), F takes ci+, into ci and moves co into y. 

(e) Assume w S x. By Part (c) x is Dedekind-infinite. Choose y @ x. By 
Part (d), x 1: x u { y ) .  Hence, x +,1 = ( x  x ( 0 ) )  u ( (0 ,  1 ) )  -- x u 
{ Y >  -- x.  

4.74. NBG is finitely axiomatizable and has only the binary predicate letter A:. 
The argument on p. 205 shows that NBG is recursively undecidable. Hence, by 
Proposition 3.47, the predicate calculus with A: as its only predicate letter is 
recursively undecidable. 

4.75. (a) Assume x S w,. I f  2 S x,  then, by Proposition 4.32(b) and Proposition 
4.35, w, S x u w, S x x w, 4 w, X w, -- w,. I f  x contains one ele- 
ment, use Exercise 4.72(c), (d). 

(b) Use Corollary 4.36. 
4.78. (a) 9 (a,) x 9 (a,) -- 2". x 2". -- 2"~+c% 1: 2". -- 9 (a,). 

(b) ( 9  (a,))" -- (2%)" -- 2"- X x  -- 2". -- 9 (a,). 
4.79. (a) I f  y were non-empty and finite, y -- y +,y would contradict Exercise 

4.67. 
(d)  By Part (c), lety = u u u, u n u = 0, u -- y,  u -- y. Let y I: u. Define 

J 

a function g on 9 ( y )  as follows: for x y ,  let g'x = u u W x ) .  Then 
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g'x c y and y 1: u S g'x S y. Hence, g'x -- y. So, g is a one-one 
function from 9(y)  into A = {ZJZ c y A z N y). Thus, T(y)  S A.  
Since A C T(y), @ 4 T(y). 

(e) Use Part (d). {LIZ C y A z = y )  C {LIZ C y A Inf(z)). 
(f) By Part (c), let y = u u u, u n u = 0, u 1: y, u -- y. Let u 7 u. Define 

h 
f on y as follows: f'x = h'x if x E u and f'x = (hK1)'x if x E u. 

4.80. (a) Use Proposition 4.32(b). 
(b) (i) Perm(y) yY S (2Y)Y -- 2YXY N 2Y 1: T(y). 

(ii) By Part (a), we may use Exercise 4.79(c). Let y = u u u, u n u = 0, 
u e y ,  u ~ y .  Let u--u  and y1:u. Define a function F :  9 ( y ) +  

H G 
Perm(y) in the following way. Assume z E 9(y). Let J; : y -+ y be 
defined as follows: #='x = H'x if x E GLLz; IC;'x = (H -')'x if 
(H-')'x E G"z; &'x = x otherwise. Then #z C; Perm(y). Let F'z = 
#=. F is one-one. Hence, 9 (y) S Perm(y). 

4.81. (a) Use (W.O.) and Proposition 4.17. 
(b) The proof of 1 Zorn 1 (W.O.) in Proposition 4.37 uses only this special 

case of Zorn's Lemma. 
(c) To prove the Hausdorff Maximal Principle (HMP) from Zorn, consider 

some c -chain Co in x. Let y be the set of all c -chains C in x such 
that Co C C, and apply Part (b) toy. 

Conversely, assume (HMP). To prove (b), assume that the union of 
each non-empty c -chain in a given non-empty set x is also in x. By 
(HMP) applied to the c -chain 0, there is some maximal c -chain C 
in x. Then U(C) is an c -maximal element of x. 

(d) Assume the Teichmiiller-Tukey Lemma 0. To prove Part (b), 
assume that the union of each non-empty c -chain in a given non- 
empty set x is also in x. Let y be the set of all c -chains in x. y is easily 
seen to be a set of finite character. Therefore, y contains an c - 
maximal element C. Then U(C)  is an c -maximal element of x. 

Conversely, let x be any set of finite character. In order to prove 
0 by means of Part (b), we must show that, if C is an c -chain in x, 
then U(C) E x. By the finite character of x, it suffices to show that 
every finite subset z of U(C)  is in x. Now, since z is finite, z is a subset 
of the union of a finite subset W of C. Since C is an c -chain, W has 
an c -greatest element w E x, and z is a subset of w. Since x is of 
finite character, z E x. 

