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The shortest path between two truths in the real
domain passes through the complex domain.

Jacques Hadamard
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Preface

Solving algebraic equations has been historically one of the favorite topics of mathe-
maticians. While linear equations are always solvable in real numbers, not all quadratic
equations have this property. The simplest such equation is x> + 1 = 0. Until the 18th
century, mathematicians avoided quadratic equations that were not solvable over R.
Leonhard Euler broke the ice introducing the “number” v/—1 in his famous book Ele-
ments of Algebra as . . . neither nothing, nor greater than nothing, nor less than noth-
ing ... ” and observed “ ... notwithstanding this, these numbers present themselves to
the mind; they exist in our imagination and we still have a sufficient idea of them, . . .
nothing prevents us from making use of these imaginary numbers, and employing them
in calculation”. Euler denoted the number /—1 by i and called it the imaginary unit.
This became one of the most useful symbols in mathematics. Using this symbol one
defines complex numbers as z = a + bi, where a and b are real numbers. The study of
complex numbers continues and has been enhanced in the last two and a half centuries;
in fact, it is impossible to imagine modern mathematics without complex numbers. All
mathematical domains make use of them in some way. This is true of other disciplines
as well: for example, mechanics, theoretical physics, hydrodynamics, and chemistry.
Our main goal is to introduce the reader to this fascinating subject. The book runs
smoothly between key concepts and elementary results concerning complex numbers.
The reader has the opportunity to learn how complex numbers can be employed in
solving algebraic equations, and to understand the geometric interpretation of com-
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plex numbers and the operations involving them. The theoretical part of the book is
augmented by rich exercises and problems of various levels of difficulty. In Chap-
ters 3 and 4 we cover important applications in Euclidean geometry. Many geometry
problems may be solved efficiently and elegantly using complex numbers. The wealth
of examples we provide, the presentation of many topics in a personal manner, the
presence of numerous original problems, and the attention to detail in the solutions to
selected exercises and problems are only some of the key features of this book.

Among the techniques presented, for example, are those for the real and the complex
product of complex numbers. In complex number language, these are the analogues of
the scalar and cross products, respectively. Employing these two products turns out to
be efficient in solving numerous problems involving complex numbers. After covering
this part, the reader will appreciate the use of these techniques.

A special feature of the book is Chapter 5, an outstanding selection of genuine
Olympiad and other important mathematical contest problems solved using the meth-
ods already presented.

This work does not cover all aspects pertaining to complex numbers. It is not a
complex analysis book, but rather a stepping stone in its study, which is why we have
not used the standard notation ¢!’ for z = cost + i sint, or the usual power series
expansions.

The book reflects the unique experience of the authors. It distills a vast mathematical
literature, most of which is unknown to the western public, capturing the essence of an
abundant problem-solving culture.

Our work is partly based on a Romanian version, Numere complexe de laAla ... Z,
authored by D. Andrica and N. Bigboaci and published by Millennium in 2001 (see our
reference [10]). We are preserving the title of the Romanian edition and about 35% of
the text. Even this 35% has been significantly improved and enhanced with up-to-date
material.

The targeted audience includes high school students and their teachers, undergrad-
uates, mathematics contestants such as those training for Olympiads or the W. L. Put-
nam Mathematical Competition, their coaches, and any person interested in essential
mathematics.

This book might spawn courses such as Complex Numbers and Euclidean Geom-
etry for prospective high school teachers, giving future educators ideas about things
they could do with their brighter students or with a math club. This would be quite a
welcome development.

Special thanks are given to Daniel Véciaretu, Nicolae Bigboacd, Gabriel Dospinescu,

and loan Serdean for the careful proofreading of the final version of the manuscript. We
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would also like to thank the referees who provided pertinent suggestions that directly
contributed to the improvement of the text.

Titu Andreescu
Dorin Andrica
October 2004



Notation

O Z N

la, b]
(a,b)

|z

AB
(AB)
[AB]
(AB
areal F']
Un
C(P;n)

the set of integers

the set of positive integers

the set of rational numbers

the set of real numbers

the set of nonzero real numbers

the set of pairs of real numbers

the set of complex numbers

the set of nonzero complex numbers

the set of real numbers x such thata < x < b
the set of real numbers x such thata < x < b
the conjugate of the complex number z

the modulus or absolute value of complex number z
the vector AB

the open segment determined by A and B

the closed segment determined by A and B
the open ray of origin A that contains B

the area of figure F

the set of n'™ roots of unity

the circle centered at point P with radius n



Complex Numbers in Algebraic Form

1.1 Algebraic Representation of Complex Numbers

1.1.1 Definition of complex numbers

In what follows we assume that the definition and basic properties of the set of real
numbers R are known.

Let us consider the set R2 = R x R = {(x, y)| x, y € R}. Two elements (x1, y;)
and (x3, yp) of R2? are equal if and only if x; = x; and y; = y;. The operations of
addition and multiplication are defined on the set R? as follows:

21+ 22 = (1, Y1) + (x2, y2) = (x1 + x2, y1 + y2) € R?

and
2122 = (x1, ¥1) - (02, y2) = (x1x2 — y1y2. X1y2 + x2y1) € R?,
for all z; = (x1, y1) € R? and 20 = (x2, y») € R2.
The element z; + z2 € R is called the sum of z1, z» and the element z; - 7 € R? is
called the product of z1, z>.
Remarks. 1) If z; = (x1,0) € R? and 25 = (x2,0) € R?, then z; - 25 = (x1x2, 0).
() Ifz; = (0, y1) € R? and zo = (0, y) € R%, then z; - 22 = (—y12, 0).
Examples. 1) Let z; = (=5, 6) and zo = (1, —2). Then

zitz2=(-5,6+(1,-2)=(-44)
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and
7122 = (=5,6) - (1, =2) = (-5 + 12, 10 + 6) = (7, 16).

1 11
(2)Letz; = (—5, 1) and 7o = (_5’ 5) Then
(L (53
/111 1y 1T
d2=le 274 3) Uz 12)

Definition. The set R?, together with the addition and multiplication operations, is
called the set of complex numbers, denoted by C. Any element z = (x, y) € Cis called
a complex number.

The notation C* is used to indicate the set C \ {(0, 0)}.

and

1.1.2 Properties concerning addition

The addition of complex numbers satisfies the following properties:
(a) Commutative law

Z1+z22 =22+ 2z forall z;,zp € C.

(b) Associative law
(z1 +22) +2z3 =21 + (22 +z3) forall z1, 22, z3 € C.
Indeed, if z; = (x1, y1) € C, 22 = (x2, y2) € C, z3 = (x3, y3) € C, then
(21 +22) + 23 = [(x1, y1) + (32, y2)1 + (3, y3)

= (x1 4+ x2, y1 + y2) + (x3, y3) = ((x1 + x2) +x3, (V1 + y2) + y3),
and
21+ (22 +23) = (x1, y1) + [(x2, y2) + (x3, y3)]
= (x1, y1) + (2 +x3, y2 + y3) = (01 + (%2 + x3), y1 + (2 + ¥3))-
The claim holds due to the associativity of the addition of real numbers.
(c) Additive identity  There is a unique complex number 0 = (0, 0) such that

z40=0+z=zforallz = (x,y) € C.

(d) Additive inverse For any complex number z = (x, y) there is a unique —z =
(=x, —y) € C such that

z4+(—z2)=(-2)+z=0.
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The reader can easily prove the claims (a), (c) and (d).

The number z; — zo = z1 + (—z2) is called the difference of the numbers z; and
z2. The operation that assigns to the numbers z; and z; the number z; — z7 is called
subtraction and is defined by

71— 22 =(x1,y1) — (x2,y2) = (x1 —x2, 1 — ) € C.

1.1.3 Properties concerning multiplication

The multiplication of complex numbers satisfies the following properties:
(a) Commutative law

2122 =22 -z forall z1, 2z € C.
(b) Associative law
(z1-22)-z3 =21 (22 - z3) forall z1, 22, z3 € C.

(c) Multiplicative identity = There is a unique complex number 1 = (1,0) € C
such that
z-1=1-z=zforallz € C.

A simple algebraic manipulation is all that is needed to verify these equalities:
z-1=0» - 1,0=x-1-y-0,x-0+y-D=(,y) =z

and
1-z=1,00-(x,»)=1-x=0-y,1-y4+0-x)=(x,y) =z

(d) Multiplicative inverse For any complex number z = (x, y) € C* there is a
unique number =, y") € C such that

To find z7' = (x/, '), observe that (x, y) # (0,0) implies x # 0 or y # 0 and
consequently x2 + y* # 0.
The relationz -z~ ! = 1 gives (x, y) - (x/, ¥") = (1, 0), or equivalently

xx' —yy =1
yx' +xy =0.

Solving this system with respect to x” and y’, one obtains
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hence the multiplicative inverse of the complex number z = (x, y) € C* is

1 X y

—1 *
= - = , — G(C
- z (x2+y2 x2+y2>

1

By the commutative law we also have z7" -z = 1.
Two complex numbers z; = (21, y1) € C and z = (x, y) € C* uniquely determine

a third number called their quotient, denoted by ! and defined by
b4

Z—l—z-zfl—(x i) - - -
- 1 1, )1 242 2t y2
_(nxt )’1)7’ —X1y + y1X cC.
x2+y2 .X2 +y2
Examples. 1) If z = (1, 2), then

N 2\ (1 -2
S T\eye2zrei2) T\ 5 )

2)Ifz; = (1,2) and 22 = (3, 4), then

2 (348 —446\ (11 2
22 \9+16°9+16/) \25°25)°

An integer power of a complex number z € C* is defined by

L=1 =z P=z-z

7" =z.7---z forall integers n > 0
—
n times
and z" = (z~1)™" for all integers n < 0.
The following properties hold for all complex numbers z, z1,z2 € C* and for all
integers m, n:
])Zm L= Zm+n.
" ’
_ _m—n.
2) Z_n =2 )
4) (z1-22)" =2} - 25;
5) (Z_l) _a
22 5
When z = 0, we define 0" = 0 for all integers n > 0.
e) Distributive law

21 (2+z3)=2z1-22+ 21 -zz3forall z1, 22, z3 € C.

The above properties of addition and multiplication show that the set C of all com-
plex numbers, together with these operations, forms a field.
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1.1.4 Complex numbers in algebraic form

For algebraic manipulation it is not convenient to represent a complex number as an
ordered pair. For this reason another form of writing is preferred.
To introduce this new algebraic representation, consider the set R x {0}, together

with the addition and multiplication operations defined on R2. The function
ST R—>Rx{0}, f(x)=(x,0)
is bijective and moreover,
x,0) 4+ (y,0) =(x+y,0)and (x,0) - (y,0) = (xy,0).

The reader will not fail to notice that the algebraic operations on R x {0} are sim-
ilar to the operations on R; therefore we can identify the ordered pair (x, 0) with the
number x for all x € R. Hence we can use, by the above bijection f, the notation
(x,0) = x.

Setting i = (0, 1) we obtain

Z=(xv)’):(an)—i-(O,y):(x»O)‘i‘(y,O)(071)

=x4+yi=(x,0+0,1)-(y,0 =x+iy.

In this way we obtain

Proposition. Any complex number z = (x,y) can be uniquely represented in the

form
z=x+yi,
where x, y are real numbers. The relation i 2 — —1 holds.
The formula i> = —1 follows directly from the definition of multiplication: i*> =

i-i=(@0,1)-0,1)=(-1,0)=—-1.

The expression x + yi is called the algebraic representation (form) of the complex
number z = (x, y), so we can write C = {x + yi| x € R, y € R, i2 = —1}. From
now on we will denote the complex number z = (x, y) by x + iy. The real number
x = Re(z) is called the real part of the complex number z and similarly, y = Im(z)
is called the imaginary part of z. Complex numbers of the form iy, y € R — in other
words, complex numbers whose real part is 0 — are called imaginary. On the other
hand, complex numbers of the form iy, y € R* are called purely imaginary and the
complex number i is called the imaginary unit.

The following relations are easy to verify:
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a) 71 = zp if and only if Re(z); = Re(z)2 and Im(z)1 = Im(z)2.

b) z € Rif and only if Im(z) = 0.

¢) z € C\ Rif and only if Im(z) # 0.

Using the algebraic representation, the usual operations with complex numbers can
be performed as follows:

1. Addition
21+ 22 = (01 + y1i) + (2 + y2i) = (x1 +x2) + (y1 + y2)i € C.

It is easy to observe that the sum of two complex numbers is a complex number
whose real (imaginary) part is the sum of the real (imaginary) parts of the given num-
bers:

Re(z) + z2) = Re(2)1 + Re(2)2;
Im(z; + z2) = Im(z); + Im(z)>.
2. Multiplication
zi - 22 = (x1 + y1)(x2 + y21) = (x1x2 — y1y2) + (x1y2 + x2y1)i € C.
In other words,
Re(z1z2) = Re(z)1 - Re(z)2 — Im(z)1 - Im(z)2

and
Im(z1z2) = Im(z); - Re(z)2 + Im(z)2 - Re(z);.

For a real number A and a complex number z = x + yi,
Az=Ax+yi)=rx+xryi eC

is the product of a real number with a complex number. The following properties are
obvious:

1) A(z1 + z2) = Az1 + Az2;

2) M (A22) = (M1A2)z;

3) (M1 +A2)z=Az+ Az forallz,z1,20 € Cand A, A1, A2 € R.
Actually, relations 1) and 3) are special cases of the distributive law and relation 2)

comes from the associative law of multiplication for complex numbers.

3. Subtraction

21— 22 = (1 + y1i) — (2 + y2i) = (x1 —x2) + (y1 — y2)i € C.
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That is,

Re(z1 — z2) = Re(z)1 — Re(2)2;

Im(z1 — z2) = Im(z)| — Im(2)>.

1.1.5 Powers of the number i

The formulas for the powers of a complex number with integer exponents are preserved
for the algebraic form z = x + iy. Setting z = i, we obtain

P=iti=i dg=i-i=—1; i'=i%
One can prove by induction that for any positive integer n,

—I.

Hence i" € {—1, 1, —i, i} for all integers n > 0. If n is a negative integer, we have

1 —n
i"=G"HT"= (7) = (i)™

Examples. 1) We have

j105 4 ;23 4 ;20 ;34 _ 42641 4 453 4 4S5 4842 _ 4] =0

2) Let us solve the equation z> = 18 + 26, where z = x + yi and x, y are integers.
We can write

(x4 3% = (x4 3P+ i) = (2 — y? + 2xpi) (x + yi)
= (x> = 3xy?) + Bx%y — y?)i = 18 + 26i.
Using the definition of equality of complex numbers, we obtain

x3—3xy? =18
3x%y — y3 =26.
Setting y = tx in the equality 18(3x%y — y3) = 26(x> — 3xy?), let us observe that

x # 0and y # 0 implies 18(3¢ — 3) = 26(1 — 3r?). The last relation is equivalent to
(3t — 1)(3t2 — 12t — 13) = 0.

1
The only rational solution of this equation is t = 5; hence,

x=3, y=1landz=3+1.
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1.1.6 Conjugate of a complex number

For a complex number z = x + yi the number 7 = x — yi is called the complex
conjugate or the conjugate complex of z.

Proposition. /) The relation z = 7 holds if and only if 7 € R.

2) For any complex number 7 the relation z = Z holds.

3) For any complex number z the number z - 7 € R is a nonnegative real number.

4) 71 + z2 = 71 + 22 (the conjugate of a sum is the sum of the conjugates).

5) 71 - 22 = 71 - 22 (the conjugate of a product is the product of the conjugates).

6) My nonzero complex number 7 the relation le = )~} holds.

7) <Z—1) = f—l 22 # 0 (the conjugate of a quotient is the quotient of the conju-
gates). = =

8) The formulas

Re(z) = % and Im(z) = %

are valid for all 7 € C.

Proof. 1) If z = x + yi, then the relation z = 7 is equivalent to x 4+ yi = x — yi.
Hence 2yi =0, so y = 0 and finally z = x € R.

2)Wehavez =x —yiandz =x — (—y)i = x + yi = z.

3) Observe that z - 7 = (x + yi)(x — yi) = x4+ y2 > 0.

4) Note that

21+ 22 = (x1 +x2) + (1 + y2)i = (x1 +x2) — (y1 + y2)i

= (x1 — y11) + (x2 — i) = 71 + 22.

5) We can write

71 - 22 = (x1x2 — y1y2) +i(x1y2 + x2y1)

= (x1x2 — y1¥2) —i(x1y2 +x2y1) = (x1 —iy1)(x2 —iy2) =71 - 22.

1 1 - 1
6) Because z- — = 1, we have (z . —) = 1, and consequently z - (—> = 1, yielding
Z Z

Z
H=@"

1 1 1 71
7) Observe that (Z—1> = (Zl . —) =71 (—) =71 == Zzl
22 22 22 <2 <2

8) From the relations

z24+72=&+yi)+ (x —yi)=2x,



1.1. Algebraic Representation of Complex Numbers 9

z2—2=(x+yi)— (x —yi) =2yi

it follows that

ite and Im(z) = ﬂ
2i

Re(z) =

as desired. O

The properties 4) and 5) can be easily extended to give

4') (Z Zk) = ZZk;
=1 =1

n n
) (sz> = HZkforallzk eCk=1,2,...,n.
k=1

k=1
As a consequence of 5') and 6) we have

5") (z) = (7)" for any integers n and for any z € C.

Comments. a) To obtain the multiplication inverse of a complex number z € C*
one can use the following approach:

1z x—yi X y

= = — i
z z-7  x24y? x24+y? X242

b) The complex conjugate allows us to obtain the quotient of two complex numbers

as follows:
21 _z-z2 Ay —yi) - xx+yiye | —xan + X2y,
2 -2 x5 +y3 X3 +y3 x3+y3
54 5i 20
Examples. (1) Compute z = —— + .
xamples. (1) Compute 2 = 30 + 1773;

Solution. We can write
5+5)3+4i) 204-3i) —-5+4+35i 80—060i
T 91612 6—92 ~ 25 25
75 — 25i
R
(2) Let z1, zo € C. Prove that the number E = z; - 2o + Z1 - 22 is a real number.

=J5—1.

Solution. We have

E=z1-224+721-2=21-22+21- 22 =E, soE €R.

1.1.7 Modulus of a complex number

The number |z| = /x2 + y?2 is called the modulus or the absolute value of the complex
number z = x + yi. For example, the complex numbers

21=4+3i, zp=-3i, z3=2
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have the moduli
il = VA2 +32 =5, |2 =v02+(=3)2=3, |xl=v22=2.

Proposition. The following properties are satisfied:

(1) —|z] < Re(z) < |z and —|z| < Im(2) < |z|.

(2) 1z| = 0 for all z € C. Moreover, we have |z| = 0 if and only if 7 = 0.
(3)lzl=1—zl =zl

4)z-7 =z

(5) 121 - z21 = |z1l - |z2| (the modulus of a product is the product of the moduli).
(6) |z1] = |z2| = |z1 + 22| = lz1] + |22l

7)1 =z~ 2 £ 0.

(8) 1y % z2 # 0 (the modulus of a quotient is the quotient of the moduli).
22 22
9) lz1l — lz2l < lz1 — 22| < lz1l + |z2l-

Proof. One can easily check that (1)—(4) hold.

(5) We have |z - 22]> = (21 - 22)(T1-22) = (21 - Z1)(22 - Z2) = |z1|% - |z2/% and
consequently |71 - z2| = |z1] - |z2], since |z| > O for all z € C.

(6) Observe that

lz1+ 2P =@ +2)@ F22) = @ +2)@ +22) = lalP +21 22+ 2 -2+l
Because z; - 22 = Z1 - 22 = 21 - 22 it follows that
2122 + 21 - 22 = 2 Re(z1 - 22) < 2|z1 - 22| = 2|z1] - 1221,

hence
2 2
lz1 + z21° < (Jz1] + 1227,

and consequently, |z1 + z2| < |z1| + |z2], as desired.
In order to obtain inequality on the left-hand side note that

|zil = |z1 + 22 + (=22)| < |z1 + 22|l + | — 22| = |z1 + 22| + [z2],

hence
lz1] = lz2| < |z1 + z2l.
. 1 . 1 1
(7) Note that the relation z - — = 1 implies |z| - |-| = 1, or |-| = —. Hence
Z b4 z |z]
27! =z
(8) We have
21 1 -1 -1 —1 |z1]
—|=z1-—|=lz12 |=lzal-lzy | =lz1l - |z2| " = —.
2 22 |z2]
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(9) We can write |z1]| = |z1 — 22 + 22| < |21 — 22| + |z2], s0 |z1 — z2] = |z1] — |z2].
On the other hand,
lz1 — 22l = lz1 + (=22)| < lz1l + | — z2] = lz1] + |z2]. O

Remarks. (1) The inequality |z; +z2| < |z1|+ |z2]| becomes an equality if and only
if Re(z1z2) = |z1llz2|. This is equivalent to z; = tzp, where ¢ is a nonnegative real
number.

(2) The properties 5) and 6) can be easily extended to give
n n
SH [ Zk‘ = [ laxl;
k=1 k=1

n n
> 2| =) lalforallzg € Cok=T,n.
k=1 k=1
As a consequence of(5') and (7) we have

(6"

(5”) |7"*| = |z|" for any integer n and any complex number z.
Problem 1. Prove the identity
21+ 22 + lz1 — 221 = 2021 P + |22

Sfor all complex numbers z1, 25.

Solution. Using property 4 in the proposition above, we obtain

1zt + 222+ 21 — 2P = @1+ 22)@1 +22) + @1 — 22)@1 —22)

2 - - 2 2 - - 2

=g+ -2+ +l2 +lzl"—z21-22 — 2271 + |22]
2 2
=2(|z1|” + |z21).

Problem 2. Prove that if |z1]| = |z2| = 1 and z1z0 # —1, then atza is a real

I +z122
number.

Solution. Using again property 4 in the above proposition, we have

_ ’ _ 1
zi-z1=lz1I"=1landz; = —.
21

1
Likewise, 7o = —. Hence denoting by A the number in the problem we have

22
1 1
T 1t _ 2 _atn
1+71-22 1+l_i l+z122
21 22

so A is a real number.
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Problem 3. Let a be a positive real number and let

Maz{ze(C*:

1
2+ -
z

~d}.

Find the minimum and maximum value of |z| when 7 € M,.

1
Solution. Squaring both sides of the equality a = |z + —|, we get
Z

1

2 1\ /1 , Z24+@F 1
+-| =zt )2tz )=+ —F—+—
z z Z |z] |z]

G+ -2z + 1
|z|? '

Hence

4

lzI* =1z @ +2)+1=—(z+2D*<0

and consequently

o e |:a2+2—«/a4+4a2 a2+2+«/a4+4a2:|
Z s .
2 2

—a++~a?2+4 a+~a®+4
It follows that |z| € , , SO

2 2
a++~a’+4 . —a++va*+4
max |z = ———, min|z|l= ————
2 2
and the extreme values are obtained for the complex numbers in M satisfying z = —7.

Problem 4. Prove that for any complex number z,

1
lz4+1> —or|2+1] > 1.
V2

Solution. Suppose by way of contradiction that

1
1+zl<—and|l+2z% <1.

N

Setting z = a + bi, with a, b € R yields z? = a® — b? + 2abi. We obtain

1
(A +a®— b2 +4a%p* < 1and (1 + a)? + b2 < 5

and consequently

@ +bH%+2@*-b* <0and2(a® +b*) +4a+1 < 0.
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Summing these inequalities implies
@ +b)*+ (2a+ 1? <0,

which is a contradiction.

7 7
~ < 1— 21 <3,/-
\/;_I—l-zl—i-l 74277 < G

for all complex numbers with |z| = 1.

Problem 5. Prove that

Solution. Let r = |1 + z| € [0, 2]. We have

2-2
2

Then |1 — z + 22| = /|7 — 2¢2|. It suffices to find the extreme values of the function

F:00,21 > R,  f(@) =t++/|7—22.
We obtain
N /7 17— o2 \ﬁ _3 /7
f<\/;>—\/;§r+ 7T=201=F Vg ) =g

as we can see from the figure below.

t?=(042z)-(14+7) =2+2Re(z), so Re(z) =

TR
6 V2

Figure 1.1.

Problem 6. Consider the set
H={zeC: z=x—-14xi, xeR}.

