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Preface

Students of mathematics and computer science often have trouble the first
time they're asked to work seriously with mathematical proofs, because they
don’t know the “rules of the game.” What is expected of you if you are asked
to prove something? What distinguishes a correct proof from an incorrect
one? This book is intended to help students learn the answers to these ques-
tions by spelling out the underlying principles involved in the construction of
proofs.

Many students get their first exposure to mathematical proofs in a high
school course on geometry. Unfortunately, students in high school geometry
are usually taught to think of a proof as a numbered list of statements and
reasons, a view of proofs that is too restrictive to be very useful. There is a
parallel with computer science here that can be instructive. Early programming
languages encouraged a similar restrictive view of computer programs as num-
bered lists of instructions. Now computer scientists have moved away from
such languages and teach programming by using languages that encourage an
approach called “structured programming.” The discussion of proofs in this
book is inspired by the belief that many of the considerations that have led
computer scientists to embrace the structured approach to programming ap-
ply to proof-writing as well. You might say that this book teaches “structured
proving.”

In structured programming, a computer program is constructed, not by listing
instructions one after another, but by combining certain basic structures such
as the if-else construct and do-while loop of the Java programming language.
These structures are combined, not only by listing them one after another, but
also by nesting one within another. For example, a program constructed by

ix




X Preface

nesting an if-else construct within a do-while loop would look like this:
do
if [condition]
[List of instructions goes here.]
else
[Alternate list of instructions goes here.]
while [condition]
The indenting in this program outline is not absolutely necessary, but it is a
convenient method often used in computer science to display the underlying
structure of a program.

Mathematical proofs are also constructed by combining certain basic proof
structures. For example, a proof of a statement of the form “if P then Q" often
uses what might be called the “suppose-until” structure: We suppose that P is
true until we are able to reach the conclusion that Q is true, at which point we
retract this supposition and conclude that the statement “if P then Q” is true.
Another example is the “for arbitrary x prove” structure: To prove a statement
of the form “for all x, P(x),” we declare x to be an arbitrary object and then
prove P(x). Once we reach the conclusion that P(x) is true we retract the
declaration of x as arbitrary and conclude that the statement “for all x, P(x)”
is true. Furthermore, to prove more complex statements these structures are
often combined, not only by listing one after another, but also by nesting one
within another. For example, to prove a statement of the form “for all x, if P(x)
then Q(x)” we would probably nest a “suppose-until” structure within a “for
arbitrary x prove” structure, getting a proof of this form:

Let x be arbitrary.
Suppose P(x) is true.
[Proof of Q(x) goes here.]
Thus, if P(x) then Q(x).
Thus, for all x, if P(x) then Q(x).
As before, we have used indenting to make the underlying structure of the proof
clear.

Of course, mathematicians don’t ordinarily write their proofs in this indented
form. Our aim in this book is to teach students to write proofs in ordinary
English paragraphs, just as mathematicians do, and not in the indented form.
Nevertheless, our approach is based on the belief that if students are to succeed
at writing such proofs, they must understand the underlying structure that proofs
have. They must learn, for example, that sentences like “Let x be arbitrary” and
“Suppose P are not isolated steps in proofs, but are used to introduce the “for
arbitrary x prove” and “suppose-until” proof structures. It is not uncommon
for beginning students to use these sentences inappropriately in other ways.
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Such mistakes are analogous to the programming error of using a “do” with no
matching “while.”

Note that in our examples, the choice of proof structure is guided by the log-
ical form of the statement being proven. For this reason, the book begins with
elementary logic to familiarize students with the various forms that mathemati-
cal statements take. Chapter 1 discusses logical connectives, and quantifiers are
introduced in Chapter 2. These chapters also present the basics of set theory,
because it is an important subject that is used in the rest of the book (and
throughout mathematics), and also because it serves to illustrate many of the
points of logic discussed in these chapters.

Chapter 3 covers structured proving techniques in a systematic way, running
through the various forms that mathematical statements can take and discussing
the proof structures appropriate for each form. The examples of proofs in this
chapter are for the most part chosen, not for their mathematical content, but for
the proof structures they illustrate. This is especially true early in the chapter,
when only a few proof techniques have been discussed, and as a result many of
the proofs in this part of the chapter are rather trivial. As the chapter progresses
the proofs get more sophisticated and more interesting, mathematically.

Chapters 4 and 5, on relations and functions, serve two purposes. First,
they provide subject matter on which students can practice the proof-writing
techniques from Chapter 3. And second, they introduce students to some fun-
damental concepts used in all branches of mathematics.

Chapter 6 is devoted to a method of proof that is very important in both
mathematics and computer science: mathematical induction. The presentation
builds on the techniques from Chapter 3, which students should have mastered
by this point in the book.

Finally, in Chapter 7 many ideas from throughout the rest of the book are
brought together to prove some of the most difficult and most interesting the-
orems in the book.

I would like to thank all those who read earlier drafts of the manuscript and
made many helpful suggestions for improvements, in particular Lauren Cowles
at Cambridge University Press, my colleague Professor Duane Bailey and his
Discrete Mathematics class, who tried out earlier versions of some chapters,
and finally my wife, Shelley, without whose constant encouragement this book
would never have been written.
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Preface to the Second Edition

I would like to thank all of those who have sent me comments about the first
edition. Those comments have resulted in a number of small changes through-
out the text. However, the biggest difference between the first edition and the
second is the addition of over 200 new exercises. There is also an appendix
containing solutions to selected exercises. Exercises for which solutions are
supplied are marked with an asterisk. In most cases, the solution supplied is a
complete solution; in some cases, it is a sketch of a solution, or a hint.

Some exercises in Chapters 3 and 4 are also marked with the symbol &.
This indicates that these exercises can be solved using Proof Designer. Proof
Designer is computer software that helps the user write outlines of proofs
in elementary set theory, using the methods discussed in this book. Further
information about Proof Designer can be found in an appendix, and at the Proof
Designer website: http://wuw.cs.amherst.edu/~djv/pd/pd.html.




Introduction

What is mathematics? High school mathematics is concerned mostly with solv-
ing equations and computing answers to numerical questions. College mathe-
matics deals with a wider variety of questions, involving not only numbers, but
also sets, functions, and other mathematical objects. What ties them together
is the use of deductive reasoning to find the answers to questions. When you
solve an equation for x you are using the information given by the equation
to deduce what the value of x must be. Similarly, when mathematicians solve
other kinds of mathematical problems, they always justify their conclusions
with deductive reasoning.

Deductive reasoning in mathematics is usually presented in the form of a
proof. One of the main purposes of this book is to help you develop your
mathematical reasoning ability in general, and in particular your ability to read
and write proofs. In later chapters we’ll study how proofs are constructed in
detail, but first let’s take a look at a few examples of proofs.

Don’t worry if you have trouble understanding these proofs. They're
just intended to give you a taste of what mathematical proofs are like. In
some cases you may be able to follow many of the steps of the proof, but you
may be puzzled about why the steps are combined in the way they are, or how
anyone could have thought of the proof. If so, we ask you to be patient. Many
of these questions will be answered later in this book, particularly in Chapter 3.

All of our examples of proofs in this introduction will involve prime num-
bers. Recall that an integer larger than 1 is said to be prime if it cannot be
written as a product of two smaller positive integers. For example, 6 is not a
prime number, since 6 = 2 - 3, but 7 is a prime number.

Before we can give an example of a proof involving prime numbers, we
need to find something to prove — some fact about prime numbers whose
correctness can be verified with a proof. Sometimes you can find interesting
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patterns in mathematics just by trying out a calculation on a few numbers.
For example, consider the table in Figure 1. For each integer n from 2 to 10,
the table shows whether or not both n and 2" — 1 are prime, and a surprising
pattern emerges. It appears that 2" — 1 is prime in precisely those cases in
which n is prime!

n Is n prime? 2" -1 Is 2" — 1 prime?

2 yes 3 yes

3 yes 7 yes

4 no:4=12-.2 15 no: 15=3-5

5 yes 31 yes

6 no:6=2-3 63 no:63=7-9

7 yes 127 yes

8 no:8=2-4 255 no: 255 =15-17

9 no:9=3-.3 511 no: 511 =7-73

10 no: 10=2-5 1023 no: 1023 = 31 -33
Figure 1

Will this pattern continue? It is tempting to guess that it will, but this is
only a guess. Mathematicians call such guesses conjectures. Thus, we have the
following two conjectures:

Conjecture 1. Suppose n is an integer larger than 1 and n is prime. Then
2" — 1 is prime.

Conjecture 2. Suppose n is an integer larger than 1 and n is not prime. Then
2" — 1 is not prime.

Unfortunately, if we continue the table in Figure 1, we immediately find that
Conjecture 1 is incorrect. It is easy to check that 11 is prime, but 2!! — 1 =
2047 =23-89, so 2! — 1 is not prime. Thus, 11 is a counterexample to
Conjecture 1. The existence of even one counterexample establishes that the
conjecture is incorrect, but it is interesting to note that in this case there are
many counterexamples. If we continue checking numbers up to 30, we find
two more counterexamples to Conjecture 1: Both 23 and 29 are prime, but
2% — 1 =8,388,607 = 47 - 178,481 and 2% — 1 = 536,870,911 =2, 089 -
256,999. However, no number up to 30 is a counterexample to Conjecture 2.

Do you think that Conjecture 2 is correct? Having found counterexamples to
Conjecture 1, we know that this conjecture is incorrect, but our failure to find a
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counterexample to Conjecture 2 does not show that it is correct. Perhaps there
are counterexamples, but the smallest one is larger than 30. Continuing to check
examples might uncover a counterexample, or, if it doesn’t, it might increase
our confidence in the conjecture. But we can never be sure that the conjecture
is correct if we only check examples. No matter how many examples we check,
there is always the possibility that the next one will be the first counterexample.
The only way we can be sure that Conjecture 2 is correct is to prove it.
In fact, Conjecture 2 is correct. Here is a proof of the conjecture:

Proof of Conjecture 2. Since n is not prime, there are positive integers
a and b such that @ <n, b <n, and n =ab. Let x =2 — 1 and y=

1420 42% 4 ... 42Uk Thep

xy=@2"=1- (142" +2% 4 ... 42070
=22 (14224 2% 4 4207 — (1422 2% . 207D
= (2P 4220 4230 o aby (] 20 422 4.y 2l Dby
= 2% — |
—2 1.

Since b < n, we can conclude that x = 2% — 1 < 2" — 1. Also, since
ab =n > a, it follows that » > 1. Therefore, x =2 — 1 =2 =1 =1, so
y < xy = 2" — 1. Thus, we have shown that 2" — 1 can be written as the prod-
uct of two positive integers x and y, both of which are smaller than 2" — 1, so
2" — 1 is not prime. O

Now that the conjecture has been proven, we can call it a theorem. Don’t
worry if you find the proof somewhat mysterious. We’ll return to it again at
the end of Chapter 3 to analyze how it was constructed. For the moment, the
most important point to understand is that if » is any integer larger than 1
that can be written as a product of two smaller positive integers a and b, then
the proof gives a method (admittedly, a somewhat mysterious one) of writing
2" — 1 as a product of two smaller positive integers x and y. Thus, if n is not
prime, then 2" — 1 must also not be prime. For example, suppose n = 12, so
2" — 1 = 4095. Since 12 = 3 - 4, we could take @ = 3 and b = 4 in the proof.
Then according to the formulas for x and y given in the proof, we would
have x =20 —1=2*-1=15, and y=142042% 4 ... 4 2@"Db -
14 2%+ 2% =273, And, just as the formulas in the proof predict, we have
xy = 15273 = 4095 = 2" — 1. Of course, there are other ways of factoring
12 into a product of two smaller integers, and these might lead to other ways of
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factoring 4095. For example, since 12 = 2 - 6, we could use the values a = 2
and b = 6. Try computing the corresponding values of x and y and make sure
their product is 4095.

Although we already know that Conjecture 1 is incorrect, there are still inter-
esting questions we can ask about it. If we continue checking prime numbers
n to see if 2" — 1 is prime, will we continue to find counterexamples to the
conjecture — examples for which 2" — 1 is not prime? Will we continue to find
examples for which 2" — 1 is prime? If there were only finitely many prime
numbers, then we might be able to investigate these questions by simply check-
ing 2" — 1 for every prime number 1. But in fact there are infinitely many prime
numbers. Euclid (circa 350 B.C.) gave a proof of this fact in Book IX of his
Elements. His proof is one of the most famous in all of mathematics:

Theorem 3. There are infinitely many prine numbers.

Proof. Suppose there are only finitely many prime numbers. Let py, p2, ..., pa
be a list of all prime numbers. Let m = p;p2--- p, + L. Note that m is not
divisible by py, since dividing m by p; gives a quotient of pap3--- p, and a
remainder of 1. Similarly, m is not divisible by any of p,, ps, ..., pa.

We now use the fact that every integer larger than 1 is either prime or can
be written as a product of primes. (We’ll see a proof of this fact in Chapter 6.)
Clearly m is larger than 1, so m is either prime or a product of primes. Suppose
first that m is prime. Note that m is larger than all of the numbers in the
list py. pa. ..., Pa, s0 we've found a prime number not in this list. But this
contradicts our assumption that this was a list of @/l prime numbers.

Now suppose m is a product of primes. Let g be one of the primes in this
product. Then m is divisible by ¢. But we’ve already seen that m is not divisible
by any of the numbers in the list py, ps, ..., p,, 50 once again we have a
contradiction with the assumption that this list included all prime numbers.

Since the assumption that there are finitely many prime numbers has led to
a contradiction, there must be infinitely many prime numbers. 0

Once again, you should not be concerned if some aspects of this proof seem
mysterious. After you’ve read Chapter 3 you’ll be better prepared to understand
the proof in detail. We’'ll return to this proof then and analyze its structure.

We have seen that if » is not prime then 2" — 1 cannot be prime, but if » is
prime then 2" — 1 can be either prime or not prime. Because there are infinitely
many prime numbers, there are infinitely many numbers of the form 2" — 1
that, based on what we know so far, might be prime. But how many of them
are prime?
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Prime numbers of the form 2" — 1 are called Mersenne primes, after Father
Marin Mersenne (1588—-1647), a French monk and scholar who studied these
numbers. Although many Mersenne primes have been found, it is still not
known if there are infinitely many of them. Many of the largest known prime
numbers are Mersenne primes. As of this writing (April 2005), the largest
known prime number is the Mersenne prime 277764931
7,816,230 digits.

Mersenne primes are related to perfect numbers, the subject of another fa-
mous unsolved problem of mathematics. A positive integer n is said to be
perfect it n is equal to the sum of all positive integers smaller than n that divide
n. (For any two integers m and n, we say that m divides n if n is divisible by m;

— 1, a number with

in other words, if there is an integer ¢ such that n = gm.) For example, the only
positive integers smaller than 6 that divide6are 1,2, and3,and 1 + 2+ 3 = 6.
Thus, 6 is a perfect number. The next smallest perfect number is 28. (You should
check for yourself that 28 is perfect by finding all the positive integers smaller
than 28 that divide 28 and adding them up.)

Euclid proved that if 2" — 1 is prime, then 2"~ (2" — 1) is perfect. Thus,
every Mersenne prime gives rise to a perfect number. Furthermore, about
2000 years after Euclid’s proof, the Swiss mathematician Leonhard Euler
(1707—-1783), the most prolific mathematician in history, proved that every
even perfect number arises in this way. (For example, note that 6 = 2'(22 — 1)
and 28 = 22(2% — 1).) Because it is not known if there are infinitely many
Mersenne primes, it is also not known if there are infinitely many even perfect
numbers. It is also not known if there are any odd perfect numbers.

Although there are infinitely many prime numbers, the primes thin out as
we look at larger and larger numbers. For example, there are 25 primes be-
tween 1 and 100, 16 primes between 1000 and 1100, and only six primes
between 1,000,000 and 1,000,100. As our last introductory example of a proof,
we show that there are long stretches of consecutive positive integers con-
taining no primes at all. In this proof, we’ll use the following terminology:
For any positive integer n, the product of all integers from | to n is called
n factorial and is denoted n!. Thus, n! = 1-2 -3 ... n. As with our previous
two proofs, we’ll return to this proof at the end of Chapter 3 to analyze its
structure.

Theorem 4. For every positive integer n, there is a sequence of h consecutive
positive integers containing no primes.

Proof. Suppose n is a positive integer. Letx = (n + 1)! + 2. We will show that
none of the numbers x, x + 1, x + 2,...,x + (n — 1) is prime. Since this is a
sequence of n consecutive positive integers, this will prove the theorem.
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To see that x is not prime, note that

x=1-2-3-4...(n4+D+2
=2-(1-3-4---(n+ D+ 1.

Thus, x can be written as a product of two smaller positive integers, so x is
not prime.
Similarly, we have

x+1=1-2-34---(n+1)+3
=3.(1-2-4--(n+ D +1),

s0 x + 1 is also not prime. In general, consider any number x + i, where
0 =i <n— 1. Then we have

x4+i=1-2-3-4.-.n4+D+G+2)
=42 (123G +D-(+3) -+ D+ 1),

s0 X + i is not prime. O

Theorem 4 shows that there are sometimes long stretches between one prime
and the next prime. But primes also sometimes occur close together. Since 2
is the only even prime number, the only pair of consecutive integers that are
both prime is 2 and 3. But there are lots of pairs of primes that differ by only
two, for example, 5 and 7, 29 and 31, and 7949 and 7951. Such pairs of primes
are called twin primes. It is not known whether there are infinitely many twin
primes.

Exercises

*1. (a) Factor2!® — 1 =232,767 into a product of two smaller positive integers.
(b) Find an integer x such that 1 < x < 232767 — | and 2°77%7 — | is divis-
ible by x.

2. Make some conjectures about the values of n for which 3" — 1 is prime or
the values of n for which 3" — 2" is prime. (You might start by making a
table similar to Figure 1.)

*3. The proof of Theorem 3 gives amethod for finding a prime number different
from any in a given list of prime numbers.
(a) Use this method to find a prime different from 2, 3, 5, and 7.
(b) Use this method to find a prime different from 2, 5, and 11.
4. Find five consecutive integers that are not prime.
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5. Use the table in Figure 1 and the discussion on p. 5 to find two more perfect
numbers.

6. The sequence 3, 5, 7 is a list of three prime numbers such that each pair of
adjacent numbers in the list differ by two. Are there any more such “triplet
primes”?




1

Sentential Logic

1.1. Deductive Reasoning and Logical Connectives

As we saw in the introduction, proofs play a central role in mathematics, and
deductive reasoning is the foundation on which proofs are based. Therefore,
we begin our study of mathematical reasoning and proofs by examining how
deductive reasoning works.

Example 1.1.1. Here are three examples of deductive reasoning:

1. It will either rain or snow tomorrow.

It's too warm for snow.

Therefore, it will rain.

If today is Sunday, then I don’t have to go to work today.
Today is Sunday.

Therefore, I don’t have to go to work today.

(R

3. I will go to work either tomorrow or today.
I'm going to stay home today.
Therefore, I will go to work tomorrow.

In each case, we have arrived at a conclusion from the assumption that
some other statements, called premises, are true. For example, the premises in
argument 3 are the statements “I will go to work either tomorrow or today”
and “I’'m going to stay home today.” The conclusion is “I will go to work
tomorrow,” and it seems to be forced on us somehow by the premises.

But 1s this conclusion really correct? After all, isn’t it possible that I'll stay
home today, and then wake up sick tomorrow and end up staying home again?
If that happened, the conclusion would turn out to be false. But notice that in
that case the first premise, which said that I would go to work either tomorrow

8
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or today, would be false as well! Although we have no guarantee that the
conclusion is true, it can only be false if at least one of the premises is also
false. If both premises are true, we can be sure that the conclusion is also true.
This is the sense in which the conclusion is forced on us by the premises, and
this is the standard we will use to judge the correctness of deductive reasoning.
We will say that an argument is valid if the premises cannot all be true without
the conclusion being true as well. All three of the arguments in our example
are valid arguments.
Here’s an example of an invalid deductive argument:

Either the butler is guilty or the maid is guilty.
Either the maid is guilty or the cook is guilty.
Therefore, either the butler is guilty or the cook is guilty.

The argument is invalid because the conclusion could be false even if both
premises are true. For example, if the maid were guilty, but the butler and the
cook were both innocent, then both premises would be true and the conclusion
would be false.

We can learn something about what makes an argument valid by compar-
ing the three arguments in Example 1.1.1. On the surface it might seem that
arguments 2 and 3 have the most in common, because they’re both about
the same subject: attendance at work. But in terms of the reasoning used,
arguments 1 and 3 are the most similar. They both introduce two possibili-
ties in the first premise, rule out the second one with the second premise, and
then conclude that the first possibility must be the case. In other words, both
arguments have the form:

Por Q.

not Q.
Therefore, P.

It is this form, and not the subject matter, that makes these arguments valid.
You can see that argument 1 has this form by thinking of the letter P as standing
for the statement “It will rain tomorrow,” and Q as standing for “It will snow
tomorrow.” For argument 3, P would be I will go to work tomorrow,” and Q
would be “T will go to work today.”

Replacing certain statements in each argument with letters, as we have in
stating the form of arguments 1 and 3, has two advantages. First, it keeps us
from being distracted by aspects of the arguments that don’t affect their validity.
You don’t need to know anything about weather forecasting or work habits to
recognize that arguments 1 and 3 are valid. That’s because both arguments have
the form shown earlier, and you can tell that this argument form is valid without




10 Sentential Logic

even knowing what P and Q stand for. If you don’t believe this, consider the
following argument:

Either the framger widget is misfiring, or the wrompal mechanism is out of
alignment.

I've checked the alignment of the wrompal mechanism, and it’s fine.
Therefore, the framger widget is misfiring.

If a mechanic gave this explanation after examining your car, you might still
be mystified about why the car won’t start, but you’d have no trouble following
his logic!

Perhaps more important, our analysis of the forms of arguments 1 and 3
makes clear what is important in determining their validity: the words or and
not. In most deductive reasoning, and in particular in mathematical reasoning,
the meanings of just a few words give us the key to understanding what makes
a piece of reasoning valid or invalid. (Which are the important words in ar-
gument 2 in Example 1.1.17) The first few chapters of this book are devoted
to studying those words and how they are used in mathematical writing and
reasoning.

In this chapter, we'll concentrate on words used to combine statements to
form more complex statements. We'll continue to use letters to stand for state-
ments, but only for unambiguous statements that are either true or false. Ques-
tions, exclamations, and vague statements will not be allowed. It will also be
useful to use symbols, sometimes called connective symbols, to stand for some
of the words used to combine statements. Here are our first three connective
symbols and the words they stand for:

Symbol Meaning
v or
A and
- not

Thus, if P and Q stand for two statements, then we’ll write P v Q to stand
for the statement “P or Q,” P A @ for “P and Q.” and —P for “not P” or
“P is false.” The statement P v Q is sometimes called the disjunction of P
and O, P » Q is called the conjunction of P and Q, and —P is called the
negation of P.

Example 1.1.2. Analyze the logical forms of the following statements:

1. Either John went to the store, or we're out of eggs.
2. Joe is going to leave home and not come back.
3. Either Bill is at work and Jane isn’t, or Jane is at work and Bill isn’t.
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Solutions

1. If we let P stand for the statement “John went to the store” and Q stand for
“We’'re out of eggs,” then this statement could be represented symbolically
as P v Q.

2. If we let P stand for the statement “Joe is going to leave home™ and Q stand
for “Joe is not going to come back,” then we could represent this statement
symbolically as P A Q. But this analysis misses an important feature of the
statement, because it doesn’t indicate that Q is a negative statement. We
could get a better analysis by letting R stand for the statement “Joe is going
to come back™ and then writing the statement Q as —R. Plugging this into
our first analysis of the original statement, we get the improved analysis
P~ —R.

3. Let B stand for the statement “Bill is at work™ and J for the statement “Jane is
at work.” Then the first half of the statement, “Bill is at work and Jane isn’t,”
can be represented as B A —J. Similarly, the second half is J A —B. To
represent the entire statement, we must combine these two with or, forming
their disjunction, so the solution is (B A =J) Vv (J A —=B).

Notice that in analyzing the third statement in the preceding example, we
added parentheses when we formed the disjunction of B A =J and J A =B
to indicate unambiguously which statements were being combined. This is
like the use of parentheses in algebra, in which, for example, the product
of a + b and a — b would be written (a + b) - (a — b), with the parentheses
serving to indicate unambiguously which quantities are to be multiplied. As
in algebra, it is convenient in logic to omit some parentheses to make our
expressions shorter and easier to read. However, we must agree on some con-
ventions about how to read such expressions so that they are still unambigu-
ous. One convention is that the symbol — always applies only to the state-
ment that comes immediately after it. For example, =P A Q means (—P) A Q
rather than —(P A Q). We’ll see some other conventions about parentheses
later.

Example 1.1.3. What English sentences are represented by the following
expressions?

1. (=8 A L) v §, where § stands for “John is stupid” and L stands for “John is
lazy.”

2. =S A (L v §), where § and L have the same meanings as before.

3. =(S A L)yv S, with § and L still as before.
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Solutions

1. Either John isn’t stupid and he is lazy, or he’s stupid.

2. John isn’t stupid, and either he’s lazy or he’s stupid. Notice how the place-
ment of the word either in English changes according to where the paren-
theses are.

3. Either John isn’t both stupid and lazy, or John is stupid. The word
both in English also helps distinguish the different possible positions of
parentheses.

It is important to keep in mind that the symbols A, Vv, and — don’t really
correspond to all uses of the words and, or, and not in English. For example,
the symbol A could not be used to represent the use of the word and in the
sentence “John and Bill are friends,” because in this sentence the word and is
not being used to combine two statements. The symbols A and v can only be
used between two statements, to form their conjunction or disjunction, and the
symbol — can only be used before a statement, to negate it. This means that
certain strings of letters and symbols are simply meaningless. For example,
P=nrQ,PAjv @, and P-Q are all “ungrammatical” expressions in the
language of logic. “Grammatical” expressions, such as those in Examples 1.1.2
and 1.1.3, are sometimes called well-formed formulas or just formulas. Once
again, it may be helpful to think of an analogy with algebra, in which the
symbols +, —, -, and = can be used between two numbers, as operators, and
the symbol — can also be used before a number, to negate it. These are the
only ways that these symbols can be used in algebra, so expressions such as
X — =y are meaningless.

Sometimes, words other than and, or, and not are used to express the mean-
ings represented by A, v, and —. For example, consider the first statement in
Example 1.1.3. Although we gave the English translation “Either John isn’t
stupid and he is lazy, or he’s stupid,” an alternative way of conveying the same
information would be to say “Either John isn’t stupid but he is lazy, or he’s
stupid.” Often, the word bur is used in English to mean and, especially when
there is some contrast or conflict between the statements being combined. For
a more striking example, imagine a weather forecaster ending his forecast with
the statement “Rain and snow are the only two possibilities for tomorrow’s
weather.”” This is just a roundabout way of saying that it will either rain or
snow tomorrow. Thus, even though the forecaster has used the word and, the
meaning expressed by his statement is a disjunction. The lesson of these ex-
amples is that to determine the logical form of a statement you must think
about what the statement means, rather than just translating word by word into
symbols.
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Sometimes logical words are hidden within mathematical notation. For ex-
ample, consider the statement 3 < m. Although it appears to be a simple
statement that contains no words of logic, if you read it out loud you will
hear the word or. If we let P stand for the statement 3 < 7 and Q for the
statement 3 = i, then the statement 3 < 7 would be written P v Q. In this
example the statements represented by the letters P and Q are so short that it
hardly seems worthwhile to abbreviate them with single letters. In cases like
this we will sometimes not bother to replace the statements with letters, so we
might also write this statement as (3 < ) v (3 = m).

For a slightly more complicated example, consider the statement 3 < 7 < 4.
This statement means 3 < 7w and m < 4, so once again a word of logic has
been hidden in mathematical notation. Filling in the meaning that we just
worked out for 3 < 77, we can write the whole statement as [(3 < 7)) Vv (3 =
m)] A (r < 4). Knowing that the statement has this logical form might be
important in understanding a piece of mathematical reasoning involving this
statement.

Exercises

*1. Analyze the logical forms of the following statements:
(a) We’ll have either a reading assignment or homework problems, but we
won'’t have both homework problems and a test.
(b) You won't go skiing, or you will and there won’t be any snow.
© V722
2. Analyze the logical forms of the following statements:
(a) Either John and Bill are both telling the truth, or neither of them is.
(b) I'll have either fish or chicken, but I won't have both fish and mashed
potatoes.
(c) 3 isa common divisor of 6, 9, and 15.
3. Analyze the logical forms of the following statements:
(a) Alice and Bob are not both in the room.
(b) Alice and Bob are both not in the room.
(c) Either Alice or Bob is not in the room.
(d) Neither Alice nor Bob is in the room.
4. Which of the following expressions are well-formed formulas?
(2) ~(=P vV ——R).
(b) =(P. Q. AR).
(c) PA—P.
(d) (P A Q)P VR).




14 Sentential Logic

*5. Let P stand for the statement “I will buy the pants” and S for the statement
“I will buy the shirt.” What English sentences are represented by the fol-
lowing expressions?

(a) —(P A —8).

(b) =P A —S.

(c) =P v =S,

6. Let § stand for the statement “Steve is happy” and G for “George is happy.”
What English sentences are represented by the following expressions?
(a) (Sv G)A (S v—G).

) [SV(G A=)V -G

(©) SVIG A (=5 V=Gl

7. Identify the premises and conclusions of the following deductive argu-
ments and analyze their logical forms. Do you think the reasoning is valid?
(Although you will have only vour intuition to guide you in answering
this last question, in the next section we will develop some techniques for
determining the validity of arguments.)

(a) Jane and Pete won’t both win the math prize. Pete will win either
the math prize or the chemistry prize. Jane will win the math prize.
Therefore, Pete will win the chemistry prize.

(b} The main course will be either beef or fish. The vegetable will be either
peas or corn. We will not have both fish as a main course and corn as a
vegetable. Therefore, we will not have both beef as a main course and
peas as a vegetable.

(c) Either John or Bill is telling the truth. Either Sam or Bill is lying.
Therefore, either John is telling the truth or Sam is lying.

(d) Either sales will go up and the boss will be happy, or expenses will go
up and the boss won’t be happy. Therefore, sales and expenses will not
both go up.

1.2. Truth Tables

We saw in Section 1.1 that an argument is valid if the premises cannot all be
true without the conclusion being true as well. Thus, to understand how words
such as and, or, and not affect the validity of arguments, we must see how they
contribute to the truth or falsity of statements containing them.

When we evaluate the truth or falsity of a statement, we assign to it one of
the labels rrue or false, and this label is called its truth value. It is clear how the
word and contributes to the truth value of a statement containing it. A statement
of the form P A Q can only be true if both P and Q are true; if either P or Q
is false, then P ~ Q will be false too. Because we have assumed that P and
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P Q PaAQ

F F F

F T F

T F F

T T T
Figure 1

Q both stand for statements that are either true or false, we can summarize all
the possibilities with the table shown in Figure 1. This is called a truth table
for the formula P A Q. Each row in the truth table represents one of the four
possible combinations of truth values for the statements P and Q. Although
these four possibilities can appear in the table in any order, it is best to list them
systematically so we can be sure that no possibilities have been skipped. The
truth table for —P is also quite easy to construct because for —P to be true,
P must be false. The table is shown in Figure 2.

P =P
F T
T F
Figure 2

The truth table for P v @ is a little trickier. The first three lines should
certainly be filled in as shown in Figure 3, but there may be some question
about the last line. Should P v Q be true or false in the case in which P and Q
are both true? In other words, does P v @ mean “P or Q, or both” or does it
mean “P or Q but not both™? The first way of interpreting the word or is called
the inclusive or (because it includes the possibility of both statements being
true), and the second is called the excliusive or. In mathematics, or always means
inclusive or, unless specified otherwise, so we will interpret v as inclusive or.
We therefore complete the truth table for P v Q as shown in Figure 4. See
exercise 3 for more about the exclusive or.

P Q PvQ P QO PvQ

F F F F F F

F T T F T T

T F T T F T

T T ? T T T
Figure 3 Figure 4

Using the rules summarized in these truth tables, we can now work out truth
tables for more complex formulas. All we have to do is work out the truth
values of the component parts of a formula, starting with the individual letters
and working up to more complex formulas a step at a time.
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Example 1.2.1. Make a truth table for the formula —=(P v —=Q).

Solution
P Qg =0 Pv-Q =(Pv-Q)
F F T T F
F T F F T
T F T T F
T T F T F

The first two columns of this table list the four possible combinations of
truth values of P and Q. The third column, listing truth values for the formula
—Q, is found by simply negating the truth values for Q in the second column.
The fourth column, for the formula P v —Q, is found by combining the truth
values for P and —( listed in the first and third columns, according to the
truth value rule for v summarized in Figure 4. According to this rule, P v = Q
will be false only if both P and —Q are false. Looking in the first and third
columns, we see that this happens only in row two of the table, so the fourth
column contains an F in the second row and T’s in all other rows. Finally, the
truth values for the formula —(P v — ) are listed in the fifth column, which
is found by negating the truth values in the fourth column. (Note that these
columns had to be worked out in order, because each was used in computing
the next.)

Example 1.2.2. Make a truth table for the formula —=(P ~ Q) v —R.

Solution
P O R Pr@Q —(PraQ) —-R —=(PrQ)v-R
F F F F T T T
F F T F T F T
F T F F T T T
F T T F T F T
T F F F T T T
T F T F T F T
T T F T F T T
T T T T F F F

Note that because this formula contains three letters, it takes eight lines to
list all possible combinations of truth values for these letters. (If a formula
contains n different letters, how many lines will its truth table have?)

Here's a way of making truth tables more compactly. Instead of using separate
columns to list the truth values for the component parts of a formula, just list
those truth values below the corresponding connective symbol in the original
formula. This is illustrated in Figure 5, for the formula from Example 1.2.1.
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In the first step, we have listed the truth values for P and Q below these letters
where they appear in the formula. In step two, the truth values for —=Q have
been added under the — symbol for = (. In the third step, we have combined the
truth values for P and — Q to get the truth values for P v —@Q, which are listed
under the Vv symbol. Finally, in the last step, these truth values are negated and
listed under the initial — symbol. The truth values added in the last step give the
truth value for the entire formula, so we will call the symbol under which they
are listed (the first — symbol in this case) the main connective of the formula.
Notice that the truth values listed under the main connective in this case agree
with the values we found in Example 1.2.1.

Step 1 Step 2
P Q0 =(Pv=-0 P Q =(Pv—0Q)
F F F F F F F TF
F T F T F T F FT
T F T F T F T TF
T T T T T T T FT
Step 3 Step 4
P _Q ~(Pv-Q) P _Q ~(Pv-0)
F F FTTF F F FFTTF
F T FFFT F T TFFFT
T F TTTF T F FTTTF
T T TTFT T T FTTFT
Figure 5

Now that we know how to make truth tables for complex formulas, we're
ready to return to the analysis of the validity of arguments. Consider again our
first example of a deductive argument:

It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

As we have seen, if we let P stand for the statement “It will rain tomorrow™
and @ for the statement “It will snow tomorrow,” then we can represent the
argument symbolically as follows:
PvQ
-0
P (The symbol .-, means therefore.)
We can now see how truth tables can be used to verify the validity of this

argument. Figure 6 shows a truth table for both premises and the conclusion
of the argument. Recall that we decided to call an argument valid if the
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premises cannot all be true without the conclusion being true as well. Looking at
Figure 6 we see that the only row of the table in which both premises come
out true is row three, and in this row the conclusion is also true. Thus, the truth
table confirms that if the premises are all true, the conclusion must also be true,
so the argument is valid.

Premises Conclusion
P Q PvQ@g =Q P
F F F T F
F T T F F
T F T T T
T T T F T
Figure 6

Example 1.2.3. Determine whether the following arguments are valid.

1. Either John isn’t stupid and he is lazy, or he’s stupid.
John is stupid.
Therefore, John isn’t lazy.

2. The butler and the cook are not both innocent.
Either the butler is lying or the cook is innocent.
Therefore, the butler is either lying or guilty.

Solutions

1. Asin Example 1.1.3, we let S stand for the statement “John is stupid” and
L stand for “John is lazy.” Then the argument has the form:
(=SAL)VS
S
L
Now we make a truth table for both premises and the conclusion. (You

should work out the intermediate steps in deriving column three of this table
to confirm that it is correct.)

Premises Conclusion
S L (=S~ALywvS 8§ =L
F F F F T
F T T F F
T F T T T
T T T T F

Both premises are true in lines three and four of this table. The conclusion
is also true in line three, but it is false in line four. Thus, it is possible for
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both premises to be true and the conclusion false, so the argument is invalid.
In fact, the table shows us exactly why the argument is invalid. The problem
occurs in the fourth line of the table, in which § and L are both true — in other
words, John is both stupid and lazy. Thus, if John is both stupid and lazy,
then both premises will be true but the conclusion will be false, so it would
be a mistake to infer that the conclusion must be true from the assumption
that the premises are true.

2. Let B stand for the statement “The butler is innocent,” C for the statement
“The cook is innocent,” and L for the statement “The butler is lying.” Then
the argument has the form:

=(B AC)
LvC
S.Lv =B

Here is the truth table for the premises and conclusion:

Premises Conclusion
~(BrnC) LvC Lv—B

L
F
T
F
T
F
T
F
T

H A H ST T
ST T E AT
R I IR R RS
i e e e
HmaTmEaSAaA

The premises are both true only in lines two, three, four, and six, and in
each of these cases the conclusion is true as well. Therefore, the argument
is valid.

If you expected the first argument in Example 1.2.3 to turn out to be valid,
it’s probably because the first premise confused you. It’s a rather complicated
statement, which we represented symbolically with the formula (=5 ~ L) v §.
According to our truth table, this formula is false if § and L are both false, and
true otherwise. But notice that this is exactly the same as the truth table for the
simpler formula L v S! Because of this, we say that the formulas (=S A L) v §
and L v § are equivalent. Equivalent formulas always have the same truth
value no matter what statements the letters in them stand for and no matter
what the truth values of those statements are. The equivalence of the premise
(=S A L) v S and the simpler formula L v § may help you understand why
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the argument is invalid. Translating the formula L v § back into English, we
see that the first premise could have been stated more simply as “John is either
lazy or stupid (or both).” But from this premise and the second premise (that
John is stupid), it clearly doesn’t follow that he’s not lazy, because he might be
both stupid and lazy.

Example 1.2.4. Which of these formulas are equivalent?
=(P A Q), =P An=0, =P v =0.

Solution
Here’s a truth table for all three statements. (You should check it yourself!)

P Q =(PAQ) =PA=Q =Pv=0
F F T T T
F T T F T
T F T F T
T T F F F

The third and fifth columns in this table are identical, but they are different
from the fourth column. Therefore, the formulas —(P A Q) and =P v —Q
are equivalent, but neither is equivalent to the formula =P A —@Q. This should
make sense if you think about what all the symbols mean. For example, suppose
P stands for the statement “The Yankees won last night” and Q stands for
“The Red Sox won last night.” Then —(P A Q) would mean “The Yankees
and the Red Sox did not both win last night,” and =P v —=Q would mean
“Either the Yankees or the Red Sox lost last night”; these statements clearly
convey the same information. On the other hand, =P A —=Q would mean “The
Yankees and the Red Sox both lost last night,” which is an entirely different
statement.

You can check for yourself by making a truth table that the formula =P A —=Q
from Example 1.2.4 is equivalent to the formula —(P v Q). (To see that this
equivalence makes sense, notice that the statements “Both the Yankees and
the Red Sox lost last night” and “Neither the Yankees nor the Red Sox won
last night” mean the same thing.) This equivalence and the one discovered in
Example 1.2.4 are called DeMorgan’s laws.

In analyzing deductive arguments and the statements that occur in them it
is helpful to be familiar with a number of equivalences that come up often.
Verify the equivalences in the following list yourself by making truth tables,
and check that they make sense by translating the formulas into English, as we
did in Example 1.2.4.
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DeMorgan’s laws
=(P A @) isequivalent to =P v = Q.
=(P v @) is equivalent to =P A = Q.

Commutative laws
P A Qisequivalentto O A P.
P v @ is equivalentto Q v P.

Associative laws
P A (Q A~ R)isequivalentto (P A Q) A R.
P v (0 v R)isequivalentto (P v Q) Vv R.

Idempotent laws

P A P is equivalent to P.

P v P is equivalent to P.

Distributive laws
P A(Q v R)is equivalentto (P A Q)V (P A R).
P v (0 A R)isequivalent to (P v Q) A (P V R).

Absorption laws
P v (P ~ Q) is equivalent to P.
P A (P Q)is equivalent to P.

Double Negation law

——P is equivalent to P.

Notice that because of the associative laws we can leave out parentheses in
formulas of the forms P A Q A R and P v Q v R without worrying that the
resulting formula will be ambiguous, because the two possible ways of filling
in the parentheses lead to equivalent formulas.

Many of the equivalences in the list should remind you of similar rules in-
volving +, -, and — in algebra. As in algebra, these rules can be applied to more
complex formulas, and they can be combined to work out more complicated
equivalences. Any of the letters in these equivalences can be replaced by more
complicated formulas, and the resulting equivalence will still be true. For ex-
ample, by replacing P in the double negation law with the formula Q v =R,
you can see that ——(Q v —R) is equivalent to Q v —R. Also, if two formulas
are equivalent, you can always substitute one for the other in any expression
and the results will be equivalent. For example, since —=— P is equivalent to
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P, if =—P occurs in any formula, you can always replace it with P and the
resulting formula will be equivalent to the original.

Example 1.2.5. Find simpler formulas equivalent to these formulas:

L. =(P v —=Q).
2. ~(@Q A=P)v P.
Solutions
1. =(P v —=Q)
is equivalentto —P A —=—Q (DeMorgan’s law),
which is equivalentto —P A Q (double negation law).

You can check that this equivalence is right by making a truth table for

—P A Q and seeing that it is the same as the truth table for —=(P v = Q)

found in Example 1.2.1.

2. «(Q A-P)V P
is equivalent to (—Q v ——P) v P (DeMorgan’s law),

which is equivalentto (—=Q v P)v P (double negation law),
which is equivalentto —Q Vv (P Vv P) (associative law),
which is equivalentto —Q v P (idempotent law).

Some equivalences are based on the fact that certain formulas are either
always true or always false. For example, you can verify by making a truth
table that the formula Q A (P v = P) is equivalent to just Q. But even before
you make the truth table, you can probably see why they are equivalent. [n every
line of the truth table, P v — P will come out true, and therefore Q » (P v —P)
will come out true when @ is also true, and false when Q is false. Formulas that
are always true, such as P v =P, are called rautologies. Similarly, formulas
that are always false are called contradictions. For example, P A —P is a
contradiction.

Example 1.2.6. Are these statements tautologies, contradictions, or neither?

PVv(QV—=P) PAr=(QV—=0) PvV—(QV—=0).
Solution
First we make a truth table for all three statements.

P Q Pv(Q@Qv—oP) PA=QV=Q) PVvo(Qv—(0)
F F T F F
F T T F F
T F T F T
T T T F T
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From the truth table it is clear that the first formula is a tautology, the second
a contradiction, and the third neither. In fact, since the last column is identical
to the first, the third formula is equivalent to P.

We can now state a few more useful laws involving tautologies and contradic-
tions. You should be able to convince yourself that all of these laws are correct by
thinking about what the truth tables for the statements involved would look like.

Tautology laws
P A (atautology) is equivalent to P.
P v (a tautology) is a tautology.

—(a tautology) is a contradiction.

Contradiction laws
P A (a contradiction) is a contradiction.
P v (a contradiction) is equivalent to P.

—(a contradiction) is a tautology.

Example 1.2.7. Find simpler formulas equivalent to these formulas:

1. PV (Q A=P).
2. =(PV(QA=R)A Q.

Solutions

1. PV(QA—P)
is equivalentto (P v Q) A (P v —=P) (distributive law),
which is equivalentto P v Q (tautology law).
The last step uses the fact that P v =P is a tautology.
2. 5(Pv(QA—-RNAQ
is equivalent to (=P A —=(Q A —R)) A @ (DeMorgan’s law),
which is equivalent to (=P A (—=Q Vv =—=R)) A Q (DeMorgan’s law),
which is equivalent to (=P A (—=Q V R)) A Q (double negation law),
which is equivalent to =P A ((—Q VvV R) A Q) (associative law),
which is equivalent to =P A (Q A (—Q V R)) (commutative law),
which is equivalent to =P A ((Q A —=0Q) Vv (Q A R))
(distributive law),
which is equivalent to =P A (Q A R) (contradiction law).

The last step uses the fact that @ ~ —Q is a contradiction. Finally, by the
associative law for A we can remove the parentheses without making the
formula ambiguous, so the original formula is equivalent to the formula
—PAQAR.
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Exercises

Make truth tables for the following formulas:
(a) =P v Q.
(b) (§v G) A (=Sv-G).

. Make truth tables for the following formulas:

(@ =[P A(QV—=P)]
(b) (P Vv Q)A (=P VR).

. In this exercise we will use the symbol + to mean exclusive or. In other

words, P + Q means “P or @, but not both.”

(a) Make a truth table for P 4+ Q.

(b) Find a formula using only the connectives A, v, and — that is equiv-
alent to P + Q. Justify your answer with a truth table.

. Find a formula using only the connectives A and — that is equivalent to

P v Q. lJustify your answer with a truth table.

Some mathematicians use the symbol | to mean nor. In other words,

P | O means “neither P nor Q.”

(a) Make a truth table for P | Q.

(b) Find a formula using only the connectives A, v, and — that is equiv-
alentto P | Q.

(c) Find formulas using only the connective | that are equivalent to =P,
Pv Q,and P A Q.

. Some mathematicians write P | Q to mean “*P and Q are not both true.”

(This connective is called nand, and is used in the study of circuits in

computer science.)

(a) Make a truth table for P | Q.

(b) Find a formula using only the connectives A, Vv, and — that is equiv-
alentto P | Q.

(c) Find formulas using only the connective | that are equivalent to =P,
PV Q,and P A Q.

Use truth tables to determine whether or not the arguments in exercise 7

of Section 1.1 are valid.

. Use truth tables to determine which of the following formulas are equiv-

alent to each other:

(a) (PAQ)V (=P A=Q).

(b) =P v Q.

() (PV=0)A(QV—P).

(d) =(P v Q).

(e) (Q A P)v —P.

Use truth tables to determine which of these statements are tautologies,
which are contradictions, and which are neither:
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(@ (PV Q)A(=PV=Q)

(b) (PV Q) A (=P A—=Q).

(© (PV Q) V(=PVv=0)

(d)y [PA(QV -R)]V(—PVR).

Use truth tables to check these laws:

(a) The second DeMorgan’s law. (The first was checked in the text.)

(b) The distributive laws.

Use the laws stated in the text to find simpler formulas equivalent to these
formulas. (See Examples 1.2.5 and 1.2.7.)

(@) =(=P A=0).

(b) (P A Q)V (P A=Q).

(© ~(P A=Q)V (=P A Q).

Use the laws stated in the text to find simpler formulas equivalent to these
formulas. (See Examples 1.2.5 and 1.2.7.)

(a) =(=Pv @)v (P A—R).

(b) =(=P A Q)v (P A—=R).

(c) (PARYVI[-RA(PV O

Use the first DeMorgan’s law and the double negation law to derive the
second DeMorgan’s law.

Note that the associative laws say only that parentheses are unnecessary
when combining three statements with A or V. In fact, these laws can be
used to justify leaving parentheses out when more than three statements
are combined. Use associative laws to show that [P A (Q A R)] A S is
equivalent to (P A Q) A (R A S).

How many lines will there be in the truth table for a statement containing
n letters?

Find a formula involving the connectives A, v, and — that has the follow-
ing truth table:

P Qg m
F F T
F T F
T F T
T T T

Find a formula involving the connectives A, Vv, and — that has the follow-
ing truth table:

P o M
F F F
F T T
T F T
T T F
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18. Suppose the conclusion of an argument is a tautology. What can you
conclude about the validity of the argument? What if the conclusion is
a contradiction? What if one of the premises is either a tautology or a
contradiction?

1.3. Variables and Sets

In mathematical reasoning it is often necessary to make statements about objects
that are represented by letters called variables. For example, if the variable x
is used to stand for a number in some problem, we might be interested in the
statement “x is a prime number.” Although we may sometimes use a single
letter, say P, to stand for this statement, at other times we will revise this
notation slightly and write P(x), to stress that this is a statement about x.
The latter notation makes it easy to talk about substituting some number for
x in the statement. For example, P(7) would represent the statement “7 is a
prime number,” and P(a + b) would mean “a + b is a prime number.” If a
statement contains more than one variable, our abbreviation for the statement
will include a list of all the variables involved. For example, we might represent
the statement “p is divisible by ¢” by D(p, g). In this case, D(12,4) would
mean “12 is divisible by 4.”

Although you have probably seen variables used most often to stand for
numbers, they can stand for anything at all. For example, we could let M (x)
stand for the statement “x is a man,” and W(x) for “x is a woman.” In this
case, we are using the variable x to stand for a person. A statement might even
contain several variables that stand for different kinds of objects. For example,
in the statement “x has y children,” the variable x stands for a person, and y
stands for a number.

Statements involving variables can be combined using connectives, just like
statements without variables.

Example 1.3.1. Analyze the logical forms of the following statements:

1. x is a prime number, and either y or z is divisible by x.
2. x 1s a man and y is a woman and x likes y, but y doesn’t like x.

Solutions

1. We could let P stand for the statement “x is a prime number,” D for “y
is divisible by x,” and E for “z is divisible by x.” The entire statement
would then be represented by the formula P A (D v E). But this analysis,
though not incorrect, fails to capture the relationship between the statements
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D and E. A better analysis would be to let P(x) stand for “x is a prime
number” and D(y, x) for “yis divisible by x.” Then D(z, x) would mean *z is
divisible by x,” so the entire statement would be P(x) A (D(y, x) v D(z, x)).
2. Let M(x) stand for “x is a man,” W(y) for “y is a woman,” and L(x, y) for
“x likes y.” Then L(y, x) would mean “y likes x.” (Notice that the order of
the variables after the L makes a difference!) The entire statement would
then be represented by the formula M (x) A W(y) A L(x, y) A —=L(y, x).

When studying statements that do not contain variables, we can easily talk
about their truth values, since each statement is either true or false. But if a
statement contains variables, we can no longer describe the statement as being
simply true or false. [ts truth value might depend on the values of the variables
involved. For example, if P(x) stands for the statement “x is a prime number,”
then P(x) would be true if x = 23, but false if x = 22. To solve this problem,
we will define truth sets for statements containing variables. Before giving this
definition, though, it might be helpful to review some basic definitions from
set theory.

A set 1s a collection of objects. The objects in the collection are called the
elements of the set. The simplest way to specify a particular set is to list its
elements between braces. For example, {3, 7, 14} is the set whose elements
are the three numbers 3, 7, and 14. We use the symbol € to mean is an element
of. For example, if we let A stand for the set {3, 7, 14}, then we could write
7 € A to say that 7 is an element of A. To say that 11 is not an element of A,
we write 11 ¢ A.

A set is completely determined once its elements have been specified. Thus,
two sets that have exactly the same elements are always equal. Also, when
a set is defined by listing its elements, all that matters is which objects are
in the list of elements, not the order in which they are listed. An element
can even appear more than once in the list. Thus, {3, 7, 14}, {14, 3, 7}, and
{3,7, 14, 7} are three different names for the same set.

It may be impractical to define a set that contains a very large number of
elements by listing all of its elements, and it would be impossible to give such
a definition for a set that contains infinitely many elements. Often this problem
can be overcome by listing a few elements with an ellipsis (. . .) after them, if it
is clear how the list should be continued. For example, suppose we define a set
B by saying that B = {2,3,5,7, 11, 13, 17, .. .}. Once you recognize that the
numbers listed in the definition of B are the prime numbers, then you know that,
for example, 23 € B, even though it wasn’t listed explicitly when we defined
B. But this method requires recognition of the pattern in the list of numbers in
the definition of B, and this requirement introduces an element of ambiguity
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and subjectivity into our notation that is best avoided in mathematical writing.
It is therefore usually better to define such a set by spelling out the pattern that
determines the elements of the set.

In this case we could be explicit by defining B as follows:

B = {x| xis a prime number}.

This is read **B = the set of all x such that x is a prime number,” and it means
that the elements of B are the values of x that make the statement “x is a prime
number” come out true. You should think of the statement “x is a prime number”
as an elementhood test for the set. Any value of x that makes this statement
come out true passes the test and is an element of the set. Anything else fails
the test and is not an element. Of course, in this case the values of x that make
the statement true are precisely the prime numbers, so this definition says that
B is the set whose elements are the prime numbers, exactly as before.

Example 1.3.2. Rewrite these set definitions using elementhood tests:

l. E=1{2,4,6,8,...}.
2. P = {George Washington, John Adams, Thomas Jefferson, James
Madison, ... }.

Solutions

Although there might be other ways of continuing these lists of elements,
probably the most natural ones are given by the following definitions:

1. E = {n|n is a positive even integer}.
2. P = {z|z was a president of the United States}.

If a set has been defined using an elementhood test, then that test can be used
to determine whether or not something is an element of the set. For example,
consider the set {x | x> < 9}. If we want to know if 5 is an element of this set,
we simply apply the elementhood test in the definition of the set — in other
words, we check whether or not 52 < 9. Since 5% = 25 = 9, it fails the test,
505 & {x |x? < 9). On the other hand, (-2)> =4 < 9,50 =2 € {x | x? < 9).
The same reasoning would apply to any other number. For any number v, to
determine whetherornot y € {x | x* < 9}, we just check whether or not y* < 9.
In fact, we could think of the statement y € {x | x> < 9} as just a roundabout
way of saying y? < 9.

Notice that because the statement y € {x | x> < 9} means the same thing as
y? < 9, it is a statement about y, but not x! To determine whether or not y €
{x | x* < 9} you need to know what y is (so you can compare its square to 9), but
not what x is. We say that in the statement y € {x | x> < 9}, y is a free variable,
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whereas x is a bound variable (or a dummy variable). The free variables in a
statement stand for objects that the statement says something about. Plugging
in different values for a free variable affects the meaning of a statement and
may change its truth value. The fact that you can plug in different values for
a free variable means that it is free to stand for anything. Bound variables, on
the other hand, are simply letters that are used as a convenience to help express
an idea and should not be thought of as standing for any particular object. A
bound variable can always be replaced by a new variable without changing
the meaning of the statement, and often the statement can be rephrased so
that the bound variables are eliminated altogether. For example, the statements
y € {x|x* <9}and y € {w|w? < 9} mean the same thing, because they both
mean “y is an element of the set of all numbers whose squares are less than 9.”
In this last statement, all bound variables have been eliminated, and the only
variable mentioned is the free variable y.

Note that x is a bound variable in the statement y € {x | x?> < 9) even though
it is a free variable in the statement x* < 9. This last statement is a statement
about x that would be true for some values of x and false for others. It is only
when this statement is used inside the elementhood test notation that x becomes
a bound variable. We could say that the notation {x | ...} binds the variable x.

Everything we have said about the set {x | x> < 9} would apply to any set
defined by an elementhood test. In general, the statement y € {x | P(x)} means
the same thing as P(y), which is a statement about y but not x. Similarly,
y ¢ {x| P(x)) means the same thing as —P(y). Of course, the expression
{x | P(x)} is not a statement at all; it is a name for a set. As you learn more
mathematical notation, it will become increasingly important to make sure you
are careful to distinguish between expressions that are mathematical statements
and expressions that are names for mathematical objects.

Example 1.3.3. What do these statements mean? What are the free variables
in each statement?

1. a + b & {x | x is an even number}.
2. y € {x | x is divisible by w}.
3.2 {w]|6 ¢ {x|x is divisible by w}}.

Solutions

1. This statement says that a + b is not an element of the set of all even
numbers, or in other words, a + b is not an even number. Both @ and b are
free variables, but x is a bound variable. The statement will be true for some
values of ¢ and b and false for others.




30 Sentential Logic

2. This statement says that y is divisible by w. Both y and w are free variables,
but x is a bound variable. The statement is true for some values of y and w
and false for others.

3. This looks quite complicated, but if we go a step at a time, we can decipher
it. First, note that the statement 6 & {x | x is divisible by w}, which appears
inside the given statement, means the same thing as “6 is not divisible by w.”
Substituting this into the given statement, we find that the original statement
is equivalent to the simpler statement 2 € {w | 6 is not divisible by w}. But
this just means the same thing as “*6 is not divisible by 2.” Thus, the statement
has no free variables, and both x and w are bound variables. Because there
are no free variables, the truth value of the statement doesn’t depend on the
values of any variables. In fact, since 6 is divisible by 2, the statement is
false.

Perhaps you have guessed by now how we can use set theory to help us
understand truth values of statements containing free variables. As we have
seen, a statement, say P(x), containing a free variable x, may be true for some
values of x and false for others. To distinguish the values of x that make P(x)
true from those that make it false, we could form the set of values of x for which
P(x) is true. We will call this set the truth set of P(x).

Definition 1.3.4. The rruth set of a statement P(x) is the set of all values of x
that make the statement P(x) true. In other words, it is the set defined by using
the statement P(x) as an elementhood test:

Truth set of P(x) = {x | P(x)}.

Note that we have defined truth sets only for statements containing one free
variable. We will discuss truth sets for statements with more than one free
variable in Chapter 4.

Example 1.3.5. What are the truth sets of the following statements?

1. Shakespeare wrote x.
2. n is an even prime number.

Solutions

1. {x| Shakespeare wrote x} = {Hamlet, Macbeth, Twelfth Night, .. .}.

2. {n|n is an even prime number}. Because the only even prime number is 2,
this is the set {2}. Note that 2 and {2} are not the same thing! The first is
a number, and the second is a set whose only element is a number. Thus,

2 € {2}, but2 # (2).
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Suppose A is the truth set of a statement P(x). According to the definition of
truth set, this means that A = {x | P(x)}. We’ve already seen that for any object
v, the statement y € {x | P(x)} means the same thing as P(y). Substituting in
A for {x | P(x)}, it follows that y € A means the same thing as P(y). Thus, we
see that in general, if A is the truth set of P(x), then to say that y € A means
the same thing as saying P(y).

When a statement contains free variables, it is often clear from context that
these variables stand for objects of a particular kind. The set of all objects of
this kind — in other words, the set of all possible values for the variables — is
called the universe of discourse for the statement, and we say that the variables
range over this universe. For example, in most contexts the universe for the

statement x? < 9 would be the set of all real numbers; the universe for the
statement “x is a man”’ might be the set of all people.

Certain sets come up often in mathematics as universes of discourse, and it is
convenient to have fixed names for them. Here are a few of the most important
ones:

R = {x | x is a real number}.

@ = {x | x is a rational number}.

(Recall that a real number is any number on the number line, and a
rational number is a number that can be written as a fraction p/q,
where p and ¢ are integers.)

Z = {x|xisaninteger} = {..., -3, -2,-1,0,1,2,3,...}.

N = {x | x is a natural number} = {0, 1,2, 3,...}.

(Some books include 0 as a natural number and some don’t. In this
book, we consider ) to be a natural number.)

The letters R, (§, and Z can be followed by a superscript 4+ or — to indicate that
only positive or negative numbers are to be included in the set. For example,
R* = {x|x is a positive real number}, and Z~ = {x | x is a negative integer}.

Although the universe of discourse can usually be determined from context,
itis sometimes useful to identify it explicitly. Consider a statement P(x) witha
free variable x that ranges over a universe U. Although we have written the truth
set of P(x) as {x | P(x)}, if there were any possibility of confusion about what
the universe was, we could specify it explicitly by writing {x € U | P(x)}; this
is read “the set of all x in U such that P(x).” This notation indicates that only
elements of U are to be considered for elementhood in this truth set, and among
elements of U, only those that pass the elementhood test P(x) will actually be in
the truth set. For example, consider again the statement x* < 9. If the universe
of discourse for this statement were the set of all real numbers, then its truth
set would be {x e R|x? < 91}, or in other words, the set of all real numbers
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between —3 and 3. But if the universe were the set of all integers, then the
truth set would be {x € Z|x? < 9} = {=2,—1,0, 1, 2}. Thus, for example,
1.58 e {x e B|x? <9} but 1.58 ¢ {x € Z | x? < 9). Clearly, the choice of
universe can sometimes make a difference!

Sometimes this explicit notation is used not to specify the universe of dis-
course but to restrict attention to just a part of the universe. For example, in
the case of the statement x> < 9, we might want to consider the universe
of discourse to be the set of all real numbers, but in the course of some
reasoning involving this statement we might want to temporarily restrict our
attention to only positive real numbers. We might then be interested in the
set {x € R* | x2 < 9}. As before, this notation indicates that only positive real
numbers will be considered for elementhood in this set, and among positive
real numbers, only those whose square is less than 9 will be in the set. Thus,
for a number to be an element of this set, it must pass two tests: it must be a
positive real number, and its square must be less than 9. In other words, the
statement y € {x € R" | x? < 9) means the same thing as y € RT A y* < 9.
In general, y € {x € A| P(x)} means the same thingas y € A A P(y).

When a new mathematical concept has been defined, mathematicians are
usually interested in studying any possible extremes of this concept. For
example, when we discussed truth tables, the extremes we studied were
statements whose truth tables contained only T’s (tautologies) or only F’s
(contradictions). For the concept of the truth set of a statement containing a
free variable, the corresponding extremes would be the truth sets of statements
that are always true or always false. Suppose P(x) is a statement containing
a free variable x that ranges over a universe U. It should be clear that if P(x)
comes out true for every value of x € U, then the truth set of P(x) will be
the whole universe U. For example, since the statement x> = 0 is true for
every real number x, the truth set of this statement is {x € R|x? = 0} = R.
Of course, this is not unrelated to the concept of a tautology. For exam-
ple, since P v —P is a tautology, the statement P(x)v —P(x) will be true
for every x € U, no matter what statement P(x) stands for or what the
universe U is, and therefore the truth set of the statement P(x) v —P(x)
will be U.

For a statement P(x) that is false for every possible value of x, nothing in
the universe can pass the elementhood test for the truth set of P(x), and so this
truth set must have no elements. The idea of a set with no elements may sound
strange, but it arises naturally when we consider truth sets for statements that
are always false. Because a set is completely determined once its elements have
been specified, there is only one set that has no elements. It is called the empty
set, or the nulfl set, and is often denoted . Forexample, {x € Z | x # x} = &.
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Since the empty set has no elements, the statement x € & is an example of a
statement that is always false, no matter what x is.

Another common notation for the empty set is based on the fact that any set
can be named by listing its elements between braces. Since the empty set has
no elements, we write nothing between the braces, like this: & = { }. Note that
{ &} is not correct notation for the empty set. Just as we saw earlier that 2 and
{2} are not the same thing, & is not the same as {}. The first is a set with no
elements, whereas the second is a set with one element, that one element being
&, the empty set.

Exercises

*1. Analyze the logical forms of the following statements:

(a) 3 is a common divisor of 6, 9, and 15. (Note: You did this in exercise
2 of Section 1.1, but you should be able to give a better answer now.)

(b) x is divisible by both 2 and 3 but not 4.

(c) x and y are natural numbers, and exactly one of them is prime.

2. Analyze the logical forms of the following statements:

(a) x and y are men, and either x is taller than y or y is taller than x.

(b) Either x or y has brown eyes, and either x or y has red hair.

(c¢) Either x or y has both brown eyes and red hair.

*3. Write definitions using elementhood tests for the following sets:

(a) {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
Pluto}.

(b) {Brown, Columbia, Cornell, Dartmouth, Harvard, Princeton, Univer-
sity of Pennsylvania, Yale}.

(¢) {Alabama, Alaska, Arizona, ..., Wisconsin, Wyoming}.

(d) {Alberta, British Columbia, Manitoba, New Brunswick, Newfound-
land and Labrador, Northwest Territories, Nova Scotia, Nunavut, On-
tario, Prince Edward Island, Quebec, Saskatchewan, Yukon}.

4. Write definitions using elementhood tests for the following sets:

(a) {1,4,9,16,25,36,49,...}.

(by {1,2,4,8,16,32,64,...}.

(c) {10,11,12,13, 14, 15,16, 17, 18, 19}.

*5. Simplify the following statements. Which variables are free and which are
bound? If the statement has no free variables, say whether it is true or
false.

(a) 3e{xeR|13-2x > 1}.

b)defxeR |13 —2x>1).

() S¢{xeR|13—-2x>¢).
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6. Simplify the following statements. Which variables are free and which are
bound? If the statement has no free variables, say whether it is true or
false.

(a) we{xeR|13-2x = ¢).

(b) 4 e {x e R |13 —2x € {y| yisaprime number}}. (It might make
this statement easier to read if we let P = {y | y is a prime number};
using this notation, we could rewrite the statement as 4 € {x € R |
13-2x € P})

(c) 4 € {xe{y| yis a prime number}| 13 — 2x > 1}. (Using the same no-
tation as in part (b), we could write thisas4 € {x € P | 13 — 2x > 1}.)

*7. What are the truth sets of the following statements? List a few elements of
the truth set if you can.

(a) Elizabeth Taylor was once married to x.

(b) x is a logical connective studied in Section 1.1.

(c) x is the author of this book.

8. What are the truth sets of the following statements? List a few elements of
the truth set if you can.

(a) x is a real number and x> — 4x +3 = 0.

(b) x is a real number and x2 —2x +3 = 0.

(c) xisareal numberand 5 € {y € R | x> + y* < 50).

1.4. Operations on Sets

Suppose A is the truth set of a statement P(x) and B is the truth set of Q(x).
What are the truth sets of the statements P(x) A Q(x), P(x) v Q(x),
and —P(x)? To answer these questions, we introduce some basic operations
on sets.

Definition 1.4.1. The intersection of two sets A and B is the set A N B defined
as follows:
ANB ={x|x € Aand x € B}.
The union of A and B is the set A U B defined as follows:
AUB={x|x € Aorx € B}.
The difference of A and B is the set A \ B defined as follows:
A\B={x|x e Aandx € B}.

Remember that the statements that appear in these definitions are element-
hood tests. Thus, for example, the definition of A N B says that for an object to
be an element of A N B, it must be an element of both A and B. In other words,
AN B is the set consisting of the elements that A and B have in common.
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Because the word or is always interpreted as inclusive or in mathematics,
anything that is an element of either A or B, or both, will be an element of
A U B. Thus, we can think of A U B as the set resulting from throwing all the
elements of A and B together into one set. A \ B is the set you would get if you
started with the set A and removed from it any elements that were also in B.

Example 1.4.2. Suppose A = {1,2,3,4,5}and B = {2, 4,6, 8, 10}. List the
elements of the following sets:

1. ANB. 4. (AUB)\ (AN B).
2. AU B. 5. (A\B)U(B\ A).
3. A\ B.

Solutions

AN B = (2,4}

.AUB={1,2,3,4,5,6,8, 10}

A\ B=1{13,5).

. We have just computed A U B and A N B in solutions 1 and 2, so all we
need to do is start with the set A U B from solution 2 and remove from it
any elements that are also in A N B. The answer is (AU B)\ (AN B) =
{1,3,5,6,8, 10}.

5. We already have the elements of A\ B listed in solution 3, and B\ A =

{6, 8, 10}. Thus, their unionis (A} B)U(B\ A) ={1,3,5,6,8, 10}. Is it

just a coincidence that this is the same as the answer to part 47

B b —

Example 1.4.3. Suppose A = {x |xisaman} and B = {x | x has brown hair}.
Whatare ANB,AUB,and A\ B?
Solution

By definition, AN B = {x |x € A and x € B}. As we saw in the last section,
the definitions of A and B tell us that x € A means the same thing as “x is a
man,” and x € B means the same thing as “x has brown hair.” Plugging this
into the definition of A N B, we find that

AN B = {x|xis aman and x has brown hair}.
Similar reasoning shows that
A U B = {x | either x is a man or x has brown hair}
and

A\ B = {x|xis aman and x does not have brown hair}.
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Sometimes it is helpful when working with operations on sets to draw pic-
tures of the results of these operations. One way to do this is with diagrams
like that in Figure 1. This is called a Venn diagram. The interior of the rect-
angle enclosing the diagram represents the universe of discourse U, and the
interiors of the two circles represent the two sets A and B. Other sets formed by
combining these sets would be represented by different regions in the diagram.
For example, the shaded region in Figure 2 is the region common to the circles
representing A and B, and so it represents the set A N B. Figures 3 and 4 show
the regions representing A U B and A \ B, respectively.

v A B v A B
Figure 1 ANB
Figure 2

v v A B
AUB A\ B
Figure 3 Figure 4

Here's an example of how Venn diagrams can help us understand operations
on sets. In Example 1.4.2 the sets (AU B)\ (AN B) and (A\ B)U(B\ A)
turned out to be equal, for a particular choice of A and B. You can see by
making Venn diagrams for both sets that this was not a coincidence. You’ll
find that both Venn diagrams look like Figure 5. Thus, these sets will always
be equal, no matter what the sets A and B are, because both sets will always
be the set of objects that are elements of either A or B but not both. This set
is called the symmetric difference of A and B and is written AAB. In other
words, AAB =(A\ B)U (B \ A) =(A U B)\ (AN B). Later in this section
we’ll see another explanation of why these sets are always equal.
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4 A B

(AUB)\(ANB) = (A\ B)U(B\ A)
Figure 5

Let’s return now to the question with which we began this section. If A is
the truth set of a statement P(x) and B is the truth set of Q(x), then, as we saw
in the last section, x € A means the same thing as P(x) and x € B means the
same thing as Q(x). Thus, the truth set of P(x) A Q(x)is {x | P(x) A Q(x)} =
{x|x € AAax e B} = AN B. This should make sense. It just says that the
truth set of P(x) ~ Q(x) consists of those elements that the truth sets of P(x)
and Q(x) have in common — in other words, the values of x that make both
P(x) and Q(x) come out true. We have already seen an example of this. In
Example 1.4.3 the sets A and B were the truth sets of the statements “x is a
man” and “x has brown hair.,” and A N B turned out to be the truth set of “x is
a man and x has brown hair.”

Similar reasoning shows that the truth set of P(x) v Q(x)is AU B. To find
the truth set of —=P(x), we need to talk about the universe of discourse U. The
truth set of = P(x) will consist of those elements of the universe for which P(x)
is false, and we can find this set by starting with U/ and removing from it those
elements for which P(x) is true. Thus, the truth set of = P(x) is U \ A.

These observations about truth sets illustrate the fact that the set theory
operations M, U, and \ are related to the logical connectives ., v, and —. This
shouldn’t be surprising, since after all the words and, or, and not appear in
their definitions. (The word not doesn’t appear explicitly, but it’s there, hidden
in the mathematical symbol ¢ in the definition of the difference of two sets.)
It is important to remember, though, that although the set theory operations
and logical connectives are related, they are not interchangeable. The logical
connectives can only be used to combine statenents, whereas the set theory
operations must be used to combine sets. For example, if A is the truth set of
P(x)and B is the truth set of Q(x), then we can say that A N B is the truth set of
P(x) A Q(x), but expressions such as A A B or P(x) N Q(x) are completely
meaningless and should never be used.

The relationship between set theory operations and logical connectives also
becomes apparent when we analyze the logical forms of statements about
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intersections, unions, and differences of sets. For example, according to the
definition of intersection, to say that x € AN B means that x € A A x € B.
Similarly, to say that x € AU B means that x e Avx e B,andx € A\ B
means x € A A x € B, orin other words x € A A —(x € B). We can combine
these rules when analyzing statements about more complex sets.

Example 1.4.4. Analyze the logical forms of the following statements:

l.xe AN(BUC).
2.x € A\ (BNO).
3.xe(ANB)U(ANCQ).

Solutions

l.xe AN(BUC(C)
is equivalentto x e AAx e (BUCQC) (definition of N),
which is equivalentto x € A A (x € Bvx € C) (definition of U).
2.x€ A\(BNC)
is equivalentto x € A A —~(x € BN C) (definition of \),
which is equivalentto x € A A —~(x € B A x € C) (definition of N).
Ixe(ANBUANC)
is equivalentto x € (AN B) v x € (ANC) (definition of U),
which is equivalentto (x e AAx e B)v{xe Arx eC)
(definition of N).

Look again at the solutions to parts 1 and 3 of Example 1.4.4. You should rec-
ognize that the statements we ended up with in these two parts are equivalent. (If
you don’t, look back at the distributive laws in Section 1.2.) This equivalence
means that the statements x €e AN(BUC) and x e (ANBYU(ANC) are
equivalent. In other words, the objects that are elements of the set A N (B U C)
will be precisely the same as the objects that are elements of (AN B)U
(AN C), no matter what the sets A, B, and C are. But recall that sets with
the same elements are equal, so it follows that for any sets A, B, and C, AN
(BUC)=(ANB)U(ANC). Another way to see this is with the Venn di-
agram in Figure 6. Our earlier Venn diagrams had two circles, because in
previous examples only two sets were being combined. This Venn diagram has
three circles, which represent the three sets A, B, and C that are being combined
in this case. Although it is possible to create Venn diagrams for more than three
sets, it is rarely done, because it cannot be done with overlapping circles. For
more on Venn diagrams for more than three sets, see exercise 10.

Thus, we see that a distributive law for logical connectives has led to a
distributive law for set theory operations. You might guess that because there
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A B

C

AN(BUC)=(ANBYU(ANC)
Figure 6

were two distributive laws for the logical connectives, with A and v playing
opposite roles in the two laws, there might be two distributive laws for set
theory operations too. The second distributive law for sets should say that for
any sets A, B, and C, AU(BNC)= (AU B)N{AUC). You can verify this
for yourself by writing out the statements x € A U(BNC)andx € (AU B)N
(A U C) using logical connectives and verifying that they are equivalent, using
the second distributive law for the logical connectives A and V. Another way
to see it is to make a Venn diagram.

We can derive another set theory identity by finding a statement equivalent
to the statement we ended up with in part 2 of Example 1.4.4:

xeA\(BNCO)
isequivalenttox e Aan—-(x e BAx e () (Example 1.4.4),
which is equivalenttox e An(x € Bvx &€ C) (DeMorgan’s law),

which is equivalentto(x e AAx € B)vixe Arx &C)

(distributive law),
which 1s equivalentto (x € A\ B)v(x € A\ C) (definition of \),
which is equivalenttox € (A \ B)U(A\ ©) (definition of U).

Thus, we have shown that for any sets A, B,and C, A\(BNC)=(A\ B)U
(A \, C). Once again, you can verify this with a Venn diagram as well.

Earlier we promised an alternative way to check the identity (A U B)\
(AN B)=(A\ B)U(B\ A). You should see now how this can be done. First,
we write out the logical forms of the statements x € (A U B) \ (AN B) and
x € (A\ B)U(B\ A):

xe(AUB)N(ANB)means(x e Avx € B)A—(x € AAnx € B);
xe(A\B)U(B\ Aymeans(x e Arnx € B)yvixe Bax gA).
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You can now check, using equivalences from Section 1.2, that these statements
are equivalent. An alternative way to check the equivalence is with a truth table.
To simplify the truth table, let’s use P and Q as abbreviations for the statements
x € Aandx € B. Then we must check that the formulas (P v Q) A —=(P A Q)
and (P A —=Q) v (Q A —P) are equivalent. The truth table in Figure 7 shows

this.

(PVOAAPAQ) (PA-Q)V(QA—P)

== m |

M-

g
F
T
F
T

e e T

Figure 7

Definition 1.4.5. Suppose A and B are sets. We will say that A is a subset of
B if every element of A is also an element of B. We write A € B to mean that
A is a subset of B. A and B are said to be disjoint if they have no elements in

common. Note that this is the same as saying that the set of elements they have
in common is the empty set, or in other words A N B = &,

Example 1.4.6. Suppose A = {red, green}, B = {red, yellow, green, purple},
and C = {blue, purple}. Then the two elements of A, red and green, are both
also in B, and therefore A € B. Also, AN C =&, so A and C are disjoint.

If we know that A € B, or that A and B are disjoint, then we might draw a
Venn diagram for A and B differently to reflect this. Figures 8 and 9 illustrate

this.
U B u A B
ACB ANB =
Figure 8 Figure 9

Just as we earlier derived identities showing that certain sets are always equal,

it is also sometimes possible to show that certain sets are always disjoint, or

that one set is always a subset of another. For example, you can see in a Venn
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diagram that the sets A N B and A \ B do not overlap, and therefore they will
always be disjoint for any sets A and B. Another way to see this would be to
write out what it means to say that x € (AN B)N(A\ B):

xEeEANB)N(A\ B)means(x e Anxe B)an(x e AAnx & B),
which is equivalenttox € A A(x € B A x € B).

But this last statement is clearly a contradiction, so the statement x € (AN
B) N (A \ B) will always be false, no matter what x is. In other words, nothing
can be an element of (A N B) N (A \ B), so it must be the case that (A N B) N
(A\ B) = (. Therefore, AN B and A\ B are disjoint.

The next theorem gives another example of a general fact about set oper-
ations. The proof of this theorem illustrates that the principles of deductive
reasoning we have been studying are actually used in mathematical proofs.

Theorem 1.4.7. For any sets Aand B, (A UB)\ B C A.

Proof. We must show that if something is an element of (A U B) \ B, then it
must also be an element of A, so suppose that x € (A U B) \ B. This means
that x € AU B and x &€ B, or in other words x € AV x € B and x & B. But
notice that these statements have the logical form P v @ and —Q, and this
is precisely the form of the premises of our very first example of a deductive
argument in Section 1.1! As we saw in that example, from these premises we
can conclude that x € A must be true. Thus, anything that is an element of
(AU B)\ B must also be an element of A,s0 (AU B)\ B C A. O

You might think that such a careful application of logical laws is not needed
to understand why Theorem 1.4.7 is correct. The set (A U B)\ B could be
thought of as the result of starting with the set A, adding in the elements of
B, and then removing them again. Common sense suggests that the result will
Just be the original set A; in other words, it appears that (AU B)\ B = A.
However, as you are asked to show in exercise 9, this conclusion is incorrect.
This illustrates that in mathematics, you must not allow imprecise reasoning
to lead you to jump to conclusions. Applying laws of logic carefully, as we did
in our proof of Theorem 1.4.7, may help you to avoid jumping to unwarranted
conclusions.

Exercises

*1. Let A =1{1,3,12,35), B=1{3,7,12,20}, and C = {x | xis a prime
number}. List the elements of the following sets. Are any of the sets
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below disjoint from any of the others? Are any of the sets below subsets
of any others?

(a) ANB.

(b) (AUB)\C.

() AU(B\C).

. Let A = {United States, Germany, China, Australia}, B = {Germany,

France, India, Brazil}, and C = {x | x is a country in Europe}. List the
elements of the following sets. Are any of the sets below disjoint from
any of the others? Are any of the sets below subsets of any others?

(a) AUB.

(b) (AN B)\C.

() (BNC)\ A.

. Verify that the Venn diagrams for (AU B)\ (AN B) and (A\ B)U

(B \ A)both look like Figure 5, as stated in this section.
Use Venn diagrams to verify the following identities:
(a) AN(ANB)=A\B.

(b)y AUBNC)=(AUB)N(AUC).

. Verify the identities in exercise 4 by writing out (using logical symbols)

what it means for an object x to be an element of each set and then using
logical equivalences.

. Use Venn diagrams to verify the following identities:

@ (AUB)\C=(A\C)U(B\C).
() AUB\C)=(AUB)\ (C\ A).

. Verify the identities in exercise 6 by writing out (using logical symbols)

what it means for an object x to be an element of each set and then using
logical equivalences.

For each of the following sets, write out (using logical symbols) what it
means for an object x to be an element of the set. Then determine which
of these sets must be equal to each other by determining which statements
are equivalent.

(@ (A\B)\C.

(b) AN(B\O).

©) (A\BYUANC).

d (A\B)N(AN\C).

(e) AN(BUC).

. It was shown in this section that for any sets A and B, (AU B)\ B C A.

Give an example of two sets A and B for which (AU B)\ B £ A.
It is claimed in this section that you cannot make a Venn diagram for four
sets using overlapping circles.
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(a) What’s wrong with the following diagram? (Hint: Where's the set
(ANDHY\(BUC))

(b) Can you make a Venn diagram for four sets using shapes other than
circles?

(a) Make Venn diagrams for thesets (A U B)\ Cand A U (B \ C). What
can you conclude about whether one of these sets is necessarily a
subset of the other?

(b) Give an example of sets A, B, and C for which (A U B)\ C #£ AU
(B\ C).

. Use Venn diagrams to show that the associative law holds for symmetric

difference; that is, for any sets A, B,and C, A A (BAC) =(AAB)AC.

. Use any method you wish to verify the following identities:

(a) (AAB)UC =(AUC)A (BN C).
(B (AAB)NC =(ANC)A(BNC).
© (AAB)\NC=(A\NC)A(B\C).
Use any method you wish to verify the following identities:
(@A (AUBYAC=(AAC)A(BYA).
) (ANBYAC =(AAC)A(ANB).
@ A\B)AC=(AAC)A(ANB).
Fill in the blanks to make true identities:
(@) AAB)NC=(C\A) A
(b) CNAALAB)=(ANCYA —
C© (B\AYAC=(ALCYN

1.5. The Conditional and Biconditional Connectives

It is time now to return to a question we left unanswered in Section 1.1. We

have seen how the reasoning in the first and third arguments in Example 1.1.1
can be understood by analyzing the connectives v and —. But what about the
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reasoning in the second argument? Recall that the argument went like this:

If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, [ don’t have to go to work today.

What makes this reasoning valid?

It appears that the crucial words here are if and then, which occur in the
first premise. We therefore introduce a new logical connective, —, and write
P — ( to represent the statement “If P then Q" This statement is sometimes
called a conditional statement, with P as its antecedent and Q as its consequent.
If we let P stand for the statement “Today is Sunday” and Q for the statement *1
don’t have to go to work today,” then the logical form of the argument would be

P—Q

P

o0
Our analysis of the new connective — should lead to the conclusion that this
argument is valid.

Example 1.5.1. Analyze the logical forms of the following statements:

1. If it’s raining and I don’t have my umbrella, then I'll get wet.
2. If Mary did her homework, then the teacher won’t collect it, and if she didn’t,
then he’ll ask her to do it on the board.

Solutions

1. Let R stand for the statement “It’s raining,” U/ for “I have my umbrella,” and
W for “I'll get wet.” Then statement 1 would be represented by the formula
(RA=U)— W.

2. Let H stand for “Mary did her homework,” C for “The teacher will collect
it,” and B for “The teacher will ask Mary to do the homework on the board.”
Then the given statement means (H — —C) A (—H — B).

To analyze arguments containing the connective — we must work out the
truth table for the formula P — Q. Because P — (@ is supposed to mean that
if P is true then Q is also true, we certainly want to say that if P is true and
Q is false then P — Q is false. If P is true and Q is also true, then it seems
reasonable to say that P — (@ is true. This gives us the last two lines of the
truth table in Figure 1. The remaining two lines of the truth table are harder
to fill in, although some people might say that if P and @ are both false then
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P — (@ should be considered true. Thus, we can sum up our conclusions so
far with the table in Figure 1.

P—Q

= =-mm|Y
=T
- T e =

~

Figure 1

To help us fill in the undetermined lines in this truth table, let's look at
an example. Consider the statement “If x = 2 then x? > 4, which we could
represent with the formula P(x) — Q(x), where P(x) stands for the statement
x > 2 and Q(x) stands for x> > 4. Of course, the statements P(x) and Q(x)
contain x as a free variable, and each will be true for some values of x and false
for others. But surely, no matter what the value of x is, we would say it is true
that if x > 2 then x* > 4, so the conditional statement P(x) — Q(x) should
be true. Thus, the truth table should be completed in such a way that no matter
what value we plug in for x, this conditional statement comes out true.

For example, suppose x = 3. In this case x > 2 and x> =9 > 4, so P(x)
and Q(x) are both true. This corresponds to line four of the truth table in
Figure 1, and we’ve already decided that the statement P(x) — Q(x) should
come out true in this case. But now consider the case x = 1. Then x < 2 and
x? =1 < 4,50 P(x) and Q(x) are both false, corresponding to line one in the
truth table. We have tentatively placed a T in this line of the truth table, and
now we see that this tentative choice must be right. If we put an F there, then
the statement P(x) — Q(x)would come out false in the case x = 1, and we’ve
already decided that it should be true for all values of x.

Finally, consider the case x = —5. Then x < 2, so P(x) is false, but x? =
25 = 4, so Q(x) is true. Thus, in this case we find ourselves in the second line
of the truth table, and once again, if the conditional statement P(x) — Q(x)
is to be true in this case, we must put a T in this line. So it appears that all the
questionable lines in the truth table in Figure 1 must be filled in with T’s, and
the completed truth table for the connective — must be as shown in Figure 2.

P Q P—-Q
F F T
F T T
T F F
T T T

Figure 2
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Of course, there are many other values of x that could be plugged into our
statement “If x > 2 then x? > 4”; but if you try them, you’ll find that they all
lead to line one, two, or four of the truth table, as our examples x = 1, —5,
and 3 did. No value of x will lead to line three, because you could never have
x > 2 but x> < 4. After all, that's why we said that the statement “If x > 2
then x* > 4" was always true, no matter what x was! The point of saying that
this conditional statement is always true is simply to say that you will never
find a value of x such that x > 2 and x* < 4 — in other words, there is no value
of x for which P(x) is true but Q(x) is false. Thus, it should make sense that
in the truth table for P — Q, the only line that is false is the line in which P
is true and @ is false.

As the truth table in Figure 3 shows, the formula =P v @ is also true in
every case except when P is true and Q is false. Thus, if we accept the truth
table in Figure 2 as the correct truth table for the formula P — Q, then we
will be forced to accept the conclusion that the formulas P — @ and =P v Q
are equivalent. Is this consistent with the way the words if and then are used
in ordinary language? It may not seem to be at first, but, at least for some uses
of the words if and then, it is.

-PvQ

Q
F
T
F
T

== |
- T

Figure 3

For example, imagine a teacher saying to a class, in a threatening tone of
voice, “You won’t neglect your homework, or you’ll fail the course.” Grammat-
ically, this statement has the form =P v @, where P is the statement “You will
neglect your homework™ and Q is “You’ll fail the course.” But what message is
the teacher trying to convey with this statement? Clearly the intended message
is “If you neglect your homework, then you'll fail the course,” or in other words
P — Q. Thus, in this example, the statements =P v Q and P — Q seem to
mean the same thing.

There is a similar idea at work in the first statement from Example 1.1.2,
“Either John went to the store, or we're out of eggs.” In Section 1.1 we repre-
sented this statement by the formula P v Q, with P standing for “John went to
the store” and Q for “We're out of eggs.” But someone who made this statement
would probably be trying to express the idea that if John didn’t go to the store,
then we’re out of eggs, or in other words =P — Q. Thus, this example sug-
gests that =P — @ means the same thing as P v Q. In fact, we can derive this
equivalence from the previous one by substituting — P for P. Because P — Q
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is equivalent to =P v @, it follows that =P — Q is equivalent to =——P v Q,
which is equivalent to P v Q by the double negation law.
We can derive another useful equivalence as follows:

—Pv(Q is equivalent to =P v ——Q (double negation law),

which is equivalent to ~(P A =) (DeMorgan’s law).

Thus, P — Q is also equivalent to —(P ~ —@). In fact, this is precisely the
conclusion we reached earlier when discussing the statement “If x = 2 then
x? > 4. We decided then that the reason this statement is true for every value
of x is that there is no value of x for which x > 2 and x? < 4. In other words,
the statement P(x) A —Q(x) is never true, where as before P(x) stands for
x > 2 and Q(x) for x> > 4. But that’s the same as saying that the statement
—=(P(x) A —Q(x)) is always true. Thus, to say that P(x) — Q(x) is always
true means the same thing as saying that =(P(x) A —Q(x)) is always true.

For another example of this equivalence, consider the statement “If it’s going
to rain, then I'll take my umbrella.” Of course, this statement has the form
P — (@, where P stands for the statement “It’s going to rain” and Q stands
for “I'll take my umbrella” But we could also think of this statement as a
declaration that [ won’t be caught in the rain without my umbrella — in other
words, =(P A —~(Q).

To summarize, so far we have discovered the following equivalences involv-
ing conditional statements:

Conditional laws
P — Qisequivalent to—P v Q.
P — Qisequivalent to—(P » —Q).

In case you're still not convinced that the truth table in Figure 2 is right,
we give one more reason. We know that, using this truth table, we can now
analyze the validity of deductive arguments involving the words if and then.
We'll find, when we analyze a few simple arguments, that the truth table in
Figure 2 leads to reasonable conclusions about the validity of these arguments.
But if we were to make any changes in the truth table, we would end up with
conclusions that are clearly incorrect. For example, let’s return to the argument
form with which we started this section:

P—Q

P

QO
We have already decided that this form of argument should be valid, and the
truth table in Figure 4 confirms this. The premises are both true only in line
four of the table, and in this line the conclusion is true as well.
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Premises Conclusion

P Q9 P—>Q P Q

F F T F F

F T T F T

T F F T F

T T T T T
Figure 4

You can also see from Figure 4 that both premises are needed to make this
argument valid. But if we were to change the truth table for the conditional
statement to make P — ( false in the first line of the table, then the second
premise of this argument would no longer be needed. We would end up with
the conclusion that, just from the single premise P — @, we could infer that Q
must be true, since in the two lines of the truth table in which the premise P —
Q would still be true, lines two and four, the conclusion @ is true too. But this
doesn’t seem right. Just knowing that if P is true then Q is true, but not knowing
that P is true, it doesn’t seem reasonable that we should be able to conclude that
@ is true. For example, suppose we know that the statement “If John didn’t go
to the store then we're out of eggs™ is true. Unless we also know whether or not
John has gone to the store, we can’t reach any conclusion about whether or not
we're out of eggs. Thus, changing the first line of the truth table for P — Q
would lead to an incorrect conclusion about the validity of an argument.

Changing the second line of the truth table would also lead to unacceptable
conclusions about the validity of arguments. To see this, consider the argument
form:

P—=0
e
P

This should not be considered a valid form of reasoning. For example, consider
the following argument, which has this form:

If Jones was convicted of murdering Smith, then he will go to jail.
Jones will go to jail.
Therefore, Jones was convicted of murdering Smith.

Even if the premises of this argument are true, the conclusion that Jones was
convicted of murdering Smith doesn’t follow. Maybe the reason he will go to
jail is that he robbed a bank or cheated on his income tax. Thus, the conclusion
of this argument could be false even if the premises were true, so the argument
isn’t valid.
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The truth table analysis in Figure 5 agrees with this conclusion. In line two of
the table, the conclusion P is false, but both premises are true, so the argument
is invalid. But notice that if we were to change the truth table for P — Q
and make it false in line two, then the truth table analysis would say that the
argument is valid. Thus, the analysis of this argument seems to support our
decision to put a T in the second line of the truth table for P — (.

Premises Conclusion
P Q P>Q 0 P
F F T F F
F T T T F
T F F F T
T T T T T
Figure 5

The last example shows that from the premises P — Q and Q it is incorrect
to infer P. But it would certainly be correct to infer P from the premises Q — P
and Q. This shows that the formulas P — Q and Q — P do not mean the same
thing. You can check this by making a truth table for both and verifying that
they are not equivalent. For example, a person might believe that, in general,
the statement “If you are a convicted murderer then you are untrustworthy™ is
true, without believing that the statement “If you are untrustworthy then you
are a convicted murderer” is generally true. The formula Q — P is called the
converse of P — Q. It is very important to make sure you never confuse a
conditional statement with its converse.

The contrapositive of P — Q isthe formula =Q — — P, and it is equivalent
to P — (. This may not be obvious at first, but you can verify it with a truth
table. For example, the statements “If John cashed the check I wrote then my
bank account is overdrawn” and *“If my bank account isn’t overdrawn then John
hasn’t cashed the check I wrote” are equivalent. Both would be true in exactly
the same circumstances — namely, if the check I wrote was for more money
than I had in my account. The equivalence of conditional statements and their
contrapositives is used often in mathematical reasoning. We add it to our list
of important equivalences:

Contrapositive law
P — Qisequivalent to = Q — —P.

Example 1.5.2. Which of the following statements are equivalent?

