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Preface

The creative process of mathematics, both historically and individually,
may be described as a counterpoint between theorems and examples. Al-
though it would be hazardous to claim that the creation of significant
examples is less demanding than the development of theory, we have dis-_
covered that focusing on examples is a particularly expeditious means of
involving undergraduate mathematics students in actual research. Not only
are examples more concrete than theorems-—and thus more accessible-—but,
they cut across individual theories and make it both appropriate and neces-
sary for the student to explore the entire literature in journals as well as
texts. Indeed, much of the content of this book was first outlined by under-
graduate research teams working with the authors at Saint Olaf College
during the summers of 1967 and 1968,

In compiling and editing material for this book, both the authors and
their undergraduate assistants realized a substantial inerement in topologi-
cal insight as a direct result of chasing through details of each example. We
hope our readers will have a similar experience. Each of the 143 examples in
this book provides innumerable concrete illustrations of definitions, theo-
rems, and general methods of proof. There is no better way, for instance, to
learn what the definition of metacompactness really means than to try to
prove that Niemytzki’s tangent dise topology is not metacompact.

The search for counterexamples is as lively and creative an activity as
can be found in mathematics research. Topology particularly is replete
with unreported or unsolved problems (do you know an example of a
Hausdorf{ topological space which is separable and locally compaet, but
not g-compact?), and the process of modifying old examples or creating
new ones requires a wild and uninhibited geometric imagination. Far from
providing all relevant examples, this book provides a context in which to
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usk new questions and seek new answers. We hope that cach reader will
share (and not just vicariously) in the excitement of the hunt.

Counterezamples in Topology was originally designed, not as a text, but
45 4 course supplement and reference work for undergraduate and graduate
students of general topology, as well as for their teachers. For such use, the
reader should scan the book and stop occasionally for a guided tour of the
various examples. The authors have used it in this manner as a supplement
to a standard textbook and found it to be a valuable aid.

There are, however, two rather different circumstances under which this
monograph eould most appropriately be used as the exclusive reference in
a topology course. An instructor who wishes to develop his own theory in
class lecture may well find the succinet exposition which precedes the
exumples an appropriate minimal source of definitions and structure. On
the other hand, Counterexamples in Topology may provide Sufﬁciently few
proofs to serve as a basis for an inductive, Moore-type topology course. In
either case, the book gives the instructor the flexibility to design his own

course, and the students a wealth of historically and mathematically sig-
nificant examples.

A counterexample, in its most restricted sense, is an example which dis-
proves a famous conjecture. We choose to interpret the word more broadly,
particularly since all examples of general topology, especially as viewed by
beginning students, stand in contrast to the canon of the real line. Su in
this sense any example which in some respect stands opposite to the reals
is truly a Gegenbeispiel. Having said that, we should offer some rationale
fer our inclusions and omissions, In general we opted for examples which
were necessary to distinguish definitions, and for famous, well known, or
simply unusual examples even if they exhibited no new properties. Of course,
what is well known to others may be unknown to us, so we acknowledge
with regret the probable omission of certain deserving examples.

In choosing among competing definitions we generally adopted the
strategy of making no unnecessary assumptions, With rage exception
therefore, we define all properties for all topologieal spaces, and not just
for, for instance, Hausdorff spaces.

Often we give only a brief outline or hint of a proof; this is intentional, but
we caution readers against inferring that we believe the result trivial,
Rather, in most cases, we believe the result to be a worthwhile exercige
which eould be done, using the hint, in a reasonable period of time. Some
of the more difficult steps are discussed in the Notes at the end of the book,

The examples are ordered very roughly by their appropriateness to the
definitions as set forth in the first section. This is a very crude guide whose
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only reliable consequence is that the numerical order has no correlation .
with the difficulty of the example. To aid an instructor in recommending
examples for study, we submit the following informal classificution hy
sophistication:

Elementary: 1-25, 27-28, 30-34, 38, 40-47, 49-50, 52-58, 62-6d,
73-74, 81, 86-89, 97, 104, 109, 115-123, 132-135, 137,
139-140,

Intermediate: 26, 29, 35-37, 39, 48, o1, 65-72, 75-80, 82-85, 00-u1,
93-96, 98-102, 105-108, 113-114, 124, 126-127, 130, 136,
138, 141.

Advanced: 60-61, 92, 103, 11¢ 112, 125, 128-129, 131, 142, 143.

The discussion of each example is geared to its general level: what is proved

in detail in an clementary example may be assumed without comment in a

more advanced example.

In many ways the most useful part of this book for reference may t_)e the
appendices. We have gathered there in tabular form a composite L'nct.ure
of the most significant counterexamples, 0 a person who is searcmng for
Hausdorfl nonregular spaces can easily discover a few. Notes are provided
which in addition to serving as a guide to the Bibliography, provide added
detail for many results assumed in the first two sections. A‘ collection (.)f
problems related to the examples should prove most helpful if th'e b?ok is
used as a text. Many of the problems ask for Justification of entries in the
various tables where these entries are not explicitly discussed in the example.
Many easy problems of the form “justify the assertion that . . have {mt
been listed, since these can readily be invented by the instructor according
to his own taste.

In most instances, the index includes only the initial (or defining) use of
a term. For obvious reasons, no attempt has been made to include in the
index all occurrences of a property throughout the book. But the G_eneral
Reference Chart (pp. 170-179) provides a complete cross—t?.bula.tlon of
examples with properties and should facilitate the quick location of exam-
ples of any speecific type. The chart was prepared by an IBM 1130 using a
program which enables the computer to derive, from the theorem‘.s dis~
cussed in Part I, the properties for each example which follow logically
from those discussed in Part I1. '

Examples are numbered consecutively and referred to by thEI‘I' nux_nbers
in all eharts. In those few cases where a minor but inelegant modlﬁcatlor} of
an example is needed to produce the desired concatenation of properties,
we use a decimal to indicate a particular point within an example: 23.17
means the 17th point in Example 23.



The research for this book was begun in the summer of 1967 by an under-
graduate research group working with the authors under a grant from the
National Science Foundation. This work was continued by the authors
with support from a grant by the Research Corporation, and again in the
summer of 1968 with the assistance of an N.S.F. sponsored undergraduate
research group. The students who participated in the undergraduate re-
search groups were John Feroe, Gary Gruenhage, Thomas Leffler, Mary
Maleolm, Susan Martens, Linda Ness, Neil Omvedt, Karen Sjoquist, and
Gail Tverberg. We acknowledge that theirs was a twofold contribution:
not only did they explore and develop many examples, but they proved by c t ,
their own example the efficacy of examples for the undergraduate study of on en s
topology,
Finally, we thank Rebecca Langholz who with precision, forbearance, and
uniailing good humor typed in two vears three complete preliminary edi-
tions of this manuseript.

Northfield, Minnesota Lynn A. Steen Preface v
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Basic Definitions



SECTION 1
General Introduction

A topological space is a pair (X,r} consisting of a set X and a collee-
tion r of subsets of X, called open sets, satisfying the following axioms:

O:: The union of open sets is an open set,
Os: The finite intersection of open sets is an open set.
O;: X and the empty set (¥ are open sets.

The collection r is called a topology for X. The topological space (X,7) is
sometimes referred to as the space X when it is clear which topology X
carries,

If 7, and , are topologies for a set X » 71 18 said to be coarser (or weaker
or smaller) than +, if every open set of 7, is an open set of 7. 7, is then said
to be finer (or stronger or larger) than r,, and the relationship is expressed
as7; < 7. Of course, as sets of sets, 71 & 72. On a set X, the coarsest topol-
ogy is the indiscrete topology (Example 4), and the finest topology is the
discrete topology (Example 1). The ordering < is only 2 partial ordering,
since two topologies may not be comparable (Example 8.8).

In a topological space (X 7), we define a subset of X to be closed if its
complement is an open set of X , that is, if its complement is an element of r.
The De Morgan laws imply that closed sets, being complements of open
sets, have the following properties:

Ci: The intersection of closed sets is a closed set,
Cs:  The finite union of closed sets is a closed set.
Cs: X and the empty set & are both closed.

It is possible that a subset be both open and closed (Example 1), or that a
subset be neither open nor closed (Examples 4 and 28).
An F,-set is a set which can be written as the union of a countable col-
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lection of closed sets; a G;-set is a set which can be written as the inter-
section of a countable collection of open sets. The complement of every
Fo-set is a Gy-set and conversely. Since a single set is, trivially, a countable
collection of sets, closed sets are ,-sets, but not conversely (Example 19).
Furthermore, closed sets need not beGi-sets (Example 19). By complemen-
tation analogous statements hold concerning open sets.

Closely related to the coneept of an open set is that of a neighborhood.
In a space (X,r), a neighborhood N4 of a set A, where A may be a set con-
sisting of a single point, is any subset of X which contains an open set con-
taining A. (Some authors require that N, itself be open; we call such sets
open neighborhoods.) A set which is a neighborhood of each of its points
is open since it can be expressed as the union of open sets containing each
of its points,

Any collection $ of subsets of X may be used as a subbasis (or subbase)
to generate a topology for X. This is done by taking as open sets of 7 all
sets which can be formed by the union of finite intersections of sets in 8,
together with @ and X. If the union of subsets in a subbasis § is the set X
and if each point contained in the intersection of two subbasis elements is
also contained in a subbasis element contained in the intersection, § is
called a basis (or base) for 7. In this case, r is the collection of all sets which
can be written as a union of elements of §. Finite intersections need not be
taken first, since each finite intersection is already a union of elements of 8.
If two bases (or subbases) generate the same topology, they are said to be
equivalent (Example 28). A local basis at the point + € X is a collection
of open neighborhoods of 2 with the property that every open set contain-
ing x contains some set in the collection.

Given a topological space (X,r), a topology rv can be defined for any
subset Y of X by taking as open sets in 7y every set which is the intersec-
tion of ¥ and an open set in 7. The pair (¥,ry) is called a subspace of
(X,r}, and 7y is called the induced (or relative, or subspace) topology
for Y. A set U C Y is said to have a particular property relative to Y
(such as open relative to ¥} if U has the property in the subspace (¥,ry).
A set Y is said to have a property which has been defined only for topo-
logical spaces if it has the property when considered as a subspace. If for
a particular property, every subspace has the property whenever a space
does, the property is said to be hereditary. If every closed subset when
considered as a subspace has a property whenever the space has that
property, that property is said to be weakly hereditary.

An important example of a weakly hereditary property is compaectiess.
A space X is said to be compact if from every open cover, that is, a
collection of open sets whose union contains X, one ean select o finite
subcollection whose union also contains X. Every closed subset Y of a
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compact space is compact, since if {0,} is an open cover for Y, {0} W
(X — 7)) is an open cover for X. From {0.) \J (X — 1), one can choose
a finite subcollection covering X, and from this one ean choose an appro-
priate cover for ¥ containing only elements of {0} simply by omitting
X ~ Y. A compact subset of a compact space need not be closed (Examples
4, 18).

Limir PoinTs

A point p is a limit point of a sct A if every open set containing p con-
tains at least one point of A distinet from p. (If the point of 4 is not re-
quired to be distinet from p, p is called an adherent point.) Particular
kinds of limit points are w-accumulation points, for which every open
set containing p must contain infinitely many points of 4, and condensa-
tion points, for which every open set containing p must contain uncount-
ably many points of A. Examples 8 and 32 distinguish these definitions.

The concept of limit point may also be defined for sequences of not
necessarily distinet points. A peint p is said to be a limit point of a
sequence (2.}, n = 1,2, 3, . . . if every open set containing p eontains
all but finitely many terms of the sequence. The sequence is then said to
converge to the point p. A weaker condition on p is that every open set
containing p contains infinitely many terms of the sequence. In this case, p
is called an accumulation point of the sequence. It is possible that a
sequence has uncountably many limit points {(Example 4), both a lLimit
point and an accumulation point that is not a limit point (Example 53),
or a single aceumulation point that is not a limit point {Example 28).

Since a sequence may be thought of as a special type of ordered set, each
sequence has associated with it, in a natural way, the set consisting of its
elements. On the other hand, every countably infinite set has associated
with it many sequences whose terms are points of the set. There is little
relation between the limit points of a sequence and the limit points of its
associated set. A point may be a limit point of a sequence, but only an
adherent point of the associated set (Example 1). If the points of the
sequence are distinet, any accumulation point (and therefore any limit
point) of the sequence is an w-accumulation point of the associated set.
Likewise, any w-accumulation point of a countably infinite set is also an
accumulation point (but not necessauily a limit point) of any sequence
corresponding to the set. Not too surprisingly, a point may be a limit point
of & countably infinite set, but a corresponding sequence may have no
limit or accumulation poing (Fxample 8).

T A s o subset of a topological space X, the derived set of the set A is
the collection of all limit points of .1, Generally this includes some points



of A and some points of its complement. Any point of 4 not in the derived
set is called an isolated point since it must be contained in an open set
containing no other point of A. If A contains no isolated points, it is called
dense-in-itself. If in addition A is closed, it is said to be perfect. A
closed set A contains all of its limit points since for every r € (X — 4),
X — A is an open set containing x and no points of A. Also, a set containing
its limit points is closed since X — A contains a neighborhood of each of its
points, so is open. Therefore we see that a set is perfect if and only if it
equals its derived set.

CLOSURES aAND INTERIORS

The closure of a set 4 is the set together with its limit points, denoted
by 4 (or A-). Since a set which contains its limit points is closed, the
closure of a set may be defined equivalently as the smallest closed set con-
taining A. Allowing A to be A plus its w-accumulation points or condensa-
tion points would permit A, the closure of 4, not to be closed (Example
50.9), which is clearly undesirable. Analogously, we define the interior of
a set A, denoted by A®, to be the largest open set contained in A, or equiv-
alently, the union of all open sets in .. Clearly the interior of A equals the
complement of the ¢losure of the complement of A.

There are at most fourteen different sets that can be formed from a given
set A by successive applications of the closure and complement operations,
Indeed, these two operations generate a semigroup with fourteen members.
These sets are intricately related by inelusion and there is an example of a
set A for which all fourteen sets are distinct (Example 32.9). An open set
for which 4 = A= is called regular open, and a closed set for which
A = A* i3 called regular closed.

The union of the closures of finitely many sets always equals the closure
of their union; for infinite eollections it need only be contained in the
closure of the union (Example 30). Similarly, the intersection of the in-
teriors always contains the interior of the intersection, though they are
equal only for finite intersections {Example 32.4). The intersection of
finitely many regular open sets is regular open and the union of finitely
many regular closed sets is regular closed, but the intersection of regular
closed sets need not be regular closed (Example 32.6), and by complemen-
tation, the union of regular open sets neced not be regular open.

The set of all points which are in the closure of A but not in the interior
of 4 is the boundary (or frontier) of A, denoted by 4% A*is also equal
to A=M (X ~ 4), since 4% = A~ — Ao = A- N\ (X —A). A set is
closed if and only if it contains its boundary, and is open if and only if it is
disjoint from its boundary. Therefore a set is both open and closed if and
only if its boundary is empty. A boundary is always closed since it is the
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intersection of two closed sets. The boundary of the boundary of a set, 4%,
need not equal A2, although A® is always contained in A% (Example 4).

The exterior A¢ of a set 4 is the complement of the closure of 4, or
equivalently, the interior of the complement of 4. In general, A° is con-
tained in A, but they need not be equal (Example 51). The exterior of
the union of sets is always contained in the interseetion of the exteriors,
and similarly, the exterior of the intersection is contained in the union of
the exteriors; equality holds only for finite unions and intersections.

If two sets A and B have the property that A "B =ANJ = &, they
are called separated. A set 4 in a topological space X is connected if it
cannot be written as the union of two separated sets.

COUNTABILITY PROPERTIES

A set A is said to be dense in a space X if every point of X is a point
or a limit point of A, that is, if X ~ 4. A subset A of X is said to be
nowhere dense in X if no nonempty open set of X is contained in 4. In
other words, the interior of the closure of a nowhere dense set is empty. A
set Js said to be of first category (or meager) in X if it is the union of a
countable collection of nowhere dense subsets of X. Any other set is said to
be of second category.

A space is said to be separable if it has a countable dense subset. It is
said to be second countable (or completely separable, or perfectly
separable) if it has a countable basis. A space is first countable if at
each point p of the space, there is a countable local basis, that is, a count-
able collection of apen neighborhoods of p such that each open set con-
taining p contains a member of the collection. Every second countable space
is both first countable and separable. The first countability is obvious,
while the separability follows from the observation that the union of one
point from each basis element forms a countable dense subset. A separable
space need not be even first countable (Example 19).

The property of being first countable and the property of being second
countable are both hereditary, but the property of being separable is not
even weakly hereditary (Example 10). A subspace A of a first countable
space is first countable, since the intersection of A with the countable local
basis for the space provides a countable local basis for 4 ; similarly, every
subspace of a second countable space is second countable.

Funcrions

Funetions on spaces are important tools for studying properties of spaces
and for constructing new spaces from previously existing ones. A funetion b
from a space ( X,7) to a space (Y,0) is said to be continuous if the inverse
image of every open set is open. This is equivalent to requiring that the
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inverse image of closed sets he closed, or that for each subsot A of X,
J(d) CT(A). Another cquivalent condition is that for each 2 in X and each
neighborhood N of S(x), there exists a neighborhood M of z such that
J(Al)y C N.If this last condition holds at a particular point p, the function
15 said to be continuous at the point p.

The composition ¢ O [ 1s continuous whenever JiX->Yadyg ¥ o2z
are both continuous, since the inverse image under g of an open set in Z is
an open set in ¥, and the inverse image of that open set under [ is again
an open set in X,

A function f from (X 1) to (V,0) is said to be open if the image under fof
each open set is open, and closed if the image under f of every closed set is
closed. For bijective (one-to-one and onto) functions, the conditions of
heing open and of being closed are equivalent, although iy general they are
hot equivalent (Example 33). It is not difficult to see that f is an open
bijective function if and only if f' is a continuous bijective function.

A bijective function Sfrom X to Visa homeomorphism if fand 1
are continuous, or equivalently, if f is both continuous and open, or if
JA) =J(A) for all 4. X and ¥ are then topologically equivalent or
homeomorphic. Such spaces are indistinguishable from a topological
point of view. It is possible, though, that two spaces formed by assigning
topologies r and 7* to 2 set X may be homeomorphic, even though r and +*
are not identical nor even comparable (Example 8.8). It is also possible
that two sets, A and B,AC XandB C Y where ¥ and ¥ are homeomor-
phic, may be topologically equivalent as subspaces, but because of the
nature of X and ¥ there may be no homeomorphism of X and Y taking 4
onto B (Example 32.7).

A property is said to be a topological invariant (or topological
property) if whenever one space possesses a given property, any space
homeomorphie to it, also possesses the same property. Similarly, a property
15 called a continuous, open, or closed invariant if any continuous
(respectively open, closed) image of g Space possessing the property also
possesses the property. Both separability and compactness are continuous
mvariants.

For a given collection of topological spaces (Xw7a), where & € A, an
indexing set, the product space is defirad to be the usual Cartesian prod-
uct 11X, of all the sets Xa, together with the coarsest topology on this set
such that all of the coordinate projectiong Ta are contintous. This conrsest
topology is called the Tychonoft topology and has as o subbasis ull inverse
images under projections of open sets of the X a'5, that is, “open evlinders”
of the form x,~Y( U). Tt follows immediately from this description of the
subbuasis that J1Z >N X, is continuous Hf f O n, is continuous for cach a.

H (X1 isa topological space, ¥ a set, and f: X - ¥V 4 function, there
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15 then a finest topology ¢ for ¥ relative to which J is continuous. We may
describe ¢ explicitly by noting that V C ¥ is an element of o (open in ¥)
iF f=1(V) is in 7. This topology, which depends on f: X —» ¥ and T, 18
called the identification topology on Y with respect to Fand (X 7). Now
if R is an equivalence relationon X, if p: X — X / R is the usual projection
function which maps each x € X to its equivalence class [v]in X/R, and
if o is the identification topology on X /R with respect to p, then (X/R,0)
is called the quotient space of (X ,r) by the relation R. An important
special case arises whenever A is a subspace of X. One may then define an
equivalence relation R on X by declaring z ~ yiffx =y or x and y are
hoth in A. In this case X/R is usually written X /4 and is called the quo-
tient of X by A. ]

If {X,r) aud (¥Y,0) are two topological spaces, the.tf)polog:.cal sum
(Z,e) of X and Y is defined by taking for the set Z the disjoint union of the
sets X and Y, that is, the union of X and ¥ where X and Y are decreed
to have no common elements. The topology ¢ is defined as the topology
generated by the union of = and ¢. ¢ is characterized by being the finest
topology on Z in which the inclusion funetions from {X,7) and (¥,0) are

continuous.

Frrers
A filter on a set X is a collection F of subsets of X with the following
properties:
Fy: Every subset of X which contains a set of F belongs to F.
Fy: Every finite intersection of sets of F belongs to F.
Iyt The empty set is not in F.

The set X with the filter /¥ is called a set filtered by F, or just a filtered set.

If & Is a nonempty set of subsets of X which does not contain &, t_hen
the collection of all subsets of X which contain some member of ® is a
filter I if and only if the intersection of any two sets in ® contains a set in @.
Such a set @& is ealled a base of the filter F and F is called the filter generate_d
by &. Equivalently, a subset ® of a filter F' is a base (.)f F if and .only if
every set of I contains a set of @, Two filter bases ure said to be equlvale'nt
if they generate the same filter. Conditions Fy and T, imply that the f:'umly
of sets I satisfies the finite intersection property, that is, that the inter-
section of any finite number of sets of the family is nonempty. Conversely,
any family of sots satisfying the finite intersection property is a subba.se
for a filter F since the family together with the finite intersections of its

rY

metmbers is a filter base.
If £, F* are two filters on the same set X, F” is suid to be finer than F
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(or ¥ is coarser than F’) if F C F'. If also F #= F’, then F’ is said to be

strictly finer than 7, or F strictly coarser than #”. Two filters are said to

be comparable if one is finer than the other, A filter 7 with base ®' is
finer than a filter F with a base ® if and only if every set of ® contains a
set of @',

If a filter F on X has the property that there is no filter on X which is

strictly finer than F, F is called an ultrafilter on ¥ . Equivalently, F is an

ultrafilter if and only if for every two disjoint subsets 4 and B of X such
that A\JB € F, then either A EF or B € F. Thus if F is an ultrafilter
and £ C X theneitherEor X — FisinF. Furthermore, if F and F’ are dis-
tinct, there exists a set A such that 4 € F and A ¢ F'; but then X — 4
EF,sowehave A EFand X — 4 € F'.

If a point z is in all the sets of a filter we call it a cluster point; clearly
an ultrafilter can have at most one cluster point. An ultrafilter with a cluster
point p is just the set of all sets containing that point and is called a fixed,
or principal ultrafilter; an ultrafilter with no cluster point is called free,
or nonprincipal.

If X is a topological space, the set N of all neighborhoods of an arbitrary
nonempty subset A of X is called the neighborhood filter of A. Let
be any filter on X. A point z € X is sald to be a limit point of F if F ig
finer than the neighborhood filter N of z; F is also said to converge to .
The point z is said to be a limit of a filter base ® on X, and @® is said to
converge to x, if the filter whose base is @ converges to r. Equivalently, a
filter base ® on a topological space X is said to converge to x if and only if
every neighborhood of  contains a sct of ®.

SECTION 2
Separation Axioms

It is often desirable for a topologist to be able to assign to a set of objects
a topology about which he knows a great deal in advance. This can be done
by stipulating that the topology must satisfy axioms in addition to those
generally required of topological spaces.

One such collection of conditions is given by means of axioms called T,
or separation axioms. These stipulate the degree to which distinct points or
closed sets may be separated by open sets. Let (X,r) be a topological
space.

Ty axiom: Ifab € X, there exists an open set O € r such that either
a€Oandb g0, orbEOanda ¢ 0.

Ty axiom: If b € X, there exist open sets 0., Oy € r containing a
and b respectively, such that b ¢ O, and a ¢ 0.

T, axiom: If e,b € X, there exist disjoint open sets O, and 0, con-
taining a and b respectively.

T3 axiom: If A is a closed set and b is a point not in A, there exist
disjoint open sets O 4 and O; containing 4 and b respectively.

T¢axiom: If A and B are disjoint closed sets in X, there exist dis-
joint open sets Q4 and Oy containing A and B respectively.

Ts axiom: If A and B are separated setsin X , there exist disjoint open

sets 04 and Op containing A and B respectively.

If (X,r) satisfies a T axiom, X is called a T; space. A T, space is some-
times called a Kolmogorov space and a T, space, a Fréchet space. We
will conform to common practice and call a T, space a Hausdorff space.

It follows from the T'; axioms that T, spaces are characterized by the fact
that no two points can be limit points of each other. Similarly, T, spaces are
characterized by points being closed, and T, spaces by points being the

11



intersection of their closed neighborhoods. T, spuaces may be characterized
either by the fact that each open set contains a closed neighborhood around
each of its points, or by the property that each closed set is the intersection
of its closed neighborhoods. A space is T, iff every open set O contains g
closed neighborhood of each closed set contained in 0. It is Ts iff every
subset Y contains a closed neighborhood of each set A C Yowhere 4 C Y.

Each of these axioms is independent of the axioms for a topological space;
in fact there exist examples of topological spaces which fail to satisf y any T;
axiom (Example 21). But they are not independent of each other, since
for instance, axiom T, implies axiom T, and axiom T, implies axiom T,
Fhere are, on the other hand, T, spaces which fail to satisfly every other
separation axiom (Example 53) and T, spaces which do not satisfy any
separation axiom but the T, axiom (Example 18): similarly, there are T,
spaces which fail to be Ty Tyor T {(Example 75), F urthermore, neither the
Ty axiom nor the T, axiom implies any of the other separation axioms
(Examples 90.4 and 21.8) nor is either generally implied by them though
in eompact spaces T, implies T, but not Ts (Iixample 86). The Ts axiom
does however imply T,, though it is independent of the other separation
axioms.

REcuLAR anp N ORMAL SPACES

they can be employed to define successively stronger properties. To this
end, we note that if a4 space ts both T; and T,, it is T, while a space that is
both T, and T, must be T;3. The former spaces are called regular, and the
latter normal.

Specifically a space X js said to be regular if and only if it is both a T,
and a T; space; to be normal if and only if it is both g T;and 2 T, space;
to be completely normal if ang only if it is both a T; and a T, space.
Thus, we have the following sequence of implications:

Completely normal = Normal = Regular = Hausdorflf = T, = Te.

Examples 86, 82, 75, 18, and 53 show that the implications are not revers-
ible. A T, space (or T space) must be a T\ space in order to guarantee that
it is a Ty space, for there are Ty spaces (and T spaces) which are T, and
yet fail to be T, (Example 55).

The use of the terms “regular” and “normal” is not uniform throughout
the literature. While some authors use these terms interchangeably with
“T; space’ and “Ty space” respectively, others refer to our Ty space as a
“regular” space and vice versa, and similarly permute YTy space” and
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“normal.”’ This allows the successively stronger properties to correspond to
increasing T; axioms. We prefer, however, to allow a T, space to be a space
satislying the corresponding T; axiom, and content ourselves with labeling
the successively stronger properties with unique terminology.

CoMPLETELY HAUSDORFF Sraces

We will now introduce two variations of the separation properties. The
first involves the use of closed neighborhoods in place of open sets in axioms
Ty, T, and T,.

Since in normal spaces every open set O contains a closed neighborhood
of each closed set contained in 0, if X is a normal space and if A and B are
disjoint closed subsets, there exist open sets O, and Oy containing A and B,
respectively, such that 0, N 0, = . B0 the use of closed neighborhoods
in place of open sets in the definition of a normal space yields the same
class of spaces. :

Similarly, if X is a regular space, A is a closed subset, and b is a point
not in A4, then there are open sets 0, and 0, containing 4 and b respectively
such that 0, N 0, = (7, However, there are Hausdorff spaces which have
two points which do not have disjoint closed neighborhoods (Example 75).
Thus, we present the following new axiom.

If a and b are two points of a topological space X, there
exist open sets 0, and 0, containing a and b, respectively,
such that 0, N 0, = &.

Ty axiom:

A Ty space will be called a completely Hausdorff space. It is clear that
every regular space is completely Hausdorff and every completely Haus-
dorff space is Hausdorfl. Since there are completely Hausdorff spaces which
fail to be regular (Example 78), the completely Hausdorfl property is
intermediate in strength between the properties Hausdorff and regular.

CoMPLETELY REGULAR SpacEs

The second variation of the separation axioms concerns the existence of
eertain continuous, real-valued functions, A Urysohn function for 4 and
B, disjoint subsets of a space X, is a continuous function f: X —[0,1] such
that fl4 = O and fl; = 1.

Urysohn’s famous lenima asserts that if A and B are disjoint closed sub-
sets of a Ty space, there exists a U rysohn function for A and B. Conversely,
if there is a Urysohn function for any two disjoint closed sets 4 and B in



a space X, then Xisa T, Space. But the existence of such a function does
not guarantee that X is g T) space and thus 5 normal space (Example 5),

However, the statement for regular spaces analogous to Urysohn’s lemma
is false (Example 90), so we give the following new separation axiom:

Ty axiom: IfAisa closed subset of 5 space X and b is a point not io
4, there is a Urysohn function for A and {b}.

Then every Ty space:is a T; space, though not necessarily a T, space
(Example 5) unless it is also a Ty space. Such a space, which is both T,

normal spaces are completely regular, There are, however, regular spaces

which fail to be completely regular {(Example 90) and completely regular
spaces which fail to be normal (Example 82).

- Although normal Spaces are Ty, T, spaces need not be (Example 53).

But if a T, space is also Ty, even though possibly not normal, it must

nevertheless he T, for if the point # is disjoint from the closed set 4 ina T,

the space is also T4, we can apply Urysohn's lemma to produce a Urysohn
function for A ang B. This function is clearly a Urysohn funetion for 4
and {p} also.

We summarize the Ti implications and counterexamples in Figure |
where the numbers in parentheses indicate examples, In addition, we have
the following simple diagram, in which none of the arrows reverse, and
where the numbers refer to appropriate counterexamples;

Comp.
norm

Comp Comp.,

= Normal = "= Regular =

re = Tz = 'T] = 'l‘n.
" (86) #2"%  (90)

a8 sy gy )

Funcrions, Probucrs, anp SUBSPACES

All the separation properties are topological properties, that i, they are
preserved under homeomorphisms. However, certain of the properties are
Preserved under less restrictive functions, ,

If X and ¥ are topological spaces, and J: X > Yis a closed bijection,
and X is T, T, Hausdorff, or completely Hausdorff, then ¥ ig To, T,
Hausdorff, or completely Hausdorff, respeetively. In particular, if r, C o,
are topologies for X, the identity function from (A1) to ( X, is closed;
hence, if ( X,m) is Ty, Ty, Hausdorfl, or completely Hausdorff, then so is
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Tp (8)
Ty 1s)
Tz (15)
Tz4 (78)
T3 (90)
T3} (82)
Ta (86 (16.10)

Ts (39)] (5%)

(90.5) [(82.10)] (86.6) ©)

Q1.8 G2
TZ;—"TZ'TI"TU TJ,}_"T_';
T3and Ty = Ty Ts=Ty

Tqand Ty = T3L Tsand T3 = T3L

Figure 1,

(X,r2). We call 7, an expansion of r, and note that expansion preserves
the above separation properties. The stronger separation properties are not,
in general, preserved under expansion (Example 66).

Most separation properties are, however, preserved under products, If
X =1X,then Xisa To, Ty, Hausdorff, completely Hausdorff, regular,
or completely regular space if and only if each of the X, is To, T), Haus~
dorff, completely Hausdorff, regular, or completely regular, respectively.
If X is normal or completely normal, each X « 13 normal or completely
normal, but the converse does not hold (Example 843,

Normality diverges from the remainder of the separation properties in
the case of subspaces, also, For every subspace of a T, T, Hausdorff, com-
pletely Hausdorf, regular, or completely regular space is Ty, T, Hausdorfi,
completely Hausdorff, regular, or completely regular, respectively. But
only closed subspaces of normal spaces need be normal {Example 86).
However, every subspace of a completely normal space is completely nor-
mal, since, a space is completely norma) iff every subspace is normal. In
fact, a space is T iff every subspace is T,.



ADDITIONAL SEpARATION ProrerTiEs

point and a closed set gave the Ty property which was stronger than
axiom T;. When applied to two points this requirement yields a condition
even stronger than completely Hausdorfl (Example 80). We call a space
with a Urysohn function for any two points a Urysohn space,

A T, space in which every closed set is a G, is often eallod perfectly T, A
perfectly T space which is also Ty will be called perfectly normal. Every
perfectly normal space is completely normal, but not conversely (Ixam-
ple 24),

Since each open set in o T3 space contains o closed neighborhood around
each of its points, CGVery open set in a T; space can be written as the union of
regular open sets. Since the converse is not true (Example 81}, we will call
semiregular all T, spaces in which the regular open sets form a basis for

the topology. Semiregular spaces are not necessarily either completely -

Hausdorff (Example 81) or Urysohn (Example 80).

T, ‘ (8

T, (18)

Hausdorfr (15)

Semiregular @1

Completely Hausdorff (80) (126)

Regular (90)

Urysohn ©n! @) (79

Completely regular 82)

Normal (86)

(43)
Completely
normal

Figure 2,
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If we add these new properties to the basic separation axiom structure,
we vbtain the summary Figure 2. The implications are best illustrated by

Perf.

norn.

Comp,

Comp.
norm. reg.

=Uryschn

! 4

Comp.
Regular = Haus.

U U

Semi- = er = T1 = TO-
regular

= Normal =



SECTION 3
Compactness

complement topology (Example 18.7) which is not even To yet does satisfy
all the forms of compactness,

GLoBAL CoMPaCTNESS ProprenTIES

A topologieal space X is compact if CVery open cover containg finite
subcover; equivalently, X ig compact if it satisfies the finite intersection
axiom, that is, if every family of closed subsets whose intersection is empty
cohtaing a finite subfamily whoge intersection is empty. For if {4,} is any
family of closed sets such that N 4, = &, then { X — A} is an open
cover which has a finite subcover { X — Anlk < n). By De Morgan’s
Law, X — (X -4, = & it NA,, = jug Conversely, if the family
{04} is an open cover of X, then since X -0, = &, there is a finite

n
subfamily such that N(x - On) = (F, By De Morgan’s Law,

k=1
n
kEJl Ou = X. An equivalent subbasis condition for compactness is given

by Alexander’s Compactness Theorem: if g topological space X has a
subbasis § such that from every cover of X by elements of S, afinite sub-
cover can be selected, then X js compact. The condition ig clearly necessary,
but the proof of sufficiency uses the axiom of choice.

18
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These implications are not reversible (Examples 28 and 51).
A topological space is called countably compact if any one of the fol-
lowing equivalent conditions is satisfied:

CCy:  Every countable open cover of X has a finite subcover,

CCy: Every infinite set has an w-accumulation point in X,

CCi: Every sequence has an accumulation point in X.

CCy: Every countable collection of closed sets with an empty inter-
. section has a finite subfamily with an empty intersection.

Condition CC,, the countable finite intersection axiom, is equivalent to
CC, for the same reasons that the ordinary finite intersection axiom is
equivalent to compaetness. Conditions CC, and CC, are equivalent to each
other since a point is an w-accumulation poing of a countably infinite set
iff it is an accumulation point of that set viewed as a sequence. Now if the
space X has a countable open cover {0,} with no finite subcover, we can

find o set {a.} of distinet points such that 2, ¢ \U O;; this sequence can
i=1

have no w-accumulation point in X, for every point of X hag a neighbor-
hood, namely one of the O: to which it belongs, which intersects only
finitely many points of the set, Thus CC, = CC,. Conversely, if S C X is
a countably infinite set without an w-accumulation point, each z € ¥
would have an open neighborhood O: which interseets at most finitely many
points of S. For cach finite subset ' of 8, défine O, = V00, N S = Fl.
Then {Of} is a countable open covering of X every finite subeollection of
which includes at most finitely many points of . Thus no finite subcollec-
tion may cover X.

every sequence has a convergent subsequence, and weakly countably
compact if every infinite set has a limit point. Sequential conmpactness

clearly implies countable compactness, and since every w-accumulation

point is a {imit point, every countably compact space is weakly countably
compact. However, neither converse is necessarily true (Examples 105 and
106). However, in a T, space, weak countable compactness is equivalent to
countable compactness. For assuming that z is a limit point of a set 4,
but not an w-accuimulation point, implies that some open set 0, containing x
contains only a finite number of points of 4, say {ey . . . a,}.Butina T



space, this implies that z has an open neighborhood which contains no
boints of A, that is, that z is not a limit point of 4.

Finally, a space X ig called pseudocompact if every continuous real-
valued function on X is bounded. Every countably compact space X ig
pseudocompaet, since for g continuous function fon X, the sets 8, =
{2 /()| < n} form a countable cover of X whose finite subcover yields a

ple 9), every pseudocompact normal space is necessarily counttably com-

space topology; since X is T5, the Tietze extension theorem guarantees 5
continuous extension to X of the unbounded continuous function fiS—=R
defined by f(z,) = n. This shows that X eould not have been pscudo-
compact.

‘The relations between the varieties of global compactness may be sum-
marized in this diagram:

o-compact = Lindelsf

Compact : Weakly
Xy Va countably
Countably compact
compact
N
Sequentially Pseudocompact.
compact

In general, none of the arrows reverse, though, trivially, every countably
compact Lindelsf space is compact. So Figure 3 summarizes bath the impli-
cations and counterexamples,

LocaLizep Compacragss PROPERTIES

A topological space is called locally compact if each point is contained
In a compact neighborhood. Clearly every compact space X is locally com-
pact, since X itself is 5 compact neighborhood of each of its points.

-A common nonequivalent, variation of the definition of loeal compactness
requires that each poing be contained in an open set whose closure is eom-
pact. We shall cal] this concept strong local compactness since every
space satisfying this condition is clearly locally tompact; the converse,
however, is not generally true (Example 52) although it does hold in
Hausdorff spaces for in such spaces compact sets are closed, so the interior
of every compact neighborhood has a compaet closure,
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T Weakly countably compace |
| I
| Do Ao T T e e L 1
I } Pseudocompact (10.16)
i |
|I : Countably compact
| |
106
i : Compact (106)
bolen (50) Tt 1
! | 1 Sequentially 1
I b = | compact |
.' ! P @en
I {(25.4) {6) : [ SN +
! (105)
i
B - compuet (81
(2 75 I
¢ - compact ! (15) 0 ;
{ 20 I
(25) [N N B
Lindel&F
Figure 3,

A different strong form of local compactness is obtained by requiring X
to be both s-compact and locally compact: such a space is called o-locally
compact. It suffices in fact to assume X locally compact and Lindelsf,
for such spaces must be o-compact: the interiors of the compact neighbor-
hoods cover X, so some countable number of such interiors, and therefore
of compact neighborhoods, covers X.

Although both stronger properiies imply Ioeal compactness, strong local
compactness and o-local compactness are independent (Examples 3 and 52).
We may sumimarize the implications as foliows:

Compact = o-locally = e-compact = Lindelsf
compact

I

Locally
compact,

Strongly
locally =»
compact

The appropriate counterexamples are summarized in Figure 4.

Counraninry AX10Ms AND SEPARABILITY

-Although the previous compactness properties indirectly imply limita-
tions on the number of open sets in a topology, the countability axioms
introduced in the first section directly limit the number of open sets by
restricting the number of basis elements. There are three major countability
properties: a topological space is separable if it has a countable dense
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o - compact (58)
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o — locally
Compact
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52} 1 a0y Compact
(24)
1
f 1
= (3)
Strongly
locally compact
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10)

Locally compact

Figure 4.

subset, second countable if it has a countable basis, and first countable
if the neighborhood system of every point has a countable local basis,
Clearly, every second countable space is first countable, separable and
Lindelsf, although none of these implications reverse. In fact, there are
spaces which are first countable, separable and Lindelsf but not second
countable (Example 51). A special property which is strictly weaker than
separability (Example 20) is the countable chain condition, which is
the condition that every disjoint family of open sets is countable.

In second countable spiaces, compactness is equivalent to countable
compactness. Similarly, in a first countable space, countable compactness
1s equivalent to sequential compactness, for if {s,} is any sequence in a
countably compact space X with accumulation point p € X, there is g
countable local base at p, say [V.[V, DV, D v, . . -}- Then a subsequence
{8a} where s, € Vi converges to .

_F igure 5 summarizes the important relations between the countabiiity
axioms and compactness,

PARACOMPACTNESS

Several compactness properties which have both loeq] and global aspects
'rely on the concept of 5 refinement of a cover. A cover {13} of a space X
Is a refinement of a cover { U.} if for each Vi there is a U, such that
Vs C U, A cover is point finite if cach point belongs to only finitely
Mmany sets in the covering, and it is locally finite if each point has some
neighb'orhood which intersects only finitely many mentbers of the cover,
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First countable

(10 Countabi
(42) {42.15) ;:;umnpacty

(51} (15)

Second countable
541 (13

(106)

24) Sequentially
compact

(105)

Compact

(26)

Lindetof

Figure 5.

Finally, a cover {V,} of X is said to be a star refinement of a cover { U]
if for each x € X there is some U. such that 2* C U,, where z*, the star
of z with respect to {V;}, is the union of ail the sets ¥, of which z is an
element.

A space is called metacompact (or sometimes pointwise paracom-
pact) if every open cover has an open point finite refinement, paracom-
pact if every open cover has an open locally finite refinement, and fully T,
if every open cover has a star refinement. The slightly weaker conditions of
countable metacompactness and countable paracompactness re-
quire only that every countable open cover have the desired type of refine-
ment. A fully T, space which is also "I, is ealled fully normal. As the nota-
tion implies, every fully normal space is normal, and also paracompact.

Clearly every compact space is paracompact, and every paracompact
space metacompact. Although these implications are not reversible (Exam-
ples 28 and 89), every metacompact space (and therefore every paracom-
pact space) which is also countably compact must be eompact. For if { U,}
is any open covering of the metacompact space X, { U} has an open point
finite refinement {V,}. Now {Vs]} has an irreducible (that is, a minimal)
subcovering {V,}, for if we order subcoverings by inclusion, the intersection
of a chain of subcoverings is a subcovering: if x is not covered by the inter-
section of the subcoverings, being contained in only finitely many Vj, it
would fail to be covered by one of the elements of the chain of subcoverings,
a contradiction. Now {V,} is a finite covering, for in each V, there is an
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iy belonging to no other element of the family {V,} since the family is
minimal and if the family {V,} were infinite the set {z,] would be an
infinite set with no w-accumnulation point.

Thus we have the following implications:

Fully normal = Fully T,= T,

y _
Compact = Paracompact = Metacompact
! l 4
Countably  Countably Countably
compact, paracompact — metacompact.

None of the implications is reversible, so Figure 6 can be used to summarize
the necessary counterexamples.

Just as a Lindeléf countably compact space is compact every Lindelof
countably metacompact space is metacompact and every Lindelsf count-
ably paracompact space is paracompact. Furthermore a separable meta-
compaet space is Lindelof. For if {U,} is an open cover with no countable
subcover, and {V4] is a point finite refinement (uncountable, of course),
and {x;} is a countable dense subset, then each V; contains some ;5 so some
; is contained in uncountably many V,, a contradiction to the nature of

1Val.

CoMmPACTNESS PROPERTIES AND THE T; Axioms

Although compactness and the separation axioms involve conflicting
requirements on the number of open sets in the topology, when compact-
ness properties are combined with the T. or T; axioms, the topology often

Countably metacompact
78
(78) Metacompact (89)
Countably
paracompact (143)
Paracompact
(42.16)
(62)
Fully normal
(28)
Countably | Compact
compact
(53) 1
42) R
Figure 6.

