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PREFACE

Is it fun to solve problems, and is solving problems about something a good
way to learn something? The answers seem to be yes, provided the prob-
lems are neither too hard nor too easy.

The book is addressed to students (and teachers) of undergraduate lin-
ear algebra—it might supplement but not (I hope) replace my old Finite-
Dimensional Vector Spaces. It largely follows that old book in organization
and level and order—but only “largely”—the principle is often violated.
This is not a step-by-step textbook—the problems vary back and forth be-
tween subjects, they vary back and forth from easy to hard and back again.
The location of a problem is not always a hint to what methods might be
appropriate to solve it or how hard it is.

Words like “hard” and “easy” are subjective of course. I tried to make
some of the problems accessible to any interested grade school student,
and at the same time to insert some that might stump even a professional
expert (at least for a minute or two). Correspondingly, the statements of
the problems, and the introductions that precede and the solutions that
follow them sometimes laboriously explain elementary concepts, and, at
other times assume that you are at home with the language and attitude of
mathematics at the research level. Example: sometimes I assume that you
know nothing, and carefully explain the associative law, but at other times
I assume that the word “topology”, while it may not refer to something that
you are an expert in, refers to something that you have heard about.

The solutions are intrinsic parts of the exposition. You are urged to
look at the solution of each problem even if you can solve the problem with-
out doing so—the solution sometimes contains comments that couldn’t be
made in the statement of the problem, or even in the hint, without giving
too much of the show away.
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I hope you will enjoy trying to solve the problems, I hope you will learn
something by doing so, and I hope you will have fun.
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CHAPTER 1

SCALARS

1. Double addition
Is it obvious that
63 + 48 = 27 + 84?7

It is a true and thoroughly uninteresting mathematical statement that can
be verified in a few seconds—but is it obvious? If calling it obvious means
that the reason for its truth is clearly understood, without even a single
second’s verification, then most people would probably say no.

What about

(27 + 36) + 48 = 27 + (36 + 48)

—is that obvious? Yes it is, for most people; the instinctive (and correct)

_ reaction is that the way the terms of a sum are bunched together cannot

affect the answer. The approved technical term is not “bunch together” but
“associate”; the instinctive reaction is a readiness to accept what is called
the associative law of addition for real numbers. (Surely every reader has
noticed by now that the non-obvious statement and the obvious one are in
some sense the same:

63=27+36 and 84=36+48)

Linear algebra is concerned with several different kinds of operations
(such as addition) on several different kinds of objects (not necessarily real
numbers). To prepare the ground for the study of strange operations and to
keep the associative law from being unjustly dismissed as a triviality, a little
effort to consider some good examples and some bad ones is worthwhile.
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Some of the examples will be useful in the sequel, and some won’t—some
are here to show that associativity can fail, and others are here to show that
evenwhen it holds it may be far from obvious. In the world of linear algebra
non-associative operations are rare, but associative operations whose good
behavior is not obvious are more frequently met.

Problem 1. Ifa new addition for real numbers, denoted by the tem-
porary symbol [+), is defined by

alt|8=2a+25,
is associative?

Comment. The plus sign on the right-hand side of the equation denotes
ordinary addition.
Note: since ordinary addition is commutative, so that

20+ 28 =283+ 2a,
it follows that
a[¥]8=p8F]a

Conclusion: the new addition is also commutative.

2. Half double addition

Problem 2. If a new addition for real numbers, denoted by the tem-
porary symbol [+), is defined by

a[+]=2a+5,
is associative?

Comment. Since 2a + (3 is usually different from 23 + q, this is not
commutative.

3. Exponentiation

Problem 3. Ifan operation for positive integers, denoted by the tem-
porary symbol , is defined by

a*ﬂ:a‘@,

is it commutative? Is it associative?

SCALARS 3

4. Complex numbers

Suppose that an operation is defined for ordered pairs of real numbers,
that is for objects that look like {c, 3} with both @ and 3 real, as follows:

(. 8) [£] (7,6) = (@ +7,8+6).

Is it commutative? Sure, obviously—how could it miss? All it does is perform
the known commutative operation of addition of real numbers twice, once for
each of the two coordinates. Is it associative? Sure, obviously, for the same
reason.

The double addition operations in Problems 1 and 2 are artificial; they
were cooked up to make a point. The operation of exponentiation in Problem
3 is natural enough, and that is its point: “natural” operations can fail to be
associative. The coordinatewise addition here defined for ordered pairs is a
natural one also, but it is far from the only one that is useful.

Problem 4. If an operation for ordered pairs of real numbers,
denoted by the temporary symbol [-], is defined by

is it commutative? Is it associative?
Comment. The reason for the use of the symbol [] (instead of [+]) is
twofold: it is reminiscent of multiplication (instead of addition), and it avoids

confusion when the two operations are discussed simultaneously (as in many
contexts they must be).

5. Affine transformations

Looking strange is not necessarily a sign of being artificial or useless.

Problem 5. If an operation for ordered pairs of real numbers,
denoted by [-] again, is defined by

(o, ) [] (7,8) = (ay, 26 + B),

is it commutative? Is it associative?

6. Matrix multiplication

The strange multiplication of Problem 5 is a special case of one that is more
complicated but less strange.
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Problem 6. If an operation for ordered quadruples of real num-
bers, denoted by [-], is defined by

(a,8,7,8) [1 (', 8,7, 6
= (ad’ + By, a8 + B8, v’ + 89,78 + 68"),

is it commutative? Is it associative?

Comment. How is the multiplication of Problem 5 for ordered pairs a “spe-
cial case” of this one? Easy: restrict attention to only those quadruples
{a,B,7,8) for which v = 0 and § = 1. The [] product of two such
special quadruples is again such a special one; indeed if v = 7' = 0 and
6 =4 =1, then yo/ + 6" = 0 and /3’ + 66’ = 1. The first two coordinates
of the product are aa’ and a§’ + (3, and that’s in harmony with Problem 5.

Another comment may come as an additional pleasant surprise: the mul-
tiplication of complex numbers discussed in Problem 4 is also a special case
of the quadruple multiplication discussed here. Indeed: restrict attention to
only those quadruples that are of the form

<a7ﬂ7 —6,&),

and note that

(Ot, 6> _)8; a) I:l <’7y 67 =7 6) = (0[")’ - Bé, CY6 + 675 _ﬁ7 - 056, —:56 + O"Y)

—in harmony with Problem 4.

7. Modular multiplication

Define an operation, denoted by [-], for the numbers 0, 1, 2, 3, 4, 5 as
follows: multiply as usual and then throw away multiples of 6. (The technical
expression is “multiply modulo 6”.) Example: 4[-]5 =2 and 2[-] 3 = 0.

Problem 7. Is multiplication modulo 6 commutative? Is it asso-
ciative? What if 6 is replaced by T: do the conclusions for 6 remain
true or do they change?

8. Small operations

Problem 7 shows that interesting operations can exist on small sets. Small
sets have the added advantage that sometimes they can forewarn us about
some dangers that become more complicated, and therefore harder to see,
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when the sets get larger. Another reason small sets are good is that op-
erations on them can be defined in a tabular manner that is reassuringly
explicit.

Consider, for instance, the table

N o= o X
o o oo
N o= O
[ IR =N I )

which defines multiplication modulo 3 for the numbers 0, 1, 2. The infor-
mation such tables are intended to communicate is that the product of the
element at the left of a row by the element at the top of a column, in that
order, is the element placed where that row and that column meet. Exam-
ple: 2 x 2 = 1 modulo 3.

It might be worth remarking that there is also a useful concept of ad-
dition modulo 3; it is defined by the table

N o= O+
[ SR o B e
= o |

1
1
2
0

It’s a remarkable fact that addition and multiplication modulo 3 possess
all the usually taught properties of the arithmetic operations bearing the
same names. They are, for instance, both commutative and associative,
they conspire to satisfy the distributive law

ax (B+7)=(axp)+(axy),

they permit unrestricted subtraction (so that, for example, 1 — 2 = 2), and
they permit division restricted only by the exclusion of the denominator 0
(so that, for example, 3 = 2). In a word (officially to be introduced and
studied later) the integers modulo 3 form a field.

Problem 1 is about an operation that is commutative but not associa-
tive. Can that phenomenon occur in small sets?

Problem 8. Is there an operation in a set of three elements that is
commutative but not associative?
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9. Identity elements

The commonly accepted attitudes toward the commutative law and the
associative law are different. Many real life operations fail to commute;
the mathematical community has learned to live with that fact and even to
enjoy it. Violations of the associative law, on the other hand, are usually

considered by specialists only. Having made the point that the associative

law deserves respect, this book will concentrate in the sequel on associative
operations only. The next job is to see what other laudable properties such
operations can and should possess.

The sum of 0 and any real number « is « again; the product of 1 and
any real number « is a again. The phenomenon is described by saying that
0 and 1 are identity elements (or zero elements, or unit elements, or neutral
elements) for addition and multiplication respectively. An operation that
has an identity element is better to work with than one that doesn’t. Which
ones do?

Problem 9. Which of the operations
(1) double addition,
(2) half double addition,
(3) exponentiation,
(4) complex multiplication,
(5) multiplication of affine transformations,
(6) matrix multiplication,
and
(7) modular addition and multiplication
have an identity element?

In the discussion of operations, in Problems 1-8, the notation and
the language were both additive (+, sum) and multiplicative (x, prod-
uct). Technically there is no difference between the two, but traditionally
multiplication is the more general concept. In the definition of groups, for
instance (to be given soon), the notation and the language are usually mul-
tiplicative; the additive theory is included as a special case. A curious but
firmly established part of the tradition is that multiplication may or may
not be commutative, but addition always is. The tradition will be followed
in this book, with no exceptions.

An important mini-theorem asserts that an operation can have at most
one identity element. That is: if x is an operation and both £ and ¢’ are
identity elements for it, so that

EXa=aXeE=0 and Egxa=axe =a

SCALARS 7

for all o, then

Proof. Use ¢ itself for « in the equation involving ¢, and use ¢ for a in
the equation involving €’. The conclusion is that € x ¢’ is equal to both €
and ¢', and hence that ¢ and ¢’ are equal to each other.

Comment. The proof just given is intended to emphasize that an identity
is a two-sided concept: it works from both right and left.

10. Complex inverses

Is there a positive integer that can be added to 3 to yield 87 Yes.

Is there a positive integer that can be added to 8 to yield 3? No.

In the well-known language of elementary arithmetic: subtraction
within the domain of positive integers is sometimes possible and some-
times not.

Is there a real number that can be added to 5 to yield 0? Yes, namely
—5. Every real number has a negative, and that fact guarantees that within
the domain of real numbers subtraction is always possible. ('To find a num-
ber that can be added to 8 to yield 3, first find a number that can be added
to 3 to yield 8, and then form its negative.)

The third basic property of operations that will be needed in what fol-
lows (in addition to associativity and the existence of neutral elements)
is the possibility of inversion. Suppose that « is an operation (a temporary
impartial symbol whose role in applications could be played by either addi-
tion or multiplication), and suppose that the domain of * contains a neutral
element ¢, so that € x & = a * € = a for all z. Under these circumstances
an element S is called an inverse of z ( * inverse) if

axf=03xa=c¢.

Obvious example: every real number « has a + inverse, namely —a. Wor-
risome example: not every real number has a x inverse. The exception is
0; there is no real number 3 such that 0 x 3 = 1. That is the only exception:
if o # 0, then the reciprocal a=! (= 1) is a x inverse. These examples are
typical. The use of additive notation is usually intended to suggest the ex-
istence of inverses (+ inverses, negatives) for every element, whereas for
multiplicatively written operations some elements can fail to be invertible,
that is, can fail to possess inverses (x inverses, reciprocals).

10
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The definition of * inverse makes sense in complete generality, but
it is useful only in case x is associative. The point is that for associative
operations an important mini-theorem holds: an element can have at most
one inverse. That is: if both 3 and -y are * inverses of «, so that

axf=0B*xa=¢ and axy=v*ka=¢,

then 8 = ~. Proof: combine all three, v, and a, and 3, in that order, and’

use the associative law. Looked at one way the answer is

Tr(a*xB)=yxe=",
whereas the other way it is
(yxa)xB=exB=p.
The conclusion is that the triple combination +y * a * 3 is equal to both

and 3, and hence that -y and § are equal to each other.

Problem 10. For complex multiplication (defined in Problem 4),
which ordered pairs {a, 3) are invertible? Is there an explicit formula
for the inverses of the ones that are?

11 11. Affine inverses

Problem 11. For the multiplication of affine transformations (de-
fined in Problem 5), which ordered pairs (o, B) are invertible? Is there
an explicit formula for the inverses of the ones that are?

12 12. Matrix inverses

Problem 12. Which of the 2 x 2 matrices

a B

v 6
(for which multiplication was defined in Problem 6) are invertible?
Is there an explicit formula for the inverses of the ones that are?

13 13. Abelian groups

Numbers can be added, subtracted, multiplied, and (with one infamous ex-
ception) divided. Linear algebra is about concepts called scalars and vec-
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tors. Scalars are usually numbers; to understand linear algebra it is neces-
sary first of all to understand numbers, and, in particular, it is necessary to
understand what it means to add and subtract them. The general concept
that lies at the heart of such an understanding is that of abelian groups.

Consider, as an example, the set Z of all integers (positive, negative,
or zero) together with the operation of addition. The sum of two integers
is an integer such that:

addition is commutative, meaning that the sum of two integers is in-
dependent of the order in which they are added,

r+y=y+ux;

addition is associative, meaning that the sum of three integers, pre-
sented in a fixed order, is independent of the order in which the two addi-
tions between them are performed,

@+y)+z=z+(y+2);

the integer 0 plays a special role in that it does not change any integer
that it is added to,

z+0=0+z=u;

and every addition can be “undone” by another one, namely the addi-
tion of the negative of what was just added,

z+(—z)=(-z)+x=0.

This example is typical. The statements just made about Z and + are
in effect the definition of the concept of abelian group. Almost exactly the
same statements can be made about every abelian group; the only differ-
ences are terminological (the words “integer” and “addition” may be re-
placed by others) and notational (the symbols 0 and + may be replaced by
others).

Another example is the set Z;2 consisting of the integers between 0
and 11 inclusive, with an operation of addition (temporarily denoted by *)
defined this way: if the sum of two elements of Z» (in the ordinary meaning
of sum) is less than 12, then the new sum is equal to that ordinary sum,

Try=2z+y,

but if their ordinary sum is 12 or more, then the new sum is the ordinary
sum with 12 subtracted,

cxy=x+y-—12.
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The operation * is called addition medulo 12, and is usually denoted by
just plain +, or, if desired, by + followed soon by an explanatory “mod
12”. The verification that the four typical sentences stated above for Z are
true for Z;2 is a small nuisance, but it’s painless and leads to no surprises.
(The closest it comes to a surprise is that the role of the negative of x is

played by 12 — z.)

Here is another example of an abelian group: the set R, of positive

real numbers, with an operation, temporarily denoted by *, defined as or-
dinary numerical multiplication:

Ty = TY.

Everybody believes commutativity and associativity; the role of zero is
played this time by the real number 1,

zxl=1xzx =1z,

and the role of the negative of z is played by the reciprocal of z

() (2)e

The general definition of an abelian group should be obvious by now:
it is a set G with an operation of “addition” defined in it (so that when-
ever z and y are in G, then z + y is again an element of G), satisfying the
four conditions discussed above. (They are: commutativity; associativity;
the existence of a zero; and, corresponding to each element, the existence
of a negative of that element.)

The word “abelian” means exactly the same as “commutative”. If an
operation in a set satisfies the last three conditions but not necessarily the
first, then it is called a group. Non-commutative groups also enter the study
of linear algebra, but not till later, and not as basically as the commutative
ones.

Problem 13. (a) If a new operation « is defined in the set R, of
positive real numbers by

x *y = min{(z, y),

does R become an abelian group?
(b) If an operation x is defined in the set {1,2, 3,4, 5} of positive
integers by

z * y = max(z,y),

does that set become an abelian group?

SCALARS 11

(©) If z and y are elements of an abelian group such that T +y =
v, does it follow that = = 0?

Comment. The abbreviations “min” and “max” are for minimum and
maximum; min(2, 3) = 2, max(—2, —3) = —2, and min(5, 5) = 5.

Parts (a) and (b) of the problem test the understanding of the defini-
tion of abelian group. The beginning of a systematic development of group
theory (abelian or not) is usually a sequence of axiom splitting delicacies,
which are fussy but can be fun. A sample is the mini-theorem discussed in
Problem 9, the one that says that there can never be more than one ele-
ment that acts the way 0 does. Part (c) of this problem is another sample
of the same kind of thing. It is easy, but it’s here because it is useful and,
incidentally, because it shows how the defining axioms of groups can be
useful. What was proved in Problem 9 is that if an element acts the way 0
does for every element, then it must be 0; part (c) here asks about elements
that act the way 0 does for only one element.

14. Groups

According to the definition in Problem 13 a set endowed with an operation
that has all the defining properties of an abelian group except possibly the
first, namely commutativity, is called just simply a group. (Recall that the
word “abelian” is a synonym for “commutative”.) Emphasis: the operation
is an essential part of the definition; if two different operations on the same
set both satisfy the defining conditions, the results are regarded as two
different groups.

Probably the most familiar example of an abelian group is the set Z
of all integers (positive, negative, and zero), or, better said, the group is
the pair (Z, +), the set Z together with, endowed with, the operation of
addition. It is sometimes possible to throw away some of the integers and
still have a group left; thus, for instance, the set of all even integers is a
group. Throwing things away can, however, be dangerous: the set of pos-
itive integers is not an additive group (there is no identity element: 0 is
missing), and neither is the set of non-negative integers (once 0 is put back
in it makes sense to demand inverses, but the demand can be fulfilled only
by putting all the negative integers back in too).

The set of real numbers with addition, in symbols (R, +), is a group,
but (R, x), the set of real numbers with multiplication is not—the number
0 has no inverse. The set of non-zero real numbers on the other hand, is
a multiplicative group. The same comments apply to the set C of complex
numbers. The set of positive real numbers is a group with respect to mul-

14
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tiplication, but the set of negative real numbers is not—the product of two
of them is not negative. o

Group theory is deep and pervasive: no part of mathematics is free of
its influence. At the beginning of linear algebra not much of it is needed,
but even here it is a big help to be able to recognize a group when one

enters the room.

Problem 14. Is the set of all affine transformations § — of +
(with the operation of functional composition) a group? What about
the set of all 2 x 2 matrices

a B

vy 6)°
(with matrix multiplication)? Is the set of non-zero integers modulo
6 (that is: the set of numbers 1, 2, 3, 4, 5) a group with respect to mul-

tiplication modulo 67 What if 6 is replaced by 7: does the conclusion
remain true or does it change?

Comment. The symbol -, called the barred arrow, is commonly used for
functions; it serves the purpose of indicating the “variable” that a function
depends on. To speak of “the function 2z + 3” is bad form; Wh::lt the ex-
pression 2z + 3 denotes is not a function but the value of a function at the
number z. Correct language speaks of the function

T — 2z + 3,

which is an abbreviation for “the function whose value at each = is2x+3”.

15. Independent group axioms

A group is a set with an operation that has three good properties, nam(?ly
associativity, the existence of an identity element, and the existence c.)f in-
verses. Are those properties totally independent of one another, or isit the
case that some of them imply some of the others? So, for example, must an
associative operation always have an identity element? The answer is no,
and that negative answer is one of the first things that most children lc?zfm
about arithmetic. We all learn early in life that we can add two positive
integers and get a third one, and we quickly recognize that that tlllird one
is definitely different from both of the numbers that we started w1th.—tthe
discovery of zero came to humanity long after the discovery of addition,
and it comes similarly late to each one of us. Very well then, if we have an
associative operation that does possess an identity element, does it follow
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that every element has an inverse? The negative answer to that question
reaches most of us not long after our first arithmetic disappointment (see
Problem 13): in the set {0, 1,2, 3, ...} we can add just fine, and 0 is an iden-
tity element for addition, but + inverses are hard to come by—subtraction
cannot always be done. After these superficial comments there is really
only one sensible question left to ask.

Problem 15. Can there exist a non-associative operation with an
identity element, such that every element has an inverse?

16. Fields

If, temporarily, “number” is interpreted to mean “integer”, then numbers
can be added and subtracted and multiplied, but, except accidentally as
it were, they cannot be divided. If we insist on dividing them anyway, we
leave the domain of integers and get the set Q of all quotients of integers—
in other words the set Q of rational numbers, which is a “field”.

(Does everyone know about rational numbers? A real number is called
rational if it is the ratio of two integers. In other words, z is rational just
in case there exist integers m and n such that z = 2. Examples: 2, —2,
0, 1, 10, —10, 5°. Note: % and :—ig are additional representations of the
rational number :?,; already mentioned; there are many others. Celebrated
counterexamples: v/2 and . A proof that v/2 is not rational was known to
humanity well over 2000 years ago; the news about r is only a little more
than 200 years old. That (Q, +) is a group needs to be checked, of course,
but the check is easy, and the same is true for (Q — {0}, x).)

Probably the best known example of a field is the set R of real num-
bers endowed with the operations of addition and multiplication. As far
as addition goes, R is an abelian group, and so is Q. The corresponding
statement for multiplication is not true; zero causes trouble. Since 0z = 0
for every real number z, it follows that there is no x such that 0z = 1; the
number 0 does not have a multiplicative inverse. If, however, R is replaced
by the set R* of real numbers different from 0 (and similarly Q is replaced
by the set Q* of rational numbers different from 0), then everything is all
right again: R* with multiplication is an abelian group, and so is Q*.

It surely does not come as a surprise that the same statements are true
about the set C of all complex numbers with addition and multiplication,
and, indeed, C is another example of a field. The properties of Q and R
and C that have been mentioned so far, are, however, not quite enough to
guess the definition of a field from. What the examples suggest is that a field
has two operations; what they leave out is a connection between them. It is

16
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mathematical malpractice to endow a set with two different structures that
have nothing to do with each other. In the examples already mentioned
addition and multiplication together form a pleasant and useful conspiracy
(in fact two conspiracies), called the distributive law (or laws):

alz+y)=ar+oy and (a+B)z=oaz+fz,

and once that is observed the correct definition of fields becomes guess-
able. A field is a set F with two operations + and x such that with + the
entire set F is an abelian group, with x the diminished set F* (omit 0) is
an abelian group, and such that the distributive laws are true.

(Is it clear what “0” means here? It is intended to mean the identity
element of the additive group F . The notational conventions for real num-
bers are accepted for all fields: 0 is always the additive neutral element, 1
is the multiplicative one, and, except at rare times of emphasis, multiplica-
tion is indicated simply by juxtaposition.)

Some examples of fields, less obvious than R, Q, and C, deserve men-
tion. One good example is called Q(+/2); it consists of all numbers of the
form a+3+v/2 where o and 3 are rational; the operations are the usual addi-
tion and multiplication of real numbers. All parts of the definition, except
perhaps one, are obvious. What may not be obvious is that every non-zero
element of Q(+/2) has a reciprocal. The proof that it is true anyway, obvi-
ous or no, is the process of rationalizing the denominator (used before in
Solution 10). That is: to determine ———1—, multiply both numerator and

a+ V2
denominator by o — $+/2 and get
012“ ﬂ\/§ — o _ B \/§
a?—-2062 o?2-23%2 o?-2p32

The only thing that could possibly go wrong with this procedure is that the
denominator a? — 232 is zero, and that cannot happen (unless both « and
(3 are zero to begin with)—the reason it cannot happen is that V2 is not
rational.

Could it happen in a field that the additive identity element is equal to
the multiplicative one, that is that 0 = 1? That is surely not the intention of
the definition. A legalistic loophole that avoids such degeneracy is to recall
that a group is never the empty set (because, by assumption, it contains an
identity element). It follows that if F is a field, then F — {0} is not empty.
That does it: 1 is an element of F — {0}, and therefore 1 # 0.

If Fis a field, then both F with 4+ and F* with x are abelian groups, but
neither of these facts has anything to do with the multiplicative properties
of the additive inverse 0. As far as they are concerned, do fields in general
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behave the way QQ, R, and C do, or does the generality permit some unusual
behavior?

Problem 16. Must multiplication in a field be commutative?

17. Addition and multiplication in fields

If a question about the behavior of the elements of a field concerns only

one of the two operations, it is likely to be easy and uninteresting. Example:
is it true that if

a+7=;8+7i

then o = 3 (additive cancellation law)? Answer: yes—just add —v to both

sides. A pleasant consequence (that sometimes bothers mathematical be-
ginners): since

a+(—a)=0

and

(—a) + (~(~a)) =0,

the commutativity of addition and the additive cancellation law imply that
—(—a) =a.

The tricky and useful questions about fields concern addition and mul-
tiplication simultaneously.

Problem 17. Suppose that F is a field and o and (3 are in F. Which
of the following plausible relations are necessarily true?

(a)0x a=0.

®) (-)a = —a.

© (~a)(~B) = af.

(d1+1#0.

(e)If a # 0and B # 0, then a8 # 0.

Comment. Observe that both operations enter into each of the five re-
lations. (a) What is the multiplicative behavior of the additive unit? (b)
What is the multiplicative behavior of the additive inverse of the multi-
plicative unit? (c) What is the multiplicative behavior of additive inverses
in general? (d) What is the additive behavior of the multiplicative unit? (e)
What is the relation of multiplication to the additive unit?

17
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18. Distributive failure

Problem 18. Is there a set F with three commutative operations +,
x1, and X such that (F,+) is a group, both (F — {0}, x;) and
(F — {0}, x2) are groups, but only one of (F,+, x1) and (F, +, X2)
is a field?

19. Finite fields

Could it happen that a field has only finitely many elements? Yes, it could;
one very easy example is the set Z, consisting of only the two integers 0
and 1 with addition and multiplication defined modulo 2. (Compare the
non-field constructed in Problem 16.)

The same sort of construction (add and multiply modulo something)
yields the field Z3 = {0, 1,2} with addition and multiplication modulo
3. If, however, 4 is used instead of 2 or 3, something goes wrong; the set
Z4 = {0,1,2,3} with addition and multiplication modulo 4 is not a field.
What goes wrong is not that 2+ 2 = 0—there is nothing wrong with that—
but that 2 x 2 = 0—that’s bad. The reason it’s bad is that it stops 2 from
having a multiplicative inverse; the set Z} (= Z; — {0}) is not an abelian
group.

Further experimentation along these lines reveals that Zs is a field, but
Zg is not; Z is a field, but Zg, Zg, and Zy are not; Z,; is a field, but Z,,
isnot. (In Zg, 2 x 4 = 0; in Zgy, 3 x 3 = 0; etc. ) General fact (not hard to
prove): Zy, is a field if and only if the modulus = is a prime.

The fact that Z4 is not a field shows that a certain way of defining
addition and multiplication for four elements does not result in a field. Is
it possible that different definitions would lead to a different result?

Problem 19. Is there a field with four elements?

CHAPTER 2

VECTORS

20. Vector spaces

Real numbers can be added, and so can pairs of real numbers. If R? is the

set of all ordered pairs (e, ) of real numbers, then it is natural to define
the sum of two elements of R? by writing

(a,B8) + (7,6) = (@ + 7,8+ 6)

and the result is that R? becomes an abelian group. There is also a kind of
partial multiplication that makes sense and is useful, namely the process

of multiplying an element of R? by a real number and thus getting another
element of R2:

a(ﬁa’Y) = (Otﬂ, Ol’)’)-

The end result of these comments is a structure consisting of three parts:
an abelian group, namely R? , a field, namely R, and a way of multiplying
the elements of the group by the elements of the field.

‘ For another example of the kind of structure that linear algebra stud-
ies, consider the set IP of all polynomials with real coefficients. The set P,
endowed with the usual notion of addition of polynomials, is an abelian
group. Just as in the case of R? there is a multiplication that makes useful
sense, namely the process of multiplying a polynomial p by a real number:

(ap)(z) = a - p(x).
The result is, as before, a triple structure: an abelian group P, a field R,
and a way of multiplying elements of P by elements of R.
The modification of replacing the set P of all real polynomials (real
polynomial is a handy abbreviation for “polynomial with real coefficients”)

20
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by the set IP; of all real polynomials of degree less than or equal to 3 is
sometimes more natural to use than the unmodified version. The sum of two
elements of P53 is again an element of P3, and so is the product of an element
of P; by a real number, and that’s all there 1s to it.

One more example, and that will be enough for now. This time let V be
the set of all ordered triples (e, 3,7) of real numbers such that

a+B+v=0.
Define addition by

(0,8,7)+ (e, 8,%) = (a+ o, B+ 8,7 +7),

define multiplication by

Oé(ﬂ, Y 6) = (Oéﬂ, ary, 016)7

and observe that the result is always an ordered triple with sum zero. The set
of all such triples is, once again, an abelian group (namely V), a field, and a
sensible way of multiplying group elements by field elements.

The general concept of a vector space is an abstraction of examples such
as the ones just seen: it is a triple consisting of an abelian group, a field, and a
multiplication between them. Recall, however, that it is immoral, illegal, and
unprofitable to endow a set with two or more mathematical structures without
tightly connecting them, so that each of them is restricted in an essential way.
(The best known instance where that somewhat vague commandment is reli-
giously obeyed is the definition of a field in Problem 16: there is an addition,
there is a multiplication, and there is the essential connection between them,
namely the distributive law.)

A vector space over a field F (of elements called scalars) is an addi-
tive (commutative) group V (of elements called vectors), together with an
operation that assigns to each scalar a and each vector z a product oz that
is again a vector. For such a definition to make good mathematical sense,
the operation (called scalar multiplication) should be suitably related to the
three given operations (addition in F, addition in V, and multiplication in I).
The conditions that present themselves most naturally are these.

The vector distributive law:

(a+B)x=azx+ Bz

whenever « and (3 are scalars and z is a vector. (In other words, multiplication
by a vector distributes over scalar addition.)
The scalar distributive law:

oz +y) =oaxr+ oy
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whenever « is a scalar and z and y are vectors. (In other words, multipli-
cation by a scalar distributes over vector addition).
The associative law:

(af)z = ofz)

whenever a and 3 are scalars and z is a vector.
The scalar identity law:

lz =z

for every vector z. (In other words, the scalar 1 acts as the identity trans-
formation on vectors).

(The reader has no doubt noticed that in scalar multiplication the
scalar is always on the left and the vector on the right—since the other
kind of multiplication is not even defined, it makes no sense to speak of
a commutative law. Nothing is lost by this convention, and something is
gained: the very symbol for a product indicates which factor is the scalar
and which the vector.)

Many questions can and should be asked about the conditions that
define vector spaces: one worrisome question has to do with multiplication,
and another one, easier, has to do with zero.

Why, it is natural to ask, is a multiplicative structure not imposed on
vector spaces? Wouldn’t it be natural and useful to define («, 8) - (v,8) =
(oy, B6) (similarly to how addition is defined in R?)? The answer is no.
The trouble is that even after the zero element (that is, the element (0, 0))
of R? is discarded, the remainder does not constitute a group; a pair that
has one of its coordinates equal to 0, such, for instance, as (1,0), does not
have an inverse. The same question for P is tempting: the elements of P can
be multiplied as well as added. Once again, however, the result does not
convert P into a field; the multiplicative inverse of a polynomial is very un-
likely to be a polynomial. Examples such as P3 add to the discouragement:
the product of two elements of P; might not be an element of P (the de-
gree might be too large). The example of triples with sum zero is perhaps
the most discouraging: the attempt to define the product of two elements
of V collapses almost before it is begun. Even if both a + 8+ v = 0 and
o' + B+ =0, it is a rare coincidence if also ao/ + 88’ + vy = 0. It
is best, at this stage, to resist the temptation to endow vector spaces with a
multiplication.

Both the scalar 0 and the vector 0 have to do with addition; how do
they behave with respect to multiplication? It is possible that they misbe-
have, in a sense something like the one for vector multiplication discussed
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in the preceding paragraph, and it is possible that they are perfectly well
behaved—which is true?

Problem 20. Do the scalar zero law,
0z =0,
and the vector zero law,
al =0,

follow from the conditions in the definition of vector spaces, or could
they be false?

Comment. Note that in the scalar zero law the symbol 0 denotes a scalar
on the left and a vector on the right; in the vector zero law it denotes a
vector on both sides.

21. Examples

It is always important, in studying a mathematical structure, to be able to
recognize an example as a proper one, and to recognize a pretender as one
that fails in some respects. Here are a half dozen candidates that may be
vector spaces or may be pretenders.

(1) Let Fbe C, and let V also be the set C of complex numbers. Define
addition in C the usual way, and let scalar multiplication (denoted by ) be
defined as follows:

a*x=a2-:c.

(2) Let F be a field, let V be F2 (the set of all ordered pairs of elements
of ), let addition in V be the usual one (coordinatewise), and define a new
scalar multiplication by writing

ax*(8,7) = (af,0)

(for all o, 3, and 7).
(3) Let F be the field of four elements discussed in Problem 19, let V
be F2 with the usual addition, and define scalar multiplication by

ax(8,7)=(aB,ay) ify#0

and

ax*(8,0) = (02ﬂ1 0)
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(4) Let F be R and let V be the set R of all positive real numbers.
Define the “sum” denoted by « |+ 3 of any two positive real numbers o
and 3, and define the “scalar product” denoted by o [] 8 of any positive
real number a by an arbitrary (not necessarily positive) real number 3 as
follows:

alt]B=0aB
and
all]B=p*

(5) Let F be C, and let V be C also. Vector addition is to be defined
as the ordinary addition of complex numbers, but the product of a scalar
a (in C) and a vector z (in C) is to be defined by forming the real part of
o first. That is:

oz = (Re a)z.

(6) Let IF be the field Q of rational numbers, let V be the field R of real
numbers and define scalar multiplication by writing

aA*xTL = ar
for all @ in Q and all z in R.

Problem 21. Which of the defining conditions of vector spaces are
missing in the examples (1), (2), (3), (4), (5), and (6)?

22. Linear combinations

The best known example of a vector space is the space R? of all ordered
pairs of real numbers, such as '

((1,1),
(05 772),
1

{(3v2): *
(0, —200),

(%)
L \VE )
An example of a vector space, different from R? but very near to it in spirit,
consists not of all ordered pairs of real numbers, but only some of them.

22
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That is, throw away most of the pairs in R?; typical among the ones to be
kept are

((0,0),

(3)

| (v5,-2v5),
(&)

Are these four pairs in R? enough to indicate a pattern?—is it clear which
pairs are to be thrown away and which are to be kept? The answer is: keep
only the pairs in which the second entry is —2 times the first. Right? Indeed:
0=(—2)-0,and 1 = (—2)(—1), and so on. Use R} as a temporary symbol
to denote this new vector space.

Spaces such as R? and R} are familiar from analytic geometry; R? is
the Euclidean plane equipped with a Cartesian coordinate system, and RJ
is a line in that plane, the line with the equation 2z + y = 0. It is often
good to use geometric language in linear algebra; it is comfortable and it
suggests the right way to look at things.

A vector was defined as an element of a vector space—any vector
space. Caution: the word “vector” is therefore a relative word—it changes
its meaning depending on which vector space is under study. (It’s like the
word “citizen”, which changes its meaning depending on which nation is
being talked about.) Vectors in the particular vector spaces R? and R2 hap-
pen to be ordered pairs of real numbers, and the two real numbers that
make up a vector are called its coordinates. Each of the five pairs in the
list (%) is a vector in R? (but none of them belongs to R2), and each of the
four pairs in the list (+*) is a vector in R3.

The most important aspect of vectors is not what they look like but
what one can do with them, namely add them, and multiply them by scalars.
More generally, if z = (a1, a2) and y = (81, B2) are vectors (either both
in R? or else both in R2) and if £ and 7 are real numbers, then it is possible
to form

&z +ny = (bou + 1P, oz + 1B2),

which is a vector in the same space called a linear combination of the given
vectors z and y, and that’s what a lot of the theory of vector spaces has to
do with. Example: since

3(4,0) — 2(0,5) = (12, -10),
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the vector (12, —10) is a linear combination of the vectors (4,0) and (0, 5).
Even easier example: the vector (7, ) is a linear combination of the vectors
(1,0} and (0, 1); indeed

(7,7) = 7(1,0) + 7(0,1).

This easy example has a very broad and completely obvious generalization:
every vector (a, 3) is a linear combination of (1,0) and (0, 1). Proof:

(o, B) = a(1,0) + 3(0, 1).

Problem 22. Is (2,1) a linear combination of the vectors (1,1)
and (1,2) in R%? Is (0,1)? More generally: which vectors in R?
are linear combinations of (1,1) and (1,2)?

Comment. It is important to remember that 0 is a perfectly respectable scalar,
so that, in particular (1, 1) is a linear combination of (1,1) and (1,2):

(L)=1-(1,1)4+0-(1,2),
and so is (0,0):

(0,0)=0-(1,1)+0 - (1,2).

23. Subspaces

The discussion of Problem 21 established that the four axioms that define
vector spaces (the vector and scalar distributive laws, the associative law, and
the scalar identity law) are independent. According to the official definition,
therefore, a vector space is an abelian group V on which a field F “acts” so
that the four independent axioms are satisfied. The set P of all polynomials
with, say, real coefficients, is an example of a real vector space, and so is
the subset P; of all polynomials of degree less than or equal to 3. The set
R3 of all ordered triples of real numbers is a real vector space, and so is the
subset V consisting of all ordered triples with sum zero. (See Problem 20.)
The subset Q3 of R? consisting of all triples with rational coordinates is not
a vector space over R ( an irrational number times an element of Q3 might
not belong to @3 ), and the subset X of R? consisting of all triples with at
least one coordinate equal to 0 is not a vector space (the sum of two elements
of X does not necessarily belong to X).

These examples illustrate and motivate an important definition: a non-
empty subset M of a vector space V is a subspace of V if the sum of two
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vectors in M is always in M and if the product of a vector in M with ev-
ery scalar is always in M. An equivalent way of phrasing the definition is
this: a non-empty set M is a subspace if and only if ax + By belongs to M
whenever z and y are vectors in M and a and 3 are arbitrary scalars, or,
in other words, subspaces are just the non-empty subsets closed under the
formation of linear combinations.

The set O consisting of the zero vector alone is a subspace of every
vector space V (it is usually referred to as the trivial subspace—the oth-
ers are called non-trivial), and so is the entire space V. The way the words
“subset” and “subspace” are used is intended to allow these extremes. (A
subspace of V different from V is called a proper subspace—in this lan-
guage V itself is called the improper subspace.) To get more interesting
examples of subspaces, it’s a good idea to enlarge the stock of examples of
vector spaces.

It has already been noted (see Solution 20) that every field is a vector
space over itself. In particular, R is a vector space over R, but, and this is
more interesting, R is a vector space over Q also—just forget how to mul-
tiply real numbers by anything except rational numbers. In this situation,
where R is regarded as a rational vector space, the subset Q of R is a new
example of a subspace, and so is the larger subset Q(v/2) (see Problem 16).
In the same spirit, C (with the operation of addition) is a vector space over
C, and it is also a vector space over R; from the latter point of view, the set
R is a subspace (a real subspace of C).

Usually when vector spaces are discussed a field F has been fixed once
and for all, and it is clear that all vector spaces under consideration are over
F. If, however, there is some chance that the underlying field may have to
be changed during the discussion, then it is necessary to specify the field
each time. One way to do that is to speak of an F vector space; this is the
general form of speaking of rational, real, and complex vector spaces.

If F is a field and n is a positive integer, then the set of all n-tuples
(&1,62,...,&) of elements of F, is an F vector space (the addition of the
n-tuples that play the role of vectors is coordinate by coordinate, and so is
multiplication by an element of F); this space is denoted by F". The set of
those n-tuples whose first coordinate is equal to 0 is a subspace.

Here is an important non-trivial example: the set of all real-valued
functions defined on, say, a closed interval is a vector space over R if vec-
tor addition and scalar multiplication are defined in the obvious pointwise
fashion. The set of all continuous functions is an example of a subspace
of that space. A different generalization of R™ is the set of all infinite se-
quences {£1,£2,83,. ..}, of real numbers; an example of a subspace is the
subset consisting of all those sequences for which the series Y .., &, is
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convergent, and a subspace of that subspace is the subset of all those se-
quences for which the series is absolutely convergent.

For examples with a more geometric flavor, consider the real vector
space R? and in it the subset M of all vectors of the form (a, 2a), where o
is an arbitrary real number. Equivalently: M consists of the vectors whose
second coordinate is equal to twice the first; in the usual language of an-
alytic geometry the elements of M are the points on the line through the
origin with slope 2; the line described by the equation y = 2z. (Examples
like this are the reason why linear algebra is called linear: the expression
refers to the algebra of lines and their natural higher-dimensional gener-
alizations.) The example is typical: every straight line through the origin is
a subspace of R?, and every non-trivial proper subspace of R? is like that.
The generalization of these examples to R® is straightforward: the non-
trivial proper subspaces of R? are the lines and planes through the origin.

What’s special about the origin? Answer: it necessarily belongs to ev-
ery subspace. Proof: if M is a subspace, and if z is an arbitrary element of
M, then 0 - z belongs to M (scalar multiples), and since it is already known
that 0 - = = 0, it follows that 0 € M for all M. The definition of subspaces
could have been formulated this way: a subset M of V is a subspace if M
itself is a vector space with respect to the same linear operations (vector
addition and scalar multiplication, or, in one phrase, linear combination)
as are given in V. Since every vector space contains its zero vector, the
presence of 0 in M should not come as a surprise.

Problem 23. (a) Consider the complex vector space C? and the
subsets M of C? consisting of those vectors (c, 3, v) for which

(1) a=0,
(2)B=0,
B)a+8=1,
4a+8=0,
S)a+p20,

(6) a is real.
In which of these cases is Ml a subspace of C3?

(b) Consider the complex vector space P and the subsets M of
all those vectors (polynomials) p for which

(1) p has degree 3,

(2) 2p(0) = p(1),

(3) p(t) 2 Owhenever 0 St < 1,

(4) p(t) = p(1 — t) forall t.
In which of these cases is M a subspace of P?
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24. Unions of subspaces

What set-theoretic operations on subspaces produce further examples of
subspaces? One that surely does not is set-theoretic complementation: the
vectors that do not belong to a specified subspace never form a subspace.
To become convinced of that, think of a picture, in the plane for instance:
the complement of a line is not a line. To give a brisk proof, just think of 0:
the complement of a subspace never contains it.

Problem 24. (a) Under what conditions is the set-theoretic inter-
section of two subspaces a subspace? What about the intersection of
more than two subspaces (perhaps even infinitely many)—when is
that a subspace?

(b) Under what conditions is the set-theoretic union of two sub-
spaces a subspace? What about the union of more than two sub-
spaces?

25. Spans

Do linear combinations of more than two vectors make sense? Sure. If, for
instance, z, y, and z are three vectors in R3, or, for that matter, in R? or in
RZ (see Problem 22) and if o, 3, and +y are scalars, then the vector

ax + By + vz

is a linear combination of the set {z, y, z}. Linear combinations of sets of
four vectors, such as {z;, z2, 23, 4}, are defined similarly as vectors of the
form

0171 + Qa2 + 33 + 4Ty

(where a3, a2, a3, and a4 are scalars, of course), and the same sort of
definition is used for linear combinations of any finite set of vectors. Since

ar+py+vyz=1 (ax+By)+7-z,

it is clear that a linear combination of three vectors can be obtained in two
steps by forming linear combinations of two vectors: the first step yields
az + By and the second step forms a linear combination of that and z. The
same thing is true in complete generality: every finite linear combination
can be obtained in a finite number of steps by forming linear combinations
of two vectors at a time.

A vector space of interest is the set P5 of all real polynomials p in one
variable z, of degree less than or equal to 5 (an obvious relative of the
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space IP3 considered in Problem 20). Examples of such polynomials are

p(z) =z + 2%,
p(z) = -7+ 2%,
plz)=T+z+(V2+ ")z,

p(z) =1,
p(z) =0,
p(z) = =4,

and it is clear that to get more, richer, examples of vectors in Ps “long”
linear combinations of examples such as these need to be formed.

Objects that naturally arise in this connection are the large sets of vec-
tors that can be obtained from small sets by forming all possible linear com-
binations. Problem 22, for instance, asked which vectors in R? are linear
combinations of (1, 1) and (1, 2), and the answer turned out to be that every
vector in R? is such a linear combination. A similar question is this: which
vectors in R? are linear combinations of (1, 1,0) and (1,2,0)? The solu-
tion of Problem 22 makes the answer to this question obvious: the answer
is all vectors of the form (z, y, 0). The technical word for “set of all linear
combinations” is span. So, for example, the span of the vectors (1, 1,0) and
(1,2, 0) is the set of all vectors of the form (¢, 7, 0), or, to say the same thing
in different words, the set {(1,1,0), (1,2,0)} spans the set of all vectors of
the form (¢, 7,0).

In geometrical language R? is 3-dimensional Euclidean space. In that
space the set of all those vectors (¢, 7, ¢) for which n = ¢ = 0, or, in other
words, the set of all (£, 0, 0), is called the ¢-axis, and, similarly, the n-axis is
the set of all (0,7,0), and the (-axis is the set of all (0,0, ). These coordi-
nate axes are lines. The coordinate planes are the (£, )-plane, which is the
set of all (£, 7, ¢) with ¢ = 0, or, in other words, the set of all (£, n,0), and,
similarly, the (n, ¢)-plane, which is the set of all (0,7,¢), and the (¢, ¢)-
plane, which is the set of all (£,0,¢). In this language: the £-axis and the
¢-axis span the (¢, ¢)-plane, and the set {(1, 1,0), (1, 2,0)} spans the (&, n)-
plane.

What is the span of the set {(1,1,1),(0,0,0)}? Answer: it is the set of
all vectors of the form (¢, ¢, £), or, geometrically, it is the line through the
origin that makes an angle of 45° with each of the three coordinate axes.

How about this: does the vector (1,4,9) in R? belong to the span of
{(1,1,1),(0,1,1),(0,0,1)}? The answer is probably not obvious, but it is
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not difficult to get. If (1,4,9) did belong to the span of

{(1,1,1),(0,1,1),(0,0,1)},

then scalars o, 3, and « could be found so that

a(1,1,1) 4 8(0,1,1) + 4(0,0,1) = (1,4,9)

and then it would follow that
a=1,
a+ =4,
at+pf+v=9.

This in turn implies that

a=1,
B=4—a=4-1=3,
y=9-a—-f3=9-1-3=5.

Check: 1-(1,1,1) +3-(0,1,1) + 5- (0,0,1) = (1,4,9).

Among the simplest of the polynomials (vectors) in the vector space Ps
are 1, z2, and z*. What is their span? Answer: it is the set of all polynomials
of the form

o+ Bz? + yrt. )
These polynomials happen to have a pleasant property that characterizes them:
the replacement of z by —z does not change them. Polynomials with this
property are called even. Symbolically said: a polynomial p is even if it
satisfies the identity p(—z) = p(x). A polynomial p is called odd if it sat-
isfies the identity p(—x) = —p(z). What do the odd polynomials in Ps
look like?

Problem 25. (a) Can two disjoint subsets of R?, each containing
two vectors, have the same span? (b) What is the span in R® of

{(1,1,1),(0,1,1),(0,0,1)}?

26. Equalities of spans

Span is a set-theoretic operation that converts sets (of vectors) into other
sets (subspaces). (In other words, “span” applies to sets of vectors, not to
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vectors themselves, and an expression such as “the span of the vectors
and y” is not really a proper one.) What can be said about the relation
between a set of vectors and its span? There are three easy statements on
the most abstract (and therefore most shallow) level, namely that

(1) every set is a subset of its span,

(2) if aset Eis a subset of a set F, then the span of E is a subset of the span
of F,

and

(3) the span of the span of a set is the same as the span of the set.

It is often convenient to have a symbol to denote “span”, and one possi-
ble symbol is \/ (which is intended to be reminiscent of the ordinary set-
theoretic symbol for union). In terms of that symbol the statements just
made can be expressed as follows:

Ec \/E, (1)

if ECF, then \/Ec \/F, (2)

and

VVE=VE. 3)

In technical language (which is not especially useful here) (1) says that the
span operation is increasing, (2) says that it is monotone, and (3) says that
it is idempotent.

Knowledge about the span of a set of vectors provides geometric in-
sight about the set, and, for instance, the knowledge that two sets have the
same span (compare Problem 25 (a)) provides geometric insight about the
relations between them. Here is an example of the kind of question about
some spans that might arise: if we know about three vectors z, y, and z
that z € \/{y, z}, are we allowed to infer that \/{z,2} = V/{y, z}? The
answer is no. If, for instance, x is a scalar multiple of z but y is not, then z
obviously belongs to \/{z, z}, but y does not.

A related question is this: if M is a subspace and z and y are vectors
such that

I € \/{M, y}7
does it follow that
VM, z} = \/{M,y}?

(Here {M, z} is an abbreviation for MU {z}.) The answer is trivially no: it
could, for instance, happen that M is the subspace spanned by x, in which
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case the assumption is obviously true, but the questioned conclusion can
be true only if y belongs to that subspace, which it may fail to do. Is that
the only thing that can go wrong?

Problem 26. If z and y are vectors and M is a subspace such that
z ¢ Mbut x € \/{M, y}, does it follow that

VM, 2} = \/{M,y}?

27. Some special spans

If z is a vector in V, what is the intersection of all the subspaces of V that
contain z? (Caution: are there any?) In view of Problem 24, one thing is for
sure: that intersection, call it M, is a subspace. Since, moreover, M is the
intersection of sets (subspaces) each of which contains z, it too contains z.
What else does it have to contain? Answer: since a subspace containing =
must contain all scalar multiples of z, it follows that az is in M for every a.
The set M of all scalar multiples of  is itself a subspace, and the preceding
sentence says exactly that My, C M. Since, moreover, the subspace My
contains z, so that it is a member of the collection that was intersected to
form M, it follows that M C M. Consequence: M = M.

The same argument can be applied to two vectors as easily as to one.
If  and y are in V, there surely exist subspaces that contain them both
(V is one), and the intersection of all those subspaces is a subspace M that
contains both. Being a subspace, it contains all linear combinations az+ 3y
also. The set M of all such linear combinations is itself a subspace, the one
that was called the span of {x,y} in Problem 25, and, obviously My C M.
Argue as above and conclude that M = M.

These examples are special cases of a general concept that applies to
arbitrary subsets of a vector space. If E C V (the set E can be a singleton
{x}, a pair {z, y}, or, for that matter, an arbitrary finite or infinite set), the
intersection, call it M, of all subspaces that include E is a subspace. (Recall
that there always exists at least one subspace that includes E, namely V.)
The argument given in the preceding paragraphs can be given again and it
proves that M = \/ E.

Is the last sentence correct? There is a curious degenerate case to be
considered: what is the span of the empty set of vectors? In view of the def-
inition, the question is this: which vectors can be obtained as linear combi-
nations of no vectors at all? This formulation calls attention to a blemish
of the definition; it doesn’t apply to the conceptually trivial but technically
very important empty set. The cure is to rephrase the definition: the span of
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a set of vectors is the intersection of all the subspaces that include the set.
It is a non-profound exercise to show that for non-empty sets the rephras-
ing is equivalent to the original definition, its virtue is that it applies with
no change to every set—including, in particular, the empty set. Since every
subspace includes the empty set, and, in particular, the trivial subspace O
includes the empty set, it follows that the span of the empty set is O. The
result is worth mentioning, if only to show that the concept of span works
smoothly in all cases, with no troublesome exceptions.

The span of a set (finite or infinite) consists, by definition, of the set of
all linear combinations of elements of the set. There is a way of saying the
same thing that uses exactly one more word and that word seems to come
naturally to some people: they say that the span of a set consists of the set
of all finite linear combinations of elements of the set. The added word
“finite” is harmless, in the sense that it doesn’t change the meaning of the
sentence (no other kind of linear combination has been defined), but at
the same time it might be harmful because it suggests that “infinite linear
combinations” could have been considered but were deliberately excluded.
That is not true, and that way confusion lies.

To get acquainted with the notion of span it is a good idea to look at a
handful of special cases, various more or less randomly selected (small or
large) subsets of R? or R® or P, and examine their spans.

Problem 27. (a) Is there a vector that spans R?? (b) Are there two
vectors that span R? (c) Are there two vectors that span R3? (d) Is
there any finite set of vectors that spans P?

28. Sums of subspaces

Which vectors in R? can be obtained from the two subspaces (lines) M
and N, where M is the line through the origin with slope 2 and N is the
line through the origin with slope 3, by adding a vector in M to a vector
in N? The vectors in M are those of the form (¢, 2a) and the vectors in N
are those of the form (e, 3c). The question is: which vectors can be repre-
sented in the form (a + 3, 2« + 373) as « and 3 are allowed to vary over all
real numbers? The answer is easy enough to figure out (all vectors in R?),
but there is a general concept here, waiting to be recognized, that’s much
more useful than the special answer.

If M and N are subspaces of a vector space V, which vectors can be
obtained by adding a vector in M to a vector in N? That is: choose z in M
and y in N, form z + y, and ask which vectors can be so represented as z
and y vary over all vectors in M and N respectively. Whatever the answer,

28
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the symbol for it is
M +N.

This is a new operation on subspaces, a kind of addition. Its main use comes
from its relation to spans.

Since 0 belongs to every subspace, it follows that both M and N are
included in M + N, and hence that MUN C M + N. Since M + N is a
subspace (that is easy to check), it follows that

VMUN)cM+N.

(Right? If a subspace includes a set E, then it includes \/ E.) But both M
and N are included in \/(M U N), and V/(M U N) is closed under vector
addition. It follows that M + N C /(M U N), and therefore, finally, that

\V(MUN) =M +N.

Summary: to form the span of two subspaces is the same as forming their
sum.

Addition of subspaces is a curious operation. It is commutative and
associative—that’s easy. It has an identity, namely the trivial subspace O.
It does not, however, make the set of subspaces of a vector space into a
group—inverses do not exist. Indeed, since M C M + N whenever M and
N are subspaces, it follows that M + N = O is out of the question unless
M = N = O. Note also that M + M = M-—not the sort of behavior that
groups permit. A related unorthodox property of subspace addition is that
M + N = N can happen quite easily even when M # O. (Under what
conditions does it happen? Answer: if and only if M C N.)

Subspaces have a kind of multiplicative structure too, namely inter-
section. Intersection is commutative and associative—that’s easy—and it
has an identity, namely the improper subspace V. That’s as far as the good
properties go. Inverses do not exist. Indeed: M O MNN whenever M and N
are subspaces, so that MNN = V is out of the question unlessM = N = V.
Note also that M N M = M, and that M N N = N can happen quite easily,
namely just when N C M.

Related to the additive and multiplicative structure of subspaces and
symmetrically connected with both there is a geometrically important pos-
sibility that has some of the properties of set-theoretic complementation.
It’s best to begin its study by looking at some examples.

Consider two distinct non-trivial proper subspaces M and N of R? (or,
if geometric language is preferred, consider two distinct lines in the or-
dinary Euclidean plane). It cannot be true that M + N = O (that is, M
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and N are not additive inverses of one another), and it cannot be true that
MNN = R? (that is, M and N are not multiplicative inverses of one another).
The extreme opposite is true: M + N = R? and M NN = Q. (Look at the
pictuare.)

Another example. Let M be the set of all even polynomials (with, say,
real coefficients) and N the set of all odd ones; the definitions of these terms
appear in Problem 25. Can a polynomial be both even and odd? A moment’s
thought should reveal the answer: if and only if it is identically zero. Note
that it follows that both M and N are subspaces of the vector space P of
all polynomials. (Caution: if the underlying field is such that 1 + 1 = 0, the
two definitions of evenness and oddness are not equivalent. Over the field of
integers modulo 2, for instance, every polynomial is both even and odd in the
second sense.)

Can every polynomial be written as a sum of an even one and an odd
one? Sure: given p, define ¢ and r by

@) = 5 (@) +p(-2)  and () = 5 (ple) ~ p(-0)),

BO |

and verify that ¢ is even, r is odd, and p = q + r. Conclusion:

MNN=0 and M+ N=P.

In a general vector space V two subspaces M and N are called
complements of one another if

MNN=0 and M+ N=V.

The concept is illustrated by the examples: every line in the plane is a com-
plement of every other line (no hope of uniqueness), and the subspaces of
even and odd polynomials are complements in P. A trivial example can be
given in any V, namely the trivial subspace @ and the improper subspace V.
Does every subspace in every vector space have at least one complement?
Does every non-trivial proper subspace in every vector space have many com-
plements? (What does “many” mean? It is a relative notion; it depends on
the coefficient field. For finite fields “many” might just mean “more than
one”.) The answers are yes both times, but the proofs depend on set-theoretic
techniques (such as Zorn’s lemma) foreign to the spirit of introductory linear
algebra. For the vector spaces that will presently start occupying the center
of the stage the answer will be obtained by more easily accessible methods.
The set of subspaces with addition (+) and intersection (M) misses
being a field because neither operation admits inverses. What about the
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connection between the two operations: how well behaved is it? A frontal
attack on the question would try to prove or disprove the distributive law.
It is advisable to approach the question more modestly by asking about
easier algebraic properties of subspace addition. One well-known possible
property is called the modular identity; that’s what this problem is about.

Problem 28. Is it true that if L, M, and N are subspaces of a vector
space, then

LNn(M+ (LNN)) = (LNM)+(LNN)?

29. Distributive subspaces

Problem 29. For which vector spaces V is it true that if L, M, and
N are subspaces of V, then

LN (M+N) = (LNM)+ (LNN)?

30. Total sets

Is there a subfset] E of a vector space V such that the only sub{Space] of V
that includes E is V itself? Sure: several such examples have already been
seen. An example in R is the singleton {z} of any non-zero z; an example
in R is E = {(1,0), (0,1)}.

If the only subspace of V that includes E is V, then, of course, the
intersection of all the subspaces that include E is just V, so that

VE=V.

A set E with this property, a set whose span is the entire vector space, is
called a total set. By a slight extension of the language, a set E that spans
a subspace M of V is called total for M . In the vector space PP; of all poly-
nomials of degree less than or equal to 2 the set

E={1,14+z1+z+2%}

is a total set, and in the larger vector space P of all polynomials the infinite
set

E={1,z,2%,2°...}

of monomials is a total set. For the space O, the empty set is total.
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The good vector spaces in linear algebra, the easiest ones to work with
and the ones that the subject is rooted in, are the ones that have a finite
total set; vector spaces like that are called finite-dimensional. The space
IP; is finite-dimensional, but (see Problem 27) the space P is not.

The first natural question about finite-dimensional vector spaces
sounds deceptively simple: is every subspace of a finite-dimensional vector
space finite-dimensional? That sounds like asking whether every subset of
a finite set is finite, but it is not. The question is surprisingly delicate; it is
not the kind for which all that’s necessary is to feed the definitions into a
machine and turn the crank. Here is a step toward acquiring the necessary
insight.

Problem 30. If E is a total subset of a vector space V, and if M is
a subspace of V, does it follow that some subset of E is total for M?

31. Dependence

The three vectors

z = (1,0), y=(0,1), and z=(1,1)

form a total set for R?; in fact the first two are enough and the third one
is superfluous. There is a simple doctrine at work here: adjoining extra
vectors to a total set leaves it total. The new vectors do no harm, but they
give no new information.

The vector z in this example is the sum of = and y, and that makes
it obvious that every linear combination of z, y, and z is already a linear
combination of  and y. The presence of superfluous vectors in a total set is
not always so clearly visible. For a look at a more hidden kind of superfluity,
let z, y, and z this time be defined by

z=(1,7), y=(2,8), and z=(3,6).

It doesn’t jump to the eye that z, y, and z form a total set, but they do—and
it doesn’t jump to the eye that one of z, y, and z is superfluous, but it is
true. One way to become convinced of totality is to verify that

7T 7 1 7 2
- = —z=(1 - —Y - —z = )
x 4y+ &2 (1,0) and 7a:+6y 517 (0,1)
Once that is granted, totality does jump to the eye: since every vector in
R? is a linear combination of (1,0) and (0, 1), it follows that every vector

in R? is a linear combination of z, y, and z. As for superfluity: since

4x — by + 2z =0,
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it follows that z is “superfluous” in the sense that z is a linear combination
of rand y (z = %y — 2z). Similarly, of course, z is also superfluous, and so
is y. If any one of x, y, and z is omitted from {z,y, 2}, what's left is still a
total set.

The way , ¥, and z in these examples depend on one another (“depend”
is the crucial word) is an instance of the basic general concept called depen-
dence. No matter what x, y, and z are, it is always possible to find scalars
a, 3, and y so that the linear combination ax + By + vz becomes 0; just
choose @ = 0, 3 = 0, and v = 0. That’s a trivial statement, and the linear
combination 0-z+0-y+0-z is justly called the trivial linear combination. The
same language is used for any finite number of vectors. With that settled, the
ground is prepared for the appropriate general definition: a finite set of vec-
tors is called dependent (usually the longer expression linearly dependent
is used) if some non-trivial linear combination of them vanishes. If the set is
{x1,...,Zn}, then dependence means that there exist scalars o, . .., Gy, NOL
all zero, such that

11y + -+ ann = 0.

Example: no matter what vector z is, the set {0, z} is dependent. Reason:
1-040-2 = 0. (Note: the scalar coefficients are 1 and 0, and they are not all
zero.) A trivial example of a dependent set is the set consisting of the vector
0 alone. Reason: 1-0 = 0. Here is a more nearly typical example: if z and y
are arbitrary vectors, the set {z,y,z +y} is dependent. Reason:

l.z+1-y+(-1)-(z+y) =0

Still another: if z, y, u, and v are arbitrary vectors, then the set

{m’ y’ T + y’ 11" U}

is dependent. Reason:

1. z4+1-y+(-1)-(z+y)+0-u+0-v=0.

This last example illustrates that in at least one respect dependence behaves
the way totality does: adjoining extra vectors doesn’t change the property. A
set larger than a dependent set is still dependent.

Here is a final easy example of dependence in the concrete vector space
R!: if 2 and y are any two vectors in that space (that is any two real numbers),
then the set {z,y} is dependent. Reason: if both = and y are 0, the assertion
is trivial; if at least one of them is different from 0, then yz + (—z)y is a
non-trivial linear combination that vanishes.

VECTORS 37

The concept of dependence was introduced via a discussion of “su-
perfluous™ vectors in total sets. Does the same connection between de-
pendence and superfluity hold in general?

Problem 31. Ifavector zy is a linear combination of {x,, ... ,z.},
does it follow that the set {xo,z:,...,x,} is dependent? If, con-
versely, a finite set {xo,z:,...,z,} of vectors is dependent, does it
follow that at least one of them is a linear combination of the others?