1. If it’s either raining or snowing, then the game has been canceled.
2. If the game hasn’t been canceled, then it’s not raining and it’s not snowing.
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3. If the game has been canceled, then it’s either raining or snowing.

4. If it’s raining then the game has been canceled, and if it's snowing then the
game has been canceled.

5. If it’s neither raining nor snowing, then the game hasn’t been canceled.

Solution

We translate all of the statements into the notation of logic, using the follow-
ing abbreviations: R stands for the statement “It’s raining,” § stands for “It’s
snowing,” and C stands for “The game has been canceled.”

1. (RVS)— C.

2. =C — (=R A —8). By one of DeMorgan's laws, this is equivalent to
—=C — —(R v §). This is the contrapositive of statement 1, so they are
equivalent.

3. C — (R §). This is the converse of statement 1, which is not equivalent
to it. You can verify this with a truth table, or just think about what the state-
ments mean. Statement 1 says that rain or snow would result in cancelation
of the game. Statement 3 says that these are the only circumstances in which
the game will be canceled.

4. (R — C) A (S — C).Thisis alsoequivalent to statement 1, as the following
reasoning shows:

(R—O)yn(S—0)
is equivalent to (mR v C) A (—S v C) (conditional law),

which is equivalent to (—R A —=§) v C (distributive law),
which is equivalentto =(R v §) v C (DeMorgan’s law),
which is equivalent to (R v §) — C (conditional law).

You should read statements 1 and 4 again and see if it makes sense to you
that they 're equivalent.

5. =(R v §) — —C. This is the contrapositive of statement 3, so they are
equivalent. It is not equivalent to statements 1, 2, and 4.

Statements that mean P — @ come up very often in mathematics, but
sometimes they are not written in the form “If P then Q.” Here are a few other
ways of expressing the idea P — @ that are used often in mathematics:

P implies Q.

Q,if P.

P only if Q.

P is a sufficient condition for Q.
@ is a necessary condition for P.
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Some of these may require further explanation. The second expression,
“Q, if P,” is just a slight rearrangement of the statement “If P then Q,” so
it should make sense that it means P — (. As an example of a statement of
the form “P only if Q.” consider the sentence “You can run for president only if
you are a citizen.” In this case, P is “You can run for president” and Q is “You
are a citizen.” What the statement means is that if you're not a citizen, then you
can’t run for president, or in other words —=Q — —P. But by the contrapositive
law, this is equivalent to P — Q.

Think of “P is a sufficient condition for Q" as meaning “The truth of P
suffices to guarantee the truth of Q,” and it should make sense that this should
be represented by P — Q. Finally, “Q is a necessary condition for P” means
that in order for P to be true, it is necessary for 0 to be true also. This means
that if Q isn’t true, then P can’t be true either, or in other words, = Q — —P.
Once again, by the contrapositive law we get P — (.

Example 1.5.3. Analyze the logical forms of the following statements:

. If at least ten people are there, then the lecture will be given.

. The lecture will be given only if at least ten people are there.

. The lecture will be given if at least ten people are there.

. Having at least ten people there is a sufficient condition for the lecture being
given.

5. Having at least ten people there is a necessary condition for the lecture being

given.

oL RO —

Solutions

Let T stand for the statement “At least ten people are there” and L for “The
lecture will be given.”

I.T— L.

2. L — T. The given statement means that if there are not at least ten people
there, then the lecture will not be given, or in other words =T — —L. By
the contrapositive law, this is equivalent to L — T.

3. T — L. This is just a rephrasing of statement 1.

4. T — L. The statement says that having at least ten people there suffices to
guarantee that the lecture will be given, and this means that if there are at
least ten people there, then the lecture will be given.

5. L — T. This statement means the same thing as statement 2: If there are
not at least ten people there, then the lecture will not be given.
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We have already seen that a conditional statement P — ( and its converse
@ — P are not equivalent. Often in mathematics we want to say that both
P — Q and Q — P are true, and it is therefore convenient to introduce a
new connective symbol, <>, to express this. You can think of P < Q as just
an abbreviation for the formula (P — Q) A (Q — P). A statement of the
form P < @ is called a biconditional statement, because it represents two
conditional statements. By making a truth table for (P — Q) A (Q — P) you
can verify that the truth table for P < @ is as shown in Figure 6. Note that, by
the contrapositive law, P <> @ isalsoequivalentto (P — Q) A (-P — Q).

P Q0 PeQ

F F T

F T F

T F F

T T T
Figure 6

Because 0 — P can be written “Pif 0" and P — @ can be written “P only
it 0. P < @ means “P if ( and P only if (" and this is often written “P if
and only if Q.” The phrase if and only if occurs so often in mathematics that
there is a common abbreviation for it, iff. Thus, P < Q is usually written “P
iff Q.” Another statement that means P < Q is “P is a necessary and sufficient
condition for Q.”

Example 1.5.4. Analyze the logical forms of the following statements:

1. The game will be canceled iff it’s either raining or snowing.

2. Having at least ten people there is a necessary and sufficient condition for
the lecture being given.

3. If John went to the store then we have some eggs, and if he didn’t then we
don’t.

Solutions

1. Let C stand for “The game will be canceled,” R for “It’s raining,” and §
for “It’s snowing.” Then the statement would be represented by the formula
C < (RvS)

2. Let T stand for “There are at least ten people there” and L for “The lecture
will be given.” Then the statement means T <« L.

3. Let S stand for “John went to the store” and E for “We have some eggs.”
Then a literal translation of the given statement would be (S — E) A
(=S — —E). This is equivalent to § < E.
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One of the reasons it’s so easy to confuse a conditional statement with its
converse is that in everyday speech we sometimes use a conditional statement
when what we mean to convey is actually a biconditional. For example, you
probably wouldn’t say “The lecture will be given if at least ten people are there”
unless it was also the case that if there were fewer than ten people, the lecture
wouldn't be given. After all, why mention the number ten at all if it’s not the
minimum number of people required? Thus, the statement actually suggests
that the lecture will be given iff there are at least ten people there. For another
example, suppose a child is told by his parents, “If you don’t eat your dinner,
you won’t get any dessert.” The child certainly expects that if he does eat his
dinner, he will get dessert, although that’s not literally what his parents said. In
other words, the child interprets the statement as meaning “Eating your dinner
is a necessary and sufficient condition for getting dessert.”

Such a blurring of the distinction between if and iff is never acceptable in
mathematics. Mathematicians always use a phrase such as iff or necessary and
sufficient condition when they want to express a biconditional statement. You
should never interpret an if-then statement in mathematics as a biconditional
statement, the way you might in everyday speech.

Exercises

*1. Analyze the logical forms of the following statements:
(a) If this gas either has an unpleasant smell or is not explosive, then it
isn't hydrogen.
(b) Having both a fever and a headache is a sufficient condition for George
to go to the doctor.
(c) Both having a fever and having a headache are sufficient conditions
for George to go to the doctor.
(d) If x # 2, then a necessary condition for x to be prime is that x be odd.
2. Analyze the logical forms of the following statements:
(a) Mary will sell her house only if she can get a good price and find a
nice apartment.
(b) Having both a good credit history and an adequate down payment is a
necessary condition for getting a mortgage.
(c) John will kill himself, unless someone stops him. (Hint: First try to
rephrase this using the words if and then instead of unless.)
(dy If x is divisible by either 4 or 6, then it isn’t prime.
3. Analyze the logical form of the following statement:
(a) Ifitis raining, then it is windy and the sun is not shining.
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Now analyze the following statements. Also, for each statement determine
whether the statement is equivalent to either statement (a) or its converse.
(b) Itis windy and not sunny only if it is raining.

(c) Rain is a sufficient condition for wind with no sunshine.

(d) Rain is a necessary condition for wind with no sunshine.

(e) It's not raining, if either the sun is shining or it's not windy.

(f) Wind is a necessary condition for it to be rainy, and so is a lack of
sunshine.

(g) Either it is windy only if it is raining, or it is not sunny only if it is
raining.

Use truth tables to determine whether or not the following arguments are

valid:

(a) Either sales or expenses will go up. If sales go up, then the boss will
be happy. If expenses go up, then the boss will be unhappy. Therefore,
sales and expenses will not both go up.

(b) If the tax rate and the unemployment rate both go up, then there will
be a recession. If the GNP goes up, then there will not be a recession.
The GNP and taxes are both going up. Therefore, the unemployment
rate is not going up.

(¢) The warning light will come onif and only if the pressure is too high and
the relief valve is clogged. The relief valve is not clogged. Therefore,
the warning light will come on if and only if the pressure is too high.

. (a) Show that P < Q is equivalentto (P A Q) V (=P A —=Q).

(b) Show that (P — Q) v (P — R)isequivalentto P — (Q v R).
(a) Show that (P — R) A (Q — R)isequivalentto (P v Q) — R.
(b) Formulate and verify a similar equivalence involving (P — R)V

(@ — R).

. (a) Show that (P — Q)A(Q — R) is equivalent to (P — R)A

(P < Q)V(R« Q)
(b) Show that (P — Q) v (Q — R)is a tautology.
Find a formula involving only the connectives — and — that is equivalent
to P AQ.

. Find a formula involving only the connectives — and — that is equivalent

to P« Q.

Which of the following formulas are equivalent?
(a) P—(Q — R).

(b) Q — (P — R).

(¢ (P — @) (P — R).

(d) (P~ Q)— R.

(e P— (Q AR).
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Quantificational Logic

2.1. Quantifiers

We have seen that a statement P(x) containing a free variable x may be true
for some values of x and false for others. Sometimes we want to say something
about how many values of x make P(x) come out true. In particular, we often
want to say either that P(x) is true for every value of x or that it is true for at least
one value of x. We therefore introduce two more symbols, called quantifiers,
to help us express these ideas.

To say that P(x) is true for every value of x in the universe of discourse
U, we will write ¥x P(x). This is read “For all x, P(x).” Think of the upside
down A as standing for the word all. The symbol V is called the universal
quantifier, because the statement ¥x P(x) says that P(x) is universally true. As
we discussed in Section 1.3, to say that P(x) is true for every value of x in the
universe means that the truth set of P(x) will be the whole universe U/. Thus,
you could also think of the statement ¥x P(x) as saying that the truth set of
P(x)is equal to U.

We write dx P(x) to say that there is at least one value of x in the universe
for which P(x) is true. This is read “There exists an x such that P(x).” The
backward E comes from the word exists and is called the existential quantifier.
Once again, you can interpret this statement as saying something about the
truth set of P(x). To say that P(x) is true for at least one value of x means that
there is at least one element in the truth set of P(x), or in other words, the truth
set is not equal to &,

For example, in Section 1.5 we discussed the statement “If x = 2 then
x% = 4,” where x ranges over the set of all real numbers, and we claimed
that this statement was true for all values of x. We can now write this claim
symbolically as Yx(x > 2 — x> > 4).

55
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Example 2.1.1. What do the following formulas mean? Are they true or
false?

1.

Vx(x? = 0), where the universe of discourse is I, the set of all real numbers.

2. 3x(x? — 2x 4+ 3 = 0), with universe R again.

3. dx(M(x) A B(x)), where the universe of discourse is the set of all people,
M (x) stands for the statement “x is a man,” and B(x) means “x has brown
hair.”

4. ¥x(M(x) — B(x)), with the same universe and the same meanings for M (x)
and B(x).

5. ¥xL(x,y), where the universe is the set of all people, and L(x, y) means
“x likes y.”

Solutions

. This means that for every real number x, x> = 0. This is true.
. This means that there is at least one real number x that makes the equation

x? —2x 43 = 0 come out true. In other words, the equation has at least
one real solution. If you solve the equation, you’ll find that this statement
is false; the equation has no solutions. (Try either completing the square or
using the quadratic formula.)

. There is at least one person x such that x is a man and x has brown hair. In

other words, there is at least one man who has brown hair. Of course, this is
true.

. Forevery person x, if x is a man then x has brown hair. In other words, all men

have brown hair. If you're not convinced that this is what the formula means,
it might help to look back at the truth table for the conditional connective.
According to this truth table, the statement M (x) — B(x) will be false only
if M(x)istrue and B(x) is false; that is, x is a man and x doesn’t have brown
hair. Thus, to say that M(x) — B(x) is true for every person x means that
this situation never occurs, or in other words, that there are no men who
don’t have brown hair. But that’s exactly what it means to say that all men
have brown hair. Of course, this statement is false.

. For every person x, x likes y. In other words, everyone likes y. We can’t tell

if this is true or false unless we know who y is.

Notice that in the fifth statement in this example, we needed to know who

v was to determine if the statement was true or false, but not who x was. The

statement says that everyone likes y, and this is a statement about y, but not x.
This means that y is a free variable in this statement but x is a bound variable.

Similarly, although all the other statements contain the letter x, we didn’t need

to know the value of x to determine their truth values, so x is a bound variable in
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every case. In general, even if x is a free variable in some statement P(x), itisa
bound variable in the statements Vx P(x) and 3x P(x). For this reason, we say
that the quantifiers bind a variable. As in Section 1.3, this means that a variable
that is bound by a quantifier can always be replaced with a new variable without
changing the meaning of the statement, and it is often possible to paraphrase
the statement without mentioning the bound variable at all. For example, the
statement Vx L(x, ¥) from Example 2.1.1 is equivalent to ¥w L(w, y), because
both mean the same thing as “Everyone likes y.” Words such as everyone,
someone, everything, or something are often used to express the meanings of
statements containing quantifiers. If you are translating an English statement
into symbols, these words will often tip you off that a quantifier will be needed.

As with the symbol —, we follow the convention that the expressions Vx
and dx apply only to the statements that come immediately after them. For
example, ¥x P(x) — Q(x) means (Vx P(x)) — Q(x), not Vx(P(x) — Q(x)).

Example 2.1.2. Analyze the logical forms of the following statements.

Someone didn’t do the homework.

Everything in that store is either overpriced or poorly made.
Nobody’s perfect.

Susan likes everyone who dislikes Joe.

ACB.

ANBCB\C.

R

Solutions

1. The word someone tips us off that we should use an existential quantifier.
As a first step, we write v (x didn’t do the homework). Now if we let H(x)
stand for the statement “x did the homework,” then we can rewrite this as
dx—H(x).

2. Think of this statement as saying “If it’s in that store, then it’s either over-
priced or poorly made (no matter what it is).” Thus, we start by writing ¥x (if
x is in that store then x is either overpriced or poorly made). To write the
part in parentheses symbolically, we let §(x) stand for “x is in that store,”
O(x) for “x is overpriced,” and P(x) for “x is poorly made.” Then our final
answer is Vx[S(x) = (O(x) v P(x))].

Note that, like statement 4 in Example 2.1.1, this statement has the form
of a universal quantifier applied to a conditional statement. This form occurs
quite often, and it is important to learn to recognize what it means and when
it should be used. We can check our answer to this problem as we did before,
by using the truth table for the conditional connective. The only way that
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the statement S(x) — (OQ(x) v P(x)) can be false is if x is in that store, but
is neither overpriced nor poorly made. Thus, to say that the statement is
true for all values of x means that this never happens, which is exactly what
it means to say that everything in that store is either overpriced or poorly
made.

. This means —(somebody is perfect), or in other words —3Jx P(x), where

P(x) stands for “x is perfect.”

. As in statement 2 in this example, we could think of this as meaning “If a

person dislikes Joe then Susan likes that person (no matter who the person
is).” Thus, we can start by rewriting the given statement as Vx (if x dislikes
Joe then Susan likes x). Let L(x, y) stand for “x likes y.”" In statements that
talk about specific elements of the universe of discourse it is sometimes
convenient to introduce letters to stand for those specific elements. In this
case we need to talk about Joe and Susan, so let’s let j stand for Joe and s for
Susan. Thus, we can write L(s, x) to mean “Susan likes x,” and —=L(x, j) for
“x dislikes Joe.” Filling these in, we end up with the answer Vx(—L(x, j) —
L(s. x)). Notice that, once again, we have a universal quantifier applied to a
conditional statement. As before, you can check this answer using the truth
table for the conditional connective.

. According to Definition 1.4.5, to say that A is a subset of B means that

everything in A is in B. If you’ve caught on to the pattern of how universal
quantifiers and conditionals are combined, you should recognize that this
would be written symbolically as ¥x(x € A — x € B).

. As in the previous statement, we first write this as Vx(x e AN B — x €

B\ C). Now using the definitions of intersection and difference, we can
expand this further to get Vx[(x e Anx e B) = (x e Bax ¢ C).

Although all of our examples so far have contained only one quantifier,

there’s no reason why a statement can’t have more than one quantifier. For

example, consider the statement “Some students are married.” The word some
indicates that this statement should be written using an existential quantifier,

50

we can think of it as having the form Jx(x is a student and x is married).

Let §(x) stand for “x is a student.” We could similarly choose a letter to stand
for “x is married,” but perhaps a better analysis would be to recognize that to

be

“y

married means to be married to someone. Thus, if we let M(x, y) stand for
is married to y,” then we can write “x is married” as Iy M(x, y). We can

therefore represent the entire statement by the formula I3x(S(x) A IyM(x, v)),

a formula containing two existential quantifiers.

As another example, let’s analyze the statement “All parents are married.”

We start by writing it as ¥x(if x is a parent then x is married). Parenthood,
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like marriage, is a relationship between two people; to be a parent means to
be a parent of someone. Thus, it might be best to represent the statement “x
is a parent” by the formula Iy P(x, y), where P(x, ¥) means “x is a parent
of y.” If we again represent “x is married” by the formula 3yM(x, y), then
our analysis of the original statement will be Vx(3y P(x, y) — IyM(x, y)).
Although this isn’t wrong, the double use of the variable y could cause confu-
sion. Perhaps a better solution would be to replace the formula 3y M (x, y) with
the equivalent formula 3z M(x, z). (Recall that these are equivalent because a
bound variable in any statement can be replaced by another without changing
the meaning of the statement.) Our improved analysis of the statement would
then be Vx(Iy P(x, y) — dzM(x, z)).

Example 2.1.3. Analyze the logical forms of the following statements.

Everybody in the dorm has a roommate he doesn’t like.

Nobody likes a sore loser.

Anyone who has a friend who has the measles will have to be quarantined.
If anyone in the dorm has a friend who has the measles, then everyone in
the dorm will have to be quarantined.

5. If A € B, then A and C \ B are disjoint.

el A

Solutions

1. This means Vx(if x lives in the dorm then x has a roommate he doesn’t
like). To say that x has a roommate he doesn’t like, we could write Jy(x
and y are roommates and x doesn’t like y). If we let R(x, y) stand for
“x and y are roommates” and L(x, y) for “x likes y,” then this becomes
Ay(R(x, ¥) A —L(x, y)). Finally, if we let D(x) mean “x lives in the dorm,”
then the complete analysis of the original statement would be Vx[D(x) —
Iy(R(x, y) A —=L(x, y)I.

2. This is tricky, because the phrase a sore loser doesn't refer to a particular
sore loser, it refers to all sore losers. The statement means that all sore losers
are disliked, or in other words Vx(if x is a sore loser then nobody likes x). To
say nobody likes x we write —(somebody likes x), which means =3y L(y, x),
where L(v, x) means “y likes x.” If we let S(x) mean “x is a sore loser,” then
the whole statement would be written Vx(S(x) — —3yL(y, x)).

3. You have probably realized by now that it is usually easiest to translate from
English into symbols in several steps, translating only a little bit at a time.
Here are the steps we might use to translate this statement:

(i) Vx(if x has a friend who has the measles then x will have to be quaran-
tined).
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(ii) ¥x[3dy(y is a friend of x and y has the measles) — x will have to be
quarantined].

Now, letting F(y, x) stand for “y is a friend of x,” M(y) for “y has the

measles,” and Q(x) for “x will have to be quarantined,” we get:

(iii) Vx[3y(F(y,x) A M(y) = Q1.

4. The word anyone is difficult to interpret, because in different statements it
means different things. In statement 3 it meant everyone, but in this statement
it means someone. Here are the steps of our analysis:

(i) (Someone in the dorm has a friend who has the measles) — (everyone
in the dorm will have to be quarantined).

(11) Jx(x lives in the dorm and x has a friend who has the measles) — Vz(if
z lives in the dorm then z will have to be quarantined).

Using the same abbreviations as in the last statement and letting D(x) stand

for “x lives in the dorm,” we end up with the following formula:

(i) Ix[D(x) AIY(F(y, x) A M(y)] = Yz(D(z) = O(2)).

5. Clearly the answer will have the form of a conditional statement,(A C B) —
(A and C\ B are disjoint). We have already written A C B symbolically in
Example 2.1.2. To say that A and C \ B are disjoint means that they have no
elements in common, or in other words —3x(x € A A x € C \ B). Putting
this all together, and filling in the definition of C\ B, we end up with
YVx(xeA—=xeB)— -Ax(xeArxeCnrx¢B).

When a statement contains more than one quantifier it is sometimes difficult
to figure out what it means and whether it is true or false. It may be best in this
case to think about the quantifiers one at a time, in order. For example, consider
the statement Yx3y(x + y = 5), where the universe of discourse is the set of
all real numbers. Thinking first about just the first quantifier expression ¥x,
we see that the statement means that for every real number x, the statement
dy(x + y = 5) is true. We can worry later about what J3y(x + y = 5) means;
thinking about two quantifiers at once is too confusing.

If we want to figure out whether or not the statement 3y(x + y = 5)istrue for
every value of x, it might help to try out a few values of x. For example, suppose
x = 2. Then we must determine whether or not the statement 3y(2 + y = 5) is
true. Now it’s time to think about the next quantifier, 3y. This statement says
that there is at least one value of y for which the equation 2 + y = 5 holds. In
other words, the equation 2 + y = 5 has at least one solution. Of course, this is
true, because the equation has the solution y = 5 — 2 = 3. Thus, the statement
Ay(2 + y = 5) is true.

Let’s try one more value of x. If x = 7, then we are interested in the statement
Ay(7 + y = 5), which says that the equation 7 + y = 5has atleast one solution.
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Once again, this is true, since the solution is y =5 — 7 = —2. In fact, you
have probably realized by now that no matter what value we plug in for x, the
equation x + y = 5 will always have the solution y = 5 — x, so the statement
dy(x + y = 5) will be true. Thus, the original statement Vx3y(x + y = 5) is
true.

On the other hand, the statement 3yVx(x + y = 5) means something entirely
different. This statement means that there is at least one value of y for which the
statement Yx(x + y = 5) is true. Can we find such a value of y? Suppose, for
example, we try y = 4. Then we must determine whether or not the statement
Vx(x + 4 = 5) is true. This statement says that no matter what value we plug in
for x, the equation x + 4 = 5 holds, and this is clearly false. In fact, no value of
x other than x = 1 works in this equation. Thus, the statement ¥Vx(x + 4 = 5)
is false.

We have seen that when y = 4 the statement Vx(x + y = 5) is false, but
maybe some other value of y will work. Remember, we are trying to determine
whether or not there is at least one value of y that works. Let’s try one more, say,
¥ = 9. Then we must consider the statement Vx(x + 9 = 5), which says that no
matter what x is, the equation x 4+ 9 = 5 holds. Once again this is clearly false,
since only x = —4 works in this equation. In fact, it should be clear by now
that no matter what value we plug in for y, the equation x + y = 5 will be true
for only one value of x, namely x = 5 — y, so the statement ¥x(x + y = 5)
will be false. Thus there are no values of y for which Vx(x + y = 5) is true, so
the statement IyVx(x + y = 5) is false.

Notice that we found that the statement Vx3y(x + y = 5) is true, but
JyV¥x(x + y = 5) is false. Apparently, the order of the quantifiers makes a
difference! What is responsible for this difference? The first statement says
that for every real number x, there is a real number y such that x + y = 5. For
example, when we tried x = 2 we found that y = 3 worked in the equation
x4+ y =25, and with x = 7, y = —2 worked. Note that for different values of
x, we had to use different values of y to make the equation come out true. You
might think of this statement as saying that for each real number x there is a
corresponding real number y such that x + y = 5. On the other hand, when we
were analyzing the statement 3yVx(x 4+ y = 5) we found ourselves searching
for a single value of y that made the equation x + y = 5 true for all values of x,
and this turned out to be impaossible. For each value of x there is a correspond-
ing value of y that makes the equation true, but no single value of y works for
every x.

For another example, consider the statement Yx3yL(x, y), where the uni-
verse of discourse is the set of all people and L(x, y) means “x likes y.” This
statement says that for every person x, the statement Iy L(x, y) is true. Now
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dyL(x, y) could be written as “x likes someone,” so the original statement
means that for every person x, x likes someone. In other words, everyone likes
someone. On the other hand, 3yVxL(x, y) means that there is some person y
such that ¥x L(x, y) is true. As we saw in Example 2.1.1, ¥xL(x, y) means
“Everyone likes y,” so 3y¥xL(x, y) means that there is some person y such
that everyone likes y. In other words, there is someone who is universally liked.
These statements don’t mean the same thing. It might be the case that everyone
likes someone, but no one is universally liked.

Example 2.1.4. What do the following statements mean? Are they true or
talse? The universe of discourse in each case is ¥, the set of all natural numbers.

Vxdy(x < y).
dyWx(x < y).
IxVy(x < y).
Vydx(x < y).
dxIy(x < y).
YxV¥y(x < y).

R W=

Solutions

1. This means that for every natural number x, the statement Iy(x < y)is true.
In other words, for every natural number x, there is a natural number bigger
than x. This is true. For example, x + 1 is always bigger than x.

2. This means that there is some natural number y such that the statement
Vx(x < y)istrue. In other words, there is some natural number y such that
all natural numbers are smaller than y. This is false. No matter what natural
number y we pick, there will always be larger natural numbers.

3. This means that there is a natural number x such that the statement Vy(x < y)
is true. You might be tempted to say that this statement will be true if x = 0,
but this isn’t right. Since 0 is the smallest natural number, the statement
0 < yistrueforall values of y excepr y = 0, butif y = 0, then the statement
0 < y is false, and therefore Vy(0 < y) is false. Similar reasoning shows
that for every value of x the statement Vy(x < y) is false, so IxVy(x < y)
is false.

4. This means that for every natural number y, there is a natural number smaller
than y. This is true for every natural number y except y = 0, but there is no
natural number smaller than 0. Therefore this statement is false.

5. This means that there is a natural number x such that Iy(x < y) is true.
But as we saw in the first statement, this is actually true for every natural
number x, so it is certainly true for at least one. Thus, IxIy(x < y) is true.
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6. This means that for every natural number x, the statement Vy(x < y) is
true. But as we saw in the third statement, there isn’t even one value of x
for which this statement is true. Thus, YxVy(x < y) is false.

Exercises

Analyze the logical forms of the following statements.

(a) Anyone who has forgiven at least one person is a saint.

(b) Nobody in the calculus class is smarter than everybody in the discrete
math class.

(c) Everyone likes Mary, except Mary herself.

(d) Jane saw a police officer, and Roger saw one too.

(e) Jane saw a police officer, and Roger saw him too.

Analyze the logical forms of the following statements.

(a) Anyone who has bought a Rolls Royce with cash must have a rich
uncle.

(b) If anyone in the dorm has the measles, then everyone who has a friend
in the dorm will have to be quarantined.

(c) If nobody failed the test, then everybody who got an A will tutor
someone who got a D.

(d) If anyone can do it, Jones can.

(e) If Jones can do it, anyone can.

. Analyze the logical forms of the following statements. The universe of

discourse is R, What are the free variables in each statement?

(a) Every number that is larger than x is larger than y.

(b) For every number a, the equation ax? 4+ 4x — 2 = 0 has at least one
solution iff & = —2.

(c) All solutions of the inequality x* — 3x < 3 are smaller than 10.

(d) If there is a number x such that x> + 5x = w and there is a number y
such that 4 — y2 = w, then w is between — 10 and 10.

Translate the following statements into idiomatic English.

(a) Yx[(H(x) A~ —=3yM(x,y)) — U(x)], where H(x) means “x is a man,”
M(x, y) means “x is married to y,” and U(x) means “x is unhappy.”

(b) 3z(P(z,x) A S(z, ¥) A W(¥)), where P(z, x) means “z is a parent of
x.” 8(z, ¥) means “z and y are siblings,” and W{(y) means “y is a
woman.”

Translate the following statements into idiomatic mathematical English.

(a) Yx[(P(x) A—(x =2)) — O(x)], where P(x) means “x is a prime
number” and O (x) means “x is odd.”
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(b) Ix[P(x) AVY(P(y) — y < x)], where P(x) means “x is a perfect
number.”

6. Are these statements true or false? The universe of discourse is the set of
all people, and P(x, y) means “x is a parent of y.”
(a) IxVyP(x, y).
(by Yx3IyP(x, y).
(c) —=Ax3Iy P(x, y).
(d) Ix—3Iy P(x, y).
(e) IxIy—-P(x, y).

*7. Are these statements true or false? The universe of discourse is 4.
(a) Vx3dy(2x — y = 0).
(b) IyVx(2x — y =0).
(c) Vxdy(x — 2y =0).
(d) Vx(x < 10 > Vy(y < x — y < 9).
(e) Jydz(y + z = 100).
() Vx3y(y = x A dz(y + z = 100)).

8. Same as exercise 7 but with R as the universe of discourse.

9. Same as exercise 7 but with Z as the universe of discourse.

2.2. Equivalences Involving Quantifiers

In our study of logical connectives in Chapter 1 we found it useful to examine
equivalences between different formulas. In this section, we will see that there
are also a number of important equivalences involving quantifiers.

For example, in Example 2.1.2 we represented the statement “Nobody's
perfect” by the formula —3x P(x), where P(x) meant “x is perfect.” But another
way to express the same idea would be to say that everyone fails to be perfect, or
in other words ¥x— P (x). This suggests that these two formulas are equivalent,
and a little thought should show that they are. No matter what P(x) stands
for, the formula —3x P(x) means that there’s no value of x in the universe of
discourse for which P(x) is true. But that’s the same as saying that for every
value of x in the universe, P(x) is false, or in other words Yx—P(x). Thus,
—3x P(x) is equivalent to Vx—P(x).

Similar reasoning shows that =¥x P(x) is equivalent to 3x— P(x). To say that
=V¥x P(x) means that it is not the case that for all values of x, P(x)is true. That's
equivalent to saying there’s at least one value of x for which P(x) is false, which
1s what it means to say 3x—P(x). For example, in Example 2.1.2 we translated
“Someone didn’t do the homework™ as 3x—H(x), where H (x) stands for “x
did the homework.” An equivalent statement would be “Not everyone did the
homework,” which would be represented by the formula =Vx H(x).
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Thus, we have the following two laws involving negation and quantifiers:

Quantifier Negation laws
—3x P(x)is equivalent to Vx— P(x).

=¥x P(x)is equivalent toIx—P(x).

Combining these laws with DeMorgan’s laws and other equivalences involv-
ing the logical connectives, we can often reexpress a negative statement as an
equivalent, but easier to understand, positive statement. This will turn out to be
an important skill when we begin to work with negative statements in proofs.

Example 2.2.1. Negate these statements and then reexpress the results as
equivalent positive statements.

1. ACB.
2. Everyone has a relative he doesn’t like.

Solutions

1. We already know that A € B means Vx(x € A — x € B).Toreexpress the
negation of this statement as an equivalent positive statement, we reason as
follows:

=Vx(x e A—x€B)

is equivalent to Jdx—(x € A — x € B) (quantifier negation law),
which is equivalent to dx—(x ¢ A v x € B) (conditional law),
which is equivalent to dx(x € A Ax ¢ B) (DeMorgan's law).

Thus, A € B means the same thing as 3x(x € A A x ¢ B). If you think
about this, it should make sense. To say that A is not a subset of B is the
same as saying that there’s something in A that is not in B.

2. First of all, let’s write the original statement symbolically. You should be
able to check that if we let R(x, y) stand for “x is related to y"” and L(x, y)
for “x likes y,” then the original statement would be written Vx3y(R(x, y) A
=L(x, y)). Now we negate this and try to find a simpler, equivalent positive
statement:

=VxIy(R(x, y) A —L(x, ¥)
is equivalent to Ix—3Iy(R(x, y) A =L(x, y))

{quantifier negation law),
which is equivalent to IxVy—(R(x, y) A —L(x, ¥))

(quantifier negation law),
which is equivalent to IxVy(—=R(x, y) v L(x, y))

(DeMorgan’s law),
which is equivalent to AxVy(R(x, y) — L(x, y))

(conditional law).
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Let’s translate this last formula back into colloquial English. Leaving
aside the first quantifier for the moment, the formula Vy(R(x, y) — L(x, y))
means that for every person y, if x is related to y then x likes y. In other
words, x likes all his relatives. Adding Jx to the beginning of this, we get the
statement “There is someone who likes all his relatives.” You should take a
minute to convince yourself that this really is equivalent to the negation of
the original statement “Everyone has a relative he doesn’t like.”

For another example of how the quantifier negation laws can help us un-
derstand statements, consider the statement “Everyone who Patricia likes, Sue
doesn’t like” If we let L(x, y) stand for “x likes y,” and we let p stand for
Patricia and s for Sue, then this statement would be represented by the formula
Vx(L(p,x) — —L(s, x)). Now we can work out a formula equivalent to this
one as follows:

Vx(L(p, x) — —=L(s, x))

is equivalent to Vx(—L(p, x) v —L(s, x)} (conditional law),
which is equivalent to Vx—(L(p, x) ~ L(s, x))  (DeMorgan’s law),
which is equivalent to —3x(L(p, x) A L(s,x))  (quantifier negation law).

Translating the last formula back into English, we get the statement “There’s
no one who both Patricia and Sue like,” and this does mean the same thing as
the statement we started with.

We saw in Section 2.1 that reversing the order of two quantifiers can some-
times change the meaning of a formula. However, if the quantifiers are the same
type (both ¥V or both 3), it turns out the order can always be switched with-
out affecting the meaning of the formula. For example, consider the statement
“Someone has a teacher who is younger than he is.” To write this symbolically
we first write 3x(x has a teacher who is younger than x). Now to say “x has a
teacher who is younger than x” we write Iy(T(y, x) A P(y, x)), where T(y, x)
means “y is a teacher of x”" and P(y, x) means “y is younger than x.”’ Putting
this all together, the original statement would be represented by the formula
FeIy(T(y, x) A Py, x)).

Now what happens if we switch the quantifiers? In other words, what does
the formula y3x(T(y, x) A P(y, x)) mean? You should be able to convince
yourself that this formula says that there is a person y such that y is a teacher of
someone who is older than y. In other words, someone is a teacher of a person
who is older than he is. But this would be true in exactly the same circumstances
as the original statement, “Someone has a teacher who is younger than he is™!
Both mean that there are people x and y such that y is a teacher of x and y is
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younger than x. In fact, this suggests that a good way of reading the pair of
quantifiers 3y3x or AxIy would be “there are objects x and y such that....”

Similarly, two universal quantifiers in a row can always be switched without
changing the meaning of a formula, because VxVy and VyVx can both be
thought of as meaning “for all objects x and v, ...."” For example, consider
the formula VxVy(L(x, y) — A(x, y)), where L(x, y) means “x likes y" and
A(x, y) means “x admires y.” You could think of this formula as saying “For
all people x and y, if x likes y then x admires y.” In other words, people always
admire the people they like. The formula VyV¥x(L(x, y) — A(x, y)) means
exactly the same thing.

It is important to realize that when we talk about objects x and y, we are
not ruling out the possibility that x and y are the same object. For example,
the formula Vx¥y(L(x, y) — A(x, y)) means not just that a person who likes
another person always admires that other person, but also that people who like
themselves also admire themselves. As another example, suppose we wanted
to write a formula that means “x is a bigamist.” (Of course, x will be a free
variable in this formula.) You might think you could express this with the
formula Jy3Jz(M(x, y) A M(x, 2)), where M(x, y) means “x is married to y.”
But to say that x is a bigamist you must say that there are two different people
to whom x is married, and this formula doesn’t say that y and z are different.
The right answer is AyJz(M(x, ¥) A M(x,2) Ay # 2).

Example 2.2.2. Analyze the logical forms of the following statements.

1. All married couples have fights.
2. Everyone likes at least two people.
3. John likes exactly one person.

Solutions

1. ¥xVy(M(x,y) — F(x,y)), where M(x, y) means “x and y are married to
each other” and F(x, y) means “x and y fight with each other.”

2. Wx3IyJz(L(x, y) A L(x, z) A y # z), where L(x, y) stands for “x likes y.”
Note that the statement means that everyone likes at least two different
people, so it would be incorrect to leave out the “y # z” at the end.

3. Let L(x, y) mean “x likes y,” and let j stand for John. We translate this
statement into symbols gradually:

(i) 3x(John likes x and John doesn't like anyone other than x).
(i) Ix(L(j, x) A —Iy(John likes y and y # x)).
(i) Ix(L(j, x) A=Iy(L, ¥) A Y # X))
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Note that for the third statement in this example we could not have given
the simpler answer 3x L(j, x), because this would mean that John likes at least
one person, not exactly one person. The phrase exactly one occurs so often in
mathematics that there is a special notation for it. We will write 3!x P(x) to
represent the statement “There is exactly one value of x such that P(x) is true.”
It is sometimes also read “There is a unique x such that P(x).” For example, the
third statement in Example 2.2.2 could be written symbolically as 3!x L(J, x).
In fact, we could think of this as just an abbreviation for the formula given in
Example 2.2.2 as the answer for statement 3. Similarly, in general we can think
of 31x P(x) as an abbreviation for the formula3x(P(x) A =Iy(P(y) A ¥y # X)).

Recall that when we were discussing set theory, we sometimes found it
useful to write the truth set of P(x) as {x € U | P(x)} rather than {x | P(x)}, to
make sure it was clear what the universe of discourse was. Similarly, instead
of writing Vx P(x) to indicate that P(x) is true for every value of x in some
universe U, we might write Vx € UU P(x). This is read “For all x in U, P(x).”
Similarly, we can write 3x € U P(x) to say that there is at least one value of x
in the universe U such that P(x) is true. For example, the statement Vx(x = 0)
would be false if the universe of discourse were the real numbers, but true if
it were the natural numbers. We could avoid confusion when discussing this
statement by writing either Yx € R(x = 0) or Vx € N(x = 0), to make it clear
which we meant.

As before, we sometimes use this notation not to specify the universe of
discourse but to restrict attention to a subset of the universe. For example, if
our universe of discourse is the real numbers and we want to say that some
real number x has a square root, we could write 3y(y*> = x). To say that every
positive real number has a square root, we would say ¥x € R¥3y(y?> = x). We
could say that every positive real number has a negative square root by writing
¥x € RT3y € R™(y* = x). In general, for any set A, the formula ¥x € AP (x)
means that for every value of x in the set A, P(x) is true, and Jdx € AP(x)
means that there is at least one value of x in the set A such that P(x) is true. The
quantifiers in these formulas are sometimes called bounded quantifiers, because
they place hounds on which values of x are to be considered. Occasionally
we may use variations on this notation to place other kinds of restrictions on
quantified variables. For example, the statement that every positive real number
has a negative square root could also be written ¥Yx > 03y < 0(y? = x).

Formulas containing bounded quantifiers can also be thought of as abbre-
viations for more complicated formulas containing only normal, unbounded
quantifiers. To say that 3x € AP(x) means that there is some value of x that
is in A and that also makes P(x) come out true, and another way to write
this would be Jx(x € A A P(x)). Similarly, you should convince yourself
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that Vx € A P(x) means the same thing as Vx(x € A — P(x)). For exam-
ple, the formula Vx € R*3y € R~(y? = x) discussed earlier means the same
thing as Vx(x € RT — 3y € R~(y? = x)), which in turn can be expanded as
¥x(x € RT — Jy(y € R~ A y> = x)). By the definitions of R* and R~, an
equivalent way to say this would be Vx(x > 0 — qy(y < 0 A y?> = x)). You
should make sure you are convinced that this formula, like the original for-
mula, means that every positive real number has a negative square root. For
another example, note that the statement A € B, which by definition means
¥x(x € A — x € B), could also be written as Yx € A(x € B).

It is interesting to note that the quantifier negation laws work for bounded
quantifiers as well. In fact, we can derive these bounded quantifier negation laws
from the original laws by thinking of the bounded quantifiers as abbreviations,
as described earlier. For example,

=Vx € AP(x)

1s equivalent to =¥x(x € A — P(x)) (expanding abbreviation),
which is equivalent to 3x—(x € A — P(x)) (quantifier negation law),
which is equivalent to dx—(x ¢ A v P(x)) (conditional law),
which is equivalent to dx(x € A A =P (x)) (DeMorgan’s law),
which is equivalent to dx € A—=P(x) (abbreviation).

Thus, we have shown that =¥x € A P(x) is equivalent to 3x € A=P(x). You
are asked in exercise 5 to prove the other bounded quantifier negation law, that
—3dx € AP(x)is equivalent to Vx € A—P(x).

It should be clear that if A = then dx € AP(x) will be false no matter
what the statement P(x) is. There can be nothing in A that, when plugged in
for x, makes P(x) come out true, because there is nothing in A at all! It may
not be so clear whether ¥x € A P(x) should be considered true or false, but we
can find the answer using the quantifier negation laws:

¥Yx € AP(x)
is equivalent to =—=V¥x € AP(x) (double negation law),
which is equivalent to —3x € A—P(x) (quantifier negation law).

Now if A = & then this last formula will be true, no matter what the statement
P(x) is, because, as we have seen, dx € A—P(x) must be false. Thus, ¥x €
AP(x) is always true if A = . Mathematicians sometimes say that such a
statement 1s vacuously true. Another way to see this is to rewrite the statement
Vx € AP(x)in the equivalent form Vx(x € A — P(x)). Now according to the
truth table for the conditional connective, the only way this can be false is if
there is some value of x such that x € A is true but P(x) is false. But there is
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no such value of x, simply because there isn’t a value of x for which x € A is
true.

As an application of this principle, we note that the empty set is a subset
of every set. To see why, just rewrite the statement A C B in the equivalent
form Vx € A(x € B). Now if A = & then, as we have just observed, this
statement will be vacuously true. Thus, no matter what the set B is, & C B.
Another example of a vacuously true statement is the statement “All unicorns
are purple.” We could represent this by the formula Vx € A P(x), where A is
the set of all unicorns and P(x) stands for “x is purple.” Since there are no
unicorns, A is the empty set, so the statement is vacuously true.

Perhaps you have noticed by now that, although in Chapter 1 we were al-
ways able to check equivalences involving logical connectives by making truth
tables, we have no such simple way of checking equivalences involving quan-
tifiers. So far, we have justified our equivalences involving quantifiers by just
looking at examples and using common sense. As the formulas we work with
get more complicated, this method will become unreliable and difficult to use.
Fortunately, in Chapter 3 we will develop better methods for reasoning about
statements involving quantifiers. To get more practice in thinking about quan-
tifiers, we will work out a few somewhat more complicated equivalences using
common sense. If you're not completely convinced that these equivalences are
right, you’ll be able to check them more carefully when you get to Chapter 3.

Consider the statement “Everyone is bright-eyed and bushy-tailed.” If we let
E(x)mean “x is bright-eyed” and T (x) mean “x is bushy-tailed,” then we could
represent this statement by the formula Vx(E(x) A T(x)). Is this equivalent
to the formula Yx E(x) A VxT(x)? This latter formula means “Everyone is
bright-eyed, and also everyone is bushy-tailed,” and intuitively this means the
same thing as the original statement. Thus, it appears that Vx(E(x) A T(x)) is
equivalent to Yx E(x) A ¥x T (x). In other words, we could say that the universal
quantifier distributes over conjunction.

However, the corresponding distributive law doesn’t work for the existential
quantifier. Consider the formulas Ix(E(x) » T(x))and x E(x) A IxT(x). The
first means that there is someone who is both bright-eyed and bushy-tailed, and
the second means that there is someone who is bright-eyed, and there is also
someone who is bushy-tailed. These don’t mean the same thing at all. In the
second statement the bright-eyed person and the bushy-tailed person don’t
have to be the same, but in the first statement they do. Another way to see the
difference between the two statements is to think about truth sets. Let A be the
truth set of E(x) and B the truth set of T(x). In other words, A is the set of
bright-eyed people, and B is the set of bushy-tailed people. Then the second
statement says that neither A nor B is the empty set, but the first says that AN B
is not the empty set, or in other words that A and B are not disjoint.
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As an application of the distributive law for the universal quantifier and
conjunction, suppose A and B are sets and consider the equation A = B. We
know that two sets are equal when they have exactly the same elements.
Thus, the equation A = B means Vx(x € A <> x € B), which is equivalent
toVx[(x € A - x € B) A (x € B — x € A)]. Because the universal quanti-
fier distributes over conjuction, this is equivalent to the formula Vx(x € A —
x € B)yavVx(x € B— x € A), and by the definition of subset this means
A € B A B C A. Thus, we have shown that the equation A = B is also equi-
valent to the formula A € B A B C A.

We have now introduced seven basic logical symbols: the connectives A,
v, =, —, and <>, and the quantifiers ¥ and 3. It is a remarkable fact that the
structure of all mathematical statements can be understood using these symbols,
and all mathematical reasoning can be analyzed in terms of the proper use of
these symbols. To illustrate the power of the symbols we have introduced, we
conclude this section by writing out a few more mathematical statements in
logical notation.

Example 2.2.3. Analyze the logical forms of the following statements.

1. Statements about the natural numbers. The universe of discourse is 4.
(a) xis a perfect square.
(b) xisa multiple of y.
(c) xis prime.
(d) xis the smallest number that is a multiple of both y and z.
2. Statements about the real numbers. The universe of discourse is .
(a) The identity element for addition is 0.
(b) Every real number has an additive inverse.
(c) Negative numbers don’t have square roots.
(d) Every positive number has exactly two square roots.

Solutions

1. (a) This means that x is the square of some natural number, or in other

words Jy(x = y?).

(b) This means that x is equal to y times some natural number, or in other
words dz(x = yz).

(c) This means that x > 1, and x cannot be written as a product of two
smaller natural numbers. In symbols: x > 1 A—-JyJz(x = yz Ay <
XAZ <X

(d) We translate this in several steps:

(i) xisa multiple of both y and z and there is no smaller number that
is a multiple of both y and z.
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(i) Fa(x = ya) A Ib(x = zb) A —Iw(w < x A (w is a multiple of
both y and z)).
(iii) Ja(x = ya) A Ib(x = zb) A —Aw(w < x Ade(w = ye) A
Jd(w = zd)).
2. (a) Vx(x +0=x).
(b) YxIy(x +y =0).
(©) Yx(x < 0 — =3y(y* = x)).
(d) We translate this gradually:
(i) ¥x(x = 0 — x has exactly two square roots).
(i) Vx(x = 0 — Jydz(y and z are square roots of x and y # z and
nothing else is a square root of x)).
(iii) Vx(x > 0 — IyTz(y? =x A =x Ay £z A-qww? =
XAWFEYAWFE D).

Exercises

*1. Negate these statements and then reexpress the results as equivalent

positive statements. (See Example 2.2.1.)
(a) Everyone who is majoring in math has a friend who needs help with
his homework.
(b) Everyone has a roommate who dislikes everyone.
(c) AUBC C\D.
(d) IxVyly > x — Jz(z% + 5z = y)].
2. Negate these statements and then reexpress the results as equivalent
positive statements. (See Example 2.2.1.)
(a) There is someone in the freshman class who doesn’t have aroommate.
(b) Everyone likes someone, but no one likes everyone.
(c) Vaec AAbc Blacs C < be().
(d) Vy > 03x(ax® 4+ bx +c = y).
3. Are these statements true or false? The universe of discourse is [,
(a) Yx(x <7 — Ja3b3c(a® + b* + ¢ = x)).
(b) Ax((x — 4> =9).
(¢) Ix((x —4* =25).
(d) IxIy((x — 42 =25 A (y — 4)> =25).

*4. Show that the second quantifier negation law, which says that =Vx P (x)
is equivalent to 3x—P(x), can be derived from the first, which says that
—dx P(x) is equivalent to Vx— P(x). (Hint: Use the double negation law.)

5. Show that —3x € AP(x)is equivalent to Vx € A—=P(x).

*6. Show that the existential quantifier distributes over disjunction. In other

words, show that Ix(P(x) v Q(x)) is equivalent to Ix P(x) v Ix Q(x).




More Operations on Sets 73

(Hint: Use the fact, discussed in this section, that the universal quantifier
distributes over conjunction.)
7. Show that 3x(P(x) — Q(x)) is equivalent to Vx P(x) — dx Q(x).

*8. Show that (¥x € AP(x)) A (Vx € BP(x)) is equivalent to Vx &
(A U B)P(x). (Hint: Start by writing out the meanings of the bounded
quantifiers in terms of unbounded quantifiers.)

9. IsVx(P(x) v Q(x))equivalentto¥Vx P(x) v ¥x Q(x)? Explain. (Hint: Try
assigning meanings to P(x) and Q(x).)
10. (a) Showthatdx € A P(x) v 3x € B P(x)isequivalenttodx € (AU B)
P(x).
(b) Is 3x € A P(x) A dx € B P(x) equivalent to 3x € (A N B) P(x)?
Explain.

*11. Show that the statements A € Band A \ B = & areequivalent by writing
each in logical symbols and then showing that the resulting formulas are
equivalent.

12. Let T(x, y) mean “x is a teacher of y.” What do the following statements
mean? Under what circumstances would each one be true? Are any of
them equivalent to each other?

(a) AyT(x, y).

(b) Ix3A!'yT(x, y).

(c) AlxIAyT(x, y).

(d) Iy3xT(x, y).

(e) Ax3AyT(x, y).

(£) xIyIT(x, y) A —=FuIv(T(u,v) A (e £ x Vv £ y))].

2.3. More Operations on Sets

Now that we know how to work with quantifiers, we are ready to discuss some
more advanced topics in set theory.

So far, the only way we have to define sets, other than listing their elements
one by one, is to use the elementhood test notation {x | P(x)}. Sometimes this
notation is modified by allowing the x before the vertical line to be replaced
with a more complex expression. For example, suppose we wanted to define §
to be the set of all perfect squares. Perhaps the easiest way to describe this set
is to say that it consists of all numbers of the form n?, where n is a natural num-
ber. This is written § = {n” | n € N}. Note that, using our solution for the first
statement from Example 2.2.3, we could also define this set by writing § =
{x|3n € N(x = n?)}. Thus, {n*|n € N} = {x|3n € N(x = n?)}, and there-
fore x € {n?|n € N} means the same thing as 3In € N(x = n?).
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Similar notation is often used if the elements of a set have been numbered.

For example, suppose we wanted to form the set whose elements are the first
100 prime numbers. We might start by numbering the prime numbers, calling
them py, p2. pa, - ... Inother words,p, =2, p» = 3, p; = 5, and so on. Then
the set we are looking for would be the set P = {py, p», ps, - - -, P1oo}- Another
way of describing this set would be to say that it consists of all numbers p;, for
i an element of the set 7 ={1,2,3,...,100} = {i € N|1 < i < 100}. This
could be written P = {p; |i € I'}. Each element p; in this set is identified by
a number i € I, called the index of the element. A set defined in this way is
sometimes called an indexed family, and I is called the index set.

Although the indices for an indexed family are often numbers, they need not
be. For example, suppose § is the set of all students at your school. If we wanted
to form the set of all mothers of students, we might let m; stand for the mother
of s, for any student 5. Then the set of all mothers of students could be written
M = {my |s € S}. This is an indexed family in which the index set is §, the set
of all students. Each mother in the set is identified by naming the student who
is her child. Note that we could also define this set using an elementhood
test, by writing M = {m |m is the mother of some student} = {m |3s €
S(m = my)}. In general, any indexed family A = {x; |{ € I} can also be de-
fined as A = {x |3 € I(x = x;)}. It follows that the statement x € {x; |i € I}
means the same thing as 3 € I(x = x;).

Example 2.3.1. Analyze the logical forms of the following statements by
writing out the definitions of the set theory notation used.

. ye{Jxlx Q).
2. {x;liel)C A
3. {n*|n € N} and {n” | n € N} are not disjoint.

Solutions

L. 3x € QO = V).

2. By the definition of subset we must say that every element of {x; |i € I}
is also an element of A, so we could start by writing Vx(x € {x; |i € I} —
x € A). Filling in the meaning of x € {x; |i € I}, which we worked out
earlier, we would end up with Vx(3i € I(x = x;) — x € A). But since the
elements of {x;|f € I} are just the x;'s, for all i € I, perhaps an easier
way of saying that every element of {x; | i € I} is an element of A would be
Vi € I(x; € A). The two answers we have given are equivalent, but showing
this would require the methods we will be studying in Chapter 3.
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3. We must say that the two sets have a common element, so one solution
is to start by writing Ax(x € {n*|n € N} A x € {n? |n € N}). However, as
in the last statement, there is an easier way. An element common to the
two sets would have to be the square of some natural number and also the
cube of some (possibly different) natural number. Thus, we could say that
there is such a common element by saying 3n € Nam € N(n? = m?). Note
that it would be wrong to write 3n € N(n® = n3), because this wouldn’t
allow for the possibility of the two natural numbers being different. By the
way, this statement is true, since 64 = 82 = 4°, so 64 is an element of both
sets.

Anything at all can be an element of a set. Some interesting and useful ideas
arise when we consider the possibility of a set having other sets as elements.
For example, suppose A = {1, 2,3}, B = {4}, and C = &. There is no reason
why we couldn’t form the set 7 = {A, B, C}, whose elements are the three
sets A, B, and C. Filling in the definitions of A, B, and C, we could write
this in another way: F = {{1, 2, 3}, {4}, &}. Notethat 1 € A and A € F but
1 ¢ F. F has only three elements, and all three of them are sets, not numbers.
Sets such as F, whose elements are all sets, are sometimes called families of
sets.

It is often convenient to define families of sets as indexed families. For
example, suppose we again let S stand for the set of all students, and for each
student s we let C, be the set of courses that s has taken. Then the collection
of all of these sets C, would be an indexed family of sets 7 = {C, | s € S}.
Remember that the elements of this family are not courses but sets of courses. If
we let t stand for some particular student Tina, and if Tina has taken Calculus,
English Composition, and American History, then C, = {Calculus, English
Composition, American History} and C, € F, but Calculus ¢ F.

An important example of a family of sets is given by the power set of
a set.

Definition 2.3.2. Suppose A is a set. The power set of A, denoted 7 (A), is
the set whose elements are all the subsets of A. In other words,

P(A) = {x|x C A}.

For example, the set A = {7, 12} has four subsets: &, {7}, {12}, and {7, 12}.
Thus, 7 (A) = {&, {7}, {12}, {7, 12}}. What about = (&Z)? Although & has
no elements, it does have one subset, namely &. Thus, 7 (&)= {}. Note
that, as we saw in Section 1.3, {Z'} is not the same as &.
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Any time you are working with some subsets of a set X, it may be helpful to
remember that all of these subsets of X are elements of #° (X), by the definition
of power set. For example, if we let C be the set of all courses offered at your
school, then each of the sets C; from our previous example is a subset of C.
Thus, for each student s, C; € #”(C). This means that every element of the
family 7 = {C, | s € §} is an element of 7 (C), so F < #(C).

Example 2.3.3. Analyze the logical forms of the following statements.

x € P (A).

P(A) € 2 (B).

. Be{#(A)|A e F).
x € #(AN B).

x € 7(A)N 2 (B).

A e

Solutions

1. By the definition of power set, the elements of #*(A) are the subsets of A.
Thus, to say that x € #°(A) means that x € A, which we already know can
be written as Yy(y € x — y € A).

2. By the definition of subset, this means Vx(x € %’ (A) — x € #*(B)). Now,
writing out x € %’(A) and x € #’(B) as before, we get Vx[Vy(y € x —
yveAd)—=Vy(yex — ye B).

3. As before, this means A € F(B = #°(A)). Now, to say that B = #°(A)
means that the elements of B are precisely the subsets of A, or in other words
Vx(x € B <+ x C A).Filling thisin, and writing out the definition of subset,
we get our final answer, 34 € FVx(x € B < Vy(y € x — y € A)).

4. Asinthe first statement, we start by writing this as Vy(y € x — y € AN B).
Now, filling in the definition of intersection, we get Vy(y e x — (v € A A
y € B)).

5. By the definition of intersection, this means (x € #*(A)) A (x € 7 (B)).
Now, writing out the definition of power set as before, we get Yy(y € x —
yeAAVYY(y ex — y € B).

Note that for statement 5 in this example we first wrote out the definition
of intersection and then used the definition of power set, whereas in statement
4 we started by writing out the definition of power set and then used the
definition of intersection. As you learn the definitions of more mathematical
terms and symbols, it will become more important to be able to choose which
definition to think about first when working out the meaning of a complex
mathematical statement. A good rule of thumb is to always start with the
“outermost” symbol. In statement 4 in Example 2.3.3, the intersection symbol
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occurred inside the power set notation, so we wrote out the definition of power
set first. In statement 5, the power set notation occurred within both sides of
the notation for the intersection of two sets, so we started with the definition of
intersection. Similar considerations led us to use the definition of subset first,
rather than power set, in statement 2.

It is interesting to note that our answers for statements 4 and 5 in
Example 2.3.3 are equivalent. (You are asked to verify this in exercise 10.) As in
Section 1.4, it follows that for any sets A and B, (A N B) = #°(A) N % (B).
You are asked in exercise 11 to show that this equation is not true in general if
we change M to U.

Consider once again the family of sets F = {C; | s € S}, where S 1s the set
of all students and for each student s, C; is the set of all courses that s has taken.
If we wanted to know which courses had been taken by all students, we would
need to find those elements that all the sets in F have in common. The set of all
these common elements is called the intersection of the family J and is written
M. Similarly, the union of the family F, written UF, is the set resulting from
throwing all the elements of all the sets in F together into one set. In this case,
UF would be the set of all courses that had been taken by any student.

Example 2.34. Let F = {{1,2,3,4}.{2.3.4.5).{3.4. 5. 6}). Find NF and
UF.

Solution

NF ={1,2,3.4)N{2,3.4,5 N {3.4,5,6} = {3, 4}.
UF = {1,2,3.4)U{2.3.4.5) U {3.4.5.6) = {1.2.3.4.5.6).

Although these examples may make it clear what we mean by NJF and UF,
we still have not given careful definitions for these sets. In general, if F is any
family of sets, then we want NF to contain the elements that all the sets in F
have in common. Thus, to be an element of NJF, an object will have to be an
element of every set in F. On the other hand, anything that is an element of
any of the sets in F should be in UF, so to be in UF an object only needs to be
an element of at least one set in . Thus, we are led to the following general
definitions.

Definition 2.3.5. Suppose F is a family of sets. Then the intersection and
union of F are the sets NJF and UJF defined as follows:

NF={x|VAeF(xeA)}={x|VAA e F — x € A)).
UF={x |34 e Flx e A)} ={x |JA(A € F rx € A)}.
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Some mathematicians consider NF to be undefined if 7 = . For an ex-
planation of the reason for this, see exercise 14. We will use the notation NJF
only when F # &.

Notice thatif A and B are any two sets and F = {A, B}, thenNF = ANB
and UF = A U B. Thus, the definitions of intersection and union of a family
of sets are actually generalizations of our old definitions of the intersection and
union of two sets.

Example 2.3.6. Analyze the logical forms of the following statements.

x € NF.

NF & UG.

x € P (UF).

x e U{#(A)| A e F}.

e

Solutions

1. By the definition of the intersection of a family of sets, this means VA €
F(x € A), or equivalently, VA(A € F — x € A).

2. As we saw in Example 2.2.1, to say that one set is not a subset of an-
other means that there is something that is an element of the first but not
the second. Thus, we start by writing Ix(x € NF A x ¢ UG). We have al-
ready written out what x € N means in solution 1. By the definition of the
union of a family of sets, x € UG means 34 € G(x € A),s0ox ¢ UG means
—3JA € G(x € A). By the quantifier negation laws, this is equivalent to
VA € G(x ¢ A). Putting this all together, our answer is dx[VA €
Flx € AYAVA € G(x ¢ A)].

3. Because the union symbol occurs within the power set notation, we start by
writing out the definition of power set. As in Example 2.3.3, we getx C UF,
orinother words¥Vy(y € x — y € UJF ). Now we use the definition of union
to write out y € UF as 3A € F(y € A). The final answer is Yy(y € x —
JA € F(y € A)).

4. This time we start by writing out the definition of union. According to
this definition, the statement means that x is an element of at least one of
the sets #°(A), for A € F. In other words, A € F(x € 7 (A)). Inserting
our analysis of the statement x € %°(A) from Example 2.3.3, we get 34 €
FV¥y(y € x —» y € A).

Writing complex mathematical statements in logical symbols, as we did in
the last example, may sometimes help you understand what the statements
mean and whether they are true or false. For example, suppose that we once
again let C; be the set of all courses that have been taken by student s.
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Let M be the set of math majors and E the set of English majors, and let
F={C;|s €M) and G = (C,|s € E}. With these definitions, what does
statement 2 of Example 2.3.6 mean, and under what circumstances would
it be true? According to our solution for this example, the statement means
dx[VA € F(x € A) AVA € G(x ¢ A)], or in other words, there is something
that is an element of each set in F, and that fails to be an element of each set in
G. Taking into account the definitions of F and G that we are using, this means
that there is some course that has been taken by all of the math majors but
none of the English majors. If, for example, all of the math majors have taken
Calculus but none of the English majors have, then the statement would be true.

As another example, suppose F = {{1,2,3},1{2, 3,4}, {3,4,5}}, and x =
{4, 5, 6}. With these definitions, would statement 3 of Example 2.3.6 be true?
You could determine this by finding 2 (UF) and then checking to see if x
is an element of it, but this would take a very long time, because it turns
out that #” (UJF) has 32 elements. It is easier to use the translation into logical
symbols given in our solution for this example. According to that translation, the
statement means Yy(y € x — 3A € F(y € A)); in other words, every element
of x is in at least one set in F. Looking back at our definitions of F and x, it is not
hard to see that this is false, because 6 € x, but 6 1s not in any of the sets in F.

An alternative notation is sometimes used for the union or intersection
of an indexed family of sets. Suppose F = {A; |i € I}, where each A; is a
set. Then NJF would be the set of all elements common to all the A;’s, for
i € I, and this can also be written as M;=; A;. In other words, NF = NM;r A; =
{x|V¥i € I{x € A;)}. Similarly, an alternative notation for UF is U;c; A;, so
UF = Ui A; = (x| 3i € I(x € A;)}. Returning to our example of courses
taken by students, we could use this notation to write the set of courses taken
by all students as MNyc5C;.

Example 2.3.7. Let I ={1,2,3}, and foreachi e I let A; ={i,i + 1,i +
2, i+ 3} Find ﬂ,—e;A,- and U,'G;A,"
Solution

First we list the elements of the sets A;, fori € I:
A12{1,2,3,4}, A2:{2:3‘:4'5}: A3:{3:4:5'6}'

Then MicpAd; = AyNAN A ={1,2,3,4)Nn{2,3,4,5)N{3,4,5,6} =
{3, 4}, and similarly U;c;A; = {1,2,3,4} U {2,3,4,5} U {3,4,5,6} = {1, 2,
3,4, 5, 6}. In fact, we can now see that the question asked in this example is
exactly the same as the one in Example 2.3.4, but with different notation.
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Example 2.3.8. For this example our universe of discourse will be the set S
of all students. Let L(x, y) stand for “x likes y” and A(x, y) for “x admires

v

" For each student s, let L, be the set of all students that s likes. In other

words L, = {t € §|L(s, t)}. Similarly, let A, = {t € §| A(s, t)} = the set of
all students that s admires. Describe the following sets.

N LN -

m.\'ESL_K'

U.\-E.S‘Lx-

Uses L\ Ues Ay
U_\'ES(LS\AJ)A

{mse.&'Ls) N {ﬂ.s'e.\'As)-
Myes(Ls M Ag).

UpepLyp, where B = NgegAs.

Solutions

First of all, note that in general t+ € L, means the same thing as L(s, 1), and
similarly 1 € A; means A(s, ).

1.

MNyesLy ={t|Vs e St e L)) ={t € §|Vs € S L(s,1)} = the set of all
students who are liked by all students.

cUgesLy={t|Ase Ste L)) ={t € §|3s € S L(s,t)} = the set of all

students who are liked by at least one student.

. As we saw in solution 2, U,-¢L, = the set of all students who are liked

by at least one student. Similarly, U,cgA; = the set of all students who are
admired by at least one student. Thus Uy gL\ Uges Ay = {f |t € UsesL;
and 1 ¢ UcsA} = the set of all students who are liked by at least one
student, but are not admired by any students.

cUses(LoVAy) = {t|3s e Se L\NA))={re §S|3s e S(L(s, A

—A(s, 1))} = the set of all students ¢ such that some student likes ¢, but
doesn’t admire 1. Note that this is different from the set in part 3. For a
student ¢ to be in this set, there must be a student who likes ¢ but doesn’t
admire 7, but there could be other students who admire 7. To be in the set in
part 3,  must be admired by nobody.

. (msGSLJ) n (DXESA.E) = {I |'r € meSLx and 1 € meSA.'K} = {I[VS €

SteLl)nVseSite A} ={teS|VseSL(s,t)AVs e SA(s, 1)} =
the set of all students who are liked by all students and also admired by all
students.

CNyes(LyNAY) = {t|¥seS@tel,NA)) = {teS|VseS(L(s, 1) A

A(s, 1))} = the set of all students who are both liked and admired by all
students. This is the same as the set in part 5. In fact, you can use the
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distributive law for universal quantification and conjunction to show that
the elementhood tests for the two sets are equivalent.

. UpesLy, = {1|3b € Bt € L)} = {t € S|3b(b € B A L(b.1))}. But
B was defined to be the set of all students who are admired by all
students, so b € B means b € § AVs € § A(s, b). Inserting this, we get
UpepLp ={t € §|3b(b € S AVs € § A(s, b) A L(b, 1))} = the set of all
students who are liked by some student who is admired by all students.

Exercises

*1. Analyze the logical forms of the following statements. You may use the
symbols €, ¢, =, #, A, VvV, —, <>, ¥, and 3 in your answers, but not
C, &, 2,Nn U\, {,}, or = (Thus, you must write out the definitions
of some set theory notation, and you must use equivalences to get rid of
any occurrences of —.)
(a) F € 2(A).
(b) AC{2n+1|neN}.
) MW +n+1|lneNjc{2n+1|neN}.
(d) #(Uies A)) € Uier? (Ap).

2. Analyze the logical forms of the following statements. You may use the
symbols €, ¢, =, #, A, V, —, <, ¥, and 3 in your answers, but not
C,Z, 2, N, U\, {,}, or = (Thus, you must write out the definitions
of some set theory notation, and you must use equivalences to get rid of
any occurrences of —.)

(a) x e UF\ UG.
() {x € B|x¢C}eZ(A).
(c) x € Mier(A; U By).
(d) x € (NierAi) U (N By).
3. We've seen that 7 (&) = {J}, and {J} # &. What is /({J})?
*4. Suppose F = {{red, green, blue}, {orange, red, blue}, {purple, red,
green, blue} }. Find NF and UF.

5. Suppose F = {{3,7, 12}, {5, 7, 16}, {5, 12, 23}}. Find NJF and UF.

6. Let I ={2,3,4,5}),and foreachi e I'let A; = {i,i +1,i —1,2i}.

(a) List the elements of all the sets A;, fori € I.
(b) Find Mjc;A; and U;; A;.

7. Let P = {Johann Sebastian Bach, Napoleon Bonaparte, Johann
Wolfgang von Goethe, David Hume, Wolfgang Amadeus Mozart, [saac
Newton, George Washington} and let ¥ = {1750, 1751, 1752, ..., 1759}
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*8.

10.

*11.
12.

*13.

14.

Quantificational Logic

Foreachy e Y,let A, = {p € P | the person p was alive at some time

during the year y}. Find U,y A, and N,y A,.

Let I = {2, 3}, and foreachi € [ let A; = {i, 2i} and B; = {i,i + 1}.

(a) List the elements of the sets A; and B; fori € 1.

(b) Find M;c;(A; U B;) and (N;ey A;) U (N;e; B;). Are they the same?

(¢) In parts (c) and (d) of exercise 2 you analyzed the statements x €
Nicr(A; U Bj)and x € (Mjcr A;) U (Nier Bi). What can you conclude
from your answer to part (b) about whether or not these statements
are equivalent?

. Give an example of an index set [ and indexed families of sets {A; | i € I}

and {B; | i € I} such that U;c;(A; N B;) #£ (Uics Aj) N (Uiey By).

Show that for any sets A and B, #”(A N B) = #’(A) N %’ (B), by showing

that the statements x € #*(A N B) and x € #*(A) N #(B) are equiva-

lent. (See Example 2.3.3.)

Give examples of sets A and B for which #*(A U B) # 2 (A)U #(B).

Verity the following identities by writing out (using logical symbols)

what it means for an object x to be an element of each set and then using

logical equivalences.

(a) Uier(A; U B;) = (Uier A U (Ui By).

(b) (NF)N(NG)=N(FUG).

(©) Mier(Ai \ Bi) = (Mie Ai) \ (Uier By).

Sometimes each set in an indexed family of sets has two indices. For

this problem, use the following definitions: I = {1, 2}, J = {3, 4}. For

eachi e land j € J,let A; ; = {i, j, i + j}. Thus, for example, A, 3 =

{2, 3,5}

(a) Foreach j € Jlet B; = UjgsA;j = Ay ;U Ay ;. Find B; and By.

(b) Find N;<;B;. (Note that, replacing B; with its definition, we could
say that Ny B; = Njes(Uier Ai j).)

(¢) Find U;jer(NjesA; ;). (Hint: You may want to do this in two
steps, corresponding to parts (a) and (b).) Are Nz, (Ui A; ;) and
Uier(NjesAi ;) equal?

(d) Analyze the logical forms of the statements x € Nje;(UiesA; ;) and
X € Ujer(NjesA; ;). Are they equivalent?

(a) Show that if F = &J, then the statement x € UJF will be false no
matter what x is. It follows that UZ = &,

(b) Show that if F = &, then the statement x € NJF will be true no
matter what x is. In a context in which it is clear what the universe
of discourse U is, we might therefore want to say that N = U.
However, this has the unfortunate consequence that the notation N/
will mean different things in different contexts. Furthermore, when
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working with sets whose elements are sets, mathematicians often
do not use a universe of discourse at all. (For more on this, see the
next exercise.) For these reasons, some mathematicians consider the
notation N& to be meaningless. We will avoid this problem in this
book by using the notation NF only in contexts in which we can be

sure that F #£ &1,

15. In Section 2.3 we saw that a set can have other sets as elements. When

discussing sets whose elements are sets, it might seem most natural to

consider the universe of discourse to be the collection of all sets. However,

as we will see in this problem, assuming that there is such a universe leads
to contradictions.
Suppose U were the collection of all sets. Note that in particular U is

a set, so we would have U € U. This is not yet a contradiction; although

most sets are not elements of themselves, perhaps some sets are elements

of themselves. But it suggests that the sets in the universe U could be
split into two categories: the unusual sets that, like U itself, are elements
of themselves, and the more typical sets that are not. Let R be the set of
sets in the second category. In other words, R = {A € U | A ¢ A}. This
means that for any set A in the universe U, A will be an element of R iff

A ¢ A.In other words, we have VA e U(A € R < A ¢ A).

(a) Show that applying this last fact to the set R itself (in other words,
plugging in R for A) leads to a contradiction. This contradiction was
discovered by Bertrand Russell in 1901, and is known as Russell’s
Paradox.

(b) Think some more about the paradox in part (a). What do you think it
tells us about sets?
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Proofs

3.1. Proof Strategies

Mathematicians are skeptical people. They use many methods, including exper-
imentation with examples, trial and error, and guesswork, to try to find answers
to mathematical questions, but they are generally not convinced that an answer
1s correct unless they can prove it. You have probably seen some mathematical
proofs before, but you may not have any experience writing them yourself. In
this chapter you’ll learn more about how proofs are put together, so you can
start writing your own proofs.

Proofs are a lot like jigsaw puzzles. There are no rules about how jigsaw
puzzles must be solved. The only rule concerns the final product: All the
pieces must fit together, and the picture must look right. The same holds for
proofs.

Although there are no rules about how jigsaw puzzles must be solved, some
techniques for solving them work better than others. For example, you'd never
do a jigsaw puzzle by filling in every other piece, and then going back and
filling in the holes! But you also don’t do it by starting at the top and filling in
the pieces in order until you reach the bottom. You probably fill in the border
first, and then gradually put other chunks of the puzzle together and figure out
where they go. Sometimes you try to put pieces in the wrong places, realize that
they don’t fit, and feel that you're not making any progress. And every once
in a while you see, in a satisfying flash, how two big chunks fit together and
feel that you’ve suddenly made a lot of progress. As the pieces of the puzzle
fall into place, a picture emerges. You suddenly realize that the patch of blue
you’ve been putting together is a lake, or part of the sky. But it’s only when the
puzzle is complete that you can see the whole picture.

Similar things could be said about the process of figuring out a proof. And
I think one more similarity should be mentioned. When you finish a jigsaw

84
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puzzle, you don’t take it apart right away, do you? You probably leave it out
for a day or two, so you can admire it. You should do the same thing with a
proof. You figured out how to fit it together yourself, and once it’s all done,
isn’t it pretty?

In this chapter we will discuss the proof-writing techniques that mathemati-
cians use most often and explain how to use them to begin writing proofs your-
self. Understanding these techniques may also help you read and understand
proofs written by other people. Unfortunately, the techniques in this chapter
do not give a step-by-step procedure for solving every proof problem. When
trying to write a proof you may make a few false starts before finding the right
way to proceed, and some proofs may require some cleverness or insight. With
practice your proof-writing skills should improve, and you’ll be able to tackle
more and more challenging proofs.

Mathematicians usually state the answer to a mathematical question in the
form of a theorem that says that if certain assumptions called the hypotheses
of the theorem are true, then some conclusion must also be true. Often the hy-
potheses and conclusion contain free variables, and in this case it is understood
that these variables can stand for any elements of the universe of discourse.
An assignment of particular values to these variables is called an instance of
the theorem, and in order for the theorem to be correct it must be the case that
for every instance of the theorem that makes the hypotheses come out true, the
conclusion is also true. If there is even one instance in which the hypotheses are
true but the conclusion is false, then the theorem is incorrect. Such an instance
is called a counterexample to the theorem.

Example 3.1.1. Consider the following theorem:
Theorem. Suppose x > 3 and y < 2. Then x> — 2y > 5.

This theorem is correct. (You are asked to prove it in exercise 14.) The
hypotheses of the theorem are x > 3 and y < 2, and the conclusion is
x? =2y > 5. As an instance of the theorem, we could plug in 5 for x and
1 for y. Clearly with these values of the variables the hypotheses x > 3 and
y < 2 are both true, so the theorem tells us that the conclusion x> — 2y = 5
must also be true. In fact, plugging in the values of x and y we find that
x? —2y =25—2 =23, and certainly 23 > 5. Note that this calculation does
not constitute a proof of the theorem. We have only checked one instance of
the theorem, and a proof would have to show that all instances are correct.

If we drop the second hypothesis, then we get an incorrect theorem:

Incorrect Theorem. Suppose x > 3. Then x* — 2y > 5.
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We can see that this theorem is incorrect by finding a counterexample. For
example, suppose we let x = 4and y = 6. Then the only remaining hypothe-
sis, x = 3, is true, but x> — 2y = 16 — 12 = 4, so the conclusion x> —2y > 5
is false.

If you find a counterexample to a theorem, then you can be sure that the
theorem is incorrect, but the only way to know for sure that a theorem is
correct is to prove it. A proof of a theorem is simply a deductive argument
whose premises are the hypotheses of the theorem and whose conclusion is the
conclusion of the theorem. Of course the argument should be valid, so we can
be sure that if the hypotheses of the theorem are true, then the conclusion must
be true as well. How you figure out and write up the proof of a theorem will
depend mostly on the logical form of the conclusion. Often it will also depend
on the logical forms of the hypotheses. The proof-writing techniques we will
discuss in this chapter will tell you which proof strategies are most likely to
work for various forms of hypotheses and conclusions.

Proof-writing techniques that are based on the logical forms of the hypothe-
ses usually suggest ways of drawing inferences from the hypotheses. When
you draw an inference from the hypotheses, you use the assumption that the
hypotheses are true to justify the assertion that some other statement is also
true. Once you have shown that a statement is true, you can use it later in
the proof exactly as if it were a hypothesis. Perhaps the most important rule
to keep in mind when drawing such inferences is this: Never assert anything
until you can justify it completely using the hypotheses or using conclusions
reached from them earlier in the proof. Your motto should be: “I shall make
no assertion before its time.” Following this rule will prevent you from us-
ing circular reasoning or jumping to conclusions and will guarantee that, if
the hypotheses are true, then the conclusion must also be true. And this is
the primary purpose of any proof: to provide a guarantee that the conclusion
is true if the hypotheses are.

To make sure your assertions are adequately justified, you must be skeptical
about every inference in your proof. If there is any doubt in your mind about
whether the justification you have given for an assertion is adequate, then it
isn’t. After all, if your own reasoning doesn’t even convince you, how can you
expect it to convince anybody else?

Proof-writing techniques based on the logical form of the conclusion are
often somewhat different from techniques based on the forms of the hypothe-
ses. They usually suggest ways of transforming the problem into one that is
equivalent but easier to solve. The idea of solving a problem by transforming it
into an easier problem should be familiar to you. For example, adding the same
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number to both sides of an equation transforms the equation into an equivalent
equation, and the resulting equation is sometimes easier to solve than the orig-
inal one. Students who have studied calculus may be familiar with techniques
of evaluating integrals, such as substitution or integration by parts, that can be
used to transform a difficult integration problem into an easier one.

Proofs that are written using these transformation strategies often include
steps in which you assume for the sake of argument that some statement is
true without providing any justification for that assumption. It may seem at
first that such reasoning would violate the rule that assertions must always
be justified, but it doesn’t, because assuming something is not the same as
asserting it. To assert a statement is to claim that it is true, and such a claim
is never acceptable in a proof unless it can be justified. However, the purpose
of making an assumption in a proof is not to make a claim about what is true,
but rather to enable you to find out what would be true if the assumption were
correct. You must always keep in mind that any conclusion you reach that is
based on an assumption might turn out to be false if the assumption is incorrect.
Whenever you make a statement in a proof, it’s important to be sure you know
whether it’s an assertion or an assumption.

Perhaps an example will help clarify this. Suppose during the course of a
proof you decide to assume that some statement, call it P, is true, and you
use this assumption to conclude that another statement Q is true. It would be
wrong to call this a proof that Q is true, because you can’t be sure that your
assumption about the truth of P was correct. All you can conclude at this
point is that if P is true, then you can be sure that Q is true as well. In other
words, you know that the statement P —  is true. If the conclusion of the
theorem being proven was (, then the proof is incomplete at best. But if the
conclusion was P — (, then the proof is complete. This brings us to our first
proof strategy.

To prove a conclusion of the form P — Q:
Assume P is true and then prove Q.

Here’s another way of looking at what this proof technique means. As-
suming that P is true amounts to the same thing as adding P to your list
of hypotheses. Although P might not originally have been one of vour
hypotheses, once you have assumed it, you can use it exactly the way
you would use any other hypothesis. Proving O means treating Q as your con-
clusion and forgetting about the original conclusion. So this technique says that
if the conclusion of the theorem you are trying to prove has the form P — Q,
then you can transform the problem by adding P to your list of hypotheses and
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changing your conclusion from P — @ to Q. This gives you a new, perhaps

easier proof problem to work on. If you can solve the new problem, then you
will have shown that if P is true then Q is also true, thus solving the origi-
nal problem of proving P — Q. How you solve this new problem will now
be guided by the logical form of the new conclusion Q (which might itself
be a complex statement), and perhaps also by the logical form of the new
hypothesis P.

Note that this technique doesn’t tell you how to do the whole proof, it just
gives you one step, leaving you with a new problem to solve in order to finish
the proof. Proofs are usually not written all at once, but are created gradually
by applying several proof techniques one after another. Often the use of these
techniques will lead you to transform the problem several times. In discussing
this process it will be helpful to have some way to keep track of the results of
this sequence of transformations. We therefore introduce the following termi-
nology. We will refer to the statements that are known or assumed to be true
at some point in the course of figuring out a proof as givens, and the statement
that remains to be proven at that point as the goal. When you are starting to
figure out a proof, the givens will be just the hypotheses of the theorem you
are proving, but they may later include other statements that have been in-
ferred from the hypotheses or added as new assumptions as the result of some
transformation of the problem. The goal will initially be the conclusion of the
theorem, but it may be changed several times in the course of figuring out a
proof.

To keep in mind that all of our proof strategies apply not only to the original
proof problem but also to the results of any transformation of the problem,
we will talk from now on only about givens and goals, rather than hypothe-
ses and conclusions, when discussing proof-writing strategies. For example,
the strategy stated earlier should really be called a strategy for proving a goal
of the form P — Q, rather than a conclusion of this form. Even if the con-
clusion of the theorem you are proving is not a conditional statement, if you
transform the problem in such a way that a conditional statement becomes
the goal, then you can apply this strategy as the next step in figuring out the
proof.

Example 3.1.2. Suppose a and b are real numbers. Prove that if 0 <a < b
then a® < b*.
Scratch work

We are given as a hypothesis that @ and b are real numbers. OQur conclusion has
the form P — @, where P is the statement 0 < a < b and Q is the statement
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a’ < b*. Thus we start with these statements as given and goal:

Givens Goal
a and b are real numbers 0<a<b)— (a* <b)

According to our proof technique we should assume that 0 < a < b and try
to use this assumption to prove that a> < b*. In other words, we transform the
problem by adding 0 < a < b to the list of givens and making a® < b our
goal:

Givens Goal
a and b are real numbers a’ < b?
O<a<b

Comparing the inequalities @ < b and a® < b? suggests that multiplying
both sides of the given inequality a < b by either @ or b might get us closer
to our goal. Because we are given that @ and b are positive, we won’t need
to reverse the direction of the inequality if we do this. Multiplying a < b
by a gives us a” < ab, and multiplying it by b gives us ab < b*>. Thus

2

a® < ab < b?, s0 a® < b

Solution

Theorem. Suppose a and b are real numbers. If 0 < a < b then a> < b*.
Proof. Suppose 0 < a < b. Multiplying the inequality a < b by the posi-
tive number @ we can conclude that a> < ab, and similarly multiplying by

b we get ab < b*. Therefore a> < ab < b, so a* < b?, as required. Thus, if
0 < a < bthena® < b*. O

As you can see from the preceding example, there’s a difference between
the reasoning you use when you are figuring out a proof and the steps you
write down when you write the final version of the proof. In particular, al-
though we will often talk about givens and goals when trying to figure out
a proof, the final write-up will rarely refer to them. Throughout this chap-
ter, and sometimes in later chapters as well, we will precede our proofs with
the scratch work used to figure out the proof, but this is just to help you
understand how proofs are constructed. When mathematicians write proofs,
they usually just write the steps needed to justify their conclusions with no
explanation of how they thought of them. Some of these steps will be sen-
tences indicating that the problem has been transformed (usually according
to some proof strategy based on the logical form of the goal); some steps
will be assertions that are justified by inferences from the givens (often using
some proof strategy based on the logical form of a given). However, there
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will usually be no explanation of how the mathematician thought of these
transformations and inferences. For example, the proof in Example 3.1.2 starts
with the sentence “Suppose 0 < a < b,” indicating that the problem has been
transformed according to our strategy, and then proceeds with a sequence
of inferences leading to the conclusion that a> < b%. No other explanations
were necessary to justify the final conclusion, in the last sentence, that if
0 <a < bthena® < b°.

Although this lack of explanation sometimes makes proofs hard to read, it
serves the purpose of keeping two distinct objectives separate: explaining your
thought processes and justifying your conclusions. The first is psychology; the
second, mathematics. The primary purpose of a proof is to justify the claim that
the conclusion follows from the hypotheses, and no explanation of your thought
processes can substitute for adequate justification of this claim. Keeping any
discussion of thought processes to a minimum in a proof helps to keep this
distinction clear. Occasionally, in a very complicated proof, a mathematician
may include some discussion of the strategy behind the proof to make the
proof easier to read. Usually, however, it is up to readers to figure this out
for themselves. Don’t worry if you don’t immediately understand the strategy
behind a proof you are reading. Just try to follow the justifications of the steps,
and the strategy will eventually become clear. If it doesn’t, a second reading of
the proof might help.

To keep the distinction between the proof and the strategy behind the proof
clear, in the future when we state a proof strategy we will often describe both
the scratch work you might use to figure out the proof and the form that the
final write-up of the proof should take. For example, here's a restatement of
the proof strategy we discussed earlier, in the form we will be using to present
proof strategies from now on.

To prove a goal of the form P — Q:
Assume P is true and then prove Q.

Scratch work

Before using strategy:
Givens Goal
— P— 0
After using strategy:
Givens Goal
— o

P
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Form of final proof:

Suppose P.
[Proof of Q goes here.]
Therefore P — Q.

Note that the suggested form for the final proof tells you how the beginning
and end of the proof will go, but more steps will have to be added in the middle.
The givens and goal list under the heading “After using strategy” tells you what
is known or can be assumed and what needs to be proven in order to fill in this
gap in the proof. Many of our proof strategies will tell you how to write either
the beginning or the end of your proof, leaving a gap to be filled in with further
reasoning.

There is a second method that is sometimes used for proving goals of the
form P — Q. Because any conditional statement P — Q is equivalent to its
contrapositive =0 — —P, you can prove P — Q by proving —=Q — =P
instead, using the strategy discussed earlier. In other words:

To prove a goal of the form P — Q:
Assume Q is false and prove that P is false.
Scratch work

Before using strategy:

Givens Goal
— P> Q
After using strategy:
Givens Goal
- —P
Y

Form of final proof:

Suppose Q is false.
[Proof of =P goes here.]
Therefore P — Q.

Example 3.1.3. Suppose a, b, and ¢ are real numbers and @ > b. Prove that if
ac < bethene < 0.
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Scratch work

Givens Goal
a, b, and ¢ are real numbers (ac < bc) — (c =0)
a=>b

The contrapositive of the goal is =(¢ < 0) — —(ac = bc), or in other words
(¢ = 0) — (ac = bc), so we can prove it by adding ¢ > 0 to the list of givens
and making ac > bc our new goal:

Givens Goal
a, b, and ¢ are real numbers ac > be
a=b
c=>0

We can also now write the first and last sentences of the proof. According to
the strategy, the final proof should have this form:

Suppose ¢ = 0.
[Proof of ac = bc goes here.|
Therefore, if ac < bc then ¢ < ().

Using the new given ¢ > (), we see that the goal ac = bc follows im-
mediately from the given a > b by multiplying both sides by the positive
number ¢. Inserting this step between the first and last sentences completes
the proof.

Solution

Theorem. Suppose a, b, and ¢ are real numbers and a = b. If ac < bc then
c =<0

Proof. We will prove the contrapositive. Suppose ¢ > (. Then we can multi-
ply both sides of the given inequality @ > b by ¢ and conclude that ac > be.
Therefore, if ac < be then ¢ < 0. O

Notice that, although we have used the symbols of logic freely in the scratch
work, we have not used them in the final write-up of the proof. Although
it would not be incorrect to use logical symbols in a proof, mathematicians
usually try to avoid it. Using the notation and rules of logic can be very helpful
when you are figuring out the strategy for a proof, but in the final write-up you
should try to stick to ordinary English as much as possible.

The reader may be wondering how we knew in Example 3.1.3 that we
should use the second method for proving a goal of the form P — Q
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rather than the first. The answer is simple: We tried both methods, and the
second worked. When there is more than one strategy for proving a goal of a
particular form, you may have to try a few different strategies before you hit
on one that works. With practice, you will get better at guessing which strategy
is most likely to work for a particular proof.

Notice that in each of the examples we have given our strategy involved
making changes in our givens and goal to try to make the problem easier. The
beginning and end of the proof, which were supplied for us in the statement of
the proof technique, serve to tell a reader of the proof that these changes have
been made and how the solution to this revised problem solves the original prob-
lem. The rest of the proof contains the solution to this easier, revised problem.

Most of the other proof techniques in this chapter also suggest that you
revise your givens and goal in some way. These revisions result in a new proof
problem, and in every case the revisions have been designed so that a solution
to the new problem, when combined with some beginning or ending sentences
explaining these revisions, would also solve the original problem. This means
that whenever you use one of these strategies you can write a sentence or two
at the beginning or end of the proof and then forget about the original problem
and work instead on the new problem, which will usually be easier. Often you
will be able to figure out a proof by using the techniques in this chapter to
revise your givens and goal repeatedly, making the remaining problem easier
and easier until you reach a point at which it is completely obvious that the
goal follows from the givens.

Exercises

*1. Consider the following theorem. (This theorem was proven in the intro-
duction.)

Theorem. Suppose n is an integer larger than I and n is not prime. Then
2" — 1 is not prime.

(a) Identify the hypotheses and conclusion of the theorem. Are the hy-
potheses true when n = 67 What does the theorem tell you in this
instance? Is it right?

(b) What can you conclude from the theorem in the case n = 157 Check
directly that this conclusion is correct.

(c) What can you conclude from the theorem in the case n = 117

2. Consider the following theorem. (The theorem is correct, but we will not
ask you to prove it here.)
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4.

*0.
10.

*11.

12.

13.

Proofs

Theorem. Suppose that b> > 4ac. Then the quadratic equation ax* +
bx + ¢ = 0 has exactly two real solutions.

(a) Identify the hypotheses and conclusion of the theorem.

(b) To give an instance of the theorem, you must specify values for a, b,
and ¢, but not x. Why?

(c) What can you conclude from the theorem in the case a = 2, b = -5,
¢ = 37 Check directly that this conclusion is correct.

(d) What can you conclude from the theorem in the case a =2, b =4,
c =37

. Consider the following incorrect theorem:

Incorrect Theorem. Suppose n is a natural number larger than 2, and
n is not a prime number. Then 2n + 13 is not a prime number.

What are the hypotheses and conclusion of this theorem? Show that
the theorem is incorrect by finding a counterexample.
Complete the following alternative proof of the theorem in Example 3.1.2.

Proof. Suppose 0 <a < b. Thenb —a = 0.

[Fill in a proof of b* — a® = 0 here.]
Since b — a® > 0, it follows that a®> < b*. Therefore if 0 < a < b then
a’ < b O

Suppose a and b are real numbers. Prove thatif a < b < Othena? > b2
Suppose a and b are real numbers. Prove that if 0 < a < b then 1/b <
1/a.

Suppose that @ is a real number. Prove that if a* > ¢ then @ > a. (Hint:
One approach is to start by completing the following equation: @> — a =
@ —ay-2)

Suppose A\ B € CN D andx € A. Prove thatif x ¢ D then x € B.

Suppose a and b are real numbers. Prove that if ¢ < b then X2 < p.
Ix4s

2+6

Suppose x is a real number and x # 0. Prove that if = % then

x # 8.

Suppose a, b, ¢, and d are real numbers, 0 < a < b, and d = 0. Prove
that if ac = bd then e > d.

Suppose x and y are real numbers, and 3x 4 2y < 5. Prove thatif x > 1
theny < 1.

Suppose that x and y are real numbers. Prove that if x> 4+ y = —3 and
2x —y=2thenx = —1.
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15.

l6.
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Prove the first theorem in Example 3.1.1. (Hint: You might find it useful
to apply the theorem from Example 3.1.2.)
Consider the following theorem.

Theorem. Suppose x is a real number and x # 4. If % =3 then
x=T

(a) What's wrong with the following proof of the theorem?

_ w5 _ 2AT=5 _ 9 _ N
Proof. Suppose x = 7. Then == = == = § = 3. Therefore if

%:3thenx:’}h O

(b) Give a correct proof of the theorem.
Consider the following incorrect theorem:

Incorrect Theorem. Suppose that x and v are real numbers and x # 3.
Ifx®y =9y then y = 0.

(a) What's wrong with the following proof of the theorem?

Proof. Suppose that x?y = 9y. Then (x> — 9)y = 0. Since x # 3,
x2 £ 9, so x2 — 9 £ (0. Therefore we can divide both sides of the
equation (x2 —9)y =0 by x2 — 9, which leads to the conclusion
that y = 0. Thus, if x>y = 9y then y = 0. O

(b) Show that the theorem is incorrect by finding a counterexample.