Prove that there is a unique number 7 € H such that |z| < |w| for all w € H.
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Solution. Let w = y — 1 + yi, with y € R.

It suffices to prove that there is a unique number x € R such that
@=D* 427 <= D> 4y’

forally e R.

In other words, x is the minimum point of the function

1\> 1
fiR>ER f(y)=(y—1)2+y2=2y2—2y+1=2<y——> 41

b 1 d 1+1,
n =—andz=—=+ —i.
ence x 2a z > 21

Problem 7. Let x, y, z be distinct complex numbers such that
y=tx+ ({1 -1z, te€(0,1).
Prove that

RM—WIEMM—MIEDW—ML
|z =yl |z — x| ly — x|

Solution. The relation y = rx + (1 — )z is equivalent to
z—y=1t(z—x).
The inequality

- —|x
lz| — |yl . |z] — |x]
lz — yl |z — x|

becomes
lz| = Iyl = t(z] — |x]),

and consequently
Iyl = (A =0z +t]x].

This is the triangle inequality for
y=(0—-1t)z+1x.
The second inequality can be proved similarly, writing the equality
y=tx+(1—-1)z

as
y—x=(1—-1)(z—x).
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1.1.8 Solving quadratic equations
We are now able to solve the quadratic equation with real coefficients
ax2+bx+c=0, a#0

in the case when its discriminant A = b? — 4ac is negative.
By completing the square, we easily get the equivalent form

40 2+_A =0
I\ T 4a2 | T

(o2 (55

—b+iv—A —b— =
and so x; = T,xz =

Observe that the roots are conjugate complex numbers and the factorization formula

Therefore

ax’> +bx +c= a(x —xp)(x — xp)

holds even in the case A < 0.

Let us consider now the general quadratic equation with complex coefficients
az2+bz+c=0, a # 0.

Using the same algebraic manipulation as in the case of real coefficients, we get

This is equivalent to
L b A
“T2a) Taz

(az + b)* = A,

or
where A = b? — 4ac is also called the discriminant of the quadratic equation. Setting
y = 2az + b, the equation is reduced to

y2 =A=u+vi,

where u and v are real numbers.
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This equation has the solutions

yipg==% ,/qu(sgnv),/r_ui )
’ 2 2

where r = |A| and signv is the sign of the real number v.

The roots of the initial equation are

1
212 =—(=b+y12).
2a

Observe that the relations between roots and coefficients

b c
21+tz=—, z2122=-,
a a

as well as the factorization formula
az? +bz+c=a(z—z1)(z — 22)

are also preserved when the coefficients of the equation are elements of the field of
complex numbers C.

Problem 1. Solve, in complex numbers, the quadratic equation
22 —8(1—i)z+ 63— 16i = 0.
Solution. We have
A = (4 — 4i)? — (63 — 16i) = —63 — 16i
and
where A’ = (1—)>2 —ac.

2
The equation

r=|A| =632+ 162 = 65,

y> = —63 — 16i

. 65—63 /65463
has the solution y; 2 = £ > +1i >

) = =£(1 — 8i). It follows that
212 =4 —4i £ (1 — 8i). Hence
z1=5—12i and zp = 3 + 4i.

Problem 2. Let p and q be complex numbers with q # 0. Prove that if the roots of the

quadratic equation x> + px + q*> = 0 have the same absolute value, then L is a real

number.
(1999 Romanian Mathematical Olympiad — Final Round)
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Solution. Let x| and x> be the roots of the equation and let r = |x;| = |x2|. Then
2 2 Eos -
X1 +x X X X1x XX 2 -
p—2=M=—1+—2+2=1—22+%+2=2+—2Re(x1x2)
q X1X2 X2 X1 r r r

is a real number. Moreover,

2
Re(x1%2) > —|x %2 = =2, s0 p—2 > 0.
q
Therefore 4 is a real number, as claimed.
Problem 3. Let a, b, ¢ be distinct nonzero complex numbers with |a| = |b| = |c|.

a) Prove that if a root of the equation az*> + bz + ¢ = 0 has modulus equal to 1,
then b* = ac.
b) If each of the equations

az?+bz4+c=0 and b7*+cz+a=0

has a root having modulus 1, then la — b| = |b — c| = |c — al.
c 1
Solution. a) Let 71, z; be the roots of the equation with |z;| = 1. From zp = — - —
a 71
. c 1 b
it follows that |zo| = ‘—) . ﬁ = 1. Because z1 + z2 = —— and |a| = |b|, we have
a 21 a

|z1 + z2|*> = 1. This is equivalent to

1 1
(21 +22)@1+22) =1, ie, (21 +22) (— + —) =1
21 22

We find that 5
(z1 +22)* = 72122, e, (——) = -,

which reduces to b2 = ac, as desired.
b) As we have already seen, we have b> = ac and ¢> = ab. Multiplying these
relations yields b2c? = a?bc, hence a? = bc. Therefore

a’ +b*+c* =ab + be + ca. (D
Relation (1) is equivalent to
(a—b>+0b-0>*+(—a)?=0,
i.e.,

(@a—b)?>+®B—c)?+2a—b)b—c)+(c—a)’=2a—b)b—c).
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It follows that (a — c)2 = (a — b)(b — ¢). Taking absolute values we find ﬁ2 =ya,
where « = |b—c|, B = |c —al, y = |a — b|. In an analogous way we obtain o = By
and y?> = afB. Adding these relations yields a®> + 2 + y> = af + By + ya, ie.,
(@—PB2+B—y)>+(y—a)>=0.Hencea = = y.

1.1.9 Problems

1. Consider the complex numbers z; = (1, 2), zo0 = (—2, 3) and z3 = (1, —1). Com-
pute the following complex numbers:
a)z1+2z2+23; b)zizo + 2223 + 23215 ©) 212023;
23 Z% + z%
o PZvad
27743

21, 2
d)zf+z§+z§; e)—1+—2+
223

2. Solve the equations:

az+(=57=Q2,-D; b23)+z=(-5-1);
Z
0z-(2,3)=45); d 13 (3,2).
3. Solve in C the equations:

a)z2+z+1=0;, b2+1=0.

n
4.Letz = (0,1) € C. Express Z ¥ in terms of the positive integer n.
k=0
5. Solve the equations:
a)z-(1,2)=(=13); b D-z2=(-1L7.
6.Let z = (a, b) € C. Compute Z2, 73 and 7*.
7.Let zo = (a, b) € C. Find z € C such that 72 = z;.

8.Let z = (1, —1). Compute 7", where n is a positive integer.

9. Find real numbers x and y in each of the following cases:

(1 =2ix+ (1 420y = 1+i; b2 273
a —20)x )y = i; =i,
Y 3+i  3—i

1
C) (4 — 3i)x2 + (3 + 2i)xy = 4y2 — zxz + (3xy — 2y7)i.

10. Compute:

Q) 2—-)(=3+2)S—4i); b)2—-4)G+2i)+ B +4)(—6—1i);
1+i\'* /1-i\® 143\ [(1-iv7\°

C)<1—i) +<1+i>’ d)< 2 T\ T2 :

)3+7i+5—8i

Y273 Ta—ai
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11. Compute:
a) i2000+i1999+i201+i82+i47;
DE,=1+i+i>+i3+---+i"forn>1;
C)il 'iz'i3"'i2000;

d) i+ (=) (=) 710 4 (=),
12. Solve in C the equations:

A =i; bP=—i; o)f=5—i—.

1
13. Find all complex numbers z # O such that z + — € R.
z

14. Prove that:
AE =Q+iV5)+Q2—-iv5) eR;
1 i\" /(2 i\"
b) E = ( 317’) +<70165;> eR
15. Prove the following identities:
a) |z + 2P+l + s+l +al’ =lal + 2P+l +la + 2 + 2315
b) 114+ 21221 + |21 — 221> = (1 + |21 ) + |22%);
Ol —zzf =z — 2P = = ) - |z22?);

D0zi+n+alP+l-a+n+aP+la-—n+nl?+la+n -
=4(|z1* + 122 + 1z3).

1
Z+ -
Z

1
16. Let z € C* such that |73 + == 2. Prove that < 2.
z

17. Find all complex numbers z such that
Izl =1and |22 + 22| = 1.
18. Find all complex numbers z such that
422 + 871> = 8.

19. Find all complex numbers z such that z3 = z.
20. Consider z € C with Re(z) > 1. Prove that
1 1

1
< —.
z 2 2

3
21. Let a, b, ¢ be real numbers and w = —5 + iT. Compute

(a+bw+ ca)z)(a +bw® + cw).
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22. Solve the equations:
a) |z| —2z =3 —4i;
b) |z| +z =3+ 4i;
¢)z> =2+ 11i,wherez=x+ yi and x, y € Z;
d)iz? + (1+2i)z+1=0;
&)zt +6(1+i)z2+5+6i =0;
f)(1+i)z2+2+11i =0.

23. Find all real numbers m for which the equation
P24+@+i)2—3z—(m+i)=0
has at least a real root.

24. Find all complex numbers z such that
7 =@=-2)@+1i)
is a real number.

1
25. Find all complex numbers z such that |z| = ‘— ‘
z

26. Let z1, zo € C be complex numbers such that |z] + z2| = /3 and
|z1] = |z2] = 1. Compute |z; — z2|.

27. Find all positive integers n such that

143\ [(—1-iv3)
) )

28. Let n > 2 be an integer. Find the number of solutions to the equation

=iz

29. Let z1, z2, z3 be complex numbers with
lzil = lz2] = lz3l = R > 0.
Prove that
i — 22l 2 — 3l + 13 — 2l -l — 22l + 122 — 23] - |23 — 21 < 9R%.

30. Let u, v, w, z be complex numbers such that |u| < 1, |[v| = 1 and

v(u —z) . .
T 1 Prove that |w| < 1 if and only if |z| < 1.

U7 —
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31. Let z1, z2, z3 be complex numbers such that
21+224+2z23=0 and |z1| =22l =lz3]=1.

Prove that
4+ + z% =0.
32. Consider the complex numbers z1, 22, . . . , Z, With

lz1l = lz2l = - =zl =7 > 0.

Prove that the number
(@ +22)(@+23) - -1 +20) (@20 +21)
21322 Zn

E

is real.
33. Let z1, z2, z3 be distinct complex numbers such that
lz1] = |z2] = |z3] > 0.

If z1 + 2223, 22 + z123 and z3 + 7122 are real numbers, prove that z;zpz3 = 1.
34. Let x; and x> be the roots of the equation x> — x 4+ 1 = 0. Compute:

a) x12000 + X%OOO; b) x11999 + x21999; c) x{ +x3,forn e N.
35. Factorize (in linear polynomials) the following polynomials:

Axt4+16; b xP—27; o)x3+8 dHxt4+x2+1.
36. Find all quadratic equations with real coefficients that have one of the following

roots:

a)2+i)3—1i); b)5+i'

2—i’
37. (Hlawka’s inequality) Prove that the following inequality

©) i+ 2080 4 3i% + 4%,

|21 + 22| + |z2 + 23] + |23 + 21| < |21l + |z2] + |z3] + |21 + 22 + z3]

holds for all complex numbers z1, 22, 23.

1.2 Geometric Interpretation of the Algebraic
Operations

1.2.1 Geometric interpretation of a complex number

We have defined a complex number z = (x,y) = x + yi to be an ordered pair of
real numbers (x, y) € R x R, so it is natural to let a complex number z = x + yi
correspond to a point M (x, y) in the plane R x R.
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For a formal introduction, let us consider P to be the set of points of a given plane I1
equipped with a coordinate system x Oy. Consider the bijective function ¢ : C — P,
¢(z) = M(x,y).

Definition. The point M (x, y) is called the geometric image of the complex number
z=x+ yi.

The complex number z = x + yi is called the complex coordinate of the point
M (x, y). We will use the notation M (z) to indicate that the complex coordinate of M
is the complex number z.

M(x,y)

10) X M'(x,-y)

M(x, y)
.

Mx,%y)
Figure 1.2.

The geometric image of the complex conjugate 7z of a complex number z = x + yi
is the reflection point M’(x, —y) across the x-axis of the point M (x, y) (see Fig. 1.2).

The geometric image of the additive inverse —z of a complex number z = x + yi is
the reflection M”(—x, —y) across the origin of the point M (x, y) (see Fig. 1.2).

The bijective function ¢ maps the set R onto the x-axis, which is called the real axis.
On the other hand, the imaginary complex numbers correspond to the y-axis, which
is called the imaginary axis. The plane I1, whose points are identified with complex
numbers, is called the complex plane.

On the other hand, we can also identify a complex number z = x + yi with the
vector T = 0—A>/I, where M (x, y) is the geometric image of the complex number z.
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M(x,y)
Yhoooooy ‘
-
J
o| 7T x

Figure 1.3.

Let Vp be the set of vectors whose initial points are the origin O. Then we can define
the bijective function

¢ :C— Vo, w’(z):O—A>/I=?=xT)+y?,

where i, j are the vectors of the x-axis and y-axis, respectively.

1.2.2 Geometric interpretation of the modulus

Let us consider a complex number z = x + yi and the geometric image M (x, y) in the
complex plane. The Euclidean distance O M is given by the formula

OM =/ (xar = x0 + (3 — yo )

hence OM = /x2 4+ y2 = |z| = | 7|. In other words, the absolute value |z| of a
complex number z = x + yi is the length of the segment O M or the magnitude of the
vector @ =x17 +y .

Remarks. a) For a positive real number r, the set of complex numbers with moduli
r corresponds in the complex plane to C(O; r), our notation for the circle C with center
O and radius r.

b) The complex numbers z with |z| < r correspond to the interior points of circle C;
on the other hand, the complex numbers z with |z| > r correspond to the points in the
exterior of circle C.

V3

1
Example. The numbers zz = £= £ —i, k = 1, 2, 3, 4, are represented in the
complex plane by four points on the unit circle centered on the origin, since

|z1] = |z2] = |z3] = |z4] = 1.
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1.2.3 Geometric interpretation of the algebraic operations

a) Addition and subtraction. Consider the complex numbers z; = x1 + yji and 2o =
X2+ yi and the corresponding vectors v = x| T+ v ? and Ty =x2 7 + yz?.
Observe that the sum of the complex numbers is

71 + 22 = (x1 +x2) + (1 + y2)i,
and the sum of the vectors is
—- —
T+ Vo=@ +x) i +Oi+y) /.

Therefore, the sum z; + z5 corresponds to the sum v | + .

M(x1+x2, y1+y2)

Mr(x2, y2)

—
V1 Mi(x1, y1)

Figure 1.4.

Examples. 1) We have (3 + 5i) 4+ (6 + i) = 9 + 6i; hence the geometric image of

the sum is given in Fig. 1.5.

MO.6)  MA(-2.5 |
M3,5
M(4.3)
Lt My(6. 1) 5o~ "4 '\
3 6 9 Py
My(6.-2)
Figure 1.5. Figure 1.6.

2) Observe that (6 — 2i) 4+ (—2 + 5i) = 4 4 3i. Therefore the geometric image of
the sum of these two complex numbers is the point M (4, 3) (see Fig. 1.6).
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On the other hand, the difference of the complex numbers z; and z; is
1 — 22 = (x1 —x2) + (Y1 — )i,
and the difference of the vectors v; and vy is
Ti- Vo=@ -7 01— 7.

Hence, the difference z; — z; corresponds to the difference 7| — 7.
3) We have (=3 +i) — (24 3i) = (=3 +i) + (—2 — 3i) = —5 — 2i; hence the
geometric image of difference of these two complex numbers is the point M (—5, —2)

given in Fig. 1.7.

4 M2, 4)
M>(2,3)
M(5,2)
M (3,1
M;(3,-2)
M(-5,-2)
"o _
M(=2.-3) ME2,-4)
Figure 1.7. Figure 1.8.

4) Note that (3 — 2i) — (=2 — 4i) = (3 —2i) + (2 4+ 4i) = 5 4+ 2i, and obtain
the point M (—2, —4) as the geometric image of the difference of these two complex
numbers (see Fig. 1.8).

Remark. The distance Mj(x1, y1) and M3 (x32, y2) is equal to the modulus of the
complex number z; — z; or to the length of the vector 7| — ¥ 5. Indeed,

IM\Mp| = |21 — 22| = |01 = Va2l = \/(X2 —x)?+ (2 —y*

b) Real multiples of a complex number. Consider a complex number z = x + iy
and the corresponding vector U = X7 + y?. If A is a real number, then the real
multiple Az = Ax + i1y corresponds to the vector

AT =Ax 7 Ay
Note that if A > 0 then the vectors A @ and ¥ have the same orientation and

AT = AT
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When A < 0, the vector A0 changes to the opposite orientation and [A 7| = —A|V"|.

Of course, if A = 0, then A7 = .
y y
M’ (Ax, Ay)
}\, >0 7\« <0
M(x,y)
M(x,y)

0 X X

M'(Ax, Ay)

Figure 1.9.

Examples. 1) We have 3(1 + 2i) = 3 + 6i; therefore M’(3, 6) is the geometric
image of the product of 3 and z = 1 4 2i.

2) Observe that —2(—3 + 2i) = 6 — 4i, and obtain the point M’(6, —4) as the

geometric image of the product of —2 and z = —3 + 2i.
Y M'(3, 6)
6 3
| M(3,2) 5
: 6
| E |
21 4M1,2)
1 3 XN ‘
—4 M'(6, -4)

Figure 1.10.
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1.2.4 Problems

1. Represent the geometric images of the following complex numbers:
21=3+i; 22=—4+2; 53=-5-4i; z4=5-1i;
zs5=1; z6 =-3i; z7=2i; z3=—4

2. Find the geometric interpretation for the following equalities:
a)(=5+4)+2-3i))=-3+1i;
b) (4 —i)+(=6+4i)=-2+3i;
) (—3—-2i)—(-5+i)=2-3i;
d) 8 —1i)— (5 +3i)=3—4i;
e)2(—4 +2i) = -8 4 4i;
f) =3(—1+2i)=3—6i.

3. Find the geometric image of the complex number z in each of the following cases:
a)|lz—2l=3; blz+il<l; ¢o)|z—14+2i|>3;
dz—2]—1z4+2]<2; e0<Re(iz)<1l; H—-1<Im(x) <]
z—2 I1+z
9) Re( eR.

=0; h
D=0 m
4. Find the set of points P (x, y) in the complex plane such that

Wx2+4+iyy—4 =10.

f—

5.Letz; = 1+iand z3 = —1 —i. Find z3 € C such that triangle z, 22, z3 is
equilateral.

6. Find the geometric images of the complex numbers z such that the triangle with
vertices at z, z2 and 23 is right-angled.

7. Find the geometric images of the complex numbers z such that

1

72+ -|=2.
Z
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Complex Numbers

in Trigonometric Form

2.1 Polar Representation of Complex Numbers

2.1.1 Polar coordinates in the plane

Let us consider a coordinate plane and a point M (x, y) that is not the origin.

The real number r = /x2 + y2 is called the polar radius of the point M. The direct
angle t* € [0, 2r) between the vector OM and the positive x-axis is called the polar
argument of the point M. The pair (r, t*) is called the polar coordinates of the point M.
We will write M (r, t*). Note that the function z : R x R\ {(0, 0)} — (0, 00) x [0, 27),
h((x,y)) = (r, t*) is bijective.

The origin O is the unique point such that r = 0; the argument ¢* of the origin is
not defined.

For any point M in the plane there is a unique intersection point P of the ray (OM
with the unit circle centered at the origin. The point P has the same polar argument #*.

Using the definition of the sine and cosine functions we find that
x =rcost™and y = rsint*.

Therefore, it is easy to obtain the cartesian coordinates of a point from its polar coor-
dinates.

Conversely, let us consider a point M (x, y). The polar radius is r = 1/x2 + y2. To
determine the polar argument we study the following cases:
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M(x,y)

P(,1%)

¥

Figure 2.1.

a) If x # 0, from tan * = 24 we deduce that
X

= arctan 24 + k,
X

where
0, for x>0andy >0

k=71 1, for x <Oandanyy
2, for x>0andy <O.

b) If x = 0and y # 0, then

o w/2, for y>0
| 37/2, for y<O.

Examples. 1. Let us find the polar coordinates of the points M (2, —2), M>(—1, 0),
M3(—2+/3, =2), M4y(V/3, 1), M5(3,0), Mg(—2,2), M7(0, 1) and Mg(0, —4).
In this case we have r| = /22 4+ (=2)2 = 24/2; 1} = arctan(—1) + 27 = —% +

7 7
2m = —n, so M, <2\/§, T”)

4
Observe that r; = 1, 5 = arctan0 + 7 = 7, so M>(1, ).
V3 T T T
We have r3 :4,t§k :arctanT+7r = g+n = ?,SOM3 4,? .

3
Note that r4 = 2, t; = arctan % = %, SO My (2, %)
We have r5 = 3, tS* =arctan0 4+ 0 = 0, so M5(3, 0).

3 3
We have rg = 2+/2, t¢ =arctan(—1) + 7 = —% + 7= Tn, so Mg (2«/5, Tn)

b4 T
Note that r; = 1,17 = > so My (1, 5)
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3 3
Observe that rg = 4, té“ = DR soMg (1, -

2. Let us find the cartesian coordinates of the points M} <2, %T), M (3, 7%) and
Ms(1, 1).

We have x; = ZCOS%T = 2(—%) = -1,y = 2sin2?n = ﬁ = ﬁ SO
Mi(=1,/3).

7 342 7 342
Note that x, = 3005% = L_’ y = 3sin7ﬂ - _T\/_, SO
372 342
M, i,_i )
2 2

Observe that x3 = cos 1, yo = sin 1, so M3(cos 1, sin 1).

2.1.2 Polar representation of a complex number

For a complex number z = x 4 yi we can write the polar representation
z =r(cost™ +isint™),

where r € [0, c0) and t* € [0, 27r) are the polar coordinates of the geometric image
of z.

The polar argument ¢* of the geometric image of z is called the argument of z,
denoted by arg z. The polar radius r of the geometric image of z is equal to the modulus
of z. For z # 0, the modulus and argument of z are uniquely determined.

Consider z = r(cost* + i sint*) and let t = ¢* + 2k for an integer k. Then

z = r[cos(t — 2km) +isin(t — 2kmw)] = r(cost +isint),

i.e., any complex number z can be represented as z = r(cost + i sint), where r > 0
and r € R. The set Argz = {t : t* 4 2km, k € Z} is called the extended argument of
the complex number z.

Therefore, two complex numbers z1, zo 7# O represented as
z1 = ri(cost; +isinty) and zo = rr(costy + i sinty)

are equal if and only if r; = r» and #; — #, = 2k, for an integer k.

Example 1. Let us find the polar representation of the numbers:

a)z1=-—-1—1,
b)zp =2+ 2i,
¢)z3 = —1+i+/3,
d)za=1-i3

and determine their extended argument.
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a) As in the figure below the geometric image P;(—1, —1) lies in the third quadrant.

Then r; = V(=12 + (—=1)2 = v/2 and

N y b4 S
tf =arctan~ +m =arctanl +7 = — + 7 = —.
X 4 4
Sm
P —
4
SR
V2
-1
Pi(-1,-1)
Figure 2.2.
Hence 5 5
=2 cos“n» 'sinu]?
21 4 +1 4
and

5
Argz) = {Z + 2km| k € Z} .
b) The point P, (2, 2) lies in the first quadrant, so we can write
ry =22 422 = 2\/2andt§‘ =arctan |l = Z
Hence
b4 b4
22 cos 4 + i sin 4
and
T
Argz = [444 4 2kn|k € Z} .
¢) The point P3(—1, V' 3) lies in the second quadrant, so

2
r3 =2 andt§ = arctan(—x/3) + = —Z +7 =" ;T
Therefore,

5 271+, . 271)
=2|cos . +isin- .-
23 3 3
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P3(-1,/3)
V3
r3
\,;
-2
Figure 2.3.

and
2w
Argzz = { 3 + 2km| k € Z} .
d) The point P4 (1, —+/3) lies in the fourth quadrant (Fig. 2.4), so

: 5
rg=2andt; = arctan(—\/3) + 27 = —g + 27 = ;T

N
N

T4

V3

Py(1, —/3)

Figure 2.4.
Hence
) Sm tisi S
= cos — +isin — |,
z4 3 3
and

Sm
Argzy = {T+2kn|keZ}.