32. Independence

If z is a non-zero vector, then the only linear combination of the set {z}
that can vanish is the trivial one—or, in plain English, the only time oz can
be 0 is when o = 0. In other words, with one exception the singleton {z}
is not dependent.

In the vector space R? if z = (1,0) and y = (0, 1), then the only linear
combination of the set {x, y} that can vanish is the trivial one—that is, the
only time ax + By can be zero is when a = 8 = 0. In other words, the pair
{z,y} is not dependent.

General definition: a set that is not dependent is called independent
(usually linearly independent).

Dependence and independence are properties of sets (of vectors), but
fno§t people find it comfortable to speak a little loosely and apply the ad-
jectives to vectors. Instead of speaking of an “independent set” [of vectors],
Fhey speak of [a set of] “independent vectors”. The slightly less sharp usage
isn’t really dangerous.

It is often convenient to extend the use of the language to two extreme
cases, very large sets and very small sets. Very large: infinite. Very small:
empty.

An infinite set is called independent if every finite subset of it is in-
dependent. Example: the monomials 1, z, 22, 23, . .. form an infinite inde-
pendent set in IP. Reason: the only time a linear combination of powers is
the zero polynomial is when every coefficient is zero. (This, by the way, is
not a statement about the algebra of polynomials: it is merely a reminder
of what “zero polynomial” means in contexts such as this.)

Is the empty set dependent or independent? The question is not in-
trinsically important, but it would be inconvenient to proceed without ex-
amining it. The point is that the empty set is quite likely to occur in the
middle of a deduction (when, for instance, the intersection of two sets has

to be formed), and it would be awkward to have to keep making case dis-
tinctions.
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The best way (the only convincing way?) to answer questions about the
empty set (questions of “vacuous implication™) is to ask how they can be
false. The present question is this: if a linear combination of the empty set is
0, does it follow that every coefficient must be 07 How could that be false?
It is false only if some non-trivial linear combination of the empty set turns
out to have the value 0. To say that a linear combination is non-trivial means
that it has at least one coefficient different from 0—and that cannot happen.
Reason: there are no coefficients at all, and hence, in particular, there is no
coefficient different from 0. Conclusion: the assertion that the empty set is
independent cannot be false. A consistent use of language demands that the
empty set be declared independent. Note, by the way, that this conclusion
is in harmony with the assertion that every subset of an independent set is
independent.

“Independent” is the accepted dignified way to say of a set of vectors
that it has no “superfluous” elements. An independent total set in a vector
space V is called a basis of V. Examples: if 2 is any real number different
from 0, then {z} is a basis for R!; if

z = (1,0) and y = (0,1),
then {z,y} is a basis for R?, and so is {x — y,z + y}; the monomials
1,m,x2,x3,...

constitute a basis for P; the monomials 1, z, z2, 3, %, 2% constitute a basis
for ]P’s.

Does the vector space O (consisting of the vector 0 only) have a basis?
Since the only possible element in a basis for O is 0, and since the set {0} is
dependent, it looks as if the answer must be no—but that’s wrong. The answer
is yes; the space @ does have a basis, namely the empty set. Indeed: the empty
set is independent and its span contains 0. This sort of thing looks strange on
first encounter, but it’s easy to get used to, and it works smoothly—there is
nothing wrong, either logically or linguistically.

Do vector spaces always have bases? That’s a surprisingly difficult ques-
tion; the techniques for the general answer are necessarily transfinite. For
finite-dimensional vector spaces, however, the tools already available are ad-
equate.

Problem 32. Does every finite-dimensional vector space have a
finite basis?

CHAPTER 3

BASES

33. Exchanging bases

The most useful questions about total sets, and, in particular, about bases,
are not so much how to make them, but how to change them. Which vectors
can be used to replace some element of a prescribed total set and have it
remain total? Which sets of vectors can be used to replace some subset of
a prescribed total set and have it remain total? What restriction is imposed
by the relation between the prescribed set and the prescribed total set?

Problem 33. Under what conditions on a total set T of a vector

space V and a finite subset E of V does there exist a subset F of T
such that (T — F) U E is total for V?

Does that sound awkward? In less stilted language the question is this:

unde.r what conditions can one replace a part of a total set by a prescribed
set without ruining totality?

Comment. The way the problem is stated the answer is “always”: just take
F = @. Consequence: it is necessary to think about the problem before

begin.ning to solve it. Under what conditions on T and E and F does the
question make good sense?

34. Simultaneous complements

If M is a subspace of a vector space V, a complement of M was defined in
Problem 28 as a subspace N of V such that MN N = {0}and M + N =
V. (Recall that M + N denotes the set of all vectors of the form z +y
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with z € M and y € N, or, which for subspaces comes to the same thing,
it denotes the span of the set M U N.) It is easy for a subspace to have
more than one complement, or, to put the same thing another way, it is
easy for several subspaces to have a “simultaneous” complement, meaning
a complement in common. It’s easy enough, but that doesn’t mean that
it always happens. Sample question (which will cause even the experts to
think for a nanosecond): if two subspaces are complements, can they have
a simultaneous complement? Must they always have one?

Problem 34. Under what conditions does a finite collection of sub-
spaces of a finite-dimensional vector space have a simultaneous com-
plement?

35. Examples of independence

Linear independence is one of the most important concepts of linear alge-
bra. A good way to acquire it in one’s bloodstream is to look at many ex-
amples, and this problem, and several of the ones that follow, are intended
to provide some practice in the use of the concept. Most such problems re-
quire very little thought—just a little work will solve them.

Problem 35. (a) For which real numbers x is it true that the vectors
x and 1 are linearly independent in the vector space R of real numbers
(over the field Q of rational numbers)?

(b) Under what conditions on the scalar & are the vectors
(L+&1—¢&)and (1 - £,1+ &) in R? (over the field Q of rational
numbers) linearly independent?

36. Independence over R and Q

Problem 36. Is there a subset of R that is independent over Q but
dependent over R?

37. Independence in C2

Problem 37. (a) Under what conditions on the scalars o and 3 are
the vectors (1, ) and (1, 8) in C2 linearly independent?
(b) Is there a set of three linearly independent vectors in C??
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38. Vectors common to different bases

Problem 38. (a) Do there exist two bases in C* such that the only
vectors common to them are (0,0,1,1) and (1,1, 0, 0)?

(b) Do there exist two bases in C* that have no vectors in com-
mon so that one of them contains the vectors (1, 0,0, 0)and (1,1,0,0)
and the other one contains the vectors (1,1,1,0) and (1,1,1,1)?

39. Bases in C3

Problem 39. (a) Under what conditions on the scalar x do the vec-
tors (1,1,1) and (1, z,z?) form a basis of C3?

(b) Under what conditions on the scalar x do the vectors (0,1, z),
(z,0,1), and (z, 1,1 + z) form a basis of C3?

40. Maximal independent sets

Problem 40. If X is the set consisting of the six vectors in R4,

(1,1,0,0), (1,0,1,0), (1,0,0,1),
(0? 1’ 1’0)1 (0? 1’ 0’ 1), (070’ 17 1),

do there exist two different maximal linearly independent subsets of
X?

(A maximal linearly independent subset of X is a subset Y of X that

becomes linearly dependent every time that a vector of X that is not already
in Y is adjoined to Y.)

41. Complex as real

A vector space is not only a set of vectors; it is a set of vectors together
with a coefficient field that acts on it. It follows that one and the same set
of vectors can well be a vector space in several different ways, depending on
what scalars are admitted. So, for instance, the set C of complex numbers
is a vector space over the field C, but that’s not especially thrilling; what is
more interesting is that C is a vector space over the field R of real numbers:
just forget that multiplication by non-real scalars is possible. The following
question is a generalization of the one just hinted at.
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Problem 41. Every complex vector space V is intimately associated
with a real vector space V2%, the space V™2 is obtained from V by
refusing to multiply vectors in V by anything other than real scalars.
If the dimension of the complex vector space V is n, what is the di-
mension of the real vector space V1?7

42. Subspaces of full dimension

Problem 42. Can a proper subspace of a finite-dimensional vector
space have the same dimension as the whole space?

43. Extended bases

Which vectors are fit to belong to a basis of a vector space? The vector 0 is
not; is that the only exception? Which sets of vectors are fit to be subsets
of a basis? A dependent set is not; is that the only exception?

Consider a special example. The vectors

z; =(1,0,0,0),
z2 = (0,1,0,0),
z3 = (0,0,1,0),
z4 = (0,0,0,1),

form a basis for C*—that’s easy. Suppose, however, that for some applica-
tion a different basis is needed, one that contains the vectors

v=(1,1,1,1)
and
v=(1,2,3,4).

Is there such a basis? What is easy to check is that  and v are independent,
so that they might be fit to be part of a basis, but the question is whether
independence by itself is a sufficient condition.

Problem 43. Can every (finite) independent set in a finite-
dimensional vector space be extended to a basis?

&
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44. Finite-dimensional subspaces

In Problem 30 the question arose whether every subspace of a finite- di-
mensional vector space is finite-dimensional, but it was not answered there.
Now that the technique of making independent sets larger is at hand, that
question can be raised with more profit.

Problem 44. Is every subspace of a finite-dimensional vector space
finite-dimensional?

45. Minimal total sets

Total sets are “large” in some rough sense, and, in particular, it is obviously
true that if a set is total, then any larger set is necessarily total also. This
obvious remark calls attention to the fact that sometimes it is possible to
omit some of the elements of a total set and still end up with a total set.
When that is not possible, it is natural to call the total set minimal. Some
total sets are minimal, and some (for example bases) are independent. Is
there an implication relation between these two possible properties of total
sets, either way?

Problem 45, Is every minimal total set independent? Is every inde-
pendent total set minimal?

46. Existence of minimal total sets

Minimal total sets exist all right (any basis is one), but how easy are they
to come by in prescribed contexts?

Problem 46. Does every total set have a minimal total subset?

47. Infinitely total sets

Do there exist total sets that remain total when any one of their elements
is discarded, but cease being total if an appropriately chosen set of two
elements is discarded? Caution: the question is about sets not sequences;
duplication of elements is not appropriate in this context. If, for instance,
V is a 2-dimensional vector space, and {z,y} is a basis for V, then the
“set” {z,z,y,y} is not an acceptable answer. A small modification of this
unacceptable construction does, however, yield an answer, namely the set
{z,2z,y, 2y} (provided that the underlying scalar field does not have char-
acteristic 2). An obvious extension of the technique gives for each positive
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integer n a total set that remains total when any n of its elements are dis-
carded, but ceases being total if an appropriately chosen set of n + 1 el-
ements is discarded. It is even possible for a set to be infinitely total in
the sense that it remains total when any finite subset of it is discarded. A
specific example for a 2-dimensional vector space with basis {x, y} over R,
say, is the set

{z,y,2z,2y,3z,3y,...}

In this example even infinite omissions can be allowed, if they are carefully
made. If every term after the second one is omitted (that’s being very care-
ful), the result is still total, but if all the terms in even positions are omitted
(not careful enough), the remainder is not total. Is this a very special case,
or are its properties shared by all infinitely total sets?

Problem 47. Does every infinitely total set E have an infinite subset
F such that the relative complement E — T is total?

48. Relatively independent sets

Every set of n + 1 vectors in an n-dimensional vector space is dependent.
It is, however, trivial to find three vectors in R? such that no two of them
are dependent (or, in geometric language, such that no two of them are
collinear with the origin), and it is equally trivial to find four vectors in R3
such that no three of them are coplanar with the origin, and, generally, it
is easy to find » + 1 vectors in R™ such that every n of them constitute
an independent set. It is temporarily convenient to call a subset E of R®
with this property relatively independent, the property being that every n
vectors in E are independent. A relatively independent set in R™ can have
n + 1 vectors; can the number n + 1 be improved?

Problem 48. What is the largest possible number of vectors in a
relatively independent subset of R™?

49. Number of bases in a finite vector space

Properties of the coefficient field of a vector space obviously have an effect
on the linear algebraic properties of the space. Finite fields are especially
important in some applications, and the subject as a whole is not properly
understood without at least a little insight into how they work.

The best known examples of finite fields are the ones of the form Z,,
that is, the integers modulo p, where p is a prime. These examples are not

S
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the only ones; see Problem 19. Granted that they exist, linear algebra can
be used to prove a little theorem about them, namely that the number
of elements is always a power of a prime. The necessary tools from field
theory are these: a finite field must have prime characteristic; every field of
characteristic p has a subfield isomorphic to Z,; every field is a vector space
over any subfield. (These statements belong to the part of field theory that
is right next to the definitions; they are easy to prove.) An additional tool
that is needed is from linear algebra, and it will be discussed later; the proof
of the “little theorem” will be postponed till then.

It is true that if ¢ is a power of a prime, then there does indeed exist
a field with ¢ elements (and, to within a change of notation, there is only
one such field); the case ¢ = 22 discussed in Problem 19 is more or less
typical. A typical vector space over a field F with q (= p*) elements, is F".
How many vectors does that vector space contain? The answer is ¢" and
that’s easy. The following considerably trickier counting question asks not
for the number of elements but for the number of subsets of a certain kind.

Problem 49. If F is a field with q elements, how many bases are
there in F™?

50. Direct sums

The Euclidean plane can be viewed as the result of a construction that
starts from two lines (the z-axis and the y-axis) and puts them together to
form a new vector space. That construction is an instance of a general one;
other instances of it occur throughout linear algebra (or, for that matter,
throughout mathematics). If U and V are vector spaces, then their direct
sum, denoted by

UeV
is the set of all ordered pairs (z, y), with z in U and y in V, and with vector
addition and scalar multiplication defined by the natural equations
(z1,01) + (T2,52) = (&1 + 2,91 + ¥2)

and

a(x, y) = (aw, ay)'

The vectors z (in U) and y (in V) are called the coordinates of (x,y) (in
U @ V). In that language, the definitions just described can be expressed
by saying that the linear operations in U@V are defined coordinatewise. It
must, of course, be checked that the definitions are correct, meaning that
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they do indeed define a vector space. That check is painless, and requires
no new techniques; it’s no different from the proof that if F is a field, then
F?2 is a vector space. That familiar assertion is, in fact, a special case of what
is now being asserted; in the present language F? is the direct sum of F*
and F.

If U and V are well-behaved vector spaces, how well-behaved is UG V?

Problem 50. If U and V are finite-dimensional vector spaces, of
dimensions n and m respectively, what is the dimension of U & V?

Reminder. The dimension of a (finite-dimensional) vector space was
defined in Solution 33 as the number of elements in a basis of V immedi-
ately after the statement that all bases have the same number of elements.

51. Queotient spaces

If M is a subspace of a vector space V, then there are, usually, many sub-
spaces N such that

MNN=0O
and
M+N=YV,

or, in other words, M can have many complements, and there is no nat-
ural way of choosing one from among them. There is, however, a natural
construction that associates with M and V a new vector space that plays,
for all practical purposes, the role of a complement of M. The theoreti-
cal advantage that the construction has over the formation of an arbitrary
complement inside V is precisely its “natural” character, that is, it does not
depend on choosing a basis, or, for that matter, on choosing anything at all.

To understand the construction it is a good idea to keep a picture in
mind. Suppose, for instance, that V = R? and that M consists of all those
vectors (zy, z2) for which z; = 0 (the horizontal axis). Each complement
of M is a line (other than the horizontal axis) through the origin. Observe
that each such complement has the property that it intersects every hor-
izontal line in exactly one point. The idea of the construction to be de-
scribed now is to make a vector space out of the set of all horizontal lines.

Begin (back in the general case) by using M to single out certain sub-
sets of V. If z is an arbitrary vector in V, the set z + M consisting of all the
vectors of the form z+y with y in Ml is called a coset of M, and sets like that
are the ones that are of interest now. As for the notation: it is consistent
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with that used before for vector sums (see Problem 28). In the case of the
plane-line example, the cosets are the horizontal lines. Note that one and
the same coset can arise from many different vectors: it is quite possible
that z + M = y + M even when z # y. It makes good sense, just the same,
to speak of a coset, say K, of M, without specifying which element (or el-
ements) K comes from; to say that K is a coset (of M) means simply that
there is at least one z such that K = z + M.

If H and K are cosets (of M), the vector sum H + K is also a coset of
M. Indeed, if

H=z+M
and
K=y+M,

then every element of H + K belongs to the coset (z + y) + M (note that
M + M = M), and, conversely, every element of (= + y) + Mis in H + K.
(If, for instance, z is in M, then (z + y) + z = (x + 2) + (y + 0).) In other
words,

H+K=(z+y)+M,

so that H + K is a coset, as asserted.
It is easy to verify that coset addition is commutative and associative.
The coset M (that is, 0 + M) is such that

K+M=K

for every coset K, and, moreover, M is the only coset with this property. (If
(z+M)+(y+M) = z+M, then z+M contains z+y,sothat z+y = z+u
for some u in M; this implies that y is in M, and hence that y + M = M.)
If K is a coset, then the set consisting of all the vectors —u, with u in K, is
itself a coset, which is denoted by

-K.

The coset —K is such that K + (—K) = M, and, moreover, —K is the only
coset with this property. To sum up: with the operation of vector sum, the
cosets of M form an abelian group.

If K is a coset and if « is a non-zero scalar, write « - K for the set
consisting of all the vectors au with u in K; the coset 0 - K is defined to be
M. A simple verification shows that with scalar multiplication so defined
the cosets of M form a vector space. This vector space is called the quotient
space of V modulo M; it is denoted by V /M.
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The quotient space V/M could have been defined differently. Accord-
ing to an alternative definition, the elements of V/M are the same as the
elements (vectors) of V, but the concept of equality is redefined: two vec-
tors are to be regarded as the same if they differ from one another only by a
vector in M. In other words, if  and y are vectors in V, say that z = y mod-
ulo M, best pronounced as “z is congruent to y modulo M”, and perhaps
more honestly written as

z=y (mod M)

when z -y € M. This alternative formulation is intended to be reminiscent
of the discussion of polynomials modulo (the multiples of) a fixed polyno-
mial (see Solution 19). There are two approaches to the study of “quo-
tients”: in one the new elements are sets, with the necessary operations,
such as addition, suitably defined, and in the other the new elements are
the same as the old ones, and so are the operations, but equality is suitably
re-defined. The coset approach could have been used in Solution 19 and
the congruence approach could have been used in the definition of quo-
tient spaces—and, in what follows, the latter will in fact be used whenever
it seems convenient to do so.

There are three constructions that are universal in the sense that they
occur in every kind of mathematical structure and are important when-
ever they occur: they are usually referred to by expressions such as sub-
structures, direct sum structures, and quotient structures. Such construc-
tions appear, in particular, in group theory, and in topology, and, of course,
in linear algebra. It is a good idea to acquire some facility in handling them,
and, in the particular case of linear algebra, the most obvious questions
concern dimensions.

Problem 51. (a) Is there an example of a vector space V and a
subspace M such that neither M nor V /M is finite-dimensional?

(b) Is there an example of a vector space V and subspaces M
and N such that V /M is finite-dimensional but V /N is not?

Comment. The quotient language and the quotient notation (V/M)
might strike some people as inappropriate—shouldn’t the language and
the notation indicate subtraction rather than division? Yes and no. In many
parts of mathematics sets of ordered pairs (such as a direct sum U & V),
are called Cartesian products, and in such cases it is natural to look at the
reverse as a kind of division. The trouble is that different parts of linear
algebra come, historically, from different sources, and the terminological
clash is unchangeable by now. It’s not hard to learn to live with it.
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Problem 52. If V is an n-dimensional vector space and M is an
m-dimensional subspace, what is the dimension of V/M?

53. Additivity of dimension

If M and N are subsets of a set, there is a natural third set associated with
them, namely their union, MUN. If M and N are finite, and if card (for car-
dinal number) is used to denote “the number of elements in”, then some-
times

card(M U N) = card M + card N.

More precisely, the equation is true when M and N are disjoint (M NN =
2). If they are not disjoint, then the right side counts the elements common
to M and N twice, and the equation is false.

If M and N are subspaces of a vector space, there is a natural third
subspace associated with them, namely their span, M + N. If M and N are
finite-dimensional, then sometimes

dim(M + N) = dimM + dim N.

More precisely , the equation is true when M and N are disjoint (which
means that M N N = O); otherwise it’s false. What is always true?

Problem 53. IfM and N are finite-dimensional subspaces of a vec-
tor space, what relation, if any, is always true among the numbers
dimM, dimN, dim(M + N), and dim(M N N)?

Terminological caution. For subspaces “disjoint” means that their inter-
section is O, not @. Since the zero vector belongs to every subspace, the
latter is impossible.
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CHAPTER 4

TRANSFORMATIONS

54, Linear transformations

Here is where the action starts. Till now the vectors in a vector space just
sat there; the action begins when they move, when they change into other
vectors. A typical example of a change can be seen in the vector space Ps
(all polynomials of degree less than or equal to 5): replace each polynomial
p by its derivative Dp.
What is visible here? If p; (x) = 3z and pa(z) = 522, then
Dpi(z) =3 and Dpy(z)=10z;

if moreover s is the sum p; + po,

s(z) = 3z + 527,
then

Ds(z) =3 + 10z.

This simple property of differentiation is from the present point of view its
most important one: the derivative of a sum is the sum of the derivatives.
An almost equally important property is illustrated by

D(7pa(z)) = 70z;
the general assertion is that
D(ap(z)) = aDp(z)

for any polynomial p and for any scalar a. In words: the derivative of a
scalar multiple is the same scalar multiple of the derivative.
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These two features of the change that differentiation effects can be
described by just one statement: whether you form a linear combination
first and then change, or change first and then form the same linear com-
bination—the result will be the same. That’s what makes differentiation
important in linear algebra; the property is described by saying that D is a
linear transformation.

Here is another example: consider the vector space R3, and stretch
each vector (z, y, z) by a factor of 7. Let S be the symbol for this stretch,
so that S changes (1,0, 2) (call it ») into (7,0, 14) (= Su), and S changes
(3,—1,5) (call it v) into (21, -7, 35) (= Sv), and, generally,

S(z,y,2) = (T, Ty, 7).
Look at a linear combination such as
Ju — 2v,
which is equal to
(3,0,6) — (6,—2,10)
and therefore to
(—3,2,-4),
and then stretch to get
(—21,14, —28).

Other possibility: stretch « and v separately and then form the linear com-
bination to get

Su=(7,0,14), Sv=(21,-7,35)

and

35u — 28v = (21,0,42) — (42, —14,70) = (—21, 14, —28)

—the same final answer.

It works every time. Given two vectors (or, for that matter, any finite
number), if you form a linear combination of them and then stretch, or if
you stretch each vector first and then form the same linear combination,
the results will always be the same, and, for that reason, the act of stretch-
ing is called a linear transformation. (Symbols such as Sv and S(1,0, 2)
are pronounced the way we are all taught when we learn the language of
functions: they are “S of v” and “S of (1,0, 2)”.)

TRANSFORMATIONS 53

To understand a mathematical phenomenon it is essential to see sev-
eral places where it occurs and several where it does not. In accordance
with that principle, what follows now is a description of each of five trans-
formations (“changes”) on a vector space; some of them are linear trans-
formations and some of them are not.

(1) The vector space is R?; the transformation T changes each vector by
interchanging its coordinates:

T(z,y) = (y, ).
(2) The vector space is R?; the transformation T replaces each coordinate
by its square:
T(z,y) = (=*,9).
(3) The vector space is R?; the transformation T replaces each coordinate
by its exponential:
T(z,y) = (%, €").

(4) The vector space is P; the transformation T integrates:

Tp(z) = /2 " p(t) .

(5) The vector space is R?; the transformation T replaces each coordinate
by a certain specific linear combination of the two coordinates:

T((E, y) = (2$ +3y,7z — 53/)

The result is that (1), (4), and (5) define linear transformations and
(2) and (3) do not. The verification for (1) and (5) is easy. In each case,
just replace (z,y) by an arbitrary linear combination

ay(z1,y1) + az(z2, ¥2),

apply T, and compare the result with the result of doing things in the other
order. (Is “other order” clear? It means apply T to each of (z1, y1) and
(z2,y2) and then form the linear combination.) In other words, the ver-
ification consists of applying the very definition of linear transformation,
and that yields what is wanted. The truth of (4) depends on known facts
about integration: the integral of a sum is the sum of the integrals, and the
integral of a scalar multiple is the scalar multiple of the integral.
As for (2): everything goes wrong. If it were true that

(s +1)? = 5% + ¢
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for all real numbers s and ¢ (an identity that a few beginning students of
mathematics are in fact tempted to believe), then it would follow that the
transformation T satisfies one of the necessary conditions for being linear.
Namely, it would then be true that

((m1+72)%, (11 + 12)%) = (] + 23,97 + 1),

and hence that

T((z1,91) + (€2,92)) = T(21,41) + T(x2,¥2)-

But even if that were right, scalar multiples would still misbehave. For lin-
earity it is necessary that T'(az, ay) should equal oT'(z, y), but

T(azx, ay) = (a®z?,0*y?)

and
aT(z,y) = a(z?,y?) = (ez?, ay?),

and except in the rare cases when o = a? the two right sides of these
equations are not eager to be the same.

Warning: this argument would be regarded with disapproval by many
professional mathematicians. The trouble is that the argument does not
prove that T fails to be a linear transformation; it just points out that the
natural way to try to prove that T is a linear transformation doesn’t suc-
ceed. The only convincing way to prove that T' does not satisfy the iden-
tity that linearity requires is to exhibit explicitly, with concrete scalars and
vectors, a linear combination that T' does not cooperate with. That’s easy
enough to do: if, for instance, (z,y) = (1,1) and @ = 2, then

T(ax, ay) = (22722) - (4, 4)
and
aT(z,y)=2-(1,1) = (2,2).

The negative assertion that the transformation T' described in (3) is
not a linear transformation either is proved similarly. An explicit coun-
terexample is given by (z,y) = (0,0) and o = 2; in that case

T(ax,ay) = T(0,0) = (1,1)
and

oT(z,y)=2-(1,1) = (2,2).

TRANSFORMATIONS 5§

Problem 54. (a) Which of the following three definitions of trans-
formations on R? give linear transformations? (The equations are
intended to hold for arbitrary real scalars o, 3, 7, 6.)

(V) T(§,m) = (o + Bn,¥§ + ).

() T(€,n) = (a€® + Bn®,v€* + bn°).

() T(€,n) = (@*€ + B°n,v*€ + 6*n).

(b) Which of the following three definitions of transformations
on Pgive linear transformations? (The equations are intended to hold
for arbitrary polynomials p.)

(1) Tp(z) = p(x?).
(2) Tp(z) = (p(=))"
(3) Tp(z) = =°p(=).

55. Domain and range

Integration on the vector space P is a perfectly good linear transformation
(see Problem 54), but the same equation

mw=[wm (*)

as the one that worked there does not work on the space Ps; the trouble is
that the degree of the polynomial that it gives may be too large. Right? If,
for instance, p(z) = z° then

Lp(t)dt_[gtL_ -2

Differentiation on the vector space P5 might seem to run into similar
trouble—it lowers degrees instead of raising them—but, in fact, there is
nothing wrong with it. Sure, it’s true that D applied to a polynomial of
degree less than or equal to 5 always yields a polynomial of degree less
than or equal to 4, but 4 is less than 5, and vectors in P5 stay in Ps.

These two examples prepare the ground for a small but useful gener-
alization of the concept of linear transformation and for introducing two
important constructs associated with each linear transformation. The gen-
eralization is to a transformation (= change, function, mapping, map, op-
erator, etc.) that changes each vector v in one vector space into a vector
Tvin a possibly different vector space, and does it in such a way that it “co-
operates” with linear combinations. The technical word is “commutes”; it
means, of course, that the result of forming a linear combination and then
transforming is always the same as the result of transforming first and then
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forming the linear combination. Symbolically:

T(ou + fv) = oTu + fTv.

Example: if T is the integration defined by the equation (+) above, then
T is a linear transformation from P5 to Pg (where the meaning of Ps is
surely guessable: it is the vector space of all real polynomials of degree.
not more than 6). The same equation can also be regarded as defining a
linear transformation from Pj to P, and many others in similar contexts.
A linear transformation from a vector space V to itself is called a linear
transformation on V; that’s the kind that was introduced in Problem 54.

The set of vectors where a linear transformation starts is called the
domain of 7', and the set of vectors that result from applying 7" to them is
called the ra\mge of T'; the abbreviations

domT and ranT

are quite commonly accepted. So, for example, if T is differentiation on
Ps, then

domT =P; and ranT = Py;

if T is differentiation from P5 to P, then also dom T = P5 and ran T = P4.
Some confusion is possible here and should be avoided. Integration can be
considered to define a linear transformation from P5 to Pg or from P5 to
PP; or from P5 to P2gp; in each of these cases the domain is P5 and the range
is a part of Pg. (Which part? The question deserves a moment’s thought.)
The vector space that follows the specification “to” plays a much smaller
role than the range, a subsidiary role, and it does not have a commonly
accepted name; the word “codomain” is sometimes used for it.

Important observation: the domain of a linear transformation is always
a vector space, and so is the range.

Integration is not the only useful linear transformation from one vec-
tor space to a different one. The change of variables example in Problem
54,

Tp(z) = p(z?),

can be regarded as a linear transformation on P, or, alternatively, the same
equation can be used to define a linear transformation from P5 to Pyo.
Right? If p(z) = z*, then T'p(x) = z®. Similarly the multiplication example
in Problem 54,

Tp(z) = z*p(),
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can be regarded as a linear transformation on P, or, alternatively, the same
equation can be used to define a linear transformation from P to P7. (If
p(z) = z*, then T'p(z) = 25.)

The domains and ranges of the linear transformations given as exam-
ples in Problem 54 are not difficult to find. Challenge: check that for the
stretching example on R® both the domain and the range are equal to R3,
and for the interchange example ((1) in the discussion of Problem 54), and
for the linear combination example ((5) in the discussion of Problem 54),
both the domain and the range are equal to R3.

When trying to understand domains and ranges for linear transforma-
tions between possibly different vector spaces, it is a good idea to study at
least a few new examples. The problems that follow describe some.

Problem 55. (1) The set R of all real numbers is a real vector space,
which in that capacity is denoted by R'. The sum of two real num-
bers x and y, considered as vectors, is just the ordinary sum obtained
by considering them as the real numbers they are and adding them;
the multiple of a “vector” (real number) by a “scalar” (real number)
is just the product obtained by forming the product of the two real
numbers. The equation

F(.’L‘,y) =+ 2y

defines a linear transformation from R? to R'. This example is a
special case of an important class of linear transformations: a lin-
ear transformation from any real vector space V to the special vector
space R! is called a linear functional on V. (The use of “on” here is
in slight collision with the use explained before, but that’s life—with
a little care confusion can be avoided.) What are the domain and
the range of the particular linear functional here defined? What, in
general, can be said about the range of a linear functional?

(2) Does the equation

Tp(z) = p(z +2)

define a linear transformation from Ps to Pyo? If so, what are its
domain and its range?

(3) Does the equation
T(z,y,2) = (0,0)

define a linear transformation from R® to R?? If so, what are its do-
main and its range?
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(4) Does the equation
T(:z:,y,z) =(z+2,y+2)

define a linear transformation from R3 to R*? If so, what are its do-
main and its range?

(5) Let R be the set of all positive real numbers, and try to make
it into a real vector space. To do that, it is necessary to define an “ad-
dition” for any two positive real numbers and to define the “scalar
multiple” of any positive real number by an arbitrary (not necessarily
positive) real number. In trying to do that it would be dangerous to use
the ordinary symbols for addition and multiplication—that way con-
fusion lies. To avoid that confusion, the sum about to be defined will
be denoted by and the product by [-], and the actual definitions
are as follows: if s and t are positive real numbers, then

s[+]t = st

(that is, the new sum of s and t is the plain old product of s and t),
and if s is a positive real number and x is an arbitrary real number,
then

z[]s=3s"

(that is, the new product of s by x is s to the power x in the usual
sense). This is a weird procedure, but it works; it actually defines a
real vector space. Does the equation

T(s) =logs

define a linear functional on that vector space? If so, what is its range?
Caution: what does “log” mean—does it mean log,,, or log,, or
log,?

56. Kernel

There is a real number 0 and (in every vector space) there is a vector 0, and
no confusion will ever arise between the number 0 and the vector 0; on the
rare occasions when one threatens, a few cautionary words will dispel it.

The symbol 0 has more than just two uses in mathematics, and even in
linear algebra; here, for instance, is a third. Consider any two vector spaces
V and W, and define a transformation 7' from V to W by writing

Tv=0

- 2
ST
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for all v in V. Since the description of T warned that its range will be in W,
it is clear that the symbol 0 on the right side of this equation must stand
for the zero vector in W. Is T a linear transformation? Sure—obviously.
Form all the linear combinations you like in V and then apply T to them.
Since T' sends everything to 0 in W, the result obtained by applying 7 first
and forming linear combinations later will always be 0. That’s just fine:

T(au + fv)

is indeed the same as

aTu + fTv

because T(au + Bv) is 0 and oTu + BTv is a - 0 + G - 0, which is also 0.
This very special linear transformation (that can be used between any two
vector spaces) has a special name, namely 0.

Linguistic interruption: if T' is a linear transformation and v is a vector
in the domain of T, the corresponding vector T'v in the range is often called
the image of v, or the transform of v, under the action of T. (Caution: here
“transform” is the right word, not “transformation”.) So: the zero linear
transformation from V to W is the one that maps (= sends) every vector
v to 0, or, in other words, it is the one for which every vector in V has the
same image, namely 0.

Zero plays an important role in linear algebra. So, for instance, every
linear transformation sends 0 to 0. (A precise proof of that comment is
easy, but it belongs to the hairsplitting axiomatics of the subject, which will
be treated later.) There could perfectly well be many other vectors, differ-
ent from 0, that a linear transformation 7 sends to 0 also. The collection
(set) of all those vectors gives vital information about T; it is called the
kernel of T, abbreviated

kerT.

For a first example, consider the zero transformation from, say, R3 to
RR?: what is its kernel? In other words: what is the set of all vectors in R3
that the transformation 0 sends to the vector 0 in R2? Answer: 0 sends every
vector in R3 to 0 in R?; the kernel of 0 is the whole space R3.

Consider next the linear transformation T on Ps defined by

Tp=p
for all p. Is it really a linear transformation? Sure—that’s very easy. What
is its kernel? In other words, what is the set of all polynomials in P5 whose
image under this 7 is the zero polynomial? Answer: 7' can send no poly-
nomial to 0, except only the polynomial 0; the kernel of this 7T is the set
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consisting of the polynomial 0 only. The cautious notation for that set is
{0}. The braces are needed: it is important to realize and to emphasize
that the kernel of a linear transformation is always a set. The set might, to
be sure, consist of just one object, but it is a set just the same. (Analogy: a
hatbox with just one hat in it is not the same as a hat.)

By the way: the equation Tp = p defines a linear transformation on

every vector space, and that linear transformation is an important one with
a special name. (Recall that “on” in this context describes a linear transfor-
mation from the given vector space fo the same space.) It is always called
the identity transformation, but it is not always denoted by the same sym-
bol. Some people call it

1

(so that the number “one” and the identity transformation have the same
symbol), others use the letter I, and still others indicate the vector space
under consideration by using the symbol Iy. In this book the first of these
possibilities, the numerical symbol, is the one that will be used most of the
time; “I” will be used when that practice threatens to lead to confusion.

Problem 56. What are the kernels of the linear transformations

named below?
(1) The linear transformation T defined by integration, say, for
instance,
z+9
To@) = [ n0at
from Pg to P

(2) The linear transformation D of differentiation on Ps.
(3) The linear transformation T on R? defined by
T(z,y) = (2z + 3y, Tz — 5y);

see example (5) in Problem 48.

(4) The linear transformation T from Ps to Py defined by the
change of variables

Tp(x) = p(z?);
see part (4) of Problem 48.
(5) The linear transformation T on R? defined by

T(z,y) = (x,0).
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(6) The linear transformation F from R? to R! defined by

F(z,y) =z +2y;
see part (1) of Problem 55.

57. Composition

Differentiation (denoted by D) is a linear transformation on the vector
space P of all polynomials, and so is the transformation M (multiplication
by the variable) defined by

Mp(z) = zp(z).

What happens to a polynomial if both those transformations act on it, one
after another? Suppose, to be specific, that D sends p to g,

q = Dp,

and then M sends g to r,
Mg =r;

what can be said about the passage from p to r? Write
r=Tp,

and, just to see what happens in a special example, let p(x) be

2+ 3z + 42°.

In that case

¢(z) = 3 + 8,
and therefore
r(z) = 3z + 8z2.

Suppose now that the same thing is done not for one p but for two,
and then a linear combination is formed, so that the result looks like

a1 Tp1(z) + axTpa(x).

What if the linear combination had been formed before the two-step trans-
formation 7? Would the result

(T(alpl + azpz)) (z)

57
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be the same? In other words, is 7" a linear transformation? Isn’t it clear that
the answer must be yes? To say that D is linear means that D distributes
over vector addition and scalar multiplication—that is, that D converts a
linear combination of vectors into the same linear combination of their
D images. If M is allowed to act on the linear combination so obtained,
then the linearity of M means that M distributes over it—that is, that M

converts it into the same linear combination of the M images of the vectors

that enter. These two sentences together say that T distributes over linear
combinations, or, in official language, that T is linear.

The reasoning just described is quite general: it proves that the
composition of two linear transformations is a linear transformation. The
concept of composition so introduced is just as often called product. The
official definition is easy to state: if S and T are linear transformations on
the same vector space, then the composition of S and T, denoted by

ST,

is the transformation that sends each vector v in the space to the vector
obtained by applying 7T to v and then applying S to the result.

Caution: the order of events is important. What would have happened
to the polynomial 2 + 3z + 4? if it had been multiplied by z first and then
differentiated? Answer: the multiplication would have produced

2z + 3x% + 423,
and then the differentiation would have produced
2 + 6z + 1222,
which is not at all the same as the
| 3z + 8z?
obtained before. In other words:
MD # DM.

For a different enlightening example, consider the multiplication
transformation N defined on P by

Np(z) = (1 - 32%)p().
In that case
N(2+ 3z + 42%) = (1 — 32%)(2 + 3z + 42?)
=2+ 3z — 22° — 9z% — 122%,
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and the result of applying M to that is

2z + 322 — 22° — 92* — 1225,
On the other hand

M(2 + 3z + 4z%) = 2z + 32® + 428,
and the result of applying NV to that is

(1 —322)(2z + 322 + 42%) = 2z + 32? — 223 — 9z — 1225

—the same thing. This could have been obvious without any calculation:
the first result was obtained by two multiplications (1 — 3z2 followed by
), as was the second (z followed by 1 — 3z2). Since the order in which
multiplications are performed doesn’t matter, it is no surprise that

MN = NM.

The result is described by saying that the linear transformations M
and N commute (or they are commutative). The example of M and D
shows that linear transformations may fail to commute—they may be
non-commutative.

Can transformation multiplication be defined for linear transfor-
mations that go from one vector space to a different one? Yes—
sometimes. If U and V are vector spaces, and if T is a linear transformation
from U to V, then it makes sense to follow an action of 7' by another lin-
ear transformation, say .S, but only if S starts where T left off, or, in more
dignified language, if the domain of S includes the range of 7. If, in other
words, for each vector u in U, the image T'u belongs to the domain of 3,
then ST makes sense, and if, to be specific, the range of S is included in
a vector space W, then the product ST is defined and is a linear transfor-
mation from U to W.

Here is an example. Suppose that U is R3, V is R2, and W is R}; let T
be the linear transformation from R? to R? defined by

T(z,y,2) = (z,9),
and let S be the linear transformation from R? to R! defined by
S(z,y)=xz+y.
In that case
ST(z,y,2) = S(z,y) =z +y.

Note: the product T'S cannot be defined. The only way a symbol such as
T'S could be interpreted is as a transformation that starts where S starts,
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that is, as a transformation with domain R2. But then the result of applying
S yields a vector in R, and it does not make sense to apply 1" to it —T' can
only work on vectors in R3. If the product of two linear transformations S
and T is defined, is it clear how to read a symbol such as ST? A possible
source of confusion, which should be avoided, is that the symbol must be

read “backward”, from right to left. To see how ST acts on a vector, let T'

act on it first and then, second, let S act on the result. The reason is that
transformations are, after all, functions, and the usual functional notation (as
in f(z)) puts the name of the function next to the name of the variable and
to the left of it. Students of mathematics realize early that if

f@)=2" and g(z)=z+2,
then

flo(@) = (z+2)%

the first function to act is the one next to z—the one on the right. (The
other order would yield g(f(x)), which is 2 4 2—not at all the same thing.
Non-commutativity raises its head again.)

Problem 57. (1) If S is the stretching transformation on R?,

(see Problem 54) and T is the transformation on R? defined by
T(z,y) = (2z + 3y, 7z — 5y),

do S and T commute?
() If S is the stretching transformation on R?,

S(z,y,2) = (Tx, Ty, 72),
and T is the “projection” transformation from R® to R? defined by

T(.’L’, y,Z) = (Zﬂ,y),

do S and T commute?
() If S is the change of variables on P defined by

Sp(z) = p(z?),
and T is the multiplication transformation defined by

Tp(z) = 2°p(z),

do S and T' commute?
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(4) If S is the transformation from R? to R! defined by

S(-’Evy) =z +2y,
and T is the transformation from R! to R? defined by

I(z) = (z,2),

do S and T commute?
(5) If S is the change of variables defined on P; by

Sp(z) = p(z + 2),
and T is the transformation defined by

T(o + Bz + v2* + 62°) = a + 722,

(forall o, B3, y, §) do S and T commute?
(6) In each of the preceding cases, what are the domains, ranges,
and kernels of ST and T'S (when they make sense)?

58. Range inclusion and factorization

When is one linear transformation divisible by another? In view of the dif-
ference between right and left, the question doesn’t quite make sense, but
once divisibility is interpreted one way or the other then it does.

Suppose, for instance, that A is called left divisible by B in case there
exists a linear transformation 7' such that A = BT. One relation between
A and B is an immediate consequence, namely that

ran A C ran B.

Is that necessary condition for left divisibility sufficient also?

Problem 58. If two linear transformations A and B on a vector
space are such that ran A C ran B, does it follow that A is left divis-
ible by B? What is the analogous necessary condition for right divis-
ibility? Is it sufficient?

59. Transformations as vectors

‘Two transformations A and B on a vector space can form a conspiracy: for
each vector v the results of the actions of A and B on v can be added to
yield a new vector. The result of this conspiracy assigns a vector, call it Sv,
to each starting vector v—in other words, the passage S from v to Av+ Bv

58

59



66 LINEAR ALGEBRA PROBLEM BOOK

is a transformation defined on the underlying vector space V. It is natural
to call the transformation S the sum of A and B. The commutativity and
associativity of addition in V imply immediately that the addition of linear
transformations is commutative and associative.

Much more than that is true. The sum of any linear transformation A
and the linear transformation 0 (see Problem 56) is A. If for each linear

transformation A, the symbol —A is used to denote the transformation -

defined by
(=Ap = —(Av),
then
A+ (-A)=0,

and the linear (!) transformation —A is uniquely characterized by that
property. To sum up: the set of all linear transformations on V is an abelian
group with respect to the operation of addition.

If, moreover, for any scalar o and any linear transformation A a prod-
uct aA is defined by

(xA)v = a(Av),

it follows that the set of all linear transformations on a vector space V is
itself a vector space; a usable symbol for it might be L(V).

The set L(V) has a structural property that not every vector space has,
namely it has a natural multiplication defined on it, the composition of
linear transformations. If A and B are linear transformations, then not
only are aA and A + B linear transformations, but so also is AB; it is
possible to form not only linear combinations of linear transformations,
but also linear combinations of powers of a single linear transformation.
“Linear combinations of powers” is a long way to say polynomials; if, that
is,

p(z) =ap+ o1z + - + o™
is a polynomial, and A is a linear transformation, then p(A) makes sense:
p(A) =ag+oA+---+ a, A™.

How are the linear and multiplicative properties of L(V) related to the
vector space properties of V?

Problem 59. (1) What can be said about the dimension of L(V)
in terms of the dimension of V?
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(2) If A is a linear transformation on a finite-dimensional vec-
tor space, does there always exist a non-zero polynomial p such that
p(A) =07

(3) If xo is a vector in a vector space V, and vy, is a linear func-
tional on V, and if Az is defined for every x in V by

Az = yo(2)zo,

then A is a linear transformation on V; what is the smallest possible
degree of a polynomial p such that p(A) = 0?

60. Invertibility

Addition can be undone—reversed—by subtraction; can the multiplica-
tion of linear transformations also be undone somehow? Is there a pro-
cess like division for linear transformations? Central special case: can the
identity transformation 1 be “divided” by any other linear transformation
T—or, in other words, does a linear transformation always have a “recip-
rocal”?

Suppose that T is a transformation on a vector space V, so that T as-
signs to each vector in V another vector (or possibly the same one) in V
again. A candidate for a reciprocal should presumably be a transformation
that goes backward, in the sense that it assigns to each vector in V the vec-
tor that it comes from. That may sound plausible, but there is a catch in
it—two catches in fact. To be able to go backward, each vector in V must
be the image under T of something (in other words, ran T must be V),
and it must make sense to speak of the vector that a vector comes from
(in other words, T' must never send two different vectors onto the same
vector). Equivalent language: the transformation 7' must map V onto V
(technical word: T is surjective), and T must do so in a one-to-one manner
(technical word: T is injective).

A typical violent counterexample (in case the vector space V is not the
trivial space Q) is the linear transformation 0: it fails to satisfy the condi-
tions just described in the worst possible way. Not only is it false that T is
surjective, but in fact ran 0 is as small as can be—it consists of one vector
only—and not only is it false that 0 is injective, but in fact 0 is as many-to-
one as can be—it sends every vector onto the same one. Here are a couple
of other examples that are bad enough but not quite that bad: the linear

transformations defined for every vector (f’ ) in R? by

a(s)=(3m)

60
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2(3)- ()

(Vectors are written vertically, as (f}), or horizontally, as (§,7) ad lib.

and

The vertical symbol will seem more appropriate when matrices enter the
picture, but the horizontal one is typographically more convenient.) The
range of A consists only of vectors whose two coordinates are equal—
and that’s nowhere near all of R2. As for B, the vector (0,0) comes from
infinitely many vectors—the transformation is nowhere near injective.
(Question: do A and B fail for just one reason each, or for two? That is:
granted that A is not surjective, is it at least injective? And: granted that B
is not injective, is it at least surjective?)

A linear transformation T on a vector space V is called invertible if it
is both injective and surjective. If T is invertible, then the transformation
that assigns to each vector v in V the unique vector u that it comes from
(that is, the unique vector u such that T'u = v) is called the inverse of T’; it
is denoted by T—! (pronounced “T inverse”).

If an invertible T acts on a vector v, what happens when the inverse
T-1 acts on the result? The answer is obvious: T~ sends T back to v,
so that T~1(T'v) = v. Does it work the other way? In other words, what
happens when 7' is made to go backward before it goes forward? That may
be colorful language, but it’s sloppy enough to be dangerous. What the
question really asks is: what is T(T~v)? To find the answer, write u =
T~ v, which says the same as T'u = v, and then unscramble the notation:

T(T w)=Tu=w.

Another way of expressing the same question (and its answer) is to note
that the inverse of a transformation, as here defined, is really a left inverse,
and to ask whether it works from the right also. The question makes sense
(since both 7' and T—! map V into V, the product can be formed in either
order), and, as the discussion above shows, the answer is yes.

The simplest example of an invertible transformation is 1, the identity;
it is obviously both injective and surjective, and it is its own inverse.

Is the linear transformation 7' defined for all (i) in R? by

7(5)-(&5)
7 £+
invertible? That’s two questions: is 7" surjective?, and is T" injective?—but,
as it turns out an examination of surjectivity alone yields the full answer.
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The surjective question for T reduces to the solvability of the equations
2+n=a
§+n=8

for all  and 3. That’s a routine matter: £ must be o — B and n must be
—a + 2f3. That is: the candidate for the inverse of T is the linear transfor-

” E ”

To check whether the candidate works, form the product ST. That is: find
ST, at each (f’), by forming S(7), where

(3)-(5)
) E+n )’
The result of the substitution is
ST(E) _ ( (26+n)—(E+n) ) _ (&)
n —(26+n)+2(6+n) n)’
and that does it—indeed, ST = 1.

These examples suggest a question to which the answer must be known
before the theory can proceed.

Problem 60. Must the inverse of an invertible linear transformation
be a linear transformation?

61. Invertibility examples

Problem 61. (1) Is the linear transformation defined by

EY_(2%+n
T(n)—(%+n)
invertible?
(2) What about

=)
T = ?
(n £
(3) Is the differentiation transformation D on the vector space
Py invertible?

61
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62. Determinants: 2 x 2

If o and £ are known numbers, can the equation

ar=§

be solved for z? Maybe. If « is not 0, then all that’s needed is to divide by
it. If & = 0, there is trouble: if £ # 0, the equation has no solutions, and if
¢ = 0, it has too many—every x works.

The question could have been asked this way: if « is a known scalar,
and if a linear transformation T is defined on R! by

Tz = ax,

is T invertible? The answer is yes if and only if o # 0.

That answer is in fact the answer to a very special case of a very general
question. The general question is this: how do the entries of an n X n matrix
determine whether or not it is invertible? When n = 1, there is only one
entry and the answer is that the matrix is invertible if and only if that entry
is different from 0.

What happens when n = 2? In other words, under what conditions on
the numbers a, 8, v, § is the 2 x 2 matrix

_(o B
M= ('r 5)
invertible, or, equivalently, when can the equations
ar+ Py =¢

vz + 6y =1

be solved for = and y?
To find z, eliminate y, which means multiply the first equation by 4,
the second by (3, and subtract the second from the first to get

(ab — By)x = 6§ — Bn.

To find y, multiply the first equation by ~, the second by o, and subtract
the first from the second to get

(@b — By)y = an — &

If a6 — By # 0, then all that’s needed is to divide by it, but if a6 — 8y = 0,
there is trouble: the results obtained give no information about z and y. If
either one of §¢ — B or an — B¢ is not 0, the equations have no solutions,
and if both are 0, they have too many—every pair (z, i) works.
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The expression ad — (37 is called the determinant of M, abbreviated

det M,

and the answer to the 2 x 2 question is that M is invertible if and only if
det M # 0. The function det has some obvious properties and some non-
obvious ones. An obvious property is that

detl =1,

and, more generally, that if M is diagonal (that is, 3 = v = 0), then det M
is the product of the diagonal entries. Another easy property is the behav-
ior of det with respect to scalar multiplication:

det(AM) = X2 det M

for every real scalar \.
' A non-obvious and possibly surprising property of det is that it is mul-
tiplicative, which means that if M; and M, are two 2 x 2 matrices, then

det(M1 - Ms) = (det M) - (det My).

If, in other words,
a1 b az B
M, = and My= (% P
' ( m 6 ) 2 ( Yo bg )’

M, - M, = (0‘10‘2 + A2 1Bz + P62
maz+61v2 P+ 616y )’

so that

then it is to be proved that

(102 + Bry2) (B2 + 6162) — (a1 fBe + Brd2)(mag + 6172)
= (181 — Bim) (0202 — Baye),

and to prove that, there is no help for it—compute.
Multiplicativity has a pleasant consequence about inverses. If M hap-
pens to be invertible, then

(det M) - (det M) = det(MM 1) = det1 = 1.
so that
det Ml = 1 .
det M

Qan the_results about the determinants of 2 x 2 matrices be generalized to
bigger sizes? One tempting direction of generalization is this: replace the




63

72 LINEAR ALGEBRA PROBLEM BOOK

entries a, 8, 7, 6 of a 2 x 2 matrix by 2 x 2 matrices (a), (8), (7), (6), thus
getting a 4 x 4 matrix
((a) ®) ) |
() ()

The attempt to generalize the concept of determinant runs into a puzzle
before it can get started: since the matrix entries may fail to commute, it is
not clear whether the generalized determinant ought to be defined as

(@)(8) — (B)(7), or (a)(6)—(1)(B), or
(8)(e) = (B)(7), or  (6)() — (M(B)-

These four “formal determinants” seem to play equal roles—no reason to
prefer one to the others is apparent. The best thing to do therefore is to
be modest: assume as much as possible and conclude as little as possible.
Here is one possible question.

Problem 62. Which (if either) of the following two assertions is
true? '

(1) If a 2 x 2 matrix M of 2 x 2 matrices is invertible, then at
least one of its formal determinants is invertible.

(2) If all the formal determinants of a 2 x 2 matrix M of 2 x 2
matrices are invertible, then M is invertible.

63. Determinants: 12 x 1

When linear algebra began it wasn’t called “linear algebra”—the central
part of the subject was thought to be the concept of determinant. Nowadays
determinant theory is considered a very small part of linear algebra. One
reason is that this part of linear algebra is not really linear—the subject
is an intricately combinatorial one that some people love for that reason,
while others insist that the only elegant way to proceed is to avoid it when-
ever possible. Every one admits, however, that a little of it must be known
to every student of the subject, and here comes a little.

It is not obvious how the definition of determinant for 2 x 2 matrices
can be extended to n x n matrices. Even the basic definition with which
most treatments begin is a little frightening. If M = (ay;) is an n xn matrix,
the cofactor of an entry o;;, call it A;j, is the (n — 1) x (n — 1) matrix
obtained by removing from M the entire row and the entire column that
contain a;;—that is, removing row i and column j. Thus, for instance, the

B

cofactor of a in 5

) is the 1 x 1 matrix (6), and the cofactor of -y is the
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1 x 1 matrix (3). The standard definition of determinants uses cofactors
to proceed inductively. The determinant of a 1 x 1 matrix (z) is defined to
be the number z, and the determinant of an n x n matrix, in terms of its
(n — 1) x (n — 1) submatrices (written here for n = 4), is given by

det M = a3 - det Ay; — gy - det Agy + a3y - det Ag; — gy - det Ayg.

In words: multiply each element of the first column by the determinant of
its cofactor, and then form the sum of the resulting products with alternat-
ing signs. Special case:

det (j §) — a-det(6) — 7 - det(8),

which agrees with the ad — 3~ definition of Problem 62.

Important comment: the definition does not have to be based on the
first column—with a small modification any other column gives the same
result. The modification has to do with signs. Think of the entries of a
matrix as having signs painted on them: the sign painted on «;; is to be
plus if 7 + j is even and minus if ¢ + j is odd. (Equivalently: the sign of
a; is the sign of the number (—1)*+9.) Thus, a1; and as; are plus whereas
a9y and ay; are minus. The definition of determinant in terms of column
j instead of column 1 (written here for n = 4) is either

a5 det Alj —Qgj - det A2j + as; - det Az; — oy - det A4_7'

or the negative of that depending on whether the sign of a; is plus or
minus. Example: if

011 012 0a3

M=o op aygl],
a31 Q32 033
then
det M = a11(a22a33 - a23a32)
— a2 (01120433 - 0113032)
+ a31(@12023 — a13022),
and also

det M = —ay2(az1033 — (ra30031)
+ 022(011033 - 013031)

— agz(o1003 — a13001).

These formulas are called the expansion of det M in terms of the first and
the second columns; there is also, of course, an expansion in terms of the
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third column, and there are completely similar expansions in terms of the
TOWS.

The assertion that these various signed sums all give the same answer
(in every case, not only for 3 x 3 matrices) needs proof, but the proof is
not likely to elevate the reader’s soul and is omitted here. Comment: if all
parentheses are removed, so that the expansion of the determinant of a
3 x 3 matrix is written out in complete detail, then each of the resulting six
terms is a product (with its appropriate sign) of exactly one element from
each row and each column. A similar statement is true about n x n matrices
for every n: the value of the determinant is the sum, with appropriate signs,
of the n! products that contain exactly one factor from each row and each
column. A description such as that is sometimes used as an alternative
definition of determinants.

Another (definitely non-trivial) assertion is that (for matrices of all
sizes) determinant is multiplicative: if M, and M; are two n x n matrices,
then

det(M; - M;) = (det M) - (det My).

An easier property (with its easier proof also omitted) is that the de-
terminant of an upper triangular matrix, such as for instance

o O #*
S * *
* * *

*

*

*
0 00
is the product of the diagonal entries. (The picture is intended to convey
that the entries below the main diagonal are 0 while the entries on and
above are arbitrary. A similar picture and similar comment apply to lower
triangular matrices also.) Special case: the determinant of a diagonal ma-
trix is the product of the diagonal entries. Special case of that special case:
the determinant of a scalar matrix A - 1 is A", and, in particular, the deter-
minant of 1 is 1. For invertible matrices

*

1
_1 _
det M™" = det M’
and, for any matrix,

det(AM) = \*det M

(where X is an arbitrary scalar).

Far and away the most useful property of determinants is that
det M # 0 if and only if M is invertible. (The proof is just as omitted as
the other proofs so far in this section.) That property is probably the one
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that is most frequently exploited, and it will indeed be exploited at some
crucial spots in the sequel.

The actual numerical values of determinants are rarely of any inter-
est; what is important is the theoretical information that the existence of
a function of matrices with the properties described above implies. The
questions that follow, however, do have to do with the numerical evalua-
tion of some determinants—they are intended to induce at least a small
familiarity with (and perhaps a friendly feeling toward) such calculations.

Problem 63. If M1, My, and M3 are the matrices below, what are
the values of det M, det My, and det M3?

1 200
2100
M, =
1 00 3 4}’
00 43
200 0 2
02020
Mo=}00 20 0],
020 20
200 0 2
30000 2
030020
o003 200
My=149 02300/
020030
20000 3

64. Zero-one matrices

Matrices with only a small number of different entries intrigue mathe-
maticians—such matrices have some pleasant, and curious, and sometimes
surprising properties. Suppose, for instance, that every entry of ann x n
matrix is either 0 or 1—how likely is such a matrix to be invertible? It is
clear that it doesn’t have to be. The extreme example is the matrix in which
every entry is equal to 0—the zero matrix. Equally clearly a matrix of 0’s
fmd I’s (would “01-matrix” be a useful abbreviation?) can succeed in being
invertible—the trivial example is the identity matrix. It seems reasonable
that the more zeros a matrix has, the more likely it is that its determinant
is 0, and hence the less likely the matrix is to be invertible. What in fact is
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the largest number of 0’s that a 01-matrix of size n X n can have and still
be invertible? Equivalently: what is the smallest number of 1’s that a 01-
matrix of size n x n can have and still be invertible? That’s easy: the answer
is n. The number of 1’s in the identity matrix is n; if a matrix has fewer 1’s,
then at least one of its rows must consist of 0’s only, which implies that its
determinant is 0. (Why?) Consequence: the maximum number of 0’s that
an invertible 01-matrix can have is n? — n.

What about 1’s? An n x n matrix has n? entries; if they are all equal to
1, then, for sure, it is not invertible; in fact its determinant is 0. What is the
largest number of 1’s that an n x n 01-matrix can have and be invertible?
Triangular examples such as

oo O =
o O = =
O = =
-

suggest the conjecturable answer

n2—~(1+~-+(n—1))=n(L2+~1—).

Is that right?

Problem 64. What is the largest number of 1’s that an invertible
01-matrix of size n x n can have?

Comment. The displayed formula has a not uncommon problem at its
lowest value: when n = 1, the left side has to be interpreted with some
kindness.

65. Invertible matrix bases

The set L(V) of all linear transformations of an n-dimensional real vector
space V to itself, or, equivalently, the set of all » x n real matrices, is a
vector space that has a basis consisting of n? elements—see Problem 59.
How good can that basis be?

Problem 65. Does L(V) have a basis consisting of invertible linear
transformations?
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66. Finite-dimensional invertibility

The two conditions needed for invertibility are easy to characterize indi-
vidually: to say that a linear transformation T' on a vector space V is sur-
jective means just that ran 7" = V, and to say that it is injective means that
ker T = {0}. The first statement is nothing but language: that’s what the
words mean. The second statement is really two statements: (1) if T is in-
jective, then ker T' = {0}, and (2) if ker T' = {0}, then T is injective. Of
these (1) is obvious: if T is injective, then, in particular, 7' can never send
a vector other than 0 onto 0. Part (2) is almost equally obvious: if T" never
sends a non-zero vector onto 0, then 7' cannot send two different vectors u,
and uy onto the same vector, because if it did, then (by linearity) T would
send u; — ug onto 0.

The interesting question along these lines is whether there is any rela-
tion between the two conditions. Is it possible for T to be surjective but not
injective? What about the other way around? These questions, and their
answers, turn out to have a deep (and somewhat complicated) theory in
the infinite parts of linear algebra. In the finite-dimensional case the facts
are nearer to the surface.

Problem 66. Can a linear transformation on a finite-dimensional
vector space be injective but not surjective? How about the other way
around?

67. Matrices

A matrix is a square array of scalars, such as

-3 7 T
3 0 1
V10 /7 €* 19

0 1 0 X

1
2
0

This example is called a 4 x 4 matrix (pronounced “four by four”); all other
sizes (2 x 2, 11 x 11) are equally legitimate. An extreme case isa 1 x 1
matrix, which is hard to tell apart from a scalar. In some contexts (slightly
more general than the ones here considered) even rectangular matrices
are allowed (instead of only square ones).

Matrices have already occurred in these problems. Solution 59 shows
thatabasis {e;, e,, .. ., e, } of a finite-dimensional vector space can be used
to establish a one-to-one correspondence between all linear transforma-
tions A on that space and all matrices {a; }. The relation between a linear

66
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transformation A and its matrix {a;;} is that

n
A6j= E Q€4
i=1

for each j = 1,2,...,n. What is already known is that the linear proper-

ties of linear transformations correspond just fine to the linear properties
of matrices: if two transformations A and B have matrices {a;;} and {8;;},

then a transformation such as £ A + 7B has the matrix {{a;; +n0;; }. What

is not known is how matrices behave under multiplication: what, to be def-

inite, is the matrix of AB? The only way to find the answer is to indulge in

a bit of not especially fascinating computation, like this:

(AB)ej = A(Be]-) =A (z ﬁkjek) = Zﬁijek
k k

- ¥ (Z a,.,ce,) -y (zkj aikﬁkj) e

i

Conclusion: the (3, j) entry of the matrix of AB is
Z QikP;-
k

It may look complicated to someone who has never seen it before, but all
it takes is a little getting used to—it is really quite easy to work with.