3.2. Proofs Involving Negations and Conditionals

We turn now to proofs in which the goal has the form —P. Usually it’s easier
to prove a positive than a negative statement, so it is often helpful to reexpress
a goal of the form — P before proving it. Instead of using a goal that says what
shouldn’t be true, see if you can rephrase it as a goal that says what should
be true. Fortunately, we have already studied several equivalences that will
help with this reexpression. Thus, our first strategy for proving negated state-
ments 1s:

To prove a goal of the form — P:

If possible, reexpress the goal in some other form and then use one of the

proof strategies for this other goal form.

Example 3.2.1. Suppose ANC € Banda € C. Prove thata ¢ A\ B.
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Scratch Work

Givens Goal
ANCCB a¢ A\ B
aeC

Because the goal is a negated statement, we try to reexpress it:

a¢ A\ Bisequivalentto ~(a € A Aa ¢ B) (definition of A\ B),
which 1s equivalenttoa ¢ A va € B (DeMorgan’s law),
which is equivalenttoa € A — a € B (conditional law).

Rewriting the goal in this way gives us:

Givens Goal
ANCCBEB aceA—aecB
aeC

We now prove the goal in this new form, using the first strategy from Sec-
tion 3.1. Thus, we add @ € A to our list of givens and make @ € B our goal:

Givens Goal
ANCCB aeB
acC
aec A

The proof is now easy: From the givensa € A and a € C we can conclude that
a € ANC, and then, since A N C C B, it follows that a € B.

Solution

Theorem. Suppose ANC C Banda € C. Thena ¢ A\ B.

Proof. Supposea € A. Thensincea € C,a € AN C.Butthensince ANC C
B it follows that @ € B. Thus, it cannot be the case that « is an element of A
butnot B,soa ¢ A\ B. 0

Sometimes a goal of the form — P cannot be reexpressed as a positive state-
ment, and therefore this strategy cannot be used. In this case it is usually best
to do a proof by contradiction. Start by assuming that P is true, and try to
use this assumption to prove something that you know is false. Often this is
done by proving a statement that contradicts one of the givens. Because you
know that the statement you have proven is false, the assumption that P was
true must have been incorrect. The only remaining possibility then is that P is
false.
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To prove a goal of the form —P:
Assume P is true and try to reach a contradiction. Once you have reached
a contradiction, you can conclude that P must be false.

Scratch work

Before using strategy:

Givens Goal
— —P

After using strategy:

Givens Goal
— Contradiction

P
Form of final proof:

Suppose P is true.
[Proof of contradiction goes here.]
Thus, P is false.

Example 3.2.2. Prove thatif x> + y = 13 and y # 4 then x # 3.

Scratch work

The goal is a conditional statement, so according to the first proof strategy in
Section 3.1 we can treat the antecedent as given and make the consequent our
new goal:

Givens Goal
xX2+y=13 x#3
y#4

This proof strategy also suggests what form the final proof should take.
According to the strategy, the proof should look like this:

Suppose x>+ y =13 and y # 4.
[Proof of x # 3 goes here.]
Thus, if x>+ y = 13 and y # 4 then x = 3.

In other words, the first and last sentences of the final proof have already been
written, and the problem that remains to be solved is to fill in a proof of x #£ 3
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between these two sentences. The givens—goal list summarizes what we know

and what we have to prove in order to solve this problem.

The goal x # 3 means —(x = 3), but because x = 3 has no logical connec-
tives in it, none of the equivalences we know can be used to reexpress this goal
in a positive form. We therefore try proof by contradiction and transform the
problem as follows:

Givens Goal
XX 4+y=13 Contradiction
y#4
x=3

Once again, the proof strategy that suggested this transformation also tells
us how to fill in a few more sentences of the final proof. As we indicated earlier,
these sentences go between the first and last sentences of the proof, which were
written before.

Suppose x2 4+ y =13 and y # 4.
Suppose x = 3.
[Proof of contradiction goes here. |
Therefore x = 3.
Thus, if x>+ y = 13 and y # 4 then x # 3.

The indenting in this outline of the proof will not be part of the final proof.
We have done it here to make the underlying structure of the proof clear. The
first and last lines go together and indicate that we are proving a conditional
statement by assuming the antecedent and proving the consequent. Between
these lines is a proof of the consequent, x = 3, which we have set off from the
first and last lines by indenting it. This inner proof has the form of a proof by
contradiction, as indicated by its first and last lines. Between these lines we
still need to fill in a proof of a contradiction.

At this point we don’t have a particular statement as our goal; any impossible
conclusion will do. We must therefore look more closely at the givens to see if
some of them contradict others. In this case, the first and third together imply
that y = 4, which contradicts the second.

Solution

Theorem. Ifx> 4y = 13 and y # 4 then x # 3.

Proof. Suppose x> 4+ y = 13 and y # 4. Suppose x = 3. Substituting this into
the equation x> + y = 13, we get 9 + y = 13, so y = 4. But this contradicts
the fact that y # 4. Therefore x # 3. Thus, if x>+ y = 13 and y # 4 then
X # 3. O
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You may be wondering at this point why we were justified in conclud-
ing, when we reached a contradiction in the proof, that x # 3. After all, the
second list of givens in our scratch work contained three given. How could
we be sure, when we reached a contradiction, that the culprit was the third
given, x = 3? To answer this question, look back at the first givens and goal
analysis for this example. According to that analysis, there were two givens,
x>+ y=13 and y # 4, from which we had to prove the goal x # 3. Re-
member that a proof only has to guarantee that the goal is true if the givens
are. Thus, we didn’t have to show that x # 3, only that if x>+ y = 13 and
v # 4 then x # 3. When we reached a contradiction, we knew that one of
the three statements in the second list of givens had to be false. We didn’t
try to figure out which one it was because we didn’t need to. We were cer-
tainly justified in concluding that if neither of the first two was the culprit,
then it had to be the third, and that was all that was required to finish the
proof.

Proving a goal by contradiction has the advantage that it allows you to
assume that your conclusion is false, providing you with another given to
work with. But it has the disadvantage that it leaves you with a rather vague
goal: produce a contradiction by proving something that you know is false.
Because all the proof strategies we have discussed so far depend on analyzing
the logical form of the goal, it appears that none of them will help you to
achieve the goal of producing a contradiction. In the preceding proof we were
forced to look more closely at our givens to find a contradiction. In this case
we did it by proving that y = 4, contradicting the given y # 4. This illustrates
a pattern that occurs often in proofs by contradiction: If one of the givens has
the form — P, then you can produce a contradiction by proving P. This is our
first strategy based on the logical form of a given.

To use a given of the form —P:
If you're doing a proof by contradiction, try making P your goal. If
you can prove P, then the proof will be complete, because P contradicts the
given —P.

Scratch work
Before using strategy:

Givens Goal
=P Contradiction
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After using strategy:

Givens Goal
-P P

Form of final proof:

[Proof of P goes here.]
Since we already know — P, this is a contradiction.

Although we have recommended proof by contradiction for proving goals
of the form — P, it can be used for any goal. Usually it’s best to try the other
strategies first if any of them apply; but if you're stuck, you can try proof by
contradiction in any proof.

The next example illustrates this and also another important rule of proof-
writing: In many cases the logical form of a statement can be discovered
by writing out the definition of some mathematical word or symbol that
occurs in the statement. For this reason, knowing the precise statements of
the definitions of all mathematical terms is extremely important when you're
writing a proof.

Example 3.2.3. Suppose A, B, and C are sets, A\ B € C, and x is anything
at all. Prove thatif x € A\ C then x € B.
Scratch work

We're giventhat A \ B € C, and our goalis x € A\ C — x € B. Because the
goal is a conditional statement, our first step is to transform the problem by
adding x € A\ C as a second given and making x € B our goal:

Givens Goal
A\BCC XeEB
xe A\NC

The form of the final proof will therefore be as follows:

Suppose x € A\ C.
[Proof of x € B goes here.]
Thus, if x € A\ C thenx € B.

The goal x € B contains no logical connectives, so none of the techniques
we have studied so far apply, and it is not obvious why the goal follows from
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the givens. Lacking anything else to do, we try proof by contradiction:

Givens Goal
A\BCC Contradiction
xeA\C
x¢B

As before, this transformation of the problem also enables us to fill in a few
more sentences of the proof:

Suppose x € A\ C.
Suppose x ¢ B.
[Proof of contradiction goes here. ]
Therefore x € B.
Thus, if x € A\ C thenx € B.

Because we're doing a proof by contradiction and our last given is now a
negated statement, we could try using our strategy for using givens of the form
—P. Unfortunately, this strategy suggests making x € B our goal, which just
gets us back to where we started. We must look at the other givens to try to find
the contradiction.

In this case, writing out the definition of the second given is the key to
the proof, since this definition also contains a negated statement. By definition,
x € A\ Cmeansx € Aandx ¢ C. Replacing this given by its definition gives
us:

Givens Goal
A\BCC Contradiction
xeA
x¢gC
x¢&B

Now the third given also has the form — P, where P is the statement x € C, so
we can apply the strategy for using givens of the form — P and make x € C our
goal. Showing that x € C would complete the proof because it would contradict
the given x ¢ C.

Givens Goal
A\BCC xeC
xeA
xgC
x¢B

Once again, we can add a little more to the proof we are gradually writing
by filling in the fact that we plan to derive our contradiction by proving x € C.
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We also add the definition of x € A \ C to the proof, inserting it in what seems
like the most logical place, right after we stated that x € A\ C:

Suppose x € A\, C. This means that x € A and x ¢ C.
Suppose x ¢ B.
[Proof of x € C goes here.]
This contradicts the fact that x ¢ C.
Therefore x € B.
Thus, if x € A\ C thenx € B.

We have finally reached a point where the goal follows easily from the
givens. Fromx € A and x ¢ B we conclude thatx € A\ B.Since A\ B C C
it follows that x € C.

Solution

Theorem. Suppose A, B, and C are sets, A\ B C C, and x is anything at all.
Ifx € A\ C then x € B.

Proof. Suppose x € A\ C.This meansthatx € Aandx ¢ C.Suppose x ¢ B.
Thenx € A\ B,sosince A\ B C C, x € C. But this contradicts the fact that
x ¢ C. Therefore x € B. Thus,if x € A\ C then x € B. O

The strategy we’ve recommended for using givens of the form —P only
applies if you are doing a proof by contradiction. For other kinds of proofs,
the next strategy can be used. This strategy is based on the fact that givens of
the form — P, like goals of this form, may be easier to work with if they are
reexpressed as positive statements.

To use a given of the form —P:
If possible, reexpress this given in some other form.

We have discussed strategies for working with both givens and goals of
the form —P, but only strategies for goals of the form P — Q. We now fill
this gap by giving two strategies for using givens of the form P — Q. We
said before that many strategies for using givens suggest ways of drawing
inferences from the givens. Such strategies are called rules of inference. Both
of our strategies for using givens of the form P — @ are examples of rules of
inference.

To use a given of the form P — Q:
If you are also given P, or if you can prove that P is true, then you can
use this given to conclude that Q is true. Since it is equivalent to =Q — =P,
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if you can prove that Q is false, you can use this given to conclude that P is
false.

The first of these rules of inference says that if you know that both P and
P — ( are true, you can conclude that Q must also be true. Logicians call this
rule modus ponens. We saw this rule used in one of our first examples of valid
deductive reasoning in Chapter 1, argument 2 in Example 1.1.1. The validity
of this form of reasoning was verified using the truth table for the conditional
connective in Section 1.5.

The second rule, called modus tollens, says that if you know that P — Q
is true and @ is false, you can conclude that P must also be false. The validity
of this rule can also be checked with truth tables, as you are asked to show in
exercise 13. Usually you won't find a given of the form P — Q to be much use
until you are able to prove either P or — Q. However, if you ever reach a point
in your proof where you have determined that P is true, you should probably
use this given immediately to conclude that Q is true. Similarly, if you ever
establish —Q, immediately use this given to conclude —P.

Although most of our examples will involve specific mathematical state-
ments, occasionally we will do examples of proofs containing letters standing
for unspecified statements. Later in this chapter we will be able to use this
method to verify some of the equivalences from Chapter 2 that could only be
justified on intuitive grounds before. Here’s an example of this kind, illustrating
the use of modus ponens and modus tollens.

Example 3.2.4. Suppose P — (Q — R). Prove that =R — (P — —=Q).
Scratch work

This could actually be done with a truth table, as you are asked to show in
exercise 14, but let’s do it using the proof strategies we've been discussing. We
start with the following situation:

Givens Goal
P - (Q — R) R — (P - —0)

Our only given is a conditional statement. By the rules of inference just
discussed, if we knew P we could use modus ponens to conclude @ — R, and
if we knew —(Q — R) we could use modus tollens to conclude —P. Because
we don't, at this point, know either of these, we can’t yet do anything with
this given. If either P or =(Q — R) ever gets added to the givens list, then we
should consider using modus ponens or modus tollens. For now, we need to
concenfrate on the goal.
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The goal is also a conditional statement, so we assume the antecedent and
set the consequent as our new goal:
Givens Goal
P—(Q—R) P— =0
=R

We can also now write a little bit of the proof:
Suppose —R.

[Proof of P — —(Q goes here.]
Therefore =R — (P — —=0).

We still can’t do anything with the givens, but the goal is another conditional,
s0 we use the same strategy again:

Givens Goal
P—(Q—R) -0
=R
P

Now the proof looks like this:

Suppose —R.
Suppose P.
[Proof of —=Q goes here.]
Therefore P — — Q.
Therefore =R — (P — =0).

We've been watching for our chance to use our first given by applying
either modus ponens or modus tollens, and now we can do it. Since we know
P — (Q — R)and P, by modus ponens we can infer 0 — R. Any conclusion
inferred from the givens can be added to the givens column:

Givens Goal
P—(Q—R) -0
-R
P
Q— R

We also add one more line to the proof:

Suppose —R.
Suppose P.
Since Pand P — (Q — R), it follows that @ — R.
[Proof of = Q goes here.]
Therefore P — —=(.
Therefore =R — (P — —Q).
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Finally, our last step is to use modus tollens. We now know Q — R and
=R, so by modus tollens we can conclude — Q. This is our goal, so the proof
is done.

Solution

Theorem. Suppose P — (Q — R). Then =R — (P — —Q).

Proof. Suppose —R. Suppose P. Since P and P — (Q — R), it follows that
Q — R.Butthen, since =R, we can conclude = Q. Thus, P — —Q. Therefore
=R — (P — —=Q). O

Sometimes if you're stuck you can use rules of inference to work backward.
For example, suppose one of your givens has the form P — Q and your goal
is @. If only you could prove P, you could use modus ponens to reach your
goal. This suggests treating P as your goal instead of Q. If you can prove P,
then you'll just have to add one more step to the proof to reach your original

goal Q.

Example 3.2.5. Supposethat A C B,a € A,anda ¢ B\ C.Provethata € C.

Scratch work

Givens Goal
ACB acC
aecA

a¢ B\C

Our third given is a negative statement, so we begin by reexpressing it
as an equivalent positive statement. According to the definition of the dif-
ference of two sets, this given means —(a € B A a ¢ C), and by one of
DeMorgan’s laws, this is equivalent to a € B v a € C. Because our goal is
a € C,itis probably more useful to rewrite this in the equivalentform a € B —
aeC:

Givens Goal
ACB aeC
ac A

aeEB—-acC

Now we can use our strategy for using givens of the form P — Q. Our goal
isa € C, and we are given thata € B — a € C.If we could prove thata € B,
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then we could use modus ponens to reach our goal. So let’s try treating a € B
as our goal and see if that makes the problem easier:

Givens Goal
ACB acB
aeA

aeB—-acC

Now it is clear how to reach the goal. Sincea € Aand A € B,a € B.

Solution

Theorem. Supposethat A C B,a € A, anda ¢ B\ C.Thena € C.
Proof. Sincea € A and A C B, we can conclude that@ € B. Buta ¢ B\ C,
so it follows thata € C. O

Exercises

*1. This problem could be solved by using truth tables, but don’t do it that
way. Instead, use the methods for writing proofs discussed so far in this
chapter. (See Example 3.2.4.)

(a) Suppose P — Q and Q — R are both true. Prove that P — R is
true.

(b) Suppose =R — (P — —Q) is true. Prove that P — (Q — R) is
true.

2. This problem could be solved by using truth tables, but don’t do it that
way. Instead, use the methods for writing proofs discussed so far in this
chapter. (See Example 3.2.4.)

(a) Suppose P — @ and R — —( are both true. Prove that P — —R
is true.
(b) Suppose that P is true. Prove that 0 — —=(Q — —P)is true.

3. Suppose A € C, and B and C are disjoint. Prove that if x € A then
x ¢ B.

4. Suppose that A\ B is disjoint from C and x € A. Prove that if x € C
then x € B.

*5. Use the method of proof by contradiction to prove the theorem in
Example 3.2.1.

6. Use the method of proof by contradiction to prove the theorem in
Example 3.2.5.

7. Suppose that y + x = 2y — x, and x and y are not both zero. Prove that

v # 0.




*8.

10.

*11.

12.

13.
*14.
15.

16.
17.
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Suppose that @ and b are nonzero real numbers. Prove thatif a < 1/a <
b < 1/bthena < —1.

Suppose that x and y are real numbers. Prove that if x>y = 2x + y, then
if y £ 0 thenx £ 0.

Suppose that x and y are real numbers. Prove that if x £ 0, then if y =
3x42y _

TN then y = 3.

Consider the following incorrect theorem:

Incorrect Theorem. Suppose x andy are real numbers and x + y = 10.
Then x # 3 and y # 8.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose the conclusion of the theorem is false. Then x =
3 and y = 8. But then x + y = 11, which contradicts the given
information that x 4+ y = 10. Therefore the conclusion must be
true. O

(b) Show that the theorem is incorrect by finding a counterexample.
Consider the following incorrect theorem:

Incorrect Theorem. Suppose that A C C, B C C, and x € A. Then
X € B.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose that x ¢ B. Since x € Aand A C C, x € C. Since
x¢B and BC C, x ¢ C. But now we have proven both x €
C and x ¢ C, so we have reached a contradiction. Therefore

x € B. O

(b) Show that the theorem is incorrect by finding a counterexample.
Use truth tables to show that modus tollens is a valid rule of inference.
Use truth tables to check the correctness of the theorem in Example 3.2.4.
Use truth tables to check the correctness of the statements in
exercise 1.

Use truth tables to check the correctness of the statements in exercise 2.
Can the proof in Example 3.2.2 be modified to prove that if x* 4+ y = 13
and x £ 3 then y = 47 Explain.
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3.3. Proofs Involving Quantifiers

Look again at Example 3.2.3. In that example we said that x could be any-
thing at all, and we proved the statement x € A \ C — x € B. Because the
reasoning we used would apply no matter what x was, our proof actually shows
that x € A\ C — x € B is true for all x. In other words, we can conclude
Yx(x e A\NC — x € B).

This illustrates the easiest and most straightforward way of proving a goal
of the form Vx P(x). If you can give a proof of the goal P(x) that would work
no matter what x was, then you can conclude that ¥x P(x) must be true. To
make sure that your proof would work for any value of x, it is important to
start your proof with no assumptions about x. Mathematicians express this by
saying that x must be arbitrary. In particular, you must not assume that x is
equal to any other object already under discussion in the proof. Thus, if the
letter x is already being used in the proof to stand for some particular object,
then you cannot use it to stand for an arbitrary object. In this case you must
choose a different variable that is not already being used in the proof, say y,
and replace the goal Vx P(x) with the equivalent statement ¥y P(y). Now you
can proceed by letting y stand for an arbitrary object and proving P(y).

To prove a goal of the form Vx P(x):

Let x stand for an arbitrary object and prove P(x). The letter x must be a
new variable in the proof. If x is already being used in the proof to stand for
something, then you must choose an unused variable, say y, to stand for the
arbitrary object, and prove P(y).

Scratch work

Before using strategy:

Givens Goal
— Wx P(x)
After using strategy:
Givens Goal
— P(x)

Form of final proof:

Let x be arbitrary.
[Proof of P(x) goes here.]
Since x was arbitrary, we can conclude that Vx P(x).
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Example 3.3.1. Suppose A, B, and C are sets, and A\ B € C. Prove that
A\C C B.

Scratch work

Givens Goal
A\BCC A\CCBH

As usual, we look first at the logical form of the goal to plan our strategy. In
this case we must write out the definition of C to determine the logical form
of the goal.

Givens Goal
A\BCC Vx(x e A\NC —> x €B)

Because the goal has the form ¥x P(x), where P(x) is the statement x €
A\ C — x € B, we will introduce a new variable x into the proof to stand for
an arbitrary object and then try to prove x € A\ C — x € B. Note that x is
a new variable in the proof. It appeared in the logical form of the goal as a
bound variable, but remember that bound variables don’t stand for anything in
particular. We have not yet used x as a free variable in any statement, so it has
not been used to stand for any particular object. To make sure x is arbitrary
we must be careful not to add any assumptions about x to the givens column.
However, we do change our goal:

Givens Goal
A\BCC x€A\C—-xcB

According to our strategy, the final proof should look like this:

Let x be arbitrary.

[Proof of x € A\ C — x € B goes here.]
Since x was arbitrary, we can conclude that Vx(x € A\ C — x € B),
soA\C C B.

The problem is now exactly the same as in Example 3.2.3, so the rest of the
solution is the same as well. In other words, we can simply insert the proof we
wrote in Example 3.2.3 between the first and last sentences of the proof written
here.

Solution

Theorem. Suppose A, B, and C are sets, and A\ B € C. Then A\ C C B.
Proof. Let x be arbitrary. Suppose x € A\ C. This means that x € A and
x ¢ C. Suppose x ¢ B. Then x € A\ B, so since A\ BC C,x e C. But
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this contradicts the fact that x ¢ C. Therefore x € B. Thus, if x € A \ C then
X € B. Since x was arbitrary, we can conclude that Vx(x € A\ C — x € B),
so A\ C C B. O

Notice that, although this proof shows that every element of A \ C is also
an element of B, it does not contain phrases such as “every element of A \ C”
or “all elements of A\ C.” For most of the proof we simply reason about x,
which is treated as a single, fixed element of A \ C. We pretend that x stands for
some particular element of A \ C, being careful to make no assumptions about
which element it stands for. It is only at the end of the proof that we observe
that, because x was arbitrary, our conclusions about x would be true no matter
what x was. This is the main advantage of using this strategy to prove a goal of
the form Vx P(x). It enables you to prove a goal about all objects by reasoning
about only one object, as long as that object is arbitrary. If you are proving a
goal of the form ¥x P(x) and you find yourself saying a lot about “all x’s” or
“every x,” you are probably making your proof unnecessarily complicated by
not using this strategy.

As we saw in Chapter 2, statements of the form Vx(P(x) — Q(x)) are quite
common in mathematics. It might be worthwhile, therefore, to consider how
the strategies we’ve discussed can be combined to prove a goal of this form.
Because the goal starts with Vx, the first step is to let x be arbitrary and try to
prove P(x) — Q(x). To prove this goal, you will probably want to assume that
P(x)1s true and prove Q(x). Thus, the proof will probably start like this: *“Let x
be arbitrary. Suppose P(x).” It will then proceed with the steps needed to reach
the goal Q(x). Often in this type of proof the statement that x is arbitrary is left
out, and the proof simply starts with “Suppose P(x).” When a new variable x
is introduced into a proof in this way, it is usually understood that x is arbitrary.
In other words, no assumptions are being made about x other than the stated
one that P(x) is true.

An important example of this type of proof is a proof in which the goal
has the form Vx € A P(x). Recall that Vx € A P(x) means the same thing as
Vx(x € A — P(x)), so according to our strategy the proof should start with
“Suppose x € A” and then proceed with the steps needed to conclude that P (x)
is true. Once again, it is understood that no assumptions are being made about
x other than the stated assumption that x € A, so x stands for an arbitrary
element of A.

Mathematicians sometimes skip other steps in proofs, if knowledgeable read-
ers could be expected to fill them in themselves. In particular, many of our proof
strategies have suggested that the proof end with a sentence that sums up why
the reasoning that has been given in the proof leads to the desired conclusion.
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In a proof in which several of these strategies have been combined, there might
be several of these summing up sentences, one after another, at the end of the
proof. Mathematicians often condense this summing up into one sentence, or
even skip it entirely. When you are reading a proof written by someone else,
you may find it helpful to fill in these skipped steps.

Example 3.3.2. Suppose A and B are sets. Prove that if AN B = A then
A CB.

Scratch work

Our goalisAN B = A — A C B. Because the goal is a conditional statement,
we add the antecedent to the givens list and make the consequent the goal. We
will also write out the definition of C in the new goal to show what its logical
form is.

Givens Goal
ANB=A Yyx(x e A — x € B)

Now the goal has the form Vx(P(x) — Q(x)), where P(x) is the statement
x € Aand Q(x) is the statement x € B. We therefore let x be arbitrary, assume
x € A, and prove x € B:

Givens Goal
ANB=A xeB
xEeA

Combining the proof strategies we have used, we see that the final proof will
have this form:

Suppose AN B = A.
Let x be arbitrary.
Suppose x € A.
[Proof of x € B goes here.]
Therefore x € A — x € B.
Since x was arbitrary, we can conclude that Vx(x € A — x € B), so
ACB.
Therefore, if AN B = A then A C B.

As discussed earlier, when we write up the final proof we can skip the sentence
“Let x be arbitrary,” and we can also skip some or all of the last three sentences.

We have now reached the point at which we can analyze the logical form of
the goal no further. Fortunately, when we look at the givens, we discover that
the goal follows easily. Sincex € Aand AN B = A, itfollows thatx € AN B,
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so x € B. (In this last step we are using the definition of M: x € A N B means
xeAandx € B.)

Solution

Theorem. Suppose A and B are sets. f AN B = A then A C B.

Proof. Suppose AN B = A, and suppose x € A. Thensince ANB=A,x €
AN B, so x € B. Since x was an arbitrary element of A, we can conclude
that A C B. O

Proving a goal of the form 3x P(x) also involves introducing a new variable x
into the proof and proving P (x), but in this case x will not be arbitrary. Because
you only need to prove that P(x) is true for at least one x, it suffices to assign
a particular value to x and prove P(x) for this one value of x.

To prove a goal of the form Jx P(x):

Try to find a value of x for which you think P(x) will be true. Then start
your proof with “Let x = (the value you decided on)” and proceed to prove
P(x) for this value of x. Once again, x should be a new variable. If the letter
x is already being used in the proof for some other purpose, then you should
choose an unused variable, say y, and rewrite the goal in the equivalent form
dy P(y). Now proceed as before by starting your proof with “Let y = (the value
you decided on)” and prove P(y).

Seratch work

Before using strategy:

Givens Goal
— dx P(x)
After using strategy:
Givens Goal
— P(x)

x = (the value you decided on)
Form of final proof:

Let x = (the value you decided on).
[Proof of P(x) goes here.]
Thus, 3x P(x).
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Finding the right value to use for x may be difficult in some cases. One
method that is sometimes helpful is to assume that P(x) is true and then see
if vou can figure out what x must be, based on this assumption. If P(x) is an
equation involving x, this amounts to solving the equation for x. However, if
this doesn’t work, you may use any other method you please to try to find a
value to use for x, including trial-and-error and guessing. The reason you have
such freedom with this step is that the reasoning yout wse to find a value for x
will not appear in the final proof. This is because of our rule that a proof should
only contain the reasoning needed to justify the conclusion of the proof, not
an explanation of how you thought of that reasoning. To justify the conclusion
that 3x P(x) is true it is only necessary to verify that P(x) comes out true when
x 1s assigned some particular value. How you thought of that value is your own
business, and not part of the justification of the conclusion.

Example 3.3.3. Prove that for every real number x, if x > 0 then there is a
real number y such that y(y + 1) = x.

Scratch work

In symbols, our goal is Vx(x > 0 — Jy[v(y + 1) = x]), where the variables
x and y in this statement are understood to range over 2. We therefore start by
letting x be an arbitrary real number, and we then assume that x = 0 and try
to prove that 3y[y(y 4+ 1) = x]. Thus, we now have the following given and
goal:

Givens Goal

x>0 Iylyly + 1) =x]

Because our goal has the form JyP(y), where P(y) is the statement
¥(y 4+ 1) = x, according to our strategy we should try to find a value of y
for which P(y) is true. In this case we can do it by solving the equation
y(y + 1) = x for y. It’s a quadratic equation and can be solved using the
quadratic formula:

Yo+D=x = y4+y—-x=0 = y= w
Note that /1 + 4x is defined, since we have x = 0 as a given. We have actually
found two solutions for y, but to prove that 3y[v(y + 1) = x| we only need
to exhibit one value of y that makes the equation y(y + 1) = x true. Either
of the two solutions could be used in the proof. We will use the solution

y=(=14+1+4x)/2
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The steps we 've used to solve for y should not appear in the final proof. In the
final proof we will simply say “Let y = (=1 4+ +/1 + 4x)/2” and then prove
that y(v + 1) = x. In other words, the final proof will have this form:

Let x be an arbitrary real number.
Suppose x = 0.
Lety = (—1+ /1 4+ 4x)/2.
[Proof of y(y + 1) = x goes here.]
Thus, Iy[y(y + 1) = x].
Therefore x = 0 — Jy[y(y + 1) = x].
Since x was arbitrary, we can conclude that ¥x(x = 0 — Iy[y(y + 1)

=x]).

To see what must be done to fill in the remaining gap in the proof, we add
vy = (—1 4 +/1 + 4x)/2 to the givens list and make y(y + 1) = x the goal:

Givens Goal
x=0 yiyv+ 1D =x
-1 4+ /1+4x
e
: 2

We can now prove that the equation y(y + 1) = x is true by simply sub-
stituting (—1 + /1 + 4x)/2 for y and verifying that the resulting equation is
true.

Solution

Theorem. For every real number x, if x = O then there is a real number y such
that y(y + 1) = x.
Proof. Let x be an arbitrary real number, and suppose x > 0. Let

—1+ /T + 4x

y = 5

which is defined since x = (. Then,

1+ VTFax\ (—1+/T54
y(_\’+l):( +2+x)_( +2+x+l)

(VI t4x -1 JI4+4dx +1
2 2
1+4dx —1 _4x

4 g " O
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Sometimes when you're proving a goal of the form JIyQ(y) you won't
be able to tell just by looking at the statement Q(y) what value you should
plug in for y. In this case you may want to look more closely at the givens
to see if they suggest a value to use for y. In particular, a given of the form
dx P(x) may be helpful in this situation. This given says that an object with a
certain property exists. It is probably a good idea to imagine that a particular
object with this property has been chosen and to introduce a new variable,
say xp, into the proof to stand for this object. Thus, for the rest of the proof
you will be using x; to stand for some particular object, and you can assume
that with x; standing for this object, P(xp) is true. In other words, you
can add P(xy) to your givens list. This object xg, or something related to
it, might turn out to be the right thing to plug in for y to make Q(y) come out true.

To use a given of the form 3x P(x):
Introduce a new variable x; into the proof to stand for an object for which
P(xy) is true. This means that you can now assume that P(x;) is true. Logicians
call this rule of inference existential instantiation.

Note that using a given of the form 3x P(x) is very different from proving a
goal of the form 3x P(x), because when using a given of the form Ix P(x), you
don’t get to choose a particular value to plug in for x. You can assume that x;
stands for some object for which P(xy) is true, but you can’t assume anything
else about xy. On the other hand, a given of the form ¥x P(x) says that P(x)
would be true no martter what value is assigned to x. You can therefore choose
any value you wish to plug in for x and use this given to conclude that P(x) is
true.

To use a given of the form Vx P (x):
You can plug in any value, say a, for x and use this given to conclude that
P(a) is true. This rule is called universal instantiation.

Usually, if you have a given of the form 3x P(x), you should apply existen-
tial instantiation to it immediately. On the other hand, you won’t be able to
apply universal instantiation to a given of the form Vx P(x) unless you have
a particular value a to plug in for x, so you might want to wait until a likely
choice for a pops up in the proof. For example, consider a given of the form
Vx(P(x) — Q(x)). You can use this given to conclude that P(a) — Q(a) for
any a, but according to our rule for using givens that are conditional state-
ments, this conclusion probably won't be very useful unless you know either
P(a)or —Q(a). You should probably wait until an object a appears in the proof
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for which you know either P(a) or —Q(a), and plug this a in for x when it
appears.

We’ve already used this technique in some of our earlier proofs when dealing
with givens of the form A C B. For instance, in Example 3.2.5 we used the
givens A C B anda € A to conclude that @ € B. The justification for this rea-
soning is that A € B meansVx(x € A — x € B), so by universal instantiation
we can plug in « for x and conclude thata € A — a € B. Since we also know
a € A, it follows by modus ponens that a € B.

Example 3.3.4. Suppose F and G are families of sets and F N G # &. Prove
that NF € UG.

Scratch work

Our first step in analyzing the logical form of the goal is to write out the meaning
of the subset symbol, which gives us the statement Vx(x € NF — x € UG).
We could go further with this analysis by writing out the definitions of union
and intersection, but the part of the analysis that we have already done will be
enough to allow us to decide how to get started on the proof. The definitions
of union and intersection will be needed later in the proof, but we will wait
until they are needed before filling them in. When analyzing the logical forms
of givens and goals in order to figure out a proof, it is usually best to do only
as much of the analysis as is needed to determine the next step of the proof.
Going further with the logical analysis usually just introduces unnecessary
complication, without providing any benefit.

Because the goal means ¥Yx(x € NF — x € UG), we let x be arbitrary,
assume x € NJF, and try to prove x € UG.

Givens Goal
FNG£Y x e Ug
x enF

The new goal means 3A € G(x € A), so to prove it we should try to find a
value that will “work” for A. Just looking at the goal doesn’t make it clear how
to choose A, so we look more closely at the givens. We begin by writing them
out in logical symbols:

Givens Goal
JAA e FNG) JA e G(x € A)
VYA e Flx € A)

The second given starts with YA, so we may not be able to use this given
until a likely value to plug in for A pops up during the course of the proof. In
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particular, we should keep in mind that if we ever come across an element of F
while trying to figure out the proof, we can plug it in for A in the second given
and conclude that it contains x as an element. The first given, however, starts
with 3A, so we should use it immediately. It says that there is some object that
is an element of 7 N G. By existential instantiation, we can introduce a name,
say Ay, for this object. Thus, we can treat Ay € F N G as a given from now on.
Because we now have a name, Ay, for a particular element of F N G, it would
be redundant to continue to discuss the given statement JA(A € F N G), so we
will drop it from our list of givens. Since our new given Ay € F N G means
Ay € Fand Ay € G, we now have the following situation:

Givens Goal
Ag e F JAeGx € A)
Ay € G
VA e F(x € A)

If you've been paying close attention, you should know what the next step
should be. We decided before to keep our eyes open for any elements of F that
might come up during the proof, because we might want to plug them in for A
in the last given. An element of F has come up: Ay! Plugging A in for A in
the last given, we can conclude that x € Ay. Any conclusions can be treated in
the future as givens, so you can add this statement to the givens column if you
like.

Remember that we decided to look at the givens because we didn’t know
what value to assign to A in the goal. What we need is a value for A thatisin G
and that will make the statement x € A come out true. Has this consideration
of the givens suggested a value to use for A? Yes! Use A = Ajy.

Although we translated the given statements x € NJF,x € UG, and F N
G £ @ into logical symbols in order to figure out how to use them in the
proof, these translations are not usually written out when the proof is written
up in final form. In the final proof we just write these statements in their original
form and leave it to the reader of the proof to work out their logical forms in
order to follow our reasoning.

Solution

Theorem. Suppose F and G are families of sets, and F NG #J. Then
NF < UG.

Proof. Suppose x € NF. Since F NG # &, we can let Ay be an element of
FNgG. Thus, Ay € Fand Ay € G. Since x € NF and Ay € F, it follows that
x € Ag. But we also know that Ay € G, so we can conclude that x € UG. [
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Proofs involving the quantifiers for all and there exists are often difficult for
them.

That last sentence confused you, didn’t it? You're probably wondering, “Who
are they?” Readers of your proofs will experience the same sort of confusion
if you use variables without explaining what they stand for. Beginning proof-
writers are sometimes careless about this, and that’s why proofs involving the
quantifiers for all and there exists are often difficult for them. (It made more
sense that time, didn’t it?) When vou use the strategies we’ve discussed in this
section, you’ll be introducing new variables into your proof, and when you
do this, you must always be careful to make it clear to the reader what they
stand for.

For example, if you were proving a goal of the form Vx € A P(x), you would
probably start by introducing a variable x to stand for an arbitrary element of
A. Your reader won’t know what x means, though, unless you begin your proof
with “Let x be an arbitrary element of A,” or “Suppose x € A.” Of course,
you must be clear in your own mind about what x stands for. In particular,
because x is to be arbitrary, you must be careful not to assume anything about
x other than the fact that x € A. It might help to think of x as being chosen
by someone else; you have no control over which element of A they’ll pick.
Using a given of the form Jx P(x) is similar. This given tells you that you
can introduce a new variable x; into the proof to stand for some object for
which P(xp) is true, but you cannot assume anything else about xy. On the
other hand, if you are proving 3x P(x), your proof will probably start “Let
x = ...” This time you get to choose the value of x, and you must tell the
reader explicitly that you are choosing the value of x and what value you have
chosen.

It’s also important, when you're introducing a new variable x, to be sure you
know what kind of object x is. Is it a number? a set? a function? a matrix? You’d
better not write @ € X unless X is a set, for example. If you aren’t careful about
this, you might end up writing nonsense. You also sometimes need to know what
kind of object a variable stands for to figure out the logical form of a statement
involving that variable. For example, A = B means Vx(x € A <> x € B) if A
and B are sets, but not if they’re numbers.

The most important thing to keep in mind about introducing variables into
a proof is simply the fact that variables must always be introduced before they
are used. If you make a statement about x (i.e., a statement in which x occurs
as a free variable) without first explaining what x stands for, a reader of your
proof won’t know what you're talking about — and there’s a good chance that
you won't know what you're talking about either!
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Because proofs involving quantifiers may require more practice than the
other proofs we have discussed so far, we end this section with two more
examples.

Example 3.3.5. Suppose B is a set and F is a family of sets. Prove that if
UF C B then F C #(B).

Scratch Work

We assume UF C B and try to prove F C #”(B). Because this goal means
VYx(x € F — x € #’(B)), we let x be arbitrary, assume x € F, and set x €
#(B) as our goal. Recall that F is a family of sets, so since x € F, x is a set.
Thus, we now have the following givens and goal:

Givens Goal
UF C B x € P(B)
xeF

To figure out how to prove this goal, we must use the definition of power set.
The statement x € #’ (B)means x € B, orinotherwordsVy(y € x — y € B).
We must therefore introduce another arbitrary object into the proof. We let y
be arbitrary, assume y € x, and try to prove y € B.

Givens Goal
UFCB yeEB
xeF
yEX

The goal can be analyzed no further, so we must look more closely at the
givens. Our goal is y € B, and the only given that even mentions B is the first.
In fact, the first given would enable us to reach this goal, if only we knew that
y € UF. This suggests that we might try treating y € UJF as our goal. If we can
reach this goal, then we can just add one more step, applying the first given,
and the proof will be done.

Givens Goal
UFCB yeUF
xeF
yex

Once again, we have a goal whose logical form can be analyzed, so we use
the form of the goal to guide our strategy. The goal means 3A € F(y € A), so
to prove it we must find a set A such that A € F and y € A. Looking at the
givens, we see that x is such a set, so the proof is done.
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Solution

Theorem. Suppose B is a set and F is a family of sets. If UF C B then
F C 7 (B).

Proof. Suppose UF C B. Let x be an arbitrary element of F. Let y be an
arbitrary element of x. Since y € x and x € F, clearly y € UF. But then since
UF C B,y € B. Since y was an arbitrary element of x, we can conclude that
X C B, sox € #(B). But x was an arbitrary element of F, so this shows that
F C #’(B), as required. O

This is probably the most complex proof we’ve done so far. Read it again
and make sure you understand its structure and the purpose of every sentence.
Isn’t it remarkable how much logical complexity has been packed into just a
few lines?

It is not uncommon for a short proof to have such a rich logical structure.
This efficiency of exposition is one of the most attractive features of proofs, but
it also often makes them difficult to read. Although we’ve been concentrating
so far on writing proofs, it is also important to learn how to read proofs written
by other people. To give you some practice with this, we present our last proof
in this section without the scratch work. See if you can follow the structure of
the proof as you read it. We’ll provide a commentary after the proof that should
help you to understand it.

For this proof we need the following definition: For any integers x and y,
we'll say that x divides y (or y is divisible by x) it Ik € Z(kx = y). We use the
notation x | ¥ to mean “x divides y.” For example, 4 | 20, since 5 - 4 = 20.

Theorem 3.3.6. For all integers a, b, and ¢, if a|band b | c then a | c.

Proof. Let a, b, and ¢ be arbitrary integers and suppose a | b and b | c. Since
a | b, we can choose some integer m such that ma = b. Similarly, since b | ¢,
we can choose an integer n such that nb = c¢. Therefore ¢ = nb = nma, so
since nm is an integer, a | ¢. O

Commentary. The theorem says Ya € Zv¥b € Z¥c € Z{a |b A b|c — a]c),
so the most natural way to proceed is to let a, b, and ¢ be arbitrary integers,
assume a | b and b | ¢, and then prove a | ¢. The first sentence of the proof indi-
cates that this strategy is being used, so the goal for the rest of the proof must
be to prove that a | ¢. The fact that this is the goal for the rest of the proof is not
explicitly stated. You are expected to figure this out for yourself by using your
knowledge of proof strategies. You might even want to make a givens and goal
list to help you keep track of what is known and what remains to be proven as
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you continue to read the proof. At this point in the proof, the list would look
like this:

Givens Goal
a, b, and care integers alce
alb
ble

Because the new goal means 3k € Z(ka = c¢), the proof will probably pro-
ceed by finding an integer k such that ka = ¢. As with many proofs of existential
statements, the first step in finding such a k involves looking more closely at the
givens. The next sentence of the proof uses the given a | b to conclude that we
can choose an integer m such that ma = b. The proof doesn’t say what rule of
inference justifies this. It is up to you to figure it out by working out the logical
form of the given statement « | b, using the definition of divides. Because this
given means 3k € Z(ka = b), you should recognize that the rule of inference
being used is existential instantiation. Existential instantiation is also used in
the next sentence of the proof to justify choosing an integer n such that nb = c.
The equations ma = b and nb = ¢ can now be added to the list of givens.

Some steps have also been skipped in the last sentence of the proof. We
expected that the goal a | ¢ would be proven by finding an integer k such that
ka = c.Fromthe equation ¢ = nma and the fact that nm is an integer, it follows
that k = nm will work, but the proof doesn’t explicitly say that this value of
k is being used; in fact, the variable k is not mentioned at all in the proof. Of
course, the variable k is not mentioned in the statement of the theorem either.
It is not uncommon for a proof of an existential statement to be written in this
way, especially when, as in this case, the goal is not written out explicitly in the
statement of the theorem as an existential statement. In this case, the existential
nature of the goal became apparent only when we filled in the definition of
divides.

Exercises

Note: Exercises marked with the symbol » can be done with Proof Designer.
For more information about Proof Designer, see Appendix 2.

*1. In exercise 7 of Section 2.2 you used logical equivalences to show that
Ax(P(x) — Q(x)) is equivalent to ¥x P(x) — dx Q(x). Now use the
methods of this section to prove that if 3x(P(x) — @Q(x)) is true, then
¥x P(x) — dx Q(x)istrue. (Note: The other direction of the equivalence
is quite a bit harder to prove. See exercise 29 of Section 3.5.)
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7.
B8,
"9,
10.

11.
B*12.

bh16.

*17.

*20.

Proofs

. Prove that if A and B \ C are disjoint, then AN B € C.
*3.
hd,
. The hypothesis of the theorem proven in exercise 4 is A € Z(A).

Prove thatif A € B\ C then A and C are disjoint.
Suppose A C “”(A). Prove that %7 (A) C (4 (A)).

(a) Can you think of a set A for which this hypothesis is true?
(b) Can you think of another?

. Suppose x is a real number.

(a) Prove that if x £ 1 then there is a real number y such that -:—4_'—; =x.
(b) Prove that if there is a real number y such that -:% = x,thenx # 1.
Prove that for every real number x, if x > 2 then there is a real number
y such that y + ‘l =X.

Prove that if F is a family of sets and A € F, then A C UF.

Prove that if F is a family of sets and A € F, then NF C A.

Suppose that F is anonempty family of sets, Bisaset,and VA € F(B C
A). Prove that B C N.F.

Suppose that F is a family of sets. Prove that if & € F then N.F = .
Suppose F and G are families of sets. Prove that if 7 € G then UF C

ug.

. Suppose F and G are nonempty families of sets. Prove that if ¥ € G

then NG € NF.

. Suppose {A; |i € I} i1s an indexed family of sets. Prove that

Uie; 2 (A;) € P (Uier Ap). (Hint: First make sure you know what all
the notation means!)

. Suppose {A; | i € I'}isan indexed family of sets and / # &. Prove that

NictA; € Nigr 7 (A;).

Prove the converse of the statement proven in Example 3.3.5. In other
words, prove that if 7 C #°(B) then UF C B.

Suppose F and G are nonempty families of sets, and every element of
JF is a subset of every element of G. Prove that UF € NG.

. In this problem all variables range over Z, the set of all integers.

(a) Provethatifa|banda|c, thena|(b + c).
(b) Prove that if ac | be and ¢ £ 0, then a | b.

. (a) Prove that for all real numbers x and y there is a real number z such

thatx +z =y — z.

(b) Would the statement in part (a) be correct if “real number” were
changed to “integer”? Justify your answer.

Consider the following theorem:

Theorem. For every real number x, x> = 0.

What’s wrong with the following proof of the theorem?
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*22.

23.
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Proof. Suppose not. Then for every real number x, x> < 0. In particular,
plugging in x = 3 we would get 9 < 0, which is clearly false. This
contradiction shows that for every number x, x> = 0. O

Consider the following incorrect theorem:

Incorrect Theorem. If ¥Vx € A(x #£0) and A C B then Vx € B(x
= 0).

(a) What's wrong with the following proof of the theorem?

Proof. Let x be an arbitrary element of A. Since Yx € A(x # 0),
we can conclude that x 7 0. Also, since A C B, x € B. Since
x € B,x 0, and x was arbitrary, we can conclude that ¥x €
B(x # 0). O

(b) Find a counterexample to the theorem. In other words, find an ex-
ample of sets A and B for which the hypotheses of the theorem are
true but the conclusion is false.

Consider the following incorrect theorem:

Incorrect Theorem. Jx € RVy € R(xy* =y — x).
What’s wrong with the following proof of the theorem?
Proof. Let x = y/(y* + 1). Then

¥ )I 3 )I

_)’2+] :)12+l :)Jz+l

y—x=y— -yz:_\:yz_ ]

Consider the following incorrect theorem:

Incorrect Theorem. Suppose F and G are families of sets. If UF and
UG are disjoint, then so are F and G.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose UJF and UG are disjoint. Suppose F and G are not
disjoint. Then we can choose some set A such that A € Fand A € G.
Since A € F, by exercise 8, A C UF, so every element of A is in
UF. Similarly, since A € G, every element of A is in UG. But then
every element of A 1sin both UF and UG, and this is impossible since
UF and UG are disjoint. Thus, we have reached a contradiction, so
JF and G must be disjoint. O

(b) Find a counterexample to the theorem.




124 Proofs

24. Consider the following putative theorem:
Theorem? For all real numbers x and v, x*> + xy —2y> = 0.
(a) What's wrong with the following proof of the theorem?

Proof. Let x and y be equal to some arbitrary real number r. Then
x4 xy=2yt=ri4r.r-22=0.

Since x and y were both arbitrary, this shows that for all real numbers
xand y, x? +xy — 2y* = 0. 0

(b) Is the theorem correct? Justify your answer with either a proof or a
counterexample.
*25. Prove that for every real number x there is a real number y such that for
every real number z, yz = (x + 2)* — (xZ + 2%).
26. (a) Comparing the various rules for dealing with quantifiers in proofs,
you should see a similarity between the rules for goals of the form
Vx P(x) and givens of the form Jx P(x). What is this similarity?
What about the rules for goals of the form 3x P(x) and givens of the
form Vx P(x)?
(b) Can you think of a reason why these similarities might be expected?
(Hint: Think about how proof by contradiction works when the goal
starts with a quantifier.)

3.4. Proofs Involving Conjunctions and Biconditionals

The method for proving a goal of the form P A Q is so simple it hardly seems
worth mentioning:

To prove a goal of the form P A Q:
Prove P and Q separately.

In other words, a goal of the form P » Q is treated as two separate goals:
P, and Q. The same is true of givens of the form P A Q:

To use a given of the form P » Q:
Treat this given as two separate givens: P, and Q.

We've already used these ideas, without mention, in some of our previous
examples. For example, the definition of the given x € A\ C in Example 3.2.3
wasx € A A x ¢ C,butwe treated it as two separate givens: x € A,andx ¢ C.
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Example 3.4.1. Suppose A € B, and A and C are disjoint. Prove that
ACB\C.

Scratch work

Givens Goal
ACB ACB\C
ANC=@

Analyzing the logical form of the goal, we see that it has the form ¥Vx(x €
A — x € B\ (), so we let x be arbitrary, assume x € A, and try to prove that
x € B\ C. The new goal x € B\ C means x € B A x ¢ C, so according to
our strategy we should split this into two goals, x € B and x ¢ C, and prove
them separately.

Givens Goals
ACB xXE€B
ANC=9@ xgC
xe A

The final proof will have this form:

Let x be arbitrary.
Suppose x € A.
[Proof of x € B goes here.]
[Proof of x ¢ C goes here.]
Thus,x e BArx ¢ C,sox € B\ C.
Therefore x € A - x € B\ C.
Since x was arbitrary, Vx(x e A > x e B\ C),s0 A C B\ C.

The first goal, x € B, clearly follows from the fact that x € A and A C B.
The second goal, x ¢ C, follows from x € A and AN C = You can see
this by analyzing the logical form of the statement A N C = . It is a negative
statement, but it can be reexpressed as an equivalent positive statement;

ANC = isequivalent to =3y(y € A Ay € C) (definitions of N and &),
which is equivalent to Vy—(y € A A y € C) (quantifier negation law),
which is equivalentto Vy(y ¢ Av y ¢ C) (DeMorgan’s law),
which is equivalent to Vy(y € A — y ¢ C) (conditional law).

Plugging in x for y in this last statement, we see thatx € A — x ¢ C, and since
we already know x € A, we can conclude that x ¢ C.

Solution

Theorem. Suppose A C B, and A and C are disjoint. Then A € B\ C
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Proof. Suppose x € A. Since A C B, it follows that x € B, and since A and C
are disjoint, we must have x ¢ C. Thus, x € B\ C. Since x was an arbitrary
element of A, we can conclude that A C B\ C. O

Using our strategies for working with conjunctions, we can now work out
the proper way to deal with statements of the form P < @ in proofs. Because
P < Q is equivalent to (P — Q) A (Q — P), according to our strategies a
given or goal of the form P «> Q should be treated as two separate givens or
goals: P — (Q,and Q — P.

To prove a goal of the form P < Q:
Prove P — @ and Q — P separately.

To use a given of the form P < Q:
Treat this as two separate givens: P — @Q,and Q¢ — P.

This is illustrated in the next example, in which we use the following
definitions: An integer x is even if 3k € Z(x = 2k), and x is odd if 3k €
Z(x = 2k + 1). We also use the fact that every integer is either even or odd,
but not both. We'll see a proof of this fact in Chapter 6.

Example 3.4.2. Suppose x is an integer. Prove that x is even iff x? is even.
Scratch work

The goal is (x is even) <> (x2 is even), so we prove the two goals (x is even) —
(x? is even) and (x” is even) — (x is even) separately. For the first, we assume
that x is even and prove that x? is even:

Givens Goal
xeZ x? is even
x is even

Writing out the definition of even in both the given and the goal will reveal
their logical forms:

Givens Goal
xei Ik € Z(x* = 2k)
3k € Z(x = 2k)

Because the second given starts with 3k, we immediately use it and let k
stand for some particular integer for which the statement x = 2k is true. Thus,
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we have two new given statements: k € Z, and x = 2k.

Givens Goal
xeZ Ik e Z(x? = 2k)
keZ

x =2k

The goal starts with 3k, but since k is already being used to stand for a
particular number, we cannot assign a new value to k to prove the goal. We
must therefore switch to a different letter, say j. One way to understand this is
to think of rewriting the goal in the equivalent form 3 € Z(x*> = 2). To prove
this goal we must come up with a value to plug in for j. It must be an integer,
and it must satisfy the equation x> = 2. Using the given equation x = 2k, we
see that x2 = (2k)* = 4k? = 2(2k?), so it looks like the right value to choose
for j is j = 2k2. Clearly 2k? is an integer, so this choice for j will work to
complete the proof of our first goal.

To prove the second goal (x? is even) — (x is even), we’ll prove the con-

% is not even) instead. Since any integer is

trapositive (x is not even) — (x
either even or odd but not both, this is equivalent to the statement (x is odd) —

(x? is odd).

Givens Goal
xXeZ x?is odd
x is odd

The steps are now quite similar to the first part of the proof. As before, we
begin by writing out the definition of odd in both the second given and the
goal. This time, to avoid the conflict of variable names we ran into in the first
part of the proof, we use different names for the bound variables in the two
statements.

Givens Goal
xeZ JjeZ(x?=2j+1)
JdkeZix=2k+1

Next we use the second given and let k stand for a particular integer for
which x = 2k + 1.

Givens Goal
xel 3jeZ(x?=2j+1)
kel

x=2k+1
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We must now find an integer j such that x> = 2 + 1. Plugging in 2k + 1 for
xwegetx? =2k + 17 =4k> + 4k +1=2Q2k> +2k) + 1,50 j =2k> + 2k
looks like the right choice.

Before giving the final write-up of the proof, we should make a few explana-
tory remarks. The two conditional statements we’ve proven can be thought of
as representing the two directions — and < of the biconditional symbol <> in
the original goal. These two parts of the proof are sometimes labeled with the
symbols — and <. In each part, we end up proving a statement that asserts the
existence of a number with certain properties. We called this number j in the
scratch work, but note that j was not mentioned explicitly in the statement of
the problem. As in the proof of Theorem 3.3.6, we have chosen not to mention
j explicitly in the final proof either.

Solution

Theorem. Suppose x is an integer. Then x is even iff x? is even.
Proof. (—) Suppose x is even. Then for some integer k, x = 2k. Therefore,
x? = 4k? = 2(2k?), so since 2k? is an integer, x? is even. Thus, if x is even

2 is even.

then x
(«) Suppose x is odd. Then x = 2k + 1 for some integer k. Therefore,
x2 =2k + 172 =4k + 4k + 1 = 2(2k* + 2k) + 1, so since 2k* + 2k is an

integer, x? is odd. Thus, if x? is even then x is even. 0

Using the proof techniques we’ve developed, we can now verify some of the
equivalences that we were only able to justify on intuitive grounds in Chapter
2. As an example of this, let’s prove that the formulas Yx—P(x) and —=3x P(x)
are equivalent. To say that these formulas are equivalent means that they will
always have the same truth value. In other words, no matter what statement
P(x) stands for, the statement ¥Yx—=P(x) « —=3x P(x) will be true. We can
prove this using our technique for proving biconditional statements.

Example 3.4.3. Prove that Vx—P(x) «+ —3dx P(x).
Scratch work

(—) We must prove Yx—P(x) — —Jx P(x), so we assume Yx—P(x) and try
to prove —3x P(x). Our goal is now a negated statement, and reexpressing it
would require the use of the very equivalence that we are trying to prove! We
therefore fall back on our only other strategy for dealing with negative goals,
proof by contradiction. We now have the following situation:
Givens Goal
Yx—=P(x) Contradiction
dx P(x)
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The second given starts with an existential quantifier, so we use it immedi-
ately and let x; stand for some object for which the statement P(xy) is true.
But now plugging in x; for x in the first given we can conclude that =P (xy),
which gives us the contradiction we need.

(<) For this direction of the biconditional we should assume —3x P(x) and
try to prove Yx—P(x). Because this goal starts with a universal quantifier, we
let x be arbitrary and try to prove —P(x). Once again, we now have a negated
goal that can’t be reexpressed, so we use proof by contradiction:

Givens Goal
—3x P(x) Contradiction
P(x)

Our first given is also a negated statement, and this suggests that we could
get the contradiction we need by proving Ix P(x). We therefore set this as our
goal.

Givens Goal
—3dx P(x) dx P(x)
P(x)

To keep from confusing the x that appears as a free variable in the second
given (the arbitrary x introduced earlier in the proof) with the x that appears
as a bound variable in the goal, you might want to rewrite the goal in the
equivalent form 3y P(y). To prove this goal we have to find a value of y that
makes P(v) come out true. But this is easy! Our second given, P(x), tells us
that our arbitrary x is the value we need.

Solution

Theorem. ¥Yx—P(x) « —3x P(x).

Proof. (—) Suppose Vx—P(x), and suppose dx P(x). Then we can choose
some x, such that P(xg) is true. But since Yx=P(x), we can conclude that
—P(xy), and this is a contradiction. Therefore Vx—=P(x) — —3Jx P(x).

(<) Suppose —3x P(x). Let x be arbitrary, and suppose P(x). Since we
have a specific x for which P(x) is true, it follows that Jx P(x), which is a
contradiction. Therefore, =P (x). Since x was arbitrary, we can conclude that
Yx—=P(x),s0 =Ix P(x) = Vx—P(x). O

Sometimes in a proof of a goal of the form P <+ Q the steps in the proof of
@ — P are the same as the steps used to prove P — (, but in reverse order.
In this case you may be able to simplify the proof by writing it as a string of
equivalences, starting with P and ending with Q. For example, suppose you
found that you could prove P — Q by first assuming P, then using P to infer
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some other statement R, and then using R to deduce Q; and suppose that the
same steps could be used, in reverse order, to prove that Q — P. In other
words, you could assume (, use this assumption to conclude that R was true,
and then use R to prove P. Since you would be asserting both P — R and
R — P, you could sum up these two steps by saying P < R. Similarly, the
other two steps of the proof tell you that R <> Q. These two statements imply
the goal P <+ Q. Mathematicians sometimes present this kind of proof by
simply writing the string of equivalences

Piff Riff Q.
You can think of this as an abbreviation for “P iff R and R iff Q (and therefore
P iff @).” This is illustrated in the next example.

Example 3.4.4. Suppose A, B, and C are sets. Prove that AN(B\ C) =
(AN B)\ C.

Seratch work

As we saw in Chapter 2, the equation AN(B\ C)= (AN B)\ C means
Vx(x e AN(B\C)«<xe(ANB)\C), but it is also equivalent to
the statement [AN(B\C)S(ANB)\CIA[(ANB)\C S AN(BY )]
This suggests two approaches to the proof. We could let x be arbitrary and then
provex € AN(B\C) < x € (AN B)\ C, or we could prove the two state-
ments AN(BNC)C(ANB)\C and (ANB)\C C AN(B\C). In fact,
almost every proof that two sets are equal will involve one of these two ap-
proaches. In this case we will use the first approach, so once we have introduced
our arbitrary x, we will have an iff goal.

For the (—) half of the proof we assume x € A N (B "\ C) and try to prove
x € (ANB)\C:

Givens Goal
xeAN(B\C) xe(ANB)\C
To see the logical forms of the given and goal, we write out their definitions
as follows:
xeAnNB\C) iffxeAaxeB\CifftxeAnxeBnrx¢C,
x€(ANB)\C iffx e ANBAx¢C iffxcAAxeBAxEC.
At this point it is clear that the given implies the goal, since the last steps
in both strings of equivalences turned out to be identical. In fact, it is also

clear that the reasoning involved in the (<) direction of the proof will be
exactly the same, but with the given and goal columns reversed. Thus, we
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might try to shorten the proof by writing it as a string of equivalences, starting
with x € AN(B Y C) and ending with x € (AN B) \ C. In this case, if we
start with x € A N (B \, C) and follow the first string of equivalences displayed
above, we come to a statement that is the same as the last statement in the
second string of equivalences. We can then continue by following the second
string of equivalences backward, ending with x € (AN B) \ C.

Solution

Theorem. Suppose A, B, and C are sets. Then AN(B\C)=(ANB)\ C.
Proof. Let x be arbitrary. Then

xe AN(B\CQ)iffxe AnxeB\C
iffxeArnxeBarxé¢C
fxe(ANByAxgC
iff xe (AN B)Y\ C.

Thus,¥x(x e AN(B\C) < x e (ANB)\C),soAN(B\C)=(ANB)\C.
O

The technique of figuring out a sequence of equivalences in one order and
then writing it in the reverse order is used quite often in proofs. The order in
which the steps should be written in the final proof is determined by our rule
that an assertion should never be made until it can be justified. In particular,
if you are trying to prove P < (), it is wrong to start your write-up of the
proof with the unjustified statement P < (Q and then work out the meanings
of the two sides P and (, showing that they are the same. You should instead
start with equivalences you can justify and string them together to produce a
Justification of the goal P <> () before you assert this goal. A similar technique
can sometimes be used to figure out proofs of equations, as the next example
shows.

Example 3.4.5. Prove that for any real numbers a and b,

(a+ b)Y —4d(a — b)* = (3b —a)3a —b).

Scratch work

The goal has the form YaVb((a + b)? — 4(a — b)*> = (3b — a)(3a — b)), so we
start by letting a and b be arbitrary real numbers and try to prove the equation.
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Multiplying out both sides gives us:

(a4 b7 —da —b)? = a®>+2ab+b*> — 4(a* — 2ab+ b
= —3a”> + 10ab — 3b%;
(3b — a)3a — by = 9ab — 3a* — 3b* 4+ ab = —3a* + 10ab — 3b%.

Clearly the two sides are equal. The simplest way to write the proof of this
is to write a string of equalities starting with (a + b)> — 4(a — b)* and ending
with (36 — a)(3a — b). We can do this by copying down the first string of
equalities displayed above, and then following it with the second line, written
backward.

Solution
Theorem. For any real numbers a and b,
(a + b)Y’ — 4(a — b)* = (3b — a)(3a — b).

Proof. Let a and b be arbitrary real numbers. Then

(a+ b)Y —4(a — b)? = a® + 2ab + b* — 4a® — 2ab + b*)
= —3a* + 10ab — 3b*
=9ab —3a* —3b>+ab=3b—a)B3a—-b). O

We end this section by presenting another proof without preliminary scratch
work, but with a commentary to help you read the proof.

Theorem 3.4.6. For every integern, 6 |n iff 2 | n and 3 | n.
Proof. Let n be an arbitrary integer.
(—) Suppose 6 | n. Then we can choose an integer k& such that 6k = n.
Therefore n = 6k = 2(3k), so 2 | n, and similarly n = 6k = 3(2k), so0 3 | n.
(<) Suppose 2|nr and 3 | n. Then we can choose integers j and k such
that n = 2j and n = 3k. Therefore 6(j — k) = 6j — 6k = 3(2j) — 2(3k) =
3n—2n=mn,s06|n. O

Commentary. The statement tobe provenisVn € Z(6|n < (2|n A 3|n)),and
the most natural strategy for proving a goal of this form is to let n be arbitrary
and then prove both directions of the biconditional separately. It should be clear
that this is the strategy being used in the proof.

For the left-to-right direction of the biconditional, we assume 6 | n and then
prove 2 |n and 3 | n, treating this as two separate goals. The introduction of
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the integer k is justified by existential instantiation, since the assumption 6 | n
means 3k € Z(6k = n). At this point in the proof we have the following givens
and goals:

Givens Goals
nei 2| n
kel 3|n
6k =n

The first goal, 2 | n, means 3j € Z(2j = n), so we must find an integer j
such that 2j = n. Although the proof doesn’t say so explicitly, the equation
n = 2(3k), which is derived in the proof, suggests that the value being used for
Jis j = 3k. Clearly, 3k is an integer (another step skipped in the proot), so this
choice for j works. The proof of 3 | n is similar.

For the right-to-left direction we assume 2|n and 3 |n and prove 6|n.
Once again, the introduction of j and & is justified by existential instantia-
tion. No explanation is given for why we should compute 6(j — k), but a proof
need not provide such explanations. The reason for the calculation should be-
come clear when, surprisingly, it turns out that 6(j — k) = n. Such surprises
provide part of the pleasure of working with proofs. As in the first half of the
proof, since j — k is an integer, this shows that 6 | n.

Exercises

*1. Use the methods of this chapter to prove that Yx(P(x) A Q(x)) is
equivalent to Vx P(x) A Vx Q(x).
2. Prove thatif A C Band A C Cthen A C BNC.
b3. Suppose A C B. Prove that for everyset C,C\ B € C\ A.
b*4. Prove thatif A C Band A € Cthen B € C.
b5, Prove thatif A C B\ Cand A # ZJthen B € C.

6. Prove that for any sets A, B,and C, A\ (BN C)=(A\ BYU(A\ C),
by finding a string of equivalences starting with x € A\ (B NC) and
ending with x € (A \ B)U (A \ C). (See Example 3.4.4.)

5*7. Use the methods of this chapter to prove that for any sets A and B, #*(A N
B)=2(A)NZ(B).
8. Prove that A C B ift *(A) C #”(B).
*9. Prove that if x and y are odd integers, then xy is odd.

10. Prove that for every integer n, n* is even iff n is even.
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. Consider the following putative theorem:

Theorem? Suppose m is an even integer and n is an odd integer. Then
n*—m’>=n+m.
(a) What's wrong with the following proof of the theorem?

Proof. Since m is even, we can choose some integer k such that
m = 2k. Similarly, since » is odd we have n = 2k + 1. Therefore

W—m =Rk + 1Y — 2k =+ 4k + 1 — 4K =4k + 1

= Qk+ 1)+ @Qk)=n +m. 0
(b) Is the theorem correct? Justify your answer with either a proof or a
counterexample.

Prove that Vx € R[Ay e R(x + y = xy) < x # 1].

Provethat I: e R¥x e RT[Ay e R(y —x = y/x) < x £ z].

Suppose B is a set and F is a family of sets. Prove that U{A\ B | A €

F} S UF \ #(B)).

Suppose F and G are nonempty families of sets and every element of F

is disjoint from some element of G. Prove that UF and NG are disjoint.

Prove that for any set A, A = U (A).

Suppose F and § are families of sets.

(a) Prove that U(F NG) € (UF) N (UG).

(b) What's wrong with the following proof that (UF)N(UG) C
UFNG)?

Proof. Suppose x € (UF) N (UG). This means that x € UF and
x €UG, so 3A € F(x € A) and A € G(x € A). Thus, we can
chooseasetAsuchthatA € 7, A € G,andx € A. Since A € F and
Ae G, Ae FnG. Therefore IA € FNG(x € A), so x € U(F N
G). Since x was arbitrary, we can conclude that (UF) N (UG) C
U(F NG). O

(c) Find an example of families of sets F and G for which U(F N G) #
(UF) N (UG).

Suppose F and G are families of sets. Prove that (UF) N (UG) C

UFNG)IiffYA € FYB € G(AN B C UFNG)).

Suppose F and G are families of sets. Prove that UF and UG are disjoint

iff forall A € F and B € G, A and B are disjoint.

Suppose F and G are families of sets.

(a) Prove that (UF)\ (UG) € U(F \ G).

(b) What's wrong with the following proof that U(F \ G) C (UF)\
(UG)?
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Proof. Suppose x € U(F \ G). Then we can choose some A € F
Gsuchthatx € A.SinceA € F\ G, A€ FandA ¢ G.Sincex € A
and A e F,x e UF. Since x € A and A ¢ G, x ¢ UG. Therefore
x € (UF)\ (UG). O

(c) Prove that U(F \ G) C (UF)\(UG) ift VA € (F\GIVB € G(AN
B = ).

(d) Find an example of families of sets F and G for which U(F \ §) #
(UF)\ (UG).

Suppose F and G are families of sets. Prove that if UF & UG, then there

is some A € Fsuchthatforall Be G, A € B.

Suppose Bisaset, {A; |i € I'}is an indexed family of sets, and I # &,

(a) What proof strategies are used in the following proof that B N
(Uier Aj) = Uje (BN A;)?

Proof. Let x be arbitrary. Suppose x € B N (U;c;A;). Then x € B
and x € U;-; A;, so we can choose some iy € [ such that x € A
Since x € B and x € A; ,x € BNA
A
Now suppose x € U;c;(B N A;). Then we can choose some iy €
I such that x € BN A;,. Therefore x € B and x € A;,. Since x €
Aj,, x € UigsA;. Sincex € Band x € Ui Aj, x € BN (Uier A)).
Since x was arbitrary, we have shown that Vx[x € BN
(UiesAj) < x € Ui (BN Aj)], 80 BN(Uigy A;) = Uiy (B M A;).
O

In®

. Therefore x € U;-;(B N

|'-|]

(b) Prove that B \ (Uje;A;) = Nigi(B\ Aj).

(c) Can you discover and prove a similar theorem about B \ (M;c; A;)?
(Hint: Try to guess the theorem, and then try to prove it. If you can’t
finish the proof, it might be because your guess was wrong. Change
your guess and try again.)

Suppose {A; | i € I} and {B; | i € I} are indexed families of sets and

1+£0.

(a) Prove that Uijc;(A; \ Bi) € (Uies Ai) \ (Nies Bi)

(b) Find an example for which U;c;(A; \ B;) # (Uier A\ (Nier Bi).

Suppose {A; | i € I} and {B; | i € I} are indexed families of sets.

(a) Prove that U;c;(A; N B;) C (Ui A7) N(U;2p B).

(b) Find an example for which U;c;(A; N B;) # (Uier A7) N (Uiey B;).

Prove that for all integers a and b there is an integer ¢ such that a | ¢

and b | c.

(a) Prove that for every integer n, 15 | n iff3 | nand 5 | n.

(b) Prove that it is not true that for every integer n, 60 | n iff 6| n and
10| n.
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3.5. Proofs Involving Disjunctions

Suppose one of your givens in a proof has the form P v Q. This given tells
you that either P or Q is true, but it doesn’t tell you which. Thus, there are two
possibilities that you must take into account. One way to do the proof would
be to consider these two possibilities in turn. In other words, first assume that
P is true and use this assumption to prove your goal. Then assume @ is true
and give another proof that the goal is true. Although you don’t know which of
these assumptions is correct, the given P v Q tells you that one of them must
be correct. Whichever one it is, you have shown that it implies the goal. Thus,
the goal must be true.

The two possibilities that are considered separately in this type of proof —
the possibility that P is true and the possibility that Q is true — are called cases.
The given P v @ justifies the use of these two cases by guaranteeing that these
cases cover all of the possibilities. Mathematicians say in this situation that the
cases are exhaustive. Any proof can be broken into two or more cases at any
time, as long as the cases are exhaustive.

To use a given of the form P v Q:
Break your proof into cases. For case 1, assume that P is true and use this
assumption to prove the goal. For case 2, assume @ is true and give another
proof of the goal.

Scratch work

Before using strategy:

Givens Goal
PV Q _
After using strategy:
Case 1: Givens Goal
P -
Case 2: Givens Goal
0 _

Form of final proof:

Case 1. P is true.
[Proof of goal goes here.]
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Case 2. Q is true.

[Proof of goal goes here.]
Since we know P Vv (, these cases cover all the possibilities. Therefore
the goal must be true.

Example 3.5.1. Suppose that A, B, and C are sets. Prove that if A € C and
BC CthenAUBCC.
Scratch work

We assume A € C and B C C and prove AU B C C. Writing out the goal
using logical symbols gives us the following givens and goal:

Givens Goal
ACC Vi(x e AUB —- x € ()
BCC

To prove the goal we let x be arbitrary, assume x € A U B, and try to prove
x € C. Thus, we now have a new given x € AU B, which we write as x €
A v x € B,and our goal is now x € C.

Givens Goal
ACC xeC
BCC

xeAvxeB

Because the goal cannot be analyzed any further at this point, we look more
closely at the givens. The first given will be useful if we ever come across an
object that is an element of A, since it would allow us to conclude immediately
that this object must also be an element of C. Similarly, the second given will
be useful if we come across an element of B. Keeping in mind that we should
watch for any elements of A or B that might come up, we move on to the third
given. Because this given has the form P v @, we try proof by cases. For the
first case we assume x € A, and for the second we assume x € B. In the first
case we therefore have the following givens and goal:

Givens Goal
ACC xecC
BCC
xeA

We've already decided that if we ever come across an element of A, we can
use the first given to conclude that it is also an element of C. Since we now
have x € A as a given, we can conclude that x € C, which is our goal. The




138 Proofs

reasoning for the second case is quite similar, using the second given instead
of the first.

Solution

Theorem. Suppose that A, B, and C are sets. If A € C and B € C then AU
BcC.
Proof. Suppose A € C and B C C, and let x be an arbitrary elementof A U B.
Then either x € A orx € B.

Case 1. x € A. Thensince AC C,x € C.

Case 2. x € B. Thensince B C C,x € C.

Since we know that either x € A or x € B, these cases cover all the possi-

bilities, so we can conclude that x € C. Since x was an arbitrary element of
AU B, thismeans that A U B C C. O

Note that the cases in this proof are not exclusive. In other words, itis possible
for both x € A and x € B to be true, so some values of x might fall under both
cases. There is nothing wrong with this. The cases in a proof by cases must
cover all possibilities, but there is no harm in covering some possibilities more
than once. In other words, the cases must be exhaustive, but they need not be
exclusive.

Proof by cases is sometimes also helpful if you are proving a goal of the
form P v Q. If you can prove P in some cases and @ in others, then as long as
your cases are exhaustive you can conclude that P v Q is true. This method
is particularly useful if one of the givens also has the form of a disjunction,
because then you can use the cases suggested by this given.

To prove a goal of the form P v QO:
Break your proof into cases. In each case, either prove P or prove Q.

Example 3.5.2. Suppose that A, B and C are sets. Prove that A\ (B\ C) C
(A\B)UC.
Scratch work
Because the goal is Vx(x € A\ (B\ C) — x € (A\ B)U (), we let x be ar-

bitrary, assume x € A\ (B \ C), and try to prove x € (A\ B)U C. Writing
these statements out in logical symbols gives us:

Givens Goal
xeAan—(xeBnrxegl) (xeArnx¢gB)vxeC

We split the given into two separate givens, x € A and =(x € B A x ¢ C),
and since the second is a negated statement we use one of DeMorgan’s laws to
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reexpress it as the positive statement x ¢ B v x € C.

Givens Goal
xeA (xeAaxgB)vxelC
x¢BvxeC

Now the second given and the goal are both disjunctions, so we’ll try consid-
ering the two cases x ¢ B and x € C suggested by the second given. According
to our strategy for proving goals of the form P v @, if in each case we can
either prove x € A A x ¢ B or prove x € C, then the proof will be complete.
For the first case we assume x ¢ B.

Givens Goal
xe A (xeAnrnxgB)vxel
xé¢B

In this case the goal is clearly true, because in fact we can conclude that
x € Anx ¢ B. For the second case we assume x € C, and once again the
goal is clearly true.

Solution

Theorem. Supposethat A, B, and Caresets. Then A\ (B\ C) C (A\ B)UC.
Proof. Suppose x € AN(B\ C). Thenx € A and x ¢ B\ C. Since x ¢ B\
C,itfollows thateitherx ¢ Borx € C. We will consider these cases separately.

Case l.x ¢ B. Thensincex e A,x € A\ B,soxe(A\ B)UC.

Case 2. x € C. Then clearly x € (A\ B)UC.

Since x was an arbitrary element of A \ (B \ C), we can conclude that A\
(B\C)C (A\ B)UC. 0

Sometimes you may find it useful to break a proof into cases even if the cases
are not suggested by a given of the form P v Q. Any proof can be broken into
cases at any time, as long as the cases exhaust all of the possibilities.

Example 3.5.3. Prove that forevery integer x, the remainder when x? is divided
by 4 is either 0 or 1.

Scratch work

We start by letting x be an arbitrary integer and then try to prove that the
remainder when x? is divided by 4 is either 0 or 1.

Givens Goal
xel (x? = 4 has remainder0) v (x> = 4 has remainder 1)
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Because the goal is a disjunction, breaking the proof into cases seems like a
likely approach, but there is no given that suggests what cases to use. However,
trying out a few values for x suggests the right cases:

2

x x? quotientof x> ~4  remainder of x> - 4
l l 0 l
2 4 1 0
3 9 2 1
4 16 4 0
5 25 6 l
6 36 9 0

It appears that the remainder is 0 when x is even and 1 when x is odd. These
are the cases we will use. Thus, for case | we assume x is even and try to prove
that the remainder is 0, and for case 2 we assume x is odd and prove that the
remainder is 1. Because every integer is either even or odd, these cases are
exhaustive.

Filling in the definition of even, here are our givens and goal for case 1:

Givens Goal
xeZ x? = 4 has remainder 0
Ik € Z(x = 2k)

We immediately use the second given and let k stand for some particular integer
for which x = 2k. Then x? = (2k)*> = 4k?, so clearly when we divide x? by 4
the quotient is k* and the remainder is 0.

Case 2 is quite similar:

Givens Goal
xeZl x2 = 4 has remainder 1
e Zx = 2% + 1)

Once again we use the second given immediately and let k stand for an integer
forwhichx =2k + 1.Thenx? = 2k + 1) = dk* + 4k + 1 = 4(k* + k) + 1,

so when x? is divided by 4 the quotient is k> 4 k and the remainder is 1.

Solution

Theorem. For every integer x, the remainder when x* is divided by 4 is either
0orl
Proof. Suppose x is an integer. We consider two cases.

Case 1. x is even. Then x = 2k for some integer k, so x? = 4k°. Clearly the
remainder when x? is divided by 4 is 0.
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Case 2. x isodd. Then x = 2k + 1 forsome integer k, so x? = 4k? 4 4k + 1.
Clearly in this case the remainder when x? is divided by 4 is 1. O

Sometimes in a proof of a goal that has the form P v Q it is hard to figure
out how to break the proof into cases. Here’s a way of doing it that is often
helpful. Simply assume that P is true in case 1 and assume that it is false in
case 2. Certainly P is either true or false, so these cases are exhaustive. In the
first case you have assumed that P is true, so certainly the goal P v Q is true.
Thus, no further reasoning is needed in case 1. In the second case you have
assumed that P is false, so the only way the goal P v Q could be true is if @
is true. Thus, to complete this case you should try to prove Q.

To prove a goal of the form P v Q:
If P is true, then clearly the goal P v Q is true, so you only need to worry
about the case in which P is false. You can complete the proof in this case by
proving that @ is true.

Scratch work

Before using strategy:

Givens Goal
— PvQ
After using strategy:
Givens Goal
— Q0
-P

Form of final proof:

If P is true, then of course P v @ is true. Now suppose P is false.
[Proof of O goes here.]
Thus, P v Q is true.

Thus, this strategy for proving P v Q suggests that you transform the prob-
lem by adding — P as a new given and changing the goal to Q. It is interesting
to note that this is exactly the same as the transformation you would use if
you were proving the goal =P — Q! This is not really surprising, because we
already know that the statements P v Q and =P — Q are equivalent. But we
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derived this equivalence before from the truth table for the conditional connec-
tive, and this truth table may have been hard to understand at first. Perhaps the
reasoning we’ve given makes this equivalence, and therefore the truth table for
the conditional connective, seem more natural.

Of course, the roles of P and Q could be reversed in using this strategy. Thus,
you can also prove P v Q by assuming that @ is false and proving P.

Example 3.5.4. Prove that for every real number x, if x? > x then eitherx < 0
orx = 1.

Scratch work

Our goal is Yx(x2 = x — (x =0V x = 1)), so to get started we let x be an
arbitrary real number, assume x> = x,andsetx <0vx > 1asour goal:

Givens Goal
2

xX“>x x<=0vx=1
According to our strategy, to prove this goal we can either assume x > ()
and prove x = | or assume x < | and prove x < (. The assumption that x is
positive seems more likely to be useful in reasoning about inequalities, so we
take the first approach.

Givens Goal
x2=x x =1
x>0

The proof is now easy. Since x > 0, we can divide the given inequality
x% = x by x to get the goal x > 1.

Solution

Theorem. For every real number x, if x> = x then either x <0 orx > 1.

Proof Suppose x> > x.If x < 0, then of course x < Qorx > 1. Now suppose
x > 0. Then we can divide both sides of the inequality x* = x by x to conclude
that x = 1. Thus, either x < Oorx = 1. O

The equivalence of P v Q and =P — (@ also suggests a rule of inference
called disjunctive syllogism for using a given statement of the form P v Q:

To use a given of the form P v Q:
If you are also given —P, or you can prove that P is false, then you can
use this given to conclude that @ is true. Similarly, if you are given —Q or can
prove that Q is false, then you can conclude that P is true.
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In fact, this rule is the one we used in our first example of deductive reasoning
in Chapter 1!

Once again, we end this section with a proof for you to read without the
benefit of a preliminary scratch work analysis.

Theorem 3.5.5. Suppose m and n are integers. If mn is even, then either m is
even or n is even.

Proof. Suppose mn is even. Then we can choose an integer £ such that mn =
2k. If m is even then there is nothing more to prove, so suppose m is odd. Then
m = 2j + 1 for some integer j. Substituting this into the equation mn = 2k, we
get (2j + )n = 2k, so 2jn + n = 2k, and therefore n = 2k — 2jn = 2(k —
jn). Since k — jn is an integer, it follows that n is even. O

Commentary. The overall form of the proof is the following:

Suppose mn is even.
If m is even, then clearly either m is even or n is even. Now suppose
m is not even. Then m is odd.
[Proof that n is even goes here. |
Therefore either m is even or n is even.
Therefore if mn is even then either /1 is even or n is even.

The assumptions that mn is even and m is odd lead, by existential instanti-
ation, to the equations mn = 2k and m = 2j + 1. Although the proof doesn’t
say so explicitly, you are expected to work out for yourself that in order to prove
that n is even it suffices to find an integer ¢ such that n = 2¢. Straightforward
algebra leads to the equation n = 2(k — jn), so the choice ¢ = k — jn works.

Exercises

b*]. Suppose A, B, and C are sets. Provethat AN (BUC) S (AN BYUC.
2. Suppose A, B, and C are sets. Prove that (AU B)\ C C AU(B\ C).
3. Suppose A and B are sets. Prove that A\ (A\ B) = AN B.
B*4, Suppose ANC C BNCand AUC C B UC. Prove that A C B.
b5. Recall from Section 1.4 that the symmetric difference of two sets A and B
istheset AAB=(A\ B)U(B\ A)=(AUB)\ (AN B). Prove that
if AAB C Athen B C A.

b6. Suppose A, B, and C are sets. Provethat AUC C BUCIt A\ C C
B\ C.

1*7. Prove that for any sets A and B, #°(A) U #*(B) € #(AU B).
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Proofs

Prove that for any sets A and B, if #*(A)U 2 (B) = +"(A U B) then
either A € Bor B C A.

. Suppose x and y are real numbers and x # 0. Prove that y + 1/x =

I+ y/xiffeitherx = lory=1.

. Prove that for every real number x, if |x — 3| > 3 then x? > 6x. (Hint:

According to the definition of [x — 3|,ifx =3 = 0Othen|x — 3| =x —
3,and if x —3 < 0 then |x — 3] = 3 — x. The easiest way to use this
fact is to break your proof into cases. Assume that x — 3 = 0 in case 1,
and x — 3 < 0 in case 2.)

Prove that for every real number x, |2x — 6| > x iff |x — 4] = 2. (Hint:
Read the hint for exercise 10.)

. (a) Prove that for all real numbers a and b, |a| < bifft —b <a < b.

(b) Prove that for any real number x, —|x| < x < |x|. (Hint: Use
part (a).)

(c) Prove that for all real numbers x and y, |[x + y| < |x| + |y|. (This is
called the triangle inequality. One way to prove this is to combine
parts (a) and (b), but you can also do it by considering a number of
cases.)

. Prove that for every integer x, x> 4 x is even.
. Prove that for every integer x, the remainder when x* is divided by 8 is

either O or 1.

. Suppose F and G are nonempty families of sets.

§(a) Prove that U(F U G) = (UF) U (UG).

(b) Can you discover and prove a similar theorem about N{F U G)?

. Suppose F is a nonempty family of sets and B is a set.

Bb(a) Prove that B U (UF) = U(F U {B}).
(b) Prove that B U (NJF) = Nacr(B U A).
(c) Can you discover and prove a similar theorem about B N (NF)?

. Suppose F, G, and H are nonempty families of sets and forevery A € F

and every B € G, A U B € H. Prove that "H € (NF) U (NG).
Suppose A and B are sets. Prove that Vx(x e AAB < (x € A <
x ¢ B)).

Suppose A, B, and C are sets. Prove that A A B and C are disjoint iff
ANC=BnNC.

Suppose A, B, and C are sets. Prove that AAB CC iff AUC =
BUC.

Suppose A, B, and C are sets. Prove that C CAABiff CC AUB
andANBNC =4d.

Suppose A, B, and C are sets.

(a) Provethat A\ C C (A\ B)U(B\ C).

(b) Provethat AAC C(AABYU(BAC).
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Suppose A, B, and C are sets.

(a) Provethat (AU BYAC C(AAC)U(BACQ).

(b) Find an example of sets A, B, and C such that (AU B)AC #
(AACYU(BAC)

Suppose A, B, and C are sets.

(a) Provethat  AACYN(BAC)C(ANB)YAC.

(b) Is it always true that (ANB)AC C(AAC)N(BAC)? Give
either a proof or a counterexample.

Suppose A, B, and C are sets. Consider the sets (A\ B)AC and

(A AC)\ (B AC). Can you prove that either is a subset of the other?

Justify your conclusions with either proofs or counterexamples.

Consider the following putative theorem.

Theorem? For every real number x, if |[x — 3| < 3 then 0 < x < 6.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary real number, and suppose |[x — 3| < 3. We
consider two cases:

Case 1. x — 3 = 0. Then |x — 3| = x — 3. Plugging this into the as-
sumption that |x — 3| < 3, we get x — 3 < 3, soclearly x < 6.

Case 2. x —3 < 0. Then |[x — 3| =3 — x, so the assumption |x —
3| < 3 means that 3 — x < 3. Therefore 3 < 3+ x, 500 < x.

Since we have proven both 0 < x and x < 6, we can conclude that
0<x <6. 0

Consider the following putative theorem.

Theorem? For any sets A, B, and C, if A\ B C C and A € C then
ANB#£J.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?

Proof. Since A € C, we can choose some x such that x € A and x ¢
C.Sincex ¢ Cand A\ B € C,x ¢ A\ B. Therefore either x ¢ A or
x € B. But we already know that x € A, so it follows that x € B. Since
xeAandx € B, x € AN B. Therefore AN B # &. O

Consider the following putative theorem.
Theorem? Vx € RIy € R(xy? # y — x).

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?
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29.

*30.

31.

Proofs

Proof. Let x be an arbitrary real number.

Casel.x =0.Lety=1.Thenxy’=0andy—x =1-0=1, s0
xy? £y —x.

Case 2. x #0. Let y=0. Then xy? =0 and y — x = —x # 0, so
xyl £y —x.

Since these cases are exhaustive, we have shown that 3y € R(xy* #
y — x). Since x was arbitrary, this shows that Vx € Ry € R(xy? #
¥ —Xx). O

Prove that if ¥x P(x) — Jx Q(x) then Ix(P(x) — Q(x)). (Hint: Re-
member that P — ) is equivalent to =P v Q).

Consider the following putative theorem.

Theorem? Suppose A, B, and C are sets and A € B U C. Then either
ACTBorACC(C.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary element of A. Since A C B U C, it follows
that either x € Bor x € C.

Case 1. x € B. Since x was an arbitrary element of A, it follows that
V¥x € A(x € B), which means that A C B.

Case 2. x € C. Similarly, since x was an arbitrary element of A, we
can conclude that A € C.

Thus, either A C Bor A C C. O

Prove dx(P(x) — ¥y P(¥)).

3.6. Existence and Uniqueness Proofs

In this section we consider proofs in which the goal has the form 3!x P(x). As
we saw in Section 2.2, this can be thought of as an abbreviation for the formula
Ax(P(x) A —3v(P(y) Ay # x)). According to the proof strategies discussed
in previous sections, we could therefore prove this goal by finding a particular
value of x for which we could prove both P(x) and —=3y(P(y) A y # x). The
last part of this proof would involve proving a negated statement, but we can
reexpress it as an equivalent positive statement:

=Ay(P(yy Ay # x)

is equivalent to Vy—(P(y) A ¥y £ x) (quantifier negation law),

which is equivalent to Vy(—P(y) v y = x) (DeMorgan’s law),
which is equivalent to Vy(P(y) — y = x) (conditional law).
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Thus, we see that 3!x P(x) could also be written as Ix( P(x) A Vy(P(y) —
y = x)). In fact, as the next example shows, several other formulas are also
equivalent to 3!'x P(x), and they suggest other approaches to proving goals of
this form.

Example 3.6.1. Prove that the following formulas are all equivalent:

L Ax(P(x) AVY(P(y) = ¥y = x)).
2. AxVy(P(y) < y = x).
3. I P(x) AYYYZ((P(y) A P(2)) = y =2).

Scratch work

If we prove directly that each of these statements is equivalent to each of the
others, then we will have three biconditionals to prove: statement 1 iff statement
2, statement 1 iff statement 3, and statement 2 iff statement 3. If we prove
each biconditional by the methods of Section 3.4, then each will involve two
conditional proofs, so we will need a total of six conditional proofs. Fortunately,
there is an easier way. We will prove that statement 1 implies statement 2,
statement 2 implies statement 3, and statement 3 implies statement 1 — just three
conditionals. Although we will not give a separate proof that statement 2 implies
statement 1, it will follow from the fact that statement 2 implies statement 3 and
statement 3 implies statement 1. Similarly, the other two conditionals follow
from the three we will prove. Mathematicians almost always use some such
shortcut when proving that several statements are all equivalent. Because we'll
be proving three conditional statements, our proof will have three parts, which
we will label 1 — 2,2 — 3, and 3 — 1. We'll need to work out our strategy
for the three parts separately.

1 — 2. We assume statement 1 and prove statement 2. Because statement 1
starts with an existential quantifier, we choose a name, say x;, for some object
for which both P(xp) and Vy(P(y) — y = x¢) are true. Thus, we now have the
following situation:

Givens Goal
P(xq) AVy(P(y) < y =x)
Vy(P(y) = y = xo)

Our goal also starts with an existential quantifier, so to prove it we should
try to find a value of x that makes the rest of the statement come out true.
Of course, the obvious choice is x = xy. Plugging in x; for x, we see that we
must now prove Yy(P(y) < y = xp). We let y be arbitrary and prove both
directions of the biconditional. The — direction is clear by the second given.
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For the <« direction, suppose y = xp. We also have P(xy) as a given, and
plugging in y for x; in this given we get P(y).

2 — 3. Statement 2 is an existential statement, so we let x; be some object
such that Yy(P(y) <> y = x¢). The goal, statement 3, is a conjunction, so we

treat it as two separate goals.

Givens Goals
Yy(P(y) <y = Xo) Ix P(x)
V.\,VZ{(P(_\’) AN P{Z)) — y= Z)

To prove the first goal we must choose a value for x, and of course the
obvious value is x = x( again. Thus, we must prove P(xy). The natural way to
use our only given is to plug in something for y; and to prove the goal P(xy),
the obvious thing to plug in is xp. This gives us P(xy) <> xy = xg. Of course,
Xp = Xy 1s true, so by the <« direction of the biconditional, we get P(x).

For the second goal, we let y and z be arbitrary, assume P(y) and P(z), and
try to prove y = z.

Givens Goal
Vy(P(y) < y = xq) y=z2
P(y)

P(2)

Plugging in each of y and z in the first given we get P(y) < y = x( and
P(z) > 7 = xy. Since we’ve assumed P(y) and P(z), this time we use the —
directions of these biconditionals to conclude that y = xy and z = xy. Our goal
vy = z clearly follows.