(e) Assume Rel(x). Let u = {zJ(Eu)(u E 9 ( x )  A z = {u)lx),  that is, z E 
u if z is the set of all ordered pairs (u, w) in x, for some fixed u. Apply 
the Multiplicative Axiom to u. The resulting choice set y C x is a 
function with domain 9 (x). 

Conversely, the given property easily yields the Multiplicative 
Axiom. If x is a set of disjoint non-empty sets, let r be the set of all 
ordered pairs (u, u) such that u E x and u E u. By Part (e), there is a 
function f C r such that QCf) = 9 ( r )  = x. The range %Cf) is the 
required choice set for x. 
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( f )  By Trichotomy, either x < y or y < x. If x < y, there is a function 
with domain y and range x. (Assume x -- y, 5 y. Take c E x. Define 

f 

g'u = c if u E y - y,, and g'u = Cf-')'u\f u E y,.) Similarly, if y < x, 
there is a function with domain x and range y. 

Conversely, to prove (W.O.), apply the assumption ( f )  to x and 
3C6(9(x)). Note that, if (Ef)Cf:u -+ u A %(f) = u), then 9(o)  < T(u). 
Therefore, if there were a function f from x onto 3C6(9(x)), we would 
have 3C '(9 (x)) < 9 (3CG(9 (x))) < 9 (x), contradicting the definition 
of 3C6(9(x)). Hence, there is a function from 3C6(9(x)) onto x. Since 
3C6(9 (x)) is an ordinal, one can define a one-one function from x into 
3C6(9 (x)). Thus, x < 3CC(9 (x)), and, therefore, x can be well-ordered. 

4.84. If < is a partial ordering of x, use Zorn's Lemma to obtain a maximal 
partial ordering < * of x with < c < *. But a maximal partial ordering must be a 
total ordering. (For, if u, u were distinct elements of x unrelated by < *, we could 
add to < * all pairs (u,, u,) such that u, < *u and u < *u,. The new relation 
would be a partial ordering properly containing < *.) 

4.87. (b) S i n c e ~ x y 1 : x + ~ y , x X y = a u  b w i t h a n  b = O , a - - x , b - - y .  
Let r be a well-ordering of y. (i) Assume there exists u in x such that 
(u, u) E a for all u in y. Then y S a. Since a 1: x, y S x, contradict- 
ing - (y S x). Hence, (ii) for any u in x, there exists u in y such that 
(u, u) E b. Define j : x -+ b such that f'u = (u, u), where u is the 
r-least element of y such that (u, u) E b. Since f is one-one, x 4 b 1: 
Y. 

(c) Clearly Inf(z) and Inf(x +,z). Then 

Therefore, x X z S 2 X (x X z) S x +,2 X (x X z) +,z 2: x +,z. 
Conversely, x +,z S x x z by Proposition 4.32@). 

(d) If (AC) holds, (y)(Inf(y) II y -- y x y) follows from Proposition 4.35 
and Exercise 4.81(a). Conversely, if we assume y = y  x y for all 
infinite y, then, by Parts (c) and (b), it follows that x S 3C'x for any 
infinite set x. Since 3C'x is an ordinal, x can be well-ordered. Thus, 
(W.0) holds. 

4.89. (a) Let < be a well-ordering of the range of r. Let f'O be the < -least 
element of %(r), and let f'(nl) be the < -least element of those u in 
%(r) such that vn, u) E r. 