33



34 2. Complex Numbers in Trigonometric Form

Example 2. Let us find the polar representation of the numbers

a)z1 = 2i,
b)z; = —1,
¢) 73 =2,
d) z4 = —3i

and determine their extended argument.
a) The point P; (0, 2) lies on the positive y-axis, so

T T T
ry =2, lik=§, z1=2<cos5+isin§)

and
Argzy = {% +2km| k € Z}.

b) The point P,(—1, 0) lies on the negative x-axis, so
rn=1, t;=mnz=cosw+isinm

and
Argzy = {m + 2kxm| k € Z}.

¢) The point P3(2, 0) lies on the positive x-axis, SO
r3=2, t; =0, 2z3=2(cos0+isin0)

and
Argzz = {2kn| k € Z}.

d) The point P4(0, —3) lies on the negative y-axis, so

3 p 3 ) 3 tisi 3
rq =3, =, =2|cos — +isin—
4 4= 8 2 2
and 3
i
Argz4 = {7 +2km| k € Z} .
Remark. The following formulas should be memorized:
1 =cosO+isin0; i:cosz—i—isinz;
2 2
. . 37 .. 3w
— 1l =cosm +isinm; —l=0057+1s1n7.

Problem 1. Find the polar representation of the complex number

z=1+4cosa+isina, a € (0,2m).
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Solution. The modulus is

lz] = \/(1 +cosa)? +sina = /2(1 4+ cosa) = /4coszg =2 ‘cosg .
The argument of z is determined as follows:

b1
a)Ifa € (0, m), then % € (O, 5) and the point P (1 4 cosa, sina) lies on the first
quadrant. Hence

N sina a a
t" = arctan —— = arctan (tan —) = —,
1+cosa 2

and in this case
= 2cos 4 (cos 4 + i sin E)
¢ 2 %7 2)

b) If a € (m,2m), then % € (% n) and the point P(1 + cosa, sina) lies on the
fourth quadrant. Hence

t* t (t a>+2 a +2 a+
= arctan ({ tan — T =——7 T = — T
2 2 2

and
= —2cos a <cos (ﬁ + rr) + i sin <g + n))
¢ 2 2 2 '
c)Ifa =m,thenz =0.

Problem 2. Find all complex numbers z such that |z| = 1 and

Solution. Let z = cosx + i sinx, x € [0, 27). Then

z zZ 122 4+ 72|
1: = - = —
Z z |z|2
= |cos2x + i sin2x + cos2x — i sin 2x|
= 2| cos2x|
hence
1 1
COSZXZEOI‘COSZ)C:——.
1
If cos2x = z,then
T 5w T 117
X1=—, X2=—, X3=—, X4=
T T e PT 6 T
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1
If cos2x = —5 then

b4 27 4 5w
Xs=—=, X6=-—7%, X7=-—7, X§=—.
3 3 3 3
Hence there are eight solutions
Zk =cosxg +isinxg, k=1,2,...,8.

2.1.3 Operations with complex numbers in polar representation
1. Multiplication

Proposition. Suppose that
z1 = ri(costy +isinty) and 7o = rp(costy + i sinty).

Then
2122 = r1r2(cos(ty + 1) +1isin(t) + 12)). (D

Proof. Indeed,
z122 = rirp(costy + i sinty)(costy + i sinty)

= rirp((cos ty costp — sinty sinty) + i(sint; costr + sinty costy))
= rira(cos(ty + 1) + i sin(t; + 1)). O

Remarks. a) We find again that |z1z2| = |z1] - |z2].
b) We have arg(z1z2) = arg z1 + arg zo — 2k, where

k= 0, for argzy +argzy < 2m,
B 1, for argz)+argzy > 2m.

c¢) Also we can write Arg (z1z2) = {argz| +argzy + 2k : k € Z}.
d) Formula (1) can be extended to n > 2 complex numbers. If z; = rr(cost; +
isinty),k=1,...,n,then

2122 Zp =112 - rp(cos(ty + 1 + - -+ 1) Fisin(t + 0+ -+ 1),

The proof by induction is immediate. This formula can be written as

ﬁzk=ﬁrk<cos2n:tk+isinitk>. 2)
k=1 k=1 k=1 k=1
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Example. Let 71 = | — i and z5 = +/3 +i. Then
7 7
21 =x/§<COSTn+iSinT7T>, zg=2<cos%+isin%)

and

7 7
weslo( o) om (543

23 23
=2\/§<cosl—;+isinl—;>.
2. The power of a complex number

Proposition. (De Moivre!) For z = r(cost + i sint) and n € N, we have

7" = r"(cosnt +isinnt).

Proof. Apply formula (2) for z = z; =z = - - - = z, to obtain

=r-r---r(cos(t+t+---+t)+isint+r+---+1))
N ——’ < — e [ S —

n times n times n times
= r"*(cosnt + i sinnt).

Remarks. a) We find again that |7"| = |z|".
b) If r = 1, then (cost + i sin?)" = cosnt + i sinnt.
c) We can write Argz" = {nargz + 2kmw : k € Z}.

Example. Let us compute (1 + i)',

37

3)

T T
The polar representation of 1 + i is v/2 (cos 7 + i sin Z) Applying de Moivre’s

formula we obtain

(14 0)1000 — (/2)1000 (cos 1000% +isin 1000%)

= 2% (cos 2507 + i sin2507) = 279,
Problem. Prove that
sin5t = 16sin® t — 20sin> ¢ + 5sint;

cos 5t = 16cos” t — 20 cos> ¢ + 5cost.

! Abraham de Moivre (1667—1754), French mathematician, a pioneer in probability theory and trigonom-

etry.
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Solution. Using de Moivre’s theorem to expand (cos? + i sint)°, then using the
binomial theorem, we have

08 5t + i sin 5¢ = cos” ¢ + 5i cos* ¢ sint + 10i2 cos> ¢ sin® t

+10i3 cos? t sin® t + 5i* cos ¢ sin* t + i° sin’ .

Hence
cos 5t + i sin5¢ = cos® t — 10 cos’ t(1 — cos’ 1) + Scost(l — cos’ 1)?
+i(sint(1 —sin® ) sint — 10(1 — sin®¢) sin® ¢ + sin> 7).
Simple algebraic manipulation leads to the desired result.
3. Division

Proposition. Suppose that
z1 =ri(costy +isintp), zo =ry(cost, +isint) #O0.

Then
21 n . .
— = —[cos(t; — tr) +isin(t] — 1p)].
22 n

Proof. We have

71 ri(costy +isinty)

7o rp(costy +isintp) -
ri(costy +isinty)(costy —isinty)

ra(cos? 1y + sin’ 1)

r . . .. .
= —[(costjcosty + sinty sinty) + i(sint; costy — sinty costy)]

r
r ..
= —(cos(t; — ) +isin(t; — 12)). O
n
. 21 r 21
Remarks. a) We have again | —| = — = u;
22|

b) We can write Arg (Z—]> = {argz) —argzy + 2km 1 k € Z};
22
c)Forzi =1and z, =z,
11 ..
— =7z = —(cos(—t) +isin(—1));
z r
d) De Moivre’s formula also holds for negative integer exponents 7, i.e., we have

" =r"(cosnt +isinnt).
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Problem. Compute
(1 -3 +i)
= .
(=1 —i4/3)10

Solution. We can write
10 T 4 10 5 T A
(«/E) COST-HSIHT -2 (cosg+lsm—)

6
4 A\ 10
210 cos ik +i sin—n
3 3

210 ( cos 357 + i sin Shi cos o + i sin o
2 2 6 6
40 40
210 cos o +isin o
3 3

557 Lisi 557

coS — + i sin —
3 3

cos il + i sin 407
3 3

=

=cosS5m +isinSmr = —1.

2.1.4 Geometric interpretation of multiplication

Consider the complex numbers
z1 =ri(cost] +isint]), 2z =ra(costy +isinty)

and their geometric images Mi(ry,t}), Ma(r2,13). Let Py, P, be the intersection
points of the circle C(O; 1) with the rays (OM; and (O M. Construct the point
P3 € C(0; 1) with the polar argument #{ + ¢ and choose the point M3 € (O P;3
such that OM3 = OM; - OM;. Let z3 be the complex coordinate of M3. The point
M3(rir2, tf + t3) is the geometric image of the product z; - z».
Let A be the geometric image of the complex number 1. Because
O M3 oM, . OM; oM,

= , e, =

oM, 1 OM, OA

and MTO\M3 = ml, it follows that triangles O AM| and O M M3 are similar.
. . . z
In order to construct the geometric image of the quotient, note that the image of 3

) 22
is M.

2.1.5 Problems

1. Find the polar coordinates for the following points, given their cartesian coordinates:
a) Mi(=3,3);  b) Ma(=4v/3, —4);  ¢) M3(0, =5);
d) Ma(=2,—1); e) Ms(4, -2).
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M3

M
P3 P
M,
i .
t2 » Py
\i
0 A
Figure 2.5.

2. Find the cartesian coordinates for the following points, given their polar coordinates:

3.

3
a) P, (2, %), b) P> (4, 27 — arcsin 5)’ c) P32, m);

T 37
d) P43, —71): e)P5<1,E); f)P6<4,7>.

Express arg(z) and arg(—z) in terms of arg(z).

4. Find the geometric images for the complex numbers z in each of the following cases:

a)lzl=2; b)lz+i]l>2; o)|z—i] <3;

(l) 7T T _— e) Z>— I) I —_

T

6,%); h)|z+1+i|<3and0<argz<%.

@ are(-2) € (

. Find polar representations for the following complex numbers:

1 V3 1 V3
b)22=—z+l—§ C)Z3=———17§

4 2
e)z5s=3-2i; f)ze=—4.

a)z1 =6+ 6i/3;
d) z4 =9 — 9i/3;

. Find polar representations for the following complex numbers:

a €0,2n);
a € [0,2m);
a € [0,2m);

a)z; =cosa —isina,
b) zp = sina +i(1 +cosa),
¢)z3 =cosa + sina + i(sina — cosa),

d)zg4 =1—cosa+isina, a €]0,2r).

. Compute the following products using the polar representation of a complex num-

ber:

2 2
) —2i - (—4 + 4/3i) - (3 + 3i):

a) (l - i£> (—3+3)2V3+2i); b (1 +D)(=2—2i)-i;

d)3- (1 =i)(=5+50).
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Verify your results using the algebraic form.
8. Find |z|, arg z, Arg z, arg 7, arg(—z) for
a)yz=(1—i)6+6i); b)z=(7T—TV3)(—=1—1i).
9. Find |z| and arg z for
3) (23 +2i)3 (141i)8
= ; 5
(11— (24/3 — 2i)8
(—1+i)* 1
b)z= ;
(V3-0D10  @2V3+2i)*
)z =(1+iv3)"+ (1 —iv3)"

10. Prove that de Moivre’s formula holds for negative integer exponents.

11. Compute:
a) (1 —cosa +isina)" fora € [0,27) andn € N;

1 1
b)Z”“FZ—n,ifZ‘FZ:\/g.

2.2 The n™ Roots of Unity

2.2.1 Defining the n™ roots of a complex number

Consider a positive integer n > 2 and a complex number zg # 0. As in the field of real
numbers, the equation

Z"—20=0 (1
is used for defining the n™ roots of number zo. Hence we call any solution Z of the
equation (1) an n” root of the complex number z.

Theorem. Let zg = r(cost™ + i sint™) be a complex number with r > 0 and t* €
[0, 2m).

The number zo has n distinct n™ roots, given by the formulas
t* 4 2km t* 4 2km
Zp = W(cos+—+isin+—)

k=0,1,....,n—1

Proof. We use the polar representation of the complex number Z with the extended

’

argument
Z = p(cosg +ising).

By definition, we have Z" = zg or equivalently
p"(cosng +isinng) = r(cost™ +isint™).

t* 2
We obtain p" = r and ng = t*+2kmw fork € Z;hence p = /r and ¢ = —+k-—
n n
for k € Z.



42 2. Complex Numbers in Trigonometric Form
So far the roots of equation (1) are

Zi = Yr(cos g +isingy) fork € Z.

Now observe that 0 < @9 < ¢1 < -+ < @u—1 < 2w, so the numbers ¢, k €
{0,1,...,n — 1}, are reduced arguments, i.e., go,f = ¢r. Until now we had n distinct
roots of zg:

Zo, 21, ., Zp.

Consider some integer k and let r € {0, 1, ..., n — 1} be the residue of k modulo n.
Then k = nqg + r for g € Z, and

t* 27 t* 27
pp=—+mg+r)—=—+r—+2qn = ¢ +2qm.
n n n n

It is clear that Z; = Z,. Hence
(Ze: keZ}y={Zo, Z1,..., Zn1}.

In other words, there are exactly n distinct n'™ roots of zg, as claimed. O

The geometric images of the n'™ roots of a complex number zo # 0 are the vertices
of a regular n-gon inscribed in a circle with center at the origin and radius /7.

To prove this, denote My, M1, ..., M,_ the points with complex coordinates Zy,
Zi,..., Zy_1.Because OM; = |Zy| = ¥/r fork € {0,1,...,n — 1}, it follows that
the points My lie on the circle C(O; /r). On the other hand, the measure of the arc
MkAA/IkH is equal to

t*+ 2k + )m — (t* +2kn) 27
arg Zy4 —arg Zy = p =—

3

—~

forallk € {0, 1,...,n — 2} and the remaining arc M,,_1 My is
2 2
— =21 —(n—1)—.
n n

Because all of the arcs MoM|, M M>, ..., M,_1 My are equal, the polygon
MoM; - - - M,,_ is regular.

Example. Let us find the third roots of the number z = 1 4 i and represent them in
the complex plane.

The polar representation of z = 1 4 i is

:ﬁ( T Z)
Z cos4+lsm4
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The cube roots of the number z are

2 2
zk=f/§(cos<l+k—”>+isin<£+k—”>>, k=0,1,2,

12 3 12 3

or, in explicit form,
T .
Zy = %(Cos—+ism—>,

12 12
3 3
Z) = %(cos%%—isin%)

and
12
Using polar coordinates, the geometric images of the numbers Zg, Z1, Z; are

Mo (V2. 2. (fz %”) M (ﬁ ””).

12 12

17 17
Zzzf/§<cos1—;+isin n)‘

The resulting equilateral triangle MyM M, is shown in the following figure:

y
Ml

M,

Figure 2.6.

2.2.2  The n™ roots of unity

The roots of the equation Z" — 1 = 0 are called the n™ roots of unity. Since 1 =
cos 0 + i sin 0, from the formulas for the n™ roots of a complex number we derive that

the n roots of unity are
2km 2km
gr=cos— +isin—, ke{0,1,2,...,n— 1}
n n

Explicitly, we have
gog =cos0+isin0=1;
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2 . 27
&1 =COS— +18SIn — = ¢g;
n n
47 . 4n 5
&) =COS — —+1SIn — = g7,
n n

2(n —1 2(n —1
—(n d + i sin —(n d n=1,

&n—1 = COS =¢

The set {1, ¢, e, ..., 8”’]} is denoted by U,,. Observe that the set U,, is generated
by the element ¢, i.e., the elements of U, are the powers of ¢.

As stated before, the geometric images of the n™ roots of unity are the vertices of a
regular polygon with n sides inscribed in the unit circle with one of the vertices at 1.

We take a brief look at some particular values of .

i) For n = 2, the equation 72 — 1 = 0 has the roots —1 and 1, which are the square
roots of unity.

ii) For n = 3, the cube roots of unity, i.e., the roots of equation Z 3_1=0are given
by

2kn . 2km
sk:cos—+lsmTforke{0,1,2}.

3
Hence
2 2 1 3
g =1, 81=cosT+isin?=_§+i§:8
and

4w . 4w 1 V3
& =cos— +isin—=—= —i— =¢~°.

3 3 2 2

They form an equilateral triangle inscribed in the circle C(O; 1) as in the figure

T~

below.

R

Figure 2.7.
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iii) For n = 4, the fourth roots of unity are

2k 2k
&k =cosTﬂ+isinTﬂ fork=0,1,2,3.

In explicit form, we have

.. s .. T .
gg=cos0+isin0=1; e =cos— +isin— =i;
2 2
.. 37 .. 3m .
ezzcosrr—i—lsmn:—land%:cosT—i—lmn?:—z.

Observe that Uy = {1, 1, i2, i3} = {1,i, —1, —i}. The geometric images of the
fourth roots of unity are the vertices of a square inscribed in the circle C(O; 1).
y

i

—i

Figure 2.8.

The root ¢, € U, is called primitive if for all positive integer m < n we have
el # 1.

Proposition 1. a) If n|q, then any root of Z" — 1 =0 isarootof Z9 — 1 = 0.

b) The common roots of Z™ — 1 = 0 and Z" — 1 = 0 are the roots of Z¢ — 1 = 0,
where d = ged(m, n), i.e., U, NU, = Uy.

2k 2k
¢) The primitive roots of Z™ — 1 = 0 are g, = cos —— +1i sin —, where 0 < k <
m m
m and gcd(k, m) = 1.

Proof. a)If g = pn,then Z9 — 1 = (ZM)P —1 = (Z" — )(ZP~Dn ... 4 7"+ 1)

and the conclusion follows. 5 )
7 7 b
b) Consider £, = cos ZPT 1 isin 22 arootof 2 — 1 =0 and &, = COS AT
5 m m n
b4

i sin 22 4 oot of Z" — 1 = 0. Since lepl = |8:I| =1, we have ¢, = 8; if and only
n
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. , . 2pm 2qm ) ..
if arge, = arge,, i.e., — = —— + 2rx for some integer r. The last relation is
m n
equivalent to pP_q_ r, thatis, pn — gm = rmn.
m n
On the other hand we have m = m’d and n = n'd, where ged(m’, n’) = 1. From the
relation pn — gm = rmn we find n'p — m’q = rm’n’d. Hence m’|n’ p, so m’| p. That
is, p = p’m’ for some positive integer p’ and
2pr 2p'm'm  2p'm

— — d _
argep = = d - d and &), = 1.

Conversely, since d|m and d|n (from property a), any root of Z¢ — 1 = 0 is a root
of Z" —1=0and Z" — 1 =0.
c¢) First we will find the smallest positive integer p such that 8£ = 1. From the

) » ) 2kpm , . , )
relation & = 1 it follows that = 2k'm for some positive integer k’. That is,
k
®_ k' € Z.Consider d = ged(k, m) and k = k'd, m = m’d, where gcd(k’, m’) = 1.
m

k' pd K
We obtain ljd = —l; € Z. Since k' and m’ are relatively primes, we get m’|p.
m m

Therefore, the smallest positive integer p with slf = 1is p = m’. Substituting in the

relation m = m’d, it follows that p = % where d = ged(k, m).
m

If & is a primitive root of unity, then from relation elf =1L p=—-7it
gcd(k, m)
O

follows that p = m, i.e., gcd(k, m) = 1.
Remark. From Proposition 1.b) one obtains that the equations Z” — 1 = 0 and
Z" — 1 = 0 have the unique common root 1 if and only if ged(m, n) = 1.

Proposition 2. If ¢ € U, is a primitive root of unity, then the roots of the equation

rJrl7 ., 8r+n71

"—1=0arec", ¢ , where r is an arbitrary positive integer.

Proof. Let r be a positive integer and consider & € {0, 1, ...,n—1}. Then (sr“’)" =
(e)th =1,ie, et isarootof Z" — 1 = 0.

We need only prove that ¢”, ¢+, ... &"*"~1 are distinct. Assume by way of con-
tradiction that for r + h1 # r 4+ hy and h; > ho, we have ¢"t"1 = g"+"2 Then
g tha(ghi=ha _ 1) = 0. But &’ 2 £ 0 implies 172 = 1. Taking into account that
h1 — hy < n and ¢ is a primitive root of Z" — 1 = 0, we get a contradiction. (]

Proposition 3. Let 0, 1, . . ., £,_1 be the n™ roots of unity. For any positive integer
k the following relation holds:

& | on ifnlk,
Zej:

0, otherwise.
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. 2 . 2w . C . .
Proof. Consider ¢ = cos — 4 i sin —. Then ¢ € U, is a primitive root of unity,

n n
hence ¢” = 1 if and only if n|m. Assume that n does not divides k. We have
n—1

n—1 ) n—1 i 1 — (8k)n 1 — (8n)k
k. e J k = k J = = -
/Z:;)ej > &) ;(e) — —— =0.

=0

If n|k, then k = gn for some positive integer g, and we obtain

n—1 n—1 n—1 n—1
k qn __ n\g _ _
Y= =) Epi=3 1=n 0
j=0 j=0 j=0 j=0
.. . 27 . 2w
Proposition 4. Let p be a prime number and let ¢ = cos — + isin—. If
p p
ap, ai, ..., ap_1 are nonzero integers, the relation

ap+aje+---+a,_1e"1 =0

holds if and only ifap = a1 = --- = ap_1.

Proof. If ap = a1 = - - - = ap_1, then the above relation is clearly true.

Conversely, define the polynomials f, g € Z[X]by f = a1+a1 X+ - ~—f—ap_1Xp_1
and g = 1 + X + --- + XP~!_If the polynomials f, g have common zeros, then
gcd(f, g) divides g. But it is well known (for example by Eisenstein’s irreducibility
criterion) that g is irreducible over Z. Hence gcd(f, g) = g, so g|f and we obtain
g = kf for some nonzero integer k, i.e.,ag = a; = --- = a,_1. O
Problem 1. Find the number of ordered pairs (a, b) of real numbers such that (a +
bi)?% = a — bi.

(American Mathematics Contest 12A, 2002, Problem 24)

Solution. Let z = a + bi, 7 = a — bi, and |z| = ~/a? + b?. The given relation
becomes 72992 = 7. Note that

127 = 12 = [zl = Iz,
from which it follows that
21(127*" = 1) = 0.
Hence |z] = 0, and (a,b) = (0,0), or |z] = 1. In the case |z] = 1, we have

Z2002 2003

= 7.z = |z|*> = 1. Since the equation
22903 — 1 has 2003 distinct solutions, there are altogether 1 + 2003 = 2004 ordered
pairs that meet the required conditions.

= 7z, which is equivalent to z

Problem 2. Two regular polygons are inscribed in the same circle. The first polygon
has 1982 sides and the second has 2973 sides. If the polygons have any common ver-

tices, how many such vertices will there be?
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Solution. The number of common vertices is given by the number of common roots

of 21982 — 1 = 0 and z%°73 — 1 = 0. Applying Proposition 1.b), the desired number is
d = gcd(1982,2973) = 991.

Problem 3. Let ¢ € U, be a primitive root of unity and let z be a complex number such
that |z — skl <lforallk =0,1,...,n— 1. Prove that z = 0.

Solution. From the given condition it follows that (z — iz —ek) < 1, yielding

|z|2 <z(eh)+7- & k=0,1,...,n—1. By summing these relations we obtain
n—1 n—1
n|Z|2§z<Zek)+Z- sk =o.
k=0 k=0
Thus z = 0.

Problem 4. Let PyP; - - - P,—1 be a regular polygon inscribed in a circle of radius 1.
Prove that:

a) PyPy - PyPy--- PhPy_1 = n;

.o . 2w . (n—=Dm n
b) sin — sin — - - - sin = oS
n n n n—
. mw . 3w . @2n—Drm 1
c) sin — sin — - - - sin = T
2n 2n 2n 2n=

Solution. a) Without loss of generality we may assume that the vertices of the poly-
gon are the geometric images of the n™ roots of unity, and Py = 1. Consider the

: -1 2r . . 27
polynomial f = 7" —1=(z—1)(z—¢)---(z—&"7"), where ¢ = cos — +i sin —.
n n
Then it is clear that

n=f'H=0—-e(1—8)---(1—¢&" .

Taking the modulus of each side, the desired result follows.

b) We have
2k 2k k k k
1—ek=1—cos——isin—n :251n2—n—2isin—ncos—n
n n n n n
. km < o km kn)
=2sin— (sin— —icos— |,
n n n
X .k . . .. .
hence |1 —&*| =2sin—, k= 1,2,...,n — 1, and the desired trigonometric identity
n

follows from a).

c¢) Consider the regular polygon Qo Q1 - - - Q2,—1 inscribed in the same circle whose
vertices are the geometric images of the (2n)™ roots of unity. According to a),

00010002 Q0021 =2n.
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Now taking into account that Q¢ Q> - - - Q,—2 is also a regular polygon, we deduce
from a) that

0002 - 000Q4---Q0Q2m—2 =n.