Here is an easy example: the set C of complex numbers is a real (!) vec-
tor space, the set {1, i} is a basis for that space, and the action C of complex
conjugation is a linear transformation on that space—what is the corre-
sponding matrix? That’s two questions: what is the expansion, in terms of
{1,4} of C1, and what is the expansion in terms of {1,4} of C'i? Since the
answers are obvious: C1 = 1 and Ci = —i, the matrix is

(6 %)

That’s too easy. For a little more revealing example, consider the vec-
tor space P4 of all polynomials of degree 4 or less, with basis

e=1, e =t ey =12, e3 =13, e4 =t
and the linear transformation A on P, defined by

Ax(t) = z(t + 1);
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what is the matrix? Since
Aeg =1,
Aey =t+1,
Aey = (t+1)2 =+ 2t +1, etc.,

it follows that the matrix (look at its columns) is

11111
012 3 4
001 3 6
0 001 4
00001

Problem 67. What happens to the matrix of a linear transformation
on a finite-dimensional vector space when the elements of the basis
with respect to which the matrix is computed are permuted among
themselves?

Comment. The considerations of invertibility introduced in Problem 60
can be formulated more simply and more naturally in terms of matrices.
Thus, for instance, the question about the transformation 7" of that prob-
lem could have been asked this way: is the matrix

2 1
1 1
invertible?

68. Diagonal matrices

Some matrices are easier to work with than others, and the easiest, usually,
are the diagonal ones—they are the ones, such as

5 0 0 0
0 —e 0 0
00 %2 o |
0 0 0 100

in which every entry not on the main diagonal is 0. (The main diagonal
of a matrix {ai;} is the set of entries of the form a;, that is the entries
w.hose two subscripts are equal.) The sum of two diagonal matrices is a
dfagonal matrix, and, extra pleasant, even the multiplication formula for
dlagqnal matrices is extra simple. The product of two diagonal matrices is
the diagonal matrix obtained by multiplying each entry of one of them by

68
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the corresponding entry in the other. It follows in particular that within the
territory of diagonal matrices multiplication is commutative. The product
of two matrices usually depends on the order in which they are multiplied,
but if A and B are diagonal matrices, then always AB = BA.

The simplest among the diagonal matrices are the scalar matrices,
which means the matrices that are scalar multiples of the identity: matri-
ces in which all the diagonal entries are equal. They are the simplest to
look at, but it happens that sometimes the extreme opposite, the diagonal
matrices in which all diagonal entries are different, are the easiest ones to
work with.

Problem 68. If A is a diagonal matrix whose diagonal entries are
all different, and if B is a matrix that commutes with A, must B also
be diagonal?

69. Universal commutativity

Which matrices commute with all matrices? To keep the question from be-
ing nonsense, it must be assumed of course that a size is fixed once and for
all and only square matrices of that size are admitted to the competition.
One example is the identity matrix; another is the zero matrix. Which are
the non-trivial examples?

Problem 69. Which n x n matrices B have the property that AB =
BA for all n x n matrices A?

70. Invariance

The set M of all vectors of the form

(0,a,83,8)

in R* (that is, the set of all vectors whose first coordinate is 0 and whose
last two coordinates are equal) is a subspace of R%, and the matrix

101 -1
21 2 1
A_0161
313 4

defines a linear transformation on R?. If u is a vector in M, then the vector
Aw has its first coordinate equal to 0 and its last two coordinates equal
to one another (true?)—in other words, it too is in M (along with ). This
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phenomenon is described by saying that the subspace M is invariant under
the linear transformation A. (The facts are often stated in this language:
M is an invariant subspace of A.)

If B is the scalar matrix

S O N
QN o
N O o
(=T == e

000 2

and if » is in M, then Bu is in M—the subspace M is invariant under B
also.

If C is the diagonal matrix
1000
02 00
0010}’
0 00 2
and if u = (0,1, 2,2), then  is in M, but Cu is not; the subspace M is not

invariant under C.

The concept of invariance plays a central role in linear algebra (or, for
that matter, in all mathematics). The most primitive questions about in-
variance are those of counting: how many invariant subspaces are there?
If, for instance, the underlying vector space V is the trivial one, that is the
space O, then every linear transformation has exactly one invariant sub-
space (namely O itself). If V is R! and if A is the identity transformation
on R?, then there are just two invariant subspaces (namely O and R!.)

Problem 70. Is there a vector space V and a linear transformation
AonV, such that A has exactly three invariant subspaces?

71. Invariant complements

Invariant subspaces can be used to simplify the appearance of matrices. If
A is a linear transformation on a vector space V of dimension n, say, and
if M is a subspace of V invariant under A, of dimension m, say, then there
exists a basis {ej, ez, ..., e, } of V such that the vectors e; (j = 1,...,m)
belong to M. With respect to such a basis, the matrix corresponding to A

has the form
P Q
0 R/’

where P is an m x m matrix, R is an (n — m) x (n — m) matrix (square),
and @ is an array (a rectangular matrix) with m rows and n — m columns.

7!
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The entry 0 in the lower left corner deserves mention too: it is an array (a
rectangular matrix) with n — m rows and m columns.

The more zeroes a matrix has, the easier it is to compute with. For
each linear transformation it is natural to look for a basis so as to make
the corresponding matrix have many zeroes. What the preceding comment
about matrices shows is that if the basis begins with vectors in an invariant

subspace, then the matrix has an array of zeroes in the lower left corner.

Under what circumstances will the other corners also consist of zeroes?
When, for instance, will it happen that P = 0? That’s easy: P = 0
means that Ae; = 0forj = 1,...,m,sothatthe spanMof {e,ez,...,em}
is in the kernel of A—that’s necessary and sufficient.
When is Q = 0? Answer: if and only if the coefficients of the vectors

€1,€2,...,em in the expansion of Ae; (j =m+1,...,n) are all 0. Better
said: if and only if the image under A of each e; (j = m+1,...,n) belongs
to the span of {€m41, . . -, €n }. Reformulation: the span of {em41,. .-, €n}

is invariant under A. In other words, a necessary and sufficient condition
that the matrix of A have the form

(¢ »)

with respect to some basis {1, €2, . . . , €, } is that for some m both the span
of {ey,...,en} and the span of {e; 11, . . ., €, } be invariant under A. Best
answer: the matrix of A has the form Ig 1?2 if and only if there exist

two complementary subspaces each of which is invariant under A.
How likely is that to happen?

Problem 71. If Aisalinear transformation on a finite-dimensional
vector space, does every invariant subspace of A have an invariant
complement?

72. Projections

If M and N are complementary subspaces of a finite-dimensional vector

" space V, then (Problem 28) corresponding to every vector z in V there are

two vectors z and y, with = in M and y in N, such that z = z + y, and,
moreover, z and y are uniquely determined by 2. The vector z is called the
projection of z into (or just plain “to”) M along (or parallel to) N, and,
similarly, y is the projection of z to N along M.

A picture for the case in which M and N are distinct lines through the
origin in the plane helps to see what’s going on. If z is a typical point not
on either M or N, then draw a line through z parallel to Mj; the point where
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that parallel intersects N is the projection of z to N. (Similarly, of course,
the intersection with M of the line through z parallel to N is the projection
of 2 to M..) What happens if 2 does belong to M or N?

Consider the correspondence (transformation) that assigns to each z
the vector z—call it E—and, similarly, let F' be the transformation that
assigns to each z the vector y. The verification that £ and F are linear
transformations is dull routine (but necessary). Since x + y = z, it follows
that £+ F = 1. The word projection is used for the transformations £ and
F' (as well as for the vectors z and y in their ranges): E is called the pro-
jection on M (along N) and F the projection on N (along M). Warning: E
emphasizes M, but its definition depends crucially on both M and N, and,
similarly, F' emphasizes N, but depends on both subspaces also. In other
words if N; and N; are two different complements of M, then the projec-
tions Fy and E; on M along N; and N are different transformations. If
M = V (in which case N is uniquely determined as Q), then E = 1; if
M = O, then E = 0. These are trivial examples of projections; what are
some non-trivial ones? Could it be, for instance, that every linear transfor-
mation is the projection to some subspace along one of its complements?

Problem 72. (a) Which linear transformations are projections?
(b) If E is the projection on M along N, what are ran E and
ker E?

Comment. Question (a) asks for a characterization of some algebraic
kind (as opposed to the geometric definition) that puts all projections into
one bag and all other linear transformations into an another.

73. Sums of projections

Is the sum of two projections always a projection? Of course not—the iden-
tity transformation 1, for instance, is a projection, but the sum of the iden-

tity and itself, the transformation 2, is certainly not a projection. (In fact
the double of a projection different from 0 is never a projection. Proof?) "

. On the other hand the sum of two projections can often be a projec-
tion. A trivial example is given by any projection E and the projection 0.
An only slightly less trivial example is

(o 0) = (53):
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A numerically somewhat cumbersome example, in, however, the same
spirit, is given by

179 12 and 1/16 -12
25\ 12 16 25\-12 9
What’s going on?

Problem 73. When is the sum of two projections a projection?

74. Not quite idempotence

A linear transformation E is a projection if and only if it is idempotent, and
that condition is equivalent to the equation E(1 — E) = 0. If that equation
is satisfied then E = E?2 and 1 — E = (1 — E)2. It follows that if E is
idempotent, then the slightly weaker equations

E*1-E)=0 and E(1-E)*=0

are satisfied also. Are these necessary conditions sufficient? Caution: does
the question mean together or separately?

Problem 74. If E is a linear transformation such that
E1-E)=0,
does it follow that E is idempotent? Is that condition equivalent to

E(1-E)Y? =07

CHAPTER 5

DUALITY

75. Linear functionals

The most useful functions on vector spaces are the linear functionals. Re-
call their definition (Problem 55): a linear functional is a scalar-valued
function £ such that

§(z+y) = ¢(z) +£(v)

and

{(az) = af(x)
whenever z and y are vectors in V and « is a scalar,
Example on R™: &(z4,z2,...,Z,) = 32;.
Example on R3: ¢(z,y,z) = = + 2y + 3=.
Examples on the space P of polynomials:

+1
E(p) = /_ 1 p(t)dt, or / +1t2p(t)dt,

-2

9 d?
or | p(t?)dt, e
The most trivial linear functional is also the most important one,
namely 0. That is: if £ is defined by

t=1

£(z) =0

for all z, then ¢ is a linear functional. Except for this uninteresting case,
every linear functional takes on every scalar value—that’s an easy exercise
(see Problem 55(1)). So, for instance, if £, is a non-zero linear functional
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on a finite-dimensional vector space V, then there always exists a vector z
in V such that & (z) = 3. Does it work the other way? That is: if zp is a non-
zero vector in a finite-dimensional vector space V, does there always exist
a linear functional £ such that £(zo) = 3? That takes a little more thought,
but the answer is still yes. To see that, let {zq,z2,...,z,} be a basis for V

that has the prescribed vector z, as one of its elements, say, x; = xo; then

the first example above does the job.

These statements are mainly about the ranges of linear functionals;
can something intelligent be said about their kernels? If, for instance, £
and 7 are linear functionals (on the same vector space V) and « is a scalar
such that n(z) = o€(z) for every z in V, then, clearly, n(z) = 0 whenever
£(z) = 0. Is there a chance that the converse statement is true?

Problem 75. If £ and 7 are linear functionals (on the same vector
space) such that n(z) = 0 whenever {(z) = 0, must there always
exist a scalar a such that n(z) = a€(x) for all x?

76. Dual spaces

Old vector spaces can sometimes be used to make new ones. A typical ex-
ample of such a happening is the formation of the subspaces of a vector
space. Another example starts from two spaces, a vector space and a sub-
space, and forms the quotient space. Still another example starts from two
arbitrary vector spaces and forms their direct sum.

One of the most important ways to get new vector spaces from old ones
is duality: corresponding to every real vector space V there is a so-called
dual space V'. The elements of V’ are easy enough to describe: they are
the linear functionals on V. Linear functionals can be added: if £ and n are
linear functionals on V, then a linear functional ¢ = £ + 7 is defined for
all z by

o(z) = {(z) + n(z).

Linear functionals can be multiplied by scalars: if £ is a linear functional
and « is a scalar, then a linear functional 7 = af is defined for all z by

7(z) = af(x).
With these definitions of addition and scalar multiplication the set V' of

all linear functionals becomes a vector space, and that is the dual of V.

Problem 76. Is the dual of a finite-dimensional vector space finite-
dimensional?
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77. Solution of equations

Every vector in a vector space (except the zero vector) is just like every
other vector, and every linear functional (except the zero linear functional)
is just like every other. If, however, [ is a field, and, for some positive in-
teger n, the particular vector space under consideration is F”, then the
existence of built-in coordinates makes it possible to single out certain spe-
cial vectors and special linear functionals. Thus, for instance, the vectors
that have only one coordinate different from 0 and that one equal to 1 are
often made to play an important role, and the same is true of the linear
functionals p; defined by

pj(ml)'--yxn)zmj, j=1,...,n,

called the coordinate functionals or coordinate projections.

These vectors and functionals are most conspicuous in the procedure
called “solving” systems of n linear equations in » unknowns. Here is what
that seems to mean to most students: keep forming linear combinations of
the given equations till they take the form

Tl = Q1y...4yTpn = Qp,

and then feel justified in deciding that (¢, . .., @, ) is the sought for solu-
tion.

The most fussily honest way of describing what the reasoning shows is
to say that IF there is a solution, THEN the procedure leads to one, but an
existence proof of some kind is probably called for, and so is a uniqueness
proof. Some teachers worry about putting such an incomplete tool into the
hands of their students, and feel called upon to justify themselves by an airy
wave of the hand and the suggestion “just follow the steps backwards, and
you’ll be all right”. Is that always true?

A linear equation is presumably something of the form

y(z) =0,
where y is a linear functional (given),  is a scalar (known), and z is a vector
(unknown). A system of n linear equations in n unknowns, then, involves
n linear functionals vy, . .., ¥, and n scalars aj, . . ., &,; What is wanted is
avector £ = (z,...,2y) such that

yj((l:):aj, j=1,...,n.
Another way of saying all this is to define a linear transformation T' from
F" to F™ by writing

T(x) =T(z1,...,%n) = (11(2), . .-, ¥n(z)),
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and then hope that enough is known about T' to guarantee that its range
is all of F™ (existence of solutions) and that its kernel is {0} (uniqueness).
The hope, in other words, is that T is invertible; if it is, then the desired
solution (e, - . .,ay) is given by T~ (ay, ..., an).

What hidden assumption is there in the usual solution procedure that

might be enough to imply the invertibility of T'? The not especially well

hidden assumption is that it is possible to
“keep forming linear combinations of the given equations till they
take the form o, = a1,...,T, = ap”.

In other words: the span of the linear functionals y1, . . . , ¥, (their span in
the dual space of F", of course) contains each of the coordinate projec-
tions.

Problem 77. If y1,...,yn are linear functionals on F" such that
each of the coordinate projections belongs to their span, does it al-
ways follow that the linear transformation T from F™ to F" defined

by
T(z) = (yl (z),. -+, yn(a:))
is invertible?

78. Reflexivity

Sometimes two different vector spaces can resemble each other so much
that it’s hard to tell them apart. At first blush the space P3 (polynomials of
degree 3 or less) and the space R* (sequences of length 4) may not look
much alike, but on second thought maybe they do. What are vector prop-
erties of polynomials such as

ag + ot + a2t2 + a3t3,

and how do they compare with the vector properties of sequences such as

(51)52, {3154)?

In this question the traditional use of the alphabet hurts a little rather than
helps. Change the o’s to £’s and jack up their indices by one, or else change
the £’s to o’s and lower their indices by one, and the differences tend to go
away: the only difference between the vector

€1 + &t + &3t + Lat®
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in P3 and the vector

(El, 52753) 64)

in R* is that one uses plus signs and ¢’s and the other uses parentheses and
commas—notation, not substance. More elegantly said: there is a natu-
ral one-to-one correspondence between R* and Ps, namely the correspon-
dence T defined by

T(£1,82,83,84) = &1 + Eat + &3t + £423,

and both that correspondence and its inverse are linear. Is the meaning of
that sentence clear? It says that not only is T' a one-to-one correspondence,
but, moreover, if z = (&;,42,£3,&4) and y = (1,712, 73,74) are in R* and
a and S are scalars, then

T(cf + Bn) = aT(€) + BT(n),

and also that if p and q are in P3, then

T Y ap + Bq) = aT~(p) + BT (q).

(See Problem 60.) An informal but not misleading way of saying all this is
to say that P; and R* differ in notation only, or even more informal and
perhaps a tiny bit misleading, that P; and R* are essentially the same.

The dignified word for “essentially the same” is isomorphic. An iso-
morphism from a vector space V to a vector space W is a one-to-one linear
correspondence T from (all of) V to (all of) W; two spaces are called iso-
morphic if there exists an isomorphism between them. Trivially V and V
are always isomorphic, and if V and W are isomorphic, then so are W and
V (the inverse of an isomorphism is an isomorphism), and, finally, if U, V,
and W are vector spaces such that U is isomorphic to V, and V is isomorphic
to W, then U is isomorphic to W (the composition of two isomorphisms is
an isomorphism). What was just said is that isomorphism is an equivalence
relation—and nothing that has been said on the subject so far is deep at
all.

Isomorphisms preserve all important properties of vector spaces.
Example: isomorphic vector spaces have the same dimension. Proof: if
{£1,...,&,} is a basis for V and if T is an isomorphism from V to W, then
{T¢,...,T¢,} is a basis for W. Reason: if

a1 Té + -+ a,TE, =0,
then

T{a1€1 + -+ antn) =0,
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which implies that
a6y + -+ andn =0,
and hence that
ay=---=a,=0

—the T'x;’s are linearly independent. If, moreover, y is an arbitrary vector
in W, then 71y (in V) is a linear combination of the z,’s—that is T~y
has the form a1 &; + - - - + o, &, for suitable a’s. Apply T to conclude that
y=a1T& +-- - + a,TE—the TE;’s span W.

The converse of the result just proved is also true: if two finite-dimen-
sional vector spaces V and W have the same dimension, then they are iso-
morphic. Proof: if {{;,...,£,} is a basis for V and {n,,...,7,} is a basis
for W, then there is one and only one linear transformation 7" from V to
W such that T¢; = n; (j = 1,...,n), and that transformation is an iso-
morphism from V to W.

The proof just sketched is correct, but in the view of some mathemati-
cians it is ugly—it is unnatural. Reason: it depends on two arbitrary (un-
natural) choices—a basis for V must be chosen and a basis for W must be
chosen, and the argument depends on those two bases. If those bases are
changed, the isomorphism T changes. Yes, sure, there exists an isomor-
phism, and, in fact, there are many isomorphisms from V to W, but there
is no reason to prefer any one of them to any other—there is no natural
way to make the choice between them.

There is one celebrated circumstance in which a natural isomorphism
between two vector spaces does spring to the eye, and that is between a
finite-dimensional vector space V and the dual space (V’)’ of its dual space
V’. (It is more convenient and customary to denote that second dual space
by V”.) The elements of V” are linear functionals of linear functionals.
What is an example of such a thing? Here is one: fix a vector &, in V, and
then, for each element n of V'— that is, for each linear functional 5 on
V—write

&o(m) = n(20).

Emphasis: &, is held fixed here (in V) and 7 is allowed to vary (in V’).
Consequence: & is a function on V’, a function of 7, and half a minute’s
staring at the way 7(&o) (which equals £;(n)) depends on 7 should convince
everyone that & is a linear functional on V.

Does every linear functional on V' arise in this way?
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Problem 78. If V is a vector space, and if for each vector zin V an
element =’ (= Tx) of V" is defined by

' (n) = n(z),

then T is always a linear transformation from V to V" (verification?);
is it always an isomorphism?

Comment. The question belongs to one of the subtlest parts of linear al-
gebra; to put it into the right context a couple of comments are advisable.

(1) The mapping T here defined is called the natural mapping from
V to V”. In case it happens that T maps V onto V” (so that it is an iso-
morphism), the vector space V is called reflexive. (Warning: for infinite-
dimensional, topological, vector spaces the same word is defined with an
extra twist—the use of the present definition in those cases can lead to
error and confusion.)

(2) If a finite-dimensional vector space V is reflexive—if, that is, not
only are V and V” isomorphic, but, in fact, the natural mapping is an
isomorphism—then it is frequently convenient (though mildly sloppy) to
identify the isomorphic spaces V and V”. In more detail: if V is reflexive,
then each vector z in V is regarded as the same as its image z’ (= T'z) in
V. As a special case, recall the construction (described in Solution 76) of
a basis dual to a prescribed one. Start with a basis

X={z1,...,2a}
inV,let
U= {ul,...,un}

be the dual basis in V' (so that u;(z;) = 6;; for all i and 5), and do it again:
let

X' ={zi,...,z,}
be the basis in V" dual to U (so that
zj(ui) = 6i;
for all 7 and 5). Since
IB; (ui) = Ui(fj)
for all i and 7, it follows that

zj(u) = u(z;)
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for all u in V’ and for all j, so that z, is exactly the image of z; under the
natural mapping T from V to V”. The proposed identification declares that
for each j the vectors .1;9 and z; are the same, and hence that the bases X’
and X are the same.

79. Annihilators

The kernel of a linear transformation (see Problem 56), and, in particular,
the kernel of a linear functional is the set (subspace) of vectors at which it
takes the value 0. A question can be asked in the other direction: if z is a
vector in a vector space V, what is the set of all linear functionals v on V
such that u(z) = 0? Frequently used reformulation: what is the annihilator
of ? An obviously related more general question is this: if M is a subset
(possibly but not necessarily a subspace) of a vector space V, what is the set
of all linear functionals « on V such that u(z) = 0 for every z in M? The
answer, whatever it is, is denoted by M? and is referred to as the annihilator
of M.

Trivial examples: ° = V' and V? = O (in V’). If V is finite-dimen-
sional and M contains a non-zero vector, then (see the discussion preced-
ing Problem 63) M? # V',

The annihilator of a singleton (M = {z}) consists of all those linear
functionals u for which z is in ker ». In the abbreviated language of double
duality (see Problem 77) {z}° is the kernel (in V') of the linear functional
x in V" (originally denoted by ' in Problem 77). Consequence: the annihi-
lator of {x} is always a subspace of V’. This consequence could have been
derived perfectly easily without the double duality discussion, but that is
where the result naturally belongs. If M is an arbitrary subset of V, then
MO is the intersection of all the annihilators, such as {z}, of the vectors
z in M. Consequence: the annihilator of every set (in V) is a subspace (of
V).

Since M? is a subspace, it makes sense to speak of dim M?; can any-
thing intelligent be said about it?

Problem 79. If M is an m-dimensional subspace of an n-
dimensional vector space V, what is the dimension of M° in V'?

80. Double annihilators

It is a good rule in most of mathematics that if you can do something once,
you should do it again, and again and again and again: iterate whenever
possible. Example: if it is a good thing to start with a subspace M of a
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vector space V and form its annihilator M? in V', then it is a good thing
to do it again. Doing it again means to start with M® in V' and form its
annihilator (M?)? in V" (except that, just as for (V’)’, it is saner to denote
that double annihilator by M).

Problem 80. If M is a subspace of a finite-dimensional vector space
V, what is the relation between M and M%0?

Comment. Strictly speaking M and M are incomparable: they are sub-
spaces of the different vector spaces V and V”. Since, however, every
finite-dimensional vector space is reflexive, the identification convention of
Problem 77 can and should be applied. According to that convention the
space V" is the same as the space V, and both M and M are subspaces
of that space.

81. Adjoints

The concept of duality was defined in terms of very special linear transfor-
mations, namely linear functionals; does it have anything to do with more
general linear transformations? Yes, it does.

Suppose that A is an arbitrary linear transformation on a vector space
V and that u is an arbitrary element of the dual space V’. With those two
tools at hand, there are two natural things to do to any particular vector
z in V: form the vector Az and form the scalar u(z). And there is also a
third thing: the two tools can form a conspiracy by being used one after the
other (in the only order in which that is possible). It makes sense, that is, in
addition to applying either A or u to z, to apply both by forming u(Az). If
A and v are regarded as temporarily fixed, the expression u(Az) depends
on z alone—it is a function of z. Since both A and u depend linearly on z,
so does their composition. If, in other words, a function v on V is defined

by
v(z) = u(Az),

then v is a linear functional, an element of V'.

A minor miracle just occurred: a linear transformation on V and a
linear functional in V' collaborated to produce a new element of V’. That
new element v can be viewed as the result of operating on the old element
u by a transformation A’, so that

v=Au.

81
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The transformation A’ is called the adjoint of A; it sends vectors in V' to

vectors in V',
How does A’ operate on V'? Unsurprising answer: linearly. That is: if

U = q1U] + gz,
then
A'u = oy A'uy + agAlug;

the verification of that equation should by now be regarded as dull routine.
That answers the question of how A’u depends on u. A more interesting
and less commonplace question is this: how does A’'u depend on A? An-
swer: simply and beautifully, with only one small and harmless surprise.

It is, for instance, child’s play to verify that if A = 0 (on V), then A’ =0
(on V'), and, similarly, that if A = 1 (on V), then A’ =1 (on V’). Simpler
put: 0’ = 0and 1’ = 1. The proof that if A and B are linear transformations
onV, then

(A+B)I=AI+BI

is just as easy—the only difference is that a few more symbols are involved.
Since, moreover, if A is a linear transformation on V and « is a scalar, then

(@A) = ad’,

a part of the relation between linear transformations and their adjoints can
be described by saying that A’ depends linearly on A.

What about products? If A and B are linear transformations (on V),
and if C = AB, what can be said about C’ (on V’) in terms of A’ and B'?
Here comes the small and harmless surprise:

(C'u)(z) = u(Cz) = u((AB)z)) = u(A(Bx))
= (A'u)(Br)  (by the definition of A’)
= B'((A'u)z)  (by the definition of B')
= ((B'A")u)(x)-
Conclusion: (AB)' = B’ A'—the order of the product became reversed.
The last question of this kind concerns inverses: if A is invertible, what

can be said about (A~!)’? Answer: if A is invertible, (on V), then A’ is
invertible (on V) and

(A—l)l — (A’)—l.

The proof makes obvious use of the multiplicativity equation just proved
and of the basic relation 1’ = 1.
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At this point another opportunity presents itself to act on the principle
of doing something doable again and again: if a linear transformation 4 on
a vector space V yields a linear transformation A’ on V, then A’ yields a
linear transformation (A')’ on V”—what is the relation between A and
its double adjoint? First comment: notational sanity suggests that (A’)’ be
denoted by A”. Second comment: in order for A” and A to be comparable,
it would be good to have them live on the same domain, and, to achieve
that, it is a good idea to assume that V is finite-dimensional and, therefore,
reflexive. Once that’s done, the answer to the question becomes simple:

A" = A,

Proof: if z isin V and u is in V', then

u(Az) = ((A'u)z)  (by the definition of A’)

and

(A'u)(z) = u(A"z)  (by the definition of A”).

So much for the general properties of adjoints; it is high time that a
deeper understanding of them be acquired by studying their more special
properties, which means their relations to other concepts. Example: linear
transformations are intimately associated with certain subspaces, namely

their kernels and ranges. What does the formation of adjoints do to kernels
and ranges?

Problem 81. If Aisalinear transformation on a finite-dimensional
vector space V and if A’ is its adjoint on V', what is the relation
between the ranges and the kernels of A and A'?

Co.mme.nt. The question can be asked in any case, but the restriction to
finite-dimensionality is a familiar and sane precaution.

82. Adjoints of projections
Can the adjoint of a concretely presented transformation be exhibited con-
cretely? What, for instance, happens with projections?

Problem 82. IfM and N are subspaces of a finite-dimensional vec-
tor space V, what is the adjoint of the projection of V to M along N?

82
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83 83. Matrices of adjoints CHAPTER 6
Linear transformations have adjoints; what do matrices have? SIMILARITY

Problem 83. What is the relation between the matrix, with respect to
some basis, of a linear transformation on a finite-dimensional vector
space and the matrix, with respect to the dual basis, of its adjoint on
the dual space?

84. Change of basis: vectors

If V is an n-dimensional vector space, with a prescribed ordered basis

{z1,...,zn}, then each vector z determines an ordered n-tuple of scalars.
This is an elementary fact by now: if the expansion of z in terms of the
z;’s is

T=0a1T + -+ QpTn,

then the ordered n-tuple determined by z is just the n-tuple

(al,...,an)

of coefficients. The game can, of course, be played in the other direction:
once a basis is fixed, each ordered n-tuple of scalars determines a vector,
namely the vector whose sequence of coefficients it is.

Now change the rules again, or, rather, play the already changed rules
| but change the emphasis. Given an n-dimensional vector space V and an
5 ordered n-tuple (ay,..., ay,) of scalars, note that each basis {z4,...,z,}
of V determines a vector in V, namely the vector described by the first
\ equation above. That vector depends, obviously, on the basis. If {y1, . ..,y }

is also a basis of V, it would be a surprising coincidence if the determined
vector

y=oh +- -+ aplYn

i turned out to be the same as z; as the basis changes, the vector changes.
] How?
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Problem84. If{z1,...,z,}and {y,...,yn} arebases of avector
space, and if

T=01Z1+ -+ QpTy
and
y=ayr + -+ OpYn,

what is the relation between the vectors x and y?

Reformulation. What happens to vectors under a “change of basis”?

Emphasis. The same coefficients (a1, . .., a,) appear in the two displayed
equations.
85 85. Change of basis: coordinates
If {x1,...,2,} and {y1,...,yn} are bases of a vector space, the problem
of changing from one to the other can be thought of in two ways.
(1) Given an ordered n-tuple (a1, .. ., ay) of scalars, what is the rela-
tion between the vectors

I=01Z1+ "+ QpTy

and

y=a1y1 + -+ anyn?

(2) Given a vector z, what is the relation between its coordinates with
respect to the z’s and the y’s? A preceding problem (84) took the first point
of view. How does the answer obtained compare with the one demanded
by the second point of view?

Problem85. If{zi,...,zn}and {yi,...,yn}arebases of a vector
space, and if
&iz1t+ -+ &l =My + 0+ MnYn,

what is the relation between the coordinates £ and 1?7

86 86. Similarity: transformations

Vectors are in the easy part of linear algebra; the more challenging and
more useful part deals with linear transformations. One and the same “co-
ordinate vector” (a;, ..., ay) can correspond to two different elements of
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a vector space via two different bases—that’s what Problem 83 is about.
A parallel statement on the higher level is that one and the same matrix
can correspond to two different linear transformations on a vector space—
that’s what the present discussion is about.

Problem 86. If{z,,...,z,}and {y,...,yn}arebasesof avector
space, and if

Bz; = Z ;T
i
and
Cy; =Y aiui,
i
what is the relation between the linear transformations B and C?

Reformulation. What happens to linear transformations under a change
of basis?

Emphasis. The same matrix (o;;) appears in the two displayed equations.

Comment. This problem is only slightly harder than Problem 83, but
much deeper. Two transformations related in the way here described are
called similar, and similarity is the right, the geometric, way to classify lin-
ear transformations. To say that two linear transformations are similar is
to say, in effect, that they are “essentially the same”. Similarity is the single
most important possible relation between linear transformations—it lies
at the heart of linear algebra.

87. Similarity: matrices

A change of basis can be looked at in two ways: geometrically (what does
it do to vectors?—Problem 83) and numerically (what does it do to
coordinates?—Problem 84). The same two points of view are available in
the study of the effect of a change of basis on the higher level: geometric
(linear transformations) and numerical (matrices). The first of these was
treated by Problem 85; here is the second.

Problem 87. Ifone basis of a vector space is used to express a linear
transformation as a matrix, and then another basis is used for the
same purpose (for the same linear transformation), the result is two
matrices—what is the relation between them?

87
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88. Inherited similarity

Similarity is sometimes passed on from one pair of transformations to an-
other. Example: if B and C are similar, then so are B? and C2. Indeed: if
TBT ! = C (see Solution 86), then

TB2T~! = TB(T*T)BT! = (TBT Y)(TBT™!) = CC = C2.

Similarly, of course, if B and C are similar, then so are B™ and C™ for all
positive integers n, and, therefore, so are p(B) and p(C) for all polynomi-
als p. (Minor comment: if B is similar to a scalar v, then T is equal to 1.
Reason: TYT~! = ~TT~ 1)

The kind of reasoning used here can go a bit further. It proves, for
instance, that if B and C are similar, then so are B’ and C’. (Form the
adjoints of both sides of the equation TBT~! = C, and use the results

of Problem 80.) It proves also that if B and C are similar and if both are-

invertible, then B—! and C~! are similar. (Form the inverses of both sides
of the similarity equation.) What is true about products?

Problem 88. If B and C are linear transformations (on the same
vector space), is it always true that BC and C B are similar?

Question. Does it make any difference whether B and C are invertible?

89. Similarity: real and complex

Anyone who speaks of a vector space must have selected a coefficient field
to begin with; anyone who speaks of a matrix has in mind its entries, which
belong to some prescribed field. What happens to vectors, and linear trans-
formations, and matrices when the field changes? If, in particular, two dif-
ferent fields, E and IF say, appear to be pertinent to some study, withE C F,
then every vector space over F is automatically a vector space over E also
(or, more precisely, naturally induces a vector space over E by just restrict-
ing scalar multiplication to E); the general question is how much informa-
tion an F fact gives about an E space. The following special question is a
well known, important, and typical instance.

Problem 89. If A and B are two real matrices that are similar over
C, do they have to be similar over R?
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90. Rank and nullity

Which linear transformation (matrix) is “bigger”,

111

The question doesn’t make sense—except for the size of a matrix (in the
sense in which these 3 x 3 examples are of size 3) no way of measuring
linear transformations has been encountered yet.

The transformation C is invertible, but the transformation B is not: the
range of B is a 1-dimensional subspace. In other words, the transformation
B collapses the entire space into a proper subspace—that might be one
good reason for calling B smaller than C. Another reason might be that B
“shrinks” some vectors (sends them to 0) and C does not. The dimension
of the range of a linear transformation—called its rank—is a measure of
size; in the present example

1 11 01
B=]1 11 or C=[01 0]7?

rank B=1 and rankC =3.

Roughly: transformations are large if their rank is large. The dimension of
the kernel—called the nullity, and abbreviated as “null”—is another kind
of measure of size; in the present example

nllB=2 and nullC=0.

Roughly: transformations are large if their nullities are small.
Is there a relation between these two measures of size? And what
about the sizes of a transformation and its adjoint?

Problem 90. If A is a linear transformation of rank r on a vector
space of dimension n, what are the possible values of the rank of A’?
What are the possible values of the nullity of A?

91. Similarity and rank

Problem 91. Iftwo linear transformations on a finite-dimensional
vector space are similar, must they have the same rank?

92. Similarity of transposes

If two linear transformations on a finite-dimensional vector space have the
same rank, must they be similar? That question is the converse of the one

90

91

92
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in Problem 91, and it would be silly to expect it to have an affirmative an-
swer. (Are two invertible matrices always similar?) In some special cases,
however, the affirmative answer might be true anyway. So, for instance, ev-
ery transformation has the same rank as its adjoint~—could that statement
be strengthened sometimes to one about similarity?

B

s ) similar to its transpose

Problem 92. Is every 2 X 2 matrix (:
a 7Y,
B &)

93 93. Ranks of sums

Problem 93. If A and B are linear transformations on a finite-
dimensional vector space, what is the relation of rank(A + B) to
the separate ranks, rank A and rank B?

94 94. Ranks of products

Problem 94. If A and B are linear transformations on a finite-
dimensional vector space, what is the relation of rank AB to the sep-
arate ranks, rank A and rank B?

95 95. Nullities of sums and products

Since rank and nullity always add up to the dimension of the space (Prob-
lem 90), every relation between ranks is also a relation between nullities.
That is true, in particular, about the sum and product formulas (Problems
93 and 94), but the nullity relations obtained that way are far from thrilling.
There is, however, a nullity relation that comes nearer to a thrill, and that
is not an immediate consequence of the rank relations already available.

Problem 95. If A and B are linear transformations on a finite-
dimensional vector space, is there a simple relation involving
null (AB), null A4, and null B?
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96. Some similarities
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The best way to get a feeling for what similarity means is to look at special
cases—sometimes the answer is not what you would expect.

Problem 96.
11
(a) IsB= (O 2
0 0

== o i )
o

(b) IsB:(

(¢ IsB= (

(d IsB= (

o O N
w

oo o

11
() IsB=[0 1
0 0

Comment.

1
1 | similarto C =
3
1
1 | similarto C =
0
1
1 | similarto C =
3
0
1 | similarto C =
0
1
1 | similarto C =
1

trices of size larger than 3 x 3.

97. Equivalence

o o N o oo O O

e o

1
1
1

[ ]

[

Similar questions make sense, and should be asked, for ma-

96
0
017
3
0
1]7?
0
0
0|7
3
0
217
0
0
0]?
1
97

The construction of a matrix associated with a linear transformation de-
pends on two bases, not one. Indeed, if

X={zn,...,z,} and X={F,...,Z,}

are bases of V, and if A is a linear transformation on V, then the matrix of
A with respect to X and X, denote it temporarily by

should be defined by

A(X, X),

Al‘jz E QT4
i
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The definition originally given (see Problems 66 and 68) corresponds to
the special case in which X = X. That special case leads to the concept of
similarity—B and C are similar if there exist bases X and Y such that the
matrix of B with respect to X is equal to the matrix of C with respect to Y,
or, in the notation introduced above, if

B(X,X) = C(Y, Y).

The analogous relation suggested by the general case is called equiv-
alence: B and C are called equivalent if there exist basis pairs (X, X) and
(Y, Y) such that

B(X,X) = C(Y,Y).
The principal question about equivalence, written out in complete detail,

is in spirit the same as the original question (Problem 72) about similarity.

Problem 97. If {zi1,...,zn}, {Z1,..-,Za}, {91,..-,¥n}, and
{¥1,--.,Yn}, are bases of a vector space, and if

Bz; = Z 045
and
Cy; =Y i,
i
what is the relation between the linear transformations B and C?

Reformulation. What happens to linear transformations under two si-
multaneous changes of bases?

Emphasis. The same matrix («;;) appears in the two displayed equations.

Comment. The question is somewhat vague, just as it was in Problem 85.
The relation is that there exist bases with the stated property—and why
isn’t that an answer? The unformulated reason, at the time Problem 85
was stated, was the hope that the “geometric” definition could be replaced
by an “algebraic” necessary and sufficient condition. That hope persists
here too.

98. Rank and equivalence

If E is a projection with range M and kernel N, then there exists a basis
{Z1,---sTr,Trs1,.-.,Zn} of the space such that {z4,...,z,} is a basis for
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Mand {z,4,...,z,} is a basis for N. The matrix of E with respect to that

basis is of the form g), where the top left “1” represents an identity

1
0
matrix of size r x r and the bottom right “0” represents a zero matrix of
size (n — r) x (n — r). Consequence: not only do similar projections have
the same rank (Problem 91), but the converse is true: projections of the
same rank are similar. Since similarity is a much stronger condition than
equivalence, it follows in particular that projections of the same rank are
equivalent. Is that statement generalizable?

Problem 98. If two linear transformations on a finite-dimensional
vector space have the same rank, must they be equivalent?



CHAPTER 7

CANONICAL FORMS

99. Eigenvalues

A large vector space (one of large dimension, that is) is a complicated ob-
ject, and linear transformations on it are even more complicated. In the
study of a linear transformation on a large space it often helps to con-
centrate attention on the way the transformation acts on small subspaces.
The phrase “a linear transformation acting on a subspace” is usually inter-
preted to mean that the subspace is invariant under the transformation (in
the language of Problem 70), and a “small” subspace is one of dimension
1 (surely the smallest that a non-trivial subspace can be). In view of these
comments, a promising approach to the study of linear transformations
would seem to be to search for invariant subspaces of dimension 1.

If A is a linear transformation and if z is a vector in ker A then, of
course, Az = 0, and it follows that A(Az) = 0 for every scalar A. Conse-
quence: the 1-dimensional subspace consisting of all scalar multiples of =
is invariant under A. This is an example—an extreme sort of example—of
the possibility described above. What A does to this particular x is simply
to multiply it by 0:

Az = 0zx.

A less extreme example might be a linear transformation A and a vector z
such that, say,

Az = Tz,

Can that happen? Sure—it happens, for instance, when A = 7- I (the
product of the scalar 7 and the identity transformation I). It happens also

99
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in less spectacular (but more typical and more useful) cases such as

7 0
Ay (0 5), z; = (1,0)

A small modification yields the less special looking example

7 8 .
= = 1,0 .
A (O 5>, z2 = (1,0)

A different looking and perhaps surprising example is

10 3
= = ]_’—1 .
Az (_5/2) z3 = (1,-1)

(Verifications?)

All right, so Azzz = Tx3; is that an accident or is it a bad habit that
Aj has? What other vectors = have the property that Azz = 7z? Un-
satisfactory answer: all scalar multiples of z3 have that property. (Right?
As(4zs) = 4(Aszs) = 4 - Tz = 7 - (4z3).) Are there any others? The
question amounts to asking for solutions (o, a2) of the equations

101 + 302 = Ty
—5051 + 2(12 = 702.

That’s a routine question and the easily calculated answer is that all so-
lutions are of the form (7, —7), and those are exactly the “unsatisfactory”

ones already dismissed.
Is there something special about 7 and z3? Are there other scalars A

and other vectors z such that
Az = dx?
This time the question is about the solutions of
1007 + 3as = Aoy
—5a1 + 202 = Aae,

and that requires a little more thought.

There is one dull solution, namely a; = ap = 0—that works for every
A and yields no information. If that’s dismissed, if, in other words, only
non-zero vectors are to be accepted as solutions, then the question be-
comes this: for which scalar values of A does the matrix

10-A 3
-5 2-2A
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have a non-trivial kernel? Equivalently: for which scalar values of A is it

true that
10— X 3
—0?
det( _5 2_)‘) 07

The determinant is easy enough to calculate, and when that’s done, the
question becomes this: what are the roots of the equation

A2 122+ 35=07

That can be answered by anyone who knows how to solve quadratic equa-
tions. The answer is that there are only two values of A, namely 7 and 5.

Curiouser and curiouser. The value 7 is an old friend, with the corre-
sponding vector z3 = (1, —1). What vectors work for 5? That is: what are
the (non-zero) solutions of the equations

10a; + 3ag = by
—5a1 + 20 = 5a?

Easily calculated answer: all vectors of the form (37, —57).

The matrix here studied, and its relation to certain special scalars and
vectors, exemplifies quite well the theory on which it all rests. General def-
inition: an eigenvalue of a linear transformation A is a scalar A such that

Az = Az,

for some non-zero vector z. (With z = 0 the equation is totally useless;
it is satisfied no matter what A and ) are.) Every non-zero vector z that
can be used here is called an eigenvector of A corresponding to the eigen-
value A.

A scalar A is an eigenvalue of a linear transformation A on a finite-
dimensional vector space if and only if A — )\ has a non-trivial kernel, and
that happens if and only if X satisfies the characteristic equation

det(A — XI) =0.

The expression det(A — AI) is a polynomial of degree n (the dimension
of the space) in ), called the characteristic polynomial of A. What’s im-
portant about the characteristic equation is what its roots are. In much of
linear algebra and its applications the main problem is to find characteris-
tic equations and their roots, that is eigenvalues. Here is a small sample.

Problem 99. What can the characteristic equation of a projection
be?
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100. Sums and products of eigenvalues

The eigenvalues of “good” matrices can be quite bad. Thus, for instance,
the eigenvalues of a matrix of integers are not necessarily integers—they

are not even necessarily rational (Example: ((1) 3)) Just how bad can

the eigenvalues of a good matrix be?

Problem 100. Can both the sum and the product of the eigenvalues
of a matrix of rational numbers be irrational?

Comment. The question is about “can”, not about “must”. For the exam-

ple ((1) 3) the sum and the product are 0 and 2.

101. Eigenvalues of products

If A and B are linear transformations on the same finite-dimensional vec-
tor space, and if AB is invertible, then each of A and B is invertible (det A-
det B # 0), and therefore BA is invertible. Contrapositively (with the roles
of A and B interchanged): if AB is not invertible, then BA is not invert-
ible. Another way of stating the result is that if 0 is an eigenvalue of AB,
then 0 is an eigenvalue of BA also. For other eigenvalues the situation is
not so clear: when A # 0, there doesn’t seem to be any way to pass from
information about det(AB — AI) to information about det(BA — AI).

Problem 101. If A and B are linear transformations on the same
finite-dimensional vector space, and if \ is a non-zero eigenvalue of
AB, must \ be an eigenvalue of BA also?

102. Polynomials in eigenvalues

Problem 102. If Ais a linear transformation on a finite-dimensional
vector space and if p is a polynomial, what information do the eigen-
values of A give about p(A)?

103. Diagonalizing permutations

For matrices that are simple enough, the theory of eigenvalues works like
a charm. For the trivial 1 x 1 matrix (2), there is of course nothing to do.
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The 2 x 2 diagonal matrix

(6 5)

has two eigenvalues, and its study reduces to that of two trivial matrices of

size 1 x 1. The 3 x 3 matrix
2 00
0 3 0
0 0 4

is larger, but it is still a beautiful one. It has three distinct eigenvalues and
corresponding to them three disjoint eigenspaces—the notion of applying
eigenvalues to reduce a large study to small pieces (Problem 96) still works
just fine.

The matrix

3 00
030
0 0 4

is from the present point of view perhaps a shade less beautiful—it has
only two eigenvalues but its eigenspaces still have a total dimension 3, and
its study presents no difficulties. Matrices such as

310
03 0],
0 0 4

(6 3)

misbehave a little more—the total dimensions of their eigenspaces are not
as large as one could wish. It begins to look as if eigenvalue theory might
not stretch to give complete information about matrices.

Things get really tough with a matrix such as

A=(_01 (1])

Its characteristic equation is

or, for that matter,

M 4+1=0,

and since there is no real number X that satisfies that equation, it looks as
if eigenvalue theory might give no information about A.
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The disease just noticed is not fatal; a hint to its cure is contained in
the diagnosis. Sure, there is no real number that satisfies the characteris-
tic equation, but that phenomenon is exactly what complex numbers are
designed to deal with—and, indeed, they solve the problem.

The properties of vector spaces and of linear transformations on them
are strongly influenced by the underlying coefficient field. That fact was
hardly noticeable till now—much of the theory works equally well for ev-
ery field. The exposition till now has either tacitly or explicitly assumed
that the coefficient field was the field R of real numbers—the field that is
probably the most familiar to most students. In the applications however
(of linear algebra, and of mathematics in general) the field C of complex
numbers is often more useful. For that reason, from here on, it will be as-
sumed that the vector spaces to be considered are complex ones, and that,
correspondingly, the vectors and linear transformations to be studied ad-
mit complex linear combinations. The typical coordinatized example will
therefore be C™ (not R™).

The problem that follows is a small step toward getting used to the
appearance of complex numbers.

Problem 103. What are the eigenvalues and eigenvectors of the lin-
ear transformation A defined on C3 by

A(zy, 2, 73) = (T2, 23,21)7?

104. Polynomials in eigenvalues, converse

Does the converse of Solution 102 have a chance of being true? According
to Solution 102, if X is an eigenvalue of A and p is a polynomial, then p(\)
is an eigenvalue of p(A). The converse might be something like this: if p())
is an eigenvalue of p(A), must it be true that X is an eigenvalue of A? No,
that’s absurd. Counterexample: if A = I (the identity transformation),
A = 1 (the number), and p(A\) = A%, then p(—1) (= 1) is an eigenvalue of
A, but —1 is not an eigenvalue of p(A) (= 1).

The negative solution of one possible version of the converse problem
doesn’t settle the issue—slightly weaker problems can be posed and can
have hopes of affirmative solutions. Here is one: is every eigenvalue of
p(A) of the form p(\) for some eigenvalue A of A? The question is one
in which the coefficient field matters: it is conceivable that the answers for
the real field and the complex field are different.

CANONICAL FORMS 113

The answer for the real field is no. If

0 1
=(4 )

then —1is eigenvalue of A2 (check?), but —1 is not of the form A2 for some
eigenvalue A of A, simply because A has no eigenvalues—no real ones,
that is. If the real field is replaced by the complex field in this example, the
answer changes from no to yes. Is that a lucky property of this example, or
is it always true?

Problem 104. If Ais a linear transformation on a finite-dimensional
(complex) vector space and if p is a polynomial, is every eigenvalue
of p(A) of the form p()) for some eigenvalue X of A?

105. Multiplicities
If

is 3 an eigenvalue of A? Sure, that’s obvious: if z; = (1,0,0), then

AtL‘l = 3.’131.

It is also true that every non-zero multiple of z, is an eigenvector of A
(“non-zero” because that’s how eigenvectors are defined), but that true
statement is universally true and gives no new information. New informa-
tion is, however, available: it is also true that if z, = (0, 1,0), then

A$2 = 31‘2.

Both of the radically different vectors z; and z, are eigenvectors of A.
What goes on is that the set of all those vectors z that satisfy the equation

Az =3z

(including the vector 0) is a subspace of dimension 2; it is sometimes called
the eigenspace of A corresponding to the eigenvalue 3.

(The vector 0 is never regarded as an eigenvector, but the vector 0 is
always regarded as belonging to the eigenspace corresponding to an eigen-
value A. This apparently contradictory use of language might take a few
seconds to get used to, but it causes no trouble, and, in fact, it is more con-
venient than being forced to deal with the awkward “punctured” subspace
obtained by considering only the non-zero solutions of Az = Az.)

105



114 LINEAR ALGEBRA PROBLEM BOOK

In some plausible sense the number 3 occurs twice as an eigenvalue
of the matrix A above. If the multiplicity—in more detail the geometric
multiplicity—of an eigenvalue A of a transformation A is defined as the
dimension of the set of solutions of Az = Az, then in the example under
consideration the number 3 is an eigenvalue of geometric multiplicity 2.

If
310
B=(0 3 0),
0 0 4

how do the facts for B compare with the facts for A? The number 3 is an
eigenvalue of B,

Ba':l = 3$1,

just as it was for A. The vector z, however, is not an eigenvalue of B.
What is the geometric multiplicity of the eigenvalue 3 for B? The ques-
tion is one about solutions (u, v, w) of the equations

Ju+v =3u
v =3
4w = 3w.

If (u,v,w) is a solution, then the last equation implies that w = 0 and
the first equation implies that v = 0. Consequence: the eigenspace cor-
responding to the eigenvalue 3 for B is the set of all vectors of the form
(u, 0,0)—a space of dimension 1.

Isn’t that just a little puzzling? The matrices A and B don’t look very
different: both are upper triangular, they have the same diagonal, and, con-
sequently, they have the same characteristic polynomial, namely

(A=3)%2(A —4) (= A% - 10)% + 33X — 36).

The geometric multiplicity of 3 as an eigenvalue of A seems to be caused
by the exponent 2 on (A — 3)— but that exponent is there for B also.

Well, that’s life: the concept of multiplicity has in fact two distinct
meanings. In the already defined geometric meaning the number 3 has the
multiplicity 2 as an eigenvalue of A and the multiplicity 1 as an eigenvalue
of B, but it has the same multiplicities for A and B in the other sense. The
algebraic multiplicity of a number ) as an eigenvalue of a linear trans-
formation is the number of times A\ occurs as a root of the characteristic
equation—or, better said, it is the exponent of (A— o) in the characteristic
polynomial.

It might be helpful to look at a natural concrete example.
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Problem 105. What are the geometric and algebraic multiplicities
of the eigenvalues of the differentiation transformation D on the space
3 of polynomials of degree less than or equal to 3?

Reminder. The differentiation transformation was first mentioned as an
example in Problem 54.

106. Distinct eigenvalues

What made the diagonalization possible in Problem 103? The easiest trans-
formations to diagonalize are the scalars—the matrix of a scalar transfor-
mation is diagonal with respect to every basis. If multiplicities are counted,
as they always should be, a scalar transformation on a vector space of di-
mension n has n eigenvalues—that is, one eigenvalue with multiplicity n.
The opposite extreme to scalars are the transformations with n distinct
eigenvalues—how difficult are they to diagonalize?

Problem 106. If a linear transformation on a vector space of di-
mension n has n distinct eigenvalues, must it be diagonalizable?

107. Comparison of multiplicities

For the examples

3 00 310
A=]0 3 0 and B=|0 3 0
0 0 4 0 0 4

of Problem 103, it turned out that 3 was an eigenvalue of algebraic multi-
plicity 2 for both A and B, and it had geometric multiplicity 2 for A and 1
for B. How difficult is it to find an example where the algebraic multiplicity
is the smaller one?

Problem 107. Does there exist a linear transformation on a finite-
dimensional vector space with an eigenvalue ) whose algebraic mul-
tiplicity is less than its geometric multiplicity?

108. Triangularization

Can every matrix be diagonalized? (For a discussion of diagonalization see
Problems 103 and 106.) The answer is no, and the almost universal coun-

01 . . .
terexample ( 0 0) proves it. Indeed the eigenspaces of a 2 x 2 diagonal

106

107

108
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matrix have total dimension 2, but the “universal counterexample” has only
one eigenvalue (namely 0) and only one eigenvector (namely (0, 1) and its
scalar multiples). The example can be generalized: the matrix

0100
0 010
0 001
0 0 00O
has only one eigenvalue (namely 0) and only one eigenvector (namely
(1,0,0,0) and its scalar multiples), whereas the eigenspaces of a diago-
nalizable 4 x 4 matrix have total dimension 4. Similar statements apply of
course to the obvious generalizations of this 4 x 4 matrix to n x n for every
positive integer n.

Granted that not every matrix can be diagonalized, what’s the next best
thing that can be done? The matrix

310
0

00
is not so easy to work with as

3 00
03 0],
0 0 4

but it’s not too bad: its eigenvalues (and their multiplicities) can be read
off at a glance, and even its powers are easy to compute. (For instance

3 1\"_ (3" n3~!

0 3/ \0O 3n )
Check?) It is tempting to guess that the next best thing to diagonalize is to
triangularize. Can that always be done?

The characteristic property of a matrix in triangular form, for example
a 4 x 4 matrix such as

W
[ =]

oS O ¥
O ¥ X
* X ¥

A=

*¥ X ¥ ¥

0 00

is that there exists a basis consisting of vectors u, v, w, etc., (in the example

they are (1,0, 0,0), (0,1,0,0), (0,1,0,0) etc.) such that

(1) Auw is a scalar multiple of u (or, in plain English, such that v is an
eigenvalue of A),

(2) Avis a linear combination of « and v,
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(3) Aw is a linear combination of u, v, and w—etc.

In view of this comment a natural approach to trying to triangularize a
matrix A is (1) to find an eigenvector v, (2) to find a vector v such that Av
is a linear combination of v and v, etc., etc. The answer to the question is
yes: every matrix can be triangularized. The proposed proof is by induction
on the size n of the matrix. The beginning, n = 1, is easy enough: if n = 1,
there is nothing to do.

For an arbtirary n, the first step in any event is always possible: every
linear transformation on a complex vector space V has an eigenvector.

The induction step has to be preceded by the observation that if M is
the 1-dimensional space of all multiples of an eigenvector—an eigenspace
—then the quotient space V/M has dimension n — 1 (Problem 52). Recall
now that according to one definition of quotient space the elements of
¥V /M are the vectors of V but with equality defined as congruence modulo
M (Problem 51). Use that definition to define a linear transformation Ay
on V/M (called the quotient transformation induced by A) by writing

AM.’E = Az

for every « in V. This definition needs defense: it must be checked that it
is unambiguous. The trouble is (could be) that two “equal” vectors (that
is vectors that are congruent modulo M) might have unequal images. The
defense, in other words, must prove that if x = y mod M, then Az =
Ay mod M, or, equivalently, that if z — y is in M, then A(z — y) isin M. In
that form the implication is obvious—it asserts no more and no less than
that M is invariant under A.
The ground is now prepared for the induction step: since

dimV/M=n-—1,

the transformation Ay on V/M can be triangularized. That means, as a
first step, that there exist vectors v, w, ... in V (considered here as a pho-
tograph of V/M) such that Ayv is a scalar multiple of v, Ayw is a linear
combination of v and w, etc. In different language: Av is equal to a scalar
multiple of v plus an element of M, Aw is equal to a linear combination of
v and w plus an element of M, etc. Conclusion: not only is Au a scalar mul-
tiple of u, but also Awv is a linear combination of u and v, and Aw is a linear
combination of u, v, and w, etc.—and that says exactly that A has been
triangularized. Conclusion: every transformation can be triangularized.

To fix in one’s mind this outline of an argument, it might be a good
idea to follow it in a couple of concrete numerical cases, and that’s what
the following problem suggests.
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Problem 108. Tiangularize both the matrices

1 1 0 1 10
A=|-1 2 1 and B=|-4 5 0}].
3 -6 6 -6 3 3
Are they similar?

Comment. To “triangularize” a matrix M it is not enough to exhibit a tri-
angular matrix M, and to prove that M and M, are similar. What is wanted
is either the explicit determination of a new basis with respect to which the
new matrix of the same linear transformation is triangular, or, equivalently,
the explicit determination of an invertible matrix 7', the transformer, such
that TMT~1 is triangular. In the course of looking for a suitable basis the
eigenvalues of M should become visible—which is frequently preceded by
the determination of the characteristic polynomial and followed by the de-
termination of the eigenvectors.

Reminder. The theories of upper and lower triangularization are boringly
alike; in the discussion above, for no especially good reason, upper was
emphasized.

109. Complexification

Does every linear transformation on R™ have an invariant subspace of di-
mension equal to 1? To ask that is the same as asking whether every linear
transformation on R™ has an eigenvector, and the answer to that is obvi-
ously no (see Problem 103). What happens if the question is liberalized a
little?

Problem 109. If n > 1, does every linear transformation on R"
have an invariant subspace of dimension equal to 2?7

110. Unipotent transformations

Problem 110. If a linear transformation A on a finite-dimensional
(complex) vector space is such that A¥ = 1 for some positive integer
k, must A be diagonalizable?

Comment. Transformations some positive power of which is equal to the
identity are sometimes called unipotent.
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111. Nilpotence

Transformations with many distinct eigenvalues are diagonalizable (Prob-
lem 106); does that imply that if a transformation has only a small number
of eigenvalues, then it is difficult to diagonalize? A clue to the answer can
be found in the triangularization discussions of transformations with just
one eigenvalue (Problem 105).

In the study of linear transformations with just one eigenvalue, the
actual numerical value of that eigenvalue can’t matter much: if A has the
unique eigenvalue «, then A — af has the unique eigenvalue 0, and
(A — al) + BI has the unique eigenvalue S. Since the addition of a scalar
cannot produce any major changes, the question might as well be restricted
to the easiest eigenvalue to work with, namely 0.

How easy is it to find examples of linear transformations whose only
eigenvalue is 0? One example is the ubiquitous

(b &)
a=(3 1),

Is the latter obvious? The statement is surely not a deep one—a few sec-
onds’ calculation shows that the characteristic polynomial of A is A2—but
a special point of view on it is usefully generalizable. To wit: since an equa-
tion such as

Another is

Az = Az
implies that
AZr = g,

it follows from A2 = 0 (a few microseconds’ calculation) that A\ = 0 (except
in the degenerate case ¢ = 0). Generalization: if a linear transformation
A is such that A? = 0 for some positive integer ¢, then its only eigenvalue
is 0. The proof is the same as the one just seen: if

Az = Az,
then
Az = Mg,

and therefore A = 0 (or z = 0).

111



112

120 LINEAR ALGEBRA PROBLEM BOOK

A linear transformation A such that A? = 0 for some positive integer ¢
is called nilpotent; the smallest ¢ that works is called its index of nilpotence.
The observation of the preceding paragraph was that if A is nilpotent, then
spec A consists of 0 alone. The converse is also true, but it is slightly deeper-
Indeed: if spec A = {0}, then a triangularization of A (see Problem 105)
has zeroes on as well as below the main diagonal, and a triangular matrix
like that is nilpotent. The reason is that if

0 * % * =*
0 0 * x =x
A=]10 0 0 x x|,
0 00 0 =
0 00 00
is squared, then the result has the form ~
0 0 * x *
0 0 0 * =%
A2=]10 0 0 0 *
0 0 0 00O
00 0 00O

Empbhasis: the diagonal just above the main one consists of zeroes only.
Multiply by A again: for A3 the two diagonals just above the main one
consist of zeroes only. Continue this way, and infer that A® = 0. Conclu-
sion: A is nilpotent (but a calculation of this sort does not reveal its exact
index of nilpotence).

Problem 111. If a linear transformation A on a finite-dimensional
vector space is nilpotent of index q, and if, for each vector z in the
space, a subspace M(z) is defined as the span of the vectors

z, Az, A%z,..., A% 1z,

how large can the dimension of M(z) be?

112. Nilpotent products

An obvious exercise about nilpotence is to ask whether the product of two
nilpotent transformations is necessarily nilpotent. The answer is yes if they
commute, but the answer is no in general; a standard easy example is given

by the two matrices
01 00
(o) = (2 3)
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That doesn’t settle everything though; there are tricky nilpotence questions
that arise in some contexts and to which the answer is not predictable just
from the existence of examples such as these.

Problem 112. If A and B are linear transformations on the same
vector space such that ABAB = (, does it follow that BABA = 0?7

113. Nilpotent direct sums 113

If A, B, and C are nilpotent matrices of sizes 6, 4, and 4 respectively and
indices of nilpotence also 6, 4, and 4 respectively, is the matrix

A 0 O
M=|0 B 0
0 0 C

also nilpotent? That’s a trivial question; the 14 x 14 matrix M is obviously
nilpotent of index 6.

How else can one obtain a nilpotent matrix of size 14 and index 6? One
easy answer is just to juggle the numbers: replace the sizes and indices of
B and C, for instance, by 5 and 3, or replace the sizes and indices of B and
C by 6 and 2, etc. These examples are direct sums; they are obtained by
gluing together examples of the same or smaller size. What other way of
manufacturing nilpotent matrices is there?

The result of Problem 111 implies that if M is a nilpotent matrix of
index 3, say, then there exists a vector z such that the vectors

z, Mz, Mz

are linearly independent. Extend that linearly independent set to a basis
and write down the matrix of M with respect to that basis. The result looks

like
A X
(5 3)
where
010
A=(0 0 11,
0 00

and B is a matrix that must be nilpotent also, with index less than or equal
to 3. Question: can X be thrown away? Precisely: is

(3 )
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(5 )
0 B

That question in its general form is one of the most important ones
in linear algebra and its answer is correspondingly difficult. It isn’t all that
difficult—the methods used so far serve to prove that the answer is yes—
but it tends to be longish and complicated. A slight feeling for the spirit of
the answer can be obtained by working out a very easy special case; here
is one.

similar to

Problem 113. What is a basis with respect to which the linear trans-
formation defined by the matrix

0101 0 )
0010 -1 /
M=]0 0 00 0
00 00 1
0 00 0 O
has the matrix
01000
0 01 00
My=]0 0 0 0 07
0 00 01
0 00 O0UO
114. Jordan form

What happens when the general theorem that exhibits a nilpotent matrix
as a direct sum (Problem 108) is applied repeatedly? The theorem says
that with respect to a suitable basis every nilpotent matrix of index g, say,

has the form
A 0
u=(3 5):

where A and B have the following special properties.
(1) Aisa q x g matrix of the same form (Jordan form) as the 3 x 3 matrix

010
0 01
0 00

described in Problem 108, meaning that the entries on the diagonal
just above the main one are 1 and all others are 0, and
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(2) B is nilpotent with index less than or equal to q.