Compactness 25

satisfies certain higher T; axioms. For the compactness properties, by
limiting the number of open sets in a cover, allow the desired disjoint open
sets to be constructed by finite intersections. As a result compact sets in
Ty or Ty spaces have the same properties as points, namely: two disjoint,
compact sets in a Hausdorff space have disjoint neighborhoods, while if 4 is
a compact subset of Ty spaces, then for each open set U O 4, there is an
open V such that A C V C ¥V C U. Also, then, compact sets in a Haus-
dorff space are closed. Thus a compact HausdorfT space is T, since closed
subsets of a compactspace are compact. Infact certain conditions weaker than
compactness are sufficient for this, while other compactness properties result
in only weaker conclusions. The precise nature of the implications following
from the assumption of the T: or T; separation axioms is pictured in
Figure 7. Furthermore, certain combinations of the compactness properties
and separation axioms foree a space to be of the second category in itself.
This type of Baire category theorem applies both to locally compact
Hausdorff spaces and to countably compact regular spaces.

Compact Hausdorff topologies are especially interesting since any such
topology 7 on a space X is both minimal Hausdor{l as well as maximal
compact. 7 18 & minimal Hausdorff topology since if #* C r, the identity map
{1 (X)) — (X,7*) would be continuous. Thus if A is closed in (X,7), it is
compact (since (X,r) is compact) and thus f(A) is compact. If +* were
Hausdorff, f(A) would be closed, and hence f would be a closed mapping—
which would mean that 7 C 7*. Thus no topology strictly smaller than r
ean be Hausdorfi. Similarly, r is 2 maximal compact topology for if #* D r,

In T> spaces:
o - locally Locally First countable and
—_—
Fully T4 compact compact countably compact
Paracompact » Ty > T3% > Ty
In T3 spaces:
Second countable > Tg
“ Paracompact U
Lindeitf ———> ﬂ ——> T4
Futly T4

Tigure 7.



the identity map Ji(Xs") > (X7)isa continuous bijection of a Hausdorff
space to a compact Hausdorff space. If +* is also tompact, f must be open,
hence +* C r. Thus no topology strictly larger than - can be compact.
Examples 99 and 100 show that the converse statements are not necessarily
true: minimal Hausdorff topologies need not he compact, and maxima]
compact topologies need not be Hausdorff,

We should note, finally that separable Hausdorff spaces can have
cardinality not exceeding 22“", for if D is a countable dense subset of X , the
map &: X — 2P0 defined by ®(x)(4) =1 iff 4 = DM U, for some
neighborhood U, of z is one-to-one whenever X is Hausdorff. Thus ecard
(X) < card 2P0 = g5®%

INvARIANCE ProrErTIES

It can be easily seen that all global and locaj compaciness properties are
weakly hereditary, that is, they are preserved in closed subspaces. But in
most cases they are not preserved in open subspaces, so are not hereditary.
Paracompactness and metacompactness, similarly, are only weakly hered-
itary. Both first and second countability are, however, hereditary, although
separability is not. In fact, separability is preserved only In open subspaces
(Example 10.6).

Most compactness properties fail to be preserved by arbitrary products.
The most famous exception is compactness itself, for, by Tychonoff’s

Table 1
PROPERTIES PRESERVED BRY PRODUCTS

TYrE oF Probucr

ProrerTY OF

Factor Spaces Finire CounTanLe UNcouNTaBLE
Compact True True True
a-compact True False (102) Faise
Sequentially eompact True True False (105)
Countably compaet False (112) False False
Locally compact True False (102) False
Lindelsf False (84) False False

First countable True True False (103)
Second countable True True False (103)
Separable © True True False (103)
Paracompaet False (84) False False

Metacompaet False (84) False False
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theorem, the product of an arbitrary family of topological spaces is com-
pact iff each factor space is compact. If X is compact, then in general
X X Y has the compactness properties of Y. If X satisfies only weaker
conditions, the situation is considerably more complex, and may be best
summarized by Table 1 which indicates which properties are preserved by
various types of products, and cites counterexamples where appropriate.

Conversely, it is often possible to infer properties of the factors given a
property of the product space. This may be done most easily by observing
that the projection maps are continuous, but in general, only the global
compactness properties are preserved under continuous mappings. To be
precise, the properties of compactness, s-compactness, countable compact-
less, sequential compactness, Lindeldf, and separability are preserved under
continuous maps and therefore also under projections. Local compaf:tness,
and first and second countability are preserved under open continuous
maps, but not just under continuous maps (Examples 116 and 26); since
projections are open and continuous, these properties also are preserved
under projection maps. Paracompactness even fails to be preserved under
open continuous maps (Example 11.19), although it is preserved under
projections.



SECTION 4
Connectedness

Connectedness denies the existence of certain subsets of a topological
space with the property that UNV = & and UN 7 = &. Any two
such subsets are said to be separated in the space. Although this concept
is logically related to the separation axioms, it examines the structure of
topological spaces from the opposite point of view.

We call two open sets I/ and V a separation of a topological space X
fFUNV=gand X = U V; spaces which have no nontrivial separa-
tions are connected. Equivalently, X is connected iff it is not the union of
two separated sets; or it is not the union of two disjoint, closed sets; or, it
does not have any nontrivial sets which are both open and closed; or, there
is no continuous function from X onto the two point set, with the discrete
topology. A connected space X is said to be degenerate if it consists of a
single point. A subset in a topological space X is a connected set if it is
not the union of two separated subsets of X , or, equivalently, if it satisfies
the definition of a connected space under the induced topology. Two points
of X are connected in X if there exists a connected set containing them
both. This relation between the points of a space is an equivalence relation,
since the union of any family of connected sets having a nonempty inter-
section is connected. The disjoint equivalence classes of points of X under
the relation “connected in X" are called the components of X. The
components of X are precisely the muximal connected subsets of X, and
they must be closed since the elosure of every connected set is conneeted -
any separation of & would either separate E, or separate £ from some of its
lmit points. (This shows even more, namely, if E CF C F and if I is
connected, then F is connected.) Bach nonempty set in X which is both open
and closed contains the components of all of its points, but the component
of 4 puint need not coincide with intersections of the sets containing it which
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are both open and closed (Example 115). We say that a space X is con-
nected between twe points if each separation of X includes a single open
set containing both points. This too is an equivalence relation between the
points of a space; we will call the equivalence classes the quasicoml_)o-
nents. The quasicomponent containing p € X is precisely the intersection
of all sets containing p which are both open and closed. If a space X has
just one quasicomponent, it must in fact be connected; thus we need not
call it quasiconnected.

Path and arc connectedness relate to the existence of certain continuous
functions from the unit interval into a topological space. Continuous func-
tions from the unit interval are called paths; if they are one-to-one they are
arcs. A space is path connected if for every pair of points a and b there
exists a path f such that f(0) = a and f(1) = b. The existence of a path
between two points of a space is an equivalence relation; transitivity may
be verified by reparametrizing the two paths. The equivalence classes,
called path components, are the maximal subsets with respect to path
connectedness. Arc connectedness and arc components are defined by
exact analogy; to make the relation reflexive, we declare every point are
connected to itself. Clearly, every nontrivial arc connected space must be
uncountable.

The relations between the four types of components may be summarized
by the following chain of containments:

Arc Path

C Components C Quasicomponents.
components — components

None of these containments is reversible (Examples 8, 116, and 115).

A set with no disjoint open sets will be calied hyperconnected snd a
set with no disjoint closed sets will be called ultraconnected. Equi.v—
alently, X is hyperconnected if the closure of every open set is the entire
space, while X js ultraconnected if the closures of distinct points always
intersect. Ultraconnectedness is independent of hyperconnectedness, though
both imply comnnected. In fact, every ultraconmected space is path con-
nected, for if p is a point in {a} M 5], then the function f:[0,1] — X
which maps each point of [0,1) to a, each point (,1] to b, and }topis
continuous. Hyperconnected spaces need not be path connected (Example
18) and ultraconnected spaces need not be are connected (Example 13).
S0 we may summarize the connectedness implications by:

Ultraconneeted = Path conneeted = Connected

7 , 1

Arc connected Hyperconnected

Both ultra- and hyperconnectedness are very strong conditions which



trivially imply some other properties. Every continuous real-valued func-
tion on a hyperconnected space is constant, so such spaces are necessarily
pseudocompact. On the other hand, no nontrivial ultraconnected space can
have more than one closed point, 80 none are T,, even though they must all
be T,, trivially. '

Quasicomponents and components are equal if (but not only if; see
Example 26) a space has a basis consisting of connected sets ; we call such a
space locally connected. Equivalently, X is locally connected if the com-
ponents of open subsets of X are open in X. Local connectedness clearly
does not imply connectedness, but neither does connectedness imply loeal
connectedness (Example 116). However, every hyperconnected space is
clearly locally connected, since in such spaces every open set is conmected.
Figure 8 summarizes the relevant counterexamples.

Connected
(116)
Path connected
(1zn
Arc
connected
(120)
If'_'_ T T 71 ———— T
| (45) (57 (46) #
i
| Hyperconnected f'
I' (53) 56 | as :
i' [
| 0 |
Locally connected |
e Tyconnected J
Figure 8.

Path components are equal to quasicomponents if a space has a basis
consisting of path connected sets; such a space is ealled locally path con-
nected. Equivalently, X is locally path connected if the path components
of open subsets of X are openin X. Analogously, are components are equal
to quasicomponents if a space has a basis of are connected sets; such a space
is said to be locally arc connected. As above, locally are connected
implies locally path connected, which impiies locally connected, but neither
converse holds (Examples 4 and 18). Furthermore, loeally path connected
is independent of path connected and locally are connected is independent
of are connected (Examples 118 and 32.5).
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Funcrions AND Probucts

Any set S which is the union of connected sets A,‘and a connm@ set B
where BN A, » & for each « must be connected since a separation of S

would necessarily separate B. Since any finite product ‘E 1X,— of cor:nected
.

sets X, can be written as the union of spaces homeomorphic to ,‘IE lX.- and

X., a simple induction argument shows that any finite product of con-

nec,t,ed spaces 1s connected. In fact, a straightforward argument by trans-

finite induction can be used to show that any product GEAXG of connected

spaces X, is connected. If the index set A is well ordered and if x = (z.) €
X = II X, is some fixed point, let S, = {{yg) € Xlys = x5 for_ all B > al.
Then S, 1s connected whenever S,_; is since S, is ho_meomorphlc toSa1 X
Xo If @35 & limit ordinal, S. = \J §j, so if each Sy is connected for 8 < a,

A <a . _ .
S« must be also, since the collection {S,} is nested. Thus X = aLEJAS‘, is

connected. Indeed we have proved more since the proof uses only the fact
that in the product topology the subsets X; Cax, ’where X;}:S
{{ys) € Xlyp = x5, B # a} are homeomorphic to the X,’s. T%xus 1:,1 .
proof applies to the Cartesian produet o‘fi .t.he ))g = with any topology in whic
re capies of the corresponding X,.

th‘;fsgﬁ'sis{:o?mect:d and f is a continuous function on X, then f{X) must
be connected, for if A and B separate f(X), f-(4) and f~}(B) separate X.
Though the continuous image of a locally connected space need notdbe
locally connected, it is true that local connectedness is preserved un ;r
continuous maps f from a compact space X onto a Hausdorff sp;ce .
For suppose £ is a component of an open subs',et U of Y Then eac com;
ponent of f~(E) is a component of f-1( U.) since lf(f is a compon_ex'lt_ot
J7Y(U), then f(G) is connected and thus either contained in E or disjoin
from it. But if X is locally connected, the components of the open set
JS7Y(U) are open, so f7}(E) must be open. Its complement is clospd, tllflus
compact, so f(X — f(E})) = ¥ — E is compact, hence closed (since ¥ is
Hausdorfl). Thus E is open, and therefore ¥ must be locally connected.

DIsCONNECTEDNESS

A space is totally pathwise disconnected if the o'nly continyoys ma.pl-sl
from the unit interval into X are constant., or, eq}llvalently, if 11;5-, pa.t.;d
components are single points. A space with s‘mgle pomt components is salh
to be totally disconnected; since the points will then be f:losed, ea::i
such space will be T,. Clearly no connected set can be totally disconnected,
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though there is & connected set which is totally pathwise disconnected
(Example 128). Furthermore, only the discrete space can be both totall
disconnected and locally counected, for in such cases each compone );
{that is, each point) must be open. ponen
r If for every pair of points @ and b in a space X there exists a separation
U, Vsuchthat e € Uand p & V, we shall say that X is totally sepa-
Fated..A necessary and sufficient condition that X be totally separated
Is tha.t_lts quasicomponents be single points; clearly every totally separated
space 18 completely Hausdorff and Urysohn. A Hausdorff Space in which
the‘closm'e of every open set is open is called extremally disconnected-
equivalently, a Hausdorff space is extremally disconnected iff the im;erioxt
of every elosed set is closed, or, if disjoint open sets always have disjoint
closures. Clearly every extremally disconnected space is totally scpa;ated.

T,
0 (53)
T, 18)
Ty (28)
(129.6) (129) Totally disconnected
Scattered 72)
79 Totalty
o separated
® @n | (23) @] 0
]
: ]
Extrcnlaally disconnected i'
I (114) {
{113)
(i 113,
II Discrete ) || a13.n
| 4) i
Zero dimensional
[Zerodimensional _
/ Scattered and T, X
Discrete Extremally Totall
2 y Totally Total i
topology ~ disconnected separated disconnected$ dizc?:rl:iﬁ:g:lwm

/ Urysohn
Zero dimensional U

and TO = RCELI]HI‘ ——% T2 _ T]

Figure 9.
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A space is zero dimensional if it has a basis consisting of sets which
arc both open and closed. Clearly every zero dimensional space is T, though
not necessarily Ty (Example 5). Every zero dimensional T, space is totally
separated. A space is called scattered if it contains no nonempty dense-
in-itself subsets; although scattered spaces need not be T\, every scattered
T, space must be totally disconnected since in T, spaces, every nontrivial
vonnected set is dense-in-itself. However, a scattered space which is not
T: may be connected (Example 57). Thus we may summarize the various
disconnectedness properties in Figure 9.

BrcoNNECTEDNESS AND CONTINUA

A connected set is swid to be biconnected if it is not the union of two
disjoint nondegenerate connected subsets. A point p of a connected set X
is called a cut point if X — [p] is disconnected, and a dispersion point
it X — {p} is totally disconnected; any set having a dispersion point is
biconnected, since the dispersion point can be in at most one of the two
disjoint subsets. There is, however, a biconnected set without a dispersion
point (Example 131).

Sets which are both compact and connected are called continua; a
continuum is indecomposable if it is not the union of two different
nondegenerate proper sub-continua, A subset ¢ of a continuum K is a
composant if for some p € K, C contains all points z such that x and p
are contained in some proper sub-continua of K. A set is said to be puncti-
form if it contains no nondegenerate continun. Clearly, each totally dis-
connected space is punctiform, although so are some connected spaces
{Example 128).



SECTION §
Metric Spaces

A metric for a get X Is a mapping d of X X Xinto the nonnegative real
numbers satisfying the following conditiong forall 2,y € x.
My: d{z,z) =0
Me: d(z,2) < d(zy) + d(y,z)
M;: d(z,y) = d(y,z)
Mi: iz g d(z,y) > 0.

We call d(z,y) the distance between T and y. If d satisfies only M,, M,,
and My it is called quasimetric, while if it satisfies M,, M., and M, it is
called a pseudometric, It js Possible to use a metric to define g topology
on X by taking as a basis all open balls Blre) = jye x ld(z,y) < ¢f.
A topological Space together with a metric giving its topology is called a
metric space, Although a single metric will yield a unique topology on a
given set, it is possible to find more than one metric which will yield the
same topology. In fact, there are always an infinite number of metries which
will yield the same metric space (Example 134),

Every metrie space is Hausdorff, since B(p,e) NB(g,e) = i e <
d(p,4)/2, and also Ty, For sSuppose 4 and B are separated subsets of 5
metric space X; then each pointr € A hag 4 neighborhood B(z,e,) disjoint
from B, and each point ¥ € B hag a neighborhood B(y,¢,) disjoint from A
Then U, = B(z,e./2) and Uy = U B(y,e,/2) are disjoint open neigh-

€4 €B

x
borhoods of 4 and B, respectively. '1‘th metrie spaces are completely nor-
mal, and, by similay argument, perfectly normal. Therefore metric spaces
satisly every T, separation property. Furthernmre, every metrie space is
fully T, thus fully normal and paracompact.

Mueh of the structure of countability and compaciness is also simplified
In metric spaces. Since {B(x,1/n)in = 1,2,3 .. Jisa countable loeal
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buasis at x, each metric space is first countable. If {x,} is a countable dense
subset of X, the balls B(z,,1/n) form a countable base for the to_pology on
X. 8o for metrie spaces separability implies, and is therefore equivalent to,
; ntability.

be?loll:g s(;(:::e 1i;:truey()f metric spaces which are Lindelsf, since in such spaces,
for each integer k, the open covers {Bz,1/k)lx € X } have countable sub-
covers. The union of all such subcovers is a countable base for X. Thus
every Lindelof metric space is also second countable. ' _

Since each metrie space X is first countable, sequtantla.l 'comp:actness is
equivalent to countable compactness, which, since X is T,, is equivalent to
weak countable compactness. More important, countable compactness in
metric spaces is equivalent to compactness, since every countably compact
metrie space is separable: for cach n, a countably compac‘t metric space
can be covered by finitely many balls B(:r:.-",l/.n), 80 {.a:.-"} 1s & countable
dense subset. Thuseach countably compact metric space is second countable,
and every countably compact second countable space is compact.

Since metric spaces are Hausdorff, the concepts (?f local compactness and
strong local compactness are equivalent, So in metric space, we h.ave amuch
simplified implication chart (Figure 10); that. thef_se implications do not
reverse is shown by the counterexamples listed in Figure 11.

. - locally
Sequentially > ?
compact compact
Countably o ~ compact
compact
Compact . Separable
ﬂ Lindeldf
Weakly
countably Second
compact countable
L |
Figure 10.

Although in general the metric structure of a space does not appl:eclably
simplify its connectednoss properties, we can shm.\' that every metric space
which is extremally disconnected is discrete. For in any metric space, each
point p can be written as the intersection of the closed metrie balls
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(30) - compact
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Figure 11.

Buyx(p); then U = \_Jl Bipu(p) — Bj@ayn (p) is an open set which has p as a

noninterior limit point] provided p is not open. So if X is not discrete, it
cannot be extremally disconnected.

CompPLeETE METRIC SracEs

Heuristically, compactness is related to the size of a space in that it
determines how many small open sets are required for a cover. In g metric
space, the radius ¢ of an open ball can be used as a precise measure of the
size of the small open sets. Thus we call a subset & of a metric space X
totally bounded (precompact) if for every ¢ > 0, £ may be covered by a,
finite collection of open balls of radius ¢, We call such a cover an e-net.“A
subset ¥ is called bounded if there exists a real number 8 such that
d(e, 1) < 8 wherever T,y € K the least bound of i is called the diameter
of E. Clearly every totally bounded set is bounded, but not conversely

Every compact meftric space is totally bounded, since every covering by
e-balls has a finite subcover, and every totally bounded set is second
countable, since the union of enetsfore=111 . forms a countable
basis. But neither of these implications reverses (Examples 30.10 and 134).

To discover the reason that totally bounded sets may fail to be compact,
we must examine the convergent sequences. A sequence {z,} in a metric

convergent sequence is g Cauchy sequence; but the converse failg {Exam-
ple 32.1). So we define a complete metric space as one in which every
Cauchy sequence converges to some point in the Space, or equivalently

Metrie Spaces 37

that the interseetion of every nested sequence of closed balls with radii
tending to zero is nonempty. (A sequence {Ea} of sets is nested iff E. C
Fnp1 for all n.) If the radii do not tend to zero, this condition need not be
implied by completeness (Example 135). Now every compact metric space
is complete, and more important, every complete and totally bounded
metrie space is compact,

We will call a topological space (X,7) topologically complete if there
exists a metric d giving the topology r such that (X,d) is a complete metric
space. Topological completeness is a topological property which is weakly
hereditary, though not hereditary (Example 30). Clearly every compact
metric space is complete; though the converse is not true (Example 28), it
is true that a metric space is compact iff it is complete in every equivalent
metric. The famous Baire category theorem states that every topologically
complete metric space is second category.

A completion of a metric space X is any complete metric space which
contains a dense subset to which X is isometric, that is, to which there is
a bijection which is distance preserving. All metric spaces have completions
and even more surprising, all of the completions of a given space are iso-
metric. Furthermore completeness is preserved by isometries but uniike
topological completeness not, by homeomorphisms {Example 32.10).

METRIZABILITY

A topological space (X ,r) is called metrizable if there exists a metric d
which yields the topology 1. Every regular second countable space is metriz-
able, but not conversely (Example 3); in fact, a topological space is metriz-
able iff it is regular and has g o-locally finite base, that is, a base which
is the countable union of locally finite families. Although this requirement
is very close to paracompactness, and though every metrie space is para-
compact, there exist regular paracompact spaces which are nonmetrizable
(Examples 51 and 141).

UNIFORMITIES

A quasiuniformity on a set X isa collection U of subsets of X % X
which satisfies the following axioms:

Ur: Forallw € U, A C u, where A = {(x,2)|z € X},

Uy Foru € Uandy € Uyunev ey

Uy Ifu€ Uand v CX XX, theny € 1.

Ui For all w € U, there isv € U such that » 0 v C » where o is
defined by v 0 r = {(x,2}| there is a y € X such that (r,y €0
and (y,2) € u).



33 Basic Definitions

The quasiuniformity U is a uniformity if the following additional condi-
tion is satisfied

Us: Ifu € U, then u' € U where u~! = Hy)lx,y) € UY.

A set u which is an element of the quasiuniformity U is called an entourage
(or a relation). The entourage u is said to be symmetric if u = 3, The
set A is called the diagonal of X X X. The quasiuniformity U is said to be
separated if the intersection of all the members of U is the diagonal A.

The first three axioms say that every quasiuniformity on a set X is a
fiiteron X X X. Further, a quasiuniformity U is a uniformity iff there is a
symmetric base for U, that is a filter base of symmetric sets.

Every quasiuniformity I/ on a set X vields a topology 7 on X by taking
as a neighborhood system for X the sets u(z} where v € U and u(z) =
{yl(z,y) € u}; there may be more than one quasiuniformity generating a
given topology (Example 44). If two quasiuniformities generate the same
topology on the set X, they are said to be compatible. A set X with a
quasiuniformity U and the topology r generated by U is said to be a
quasiuniform space and we may use the notation (( X, U ),7) to denote
this or the shorter notation (X, U} where r is understood to be the topology
generated on X by U. A topological space (X,r) is said to be quasiuni-
formizable if there is a quasiuniformity U such that ((X U)r) is a
quasiuniform space.

The problem of when a topological space (X,7) is quasiunformizable or
uniformizable is simpler than the corresponding metrization problem. If
(X,r} is a topological space, the set [/ —= fugiug = (G X @) U (X —
G X X) and G € 7} is a filter subbase for a quasiuniformity on X which
generates 7, and thus every topological space is quasiuniformizable. A
topological space (X ,r) is uniformizable iff it is a Ty space,

MEetric UNIFORMITIES

If (X,d) is a pseudometric space, then the family U of all sets u which
contain a set of the form v, = f{zld(z,y) < €} is a uniformity on X,
which yields the same topology as the pseudometric d. Such a unif ormity is
called pseudometrizable (or, if appropriate, metrizable). Not every uni-
formity which yields a metrizable topological space need be metrizable
(Iixample 44).

PART Il
Counterexamples



1. Finite Discrete Topology

2. Countable Discrete Topology

3. Uncountable Discrete Topology

On any set X we define the discrete topology by taking all subsets of X
to be open. Any subset is then both open and closed. We distinguish three
cases, the finite discrete topology, the countable discrete topology, and
the uncountable discrete topology according to whether the set X is
finite, countably infinite, or uncountable.

1.

6.

This topology is the finest topology for X, since any open sef, of
any other topology is an open set in this topology.

Every point is an isolated point,

7 1s not a limit point of the sequence Z,%, % .. .considered as a
set, although it is an adherent point of the set.

For any set A C X, A =Ae=A- and A* = .

Any function from a set X with the discrete topology is
continuous.

The topology on a discrete space may be obtained from the dis-
crete metric: d(x,y) = 1if ¢ == yyandd(zy) = 0if z = 4. Thus
every discrete space satisfies all separation properties,

Each discrete space is strongly locally compact since each point
is a neighborhood of itself. Such spaces are clearly first countable
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10.

11,

and, since the open cover by discrete points i locailly finite and
finer than all other open covers, discrete spaces are paracompact,

Countable discrete Spaces are o-compact, Lindelsf, second count-
able, and separable but uncountable discrete spaces are none of
the above. Finite discrete spaces satisfy ali compactness
properties.

Since only the empty set is nowhere dense, every diserete space
Is of the second category. (In faet, a discrete space is a complete
metric space.) Furthermore, no discrete space iy dense-in-itself,

If X consists of more than one point, it is clearly not conneeted
and thus neither path nor are connected. But it ig locally path
eonnected, and thus weally eonnected.

points.)

1. This topology is the toarsest one for X, It ig comparable with
any other topology for X

2. No subset 4 # Xor @iy open, closed, F,, or @,

3. Every subset is compact and sequentially compact.

4. Every point of X 1s a limit point for every subset of X, and every
Sequence converges to eBVery point of X. If X is uncountable,
every sequence hag uncountably many limig points.

5. Every subset coutaining more than one point is dense-in-itself.
The only nowhere dense subset is &, s0 X is of the second
category,

6. For A = X, Ao = fo- = A = of and for A - =
A= = g~ - If A # X or &, Ab = X, A% = gy

7. Xis separable, since any subset is denge. Furthermure, X is
second countable,

8.

Every function to a space with the indiserete topology is
continuous.

10.

11.
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The indiscrete space is path connected and thuys connected, but,
Is arc connected only if it is uncountable. It ig both hypercon-
nected and ultraconnected.

Since the only open set containing any given point is X itself,
the indiscrete space fails to be T,. But it is Ts, Ty, and T
vacuously,

Clearly X is bseudometrizable, although not metrizable.

5. Partition Topology

6. Odd-Even Topology

7. Deleted Integer Topology

Each partition P of any set X into disjoing subsets, together with &, is
1 basis for a topology on X, known as a partition topology. A subset of X
is then open if and only if it is the union of sets belonging to P,

1.

The partition topology is characterized by the fact that every
open set is also closed ; each set in the partition P is a component of
the space X. Thus X /P is discrete,

The trivial partitions yield the discrete or indiserete topologies.
In any other case X with u partition topology is not T, since some
element of the partition contains two or more points neither of
which can be separated from the other. Thus X is not Ty, Ty,
or T.. However a subset, of X is open iff it is & union of elements of
the partition and thus its complement is also open; thus a set is
open iff it is closed. Hence X ig Ts, Ty, Ty, and T.

An important example of a partition topology is the odd-even
topology on the set X of positive integers, generated by the parti-
tion P = {{2k — |, 2k}}. Clearly this space is second countable,
thus first countable, separable, and Lindeléf. Since every noi-
empty subset of X has a limit point in this topology, X is weakly
countably compact. But X s hot countably compact, since P
itself is a countable open covering of X which has no finite
subcover.

If X is the set of positive integers with the odd-even topology,
and if Z* is the same set with the discrete topology, then the
mapping f: X — 2+ defined by f(2k) = &, f(2k — 1) = k is con-
tinuous. But X is weakly countably compact, whereas Z+ is not,.
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So weak countable compactness is not preserved under continuous
maps,

A commeon variation of the odd-even topology is the deleted inte
ger topology: in this ease X is the unjon of the open intervals
(m—1mn)forn =1, 2, 3, ..., and the topology on X is gen-
erated by the partition P = {(n — 1,n)]. This example has mogt
of the properties of the odd-even topology.

Every pa.rtitior_l space is pseudometrizable since the pseudometric
defined by letting d(z,y) = 0 iff 2 and y belong to the same set

of -the partition, and letting d(z,y) = 1 otherwise yields the par-
tition topology.

If we double the points of the real numbers with the discrete
topology, we obtain a partition topology with uncountably many

disjoint open sets. This topology is weakly countabl
c
but not Lindelsf. g Y compadt

8. Finite Particular Point Topology

9. Countable Particular Point Topology

10. Uncountable Particular Point Topology

1. Sierpinski Space

12. Closed Extension Topology

On any set X, we can define the o
subset of X that contains a partic

pen sets of a topology to be ¢f and any
ular point, p. We distinguish three cases,

finite, countable, and uncountable according to the size of X

1.

The only sequences | a:} which converge are those for which the
a; are _equal for all but a finite number of indices. The only aceu-
mul?,txon points for sequences are the points b, that the a, equal
fOf' 1.nﬁnitely many indices. So any countably infinite set con-
taining p has a limit point, but never even an accumulation point
when considered as a sequence 1n any ordering.

Every point except P in X is a limit point of P, so the closure of
any open set other than &f is X. Closed sets other than X do not

contain p, so the interior of any closed set other than X js &.

10.

11.
12.

13.

14.
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Let Y be a subset containing the particular point p. Then every
point ¢ # pis alimit point of ¥ but not an w-accumulation point,

Every particular point topology is Ty, but sinee there are no dis-
joint open sets, none of the higher separation axioms are satisfied
unless X has only two points.

A = {p} is compact, but A = X is not compact if X is infinite.
In this case, X is locally compact but not strongly locally com-
pact, since the closure of any set containing p is X. In fact, if X
is uneountable, it is not even Lindelsf.

X is separable, sinece {p}] is a countable dense subset. But, if X
is uncountable, X — {p} is not separable.

If X is uncountable, it is first countable, but not second eount-
able, since X — {p] is discrete.

If on a given set X, we define , to be the collection of all sets
containing a point p, and 7, to be the collection of all sets con-
taining ¢ # p, the spaces (X,r;) and (X,r:) are homeomorphie,
but r, and 7. are not comparable.

X is scattered, since every subset not containing p has no limit
point, and for a subset which contains p, p itself is not a limit
point. Thus X contains no nonempty dense-in-itself subsets.

X is hyperconnected, since every open set must contain p. But
if X contains at least three points, it is not ultraconnected since
two points not equal to p are disjoint closed sets.

Since X — {p} is discrete, p is a dispersion point for X.

X 1s not weakly countably compact since any set which does not
contain p has no limit points. But since there are no disjoint open
sets, every continuous real valued function on X is constant.
Thus X is pseudocompact.

X is path connected and locally path connected since if ¢ € X
we can map 1 to g and [0,1) to p to form a path from ¢ to p.
But X is not arc connected since the inverse image (under a
homeomorphism) of the open set p would be one point, which is
not an open set in [0,1].

X is not of the first category, since if it were, some nowhere dense
set would have to contain p, and its closure would then be X.

(X,r) is locally compact since each point has a compaet neighbor-
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16.

17.

18.

19.

20.

21.

hood, namely itself together with p; but if X is infinite, it is not
strongly locally compact since the closure of any neighborhood
is all of X.

If we replace the particular point p with two points p;, pa, the
resulting space is weakly countably compact since either p; or
P2 is a limit point of any subset,.

An important particular point topology is Sierpinski space, the
space {0,1} with the particular point 0. Since the only open sets
are &, X, and {0}, the sequence 0,1,0,1, ... has 0 as an
accumulation point and 1 as a limit point.

Sierpinski space is hyperconnected, ultraconnected, and path
connected, but not arc connected. Also it is T, and T; vacuously,

Let (X,7) be a countable set with the discrete topology, which
is then paracompact, and let ¥ = {0,1} be Sierpinski space with
0 open, which is compact; then X X ¥ is paracompact. If
(X' {p},0) is a particular point space with particular point p
then the cover {{p,a}|a € X} is a countable cover with no point
finite refinement. Thus (X \J {p},c) is not even countably meta-
compact. However the function f: X X ¥ - X U {p} defined
by f(,0) = p and f(z,1) = z is open and continuous. Thus the
open continuous image of a paracompact space need not even be
countably metacompact.

The particular point topelogy permits the following usefu] ex-
tension. Let (X,r) be any honempty space, and let p be a point
not in X. We define X* = X U {p} and describe a topology +*
on X* by calling a set in X* open iff it is the empty set or is of
the form U U {p} where U € 7. Since the closed sets of X*
other than X" itself are precisely the closed sets of X we eall
(X*,7*) the closed extension of (X,r). The particular point to-
g{olog:ir o}n X 1s the closed extension of the discrete topology on
— {p}.

The properties of the elosed extension topology are the same as
the properties of the particular point topology except in the
cases where the properties of the particular point topology de-
pend on the disereteness of X — {pl. Thus (X*#) is T, iff
(X,r) is To; but (X*r*) is not Ty, Ty, or Ts. Further (X*7*) is
Tyor Tsiff (X,;7) is Ty or T vacuously and in this case the con-
dition on {X*,7*) is also vacuous.

13.

4.

15.

16.
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Finite Excluded Point Topology

Countable Excluded Point Topology

Uncountable Excluded Point Topology

Open Extension Topology

The exeluded point topology may be defined on any set X by declaring
open, in addition to X itself, all sets which do not include a given point
p € X. As usual, we distinguish three special cases depending on the
cardinality of X: finite, countable, or uncountable excluded point

topology.

i.

If X has just two points, the excluded point topology on X is
just the Sierpinski topology. We consider this to be the trivial
case, and assume hereafter that X has at least three distinct
points.

X is Ty, but since the only neighborhood of p is X itself, X is not
Ty, and thus not T, or T:. However, every nonempty closed set
contains p so X is T, vacuously. Since any two sets in X are
separated iff they are disjoint subsets of X — {p}, and since
such sets are open, X is T; nonvacuously.

Again, since X is the only open set containing p, X must be both
compact and connected. Since every closed set other than ¢
conlains p, X is ultraconnected, but it is not hyperconnected,
since two points distinet from p are disjoint open sets. Thus
X is path connected, though it cannot be arc connected since
the inverse image of a single point distinet from p must be an
open set in [0,1]. Similarly X is locally path connected but not
locally arc connected.

Since {p} is closed, and since the only open set which contains p
is X itself, X is not perfectly T,.

X contains no nonempty dense-in-itself subsets since only p can
be a limit point of any set. Thus X is scattered. Further p is a
dispersion point of X.

X is always first countable, and thus sequentially compact. But
it is second countable and separable only when X is finite or
countable.

The excluded point topology may be varied by selecting as open
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?.ll sets w'hich are disjoint from a fixed subset A, together with ¥
1tself. This excluded set topology is similar to the excluded point
topology except that it will in general fail to be ‘T,

8. The excluded point topology is a special case of the following
Let .(X »7) be a nonempty topological space, and let pbea poinl.
not 11: X. We .deﬁne X" = XU {p) and describe a topology
on.X* by calling a set in X* open iff it is X* or in 7. We cal
(X*;r*) the open extension of (X7} since other than X* itself the
open sets_ of 7% are just the open sets of . The excluded point
topology is then the open extension of the discrete topology.

9. Except where the preceding arguments depend on the discrete

ness of X — {p} the properties of (X*r*) are the same as thos

of the excluded point topology. Thus (X% is Ty iff (X 7) is T,

})ut ()_( *,r*) always fails to be Ty, Ty, Ta. It is always T.: but i;

$tT5 iff (X;,Zi is.L.SkimiIarly (X" is compact, cozlnecte;d and
raconnected. Likewise (X*+%) j i J

cotmtable -Gt (X' is separable, first or second

10. The open extension of the particular point topology is T, and

I ) I l] ] nor I 1N¢ h.e ar tlculal Olntl
OI].I ; I 0

17. Either-Or Topology

The’ either-or topolc_)gy is defined on the interval X = [—1,1] by de-
claring a set open iff it either does not contain {0} or does contain (—1 1)

Thus {1}, {— — ini
o Sesd {Se}t,s.{ 1}, {—1,1} and any set containing {0} are the nontrivial

1. A straightforward consideration of cases shows that X is Ty and
T, but neither T, nor Ts. In fact, X is Ts, since if 4 and B are
sepal:ated sets neither of which contains 0, they are then open
But if one, say A, contains 0, then 0 cannot be in B. 8o B ean be.
only {1}, {—1}, or {—1,1}, and in any of these cases B and
X — Bare disjoint open sets containing B and 4.

2, Sm.ce any open cover of X must include an open set containing 0
X is compact, thus Lindelsf, But the subspace X — {0} is dis:
crete, thus not Lindelsf.

3. X s clearly first countable, although not separable since X eon-
tfuns uncountably many open points. X is not of the first category

- 3 . = '

Since no open point can be contained in any nowhere dense set.
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4. X'is locally path connected since every point except 0 is open, and
the neighborhood (—1,1) of 0 is path connected: if p € (—1,1),
the function which takes 0 to 0 and (0,1] to p is a path joining 0
to p. Thus X is also locally connected, but not locally arc
connected.

5. However X is scattered, since there are no nonempty dense-in-
itself subsets, for 0 is the only possible limit point of any subset.

18. Finite Complement Topology on a Countable Space

19. Finite Complement Topology on an Uncountable Space

We define the topology r of finite complements {or cofinite topology)
on any set X by declaring open those sets with finite complements, to-
gether with ¢F (and X). Then the only closed sets are X, ¢, and finite
sets. If X is finite, the topology of finite complements is the discrete
topology. So, to avoid trivialities, we will assume that X is infinite, and
distinguish two cases, the topology of finite complements on a countable
space, and the topology of finite complements on an uncountable space.

1. Each point of X is a limit point of any infinite subset 4, since
then any open set of X contains a point of A. In particular, if A

is countably infinite, A = X, so X is separable.

2. The space X and every subspace of X is compact. If we have a
collection of open sets covering X, any one of the sets will cover
all but a finite number of points of X, say n points of X. We can
choose n other sets of the collection, one for each point, and
together these n + 1 open sets will constitute a finite subcover
of X, '

3. If X is uncountable, open sets are uncountable, so are not F,-
sets. By complementation, closed sets are not @s-sets. Thus X is
not perfectly T,. In this case, the countably infinite sets are
F .-sets, which are neither open nor closed, and the complements
of countably infinite sets are (4-sets, also neither open nor closed.

4. For uncountable X, this topology is not first countable, and
therefore not second countable. Suppose at some point z there
exists a countable loecal basis. Then there exists a countable
collection of open sets @, each containing x, such that every
open neighberhood of z contains some set B € ®,. 8o M@, =

{z}, and thus X — {2} = X — M@, = U (X — B). Each of
BE®,



t:he.: X - B are finite by definition, and the countable union g
fuutfe s.ets is count:able, S0 X ~ {z} mugt be countable, a ggp
tradiction. But X g separable, since any infinite set is dense.

5. Ifabe x »then0, = x — {6} is an open set containing g by
notb,and 0, = ¥ — {a} eontains b but not ¢, so X is g T, space,

6. Since no two open sets are disjoint (since X 18 assumed infinite)
(X1 is hyperconnected and therefore not Ts, Ty, T, or Ts. I

7. If one doubles the points of X, the resulti isfi
. , sultin, space satisfie -
axioms, but is sti]] compact bR stisfies o

8. risthe smal!es't (or coarsest) topology on X in which points ar
closed, thus it s often called the minimal T, topology.

i0. ‘If X is. countable, it cannot be Path conneeted for if f:i0,11 > ¥
is con!;lpulous, =)z € X Jisa countable CO]lecti;)ll (;f- nuty.
a:lly disjoint closed setg whose union ig [0,1]. But this s impos-
sible. For the same reason, X cannot be locally path connected,

11. IfXis uncountable, and if we assunie the ¢
then each pair of points g, bE X ig contained in some set 8§
.wl.lose cagrdinality Is that of [0,1]. If f: 0,1] - S is a bijection
it is cm}tmuous, so Sisanarcin X joining @ and b, Thus in this,
case X is are connected and similarly, locally are cohnected.

20. Countabie Complement Topology

21. Double Pointed Countable Complement Topology

If X is an uncountable set, we define the to
ments on X by declaring open a)j sets whose
together with g (and X).

pology of countable compie-
complements are countable,

1. Since the topology of countable complements is finer than the

mgnmal T‘. topol(.agy, it is Ty and Ts; but it does not satisfy any
other T; axioms since O two open sets are disjoint.

. ¢ the complement
of any open set is countable the space js Lindelof, g
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point, X is not separable even though it satisfies the countable
chain condition.

4. X is hyperconnected and thus connected, locally connected, and
pseudocompact.

5. Since in this topology the intersection of any countable collection
of open sets is open and thus uncountable, X is not even eountably
metacompact.

6. An interesting variation of this space may be constructed by
doubling each of its points. Technically, this double pointed
countable complement topology is the product of X, the topology
of countable complements, with the two point indiscrete space.
Clearly the double pointed countable complement topology fails
to be Ty or T, and since each doublet is closed and no two open
sets are disjoint, it fails to satisfy any higher T; axioms.

7. The double pointed countable complement topology is weakly
countably compact, since if p belongs to any infinite set A, then
its twin p’ is a limit point of A. (The ordinary topology of count-
able complements is not weakly countably compact.)

8. If we further vary this example by forming the open extension of
the double pointed countable complement topology, we will have
aspace which is T, (since all open extension topologies are T} but
not, Tu, T], Tg, r].‘s, or Tg.

22.  Compact Complement Topology

On (R,r) the Euelidean space of real numbers, we define a new topology
by letting r* = {X C RIX=gorR— Xis compact in (R,r)}. Since
the compact sets in (K,r) are closed under arbitrary intersection and
finite unions, r* is a topology.

1. Since finite sets are compact in (R,r), the topology 7* is finer than
the topology of finite complements. Thus (R +*) is T,.

2. However, no two open sets in (R,7") can be disjoint, for the com-
plement of their intersection, being the union of their compact
complements, cannot be R: Thus X must fail to be T, and thus
cannot be Ty, nor, since it is Ty, can (R7*) be Ty, T sy or Ts.

3. Fur precisely the same reason, (R,r") is hyperconnected, thus
connected and locally connected. But it is not ultraconnected.

4. (R") is compact, since if 0] s an open covering of R, R -0,
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is compact in the Euclidean topology (for any O, € 10,}). Sinee which converges to p. In fact, if X is uncountable, p is the only
each O, is open in the Euclidean topology, a finite number of them limit point of any infinite countable subset, so such an X cannot be
must cover £ — Oa,. separable.

5. Sets of the form (— o ,m) (p — 1/n, P+ 1/n) U (n, ) form 5. If X is uncountable, it is not first countable either, since p cannot
& countable local basis at P € R 8o (R is first countable ang have a countable local base. For suppose {U,} is a countaple cal-
similarly, also second countable, Thus it is alsg sequentially lection of neighborhoods of p; then X — [/, is finite, so
compact, C) X-U)=X-NU, is at most countable. Thus

6. Since (R,7'} is coarser than the Buclidean topology, the rationalg o = . .
remain dense in the neyw topology. Thus (R,7") is separable, ™ Ui p, so there exists a pomnt ¢ # p in N, and hence

i=1 .
X ~ ¢ is a neighborhood of p which does not eontain any U,
2. Countable Fort Space So {U,} is not a neighborhood base of p.