3 — 1. Because statement 3 is a conjunction, we treat it as two separate
givens. The first is an existential statement, so we let x; stand for some object
such that P(xg) is true. To prove statement 1 we again let x = x, so we have
this situation:

Givens Goal
P(xp) P(xo) AYY(P(y) — y = xp)
VywVz((P(Y)AP(2) > y=2)

We already know the first half of the goal, so we only need to prove the
second. For this we let y be arbitrary, assume P(y), and make y = x, our goal.

Givens Goal
P(xp) y = Xg
VWz((P(W) A P(2) = y=12)
P(y)
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But now we know both P(y) and P(xy), so the goal y = x; follows from the
second given.

Solution
Theorem. The following are equivalent:

L. 3x(P(x) AVY(P(y) = y = x)).
2. IxVy(P(y) < y = x).
3. IxP) AYYVI(P(Y) A P() = y =2).

Proof. 1 — 2. By statement 1, we can let x( be some object such that P(xy) and
Yy(P(y) — y = xg). To prove statement 2 we will show that YVy(P(y) < y =
xp). We already know the — direction. For the « direction, suppose y = xj.
Then since we know P(xy), we can conclude P(y).

2 — 3. By statement 2, choose x, such that ¥y(P(y) <> ¥ = xy). Then, in
particular, P(xy) <> xg = xq, and since clearly xp = xg, it follows that P(xg)
is true. Thus, 3x P(x). To prove the second half of statement 3, let y and z be
arbitrary and suppose P(y)and P(z). Then by our choice of x; (as something
for which Yy(P(y) <> vy = xp) is true), it follows that y = xy and z = x, so
y==z

3 — 1. By the first half of statement 3, let x, be some object such that P (x;).
Statement 1 will follow if we can show that Yy(P(y) — y = xq), so suppose
P(y). Since we now have both P(xg) and P(y), by the second half of statement
3 we can conclude that y = xg, as required. O

Because all three of the statements in the theorem are equivalent to 3!x P(x),
we can prove a goal of this form by proving any of the three statements in the
theorem. Probably the most common technique for proving a goal of the form
3!x P(x) is to prove statement 3 of the theorem.

To prove a goal of the form 3!x P(x):

Prove 3x P(x)and YyVz((P(y) A P(2)) — y = z). The first of these goals
shows that there exists an x such that P(x) is true, and the second shows that it
is unique. The two parts of the proof are therefore sometimes labeled existence
and uniqueness. Each part is proven using strategies discussed earlier.

Form of final proof-

Existence: [Proof of 3x P(x) goes here.]
Uniqueness: [Proof of VyVz((P(y) A P(z)) — vy = z) goes here.]

Example 3.6.2. Prove that there is a unique set A such that for every set B,
AUB = B.
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Scratch work

Our goal is 3!A P(A), where P(A) is the statement VB(A U B = B). Accord-
ing to our strategy, we can prove this by proving existence and uniqueness
separately. For the existence half of the proof we must prove 3A P(A), so we
try to find a value of A that makes P(A) true. There is no formula for finding
this set A, but if you think about what the statement P(A) means, you should
realize that the right choice is A = &. Plugging this value in for A, we see that
to complete the existence half of the proof we must show that VB( & UB = B).
This is clearly true. (If you're not sure of this, work out the proof!)

For the uniqueness half of the proof we prove YVCVD((P(C) A P(D)) —
C = D). To do this, we let C and D be arbitrary, assume P(C) and P(D), and
prove C = D. Writing out what the statements P(C) and P(D) mean, we have
the following givens and goal:

Givens Goal
YB(CUB =B) C=D
YEB(DUB = B)

To use the givens, we should try to find something to plug in for B in each of
them. There is a clever choice that makes the rest of the proof easy: We plug in
D for B in the first given, and C for B in the second. This givesus C U D = D
and D U C = C.Butclearly C U D = D U C. (If you don't see why, prove it!)
The goal C = D follows immediately.

Solution

Theorem. There is a unique set A such that for every set B, AU B = B.
Proof. Existence: Clearly VB (& UB = B), so @ has the required property.
Uniqueness: Suppose VB(C U B = B) and VB(D U B = B). Applying the
first of these assumptions to D we see that C U D = D, and applying the second
toCweget DUC =C.Butclearly CUD=DUC,s0C = D. 0

Sometimes a statement of the form 3!x P(x) is proven by proving statement
| from Example 3.6.1. This leads to the following proof strategy.

To prove a goal of the form 3!x P(x):
Prove Ix(P(x) A¥y(P(y) — y = x)), using strategies from previous
sections.

Example 3.6.3. Prove that for every real number x, if x # 2 then there is a
unique real number y such that 2y/(y + 1) = x.
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Scratch work

Our goal is Vx(x # 2 — 3Ay(2y/(y + 1) = x)). We therefore let x be arbi-
trary, assume x # 2, and prove 3!y(2y/(y + 1) = x). According to the pre-
ceding strategy, we can prove this goal by proving the equivalent statement
Iy2y/(y + D =x AVz(2z/(z + 1) = x — z = y)). We start by trying to find
a value of y that will make the equation 2y/(y + 1) = x come out true. In other
words, we solve this equation for y:

X

2y
— = 2y = ; 1 (2 — = p = .
vl x = 2y=x(y+1) = ¥ X)=x =y P

Note that we have x # 2 as a given, so the division by 2 — x in the last step
makes sense. Of course, these steps will not appear in the proof. We simply
let y = x/(2 — x) and try to prove both 2y/(y + 1) = x and Vz(2z/(z + 1) =

X —=>z=y)

Givens Goals
2 tl
x#2 Y _ X
y41
x v 2z )
V= Z =X =Y
’ 2—x 241 Y

The first goal is easy to verify by simply plugging in x /(2 — x) for y. For
the second, we let z be arbitrary, assume 2z/(z + 1) = x, and prove z = y:

Givens Goal
x#2 1=y
X
y=
’ 2—x
2z
=x
z+1

We can show that z = y now by solving for z in the third given:

X

&

2
=x = 2z=x(z4+1) = z2-x)=x = z=

+1 —x

e

Note that the steps we used here are exactly the same as the steps we used
earlier in solving for y. This is a common pattern in existence and uniqueness
proofs. Although the scratch work for figuring out an existence proof should not
appear in the proof, this scratch work, or reasoning similar to it, can sometimes
be used to prove that the object shown to exist is unique.
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Solution

Theorem. Forevery real number x, if x £ 2 then there is a unigue real number
v such that 2y /(y + 1) = x.

Proof. Let x be an arbitrary real number, and suppose x £ 2. Let y =
x /(2 — x), which 1s defined since x # 2. Then

2x 2x

To see that this solution is unique, suppose 2z/(z 4+ 1) = x. Then 2z =
x(z 4+ 1), so z(2 — x) = x. Since x # 2 we can divide both sides by 2 — x
togetz =x/(2—x)=y. O

The theorem in Example 3.6.1 can also be used to formulate strategies for
using givens of the form 3'x P(x). Once again, statement 3 of the theorem is
the one used most often.

To use a given of the form 3!'x P(x):
Treat this as two given statements, 3x P(x) and YyVz((P(y) A P(2)) —
¥y = z). To use the first statement you should probably choose a name, say x,
to stand for some object such that P(xg) is true. The second tells you that if
you ever come across two objects y and z such that P(y) and P(z) are both
true, you can conclude that y = z.

Example 3.6.4. Suppose A, B, and C are sets, A and B are not disjoint, A and
C are not disjoint, and A has exactly one element. Prove that B and C are not
disjoint.

Scratch work

Givens Goal
ANB#£J BNC#£L
ANC#£d
dlx(x € A)

We treat the last given as two separate givens, as suggested by our strategy.
Writing out the meanings of the other givens and the goal, we have the following
situation:

Givens Goal
dx(x e Aanx e B) dx(x e Baxe(C)
dx(x e ArnxeC)

dx(x € A)
YyVz((ve AAnzeA)— y=1)
To prove the goal, we must find something that is an element of both B and
C. To do this, we turn to the givens. The first given tells us that we can choose a
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name, say b, for something such thath € A and b € B. Similarly, by the second
given we can let ¢ be something such that ¢ € A and ¢ € C. At this point the
third given is redundant. We already know that there’s something in A, because
in fact we already know that b € A and ¢ € A. We may as well skip to the last
given, which says that if we ever come across two objects that are elements of
A, we can conclude that they are equal. But as we have just observed, we know
that b € A and ¢ € A! We can therefore conclude that b = ¢. Since b € B and
b = ¢ € C, we have found something that is an element of both B and C, as
required to prove the goal.

Solution

Theorem. Suppose A, B, and C are sets, A and B are not disjoint, A and C are
not disjoint, and A has exactly one element. Then B and C are not disjoint.

Proof. Since A and B are not disjoint, we can let b be something such that
b e Aand b € B. Similarly, since A and C are not disjoint, there is some object
¢ such that ¢ € A and ¢ € C. Since A has only one element, we must have
b =c¢. Thus b = ¢ € B N C and therefore B and C are not disjoint. 0

Exercises

*1. Prove that for every real number x there is a unique real number y such
that x?y = x — y.

2. Prove that there is a unique real number x such that for every real number
v, xy +x —4 =4y,

3. Prove that for every real number x, if x # 0 and x £ 1 then there is a
unique real number y such that y/x = y — x.

*4. Prove that for every real number x, if x # 0 then there is a unique real
number y such that for every real number z, zy = z/x.

5. Recallthatif F is a family of sets, then UF = {x | JA(A € F n x € A)}.
Suppose we define a new set ULF by the formula U!F = {x |31A(A €
Farx e A).

(a) Prove that for any family of sets F, UlF C UF.

(b) A family of sets F is said to be pairwise disjoint if every pair of
distinct elements of F are disjoint; that is, VA € F¥YB € F(A #
B — AN B = ). Prove that for any family of sets F, U\F = UF
iff F is pairwise disjoint.

H*6. Let U be any set.

(a) Prove that there is a unique A € #°(U) such that for every B €

A(U),AUB =B.
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(b) Prove that there is a unique A € #°(U) such that for every B €
>(U),AUB = A.

Let U be any set.

(a) Prove that there is a unique A € #°(U) such that for every B ¢
PU), ANB = B.

(b) Prove that there is a unique A € #*(U) such that for every B €
>A(U),ANB =A.

Let U be any set.

(a) Prove that for every A € #°(U) there is a unique B € #*(U) such
that for every C € #*(U),C\ A= CnNB.

(b) Prove that for every A € #”(U) there is a unique B € #”(U) such
that for every C € #*(U),CNA =C\ B.

Recall that you showed in exercise 12 of Section 1.4 that symmet-

ric difference is associative; in other words, for all sets A, B, and C,

AAN(BAC)=(AAB)AC. You may also find it useful in this prob-

lem to note that symmetric difference is clearly commutative; in other

words, for all sets A and B, AAB =B AA.

(a) Prove that there is a unique identity element for symmetric differ-
ence. In other words, there is a unique set X such that for every set
AJAAX = A

(b) Prove that every set has a unique inverse for the operation of symme-
tric difference. In other words, for every set A there is a unique set B
such that A A B = X, where X is the identity element from part (a).

(c) Prove that for any sets A and B there is a unique set C such that
AAC=B.

(d) Prove that for every set A there is a unique set B € A such that for
everysetC CA, BAC=A\C.

Suppose A is a set, and for every family of sets F, if UF = A then

A € F. Prove that A has exactly one element. (Hint: For both the exis-

tence and uniqueness parts of the proof, try proof by contradiction.)

Suppose F is a family of sets that has the property that for every G C

F.UG € F. Prove that there is a unique set A such that A € F and

VB € F(B C A).

. (a) Suppose P(x) is a statement with a free variable x. Find a formula,

using the logical symbols we have studied, that means “there are
exactly two values of x for which P(x) is true.”

(b) Based on your answer to part (a), design a proof strategy for proving
a statement of the form “there are exactly two values of x for which
P(x) is true.”

(c) Prove that there are exactly two solutions to the equation x* = x2.
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3.7. More Examples of Proofs

So far, most of our proofs have involved fairly straightforward applications of
the proof techniques we’ve discussed. We end this chapter with a few exam-
ples of somewhat more difficult proofs. These proofs use the techniques of this
chapter, but for various reasons they're a little harder than most of our earlier
proofs. Some are simply longer, involving the application of more proof strate-
gies. Some require clever choices of which strategies to use. In some cases it’s
clear what strategy to use, but some insight is required to see exactly how to
use it. Our earlier examples, which were intended only to illustrate and clarify
the proof techniques, may have made proof-writing seem mechanical and dull.
We hope that by studying these more difficult examples you will begin to see
that mathematical reasoning can also be surprising and beautiful.

Some proof techniques are particularly difficult to apply. For example, when
you're proving a goal of the form 3x P (x), the obvious way to proceed is to try
to find a value of x that makes the statement P(x) true, but sometimes it will
not be obvious how to find that value of x. Using a given of the form VYx P(x) is
similar. You'll probably want to plug in a particular value for x, but to complete
the proof you may have to make a clever choice of what to plug in. Proofs that
must be broken down into cases are also sometimes difficult to figure out. It is
sometimes hard to know when to use cases and what cases to use.

We begin by looking again at the proofs from the introduction. Some aspects
of these proofs probably seemed somewhat mysterious when you read them
in the introduction. See if they make more sense to you now that you have a
better understanding of how proofs are constructed. We will present each proof
exactly as it appeared in the introduction and then follow it with a commentary
discussing the proof techniques used.

Theorem 3.7.1. Suppose nis an integer larger than 1 and n is not prime. Then
2" — 1 is not prime.

Proof. Since n is not prime, there are positive integers a and b such that
a<nb<n and n=ab. Let x=2"—1and y=1+4+24224... 4
2(@=Db Then

xy=@ -1 1 +2°42% ... 42070
=22 (1 +2°+2% 4 4207 — (1422 2% 4 4207
= (2P 2% 423 2%y (1428 22 ... 42Dy
:2ab_l
=2"—1.
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Since b < n, we can conclude that x =2 — 1 < 2" — 1. Also, since
ab =n > a, it follows that b > 1. Therefore, x =2 — 1 > 2! — 1 =1, so
y < xy = 2" — 1. Thus, we have shown that 2" — 1 can be written as the prod-
uct of two positive integers x and y, both of which are smaller than 2" — 1, so
2" — 1 is not prime. O

Commentary. We are given that n is not prime, and we must prove that
2" — 1 is not prime. Both of these are negative statements, but fortunately
it is easy to reexpress them as positive statements. To say that an integer
larger than 1 is not prime means that it can be written as a product of two
smaller positive integers. Thus, the hypothesis that n is not prime means
Ja € Z¥3b € ZT(ab=n Aa < n A b < n), and what we must prove is that
2" — 1 is not prime, which means Ix € ZT3y e ZT(xy =2" — 1 Ax < 2" —
I Ay <= 2" — 1). In the second sentence of the proof we apply existential in-
stantiation to the hypothesis that n is not prime, and the rest of the proof is
devoted to exhibiting numbers x and y with the properties required to prove
that 2" — 1 is not prime.

As usual in proofs of existential statements, the proof doesn’t explain how
the values of x and y were chosen, it simply demonstrates that these values
work. After the values of x and y have been given, the goal remaining to be
proven is xy = 2" — 1 Ax < 2" — 1 Ay < 2" — 1. Of course, this is treated
as three separate goals, which are proven one at a time. The proofs of these
three goals involve only elementary algebra.

One of the attractive features of this proof is the calculation used to show
that xy = 2" — 1. The formulas for x and y are somewhat complicated, and at
first their product looks even more complicated. It is a pleasant surprise when
most of the terms in this product cancel and, as if by magic, the answer 2" — 1
appears. Of course, we can see with hindsight that it was this calculation that
motivated the choice of x and y. There is, however, one aspect of this calculation
that may bother you. The use of “ - -” in the formulas indicates that the proof
depends on a pattern in the calculation that is not being spelled out. We'll give
a more rigorous proof that xy = 2" — 1 in Chapter 6, after we have introduced
the method of proof by mathematical induction.

Theorem 3.7.2. There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers. Let py, p2, ..., pu
be a list of all prime numbers. Let m = p;p>--- p, + 1. Note that m is not
divisible by p,, since dividing m by p; gives a quotient of pap3--- p, and a
remainder of 1. Similarly, m is not divisible by any of pa, ps..., pa.
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We now use the fact that every integer larger than 1 is either prime or can
be written as a product of primes. (We’ll see a proof of this fact in Chapter 6.)
Clearly m is larger than 1, so m is either prime or a product of primes. Suppose
first that m is prime. Note that m is larger than all of the numbers in the
list py, pas - -, Pn, 80 we've found a prime number not in this list. But this
contradicts our assumption that this was a list of a/l prime numbers.

Now suppose m is a product of primes. Let ¢ be one of the primes in this
product. Then m is divisible by ¢. But we’ve already seen that m is not di-
visible by any of the numbers in the list py, p2,..., p,, S0 once again we
have a contradiction with the assumption that this list included all prime
numbers.

Since the assumption that there are finitely many prime numbers has led to
a contradiction, there must be infinitely many prime numbers. O

Commentary. Because infinite means not finite, the statement of the theorem
might be considered to be a negative statement. It is therefore not surprising
that the proof proceeds by contradiction. The assumption that there are finitely
many primes means that there exists a natural number n such that there are n
primes, and the statement that there are n primes means that there is a list of
distinct numbers p|, ps, ..., p, such that every number in the list is prime, and
there are no primes that are not in the list. Thus, the second sentence of the proof
applies existential instantiation to introduce the numbers n and py, p2. ..., p,
into the proof. At this point in the proof we have the following situation:

Givens Goal
P1s P2, ..., Pnare all prime Contradiction

—3q(gisprime Ag ¢ {p1, p2.... Pn})

The second given could be reexpressed as a positive statement, but since we
are doing a proof by contradiction, another reasonable approach would be to try
to reach a contradiction by proving that 3g(g is prime A g € {p1. p2. ..., Pu}).
This is the strategy used in the proof. Thus, the goal for the rest of the proofiis to
show that there is a prime number not in the list p;, pa, ..., p, —an “unlisted
prime.”

Because our goal is now an existential statement, it is not surprising that
the next step in the proof is to introduce the new number m, without any
explanation of how m was chosen. What is surprising is that m may or may not
be the unlisted prime we are looking for. The problem is that /# might not be
prime. All we can be sure of is that m is either prime or a product of primes.
Because this statement is a disjunction, it suggests proof by cases, and this is
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the method used in the rest of the proof. Although the cases are not explicitly
labeled as cases in the proof, it is important to realize that the rest of the proof
has the form of a proof by cases. In case 1 we assume that m is prime, and in
case 2 we assume that it is a product of primes. In both cases we are able to
produce an unlisted prime as required to complete the proof.

Theorem 3.7.3. For every positive integer n, there is a sequence of n consec-
utive positive integers containing no primes.

Proof. Suppose n is a positive integer. Let x = (n + 1)! 4+ 2. We will show that
none of the numbers x, x + 1, x + 2, .-, x 4 (n — 1) is prime. Since this is a
sequence of n consecutive positive integers, this will prove the theorem.

To see that x is not prime, note that

x=1:2-34--(n4+1+2
=2.(1-3-4---(n+ 1)+ 1).

Thus, x can be written as a product of two smaller positive integers, so x is not
prime.
Similarly, we have

x+1=1:2.34-(n+1)+3
=3-(1-2:4--(n+ D +1),

so x + 1 is also not prime. In general, consider any number x + i, where
0 <1i <n—1.Then we have

x+i=12-3-4---n+D+{+2)
= +2) (123 (i + 1) +3)(n+ D+ 1),

$0 X + i is not prime. O

Commentary. A sequence of n consecutive positive integers is a sequence of
theformx, x + 1, x + 2, ..., x + (n — 1), where x is a positive integer. Thus,
the logical form of the statement to be proven is ¥n = 03x = OVi(0 <i <
n — 1 — x +1i is not prime), where all variables range over the integers. The
overall plan of the proof is exactly what one would expect for a proof of a
statement of this form: We let n > 0 be arbitrary, specify a value for x, let i
be arbitrary, and then assume that 0 < i < n — 1 and prove that x 4 is not
prime. As in the proof of Theorem 3.7.1, to prove that x + i is not prime we
show how to write it as a product of two smaller integers.

Before the demonstration that x + i is not prime, where i is an arbitrary
integer between 0 and n — 1, the proof includes verifications that x and x + 1
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are not prime. These are completely unnecessary and are only included to make
the proof easier to read.

For readers who are familiar with the definition of limits from calculus, we
give one more example, showing how proofs involving limits can be worked
out using the techniques in this chapter. Readers who are not familiar with this
definition should skip this example.

2x? —5x =3
Example 3.7.4. Show that lirr; ——3 = 7.
r— X —

Scratch work

According to the definition of limits, our goal means that for every positive
number ¢ there is a po%itive number é such that if x is any number such that 0 <
|x — 3] < §, then | w '?| < ¢. Translating this into logical symbols, we

<e).

We therefore start by letting £ be an arbitrary positive number and then try to
find a positive number § for which we can prove
< 3) :

2x2 —5x -3
x—=3
The scratch work involved in finding § will not appear in the proof, of course.
In the final proof we’ll just write “Let § = (some positive number)” and then

<e).

Before working out the value of &, let’s figure out what the rest of the proof
will look like. Based on the form of the goal at this point, we should proceed by
letting x be arbitrary, assuming 0 < |x — 3| < &, and then proving |¢3

'}'| < £. Thus, the entire proof will have the following form:

have

2x2 —5x -3
Ve = 034 >{}Vx(04[x—3|<5—>‘%—7
x—

Vx(O«:[x—3[<éi—> -7

proceed to prove

2x2 -5y -3

-7
x—3

Vx((){[x—3[{éi—>

Let £ be an arbitrary positive number.
Let § = (some positive number).
Let x be arbitrary.
Suppose 0 < |\‘ -3 =< 4.

[Proof of |w ’?| < £ goes here.|

—5\ 3

Therefore 0 < |[x — 3| < § — | 7| < &.
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Since x was arbitrary, we can conclude thatVx(0 < |[x — 3| < § —
|21 —Sx 3 _?| “CE)
Theretore 38 > 0Wx(0 < |x =3 < 8§ — |21 _Sx 3 '?| < E).
Since & was arbitrary, it follows that Ve > 036 > OVx(O < |x =3 <

5o [ -] <o),

Two steps remain to be worked out. We must decide what value to assign
to &, and we must fill in the proof of < £. We'll work on the
second of these steps first, and in the course of working out this step it will

2= -]

become clear what value we should use for §. The givens and goal for this
second step are as follows:

Givens Goal
2% —5x -3
e=0 —— | <e¢
x—3

§ = (some positive number)
O<|x=3<3é

First of all, note that we have 0 < |x — 3| as a given, so x = 3 and therefore

the fraction % 1s defined. Factoring the numerator, we find that

x—3 x—3
=[2x+1-T7]=[2x — 6] =2|x — 3|

2x2—5x -3 _7‘: ‘(2¥+l)(,t—3)_7‘

Now we also have as a given that |x — 3| < §,s02|x — 3| < 2§. Combining

w — 7| < 25, and our goal is

this with the previous equation, we get |

% — 7| < &. Thus, if we chose § so that 2§ = &, we'd be done. In other

words, we should let § = £/2. Note that since ¢ = 0, this is a positive number,
as required.

Solution

22 _5¢—3
==—=1

Proof. Suppose ¢ > 0. Let § = £/2, which is also clearly positive. Let x be an
arbitrary real number, and suppose that 0 < |x — 3| < §. Then

2x2—5x -3 4 = (2x + DH(x = 3)
x—-3 N x =3
=2x+1-7 =|2x — 6

:2[1—3|425:2(§):£. O

Theorem. 11rn3

_7‘
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Exercises

Suppose F is a family of sets. Prove that there is a unique set A that has

the following two properties:

(a) F C 2(A).

(b) VB(F € #*(B) — A C B).

(Hint: First try an example. Let F = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}. Can

you find the set A that has properties (a) and (b)?)

Suppose A and B are sets. What can you prove about #° (A \ B)\ (#(A) \,

“”(B))? (No, it’s not equal to &, Try some examples and see what you

get.)

Suppose that A, B, and C are sets. Prove that the following statements

are equivalent:

(a) (AAC)N(BAC) =

(b ANBCCC AUB.

(c) AANMCC AAB.

Suppose {A;|i € I'} is a family of sets. Prove that if %’ (U;c;4;) C

Uier#’ (A;), then there is some i € I such that Vj € I(A; C A;).

Suppose F is a nonempty family of sets. Let / = UF and J =NF.

Suppose also that J # &J, and notice that it follows that forevery X € F,

X £ &, and also that I # . Finally, suppose that {A; |i € I} is an

indexed family of sets.

(a) Prove that U;c; A; = Uyor(Ujex Aj).

(b) Prove that N;c; A; = Nycr(Nicx A;).

(c) Prove that Uijc;A; € Nyer(Uiex Ap). Is it always true that U;cy A; =
Nxer(Uiex A;)? Give either a proof or a counterexample to justify
your answer.

(d) Discover and prove a theorem relating M;<; A; and Uxex(Mjex A;).

Prove that lim "”;T_D = 12.

x—2

Prove that if llm f(x)= L and L = 0, then there is some number § = 0
such that for all x, if0 < |x —¢| < & then f(x) = 0.

. Prove that if lim f(x) = L then lim 7 f(x) = 7L.
Q. X

X—C

Consider the following putative theorem.

Theorem. There are irrational numbers a and b such that a® is rational.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct? (Note: The proof uses the
fact that +/2 is irrational, which we’ll prove in Chapter 6.)
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N V2, . oy

Proof. Either V2" is rational or it’s irrational.
=
V2, . . .

Case 1. \/E isrational. Leta = b = \/i Then a and b are irrational,

=
V2 . . . . . .

and a® = v2"°, which we are assuming in this case is rational.

7. /2 .
Case 2. v/2"" is irrational. Let ¢ = /2"~ and b = +/2. Then a is
irrational by assumption, and we know that b is also irrational. Also,

207 3.
ab = [\/5\ 2)“"2 N (+v/2)> = 2, which is rational. O
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Relations

4.1. Ordered Pairs and Cartesian Products

In Chapter 1 we discussed truth sets for statements containing a single free
variable. In this chapter we extend this idea to include statements with more
than one free variable.

For example, suppose P(x, y) is a statement with two free variables x and y.
We can’t speak of this statement as being true or false until we have specified two
values — one for x and one for y. Thus, if we want the truth set to identify which
assignments of values to free variables make the statement come out true, then
the truth set will have to contain not individual values, but pairs of values. We
will specify a pair of values by writing the two values in parentheses separated
by a comma. For example, let D(x, y) mean “x divides y.” Then D(6, 18) is
true, since 6 | 18, so the pair of values (6, 18) is an assignment of values to the
variables x and y that makes the statement D(x, y) come out true. Note that 18
does not divide 6, so the pair of values (18, 6) makes the statement D(x, y) false.
We must therefore distinguish between the pairs (18, 6) and (6, 18). Because
the order of the values in the pair makes a difference, we will refer to a pair
(a, b) as an ordered pair, with first coordinate a and second coordinate b.

You have probably seen ordered pairs before when studying points in the
xy plane. The use of x and y coordinates to identify points in the plane works
by assigning to each point in the plane an ordered pair, whose coordinates
are the x and y coordinates of the point. The pairs must be ordered because,
for example, the points (2, 5) and (5, 2) are different points in the plane. In
this case the coordinates of the ordered pairs are real numbers, but ordered
pairs can have anything at all as their coordinates. For example, suppose we
let C(x, y) stand for the statement “x has y children.” In this statement the
variable x ranges over the set of all people, and y ranges over the set of all
natural numbers. Thus, the only ordered pairs it makes sense to consider when

163
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discussing assignments of values to the variables x and y in this statement
are pairs in which the first coordinate is a person and the second is a natural
number. For example, the assignment (Prince Charles, 2) makes the statement
C(x, y) come out true, because Prince Charles does have two children, whereas
the assignment (Johnny Carson, 37) makes the statement false. Note that the
assignment (2, Prince Charles) makes no sense, because it would lead to the
nonsensical statement “2 has Prince Charles children.”

In general, if P(x, y) is a statement in which x ranges over some set A and
y ranges over a set B, then the only assignments of values to x and y that will
make sense in P(x, v) will be ordered pairs in which the first coordinate is an
element of A and the second comes from B. We therefore make the following
definition:

Definition 4.1.1. Suppose A and B are sets. Then the Cartesian product of
A and B, denoted A x B, is the set of all ordered pairs in which the first coor-
dinate is an element of A and the second is an element of B. In other words,

Ax B={(a,b)|ae Aand b € B}.

Example 4.1.2.

l. If A= {red,green} and B = {2,3,5} then A x B = {(red, 2), (red, 3),
(red, 5), (green, 2), (green, 3), (green, 5)}.

2. If P = the set of all people then P x N = {(p,n)| p is a person and n
is a natural number} = {(Prince Charles, 0), (Prince Charles, 1), (Prince
Charles, 2), ..., (Johnny Carson, 0), (Johnny Carson, 1),. . }. These are the
ordered pairs that make sense as assignments of values to the free variables
x and y in the statement C(x, y).

3. R x R = {(x, y) | x and y are real numbers}. These are the coordinates of all
the points in the plane. For obvious reasons, this set is sometimes written R2.

The introduction of a new mathematical concept gives us an opportunity
to practice our proof-writing techniques by proving some basic properties of
the new concept. Here’s a theorem giving some basic properties of Cartesian
products.

Theorem 4.1.3. Suppose A, B, C, and D are sets.

CAX(BNCO)Y=(Ax BYN(A x C).
CAX(BUC)=(Ax BYU(A x O).
L(AXBNICxD)Y=(ANC)x (BN D).
L(AXBUCxD)CS(AUC) x(BUD).
AXEP=dxA =D,

o W 2 —
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Proof of 1. Let p be an arbitrary element of A x (B N C). Then by the defi-
nition of Cartesian product, p must be an ordered pair whose first coordinate
is an element of A and second coordinate is an element of B N C. In other
words, p = (x, y) forsome x € Aand ye BNC. Since ye BNC,y€ B
and y e C. Since x e A and y € B, p=(x,y) € A x B, and similarly p €
A x C. Thus, pe (A x B)N(A x C). Since p was an arbitrary element of
Ax(BNO),itfollowsthat A x (BNC)C (A x B)N(A x C).

Now let p be an arbitrary element of (A x B)N (A x C). Then p € A x B,
so p=1(x,y) for some x € A and y € B. Also, (x,y)=pec AxC, so
yveC.Sinceye Bandye C,ye BNC.Thus,p =(x,y) € A x (BNC).
Since p was an arbitrary element of (A x B)N(A x C) we can con-
cludethat (A x BYN(Ax C)CAx(BNC),s0Ax(BNC)=(Ax B)n
(A x C). O

Commentary. Before continuing with the proofs of the other parts, we give a
brief commentary on the proof just given. Statement 1 is an equation between
two sets, so as we saw in Example 3.4.4, there are two natural approaches
we could take to prove it. We could prove Vplpe A x (BNC) < pe
(A x B)YN(A x C)] or we could proveboth A x (BNC) < (A x B)N(A x
C)and (A x BYN(A x C) C A x (BN C). In this proof, we have taken the
second approach. The first paragraph gives the proof that A x (BN C) C
(A x B)N(A x C) and the second gives the proof that (A x B)N (A x C) C
A x (BN Q).

In the first of these proofs we take the usual approach of letting p be an arbi-
trary element of A x (B N C) and then proving p € (A x B)N(A x C). Be-
cause p € A x (BNC) means IxIy(x e AAy € BNC A p=(x,y)), we
immediately introduce the variables x and y by existential instantiation. The
rest of the proof involves simply working out the definitions of the set theory op-
erations involved. The proof of the opposite inclusion in the second paragraph
is similar.

Note that in both parts of this proof we introduced an arbitrary object p
that turned out to be an ordered pair, and we were therefore able to say that
p = (x, y)forsome objects x and y. In most proofs involving Cartesian products
mathematicians suppress this step. If it is clear from the beginning that an object
will turn out to be an ordered pair, it is usually just called (x, y) from the outset.
We will follow this practice in our proofs.

We leave the proofs of statements 2 and 3 as exercises (see exercise 5).

Proof of 4. Let (x, y) be an arbitrary element of (A x B)U(C x D). Then
either (x, y) e A x Bor(x,y)e C x D.
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Case 1. (x,y)e A x B. Thenx € Aand y € B, so clearly x € A U C and
y € BU D. Therefore (x, y) e (AUC) x (BU D).

Case 2. (x,y) € C x D. A similar argument shows that (x, y) € (AU C) x
(BUD).

Since (x, y) was an arbitrary element of (A x B) U (C x D), it follows that
(Ax BYU(C x D)C(AUC) x(BUD). O

Proof of 5. Suppose Ax & # . Then Ax & has at least one element, and by
the definition of Cartesian product this element must be an ordered pair (x, y)
for some x € A and y € &. But this is impossible, because & has no elements.
Thus, Ax @ = &. The proof that @ x A = & is similar. O

Commentary. Statement 4 says that one set is a subset of another, and the proof
follows the usual pattern for statements of this form: We start with an arbitrary
element of the first set and then prove that it’s an element of the second. It is
clear that the arbitrary element of the first set must be an ordered pair, so we
have written it as an ordered pair from the beginning.

Thus, for the rest of the proof we have (x,y) € (A x B)U(C x D) as a
given, and the goal is to prove that (x, y) € (A UC) x (B U D). The given
means (x,y) € A x BV (x,y) € C x D, so proof by cases is an appropriate
strategy. In each case it is easy to prove the goal.

Statement 5 means Ax d= I n @x A = &, so we treat this as two goals
and prove AxJ = J and @ x A= separately. To say that a set equals the
empty set is actually a negative statement, although it may not look like it on
the surface, because it means that the set does nor have any elements. Thus,
it is not surprising that the proof that Ax& = & proceeds by contradiction.
The assumption that Ax @ # & means Ip(p € Ax ), so our next step is
to introduce a name for an element of A x . Once again, it is clear that the
new object being introduced in the proof is an ordered pair, so we have written
it as an ordered pair (x, y) from the beginning. Writing out the meaning of
(x,v) € Ax& leads immediately to a contradiction.

The proof that @x A = & is similar, but simply saying this doesn’t prove
it. Thus, the claim in the proof that this part of the proof is similar is really
an indication that the second half of the proof is being left as an exercise. You
should work through the details of this proof in your head (or if necessary write
them out on paper) to make sure that a proof similar to the proof in the first
half will really work.

Because the order of the coordinates in an ordered pair matters, A x B
and B x A mean different things. Does it ever happen that A x B = B x A?
Well, one way this could happen is if A = B. Clearlyif A = Bthen A x B =
A x A = B x A. Are there any other possibilities?
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Here’s an incorrect proof that A x B = B x A only if A = B: The first
coordinates of the ordered pairsin A x B come from A, and the first coordinates
of the ordered pairs in B x A come from B. Butif A x B = B x A, then the
first coordinates in these two sets must be the same, so A = B.

This is a good example of why it's important to stick to the rules of proof-
writing we've studied rather than allowing yourself to be convinced by any rea-
soning that looks plausible. The informal reasoning in the preceding paragraph
is incorrect, and we can find the error by trying to reformulate this reasoning
as a formal proof. Suppose A x B = B x A. To prove that A = B we could
let x be arbitrary and then try to provex e A > x € Bandx € B — x € A.
For the first of these we assume x € A and try to prove x € B. Now the incor-
rect proof suggests that we should try to show that x is the first coordinate of
some ordered pair in A x B and then use the fact that A x B = B x A. We
could do this by trying to find some object y € B and then forming the ordered
pair (x, y). Then we would have (x,y) € Ax Band A x B=B x A, and it
would follow that (x, y) € B x A and therefore x € B. But how can we find
an object y € B? We don’t have any given information about B, other than the
fact that A x B = B x A. In fact, B could be the empty set! This is the flaw in
the proof. If B = &, then it will be impossible to choose y € B, and the proof
will fall apart. For similar reasons, the other half of the proof won’t work if
A=,

Not only have we found the flaw in the proof, but we can now figure out
what to do about it. We must take into account the possibility that A or B might
be the empty set.

Theorem 4.1.4. Suppose A and B are sets. Then A x B = B x A iff either
A= B=J, orA=B.
Proof. (—) Suppose A x B = B x A.Ifeither A =& or B = &, then there
is nothing more to prove, so suppose A = & and B # &. We will show that
A = B. Let x be arbitrary, and suppose x € A. Since B # & we can choose
somey € B.Then(x,y)e Ax B=B x A,sox € B.

Now suppose x € B. Since A # & we can choose some 7 € A. Therefore
(x,z)eBx A=A x B,sox € A. Thus A = B, as required.

(<) Suppose either A = &, B =&, or A = B.

Case . A= . ThenA x B=dxB=J=Bx@J =8B x A.

Case 2. B = . Similar to case 1.

Case 3. A=B. ThenA x B=Ax A=Bx A. O

Commentary. Of course, the statement to be proven is an iff statement, so
we prove both directions separately. For the — direction, our goal is A =
@vB = &vA = B, which could be written as (A = JvB = &) vA = B,
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so by one of our strategies for disjunctions from Chapter 3 we can assume
—(A = @vB = &) and prove A = B. Note that by one of DeMorgan’s laws,
—(A =@vB =) isequivalent to A # @A B # &, so we treat this as two
assumptions, A # & and B £ &. Of course we could also have proceeded dif-
ferently, forexample by assuming A # B and B # & and then proving A = .
But recall from the commentary on part 5 of Theorem 4.1.3 that A = & and
B = & are actually negative statements, so because it is generally better to
work with positive than negative statements, we're better off negating both of
them to get the assumptions A # @ and B # & and then proving the pos-
itive statement A = B. The assumptions A £ & and B # & are existential
statements, so they are used in the proof to justify the introduction of y and z.
The proof that A = B proceeds in the obvious way, by introducing an arbitrary
object x and then proving x € A <+ x € B.

For the « direction of the proof, we have A = JvB = vA =B asa
given, so it is natural to use proof by cases. In each case, the goal is easy to
prove.

This theorem is a better illustration of how mathematics is really done than
most of the examples we've seen so far. Usually when you’re trying to find
the answer to a mathematical question you won’t know in advance what the
answer is going to be. You might be able to take a guess at the answer and you
might have an idea for how the proof might go, but your guess might be wrong
and your idea for the proof might be flawed. It is only by turning your idea into
a formal proof, according to the rules in Chapter 3, that you can be sure your
answer is right. Often in the course of trying to construct a formal proof you will
discover a flaw in your reasoning, as we did earlier, and you may have to revise
your ideas to overcome the flaw. The final theorem and proof are often the result
of repeated mistakes and corrections. Of course, when mathematicians write
up their theorems and proofs, they follow our rule that proofs are for justifying
theorems, not for explaining thought processes, and so they don’t describe
all the mistakes they made. But just because mathematicians don’t explain
their mistakes in their proofs, you shouldn’t be fooled into thinking they don’t
make any!

Now that we know how to use ordered pairs and Cartesian products to talk
about assigning values to free variables, we're ready to define truth sets for
statements containing two free variables.

Definition 4.1.5. Suppose P(x, y) is a statement with two free variables in
which x ranges over a set A and y ranges over another set B. Then A x B is the
set of all assignments to x and y that make sense in the statement P(x, y). The
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truth set of P(x, v)is the subset of A x B consisting of those assignments that
make the statement come out true. In other words,

truth set of P(x,y) = {(a, b) € A x B| P(a, b)}.

Example 4.1.6. What are the truth sets of the following statements?

1. “x has y children,” where x ranges over the set P of all people and y ranges
over N.

2. “x is located in y,” where x ranges over the set C of all cities and y ranges
over the set N of all countries.

3. *y = 2x — 3" where x and y range over R.

Solutions

1. {(p,n) € P x N| the person p has n children} = {(Prince Charles, 2), .. .}.

2. {(c,n) € C x N | the city ¢ is located in the country n} = {(New York,
United States), (Tokyo, Japan), (Paris, France), .. .}.

{x, M eRxR|y=2x -3} ={(0,=3),(1,-1),(2,1),...}. You are
probably already familiar with the fact that the ordered pairs in this set
are the coordinates of points in the plane that lie along a certain straight
line, called the graph of the equation y = 2x — 3. Thus, you can think of
the graph of the equation as a picture of its truth set!

Many of the facts about truth sets for statements with one free variable that
we discussed in Chapter 1 carry over to truth sets for statements with two free
variables. For example, suppose T is the truth set of a statement P(x, y), where
X ranges over some set A and y ranges over B. Then foranya € Aand b € B
the statement (a, b) € T means the same thing as P(a, b). Also, if P(x, y) is
true for every x € A and y € B, then T = A x B, and if P(x, y) is false for
everyx € Aand y € B, then T = &J. If § is the truth set of another statement
QO(x, y), then the truth set of the statement P(x, y) A Q(x, y)is T N §, and the
truth set of P(x, y) v Q(x,y)is T US.

Although we’ll be concentrating on ordered pairs for the rest of this chapter,
it is possible to work with ordered triples, ordered quadruples, and so on. These
might be used to talk about truth sets for statements containing three or more
free variables. For example, let L(x, y, 7) be the statement “x has lived in y for
z years,” where x ranges over the set P of all people, y ranges over the set C
of all cities, and z ranges over M. Then the assignments of values to the free
variables that make sense in this statement would be ordered triples (p, ¢, n),
where p is a person, ¢ is a city, and n is a natural number. The set of all such
ordered triples would be written P x C x N, and the truth set of the statement
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L(x, y, z) would be the set {(p, c,n) € P x C x N |the person p has lived in
the city ¢ for n years}.

1.

4.

Exercises

What are the truth sets of the following statements? List a few elements

of each truth set.

(a) “x is a parent of y,” where x and y both range over the set P of all
people.

(b)y “There is someone who livesin x and attends y,” where x ranges over
the set C of all cities and y ranges over the set I/ of all universities.

. What are the truth sets of the following statements? List a few elements

of each truth set.

(a) “x lives in y,” where x ranges over the set P of all people and y
ranges over the set C of all cities.

(by “The population of x is y,” where x ranges over the set C of all
cities and y ranges over M.

. The truth sets of the following statements are subsets of R, List a few

elements of each truth set. Draw a picture showing all the points in the
plane whose coordinates are in the truth set.

(a) y =x2—x-2

(b) y < x.

(c) Eithery =x?—x —2o0ry =3x —2.

(d) y < x,andeithery = x> —x —2o0ry = 3x — 2.

Let A ={1,2,3},B={1,4},C ={3,4}, and D = {5}). Compute all
the sets mentioned in Theorem 4.1.3 and verify that all parts of the
theorem are true.

. Prove parts 2 and 3 of Theorem 4.1.3.
6.

What’s wrong with the following proof that for any sets A, B, C, and
D.(AUC) x (BUD)C (A x BYU(C x D)?(Note that this is the re-
verse of the inclusion in part 4 of Theorem 4.1.3.)

Proof. Suppose (x, ¥) e (AUC) x (BUD). Thenx e AUCandy €
B U D, soeither x € Aorx € C, and either y € B or y € D. We con-
sider these cases separately.

Case I.x € Aand y € B. Then (x, y) € A x B.

Case2.x e Candy € D.Then (x,y) € C x D.
Thus, either (x, y) e A x Bor(x,y)e C x D,so(x,y)e (A x B)U
(C x D). O




Relations 171

7. If A has m elements and B has n elements, how many elements does
A x B have?
5*8. Is it true that for any sets A, B, and C, Ax(B\C) = (Ax B)\(AxC)?
Give either a proof or a counterexample to justify your answer.
9. Prove that for any sets A, B, C, and D, (A x B) \ (C x D) =[A x
(B\ D)JU[(A\ C) x B].
h10. Prove that for any sets A, B, C, and D, if A x B and C x D are disjoint,
then either A and C are disjoint or B and D are disjoint.
11. Suppose {A; | i € I'} and {B; | i € I} are indexed families of sets.
(a) Prove that U;e;(A; x B;) © (UiesA;) X (Uier Bi).
(b) For each (i, j)e I x I let Cy;=A; x B;,and let P =1 x I.
Prove that U, pCp, = (Ui A;) x (Uicr By).
*12. This problem was suggested by Prof. Alan Taylor of Union College.
Consider the following putative theorem.

Theorem? Forany setsA, B, C,and D, if A x B C C x Dthen A C C
and B C D.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?

Proof. Suppose A x B € C x D. Let a be an arbitrary element of A
and let b be an arbitrary element of B. Then (a,b) € A x B, so since
AxBCCxD,(a,b)e C x D. Therefore a € C and b € D. Since
a and b were arbitrary elements of A and B, respectively, this shows that
ACCand B C D. O

4.2. Relations

Suppose P(x, y) is a statement with two free variables x and y. Often such a
statement can be thought of as expressing a relationship between x and y. The
truth set of the statement P(x, y) is a set of ordered pairs that records when this
relationship holds. In fact, it is often useful to think of any set of ordered pairs
in this way, as a record of when some relationship holds. This is the motivation
behind the following definition.

Definition 4.2.1. Suppose A and B are sets. Then aset R C A x B iscalleda
relation from A to B.

If x ranges over A and y ranges over B, then clearly the truth set of
any statement P(x, y) will be a relation from A to B. However, note that
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Definition 4.2.1 does not require that a set of ordered pairs be defined as the
truth set of some statement for the set to be a relation. Although thinking about
truth sets was the motivation for this definition, the definition says nothing
explicitly about truth sets. According to the definition, any subset of A x B is
to be called a relation from A to B.

Example 4.2.2. Here are some examples of relations from one set to another.

. Let A ={1,2,3}, B =1{3,4,5),and R = {(1,3),(1,5),(3,3)}. Then R <
A x B, so R is arelation from A to B.

2. Let G ={(x,y) € R x R|x = y}. Then G is arelation from R to R.

3. Let A={l1,2} and B =% (A) = {, {1}, {2}, {1,2})}. Let E = {(x,y) €
A x B|x € y}. Then E is a relation from A to B. In this case, E =
{(1, (1D, (1, {1, 2}, (2, {2}), (2, {1, 2D}

For the next three examples, let § be the set of all students at your school,

R the set of all dorm rooms, P the set of all professors, and C the set of all

courses.

4. Let L = {(s,r) € § x R| the student s lives in the dorm room r}. Then L
is a relation from Sto R.

5. Let E = {(s, ¢) € § x C| the student s is enrolled in the course ¢}. Then E
is a relation from Sto C.

6. Let T = {(c, p) € C x P | the course c is taught by the professor p}. Then
T is arelation from C to P.

So far we have concentrated mostly on developing your proof-writing skills.
Another important skill in mathematics is the ability to understand and apply
new definitions. Here are the definitions for several new concepts involving
relations. We’ll soon give examples illustrating these concepts, but first see if
you can understand the concepts based on their definitions.

Definition 4.2.3. Suppose R is a relation from A to B. Then the domain of R
is the set

Dom(R) = {a € A|3b € B((a, b) € R)}.
The range of R is the set
Ran(R) = {b € B|3a € A((a, b) € R)).

The inverse of R is the relation R~! from B to A defined as follows:

R'={((h,a)e B x A|(a,b) € R}.




Relations 173

Finally, suppose R is a relation from A to B and § is a relation from B to C.
Then the composition of S and R is the relation § o R from A to C defined as
follows:

SoR={(a,e) e Ax C|3be B((a,b) € Rand (b, c) € §)}.

Notice that we have assumed that the second coordinates of pairs in R and the
first coordinates of pairs in S both come from the same set, B. If these sets were
not the same, the composition S o R would be undefined.

According to Definition 4.2.3, the domain of a relation from A to B is the
set containing all the first coordinates of ordered pairs in the relation. This will
in general be a subset of A, but it need not be all of A. For example, consider
the relation L from part 4 of Example 4.2.2, which pairs up students with the
dorm rooms in which they live. The domain of . would contain all students
who appear as the first coordinate in some ordered pair in L — in other words,
all students who live in some dorm room — but would not contain, for example,
students who live in apartments off campus. Working it out more carefully from
the definition as stated, we have

Dom(L) = {s € §|3r € R((s,r) € L)}
= {s € §|3r € R (the student s lives in the dorm room r)}

= {s € §| the student s lives in some dorm room}.

Similarly, the range of a relation is the set containing all the second coordinates
of its ordered pairs. For example, the range of the relation L would be the set
of all dorm rooms in which some student lives. Any dorm rooms that are
unoccupied would not be in the range of L.

The inverse of a relation contains exactly the same ordered pairs as the
original relation, but with the order of the coordinates of each pair reversed.
Thus, in the case of the relation L, if Joe Smith lives in room 213 Davis Hall,
then (Joe Smith, 213 Davis Hall) € L and (213 Davis Hall, Joe Smith) € L.
In general, for any student s and dorm room r, we would have (r, s) € L™!
iff (s, r) € L. For another example, consider the relation G from part 2 of
Example 4.2.2. It contains all ordered pairs of real numbers (x, y) in which x
is greater than y. We might call it the “greater-than” relation. Its inverse is

Gl ={(x,y) eRxR[(y,x) € G}
={(x.y) eRxR|y>x}

={x,yeRxR|x <y}

In other words, the inverse of the greater-than relation is the less-than relation!
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The most difficult concept introduced in Definition 4.2.3 is the concept of
the composition of two relations. For an example of this concept, consider
the relations E and T from parts 5 and 6 of Example 4.2.2. Recall that E
is a relation from the set § of all students to the set C of all courses, and
T is a relation from C to the set P of all professors. According to Defini-
tion 4.2.3, the composition T o E will be the relation from S to P defined as
follows:

ToE=|{(s,p)eSx P|3ceC((s,c) e Eand (c, p) € T)}
= {(s, p) € § x P|3dc € C(the student s is enrolled in the course ¢
and the course c is taught by the professor p)}
= {(s, p) € § x P| the student s is enrolled in some course

taught by the professor p}.

Thus, if Joe Smith is enrolled in Biology 12 and Biology 12 is taught by
Professor Evans, then (Joe Smith, Biology 12) € E and (Biology 12, Professor
Evans) € T, and therefore (Joe Smith, Professor Evans) € T o E. In general, if
s is some particular student and p is a particular professor, then (s, p) e To E
iff there is some course ¢ such that (s, ¢) € E and (¢, p) € T. This notation may
seem backward at first. If (s, ¢) € E and (¢, p) € T, then you might be tempted
to write (s, p) € E o T, but according to our definition, the proper notation is
(s, p) € T o E. Infact, E o T is undefined, because the second coordinates of
ordered pairs in T and the first coordinates of pairs in E do not come from
the same set. The reason we’ve chosen to write compositions of relations in
this way will become clear in Chapter 5. For the moment, you’ll just have
to be careful about this notational detail when working with compositions of
relations.

Example 4.24. Let S, R, C, and P be the sets of students, dorm rooms,
courses, and professors at your school, as before, and let L, E, and T be
the relations defined in parts 4—6 of Example 4.2.2. Describe the following
relations.

E~L.
.EoL7L

. E'o.E.
.EcE™!.
.To(EoL™").
A(ToE)oL™L.

Cl‘\U!hDJM:—
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Solutions

. E'={(c,s) e C x S|(s,¢) € E}={(c,s) € C x S| the student s is en-
rolled in the course ¢}. For example, if Joe Smith is enrolled in Biology 12,
then (Joe Smith, Biology 12) € E and (Biology 12, Joe Smith) € E~!.

2. Because L~ is arelation from R to § and E is a relation from Sto C, E o L™!
will be the relation from R to C defined as follows.

EoL™' = {(r,c)e Rx C|3s € S((r,s) € L 'and (s,0) € E)}
{(r,e)e R x C|3s € S((s,r) € Land (s, c) € E)}
{(r,¢) € R x C|3s € S(the student s lives in the dorm

room r and is enrolled in the course ¢)}
= {(r,¢) € R x C| some student who lives in the room r
is enrolled in the course ¢}.
Returning to our favorite student Joe Smith, who is enrolled in Biology 12
and lives in room 213 Davis Hall, we have (213 Davis Hall, Joe Smith)
€ L~ and (Joe Smith, Biology 12) € E, and therefore (213 Davis Hall,
Biology 12) € Eo L™".
3. Because E is a relation from S to C and E~! is a relation from C to S,
E~! o E is the relation from S to § defined as follows.
E'oE={(5,1)eSx58|3ceC((s,c)e Eand (c,t) € E™})}
= {(s5,1) € § x §|3dc € C(the student s is enrolled in the
course ¢, and so is the student 1)}
= {(s,1) € S x §| there is some course that the students s
and ¢ are both enrolled in}.
(Note that an arbitrary element of § x § is written (s, 1), not (s, 5), because
we don't want to assume that the two coordinates are equal.)

4. This is not the same as the last example! Because E~! is a relation from
Cto S and E is arelation from S to C, E o E~! is arelation from Cto C. It
is defined as follows.

EoE ' ={(c,d)e C xC|3s € S((c,s) € E™" and (s, d) € E)}
= {(c,d) € C x C|3s € S(the student s is enrolled in the
course ¢, and he is also enrolled in the course d)}
= {(c,d) € C x C| there is some student who is enrolled in

both of the courses ¢ and d}.
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5. We saw in part 2 that E o L~! is a relation from R to C, and T is a relation
from Cto P,so T o (E o L™")is the relation from R to P defined as follows.

To(EoL™)={(r,p)e Rx P|IceC((r,c)e EoL" and
(c.p)eT))
= {(r, p) € R x P |3c € C (some student who lives
in the room r is enrolled in the course ¢, and ¢
1s taught by the professor p)}
= {(r, p) € R x P | some student who lives in
the room r is enrolled in some course taught by

the professor p).

6. (ToE)oL' ={(r.p)eRx P|3seS((r,s)e L™ and
(s, p)eToE)}
= {(r, p) € R x P |3s € S(the student s lives in the
room r, and is enrolled in some course taught
by the professor p)}
= {(r, p) € R x P | some student who lives in
the room r is enrolled in some course taught by

the professor p}.

Notice that our answers for parts 3 and 4 of Example 4.2.4 were different. so
composition of relations is not commutative. However, our answers for parts
5 and 6 turned out to be the same. Is this a coincidence, or is it true in general
that composition of relations is associative? Often, looking at examples of a
new concept will suggest general rules that might apply to it. Although one
counterexample is enough to show that a rule is incorrect, we should never
accept a rule as correct without a proof. The next theorem summarizes some
of the basic properties of the new concepts we have introduced.

Theorem 4.2.5. Suppose R is a relation from A to B, S is a relation from B to
C, and T is a relation from C to D. Then:

1. (R '=R.

2. Dom(R~!) = Ran(R).

3. Ran(R™!) = Dom(R).

4. To(SoR)=(ToS8)cR.
5 (SoR)y'=R'oS™L
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Proof. We will prove 1, 2, and half of 4, and leave the rest as exercises. (See
exercise 6.)

1. First of all, note that R~! is a relation from B to A, so (R~1)~! is a relation
from A to B, just like R. To see that (R™!)~! = R, let (a, b) be an arbitrary
ordered pair in A x B. Then

(a,b) e (R"H7Viff (b,a) € R7Viff (a, b) € R.

2. First note that Dom(R™") and Ran(R) are both subsets of B. Now let b be
an arbitrary element of B. Then

b € Dom(R™") iff da € A((h,a) € R7Y)
iff da € A((a, b) € R)iff b € Ran(R).

4, Clearly T o (Sc R) and (T o §) o R are both relations from A to D. Let
(a, d) be an arbitrary element of A x D.

First, suppose (a, d) € T o (S o R). By the definition of composition, this
means that we can choose some ¢ € C such that (a,¢) € So Rand (¢, d) €
T. Since (a,c) € S o R, we can again use the definition of composition
and choose some b € B such that (a, b) € R and (b, ¢) € §. Now since
(b,c)e §and (c,d) € T, we can conclude that (b, d) € T o §. Similarly,
since (a,b) € Rand (b, d) € T o §, it follows that (a, d) € (T o S) o R.

Now suppose (a,d) (T oS§)oc R. A similar argument, which is
left to the reader, shows that (a,d) € T o(So R). Thus, To(ScR) =
(T o8)oR. O

Commentary. Statement 1 means Vp(p € (R™1)™! & p € R), so the proof
should proceed by introducing an arbitrary object p and then proving p €
(R™Y)™! & p € R. But because R and (R=!)~! are both relations from A to
B, we could think of the universe over which p ranges as being A x B, so
p must be an ordered pair. Thus, in the preceding proof we’ve written it as
an ordered pair (a, b) from the start. The proof of the biconditional statement
(a,b) € (R"H7! « (a, b) € R uses the method, introduced in Example 3.4.4,
of stringing together a sequence of equivalences.

The proofs of statements 2 and 4 are similar, except that the biconditional
proof for statement 4 cannot easily be done by stringing together equivalences,
so we prove the two directions separately. Only one direction was proven.
The key to this proof is to recognize that the given (a,d) € T o (5§ o R) is an
existential statement, since it means 3¢ € C((a,c) € So Rand (¢, d) € T), so
we should introduce a new variable ¢ into the proof to stand for some element
of C such that (a,c) € So R and (¢, d) € T. Similarly, (a,c) € So R is an
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existential statement, so it suggests introducing the variable b. Once these new
variables have been introduced, it is easy to prove the goal (a,d) € (T o §) o R.

Statement 5 of Theorem 4.2.5 perhaps deserves some comment. First of all,
notice that the right-hand side of the equation is R~ o §7!, not §~'o R7;
the order of the relations has been reversed. You are asked to prove statement 5
in exercise 6, but it might be worthwhile to try an example first. We've already
seen that, for the relations E and T from parts 5 and 6 of Example 4.2.2,

T o E ={(s,p) € § x P|the student s is enrolled in some course

taught by the professor p}.
It follows that
(ToEY!'= {(p,s) € P x §]| the student s is enrolled in some course

taught by the professor p}.

To compute E~! o T~!, first note that 7~ is a relation from P to C and E~! is
a relation from C to S, so £~! o T~! is a relation from P to S. Now, applying
the definition of composition, we get

E'loT™!

{(p.s) e PxS|3ceC(p.c)eT 'and(c.s) € E™")}
{(p,s)e PxS§|3ceC((c,p) €T and (s, c) € E)}
{(p,s) € P x 8§|3c € C(the course ¢ is taught by the

professor p and the student s is enrolled in the course ¢)}
= {(p, s) € P x §| the student s is enrolled in some course

taught by the professor p}.

Thus,(ToE)y ' =E'oT™ L

Exercises

*1. Find the domains and ranges of the following relations.
(a) {(p,q) € P x P | the person p is a parent of the person ¢}, where
P is the set of all living people.
(b) {(x.y) e R?|y > x?).
2. Find the domains and ranges of the following relations.
(a) {(p.q) € P x P | the person p is a brother of the person g4},
where P is the set of all living people.
(0) {(x, ) € B2 y2 =1 = 2/(x* + 1)},
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. Let L and E be the relations defined in parts 4 and 5 of Example 4.2.2.

Describe the following relations:

(a) L~'oL.

(by Ec(L'oL).

Suppose that A ={1,2,3}, B={4,5,6}, R=1{(1,4),(1,5),(2,9),
(3,6)}, and § = {4, 5), (4, 6), (5, 4), (6, 6)}. Note that R is a relation
from A to B and § is a relation from B to B. Find the following
relations:

(a) SoR.

(b) SoS7L

. Suppose that A ={1,2,3}), B={4,5}), C =1{6.7.8), R={(1,7),

(3,6),(3,7)), and S = {(4,7), (4, 8), (5, 6)}. Note that R is a relation
from A to C and S is arelation from B to C. Find the following relations:
(@) S~'oR.
(b)y R'oS.

. (a) Prove part 3 of Theorem 4.2.5 by imitating the proof of part 2 in

the text.
(b) Give an alternate proof of part 3 of Theorem 4.2.5 by showing that
it follows from parts 1 and 2.
(c) Complete the proof of part 4 of Theorem 4.2.5.
(d) Prove part 5 of Theorem 4.2.5.
Let E = {(p,q) € P x P| the person p is an enemy of the person g},
and F = {(p, q) € P x P | the person p is a friend of the person g},
where P is the set of all people. What does the saying “an enemy of
one's enemy is one’s friend” mean about the relations E and F?

. Suppose R is a relation from A to B and § is a relation from B to C.

(a) Prove that Dom(§ ¢ R) € Dom(R).
(b) Prove that if Ran(R) € Dom(S) then Dom(S§ ¢ R) = Dom(R).
(c) Formulate and prove similar theorems about Ran(§ o R).

. Suppose R and § are relations from A to B. Must the following statements

be true? Justify your answers with proofs or counterexamples.

(a) R € Dom(R) x Ran(R).

(b) IfR C Sthen R~ € 571,

() (RUS'=R'uUSs™L

Suppose R is a relation from A to B and § is a relation from B to C.
Prove that § o R = & iff Ran (R) and Dom (S§) are disjoint.

Suppose R is a relation from A to B and § and T are relations from
BtoC.

(a) Provethat (Se R)\(ToR)S (S\T)eR.
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(by What's wrong with the following proofthat (S \ T)c R € (So R) \
(T o R)?

Proof. Suppose (a,c) € (S§\ T)o R. Then we can choose some
b € B such that (a,b) € R and (b,c)€ S\ T, so (b,c) € § and
(b,c) & T. Since (a,b) € R and (b,¢) € S, (a,¢) € So R. Sim-
ilarly, since (a,b) € R and (b,¢c) ¢ T, (a,c) ¢ T o R. Therefore
(a,c) € (§So R)\ (T o R).Since (a, c) was arbitrary, this shows that
(S\TYe R (SoR)\ (T o R). O

(c) Must it be true that (§\ T)o R C (S o R)\ (T o R)? Justify your
answer with either a proof or a counterexample.
h12. Suppose R is a relation from A to B and S and T are relations from B
to C. Must the following statements be true? Justify your answers with
proofs or counterexamples.
(a) f SCTthenSocRCToR.
®) SNT)oRCS(SoR)N(T o R).
) (SNTYo R=(ScR)N(T o R).
(d) (SUT)oR=(SoR)U(T o R).

4.3. More About Relations

Although we have defined relations to be sets of ordered pairs, it is sometimes
useful to be able to think about them in other ways. Often even a small change
in notation can help us see things differently. One alternative notation that
mathematicians sometimes use with relations is motivated by the fact that
in mathematics we often express a relationship between two objects x and y
by putting some symbol between them. For example, the notations x = y,
x <y, x €y, and x C y express four important mathematical relationships
between x and y. Imitating these notations, if R is arelation from A to B, x € A,
and y € B, mathematicians sometimes write x Ry to mean (x, y) € R.

For example, if L is the relation defined in part 4 of Example 4.2.2, then
for any student s and dorm room r, s Lr means (s, r) € L, or in other words,
the student s lives in the dorm room r. Similarly, if E and T are the relations
defined in parts 5 and 6 of Example 4.2.2, then sEc means that the student s
is enrolled in the course ¢, and ¢T p means that the course ¢ is taught by the
professor p. The definition of composition of relations could have been stated
by saying that if R is a relation from A to B and S is a relation from B to C, then
SoR={(a,c)e A xC|3be B(aRband bSc)}.
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Another way to think about relations is to draw pictures of them. Figure 1
shows a picture of the relation R = {(1, 3), (1, 5), (3, 3)} from part 1 of Exam-
ple 4.2.2. Recall that this was a relation from the set A = {1, 2, 3} to the set
B = {3, 4,5). In the figure, each of these sets is represented by an oval, with
the elements of the set represented by dots inside the oval. Each ordered pair
(a, b) € R is represented by an arrow from the dot representing a to the dot
representing b. For example, there is an arrow from the dot inside A labeled 1
to the dot inside B labeled 5 because the ordered pair (1, 5) is an element of R.

In general, any relation R from a set A to a set B can be represented by such a
picture. The dots representing the elements of A and B in such a picture are called
vertices, and the arrows representing the ordered pairs in R are called edges. It
doesn’t matter exactly how the vertices representing elements of A and B are
arranged on the page; what's important is that the edges correspond precisely
to the ordered pairs in R. Drawing these pictures may help vou understand
the concepts discussed in the last section. For example, you should be able
to convince yourself that you could find the domain of R by locating those
vertices in A that have edges pointing away from them. Similarly, the range
of R would consist of those elements of B whose vertices have edges pointing
toward them. For the relation R shown in Figure 1, we have Dom(R) = {1, 3}
and Ran(R) = {3, 5}. A picture of R~ would look just like a picture of R but
with the directions of all the arrows reversed.

A B

Figure 1

Pictures illustrating the composition of two relations are a little harder to
understand. For example, consider again the relations E and T from parts 5
and 6 of Example 4.2.2. Figure 2 shows what part of both relations might look
like. (The complete picture might be quite large if there are many students,
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courses, and professors at your school.) We can see in this picture that, for
example, Joe Smith is taking Biology 12 and Math 21, that Biology 12 is
taught by Prof. Evans, and that Math 21 is taught by Prof. Andrews. Thus,
applying the definition of composition, we can see that the pairs (Joe Smith,
Prof. Evans) and (Joe Smith, Prof. Andrews) are both elements of the relation

TokE.
S P
Joe Smg:\ » @ Prof. Evans

Peter J ones @ =

>0 Prof Lewis
Mary Edwards .

U U Andrews

To see more clearly how the composition 7 ¢ E is represented in this picture,
first note that for any student s, course ¢, and professor p, there is an arrow

Figure 2

from s to ¢ iff s Ec, and there is an arrow from ¢ to p iff ¢T'p. Thus, according
to the definition of composition,

ToE=|{(s,p)e §x P|dceC(sEcand cTp)}
={(s, p) € § x P|3c € C(in Figure 2, there is an arrow
from s to ¢ and an arrow from ¢ to p))
= {(s, p) € § x P| in Figure 2, you can get from s to p in

two steps by following the arrows}.

For example, starting at the vertex labeled Mary Edwards, we can get to Prof.
Andrews in two steps (going by way of either Math 21 or Math 13), so we can
conclude that (Mary Edwards, Prof. Andrews) € T o E.

In some situations we draw pictures of relations in a slightly different way.
Forexample, if Aisasetand R € A x A, then according to Definition 4.2.1, R
would be called a relation from A to A. Such a relation is also sometimes called
a relation on A (or a binary relation on A). Relations of this type come up often
in mathematics; in fact, we have already seen a few of them. For example, we
described the relation G in part 2 of Example 4.2.2 as a relation from R to R,
but in our new terminology we could call it a relation (or a binary relation) on
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R. The relation E~' o E from Example 4.2.4 was a relation on the set S, and
E o E~! was a relation on C.

Example 4.3.1. Here are some more examples of relations on sets.

. Let A= {1,2}and B = #*(A) = {, {1}, {2}, {1, 2}} as in part 3 of Exam-
ple4.2.2. LetS = {(x,y) € B x B|x Sy} ={(, &), (I, {1}, (&, {2}),
(D, {1, 2D, ({1}, {1, (1} {1. 2D, ({2). (2D, ({2} {1, 2D. ({1, 2}, {1. 2]}
Then § is a relation on B.

2. Suppose Aisaset. Letiy = {(x,y) € A x A|x = y}. Theni, is arelation
on A. (It is sometimes called the identity relation on A.) For example, if
A={1,23), theniy = {(1, 1),(2,2),(3,3)}. Note that i4 could also be
defined by writing iy = {(x, x)|x € A}.

3. For each positive real number r, let D, = {(x, y) € R x R | x and y differ
by less than r, or in other words [x — y| < r}. Then D, is a relation on R.

Suppose R is a relation on a set A. If we used the method described earlier
to draw a picture of R, then we would have to draw two copies of the set A
and then draw edges from one copy of A to the other to represent the ordered
pairs in R. An easier way to draw the picture would be to draw just one copy
of A and then connect the vertices representing the elements of A with edges
to represent the ordered pairs in R. For example, Figure 3 shows a picture of
the relation S from part 1 of Example 4.3.1. Pictures like the one in Figure 3

are called directed graphs.
1,2
QYUY
A

{1 {2}

: 5

C/'@

Figure 3
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Note that in this directed graph there is an edge from & to itself, because
(I, &) e 8. Edges such as this one that go from a vertex to itself are called
loops. In fact, in Figure 3 there is a loop at every vertex, because § has the
property that Vx € B((x, x) € §). We describe this situation by saying that §
is reflexive.

Definition 4.3.2. Suppose R is a relation on A.

1. R is said to be reflexive on A (or just reflexive, if A is clear from context) if
¥x € A(x Rx), or in other words ¥x € A((x,x) € R).

2. Ris symmetric if Vx € AVy € A(xRy — yRx).

3. Ris transitive if Vx € AVy € AVz € A((xRy A yRz) — xRz).

As we saw in Example 4.3.1, if R is reflexive on A, then the directed graph
representing R will have loops at all vertices. If R is symmetric, then whenever
there is an edge from x to y, there will also be an edge from y to x. If x and
y are distinct, it follows that there will be two edges connecting x and y, one
pointing in each direction. Thus, if R is symmetric, then all edges except loops
will come in such pairs. If R is transitive, then whenever there is an edge from
xto yand y to z, there is also an edge from x to z.

Example 4.3.3. Is the relation G from part 2 of Example 4.2.2 reflexive? Is it
symmetric? Transitive? Are the relations in Example 4.3.1 reflexive, symmetric,
or transitive?

Solution

Recall that the relation G from Example 4.2.2 is a relation on R and that for
any real numbers x and y, xGy means x > y. Thus, to say that G is reflexive
would mean that Vx € R(xGx), or in other words ¥x € R{x > x), and this
is clearly false. To say that G is symmetric would mean that ¥x € RYy €
E(x = y — y = x), and this is also clearly false. Finally, to say that G is
transitive would meanthat¥x e Ry e RVz e R((x > yA y = 2) = x > 2),
and this is true. Thus, G is transitive, but not reflexive or symmetric.

The analysis of the relations in Example 4.3.1 is similar. For the relation S in
part 1 we use the fact that for any x and y in B, xSy means x C y. As we have
already observed, S is reflexive, since Vx € B(x C x), but it is not true that
Vx € BYy € B(x €y — y C x).Forexample, {1} € {1, 2}, but {1, 2} € {1}.
You can see this in Figure 3 by noting that there is an edge from {1} to
{1, 2} but not from {1, 2} to {1}. Thus, § is not symmetric. S is transitive,
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because the statement Vx € By e BVze B(x S yAyCz)—> xC2)is
true.

For any set A the identity relation i, will be reflexive, symmetric, and
transitive, because the statements Vx € A(x = x),Vx € AVy e A(x =y —
y=x),andVx € AVy € AVz € A((x = y Ay = z) — x = z) are all clearly
true. Finally, suppose r is a positive real number and consider the relation D, .
For any real number x, |[x — x| =0 < r, so (x, x) € D,. Thus, D, is reflexive.
Also, for any real numbers x and y, |[x — y| = |y — x|, soif |[x — y| < r then
|v — x| < r. Therefore, if (x,y) e D, then (v,x) € D,, so D, is sym-
metric. But D, is not transitive. To see why, let x be any real number.
Let y=x+2r/3and z=y+2r/3=x+44r/3. Then |x — y|=2r/3 <r
and |y —z|=2r/3 <r, but |x —z| =4r/3 = r. Thus, (x,y) e D, and
(y,z) € D, but(x,z) ¢ D,.

Perhaps you’ve already guessed that the properties of relations defined in
Definition 4.3.2 are related to the operations defined in Definition 4.2.3. To
say that a relation R is symmetric involves reversing the roles of two variables
in a way that may remind you of the definition of R~!. The definition of
transitivity of a relation involves stringing together two ordered pairs, just as
the definition of composition of relations does. The following theorem spells
these connections out more carefully.

Theorem 4.3.4. Suppose R is a relation on a set A.

1. Ris reflexive iff iy € R, where as before i 4 is the identity relation on A.

2. Rissymmetriciff R = R~
3. Ris transitive iff Ro R € R.

Proof. We will prove 2 and leave the proofs of 1 and 3 as exercises (see exer-
cises 7 and 8).

2.(—) Suppose R is symmetric. Let (x, y) be an arbitrary element of R. Then
xRy, so since R is symmetric, yRx. Thus, (v, x) € R, so by the definition of
R~',(x,y) € R™'. Since (x, y) was arbitrary, it follows that R € R™!.

Now suppose (x, y) € R™'. Then (y,x) € R, so since R is symmetric,
(x,y)€ R.Thus, R-"' S R,soR=R"".

(<) Suppose R = R, and let x and y be arbitrary elements of A. Suppose
xRy. Then (x, y) € R, so since R = R~ (x, y) € R7L By the definition of
R this means (y,x) € R, so yRx. Thus, ¥Yx € AVy € A(xRy — yRx), s0
R is symmetric. O

Commentary. This proof is fairly straightforward. The statement to be proven
is an iff statement, so we prove both directions separately. In the — half we
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must prove that R = R™!, and this is done by proving both R € R~! and
R~ C R. Each of these goals is proven by taking an arbitrary element of the
first set and showing that it is in the second set. In the < half we must prove
that R 1s symmetric, which means ¥x € AVy € A(xRy — yRx). We use the
obvious strategy of letting x and y be arbitrary elements of A, assuming xRy,
and proving yRXx.

Exercises

*1. Let L ={a.b,c,d,e} and W = {bad, bed, cab}. Let R ={(l,w) €
L x W | the letter { occurs in the word w}. Draw a diagram (like the
one in Figure 1) of R.

. LetA = {cat, dog, bird, rat},andlet R = {(x, y) € A x A|thereisatleast
one letter that occurs in both of the words x and y}. Draw a directed graph

2

(like the one in Figure 3) for the relation R. Is R reflexive? symmetric?
transitive?

*3. Let A ={I1,2,3,4}. Draw a directed graph for the identity relation on
A ig.

4. List the ordered pairs in the relations represented by the following di-
rected graphs. Determine whether each relation is reflexive, symmetric,
or transitive.

(a) c (b) a C
.——-—.‘.o o L ]
— )
b..-"""———"" b.—’.d

BRI




*5.

6.

7

o oo

*13

14
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The following diagram shows two relations R and S. Find S o R.

A B C

d
o
€
°
f
°
8
°

Suppose r and s are two positive real numbers. Let D, and D, be defined
as in part 3 of Example 4.3.1. What is D, o D,? Justify your answer with
a proof. (Hint: In your proof, you may find it helpful to use the triangle
inequality; see exercise 12(c) of Section 3.5.)

Prove part 1 of Theorem 4.3.4.

Prove part 3 of Theorem 4.3.4.

Suppose A and B are two sets.

(a) Show that for every relation R fromAto B, Roiy = R.

(b) Show that for every relation R fromAto B,igo R = R.

Suppose § is a relation on A. Let D = Dom(S) and R = Ran(S§). Prove
that ip C §~'o S and irSSo S-1.

Suppose R is arelation on A. Prove that if R isreflexivethen R € Ro R.
Suppose R is a relation on A,

(a) Prove thatif R is reflexive, then so is R~!.

(b) Prove that if R is symmetric, then so is R~

(c) Prove that if R is transitive, then so is R,

Suppose R; and R are relations on A. For each part, give either a proof
or a counterexample to justify your answer.

(a) If Ry and R, are reflexive, must R; U R, be reflexive?

(b) If R, and R, are symmetric, must R} U R; be symmetric?

(¢) If R, and R, are transitive, must R, U R be transitive?

Suppose R; and R, are relations on A. For each part, give either a proof
or a counterexample to justify your answer.

(a) If Ry and R; are reflexive, must R; N R, be reflexive?

(b) If R, and R, are symmetric, must R; N R; be symmetric?

(¢) If Ry and R, are transitive, must R; N R, be transitive?
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Suppose R; and R, are relations on A. For each part, give either a proof
or a counterexample to justify your answer.

(a) If R, and R, are reflexive, must R; \, R> be reflexive?

(b) If R, and R, are symmetric, must R, \ R, be symmetric?

(c) If R, and R, are transitive, must R; ', R be transitive?

Suppose R and § are reflexive relations on A. Prove that R o § isreflexive.
Suppose R and § are symmetric relations on A. Prove that R o § is sym-
metriciff Ro S = SoR.

Suppose R and § are transitive relations on A. Prove thatif Sc R C Ro §
then R o § is transitive.

Consider the following putative theorem.

Theorem? Suppose R is a relation on A, and define a relation § on % (A)
as follows:

S={(X.Y) e #(A) x (A) | Ix € Xy € Y(xRy)}.

If R is transitive, then so is §S.

(a) What's wrong with the following proof of the theorem?

Proof. Suppose R is transitive. Suppose (X, Y) € Sand (Y, Z) € §.
Then by the definition of §, xRy and yRz, where x € X, y €Y,
and 7 € Z. Since xRy, yRz, and R is transitive, x Rz. But then since
x € X and z € Z, it follows from the definition of § that (X, Z) € §.
Thus, § is transitive. O

(b) Is the theorem correct? Justify your answer with either a proof or a
counterexample.

Suppose Risarelationon A.Let B = {X € #’(A) | X # I}, and define

a relation S on B as follows:

S={X,Y)e BxB|Vxe XVyeY(xRy)).

Prove that if R is transitive, then so is §. Why did the empty set have to
be excluded from the set B to make this proof work?
Suppose R is arelation on A, and define a relation § on #*(A) as follows:

S={(X.Y) e 2(A) x Z(A) | Vx € XIy € Y(xRY)}.

For each part, give either a proof or a counterexample to justify your
answer.

(a) If R is reflexive, must S be reflexive?

(b) If R is symmetric, must S be symmetric?

(c) if R is transitive, must S be transitive?
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22. Consider the following putative theorem:

Theorem? Suppose R is a relation on A. If R is symmetric and transitive,
then R is reflexive.

Is the following proof correct? If so, what proof strategies does it use? If
not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary element of A. Let y be any element of A
such that x Ry. Since R is symmetric, it follows that y Rx. But then by
transitivity, since x Ry and yRx we can conclude that x Rx. Since x was
arbitrary, we have shown that Yx € A(x Rx), so R is reflexive. O

*23. This problem was suggested by Prof. William Zwicker of Union College.
Suppose A is a set, and F € #(A). Let R = {(a,b) € A x A| for ev-
ery X € A\ {a, b}, if XU {a} € F then X U {b} € F}. Show that R is
transitive.

4.4. Ordering Relations

Consider the relation L = {(x, y) € R x R|x < y}. You should be able to
check for yourself that it is reflexive and transitive, but not symmetric. It fails
to be symmetric in a rather extreme way because there are many pairs (x, y)
such that x Ly is true but yLx is false. In fact, the only way xLy and yLx can
both be true is if x < y and y < x, and thus x = y. We therefore say that L is
antisymmetric. Here is the general definition.

Definition 4.4.1. Suppose R is a relation on a set A. Then R is said to be
antisymmetric it ¥x € AVy € A((xRy A yRx) — x = y).

We have already seen arelation with many of the same properties as L. Look
again at the relation § defined in part 1 of Example 4.3.1. Recall that in that
example we let A ={1,2}, B=2(A), and S ={(x,y) € B x B|x C y}.
Thus, if x and y are elements of B, then xSy means x € y. We checked in
the last section that S is reflexive and transitive, but not symmetric. In fact, §
is also antisymmetric, because for any sets x and y, if x € y and y C x then
x = y. You may find it useful to look back at Figure 3 in the last section, which
shows the directed graph representing S.

Intuitively, L and § are both relations that have something to do with com-
paring the sizes of two objects. Each of the statements x < y and x C y can
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be thought of as saying that, in some sense, y is “at least as large as” x. You
might say that each of these statements specifies what order x and y come in.
This motivates the following definition.

Definition 4.4.2. Suppose R is a relation on a set A. Then R is called a partial
order on A (or just a partial order if A is clear from context) if it 1s reflexive,
transitive, and antisymmetric. It is called a total order on A (or just a total
order) if it is a partial order, and in addition it has the following property:

Vx € AVy € A(xRy V yRx).

The relations L and S just considered are both partial orders. § is not a total
order, because it is not true that ¥x € BYy € B(x € y v y C x). For example,
ifweletx = {1} and y = {2}, then x € y and y &€ x. Thus, although we can
think of the relation § as indicating a sense in which one element of B might
be at least as large as another, it does not give us a way of comparing every
pair of elements of B. For some pairs, such as {1} and {2}, § doesn’t pick out
either one as being at least as large as the other. This is the sense in which the
ordering is partial. On the other hand, L is a total order, because if x and y are
any two real numbers, then either x < y or y < x. Thus, L does give us a way
of comparing any two real numbers.

Example 4.4.3. Which of the following relations are partial orders? Which
are total orders?

1. Let A be any set, and let B = #*(A)and § = {(x,y) € B x B|x C y}.

2. Let A ={1,2} and B = %*(A) as before. Let R = {(x,v) € B x B|yhas
at least as many elements as x} = {(&&, &), (&, (1)), (F, {2)), (&, {1, 2)),
({13 1D, ({1}, {2, (1} AL 2D, (12}, {1D. ({2}, {2D), (2}, {1. 2}). ({1. 2},
{L,2h}.

3. D={(x,y) € ZT x Z™ | x divides y}.

4. G={x,y)eRxR|x =y}

Solutions

1. This is just a generalization of one of the examples discussed earlier, and
it is easy to check that it is a partial order. As long as A has at least two
elements, it will not be a total order. To see why, just note that if ¢ and b
are distinct elements of A, then {a} and {b} are elements of B for which
{a} € {b} and {b} Z {a}.

2. Notethat ({1}, {2}) € R and ({2}, {1}) € R, butof course {1} # {2}. Thus, R
is not antisymmetric, so it is not a partial order. Although R was defined by
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picking out pairs (x, ¥) in which y is, in a certain sense, at least as large as
x, it does not satisty the definition of partial order. This example shows that
our description of partial orders as relations that indicate a sense in which
one object is at least as large as another should not be taken too seriously.
This was the motivation for the definition of partial order, but it is not the
definition itself.

3. Clearly every positive integer is divisible by itself, so D is reflexive. Also, as
we showed in Theorem 3.3.6, if x | y and y | z then x | z. Thus, if (x, ¥) € D
and (y, z) € D then (x, z) € D, so D is transitive. Finally, suppose (x, y) €
D and (y,x) € D. Then x | y and y | x, and because x and y are positive it
follows that x < y and y < x, so x = y. Thus, D is antisymmetric, so it is
a partial order. It is easy to find examples illustrating that D is not a total
order. For example, (3,5) ¢ D and (5,3) ¢ D.

Perhaps you were surprised to discover that D is a partial order. It doesn’t
seem to involve comparing the sizes of things, like the other partial orders
we’ve seen. But we have shown that it does share with these other relations
the important properties of reflexivity, transitivity, and antisymmetry. In fact,
this is one of the reasons for formulating definitions such as Definition 4.4.2.
They help us to see similarities between things that, on the surface, might
not seem similar at all.

4. You should be able to check for yourself that G is a total order. Notice that
in this case it seems more reasonable to think of xGy as meaning that y is
as least as small as x rather than at least as large. The definition of partial
order, though motivated by thinking about orderings that go in one direction,
actually applies to orderings in either direction. In fact, this example might
lead you to conjecture that if R is a partial order on A, then so is R™'. You
are asked to prove this conjecture in exercise 13.

Here’s another example of a partial order. Let A be the set of all words
in English, and let R = {(x, y) € A x A| all the letters in the word x ap-
pear, consecutively and in the right order, in the word y}. For example, (can,
cannot), (tar, start), and (ball, ball) are all elements of R, but (can, anchor)
and (can, carnival) are not. You should be able to check that R is reflexive,
transitive, and antisymmetric, so R is a partial order. Now consider the set
B = {me, men, tame, mental} € A. Clearly many ordered pairs of words in B
are in the relation R, but note in particular that the ordered pairs (me, me), (me,
men), (me, tame), and (me, mental) are all in R. If we think of x Ry as meaning
that y is in some sense at least as large as x, then we could say that the word
me is the smallest element of B, in the sense that it is smaller than everything
else in the set.
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Not every set of words will have an element that is smallest in this sense. For
example, consider the set C = {a, me, men, tame, mental} € A. Each of the
words nien, tame, and mental is larger than at least one other word in the set,
but neither a nor me is larger than anything else in the set. We’ll call @ and me
minimal elements of C. But note that neither a nor me is the smallest element
of C in the sense described in the last paragraph, because neither is smaller
than the other. The set C has two minimal elements but no smallest element.

These examples might raise a number of questions in your mind about small-
est and minimal elements. The set C has two minimal elements, but B has only
one smallest element. Can a set ever have more than one smallest element?
Until we have settled this question, we should only talk about an object being
a smallest element of a set, rather than the smallest element. If a set has only
one minimal element, must it be a smallest element? Can a set have a smallest
element and a minimal element that are different? Would the answers to these
questions be different if we restricted our attention to total orders rather than
all partial orders? Before we try to answer any of these questions, we should
state the definitions of the terms smallest and minimal more carefully.

Definition 4.4.4. Suppose R is a partial order on aset A, B € A, and b € B.
Then b is called an R-smallest element of B (or just a smallest element if R
is clear from the context) if Vx € B(bRx). It is called an R-minimal element
(or just a minimal element) if =3x € B(xRb A x # b).

Example 4.4.5.

l. Let L={(x,y)eR xR|x <y}, as before. Let B={xeR|x =7)}.
Does B have any L-smallest or L-minimal elements? What about the set
C={xeR|x>T7}?

2. Let D be the divisibility relation defined in part 3 of Example 4.4.3. Let B =
{3,4,5,6,7,8,9}. Does B have any D-smallest or D-minimal elements?

3. Lt S={(X,Y) e #”(N) x »»(N)| X € Y}, which is a partial order on the
set?(N). Let F = {X € () |2 € X and 3 € X}. Note that the elements
of F are not natural numbers, but sets of natural numbers. For example,
{1,2,3}and {n € N |n is prime} are both elements of F. Does F have any
S-smallest or S-mimimal elements? What about the set G = {X € () |
either2 € X or 3 € X}?

Solutions

1. Clearly7 < xforevery x € B,soVx € B(7Lx)and therefore 7 is a smallest
element of B. It is also a minimal element, since nothing in B is smaller
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than 7, so —3dx € B(x <7 A x #£ 7). There are no other smallest or minimal
elements. Note that 7 is not a smallest or minimal element of C, since 7 ¢ C.
According to Definition 4.4.4, a smallest or minimal element of a set must
actually be an element of the set. In fact, C has no smallest or minimal
elements.

2. First of all, note that 6 and 9 are not minimal because both are divisible by
3, and 8 is not minimal because it is divisible by 4. All the other elements
of B are minimal elements, but none is a smallest element.

3. Theset{2, 3} is a smallest element of F, since 2 and 3 are elements of every
set in F, and therefore VX € F({2,3} C X). It is also a minimal element,
since no other element of F is a subset of it, and there are no other smallest
or minimal elements. The get G has two minimal elements, {2} and {3}.
Every other set in G must contain one of these two as a subset, so no other
set can be minimal. Neither set is smallest, since neither is a subset of the
other.

We are now ready to answer some of the questions we raised before
Definition 4.4.4.

Theorem 4.4.6. Suppose R is a partial order on a set A, and B C A.

1. If B has a smallest element, then this smallest element is unique. Thus, we
can speak of the smallest element of B rather than a smallest element.

2. Suppose b is the smallest element of B. Then b is also a minimal element
of B, and it is the only minimal element.

3. If R is atotal order and b is a minimal element of B, then b is the smallest
element of B.

Scratch work

These proofs are somewhat harder than earlier ones in this chapter, so we do
some scratch work before the proofs.

1. Of course, we start by assuming that B has a smallest element, and because
this is an existential statement, we immediately introduce a name, say b, for
a smallest element of B. We must prove that b is the only smallest element.
As we saw in Section 3.6, this can be written Ve(e is a smallest element of
B — b = ¢), so our next step should be to let ¢ be arbitrary, assume it is also
a smallest element, and prove b = c.

At this point, we don’t know much about b and ¢. We know they’re both
elements of B, but we don’t even know what kinds of objects are in B — whether
they’re numbers, or sets, or some other type of object — so this doesn’t help us
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much in deciding how to prove that b = ¢. The only other fact we know about
b and c is that they are both smallest elements of B, which means Vx € B(bRx)
and Vx € B(cRx). The most promising way to use these statements is to plug
something in for x in each statement. What we plug in should be an element of
B, and we only know of two elements of B at this point, b and ¢. Plugging in
both of them in both statements, we get bRb, bRc, ¢Rb, and ¢ Re. Of course,
we already knew bRb and cRe, since R is reflexive. But when you see that
bRc and ¢Rb, you should think of antisymmetry. Since R is a partial order, it
is antisymmetric, so from bRc¢ and ¢ Rb it follows that b = ¢.

2. Our first goal is to prove that b is a minimal element of B, which means
—dx € B(xRb A x # b). Because this is a negative statement, it might help to
reexpress it as an equivalent positive statement:

—dx € B(xRbAx #£b) iff ¥x € B=(xRb A x £ b)
iff ¥x € B(—xRbv x = b)
iff ¥x € B(xRb — x = b).

Thus, to prove that b is minimal we could let x be an arbitrary element of B,
assume that x Rb, and prove x = b.

Once again, it’s a good idea to take stock of what we know at this point about
b and x. We know x Rb, and we know that b is the smallest element of B, which
means Vx € B(bRx). If we apply this last fact to our arbitrary x, then as in part
1 we can use antisymmetry to complete the proof.

We still must prove that b is the only minimal element, and as in part 1
this means V¢(c is a minimal element of B — b = ¢). So we let ¢ be arbitrary
and assume that ¢ is a minimal element of B, and we must prove that b =
¢. The assumption that ¢ is a minimal element of B means that ¢ € B and
—3dx € B(xRc A x # ¢), but as before, we can reexpress this last statement in
the equivalent positive form ¥x € B(xRc — x = ¢). To use this statement we
should plug in something for x, and because our goal is to show that b = ¢,
plugging in b for x seems like a good idea. This gives us bRc — b = ¢, soif
only we could show b Re, we could complete the proof by using modus ponens
to conclude that b = ¢. But we know b is the smallest element of B, so of course
bRc is true.

3. Of course, we start by assuming that R is a total order and b is a minimal
element of B. We must prove that b is the smallest element of B, which means
Vx € B(bRx), so we let x be an arbitrary element of B and try to prove bRx.

We know from examples we’ve looked at that minimal elements in partial
orders are not always smallest elements, so the assumption that R is a tetal order
must be crucial. The assumption that R is total means Vx € AVy € A(xRy Vv
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yRx), so to use it we should plug in something for x and y. The only likely
candidates for what to plug in are b and our arbitrary object x, and plugging these
in we get x Rb v bRx. Our goal is bRx, so this certainly looks like progress.
If only we could rule out the possibility that x Rb, we’d be done. So let’s see if
we can prove —x Rb.

Because this is a negative statement, we try proof by contradiction. Suppose
x Rb. What given statement can we contradict? The only given we haven’t used
yet is the fact that & is minimal, and since this is a negative statement, it is the
natural place to look for a contradiction. To contradict the fact that b is minimal,
we should try to show that 3x € B(xRb A x # b). But we’ve already assumed
xRb, so if we could show x £ b we’d be done.

You should try proving x = b at this point. You won’t get anywhere. The
fact is, we started out by letting x be an arbitrary element of B, and this means
that it could be any element of B, including b. We then assumed that x Rb, but
since R is reflexive, this still doesn’t rule out the possibility that x = b. There
really isn’t any hope of proving x # b. We seem to be stuck.

Let’s review our overall plan for the proof. We needed to show Vx € B(bRx),
so we let x be an arbitrary element of B, and we're trying to show bRx. We’ve
now run into problems because of the possibility that x = b. But if our ultimate
goal is to prove bR x, then the possibility that x = b really isn’t a problem after
all. Since R is reflexive, if x = b then of course b Rx will be true!

Now, how should we structure the final write-up of the proof? It appears that
our reasoning to establish b Rx will have to be different depending on whether
or not x = b. This suggests proof by cases. In case 1 we assume that x = b,
and use the fact that R is reflexive to complete the proof. In case 2 we assume
that x # b, and then we can use our original line of attack, starting with the
fact that R is total.

Proof.

1. Suppose b is a smallest element of B, and suppose ¢ is also a smallest
element of B. Since b is a smallest element, Vx € B(bRx), so in particular
bRc. Similarly, since ¢ is a smallest element, cRb. But now since R is
a partial order, it must be antisymmetric, so from bRe¢ and ¢Rb we can
conclude b = c.