To apply that result the second time means to apply it to B. The result
is a representation of B as a direct sum of two nilpotent matrices, of which
the first is in Jordan form, with index equal to the index of B (and with
size same as its index). Application of the method “repeatedly” as often as
possible yields a matrix representation for M of the form

A 0 O
0 A2 O
0 0 A;

Here each A; on the diagonal is a nilpotent matrix in Jordan form, of size
and index g;, with ¢; 2 ¢2 2 g3 2 --- . This is called the Jordan form of
M.

Could it be true that every matrix can be obtained by gluing together
easy ones? Could it, for instance, be true that the “zero part” of every ma-
trix can be split off and studied separately? What might that mean? Well,
a possible hope is that every matrix is (or is similar to?) a direct sum, such

as
00
0o 3/’

of a zero matrix and a non-zero matrix—but that is not true. Example:

0 3
(6 )

The weakest way of saying “zero” and the strongest way of saying “non-
zero” suggest a modified hope: could it be that every matrix is (or is similar
to) a direct sum of a nilpotent matrix and an invertible matrix? Yes; that is
true, and the result is known as Fitting’s lemma.

The invertible direct summand that Fitting’s lemma yields (call it M)
does not have 0 in its spectrum, but since it does have some eigenvalue
A, Fitting’s lemma is applicable to the matrix M — A. Consequence: M is

representable as a direct sum that exactly resembles the one displayed in
the nilpotent case, but with direct summands A;

A1 0
0 A 1
0 0 A
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on whose main diagonal A appears instead of 0. In an obvious extension of
the terminology introduced before, that form is known as the Jordan form
of A.

Arguing the same way separately for each eigenvalue of an arbitrary
matrix M leads to the grand conclusion—the assertion that every matrix
is similar to a direct sum of matrices My, Ms, Mg, ... in Jordan form, with
distinct eigenvalues. That direct sum is called the Jordan form of M (in
the second and final broadening of that expression), and the possibility of
representing every M that way is the apex of linear algebra. It is difficult
to think of an answerable question about linear transformations whose an-
swer is not a consequence of representability in Jordan form; here is a small
but pleasant sample.

Problem 114. Does every matrix have a square root?

Comment. 1f A= B2, then, of course, B is called a square root of A.

115. Minimal polynomials

Is every matrix algebraic? The language is borrowed from the theory of
algebras: an element a of an algebra is called algebraic if there exists a
non-zero polynomial p such that p(a) = 0. Example: if F is a projection,
and if p(\) = A2 — ), then p(E) = 0. Another example: if A is nilpotent of
index g and if p(A\) = A9, then p(A) = 0.

The second example can be generalized: if a linear transformation Ag
on a finite-dimensional vector space has only one eigenvalue, A say, then
Ap — Aol is nilpotent of index go say, and therefore the polynomial

mo(A) = (A — Ag)®
annihilates Ay. Important note: gq is the smallest degree that such a poly-
nomial can have, and mg()) is the unique monic polynomial of that degree
that does the job.

If a linear transformation has not just one eigenvalue but two, A; and
A2, then its Jordan form looks like

M, O
M= ( 0 M2) ’
where M; — A; and M; — ), are nilpotent, with some indexes ¢; and go. It

follows that there is one and only one monic polynomial of minimal degree
that annihilates M, namely the polynomial

m(A) = (A — A )P (A — Aa)®.

CANONICAL FORMS 125

The number 2 has nothing to do with this statement or its proof. The
general statement is that for every matrix A there exists a unique
monic polynomial of minimal degree that annihilates A; it is called the
minimal polynomial of A. This minimal polynomial is, in fact, equal to
the product of the factors of the form (A — A;)% obtained by letting the
A;’s range through the distinct eigenvalues of A; the g;’s are corresponding
indexes in the Jordan (or triangular) form.

Since each factor of the minimal polynomial is a factor of the charac-
teristic polynomial also, it follows that if the characteristic polynomial of
A is p, then p(A) = 0; this famous statement is known as the Hamilton-
Cayley equation.

If the minimal polynomial of a linear transformation on a space of
dimension n has degree n, does it follow that the transformation is diago-

nalizable? Answer: no—trivially no—a counterexample is 0 0)
How do the minimal polynomial and the characteristic polynomial of
a diagonal matrix compare? Answer: if

AL 00
0 X O
A=1190 0 X ;

then the characteristic polynomial is the product of all the (A — A;)’s, but
the minimal polynomial is the product of just one representative of each
possible factor. So, for example, if

10

[en I =l e R an}
o O O
S O N OO
N O OO
N o O o O

0

then the characteristic polynomial is (A — 1)2(A — 2)3, and the minimal
polynomial is (A — 1)(\ — 2).

These examples were trying to cultivate friendship toward minimal
polynomials; the following problem might test the success of the attempt.

Problem 115. What are the minimal polynomial and the charac-
teristic polynomial of the differentiation transformation D and the
translation transformation T on the space P3 of polynomials
of degree less than or equal to 3? (Reminder: Dzx(t) = % and
Ta(t) = a(t+1).)
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116. Non-commutative Lagrange interpolation

Is there a polynomial p such that p(n) = 10" for every integer n between
1 and 100 inclusive? Sure, why not: in fact there is a polynomial of degree
99 that does that. All you have to do to prove it is to write down the perti-
nent system of 100 (linear) equations in the 100 unknown coefficients, and
note that its determinant (a special instance of a Vandermonde) is not 0.
It is easy to formulate a general theorem of which this result is a special
case: if zy,...,z, are n distinct numbers (the avoidance of repetitions is
essential), and if yy, . . . , y, are any n numbers, then there exists a (unique)
polynomial p of degree n — 1 such that

p(z;) =5
for j = 1,...,n. The celebrated Lagrange interpolation formula is an ex-
plicit presentation of that polynomial. The “numbers” in the general the-
orem can be replaced by elements in an arbitrary field, and the result is a
polynomial with coefficients in that field.

Once all that is granted, a shallow generalization is easy to come by:
if X3,...,X, are pairwise disjoint finite sets of numbers (or elements of
an arbitrary field), and if py, . . ., p,, are arbitrary polynomials (with coeffi-
cients in the same field), then there exists a polynomial p such that

p(z) = p;(2)

whenever z € X, j = 1,...,n. Proof: apply the Lagrange interpolation
theorem to the set of (distinct) numbers z in X; U - - - U X,, with the cor-
responding values y chosen to be p;(z) whenever € Xj;. (The smallest
possible degree of p is easy to describe in terms of the number n and the
sizes of the sets X, ..., X,.) A statement of this generalization in terms
of matrices goes like this: if M, ..., M, are diagonal matrices with pair-
wise disjoint spectra (that is, pairwise disjoint sets of eigenvalues, or, what
comes to exactly the same thing, pairwise disjoint sets of diagonal entries),
andifp,, ..., p, are polynomials, then there exists a polynomial p such that

p(M) = p;(M;)

forj=1,...,n.

The most conspicuous fact about diagonal matrices is that they all
commute with one another; the matrix Lagrange interpolation theorem
that was just formulated belongs to commutative linear algebra. Does its
straightforward non-commutative generalization have a chance of being
true, or does the conclusion itself imply some kind of partial commuta-
tivity? To avoid extraneous trouble with non-existence of eigenvalues, the
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straightforward generalization will be formulated over the field C of com-
plex numbers.

Problem 116. Is it always true that if Ay, ..., A, are linear trans-
formations with pairwise disjoint spectra (that is, pairwise disjoint
sets of eigenvalues) on a finite-dimensional vector space V over C,
and if p1, . .., p, are polynomials with coefficients in C, then there
exists a polynomial p with coefficients in C such that

p(4;) = pi(4;)

fori=1,...,n?




CHAPTER 8

INNER PRODUCT SPACES

117. Inner products

Which of these vectors in R3 is larger: (2, 3,5) or (3,4,4)? Does the ques-
tion make sense? The only sizes, the only numbers, that have been con-
sidered so far are dimensions. Since (2,3, 5) belongs to R® and (1,1,1,1)
belongs to R4, the latter is in some sense larger, but it is a weak sense and
not a useful one. The time has come to look at the classical and useful way
of “measuring” vectors.

The central concept is that of an inner product in a real or complex
vector space. That is, by definition, a

(1) Hermitian symmetric,

(2) conjugate bilinear,
and

(3) positive definite
form—which means that it is a numerically valued function of ordered
pairs of vectors x and y such that

(z,y) = (y,2), 1)
(@171 + a2z2,y) = a1(z1,y) + az2(z2,y), 2
(z,z) 2 0;(z,z) = 0if and only if z = 0. 3)

Standard examples: for z = (£, &) and y = (71, 7,) in R?, write

(z,y) = &7y + &7

117



118

130 LINEAR ALGEBRA PROBLEM BOOK

(reminiscent of the formula for the cosine of the angle between two segments),
and for z and y in [P, write

(z,1) = / 2(t)y (D) dt

(a formal “continuous” analog of the sum in R? and of its natural generaliza-
tion in R™).

The upper bars here denote complex conjugation; the reason they are
necessary has to do with the associated notion of length. The point is that the
length (or norm) of a vector z is defined by

|2l = v/ (=, ).

If the formula £;7; + €272 had been used (instead of £17; + \Egﬁz), then for
a vector z in C2 the consideration of its scalar multiple iz (where i = /—1)
would lead to an unpleasant surprise. The relation between inner products
and scalars would yield

il = (iz,iz) = i(z,iz) = i*(z,z) = ||z,

and that could be regarded as unpleasant. The square of a length shouldn’t
really be negative—that would lead to a length whose value is an imaginary
number, and that is not the sort of thing one normally thinks of as a suitable
measure of size.

An inner product space is a vector space with an inner product. The
intuitive interpretation of (x,y) is the cosine of the angle between x and y,
and, correspondingly, if (x,y) = 0—cosine equal to 0—the vectors x and y
are called orthogonal (= perpendicular). To what extent is this metric concept
in harmony with the linear concepts treated so far?

Problem 117. How large does a finite orthogonal set of non-zero
vectors have to be to be linearly dependent?

Comment. A set of vectors is called orthogonal if each pair of its elements is
orthogonal. Recall that when a set of vectors is enlarged, a linear dependence
relation between them becomes more likely than it was before.

118. Polarization

The norm in an inner product space is defined in terms of the inner product.
Is there any hope of going in the other direction?

Problem 118. Can two different inner products yield the same
norm?
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119. The Pythagorean theorem

The Pythagorean theorem says that the sum of the squares of two sides of
a right triangle is equal to the square of the hypotenuse. Is anything like
that true for vector spaces in general?

Problem 119. Under what conditions on two vectors = and y is it
true that

Iz + 9ll* = llz* + [lyl1>?

120. The parallelogram law

Problem 120. Under what conditions on two vectors « and y is it
true that

llz +yll* + llo — ylI* = 2))2||* + 2[|y(|*?

Comment. The equation is not as strange as at first it might appear. Think
about pictures: if z and y are two intersecting sides of a parallelogram, then
z +y and z —y can be thought of as its two diagonals. The “parallelogram
law” of elementary geometry is exactly the equation under consideration.

121. Complete orthonormal sets

How large can an orthogonal set be? One possible interpretation of that
question is this: for which values of n is it possible to find an orthogonal
set {z1,...,2,} of vectors in an inner product space? That’s not quite a
sensible interpretation: the notation allows many (all) of the z,’s to be 0,
and in that sense n can be chosen arbitrarily large. An efficient way to rule
out that uninformative interpretation of the question is to “normalize” the
vectors that are allowed to enter. In the language that is customary in this
circle of ideas, to say that a vector z is normal or normalized means that
llzll = 1, and, correspondingly, an orthogonal set {z,z,,...} is called
orthonormal if (z;,z;) = §;; for all i and j.

An orthonormal set is called complete if it is maximal, that is, if it can-
not be enlarged, or, in other words, if it is not a subset of any larger or-
thonormal set. Since orthonormal sets are linearly independent (Problem
117), an inner product space of dimension » cannot have orthonormal sets
with more than n elements. Can it always have that many?

119

120

121
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Problem 121. Does every inner product space of dimension n have
an orthonormal set of n elements?

122. Schwarz inequality

In what way are orthonormal bases better than just plain bases? A partial
answer is that when a vector z is expanded in terms of an orthonormal
basis the coeflicients give precise information about the size of the vector.
If, in fact {z;, ..., z, } is an orthonormal set (not even necessarily a basis),
and z is an arbitrary vector, then

r 2

z— Z(x, T;)T;

1

= (x - i(m,xi)mi,x ~ z::(x,xj)xj)
= (z,x) — Z(w ;) (i, x) — ;(xj,z)(m,zj)
+ sz:(a: ;) (@, ;) (zi, ;)
= [|=” - Z |(z, :)|* - Z |z, z:)|* + Z (2, :)|*.

Consequence:

0<

> l@ @) < llell®.
1

This result is known as Bessel’s inequality. It has two important conse-

quences.
(1) If z and y are vectors in an inner product space, then

|(z,9)I £ llll - llyll-

This result is known as the Schwarz inequality. It can be derived from
Bessel’s inequality as follows: if y = 0, both sides are 0; if y # 0, the
set consisting of the vector |TZ|—| only is orthonormal, and consequently, by

(=1%)

Bessel’s inequality,

2
< Jl|f®.
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(2)Ifzisavector and {z1, ..., z,} is an orthonormal basis in an inner
product space, then

=l =" Iz, ).
i
To prove that, observe that if z is expanded in terms of the z,’s,
T= Z ;T
J

then, forming the inner product of each side with itself yields

lzl® = { D iz Y azzs | =D adjl@i, ) = Y lal?,
i 3 i J k

and forming the inner product of both sides with each x;, yields

(w,xk) = Q.

The equation
Izl =D (2, 2:)?
i

is known as Parseval’s identity. Note: a small modification of the technique
proves a more general result: if £ = 3, o;z; andy = 3 ajz;, then

(@y) =) ;B;.
j

Bessel and Schwarz and Parseval are part of the standard lore of this
subject. The answer to the next question is equally well known to the ex-
perts, but it is slightly more recondite and, perhaps, a little more fun.

Problem 122. For which pairs of vectors does the Schwarz inequal-
ity become an equation?

123. Orthogonal complements

Just how much is orthogonality in “harmony” with linearity? What is al-
ready known is that vectors that differ a lot in the metric sense differ a
lot in the linear sense too (orthonormal sets are linearly independent, see
Problem 117). What if a bunch of vectors all have a common (orthogonal)
enemy—does it follow that they are all (linear) friends? A sharp formu-

lation of that vague question has to do with what are called orthogonal
complements.

123
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If E is a set of vectors in an inner product space V, the orthogonal
complement E (pronounced “E perp”) of E is the set of all those vectors
in V that are orthogonal to every vector in E. It is an easy exercise to verify
that E* is a subspace of V (it doesn’t matter whether E is a subspace or
not), and saying the meanings of the symbols slowly ought to convince any-

one that E ¢ E*. (Is the intended meaning of E** clear? It is (E*)*.)
Consequence:

span E c E1L.

Problem 123.  IfMis a subspace of a finite-dimensional inner prod-
uct space V, what are the relations among M, M+, and M+1?

124. More linear functionals

Is the resemblance between the superscripts such as in M° (annihilators of
subspaces) and the ones in M (orthogonal complements of subspaces) a
structural one or merely notational? It turns out that the question is really
one about linear functionals.

Linear functionals on an inner product space V are easy enough to
come by: fix an element y in V and then define a function £ on V by writing

§(z) = (z,y)

for all z. That £ is a linear functional is an immediate consequence of the

defining properties of inner products. Are the linear functionals obtained
in this way typical?

Problem 124. [f { is a linear functional on an inner product space
V, does there always exist a vector y in V such that

{(z) = (z,y)

forall x?

125. Adjoints on inner product spaces

Is a vector in an inner product space the same as a linear functional? That
may look like a foolish question, but (a) linear algebraists are used to con-
sidering linear functionals as vectors (elements of the dual space), and (b)
in an inner product space each vector induces (is?) a linear functional, the
one defined by inner products. In fact the correspondence that assigns to
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each vector y in an inner product space V the linear functional ¢ that it
induces,

£(x) = (-73’ y)’

is a one-to-one correspondence between all of V and all of the dual space
V’. One-to-one? Sure: if y; and y» correspond to the same u, then

(l‘, yl) = ({E, y2)

for all z, so that

(91 —¥2) =0

for all z, so that y; — y- is orthogonal to every vector z, and therefore
y1 — y2 = 0. All of V’? Sure: that’s what Solution 123 proves.

The correspondence y > « is eager to cooperate with the linear struc’-
ture of V.If 1 — &1 and yo — &, theny; + 32 — & + £o—that’s
easy—and if y induces ¢, then a scalar multiple ay induces—no, not af,
but almost—in fact it induces @¢. Clear? If (z,y) = £(z) for all z, then
(z,ay) = a(z,y) = a(z) for all z. The correspondence Y- I3 doe:sn’t
quite deserve to be called an isomorphism: it is a conjugate isomorphism.

Is the dual space of an inner product space an inner producit space?
Well, that depends: how is the inner product of two linear functionals &;
and &; defined? If &,(z) = (x,11) and £2(z) = (2, y2), the most natural
looking definition is probably this:

(é1,€2) = (y1,42)-
Trouble: it doesn’t work. Is (€1, &2) linear in &,? Additivity is all right, but
is it true that
(061,52) = 0(51762)?

No: since oy, induces @), so that o is induced by oy,

(at1, &) = (@y1,y2) = Ay, ¥2) = @&, €2),

it follows that, once more, a conjugation appears where it wasn’t invited.

There is a brute force remedy, but it’s far from clear on first glance
that it will work: why not define (¢1, &) to be (y2, y1)? Does it work? Yes.
Indeed, with that definition,

(a1, &2) = (y2,@1) = E(y2,41) = by, &2)-

Conclusion: with the inner product so defined, the space of all linear func-
tionals on an inner product space V is itself an inner product space, and, as



136 LINEAR ALGEBRA PROBLEM BOOK

such, it is denoted by V*. The isomorphism statement for the pure vector
spaces V and V' now extends to the inner product spaces V and V*: they
too are conjugate isomorphic.

If in accordance with that conjugate isomorphism the spaces V and V*
are identified—regarded as the same—then many earlier statements about
the relation between V and V' become more interesting and more usable.
So, for instance, the assertion that corresponding to each basis of V there
is a dual basis in V’ becomes the assertion that to each basis {z1,...,z,}
of V there corresponds another basis {£3, . .., &, } of V, the dual basis, such
that (z;, §;) = 6;;. The correspondence between subspaces of V and their
annihilators in ¥V’ becomes the correspondence between subspaces M of V
and their orthogonal complements M+ also in V. Finally, and most impor-
tantly, the correspondence between linear transformations on V and their
adjoints on V’ becomes a correspondence between linear transformations
A on V and their adjoints on V*, denoted in this context by A*. The purely
linear adjoints and the inner product kind differ in minor ways only, all of
which have to do with the conjugation that has to be built into the complex
theory. The differences are that

(cA)* =GA*  (notaAd*), (1)

that the matrix of A* (with respect to an orthonormal basis) is the
conjugate transpose of the matrix of A,

(a;) becomes (@;;)

(not (a:)), (2)
and that

det A* =detA  (notdet A). (3)

That’s the bad news—and it sure isn’t very bad. The good news is that if A
is a linear transformation, not only are A and A** comparable but so are
A and A*. For A and A** “comparable” turns out to mean “equal”. For
A and A* that can happen, but doesn’t have to, but, in any case, new and
valuable questions can be asked. When is it true that A* = A? How about
A* = —A? What can be said about the sum of A and A*? What about the
product; when do A and A* commute? These questions are at the basis of
the most important part of linear algebra. Before beginning their proper
study, a couple of problems should be looked at by way of practice—the
properties of the correspondence A — A* take a little getting used to.

Problem 125. The direct sum ¥V & W of two inner product spaces
is defined to be the direct sum of the vector spaces V and W endowed

INNER PRODUCT SPACES 137

with the inner product defined by

((xla yl)’ <.’Eg,y2>) = (m19z2) + (ylay2)‘

(Check: is this indeed an inner product?)
(a) If a linear transformation U is defined on V @ V by

U(‘I’.’ y) = (y7 ~.’E),

what is U*? What are U*U and UU*?

(b) The graph of a linear transformation A on a vector space V
is the set of all those ordered pairs (z,y) in V&V for which y = Ax.
Is the graph always a subspace of V & V?

(¢) If G is the graph of a linear transformation A on V, what is
the graph of A*? How are those graphs related?

126. Quadratic forms

Adjoints enter linear algebra through still another door, the back door of
quadratic forms (whose name, to be sure, doesn’t sound very linear). A
quadratic form is a specialization of a bilinear form, which, in turn is a
generalization of a linear functional.

The obvious way to generalize linear functionals is in the direction of
the functions of several variables called multilinear forms. The easiest but
nevertheless typical multilinear forms are the bilinear ones; they are, by
definition, functions of two vector variables that are linear in each variable
separately for fixed values of the other. Explicitly: if V is a vector space, a
scalar-valued function ¢ on V @ V is a bilinear form if

plarzy + az2, y) = cp(z1,y) + a20(xa,y)

for each y in V, and at the same time

o(z, Biy1 + Bayz) = Brp(z, y1) + Pap(z, y2)
for each z in V. Example: if V is R! and

p(z,y) = zy,

then ¢ is a bilinear form. Less trivially: if V is R? and

90((331,352), (yl,yz)) =I1Y1 + Z2Y2,

then ¢ is a bilinear form. (Check?) A quadratic form is a function obtained
from a bilinear one by restriction to equal values of the two variables. That

126
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is: the quadratic form induced by the bilinear form ¢ is the function @
defined by

plz) = p(z, ).

The most valuable example of a bilinear form is one that is not really
an example at all. If V is an inner product space and if ¢ is defined by

p(z,y) = (z,9),

then ¢ is linear in z, to be sure, and it’s trying to be linear in y, but complex
conjugation ruins it. A curious usage of words has been adopted in con-
nection with this kind of occurrence of complex conjugation. A complex-
valued function ¢ that is additive,

£(x +y) = £(x) +£(v),

and fails to be linear because of complex conjugation,

§(ox) = (x)

has come to be called semilinear. (Happy acceptance of this language
might be difficult for some—it’s not obvious that such a function satisfies
exactly half the conditions for linearity—but it is well established and it’s
too late to change it.) In accordance with that usage a function ¢ of two
variables that behaves like an inner product (linear in the first variable and
semilinear in the second) could be called one-and-a-half linear—and that
is almost what it is called. In fact the Latin for one-and-a-half is used, so
that the technical word is sesquilinear. (Semilinear functions are some-
times called antilinear and sometimes conjugate linear.)

Linear transformations in conspiracy with inner products can be used
to get many examples of sesquilinear forms. Here is how: if A is a linear
transformation on an inner product space V, and if x and y are in V, write

p(z,y) = (Az,y).

All such examples are sesquilinear and therefore they act, in part, like inner
products—but usually only in part. There is no reason why they should be
Hermitian symmetric—sometimes they are and sometimes they are not—
it all depends on properties of A. There is no reason why they should
be positive definite—again whether they are or not depends on A. It is
good to know just how these properties depend on A, and that will be dis-
cussed soon. For now, however, it’s best to get back to the general theory
of sesquilinear forms.
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If ¢ is a sesquilinear form, what should &, be called? (Here, as be-
fore, p(z) = ¢(z,x).) No accurate word exists (semiquadratic and sesqui-
quadratic suggest themselves?—but the world hasn’t adopted either one),
and, therefore, an innacurate one is commonly used. If ¢ is a sesquilinear
form and @(z) = ¢(z, z), then, just as in the bilinear case, ¢ is called the
quadratic form associated with (induced by) ¢.

There is a way of making new sesquilinear forms out of old. If ¢ is
a sesquilinear form, and if P and @ are linear transformations, then the
expression

¢(Pz,Qy)

defines another sesquilinear form—in this sense linear transformations
(or, rather, pairs of linear transformations) act on sesquilinear forms. If,
in particular,

w(z,y) = (Az,y),
then

¢o(Pz,Qy) = (APr,Qy) = (Q* APz, y).

That is: the action of P and Q on ¢ replaces the linear transformation A by
an equivalent one (in the strict sense of the word, as discussed in Problem
95). If & is the quadratic form associated with ¢, then the natural way to
mix in a linear transformation is to consider $(Pz). Since

@(Pz) = (APz,Pz) = (P*APz, ),

the action of P on § replaces A by the unfamiliar construct P* AP. That
construct is a good thing to know about; the concept it defines is called con-
gruence. That is: two linear transformations A and B are called congruent
if there exists an invertible linear transformation P such that

B = P*AP.

Invertibility is essential here; without it the relation is too loose to be of
much interest. Congruence is a special case of equivalence. What are its
special properties?

Problem 126. (a) Is congruence an equivalence relation?

(b) If A and B are congruent, are A* and B* congruent?

(c) Does there exist a linear transformation A such that A is con-
gruent to a scalar o but A # o?

(d) Do there exist linear transformations A and B such that A
and B are congruent but A? and B? are not?
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(€) Do there exist invertible linear transformations A and B such
that A and B are congruent but A= and B! are not?

127. Vanishing quadratic forms

To what extent does a quadratic form (Az, z) determine the linear trans-
formation A? Can it happen for two different transformations A and B
that (Az,z) = (Bz, z) for all ?

Problem 127. Does there exist a non-zero linear transformation A
on an inner product space such that (Az,z) = 0 for chl x?

Comment. It is clear, isn’t it?, that this question about zero is the same
as the uniqueness question: is it true that (Az, x) = (Bz, z) for all z if and
only if (A — B)z,z) = 0 for all 2?

128. Hermitian transformations

How closely do linear transformations on a vector space resemble complex
numbers? Linear transformations can be added and multiplied—that’s old
stuff, and it says no more than that they form a ring. Transformations on
an inner product space admit another operation, one that resembles com-
plex conjugation (adjoint)—that is another, different aspect of the resem-
blance.

Complex conjugation can be used to define various important sets of
complex numbers. The most obvious one among them is the set of real
numbers (some complex numbers are real)—they can be defined as the set
of those complex numbers z for which z = Zz. The transformation analog
is the set of those linear transformations A on an inner product space for
which A = A*. They are called Hermitian, and they are among the ones
that occur most frequently in the applications of linear algebra.

If the matrix of a linear transformation A with respect to an orthonor-
mal basis is («;;), then the matrix of A* is the conjugate transpose (@;;)
(see Problem 125). The use of orthonormal bases is crucial here. If, for
instance, A has the matrix

01
(¥ o)

with respect to the orthonormal basis {(1,0), (0,1)}, then A is Hermitian.
If however the non-orthonormal basis {u;, u2} is used, where

u; = (1,0) and ug = (1,1),
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then
Au; =(0,1) = (1,1) - (1,0) = ug — uq,
and
Auy = ug,

so that the matrix of A with respect to {u,,uz} is

-1 0
(3 1)
Since it is easy enough to write down as many conjugate symmetric ma-
trices as anyone could desire, it is easy to produce examples of Hermitian
transformations. Very special case: a scalar transformation is Hermitian if
and only if the scalar in question is real.
What follows is a sequence of problems (puzzles) intended to give

their solver the opportunity of getting used to the properties of Hermitian
transformations.

Problem 128. When is the product of two Hermitian transforma-
tions Hermitian?

129. Skew transformations

The most unreal numbers are the so-called pure imaginary ones, the real
multiples of . The complex conjugate of such a number is not equal to

itself but is equal to its negative: 7 = —i. The transformation analogs of
those numbers are called skew Hermitian, or simply skew: they are the
transformations A for which A* = —A. Various combinations of Hermi-

tian transformations and skew transformations can sometimes turn out to
be Hermitian or skew; here are some sample questions.

Problem 129. (a) If A and B are congruent and A is skew, does it
follow that B is skew?
(b) If A is skew, does it follow that A? is skew? How about A3?
(c) If Ais either Hermitian or skew, and if B is either Hermitian
or skew, what can be said about AB + BA? What about AB — BA?

Comment. “Congruent” refers to the concept discussed in Problem 120.
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130. Real Hermitian forms

How much do Hermitian transformations resemble real numbers? The moti-
vation for introducing them above was the equation A = A*, but that’s only
a formal analogy. If A is the matrix

01
0 0
— as non-Hermitian as any matrix can get—and if z = (1, x2), then

(Az,x) =T122

—the quadratic form associated with A is as non-real as any can get. If, on
the other hand, A is /

(7 4)

(Aa:, CL‘) =T1%2 + 21T9 = 2ReT 129

then

—as real as any can get. Are these phenomena typical?

Problem 130. What is the relation between Hermitian transforma-
tions and transformations with real quadratic form?

131. Positive transformations

Does the set of positive real numbers have as nice a transformation analog
as the set of all real numbers? A natural attempt to define positiveness for
transformations is to imitate the definition of reality via quadratic forms,
and that in fact is what is usually done. A linear transformation A is called
positive if (Az,z) 2 0 for every vector z; if (Ax,z) > 0 for all non-zero
x, the phrase positive definite is used. The symbolic way of saying that A is
positive is to write

AZ0
and the statement A — B 2 0 can also be written as
AZB.

The weak sign (2) can be replaced by the strong one (>) when the facts
permit it, and
B<LA

means, of course, the same as A = B.

INNER PRODUCT SPACES 143

Examples: if A is an arbitrary linear transformation, then A*4 =2 0
(because (A* Az, z) = || Az||?), and therefore if B is a Hermitian transfor-
mation, then B2 > 0 (because B2 = B*B). These statements are trans-
formation analogs of the numerical statements Zz 2 0 (for every complex
number z) and u? 2 0 (for every real number v).

To say that a matrix is positive means that the linear transformation it
defines is positive; in matrix notation that is expressed by saying that

DD w20
i

1

for every vector {£1, ..., &, }. Concrete examples:
2 1
>
(3 1)zo

21612 + & ba + &by + |6 = |6 + &P + 142

and (easier)
10
0 2

1) = (o)

are not positive, in both cases because the values of their quadratic forms
at the vector (—1, 1) are negative.

Some caution is called for in using the symbolism of ordering when
complex numbers enter the picture. Everybody agrees that 3 > 2, and
almost everybody sooner or later agrees that —2 > —3. What about

because

1\Y
L

but

3+4i>24+4

—is that true? What is true is that subtracting the right side from the left
yields a positive number, but, nevertheless, most people feel uncomfort-
able with the inequality. Common sense suggests that such inequalities are
best avoided, and experience shows that nothing is lost by avoiding them
and using inequalities for real numbers (and Hermitian transformations)
only. It is pertinent to recall that if A 2 0, so that (Az, z) = 0 for all z, then

in particular (Az, ) is real for all z, and therefore A must be Hermitian
{(Problem 130).
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Problem 131. (a) Is there an example of a positive matrix not all of
whose entries are positive?
(b) Is there an example of a non-positive matrix all of whose

entries are positive?
111
(c)Isthematrix | 1 1 1 | positive?
1 11
1 01
(d)Isthematrix {0 1 0 ) positive?
1 01

SO =

a 1
(e) For which values of  is the matrix | 1 0) positive?
1 0

132. Positive inverses

Problem 133. If a positive transformation is invertible, must its in-
verse also be positive?

133. Perpendicular projections

The addition to a vector space of an inner product structure makes the the-
ory more special (and therefore deeper); how does it affect the questions
and answers about projections? The answer is that it affects those questions
and answers quite a lot. The main reason for the change is that the inner
product structure picks out a special one among the many complements
that a subspace has, namely (obviously) the orthogonal complement. Re-
call that if M and N are complementary subspaces of a finite-dimensional
vector space V, that is if

MNN={0} and M+N=V,

so that every z in V is uniquely representable as

z=zx+vy

with z in M and y in N, then the projection E to M along N is the linear
transformation defined by Ez = z (Problem 72). If V is an inner product
space, then the projection onto a subspace M along its orthogonal comple-
ment M+ is called the perpendicular projection onto M. When extraordi-
nary caution is needed, that perpendicular projection can be denoted by
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Py, but most frequently, when the context makes notational and termino-
logical fuss unnecessary, even the word “perpendicular” is dropped and
people just speak of the projection onto M.

It would be a pity if perpendicular projections were lost in the crowd
of all possible projections. Is there a way of recognizing them?

Problem 133. Which linear transformations on an inner product
space are perpendicular projections?

Comment. The question is vague—the first problem is to look for a non-
vague interpretation of it. In slightly less vague terms the challenge is to
look for an algebraic characterization of those linear transformations on
an inner product space that are perpendicular projections.

134. Projections on C x C

Problem 134. What can the matrix of a projection on Cx C (= C?)
look like?

Caution. “Matrix” here refers to a matrix with respect to an orthonormal
basis.

135. Projection order

How is the geometric ordering of projections related to the algebraically
defined ordering via positiveness (Problem 131)? The geometric ordering
is one that suggests itself naturally: if E and F are projections with ranges
M and N, then it is an almost irresisitible temptation to say that E is smaller
than F' in case M is smaller than N (meaning that M C N).

Problem 135. If E and F are perpendicular projections, is there an
implication in either direction between the statements

ELF

and

ran E C ran F?

134

135
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136. Orthogonal projections

How is the orthogonality of two subspaces reflected by their projections?

Problem 136. If E and F are perpendicular projections, what alge-
braic relation between E and F characterizes the geometric property
of ran E being orthogonal to ran F'?

Comment. Whatever the answer turns out to be, it seems reasonable to
use for that algebraic relation the same word as for subspaces. That is,
E and F shall be called orthogonal projections exactly in case ran E and
ran F are orthogonal subspaces. ‘

\
137. Hermitian eigenvalues

How does the spectrum of a transformation reflect its structure? Partial
answers to this vague question have occurred already, as for instance in the
statement that the nilpotence of A is equivalent to spec A = {0} (Problem
111).

Another special sample question is this: can a real matrix (meaning
just that all its entries are real) have non-real eigenvalues? Yes. Example:
the eigenvalues of the matrix

4 1
( -17 2) ’

that is the roots of the quadratic equation
A% —61+25=0,

are 3 + 4¢ and 3 — 44. (Is a general construction visible here? Can every
complex number be an eigenvalue of a real matrix?)

The concept of a “real matrix” is an artificial one—reality is not a
property of a linear transformation but of a conspiracy between a linear
transformation and a basis. (Such conspiracies are usually called matrices.)
What about the notion of reality that is a property of a linear transforma-
tion —does that behave differently?

Problem 137. What can be said about the eigenvalues of Hermitian
transformations? What about positive transformations?

Question. Are the conditions on the eigenvalues necessary, or sufficient,
or both?
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138. Distinct eigenvalues

Here is a good question to ask that may not occur to everyone immedi-
ately but that does play a role in the theory: is there any relation between
eigenvectors belonging to different eigenvalues? Example: if

12
4=(03)

then (1, 0) is an eigenvector with eigenvalue 1 and (1, 1) is an eigenvector
with eigenvalue 3, and there is no obviously discoverable relation between
those two eigenvectors. Why not?

Problem 138. Is there any relation between eigenvectors belonging
to distinct eigenvalues of a Hermitian transformation?

138
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139. Unitary transformations 139

The three most obvious pleasant relations that a linear transformation on
an inner product space can have to its adjoint are that they are equal (Her-
mitian), or that one is the negative of the other (skew), or that one is the
inverse of the other (not yet discussed). The word that describes the last of
these possibilities is unitary: that’s what a linear transformation U is called
in case it is invertible and U~! = U*. The definition can be expressed in
a “less prejudiced” way as U*U = 1—less prejudiced in the sense that it
assumes less—but it is not clear that the less prejudiced way yields just as
much. Does it?

Problem 139. If U is a linear transformation such that U*U = 1,
does it follow that U*U = 17

140. Unitary matrices 140

It seems fair to apply the word “unitary” to a matrix in case the linear trans-
formation it defines is a unitary one. (Caution: when language that makes
sense in inner product spaces only is applied to matrices, the basis that es-
tablishes the correspondence between matrices and linear transformations
had better be an orthonormal one.) A quick glance usually suffices to tell
whether or not a matrix is Hermitian; is there a way to tell by looking at a
matrix whether or not it is unitary? The following special cases are a fair
test of any proposed answer to the general question.
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a 0 ) :
a unitary ma-

Problem 140. (a) For which values of o is ( 11
1

trix?
(b) For which values of o is ( al 2 ) a unitary matrix?

(c) Is there a 3 x 3 unitary matrix whose first row is a multiple
of (1,1,1)?

141. Unitary involutions

The two simplest properties that a linear transformation on an inner prod-
uct space can have are being Hermitian or being unitary. A pleasantly and
interestingly related property is being involutory. (A linear transformation
U is called an involution or invelutory if U? = 1.) What are the relations
among these properties?

Problem 141. What are the implication relations among the con-
ditions U* =U, U*U = 1, and U? = 17

142. Unitary triangles

Problem 142. Which unitary matrices are triangular?

143. Hermitian diagonalization

Diagonal (or diagonalizable) matrices are pleasant to work with; it is al-
ways good to discover of a class of matrices under study that they can be
diagonalized. (Remember, for instance, the diagonalization of permuta-
tions, Problem 103, and the diagonalization of transformations with dis-
tinct eigenvalues, Problem 106.)

Is every Hermitian transformation diagonalizable? Here is a phony
proof that the anwer is yes. Given a Hermitian A, find a basis

{61,62,. . }

such that the matrix of A with respect to that basis is upper triangular
(Problem 108). If, to be specific,

Aej= E Q€4
i
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with o;; = 0 whenever i > j, then
(Aej, ex) = Zaij(e,-,ek) = Zaiﬁik = Q-
i i
The Hermitian character of A implies that
ajx = (Aek,e;) = (ex, Ae;) = (Aej, ex) = g,
and hence that o, = 0 whenever j > k. Consequence:
ajr =0

whenever j # k, and therefore the matrix (ay;) is diagonal.

What’s wrong with that proof? Answer: it uses the orthonormality of
the basis {e1, ez, ...}, and that’s completely unjustified. All that the trian-
gularization theorem says is that there exists some basis that does the job—
it leaves open the question of whether or not there exists an orthonormal
basis that does it.

It’s easy enough to doctor up a basis so that with respect to it the matrix
of some Hermitian transformation comes out triangular but not diagonal.
For a concrete example, consider the linear transformation on C? whose

matrix is
2 -1
a=(% 7).

which is of course seen to be Hermitian by a casual glance. Consider now
the (non-orthonormal) basis

{(1,1),(0,1)}

of C2. Since
AQ,1)=(1,1) and  A(0,1) = (-1,2),
so that
A(1,1) =1-(1,1)+0-(0,1)
and

A(0,1) = —1-(1,1) +3-(0,1),

it follows that the matrix of A with respect to that basis is

.y

—triangular but not diagonal.
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Which Hermitian matrices are triangular? The answer is “just the di-
agonal ones”—that’s what the phony proof above really proves. The orig-
inal question, however, still stands.

Problem 143, If Aisa Hermitian transformation on a finite-dimen-
sional complex inner product space, does there always exist an or-
thonormal basis with respect to which the matrix of A is diagonal?

Comment. To say that a linear transformation is diagonalizable means
that its matrix A (with respect to an arbitrary basis) is similar to a diagonal
matrix, and that conclusion can be expressed by saying( that there exists an
invertible matrix 7" such that ! AT is diagonal (Problem 86). In the same
way, the assertion that a linear transformation A is diagonalizable with re-
spect to an orthonormal basis can be expressed by saying that there exists
a unitary matrix U such that U* AU is diagonal. This assertion is an imme-
diate consequence of its predecessor—all that has to be recalled is that a
linear transformation that changes one orthonormal basis into another is
necessarily unitary. The present question could therefore have been for-
mulated this way: if A is a Hermitian matrix, does there always exist a uni-
tary matrix U such that U* AU is diagonal?

144. Square roots

If A is a linear transformation, does e# make sense? Or cos A? or vV A?
The general question is what sense it makes to form functions of a trans-
formation, and whether it does any good to do so.

Yes, functions of transformations sometimes make sense and are
sometimes very useful. The most typical and most important special case
is the assertion that every invertible linear transformation (on a finite-
dimensional complex vector space) has a square root (Problem 114). That
is a matrix generalization of the statement that every complex number has
a square root—a true statement that happens, however, not to be espe-
cially useful. The useful fact is that every positive number has a positive
square root. Is there a good matrix generalization of that?

Problem 144. How many positive square roots can a positive linear
transformation on a finite-dimensional inner product space have?

J—
i
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145. Polar decomposition

Does it make sense to speak of the absolute value of a linear transforma-
tion? An answer is suggested by the so-called polar representation

a = pe'®

of a complex number. The angle (= real number) 4 is between 0 and 27,
and the number p is positive—and the latter is the absolute value of a. (It is
worthy of note that except when a = 0 the polar representation is unique.)
Can such a representation be imitated by linear transformations?

What does imitation mean? A good imitation of a positive number is,
presumably, a positive linear transformation. The equation

e .ef =1

suggests that a possible imitation of the angle part of the polar representa-
tion is a linear transformation whose product with its own adjoint is equal
to the identity transformation—that is, a unitary transformation.

Problem 145. Which linear transformations A on a finite-dimen-
sional inner product space are equal to products U P with U unitary
and P positive?

146. Normal transformations

Can every matrix be diagonalized? Why not? After all every A is equal to
B + iC, with B and C Hermitian; why isn’t it true that the diagonaliza-
tions of B and C separately yield a diagonalization of A? The answer is, of
course, that diagonalization involved finding a suitable orthonormal basis,
and there is no reason to expect that a basis that diagonalizes B will have
the same effect on C.

All right then—are Hermitian transformations the only ones that can
be diagonalized? Nonsense—of course not—for an example just consider
a diagonal matrix such as

i 0
(6 1)

that has a non-real entry. Emphasis: diagonalization in these questions
means orthonormal diagonalization, or, from a different but equivalent
point of view, unitary equivalence to a diagonal matrix; see the comment
following Problem 143.

To discover the right middle course to steer between the extravagantly
large class of all transformations and the relatively too restricted class of

145
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Hermitian ones, the intelligent thing to do is to examine diagonalizable
matrices and try to discover what makes them so. If D is a diagonal matrix,
then so is D*, and, therefore, D and D* commute. That’s a special property
of diagonal matrices; does it survive under unitary equivalence? That is: if
U is unitary and A = U*DU, is it true that A and A* commute? Sure:

AA* =U*DUU*D*U

=U*DD*U (because U is unitary)
=U*D*DU

=U*D*UU*DU  (because U is ul\litary)
= A*A.

Linear transformations with the commutativity property here encoun-
tered (A*A = AA*) are called normal, and while at this stage the con-
nection between normality and diagonalizability is rather tenuous they de-
serve a look. The best thing to look at might be a property of Hermitian
transformations that played an important role in the proof that they are
diagonalizable (see Solution 143)—do normal transformations have that

property?

Problem 146. Must eigenvectors belonging to distinct eigenvalues
of a normal transformation (on a finite-dimensional inner product
space) be orthogonal?

147. Normal diagonalizability

Are normal transformations good imitations of Hermitian ones? The use-
ful Hermitian lemma that helped to prove that Hermitian transformations
are diagonalizable extends to the normal case (that’s what Problem 146
did); does its consequence extend also?

Problem 147. If A is a normal transformation on a finite-dimen-
sional complex inner product space, does there always exist an or-
thonormal basis with respect to which the matrix of A is diagonal?

Comment. In less stuffy language the question is whether normal trans-
formations are diagonalizable.
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148. Normal commutativity

The most important kind of questions linear algebra can ask and answer
concern the relation between the algebra and the geometry of linear trans-
formations.

Here is an example: if two linear transformations A and B commute,
and if X is an eigenvalue of A with eigenvector z (so that Az = Az), then
ABz = BAz = ABz. That is: the algebraic assumption of commutativity
yields the geometric conclusion that each eigenspace of either transforma-
tion is invariant under the other. Is the converse true: does the geometric
statement imply the algebraic one?

The answer is no. If, for instance, A and B are defined on C? by

01 11
A= =
(0 0) and B (o 0)’

then the only eigenspace of A is the set of all vectors of the form (e, 0),
and that set is invariant under B, but A and B do not commute.
Does the bad news become good if normality enters the picture?

Problem 148. If the linear transformations A and B on an inner
product space are such that every eigenspace of A is invariant under
B, and if B is normal, does it follow that AB = BA? What if B is
not necessarily normal, but A is?

149. Adjoint commutativity

If A, B, and C are linear transformations such that A commutes with B
and B commutes with C, does it follow that A commutes with C'? In other
words: is the relation of commutativity transitive? The suggestion is seen
to be absurd almost sooner than it can be made: if B = 0, the assumptions
are satisfied, but there is no reason on earth for the conclusion to follow.

The strongly negative nature of the answer adds interest to the study
of special cases in an attempt to learn when the answer remains negative
and when it just happens to be affirmative. As it turns out, moreover, some
of those special cases are useful to know about, especially the ones that
have to do with adjoints.

Problem 149. If A, B, and C are linear transformations on an in-
ner product space V such that A commutes with B and B commutes

with C, and if two of the three are adjoints of one another, does it
follow that A commutes with C'?

148
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150. Adjoint intertwining

The standard way to describe the fact that AS = SA is, of course, to say
that S commutes with A. An important generalization of commutativity
also has a word associated with it, a less well-known word: if AS = SB,
then S intertwines A and B. Commutativity is rare; intertwining is more
common. When commutativity theorems can be extended to intertwining
theorems, good applications usually follow.

A good commutativity theorem is the one about adjoint commutativity
(Solution 143): if A is normal and AS = SA, then A*S = SA*. (Caution:
the assumption of normality is essential in this implication. The point is
that, no matter what A is, S can always be taken to be A itself, and the
commutativity assumption is satisfied; if, however, A is not normal, then
S, that is A, will not commute with A*.)

Does the adjoint commutativity theorem have an intertwining version?
That is: is it sometimes possible to start with AS = SB and infer that
A*S = SB*? The cautionary example above (A not normal and S = A*)
shows that the implication is surely not always true, but there are worse
examples than that. Indeed, if

10 0 0
A—(O 0), B_(l 0), and S=0B5,

then AS = SB = 0, whereas A*S (= AS) =0and

., (00
s5=(5 1)

The reason this example is worse is that one of the constituents, namely A,
is normal. Interchanging A and B and replacing S by

01

00
yields an example in which B is normal. Are there bad examples like this
even when both A and B are required to be normal?

Problem 150. If A and B are normal linear transformations on a
finite-dimensional inner product space, and if AS = SB, does it
always follow that A*S = SB*?

151. Normal products

The product of two self-adjoint transformations may fail to be self-adjoint,
but if they commute then the product must be self-adjoint too. The proof
is a trivial piece of algebra: if A = A* and B = B*, then (AB)* = B*A* =
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BA. Does the result extend to normal transformations? That is, if A and
B are normal and commutative, does it follow that AB is normal? The
answer is yes, but it is somewhat more subtle. One way to prove it is to
use the adjoint commutativity theorem. In view of the assumption AB =
BA, the normality of A implies that A*B = BA*. It follows that all four
transformations A, A*, B, and B* commute with one another, and hence
that

(AB)(AB)* = ABB*A* = B*A*AB = (AB)*(AB).

For self-adjoint transformations, there is a converse theorem: if the
product of two of them turns out to be self-adjoint, then they must com-
mute. The proof is obvious: if

A=A*,B=B*, and AB-=(AB)",

then
AB = B*A* = BA.

Does the converse extend to normal transformations? That question takes
most people a few more seconds to answer than the self-adjoint one; the
reason is that the answer is different. No, normal transformations with
a normal product do not have to commute. Example: take any two non-
commutative unitary transformations their product is unitary, therefore
normal.

There is still another twist on questions of this type. If A and B are
normal and commutative, so that AB is normal, then, of course, BA is

normal too (because it is equal to AB). Is commutativity needed to draw
that conclusion?

Problem 151. If the linear transformations A and B on a finite-
dimensional inner product space are such that A, B, and AB are
normal, does it follow that B A is normal?

152. Functions of transformations

Polynomials of a linear transformation make sense, and (as Problem 144
indicated ) sometimes they can be used to define more complicated func-
tions of linear transformations. If, for instance, A is a normal transforma-
tion on finite-dimensional vector space, then everything works smoothly.
For an arbitrary function f whose domain is at least as large as spec A
(the set of eigenvalues of A) a transformation f(A) can be defined by find-
ing a polynomial p that agrees with f on specA and writing f(A) = p(A).

152
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The process of forming functions of transformations is a powerful tool,
and what makes it so is that the algebraic and analytic properties of such
functions mirror faithfully the corresponding properties of numerical func-
tions. Thus, for instance, if A is normal and f(2) = Z (complex conjugate),
then f(A) = A* (adjoint); if, in addition, A is invertible and f(z) = 1
whenever z # 0, then f(A) = A~!; and if A is positive and f(z) = vz
whenever z > 0, then f(A) = v/A (the unique positive square root).

Some functions of linear transformations demand attention even in
the absence of normality (and sometimes even in the absence of any in-
ner product structure in the underlying vector space); conspicuous among
them are A — A* and, for invertible transformations, A — A~1. Can the
study of their behavior, good or bad, be reduced to the study of polynomi-
alsin A?

Problem 152. (a) If A is a linear transformation on a finite-dimen-
sional inner product space, does there necessarily exist a polynomial
psuch that p(A) = A*?

(b) If Ais an invertible linear transformation on a finite-dimen-
sional vector space, does there necessarily exist a polynomial p such
that p(A) = A™1?

153. Gramians

How easy is it to recognize that a matrix is positive? (“Positive” is used here
in the quadratic form sense, as defined in Problem 131.) So, for example
is either of the matrices

( 5 12) and ( 5 11 )

12 25 11 25

positive? The answer is no for the first one (note that its determinant is
negative) and yes for the second, but no single answer like that is impor-
tant. An effectively computable test for positiveness would be pleasant to
have, but, failing that, even an abstract characterization would be welcome.
Prediction is sometimes more important in mathematics (if you do so and
so, you'll get a positive matrix) than recognition (I don’t know what you
did, but you ended up with a positive matrix).

The challenge to write down a hundred different matrices is a trivial
one, even if “different” is intended to suggest radical differences, not just
trivial ones such as are possessed by different scalar multiples of one ma-
trix. It’s just as easy to write down a hundred different Hermitian matrices.
Is it easy to write down a hundred radically different 4 x 4 positive matri-
ces?

P S
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Yes, it’s easy. Consider any four vectors z1, 2, 3, 74 in C* and form
the matrix A = (o4;) whose entry «;; in row ¢ and column j is the inner
product

(zi’xj)'

Assertion: A is positive. For the proof what must be shown is that if
v = (v1,v2,v3,v4) is any vector in C4, then (Av,v) 2 0. The proof is a
straightforward computation. If Au = v = (v1, v, v, v4), S0 that

v; = Z(-’Ei,wj)ui,
then
(Au,u) = (v,u) = ZZ(“’:‘,%)WEJ‘

J

= Z (Z(a}iui,.’llj)) uj = (Z T;Ug, ijuj)

2
2 0.

E Tl
i

A matrix such as the A here defined is called a Gramian, or, more
specifically, the Gramian of the vectors 1, z3, 3, 4. What was just proved
is that every Gramian is positive. To what extent is the converse of that
statement true?

Problem 153. Which positive matrices are Gramians?

154. Monotone functions

Problem 154. If A and B are positive transformations on a finite-
dimensional inner product space such that

AZLB,
does it follow that
A% < B%?
How about
VAL VB?
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Comment. The question could have been phrased by asking whether
square and square root are monotone functions of transformations.

The restriction to positive transformations is advisable, isn’t it? After
all the function z — z? on the real line is not a monotone function (al-
though it is true that —3 £ 2, it is not true that 9 < 4), but its restriction
to the positive part of the line is. In other words, for positive real numbers
the answers are yes, which can be read as saying that for linear transforma-
tions on a vector space of dimension 1 the answers are yes; the question is
whether the answers remain yes for spaces of higher dimensions.

155. Reducing ranges and kernels i

!

Invariant subspaces for a linear transformation A on a finite-dimensional
vector space V are easy enough to find; the difficulty, usually, is to prove
that they are different from the trivial subspace {0} and the improper sub-
space V. If the vector space is equipped with an inner product, it becomes
natural to look for reducing subspaces (subspaces invariant under both A
and its adjoint A*); they are harder to find. Thus, for instance, both ran A
and ker A are invariant under A, but they may well fail to be reducing. An
easy example is furnished by the 2 x 2 matrix that is an almost universal

counterexample. If
01
4= o)

is regarded as a linear transformation on the space C2, then both ran A
and ker A are equal to the set of all vectors of the form (z, 0}, but neither
one of them is invariant under A*. Does something more useful happen if
intersections and spans of ranges and kernels are allowed?

Problem 155. If Aisalinear transformation on a finite-dimensional
inner product space, which of the subspaces obtained from ran A,
ker A, ran A*, and ker A* by the formation of intersections and spans
necessarily reduce A?

156. Truncated shifts

The larger the domain of a linear transformation, the more likely it is to
have invariant and reducing subspaces. The easiest example of an irre-
ducible linear transformation on a vector space V (that is, a transformation
with no reducing subspaces other than {0} and V') is the one induced on
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C? by the matrix

(1 3)

(compare Problem 74). That example has natural generalizations to higher
dimensions, such as

[=le ol
(=R T e I .}
O =0 O O
-0 0O o O
OO 0o oo

on C® for instance.

Another way of describing the same phenomenon is to consider any
basis {z1,...,z,} in any vector space V of dimension n, say, and let A be
the truncated shift that sends (shifts) z; to z;41 (1 £ j < n) and sends
Z,, to 0. The matrix of A with respect to the basis {z,...,z,} is just like
the one displayed above (with the role of 5 being played by n). Note that
A™"1 2£ 0 but A™ = 0; the transformation A is nilpotent of index exactly
n.

When n is large, the domain of the linear transformation A is larger
than it is when n = 2. How effective is the enlargement as a producer of
invariant and reducing subspaces?

Problem 156. How many invariant subspaces does a truncated shift
have? How many reducing subspaces does it have?

157. Non-positive square roots

Positive linear transformations are not the only ones for which the problem
of square roots makes sense. Every linear transformation has a square, and
that shows that many transformations have square roots even though they
have nothing to do with positiveness.
Does the matrix
010
A=]0 0 1
000

have a square root? No, it does not. If it happened that B? = A, then (since
Ajis nilpotent of index 3), it would follow that B® = 0, and that would imply
that the minimal polynomial of B is a power of ). Since the degree cannot
be greater than 3 (the degree of the characteristic polynomial), it follows

157
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that B3 = 0, whence A2 = B* = 0, which is a contradiction. This sort of
argument can be used often, and it implies, for instance, that no truncated
shift can have a square root. There are, however, many transformations
about which the argument gives no information, however much they may
resemble truncated shifts.

Problem 157. Does the matrix

A=

[am Y o BN e}
OO =
oo o

have a square root?

158. Similar normal transformations

The “right” relation of equivalence between linear transformations on an
abstract vector space is similarity; from the point of view of the structure of
vector spaces similar transformations are indistinguishable. Inner product
spaces have a richer structure; a relation (such as similarity) that ignores
that structure does not give the best information. The “right” relation be-
tween linear transformations on inner product spaces is unitary similarity
(often, somewhat misleadingly, called unitary equivalence).

What information does unitary similarity give that ordinary similar-
ity does not? Since the rich structure of inner product spaces consists of
numerical ways of measuring sizes (angles and lengths), the most natural
answer to the question is “size”. Consider, for instance, the matrices

11 1 0
A—(O 0) and B_(O 0)‘

Computational verification (or a moment’s thought about known elemen-
tary sufficient conditions for similarity) will establish that A and B are sim-
ilar. The unit vectors (1,0) and (7, — =) are eigenvectors of 4; since
their inner product is %, the angle between them is . The unit vectors
(1,0) and (0, 1) are eigenvectors of B; the angle between them is 7. The
norm of A is % (compute the larger of the square roots of the eigenval-
ues of A* A); the norm of B is 1. Conclusion: A and B, though similar, are
certainly not unitarily similar; every measure of size indicates a difference
between them.

The linear transformation defined by A is pleasantly related to the
inner product structure: A is normal. The transformation defined by B is
not normal. These facts establish once again that A and B couldn’t possibly
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be unitarily similar, and they suggest a search for an even more powerful
counterexample.

Problem 158. Do there exist two normal transformations that are
similar but not unitarily similar?

159. Unitary equivalence of transposes

The hardest and most important problem about many mathematical struc-
tures is to determine when two of them are the “same”. One such problem
in linear algebra is to find out when two linear transformations are simi-
lar, or, in case the underlying vector space comes endowed with an inner
product, to find out when two linear transformations are unitarily equiv-
alent. There exists something called elementary divisor theory, which fre-
quently yields satisfactory answers to questions of the first of these types,
good enough for explicit calculations. The second type of question is usu-
ally much harder.

Suppose, for instance, that A is a linear transformation on a finite-
dimensional inner product space. The transformations A and A* have
much in common, especially as far as sizes are concerned. A trivial obser-
vation along these lines is that the geometric norms of A and A* are the
same. Since det A* is the complex conjugate of det A, it follows that if X is
an eigenvalue of A, then X (the complex conjugate of A) is an eigenvalue
of A*, and hence, in particular, that |X| = |X|; the sizes of the eigenvalues
of the two transformations are the same.

Could it be that A and A* are always unitarily equivalent? No, that’s
absurd: complex conjugation is in the way. Unitarily equivalent transfor-
mations have the same eigenvalues, but it can perfectly well happen that a
linear transformation A has ) for an eigenvalue but not }; in that case A
and A* cannot possibly be unitarily equivalent.

The adjoint of a matrix is the complex conjugate of its transpose. If the
conjugation step is omitted, does the difficulty disappear?

Problem 159. Is every matrix unitarily equivalent to its transpose?

To interpret the question, identify each n x n matrix with the linear
transformation that it induces on the inner product space C™. Note that,
by the elementary divisor theory referred to above, if unitary equivalence is
replaced by similarity, then the answer is yes: a matrix A and its transpose
A’ obviously have the same elementary divisors.

159
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160. Unitary and orthogonal equivalence

If two real matrices are complex similar, then they are real similar—a con-
struction to prove that was carried out in Problem 89. What happens (spe-
cial case) when two real matrices are unitarily equivalent?

Is it possible for two real matrices to be unitarily equivalent in a com-
plex way? That is: do there exist real matrices A and B and a complex
unitary matrix U such that U* AU = B? The question is not sharp enough;
it admits trivial answers suchas A = B = 0 and U = 1. An answer like that
would be described as trivial by everyone, but just exactly what deserves to
be called non-trivial?

It’s not enough to insist that U be genuinely complex; trivial answers
still exist. Example: let U be an arbitrary “genuinely cohplex” unitary ma-
trixandtake A=B =1,

Here is an example of a different kind: take

00 10 0 i
=(0v) 2=(a) s-(0)

and verify that S*AS = (S-'AS) = B. The technique of Problem 89
shows that if P and QQ are the real and imaginary parts of S,

S =P+1iQ,

then there exist real numbers X such that T = P + AQ is invertible, and
for any such 7' it is true that T-! AT = B. The matrices T are of the form

10
pleasant phenomenon occurs only rarely.

Still another example: take an arbitrary real A and an arbitrary real
V that is unitary, define B = V*AV, and write U = oV, where « is an
arbitrary complex number of modulus 1. This latter example leads to oth-
ers that cannot be spotted so easily. Form the direct sum of two of them,
and then transform every transformation that enters by a sufficiently com-
plicated looking real unitary transformation W. (To transform means to
replace X by W*XW.) The new U (a complicated real transform of the
direct sum of a couple of complex scalar multiples of two other real U’s)
looks as genuinely complex as anything can, but it succeeds in transforming
the new real A to the new real B.

Are all these examples “artificial”? The following problem is a precise
way of putting this somewhat vague question.

(0 A ) , and while it’s quite possible for such a matrix to be unitary, that

Problem 160. If two real matrices are (complex) unitarily equiva-
lent, does it follow that they are also (real) orthogonally equivalent?
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161. Null convergent powers

If a finite-dimensional (real or complex) vector space V does not come
equipped with an inner product, then there is no natural notion of distance
for vectors in it or linear transformations on it, but there are many equally
good “unnatural” ones. To get one of them, choose a basis, and, using it,
establish an isomorphism between V and C™ for the appropriate n. The
isomorphism transplants the natural inner product structure (and hence
the analytic and topological structures, such as distance and convergence)
from C" to V. It is good to know (and not especially difficult to prove) that
while the distances obtained this way may be very different from one an-
other, the topologies are all the same. If, in particular, {A,} is a sequence
of linear transformations on a finite-dimensional (real or complex) vector
space, then it might make sense to ask whether the sequence converges to
something. It might make sense, but it is usually not worth the trouble to
ask such questions; it is simpler and more honest to restrict attention to
matrices in the first place.

As an illustration of the kind of analytic question that it is often useful
to ask about matrices, consider this one: if a complex matrix A is such that
A™ — 0 as n — oo, what can be said about the eigenvalues of A? Answer:
every one of them must be strictly less than 1 in absolute value. Reason:
if Az = Az, then A"z = A"z, and therefore, provided only that = # 0, it
follows that A™ — 0. Is the converse true?

Problem 161. If every eigenvalue of a complex matrix A is strictly
less than 1 in absolute value, does it follow that A™ — 0asn — oo?

162. Power boundedness

The powers of a linear transformation A can exhibit several kinds of good
and bad behavior. Solution 161 discussed the possibilities || A™|| — 0 (good)
and ||A™|| — oo (bad). A good possibility between those two extremes
is that ||A™||, as a function of n, is bounded. The possibility is important
enough that it deserves to be given its name even before it is adequately
studied and characterized; a linear transformation with that property is
called power bounded. Which ones are?