6. Butif X is countable, it must be separable (it is a countable denge

4. Uncountable Fort Space subset of itself) as well as second countable, for the total number

If X is any infinite set, and p a particular point of X, we can define a of neighborhoods of p—the only point in question'—is countab_le,
topology on X by declaring open any set whose complement, either js being in one-to-one correspondence with the totality of all finite
finite or includes p.If X is countably infinite, we cajl this space count. sets. So countable Fort space, since it is regular, must be
able Fort space; if X i uncountable, then uncountabie Fort space. metrizable.
1. This topology is clearly the minimal topology generated by the 7. Every point q of X, except p, is both open and closed, so { q.} and
excluded point topology together with the topology of finite com. X — {q} separate X. Thus X is totally separated. But X is not
plements, and thus (X,7) is T, extremally disconnected, for if A is an infinite set with an infinite

complement which containg P, then A is open, although 4 =
AV {p} is not open.

P 181 exactly one of them 8ay A; then B iy open, but so too is 8. X isscattered since in T, spaces, every dense_-in—it.self su!aset _must
X — B.Forif B were not closed it would contain infinitely many contain an infinite number of points. But this is Impossible in X,
points, while eVery open set containing p has g finite complement, since every point except p is open.

9. Since every set containing p is closed, p has s local basis of open
and closed sets. Since each other point is open, X will be zero
dimensional.

not be empty. So (X,r)is completely normal, and thus satisfies all
weaker separation eonditions,

3. It Xis uncountable, {p) is a cloged set which is not 5 G-set, for
every countable intersection of open sets containing p contains aj

_but a countable number of points of X. Thus in this case, (X %. Fortissimo Space

:T)

1s not perfectly normal—that is, not all of its closed sets are G- If X is any uncountable set, and p a particular point of X, we can deﬁl%e

sets. In the countable case, X is perfectly normal. & topology on X by declaring open any set whose complement either is
4. Xis compact, since any open covering of X must contain a neigh- countable or includes p.

borhood U of P whose complement ig finite. So U, together with L. This space, like uncountable Fort space, is completely normal and,

one neighborhood containing each point of X — U, is a finite sub- like the countable complement topology, is Lindelsf but not eom-

cover. Furthermore, X i sequentially compact since every se- pact, separable, or first countable, and thus not, metrizable. But

quence of infinitely many distinct pointg contaings g subsequence it is baracompacet, since every open cover has a refinement con-



sisting of one special open set which contains P together with open
points.

the point p it foliows that X is not sequentially compact or even

wegkly countably compact, In fact only finite sets are compact so
X is not g-compact.

3. Xisnot pseudocompact since the function which maps a neigh-
borhood of p to 0 and the elements of its countable complement
one-to-one onto the remaining integers in R is continuous.

4. If we double the points of X we obtaiy 4 space that is weakly
countably compaet and Lindelsf but st neither g-compact noy
pseudocompact,

26. Arens-Fort Space

Le.t {X,7) be the set of all ordered pairs of honnegative integers with each
Palr open except (0,0). Open neighborhoods U of (0,0) are defined so
that for all but 4 finite nuniber of integers m, the sets S, =
inlimmn) € | are each finite, Thus each open neighborhood of the

origin contains all but a finite number of points in each of all hut a
finite number of columns,

1. '} contains Fort’s topology with particular poing (0,00, so it is T,
Iy rrl.'l- ’

2. 7is T} for the same reason that Fort space is, The only nontrivial
case oceurs when A and B are separated sets where 0,0) € 4.

(0,0) € Bthen A N 5 # & 50 A and B are not separated. Thug

3. (X ,:r) is not first countable, for it does not have a countable loeal
baS.lS' at (0,0). For suppose {U;] was such g basis; then for cach
Positive integer ¢, there are integers m;, n;, each greater than ¢
such that (min) € [, Then X — {(min)|i = 1,2,3 ... ;
an open neighborhood of the origin which contajns none of the

4. Since X is. eountable, it js separable, o-compact, and Lindelsf,
But no neighborhood of (0,0} is compact and hence X is net
locally compacet, and thus neither Colipaet nor countably compact.
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Since X is T; and Lindelsf, it is paracompact. This can also be
shown directly by selecting from an arbitrary open covering of X
one set, say U, which contains (0,0). Then the covering consisting
of U together with all of the open points in X — U is g locally
finite refinement, of the original cover.

The identity mapping of X with the discrete topology onto (X,r)
is a continuous funetion from a space which is both first and second
countable to one which is neither.

(X,r) is neither connected nor loeally connected since every neigh-
borhood U of (0,0) has a separation, namely, U — {p} and {p},
wherep € U, p = 0,0).

Every neighborhood of {0,0) is closed since its complement con-
sists of a discrete set of points, so X is zero dimensional, and thus
totally separated. Also since every poinut but (0,0) is isolated, X is
scattered, and not first category.

X is not extremally disconneeted, for the closure of the set § =
{(mn)m is even} is S\U {(0,0)}. But this set is not open, for it
does not contain any neighborhood of (0,0).

27. Modified Fort Space

Let the set X be the union of any infinite set N and two distinet one point
sets {a,} and {x,), We topologize X by calling any subset of N open and
calling any set containing z, or ; open iff it contains all but a finite num-
ber of points in N.

1.

oy

X is compact for in any cover there is some open set containing z,,
the complement of this set is then finite and hence covered by a
finite subcover.

X is T for each point in N is open and both x, and z, have neigh-
borhoods not containing any other given point.

X is not T, for x, and 7; do not have any disjoint neighborhoods,
thus X is not Ty, Ty, or Ts.

Every point of X is a component since every set eontaining more
than one point is separuted, thus X is totally disconnected, and
not locally eonnected.

T X = AU Bis aseparation of X and 2y € A then 4 is a closed
and open set containing x,. Then since the closure of any open set
containing xy contains x5, ¥y € 4. Thus the quasicomponent of x,
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contains {x;} \J {x:}. But no point of N is in the quasicomponent
of {z:}, Thus {z,) \U {22) isa quasicomponent though every com-
ponent consists of a single point. So X is totally disconnected but
not totally separated, and not zero dimensional.

X 1s scattered since it is Ty, and thus any dense-in-itself subset
must be infinite; but any set with three or more points containg
an isolated point.

X is sequentially compact since any sequence has either one point
repeated infinitely many times or infinitely many distinct points
In the first case the subsequence of repeated points converges to
itself, while in the second case the subsequence of distinct points
converges to both x; and z,.

28. Euclidean Topology

We define the Euclidean (or, usual) topology on the set R of real num-
bers by using as a basis sets of the form (ab) = {zla <z < b and
abx € R},

1.

The Euclidean topology on R is generated by the metric d(z,y) =
|z — yl, where |z] denotes, as usual, the absolute value of the
real number x. So the metric space R satisfies all of the separation
axioms. Furthermore, R is complete, so of the second category.

R is second countable (and therefore first countable and Lindelsf)
since sets of the form (a,b) where a and b are rational, form a
countable basis for R. Since the rationals are a countable dense
subset of the reals, R is separable.

If {a.} is the sequence 1, 1, 1, 2, L3, ..., listheonlyaccumu-
lation point of the sequence, but is not a limit point of the
sequence,

R is not countably compact, since the open intervals (n,n -+ 2),
n=0,2%1,+2, .. .cover R but no finite subcollection covers R.
But R is locally compact and o-compact, since the closed and
bounded intervals [a,b] are compact.

Every closed subset 4 of R is a (s-set since 4 = M A, where
n=1

A, is a neighborhood of A of radius 1/n—that is, A4, =
\EJA B(z,1/n). Each point not in A is contained in an e-ball

which is disjoint from A4, and thus disjoint from some A ,.
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Any open cover for R covers each of the compact intervals
[r,n + 1], so an open cover can be reduced to a sequence of finite
subcovers |G} for each interval {n,n + 1]. Then the sets @, M
(n — 1,n + 2) form a locally finite refinement of the original open
cover. Thus R is paracompact.

The topology on R can be given also by a quasimetric such as
diz,y) =y—zif y >z, and d(z,y) = 2(z — y) if y < z. Basis
neighborhoods are off-center intervals, since points to the right
of x are closer to it than are points to the left.

The collection of sets S = {{z,)|r,y < b or z,y >a}, where
a, b € Rand a < b, is a subbase for a uniformity U which gener-
ates the usual topology on R, but U is clearly not the usual metric
uniformity.

Euclidean n-space R is defined to be the product of n copies of R.
The product topology is that generated by the basis of open rec-
tangles, sets formed by the cross product of one open interval
from each copy of R. An equivalent basis consists of open n-
spheres, the metric balls under the metric d(z,y) = [Z(z; — y)2o.

29. The Cantor Set

The Cantor set C counsists of all points in the closed unit interval which
can be expressed to the base 3 without using the digit 1. This representa-
tion of points of C is unique, for even though many rational numbers
have two possible ternary expansions—such as 1 = 0.10000 . . . =
0.022222 . . .—no number can be written in more than one way without
using the digit 1.

1.

Geometrically, the Cantor set is the set obtained by deleting a
sequence of open sets, known as middle thirds, from the closed
unit interval. The exact construction is as follows. From the
closed interval E, = [0,1], first remove the open interval (3,2),
leaving E» = [0,3]\J [3,1]. From the remaining intervals, delete
the open intervals (1/9, 2/9) and (7/9, 8/9}. Four closed intervals
will remain; F; will denote their union. From these four, remove
middle thirds as before, leaving E,, the union of eight closed
intervals, The Cantor set (' is then the intersection of the suc-
cessive closed remainders: ¢ = N E,.
i=1

The Cantor set is closed and compact because it is the intersection
of closed subsets of the unit interval which is compact. Thus C
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is a8 complete metrie Space and therefore satisfies a]] T; axiomsg, 3. The Rational Numbers
I"urthermm-e, C is second tountable since the unit interva] js.
3t. The Irrational Numbers
3. Cis dense-in-itself since every open set containing a point pEC
contains points of ¢’ distinet from, P- Thus € is not scattered, and,
since it s closed, it is perfect,

Let Q be the set of rational numbers, QC R Then R—-9Q 1s the sat 0{
irrationals. In each case we irpose the topology induced by the usua,

topology on R.

of [0,1]. Being nowhere dense i, [0,1], C ig obviously of the first
category in the closed unit interval, But, being itself 5 complete
metric space, it is of second category in itself.

The Cantor set is uncountable, We can define a funetion f from
the Cantor yet, onto the uncountable set [0,1] as follows. If » & C
IS written uniquely to the base 3 without using the digit 1, f(z) is
the point in [0,1] whose binary €xpansion is obtajned by replacing
each digit “9v i, the ternary expansion of by the digit “3.»
Clearly al points in [0,1] may be obtained by such a Process.

The components of (' gre single points, for if g < b are tyo points
in C there exists a real number » ¢ C such that 4 <7 < b. Then
A4d=0n [07) and B < CM{(r1]is a separation of ¢ where

But ¢ js not, extremally disconnected, since ¢ N (0,1/4) and
an (1/4,1] are disjoing open subsets of ¢ with intersecting
closures, since 1/4 = 0.02020202 . . belongs to both closures-

The countably infinjte product 4 = g 4., of the two point

=]
discrete sppee A, = 10,2} (for all n) ig hcmeomorphic to the
Cantor set. In €, basjs elements consist of gj) sets of the form
e -y < ¢ fors € Cand ¢ 4 Positive number. Iy 114,, the
sets of the form {{a) € N4, |a, is fixed for1 <4 < n}forma basis
for the produet topology. The function J taking each point

Since € is totally Separated, it is not locally connected. But ¢ jg
the countable produet of copies of the loeally connected discrete
space {0,2},

-

If B, is the set containing the single rat}cnal o, then\U, B, = ¢
but \J, B, = R. Also (\B.)* = & while MB.sf =R — (.

@ is an F,-set in R that is neither closed nor G, since its ccmp]e-
ment is neither open nor F,. Thys R—Qisa Gs-set, in fact

E—-Q= QQ(R = la}).

Qf\(R—Q)=,®'bthf\(Iﬂ—Q)=R.

The Euclidean metric makes both Q and R — @ into metrlc
spaces and thus they are completely normal and paracompact.

If {r.} is an enumeration of @, we can define a new metric on R by
The metric d adds to the Euclidean dis_tancc between z and (_11; a
contribution which measures the rclctlve dlstances of x an g;'
from the rationals Q. 1f B,(p) is a Euclidean metric ball and Af. ('11,
a d-metric ball, it is clear that Adp) C B.(p). The com.rerse ails
since if r is rational and e sufﬁcientlly small, A(r} = {r}: hence in
i R,d) the rationals are open,
th%zleg li'spriz:rgct d) to the irrationals B — Q, we can always
find, for each ¢, a 8 so that Bi(p) C /_':.(p)_. Thufs the metlrrc space
(R —Qd)is homeomorphic to the LEuclidean irrationals. b
But (R — Q) is complete, since no sequence fa, ) w ;e
converges in the Euclidean topology to a ratlonal rktcali :
Cauchy: for each T, in such a sequence, there exlst;s gf erursem
(where m > n} such that d(Tnn) 2 |2, — 2} + 2 ( cc; .SC:
those sequences which are Cauchy converge to irrationals,
R—Qis topologically complete.

— max
IP;'X |z — 75| i<i Y — 7

dzy) = |v — | + Z 2—"inf(1,
1=1

The complete metric space R — @ is.cf the second fcz;;nlegﬁo:zt,;
while @, the countable union of one-point subsets, is of the

category.
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7. Qis clearly separable and R — @ is separable since the irr.
tionals of the form r + g, q € @ are dense in R — Q. Thus qQ
and B — @ are second countable.

Since in either Q or B — @ the only compact sets are nowhere
dense, it follows that neither Q nor R — Q are locally compact
or o-locally compact. However @, being countable, is o-compact,

9. BothQand R — Q are totally separated, but since Q and R — Q

are both dense-in-themselves neither s scattered, though both
are zero dimensional.

10.  [0,1]1M @ is totally bounded, but not compact.

32. Special Subsets of the Real Line

If B is the real line with the Euelid
lowing subsets:

1.

2. Let A = {0} U {1/n)n = 1,23 ...

ean topology, we consider the fol-

Let A be the set of all points l/n, forn=1,23, ...

(2) A =4V {0].

(b) 0 is a limit point and an w-accumulation point but not a
condensation point of the uncountable set A\ [2,3].

(c) The set A contains a Cauchy sequence (1, 3, % .- ) which
has no limit point in A.

(a) A is not locally connected, for no neighborhood of 0 is
connected.

(b) If B is any countable discrete space, and J: B— A any
one-to-one correspondence, then B is locally connected and
fis continuous, but 4 = J(B) is not locally connected.

{¢) A is totaily separated, since if a,b € A where a < b, we
may select an irrational o such that a <a<b and
AN [0,e) and A N (q,1] separates 4 so both the compo-
nents and quasicomponents of A are single points.

(d) A is not extremally disconnected since {1 /2k} is open, but
its closure contains 0 and is not open.

Let {a.} be the sequence 1/1, 14 1/1, 1/2, 1 + 1/2, 1/3,
I+1/3, ..., 1/m 1+ 1/m, ... .0isalimit point and an
w-accumulation point of the set of numbers in the sequence. It is
an accumulation point but not a limit point of {a,}.

Let Ay=(1—1/n, 1+ I/n)yforn=1,23 ... N4,

10.

1.

Soeoni, Molsens o e YT
MNAe = 1. (N4 = (1) = &, so (Md,)° is properly con-
tained in MA 0.

Let A = (0,3)\Y (3,1). o
{a) A= Az, Ao = A== (0,1}, and A=~ = A~ = A~ =
[0,1]. )
(b) A= = (0,1), so A° is a proper subset of A, o
(¢) (0,3) and (3,1} are both regular open, but their union, 4,
is not regular open. .
(d) If By = (0,3) and B: = (4,1), (B:"\ By) = &, but B,N
Bz = {%l
= il is i tion of the regu-
If A, = [0,3] and A, = [3,1], {§] is t_,he intersec
lar ciose(g s:ts A, and A, but is not itself regular closed. A, a.n‘c)l
As are also an example of sets for which 4,2\ 4,° # (4, 4y,
since A;°\J Ay = (0,3) VW 3,1), but (A, 45)°= (0,1).

Let A = (0,1) and B = [0,1]. A is homeomorphic to the subset
{0,1) of [0,1], B is homeomorphic to the subset [1/4,3/4] of 4,
but A and B are not homeomorphie.

Let A = {0} (1,21 {3} and let B = [0,1]\_.) {21V {3}). 4
and B are homeomorphic as subspaces, but there is no homeomor-
phism of R onto R taking A onto B.

Consider theset A = {1/aln =1,2,3, . . .}V (2,3)hU (3,4;);_‘)1
{43} U [5,6] U {z|z is rational and 7 < z < 8}_. T er:(z all;) :
distinct sets that can be formed from A (including A itse a{
successive applications of the closl_lre an_d c(')mplement oper
tions; these sets are depicted graphically in Figure 12.

Let Z+ be the set of positive integers. If d(_a:,y) =1!:r, —ylis ﬂf
usual metric for Z+; we define a new metric on Z +by E(x,yl'J)Ot—h
| — y]/xy. The metric topologies for_ (Z+,d) and (Z+,8) aée .
diserete and thus are homeomorphic. Clearly, every Zi.l;c) ly
sequence in (Z+,d) must eventually be c_onsta.nt and so { ,c ) is
complete. The sequence 1, 2,3, . . ., Is a Cauchy seqllljsn o In
(Z+,8) since for ¢ > 0 if we choose an integer N ge) > 1/e hon
formm > N(¢) we have §(m,n) < e._But clearly 1,2, . . .can
converge in (Z*,8) and thus (Z+,5) is not complete.

33. Special Subsets of the Plane

Let R? = R X R be the Luclidean plane. The set A of a?{‘ﬂpo'llfl}fs
{(x,y)|xy > 1}, where 2,y € {1’, is a cl‘osedz subse.t cj:é i‘.; .0 ene
projection map p: B > R tak}tlg (x,5) in B? to = in R, 1s open,
but it is not closed since p(4) is not closed.
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[ S . SM .
[ rationais ] . .
2 3 4 s the union of the lines r = a,y = yiisanarc connected subset of X

6 .. .
7 8 containing (z,,3) and (a,b). Hence any point of A can be connected

A’ M&H
. F—o—y Y imationak by an are to (x,11:).
4 5

0 I 2 3 6 7 :
A%= 4
0 . ﬁ_ﬂ 3. One Point Compactification Topology
4 5 6 7 !
A femes . 7 . — [ ] 35. One Point Compactification of the Rationals
1] 1 2 3 4 . . . .
o 5 6 4 8 Let (X,r) be a nonempty topological space, and let p be a point not in X,
=4 ome—o— —o—jy ¢ ) ( We define X* =‘X VU {p} and describe a topology r* on X* by calling
¢ ! 2 3 4 3 P , 8 aset in X* open iff it is in 7 or is the complement of a closed and compact
A= 40- —_— 3 . ' subset of (X,7).
= e .
0 ! 2 3 4 5 6 7 8 L. (X"+") is compact since any open cover U of X* contains an open
Af = 40- [_\] set about p and the complement of this open set is covered by a
0 1 2 3 2 sE ] finite number of sets in a1.

2. (X*7)is Ty iff (X,r) is since if z € X%,z # p then X* — {7} is

6
Ah = 470 M
0 1 2 3 a (5 ) — an open set containing p when (X7) is T.. Conversely (X 7)is a
AP= 40-0 6 7 8 subspace of (X*,7") hence is T; when (X ') is.
0 i gﬁ S‘ﬂ 3. (X" is T2 iff (X,7) is T, and locally compact. For if z,y € X
¢ 7 8 they may clearly be separated in X* ;if ¥y = p and (X,r) is Ty then

A = 490
[\) — — any compact neighborhood of z is closed so its complement is

0 ! 2 3 4 5 & 2 an open set about p disjoint from some open set about z. Con-

An = ,4-0-[_‘_N versely if (X*;7*)is Tys0is (X,r) asa subspace. To see that (X,r)
] I 2 3 4E ] —3 E is locally compact let 2 € X, and let U be an open neighborhood

3 6 7 8 of z disjoint from an open neighborhood V of p. Then X* — Vis

A9 = 40~ &] . . &y s
a compact neighborhood of z. Thus since (X*+*) is compact
4] 1 2 3 A [\ﬂ H p ?

(X*,r) is Ty if it is Ts.

5 6
A4 = 4 -0’0

[\) — ¢ i 4. 1f (Q,7) is the rationals with the topology induced by the Eucl.ldean
Q_o? : z 3 ¢ 5 P 7 g topology on the reals, (Q°,+"} is not Hausdorff, since (Q,7) is not
A7=4 [N locally compact. But since (Q,7) is T, so is (Q°7*) and thus (¢* %)

0 1 2 3 4E 53 P satisfics no higher separation axioms,

6 7 8
Fi I 5. pis a dispersion point of Q* for, clearly, @* — {p} is totally dis-
gure 12. connected and Q" is connected since uny open set containing p
2, Let . b - _ . has a nowhere dense, and thus non open complement. Thus
be the subset of 2 — X R consisting of all points wigh (Q" ") is biconneeted. 1

at least one irrational coordinate, and et 1
tppn]ngy. A s are conneeted sinee g point ( r
tional coordina ges nmay be joined by an are tn‘ I
as follows. Since {a,b) € A ecither @ or b is irr

have the induced
) with two jpra-
any point {a,b) € 4
ational, say 4. Then

6. Every sequence in (Q*,7*) must either be contained in a compact
subset, or must contain a subsequence converging to p. In either
case, the original sequence must contain a convergent subse-
quence, so (Q"7%) is sequentially compact.
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36. Hilbert Space

37. Fréchet Space

Hilbert space H is the set of a)) Sequences x = (z,) of reg) numbers z,

Such thﬂ.t E:C. cony erges tO eth.el Wl ta]l a ()p O y 1
g
Illeb]].c d(zj ) IE(:: - y|) I . t Ol g ge[ el'ated b‘ the

1.

H is a complete metric space, for whenever z1 22 43 i
Cauchy‘ sequence in H, then for each 1, {z7}2 ’ is ,a. éauch w
quence in the complete metrje space R and tfx-l'Jls converges )t(;()s:
11;;)]1::1; ro: Ii,{ say x,-._ 'l,}}cn z = (:a?,-), the points z — 27 eventually
EW M, 50x = (r — i) 4 4 must be in 1, and d{x,z?) — .

{yld(z,y) < e} are not compact. For the points Un = {3y, 2,
Tnets Tn + € Zops, . . ) are in B(z,e), yet d(ynym) = \/2_; when:
ever n = m. Thus {y,} has no convergent subsequence,

Since H is Hau_sdorff ally compacet subset € is closed If a set ¢
has nonempty mtt?rior it is not compact since H ig .not loeall
flompact at any pomt..T hus any compact subset, of H is nnwherﬁ
ense, Henct?, since H is a complete metric space and thus se d
category, H is not g-compact. o

H is arc connected since the entire J;

- . . Ire line segment joining anv tw
points of H lies entlreljf in H. That is, if z — (zs) and y g= (; 3 :::'2
2111 f],t)thin the funetion I .[0,1]—>H defined by f6 = ;J, -+

Y= {lx; 4+ (1 — i) is a path joining z to ¥, since
2(r; + (1 — By.)? converges, ’

H is homeomorphic to Re, th infini i
of thoome e o » the countable infinite product of copies

3’ cilrt}alct comparison of the corresponding basis elements shows
at the product topology on R» may be given aiso by the Fréchet

product meétric:
d(z,y) = Z 2~ yd |
1 + l-’ri - y,]
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In this case we call the metric space (R*,d) Fréchet space, and can
prove, as with Hilbert space, that Fréchet space is complete.

Every separable metric space (X,d) can be mapped homeomor-
phically onto a subspace of Fréchet space by the function flx) =
(d(z,x)) where z € X and {z,} is a countable dense subset of X.

38. Hilbert Cube

The subspace I« of Hilbert space consisting of all points = = {2y, 2y,
a3, . . .) such that 0 < a; < 1/5 (or homeomorphically, |v;]| < 1/§ for
each integer 7) is known as the Hilbert cube.

1.

I+ is homeomorphic to the countable infinite product of the closed
unit interval, 7 = [0,1]. f:1“— I I, by f(r,, 25, a3, . . 3=
ta=]l

(%, 229, 323, . . .) is a bijective function which is both open and
continuous. (This is why the Hilbert cube is denoted by 7«.)

I#, being a subspace of Hilbert space, is a metric space and thus
completely normal,

I“ is separable and second countable, for the points with rational
coordinates for a fintte number of z, and 0 for the other z, form
a countable dense subset.

I* is compact since it is homeomorphic to 11 7, which is compact

t=1

by the Tychonoff theorem. This may also be proved directly by
considering a sequence [z,} of points of I*. The sequence of first
coordinates, {z.'} consists of real numbers from the compact
interval [0,1], so there is a subsequence of {z*} whose first coor-
dinates converge to some point z, € [0,1]. Similarly, the second
coordinates of this subsequence belong to [0,3], so there must
exist another subsequence whose second coordinates converge to
a number z; € {0,5]. We may use induction to continue this proc-
ess of construeting subsequences. Then the diagonal subsequence
consisting of the first member of the first subsequence, the second
member of the sccond subsequence, and so on, converges to the
sequence (I, T, ¥3, . . .), which belongs to f«.

I+ is are connected for if z = {z,) and y = {y,) belong to I* then
so do the elements iz + (1 — &)y = (z; + (1 — y,) for all
0 <t < 1. Similarly, each metric ball contains the entire line
segment joining its center to any point in it (since for 0 < ¢ < 1,
dz,tx + (1 = Dy) < d{x,y)). So I“ is locally are connected.
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39. Order Topology

Let X be a set which is linearly ordered by the transitive relation “<
We define the order (or interval) topology on X by taking as a basis the

open intervals (y,z) = [t€EXly << z} for each pair yz € X where
¥y <a.

L.

We will call a set S C X convex whenever it contains all points
which lie between any two of its points: if a,b € § and if a <
.t < b, then { € §. This concept is to be distinguished from an
lmierva] in X which is a set of puints lying between two fixed
polnts of z; as usual we denote intervals by (a,b), [a.b), (a,b], or
la,b] according to whether they do or do not contain theixj c;1d-
points. Clearly every Interval is convex but not conversely.

The- uni.on of any collection of convex sets with nonempty inter-
section 1s convex. So any subset S of X can be uniquely expressed
as a union of disjoint, nonempty, maximal convex sets called
convex components; the componént of § which contains the point
P € §1s just the union of aj] convex subsets of § which contain p,

Suppose A and B are separated subsets of X;let A* = \U{ [a,b]|a,b
€4 1MINE = &), and let B = Ulfabllap € B, fa ) s
= Q’}; Then 4 C A* since for a € A, [a,a] = la} is disjoint
from B. Further A* N B* = &, for if p € A* N B*, then there
must .be points a,b € A and ¢,d € B such that p € {a,b] M [c,d].
But since neither ¢ nor d can belong to [a,b], and neither ¢ nor b, to
le,d], we must have [2,8] N\ [e,d] = .

In fact, we can prove more: A and B® must be separated. To
prove this, _we observe first that A* CA*\JA. For suppose
P § A"\J A. Then there exists an open interval {s,8) disjoint
frqm_ 4 but containing p. The interval (8,) may intersect 4* only
if it intersects some interval [a,b] C 4 where 0,6 € A. But since
8 MNA = and a,b € A then (s1) C (a,b) which would imply
that p € A", Bug sitce p ¢ A*, we must have {,6) Y A" = ,(«35
Thus p ¢ A°. Thus 2° N p* CAvVAHNE = (AN By U
ANB) =g

If we now write A%, B and (4* WV B*) as the union of convey
components, 4* = \UJ4,, B* = UBgand (A4* W BYY =\UC,, the
colleetion A = {4 B, } inherits a linear order from: X and is
thus itself o linearly ordered set. We claim that in the ordered
set _Jl[ » each of the sets 4, (and similarly, each of the sets Bs) has
an immediate successor whenever A, interscets the closure of Sea
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the set of strict upper bounds for A . Tn this case we can show that
the successor to 4, is an element of {C,}, which we will denote
by C,t.

For suppose A.M S, = &; then 4, MN S, contains precisely
one point, say p, which belongs to the complement of the closed
set B*, so there exists a neighborhood (z,y) of p disjoint from &,
Then (z,) N 8. = &, so (p,y) = &. But (p,¥) is disjoint from
both 4* and B*, so there must exist some set €, containing (p,y).
In the linear order on M, €, is the immediate successor to A,
and we will call it C+.

For each 7, select and fix some point ky € €. Then whenever
AaN 8, # &, there exists a unique k.t € C,*+, the immediate
successor of 4. In such cases, let I, = [p,k,*) where PEANS,;
otherwise, if AN S, = &, let I, = &. Define J « similarly for
the strict lower bounds of 4, (using the same collection of points
ky € C,). Then for each a, let U, = J,\J AU I, and similarly
for each 8, let Vg = J5\J Bg\J I,. Each U, and Vg is clearly a
convex open set containing A, and B,, respectively. Thus I/ =
\JU,, V = UV, are open sets containing A* and B*, respectively.
Since no A, intersects any B, and the use of the same k, through-
out implies that no Js or I may intersect any J, or [ « it 1s clear
that no U, can intersect any V5. Thus UNV = &, and hence X
is Ts. Since the points of X are clearly closed, X is Ty, and thus
completely normal.

The order topology on X is compact iff it is complete—that is,
iff every nonempty subset of X has a greatest lower bound and a
least upper bound. This condition is clearly necessary, for if
A C X and if A has no least upper bound, then the sets P, =
fz|lr < a} and Sy = {z|x > B} for a € 4 and g an upper bound
of 4 cover X but they contain no finite subcover. To prove it
suflicient we need only consider, for any given open cover U of X,
the sct S of those elements y € X for which [a,y) {where a =
glb. X) can be covered by finitely many members of U. If o =
lub.Sandif e € U € , then U C 8. There then exists, unless
e = lLub. X, an mterval (z,5) C U such that o € (x,¥). Then
(o) = & since & = Lu.b. S. But this would mean that ¥ €S,
which is impossible. Thus § = X,

Whenever X contains two consecutive points {that is, whenever
some interval (a,h) is empty), X can be separated by [zix < a]
and {xlr > b}. Similarly, if X contains a bounded set A with no
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least upper bound, the set of upper bounds for 4 and ;
ment‘separate X. Thus X is connected only if it COllta;Ith ‘;ODHLI:)]::
secutive points, and.if every bounded subset has g least u
bound. These conditions are in fact sufficien "y
marized by the Dedekind cut axiom:if 4 5
empty subsets of X whase union is X, and if every point of 4 is
less than every point of B, then there exists Lu.b. 4 and it e usl
glb. B. We will use this version to prove sufficiency., .
_ Suppose U and V are disjoint nonempty open sets.w whose union
is X » and assume that U contains a point u which is Jess than s0me
pqlnt v € V. Let E be the convex component of U which eon-
tains u, and let A = g/ U frEXe<ul. IfB = x A then
v E B and so the Dedekind cut axiom guarantees the existence of
4 point p = lub. 4 = glb. B. It P € 4, then it must be in £
and thus in U; so there exist points z,y such that P € (zy)
(=9) CEC U. But since p = Lub. 4, (py) = g which s
mpossible since y eannot be the immediate suecessor of ?- Thus

P € A. By a similar argument it ean be se
iv . en that p ¢ B, whi
gives the desired contradiction. P » which

nd B are disjoint non-

9. If Xis a connected set with the order topology, any point p € X

is & cut point, since X — {p} is se
. parated by P, < p
x<p}andS,={a:€X]:c>p} Yhol=e X

40. Open Ordinal Space [0,I') (T' < Q)

41. Closed Ordinal Space [0,1') (I < )
42. Open Ordinal Space [0,0)
43.

Closed Ordinal Space [0,)

less than I‘.. Sets of the form (a8 4+ 1) = (o8]
form a basis for this topology. We will
I' = @, the first uncountable ordinal, and T < 0.

1. In o_rdmal space [0,9], {2} is a closed set, that is not a @;-set
fQlis clf)sed since its complement [0,2) is an open set. It is m:t 1
Ga.-s?t, since for any countable collection ¢, of open sets con‘-
taining 9, we can find a collection of basis elements of the form

Closed Ordinal Space (9

(er5,@] C G for each 1. The least upper bound of the «; is an
ordinal ¥ less than @, since each o, or equivalently, each [0,a;)
is countable and the countable union of countable sets is count-
able. Therefore MG: D (v,Q] # {Q}.

Thus ordinal space [0,0] is not first countable, since the point @
does not have a countable local basis. In fact, 2 is a limit point
of the set (2,Q) but it is not the limit point of any sequence of
points in {(a,). '

Similar reasoning shows that [0,2) is not separable, for the least
upper bound of any countable subset of [0,) is countable, and
will be strictly less than @. Therefore, there will always be an
open interval {e,Q) in the complement of a countable subset.
Thus both [0,Q) and {0,4] fail to be separable. But unlike [0,2],
[0,€2) is first countable, since the only point of [0,2] which does
not have a countable local basis is .

Since all order topologies satisfy all the separation axioms, each
ordinal space is completely normal. But [0,9] is not perfectly
normal, since the closed set {2} is not @,

Although neither [0,2] nor [0,2) are second countable, both [0,T]
and [0,T) are (for ' < Q) since each point has a countable local
basis, and there are only countably many points. Thus, since
ordinal spaces are regular, both [0,I'} and [0,T") are metrizable.

Every subset of each ordinal space has a greatest lower bound
(its first element) and every subset of [0,I'] has a least upper
bound. Therefore, [0,I'l is a complete order topology, and thus
compact. Similarly, the closure of each basis neighborhood is
compact, so every ordinal space is strongly locally compact.

The open subset [0,I') of [0,T] fails to be compact since the col-
lection {{0,a)le < I'} is an open cover with no finite subcover
(since T is a limit ordinal).

Since [0,9] is compact, it is ecountably compact. Thus every
sequenece in [0,2) has an accumulation point in [0,2]. But Q can-
not be an accumulation point of any sequence in [0,2). So every
sequence in [0,2) has an accumulation point in [0,2), which means
that [0,Q) is eountably compact.

Because a space is compact iff it is both countably compact and
metacompact, and since {0,2) is countably compaect but not
compact, [0,2) eannot be metacompact or paracompact.



10. Since every 1

3

_ 1 Lindelsf space is paracompact, f0,2) is not
Lindelsf, and thyg ot o-compact. Byt {0,2] being compact, i
both Lindelsf and o-compact,.
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X is well-ordered, since it s a subset of [0,9) vet its topology
1s discrete since X M {ta+2) = (o + 1} is open in X. Thus
the topology on X is not the topology given by its natura) ordering.

11, Since.it is first countable and countably compact, [0,0) is ge. 2. The product set [0,2) X Z, where Z is the integers with the lexico-
quentially compact, graphic order () < (@) if o < o orif e = o' and n < 5’
12 is a linearly ordered set in which every element has both an jm.-

Any eontinuousg real-valued funetion fon [0,9) must be even-

mediate predecessor and an immediate successor. Thus its order
topology is also discrete and 80, since it has the same cardinality
as X, it is homeomorphic to X
3. The discrete metric on X yields the discrete uniformity U, which
has as a base the diagonal A = fzr) EX x X [z € X}. Thus
Ui is a metrizable uniformity.
The uniformity ¥/, which is generated |
by the basis of all sets of the form I
B,=AU{(J:,y)EX><X[.‘r>zand ll
!

tuglly constant—that ig, constant on some get (). To prove
this, we verify first the existence of g sequence o, € [0,2) such
that |f(g) — Han)| < 1/n whenever g > @ For if no such se-
quence existed, there woylg be some nteger n, for which we
could construct iuductively an increasing Sequence v, € [0,0)
such that | Ty ~ V[CTRY I Y cach 7. Bug the sequexice
Vi Converges to its least, upper bound -, whereas the points J(v) 4.
cannot converge. Thig IS impossible for & continuous funetjon 7.

So the sequence @ exists, and it has 5 least upper boung a < Q.

Clearly 1 is constant on (a,0). Yy > 2} also yields the discrete topol-
ogy. However U, does not have a
countable base since every countable
subset of X has a least upper bound
less than 9. Thus (X,U,) is a nonme.
trizable uniform space whose topology
is metrizable.

13.  All ordina] Spaces are zerg dimensional, since the basis elements
(f!’m are closed. But none of them are extremally disconnected
since the open set 4 = {1, 3, 5, 7, . ..) has as its closurc;
AV o}, a set which is not open.

4. Sinee ordinals are weII-ordered, every subset of ordina] space

ment; thus the firgt element cannot be a limit poing of the set,

s? NO nonempty subset of ordinal space cap he dense-in-itgelf.
Thus each ordinal space is scattered.

45. The Long Line

46. The Extended Long Line

The long line I, is constructed from the ordinal space [0,2) (where 7 is
the least uncountable ordinaly by placing between each ordinal « and
its successor o + 1 a copy of the unit interval J — (0,1). L is then
linearly ordered, and we give it the order topology. The extended long
line L* is constructed similarly from [0,0].

15. The ordina) space [0,29) is, like [0,2), Sequentially compact but
not compact, But, unlike 0,2, [0,29) is not first countabe.

16. If we expand the intervg] topology an 10,) by declaring open
each ordinal 7, we will have, essentially, a countably infinjte
sum of copies of {0,2). This new Space will fail, like [0,‘9), to be
metacompact ang furthermore it will fail to be countably con- L
Pact since the summands form g countable cover with 1o finite
subcover. By, clearly [0,02) with the new topology will stifi be
countably Paracompact. ‘

L is not eompact, since the open covering by sets of the form
Wy < e, a € [0,2) has no finite subcover. In fact, it has no
countable subcover, since the least upper bound of any countable
collection of ordinals o € [0,2) must be countable, and therefore
cannot equal Q. Thus L is not Lindelof, and therefore not
g-compaet.

2. For asimilar reason, L is not separable. If D is a countable subset
of L, and if 8 is the least upper bound of 1), the set ly € Lly > g}
is a nonempty open subset of I which is disjoint from . So p
cannot be dense i [,

4. Uncountable Discrete Ordinal Space

l.('t_ X be the set of Points of the form a -+ 1in [0,9) where a is a limit
ordinal, together with the subspace topology induced by the order
topology on [0,9).



«~  Lounterexamples

3. Lis first countable since each pointz € L is the least upper bound

of a countable collection {xa} of points in I, which precede it. So

{(zayr + 1/n)} is a countable loca] basis for the topology at the
point z. ~

Sinece L and L* carry the order topology, they are both completely
normal, Furtherlflore, although 1* fails to he perfectly normal

open interval which is disjoint from A and which is eventually
disjoint from the nested open neighborhoods of 4.

L is compact since each open neighborhood of Q has » compact
complement. So L is countably compaet, for just as in the ordinal
space [0,2), every sequence in L has ap accumulation point which
nmust be in £, Clearly L is not compact, and thus, since it is count.
ably compact, neither metacompact nor paracompact,.

L is are com‘lected since whenever 7,9 € L, the interval {p,q] is
homeomorphic to the closed unit interval, L’, being the closure

of Lg i's thus connected, but it is not path conneeted, for no path
¢an joln any point to (.

Since both L and L* are countably compact and regular, they are
of the second category.

47. An Altered Long Line

To the long line 7, we add & point, p. Open sets of L\ {p] are the open
sets of L together with those generated by the following neighborhoods

2
of p: Ug(p) = {p} U | k{s (@ + 1)} (where 1 < 8 < Q). Ug(p) is then

4 right-hand ray less the ordinal points, We consider p to be the greatest
clement of L\ Inl.

1.

2,

If ab € L &‘} ip}, say a < b, then there exists g z such that
@ <z < Thus {z]zx < zl and {z|x > z} are disjoint neighbor-
hoods of a and b, so L\J {p} is T,

No Us(p) contains U.(p) for any a. Hence L\ Ip} is not Ts;
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but since it is Ty, it cannot be compact. Yet, L\ {p], like the
extended long line, is countably compact, connected, and not
separable. But it is not Lindeldf, for the cover consisting of the
sets (8,8 + 2) together with U;(p) has no countable subcover.

48. Lexicographic Ordering on the Unit Square

Let X be the unit square in the plane: X = {0 <z <1,0<y<1}.
We order X lexicographieally ((z,y) < (up) iff 2 <wu, or z = u and
y < v) and place the order topology on X.

1.

2.

Sinee X carries the order topology, it is completely normal.

Every nonempty subset A of X has a least upper bound. Although
this is not obvious, it is at least clear that the set of first coordi-
nutes of points of 4, being a subset of the closed unit interval, has
a least upper bound; let « = Lu.b. {(,0)|(z,y) € A for some y}.
Then if AN {(a,)0 <y < H = &, (&,0) is the least upper
bound for A. Otherwise, Lub. A = Lu.b. {lay) EADL y < 1),
Thus X is a complete ordered space, and hence compact.

The set L = {(z,y)ly = 2} is an uncountable Gi-set (trivially)
which contains no perfect set. That is, L is an uncountable dis-
crete subspace, which means that X cannot be separable since it
contains an uncountable collection of disjoint open sets and thus
fails to satisfy the countable chain condition.

Since X is compact but not separable, it is not metrizable. How-
ever, it is first countable.

. Since in the linear order on X there are no consecutive points, and

since every (bounded) subset of X has a least upper bound, X is
connected. But X is not path connected since any path in X join-
ing, say, (0,0) and (1,1) must be connected, and therefore must
contain all of X—since in a linearly ordered space any eonnected
set containing two given points must contain the entire interval
between them. But X cannot be the continuous image of [0,1}
since X contains an uncountable collection of disjoint open sets
whose inverse images would form an uncountable collection of
disjoint open sets in [0,1]. But this is impossible sinee each such
open set would have to contain a rational.
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50.

If

the form S,

Right Order Topology

Right Order Topology on R

Xisa linearly ordered set, the topology gencrated by basis sets of
= {z|lz > a} is called the right order topology on X, A

left order topology is defined similarly using the sets °, = fxlr < a))

2. Clearly X is both hyperconnected

3. Xis always locally

4. If ¢ < ¥, then 8, is ap

1}

=]

¢ ]

1. For any point ¢ & Xeveryz <aisg Timit point, for {a}. So the
closure of any open set is the whole space X, and every right ordep
topology is weakly countably compact,

and ultrau:(mnected, thus path

connected, locully connceted, and Pseudocompact,

tompact, but it is compact iff it containg g
first element, But since the closure of any open set is the whole

space, X will be strongly locally compact iff X is compact,

open neighborhood of ¥
contain . So X is Ts, but clearly not Ti. Thus it is not Ty, Ty, op
T34 But since there are no disjoint closed sets, X is T, vacuously.
Similarly, X is Ts vaeuously since there ean be no separated sets
in X:if 4 and B are disjoint and nonempty, one of them, say A,
than some point ¢ € B,
But then ¢ € 4, since every neighborhood of g must contain p,
$0 4 and B cannot be separated,

which doeg not

X is not perfectly T,, since the only open set which containg

any
closed set is X

An interesting special case is the right, order topology on the reg)
numbers B; call this space (R,;7). Then (B,r) is second countable
since | Sileqisa countable basis fop 1. Thus (R,7) is Lindelsf,
and therefore not, countably compact since it is not compaet.

But, since (R,7) is thus both locally compact and Lindelsf, it must
€ o-compact,

Each set P, = 2 € Rlx < r} is nowhere denge in (B,7), so R,

which equals U Py, is first category. But each P, is dense-
in-itself. €

The open cover {8,} of R,

where n is an Integer, has no point
finite refinement, so (R7)is

not countably metacompuet,

Any finite set in (R,r) has infinitely many limit points, but no
w-accumulation points, Thus if we add to a finite set jtg w-accumu-
lation points, we will not produce a cloged set.