2. Let x be an arbitrary element of B and suppose that x Rb. Since b is the
smallest element of B, we must have bRx, and now by antisymmetry it
follows that x = b. Thus, » must be a minimal element.

To see that it is the only one, suppose ¢ is also a minimal element. Since
b is the smallest element of B, bRc. But then since ¢ is minimal, we must
have b = ¢. Thus b is the only minimal element of B.
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3. Suppose R is a total order and b is a minimal element of B. Let x be an
arbitrary element of B. If x = b, then since R is reflexive, b Rx. Now suppose
x # b. Since R is a total order, we know that either x Rb or bRx. But x Rb
can’t be true, since by combining x Rb with our assumption that x £ b we
could conclude that b is not minimal, thereby contradicting our assumption
that it is minimal. Thus, # Rx must be true. Since x was arbitrary, we can
conclude that Vx € B(bRx), so b is the smallest element of B. O

When comparing subsets of some set A, mathematicians often use the
partial order § = {(X,¥) € #°(A) x #*(A)| X C Y}, although this is not al-
ways made explicit. Recall that if 7 € #°(A) and X € F, then according to
Definition 4.4.4, X is the §-smallest element of F iff VY € F(X C Y). In other
words, to say that an element of F is the smallest element means that it is a
subset of every element of F. Similarly, mathematicians sometimes talk of a
set being the smallest one with a certain property. Generally this means that
the set has the property in question, and furthermore it is a subset of every set
that has the property. For example, we might describe our conclusion in part
3 of Example 4.4.5 by saying that {2, 3} is the smallest set X € N with the
property that 2 € X and 3 € X. We will see more examples of this idea in the
next section and in later chapters.

Example 4.4.7.

. Find the smallest set of real numbers X such that 5 € X and for all real
numbers xand y,if x € X and x < y then y € X.

2. Find the smallest set of real numbers X such that X # & and for all real
numbers xand y, if x € X and x < y then y € X.

Solutions

1. Another way to phrase the question would be to say that we are looking
for the smallest element of the family of sets F = {X CR|5 € X and
VxVy((x € X nx < y) — y € X)}, where it is understood that smallest
means smallest with respect to the subset partial order. Now for any set X €
F we know that 5 € X, and we know that VxVy((x e X Ax < y) —> y €
X). In particular, since 5 € X we can say that Vy(5 < y — y € X). Thus,
ifwelet A ={y € R|5 < y}, then we can conclude that VX € F(A C X).
But it is easy to see that A € F, so A is the smallest element of F.

2. We must find the smallest element of the family of sets F = {(X CR | X #
& and VaVy((x e X Ax <y)—> ye X)}. Theset A={yeR|5 <y}
from part 1 is an element of F, but it is not the smallest element, or even a
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minimal element, because the set A" = {y € R |6 < y)} is smaller — in other
words, A’ C A and A" £ A. But A’ is also not the smallest element, since
A" ={y € R|7 < y} is still smaller. In fact, this family has no smallest,
or even minimal, element. You're asked to verify this in exercise 12. This
example shows that we must be careful when talking about the smallest set
with some property. There may be no such smallest set!

You have probably already guessed how to define maximal and largest ele-
ments in partially ordered sets. Suppose R is a partial orderon A, B € A, and
b € B. We say that b is the largest element of B if Yx € B(xRb), and it is a
maximal element of B if =3x € B(bRx » b # x). Of course, these definitions
are quite similar to the ones in Definition 4.4.4. You are asked in exercise 14 to
work out some of the connections among these ideas. Another useful related
idea is the concept of an upper or lower bound for a set.

Definition 4.4.8. Suppose R is a partial orderon A, B € A, and a € A. Then
a is called a lower bound for B if Vx € B(aRx). Similarly, it is an upper bound
for Bit Vx € B(x Ra).

Note that a lower bound for B need not be an element of B. This is the only
difference between lower bounds and smallest elements. A smallest element
of B is just a lower bound that is also an element of B. For example, in part 1
of Example 4.4.5, we concluded that 7 was not a smallest element of the set
C={xeR|x > 7} because 7 ¢ C. But 7 is a lower bound for C. In fact, so
is every real number smaller than 7, but not any number larger than 7. Thus,
the set of all lower bounds of C is the set {x € . |x < 7}, and 7 is its largest
element. We say that 7 is the greatest lower bound of the set C.

Definition 4.4.9. Suppose R is a partial order on A and B C A. Let U be the
set of all upper bounds for B, and let L be the set of all lower bounds. If U has
a smallest element, then this smallest element is called the least upper bound
of B. If L has a largest element, then this largest element is called the greatest
lower bound of B. The phrases least upper bound and greatest lower bound
are sometimes abbreviated Liu.b. and g.L.b.

Example 4.4.10.

L Let L={(x,y)eRxR|x < y},atotal orderon R. Let B = {1/n|n €
Zty=1{1,1/2.1/3,1/4,1/5,...} € R. Does B have any upper or lower
bounds? Does it have a least upper bound or greatest lower bound?
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2. Let A be the set of all English words, and let R be the partial order on A
described after Example 4.4.3. Let B = {house, boat}. Does B have any
upper or lower bounds? Does it have a least upper bound or a greatest lower
bound?

Solutions

1. Clearly the largest element of B is 1. It is also an upper bound for B, as is
any number larger than 1. By definition, an upper bound for B must be at
least as large as every element of B, so in particular it must be at least as
large as 1. Thus, no number smaller than 1 is an upper bound for B, so the
set of upper bounds for B is {x € R|x = 1}. Clearly the smallest element
of this setis 1, so 1 is the Lu.b. of B.

Clearly 0 is a lower bound for B, as is any negative number. On the other
hand, suppose a is a positive number. Then for a large enough integer n
we will have 1/n < a. (You should convince yourself that any integer n
larger than 1 /a would do.) Thus, it is not the case that Vx € B(a < x), and
therefore a is not a lower bound for B. So the set of all lower bounds for B
is{x e R|x <0}, and the g.1.b. of B is (.

2. Clearly houseboat and boathouse are upper bounds for B. In fact, no shorter
word could be an upper bound, so they are both minimal elements of the
set of all upper bounds. According to part 2 of Theorem 4.4.6, a set that has
more than one minimal element can have no smallest element, so the set of
all upper bounds for B does not have a smallest element, and therefore B
doesn’t have a Lu.b.

The only letter that the words house and boat have in common is o, which
is not a word of English. Thus, B has no lower bounds.

Notice that in part 1 of Example 4.4.10, the largest element of B also turned
out to be its least upper bound. You might wonder whether largest elements are
always least upper bounds and whether smallest elements are always greatest
lower bounds. You are asked to prove that they are in exercise 20. Another
interesting fact about this example is that, although B did not have a smallest
element, it did have a greatest lower bound. This was not a coincidence. It
is an important fact about the real numbers that every nonempty set of real
numbers that has a lower bound has a greatest lower bound and, similarly,
every nonempty set of real numbers that has an upper bound has a least upper
bound. The proof of this fact is beyond the scope of this book, but it is important
to realize that it is a special fact about the real numbers; it does not apply to all
partial orders or even to all total orders. For example, the set B in the second
part of Example 4.4.10 had upper bounds but no least upper bound.
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We end this section by looking once again at how these new concepts apply
to the subset partial order on #?(A), for any set A. It turns out that in this partial
order, least upper bounds and greatest lower bounds are our old friends unions
and intersections.

Theorem 4.4.11. Suppose A is a set, F C 2*(A), and F £ &. Then the least
upper bound of F (in the subset partial order) is UF and the greatest lower
bound of F is NF.

Proof. See exercise 23. O

Exercises

*1. In each case, say whether or not R is a partial order on A. If so, is it a total

order?

(a) A={a,b,c}, R ={(a,a),(b,a),(b,b),(b,c)(c,c)}

) A=R,R={x,eRxR| |x| = |yl}

) A=R,R={(x,y)eRxR| |x| < |y|orx =y

In each case, say whether or not R is a partial order on A. If so, is it a total

order?

(a) A = the set of all words of English, R = {(x, y) € A x A | the word
y occurs at least as late in alphabetical order as the word x}.

(b) A = the set of all words of English, R = {(x, y) € A x A | the first
letter of the word y occurs at least as late in the alphabet as the first
letter of the word x}.

(c) A = the set of all countries in the world, R = {(x, y) € A x A | the
population of the country y is at least as large as the population of the
country x}.

[

3. Ineach case find all minimal and maximal elements of B. Also find, if they
exist, the largest and smallest elements of B, and the least upper bound and
greatest lower bound of B.

(a) R = the relation shown in the following directed graph, B = {2, 3, 4}.

SIY
Qz/
O.
&

1
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4.

*8.

10.

*11.

12.

13.

*14.

Relations

by R={(x,VeRxR|lx=yLB={xeR|l =x <2}

) R={x, e x»PM|xCy},B={xePM)|x has at
most 5 elements}.

Suppose R is a relation on A. You might think that R could not be both

antisymmetric and symmetric, but this isn’t true. Prove that R is both

antisymmetric and symmetric iff R € i4.

Suppose R is a partial order on A and B € A. Prove that RN (B x B) is

a partial order on B.

. Suppose R, and R; are partial orders on A. For each part, give either a

proof or a counterexample to justify your answer.

(a) Must R; N R, be a partial order on A?

(b) Must R; U R, be a partial order on A?

Suppose R is a partial order on A}, R is a partial order on A», and

A| n Ag = .

(a) Prove that Ry U R» is a partial order on A; U A,.

(b) Prove that Ry U Ry U (A, x A,) is a partial order on A; U A,.

(c) Suppose that R, and R, are total orders. Are the partial orders in parts
(a) and (b) also total orders”

Suppose R is a partial order on A and S is a partial order on B. Define a

relation T on A x B as follows: T = {((a, b), (a’, b)) € (A x B) x (A %

B)|aRa' and bSh'}. Show that T is a partial order on A x B. If both R

and S are total orders, will T also be a total order?

. Suppose R is a partial order on A and S is a partial order on B. Define a

relation Lon A x B as follows: L = {((a, b), (@', b)) € (A x B) x (A x

B)|aRd', and if a = a' then hSb'}. Show that L is a partial order on

A x B.If both R and S are total orders, will L also be a total order?

Suppose R is a partial orderon A. Foreachx € A,let P, = {a € A | aRx}.

Prove that Vx € AYy € A(xRy < P, C P,).

Let D be the divisibility relation defined in part 3 of Example 4.4.3. Let

B = {x € Z | x = 1}. Does B have any minimal elements? If so, what are

they? Does B have a smallest element? If so, what is 1t?

Show that, as was stated in part 2 of Example 447, {X CR| X # & and

VxVy((x € X Ax < y) — y € X)} has no minimal element.

Suppose R is a partial order on A. Prove that R™! is also a partial order on

A. If R is a total order, will R~! also be a total order?

Suppose R is a partial order on A, B € A, and b € B. Exercise 13 shows

that R™! is also a partial order on A.

(a) Prove that b is the R-largest element of B iff it is the R~'-smallest
element of B.

(b) Prove that b is an R-maximal element of B iff it is an R~'-minimal
element of B.




15.

16.

*17.

18.

19.

20.

*21.
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Suppose R; and R, are partial orderson A, R} € R;, B € A,and b € B.

(a) Prove that if b is the R;-smallest element of B, then it is also the
R>-smallest element of B.

(b) Prove that if b is an R>-minimal element of B, then it is also an R,-
minimal element of B.

Suppose R is a partial orderon A, B € A, and b € B. Prove thatif b is the

largest element of B, then b is also a maximal element of B, and it’s the

only maximal element.

If a subset of a partially ordered set has exactly one minimal element,

must that element be a smallest element? Give either a proof or a counter

example to justify your answer.

Suppose R is a partial order on A, By C A, B, C A, Vx € Bjdy ¢

By(xRy),and Vx € Bdy € Bi(xRy).

(a) Prove that for all x € A, x is an upper bound of B, iff x is an upper
bound of B>.

(b) Prove thatif B; and B, are disjoint then neither of them has a maximal
element.

Consider the following putative theorem.

Theorem? Suppose R is a total order on A and B C A. Then every ele-
ment of B is either the smallest element of B or the largest element of B.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose b € B. Let x be an arbitrary element of B. Since R is
a total order, either bRx or x Rb.

Case 1. bRx. Since x was arbitrary, we can conclude that Vx €
B(bRx), so b is the smallest element of R.

Case 2. xRb. Since x was arbitrary, we can conclude that Vx €
B(x Rb), so b is the largest element of R.

Thus, b is either the smallest element of B or the largest element
of B. Since b was arbitrary, every element of B is either its smallest
element or its largest element. 0

(b) Is the theorem correct? Justify your answer with either a proof or a
counterexample.

Suppose R is a partial orderon A, B C A, and b € B.

(a) Prove that if b is the smallest element of B, then it is also the greatest
lower bound of B.

(b) Prove that if b is the largest element of B, then it is also the least upper
bound of B.

Suppose R is a partial order on A and B C A. Let U be the set of all upper

bounds for B.
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(a) Prove that U is closed upward, that is, prove that if x € U and xRy,
theny € U.
(b) Prove that every element of B is a lower bound for U.
(c) Prove that if x is the greatest lower bound of U, then x is the least upper
bound of B.
22. Suppose that R is a partial order on A, B) C A, B, € A, x) is the least
upper bound of Bj, and x; is the least upper bound of B,. Prove that if
B € B> then x) Rxa.
23. Prove Theorem 4.4.11.

4.5. Closures

According to the definition we gave in the last section, the relation L =
{(x,y) e R x R|x < y}is a total order on R, but the relation M = {(x, y) €
E x R|x < y}is not because it is not reflexive. Of course, these relations are
closely related. It’s clear that M C L, and the only ordered pairs in L that are
not in M are pairs of the form (x, x), for some x € . Note that all of these
ordered pairs must be in any reflexive relation on . Thus, you could think of
L as being formed by starting with M and then adding just those ordered pairs
that must be added to create a reflexive relation. It follows that L is the smallest
relation on R that is reflexive and contains M as a subset. We are using the
word smallest here in exactly the way we defined it in the last section. If we let
F={TCRxR|MCT and T is reflexive}, then L is the smallest element
of F, where as usual it is understood that we mean smallest in the sense of the
subset partial order. In other words, L is an element of F, and it’s a subset of
every element of 7. We will say that L is the reflexive closure of M.

Definition 4.5.1. Suppose R is a relation on a set A. Then the reflexive closure
of R is the smallest set § € A x A such that R C § and § is reflexive, if there
is such a smallest set. In other words, a relation S € A x A is the reflexive
closure of R if it has the following three properties:

l. RCS.
2. §is reflexive.
3. ForeveryrelationT € A x A,if R C T and T is reflexive, then S C T'.

According to Theorem 4.3.6, if a set has a smallest element, then it can
have only one smallest element. Thus, if a relation R has a reflexive closure,
then this reflexive closure must be unique, so it makes sense to call it the
reflexive closure of R rather than a reflexive closure. However, as we saw in




Closures 203

Example 4.4.7, some families of sets don’t have smallest elements, so it might
not be clear at first whether every relation has a reflexive closure. In fact, every
relation does have a reflexive closure.

Theorem 4.5.2. Suppose R is a relation on A. Then R has a reflexive closure.

Proof. Let S = R Ui, where as usual i, is the identity relation on A. We
will show that § is the reflexive closure of A. Thus, we must show that §
has the three properties listed in Definition 4.5.1. The first property is ob-
viously true, since clearly R € R Ui, = S. For the second and third, we use
Theorem4.3.4. Clearlyiy € R Uiy = S,sobypart I of Theorem4.3.4, Sisre-
flexive. Finally, to prove the third property, suppose T isarelationon A, R C T,
and T is reflexive. Then by Theorem 4.3.4, since T is reflexive, iy € T. Com-
bining this with the fact that R € T, we can conclude that § = RU i, € T, as
required. 0

Commentary. Our goal is the existential statement 35(§ is the reflexive closure
of R), so we start by specifying a value for S. Our earlier discussion suggests that
to get § we should start with R and then add just those ordered pairs that must
be added to create a reflexive relation. The ordered pairs that must be added
are the elements of i 4 that are not already in R, so we let S = R Ui 4. Our goal
now is to prove that S is the reflexive closure of R, and by definition this means
that we must prove statements 1-3 of Definition 4.5.1. We prove these one at a
time. Statements 1 and 2 are easy, and the logical form of statement 3 suggests
the strategy of letting T be an arbitrary relation on A, assuming R € 7 and T
is reflexive, and then proving § € T.

For another example of a reflexive closure, let A be any set and consider
the relation P = {(x, y) € #’(A) x #?(A)|x € yand x # y}. Thus,if xand y
are any two subsets of A, then x Py means that x € y and x # y. If x Py, then
we will say that x is a proper subset of y, which is written x C y. The reflexive
closure of P would be the relation

PUiyu={(x,y) € 7(A) x Z(A)| (x,y) € P or (x,y) € i» )}
={x,y)e PA)x »P(A)|x Cyorx =y}
={(x.y) € 7(A) x 7(A)[x € y}.
Thus, the reflexive closure of the proper subset relation is the subset relation.
The relations M and P in these examples are similar to partial orders except

that they are not reflexive. Rather than expressing a sense in which one object
can be “at least as large as” another, these relations seem to represent a sense




204 Relations

in which one object can be “strictly larger” than another. They are therefore
sometimes called strict partial orders.

Definition 4.5.3. Suppose R is a relation on A. Then R is said to be irreflexive
if Vx € A((x,x) ¢ R). R is called a strict partial order if it is irreflexive and
transitive. [t is called a strict rotal order if it is a strict partial order, and in
addition it satisfies the following requirement, called trichotomy:

Vx € AVy € A(xRy v yRx vx =1y).

Note that the terminology here is slightly misleading. A strict partial order
isn’t a special kind of partial order. It’s not a partial order at all, since it’s not
reflexive! You may be surprised that we did not include antisymmetry in the
definition of strict partial order, since it was part of the definition of partial
order, but it turns out that antisymmetry is implied by the definition. For more
on this, see exercise 3.

You should be able to check for yourself that P is a strict partial order and
M is a strict total order. Perhaps you've already guessed from these examples
that the reflexive closure of a strict partial order is always a partial order, and
the reflexive closure of a strict total order is always a total order. You are asked
to prove this in exercise 4.

Reflexivity is not the only property for which we can define a closure. Exactly
the same idea could be applied to symmetry and transitivity.

Definition 4.5.4. Suppose R is a relation on A. The symmetric closure of R is
the smallest set § € A x A such that R C S and § is symmetric, if there is such
a smallest set. In other words, a relation § € A x A is the symmetric closure
of R if it has the following properties:

l. RCS.
2. § is symmetric.
3. ForeveryrelationT € A x A,if R € T and T is symmetric, then § C T.

The transitive closure of R is the smallest set S C A x A suchthat RC §
and S is transitive, if there 1s such a smallest set. In other words, a relation
§ € A x A is the transitive closure of R if it has the following properties:

l. RCS.
2. §is transitive.
3. ForeveryrelationT € A x A,if R C T and T is transitive, then S C T.
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As we saw in the case of reflexive closure, it is not immediately obvious
that these closures will always exist. It turns out that they do, although this will
require proof. But before proving these theorems, let’s look at a few examples
of symmetric and transitive closures.

Let P be the set of all people, and let H = {(x, y) € P x P|x hates y}.
Then H may fail to be symmetric, because if x hates y, it doesn’t necessarily
follow that y hates x. To find the symmetric closure of H we would have to
find the smallest relation on P that is symmetric and contains every ordered
pair in H. We could do this by starting with H and then adding only those
ordered pairs that mist be added to make the relation symmetric. Now clearly
if we want to create a symmetric relation, then we will have to add the ordered
pair (x, y) whenever (y, x) € H. In other words, if y hates x, then we’ll have to
include the pair (x, y) in the relation we are constructing. Adding these ordered
pairs to H, we can see that any relation on P that is symmetric and contains
H must contain all the ordered pairs in the set S= HU {(x,y)€ P x P|y
hates x} = {(x, y) € P x P either x hates y or y hates x}. Now it is not hard
to check that S is a symmetric relation, so it must be the symmetric closure
of H. If you were planning the guest list for a party, you might want to know
about the relation §. If you are inviting some person x and you know that xSy,
you probably shouldn’t invite y!

For an example of a transitive closure, let C be the set of all cities in the
worldandlet B = {(x, y) € C x C| there is anonstop bus from x to y}. Now if
(a, b) € B and (b, ¢) € B, it does not necessarily follow that (a, ¢) € B, since
there might be nonstop buses from a to b and b to ¢, but no nonstop bus from
a to ¢. Thus, if we want to add new ordered pairs to B in order to construct a
transitive relation, we must add the pair (a, ¢). But notice that once we have
added (a, ¢), we may be forced to add even more ordered pairs if we want to
end up with a transitive relation. For example, if there is a nonstop bus from
¢ to some other city d, then we will have to add (a, d). We were forced to
add (a, d) because (a, b), (b, ¢), and (c, d) were all elements of B. In other
words, you could go by bus from a to b, from b to ¢, and from ¢ to . In fact,
it should be clear now that for any two cities x and y, if there is a way to get
from x to y by bus, changing buses any number of times at other cities, then we
will eventually be forced by the transitivity requirement to add the pair (x, y).
Thus, any transitive relation on C that contains all the ordered pairs in B must
contain the relation T = {(x, y) € C x C| it is possible to get from x to y by
bus (possibly changing buses several times at other cities) }. But if you can get
from x to y by bus and you can get from y to z by bus, then by combining the
two bus trips you can get from x to z by bus. Thus, 7 is transitive, so it is the
transitive closure of B.
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It might be helpful in thinking about this last example to draw the directed
graph of the relation B. This is illustrated in Figure 1 for a small set of cities.
A bus company might draw such a diagram to represent all its bus routes. Now
we can describe the transitive closure T as consisting of all ordered pairs (x, v)
such that you can get from x to y in Figure 1 by following the arrows. For
example, the pair (Dallas, New York) would be in 7, because you can get from
Dallas to New York by changing buses in Washington. Note that although it
might be convenient to position the dots in this diagram as they would appear
on a map, the precise positions of the dots have nothing to do with the relations
B and T. To read from the diagram which ordered pairs are in B or T, we
only need to know which dots are connected by arrows and which aren’t, not
precisely where the dots are located.

Chicago

°
/ \ o New York
San Francisco @ /
°

ashington, D.C.
Dallas
Figure 1

Directed graphs can often be helpful in thinking about symmetric and
transitive closures of relations. Let’s work out one more example. Suppose
A=1{1,2,3,4) and R=1{(1,2),(1,3),(2,1),(2,2),(3,4)}. The directed
graph representing R is shown in Figure 2.

[ ] [ ]

Figure 2




Closures 207

We can find the symmetric and transitive closures of R by imitating the rea-
soning we used for the relations H and B. To find the symmetric closure we
start with R, and for each ordered pair (x, y) in R we add the ordered pair (v, x).
This gives us the relation § = {(1, 2), (1, 3), (2, 1),(2,2), (3, 1).(3,4), (4, 3)},
whose directed graph is shown in Figure 3. Note that the only difference be-
tween this graph and the one in Figure 2 is that single arrows connecting distinct
vertices have been changed to pairs of arrows pointing in opposite directions.
You should be able to check that § is symmetric, and since the only ordered pairs
we added to R are those we were forced to add by the definition of symmetry,
S must be the symmetric closure of R.

To find the transitive closure of R, we let T = {(x,y) € A x A| you can
get from vertex x to vertex y in Figure 2 by following the arrows} =
{(1, D, (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 4)}. The graph
of T is also shown in Figure 3. Note in particular that (1, 1) € T, because you
can get from vertex 1 to itself by following the arrows in Figure 2, going first
from vertex 1 to vertex 2 and then back to vertex 1. Rephrasing this in terms of
the definition of transitivity, since (1, 2) € R and (2. 1) € R, we must add the
ordered pair (1, 1) to R if we want to create a transitive relation. Once again,
you should be able to verify that T is the transitive closure of R by checking
that T is transitive and that the only ordered pairs in T that are not in R are
those we were forced to add by the definition of transitivity.

402 > 03 40«

Figure 3

Let’s return now to the problem of proving that every relation has a symmetric
closure and a transitive closure. Both of these proofs will involve proving that
something with a certain property exists, and as we saw in Chapter 3, proofs of
this kind are sometimes difficult. The most straightforward way to proceed is to
try to find something that has the required property, but sometimes this object is
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difficult to find. For the proofs we are concerned with we will need to be able to
find, for any given relation R, relations that satisfy the definitions of symmetric
and transitive closure for R. This will actually be the most difficult part of
figuring out these proofs. Once we’ve found the right relations, verifying that
they satisfy the definitions of symmetric and transitive closure will be somewhat
long, but not difficult.

The case of the symmetric closure is the easier of the two. Suppose R is a
relation on a set A, and we want to find the symmetric closure of R. Looking at
the earlier examples, it appears that all we need to do is to add to R all ordered
pairs (x, v) such that (y, x) € R. In other words, it looks like the symmetric
closure of R willbe R U R™L.

Theorem 4.5.5. Suppose R is a relation on a set A. Then R has a symmetric
closure.
Proof Let § = RU R™!. We will show that S is the symmetric closure of R.
Clearly R C S, so the first clause of the definition of symmetric closure
is satisfied. For the second, suppose (x, y) € S. Then by the definition of S,
either (x,y) € R or (x,y) e R If (x,y) € R, then (y.x)e R°'C S. If
(x,y) € R7! then (y,x) € R € S. Thus, we can conclude that if (x, y) € §
then (v, x) € §. Since (x, y) was arbitrary, this shows that § is symmetric.
Finally, for the third clause in the definition of symmetric closure, sup-
pose RC T C A x Aand T is symmetric. Suppose (x, y) € S. As before, this
means that either (x, y) € R or (x, y) € R™!, so we consider these two possi-
bilities separately. If (x, y) € R then (x, y) € T,since R € T.If (x, y) € R™!
then (y, x) € R,sosince R € T,(y, x) € T. But then since 7 is symmetric, it
follows that (x, y) € T. Since (x, y) was arbitrary, we have shown that § C T,
as required. O

Commentary. The overall form of this proof is quite similar to the form of the
proof of Theorem 4.5.2, but some of the details are a little trickier. We start
by specifying a relation § that will be the symmetric closure of R, and then
we prove the three statements in the definition of symmetric closure one at a
time. The logical form of the definition of symmetric suggests that to prove
that § is symmetric we should start with an arbitrary ordered pair (x, y) € §
and prove (y, x) € S. Because we defined S tobe R U R™!, the assumption that
(x,v) € § means (x, y) € RV (x,y) € R}, and since this is a disjunction it
suggests the use of proof by cases.

Asinthe proof of Theorem 4.5.2, to prove the third statement in the definition
of symmetric closure we let T be an arbitrary relation on A suchthat R € T
and T is symmetric, and we prove S € 7. To prove S € T we let (x, y) be
an arbitrary element of § and prove (x, y) € T. As before, the assumption that
(x, y) € § is a disjunction, so it leads to a proof by cases.
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Before moving on to the proof that all relations have transitive closures, we
would like to describe an alternative method of proving Theorem 4.5.5. If R
is a relation on a set A, then we know that the symmetric closure of R, if it
exists, must be the smallest element of the family F ={T CAx A|RCT
and T is symmetric}. Now according to exercise 20 in the last section, the
smallest element of a set is also always the greatest lower bound of the set, and
by Theorem 4.4.11, the g.1.b. of a nonempty family of sets F is always NF.
Thus, if the symmetric closure of R exists, then it must be equal to NJF. This
suggests an alternative approach to proving Theorem 4.5.5. We could define
the family F, prove that F # &, and then let S = N (instead of R U R™!)
and prove that S satisfies the definition of symmetric closure. Recall that we
only defined NF for F # &, so we must check that F #£ J before we can
form NF. You are asked in exercise 10 to work out the details of this alternative
proof.

There are also two ways we could prove that any relation R on a set A
has a transitive closure. One possibility would be to try to form the transitive
closure by starting with R and then adding extra ordered pairs to try to create
a transitive relation, as we did in the earlier examples. Although this can be
done, a careful treatment of the details of this proof would require the method
of mathematical induction, which we have not yet discussed. We will present
this proof in Chapter 6 after we’ve discussed mathematical induction. For now,
we’ll use the alternative method suggested by the last paragraph of letting
F={T S AxA|RCT and T is transitive} and then showing that F # &
and NF is the transitive closure of R.

Theorem 4.5.6. Suppose R is a relation on a set A. Then R has a transitive
closure.

Proof. Let F ={T C Ax A|RCT and T is transitive}. First of all, you
should be able to check that R € A x A and A x A is a transitive relation on
A, s0 A x A € F, and therefore F = &. Thus, we can let § = NF. We will
show that § is the transitive closure of R.

To prove the first clause in the definition of transitive closure, suppose
(x,v) € R. Let T be an arbitrary element of . Then by the definition of
F,RCT, so (x,y)e T. Since T was arbitrary, this shows that VT ¢
F((x,v)eT),so0(x,y)enNF=S5.Thus, R C §S.

For the second clause, suppose (x, y) € Sand(y, z) € §, andagainlet T be an
arbitrary element of 7. Then since (x, y) € § = NF, (x, y) € T, and similarly
(y,z) € T.Butsince T € F, T is transitive, so it follows that (x, z) € T. Since
T was arbitrary, we can conclude thatVT € F((x,z) € T),so(x,z) e NF = §.
Thus, we have shown that if (x, y) € S and (y,z) € Sthen(x,z) € S,s0 5 is
transitive.




210 Relations

Finally, for the third clause, suppose T is a relation on A, R € T, and T
is transitive. Then T € F, and by exercise 9 of Section 3.3, it follows that
S=NFCT. O

Commentary. Once again we start by defining S, but this time the definition
§ = NJF doesn’t make sense unless we know F # &, so we must prove this
first. Because F £ & means 3Q(Q € F), we prove it by giving an example
of an element of F. The example is A x A, so we must prove A x A € F,
and according to the definition of 7 thismeans A x AC A x A, R C A x A,
and A x A is transitive. The statement in the proof that “you should be able to
check™ that these statements are true really does mean that you should do the
checking. In particular, you should verify that A x A is transitive by assuming
that (x, y) € A x Aand (v, z) € A x A and then proving that (x, z) € A x A.

As in Theorems 4.5.2 and 4.5.5, we must now prove the three statements
in the definition of transitive closure. To prove the first statement, R C §, we
let (x, y) be an arbitrary element of R and prove (x, y) € §. Since § = N.F,
the goal (x, ¥) € § means VT € F((x, y) € T), so to prove it we let T be an
arbitrary element of F and prove (x, y) € T. To prove that § is transitive we
assume (x, v) € § and (y, z) € §, and prove (x, z) € §. Once again, by the
definition of § this goal means VT € F((x, z) € T), so we let T be an arbitrary
element of F and prove (x,z) e T.

Exercises

*1. Find the reflexive, symmetric, and transitive closures of the following
relations.
(a) A={a,b,c}),R={(a,a)(a,b) b, c)cb)).
by R={x,meRxRlx <y}
(c) D,, as defined in part 3 of Example 4.3.1, for any positive real

number r.
2. Find the reflexive, symmetric, and transitive closures of the relations in

exercise 4 of Section 4.3.

*3. Suppose R is a relation on A. R is called asymmetric if Vx € AVy €
A((x,y) € R = (y,x) ¢ R).
(a) Show that if R is asymmetric then R is antisymmetric.
(b) Show that if R is a strict partial order, then R is asymmetric. Note that

it follows by part (a) that it is also antisymmetric.
4. Suppose R is a strict partial order on A. Let § be the reflexive closure of R.

(a) Show that S is a partial order on A.
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(b) Show that if R is a strict total order, then S is a total order.

Suppose R is a relationon A. Let S = R \ i4.

(a) Prove that § is the largest element of the set {T CAx A|T CR
and T is irreflexive}.

(b) Prove that if R is a partial order on A, then § is a strict partial order
on A,

Let P be the set of all people, and let R = {(p,q) € P x P| the person

p is a parent of the person ¢}.

(a) Let S be the transitive closure of R. Describe the relation §.

(b) Describe the relation § o S~!.

Suppose R is a relation on A.

(a) Prove that R is reflexive iff R is its own reflexive closure.

(b) Do similar theorems hold for symmetry and transitivity? Justify your
answers with proofs or counterexamples.

Suppose R is a relation on A, and let S be the symmetric closure of R.

Prove that Dom(S) = Ran(§) = Dom(R) U Ran(R).

Suppose R is a relation on A, and let § be the transitive closure of R.

Prove that Dom(S§) = Dom(R) and Ran(S) = Ran(R).

Suppose Ris arelationon A. Let F ={T CAx A|RCT and T is

symmetric }. Complete the alternative proof of Theorem 4.5.5 suggested

in the text as follows:

(a) Prove that F # &.

(b) Let § = NJ. Prove that S is the symmetric closure of R.

Suppose R and R; are relations on A and R; C R,.

(a) Let S} and §; be the reflexive closures of R; and R, respectively.
Prove that S; € §;.

(b) Do similar theorems hold for the symmetric and transitive closures?
Justify your answers with proofs or counterexamples.

Suppose R, and R; are relationson A, and let R = R; U R;.

(a) Let Sy, S5, and § be the reflexive closures of Ry, R,, and R respec-
tively. Prove that §; U §; = §.

(b) Let Sy, S5, and S be the symmetric closures of Ry, R;, and R respec-
tively. Prove that §; U §; = S.

(c) Let Sy, 53, and S be the transitive closures of Ry, R, and R respec-
tively. Prove that §; U §; C S, and give an example to show that it
may happen that §; U §; # §.

Suppose R and R, are relations on A, and let R = R N R».

(a) Let 8, §>, and § be the reflexive closures of Ry, Ry, and R respec-
tively. What is the relationship between §; N 8> and S? Justify your
conclusions with proofs or counterexamples.
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(b) Let Sy, S, and S be the symmetric closures of R, R,, and R respec-
tively. What is the relationship between §; N §; and S? Justify your
conclusions with proofs or counterexamples.

(c) Let 8§, S5, and § be the transitive closures of Ry, R, and R respec-
tively. What is the relationship between S| N S, and §? Justify your
conclusions with proofs or counterexamples.

Find an example of relations R; and R; on some set A such that, if we

let R = R1 \ R2 and we let S1, S2, and S be the transitive closures of Rj,

R», and R respectively, then §; \ S> € Sand S € 51\ S».

Suppose R is a relation on A. The reflexive symmetric closure of R is

the smallest set § € A x A such that R C §, § is reflexive, and § is

symmetric, if there is such a smallest set. Prove that every relation has a

reflexive symmetric closure.

Suppose R is a relation on A, and let S be the reflexive closure of R.

(a) Prove that if R is symmetric, then so is S.

(b) Prove that if R is transitive, then sois §.

Suppose Ris arelation on A, and let § be the transitive closure of R. Prove

that if R is symmetric, then so is S. (Hint: Assume that R is symmetric.

Prove that R € S~! and §~! is transitive. What can you conclude about

Sand S7'7)

Suppose R is a relation on A. The symmetric transitive closure of R is

the smallest set S € A x A such that R € S, § is symmetric, and § is

transitive, if there is such a smallest set.

Let Q be the symmetric closure of R, and let § be the transitive closure
of Q. Also, let Q' be the transitive closure of R, and let §’ be the symmetric
closure of Q'.

(a) Prove that § is the symmetric transitive closure of R. (Hint: Use
exercise 17.)

(b) Prove that §' C §.

(c) Must it be the case that §" = §7? Justify your answer with either a
proof or a counterexample.

Consider the following putative theorem:

Theorem? Suppose R is a reflexive, antisymmetric relation on A. Let §
be the transitive closure of R. Then § is a partial order on A.

Is the following proof correct? If so, what proof strategies does it use? If
not, can it be fixed? [s the theorem correct?

Proof. R is already reflexive and antisymmetric. To form the relation
S we add more ordered pairs to make it transitive as well. Thus, § is
reflexive, antisymmetric, and transitive, so it is a partial order. O
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*20. A bus company is trying to decide what bus routes to run among the cities
in the set C = {San Francisco, Chicago, Dallas, New York, Washington
D.C.}. Their routes will be represented by a relation B on C, as in the
example in the text. The company wants to make sure you can get from
any city in C to any other city in C, so they want to make sure that the
transitive closure of Bis C x C. Let F = {B € C x C| the transitive
closure of B is C x C}. However, they don’t want to run any bus routes
unnecessarily, so they want the relation B to be a minimal element of F.
(As usual, we mean minimal with respect to the subset ordering on F.
You will have to work out what this means, according to the definition of
minimal in Section 4.4.)

(a) Find a minimal element of 7.
(b) Does F have a smallest element?

4.6. Equivalence Relations

We saw in Example 4.3.3 that the identity relation {4 on any set A is always
reflexive, symmetric, and transitive. Relations with this combination of prop-
erties come up often in mathematics, and they have some important properties
that we will investigate in this section. These relations are called equivalence
relations.

Definition 4.6.1. Suppose R is a relation on a set A. Then R is called an
equivalence relation on A (or just an equivalence relation if A is clear from
context) if it is reflexive, symmetric, and transitive.

As we observed earlier, the identity relation i, on a set A is an equivalence
relation. For another example, let T be the set of all triangles, and let C be the
relation of congruence of triangles. In other words, C = {(s,1) € T x T | the
triangle s is congruent to the triangle r}. (Recall that a triangle is congruent
to another if it can be moved without distorting it so that it coincides with the
other.) Clearly every triangle is congruent to itself, so C is reflexive. Also, if
triangle s is congruent to triangle 7, then ¢ is congruent to s, so C is symmetric;
and if r is congruent to s and s is congruent to ¢, then r is congruent to ¢, so C
is transitive. Thus, C is an equivalence relation on 7.

As another example, let P be the set of all people, and let B = {(p.¢) €
P x P| the person p has the same birthday as the person g}. (By “same
birthday” we mean same month and day, but not necessarily the same year.)
Everyone has the same birthday as himself, so B is reflexive. If p has the same
birthday as ¢, then ¢ has the same birthday as p, so B is symmetric. And if p has
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the same birthday as ¢ and ¢ has the same birthday as r, then p has the same
birthday as r, so B is transitive. Therefore B is an equivalence relation.

It may be instructive to look at the relation B more closely. We can think
of this relation as splitting the set P of all people into 366 categories, one for
each possible birthday. (Remember, some people were born on February 29th!)
An ordered pair of people will be an element of B if the people come from the
same category, but will not be an element of B if the people come from different
categories. We could think of these categories as forming a family of subsets of
P, which we could write as an indexed family as follows. First of all, let D be
the set of all possible birthdays. In other words, D = {Jan. 1, Jan. 2, Jan. 3, ...,
Dec. 30, Dec. 31}. Now foreach d € D, let P, = {p € P| the person p was
born on the day d}. Then the family 7 = {P; | d € D} is an indexed family of
subsets of P. The elements of F are called equivalence classes for the relation
B, and every person is an element of exactly one of these equivalence classes.
The relation B consists of those pairs (p,g) € P x P such that the people p
and g are in the same equivalence class. In other words,

B={(p.q)e Px P|3d € D(p € Pyjand q € P,)}
={(p.g)€ P x P|3d € D((p,q) € Psa x Pa)}
= U (Py x Py).

del

We will call the family F a partition of P because it breaks the set P into
disjoint pieces. It turns out that every equivalence relation on a set A determines
a partition of A, whose elements are the equivalence classes for the equivalence
relation. But before we can work out the details of why this is true, we must
define the terms partition and equivalence class more carefully.

Definition 4.6.2. Suppose A is a set and F C % (A). We will say that F is
pairwise disjoint if every pair of distinct elements of F are disjoint, or in other
words VX € FYY € F(X £ Y — X NY = ). (This concept was discussed
in exercise 5 of Section 3.6.) F is called a partition of A if it has the following
properties:

l. UF = A.
2. F is pairwise disjoint.
3. VX e F(X £ D).

For example, suppose A = {1,2,3,4} and F = {{2}, {1, 3}, {4}}. Then
UF ={2}U{l.3}U{4) ={1,2,3,4) = A, so JF satisfies the first clause in
the definition of partition. Also, no two sets in F have any elements in com-
mon, so F is pairwise disjoint, and clearly all the sets in F are nonempty. Thus,
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JF is a partition of A. On the other hand, the family G = {{1, 2}, {1, 3}, {4}} is
not pairwise disjoint, because {1, 2} N {1, 3} = {1} # &, so it is not a partition
of A. The family H = {&, {2}, {1, 3}, {4}} is also not a partition of A, because
it fails on the third requirement in the definition.

Definition 4.6.3. Suppose R is an equivalence relation on a set A, and x € A.
Then the equivalence class of x with respect to R is the set

[x]g ={y € A| yRx}.

If R is clear from context, then we just write [x] instead of [x]g. The set of all
equivalence classes of elements of A is called A modulo R, and is denoted A/R.
Thus,

A/R ={[x]g|x € A} ={X C A[dx € A(X = [x]g)}.

In the case of the same-birthday relation B, if p is any person, then according
to Definition 4.6.3,

(pls = {q € P|qBp}
= {g € P |the person ¢ has the same birthday as the person p}.

For example, if John was born on August 10, then

[John]yz = {g € P | the person ¢ has the same birthday as John}
= {gq € P | the person ¢ was born on August 10}.

In the notation we introduced earlier, this is just the set P, for d = August
10. In fact, it should be clear now that for any person p, if we let d be p’s
birthday, then [p]g = Py. This is in agreement with our earlier statement that
the sets P, are the equivalence classes for the equivalence relation B. Accord-
ing to Definition 4.6.3, the set of all of these equivalence classes is called P
modulo B:

P/B={[plplpe P}={Psld € D}.

You are asked to give a more careful proof of this equation in exercise 5. As
we observed before, this family is a partition of P.

Let’s consider one more example. Let S be the relation on R defined as
follows:

S={x,meRxR|x—yeZ}.
Forexample, (5.73,2.73) € Sand (—1.27,2.73) € §,since5.73 - 2.73 =3 ¢

Ziand —1.27—-273=—-4 e Z, but (1.27,2.73) ¢ S, since 1.27-2.73 =
—1.46 ¢ Z.Clearlyforanyx e R, x —x = 0 € Z,s0(x, x) € §, and therefore
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§ is reflexive. To see that S is symmetric, suppose (x, ¥) € S. By the definition
of S, this means that x — y € Z. But then y — x = —(x — ¥) € Z too, since
the negative of any integer is also an integer, so (y, x) € §. Because (x, y)
was an arbitrary element of S, this shows that § is symmetric. Finally, to see
that § is transitive, suppose that (x, y) € S and (y,z) € S. Then x —y € Z
and y — z € Z. Because the sum of any two integers is an integer, it follows
that x —z=(x —y)+(y —2) € Z, so (x, z) € §, as required. Thus, S is an
equivalence relation on R.

What do the equivalence classes for this equivalence relation look like? We
have already observed that (5.73,2.73) € S and (—1.27,2.73) € §,505.73 ¢
[2.73] and —1.27 € [2.73]. In fact, it is not hard to see what the other elements
of this equivalence class will be:

2.73]={...,—1.27,-0.27,0.73,1.73,2.73,3.73,4.73,5.73, . . .}.

In other words, the equivalence class contains all positive real numbers of the
form “__.73" and all negative real numbers of the form “~__.27." In general,
for any real number x, the equivalence class of x will contain all real numbers
that differ from x by an integer amount:

[x]={...x—3,x—-2x—-Lx,x+1,x+2,x4+3,...}.

Here are a few facts about these equivalence classes that you might try to
prove to yourself. As you can see in the last equation, x is always an element
of [x]. If we choose any number x € [2.73], then [x] will be exactly the same
as [2.73]. For example, taking x = 4.73 we find that

[4.73]1={..., —1.27,-0.27,0.73, 1.73, 2.73, 3.73,
4.73,5.73....) = [2.73].

Thus, [4.73] and [2.73] are just two different names for the same set. But if we
choose x ¢ [2.73], then [x] will be different from [2.73]. For example,

[13]={...,—1.7,-0.7,03,1.3,2.3,33,43, .. }.

In fact, you can see from these equations that [ 1.3] and [2.73] have no elements
in common. In other words, [1.3] is actually disjoint from [2.73]. In general,
for any two real numbers x and y, the equivalence classes [x] and [y] are either
identical or disjoint. Each equivalence class has many different names, but
different equivalence classes are disjoint. Because [x] always contains x as an
element, every equivalence class is nonempty, and every real number x is in
exactly one equivalence class, namely [x]. In other words, the set of all of the
equivalence classes, R/ S, is a partition of R. This is another illustration of the
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fact that the equivalence classes determined by an equivalence relation always
form a partition.

Theorem 4.6.4. Suppose R is an equivalence relation on a set A. Then A/R is
a partition of A.

The proof of Theorem 4.6.4 will be easier to understand if we first prove
a few facts about equivalence classes. Facts that are proven primarily for the
purpose of using them to prove a theorem are usually called lemmas.

Lemma 4.6.5. Suppose R is an equivalence relation on A. Then:

1. Foreveryx € A, x € [x].
2. Foreveryx e Aandy € A, y € [x]iff [y] = [x].

Proof.

1. Letx € A bearbitrary. Since R is reflexive, x Rx. Therefore, by the definition
of equivalence class, x € [x].

2. (—) Suppose y € [x]. Then by the definition of equivalence class, yRx.
Now suppose z € [y]. Then zRy. Since zRy and yRx, by transitivity of R
we can conclude that zRx, so z € [x]. Since z was arbitrary, this shows that
y] € Ix].

Now suppose z € [x], so zRx. We already know yRx, and since R is
symmetric we can conclude that x Ry. Applying transitivity to z Rx and x Ry,
we can conclude that zRy, so z € [y]. Therefore [x] C [v], so [x] = [v].

(<) Suppose [v] = [x]. By part 1 we know that y € [y], so since [y] =
[x], it follows that y € [x].

O

Commentary

1. According to the definition of equivalence classes, x € [x] means x Rx.
This is what leads us to apply the fact that R is reflexive.

2. Of course, the iff form of the goal leads us to prove both directions separately.
For the — direction, the goalis [y] = [x], and, since [ y] and [x] are sets, we
can prove this by proving [y] C [x] and [x] € [y]. We prove each of these
statements by the usual method of taking an arbitrary element of one set and
proving that it is in the other. Throughout the proof we use the definition of
equivalence classes repeatedly, as we did in the proof of statement 1.
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Proof of Theorem 4.6.4. To prove that A /R is a partition of A, we must prove the
three properties in Definition 4.6.2. For the first, we must show that U(A/R) =
A, or in other words that U, 4[x] = A. Now every equivalence class in A/R is
a subset of A, so it should be clear that their union is also a subset of A. Thus,
U(A/R) C A, so all we need to show to finish the proof is that A C U(A/R).
To prove this, suppose x € A. Then by Lemma 4.6.5, x € [x], and of course
[x] € A/R, so x € UA/R). Thus, U(A/R) = A.

To see that A/R is pairwise disjoint, suppose that X and ¥ are two elements of
A/R,and X N'Y # &. By definition of A/R, X and ¥ are equivalence classes,
so we must have X = [x]and ¥ = [y] forsome x, y € A. Since X NY #£ &,
we can choose some zsuchthatz € X NY = [x] N [y]. Now by Lemma 4.6.5,
since z € [x] and z € [y], it follows that [x] = [z] = [y]. Thus, X = Y. This
shows thatif X #£ Y then X NY = &, so A/R is pairwise disjoint.

Finally, for the last clause of the definition of partition, suppose X € A/R.
As before, this means that X = [x] for some x € A. Now by Lemma 4.6.5,
X € [x] = X,s0 X # , as required. O

Commentary. We have given an intuitive reason why U(A/R) C A, but if
you're not sure why this is correct, you should write out a formal proof.
(You might also want to look at exercise 16 in Section 3.3.) The proof that
A € U(A/R) is straightforward.

The definition of pairwise disjoint suggests that to prove that A/R is pair-
wise disjoint we should let X and ¥ be arbitrary elements of A/R and then
prove X £ ¥ — X NY = &. Recall that the statement that a set is empty is
really a negative statement, so both the antecedent and the consequent of this
conditional are negative. This suggests that it will probably be easier to prove
the contrapositive, so we assume X NY # & and prove X = Y. The givens
XeA/R Y e A/R,and X NY # & are all existential statements, so we use
them to introduce the variables x, y, and z. Lemma 4.6.5 now takes care of the
proof that X = ¥ as well as the proof of the final clause in the definition of
partition.

Theorem 4.6.4 shows that if R is an equivalence relation on A then A/R is a
partition of A. In fact, it turns out that every partition of A arises in this way.

Theorem 4.6.6. Suppose A is a set and F is a partition of A. Then there is an
equivalence relation R on A such that A/R = F.

Before proving this theorem, it might be worthwhile to discuss the strategy
for the proof briefly. Because the conclusion of the theorem is an existential
statement, we should try to find an equivalence relation R such that A/R = F.
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Clearly for different choices of F we will need to choose R differently, so
the definition of R should depend on F in some way. Looking back at the
same-birthday example may help you see how to proceed. Recall that in that
example the equivalence relation B consisted of all pairs of people (p, ¢) such
that p and ¢ were in the same set in the partition {Py|d € D}. In fact, we
found that we could also express this by saying that B = Ugcp(Py x Py). This
suggests that in the proof of Theorem 4.6.6 we should let R be the set of all
pairs (x, y) € A x A such that x and y are in the same set in the partition F.
An alternative way to write this would be R = Uy x(X x X).

For example, consider again the example of a partition given after Definition
4.6.2. In that example we had A = {1, 2, 3,4} and F = {{2}, {1, 3}, {4}}. Now
let’s define a relation R on A as suggested in the last paragraph. This gives us:

R= U (X xX)
XeF

= ({2} x {2Zh U ({1, 3} x {1,3) U ({4} x {4})

={2, 2} U{(1,1),(1,3),(3,1),(3,3)} U {4, 4)}

={(2,2),(1, 1),(1,3), (3, 1),(3,3), 4, 4)}.
The directed graph for this relation is shown in Figure 1. We will let you check
that R is an equivalence relation and that the equivalence classes are

21=1{2}, [1=0B1={13}), [4]={4).

Thus, the set of all equivalence classes is A/R = ({2}, {1, 3}, {4}), which is
precisely the same as the partition F we started with.

G £

1 2
4 3
G O
Figure 1

Of course, the reasoning that led us to the formula R = Uy (X x X) will
not be part of the proof of Theorem 4.6.6. When we write the proof, we can
simply define R in this way and then verify that it is an equivalence relation on
A and that A/R = F. It may make the proof easier to follow if we once again
prove some lemmas first.
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Lemma 4.6.7. Suppose A is a set and F is a partition of A. Let R =
Uyxer(X x X). Then R is an equivalence relation on A. We will call R the
equivalence relation determined by F.

Proof. We'll prove that R is reflexive and leave the rest for you to do in
exercise 7. Let x be an arbitrary element of A. Since F is a partition of
A,UF = A, so x € UF. Thus, we can choose some X € F such that x € X,
But then (x,x) e X x X, so (x,x) € Uxer(X x X) = R. Therefore, R is
reflexive. O

Commentary. After letting x be an arbitrary element of A, we must prove
(x,x) € R. Because R = Uyr(X x X), this means we must prove 31X €
F((x,x) € X x X), or in other words 3X € F(x € X). But this just means
x € UF, so this suggests using the first clause in the definition of partition,
which says that UF = A.

Lemma 4.6.8. Suppose A is a set and F is a partition of A. Let R be the equiv-
alence relation determined by F. Suppose X € F and x € X. Then [x]g = X.

Proof. Suppose y € [x]g. Then(y, x) € R, so by the definition of R there must
besome Y € Fsuchthat(y,x) € ¥ x Y, andtherefore y € Y andx € Y. Since
xeXandx e ¥, XNY # I, and since F is pairwise disjoint it follows that
X =Y. Thus, since y € ¥, y € X. Since y was an arbitrary element of [x]g,
we can conclude that [x ]z C X.

Now suppose y € X. Then (y,x) € X x X, so (y,x) € R and therefore
vy € [x]g. Thus X C [x]g,s0 [x]g = X. O

Commentary. To prove [x]g = X we prove [x]g € X and X C [x]g. For the
first we start with an arbitrary y € [x]g and prove y € X. Writing out the defini-
tion of [x]g we get (v, x) € R, and since R was defined tobe Uy z(Y x Y), this
means 3Y € F((y,x) € ¥ x ¥). Of course, since this is an existential state-
ment we immediately introduce the new variable ¥ by existential instantiation.
Since this gives us y € ¥ and our goal is y € X, it is not surprising that the
proof is completed by proving ¥ = X.

The proof that X C [x]g also uses the definitions of [x] and R, but is more
straightforward.

Proof of Theorem 4.6.6. Let R = Uy-r(X x X). We have already seen that
R is an equivalence relation, so we need only check that A/R = F. To see
this, suppose X € A/R. This means that X = [x] forsome x € A. Since F isa
partition, we know that UF = A, sox € UF, and therefore we can choose some
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Y € Fsuchthatx € Y. Butthenby Lemma4.6.8,[x] = Y. Thus X =Y € F,
so A/R C F.

Now suppose X € F. Then since F is a partition, X # &, so we can choose
some x € X. Therefore by Lemma4.6.8, X = [x] € A/R,s0F € A/R. Thus,
A/R=F. 0

Commentary. We prove that A/R =F by proving that A/R € F and
F C A/R. For the first, we take an arbitrary X € A/R and prove that X € F.
Because X € A/R means dx € A(X = [x]), we immediately introduce the
new variable x to stand for an element of A such that X = [x]. The proof that
X € F now proceeds by the slightly roundabout route of finding a set ¥ € F
such that X = Y. This is motivated by Lemma 4.6.8, which suggests a way of
showing that an element of F is equal to [x] = X. The proof that ¥ € A/R
also relies on Lemma 4.6.8.

We have seen how an equivalence relation R on a set A can be used to
define a partition A/R of A and also how a partition F of A can be used to
define an equivalence relation Uy -r(X x X) on A. The proof of Theorem
4.6.6 demonstrates an interesting relationship between these operations. If you
start with a partition F of A, use F to define the equivalence relation R =
Uyxer(X x X) and then use R to define a partition A/R, then you end up back
where you started. In other words, the final partition A/R is the same as the
original partition F. You might wonder if the same idea would work in the other
order. In other words, suppose you start with an equivalence relation R on A,
use R to define a partition 7 = A/R, and then use F to define an equivalence
relation § = Uxcr(X x X). Would the final equivalence relation S be the same
as the original equivalence relation R? You are asked in exercise 9 to show that
the answer is yes.

We end this section by considering a few more examples of equivalence
relations. A very useful family of equivalence relations is given by the next
definition.

Definition 4.6.9. Suppose m is a positive integer. For any integers x and y, we
will say that x is congruent to y modulo m if 3k € Z(x — y = km). In other
words, x is congruent to y modulo m iff m | (x — y). We will use the notation
x = y (mod m) to mean that x is congruent to y modulo m.

For example, 12 =27 (mod 5), since 12 — 27 = —15 =(-3)-5. Now
it turns out that for every positive integer m, the relation C,, = {(x,y) €
Z x Z|x =y (mod m)} is an equivalence relation on Z. We will check tran-
sitivity for C,, and let you check reflexivity and symmetry in exercise 10.
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To see that C,, is transitive, suppose that x = y (mod m) and y = z (mod
m). Then m |(x — y) and m | (¥ — 2), so by exercise 18(a) in Section 3.3,
m|lx —y)+(y—2)]. But (x —y)+(y —z)=x — z, so it follows that
m | (x — z), and therefore x = z (mod m). For more about these equivalence
relations, see exercise 10.

Equivalence relations often come up when we want to group together ele-
ments of a set that have something in common. For example, if you've studied
vectors in a previous math course or perhaps in a physics course, then you may
have been told that vectors can be thought of as arrows. But you were probably
also told that different arrows that point in the same direction and have the same
length must be thought of as representing the same vector. Here's a more lucid
explanation of the relationship between vectors and arrows. Let A be the set of
all arrows, and let R = {(x, y) € A x A| the arrows x and y point in the same
direction and have the same length}. We will let you check for yourself that R
is an equivalence relation on A. Each equivalence class consists of arrows that
all have the same length and point in the same direction. We can now think
of vectors as being represented, not by arrows, but by equivalence classes of
arrows.

Students who are familiar with computer programming may be interested in
our next example. Suppose we let P be the set of all computer programs, and
for any computer programs p and ¢ we say that p and g are equivalent if they
always produce the same output when given the same input. Let R = {(p, ¢) €
P x P | the programs p and g are equivalent}. It is not hard to check that R is
an equivalence relation on P. The equivalence classes group together programs
that produce the same output when given the same input.

Exercises

*1. Find all partitions of the set A = {1, 2, 3}.

2. Find all equivalence relations on the set A = {1, 2, 3}.

*3. Let W = the set of all words in the English language. Which of the
following relations on W are equivalence relations? For those that are
equivalence relations, what are the equivalence classes?

(a) R={(x,y)e W x W | the words x and y start with the same
letter}.

(b) § ={(x.y) e W x W | the words x and y have at least one letter in
common }.

(¢) T ={(x,y)e W x W | the words x and y have the same number of
letters}.
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. Which of the following relations on IR are equivalence relations? For those

that are equivalence relations, what are the equivalence classes?

(a) R={(x,yeRxR|x—yelN}.

(b) S={x.y)eRxR|x—-yeQ}

(©) T={(x,yeRxR|3neZiy=x-10M}.

In the discussion of the same-birthday equivalence relation B, we claimed
that P/B = {Py|d € D}. Give a careful proof of this claim. You will find
when you work out the proof that there is an assumption you must make
about people’s birthdays (a very reasonable assumption) to make the proof
work. What is this assumption?

. Let T be the set of all triangles, and let § = {(s, 1) € T x T | the triangles

s and 7 are similar}. (Recall that two triangles are similar if the angles of
one triangle are equal to the corresponding angles of the other.) Verify
that § is an equivalence relation.

. Complete the proof of Lemma 4.6.7.
. Suppose R and § are equivalence relations on A and A/R = A/S. Prove

that R = §S.

Suppose R is an equivalence relation on A. Let F = A/R, and let § be the

equivalence relation determined by F. In other words, § = Uy #(X x

X). Prove that § = R.

Let C,, be the congruence mod m relation defined in the text, for a positive

integer m.

(a) Complete the proofthat C,, is an equivalence relation on Z by showing
that it is reflexive and symmetric.

(b) Find all the equivalence classes for C; and C5. How many equivalence
classes are there in each case? In general, how many equivalence
classes do you think there are for C,,?

Prove that for every integer n, either n* = 0 (mod 4) or n> = 1 (mod 4).

Suppose m is a positive integer. Prove that for all integers a, b, ¢, and d,

if a = ¢ (mod m)and b = d (mod m) then a + b = ¢ + d (mod m) and

ab = cd (mod m).

Suppose R is an equivalence relation on A and B € A. Let S=R N

(B x B).

(a) Prove that S is an equivalence relation on B.

(b) Prove that forall x € B, [x]s = [x]z N B.

Suppose B C A, and define a relation R on % (A) as follows:

R={(X,Y)e #(A)x #(A) | (XAY) C B}.

(a) Prove that R is an equivalence relation on % (A).
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*15.

16.

17.

Relations

(b) Prove that for every X € #°(A) there is exactly one ¥ € [X]g such
that Y N B = &.

Suppose F is a partition of A, G is a partition of B, and A and B are

disjoint. Prove that 7 U G is a partition of A U B.

Suppose R is an equivalence relation on A, § is an equivalence relation

on B, and A and B are disjoint.

(a) Prove that R U S is an equivalence relation on A U B.

(b) Prove that forall x € A, [x]grus = [x]g, and forall y € B, [y]rus =
[¥ls.

(c) Prove that (AU B)/(RUS)=(A/R)U(B/S).

Suppose F and G are partitions of a set A. We define a new family of sets

JF . § as follows:
F-Gg={ZePA)|Z#+#JandIX € FAY e G(Z =X NYT))}.

Prove that F - G is a partition of A.

18 Let F = {R~, R, {0}}) and G = {Z, R \ Z}, and note that both F and G

“19.

20.

*21.

22.

are partitions of R. List the elements of F - G. (See exercise 17 for the

meaning of the notation used here.)

Suppose R and § are equivalence relationson aset A.Let T = RN S.

(a) Prove that T is an equivalence relation on A.

(b) Prove that for all x € A, [x]y = [x]g N [x]s.

(c) Prove that A/T = (A/R)-(A/S). (See exercise 17 for the meaning
of the notation used here.)

Suppose F is a partition of A and G is a partition of B. We define a new

family of sets F ® G as follows:

FRG={ZeP(AxB)|IX e FAY e G(Z=X x Y)).

Prove that 7 ® G is a partition of A x B.

Let F = {R~, R, {0}, which is a partition of R. List the elements of
F & F, and describe them geometrically as subsets of the xy-plane. (See
exercise 20 for the meaning of the notation used here.)

Suppose R is an equivalence relation on A and § is an equivalence relation
on B. Define arelation T on A x B as follows:

T ={((a,b).(a'". b)) € (A x B)x (A x B) | aRa’ and bSh'}.

(a) Prove that T is an equivalence relationon A x B.

(b) Prove thatif @ € A and b € B then [(a, b)]; = [a]g x [b]s.

(c) Prove that (A x B)/T = (A/R) ® (B/5). (See exercise 20 for the
meaning of the notation used here.)




*23.

24.

25.

26.

Equivalence Relations 225

Suppose R and S are relations on a set A, and § is an equivalence relation.

We will say that R is compatible with § if for all x, y, x', and y" in A, if

xSx"and ySy' then x Ry iff x'Ry’.

(a) Prove that if R is compatible with §, then there is a unique relation
T on A/S such that for all x and y in A, [x]|sT [y]s iff xRy.

(b) Suppose T is arelation on A/S and for all x and y in A, [x]sT[y]s
iff x Ry. Prove that R is compatible with §.

Suppose R is a relation on A and R is reflexive and transitive. (Such a

relation is called a preorder on A.)Let § = RN R~

(a) Prove that S is an equivalence relation on A.

(b) Prove that there is a unique relation T on A /S such that for all x and
yin A, [x]sT[v]s iff x Ry. (Hint: Use exercise 23.)

(c) Prove that T is a partial order on A/S, where T is the relation from
part (b).

Let I ={1,2,...,100}, A=2({),and R={(X,Y) e Ax A|Y has

at least as many elements as X }.

(a) Prove that R is a preorder on A. (See exercise 24 for the definition of
preorder.)

(b) Let § and T be defined as in exercise 24. Describe the elements of
A/§ and the partial order T. How many elements does A/S have? Is
T atotal order?

Suppose A is a set. If 7 and G are partitions of A, then we’ll say that F

refines Gif ¥X € F3Y € G(X C Y). Let P be the set of all partitions of

A andlet R = {(F,G) € P x P | F refines G}.

(a) Prove that R is a partial order on P.

(b) Suppose that S and 7 are equivalence relations on A. Let F = A/S
and G = A/T.Prove that § C T iff F refines G.

(c) Suppose F and G are partitions of A. Prove that F - G is the greatest
lower bound of the set {F, G} in the partial order R. (See exercise 17
for the meaning of the notation used here.)
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Functions

5.1. Functions

Suppose P is the set of all people, and let H = {(p,n) € P x N |the person
p has n children}. Then H is a relation from P to N, and it has the following
important property. For every p € P, there is exactly one n € N such that
(p,n) € H. Mathematicians express this by saying that H is a function from
PtoN.

Definition 5.1.1. Suppose F is a relation from A to B. Then F is called a
Junction from A to B if for every a € A there is exactly one b € B such that
(a, b) € F.In other words, to say that F is a function from A to B means:

Va € A3Jlb € B((a, b) € F).
To indicate that F is a function from A to B, we will write F : A — B.

Example 5.1.2.

l. Let A={1.2,3).,B=1{4,5.6), and F = {(1,5).(2.4).(3.5)}. Is F a
function from A to B?

2. Let A={1,2,3},B=1{4,5,6}, and G={(1,5),(2,4),(1,6)). Is G a
function from A to B?

3. Let C be the set of all cities, N the set of all countries, and let L = {(c, n) €
C x N |the city ¢ is in the country n}. Is L a function from C to N?

4. Let P be the set of all people, and let C = {(p, g) € P x P |the person p
is a parent of the person ¢}. Is C a function from P to P?

5. Let P be the set of all people, and let D = {(p,x) € P x #*(P)|x = the
set of all children of p}. Is D a function from P to #°(P)?

226
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6. Let A be any set. Recall that iy = {(a.a)|a € A} is called the identity

relation on A. Is it a function from A to A?

7. Let f ={(x,y) € R x R| y = x?}. Isf a function from R to E?

Solutions

1.

. Yes. For each real number x there is exactly one value of y, namely y = x~,

Yes. Note that 1 is paired with 5 in the relation F, but it is not paired with
any other element of B. Similarly, 2 is paired only with 4, and 3 with 5. In
other words, each element of A appears as the first coordinate of exactly
one ordered pair in F. Therefore F is a function from A to B. Note that the
definition of function does not require that each element of B be paired with
exactly one element of A. Thus, it doesn’t matter that 5 occurs as the second
coordinate of two different pairs in F and that 6 doesn’t occur in any ordered
pairs at all.

. No. G fails to be a function from A to B for two reasons. First of all, 3

isn’t paired with any element of B in the relation G, which violates the
requirement that every element of A must be paired with some element of
B. Second, 1 is paired with two different elements of B, 5 and 6, which
violates the requirement that each element of A be paired with only one
element of B.

. If we make the reasonable assumption that every city is in exactly one

country, then L is a function from C to N.

. Because some people have no children and some people have more than

one child, C is not a function from P to P.

. Yes. D is a function from P to #°(P). Each person p is paired with exactly

one set x € P, namely the set of all children of p. Note that in the relation
D, a person p is paired with the set consisting of all of p’s children, not with
the children themselves. Even if p does not have exactly one child, it is still
true that there is exactly one set that contains precisely the children of p and
nothing else.

. Yes. Each a € A is paired in the relation i 4 with exactly one element of A,

namely a itself. In other words, (a,a) € i, but for every a’ # a, (a,a’) ¢

i 4. Thus, we can call i, the identity function on A.
2

such that (x, y) € f.

Suppose f: A — B.Ifa € A, then we know that there is exactlyone b € B

such that (a, b) € f. This unique b is called “the value of f at a,” or “the image
of a under f.” or “the result of applying f to a,” or just “f of @,” and it is written
f(a). In other words, for every a € A and b € B,b = f(a) iff (a,b) € f.
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For example, for the function F = {(1, 5), (2, 4), (3, 5)} in part 1 of the last
example, we could say that F(1) = 5, since (1, 5) € F. Similarly, F(2) = 4
and F(3) = 5.If L is the function in part 3 and ¢ is any city, then L(c) would be
the unique country n such that (¢, r) € L. In other words, L(c¢) = the country
in which ¢ is located. For example, L(Paris) = France. For the function D in
part 5, we could say that for any person p, D(p) = the set of all children of p.
IfAisanysetanda € A, then (a, a) € iy, s0i4(a) = a. And if f is the function
in part 7, then for every real number x, f(x) = x2.

A function f from a set A to another set B is often specified by giving a rule
that can be used to determine f(a) for any a € A. For example, if A is the set
of all people and B = R, then we could define a function f from A to B by the
rule that foreverya € A, f(a) = a’s height in inches. Although this definition
doesn’t say explicitly which ordered pairs are elements of f, we can determine
this by using our rule that foralla € A and b € B, (a,b) € [ ifft b = f(a).
Thus,

f=1{ab)e AxB|b= f(a))
= {(a, b) € A x B|b = a’s height in inches}.

For example, if Joe Smith is 68 inches tall, then (Joe Smith, 68) € f and
f(Joe Smith) = 68.

It is often useful to think of a function f from A to B as representing a rule
that associates, with each a € A, some corresponding object b = f(a) € B.
However, it is important to remember that although a function can be defined
by giving such a rule, it need not be defined in this way. Any subset of A x B
that satisfies the requirements given in Definition 5.1.1 is a function from
Ato B.

Example 5.1.3. Here are some more examples of functions defined by rules.

1. Suppose every student is assigned an academic advisor who is a professor.
Let S be the set of students and P the set of professors. Then we can define
a function f from S to P by the rule that for every student s, f(s) = the
advisor of s. In other words,

f={s.peSxP|p=[f)}
= {(s, p) € § x P |the professor p is the academic advisor

of the student s}.
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2. We can define a function g from Z to | by the rule that for every x € Z,
g(x)=2x + 3. Then

g={x.neZxR]y=gx)
={x,y)eZxR|y=2x+ 3}
={...(=2,-D.(=1,1),00,3),(1.5),(2, 7). ...}.

3. Let & be the function from R to R defined by the rule that for every x € R,
h(x) = 2x + 3. Note that the formula for 4(x) is the same as the formula
for g(x) in part 2. However, h and g are not the same function. You can see
this by noting that, for example, (7, 27 + 3) € hbut (7, 27 + 3) ¢ g, since
m ¢ Z. (For more on the relationship between g and 4, see exercise 7.)

Notice that when a function f from A to B is specified by giving a rule
for finding f(a), the rule must determine the value of f(a) for every a €
A. Sometimes when mathematicians are stating such a rule they don’t say
explicitly that the rule appliesto alla € A. For example, a mathematician might
say “let f be the function from R to R defined by the formula f(x) = x> +7."
It is understood in this case that the equation f(x) = x? + 7 applies to all
x € R even though it hasn’t been said explicitly. This means that you can plug
in any real number for x in this equation, and the resulting equation will be
true. For example, you can conclude that f(3) = 3% + 7 = 16. Similarly, if w
is a real number, then you can write f(w) = w?+ 7, or even f(2w —3) =
(Qw = 3)* + 7 =4w? — 12w + 16.

Because a function f from A to B is completely determined by the rule for
finding f(a), two functions that are defined by equivalent rules must be equal.
More precisely, we have the following theorem:

Theorem 5.1.4. Suppose f and g are functions from A to B. I[fVa € A(f(a) =
g(a)), then f = g.

Proof. Suppose Ya € A(f(a) = g(a)), and let (a, b) be an arbitrary element
of f. Then b = f(a). But by our assumption f(a) = g(a), so b = g(a) and
therefore (a,b) € g. Thus, f C g. A similar argument shows g C f, so
f=g 0

Commentary. Because f and g are sets, we prove f = g by proving f C g
and g C f. Each of these goals is proven by showing that an arbitrary element
of one set must be an element of the other. Note that, now that we have proven
Theorem 5.1.4, we have another method for proving that two functions f and
g from a set A to another set B are equal. In the future, to prove f = g we will
usually prove Ya € A(f(a) = g(a)) and then apply Theorem 5.1.4.
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Because functions are just relations of a special kind, the concepts introduced
in Chapter 4 for relations can be applied to functions as well. For example,
suppose f : A — B. Then f is a relation from A to B, so it makes sense to talk
about the domain of f, which is a subset of A, and the range of f, which is a
subset of B. According to the definition of function, every element of A must
appear as the first coordinate of some (in fact, exactly one) ordered pair in f,
so the domain of f must actually be all of A. But the range of f need not be all
of B. The elements of the range of f will be the second coordinates of all the
ordered pairs in f, and the second coordinate of an ordered pair in f is what we
have called the image of its first coordinate. Thus, the range of f could also be
described as the set of all images of elements of A under f:

Ran(f) = {f(a)|a € A}.

For example, for the function f defined in part 1 of Example 5.1.3, Ran( f) =
{f(s)]|s € §} = the set of all advisors of students.

We can draw diagrams of functions in exactly the same way we drew dia-
grams for relations in Chapter 4. If f : A — B, then as before, every ordered
pair (a, b) € f would be represented in the diagram by an edge connecting a
to b. By the definition of function, every a € A occurs as the first coordinate
of exactly one ordered pair in f, and the second coordinate of this ordered pair
is f(a). Thus, for every a € A there will be exactly one edge coming from a,
and it will connect a to f(a). For example, Figure 1 shows what the diagram
for the function L defined in part 3 of Example 5.1.2 would look like.

(& N

L
Bosto{.x /\
/ \ 2ol Si
L_, o France

New York ¢

Figure 1

The definition of composition of relations can also be applied to functions. If
f:A— Bandg : B — C, thenf is arelation from A to B and g is a relation
from B to C, so it makes sense to talk about g o f, which will be a relation
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from A to C. In fact, it turns out that g o f is a function from A to C, as the next
theorem shows.

Theorem 5.1.5. Suppose f : A — Bandg:B — C.Thengo f: A — C,
and for any a € A, the value of g o [ at ais given by the formula (g o f)a) =
g(f(a)).

Scratch work

Before proving this theorem, it might be helpful to discuss the scratch work
for the proof. According to the definition of function, to show that go f :
A — C we must prove that Va € Adlc € C((a,c) € g o f), so we will start
out by letting @ be an arbitrary element of A and then try to prove that !¢ €
C((a,c) € g o f). As we saw in Section 3.6, we can prove this statement by
proving existence and uniqueness separately. To prove existence, we should
try to find a ¢ € C such that (a, ¢) € g o f. For uniqueness, we should assume
that (@, ¢;) € g o f and (a, ¢;) € g o f, and then try to prove that ¢; = ¢5.

Proof. Let a be an arbitrary element of A. We must show that there is a unique
¢ € Csuchthat (a,c) e go f.

Existence: Let b = f(a) € B. Let ¢ = g(b) € C. Then (a,b) € f and
(b, c) € g, so by the definition of composition of relations, (a,c) € go f.
Thus, 3¢ € C((a,¢) € g o f).

Uniqueness: Suppose (a,c;) € go f and (a, ¢;) € g o f. Then by the def-
inition of composition, we can choose by € B such that (a, b)) € f and
(b1,c;) € g, and we can also choose b, € B such that (a, b;) € f and
(b3, c3) € g. Since f is a function, there can be only one b € B such that
(a, b) € f. Thus, since (a, b;) and (a, b;) are both elements of f, it follows
that b; = b,. But now applying the same reasoning to g, since (b;, ¢;) € gand
(b1, c2) = (b2, c3) € g, itfollows that ¢; = ¢, as required.

This completes the proof that g o f is a function from A to C. Finally, to
derive the formula for (g o f)(a), note that we showed in the existence half of the
proof that forany a € A, if weletbh = f(a) and ¢ = g(b), then(a,c) e go f.
Thus,

(8o f)a) = c=gb)=g(f(a). O

When we first introduced the idea of the composition of two relations
in Chapter 4, we pointed out that the notation was somewhat peculiar and
promised to explain the reason for the notation in this chapter. We can now
provide this explanation. The reason for the notation we’ve used for composi-
tion of relations is that it leads to the convenient formula (g o f)(x) = g(f(x))
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derived in Theorem 5.1.5. Note that because functions are just relations of a
special kind, everything we have proven about composition of relations ap-
plies to composition of functions. In particular, by Theorem 4.2.5, we know
that composition of functions is associative.

Example 5.1.6. Here are some examples of compositions of functions.

1. Let C and N be the sets of all cities and countries, respectively, and let
L : C — N be the function defined in part 3 of Example 5.1.2. Thus, for
every city ¢, L(¢) = the country in which ¢ is located. Let B be the set
of all buildings located in cities, and define F : B — C by the formula
F(b) = the city in which the building b is located. Then L o F : B — N.
For example, F(Eiffel Tower) = Paris, so according to the formula derived
in Theorem 5.1.5,

(L o F)(Eiffel Tower) = L(F(Eiffel Tower))

= L(Paris) = France.
In general, for every building b € B,

(L o F)(b) = L(F(b)) = L(the city in which b is located)

= the country in which b is located.

A diagram of this function is shown in Figure 2.

B C N
F L
Empire S& /\ /\
Building > g o YOIk >eU.S.
U.N. Building ® Paris
| [ ] » ® France
Eiffel Tower @ )
: "F(b) '
® > @ L(F(b)) =
b [ ] : . (L OF)[b)
Figure 2

2. Let g:Z — R be the function from part 2 of Example 5.1.3, which
was defined by the formula g(x) =2x + 3. Let f:Z — Z be defined
by the formula f(n) =n* —3n+ 1. Then go f : Z — R. For example,
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f2)=22=3-241=-1, 50 (g0 H2)=g(f2)=g(-D =1 TIn
general, for every n € Z,

(g0 Hn)=g(f(n)=gn*=3n+1)=2n*-3n+1)+3

=2n% —6n +5.

Exercises

1. (a) Let A={1,2,3},B={4}, and f ={(1.4),(2.4),(3,4)}. Is [ a
function from A to B?

(b) Let A={1},B={2,3,4}, and f ={(1,2),(1,3),(1,4}. Is f a
function from A to B?

(c) Let Cbethe setof all cars registered in your state, and let § be the set of
all finite sequences of letters and digits. Let L = {(c,s) € C x §|the
license plate number of the car ¢ is s}. Is L a function from C to §?

2. (a) Letf betherelation represented by the following graph. Is f a function
from A to B?

-

]
]

(b) Let W be the set of all words of English, and let A be the set of all
letters of the alphabet. Let f = {(w, a) € W x A |the letter a occurs
in the word w}, and let g = {(w, a) € W x A | the letter a is the first
letter of the word w}. Is f a function from W to A? How about g?

(c) John, Mary, Susan, and Fred go out to dinner and sit at a round
table. Let P = {John, Mary, Susan, Fred}, and let R = {(p,q) €
P x P |the person p is sitting immediately to the right of the person
q}. Is R a function from P to P?

*3. (a) Let A ={a,b,c}, B={a, b}, and f = {(a, b), (b, b), (c, a)}. Then
f:A— B.Whatare f(a), f(b), and f(c)?
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(b) Let f : R — R be the function defined by the formula f(x) = x* —
2x. Whatis f(2)?

(c) Let f={(x,n)eBxZ|n<x<n+1}. Then f: R — Z. What
is f(m)? What is f(—m)?

. (a) Let N be the set of all countries and C the set of all cities. Let H :

N — C be the function defined by the rule that for every country n,
H(n) = the capital of the country n. What is H(Italy)?

(b) Let A=1{1,2,3) and B = “(A). Let F : B — B be the function
defined by the formula F(X) = A\ X. What is F({1, 3})?

(c) Let f : R — R x & be the function defined by the formula f(x) =
(x +1,x — 1). What is f(2)?

Let L be the function defined in part 3 of Example 5.1.2 and let H be the

function defined in exercise 4(a). Describe L o H and H o L.

. Let f and g be functions from [ to R defined by the following formulas:

1
f(x)=m, glx)=2x — 1.

Find formulas for ( f o g)(x) and (g o f)(x).
Suppose f : A — Band C € A.Theset f N(C x B),whichisarelation
from C to B, is called the restriction of f to C, and is sometimes denoted
f I C. In other words,
f1C€=fn(C x B).
(a) Prove that f [ C is a function from C to B and that for all ¢ € C,
fle)=(fC)e).
(b) Suppose g : C — B.Provethatg = f [Ciff g C f.
(c) Let g and /h be the functions defined in parts 2 and 3 of Example 5.1.3.
Show that g = h [ Z.

. Suppose A is a set. Show that i4 is the only relation on A that is both an

equivalence relation on A and also a function from A to A.

. Suppose f: A— Candg: B — C.

(a) Prove thatif A and B are disjoint, then f Ug: AUB — C.

(b) More generally, prove that fUg: AUB — C iff f[(ANB)=
g | (A N B).(Seeexercise 7 for the meaning of the notation used here.)

Suppose R is a relation from A to B, § is a relation from B to C,

Ran(R)=Dom(S)=B,and So R : A — C.

(a) Provethat S : B — C.

(b) Give an example to show that it need not be the case that R : A — B.

Suppose f: A — B and § is a relation on B. Define a relation R on A

as follows:

R={(x,y) e AxA[(f(x), f(3)€S).
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(a) Prove that if § is reflexive, then sois R.
(b) Prove that if S is symmetric, then so is R.
(c) Prove that if § is transitive, then so is R.
*12. Suppose f : A — B and R is a relation on A. Define a relation § on B
as follows:

S={x,y)eBxB|duecAFv e A(f(u)=x A f(v) =y r(u,v) € R)}.

Justify your answers to the following questions with either proofs or
counterexamples.
(a) If R is reflexive, must it be the case that § is reflexive?
(b) If R is symmetric, must it be the case that § is symmetric?
(c) If R is transitive, must it be the case that S is transitive?

13. Suppose A and B are sets, and let F = {f | f : A — B}. Also, suppose
R is arelation on B, and define a relation § on F as follows:

S={(f,g) e FxF|Vx e A((f(x), g(x)) € R)}.

Justify your answers to the following questions with either proofs or

counterexamples.

(a) If R is reflexive, must it be the case that § is reflexive?

(b) If R is symmetric, must it be the case that § is symmetric?

(c) If R is transitive, must it be the case that S is transitive?

14. Suppose A is a nonempty setand f : A — A.

(a) Suppose there is some a € A such that Vx € A(f(x) = a). (In this
case, [ is called a constant function.) Prove that forall g : A — A,
feg=1/f.

(b) Suppose thatforallg : A — A, f o g = f.Provethat f isa constant
function. (Hint: What happens if g is a constant function?)

15.Let F={f|f:R—>R}). Let R={(f,g) € F x F|JaecRv¥x >

a(f(x) = gxn}

(a) Let f:R — R and g : R — R be the functions defined by the for-
mulas f(x) = |x| and g(x) = x. Show that (f, g) € R.

(b) Prove that R is an equivalence relation.

*16. LetF ={f | f : ZT — R}.Forg € F, wedefine theset O(g)as follows:

O(®) = {f € F|3a € Z 3 € R"Vx > a(| f(x)] = c|g(x)D}.
(If f € O(g), then mathematicians say that “ f is big-oh of g".)

(a) Let f : Z* — Randg : Z* — IR be defined by the formulas f(x) =
7x + 3 and g(x) = x>. Prove that f € O(g), but g ¢ O(f).




236

17.

*18.

19.

Functions

(b) Let S = {(f,g) € F x F | f € O(g)}. Prove that § is a preorder, but
not a partial order. (See exercise 24 of Section 4.6 for the definition
of preorder.)

(c) Suppose f; € O(g) and f> € O(g), and s and ¢ are real numbers. De-
fine a function f : Z* — R by the formula f(x) = sf;(x) + 1 f>(x).
Prove that f € O(g). (Hint: You may find the triangle inequality
helpful. See exercise 12(c) of Section 3.5.)

(a) Suppose g: A — B and let R={(x,y)e A x A|g(x) =g}
Show that R is an equivalence relation on A.

(b) Suppose R is an equivalence relationon A andlet g : A — A/R be
the function defined by the formula g(x) = [x]g. Show that R =
{(x,y) e A x Alg(x) =g(y)}

Suppose f: A — B and R is an equivalence relation on A. We will

say that f is compatible with Rif Yx € A¥y € A(xRy — f(x) = f(»)).

(You might want to compare this exercise to exercise 23 of Section 4.6.)

(a) Suppose [ is compatible with R. Prove that there is a unique function
h:A/R — Bsuchthatforallx € A, h([x]g) = f(x).

(b) Supposeh : A/R — Bandforallx € A, h(|x]g) = f(x).Prove that
f 1s compatible with R.

Let R ={(x,y) € Z x Z|x = y (mod 5)}. Recall that we saw in Sec-

tion 4.6 that R is an equivalence relation on Z.

(a) Show that there is a unique function i : Z/R — Z/R such that for
every integer x, i([x]z) = [x?]x. (Hint: Use exercise 18.)

(b) Show that there is no function h : Z/R — Z/R such that for every
integer x, A([x]g) = [2*]&.

5.2. One-to-one and Onto

In the last section we saw that the composition of two functions is again a
function. What about inverses of functions? If f : A — B, then f is a relation
from A to B, so f~! is a relation from B to A. Is it a function from B to A? We'll

answer this question in the next section. As we will see, the answer hinges on

the following two properties of functions.

Definition 5.2.1. Suppose f : A — B. We will say that f is one-to-one if

—3Ja; € Aday € A(f(a1) = f(ax) Aay # az).

We say that f is onto if

Vb e Bia € A(f(a) = b).

One-to-one functions are sometimes also called injections, and onto functions

are sometimes called surjections.
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Note that our definition of one-to-one starts with the negation symbol —.
In other words, to say that f is one-to-one means that a certain situation does
not occur. The situation that must not occur is that there are two different
elements of the domain of f, a; and a», such that f(a;) = f(ay). This situation
is illustrated in Figure 1(a). Thus, the function in Figure 1(a) is not one-to-one.
Figure 1(b) shows a function that is one-to-one.

(a) f is not one-to-one (b) f is one-to-one

Figure 1

If f: A — B,thento say that f is onto means that every element of B is the
image under f of some element of A. In other words, in the diagram of f, every
element of B has an edge pointing to it. Neither of the functions in Figure 1 is
onto, because in both cases there are elements of B without edges pointing to
them. Figure 2 shows two functions that are onto.

A ) B A ) B
“ “

(a) f is onto but not one-to-one (b) f is both one-to-one and onto

Figure 2
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Example 5.2.2. Are the following functions one-to-one? Are they onto?

o W 2 =

. The function F from part 1 of Example 5.1.2.
. The function L from part 3 of Example 5.1.2.
. The identity function i 4, for any set A.

. The function g from part 2 of Example 5.1.3.
. The function A from part 3 of Example 5.1.3.

Solutions

1.

F 1s not one-to-one because F(1) = 5 = F(3). It is also not onto, because
6 € B but there is no @ € A such that F(a) = 6.

. L is not one-to-one because there are many pairs of different cities ¢; and

¢ for which L(c;) = L(c,). For example, L(Chicago) = United States =
L(Seattle). To say that L is onto means that Yn € Ndc € C(L(c) = n), or
in other words, for every country n there is a city ¢ such that the city ¢ is
located in the country n. This is probably true, since it is unlikely that there
is a country that contains no cities at all. Thus, L is probably onto.

. To decide whether i, is one-to-one we must determine whether there are

two elements a; and a; of A such that i(a;) = i4(a2) and a; # a». But
as we saw in Section 5.1, for every a € A,is(a) = a, so i4(a;)) = is(az)
means a; = dao. Thus, there cannot be elements a; and a> of A such that
ialay) = ia(asz) and a; #£ az, 50 i, is one-to-one.

To say that i4 is onto means that for every a € A, a = i 4(b) for some
b € A. This is clearly true because, in fact, a = i 4(a). Thus i 4 is also onto.

. As in solution 3, to decide whether g is one-to-one, we must determine

whether there are integers n; and n; such that g(n;) = g(n») and n; # n,.
According to the definition of g, we have

g(n)) = gny) iff 2n; +3 =20, + 3
iff Zﬂ; = Zﬂg

iff ny =ns;.

Thus there can be no integers n; and n, for which g(n;) = g(n;) and
iy # ns. In other words, g is one-to-one. However, g is not onto because,
forexample, there is no integer n for which g(n) = 0. To see why, suppose n
is an integer and g(n) = 0. Then by the definition of g we have 2n 4 3 = 0,
son = —3/2. But this contradicts the fact that n is an integer. Note that the
domain of g is Z, so for g to be onto it must be the case that for every real
number y there is an integer n such that g(n) = y. Since we have seen that
there is no integer n such that g(n) = 0, we can conclude that g is not onto.
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5. This function is both one-to-one and onto. The verification that & is one-
to-one is very similar to the verification in solution 4 that g is one-to-
one, and it is left to the reader. To see that A is onto, we must show that
¥y € R3x € R(h(x) = y). Here is a brief proof of this statements. Let y
be an arbitrary real number. Let x = (y — 3)/2. Then g(x) =2x 4+ 3 =
2-((y=3)/2)+3=y—-343=y. Thus, Vy € RIx € R(h(x) = y), so
h is onto.

Although the definition of one-to-one is easiest to understand when it is
stated as a negative statement, as in Definition 5.2.1, we know from Chapter 3
that the definition will be easier to use in proofs if we reexpress it as an
equivalent positive statement. The following theorem shows how to do this. It
also gives a useful equivalence for the definition of onto.

Theorem 5.2.3. Suppose f : A — B.

1. f is one-to-one iff Ya, € AVa, € A(f(a)) = f(az) — a; = a»).
2. fis onto iff Ran(f) = B.

Proof

1. We use the rules from Chapters 1 and 2 for reexpressing negative statements
as positive ones.
f 1s one-to-one iff —=3a; € Ada; € A(f(ay) = flax) A a) # az)
iff Ya; € AVas € A—(f(a1) = fla) Aay # ay)
iff Ya; € AVa; € A(f(ay) # flaz) va, = ay)
iff Va; € AVay € A(f(ay) = flaz) — a; = az).

2. First we relate the definition of onto to the definition of range.

fisonto iff Vb € B3a € A(f(a) = b)
ift Vb € B3a € A((a,b) € f)
iff ¥b € B(b € Ran(f))
iff B C Ran(f).
Now we are ready to prove part 2 of the theorem.
(—) Suppose f is onto. By the equivalence just derived we have B C
Ran( f), and by the definition of range we have Ran( /) C B. Thus, it follows
that Ran( f) = B.

(<) Suppose Ran( f) = B. Then certainly B € Ran(f), so by the equiva-
lence, f is onto. O
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Commentary . It is often most efficient to write the proof of an iff statement as
a string of equivalences, if this can be done. In the case of statement 1 this is
easy, using rules of logic. For statement 2 this strategy doesn’t quite work, but
it does give us an equivalence that turns out to be useful in the proof.

Example 5.24. Let A = R\ {—1}, and define f : A — R by the formula
2a
a+1

fla)=
Prove that f 1s one-to-one but not onto.
Scratch work

By part 1 of Theorem 5.2.3, we can prove that f is one-to-one by proving the
equivalent statement Ya, € AVa; € A(f(a;) = f(az) — a; = a3). Thus, we
let @, and a; be arbitrary elements of A, assume f(a;) = f(a2), and then prove
a1 = a». This is the strategy that is almost always used when proving that a
function is one-to-one. The remaining details of the proof involve only simple
algebra and are given later.

To show that f is not onto we must prove =Vx € B3a € A(f(a) = x). Re-
expressing this as a positive statement, we see that we must prove Ix € RVa €
A(f(a) # x), so we should try to find a particular real number x such that
Va € A( f(a) # x). Unfortunately, it is not at all clear what value we should
use for x. We’ll use a somewhat unusual procedure to overcome this difficulty.
Instead of trying to prove that /' is not onto, let’s try to prove that it is onto! Of
course, we're expecting that this proof won’t work, but maybe seeing why it
won’t work will help us figure out what value of x to use in the proof that f is
not onto.

To prove that f is onto we would have to prove Yx € B3a € A(f(a) = x),
so we should let x be an arbitrary real number and try to find some a € A such
that f(a) = x. Filling in the definition of f, we see that we must find a € A
such that

2a

a+l:

X.

To find this value of a, we simply solve the equation for a:
x

P :x:}Za:ax+x=>a{2—x):x:}a:z_x.

Aha! The last step in this derivation wouldn’t work if x = 2, because then
we would be dividing by 0. This is the only value of x that seems to cause
trouble when we try to find a value of @ for which f(a) = x. Perhaps x = 2 is
the value to use in the proof that f is not onto.
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Let’s return now to the proof that f is not onto. If we let x = 2, then to
complete the proof we must show that Ya € A(f(a) # 2). We'll do this by
letting a be an arbitrary element of A, assuming f(a) = 2, and then trying to
derive a contradiction. The remaining details of the proof are not hard.

Solution

Proof To see that f is one-to-one, let a; and a; be arbitrary elements of A
and assume f(a;) = f(a>). Applying the definition of f, it follows that j“’—+‘| =
i‘ﬁ Thus, 2a;(as + 1) = 2as(a; + 1). Multiplying out both sides gives us
2aias + 2a; = 2a a2 + 2as, s0 2a; = 2a» and therefore a; = as.