Combining the last two relations yields

0001 - 0003--- Q0021 =2.

A similar computation to the one in b) leads to

2k — m
Q0Q2k71=251nu’ k=192""7n7
2n
and the desired result follows. 5 5
Let n be a positive integer and let &, = cos il + isin _71 The n'*-cyclotomic
n n

polynomial is defined by
g = ] @—ep.

1<k<n-—1
ged(k,n)=1

Clearly the degree of ¢, is ¢(n), where ¢ is the Euler “totient” function. ¢, is a

monic polynomial with integer coefficients and is irreducible over Q. The first sixteen

cyclotomic polynomials are given below:

o(x)=x—1
¢r(x) =x+1
$3(x) = x> +x +1
Pa(x) =x2+1

¢5(x) =x*+x3+x2+x+1
Po(x) = x> —x +1
@7(x) =0+ X+t 3P+ x+1
dg(x) =x*+1
do(x) = X+ +1
d10(x) =xt -3+t —x+1
b11(x) =x0 4 x93+ 41
() =x*—x2+1
dra) = x2 4 x4 X104y
b14(x) =x0 -+t —x+1
b15(x) =x8 XT3 —x+1
pre(x) = x5 +1
The following properties of cyclotomic polynomials are well known:
1) If ¢ > 1is an odd integer, then ¢4 (x) = ¢, (—x).
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2)If n > 1, then

p, when n is a power of a prime p,
¢n (1) = .
1, otherwise.

The next problem extends the trigonometric identity in Problem 4.b).

Problem 5. The following identities hold:

. km 1 . .
a) l_[ sin — = S’ whenever n is not a power of a prime;
I<k<n—1
gcﬁ(k_,r’:):l
pn)
kmw (=1 e
b) l_[ cos — = W,for all odd positive integers n.
n
I<k<n-—1
gcﬁ(kjr?):l

Solution. a) As we have seen in Problem 4.b),

k L km (. km . km 2 . km kr . km
l—¢,=2sin— (sin— —icos— | = —sin— | cos — +isin— ).

n n n i n n n
We have
2 km ki km
l=¢,(1) = 1_[ (1—8£)= H —sin — [ cos — 4+ i sin —
I<k<n-—1 1<k<n—1 l n n n
gca(ki.n) =1 gca(ki,n )=1
20 . km p(n) o(n)
= — sin — COS —7r + i sin ——7
ifﬂ(") 1<g71 n ( 2 2 )
ged(k,n)=1
29(n) km o)
= H sin— | (=1)2,
(—]) 2 I<k<n—1 n
ged(k,n)=1

where we have used the fact that ¢ (n) is even, and also the well-known relation

1
k = —npn).
ged(k,n)=1
The conclusion follows.
b) We have
2k 2k km km km
1+¢ek =14 cos = +isin —— = 2cos® — + 2i sin — cos —
n n n n n

k k k
:ZCos—n(cos—n—l—isin—n), k=0,1,...,n—1.

n n n
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Because n is odd, from the relation ¢y, (x) = ¢,(—1) it follows that ¢, (—1) =
¢2, (1) = 1. Then

l=g(-D= [ d=ep=D*" [ d+ep

1<k<n-—1 1<k<n-—1
ged(k,n)=1 ged(k,n)=1
o(n) km km . km
= (-1 l_[ 2cos — | cos — + i sin —
1<k<n-—1 n n n
ged(k,n)=1

k
= (=1)¥moem l_[ cos & (cos (p(n)n + i sin (p(n)n>
I<k<n—1 n 2 2
gcﬁ(kjn):l

o) km
= (—1) 2 2¢W | | cos —,
1<k<n—-1 n
ged(k,n)=1

yielding the desired identity.

2.2.3 Binomial equations

A binomial equation is an equation of the form Z" +a = 0, where a € C* and n > 2
is an integer.

Solving for Z means finding the n™ roots of the complex number —a. This is in fact
a simple polynomial equation of degree n with complex coefficients. From the well-
known fundamental theorem of algebra it follows that it has exactly n complex roots,
and it is obvious that the roots are distinct.

Example. 1) Let us find the roots of Z3 + 8 = 0.

We have —8 = 8(cos 7 + i sin ), so the roots are

2% 2%
Zk=2(cosn+3 T 4+ isin Y ”), k ef0,1,2).

3
2) Let us solve the equation AR Z3(1 +i)+i=0.

Observe that the equation is equivalent to
(Z-1)(Z =i =0.

Solving for Z the binomial equations Z> — 1 = 0 and Z3 — i = 0, we obtain the

solutions ok ok
b4 b4
&k ZCOST +isinT fork € {0, 1, 2}

and - -
— + 2k — + 2km
Zp = cos 2— 4 isin 2 7 fork € (0.1,2).
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2.2.4 Problems

1. Find the square roots of the following complex numbers:

1 i
az=1+i; bz=i; )z=—+—F7;
V2 V2
d)z=-2(1+iv3); e)z=7-—24i.
2. Find the cube roots of the following complex numbers:
ayz=—i; b)z=-27, ¢)z=2+2i;
1

3
d)z:z—i%—; e)z = 18 4 26i.

3. Find the fourth roots of the following complex numbers:

Az=2—iv12; bz=+3+i; oz=1i;

d)z=-2i; e)z=-T7+424i.
4. Find the fifth, sixth, seventh, eighth, and twefth roots of the complex numbers given
above.

5.Let U, = {&g, €1, &2, ..., &n—1}. Prove that:
a)egj-g € Uy, forall j,ke{0,1,...,n—1}
b)ej_l € Uy, forall j €{0,1,...,n—1}.
6. Solve the equations:
A2 —125=0; b)z*+16=0;
)3 4+64i =0; d)z—27i =0.
7. Solve the equations:
a)z —2iz*—iz?—2=0; b)+id+i-1=0;
)QR2-30)0+14+5=0, &0+ (247> —2i=0.
8. Solve the equation
F=5c-DE-z+ 1.
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Complex Numbers and Geometry

3.1 Some Simple Geometric Notions and Properties

3.1.1 The distance between two points

Suppose that the complex numbers z1 and z; have the geometric images M and M.
Then the distance between the points M; and M5 is given by

MiM; = |z1 — z2].
The distance function d : C x C — [0, 00) is defined by
d(z1,22) = |z1 — 22|,

and it satisfies the following properties:
a) (positiveness and nondegeneration):

d(z1,z2) > 0forall z1,z0 € C;

d(z1,z2) = 0if and only if z; = z5.

b) (symmetry):
d(z1,22) = d(z2,z1) forall z1,z0 € C.

¢) (triangle inequality):

d(z1,z2) <d(z1,23) +d(z3,22) forall z1, 22,23 € C.
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To justify c) let us observe that
lz1 — 22l = [(z1 — 23) + (23 — 22)| =< |21 — 23] + |23 — 22|,

from the modulus property. Equality holds if and only if there is a positive real number
k such that
73 — 21 = k(z2 — 23).

3.1.2  Segments, rays and lines

Let A and B be two distinct points with complex coordinates a and b. We say that the
point M with complex coordinate z is between the points A and B if z # a, z # b and

the following relation holds:
la—z|+ |z —b| =la—b|.

We use the notation A — M — B.

The set (AB) = {M : A — M — B} is called the open segment determined by the
points A and B. The set [AB] = (AB) U{A, B} represents the closed segment defined
by the points A and B.

Theorem 1. Suppose A(a) and B(b) are two distinct points. The following state-
ments are equivalent:

1) M € (AB);

2) there is a positive real number k such that 7 —a = k(b — z2);

3) there is a real number t € (0, 1) such that z = (1 — t)a + tb, where 7 is the

complex coordinate of M.

Proof. We first prove that 1) and 2) are equivalent. Indeed, we have M € (AB) if and
onlyif |a —z| 4+ |z —b| = |a —b|. That is, d(a, z) +d(z, b) = d(a, b), or equivalently
there is areal k > O such that z — a = k(b — 7).

k t
To prove that 2) < 3),sett = . € (0,1)ork = 11— > 0. Then we have

1 k
z—a=k(Mb—z)ifandonlyif z = ma + mb. Thatis, z = (1 — t)a + tb and
we are done. O

The set (AB = {M| A—M — B or A— B — M} is called the open ray with endpoint
A that contains B.

Theorem 2. Suppose A(a) and B(b) are two distinct points. The following state-
ments are equivalent:

1) M € (AB;

2) there is a positive real number t such that 7 = (1 — t)a + tb, where z is the

complex coordinate of M ;
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3) arg(z — a) = arg(b — a);

4)z—a e RT.
b—a

Proof. It suffices to prove that 1) = 2) = 3) = 4) = 1).
1) = 2).Since M € (ABwehave A— M — B or A— B — M. There are numbers
t,1 € (0, 1) such that

z={U—-ta+thorb=(1—-1Da+Iz.
1
In the first case we are done; for the second case set t = 7 hence
z=th—({t—1a=(—1t)a+th,

as claimed.
2) = 3).Fromz = (1 —t)a + th, t > 0 we obtain

z—a=tb-—a), t >0.

Hence

arg(z — a) = arg(b — a).

3) = 4). The relation

arg 2 —4_ arg(z —a) — arg(b — a) + 2k for some k € Z
. . Z—a . Z—a .
implies arg 5 = 2km, k € Z. Since arg 5 € [0, 2m), it follows that k = 0 and
—da —da
arg IZ? —a = 0. Thus Z —a € RT, as desired.

4) = 1).Lett = Z_ € R*. Hence

z=a+tb—a)=0—t)a+1tb, t > 0.

Ifr € (0,1),then M € (AB) C (AB.
Ifr =1,thenz = band M = B € (AB. Finally, if ¢+ > 1 then, setting / = ; €
(0, 1), we have
b=Ilz+ (1 —Da.

It follows that A — B — M and M € (AB.
The proof is now complete. U
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Theorem 3. Suppose A(a) and B(b) are two distinct points. The following state-
ments are equivalent:

1) M (z) lies on the line AB.
z—a

Z)b e R
—a
3) There is a real number t such that z = (1 — t)a + tb.
27 ISR B ®
b—a b—a
z z 1
5)la a 1]|=0.
b b 1

Proof. To obtain the equivalences 1) < 2) < 3) observe that for a point C such
that C — A — B the line AB is the union (AB U {A} U (AC. Then apply Theorem 2.
Next we prove the equivalences 2) < 4) < 5).

Indeed, we have 2 € R if and only if — = — (Z_“>.

b—a b—a b—a
That is, tTa = E_ a , or, equivalently, a i B ci = (0, so we obtain that
b—a b-a —a b—a
2) is equivalent to 4).
Moreover, we have
z 1 z—a z—a 0
a a 1 |=0ifandonlyif a a 1|=0
b b 1 b—a b—a 0
The last relation is equivalent to
N )
b—a b—a
so we obtain that 4) is equivalent to 5), and we are done. O
Problem 1. Let z1, 22, 23 be complex numbers such that |z1| = |z2| = |z3] = R and

72 # z3. Prove that
infaza + (1 — )33 — 21l = ~= a1 — 22l - |21 — 2al
min (azp —a)z3 — 21| = =121 — 221 - 121 — Z3]-
acR 2R

(Romanian Mathematical Olympiad — Final Round, 1984)

Solution. Let z = az2 + (1 — a)z3, a € R and consider the points Ay, A>, Az, A of
complex coordinates z1, 22, 23, 2, respectively. From the hypothesis it follows that the
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circumcenter of triangle Aj A>Aj3 is the origin of the complex plane. Notice that point
A lies on the line A2 A3, so A1 A = |z — z1] is greater than or equal to the altitude A B
of the triangle Aj A A3.

A

A, B A A,

Figure 3.1.

It suffices to prove that

1 1
AB = —|z1 — — 73l = —A1As - A As.
1 2R|Z1 221121 — z3| FpArA2- A14s

Indeed, since R is the circumradius of the triangle A1 A2 A3z, we have
A1Ay - ApAs - A3Ay
2area[ A1 Az A3] _ 2 4R _ A1Az - A3Ay
Ar Az B Ar Az B 2R ’

A1B =

as claimed.

3.1.3 Dividing a segment into a given ratio

Consider two distinct points A(a) and B(b). A point M (z) on the line AB divides the
segments A B into the ratio k € R \ {1} if the following vectorial relation holds:

MA =k - MB.

In terms of complex numbers this relation can be written as
a—z=k(b—2z)or (1 —k)z =a —kb.

Hence, we obtain
_a—kb
=T
Observe that for k < 0 the point M lies on the line segment joining the points A and

B.Ifk € (0, 1), then M € (AB \ [AB]. Finally, if k > 1, then M € (BA \ [AB].
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As a consequence, note that for k = —1 we obtain that the coordinate of the mid-
b
point of segment [A B] is given by z)y = a -; .

Example. Let A(a), B(b), C(c) be noncollinear points in the complex plane. Then

b
the midpoint M of segment [A B] has the complex coordinate z; = i. The cen-
troid G of triangle ABC divides the median [CM] into 2 : 1 internally, hence its
complex coordinate is given by k = —2, i.e.,

c+2zM_a+b—|—c
1+2 3

G =

3.1.4 Measure of an angle

Recall that a triangle is oriented if an ordering of its vertices is specified. It is posi-
tively or directly oriented if the vertices are oriented counterclockwise. Otherwise, we
say that the triangle is negatively oriented. Consider two distinct points M(z;) and
M>(z2), other than the origin of a complex plane. The angle Ml/O\Mz is oriented if the
points M and M> are ordered counterclockwise (Fig. 3.2 below).

Proposition. The measure of the directly oriented angle
M1 0 M; equals arg Z—z.

21

Proof. We consider the following two cases.

y M,

M,

Figure 3.2.

a) If the triangle M| O M> is negatively oriented (Fig. 3.2), then
M1/07/12 = @ — m =argzy —argz) = arg Z—z.
21
b) If the triangle M O M is positively oriented (Fig. 3.3), then

— — Z
MiOM> =21 — MaOM, = 27 — arg -2,
21
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since the triangle M» O M is negatively oriented. Thus

MTO\M2=2n—argZ—1=2n— <2n—argz—2> :argz—z,
22 71 21

as claimed.

M,
M,

-
o/

Figure 3.3.

Remark. The result also holds if the points O, M1, M3 are collinear.

Examples. a) Suppose that z; = 1 +i and z2 = —1 +i. Then (see Fig. 3.4)

o _—lti_(Clepi-i)

a 1+i 2

SO

Yy . T —— ) 3
MiOM; = argi = 7 and MO M| = arg(—i) = =

M, (1 +i) M, (1 +i)

N

Figure 3.4.

59
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® M, ()

AN,

1 mao

Figure 3.5.

1
b) Suppose that z; =i and zp = 1. Then 2 _ — = —i, so (see Fig. 3.5)
2]

— . 3 — . b4
M1OM;, = arg(—i) = - and M,OM| = arg(i) = 7

Theorem. Consider three distinct points M1(z1), M>(z2) and M3(z3).
—— 3—2

The measure of the oriented angle My M M3 is arg B

22— 21

Proof. The translation with the vector —z; maps the points M1, M>, M3 into the

points O, M}, M}, with complex coordinates O, z> — z1, z3 — z1. Moreover, we have

—

Mm:), = M/,0 M. By the previous result, we obtain

73 — 11
2—121

M,0M), = arg

as claimed. |

Example. Suppose that z1 =4 4 3i,z0 =4 + 7i, z3 = 8 + 7i. Then

=21 4i _i(l—i)_1+i
n—z1 4+4 2 27
SO
MMM L+i_7
= ar = —
3M1 M3 g 3 2
and
MoM, M 2 d—i=1"
= ar = ar — = —.
2M1 M3 gl—i-i g ! 4

Remark. Using polar representation, from the above result we have

3 — 21 .. 3 — 2
cos | arg + s | arg
2 —121 2 =2

(cos Mm3 + i sin Mmg,).

3 — 11

3 — 11

22— 121 22 — 121

3 — <11
72 — 121
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3.1.5 Angle between two lines

Consider four distinct points M;(z;), i € {1, 2,3, 4}. The measure of the angle deter-
23— 21 24 —22

or arg
24— 22 23—z

obtained following the same ideas as in the previous subsection.

mined by the lines M M3 and MM, equals arg . The proof is

3.1.6 Rotation of a point

Consider an angle o and the complex number given by
& =cosa +1isina.

Let z = r(cost 4 i sint) be a complex number and M its geometric image.
Form the product ze = r(cos(t + o) + i sin(¢ 4+ «)) and let us observe that |ze| = r
and
arg(ze) = argz + «.

It follows that the geometric image M’ of ze is the rotation of M with respect to the

origin by the angle «.

y
M'(ze)
M(2)
«
0] X
Figure 3.6.

Now we have all the ingredients to establish the following result:

Proposition. Suppose that the point C is the rotation of B with respect to A by the
angle «.

Ifa, b, c are the coordinates of the points A, B, C, respectively, then
c=a+ (b—a)e, wheree = cosa + i sina.

Proof. The translation with vector —a maps the points A, B, C into the points
0, B, C’, with complex coordinates O, b — a, ¢ — a, respectively (see Fig. 3.7). The
point C’ is the image of B’ under rotation about the origin through the angle o, so
c—a=((b—a)e,orc=a+ (b— a)e, as desired. U
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(07

Figure 3.7.

We will call the formula in the above proposition the rotation formula.

Problem 1. Let ABCD and BN MK be two nonoverlapping squares and let E be the
midpoint of AN. If point F is the foot of the perpendicular from B to the line CK,
prove that points E, F, B are collinear.

Solution. Consider the complex plane with origin at F and the axis CK and FB,
where F B is the imaginary axis.

Let c, k, bi be the complex coordinates of points C, K, B with ¢, k,b € R. The
rotation with center B through the angle 6 = % maps point C to A, so A has the
complex coordinate a = b(1 — i) 4 ci. Similarly, point N is obtained by rotating point
K around B through the angle 6 = —% and its complex coordinate is

n=>b(+1i) — ki.

The midpoint E of segment AN has the complex coordinate

a—+n c—k.
e = = + l’

2 2

so E lies on the line F'B, as desired.

Problem 2. On the sides AB, BC, CD, DA of quadrilateral ABC D, and exterior
to the quadrilateral, we construct squares of centers O1, Oa, O3, Oa, respectively.
Prove that

0103 L 0,04 and 0103 = 0,04.

Solution. Let ABMM', BCNN', CDP P’ and DA Q Q’ be the constructed squares
with centers O1, 0>, O3, O4, respectively.
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Denote by a lowercase letter the coordinate of each of the points denoted by an
uppercase letter, i.e., o1 is the coordinate of Oy, etc.

Point M is obtained from point A by a rotation about B through the angle 6 = %;
hence m = b + (a — b)i. Likewise,

n=c+®b-c)i, p=d+(c—d)i and g =a+ (d —a)i.

It follows that
a+m a+b+ (a—Db)i b+c+b—-o)
0] = = , 0= ——--—— "
2 2 2
c+d+(c—d)i d+a+(d—a)
03=—————andoy = ——«———.
2 2
Then

03 — 0] _c+d—a—b+i(c—d—a+b) _
04 — 02 _a+d—b—c+i(d—a—b+c) -
so 0103 L 0,04. Moreover,

—i € iR",

03 — 0]

=|—-il=1,

04 — 02
hence O1 03 = 0,0y, as desired.

Problem 3. In the exterior of the triangle ABC we construct triangles ABR, BCP,
and C AQ such that
m(PBC) =m(CAQ) = 45°,

m(BCP) = m(QCA) = 30°,
and

m(ABR) = m(RAB) = 15°.

K

Figure 3.8.
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P
P/
’ 03
¢ D N
C
(on
0 2
A B
0,
M’ M
Figure 3.9.

Prove that
m(QRP) =90° and RQ = RP.

Solution. Consider the complex plane with origin at point R and let M be the foot
of the perpendicular from P to the line BC.

A Q

P
Figure 3.10.

Denote by a lowercase letter the coordinate of a point denoted by an uppercase letter.

MC .
From M P = M B and WP = +/3 it follows that

P11 _iand &= — i3,
b—m p—m
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hence
¢+ +/3b b—c .

= + I
P=aT s T4

c+\/§a+ a—c .
= i.
1+V3  1+43

Point B is obtained from point A by a rotation about R through an angle 6 = 150°,

V31,
bZCZ(—T“rEl)-

Simple algebraic manipulations show that P _ i € iR*, hence QR L PR. Moreover,

Likewise,

SO

q
|pl = lig] = |gq|, s0o RP = RQ and we are done.

3.2 Conditions for Collinearity, Orthogonality and
Concyclicity
In this section we consider four distinct points M;(z;), i € {1, 2, 3, 4}.
Proposition 1. The points M1, My, M5 are collinear if and only if

73— 71
e R*.

2 —11

Proof. The collinearity of the points M, M,, M3 is equivalent to Mm3 €

23— 121 . 23— 21
{0, m}. It follows that arg —— € {0, 7} or equivalently

2 — 21 2 —21
claimed. ([l

e R* as

Proposition 2. The lines M1 M, and M3 My are orthogonal if and only if

21—22 .
e iR*.

23 — 24

3
Proof. We have MiMs L M3My if and only if (Mi M2, M3Mas) € {% 7” } This

21—22 .
c iR*. O

is equivalent to arg

— 3
S € {z, _71} We obtain
73 — 24 22 73 — 24

Remark. Suppose that M> = My4. Then MM, | M3M, if and only if g

iR*.
Examples. 1) Consider the points M1 (2—1i), Ma(—142i), M3(—2—1i), M4(1+2i).
Simple algebraic manipulation shows that

3 — 22

21— 22
i3 — 24

=1, hence MM, 1. M3My4.
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2) Consider the points M1(2 — i), Ma(—1+2i), M3(1 4+ 2i), Ma(—2 —i). Then we
have -2 — _j hence M, M L M3Mj.
73— 24

Problem 1. Let z1, 22, 23 be the coordinates of vertices A, B, C of a triangle. If w; =

z1 — zo and wy = 73 — 71, prove that A =90° if and only if Re(w; - wp) = 0.

Solution. We have A = 90° if and only if 2= € iR, which is equivalent to
23— 2
wq . wi . . . wi - Wy
—— € iR, ie, Re <—) = (. The last relation is equivalent to Re < 2) =
—wy —wy —lwa|

0,i.e., Re(w; - wy) = 0, as desired.
Proposition 3. The distinct points M1(z1), M2(z2), M3(z3), M4(z4) are concyclic
or collinear if and only if

_ BT B

k e R*.

21— 21—
Proof. Assume that the points are collinear. We can arrange four points on a circle in
(4 — 1)! = 3! = 6 different ways. Consider the case when M1, M>, M3, M4 are given
in this order. Then My, M, M3, M4 are concyclic if and only if

M MyMs + My MaMs € (37, 7).

That is,
3 —22 i1 — 24
arg + arg € {3, m}.
71— 22 23—
We obtain
23— 22 23— 24
arg —ar € {3n, 7},
21 —22 21— 24
ie., k <O.

For any other arrangements of the four points the proof is similar. Note that £ > 0
in three cases and k < 0 in the other three. O
The number £ is called the cross ratio of the four points M1 (z1), M2(z2), M3(z3)
and My(z4).
Remarks. 1) The points M1, M»>, M3, My are collinear if and only if
3—22

23 — 24
e R* and
21— 22 21 — 24

€ R*.

2) The points M1, My, M3, M4 are concyclic if and only if

i3 — 4

3—20 3—24 23— 22
: € R*, but =—= ¢ R and
21 —22 21— 24 21— 22 21 — 24

k= ¢ R.

Examples. 1) The geometric images of the complex numbers 1, i, —1, —i are con-
—1—-i -1+

1—i 14

cyclic. Indeed, we have the cross ratio k =

1 14
,lgRand +‘l
1—1i 1+

= —1 € R* and clearly

¢R
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2) The points M1(2 — i), M>(3 — 2i), M3(—1+ 2i) and M4(—2 + 3i) are collinear.

—44+4 1- —444
Indeed, k = 0. 171 | cRrand 2 Y _ 4R

—14+i 4-—-4i —14i
Problem 2. Find all complex numbers z such that the points of complex coordinates
2,72, 23, 7% — in this order — are the vertices of a cyclic quadrilateral.