Right Half-Open Interval Topology 75

- 51, Right Half-Open Interval Topology

On the set X of all real numbers (lor, mo:e ieen;t;:lg;:i?;( i}n;ﬁr;ztzrﬁe; ﬁi
: opology + to _

;etl)]’l ‘[:leb(;h(:\(f)lizrt Z?Ij)ltéﬁ;.aFtof ()bvgiius reasons, {X,r) is qa]l‘ed the flght
I::ll]f-op:en’interva] topology, or sometimes the lower tn:}f (1);01;3 (;gn{l
Then sets of the form (— w,a), [a,b), or [a,+ =) 'areX oincep(a e
closed. Sets of the form (a,b) or (q,+ =) are open l?th‘; fs0 e (_,w ;
Ulla,b)le < @ < B}. They are not leosed, since setS(]; he form ( ,al,
[e,b], and {p} are not open, not being the union of basis e .

1

6.

If 4=(@+w), A°=(a,+%), 4= (-~wa), and A==

[a,4 ). We see that A D Ao, but A= = Ae.

X is Hausdorff since the topology is an expansion of the ilgzi;v;;
topology on X. X is in fact completely norma],XI:(Jr Ieé, ilhan Bhe
i ac € X - ere
ated sets in X. Then for each a C -
:tt,:woesiyzfmh that [a,2.) C X — B since X — B is open. We dg
ﬁ;e Oa = U [a,2.). Op containing B is defined analogously.
€4

: € 4, b € B we have [a,2,) N
0aM O0g # &, then for some « , e Loz O
ih,1s) 2 5. Say a < b: .tl.le.n bEfar,)CX -8B ac
tion. So O4 and Oy are disjoint.

X is not second countable, for if § = xayli € X?*'} if t:;.:;i
countable set of basis elements there exists an a E sUcC that
a # z; for any ¢ € Z*. Then for any b > g, [a,b) is not a u

of any collection of elements of S.

i ion of
However X is first countable, for at a point :r:l, the cl:)ollecftlo L of
i -t r, form
), where a¢; is a rational num Cr,
sets of the form [z,a;), whe rational ; e
countable local basis. Irurthermore, X is sepm,aple s;nc:cond
rational numbers are dense in X. T hus, since X is not s
countable, it cannot be metrizable.

Every compaet subset of (X,r) is nowhere dense in t?eb]’:?u%d;‘an

’ s we wi this space, as usual, by R. For
topology on X; we will denotq . . :
ngpusi} A is u subset of R which is not IlOWl:iEI‘E dense; then I;t
;011taills some subset B which is dense in an interval [Cf,b] tC b.
If {b;} is an increasing sequence in B M [o_:,b] convergll)ll}g Oe,;
then [_ @ :a)! [a:bl): {[birbi+l) l:=1 and [b) DO) s a (c?unt:;. e) OI;?’
covering of A which can have no finite subcover, since for each 7,
babia) M A4 = &

(X,7) cannot be o-compact, for if X = \JA; for compact A;, then
“Xy



R = \UA, where each A; is nowhere dense. Bug since R is of the
second category, this is mpossible,

But (X,7) is Lindelsf, for if {U.} is an UPeN covering of (X 7) ayg
.if U.%is the Euclidean interior of {7 a; thei since every subset of §
1s Lindelsf, {U.°} has a countable subcollection {Us} which
covers U = UU,0. But the complement 4 = y _ U may be
covered by a countable subcollection of {U.} since A isa countable
set. For if p € 4 there must, bhe some point z, > P such that
@a,) N A = . But these intervals are disjoint, so there cannot
be uncountably many of then.

Since fea.ch ?f the basis sets [a,b) is both open and closed, X j
zero dimensiong] ; sinee it ig T, it is therefore algg totally sepa-
_rated and totally disconnected. But, since X g dense-in—itse!f, it

of the set Ul (1/2n, 1/(2n — 1)) is not open.

52. Nested Interval Topology

On the open interval X = (0,1) we define 5 topology
all sets of the form U. = (0,1 — 1/n), for n = 2,84
with &f and x . ,

1.

1]

7 by declaring open
» « + -, together

Since EVery nonempty apen set contains both } angd H X is not
Ts, thus not Ty, Ty, or Ty,

Similarly, since €very nonempty open get, containg 1, every neigh.
borhood of the closed set, [3,1) must alse. Thus (X ) 1s not Ty,

than the greatest lower bound of 8, there can be ng separated sets;
thus (X 7) is T; vacuously, and thys T, also vacuously.

Xis clearly hyperconnected and ultraconnected and thus is pagh
tonnected, connected, loeally connected, and bseudocompact,

Since 7 is countable, X ig seeond countable and thus first count-
able, separable, and Lindelsf,

Since all nontrivial open sets are of the form U = (0,1 — 1 /n),
each open set except X itself ig compact,. Furthermore, no ciosed
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set except & is compact, since {U,) is an open covering of any
closed set which can never have a finite subcover.

Since each point of X is contained in a compact open set
0,1 — 1/n), X is locally compact. X js not strongly locally com-
pact sinee the closures of neighborhoods are not, ecompact: 7, = X
for each n. Since X = U, X is g-compact and thus o-locally
compact,.

X is not countably compaet for the U, have no finite subcover,
and thus not sequentially compact. X is, however, weakly count-
ably compact for if P is the greatest lower bound of any infinite
set A, then every point 2 > pis a limit point of A. X is not count-
ably metacompact since the open cover {U,} has no finite refine-
ment and 1/4 is in every set in the cover.

53. Overlapping Interval Topology

On the set [—1,1] we generate a topology from sets of the form [—1,b)

for 6> 0 and (a,1] for a < 0. Then all sets of the form (a,b) are also
open.

1. Xis T, butnot Ty, since the point 0 is not closed. Also X is not T,
since {—1} and {1} are closed subsets with no disjeint
neighborhoods.

2. X is compact, since in any open covering, the two sets which
include 1 and —1 wil] cover X. _

3. Every nonempty Open set contains 0, and the closure of Ay non-
empty open set is the whole set X, So X is dense-in-itself and
hyperconnected and thus connected and locally connected.

4. Since this topology is coarser than the Euclidean topology X is
arc connected.

9. X is second countable since the intervals [~1L8), (5,¢) and (s,1]
for rational s,¢ such that s < 0 < ¢ form a countable basis,

6. The sequence 0,2,0,3,0,4, . . .haso as an accumulation point

but not a limit point but any point greater than £ is a [imit point
of this sequence.

54. Interlocking Interval Topology

Let X = p+ — Z*, the positive real numbers excluding the positive
integers. The topology = on X is generated by the sets §, = 0,1/n) v
(n,n + 1), where n € z+.



S Counterexamples

1. X i§ not Ty since 2% and 2% eannot he separated; X is also ny
tI‘q. since (2,3) and (3,4) are disjoint closed sets, but X has no dj,
Joint open sets.

2. Since X is hyperconnected it is connected, locally connected and
pseudocompact. ’

3. {8.}is a countable open covering of X with no finite subcover,
S0 (X,7) is not, countably compact, and thus nut compact.

4. A basis for r consists of the sets S, together with sets of the fom
(O,rl/n_) for n > 2. Since ench of the basis clements is compaet
(X7} is locally compact and thus o compact sinee US, = X.

[ ]

Since {5,} is countable (X)) is second
" able, (X, : countable and tl
separable and Lindelsf, ane Herefor

6. fI‘he open cover {S,} has no refinement. But S, = 0,1)\ (1,9
Intersects every other set in the cover. So (X :

A ,7) 18 not countably

7. But the cover {S.} is point finite, since each pointz > 1 belongs
to only one member of the cover, and each point r < | belongy

to finitely many members of the oo y Y
ver {S,}. ig
metacompact, PSS W s

55. Hjalmar Ekdal Topology

b?' including i.n T prec_isefy those subsets of X which contuin the
ol every odd integer in them. Thus a set A is closed in {X,7) iff for each

even point p in 4 P—1€A4, forif p — 1 it w ¢
P A', P ¢ 4, it would be an odd

The Hjalmar Ekdal topology is defined on the set X of positive integers

sUCCessor

L. (X,7) is just the sum of countably many copies of Sierpinski space.
9

2. Thes 3 is Ty i i i
sum of Spaces is Ty iff each of the spaces is T} since to sepa-

3. X s n'ot compact since the covering by summands is an open dis-
Joint infinite covering with no finite subcover, But since cuch
summand is second countable 80 Is the sum X. The fact that ‘the
cover by summands js 5 refinement of any Open cuver implies that

_X Is paracompaet. That these summands are finite implies that X
18 locally compact,
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4. Since the subspaces {2n — 1,2n} are the components of X, X is
locally connected and locally path connected, but neither totally
separated nor totally disconnected. No subset is dense-in-itself,
so the space is scattered. In fact, since each even integer is open
and not closed, X is neither first category nor zero dimensional,

56. Prime Ideal Topology

Let X be the set of all prime ideals of integers; that is, X is the set of all
ideals P in Z whose complement, is multiplicatively closed. We define a
topology for X by taking as a busis ull sets ¥V, = (P € X jx ¢ P}, for
allx € Z* (Note that Vo = @ and V, = X))

I.  Each basis element V, contains all but a finite number of prime
ideals (those generated by the prime factors of x), while the ideal
0 is contained in every basis element V.. Thus a subset of X is
open iff it contains 0 and has a finite complement.

2. A subset U of X is open iff there is an ideal [ C Z such that

U={P€X|I P} Forif U = U V,, Iistheideal generated
SEM

by M, and conversely. So a set € is closed iff there is an ideal [ in
Z such that C = {P € X|I C P}. (This description may be used
to define a topology on the set of prime ideals in any ring A; this
space is normally called Spec A.)

3. X is Ty, but not T since 0 is in every open set. Thus X is not T: or
Ta. Since any nonzero prime ideal is closed X does have disjoint
closed sets and hence is not T, or Ts, nor metrizable. Again since 0
is in every open set X is hyperconnected and thus connected and
locally connected.

4. X is compact since every open set has a finite complement. Also X
1s second countable since the basis { V.{,c 2. is countable.

5. The map f: (0,1} — X defined by f(0) = P, f(1) = Gand f(i} =0
for { € (0,1) is continuous for any P,Q € X. Thus X is both path
comnected and loeally path connected sinee 0 is in every
neighborhood.

Divisor Topology

Let X = {x € Ztjx > 2], tu.gether with the topology generated by sets
of the form U, = |2 € Z*|z divides n}, for n > 2.

L. X is Ty for if x < y then y ¢ U.; but every neighborhood of 6
contains 3 so X is not Ty, and thus not s or 1.



80 Counterexamples

2. Ifzisa point of X the closure of x consists of all multiples of 5
g‘hus no t\.vo nonempty closed sets are disjoint since they mug
oth contain the product of any two elements, one from each sel

Thus X is Ty vacuousl
v, and also uitraconnected, path ¢
and connected, ;P connected

3. If neither of z or ¥ divides the other they form separuted sets but
any open set containing ¢ or y contains the greatest common c,iivi-

sor of z and y. Thus 6 and 8 may not be g ,
X is not T, Y ¢ separated by open sets s,

4. Tl.le set. o.f primes is dense in X for Cvery open set containg g
p[ilme divisors of all of ity elements; in fact each prime is open ang
therefore not nowhere dense so X is seeond category.

5. Sincfa guch _point has a finite neighborhood, X is locally compact
But it is neither countably compact, since the sets S, = \U [/, -

B . - S’
{zle < n} form an Gpen covering of X with no finite ;ul;cover

nor strongly locally compact, sine ; is infini
" e every closed set j
therefore not, compact, #infnite un

6. Since X is countable and all basis inite, it i
elements are finite, it is
countable and thus separable and Lindelsf, " sevond

-1

X is loeally connected, since for eachn € ¥ the set U/, iy
est opetll set containing n, und thus connected. X , t
nected, is scattered since each nonempty subset has a

which is therefore an isolated point of the set and
such set can be dense-in-itself. ’

a small-
hough con-
first clement
therefore ng

8. Each basis neighborhood 7
tol?o]ogy (since every closed
X is locally path connected.

» is ultraconnected in the induced
set in U, contains the point n), so

58. Evenly Spaced Integer Topology

» where Z is the set of integers, and

@l € X_ The basis sets are simply the cosets of subgroups of the

integers.

L Xis Hausdorf!, for if &b € X and I does

not divide & — g, th
a+kZand b + k7 are disjoint cosets. e

2. Every basis element is closed sinee a given coset of g subgroup is
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the complement of the union of the remaining cosets of that sub-
group. Thus X is zero dimensional and regular.

3. X is totally separated, since it is Hausdorff and zero dimensional.
If Sis the set of odd integers, the sets 28,7 = 0,1,2, . . . , are
disjoint, for if a2= = b2~ then a2*m» = b which implies either

m =n or one of ¢ and b is even. The sets A = U 28 and
n=0

B = \U 20418 are then open, disjoint, and contain all the in-
n=0
tegers except 0. If & € A then 2k € B and vice versa, thus 0 is

a limit point of both A and B so X is not extremally disconnected.

4. X is clearly second countable and thus, since it is regular, it is
metrizable which in turn implies that X satisfies all the separation
axioms and is paracompact. Since points are closed and not open,
and since X is countable, X is first category, and thus not
complete.

5. The set of primes is an infinite set without a limit point so X is
not countably compact and thus not compact. However, since X
is countable and second countable, it is e-compact and Lindelsf.

6. The function a 4 kX — X defines a homeomorphism between any
basis element and the entire space. But since X is Hausdorff and
each busis element is closed, this implies that no neighborhood of
any point is compact. For being compact it would be closed and
thus contain the closure of a basis element which would then be
compact even though it is homeomorphic to X which is not com-
pact. Thus X is not locally compact.

59. The p-adic Topology on Z

Let X = Z be the set of integers, and let p be a fixed prime. We define a
topology r on X by taking as a basis all sets of the form Udn) =
{n + xpe|x € Z}.

1. The topology 7 is generated by the metric d{n,m) = 2-* where &
is the largest power of p which divides [n — ml; if n = m,
d(n,m) = 0. The cquivalence of these topologies follows from the
relation B.(272) = U, ..(n).

2. Since Ua(n) = {nl|p= divides |m — nl} = {m|d(mn) < 29},
cach basis set U.(n) is closed. Thus X is zero dimensional. Since
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no point is open, X has no isolated points; thus X jg dense-ip.
itself, and therefore not scattered.

Each point is closed and not, open, thus nowhere dense in X ; thus
su}ce X is countable it is of the first category, hence it can be
neither topologically complete, nor locally compact,

60, Relatively Prime Integer Topology

61. Prime Integer Topology

ot X e e
Ontheset X = Z+qf positive integers we generate o topology r from the

busis @ = UL (bY]a,b €A, (g,0) = 1}

where U,(t) = b+ na€x

]n.E Z} and a subtopology ¢ from the subbasis @ = {UL0)p is
primej}. The'topology 7 will be called the relatively prime Integer topol-
ogy, and o simply the prime integer topology,

1.

That & is a basis for a topology follows direct) ¥ from the observa.

tion that the intersection of any two of the arithmetic progres.

sions in ® is itself an arithmetic progression of the same type, or
empty. In fact, if ¢ € Ua(b) N U(d), then Ualb) N U(d) =
Ula.c1(g) where [a,¢] is the least common muitiple of ¢ and ¢,
Clearly, ¢ + nlac] € U by N Ui(ed) for all appropriate n. Con-
versely if x = b 4 g = d 4+ n’c, then since g =10+ na =
d + ny'c we have gy — = (n—na = (n — m')e so [ae]le — g
and thus z = Ma,e) + ¢ for some k, 501 € Up g (g)- So & iy
indeed a basis,

Ua(b) N U (d) 5 &It b= mod(a,e) for if 6 — ¢ = ria,c)
then there exists integers s and ¢ such that r(a,c) = r(as 4 el) =
b—d sod+ c(tr) = b + a(—rs). Thus for sufficiently large n,
d+etr + aen € Uy U.(d). ()unversely if for some ny und
M0 we have b+ nyg = ¢ + e, then b — ¢ = pyfe — nott =
k(a,c), for some kysob=y mod{a,e).

In(X,q), forp s« ¢, UL(b) always intersects Uyld) since (p,g) = 1.
So the collection @’ = tU.(B) € ®|ais square-frec} forms u busjs
for (X,0) (where an mteger is called square-free if it hus no pe-
peated prime factors),

If ap = X, and if P18 0 prime greater than @ + b, then # #
a mod p so Usla) N U0y = &. Thus (X,0) (and thercfore also
(X,7)) is T,, Ty, and T, .

(X,r) is not Ty since the closure of any open neighborhood

9.

10.
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Ua(b) contains all multiples of a, and thus the closures of any
two open neighborhoods Udb), U.(d) contain in common a]l
multiples of [a,c]. To see this we observe for any k that if (t,ka)
= lthen (t,a) = 1,50 U, (ke) N Ua(b) # & for ka =bmod (t,a).
A similar argument may be applied to (X,¢) with similar results,
so neither space can be regular or Urysohn.

Since both spaces are HausdorfT but not, regular, they are neither
locally compact, paracompact, or compact. Since ® is eountable,
(X,r) (and therefore also (X,0)) is second countable, thus first
countable and Lindelsf. Since in second countable spaces com-
pactness is equivalent to eountable compactness, neither space
can be countably compact,.

Since in both spaces the closures of any two disjoint open sets
intersect, every real-valued continuous function on (X,7) or
(X,0) is constant. Thus both spaces are pseudocompact and
connected.

Suppose N is an open r-neighborhood of 1 contained in Ua(1);
let 1+ 2n € N for some n > 0. Then U = Usnu(1) is an open
subset of Us(1) whose relative complement ¥ is open and contains
1 + In (Since V = Uz(l) — U2n+|.(l) = UL::__ll U2u+:l(1 + 21))
Thus UM N and VNN separate N, so Us(1) cannot contain
any open connected neighborhood of 1. Thus (X ,7) 18 not locally
connected.

Suppose U.(b) is a basis element of (X,s) with the induced
topology. If A and B are open sets in (X,¢) which separate
U.(D), then each contains some induced basis neighborhood : as-
sume N = Uy () C AN U(b) and M = Uia(s) C B M UL{b),
where (a,6) = (a,d) = 1. Then some multiple r of ed belongs to
U7.(b) since (a,ed) = 1, and we may assume that r € 4. But
then there is an induced basis neighborhood U.(r) C A N U.(b)
where (e,ed) = 1; thus (e,d) = 1. But Uae(r) M Uaals) = @,
since r = b+ ra="b+ ya = s mod (ae,ad) for (e,d) = 1 im-
plies (ac,ad) = a; 50 AN B # &, a contradiction. Thus there
e be no separation of U,(b), which means that (X,0) is locally
connected sinee each of its busis neighborhoods is conneeted.

Returning to the space (X,r), we see that if pis a prime U,.()
is just U,.(b) together with all nonzero multiples of p. To see
this write b as Lp + 8 where 0 < B8 < p since (p%b) = 1. Let
« = mp + v be any integer where < v < p. Consider U, (x) N
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i1.

12.

Up(b) where (4,z) = 1. This intersection is nonempty iff mp 4 4
=kp + Bmod (t,p"). v = 0 iff 2 is a multiple of ? and in this
case (4,r) = 1 implies {t,p*) = 1 so the intersection is nonempty
for all ¢ such thag (hx) = 1, thus ¢ € Upn(D). If v 5 0 then take
t=p" (p"mp + v) = 1 but (P"p") = prso Uplx) N\ U (b) #
& iff £ = b mod P" This holds iff z < U palb). "

Iipis & prime, U,.(b) is reguiar open in (X (e

where U,(6) = X. For if kp € U:.)(b), tlfen‘r()t,t:r};‘ept e
(t.,;l?") = 1. Thus U,(kp) N Up(a) # & for all « where (a,p") =
I; in other words, U «(kp) must contain {for each appropriate i)
some element of every T/ m(a) for a = kp. But m{h) may con-
tain .elcments from at most two such sets: Upa(b) itself p]us all
multiples of p. Thus if there are more than two cu;lgruence
classes (that is, if p" # 2), then U,(kp) cannot be contained in
Uspn(b) for any ¢. Thus p(D)e = U.(b).

) = 1 implies

Si _ n n .
nee U (b) '_O] Upe (b) where g =;En P+, the reguilar open

sets generate the basis @. except for sets U,(b) where ¢ — 2k
(k,'2) = l—these being the integers :
prime decomposition. But each sue
Un(d) = Un(d) U Ua(b + 2k
a subbasis, and therefore also
by ®, so (X,7) is semiregular,

that use p* = 2 in their
h set may be written as
)- Thus the regular open sets form
a basis for the topology generated

62. Double Pointed Reals

Let X be the Cartesian produet of
and {0,1} with the indiscrete topol

1.

L

In X, the intersection of two com
Let A = {{a,b] X 0} W {(a,b) %
X 1}. Bince eVery open set contai

the real line with the usug| topology
ogy.

pact sets need not be conmpact,.
1, B = {(ab) X 0] U {[a,
nimng (a,0) containg {e,1) both

A and B are compact. But A N\ B
. ) = (GIb X O:I hich i
tompact since (a,b) is not compact, )X @D which i "t

Clearly X is not Te, Ty, or Tz; but it is Ts, Ty, and T,

Since (a,0) is a limit point of every
weakly countably compact. But clea
compact nor pseudoconpact.

X is are connected, for if f is the are which
I,y € R, then the function g; 0,1 —

set containing (e,1), X is
rly it is neither countably

r juins the points
X defined by g(1) = (fin,1)
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for 0 < ¢ <1, g(1) = (f(1),0) is an are joining the points {x,1)
and (y,0). Then clearly every two points of X can be joined by an
arc.

X is paracompact since {0,1] is compact and the real line is para-
compact. X is not fully normal since it is not Ty,*but since the
real line is fully normal X is fully T,.

63. Countable Complement Extension Topology

If X is the real line, and if r, is the Iuclidean topology on X and r, is
the topology of countable complements on X, we define 7 to be the small-
est topology generated by 7, \J 1.

1.

[}

6.

=1

AsetOisopeninrtiff 0 = UV — A where U € 7, and A is count-
able. 8o a set C is closed in 7 iff ¢ = K \J B where K is closed in
1 and B is eountable.

If 0 = U — Aisopeninr, the elosure inr of O is the closure of U
in 7, for if K'\J B contains O (where B is countable, K is closed
in7;) then K 3 O. So the smallest closed {in 7) set which contains
O must be closed in 7;; thus it must be 0.

S0 the only sets in 7 which are regular open are those which were
regular open in r,, since if O = U7 — A is the interior of its closure
U, O must be U, and U must equal Ue.

The regular open sets in 7; do not form u basis for this topology,
for the set of irrationals is open in 7;, yet is not the union of regular
open sets. Thus X is not semiregular.

As an expansion of the Euclidean topology, this space is Ty, Ty,
Ty, Ty, and Uryschn,

Since X is Ty but not semiregular, it cannot be Ty, T, or Ts. This
may also be proved directly by observing that X — Q, the open set
of irrationals, does not contain the closure of any of its open sub-
sets, sinee such a closure must be identical to the usual Euclidean
closure. Thus X' — @ cannot contain a closed neighborhood around
each of its points.

A subset of X is compaet iff it is finite, so X is neither compact
nor g-compact. But it is Lindeldf, for if {U, — A,] is an open
cover of X (U, C 7, 4, countable) then U, covers X and has a
countable subcover {U:}. Then {U; — A,} covers all but count-
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ably many points of X » 80 all of X ean be eovered by some count.
able subcollection of {U/, — All.

X is not first countable, for if {0}~ = fU: — A1 were a

countable collection of open neighborhoods of z and if pd C) A,
i=1

then .R — {p} is a neighborhood of z which does not contain any
0. Since every countable set is closed, X is not separable either,

X is connected for if X = 01 U 0s, where O, and O: are disjoint,
nonempty and open, then they are also closed, so they must be
closed in ry, which is impossible sinee (X,7) is connected. But since
the continuous image in X of the Ruelidean unit interval {0,1] is
compact, it must be finite and therefore just g singleton. Thus X
Is totally pathwise disconnected, for no two points of X may be
connected by a path. :

64. Smimov’s Deleted Sequence Topology

Let X be the set of real numbers and let 4 = {I/aln = 1, 2, 3, ...

Define a topology 7 on X by letting0 € 7if 0 = 7 — B, where B C 4
and U 18 a0 open set in the Fuclidean topology ou . The topology 7 is
sometimes called the Smirnov topology on Y.

I

b

Choosing B = & A, it is clear that this topology 7 is finer than
the usual topology on X, Therefore, X is Urysohn, as well ag
Tgi, T?, Tl, and Tu.

X is not, however, a T, space, since every open set containing the
closed set A intersects every open set which contains the point
0 ¢ 4. Of course X also fails then to be Tay, Ty, or Ts.

X is clearly not compact {(since the closed subset A is not compact),
but it is g-compact since the intervals [, + 1] for 7 = 0, and
(1/¢ + 1),1/4) cover X. Since 0 does not have a compact neigh-
borhood, X is not tocally compaet.

:\' is not countably paracompact, since the countable open cover-
g by thesets 0, = \ — (4 ~ {1/n}) has no open locadly finite
1'eﬁnex_nent, since in every refinement every open set cuv;:ring 0
must intersect infinitely nuiny other sets of the refinement. One
should note that an apen set about 0 containg all of an open intep-
val about 0 except the points 1/n,

X is, however, metacompact. Suppose X iy covered by open sets
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O« = U, ~ B, (where B, C A). Then { Uq} forms an open cover-
ing of the Euclidean space R, and thus has an open point finite
refinement {V4}. Then the collection {Vs — A} is a refinement
of U,, but it covers only X — A. But each point of 4 is contained
in some Q,, 80 we can cover each point 1/n by some centered open
interval I, of length less than 1/2n(n + 1) which is contained in
an O,. These intervals will be disjoint, so the refinement of 0,
consisting of {Vg — A)\U {J «} covers X and is clearly point
finite. Thus X is metacompact.

65. Rational Sequence Topology

Let X be the set of real numbers and for each irrational x we choose a
sequence [a;} of rationals converging to it in the Euclidean topology.
The rational sequence topology 7 is then defined by declaring each ra-
tional open, and selecting the sets U2) = {z:],2 U {2} as a basis for
the irrational point 2.

1.

Since every Euclidean open interval contains a, 7-neighhorhood of
each of its points, (X,7) is an expansion of the Euclidean topology
and iy thus Ty, T, and T,. F urthermore, each rational point and
each basis set U,(x) must be closed, so0 (X,7) is zero dimensional,
and thus regular.

Any subset of X which contains a rational cannot be dense-in-
itself, and any set containing an irrational could be dense-in-
itself only if it contained some rational. So only the empty set is
dense-in-itself, and thus X is scattered. But X is not extremally
disconnected, for if {2} is the rational sequence associated with
the irrational point z, then {x.;] and {72011} are disjoint open sets
whose closures each contain 2.

X — @ is an uncountable discrete subspace, so X is not Lindelsf,
and thus not second countable, though clearly it is first countable.
Since @ is dense, X is separable. Clearly then, X is not metrizuble.

A is not countably compaet since the set of integers has no limit
point and thus no aceumulation point. Since each basis neighbor-
hood is compact and X is Ty, X is strongly locally compact. Since
X contains open points it is second category. Further, a compact
set can contain only finitely many irrationals, for the irrationals
in a compact set form a closed, and thus compact, diserete subset.
Thus X is not s-compact.
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66. Indiscrete Rational Extension of R
67. Indiscrete Irrational Extension of R
68. Pointed Rational Extension of R

69. Pointed Irrational Extension of R

If X is the set of rea numbers with the Ruclidean topology 7, and if p

A with a denge complement, we define ", the indis.
crete extension of r, to be the topology generated from » by the addition

is a dense subset of

of all sets of the form DN U where 17

the set of rationals, or D = ¥ — O, the set of irrationals.

L. #'is elearly an expansion of r since if ¢ € [/ € 7, the set {2} U

0 7. Since D

SO an ex-
pansion of 7*, which is clearly an expansion of 7, Thusr C+* C 4.

DN is contained in U apd open relative t
itself is open (D= {2} V(DN XYz €D), +isal

2. The set D is still dense in + gj
in 7,

3. Every open set O in 7 has a |
always closed in r. For suppose
point p intersects O ; then UM o
which must intersect the dense set D. So if IV ONY s
a 1’ neighborhood of P, 1t must intersect 0, since V € 7, and
therefore every r-limit point of 0 is a +* limit point. Thus the »
closure of O ig contained in, and thus equal to the 77 closure. 1f
NE 7 thenN €, and the 7* closure of ¥ jg in general larger
than its + closure, Thus the same conclusion applies to & - it

is closed in (X,r).

4. Every connected subset of (X ) ig clearly
since ¥ C . The converse is also true. Sip
subset of (X,7) is an interval, its +* interior
Thus it suffices to show that no + open interval § can be o
disconnected. Foy if stch an interval § were disconnected in r,
there would be two disjoint nonempty sets N, M € +* such that
S = N\UM. Then the 1 closure of A" js T closed, so M =

connected in (X,7)
te every connected
equals its r interior,

€ 7, and ', the pointed extension
of R, to be the topology generated by all sets {x} \U (DY U) wher
€ UEr In each case, we will be particularly interested in ) = 0,

hee every neighborhood of every
point of X — D must contain a point of ). Therefore D is dense

arge closure; specifically, 0 is
every r-neighborhood U of
Is a nonempty open set in ¢

6.
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X-NNSisr open; sinilarly, N is r open, which is impos-
sible since S is + connected.

Since both 7* and ' are expansions of 7, t_,hese. spaces are T, T,
Ty, Ty, and Urysohn._But in each case if O is an open set con-
taining X — D, then O equals X, the -r—clos.ure .of the dense .:set
X — D. 8o no point of D can be separated—in glther topology e
from X — D by means of open’sets. Thus neither topology is
Ta, '1‘4, or rl‘a. .

No subset of (X,7") which contains a nondegenerate inter.'val can
be compact, for any such set S must contain a closed interval
[p,g] where p,g € D. Then the sets (— oo,p), {(g,¢), D, and

A@@)ir > p, x € X — D} form an open covering of S with no

finite subcovering. Clearly then no subset of (X,r") which con-
tains an interval can be compact.

We can prove much more: in both spaces, a set which conta.mé an
open set cannot be compact. For if the compact s:et c coptanlns ('Iin
open set 0, it must contain the closure of O, since C is closed.
But O must contain an interval so (' cannot be compact.

Suppose f: [0,1] > (X,7*) is continuous; then f([O,l]?X_ls*bc‘)t‘}el
compact and connected. But the connected sets of ( i )' ful‘
precisely those of (X,r), namely intervals, and the oply.r mte;\ als
which can be compact are the degenerate‘ones consisting o olne
point. So f is constant, and hence (X,7*) (and thel_'efore a s‘o
{(X,7")) is totally pathwise disconfle'cted. Yet botlll spaces ;1;3
conneeted, sinee (X,r) is. No nontrivial subset of I is connf-fcl ‘
in (X,r) since X — D is dense in (X,r); thus clearly neither
(X,7") nor (X,7') can be loeally connected.

If p,g € Q, the sets of the form (p,q) und (p,g) N D comprise ;
countable base for *; thus (X,r*) is always second countable, ’an_ ‘
therefore first countable, Lindeldf and separable. But (X, is
second countable iff X' — D is countable (as when ) = X - ),
for then sets of the form (ab) N D and {x}_ (W ((a:b) M D)
where e,br € X — D comprise a countable basis for r'. Onrtl‘te
other hand, if X — D is uncountable (as when D = Q) ( ,I)
15 not even Lindelsf, for the open covering of X by sets of t he
form jx} U D, 2 € X — D, has no countal)’le.subcover. Soblln
this case (X,7’) is not second countable. But it is first countable
since the sets {a} U ((a,b) N\ D) for ¢,b € Q form a countable
local hase at x.
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Il X' is the set of real numbers, and if 1 is 2 dense
=pace (X,r) with a dense com plement, we define ", th

10. Ifdis compaet in (X 7'), it must be compact i (X

»7), since the
dentity funetion from (X 7) to {(X,7) is continuous. Bug the

only conmpact sets in (X,7r) which do not, contain g nondegenerate
interval are nowhere dense in {(X,7). So every compact subset
of (X,7'), and thus every compact subset of {X,r*), is nowhere
dense in (X ;7). Since (X 7) is of second eategory, this means thyt
neither (X r*) noy {(X,*) can be o-conmpact.

Discrete Rational Extension of R

Discrete Irrational Extension of R

subset of the Luclidean
ediserete extension

0f 7 to be the topology generated from 7 by adding each point of D g5

in open set. Then any subset of [ will be vpen in 5.

As In the previous

examples, we wil] bhe particularly interested in the cases wheye D =g
orDD =X — @,

1

)

. Metrizable. We cap actually exhibit a metric

Since (X 7*) is an expansion of the Euclidean topology, it iy T,
Ty, Ty, and Urysohn.

No point of D js ever the limit point of a set A in (X,7*), while
apointof X — Diga limit point of 4 iff jt is a 7-limit poing of A.
Thusif A and B are separated subset of (X "), then . — A MND
and B — (BN D) are separated subsets of (X)r) and are there-
fore contained in disjoint open sets NAI € 7. Then since every
subset of D s open, N'\J (4 M D) and A7 BN D) are disjoint
neighborhoods of A and B in (X,7*). Thus (X

77) is Ty, hence
regular, normal, and completely norma].

If D is countable (for instance, if ) = Q) (X,7*) is second count-
uble since 7 has g countable basis. Thus since X iy regular, it is
by first enumerating
D as {r:}2), and then defining d(x,y) = sup {1/ila < r; < ¥l
whenever v < Y and letting dx,y) = 0if x = ¥. Then d(ry,x) >
1/k whenever 1 Ty, 50 B(r) = {7:] whenever e < 1/l thus in
the metrie topalogy, caeh point of 1) is open. Now if r < ¥ < e,
we have d(z,y) < d(x,2), 50 each metric ball B.(r) is an interval,
possibly degenerate. Clearly then, every me
in some basis clement of {(X,7), and every basis element of
(X,r") is some set B(x), Thus (X,d) generates the topology *.

tric ball iy contained

In general, (X %) is not locally compact, for every neighborhood
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N of a point p € X — D contains an infinite sequence wit}}out
a limit point: simply select a point r € NN\ D and consider

{r+ 1/n}L,. For the same reason, (X;") is not countably

compact.

If D is uncountable (for example, D = X — @), (X.,'r ) c:sal.?nnilt1 ti.f-!
separable, for any dense subset would have to contagl D._ :r . eOf
more, if X — D is countable, we can cover each poin r.u
X — D with an open interval J; of length 2-¢, thus ]ea.}rmg fr;
countably many points of D uncovercd: The open .coverlélgpohas
consisting of the intervals J, together with ‘ea_ch pox;i;. ;:i s
no countable subcover. So in this case (X ,r*) is not Lindelsf.
clearly it is first countable.

Since every subspace of (X,7) is paracc;mp;:,ct, tslcl) toonlsc éi(rlr 3f
i i i f (X,r"), then the eolle

For if U is an open covering o T ), ; :

r-interiors of sets in U covers some subset of X. Thus it h}%:s csl.

locally finite refinement U/* which eovers :?Il of X except p:iazd alt:)

certain points of D. But these single points may.be ad 1(;

U* to produce a locally finite refinement of U which covers a

of X.

72. Rational Extension in the Plane

i ide: ‘e define a topology =* for X by declaring
If (X ,7) is the Euclidean plane, we o
opin ;wh pointin theset D = {(z,y)[x € Q, ¥ € Q], and each set o
T
form {x} \J (DN U) wherex € U € 1.

1.

Clearly (X,r*) is an expansion of (X 7), since‘ every open )s:t'm_r
contains a 7° neighborhood of each of its points. Thus (X,m") is
Te, Ty, Ts, Ty, and Urysohn.

(,7*) is not 1%, for if p ¢ D, then 4 = (.X.— Dy—{p)isa
S{l):et; sjjt, since {p} U I is open. .Yet every nelghboxzhoodU{ ﬂu:i
(DM U} of p intersects every ne1ghbnrhor:)d of 1}1‘ , s(:lnci must
contain a point ¢ € X — D, :_md each' fl(_‘lgh'tf()l" (;10 of ¢
seets (M U). Thus (X #*) fails to be T, or T either.

Y : — D has
The open covering of X by sets {z} U I: };‘helr; ::1 e]€6 t:Xor Si)c has
] *) is neither Lin
no countable subcover, so (X ,:r) is 1
countable. But it is separuble since D is countable and dense.

Since D is diserete, any dense-in-itself subset m\%st be cnn’éamed
in X — IJ; but every point p € X — Dhasa neighborhood con-



tained in | PIUD, 50 no honempiy suby

" - e s et can be dense_ip.;
Thus (X,r*) is scattered an se-In-isel,

d, since it js T, totally disconnected.
9. But 1t.is not totally Separated, for if ; jg irrational, ne two poingg
oz =.(z,y,), T2 = (4,32) on the vertical line x = , ca;n be se afated
For if X‘*—- AVUB s g Separation of Y with 2, € 4 l; S B.
the sot {Gy)] (4y) € A}is nonempty and has a least up :31- lio d'
say (z,y,). If () € 4, then, since 4 1 open, there is alr)l ) erl: ﬂ L,

of toe for_'m’ {Gw)) U DNy contained in 4 ; then ther;) exi:tes
afpomt &y .E' U sueh that ¥ >y, Clearly (Gy’') is a limit point

of 4, and so is jp, A, which ig Impossible since 3’ Yo, Similarly
(Z,y0) cannot belong o g So there ean be no sych oe arati ’
and X ig therefore ot totally separated, pirtion

73. Telophase Topology

Il,et (X,r)_ b.e the topological Space formed by addin
closed unijt Interval [0,1) another right epq point, say 1*
RGNV } as a local neighborhood basis. ’

L (X is‘ homeomorphic to the quotient space (~1,1/R where
}, and {r,~2} for ali

2 (X2 is T, since f0,1} is, and ifa€ [0,1], each

and 1* . of the points 4
havo Detghborhoods ywhich do not contain the other point,

3. tSlinee I[)0,1] and [0,1) [1°} are homeomorphic as subspaces, ang
coﬁl‘:‘; szpac;: topology on 10,1} s Euch’dean, X is the union 0; two
: €l subspaces and th ; ing it
o eonuected[.) 1a thus compacet, By the same reasoning it i
4. .[0,1] and [0,1) (1"} are comipag
Intersection,

74. Double Origin Topo]ogy

Let X consigt, of the set of points of the
plane together with an additiong) point
0. Neighborhoods of pointg other than
the origin 0 and the point o* are the ygyg)
bpen sets of g2 __ 0; as a bagis of neigh-
I)orhoods of 0 ang 0%, we take V.(0) =
() a2 + ¥ < /7%y > 0} v {0} and

bﬂg%?;.: Hzy))er + V< 1ny < 0}

Irrational Slope Topology 93

1. X is clearly ausdorff, though not Ty since 0 and 0" do not have
disjoint closed neighborhoods: any two neighborhoods of 0 and 0°
contain a segment of the z axis in the intersection of their closures.

2. X is neither compact, paracompact, nor locally compact for if it
were it would be T; and thus Ty. But X is clearly second
countabie.

3. X is arc connected since either 0 or 0* may be connected by an
arc to any other point of X in the usual manner, except that an
arc starting at 0 must be contained in the upper half-plane for a
short distance, while one starting at 0* mugt begin in the lower
half-plane.

75. Irrational Slope Topology

Let X = {@y)ly > 0, 2,y € Q) and ()

fix some irrational number 8. The N
irrational slope topology + on X ig e .
generated by e-neighborhoods of the e AN
form N ((z,9)) = {(#.)] U B.(z + A PN
/) \J Bz — y/6) where B,(¢) = v v

r € QJ lr—¢] <el,Q being the rationals on the z axis. Each ¥ {(z,u)
consists of {(x,y)} plus two intervals on the rational z axis centered at
the two irrational points x + y/6; the lines joining these points to (z,1)
have slope +4.

1. (X,7) is Hausdorff since 6 is irrational, for no two points in X can
lie on a line with slope 8, and if one point of X lies on a line with
slope 8, no other point of X can lie on the line of slope —8 which
intersects the original line at its intersection with the axis. Thug
any two distinet points in X must, project (along lines with slope
=£6) onto distinet pairs of irrational points on the axis, which
have disjoint neighborhoods.

2. The closure of each basis neighborhood N ((x,)) contains the
union of the four strips of slope +¢ emanating from Bz 4+ y/o)
and B.(x — y/6), since every point in cach such ray projects to an
irrational on the z axis which lies within € of either z + y/8 or

e s e
Ve
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AN ANERN . /
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91 Counterexumples

G,

‘.

3. Since the elosure of each b

1. Since the closure of

T — y/8. So, s a consequence, the closures
sets must intersect. Thus (X,r) fails to be T,
15 neither T3, Ty, Ts, nor Ts.

of every two open
i» and consequently

asis neighborhood contains open neigh.
borhuods around each point in the diamond shaped region formeg
by the intersection of strips, every regular open set must contain
some such diamond. Thus the regular open sets cannot form g
basis for the topology, so (X,7) is not semiregular,

any two open sets must have
Intersection, (X,7) is connected. So it is
Hausdorlf  space. But it cannot be path conaected since if
Jo 015X i continuous, X js countable, so (o)lp € X}
Is & countable collection of disjoint closed sets which covers [0,1].
This, however, is impossible.

a4 nonempty
a eountable connected

7} Is constant, for
disjoint open sets

Since X is countable and since each point of v’ h
local basis, (X,7) is second countable
finite base. But, it is not Ty, 50 it is n

s 1 countable
and therefore has g a-locally
ot metrizabie.

X is not even wenkly counta

bly compact since the sequence of
integers on the r axis h

@8 no limit point.

76. Deleted Diameter Topology

77. Deleted Radius Topology

Let X be the Euclidean
on X" by taking as a sub
the horizontal diameters other th
only the horizonta] radius to the
baxis for a topology r which we ¢

L. Sinee both ¢ and T are exp
{(X,0) and (X)) are Hausdorfr, completely
Urysohn,

2. Since no deleted (radius or dia
any neighborhood of ity center

plane, we define the deieted dj

ameter topology
basis for a topology «

all open dises with al) of
an the center, excluded. By deleting
right of the center we describe a sub-
all the deleted radius topology,

ansions of the Ruclidean topology hoth
Hausdorff, and

meter} dise contains the closure of

" neither (X,¢) noy (X,7r) is regulay

Deleted Radius Topology 95

nor semiregular. Thus neither space is locally compax.:t. In fact,
since no set with a nonempty interior is compact neither (X ,cr)2
nor (X,r) are o-compact since the Baire eategory theorem for.R
shows that R? cannot be a countable union of compact (which
implies nowhere dense) sets.

Both (X,s) and (X,7) are connected since the elosure of any open
set in either case is its usual Euclidean closux:e, and thu:? any
open and closed set must be open and closed in the Euclidean
topology and thus is &f or X.

Neither (X,e) nor (X,7) is countably compact since both are ex-
pansions of the Buclidean topology which is not countably eom-
pact. Clearly neither space is sequentially compact.

That (X,e) is neither Lindelof nor metacor'npacft may be showr:) l:;}x)
considering the cover consisting of the baS]S‘ n91ghb01:hood at E) , )
of radius 1, the complement of the closed dise of radms.7/8 at ogt
(0,0}, together with one basis neighbor.hood fc3r each p;)llnt. no yb_
covered on the horizontal diameter. Smce. thls“cover as no f;.su ’
cover and is uncountable (X,o) is not Lindelaf. If 9 is a ,;'e :
refinement of this cover and « € [—7/8, 7/8, let 8, be the r% ius
of a disc about (x,0) contained in some element of . By th(}al ta;]l;etr
category theorem for some e > 0 the set of I'.G I suc Shat
8. > € is not nowhere dense, s0 its closure c?ntams some clc «
interval 7. Then the point (z,y) where 2 € I, y < ¢ is contain
in infinitely many open sets of the refinement.