If |A|| £ 1 (that can be expressed by the usual technical term: A is a
contraction), then surely ||A"|| < 1 for all n. Contractions must be power
bounded; can anything else be? Is it possible to have a transformation A

161
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with ||A|| = 2 and || A™|| bounded? Yes, it is. Example:

0 2
a=(0 ).
The point is, of course, that A™ = 0 whenever n 2 2; the presence of the
entry 2 doesn’t affect any of the powers of A after the first.
Examples like the last might tend to shake one’s faith in the possibility
of a good connection between power boundedness and contractions; the

next comment might restore some of that faith. If a linear transformation
A is not a contraction but is similar to one,

A=s71cs, [Cl£1,
then

4™ =87 CmSI L NS~ - Ie™ - IS < 18~ - IS
so that A is power bounded. How likely is that faith to be shaken?

Problem 162. Is every power bounded linear transformation on a
finite-dimensional inner product space necessarily similar to a con-
traction?

163. Reduction and index 2

The easy examples of irreducible transformations turn out to be nilpotent
(see Solution 156); it almost looks as if every nilpotent transformation must
be irreducible. That’s not true, of course: for a counterexample just form
the direct sum of two nilpotent transformations to get one that is still nilpo-
tent but definitely not irreducible. Contemplation of such examples sug-
gests a question: are there relations between the index of nilpotence and
the dimension of the space that either force or prevent irreducibility? The
answer is not obvious even for the lowest possible index.

Problem 163. Is there an irreducible nilpotent transformation of
index 2 on a space of dimension greater than 2?7

164. Nilpotence and reduction

If alinear transformation A on a vector space V of dimension 7 is nilpotent
of index k, what can be said about the existence of reducing subspaces for
A?If k < n, then A can be reducible (trivial, form direct sums); if k = n,
then A cannot be reducible (that is in effect what Solution 151 shows); and
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if x = 2and n > 2, then A must be reducible (see Solution 163). What
can be guessed from that much evidence? A possible guess is thatif & < n,
then A is necessarily reducible. Is that true?

Problem 164. Can a nilpotent linear transformation A of index 3
on an inner product space V of dimension 4 be irreducible?
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HINTS

Chapter 1. Scalars

Hint 1. Write down the associative law for [+].
Hint 2. Same as for Problem 1: substitute and look.
Hint 3. How could it be?

Hint4. Note the title of the problem.

Hint 5. The affine transformation of the line associated with the real
numbers o and 3 is the one that maps each real number £ onto af + 3.

Hint 6. Does it help to think about 2 x 2 matrices? If not, just compute.

Hint 7. Let r¢ (for “reduce modulo 6”) be the function that assigns to
each non-negative integer the number that’s left after all multiples of 6 are
thrown out of it. Examples: r6(8) = 2, r¢(183) = 3, and r4(6) = 0. Verify
that the result of multiplying two numbers and then reducing modulo 6
yields the same answer as reducing them first and then multiplying the
results modulo 6. Example: the ordinary product of 10 and 11 is 110, which
reduces modulo 6 to 2; the reduced versions of 10 and 11 are 4 and 5, whose
product modulo 6 is 20 — 18 = 2.
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Hint 8. The answer may or may not be easy to guess, but once it’s cor-
rectly guessed it’s easy to prove. The answer is yes.

Hint 9. Not as a consequence but as a coincidence the answer is that the
associative ones do and the others don’t.

Hint 10. To find ﬁ, multiply both numerator and denominator by
o — if3. The old-fashioned name for the procedure is “rationalize the de-
nominator”.

Hint 11. The unit is (1, 0). Caution: non-commutativity.
\

Hint 12. The unit is ((1) (1))

Hint 13. (a)and (b). Are the operations commutative? Are they associa-
tive? Do the answers change if R is replaced by [0, 1]?
(c¢) Add (—z) to both sides of the assumed equation.

Hint 14. An affine transformation £ — af + 8 with a = 0 has no inverse;

a matrix with
a B
v &6
ad — (v = 0 has no inverse.

The integers modulo 3 form an additive group, and so do the integers
modulo anything else. Multiplication is subtler. Note: the number 6 is not
a prime, but 7 is.

Hint 15. If the underlying set has only two elements, then the answer is
no.

Hint 16. Use both distributive laws.

Hint 17. In the proofs of the equations the distributive law must enter
directly or indirectly; if not there’s something wrong. The non-equations
are different: one of them is true because that’s how language is used, and
the other is not always true.

Hint 18. Think about the integers modulo 5.
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Hint 19. The answer is yes, but the proof is not obvious. One way to do it
is by brute force; experiment with various possible ways of defining + and
x, and don’t stop till the result is a field.

A more intelligent and more illuminating way is to think about polyno-
mials instead of integers. That is: study the set P of all polynomials with co-
efficients in a field of two elements, and “reduce” that set “modulo” some
particular polynomial, the same way as the set Z of integers is reduced
modulo a prime number p to yield the field Z,. If the coefficient field is
taken to be Q and the modulus is taken to be 22 — 2, the result of the pro-
cess is (except for notation) the field Q(+/2). If the coefficient field is taken
to be Z> and the modulus is taken to be an appropriately chosen polyno-
mial of degree 2, the result is a field with four elements. Similar techniques
work for 8, 16,32, ...and 9, 27, 81, ..., etc.

Chapter 2. Vectors

Hint 20. The 0 element of any additive group is characterized by the fact
that 0 4+ 0 = 0. How can it happen that az = 0? Related question worth
asking: how can it happen that az = z?

Hint21. (1) The scalar distributive law; (2) the scalar identity law; (3) the
vector distributive law; (4) none; (5) the associative law; (6) none.

Hint 22. Can you solve two equations in two unknowns?
Hint 23. (a): (1), (2), and (4); (b): (2) and (4).

Hint 24. (a) Always. (b) In trivial cases only. Draw pictures. Don’t forget
finite fields. If it were known that a vector space over an infinite field cannot
be the union of any two of its proper subspaces, would it follow that it
cannot be the union of any finite number? In any event: whenever M; and
M are subspaces, try to find a vector z in M; but not in M, and a vector
y not in M, and consider the line through y parallel to z.

Hint25. (a) Can it be done so that no vector in either set is a scalar multi-
ple of a vector in the other set? (b) Can you solve three equations in three
unknowns?

Hint 26. Is it true that if z is a linear combination of ¥ and something in
M, then y is a linear combination of z and something in M?
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Hint 27. (a) No; that’s easy. (b) Yes; that’s very easy. (c) No; and that
takes some doing, or else previous acquaintance with the subject. (d) Yes;
and all it requires is the definition, and minimum acquaintance with the
concept of polynomial.

The reader should be aware that the problem was phrased in incorrect
but commonly accepted mathematese. Since “span” is a way to associate a
subspace of V with each subset of V, the correct phrasing of (a) is: “is there
a singleton that spans R??” Vectors alone, or even together with others (as
in (b) and (c)), don’t span subspaces; spanning is done by sets of vectors.
The colloquialism does no harm so long as its precise meaning is not for-
gotten.

Hint 28. Note that since L. N (L. N N) = L N N, the equation is a special
case of the distributive law. The answer to the question is yes. The harder
half to prove is that the left side is included in the right. Essential step:
subtract.

Hint 29. Look at pictures in R?.
Hint 30. No.

Hint 31. Just look for the correct term to transpose from one side of the
given equation to the other.

Hint 32. Use Problem 31.

Chapter 3. Bases
Hint 33. Examine the case in which E consists of a single vector.

Hint 34. It is an elementary fact that if M is an m-dimensional subspace
of an n-dimensional vector space V, then every complement of M has di-
mension n — m. It follows that if several subspaces of V have a simulta-
neous complement, then they all have the same dimension. Problem 24 is
relevant.

Hint 35. (a) Irrational? (b) Zero?

Hint 36. /2?
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Hint37. (a)a—/3?(b) Noroom. Keep in mind that the natural coefficient
field for C2is C.

Hint 38. Why not? One way to answer (a) is to consider two independent
vectors each of which is independent of (1, 1). One way to answer (b) is to
adjoin (0,0, 1,0) and (0,0, 1, 1) to the first two vectors and (1,0, 0, 0) and
(1,1,0,0) to the second two.

Hint 39. (a) Too much room. (b) Are there any?

Hint 40. How many vectors can there be in a maximal linearly indepen-
dent set?

Hint41. What information about V™! does a basis of V give?
Hint 42. Can a basis for a proper subspace span the whole space?

Hint 43. Use Problems 32 and 33. Don’t forget to worry about indepen-
dence as well as totality.

Hint 44. Given a subspace, look for an independent set in it that is as
large as possible.

Hint 45. Note that finite-dimensionality was not explicitly assumed. Re-
call that a possibly infinite set is called dependent exactly when it has a finite
subset that is dependent. Contrariwise, a set is independent if every finite
subset of it is independent. As for the answer, all it needs is the definitions
of the two concepts that enter.

Hint 46. It is tempting to apply a downward induction argument, possibly
infinite. People who know about Zorn’s lemma might be tempted to use
it, but the temptation is not likely to lead to a good result. A better way to
settle the question is to use Problem 45.

Hint47. Omit one vector, express it as a linear combination of remaining
vectors, and then omit a new vector different from all the ones used so far.

Hint 48. A few seconds of geometric contemplation will reveal a rela-
tively independent subset of R? consisting of 5 vectors (which is n + 2 in
this case). If, however, F is the field Z, of integers modulo 2, then a few
seconds of computation will show that no relatively independent subset of
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IF3 can contain more than 4 vectors. Why is that? What is the big difference
between F and R that is at work here?
Having thought about that question, proceed to use induction.

Hint49. A slightly modified question seems to be easier to approach: how
many ordered bases are there? For the answer, consider one after another
questions such as these: how many ways are there of picking the first vector
of a basis?; once the first vector has been picked, how many ways are there
of picking the second vector?; etc.

Hint 50. The answer is n + m.

Hint 51. There is a sense in which the required constructions are trivial:
no matter what V is, let M be O and let N be V. In that case V/M is the same
as V and V/N is a vector space with only one element, so that, except for
notation, it is the same as the vector space Q. If V was infinite-dimensional
to begin with, then this construction provides trivial affirmative answers to
both parts of the problem. Many non-trivial examples exist; to find one,
consider the vector space P of polynomials (over, say, the field R of real
numbers).

Hint 52. The answer is n — m. Start with a basis of M, extend it to a basis
of V, and use the result to construct a basis of V/M.

Hint 53. If M and N are finite subsets of a set, what relation, if any,
is always true among the numbers card M, card N, card(M U N), and
card(M N N)?

Chapter 4. Transformations

Hint 54. Squaring scalars is harmless; trying to square vectors or their
parts is what interferes with linearity.

Hint 55. (1) Every linear functional except one has the same range.

(2) Compare this change of variables with the one in Problem 54
(1(b)).

(3) How many vectors does the range contain?

(4) Compare this transformation with the squaring in Problem 54
2 (b))

(5) How does this weird vector space differ from R!?
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Hint 56. (1) What do you know about a function if you know that its
indefinite integral is identically 0?

(2) What do you know about a function if you know that its derivative
is identically 0?

(3) Solve two “homogeneous” equations in two unknowns. ("Homo-
geneous” means that the right sides are 0.)

(4) When is a polynomial 0?

(5) What happens to the coordinate axes?

(6) This is an old friend.

Hint 57. (1) What could possibly go wrong?

(2) Neither transformation goes from R? to R3.

(3) What happens when both S and T are applied to the constant poly-
nomial 1? What about the polynomial z?

(4) Do both products make sense?

(5) What happens when both S and T are applied to the constant poly-
nomial 1? What about the polynomial z? What about z2?

(6) There is nothing to do but honest labor.

Hint 58. Consider complements: for left divisibility, consider a comple-
ment of ker B, and for right divisibility consider a complement of ran B.

Hint 59. (1) If the result of applying a linear transformation to each vec-
tor in a total set is known, then the entire linear transformation is known.
(2) How many powers does A have?
(3) What is A%z?
Hint 60. Make heavy use of the linearity of T
Hint 61. (1) What is the kernel? (2) What is 727 (3) What is the range?

Hint 62. Choose the entries () and () closely related to the entries ()
and (8).

Hint 63. Direct sum, equal rows, and similarity.

Hint64. The “conjecturable” answer is too modest; many of the 0’s below
the diagonal can be replaced by 1’s without losing invertibility.

Hint 65. Start with a basis of non-invertible elements and make them
invertible.
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Hint 66. To say that a linear transformation sends some independent set
onto a dependent set is in effect the same as saying that it sends some non-
zero vector onto 0.

Hint 67. If the dimension is 2, then there is only one non-trivial permu-
tation to consider.

Hint 68. There is nothing to do but use the general formula for matrix
multiplication. It might help to try the 2 x 2 case first.

Hint 69. Look at diagonal matrices.
Hint 70. Yes.

Hint 71. Consider differentiation.

Hint 72. If E is a projection, what is £2?
Hint 73. Multiply them.

Hint 74. No and no. Don’t forget to ask and answer some other natural
questions in this neighborhood.

Chapter 5. Duality

Hint 75. If there were such a scalar, would it be uniquely determined by
the prescribed linear functionals £ and 5?

Hint 76. Use a basis of V to construct a basis of V’.

Hint 77. This is very easy; just ask what information the hypothesis gives
about the kernel of T

Hint 78. Does it help to assume that V is finite-dimensional?

Hint79. IfVisR5 and Mis the set of all vectors of the form (&1, &2, €3, 0, 0),
what is the annihilator of M?

Hint 80. What are their dimensions?
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Hint 81. Surely there is only one sanely guessable answer.
Hint 82. Can kernels and ranges be used?

Hint 83. There is no help for it: compute with subscripts.

Chapter 6. Similarity

Hint 84. How does one go from z to y?

Hint 85. How does one go from 7 to £?

Hint 86. Transform from the z’s to the y’s, as before.

Hint 87. Use, once again, the transformation that takes one basis to the
other, but this time in matrix form.

Hint 88. If one of B and C is invertible, the answer is yes.

Hint 89. Think about real and imaginary parts. That can solve the prob-
lem, but if elementary divisor theory is an accessible tool, think about it:
the insight will be both less computational and more deep.

Hint 90. Extend a basis of ker A to a basis of the whole space.

Hint 91. Yes.

Hint 92. Look first at the case in which 3y # 0.

Hint 93. The first question should be about the relation between ranges
and sums.

Hint 94. The easy relation is between the rank of a product and the rank
of its first factor; how can information about that be used to get informa-
tion about the second factor?

Hint 95. The best relation involves null A + null B.

Hint 96. For numerical calculations the geometric definition of similarity
is easier to use than the algebraic one.
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Hint 97. There are two pairs of bases, and, consequently, it is reasonable
to expect that two transformations will appear, one for each pair.

Hint 98. Even though the focus is on the dimensions of ranges, it might
be wise to begin by looking at the dimensions of kernels.

Chapter 7. Canonical Forms

Hint 99. If A is a linear transformation, is there a connection between
the eigenvalues of A and A?? \
Hint 100. The answer is no. Can you tell by looking at a polynomial equa-
tion what the sum and the product of the roots has to be?

Hint 101. This is not easy. Reduce the problem to the consideration1 of
A = 1, and then ask whether the classical infinite series formula for 7

suggests anything,

Hint 102. What about monomials?

Hint 103. )3 =1.

Hint 104. If u is an eigenvalue of A, consider the polynomial p()) — p.
Hint 105. What are the eigenvalues?

Hint 106. What does the assumption imply about eigenvectors?

Hint 107. No.

Hint 108. Look for the triangular forms that are nearest to diagonal ones
—that is the ones for which as many as possible of the entries above the
diagonal are equal to 0.

Hint 109. Think about complex numbers.

=

Hint 110. What can the blocks in a triangularization of A look like?

B S g5 S AN

USRI S
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Hint 111.  The answer depends on the dimension of the space and on the
index of nilpotence; which plays the bigger role?

Hint 112. The answer depends on size; look at matrices of size 2 and
matrices of size 3.

Hint 113. Examine what M does to a general vector (a, 3,7, 6, ¢) and
then force the issue.

Hint 114. Don’t get discouraged by minor setbacks. A possible approach
is to focus on the case A = 1, and use the power series expansion of /1 + <.

Hint 115. Use eigenvalues—they are more interesting. Matrices, how-
ever, are quicker here.

Hint 116. What turns out to be relevant is the Chinese Remainder The-
orem. The version of that theorem in elementary number theory says that
if z,...,z, are integers, pairwise relatively prime, and if y, ... »Yn are
arbitrary integers, then there exists an integer z such that

z; =y; mod 2

for j = 1,...,n. A more sophisticated algebraic version of the theorem
has to do with sets of pairwise relatively prime ideals in arbitrary rings,
which might not be commutative. The issue at hand is a special case of
that algebraic theorem, but it can be proved directly. The ideals that enter
are the annihilators (in the ring of all complex polynomials) of the given
linear transformations.

Chapter 8. Inner Product Spaces

Hint 117. Form the inner product of a linear dependence relation with
any one of its terms.

Hint 118. Is there an expression for (z, y) in terms of z and y and norms
—one that involves no inner products such as (u, v) with u # v?

Hint 119. Examine both real and complex vector spaces.

Hint 120. Always.
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Hint 121. Keep enlarging.
Hint 122. Evaluate the norms of linear combinations of z and y.

Hint 123. How close does an arbitrary vector in V come to a linear com-
bination of an orthonormal basis for M?

Hint 124. Look at ker™ ¢£.

Hint125. (a) By definition (U*v,w) = (v, Uw); there is no help for it but
to compute with that. (b) Yes. (c) Look at the image under U of the graph
of A.

Hint 126. Some of the answers are yes and some are no, but there is only
one (namely (d)) that might cause some head scratching.

Hint 127. Is something like polarization relevant?
Hint 128. Always?

Hint 129. Only (c) requires more than a brief moment’s thought; there
are several cases to look at.

Hint 130. Problem 127 is relevant.

Hint 131. The easy ones are (a) and (b); the slightly less easy but straight-
forward ones are (c) and (d). The only one that requires a little thought is
(e); don’t forget that a must be real for the question to make sense.

Hint 132. The answer is short, but a trick is needed.

Hint 133. What is the adjoint of a perpendicular projection?

Hint 134. A little computation never hurts.

Hint135. IfE < Fandzisinran E, evaluate ||z—Fz||. Ifran E C ran F,
then EF = E.

Hint 136. Is the product of two perpendicular projections always a per-
pendicular projection?
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Hint 137. Quadratic forms are relevant.

Hint 138. If Az; = \jz; and Az, = A\ox2, examine (z,, T3).

Chapter 9. Normality

Hint 139. Is the dimension of the underlying vector space finite or infi-
nite? Is U necessarily either injective or surjective?

Hint 140. Can “unitary” be said in matrix langnage?

Hint 141. The question is whether any of the three conditions implies any
of the others, and whether any two imply the third.

Hint 142. Must they be diagonal?

Hint 143. Look at the eigenspaces corresponding to the distinct eigen-
values.

Hint 144. Diagonalize.

Hint 145, Assume the answer and think backward. The invertible case is
easier.

Hint 146, Imitate the Hermitian proof.

Hint 147. Imitate the Hermitian proof.

Hint 148. 1It’s a good idea to use the spectral theorem.

Hint 149. Use Solution 148.

Hint 150. Assuming that AS = SB, with both A and B normal, use the
linear transformations A, B, and S, as entries in 2 x 2 matrices, so as to be
able to apply the adjoint commutativity theorem.

Hint 151. Put C = B(A*A) — (A* A)B and study the trace of C*C.

Hint 152. (a) Consider triangular matrices. (b) Consider the Hamilton-
Cayley equation.
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Hint 153. Use square roots.
Hint 154. The two answers are different.

Hint 155. Some do and some don’t; the emphasis is on necessarily. For

some of the ones that don’t, counterexamples of size 2 are not large enough.

Hint 156. How many eigenvectors are there? More generally, how many
invariant subspaces of dimension k are there, 0 £ k < n?

Hint 157. What’s the relation between A and the matrix
0 0 1 }
00 0]?
0 00

Hint 158. Consider the polar decomposition of a transformation that af-
fects the similarity; a natural candidate for a unitary transformation that
affects the equivalence is its unitary factor. Don’t be surprised if the argu-
ment wants to lean on the facts about adjoint intertwining (Solution 150).

Hint 159. Most people find it difficult to make the right guess about this
question when they first encounter it. The answer turns out to be no, but
even knowing that does not make it easy to find a counterexample, and,
having found one, to prove that it works. One counterexample is a 3 x 3
nilpotent matrix, and one way to prove that it works is to compute.

Hint 160. Solution 89 describes a way of passing from complex similarity
to real similarity, and Solution 158 shows how to go from (real or complex)
similarity to (real or complex) unitary equivalence. The trouble is that So-
lution 158 needs the adjoint intertwining theorem (Solution 150), which
must assume that the given transformations are normal. Is the assumed
unitary equivalence sufficiently stronger than similarity to imply at least a
special case of the intertwining theorem that can be used here?

Hint 161. Look at the Jordan form of A.
Hint 162. Is a modification of the argument of Solution 161 usable?

Hint 163. If A is nilpotent of index 2, examine subspaces of the form
N + AN, where N is a subspace of ker A*.

HINTS: Chapter 9 183

Hint 164. The most obvious nilpotent transformation on C* is the trun-
cated shift (see Problem 156), but that has index 4. It’s tempting to look
at its square, but that has index 2. What along these lines can be done to
produce nilpotence of index 3?



SOLUTIONS

Chapter 1. Scalars

Solution 1.
The associative law for expressed in terms of + looks like this:

2(20 + 28) + 2y = 2a + 2(26 + 2v),

which comes to

doa+48+ 2y =20+ 406 + 4y. (*)
That can be true, but it doesn’t have to be; it is true if and only if & = +.

If, for instance, o = 8 = 0 and v = 1, then the desired equation becomes
the falsehood

0+0+2=0+0+4. (x%)
Conclusion: the associative law for is false.
Comment. Does everyone agree that an alphabetical counterexample

(such as (x)) is neither psychologically nor logically as convincing as a num-
erical one (such as (xx))?
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Solution 2.
The associative law for is false. The equation

o[+ (8[H]) = («[H]8) [+
says that
2a+ (26 +7) =2(2a+ B) + 7,

which is true if and only if & = 0. If, for instance,a = land § = v = 0,
then the desired equation becomes the falsehood

24 (040) =2(2+0) +0.

Solution 3.

For both commutativity and associativity it is harder to find instances where
they hold than instances where they don’t. Thus, for instance,

(@) = o

istrueonlyif @ = 1,ory = 1, or 8 = v = 2. If, in particular, a = v = 2
and 8 = 1, then it is false. Exponentiation is neither commutative nor
associative.

Solution 4.

Both answers are yes, and one way to prove them is to compute. Since

(7, 6) [1{a, B) = (ya — 68,78 + ba),

the commutativity of [] is a consequence of the commutativity of the or-
dinary multiplication of real numbers.
The computation for associativity needs more symbols:

({0, BY[1 (7, 6)) L) e, )
= ((ay — B)e — (a6 + B)p, (ay — Bb)p + (ab + By)e)

and

(a, B [1{{7, 6) (1 (8¢, 0))
= {a(ye — 8p) — B(yyp + 6¢), alvp + 8e) + B(ve — b))
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By virtue of the associativity of the ordinary multiplication of real numbers
the same eight triple products, with the same signs, occur in the right-hand
sides of both these equations.

For people who know about complex numbers and know that for them
both addition and multiplication are both commutative and associative,
Problem 4 takes just as little work as the paragraph that introduced it. In-
deed: if (o, 8) is thought of as o + B¢ then and [] become “ordi-
nary” complex addition and multiplication, and after that insight nothing
remains to be done.

Solution 5.

Straightforward computation shows that the equation

(av ﬁ) [ (71 6) = <'7a 6) ] (0!, ﬁ>

is a severe condition that is quite unlikely to be satisfied. An explicit coun-
terexample is given by

<17 1) E! (29 1) = (2) 2)

and

2,1HE0,1)=(@2,3).

The associativity story is quite different; there straightforward com-
putation shows that it is always true. This way of multiplying pairs of real
numbers is not a weird invention; it arises in a natural classical context. An
affine transformation of the real line is a mapping S defined for each real
number ¢ by an equation of the form S(¢) = af + 3, where a and 3 them-
selves are fixed preassigned real numbers. If T is another such mapping,
T(&) = ~€ + 6, then the composition ST (for the purist: S o T') is given by

(ST)(€) = S(¥ +6) = a(vE + 8) + B = (a7)§ + (b + J).

In other words, the product ST of the transformations corresponding
to

{(B) and (7,9

is exactly the transformation corresponding to («, 3) [] (, 6). Since the
operation of composing transformations is always associative, the associa-
tivity of [] can be inferred with no further computation.

Is that all right? Is the associativity of functional composition accepted?
If it is not accepted, it can be proved as follows. Suppose that R, S, and T’
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are mappings of a set into itself, and write P = RS, Q = ST. Then, for
each z in the domain,

((RS)T)(z) = (PT)(z) = P(T(z)) [by the definition of PT]

= (RS)(T(z)) = R(S(T(m))) [by the definition of RS].
whereas
(R(ST))(z) = (RQ)(z) = R(Q(z)) [by the definition of RQ]

= R((ST)(2)) = R(S(T(a))) by the definition of ST].

Since the last terms of these two chains of equations are equal, the first
ones must be also.

Solution 6.

In view of the comment about Problem 5 being a special case, it follows
immediately that the present [-] is not commutative. To get a counterex-
ample, take any two pairs that do not commute for the [7] of Problem
5 and use each of them as the beginning of a quadruple whose last two
coordinates are 0 and 1. Concretely:

(1,1,0,1) - (2,1,0,1) = (2,2,0,1)

and

(2,1,0,1) - (1,1,0,1) = (2,3,0,1).

Associativity is harder. It was true for Problem 5 and it might con-
ceivably have become false when the domain was enlarged for Problem 6.
There is no help for it but to compute; the result is that the associative law
is true here.

For those who know about the associativity of multiplication for
2 x 2 matrices no computation is necessary; just note that if a quadruple

(o, B,, 6) is written as
a 3
v 8)°

then the present product coincides with the ordinary matrix product.

Solution 7.

'ljhe worst way to solve the problem is to say that there are only 36 (six times
six) possible ordered pairs and only 216 (six times six times six) possible
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ordered triples that can be formed with 0, 1, 2, 3, 4, 5—in principle the
commutativity and associativity questions can be decided by examining all
of them.

A better way, for commutativity for instance, is to note that if each of
a and g is one of the numbers 0, 1, 2, 3, 4, 5, and if the largest multiple of 6
that doesn’t exceed their ordinary product is, say, 60, so that a8 = v + 60,
where v is one of the numbers 0, 1, 2, 3, 4, 5, then, because ordinary multi-
plication is commutative, the same conclusion holds for Sa. Consequence:

al]B=7

and

Blla=1.
The reasoning to prove associativity works similarly—the language and the
notation have to be chosen with care but there are no traps and no diffi-
culties.
The intellectually most rewarding way is to use the hint. If m and n
are non-negative integers, then each of them is one of the numbers 0, 1,
2, 3, 4, 5 plus a multiple of 6 (possibly the zero multiple). Establish some
notation: say 7(m) = c plus a multiple of 6, and r(n) = £ plus a multiple
of 6. (The reason for “7” is to be reminded of “reduce”.) Consequence:
when mn and af are reduced modulo 6 they yield the same result. (Think
about this step for a minute.) Conclusion:

r(mn) =r(m)[r(n),

as the hint promised.

This was work, but it uses a standard technique in algebra (it’s called
homomorphism and it will be studied systematically later), and it pays off.
Suppose, for instance, that each of o, 3, and v is one of 0, 1, 2, 3, 4, 5, so
that r(a) = o and r(8) = B, r(7) = 7. The proof of the associative law
can be arranged as follows:

(@B B = () r(B)dr()
=r(aB)[r(y) [by the preceding paragraph]
=r((aB)y) [ditto]
=r(a(By)) [because ordinary multiplication is associative]
=r(a) Ar(B) = (@) D (r(B) (7))
=a[J(8[7)

—the last three equalities just unwind what the first three wound up.
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An important difference between the modular arithmetic of 6 and 7
will become visible later, but for most of the theory they act the same way,
and that is true, in particular, as far as commutativity and associativity are
concerned.

Solution 8.

The answer may or may not be easy to guess, but once it’s correctly guessed
it’s easy to prove. The answer is yes, and anyone who believes that and sets
out to construct an example is bound to succeed.

Call the three elements for which multiplication is to be defined o, 3,
and +; the problem is to construct a multiplication table that is commuta-
tive but not associative.

Question: what does commutativity say about the table? Answer: sym-
metry about the principal diagonal (top left to bottom right). That is: if the
entry in row o and column j is, say, -, then the entry in row 8 and column
« must also be .

How can associativity be avoided? How, for instance, can it be guar-
anteed that

(axB)xy#ax(Bx9)?

Possible approach: make a x 3 = v and 8 x v = a; then the associative
law will surely fail if ¥ x v and a x « are different. That’s easy enough to
achieve and the following table is one way to do it:

™ QX

«
«a
v

R |®
R WX

Y| B8 a v

Here, for what it’s worth, is a verbal description of this multiplication:
the product of two distinct factors is the third element of the set, and the
product of any element with itself is that element again.

This is not the only possible solution of the problem, but it’s one that
has an amusing relation to the double addition in Problem 1. Indeed, if
the notation is changed so as to replace a by 0, 3 by 2, and + by 1, then the
present x satisfies the equation

a X =20+ 28,

where the plus sign on the right-hand side denotes addition modulo 3.
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Solution 9.

(1) How could a real number £ be an identity element for double addition?
That is, can it be that

20+ 2 =«

for all o? Clearly not: the equation holds only when a = —2¢, so that, in
particular, it does not hold when o =1and e = 0.

(2) The answer is slightly different for half double addition. It is still
true that for no ¢ does

20+e=a

hold for all e, but since this operation is not commutative at least a glance
at the other order is called for. Could it be, for some ¢, that

2eta=a

for all a? Sure: just put ¢ = 0. That is: half double addition has no right
identity element but it does have a left identity.

(3) Exponentiation behaves similarly but backward. There is a right
identity, namely 1 (o' = a for all &), but there is no left identity (¢* = o
for all « is impossible no matter what ¢ is).

(4) The ordered pair (1, 0) (or, if preferred, the complex number 1 +
0 - ¢) is an identity for complex multiplication (both left and right, since
multiplication is commutative).

(5) The ordered pair (1, 0) does the job again, but this time, since mul-
tiplication is not commutative, the pertinent equations have to be checked
both ways:

<a1 ﬂ) X <1a0) = <a7,8>
and

(1,0) x (a, B) = (o, B).
Equivalently: the identity mapping I, defined by I(a) = a, is an affine
transformation that is both a right and a left unit for functional composi-
tion. That is: if S is an affine transformation, then

ToS=8So0lI=25.

(6) The quadruple (1,0,0,1) is a unit for matrix multiplication (both
left and right), or, if preferred, the identity matrix

(6 7)

is an identity element.
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Since complex multiplication and and affine multiplication are known
to be special cases of matrix multiplication (see Problem 6), it should come
as no surprise to learn that the identity elements described in (4) and (5)
above are special cases of the one described in (6).

(7) Modular addition and multiplication cause the least trouble: 0 does
the job for +, and 1 does it for x.

Solution 10.

Given o and 3, can one find v and § so that the product of (a,3) and
{,6) is (1,0)? The problem reduces to the solution of two equations in
the unknowns ~ and é:

ay—p6=1,
ab+ Py =0.

The standard elementary techniques for doing that yield an answer in every
case, provided only that

a2+,325£01

or in other words (since a and 3 are real numbers) provided only that not
both a and 3 are 0.
Alternatively: since in the customary complex notation

1 a—Bi _ e i
a+pBi (a+Bi)a-Bi) o2+p2 o +62

it follows that (e, §) is invertible if and only if o2 + 32 # 0, and, if that
condition is satisfied, then

) -8
@0 = (g i)

Solution 11.

The equations to be solved are almost trivial in this case. The problem is,
given (a, B8}, to find (v, §) so that

ay=1 and ab+5=0.

The first equation has a solution if and only if o # 0, and, if that is so, then
the second equation is solvable also. Conclusion: (a, 3) is invertible if and
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only if a # 0, and, if so, then

@8 =(3.-2).

a4 «

Caution: this multiplication is not commutative, and the preceding
computation guarantees a right inverse only. Does it work on the left too?

Check it:
1 B _ 1 1 Jo]
<—,——> x {a, ) = <(—) a,—0— —>.

Solution 12.

It is time to abandon the quadruple notation and the symbol x; from now

write
a
(7 5)

instead of (e, 3, v, 6) and indicate multiplication by juxtaposition (placing
the two symbols next to one another) instead of by x. The problem is, given

a matrix
a
¥y 6)°

to determine whether or not there exists a matrix

al ﬂl

(,yl 6'
a f o By (10
(55 5)-61)

What is asked for is a solution of four equations in four unknowns. The
standard solution techniques are easy enough to apply, but they are, of
course, rather boring. There is no help for it, for the present; an elegant
general context into which all this fits will become visible only after some of

such that

a
the theory of linear algebra becomes known. The answer is that ( N g)
is invertible if and only if a8 — B # 0, and, if that is so, then

(5 0)-( 8 =(= 22)

- o
7, 6, v 6 y ab— B’Y

12
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Readers reluctant to derive the result stand to gain something by at least
checking it, that is by carrying out the two multiplications

525G )
vy 6 "/I &
o 5 a B
(7’ 6’)(7 6)’

and noting that they yield the same answer, namely
10
0 1)

Comment. The present result applies, in particular, to the special matri-

Q

and

o . .
ces (_ 3 g ) , which are, except for notation, the same as the complex

numbers discussed in Problem 4. It follows that such a special matrix is
invertible if and only if o — B(—f3) # O—which is of course the same
condition as a? + 2 # 0. (The awkward form is intended to serve as a
reminder of how it arose this time.) If that condition is satisfied, then the

04

o? 52 LR
and that is exactly the matrix that corresponds to the complex number

a -
<C¥2 +ﬁ2’ a2+ﬂ2) ’

in perfect harmony with Solution 10.
a B
01
transformations (o, 5) discussed in Problem 5. According to the present
result such a special matrix is invertible if and only if - 1 — 8- 0 # 0, and
in that case the inverse is (2, —g), in perfect harmony with Solution 11.

It is a consequence of these comments that not only is Problem 6 a
generalization of Problems 4 and 5, but, correspondingly, Solution 12 has
Solutions 10 and 11 as special cases.

Similarly the special matrices are the same as the affine

Solution 13.

(2) The verification that min is both commutative and associative is straight-
forward. If anything goes wrong, it must have to do with the existence of a
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neutral element, an identity element, that plays the role of 0. The question
is this: does there exist a positive real number z such that

min(z, z) =z

for every positive real number z? The equation demands that z be greater
than or equal to every positive real number z—in other words that z be
“the largest real number”. That’s nonsense—there is no such thing; the
present candidate fails to be a group.

(b) The verification of commutativity and associativity is easy again.
The search for 0 this time amounts to the search for a number z in the set
{1,2,3,4,5} with the property that

max(z,z) =z

for every number z in the set. The equation demands that z be less than or
equal to every positive integer between 1 and 5, and that’s easy; the number
1 does the job. It remains to look for inverses. Given z, can we find y so
that max(z,y) = 1? No—that’s impossible—the equation can never be
satisfied unless ¢ = y = 1.

(c) Given that = + y = y, add (—y) to both sides of the equation. The
right side becomes 0, and the left side becomes

+y)+(-y)=z+@W+(-y)=z+0=g=,

and, consequently, z = 0.

Comment. 'What went wrong in (a) was caused by the non-existence of a
largest positive real number. What happens if R, is replaced by a bounded
set of positive real numbers, such as the closed unit interval [0, 1]? Does
the operation min produce a group then? Commutativity, associativity, and
the existence of a zero element are satisfied (the role of 0 being played by
1); the question is about inverses. Is it true that to every number z in [0, 1]
there corresponds a number y in [0, 1] such that min(z,y) = 1? Certainly
not; that can happen only if z = 1.

Does the argument for (c) use the commutativity of +? Associativity?
Both the defining properties of 0?

Solution 14.

The set of those affine transformations

E—af+p

14
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(discussed in Problem 5) for which a # 0 does not have the first of the
defining properties of abelian groups (commutativity), but it has all the
others (the associative law, the existence of an identity element, and the
existence of an inverse for every element)—see Problem 11; it is a group.

The set of invertible 2 x 2 matrices is not commutative, but has the
other properties of abelian groups (see Problem 12); it is a group.

The product 2 x 3 is equal to 0 modulo 6. That is: multiplication mod-
ulo 6 is not defined in the domain in question, or, in other words, the set
{1,2,3,4,5} is not closed under the operation. Conclusion: the non-zero
integers modulo 6 do not form a multiplicative group.

If o is any one of the numbers 1, 2, 3, 4, 5, 6 what can be said about
the numbers

axl,ax2, ax3, ax4, axd axb6

(multiplication modulo 7)? First answer: none of them is 0 (modulo 7).
(Why? This is important, and it requires a moment’s thought.) Second (as
a consequence of the first): they are all different. (Why?) Third (as a conse-
quence of the second): except possibly for the order in which they appear,
they are the same as the numbers 1, 2, 3, 4, 5, 6, and therefore, in particu-
lar, one of them is 1. That is: for each number « there is a number 8 such
that a x # = 1: this is exactly the assertion that every o has a multiplicative
inverse. Conclusion: the non-zero integers modulo 7 form a multiplicative

group.

Solution 15.

If there are only two distinct elements, an identity element 1 and another
one, say a, then the “multiplication table” for the operation looks like

0 1 «
1 1
al|la ?

If the question mark is replaced by 1, the operation is associative; if it is
replaced by a, then the element o has no inverse. Conclusion: two elements
are not enough to provide a counterexample.
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If there are three distinct elements, an identity 1, and two others, «
and (3, then there is more elbow room, and, for instance, one possibility is

| 1 a §
111 a B
ala z 1
glB 1 y

No matter what z and y are (among 1, c, and 3) the operation that the
table defines has an identity and every element has an inverse. If z = B
and y = o, the result is associative, so that it does not serve as an example
of the sort of thing wanted. If, however, z = a, then

(a@)f=aBf =1

and
a(af) =al = q,

so that the operation is not associative (and the same desired negative con-
clusion follows if y = ).

Solution 16.

Yes, everything is fine, multiplication in a field must be commutative, and,
in particular, 0-z = x -0 = 0 for every z, but it’s a good idea to look at the
sort of thing that can go wrong if not both distributive laws are assumed.
Question: if F is an abelian group with +, and if F* is an abelian group with
X, and if the distributive law

a(z+y)=azr+ay

is true for all a, = and y, does it follow that multiplication in F is commu-
tative? Answer: no. Here is an artificial but illuminating example.

Let F be the set of two integers 0 and 1 with addition defined modulo
2, and with multiplication defined so that z - 0 = 0 for all (that is, for
z = 0andforz = 1) and z - 1 = 1 for all z. (Recall that in addition
modulo 12 multiples of 12 are discarded; in addition modulo 2 multiples
of 2 are discarded. The only thing peculiar about addition modulo 2 is that
1+1 = 0.) Itis clear that F with + is an abelian group, and it is even clearer
that F* (which consists of the single element 1) with x is an abelian group.
The distributive law

a(z+y)=ar+ay

16
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is true; to prove it, just examine the small finite number of possible cases.
On the other hand the distributive law

(a+ B =az+ Pz
is not true; indeed
0+1)-1=1
and
0-1+1-1=14+1=0.

Irrelevant side remark: the associative law a(8y) = (a8)7y is true—
straightforward verification. The commutative law is false, by definition:
0-1=1and1-0=0.

If, however, both distributive laws are assumed, in other words, if the
system under consideration is a bona fide field, then all is well. Indeed,
since

O0+lz=0-z+1.-z
for all z, and since the left side of this equation is = whereas the right side
is
0-z+ux,
it follows (from Problem 1) that
0-2=0
for all z. A similar use of the other distributive law,
z0+1)=z-0+2z-1,
implies that
z-0=0

for all z. In other words, every product that contains 0 as a factor is equal
to 0, and that implies everything that’s wanted, and it implies, in particular,
that multiplication is both associative and commutative.

Solution 17.

(a) It is to be proved that 0 x « acts the way 0 does, so that what must be
shown is that 0 x o added to any B yields 8. It must in particular be true that
(0 x @) + a = a (= 0 + @), and, in fact, that’s enough: if that is true then
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the additive cancellation law implies that 0 x a = 0. The proof therefore
can be settled by the following steps:

Oxa)+a=(0xa)+(1xa) (becausel isthe multiplicative unit)
=(0+1) x o (by the distributive law)
=1xa (because 0 is the additive unit)
= .
(b) It is to be proved that (—1)« acts the way —a does, so that what
must be shown is that o + (—1)a = 0. Proof:
at+(-la=(1xa)+ ((-1)xa)=(1+(-1)) xa=0xa=0.

(c) It helps to know “half” of the asserted equation, namely

(—a)B = —(aB),
and the other, similar, half

a(~B) = —(af).
The first half is true because
aff+ (—a)8 = (a+ (—a))B (distributive law)
=0x8=0,
which shows that (—a)g indeed acts just the way —(a3) is supposed to.

The other half is proved similarly. The proof of the main assertion is now
an easy two step deduction:

(—a)(=B) = —(a(-B)) = —(~(aB)) = ap.

(d) This is not always true. Counterexample: integers modulo 2. (See
Problem 18.)

(e) By definition the non-zero elements of F constitute a multiplicative
group, which says, in particular, that the product of two of them is again
one of them.

Solution 18. 18

The answer is yes. The example illustrates the possible failure of the dis-
tributive law and hence emphasizes the essential role of that law.

Let F be {0,1,2, 3,4}, with + being addition modulo 5 and x, being
multiplication modulo 5. In this case all is well; (F, +, x1) is a field.
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An efficient way of defining a suitable x is by a multiplication table,
as follows:

x2 |0 1 2 3 4
0 6 0 0 O O
1 0 1 2 38 4
2 0 2 1 4 3
3 0 3 4 1 2
4 [0 4 3 2 1

A verbal description of the multiplication of the elements 2, 3, and 4 is
this: the product of two distinct ones among them is the third. Compare
Problem 8. The distributive law does indeed break down:

2X2(3+4)=2x%x22=1,

but

Comment. This is far from the only solution. To get another one, let F
be {0, 1} with + being addition and x, being multiplication modulo 2; in
this case (F, +, x1) is a field. If, on the other hand, x is defined by the
ridiculous equation
a Xg ﬂ =1
for all o and S, then
1x;(1+1)=1
but

(Ix21)+(1x21)=1+1=0.

Solution 19.

The answer is yes, there does exist a field with four elements, but the proof
is not obvious. An intelligent and illuminating approach is to study the
set P of all polynomials with coefficients in a field and “reduce” that set
“modulo” some particular polynomial, the same way as the set Z of integers
is reduced modulo a prime number p to yield the field Z,.
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Logically, the right coefficient field to start with for the purpose at
hand is Z, but to get used to the procedure it is wise to begin with a more
familiar situation, which is not directly relevant.

Let P be the set of all polynomials with coefficients in the field Q of
rational numbers, and let p be the particular polynomial defined by

p(x) =z - 2.

Important observation: the polynomial p is irreducible. That means non-
factorable, or, more precisely, it means that if p is the product of two poly-
nomials with coefficients in Q, then one of them must be a constant.

Let F be the result of “reducing P modulo p”. A quick way of explain-
ing what that means is to say that the elements of I are the same as the
elements of P (polynomials with rational coefficients), but the concept of
equality is redefined: for present purposes two polynomials f and g are to
be regarded as the same if they differ from one another only by a multiple
of p. The customary symbol for “equality except possibly for a multiple of
p” is =, and the relation it denotes is called congruence. In more detail: to
say that f is congruent to g modulo p, in symbols

f = g modulo p,
means that there exists a polynomial ¢ (with rational coefficients) such that
f-9=npq
What happens to the “arithmetic” of polynomials when equality is inter-
preted modulo p? That is: what can be said about sums and products mod-
ulo p?

As far as the addition of polynomials of degree 0 and degree 1 is con-
cerned, nothing much happens:

(az+B) + (v +6) = (a+7)z + (8 +6),

just as it should be. When polynomials of degree 2 or more enter the pic-
ture, however, something new happens. Example: if

flz)=2 and  g(z)=-2,
then
f(z) + g(z) = 0 (modulo p).
Reason: f 4 g is a multiple of p (namely p - 1) and therefore

(f +9) — 0 = 0 modulo p.
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Once that is accepted, then even multiplication offers no new sur-
prises. If, for instance,

f(z) = g(z) =z,
then
f - g =2 (modulo p);

indeed, f-g—2=p.

What does a polynomial look like, modulo p? Since z? can always be
replaced by 2 (is “equal” to 2), and, consequently, z3 (= 2z?) can be re-
placed by 2z, and z* (= 2 - 2®) can be replaced by 4, etc., it follows that
every polynomial is “equal” to a polynomial of degree 0 or 1. Once that is
agreed to, it follows with almost no pain that F is a field. Indeed, the veri-
fication that F with addition (modulo p) is an abelian group takes nothing
but a modicum of careful thinking about the definitions. The same state-
ment about the set of non-zero elements of F with multiplication (modulo
p) takes a little more thought: where do inverses come from? The clue to
the answer is in the following computation:

1 a-fz
a+Bzr a%-282

Familiar? Of course it is: it is the same computation as the rationalization
of the denominator that was needed to prove that Q(v/2) is a field. All
the hard work is done; the distributive laws give no trouble, and the happy
conclusion is that F is a field, and, in fact, except for notation it is the same
as the field Q(v/2).

The same technique can be applied to many other coefficient fields
and many other moduli. Consider, to be specific, the field Z,, and let P
this time be the set of all polynomials

ag + a1 + oz + -+ apz”

of all possible degrees, with coefficients in Z,. (Caution: 5z + 3 means

(z+z+z+rc+z)+(1+1+1)

it is a polynomial, and it is equal to = + 1 modulo 2. It is dangerous to jump
to the conclusion that the polynomial z° + z3, which means zzzzz + z77,
can be reduced similarly.) The set P of all such polynomials is an abelian
group with respect to addition (modulo 2, of course); thus, for example,
the sum of

D+ +zr+1
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and
?+zl+z
is
® +z? + 1.
Polynomials admit a natural commutative multiplication also (example:
(2?2 +1)2° + = = 25 + 2),

with a unit (the constant polynomial 1), and addition and multiplication
together satisfy the distributive laws. Not all is well, however; multiplica-
tive inverses cause trouble. Example: there is no polynomial f such that
zf(x) = 1; the polynomial z (different from 0) has no reciprocal. In this
respect polynomials behave as the integers do: the reciprocal of an integer
n is not an integer (unless n = 1 or n = —1). Just as for integers, reduction
by a suitable modulus can cure the disease. A pertinent modulus for the
present problem is z% + z + 1.

Why is it pertinent? Because reduction modulo a polynomial of de-
gree k, say, converts every polynomial into one of degree less than k, and
modulo 2 there are, for each k, exactly 2% polynomials of degree less than
k. That’s clear, isn’t it?—to determine a polynomial of degree k — 1 or
less, the number of coefficients that has to be specified is k, and there are
two choices, namely 0 and 1, for each coefficient. If we want to end up
with exactly four polynomials that constitute a field with four elements,
the value of k£ must therefore be 2. Modulo 2 the four polynomials of de-
gree less than 2 are 0, 1, 2, and z + 1. Just as the modulus by which the
integers must be reduced to get a field must be a prime—an unfactorable,
irreducible number—the modulus by which the polynomials must be re-
duced here should be an unfactorable, irreducible polynomial. Modulo 2
there are exactly four polynomials of degree exactly 2, namely the result of
adding one of 0, 1, z, or z + 1 to z2. Three of those, namely

=z z,

2 +1=(z+1)(z+1),
and
z2+m=m(m+1)

are factorable; the only irreducible polynomial of degree 2 is z2 + z + 1.
The reduced objects, the four polynomials

0,1, z,z+1
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are added (modulo 2) the obvious way; the modulus does not enter. It does
enter into multiplication. Thus, for instance, to multiply modulo z*+z+1,
first multiply the usual obvious way and then throw away multiples of
z2 + ¢ + 1. Example: 23 = 1 (modulo z? + z + 1). Reason:

=z =z((@®+z+1)+ (@ +1) =z(x+1)
=zl4+r=(+2+1)+1=1
The multiplication table looks like this:

X 0 1 T z+1
0 0 0 0 0
1 0 1 T z+1
T 0 z z+1 1
z+1 |10 =z4+1 1 z

The inspiration is now over; what remains is routine verification. The result
is that with addition and multiplication as described the four polynomials
0, 1, z, z + 1 do indeed form a field.

To construct a field with nine elements, proceed similarly: use polyno-
mials with coefficients in the field of integers modulo 3 and reduce modulo
the polynomial z3 + 2z + 2.

Is there a field with six elements? The answer is no. The proof depends
on a part of vector space theory that will be treated later, and the fact itself
has no contact with the subject of this book. The general theorem is that
the number of elements in a finite field is always a power of a prime, and
that for every prime power there is one (and except for change of notation
only one) finite field with that many elements.

Chapter 2. Vectors

Solution 20.

The scalar zero law is a consequence of the other conditions; here is how
the simple proof goes. If z is in V, then

0z + 0z = (04 0)z  (by the vector distributive law)
= Oz,

and therefore, simply by cancellation in the additive group V, the forced
conclusion is that 0z = 0.
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As for the vector zero law, the scalar distributive law implies that a0
is always zero. Indeed:

a0 + a0 = a(0 + 0) = a0,

and therefore, simply by cancellation in the additive group V, the forced
conclusion is that a0 = 0.

It is good to know that these two results about 0 are in a sense best
possible. That is: if az = 0, then either & = 0 or z = 0. Reason: if az = 0
and a # 0, then

z=1x = (la) T = (le') (azx) (by the associative law),
!

which implies that
1
T = (—) 0=0.
47

Comment. If a scalar multiplication satisfies all the conditions in the def-
inition of a vector space, how likely is it that oz = 2? That happens when
z = 0 and it happens when a = 1; can it happen any other way? The an-
swer is no, and, by now, the proof is easy: if az = z, then (o — 1)z = 0,
and therefore eithera — 1 =0o0rz = 0.

A pertinent comment is that every field is a vector space over itself.
Isn’t that obvious? All it says is that if, given F, and if the space V is de-
fined to be F itself, with addition in V being what it was in F and scalar
multiplication being ordinary multiplication in F, then the conditions in
the definition of a vector space are automatically satisfied. Consequence:
if F is a field, then the equation 0c: = 0 in F is an instance of the scalar
zero law. In other words, the solution of Problem 17 (a) is a special case of
the present one.

Solution 21.
(1) The scalar distributive law fails: indeed
2x1=22.1=4,
but
1*1+1%x1=1-14+1-1=2.

The verifications that all the other axioms of a vector space are satisfied
are painless routine.

21
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(2) The scalar identity law fails; all other conditions are satisfied.

(3) Since the mapping o — o? is multiplicative ((a8)? = a2?), the
associative law for the new scalar product is true (this should be checked,
and it is fun to check). The new scalar identity law follows from the fact
that 12 = 1. The verification of the new scalar distributive law depends
on the fact that if @ and 3 are scalars (in the present sense, a very special
case), then

(a+B)?=a+p5

(That identity holds, in fact, if and only if the field has “characteristic 27,
which means that o + a = 0 for every « in F. An equivalent way of ex-
pressing that condition is just to say that 2 = 0, where “2” means 1 + 1, of
course.) The scalar distributive law, however, is false. Indeed:

1((1,0) +(0,1)) = 1(1,1) = (1,1),

whereas

1(1,0) +1(0,1) = (1+1,0) + (0,1) = (1 + 1,1).

(4) Nothing is missing; the definitions of and []do indeed make
R, into a real vector space.
(5) In this example the associative law fails. Indeed, if « = 8 = i, then

(@B)-1=(-1)1= -1,
whereas
a-(8-1)=0-(0)=0.

The verifications of the distributive laws (vector or scalar), and of the scalar
identity law, are completely straightforward; all that they depend on (in
addition to the elementary properties of the addition of complex numbers)
is that Re does the right thing with 0, 1, and +. (The right thingis Re 0 = 0,
Rel=1,and Re(a + 8) = Rea+ Ref3.)

(6) Here, once more, nothing is missing. The result is a special case of
the general observation that if F is a field and G is a subfield, then F is a
vector space over G.

Question. What is the status of the zero laws (scalar and vector) in these
examples? The proof that they held (Problem 20) depended on the truth
of the other conditions; does the failure of some of those conditions make
the zero laws fail also?
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Comment. Examples (1), (2), (3), and (5) show that the definition of vec-
tor spaces by four axioms contains no redundant information. A priori it
is conceivable that some cleverly selected subset of those conditions (con-
sisting of three, or two, or even only one) might be strong enough to imply
the others. There are 15 non-empty subsets, and a detailed study of all pos-
sibilities threatens to be more than a little dull. An examination of some of
those possibilities can, however, be helpful in coming to understand some
of the subtleties of the algebra of scalars and vectors, and that’s what the ex-
amples (1), (2), (3), and (5) have provided. Each of them shows that some
particular one of the four conditions is independent of the other three:
they provide concrete counterexamples (of F, V, and a scalar multiplica-
tion defined between them) in which three conditions hold and the fourth
fails.

Despite example (5), the associative law is almost a consequence of the
others. If, to be specific, the underlying field is Q, and if V is a candidate for
a vector space over Q, equipped with a scalar multiplication that satisfies
the two distributive laws and the scalar identity law, then it satisfies all the
other conditions, and, in particular, it satisfies the associative law also, so
that V is an honest vector space over Q. The proof is not especially difficult,
but it is of not much use in linear algebra; what follows is just a series of
hints.

The first step might be to prove that 2z is necessarily equal to z+x, and
that, more generally, for each positive integer m, the scalar product mz is
the sum of mn summands all equal to z. This much already guarantees that
(aeB)z = aBz) whenever a and 3 are positive integers. To get the general
associative law two more steps are necessary. One: recall that 0.z = 0 and
(—=1)z = —z (compare the corresponding discussions of the status of the
other vector space axioms)—this yields the associative law for all integers.
Two: 1z + 1z = z, and, more generally, the sum of n summands all equal
to 1z is equal to z—this yields the associative law for all reciprocals of
integers. Since every rational number has the form m - 1, where m and n
are integers, the associative law follows for all elements of Q. Caution: the
reader who wishes to flesh out this skeletal outline should be quite sure
that the lemmas needed (for example (—1)z = —z) can be proved without
the use of the associative law.

A similar argument can be used to show that if the underlying field is
the field of integers modulo a prime p, then, again, the associative law is
a consequence of the others. These facts indicate that for a proof of the
independence of the associative law the field has to be more complicated
than Q or Z,. (Reminder: fields such as Z,, occurred in the discussion pre-
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ceding Problem 19.) A field that is complicated enough is the field C of
complex numbers—that’s what the counterexample (5) shows.

Solution 22,
It’s easy enough to verify that

3(1,1) - 1(1,2) = (2,1)
and
-1(1,1) + 1(1,2) = (0,1),

so that (2, 1) and (0, 1) are indeed linear combinations of (1, 1) and (1, 2),
but these equations don’t reveal any secrets; the problem is where do they
come from—how can they be discovered?

The general question is this: for which vectors (e, §) can real numbers
¢ and 7 be found so that

6(1, 1) + '7(1, 2) = (aa ﬂ)7

In terms of coordinates this vector equation amounts to two numerical
equations:

E+n=a

£+2n=0

To find the unknowns £ and #, subtract the top equation from the bottom
one to get

n=8-a,
and then substitute the result back in the top equation to get
E+f-a=aq,
or, in other words,
E=28-a.

That’s where the unknown coefficients come from, and, once derived, the
consequence is easy enough to check:

2a—-B)(1L,)+(B-a)(1,2)=(2a—B+0—-a,2a—+20 - 2a)
=(an@)'

Conclusion: every vector in R? is a linear combination of (1,1) and (1, 2).
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The process of solving two linear equations in two unknowns (elim-
inate one of the unknowns and then substitute) is itself a part of linear
algebra. It is used here without any preliminary explanation because it is
almost self-explanatory and most students learn it early. (Incidentally: in
this context the phrase linear equations means equations of first degree,
that is, typically, equations of the form

af+pPn+vy=0
in the two unknowns £ and 7.)

Solution 23.

For (a) the sets described by (1), (2), and (4) are subspaces and the sets
described by (3), (5), and (6) are not. The proofs of the positive answers
are straightforward applications of the definition; the negative answers de-
serve at least a brief second look.

(3) The vector 0 (= (0,0,0)) does not satisfy the condition.

(5) The vector (1,1,1) satisfies the condition, but its product by ¢
(= v/~1) does not.

(6) The vector (1, 1, 1) satisfies the condition, but its product by ¢ does
not.

For (b) the sets described by (2) and (4) are subspaces and the sets
described by (1) and (3) are not. The proofs of the positive answers are
straightforward. For the negative answers:

(1) The polynomials z® +  and —23 + 2 satisfy the condition, but their
sum does not.

(3) The polynomial z? satisfies the condition, but its product by &

(= v/-1) does not.

Comment. The answers (5) for (a) and (3) for (b) show that the sets M in-
volved are not subspaces of the complex vector spaces involved—but what
would happen if C* in (a) were replaced by R®, and, similarly, the com-
plex vector space PP in (b) were replaced by the corresponding real vector
space? Answer: the results would stay the same (negative): just replace “”
by “—1”.

Solution 24.

(a) The intersection of any collection of subspaces is always a subspace.
The proof is just a matter of language: it is contained in the meaning of
the word “intersection”. Suppose, indeed, that the subspaces forming a

23

24
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collection are distinguished by the use of an index +; the problem is to
prove that if each M, is a subspace, then the same is true of M = ﬂ,y M,,.
Since every M, contains 0, so does M, and therefore M is not empty. If
and y belong to M (that is to every M, ), then az + Sy belongs to every
M, (no matter what « and 3 are), and therefore ax + By belongs to M.
Conclusion: M is a subspace.

(b) If one of two given subspaces is the entire vector space V, then
their union is V; the question is worth considering for proper subspaces
only. If M; and M are proper subspaces, can M; UMj be equal to V? No,
never. If one of the subspaces includes the other, then their union is equal
to the larger one, which is not equal to V. If neither includes the other, the
reasoning is slightly more subtle; here is how it goes.

Consider a vector z in M; that is not in My, and consider a vector y
that is not in M (it doesn’t matter whether it is in M or not). The set of
all scalar multiples of z, that is the set of all vectors of the form az, is a line
through the origin. (The geometric language doesn’t have to be used, but it
helps.) Translate that line by the vector y, that is, form the set of all vectors
of the form az 4+ y; the result is a parallel line (not through the origin).
Being parallel, the translated line has no vectors in common with M;. (To
see the geometry, draw a picture; to understand the algebra, write down a
precise proof that ax 4 y can never be in M;.) How many vectors can the
translated line have in common with M;? Answer: at most one. Reason: if
both az+y and Sz +y are in Mz, with o # S, then their difference (a—3)z
would be in M, and division by o — 8 would yield a contradiction. It is a
consequence of these facts that the set L of all vectors of the form az + y
(aline) has at most one element in common with M; UM,. Since there are
as many vectors in L as there are scalars (and that means at least two), it
follows that M; U Ml; cannot contain every vector in V.

Granted that V cannot be the union of two proper subspaces, how
about three? As an example of the sort of thing that can happen, consider
the field F of integers modulo 2; the set F? of all ordered pairs of elements
of IF is a vector space in the usual way. The subset

{(0,0),(0,1)}

is a subspace of F2, and so are the subsets

{(0,0),(1,0)}

and

{(0,0),(1,1)}.
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The set-theoretic union of these three subspaces is all of F2; this is an ex-
ample of a vector space that is the union of three proper subspaces of itself.
The example looks degenerate, in a sense: the vector space has only a fi-
nite number of vectors in it, and it should come as no surprise that it can
be the union of a finite number of proper subspaces. Every vector space
is the union of its “lines”, and in the cases under consideration there are
only a finite number of them.

Under these circumstances, the intelligent thing to do is to ask about
infinite fields, and, sure enough, it turns out that a vector space over an
infinite field is never the union of a finite number of proper subspaces; the
proof is just a slight modification of the one that worked for n = 2 and all
fields (infinite or not).

Suppose, indeed, that M, ..., M,, are proper subspaces such that
none of them is included in the union of the others. From the present point
of view that assumption involves no loss of generality; if one of them is
included in the union of the others, just omit it, and note that the only
effect of the omission is to reduce the number n to n — 1. It follows that
there exists a vector x; in M); that does not belong to M; for j # 1, and
(since M is not the whole space) there exists a vector x, that does not
belong to Mj;.

Consider the line through z parallel to z, . Precisely: let L be the set of
all vectors of the form zy+az, (o ascalar). How large can the intersections
L N M; be (where j = 1,...,n)? Since z; belongs to M; it follows that
xo + az; cannot belong to M; (for otherwise zy would also); this proves
that L "M, = &. As for the sets L. N M with j # 1, they can contain no
more than one vector each. Reason: if both x4 + ax; and zo + Bz, belong
to M, then so does their difference, (o« — 3)z;, and, since z, is not in M,
that can happen only when o = §.

Since (by hypothesis) there are infinitely many scalars, the line L con-
tains infinitely many vectors. Since, however, by the preceding paragraph,
the number of elements in L. N (M; U --- U M,,) is less than n, it follows
that M U - - - U M, cannot cover the whole space; the proof is complete.

What the argument depends on is a comparison between the cardinal
number of the ground field and a prescribed cardinal number n. Related
theorems are true for certain related structures. One example: a group
is never the union of two proper subgroups. Another example: a Banach
space is never the union of a finite or countable collection of closed proper
subspaces.

Caution. Even if the ground field is uncountable (has cardinal number
greater than Ry, as does R for instance), it is possible for a vector space
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to be the union of a countably infinite collection of proper subspaces. Ex-
ample: the vector space P of all real polynomials is the union of the sub-
spaces PP, consisting of all polynomials of degree less than or equal to n,
n = 1,2,3,... .

Solution 25.