Solution. If the points of complex coordinates z, 72,73, z* — in this order — are the

vertices of a cyclic quadrilateral, then

2-72 P2-7
2 4

—F eR".
-2

72—z
It follows that

_l—i—erz2

1
e R* ie., —1— (z—l——) e R*.
Z z

We obtain z + % eR, ie.,z+ % =7+ % Hence (z —2)(Jz]> — 1) = 0, hence z € R
or|z| =1.

If z € R, then the points of complex coordinates z, 72, 73, z* are collinear, hence it
is left to consider the case |z| = 1.

Let + = argz € [0,27). We prove that the points of complex coordinates
2 47
2, 72, 73, 7% lie in this order on the unit circle if and onlyifz € (O, ?> U <?, 27r> .

Indeed,
a)Ifr e (o, %),then0<t<2t <3t <4t <27 or

O<argz < argz2 < argz3 < argz4 < 2m.

T 2w
b)Ift e E,T),then0§4t—2n<t<2t<3t<27t0r

0< argz4 <argz < argz2 < argz3 < 2m.

2
olIfre Tn,n),then0§3t—27r<t§4t—2n<2t<2nor

0< argz3 <argz < argz4 < argzz.

In the same manner we can analyze the case t € [, 27).
To conclude, the complex numbers satisfying the desired property are

.. . 2 47
z=cost+isint, witht € O,? U ?,n .
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3.3 Similar Triangles

Consider six points Aj(ai), Az(az), Az(az), B1(by), B2(b2), B3(b3) in the complex
plane. We say that the triangles A1 A>A3 and B B> B3 are similar if the angle at Ay is
equal to the angle at By, k € {1, 2, 3}.

Proposition 1. The triangles A1A2A3 and By By B3 are similar, having the same

orientation, if and only if
ay —ail b2 — b1

= . 1
az—a; by —b; M
. .. A1As BB
Proof. We have AA1A>A3 ~ AB1ByBj3 if and only if = and
AlA B B3
— _— — br— b _
A3A1Ay = B3B1B». This is equivalent to jaz — ail = b2 ! and arg @ma
b b ) b|a3—a1| |b3 — b az —aj
arg 2= I.Weobtainaz_al— 277 (]

bz — by as—ar  b3—by’
Remarks. 1) The condition (1) is equivalent to

1 1 1
ap a az |=0.
by by b3

2) The triangles A1(0), A2(1), A3(2i) and B1(0), B2o(—i), B3(—2) are similar, but
opposite oriented. In this case the condition (1) is not satisfied. Indeed,

ar — aj 1-0 1 by — by —i—0 i

as—ay 20—0 2 b3—b -—2-0 2
Proposition 2. The triangles A1A2A3 and By By B3 are similar, having opposite
orientation, if and only if
ay—a; _ by—b
az —dai N 53 —El.

Proof. Reflection across the x-axis maps the points Bj, By, B3 into the points
Mi(by), Ma(b2), M3(b3). The triangles By B B3 and M| M> M3 are similar and have
opposite orientation, hence triangles A1 Ay Az and M| M> M3 are similar with the same

orientation. The conclusion follows from the previous proposition. ]
Problem 1. On sides AB, BC, C A of a triangle A BC we draw similar triangles AD B,

BEC, CFA, having the same orientation. Prove that triangles ABC and DEF have
the same centroid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter.
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Triangles ADB, BEC, CF A are similar with the same orientation, hence

d—a e—-b f-—c

- - _Z7
b—a c—b a—c

and consequently
d=a+b—-a)z, e=b+(c—bz, f=c+(@—o)z.

Then
d+c+f a+b+c
3 37
so triangles ABC and D E F have the same centroid.
Problem 2. Let M, N, P be the midpoints of sides AB, BC, CA of triangle ABC.

On the perpendicular bisectors of segments [AB], [BC], [CA] points C', A’, B’ are

chosen inside the triangle such that
McC’ N A’ . PB’
AB ~ BC CA’

Prove that ABC and A’ B'C’ have the same centroid.

Solution. Note that from
MC' NA" PP
AB ~ BC CA

it follows that tan(m) = tan(A//B\C) = tan(B//a). Hence triangles AC’B, BA'C,
C B’ A are similar and we can proceed as in the previous problem.
Problem 3. Let ABO be an equilateral triangle with center S and let A’B’O be an-
other equilateral triangle with the same orientation and S # A’, S # B’. Consider M
and N the midpoints of the segments A'B and AB'.
Prove that triangles SB'M and SA’N are similar.
(30t IMO — Shortlist)

Solution. Let R be the circumradius of the triangle AB O and let

2 .. 27w
£ =cos?+zsm?.
Consider the complex plane with origin at point S such that point O lies on the positive
real axis. Then the coordinates of points O, A, B are R, Re, Re2, respectively.
Let R + z be the coordinate of point B’, so R — z¢ is the coordinate of point A’. It
follows that the midpoints M, N have the coordinates

_ptza Re> + R — z¢ _ R(E>+ 1) —z¢

i 2 2 - 2
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and

. ia+zy Re+R+z Re+1)+4+z —Ee*+z
N = T/ T/ e T/

Now we have

if and only if

The last relation is equivalentto ¢ - ¢ = 1, i.e., |e|2 = 1. Hence the triangles SB’M
and SA’N are similar, with opposite orientation.

3.4 Equilateral Triangles

Proposition 1. Suppose z1, z2, z3 are the coordinates of the vertices of the triangle
A1 A2 A3. The following statements are equivalent:

a) A1 A2 A3z is an equilateral triangle;

b)lz1 — 22l = |22 — 23l = |z3 — z1l;

)23+ 23+ 25 =120 + 2223 + 2321

-2 -2
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1 1 1

e) n n — 0, where 7 = SLT 218,
Z—21 Z—22 Z—2123 3
2 2 27 .. 27w

) (z1 +ez2 +€°23)(z1 + €722 + €23) = 0, where ¢ = cos 3 + i sin ?;

1 1 1
glzi = z3|=0.

2 73 2

Proof. The triangle AjAA3 is equilateral if and only if AjAyA3 is similar with
same orientation with A A3A1, or

1 1 1
21 z2 z3 | =0,
2 73 21

thus a) & g).
Computing the determinant we obtain

1 1 1
O=|z1 22 z3
2 73 21

=z122 + 2223 + 2321 — (z% + z% + z%)

= —(z1 + €22 + £223) (21 + €220 + €23),

hence g) & ¢) & f).

Simple algebraic manipulation shows that d) < c). Since a) < b) is obvious, we
leave for the reader to prove that a) < e). O

The next results bring some refinements to this issue.

Proposition 2. Let 71, 22, 23 be the coordinates of the vertices Ay, Aa, Az of a pos-
itively oriented triangle. The following statements are equivalent.

a) A1 A2 A3 is an equilateral triangle;

b)z3 —z1 = (22 — 21), where ¢ = cos% +isin %

c) 2o —z1 = €(z3 — 71), where ¢ = cos 5?71 + i sin 5?71

d)z1 + ez0 + €223 = 0, where ¢ = cos ?n + isin Tn

Proof. A1A3A3 is equilateral and positively oriented if and only if A3 is obtained
from A, by rotation about A; through an angle of % That is,

T .. T
Z3=Z1+(COS§+zsm§>(Zz—Zl),

hence a) < b).
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As

Al

Figure 3.12.

Sm
The rotation about A through an angle of EY maps A3z into Aj. Similar considera-
tions show that a) < c¢).
To prove that b) < d), observe that b) is equivalent to

1 3 1 3 1 3
b)Yz =z1+ (5 +i§> (2 —z1) = (5 —i%) 1 + <§ +i\/7_) z2. Hence

1 V3 1 V3
Z1+522+8223=Zl+<—§+i7>22+<———i—>23

(A8
ﬁ =

orb) & d). O
Proposition 3. Let z1, 22, 23 be the coordinates of the vertices A1, A2, A3 of a neg-
atively oriented triangle.
The following statements are equivalent:
a) A1 A, Az is an equilateral triangle;

S . . 5w
b) 73 — z1 = €(z2 — z1), where € = cos 5 + i sin ?

T
¢) 22 — 21 = &(23 — 21), where & = cos 3 +isin E;
2 27 . 27
d)z1+e“720+ez3 =0, wheree:cos?+tsmT.
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Proof. Equilateral triangle Aj Ay A3 is negatively oriented if and only if AjA3Ajzisa
positively oriented equilateral triangle. The rest follows from the previous proposition.
(]

Proposition 4. Let 71, 72, 23 be the coordinates of the vertices of equilateral triangle
A1ArAjs. Consider the statements:

1) A1 Ay A3 is an equilateral triangle;

2)z1°72=22-23 =23 21,

2=z -z3andz3 =z - 23.
Then2) = 1),3) = 1)and2) & 3).

Proof. 2) = 1). Taking the modulus of the terms in the given relation we obtain
lz1] - [22] = lz2] - |z3] = [z3] - [z1l,

or equivalently

lz1] - 1z2] = |z2| - 23] = lz3] - |z1].

This implies
r=lzil = lz2| = |z3l
and
~ 2 2 2
=—, n=—, 3=—.
71 22 23

Returning to the given relation we have

11 22 23

’

22 23 21
or

2 2 2
2] = 2223, 23 =232, 23 = 2122

Summing up these relations yields

z% + z% + z% = 2122 + 2223 + 2321,

so triangle A1 A3 A3 is equilateral.
Observe that we have also proved that 2) = 3) and that the arguments are re-
versible; hence 2) < 3). As a consequence, 3) = 1) and we are done. O

Problem 1. Let 71, 27, 23 be nonzero complex coordinates of the vertices of the triangle
A1ArAs3. Ifz% = 7523 and z% = 7123, show that triangle A1 A, A3 is equilateral.

Solution. Multiplying the relations z§ = z»z3 and z3 = z;z3 yields z3z5 = lezzg,
and consequently z1zo = z%. Thus

z% + z% + z% = z122 + 2223 + 2321,

so triangle A1 A3 A3 is equilateral, by Proposition 1 in this section.
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Problem 2. Let 71, z2, 73 be the coordinates of the vertices of triangle A1 Az Az. If
|z1] = |z2| = |z3| and z1 + z2 + z3 = 0, prove that triangle A1 A, A3 is equilateral.

Solution. The following identity holds for any complex numbers z; and z; (see
Problem 1 in Subsection 1.1.7):

21 — 22 + lz1 + 22 = 221 P + |22 ). ()
From z; + zo + z3 = 0 it follows that z; 4+ zo = —z3, so |z1 + z2| = |z3]. Using
the relations |z1| = |z2| = |z3| and (1) we get |z — Z2|2 = 3|Z1|2. Analogously, we

find the relations |z2 — z3]% = 3|z1|% and |z3 — z1|* = 3|z1/|%. Therefore |z — z2| =
lz2 — z3| = |z3 — 211, i.e., triangle AjA;Aj is equilateral.
1

1
Alternative solution 1. If we pass to conjugates, then we obtain — + — + — = 0.
21 2 23

Combining this with the hypothesis yields z% + z% + z% = 7122 + 2223 + 2321 = 0,
from which the desired conclusion follows by Proposition 1.

Alternative solution 2. Taking into account the hypotheses |z1| = |z2] = |z3] it
follows that we can consider the complex plane with its origin at the circumcenter of
triangle A1 A»Az. Then, the coordinate of orthocenter H is zg =71 +22+23 =0 =
zo. Hence H = O, and triangle A1 A, A3 is equilateral.

Problem 3. In the exterior of triangle ABC three positively oriented equilateral
triangles AC'B, BA'C and C B’ A are constructed. Prove that the centroids of these
triangles are the vertices of an equilateral triangle.

(Napoleon’s problem)

Solution.
B!

C~ C

Figure 3.13.

Let a, b, c be the coordinates of vertices A, B, C, respectively.
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Using Proposition 2, we have
a+ce+be? =0, b+det+ce?=0, c+be+as’=0, (1)

where a’, b’, ¢’ are the coordinates of points A’, B, C’.
The centroids of triangles A’BC, AB’'C, ABC' have the coordinates

4 1 / 4 1 / /! 1 /
a =§(a +b+c), b =§(a+b +c), ¢ =§(a+b+c)’
respectively. We have to check that ¢’ + a”’e + b"e? = 0. Indeed,

3" +ad"e+b'e)=(a+b+)+ (@ +b+c)e+ (a+b +c)e?
=(b+de+ce®)+ (c+be+as’)e+ (a+ e+ be)e? =0.

Problem 4. On the sides of the triangle A BC we draw three regular n-gons, external
to the triangle. Find all values of n for which the centers of the n-gons are the vertices
of an equilateral triangle.

(Balkan Mathematical Olympiad 1990 — Shortlist)

Solution. Let Ag, By, Co be the centers of the regular n-gons constructed externally
on the sides BC, CA, AB, respectively.

Bo
A
Co
B C
27/n
Ao
Figure 3.14.

— 2
The angles ACoB, BAoC, AByC have the measures of —. Let
n

2 . 27
& =C0S — —+18In —
n n
and denote by a, b, ¢, ag, by, co the coordinates of the points A, B, C, Ag, By, Co, re-

spectively.
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Using the rotation formula, we obtain
a=co+ (b—coe;
b =ap+ (c —ap)s;

c =bo+ (a — by)e.

Thus
b—ce c—as a— be
, bo= , Co=

apg =

1—¢ 1—¢ 1—¢°

Triangle AgBoCy is equilateral if and only if
a(% + b(z) + c(% = aopbo + boco + copap.
Substituting the above values of ag, bo, co we obtain
b — c‘e)2 + (c — ae)2 + (a — b&)2
= (b —ce)(c —ae) + (c —ae)(a — be) + (a — be)(c — ae).
This is equivalent to
(I+e+eDa—b)?+ b -+ (—a)il=0.

2 . 2 2 .
It follows that 1 + & +&“ =0, ie., — = 3 and we get n = 3. Therefore n = 3 is

the only value with the desired propegy.
3.5 Some Analytic Geometry in the Complex Plane

3.5.1 Equation of a line

Proposition 1. The equation of a line in the complex plane is
a-z+az+p=0,

wherea € C*, B e Randz = x +iy € C.

Proof. The equation of a line in the cartesian plane is

Ax+By+C =0,

where A, B,C € R and A% + B2 # 0. If wesetz = x +1iy,thenx = it

77—z
= . Thus,
D TEE

and

Az—i—z_Bl,z—z
2

+C=O,
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or equivalently

A+ Bi A — Bi
z C =0.
z( > )—i—z 3 +

Leta =

5
! e C*and B = C € R. Then

Q|

Z+az+ B =0,

as claimed. O

If « = o, then B = 0 and we have a vertical line. If « # o, then we define the
angular coefficient of the line as

A d+ao o +o,
m-—=——=— — = l.
B o0 —o o—o

i

Proposition 2. Consider the lines d| and dy with equations
o Z+a-z+p1 =0

and
a-zt+oa-z+p2=0,
respectively.
Then the lines d| and d> are:
. Lo 00
1) parallel if and only if — = —;
o] o2
2) perpendicular if and only if l + L _ 0;
(S )
3) concurrent if and only ifO[—1 # 2
ap - o

. . art+oy, atan,
Proof. 1) We have d1||d> if and only if m| = m,. Therefore — = —1,
o] — o] oy — o)
_ _ o o
S0 apd] = 12 and we get — = —.
23] o%)
2) We have di L d, if and only if mym, = —1. That is, arer] + oy = 0, or
a; o
—+—==0.
o o)
3) The lines d; and d, are concurrent if and only if m| 7 m;. This condition yields
o o

oo

The results for angular coefficient correspond to the properties of slope. (]
o

The ratio my = —— 1is called the complex angular coefficient of the line d of equa-
o

tion
o-z2+a-z+p4=0.
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3.5.2 Equation of a line determined by two points

Proposition. The equation of a line determined by the points P1(z1) and P>(z2) is

z1 71 1
72 72 1 |=0.
z z 1

Proof. The equation of a line determined by the points P;(x1, y1) and P>(x3, y2) in
the cartesian plane is
xpoy 1
xy y» 1 ]=0.
x oy 1

Using complex numbers we have

a4+ -z |
2 2i
2+z22 2—22 1 1=0
2 2i
21+2 z—2 |
2 2i
if and only if
un+z1 a—z1 1
— | z2+722 z2—722 1 |=0.
4q _ _
z2+z z—7z 1
That is,
z1 21 1
22 2 1]=0,
z z 1
as desired. O

Remarks. 1) The points M1(z1), M2(z2), M3(z3) are collinear if and only if

z1 21 1
2 2 1 |=0.
zz z3 1

2) The complex angular coefficient of a line determined by the points with coordi-

nates z; and z» is
72 — 21
m = .
722 —121
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Indeed, the equation is

21 z1 1
2 22 1 |=0<¢ zin+nz+z221—222—212— 2221 =0
z3 23 1

< 2z2—z1) -z — 72D + 2122 — 2221 = 0.
Using the definition of the complex angular coefficient we obtain

_ -2

2 =21

3.5.3 The area of a triangle

Theorem. The area of triangle A1 A Az whose vertices have coordinates z1, 22, 23 IS

equal to the absolute value of the number

Sl 71 1

- 72 1 |. 1

1l 2 Z_z (D
23 73 1

Proof. Using cartesian coordinates, the area of a triangle with vertices (xg, y1),
(x2, ¥2), (x3, ¥3) is equal to the absolute value of the determinant

RS 1
A=~ 1
) X2 Y2
x3 y3 1
Since
Zk + 7k k — Zk
Xp = , = , k=1,2,3
k 2 k="
we obtain
zi+z1 z1—z1 1 L] 71 1
A=— k) -7 1 |=— 1
g|2tE 2-B l|=—g|a 3
23+723 z3—2723 1 z3 73 1
; z1 z1 1
= — - 1],
4 22 Z_Z
z3 73 1

as claimed. |
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It is easy to see that for positively oriented triangle AjA;A3z with vertices with
coordinates z1, z2, z3 the following inequality holds:

@ z1 1
- 2 1 [>0.
4 2 22

z3 z3 1

Corollary. The area of a directly oriented triangle A1AA3 whose vertices have

coordinates 71, 22, 23 IS
1 _ _ _
area[A|ArAz] = 3 Im(z1z2 + 72223 + z321)- ()

Proof. The determinant in the above theorem is

71 z1 1
2 2 1 | =(z2172 + 2273 + 2321 — 2223 — 2123 — 2221)
z3 73 1

= [(z122 + 2273 + 23271) — (2122 + 2223 + 2321)]

= 2i Im(z122 + 2223 + 2371) = —2i Im(Z122 + 2223 + 2321)-

Replacing this value in (1), the desired formula follows. ]

We will see that formula (2) can be extended to a convex directly oriented polygon
A1Ar -+ A, (see Section 4.3).

Problem 1. Consider the triangle A1 A> A3 and the points My, M», M3 situated on lines
ArAsz, A1A3, A1 Ay, respectively. Assume that My, M, M3 divide segments [A2A3],
[A3A1], [A1A2] into ratios My, A2, A3, respectively. Then

area| My My M3] _ 1 —AidoA3

= . 3
area[ A1 Az Asz] (I =2 =22)(1 —A3) ©

Solution. The coordinates of the points M, M», M3 are

ap — Aas az — Azag ap — Azap

m; = . mp = . om3 =
! 1—X 2 1— X 3 1—2x3
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Applying formula (2) we find that

1
area[ M1 My M3] = 3 Im(@mimy + mom3 + m3my)

_1 [(@ —A@3)(az — rar) (@3 — Aar)(ar — Azaz)
2 (I =ApDd—=22) (I —A2)(1 —A3)
(ar — ra2)(az —)»103)}
1 —=23)(1 = 2xy)

1 I |: 1 —XiAA3 @iar + T3as + T )i|
= —1m ajar azas aszag
2 (I =21 =22)(1 = 23)

1 —XiA2A3
= area[A1A)As].
(I =2 = 22)(1 = A3)

Remark. From formula (3) we derive the well-known theorem of Menelaus: The
points My, M>, M3 are collinear if and only if A\{AzA3 = 1, i.e.,

MiAy M)Az M3A1_1
MiAs MyA; M3A;

Problem 2. Let a, b, ¢ be the coordinates of the vertices A, B, C of a triangle. It is
b4

known that |a| = |b| = |c| = 1 and that there exists a € (O, 5) such that a +

bcosa + csina = 0. Prove that

1 2
1 < areal ABC] < +2f.

(Romanian Mathematical Olympiad — Final Round, 2003)

Solution. Observe that

1= |a|2 = |bcosa —i—csinoz|2
= (bcosa + csina) (b cosa + ¢ sina)

= |b|zcos2a + |c|2 sin® o + (bt 4 bc) sina cos

b+ c?

=1+ Ccos & Sin «.

It follows that b? 4+ ¢? = 0, hence b = Fic. Applying formula (2) we obtain
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1 I
area|ABC] = §| Im(ab + bc + ca)|
1 - _ . - _ .
= El Im[(—bcosa — csina)b + bc — c(bcosa + csinw)]|
1 . _ . _ -
= §| Im(—cosa — sina — besina — becosa + be)|
1 — ) _ 1 . -
= EI Im[bc — (sina + cos @)bc]| = §|Im[(1 + sino 4 cosa)bc]|
1 . — 1 . .
= 5(1 + sina 4+ cos )| Im(bc)| = z(l + sina + cos«)| Im(Ficc)|

1 1
= 5(1 + sina + cosa)| Im(%i)| = 5(1 + sino + cos @)
1 2 2 1

.. T T 3 2 . T
Taking into account that 1 <a+ 1 < 7 we get that - < sin (a + Z) < 1and
the conclusion follows.

3.5.4 Equation of a line determined by a point and a direction

Proposition 1. Let d : az + « - 7+ 8 = 0 be a line and let Py(zp) be a point. The
equation of a line parallel to d and passing through point Py is

[ 2
z—20=——(2—720).
o

Proof. Using cartesian coordinates, the line parallel to d and passing through point

Po(x9, yo) has the equation

oa+o
Yy—Y=1

—(x — Xxp).
o —o

Using complex numbers the equation takes the form

i-7 - _etaz+z 20+
2i 2 a—a\ 2 2 ’
This is equivalent to (@ —@)(z — 20 =2 +20) = (@ +@)(z +Z — 20 — Z0), Or
o
a(z—zo)z—&(E—%).Weobtainz—zoz—E(Z—E). O
Proposition 2. Letd : az+a-z+ B = 0 be a line and let Py(zp) be apoinﬁ The line

o
passing through point Py and perpendicular to d has the equation z —z0 = —(Z —20)-
o
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Proof. Using cartesian coordinates, the line passing through point Py and perpen-

dicular to d has the equation

10{—&( )
—y=—-"- X — Xg).
YN =T e +a 0
Then we obtain
Z—Z_Zo—%_i o—a Z+Z_Zo+%
2i 2 a+a\ 2 2 ’
Thatis, (@ + @)(z —z0 —2+20) = (@ —@)(z —z0 + T — Z0) Or

z—zo)la+a+a—a)=Z—-720)(—a+a+a+a).
We obtain a(z — z9) = a(z —zg) and 7z — 79 = g(f—%). O

3.5.5 The foot of a perpendicular from a point to a line

Proposition. Let Py(zo) be a point and let d : oz + az + B = 0 be a line. The foot of
the perpendicular from Py to d has the coordinate

_azo—azo— B

N 20 '

Proof. The point z is the solution of the system

Z

a-74+a-z+B=0,
a(z —zo) = a(z — 20).

The first equation gives

_ —az—p
1= ———-
(07
Substituting in the second equation yields
oz —ozg=—az— B —a-7p.
Hence __
azo— @70 — B
1=————,
2a
as claimed. O

3.5.6 Distance from a point to a line

Proposition. The distance from a point Py(zg) toalined : o -7 +a-z+ B =0,

o € C* is equal to
_ezo+ o -zo + Bl

2Va o

D
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Proof. Using the previous result, we can write

azo—a-z0 — P
D= ——ZO =
2a

—azp —azo — P
20

_la-zo+oazo+ Bl lazo +azo + Bl
2| Waa

3.6 The Circle

3.6.1 Equation of a circle

Proposition. The equation of a circle in the complex plane is
72 Z4+a-z+a-72+8=0,

where « € Cand B8 € R.