Similarly, (X,s) is not countably pa.racm.npuct: to shnw"tgfs j.v(ls
construct a cover by taking the basis neighborhood of 1‘21 lius !
about (0,0) together with the complement of. t.he closed ‘I.SC. 0r
radius 7/8 about the origin as before. N.mv partlt19n the reman.nll)llg,‘
portion of the horizontal axis (including (0,0)) into a CUUIlltd. (E
number of disjoint dense subsets (as in the usual constructlf)n: 0
a nonmeasurable subset of B') and take for each of the remamm%
sets of the cover a union of basis neighborhoods of the eleme‘nts 0
one class, where (0,0) is deleted from t!l(! class t‘.hat (ECmtfllllS lt:
Any neighborhood of the origin must interseet mﬁmtel.)- m}s:ni‘
members of any refinement of this cover, at least one for each o
the countably many dense subsets.

We can also show that (X,r) is not countably paracompact by
choosing the same first two open sets as before, thus leavu_lg just
one interval to be covered. Consider the points (1/2,0) which are



eiitelexamples

(1)1; :;:;s nllt.erval and inchfde the point (1/1,0) in the deleted dise
ot ;;.s, L/ (n(n + 1)) with center at (1/n,0). Then in any 1-eﬁ1m
men le open set containing (0,0) interseets the open sets .
aling infinitely many of the points (1/n,0) S

,0).

78. Half-Disc Topology

b

if P"——- Heyzy € B, y >0} is the open y
‘uchdean topology 7, and if [, 1s the real nxj
r'hon X=pPuUL by adding to r aJ] sets of the f,
Where x € L, and U/ is 4 Euelidean neighborhood

1.

pper half-plane with the
8, We generate g topology
my o) \J (P U)
" | fxin the plane.
- ;anogfél ;I;j:;z f?::loz;tcnnt\}fﬁment basis for the Euelidean topol-
erated by g basis’ consist?xlllg ofl lt:vl:'od the ropeioey 7 us veing g
types. of neighborhoods- fzrep
a basxs. element containing 1z ig 31; d A
open disc contained i, P, whereas —'~—*-—-—-.__.____.____' K
the basis getg around a point y € f, r

are of the form fut v n D)
wl'le‘re D is an open disc aroynd
taining y € f, consists of an ope
together with {y} itself.

. That‘is, a basis set cop-
0 half-disc centered at fy}

H

X i . . )

1(1 eighi) ;iha: Osx;}ansz(;ln (}f (X,7) since every set in r containg »
eac [y} its . . , UL T T, .

and Urysohn, points. Thus (X %) is T, Ly, Ty, Ty,

» 80 (X,r*) is neither
: countable. Neither is it Tindais

¢ N $ 1t Lindelof, f
fverlng by.bsf.sls neighborhoods has ne countable sub0 er o
clearly (X°) is first countable. cover. But

The covering of (X ") by basi

. s elements e .
has no point fipjte refinement, ents, one for each poing of X )

4 31 s 3
For consider any refinement of this

79.
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cover and let S, denote the set of points y € L for which the ele-
ment of the refinement containing ¥ contains a basis element of
radius greater than 1/n. By the Baire category theorem for some n,
S, has a nonempty interior. Let 7 be an open interval contained
in S,, and let x € I. Then if 0 < ¥ < 1/n the point (z,y) is con-
tained in infinitely many elements of the refinement. Thus (X )
is not metacompact.

However X is countably metacompact. For Jet {4, = {V,} U
{Us} be a countable cover where each V; C P, and each U, inter-
sects L; let Sy = Ux M L. The sets U, — 8, together with the V;
form a Euclidean open cover of the upper half-plane which may be
refined to a point finite cover {Wa}. Now let T: = 8 — \U §;
F<i
so that the T are disjoint although \/ 7'; = L. Define U,’ =
T=l
Ue™ \J D, where D, is a basis neighborhood of s with radius

aETe
1/k. Sinee Ui’ does not extend more than 1/k above L no point

may be in more than finitely many U,'. So {W,} \J {U:/} covers
X and is point finite.

If {7} is a countable exhaustive collection of disjoint dense sub-
sets of L, and if U, is a neighborhood of T, then the countable
cover {U;} \U [P} has no locally finite refinement. Thus X is not
countably paracompact.

Irregular Lattice Topology

Let X be the subset of the integral lattice points of the plane consisting
of all (¢,k) where ¢,k > 0, together with the points (;,0} for ¢ > 0. The
lattice topology on X is determined by its basis elements: each point of
the form (3,k) is itself open, each point of the form (5,0) 7 # 0, has as a
local basis sets of the form U,((,0)) = {(G,k)|k = 0 or k > 2}, while

the sets V. = {({,k)li = k = 0 or 5,k > n] form a basis for the point
(0,0). '
1. Clearly each open set {(5,k)} is closed, as is each basis element
Un{(,0)). But the closure of V, includes the points (k,0) where
k > m, since every neighborhood of these points intersects V,,.
(Note that each V¥, is open, though {V.} does not form a local
basis for the point (0,0}.)
2. X is a completely Hausdorff space, since it may be shown that to

each pair of points z,y € X, there correspond open neighborhoods
0. and O, with disjoint closures. Since all basis elements except
those around (0,0) are closed, the construction of Q. and 0, is
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" Counterexamples

t.

=1

« normal.

trivial unless one point, say x, is (0,0). But in that case, if y =
(,k), we need only take 0, to be V, where n > £ Then 0, will
be disjoint from some (closed) basis element of 3

X is not regular, though, since for each n > 0, the point (0,0)
and the set X — V, do not have disjoint open neighborhoods,
Thus X also fails to be completely regular, normal, and completely

None of the sets 1", can contain a regular open neighborhood of
(0,0), for the closure of any such neighborhood &7 must contain
some point (£,0) which is then an interior point of U. Thus ¥,
camnot contain U, so X is not semiregular.

Sinee all but one of the points of X have a local busis of sets which
are both open and closed, at least one puint in every paira,h € X
has this property; suppose 1t is @, and suppose N
closed neighborhood of a disjoint from b,
function of N is a {continuous) Uy
X is a Urysohn space.

is an open-
Then the characteristic
ysohn function for ¢ and &, so

Sinee X is countable, and since each point of X has a countable
loeal base, X is second countable. Furthermore, it is neither weak

ly
countably compaet, pseudocompact, nor locally compact,

Since each point of X is the intersection of the sets containing it
which are both open and closed, cach of these points is a ffUasi-
component of X, so X is totally separated. But it is not zero
dimensional and not extremally disconnected sinee U7 = (20 %
=1,23, .. Jisopen, yet U = [/ U 1(1,0}} is not open.

X is, however, scattered since any stubset which w
itself could contain no isolated points, and thus must be a subset
of S = ((1,0)i = 0,1,2, .. .J. But S is discrete in the subspace
topalogy, so it can have no nonempty dense-in-itself subsets.

a8 dense-in-

Arens Square F——— T
If § is the set of points in the inte- | R N O S
rior of the unit square both of whaose II L—————F—————-: :
coordinates are rational, we define | [ i
X to be SV {00} V10,0 U ! I
G VEIr € Q,0 < r /2 < 1}, : |
We deline a basis for a topology on |

|
|
i
I
d

X by granting to each peintof 8 the
loeal basis of relatively open sets ©®

i

.’

|
‘-—__.._1_____J__‘___‘_~—_~‘

1

2

Arens Square 99

. . d
which it inherits from the Euclidean topology on the unit square, an
to the other points of X the following local bases:

100,00 = (0,00} U {0 <z <1,0 <y <1/nj,
Lnil,og = {10}V {&m} <z <1,0<y<1n} and
UGr vV = il <z <ily—rv2l <1/nl.

With this topology X is Ty. This may be seen ;b% direcg.ocg;xsld;
i i int of S nor {0,0) nor

ion of cases noting that ne:ther_ any point of !
‘(a;.)a:;omay have the same y coordinate as a point of the form

(3 V2).

Y is not T; and hence not Ty since given (0,0) € U,.(O,ngtg)eg;
exists no open set U o such that (0,0) € U(o,n).C U(f,,o)l %} u,, h,n;)
gince U oy must include a point whose z coordinate is § thoug
such point exists in U.(0,0) for any n.

We can show that X is not Urysohn by c?nSIdeEnlg ?f’l;rui!;c:lon‘_:
f: X = I = [0,1] such that f(0,0? = 0 and j(1,0) = .t O
tinuous we note that the inverse mages of the open Ze [S} (,1,{0) nd
(3,11 of I must be open and hence cont,.aln U.(0,0) an 1,,} ,I/m}
s:);ne m and n, respectively. Then if r V2 < n;m {Ot?l,l A 1)’:
f(3,r 4/2) is not in both [0,1) and (},1], so spppo-sei &SSILCh tha,;[jr
e e e e mvers mages of U and [03)
: 1) isjoint. But then the im
\1111]1?10[??)“::1:11 ble disjoint closed sets cuntmumgh o_penosfe:s \a/%m&t
(3,r+4/2) and (0,0) respectively. But by tlrl-e c 01(:{;] 00y i
min {1/n,1/m}, these closed set_s. 'contlumng +(0,
Ux(d,r v/2) for some k cannot be disjoint.

4. X is semiregular because the basis neighborhoods are regular open

. To — U
sets: a straightforward check of each case reveals that U
for each basis neighborhood U.

i al
Since X is countable and SiIlCB E{J.Ch 'pﬂlﬂ:t has a C({l}].[rlt;ahlelst)cl
basis X is second (:uuntable. But it is neither weak Yy cour ab y
) -~

compact nor locally eompact.

. . P
The components of X are each single points, am% s};) are th:(,qfii .
components exeept for the set {(0,0), .(1,0)} whic blsta. Oxt : ;}muy
quasicomponent. Thus X is totally disconnected but n

separated.

i i -in-1 I Zero
Y is not scattered since each basis set is dense-in itself, no



SRR Amples

dimensional, since (0,0) cannot have g |
open and closed sets since
would be limit points but,

ha ocul basig consistip
for s.ufhcfently small z, the points (E;
not interior pointg of each basis set ’

81. Simplified Arelis Square

I.f S is the get of Points in the inte. |
ror of the ynit, Square, we define X fl
t be S {(0,0),(1,0)}. Points i g |
wlll_ be given the Buclidean local :
buasig neighborhoods, while U7, (0 0 k
100} Uy < 5 |

<y <1/} and v 2 L ’ [ v T

10}, respective] y.

- to be Hausdorff b i

: Y a consid
lt. Is .not completely Hausdorff, since (0 d
d_ls,]omt closed eighborhoods,
£ven basis consigtg of regular o

ation of cages. But
,0-) and (1,0) do not have
Clearly X is semiregular, since the
ben sets. Thug X ig not Ty, T, or T,.

2 <
<. Clearly X ;s not Sequentially Compact since the induced

on the open upit Square § is the Euelideap topology opols

X is neither locally compact no

tablfi and separable since the 9pen unit square
Opology is, thus X ig Lindelsf. Byg since X g

not Ty, it is not
X 5 1 Paracompact g
Since it is Lindelgf, pactand thus not countably paracompag

Xism i

tho ;{i‘zcegmtpaci; Since the open upjt square § js metacompact ip

cach of 1 tw:l;)(:; I_f;iy (i(l)ng) th?j addition of 5 neighborhood for
' $(U,0) and (1,0) 10 4 nes i

would not destroy its point finite cha?ract‘;rpomt fnite relinement

6. The identj
o the e?:lty map frm_n the set X with the Euclideay, topol
. Siven space X jg continuous so X iy th o o8y
e connected, Oth are and locally

82. N iemytzky

8 Tangen¢ Disc Topology
If P =

Hzy)lzy € B y>o0}is the

= o
(.‘5':.,
=
a=r+
=)
s <
T =
£ 2
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Niemytzki’s Tangent Dise Topology 101

P\J L by adding to r all sets of the form {z} \J D, wherez € L and D
is an open dise in P which is tangent to I at the point z.

1. (X,r") is an expansion of the Euclidean subspace topology on X,
Forlet U C X be open in the Euclidean subspace topology, and
letx € U.Thenif z € P, there
is an open neighborhood of z
contained in U since for such z,
the two topologies have the

same loeal bases. If z € L, then
there exists a disc A, centered .
at z, and open in the entire

plane, such that AN X C U, *

Clearly then there is a disc £

A1 C P with radius half that of

4, which is tangent to L at z, and which is contained in A,
and hence in U. Thus (X7*) is Ty, Ty, Ty, and Ty,

2. Toshow that (X,r*) is completely regular, we select a closed set 4
and apointb ¢ A.1f b € P, then there is a neighborhood U of ¢
which is contained in X — A, and is open in both 7* and the
Euclidean topology. So its complement, X — U, is closed in the
Euclidean topology, and since that topology is completely regu-
lar, there is a Urysohn function for X — 7 and b, But this
function is continuous relative to +*, and is a Urysohn function
for A C X — U andb.

So we consider the case where b € 1. There niust then exist a
disc D, tangent to L at b, which does not intersect A; let its
radius be 8. We define a function f; X — {0,1] by requiring that
@) =1ifx ¢ D\J {b}, f(b) = 0, and at the point (z,y) € D,
Ty} = [z — b + 12)/28y. f is continuous, since f~([0,a)) is
the open set {b} \U D,, where D, is the open dise of radius sa
tangent to L at b and f~'((«,1]) is the open set X — D.. Hence §
is a Urysohn function for A and b, so (X,r") 1s completely regular.

3. Since each basis neighborhood of each & C L contains nt most
one point of L, every subset of L is closed. In particular, the
rationals Q@ C L and the irrationals I C L are disjoint closed
sets which do not have disjoint open neighborhoods, so (X,7%)
is not normal. ¥or suppose U/ D Qand V DT are open sets in
(X,7°). Then to each point z € V there corresponds a disce
D. C Vof radiusr,, tangent to I, at z;let S, = {z € Ir, > 1/n}.
Then the collection {8, together with the points of Q forms a
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s,

countable eoyer of the second category space (L7}, where £ j the
Euelidean topology, Thus some one of the gptq S. fails 4 be
nowhere depge In (Lr)-—g for some integer 79, there is »p, intep:
val (a,b) in which {z € Llr, > /7o) is dense. Then every neigh.

borhood of every rational jp (2,b) must Intersect V, 50 U ang i

tannot be disjoing,

Xis Separable sinee {(z,y) [,y € Q} is Countable and dense, bug
the Uncountable clogeg subspace 7, i not Separable, sinee the
induceqd topology oy 7, is diserete,

X must pot be second tountable singee otherwise 7, would be
Second countable yet nog separable. Iy Particular, eael point of
Lisin a basjg element containing 1, other poing of L
uncountably Many Duints, any
Clearly they, X is not Lindelsf,

IHNisa neighborhegg of the point, » & L,and if p 2} isa
basis set where ) C N, thep the circumference of I Containg 4
sequence of Points which tonverges to y jn the Euclideay topol-
0gy, but which can have pq limit pojnt in the tangent djse topol-
i closed subget which i pe countab]y

compact, so ¥ cpp be neither compaet nor tountably Compaet,

Thus X js 1ot locally compact,

- Sinee £, has
busis st e uneountable,

X is not paracompact, sinee every Pardcompaet J Tausdory spage
1S normay. F urthermore, X is not tountahjy baracompacet, for
SUppose {£.} is 5 countahle partition of g, Into congruent, djs.
joint denge subsets ench of second category jn 7, Let {1, ! be
an open Covering of v U; and Ny = Ho; let
{Val be a refinement, :
the set, of Points in &,

hoad n some ¥, for each %, at leagt one
of the setg n' must fai g, be nowhere dense ip L, since S, =

hese dises niust
intersect every element of the refinenye, which Containg a poing
of (a,b) and thys point of g has g neighborhuud which ingep.
sects only finitely Mmany memberg of {V.}. H ence {7}
locally finite reﬁnement, 50 X is not countably Baracompaeg,

As in the haif.-dise topolugy,

X ig Countably metacompyet but
not metacompact.

.
. Wecanconstruet from X

Sorgenfrey’s Half-Open Square Topology 103

a space ¥ which is normal yet not com-

since Y co tains X as a s bspace. To do thlS we

al sine contains 4 u B

hlcte:y n()rn.mI U}n 0 X\ ; iehbor { } U cher
merely add a p t P to X, with ne b’h 0 hOOdS P Uv he e

U'is open in (X,7*), and U contains all but fini
7 is ,

tely many points

of . Then Y = X\ {p} is normal.

10.  If we double the points of X the resultin

'1‘3‘ .

8. Metrizable Tangent Disc Topology

Let S be a countable subset of the o axis in l.!lwlr
t“ 1)‘{ the subspace of the tangent dise topolog
i ! & b

g space is only T; and

plane. We define (X7}
¥ consisting of 2\ 8,

i per half-plune.
where 7 i the open upy

1. Sin

of

set with no limit point. So (X

H . X
im X, and since X is clearly first countab:c, (
bfe ’Thuq since it is a subspace of a regular sp
able. Y

and thus completely

2. Let A be a closed dise tang,

W M H : ' 3 1 e d{. 1156
l l b'i"( 14 thL liltl()ll‘ll l;ltt-ll c p()lllta Of il 1S
HUNEE L[]lllltt[ 4] (_, W y ] ) '

ace, X is metrizable
normal and paracompact.
ent to the x axis at p. Then a sequence

A which approach p yields a countable

P o h elgs of 7} is neither locally compact nor

countably compact.

84. Sorgenfrey’s Half-Open Square Topology

I

Let § = (R,7) be the real line with the rsgh: I'
elf-open i : ue

half-open interval topology: the pro i|

|

!

¥ X 8 then carries the half-open

Space X = . . M -
:guare topology in which a t.‘y/l)lctill n?]g](l:;)ru S(p,e)
: i3 a rectangle )
hood of a point (_'t’y) below d :
square) including its boundary only and if € > 0, we will de-

ive s €EX
the diagonal with negative slope, If 17:
note the basic half-open square of side e

i ower left corner point »

by S(p,e).

1.

i 1y regul: faet, 8
X is completely regular sinee S is completely regular. (In .
A I8¢

. \ al.)
18 completely norma This may
Although & is completely normal, X is not even ?Ugm,?-zviuusly o
f proved by the second category argument ubel E]‘he diagonal
e t diae logy is not normal.

o he tangent disce topo o8y N in the
T.h')“LthatIEx WY = —z} is elosed in X and is discrete in

me L = {(r,

H g p )?

l“du (.d t()p”l()gy siee L n A!(p E) = {pl \‘rhene‘l er E L S0

b()tlch = {(a 'a()la I8 Ilrdtlonﬁl} ﬂ.[ld ]tb CO]IlplEIllent L K
?
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are elosed in X', Then if 77 i
o e 31 j;ld ]::;l if ‘U 1s & neighborhood of K, there must
contain wpnd 20 ci ;ubset A C K whose Euelidean clusig
Somal (OtherWiscf\ZL | of I, suc}} that Spw) CU whenevy
ofseta g <5V n, _hwuld be written as the countable yy
Bt hen i vare 0?“( [ere dense in the Euclidean topology nnl:
Juint from U, s0 K and JL—EKI)(QM{l:(ﬁ;nbhave . "‘-’ighb”rh“"d »
€ separated by opeh sefy,
t@y)ly € g
h closed, fority

X i )
X dls sepgrable since the countable subset D
ense : is "
oo iElX ; ygt L is not separable, ovep thoug
Able and discrete in the : .
dretts I the indueed topology. Tk
Y to an alternate v - ¥, s
poree (.(,"t,'n:,n, l?telll.lt.l Proof that X s not. nnrm:l ’l‘hpr\\ o
o e ous real-valued functions on I, but, s s e
able, there ape only 2% congingoy | J’l  function,
So mt s ! 5 rexzlvalued funetione )
vor + ‘ ! unctions o
o ot e\-te;‘:d !oinit;:)nu?us I‘E‘)&l function on the closed suhy -l-l Y
m.ore e X, which means X cannot he nmm*?d:f“.hi.
o ’ nn . ‘mal, Thi
B die tge Sﬁt;lslll)), tliz;t ‘;m, Space with a denge set [} and )
ace & of cardinal; )
Ity larger tha
n that of p

Even though the Space (S;r) ig Lindelsf, x —

Lindelsf since the closed subset L is not Lindelsf S8 s

X i .
Opelrsl CIL(:: n.letacfompact since (X — K) S, € K}
overmg of X with no point fin: . A (} is an
point finite refinen,

A ent. For, ag ab
basic square of this covering must have sty which ¢ ove,
Euclidean ¢l (Bre) for sume fixed >0andp € 4 }umtam
such  elosure of A includes some interval of ot the

refinement can be point finite 4l ol L. Clearly pg

A similay g

paracompa;‘i%m;s:t]c:n be used to shoy that X s not countab)
i o —eK{U‘,} be a refinement of the cuuntably
e L= IRV {Stp,Dpe g, _ K}. Then for -Ie
N We can select g e
> such  that S(p,8,) is con-
tained in some Us; further, egch

U, can contain
at most
S(p,ap)- If !Uﬂ} ¢ o Uf the

finitely many of the {7, and th

%ﬂy finitely many of tf;e ( él;S
lert'efore with each gEK w&f ’c; .

assoclate an ¢, > () 80 that S{g,e,) ils]

LR

Michael’s Product Topology 105

disjoint from all S{p,5,) where p € L — K. Thus by applying the
preceding category argument to the set K with its topologically
complete interval topology we can guarantee the existence of an
¢ > 0 and an interval 7 C K such that the Euclidean closure of

¢ € Kle, > €} contains 1. 8o if p € (L — K) N1, 8(p,8,) can-
not be disjoint from all S{g,e,) for ¢ € K. But this is contrary
to the definition of S(g,e.), so {Ua] cannot be locally finite.

Michael’s Product Topology
1R i the real Tine with the Fuelidean topology and i€ 1} = £ @,
we define (X,o) = (%) X (D7)} where 7% ix the (rrational) diserete
extension of 7 by the dense set D, und 7' is the induced Euclidean topol-

agy on D,

1.

(D,r') is a separable metrie spuce, and (R,7") is a completely nor-

mal paracompact space, yet the produet space (X,7) is not even
normal. Consider the digjoint sets A = Q X D = {(x,y)|z €0,
y €D} and B = {(2,2){z € D}. A is closed since Q is closed in
(R,7*}, while B is closed since both (R#*) and (D,7") are Hausdorff.
But since basie neighborhoods of points of B are vertical intervals
while neighborhoods of A are rectangles, a category argument
similar to that used in the tan-

gent dise topology will show that (0,7 P s

A and B cannot have disjoint :

open neighborhoods in (X,e). :
Specifically, any neighborhood :[

N of B must contain, for some

u > 0, intervals of length greater {

than p which intersect B in a set

whose Muclidean closure con- R S

tains some interval. Then every "“;"J

nelghborhood of A must inter- (R,7*)

sect N,

2. Since X is not normal, it is clearly not paracompact. But it is

metacompact for if {U,} is an open covering of X, the Euclidean
interiors U,° form an open covering of \J U,* which has a BEuclid-
ean (and hence 7) open point finite refinement, {0,}. Now the
complement K = X -~ \JU,° is metacompact on each vertical
line, 0 we can find on each line a point finite refinement consisting
of open subsets of the line. The union of all these refinements
together with {0,} is a puint finite refinement of {U,}.



1o Counterexamples

86. Tychonoff Plank

87. Deleted Tychonoff Plank

It 2 is the first uncountable ordinal, and if w is the first infinite ordinal,
then the Tychonoff plank T is defined to be {0,9] X [0,], where both
ordinal spaces [0,9] und [0,0] are given the interval topology. The sul-
space T'e = 1" — [(Q@)} will be called the deleted TychonofT plank.

Since ordinal space 0,17 is compact and Hausdorff, so is the
Tychonofl plank 7', Since every compuct Hausdor!T space is nor-
mal, 7 is thus normal. (Nole that even though [0,] and [0,8] awe
normal, we cannot conclude directly that 7' is normal, since
normality need not be preserved under products.)

T fails, however, to be completely normal since the deleted plank
T, is not normal. For let 4 = {(m)[0 < n < w} and B =
{{e,w)]0 < & < Q). Then 4 and B are subsets of T which are
closed in the subspace topology on 7', since their complenients in
7. are clearly open. Now suppose U (C T', is 2 neighborhood of A.
For each point (2,n) € A, there is an ordinal &, < € such that
{(an)en <@ <Q} C U.

Let & be an upper bound @ w) B ()

f(]l‘ the @, & <0 sincc Q (- sensaverrnesn " ........-....D

has uncountably many
predecessors, while & has
only countably many.
Thus the set (&% X
[0,0) C U. So any neigh- o veereneeenren
borhood of (& + 1,w) € B ©.0 o
must intersect U. Thus '
any neighborhood V of B will interseet U , 80 T is not normal.

*  ersssreserseves Shvrnssnassbune

. L L YT R P Y T Y L R T Y YY)

L] eansesunana sase Cssssrvassvseans A
» “ssessantnnasny

Assssuvansssans

L T T Y YT

That T is not perfectly normal follows from the fact that 7' is not
completely normal. It also follows directly from the observation
that the closed set {(Q,w)} is not the countable intersection of
open sets. But it is the intersection of all open sets which contain
it, 5o T' cannot be first countable or separable.

T4 is not weakly countably compaet, since A = F@)10 <0 < w!
is an infinite set with no it point. But it is pseudocompact, since
every continuous real-valued function f on 7', can be extended to
a continuous function f on the compacet set 7', and therefore both
J and f are bounded. For we know that on each set L, =

Alexandroff Plank 107

; 5 L.=B = [{a,)0 L a<q]

M0 < a <9} as well as on Ly )10
j{‘ (i:);?r;ntually constant, so for cach n € (0,0, there em‘sts -y,} <t9
:h that f((a,n)) = 2» for ull @ > va So the faxt.eusml? of [ to
?u(}’;' — R give’n by f((ﬂ,w)) = x, will be continuous since sup

Yo < 8

XK=
La(.;h Oldllla-l Spﬂ(e 15 Zero dlllleIISIOIlﬂ.l, thl.tte[‘ed, but IlOt e
Y tlcl y 1 an T fUl exac 15‘ h. S84l
t.I'Lln l d hLOllllCLde, 50 tJO() wre P d W) X t t e ne

[y ]

reasons.

6. 1f we double the points of the "I'ychonoff plank the resulting space
is T3, Ty, and Taonly.

§8. Alexandroff Plank

— sach with the interval
oduet of [0,9] and [—1,1}, eac ' .
- I(X,Tr) })fe ';h=e I()Qr 0) € X, we let o be the expansion of genlem\;ed
tl‘)(;p:;dgi}n.g to 7 the sets of the form Ulan) = {p} Y (,2] X (0,1/n}).

+1

-1 Q
0 1 7 w

. R X,

1. Since (X,r} is regular, the expansion (X ,r{) is Lryszhn.?:{t)t( c(:,)_

. is not regular since € = {(a,0)]e < Slr}. is a clofse se o
éuining p, yet every neighborhood of ¢ intersects every

hood of p.

) C. y g L b « g n S
2 (;( g 1

- s 15 (:Ie l]l semire ].1 ' SINCE eu,h b.lblS IE(Eta]l 16: 1 r 1
l(‘,[.,'lﬂdl ﬂ])(,‘n, HE B Q:l(;ll ...“Cb lj (a,n).

3. (X,o} is not countably cnmpacE. 't-‘.ince 1.;he fgat [((:;-t—a i(/}:l)}\::pt 21}
3. .. .} has no limit peint. Neither is (2 ,o‘)_.I}‘ll e
{’V | is a covering of the ordinal space ,[O’Q) wit bnuUp it
reﬁunement, then the covering {Ua} of X deﬁn'e:r;lvy>< ;[:1 o
(10,21 X (0,1}, U= = 0,2} X (—1,0), and Us = Va ,
no point finite refinement.
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89,  Dieudonnég Plank

Let X be [0,9] x [0,0] ~ {(2uw)},

the points of the deleted Tychongg
plank, with the topology

7 generated by declaring open each poing of

(0, w) (8,w) (2,w)

(2.5

(0,0) (2,0

0,2 x [0,}, together with
ValB) = {(v8)|a < v < 2}
I The Dieudonng to
topology on 7, =
(X,7) is not weakly

the sets {7 «(8)

= {BY)a <y < w} and

pology » on X is finer th
X, 50 (X,‘r) iS '1‘213 1‘2, '1‘1,
countably compact,

an the Tychonof
and T,. Similarly,

o

Each of the open basis gets U.(8) and Va(8), together with eacl,
open point is alsg closed, so (X

,7) 1S completely regular and zery
dimensional, But the sets A4 = @m0 <n < w} and B =

h_

{la,0))0 < ¢ « 2} cannot h
each neighborhaod N=y
seet each basis neighbogh
SUpa, < v < . Therefore,

(X, is metacompact sipce
ment consisting of one b
But any sych refinemen:
can be contained in at n

ave disjoint open neighborhoods sinee
(Va0 < 5 < @l of A must intey.

wd of each point (y,w) € B, where
(X,r) is not normal,

any open covering of
asis neighborhood for e
t is point finite since a
wst three such b

X has a refine-
ach point ¢ € X.
n arbitrary point
asie neighborhoods,

Deleted Tychonoff Corkscrew 100

1. The space (X,r} is not countably paracompact silr;u(a t-h_e lc)lpfir:
. covering of X by thesets Uy = X — A and U, = Vo(n

1,2 3 has no locally finite refinement. For if {W,}
n=1223, ...
_______________ ~
r-__ T
I po——
-————-—r——
' -
l )
i
! —_— 1,
i ——
1 —
7
j — — -
o UO

i ' inal &, to be
h integer n an ordinal o, :
U.}], we may define for eac . . ord >
mﬁnles' [t m]-dinal such that ¥, (»n) is contained in ]u:%t one {1 é.t
tlhlf e"lfS sup a, < 1, every neighborhood of {(a,w) will interse
T enila = n ] o
infinmitely many elements of {W,].

90. Tychonoff Corkscrew

Deleted Tychonoff Corkscrew

i r ordered set (—0, —1,
‘G rding let A, denote the linearly o
Foy each orcinal e2 1, 0) with the order top(_)logy. .Let P lzie s;‘,hlz
_221 . t ;p’u:e’ ln >'<,4 J (\;'here w is the first infinite ordinal, an
product s . A,

0.0) 20 0
r“—r‘m‘““__TT_ {
|1 |

f1§ |
} I i ! :"w }
[ 1 Il i Ag
1 | ——gq(0,w)
(1T R 4 0 ————=

Dw) L (2, 0) —1
| | [
| I [
| = '

o}
b o a0
(-0,-0) (£2,-0)

* 2 & ae - (@)},
the first uncountable ordinal); let /** be t}lm‘&;]:iﬁici prOin[t(S ,Wi)th
Then P* may be thought of as a rectangu ar la o points Wi
1 1el(;in'1te axes Agand A,. We then use an mfl.mte_ stack o .L:options o
::(l";rm‘u rectang;L;lm- corkserew lattice S, S?l_rahng m})‘o;l; éiltx }c}z:n joi;ling
slitting each P* immediately below th(:; lllms;ltl,;\;e(ﬁlz 3:;:; and then Joining
th?dl'.”:,n'lt;h 1()1;13?\“11? I(;f {I:,?*](}:)ﬂlnfc“ft iscthe indexed collection of posi-
mediately . i
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t?\e FIT axes, we wiil eall 7 the level of /4 o, and will consider, by ¢

Ffl:)nI, the points of S which Le above Agt(3) to be at -lcv‘(‘l gr{'m&:;’}‘;:""!‘
E\'.l 1‘- b}l(.h il ])utnt, we write Ij(.r) > 1. T'o complete the infinite cor -
A, we add to S two ideal puints a* and -, to be thought of
ponts at the top and hottom of the JRNTY u]f the e |
borhoods of a* consist of . hic

kseroy

as infinity

corkserew; hasis poj

: ‘ i th 5 hasis neigh,

all points of X which Jie above (or, for o
1 L]

.' ,

] 77712
[
/77, —

— -
=
, .

|

|

I

below) o certai T
f an level. The subsy. g Y

. space Vo= X — tg-) wi ”
deleted Tychonoff corkserew. 71 it be calld e
| Iaedy quadrant of the reet
T the subset of the.

point {4y, Sinee 7

angular lattice 7 js
Tyehonofi 1)
« 15 regulur, the

homeoninrphie to
ank forued by deleting the
corkserew § clearly ix alse.
thus need consider o
and e~ If (' jg

To prove X regulir, we
the two ideal points g+
o oo ide uz)mtl]l]t.':- a ; e a closed set in v which dogs
e P — s open and st contain all o
; _|‘. 1.; Uv:zl :11;-011:1111 level £, Then the sets U7 =[x t€ \lf! l(’“)'"t""'
o e . | ; = | L) <
containing (' ynd ({zi ia}){n{lt(;:) ]> g +-] f- are disivint open sets
ool € , T vely. A sinilar discussion could be

ly cases in\'nlving

vg. (_ 01 bH? LAY 'S WY
Slle low C tv
H SENIRITIRES re ] UL
1 (] 1" oy L con e I.I ‘d lell(,tltJll , an \ S“J.( e the

Hewitt’s Condensed Corkserew 111

restriction of f to each quadrant of each P* may be extended
continuously to the missing center point {Q,w), and since f Is
eventually constant on each positive and negative Aq axis, we sce
by induction that f must be constant on some set which includes
at each level a deleted open interval around (Q,w) on the Ag axis.
Thus there exists a sequence {a,}”, on which f is constant,
where lim a; = ¢* and lim @, = a~. Since f is continuous, it

it w — - w0

follows that f(a*) = f(a™), so X cannot be either Urysohn or
completely regular.
1. Since X is not Urysohn, it cannot be either totally separated or
vero dimensional. In fact, {at,a~} is the only quasicomponent of X
containing more than one point. But X is totally disconnected
sinee {at,a—} is discrete in the induced topology.
If we double the points of the corkscrew X the resulting space
will be T; only.

(11

6. The deleted corkscrew Y is regular since it is a subspace of X,
but it is also Urysohn since every point of X except a~ can '(_)e
separated from a* by a continuous function. However Y is still
not completely regular, for, as above, the point a* may not be
separated by a continuous function from the closed set in Y con-
sisting of the complement of a basis neighborhood of a*.

7. Y is totally separated since no more than one point of any given
guasicomponent of X lies in V. Further Y is not zero dimensional
since a* had a basis of open and closed neighborhoods in Y these
neighborhoods would also form a basis of open and closed neigh-
borhoods of a* in X in contradiction to the fact that a* and a”
together form a quasicomponent of X. The basis neighborhomds
ol @t have netopen closures so Y s ool extremally disconnerted
Sinee the Tyehonofl plank s seattered o s 8, and thos also )
and X.

92, Hewitt’s Condensed Corkscrew

IfT =8 {at} U {a} is the Tychonoff corkserew and if [0,8) is the
set. of countable ordinals, we let A = 7' X [0,2) and define X to be the
subset of A consisting of 8 X [0,2}). We think of 4 as an uncountable
sequence of corkserews A, where x € [0,2), and of X as the same
sequence of corkserews missing all ideal {or infinity) points. If T': X X
X — [0,92) i3 a one-tv-one correspondence, and if «; (2 = 1,2) arc the
coordinate projections from X X X to X, we define a funetion ¢ from
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Thomas’ Corkscrew 113

3. Clearly now, since each A, is regular, each open basis neighbor-

¥l(x)
~ ; \ hood N contains a basis neighborhood A such that A7 C N. This
3 : . shows that X also is regular.

% 1. The function ¢: A — X — X permits a natural extension of any
] function f on X to a function £ on A by defining f(z) = f(x) if
okl z € X and f(a) = f(¥(a)) ifa € A — X. Ii fis continuous, so is
T T 17 @ { since for any open set U, f=(U) = j-(U) U (f © y)~}(U) =
FHY NI H(FH(U)) where f~(U) is an open subset of X. Thus
F7HU) = X N (UN,) where each N, is a o-neighborhoed in A

and \JN; is open in 1. Thus

FUU) = 1X N (UNJTY [ HX N (UNY))]
\W"u)——"’” = [MEX NNV WX NN
= \UN;

A~Xonto X by ¢(a*t) = =y
L = mI7A) and Y(ary) = 7,0 A). Then i
;m_c-i ¥ are two distinet points of X » there exists some )2\ @([0) Q) n?:n]:lf
-'i‘hr‘(iv,y),lsueh that both of the sets 1) and ¥ (y) inte’rsc:ct Ay )
e . u . - - i '
r€X \\?irz}{: (:}%g 0:1 4 ]tS determj:led by 1,)3815 neighborhoods N of eaeh 5. Lvery real-valued continuous function f on X is constant, for if
proper ythﬂt\l/ (Nn A) C N, t(]gether with AA Xl € X and if A= P(I’y)- then \f/(a"‘x) =z and v"(a_h) = Y.

since y (X NN)C Ny and N; C (XNN)UY X NN,).
Hence f~'(U) is open in A, so f is continuous on A.

-basis

-neighborhoods (e i : . : .

the subspace tf)ffﬁf(lle{jf:(?:m)]”{[‘eac}l point ¢ € A — X; X will inheriy But f Is continuous on A and hence on Ay, so flar) = fla)

of 2 € X, we begin with 1 0 COBSEIUCt & typical basis neighborhood where f(ah) = f@(ah)) = f@@) and flams) = fp(a) = f(y).
! g with a o-neighborhood Nyof 2z U ¥ 1(z) where o i Thus f(z) = f(y) for any two points of z,y € X.

the product topology on 4 = 7
' ( =T X 0,2 where [0,2) is diseret
mductlvely, we let N; be a o-neighborhood of N.u \lx‘lt(::’\(; rel. f{‘h;l)]

and ¥ = Uy, Clearly N N X)CAN. 93. Thomas’ Plank

I. X is Ty in the induced to i i
. ‘ pology since each ot r € X iy ’ k
Intersection of all of jtg basis neighborhoods, P oA e P Thoms Gorlacrew

Let X = U L; be the union of

) .
) (I); gnesefs, ;ra;ch bj;SlS neighborhood N of » Is the union of relatively Pt — 1
correspondin C\‘n p (\ . Y.‘ie claim that & is simply the union of lines in the plane where L, =
and N is the ff (ihere A denotes the closure of 42 ind,Nx, {(@0)z € 0,1}, and for; > 1, F 3 L,
a point g ¢ \_())IS\:'rlare of N in x.Y). Suppose not; then there would be Li= {(r,1/Dlz € 0,1} Ifi>1, E— — 1,
But every neighhb t;,ve;‘g nelghbo}-ho()d of which intersected N, each point of L, except for (0,1/8) 3.
open sets. A é Aor r(\) X A of Y18 a union of certain relatively is open; basis neighborhoods of f— :
could intersect N x_ Id ,.har;d bite only way that every such set (0,1/7) are subsets of L, with E
some corksoren 4 “(l);l ¢ for cach M NN to contain a tail in finite complements. Similarly, = - -1,
poin, say a+e:ra ‘\[; ut this means. that the corresponding idea] the sets U.(x,0) = {(z,0)} U
in bo;;h M a:;d ;} E;’;dcifi b{gﬁ‘ Vf‘f‘- ¥ to another tail contained {Gx,1/n)n > 7} form a basis for the points in L.
. - cating this finitely many times nrodeo |
eithery € N ory € Af; the former contradicts ghe se;;c:;:>(l)1d:f(f5 1. livery basis neighborhood of X is elosed as well as open, so X is
i r zero dimensional and therefore regular since it is clearly T,.

true that ¥ = (i, ; s
2. X is also completely regular since if € is a closed set and p ¢ C,

=
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there must be some hisi
Then the function [ taki
points to 0 is continuous,

s neighborhood N of  disjoint from ¢
ng every point of N o 1 and all othey

3. .{'&(01? not normal, sinee every neighborhood of the closed s
: /n)[nwz 1, 2,3, ...} contains all but countabiy myyy
oints Ly wherens ' nei ‘
pomts of nk=Jl L., whereas every neighborhood of the closed set f,
contains uncountably many points of kj’ L
nw=1
-4,
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95. Weak Paralle] Line Topology

96.  Strong Paraljel Line Topology
Let A be the subset of the plane {00 <z < 1} and le

subset {(2 o< 2 < 1}, X is
z, < ) s the set 4 / i
pavadlel line topology ¢ on X by tak b define

t I3 be the

: - the strong
g as a basis all sets of the form

u 14
u
s W
U u W
3 e,
(X,0)

(X.7)
Vo= {(x,1)fa L2<d) and U =
bi. that is, left half-g i

H@0)e < 2 < b (e Da < 2 <
‘n A together with t

pen mtervals on B and right half-open intervalg
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parallel line topology r consists of the sets U together with sets W =
Heila <z < b {{2,)ja € x < b).

. Since each W may be written as V\J U/, where V = WN B

and the union is taken over all U, C W, we see that o is a finer
topology than 7.

[

If we define (2,7) < (1,j) (i, = 0,1) whenever x <y or 2 = y
and ¢ < j we see that for any two points p,, p2 of X either p, < ps
orps < pr. In (X;r), W = {(2,0)la <z < b}V {{z,D)]|a < x < b}
= {p € X{(a,0) < p < (h,0)}; since each U may be expressed
similarly, (X,7) is an order topology and is therefore completely
normal. (Y,¢) however is not "I since the closure of eack V con-
tains points on the lower line, so no open subset of B can contain
a ¢losed neighborhood.

3. f m €A, the sets C={p € Xip <} and D = {p € X|
p > p} are both open and closed in botho and 7. Thus f: X - R
defined by f(p) = 0if p € C and f(p) = 1if p € D is continuous.
Thus both spaces are totally separated, Urysohn, Hausdorff, and
not locally connected.

4. X is not sequentially compact with the topology r since a mono-
tone increasing sequence of points of B which is bounded above
contains no convergent subsequence. Thus (X,s) is also not
sequentially compact.

5. Considerations entirely analogous to those given for the right
half-open interval topology show that neither (X,s) nor (X, is
locally eompact, e-compact, or second countable. Clearly both
topologies are first countable, and as in the right half-open
interval topology, are Tindelaf and separable.

. Since no set V contains any closed neighborhood, (X,e) is not
regular, and thus is not zero dimensional sinee it is ausdorfl.
But the closures of the sets I7 (or W for that matter) are just the
union of the set U and a set of the form 11" and thus are also open,
These sets form a hasis for 7 for ench U or W is the union of all
such sets contained in it. Thus (X,r) is zero dimensional.

7. SBince in either topology all the basis elements are dense-in-
thenselves neither space is seattered.

8. Neither (X,0) nor (X,7) is extremally disconnected for, as in the
right half-open interval topology, a certain infinite union of dis-
juint basis elements has s closure which is not open.
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(', nested sequences of intervals together with their deleted
projections.

X is not separable since no countable subset is dense in ;. Since

X is compact, it is Lindelsf and thus not metrizable.

The components of X are € and each of the points of Cs.

%. Appert Space

Let X be the set of positive integers. Let N (n,E) denote the number of
integers in a set £ C X which are less than or cqual to n. We describe
Appert’s topology on X by declaring open any set which excludes the
integer 1, or any set E containing 1 for which lim N nEy/n =1,

1,

G.

n— w0

Appert space is an expansion of countable Fort space; a set
C is closed in Appert space if 1 € C, or if 1 ¢ € and
lim N(n,C}/n = 0,

H—r o

Appert space is clearly Hausdorff, and in fact, completely normal.
If A and B are sepurated sets, and if 1 ¢ A\J B, then 4 and B
are open. If 1 € A, then lim N(n,B)/n = 0 (otherwise 1 would

n—r o

be a limit point of B) and so B and X — B are disjoint open neigh-
borhoods of B and A respectively. If 1 € B, the argument is .
similar.