(b) Assume Den(x) A (u)(u E x 3 u # 0). Let w -- g x. Let r be the set of 

all pairs (a, b) such that a and b are finite sequences (uo, u,, . . . ,on) 
and (uo, ul, . . . , on+ ,) such that, for 0 < i < n + 1, ui E g'i. Since 
%(r) 9 (r), (PDC) produces a function h : o -+ $0 (r) such that 
(h'n, hS(n')) E r for all n in o. Define the choice function f by taking, 
for each u in x, f'u to be the ( g ' ~ ) t h  component of the sequence 
h'(g6u). 
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(c) Assume (PDC) and Inf(x). Let r consist of all ordered pairs (u, u u 
(a)), where u u (a )  L x, Fin(u u (a) ) ,  and a B u. By (PDC), there 
is a function f : o + Oi)(r) such that (f'n, f'(n')) E r for all n in a. 
Define g : o + x by setting g'n equal to the unique element of 
f'(nl) - f'n. Then g is one-one, and so, o < x. 

(d) In the proof of Proposition 4.39(2), instead of using the choice function 
h, apply (PDC) to obtain the functionf. As the relation r, use the set of 
all pairs (u, o) such that u E c, o E c, u E u n X. 

4.90. Use transfinite induction. 
4.93. Induction on 8. 
4.94-4.95. Use transfinite induction and Proposition 4.90. 

4.97. Assume u c_ H .  Let o be the set of ranks p'x of elements x in u. Let 
= U(u). Then u L 9'8. Hence, u E 9(\k'B) = \k6(B') c_ H .  
4.98. Assume X # 0 A - (Ey)(y E X A y n X = 0). Choose u E X. Define a 

function g : g'O = u n X, g6(n') = (U(g'n)) n X. Let x = U(A(g)). Then x # 0 
and (y)(y E x 2 y n x # 0). 

4.103. Hint: Assume that the other axioms of NBG are consistent and that the 
Axiom of Infinity is provable from them. Show that H, is a model for the other 
axioms but not for the Axiom of Infinity. 

104. Use H,,,. 

Chapter 5 
5.1. (a) Any word P is transformed into QP. 

(b) Any word P in A is transformed into PQ. 
(c) Any word P in A is transformed into Q. 
(d) Any word P in A is transformed into 5, where n is the number of 

symbols in P. 

5.2. (a) a 5 j . A  ([inA) 
a + - A  
A + a  
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5.4. (d) 1 1 + 
* + I  

(e) 1 1 + 1  
(f) Let a ,  8 ,  S be new symbols. 

5.6. In the notation of the proof of Proposition 5.10, let cp(e, x) = py(W,(x) A 
Der(e, x, y)) V - W,(x)) and #(e, x) = (cp(e, x)),,(~,, .))- ,. If e is the index of an 
algorithm schema for an algorithm B in A and if x is the Godel number of a word 
P in A, then #(e, x) is the Godel number of the word B(P) if B(P) is defined; 
otherwise, #(e, x) is not defined. Let 6 be a normal algorithm over M computing 
#(e, x). Let 55, be the normal algorithm over M of p. 235, and let J be the identity 
algorithm in A u M. By Corollary 5.2, there is a juxtaposition algorithm - 3 such 
that, for any natural number e and any word P in A, 3(E P )  = E g(P). Let Zz 
be the algorithm of Exercise 5.5. Let b be the composition B2 6 3. 

5.7. Let cp(x,, . . . , x,,) be a total partial recursive function. By Proposition 5.8, cp 
is Markov-computable. Hence, by Corollary 5.1 1, cp is recursive. 

5.8. Since two fully equivalent algorithms are equivalent, one direction is easy. 
Assume that every algorithm in A is equivalent relative to A to some normal 
algorithm over A. Let % be an algorithm in A. Then B is equivalent relative to A to 
some normal algorithm b. Let the alphabet of b be B 2 A. Let 3 be a normal 
algorithm in B such that S(P) is defined only for words P in A, and 3(P)  = P for 
all words P in A. (Its schema is 5. + 5 (5 in B - A).) Then B is fully equivalent 
relative to A to 3 0 23. 