Proof. The equation of a circle in the cartesian plane is

x2+y2+mx+ny+p=0,

mz—l—n2
n .

72—z .
and y = ETH we obtain
1

m,n,peR, p<

Setting x = cte

2 z+z -2z
- =0
|z|* 4+ m > +n 2 +p
or . .
_ m—ni _m-+ni
2 ity +Ii———+p=0.

m — ni
Take ¢ =

proved. ]

€ Cand B = p € R in the above equation and the claim is

Note that the radius of the circle is equal to

m*>  n?
r= T#—Z—p:,/a&—ﬂ.

Then the equation is equivalent to
C+a)z+a) =r

Setting
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the equation of the circle with center at y and radius r is
@E-Me-y)=r’

Problem. Let 71, 22, 23 be the coordinates of the vertices of triangle A1A2A3. The

coordinate 7o of the circumcenter of triangle A1 Ay A3 is

1 1 1
21 22 23
lz11? 122 Iz3)?
z0 = : (1)
1 1 1
21 22 23
DB

Solution. The equation of the line passing through P (zp) which is perpendicular to
the line A A, can be written in the form

2(z1 — 22) +2(z1 — 22) = 20(zZ1 — 22) +20(z1 — 22)- ()

Applying this formula for the midpoints of the sides [A2A3], [A1A3] and for the lines
Ay Az, A1 A3, we find the equations

— =, = 2 2
2(z2 — 73) +2(z2 — 23) = |z21" — |z3]

. 2 2
2(z3 — 71) +2(z3 — z1) = |z31° — |z1]”.

By eliminating 7 from these two equations, it follows that

zZ[(z2 — 73) + (3 — 71 (22 — 23)]

= (z1 — 23)(|221* = |z31%) + (22 — z3) (Iz3 1> — |z11%),

hence
1 1 1 1 1 1
Zlz1 22 3 |=| «u 22 23
DD lz11* 22l Jz3f?

and the desired formula follows.

Remark. We can write this formula in the following equivalent form:

12122 — 23) + 2222(23 — 21) + 2323(21 — 22)
1 1 1
1 2 3

3)

20

21 22 13
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3.6.2 The power of a point with respect to a circle
Proposition. Consider a point Py(zo) and a circle with equation
2 Z2+oa-z+a-z+ B =0,

fora € Cand B € R.
The power of Py with respect to the circle is

p(z0) =z0-z0 +azo+a-Z0 + B.

Proof. Let O(—a) be the center of the circle. The power of Py with respect to the
circle of radius r is defined by p(z9) = OPO2 — 2. In this case we obtain

p(z0) = OP? —r* =|zo+a@® —r? = 20 - 7o + @20 + @20 + o — a@ + f

=z0-20+az0+o-20+ B,

as claimed. |

Given two circles of equations
z-Z4+ar-z4+a1-2+pB1=0 and z-Z+ax-z+az-2+ B =0,

where a1, oy € C, B1, B2 € R, their radical axis is the locus of points having equal
powers with respect to the circles. If P(z) is a point of this locus, then

Z'Z+(XIZ+O[_]'Z+I3] :Z'Z‘FO{ZZ‘F@'Z—FIBL
or equivalently (o1 — a2)z + (@1 — @2)Z + B1 — B2 = 0, which is the equation of a
line.

3.6.3 Angle between two circles
The angle between two circles with equations
- Z4+ar-z+oar -2+ p1 =0
and
z:Z2t+ar-z+02-2+ B =0, aj,;2eC, By, eR,
is the angle 6 determined by the tangents to the circles at a common point.
Proposition. The following formula

B1 + B2 — (ajoz + arorn)

cosf =
2rir;

holds.
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Figure 3.15.

Proof. Let T be a common point and let O1(—o7), O2(—a2) be the centers of the
circles.
The angle 6 is equal to O1T O or 1 — O1T O3, hence

2 2 2
[r{ +r5 — 010;]
2rir;

cosf = |cos OTT\02| =

oy — i + @y — B — |y — @
2rir

o + a0t — Bi — fo — ooy — ot + Ao + 00|
2r1r;

_ B+ B — (viop + )|
2r1r; ’

as claimed. O

Note that the circles are orthogonal if and only if

B1 + B = a1z + ajar.
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Problem 1. Let a, b be real numbers such that |b| < 2a®. Prove that the set of points

with coordinates z such that
122 — a?| = |2az + b

is the union of two orthogonal circles.

Solution. The relation
Iz2 — a2| = |2az + b|

is equivalent to

2 _a%? = 2az + b, ie.,

|z
(22— a»)(F - @) = Qaz + b)(2az + b).
‘We can rewrite the last relation as
2|t — a?(2® +7%) + a* = 4a*|z|* + 2ab(z +2) + b7, ie,

Iz)* — @®[(z + 2)® = 21z%] + a* = 4a®|z|* + 2ab(z + 7) + b*.
Hence
1z|* = 2a%|z2)> + a* = a’(z +2)* + 2ab(z +2) + b, ie.,

(12> = a®? = (a(z +7) + b)*.
It follows that
2 7—a*=a@+2)+borz-7—a’>=—az+7) —b.
This is equivalent to
(z—a)Z—a) =2a*+bor(z+a)Z+a) =2a> —b.

Finally
Iz —al?> =2d>+bor|z+al> =24 —b. (1)

Since |b| < 242, it follows that 2a% + b > 0 and 242 — b > 0. Hence the relations
(1) are equivalent to

lz—a|l =+v?2a?2+bor|z+a|l =+v2a%—b.

Therefore, the points with coordinates z that satisfy |z2 — a®| = |2az + b| lie on
two circles of centers C| and C», whose coordinates a and —a, and with radii R} =

v2a? 4+ b and Ry = ~/2a? — b. Furthermore,

C1C} = 4d® = (vV2a? + b)® + (V24> — b)* = R} + R},

hence the circles are orthogonal, as claimed.
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More on Complex Numbers

and Geometry

4.1 The Real Product of Two Complex Numbers

The concept of the scalar product of two vectors is well known. In what follows we
will introduce this concept for complex numbers. We will see that in many situations
use of this product simplifies the solution to the problem considerably.

Let a and b be two complex numbers.

Definition. We call the real product of complex numbers a and b the number given

by

1 _
a-b= E(Eb—i—ab).

It is easy to see that

P 1 -
a~b:§(ab+5b):a~b;

hence a - b is a real number, which justifies the name of this product.

The following properties are easy to verify.

Proposition 1. For all complex numbers a, b, c, z the following relations hold:
l)a-a= |a|2.

2)a-b=>b-a; (the real product is commutative).

3)a-(b+c) =a-b+a-c; (the real product is distributive with respect to addition).
4) (wa) -b=a(a-b)=a- (ab) foralla € R.
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5)a-b = 0ifand only if OA L OB, where A has coordinate a and B has
coordinate b.

6) (az) - (bz) = |z|*(a - b).

Remark. Suppose that A and B are points with coordinates a and b. Then the real

product a - b is equal to the power of the origin with respect to the circle of diameter
AB.

b
Indeed, let M (%) be the midpoint of [A B], hence the center of this circle, and
1
letr = —AB = §|a — b| be the radius of this circle. The power of the origin with
respect to the circle is
+b 2 a—»bl?
OM? — 2 = a _
" 2 2
(a+b)@+b) (a—b)a—b) ab+ba )
= — = =a- o,
4 4 2
as claimed.

Proposition 2. Suppose that A(a), B(b), C(c) and D(d) are four distinct points.
The following statements are equivalent:

1)AB L CD;

2)(b—a)-(c—d)=0;

—a .. ) b—ay
3) y— € iR” (or, equivalently, Re(d — c> =0).

Proof. Take points M (b — a) and N(d — c) such that OABM and OCDN are
parallelograms. Then we have AB L CD if and only if OM 1 ON.Thatis,m -n =

(b —a) - (d—c) =0, using property 5) of the real product.

The equivalence 2) <« 3) follows immediately from the definition of the real
product. ]

Proposition 3. The circumcenter of triangle ABC is at the origin of the complex
plane. If a, b, c are the coordinates of vertices A, B, C, then the orthocenter H has
the coordinate h = a + b + c.

Proof. Using the real product of the complex numbers, the equations of the altitudes
AA’, BB, CC’ of the triangle are

AA :(z—a)-(b—c)=0, BB : (z—b)-(c—a) =0, CC': (z—c)-(a—b) =0.

We will show that the point with coordinate 7 = a + b + ¢ lies on all three altitudes.
Indeed, we have (h —a) - (b —c¢) = Oifand only if (b + ¢) - (b — ¢) = 0. The last
relation is equivalent to b - b — ¢ - ¢ = 0, or |b|*> = |c|?. Similarly, H € BB’ and
H € CC’, and we are done. O
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Remark. If the numbers a, b, c, 0, h are the coordinates of the vertices of triangle
ABC, the circumcenter O and the orthocenter H of the triangle, then 7 = a+b+c—2o0.

Indeed, taking A" diametrically opposite A in the circumcircle of triangle ABC, the
quadrilateral H BA’C is a parallelogram. If {M} = HA’ N BC, then

_b+c zwt+za  zut20-—a
M= T Ty T 2

Problem 1. Let ABC D be a convex quadrilateral. Prove that

,l.e,zg=a+b+c—2o.

AB?>+ CD? = AD? + BC?

ifand only if AC L BD.

Solution. Using the properties of the real product of complex numbers, we have
AB? + CD* = BC* + DA?
if and only if
b—a)-b—a)+d—c)-d—c)=(c—=b)-(c—b)+(a—4d)-(a—4d).

That is,
a-b+c-d=b-c+d-a
and finally
(c—a)-(d—-b)=0,
or, equivalently, AC L BD, as required.

Problem 2. Let M, N, P, Q, R, S be the midpoints of the sides AB, BC, CD, DE,
EF, FA of a hexagon. Prove that

RN?=MQ*+ PS?

ifandonly if MQ L PS.
(Romanian Mathematical Olympiad — Final Round, 1994)

Solution. Let a, b, ¢, d, e, f be the coordinates of the vertices of the hexagon. The
points M, N, P, O, R, S have the coordinates

a—+b b+c c+d

= , n= , D= ,
2 2 2
d+e e+ f f+a

q: , r = . S = s
2 2 2

respectively.
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Figure 4.1.

Using the properties of the real product of complex numbers, we have
RN? = MQ* + PS?
if and only if
e+ f—b—-c)-(e+f—-b—0)
=(d+4+e—a—-b)-d+e—a—-b)+(f+a—c—d)-(f+a—c—4d).
That is,
d+e—a—->b)-(f+ra—c—d)=0;
hence MQ L PS, as claimed.

Problem 3. Let A{A; - -+ A, be a regular polygon inscribed in a circle of center O
and radius R. Prove that for all points M in the plane the following relation holds:

n
Z MA? =n(OM?* + R?).
k=1

Solution. Consider the complex plane with origin at point O and let Rej be the
coordinate of vertex Ay, where g are the n-roots of unity, k = 1,...,n. Let m be
the coordinate of M.

Using the properties of the real product of the complex numbers, we have

n

i MA} = (m— Rey) - (m — Rey)

k=1 k=1

n
= Z(m~m—2R8k -m+R28k~ek)
k=1

n n
=nlm|> — 2R(Zsk) -m + R? Z lex]?
=1 =1
=n-0OM?+nR> =n(OM? + R?),
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n
since Z e =0.
k=1

Remark. If M lies on the circumcircle of the polygon, then

n
> MA} =R
k=1
Problem 4. Let O be the circumcenter of the triangle ABC, let D be the midpoint of
the segment AB, and let E is the centroid of triangle AC D. Prove that lines CD and
OE are perpendicular if and only if AB = AC.
(Balkan Mathematical Olympiad, 1985)

Solution. Let O be the origin of the complex plane and let a, b, ¢, d, e be the coor-
dinates of points A, B, C, D, E, respectively. Then

a+b atc+d 3a + b+ 2c
and e = 3 = 3 .

Using the real product of complex numbers, if R is the circumradius of triangle
ABC, then

d =

a-a=b-b=c-c= R~
Lines CD and DE are perpendicular if and only if (d — ¢) - e = 0 That is,
(@a+b—2c)-Ba+b+2c)=0.
The last relation is equivalent to
3a-a+a-b+2a-c+3a-b+b-b+2b-c—6a-c—2b-c—4c-c=0,

that is,
a-b=a-c. (D)

On the other hand, AB = AC is equivalent to

b—al*=|c—al*
That is,
b—-a)-b—a)=(c—a) (c—a)
or
b-b—2a-b+a-a=c-c—2a-c+a-a,
hence

a-b=a-c. 2)
The relations (1) and (2) show that CD L OE if and only if AB = AC.
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Problem 5. Let a, b, ¢ be distinct complex numbers such that |a| = |b| = |c| and
|b+ ¢ —al| =|al.
Prove that b 4 ¢ = 0.

Solution. Let A, B, C be the geometric images of the complex numbers a, b, c,
respectively. Choose the circumcenter of triangle ABC as the origin of the complex

plane and denote by R the circumradius of triangle ABC. Then
ad =bb=cc = Rz,
and using the real product of the complex numbers, we have
|b+c—a| = |a| if and only if |b + ¢ — a|* = |a|?.
That is,
(b+c—a)-(b+c—a)=lal ie.,
lal> + 6> +|c>+2b-c—2a-c—2a-b=lal*

‘We obtain
2(R2+b~c—a~c—a-b)=0, ie.,

a-a+b-c—a-c—a-b=0.
It follows that (¢ — b) - (a — c¢) = 0, hence AB 1 AC,i.e., m = 90°. Therefore,

[BC] is the diameter of the circumcircle of triangle ABC,so b + ¢ = 0.

Problem 6. Let E, F, G, H be the midpoints of sides AB, BC, CD, DA of the convex
quadrilateral ABC D. Prove that lines AB and C D are perpendicular if and only if

BC? + AD? = 2(EG? + FH?).

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter. Then
a+b b+c c+d h— d+a

= S 8= 2

Using the real product of the complex numbers, the relation
BC? + AD> =2(EG* + FH?)

becomes
(c=b)-(c—=b)+d—a)-(d—a)
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1 1
=§(C+d—a—b)~(c+d—a—b)+§(a+d—b—c)~(a+d—b—c).

This is equivalent to

c-c+b-b+d-d+a-a—2b-c—2a-d
=a-a+b-b+c-c+d-d—2a-c—2b-d,
or
a-d+b-c=a-c+b-d.
The last relation shows that (@ — b) - (d — ¢) = 0 if and only if AB L CD, as
desired.

Problem 7. Let G be the centroid of triangle ABC and let A1, By, C1 be the midpoints
of sides BC, CA, AB, respectively. Prove that

MA%* 4+ MB? + MC? + 9MG? = 4(MA? + MB? + MC?)

for all points M in the plane.
Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter. Then

a+b+c b+c c+a a+b
=— = , b= , 1= .
3 2 2 2

Using the real product of the complex numbers, we have

ai

MA? + MB*> + MC? + 9MG?
=(m-—a)-(m—a)+(m—>b)-(m—>b)+(m—c)-(m—-c)

a+b+c a+b+c
+9 m—T . m—T

=12im>—=8@+b+c)-m+2(al>+ b>+|c|*>)+2a-b+2b-c+2c-a.

On the other hand,

4(MA3 + MB} + MC?)
b+c b+c c+a
=4||m— > . m—T +{m-— >
c+a a+b a+b
2 2 2

=12m>=8@a+b+c) - m+2(al>+ b+ 1|c|*>)+2a-b+2b-c+2c-a,

so we are done.
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Remark. The following generalization can be proved similarly.
Let AjAz - - - A, be a polygon with the centroid G and let A;; be the midpoint of the
segment [A;Aj],i < j,i,je€{l,2,...,n}.
Then
n
(n—=2)Y MA}+n°MG* =4 MA},
k=1 i<j

for all points M in the plane. A nice generalization is given in Theorem 5, Section 4.11.

4.2 The Complex Product of Two Complex Numbers

The cross product of two vectors is a central concept in vector algebra, with numerous
applications in various branches of mathematics and science. In what follows we adapt
this product to complex numbers. The reader will see that this new interpretation has
multiple advantages in solving problems involving area or collinearity.

Let a and b be two complex numbers.

Definition. The complex number
1 —
axb= E(Eb—ab)

is called the complex product of the numbers a and b.
Note that ! !
axb+axb= E(Eb—a@)—i-z(az—ﬁb) =0,

so Re(a x b) = 0, which justifies the definition of this product.

The following properties are easy to verify:

Proposition 1. Suppose that a, b, c are complex numbers. Then:

1)a xb=0ifand onlyifa = 0orb = 0 ora = Ab, where A is a real number.

2)a x b = —b X a; (the complex product is anticommutative).

3)a x (b+c)=a x b+ a x c (the complex product is distributive with respect to
addition).

4) a(a x b) = (xa) x b = a x (ab), for all real numbers «.

5) If A(a) and B(b) are distinct points other than the origin, then a x b = 0 if and
only if O, A, B are collinear.

Remarks. a) Suppose A(a) and B(b) are distinct points in the complex plane, dif-
ferent from the origin.
The complex product of the numbers a and b has the following useful geometric

interpretation:

b 2i - area[AO B], if triangle O A B is positively oriented;
axb=
—2i -areal AO B], if triangle O AB is negatively oriented.
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Figure 4.2.
Indeed, if triangle O AB is positively (directly) oriented, then

2i -arealOAB] =i - OA - OB -sin(AO B)

b b
=ilal-|b|-sin|larg— | =i-l|a|-|b]-Im| — ~M
a a ||

1 b b 1 _ —
=—lal"|-—=])==@b—ab) =a x b.
2 a a 2

In the other case, note that triangle O BA is positively oriented, hence
2i -areal]OBAl=b xa = —a x b.

b) Suppose A(a), B(b), C(c) are three points in the complex plane.
The complex product allows us to obtain the following useful formula for the area
of the triangle ABC:

1
T(axb+bxc+cxa),
i

if triangle ABC is positively oriented;
areal ABC] =

1
—T(axb+bxc+cxa),
i

if triangle ABC is negatively oriented.

Moreover, simple algebraic manipulation shows that

1 _
arealABC] = 7 Im(ab + bc + ca)

if triangle ABC is directly (positively) oriented.

To prove the above formula, translate points A, B, C with vector —c. The images
of A, B, C are points A’, B’, O with coordinates a — ¢, b — c, 0, respectively. Trian-
gles ABC and A'B’ O are congruent with the same orientation. If ABC is positively
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oriented, then

1
area| ABC] = area| OA'B’] = T((a —c)x (b—2¢))
i
1 1
=—(a—c)xb—(a—c)xc)=—(x(@—c)—>bx(a—rc))
2i 2i
1
:T(cxa—cxc—bxa+bxc)=T(axb+bxc+cxa),
i i
as claimed.
The other situation can be similarly solved.

Proposition 2. Suppose A(a), B(b) and C(c) are distinct points. The following
statements are equivalent:

1) Points A, B, C are collinear.

2)(b—a) x (c—a)=0.

3)axb+bxc+cxa=0.

Proof. Points A, B, C are collinear if and only if areal ABC] = 0,1i.e.,a x b+ b x

¢ + ¢ x a = 0. The last equation can be written in the form (b — a) X (c —a) = 0.0

Proposition 3. Let A(a), B(b), C(c), D(d) be four points, no three of which are
collinear. Then AB||CD if and only if (b —a) x (d —c¢) = 0.

Proof. Choose the points M (m) and N (n) such that OABM and OCDN are paral-
lelograms; thenm =b —aandn =d —c.

Lines AB and CD are parallel if and only if points O, M, N are collinear. Using
property 5, this is equivalent to 0 =m x n = (b — a) x (d — ¢). ]

Problem 1. Points D and E lie on sides AB and AC of the triangle ABC such that

AD AE 3
AB _ AC 4
Consider points E' and D’ on the rays (BE and (CD such that EE' = 3BE and
DD’ = 3CD. Prove that:
1) points D', A, E’ are collinear;
2)AD' = AE'.
a+3b a+ 3c

Solution. The points D, E, D’, E' have the coordinates: d = YR e = YR

¢ =4e—-3b=a+3c—3bandd =4d —3c = a + 3b — 3c,

respectively.
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D’ A E’

Figure 4.3.

1) Since
(a—d) x (e —d)=(Bc—3b) x (6c —6b) = 18(c — b) x (c —b) =0,

using Proposition 2 it follows that the points D’, A, E’ are collinear.

2) Note that
a—d'

e —d

AD’

D'E
s0 A is the midpoint of segment D'E’.
Problem 2. Let ABC DE be a convex pentagon and let M, N, P, Q, X, Y be the mid-
points of the segments BC, CD, DE, EA, M P, N Q, respectively.

Prove that XY ||AB.

27

Solution. Let a, b, ¢, d, e be the coordinates of vertices A, B, C, D, E, respectively.

E
P
0 D
A
Y N
B i c
Figure 4.4.
Points M, N, P, Q, X, Y have the coordinates
b+c c+d d+e
m = , n= , D= ,
2 2 2
e+a b+c+d+e ct+d+e+a
= X=—- -

5 4 , Y= 2 s
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respectively. Then

hence
(y—x)x(b—a):—él—‘(b—a)x(b—a)zo.

From Proposition 3 it follows that XY ||AB.

4.3 The Area of a Convex Polygon

We say that the convex polygon AjA»--- A, is directly (or positively) oriented if
for any point M situated in the interior of the polygon the triangles M Ay Ax+1,
k=1,2,...,n, are directly oriented, where A, ] = Aj.

Theorem. Consider a directly oriented convex polygon A1A3 - -- A, with vertices
with coordinates ay, ay, . . ., a,. Then

1
area[A1Ay--- Ay] = Elm(aaz +axaz + -+ ap_1a, + azay).

Proof. We use induction on n. The base case n = 3 was proved above using the
complex product. Suppose that the claim holds for n = k and note that

area[A1Ay - - - ArAk41] = area[A1Ar - - - Ag] + area[Ax Ax+1A1]

1 - _ o _ 1 - o _
=5 Im(arap + azas + - - - + ax—rax + axar) + 2 Im(axag+1 + axr1a1 + arag)
L _ _ _ _
=3 Im(ayay + azas + - - - + ax_1ax + agag+1 + axy1a1)

1 1
+ 3 Im(aga; + arax) = 3 Im(aiaz + azas + - - - + agary1 + agy1a1),

since Im(axa; + ajar) = 0.
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Alternative proof. Choose a point M in the interior of the polygon. Applying the
formula (2) in Subsection 3.5.3 we have

n
area[A1Ay -+ Ay] = ) areal M Ay Ay 1]
k=1

1< _ _ N
=5 /; Im(zay + axag+1 + ax+12)

1 & 1 <
=5 D Im@caki1) + 5 3 Imax +axiiz)

k=1 k=1
1 n 1 n n 1 n
=5 Im (;ﬁakH) + 3 Im (Z];ak +z Za_j) =3 (Z@akﬂ) )
= = j=1 k=1
since for any complex numbers z, w the relation Im(zw + zw) = 0 holds. (|

Remark. From the above formula it follows that the points Aj(ai), A2(a2), ...,
Ay (ay) are collinear if and only if

Im(ajas + araz + -+ - + ap—1a, + ayar) = 0.

Problem 1. Let PyP;--- P,—1 be the polygon whose vertices have coordinates
Le, ...,e" Vandlet Q001 - Qn—1 be the polygon whose vertices have coordinates

T 2w
Ll4+e, ....,14+e+---+&"! wheree = cos =— + i sin —. Find the ratio of the
n n
areas of these polygons.