X is not countably compact, for the infinite set {2}, n.> 1, has
no limit point: no z > 1 can be a limit point since each such point
is open, and 1 cannot be a limit point of {27} sinece X — {24} is
open.

Since X is countable, it is g-compact, Lindelof, and separable.

X is not first eountable, since the point I does not have a count-
able local basis. Suppose {B.} were a countable loeal basis at 1,
Then each B, must be infinite, so we can select an z, € B, such
that x, > 10%; then I/ = X — fza} does not contain any of the
sets B,, yet it is an open neighborhood of 1, for N (n,U) >
n = logi u, and thus lim N(n, U)/n = 1.

X is not locally compact, since the point 1 does not have a compact
neighborhood, for any neighborhood of 1 is infinite, and may be
covered by a (smaller) neighborhood of 1, together with a disjoint
infinite collection of open points.
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7. Appert space is seattered since in T, spaces every dense-in-itself
:'subset_must contain an infinite number of points. But this js
impossible in X since every point other than 1 is open.

8. Since any set containing 1 is closed, 1 has a local basis of sety

which are both open and closed Sin i
_ . ce all other points are dis
crete, X is zero dimensional. ? ¢

9. X Is not extremally disconnected since the set £ of even integery
1s an open set whose closure 17\ {1} is not open

99. Maximal Compact Topology

Lfat X bc_ the set of all lattice points (7,7) of positive integers together
with two.ldeal points x and 5. The topology 7 on X is defined by declarin,
each lattice point to be open, and by taking us open neighborhoods of :f
set_s of the form X — A where 4 is any set of lattice points with at most
finitely many points on each row, and as open neighborhoods of y gt

sets of the formi X' — B where B is an i i
[ y set of lattice points selec
at most finitely many rows. points selected from

1. (X,7) is not Hausdorfl, for there are no disjoint open neighbor-

hoods of z and y. But it is T, si int i i
_ . 1 since each point is th i
of its neighborhoods. P e intersection

2. (X,r) is compaet since if X — 4 and X
R 2 4 and X — B are open neighbor-
hoods of = and ¢, respectively, then X — [(X — A)pU (X g— B?;l
= A M B is finite.

3. Every compact subset of X is closed, for suppose that E ¢ X is
not elosed. Since each lattice point (4,5) is open, ¥ can fail to be
c]osed_ only if 2 or y is a limit point of, yet n(;t in, £. Suppose
¥y € E — FE; then £ must contain points from an inf%nit.e nul:lll)ber
of rows. ITA = {(70,7.)} is a collection of points in K, one in each
o!' Ipﬁnltely many rows, X — A together with the di;.crete points
(1.""7.") forl.ns an open covering of ¥ but has no finite subcover
Slnu].arly fzx € E ~ E, then £ must contain an infinite number"
]of p;mts from Some one row; so we let B be that row and cover
1:,_{ (:ml; {f::tz-md singletons. Thus a set which is not elosed eannot

4. Suppose'r' O is a compact topology for X. If the contaimment
\\-'ere strict, there would be a subset A which was closed under
7" but not under . But then A would be compact under * but
not' un.der 7, which is elearly impossible. Hence no topology on X
which is strictly larger than r can be compact; that is, 7 is a maxi
mal compaet, non-Hausdorff topology., ’ , N
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5. X is second countable since it is first countable and countable. To
see that X is first countable we observe that all points other than
2 and y are open. The collection of sets A is countable so x has a
countable basis; on the other hand, ¥ has a countable local basis,
the sets consisting of X — 7" where 7 is a finite collection of rows.

§. The doublet {z,4} is a quasicomponent of X which is not a com-
ponent. Thus X is totally disconnected, but not totally separated.
Clearly X is scattered since in a T, space any dense-in-itself sub-
set must be infinite, but all points except « and y are open.

100, Minimal Hausdorff Topology

If A is the linearly ordered set {1,2,3, . . . , 0, ..., -3, -2, —1}
with the interval topolegy, and if Z+ is the set of positive integers with
the discrete topology, we define X to be A X Z+ together with two
ideal points a and ~a. The topology r on X is determined by the prod-
uet topology on A X Z* together with basis neighborhoods M, *t(a) =

a =~ M,,' M N a
(\. —————ee————— | r""'_—'"—___.__T_/ .Il
v 1" : (
. le| e
I - : I . . |
R 1°y e o
TR C R L A

- . . LI R I ] - LI IR A

fa] UEHE <w, j>n} and M.(—a) = {—a} U {GJli >«
i>mn}.
1. A straightforward consideration of cases shows that (X,r) is

Hausdorff, though not completely Hausdorff since for all integers
nand m, M, *(a) N\ M, (—a) = {(w,i)|i > max (mn}] # .

b2

Clearly each basis neighborhood is the interior of its closure, so
(X,7) is semiregular. But it is not regular since it i1s not com-
pletely Hausdorff.

3. The basis neighborhoods form an open covering of X with no

finite subcovering, since the points (w,j) are contained only in
their own neighborhoods. Thus X is not compact.

4. However, X is almost compact since any collection of open sets
which covers X must have a finite subcollection whose elosures
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101.

cover X. This follows from the fact that the closures of any neigh.
borhoods of ¢ and —a contain all but finitely many of the points
(w,j). A straightforward consideration of cases shows similarly

that the complement of any basis neighborhood is also almost
compact.

5. Now suppose r* C r, suppose N is a basis neighborhood of r and
suppose {O.} is a 7"-open covering of X — N. It is then a T-0pen
covering, so there exist finitely many sets O, . . . , O, the union
of whose r—closures covers X — N. But the +* closure of O; con-
tains the r-closure, so X — N is covered by the union of the s
closures of O, Oy, . . ., O, In other words, X — N is mn
almost compact subset of (X 7*).

6. Suppose r* is a proper subtopology of 7. Then there would be
some basis neighborhood N € 7 for which X — N would not be
closed in 7*, and so there would be a point * € N such that ¢
belongs to the =" closure of X — N. Let {Ca} be the family of
r"-closed neighborhoods of , and suppose {X ~ C.] covers
X — N. Then for some ¢, . . . C,, X —NCUX = C;; but
UX — Ciis closed, so must contain r. Since the C; are neighbor-
hoods of z, this is impossible, so fX — C.} could not have
covered X — N. Thus N, contains more than just the point z,
s0 7" cannot be Hausdorff. This means that r is a minimal
Hausdorff topology for X.

Alexandroff Square

If X is the closed unit square [0,1] X (0,1},
we define a topology r by taking as a l
neighborhood basis of all points (,0) off the
diagonal A = {(z2)|x € [0,1]} the inter-
section of X — A with an open vertical line "“I‘ - :[_I‘“

segment centered at p: N.(s,0) = {(s,y) €
X—a l|t — y} <¢}. Neighborhoods of
points (z,r) € A are the intersection with I‘”
X' of open horizontal strips less a finite
number of vertical lines: M ((s,8)) =

{{z,y) = Xl]y—sl <ETHF Lo, Tn, . v ., n).
1.

A is Hausdorff as may be scen by direct examination of cases.
Consu_ier two points (21,51), (22,12} € X. If ¥ ¥ iz then we may
find disjoint horizontal strips, and thus disjoint open neighbor-

o

102. Z7
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hoods, containing (ri,y) and (x2,ys), respectively. If 3, = i,
then either ; = ¥, or z; # y; say 2, # ¥,. Then any open hori-
zontal strip containing (xs,45) less the vertical line through
(x1,n) und any basis neighborhood of (z,,:) are disjoint neigh-
bhorhoods of (x,1) and {x2,12)-

Suppose A and B are separated subsets of X. Then each point

a = {a,a:) © A has a neighborhood N(a) or M.(a) which is

disjoint from B. If a € A we may assume (by selecting ¢ suffi-

ciently small) that M.(a) N 4a = {(z,2)|}z — & < ¢}. Then

U= (VU Ngp@V( U M,p(a))isanopensetcontaining
aE4-A acAMNa

4, and we may define similarly an open set V containing B.
Clearly UNT = &, so (X,r) is Ts and therefore completely
normal.

Let {U,} be an open covering of X, and let B = {alU. M A #
. If = is the projection map of X onto the y axis, {x(U.}}ecn
is an open covering of [0,1] and thus has a finite subcovering, say
{w(Uad ey Then {U}t., covers all of X except for finitely
many closed vertieal line segments, and each of these may be
covered by finitely many U,. Thus (X,r) is compact.

No point on the diagonal A can have a countable local basis so
(X,r) is not first countable. But X is sequentially eompact since
every sequence has a subsequence {(z,y.)} which converges in
the Euclidean topology on X to a point, say (x,y). Then {{z;,y.)}
converges in (X,r) to (y,y) unless all but finitely many of the z;
are equal; in this case, {{x;y.)} converge to (x,3).

The induced topology on each vertical line in X, as well as on
the diagonal 4, is the Euclidean topology. Since these are arc
connected, so too is (X,r) for two points in X may be joined by a
path consisting of two vertical line segments and an interval
along the diagonal. Thus X is connected. But clearly it is not
loeally connected sinee no nontrivial neighborhood of any point
on A is connected.

Let Z+ be the positive integers with the discrete topology; let X =
M Z*; be the countable Cartesian product of copies of Z+ with the

¥

Tychonoff product topology r.



1.

en

6.

If & = (&) and y = (¥ are points of X, and if E, ., dototy
{4 € ZHe: 5% yi}, we can define a metric for X by d(z,5) =

Z 27 Sinee M., \V E,, D E.., dis o metric for X; since
i€Es,

Byi(a) C#7ay), the Cartesian product topology is finer thag
it

the metric topology. But since M 7 Ya;) C Byi(a), the topuol-
i=1

ogies must be equal.

H asubset ¥ of X is compaet, ,(Y), the projection of ¥ onte
the nth coordinate, is compact and thus finite. So no compact sel
in X can ¢ontain an open subset, for cach openset U C X must
have some projection m{U) which equals Z+. Thus X is net
locally compact.

X is not e-compact cither, for if X = UYL, Yy compact, we
can define m(n,k) to be the greatest integer in «,(Y,). Then
the point whose nth coordinate is min,n) + 1 is in X, but net
inany Y,.

X 1s second countable, and thus Lindelsf, since it is the count.
able product of second countable spaces,

Since Z+ is totally disconnected, each projection map must take
a connected subset of X to a point; thus only one-point sub-
sets of X may be connected, so X s totally disconnected, In
fact, the subbusis sets #7'(F) wre open and closed, since they
are the inverse imuages under continuous maps of open and
closed sets, so X is zero dimensional and thus totally separated.

No point of X is isolated so X is dense-in-itself, and thus not
scattered.

A sequence of points 17} C X converges to the point x iff each
coordinate ;% eventually equals x; (for sufficiently large 7).
Indeed, each coordinate in a Cauchy sequence eventually be-
comes constant, so X is a complete metrie space.

In the space (X,d), the open ball B.-,(a) is the set, {{a,, M, . ..
@iy Tigy Tjgr, « . ) Ik D a0 = i, and its closure is simply
)
- = "N 2 Ya). Thus
i=1

Bei{a) is closed in (X,d) but open in (X,7)—-yet both spaces
have the same topulogy.

Ifer=(1,1,1, ..

the set {{a;, @, . . . y Wiy Xjgr, Tiyn, .

<32 1,0,0,0, .. ) with 7 consecutive I’s,

10.

[, - S

DRSS it

C) Bi=(e). But B = e} \J U By»(ef), 50 e cannot be an
i=1 B iel i '

interior point of B since every point of B — {e} must coutf}ln
some consecutive zeros, yet every neighborhood of ¢ contains
a point with just one zero. Hence B is an open set whose closure

is not open, so X is not extremally disconnected.

The Baire metric on X defined by §(z,y) = I{n where n is the
index of the first coordinate at which x and y dlﬁ'(.él' has the same
Cauchy sequences as the metric d. Thus it yields the same

topology.

103. Uncountable Products of Z*+

If Z+ is the discrete space of positive integers, we let X, = II Z*,,

aSAd

where X is the curdinality of 4. We assume that A > Ny—that is, that
A is uncountable.

1.

L2

X, is clearly Hausdorfl and completely regular since these prop-

erties are preserved by arbitrary products.

X, is neither first nor second countable. Assum_e {B:}isa co:x?t.-
able local base at the point p € X\. For each 1, 7.(B:) = Z* for
all but finitely many o; since there are uncountably m_any a,
we can seleet one, say a,, such that 7.,(B;) = Z.+ for all <. Then
Tas (D) = (4 € Xpl¥ay = Pa} i85 an open neighborhood of p
which contains no B;, so { B} is not a local base at p.

ff A< 2™ X, is separable. For in this case .Lh.cre exists o bijee-
tion ; ot A onto a proper subset of the }mlt mten{al 1. Let J,,
Js, . . ., Jx be any finite pairwise disjoint collection of closed
subintervals of I with rational endpoints, and ny, ng, . . ., b‘ea
finite subset of Z+. Let p(Jy, . . . ,Jp, 7, . . . , 1) be the'pomt
{pa) € X, where p, = n:if ¢(a) € J,, and p. = 0 otherwise.
The set of all such points p(Jy, Js, . . ., Ji, My, 1y, . . < k)
is clearly countable; it is also dense, for given any open set in X,
of the form ;\ 7o, W(Ua,), where U, is any open set (that is, any
set) in Z+,j: :\}e can find a pairwise disjoint colleetion J,, . . .,
Ji such that ¢{e;} € J;, and for each j, ap n; such that n; € U,,

Then p(Jy, . . ,m) € Ql w7 (U,,), since when-
ever qb(a,-) < Jj, Pa = ; = U,-,,-.

Y PO TR
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4. Conversely, if A > 2“", X, is not s : i
a countable dense subset, of X A thiia;::) ?Ac?; ,:’upep;setgem
DN\ xg Y1) and D N m5~'(1) are distinct, since eja.ch ba.;is neighs
borhood #,7'(1) and 75'(1) is both open and closed. Thus the
map &: 4 — P(D) given by ®#(a) = DN %o~ '(1) is injective, g
A= card 4 < card P(D) = 2™ '

5. X, is neither compact, ¢-compact, nor locally compact since Z#

It 125

A Baire basis set By(z) consists of all ¥ € X whose first 7 coor-

dinates agree with those of 2. Clearly no basis set of the Tychonoff

product topology on R« can be contained in By(z), but By (x)

is contained in the Tychonoff basis set N x;(U;) where z; € U,
i=t

for all 7 < 4. Thus the Baire topoiogy is strictly finer than the
Tychonoff topology on R=.

is none of these and they are ail .
maps. Also like 22, X, is zero dim[:el:ssizrx?:ld b)'( open conunumfs 2. TIf {z.} is a Cauchy sequence in X, and if z; , is the ¢th coordinate
set 72 1(p.) is both open and closed—but, n‘: Ince each subbasis of the term z,, then for each ¢ the sequence z.,, 7,3, z:s, .
6. Fori = Qand 1. ] 0t scattered. is eventually constant, say z'. Then clearly {z.] converges to
the ‘ » let P i © X be the collection of al] points with z = {z%. Thus X is complete.
¢ D[(Jﬂr_upct ty that each Integer except ¢ appears at most once as 3
;‘;‘:}e 1;1(3—139- I’Ehen Sncze 4 is uncountable, P, N\ p, = & and 3. The induced topology on each coordinate axis R; is discrete. In
A— 4= To Wn) M ! s . i
s () Nag(ny), P, is closed. We will fact, sinee Byd{x) = M x,7(z,), the topology generated on Rv
: i=1
:2(3(“’ that any two neighborhoods 7 and V of Pyand Py intersect by the Baire metric is precisely the Tychonoff product topology
E * ﬁagnf)t be normal, ' where the factors R; are assumed discrete. But clearly X is not
i acf nite S}lbset F C A determines a bagis neighborhood discrete.
z) of any point z € X, by Fz) = N x,7z). We define |
induetively a nested ; . a€F . 4. Bince the projection of every compact subset of X onto each
subsets of 4 mgethez.ni:.?:;mg sequence Fo = {ayj?_; of finite discrete factor space R, is compact and therefore finite, a compact
2" € Po. Let 2% = 0 for aj] aneassomated Sequence of points subset of X can be at most countable. But X itself is uncountable,
F._, are given'aselect F,D Fa bA, anc_] Suppose that z» and s0 it cannot be ¢-compact. Similarly, since every basis set in X
and then Selec;, i £ ;’n S0 :};;t i r,?ﬂmng ;hat Fuz) C U, is uncountable, X cannot be locally compact.
and £, — : e = = J whenever o; € F,
whenewer a‘Oeﬂtkl;er"mse. Nowlet y € p, ‘be defined by Yo; = § 5. Since the discrete topology on each factor space R; is non-
finite set @ JC y ~ and ¥, = 1 otherwise. Then there is a separable, X cannot be separable.
S such that G(y) C V. Then for some integer m
GNUVUF. =N} so , 6. Since the subbasis sets x;~1(x;) are the inverse images under con-
n = n we ma : i
2 ="E 0 h ’ v define 4 point » € Xy by tinuous maps of sets which are both open and closed, they, and
ac;:d . ='«vlente;er _t-xk € Foy 20, = 0 whenever o, € F, 1 —~ therefore the corresponding basis sets, are both open and closed.
wise i? c (2; er\\ise. Then z, = y, if o € GNF,, and other- Thus X is zero dimensional. Since no point is open, X is dense-
. - k‘; "::a _f— Ya=1,thus z € Q(y) C V. Furthermore, in-itself and therefore not scattered; since X is metrizable and
F?:.+: F :'Ba‘tr;hu ! ea” EFn and 2, ~0= To,™ if o € not discrete, it is not extremally disconnected.
- ) 8 - m —
A 8 e, T @) = Fauam) C UL s
2 € UMYV, which was to be proved.
105, H

104. Baire Metric on R
Let I” be the uncountable Cartesian product of the elosed unit interval
I=[0l1}:F=01I.

iel
I is compact and Hausdorff since 7 is compact and HausdorfT.
Thus I is normal. Similarly since I is connected, so is 7.

X = Reistheset 11 R, « i
set, _Hl R, where each K. s a copy of the Euclidean

real line, we define th('a Baire metri
5 s etric on X by d({z) (u:)) = 1/7 w .
13 the first coordinate where z and ¥ differ. (@) /4 where i L



3. Suppuse {B,}isa

9
= M d={1me Ilne z+y containg ¥ =

for each n, (B,) = If,
elBs) = [ for all byt finitely my i i
uncountable, there must be an o, such that wII{I; ,) afdlsfuwelf )
o \rp) = orull g

So if I/ is an open neighborhood of Yoow U ¢ ] o I g
gy @ 15 an

Open neighborhood of ; whi i ,
) ¥ which contaie. T i
fnat conrbr Y ¢h containg ng By, Thus [1 not

Points of 77 ape ¢ i
unctions from 71 1, 7 and
o : : » A0 4 sequence of po;
t ; o }tle;%e; 11.1ff] ; to « iff the functions converge pOl:l]t(.::Ilt
o 2V I8, U for each » € 7, a(x) converges in J to
§ equivalence follows direetly initic .

ue
. ;;; t;:Iupology on I’,. for open neighborhoods ipn 77

. Oy many coordinates at 5 time, and this js
wise convergence, , e

restriet only
cisely point.
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Since [0,82) is neither separable, Lindeldf, nor e~compact, X also
cannot satisfy these conditions. Similarly, since I7 is not first
countable, neither is X. But since both ¥ and [0,Q) are locally

compacet, 0 is X.

107. Helly Space

The subspace X of IT consisting of all nondecreasing funetions is ealled
liclly space; it carries the induced topology.

1.

If f € ' — X, it is not nondecreasing. Thus there are points
r,y © 1 such that @ <y but f(z) > f(y). If € < 3{f(z) — f)],
and if U;= B{(f(z)) and U, = B.(J(y)), then =~ YU, N
7, (U,) 1s a neighborhood of f disjoint from X. Thus X is a
closed subspaee of the compact set 17, so X is a compact Haus-

dorff space.

Each funetion f € X has at most countably many points of
discontinuity. Let A, be these points of discontinuity together
with the rationals in the unit interval I; then A4 is a countable
set. We claim that the set of all finite intersections of
m W (By(fla))) fora € Ayand =1, 2, 3, . . . is a countable
local basis for f. To verify this we need only check that every sub-
basis neighborhood =, 4{B(f()))} contains an element of our
countable family. 1f y is a point of diseontinuity of f, we merely
select j so that 1/j < ¢, and take =,~'(B,,{f())). If not, then f
15 continuous at y, so there is a & such that f(z) € B.(f(y))
whenever |r — y| < 5. 80 if @ is a rational in the interval
(1, + 6) and j so large that By,(f(a)) C B{f(y)), and similarly
if b is a rational in (y — 8,5) and Bii(f(b)) C B.(f(3)), then
every function of X in m,7(By;{(f{a))) M = (B (f())) must
be in m, Y B{f(¥))). Thus X is first countable.

Let A; be the set of diadic rationals in 7 with denominator 2%
then {A.} is an increasing nested sequence of finite subsets of I
whose union is dense in 1. For each £, let V; be the set of contin-
uous piecewise linear functions in X which take on rational values
at each point of 4; and which are lincar between these points.
Each ¥; is countable, so ¥ = \UY, is also. Furthermore, ¥ is
dense in X, so X is separable.

The collection of functions f. defined by. f.(f) = 0 if t < =z,
fAx) = %, and f.{t) = 1if t > z is an uncountable subset of X

2,
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.which is discrete in the induced topology. Thus, this subspace
1s not s_econd countable, and so therefore neither is X ; further-
more, since X is separable, it cannot be metrizable.

108. C[o,1]

The space of real-valued continuous functions on the unit mterval I will
be denoted by C[0,1]; it is a metric space under the sup norm distance:
d(f,9) = sup 1/(¢) ~ g(8)].

I. ¢ is a ¢ ric s i
'( [0,' 1] is 2 wm[')letc metrie space, since cach Cauchy sequence
in Clo,1] Is uniformly convergent, sequence of continuous fune-
tions, which must have a continuous function as a limit.

2, Q[O,li is separable since the polynomials with rational coeffi-
cients form a countable dense subset,

3. Every open ball B.(f) contains a sequence {f;} such that
d(fof) = € (for 1 3= J) and which therefore has no convergent
subsequence. To see this we define
¢, € C[0,1] to be —¢/2 on {0,1/2 —
¢/2n), +¢/2 on [1/2 + ¢/2n,1] and
linear in between. Then fi=f+
¢; € B((f) and satisfies d(f.',f,') = €. 0 1
Thus C{0,1] has no compact neigh- / o
borhoods, so is neither locally com-

pact nor, sinee it is of second
category, e-compact.

4. C0,1]is bo_th arc connected and loeally arc connected since each
ball B.(f) is convex. That is, the funetion ¢: [0,1] — Cl0,1] de-
ﬁnfad'by W) =tg+ (1 —-Dhisa path joining ¢ to k; if ¢ and
h lie in B.(f), so does each o{t).

109. Boolean Product Topology on R+

If X = B is the set .‘1.31 R., where each E; is the Euclidean real line,
Wwe generate the Boolean product topology r from basis sets of the

form II U; where each U, is open in R,

=]

1. Clearly each basis set of the Tychonoff topology is open in the
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Boolean topalogy, so r is strictly finer than the Tychonoff prod-
uect topology on X. Thus (X,7) is Hausdorff.

2. (X,r) is also T, for suppose A and B are separated subsets of X.
Then eacha = {a;} € 4 is contained in some basis neighborhood
U ;(a:), disjoint from B, where each U;(a;) is an interval in B,
centered at the eoordinate a;. Let U,%(a,) be the middle half of
the interval Uji(a;), and let U*(a) = IU,*(a:). If V*(b) is de-
fined similarly for each b € B, then U = U U*(a) and V =

sEA
U V*(b) are disjoint open sets containing A and B respectively.
vED
3. Since in the induced topology each of the translates RS =
{y € Xly: = 24, 1 # j} is homeomorphic to the connected set
R; X is connected.

4. Since (X,r) is an expansion of the Tychonoff topology on R,
which is homeomorphic to Hilbert space, any compaet subset of
X must be compact in Hilbert space. Thus, since Hilbert space
is not s-compact, neither is (X,r). But (X,r) is locally compact
since the product of compact intervals is compact.

5. Suppose {U,} is a countable local basis at the point z € X; let
U; = 1 Uj;. Then for each 1, let V be a proper subset of U,;

i=1
containing z,; then Tl V; is a neighborhood of z = {z;) which
i=1

does not contain any of the sets {U.}. Thus {U;} cannot be 2
basis at x, so X is not first countable.

6. Neither is X separable, for if, for each 1, U;; is the open interval
(7,7 + 1) in R, then the collection of all sets 4;, = I U,
i=1

where {7} is an infinite subset of the integers, forms an uncount-
able disjoint collection of open sets in X. This shows in fact that
X does not satisfy the countable chain condition.

110. Stone-Cech Compactification

Let (X ,7) be a completely regular space, let I be the closed unit interval
[0,1] C R, and let C(X,I) be the collection of all continuous funetions

from X to I. Let 7. = 11 I, where I, is a copy of I indexed
MECX.D)

by A € C(X,I). We denote by (4,) the element of J¢X.D whose Ath coor-
dinate is #. Then if hx: X — ICE.D ig defined by hx(z) = (A(x)), the
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imoge of hy, hX(,X ), is a subset of the compact Hausdorif space [Cxn
80 its c!osure BX = i_lx(A) 15 a compact Hausdoyf space known ag thl;
Stone-Cech compactification of (X 7).

1.

o

h{( 18 & homeomorphism of X onto hx(X), a dense subset, of BX
S_lnce O hy = \foreach) € CXL 1) (where p, is the pro';c.
tion of 111, onto 1), hx is continuous. It is also injective sincle i;
5Ly € X, z # y, there is g continuous function x: X — { such
Ph_a.t )f(x).——* 0 and Ay) = 1. Thus ha(x) 5 hy(y). Tn fact hy is
Injective lff. X is Urysohn, Finally, we can show that A i'sxa:
open mapping by selecting any open set U C X, ang J: )loimt
z € U. Since (X,7) is completely regular, there cx’ists )\"X]——» 1
.‘such’that A} = 0 while A==1 on the closed set X — (:’ Then
hx.(,l) N o ((— ,1)) is an open subset of Ly (1) \\'hicil e

tains Ayx(r). So hx(U) is open. .

Every continuous function f from X to 4 compact Hausdorf
space Y h_as a unigue continuoys extension to 8X: that 1:-. for
f‘aocl‘lxcontmuous X — Y there exists a continuous func’tion
{hﬁt f-—» Y such tha’t Jo hX. = f. To prove this we note first
a; Or any space Y, a continuous funetion f: X ¥ induces
a' continuous funetion F- ICXD  rern g follows. If ¢ €
50({1;,1{) then ko € C(X,1) so we may define F: jeoxn _,
: by F((t)) = ((teo)i); that 15, the & © fth coordinate of
'(t;\) is tak:en as the Lth coordinate of F{{t)). Since p, 0 (=
i\sroa contln;ious map for each I, F itself is a continuous 111:;3!
coo:d i:: :tes: O‘EFt}Cl)ath_:Zxc))) :lx== by O f by computing the kth
(hx(@os = k O fz) =
(o (). Thus F(he(X)) ¢, d
hy(Y) so by the continuity of
F, FeX) C F(hxe(X)) C Y.

Thus F restricts to B8f: BX — hx hr
BY such that Bf O by = hy OFf.
Now since Y is compact hy: Kwn

Y—;»BY is a homeomorphism F e

80 f.= hy™' O Bf is the desired

continuous extension of Sy for

gi;x‘?hy‘_’ OBf[OChxy = hy1 0 hy O f = f. Since Y is Haus-
W T Is unique, .for 4 map from any space X to a Hausdorff

space Y is determined by its values on any dense subset of X,

The properties that BX is tompact, A(X} is dense in 8X , and
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that every map from X to a com-
pact Hausdorff space ¥ may be
extended uniquely to 8X charac-
terize BX. For let T have those
properties. Then there exists an

e
- . v X
inclusion f of X into T with a \
f

unique extension f: AX — T, and
a unique extension £ to T of
the inclusion h of X into BX.
Since both £ O fand the identity
i: 8X — BX are cxtensions to 8X of h: X — X , ko f must be
the identity on 8X; likewise f O £ is the identity on 7. Ience
BX and 7 are homeomorphic.

i |
\

h S ox
/
T

4. A second description of 8X may be given as follows. We call

A C X a zero set if for some continuous real-valued function f
on X, A = {z € X|f(z} = 0}. Clearly, for a completely regular
space X, the collection Z of zero-sets forms a basis for the set
of closed sets of X, that is, every closed set is an intersection of
zero-sets of X. We note that the points of X are in a natural
correspondence with the principal ultrafilters of zero-sets and
we shall identify a point with the corresponding ultrafilter;
further, we shall restrict our attention to ultrafilters of zero-sets
which are the intersections of ordinary ultrafilters with Z, the
collection of zero-sets. We now take as a new definition of BX
the set of all ultrafilters of zero-sets of X.

With these conventions we define a topology on 8X by
taking as a basis of closed sets all sets of the form €, =
{F € BX|A € F|, where A is any zero-set; clearly C4 N C5 =
Cans. Then the function h: X — 8X which assigns to z the
principal ultrafilter of all zero-sets containing z is a homeomor-
phism into BX and its image is dense in 8X with the given
topology. To see this we note that A is one-to-one, since distinct
points give rise to distinct prineipal ultrafilters, and if A is a
zero-set in X that A(4) is just A(X) N Cy; thus k of each closed
set is closed and A of each open set is open. Since X is the only
set contained in all principal ultrafilters, Cx = 8X is the only
clused set containing A(X). Thus k(X)) = gX.

BX is compact since it satisfies the finite intersection axiom. Sup-
pose {Cilaea is a collection of closed subsets of X with non-
empty finite intersections. Then if each ¢y is the intersection
of closed basis sets Caq,o (that is, Cx = M Caq.) the family
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{Ca0.} also has nonempty finite intersections. Hence so doeg

the family {A () a) I, which means that some ultrafilter F in gx

contains all of the zero-sets A\e). Clearly for all g and 3,

F e CA(l.n) = [G = ﬁX!A(A,a_) < G}, so FE NN CA()._,,) =
A a

M Cy.
A

The two spaces 8X are homeomorphic since they both satisfy
the three characterizing Properties enumerated above. To com-
plete the characterization, we must only show that every con-
tinuous funetion from X to a compact Hausdorff space ¥ hag 8
unique continuous extension to (the new) AX. Since X is dense
m 8X any extension we can produce will he unique; so suppose
i X>V, and let F e BX. Let E = E(f,F} = {zero-sets
ACYl A EF }; then ¥ is a filter in ¥ which inherits from
F the property that whenever A and B are zero-sets for which
A\J B € E, either A or B also belongs to E. Since ¥ is compact,
AQEA Is nonempty; Suppose p and g are both in each set of E,

P # q. Then since ¥ is completely regular, being compact and
Hausdorfr, there exist disjoint open neighborhoods U/ and V of
P and ¢ respectively whose complements are zero-sets. Thus
since (¥ — DUy —-v) = Y EEeither ¥ — U or ¥ — | 4
must also be in &; but neither can be in E if both p and g arein
every set in E. Thig contradiction shows that the sets of £ cap
have at most one, and hence precisely one point in common.
This point we call J(F), and thereby define f: gx — Y; fis the
desired extension of J. To show that f is continuous we need only
show that the inverse image of any closed Zero-set is closed, and

this follows from the fact that for every zero-set A C Y,
A} = Cpaa.

11.  Stone-Cech Compactification of the Integers

Let (X,r) be the Stone-Cech compactifieation of Z+, the space of posi-
tive integers with the discrete topology.

1.

The set X is that subset of f€4%D which is the closure of the
image of hz.: Z+ — jo'n where Kz, is defined by hz(n) =
(A(n)) for ) € C(Z+,I). Since Z+ is discrete, C(Z+,I), the set, of
all continuous funections from Z+ to [, is merely the set of all
sequences of numbers in J = [0,1]. Since the set of all Zero-sets
of functions from Z+ to R is just the power set P(Z*) we may
also describe X as the set of all ultrafilters on Z+. Since the prin-

[
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cipal, ultrafilters correspond exactly to the points .of Zt we may
consider X to be Z+\UJ M where M is the collection of a.II. non-
principal ultrafilters of Z+. In this case we have as a basis for
our topology the collection of all sets of the 1fcirm Ua=
(F € X|A € F} for AC Z+ since X — Uy = {F € X|(X -
A) € F} is by definition a basis closed set. If z € 4, and 1f. F,
is the principal ultrafilter containing {x}, 4 € F2; so, happily,
F. C Ua, which can be interpreted to mean that 4 C U,.
Clearly each U, is closed as well as open; furthermore, I/, M Ug
= Usns, and A C B implies U, C U,

The cardinality of C(Z+,I) is the cardinality of all countable
subsets of I which is ¢, the cardinality of the reals. Thus card
(I¢Z'.D) = ¢¢ 50 card (X) < ¢ = 2, Analogously, the set of
ultrafilters is a subset of P(P(Z+)) and so has cardinality less

than or equal to 22™ = 2¢,

Since the Cartesian product of ¢ = 2% separable spaces is sepa-
rable, I¢Z°.D must have a countable dense supset D. 'So i:,here is
a surjection ¢: Zt — D which is continuous since Z* m.discret.?.
Thus ¢ can be extended continuously to ¢: X — D Since X is
compaet, 50 is $(X); s0 ¢ (X) is a closed set conta,lmng+ II), \yhmh
can only be D = 7¢&"D_ Thus card (X) > card (JCZ".D)) = 2¢,
So therefore X has cardinality 2¢.

When X is considered as u set of ultrafilters the above cardi-
nality argument takes the following form. We must construct,

so to speak, 22 ultrafilters on the positive integers. _We in fact
construct 22 ultrafilters on any infinite set with cardinal «. Let
F be the set of all finite subsets f of X and let & denote the seft
of all finite subsets ¢ of F. Note that F X & has 1:,he same cardi-
nality as X so it is sufficient to construct the desired ultrafilters
on F X &. For any subset 4 C X we define by = {{(fi0) €
F X @A N[ E ¢};let by’ denote (F X &) — ba. Now for each
Sin P(P(X)) let Bs = [b4|A € S} U {by'|4 ¢ S} CP(F X ®),
Then Bs has the finite intersection property, and thus is the base
for a filter on F X ®. If S and T are different subsets of P(X),
there is some set A € § — T'; thus b, € Bs, and b’ € By, so
any ultrafilters containing Bs and By are distinct. Thus the_re
are at least as many ultrafilters as subsets of P(X)—that is,
2** many. We note that of the 22 ultrafilters, at most « are
principal, so we have 22 nonprincipal ultrafilters.



o, If F € M, the sets U, for all A € Fform a ioeal neighborhowg
basis _at F._So if Ois an opensetand if A = g N z+ O must be
contained in U,, for if € 0N A, there exists n éet BCy
such that P € Up CO. But then B A, soF € [,

6. If‘A = 0N Z* where 0 is open in X, and if ¥ € every
neighborhood {7, of 7 must interseet O since 3 M A = ,é)" Thn'
F C 0. Conversely, ¢! € Uy, then Uze_4 is an open se.t co:s
taining @ which js disjoint from 0. Thyg 0=1U, so X
eictf'emally disconnected and since if O = {7, we huveAb = UL5
X is zero dimensional, Iy, fact if Z+ = 4 B, A ('\:;3: "
then UAUUB=Xxl.11d UaNuy, = o, , -2

-7

Bvery neighborhood 17 a ol every point # € 3y contui
many elements of s » 80 M is dense-in-itself Th
scattered, ‘

ns inﬁnitely
us X is net

8. X is separable since Z*is dense in X, But, since
dlsconnelcted yet not discrete, it is not metriza
regular, it cannot be second countable,

Xis extremally
ble; since it is

112. Novak Space

_If Z+ denotesvthe positive integers with the diser
15 !:-he _Stone-.Cech conmpactification of Z%, we will construet by trans-
finite mduf:tlf)n_ a certain subset P f S, Let Fobe the fumi].y of ]aljl
f:,:;lml;gc infinite su'bsets of 8, well ordered by the least ordingl I of
S.;whn;(llmt = c:u-ci (8). Let {P4d € £} be a collection of subsets of §
such 'card (Pa) < 2, P’p C Pa whenever D) « 4, and fiP N
4= Fy here Jis the unque extension to § - B(Z*) of the contj
Uous function f; Z* = Z+ \hich permutes each odd integer \'itI;;
lGj{ Peveln esu:zcessm-: Su) = n + (= 1) Thep we define P“=
: Subgll;ace Olf* fg’ a:?; (glf; define Novak’s Space by X = P 7+, x i

cte topology, and if §

1. The c?llection {P4l4 € F} can be defined inductively ag fol-
Iowi: if BE F where P4 has been defined for all 4 < B, let
032: UP44 < B).Then card (Qx) < 2¢since card {11 <, B
; and card (P“) < I"urthernmre, since f O f is the iden-
tity on Z+, 5 !b JFOfon & Thys fis invertible, so f(QB) =
UA(P4) eannot mtersect Qp. Now B iy an infinite closed subset
of 8 and any such set must have cardinality 2¢; hence card B>
card B \J f(Qs), so there exists a point » € é — B such that
T ¢ f(Qs). Let Pp = Qg {z}. Then clearly card (P} < 2
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furthermore, f(Ps) N Py = f(Qs U {z}) N (Qs U {z}) =
(f(x)}} M Qy since f leaves no poeint fixed. But this intersection
is empty since vtherwise x. = f(f(r)) e f(Qg). This completes the
induetive construction of the sets P,.

2. If Bis a countably infinite subset of S, P contains a limit point
of B, since by construction P contains a point of B — B for
each such B. 80 X is countably compact.

3. Let K = {(nfm)|n € Z+}. Since f: S > S is continuous, its
graph G = {(z,f(z)) €S X 8} is closed in 8X 8. Since
P N J(Py = ¢ by construction and f(Z+) C 2+, @ N (X X X)
= K, 50 K is closed in X X X. Furthermore, K is infinite and
contains no limit points of itself since it is the graph of the
homeomorphism f on the discrete set Z+. So K is an infinite set
of X X X without a limit point so X X X is not countably
compact.

4. X is separable since Z* = X, and X is completely regular since
it is a subspace of the normal space .

113. Strong Ultrafilter Topology

Let Z* be the positive integers, and let M be the collection of all non-
principal ultrafilters on Z*. Let X = Z+\U M, and let the topology 7
on X be generated by the points of Z+ together with all sets of the form
AN [F} whereA € F € M.

1. X is Hausdorfl, since any two members F and @ of M , being
ultrafilters, are incomparable. So there exist A € F — G, B €
G — F. Then since F is an ultrafilter, B' € F,s0 AMNB =
A—BECF. Similarly, B— A4 € ¢, and so 4 —-B)U {F}
and (B — A)\J {@] are disjoint neighborhoods of F and .
(Note that F € A can be separated from any y € Z¥ precisely
since no y can be contained in all sets of F since F can have no

cluster points.)

2. We can prove that X is extremally disconnceted by showing
that if O is un open subset of X, 0 is open. Suppose p is a limit
point of O which does not belong to O; since each point of Z+ is
open, p € X — Z+ = M. Sopisan ultrafilter, say F, and every
neighborhood A \J {F] of p (where 4 € F) intersects Q. But
since #' itself does not belong to 0, this intersection is contained
in Z+. Thus, O N Z+ intersects every member of the ultrafilter
F; but it is a property of ultrafilters that for every subset §
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(of Z*), either S or its complement belongs to the ultrafilter,
Since 0 M Z+ does not intersect its own complement, O N 2+
ltself must belong to the ultrafilter F. That 15, (0N Z4) € !
Thus (0N zZ+) U {F}, or equivalently, (0 N Z U pl, i
open. Thus OV {p} = g (ONzZH v {p}) is open, and
since p was an arbitrary limit poing of 0, 0 must be open. Thus
X is extremally disconnected.

then A N B 5« GysoBURI N AU [F} #L?)’.SoifBCA,
B\U {F} contains all ultrafilters which contain B, which mean
that B\J TF} is not contained in A\ IF}. Thus X eannot be
Ts, s0 it is not zero dimensional.

4. X is scattered since it cannot contain iny nonempty dense-in-
itself subsets. For no dense-in-itself set can contain a point of VAR
yet no point of A can be a limit point of a subset of A7, Ip fact,
% is discrete, and in the induced topology, so is M. Clearly M is
an infinite subset of X with no limit point, so X is not countably
compact.

9. Since every open set in X contains an integer, Z* is dense in X .
Thus X is separable. But A1 is uncountable, so the collection of
all open sets 4 \U {F} where ¥ € a1 s an uncountable open
covering of X which has no countable subcover. Thus X js not
Lindelsf,

6. Since X is extremally disconnected it is totally separated, and
thus Urysohn.

scattered.

114. Single Ultrafilter Topology

Let X = z+\y {F} where F is a nonprincipal ultrafilter on Z*, We
take as a basis of open sets all sets of the form 4 \U {F} where 4 € F,
together with the points of VAR

L. X is Hausdorff for clearly any two points of Z+ may be separated,
while if z € Z*, then since F is nonprineipal, {z} ¢ F; thus
(Z+ — {zph v {F} is a neighborhood of F disjoint from the open
set {x}.
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X is extremally disconnected for the only limit point of any set

- is F, but F is a limit point of 4 iff A € F and then 4 U {ﬁ]
is oi;en. Thus, also, X is zero dimensional since the sets A \J {F)
are both open and closed.

3. X is clearly scattered, since no subset can be dense-in-itself, but

not discrete since the point F is not open.

115. Nested Rectangles

In the Euclidean plane, let L, designate
the line x = t, Ly the lineax = — 1, and
R, the boundary of rectangles centc.ared
at the origin, of height 2n and widih
2n/(n + 1). Let X = L\ L\J (\UR,),
and let X inherit the topology from the
Euclidean plane.
1. X is not locally connected since no
point on either L, or L has a con-
nected neighborhood.

2. Each rectangle R, is both open and closed in X, 50 X — U R,

n=1l
is also open and closed. Thus Iy \J [, = X - U_R... is a quat::i
component of X. But L, is a component of X, since it is connee
and no larger subset of X is connected.

116. Topologist's Sine Curve
117. Closed Topologist’s Sine Curve

118. Extended Topologist's Sine Curve

Let 8 be the graph of f(z) = sin (1/2) fo'r 0<x<1, consi;ﬁre(tloasoi
subset of the Ruclidean plane with the 1ndL_1<:ed topo.logy. eb rpS'
ogist’s sine curve is the set S\ {(0,0)}] which we will denote by §°.

[IANA
' [\\./\/
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1I. 8" is not locally compact, since the

[

Lr

point (0,0) has no compact neigh-
borhood. For any neighborhood N
of (0,0) contains 2 set AN ST
where A is a dise centered at the
origin of radius e. Thep any horizon-
tal line passing through, say (0,¢/2)
intersects A M S* in 4 sequence of
points which has no accumulation
point in N. So N cannot be count-
ably compact, and thus not compaet.,

The mayp f: IRV 0,1] - 8* de-
fined by f(—1) = 0,0}, f(z) =
(x, sin(1/x)) for 2 € (0,1)is continuous, so the continuous iy

age
of a locally compact space need not be locally compaet,

nected, for S is the closure of the countinuous image of the con.

nected set (0,1]. Sinee § = (0,11} is Connected, and § C §* Cs,
S§* is also conneeted,

Clearly neither $* nor S iy locally tonnected. But any continuous
function from the locally connected compact set {0,1] to the
Hausdorfr space 57 (or S) must have o locally conneeted and
tonnected image. Thus ne path can join the point (0,0) to (4m,0)
in either § or S*, so neither Spuce is path connected.