() Sure, that’s easy; just consider, for instance, the sets {(1,0), (0, 1)} and
{(2,0),(0,2)}. That answers the question, but it seems dishonest—could
a positive answer have been obtained so that no vector in either set is a
scalar multiple of a vector in the other set? Yes, and that’s easy too, but
it requires a few more seconds of thought. One example is {(1,0), (0,1)}
and {(1,1),(1,-1)}.

(b) The span of {(1,1,1),(0,1,1),(0,0,1)} is R3, or, in other words,
every vector in R? is a linear combination of the three vectors in the set.

Why? Because no matter what vector (a, 8,7) is prescribed, coeffi-
cients &, 1, and ¢ can be found so that

£€(1,1,1) +n(0,1,1) + ¢(0,0,1) = (e, B, 7)-
In fac.t this one vector equation says the same thing as the three scalar
equations
§=aq,
§+n=0,
E+n+(=1,

and those are easy equations to solve. The solution is

§=q,
n=pg-§{=0-aqa,
(=y—€§-n=7-a—-(B-a)=v-4.
Check:

a(19 L, 1) + (ﬁ - a)((), 1, 1) + ('7 - ﬂ)(oa 0, 1) = (a) B,7)-

Comment. The span of the two vectors (0,1,1) and (0,0, 1) is the set of
all (0, €, £ +n), which is in fact the (n, ¢)-plane. The span of the two vectors
(1,1,1) and (0, 1, 1) is the plane consisting of the set of all (£, £ +n,£ +7),
and the span of (1,1, 1) and (0, 0, 1) is still another plane.
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Solution 26.
Yes, it follows. To say that = € \/{M, y} means that there exists a vector z
in M and there exist scalars o and 3 such that

z=ay+ Pz

It follows, of course, that

ay =z — fz,

and, moreover, that a # 0—the latter because otherwise 2 would belong
to M, contradicting the assumption. Conclusion:

yE V{M, z},
and that implies the equality of the spans of {M, z} and \/{M, y}.

Solution 27.

(a) No, there is no vector that spans R?. Indeed, for each vector (z,y) in
R?, its span is the set of all scalar multiples of it, and that can never contain
every vector. Reason: if z = 0, then (1, 0) is not a multiple of (z, y), and if
x # 0, then (z,y + 1) is not a multiple of (z, y).
(b) Yes, there are two vectors that span R?, many ways. One obvious
example is (1,0) and (0, 1); another is (1,1) and (1, —1)—see Problem 25.
(c) No, no two vectors can span R®. Suppose, indeed, that

= (z1,%2,23) and  y=(y1,Y2,¥3)

are any two vectors in R?; the question is whether for an arbitrary z =
(21, 22, 23) coefficients o and 8 can be found so that ax + By = 2. In other
words, for given (1, z2,z3) and (y1,y2,¥3) can the equations

azy + By = 21,
azs + fys = 22,
azs + Bys = 23,

be solved for the unknowns « and 3, no matter what z;, 2, and 23 are? The
negative answer can be proved either by patiently waiting till the present
discussion of linear algebra reaches the pertinent discussion of dimension
theory, or by making use of known facts about the solution of three equa-
tions in two unknowns (which belongs to the more general context of sys-
tems with more equations than unknowns). In geometric language the facts

26

27



28

29

214 LINEAR ALGEBRA PROBLEM BOOK

can be expressed by saying that all linear combinations of z and y are con-
tained in a single plane.

(d) No, no finite set of vectors spans the vector space P of all poly-
nomials (no matter what the underlying coeflicient field is). The reason
is that polynomials have degrees. In a finite set of polynomials there is
one with maximum degree; no linear combination of the set will produce
a polynomial with greater degree than that. Since P contains polynomials
of all degrees, the span of the finite set cannot exhaust P. Compare the
cautionary comment at the end of Solution 24.

Solution 28.

The modular identity does hold for subspaces.

The easy direction is D: the right side is included in the left. Reason:
LNM C L (obviously) and L NN ¢ M + (L N N). In other words, both
summands on the right are included in the left, and, therefore, so is their
sum.

The reverse direction takes a little more insight. If z is a vector in the
left side, thenz € Land z = y+ 2 withy € M and z € L N N. Since
y = & — z, and since —z belongs to LNN along with z, so that, in particular,
—z € L, it follows that y € L. Since by the choice of notation, y € M, it
follows that y € L. N M, and hence that

z € (LNM) + (LNN),

as promised.

Solution 29.

The question is when do addition and intersection satisfy the distributive
law. Half the answer is obvious: the right side is included in the left. Rea-
son: both LN M and L N N are included in both L. and M + N.

As for the other half, if every vector in V is a scalar multiple of a par-
ticular vector z, then V has very few subspaces—in fact, only two, @ and V.
In that case the distributive law for subspaces is obviously true; in all other
cases it’s false.

Suppose, indeed, that V contains two vectors  and y such that neither
one is a scalar multiple of the other. (Look at a picture in R2.) If L, M, and
N are the sets of all scalar multiples of z + y, z, and y, respectively, then
LNM and LNN are Q, so that the right side is O, whereas M + N includes
L, so that the left side is L.
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Solution 30.

For most total sets E in a vector space V it is easy to find a subspace M that
has nothing in common with E. For a specific example, let V be R? and let
E be {(1,0), (0,1)}; the subspace M spanned by (1, 1) is disjoint from E.

Solution 31.
The answers are yes, and the proofs are easy.

If 2o = 3°7_, a;z;, then put ap = —1 and note that 3°7_ a;z; = 0.
Since not all the scalars ay, a1, - . . , &y, are 0 (because at least oy is not), it
follows that the enlarged set {zo, z1,...,Z,} is dependent.

In the converse direction, if 3_7_, a;z; = 0, with not every a; equal
to 0, then there is at least one index ¢ such that «; # 0. Solve for z; to get
T =Y, #i%xj. (The symbol 3, indicates the sum extended over the
indices j different from i.) That’s it: the last equation says that z; is a linear
combination of the other z’s.

It is sometimes convenient to regard a finite set {z¢, 21, ...,2,} of vec-
tors as presented in order, the order of indices, and then to ask about the
dependence of the initial segments {xo}, {z0,z1}, {0, Z1, 2}, etc. The
proof given above yields the appropriate result. A more explicit statement
is this corollary: a set {zq, z1,...,Z,} of non-zero vectors is dependent if
and only if at least one of the vectors z, . .., z, is a linear combination of
the preceding ones. The important word is “preceding”. The proof of “if” is
trivial. The proof of “only if” is obtained from the second half of the proof
given above by choosing z; to be the first vector after o for which the set
{z1,...,z;} is linearly dependent. (Caution: is it certain that there is such
an z;?) The desired result is obtained by solving such a linear dependence
relation for z;.

Solution 32.

Yes, every finite-dimensional vector space has a finite basis; in fact, if E is
a finite total set for V, then there exists an independent subset FF of E that
is a basis for V. The trick is to use Problem 31.

If V = O, the result is trivial; there is no loss of generality in assum-
ing that V # Q. In that case suppose that E is a finite total set for V and
begin by asking whether 0 belongs to E. If it does, discard it; the resulting
set (which might as well be denoted by E again) is still total for V. If E is
independent, there is nothing to do; in that case F = E. If E is dependent,
then, by Problem 31, there exists an element of E that is a linear combi-
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nation of the others. Discard that element, and note that the resulting set
(which might as well be denoted by E again) is still total for V. Keep re-
peating the argument of the preceding two sentences as long as necessary;
since E is finite, the repetitions have to stop in a finite number of steps.
The only thing that can stop them is arrival at an independent set, and that
completes the proof.

Chapter 3. Bases

Solution 33.

If T is a total set for a vector space V, and E is a finite independent set in
V, then there exists a subset F of T, with the same number of elements as
E such that (T — F) U E is total.

The proof is simplest in case E consists of a single non-zero vector
z. All that has to be done then is to express z as a linear combination
Y-, aix; of vectors in T and find a coefficient ; different from 0. From
& = ¥, a;y; it follows that y; = ai (& — X254 @3;)- If s is discarded
from T and replaced by z, the result is just as total as it was before, because
each linear combination of vectors in T is equal to a linear combination of
2 and of vectors in T different from y;.

In the general case, E = {z1, ..., .}, apply the result of the preceding
paragraph inductively to one z at a time. Begin, that is, by finding y,; in T,
(= T) so that Ty = (T} — {y1}) U {=1} is total. For the second step, find
yz in T so that T3 = (T — {y2}) U {x2} is total, and take an additional
minute to become convinced that T3 contains z;, that is that y; couldn’t
have been z;. The reason for the latter is the assumed independence of
the z’s; if z; had been discarded from T, no linear combination of 2,
together with the vectors that have not been discarded, could recapture it.
Keep going the same way, forming

Tk + 1= (T — {wx}) U {2},

till T,, is reached. The result is a new total set obtained from T by changing
asubset F = {y,...,yn} of T into the prescribed set

E={z1,...,2a}.

The name of the result is the Steinitz exchange theorem.
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The result has three useful corollaries.

Corollary 1. IfEis an independent set and T is a total set in a finite-dimen-
sional vector space, then the number of elements in E is less than or equal to
the number of elements in T.

Corollary 2. Any two bases for a finite-dimensional vector space have the
same number of elements.

The dimension of a finite-dimensional vector space V, abbreviated
dim V, is the number of elements in a basis of V.

Corollary 3. Every set of more than n vectors in a vector space V of di-
mension n is dependent. A set of n vectors in V is a basis if and only if it is
independent, or, alternatively, if and only if it is total.

Note that these considerations answer, in particular, a question asked
long before (Problem 27), namely whether two vectors can span R3. Since
dim R3 = 3, the answer is no.

Solution 34.

If several subspaces of a space V of dimension n have a simultaneous com-
plement, then they all have the same dimension, say m, so that that is at
least a necessary condition. Assertion: if the coefficient field is infinite, then
that condition is sufficient also: finite collections of subspaces of the same
dimension m necessarily have simultaneous complements.

If the common dimension m is equal to n, then each of the given sub-
spaces is equal to V (is it fair in that case to speak of “several” subspaces?),
and the subspace {0} is a simultaneous complement—a thoroughly unin-
teresting degenerate case. If m < n, then the given subspaces My, ..., My
are proper, and it follows from Problem 24 that there exists a vector z in V
that doesn’t belong to any of them. If L is the 1-dimensional space spanned
by z, then M; N L = {0} for each j, and, moreover, all the subspaces

M;+L,.... Mg+ L

have dimension m + 1. Either m + 1 = n (in which case M; + L = V for
each j, and, in fact, L is a simultaneous complement of all the M;’s), or
m + 1 < n, in which case the reasoning can be applied again. Applying
it inductively a total of n — m times produces the promised simultaneous
complement.
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The generalization of Problem 24 to uncountable ground fields and
countable collections of proper subspaces is just as easy to apply as the
ungeneralized version. Conclusion: if the ground field is uncountable, then
countable collections of subspaces of the same dimension m necessarily
have simultaneous complements.

Solution 35.

(a) If z and 1 are linearly dependent, then there exist rational numbers o
and £, not both 0, such that a - 1 + 8 - £ = 0. The coefficient 3 cannot
be 0 (for if it were, than o too would have to be), and, consequently, this
dependence relation implies that z = —2, and hence that z is rational.

The reverse implication is equally easy: « and 1 are linearly dependent if
and only if z is rational.

(b) The solution of two equations in two unknowns is involved, namely
the equations

a(l+€)+p(1-£)=0
afl-€)+p(1+£) =0

in the unknowns o and 3. If £ # 0, then « and 3 must be 0; the only case
of linear dependence is the trivial one, (1,1) and (1, 1).

Solution 36.

How about (z,1,0), (1,z,1), and (0,1, z)? The assumption of linear de-
pendence leads to three equations in three unknowns that form a conspir-
acy: they imply that z(z? —2) = 0. Consequence: x must be 0 or else ++v/2,
and, indeed, in each of those cases, linear dependence does take place.
That makes sense for R, but not for ; in that case linear dependence can
take place only when z = 0.

Solution 37.

(a) If (1, @) and (1, 3) are to be linearly independent, then clearly o cannot
be equal to 8, and, conversely, if @ # (3, then linear independence does
take place.

(b) No, there is not enough room in C2 for three linearly independent
vectors; the trouble is that three equations in two unknowns are quite likely
to have a non-trivial solution. Better: C* has dimension 2, and the existence
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of three linearly independent vectors would imply that the dimension is at
least 3.

Solution 38. 38
Why not?
For (a) consider, for instance, two independent vectors in C?, such as

(1,0) and (1, —1), each of which is independent of (1,1), and use them to
doctor up the two given vectors. One possibility is to adjoin

(0,0,1,00 and  (1,0,0,0)

to the first given pair and adjoin

(0,0,1,-1)  and  (1,-1,0,0)

to the second given pair.
For (b), adjoin

(0,0,1,00 and  (0,0,1,1)

to the first two vectors and adjoin

(-1,1,0,0,) and  (0,1,0,0)

to the second two.

Solution 39. 39

(a) Never—there is too much room in C3, Better: since the dimension of
C3 is 3, two vectors can never constitute a basis in it.

(b) Never—the sum of the first two is the third—they are linearly de-
pendent.

Solution 40. 40

How many vectors can there be in a maximal linearly independent set?
Clearly not more than 4, and it doesn’t take much work to realize that any
four of the six prescribed vectors are linearly independent. Conclusion: the
answer is the number of 4-element subsets of a 6-clement set, that is (€).
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Solution 41.

If z is an arbitrary non-zero vector in V, then z and iz (= +/—1z) are
linearly independent over R. (Reason: if o and 3 are real numbers and if

az + B(iz) =0,
then

(a+pi)z =0,

and since z # 0, it follows that a + 3i = 0.) Consequence: if the vec-
tors x1, z2, T3, ... constitute a basis in V, then the same vectors, together
with their multiples by 4, constitute a basis in V2., Conclusion: the “real
dimension” of V is 2n. Unsurprising corollary: the real dimension of C
is 2.

Solution 42.

Suppose, more generally, that M and N are finite-dimensional subspaces
of a vector space, with M C N. If M # N, then a basis for M cannot span
N. Take a basis for M and adjoin to it a vector in N that is not in M. The
result is a linearly independent set in N containing more elements than
the dimension of M—which implies that M and N do not have the same
dimension. Conclusion: if a subspace of N has the same dimension as N,
then it must be equal to N.

Solution 43.

The answer is yes; every finite independent set in a finite-dimensional vec-
tor space can be extended to a basis. The assertion (Problem 32) that in a
finite-dimensional vector space there always exists a finite basis is a special
case: it just says that the empty set (which is independent) can be extended
to a basis.

The proof of the general answer has only one small trap. Given a fi-
nite independent set E, consider an arbitrary finite basis B, and apply the
Steinitz exchange theorem (see Solution 33). The result is that there exists
a total set that includes E and has the same number of elements as B; but
is it obvious that that set must be independent? Yes, it is obvious. If it were
dependent, then (see Problem 32) a proper subset of it would be a basis,
contradicting the fact (Corollary 2 in Solution 33) that any two bases have
the same number of elements.

SOLUTIONS: Chapter 3 221

Note that the result answers the sample question about the set {u, v}
described before the statement of the problem: there does indeed exist a
basis of C* containing » and v. One such basis is {u, v, z;, z,}.

Solution 44.

If V is a vector space of dimension n, say, and if M is a subspace of V, then
M is indeed finite-dimensional, and, in fact, the dimension of M must be
less than or equal to n. If M = O, then the dimension of M is 0, and the
proof is complete. If M contains a non-zero vector x1, let M; (C M) be
the subspace spanned by z;. If M = M,, then M has dimension 1, and the
proof is complete. If M # M, let z2 be an element of M not contained in
M, and let M be the subspace spanned by z; and z4; and so on. After no
more than n steps the process reaches an end. Reason: the process yields
an independent set, and no such set can have more than n elements (since
every independent set can be extended to a basis, and no basis can have
more than n elements). The only way the process can reach an end is by
having the z’s form a set that spans M—and the proof is complete.

Solution 45.

A total set is minimal if and only if it is independent. The most natural
way to approach the proofs of the two implications involved seems to be
by contrapositives. That is: E is not minimal if and only if it is dependent.

Suppose, indeed, that E is not minimal, which means that E has a non-
empty subset F such that the relative complement E — F is total. If z is
any vector in F, then there exist vectors 1, ..., , in E — F and there exist
scalars ay, . .., ay such that

n
xr = E O!j.’Ej,
j=1

which implies, of course, that the subset {z, z1,...,z,} of E is dependent.
If, in reverse, E is dependent, then there exist vectors z,, ..., z, in E
and there exist scalars a3, . . ., a, not all zero such that

n
E Ozj$j =0.
j=1

Find i so that o; # 0, and note that
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This implies that the set F = E — {z;} is just as total as [E, and hence that
E is not minimal.

Solution 46.

If E is a total subset of a finite-dimensional vector space V, express each
vector in a basis of V as a linear combination of vectors in E. The vectors
actually used in all these linear combinations form a finite total subset of E.
That subset has an independent subsubset with the same span (see Prob-
lem 33), and, therefore, that subsubset is total. Since an independent total
set is minimal, the reasoning proves the existence of a minimal total subset
of E.

The conclusion remains true for spaces that are not finite-dimensional,
but at least a part of the technique has to be different. What’s needed, given
E, is an independent subset of E with the same span. A quick way to get
one is to consider the set of all independent subsets of E and to find among
them a maximal one. (That’s the same technique as is used to prove the
existence of bases.) The span of such a maximal independent subset of E
has to be the same as the span of E (for any smaller span would contradict
maximality). Since the span of E is V, that maximal independent subset is
itself total. Since an independent total set is a minimal total set (Problem
45), the proof is complete: every total set has minimal total subset.

Solution 47.

An infinitely total set E always has an infinite subset F such that E — F is
total. Here is one way to construct an IF.

Consider an arbitrary vector x; in E. Since, by assumption, E — {z,}
is total, there exists a finite subset E; of E — {z; } whose span contains z;.
Let z» be a vector in the relative complement E — ({z;} U E;). Since, by
assumption, E— ({1, 22} UE, ) is total, it has a finite subset E, whose span
contains z,. Keep iterating the procedure. That is, at the next step, let x3
be a vector in

E — ({z1, 22} UE; UE;),

note that that relative complement is total, and that, therefore, it has a
finite subset E3 whose span contains z3. The result of this iterative proce-
dure is an infinite set F = {z;, x2, 3, ...} with the property that E — F is
total. Reason: E; is a subset of E — F for each j, and therefore x; belongs
to the span of E — F for each j.
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Assertion: if {z,,...,z;} is a relatively independent subset of R”, where
k 2 n, then there exists a vector 3, such that {z,..., z;, x5} is rela-
tively independent.
For the proof, form all subsets of n —1 vectors of {z,, . ..,z }, and, for

each such subset, form the subspace they span. (Note that the dimension of
each of those subspaces is exactly n— 1, not less. The reason is the assumed
relative independence. This fact is not needed in the proof, but it’s good
to know anyway.) The construction results in a finite number of subspaces
that, between them, certainly do not exhaust R"; choose zx1 to be any
vector that does not belong to any of them. (The property of the field R
that this argument depends on is that R is infinite.)

Why is the enlarged set relatively independent? To see that, suppose
that yy,...,y,—1 are any n — 1 distinct vectors of the set {zy,...,zx}. In
a non-trivial dependence relation connecting the y’s and 1, that is, in a
relation of the form

> Biyi + oxr41 =0,
i

the coefficient o cannot be 0 (for otherwise the y’s would be dependent).
Any such non-trivial dependence would, therefore, imply that z,, be-
longs to the span of the s, which contradicts the way that z;..; was cho-
sen. This completes the proof of the assertion.

Inductive iteration of the assertion (starting with an independent set of
n vectors) yields a relatively independent set {z1, z2, z3, . . .} with infinitely
many elements.

A student familiar with cardinal numbers might still be unsatisfied.
The argument proves, to be sure, that there is no finite upper bound to
the possible sizes of relatively independent sets, but it doesn’t completely
answer the original question. Could it be, one can go on to ask, that there
exist relatively independent sets with uncountably many elements? The an-
swer is yes, but its proof seems to demand transfinite techniques (such as
Zorn’s lemma).

Solution 49,

Let g be the number of elements in the coefficient field F and let n be the
dimension of the given vector space over F. Since a basis of F™ is a set of
exactly n independent n-tuples of elements of I, the question is (or might
as well be): how many independent sets of exactly n vectors in F™ are there?
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Any non-zero n-tuple can be the first element of a basis; pick one, and
call it z;. Since the number of vectors in F” is g™, and since only the zero
vector is to be avoided, the number of possible choices at this stage is g™ — 1.
Any n-tuple that is not a scalar multiple of z; can follow z; as the second
element of a basis; pick one and call it 5. Since the number of vectors in
F™ is ¢", and since only the scalar multiples of z; are to be avoided, the
number of possible choices at this stage is ¢ — ¢. (Note that the number of
scalar multiples of z, is the same as the number of scalars, and that is q.)
The next step in this inductive process is typical of the most general step.
Any n-tuple that is not a linear combination of z; and z; can follow z;
and z, as the third element of a basis; pick one and call it z3. Since the
number of vectors in F” is ¢”, and since only the linear combinations of
z; and z; are to be avoided, the number of possible choices at this stage is
g™ — ¢°. (The number of linear combinations of two independent vectors
is the number of the set of all pairs of scalars, and that is ¢2.) Keep going
the same way a total of n times altogether; the final answer is the product

(@ -1)(g"-a)(@" — ¢ (" — ")

of the partial answers obtained along the way.

Caution: this product is not the number of bases, but the number of
ordered bases, the ones in which a basis obtained by permuting the vec-
tors of one already at hand is considered different from the original one.
(Emphasis: the permutations here referred to are not permutations of co-
ordinates in an n-tuple, but permutations of the vectors in a basis.) To get
the number of honest (unordered) bases, divide the answer by n!.

A curious subtlety arises in this kind of counting. If F = Z,, and the
formula just derived is applied to F3 (that is, ¢ = 2 and n = 3), it yields

(8—1)(8—2)(8 —4)

ordered bases, and, therefore, 28 unordered ones. Related question: how
many bases for R3 are there in which each vector (ordered triple of real
numbers) is permitted to have the coordinates 0 and 1 only? A not too
laborious count yields the answer 29. What accounts for the difference?
Answer: the set {(0,1,1),(1,0,1),(1,1,0)} is a basis for R?, but the same
symbols interpreted modulo 2 describe a subset of F? that is not a basis.
(Why not?)

Solution 50.

The wording of the question suggests that the direct sum of two finite-
dimensional vector spaces is finite-dimensional. That is true, and the best
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way to prove it is to use bases of the given vector spaces to construct a basis
of their direct sum,

If {z1,...,2,} and {y1,...,yYm} are bases for U and V respectively,
then it seems natural to look at the set B of vectors

(-7:1,0)1 ey (-T'mo)a (0» y1)7 tee (07 ym),

and try to prove that it is a basis for U @ V.

The easiest thing to see is that B spans U @ V. Indeed, since every
vector z in U is a linear combination of the z;’s, it follows that every vector
of the form (z,0) in UgV is a linear combination of the (x;, 0)’s. Similarly,
every vector of the form (0, y) is a linear combination of the (0, y;)’s, and
those two conclusions together imply that every vector (z,y) inU® Visa
linear combination of the vectors in B.

Is it possible that the set B is dependent? If

al(wlao) +-- 4+ an(mnv 0) + ﬂ1(01 yl) +- 4 ﬂm(oa ym) = (01 0);
then

(Z o; T, Z ﬂjwj) = (0, 0),

and it follows from the independence of the z;’s and of the y;’s that
o =+ =ap =01 == Fn =0, and the proof is complete.

Solution 51.

(a) Let the role of V be played by the vector space PP of all real polynomials,
and let M be the subspace of all even polynomials (see Problem 25). When
are two polynomials equal (congruent) modulo M? Answer: when their
difference is even. When, in particular, is a polynomial equal to 0 modulo
M? Answer: when it is even. Consequence: if p,(z) = z?"*!, forn =
0,1,2,...,then a non-trivial linear combination of a finite set of these p,,’s
can never be 0 modulo M. Reason: in any linear combination of them, let &
be the largest index for which the coefficient of py is not 0, and note that in
that case the degree of the linear combination will be 2k + 1 (which is not
even). Conclusion: the quotient space V/M has an infinite independent
subset, which implies, of course, that it is not finite-dimensional.

(b) If, on the other hand, N is the subspace of all polynomials p for
which p(0) = 0 (the constant term is 0), then the equality of two poly-
nomials modulo N simply means that they have the same constant term.
Consequence: every polynomial is congruent modulo N to a scalar multi-
ple of the constant polynomial 1, which implies that the dimension of V/M
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is 1. If bigger examples are wanted, just make N smaller. To be specific, let
N be the set of all those polynomials in which not only the constant term
is required to be 0, but the coefficients of the powers z, 22, and z* are re-
quired to be 0 also. Consequence: every polynomial is congruent modulo
N to a polynomial of degree 3 at most, which implies that the dimension
of V/Mis 4.

Solution 52.

If M is an m-dimensional subspace of an n-dimensional vector space V,
then V/M has dimension » — m. Only one small idea is needed to be-
gin the proof—after that everything becomes mechanical. The assumption
that dim V = n means that a basis of V has n elements; the small idea is to
use a special kind of basis, the kind that begins as a basis of M. To say that
more precisely, let {1, ...,z } be a basis for M, and extend it, by adjoin-
ing suitable vectors T, 41, . . ., Zn, SO as to make it a basis of V. From now
on no more thinking is necessary; the natural thing to try to do is to prove
that the cosets

$m+1 +M,...,$n+M

form a basis for V/M.

Do they span V/M? That is: if z € V, is the coset  + M necessarily a
linear combination of them? The answer is yes, and the reason is that z is
a linear combination of x4, ..., z,, so that

b
Tr = Z [o 730 11}
i=1
for suitable coefficients. Since
m
PILIES
j=1
is congruent to 0 modulo M, it follows that
r+M= Zai(l‘i + M)
i>m
and that’s exactly what’s wanted.
Are the cosets T,,41 + M, . .., T, +M independent? Yes, and the rea-
son is that the vectors z,,41,. .., T, are independent modulo M. Indeed,

if a linear combination of these vectors turned out to be equal to a vector,
say z, in M, then z would be a linear combination of z, ..., Zm, and the
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only possible linear combination it could be is the trivial one (because the
totality of the z’s is independent).

The proof is complete, and it proved more than was promised: it con-
cretely exhibited a basis of n — m elements for V/M .

Solution 53.

The answer is easy to guess, easy to understand, and easy to prove, but it is
such a frequently occurring part of mathematics that it’s well worth a few
extra minutes of attention. The reason it is easy to guess is that span and
dimension behave (sometimes, partially) the same way as union and count-
ing. The number of elements in the union of two finite sets is not the sum
of their separate numbers—not unless the sets are disjoint. If they are not
disjoint, then adding the numbers counts twice each element that belongs
to both sets—the sum of the numbers of the separate sets is the number of
elements in the union plus the number of elements in the intersection. The
same sort of thing is true for spans and dimensions; the correct version of
the formula in that case is

dim(M + N) + dim(M N N) = dimM + dimN.

The result is sometimes known as the modular equation.
To prove it, write dim(M N N) = k, and choose a basis

{z1,...,2k}

for M N N. Since a basis for a subspace can always be extended to a basis
for any larger space, there exist vectors z;, . . ., z,,, such that the set

{z1,...,Tm,21,-. ., 2}
is a basis for M; in this notation
dimM=m+ k.
Similarly, there exist vectors 1, . . . , y, such that the set
{vi, - Yny 21,50, 21}
is a basis for N; in this notation
dimN =n+k.

The span of the 2’s is disjoint from N (for otherwise the z’s and 2’s together
couldn’t be independent), and, similarly, the span of the y’s is disjoint from
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M. It follows that the set

{xly"'7$m7y1)"‘7ynazl""azk}

is a basis for M + N. The desired equation, therefore, takes the form

(m+n+k)+k=m+k)+(n+k),

which is obviously true. (Note how the intersection M N N is “counted
twice” on both sides of the equation.)

That’s all there is to it, but the proof has a notational blemish that is
frequent in mathematical exposition. It is quite possible that some of the
dimensions under consideration in the proof are 0; the case

dim(MNN) =0,

for instance, is of special interest. In that special case the notation is in-
appropriate: the suffix on z; suggests that M N N has a non-empty basis,
which is false. It is not difficult to cook up a defensible notational system
in such situations, but usually it’s not worth the trouble; it is easier (and
no less rigorous) just to remember that in case something is 0 a part of the
argument goes away.

Chapter 4. Transformations

Solution 54.

(a) The definitions (1) and (3) yield linear transformations; the definition
(2) does not. The verification of linearity in (1) is boring but easy; just re-
place (z,y) by an arbitrary linear combination

a1(é1,m) + ca(€a2,m2),

apply 7', and compare the result with the result of doing things in the other
order. Here it is, for the record. Do NOT read it till after trying to write it
down independently, and, preferably, do not ever read it.

First:

T(0a(€1,m) + a2(é2,m2))
= T(1&1 + a2, a1 + azng)
= (€1 +azbe)+B(arm +aom), y(enér +azés)+6(arm +azm)).
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Second:

o1 T(&,m) + a2T (&, m2)
= ai(ad1 + Bm,v& + dm) + az(aa + B2, v€2 + 6n2).

Third and last: compare the second lines of these equations.

As for (2): its linearity was already destroyed by the squaring coun-
terexample in the discussion before the statement of the problem. Check
it.

The example (3) is the same as (1); the only difference is in the names
of the fixed scalars.

(b) As before, the definitions (1) and (3) yield linear transformations
and the definition (2) does not. To discuss (1), look at any typical polyno-
mial, such as, say

923 — 322 + 2z — 5,

and do what (1) says to do, namely, replace z by 2. The result is

975 — 3z* + 222 — 5.

Then think of doing this to two polynomials, that is, to two elements of P,
and forming the sum of the resuits. Is the outcome the same as if the addi-
tion had been performed first and only then was z replaced by 22? Do this
quite generally: think of two arbitrary polynomials, think of adding them
and then replacing z by z2, and compare the result with what would have
happened if you had replaced = by z? first and added afterward. It’s not
difficult to design suitable notation to write this down in complete gener-
ality, but thinking about it without notation is more enlightening—and the
answer is yes. Yes, the results are the same. That’s a statement about addi-
tion, which is a rather special linear combination, but the scalars that enter
into linear combinations have no effect on the good outcome.

The definition (2) is the bad kind of squaring once more. Counterex-
ample: consider the polynomial (vector) p(z) = z and the scalar 2, and
compare T'(2p(x)) with 2Tp(z). The first is (2p(:1:))2, which is 422, and
the second is 2z*. Question: what happens if p(z) is replaced by the even
simpler polynomial p(z) = 1—is that a counterexample also?

The discussion of (3) can be carried out pretty much the same way
as the discussion of (1): instead of talking about linear combinations and
replacing z by 2, talk about linear combinations and multiply them by 2.
It doesn’t make any difference which is done first—the formula (6) does
indeed define a linear transformation.
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Solution 55.

(1) If F is a linear functional defined on a vector space V, then either F'(v)
is 0 for every vector v in V, or it is not. (The possibility is a realistic one:
the equation F(v) = 0 does indeed define a linear functional on every
vector space.) If F(v) = 0 for all v, then ran F just consists of the vector
0 (in R1), and nothing else has to be said. If that is not the case, then the
range of F' contains some vector z, in R! (a real number) different from
0. To say that z is in the range means that V contains some vector vg such
that F(vy) = zo. Since F is a linear functional (linear transformation), it
follows in particular that

F(zvg) = zxp

for every real number z. As x ranges over all real numbers, so does the
product zz,. Conclusion: the range of F is all of R!.

(2) The replacement of z by = + 2 is a change of variables similar to
(but simpler than) the replacement of z by z? considered in Problem 54
(1 (b)), and the proof that it is a linear transformation is similar to (but
simpler than) what it was there. Squaring the variable can cause trouble
because it usually raises the degree of the polynomial to which it is done
(usually?—does it ever not do so?); the present simple change of variables
does not encounter even that difficulty.

(3) The range of this transformation contains only one vector, namely
(0,0); it is indeed a linear transformation.

(4) The equation does not define a linear transformation. Counterex-
amples are not only easy to find—they are hard to miss. For a special one,
consider the vector (0, 0,0) and the scalar 2. Is it true that

T(2-(0,0,0)) =2-T7(0,0,0)?

The left side of the equation is equal to T'(0, 0, 0), which is (2, 2); the right
side, on the other hand, is equal to 2 - (2,2), which is (4,4).

(5) The “weird” vector space, call it W for the time being, is really the
easy vector space R! in disguise; they differ in notation only. That state-
ment is worth examining in detail.

Suppose that two people, call them P and Q, play a notation game.
Player P is thinking of the vector space R, but as he plays the game he
never says anything about the vectors that are in his thoughts—he writes
everything. His first notational whimsy is to enclose every vectorial symbol
in a box; instead of writing a vector z (in the present case a real number),
he writes [z], and instead of writing something like 2+ 3 = 5 or something
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like 2 - 3 = 6, he writes

=] o 2Q[] = [6]

(Note: “2” in the last equation is a scalar, not a vector; that’s why its symbol
is not, should not be, in a box.) Player Q wouldn’t be seriously mystified by
such a thin disguise.

Suppose next that the notational change is a stranger one—the oper-
ational symbols + and - continue to appear in boxes, but the symbols for
vectors appear as exponents with the base 2. (Caution: vectors, not scalars.)
In that case every time P thinks of a vector z what he writes is the number
s obtained by using x as an exponent on the base 2. Example: P thinks 1
and writes 2; P thinks 0 and writes 1; P thinks 2 and writes 4; P thinks % and
writes v/2; P thinks —3 and writes %. What will Q ever see? Since s is posi-
tive no matter what z is (that is, 2% is positive no matter what real number
z is), all the numbers that Q will ever see are positive. As = ranges over all
possible real numbers, the exponential s (that is, 2%) ranges over all possi-
ble positive real numbers. When P adds two real numbers (vectors), z and
y say, what he reports to Q is s |+|t, where s = 2* and ¢ = 2¥. Example:
when P adds 1 and 2 and gets 3, the report that Q seesis 2|+|4 = 8. As
far as Q is concerned the numbers he is looking at were multiplied.

Scalar multiplication causes a slight additional notational headache.
Both P and Q are thinking about a real vector space, which means that
both are thinking about vectors, but P’s vectors are numbers in R! and
Q’s vectors are numbers in R . Scalars, however, are the same for both,
just plain real numbers. When P thinks of multiplying a real number z (a
vector) by a real number y (a scalar), the traditional symbol for what he
gets is yx, but what he writes is

y[]s:tv

where s = 2° and ¢ = 2¥*. Notice that 2Y* = (2%)Y, or, in other words,
t = s¥. Example: when P is thinking (in traditional notation) about 3-2 = 6,
what Q sees is 3 [[]4 = 64, which he interprets to mean that the scalar
multiple of 4 by 3 has to be obtained by raising 4 to the power 3.

That’s it—the argument shows (doesn’t it?) that R! and R, differ in
notation only. Yes, R, is indeed a vector space. If T is defined on R by
T'(s) = log, s (note: log to the base 2), then T in effect decodes the no-
tation that P encoded. When Q applies T to a vector s in R, and gets
log, s, he recaptures the notation that P disguised. Thus, in particular,
when s = 2% and ¢ = 2¥ and T is applied to s[+]¢, the result is log, (2% -2¢),
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which is z + y. In other words,

T(s[+]t) = Ts+ Tt,

which is a part of the definition of a linear transformation. The other part,
the one about scalar multiples goes the same way: if s = 2% and t = 2¥%,
then

T(y[3s) = T(t) = yz = yT(s)-

There is nothing especially magical about log,; logarithms to other
bases could have been used just as well. Just remember that log, s, for
instance, is just a constant multiple of log, s—in fact

logyo s = (logy02) - logy s

for every positive real number s. If T had been defined by
T(s) = logyg s,

the result would have been the same; the constant factor log,, s just goes
along for the ride.

Solution 56.

(1) What do you know about a function if you know that its indefinite inte-
gral is identically 0? Answer: the function must have been 0 to start with.
Conclusion: the kernel of the integration transformation is {0}.

(2) What do you know about a function if you know that its derivative is
identically 0? Answer: the function must be a constant. Conclusion: ker D
is the set of all constant polynomials.

(3) How can it happen that

2r+3y=0
and
Tz — 57 =07
To find out, eliminate z. Since
7-2z4+7-3y=0
and

2.7x—2-5y=0,
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therefore
21y — 10y = 0,

or y = 0, and from that, in turn, it follows that

20 +3y=2x+3-0=2zx=0,

and hence that z = 0. Conclusion: ker T = {(0,0)}.
(4) How can it happen for a polynomial p that p(z?) = 0? Recall, for
instance, that if

p(z) = 9z° — 322 + 2z - 5,
then
p(z?) = 92° ~ 32 + 222 - 5;

the only way that can be 0 is by having all its coefficients equal to 0, which
happens only when all the coefficients of p were 0 to begin with. (See Prob-
lem 54 (2 (a)).) Conclusion: the kernel of this change of variables is {0}.

(5) To say that T'(z, y) = (0, 0) is the same as saying that (z,0) = (0,0),
and that is the same as saying that = 0. In other words, if (x, y) is in the
kernel of T, then (z,y) = (0, y). Conclusion: ker T is the y-axis.

(6) This is an old friend. The question is this: for which vectors (z,y)
in R? is it true that = + 2y = 0? Answer: the ones for which it is true, and
nothing much more intelligent can be said about them, except that the set
was encountered before and given the name RZ. (See Problem 22.)

Solution 57.

(1) The answer is yes: the stretching transformation, which is just scalar
multiplication by 7, commutes with every linear transformation. The com-
putation is simple: if v is an arbitrary vector, then

(ST)v = S(Tv) by the definition of composition
= 7(Tv) by the definition of S
and
(T'S)v =T(Sv) by the definition of composition
=T(7v) by the definition of S
= 7(Tv) by the linearity of T'.

The number 7 has, of course, nothing to do with all this: the same
conclusion is true for every scalar transformation. (For every scalar -y the
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linear transformation S defined for every vector v by Sv = v is itself
called a scalar. Words are stretched by this usage, but in a harmless way,
and breath is saved.) The proof is often compressed into one line (slightly
artificially) as follows:

(ST)yv = S(Tw) = ¢(Tv) = T(cv) = T(Sv) = (T'S)v.

(2) The question doesn’t make sense; S: R* — R3 (that is, S is a trans-
formation from R3 to R3) and T: R® — R?Z, so that T'S can be formed, but
ST cannot.

(3) If p(z) = =z, then STp(z) (a logical fussbudget would write
((ST)p)(x), but the fuss doesn’t really accomplish anything) = STz =
z? -z = 23 and TSz = Tz? = z? - 22 = z*—and that’s enough to prove
that S and T' do not commute.

A student inexperienced with thinking about the minimal, barebones,
extreme cases that are usually considered mathematically the most elegant
might prefer to examine a more complicated polynomial (not just z, but,
say, 1 + 2z + 3z2). For the brave student, however, there is an even more
extreme case to look at (more extreme than z): the polynomial p(z) = 1.
The action of T on 1 is obvious: 71 = z2. What is the action of S on
1? Answer: the result of replacing the variable = by 22 throughout—and
since = does not explicitly appear in 1, the consequence is that S1 = 1.
Consequence: ST1 = Sz? = z* and TS1 = T1 = z%. Conclusion: (as
before) S and T do not commute.

To say that S and 7" do not commute means, of course, that the com-
positions ST and T'S are not the same linear transformation, and that, in
turn, means that they disagree at at least one vector. It might happen that
they agree at many vectors, but just one disagreement ruins commutativ-
ity. Do the present ST and T'S agree anywhere? Sure: they agree at the
vector 0. Anywhere else? That’s a nice question, and it’s worth a moment’s
thought here. Do ST and T'S agree at any polynomial other than 0? Since

STp(z) = S(z*p(x)) = z*p(z?)
and
TSp(z) = Tp(z®) = «*p(z?),

the question reduces to this: if p # 0, can z*p(z?) and z2p(x?) ever be
the same polynomial? The answer is obviously no: if that equation held
for p # 0, it would follow that 2 = z*, which is ridiculous. (Careful:
z? = z* is not an equation to be solved for an unknown z. It offers itself
as an equation, an identity, between two polynomials, and that’s what’s
ridiculous.)
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(4) Since S:R? — R! and T:R* — RZ, both products ST and TS
make sense, and, in fact

ST:R! - R! and TS:R? - R

It may be fun to calculate what ST and T'S are, but for present purposes it
is totally unnecessary. The point is that ST is a linear transformation on R!
and T'S is a linear transformation on R?; the two have different domains
and it doesn’t make sense to ask whether they are equal. No, that’s not
correctly said: it makes sense to ask, but the answer is simply no.

(5) To decide whether STp(z) = T'Sp(z) for all p, look at a special
case, and, in particular, look at an extreme one such as p(z) = 1, and
hope that it solves the problem. Since S1 = 1 and T1 = 1, it follows
that ST1 = T'S1 = 1. Too bad—that doesn’t settle anything. What about
p(x) = z? Since STz = S0 =0and TSz = T(x + 2) = 2, that does settle
something: S and T do not commute.

(6)-(1) The scalar 7 doesn’t affect domain, range, or kernel: the ques-
tion is simply about dom T, ran 7', and ker T'. Answer:

domT =ranT = R?, and ker T' = {0}.

(6)-(2) Since T'S(z,y,z) = T(7z,7y,7z) = (Tz,Ty), it follows easily
that dom 7'S = R3, ran T'S = R?, and ker T'S is the set of all those vectors
(z,y, z) in R3, for which z = y = 0, that is, the z-axis. (Look at the whole
question geometrically.) Since there is no such thing as ST, the part of the
question referring to it doesn’t make sense.

(6)-(3) The domains are easy: dom ST = domT'S = P. The kernels
are easy too: since

STp(x) = Sz’p(z) = z*p(a?)
and
TSp(z) = Tp(a?) = p(c?),

it follows that ker ST = ker T's = {0}. The question about ranges takes a

minute of thought. It amounts to this: which polynomials are of the form

x2p(x?), and which are of the form z*p(x2)? Answer: ran T'S is the set of

all even polynomials with 0 constant term, and ran ST is the set of all those

even polynomials in which, in addition, the coefficient of 22 is 0 also.
(6)-(4) Now is the time to calculate the products:

STz = S(z,z) =x+2x + 3z
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and
TS(z,y) =T(z+2y) = (z+ 2,z + 2y).

Answers: dom ST = R!, domTS = RZ? ran ST = R!, ranTS is the
“diagonal” consisting of all vectors (z, y) in R? with « = y, ker ST = {0},
and ker T'S is the line with the equation ¢ + 2y = 0.

(6)-(5) To find the answer to (5) the only calculations needed were for
STz and T'Sz. To get more detailed information, more has to be calcu-
lated, as follows:

ST(a+ Bz + v2® + 62°) = S(a + yz?)
= a+7(z+2)% = (a+27) + 4z + 472°
and
TS(a+ Bz + vz + 62°) = T(a + B(z + 2) + ¥(z + 2)* + é(z + 2)*)
= (a+ 208 + 4y + 86) + (v + 66)2?

There is no trouble with domains (both are P3). The range of ST is the set
of all those quadratic polynomials for which the coefficients of z and z?
are equal, and the range of T'S is the set of all those quadratic polynomials
for which the coefficient of z is 0. The kernel of ST is the set of all those
cubic polynomials, that is polynomials of the form

a+ Bz + yz? + 623,
for which a = 4 = 0, and the kernel of T'S is the set of all those whose

coefficients satisfy the more complicated equations

a+28+4y+8=v+66=0.

Solution 58.

Yes, ran A C ran B implies the existence of a linear transformation 7" such
that A = BT The corresponding necessary condition for right divisibility,
A=8B,is

ker B C ker A,

and it too is sufficient.

The problem is, given a vector z in the vector space V, to define T'z,
and, moreover, to do it so that Az turns out to be equal to BTz. Puty =
Az, so that y € ran A; the assumed condition then implies that y € ran B.
That means that y = Bz for some z, and the temptation is to define Tz
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to be z. That might not work. The difficulty is one of ambiguity: z is not
uniquely determined by y. It could well happen that y is equal to both Bz,
and Bzy); should T'z be z; or z2?

If Bz; = Bz, then B(z; — 22) = 0, which says that

21 — 29 € ker B.

The way to avoid the difficulty is to stay far away from ker B, and the way to
do that is to concentrate, at least temporarily, on a complement of ker B.
Very well: let M be such a complement, so that

MnkerB={0} and M+kerB=V.

Since B maps ker B to {0}, the image of M under B is equal to the
entire range of B, and since M has only 0 in common with ker B, the map-
ping B restricted to M is one-to-one. It follows that for each vector z there
exists a vector 2z in M such that Az = Bz, and, moreover, there is only one
such z; it is now safe to yield to temptation and define Tz to be 2. The con-
ceptual difficulties are over; the rest consists of a routine verification that
the transformation T so defined is indeed linear (and, even more trivially,
that A = BT).

As for right divisibility, A = SB, the implication from there toker B C
ker A is obvious; all that remains is to prove the converse. A little experi-
mentation with the ideas of the preceding proof will reveal that the right
thing to consider this time is a complement N of ran B. For any vector =
in ran B, that is, for any vector of the form By, define Sz to be Ay. Does
that make sense? Couldn’t it happen that one and the same z is equal to
both By, and Bys, so that Sz is defined ambiguously to be either Ay, or
Ay,? Yes, it could, but no ambiguity would result. The reason is that if
By, = Bys,, so that y; — yo € ker B, then the assumed condition implies
that y; — y; € ker A, and hence that Ay; = Ay;. Once S is defined on
ran B, it is easy to extend it to all of V just by setting it equal to 0 on N. The
rest consists of a routine verification that the transformation S so defined
is indeed linear (and, even more trivially, that A = SB).

Solution 59.

The questions have interesting and useful answers in the finite-dimensional
case; it is, therefore, safe and wise to assume that the underlying vector
space is finite-dimensional.

(1) If the result of applying a linear transformation A to each vector
in a total set is known, then the entire linear transformation is known. It
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is instructive to examine that statement in a simple special case; suppose
that the underlying vector space is R?. If

A(l, 0) = (a, '7)
and

A(O? 1) = ()61 6)

(there is a reason for writing the letters in a slightly non-alphabetic order
here), then

A(z,y) = z(e,v) + ¥(8,6) = (az + By, vz + b6y)

(and the alphabet has straightened itself out).

The reasoning works backwards too. Given A, corresponding scalars
o, 3, v, 6 can be found (uniquely); given scalars a, 3, , 6, a corresponding
linear transformation A can be found (uniquely).

The space R? plays no special role in this examination; every 2-dimen-
sional space behaves the same way. And the number 2 plays no special
role here; any finite-dimensional space behaves the same way. The only
difference between the low and the high dimensions is that in the latter
more indices (and therefore more summations) have to be juggled. Here
is how the juggling looks.

Given: a linear transformation A on a vector space V with a prescribed
total set, and an arbitrary vector z in V. Procedure: express « as a linear
combination of the vectors in the total set, and deduce that the result of
applying A to z is the same linear combination of the results of applying
A to the vectors of the total set. If, in particular, V is finite-dimensional,
with basis {e1, ez, ..., e}, then a linear transformation A is uniquely de-
termined by specifying Ae; for each j. The image Ae; is, of course, a linear
combination of the e;’s, and, of course, the coefficient of e; in its expansion
depends on both i and j. Consequence: Ae; has the form }7- | a;je;. In
reverse: given an array of scalars a;;; (1 =1,...,n;j = 1,...,n), aunique
linear transformation A is defined by specifying that

n
A€j= E aije,-
i=1

for each j. Indeed, if

n
xr = E Yi€5»
=1
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then

n n n n n
Az =3 yide; =) Y =2 | Y iy | e
j=1 j=1 i=1 i=1 \ j=1

The conclusion is that there is a natural one-to-one correspondence
between linear transformations A on a vector space of dimension n and
square arrays (matrices) {a;;} (1 = 1,...,n; j = 1,...,n). Important
comment: linear combinations of linear transformations correspond to the
same linear combinations of arrays. If, that is,

n n
Aej = E Q564 and Bej = Zﬂ,;je,-,
i=1 i=1
then

n
(¢A+ pBB)e; = Z(aaij + BBij)ei.
i=1
Each {c;;} has n? entries; except for the double subscripts (which are
hardly more than a matter of handwriting) the «;;’s are the coordinates of
a vector in R™. Conclusion: the vector space L(V) is finite-dimensional;
its dimension is n2.

(2) Consider the linear transformations 1, A, A2, ..., A" . They con-
stitute n? + 1 elements of the vector space L(V) of dimension n?, and,
consequently, they must be linearly dependent. The assertion of linear de-
pendence is the assertion of the existence of scalars ag, oy, . . ., a,2 such
that

ag+ a1 A+ -+ appA”’ =0,

and that, in turn, is the assertion of the existence of a polynomial

2
ag+ a1+ + apex”

such that p(A) = 0. Conclusion: yes, there always exists a non-zero poly-
nomial p such that p(A4) = 0.
(3) If A is defined by Az = yo(z)zo, then
A%z = A[Az] = yo(z) Azo = yo(2) [yo(xg)mo] = yo(zo) Az.
In other words: A%z is a scalar multiple (by the scalar yo (o)) of Az, or,
simpler said, A? is a scalar multiple (by the scalar yo(z()) of A. Differently
expressed, the conclusion is that if p is the polynomial (of degree 2) defined
by
p(t) = t* — yo(@o)t,
then p(A) = 0; the answer to the question is 2.
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Solution 60.

Suppose that T is a linear transformation with inverse T~ on a vector
space V. If v; and v, are in V with T'u; = v; and T'up = v, then

T (vy 4 v2) = T (Tuq + Tuy)
=T YT (uy +uz)) (because T is linear)
=wu; +uy (by the definition of T-1)
=T 'v; + T~ v, (by the definition of T~1),

and, similarly, if v is an arbitrary vector in V, a is an arbitrary scalar, and
v = Tu, then

T Yav) = T~ (a(Tu)) = T (T(ow)) = au = (T~ 'v)
—q.e.d.

Solution 61.
(1) What is the kernel of T'? That is: for which (5) does it happen that

26+n\ _ (0Y),

26 +1n 0/
Exactly those for which 2¢+7 = 0, or, in other words, = —2¢, and that’s a
lot of them. The transformation T has a non-trivial kernel, and, therefore,

it is not invertible.
(2) The kernel question can be raised again, and yields the answer

that both £ and 5 must be 0; in other words the only (f}) in the kernel

is (g) That suggests very strongly that T is invertible, but a really sat-

isfying answer to the question is obtained by forming T2. Since all that T
does is interchange the two coordinates of whatever vector it is working
on, T2 interchanges them twice—which means that T2 leaves them alone.
Consequence: T2 = 1, or, in other words, T~ = T.

(3) The differentiation transformation D on P is not invertible. Rea-
son (as twice before in this problem): D has a non-trivial kernel. That is:
there exist polynomials p different from 0 for which Dp = 0—namely, all
constant polynomials (except 0).
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Solution 62.

Both assertions are false.
For (1), take (@) and (B) to be invertible, and put (y) = (3)7,
(6) = (a)~'. In that case

M= (([(;;L (SL) ’

which makes it obvious that all four formal determinants are equal to the
matrix 0. If, in particular,

@=(17) = ®=(5 1)

then
_ 1 0 L (1 -1
@ =(4 1) wma o=(5 1)
so that
1 0 1 1
|1 1 01
1 -1 1 0
0 1 -1 1

The point is that M is invertible. Such a statement is never obvious—
something must be proved. The simplest proof is concretely to exhibit the
inverse, but the calculation of matrix inverses is seldom pure joy. Be that
as it may, here it is; in the present case

-1 1 1 0
M-! = 0 1 -1 -1
1 0 -1 -1
1 -1 0 1

For (2), take () involutory ((a)? = 1) and (3) nilpotent of index 2
((8)? = 0), and put () = (8), (§) = (). In that case

(5 )

which makes it obvious that all four formal determinants are equal to the
identity matrix 1. If, in particular,

@=(3 ) = ®=(] 7).
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then
0100
1010
M= 0 001
1010

Since the first and third columns of M are equal, so that M sends the first
and third natural basis vectors to the same vector, the matrix M is not
invertible.

Solution 63.

The problem of evaluating det M; calls attention to a frequently usable
observation, namely that the determinant of a direct sum of matrices is the
product of their determinants. (The concept of direct sums of matrices has
not been defined—is its definition guessable from the present context?)

Since
1 2 3 4
det(2 1)——3 and det(4 3)——7,

it follows that det M; = 21.

If a matrix has two equal columns (or two equal rows?), then it is not
invertible, and, therefore, its determinant must be 0. The matrix M, has
two equal rows (for instance, the first and the fifth, and also the second
and the fourth) and therefore det M, = 0.

The simplest trick for evaluating det M3 is to observe that M is similar

to the direct sum of three copies of the matrix 2 ) (The concept of

2 3
similarity of matrices has not been defined yet—is its definition guessable

from the present context?) The similarity is achieved by a permutation ma-
trix. What that means, in simple language, is that if the rows and columns
of M3 are permuted suitably, M3 becomes such a direct sum. Since

3 2
det ( 9 3) =5,
it follows that det Mz = 53 = 125.

Solution 64.

If n = 1, then (1) is the only invertible 01-matrix and the number of its
entries equal to 1 is 1; that’s an uninteresting extreme case. When n = 2,
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the optimal example is

(6 1)

with three 1’s. What happens when n = 3?
The invertible matrix

1 11
011
0 01

has six 1’s; can that be improved? There is one and only one chance. An

extra 1 in either the second column or in the second row would ruin invert-
ibility; what about an extra 1 in position (3, 1)? It works: the matrix

1 11
011
1 01

is invertible. An efficient way to prove that is to note that its determinant
is equal to 1.

Is the general answer becoming conjecturable? The procedure is in-
ductive, and the general step is perfectly illustrated by the passage from 3
to 4. Consider the 4 x 4 matrix
1 1
0 1
1 1)’
1 1

[

1
1
0
1

and expand its determinant in terms of the first column. The cofactor of
the (1, 1) entry is invertible by the induction assumption. The (2, 1) entry is
0, and, therefore, contributes 0 to the expansion. The cofactor of the (3, k)
entry, for £ > 2, contains two identical rows, namely the first two rows
that consist entirely of 1’s—it follows that that cofactor contributes 0 also.
Consequence (by induction): the matrix is invertible.

The number of 1’s in the matrix here exhibited is obtained from n? by
subtracting the number of entries in the diagonal just below the main one,
and that number is n — 1. This proves that the number of 1’s can always be
asgreatasn? —n + 1.

Could it be greater? If a matrix has as many as n?—n+2 (= n?—(n—2))
entries equal to 1, then it has at most n— 2 entries equal to 0. Consequence:
it must have at least two rows that have no 0’s in them at all, that is at least

two rows with nothing but 1’s in them. A matrix with two rows of 1’s cannot
be invertible.
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Comment. Can the desired invertibilities be proved without determinants?
Yes, but the proof with determinants seems to be quite a bit simpler, and
even, in some sense, less computational.

Solution 65.

Yes, L(V) has a basis consisting of invertible linear transformations. One
way to construct such a basis is to start with an easy one that consists of
non-invertible transformations and modify it. The easiest basis of L(V) is
the set of all customary matrix units: they are the matrices E(3, j) whose
{p, q) entry is (i, p)6(J, g), where 8 is the Kronecker delta. (The indices ¢,
7, p» q here run through the values from 1 to n.) In plain language: each
E(i, ) has all entries except one equal to 0; the non-zero entry is a 1 in
position (i, 7). Example: if n = 4, then

E(2,3) =

e B e B e B e
[ I e B o B )
o O~ O
OO OO

The n? matrices E(3, §) constitute a basis for the vector space L(V),
but, obviously, they are not invertible. If

F(i,j) = B(i,5) +1

(where the symbol “1” denotes the identity matrix), then the matrices
F(i, j) are invertible—that’s easy—and they span L(V)—that’s not obvi-
ous. Since there are n? of them, the spanning statement can be proved by
showing that the F'(¢, j)’s are linearly independent.

Suppose, therefore, that a linear combination of the F’s vanishes:

Z a(i, j)F(i,5) =0,

or, in other words,
X =3 o(ij) 1+ ali,)E(i,j) =0.
ij ij

K p # g, then the (p, g) entry of X is 0+ a(p, g), and therefore a(p, q) = 0.
What about the entries a(p, p)? The (p, p) entry of X is

Y a(i,j) +alp,p),

ij
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which is therefore 0. But it is already known that a(i, j) = 0 when i = j,
and it follows that

a(p,p) + Za(z,z) =0

for each p. Consequence: the a(p, p)’s are all equal (!), and, what’s more,
their common value is the negative of their sum. The only way that can
happen is to have a(p, p) = 0 for all p—and that finishes the proof that the
F’s are linearly independent.

Solution 66.

The answer is that on a finite-dimensional vector space every injective lin-
ear transformation is surjective, and vice versa.

Suppose, indeed, that {u;,us,...,u,} is a basis of a vector space V
and that T is a linear transformation on V with kernel {0}. Look at the
transformed vectors Tuy, T'ug, . .., Tu,: can they be dependent? That is:
can there exist scalars a1, as, ..., a, such that

ayTuy + agTug + - - - + a,Tu, =07
If that happened, then (use the linearity of T') it would follow that

T(o1uy + aguz + -+ + auy,) =0,

and hence that

Uy + 0y + -+ apty, =0

(here is where the assumption about the kernel of T is used). Since, how-
ever, the set

{ui,ug,...,un}

is independent, it would follow that all the o’s are 0—in other words that
the transformed vectors

Tul,T’U.z, . .,Tun

are independent. An independent set of n vectors in an n-dimensional vec-
tor space must be a basis (if not, it could be enlarged to become one, but
then the number of elements in the enlarged basis would be different from
n—see Problem 42). Since a basis of V spans V, it follows that every vector
is a linear combination of the vectors Tu;, Tus, ..., Tu, and hence that
the range of T' is equal to V. Conclusion: ker 7 = {0} implies ran 7" = V.
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The reasoning in the other direction resembles the one just used. Sup-

pose this time that {u1, ua, ..., u, } is a basis of a vector space V and that T
is a linear transformation on V such that ran 7' = V. Assertion: the trans-
formed vectors Ty, Tug, ..., Tu, span V. Reason: since, by assumption

every vector v in V is the image under T of some vector u, and since every
vector w is a linear combination of the form

o1ty + otz + -+ Qplin,
it follows indeed that
v=Tu=T(a1u1 + azug + - -+ + Cptn)
=oTuy, + agTus + -+ - + anTuy,.

Since a total set of n vectors in an n-dimensional vector space must be a
basis (if not, it could be decreased to become one, but then the number
of elements in the enlarged basis would be different from n—see Problem
42), it follows that the transformed vectors Tuy, Tua, ..., Tu, are inde-
pendent. If now w is a vector in ker T', then expand u in terms of the basis
{u1,u2,...,u,}, so that

U = a1u) + QUz + - + QpUn,

infer that

0=Tu=0o1Tu; +ayTus + - - + anTu,,
and hence that the o’s are all 0. Conclusion: ran T = V implies ker " = {0}.

Comment. The differentiation operator D on the vector space Ps is nei-
ther injective nor surjective; that’s an instance of the result of this section.
The differentiation operator D on the vector space P is surjective (is that
right?), but not injective. The integration operator T' (see Problem 56} is
injective but not surjective. What’s wrong?

The answer is that nothing is wrong; the theorem is about finite-dimen-
sional vector spaces, and P is not one of them.

Solution 67.

If the dimension is 2, then there are only two ways a basis (consisting of
two elements) can be permuted: leave its elements alone or interchange
them. The identity permutation obviously doesn’t affect the matrix at all,
and the interchange permutation interchanges the two columns.

It is an easy (and familiar?) observation that every permutation can be
achieved by a sequence of interchanges of just two objects, and, in the light
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of the comment in the preceding paragraph, the effect of each such inter-
change is the corresponding interchange of the columns of the matrix. It
is, however, not necessary to make use of the achievability of permutations
by interchanges (technical word: transpositions); the conclusion is almost
as easy to arrive at directly. If, for instance, the dimension is 3, if a basis is
{e1,e2, es}, and if the permutation under consideration replaces that basis
by {es, e1, e2}, then the effect of that replacement on a matrix such as

Q11 012 013
Qg1 Qg2 Qa3
Q31 Og2 (33

produces the matrix

Q13 Q31 Q12
Q23 Q21 Q22
Q33 Q31 (32

Solution 68.

To say that {a;} is a diagonal matrix is the same as saying that a;; = a;;6i;
for all i and j (where §;; is the Kronecker delta, equal to 1 or 0 according
asi = jori#j). If B= {8}, then the (i, j) entry of AB is

n
E ik B = s Bij
k=1
(because the presence of 6;; makes every term except the one in which
k =i equal to 0), and the (i, j) entry of BA is

n
Z Bikonjbr; = Bija;.
k=1
Ifi # j, then the assumption about the diagonal entries says that o;; # o,

and it follows therefore, from the commutativity assumption, that 3;; must
be 0. Conclusion: B is a diagonal matrix.

Solution 69.

If B commutes with every A, then in particular it commutes with every
diagonal A with distinct diagonal entries, and it follows therefore, from
Problem 68, that B must be diagonal—in the sequel it may be assumed,

68
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with no loss of generality, that B is of the form

51 0 0 O
0 B2 0 O
0 0 B3 O
0 0 0 p,

At the same time B commutes with the matrices of all those linear transfor-
mations that leave fixed all but two entries of the basis. In matrix language
those transformations can be described as follows: let p and g be any two
distinct indices, and let C be obtained from the identity matrix by replacing
the 1’s in positions p and ¢ by 0’s and replacing the 0’s in positions (p, )
and (g, p) by ’s. Typical example (withn = 4, p = 2, and ¢ = 3):

1 0 00
0010
¢= 0100
0 0 01
Since
/r 0 0 O
10 0 B O
BC = 0 B3 0 O
0 0 0 pBa
and
8 0 0 O
|0 0 B O
CB = 0 B 0 O
0 0 0 B

it follows that B = Bs. It’s clear (isn’t it?) that the method works in general
and proves that all the 3’s are equal.

Solution 70.