Solution. Consideray, = 1+¢& +--- +eX k=0,1,...,n — 1, and observe that
1, [ 1. (et -1 2
i 0, 1= =1 a7, 1 .
area[ Q9 Q1 +++ Q1] = 5 m(};akam) > m(}; —
1 n—1
_ I o Y 2 R

1

1 .27
S nsin—
2le — 1|

n 4 T n T
= = 2sin — cos — = —cotan—,
8sin2 % n n n

n

n—1 n—1
since Z§k+1 =0 and Z k2 — 0.
k=0 k=0

On the other hand, it is clear that

n . 2w 4 T
area| PgP; --- P,—1] = narea[ PO P1] = ) sin — = n sin — cos —.

n n n
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We obtain
.o
areal PP -- - P n sin — cos — T
[PoP1 e _n__n = 4sin% —. (1)
area[QoQ1 -+ On-1] —cotan— "
4 n
Remark. We have Oy Qi1 = |ags1 — ax| = |kt = 1, and Py Py = |ek+1 _
e = le*(e = DI = le*]11 —e| = 1 — ¢l = 2sin ", k = 0,1,...,n — 1. Tt follows
n
that

PP,
SR oginE. k=0.1.....n—1.
Ok Qk+1 n

That is, the polygons PyP; --- P,—1 and Q¢ Q1 --- Q,—1 are similar and the result
in (1) follows.

Problem 2. Let A1Ay--- A, (n > 5) be a convex polygon and let By be the midpoint

of the segment [ApAr+1l, k = 1,2,...,n, where Ayy1 = Ay. Then the following
inequality holds:

1
area[B1By--- B,] > Earea[AlAz - Apl

Solution. Let a; and by be the coordinates of points Ay and B, k = 1,2,...,n. It
is clear that the polygon BB, - - - B, is convex and if we assume that A1As --- A, is
positively oriented, then By B; - - - B, also has this property. Choose as the origin O of
the complex plane a point situated in the interior of polygon A1 A - - - A,,.

We have by = E(ak 4+ ak+1), k=1,2,...,n,and

1 no_ 1 no
area[B1B, --- B,] = 2 Im (; bkbk+1> =3 Im ];(ak + @iy 1)(@k+1 + are2)
1 1 1 & 1 1
=3 Im <1; akak+1) + 3 Im (; ak+1ak+2) + 3 Im (; akak+2>

1 1 n
= JarealAj Az - Ay] + o Im (Z@am)

k=1

= larea[AlAz Al + ! ilm@aﬂz)
2 8 £
1 1 n e
= area[A Ay Ayl + < Y OAr - OAryasin AtO Ay
2 8

1
> Earea[AlAz <Ayl
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We have used the relations

n n
Im <Za_kak+l) =1Im (Z _Clk+lak+2> =2area[A1 A - - Ay,
k=1 k=1

and sin A;{/O—Eﬁ >0,k=1,2,...,n,where A,1» = Aj.

4.4 Intersecting Cevians and Some Important Points
in a Triangle
Proposition 1. Consider the points A’, B', C' on the sides BC, C A, AB of the triangle
ABC such that AA’, BB', CC’ intersect at point Q and let
BAY p CB m AC' =n

AC n

B/Azp CB m

If a, b, c are the coordinates of points A, B, C, respectively, then the coordinate of

3

point Q is

__ma+nb+ pc
= Tt ntp
nb c ma c
Proof. The coordinates of A’, B’, C" are ' = i’ b = +pr and ¢ =
n+p m+ p
ma + nb ma +nb c
L, respectively. Let Q be the point with coordinate g = ma+nb+ pe . We
m+n m+n+p

prove that AA’, BB, CC’ meet at Q.
The points A, Q, A" are collinear if and only if (g — a) x (@’ — a) = 0. This is

<ma+nb+pc ) (nb+pc >
———— —a|x|————a| =0
m+n-—+p n+p

or (nb+ pc — (n+ p)a) x (nb+ pc — (n+ p)a) = 0, which is clear by definition of
the complex product.

equivalent to

Likewise, Q lies on lines BB’ and CC’, so the proof is complete. O

Some important points in a triangle. 1) If 0 = G, the centroid of the triangle
ABC, we have m = n = p = 1. Then we obtain again that the coordinate of G is
a+b+c
—

2) Suppose that the lengths of the sides of triangle ABC are BC = «, CA = 8,
AB = y.If Q = I, the incenter of triangle ABC, then, using the known result

G =

concerning the angle bisector, it follows that m = «, n = B, p = y. Therefore the
coordinate of [ is
_aa+pb+yc

1
= —|aa + Bb+ yc],
a+pB+y 2s[ p vel

21
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1
where s = — (¢ + 8 + y).
3) If Q = H, the orthocenter of the triangle A BC, we easily obtain the relations

BA’ _tanC CB’ _tanA AC’ __tanB
A'C  tanB’ B'A tanC C'B  tanA’

It follows that m = tan A, n = tan B, p = tan C, and the coordinate of H is given

by
_ (tan A)a + (tan B)b + (tan C)c

tan A +tan B +tanC

Z{H

Remark. The above formula can also be extended to the limiting case when the
triangle ABC is a right triangle. Indeed, assume that A — % Then tan A — +o00

tan B)b tan C tan B +tan C
and ( )b+ ( )¢ — 0, ; — 0. In this case zyg = a, i.e., the
tan A tan A

orthocenter of triangle ABC is the vertex A.

4) The Gergonne! point J is the intersection of the cevians AA’, BB’, CC’, where
A’, B’, C’ are the points of tangency of the incircle to the sides BC, CA, AB, respec-
tively. Then

1 1 1
BA' s—y CB _4 AC -8
AC- 1 A1 ¢B 1

s—B s—y s—a

and the coordinate z; is obtained from the same proposition, where

rea +1gb +1yC

Zj =
To +1p+1y

Here rq, rg, r, denote the radii of the three excircles of triangle. It is not difficult to
show that the following formulas hold:
K K K

rOl: k] rg = ’ r = k)
s—a s s—B Vs —y

1
where K = areal ABC] and s = E(oz +B8+vy).

5) The Lemoine? point K is the intersection of the symmedians of the triangle (the
symmedian is the reflection of the bisector across the median). Using the notation from

13 oseph-Diaz Gergonne (1771-1859), French mathematician, founded the journal Annales de Mathéma-
tiques Pures et Appliquées in 1810.
2Emile Michel Hyacinthe Lemoine (1840-1912), French mathematician, made important contributions

to geometry.
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the proposition we obtain

BA'" y* CB o* AC' P
A'C B2 B'A y2 C'B o

It follows that

o?a + B2b + yic
K= T T

6) The Nagel® point N is the intersection of the cevians AA’, BB’, CC’, where
A’, B', C' are the points of tangency of the excircles with the sides BC, CA, AB,
respectively. Then

BA s—y CB s—a AC' s-—8

" BA s—y' CB s—a

AC s—8

and the proposition mentioned before gives the coordinate z of the Nagel point N,

S (s—a)a+(s—p)b+(s—y)
N -+ G-+ G-y

:(1—%)51—1—(1—?)[94—(1—%)0.

Problem. Let o, B,y be the lengths of sides BC, CA, AB of triangle ABC and

suppose o« < B < y. If points O, I, H are the circumcenter, the incenter and the

1
= ;[(s —a)a+ (s —B)b+ (s —y)c]

orthocenter of the triangle ABC, respectively. Prove that

1
aral OTH] = (o = B)(B = y)(y — ),

where r is the inradius of ABC.

Solution. Consider triangle ABC, directly oriented in the complex plane centered
at point O.
Using the complex product and the coordinates of I and H, we have

1 1 b
area[OIH]:_(Ixh):_l:w
2i a+B+y

% x(a—i—b—}—c)]

1
=4—si[(0t—/3)a><b+(ﬂ—)/)b><0+(7/—0l)6><a]

= 2i[(0l — B) -areal]OAB]+ (B — y) -arealOBC] + (y — «) - area| OC A]]
s

_1[( ﬂ)stin2C+(ﬂ )R2sin2A+( )stinZB]
~ sl 2 S YT

3Christian Heinrich von Nagel (1803-1882), German mathematician. His contributions to triangle ge-

ometry were included in the book The Development of Modern Triangle Geometry [13].
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2
= f_s[(“ — B)sin2C + (B — y) sin24 + (y — @) sin2B]

1
= 8—(oz BB -y —a),
.

as desired.

4.5 The Nine-Point Circle of Euler

Given a triangle A BC, choose its circumcenter O to be the origin of the complex plane
and let a, b, ¢ be the coordinates of the vertices A, B, C. We have seen in Section 2.22,
Proposition 3, that the coordinate of the orthocenter H is zg = a + b + c.

Let us denote by Ay, By, C; the midpoints of sides BC, CA, AB, by A’, B’, C’
the feet of the altitudes and by A”, B”, C” the midpoints of segments AH, BH, CH,

respectively.

A
C’ U
B/
H
Cy B,
B” C//
B Ay A C

Figure 4.5.

It is clear that for the points Ay, By, C1, A”, B”, C” we have the following coordi-
nates:
1 1 1
ZA, zi(b"i_c)» ZB :z(c"i_a)’ 2 :z(a'i'b)s

1 1 1
o =a+ E(b +c¢), zpr=b+ E(c +a), zcr=c+ 5(“ +b).

It is not so easy to find the coordinates of A’, B/, C’.

Proposition 1. Consider the point X (x) in the plane of triangle ABC. Let P be the
projection of X onto line BC. Then the coordinate of P is given by

! i
2 X sz C

where R is the circumradius of triangle ABC.

p:
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Proof. Using the complex product and the real product we can write the equations
of lines BC and X P as follows:

BC :(z—b) x (c—b) =0,
XP:(z—x)-(c—b)=0.
The coordinate p of P satisfies both equations; hence we have
(p—b)x(c—b)=0 and (p—x)-(c—b)=0.
These equations are equivalent to
(p=b)C—b)— (P —b)c—b)=0

and
(p—x)Cc—b+(P—-X)(c—b)=0.

Adding the above relations we find
Q@p—b—x)(c—Db)+(—-X)(c—b)=0.

It follows that

1 c—b _  _ 1 c—b _ _
p:z[b—i—x—i—g_l;(x—b)}:z b+X+W(x—b)
c b
1 bc _ - 1 be _
=§|:b+x—ﬁ(x—b)]=§(x—ﬁx+b+c). O

From the above Proposition 1, the coordinates of A’, B/, C’ are

1 b4 bca
r==\a c—— |,
) R2

C(JE
atbre="m )
1 abc
20 =3 a+b+c——).

Theorem 2. (The nine-point circle.) In any triangle ABC the points A1, B, C1, A/,

| =

ZB/:

B, C’, A", B”, C" are all on the same circle, whose center is at the midpoint of the

segment O H, and the radius is one-half of the circumcircle.
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Proof. Denote by Og the midpoint of the segment O H. Using our initial assumption,
it follows that zg, = z(a + b + ¢). Also we have |a| = |b| = |c| = R, where R is the
circumradius of triangle ABC.

1 1 1

Observe that OgA| = |z4, — 20| = §|a| = ER’ and also O9B| = Oy9C| = ER.

1 1

We can write OgA” = |z47 — z0,| = §|a| = —R, and also OgB" = 0yC" = ER

2
The distance OgA’ is also not difficult to compute:

, 1 bca 1
09A=|ZA’_Z09|= E a+b+C—F —§(a+b+c)

3

_ I _
|bca| = W|a||b||c| = m = 5

1
T 2R?

1
Similarly, we get O9gB’ = 09C’' = ER. Therefore OgA| = OgB; = 09C| =
1
O9A’ = O9B' = 09C’' = O9A”" = O9B" = O9C" = ER and the desired property
follows. O

Theorem 3. 1) (Euler” line of a triangle.) In any triangle ABC the points O, G, H
are collinear.
2) (Nagel line of a triangle.) In any triangle ABC the points I, G, N are collinear.

Proof. 1) If the circumcenter O is the origin of the complex plane, we have zp = 0,

726 = =(a+b+c),zg = a+ b+ c. Hence these points are collinear by Proposition
2 in Section 2.22.
o B y 1 o
2)Wehavez; = —a+ —b+ —c,zg6 = =(a+b+c¢),and zy = (1 — —)a—i—
2s 2s 2s 3 s

(1 — E b+ (1 — Z) ¢ and we can write zy = 3zg — 2z7;.
s s

Applying the result mentioned above and properties of the complex product we
obtain (zg — z7) x (zy — z21) = (26 — z21) X [3(z6 — z1)] = 0; hence the points
I, H, N are collinear. ]

Remark. Note that NG = 2G1, hence the triangles OGI and HGN are similar.
It follows that the lines O and NH are parallel and we have the following basic
configuration of triangle ABC (in Figure 4.6):

4L eonhard Euler (1707-1783), one of the most important mathematicians, created a good deal of anal-
ysis, and revised almost all the branches of pure mathematics which were then known, adding proofs, and
arranging the whole in a consistent form. Euler wrote an immense number of memoirs on all kinds of math-
ematical subjects. We recommend William Dunham’s book Euler. The Master of Us All (The Mathematical

Association of America, 1999) for more details concerning Euler’s contributions to mathematics.
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Figure 4.6.

If G, is the midpoint of segment [/ N], then its coordinate is

B+vy) (y +a) (@ +B)
4ds at 4s b+ 4s ¢

1
26, = 5(21 +zy) =

The point G is called the Spiecker point of triangle ABC and it is easy to verify
that it is the incenter of the medial triangle A B1Cj.

Problem 1. Consider a point M on the circumcircle of the triangle ABC. Prove that
the nine-point centers of the triangles MBC, MCA, M AB are the vertices of a trian-
gle similar to triangle ABC.

Solution. Let A’, B’, C’ be the nine-point centers of the triangles MBC, MCD,
M AB, respectively. Take the origin of the complex plane to be at the circumcenter of
triangle ABC. Denote by a lowercase letter the coordinate of the point denoted by an

uppercase letter. Then

, m4+b+c , m4c+a , m4a+b
ia=— b=— (=—
2 2 2
since M lies on the circumcircle of triangle ABC. Then

b’—a’_a—b b—a

c—a a—c c—a
and hence triangles A’B’C’ and ABC are similar.

Problem 2. Show that triangle ABC is a right triangle if and only if its circumcircle

and its nine-point circle are tangent.

Solution. Take the origin of the complex plane to be at circumcenter O of triangle
ABC and denote by a, b, ¢ the coordinates of vertices A, B, C, respectively. Then the
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circumcircle of triangle A BC is tangent to the nine-point circle of triangle ABC if and
2

only if 00y = = This is equival 2 K i 2= R?
yi 9 = ok is is equivalent to O Oy = 4,thatls,|a+b+c| = R~“.

Using properties of the real product, we have

la+b+c>=@+b+c) - (a+b+c)=a*+b>+c*+2a-b+b-c+c-a)
=3R>+2(a-b+b-c+c-a)=3R>+ (Q2R> — > +2R> — B2 +2R*> — y?)
=9R* — (& + B + 77,
where «, B, y are the lengths of the sides of triangle A BC. We have used the formulas
2 2
a-b=R?— y—,b~c = R? — a—,c~a = R? — 'B—,whichcanbeeasilyderived
from the definition of the real product of complex numbers (see also the lemma in
Subsection 4.6.2).

Therefore, a2 + ﬂz + y2 = 8R2, which is the same as sin? A +sin? B +sin? C = 2.
We can write the last relation as 1 —cos2A + 1 —cos2B + 1 — cos2C = 4. This is
equivalent to 2 cos(A 4+ B) cos(A — B) + 2 cos?C =0, i.e.,4cos Acos BcosC = 0,
and the desired conclusion follows.

Problem 3. Let ABC D be a cyclic quadrilateral and let E;, Ep, E., E; be the nine-
point centers of triangles BCD, CDA, DAB, ABC, respectively. Prove that the lines
AE,, BEy, CE., DE4 are concurrent.

Solution. Take the origin of the complex plane to be the center O of the circumcircle
of ABC D. Then the coordinates of the nine-point centers are

1 1 1 1
eu=§(b+c+d), eb=§(c+d+a), ec=§(d+a+b), ed=§(a+b+c).

We have AE, : z = ka + (1 — k)ey, k € R, and the analogous equations for the

1
lines BEy, CE., DE;. Observe that the point with coordinate g(a + b+ ¢ +d) lies

1
on all of the four lines (k = §>, and we are done.

4.6 Some Important Distances in a Triangle
4.6.1 Fundamental invariants of a triangle

1
Consider the triangle ABC with sides «, 8, y, the semiperimeter s = E((X +B84+y),

the inradius r and the circumradius R. The numbers s, r, R are called the fundamental

invariants of triangle ABC.

Theorem 1. The sides a, B, y are the roots of the cubic equation

13— 25t + (s> +r> +4Rr)t — 4sRr = 0.
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Proof. Let us prove that o satisfies the equation. We have

COS —

. A A )
o =2RsinA =4Rsin—cos — and s — o = rcotan— = r ,
2 2 2 A
sin —
2
hence
A — A
cos® = = M and sin®> = = L.
2 4Rr 2 4R(s — @)

A A
From the formula cos? ) + sin? £} = 1, it follows that

a(s —a) ar
+ =1
4Rr 4R(s — )

That is, &> — 2sa? + (s> +r2 + 4Rr)a — 4s Rr = 0. We can show analogously that
B and y are roots of the above equation. O
From the above theorem, by using the relations between the roots and the coeffi-

cients, it follows that
a+p+y=2s,

off + By +ya = s> +r2+4Rr,
affy = 4sRr.

Corollary 2. In any triangle ABC, the following formulas hold:
o+ B2+ y? =2(s> —r> —4Rr),
o> + B3+ y3 =25(s> —3r — 6Rr).
Proof. We have
@+ B2+ yr =@+ B+ ) —20B + By +ya) =4s> —2(s> +r> +4Rr)
=252 —2r2 = 8Rr = 2(s* — r* — 4Rr).
In order to prove the second identity, we can write
@+ B4y =@t B+ Y@+ B+ v —af — By —ya) +3aBy

=25(2s> —2r> —8Rr — s> — r> —4Rr) + 12sRr = 2s(s> = 3r> —6Rr). O
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4.6.2 The distance Of

Assume that the circumcenter O of the triangle A BC is the origin of the complex plane
and let a, b, c be the coordinates of the vertices A, B, C, respectively.

Lemma. The real products a - b, b - c, c - a are given by

2 2 2
a'b=R2—y—, b‘C:Rz_%’ c~a=R2_%.

Proof. Using the properties of the real product we have

v2=la—bP*>=(a—-b)-(a—b)=a*>—2a-b—b>=2R*—2a-b,

and the first formula follows.

Theorem 4. (Euler) The following formula holds:

O1* = R?> — 2Rr.

Proof. The coordinate of the incenter is given by

o B 14
= —a+"p+ L
o 2sa+2s +2sc

SO We can write

o2 =1,2=(% ﬁb Y. (< Eb Y
1211 <2sa+2s +2sc 2sa+2s +2sc

1 2 2 2\ p2 1
— @+ B+ yIHI)R +2— E -b.
12 (" + B+ y9) 12 2 (axB)a
Using the lemma above we find that

1 2 y2
2 2 2 2y p2 2
(0| — (@ + B +y9)R _|__§ Olﬂ(R __>

cyc

= R L gy =R - Lyt Bty
452 452 T 452

1 K
=R2—2—a,3y:R2—20f%~—=R2—2Rr,
S

where the well-known formulas

afy K
—, r
4K K

are used. Here K is the area of triangle ABC.
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Corollary 5. (Euler’s inequality.) In any triangle ABC the following inequality

holds:
R > 2r.

We have equality if and only if the triangle ABC is equilateral.

Proof. From Theorem 4 we have oI? = R(R — 2r) > 0, hence R > 2r. The
equality R — 2r = 0 holds if and only if OI? = 0, i.e., O = I. Therefore triangle

ABC is equilateral.

4.6.3 The distance ON

Theorem 6. If N is the Nagel point of triangle ABC, then
ON =R —2r.

Proof. The coordinate of the Nagel point of the triangle is given by

ZN=<1—%>Q+<1—§>17+(1—%)C.

0N2=|ZN|2=ZN-ZN:chyzc(l—%)z—i-zcyc (1—%) (1-?)0.1)
SR (-1 -0 (-0 (e %)
S () - (1)
s G

To calculate E we note that

E= Z( ‘”ﬁ ) =) 7 ——Z(a+ﬂ>y + 2Zaﬂy

cyc cyc cyc cyc

Sl e By Ly K

cyc cyc cyc cyc §

=—Za + - Zoc + 8Rr.

cyc cyc

Applying the formula in Corollary 2, we conclude that

E = —2(s> —r* —4Rr) 4+ 2(s> = 3r> — 6Rr) + 8Rr = —4r%> +- 4Rr.

]
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Hence ON? = R?> — E = R —4Rr +4r? = (R — 2r)? and the desired formula is
proved by Euler’s inequality. ]

Theorem 7. (Feuerbach’) In any triangle the incircle and the nine-point circle of
Euler are tangent.
Proof. Using the configuration in Section 4.5 we observe that

1 GI GOy
27 GN GO’

Figure 4.7.

Therefore triangles GI O9 and GN O are similar. It follows that the lines / Og9 and

1 1
ON are parallel and 1 Og = 3 ON. Applying Theorem 6 we get / O9 = E(R —-2r)=
R

7 r = Ry — r, hence the incircle is tangent to the nine-point circle. |

The point of tangency of these two circles is denoted by ¢ and is called the Feuer-

bach point of triangle.

4.6.4 The distance OH
Theorem 8. If H is the orthocenter of triangle ABC, then

OH? = 9R? + 2r% + 8Rr — 25>,

Proof. Assuming that the circumcenter O is the origin of the complex plane, the

coordinate of H is
zg =a+b+c.

5Karl Wilhelm Feuerbach (1800-1834), German geometer, published the result of Theorem 7 in 1822.
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Using the real product we can write

OH>=|znl*=zy zu=(a+b+c) - (a+b+c)
= la?+2) ab=3R*+2) a-b.
cyc cyc
Applying the formulas in the lemma (p. 112) and then the first formula in Corol-
lary 2, we obtain

2
OH> =3R +2) (K> = ) = 9K — @ + £ +7")

cyc
=9R?> —2(s> = r> —4Rr) = 9R*> + 2r> 4+ 8Rr — 2s>. O
Corollary 9. The following formulas hold:
2 8 2
1)OG* =R+ =/ + ZRr — =57
) + 5" + oRkr—35°
9 1 1
2) 002 = ZR2 + 5}"2 +2Rr — zs?

Corollary 10. In any triangle ABC the inequality
o + B> +y? <9R?

is true. Equality holds if and only if the triangle is equilateral.

4.7 Distance between Two Points in the Plane of a
Triangle
4.7.1 Barycentric coordinates

Consider a triangle ABC and let «, B, y be the lengths of sides BC, CA, AB, respec-
tively.

Proposition 1. Let a, b, ¢ be the coordinates of vertices A, B, C and let P be a
point in the plane of triangle. If z p is the coordinate of P, then there exist unique real

numbers [Lg, Wb, e SUCh that
Zp = Maa + upb + pec and pg + pp + pe = 1.

Proof. Assume that P is in the interior of triangle ABC and consider the point A’

, PA A'B
suchthat AP N BC = {A'}. Letk; = — ., ky = and observe that
PA’ A'C
; _a—l—k]zA/ ; _b+k2C
T
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Hence in this case we can write
1 k kik
= a—+ ! b+ 172 c.
1+ k& I+ k) +k2) I+ kA +k2)

ip

Moreover, if we consider

__1 _ ki B kiky
P 1% M7 0+ "7 00 +h)
we have
1 k kiko
Ma + b + He = ! :

Ttk Taxmat+e T 0rd )

_1+ki+k+kiky
A4+ k) + ko)

We proceed in an analogous way in the case when the point P is situated in the

exterior of triangle ABC.
If the point P is situated on the support line of a side of triangle ABC (i.e., the line
determined by two vertices)

1 k 1 k
- pa_ " —0. -y
A T B e

’

P

PB
where k = —. O
PC

The real numbers (., wp, e are called the absolute barycentric coordinates of P
with respect to the triangle ABC.
The signs of numbers u,, wp, e depend on the regions of the plane where the point

P is situated. Triangle ABC determines seven such regions.

v

A II
I
Vil

B C
v/' I w

Figure 4.8.