S has two path components, § and L = {0,m]—1 < ¥ = 1.
Though L is closed, S is not, s but S is not path connected, though
S is. Similarly, S* has two path components, S and {(0,0)).

The extended topologist’s sine curve T = § {10 < 2 <1
is arg connected, but not even lacally connecteqd
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119. The Infinite Broom

120. The Closed Infinite Broom

In the Euclidean plane, the infinite broom
B is the union of the closed line segments
joining the origin to the points {(1,1/n)|n
=1,2,3, . . .} together with the half-open
interval (3,1] on the z axis. The closed
infinite broom is then B, the union of B
und the interval (0,1].

B is conneeted since the line segments through the origin all have

] : - . -
a common point, and every open set in the_plane which contains
(3,1] intersects these line segments. Thus 5 is also connected.
2. Neither B nor B is locally connected since every small open
© neighborhood of the point (3,0) has a separation.
3. Clearly Bis arc connected, yet B is not even path connected, for

any path connecting u point of (3,11 to a point off the 2 axis
would be a continuous map from a loeally connec@ compact
space (namely [0,1]) onto a Hausdorff space which was not
locally connected (namely f10,1].

4. A more interesting infinite broom may be formed .by joining a
sequence of closed brooms end to end as pictured. Since no open
set containing the point (0,0) is connected (except for X itself),

£
w
(S

this space fails to be locally connected at the point (0,0} even
though this point has a hasis of open scts whose elosures are

connected .
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121." The Integer Broom

Let X be the set of points with polar coor-
dinates {(n,8)} in the plane R? where n is
4 nonnegative integer and # € {1/n}p
U {0}. We define a topology 7 on X by *
taking as a basis of open sets all sets of the .
form U X V where U is an open set in
the right order topology on the non-

. . L]
negative integers and ¥ is open in . o . .
{0}V {1/2}" in the topology induced R 1 $ H .
from the reals. The only neighborhood of X ¢ *

the origin is X jtself.

1. X isclearly To, but neither T, nor Ty (X, is compact sinee the
only open set containing the origin is X itself.

2, X is not locally connected since (1,0) does not have a basis of
connected neighborhoods,

connected for the function J1 [0,11 = X which niaps the interval
[0,3) to the point (m,81), (3,1] to {(ns,82) and the point 1 to the
origin is a path joining (n.,6,) and (n2,8:).

122. Nested Angles

Let X be the subset of the plane E? consisting of line segments joining
the points (0,1} and (m1/(n+ 1)) for n € Z%; the half-lines ¥y =

i+ 1),n e Z* 2 < n; and the line y = 0. We give X the induced
topology.

1. X is the closure of a family of (bent) lines with the point (0,1)
in common. Hence it is connected.
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2. Since X is a closed subset of E? it is locally compact, but it is not
compact since it is not bounded.

3. The set X — {(0,1)} is not connected; in fact, each angle and
the x axis are components. So, in particular, X is not locally
connected.

123. 'The Infinite Cage
The infinite cage X is the union of three types of sets:

A, = {(l/nrylo) € Raly Z Ol)
B, = {(0y0) € B32n — § <y < 2n + 1},
Ca=lay2) ERO<2<1/n,y=2n2=2(/n-2)).

We define X to be C} (A.\U B,\JC,) and give it the induced
n=1
LEuclidean topology.

L. 1D, = A,\U B,\J C,, [D.} is a collection of pairwise disjoint
closed connected subsets of X

2. The cage X = \UD, is itself connected, for suppose Y.,z were a
separation of X. Then each of the sets ¥ and Z must contain
entirely each D, which they intersect. So at least one of tihe. sets
Y or Z contains infinitely many of the sets 4 ;; suppose it is Y
Then ¥ must also contain \UB, since any point of B, is a; limit
point of any infinite collection of A, hence each D, C ¥. But
this means that ¥ = X. .
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124, Bernstein’s Connected Sets

Let {C e € [0,7)} be the collection of all nondegenerate closed cop.
uected subsets of the Euclidean plane B2 woll ordered by T, the least
ordinal equivalent to ¢, the cardinal of the continuum. We define by
transfinite induction two nested sequences {Aa}acr and { Ba}acr such
that 4. N B, = & for all pairs o, B. Ay and B, are merely distinet
singletons selected fron, Cr;if {A,)eeq and {Ba}acs have been defined,
the cardinal of \U (Aa\J B,) is less than ¢, but card ¢ = ¢, Thus we
«<f
can select points agbg € Cp — U (Aa\J B.), and define Ag = fag} U

a<f
(\J A4,), By = fba} U (U Bg) Let A = U Agyand B = 2 _ A.
a <f a<pg a<]
L. A and B are clearly disjoint subsets of B containing A, and

URB, respectively and any nondegenerate closed connected sub-
set of R? must interseet both A4 and B.

e

Every open subset of It? contains some nondegencrate closed

connected set, so must intersect both A and B. Thus both 4
and B are dense in 5.

3. Suppose 4 were separated by the disjoint open sets {7 and V;
ANU=g ANy O, AC UV V). The complement
nR2of U\ Y Separates the plane, so must contain a nondegen-
erate closed connected set C. But then A would intersect € even
though ¢ Cc x = A. This vontradiction shoyws thut A {and,
similarly, B) is connected.

125. Gustin’s Sequence Space

Gustin’s sequence space (X,r) is constructed from the sot X = Yu
(Z+ X ) where ¥ consists
having an even number of terms (including the null sequence denoted
by 0), Z+ is, as usual, the positive integers, and 1V is the collection of
all unordered pairs (that is, all subsets of size two) from Y. Now if o
and g are arbitrary finite sequences, we will denoge by a8 the sequence
formed by adjoining 8 to the enq of o, by o > iz € Z*) the condition
thata > §for alla € o, and by 8-D; a the existence of sequence y > 4
such that 8 = ay. For any sequence a, let [/ {a) = IBE€ Y8 Dial.
Before defining the topology on X, we select s0IMe one-to-sne corre-
spondence p between the countable set 117 and the set of pusitive prime
numbers. Then we define g {ZY X W) o 7+ by ¢(nw) = [p(w0)]".
Finally, we define the topology  on X by selecting the set {7 A{a) us open
neighborhoods  of the point « € ¥, and Vilnw) = { ()} U
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U {ag(n,w)) \J UBq(n,w)) as open neighborhoods of the point (n,w) =
(n{eBl) € Z+ X W

l. (X;7) ean be shown HausdorfT by a straightforward c‘()ntsxdera-
tion of cases. If a,8 € Y, a 5 8, then we can find an in eEeI;
larger than any term of & or 8. Clearly U"(f) ﬂ"r[j’,,(ﬁi (; a[;
Suppose ¥ € YV and (n,w) = (n,{a,8}) € Z+ X W, se e(n .
integer i greater than every term of the sequences. ¥, ag ,V e}{
Bg(raw); then Uan(y) N Valnw) = &, for -, havmg. an (:he :
number of terms can never equal aq(.n,w) or Bg(n,w) smce }})
each have an odd number of terms. F_maii:\', if in,w) ,= (r?,,{‘a,lﬁ )
and (m,2) = (m,|v,8}) :u‘edistim-.t,.pmntsln (Z+ X W), “cse)o:;r
an integer ¢ greater than any term in aq(fn,w), ,8q(1;,w_)f, 'yq(m,f:zthe
6g(m,z). Then Vi(n,w) could intersect V,(m,z) on yi t,;_me (zm )
points ag(n,w) or Bg(n,w) equaled one of the poin 'yqd t,h is,
8¢(m,z). But this could happen only if ¢(2,w) = g(m,z), an
would mean (nw0) = (m,2).

2. If Ugv) is a neighborhood of ¥ € Y, let Z(z’,‘y) = {(n,{a,,ﬁ])l‘e

. Zt X Wlagn,w) Diy or Bg(n,w) D, vl. 'lh_en (:Iearlyf e\:u_y
point of Z(z,y) is a limit point of U(y); in fact, U.(y) =
Uiy) Y Z(3,y).

3. Hv3d €Y, ZiEy) N Z(j,8) = & for all 4,j € Z+; t‘h]?hlsl b:
because we can always find a point (n,0) = En,{a,ﬁ]) bU(,' tdl'd
() > max (4,7), and o 2,y and B D,-‘ 8. Thus every.t\\on 1s.—
jnil;t open sets in (X,7) have closures with nonempty intersee-
tion. This shows that (X7} is connected.

4 Let X° =Y VU [(n,{a,0])in € Z+, a (1}-. Then every 1'elz‘x-
tively open neighborhood of a point in X* is open in XE‘A.,T).,[I&‘::
an argument similar to that givcn_ abuv? shm\.rs that. D) fls : ;‘
connected. But the point 0 € ¥ is a dispersion point or X7
since X* — 0 is totally disconnected.

126. Roy's Lattice Space

127. Roy's Lattice Subspace

Let {Ci 72, be a countable collection of disjoint dense s.ubéets of ;ET

rationals (—J; we coustract the space X by joining to {.(r,z) f (121 )(f -l

r € Ui} an ideal point . Neighborhoods of the Pmnts of t (:1 for

(r,2n)—that is, of points on the even numbered lines—are on inary
!’

open intervals U.(r,2n) = {(1,20) I [t — rl < €}. But a neighborhood of
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a point of the form (20 — 1) is a stack of three open infervaly
Vdr,2n — 1) = {{t,m) l M= <e m=9y _ 2, 2n—1, 2n),
A basis neighborhood of the point w consists of all lines numbered >

2n:Walw) = {(s0) € X|i > 2n}. These neighborhoods form a basis

for a topology 7 on the countabie set X. The subspace X — {w} will be
denoted by X*.

1. Any closed set containing un even numbereq line must contain
both adjacent odd numbered lines since every neighborhood of
every point on the lipe {00 € Xli = 2 — 1} intersects the
lines {(rs) € Xli = 2} and {(re) € X|i = 25 — 2}. Similarly,
every open set containing an odd numbered line must contain
both adjacent even numbered lines.

o

Suppose 4 is an open and closed subset of X which containg o,
Then 4 contains 3 neighborhood [/ = {(re) € X}i > 2n) of w,
Since 4 is closed, it must contain the next lower odd numbered
line; since it is open it contains the next, even numbered line,
Clearly it must therefore contain al] lines numbered belgw 2n,
and thus all of X, Thyg X is connected.

3. The ideal point e is g dispersion point of X yfor X* = x — {w]
is totally separated and thyg totally disconnected. For whenever
() and (s,5) € X*, where r < % we can find an irrational nup.
ber ¢ between r and s which yields a separation of X: {(rd) €
Xir < ¢} and Hri) € X|r > t}.

4. Since X* s totally separated, X* must be Urysohn; but since ¥
is connected and countable, X cannot be Urysohn since the
image of X in [0,1] would be connected and countable, which
is impossible, unless the image is one point,
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short intervals around the points with d:)sj();lnisltgu(:‘-e;;gléz?:;:
* : ince the neighborho «(r,
re, X' is not regular since t
lL}:){:ltain any closed neighborhvued whatsoever. Thus X* is not
zero dimensional. .
X* contains no isolated points, so it is .dense—m-ltseflf; 311(1:271)
isnotseattered. Neither is it extremally dilscofnnect(ed2 :)r+ i) ,a "
ince i i ints of the form (5,2
i t open since it contains 1:)01:1 . .
}(St ;’J’? — [;) but does not contain any of their neighborhoods.
¥

7. If V.(r,2) is a neighborhood of the p(.)int gr,2), T‘/'t(r,2) contalzn);?
‘ )uin:;s ,uf the form (s,1) which are mtcjnor points of V. (r,
El‘hus Velr,2)? 5 V.(r,2), s0 X is not semiregular.

B,

128. Cantor’s Leaky Tent

129. Cantor’s Teepee

Let (' be the Cantor set situated on tl;a ;m; itr:;etrl\::lc[gr,é] ;Oljl,rp(;t')tivtiltlﬁ
bt () 12‘1?:: i:o?fr(}j!(::a).tflerzllstl: th?a line segment joining p to the
vel'.tex &ép(.' X = Q{L(c)]c € 4. If E denotes the subset of ' con-
}).0;1-113 t?of tl;:a ;ndpoints of the deleted intervals, we let Xz denoEt',e t)](le
E‘Lil(illengover E. Xz = J{L{e)lc € E}; simi}arly, if F)‘ Z i-l—y e, Q};;
denotes the cone over F. Then we define Y = {{z,y E

P

. 1

he: denotes i = & | ]:

‘here s the mtmnals, Yg {(x,y) c Xp Y d Q and

‘}‘ =¥ QK) ¥ :“B(Jth Xand Y carTy the induced Kuelidean topolog .
B . y

To prove Y connected we consider a separation ﬁ,BO:;I;?:;
p € A. We will show that for some dense set 8 C C, t;chose s
all the points of ¥ which lie in the cone over' S (ex]ceplt e
which ¥ = 0); thus A = V. qu each ¢ € (', we retleicl(c) the
least upper bound of B N L(e); if BN L(e) = &, we
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Then I(c) ¢ ¥ unless (e} = ¢, for otherwise it would be a lingdy
point of both A and B, Furthermore, He) = ¢ can be in Yw
Ye\J Yy only if it is in Yeg, or equivalently, in H— for the y
coordinate of {(e), namely 0, is rational. Thys for each ¢ € G
either {(c) ¢ ¥, or lle) =c € vy,

let S=|ce Fle = I(e)), and et Ti=|c e ClL(e) N,
# | where, if {ril is an enumeration of the rationals iy
03], H; = {(@r)|ie) = (z,r3) for some ¢ € F}. Bach J7, is
closed, bounded subset of the line y = Ty and 7';is the continuony

1

projection through p of H;; s0 each T is closed, Furthermnre,
H.N Lic) = &F for every ¢ € K and each 7 > 0, for if (r,y) €
m.n L(e) where ¢ € I,y ois eational and (ry) € Xi; s
N EYe CY=AUp By Hi CANB, so 7, N L ¢
(JF\E)/\(A UB) = ¢

Thus each 7, C F,soif T = T, 1 = S Tiforife e F,
{(c) must be rational—singe otherwise {(c) € Y C Y, whichjs
impossible if ¢ € . Thus € = B\ SU 7, where € is a con.
plete metric space, K is countable and each 7'; is nowhere dense
in C since T, = T, and the interior of 7', in ¢ is empty (other-
wise we could find ap open interval U such that UM ¢
T: C F; but in each such UM ¢ there must be & point of £).
So E\J 7T is of the first category, but ¢ is not, Furthernmre, o
open subset of €' is of the first category in €, so each such get
must contain a point of § = ¢ — (E\J7); thus & iy dense in ()

Now suppose ¢ € B; then, since § is dense in €, every upen
set containing g interseets n segment of L(c) for some ¢ € S,
But by definition of S, the set ¥ N (L(e) — {e}) is contained

in A whenever ¢ € 8; thusg € As0d =y, This proves that V'
is connected.

The point p = {3,3)isa dispersion point of Y, for each point of
V'=y_ tp} is a component of Y*. For suppose 4 js 1 con-
nected subset of ¥*, then clearly A must lie entirely within one
line L{e), for otherwise some line through p woulq separate 4.

But Lie) N v+ iy totally disconnected, so 4 can contain at most
one point,

But ¥* is not totally separated, for the lines L(c) are the €| Uatsii-
components of ¥*. Ty sce this we observe that euch line Lie) is
the intersection of Cones over certain intervaly containing ¢ which
are open and closed in ¥*, Furthermore, each open and cloged
set A containing g4 pointr € L{¢) N y* must contain L(c) M j
since otherwise there would be a point ¢ € L(e} M Y* and a dise
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B{q) in the comp]en}ent of A. At.ssu'me
that ¢ lies above r m.L(c); a similar
argument holds if ¢ is below r. We
can then find an interval (s,1) contain-
ing ¢ such that the cone T over (s,f)
is open and closed, and separated by
B.{g). Then that part of ANMNT
which lies below B.(g) is an open and
closed subset of ¥* whose complement
together with p is ali open :.md d;ﬁ:
subs . But this is impos
:::hft)(:i (?()llllt,‘(:t(,’d, s0 4 must contain all of L(¢) M Y.

roper
4. Clearly Y contains no nondegenerate compact connected prop
subsets so is punctiform.

5. Since no point of Y* is isolated, ¥* is not scattered.

6. The direct sum of ¥* with modified Fort sp:&:e 1s t.otal(l;;i(fii:i
. i Hausdorff, since m
sted but neither scattered nor :
;‘Oorifrtw(lspace is scattered and totally disconnected but not

Hausdorff.

130. A Pseudo-Arc N -
By a chain ® in the Euclidean plane we will mean a hm‘tft} c?llec'til(;n (;
ng;an sets { D7 (called links) such t.h.a.t D\ D = i tt—i—njm re_.
A pseudo-arc joining two points a,b in the pla_ne is any ?D i
sulting from the following inductive construction. Let {D;
quence of chains such that |

i set, in D, is less than 1/4.

i) 'The diameter of each open se . : . o ..
(S; The closure of each link of Dy, is qontam_ed in some l;r;lk 01"(2!);’l
i) D is crooked in D, that is, if DI, D,# € Dy, withm -
o al;tll ID"+1 C D;, D' C D{ with |k — h| > 2 then t&?l‘? exis

m ) n ; )
D, DY € Dy, with m < s < ¢ <n suc.h .t,ha,t D'.-+1 is c:))rr:_
ta'im’ad in a link of D, adjacent to D} and similarly D is ¢
- . . ., ol . DI.
tained in a link adjacent to D] . - -
(iv) @ is in the first link of each chain ©; and b is in the final lin
of each chain.

If 9" = U D denotes the set of all elements of clements of D;, then
2 " -
X = M®,” with the induced topology is a pseudo-are.

o . P -
l. Sin( C A. 15 an l'llﬁ(-‘_‘lbe(,t.l[}n (]f (,l()sed SetS, lt; 15 LlOSEd- S]]lce eaLll
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element of ©, has diameter less tha
: - n 1 and 9, has only §
many links X C ®," is bounded. Thus X is compact, v ieke

2. X is connected. Suppose '€y and €, are two disjoint clay
_(and thus compact) subsets. Then for some 4, 3/7 is lexs tha
inf {dz,9)|(25) € Cy X €.} where d is the indused Bt
m(‘atrlc on X. Thus there is some link D whose closure inte
nelt:her Ci or Cy, but since the closure of every link of e
chain contains a point of X y OV Gy = X : e\i

3. X c_ont:-a,ins no decomposable subcontinuum, that i8, X is herwd
;tanly indecomposable. Le't Y C X be any subcontinuum al
,f‘t' Y be the sum of tywo distinet proper subeontinua J gngd | &
lhcn_ there ure points PEH, g€ Kand an integer 'suulluﬂ
the distance frt_)m g to H and p to K are both greatei th:ulx 2

E‘:‘L D = an;_‘HDIJ‘H; - - -, D, D} and :D,:'+1 = {b™
win « - ., DJEL DY b subchains of ©; and Dip fn:

p to g Without loss of generality assume P € D Then Iy
contains no point of K, therefore it must contain ;.. point of Jf.
sxrmllar.ly, Dj_, contains no point of H but some point (?f K'
N‘ow since Dy, is crooked in D; there are links D+ s+ 1)”;
With r < s <t such that D' C Di,, and D+ TD;+1 ‘C,D"

;‘)}::;z D _c?;ltafin; no point of X but both D;"r“,and‘ b nltu.:

m points of K. §j
S indecompos;[l;](: T <s<{ K cannot be connected,

131. Miller’s Biconfnected Set

Let € be a nowhere dense perfect set contain
andlet W = ¢ x | C R% Let K be an ind
that K M 2 = W, The space
as follows. Let € be the set of

thid;-, s:p?rate K, and D the set, of subsets of a fix
subset A of K which are themselves dense i interi

50t A nse in the interior of ;
?eglon with edges parailel to /2 which interseets 1, Let <, 'jﬂg:e e
ca; - . . beawell ordering of the elements of € where the o ;rc (’)rdi-m;l;
p e f of cardn.mlity ¢. Likewise let B, . .
o . . boeeas Day oL be similar well orderings of @ and :b'

respectively. For each ' - .
J. such €t a < Qdefine M/, C K and » simple closed eurve

ed in the unit interyal I
. ndecomposable continuum sych
X is defined using the axiom of chojee

(1) Zlfa=paEBaﬂKifB.,f\A=,®"
(11) 41Ia=,®’ifB.,f'\A?£®'; ,
(i) For ordinals a7 N and M, A, = o, M,

different composants of X ; and My belong ty
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{iv) J.separates K;
v) JuN(@A—Dy) =J.NM= & where M = U M,.

a<

We define the space X to be the set A\ M with the induced topology
from K2

1.

To show that X is connected, we first note that X is a subset of K.
Now if I/ and V are open sets in B2 such that X C U\J V and
XU and XNV are disjoint, then X MU and XNV are
sepoarated sets in R? which is completely normal. Thus there
exist disjoint open sets U” and V' which separate X. So the
complement of U \J V' contains a continuum which separates
K. Thus by (i) we have a contradictionto X C UV V.80 X is
connected.

Now by (i) and (ii) A7, is either empty or a singleton. Since A is
countable, (iii) implies that no composant of K contains a con-
nected subset of M for any such set is uneountable. Now if N is
a connected subset of X such that & is a proper subset of K then
N is a proper subcontinuum of K and hence lies in some COMpPOo-
sant so N also lies in the same composant, a contradietion. So
the closure of N in X is X, which means that every connected

subset of X iIs dense in X.

Consider the family of sets X M B,. We now show that there
is no set containing at least one element of each X M B, which
does not contain all of X M By for some 8. Let @ be any set which
contains a point of euch X M\ B,.. Then since X is dense in K,
(iv) implies that Q has a point in every set X N J,, for J, is a
continuum which separates K and thus any dense subset of K.
By (v) and the choice of the D,, @* = QN (X N J)} is

dense in . In fact since J, MM = & we know Q" C A so
JaM D, # & for every a, which implies that every neighbor-
hood of a point of W intersects §*. Sinec Q* C A and is dense
in W for some 8, Q" D Ag. But by (v) X N\Jg = AN Jgso Q'
and thus @ containg X M J,.

By using the preceding results, we can now show that X is bi-
connected and contains no dispersion point. If X were the union
of two disjoint connected sets X; and X,, X, would be dense in X
sinee it is a connected subset of X. Hence X, intersects X M B,
for every «; since any set with a peint in each X M B, contains
some X M By, X, must contain some particular X M B,. But X,
must also have a point in every X M B, thus in particular in

:
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XM Byso XN Xy 5 gf, Thus XY js biconnected. Now if Y o
is disconnected for any point Pysay X —p =y, y Y; whe
Yy, = & is a separation, then ¥, U {p}is connected
not dense, a contradiction. S0 X can not have g dispersion pot

132, Wheel without Its Hub

Let X be the closed unit dise in &2 minus the origin. The topology ¢
for X is generated by adding to the induced Euclidean topology of
open intervals on the ragij contained in the open unit dise,

L. X is conneeted because it is the union of radii homeomorphie 4
(0,1] all of which intersect the tonneeted unit eipele,

2, Furthermore, A is are connected for we can obtain an are be
tween two points by running out along the radius con
the first point, along the circumference to the radius eon
the second point, and in along this radius to the secon

taining

taining

d point,

3. The Euclidean length of the shortest are between ¢ and 4 can
be used to define g metric on X; by convention we deglup
d(a,a) = 0. The topology determined by the metrie ¢ is brecisely
r,and d is g bounded metric with bound 2 + .

4. As in the order topology, every point is a cug point, for if P is
any point of X, then the open radial sesment connecting the
origin to p and jts complement give 5 separation of X — in}.

o

But the topology vn X is not the order topology for any liney
order on X, Assume that it is, and SUppose @ < b < ¢ whep
a,b,e belong to the circumference (. Then since ¢ contains jy
neighborhood of any of its points, there exists apointy € X — C
such that @ < x < ¢, 7 hey L€ Clt < 2} and L€ Cle> g
separate €, which ig mipossible since th,

e circumference ¢ is
connected.

133. Tangora's Connected Space

Let X,¥,Z be mutually disjoint, g exhaustive denge subsets of te
real line R, for example, the diadic rationals (those of the form m/2n)
the remaining rationals, and the Irrationals. We expand the Euclideay,
topulogy on & by adding as open sets XY, and sots of the form
lUiwe x U Yo ~ 2] < 8} where & Zand 5> 0; X, ¥, ang
Z then inherit the subspace topology.

Bounded Metrics 151

1. With the above topology X and ¥ are totally disconnectjed sil'xce
. their topology is an expansion of the Euelidean to_pology in which
such sets are totally disconnected. Z is clearly diserete.

LA =YUZand B = XU Z are closed being complements of X
;md Y respectively. MNoreover, every pointz € X gives a separa-
tion, {a € Ale <z} and {« € Ala > x}, of A. legwlse points
of Y’ give separations of B. 8o A and B are totally disconnected.

3. The space R = A\J B is connected in the' above topology al-
though it is a union of two closed totally diseonnected ‘subs?tz;
For suppose C,D is u separation of B where some rpomt, 0
is less than some point f € D; let p = Lu.b. {e € Cle <dj. If
pisin X or Y we obtain a contradiction since C' and D are both
open and hence whichever one containg P (iontalps an open 1ntfe1(';
val of X or ¥ about p. Likewise, if p € Z, '\vhlchever one o
or D) contains p contains an open in!;erval in X \J Y about p,
again a contradiction. Ilence A \U B is connected._

134. Bounded Metrics

If (X,d) is any metric space we define new metrics for X by & =
d/{1 + d) and A = min (4,1).
1. That § is indeed a metric follows from the following proof of the
triangle inequality:
d(y,z dlz,y) + d(y,2)
1 i(i',é?.y) 1 +(i1,(£)1,2) = + d(z,y) + d(y,2)
= [ld(z,y) + d(y21" + 117 2 [[dz, )] + 11 = §(x,2).
2. Since d = §/(1 — §), the metric § is e({uivalen‘f. to the original
metric d, for any open ball in one metric contains an open ball
in the other metric.

3. The metric 8 is bounded (by 1), but the space (X,8) n_eedhnot b(;
totally bounded. Suppose, for instance, that (X,d) is the rei
line with the Euclidean metric. Then Bi(x; &) = | ylé(x,y) < e}H_
fylir — ¥l < /(1 — O} = Balz; ¢/(1 — &)). Clea.x;iy for small ¢,
no finite number of such balls can cover the real line,

4. By iterating the process by which we derived G.from d, we Ca(lil
p}uduce a sequence of equivalent, bounded metries {d,}, relate
b}’ dn-H = dn/(l + dn)-

5. Ais also bounded by 1, and is a metric for X since min (d(x,y),1)



- Lointerexamples

Duncan’s Space 153

< min (d(z,2) -+ d(z,y),1}) < min (d(z,2),

Clearly A is equivalent to d since they agr
6. If (X,d) is the real line +

1) + min (d(zy. b Duncan’s Space
ee for all sl

ng infini itive
Let X be the set of strictly increasing infinite sequences of pos
vith the Euclidean metric,

' exiate is the
the ope integers such that 8((z.)) = lim N(n,e)/n exists, where N{n,z)
_— fpen nteget: i o Thiee than n.
ol the interval (- D)- Its closure BaO 1) is [— 1,1 ber of elements in the sequence = = {z;) which are less
the closed ball {z]a(0,2) < 1} equals X. : mumb

. - define a
) wil be called the density ((Jf tJ})le D:l(ﬂty-’;_irﬁ‘-ag)e 1h(‘;I(ly)le‘.'.'here
. - the condition d(x,y = FE, o "
an be usfd ; "wm)(’ ;:l t)lfebll(east integer n for which x, # ya; if T =y, we se

e X% = i} l‘(.l',y

Any bounded metric on a topological space X ¢

define the Fréchet metric on the produet spac

i dix,y) = 0.  check that

(where each X, = ) which yields the Tychonoff product toy ify that (X,d) is a metric space, we nee«_:l only (,hec‘l\ 1

. N . LT . v 1. To Vt‘l‘lf) that (A, il Bl ) > min {k(T,Z),}l(z:y)}:
ogy. If § is the bounded metric on X, we simply define the Prode . 1(z,y). Certainly k{x,y) >
uct metric to be d(2,y) = d* (e, 2, Y (e )) - d(r,y) < d(l-’Z) . ol ality for real numbers shows th_ﬂt
Z27%(z,,y:). The tc)pulog'y of (X Z,dl") -z-a‘n ‘b.e’ShU:\,"ﬂ-’t(.J be the and the,;(,t ;azg;:(zl)n(fl;(z)iy-i- |8(2) — 5(y}|. The triangle in-
Tychonoff product topology by a direct comparison of hagy 18z) = 8] =
neighborhoods,

ivi N is a bounded
i : lly. (Note that d is a
lity for d now follows trivia : oun
i?;{:"i:: ér.since k(z,y) > 1, and 0 < 8(a) < 1; thusd(z,y) < 2)
8. If (X,d) is the real line with the Buclideay metrie, we can defips
a special metric by

/ X is not the same as the
2. X is a subset of ZZ, but the topology = on

. i tric

) ZZ. But since the Baire me
topology ¢ induced from . <
() T y il(]:z,l;af 1/2(1 y) vields the topology o, a“;l{ :«,u:ife:: I():;gr),ion

o y = e—— — | ] ’ r]
Y T+t T+ d(z,y), we have s Cr. T husl the topology on
. . . . ogy.
Heroic but straightforward caleulations can be used to verify of the induced product topology A X,¢), there-
that & is indeed » metric on X, and that it yields the Euclidean Each projection map w.: X — Z is continuous on (t ,Ur:)ject o
topology. In faet, o(t,y) < jz — ylforall 2y € x, Butin (X,q), 8. 5 & also on (X,7). So any compact subset of X must }:1 Bt
the positive integers form g Cauchy sequence since o(n,m) = h'oriie subsets since ouly finite subsets are com};?ch l‘s ini.inite
(R — m|/(1 + [m|}(1 + lm{). OFf course this Cauchy sequence hys . ry open metric ball B will have some r.(B) w tl)c lving tha‘;
no limit point in X, 50 (X,0) is not a complete metric space. szve :ufﬁciently jarge n. This can be seen by of se:heir . ol
dO(I.';: ¥) < emeans that the sequences = anlf' yhai:e;;pmximately
: ’ . iti Yhic
N . d ultimately have densities w appra )
185 Sterpinsii's Metric Space zeizls, Taﬁus no open subset of (X,r) can be conta.meci In a com:
0 . - ’ ac "
IfX = {ai = 1,23 .. jisa countable set, the function d(z,x;) = p(:ln,ct set, so X is neither locally compact nor comp
L+ 1/G + j) for 4 5« 7, d(ix;) = 0 is a metric on X. - bV pact. Let m(n,k) be
_ . : ¢ is compaet.
I. Since jyec x ldziy) < 13 = {z:}, each point in X is open. So 4. Suppose X = k\;Jl Ve where ea ‘
the topology generated on X by the metric d is the discrete

topology '

i inly. there
the greatest integer in the finite set x.(Y}). Certainly

. . oint
exists in X a point (x,) where for each ¢, x; > m(‘:géiilrllc:; 3{1 ﬁten-
_ e - ¥, thus our supp
2. (Xd)isa complete metric space, since all Cauchy sequences are would be in none of the (;o,;t.sac:.
eventually constant, able. Hence X s not o-comp is countable, as is the
A } i is ’
3. Let 8, = {y € Xld(ya,) < 1 + 1/2n). Then 8, = {z,, 2,,, 5. The set of all finite Sequenﬁ; O;L?;e%g;sset of all z € X of the
Tntny . .}, 80 [8,) is & nested sequence of closed balls whose set, of all arithmetic sequences.
intersection, M8, is em

pty. Of course the radii of the setg S,

f ( 4 ny ntly v ') er ( a+ls a2y - - ‘)
] Ilot 4] Orm Iy, 2y + 0 o+ 3 x je PR | “h- LR T 4 18 an
t 0- 1 +

ion of
arithmetic sequence is countable. Furthermore, the collect
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all finite uniong of such s i
i sequences is ¢leayl e in v
sep carly dense in X, ao!
6. ]S;nce zz is. toi.;ally Separated, so is (X »o) and therefore also (X3
Ut no point in (X ) 1s solated, so X g dense-in-itself ang

not scattereq. Sinee X ig metrizable bug not discrete, iy is &
extremally disconnected. o

137. Cauchy Completion

(I)tf: EX ,d) hls & metric space, we lot Y be the set of 4] equivalenee ¢,

! ,u:fuc Y sequences where the sequence {v,} is equivalent to |, J‘['-.
"_.l (Za,1.) = 0. We define on X' 0 etrie i* by u"(r"’:) «
. l . ,y
lim d@a,y.), where 7

fm tau} is uny element jn the equiv

e alence clasy p
and sinularly, f} € . |

1. The metric space (X*

.
. A7) s complete, for if
sequence in X,

ad if for egeh {2}
lence uivalence clagg 2.", then
{ .t,,:,,} 15 a Cauchy Séquence, and its equj
limit of the sequence {x,*}.

FAf ) s a Cauchy
IS & representative y

the diagonal sequence
valence class, °) is the

2. . P T b :
;I‘ho o1]appmg 2 X — X* which takes each poing € X into the
equiva ence class conlaming the constant sequence la,z,
I8 a distance Preserving injeetion of X into \’” :Tl’,l'lt L
) . 4] \'

) f)) = dia - . M
subsot .t ‘%).- d@,y). f(X), the image of [ in X* i 4 done

138. Hausdorfi’g Metric Topology

Let (S,d) be o metrie space, and let
bounded closeq subsets of
f(s,B) = jggd(s,b), and let

fg}‘) J(a,B), and jet 8(A,B)

( X be the collection of all honempty
8. ’Let, T8 X X 5 p+ pe defined 1y
XXX > p+ be given by ¢(4,B) =

= max {g(A,B),g(B,A)}. (X,8) is known iy
Hausdorft’s metric space,

i. 1 Y ;
ij; lf.or ‘S()l.lle sE 8 ‘u‘:d ‘B € X, f(s,B) = 0, we must have s € h
SREC s would be o limit point of B, Thug il 8(A,R)
pomt of A must bej J

= 0, every
ong to B : ’
e g and eon

versely; thus in thig case,
2. Since d(ab) < dla,c) + dle,b)

: for all q, p, e e
lgf @) < d(a,e) + inf d(e,b). ®© O ¢ €8, we have:
B

Hence f{a,B) < inf d(z,c) +
c

P - E-‘
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illff(C,B); 80 f(a]B) S f(a,C) + Sup f(C,B). This t-hen Yields
[ ¢
sup f(a,B) < sup f(a,C) + ¢(C,B), org(4,B) < g(4,0) + ¢(C,B).

‘Thus § satisfies the triangle inequality and is thus a metric for X.

. The Post Office Metric

Let (X,d) be the Euclidean plane with the ordinary metric; let 0 be the
origin in this plane. We define a new metrie d* on X by the formula
d(pyg) = d(0,p) + d(0,9), whenever pg € X, p&qifp =g welet
d(pg) =0

I, d" is a metric for X since clearly d*(p,q) = ¢(0,p) + d(0,g) <
d(OJT) + d(O!p) + d(oar) + d(O)Q) = d‘(P;?') + d.(rs'?)-

2. Every point but 0 is open since if p 0, and if ¢ = 1d(0,p) the
open metric ball around p of radius « is just {p}. Basis neighbor-
hoods of 0 are just Euclidean open balls,

3. Since each point of X — {0} is open, X is not separable and thus
neither o-compact nor compact. Although each point of X — {0}
has a compact neighborhood (namely, itsclf) 0 does not; thus X
is not locally compact.

4. The open metric balls around 0 are also closed, so X is zero
dimensional. ITowever X is not extremally disconnected since the
closure of the open set B = {@yly > 0} is EU {0}, which is
not open. But X is scattered, sinee every nonempty subset con-
tains isolated points.

140. The Radial Metric

Let (X ,d) be the Euclidean plane with the ordinary metrie; let 0 be the

origin in this plane. We define » new metric d* on X by the composite

formula:

0 ifp=g

d(p,q) i p = qand the line through p and ¢ passes
through the origin,

d(p,0) + d(q,0) otherwise.

d*(p,q) =

The metric d° corresponds to o model in which all distances are meas-
ured along lines radiating from the origin.

1. The metri¢ balls around points removed from the origin consist
simply of line segments lying on a radial path through the point;



141,

2, (X, d*) is not Separable, for the elosure of

3. The induced topology o each

in addition, boints neay o have g 1o lid i
cluded ip their metre balls, Fiden Hehborhooy "o

. : e, fo any subget |
include only pointg which lie gy rays from the origin \\'l]i(-l:;

through boints of 4_ or
; 4 countable subset 4 ‘
many such rays ¢y, interseet, 4,504 » x. ol iy
ray through th, origin jy ty

X is are Connected sjpep the rayy
b to the origin are ares, )

Buelidean topology. Thys
which connect pojntg 4 and

Radia] Interva] Topology

We generate o topology + oy
the_ coordinate plane x from g

empty opep interva] centered

at the origin on the line of
slope tan g,

it does pot have 4 countable
"Or suppose Ul were Such a bagje
If {a, } 15 any sequernce of angles, and jf gy
%, and otherwise 7 g = L,,.

[+
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then \UJ, is a neighborhood of the origin which containg no
set U,

Clearly (X,r) is neither Lindel&f nor locally compact: no neigh-
borhood of the origin has a compaet closure, Similarly, X is not
separable.

X is paracompact since each subspace I, is paracompact. If
{Ud) covers X, (U, N Ls} has a locally finite refinement N?
{(in which for each 8, a neighborhood of the origin 0 belongs to
at most one of the sets N2} s0 the collection {NJo ¢ NY
together with UINi0 N}l isa locally finite refinement of
{Ua}.

X is not metrizable since it is not first countable, Thus, since it
is regular, it cannot have a g-locally finite base, This can be seen

directly by assuming \J B is u base for 7, where each B,is a lo-
=1 ]
cally finite family. This would mean that {7 € Bio € v}
i=]

18 a countable loca) basis at 0, which does not exist,

H2. Bing’s Discrete Extension Space

3. Michael’s Closed Subspace

If B is the set of rea) numbers with power set Powelet X = 1y {0,1},

rep

where {0,1}, is a copy of the two point discrete space. For eachr € R,
let 2, be the point of X whose Ath coordinate (z,), equals 1 iffr € ;
let M = {4, € Xlr € R}, (If we think of X as the Power set of P,
A beconies the collection of principal ultrafilters of R.) Now if X has
the Tychonoff topology 7, X — A7 is clearly dense in X » 80 we may

form the discrete extension ¢ of r by

U — M. In (X,0), each point of

X — )1 is open, while each point of )f retaing jts r-neighborhoods. Let
¥ be the subspace 37 \U Fof (X,0) where F i the collection of ail finite
setsin X — A7,

1.

Since X — Af is open in (X,0), 1 is a closed subset of (X,0).
Asa subspace, Af inherits from =, and thus from o, the discrete
topology, since if 4, € M, and if A = {r}, then )M AM =
f2e). A slight extension of thiy argument shows that any two
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6.

m (1) and m~!(0) are disjoint open sets in X which contaiy
and M — L, respectively.

Now (X,¢) is clearly HausdorfT, so to show that it is normal gy
need only find disjoint open neighborhoods for disjoint cloug
sets A, and A,. Let U; and U, be disjoint open sets in X wh

contain, respectively, A, M M and 4, M M. Then (U, — _433
(4, — M) and (U, — AN\ (4, — M) are disjoint open aeh,
containing 4, and A,, respectively,

Since X — Y C X — M, Y is closed in (X,e). Thus, since (X4
is normal, so is the subspace ¥,

Neither (X,0) nor ¥ is paraconipact, sinee the covering by basg
sets has no locally finite refinement, for every neighborhoud of
point x, € M must contain infinitely many points of ¥ — N
{or of ).

(X,q) is not even metacompact, since some points of X — ¥
will always lie in infinitely many neighborhoods of points of M
$0 the covering by basis sets has no point finite refinement. liy
Y, which does not contain all the points of X' — A7, is metacon,.
pact. For let 1T/} cover Y select for each x, € M a neighhuy.
hood U, € {U,}. Then V, = iz EU|[r} €2} = U N 41y
is open in ¥, and {V.} is point finite. Thus the family {¥,}
together with the singletons of F = Y — M form a point finite
refinement of {U,}.

Since ¥ is normal and metacompact, it is countably paracom.
pact; but it is not paracompact.

PART Il

Appendices



SPECIAL REFERENCE CHARTS

The next few pages eontain six basic reference charts which display the
properties of the various examples, The properties of a topological space
have been grouped into six nearly disjoint categories: separation, com-
paetness, paracompactness, connectedness, disconnectedness, and metriza-
tion. In each category we have listed those spaces whose behavior is par-
ticularly appropriate. We usually ¢hose any space which represented a
counterexample in that category or which exhibited either an unusual or an
instructive pathology; oceasionally we listed a space simply because it was
so well behaved.

Entries in the charts are either 1, 0, or -, meaning, respectively, that the
space has the property, does not have the property, or that the property is
inapplicable. Oceasional blanks represent properties which were not dis-
cussed in the text and which do not appear to follow simply from anything
that was diseussed. Examples are listed by nunber, and in a few cases the
tables extend beyond one page in length.
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Special Reference Charts

Table 1
SEPARATION AXIOM CHART
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Special Reference Charts

Appendix

L2

Table IT (continued)

Tabhie II
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Special Reference Charts

appendix

EREAY )

Table IV
CONNECTEDNESS CHART

Table III

PARACOMPACTNESS CHAR’i‘
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Speeial Reference Charts
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PROBLEMS

Secrion 1

If {4} 2, is a countably infinite collection of subsets of a topological

space, show that \JJ A, C U A,

i=1 i=1

. True or false: AM B = AN B.

Show that the complement of an F, set is a G; set, and conversely.

. Show that any space with an open point must be second category.

What is the smallest second category space?

5. Show thatif fori = 1, . . ., n, Ciis a closed subset of a topological

space X, and f: X — Y is continuous on ¢, for all 7, then f is continu-
n

ous on \J €. Show that this result does not hold if one considers In-
i=1

finitely many closed sets.

. Show that a filter F on a set X is an ultrafilter if and only if for every

two disjoint subsets A and B of X suchthat 4 \J B € F, eitherA € F
orBeF.

SEcTION 2

Show that a space is Ty if and only if every point is closed.

Show that a space is Ty if and only if every point is the intersection of
its elosed neighborhoods.

Show that a space is T; if and only if every open set contains a closed
neighborhood of each of its points.
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10.

11.
12.

13.

4.

15.
16.

17.
18.
19.

20.
21.
22.

23.
24.
25.

26.

27.

28,

29.

30.
31.

Appendix

Show directly that every second countable regular space is completely
normal. (Do not use any metrization theorems.)
Show that X, is completely regular if each X, is completely regular.
Show that every Urysohn space is completely Hausdorfl.