5.9. (b) 
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5.11. For example, U23 is computable by the Turing machine 

90 1 so90 92 1 Rq2 
90 So R ~ I  92 SO R93 
41 l1 90 93 I S 0 ~ 4  

91 S o  Rq2 94 1 1 93 

90 1 s o  90 94 s o  L 95 
90 S o  R 9, 95 1 L 95 
41 I It 91 95 96 
41 92 96 97 
92 I I? 93 96 910 
92 4s 910 So R 911 
9s I It 98 411 S0q12 
98 49 912 So 911 
93 1 R 93 911 So  R 99 
93 so L 94 97 1 L 97 
94 1 so 94 97 So R 90 

5.14. (a) 6(x) 
(b) x1- x2 
(c) The function with empty domain. 
(d) The function with domain the set of even natural numbers and with 

value 0. 
5.15. (a) f ? ( x ~ ,  0) = X I  
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5.17. Let f(x) be a recursive function. 
I 

(a) Assume B r.e., and let C be the inverse image of B under f. By 
I 
I Proposition 5.20(1), (u)(u E B - (Ey)R(u, y)), for some recursive rela- 

tion R. Then R(f(x), y)  is recursive, and (x)(x E C - 
is r.e. (Ey)(R(f(x), y))). By Proposition 5.20(1), C ' 

(b) Let B be a recursive set, and let D be the inverse image of B under f. 
Then x E D if and only if C,( f(x)) = 0, and C,( f(x)) = 0 is a recur- 
sive relation. 

(c) Let B be r.e., and let A be the image of B under f, that is, the range off 
restricted to B. If B is empty, so is A. If B is non-empty, then B is the 
range of a recursive function g. Then A is the range of the recursive 
function f(g(x)). 

(d) Any non-empty r.e. set which is not recursive (such as that of Proposi- 
tion 5.20(5)) is the range of a recursive function g, and is, therefore, the 
image of the recursive set w of all natural numbers under the function 
g. 

5.18. (a) Let A be an infinite recursive set. Then A is the range of a recursive 
function f, by Proposition 5.20(4). Since A is infinite, h(u) = py( f(y) > 
u) is recursive. Let a. be the least element of A. Define g(0) = ao, 
g(n + 1) = f(h(g(n)). Then g is a strictly increasing function with 
range A.  

(b) Let A be the range of a strictly increasing recursive function g. Then 
g(x) x for all x (by the special case of Proposition 4.14, p. 191). 
Hence, x E A if and only if (Eu),<,g(u) = x. So, A is recursive by 
Proposition 3.17. 

5.19. Assume A is an infinite r.e. set. Let A be the range of the recursive function 
g(x). Define the function f by the following course-of-values recursion (p. 146): 

f(n> = g ( ~ ~ ( ( z ) z < n  g(y) +f(z))) = g(p~((z)z<n g(y) + (f#(n))z)). 
Then A is the range of h, h is one-one, and h is recursive by Propositions 3.17 and 
3.19. Intuitively, f(0) = g(0) and, for n > 0, f(n) = g(y), where y is the least 
number for which g(y) is different from f(O), f(l), . . . , f(n - 1). 

5.20. Let A be an infinite r.e. set, and let A be the range of the recursive function 
g. Since A is infinite, F(u) = py(g(y) > u) is a recursive function. Define G(0) = 
g(O), G(n + 1) = g(py(g(y) > G(n))) = g(F(G(n))). G is a strictly increasing re- 
cursive function whose range is infinite and included in A .  By Exercise 5.18, the 
range of G is an infinite recursive subset of A. 

5.21. Assume A and B are r.e. Then, by Proposition 5.20(1), x E A = 
(Ey)R(x, y) and x E B - (Ey)S(x, y), where R and S are recursive relations. 
Then x E A u B - (Ey)(R(x, y) V S(x,y)), and so, A u B is r.e. by Proposition 
5.20(1). Moreover, x E A n B = (Ey)(Ez)(R(x, y) A S(x, z)), and the right-hand 
side of this equivalence is equivalent to (Eu)(R(x, (u),) A S(x, (u),)). So, A n B is 
r.e. by Proposition 5.20(1). The existence of an r.e. set A for which w - A is not r.e. 
follows from Proposition 5.20(4, 5). 