To show that f is not onto we will prove that Va € A( f(a) # 2). Suppose
a € A and f(a) =2. Applying the definition of f, we get H% = 2. Thus,
2a = 2a + 2, which is clearly impossible. Thus, 2 ¢ Ran( f), so Ran(f) £ R

and therefore f is not onto. O

As we saw in the preceding example, when proving that a function f is
one-to-one it is usually easiest to prove the equivalent statement Ya; € AVa, €
A(f(ay) = f(a2) — a; = a3) given in part 1 of Theorem 5.2.3. Of course,
this is just an example of the fact that it is generally easier to prove a positive
statement than a negative one. This equivalence is also often used in proofs in
which we are given that a function is one-to-one, as you will see in the proof
of part 1 of the following theorem.

Theorem 5.2.5. Suppose f : A — B and g : B — C. As we saw in Theo-
rem 5.1.5, it follows that g o f : A — C.

1. If fand g are both one-to-one, then sois g o f.
2. If fand g are both onto, then so is g o f.

Proof

1. Suppose f and g are both one-to-one. Let a; and @> be arbitrary elements
of A and suppose that (g o f)(a;) = (g o f)(az2). By Theorem 5.1.5 this
means that g(f(a;)) = g(f(ay)). Since g is one-to-one it follows that
fla)) = f(az), and similarly since f is one-to-one we can then conclude
that a; = a,. Thus, g o f is one-to-one.

2. Suppose f and g are both onto, and let ¢ be an arbitrary element of C. Since
g is onto, we can find some b € B such that g(b) = ¢. Similarly, since f is
onto, thereis somea € A suchthat f(a) = b.Then(g ¢ f)(a) = g(f(a)) =
g(b) = c. Thus, g o f is onto. 0
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Commentary

1. AsinExample 5.2.4, we provethat g o [ is one-to-one by proving that Va, €
AVa; € A((g o f)a)) = (g o f)az) = a; = a2). Thus, we let a; and a;
be arbitrary elements of A, assume that (g o f)(a;) = (g o f)(a2), which
means g( f(a;)) = g(f(a>)), and then prove that @, = a». The next sentence
of the proof says that the assumption that g is one-to-one is being used, but
it might not be clear how it is being used. To understand this step, let’s
write out what it means to say that g is one-to-one. As we observed before,
rather than using the original definition, which is a negative statement,
we are probably better off using the equivalent positive statement Vb, €
BYb, € B(g(b)) = g(b2) — by = b,). The natural way to use a given of
this form is to plug something in for b; and b;. Plugging in f(a;) and
flaz), we get g(f(a1)) = g(f(a2)) = f(a1) = f(az). and since we know
g(f(ay)) = g(f(ay)), it follows by modus ponens that f(a;) = f(a,). None
of this was explained in the proof; readers of the proof are expected to work it
out for themselves. Make sure you understand how, using similar reasoning,
you can get from f(a;) = f(as) to a; = a, by applying the fact that f is
one-to-one.

2. After the assumption that f and g are both onto, the form of the rest of the
proof is entirely guided by the logical form of the goal of proving that g o f
is onto. Because this means Ve € Cda € A((g o f)(a) = ¢), we let ¢ be an
arbitrary element of C and then find some a € A for which we can prove

(go flla)=c.

Functions that are both one-to-one and onto are particularly important in
mathematics. Such functions are sometimes called one-to-one correspondences
or bijections. Figure 2(b) shows an example of a one-to-one correspondence.
Notice in the figure that both A and B have four elements. In fact, you should be
able to convince yourself that if there is a one-to-one correspondence between
two finite sets, then the sets must have the same number of elements. This is
one of the reasons why one-to-one correspondences are so important. We will
discuss one-to-one correspondences between infinite sets in Chapter 7.

Here’s another example of a one-to-one correspondence. Suppose A is the
set of all members of the audience at a sold-out concert and § is the set of all
seats in the concert hall. Let f : A — S be the function defined by the rule

f(a) = the seat in which a is sitting.

Because different people would not be sitting in the same seat, f is one-to-one.
Because the concert is sold out, every seat is taken, so f is onto. Thus, f is a
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one-to-one correspondence. Even without counting people or seats, we can tell
that the number of people in the audience must be the same as the number of
seats in the concert hall.

Exercises

1. Which of the functions in exercise 1 of Section 3.1 are one-to-one? Which
are onto?
*2. Which of the functions in exercise 2 of Section 5.1 are one-to-one? Which
are onto?
3. Which of the functions in exercise 3 of Section 5.1 are one-to-one”? Which
are onto?
4, Which of the functions in exercise 4 of Section 3.1 are one-to-one? Which
are onto?
*5. Let A=R\ {l1},and let f : A — A be defined as follows:
Flx) = x+1 _

x—1

(a) Show that f is one-to-one and onto.
(b) Show that fo f =iga.
6. Let A = % (R). Define f : B — A by the formula f(x) = {y e B|y? <
x}.
(a) Find £(2).
(b) Is f one-to-one? Is it onto?
*7. Let A =2(R) and B = #”(A). Define f: B — A by the formula
f(F)=UF.
(a) Find f({{1,2}.{3.4}}).
(b) Is f one-to-one? Is it onto?
8. Suppose f: A — Bandg: B — C.
(a) Prove thatif ¢ o f is onto then g is onto.
(b) Prove thatif g o f is one-to-one then f is one-to-one.
9. Suppose f: A— Bandg : B — C.
(a) Prove that if f is onto and g is not one-to-one, then g o f is not one-
to-one.
(b) Prove thatif f is not onto and g is one-to-one, then g o f is not onto.
*10. Suppose f : A — B and C C A. In exercise 7 of Section 5.1 we defined
f 1 C (the restriction of f to C), and you showed that f | C : C — B.
(a) Prove that if f is one-to-one, then sois f [ C.
(b) Prove thatif f | C is onto, then so is f.
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(c) Give examples to show that the converses of parts (a) and (b) are not
true.

11. Suppose f : A — B, and there is some b € B such that Vx € A(f(x) =
b). (Thus, f is a constant function.)

(a) Prove that if A has more than one element then f is not one-to-one.
(b) Prove that if B has more than one element then f is not onto.

12. Suppose f: A — C,g: B — C,and A and B are disjoint. In exercise
9(a) of Section 5.1 you proved that f U g : AU B — C. Now suppose in
addition that f and g are both one-to-one. Prove that f U g is one-to-one
iff Ran( /') and Ran(g) are disjoint.

13. Suppose R is a relation from A to B, § is a relation from B to C,
Ran(R) = Dom(§)= B, and So R : A — C. In exercise 10(a) of Sec-
tion 5.1 you proved that § : B — C. Now prove that if § is one-to-one
then R : A — B.

*14. Suppose f : A — B and R is a relation on A. As in exercise 12 of Sec-
tion 5.1, define a relation S on B as follows:

S={x.,y)eBxB|ueATv e A(fu)=x A f(v) =y Alu,v) € R}.

(a) Prove that if R is reflexive and f is onto then § is reflexive.
(b) Prove that if R is transitive and f is one-to-one then S is transitive.

15. Suppose R is an equivalence relation on A, and let g: A — A/R be
defined by the formula g(x) = [x]g, as in exercise 17 in Section 5.1.

(a) Show that g is onto.
(b) Show that g is one-to-one iff R = i,.

16. Suppose f : A — B, R is an equivalence relation on A, and f is com-
patible with R. (See exercise 18 of Section 5.1 for the definition of
compatible.) In exercise 18(a) of Section 5.1 you proved that there is
aunique function h : A/R — B suchthatforall x € A, h([x]g) = f(x).
Now prove thath is one-to-one iff Vx € AVy € A(f(x) = f(y) = xRy).

*17. Suppose A, B,and C are sets and f : A — B.
(a) Prove thatif fisonto,g: B— C,h:B— C,andgo f =ho f,
then g = h.
(b) Suppose that C has at least two elements, and for all functions g and
hfromBtoC,if go f = h o f then g = h. Prove that f is onto.

18. Suppose A, B,and C are sets and f : B — C.

(a) Prove thatif f is one-to-one, g: A — B, h: A — B,and fog =
foh,theng =h.

(b) Suppose that A # &, and for all functions g and h from A to B, if
fog= fohthen g = h.Prove that f is one-to-one.
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19. Let F = {f | f : R — R}, and define a relation R on F as follows:

R={(fg)e FxF|3heF(f=hog).

(a) Let f, g, and h be the functions from [ to R defined by the formulas
fx)=x24+1, g(x) =x"+ 1, and h(x) = x* 4 1. Prove that hRf,
but it is not the case that gRf .

(b) Prove that R is a preorder. (See exercise 24 of Section 4.6 for the
definition of preorder.)

(c) Prove that for all f € F, fRip.

(d) Provethatforall f € F,igRf iff f is one-to-one. (Hint for right-to-
left direction: Suppose f is one-to-one. Let A = Ran(f), and leth =
FVURN A) x {0}). Now prove thath : R — Randig = h o f.)

(e) Suppose that g € F is a constant function; in other words, there is
some real number ¢ such that ¥x € R(g(x) = ¢). Prove that for all
f e F,gRf. (Hint: See exercise 14 of Section 5.1.)

(f) Suppose that g € F is a constant function. Prove that for all f € F,
fRgiff f is a constant function.

(g) As inexercise 24 of Section 4.6, if we let § = R N R™", then S is an
equivalence relation on F. Also, there is a unique relation T on F/§
such that for all f and g in F, [ f]sT [gls iff fRg, and T is a partial
order on F/S. Prove that the set of all one-to-one functions from R
to R is the largest element of /S in the partial order T, and the set
of all constant functions from R to [t is the smallest element.

5.3. Inverses of Functions

We are now ready to return to the question of whether the inverse of a function
from A to B is always a function from B to A. Consider again the function F
from part 1 of Example 5.1.2. Recall that in that example we had A = {1, 2, 3},
B=1{4,5,6}),and F = {(1,5),(2,4), (3, 5)). As we saw in Example 5.1.2, F
is a function from A to B. According to the definition of the inverse of a relation,
F~!'= {(5, 1), (4, 2), (5, 3)}, which is clearly a relation from B to A. But F~!
fails to be a function from B to A for two reasons. First of all, 6 € B, but 6isn’t
paired with any element of A in the relation F~!. Second, 5 is paired with two
different elements of A, 1 and 3. Thus, this example shows that the inverse of
a function from A to B is not always a function from B to A.

You may have noticed that the reasons why F~! isn’t a function from B to
A are related to the reasons why F is neither one-to-one nor onto, which were
discussed in part 1 of Example 5.2.2. This suggests the following theorem.
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Theorem 5.3.1. Suppose f : A — B. If f is one-to-one and onto, then f~':
B — A.
Proof. Suppose f is one-to-one and onto, and let b be an arbitrary element
of B. To show that f~! is a function from B to A, we must prove that
Jla € A((b,a) € f~'), so we prove existence and uniqueness separately.
Existence: Since f is onto, there is some a € A such that f(a) = b. Thus,
(a,b)e f,so(b,a)e f~".
Uniqueness: Suppose (b, a1) € f~' and (b, a») € f~! for some a,, az € A.
Then(a;, b) € fand (az, b) € f,s0 f{a;) = b = f(a>). Sincef is one-to-one,
it follows that a; = a;. O

Commentary. The form of the proof is guided by the logical form of the state-
ment that f~! : B — A. Because this means Vb € B3la € A((b,a) € f71),
we let b be an arbitrary element of B and then prove existence and uniqueness
for the required @ € A separately. Note that the assumption that f is onto is the
key to the existence half of the proof, and the assumption that f is one-to-one
is the key to the uniqueness half.

Suppose [ is any function from a set A to a set B. Theorem 5.3.1 says that
a sufficient condition for £~! to be a function from B to A is that f be one-to-
one and onto. Is it also a necessary condition? In other words, is the converse
of Theorem 5.3.1 true? (If you don’t remember what the words sufficient,
necessary, and converse mean, you should review Section 1.5!) We will show
in Theorem 5.3.4 that the answer to this question is yes. In other words, if f~!
is a function from B to A, then f must be one-to-one and onto.

If f~!: B — A then, by the definition of function, for every b € B there is
exactly one a € A such that (b,a) € £, and

f~1(b) = the unique a € A such that (b, a) € f~!
= the unique a € A such that (a, b) € f
= the unique @ € A such that f(a) = b.

This gives another useful way to think about f~'. If f~! is a function from B
to A, then it is the function that assigns, to each b € B, the unique @ € A such
that f(a) = b. The assumption in Theorem 5.3.1 that f is one-to-one and onto
guarantees that there is exactly one such a.

As an example, consider again the function f that assigns, to each person in
the audience at a sold-out concert, the seat in which that person is sitting. As
we saw at the end of the last section, f is a one-to-one, onto function from the
set A of all members of the audience to the set S of all seats in the concert hall.
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Thus, f~! must be a function from S to A, and foreach s € S,

f7(s) = the unique @ € A such that f(a) = s
= the unique person a such that the seat in which a is sitting is s

= the person who is sitting in the seat s.

In other words, the function f assigns to each person the seat in which that
person is sitting, and the function f ~! assigns to each seat the person sitting in
that seat.

Because f: A — Sand f~': S — A, it follows by Theorem 5.1.5 that
f'of:A—= Aand fo f~!:5 — S. What are these functions? To figure
out what the first function is, let’s let ¢ be an arbitrary element of A and
compute ( f~' o f)(a).

(f~' o M) = f(f(a)
= f~!(the seat in which a is sitting)
= the person sitting in the seat in which a is sitting

= .

But recall that for every a € A, is(a) = a. Thus, we have shown that Ya €
A((f' o f)Na) =is(a)), so by Theorem 5.1.4, f~' o f = i,. Similarly, you
should be able to check that f o f~! =iy.

When mathematicians find an unusual phenomenon like this in an example,
they always wonder whether it’s just a coincidence or if it’s part of a more
general pattern. In other words, can we prove a theorem that says that what
happened in this example will happen in other examples too? In this case, it
turns out that we can.

Theorem 5.3.2. Suppose f is a function from A to B, and suppose that f "' is
a function from BtoA. Then f~'o f =isand fo f~' =i

Proof Let a be an arbitrary element of A. Let b = f(a) € B. Then (a,b) € [,
so (b, a) € f~! and therefore f~'(b) = a. Thus,

(S~ o fia) = TN (f(@) = f7'(b) =a =ila)
Since a was arbitrary, we have shown that Ya € A((f~' o f)(a) = ia(a)), so

f~'o f =i,.The proof of the second half of the theorem is similar and is left
as an exercise (see exercise 8). O




248 Functions

Commentary . To prove that two functions are equal, we usually apply Theorem
5.1.4. Thus, since f~! o f and i 4 are both functions from A to A, to prove that
they are equal we prove that Va € A((f ™' o f)(a) = is(a)).

Theorem 5.3.2 says thatif f : A — B and f~': B — A, then each func-
tion undoes the effect of the other. For any a € A, applying the function f
givesus f(a) € B. According to Theorem 5.3.2, f~'(f(a)) = (f ' o f)a) =
ia(a) = a. Thus, applying f~! to f(a) undoes the effect of applying f, giving
us back the original element a. Similarly, for any b € B, applying f ' we get
f~1(b) € A, and we can undo the effect of applying f~! by applying f, since
f(f71 ) =b.

For example, let f : R — R be defined by the formula f(x) = 2x. You
should be able to check that f is one-to-one and onto, so f~!: R — R, and
for any x € R,

7' (x) = the unique y such that f(y) = x.

Because f~!(x) is the unique solution for y in the equation f(y) = x, we
can find a formula for f~'(x) by solving this equation for y. Filling in the
definition of f in the equation gives us 2y = x, so y = x/2. Thus, for every
x € R, f~!(x) = x/2. Notice that applying f to any number doubles the num-
ber and applying ! halves the number, and each of these operations undoes
the effect of the other. In other words, if you double a number and then halve
the result, you get back the number you started with. Similarly, halving any
number and then doubling the result gives you back the original number.

Are there other circumstances in which the composition of two functions
is equal to the identity function? Investigation of this question leads to the
following theorem.

Theorem 5.3.3. Suppose f : A — B.

L. If there is a function g - B — A such that g o f = i, then f is one-to-one.
2. If there is a function g - B — A such that f o g = ig then f is onto.

Proof

1. Supposeg: B — Aand g o f =i4. Leta; and a; be arbitrary elements of
A, and suppose that f(a;) = f(a,). Applying g to both sides of this equation
we get g(f(a1)) = g(f(az)). But g(f(a1)) =(go fiar) =iala)) = ay,
and similarly, g(f(a2)) = a». Thus, we can conclude that a; = a2, and
therefore f is one-to-one.

2. See exercise 9. 0
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Commentary . The assumption that thereisag: B — Asuchthatgo f =i,
is an existential statement, so we immediately imagine that a particular function
g has been chosen. The proof that f is one-to-one follows the usual pattern for
such proofs, based on Theorem 5.2.3.

We have come full circle. In Theorem 5.3.1 we found that if / is a one-to-
one, onto function from A to B, then f~! is a function from B to A. From
this conclusion it follows, as we showed in Theorem 5.3.2, that the composi-
tion of f with its inverse must be the identity function. And in Theorem 5.3.3
we found that when the composition of two functions is the identity func-
tion, we are led back to the properties one-to-one and onto! Thus, combining
Theorems 5.3.1-5.3.3, we get the following theorem.

Theorem 5.3.4. Suppose f : A — B. Then the following statements are
equivalent.

1. fis one-to-one and onto.
2. f71:B— A
3. Thereisafunctiong : B — Asuchthat go f =isand fog =ip.

Proof. 1 — 2. This is precisely what Theorem 5.3.1 says.
2 — 3. Suppose f ! : B — A.Let g = f~! and apply Theorem 5.3.2.
3 — 1. Apply Theorem 5.3.3. O

Commentary. As we saw in Section 3.6, the easiest way to prove that several
statements are equivalent is to prove a circle of implications. In this case we have
proven the circle 1 — 2 — 3 — 1. Note that the proofs of these implications
are quite sketchy. You should make sure you know how to fill in all the details.

For example, let f and g be functions from R to £ defined by the following
formulas:

_x+7

fx) 5 gx)=5x—-17.

Then for any real number x,

—'}':x-|-7—7:x.

7 x+7
(8Of)(x):g(f(x))=g(x+ ):5- s

5 5

Thus, g o f = ig. A similar computation shows that f o g = ig. Thus, it fol-
lows from Theorem 5.3.4 that f must be one-to-one and onto, and f~' must
also be a function from R to R. What is f~'? Of course, a logical guess
would be that f~! = g, but this doesn’t actually follow from the theorems
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we’ve proven. You could check it directly by solving for f~!(x), using the
fact that f~'(x) must be the unique solution for y in the equation f(y) = x.
However, there is no need to check. The next theorem shows that f~! must be
equal to g.

Theorem 5.3.5. Suppose f:A— B, g:B— A,gof =i, and fog=is.
Theng = f~\.

Proof. By Theorem 534, f~!: B — A. Therefore, by Theorem 5.3.2,
f~'o f =iy, Thus,

g=is08 (exercise 9 of Section 4.3)
=(f"ofog
=f"lo(fog) (Theorem 4.2.5)
= f"loip
= f! (exercise 9 of Section 4.3). O

Commentary. This proof gets the desired conclusion quickly by clever use of
previous theorems and exercises. For a more direct but somewhat longer proof,
see exercise 10.

Example 5.3.6. In each part, determine whether or not f is one-to-one and
onto. If it is, find f 1.

1. Let A =R\ {0}and B = R {2}, and define f : A — B by the formula
X 1
fx)=—-+2.
X

(Note that for all x € A, 1/x is defined and nonzero, so f(x) # 2 and
therefore f(x) € B.)
2. LetA=Rand B = {x € R|x = 0},and define f : A — B by the formula

flx)=x2.

Solutions

1. You can check directly that f is one-to-one and onto, but we won’t bother
to check. Instead, we’ll simply try to find a function g : B — A such that
gof=isand f og=ig. We know by Theorems 5.3.4 and 5.3.5 that if
we find such a g, then we can conclude that /' is one-to-one and onto and

g=f""
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Because we’re hoping to have ¢ = f~!, we know that for any x € B =
R\ {2}, g(x) must be the unique y € A such that f(y) = x. Thus, to find
a formula for g(x), we solve for y in the equation f(y) = x. Filling in the
definition of f, we see that the equation we must solve is

1
y

+2=nx.

Solving this equation we get
1 | 1
—+2=x = —-=x-2 = y=
)J’ }.‘

Thus, we define g : B — A by the formula

1
x=2

glx) =

Let’s check that g has the required properties. For any x € A, we have

1 1

. |
g(f{x)):g(;'l'z):mzu—x:x.

Thus, g o f = i4. Similarly, for any x € B,

1

. 1
f(g(Jc)):f(x_z)— Do g t2=rm242=x

so f o g = ip. Therefore, as we observed earlier, f must be one-to-one and
onto, and g = L.
. Imitating the solution to part 1, let’s try to find a function ¢ : B — A such
that go f =i4 and f o g = ip. Because applying f to a number squares
the number and we want g to undo the effect of f, a reasonable guess would
be to let g(x) = ﬁ Let’s see if this works.

For any x € B we have

fglo) = (V) = (Wx) = x.
so f o g =1ip.Butforx € A we have
g(f () = g?) = V2,

and this is not always equal to x. For example, g(f(—3)) = /(-3)2 =
V9 =3+ —3. Thus, g o f # i4. This example illustrates that you must
check both fog=ipand go f =i,. Itis possible for one to work but
not the other.
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What went wrong? We know that if £~! is a function from B to A, then
for any x € B, f~!(x) must be the unique solution for y in the equation
F(») = x. Applying the definition of f gives us y* = x, so y = £,/x. Thus,
there is not a unique solution for y in the equation f(y) = x, there are
two solutions. For example, when x = 9 we get y = £3. In other words,
f(3) = f(—=3) = 9. But this means that f is not one-to-one! Thus, f ! is
not a function from B to A.

Functions that undo each other come up often in mathematics. For exam-
ple, if you are familiar with logarithms, then you will recognize the formulas
102% = x and log 10* = x. (We are using base 10 logarithms here.) We can
rephrase these formulas in the language of this section by defining functions
f:R— Rtand g: BT — R as follows:

flx)= 10", g(x) =logx.

Then for any x € R we have g(f(x)) = log 10® = x, and for any x € Rt,
flg(x)) = 10"* = x.Thus,go f = ipand f 0 g = ip+,s0g = f~'.Inother
words, the logarithm function is the inverse of the “raise 10 to the power”
function.

We saw another example of functions that undo each other in Section 4.6.
Suppose A is any set, let £ be the set of all equivalence relations on A, and let
P be the set of all partitions of A. Define a function f : £ — P by the formula
f(R)= A/ R, and define another function g : P — £ by the formula

g(F) = the equivalence relation determined by F
— U (X x X).
XeF

You should verify that the proof of Theorem 4.6.6 shows that f o g = ip, and
exercise 9 in Section 4.6 shows that g o f = ig. Thus, f is one-to-one and
onto, and g = f~!. One interesting consequence of this is that if A has a finite
number of elements, then we can say that the number of equivalence relations
on A is exactly the same as the number of partitions of A, even though we don’t
know what this number is.

Exercises

*1. Let R be the function defined in exercise 2(c) of Section 5.1. In exercise
2 of Section 5.2, you showed that R is one-to-one and onto, so R™':
P — P.If pe P,whatis R~!(p)?




3.

5.

*9.
10.
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. Let F be the function defined in exercise 4(b) of Section 3.1. In exercise

4 of Section 5.2, you showed that F is one-to-one and onto, so F~':
B — B.If X € B, whatis F~'(X)?

Let f : R — R be defined by the formula
2x+5
f)=—7—.

Show that f is one-to-one and onto, and find a formula for £~'(x). (You
may want to imitate the method used in the example after Theorem 5.3.2,
or in Example 5.3.6.)

. Let f: R — R be defined by the formula f(x) = 2x* — 3. Show that f

is one-to-one and onto, and find a formula for f~!(x).
Let f : R — R be defined by the formula f(x) = 10°~*. Show that f
is one-to-one and onto, and find a formula for f~!(x).

. Let A =R\ {2}, and let f be the function with domain A defined by the

formula

3x
x =2

flx)=

(a) Show that f is a one-to-one, onto function from A to B for some set
B C . What is the set B?
(b) Find a formula for f~!(x).

. In the example after Theorem 5.3.4, we had f(x) = %7 and found that

f~'x) = 5x — 7. Let f; and f> be functions from R to R defined by the
formulas

X

Hix)=x+7, f2(1)=§-

(a) Show that f = f> o f).

(b) According to part 5 of Theorem 4.2.5, we must have f~! = (f>0
)= () o (f5)7". Verify that this is true by computing ( f1) ™! o
(fz)_' directly.

. (a) Prove the second half of Theorem 5.3.2 by imitating the proof of the

first half.
(b) Give an alternative proof of the second half of Theorem 5.3.2 by
applying the first half to f~!.
Prove part 2 of Theorem 5.3.3.
Use the following strategy to give an alternative proof of Theorem 5.3.5:
Let (b, a) be an arbitrary element of B x A. Assume (b, a) € g and prove
(b,a) € f~'. Then assume (b, a) € f~! and prove (b, a) € g.
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12.

13.

*14.

15.

*16.

Functions

Suppose f : A— Bandg: B — A.

(a) Prove that if f is one-to-one and fo g =ipg,theng = f

(b) Prove thatif fisontoand go f =i, theng = f~'.

(c) Prove that if fog=1ip but go f #£1i,, then f is onto but not
one-to-one, and g is one-to-one but not onto.

Suppose f: A — B and f is one-to-one. Prove that there is some set

B’ C Bsuchthat f~': B — A.

Suppose f: A — Band fisonto. Let R={(x,y) e Ax A| f(x)=

f(y)}. By exercise 17(a) of Section 5.1, R is an equivalence relation

on A.

(a) Prove that there is a function & : A/R — B such that for all x € A,
A([x]g) = f(x). (Hint: See exercise 18 of Section 5.1.)

(b) Prove that A is one-to-one and onto. (Hint: See exercise 16 of Sec-
tion 5.2.)

(c) Itfollows from part (b)thath~' : B — A/R.Provethatforallh € B,
h'b)={xeA| fx)=b).

(d) Suppose g : B — A.Provethat f c g =iy iff Vb € B(g(b) € h(D)).

Suppose f : A — B,g: B — A,and f o g = ig.Let A’ = Ran(g) C A.

(a) Prove thatforall x € A’, (g o f)(x) = x.

(b) Prove that f | A" is a one-to-one, onto function from A’ to B and
g = (f A" (See exercise 7 of Section 5.1 for the meaning of the
notation used here.)

LetB={xeR|x=0).Let f:R — Band g: B — R be defined by

the formulas f(x) = x* and g(x) = ,/x. As we saw in part 2 of Exam-

ple 5.3.6, g # f~'. Show that g = (f [ B)~!. (Hint: See exercise 14.)

Let f: R — R be defined by the formula f(x) =4x —x°. Let B =

Ran( f).

(a) Find B.

(b) Find aset A C R such that f | A is a one-to-one, onto function from
A to B, and find a formula for (f | A)~!. (Hint: See exercise 14.)

. Let A be any set. Let P be the set of all partial orders on A, and let S be the

set of all strict partial orders on A. In exercises 4 and 5 of Section 4.5 you
showed that if R € P then R\ iy € §,and if R € S then RUiy € P.
(Recall that we showed in the proof of Theorem 4.5.2 that R U i, is the
reflexive closure of R.) Let f : P — Sand g : S — P be defined by the
formulas

J(R)= R\ iy, g(R)=RUij,.

Show that f is one-to-one and onto, and g = .
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18. Suppose Aisaset, andlet F={f | f: A= Aland P={feF | f
is one-to-one and onto}. Define a relation R on F as follows:

R={fg eFxF|aheP(f=h"ogoh)).

(a) Prove that R is an equivalence relation.

(b) Prove that if fRg then (f o f)R(g o g).

(c) Forany f € F and @ € A, if f(a) = a then we say that a is a fixed
point of f.Prove that if f has a fixed point and f Rg, then g also has
a fixed point.

5.4. Images and Inverse Images: A Research Project

Suppose f : A — B. We have already seen that we can think of / as matching
each element of A with exactly one element of B. In this section we will see
that f can also be thought of as matching subsets of A with subsets of B and
vice-versa.

Definition 5.4.1. Suppose f : A — Band X T A. Then the image of X under
f is the set f(X) defined as follows:

f(X)={f(x)]|x € X}
={be B|3x € X(f(x)=b)}.

(Note that the image of the whole domain A under f is { f(a)|a € A}, and as
we saw in Section 5.1 this is the same as the range of f.)

If Y C B, then the inverse image of Y under f is the set f~'(Y) defined as
follows:

f'(Y)={aeA|fa)eY).

Note that the function f in Definition 5.4.1 may fail to be one-to-one or
onto, and as a result f~' may not be a function from B to A, and for y € B,
the notation * f ~'(y)” may be meaningless. However, even in this case Defini-
tion 5.4.1 still assigns a meaning to the notation “f~1(Y)” for ¥ € B. If you
find this surprising, look again at the definition of f~!(Y), and notice that it
does not treat f~! as a function. The definition refers only to the results of
applying f to elements of A, not the results of applying ! to elements of B.

For example, let L be the function defined in part 3 of Example 5.1.2, which
assigns to each city the country in which that city is located. As in Exam-
ple 5.1.2, let C be the set of all cities and N the set of all countries. If B is the
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set of all cities with population at least one million, then B is a subset of C, and
the image of B under L would be the set

L(B) = {L(b)|b € B)
= {n € N|3b € B(L(b) =n)}
= {n € N | there is some city with population at least

one million that is located in the country n}.

Thus, L(B) is the set of all countries that contain a city with population at least
one million. Now let A be the subset of N consisting of all countries in Africa.
Then the inverse image of A under L is the set

L™ "(A)={c e C|L(c) € A}

= {c € C | the country in which ¢ is located is in Africa}.

Thus, LY A) is the set of all cities in African countries.
Let’s do one more example. Let f: R — R be defined by the formula
f(x)=x%andlet X = {x € R|0 < x < 2}. Then

fO={f)|xeX)={x*|0<x <2}

Thus, f(X) is the set of all squares of real numbers between 0 and 2 (includ-
ing O but not 2). A moment’s reflection should convince you that this set is
(xeR|0=x <4}). Now let's let Y ={xeR|0<x <4} and compute
f~HY). According to the definition of inverse image,

7Y ={x eR| f(x) €Y}
={xeR[0=fx)<4)
={xeR|0<x*<4)
={xelR| -2<x <2}

By now you have had enough experience writing proofs that you should
be ready to put your proof-writing skills to work in answering mathematical
questions. Thus, most of this section will be devoted to a research project
in which you will discover for yourself the answers to basic mathematical
questions about images and inverse images. To get yvou started, we’ll work out
the answer to the first question.

Suppose f : A — B, and W and X are subsets of A. A natural question you
might ask is whether or not f(W N X) must be the same as f(W)N f(X). It
seems plausible that the answer is yes, so let’s see if we can prove it. Thus,
our goal will be to prove that f(W N X) = f(W)N f(X). Because this is an




Images and Inverse Images: A Research Project 257

equation between two sets, we proceed by taking an arbitrary element of each
set and trying to prove that it is an element of the other.

Suppose first that y is an arbitrary element of f(W N X). By the definition of
f(W N X), this means that y = f(x) for some x € W N X. Sincex ¢ WnN X,
itfollows that x € W and x € X. Butnow wehave y = f(x)andx € W, sowe
can conclude that y € f(W). Similarly, since y = f(x) and x € X, it follows
that y € f(X). Thus, y € f(W)N f(X). This completes the first half of the
proof.

Now suppose that y € f(W) N f(X). Then y € f(W), so there is some
w € W such that f(w) = y, and also y € f(X), so there is some x € X such
that y = f(x). If only we knew that w and x were equal, we could conclude
thatw =xe€ WNX,soy= f(x)e f(WnN X). But the best we can do is to
say that f(w) =y = f(x). This should remind you of the definition of one-
to-one. If we knew that f was one-to-one, we could conclude from the fact
that f(w) = f(x) that w = x, and the proof would be done. But without this
information we seem to be stuck.

Let’s summarize what we’ve discovered. First of all, the first half of the
proof worked fine, so we can certainly say that in general f(WNX)C
F(W)YN f(X). The second half worked if we knew that / was one-to-one,
so we can also say that if f is one-to-one, then f(W N X) = f(W)N f(X).
But what if f isn’t one-to-one? There might be some way of fixing up the
proof to show that the equation f(W N X) = f(W) N f(X)is still true even if
f isn’t one-to-one. But by now you have probably come to suspect that perhaps
f(WNnX)and f(W) N f(X) are not always equal, so maybe we should devote
some time to trying to show that the proposed theorem is incorrect. In other
words, let’s see if we can find a counterexample — an example of a function f
and sets W and X for which f(W N X) # f(W) N f(X).

Fortunately, we can do better than just trying examples at random. Of course,
we know we’d better use a function that isn’t one-to-one, but by examining
our attempt at a proof, we can tell more than that. The attempted proof that
fIWNX)= f(W)N f(X) ran into trouble only when W and X contained
elements w and x such that w # x but f(w) = f(x), so we should choose an
example in which this happens. In other words, not only should we make sure
f isn’t one-to-one, we should also make sure W and X contain elements that
show that f isn’t one-to-one.

The graph in Figure 1 shows a simple function that isn’t one-to-one. Writ-
ing it as a set of ordered pairs, we could say f = {(1,4),(2,5), (3, 5)}, and
f:A— B,where A ={1,2,3}and B = {4, 5, 6}. The two elements of A that
show that f is not one-to-one are 2 and 3, so these should be elements of Wand X,
respectively. Why not just try letting W = {2} and X = {3}? With these choices
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Figure 1

we get f(W)={f(2)} = {5} and f(X) = {f(3)} = {5}, so fF(W)N f(X) =
(5N {5) = {5).But f(WNX) = f(@)=D,s0 F(WNX) % F(W)N f(X).
(If you’re not sure why f(&) =&, work it out using Definition 5.4.11)
If you want to see an example in which WN X £ &, try W = {1, 2} and
X = {1, 3}.

This example shows that it would be incorrect to state a theorem saying that
FWnX)yand f(W)N f(X) are always equal. But our proof shows that the
following theorem is correct:

Theorem 5.4.2. Suppose f: A — B, and W and X are subsets of A.
Then f(WNX)C f(W)N f(X). Furthermore, if f is one-to-one, then
fWNX)=fW)n f(X).

Now, here are some questions for you to try to answer. In each case, try to
figure out as much as you can. Justify your answers with proofs and counterex-
amples.

Suppose f: A — B.

1. Suppose W and X are subsets of A.

(a) Will it always be true that f(W U X) = f(W)U f(X)?

(b) Will it always be true that f(W \ X) = f(W)\ f(X)?

(c) Will it always be true that W C X «— f(W) C f(X)?
Suppose that ¥ and Z are subsets of B.

(a) Will it always be true that f~{(Y NZ) = f~Y(¥)N f~1(Z)?
(b) Will it always be true that f~"(Y U Z) = f~ (Y )U f~1(Z)?
(c) Will it always be true that f~' (Y \ Z) = f~'(¥)\ f~1Z)?
(d) WillitalwaysbetruethatY € Z < f~4(¥Y) C f~4(Z)?

2
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3. Suppose X € A. Will it always be true that f~1(f(X)) = X?

4. Suppose ¥  B. Will it always be true that f(f~"(¥) =Y?

5. Suppose g : B — C.Can you prove any interesting theorems about images
and inverse images of sets under g o f?

Note: An observant reader may have noticed an ambiguity in our notation
for images and inverse images. If f : A — B and ¥ C B, then we have used
the notation f~'(Y) to stand for the inverse image of Y under /. But if f is
one-to-one and onto, then, as we saw in Section 5.3, f~! is a function from
Bto A. Thus, f~'(Y) could also be interpreted as the image of ¥ under the
function f~!. Fortunately, this ambiguity is harmless, as the next problem
shows.

6. Suppose f : A — B, f is one-to-one and onto, and ¥ € B. Show that the
inverse image of ¥ under f and the image of ¥ under f~! are equal. (Hint:
First write out the definitions of the two sets carefully!)
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Mathematical Induction

6.1. Proof by Mathematical Induction

In Chapter 3 we studied proof techniques that could be used in reasoning about
any mathematical topic. In this chapter we’ll discuss one more proof technique,
called mathematical induction, that is designed for proving statements about
what is perhaps the most fundamental of all mathematical structures, the natural
numbers. Recall that the set of all natural numbers is N = {0, 1,2, 3, ...}.

Suppose you want to prove that every natural number has some property
P. In other words, you want to show that 0, 1, 2, ... all have the property P.
Of course, there are infinitely many numbers in this list, so you can’t check
one-by-one that they all have property P. The key idea behind mathematical
induction is that to list all the natural numbers all you have to do is start with
0 and repeatedly add 1. Thus, you can show that every natural number has
the property P by showing that 0 has property P, and that whenever you add
| to a number that has property P, the resulting number also has property P.
This would guarantee that, as you go through the list of all natural numbers,
starting with 0 and repeatedly adding 1, every number you encounter must have
property P. In other words, all natural numbers have property P. Here, then, is
how the method of mathematical induction works.

To prove a goal of the form ¥n € NP(n):

First prove P(0), and then prove ¥n € N(P(n) — P(n + 1)). The first of
these proofs is sometimes called the base case and the second the induction
step.

Form of the final proof:

Base case: [Proof of P(0) goes here.]
Induction step: [Proof of Vi € N(P(n) — P(n + 1)) goes here.]

260
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We’ll say more about the justification of the method of mathematical induc-
tion later, but first let’s look at an example of a proof that uses mathematical
induction. The following list of calculations suggests a surprising pattern:

2 =1=2"-1
V42l 142 =3=27_1
W2l 42— 14244=7=2" -1
W42t 42242 1424448 =15=2"—1

The general pattern appears to be:
2[J+2| NI +2n :2H+1 —1.

Will this pattern hold for all values of n? Let’s see if we can prove it.

Example 6.1.1. Prove that for every natural number n, 2" + 2! + ... 4+ 2" =
2n+! - 1.

Scratch work

Our goal is to prove the statement ¥n € NP(n), where P(n) is the statement
2042V ... 42" =27+l _ | According to our strategy, we can do this by
proving two other statements, P(0) and ¥Vn € N(P(n) — P(n + 1)).

Plugging in O for n, we see that P(0) is simply the statement 2° = 2' — 1,
the first statement in our list of calculations. The proof of this is easy — just do
the arithmetic to verify that both sides are equal to 1. Often the base case of an
induction proof is very easy, and the only hard work in figuring out the proof
is in carrying out the induction step.

For the induction step, we must prove ¥n € N(P(n) — P(n + 1)). Of
course, all of the proof techniques discussed in Chapter 3 can be used in
mathematical induction proofs, so we can do this by letting n be an arbitrary
natural number, assuming that P(n) is true, and then proving that P(n + 1) is
true. In other words, we’ll let n be an arbitrary natural number, assume that
20420 4. 427" = 2" _ |, and then prove that 27 42! 4 ... 427! =

2"t2 _ 1. This gives us the following givens and goal:

Givens Goal
nel 2(}+2I+“_+2n+!:2n+2_1
2(}+2I 4+ +2n :2n+1 -1

Clearly the second given is similar to the goal. Is there some way to start
with the second given and derive the goal using algebraic steps? The key to the
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proof is to recognize that the left side of the equation in the goal is exactly the
same as the left side of the second given, but with the extra term 2"*! added
on. So let’s try adding 2"*! to both sides of the second given.

This gives us

(2[J+2i +oe +2n)+2n+1 :(2n+l _ ])+2H+1,
or in other words,
2[J+2i +_“+2n+1 :2‘2n+l —1 :2"+2— 1.

This is the goal, so we are done!
Solution

Theorem. For every natural number n,2° +2' 4+ ... 42" = 2"+1 —
Proof. We use mathematical induction.

Base case: Setting n = 0, we get 2° = 1 = 2! — 1 as required.

Induction step: Let # be an arbitrary natural number and suppose that
2042V 4. 427 =21 | Then

2[i+21+__‘+2n+1:{2(}+2I+“‘+2n)+2n+l

— {2n+l _ ]) +2n+|
:2‘2H+| _ ]
— 2n+2 —1. ]

Does the proof in Example 6.1.1 convince you that the equation 2° 4+ 2! +
oo 27 =21 1 which we called P(n) in our scratch work, is true for
all natural numbers n? Well, certainly P(0) is true, since we checked that
explicitly in the base case of the proof. In the induction step we showed
that ¥rn € N(P(n) — P(n + 1)), so we know that for every natural number
n, P(n) — P(n + 1). For example, plugging in n = () we can conclude that
P(0) — P(1). But now we know that both P(0)and P(0) — P(1) are true, so
applying modus ponens we can conclude that P(1) is true too. Similarly, plug-
ging in n = 1 in the induction step we get P(1) — P(2), so applying modus
ponens to the statements P(1) and P(1) — P(2) we can conclude that P(2)
is true. Setting n = 2 in the induction step we get P(2) — P(3), so by modus
ponens, P(3) is true. Continuing in this way, you should be able to see that by
repeatedly applying the induction step you can show that P(n) must be true
for every natural number n. In other words, the proof really does show that
¥n € NP(n).
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As we saw in the last example, the hardest part of a proof by mathematical
induction is usually the induction step, in which you must prove the statement
Vn € M(P(n) — P(n+1)). It is usually best to do this by letting n be an
arbitrary natural number, assuming P (n) is true, and then proving that P(n + 1)
is true. The assumption that P(n) is true is sometimes called the inductive
hypothesis, and the key to the proof is usually to work out some relationship
between the inductive hypothesis P(n) and the goal P(n + 1).

Here’s another example of a proof by mathematical induction.

Example 6.1.2. Prove that Yn € N(3 | (n® — n)).

Scratch work

As usual, the base case is easy to check. The details are given in the following
proof. For the induction step, we let n be an arbitrary natural number and assume
that 3 | (n* — n), and we must prove that 3| ((n + D= (n+ D). Filling in the
definition of divides, we can sum up our situation as follows:
Givens Goal

neN 3 eZBj=m+1P —(m+1)

Ik e ZBk=n>—n)
The second given is the inductive hypothesis, and we need to figure out how it
can be used to establish the goal.

According to our techniques for dealing with existential quantifiers in proofs,
the best thing to do first is to use the second given and let k stand for a par-
ticular integer such that 3k = n® — n. To complete the proof we’ll need to
find an integer j (which will probably be related to &k in some way) such that
3j=(m+1)> —(n+1). We expand the right side of this equation, looking

for some way to relate it to the given equation 3k = n® — n:

m+ 1Y —m+D=n*+30"4+3n+1-n—-1
= (n’ —n)+3n*+3n
=3k +3n*+3n
= 3(k +n’ +n).

It should now be clear that we can complete the proof by letting j = k + n” + n.
As in similar earlier proofs, we don’t bother to mention j in the proof.

Solution

Theorem. For every natural number n, 3| (n* — n).
Proof. We use mathematical induction.
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Base case: If n = 0, thenn® —n =0=3-0,s03 | n® = n).
Induction step: Let n be an arbitrary natural number and suppose 3 | (n® — n).
Then we can choose an integer k such that 3k = n* — n. Thus,

n+1P—m+D=n" 43> +3n+1-n-1
= (> —n)+3n>+3n
=3k +3n’ 4 3n
=3(k +n* +n).

Therefore 3 | (n + D —(n+1)),as required. O

Once you understand why mathematical induction works, you should be able
to understand proofs that involve small variations on the method of induction.
The next example illustrates such a variation. In this example we’ll try to figure
out which is larger, n? or 2%, Let’s try out a few values of a:

n n* 2"  Which is larger?

0o 0 1 2"
1 1 2 2"
2 4 4 tie
3 9 8 n?
4 16 16 tie
5 25 32 2"
6 36 64 2"

It’s a close race at first, but starting with n = 5, it looks like 2" is taking a de-
cisive lead over n®. Can we prove that it will stay ahead for larger values
of n?

Example 6.1.3. Prove that Yn > 5(2" > n?).

Scratch work

We are only interested in proving the inequality 2" > n? for n > 5. Thus, it
would make no sense to use n = 0 in the base case of our induction proof. We’ll
take n = 5 as the base case for our induction rather than n = 0. Once we’ve
checked that the inequality holds when n = 5, the induction step will show that
the inequality must continue to hold if we repeatedly add 1 to n. Thus, it must
also hold forn = 6,7, 8, .. .. In other words, we'll be able to conclude that the
inequality holds for all n = 5.




Proof by Mathematical Induction 265

The base case n = 5 has already been checked in the table. For the induc-
tion step, we let n = 5 be arbitrary, assume 2" > n?, and try to prove that
2"+t! = (n 4 1)%2. How can we relate the inductive hypothesis to the goal?
Perhaps the simplest relationship involves the left sides of the two inequal-
ities: 2"*! = 2. 2" Thus, multiplying both sides of the inductive hypothesis
2" = n? by 2, we can conclude that 27! > 21?2, Now compare this inequality
to the goal, 27+ (n+ 1)% If we could prove that 2n% = (n + 1)?, then the
goal would follow easily. So let’s forget about the original goal and see if we
can prove that 2n% = (n + 1)%.

Multiplying out the right side of the new goal we see that we must prove that
2n* = n®> 4+ 2n + 1, or in other words n? > 2n + 1. This isn’t hard to prove:
Since we’ve assumed that n > 5, it follows that n2 > Sn = 2n +3n = 2n + 1.

Solution

Theorem. For every natural numbern = 5,2" > n’.

Proof. By mathematical induction.
Base case: When n = 5 we have 2" = 32 > 25 = n?.
Induction step: Let n > 5 be arbitrary, and suppose that 2* > n”. Then

2l =2.2"
> 2n? (by inductive hypothesis)
= n?+n?
> n’ 4 5n (sincen = 3)
=n*+2n+3n

>n2+2n+]:(n+l)2.

Exercises

*1. Prove that foralln e N, O+ 142+ .- 4+n=n(n+ 1)/2.
2. Provethatforalln € N, 0 + 12+ 224 --- +n?> = n(n + D(2n + 1)/6.
*3, Provethatforalln e N,O* + P + 22 ... 40’ = [n(n + l);’2}2.

4. Find a formulafor 1 +3+54--- 4 (2n — 1), forn = 1, and prove that
your formula is correct. (Hint: First try some particular values of n and
look for a pattern.)

5. Prove that for all nelN, 0-14+1-242-34+---4nn+1)=
n(n 4+ 1)(n + 2)/3.

6. FindaformulaforO-1-2+1-2-34+2-3 - 44 - +nln+ Dn+2),
for n € N, and prove that your formula is correct. (Hint: Compare this
exercise to exercises 1 and 5, and try to guess the formula.)
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*7. Find aformulafor3® + 3! 4+ 3% 4 ... 4 3" forn = 0, and prove that your
formula is correct. (Hint: Try to guess the formula, basing your guess on
Example 6.1.1. Then try out some values of n and adjust your guess if
necessary.)

8. Prove that forall n = 1,

{ l+l l+ N 1 1
2 3 4 2n—1 2n
| 1 1 1

T+l +n+2+n+3+m+ﬂ

9. (a) Prove thatalln € N, 2| (n> + n).
(b) Prove that foralln € N, 6| (n* — n).
*10. Prove that foralln € N, 64 | (9" — 8n — 1).

11. Prove that foralln € N,9 | (4" 4+ 6n — 1).

12. Prove that for all integers a and b and all n € N, (a — b) | (@" — b").
(Hint: Let @ and b be arbitrary integers and then prove by induction
that ¥n € N[(a — b)| (a" — b")]. For the induction step, you must relate
a™! — p"*! to @" — b". You might find it useful to start by completing
the following equation: a"*' — b"*! = a(a” — b") + 2 )

13. Prove that for all integers a and b andalln € N,(a + b) | (a®*! 4 b*"+1).

*14. Prove that forall n > 10,2" = n°.

15. Prove that foralln € N, eithern = 0(mod 3)orn =1 (mod 3)orn =2
(mod 3). (Recall that this notation was introduced in Definition 4.6.9.)

16. Prove that for all n =1, 2.2'43.2244. 224 ... 4 (4 12" =
n2mtL

17. (a) What's wrong with the following proof that for all n € N, 1 - 3% +

3.3045.32 4. .. 4 (2n + 3" = a3+

Proof. We use mathematical induction. Let n be an arbitrary
natural number, and suppose that 1-3°+3.3'4+5.324... +
(2n + 1)3" = n3"*t! Then
1-3°43.3'45.3% 4.+ 2n + D3" + 2n + 3)3""!
= n3""' +Q2n+ 3)3"“
= (3n +3)3""!
= (n+ 13",

as required. O

(b) Find a formula for 1-34+3-.3"4+5.324... 4+ (2n 4+ 1)3", and
prove that your formula is correct.
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18. Suppose a is a real number and a < ). Prove that for all n € N, if n is

even then @" > 0, and if » is odd then a” < 0.
*19. Suppose a and b are real numbers and 0 < a < b.
(a) Prove that for all n = 1, 0 < @" < b". (Notice that this generalizes
Theorem 3.1.2.)

(b) Prove that foralln = 2,0 < {/a < v/b.
(c) Provethat foralln = 1, ab" + ba™ < a"' + b"*L.
(d) Prove thatforalln = 2,

(a +b)" "+ b
< .
2 2

6.2. More Examples

We introduced mathematical induction in the last section as a method for prov-
ing that all natural numbers have some property. However, the applications of
mathematical induction extend far beyond the study of the natural numbers. In
this section we’ll look at some examples of proofs by mathematical induction
that illustrate the wide range of uses of induction.

Example 6.2.1. Suppose R is a partial order on a set A. Prove that every finite,
nonempty set B € A has an R-minimal element.

Scratch work

You might think at first that mathematical induction is not appropriate for this
proof, because the goal doesn’t seem to have the form Yn € NP(n). In fact,
the goal doesn’t explicitly mention natural numbers at all! But we can see that
natural numbers enter into the problem when we recognize that to say that B
is finite and nonempty means that it has n elements, for some n € N, n = 1.
(We'll give a more careful definition of the number of elements in a finite set
in Chapter 7. For the moment, an intuitive understanding of this concept will
suffice.) Thus, the goal means ¥n = 1VB C A(B has n elements — B has a
minimal element). We can now use induction to prove this statement.

In the base case we will have n = 1, so we must prove that if B has one
element, then it has a minimal element. It is easy to check that in this case the
one element of B must be minimal.

For the induction step we let n > 1 be arbitrary, assume that VB C A (B has
n elements — B has a minimal element), and try to prove that VB € A(B has
n + 1 elements — B has a minimal element). Guided by the form of the goal,
we let B be an arbitrary subset of A, assume that B has n 4+ 1 elements, and try
to prove that B has a minimal element.
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How can we use the inductive hypothesis to reach our goal? The inductive
hypothesis tells us that if we had a subset of A with n elements, then it would
have a minimal element. To apply it, we need to find a subset of A with n
elements. Our arbitrary set B is a subset of A, and we have assumed that it has
n + 1 elements. Thus, a simple way to produce a subset of A with n elements
would be to remove one element from B. It is not clear where this reasoning
will lead, but it seems to be the simplest way to make use of the inductive
hypothesis. Let’s give it a try.

Let b be any element of B, and let B = B \ {b}. Then B’ is a subset of A
with n elements, so by the inductive hypothesis, B’ has a minimal element.
This is an existential statement, so we immediately introduce a new variable,
say ¢, to stand for a minimal element of B’.

Our goal is to prove that B has a minimal element, which is also an existential
statement, so we should try to come up with a minimal element of B. We only
know about two elements of B at this point, b and ¢, so we should probably
try to prove that one of these is a minimal element of B. Which one? Well,
it may depend on whether one of them is smaller than the other according to
the partial order R. This suggests that we may need to use proof by cases. In
our proof we use the cases bRc¢ and —bRc. In the first case we prove that b is
a minimal element of B, and in the second case we prove that ¢ is a minimal
element of B. Note that to say that something is a minimal element of B is a
negative statement, so in both cases we use proof by contradiction.

Solution

Theorem. Suppose R is a partial order on a set A. Then every finite, nonempty
set B C A has an R-minimal element.

Proof. We will show by induction that for every natural number n > 1, every
subset of A with n elements has a minimal element.

Base case: n = 1. Suppose B C A and B has one element. Then B = {b} for
some b € A. Clearly —3x € B(x #£ b), so certainly —=3x € B(xRb A x # b).
Thus, b is minimal.

Induction step: Suppose n = 1, and suppose that every subset of A with n
elements has a minimal element. Now let B be an arbitrary subset of A with
n + 1 elements. Let b be any element of B, and let B’ = B \ {b}, a subset of A
with n elements. By inductive hypothesis, we can choose a minimal element
ceB.

Case 1. bRc. We claim that b is a minimal element of B. To see why,
suppose it isn’t. Then we can choose some x € B such that xRb and x # b.
Since x # b, x € B'. Also, since x Rb and bR, by transitivity of R it follows
that x Rc. Thus, since ¢ is a minimal element of B’, we must have x = ¢. But
then since x Rb we have ¢ Rb, and we also know b Re, so by antisymmetry of R
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it follows that b = c. This is clearly impossible, since ¢ € B’ = B "\ {b}. Thus,
b must be a minimal element of B.

Case 2. =bRc. We claim in this case that ¢ is a minimal element of B. To
see why, suppose it isn’t. Then we can choose some x € B such that xR¢
and x # c¢. Since ¢ is a minimal element of B’, we can’t have x € B’, so the
only other possibility is x = b. But then since x Rc we must have b Rc, which
contradicts our assumption that —b Rc. Thus, ¢ is a minimal element of B. [

Note that an infinite subset of a partially ordered set need not have a minimal
element, as we saw in part | of Example 4.4.5. Thus, the assumption that B is
finite was needed in our last theorem. This theorem can be used to prove another
interesting fact about partial orders, again using mathematical induction:

Example 6.2.2. Suppose A is a finite set and R is a partial order on A. Prove
that R can be extended to a total order on A. In other words, prove that there
is a total order T on A suchthat R C T.

Scratch work

We’ll only outline the proof, leaving many details as exercises. The idea is
to prove by induction that ¥n € NVYAYR[(A has n elements and R is a partial
order on A) — 3T(T is a total order on A and R € T)]. The induction step is
similar to the induction step of the last example. If R is a partial order on a set A
with n + 1 elements, then we remove one element, call it a, from A, and apply
the inductive hypothesis to the remaining set A" = A\ {a}. This will give us
a total order 7’ on A’ and to complete the proof we must somehow turn this
into a total order T on A such that R € T. The relation T’ already tells us how
to compare any two elements of A’, but it doesn’t tell us how to compare a
to the elements of A’. This is what we must decide in order to define T, and
the main difficulty in this step of the proof is that we must make this decision
in such a way that we end up with R € 7. Our resolution of this difficulty in
the following proof involves choosing a carefully in the first place. We choose
a to be an R-minimal element of A, and then when we define T, we make a
smaller in the T ordering than every element of A’. We use the theorem in the
last example, with B = A, to guarantee that A has an R-minimal element.

Solution

Theorem. Suppose A is a finite set and R is a partial order on A. Then there
is a total order T on A such that R C T.

Proof. We will show by induction on n that every partial order on a set with
n elements can be extended to a total order. Clearly this suffices to prove the
theorem.
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Base case: n = 0. Suppose R is a partial order on A and A has 0 elements.
Then clearly A = R = @. It is easy to check that & is a total order on A, so
we are done.

Induction step: Let n be an arbitrary natural number, and suppose that
every partial order on a set with n elements can be extended to a total or-
der. Now suppose that A has n + | elements and R is a partial order on A. By
the theorem in the last example, there must be some a € A such that a is an
R-minimal element of A. Let A" = A\ {a} and let " = RN (A" x A"). You
are asked to show in exercise 1 that R" is a partial order on A’. By inductive
hypothesis, we can let 7' be a total order on A" such that R’ C T'. Now let
T =T'U({a} x A). You are also asked to show in exercise 1 that T is a total
orderon A and R C T, as required. O

The theorem in the last example can be extended to apply to partial orders
on infinite sets. For a step in this direction, see exercise 17 in Section 7.1.

Example 6.2.3. Prove that for all n = 3, if n distinct points on a circle are
connected in consecutive order with straight lines, then the interior angles of
the resulting polygon add up to (n — 2)180°.

Solution

Figure 1 shows an example with n = 4. We won’t give the scratch work
separately for this proof.

Theorem. Foralln = 3, if ndistinct points on a circle are connected in consec-
utive order with straight lines, then the interior angles of the resulting polygon
add up to (n — 2)180°.

Proof. We use induction on n.

Base case: Suppose n = 3. Then the polygon is a triangle, and it is well
known that the interior angles of a triangle add up to 180°.

Induction step: Let n be an arbitrary natural number, n > 3, and assume the
statement is true for n. Now consider the polygon P formed by connecting
some n + 1 distinct points Ay, As, ..., A,4; on a circle. If we skip the last
point A, ;, then we get a polygon P’ with only n vertices, and by inductive
hypothesis the interior angles of this polygon add up to (n — 2)180°. But now
as you can see in Figure 2, the sum of the interior angles of P is equal to the sum
of the interior angles of P’ plus the sum of the interior angles of the triangle
A} A, A, 4. Since the sum of the interior angles of the triangle is 180°, we can
conclude that the sum of the interior angles of P is

(n —2)180° + 180° = ((n + 1) — 2)180°,

as required. O
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a+p+y+48=4-2)180 = 360°

Figure 1

A] Az

Antl

Ay
Figure 2
Example 6.2.4. Prove that for any positive integer n, a 2" x 2" square grid

with any one square removed can be covered with L-shaped tiles that look like:
this: Bb

Scratch work

Figure 3 shows an example for the case n = 2. In this case 2" = 4, so we have
a4 x 4 grid, and the square that has been removed is shaded. The heavy lines
show how the remaining squares can be covered with five L-shaped tiles.
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We’ll use induction in our proof, and because we’re only interested in pos-
itive n, the base case will be n = 1. In this case we have a 2 x 2 grid with
one square removed, and this can clearly be covered with one L-shaped tile.
(Draw a picture!)

:H

4 x 4 grid with Grid covered with
one square removed. L-shaped tiles.

Figure 3

For the induction step, we let n be an arbitrary positive integer and assume
that a 2" x 2" grid with any one square removed can be covered with L-shaped
tiles. Now suppose we have a 2"+ x 2"*! grid with one square removed. To
use our inductive hypothesis we must somehow relate this to the 2" x 2" grid.
Since 2"t = 27. 2, the 2"t! x 2"*! grid is twice as wide and twice as high as
the 2" x 2" grid. In other words, by dividing the 2"*! x 2"*! grid in half both
horizontally and vertically, we can split it into four 2" x 2" “subgrids.” This is
illustrated in Figure 4. The one square that has been removed will be in one of
the four subgrids; in Figure 4, it is in the upper right.

The inductive hypothesis tells us that it is possible to cover the upper right
subgrid in Figure 4 with L-shaped tiles. But what about the other three subgrids?
It turns out that there is a clever way of placing one tile on the grid so that the
inductive hypothesis can then be used to show that the remaining subgrids
can be covered. See if you can figure it out before reading the answer in the
following proof.

n "
#“
n
2 =
2?!

Figure 4
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Solution

Theorem. For any positive integer n, a 2" x 2" square grid with any one
square removed can be covered with L-shaped tiles.
Proof. We use induction on #.

Base case: Suppose n = 1. Then the grid is a 2 x 2 grid with one square
removed, which can clearly be covered with one L-shaped tile.

Induction step: Let n be an arbitrary positive integer, and suppose that a
2" % 2" grid with any one square removed can be covered with L-shaped tiles.
Now considera 27! x 2"+! grid with one square removed. Cut the grid in half
both vertically and horizontally, splitting it into four 2" x 2" subgrids. The
one square that has been removed comes from one of these subgrids, so by the
inductive hypothesis the rest of this subgrid can be covered with L-shaped tiles.
To cover the other three subgrids, first place one L-shaped tile in the center so
that it covers one square from each of the three remaining subgrids, as illustrated
in Figure 5. The area remaining to be covered now contains every square except
one in each of the subgrids, so by applying the inductive hypothesis to each
subgrid we can see that this area can be covered with tiles. 0

Figure 5

It is interesting to note that this proof can actually be used to figure out how
to place tiles on a particular grid. For example, consider the 8 x 8 grid with
one square removed shown in Figure 6.

According to the preceding proof, the first step in covering this grid with tiles
is tosplititinto four4 x 4 subgrids and place one tile in the center, covering one
square from each subgrid except the upper left. This is illustrated in Figure 7.
The area remaining to be covered now consists of four 4 x 4 subgrids with one
square removed from each of them.

How do we cover the remaining 4 x 4 subgrids? By the same method, of
course! For example, let’s cover the subgrid in the upper right of Figure 7. We
need to cover every square of this subgrid except the lower left corner, which
has already been covered. We start by cutting it into four 2 x 2 subgrids and
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|

Figure 6

put one tile in the middle, as in Figure 8. The area remaining to be covered
now consists of four 2 x 2 subgrids with one square removed from each. Each
of these can be covered with one tile, thus completing the upper right subgrid
of Figure 7.

u

Figure 7

Figure §

The remaining three quarters of Figure 7 are completed by a similar proce-
dure. The final solution is shown in Figure 9.

The method we used in solving this problem is an example of a recursive
procedure. We solved the problem foran 8 x 8 grid by splitting it into four4 x 4
grid problems. To solve each of these, we split it into four 2 x 2 problems, each
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Figure 9

of which was easy to solve. If we had started with a larger grid, we might have
had to repeat the splitting many times before reaching easy 2 x 2 problems.
Recursion and its relationship to mathematical induction is the subject of our
next section.

*1.

2

4.

Exercises

Complete the proof in Example 6.2.2 by doing the following proofs. (We
use the same notation here as in the example.)

(a) Prove that R’ is a partial order on A’.

(b) Prove that T is a total orderonAand R C T.

. Suppose R is a partial order on a set A, B C A, and B is finite. Prove

that there is a partial order T on A such that R C T and Vx € BVy €
A(xTy v yTx). Note that, in particular, if A is finite we can let B = A,
and the conclusion then means that T is a total order on A. Thus, this
gives an alternative approach to the proof of the theorem in Example
6.2.2. (Hint: Use induction on the number of elements in B. For the
induction step, assume the conclusion holds for any set B € A with n
elements, and suppose B is a subset of A with n + 1 elements. Let b be
any element of B and let B = B \ {b}, a subset of A with n elements. By
inductive hypothesis, let T’ be a partial order on A such that R € T’
and Vx € B'Vy € A(xT'y v yT'x). Now let A} = {x € A|xT'b} and
A=A\ Ay, and let T =T 'U(A; x A;). Prove that T has all the
required properties.)

. Suppose R is a total order on a set A. Prove that every finite, nonempty

set B € A has an R-smallest element.

(a) Suppose Risarelationon A, andVx € AVy € A(xRy v yRx). (Note
that this implies that R is reflexive.) Prove that for every finite,
nonempty set B € A there is some x € B suchthat Vy € B((x,y) €
R o R). (Hint: Imitate Example 6.2.1.)
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(b) Consider a tournament in which each contestant plays every other
contestant exactly once, and one of them wins. We’ll say that a con-
testant x is excellent if, for every other contestant y, either x beats y
or there is a third contestant z such that x beats 7 and z beats y. Prove
that there is at least one excellent contestant.

. Foreachn € N, let F, = 2% + 1. (These numbers are called the Fermar

numbers, after the French mathematician Pierre de Fermat (1601-1665).
Fermat showed that Fy, Fi, F2, F3, and Fy are prime, and conjectured
that all of the Fermat numbers are prime. However, over 100 years later
Euler showed that Fs is not prime. It is not known if there is any n > 4
for which F,, is prime.)

Prove thatforalln = 1, F, = (Fy- Fy - F» - -« F,_;) + 2.

. Prove that if n = 1 and ay, aa, . .., a, are any real numbers, then |a, +

ar + -+ a,| < lay| + |az| + - - - + |a,|. (Note that this generalizes the
triangle inequality; see exercise 12(c) of Section 3.5.)

. (a) Prove thatif a and b are positive real numbers, then a/b + b/a = 2.

(Hint: Start with the fact that (a — b)*> = 0.)

(b) Suppose that a, b, and ¢ are real numbers and 0 <a <b < c.
Prove that b/c+ c/a — b/a = 1. (Hint: Start with the fact that
(c—a)c—b)=0)

(c) Prove that if n = 2 and ay, a2, ..., a, are real numbers such that
D=a <a;<...<a, then afar+ajaz+---+a,_1/a,+
a,fa; = n.

If n =2 and ay, a», ..., a, is a list of positive real numbers, then the

number (a; + a» + - - - + a,)/ n is called the arithmetic mean of the num-

bers ai, as, . . ., a,, and the number J/a,a; - - - a, is called their geometric

mean. In this exercise you will prove the arithmetic-geometric mean in-
equality, which says that the arithmetic mean is always at least as large
as the geometric mean.

(a) Prove that the arithmetic-geometric mean inequality holds for lists of
numbers of length 2. In other words, prove that for all positive real
numbers a and b, (@ + b)/2 = Vab.

(b) Prove that the arithmetic-geometric mean inequality holds for any
list of numbers whose length is a power of 2. In other words, prove
that foralln = 1, if ay, as, . .., as« is a list of positive real numbers,
then

ay+dy; + -+ do

2
o = Sjadr - dan.
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(c) Suppose that ng = 2 and the arithmetic-geometric mean inequality
fails for some list of length ny. In other words, there are positive real

numbers a;, @z, . .., @, such that
aj +32+“‘+anu
- Jr[”’alaz - ann.
ny

Prove that for all n = ny, the arithmetic-geometric mean inequality
fails for some list of length n.
(d) Prove that the arithmetic-geometric mean inequality always holds.
Prove that if n = 2 and ay, a2, ..., a, is a list of positive real numbers,
then
n

i-l-i-l-‘“-l- HL < Yajas---ay.
(Hint: Apply exercise 8. The number on the left side of the inequality
above is called the harmonic mean of the numbers ay, as, ..., a,.)
Prove that for every set A, if A has n elements then % (A) has 2" elements.
If A is a set, let 77 2(A) be the set of all subsets of A that have exactly two
elements. Prove that for every set A, if A has n elements then % ;(A) has
n(n — 1)/2 elements. (Hint: See the solution for exercise 10.)

Suppose n is a positive integer. An equilateral triangle is cut into 4"
congruent equilateral triangles, and one corner is removed. (Figure 10
shows an example in the case n = 2.) Show that the remaining area can

be covered by trapezoidal tiles like this: AA.

Figure 10

Let n be a positive integer. Suppose n chords are drawn in a circle in such
a way that each chord intersects every other, but no three intersect at one
point. Prove that the chords cut the circle into "3+£’+2 regionsA‘ (Figure 11
shows an example in the case n = 4. Note that there are =2 = ||
regions in this figure.) _

Let n be a positive integer, and suppose that n chords are drawn in a
circle, cutting the circle into a number a regions. Prove that the regions
can be colored with two colors in such a way that adjacent regions (that
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Figure 11

is, regions that share an edge) are different colors. (Figure 12 shows an
example in the case n = 4.)

Y

Figure 12

What’s wrong with the following proof that if A € N and 0 € A then
A=N?

Proof. We will prove by induction that Vi € N(n € A).

Base case: If n = 0, then n € A by assumption.

Induction step: Let n € N be arbitrary, and suppose that n € A. Since
n was arbitrary, it follows that every natural number is an element of A,
and therefore in particularn + 1 € A. O

Suppose [ : R — R. What's wrong with the following proof that for
every finite, nonempty set A C R there is a real number ¢ such that
Vx € A(f(x) =c)?

Proof. We will prove by induction that for every n = 1, if A is any subset
of R with n elements then dc € RVx € A(f(x) = ¢).

Base case: n = 1. Suppose A C R and A has one element. Then A =
{a}, for some a € R. Let ¢ = f(a). Then clearly Vx € A(f(x) = c¢).

Induction step: Suppose n > 1, and for all A C R, if A has n ele-
ments then Jc € RVx € A(f(x) = ¢). Now suppose A C R and A has
n+ 1 elements. Let a; be any element of A, and let A; = A\ {a]}.
Then A has n elements, so by inductive hypothesis there is some ¢; € R
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such that Yx € A;(f(x) = ¢;). If we can show that f(a;) = ¢, then we
will be done, since then it will follow that Vx € A(f(x) = ¢}).

Let a; be an element of A that is different from a;, and let A; = A\
{a>}. Applying the inductive hypothesis again, we can choose a number
¢s € RsuchthatVx € A,(f(x) = ¢3). Notice thatsince a; # a3, a; € A,,
s0 f(ay) = 2. Now let a3 be an element of A that is different from both
ay and a;. Then a; € A; and az € A;, so f(asz) = ¢; and f(az) = ca.
Therefore ¢1 = ¢2, 50 f(ai1) = c1, as required. O

6.3. Recursion

In Chapter 3 we learned to prove statements of the form ¥n P(n) by letting n
be arbitrary and proving P(n). In this chapter we’ve learned another method
for proving such statements, when n ranges over the natural numbers: Prove
P(0), and then prove that for any natural number n, if P(n) is true then so is
P(n + 1). Once we have proven these statements, we can run through all the
natural numbers in order and see that P must be true of all of them.

We can use a similar idea to introduce a new way of defining functions. In
Chapter 5, we usually defined a function f by saying how to compute f(n) for
any n in the domain of f. If the domain of [ is the set of all natural numbers, an
alternative method to define f would be to say what f(0) is and then, for any
natural number n, say how we could compute f(n + 1) if we already knew the
value of f(n). Such a definition would enable us to run through all the natural
numbers in order computing the image of each one under f.

For example, we might use the following equations to define a function f
with domain N:

fO)y=1,
foreveryn e N, f(n4+ 1y=(n+1)- f(n).

The second equation tells us how to compute f(n + 1), but only if we already
know the value of f(#n). Thus, although we cannot use this equation to tell us
directly what the image of any number is under f, we can use it to run through
all the natural numbers in order and compute their images.

We start with f(0), which we know from the first equation is equal to 1.
Plugging inn = 0 inthe second equation, we seethat f(1)=1- f(0)=1-1=
1, so we've determined the value of f(1). But now that we know that f(1) =1,
we can use the second equation again to compute f(2). Plugging inn = | inthe
second equation, we find that f(2) =2 f(1) = 2- 1 = 2. Similarly, setting
n = 2 in the second equation we get f(3) =3 f(2) =3 -2 = 6. Continuing
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in this way we can compute f(n) for any natural number n. Thus, the two
equations really do give us a rule that determines a unique value f(n) for each
natural number n, so they define a function f with domain I. Definitions of
this kind are called recursive definitions.

Sometimes we'll work backwards when using a recursive definition to eval-
uate a function. For example, suppose we want to compute f(6), where f is
the function just defined. According to the second equation in the definition
of f, f(6) =6- f(5), so to complete the calculation we must compute f(5).
Using the second equation again, we find that f(5) =5 - f(4), so we must
compute f(4). Continuing in this way leads to the following calculation:

f(6)=6-£(5)
=65 f(4)
=6-5-4- f(3)
=6-5-4-3- f(2)
=6-5-4-3-2. f(1)
=6-5-4-3-2-1- f(0)
=6-5-4-3.2-1-1
= 720.

Perhaps now you recognize the function f. For any positive integer n,
finy=n-(n—=1)-(n—2)---1,and f(0) = 1. This number is called n facto-
rial, denoted n!. For example, 6! = 720. Often, if a function can be written as
a formula with an ellipsis (.. .) in it, then the use of the ellipsis can be avoided
by giving a recursive definition for the function. Such a definition is usually
easier to work with.

Many familiar functions are most easily defined using recursive definitions.
For example, for any number a, we could define @" with the following recursive
definition:

a’ = 1;

foreveryn € N, a""!' = a" - a.

Using this definition, we would compute a* like this:

a =a -a
2
=a +a-da
:al-a‘a‘a
= (’-a‘a‘a-a
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For another example, consider the sum 2° + 2! 422 4 ... 42" which ap-
peared in the first example of this chapter. The ellipsis suggests that we might
be able to use a recursive definition. If we let f(n) = 2% + 2! 422 4 ... 42",
then notice that for every ne N, fln+1)=2"421 4224 ... 427 4
2"+l = f(n) + 2", Thus, we could define f recursively as follows:

F0)=2"=1;
foreveryn € N, f(n+1)= f(n) 42",

As a check that this definition is right, let’s try it out in the case n = 3:

f@=r+2
= f(l)+ 2> +2°
= f0)+2'+27+2°
22[J+2!+22+23
= 15.

Sums such as the one in the last example come up often enough that there
is a special notation for them. If ag, ay, ..., a, is a list of numbers, then the
sum of these numbers is written Y -, a;. This is read “the sum as i goes from
0 to n of @;.”” For example, we can use this notation to write the sum in the last
example:

sz:2i]+21+22+“‘+2ﬂ.

i=0

More generally, if n = m, then

Zai =dap +(1,”+1 +am+2 + ot ay.
For example,
[}
Y iP=3 4445746
i=3
=94 16 4+ 25 + 36 = 86.

The letted i in these formulas is a bound variable and therefore can be replaced
by a new variable without changing the meaning of the formula.

Now let’s try giving a recursive definition for this notation. We let m be an
arbitrary integer, and then proceed by recursion on n. Just as the base case for
an induction proof need not be n = 0, the base for a recursive definition can
also be a number other than 0. In this case we are only interested inn = m, so
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we take n = m as the base for our recursion:

m

E aj = dpy;

i=m
n+1

n
foreveryn = m, E a; = 2 aj + apq1.

i=m i=m

Trying this definition out on the previous example, we get
6 5
Sroyree
i3 i=

iZ+524+6%

|
L

- 0=

]
L

2

i+ 4%+ 5 + 67

i

3

[

+47 452 +6°,

just as we wanted.

Clearly induction and recursion are closely related, so it shouldn’t be sur-
prising that if a concept has been defined by recursion, then proofs involving
this concept are often best done by induction. For example, in Section 6.1 we
saw some proofs by induction that involved summations and exponentiation,
and now we have seen that summations and exponentiation can be defined re-
cursively. Because the factorial function can also be defined recursively, proofs
involving factorials also often use induction.

Example 6.3.1. Prove that foreveryn = 4, n! = 2",

Seratch work

Because the problem involves factorial and exponentiation, both of which are
defined recursively, induction seems like a good method to use. The base case
will be n = 4, and it is just a matter of simple arithmetic to check that the
inequality is true in this case. For the induction step, our inductive hypothesis
will be n! > 2", and we must prove that (n + 1)! > 2"*!. Of course, the way
to relate the inductive hypothesis to the goal is to use the recursive definitions
of factorial and exponentiation, which tell us that (n + 1)! =(n 4 1) - n! and
27+1 =27 .2 QOnce these equations are plugged in, the rest is fairly straight-
forward.

Solution

Theorem. For every n = 4, n! = 2",
Proof. By mathematical induction.
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Base case: Whenn =4 we have n! = 24 = 16 = 2".
Induction step: Let n = 4 be arbitrary and suppose that n! > 2". Then

m+)!'=m+1) -n!
>n+1)-2" (by inductive hypothesis)
- 2_211:2n+1. 0

Example 6.3.2. Prove that for every real number a and all natural numbers
m and " am+n —a™ . q".

Scratch work

There are three universal quantifiers here, and we’ll treat the first two differ-
ently from the third. We let ¢ and m be arbitrary and then use mathematical
induction to prove that Vi € N(a™*" = a™ - a"). The key algebraic fact in the
induction step will be the formula ¢"*! = @” - a from the recursive definition
of exponentiation.

Solution

Theorem. For every real number a and all natural numbers m and n, a™™ =

ail]’ . a”
Proof. Let a be an arbitrary real number and m an arbitrary natural number.
We now proceed by induction on n.

Base case: Whenn = 0, wehavea” ™" = g™t =g" =g™ . 1 = a™ - a" =
ai” . a”

Induction step. Suppose a™ ™ = a™ - a". Then

am—!—(n—H} — lg(m'+1'a}+l
=a""" . a (by definition of exponentiation)
=a™-a"-a (by inductive hypothesis)
=a"-a""'  (by definition of exponentiation). 0
Example 6.3.3. A sequence of numbers ag, ay, as, . .. is defined recursively
as follows:
ag = 0;

foreveryn € N,a,., = 2a, + 1.

Find a formula for a,, and prove that your formula is correct.
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Scratch work

It's probably a good idea to start out by computing the first few terms in the
sequence. We already know ay = 0, so plugging in n = 0 in the second equation
wegeta; = 2ag+ 1 =0+ 1 = 1. Thus, plugginginn = 1, wegeta, = 2a, +
l =2 4 1 = 3. Continuing in this way we get the following table of values.

n a,
0 0
1 1
2 3
3 7
4 15
5 31
6 63

Aha! The numbers we're getting are one less than the powers of 2. It looks
like the formula is probably a, = 2" — 1, but we can’t be sure this is right unless
we prove it. Fortunately, it is fairly easy to prove the formula by induction.

Solution

Theorem. If the sequence ay. ay, as, . . . is defined by the recursive definition
given earlier, then for every natural number n, a, = 2" — 1.
Proof. By induction.

Base case: ap = 0 = 2" — 1.

Induction step: Suppose a, = 2" — 1. Then

tpy] = 2a, + 1 (definition of a,+)
=22" -1 +1 (inductive hypothesis)
— 2n+1 _ 2 + 1 = 2!!+| - 1. D

We end this section with a rather unusual example. We'll prove that for every
real number x > —1 and every natural numbern, (1 + x)" > nx. A natural way
to proceed would be to let x = —1 be arbitrary, and then use induction on h.
In the induction step we assume that (1 + x)" > nx, and then try to prove that
(1 4+ x)"*!' = (n 4 1)x. Because we've assumed x = —1, we have | + x = 0,
so we can multiply both sides of the inductive hypothesis (1 + x)" = nx by
I + x to get

42" =1 4+x)(1+x)"
= (1 4+ x)nx

=nx + nx2.
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But the conclusion we need for the induction step is (1 + x)**! > (n + 1)x,
and it’s not clear how to get this conclusion from the inequality we’ve
derived.

Our solution to this difficulty will be to replace our original problem with a
problem that appears to be harder but is actually easier. Instead of proving the
inequality (1 + x)" = nx directly, we’ll prove (1 4+ x)" = 1 4+ nx, and then
observe that since 1 + nx > nx, it follows immediately that (1 + x)" = nx.
You might think that if we had difficulty proving (1 + x)" = nx, we’ll surely
have more difficulty proving the stronger statement (1 + x)" > 1 + nx. But it
turns out that the approach we tried unsuccessfully on the original problem
works perfectly on the new problem!

Theorem 6.3.4. Foreveryx = —1andeverynatural numbern, (1 4+ x)" = nx.
Proof. Let x = —1 be arbitrary. We will prove by induction that for ev-
ery natural number n, (1 + x)" = 1 4+ nx, from which it clearly follows that
(14+x)" = nx.

Base case: If n=0, then (14x)"=(14x)"=1=140=1+ nx.
Induction step: Suppose (1 4+ x)" = 1 4+ nx. Then

(142" = (140 + )"
(1 + x)1 + nx) (by inductive hypothesis)

14 x +nx +nx?
I+ (n+ Dx (since nx? = 0). O

[

I

Exercises

*1. Find a formula for 3", ﬁ and prove that your formula is correct.

2. Prove that foralln = 1,

i 1 B n?+3n
ii+Di+2) 4+ Dn+2)

i=l1
3. Prove that foralln > 2,

u 1 _3n2—n—2

Z(f—l)(f+l)_ dn(n+1)

i=2

4. Prove that forall n € I,

i+ 1 (n + 1)(2n ;- H@n +3)

i=()
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5. Suppose r is a real number and r # 1. Prove that for all n € N,

n ) n+l _ 1

(Note that this exercise generalizes Example 6.1.1 and exercise 7 of
Section 6.1.)
*6. Prove that foralln = 1,

1 1
ILEEH)
7. (a) Suppose ag, ay,ds, ..., a, and by, by, by, ..., b, are two sequences

of real numbers. Prove that

n

Stn =3+ 3 oh
i=0 i=0 i=0
(b) Suppose c is a real number and ay, ay, .. ., a, is a sequence of real
numbers. Prove that

n n

C~Za,- :Z(c‘a,-).

i=0 i=0

*8. The harmonic numbers are the numbers H, for n > 1 defined by the
formula

n l
H, :;?.

(a) Prove that forall natural numbers nand m, ifn = m then H,, — H,, =
"= (Hint: Let m be an arbitrary natural number and then proceed
by induction on n, with n = m as the base case of the induction.)

(b) Prove that foralln = 0, Ha = 1+ n/2.

(c) (For those who have studied calculus) Show that lim,,_. ., H,, = 00,
s0 ) - + diverges.

9. Let H, be defined as in exercise 8. Prove that for all n > 2,

n—1

Z H, =nH, — n.
k=1

10. Find a formula for 7, (i - (i1)) and prove that your formula is correct.
11. Find a formula for 7/, (r+1)1 and prove that your formula is correct.
*12. (a) Prove thatforalln € N, 2" > n.
(b) Prove that for all n = 9, n! = (2M)2.
(¢) Prove that for all n € N, n! < 20,




13.

14.

*15.

l6.

17.

*18.
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Suppose k is a positive integer.

(a) Prove that for all n € N, (k* + n)! = k.

(b) Prove that for all n = 2k%, n! > k". (Hint; Use induction, and for the
base case use part (a). Note that in the language of exercise 16 of
Section 5.1, this shows that if f(n) = k" and g(n) = n!, then f €
0(g).)

Prove that for every real number a and all natural numbers m and

n, (@) =a™.

A sequence ayp, di, dz, . . . is defined recursively as follows:
ap = 0;

forevery n € N, a,.; = 2a, + n.

Prove that foralln € N, q, =2" —n — 1.
A sequence ay, dy, da, .. .15 defined recursively as follows:
apg=2;
forevery n € N, ay+1 = (an)’.
Find a formula for a, and prove that your formula is correct.
A sequence ay, da, ds, .. .is defined recursively as follows:
a=1;
a”

a, +1°

Find a formula for @, and prove that your formula is correct.
R

Forn = k = 0, the quantity (k) is defined as follows:

!
(:) :k!-(:j—k)!'

(a) Prove thatforalln e N, (j) = (1) = 1.

(b) Prove that foralln = k = 0, ("I') = (1’) + (kfl].

(c) If A is a set and k € I, let %7, (A) be the set of all subsets of A
that have k elements. Prove that if A has n elements and n > k = (),
then #’4(A) has () elements. (Hint: Prove by induction that Yn €
MV A[ A is a set with n elements — Yk(n = k = 0 — 7, (A) has (1’)

elements)]. Imitate exercises 10 and 11 of Section 6.2. In fact, this

foreveryn = 1,a,, =

exercise generalizes exercise 11 of Section 6.2. This exercise shows
that (:) is the number of ways of choosing k elements out of a set of
size n, so it is sometimes called n choose k.)

(d) Prove that for all real numbers x and y and every natural number #,

mn

x4+ = Z (: )x""‘y".

k=0
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(This is called the binomial theorem, so the numbers ( k) are some-

times called binomial coefficients.)
Note: Parts (a) and (b) show that we can compute the numbers (;’) con-
veniently by using a triangular array as in Figure 1. This array is called
Pascal’s triangle, after the French mathematician Blaise Pascal (1623—
1662). Each row of the triangle corresponds to a particular value of n, and
it lists the values of (:) for all & from 0 to n. Part (a) shows that the first
and last number in every row is 1. Part (b) shows that every other number
is the sum of the two numbers above it. For example, the lines in Figure
1 illustrate that (;) = 3 is the sum of (f) = 2 and (g) =1.

n=0: |
n=1 1 1
n=2 1 2 1

\/
n=23: 1 3 3 1
n=4

1 4 6 41

Figure 1: Pascal’s triangle

19. For the meaning of the notation used in this exercise, see exercise 18.
(a) Prove that foralln € N, 3{_ (}) = 2". (Hint: You can do this by
induction using parts (a) and (b) of exercise 18, or you can combine
part (c) of exercise 18 with exercise 10 of Section 6.2, or you can
plug something in for x and y in part (d) of exercise 18.)
(b) Prove that foralln = 1,3} (- l)*’(:) =0.
*20. A sequence ay, dy, da, . .. 18 defined recursively as follows:
ap = 0;
1
foreveryn € N, a,y; = (a,)” + 1
Prove thatforalln = 1,0 < a, < 1.
21. Explain the paradox in the proof of Theorem 6.3.4, in which we made the
proof easier by changing the goal to a statement that looked like it would
be harder to prove.

6.4. Strong Induction

In the induction step of a proof by mathematical induction, we prove that a
natural number has some property based on the assumption that the previous
number has the same property. In some cases this assumption isn’t strong
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enough to make the proof work, and we need to assume that a// smaller natural
numbers have the property. This is the idea behind a variant of mathematical
induction sometimes called strong induction:

To prove a goal of the form Vn € NP(n):

Prove that Vr[(Vk < nP(k)) — P(n)], where both n and k range over the
natural numbers in this statement. Of course, the most direct way to prove this
is to let n be an arbitrary natural number, assume that Yk < nP(k), and then
prove P(n).

Note that no base case is necessary in a proof by strong induction. All that is
needed is a modified form of the induction step in which we prove that if every
natural number smaller than n has the property P, then n has the property P.
In a proof by strong induction, we refer to the assumption that every natural
number smaller than n has the property P as the inductive hypothesis.

To see why strong induction works, it might help if we first review briefly why
ordinary induction works. Recall that a proof by ordinary induction enables us
to go through all the natural numbers in order and see that each of them has
some property P. The base case gets the process started, and the induction step
shows that the process can always be continued from one number to the next.
But note that in this process, by the time we check that some natural number
n has the property P, we’ve already checked that all smaller numbers have the
property. In other words, we already know that Yk < n» P(k). The idea behind
strong induction is that we should be allowed to use this information in our
proof of P(n).

Let’s work out the details of this idea more carefully. Suppose that we've
followed the strong induction proof strategy and proven the statement
Vu[(Yk < nP(k)) — P(n)]. Then, plugging in 0 for n, we can conclude that
(Vk < OP(k)) — P(0). But because there are no natural numbers smaller than
0, the statement Yk < 0P (k) is vacuously true. Therefore, by modus ponens,
P(0) is true. (This explains why the base case doesn’t have to be checked sepa-
rately in a proof by strong induction; the base case P(0) actually follows from
the modified form of the induction step used in strong induction.) Similarly,
plugging in 1 for n we can conclude that (Vk < 1 P(k)) — P(1). The only
natural number smaller than 1 is 0, and we’ve just shown that P(0) is true, so
the statement Yk < 1 P(k) is true. Therefore, by modus ponens, P(1) is also
true. Now plug in 2 for n to get the statement (¥k < 2P(k)) — P(2). Since
P(0) and P(1) are both true, the statement Yk < 2P(k) is true, and therefore
by modus ponens, P(2) is true. Continuing in this way we can show that P(n)
is true for every natural number n, as required. For an alternative justification
of the method of strong induction, see exercise 1.
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Asour first example of the method of strong induction, we prove an important
fact of number theory known as the division algorithm.

Theorem 6.4.1. (Division algorithm) For all natural numbers n and m, if
m = 0, then there are natural numbers q and r such that n = mq + r and
r < m. (The numbers ¢ and r are called the guotient and remainder when n is
divided by m.)

Scratch work

We let m be an arbitrary positive integer and then use strong induction
to prove that Yadg3dr(n = mqg + r A r < m). According to the description
of strong induction, this means that we should let n be an arbitrary natu-
ral number, assume that Yk < ndg3r(k = mg +r A r < m), and prove that
dgIrin =mg +r Ar < m).

Our goal is an existential statement, so we should try to come up with values
of g and r with the required properties. If n < m then this is easy because we can
justletg = Oandr = n.Butifn = m, then this won’t work, since we must have
r < m, so we must do something different in this case. As usual in induction
proofs, we look to the inductive hypothesis. The inductive hypothesis starts
with Yk < n, so to apply it we should plug in some natural number smaller
than n for k, but what should we plug in? The reference to division in the
statement of the theorem provides a hint. If we think of division as repeated
subtraction, then dividing n by m involves subtracting m from n repeatedly.
The first step in this process would be to compute # — m, which is a natural
number smaller than n. Perhaps we should plug in n — m for k. It’s not entirely
clear where this will lead, but it’s worth a try. In fact, as you’ll see in the proof,
once we take this step the desired conclusion follows almost immediately.

Notice that we are using the fact that a quotient and remainder exist for some
natural number smaller than » to prove that they exist for n, but this smaller
numberis notn — 1,it's n — m. This is why we’re using strong induction rather
than ordinary induction for this proof.

Proof. We let m be an arbitrary positive integer and then proceed by strong
induction on n.

Suppose n is a natural number, and for every k < n there are natural numbers
g and r such that k = mqg + r and r < m.

Casel.n < m.Letg =0andr = n. Thenclearly n = mqg + r andr < m.

Case 2. n = m. Let k = n — m < n and note that since n > m, k is a nat-
ural number. By inductive hypothesis we can choose ¢’ and r’ such that
k=mg'+r and ¥ <m. Thenn —m=mqg"+r',son=mqg' +r' +m=
m(g' 4+ 1)+ r'. Thus, if we let ¢ =¢"+ 1 and r = r’, then we have n =
mqg 4+ r and r < m, as required. O
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The division algorithm can also be extended to negative integers n, and it
can be shown that for every m and n the quotient and remainder ¢ and r are
unique. For more on this, see exercise 13.

Our next example is another important theorem of number theory. We used
this theorem in our proof in the introduction that there are infinitely many
primes. For more on this theorem, see exercise 18.

Theorem 6.4.2. Every integer n = 1 is either prime or a product of primes.
Scratch work

We write the goal in the form ¥n € N[n = 1 — (n is prime Vv n is a product
of primes)] and then use strong induction. Thus, our inductive hypothesis is
Vk < nlk = 1 — (k is prime Vv k is a product of primes)|, and we must prove
that n = 1 — (n is prime Vv n is a product of primes). Of course, we start by
assuming n > 1, and according to our strategies for proving disjunctions, a
good way to complete the proof would be to assume that n is not prime and
prove that it must be a product of primes. Because the assumption that n is not
prime means dadb(n = ab A a < n A b < n), we immediately use existential
instantiation to introduce the new variables a and b into the proof. Applying
the inductive hypothesis to a and b now leads to the desired conclusion.

Proof. We use strong induction. Suppose n > 1, and suppose that for every
integer k, if | < k < n then k is either prime or a product of primes. Of course,
if n is prime then there is nothing to prove, so suppose n is not prime. Then we
can choose natural numbers a and b such thatn = ab,a < n,and b < n. Note
that since @ < n = ab, itfollows that » = 1, and similarly we must havea = 1.
Thus, by inductive hypothesis, each of a and b is either prime or a product of
primes. But then since n = ab, n is a product of primes. O

The method of recursion studied in the last section also has a strong form.
As an example of this, consider the following definition of a sequence of num-
bers, called the Fibonacci numbers after the Italian mathematician Fibonacci
(ca 1174-1250) who first defined them.

Fy=0;

F=1

foreveryn = 2, F, = F, 2+ F,_,.
For example, plugging in n = 2 in the last equation we find that > = Fy +
Fl :0+] = lSlmllﬂI’ly,F3:F| +Fg= l+ | :2,F4:F3+F3 =1 +
2 = 3, and so on. Note that, starting with F,, each Fibonacci number is com-

puted using, not just the previous number in the sequence, but also the one
before that. This is the sense in which the recursion is strong. It shouldn’t be
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surprising, therefore, that proofs involving the Fibonacci numbers often require
strong induction rather than ordinary induction.
To illustrate this we’ll prove the following remarkable formula for the

Fibonacci numbers:
( |+\/§)" _ ( l—\fs")"
2 2

NG

It is hard at first to believe that this formula is right. After all, the Fibonacci
numbers are integers, and it is not at all clear that this formula will give an integer
value. And what do the Fibonacci numbers have to do with v/5? Nevertheless,
a proof by strong induction shows that the formula is correct. (To see how this
formula could be derived, see exercise 8.)