Consider the linear transformation

01
(6 o)
or, more properly speaking, consider the linear transformation A on R?
defined by the matrix shown. Note that if u = (a, 3) is any vector in R?,
then Au = (,0). Consequence: if M is an invariant subspace that contains
a vector (a, 8) with 8 # 0, then M contains (3,0) (and therefore (1,0)),

and it follows (via the formation of linear combinations) that M contains
(0, B) (and therefore (0, 1)). In this case M = R?.
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If M is neither O nor R?, then every vector in M must be of the form
(ax,0), and the set M; of all those vectors do in fact constitute an invariant
subspace. Conclusion: the only invariant subspaces are O, M;, and R?.

Solution 71.

If D is the differentiation operator on the space P,, of polynomials of de-
gree less than or equal to n, and if m < n, then P,,, is a subspace of P,,, and
the subspace IP,, is invariant under D. Does P,,, have an invariant comple-
ment in P,,?

The answer is no. Indeed, if p is a polynomial in P, that is not in P,,,,
in other words if the degree k of p is strictly greater than m, then replace p
by a scalar multiple so as to justify the assumption that p is monic (p(t) =
tk + ap_1t* "1 + - .- + ag). If p belongs to a subspace invariant under D,
then Dp, D?p, ... all belong to that subspace, and, therefore, so does the
polynomial D¥~™p, which is of degree m. Consequence: every polynomial
has the property that if D is applied to it the right number of times, the
result is in P,,,. Conclusion: P,,, can have no invariant complement.

Comment. Ifn =1, thenP, (=P,) consists of all polynomials a + St of
degree 1 or less, and D sends such a polynomial onto the constant poly-
nomial 3 (= # + 0 - t). That is only trivially (notationally) different from
the set of ordered pairs («, §) with the transformation that sends such a
pair onto (3, 0)—in other words in that case the present solution reduces
to Solution 69.

Solution 72.

A useful algebraic characterization of projections is idempotence. Expla-
nation: to say that a linear transformation A is idempotent means that
A% = A. (The Latin forms “idem” and “potent” mean “same” and
“power”.) In other words, the assertion is that if E is a projection, then
E? = E, and, conversely, if E? = E, then E is a projection.

The idempotence of a projection is easy to prove. Suppose, indeed,
that E is the projection on M along N. If z = z + y is a vector, with = in M
and y in N, then Ez = z, and, since x = z + 0, so that Ez = z, it follows
that B2z = Ez.

Suppose now that E is an idempotent linear transformation, and let
M and N be the range and the kernel of E respectively. Both M and N
are subspaces; that’s known. If z is in M, then, by the definition of range,
z = Eu for some vector u, and if z is also in N, then, by the definition of

)|
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kernel, Ez = 0. Since E = E?, the application of E to both sides of the
equation z = Eu implies that Ez = z; since, at the same time, Ez = 0, it
follows that z = 0. Conclusion: MNN = Q.

If z is an arbitrary vector in V, consider the vectors

Ez and z-Ez (=(1-E)z);

call them z and y. The vector z is in ran F, and, since
Ey=Ez-F%*2=0,
the vector y is in ker E. Since z = z + y, it follows that
M+N=V.

The preceding two paragraphs between them say exactly that M and
N are complementary subspaces and that the projection of any vector z
to M along N is equal to Ez—that settles everything. Note, in particular,
that the argument answers both questions: projections are just the idem-
potent linear transformations, and if E is the projection on M along N,
thenran E =M and ker E = N.

It is sometimes pleasant to know that if F is a projection, then ran E
consists exactly of the fixed points of E. That is: if z is in ran F, then Ez =
z, and, trivially, if Ez = z, then z is in ran F.

Solution 73.
If E and F are projections such that E + F also is a projection, then

(E+F)>=E+F,
which says, on multiplying out, that
EF+FE=0.
Multiply this equation on both left and right by E' and get
EF+EFE=0 and EFE+FE=0.
Subtract one of these equations from the other and conclude that
EF - FE =0,
and hence (since both the sum and the difference vanish)
EF =FE=0.

That’s a necessary condition that E + F be a projection.
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It is much easier to prove that the condition is sufficient also: if it is
known that EF = FE = 0, then the cross product terms in (E + F)2
disappear, and, in view of the idempotence of F and F separately, it follows
that E + F is idempotent.

Conclusion: the sum of two projections is a projection if and only if
their products are 0. (Careful: two products, one in each order.)

Question. Can the product of two projections be 0 in one order but not
the other? Yes, and that takes only a little thought and a little experimental

search. If
(10 _fa B
(o 0) = (5 5)
O). .
is idempotent

and EF = 0, then a = 3 = 0. The resulting F' = (2 5

if and only if either ¥ = § = 0 or else § = 1. A pertinent example is

0 0
r=(2 1)

in that case EF' = 0 and FE # 0.

Solution 74.

The condition is that E2 = E3; a strong way for a linear transformation to
satisfy that is to have E? = 0. Is it possible to have E? = 0 without E = 0?
Sure; a standard easy example is

01
E= (0 0 ) ‘

In that case, indeed, E2(1 - E) = 0, but E(1 — E) = 0is false. That settles
the first question.

It is easy to see that the answer to the second question is no—for the
E just given it is not true that E(1— E)? = 0 (because, in fact, E(1 - E)? =
E - E?),

That answers both questions, but it does not answer all the natural
questions that should be asked.

One natural question is this: if £(1 — E)? = 0, does it follow that E is
idempotent? No—how could it? Just replace the E used above by 1 — E—

that is, use
1 -1
0 1
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0 1
1"E_(0 0)’

so that (1 — E)? = 0, and therefore E(1 — E)? = 0, but it is not true that
E?=E.
Another natural question: if both

as the new E. Then

E*1-E)=0 and E(1-E)*=0,

does it follow that E is idempotent? Sure: add the two equations and sim-
plify to get E — E% = 0.

Chapter 5. Duality

Solution 75.

If n = 0, then £ = 0, everything is trivial and the conclusion is true. In
the remaining case, consider a vector o such that n(zo) # 0, and reason
backward. That is, assume for a moment that there does exist a scalar o
such that £(z) = an(z) for all z, and that therefore, in particular, £(zo) =
an(zo), and infer that

o S@)
n(Zo)

[Note, not a surprise, but pertinent: it doesn’t matter which 2o was picked
—so long as n(zg) # 0, the fraction gives the value of c. Better said: if
there is an o, it is uniquely determined by the linear functionals £ and 7.]

Now start all over again, and go forward (under the permissible as-
sumption that there exists a vector zg such that n(zo) # 0). The linear
functional  sends

Zo to 77("170),

and hence it sends

— to 1
n(xo) ’
and hence
YZo
to v
n(x,)
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for every scalar +. Special case: i sends
n(z)Zo

(<o)

for every vector z. Consequence:

for all z. The relation between £ and 7 now implies that

(-53)

to  n(z)

for all z, which says exactly that

COM
E(:D) - n(xo)"l( ))

and that is what was wanted (with a = %ml;).
o

Solution 76.

Yes, the dual of a finite-dimensional vector space V is finite-dimensional,
and the way to prove it is to use a basis of V to construct a basis of V’. Sup-
pose, indeed, that {z1,z2,...,z,} is a basis of V. Plan: find linear func-
tionals §;,&s, . . ., &, that “separate” the z’s in the sense that

&i(x5) = by

for each 4, j = 1,2,...,n. Can that be done? If it could, then the value of
¢; at a typical vector

=0T+ a2+ + apy

would be o;—and that shows how &; should be defined when it is not yet
known. That is: writing &;(z) = «; for each i does indeed define a linear
functional (verification?).

The linear functionals &1, £, . . . , &, are linearly independent. Proof: if

Briéa(z) + Boba(z) + -+ - + Brén(z) =0

for all z, then, in particular, the linear combination vanishes when z = T;
(4 =1,...,n), which says exactly that B; = 0 for each j.

Every linear functional is a linear combination of the ¢;’s. Indeed, if £
is an arbitrary linear functional and z = a3z; + 2Ty + - - - + QpZy is aN
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arbitrary vector, then

() =&larzy + azxa + -+ + Apy)
= a1f(x1) + a2f(z2) + -+ + ané(@n)
= &1(2)é(x1) + L2(2)(22) + -+ + &n(@)E(20)
= (&1(z1)&1 + La(@2)Ea + - - - + &nl@n)n) ().

The preceding two paragraphs yield the conclusion that the z’s consti-
tute a basis of V’ (and hence that V' is finite-dimensional).

Corollary. dimV’' =dimV = n.

Solution 77.

The answer is yes: the linear transformation T' defined by

T(z) =T(z1,...,2n) = (11(z),...,yn(z))

is invertible. One reasonably quick way to prove that is to examine the
kernel of T. Suppose that z = (z,...,z,) is a vector in F™ that belongs
to the kernel of T, so that

(@), 3(@)) = (0,...,0).

Since the coordinate projections p; belong to the span of y,. . ., yn, it fol-
lows that for each j there exist scalars a;, . . ., a, such that

p; = Z AkYk-
k
Consequence:
pi(z) = Zakyk =0,
k

for each j, which implies, of course, that = 0; in other words the kernel
of T'is {0}. Conclusion: T is invertible.

SOLUTIONS: Chapter 5 255

Solution 78.

The verification that T is linear is the easiest step. Indeed: if = and y are
in V and « and B are scalars, then

T(az + By)(u) = w(az + By) = au(z) + Bu(y)
= a(Tz)(uv) + B(Ty)(u)
= (aTz + BTy)(u).

How can it happen (for a vector z in V) that Tz = 0 (in V”)? Answer: it
happens when

u(z) =0

for every linear functional z on V—and that must imply that z = 0 (see the
discussion preceding Problem 74). Consequence: T is always a one-to-one
mapping from V to V",

The only question that remains to be asked and answered is whether
or not T maps V onto V”, and in the finite-dimensional case the answer is
easily accessible. The range of T" is a subspace of V"’ (Problem 55); since
T is an isomorphism from V to ran T, the dimension of ran T is equal to
the dimension of V. The dimension of V" is equal to the dimension of
V also (because dimV = dimV’ and dimV’ = dim V”). A subspace of
dimension 7 in a vector space of dimension n cannot be a proper subspace.
Consequence: ranT = V”. Conclusion: the natural mapping of a finite-
dimensional vector space to its double dual is an isomorphism, or, in other
words, every finite-dimensional vector space is reflexive.

Solution 79.

Some proofs in mathematics require ingenuity, and others require nothing
more than remembering and using the definitions—this one begins with
a tiny inspiration and then finishes with the using-the-definitions kind of
routine.

Choose a basis {1, %3, ..., 2} for V so that its first m elements are
in M (and therefore form a basis for M); let {u;,ua, ..., u,} be the dual
basis in V' (see Solution 75). Since u;(z;) = 8, it follows that the u,’s with
© > m annihilate M and with ¢ £ m do not. In other words, if the span of
the u;’s with i > m is called N, then N ¢ MP.

If, on the other hand, v is in M?, then, just because it is in the space
V’, the linear functional u is a linear combination of u;’s. Since any such
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linear combination

u = Pruy + Paus + -+ + Brun

applied to one of the z;’s with j £ m yields 0 (because z; is in M) and,
at the same time, yields §3; (because u;(z;) = 0 when i # j), it follows
that the coefficients of the early u;’s are all 0. Consequence: u is a linear
combination of the latter u;’s, or, in other words, « is in N, or, better still
M° C N.

The conclusions of the preceding two paragraphs imply that M® = N,
and hence, since N has a basis of n — m elements, that

dimM® =n —m.

Solution 80.

If the spaces V and V" are identified (as suggested by Problem 77), then,
by definition, M% consists of the set of all those vectors z in M such that
u(z) = Ofor allu in V’. Since, by the definition of V', the equation u(z) = 0
holds for all z in M and all u in M?, so that every z in M satisfies the
condition just stated for belonging to M, it follows that M c M. If
the dimension of V is n and the dimension of M is m, then (see Problem
78) the dimension of MC is n — m, and therefore, by the same result, the
dimension of M is n — (n — m). In other words M is an m-dimensional
subspace of an m-dimensional space M, and that implies that M and M
must be the same.

Solution 81.

Suppose that A is a linear transformation on a finite-dimensional vector
space V and A’ is its adjoint on V’. If u is an arbitrary vector in ker A’, so
that A’u = 0, then, of course (A'uz)(z) = 0 for every = in V, and conse-
quently u(Az) = 0 for every z in V. The latter equation says exactly that
takes the value 0 at every vector in the range of A, or, simpler said, that
belongs to (ran A)°. The argument is reversible: if u belongs to (ran A)°,
so that u(Az) = 0 for every z, then (A’u)(x) = 0 for every z, and therefore
A'u = 0, or, simpler said, u belongs to ker A’. Conclusion:

ker A’ = (ran A)°.

It should not come as too much of a surprise that annihilators enter. The
range and the kernel of A are subspaces of V, and the range and the kernel
of A’ are subspaces of V'—what possible relations can there be between
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subspaces of V and subspaces of V'? The only known kind of relation (at
least so far) has to do with annihilators.
If A is replaced by A’ in the equation just derived, the result is

ker A” = (ran 4')°,

an equation that seems to give some information about ran A’—that’s
good. The information is, however, indirect (via the annihilator), and it is
expressed indirectly (in terms of A” instead of A). Both of these blemishes
can be removed. If V” is identified with V (remember reflexivity), then A”
becomes A, and if the annihilator of both sides of the resulting equation is
formed (remember double annihilators), the result is

ran A’ = (ker A)°.

Question. Was finite-dimensionality needed in the argument? Sure: the
second paragraph made use of reflexivity. What about the first paragraph
—is finite-dimensionality needed there?

Solution 82. 82

What is obvious is that the adjoint of a projection is a projection. The rea-
son is that projections are characterized by idempotence (Problem 71), and
idempotence is inherited by adjoints.

Problem 71 describes also what a projection is “on” and “along”: it
says that if F is the projection on M along N, then

N=ker E
and
M =ranFE.
It is a special case of the result of Solution 80 that
ker E' = (ran E)°
and
ran E' = (ker E)°.

Consequence: E' is the projection on N° along MP.

Solution 83. 83

Suppose that A is a linear transformation on a finite-dimensional vector
space V, with basis {ey,...,e;}, and consider its adjoint A’ on the dual
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space V', with the dual basis {u,,...,u,}. What is wanted is to compare
the expansion of each A’u in terms of the u’s with the expansion of each Ae
in terms of the €’s. The choice of notation should exercise some alphabetic
care; this is a typical case where subscript juggling cannot be avoided, and
carelessness with letters can make them step on their own tails in a con-
fusing manner.

The beginning of the program is easy enough to describe: expand A'u;
in terms of the u’s, and compare the result with what happens when Ae;
is expanded in terms of the e’s. The alphabetic care is needed to make
sure that the “dummy variable” used in the summation is a harmless one—
meaning, in particular, that it doesn’t collide with either j or 7. Once that’s
said, things begin to roll: write

! } : /
A 'u,j = akju’k’
k

evaluate the result at each ¢;, and do what the notation almost seems to
force:

A'uj(ei) = Zafcjuk(ei) = Za;cjak'i = a;j.
k k

All right—that gives an expression for the matrix entries o;; of A’; what is
to be done next? Answer: recall the way the matrix entries are defined for
A, and hope that the two expressions together give the desired information.
That is: look at

Ae; = E Oi€k,
%

apply each u;, and get
Uj (Aei) = Uj (Z ak,-ek) = Z akiekuj(ek) = Zakiekéjk = ;.
k k k
Since
u;(Ae;) = A'uj(e;),
it follows that

a’-- = aj,;
forall i and j. Victory: that’s a good answer. It says that the matrix entries of
A’ are the same as the matrix entries of A with the subscripts interchanged.
Equivalently: the matrix of A’ is the same as the matrix of A with the rows
and columns interchanged. Still better (and this is the most popular point
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of view): the matrix of A’ is obtained from the matrix of A by flipping it
over the main diagonal. In the customary technical language: the matrix of
A’ is the transpose of the matrix of A.

Chapter 6. Similarity

Solution 84.

The interesting and useful feature of the relation between z and y is the
answer to this question: how does one go from z to y? To “go” means
(and that shouldn’t be a surprise) to apply a linear transformation. The
natural way to go that offers itself is the unique linear transformation T'
determined by the equations

T.’B] =,

Txy = Yn.
The linear transformation T has the property that Tz = y; indeed

Tr = T(qul +---+ a]_.’l,‘n)
=Tz + -+ Tz,
=y + -+ yn = Y.

The answer to the original question, expressed in terms of T, is there-
fore simply this: the relation between z and y is that Tz = y. That is: a
“change of basis” is effected by the linear transformation that changes one
basis to another.

Question. Is T invertible?

Solution 85.

The present question compares with the one in Problem 83 the way ma-
trices compare with linear transformations. The useful step in the solution
of Problem 83 was to introduce the linear transformation T that sends the
z’s to the y’s. Question: what is the matrix of that transformation (with re-
spect to the basis (1, ..., ,))? The answer is obtained (see Solution 59)

84
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by applying T to each z; and expanding the result in terms of the z’s. If
Yi = T.’Ej = Zaijx,-,

then
Zﬂjyj = Zﬂj Zaijmi = Z Zaijnj Z;.
J J i i J

Since, however, by assumption
Zfﬂ‘i = Z”h‘yj,
i J
it follows that
&= ayn;.
J

That’s the answer: the relation that the question asks for is that the £’s can
be calculated from the 7’s by an application of the matrix (c;;). Equiva-
lently: a change of basis is effected by the matrix that changes one coordi-
nate system to another.

Solution 86.

The effective tool that solves the problem is the same linear transformation
T that played an important role in Solutions 84 and 85, the one that sends
the z’s to the y’s. If, that is,

T.’L‘j='yj (j=1,,’n.)

then
Cyj = CT.’L‘j
and
Cyj = Zaijyi = ZaijT:r,- =T (Z aij:r,-) = Tij.
Consequence:
CT(L’j = TBZ’J
for all 7, so that
CT =TB.
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That’s an acceptable answer to the question, but the usual formulation
of the answer is slightly different. Solution 84 ended by a teasing puzzle that
asked whether T is invertible. The answer is obviously yes—T sends a basis
(namely the z’s) onto a basis (namely the y’s), and that guarantees invert-
ibility. In view of that fact, the relation between C and B can be written in
the form

C =TBT™},

and that is the usual equation that describes the similarity of B and C.

The last phrase requires a bit more explanation. What it is intended to
convey is that B and C are similar if and only if there exists an invertible
transformation 7" such that C = TBT !, The argument so far has proved
only the “only if”. The other direction, the statement that if an invertible
T of the sort described exists, then B and C are indeed similar, is not im-
mediately obvious but it is pretty easy. It is to be proved that if T' exists,
then B and C do indeed correspond to the same matrix via two different
bases. All right; assume the existence of a 7', write B as a matrix in terms
of an arbitrary basis {z1,...,z,}, so that

BII]': E Q;5Z5,
i

define a bunch of vectors y by writing Tz; = y; (j = 1,...,n), and then
compute as follows:

Cyj = CT:D] = TB(L‘J' = ZaijTa:,» = Zaijyi.

Conclusion: the matrix of B with respect to the «’s is the same as the matrix
of C with respect to the y’s.

Solution 87.

Some notation needs to be set up. The assumption is that one linear trans-
formation is given, call it B, and two bases

{z1,...,z0} and {v1,--Yn}-

Each basis can be used to express B as a matrix,
B.’L'J' = Z,B,-jx,- and Byj = Z’Yijyi,
i i

and the question is about the relation between the 3’s and the «y’s.

87
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The transformation T that has been helpful in the preceding three
problems (T'x; = y;) can still be helpful, but this time (because temporar-
ily matrices are at the center of the stage, not linear transformations), it
is advisable to express its action in matrix language. The matrix of 7' with
respect to the z’s is defined by

T.’I)j = E 'rkjwk,
k
and now the time has come to compute with it. Here goes:

By; = BT'x; = BZTkak
k
= ZTijmk
k
= E‘rkj Zﬁikz‘i
k i

and
By; = ) Ykiwk
k
= wiTze Y Whs > e
k k i
= Z (z Tik"/kj) Ti.
i \ k
Consequence:

D kv = Y BikTe;-
k k

In an abbreviated but self-explanatory form the last equation asserts a re-
lation between the matrices § and x, namely that

™y = A7
The invertibility of 7 permits this to be expressed in the form
Y= T_lﬁTa

and, once again, the word similarity can be used: the matrices 3 and +y are
similar.
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Solution 88.

Yes, it helps to know that at least one of B and C is invertible; in that case
the answer is yes. If, for instance, B is invertible, then

BC = BC(BB™') = B(CB)B™};

the argument in case C is invertible is a trivial modification of this one.
If neither B nor C is invertible, the conclusion is false. Example: if

1 0 01
B_(O 0) and C—(O O)’

BC=C and CB =0.

then

The important part of this conclusion is that BC # 0 but CB = 0.

Comment. There is an analytic kind of argument, usually frowned upon as
being foreign in spirit to pure algebra, that can sometimes be used to pass
from information about invertible transformations to information about
arbitrary ones. An example would be this: if B is invertible, then BC and
CB are similar; if B is not invertible then it is the limit (here is the analysis)
of a sequence {B,} of invertible transformations. Since B, C is similar to
CB,, it follows (?) by passage to the limit that BC is similar to CB.

The argument is phony of course—where does it break down? What
is true is that there exist invertible transformations 7, such that

(BnC)T,, = T,,(CBy,),

and what the argument tacitly assumes is that the sequence of 7”s (or pos-
sibly a subsequence) converges to an invertible limit 7. If that were true,
then it would indeed follow that (BC)T = T'(BC)—hence, as the proof
above implies, that cannot always be true. Here is a concrete example for
the B and C mentioned above: if

1 0
anTﬂ:(O l)?

n

then indeed
(BnC)T,, = T,,(CBy,,)

for all n, and the sequence {7}, !} converges all right, but its limit refuses
to be invertible,

88
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Solution 89.

Yes, two real matrices that are complex similar are also real similar. Sup-
pose, indeed, that A and B are real and that

SA = BS,

where S is an invertible complex matrix. Write S in terms of its real and
imaginary parts,

S=P+iQ.

Since PA + iQA = BP + iBQ, and since A, B, P, and @ are all real, it
follows that

PA=BP and QA= BQ.

The problem might already be solved at this stage; it is solved if either
P or Q isinvertible, because in that case the preceding equations imply that
A and B are “real similar”. Even if P and @Q are not invertible, however,
the solution is not far away.

Consider the polynomial

p(A) = det(P + AQ).

Since p(i) = det(P +iQ) # 0 (because S is invertible), the polynomial
p is not identically 0. It follows that the equation p(\) = 0 can have only
a finite number of roots and hence that there exists a real number ) such
that the real matrix P + A@ is invertible. That does it: since

(P+XQ)A=PA+ \QA = BP+ABQ = B(P + \Q),

the matrices A and B are similar over the field of real numbers.

The computation in this elementary proof is surely mild, but it’s there
just the same. An alternative proof involves no computation at all, but it
is much less elementary; it depends on the non-elementary concept of “el-
ementary divisors”. They are polynomials associated with a matrix; their
exact definition is not important at the moment. What is important is that
their coefficients are in whatever field the entries of the matrix belong to,
and that two matrices are similar if and only if they have the same elemen-
tary divisors. Once these two statements are granted, the proof is finished:
if A and B are real matrices that are similar (over whatever field happens
to be under consideration, provided only that it contains the entries of A
and B), then they have the same elementary divisors, and therefore they
must be similar over every possible field that contains their entries—in par-
ticular over the field of real numbers.
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Solution 90.
Since
ker A’ = (ran A)°
(by Problem 80) and since
dim(ran A)° = n — dimran 4
(by Problem 65), it follows immediately that
null A’ = n — rank A,

Suppose now that {z1,..., %} is a basis for ker A and extend it to a
basis {z1,...,Zm, Tm41,---,Zn} Of the entire space V. If

T=aZ1 4 F OmTm + 1T 0 + Qs
is an arbitrary vector in V, then
Az = 0pm41ATmy1 + - + apAzy,

which implies that ran A is spanned by the set { Az, 11, . .., Az, }. Conse-
quence:

dimranA < n—m,
or, in other words,
rank A £ n — null A.

Apply the latter result to A’, and make use of equation above connecting
null A’ and rank A to get

rank A’ < rank A.

That almost settles everything. Indeed: apply it to A’ in place of A to
get

rank A” < rank A’;

inview of the customary identification of A” and A, the last two inequalities
together imply that

rank A = rank A’.
Consequence:

null A’ = n — rank A’,
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and that equation, with A’ in place of A (and the same identification argu-
ment as just above) yields

rank A +null A = n.

The answer to the first question of the problem as stated is that if
rank A = r, then there is only one possible value of rank A’, namely the
same 7. The answer to the second question is that there is only one possible
value of null A, namelyn — r.

Comment. A special case of the principal result above (rank + nullity =
dimension) is obvious: if rank A = 0 (which means exactly thatran A = Q),
then A must be the transformation 0, and therefore null A must be n. A
different special case, not quite that trivial, has already appeared in this
book, in Problem 65. The theorem there says, in effect, that the nullity of a
linear transformation on a space of dimension r is 0 if and only if its rank
is n—and that says exactly that the sum formula is true in case null A = 0.

Solution 91.

Yes, similar transformations have the same rank. Suppose, indeed, that B
and C are linear transformations and 7' is an invertible linear transforma-
tion such that

CT =TB.
If yisavectorinran B, so thaty = Bz for some vector z, then the equation
CTx =Ty

implies that Ty is in ran C, and hence that y belongs to 7~ (ran C)). What
this argument proves is that

ran B C T~ '(ranC).

Since the invertibility of 7 implies that 7! (ran C) has the same dimension
as ran C, it follows that

rank B £ rank C.

The proof can be completed by a lighthearted call on symmetry. The as-
sumption that B and C are similar is symmetric in B and C; if that assump-
tion implies that rank B < rank C, then it must also imply that

rank C £ rank B,
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and from the two inequalities together it follows that

rank B = rank C.

Solution 92.

The answer is yes, every 2 x 2 matrix is similar to its transpose, and a sur-
prisingly simple computation provides most of the proof:

CaED-G -GG

) is invertible and that’s that: ( : 6)

If neither 5 nor « is 0, then ( 5

¥ 0
0 B
is indeed similar to ; g .

If 3 = 0 and v # 0, the proof is still easy, but it is not quite so near the
surface. If worse comes to worst, computation is bound to reveal it: just set

E5)G0)-6nE3)

and solve the implied system of four equations in four unknowns. It is
of course not enough just to find numbers &, #, ¢, and 6 that satisfy the
equations—for instance { = p = { = # = 0 always works—it is necessary
also to find them so that the matrix is invertible. One possible solution is
indicated by the equation

(3 ﬂa) (: g)=(7r«25 5(57fa))=(3 }) (2 5l’a)-
v

5 —
The case in which v = 0 and 8 # 0, that is, the problem of the simi-

larity of
a f a 0
(55 = (3

is the same as the one just discussed: just replace 3 by y and interchange
the order in which the matrices were written.

(Does the assertion that similarity is a symmetric relation deserve ex-
plicit mention? If B and C are similar, via T, that is if

That works (meaning that (2 a) is invertible) because v # 0.

CT =TB,
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then
T-YenyT =1 YTB)T L.

Replace TT~! and T—'T by I and interchange the two sides of the equa-
tion to get

BT ' =T1"1C,
and that is exactly the similarity of C and B via T~'.)
If both 8 and + are 0, the matrix ( : b

0
nal one, and the question of similarity to its transpose degenerates to a

triviality—it is equal to its transpose.

) degenerates to a diago-

Comment. That settles 2 x 2 matrices; what happens with matrices of
size 3 and greater? The answer is that the same result is true for every
size—every matrix is similar to its transpose—but even for 3 x 3 matri-
ces the problem of generalizing the computations of the 2 x 2 case be-
comes formidable. New ideas are needed, more sophisticated methods are
needed. They exist, but they will come only later.

Solution 93.

The answer is
rank(A + B) £ rank A + rank B.

For the proof, observe first that

ran A +ran B

(in the sense of sums of subspaces, defined in Problem 28) consists of all
vectors of the form

Az + By,
and that
ran(A + B)
consists of all vectors of the form
Az + Bz.
Consequence:

ran(A + B) C ran A + ran B,
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and, as a consequence of that,
rank(A + B) £ dim(ran A + ran B).
How is the right side of this inequality related to
dimran A + dimran B?
In general: if M and N are subspaces, what is the relation between
dim(M+N)  and dim M + dim N?

The answer is a natural one to guess and an easy one to prove, as fol-
lows. If {z1,...,z,,} isa basis for M and {y1,...,yn} is a basis for N, then
the set

{zlyn"xm’yl,'“iyn}

is surely big enough to span M + N. Consequence: the dimension of M+ N
is not more than m + n, or, in other words,

dim(M + N) £ dimM + dimN,

The proof of the rank sum inequality is complete.

Solution 94.
Since (AB)z = A(Bz), it follows that
ran AB C ran A,
and hence that
rank AB < rank A.

Words are more useful here than formulas: what was just proved is that the
rank of a product is less than or equal to the rank of the left-hand factor.
That formulation implies that

rank(B’A’) £ rank B'.
Since, however,
rank(B'A’) = rank((AB)') = rank AB,
and

rank B’ = rank B

9
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(Problem 88), it follows that rank AB is less than or equal to both rank A
and rank B, and hence that

rank AB < min{rank A, rank B}.
That’s it; that’s the good relation between the rank of a product and the
ranks of its factors.

Comment. If B happens to be invertible, so that rank B is equal to the
dimension of the space, then the result just proved implies that

rank AB £ rank A
and at the same time that
rank A = rank(AB)B~! £ rank AB,
so that, in fact,
fank AB =rank A.
It follows that
rank(BA) = rank(BA)’ = rank(A’B’) = rank A’ = rank A.

In sum: the product of a given transformation with an invertible one (in
either order) always has the same rank as the given one.

Solution 95.

The range of a transformation A is the image under A of the entire space
V, and its dimension is an old friend by now—that’s just the rank. What
can be said about the dimension of the image of a proper subspace of V?
The question is pertinent because

ran(AB) = (AB)V = A(BV) = A(ran B),
so that
rank(AB) = dim(A(ran B)).

If M is a subspace of dimension m, say, and if N is any complement of
M, so that

V=M+N,
then

ran A = AV = AM + AN.
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It follows that

rank 4 £ dim(AM) + dim(AN) £ dim(AM) + dim(N)

(because the application of a linear transformation can never increase di-
mension), and hence that

n—nullA £ dim(AM) +n —m
(where n = dim V, of course). If in particular
M =ran B,
then the last inequality implies that
rank B — null 4 £ rank(AB),
or, equivalently, that
n—nulA —null B £ n—null(AB).
Conclusion:

null(AB) < null A + null B.

‘Together the two inequalities about products, namely the one just proved
about nullity and the one (Problem 89) about rank,

rank AB £ min{rank A4, rank B},

are known as Sylvester’s law of nullity.

Solution 96.
(a) The “natural” basis vectors
€1 = (1’0;0)1 €2 = (0’ 1, 0)) €3 = (0: 0, 1)
have a curious and special relation to the transformation C: it happens that
Cei =e1, Cey =2e;, Ces=3es.
If B and C were similar,
CT =TB8,
or, equivalently,

BT l=T7"1C,
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then the vectors
T ley, T ley, T les
would have the same relation to B:
BT le; = T7'Cej = T '(je;) = jT 'e;

for j = 1,2,3. Is that possible? Are there any vectors that are so related
to B?

There is no difficulty about § = 1: the vector f; can be chosen to be
the same as e;. What about f? Well, that’s not hard either. Since

Be; =e;, Bey=e€;+ 2e,
it follows that
B(ey + e3) = e1 + (e1 + 2e2) = 2(e1 + e2);

in other words if fo = e; + es, then

Bfs =2fs.
Is this the beginning of a machine? Yes, it is. Since

Bes =e; + €3+ e3,
it follows that
B(ey + ez + e3) = B(e + e2) + Bes
= 2(e; + e2) + (e1 + ez + 3e3) = 3(ey + ea + e3);

to get

Bfs = 3fs,
just set

fa=e1+ex+es3.

What good does all that do? Answer: it proves that B and C are sim-
ilar. Indeed: the vectors fi, f2, f3, expressed in coordinate forms in terms
of the e’s as

fl = (170’0)
fa= (1,1,0)
f3 = (1a 1, 1),

constitute a basis. The matrix of B with respect to that basis is the matrix
C. Isn’t that clear from the definition of the matrix of B with respect to the
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basis { f1, f2, fa}? What that phrase means is this: form B f; (for each j),
and express it as a linear combination of the f’s; the resulting coefficients
are the entries of column number j. Conclusion: B and C are similar.

(b) The reasoning here is similar to the one used above. The linear
transformation C has the property that

Cey =0, Ceyx=e;, Cez=ea.
If B and C are similar,
BT ' =T"1C,
then the vectors
fi=T" (=123
are such that Bf; =0, and, for j > 0,
Bfj =BT 'e; =T 'Ce; =T 'ej_1 = fj_1.

At this moment it may not be known that B and C are similar, but it makes
sense to ask whether there exist vectors fy, f2, f3 that B treats in the way
just described.

Yes, such vectors exist, and the proof is not difficult. Just set f; equal
to ey, set f> equal to eg, and then start looking for f3. Since Beg = e; + €3,
it follows that

Bles —e3) = (e1 +€2) — €1 = eg;
in other words, if f3 = e3 — €5, then

Bf; = fa.

Once that’s done, the problem is solved. The vectors fi, fz, f3, expressed
in coordinate forms in terms of the e’s as

fl = (1,0, 0)
f2 = (07 1)0)
f3 = (0»_11 1))

constitute a basis, and the matrix of B with respect to that basis is equal
to C.

(c) The most plausible answer to both (a) and (b) is no—how could
a similarity kill all the entries above the diagonal? Once, however, the an-
swers have been shown to be yes, most people approaching (c) would prob-
ably be ready to guess yes—but this time the answer is no.
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What is obvious is that

Cel = 261, 062 = 362, 063 = 363.

What is one millimeter less obvious is that every linear combination of e,
and e3 is mapped onto 3 times itself by C'. What must therefore be asked
(in view of the technique established in (a) ) is whether or not there exist
vectors f1, f2, f3 that B treats the way C treats the e’s. The answer turns
out to be no.

Suppose indeed that Bf = 3f, where f is a vector whose coordinate
form in terms of the €’s is, say (a1, az, a3). Since

Bf = (20[1 + a3z + as, 3as + as, 3&3),

the only way that can be equal to

3f = (3a1, 3ag, 3a3),

is to have a3 = 0 (look at the second coordinates). From that in turn it
follows that a2 = a; (look at the first coordinates). To sum up: f must
look like (7, ,0), or simpler said, every solution of the vector equation
Bf = 3f is of the form (7, 7,0). Consequence: the set of solutions of that
vector equation is a subspace of dimension 1, not 2. For C the correspond-
ing dimension was 2, and that distinction settles the argument—B and C
cannot be similar.

(d) In view of all this, what would a reasonable person guess about (d)
by now? Is it imaginable that a similarity can double a linear transforma-
tion?

Yes, it is. The action of B on the natural basis {e;, ez, e3} can be de-
scribed this way: the first basis vector is killed, and the other two are shifted
backward to their predecessors. The question is this: is there a basis such
that the first of its vectors is killed and each of the others is shifted back-
ward to twice its predecessor? In that form the answer is easy to see: put

fl = (1)0,0)
f2 = (09270)
fz= (070a4)

That solves the problem, and nothing more needs to be said, but it
might be illuminating to see a linear transformation that sends the €’s to
the f’s and, therefore, actually transforms B into C. That’s not hard: if

1 00
T=[(0 1 0],
0 0 %
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then
100
T'=(0 2 0
0 0 4
and painless matrix multiplication proves that TBT~! = 2B,
(¢) The matrix of B with respect to the natural basis {e;, e, e3} is the

one exhibited in the question; what is the matrix of B with respect to the
basis given by

fi=es,
f2 = €2,
fa=e?

The answer is as easy as any matrix determination can ever be. Since
Bfi=Bes=e1textes=fa+ fo+ fi
Bfs=Be; =e1+ex= fa+ f2
Bfs = Bey = fs,

it follows that the matrix of B with respect to the f’s is exactly C.
Note that C is the transpose of B; compare with Problem 92.

Solution 97.
Define a linear transformation P by
Pfl?j:ﬂj G=1,...,n)

and compute:
Cy_j = Zaij?/ji = Z aijPEi = Pzaijai = PB:IJJ‘.
i i i

The result almost forces the next step: to make the two extreme terms of
this chain of equalities comparable, it is desirable to introduce the linear
transformation () for which
xj=Qyj (j:l,...,n).
The result is that Cy; = PBQy; for all 4, and hence that
C = PBQ.

That’s the answer: B and C are equivalent if and only if there exist
invertible transformations P and Q such that C = PBQ. The argument
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just given proves “only if”, but, just as for Problem 85, th.e “if” must be
proved too. The proof is a routine imitation of thfe proof in Problem 85,
except it is not quite obvious how to set up the notation: what can‘be chose.n
arbitrarily to begin with and what should be defined in terms of it? Here is
one way to answer those questions.

Assume that C = PBQ, and choose, arbitrarily, two bases

{#1,-..,2,} and  {y1,--, ¥}
Write
z; = Qy; and y; = Pz;,

and write B as a matrix with respect to the z’s and 2’s:
B:Ej = Z aijﬁ:\,-.
It follows that
C’y,- = PBQyj = PB:L'J' = Pzaz’j’x\i = Zaijpii = Zaijﬂ,-.
i i i

Comparison of the last two displayed equations shows the matrix C(Y,Y)
of C with respect to the y’s is the same as the matrix B(X, X) of B with
respect to the 2’s.

Question. If B is equivalent to C, does it follow that B? is equivalent to
(27 The first attempt at answering the question, without using the follow-
ing problem, is not certain to be successful.

Solution 98.

Suppose that A is a linear transformation of rank r, say, on a finite-dimen-
sional vector space V. Since the kernel of A is a subspace of dimension
n—r, standard techniques of extending bases show that there exists a basis

L1y oy TryTpglse--3Tn

of V such that {z,,1,...,Z,} is a basis for ker A. Assertion: the vectors
(731 =A:L'1,...,yr = AiL'r
are linearly independent. Indeed: the only way it can happen that

"/1A.’E1 +---+ ')’;,.A(Br =0,
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isto have 1121 + - - - + v,z in the kernel of A. Reason: since the z’s form
a basis for V, the only way a linear combination of the first r of them can
be equal to a linear combination of the last n — r, is to have all coefficients
equal to 0.

Once that is known, then, of course, the set {v1,...,9,} can be ex-
tended to a basis

Yoo UrYrd1y-- s Yn

of V. What is the matrix of A with respect to the pair of bases (the z’s and
the y’s) under consideration here? Answer: it is the n x n diagonal matrix
the first r of whose diagonal terms are 1’s and the last n — 7 are 0’s.

That remarkable conclusion should come as a surprise. It implies that
every matrix of rank r is equivalent to a projection of rank r, and hence
that any two matrices of rank r are equivalent to one another.

Chapter 7. Canonical Forms

Solution 99.
If E is a projection, and if X is an eigenvalue of E with eigenvector z, so
that Ex = Az, then

Ez = E’z = E(Ez) = E(Az) = \Ex = Az) = N2z

Since Az = A%z and = # 0 (by the definition of eigenvector), it follows
that A = A2, Consequence: the only possible eigenvalues of E are 0 and 1.
Since the roots of the characteristic equation are exactly the eigenvalues,
it follows that the only possible factors of the characteristic polynomial can
be A and 1 — A, and hence that the characteristic polynomial must be of
the form A¥(\ — 1)*~ %, withk = 0,1,...,n.

Question. If rank E = 0 (thatis, if E = 0), thenk = n; if rank E = n
(that is, if E = 1), then k = 0; what is k for other values of rank E?

Solution 100.

The sum of the roots of a (monic) polynomial equation

)\"+al)\"_1+--~+an_1A+an=0

99
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is equal to —a, and the product of the roots is equal to plus or minus o,
(depending on whether 7 is even or odd). To become convinced of these
statements, just write the polynomial in factored form

A=21) (A= An)-

It follows that the sum and the product of the eigenvalues of a matrix A
belong to the field in which the entries of A lie.

The product of the eigenvalues is equal to the determinant (think
about triangularization), and that observation yields an alternative proof
of the assertion about the product. The sum of the eigenvalues is also easy
to read off the matrix A: it is the coefficient of (—A)"~! in the expansion
of det(A — )), and hence it is the sum of the diagonal entries. That sum
has a name: it is called the trace of the matrix A.

The answer to the question as it was asked is a strong NO: even though
the eigenvalues of a rational matrix can be irrational, their sum and their
product must be rational.

Solution 101.

The answer is yes: AB and BA always have the same eigenvalues.

It is to be proved that if A # 0 and AB — )X is not invertible, then
neither is BA — ), or, contrapositively, that if AB — X is invertible, then
so is BA — \. Change signs (that is surely harmless), divide by A, and then
replace A, say, by é These manipulations reduce the problem to proving
that if 1 — AB is invertible, thensois 1 — BA.

At this point it turns out to be clever to do something silly. Pretend

that the classical infinite series formula for is applicable,

11—z

1
—— =14z +2?+23 4+
l1-=x

and apply it, as a matter of purely formal juggling, to BA in place of z. The
result is

(1-BA)"'=1+BA+ BABA+ BABABA+---
=1+ B(1+AB+ ABAB+---)A
=1+ B(1- AB)'A.

Granted that this is all meaningless, it suggests that, maybe, if 1 — AB is
invertible, with, say

(1-AB) ' =X,
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then 1 — BA is also invertible, with

(1-BA)"'=1+BXA.

Now that statement may be true or false, but it is in any case meaningful—
it can be checked. Assume, that is, that (1 — AB)X = 1 (which can be
written as ABX = X — 1) and calculate:

(1-BA)(1+BXA)=(1+BXA)—- BA(1+ BXA)
=14+BXA-BA-BABXA
=1+BXA-BA-B(X-1)A
=1+BXA-BA-BXA+BA=1.

Victory !

Solution 102.
If X is an eigenvalue of A with eigenvector z,
Az = Az,
then
A%z = A(Az) = A(\z) = AM(Az) = MAz) = A%,
and, by an obvious inductive repetition of this argument,
Az = X"z

for every positive integer n. (For the integer 0 the equation is if possible
even truer.) This in effect answers the question about monomials. A linear
combination of a finite number of these true equations yields a true equa-
tion. That statement is a statement about polynomials in general: it says
that if p is a polynomial, then p(}) is an eigenvalue of p(A).

0
0
1

Solution 103.

Since the matrix of A is

OO

the characteristic equation is

102
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Since
N o1=(A-DOZ-A+1),

it follows that the roots of the characteristic equation are the three cube
roots of unity:

1 i N
1, w—-—§+-2-\/§ and w———2——§\/§,

The corresponding eigenvectors are easy to calculate (and even easier to
guess and to verify); they are

u=(1,1,1), v = (1,w,w?), and w = (1,w?,w).
Comment. 1t is easy and worth while to generalize the question to di-
mensions greater than 3 and to permutations more complicated than the
simple cyclic permutation that sends (1,2, 3) to (2,3, 1). The most prim-

itive instance of this kind occurs in dimension 2. The eigenvalues of the
transformation A defined on C? by

A(z1,z2) = (%2, %1)

are of course the eigenvalues

of the matrix

with corresponding eigenvectors
(1,1) and 1,-1).

These two vectors constitute a basis; the matrix of A with respect to that

basis is
1 0
0o -1/°

The discussion of the 3 x 3 matrix A of the problem can also be re-
garded as solving a diagonalization problem; its result is that that matrix is

similar to
1 0 0
(0 w 0 ) .
0 0 w?
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The next higher dimension, n = 4, is of interest. There the matrix
becomes

[l = ']
SO O
OO O
[ e B oo}

Its characteristic equation is
M=1,
and, therefore, its eigenvalues are the fourth roots of unity:
1,4, —1, —i.

Consequence: the diagonalized version of the 4 x 4 matrix is

1 0 0 0
0 72 0 0
00 -1 0
00 0 —
Solution 104, 104

Yes, every eigenvalue of p(A) is of the form p()\) for some eigenvalue X of
A. Indeed, if x is an eigenvalue of p(A), consider the polynomial p(\) — u.
By the fundamental theorem of algebra that polynomial can be factored
into linear pieces. If

PA)—p=(A=A1) (A=),
then
p(A) —p=(A-A) (A= Ay).

The assumption about p implies that there exists a non-zero vector z such
that p(A)z = pz, and from that it follows that

(A=X)--(A=A)z=0.
Consequence: the product of the linear transformations
(A=XA),..., (A=)

is not invertible, and from that it follows that A — ); is not invertible for
at least one j. That means that ), is an eigenvalue of A for at least one 3.
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Conclusion: since

p()‘J) —Hp= 0’

the eigenvalue i does indeed have the form p(X) for some eigenvalue X of
A (namely A = );).

Comment. The set of all eigenvalues of a linear transformation A on a
finite-dimensional vector space is called the spectrum of A and is often
referred to by the abbreviation spec A. With that notation Solution 102
can be expressed by saying that if A is a linear transformation, then

p(spec A) C spec(p(4)),

and the present solution strengthens that to

p(spec A) = spec(p(A)).

Another comment deserves to be made, one about the factorization
technique used in the proof above. Is spec(A) always non-empty? That
is: does every linear transformation on a finite-dimensional vector space
have an eigenvalue? The answer is yes, of course, and the shortest proof
of the answer (the one used till now) uses determinants (the characteristic
equation of A). The factorization technique provides an alternative proof,
one without determinants, as follows.

Given A, on a space of dimension n, take any non-zero vector x and
form the vectors

z, Az, A%r,..., A"z,

Since there are n + 1 of them, they cannot be linearly independent. It fol-
lows that there exist scalars oy, a;, as, .. ., @y, not all 0, such that

T + Az + as A’z + -+ -+, A"z = 0.

It simplifies the notation and it loses no information to assume that if &
is the largest index for which o # 0, then, in fact, o) = 1—just divide
through by o4. A different language for saying what the preceding equa-
tion says (together with the normalization of the preceding sentence) is
to say that there exists a monic polynomial p of degree less than or equal
to n such that p(A)z = 0. Apply the fundamental theorem of algebra to
factor p:

PA) = (A= A1)+ (A= Ag)-
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Since p(A)z = 0 it is possible to reason as in the solution above to infer
that A — A; is not invertible for at least one j—and there it is!—A; is an
eigenvalue of A.

The fundamental theorem of algebra is one of the deepest and most
useful facts of mathematics—its repeated use in linear algebra should not
come as a surprise. The need to use it is what makes it necessary to work
with complex numbers instead of only real ones.

Solution 105.

The polynomials 1, z, 2, 2° form a basis of IP3; the matrix of D with respect
to that basis is

oo o

1 00
0 2 0
003

0 00O

Consequences: the only eigenvalue of D is 0, and the characteristic poly-
nomial of D is A*. The algebraic multiplicity of the eigenvalue 0 is the
exponent 4. What about the geometric multiplicity? The question is about
the solutions p of the equation

Dp=0;

in other words, the question is about the most trivial possible differen-
tial equation. Since the only functions (polynomials) whose derivative is
0 are the constants, the geometric multiplicity of 0 (the dimension of the
eigenspace corresponding to 0) is 1.

Solution 106.

The answer is good: every transformation on an n-dimensional space with
n distinct eigenvalues is diagonalizable.

Suppose, to begin with, that n = 2. If A is a linear transformation
on a 2-dimensional space, with distinct eigenvalues A\, and A, and corre-
sponding eigenvectors z; and z, then (surprise?) z; and z; are linearly
independent. Reason: if

Q11 + 0gxe =0,

apply A — X, to that equation. Since A — A; kills 1, the result is

az(Az - >\1).'1)2 = 0,

105
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and since A2 — A1 # 0 (assumption) and z5 # 0 (eigenvector), it follows
that a» = 0. That in turn implies that a; = 0, or, alternatively, an applica-
tion of A — A9 to the assumed equation yields the same conclusion.

If n = 3, and if the three distinct eigenvalues in question are A;, Ag,
and A3, with eigenvectors x, z3, and 3, the same conclusion holds: the
z’s are linearly independent. Reason: if

1T + aszy + azzrz =0,

apply A — A; to infer

02(1\2 — /\1).’1,'2 + a3()\3 - /\1).’L’3 =0,
and then apply A — ), to infer

a3(A3 — A1)(As — A2)z3 = 0.

That implies a3 = 0 (because (A3—A1)(A3—A2) # 0and z3 # 0). Continue
the same way: apply first A — A; and then A — A3 to get ae = 0, and by
obvious small modifications of these steps get a; = 0.

The general case, for an arbitrary n, should now be obvious, and from
it diagonalization follows. Indeed, once it is known that a transformation
on an n-dimensional space has n linearly independent eigenvectors, then
its matrix with respect to the basis those vectors form is diagonal—and in
this last step it no longer even matters that the eigenvalues are distinct.

Comment. Here is a minute but enchanting corollary of the result: a 2 x 2
real matrix with negative determinant is diagonalizable. Reason: since the
characteristic polynomial is a quadratic real polynomial with leading coef-
fcient 1 and negative constant term, the quadratic formula implies that the
two eigenvalues are distinct.

Solution 107.

Suppose that A is a linear transformation on a finite-dimensional vector
space and that A is one of its eigenvalues with eigenspace M. If z belongs
to Mo,

Az = oz,
then
A(Az) = A%z = X2z = Mo(Noz) = N - Az

—which says that Az belongs to M. In other words, the subspace M is
invariant under A. If A is the linear transformation A considered on Mg
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only (the restriction of A to M), then the polynomial det(A4y — A) is a
factor of the polynomial det(A — A). ( Why?). If the dimension of Mg
(= the geometric multiplicity of Ap) is my, then

det(A() - )\) ={(do— )™,

and it follows that (Ao — A) occurs as a factor of det(A — ) with an expo-
nent m greater than or equal to myg. That’s it: the assertion m 2 mg says
exactly that geometric multiplicity is always less than or equal to algebraic
multiplicity.

Comment. What can be said about a transformation for which the alge-
braic multiplicity of every eigenvalue is equal to 1? In view of the present
result the answer is that the geometric multiplicity of every eigenvalue is
equal to 1, and hence that the number of eigenvalues is equal to the di-
mension. Conclusion (see Problem 106): the matrix is diagonalizable.

Solution 108. 108

The calculation of the characteristic polynomials is easy enough:

det(A-A)=(1-2)2-AN)B6-X)+3+6(1—A)+(6—-X)
and
det(B—A)=(1-=XN(B-A)(3—-X)+43-X).

These both work out to

A3 —9X 4+ 27 — 21,
which is equal to
(A —=3)3.

It follows that both A and B have only one eigenvalue, namely A = 3, of
algebraic multiplicity 3, and, on the evidence so far available, it is possible
to guess that A and B are similar.

What are the eigenvectors of A? To have Au = 3u, where u = (o, §,7),
means having

at+ 3 = 3a
—-a+28+ y=38
30— 68+ 6y = 37.
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These equations are easy to solve; it turns out that the only solutions are the
vector © = (1,2,3) and its scalar multiples. Consequence: the eigenvalue 3
of A has geometric multiplicity 1.

For B the corresponding equations are

a+ f = 3o
—da+56+ =30
—6a — 38+ 3v= 3.

The eigenspace of the eigenvalue 3 is 2-dimensional this time; it is the set of
all vectors of the form (o, 2a, «). Consequence: the eigenvalue 3 of B has
geometric multiplicity 2. Partial conclusion: A and B are not similar.
The upper triangular form of both A and B must be something like
3 a v
0 3 8
0 0 3
Even a little experience with similarity indicates that that form is not
uniquely determined—the discussion of Problem 94 shows that similarity can

effect radical changes in the stuff above the diagonal (see in particular part
(b)). Here is a pertinent special example that fairly illustrates the general case:

1 -1 0 311 110 3 10
0 1 0 0 31 01 0)=]0 31
0 0 1 0 0 3 0 01 0 0 3

In view of these comments it is not unreasonable to restrict the search for
triangular forms to those whose top right corner entry is 0.
For A, the search is for vectors u, v, and w such that

Au=3u, Av=wu+3v, and Aw=v+ 3w.

As for u, that’s already at hand—that’s the eigenvector (1,2, 3) found
above.

If v = (a,B,7) (the notation of the calculation that led to u is now
abandoned), then the equation for v says that

at+ g =3a+1
—a+28+ y=38+2
3a—608+6y=3y+3.

These equations are just as easy to solve as the ones that led to u. Their
solutions are the vectors of the form (o,2a + 1,3c + 3)—a space of
dimension 1. One of them (one is enough) is (0,1,3)—call that one v.
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If w = (a,B,7) (another release of old notation), then the equation for w
becomes

a+ g = 3a
—a+28+ y=30+1
3a—68+6v=3y+3.

The solutions of these equations are the vectors of the form («, 2a, 3a + 1);
a typical one of which (with o = 1) is w = (1, 2,4).

The vectors u, v, and w so obtained constitute the basis; the matrix of A
with respect to that basis is

310
0 31
0 0 3
as it should be.
The procedure for B is entirely similar. Begin with the eigenvector u =
(1,2, 3) with eigenvalue 1, and then look for a vector v such that

By =u+ 3v.
If v = («, B,7), this equation becomes

a+ B =3a+1
—4a + 50 =30+2
—6a+38+3y=3y+3,

and the solutions of that are the vectors of the form («, 2a+ 1, 3). If w is the
one with o = 0, so that w = (0, 1, 3), then the vectors u, v, and w constitute
a basis, and the matrix of B with respect to that basis is

310
030
0 0 3

Solution 109.

If n is 2, the answer is trivially yes. If the question concerned C™ instead
of R™ (with the understanding that in the complex case the dimension be-
ing asked about is the complex dimension), the answer would be easily yes
again; just triangularize and look. One way of proving that the answer to
the original question is yes for every n is to “complexify” R™ and the lin-
ear transformations that act on it. There are sophisticated ways of doing
that for completely general real vector spaces, but in the case of R™ there
is hardly anything to do. Just recall that if A is a linear transformation on
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R", then A can be defined by a matrix (with real entries, of course), and
such a matrix defines at the same time a linear transformation (call it A™)
on C*

The linear transformation A* on C™ has an eigenvalue and a corre-
sponding eigenvector; that is

Atz =)z

for some complex number A and for some vector z in C™. Consider the
real and imaginary parts of the complex number A and, similarly, separate
out the real and imaginary parts of the coordinates of the vector z. Some
notation would be helpful; write

A=a+1i8,
with o and S real, and
z=zx+1y,

with z and y in R™. Since

At (z +iy) = (a +if)(z +iy),
it follows that
Az = az — By

and
Ay = Bz + ay.

There it is—that implies the desired conclusion: the subspace of R™
spanned by z and y is invariant under A.

Solution 110,

Yes, if a linear transformation A on a finite-dimensional (complex) vector
space is such that A* = 1 for some positive integer k, then A is diagonal-
izable. Here is the reasoning.

The assumption implies that every eigenvalue A of A is a kth root of
unity. Consequence: each block in a triangularization of A is of the form
A+ T, where \* = 1 and where

0
0
T_O

o O *
o % *

© o0
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is strictly upper triangular. By the binomial theorem,

A+TY=1+kT+---,

where the possible additional terms do not contribute to the lowest non-
zero diagonal of T. Conclusion: (A + T')* can be 1 only when T' = 0, that
is, only when each block in the triangularization is diagonal.

Solution 111.
Since M(z) is spanned by the g vectors

z, Az, A%z,..., A"z,

its dimension cannot be more than g; the answer to the question is that
for an intelligently chosen z that dimension can actually attain the value
g- The intelligent choice is not too difficult. Since the index of A is g, there
must exist at least one vector xp such that

Aq_l.’li() 7é 0,

and each such vector constitutes an intelligent choice.
The assertion is that if

opTo + a1 Azg + agA2:lto + e+ anq_lxo =0,

then each o; must be 0. If that is not true, then choose the smallest index
j such that a; # 0. (If o9 # 0, then of course j = 0.) It makes life a little
simpler now to normalize the assumed linear dependence equation: divide
through by o; and transpose all but A7z to the right side. The result is an
equation that expresses A’z as a linear combination of vectors obtained
from z, by applying the higher powers of A (that is, the powers A* with
k 2 j +1). Consequence:

Algy = ATty
for some y. Since
Aq—lmo = Aq_l—jAj.’L'o = Aq_l_jAj+1y =A%y =0

(the last equal sign is justified by the assumption that A is nilpotent of
index g), a contradiction has arrived. (Remember the choice of z,.) Since
the only possibly shaky step that led here was the choice of j, the forced
conclusion is that that choice is not possible. In other words, there is no
smallest index j for which a; # 0—which says that «; = 0 for all j.
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Corollary. The index of nilpotence of a transformation on an space of di-
mension n. can never be greater than n.

Solution 112.

Perhaps somewhat surprisingly, the answer depends on size. If the dimen-

sion of the underlying space is 2, or, equivalently, if A and B denote 2 x 2

matrices, then AB and BA always have the same characteristic polyno-

mial, and it follows that if AB is nilpotent, then so is BA. If a matrix of

size 2 is nilpotent, then its index of nilpotence is less than or equal to 2.
For 3 x 3 matrices the conclusion is false. If, for instance,

1 00 0 00
A= 010) and B=(100)
0 00 010
0 00
AB=(100)
0 00

is nilpotent of index 2, but BA = A is not; it is nilpotent of index 3.

then

Solution 113.

The result of applying M to a vector (e, 3,7, 6,¢€) is (8 + 6,7 — €,0,¢,0).
When is that 0—or, in other words, which vectors are in the kernel of M?
Answer: € must be 0, hence v must be 0, and 3+ § must be 0. So: the kernel
consists of all vectors of the form

(as ﬁ707 _ﬂ’ 0)’

a subspace of dimension 2. In view of this observation, and in view of the
given form of M, a reasonable hope is to begin the desired basis with

(1,0,0,0,0)
(0,1,0,0,0)
(0,0,1,0,0)
and
(0,-1,0,1,0).

What is wanted for a fifth vector is one whose image under M is
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(0,-1,0,1,0). Since the image of (a, 3,7, 6,€) is (3+6,v—¢,0,¢,0), what
is wanted is to have 8 + § = 0,y — ¢ = —1, and ¢ = 1. These equations
have many solutions; the simplest among them is

(0,0,0,0,1).

That’s it: the last five displayed vectors do the job.

Solution 114,

The answer is no but yes. No, not every matrix has a square root, but the
reason is obvious (once you see it), and there is a natural way to get around
the obstacle.

An example of a matrix with no square root is

010
A={0 0 1].
000

(Sois ( g (1) , but the larger example gives a little more of an idea of why
it works.) If, indeed, it were true that A = B2, then (since A = 0) it would
follow that B® = 0, and hence that B is nilpotent. A nilpotent matrix of
size 3 x 3 must have index less than or equal to 3 (since the index is always
less than or equal to the dimension)—and that implies B®> = 0, and since
B* = A? # (, that is a contradiction.

What’s wrong? The answer is 0. People familiar with the theory of mul-
tivalued analytic functions know that the point z = 0 is one at which the
function defined by 1/z misbehaves; the better part of valor dictates that in
the study of square roots anything like 0 should be avoided. What in ma-
trix theory is “anything like 0”? Reasonable looking answer: matrices that
have 0 in their spectrum. How are they to be avoided? Answer: by sticking
to invertible matrices. Very well then: does every invertible matrix have a
square root?

Here is where the Jordan form can be used to good advantage. Every
invertible matrix is similar to a direct sum of matrices such as

A1 0O
0 x 10
0 0 X 1)’
0 0 0 A

with A # 0, and, consequently, it is sufficient to decide whether or not every
matrix of that form has a square root.
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The computations are somewhat easier in case A = 1, and it is possible
to reduce to that case simply by dividing by A. When that is done, the 1’s
above the diagonal turn into }’s, to be sure, but in that position they cause
no trouble. So the problem is to find a square root for something like

1 o« 0 O
01 a O
0 0 1 a
0 0 0 1

One way to do that is to look for a square root of the form

1 & n ¢
01 & g
0 0 1 ¢
0 0 0 1
Set the square of that matrix equal to the given one and look for solutions
z, y, z of the resulting equations. That works!

There is a more sophisticated approach. Think of the given matrix as
I+ M, where

oo o

0
0
a

oo o R
oo R ©

0 0

The reason that’s convenient is that it makes possible the application of
facts about the function /1 + ¢.

As is well known, Professor Moriarty “wrote a treatise upon the bino-
mial theorem, which has had a European vogue”; the theorem asserts that
the power series expansion of (1 + €)%, is

et (e (o (o

(Here a binomial coefficient such as, for instance, (g) denotes

£€-1)(€-2)
3,

and the parameter £ can be any real number.) The series converges for
some values of ¢ and does not converge for others, but, for the moment,
none of that matters. What does matter is that the equation is “formally”
right. That means, for instance, that if the series for ¢ = 1 is multiplied
by itself, then the constant term and the coefficient of ¢ turn out to be 1
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and all other coefficients turn out to be 0—the product is exactly 1 + (.
In the application that is about to be made the variable ¢ will be replaced
by a nilpotent matrix, so that only a finite number of non-zero terms will
appear—and in that case convergence is not a worry.

All right: consider the series with k = 1, and replace the variable ¢ by
the matrix M. The result is

(18 = 2

4 16

2

[4 2 4 4

1 = ——
0 2 4
«

oo 1 2
2

\o 0 0 1)

(check?), and that works—meaning that its square is 1 + M (check?). So,
one way or another, it is indeed true that every invertible matrix has a
square root.

Solution 115.
The differentiation transformation D is nilpotent of index 4 (the dimen-
sion of the space). Consequence: both the minimal polynomial and the
characteristic polynomial are equal to A%
As for T, its only eigenvalue is 1. Indeed: if
a+BE+1)+y(E+1)2+68(t+1)3 = Ma+ Bt + 4t + 6t%)
then

a+B+ v+ 6=,
B+2y+36= A8,
v+ 36 = Ay,

6= M.

It follows that if A # 1, then

6=0, v=0, g=0,

and therefore
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On the other hand if A = 1, then

B+ v+ 6=0,
2v+36 =0,
36=0,
and therefore
b=y=p=0.

(Another way to get here is to look at the matrix in Solution 108.) Conclu-
sion: both the minimal polynomial and the characteristic polynomial are
(A—14

Solution 116.