5.22. Assume ($). Let f(x1, . . . , x,) be effectively computable. Then the set 
B = (ul f((u),, . . . , (u),) = (u),, 1) is effectively enumerable, and, therefore, 
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by ($), r.e. Hence, u E B - (Ey)R(u, y )  for some recursive relation R. Then 

So, f  is recursive. Conversely, assume Church's Thesis and let W be an effectively 
enumerable set. If W is empty, then W is r.e. If W is non-empty, let W be the range 
of the effectively computable function g. By Church's Thesis, g is recursive. But 
x E W = (Eu)(g(u) = x). Hence, W is r.e. by Proposition 5.20(1). 

5.23. @) Let A be r.e. Then x E A = (Ey)R(x,  y ) ,  where R is recursive. Let 
%(x,  y )  express R(x, y )  in K .  Then 

k E A - t , ( ~ ~ ) % ( k ,  y ) .  

(c) Assume k E A =tK@O<) for all natural numbers k.Then k E A r 
(Ey)Bw, (k, y) ,  and Bwdx,  y )  is recursive (cf. p. 157). 

5.24. (a) Clearly T K  is infinite. Let f(x)  be a recursive function with range T K .  
Let A,, A , ,  . . . be the theorems of K, where 53,. is the wf of K with 
Godel number fb) .  Let g(x, y )  be the recursive function such that, if x 
is the Godel number of a wf C?, then g(x, j )  is the Godel number of the 
conjunction C? A C? A . . . A C? consisting of J conjuncts; and, other- 
wise, g(x, J] = 0. Then g ( f b ) ,  J )  is the Godel number of the j-fold 
conjunction A, A A, A A - . A A,. Let K' be the theory whose axioms 
are all these ;-fold conjunctions, for J = 0, 1, 2, . . . . Then K' and K 
have the same theorems. Moreover, the set of axioms of K' is recursive. 
In fact, x is the Godel number of an axiom of K' if and only if 
x # 0 A (Ey),,<,(g(f(y), y )  = x). From an intuitive standpoint using 
Church's Thesis, we observe that, given any wf @, one can decide 
whether @ is a conjunction C? A C? A - . . A C?; if it is such a conjunc- 
tion, one can determine the number J of conjuncts and check whether 
C? is A,. 

Part (b) follows from Part (a). 
5.25. Let cp(n) = n for all n. 
5.26. If +(x)  were a recursive function which is an extension of pyTI(x, x, y ) ,  

then (Ey)Tl (x ,  x, y )  would be equivalent to T l ( x ,  x, +(x)), which is recursive. 
5.27. Let cp(z) = ~ f ( ~ [ T ~ ( z ,  A o f ( y )  > 2z]) ,  and let B be the 

range of cp. 
5.33. (a) Assume A ( x , )  weakly expresses (Td* in K. Then, for any n, t K A  (ii) 

if and only if n E (TK)*. Let p be the Godel number of A (x , ) .  Then 
t K A  @) if and only if p E (Td* Hence, t K A  @) if and only if the 
Godel number of A @) is in T K .  I.e., t K A  @) if and only if not- 
~ K A  @)- 

(b) If K is recursively decidable, TK is recursive. Hence, T K  is recursive, 
and, by Exercise 5.32, @K)* is recursive. So, (Td* is weakly express- 
ible in K, contradicting Part (a). 

(c) Use Part (b); every recursive set is expressible, and, therefore, weakly 
expressible, in everv consistent extension of K. 

534. Let T b e  a Turing machine which computes pyTI(x, x, y) .  Use Proposition 
5.19(3). 

5.36. Assume f  is recursive. Let h(z) = py(y < z ) .  Then h is partial recursive, 
and h(z)  = 0 if z  # 0, and h(z) is undefined if z  = 0. Hence, the composition 
h(f(z))  is partial recursive, and 

undefined if +;(z )  is defined 
0 if & ( z )  is undefined 

Then h(f(z))  = +k(z) for some k .  So, we obtain the contradiction: 

undefined if +k(k)  is defined, 
h(k)  = h ( f ( k ) )  = (0 if +k(k) is undefined. 
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