Theorem 6.4.3. If F,, is the n'™ Fibonacci number, then
(|+2,f§)" _ (l—zﬁ)"
NG

Fnz

Seratch work

Because Fj and F) are defined separately from F, for n > 2, we check the
formula for these cases separately. For n = 2, the definition of F,, suggests that
we should use the assumption that the formula is correct for F,_, and F,_;
to prove that it is correct for F,. Because we need to know that the formula
works for twe previous cases, we must use strong induction rather than ordinary
induction. The rest of the proof is straightforward, although the algebra gets a
little messy.

Proof. We use strong induction. Let # be an arbitrary natural number, and
suppose that for all k < n,

Case 1.n = 0. Then

() - () _ () - ()

V5 V5
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Case 2.n = 1. Then

—
+
I3
5
~—
|
—_
|
I3
S
~—=
—_—
+
(=]

2
—
|
—_
|

(%]
5
—

Case 3. n = 2. Then applying the inductive hypothesis to n — 2 and n — 1,

we get
Fn = -FH—Z + Fn—l

() () () ()

- NG ! NG

L Ny

() [ () ]
NG

Now note that

2
1+4/5 142545 6425 3445 1+4/5
2 - 4 =3 T~ 5 =M

and similarly

=1
5 +

(55) -5t

Substituting into the formula for F,, we get

() () - () ()

Fn:

Notice that in the proof of Theorem 6.4.3 we had to treat the cases n = 0
and n = 1 separately. The role that these cases play in the proof is similar to
the role played by the base case in a proof by ordinary mathematical induction.

Although we have said that proofs by strong induction don’t need base cases,
it is not uncommon to find some initial cases treated separately in such proofs.
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An important property of the natural numbers that is related to mathematical
induction is the fact that every nonempty set of natural numbers has a smallest
element. This is sometimes called the well-ordering principle, and we can prove
it using strong induction.

Theorem 6.4.4. (Well-ordering principle) Every nonempty set of natural num-
bers has a smallest element.

Scratch work

Our goal is V§ C N(§ £ & — § has a smallest element). After letting §
be an arbitrary subset of M, we’ll prove the contrapositive of the conditional
statement. In other words, we will assume that S has no smallest element and
prove that § = &. The way induction comes into it is that, for a set § C N, to
say that § = & is the same as saying that Vi € N(n ¢ §). We'll prove this last
statement by strong induction.

Proof. Suppose § € N, and § does not have a smallest element. We will prove
that Vn € N(n ¢ §), so § = &. Thus, if § # & then § must have a smallest
element.

To prove that Vi € M(n ¢ 5), we use strong induction. Suppose that n € N
and Yk < n(k ¢ §). Clearly if n € § then n would be the smallest element of
S, and this would contradict the assumption that S has no smallest element.
Therefore n ¢ S. 0

Sometimes, proofs that could be done by induction are written instead as
applications of the well-ordering principle. As an example of the use of the
well-ordering principle in a proof, we present a proof that /2 is irrational. See
exercise 2 for an alternative approach to this proof using strong induction. See
exercise 16 for another application of the well-ordering principle.

Theorem 6.4.5. /2 is irrational.
Scratch work

Because irrational means “not rational,” our goal is a negative statement, so
proof by contradiction is a logical method to use. Thus, we assume +/2 is
rational and try to reach a contradiction. The assumption that /2 is rational
means that there exist integers p and ¢ such that p/g = /2, and since /2 is
positive, we may as well restrict our attention to positive p and q. Because
this is an existential statement, our next step should probably be to choose
positive integers p and ¢ such that p/g = v/2. As you will see in the proof,
simple algebraic manipulations with the equation p /g = +/2 do not lead to any
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obvious contradictions, but they do lead to the conclusion that p and ¢ must both
be even. Thus, in the fraction p/g we can cancel a 2 from both numerator and
denominator, getting a new fraction with smaller numerator and denominator
that is equal to /2.

How can we derive a contradiction from this conclusion? The key idea is to
note that our reasoning would apply to any fraction that is equal to /2. Thus, in
any such fraction we can cancel a factor of 2 from numerator and denominator,
and therefore there can be no smallest possible numerator or denominator for
such a fraction. But this would violate the well-ordering principle! Thus, we
have our contradiction.

This idea is spelled out more carefully in the following proof, in which we’ve
applied the well-ordering principle to the set of all possible denominators of
fractions equal to +/2. We have chosen to put this application of the well-
ordering principle at the beginning of the proof, because this seems to give
the shortest and most direct proof. Readers of the proof might be puzzled at
first about why we’re using the well-ordering principle (unless they’ve read
this scratch work!), but after the algebraic manipulations with the equation
plg = V2 are completed, the contradiction appears almost immediately. This
is a good example of how a clever, carefully planned step early in a proof can
lead to a wonderful punch line at the end of the proof.

Proof. Suppose that /2 is rational. This means that 3¢ € Z*3p € Z*(p/q =
V2).sothesetS = {g € Z* |3p € ZT(p/q = +/2)} is nonempty. By the well—
ordering principle we can let ¢ be the smallest element of S. Since g € §,
we can choose some p € Z* such that p/g = /2. Therefore plgt =2,
so p? =2¢* and therefore p? is even. We now apply the theorem from
Example 3.4.2, which says that for any integer x, x is even iff x” is even. Since
p? is even, p must be even, so we can choose some p € Z* such that p = 2p.
Therefore p?> = 4p?, and substituting this into the equation p? = 2¢? we get
4p* = 292, s02p> = g° and therefore ¢ is even. Appealing to Example 3.4.2
again, this means ¢ must be even, so we can choose some § € ZT such that
¢ = 2§. But then v2 = p/g = 2p)/(2§) = p/G. so G € S. Clearly § < g,
so this contradicts the fact that g was chosen to be the smallest element of S.
Therefore /2 is irrational. (|

Exercises

*1. This exercise gives an alternative way to justify the method of
strong induction. All variables in this exercise range over N. Suppose
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3.

*6.

Mathematical Induction

P(n) is a statement about a natural number n, and suppose that

Vul[(Vk < nP(k)) — P(n)]. Let Q(n) be the statement Yk < nP (k).

(a) Prove VrQ(n) < VrnP(n) without using induction.

(b) Prove YrnQ(n) by ordinary induction. Thus, by part (a), VaP(n) is
true.

. This exercise gives an alternative way of writing the proof that V2 is

irrational. Use strong induction to prove that Vg € N[g = 0 — —3p €
N(p/q = v2).

(a) Prove that \/6 is irrational.

(b) Prove that /2 4 +/3 is irrational.

. The Martian monetary system uses colored beads instead of coins. A blue

bead is worth 3 Martian credits, and ared bead 1s worth 7 Martian credits.
Thus, three blue beads are worth 9 credits, and a blue and red bead together
are worth 10 credits, but no combination of blue and red beads is worth
11 credits. Prove that for all n = 12, there 1s some combination of blue
and red beads that is worth n credits.

. Suppose that x is a real number, x = 0, and x + 1/x is an integer. Prove

that for all n = 1, x" + 1/x" is an integer.

Let F, be the n'" Fibonacci number. All variables in this exercise range
over N

(a) Prove thatforalln, )" F; = F,40 — L.

(b) Prove that forall n, "% ((F;)* = F, Fyy.

(c) Prove that forall n, Y7 Fais1 = Fanya.

(d) Find a formula for E F5; and prove that your formula is correct.

i=0

. Let F, be the n™ Fibonacci number. All variables in this exercise range
over N.
(a) Prove thatforallm = land alln, F,,., = F,,_1 F, + FouFouys.
(b) Prove that for all m =1 and all n =1, F,., = Fuo1Fe —
FoaF.
(c) Prove that for all n, (F,)* + (Fy+1)* = Fayey and (F0)? — (F,)* =
‘FEI'H-Z‘

(d) Prove that for all m and n, if m | n then F,, | F,,.
(e) See exercise 18 of Section 6.3 for the meaning of the notation used
in this exercise. Prove that foralln = 1,

= (7 )+ () (7 )+ (00)

_"i(zn-;-Z)

=0
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and

() () () ()

_E(Zﬁ—z—]).

=0

*8. A sequence of numbers ay, a,, as,...is called a generalized Fibonacci
sequence, or a Gibonacci sequence for short, if for every n = 2,

a, = a,_» + a,—. Thus, a Gibonacci sequence satisfies the same recur-
rence relation as the Fibonacci numbers, but it may start out differently.

(a) Suppose ¢ is a real number and Vu € N(a, = ¢"). Prove that ay,
ay, ds,...is a Gibonacci sequence iff either ¢ = (1 + \/5),?2 or

c=(1-+5)/2.

(b) Suppose s and ¢ are real numbers, and for all n € N,

a, = § (l +2\/§)" +t (l _2~/5)FI.

Prove that ay, a,, a», . . . is a Gibonacci sequence.
(c) Suppose ay, a;, az, . . . s a Gibonacci sequence. Prove that there are
real numbers s and ¢ such that for all n € M,

1+v5) -5\
a,,:s( > )+r( > )

(Hint: First show that there are real numbers s and ¢ such that the
formula above is correct for ay and a;. Then show that with this

choice of s and 1, the formula is correct for all n.)
9. The Lucas numbers (named for the French mathematician Edouard Lucas

(1842-1891)) are the numbers Ly, L, L3, .. .defined as follows:
L[] = 2;
Ly=1,
foreveryn =2, L, = L,_» + L,_;.

Find a formula for L, and prove that your formula is correct. (Hint: Apply

exercise 8.)

*10. A sequence ay, 4, @2, - . . is defined recursively as follows:

ag = —1;
a =0,

forevery n > 2, a, = S5a,_; — 6a,_s.
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1L

12.

*14.

15.

Mathematical Induction

Find a formula for a, and prove that your formula is correct. (Hint:
Imitate exercise 8.)

A sequence dy, a,, d, . . . is defined recursively as follows:
ap = 0;
a; = 1;
a; = 1;
1 3 1
foreveryn = 3,a, = Ean_; + Ea,,_z + Ea"_l'
Prove that for all n € N, a, = F,, the n' Fibonacci number.
For each positive integer n, let A, ={1,2,...,n}, and let P, =

{X € #?(A,)| X does not contain two consecutive integers}. For exam-
ple, P3 = {<, {1}. {2}, {3}, {1, 3}}; P3 does not contain the sets {1, 2},
{2, 3},and {1, 2, 3} because each contains at least one pair of consecutive
integers. Prove that for every n, the number of elements in P, is F,,,», the
(n + 2)" Fibonacci number. (For example, the number of elements in P; is
5 = F5. Hint: Which elements of P, contain n? Which don’t? The answers
to both questions are related to the elements of P,,, for certain m < n.)

. Suppose n and m are integers and m > (.

(a) Prove that there are integers ¢ and r such that n = mg + r and
0 < r < m. (Hint: If n = 0, then this follows from Theorem 6.4.1.
If n < 0, then start by applying Theorem 6.4.1 to —n and m.)

(b) Prove that the integers g and r in part (a) are unique. In other
words, show that if ¢’ and ' are integers such that n = mg’ + " and
O=<r'<m,theng =¢ andr = r'.

(c) Prove that, as claimed in Section 3.4, every integer is either even or
odd but not both.

Suppose k is a positive integer. Prove that there is some positive integer

a such that for all n > a, 2" > »n*. (In the language of exercise 16 of

Section 5.1, this means that if f(n) = n* and g(n) = 2" then f € O(g).

Hint: By the division algorithm, for any natural number n there are nat-

ural numbers ¢ and r such that n = kg + r and 0 < r < k. Therefore

2" > 2K = (29)*. To choose a, figure out how large ¢ has to be to guar-

antee that 29 > n. You may find Example 6.1.3 useful.)

(a) Suppose k is a positive integer, ay, as, ..., a; are real numbers, and
fi» fa,.. ., fr. and g are all functions from Z* to R. Also, suppose
that fy, f,..., fi are all elements of O(g). (See exercise 16 of
Section 5.1 for the meaning of the notation used here.) Define f :
ZT — R by the formula f(n) = aj fi(n) + a> f>(n) + - -+ + ay fi(n).
Prove that f € O(g). (Hint: Use induction on k, and exercise 16(c) of
Section 5.1.)




17.

*18.

19.

*20.
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(b) Let g : Zt — R be defined by the formula g(n) = 2". Suppose ay,
day, @, ..., a; are real numbers, and define f : ZT — R by the
formula f(n) = ag + ain + a:n® + - -« + ayn®. (Such a function is
called apolynomial.) Prove that f € O(g). (Hint: Use exercise 14 and
part (a).)

. Suppose a and b are positive integers. Let S={x e Z"|Is € ZIt €

Z(x = as + bt)}. Note that § # & since, for example,a =a -1+ b -0,
and therefore a € §. Thus, by the well-ordering principle, we can let d be
the smallest element of S.

(a) Prove that d |« and d | b. (Hint: Use the division algorithm to choose
integers ¢ and rsuch thata = dg +r and 0 < r < d. Now show that
r=0).

(b) Prove that if ¢ is any integer such that ¢ |a and ¢ | b, then ¢ |d.
(Note that it follows that ¢ < d, so d is the greatest common divisor
of @ and b).

(a) Suppose a, b, and p are positive integers and p is prime. Prove that if
p | ab then either p |a or p|b. (Hint: Let d be the greatest common
divisor of @ and p. By exercise 16, d = as + pt for some integers s
and 1. Since p is prime, there are not many possibilities for the value
of d. What are they?)

(b) Suppose a;, as, ..., a, is a sequence of positive integers and p is
a prime number. Prove that if p|(a,az...a,), then p|a; for some
i,1 <i < n. (Hint: Use part (a) and induction.)

Suppose pi, p2, ..., pj and g1, g2, ..., g; are two sequences of prime

numbers and ppz ... pj = q142 .. . qx. Suppose also that both sequences

are nondecreasing: thatis, py = pp = ... < pjandgq; < q2 = ... = q4.

Prove that the two sequences must be the same. In other words, j = k and

pi=gq; foralli, 1 <i < j. (Hint: Apply exercise 17 and use induction

on either j or k. Note that this shows that the factorization of an integer

n > 1 into primes in Theorem 6.4.2 is unique.)

A sequence ay, ay, d»,. . . 1s defined recursively as follows:

ap = 1;

n
foreveryn € N a,., =1+ Za,-.

i=0

Find a formula for a,, and prove that your formula is correct.
A sequence dg, a1, da, . . . is defined recursively as follows:

ay=1;
1
foreveryn e M a,., =1+ —.
aﬂ




300 Mathematical Induction

Find a formula for a, and prove that your formula is correct. (Hint: These
numbers are related to the Fibonacci numbers.)

6.5. Closures Again

In Chapter 4 we promised to give an alternative treatment of transitive clo-
sures of relations using mathematical induction. In this section we fulfill this
promise.

Recall that if R is a relation on a set A, then the transitive closure of R is the
smallest relation S on A such that R € § and S is transitive. In this section we’ll
find this relation S by starting with R and then adding only those ordered pairs
that must be added if we want to end up with a transitive relation. We begin
with a sketchy description of how we’1l do this, motivated by the examples in
Section 4.5. Then we’ll use recursion and induction to make this sketchy idea
precise and prove that it works.

The examples in Section 4.5 suggested that if ay, ay....,qa, is a list of
elements of A such that (ay, a;) € R, (a),a2) € R, ..., (a,_,a,) € R, then
to create a transitive relation S extending R we must have (ag, a,) € S. Let’s
rephrase this idea in terms of composition of relations. Because (agy, a;) € R
and (a,, a;) € R, by the definition of composition, (ay, @;) € R o R. Similarly,
from(ay, a;) € R o Rand (a», a3) € R itfollows that (ag, a3) € Ro (R o R). It
is natural to call this lastrelation R*. Note that by Theorem 4.2.5, composition of
relations is associative, so there is no ambiguity if we leave the parentheses out
of the definition of R* and write R* = R o R o R. Thus, we have (ag, a3) € R?,
and because (a3, a4) € R, itfollows that(gy, a,) € RoR* = RoRoRoR =
R*. Continuing in this way we’ll eventually reach the conclusion that (ay, a,,) €
R"=Ro R oo R wheretherearen R's in the last composition. We’ll show
that the ordered pairs that must be added to R to create a transitive relation are
the elements of R" for every positive integer n.

The use of an ellipsis in the last paragraph suggests that it might be best to
define R" by recursion. Here’s the precise definition:

R'=R;
foreveryn = 1, R"™' = R" o R.

Before using this definition to construct the transitive closure of R, we prove a
lemma about it. Of course, the proof will be done by induction!

Lemma 6.5.1. For all positive integers m and n, R"™" = R™ o R".
Proof. We let m be an arbitrary positive integer and then proceed by induction
onn.
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Base case: When n = 1 we have

R™' = R" o R (by definition of R™")
= R™ o R' (by definition of R').

Induction step: Let n be an arbitrary positive integer and suppose R"1" =
R™ o R". Then

Rm+(n+|] _ R(m+n]+i

= R"M o R (by definition of R 1)
=(R™oR")o R (by inductive hypothesis)

= R"o(R" o R) (by associativity of composition)

= R" o R"! (by definition of R"*1). O

We can now say precisely how to form the transitive closure of R.

Theorem 6.5.2. The transitive closure of R is U, cz+ R".

Proof Let § = U,cz+ R". Clearly R = R' C §. To see that § is transitive,
suppose (x, y) € S and (y, z) € S. Then by the definition of §, we can choose
positive integers n and m such that (x, y) € R" and (y, z) € R™. But then by
Lemma 6.5.1, (x,z) € R" o R" = R"™", 50 (x,2) € Uyez+ R" = 5. Thus S is
transitive.

Finally, suppose R C T C A x A and T is transitive. We must show that
S C T, and clearly by the definition of § it suffices to show that Vn €
ZT(R™ C T). We prove this by induction on n.

We have assumed R € T,sowhenn = 1 wehave R" = R' = R € T. For
the induction step, suppose n is a positive integer and R" € T. Now suppose
(x,y) € R"™!. Then by definition of R"*! we can choose some z € A such
that (x,z) € R and (z, v) € R". By assumption R C T, and by inductive hy-
pothesis R" € T. Therefore, (x, z) € T and (z, ¥) € T, so since T is transitive,
(x,y) € T. Since (x, y) was an arbitrary element of R™!, this shows that
R CT. O

Commentary. Because the proof must refer to the set U,-z+ R" often, it is
convenient to give this set a name right at the beginning of the proof. According
to the definition of transitive closure we must prove three things: R C §, S is
transitive, and forall T,if R € T € A x A and T is transitive, then § C T. Of
course, we prove them one at a time.

The proof of the first of these goals is notspelled out. As usual, if youdon'tsee
why it is true you should work out the details of the proof yourself. The second
goal is to prove that § is transitive, and the proof is based on the definition of
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transitive. We let x, y, and z be arbitrary, assume (x, y) € Sand (y, z) € S, and
prove that (x, z) € S. According to the definition of S, the statement (x, y) € §
means 3n € ZT((x, y) € R"), so we immediately introduce the variable n to
stand for a positive integer such that (x, y) € R". The assumption that(y, z) € §
1s handled similarly. The goal (x, z) € § is also an existential statement, so to
prove it we must find a positive integer k such that (x, z) € R*. We use Lemma
6.5.1 to show that k = m + n works.

Finally, for the third goal we use the natural strategy of letting T be arbitrary,
assumingthat R € T C A x Aand T istransitive, and then proving that § C T.
Once again, if you don’t see why the conclusion § C T follows from Vi €
Z*(R" C T), as claimed in the proof, you should work out the details of the
proof yourself. This last goal is proven by induction, as you might expect based
on the recursive nature of the definition of R". For the induction step, we let n
be an arbitrary positive integer, assume that R" € T, and prove that R"*' € T.
To prove that R**! C T we take an arbitrary element of R”*! and prove that it
must be an element of . Writing out the recursive definition of R"*! gives us
a way to use the inductive hypothesis, which, as usual, is the key to completing
the induction step.

We end this chapter by returning once again to one of the proofs in the intro-
duction. Recall that in our first proof in the introduction we used the formula

@ -1 (142 422+ 207Dy =27,

We discussed this proof again in Section 3.7 and promised to give a more
careful proof of this formula after we had discussed mathematical induction.
We are ready now to give this more careful proof. Of course, we can also state
the formula more precisely now, using summation notation.

Theorem 6.5.3. For all positive integers a and b,

a—1
(2?3_ 1)- szb =2ab —1.

k=0

Proof. We let b be an arbitrary positive integer and then proceed by induction
onag.
Base case: When @ = 1 we have

a—1 0
k=0

k=0
=02"-1-1
=2 _ 1
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Induction step: Suppose a > 1and (22 — 1) - 3¢y 2 = 2% — 1. Then

a a—1
(2:‘3_1)_22“}:(2.’7_])‘(szh+zab)
k=0

k=0

a—1
— (2!7 _ ]) . szb +2b . zab _ zab
k=0
— 2(:!1 —1 + 2b+ab _ zab
— 2(a+|].b — 1. O

Exercises

*1. Suppose f:A — A. A set C C A is said to be closed under f if
¥x € C(f(x) € C). Now suppose B € A. The closure of B under f is
the smallest set C such that B € C C A and C is closed under f, if there
is such a smallest set. In this problem you will give two different proofs
that the closure of B under f exists.

(a) Let F={C|B < CCA and C is closed under f}. Prove that
F # &, and then prove that NF is the closure of B under f.
(b) Define sets B, forn = 1, as follows:

Bl :B;
for everyn = 1, JBn’+1 = f(Bn) = {f(x)Ix € Bn}'

Prove that U, cz+ B, 1s the closure of B under f.

2. Let f: R — R be defined by the formula f(x) = x + 1. What is the
closure of the set {0} under f7 (See exercise 1.)

3. Suppose F is a family of functions from A to A,and B € A. The closure of
B under F is the smallest set C suchthat B C C C Aandforall f € F,C
is closed under f; if there is such a smallest set. Prove that the closure of
B under F exists.

4. Suppose f: A x A — A. If (x, y) € A x A, then the result of applying
f to (x, y) should be written f((x, y)), but it is customary to leave out
one set of parentheses and just write f(x, y). A set C C A is said to be
closed under f if Yx € CVy € C(f(x,y) € C). Now suppose B C A.
The closure of B under f is the smallest set C such that B € C C A and
C is closed under f, if there is such a smallest set. Prove that the closure
of B under f exists.

*5. Let f : Z x Z — Z be defined by the formula f(x,y) = xy. Let P be
the set of all prime numbers. What is the closure of P under f7 (See
exercise 4.)
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Suppose F is a family of functions from A x A to A, and B € A. Com-

bining the ideas in exercises 3 and 4, we say that the closure of B under F

is the smallest set C such that B € € C A and for all f € F, C is closed

under f, if there is such a smallest set.

(a) Prove that the closure of B under JF exists.

(by Let f :Ex K — Rand g : R x B — R be defined by the formulas
fx,y)=x+y and g(x, y) = xy. Prove that the closure of (J U
{\/5} under { f, g} is the set {a + b2 |a € Q, b e} (This set is
called @ with ﬁ adjoined, and is denoted (J( ﬁ).)

(c) With f and g defined as in part (b), what is the closure of Q U {+/2)

under { f, g}?

. Suppose R and § are relations on A and R C S. Prove that for every

positive integer n, R" < §".

Suppose R and § are relations on A and » is a positive integer.

(a) What is the relationship between R" N §" and (R N )" 7 Justify your
conclusions with proofs or counterexamples.

(b) What is the relationship between R" U §" and (R U §)"? Justify your
conclusions with proofs or counterexamples.

. Suppose R is a relation on A and § is the transitive closure of R.

If (a,b) € §, then by Theorem 6.5.2 there is some positive integer

n such that (a, b) € R", and therefore by the well-ordering principle

(Theorem 6.4.4), there must be a smallest such n. We define the distance

from a to b to be the smallest positive integer n such that (a, b) € R", and

we write d(a, b) to denote this distance.

(a) Supposethat(a, b) € Sand (b, ¢) € § (and therefore (a, ¢) € S, since
S is transitive). Prove that d(a, ¢) < d(a. b) + d(b, ¢).

(b) Suppose (a,c) € § and 0 < m < d(a, ¢). Prove that there is some
b € Asuchthatd(a,b)y =mand d(b, c) =d(a.c) — m.

Suppose R is arelation on A and S is the transitive closure of R. For each

positive integer n, let J, = {0, 1,2, ... . n).lfa € Aand b € A, we will

say that a function f : J, — A is an R-path from a to b of length n if

f©) =a, f(n)=b,andforalli <n, (f(i), f(i +1)) € R.

(a) Prove that foralln € Z%, R" = {(a,b) € A x A | there is an R-path
from a to b of length n}.

(b) Prove that § = {(a, b) € A x A | there is an R-path from a to b}.

. Suppose R is a relation on A and S is the transitive closure of R. If f

1s an R-path, then we say that the path is simple if f is one-to-one. (See

exercise 10 for the definition of R-path.)

(a) Provethatforalln € Zt, R" \ iy € {(a.b) € A x A | thereis a sim-
ple R-path from a to b of length at most n}.
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(b) Prove that §\ iy = {(a,b) € A x A | there is a simple R-path from
ato b}

Suppose R is a relation on A. In this problem we find a relationship

between distance, as defined in exercise 9, and the lengths of R-paths,

which were discussed in exercises 10 and 11.

(a) Suppose d(a, b) = n and a # b. Prove that there is a simple R-path
from a to b of length n.

(b) Suppose d(a, a) = n. Prove that there is an R-path f from a to a of
length n such that Vi < nVj < n(f(i) = f(j) — i = j). (In other
words, f is simple, except for the fact that f(0) = f(n) = a.)

. Suppose R is a relation on A, S is the transitive closure of R, and A has

m elements. Prove that
S=RUR*U...UR"=U{R" |1 <n <m).

(Hint: Use exercise 12. What is the maximum possible length of a simple
R-path?)

There is another proof in the introduction that could be written more rig-
orously using induction. Recall that in the proof of Theorem 4 in the intro-
duction we used the fact that if n is a positive integer, x = (n + 1)! + 2,
and0 < i <n — 1, then (i 4+ 2) | (x + #). Use induction to prove this. (We
used this fact to show that x + i is not prime.)
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Infinite Sets

7.1. Equinumerous Sets

In this chapter, we’ll discuss a method of comparing the sizes of infinite sets.
Surprisingly, we’ll find that, in a sense, infinity comes in different sizes! By
now, you should be fairly proficient at reading and writing proofs, so we’ll
give less discussion of the strategy behind proofs and leave more proofs as
exercises.

For finite sets, we determine the size of a set by counting. What does it mean
to count the number of elements in a set? When you count the elements in a set
A, you point to the elements of A in turn while saying the words one, two, and
so forth. We could think of this process as defining a function f from the set
{1,2,...,n} to A, for some natural number n. Foreachi € {1, 2, ..., n}, we
let /(i) be the element of A you're pointing to when you say “i.” Because every
element of A gets pointed to exactly once, the function f is one-to-one and onto.
Thus, counting the elements of A is simply a method of establishing a one-
to-one correspondence between the sets {1, 2, ..., rn} and A, for some natural
number #. One-to-one correspondence is the key idea behind measuring the
sizes of sets, and sets of the form {1, 2, ..., n} are the standards against which
we measure the sizes of finite sets. This suggests the following definition.

Definition 7.1.1. Suppose A and B are sets. We’ll say that A is equinumerous
with B if there is a function f : A — B that is one-to-one and onto. We’ll write
A ~ B to indicate that A is equinumerous with B. For each natural number #,
let I, = {i € Z7 | i < n}. Aset A is called finite if there is a natural number n
such that I, ~ A. Otherwise, A is infinite.

You are asked in exercise 6 to show that if A is finite, then there is exactly one
n such that I, ~ A. Thus, it makes sense to define the number of elements of a
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finite set A to be the unique n such that 7, ~ A. This number is also sometimes
called the cardinality of A, and it is denoted | A|. Note that according to this
definition, & is finite and || = 0.

The definition of equinumerous can also be applied to infinite sets, with
results that are sometimes surprising. For example, you might think that Z*
could not be equinumerous with Z because Z includes all the positive inte-
gers, plus all the negative integers and zero as well. But consider the function
f : Z" — 7 defined as follows:

n i
‘ > if n 1s even
fn) =
L:—fi if n is odd
5 i s .

This notation means that for every positive integer n, if n is even then
f(n)y=n/2andif n is odd then f(n) = (1 — n)/2. The table of values for f in
Figure 1 reveals a pattern that suggests that f might be one-to-one and onto.

n fn)

~N W RN =
=]

Figure 1

To check this more carefully, first note that for every positive integer n, if
n is even then f(n)=n/2 = 0, and if n is odd then f(n) = (1 —n)/2 <0.
Now suppose n; and n; are positive integers and f(n;) = f(na). If f(n) =
f(n2) = 0 then n; and n, must both be even, so the equation f(n;) = f(n2)
means n1,/2 = n»/2, and therefore n; = n,. Similarly, if f(n,) = f(n:) <0
then n, and n, are both odd, so we get (1 — n,)/2 = (1 — n3)/2, and once again
it follows that n; = n,. Thus, f is one-to-one.

To see that f is onto, let m be an arbitrary integer. If m > 0 then let n = 2m,
an even positive integer, and if m < 0 then let n = 1 — 2m, an odd positive
integer. In both cases it is easy to verify that f(n) = m. Thus, f is onto as well
as one-to-one, so according to Definition 7.1.1, Z* ~ Z.
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Note that the function f had to be chosen very carefully. There are many
other functions from Z* to Z that are one-to-one but not onto, onto but not
one-to-one, or neither one-to-one nor onto, but this does not contradict our
claim that ZT ~ Z. According to Definition 7.1.1, to show that Zt ~ Z we
need only show that there is at least one function from Z* to Z that is both
one-to-one and onto, and of course to prove this it suffices to give an example
of such a function.

Perhaps an even more surprising example is that ZT x ZT ~ Z7. To show
this we must come up with a one-to-one, onto function f : Z* x Z* — Z7.
An element of the domain of this function would be an ordered pair (i, j),
where 7 and j are positive integers. The result of applying f to this pair should
be written f((i, j)), but it is customary to leave out one pair of parentheses
and just write f(i, j). Exercise 12 asks you to show that the following formula
defines a function from Z* x Z* to Z™ that is one-to-one and onto:

ri === D
Once again, the table of values in Figure 2 may help you understand this
example.

J
fa,pp 1 2 3 5
1 2 7 11
213 5 812
i 3] 6 913
4110 14
5|15
Figure 2

Theorem 7.1.2. Suppose A ~ B and C ~ D. Then:

l.AxC~B xD.
2. If A and C are disjoint and B and D are disjoint, then AUC ~ BU D.

Proof. Since A ~ B and C ~ D, we can choose functions f : A — B and
g : C — D that are one-to-one and onto.

1. Define h: A x C — B x D by the formula
ha, c) = (f(a), g(c)).

To see that i is one-to-one, suppose h(a;, ¢;) = h(az, ¢z). This means
that (f(ay), g(e1)) = (f(az), g(c2)), so f(ar) = f(az) and g(c1) = glca).
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Since f and g are both one-to-one, it follows that a; = a; and ¢; = ¢, so
(a1, c1) = (a2, c2).
To see that /1 is onto, suppose (b, d) € B x D. Thensincef and g are both
onto, we can choose a € A and ¢ € C such that f(a) = b and g(c) = d.
Therefore h{a, ¢) = ( f(a), g(c)) = (b, d), as required. Thus / is one-to-one
and onto, so A x C ~ B x D,
2. Suppose A and C are disjoint and B and D are disjoint. You are asked in
exercise 13 to show that f U g is a one-to-one, onto function from A U C
toBUD,soAUC ~BUD. ]

It is not hard to show that ~ is reflexive, symmetric, and transitive, so it is
an equivalence relation. In other words, we have the following theorem:

Theorem 7.1.3. For any sets A, B, and C:

1. A~ A,
2.If A~ B then B ~ A.
3.If A~Band B~ C then A ~ C.

Proof.

1. The identity function i 4 is a one-to-one, onto function from A to A.

2. Suppose A ~ B. Then we can choose some function f : A — B that is
one-to-one and onto. By Theorem 5.3.4, f~! is a function from B to A.
But now note that (f~")~! = f, which is a function from A to B, so by
Theorem 5.3.4. again, f~! is also one-to-one and onto. Therefore B ~ A.

3. Suppose A ~ Band B ~ C.Then we can choose one-to-one, onto functions
f:A— Bandg: B — C.ByTheorem 5.2.5, go f : A — C is one-to-
one and onto, s0 A ~ C. 0

Theorems 7.1.2 and 7.1.3 are often helpful in showing that sets are equinu-
merous. For example, we showed earlier that Z* x ZT ~ Z* and ZT ~ Z,
so by part 3 of Theorem 7.1.3 it follows that Z¥ x Z* ~ Z. Part 2 tells us
that we need not distinguish between the statements “A is equinumerous with
B” and “B is equinumerous with A”, because they are equivalent. For ex-
ample, we already know that ZT x ZT ~ Z¥, so we can also write ZT ~
ZF x Z7F. By part 1 of Theorem 7.1.2, ZT x ZF ~ Z x Z, so we also have
Zt ~Zx L.

We have now found three sets, Z, Z+ x Z*, and Z x Z, that are equinumer-
ous with Z*. Such sets are especially important and have a special name.
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Definition 7.1.4. A set A is called denumerable if Z7 ~ A. It is called
countable if it is either finite or denumerable. Otherwise, it is uncountable.

You might think of the countable sets as those sets whose elements can be
counted by pointing to all of them, one by one, while naming positive integers
in order. If the counting process ends at some point, then the set is finite; and
if it never ends, then the set is denumerable. The following theorem gives two
more ways of thinking about countable sets.

Theorem 7.1.5. Suppose A is a set. The following statements are equivalent:

1. A is countable.
2. Either A = @ or there is a function f : Zt — A that is onio.
3. There is a function  : A — Z7 that is one-to-one.

Proof. 1 — 2. Suppose A is countable. If A is denumerable, then there is a
function f : Z* — A that is one-to-one and onto, so clearly statement 2 is
true. Now suppose A is finite. If A = & then there is nothing more to prove, so
suppose A # . Then we can choose some element ag € A. Let g: I, - A
be a one-to-one, onto function, where n is the number of elements of A. Now
define f : ZT — A as follows:

fiy= {0 He=n

o ifi =n.

It is easy to check now that f is onto, as required.

2 — 3. Suppose that either A = & or there is an onto function from Z* to
A. We consider these two possibilities in turn. If A = &, then the empty set
is a one-to-one function from A to Z*. Now suppose g : ZT — A, and g is
onto. Then foreach a € A, the set {n € Z* | g(n) = a} is not empty, so by the
well-ordering principle it must have a smallest element. Thus, we can define a
function f : A — Z* by the formula

f(a) = the smallestn € Z* such that g(n) = a.

Note that for each a € A, g(f(a)) = a, so go f =i,. But then by Theo-
rem 5.3.3, it follows that f is one-to-one, as required.

3 — 1. Suppose g : A — ZT and g is one-to-one. Let B = Ran(g) C Z™.
If we think of g as a function from A to B, then it is one-to-one and onto, so
A ~ B. Thus, it suffices to show that B is countable, since by Theorem 7.1.3
it follows from this that A is also countable.

Suppose B is not finite. We must show that B is denumerable, which we can
do by defining a one-to-one, onto function f : Z* — B. The idea behind the
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definition is simply to let f(n) be the n** element of B, foreach n € Z*. (Recall
that B C Z™, so we can use the ordering of the positive integers to make sense
of the idea of the n'" element of B.) For a more careful definition of f and the
proof that f is one-to-one and onto, see exercise 14. 0

If A is countable and A £ &, then by Theorem 7.1.5 there is a function
f : Z* — Athatis onto. If, for every n € Z*, we leta, = f(n), then the fact
that f is onto means that every element of A appears at least once in the list
ay, dz, az, . . .. In other words, A = {ay, aa, as, .. .}. Countability of a set A is
often used in this way to enable us to write the elements of A in a list, indexed
by the positive integers. In fact, you might want to think of countability for
nonempty sets as meaning listability. Of course, if A is denumerable, then the
function f can be taken to be one-to-one, which means that each element of A
will appear only once in the listay, @2, a3, . . .. For an example of an application
of countability in which the elements of a countable set are written in a list,
see exercise 17.

Theorem 7.1.5 is also sometimes useful for proving that a set is denumerable,
as the proof of our next theorem shows.

Theorem 7.1.6. () is denumerable.
Proof. Let f : Z x Z7 — () be defined as follows:

fp.gq)=rp/q.

Clearly f is onto, since by definition all rational numbers can be written as
fractions, but note that f is not one-to-one. For example, f(1,2) = f(2,4) =
1/2.Since Z™ ~ Z, by Theorem 7.1.2 we have ZT x Z+ ~ Z x ZT, and since
we already know that Z* x Z* is denumerable, it follows that Z x Z* is
also denumerable. Thus, we can choose a one-to-one, onto function g : ZT —
Z x Z*. By Theorem 5.2.5, f o g : Z* — () is onto, so by Theorem 7.1.5,
@ is countable. Clearly () is not finite, so it must be denumerable. 0

Although our focus in this chapter is on infinite sets, the methods in this
section can be used to prove theorems that are useful for computing the cardi-
nalities of finite sets. We end this section with one example of such a theorem,
and give several other examples in the exercises (see exercises 18-28).

Theorem 7.1.7. Suppose A and B are disjoint finite sets. Then A \J B is finite,
and [AU B|=|A| + |B|.




312 Infinite Sets

Proof. Let n =|A| and m =|B|. Then A ~ I, and B ~ [,. Notice that
if xel, then 1 <x <m, and therefore n+1<x+4+n <n+m, so x +
ne Lyu\l,. Thus we can define a function f :1, — L., \ I, by the
formula f(x) = x + n. It is easy to check that f is one-to-one and onto, so
Ly ~ Lo \ I,. Since B ~ I, it follows that B ~ I, \ I,,. Applying part
2 of Theorem 7.1.2, we can conclude that AU B ~ I, U (L \ 1) = Lisp.
Therefore A U B is finite,and |[AU B|= n + m =|A| + |B|. O

Exercises

*1. Show that the following sets are denumerable.

(a) M.
(b) The set of all even integers.

2. Show that the following sets are denumerable:
(@ Q@ xQ.
(b) @(ﬁ). (See exercise 6(b) of Section 6.5 for the meaning of the

notation used here.)

3. In this problem we’ll use the following notation for intervals of real num-

bers. If @ and b are real numbers and ¢ < b, then

la,b]={xeR|a<x < b}
(a,b)y={x eR|a <x < b}
(a,b]={xeR|a<x<b)
l[a,.b)={x eR|a <x < b}.

(a) Show that [0, 1] ~ [0, 2].
(b) Show that (—m /2, m/2) ~ R. (Hint: Use a trigonometric function.)
(¢} Show that (0, 1) ~ .
(d) Show that (0, 1] ~ (0, 1).
*4. Justify your answer to each question with either a proof or a counter-
example.
(a) Suppose A~ B and A x C ~ B x D. Must it be the case that
C ~D?
(b) Suppose A~ B, A and C are disjoint, B and D are disjoint, and
AU C ~ BU D. Must it be the case that C ~ D?
5. Prove that if A ~ B then #*(A) ~ Z*(B).
*6. (a) Prove that for all natural numbers n and m, if I, ~ I, then n = m.
(Hint: Use induction on n.)
(b) Prove that if A is finite, then there is exactly one natural number n
such that I, ~ A.




*8.

L1

*12.

13.

*14.

15.
16.

Equinumerous Sets 313

. Suppose A and B are sets and A is finite. Prove that A ~ B iff B is also

finite and |A| = | B].

(a) Provethatifn € Nand A C I, then A is finite and |A| < n. Further-
more, if A £ [, then |A| < n.

(b) Prove thatif A isfiniteand B C A, then B isalsofinite,and |B| < |A]|.
Furthermore, if B # A, then |B| < |A].

. Suppose B € A, B # A, and B ~ A. Prove that A is infinite.
10.

Prove that if n e N, f: 1, — B, and f is onto, then B is finite and

|B| <n.

Suppose A and B are finite setsand f : A — B.

(a) Prove thatif |A| < |B| then f is not onto.

(b) Prove thatif |A| > |B| then f is not one-to-one. (This is sometimes
called the Pigeonhole Principle, because it means that if n pigeons
are put into m pigeonholes, where n > m, then some pigeonhole must
contain more than one pigeon.)

(c) Prove that if |A| = |B| then f is one-to-one iff f is onto.

Show that the function f : Z* x ZT — Z* defined by the formula

(i+j=2(+j—1)

fa, = 5 +i

is one-to-one and onto.

Complete the proof of part 2 of Theorem 7.1.2 by showing thatif f : A —
B and g : C — D are one-to-one, onto functions, A and C are disjoint,
and B and D are disjoint, then f U g is a one-to-one, onto function from
AUCto BUD.

In this exercise you will complete the proof of 3 — 1 of Theorem 7.1.5.
Suppose B C Z* and B is infinite. We now define a function f : ZT — B
by recursion as follows:

Foralln € Z+,
f(n) = the smallest element of B\ {f(m)|m € ZT, m < n}.

Of course, the definition is recursive because the specification of f(n)

refers to f(m) for all m < n.

(a) Supposen € Z*. The definition of f(n)only makes sense if we can be
sure that B\{f(m) | m € ZT,m < n} # &, in which case the well-
ordering principle guarantees that it has a smallest element. Prove
that B\{f(m) | m € ZT, m < n} # <. (Hint: See exercise 10.)

(b) Prove that for alln € Z*, f(n) > n.

(c) Prove that f is one-to-one and onto.

Prove that if B € A and A is countable, then B is countable.

Prove that if B C A, A is infinite, and B is finite, then A \ B is infinite.
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Suppose A is denumerable and R is a partial order on A. Prove that R
can be extended to a total order on A. In other words, prove that there
is a total order T on A such that R C T. Note that we proved a similar
theorem for finite A in Example 6.2.2. (Hint: Since A is denumerable,
we can write the elements of A in a list: A = {a;, a,, as, ...}. Now, us-
ing exercise 2 of Section 6.2, recursively define partial orders R, for
neNsothat R=Ry SR SR, C...andVi € I,Vj € Z"((a;. aj) €

Ry v (aj,ai) € Ry). Let T = UpenRy.)

Suppose A is finite and B C A. By exercise 8, B and A \ B are both finite.

Prove that |[A \ B| = |A| — |B|. (In particular, if a € A then |A \ {a}| =

|A| — 1. We used this fact in several proofs in Chapter 6; for example, we

used it in Examples 6.2.1 and 6.2.2.)

Suppose n is a positive integer and for each i € I,, A; is a finite set. Also,

assume thatVi € I,VYj € I,(i # j — A; N A; = ). Prove that U, A;

is finite and | Uzej, A;| = D), [A;].

(a) Prove that if A and B are finite sets, then A x B is finite and |A x
B| = |A] - |B|. (Hint: Use induction on |B|. In other words, prove
the following statement by induction: ¥n € NYAVB(if A and B are
finite and |B| = n, then A x B is finite and |A x B| = |A| - n). You
may find Theorem 4.1.3 useful.)

(b) A meal at Alice’s Restaurant consists of an entree and a dessert. The
entree can be either steak, chicken, pork chops, shrimp, or spaghetti,
and dessert can be either ice cream, cake, or pie. How many different
meals can you order at Alice’s Restaurant?

For any sets A and B, the set of all functions from A to B is de-

noted 4 B.

(a) Prove thatif A ~ B and C ~ D then*C ~ #D.

(b) Prove that if A, B, and C are sets and A N B = &, then *Y2C ~
AC x BC.

(c) Prove that if A and B are finite sets, then 4B is finite and |*B| =
[B|'Al. (Hint: Use induction on |A[.)

(d) A professor has 20 students in his class, and he has to assign a grade
of either A, B, C, D, or F to each student. In how many ways can the
grades be assigned?

Suppose |A] = n,andlet F = {f | f is a one-to-one, onto function from

I, to A}.

(a) Prove that F is finite, and |F| = n!. (Hint: Use induction on n.)

(b) LetL = {R | Risatotal orderon A}. Prove that F ~ L, and therefore
IL| = n!.

(c) Five people are to sit in a row of five seats. In how many ways can
they be seated?
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Suppose A is a finite set and R is an equivalence relation on A.
Suppose also that there is some positive integer n such that ¥Yx €
A(|[x]g| = n). Prove that A/R is finite and |A/R| = |A|/n. (Hint: Use
exercise 19.)
(a) Suppose that A and B are finite sets. Prove that A U B is finite, and
[AUB| = |[A|+|B|—-|ANB]|
(b) Suppose that A, B, and C are finite sets. Prove that AU BUC is
finite, and [AU BUC| = |A| + |B| +|C| = |[ANB| - |ANC| —
IBNC|+|ANBNC].
In this problem you will prove the Inclusion—Exclusion Principle, which
generalizes the formulas in exercise 24. Suppose A, A, ..., A, are finite
sets. Let P = % (I,)\ {J}, and foreach § € P let Ay = N;c5A;. Prove
that Ujey, A; is finite and |Ujey, A;| = 3¢ p(— 1S Ag]. (The notation
on the right side of this equation denotes the result of running through
all sets § € P, computing the number (— )!¥1*1| A | for each S, and then
adding these numbers. Hint: Use induction on n.)
Prove that if A and B are finite sets and |A| = |B|, then |A A B| is even.
Each customer in a certain bank has a PIN number, which is a sequence
of four digits. Show that if the bank has more than 10,000 customers,
then some two customers must have the same PIN number. (Hint: See
exercise 11.)
Alice opened her grade report and exclaimed, “I can’t believe Professor
Jones flunked me in Probability.” *“You were in that course?” said Bob.
“That’s funny, I was inittoo, and [ don’t remember ever seeing you there.”
“Well,” admitted Alice sheepishly, “I guess I did skip class a lot.” “Yeah,
me too” said Bob. Prove that either Alice or Bob missed at least half of
the classes.

7.2. Countable and Uncountable Sets

Often when we perform some set-theoretic operation with countable sets, the
result is again a countable set.

Theorem 7.2.1. Suppose A and B are countable sets. Then:

1. A x B is countable.
2. AU B is countable.

Proof. Since A and B are countable, by Theorem 7.1.5 we can choose one-to-
one functions f : A — ZT and g : B — ZT.
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1. Defineh : A x B — Z7 x Z* by the formula

hia,b) = (f(a). g(b)).

As in the proof of part 1 Theorem 7.1.2, it is not hard to show that h is one-
to-one. Since Z* x ZT is denumerable, we can let j : ZT x ZT — Z7 be
a one-to-one, onto function. Then by Theorem 5.2.5, joh: A x B — Z*
is one-to-one, so by Theorem 7.1.5, A x B is countable.

2. Define h : AU B — Z as follows:

hy= | T@ Mred
—glx) 1fxégA.

We claim now that / is one-to-one. To see why, suppose that /i(x;) = h(x2),
for some x; and x; in A U B. If A{x;) = h(xz) = 0, then according to the
definition of , we must have x; € A, x> € A,and f(x;) = h(x;) = h(x;) =
Jf(x2). But then since f is one-to-one, x; = x,. Similarly, if h(x)) = h(x,) =
0, then we must have g(x;) = —h(x;) = —h(x;) = g(x»), and then since g
is one-to-one, x; = x,. Thus, A is one-to-one.

Since Z is denumerable, we can let j : Z — Z* be a one-to-one, onto
function. As in part 1, we then find that j o & : AU B — Z7 is one-to-one,
so A U B is countable.

O

As our next theorem shows, part 2 of Theorem 7.2.1 can be extended to
unions of more than two sets.

Theorem 7.2.2. The union of countably many countable sets is countable. In
other words, if F is a family of sets, F is countable, and also every element of
F is countable, then UF is countable.

Proof. We will assume first that & ¢ F. At the end of the proof we will discuss
the case & € F.

If F = I, then of course UF = &, which is countable. Now suppose F #
&. Then, as described after the proof of Theorem 7.1.5, since F is count-
able and nonempty we can write the elements of F in a list, indexed by the
positive integers. In other words, we can say that F = {A|, Ay, A3, ...}. Sim-
ilarly, every element of F is countable and nonempty (since & ¢ F), so for
each positive integer i the elements of A; can be written in a list. Thus we
can write

Ay =aj,dl.a}, ..}
Ay ={a]. 6. 45, .. )




Countable and Uncountable Sets 317

and, in general,
i i i
A ={a), a3, a5, ...}

Note that, by the definition of union, UF = {aj— lieZ*, jeZt).
Now define a function f : ZT x Z* — UJF by the formula

fa. = ﬂj— .
Clearly f is onto. Since ZT x Z™ is denumerable, we canlet g : ZT — ZT x
Z* be a one-to-one, onto function. Then f o g : ZT7 — UF is onto, so UF is
countable.
Finally, suppose & € F. Let 7' = F\ {&}. Then F' is also a countable

family of countable sets and & ¢ F', so by the earlier reasoning, UF" is
countable. But clearly UF = UF’, so UF is countable too. O

Another operation that preserves countability is the formation of finite se-
quences. Suppose A is a set and ay, aa, - . ., a, 1s a list of elements of A. We
might specify the terms in this list with a function f : I, — A, where for each
i, f(i) = a; = the i term in the list. Such a function is called a finite sequence
of elements of A.

Definition 7.2.3. Suppose A is a set. A function f : I, — A, where n is a
natural number, is called a finite sequence of elements of A, and » is called the
length of the sequence.

Theorem 7.2.4. Suppose A is a countable set. Then the set of all finite se-
quences of elements of A is also countable.

Proof. Foreachn € N, let §, be the set of all sequences of length n of elements
of A. We first show that for every n € N, §, is countable. We proceed by
induction on n.

In the base case we assume n = (). Note that [y = &J, so a sequence of length
0is a function f : & — A, and the only such function is &. Thus, Sy = {&},
which is clearly a countable set.

For the induction step, suppose # is a natural number and S, is countable. We
must show that §,,,, is countable. Consider the function F : §, x A — §,4,
defined as follows:

F(f,a)=fUfn+1,a)}.

In other words, for any sequence f € S, and any elementa € A, F(f, a)is the
sequence you get by starting with f, which is a sequence a length », and then
tacking on a as term number n + 1. You are asked in exercise 2 to verify that F
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is one-to-one and onto. Thus, S, x A ~ §,.;. But §, and A are both countable,
so by Theorem 7.2.1 §, x A is countable, and therefore S, is countable.
This completes the inductive proof that for every n € N, §, is countable.
Finally, note that the set of all finite sequences of elements of A is U, .y S,,, and
this is countable by Theorem 7.2.2. O

As an example of the use of Theorem 7.2.4, you should be able to show
that the set of all grammatical sentences of English is a denumerable set. (See
exercise 10.)

By now you may be wondering if perhaps all sets are countable! Is there any
set-theoretic operation that can be used to produce uncountable sets? We'll see
in our next theorem that the answer is yes, the power set operation. This fact was
discovered by the German mathematician Georg Cantor (1845-1918) by means
of afamous and ingenious proof. In fact, it was Cantor who first conceived of the
idea of comparing the sizes of infinite sets. Important mathematical theorems
are often named af'ter their discoverers, so we have identified Theorem 7.2.5 as
Cantor’s theorem. Cantor’s proof is somewhat harder than the previous proofs
in this chapter, so we’ll discuss the strategy behind the proof before presenting
the proof itself.

Theorem 7.2.5. (Cantor’s theorem) =7 (Z) is uncountable.
Scratch work

The proof is based on statement 2 of Theorem 7.1.5. We’ll show that there
is no function f :Z* — Z?(Z7") that is onto. Clearly & (Z") # &, so by
Theorem 7.1.5 this shows that #? (Z*) is not countable.

Our strategy will be to let f : ZT — % (Z™) be an arbitrary function and
prove that f is not onto. Reexpressing this negative goal as a positive statement,
we must show that AD[D € (ZT) A¥n € ZT(D # f(n))]. This suggests
that we should try to find a particular set D for which we can prove both
D € #(Z")andVn € Z+(D # f(n)). This is the most difficult step in figuring
out the proof. There is a set I that makes the proof work, but it will take some
cleverness to come up with it.

We want to make sure that D € #*(Z™), or in other words D C Z™, so we
know that we need only consider positive integers when deciding what the
elements of D should be. But this still leaves us infinitely many decisions to
make: For each positive integer n, we must decide whether or not we want n
to be an element of D. We also need to make sure that Yn € ZT(D # f(n)).
This imposes infinitely many restrictions on our choice of D: For each positive
integer n, we must make sure that D # f(n). Why not make each of our
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infinitely many decisions in such a way that it guarantees that the corresponding
restriction is satisfied? In other words, for each positive integer n, we’ll make
our decision about whether or not n is an element of D in such a way that it
will guarantee that D £ f(n). This isn’t hard to do. We can let n be an element
of Dif n ¢ f(n), and leave n out of D if n € f(n). This will guarantee that
D # f(n), because one of these sets will contain n as an element and the other
won't. This suggests that we shouldlet D = {n € Z* |n & f(n)).

Figure 1 may help you understand the definition of the set D. For each
m € ZF, f(m) is a subset of Z*, which can be specified by saying, for each
positive integer n, whether or not n € f(m). The answers to these questions
can be arranged in a table as shown in Figure 1. Each row of the table gives the
answers needed to specify the set f(m) for a particular value of m. The set D
can also be specified with a row of yesses and noes, as shown at the bottom of
Figure 1. For each n € Z* we’'ve decided to determine whether or not n € D
by asking whether or not n € f(n), and the answers to these questions are the
ones surrounded by boxes in Figure 1. Because n € D iffn ¢ f(n), the row of
yesses and noes that specifies D can be found by reading the boxed answers
along the diagonal of Figure 1, and reversing all the answers. This is guaranteed
to be different from every row of the table in Figure 1, because foreachn € Z+
it differs from row # in the n'" position.

n
Isne f(m)?| 1 2 3 4 5
l1{[yes] no no yes yes

ves [yés] no no yes

no no yes no

yes yes no [yés] no

no yes yes no

T S SO CE 1

Isne D?| no no yes no yes

Figure 1

If you found this reasoning difficult to follow, don’t worry about it. Remem-
ber, the reasoning used in choosing the set D won’t be part of the proof anyway!
After you finish reading the proof, you can go back and try reading the last two
paragraphs again.

It should be clear that the set D we have chosen is a subset of Z*, so
D € #(Z™). Our other goal is to prove that Vn € Z7(D % f(n)), so we letn
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be an arbitrary positive integer and prove D # f(n). Now recall that we chose
D carefully so that we would be able to prove D # f(n), and the reasoning
behind this choice hinged on whether or not n € f(n). Perhaps the easiest way
to write the proof is to consider the two casesn € f(n)andn ¢ f(n)separately.
In each case, applying the definition of D easily leads to the conclusion that

D # f(n).

Proof. Suppose [ : Z* — % (Z*). We will show that f cannot be onto by
findingaset D € #*(Z")suchthat D ¢ Ran(f).LetD = {n € Z" |n ¢ f(n)).
Clearly D € Z*, so D € #7(Z™). Now let n be an arbitrary positive integer.
We consider two cases.

Case 1. n € f(n). Since D={n €Z% | n ¢ f(n)}, we can conclude that
n ¢ D.Butthensince n € f(n)and n ¢ D, it follows that D = f(n).

Case 2. n ¢ f(n). Then by the definition of D, n € D. Since n € D and
n¢ f(n), D # f(n).

Since these cases are exhaustive, this shows that Yn € ZT(D #£ f(n)), so
D ¢ Ran(f). Since f was arbitrary, this shows that there is no onto function
f:Zt — 2 (Z7). Clearly & (ZT) # &, so by Theorem 7.1.5, 2°(Z*) is
uncountable. O

The method used in the proof of Theorem 7.2.5 is called diagonaliza-
tion because of the diagonal arrangement of the boxed answers in Figure 1.
Diagonalization is a powerful technique that can be used to prove many the-
orems, including our next theorem. However, rather than doing another di-
agonalization argument, we’ll simply apply Theorem 7.2.5 to prove the next
theorem.

Theorem 7.2.6. R is uncountable.
Proof. We will define a function f:%(Z%) — R and show that f is
one-to-one. If & were countable, then there would be a one-to-one function
g : R — ZT. But then g o f would be a one-to-one function from %° (Z") to
Z* and therefore & (Z™") would be countable, contradicting Cantor’s theorem.
Thus, this will show that | is uncountable.

To define f, suppose A € #*(Z"). Then f(A) will be a real number between
0 and 1 that we will specify by giving its decimal expansion. For each positive
integer n, the n'" digit of f(A) will be the number d,, defined as follows:

3 ifngA

d, = e
T ifneA.
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In other words, in decimal notation we have f(A) = 0.d1d»d5 . . . . For example,
if E is the set of all positive even integers, then f(E) = 0.37373737....1f P
is the set of all prime numbers, then f(P) = 0.37737373337....

To see that f is one-to-one, suppose that A € #*(Z*1), B € #°(Z1),and A #

B. Then there is some n € Z* such that eithern € Aandn ¢ B,orn € B and
n ¢ A.Butthen f(A)and f(B)cannot be equal, since their decimal expansions
differ in the n' digit. Thus, f is one-to-one.

1.

.

*9.

10.

Exercises

(a) Prove that the set of all irrational numbers, R \ @, is uncountable.
(b) Provethat R\ Q ~ R.

. Let F:§, x A— S, be the function defined in the proof of Theo-

rem 7.2.4. Show that F is one-to-one and onto.

. Let P ={X € #(£") | X is finite}. Prove that P is denumerable.
4.

Prove the following more general form of Cantor’s theorem: For any set
A, A # 2 (A). (Hint: Imitate the proof of Theorem 7.2.5.)

. For the meaning of the notation used in this exercise, see exercise 21 of

Section 7.1.

(a) Prove that for any sets A, B,and C,*(B x C) ~ *B x *C.

(b) Prove that for any sets A, B, and C, ““*#C ~ A2 0).

(c) Prove that for any set A, 7°(A) ~ “{yes, no}. (Note that if A is finite
and |A| = n then, by exercise 21(c) of Section 7.1, it follows that
|2 (A)| = |{yes, no}|!l4l = 2". Of course, you already proved this, by
a different method, in exercise 10 of Section 6.2.)

Tt

(d) Prove that “°(Z") ~ 2P (Z).

. Suppose A is denumerable. Prove that there is a partition P of A such that

P is denumerable and for every X € P, X is denumerable.
Prove that if A and B are disjoint sets, then %’(A U B) ~ #(A) x
P (B).

. Suppose A € R, b € R™, and forevery lista,, as, . .., a, of finitely many

distinct elements of A, a; 4+ a2 + - - - + a, = b. Prove that A is countable.
(Hint: For each positive integer n, let A, = {x € A | x = 1/n}. What can
you say about the number of elements in A,,7)

Suppose F C {f | f : Z* — R} and F is countable. Prove that there is
a function g : ZT — R such that F € O(g). (See exercise 16 of Section
5.1 for the meaning of the notation used here.)

Prove that the set of all grammatical sentences of English is denumer-
able. (Hint: Every grammatical sentence of English is a finite sequence
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of English words. First show that the set of all grammatical sentences is
countable, and then show that it is infinite.)

11. Some real numbers can be defined by a phrase in the English language.
For example, the phrase “the ratio of the circumference of a circle to its

diameter” defines the number 7.

(a) Prove that the set of numbers that can be defined by an English phrase
is denumerable. (Hint: See exercise 10.)

(b) Prove that there are real numbers that cannot be defined by English
phrases.

7.3. The Cantor-Schrioder-Bernstein Theorem

Suppose A and B are sets and f is a one-to-one function from A to B. Then f
shows that A ~ Ran( f) € B, so it is natural to think of B as being at least as
large as A. This suggests the following notation:

Definition 7.3.1. If A and B are sets, then we will say that B dominates A, and
write A = B, if there is a function f : A — B that is one-to-one. If A = B
and A # B, then we say that B strictly dominates A, and write A < B.

For example, in the proof of Theorem 7.2.6 we gave a one-to-one function
[ P(E7) — R, so (Z%) 2 R. Of course, for any sets A and B, if A ~ B
thenalso A = B.Itshouldalsobeclearthatif A C Bthen A 7 B.Forexample,
Z* Z R. In fact, by Theorem 7.2.6 we also know that Z* # R, so we can say
that Zt < R.

You might think that =% would be a partial order, but it turns out that it isn’t.
You're asked in exercise | to check that = is reflexive and transitive, but it
is not antisymmetric. (In the terminology of exercise 24 of Section 4.6, 3 is
a preorder.) For example, Z* ~ (), so Z* = @ and Q = Z*, but of course
Z* 2 Q. But this suggests an interesting question: If A 2 B and B = A, then
A and B might not be equal, but must they be equinumerous?

The answer, it turns out, is yes, as we'll prove in our next theorem. Several
mathematicians’ names are usually associated with this theorem. Cantor proved
a limited version of the theorem, and later Ernst Schroder (1841-1902) and
Felix Bernstein (1878-1956) discovered proofs independently.

Theorem 7.3.2. (Cantor-Schréder—Bernstein theorem) Suppose A and B are
sets. If A 2 Band B 3 A, then A ~ B.
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Scratch work

We start by assuming that A = B and B = A, which means that we can choose
one-to-one functions f : A — B and g : B — A. To prove that A — B we
need to find a one-to-one, onto function h : A — B.

At this point, we don’t know much about A and B. The only tools we have to
help us match up the elements of A and B are the functions f and g. If f is onto,
then of course we can let 4 = f; and if g is onto, then we can let h = g~ .
But it may turn out that neither f nor g is onto. How can we come up with the
required function 4 in this case?

Our solution will be to combine parts of f and g~! to get h. To do this, we’ll
split A into two pieces X and ¥, and B into two pieces W and Z, in such a way
that X and W can be matched up by f, and ¥ and Z can be matched up by g.
More precisely, we'll have W = f(X)={f(x)|x € X} and ¥ = g(Z) =
{g(z) |z € Z}. The situation is illustrated in Figure 1. Once we have this, we’ll
be able to define h by letting h(a) = f(a) for a € X, and h(a) = g~ '(a) for
act.

A B

Figure 1

How can we choose the sets X, ¥, W, and Z? First of all, note that every
element of ¥ must be in Ran(g), so any element of A that is not in Ran(g)
must be in X. In other words, if we let A; = A\ Ran(g), then we must have
Ay € X. But now consider any a € A;. We know that we must have a € X,
and therefore f(a) € W. But now note that since g is one-to-one, g(f(a)) will
be different from g(z) for every z € Z, and therefore g(f(a)) ¢ g(Z) =Y.
Thus, we must have g(f(a)) € X. Since a was an arbitrary element of A, this
shows that if we let A; = g(f(A))) = {g(f(a))|a € A}, then we must have
A; € X. Similarly, if we let Ay = g( f(Aj3)), then it will turn out that we must
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have A3 € X. Continuing in this way we can define sets A, for every positive
integer n, and for every n we must have A, € X. As you will see, letting
X = U,ez+ A, works. In the following proof, we actually do not mention the
sets W and Z.

Proof. Suppose A 2 B and B =% A. Then we can choose one-to-one func-
tions f: A— Bandg: B — A. Let R = Ran(g) € A. Then if we think of
g as a function from B to R, it is one-to-one and onto, so by Theorem 5.3.4,
g ':R— B.

We now define a sequence of sets A, A5, As, ... by recursion as follows:

A, = A\ R;
foreveryn € Z7, A1 = g(f(A) = {g(f(a) |a € A,).

Let X = U,cz+ A, and ¥ = A\ X. Of course, every element of A is in either
X or Y, but not both. Now define & : A — B as follows:
fla) ifaeX

MO =1%1a) ifacy.

Note that for every a € A,if a ¢ Rthena € A, € X. Thus, if ¢ € Y then
a € R, so g7 (a) is defined. Therefore this definition makes sense.

‘We will show that / is one-to-one and onto, which will establish that A ~ B.
To see that /i is one-to-one, suppose ay € A, a» € A, and h(a;) = h(a»).

Case 1. a) € X. Suppose a € Y. Then according to the definition of
h,h(a;) = f(a;) and h(a;) = g~'(a;). Thus, the equation h(a;) = h(as)
means f(a;) =g '(a2), so g(f(a1)) = g(g~'(a2)) = as. Since a, € X =
Upez+ Ay, we can choose some n € Z* such that a; € A,. But then a; =
g(fla)) e g(f(A,) = A,41, so a; € X, contradicting our assumption that
a, €Y.

Thus, a> ¢ ¥, s0a, € X. This means that i(a;) = f(a2), so from the equa-
tion h(a,) = h(a;) we get f(a;) = f(as). Butf is one-to-one, so it follows that
a] = da.

Case 2. a) € Y. Asincase 1, if @» € X, then we can derive a contradiction,
so we must have a, € Y. Thus, the equation /i(a;) = h(a>) means g_'(a;) =
g~ '(ay). Therefore, a; = g(g~'(a1)) = g(g (@) = az.

In both cases we have a; = as, so h is one-to-one.

To see that / is onto, suppose b € B. Then g(b) € A, so either g(b) € X or
glbye?Y.

Case 1. g(b) € X.Choose nsuchthat g(b) € A,. Notethat g(b) € Ran(g) =
Rand A} = A\ R,sog(b) ¢ A;.Thus,n = 1,s0 A, = g(f(A,_)), and there-
fore we can choose some a € A,_; such that g( f(a)) = g(b). But then since
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g is one-to-one, f(a) = b.Sincea € A,_;,a € X, so h(a) = f(a) = b. Thus,
b € Ran(h).

Case 2. g(b) € Y. Then h(g(h)) = g7 (g(b)) = b, so b € Ran(h).

In both cases we have b € Ran(h), so h is onto. O

The Cantor—Schréder—Bernstein theorem is often useful for showing that
sets are equinumerous. For example, in exercise 3 of Section 7.1 you were
asked to show that (0, 1] ~ (0, 1), where

0, 1]={xeR|0<x <1}
and
O, H)={xeR|0<x <1}

It 1s surprisingly difficult to find a one-to-one correspondence between these
two sets, but it is easy to show that they are equinumerous using the Cantor—
Schroder—Bernstein theorem. Of course, (0, 1) € (0, 1], so clearly (0, 1) 2
(0, 1]. For the other direction, define f : (0, 1] — (0, 1) by the formula

flx)= %

It is easy to check that this function is one-to-one (although it is not onto), so
(0, 11 = (0, 1). Thus, by the Cantor—Schroder—Bernstein theorem, (0, 1] ~
(0, 1). For more on this example see exercise 9.

Our next theorem gives a more surprising consequence of the Cantor—
Schroder—Bernstein theorem.

Theorem 7.3.3. B ~ #* (Z™).

It is quite difficult to prove Theorem 7.3.3 directly by giving an example
of a one-to-one, onto function from R to 22 (Z™). In our proof we’ll use the
Cantor—Schroder—Bernstein theorem and the following lemma.

Lemma 7.3.4. Suppose x and y are real numbers and x < y. Then there is a
rational number g such that x < g < y.

Proof. Let k be a positive integer larger than »‘»uim; Then % <y—x. We
will show that there is a fraction with denominator k that is between x
and y.

Let m and nbe integers such thatm < x < n,andletS ={j e N |m + f >
x}. Note that m + @ =n > x, and therefore k(n —m) € §. Thus § # &,
so by the well-ordering principle it has a smallest element. Let j be the smallest
element of §. Note also that m + i—} =m < x,s00 ¢ S, and therefore j = 0.
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Thus, j — 1 is a natural number, but since j is the smallest elementof S, j — 1 ¢
S. It follows that m + *’%; < X.

Let g =m + {. Clearly g is a rational number, and since j € §,q =
m +£ = x. Also, combining the observations that m + -;L' < x and % <
¥y — x, we have

cmtlome Iyl o=
g=m+, =m . L <xFO-0=y
Thus, we have x < ¢ < y, as required. O

Proof of Theorem 7.3.3. As we observed earlier, we already know that
2”(Z*) = R. But now consider the function f : R — %°(Q) defined as fol-
lows:

fx)={q€Q|q < x}.

We claim that f is one-to-one. To see why, suppose x € R, y € |, and x #£ y.
Then either x < y or y < x. Suppose first that x < y. By Lemma 7.3.4, we
can choose a rational number ¢ such that x < g < y. But then ¢ € f(y) and
g & f(x),s0 f(x) = f(y). Asimilar argument showsthatif y < x then f(x)
f(y), so f is one-to-one.

Sincef is one-to-one, we have shownthat R = (). But we also know that
@ ~ Z*, so by exercise 5 in Section 7.1 it follows that % (Q)) ~ #*(Z*). Thus,
R = 2(Q) 2 2 (Z"), so by transitivity of = we have R % % (Z"). Combin-
ing this with the fact that °(Z") < R and applying the Cantor-Schroder—
Bernstein theorem, we conclude that B ~ 22 (ZT). O

We said at the beginning of this chapter that we would show that infinity
comes in different sizes. We now see that, so far, we have found only two
sizes of infinity. One size is represented by the denumerable sets, which are all
equinumerous with each other. The only examples of nondenumerable infinite
sets we have given so far are 2 (Z7) and R, which we now know are equinu-
merous. In fact, there are many more sizes of infinity. For example, #°(R) is
an infinite set that is neither denumerable nor equinumerous with R. Thus, it
represents a third size of infinity. For more on this see exercise 8.

Because ZT « R, it is natural to think of the set of real numbers as larger
than the set of positive integers. In 1878, Cantor asked whether there was a
size of infinity between these two sizes. More precisely, is there a set X such
that Z* < X < R? Cantor conjectured that the answer was no, but he was
unable to prove it. His conjecture is known as the continuwm hypothesis. At
the Second International Congress of Mathematicians in 1900, David Hilbert
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(1862—-1943) gave a famous lecture in which he listed what he believed to be
the most important unsolved mathematical problems of the time, and the proof
or disproof of the continuum hypothesis was number one on his list.

The status of the continuum hypothesis was “resolved” in a remarkable way
by the work of Kurt Godel (1906-1978) in 1939 and Paul Cohen (1934— )in
1963. The resolution turns out to require even more careful analyses than we
have given in this book of both the notion of proof and the basic assumptions
underlying set theory. Once such analyses have been given, it is possible to
prove theorems about what can be proven and what cannot be proven. What
Godel and Cohen proved was that, using the methods of mathematical proof
and set-theoretic assumptions accepted by most mathematicians today, it is
impossible to prove the continuum hypothesis, and it is also impossible to
disprove it!

Exercises

*1. Prove that = is reflexive and transitive. In other words:
(a) ForeverysetA, A 2 A,
(b) Forall sets A, B,and C,if A 2 Band B 2 Cthen A 2 C.
2. Prove that < is irreflexive and transitive. In other words:
(a) Foreveryset A, A £ A.
(b) Forall sets A, B,and C,if A < Band B < C then A < C.
3. Suppose A € B C Cand A ~ C. Prove that B ~ C.
4. Suppose A 2 Band C = D.
(a) Provethat A x C 2 B x D.
(b) Provethatif A and C are disjoint and B and D are disjoint, then A U C 2
BUD.
(c) Prove that 7 (A) = =”(B).
*5. For the meaning of the notation used in this exercise, see exercise 21 of
Section 7.1. Suppose A = Band C = D.
(a) Prove thatif A £ & then Ac 3 Ep.
(b) Is the assumption that A # & needed in part (a)?
6. (a) Prove thatif A = B and B is finite, then A is finite and [A| < |B]|.
(b) Prove that if A < B and B is finite, then A is finite and |A| < |B].
7. Prove that for every set A, A < %?(A). (Hint: See exercise 4 of Sec-
tion 7.2. Note that in particular, if A is finite and |A| = n then, by exercise
10 of Section 6.2, |#”(A)| = 2". It follows, by exercise 6(b), that 2" > n.
Of course, you already proved this, by a different method, in exercise 12(a)
of Section 6.3.)
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*8.

*10.

11

12.

13.

*14.

Infinite Sets

Let Ay =Z%,and foralln € Z7 let A,,.; = #°(A,).

(a) Prove thatforalln € Z" andm € ZT,if n < m then A, < A,,.

(b) The sets A, for n € ZT, represent infinitely many sizes of infinity.
Are there any more sizes of infinity? In other words, can you think
of an infinite set that is not equinumerous with A, forany n € Z?

. The proof of the Cantor—Schrider—Bernstein theorem gives a method

for constructing a one-to-one and onto function 4 : A — B from one-
to-one functions f : A — B and g : B — A. Use this method to find
a one-to-one, onto function h : (0, 1] — (0, 1). Start with the functions
fF:(0, 1] = (0, 1)and g : (0, 1) — (0, 1] given by the formulas:

flx) = 5‘2~ g(x) = x.

Let £ = {R | R is an equivalence relation on Z7}.

(a) Prove that £ 2 2 (Z7T).

(b) LetA = Z*\ {1, 2} andlet P bethesetof all partitions of Z™*. Define
f:2(A)— P by the formula f(X) = {X U{1},(AY\ X)U{2}}.
Prove that f is one-to-one.

(c) Prove that £ ~ 2°(Z™).

Let 7 = {R | R is a total order on Z*}. Prove that 7 ~ % (Z™). (Hint:

Imitate the solution to exercise 10.)

(a) Provethatif A has atleasttwoelementsand A x A ~ Athen %’ (A) x
Z7(A) ~ Z*(A). (Hint: Use exercise 7 of Section 7.2.)

(b) Prove that E x | ~ R.

An interval is a set I C R with the property that for all real numbers

x,v,and z,if xel,zel,and x < y < z, then y € I. An interval is

nondegenerate if it contains at least two different real numbers. Suppose

F is a set of nondegenerate intervals and F is pairwise disjoint. Prove

that F is countable. (Hint: By Lemma 7.3.4, every nondegenerate interval

contains a rational number.)

For the meaning of the notation used in this exercise, see exercise 21 of

Section 7.1.

(a) Prove that *R ~ 2 (IR).

(b) Prove that R ~ R.

(c) (For students who have studied calculus) Let C = {f € *R | f is
continuous }. Prove that C ~ R. (Hint: Show that if f and g are con-
tinuous functions and Vx € Q( f(x) = g(x)), then f = g.)
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Solutions to Selected Exercises

Introduction

. (a) One possible answer is 32,767 = 31 - 1057.

(b) One possible answer is x = 23! — 1 =2,147,483,647.
. (a) The method yields the prime number 211.

(b) The method yields two primes, 3 and 37.

Chapter 1

Section 1.1

. (a) (Rv H)»—(H »n T), where R stands for the statement “We’ll have a
reading assignment,” H stands for “We’ll have homework problems,”
and T stands for *“We’ll have a test.”

(b) =G v (G ~ —=S§), where G stands for “You'll go skiing,” and S stands
for “There will be snow.”

© =7 <2)vT=2)

. (a) I won’t buy the pants without the shirt.

(b) I won’t buy the pants and I won’t buy the shirt.

(c) Either I won’t buy the pants or I won’t buy the shirt.

Section 1.2
. (a) P 0 -PvQ
F F T
F T T
T F F
T T T
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3.

11.

14.

l6.

Appendix 1: Solutions to Selected Exercises
(b) S G SvG)Aa(—Sv-G)
F F F
F T T
T F T
T T F
(a) P Q PlQ
F F T
F T F
T F F
T T F
(b) =(P v Q).

(¢) =P is equivalent to P | P, P v Q is equivalent to (P | Q) |
(P | Q),and P A Q is equivalentto (P | P) | (Q | Q).

. (a) and (c) are valid; (b) and (d) are invalid.
. (a) is neither a contradiction nor a tautology; (b) is a contradiction; (c) and

(d) are tautologies.

(@ PV Q.

(b) P.

() =PV Q.

We use the associative law for A twice:

[PA(Q AR A Sisequivalentto[(P A Q)ARIAS
which is equivalent to(P A Q) A (R A S)

Pv=Q.

Section 1.3

. (a) D(6) A D(9) A D(15), where D(x) means “x is divisible by 3.”

(by D(x,2) A D(x,3) n—=D(x,4), where D(x, y) means “x is divisible

by }r‘!}
©) NX)ANG)A[(Px)A=PY)V(P(y)A—P(x))], where N(x)
means *“x is a natural number” and P(x) means “x is prime.”

. (a) {x|x isa planet}.

(b) {x|x is an Ivy League school}.
(c) {x|x is a state in the United States }.
(d) {x |x is a province or territory in Canada}.
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.(a) (=3 e R)A(13 —2(—3) = 1). Bound variables: x; no free variables.
This statement is true.

by deR)A @ <0)A (13 —=2(4) = 1). Bound variables: x; no free vari-
ables. This statement is false.

(c) —=[(5 € B) A (13 — 2(5) > ¢)]. Bound variables: x; free variables: c.

. (a) {x|Elizabeth Taylor was once married to x} = {Conrad Hilton Ir.,
Michael Wilding, Michael Todd, Eddie Fisher, Richard Burton, John
Warner, Larry Fortensky}.

(b) {x|x is a logical connective studied in Section 1.1} = {A, v, =)

(c) {x|x is the author of this book} = {Daniel J. Velleman}.

Section 1.4

. (a) {3,12).

(by {1, 12,20, 35}.

(c) {1,3,12,20, 35}

The sets in parts (a) and (b) are both subsets of the set in part (c).
. (a) Both Venn diagrams look like this:

(b) Both Venn diagrams look like this:
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8. Sets (a), (d), and (e) are equal, and sets (b) and (c) are equal.
10. (a) There is no region corresponding to the set (A N D)\ (B U C), but this
set could have elements.
(b) Here is one possibility:

U D

12. The Venn diagrams for both sets look like this:

Section 1.5

l. (a) (§v —E) — —H, where § stands for “This gas has an unpleasant
smell,” E stands for “This gas is explosive,” and H stands for “This
gas is hydrogen.”

(by (F n H) — D, where F stands for “George has a fever,” H stands
for “George has a headache,” and D stands for “George will go to the
doctor.”

(¢) (F — D) A (H — D), where the letters have the same meanings as
in part (b).

(d) (x £ 2) — (P(x) — O(x)), where P(x) stands for “x is prime” and
O(x) stands for “x is odd.”

4. (a) and (b) are valid, but (c) is invalid.
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. (a) Either make a truth table, or reason as follows:
(P — R)A(Q — R)isequivalentto (=P v R) A (—0Q V R)
which is equivalent to (=P A =Q)V R
which is equivalent to =(P v Q) V R
which is equivalent to (P v Q) — R
(b) (P — R)Vv(Q — R)isequivalentto (P A Q) — R.
. =(P— =0).

Chapter 2

Section 2.1

. (a) Vx[3yF(x,y) — S(x)], where F(x, y) stands for “x has forgiven y,”
and S(x) stands for “x is a saint.”

(by =3x[C(x) AVY(D(y) — S(x, y))], where C(x) stands for “x is in the
calculus class,” D(y) stands for “y is in the discrete math class,” and
S(x, y) stands for “x is smarter than y.”

(c) Yx(—(x =m)— L(x,m)), where L(x, y) stands for “x likes y,
m stands for Mary.

(d)y Ix(P(x) ~ S(J, x)) A Jy(P(y) A S(r, y)), where P(x) stands for “x is
a police officer,” S(x, y) stands for “x saw y,” j stands for Jane, and

" and

r stands for Roger.

(e) Ix(P(x) ~ S(J, x) A S(r, x)), where the letters have the same mean-
ings as in part (d).

. (a) All unmarried men are unhappy.

(b) vy is a sister of one of x’s parents; i.e., v is x’s blood aunt.

. (a), (d), and (e) are true; (b), (c), and (f) are false.

Section 2.2

. (a) Ix[M(x) AVy(F(x,y) — —H(y))], where M(x) stands for *“x is ma-
joring in math,” F(x, y) stands for “x and y are friends,” and H(y)
stands for “y needs help with his homework.” In English: There is a
math major all of whose friends don’t need help with their homework.

(b) AxVy(R(x,y) — JzL(y, 7)), where R(x, y) stands for “x and y are
roommates” and L(y, z) stands for “y likes z.” In English: There is
someone all of whose roommates like at least one person.

(©) Ix[xeAvxeB)A(x ¢ CVxeD))

(dy VxIy[y = x AVz(z* + 52 # y)].

. Hint: Begin by replacing P(x) with —P(x) in the first quantifier negation

law, to get the fact that =3x— P(x) is equivalent to Vx——P(x).
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6. Hint: Begin by showing that 3x(P(x)Vv @Q(x)) is equivalent to
—Vx—(P(x) v @(x)).
8. (Vx € AP(x)) A (Vx € BP(x))
is equivalent to Vx(x € A — P(x)) AVx(x € B — P(x))
which is equivalent to Vx[(x € A — P(x))A(x € B - P(x))]
which is equivalent to Vx[(x ¢ AV P(x)) A(x € B v P(x))]
which is equivalent to Vx[(x ¢ A A x & B) v P(x)]
which is equivalent to Vx[—-(x € AV x € B) Vv P(x)]
which is equivalent to Vx[x € (AU B) — P(x)]
which is equivalent to Vx € (A U B) P(x).
I11. A\ B = isequivalent to ~dx(x € AAx & B)
which is equivalent to Vx—(x € A A x ¢ B)
which is equivalent to Vx(x € A v x € B)
which is equivalent to Vx(x € A — x € B)
which is equivalent to A C B.

Section 2.3

l. (a) Vx(x e F > Vy(y ex — y € A)).
by Vx(x € A —> IneNx =2n+ 1)
() Vne NGm e N(n* + n+1=2m+ 1).
(d) Ix(Vy(yex —=Jiel(ye A, ND)AVieldy(yex Ay & Ap)).
4. NF = {red, blue} and UF = {red, green, blue, orange, purple}.
8. (a) A, ={2,4}, A3 ={3,6}, B, ={2,3), By = {3, 4}.
(b) Mies(A; U B;) = {3,4} and (Mie; A;) U (Nies Bi) = {3).
(¢) They are not equivalent.
11. One example is A = {1, 2} and B = {2, 3}.
13. (@) By ={1,2,3,4,5)and By = {1,2, 4,5, 6}.
(b) NjesB; = {1,2,4,5).
(€) Uier(Njes A ) = {1,2,4}.
(d) x € Njey(UigrA; ;) means VjeJIiel(xeA;;) and xe
Uier(MjesA; ;) means 3i € IVj e J(x € A; ;). They are not
equivalent.

Chapter 3

Section 3.1

1. (a) Hypotheses: n is an integer larger than 1 and n is not prime. Conclu-
sion: 2" — 1 is not prime. The hypotheses are true when n = 6, so
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the theorem tells us that 2° — 1 is not prime. This is correct, since
2 -1=63=9.-7.

(b) We can conclude that 32767 is not prime. This is correct, since
32767 = 151 - 217.

(¢) The theorem tells us nothing; 11 is prime, so the hypotheses are not
satisfied.

. Suppose 0 < @ < b. Then b — a = 0. Multiplying both sides by the pos-

itive number b+ a, we get (b+a)-(b—a) = (b+a)-0, or in other
words b — a® = 0. Since b* — a* = 0, it follows that a> < b*. Therefore
if0 < a < bthena® < b

. Hint: Add b to both sides of the inequality a < b.
. We will prove the contrapositive. Suppose ¢ < d. Multiplying both sides of

this inequality by the positive number a, we getac < ad. Also, multiplying
both sides of the given inequality a < b by the positive number 4 gives us
ad < bd. Combining ac < ad and ad < bd, we can conclude that ac <
bd. Thus, if ac = bd then ¢ > d.

Since x > 3 = (), by the theorem in Example 3.1.2, x> > 9. Also, multi-
plying both sides of the given inequality y < 2 by —2 (and reversing
the direction of the inequality, since —2 is negative) we get —2y = —4,
Finally, adding the inequalities x*>>9 and —2y > —4 gives us
x2 =2y =5

Section 3.2

. (a) Suppose P. Since P — 0, it follows that Q. But then, since 0 — R,

we can conclude R. Thus, P — R.

(b) Suppose P. To prove that Q — R, we will prove the contrapositive,
so suppose —R. Since =R — (P — —(J), it follows that P — —(,
and since we know P, we can conclude —Q. Thus, Q — R, so
P — (Q — R).

. Suppose a € A\ B. This means thata € A and a ¢ B. Since @ € A and

a€C,ae ANC. But then since A N C C B, it follows that « € B, and
this contradicts the fact that a ¢ B. Thus,a ¢ A\ B.

. Hint: Assume a < 1/a < b < 1/b. Now prove that ¢ < 0, and then use

this fact to prove thata < —1.
(a) The sentence “Then x = 3 and y = 8" is incorrect. (Why?)
(b) One counterexample isx =3,y =7.
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P—-(@—R) —-R—=(P——0)

T T

N = IR T
Ha s E AT T
G I B I 1
N I I B T e
HmHRAHAAs

Section 3.3

. Suppose Jx(P(x) — Q(x)). Then we can choose some xp such that

P(xg) — Q(xp). Now suppose that ¥x P(x). Then in particular, P(xg),
and since P(xp) — Q(xg), it follows that Q(xg). Since we have found a
particular value of x for which Q(x) holds, we can conclude that 3x Q(x).
Thus Vx P(x) — dx Q(x).

. Suppose that A € B\ C, butA and C are not disjoint. Then we can choose

some x suchthatx € Aandx € C.Sincex € Aand A C B\ C,itfollows
thatx € B\ C, which meansthatx € B and x ¢ C. Butnow we have both
x € Cand x ¢ C, which is a contradiction. Thus, it A € B "\ C then A and
C are disjoint.

. Suppose x = 2. Let y=(x++/x2—4)/2, which is defined since

x? —4 = 0. Then

N 1 x-l-\/xz—4+ 2 2x2 4+ 2x/x2 —4
y —_—— — = X.
Ty 2 x4+ Vx2=4 2x + /22 =4

. Suppose F is a family of sets and A € F. Suppose x € NF. Then by the

definition of NF, since x € NF and A € F, x € A. But x was an arbitrary
element of NF, so it follows that NF C A.

Hint: Assume F C G and let x be an arbitrary element of UF. You must
prove that x € UG, which means 3A € G(x € A), so you should try to find
some A € G such that x € A. To do this, write out the givens in logical
notation. You will find that one of them is a universal statement, and one
is existential. Apply existential instantiation to the existential one.
Suppose x € U;c;#°(A;). Then we can choose some i € I such that x €
#(A;), or in other words x € A;. Now let @ be an arbitrary element of x.
Then a € A;, and therefore a € U;c; A;. Since a was an arbitrary element
of x, it follows that x € U;<; A;, which means that x € #°(U;z; A;). Thus
Uies#(A;) € 7 (Uier Ap).
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Hint: The last hypothesis means YA € FVB € G(A C B), so if in the
course of the proof you ever come across sets A € F and B € G, you can
conclude that A C B. Start the proof by letting x be arbitrary and assuming
x € UF, and prove that x € NG. To see where to go from there, write these
statements in logical symbols.
The sentence “Then for every real number x, x* < 0" is incorrect. (Why?)
Based on the logical form of the statement to be proven, the proof should
have this outline:
Letx =....
Let y be an arbitrary real number.
[Proof of xy> = y — x goes here.]
Since y was arbitrary, ¥y € R(xy? = y — x).
Thus, 3x € RYy € R(xy? = y — x).

This outline makes it clear that y should be introduced into the proof
after x. Therefore, x cannot be defined in terms of y, because y will not yet
have been introduced into the proof when x is being defined. But in the
given proof, x is defined in terms of y in the first sentence. (The mistake
has been disguised by the fact that the sentence “Let y be an arbitrary real
number” has been left out of the proof. If you try to add this sentence to
the proof, you will find that there is nowhere it could be added that would
lead to a correct proof of the incorrect theorem.)

Here is the beginning of the proof: Let x be an arbitrary real number. Let
v = 2x. Now let z be an arbitrary real number. Then. ...

Section 3.4

. (—) Suppose Yx(P(x) A Q(x)). Let y be arbitrary. Then since Yx(P(x) A

Q(x)), P(y) A Q(y), and so in particular P(y). Since y was arbitrary,
this shows that ¥x P(x). A similar argument proves ¥x Q(x): for arbitrary
v, P(y) A Q(y), and therefore Q(y). Thus, VX P(x) A VYxQ(x).

(<) Suppose ¥x P(x) A ¥x Q(x). Let y be arbitrary. Then since ¥Vx P(x),
P(y), and similarly since Yx Q(x), Q(y). Thus, P(y) A Q(¥), and since y
was arbitrary, it follows that Yx(P(x) ~ Q(x)).

. Supposethat A C Band A &€ C.Since A € C,wecan choosesomea € A

such that @ ¢ C. Since a € A and A C B,ac B. Sinceaec B anda ¢
C,BgC.

. Let A and B be arbitrary sets. Let x be arbitrary, and suppose that

x e #Z(ANB). Then x € AN B. Now let y be all arbitrary element of
x. Then since x € AN B, y € AN B, and therefore y € A. Since y was
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arbitrary, this shows that x € A, so x € %°(A). A similar argument shows
that x C B, and therefore x € #°(B). Thus, x € #*(A) N (B).

Now suppose that x € #*(A)N 2 (B). Thenx € #*(A) and x € #”(B),
so x € A and x € B. Suppose that y € x. Then since x € A and x C B,
veAandye B,soye ANB.Thus,x C ANB,sox € (AN B).

. Suppose that x and y are odd. Then we can choose integers j and & such that

x=2j+1and y =2k + 1. Therefore xy = (2j + D2k + 1) =4jk +

2j4+2k+1=212jk+ j+k)+ 1. Since 2jk + j + k is an integer, it

follows that xy is odd.

Hint: Let x € IR be arbitrary, and prove both directions of the biconditional

separately. For the *—"" direction, use existential instantiation and proof

by contradiction. For the <" direction, assume that x # 1 and then solve

the equation x + y = xy for y in order to decide what value to choose

for y.

Suppose that UF and NG are not disjoint. Then we can choose some x such

thatx € UF and x € NG. Since x € UF, we can choose some A € F such

that x € A. Since we are given that every element of F is disjoint from

some element of ¢, there must be some B € G such that AN B = &.

Since x € A, it follows that x ¢ B. But we also have x € NG and B € G,

from which it follows that x € B, which is a contradiction. Thus, UJF and

NG must be disjoint.

(a) Suppose x € U(F N G). Then we can choose some A € F NG such
that x € A. Since x € A and A € F,x € UF, and similarly since
x € Aand A € G, x € UG. Therefore, x € (UF) N (UG). Since x was
arbitrary, this shows that U(F N G) € (UF) N(UG).

(b) The sentence “Thus, we can choose a set A such that A € F, A € G,
and x € A” is incorrect. (Why?)

(c) One example is F = {{1}, {2}}, G = {{1}. {1, 2}}.

Suppose that UF & UG. Then there is some x € UF such that x ¢ UG.

Since x € UF, we can choose some A € F such that x € A. Now let

B € G be arbitrary. If A C B, then since x € A, x € B. But then since

x € B and B € G, x € UG, which we already know is false. Therefore

A € B. Since B was arbitrary, this shows that for all B G, A € B.

Thus, we have shown that there is some A € F such that for all B € G,

Ag B.

(a) Suppose x € U;c;(A; \ B;). Then we can choose some i € I such
that x € A; \ B;, which means x € A; and x ¢ B;. Since x € A,
X € UierA;, and since x € B, x € NigrB;. Thus, x € (Uier A7)\
(Nics Bi).

(b) One example is I = {1,2}, Ay = B; = {1}, A = B, = {2}.
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Section 3.5

1. Supposex € AN(BUC).Then x € A, and either x € Borx € C.
Case 1. x € B.Thensincex € A, x e ANB,sox € (ANB)UC.
Case 2. x € C. Then clearly x e (AN B)UC.

Since x was arbitrary, we can conclude that AN(BUC)C
(AnByucC.

4. Suppose x € A. We now consider two cases:

Case 1. x € C. Thenx e ANC,sosinceANCCBNC,xe BNC,
and therefore x € B.

Case 2. x ¢ C. Since x e A, x e AUC, so since AUCCBUC,
x e BUC.Butx ¢ C,sowe must havex € B.

Thus, x € B, and since x was arbitrary, A € B.

7. Hint: Assume x € #*(A) U % (B), which means that either x € #°(A) or
x € Z2(B). Treat these as two separate cases. In case 1, assume x € 2 (A),
which means x € A, and prove x € #’(A U B), whichmeans x C A U B.
Case 2 is similar.