SecTioN 3
Show that every separable space satisfies the countable chain
condition.
Prove the following generalization of the Tietze extension theorem:
any real-valued continuous function on o closed subset X of a normal
space Y may be extended continuously to all of .
Show that every fully normal space is normal.
Show that disjoint compact subsets of a Hausdorff space have disjoint
neighborhoods.
Show that every paracompact Hausdorff space is normal.
Show that every g-locally compact Hausdorff space is normal.
Show that every locally compact Hausdorf space is completely
regular.
Show that every Lindelsf T. space is paracompact.
Show that every second countable Tj space is both Lindelof and T;.
Prove Tychonoff’s theorem: the product of an arbitrary family of
topological spaces is compact iff each factor space is compact.
Is the product of second category spaces always seeond category?
Prove that every open subspace of a separable space is separable
Show that the countable Cartesian product of separable spaces is
separable.

SEcrion 4

Show that the following are equivalent:
(i) X has no nontrivial separation
(i) X has no nontrivial subsets which are both open and closed.
Show that the union of any family of connected sets with a nonempty
intersection is connected.

Show that if a space has just ome quasicomponent, it must be
connected.

Show that every quasicomponent in a locally connected space is
connected.

Show that every countable T space is totally path disconnected.
Show that every zero dimensional space is Ty.
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SEcTioN b5

32. Show that every metric space is perfectly normal.

33. Show that a metric space is compact if and only if it is complete in
every equivalent metric.

34. Show that every second countable space has a o-locally finite base.

COUNTEREXAMPLES

35. Show that the indiscrete topology on a set (Example 4) is are con-
neeted iff the set is uncountable.

36. Show that the uncountable particular point topology {(Example 10)
does not have a g-locally finite base.

37. Show that the uncountable excluded point topology (Example 15) has
a o-locally finite base.

38. Show that the either-or topology (Example 17) has a ¢-locally finite
base. .

39. Prove that the finite complement topology on an uncountable set
(Example 19) is second category.

40. Show that the countable complement topology (Example 20) is not
path connected.

41. Show that the countable complement topology (Example 20) does
not have a s-locally finite base.

49. Show that the countable complement topology (Example 20) is second
category by showing that a set is nowhere dense if and only if it is
countable.

43. Show that the compact complement topology (Example 22) is second
countable.

44. Show that the compact complement topology (Example 22) is not
second category.

45. Countable Fort space (Example 23) is metrizable since it is regular
and second countable. Find a metric which gives this topology.

46. Show that Fortissimo space (Example 25) does not satisfy the count-
able chain condition and thus is not second countable.

47. Prove that the real line R (Example 28) is a complete metric space.

48. Show that the rational numbers are dense in the real line (Example 28).

49. Show that a subset of Euclidean n-space (Example 28.9) is compact
iff it is closed and bounded.

50. What can be said about the cardinality of connected subsets of R®
(Example 28)? :

51. Show that the uniformity {Su}aser where Su = {{z)lzy < b or
z,y > a} is not the usual metric uniformity for the real line (Example
28) but still gives the Euclidean topology.
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61.
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63.

64.

65.

66.

67.

68.

G9.
70,

Appendix

. PProve that the Cantor set (Example 29) 1s zero dimensional.
. Show that the metric o of Example 30.5 is indeed o metrie for the real

numbers.

. Show that the rational numbers with the Euclidean topology (Exam-

ple 30) are not topologically complete.

5. The set of irrationals in [0,1] (Example 30) is topologically complete

but not compact; thus it cannot be totally bounded. Show this directly
from the definition of totally bounded.

. Show, without using the concept of compactness that (0,1) is not

homeomorphic to [0,1] (Example 32.7).

. Show that no homeomorphism of K onto itself can map A = {0} W

(1,2]\J {3) onto B = [0,1]U {2} U {3}, even though A is homeo-
morphic to B (Example 32.8).

Show that the one point compactification of the irrationals is second
category, but not first eountable (Example 34).

Show that the one point compactiication of the irrationals is not are
connected (Example 34).

Note that the one point compactification of the irrationals (Example
34) is of course locally compact. Why should this be considered
artificial?

Show that the Fréchet product metric {(Example 37.7) does indeed give
the right topology for Hilbert space.

Show that every separable metric space may be imbedded in Fréchet
space (Example 37).

Show that every connceted order topology (Example 39) is locally
connected. More generally, show that any connected topology on a
linearly ordered set is locally connected provided it has a basis of
convex sets.

Ordinal spaces for countable ordinals (Examples 40 and 41} are
metrizable. Find appropriate metries.

Show that open ordinal space [0,T") for I' < @ (Example 40) is topo-
logically complete.

Give as many different reasons as possible why closed uncountable
ordinal space (Example 43) is not metrizable.

The extended long line (Example 46) is not path connected since no
path can join any point to Q. Prove this.

There is an obvious definition of sin 2xx for every x € L* the extended
long line (Example 45). Why is this function not continuous?

Show that the altered long line (Example 47) is not locally compact.
Show that the altered long line (Example 47) does not have a o-locally
finite base by showing that this property is preserved in open
subspaces.

71.

72.

73.
74.

75.

76.

77.

78.

79.

80.
81.
82,
83.
84.
85.

86,

87.

88.

89.

90.

91.
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Prove that the lexicographie ordering on the unit square (Ilxample 48)

yields a perfectlty normal topology.

Prove that the unit square with the lexicographic ordering topology

(Boxample 48) is indeed first countable.

Show that every right order topology (Example 49) is locally compact.

Show that the right half open interval topology {(Example 51) is neither

locally compact nor second category.

Show that the right half open interval topology (Example 51} is

perfeetly normal. .

Show that the nested interval topology (Example 52) is not second

category.

Show thut the overlapping interval topology (Example 53) is second

category.

Find an infinite subset of the interloeking interval topology (Example
54) which does not have a limit point.

Show that the interlocking interval topology (Example 54) is not
strongly locally compact.

Show that the interlocking interval topology (Example 54) is neither
second countable, scattered, nor biconnected.

Show that the prime ideal topology (Example 50) is second category.
Show that the divisor topology (Example 57) is not fully T..

Show that with the divisor topology (Example 57), the positive in-
tegers are weakly countably compact but not countably metacompact.
The evenly spaced integer topology (Example 58) is metrizable.
Find a metric which yields this topology on the integers.

Show that the integers Z with the p-adic topology (Example 59) are
not extremally disconnected.

Show that the relatively prime integer topology (Example 60) is not
biconnected. Hini: first show that the prime integer topology (Ex-
ample 61) is not biconnected. ‘

Prove the assertion (Example 63.7) that a subset of the countable
complement extension topology is compact iff it is finite.

Show that the countable complement extension topology (Example
63) is neither pseudocompact nor metacompact. From what other
property of this space can you then determine immediately that it is
not countably metacompact?

Prove that the countable complement extension topology (Example
63) satisfies the countable chain condition.

Show that Smirnov’s deleted ‘sequence topology (Example 64) is sep-
arable but not first countable.

Show that Smirnov’s deleted sequence topology (Example 64) is
connected, but neither path connected nor locally connected.
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Show that in the rational sequence topology {Example 65) every sub-
set is a G set.

Show that the rational sequence topology (IExample G5) is not
paracompact.

Show that for appropriate choices of sequences of rationals, the ra-
tional sequence topology (Example 65) need not be T. Is this topology
ever T,?

Discuss the rational sequence topology (Example 65) with regard to
whether it is ever countably paracompact for any choice of sequences.
Show that both the indiserete extensions of B (Examples (6 and 67)
as well as the pointed extensions of B (Examples 68 and 69) fail to be
semiregular.

Show that the indiscrete rational extension of i (IExample 66) is not
countably metacompact.

Show that neither discrete extension of B (Examples 70 and 71) is
g-compact. :

Show that the discrete rational extension of R (Example 70} is zero
dimensional, but neither scattered nor extremally disconnected.
Show that the discrete rational extension of B (Example 70), with the
metric given in 70.3, is not complete. Is this space topologically
complete?

Show that the double origin topology (Example 74) is e-compact.
Show that the irrational slope topology (Example 75) is not second
category,

Show the deleted diamecter and radius topologies (Examples 76 and
77) are arec connected. Hinl: consider paths which contain no hori-
zontal segments at all.

Show that although neither the deleted diameter nor the deleted radius
topologies (Examples 76 and 77) is second countable, the deleted radius
topology is Lindelsf.

Is the deleted radius topology (Example 77) metacompact?

Show that the half-disc topology (Example 78) is are connected.

Show that the irregular lattice topology (Example 79) is second

category. .

Justify the global and local compactuess properties of Arens square
(Fixample 80).

Show that the space developed in Example 82.9 from Niemytzki’s
tangent disc topology is normal,

Prove that Niemytzki's tangent dise topology (Example 82) is neither
Lindelsf nor e-compact.

Prove that Niemytzki’s tangent disc topology (Example 82) is arc
connected.

112.

113.

114.

115.
116

117.

118.

119,

120.

121.

122,

123.

124,

125.

126.

127,

128.

129.

130.

131.
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Show that the metrizable tangent disc topology (Example 83) is arc
connected.

Is Sorgenfrey’s half open square topology (Example 84) countably
metacompact? (Hinl: publish this one.)

Show that Michael's product topology (Example 85) is zero dimen-
sional, but neither scattered nor extremally disconnected.

Show that Michael’s product topology (Example 85) is first countable.
Show that Michael’s product topology (Example 85) is second
category.

Show that the deleted Tychnoff plank (Example 87) is locally com-
pact but not Lindelof.

Verify that the Dieudonne plank (Example 89) does not satisfy any
of the global or loeal compactness properties.

Prove the assertion that (N M X) C N which appears in the con-
struction of Hewitt's condensed corkscrew (Example 92).

Prove that the weak parallel line topology (Example 95) is paracom-
pact while the strong parallel line topology {(Example 96) is not. Show
also that both topologies are metacompact.

Show that the concentric circles topology (Example 97) is not per-
fectly normal. :

Show that the minimal Hausdorff topology (Example 100) is
pseudocompact. :

Show that the Alexandroff square (Fxample 101) is neither perfectly
normal nor separable.

A metric space is compact iff it is complete in every metric. Z# (Exam-
ple 102) is not compact though we describe a metric in which it is
complete. Find a metric in which it is not complete.

Why is the uncountable product of copies of Z+ (Example 103)
neither countably compact nor Lindelof?

Show that the subspace Y of Helly space consisting of continuous
piecewise linear functions, which take rational values on the diadic
rationals (Example 107.3), is dense in Helly space.

Show that the Boolean product topology on R+ (Example 109) gives
a space which is not Lindelsf.

Show that the Stone-Cech compactification of the integers (Example
111) is not first countable.

Novak space {Example 112) is clearly not compact.
cover with no finite subcover.

Show that the strong ultrafilter topology (Example 113) is an expan-
sion of the Stone-Ciech compactification of the positive integers.
Show that the strong ultrafilter topology (Example 113) is neither
locally eompact nor first countable.

Find an open
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Show that the single ultrafilter topology (Example 114) is perfectly
normal and paracompact, but not locally compact.

Show that the integer broom (Example 121) is Ts.

The construction of Bernstein’s connected sets (Example 124) as-
sumes that the number of closed connected subsets of R* is ¢, the
power of the continuum. Prove this.

Prove that the pseudo-arc (Example 130) is nonempty.

Prove that the wheel without its hub (Example 132) is locally are
connected.

Prove that the wheel without its hub (Example 132) is not Lindelof.
Show that the wheel without its hub (Example 132) is not locally
conmyprct,

Show that the wheel without its hub (Example 132) is topologically
complete, though not complete in the given metric. ’
Be heroic. Verify that the function o(x,y) in Example 134.8 is
indeed a metric.

Verify that Sierpinski’s metric (Example 135) on a countable set
satisfies the triangle inequality (axiom M) for a metric).

Show that Duncan’s space (Example 136) is not complete in the given
metrie. Is there a metric in which this space is complete?

Determine whether Duncan’s space (Example 136) is zero dimensional.
Fill in the missing details in the construction of the Cauchy comple-
tion of a metric space (Example 137.1).

Show that the plane with the post office metric (Example 139) is
complete. Since it is not compact, it is not complete in every equiva-
lent metric. Find a metric for this space which is not complete.
Show that the radial metric (Example 140) really is a metric and that
it yields a complete metric space.

Show that the plane with the radial metric topology (Example 140} is
not locally compact.

NOTES

Part I Basic Definitions

Sgcetion 1. GENERAL INTRODUCTION

In the definition of a topological space, condition Oj is actually redun-
dant since the union of an emply family of sets is empty, and the inter-
section of an empty family of subsets of a set X is X itself.

With the abbreviations introduced in Example 32.9 we can explicitly
represent the semigroup of sets formed by complementation and closure
(Table 2). The inclusion relations between these fourteen sets can be
summarized by

AN AN
N | AN
N/ a4

O/ e/

where larger sets are above smaller ones.

The Tychonoff topology on the set 1II X, is characterized by the fol-
aCA

lowing universul property: if Z is any topological space, and if
fa: Z— X, are continuous there exists a unique continuous function

j:Z — Tl X, such that 7, O f = fa. Indeed Il X, with the Tychonoff
a€A a4
topology is the product in the category of topological spaces and con-

tinuous mappings. Likewise the quotient space X/R is universal with
189
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Table 2
OPERATIONS TABLE
1=identity e=-' m = fo
"= complement f=vo n=e-
o=interior E=0- p=go
--=closure h=-0 q=h-
u=q v=p'
i ’ o - e f g h m n p q v u
i i ! o - ie f g h : m n p gq | v u
! ’ i ¢ f :0 - n mjh g v ; q p
ol o f o g |m f g p { m vy p gq{v m
- L i _h_ —_J e n q h [u =n h qn u
c{e - e n h - n wlh g u nlqg h
f f o m f 0 q v m | P £ m v { g D
glg m p g m v g p : m v p g v m
h _..h._._l}. “h_ f]__ u n q h_] u n h qln u
m{ m m v _p- ; —v_‘ ;1 p g m v i p
ni n u n h q n u h g u n ! q
plp v p g m v g p m Vv p g :v m
qfq u h g u n g h u mn h gn u
v[v P m v p g v m p g m v g p
ul u g u n q n u h q uw n g h

respect to continuous functions f: X — Y such that the relation defined
by f en X extends R. That is, if p: X — X/R is the projection and
f: X — Y defines (by z ~ 2’ if f(z) = f(2)) a relation which extends R
then there exists a unique continuous funetion f': X/R — Y such that
I’ O p = [. By the universality of p this condition characterizes X/R.
Finally, the topological sum is characterized dually to the product by
the inclusion funetions of the summands, and thus is the sum or co-
product in the category of topological spaces and continuous functions.

4. Wh_en dealing with identification topologies the concept of a saturated
set is of'ten helpful. If f: X — ¥,and if A C X, A is called a saturated
subset if A = f~(B) for some B in ¥, that is, A is the complete in-
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verse image of some subset of Y. Themap p: X — X /R is not generally
open but it does take saturated open scts to open sets.

It should be noted that the existence of any nonprincipal ultrafilters
depends on the axiom of choice for the construction of ultrafilters uses
Zorn's lemma to produce at least one maximal ultrafilter containing
a given filter. In Example 111, we construct many distinet ultrafilters’
on a countable set; in fact, we construct 2¢ ultrafilters of which only No

can be principal.

Sgcrion 2. SEPARATION AXIOMS

Certain general constructions dealing with the separation axioms are
worth special note because of their generality and effectiveness. Many
others of more special applicability can be found among the examples.
If one doubles the points of a space (technically this involves taking
the product of the space with the two point indiscrete space) the re-
sulting space is no longer To, Ty, or T, but clearly the new space
satisfies the same higher Ti-axioms as did the original space. More
generally since for i < 34, the product of two spaces is T; iff each space
is T;, we may use products to destroy certain selected T; properties.

Properties T, and T are often satisfied vacuously if the space X has
no disjoint closed sets. The open extension topology (Example 16) is
a general construction which accomplishes this.

The results that a space is Ts iff every subspace is T4 and that every
perfectly normal space is completely normal may be found in Gaal {19].

Secrion 3. COMPACTNESS

A proof of Alexander’s subbasis theorem can be found in Gaal [19],
p- 146. :

It should be noted that our definition of countably compact requires
that infinite sets have w-accumulation points, while most authors give
a definition of countably compact which is equivalent to our definition
of weakly countably compact. Since in a T space every limit point is an
w-accumulation point it is clear that the two different definitions coin-
cide in a T space. Hence the theorems which correspond to the equiv-
alences of C'Cy, CCs, CCs, and CC, usually involve the assumption that
the space involved is T. In particular the proof due to Arens and
Dugundji [15], p. 229, that a space is compact iff it is both countably
compact and metacompact does not need the assumption that the space
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is T, if one defines countable compactness using w-accumulation points.
Finally one should note that doubling the points of any space renders
it wenkly countably compact, for then cvery subset has a limit point,
namely, the twin of one of its points. Note that the space is no longer
T, and in fact is still not countably compact if it were not so originally.

The Venn diagram which relates the countability axioms and compact-
ness omits the concept of separability since there are general means
available to render each example separable or nonseparable, as desired.
To make any space separable without affecting any of the other prop-
erties involved in the Venn diagram one simply takes the closed exten-
sion of that space (lxample 12). The new peint is then a dense subset.
Conversely, to render the space nonscparable it is sufficient to take
the product of the space with uncountable Fort space (Example 24)
which is compact and nonseparable. The result will then have exactly
the compactness properties of the original space but will no longer be
separable. There are other useful tricks for producing certain desired
alterations. We have already observed that the produet of any space
with the two point indiscrete space effectively doubles the points of the
original space thus rendering it non-Hausdorff and all that that entails.
Direct sums of two spaces often have a different variety of properties
than either of the summands. And finally, the methods of the indiscrete,
pointed, and discrete extensions (Examples 66-71) are frequently useful
in dealing with the higher separation axioms.

Further discussion of fully normal spaces together with proofs of the
relation to normal and paracompact spaces can be found in Gaal [19].
Proofs of the T: and Ty implications concerning the compactness prop-
erties can be found in Dugundji [15] and Gaal [19].

The product property lists separability as preserved under eountable
but not uncountable products. In faet, it is preserved under products
of cardinality no greater than 2®; this is proved in Dugundji [15], p.
175, and his proof is adapted in Example 103 to show that that product
space is separable for A < 2%. Dugundji also proves that every sepa-
rable Hausdorff space has cardinality less than or equal to 22%,

Section 4. CONNECTEDNESS

The proof that loeal connectedness is preserved under certain contin-
uous functions actually shows more. We observe that if the function
maps saturated open sets (open sets which are complete inverse images
of sets) to open sets then f preserves local connectedness. This condition
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is always satisfied if the image of f bears the identification topology.
From this viewpoint, the given proof merely asserts that any Haus-
dorfT image of a compact space bears the identification topology.

Countable spaces have some interesting connectivity properties. If X
is countable and T, then it is not path connected for the inverse images
of the points in the path would yield a decomposition of the closed unit
interval into a denumerable number of closed disjoint subsets, a con-
tradiction. If X is countable and connected it may not be Urysohn, for
if it were Urysohn then there would be a nonconstant real-valued func-
tion on X; the image of this function must be countable, henee not
connected. The inverse images of two components of the image will
then separate the original space. Finally, and frivially, no countable
space or finite space with more than one point is arc connected.

It should be noted that the three point space with the indiserete topol-
ogy is a biconnected space with no dispersion point. Miller’s example
(Example 131) is of interest because it is Hausdorff.

Section 5. METRIC SPACES

As in metric spaces the sets B(z,¢) = {y € X|d(z,y) < ¢} form a basis
for a topology whenever & is either a pseudometric or & quasimetrie.
The topology resulting from a psuedometric is not necessarily T; for
i < 3, but it is always T; and T; for the same reason that metric spaces
are T and Ts. For example, the indiserete topology is given by pseudo-
metric d(z,y) = 0 for all z,y € X. Quasimetric spaces are discussed in
Murdeshwar and Naimpally [35]. The compactness relations for metric
spaces also hold for pseudometric spaces with the exception that weak
countable compactness need not imply countable compactness, for this
result depends on the T, axiom.

Tt is shown in Dervin [40], p. 118 that in a totally bounded metric space
every sequence contains a Cauchy subsequence. Thus if a totally
bounded metric space is complete it is sequentially compact and hence
compact.

The Baire category theorem and several equivalent formulations are
présented in Pervin [40], pp.127-128. Pervin also proves on p.124 that
all completions of a given metrie space are isometric.

That regular second countable spaces are necessarily metrizable was
proved by Urysohn [51] in 1924. In 1950 Bing [10], Nagata [36], and
Smirnov [44] showed that a space is metrizable iff it is regular and has a
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a-locally finite base. The search for further metrizability conditions
continues, centering around the normal Moore space conjecture.

5. That a space is uniformizable iff it is Ty was proved in 1937 by
Weil [52].

6. Niemytzki and Tychonoff {38] prove that a metric space is compact iff
it is complete in each metric.

Part i Examples

18. Tn 18.10 we prove X is not path connected by using the fact that
the unit interval cannot be written as a countable disjoint union
of closed sets. Since this result is used repeatedly to show cer-
tain spaces are not path eonnected, and since it is not usually
proved in the standard texts, we prove it here.

Suppose I = \J C; where {C;] is a family of disjoint closed
i=]1

sets; let B = \U3C; = I — \UCp. Then B is nowhere dense in [
since each subinterval J of I contains an open subset L disjoint
from B. This follows from the fact that J is of second category, so
some C), i3 dense in some open interval L C J; since C, is closed,
LCCy, 80 LMB = 7. Since B is nowhere dense in I, every
open interval {/ containing a point = € 8C; must intersect
B — 3C; for U, being a neighborhood of z, contains a point of
I—-Cisayu €0, . Then if UNBMNaCn = &, C?MUisa
nonempty open and relatively closed subset of U

Now B itself is of second eategory (in itself) since it is a closed
subset of I'; thus some aC} is dense in some nonempty open subset .
U M B (where U/ is an open interval in I). Apgain, since aC} is
closed, this means that 8C; M U = B M . But this isimpossible,
since if UMaC, # F, then UM (B — aCy) # &. This con-
tradiction shows that I cannot be written as \JC|.

23. Fort [18] introduced this as an example of a Hausdorff space in
which some points do not have a local basis of nested sets.

26. This more sophisticated type of Fort space is adapted from Arens
195
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28.

30.

32.

36.

39.

40,

[6]. It is of interest particularly because it is a countable space
which is not first countable.

This discussion of the Euclidean real line is somewhat incomplete
in that it provides sanctuary for several logieal circularities.
First of all, we refrain from asserting that the real line is path
connected for such a statement, though true, would be lacking
significance since a path is defined to be the image of part of the
real line. Furthermore, the fact that the real line is connected,
and that the intervals [e,b] are compact depends on the fact
that the real line is complete, either in its order topology or in its
metric. Since these completions are discussed later we chose to
avoid using them in Example 28. A logically complete elementary
discussion of the topological properties of the real line may be
found in any introductory text on real analysis.

The complete metric on the irrationals is adapted from Greever
(21], p. 110, where he proves a more general result due to Alex-
androff [1] that every G; subspace of a complete metric space is
topologically complete.

The sets in 32.9 are an explicit representation of the semigroup
whose table is given earlier in these Notes.

The assertion that Hilbert space is homeomorphie to the count-
able infinite product of real lines was first proved by Anderson (3]
in 1966. Anderson and Bing (4] provide an elementary, though
lengthy proof of this result, together with a survey of related
problems,

Example 132 shows that the converse of 39.9 is false: a topologi-
cal space in which every point is a cut point need not be an order
topology.

‘The proof in 40.12 that every continuous real-valued function on
[0,2) is eventually constant is adapted from Dugundji [15], p. 81.
This proof shows also that any continuous real-valued function
on [0,0] is also eventually constant, though this fact can be
proved more directly by observing that if f(2) = p, then f~'(p) =

JTHNB(p,1/n)) = Nf~Y(B(p,1/n)), a countable intersection of

neighborhoods of @, which must contain some interval (e,].

Every metric space is perfectly normal, and if L were metrizable
the proof in 45.4 would be unnecessary. But L is locally metriz-
able und this observation provides the idea for the proof as given.

47.

61.

74.
75.

80.

82,

83.

Notes 197

This example was constructed by Alexandroff and Urysohn [2],
pp. 71-72.

This topology is a special case of o topology for any eommutative
ring with unit that is usually called the A-adic topology where 4
is an ideal of the ring K. We take as a basis of neighborhoods of
zero the sets A*, the powers of the ideal A. We then take the set
of cosets of these powers as the topology. B with this topology

forms a topological group and thus is T, iff M A% = 0. In the
i=1

case that B is Hausdorff the function d defined by d(r,s) = 27,

where L is the largest power such that r — s € A%, defines a

metric.

The proof that the prime integer topology ¢ is locally connected
is due to Kirch [27]. :

Due to Alexandroff and Urysohn {2], p. 22.

Bing [8] introduced this as an example of a countable connected
Hausdorff space; the first such example was given by Urysohn
[49]. Bing's example, though connected, is not path connected,
and the proof of this fact depends on the lemma proved above
in the note for Example 18.

Hewitt [24] credits Arens with constructing an example of this
type; we present a modified version, and then a simplified version.
Like Example 75, Arens square is a countable connected Haus-
dorff space.

The method of argument in 82.7 centers on a subtle but very
useful application of the Baire category theorem: if ¢, is a positive
number for each real number # then at least one of the sets
S: = |z € Rle; > 1/4} is not nowhere dense, so there is some
interval (a,b) and some 7 where {x € (a,b)le; > 1/%} is dense in
fa,by. This method of attack is used often in proofs concerning
paracompactness and metacompactness.

This example is adapted from Bing [10], p. 182. He considers the
case where the subset S is hereditarily 75, that is, where S and
each of its subsets is G;. Now no set of cardinality ¢ = 2% can
have this property since any such set has 2¢ subsets, but there
are only ¢ (5 sets. So the existence of an uncountable hereditarily
(s set depends on the denial of the continuum hypothesis,
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84.

85.
88.

89.

90.

02.

93.

Sorgenfrey [45] used this example to show that paracompactness
is not necessarily preserved even by finite produets.

"This example is due to Michael [31].

This example is adapted from Alexandroff and Urysohn [2],
p. 26.

This space was introduced by Dieudonne [13] in the same article
in which he formulated the definition of a paracompact space.

The Tychonoff corkserew was constructed by Arens and reported
by Hewitt [24]. Greever [21] presents a lengthy exposition of the
details of this example on pp. 77-79. Our presentation is a signifi-
cant geometric rearrangement of the original, and our proofs
rely more heavily on geometric intuition. Both Hewitt and
Greever present the space as a cube with certain identifications
along the edges; we have simply unfolded the cube into a
corkserew.

This example, very complex yet very signifieant, was constructed
by Hewitt [24] using a condensation process first described by
Urysohn [50]. As in the previous example, we have relied heavily
on a geometric analogy in order to present a clear description.

To appreciate the significance of this example, we should con-
sider the relations between cardinality and connectedness. Any
Urysohn space has a nonconstant map to the real line, so if it
were connected, its image would be an interval with cardinality ¢.
Thus connected Urysohn spaces have cardinality > ¢. Urysohn
{50] showed that connected regular spaces must be uncountable
{a separation of a countable regular space can be constructed by
induction), and also that there exist countable connected Haus-
dorff spaces.

Now the absence of any nonconstant continuous real-valued
funetions is & very strong form of connectedness which cannot
oceur in Urysohn spaces; we will call such spaces strongly con-
nected. Hewitt’s example shows that regular spaces may be
strongly connected. Figure 13 indicates the relations between
these concepts, with the designation of certain significant counter-
examples. For simplicity here, we assume the continuum
hypothesis.

This is an adaptation of an example given by Thomas [49}; by
translating his example into planks and corkscrews, we hope to
make clear the similarity between Thomas’ example and
Tychonoff’s.

95-97.

08.
99-100.

Notes 199
Each of these examples is from Alexandroff and Urysohn 2],
pp- 6, 13.
This example was first given by Appert [5] in 1934.

Both of these spaces are adaptations of examples developed by
Ramanathan in [41] and _[42].

Not strongly connected

) Not connected (62)

Countable

(50

§
£

(30) (3]

. |
(79 (7 | (28) i (78)

(75

{92)
(126}

I
S

101.
103.

107.

110.

Regular = Hausdorff Strongly connected = Connected
Urysohn =+ Hausdorff
Regular and connected = Uncountable

Connected but not strongly connected = Cardinzlity = c.

Urysohn = Not strongly connected

Figure 13.

From Alexandroff and Urysohn [2], p. 15.

The proof in 103.3 that X, is separable whenever A < 2% jg g
special application of a proof in Dugundji {15], p. 175 that sep-
arability is preserved under products of cardinality < 2% The
proof in 103.6 that X, is not normal is adapted from Stone [46].

The treatment of Helly space is motivated by a problem in
Kelly [26], p. 164,

Most of the material about 8X in its ultrafilter guise is adapted
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111,

112,
113.

119.

124,

125.

126.

fromi Gillman and Jerison [20], Chapters G and 9. The original
ideus are primarily due to Stone {47]. The method in Cech [12] is
similar to the view of 8X as a subspace of a product space. The
characterizing and mapping properties of 8X described in 110.3
express the fact that 8 is a functor from the category of completely
regular spaces to itself whose range is compact Hausdorff spaces,
and that h is a natural transformation from the identity to 8.

This discussion in 111.4 is from Gillman and Jerison [20]. In
particular the claim that B, satisfies the finite interseetion prop-
erty is proved there in detail.

This example is due to J. Novak [39].

Notice that in this topology the closure of a basis set is the same
as its closure in the Stone-Cech compactification. As with the
various dense extension topologies this renders the space not T.
This is a frequent occurrence that in an expanded topology the
closures of open sets remain unchanged.

The special infinite broom of 119.4 is adapted from Hocking and
Young [23], p. 113 where a similar space is used to illustrate the
concept of connected im kleinen.

The construction in this example is due to Hocking and Young
{23}, p- 110 who modified an idea of Bernstein [7]. Two aspects of
this example are worth further comment. In the construction we
assume that every nondegenerate closed connected subset of the
plane has the cardinality ¢ of the continuum. To see this we
merely consider the image of such sets under nonconstant contin-
uous maps to the real line. Such images must be connected, so
must be nondegenerate intervals which have cardinality ¢. Thus
the original connected closed subset has cardinality ¢.

Secondly, in 124.3, we use the obvious but subtle fact that
every set which separates the plane must contain a nondegenerate
closed connected set. This follows directly from the theorem (see,
for instance, Newman [37], p. 124) that every component of the
complement of a connected open subset of the plane has a con-
nected boundary. The complement of the union of two disjoint
vpen subsets of the plane will always contain some such boundary.

Further details, particularly coneerning 125.4, can be found in
Gustin [22].

From Roy [43].

128.

130.

131.

133.

136.
141.
142.

Notes 201

This example is from Knaster and Kuratowski (28], p. 241, a
paper which contains many similar examples.

The history of indecomposable continua may be traced back to
Janiszewski [25] whose example is rather different from the one
presented here. Our example is presented by Bing [9] though we
call it a pseudo-arc which was the term used by Moise {33], for
a different deseription of the same space. The footnotes in Moise
and Miller [32] give a good survey of the basie literature dealing
with the unusual properties of indecomposable continua.

For the extended proof that such an inductive construction can be
performed one should see Miller [32]. Tt appears that the inde-
composable continuum K of this example may be constructed in
the spirit of Bing [9] and Moise [33]. Tt is necessary to keep certain
links of the chains long, but thin, and to adapt the arguments of
Bing [9] to use arguments about adjacent pairs of chains as used
by Moise to prove such a continuum is indecomposable. Our
proofs that X is biconnected and has no dispersion point are
adopted from Miller.

This example was constructed by Tangora [48] as the solution to
a Monthly problem.

This is adapted irom Duncan [16].
This is one of many examples in Bing [10].

The space (X,r) is also from Bing [10] who introduced it as an
example of a normal space which is not collectionwise normal.
Michael [30] selected the subspace Y to be metacompaet. That
normal metacompact spaces are countably paracompact was
proved by Morita [34]. These papers discuss at length several
areas beyond the seope of this book, all related to the metrization
problem. Tt remains, for instance, an open question of whether
the assumption of metacompactness is essential in Morita’s
theorem: do there exist any normal spaces which are not count-
ably paracompact? Dowker [14] shows that this is equivalent
to the unsolved problem of whether the product of a normal space
with the closed unit interval is normal. Engelking [17] contains a
thorough discussion of this topic with extensive bibliography.
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Accumulation point, of a sequence, 5
o-, &

Adherent point, 5 )

Alexander’s compactness theorem, 18

Alexandroff plank, 107

Alexandroff square, 120

Appert space, 117

Are, 20

Are component, 29

Are connected, 29

Arens-Fort space, 54

Arens square, 98

Baire category theorem, 25, 37, 197
Baire metric, 123, 124 '
Ball (open), 34
Base, of a filter, 9
of a topogy, 4
g-locally finite, 37
symmetric (for a quasiuniformity),
38
Basis, 4
equivalent, 4
local, 4
Bernstein’s connected sets, 142
Biconnected, 33
Bijective function, 8
Bing’s space, 157
Boundary, 6

Index

Bounded, 36
totally, 36

Cantor set, 57
Category, first, 7

second, 7
Cauchy completion, 154
Cauchy sequence, 36
Closed extension topology, 44
Closed function, 8
Closed set, 3
Closure, 6
Cluster point, 10
Coarser filter, 10
Coarser topology, 3
Cofinite topology, 49
Compact, 4, 18

countably, 19

locally, 20

meta-, 23

para-, 23

pre-, 36

pseudo-, 20

sequentially, 19

o, 19

o-locally, 21

strongly locally, 20

weakly countably, 19
Compactification, one point, 63

Stone-Cech, 129

205
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Comparable filters, 10
Comparable topologies, 3
Compatible uniformities, 38
Complete, 36

order, 67

topologically, 37
Completely Hausdorff, 13
Completely normal, 12
Completely regular, 14
Completely separable, 7
Completion, 37

Cauchy, 154
Component, 28

are, 29

path, 29

quasi-, 28
Composant, 33
Condensation point, 5
Connected, arc, 29

hyper-, 29

locally, 30

locally are, 30

loeally path, 30

path, 29

strongly, 198

ultra-, 2¢
Connected between two points, 29
Connected im kleinen, 200
Connected in X, 28
Conneeted set, 7, 28
Connected space, 28
Continua, 33
Continuons funetion, 7
Continuous at a point, 8
Continunm hypothesis, 50, 197
Convergence of a filter, 10
Convergence of a sequence, 5
Countable, first, 7, 22

second, 7, 22
Countable chain condition, 22
Countably compact, 19
Countably metacompaet, 23
Countably paracompact, 23
Cover, open, 4

refinement of, 22
Cube, Hilbert, 65

Cut point, 33
Cylinders, open, 8

Degenerate, 28
Dense-in-itself, 6
Dense set, 7
Derived set, 5
Diagonal, 38
Diameter, 36
Dieudonne plank, 108
Disconnected, extremally, 32
totally, 31
totally pathwise, 31
Diserete metrie, 41
Diserete topology, 41
Discrete uniformity, 42
Dispersion point, 33
Distance, 34
Double pointing, 51, 191
Duncan’s space, 153

Entourage, 38

symmetric, 38
e-net, 36
Equivalent, topologically, 8
Equivalent bases, 4
Equivalent subbasis, 4
Euelidean topology, 56
Expansion, 15
Exterior, 7
Extremally disconnected, 32

Filter, 9
coarser, 10
comparable, 10
convergence of, 10
finer, 9
limit point of, 10
neighborhood, 10
strictly coarser, 10
strietly finer, 10 -
Filter hase, 9
limit of, 10
Filtered by, 9
Filtered set, 9
Finer filter, 9
Finer topology, 3

Finite complement topology, 49
Finite intersection axiom, 18
Finite intersection property, 9
First category, 7
First countable, 7, 22
Fixed ultrafiiter, 10
Fort space, 52
Fréchet product metric, 64, 152
Fréchet space, 11, 64
Free ultrafilter, 10
Frontier, 6
F,-set, 3
Fully normal, 23
Fully T,, 23
Function, bijective, 8
elosed, 8
continuous, 7
open, 8
Urysohn, 13

G;-Set, 4
Custin’s space, 142

Half-open interval topology, 75
Hali-open square topology, 103
Hausdorff space, 11

completely, 13
Hausdorff’s metrie, 154
Helly space, 127
Hereditary, 4

weakly, 4
Hewitt's condensed corkscrew, 111
Hilbert cube, 65
Hilbert space, 64
Homeomorphie, 8
Homeomorphism, 8
Hyperconnected, 29

Identification topology, 9
Indecomposable, 33
Indiserete topology, 42
Induced topology, 4
Interior, 6

Interval topology, 66
Invariant, topological, 8
Trrational numbers, 59
Irreducible subcovering, 23

Index 207

Isolated point, &
Isometrie, 37

Kolmogorov space, 11

Larger topology, 3
Lexicographic order, 73
Limit point, 5

of a filter, 10

of a filter base, 10

of a sequence, 5
Lindelsf, 19
Loecal basis, 4
Locally are connected, 30
Locally compact, 20
Locally connected, 30
Locally finite refinement, 22
Loeally path connected, 30
Long line, 71
Lower limit topology, 75

Meager, 7
Metacompact, 23
countably, 23
Metric, 34
Baire, 123, 124
diserete, 41
Fréchet, 64, 152
Hausdorff, 154
product, 64, 152
Sierpinski, 152
Metric space, 34
Metrizable, quasiuniform space, 38
topological space, 37
Michael’s subspace, 157
Michael’s topology, 105
Miller's set, 148

Neighborhood, 4

open, 4
Neighborhood filter, 10
Nested sequence of sets, 37
Net, ¢-, 36
Niemytzki’s topology, 100
Nonprincipal ultrafilter, 10
Normal, 12
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Normal {continued)
completely, 12
fully, 23
perfectly, 16
Notes, 189
Novak space, 134
Nowhere dense set, 7
Numbers, irrational, 59
rational, 59

w-accumulation point, 5
Open ball, 34

Open cover, 4

Open cylinder, 8

One point compactification, 63
Open extension topology, 47
Open function, 8

Open neighborhood, 4
Open set, 3

Order topology, 66

Ordinal space, 68

p-adie topology, 81
Paracompact, 23
countably, 23
pointwise, 23
Particular point topology, 44
Path, 29
Path component, 29
Path connected, 29
Perfect set, 6
Perfectly normal, 16
Perfectly separable, 7
Perfectly T,, 16
Plank, Alexandroff, 107
Dieudonné, 108
Thomas’, 113
Point, adherent, 5
cluster, 10
condensation, 5§
cut, 33
dixperston, 33
isolated, 6
limit, 5
w-accumulation, §
Point finite refinement, 22
Pointwiz paracompact, 23

Precompact, 36

Principal ultrafilter, 10

Problems, 181

Product invariance properties, 26

Product metric, 64, 152

Product space, §

Pseudo-are, 147

Pseudocompact, 20

Pseudometrie, 34

Pscudometrizable (quasiuniform
space), 38

Punctiform, 33

Quasicomponent, 29
Quasimetric, 34
Quasiuniform space, 38
Quasiuniformity, 37
separated, 38
Quasiuniformizable, 38
Quotient space, 9

Rational numbers, 59
Reference charts, 161-171
compactness, 164
connectedness, 167
disconnectedness, 168
metrizability, 169
paracompactness, 166
separation axiom, 163
Refinement, 22
locally finite, 22
point finite, 22
star, 23
Regular, 12
completely, 14
semi-, 17
Regular closed set, 6
Regular open set, 6
Relation, 38
Relative to, 4
Relative topology, 4

Right half-open interval topology, 75

Right order topology, 74
Roy’s space, 143

Saturated set, 190
Scattered, 33

Second category, 7
Second countable, 7, 22
Semiregular, 17

Separable, 7, 21
completely, 7
perfectly, 7
Separated, 28
totally, 32
Separated by open sets, 11
Beparated quasiuniformity, 38
Separated sets, 7
Separation, 28
Separation axioms, 11, 191

Sequence, accumulation point of, 5

Cauchy, 36

convergence of, 5

limit point of, 5
Set, Bernstein’s connected, 142

boundary of, 6

Cantor, 57

closed, 3

closure of, 6

connected, 7, 28

dense, 7

derived, 5

exterior of, 7

filtered, 9

first category, 7

frontier of, 6

F.-, 3

G-, 4

interior of, 6

meager, 7

Miller’s, 148

nested sequence of, 37

nowhere dense, 7

open, 3

perfect, 6

regular closed, 6

regular open, 6

saturated, 190

separated, 7
Sequentially compact, 19
Sierpinski metric, 152
Sierpinski space, 44
o-compact, 19
o-locally compact, 21

Index 200

o-locally finite base, 37
Smaller topology, 3
Smirnov’s topology, 86
Sorgenfrey’s topology, 103
Space, Appert, 117
Arens-Fort, 54
Bing’s 157
completely Hausdorff, 13
completely normal, 12
connected, 28
Dunean’s, 153
Fort, 52
Fréchet, 11
Gustin’s, 142
Hausdorff, 11
Helly, 127
Hilbert, 64
Kolmogorov, 11
metrie, 34
normal, 12
Novak, 134
ordinal, 68
product, 8
quasiuniform, 38
quotient, 9
regular, 12
Roy’s, 143
semiregular, 17
separable, 7
Sierpinski, 44
T, 11
Tangora’s, 150
topological, 3
Tychonoff, 14
Urysohn, 16
Spec A, 79
Square, Alexandroff, 120
Arens, 98
Star, 23
Star refinement, 23
Stone-Cech compactifieation, 129
Strietly coarser filter, 10
Strictly finer filter, 10
Stronger topology, 3
Strongly connected, 108
Strongly locally compact, 20
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Subbase, of a filter, 9

of a topology, 4
Subbasis, 4

equivalent, 4
Subcovering, irreducible, 23
Subspace, 4

Michael's, 157
Subspace topelogy, 4
Sum, topological, 9
Symmetric base (for a quasiuniform-

ity), 38

Symmetric entourage, 38

T, space, 11
T,, fully, 23

perfectly, 16
Tangent dise topology, 100
Tangora's space, 150
Thomas corkscrew, 113
Thomas’ plank, 113
Tictze extension theorem, 20
Topological invariant, 8
Topological property, 8
Topological space, 3
Topelogical sum, 9
. Topologically complete, 37
Topologically equivalent, 8
Topologists's gine curve, 137
Topology, 3

closed extension, 44

coarser, 3

cofinite, 49

comparable, 3

discrete, 41

Euclidean, 56

finer, 3

finite complement, 49

half-open interval, 75

half-open square, 103

identification, 9

indiserete, 42

induced, 4

interval, 66

larger, 3

lower limit, 75

Afichael’s, 105

Niemytzki's, 100

open extension, 47

order, 66

p-adie, 81

particular point, 44

relative, 4

right half-open interval, 75

right order, 74

smaller, 3

Smirnov, 86

Sorgenfrey’s, 103

stronger, 3

subspace, 4

tangent dise, 100

Tychonoff, 8, 189

usual, 56

weaker, 3
Totally bounded, 36
Totally disconneeted, 31
Totally pathwise disconneeted, 31
Totally separated, 32
Tychonoff corkscrew, 109
Tychonoff plank, 106
Tychonofl space, 14
Tychonoff theorem, 26
Tychonoff topology, 8, 189

Ultraconnected, 29
Ultrafilter, 10
fixed, 10
free, 10
nonprincipal, 10
principal, 10
Uniformity, 38
compatible, 38
discrete, 42
Urysohn funetion, 13
Urysohn lemma, 13
Urysohn space, 16
Usual topology, 56

Weaker topology, 3
Weakly countably compact, 19
Weakly hereditary, 4

Zero dimensional, 33