Yes, it’s always true that one polynomial can do on each of » prescribed
transformations what n prescribed polynomials do. The case n = 2 is typ-
ical and notationally much less cumbersome; here is how it goes.

Given: two linear transformations A and B with disjoint spectra, and
two polynomials p and ¢. Wanted: a polynomial r such that

r(A) = p(4)
and
r(B) = ¢(B).

If there is such a polynomial r, then the difference r — p annihilates
A. The full annihilator of A, that is the set of all polynomials f such that
f(A) = 0, is an ideal in the ring of all complex polynomials; every such
polynomial is a multiple of the minimal polynomial po of A. Consequence:
if there is an r of the kind sought, then

T =8po+p

for some polynomial p, and, similarly,

T=th+q,

where ¢ is the minimal polynomial of B. Conversely, clearly, any spg + p
maps A onto p(A), and any tqy + q maps B onto g(B); the problem is to
find an r that is simultaneously an spy + p and a tgo + ¢. In other words,
the problem is to find polynomials s and ¢ such that

spo —lgo =q —p.
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Since py and gq are relatively prime (this is the step that uses the assumed
disjointness of the spectra of A and B), it is a standard consequence of the
Euclidean algorithm that such polynomials s and ¢ do exist.

The general case (n > 2) can be treated either by imitating the special
case or else by induction. Here is how the induction argument goes.

Assume the conclusion for n, and pass to n + 1 as follows. By the in-
duction hypothesis, there is a polynomial p such that

p(4;) = p;(4;)
forj=1,...,n. Write
A=A106---® A,
(direct sum),
B = An+1v
and
q = PDj+1-

Note that the spectra of A and B are disjoint (because the spectrum of A
is the union of the spectra of the A;’s, j = 1,...,n), and therefore, by the
case n = 2 of the theorem, there exists a polynomial r such that

r(4) = p(4)
and

r(B) = q(B).
Once the notation is unwound, these equations become

(A1) ®-- - ®1(An) =p1(A1) @ -+ D pu(Ay)
and
m(Ant1) = Pat1(Ant1)-
The first of these equations implies that
r(47) = ps(4))

for j = 1,...,n, and that concludes the proof.

The result holds for all fields, not only C, provided that the hypothesis
of the disjointness of spectra is replaced by its algebraically more usable
version, namely the pairwise relative primeness of the minimal polynomi-
als of the given transformations.
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Chapter 8. Inner Product Spaces

Solution 117.

An orthogonal set of non-zero vectors is always linearly independent. (The
case in which one of them is zero is degenerate—then, of course, they are
dependent.) Indeed, if

a1x1+"'+an$n:07

form the inner product of both sides of the equation with any z; and get
oz, ;) = 0.

The reason is that if ¢ # j, then the inner product (z;,z;) is 0; that’s what
the assumed orthogonality says. Since (z;,z;) # 0 (by the assumed non-
zeroness), it follows that o; = 0—every linear dependence relation must be
trivial.

Solution 118.

The answer to the question as posed is no: different inner products must yield

different norms. The proof is a hard one to discover but a boring one to

verify—the answer is implied by the equation

2
+1

2 2

—1

1 .
3 (x +iy)
which is called the polarization formula. It might be somewhat frighten-
ing when first encountered, but it doesn’t take long to understand, and once
it’s absorbed it is useful—it is worth remembering, or, at the very least, its
existence is worth remembering.

1
5(:5—?/)

b

2 ‘

S —iy)

1
5(:c+y)

(@)= |

Solution 119.

What is always true is that
llz+ylI? = llz1? + (z,9) + (3, 2) + lyll*.
For real vector spaces the two cross product terms are equal; the equation
le +ylI? = lllI* + lyli*

is equivalent to (z,y) = 0, and all is well.
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In complex vector spaces, however, (y, x) is the complex conjugate of
(z,y); the sum of the two cross product terms is 2Re(z, y). The equation
between norms is equivalent to Re(z,y) = 0, and that is not the same as
orthogonality. An obvious way to try to construct a concrete counterexam-
ple is to start with an arbitrary vector = and set y = iz. In that case

lle +gl1? = lI(1 + dall” = 2[|=l* = lll* + |lyll,

but (except in the degenerate case z = 0) the vectors x and y are not
orthogonal.

Solution 120.
Multiply out ||z + y||2 + ||z — y|[?, get

llll® + (@, 9) + (,2) + lIylI* + 2l — (2,) — (@, 2) + llyll%,

and conclude that the equation in the statement of the problem is in fact
an identity, true for all vectors = and y in all inner product spaces.

Solution 121.

Yes, every inner product space of dimension n has an orthonormal set of
n elements. Indeed consider, to begin with, an arbitrary orthonormal set.
If no larger one jumps to the eye, a set with one element will do: take an
arbitrary non-zero vector x, and normalize it (that is replace it by I%H)' If

the orthonormal set on hand is not maximal, enlarge it, and if the resulting
orthonormal set is still not maximal, enlarge it again, and proceed in this
way by induction. Since an orthonormal set can contain at most n elements
(Problem 111), this process leads to a complete orthonormal set in at most
n steps.

Assertion: such a set spans the whole space. Reason: if the set is
{z1,z2,. ..}, and if some vector z is not a linear combination of the z,’,
then form the vector

y=2z— Z(x, z;)T;.
J
The assumption about z implies that y # 0. Since, moreover,

v,2:) = (2,2:) = Y_(2,2:)8;5 = (z,2:) — (z,2:) =0,
J

so that y is orthogonal to each of the z;’s, the normalized vector -, when

. . llyll”
adjoined to the z;’s, leads to a larger orthonormal set. That’s a contradic-

120
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tion, and, therefore, the x;’s do indeed span the space. Since they are also
linearly independent (Problem 111 keeps coming up), it follows that they
constitute a basis, and hence that there must be n of them.

Comment. There is a different way to express the proof, a more construc-
tive way. The idea is to start with a basis {z1,...,z»} and by continued
modifications convert it to an orthonormal set. Here is an outline of how

that goes. Since z; # 0, it is possible to form y; = ﬁ Once y1,.--,Yr
1

have been found so that each y; is a linear combination of z,, ..., z;, form

Try1 — Z($r+1: yJ)ij
j=1
verify that it is linearly independent of y;, . . ., y-, and normalize it. These
steps are known as the Gram-Schmidt orthogonalization process.

Solution 122.

If z and y are the same vector, then both sides of the Schwarz inequality
are equal to ||z||?>. More generally if one of z and y is a scalar multiple
of the other (in that case there is no loss of generality in assuming that
y = ax), then both sides of the inequality are equal to |a| - ||z||%. If z
and y are linearly dependent, then one of them is a scalar multiple of the
other. In all these cases the Schwarz inequality becomes an equation—can
the increasing generality of this sequence of statements be increased still
further? The answer is no: the Schwarz inequality can become an equation
for linearly dependent pairs of vectors only.
One proof of that assertion is by black magic, as follows. If

(@, )| = ll=l - llyll,

replace x by vz, where « is a complex number of absolute value 1 chosen
so that y(z,y) is real. The assumed “Schwarz equation” is still true, but
with the new z (and the same old y) it takes the form

(z,y) = |zl - [lyll-

This is not an important step—it just makes the black magic that follows a
tiny bit more mysterious still. Once that step has been taken, evaluate the
expression

2
1tz = lally | -
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Since it is equal to

(llylle = llzlly, llyliz — [lelly) = =l ll¥11® = 2012|2512 + [zl Pl = o,

it follows that ||y|[z — |jz|ly = 0, which is indeed a linear dependence
between z and y.

One reason why the Schwarz inequality is true, and why equality hap-
pens only in the presence of linear dependence, can be seen by looking at
simple special cases. Look, for instance, at two vectors in R2, say z = (a, 3)
and y = (1,0). Then

lzll = Vie> + 182, llgll=1, and  (z,9) =

the Schwarz inequality reduces to the statement

la] £ Vlal? +18/%,

which becomes an equation just when 3 = 0.

An approach to the theorem that is neither black magic nor overly sim-
plistic could go like this. Assume that |(z,y)| = ||z|| - ||y|| and, temporarily
fixing a real parameter a, consider

llz — ayll* = (z — ay, z — oy) = ||2l|® — 2Re(z, ay) + lof?|ly|I>

This indicates why changing « so as to make (z, y) real is a helpful thing to
do; if that’s done, then the right term becomes

(!l = lod - llyll)*.

Inspiration: choose the parameter « so as to make that term equal to 0
(which explains the reason for writing down the black magic expression)—
the possibility of such a choice proves that z — ay can be made equal to 0,
which is a statement of linear dependence.

Solution 123.

If M is a subspace of a finite-dimensional inner product space V, then M
and M+ are complements (Problem 28), and M1 = M. For the proof,
consider an orthonormal basis {z,, ..., z,,} for the subspace M. If z is an
arbitrary vector in V, form the vectors

m
T = Z(z, z;)zT; and Y=z
i=1
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Since z is a linear combination of the z;’s, it belongs to M, and since y is
orthogonal to each z; it belongs to M. Consequence:

V=M+M

If a vector u belongs to both M and M+, then (u, u) = 0 (by the defini-
tion of M): that implies, of course, that u = 0, that is that the subspaces
M and M+ are disjoint. Conclusion (in the language of Problem 50): V is
the direct sum of M and M+, and that’s as good a relation between M and
ML as can be hoped for.

The definitions of z and y imply that

(2,2) = (& +y,2) = ||2|* + (3, 2) = ||aII*,

and, similarly,

(zy) = (@ +9,9) = (&,9) + Iyl = lyl*

It follows that if z is in M+, so that (2,y) = 0, then ||y||> = 0, so that
z = x and therefore z is in M; in other words M+ C M. Since the reverse
inclusion M C M1+ is already known, it now follows that M = M*+, and
that’s as good a relation between M and M- as can be hoped for.

Solution 124.

The answer is yes: every linear functional £ on an inner product space V is
induced as an inner product. For the proof it is good to look at the vectors
x for which £(x) = 0. If every « is like that, then £ = 0, and there is nothing
more to say. In any case, the kernel of £ is a subspace of V, and it is pertinent
to consider its orthogonal complement, which it is convenient to denote by
ker’ ¢. If ker £ # V (and that may now be assumed), then ker! ¢ contains
at least one non-zero vector yp. It is true in fact (even though for present
purposes it is not strictly needed) that ker™ £ consists of all scalar multiples
of any such vector yo; in other words, the subspace ker® ¢ has dimension
1. Indeed: if y is in ker £, then so is every vector of the form y — ayp. The
value of £ at such a vector, that is

E(y — ayo) = £(y) — af(wo),

can be made equal to 0 by a suitable choice of the scalar o (namely,

_ £

£(yo)
which means, for that value of £, that y — £yo belongs to both ker £ and
ker! £. Conclusion: y — ayo = 0, that is y = ayo.

o
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The vector y, “works” just fine for the vectors in ker £, meaning that

if z is in ker £, then
£(2) = (2,%0)
(because both sides are equal to 0), and the same thing is true for every
scalar multiple of y,. Does the vector yo work for the vectors in ker' ¢
also? That is: is it true for an arbitrary element oy in ker™ ¢ that
u(oyo) = (ayo, yo)?

The equation is equivalent to

(o) = [lwoll?,

and there is no reason why that must be true, but, obviously, it can be true if
Yo is replaced by a suitable scalar multiple of itself. Indeed: if y, is replaced
by vy, the desired equation reduces to

¥€(wo) = IvI” - llyol*,
which can be satisfied by choosing +y so that

€(o) = 7llyol[*.

Solution 125.

(2) Since by the very definition of adjoints (U*#, () is always equal to (n, U(),
the way to determine U™ is to calculate with (U*n, ¢). That’s not inspiring,
but it is doable. The way to do it is to begin with

(U™ (z1, 1), (22, 42))

and juggle till it becomes an inner product with the same second term
(x2,y2) and a pleasant, simple first term that does not explicitly involve
U. The beginning is natural enough:

(U*("Bhyl)’ ('7:273’2)) = (<£1)7’1>’U<m2,y2>)

= ((33171/1), {y2, —932)) = (z1,%2) — (41, 22).

That’s an inner product all right, but it is one whose second term is (y, z5)
instead of (z2,y2). Easy to fix:

(U*(@1,11), (T2, 52)) = (—y1,72) + (21, 92) = ((—y1, 1), (T2, 92))-
That does it: the identity so derived implies that

u* ((B, y) = <_y7 1‘),
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and that’s the sort of thing that is wanted. What it shows is a surprise: it
shows that

Ut =-U.
The calculation of U*U is now trivial:
U*U<$a y) = U*<ya —.’B) = (x7y>>

so that U*U is equal to the identity transformation. The verification that
UU* is the same thing is equally trivial.

(b) Yes, a graph is always a subspace. The verification is direct: if
(x1,¥1) and (z2, y2) are in the graph of A, so that

hn = Ail?l and Y2 = A.’Ez,

then a; (z1,y1) + a2(z2, y2) is in the graph of A, because

a1y1 + aaye = Az + Azs.

(c) The graph of A* is the orthogonal complement of the image under
U of the graph of A. To prove that, note that the graph of A is the set of all
pairs of the form (z, Az), and hence the U image of that graph is the set
of all pairs of the form (— Az, z). The orthogonal complement (in V & V)
of that image is the set of all those pairs (u, v) for which

(—Az,u) + (z,v) =0
identically in z. That means that
(z,-A*u+v)=0

for all z, and hence that A*u = v. The set of all pairs (u,v) for which
A*y = v is the set of all pairs of the form (u, A*u), and that’s just the
graph of A*.

That wasn’t bad to verify—was it?—but how could it have been dis-
covered? That sort of question is always worth thinking about.

Solution 126.
(a) Yes, congruence is an equivalence relation. Indeed, clearly,
A=P*AP (with P =1);
if B=P*AP, then A=Q*BQ (withQ=P™');
and

if B=P*AP and C =Q*BQ, then C = R*AR (with R = PQ).
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(b) Yes: if B = P* AP, then B* = P*A*P.

(¢) No: a transformation congruent to a scalar doesn’t have to be a
scalar. Indeed, if P is an arbitrary invertible transformation such that P*P
is not a scalar (such things abound), then P*P (= P* - 1- P) is congruent
to the scalar 1 without being equal to it.

(d) The answer to this one is not obvious—some head scratching is
needed. The correct answer is yes: it is possible for A and B to be congruent
without A2 and B? being congruent. Here is one example:

A=(g (1)) and B=((1) ;)

The computation is easy. If
(! ¢
r=(a 1)
then

rar=(: )G DG D-CDE D=6

so that, indeed, A is congruent to B. Since, however,

00 0
) w3 )

it follows that A% cannot be congruent to BZ. (Is a microsecond’s thought
necessary? Can the transformation 0 be congruent to a transformation that
is not 0? No: since P*-0- P = 0, it follows that being congruent to 0 implies
being equal to 0.)

Solution 127.

The desired statement is the converse of a trivial one: if A = 0, then
(Az,z) = 0 for all z. In the non-trivial direction the corresponding state-
ment about sesquilinear forms (in place of quadratic ones) is accessible: if
(Az,y) = 0 for all z and y, then A = 0. Proof: set y = Az. A possible ap-
proach to the quadratic result, therefore, is to reduce it to the sesquilinear
one—try to prove that if (Az,z) = 0 for all z, then (Az,y) = Oforall z
and y.

What is wanted is (or should be?) reminiscent of polarization (Solu-
tion 118). What that formula does is express the natural sesquilinear form
(z,y) in terms of the natural quadratic form ||z||?. Can that expression be
generalized? Yes, it can, and the generalization is no more troublesome
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than the original version. It looks like this:
1 1 1 1
(42,9) = 4 (3050 +0)) = 4 (5E -0 56-0)
vid (S +iy), ge i) —id (5@ - ) 3@ i)
id| 5z +iy) 5z t+iy) ) —id] 5= zy,z(m iy) ).

Once that’s done, everything is done: if (Az, 2) is identically 0, then so is
(Az,y).

Solution 128.

The product of two Hermitian transformations is not always Hermitian—
or, equivalently, the product of two conjugate symmetric matrices is not
always conjugate symmetric. It is hard not to write down an example. Here

-

Does the order matter? Yes, it matters in the sense that if the same two
matrices are multiplied in the other order, then they give a different an-

SWer,
1 0\/0 1\ _ (0 1
0 2 1 0/ \2 0)’

but the answer “no” does not change to the answer “yes”.
How likely is the product of two Hermitian transformations to be Her-
mitian? If A and B are Hermitian, and if AB also is Hermitian, then

(AB)* = AB,

which implies that BA = AB. What this proves is that for the product of
two Hermitian transformations to be Hermitian it is necessary that they
commute. Is the condition sufficient also? Sure—just read the argument
backward.

Solution 129.
(a) If B= P*AP and A* = —A, then
B* = P*(—-A)P = —P*AP = -B.

Conclusion: a transformation congruent to a skew one is skew itself.
(b) If A* = —A, then

(A%)" = (A")? = (-4)* = 47,
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which is not necessarily the same as —AZ. Conclusion: the square of a skew
transformation doesn’t have to be skew. Sermon: this is an incomplete
proof. For perfect honesty it should be accompanied by a concrete exam-
ple of a skew transformation A such that A? # — A%, One of the simplest
such transformations is given by the matrix

(50)

As for A3, since (—1)% = -1, it follows that A* = —A implies (A3)* =
—A3, 50 that A* is skew along with A.
(c) Write

S (forsum) = AB + BA
and
D (for difference) = AB — BA.
The question is: what happens to
S§*=B*A* + A*B*
and
D* =B*A* — A*B*

when A* and B* are replaced by A and B, possibly with changes of sign?
The answer is that if the number of sign changes is even (0 or 2), then S
remains Hermitian and D remains skew, but if the number of sign changes
is odd (which has to mean 1), then S becomes skew and D becomes Her-
mitian,

Solution 130.
If A = A*, then
(Az,2) = (z, A*z) = (z, Az) = (Az, z),

so that (Az, ) is equal to its own conjugate and is therefore real. If, con-
versely, (Az, z) is always real, then

(Az,z) = (Az,z) = (z,A*z) = (A*z, 2),
so that ((A — A*)z,z) = 0 for all z, and, by Problem 127, 4 = A*.
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Solution 131.

(a) The entries not on the main diagonal influence positiveness less than
the ones on it. So, for example, from the known positiveness of

2 1
11
it is easy to infer the positiveness of
2 -1
-1 1)
2 2
(b) Yes, and an example has already been seen, namely ( )

2 1
(c) A careful look at
1 11
1 11
111

shows that the quadratic form associated with it is

&1 + & + &3,

and that answers the question: yes, the matrix is positive.
(d) The quadratic form associated with

1 01
010
1 01

€1 + &% + &2,

and that settles the matter; yes, the matrix is positive.
(e) The quadratic form associated with

a 1 1
1 00
1 00

a)é|® + 2Reg &2 + 2Ret &3

and the more one looks at that, the less positive it looks. It doesn’t really
matter what &5 is—it will do no harm to set it equal to 0. The enemy is the
coefficient o, and it can be conquered. No matter what « is, choose &; to
be 1, and then choose &, to be a gigantic negative number—the resulting

is

is
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value of the quadratic form will be negative. The answer to the question as
posed is: none.

Solution 132.

Yes, if a positive transformation is invertible, then its inverse also is posi-
tive. The proof takes one line, but a trick has to be thought of.
How does it follow from (Az,z) 2 0 for all z that (A~1y,y) > 0 for
all y? Answer: put y = Az. Indeed, then
(A~ly,y) = (A71Az, Az) = (2, Az) = (Az, T),

and the proof is complete.
(Is the reason for the last equality sign clear? Since A~! is positive,
A~! is Hermitian, and therefore A is Hermitian.)

Solution 133.

If E is the perpendicular projection onto M, so that E is the projection
onto M along M1, then Problem 82 implies that E* is the perpendicular
projection onto (M*)+ along M*. (Problem 82 talks about annihilators in-
stead of orthogonal complements, but the two languages can be translated
back and forth mechanically.) That means that E* is the perpendicular
projection onto M (along M )—and that is exactly E.

If, conversely, E = E? = E*, then the idempotence of E guarantees
that E is the projection onto ran E along ker E (Problem 72). If z is in
ran E and y is in ker E, then

(z,y) = (z,y) (because the vectors in the range of a
projection are fixed points of it—see Problem 72)
= (z,E*y) (just by the definition of adjoints)
= (x,Ey) (because E was assumed to be Hermitian)

=0 (because y is in ker ).

Consequence: ran £ and ker E are not only complements—they are or-
thogonal complements, and, therefore, E is a perpendicular projection.

Summary. Perpendicular projections are exactly those linear transforma-
tions that are both Hermitian and idempotent.

132
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Solution 134.

Since a perpendicular projection is Hermitian, the matrix of a projection
on C? must always look like
(5 %)
B )’

where o and -y must be real, and must, in fact, be in the unit interval.
(Why?) The question then is just this: which of the matrices that look like
that are idempotent?

To get the answer, compute. If

(g 5) (g ﬁ)z(agjlél2 aﬁ+ﬂ7)=(g ﬁ)
B v)\B « af+By I8P +7? B v)’
then (top right corner) a + v = 1, so that

y=1-aq.

Consequence (lower right corner): |3|2+ (1 —a)? = 1—q, which simplifies
to

1% = a1 — a).
Conclusion: the matrices of projections on C? are exactly the ones of the
form
a 0/a(1 - a)
0./a(1—a) l1-a ’
where

0<a<1 and |g=1

Comment. The case § = 0 seems to be more important than any other;
in any event it is the one we are most likely to bump into.

Solution 135.

If E and F are projections, with ran £ = M and ran F' = N, then the
statements

ELXF and McN

are equivalent.
Suppose, indeed, that £ < F. If z is in M, then

(Fz,z) 2 (Ez,z) = (2,2),
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Since the reverse inequality
(z,z) 2 (Fz,x)
is always true, it follows that
(@ - F)az, z) =0,
and hence that
(1 - F)z|* =o.

(Why is the last “hence” true?) Conclusion: Fz = z, so that z is in M.

If, conversely, M C N, the FEx = Ex (because Ez is in M for all z),
so that FE = E. It follows (from adjoints) that EF = E, and that justifies
a small computational trick:

(Ez,z) = ||Ea|* = ||EFa|]® £ ||Fz|* = (Fz,z).

Conclusion: E S F.

Solution 136. 136

If E and F are projections with ran F = M and ran F = N, then the
statements

ML1N and EF =0

are equivalent.
Suppose indeed that EF = 0. If z is in M and y is in N, then

(xv y) = (Ex’ Fy) == ($7 E*Fy) = (:E’EF:‘/) = O>
If, conversely, M L N, so that
N c M+,

then, since Fz is in N for all z, it follows that Fz is in M for all z. Con-
clusion: EFz = 0 for all z.

Solution 137. 137

If A is Hermitian, and if z is a non-zero vector such that Az = Az, then,
of course,

(A.’B,:E) = /\(.’l), z);

since (Az, z) is real (Problem 130), it follows that X is real. If, in addition,
A is positive, so that (Az, ) is positive, then it follows that X is positive.
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Note that these conditions on the eigenvalues of Hermitian and posi-
tive transformations are necessary, but nowhere near sufficient.

Solution 138.

The answer is that for Hermitian transformations eigenvectors belonging
to distinct eigenvalues must be orthogonal.
Suppose, indeed, that

Az, = 1 and Axs = Aaxa,
with \; # As. If A is Hermitian, then
Az, z2) = (Azy, T2) = (21, Ax2) (why?)
= Ao(z1,22) (why?).
Since A1 # A, it must follow that (z1,z3) = 0.

Comment. Since the product of the eigenvalues of a transformation on
a finite-dimensional complex vector space is equal to its determinant (re-
member triangularization), these results imply that the determinant of a
Hermitian transformation is real. Is there an obvious other way to get the
same result?

Chapter 9. Normality

Solution 139.

Caution: the answer depends on whether the underlying vector space is of
finite or infinite dimension.

For finite-dimensional spaces the answer is yes. Indeed, if U*U = 1,
then U must be injective, and therefore surjective (Problem 66), and there-
fore invertible (definition), and once that’s known the equation U*U =1
can be multiplied by U~ on the right to get U* = UL

For infinite-dimensional spaces the answer may be no. Consider, in-
deed, the set V of all finitely non-zero infinite sequences

{51,62,63’ .. }

of complex numbers. The phrase “finitely non-zero” means that each se-
quence has only a finite number of non-zero terms (though that finite
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number might vary from sequence to sequence). With the obvious way of
adding sequences and multiplying them by complex scalars, V is a complex
vector space. With the definition

o
({51762: €3, . -}’ {771’7’277737 .. }) = Z £n7l—n;
n=1
the space V becomes an inner product space. If U and W are defined by

U{§1)§2, 637 .. } = {0)61’ 62, §3, .. }

and

W{§11€27€3, e } = {£21€3’£41 . '}a
then U and W are linear transformations on V, and a simple computation
establishes that the equation
WUz,y) = (=, Wy)
is true for every pair of vectors 2 and y in V. In other words W is exactly
the adjoint U* of U, and, as another, even simpler, computation shows
UU =1.

(Caution: it is essential to keep in mind that when U*U is applied to a
vector z, the transformation U is applied first.) It is, however, not true that
UU™ = 1. Not only does U* fail to be the inverse of U, but in fact U has
no inverse at all. The range of U contains only those vectors whose first
coordinate is 0, so that the range of U is not the entire space V—that’s
what rules out invertibility.

Solution 140. 140

. fa . .
When is ( ?) the matrix of a unitary transformation on C2? Answer:

if and only if the product of

a BY° a
d
Go) = (59)
is the identity matrix. Since
(a ﬁ)‘(a ﬁ)=(|alj+lv_l2 ap+76
v §) \v ¢ af+8 B +162 )’
that condition says that

e+ > =18+ (6>=1 and @B+756=0,
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or, in other words that the vectors (a,8) and (v, 6) in C2? constitute an
orthonormal set.

This 2 x 2 calculation extends to the general case. If U is a linear trans-
formation on a finite-dimensional inner product space, and if the matrix
of U with respect to an orthonormal basis is (ui;), then a necessary and
sufficient condition that U be unitary is that

Z Uk Uk = 6¢j .
k

That matrix equation is, in fact, just the equation U*U = 1 in matrix nota-
tion.

These comments make it easy to answer the questions about the spe-
cial matrices in (a), (b), and (c).

For (a): since the second row is not a unit vector, it doesn’t matter what
« is, the matrix can never be unitary.

For (b): the rows must be orthonormal unit vectors. Since the norm of
each row is |a|? + ], the condition of normality is equivalent to |a| = ?
Since the inner product of the two rows is 3 (—a + @), their orthogonality
is equivalent to o being real. Conclusion:

1

is unitary if and only if a = :tﬁg.

For (c): the question is an awkward way of asking whether or not a
multiple of (1, 1, 1) can be the first term of an orthonormal set. The answer
is: why not? In detail: if w is a complex cube root of 1, then the vectors

(1,1,1), (1,w,w?), and (1,w?,w)

all have the same norm (39); normalization yields an explicit answer to
the question.

Solution 141.

None of the three conditions U* = U, U*U = 1, and U? = 1 implies any
of the others. Indeed,

10

0 2

is Hermitian but neither unitary nor involutory;

(59)
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is unitary but neither Hermitian nor involutory; and

(o 7)

is involutory but neither Hermitian nor unitary.

The implicative power of pairs of these conditions is much greater than
that of each single one; indeed it turns out that any two together imply the
third. That’s very easy; here is how it goes.

If U* = U, then the factor U* in U*U can be replaced by U, and,
consequently, U*U = 1 implies U2 = 1.

If U*U = 1 and U? = 1, then of course U*U = UZ; multiply by U1
(= U*) on the right and get U* = U.

If, finally, U* = U, then one of the factors U in UZ can be replaced by
U*, and consequently, U2 = 1 implies U*U = 1.

Solution 142.

Each row and each column of a unitary matrix is a unit vector. If, in par-
ticular, a unitary matrix is triangular (upper triangular, say), then its first
column is of the form

(%,0,0,0,...),

and, consequently, those entries in the first row that come after the first
can contribute nothing—they must all be 0. Proceed inductively: now it’s
known that the second column is of the form

(0,%,0,0,...),

and, consequently, those entries in the second row that come after the first
two can contribute nothing—etc., etc. Conclusion: a triangular unitary ma-
trix must be diagonal.

Comment. This solution tacitly assumed that the matrices in question
correspond to unitary transformations via orthonormal bases. A similar
comment applies in the next problem, about Hermitian diagonalizability.

Solution 143.

The answer is yes; every Hermitian matrix is unitarily similar to a diago-
nal one. This result is one of the cornerstones of linear algebra (or, per-
haps more modestly, of the part of linear algebra known as unitary geome-

142
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try). Its proof is sometimes considered recondite, but with the tools already
available here it is easy.

Suppose, indeed, that A is a Hermitian transformation with the dis-
tinct eigenvalues

ALy oy Ap
and corresponding eigenspaces M;:
M; = {z: Az = Az},
i=1,...,7.If i # j (so that A; # A;), then
M; L M;

(by Problem 138). The M;’s must span the entire space. Reason: the re-
striction of A to the orthogonal complement of their span is still a Her-
mitian transformation and, as such, has eigenvalues and corresponding
eigenspaces.

That settles everything. Just choose an orthonormal basis within each
M, and note that the union of all those little bases is an orthonormal basis
for the whole space. Otherwise said: there exists an orthonormal basis

T1y..-3Tp

of eigenvectors; the matrix of A with respect to that basis is diagonal.

Solution 144,

The answer is 1: every positive transformation has a unique positive square
root. A quick proof of existence goes via diagonalization. If A 2 0, then,
in particular, A is Hermitian, and, consequently, A can be represented by
a diagonal matrix such as

S o R
oW o
Lo o

The diagonal entries «, 8,7, ... are the eigenvalues of A, and, therefore,
they are real; since, moreover, A is positive, it follows that they are positive.
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Va 0 0
0 VvB ©
0 0o v

(where the indicated numerical square roots are the positive ones), and
jump happily to the conclusions that (i) B 2 0 and (ii) B2 = A.

What about uniqueness? If C' 2 0 and C? = A, then C can be diago-
nalized,

£ 0 0
0n O
C=10 0 ¢

The numbers ¢,7,¢,. .. are positive and their squares are the numbers
a,B,7,..— Q.E.D.

Solution 145.

Every linear transformation A on a finite-dimensional inner product space
is representable as

A=UP

with U unitary and P positive; if A is invertible, the representation is unique.

To get a clue to a way of constructing U and P when only A is known,
think backward: assume the result and try to let it suggest the method. If
A =UP, then A* = PU*, and therefore

A*A = P2,

That’s a big hint: since A*A and P? are positive linear transformations,
they have positive square roots; the equation P? = A* A implies the square
root equation

P=+vA*A

That’s enough of a hint: given A, define P by the preceding equation, and
then ask where U can come from. If A is to be equal to U P, then it’s tempt-
ing to “divide through” by P—which would make sense if P were invert-
ible. All right: assume for a moment that A is invertible; in that case A* is
invertible, and so are A*A and P. If U is defined by

U=AP7,

145
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then
U*U =P 'A*"AP =P 'P?P =1,

and victory has been achieved: U is indeed unitary.
Uniqueness is not hard. If

U P, = Uy Py,
with U; and U unitary and P; and P; invertible and positive, then
P} = (LP) (U P) = (U2 Py)* (U2 Py) = B,
and therefore (by the uniqueness of positive square roots)
P =P,

“Divide” the equation Uy P, = Uy P, through by P, (= P;) and conclude
that U; = Us.

If A is not invertible, the argument becomes a little more fussy. What
is wanted is Az = U Pz for all z, or, writing y = Pz, what is wanted is

Uy =Pz

whenever y is in the range of P. Can that equation be used as a definition
of U—is it an unambiguous definition? That is: if one and the same y is in
the range of P for two reasons,

y = Px; and y = Pzx,,

must it then be true that Az, = Az,? The answer is yes: write
= — Ty

and note the identity

||Pz||* = (Pz, Pz) = (P*z,z) = (A*Az, ) = || Az||%.

It implies that if Pz = 0, then Az = 0, or, in other words, that if
Pz, = Px,,

then
Az, = Axy;

the proposed definition of U is indeed unambiguous.
Trouble: the proposed definition works on the range of P only; it de-
fines a linear transformation U with domain equal to ran P and range equal
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to ran A. Since that linear transformation preserves lengths (and there-
fore distances), it follows that ran A and ran P have the same dimension.
Consequence: rant A and ranl P have the same dimension, and, con-
sequently, there exists a linear transformation V that maps ran’ P onto
ran'- A and that preserves lengths. Extend the transformation U (already
defined on ran P) to the entire space by defining it to be equal to V on
ran® P. The enlarged U has the property that ||Uz|| = ||z|| for all z, which
implies that it is unitary; since A = U P, everything falls into place.

In the non-invertible case there is no hope of uniqueness and the arbi-
trariness of the definition of U used in the proof shows why. For a concrete
counterexample consider

01
=6 0);

4=(3 5) (5 0)
A=(_01 (1)) (g (1))

are polar decompositions of A.

both the equations

and

Solution 146.

Yes, eigenvectors belonging to distinct eigenvalues of a normal transfor-
mation (on a finite-dimensional inner product space) must be orthogonal.
The natural way to try to prove that is to imitate the proof that worked for
Hermitian (and unitary) transformations. That is: assume that

A.’l?l = /\11:1 and Axg = Az.’Eg,

with A; # Ag, and look at

(Axl,:z:g) = (11,'1, A*.’L“z).

The left term is equal to A, (zy, z5)—so far, so good—but there isn’t any
grip on the right term. Or is there? Is there a connection between the eigen-
values of a normal transformation and its adjoint? That is: granted that
Az = Az, can something intelligent be said about A*z? Yes, but it’s a bit

tricky.
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The normality of A implies that
[|Az||? = (Az, Az) = (A* Az, z)
= (AA*z,z) = (A*z, A*z) = ||A%z|)%
Since A — ) is just as normal as A, and since
(A=) =4* -],
it follows that
[I(4 = Nell = [1(4* = N)al|.

Consequence: if X is an eigenvalue of A with eigenvector z, then X is an
eigenvalue of A* with the same eigenvector z.

The imitation of the proof that worked in the Hermitian case can now
be comfortably resumed: since

(Azy, z3) = M (71, 72)
and
(z1, A% z2) = Ao(21, Z2),

the distinctness of A, and A, implies the vanishing of (z, x2), and the proof
is complete.

Solution 147.

The answer is yes—normal transformations are diagonalizable. The key
preliminary question is whether or not every restriction of a normal trans-
formation is normal. That is: if A is normal on V, if M is a subspace of V,
and if Ay is the restriction A|M of A to M (which means that Ayz = Az
whenever z is in M), does it follow that Ay is normal? The trouble with
the question is that it doesn’t quite make sense—and it doesn’t quite make
sense even for Hermitian transformations. The reason is that the restric-
tion is rigorously defined, but it may not be a linear transformation on M—
that is, it may fail to send vectors in M to vectors in M. For the question
to make sense it must be assumed that the subspace is invariant under the
transformation. All right, what if that is assumed?

One good way to learn the answer is to write the transformation A
under consideration as a 2 x 2 matrix according to the decomposition of
the space into M and M. The result looks like

P *
a=(5 7).
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where P is the linear transformation Ay on M and the asterisks are linear
transformations from M to M- (top right corner) and from M to M+
(bottom right corner). It doesn’t matter what linear transformations they
are, and there is no point in spending time inventing a notation for them—
what is important is the 0 in the lower left corner. The reason for that 0 is
the assumed invariance of M under A.

Once such a matrix representation is known for A, one for A* can be

deduced:
A" = (P 0) .
%k *

Now use the normality of A in an easy computation: since
* X 0 =* * ok
AA‘=(P *) (P* 0)=(PP* *)
0 =« *  x * x /]’

normality implies that

and

P*P = PP*,

that is, it implies that P is normal—in other words Ay is normal.

That’s all the hard work that has to be done—at this point the diago-
nalizability theorem for normal transformations can be abandoned in good
conscience. The point is that intellectually the proof resembles the one for
Hermitian transformations in every detail. There might be some virtue in
checking the technical details, and the ambitious reader is encouraged to
do so—examine the proof of diagonalizability for Hermitian transforma-
tions, replace the word “Hermitian” by “normal”, delete all references to
reality, and insist that the action take place on a complex inner product
space, and note, happily, that the remaining parts of the proof remain un-
changed.

Language. The diagonalizability of normal (and, in particular, Hermi-
tian) transformations is sometimes called the spectral theorem.

Solution 148.
If A and B are defined on C? by

01 10
A= -
(0 0) and B‘(o 0)’
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then B is normal and every eigenspace of A is invariant under B, but A
and B do not commute.

If, however, A is normal, and every eigenspace of A is invariant under
B, then A and B do commute. The most obvious approach to the proof is to
use the spectral theorem (Problem 147); the main purpose of that theorem
is, after all, to describe the relation between a normal transformation and
its eigenspaces. The assertion of the theorem can be formulated this way:
if A is normal with distinct eigenvalues Ay, ..., A, and if E; is, for each
J» the (perpendicular) projection on the eigenspace corresponding to ;,
then A = 3. \; E;. The assumption that the eigenspace corresponding to
A; is invariant under B can be expressed in terms of E; as the equation

BE; = E;BE;.

From the assumption that every eigenspace of A is invariant under B it
follows that the orthogonal complement of the eigenspace corresponding
to ) is invariant under B (because it is spanned by the other eigenspaces),
and hence that

B(l - EJ) = (1 - EJ)B(I - EJ)
The two equations together simplify to
BE; = E;B,

and that, in turn implies the desired commutativity BA = AB.

Solution 149,

There are three ways for two of three prescribed linear transformations A,
B, and C to be adjoints of one another; the adjoint pairs can be {4, B), or
(B, C), or {A,C). There are, therefore, except for notational differences,
just three possible commutativity hypotheses:

A with A* and A* with C,
A with B and B with B*,
A with B and B with A*.

The questioned conclusion from the last of these is obviously false; for
a counterexample choose A so that it is not normal and choose B = 0.
The implications associated with the first two differ from one another in
notation only; both say that if something commutes with a normal transfor-
mation, then it commutes with the adjoint of that normal transformation.
That implication is true.
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The simplest proof uses the fact that if A is normal, then a necessary
and sufficient condition for AB = BA is that each of the eigenspaces of
A is invariant under B (see Solution 148). Consequence: if A is normal
and AB = BA, then the eigenspaces of A are invariant under B. The
normality of A implies that the eigenspaces of A are exactly the same as
the eigenspaces of A*. Consequence: the eigenspaces of A* are invariant
under B. Conclusion: A* B = BA*, and the proof is complete.

Solution 150.

Almost every known proof of the adjoint commutativity theorem (Solution
143) can be modified to yield the intertwining generalization: it is indeed
true that if A and B are normal and AS = SB, then A*S = SB*. Alter-
natively, there is a neat derivation, via matrices whose entries are linear
transformations, of the intertwining version from the commutative one.

Write
A0 0 S
A A
A —_(0 B) and Sh = (0 0)

The transformation A” is normal, and a straightforward verification proves
that B commutes with it. The adjoint commutativity theorem implies that
B” commutes with A** also. To get the desired conclusion from this fact,
just multiply the matrices A** and B” in both orders and compare corre-
sponding entries.

Solution 151.

Yes; if A, B, and AB are all normal, then BA is normal too. One good way
to prove that statement is a splendid illustration of what is called a trace
argument. In general terms, a trace argument can sometimes be used to
prove an equation between linear transformations, or, what comes to the
same thing, to prove that some linear transformation C is equal to 0, by
proving that the trace of C*C is 0. Since C*C is positive, the only way it
can have trace 0 is to be 0, and once C*C is known to be 0 it is immediate
that C itself must be 0. The main techniques available to prove that the
trace of something is 0 are the additivity of trace,

tr(X+Y)=tr X +trY,

and the invariance of the trace of a product under cyclic permutations of
its factors,

tr(XY Z) = tr(ZXY).

150

151



322 LINEAR ALGEBRA PROBLEM BOOK

If it could be proved that A and B must commute, then all would
be well (see the discussion preceding the statement of the problem), but
that is not necessarily true (see the discussion preceding the statement
of the problem). A step in the direction of commutativity can be taken
anyway: the assumptions do imply that B commutes with A* A, That is: if
C = BA*A — A*AB, then C = 0. That’s where the trace argument comes
in.

A good way to study C*C is to multiply out

(A*AB* — B*A*A)(BA*A — A*AB),
getting
A*AB*BA*A — B*A*ABA*A — A*"AB*A*AB + B*A*AA*AB,

and then examine each of the four terms. As a device in that examination,
introduce an ad hoc equivalence relation, indicated by X ~ Y for any two
products X and Y, if they can be obtained from one another by a cyclic
permutation of factors. A curious thing happens: the assumptions (A, B,
and AB are normal) and the cyclic permutation property of trace imply
that all four terms are equivalent to one another. Indeed:

A*AB*BA*A = A*ABB*A*A (because B is normal)
~ A*B*A*ABA (because AB is normal),

B*A*ABA*A = B*A*ABAA* (because A is normal)
~ A*B*A*ABA,

A*AB*A*AB = AA*B*A*AB  (because A is normal)
~ A*B*A*ABA,

B*A*AA*AB ~ AA*ABB*A*
= AA*B*A*AB (because AB is normal)
~ A*B*A*ABA.

Consequence: all four terms have the same trace, and, therefore, the trace
of C*Cis 0.

The result of the preceding paragraph implies that B commutes with
A*A.If A = UP is the polar decomposition of A, then U commutes with P
(because A is normal), and, since B commutes with P% (= A* A), it follows
that B also commutes with P. These commutativities imply that

U*(AB)U = U*(UP)BU = (U*U)(BP)U = B(UP) = BA.
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Conclusion: BA is unitarily equivalent to the normal transformation AB,
and, consequently, B A itself must be normal.

Solution 152.

(a) The adjoint of a matrix is its conjugate transpose. Polynomials are not
clever enough to transpose matrices. If, for instance,

a=(09).
then every polynomial in A is of the form
(5 2)
g af’
which has no chance of being equal to
1
A4 = (g 0) .

Question. 'What made this A work? Would any non-normal A work just
as well?

(b) This time the answer is yes; the inverse of an invertible matrix A
can always be obtained via a polynomial. For the proof, consider the char-
acteristic polynomial

A" 4an A" 4 ah+ag

of A and observe that g cannot be 0. Reason: the assumed invertibility of A
implies that 0 is not an eigenvalue. Multiply the Hamilton-Cayley equation

A"t ap A" 14+ a1 A4+ap=0
by A~1 to get
Arl g an_lA"_2 +--t+a+ aoA_l =0.
Conclusion: if
p(A) =

then p(A4) = A~ L.

—% ()\"_1 SR NIED L a1),

Solution 153.

The answer is that all positive matrices are Gramians. Suppose, indeed,
that A 2 0 and infer (Problem 144) that there exists a positive matrix B

152
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such that B? = A. If A = (a;), then the equations
aij = (Ae,-, e,-) (Why")
= (B26j, e,-) = (Bej, Bei)

imply that A is a Gramian (the Gramian of the vectors Be;, Bea, .. .), and
that’s all there is to it.

Solution 154.

Squaring is not monotone; a simple counterexample is given by the matri-

ces
10 2 1
4=(oo) = (1)

The relation A £ B can be verified by inspection. Since

A? = ((1) g) (= A) and B%*= (g g),

2 42 (43
B A_<32’

it is also easy to see that the relation A? < B? is false; indeed, the deter-
minant of B2 — A? is negative.

Is it a small blemish that not both the matrices in this example are
invertible? That’s easy to cure (at the cost of an additional small amount
of computation): the matrices A + 1 and B + 1 are also a counterexample.

That’s the bad news; for square roots the news is good. That is: if

so that

0£ALB,
then it is true that

VA< VB.

Various proofs of that conclusion can be constructed, but none of them
jumps to the eye—the only way to go is by honest toil. The idea of one proof
is to show that every eigenvalue of /B — /A is non-negative; for invertible
Hermitian transformations that property is equivalent to positiveness. All
right: suppose then that ) is an eigenvalue of vVB—1+/A, with corresponding
(non-zero) eigenvector z, so that

VAz = vVBz — Az;

it is to be shown that X > 0.
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If it happens that v/Bz = 0, then, of course, Bz = 0, and therefore
it follows from the assumed relation between A and B that (Az,z) = 0.
Consequence: v/ Az = 0. Reason:

0 = (Az,z) = (VAVAz,z) = (VAz,VAz) = ||V Az||?.

Once that’s known, then the assumed eigenvalue equation implies that
Az = 0, and hence that A = 0.

If Bz # 0, then (v Bz, =) # 0—to see that apply the chain of equa-
tions displayed just above to B instead of A. Consequence:

(vBz,VBz) = ||VBz|}?
2 ||VBa||- ||VAz||  (why?)
> (VBz,VAz) (why?)
= (VBz,VBz — \z)
= (VBz,VBz) — A(VBz, ).

Conclusion: A > 0, because the contrary possibility yields the contradic-
tion,

(VBz,VBz) > (VBz,VBz).

The proof is complete.

Solution 155.

In some shallow combinatorial sense there are 32 cases to examine: 16 ob-
tained via combining the four constituents ran A, ker A, ran A*, and ker A*
with one another by spans, and 16 others via combining them by intersec-
tions. Consideration of the duality given by orthogonal complements (and
other, even simpler eliminations) quickly reduce the possibilities to two,
namely

ker A Nker A* and ran A Nran A*.

The first of these is always a reducing subspace; indeed both A and A*
map it into {0}. An explicit look at the duality can do no harm: since the
orthogonal complement of a reducing subspace is a reducing subspace, it
follows that ran A +ran A* is always a reducing subspace. This corollary is
just as easy to get directly: A maps everything, and therefore in particular
ran A + ran A*, into ran A ( which is included in ran A + ran A*), and a
similar statement is true about A*.

155



156

326 LINEAR ALGEBRA PROBLEM BOOK

The second possibility, ran A N ran A*, is not always a reducing sub-
space. One easy counterexample is given by

010
A=]10 0 1].
0 0O

Its range consists of all vectors of the form {«, 3, 0), and the range of its
adjoint consists of all vectors of the form (0, 3, ). The intersection of the
two ranges is the set of all vectors of the form {0, 3, 0), which is not only
not invariant under both A and A*, but, in fact, is invariant under neither.
The dual is ker A + ker A*, which in the present case consists of the set of
all vectors of the form {«, 0, ¥), not invariant under either A or A*.

Solution 156.

The only eigenvalue of A is 0 (look at the diagonal of the matrix). If x =
(a1,az,...,0p), then

Az = (01 Q1,0Qg,... 7an——1>;

it follows that Az = 0 if and only if z is a multiple of

z, ={0,0,...,0,1).

That is: although the algebraic multiplicity of 0 as an eigenvalue of A is n
(the characteristic polynomial of A is (—A)™), the geometric multiplicity is
only 1. One way to emphasize the important one of these facts is to say that
the subspace M; consisting of all multiples of z,, is the only 1-dimensional
subspace invariant under A.

Are there any 2-dimensional subspaces invariant under A? Yes; one
of them is the subspace M, spanned by the last two basis vectors z,,_; and
z, (or, equivalently, the subspace consisting of all vectors whose first n — 2
coordinates vanish). That, moreover, is the only possibility. Reason: every
such subspace has to contain z,, (because it has to contain an eigenvector),
and, since A is nilpotent, the restriction of A to each such subspace must
be nilpotent (of index 2). It follows that each such subspace must contain
at least one vector y in M, that is not in M, and hence (consider the span
of y and z,,) must coincide with M.

The rest of the proof climbs up an inductive ladder. If M, is the sub-
space spanned by the last k vectors of the basis {z1, x2, . ..,z,} (o1, €equiv-
alently, the subspace consisting of all vectors whose first n — k coordinates
vanish), then it is obvious that each My, is invariant under the truncated
shift A, and by a modification of the argument of the preceding paragraph
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(just keep raising the dimensions by 1) it follows that M}, is in fact the only
invariant subspace of dimension k. (Is it permissible to interpret My as

{017
Conclusion: the number of invariant subspaces is n+1, and the number
of reducing subspaces is 2; the truncated shift is irreducible.

Solution 157.

The matrix A is the direct sum of the 2 x 2 matrix

01
55 )
and the 1 x 1 matrix 0. A few seconds’ reflection should yield the conclusion
that the same direct sum statement can be made about

0 01
A*=10 0 0};
000

the only difference between A and A" is that for A" the third column plays
the role that the second column played for A. A more formal way of saying
that is to say that the permutation matrix that interchanges the second and
the third columns effects a similarity between A and A"

100 010 100 0 01
0 01}J-{0 0 0)-{0 0 1)=]0 0 0].
010 0 0 0 010 00O

Since A" does have a square root, namely the 3 x 3 truncated shift, so does
A. Since in fact, more generally,

o oo
o o
Omi— 3

is a square root of A", it follows that A too has many square roots, namely

the matrices of the form
0 4
0 0
0 0

obtained from the square roots of A" by the permutation similarity.

m- O 3
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Solution 158.

Similar normal transformations are unitarily equivalent. Suppose, indeed,
that A; and A, are normal and that

A1B = BA,,

where B isinvertible. Let B = U P be the polar decomposition of B (Prob-
lem 145), so that U is unitary and P = v/ B* B, and compute as follows:

Ay(B*B) = (A;B*)B
= (B*A)B
(by the facts about adjoint intertwining, Solution 150)
= B*(A1B) = B*(BAz) (by assumption)
= (B*B)A;.
The result is that
A P? = P24,
from which it follows (since P is a polynomial in P?) that
AsP = PA,.
Consequence:
A UP =UPA, (byassumption)
=UAoP (bywhat was just proved),
and therefore, since P is invertible,
AU = UA;.
That completes the proof of the unitary equivalence of A, and A,.

Solution 159.

Are the matrices

010 0 00
A=[0 0 2 and B=]2 0 0
0 0O 60 1 0

Th

unitarily equivalent? The answer is yes, and it’s not especially surprising; if

0 01
U=|01 0],
1 00

-4}
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then U* AU = B,
Are the matrices

010 0 20
A=]0 0 2 and B=(0 01
0 0O 0 0 O

unitarily equivalent? The surprising answer is no. More or less sophisti-
cated proofs for that negative answer are available, but the quickest proof
is a simple computation that is not sophisticated at all. What can be said
about a 3 x 3 matrix S with the property that

SA = BS?

Written down in terms of matrix entries, the question becomes a system
of nine equations in nine unknowns. The general solution of the system is
easy to find; the answer is that the matrix S must have the form

26 0 g
S=<o ; 0).
0 0 2¢

A matrix like that cannot possibly be unitary, and that settles that.
An alternative proof is based on the observation that

0 0 2
A2=B%2=1[0 0 0].
0 00

Since SA = BS implies that SA? = B2S, it becomes pertinent to find
out which matrices commute with A2. That’s another simple computation,
which leads to the same conclusion.

These comments seem not to address the main issue (unitary equiva-
lence of transposes), but in fact they come quite close to it. The A’s in the
two pairs of examples are the same, but the B’s are not: the first B is the
transpose of the second. Since the first B is unitarily equivalent to A but
the second one is not, since, in fact, the second B is unitarily equivalent to
the transpose of A, it follows that A is not unitarily equivalent to its own
transpose, and that settles the issue.

Yes, it settles the issue, but not very satisfactorily. How could one pos-
sibly discover such examples, and, having discovered them, how could one
give a conceptual proof that they work instead of an unenlightening com-
putational one?

Here is a possible road to discovery. What is sought is a matrix A
that is not unitarily equivalent to the transpose A. Write A in polar form
A = UP,with U unitary and P positive (Problem 145), and assume for the
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time being that P is invertible. There is no real loss of generality in that
assumption; if there is any example at all, then there are both invertible
and non-invertible examples. Proof: the addition of a scalar doesn’t change
the unitary equivalence property in question. Since, moreover, transform-
ing every matrix in sight by a fixed unitary one doesn’t change the unitary
equivalence property in question either, there is no loss of generality in
assuming that the matrix P is in fact diagonal.

If A= UP, then A’ = PU’, so that to say that A and A’ are unitarily
equivalent is the same as saying that there exists a unitary matrix W such
that

W*(UP)W = PU’, (%)
or, equivalently, such that
(W*U)P(WU) = P.

(The symbol U here denotes the complex conjugate of the matrix U.) As-
sume then that () is true, and write Q@ = W*U, and R = WU, note that
@ and R are unitary and that

QPR=P.
It follows that

P2 = PP* == QPRR*PQ* = QP?Q*,

so that  commutes with PZ; since P is a polynomial in P?, it follows that
Q commutes with P (and similarly that R commutes with P).

To get a powerful grip on the argument, it is now a good idea to make a
restrictive assumption: assume that the diagonal entries (the eigenvalues)
of P are all distinct. In view of the commutativity of @ and P, that assump-
tion implies that Q too is diagonal and hence, incidentally, that W = U P2.
The equation (*) yields

PQUQ = QPUQ = PU',
and hence, since P is invertible, that
QUQ =U"
Since the entries of the unitary diagonal matrix Q are complex numbers of
absolute value 1, it follows that the absolute values of the matrix U consti-
tute a symmetric matrix.

That last result is unexpected but does not seem to be very powerful;
in fact, it solves the problem. The assumption of the existence of W has
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implied that U must satisfy a condition. The matrix U, however, has not
yet been specified; it could have been chosen to be a quite arbitrary unitary
matrix. If it is chosen so as not to satisfy the necessary condition that the
existence of W imposes, then it follows that no W can exist, and victory is
achieved.

The simplest example of a unitary matrix whose absolute values do not
form a symmetric matrix is

010
U=10 0 1].
1 00

A simple P that can be used (positive, diagonal, invertible, with distinct

eigenvalues) is given by
1 00
P=10 2 0}.
0 0 3

Since, however, invertibility is an unnecessary luxury, an even simpler one

18
000
P=(010);
00 2

if that one is used, then the resulting counterexample is

010 0 00 010
A=UP=|0 0 1|-{0 1 0}=|00 2],
1 00 0 0 2 0 00
and the process of “discovery” is complete.

Solution 160.

If A and B are real, U is unitary, and U* AU = B, then there exists a real
orthogonal V such that V*AV = B.

A surprisingly important tool in the proof is the observation that the
unitary equivalence of A and B via U implies the same result for A* and
B*. Indeed, the adjoint of the assumed equation is U* A*U = B*.

Write U in terms of its real and imaginary parts (compare Solution 89):
U = E +iF. It follows from AU = UB that AE = EB and AF = FB,
and hence that A(E + AF) = (E + AF)B for every scalar \. If ) is real and
different from a finite number of troublesome scalars (the ones for which
det(E+\F) = 0), the real matrix S = E+ \F is invertible, and, of course,
has the property thgt AS = SB.

160
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Proceed in the same way from U*A*U = B*: deduce that
A*(E + AF) = (E 4+ AF)B" for all ), and, in particular, for the ones for
which E + AF is invertible, and infer that A*S = SB* (and hence that
S*A* = BS*).

From here on in the technique of Solution 158 works. Let S = VP be
the polar decomposition of S (that theorem works just as well in the real
case as in the complex one, so that V and P are real). Since

BP? = BS*S = S*A*S = §*SB = P?B,
so that P? commutes with B, it follows that P commutes with B. Since

AVP=AS=SB=VPB=VBP

and P is invertible, it follows that AV = V B, and the proof is complete.

Solution 161.

It is a worrisome fact that eigenvalues of absolute value 1 can not only stop
the powers of a matrix from tending to 0, they can even make those powers
explode to infinity. Example: if

11
4= 1)
n_(1 n
A‘(o 1)'

Despite this bad omen, strict inequalities do produce the desired conver-
gence.

An efficient way to prove convergence is to use the Jordan canonical
form. (Note that A” — 0 if and only if (S~1AS)™ — 0.) The relevant part
of Jordan theory is the assertion that (the Jordan form of) A is the direct
sum of matrices of the form X + B, where B is nilpotent (of some index k).
Since

A+B)" ="+ ("IL) AIB 4.4 (k " 1) An—k+1 pk-1
as soon as n > k — 1, and since the assumption || < 1 (strict inequality)
implies that the coefficients tend to 0 as n — oo, the proof is complete.

then

Solution 162.

Yes, every power bounded transformation is similar to a contraction.
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Note first that if A is power bounded, then every eigenvalue of A is less
than or equal to 1 in absolute value. (Compare the reasoning preceding
the statement of Problem 161.) To get more powerful information, use the
Jordan form to write (the matrix of) A as the direct sum of matrices of one
of the forms

A0 0 0 A0 0 0

1 A0 0 0 A 0 0
FE = =

01 A0 oo F=1g0 0]

00 1 A 00 0 A

where, for typographical convenience, 4 x 4 matrices are used to indicate
the general n x n case. It is then enough to prove that each such direct
summand that can actually occur in a power bounded matrix is similar to
a contraction.

Since |A| £ 1, the matrix F' is a contraction, and nothing else needs
to be said about it. As far as E is concerned, two things must be said: first,
|A| cannot be equal to 1, and, second, when |A| < 1, then FE is similar to a
contraction.

As for the first, a direct computation shows that the entry in row 2,
column 1 of E™ isnA"~1;if |A| = 1, that is inconsistent with power bound-
edness. As for the second, F is similar to

A0 0O

e A 0 O
Ee_Oe,\O’

0 0 ¢ X

where ¢ can be any number different from 0. There are two ways to prove
that similarity: brute force and pure thought. For brute force, form

10 0 O

0 0 O
5= 00 ¢ o}

00 0 ¢

and verify that SES~! = E,. For pure thought, check, by inspection, that
E and E. have the same elementary divisors, and therefore, by abstract
similarity theory, they must be similar.

The proof can now be completed by observing that if [A| < 1 and ¢ is
sufficiently small, then E, is a contraction. The quickest way of establishing
that observation is to recall that || X|| is a continuous function of X, and
that, therefore, ||E|| is a continuous function of ¢. Since ||Ep|| = || <

1, it follows that ||E,|| < 1 when ¢ is sufficiently small, and that settles

everything, .
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Solution 163.

What is obvious is that some nilpotent transformations of index 2 can be
reducible: just form direct sums. That can be done even in spaces of dimen-
sion 3; the direct sum of a 0 (of size 1) and a nilpotent of index 2 (of size
2) is nilpotent of index 2 (and size 3). What is not obvious is that, in fact,
on a space V of dimension greater than 2 every nilpotent transformation A
of index 2 must be reducible. In the proof it is permissible to assume that
A # 0 (for otherwise the conclusion is trivial).

(1) V = ker A + ker A*. Reason: V = ran 4 + ran' A; nilpotence of
index 2 implies that ran A C ker A, and always ran* A = ker A*. In the
rest of the proof it is permissible to assume that

ker ANker A* = {0}

(for if x # 0 but Az = A*z = 0, then the span of z is a 1-dimensional
reducing subspace).

(2) The dimension of ker A* (the nullity of A*, abbreviated null A*) is
strictly greater than 1. Since A and A* play completely symmetric roles in
all these considerations, it is sufficient to prove that null A > 1 (and that
way there is less notational fuss). Suppose, indeed, that rank A < 1. Since
A # 0 by assumption, rank A must be 1 (not 0). Since ran A = A(ker" A)
and the restriction of A to ker™ A is a one-to-one transformation, it follows
that

dimker* A = dimran A = rank A = 1.

Thus both ker A and ker A* have dimension 1, and hence V has dimen-
sion 2 (see (1) above), contradicting the assumption that dim V' > 2. This
contradiction destroys the hypothesis null A < 1.

(3) If z € ker A*, then A*Azx € ran A* C ker A*; in other words, the
subspace ker A* is invariant under the Hermitian transformation A*A. It
follows that ker A* contains an eigenvector of A* A, or, equivalently, that
ker A* has a subspace N of dimension 1 that is invariant under A* A.

(4) Consider the subspace M = N + AN. Since A maps N to AN and
AN to {0} (recall that A% = 0), the subspace M is invariant under A. Since
A* maps N to {0} (recall that N C ker A*) and AN to N, the subspace
M is invariant under A*. Consequence: M reduces A. Since M D N, the
dimension of M is not less than 1, and since M = N + AN, the dimension
of Ml is not more than 1+ 1. Conclusion: M is a non-trivial proper reducing
subspace for A.
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Solution 164.

Yes, a nilpotent transformation of index 3 can be irreducible on C%. One
example, in a sense “between” the truncated shift and its square, is given
by the matrix

0 000 0110

1 0 00 . .. 0 0 01
A = * =

1000 with adjoint A 00 0 0

0100 0 000

The kernel of A is the set of all vectors of the form = = (0,0, , 8).
These being the only eigenvectors (the only possible eigenvalue being 0),
every non-trivial invariant subspace for A must contain one of them (other
than 0). One way to establish that A is irreducible is to show that, for any
« of the indicated form, the set consisting of x together with all its images
under repeated applications of A and A* necessarily spans C*. Consider,
indeed, the following vectors:

hh= z = (01 0,7, 6>’
Y2 = Az = (77650’())’
ys = A*%z = (6,0,0,0),
Ya = AA*z = (0’7’ Ys 6>,
ys = AA*%z = (0,6,7,0),
Y6 = A2A*g = (0’0’ 0, '7)'

It is true that no matter what ~ and § are, so long as not both are 0, these
vectors span the space. If v = 0, then y1, y2, y3, and y4 form a basis; if
6 = 0, then y;, y2, ys, and a simple linear combination of y4 and yo form a
basis; if neither ~ nor é is 0, then y3, 6, and simple linear combinations of
y1 and ye for one and of y, and y3 for another form a basis.

The question as asked is now answered, but the answer gives only
a small clue to the more general facts (about possible irreducibility) for
nilpotent transformations of index k on spaces of dimension n when k < n.
The case k = 3 and n = 5 hints at the sort of thing that has to be looked
at; the matrix

SO = -=O
O RO oo
NO OO O
oo o oo
(== = T e i o B e |

does the job in that case.

It should be emphasized that these considerations have to do with in-
ner product spaceg, where reduction is defined in terms of adjoints (or,

164
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equivalently, in terms of orthogonal complements). There is a purely al-
gebraic theory of reduction (the existence for an invariant subspace of an
invariant complement), and in that theory the present question is much
easier to answer in complete generality. The structure theory of nilpotent
transformations (in effect, the Jordan normal form), implies that the only
chance a nilpotent transformation of index k on a space of dimension n has
to be irreducible (that is: one of two complementary invariant subspaces
must always be {0}) is to have k = n.