11. Let x be an arbitrary real number.

(<) Suppose |x — 4| = 2.

Case 1. x —4 = 0. Then |x — 4| = x — 4, so we have x — 4 > 2, and
therefore x > 6. Adding x toboth sides givesus 2x > 6 + x,502x — 6 > x.
Since x > 6, this implies that 2x — 6 is positive, so |2x —6] = 2x — 6> x.

Case 2. x —4 < 0. Then |x — 4| =4 — x, so we have 4 — x > 2, and
therefore x < 2. Therefore 3x < 6, and subtracting 2x from both sides
we get x < 6 — 2x. Also, from x < 2 we get 2x < 4, s0 2x — 6 < =2,
Therefore 2x — 6 is negative, so [2x — 6| = 6 — 2x = x.

(—) Hint: Imitate the “<«" direction, using the cases 2x — 6 > 0 and
2x —6 < (.

15. (a) Suppose x € U(F U G). Then we can choose some A € F UG such
that x € A. Since A e F UG, either A € For A € G.If A € F then,
since x € A, it follows that x € UF. Similarly, if A € ¢ then x € UG.
Thus either x € UF or x € UG, so x € (UF) U (UG).

Now suppose that x € (UF) U (UG). Theneitherx € UF orx € UG.
If x € UF, then we can choose some A € F such that x € A. Since
AecF,Aec FUQG,sosince x € A, it follows that x € U(F UG). A

similar argument shows that if x € UG then x € U(F U G).

(b) The theorem is: N(F U G) = (NF) N (NG).

19. (—) Supposethat A A B and C are disjoint. Let x be an arbitrary element of
ANC.Thenx € Aandx € C.Ifx ¢ B,thensincex € A,x € A\ B, and
therefore x € A A B. But also x € C, so this contradicts our assumption
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that A A B and C are disjoint. Therefore x € B. Since we alsoknow x € C,
we have x € B N C. Since x was an arbitrary element of A N C, this shows
that AN C € BN C. A similar argument shows that BNC € ANC.

(<) Suppose that AN C = BN C. Suppose that A A B and C are not
disjoint. Then we can choose some x suchthatx € A A Bandx € C. Since
x € AA B, eitherx e A\ Borx € B\ A.

Case 1. x € A\ B.Thenx € A and x ¢ B. Since we also know x € C,
we can conclude that x € A NC but x ¢ B N C. This contradicts the fact
that ANC =BnNC.

Case 2. x € B\ A. Similarly, this leads to a contradiction.

Thus we can conclude that A A B and C are disjoint.

22. (a) Hint: Suppose x € A \ C, and then break the proof into cases, depend-

ing on whether or not x € B.
(b) Hint: Apply part (a).
23. (a) Suppose x € (AU B)AC. Then either x e (AUB)\C orx € C\
(AUB).
Case 1. x e (AU B)\ C.Theneither x c Aorx € B,andx ¢ C.
We now break case 1 into two subcases, depending on whether x € A
orx € B:
Case la.x € A. Thenx e A\NC,sox e AAC,sox e (AAC)U
(BAC).
Case Ib. x € B. Similarly,x € BAC,s0x e (AAC)U(BAC).
Case 2. x€e C\N(AUB). Then xeC,x¢ A, and x ¢ B. It
follows that x € AAC and x € BAC, so certainly x e (AAC)U
(BAC).
(b) Here is one example: A = {1}, B = {2}, C = {1, 2}.

26. The proof is incorrect, because it only establishes that either 0 < x or
x < 6, but what must be proven is that 0 < x and x < 6. However, it can
be fixed.

28. The proof is correct.

30. Hint: Here is a counterexample to the theorem: A = {1,2}, B = {1},
C = {2}.

Section 3.6

1. Let x be an arbitrary real number. Let y = x/(x? 4+ 1). Then

X x4 x X x? , X

x?241 =x3+l _x3+]:x3+l:xx?+l

X—y=x-— = x%y.
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To see that y is unique, suppose that x’z = x — z. Then z(x*> + 1) = x,
and since x% 4 1 # 0, we can divide both sides by x? + 1 to conclude that
z=x/(x*+ 1D =y.

. Suppose x £ 0. Let y = 1/x. Now let z be an arbitrary real number. Then

zy = z(1/x) = z/x, as required.

To see that y is unique, suppose that y' is a number with the property that
vz € R(zy" = z/x). Then in particular, taking z = 1, we have y' = 1/x,
soy =y.

.(a) Let A=@ € »(U). Then clearly for any Be #(U),AUB =

& UB = B.
To see that A is unique, suppose that A’ € #*(U) and for all
B € #(U), A'U B = B. Then in particular, taking B = &, we can
conclude that A"U & = @, Butclearly A"U & = A',sowehave A" =
&= A.
(b) Hint: Let A = U.
Existence: We are given that for every G € F, UG € F, so in particular,
since F € F,UF € F. Let A = UF. Now suppose B € F. Then by ex-
ercise § of Section 3.3, B € UF = A, as required.

Uniqueness: Suppose that Ay € F, A, € F,¥B € F(B € A;), and
VB € F(B C Aj). Applying this last fact with B = A; we can conclude
that Ay € A3, and similarly the previous fact implies that A € A;. Thus
Ap = As.

Section 3.7

. Hint: Comparing (b) to exercise 16 of Section 3.3 may give you an idea of

what to use for A.

. Suppose (Ui A;) C Ui #”(A;). Clearly Ujc;A; C© Uicp A;,  s0

UjerA; € 7 (U;cr A;) and therefore U;c; A; € Ui, #” (A;). By the defini-
tion of the union of a family, this means that there is some i € [ such that
UicrA; € A;. Now let j € I be arbitrary. Then it is not hard to see that
AJ‘ c UjG;A;, 50 AJ' c A;.

. Suppose that lim,_.. f(x) = L = 0. Let ¢ = L. Then by the definition of

limit, there is some § = 0 such that for all x, if 0 < |x —¢| < & then
|fix)— Ll <e=L.Butif |f(x)—L| <L then —L < f(x)— L <L,
s0 0 < f(x) < 2L. Therefore, if 0 < |x —¢| < § then f(x) = 0.

. The proof is correct.
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Chapter 4

Section 4.1

. (@) {(x,y) € P x P|xisaparentof y} = {(George H. W. Bush, George

W. Bush), (Goldie Hawn, Kate Hudson), . . .}.

(b) {(x,y) € C x U| there is someone who lives in x and attends y}. If
you are a university student, then let x be the city you live in, and let
v be the university you attend; (x, y) will then be an element of this
truth set.

CAX(BNCO)=(AxB)NAxC)={(1,4),(2,4), (3,4},

Ax(BUC)=(Ax B)U(A xC)={(1,1),(2,1), (3, 1),(1,3),(2,3),
(3,3).(1,4).2.4. 3,4},

(AxB)N(C xD)=(ANC)x (BND)=J,

(Ax B)U(CxD)={(1,1),(2,1),(3.1),(1,4),(2.4),(3.4), (3. 5),
. 5)},

(AUC) x (BUD)={(1,1), (2. 1), (3. 1),(4,1),(1.4),(2.4). (3, 4),
“4.4).(1,5).(2,5). 3, 5). (4, 5)}.

. The cases are not exhaustive.

True.

. The theorem is incorrect. Counterexample: A = {1}, B=C =D = &.

Notice that A € C. Where is the mistake in the proof that A € C?

Section 4.2

. (a) Domain = {p € P | p has a living child}; Range = {p € P|p hasa

living parent}.
(b) Domain = R; Range = R*.

(@) {(1.4), (1.5).(1,6).(2.4). 3, 6)).

(b) {(4,4),(5.5),(5,6),(6.5), (6, 6)}.

.EocECF.
10.

We prove the contrapositives of both directions.

(—) Suppose Ran(R) and Dom(S) are not disjoint. Then we can choose
some b € Ran(R) N Dom(S). Since b € Ran(R), we can choose somea € A
such that (a, b) € R. Similarly, since b € Dom(S), we can choose some
c € Csuchthat (b, c) € S. Butthen(a,c) € SoR,s0 5o R # .

(«+) Suppose § o R # &. Then we can choose some (a, c) € § o R.
By definition of § o R, this means that we can choose some b € B such
that (a, b) € R and (b, ¢) € S. But then b € Ran(R) and b € Dom(S), so
Ran(R) and Dom(§) are not disjoint.
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Section 4.3

. SoR={(a,y),(a,z2), (b x)cy), @ D}

7. (—) Suppose R is reflexive. Let (x, ¥) be arbitrary element of i . Then by

10.

13.

17.

the definition of iy, x = v € A. Since R is reflexive, (x, y) = (x, x) € R.
Since (x, y) was arbitrary, this shows that i, € R.

(<) Suppose iy € R. Let x € A be arbitrary. Then (x,x) € i4, so
sinceiy € R, (x,x) € R. Since x was arbitrary, this shows that R is reflex-
ive.

Suppose (x, y) €ip. Then x = y € D = Dom(S), so there issome z € A

such that (x, z) € S. Therefore (z, x) € S™',s0(x, y) = (x,x) e §~' o §.

Thus, ip € §7! o §. The proof of the other statement is similar.

(a) Yes. To prove it, suppose R and R» are reflexive, and suppose a € A.
Since R, is reflexive, (a,a) € Ry, s0(a,a) € Ry U R,.

(b) Yes. To prove it, suppose R, and R, are symmetric, and suppose
(x,v) € Ry UR;. Then either (x,y) € Ryor (x,y)e R,. If (x,y) €
R, then since R; is symmetric, (v, x) € Ry,s0(y, x) € R; U R,. Sim-
ilar reasoning shows that if (x, y) € R, then (v, x) € R, U R,.

(c) No. Counterexample: A = {1,2,3}, R = {(1, 2)}, R, = {(2, 3)}.

First note that by part 2 of Theorem 4.3.4, since R and § are symmetric,

R =R 'and § = §~!. Therefore

R o §is symmetric iff RoS = (RoS)"! (Theorem 4.3.4, part 2)
iff RoS =S5"oR" (Theorem 4.2.5, part 5)
ff ReS=S8cR.
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Suppose R is transitive, and suppose (X, Y) € S and (Y, Z) € §. To prove
that (X, Z) € § we must show that Vx € XVz € Z(xRz),soletx € X and
7 € Z be arbitrary. Since Y € B, Y # &, so we can choose y € Y. Since
(X,Y)e §and (Y, Z) € §, by the definition of § we have xRy and yRz.
But then since R is transitive, xRz, as required. The empty set had to
be excluded from B so that we could come up with y € Y in this proof.
(Can you find a counterexample if the empty set is not excluded?)

Hint: Suppose aRb and bRc. To prove a Re, suppose that X € A\ {a, ¢}
and X U {a} € F; you must prove that X U (¢} € F. To do this, you may
find it helpful to consider two cases: b ¢ X or b € X. In the second of
these cases, try working with the sets X' = (X U {a})\ {b} and X" =

(X U{ch\ {b}.

Section 4.4

. (a) Partial order, but not total order.

(b) Not a partial order.
(c) Partial order, but not total order.

. (=) Suppose that R is both antisymmetric and symmetric. Suppose that

(x,y) € R. Then since R is symmetric, (y, x) € R, and since R is anti-
symmetric, it follows that x = y. Therefore (x, y) € i4. Since (x, y) was
arbitrary, this shows that R € i 4.

(<) Suppose that R € i4. Suppose (x, ¥) € R. Then (x, y) € i4, so
x =y, and therefore (v, x) = (x, y) € R. This shows that R is symmetric.
To see that R is antisymmetric, suppose that (x, y) € R and (y, x) € R.
Then (x, y) € ig, 50 x = y.

. To see that T is reflexive, consider an arbitrary (a,b) € A x B. Since R

and § are both reflexive, we have a Ra and bSb. By the definition of T,
it follows that (a, b)T(a, b). To see that T is antisymmetric, suppose that
(a, HT(a', byand (a’, )T (a, b). Then aRa' and a’Ra, so since R is anti-
symmetric, @ = a'. Similarly, bSH" and b'Sh, so since S is antisymmetric,
we also have b = b'. Thus (a, b) = (a’, b"), as required. Finally, to see
that T is transitive, suppose that (a, b)T (a’, b)) and (@', b")T (a”, b"). Then
aRa' and @' Ra", so since R is transitive, a Ra". Similarly, bSb" and b'Sb",
so bSh", and therefore (a, bYT(a”, b").
Even if both R and S are total orders, T need not be a total order.

The minimal elements of B are the prime numbers. B has no smallest
element.
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b is the R-largestelementof B iff b € BandVx € B(xRb)

(b)

iff b€ BandVx € BOR 'x)
iff b isthe R™'-smallest element of B.

bis an R-maximal element of B iff b € B and —=3x € B(bRx A b # X)

iff h e Band—3x € B(xR™'b
Ax # b)

iff b is an R-minimal element of B.

No.Let A=R xR, and let R = {({x, y), (x", y)) € A x A|x < x" and
y < y'}. (You might want to compare this to exercise 8.) Let B = {(0, )} U
({1} x ). We will leave it to you to check that R is a partial order on A,
and that (0, 0) is the only minimal element of B, but it is not a smallest
element.

(a)

(b)

(c)

. (a)

(b)

Suppose that x € U and x Ry. To prove that y € U, we must show that
y is an upper bound for B, so suppose that b € B. Since x € U, x is an
upper bound for B, so b Rx. But we also have x Ry, so by transitivity
of R we can conclude that #Ry. Since b was arbitrary, this shows that
v is an upper bound for B.

Suppose b € B. To prove that b is a lower bound for U, let x be an
arbitrary element of U/. Then by definition of U, x is an upper bound
for B, so b Rx. Since x was arbitrary, this shows that b is a lower bound
for U.

Hint: Suppose x is the greatest lower bound of U. First use part (b) to
show that x is an upper bound for B, and therefore x € /. Then use the
fact that x is a lower bound for U to show that x is the smallest element
of U — in other words, it is the least upper bound of B.

Section 4.5

Reflexive closure: {(a, a), (a, b), (b, ¢), (¢, b), (b, b), (c, ¢))}.
Symmetric closure: {{(a, a), (a, b), (b, ), (c, b), (b, a)}.

Transitive closure: {(a, a), (a, b), (b, ¢). (¢, b), (a. c), (b, b), (c. ¢)}.
Reflexive closure: {(x, y) e R x R|x < y}.

Symmetric closure: {(x, y) € R x R|x # y}.

Transitive closure: R.
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(c) Reflexive closure and symmetric closure are both D,. Transitive
closure is R x R.

3. (a) Suppose that R is an asymmetric relation on A. Then the statement
Vx € AVy € A((x Ry A yRx) — x = y) is vacuously true, because
xRy A yRx is always false.

(b) Suppose that R is a strict partial order, and suppose that for some
x,yeA, (x,¥y)eR and (y,x)e R. Then by transitivity of
R. (x,x) € R, which contradicts the fact that R is irreflexive. There-
fore, R is asymmetric.

5.(a) Hint: Let F={T € Ax A | T C R and T is irreflexive }. Then you
must prove that § € F and VT € F(T C S). For the first of these, you
must prove that § € R and § is irreflexive. Both of these follow easily
from the definition of §. For the second, let T € F be arbitrary and
prove T C §.Since T € F, youknow that T C R and T is irreflexive.
Let (x, y) be an arbitrary element of T, and use these facts about T,
together with the definition of §, to prove (x, y) € §.

(b) Suppose R is a partial order on A. We already showed in part (a) that
S is irreflexive. To show that it is transitive, suppose (x, y) € § and
(v, z) € §. Then by the definition of §, (x, y) € R and (y, z) € R, so
since R is transitive, (x, z) € R. If x = z then we have (x, y) € R and
(v, x) € R, s0 by the antisymmetry of R, x = y. Butthen (x, y) € i,,
which contradicts the fact that (x, y) € § = R \ i4. Therefore x # z,
50 (x, z) € i4 and hence (x,z) € §.

7. (a) Let S be the reflexive closure of R.

(—) Suppose R is reflexive. By clause 1 in the definition of reflex-
ive closure (Definition 4.5.1), R € S, and by clause 3 (with T = R),
S € R. Therefore R = §.
(<) Suppose R = §. By clause 2 in the definition of reflexive clo-
sure, R is reflexive.
(b) Yes; the proofs are very similar.
9. Hint: Let T = {(x,y) € §|x € Dom(R) and y € Ran(R)}. Prove that
R C T and T is transitive.
12. (a) SiUS=(RiUIDURUig)=(RIUR)Uig=RUiy=S.
(b) It is possible to give a proof that is similar to the proof in part (a),
using formulas for 5§, S, and S. However, we will take a different
approach. First, note that R; € R and R, C R. It follows, by exercise
11, that §{ € Sand §; € §,s0 §; U S, C §. For the other direction,
notethat R = R} U Ry € §, U 82, and by exercise 13(b) of Section 4.3,
81 U 87 is symmetric. Therefore, by definition of symmetric closure,
SC S US.
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(c) Imitating the first half of the proof in part (b), we can use exercise 11
to show that §; U §, C §. However, the answer to exercise 13(c) of
Section 4.3 was no, so we can’t imitate the second half of the proof.
In fact, the example given in the solution to exercise 13(c) works as an
example for which §; U §; #£ S.

15. Hint: Let § = RUR™ ' Uiy,

18. (a) We have R € Q and Q C §, so R € §. By definition of symmetric
closure, @ is symmetric, and therefore, by exercise 17, § is symmetric.
By definition of transitive closure, § is also transitive. Now suppose
thatT € A x A, R C T,and T is both symmetric and transitive. Since
@ is the smallest symmetric relation on A containing R, Q € 7. But
then since S is the smallest transitive relation on A containing Q,
SCT.

(b) Since R € @, Q' is the transitive closure of R, and S is the transitive
closure of Q, by exercise 11, Q' C S. Since § is symmetric and S’ is
the smallest symmetric relation on A containing Q', §' C §.

(c) No. Counterexample: A = {1,2,3}, R = {(1,2), (3, 2)}.

20. (a) Oneexample is {(San Francisco, Chicago), (Chicago, Dallas), (Dallas,
New York), (New York, Washington, D.C.), (Washington, D.C., San
Francisco)}.

(b) No.

Section 4.6

1. Here is a list of all partitions:

{{1.2.3}
{12}, (3}
{{1.3}.(2)}
{{2.3). (1))

{1}, 21, 31}

3. (a) R is an equivalence relation. There are 26 equivalence classes — one
for each letter of the alphabet. The equivalence classes are: the set of
all words that start with a, the set of all words that start with b, . ..,
the set of all words that start with z.

(b) S is not an equivalence relation, because it is not transitive.

(¢) T is an equivalence relation. The equivalence classes are: the set of
all one-letter words, the set of all two-letter words, ..., the set of all
n-letter words, where n is the length of the longest English word.
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The assumption that is needed is that for every date d, someone was born
on the date d. What would go wrong if, say, just by chance, no one was
born on April 237 Where in the proof is this assumption used?

. Since § is the equivalence relation determined by F, the proof of Theo-

rem 4.6.6 shows that A/S = F = A/R. The desired conclusion now fol-

lows from exercise 8.

Suppose a@ = ¢(mod m) and b =d (mod m). Then m |(a — ¢) and m |

(b — d). By exercise 18(a) of Section 3.3, it follows that m |(a — ¢ +

b—d). But a—c+b—-—d=(a+b)—(c+d), so m|({a+b)—

(¢ 4+ o)), and therefore a + b = ¢ + d (mod m).

For the second half of the problem, you might find it useful to begin
with the equation ab — c¢d = (ab — ad) + (ad — cd).

By exercise 15(a) of Section 3.5, U(F U G) = (UF)U (UG = AUB. To

see that F U G is pairwise disjoint, suppose that X € FUG, Y € FUQG,

and XNY £ . fXeFandY € Gthen X C Aand ¥ C B, and since

A and B are disjoint it follows that X and Y are disjoint, which is a con-

tradiction. Thus it cannot be the case that X € Fand ¥ € G, and a similar

argument can be used to rule out the possibility that X € G and ¥ € F.

Thus, X and Y are either both elements of F or both elements of G. If

they are both in , then since F is pairwise disjoint, X = ¥. A similar

argument applies if they are both in G. Finally, we have ¥X € F(X # &)
and VX € G(X # ), and it follows by exercise 8§ of Section 2.2 that

VX e FUG(X #£ ).

(a) Here is the proof of transitivity: Suppose (x,y) € T and (y,z) € T.
Then since T = RN S, (x,y) € R and (y, z) € R, so since R is tran-
sitive, (x, z) € R. Similarly, (x,z) € §,s0(x,z) e RNS=T.

(b) Suppose x € A. Then forall y € A,

yelxlpiff(y,x) e Tiff (y,x) eRA(y,x)eS§
iff y e[x]g Ay e [x]giff y € [x]p N [x]s.

(¢) Suppose X € A/T. Then since A/T is a partition, X # &. Also,
for some x € A, X = [x]r = [x]g N [x]s, so since [x]z € A/R and
[x]s € A/S, X € (A/R) - (A/S).

Now suppose X € (A/R)-(A/S). Thenforsome yandzin A, X =

[vlr Nzls. Also, X # &, so we can choose some x € X. There-

fore x € [y]g and x € [z]s. and by part 2 of Lemma 4.6.5 it fol-

lows that [x] = [v]g and [x]s = [z]s- Therefore X = [x]g N[x]s =
[x]r e A/T.

FRF={R" xR RBE xR E xE,R" xR, R" x {0}, B~ x {0},

{0} x RY, {0} x R, {(0, 0)}}. In geometric terms these are the four
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quadrants of the plane, the positive and negative x-axes, the positive and
negative y-axes, and the origin.
23. (a) Hint: Let T = {(X.Y) € A/S x A/S | 3x € X3y € Y(xRy)}.
(b) Suppose x,y,x".y € A, x8x', and ySy'. Then [x]s = [x']s and
[¥ls = [y']ls, so xRy iff [x]sT [y]s iff [x']sT[y']s iff x"Ry".

Chapter 5
Section 5.1
I. (a) Yes.
(b) No.
(¢c) Yes.
3@ fl@=b, fb)y=>, flc)=a.
(b) f2)=0.

(¢) f(m)y=3and f(—m) = —4.
5. LoH:N — N, and forevery n € N,(L o H)(n) =n. Thus, Lo H =
iy
HoL:C— C, and for every ¢ € C, (H o L)(c) = the capital of the
country in which ¢ is located.
7. (a) Suppose that ¢ € C. We must prove that there is a unique b € B such
that (¢, b) € f] C.

Existence: Let b = f(c¢) € B. Then (¢,b) € fand (c,b) € C x B,
and therefore (c,b) € f N(C x B)= f[|C.

Uniqueness: Suppose that (¢, b)) € f[ C and (¢, by) € f| C. Then
(c,by) € fand (c, b2) € f, so since f is a function, b = b,.

This proves that f] C is a function from C to B. Finally, to derive
the formula for (f ] C)(c), suppose that ¢ € C, and let b = f(c). We
showed in the existence half of the proof that (¢, b) € f[ C. It follows
that

fle)=b=(f[C)o).

(b) (—) Suppose g = f[C.Theng = f N(C x B),soclearly g C f.
(«=) Suppose g C f.Supposec € C,andleth = g(c). Then(c, b)
g, so (¢, b) € f, and therefore f(c) = b. But then by part (a),
(fI1C)Xe)= f(c)=b = g(c). Since ¢ was arbitrary, it follows by
Theorem 5.1.4 that ¢ = f| C.
© hfZ=hn(ZxRB) ={x,yeRxR|ly=2x+3INZxR) =
{x,VeZxR|y=2x+3)=¢g.
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Suppose b € B. Since Dom(§) = B, we know that there issomec € C
such that (b, ¢) € §. To see that it is unique, suppose that ¢’ € C and
(b, ¢") € §. Since Ran(R) = B, we can choose some a € A such that
(a, b) € R.Butthen(a,c) € So Rand(a.c¢) € § o R,andsince So R
is a function, it follows that ¢ = ¢'.

(b) A={1},B=1{2.3},C={4}. R={(1.2).(1,3)}, §={(2.4). 3. D)}

12. (a)

No. Example: A = {1}, B = {2, 3}, f = {(1,2)}, R = {(1, )}.

(b) Yes. Suppose R is symmetric. Suppose (x, y) € S. Then we can choose

(c)

6. (a)

some i and v in A such that f(u) = x, f(v) = y,and (i, v) € R. Since
R is symmetric, (v, u) € R, and therefore (y, x) € §.

No. Example: A= {1,2,3,4},B=1{56,7},f ={(1.5),(2,6),
(3,6), (4. 7)), R = ((1.2), 3.4)).

Leta = 3 and ¢ = 8. Then for any x = a = 3,

[ f)] = |Tx + 3| =Tx + 3 < Tx +x = 8x < 8x% = ¢|g(x)|.

This shows that f € O(g).

Now suppose that g € O(f). Then we can choose a € Z* and
¢ € R such that ¥x = a(|g(x)| < c|f(x)]), or in other words, Vx > a
(x* < ¢(7x + 3)). Let x be any positive integer larger than both a
and 10c. Multiplying both sides of the inequality x = 10c¢ by x,
we can conclude that x? > 10cx. But since x > a, we also have
x2 < e(Tx +3) < ¢(7x 4 3x) = 10cx, so we have reached a contra-
diction. Therefore g ¢ O(f).

(b) Clearly for any function f € F wehaveVx € Z7(| f(x)] < 1-|f(x)]),

(c)

so f € O(f), and therefore (f, f) € S. Thus, § is reflexive. To see that
it is also transitive, suppose (f, g) € § and (g, #) € S. Then there are
positive integers a; and a» and positive real numbers ¢; and ¢» such
that ¥x > a;(| f(x)] = c1|g(x)]) and Vx > ax(|g(x)| < c2|h(x)]). Let
a be the maximum of a; and a,, and let ¢ = ¢,¢>. Then forall x = a,

|f()] = eilg)] = erea|A(x)] = clh(x)].

Thus, (f, k) € S, so §is transitive. Finally, to see that § is not a partial
order, we show that it is not antisymmetric. Let f and g be the functions
from Z* to R defined by the formulas f(x) = x and g(x) = 2x. Then
forallx € Z*, | f(x)| < |g(x)|and [g(x)| < 2[f(x)],s0 f € O(g)and
also ¢ € O(f). Therefore (f, g) € Sand (g. f) € S, but f £ g.

Since f; € O(g), we canchoose a; € Z™ and ¢; € R™ such that Vx >
ar (] f1(x)] < ¢1]g(x)]). Similarly, since f> € O(g) we can choose a; €
Z* and > € R such that Vx > as(] f>(x)] < c2]g(x)]). Let a be the
maximum of @, and a3, and let ¢ = |s]e; + [t]cz + 1. (We have added
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1 here just to make sure that ¢ is positive, as required in the definition
of @.) Then for all x > a,

[f)] = [sfi(x) + 1001 = [sI[ACO]+ 1] f2(0)]
= Islellg@)] + Irlez|g(x)] = ([sler + |t]e2)|g(x)] < clg(x)].
Therefore f € O(g).
18. (a) Hint: Leth = {(X,y) € A/R x B|3x € X(f(x) = y)}.
(b) Hint: Use the fact that if xRy then [x]z = [y]&.

Section 5.2

2. (a) f is not a function.
(b) f is not a function. g is a function that is onto, but not one-to-one.
(c) R is one-to-one and onto.
5. (a) Suppose that x; € A, x> € A, and f(x;) = f(x2). Then we can per-
form the following algebraic steps:

.\f|+] _I3+l

xi—=1 x-=1
(1 + D2 = 1) = (x2 4 Dy = 1),
Xxonp—xtx—l=xx—-x+x -1,
2x; —2x; =0,
X = Xxa.
This shows that f is one-to-one.

To show that f is onto, suppose that y € A. Let

y+1

y—1

Notice that this is defined, since y # 1, and also clearly x #£ 1, so

x € A. Then

JRSTRELE N L S

O | -2 -
x—1 ;__1_1 =5
(b) Foranyx € A,
i+l 2x
. prr e ol S _
(f o ) = 23 (= = x =i ).

7. (a) {1,2,3,4}.
(b) f is onto, but not one-to-one.
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10. (a) Suppose that f is one-to-one. Suppose that ¢; € C,¢; € C, and
(f1C)er) = (f]C)ca). By exercise 7(a) of Section 5.1, it follows
that f(c;) = f(c2), so since f is one-to-one, ¢; = ¢3.

(b) Suppose that f[ C is onto. Suppose b € B. Then since f [ C is onto,
we can choose some ¢ € C such that { f[ C)(c) = b. But then ¢ € A,
and by exercise 7(a) of Section 5.1, f(c) = b.

(c) Let A= B =Rand C =R™.For(a), use f(x) = |x|, and for (b), use
fx)=x.

14. (a) Suppose R is reflexive and f is onto. Let x € B be arbitrary. Since f
is onto, we can choose some u# € A such that f(u) = x. Since R is
reflexive, (1, u) € R. Therefore (x, x) € S.

(b) Suppose R is transitive and f is one-to-one. Suppose that (x, y) € §
and (y,z) € S. Since (x, y) € §, we can choose some « and v in
A such that f(u) =x, f(v) =y, and (u,v) € R. Similarly, since
(v, z) € § we can choose p and g in A such that f(p) =y, f(g) =z,
and (p. g) € R. Since f(v) =y = f(p) and f is one-to-one, v = p.
Therefore (v, g) = (p, ¢) € R. Since we also have (4, v) € R, by tran-
sitivity of R it follows that (4, g) € R, so (x,z) € §.

17. (a) Let b € B be arbitrary. Since f is onto, we can choose some a € A
such that f(a) =b. Therefore g(b)=(go f)a)=(ho f)a) =
h(b). Since b was arbitrary, this shows that Yb € B(g(b) = h(b)), so
g=h

(b) Let ¢; and ¢; be two distinct elements of C. Suppose b € B. Let
g and h be functions from B to C such that Vx € B(g(x) = ¢),
Vx € B\ {b}(h(x) = ¢1),and h(b) = c5. (Formally, g = B x {c;}and
h =B\ {b}) x {c1}]U{(b,€2)}.) Then g # h, so by assumption
go f#ho f, and therefore we can choose some a € A such that
g(f(a)) # h(f(a)). But by the way g and h were defined, the only
x € B for which g(x) # h(x) is x = b, so it follows that f(a) = b.
Since b was arbitrary, this shows that f is onto.

Section 5.3

1. R~!(p) = the person sitting immediately to the right of p.
3. Let g(x) = (3x — 5)/2. Then for any x € R,

2(3x — 5)/2+5 _3x—5+5 _ 3x

and

_3{2x+5)/3—5_2x+5—5_2;\:_
g(f(x) = 5 = 5 =5 = X.
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Therefore f o g = ip and g o f = i, and by Theorems 5.3.4 and 5.3.5 it

follows that f is one-to-one and onto and f~' = g.

flx)=2—logx.

Suppose that f:A— B, g: B — A, and fog=ip. Let b be an

arbitrary element of B. Let a = g(b) € A. Then f(a)= f(g(h)) =

(f o g)b) =ig(b) = b. Since b was arbitrary, this shows that f is onto.

(a) Suppose that f is one-to-one and f o g =ig. By part 2 of Theo-
rem 5.3.3, f is also onto, so f~': B — A and f~'o f =ia. This
gives us enough information to imitate the reasoning in the proof of
Theorem 5.3.5:

g=inog=(f"oflog=fTo(feg)=ftoig=f".

(b) Hint: Imitate the solution to part (a).

(c) Hint: Use parts (a) and (b), together with Theorem 5.3.3.

(a) Suppose x € A" = Ran(g). Then we can choose some b € B such
that g(h) = x. Therefore (g o f)(x) = g(f(g(h))) = g((f o g)(b)) =
gligh)) = gb) = x.

(b) By the given information, (f[A’)og=1ip, and by part (a),
go(f[A") = ia. Therefore by Theorem 5.3.4, /| A’ is a one-to-one,
onto function from A’ to B, and by Theorem 5.3.5, g = (f] A) L.

Hint: Suppose x € R. To determine whether or not x € Ran( f'), you must

see if you can find a real number y such that f(y) = x. In other words, you

must try to solve the equation 4y — y? = x for y in terms of x. Notice that
this is similar to the method we used in part 1 of Example 5.3.6. However,
in this case you will find that for some values of x there is no solution for

v, and for some values of x there is more than one solution for y.

Chapter 6

Section 6.1

. Base case: When n = 0, both sides of the equation are 0.

Induction step: Suppose that n €M and O+ 142+ .--+n=
n(n + 1)/2. Then

O+14+2+-++D=0+1+24--+n)+n+1)
nn+1)

ZT-F(R-I-I)

:(n+])(%+]):

(n+ Dn+2)
—

as required.
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3. Base case: When n = (0, both sides of the equation are 0.
Induction step: Suppose thatn € Nand 0° + 17 +2* ... 4 1° =
[n(n 4+ 1)/2]*. Then

C+P+2 4+ + 1P =0+ P42+ )+ (n+1)
B [n(n + 1D

2
; ] +m+ 1}

2
Z(n+l)2|:%+n+l}

n*+4n +4
— 172 —
(n+1) 1

_[e+Dn+27
- 3 .

7. Hint: The formula is (3"! — 1)/2.
10. Base case: Whenn =0,9" —8n — 1 =0=64-.0,s50 64| (9" — 8n — 1).
Induction step: Suppose that n € N and 64 | (9" — 81 — 1). Then there
is some integer k such that 9" — 81 — 1 = 64k. Therefore

9 8+ 1 —1=9"""—8n -9
=9"" — 720 — 9+ 64n
=9(9" — 8n — 1)+ 64n
= 9(64k) + 64n
= 64(9k + n),

50 64 | (9" —8(n+ 1) —1).
14. Base case: When n = 10, 2" = 1024 > 1000 = n*.
Induction step: Suppose n = 10 and 2" > n>. Then

2nHl = 2.
> 2n? (by inductive hypothesis)
=34 n
> n’ + 1012 (since n = 10)
= n’ + 3n% + Tn?
>nd +3n2 +70n (since n = 10)

n® +3n% 4 3n+ 6n
=43 +3In+1=m+ D

19. (a) Basecase: Whenn = 1, the statementtobeprovenis0 < a < b, which
was given.
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Induction step: Suppose that n = 1 and 0 < a" < ". Multiplying
this inequality by the positive number a we get 0 < ¢"*!' < ab”, and
multiplying the inequality a < b by the positive number b" gives
us ab" < b"*!. Combining these inequalities, we can conclude that
0 < a™t! < ptl,

(b) Hint: First note that /a and /b are both positive. (For n odd, this
follows from exercise 18. For n even, each of a and b has two nth
roots, one positive and one negative, but /a and /b are by definition
the positive roots.) Now use proof by contradiction, and apply part (a).

(c) Hint: The inequality to be proven can be rearranged to read a"*! —
ab" — ba" + B! > 0. Now factor the left side of this inequality.

(d) Hint: Use mathematical induction. For the base case,use then = 1 case
of part (c). For the induction step, multiply both sides of the inductive
hypothesis by (a + b)/2 and then apply part (c).

Section 6.2

1. (a) We must prove that R’ is reflexive, transitive, and antisymmetric. For
the first, suppose x € A’. Since R is reflexive, (x, x) € R, s0 (x,x) €
RN(A" x A") = R'. This shows that R’ is reflexive.

Next, suppose that (x,y)€ R" and (y,z) € R’. Then (x,y)¢€
R,(v.2)€ R, and x,y,z € A". Since R is transitive, (x,z) € R, so
(x,z) e RN (A" x A") = R'. Therefore R’ is transitive.

Finally, suppose that (x, y) € R" and (y, x) € R". Then (x, y) € R
and (y, x) € R, so since R is antisymmetric, x = y. Thus R’ is anti-
symmetric.

(b) To see that T is reflexive, suppose x € A. If x = a, then (x,x) =
(a,a)e{a} x ACT.Ifx # a,then x € A’, so since R’ is reflexive,
(x,x) eRRCT'CT.

For transitivity, suppose that (x,y) € T and (y,z) e T. lf x =a
then (x,z)=1(a,z)€{a} x ACT. Now suppose x # a. Then
(x,v) ¢ {a) x A,sosince (x, y) € T = T'U ({a} x A) we must have
(x,)eT'.ButT" C A" x A", soy € A" and therefore y # a. Similar
reasoning now shows that (y, z) € T'. Since T' is transitive, it follows
that(x,z) e T"C T.

To show that T is antisymmetric, suppose (x, ¥) € Tand (y,x) € T.
If x = athen (y,x) € T',s0(y, x) € {a} x A and therefore y =a =
x.Similarly,if y = athenx = y. Now suppose x # a and y # a. Then
as in the proof of transitivity it follows that (x, y) € T and (y, x) € T',
s0 by antisymmetry of 7', x = y.
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We now know that T is a partial order. To see that it is total, suppose
xeAand y € A. If x = a then (x, y) € {a} x A C T. Similarly, if
y =a then (y,x) € T. Now suppose x = a and y ## a. Then x € A’
and y € A’, so since T' is a total order, either (x,y)e T'C T or
(v,x)eT'CT.

Finally, to see that R € T, suppose that (x, y) € R. If x = a then
(x,y) € {a} x A € T.Now suppose x # a. If y = a then the fact that
(x,y) € R would contradict the R-minimality of a. Therefore y # a.
Butthen(x,y) e RN(A"x AY)=R CT'CT.

We will prove the statement: Forevery n = 1, forevery B C A, if Bhas
nelements then there is some x € B suchthatVy € B((x, y) € Ro R).
We proceed by induction on n.

Base case: Supposen = 1.If B € A and B has one element, then for
some x € B, B = {x}. Since R is reflexive, (x, x) € R, and therefore
(x,x) € Ro R. But x is the only element in B, so Yy € B((x,y) €
R o R), as required.

Induction step: Suppose that n > 1 and for every B C A, if B has
n elements then 3x € BYy € B((x, y) € R o R). Now suppose that
B C A and B has n+ 1 elements. Choose some b € B, and let
B’ = B\ {b}. Then B’ € A and B’ has n elements, so by inductive
hypothesis there is some x € B’ such that Vy € B'((x, y) € Ro R).
We now consider two cases.

Case 1: (x,b) € Ro R. Then Yy € B((x,y) € Ro R), so we are
done.

Case 2: (x,b) ¢ Ro R. In this case, we will prove that Vy ¢
B((b, y) € R o R). To do this, let y € B be arbitrary. If y = b, then
since R is reflexive, (b, b) € R, and therefore (b, y) = (b, b) € R o R.
Now suppose y # b. Then y € B’, so by the choice of x we know
that (x, y¥) € R o R. This means that for some z € A, (x,z) € R and
(z.y) € R. We have (x,z) € R, so if (z, b) € R then (x,b) € R o R,
contrary to the assumption for this case. Therefore (z, b) ¢ R, soby the
hypothesis on R, (b, z) € R. But then since (b, z) € Rand (z, y) € R,
we have (b, ¥) € R o R, as required.

Hint: Let A = B = the set of contestants and let R = {(x,y) € A x
A | x beats y} Ui,. Now apply part (a).

Let m = (a + b)/2, the arithmetic mean of a and b, and let d =
(a — b)/2. Then it is easy to check that m + d = aandm — d = b, so

«/E:,X(m-l—d)(m—d):\/mz—dzgm:m:a+b.

2




(b)

(c)

(d)
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We use induction on n.

Base case: n = 1. This case is taken care of by part (a).

Induction step: Suppose n = 1, and the arithmetic-geometric mean
inequality holds for lists of length 2". Now let a;, ay, ..., @ be a
list of 27! positive real numbers. Let

ay+dr+ -+ dow Aoy + Aoogs + -+ Gonsl
m; = o and m, = > .

Notice that a;+ar+ -+ ax» =m 2", and similarly apyy +
gy + o+ an = my2". Also, by inductive hypothesis, we know
that my > 3/ajay -+~ az andmy > /@y 1@ 3 - dyeer. Therefore

ap +az + - A daes m2" 4+ m>2" omy +ms
2H+| = 2n+l = 2 :—> ¥ Iy niy

J{I/(I]az s fdon {/ﬂzn_‘_;ﬂzn_l_g s fdansl

i+l
= " Njapdy - dontl.

IV

We use induction on n.
Base case: If n = ng, then by assumption the arithmetic-geometric
mean inequality fails for some list of length n.
Induction step: Suppose n = ny, and there are positive real numbers
ay, ds, ...,a, such that
ayta+---+a,
n

< Jayaz - ay,.

Let m =(a; +a> + -+ a,)/n, and let a,.; = m. Then we have
m < Yfaiaz---a,, so m" < aa---a,. Multiplying both sides of
this inequality by m gives us m"™! < ajas---a,m = ajas -+ - a, 11,
so m < "/aja;---a,+1. But notice that we also have mn = a; +
ar + -+ -+ ay, S0

ar+-t+ap  mnt+m  mn+1)
n+1  on+l n+l

=m < "Yajaz- - dy+1.

Thus, we have a list of length n 4 1 for which the arithmetic-geometric
mean inequality fails.

Suppose that the arithmetic-geometric mean inequality fails for some
list of positive real numbers. Let 11 be the length of this list, and choose
an integer n = 1 such that ny < 2". (In fact, we could just let n = ny,
as you will show in exercise 12(a) in Section 6.3.) Then by part (b),
the arithmetic-geometric mean inequality holds for all lists of length
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2", but by part (c), it must fail for some list of length 2". This is a
contradiction, so the inequality must always hold.
We proceed by induction on a.

Base case: n = 0. If A has 0 elements, then A = &, s0 #(A) = {J},
which has 1 = 2 elements.

Induction step: Suppose that for every set A with n elements, 7 (A)
has 2" elements. Now suppose that A has n + 1 elements. Let a be any
element of A, and let A" = A \ {a}. Then A’ has n elements, so (A"
has 2" elements. There are two kinds of subsets of A: those that contain a
as an element, and those that don’t. The subsets that don’t contain a are
just the subsets of A’, and by inductive hypothesis there are 2" of these.
Those that do contain « are the sets of the form X U {a}, where X € #*(A"),
and there are also 2" of these, since by inductive hypothesis there are 2"
possible choices for X. Thus the total number of elements of 7 (A) is
2t 427 = 2+
Base case: n = 1. One chord cuts the circle into two regions, and
n+n+2)/2=2

Induction step: Suppose that when n chords are drawn, the circle is cut
into (n? + n + 2)/2 regions. When another chord is drawn, it will intersect
each of the first n chords exactly once. Therefore it will pass throughn + 1
regions, cutting each of those regions in two. (Each time it crosses one
of the first n chords, it passes from one region to another.) Therefore the
number of regions after the next chord is drawn is

n>4n+2 n?+3n+4 n+ 1P 4+m+1)+2
?+(n+l)— 3 ( r 2( ) ,

as required.

Section 6.3

. Hint: The formula is

i | . n
ii+1) n+1l

i=1

noq

i=1

. Base case: n = 1. Then

= | -

Induction step: Suppose that

IEELE

I!\
:|—
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Then
n+1 1 3 n 1+ 1 {2 l+ 1
2 =i (a1 n (n+1)72
nt4n+1 nt+n 1
nin +1)2 n(n + 1)2 n+1

8. (a) We let m be arbitrary and then prove by induction that for all n = m,
H,—H, =(n-m)/n.
Base case: n = m. Then H, — H,, =0 = 0= (n — m)/n.
Induction step: Suppose thatn = m and H, — H,, = (n — m)/n.
Then
1 n—m 1
H,,+1—H,,,:H,,+m—H,,,3 ; +n+l
n?4n—mn—m+n n*+n—mn
nin+1) = nin+1)
n+1—m
n+1

(by Basecase:lfn =0then Hp = Hy =1>1=1+4n/2.

Induction step: Suppose n = 0 and H>» = 1 + n/2. By part (a),
2i1+i —n 1
Hywit — Hyw = T = E

Therefore

H }H+l:>l+n+l—l+n+l
e T T T 2

(c) Since lim,_.~, 1 +1/2 = o0, by part (b) lim,,_. », H = 0o. Clearly
the H,’s form an increasing sequence, so lim,_. ., H, = oc.
12. (a) Hint: Try proving that 2" = n + 1, from which the desired conclusion
follows.
(b) Base case: n = 9. Then n! = 362880 > 262144 = (2")%.
Induction step: Suppose that n = 9 and n! = (2")2. Then

m+D'=@+D-n'>=m+1)-29 =102 =2%.2™
— 22n+2 — {2n+! )2.
(c) Basecase:n = (0. Thenn!=1<1= 20,
Induction step: Suppose that n! < 20" Then
2[(!1—!—1}1] — 2!12+2n+1 — 2{!12) . 22n+| - 2(}13] . 2n+1 - nl. (ﬂ + l)

=(n+ 1!
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(Notice that the second to last step uses both the inductive hypothesis
and part (a).)
15. Basecase: n = 0. Thena, =ay =0=2"-0—-1=2"—n — 1.
Induction step: Suppose thatn € N and @, = 2" — n — 1. Then

(LR 223:1"'”:2(2" —n—1)+n
=2 _p—24p=2"—p-2=2""_m+1-1

18. (a) G;) = u;iu = l and (:) = n?-:]! =1
(b)

n n _ n! n!
(k) + (k— J) T kN n - k) + (k= Dln —k + 1D
nln—k+1 nlk

T —k4+ D! ko —k + 1)
_ nlin+1) _(n + 1
CkMn+ 1=k O\ k)

(c) We follow the hint.

Base case: n = (). Suppose A is a set with O elements. Then A = &,
the only value of k& we have to worry about is k = 0, #°¢(A) = {J},
which has 1 element, and (::] =1.

Induction step: Suppose the desired conclusion holds for sets with
n elements, and A is a set with n + 1 elements. Let a be an element of
A, and let A" = A\ {a}, which is a set with n elements. Now suppose
0 < k < n+ 1. We consider three cases.

Case 1: k = 0. Then #*(A) = {&}, which has 1 element, and
(=1

Case 2: k = n + 1. Then #”;(A) = {A}, which has 1 element, and
()=t

Case 3. 0 < k < n. There are two kinds of k-element subsets of
A: those that contain a as an element, and those that don’t. The k-
element subsets that don’t contain a are just the k-element subsets
of A’, and by inductive hypothesis there are (:) of these. Those that
do contain a are the sets of the form X U {a}, where X € #7;_1(A"),
and by inductive hypothesis there are ( i L) of these, since this is the
number of possibilities for X. Therefore by part (b), the total number
of k-element subsets of A is

(:)Jr(kil):(}t:])'
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(d) We let x and y be arbitrary and then prove the equation by induction
on n.
Base case: n = 0. Then both sides of the equation are equal to 1.
Induction step: We will make use of parts (a) and (b). Suppose that

LI
(x+y no_ Z (k)xn—k}_.k.

k=0

Then
(x+ )" = (x4 y)x +y)
=(x+y) :)x"_k)’k (by inductive hypothesis)

(. )

_ ”’+l n+1 ”’+l) n,, (R+l) n—1.2
_( 0 )x +( i X'y + ’ X0y
H-I-] " !‘.'.+l n+1

(o (),

— i (H + l)xﬂ_H_k\’k.
k=0 k ‘

20. Hint: Surprisingly, it is easier to prove that foralln = 1,0 < a, < 1/2.

Section 6.4

1. (a) (—) Suppose that ¥a Q(n). Let n be arbitrary. Then Q(n + 1) is true,
which means Yk < n + 1(P(k)). In particular, since n < n + 1, P(n)
is true. Since n was arbitrary, this shows that ¥Vn P(n).
(<) Suppose that Yr P(n). Then for any n, it is clearly true that
Vk < nP(k), which means that Q(n) is true.




Appendix 1: Solutions to Selected Exercises

(b) Base case: n = 0. Then Q(n) is the statement Yk < 0P(k), which is

vacuously true.

Induction step: Suppose Q(n) is true. This means that Vk < n P(k)
is true, so by assumption, it follows that P(n) is true. Therefore Vk <
n + 1(P(k)) is true, which means that Q(n + 1) is true.

Suppose /6 is rational. Let S ={g € Z"|3p € Z*(p/q = V6).
Then § # &, so we can let ¢ be the smallest element of S, and we can
choose a positive integer p such that p/g = V6. Therefore p? =642,
so p? is even, and hence p is even. This means that p = 2p, for some
integer p. Thus 4p% = 642, so 2p> = 3¢ and therefore 3¢ is even.
It is easy to check that if g is odd then 3¢ is odd, so ¢ must be even,
which means that ¢ = 24 for some integer §. But then /6 = /7 and
g < g, contradicting the fact that ¢ is the smallest element of S.

Suppose that v/2 + +/3 = p/q. Squaring both sides gives us 5 +
246 = p?/g2. s0+/6 = (p* — 5¢%)/(2¢%), which contradicts part (a).

6. (a) We use ordinary induction on n.

Base case: n = 0. Both sides of the equation are equal to 0.

Induction step: Suppose that » i, F; = F,, — 1. Then
n+1 n

Y F=) Fi+Fu=Fu—D+Fp=Fus— L.

i=0 i=0

(b) We use ordinary induction on #.

Base case: n = (. Both sides of the equation are equal to 0.

Induction step. Suppose that Z::.‘:U(F,-)2 = F,F,;1. Then
n+1

D FY =) (F) + (Fas) = FFo + (Fa)’

i=0 i=0
= H+|{FH + Fn+i) = Fn+1-Fn+2-

(¢) We use ordinary induction on n.

Base case: n = (). Both sides of the equation are equal to 1.

Induction step: Suppose that 3 _:_, Fo; 11 = Fy,12. Then
n+1

Z Foip = Z Friy+ Foppa = Foyga + Fonga
i=0 i—0

= F2n+4 = FE(H+1)+2-

(d) The formulais ) 7 Foi = Fapyq — 1.

=0

8. (a) (—)Supposeay, a;. as, . ..is aGibonacci sequence. Then in particular

a; = ay + a;, which means ¢> = 1 + ¢. Solving this quadratic equa-
tion by the quadratic formula leads to the conclusion ¢ = (1 £ +/5)/2.

(<) Suppose either ¢ = (1 4+ +/5)/2 or ¢ = (1 — +/5)/2. Then
¢>=1+c, and therefore for every n>2, a,=c" =c""2* =

"l 4e)=" 4" =a, 0 a, .




10.
14.

18.

20.
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(b) It will be convenient to introduce the notation ¢; = (1 + +/5)/2
and ¢, = (1 — \/5)/2. Then for any n =2 a,=sc|+1cf =
sr:']’_ch + rcg_zc% = sr:’;_z(l +c1) + rc'g_z(l + ) = (.'re:";_2 +
rc';_z) + (sc"l’_' + rc;_’) = d,y_2 + dp_1.

(c) Hint: Let s = (Say + (2a; — ag)\/g);‘l() and t = (5ag — (2a; — ap)
V5)/10.

Hint: The formulaisa, =2 -3" —3.2".

Let a be the larger of Sk and k(k + 1). Now suppose n > a, and by the

division algorithm choose g and r such that n = kg +r and 0 <r < k.

Now note thatif ¢ <4 thenn =kg +r <4k +r < 5k < a, whichis a

contradiction. Therefore ¢ = 4, so ¢ = 5, and by Example 6.1.3 it follows

that 29 = ¢”. Similar reasoning shows thatg = k + 1,s0¢?> = gk + 1) =

kg + g > kg + r = n. Therefore 2" > 2% = (29)* > (¢*)* = n*.

We proceed by induction on j.

Base case: j = l. Suppose that py,qy. ¢, ...,q; are prime num-
bers and p; = q|q2- - - g4 Since p; is prime, we must have k = | and

P =dq.
Induction step: Suppose that j = 1, and for all £ = 1 and all non-
decreasing sequences of primes pi, pa,...,p; and g1, qo. ..., g, if

PPz P =qiq2---qrthen j = kand p; = g; foralli, 1 <i < j.Now
SuUppose pi, pa. ..., pj+1andqi, ga. .. ., g; are nondecreasing sequences
of primes and pyp;---pjs1 = qig2 -+ - gx. Then k = 2, since otherwise
we have pyps--- pjy1 = qi, contradicting the fact that g, is prime. Also,
Pi+11(q192---qi), so by exercise 17(b), pji1|¢; for some i. But then
Pj+1 = ¢i < qi. Similar reasoning shows that g; < pji1, S0 pjy1 = Gi.
Therefore pips--- p; = q1q2 - - - g¢—1, and by inductive hypothesis it fol-
lowsthatk — 1= jand p; =¢g; for1 =i < j.

Hint: The formula is a, = Fj42/F,+.

Section 6.5

. (a) To see that F # &, notice that B € A € A and A is closed under

f,so A € F. It follows that NF is defined, and in fact by exercise 9
of Section 3.3, NF C A. According to the definition of F, for every
C € F, B C C, so by exercise 10 of Section 3.3, B C NF. Thus, we
have B € NF € A. To see that NF is closed under f, suppose that
x € NF.LetC € Fbearbitrary. Thenx € C and C is closed under f, so
f(x) € C. Since C was arbitrary, this shows that VC € F(f(x) € C),
so f(x) € NJF. Finally, to see that F is smallest, suppose that B C
C C A and C is closed under f. Then C € F, and therefore, applying
exercise 9 of Section 3.3 again, NF C C.
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(by Let C = Upez+B,. Clearly B = B € C C A. To see that C is closed
under f, suppose x € C. Then for some n € Z*,x € B,, so f(x) €
B, and therefore f(x) € C.Finally, to see that C is smallest, suppose
that B € D € A and D is closed under f. We prove by induction that
Vn € Z*, B, C D, from which it follows that C C D.

Base case: n = 1. Then B, = B C D by assumption.

Induction step: Suppose n € Z" and B, € D.Nowlety € B, be
arbitrary. Then by the definition of B,+1, we can choose x € B, such
that y = f(x). Since B, € D,x € D, and since D is closed under
f,y= f(x) e D. Thus B,,; C D.

5.{neZ|nz=2}.

8. (a) RNSC R and RN S C 8. Therefore by exercise 7, for every pos-
itive integer n, (RN S)" C R" and (RN S € §", so (RN S)" C
R" N S". However, the two need not be equal. For example,
if A={1,2.3.4},R ={(1.2).(2,4)}. and S = {(1.3).(3.4)}, then
(RN S =@but R*n §* ={(1,4)}.

(by R"US" C (RUS)", but they need not be equal. (You should be able
to prove the first statement, and find a counterexample to justify the
second.)

10. (a) We use induction.

Base case: n = 1. Suppose (a,b)e R' =R. Let f ={(0,a),
(1, b)}. Then f is an R-path from a to b of length 1. For the other direc-
tion, suppose f is an R-path from a to b of length 1. By the definition
of R-path, this means that f(0) = a, f(1) = b, and (f(0), f(1)) € R.
Therefore (a, b) € R = R.

Induction step: Suppose n is a positive integer and R" = {(a, b) €
A x A | there is an R-path from a to b of length n}. Now suppose
(a,b) € R™' = R' o R". Then there is some ¢ such that (a, ¢) € R"
and (¢, b) € R. By inductive hypothesis, there is an R-path f from a to
c of length n. Then f U {(n + 1, b)} is an R-path from a to b of length
n + 1. For the other direction, suppose f is an R-path from a to b of
length n + 1. Let ¢ = f(n). Then f\{(n + 1, b)} is an R-path from
a to ¢ of length n, so by inductive hypothesis (a, ¢) € R". But also
(c.h)=(f(n), fln+ 1) eR,s0(a,b)c R' o R" = R**",

(b) This follows from part (a) and Theorem 6.5.2.

14. We use induction on n.

Base case: n = 1. Then x = 2! 4+ 2 = 4. The only value of i we have
to worry about is i = 0, and for this value of { we have i +2 = 2 and
x +1i =4. Since 2|4, we have (i + 2) | (x + {), as required.

Induction step: Suppose that n is a positive integer, and for ev-
ery integer i, if 0 <i <n —1then (i +2)|((n+ 1) 4+ 2 +i). Now let
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x =(n+2)! + 2, and suppose that 0 < i < n. If i = n then we have
X+i=m+2N+2+i=0+D!+0+D)=>0+2)(+ D!+ 1),

so (i +2)|(x +i). Now suppose 0 =i < n — 1. By inductive hypoth-
esis, we know that (i + 2)|((n + 1)! + 2 + i), so we can choose some
integer & such that (n + 1)! + 2 4+ i = k(i + 2), and therefore (n + 1)! =
(k — 1)(i + 2). Therefore

x+i=m+DI+2+i=nr+Dn+ DI+ +2)
=nm+Dk-DE+D+>@+2)=>0+D((n+2D*k-1D+ 1),

so (i +2) | (x +1i).

Chapter 7

Section 7.1

1. (a) Define f : Zt — N by the formula f(n) = n — 1. It is easy to check
that f is one-to-one and onto.
(b) Let E ={n € Z|n is even}, and define f : Z — E by the formula
f(n) = 2n. It is easy to check that f is one-to-one and onto, so Z ~ E.
But we already know that Z* ~ Z, so by Theorem 7.1.3, Z* ~ E, and
therefore E is denumerable.
4. (a) No. Counterexample: Let A = B = C = Z% and D = {1}.
(b) No. Counterexample: Let A=B =N, C=Z ,and D = .
6. (a) We proceed by induction on n.

Base case: n = 0. Suppose that m € I and there is a one-to-one,
onto function f : I, — I,,. Since n = 0, I, = &. But then since f is
onto, we must alsohave I,, = &, som =0=n.

Induction step: Suppose that n € N, and for all m € N, if I, ~ I,
then n = m. Now suppose thatm € Nand I, ~ I,. Let f : I, | —
I, be a one-to-one, onto function. Let k = f(n + 1), and notice that
I < k < m, so mis positive. Using the fact that f is onto, choose some
J < n+ 1suchthat f(j) = m.

We now define g : I, — I,,_ as follows:

. f@) ifizj,
g(‘):ik ifi=j.

We leave it to the reader to verify that g is one-to-one and onto. By
inductive hypothesis, it follows thatn = m — 1,son + 1 = m.
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(b} Suppose A is finite. Then by definition of “finite,” we know that there
is at least one n € I such that I, ~ A. To see that it is unique, sup-
pose that #n and m are natural numbers, I, ~ A, and [,, ~ A. Then by
Theorem 7.1.3, I, ~ I, so by part (a), n = m.

(a) We use induction on n.

Base case: n = 0. Suppose A € I, = . Then A = &, s0 |[A| = 0.

Induction step: Suppose that n € N, and for all A C I, A is finite,
|A| < n, and if A % I, then |A| < n. Now suppose that A C [,41. If
A = I, then clearly A ~ I,,;, s0 A is finite and |A| = n + 1. Now
suppose that A #£ I,.,. If n+1 ¢ A, then A C [, so by inductive
hypothesis, A is finite and |A| < n. If n + 1 € A, then there must be
some k € I, such that k ¢ A. Let A" = (AU {k})\ {n + 1}). Then by
matching up & with n + 1 it is not hard to show that A" ~ A. Also,
A’ C I,,soby inductive hypothesis, A" is finiteand |A’| < n. Therefore
by exercise 7, A is finite and |A] < n.

(b) Suppose A is finite and B C A. Letn = |A|,and let f : A — I, be
one-to-one and onto. Then f(B) C I,, so by part (a), f(B) is fi-
nite, | f(B)| < n,and if B #£ A then f(B) # I,,,so | f(B)| < n. Since
B ~ f(B), the desired conclusion follows.

It will be helpful first to verify two facts about the function f. Both of the

facts below can be checked by straightforward algebra:

(1) Forall j e Z*, f(1,j+ D — f(1, j) = j.

() Foralli, j e Z*, f(1,i + j— 1) < £, j) < f(1,i + j). It follows
that i + j is the smallest k € Z* such that f(i, j) < f(1, k).

To see that f is one-to-one, suppose that f(i;, j1) = f(i2, j»). Then by fact

(2) above,

i1 + j; = the smallestk € Zsuch thatf (iy, j1) < f(1.k)
= the smallestk € Z"such thatf(i2, j») < f(1, k)
=i+ 2

Using the definition of f, it follows that

(i+h—=2+h—D

iy = fl, i) = 5
oo (2+ =2+ -1
= f(ia2, j2) — 2
= is.
But then since i} = i; and i + j; = i3 + j», we must also have j; = j,,

so (i1, j1) = (i3, j2). This shows that f is one-to-one.
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To see that f is onto, suppose n € Z*. Let k be the smallest positive
integer such that f(1, k) > n, and notice that f(1,1)=1<n,s0k = 2.
Since k is smallest, f(1,k — 1) < n, and therefore by fact (1),

0<n—f k=1 < fl.k)— f(Lk— D)=k~ L.

Adding 1 to all terms, we get

l<n—-f(lLLk—1D+1<k.

Thus,ifweleti =n — f(l,k—1)+4 1thenl =i < k.Letj =k —i,and
notice that i € Z* and j € Z*. With this choice for i and j we have

(a)

i
f{i,j):{’-l-J )2{:+j )-H
:(7k_2)2(k_1)+n—f{].k—])+]

(k—2)k—1) I:(k—z)(k— 1)
:7-1-”’_ -

1 l =n.
> > +]+ n

If B\{f(m)|meZ",m<n}= & then B={f(m)|meZ",
m < n}, so by exercise 10, B is finite. But we assumed that B was
infinite, so this is impossible.

(b) We use strong induction. Suppose that ¥m < n, f(m) = m. Now

(c)

suppose that f(n) < n. Let m = f(n). Then by inductive hypoth-
esis, f(m) = m. Also, by the definition of f(n), m = f(n) € B\
{f)|[keZt k <=n) S B\ {f(k)|k € Z*,k < m}.Butsince f(m)
is the smallest element of this last set, it follows that f(m) < m. Since
we have f(m) = m and f(m) < m, we can conclude that f(m) = m.
But thenm ¢ B\ {f(k)| k € ZT, k < n}, so we have a contradiction.
Suppose that i € ZT, j € Z*, and i # j. Then either i < j or
J < i. Suppose first that i < j. Then according to the defini-
tion of f(j), f(j) € B\{f(m)|m € Z",m < j},and clearly f(i) €
{f(m)|m € Z*,m < j}. It follows that f(i) # f(j). A similar ar-
gument shows that if j < i then f(i) # f(j). This shows that f is
one-to-one.

To see that f is onto, suppose that n € B. By part (b), f(n + 1) >
n+ 1= n. But according to the definition of f, f(n+4 1) is the
smallest element of B\ { f(m)|m € Z*,m < n+ 1}. It follows that
né¢ B\{f(m)|meZ",m<n+1}. But n € B, so it must be the
case that also n € {f(m)|m € Z*, m < n + 1}. In other words, for
some positive integerm < n + 1, f(m) = n.
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17. Following the hint, we recursively define partial orders R,, forn € N, so
that R=Ry C R C R, C...and

Vi € [nvj € Z+{(ah aj) € Rn v (ajsaf) € Rn)- (*)

Let Ry = R. Given R,, to define R, we apply exercise 2 of Section 6.2,

with B = {q; |i € I,,}. Finally, let T = U,cqR,,. Clearly T is reflexive,

because every R, is. To see that T is transitive, suppose that (a,b) € T

and (b,¢) € T. Then for some natural numbers m and n, (a, b) € R,

and (b,c) € R,. If m < n then R,, C R,, and therefore (a,b) € R, and

(b, ¢) € R,. Since R, is transitive, it follows that (a,¢) € R, C T. A sim-

ilar argument shows that if n < m then (a, ¢) € T, so T is transitive. The

proof that T is antisymmetric is similar. Finally, to see that T is a total
order, suppose x € A and y € A. Since we have numbered the elements of

A, we know that for some positive integers m and n, x = a,, and y = a,,.

But then by (*) we know that either (a,,, a,) or (a,, a,,) is an element of

R, and therefore also an element of T.

20. (a) We tollow the hint.

Base case: n = 0. Suppose A and B are finite sets and | B| = 0. Then
B=C soAxB=Cand|A x B|=0=|A]-0.

Induction step: Let n be an arbitrary natural number, and suppose that
for all finite sets A and B, if |[B| = nthen A x Bisfiniteand |[A x B| =
|A| - n. Now suppose A and B are finite sets and |B| = n + 1. Choose
an element b € B, and let B’ = B\ {b}, a set with n elements. Then
Ax B=Ax (B U{b}))=(Ax BYU(A x {b}), and since b ¢ B’,
A x B" and A x {b} are disjoint. By inductive hypothesis, A x B’
is finite and |A x B'| = |A| - n. Also, it is not hard to see that A ~
A x {b}—just match up each x € A with (x, b) € A x {b}-so A x {b}
is finite and |A x {b}| = |A|. By Theorem 7.1.7, it follows that A x B
is finite and |A x B| = |A x B'| 4+ |A x {b}| = |A| -n + |A| = |A| -
(n+1).

(b) To order a meal, you name an element of A x B, where A = {steak,
chicken, pork chops, shrimp, spaghetti} and B = {ice cream, cake,
pie}. So the number of meals is |A x B| = |A|-[B]|=5-3 = 15.

22. (a) Base case: n = 0. If |[A| =0 then A = &, so F ={}, and |F| =
1 =0.L

Induction step: Suppose # is a natural number, and the desired
conclusion holds for n. Now let A be a set with n + 1 elements,
and let F = {f| f is a one-to-one, onto function from 7, to A}.
Let g : I,.; — A be a one-to-one, onto function. For each i € I,,.,,
let A; = A\ {g(i)}, a set with n elements, and let F; = {f| f is a
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one-to-one, onto function from 7, to A; }. By inductive hypothesis, F; is
finite and |F;| = n!. Now let F/ = {f € F| f(n + 1) = g(i)}. Define
a function h : F; — F/ by the formula h(f) = fU{(n + 1, g(i})}.
It is not hard to check that i is one-to-one and onto, so F i
finite and |F/| = |F;| = n!. Finally, notice that F = U;¢; , F/ and
VielLyVjeln(i#j— Fn Ff = @). It follows, by exercise
19, that F is finite and |F| = Z”H [F/|=(m+1-nl=m+DL
(b) Hint: Define h: F — L by the formula h(f)={(a,b)e A x
A| f~Ya) < f~1(b)}. (Youshould check that this set is a total order on
A.) To see that /1 is one-to-one, suppose that f € F, g € F,and [ # g.
Let i be the smallest element of I, for which f(i) # g(i). Now show
that (f(i), g(i)) € h(f)but (f(i), g(i)) ¢ h(g),so h(f) # h(g). Tosee
that /1 is onto, suppose R is a total order on A. Define g : A — [, by the
formula g(a) = |{x € A | xRa}|. Show that Va € AVb € A(aRb <
g(a) < g(b)), and use this fact to show that g=! € F and h(g™!) = R.
() 5! = 120.
25. Base case: n = 1. Then I, = {1}, P = {{1}}, and A};; = A,. Therefore
|Uier, Ail = [A1land Y g p(— DS Ag| = (=12 Ay | = |A4].
Induction step: Suppose the Inclusion—Exclusion Principle holds for n
sets, and suppose A, As, ..., A, are finite sets. Let P, = #°(I,)\ {J}
and P, = #°(I,11) \ {}. By exercise 24(a), exercise 22(a) of Section
3.4, and the inductive hypothesis,

|U:'EJ’,,+, Ai| = |(UIE!,,AF) U An+!|
= |Uier, Ail + [Anp] — [(Uie, AN Ap |
= 3 (DS A+ Apia| — [Urer, (Ai 0 Ay

SeP,

Now notice that forevery § € P,, Nics(A; N A1) = (Mics A M AL =
Aguin+1y. Therefore, by another application of the inductive hypothesis,
|Uier, (Ai N Aui)] = X gep (=D Agypnyy | Thus

Uiery Ail = (DA + [Aua] = Y (=D Asypusy]

SeP, SEP,
= Y (DA + (=1 Agay]
Sehy,

+ Y (=D Ay

Sep,
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Finally, notice that there are three kinds of elements of P,.;: those that are
elements of P,, the set {n + 1}, and sets of the form S U {n + 1}, where
§ € P,.Itfollows that the last formula above is just ZSE&H (=DISHY Ayl
as required.

Section 7.2

1. (a) By Theorem 7.1.6, @ is countable. If & \ @ were countable then, by
Theorem 7.2.1, Q U(R \ @) = R would be countable, contradicting
Theorem 7.2.6. Thus, R \ ) must be uncountable.

(b) Let A = {/2 4 n|n € Z*}. Itis not hard to see that A and Q are dis-
joint, since /2 is irrational, and A is denumerable. Now apply Theo-
rems 7.1.6 and 7.2.1 to conclude that A U () is denumerable, and there-
fore A U@ ~ A. Finally, observe that R = (E\ (AUQ)HUAUDQ)
and R\ Q =R\ (AUQ))U A, and apply part 2 of Theorem 7.1.2.

4. Suppose that A ~ #”(A). Then there is a one-to-one, onto function f :
A— P(A)Let X ={aec Ala ¢ f(a)} € #°(A). Since f is onto, there
must be some a € A such that f(a) = X. But then according to the defi-
nitionof X, a € X iffa ¢ f(a),so X # f(a), which is a contradiction.

7. Hint: Define f : #°(A) x #?(B) — #(A U B) by the formula f(X, Y) =
X UY, and prove that f is one-to-one and onto.

9. Hint: First note that if 7 = & then g can be any function. If F # &,
then since F is countable, we can write its elements in a list: F =
{f1, fo, ...}). Now define g : Z — R by the formula g(n) = max{| f(n)|,
|2, .. | fu(m)]}.

Section 7.3

1. (a) The functioniy : A — A is one-to-one.
(b) Suppose A = B and B = C. Then there are one-to-one functions f :
A— Bandg: B — C.Bypart] of Theorem5.25, g0 f:4—> C
is one-to-one, so A = C.
S5.Letg: A — Bandh: C — D be one-to-one functions.
(a) Since A # @, we can choose some ay € A. Notice that g~ ':

Ran(g) — A. Now define j : B — A as follows:

g '(b) ifbeRang,
dy otherwise.

Jjb) = [

We let the reader verify that j is onto.




(b)
8. (a)

(b)

10. (a)

®

'

()

14. (a)

(b)

()
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Now define F : *C — D by the formula F(f)=ho foj. To
see that F is one-to-one, suppose that f; € 4C, f> € *C,and F(f1) =
F(f>), which means ho fio j=ho fo0j. Let a € A be arbitrary.
Since j is onto, there is some b € B such that j(b) = a. Therefore
h(fi(@) = (ho fio j)b)=(ho fr0 j)b) = h(f:a)), and since h
is one-to-one, it follows that fi(a) = f>(a). Since a was arbitrary, this
shows that f; = f5.

Yes. (You should be able to justify this answer with a counterexample.)
Let 1 be arbitrary, and then proceed by induction on m. The base case
is m = n + 1, and it is taken care of by exercise 7. For the induction
step, apply exercise 2(b).

Unez+ A, 1s an infinite set that is not equinumerous with A, for any
n € Z*. In fact, for every positive integer n, A, < U,zz+A,. Can you
find even larger infinite sets?

Note that £ C #?(Z* x Z7). It follows, using exercise 5 of Sec-
tion 7.1, that £ = P (Z1 x Z1) ~ P (ZT).

Suppose f(X) = f(¥). Then X U {1} € f(X)= f(¥) = {Y U{1},
(A\YVYU{2}), soeither XU{l}=YU{l}Jor XU{l}=(A\ YU
{2}. But clearly 2 ¢ X U {1}, so the second possibility can be ruled
out. Therefore X U {1} = ¥ U {1}. Since neither X nor ¥ contains 1, it
follows that X = Y.

Clearly A is denumerable, and we showed at the end of Section 5.3
that P ~ & Itfollows that % (ZT) ~ 7 (A) =% P ~ £.Combining this
with part (a) and applying the Cantor—Schroder—Bernstein Theorem
gives the desired conclusion.

According to the definition of function, ER c 2R x R), and
therefore by exercise 12(b) and exercise 5 of Section 7.1, *R =
PR xR)~2(R).

Clearly {yes,no} 2 I, so by exercise 5(c) of Section 7.2 and
exercise 5, 7 (R) ~ *{yes, no} < *R. Since we have both *R <
#(R)yand 7 [R) = ER, by the Cantor-Schréder—Bernstein theorem,
ER ~ 2 (R).

By Theorems 7.1.6 and 7.3.3, exercise 21(a) of Section 7.1, and exer-
cise 5(d) of Section 7.2, “R ~ 2 (ZF) ~ 2(Z*) ~ R.

Define F : C — YR by the formula F(f) = f [ Q. (See exercise 7
of Section 5.1 for the meaning of the notation used here.) Suppose
felCgel and F(fy= F(g). Then f | Q@ = g | Q, which means
that for all x € @, f(x) = g(x). Now let x be an arbitrary real num-
ber. Use Lemma 7.3.4 to construct a sequence x, X1, ... of rational
numbers such that lim,_. ., x, = x. Then since f and g are continuous,
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F(x)=1lim,_ ~ f(x,;) = 1lim,_. . g(x,) = g(x).Since x was arbitrary,
this shows that f = g. Therefore F is one-to-one, so C < “R. Com-
bining this with part (b), we can conclude that C 2 R.

Now define G : R — C by the formula G(x) = R x {x}. In other
words, G(x) is the constant function whose value at every real number
is x. Clearly G is one-to-one, so R = C. By the Cantor—Schroder—
Bernstein Theorem, it follows that C ~ R.




Appendix 2

Proof Designer

Proof Designer is a Java applet that writes outlines of proofs in elementary set
theory, under the guidance of the user. It should work on any computer with
a sufficiently up-to-date version of Java, including both PC and Macintosh
computers. To use Proof Designer, open your web browser and go to the Proof
Designer website:

http: //www.cs.amherst.edu/"djv/pd/pd.html

Complete instructions for using Proof Designer can be found at the website.
Here we will provide an outline of these instructions.

When you open the Proof Designer home page in your browser you should
see a button at the bottom of the page that says “Write a Proof.” (If you don’t,
you may need to follow the instructions at the website for setting up your
computer to use Proof Designer.) To start writing a proof, click on the Write a
Proof button.

A dialog box will open, asking you to enter the hypotheses and conclusion
of the theorem you want to prove. The hypotheses and conclusion are entered
using ordinary set-theoretic and logical notation.! When you have entered the
hypotheses and conclusion, click OK.

The dialog box will close, and a new window will open. The window will

(LY

contain three menus, called “Edit,” “Strategy,” and “Infer.” Below the menus

will be the statement of the theorem you are proving, and then a place where

! There is one significant difference between the way set theory notation is used in Proof Designer
and the way we have used it in this book. The difference concerns intersections of families of
sets. In this book, we have used the notation MF only in contexts in which we could be sure that
F # @ thereason for this rule is discussed in exercise 14 of Section 2.3. Proof Designer enforces
this rule by restricting the contexts in which the notation M. can be used. For further details
about this, and a more complete explanation of how to type statements into Proof Designer, see
the website.
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the proof will go. As you give commands in Proof Designer, an outline of the

proof will gradually take shape in this window. While you are working on the
proof, there will usually be one or more gaps in the proof where additional
steps need to be filled in. Each gap will be indented and enclosed in a box,

iy

and it will have a button labeled in the upper left corner. The gap will say
what needs to be filled in at that point in the proof, and then it will give a list
of givens — statements that are known to be true at that point in the proof — and
the goal of the gap. Usually the goal is a statement that needs to be proven, but
occasionally the goal indicates that you need to assign a value to a variable,
and you can also have gaps that have no goal at all. Initially, the entire proof
consists of a gap whose givens are the hypotheses of the theorem, and whose
goal 1s the conclusion of the theorem.

To add a step to the proof, you click on a given or goal to select it and then
give a command from one of the menus at the top of the window. Sometimes
you will need to select several items. To do this, select the first item, and then
hold down the shift key on the keyboard and click on additional items to add
them to the selection. You can also select an entire gap by clicking either on
the sentence that introduces the gap or in the margin to the left of the gap.

As you give commands, steps will be added to the proof, and the givens and
goal lists will be updated. Sometimes a step will be justified by a subproof — a
sequence of steps that, together, justify an assertion. Each subproof is indented
and enclosed in a box, and has a button labeled “” in the upper left corner.
Subproofs can be nested inside each other, and a subproof may also contain a
gap. You can select a step in the proof by clicking on it. If the step is justified
by one or more subproofs, the subproofs get selected as well.

Some commands will add variant forms to givens or goals. A variant of a
statement is another statement that is equivalent to the original statement. A
variant of a given or goal is listed below the original and indented. You use a
variant just like the original given or goal. In particular, you can select a variant
by clicking on it.

You can change the order of the givens in a givens list by pointing to a given,
pressing and holding down the mouse button to “grab” it, and then dragging it
to a new location in the list. Any variants of the given get moved with it.

If the structure of the proof you are creating gets complicated, you can hide
some of the details by clicking on a “"” or *“?” button in the upper left corner
of a subproof or gap. When you click on the button, the details of the subproof
or gap are hidden. Click again to show the details again.

Applets are not allowed to print. However, you may be able to print your
proof by using one of the Export HTML commands. See the website for details
on this.




Suggestions for Further Reading

Barwise, J. and Echemendy, J. Language, Proof and Logic. Stanford: CSLI
Publications, 2002.

Burton, D. Elementary Number Theory, 5th edition. Boston: McGraw-Hill,
2002.

Eccles, P. An Introduction to Mathematical Reasoning: Numbers, Sets and
Functions. Cambridge: Cambridge University Press, 1997.

Enderton, H. A Mathematical Introduction to Logic, 2nd edition. San Diego:
Harcourt/Academic Press, 2001.

Enderton, H. Efements of Set Theory. San Diego: Academic Press, 1977.

Epp, S. Discrete Mathematics with Applications, 3rd edition. Belmont, Calif.:
Brooks Cole, 2004.

Halmos, P. Naive Set Theory. New York: Springer-Verlag, 1974.

Hamilton, A. Logic for Mathematicians, revised edition. Cambridge: Cam-
bridge University Press, 1988.

Hamilton, A. Numbers, Sets and Axioms: The Apparatus of Mathematics.
Cambridge: Cambridge University Press, 1982.

Mendelson, E. Introduction to Mathematical Logic, 4th edition. London:
Chapman & Hall, 1997.

Polya, G. How to Solve It: A New Aspect of Mathematical Method, 2nd edition.
Princeton: Princeton University Press, 1957,

Rosen, K. Discrete Mathematics and Its Applications, 5th edition. Boston:
McGraw-Hill, 2003.

Ross, K. and Wright, C. Discrete Mathematics, 5th edition. Upper Saddle River,
N.J.: Prentice Hall, 2003.

Stark, H. An Introduction to Number Theory. Cambridge, Mass.: MIT Press,
1978.

van Dalen, D., Doets, H., and deSwart, H. Sets: Naive, Axiomatic, and Applied.
Oxford: Pergamon Press, 1978.

375




Summary of Proof Techniques

Note: Paragraphs marked with the symbol % explain how to use each technique
in Proof Designer.

To prove a goal of the form:

l. =P:
(a) Reexpress as a positive statement.

h: Select the goal, give the Reexpress command in the Strategy menu,
and use the Reexpress Negative button in the Reexpress dialog box.

(b) Use proof by contradiction; that is, assume that P is true and try to reach

a contradiction.

h: Select the goal and give the Contradiction command in the Strategy
menu. If you already know which given you are planning to contradict,
you can select it too before giving the Contradiction command, and
Proof Designer will indicate what you have to prove to achieve the
desired contradiction.

2. P— Q:
(a) Assume P is true and prove Q.
h: Select the goal and give the Direct command in the Strategy menu.
(b) Prove the contrapositive; that is, assume that Q is false and prove that

P is false.

i: Select the goal and give the Contrapositive command in the Strategy
menu.

3. PAQO:
Prove P and Q separately. In other words, treat this as two separate goals:
P,and Q.

%: Selectthe goal and give the Conjunction command in the Infer menu.

If you already have either P or O as a given, you can select it too,
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and Proof Designer will only ask you to prove the statement that you
don't already know.
4. Pv Q:
(a) Assume P is false and prove Q, or assume Q is false and prove P.

: Select the goal and give the Disjunction command in the Strategy
menu. Proof Designer will ask which statement you are planning to
prove.

(b) Use proof by cases. In each case, either prove P or prove Q.

: Use the Cases command in the Strategy menu to break your proof
into cases. Your goal in each case willbe P v Q. In each case, select
this goal and give the Disjunction command in the Strategy menu,
and Proof Designer will ask you which statement you plan to prove
in that case. If you don't want to assume the negation of the other
statement, remove the check mark from the "Assume negations of
others” check box by clicking on it.

5. P« O:
Prove P — Q and Q — P, using the methods listed under part 2.

%: Select the goal and give the Biconditional command in the Strategy
menu.

6. YxP(x):
Let x stand for an arbitrary object, and prove P(x). (If the letter x already
stands for something in the proof, you will have to use a different letter for
the arbitrary object.)

h: Selectthe goal and give the Arbitrary Object command in the Strategy
menu.

7. AxP(x):
Find a value of x that makes P(x) true. Prove P (x) for this value of x.

h: Select the goal and give the Existence command in the Strategy
menu. Proof Designer will ask you what value you want to use for
x. If you're not sure what to use for x, you can choose a variable to
stand for this value, and fill in the choice of a value for that variable
later.

8. dlx P(x):
(a) Prove 3x P(x) (existence) and VyVz((P(y) A P(z)) — y = z) (unique-
ness).

%: Select the goal and give the Existence & Uniqueness command in
the Strategy menu.

(b) Prove the equivalent statement Ix (P (x) AVy(P(y) — y = x)).

h: Select the goal, give the Reexpress command in the Strategy menu,

and click on the Apply Definition button in the Reexpress dialog box.
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9.

Yn e MNP(n):

(a) Mathematical Induction: Prove P(0) (base case) and Vn € N(P(n) —
P(n + 1)) (induction step).

(b) Strong Induction: Prove Vi € N[(Vk < nP(k)) — P(n)].

To use a given of the form:

1.

(R

—P:
(a) Reexpress as a positive statement.
h: Select the given, give the Reexpress command in the Strategy menu,
and use the Reexpress Negative button in the Reexpress dialog box.
(b) In aproofby contradiction, you can reach a contradiction by proving P.
: Select the given and give the Contradiction command in the Strategy
menu.

. P— Q:

(a) If you are also given P, or you can prove that P is true, then you can
conclude that Q is true.

i: Select the givens P and P — Q and give the Modus Ponens com-
mand in the Infer menu, and Proof Designer will infer Q. (If you don't
already have P as a given but you think you can prove it, you can use
the Insert command in the Edit menu to insert a proof of P.)

(b) Use the contrapositive: If you are given or can prove that Q is false,
then you can conclude that P is false.

th: Select the givens -0 and P — @ and give the Modus Tollens com-
mand in the Infer menu, and Proof Designer will infer —P.

. P aQ:

Treat this as two givens: P, and Q.
%: Select the given and give the Split Up command in the Infer menu.

. PvQ:

(a) Use proof by cases. In case 1 assume that P is true, and in case 2 assume
that 0 1s true.
h: Select the given and give the Cases command in the Strategy menu.
(b) If you are also given that P is false, or you can prove that P is false,
then you can conclude that Q is true. Similarly, if you know that Q is
false then you can conclude that P is true.
'h: Select the givens =P (or =Q) and P v O and give the Disjunctive
Syllogism command in the Infer menu.

. P QO:

Treat this as two givens: P — Q,and Q0 — P.
%: Select the given and give the Split Up command in the Infer menu.
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. VxP(x):
You can plug in any value, say a, for x, and conclude that P({a) is true.
: Select the given and give the Universal Instantiation command in the
Infer menu. Proof Designer will ask you what you want to plug in for
x. As with proofs of goals of the form 3x P(x), if you're not sure what
to plug in for x, you can choose a variable to stand for the object to
be plugged in, and fill in the choice of a value for that variable later.
CAxPx):
Introduce a new variable, say xp, into the proof, to stand for a particular
object for which P(x,) is true.
h: Select the given and give the Existential Instantiation command in
the Infer menu.
A P(x):
Introduce a new variable, say xy, into the proof, to stand for a particular object
for which P(xp) is true. You may also assume that Vy(P(y) — y = xp).
h: Select the given and give the Existential Instantiation command in
the Infer menu.

Techniques that can be used in any proof:

1. Proof by contradiction: Assume the goal is false and derive a contradiction.

h: Select the goal and give the Contradiction command in the Strategy
menu. If you already know which given you are planning to contradict,
you can select it too before giving the Contradiction command.

2. Proof by cases: Consider several cases thatare exhaustive, that is, that include

all the possibilities. Prove the goal in each case.

'b: If you select a given of the form P v Q and give the Cases command
in the Strategy menu, then Proof Designer will break the proof into
the cases determined by this given. If you select a goal and give the
Cases command, then Proof Designer will ask you to type in some
statement P that will be used to distinguish the cases. Incase 1, Proof
Designer will assume that P is true, and in case 2 it will assume that
P is false.







absorption laws, 21
antecedent, 44
antisymmetric, 189
arbitrary object, 108
arithmetic mean, 276
arithmetic-geometric mean inequality, 276
associative laws, 22, 23
for » and W, 21, 25
asymmetric, 210

base case,

Bernstein, Felix, 322

biconditional, 23, 52, 53
truth table for, 23, 52

big-oh, 235

bijection, 182, 242

binary relation, 182, 242

binomial coefficient, 288

binomial theorem, 260, 288

bound variable, 29

bounded quantifier, 57, 68

Canter’s Theorem, 318, 320, 321
Cantor, Georg, 318
Cantor-Schridder-Bernstein Theorem,
322-327
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Cartesian product, 163-171
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closure
reflexive, 202
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transitive, 204, 209, 300
Cohen, Paul, 327
commutative laws for ~ and v, 21, 23, 52
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composition, 177, 178, 182, 231, 300
conclusion, 8, 85
conditional
antecedent of, 44
consequent of, 44
laws, 44-45, 47, 50
truth table for, 44-45, 47
congruent, 213
conjecture, 2
conjunction, 10
connective symbol, 10
consequent, 44
constant function, 235, 244
continuum hypothesis, 326-327
contradiction, 22, 23, 26, 32, 41
law, 23
proof by, 96, 97, 98, 99
contrapositive, 49, 91
law, 49
converse, 49
coordinate, 163
countable set, 310
counterexample, 2, 85

DeMorgan’s law, 20, 21, 22, 23, 25, 39, 47, 50
denumerable set, 318, 326
diagonalization, 320
difference of sets, 34
directed graph, 183
disjoint, 40

pairwise, 153, 214
disjunction, 10
disjunctive syllogism, 142
distributive laws, 38-39

for 3, 70

for v and v, 70

for M and U, 38-39

for A and v, 21,23
divides, 121
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division algorithm, 290, 291
domain, 172, 230
double negation law, 21, 22, 23, 25,47

edge. 181

element, 27

empty set, 32
equinumerous sets, 306-312
equivalence class, 214, 215
equivalence relation, 213-222, 309
equivalent formulas, 19, 21
even integer, 134, 312
exclusive cases, 138
exclusive or, 15, 24
exhaustive cases, 136
existential instantiation, 115
existential quantifier, 55, 58

factorial, 282
family of sets, 75
Fermat numbers, 276
Fermat, Pierre de, 276
Fibonacci, 291
Fibonacei numbers, 291-293, 296, 297
finite sequence, 317, 321-322
finite set, 306
fixed point, 255
formula, 12
free variable, 28, 55
function
compatible with an equivalence relation,
225
composition of, 232-233
domain of, 230
function of, 229
identity, 227
inverse of, 245-252
one-to-one, 236
onto, 236
range of, 239
restriction of, 234, 243

geometric mean, 357
Gibonacei sequence, 297
givens, 88

goal, 88

Gidel, Kurt, 327

graph, 183

greatest common divisor, 299

greatest lower bound (g.1b.), 197

harmonic mean, 277
harmonic numbers, 286
Hilbert, David, 326
hypothesis, 85

idempotent laws, 21, 22
identity relation, 183, 203-204, 213

Index

iff, 52
image, 227, 230, 255-259
inclusion-exclusion principle, 369
inclusive or, 15
index, 74
index set, 74
indexed family, 74, 75
induction
step, 260, 270
strong, 288-295
inductive hypothesis, 263, 265, 268, 272
inference, rule of, 107
infinite sets, 306
injections, 236
instance of a theorem, 85
integers, 31, 32
intersection
of family of sets, 77, 78
of indexed family of sets, 79
of two sets, 34
interval, 31, 328
inverse, 173, 245-252
inverse image, 255-259
irrational number, 161-162
irreflexive, 204

largest element, 197
least upper bound, 197
lemma, 217

limit, 161

logarithm, 252

loop, 184

lower bound, 197
Lucas, Edouard, 297
Lucas numbers, 297

main connective, 17

mathematical induction. See induction
maximal element, 197

Mersenne, Marin, 5

minimal element, 192, 267-269
modulo, 215, 221

modus ponens, 103

modus tollens, 103, 104, 105, 107

nand, 24

natural number, 31
necessary condition, 50
negation, 10

nor, 24, 133

null set, 32

odd integer, 24, 133, 134
one-to-one, 236

one-to-one correspondence, 242
onto, 236

ordered pair, 163-171

ordered triple or quadruple, 169




pairwise disjoint, 153, 214
partial order, 190, 254, 267, 268-269,
314
striet, 211
partition, 214, 215
Pascal, Blaise, 288
Pascal’s triangle, 288
perfect number, 5
Pigeonhole Principle, 313
polynomial, 299
power set, 75-76, 119, 318
premise, 8
preorder, 225
prime number, 1, 74, 94, 156158
largest known, 5
Mersenne, 5
twin, 6
proof, 1, 84
by cases, 137
by contradiction, 96, 97, 98, 99
Proof Designer, 102, 373-374
Proof Designer, Preface and Appendix,
373-374
proof strategy
for a given of the form
=P, 99-100, 102
P Q124
P Q,142-143
P— 0,102
P 0,126
YxPi{x), 115
JxPix), 115
3lx P(x), 152
for a goal of the form
—P,95,96
P Q124
P Q, 138, 141-142
P — (). 88,90,91
P« 0,126
Yx P(x),
¥n € MP(n), 260, 289
JxP(x).
Alx Pix), 149, 150
proper subset, 203

quantifier, 55-64
bounded, 68, 57
existential, 58
negation laws, 65, 66, 69
unique existential, 146
universal, 55

quotient, 290

range, 173, 239

rational number, 31, 311, 326,
328

real number, 31, 297

Index 383

recursive
definition, 280
procedure, 274
refine, 225
reflexive, 184
reflexive closure, 202
reflexive symmetric closure, 212
relation
antisymmetric, 212
asymmetric, 210, 346
binary, 182, 242
composition of, 176, 180-181
domain of, 173
identity, 183, 203-204, 213
inverse of, 173
irreflexive, 204
range of, 311
reflexive, 184
symmetric, 184
transitive, 184
remainder, 290, 139-140
restriction, 234, 243
rule of inference, 107
Russell, Bertrand, 83
Russell’s Paradox, 83

Schriider, Ernst, 322

sequence, 297-298

set, 27. See also countable set; denumerable
set; empty set (or null set); family of
sets; finite set; index set; infinite sets;
power set; subset: truth set

3 -notation, 281-282

smallest element, 184, 191

strict partial order, 204

strict total order, 204

strictly dominates, 322

strong induction, 288-295

subset, 40, 184

proper, 203

sufficient condition, 50

surjection, 236

symmetric closure, 204, 205

symmetric difference, 36. 43, 154

symmetric transitive closure, 40, 212, 184

tautology, 23
laws, 23

theorem, 85

total order, 190, 269-270, 275
strict, 204

transitive,

transitive closure, 204, 209, 300

trichotomy, 204

truth set, 27, 30, 37, 163

truth table, 14-23

truth value, 14
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uncountable set, 315-321
union

of an indexed family of sets,

79

of a family of sets, 78

of two sets, 78
universal instantiation, 115
universal quantifier, 55
universe of discourse, 31, 328
upper bound, 197
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vacuously true statement, 70
valid argument, 9
variable, 26

bound, 29

free. 28, 55
Wenn diagram, 36, 4041
vertex, 182

well-formed formula, 12
well-ordered principle, 294, 295, 299