In the next table we give the signs of wy, wp, the:
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Lofm|v|v]vi|vi
pa | = |+ |+ |+ ||| +
o |+ | = |+ |- |+]| - |+
pe |+ |+ - |- |-+ |+

4.7.2 Distance between two points in barycentric coordinates

In what follows, in order to simplify the formulas, we will use the symbol called “cyclic

sum.” That is, Y f(x1, X2, ..., Xn), the sum of terms considered in the cyclic order.
cyc
The most important example for our purposes is

D F@xa, x3) = fx1, X2, 63) + f (2, 63, x1) + f(x3, %1, X2).

cyc

Theorem 2. In the plane of triangle ABC consider the points P\ and P> with coor-
dinates zp, and z p,, respectively. If zp, = axa + Brb + yic, where oy, By, yi are real
numbers such that oy + B + v = 1, k = 1,2, then

PIP; == (aa—a)(Ba— B)y>.

cyc

Proof. Choose the origin of the complex plane at the circumcenter O of the triangle
ABC. Using properties of the real product, we have

PiP} =l|zp, — zp, > = (@2 — an)a + (B2 — B1)b + (v — y)cl?

=Y (@—a)’a-a+2) (@ —a)Br—pa-b

cyc cyc
)/2
=Xl — R +23 oo — (B - p (R - %)
=R (@+ph+rn-—a—p—n’ - (@—a)B— )y’
cyc
== (2 —a)(Br— B)Y*,
cyc
sincea; + 1 +yi=w+p+y =1 O

Theorem 3. The points Ay, A, B, Ba, C1, C are situated on the sides BC, CA,
AB of triangle ABC such that lines AA1, BBy, CCy meet at point Py and lines
AA,, BBy, CCy meet at point P. If

BAk_pk CBk_mk ACk_nk =112
AkC_nk’ BkA_pk’ CkB_mk’ v
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where my, n, px are nonzero real numbers, k = 1,2, and Sy = my+nig+pr, k =1, 2,
then

1
PP} = 95 |:Sl $2) (mip2+ pin)e® =7 Y napra®—53 anma{| :
1%2 cyc cyc cyc
Proof. The coordinates of points P; and P, are

. _mka+nkb+pkc k=12
P mi+ng+pr T

It follows that in this case the absolute barycentric coordinates of points P; and P,

are given by

my mp ng ng

oy = —mmmm = —, IBk:—z s

mg +ng+pr Sk mg+ng+pr Sk
e = — 2% =P k=12

mi+ni+pe Sk
Substituting in the formula in Theorem 2 we find

ny nj P2 P\ 2
PP} =— -l
k Z(Sz Sl)<52 Sl>°’

cyc
1
T D (Siny = $m1)(S1p2 — Sapi)e’
1~2 cyc
1
=T 2@ 2[512”21’2 + S3n1p1 — S182(n1p2 + nap1)le?
S785 e
1
=g [51 $)) (nipa+ pina)e® — ST Y napra® — 83 anmaz}
122 cyc cyc cyc
and the desired formula follows. O

Corollary 4. For any real numbers oy, B, yx with oy + By + v = 1, k = 1,2, the
following inequality holds:
Y (@ —an(Ba— By <0,
cyc
with equality if and only if a1 = o, B1 = B2, Y1 = V2.
Corollary 5. For any nonzero real numbers my, ng, pr, k = 1,2, with Sy = my +
nx + pr, k =1, 2, the lengths of sides o, B, vy of triangle ABC satisfy the inequality
S S
2 1 2 2 2
n + pin > — n o+ — n o
CX:( 1P2 + pin2)” = SQZ 2P2 S, Y nmip
yc cyc cyc
ppomi_m om _ m

with equality if and only if n_ =, = —, = .
ni nz pi p2 mi ma
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Applications. 1) Let us use the formula in Theorem 3 to compute the distance G/,
where G is the centroid and [ is the incenter of the triangle.
Wehave m; =ny = py =1l and my = o, np = 8, p» = y; hence

51=Zm1=3; 52=Zm2=a+ﬁ+y=2s;

cyc cyc
Y (ip2+mape’ = (B+ )’ + (v + ) + (@ + By’
cyc
=@+ B+y)aB + By +ya)—3aBy =2s(s*> +r> +4rR) — 12sRr
=253 + 2sr% — 4sRr.
On the other hand,

Y mapra’ =a’By + By + v e = afy(a + B +y) =8sRr
cyc
and
anplaz =’ + /32 + )/2 =252 —2r% — 8Rr.

cyc
Then ]
GI* = §(s2 +5r2 — 16Rr).

2) Let us prove that in any triangle A BC with sides «, 8, y, the following inequality
holds:

D Qa—B-y)2B—a—y)y*<0.

cyc

In the inequality in Corollary 4 we consider the points P = G and P, = [. Then

ap =P =y =sada = ﬁ, B = ﬁ V2 = L, and the above inequality
S s S

follows. We have equality if and only if P = P,; thatis, G = I, so the triangle is

equilateral.

4.8 The Area of a Triangle in Barycentric Coordinates

Consider the triangle ABC with a, b, ¢ the coordinates of its vertices, respectively. Let
o, B, y be the lengths of sides BC, CA and AB.

Theorem 1. Let Pj(zp;), j = 1,2, 3, be three points in the plane of triangle ABC
withzp, = aja + Bjb + yjc, where aj, Bj, y; are the barycentric coordinates of P;.
If the triangles ABC and P P> P3 have the same orientation, then

ar B1 oy
a B v
as B3 v3

area[ Py Py P3]
area[ABC]
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Proof. Suppose that the triangles ABC and P; P, Pz are positively oriented. If O

denotes the origin of the complex plane, then using the complex product we can write
2iarea[ PO P,] = zp, X z2p, = (a1a + B1b + yic) x (az2a + Pob + yac)

= (a1f2 —az2f)a x b+ (B1y2 — Bay1)b x ¢ + (y1a2 — yaa1)c X a

axb bxc

cXa axb bxc 2iarealABC]
14| aj B |=| n o) 1
Y2 o B2 %) o 1
Analogously, we find
axb bxc 2iarealABC]
2i area[ P, O P3] = V2 o 1 )
& o3 1
axb bxc 2iareal]ABC]
2i area[ P30 P1] = V3 a3 1
Y1 o] 1

Assuming that the origin O is situated in the interior of triangle P; P> Ps, it follows
that

areal[ P| P, P3] = area[ P O P,] + area[ P, O P3] + area[ P; O P ]

1
2—i(a1 —oy+oar —az+az —aj)a Xb—z—i(yl —-m+n-vi+ys—ybxc
+ (102 — y2aq + 203 — y3a2 + 301 — yiaz)area[ ABC]

= (Y102 — Y21 + y2a3 — y302 + y3a) — yiaz)area[ ABC]
I 1 a

ar B n
=areal[ABC]| 1 y» ap |=area[ABC]| an B2
1 3 a3 a3 B3 w3

and the desired formula is obtained.

|
Corollary 2. Consider the triangle ABC and the points Ay, By, C situated on the
lines BC, CA, AB, respectively, such that

A1B _

B C
22—k, 2=
AC

C1A_
BA -

—— = k3.
C1B 3
IfAA1N BBy ={P1}, BB1NCCy ={P}and CC1 N AA| = {P3}, then

area| P P, P3] _ (1- k1k2k3)2

areal ABC] (1 4+ ki + kiko)(1 + ko + kok3) (1 + k3 + kaki)
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Figure 4.9.

Proof. Applying Menelaus’s well-known theorem in triangle AA| B we find that

CiA CB P3A _
CiB CA; PA

Hence
P3A _ CiA CB

= . = k3(1 + ky).
PA — CB Cay BUTR)
The coordinate of Ps is given by
ks (1 + k )b+k1€
L _atkal ko TS UFROTOT a kb + sk
BT T kU +k)  Itkathkki Ltk +haki
In an analogous way we find that
kikya + b + kic koa + kyksb + ¢
zpp=————— and zp= — " ——.
1+ k1 + kiko 1+ ky + koks

The triangles ABC and P; P, P; have the same orientation; hence by applying the
formula in Theorem 1 we find that

areal[ P1 P, P3]
area| ABC]
| kiky 1 ki
= k kok 1
(4 ki + kik)(1+ ky + koka) (1 + ks + kzkp) | > 20
1 k3 k3ki

(1 — kikaks)?

= . O
(1 4+ k1 + ki1ko) (1 + ko + kok3) (1 + k3 + k3kq)

Remark. When k; = ko = k3 = k, from Corollary 2 we obtain Problem 3 from the
2374 Putnam Mathematical Competition.
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Let Aj, Bj, C; be points on the lines BC, CA, AB, respectively, such that

BAj:& Cszﬂ ACjzﬂ

Aj C nj Bj A Pj Cj B m;

Corollary 3. If P; is the intersection point of lines AAj, BB;,CC;, j = 1,2,3,
and the triangles ABC, Py P> Pz have the same orientation, then

. j=1273.

my niy pi
area| P P, P3] . 1
arcalABC] 818,08, | 2 " P2
m3 n3 p3

where S; =mj+nj+pj, j=1,2,3.

Proof. In terms of the coordinates of the triangle, the coordinates of the points P;

are
mja+njb+ pjc 1 .
p, = =—mija+nib+ p;c), =1,2,3.
The formula above follows directly from Theorem 1. ]

Corollary 4. In triangle ABC let us consider the cevians AA’, BB’ and CC' such

that
A'B B'C . C'A .

- ma - nv - p
A'C B’A C'B
Then the following formula holds:
area[A’B’C’] _ 1 +mnp
areal ABC]  (14+m)(1 +n)(1+ p)’
Proof. Observe that the coordinates of A’, B/, C’ are given by

m 1 n 1 p
ZA,zl—i——mb—i_le—mC’ ZB/:1+nc+ma, zc/zma—kmb.
Applying the formula in Corollary 3 we obtain
arca[A’B'C'] 1 Lom
areal ABCT — (L+m)(1+m(1+p) | 10) (1)

_ 1 + mnp
S (I+m)(I+n)(1+p)
Applications. 1) (SteinhausG) Let A;, Bj, C; be points on lines BC, CA, AB, re-
spectively, j = 1, 2, 3. Assume that
BAy, 2 CBi 1 AC 4

AC 4 BA 2 CB 1

O

6Hugo Dyonizy Steinhaus (1887-1972), Polish mathematician, made important contributions in func-

tional analysis and other branches of modern mathematics.
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BAj; 4 Ch 2 ACy l'
AT BmATE GETD
BA3 1 CB3 4 AC3 2
AsC 2 BsA 1 GB 4

If P; is the intersection point of lines AA;, BB;,CCj, j = 1,2, 3, and triangles
ABC, P P, P3 are of the same orientation, then from Corollary 3 we obtain

area| P P, Ps3] _ 1
area[ABC] ~ 7-7-7

49 1
BT

A0~
N o— A
NS

2) If the cevians AA’, BB’, CC' are concurrent at point P, let us denote by K p the
area of triangle A’B’C’. We can use the formula in Corollary 4 to compute the areas
of some triangles determined by the feet of the cevians of some remarkable points in a
triangle.

(i) If I is the incenter of triangle ABC we have

LY B
K| = p o v area[ABC]
<1+Z> <1+é> (1+3>
B a Y
- 2apy arca[ ABC] = 2apysr .
a+BB+Y)(¥+w (@a+B)B+y)y+a)

(ii) For the orthocenter H of the acute triangle A BC we obtain

tanC tanB tanA
Ky = tanB tanA tanC arealABC]

1+tanC 1+tanB 1_|_tanA
tan B tan A tan C

= (2cos A cos B cos C)area| ABC] = (2 cos A cos B cos C)sr.

(iii) For the Nagel point of triangle ABC we can write

l+s—y.s—a_s—,3

Ky — sS—B s—y s—a area[ABC]
s—y S—o s — ﬁ
(15=5) (=) 0+ 5=0)
s—B s—y s—o
B B _ 2
_ 2(s —a)(s — B)(s y)area[ABC] — Marea[ABC]
aBy 2safBy
sr2

= " arealaBC] = 2.
2R 2R
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If we proceed in the same way for the Gergonne point J we find the relation

r sr?
Kj = —area[ABC] = —.
2R 2R
Remark. Two cevians AA’ and AA” are isotomic if the points A’ and A” are sym-
metric with respect to the midpoint of the segment BC. Assuming that
A'B B'C C'A
= m, = Vl,
AC B’A C'B
then for the corresponding isotomic cevians we have

:p,

A”B 1 B"C 1 C"A 1

A'C m’ B'A _n C'B _p
Applying the formula in Corollary 4, it follows that

area[A’B'C’] B 1 + mnp
areal ABC] ~ (1 4+m)(1 +n)(1 + p)
1+ L
mnp _ area[A” B"C"]

<1+l> (1_'_1) <1+l) area[ ABC]
m n p

Therefore area[ A’ B’C’'] = area[A” B”C”]. A special case of this relation is Ky =
K j, since the points N and J are isotomic (i.e., these points are intersections of iso-
tomic cevians).

3) Consider the excenters Iy, Ig, I,, of triangle ABC. It is not difficult to see that
the coordinates of these points are

o B V4

— a—+ b+ c,

2(s —a) 2(s — B) 2(s —y)
= ¢ a— p b+ 14 c,

2(s —a) 2(s — B) 2(s —y)

B 14
= b— .

TR S Trpy A TR
From the formula in Theorem 1, it follows that

2, =

Zlﬂ

o« B 14
2s—a) 2s=H)  2s-v)

o B 4

areal[l,Igl, ] = 26 —a) _z(s -B)  2(s—y)

area[ ABC]

o p Y
2s—a)  2(s—=P) 2(s —y)
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-1 1 1

- by I —1 1 |area[ABC]
(s —a)(s — B)(s —y)
1 1 —1
safy area ABC] _ sapyarealABC]  2safy 2sR

T %G —a)s—B)s—y)  2area’[ABC] _ 4area[ABC]

4) (Nagel line.) Using the formula in Theorem 1, we give a different proof for the so-
called Nagel line: the points I, G, N are collinear. We have seen that the coordinates

of these points are

a B 4
= a4+ pp 2
e 2sa+2s +2sc’

AR PO
=-a+ = —c,
6= 34T 30Ty

ZN=(1—%>a+<l—§>b+(l—%)c.

Then
@ B Y
2s 2s 2s
1 1 1
area[IGN] = — — — -arealABC] =0,

3 3 3

% _Zf Y

s s

hence the points /, G, N are collinear.

4.9 Orthopolar Triangles

4.9.1 The Simson—Wallance line and the pedal triangle
Consider the triangle ABC, and let M be a point situated in the triangle plane. Let
P, O, R be the projections of M onto lines BC, CA, AB, respectively.

Theorem 1. (The Simson’ lineg) The points P, Q, R are collinear if and only if M

is on the circumcircle of triangle ABC.

TRobert Simson (1687-1768), Scottish mathematician.
8This line was attributed to Simson by Poncelet, but is now frequently known as the Simson—Wallance

line since it does not actually appear in any work of Simson. William Wallance (1768-1843) was also a

Scottish mathematician, who possibly published the theorem above concerning the Simson line in 1799.
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A

Figure 4.10.

Proof. We will give a standard geometric argument.
Suppose that M lies on the circumcircle of triangle A BC. Without loss of generality

we may assume that M is on the arc BC. In order to prove the collinearity of R, P, Q,
it suffices to show that the angles BPR and C/P\Q are congruent. The quadrilaterals
PRBM and PCQM are cyclic (since BRM = BPM and MPC + AjQ\C = 180°),
hence we have BPR = B/AﬁandC/I-’E = C/@.Butm —90° — ABM =
90° — Am, since the quadrilateral ABM C is cyclic too. Finally, we obtain BMR =
90° — 1\@ = C/@, so the angles BPR and a’\Q are congruent.

To prove the converse, we note that if the points P, Q, R are collinear, then the
angles B/ﬁi and C/f-’E are congruent, hence m + m = 180°, i.e., the quadri-
lateral ABMC is cyclic. Therefore the point M is situated on the circumcircle of tri-
angles ABC. (|

When M lies on the circumcircle of triangle ABC, the line in the above theorem is
called the Simson—Wallance line of M with respect to triangle ABC.

We continue with a nice generalization of the property contained in Theorem 1. For
an arbitrary point X in the plane of triangle A BC consider its projections P, Q and R
on the lines BC, CA and A B, respectively.

The triangle POR is called the pedal triangle of point X with respect to the triangle
ABC. Let us choose the circumcenter O of triangle ABC as the origin of the complex

plane.

Theorem 2. The area of the pedal triangle of X with respect to the triangle ABC is
given by

areal ABC] _

area[PQR] = e |xx — R?| (1)
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R
A X
0/
B P C
Figure 4.11.

where R is the circumradius of triangle ABC.
Proof. Applying the formula in Proposition 1, Section 4.5, we obtain the coordinates
P, q,r of the points P, Q, R, respectively:

! b b+
= — —_— cl,
P=7\* " R

1 ca _
q:§<x—ﬁx+c+a),

1 ab _
r:E(x—Fx+a+b>.

Taking into account the formula in Section 2.5.3 we have

i

area|PQR] = 1

RINENY|
|
ST

p
q
r

For the coordinates p, g, r we obtain

It follows that

(12 and _ ! | — @
q—P—E(a— )( g r—P—E(a—C) ﬁ)’ )
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1 1
7-P=7 (a—b)(x—c)R* and F—P= e (a — ¢)(x — b)R?
Therefore
areal PQR] =~ | 177 177
41 r—p 7—D
1= G-oR?
_i(a—b)(a—c) R
- 16abc -
bx
1— = (x —b)R?
. ila—b)a—c)| R?—cx x—c¢
16abc RZ—bx x-—b
. ila—b)ya—c)| b—c)x b-—c
N 16abc R>—bx x—b
_ila=b)b—-c)a—c) X 1
N 16abc R>—bx x—b
_ i(a—b)(b—c)la—c) % — RZ).
16abc
Proceeding to moduli we find that
—bllb — _
area[ POR] = (4 llb—clle—al, = po_ @BV o R
16]al|b]|c| 16R3
_ area[ ABC] T — R2|,
4R?
where «, 8, y are the length of sides of triangle ABC. O

Remarks. 1) The formula in Theorem 2 contains the Simson—Wallance line prop-
erty. Indeed, points P, Q, R are collinear if and only if area[P QR] = 0. That is,
|xXx — R?| = 0, i.e., xx = R2. It follows that |x| = R, so X lies on the circumcircle of
triangle ABC.

2) If X lies on a circle of radius R; and center O (the circumcenter of triangle ABC),
then xx = Rlz, and from Theorem 2 we obtain

arealABC]
4R?
It follows that the area of triangle P Q R does not depend on the point X.

area| PQR] = |R? — R

The converse is also true. The locus of all points X in the plane of triangle ABC
such that area[ P Q R] = k (constant) is defined by
2
2 4Rk

[xx — R | = ————.
area| ABC]
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This is equivalent to

2 2 AR’k 4k
x"=R°+——— =R (1 &+ ———).
areal ABC] areal ABC]

1
If k£ > Zarea[ABC], then the locus is a circle of center O and radius Ry =

R /1+ 4k
V areal ABC]’

1
Ifk < Zarea[ABC], then the locus consists of two circles of center O and radii

/ 4k 1
R./1 £ ————, one of which degenerated to O when k = —area[ ABC].
area| ABC) 4

Theorem 3. For any point X in the plane of triangle ABC, we can construct a
triangle with sides AX - BC, BX - CA, CX - AB. This triangle is then similar to the
pedal triangle of point X with respect to the triangle ABC.

Proof. Let P QR be the pedal triangle of X with respect to triangle ABC. From
formula (2) we obtain

R? —cx

1
‘I—P=§(a—b)(X—C)m~ 3)

Proceeding to moduli in (3), it follows that

R? —cx
|q—P|=m|a—b||X—C| — 4)
On the other hand,
2
R? —¢x _Rz—cf Rz—cx_Rz—cf R —ex
x—c | x-—c xX—-¢  x—c _ R?
x__
c
_ Rz—cf. R*(c — x) _ R
X —c cx — R? ’
hence from (4) we derive the relation
| | = : la —bl| | 5)
q—pl= 7R a x —cl.
Therefore
PO OR RP 1

= = :—, 6
CX-AB AX-BC BX-CA 2R ©

and the conclusion follows. |
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Corollary 4. In the plane of triangle ABC consider the point X and denote by
A'B'C’ the triangle with sides AX - BC, BX - CA, CX - AB. Then

area[A’B'C'] = areal ABC]|xx — R?|. (7

Proof. From formula (6) it follows that area[A’B’C’] = 4R?area[ P QR], where
P OR is the pedal triangle of X with respect to triangle ABC. Replacing this result in
(1), we find the desired formula. O

Corollary 5. (Ptolemy’s inequality) For any quadrilateral ABC D the following
inequality holds:
AC-BD <AB-CD+ BC-AD. ®)

Corollary 6. (Ptolemy’s theorem) The convex quadrilateral ABC D is cyclic if and
only if
AC-BD=AB-CD+ BC-AD. ©)]
Proof. If the relation (9) holds, then triangle A’B’C’ in Corollary 4 is degenerate;
i.e., area[A’B'C’] = 0. From formula (7) it follows that d - d = R2, where d is the
coordinate of D and R is the circumradius of triangle ABC. Hence the point D lies on
the circumcircle of triangle ABC.
If quadrilateral ABC D is cyclic, then the pedal triangle of point D with respect to
triangle ABC is degenerate. From (6) we obtain the relation (9). O

Corollary 7. (Pompeiu’s Theorem”) For any point X in the plane of the equilateral
triangle ABC, three segments with lengths XA, X B, XC can be taken as the sides of
a triangle.

Proof. In Theorem 3 we have BC = CA = AB and the desired conclusion fol-
lows. (]
The triangle in Corollary 7 is called the Pompeiu triangle of X with respect to the
equilateral triangle ABC. This triangle is degenerate if and only if X lies on the cir-
cumcircle of ABC. Using the second part of Theorem 3 we find that Pompeiu’s triangle

of point X is similar to the pedal triangle of X with respect to triangle ABC and

CX AX BX 2R 23 10)
PO QR RP «a 3 °

Problem 1. Let A, B and C be equidistant points on the circumference of a circle of
unit radius centered at O, and let X be any point in the circle’s interior. Let da, dp, dc

be the distances from X to A, B, C, respectively. Show that there is a triangle with

9Dimitrie Pompeiu (1873-1954), Romanian mathematician, made important contributions in the fields

of mathematical analysis, functions of a complex variable, and rational mechanics.
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sides da, dp, dc, and the area of this triangle depends only on the distance from X
to O.
(2003 Putnam Mathematical Competition)

Solution. The first assertion is just the property contained in Corollary 7. Taking into
account the relations (10), it follows that the area of Pompeiu’s triangle of point X is

2
—area[ P Q R]. From Theorem 2 we get that area[ P Q R] depends only on the distance

from P to O, as desired.

Problem 2. Let X be a point in the plane of the equilateral triangle ABC such that X
does not lie on the circumcircle of triangle ABC, and let XA = u, XB = v, XC = w.
Express the length side o of triangle ABC in terms of real numbers u, v, w.

(1978 GDR Mathematical Olympiad)

Solution. The segments [X A], [X B], [XC] are the sides of Pompeiu’s triangle of
point X with respect to equilateral triangle ABC. Denote this triangle by A’B’C’.
From relations (10) and from Theorem 2 it follows that

2
243 1
area[A'B'C'] = (%_) areal PQR] = marea[ABC]lx X — R?|

1 0(2\/§ _ 2 \/g
:—.—lx.x_R|=_
3R? 4 4

On the other hand, using the well-known formula of Hero we obtain, after a few

I X0% — R?|. (11)

simple computations:

1
area[A’B'C'] = Z\/(uz + 02 4+ w?)2 — 2 + v* + w?).

Substituting in (11) we find

1
1IX0? — R?| = —3\/(u2+v2+w2)2—2(u4+v4+w4). (12)

7

Now we consider the following two cases:

Case 1. If X lies in the interior of the circumcircle of triangle ABC, then X 0? <
R?. Using the relation (see also formula (4) in Section 4.11)

1
X0? = g(u2 + 02 +w? —3R?),

from (12) we find that

I I
2R = 3@ +07 4 wh) + 0w =20+ v,

/3
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hence

1 3
o? = 5(u2 + 0%+ w?) + g\/(»ﬂ + 02+ w?)? = 2ut 4 vt + wh).

Case 2. If X lies in the exterior of circumcircle of triangle ABC, then X 0% > R?

and after some similar computations we find

1 3
o = E(u2 +v2 +w?) — g\/(u2 + 02 + w22 = 2(ut + vt + wd).

4.9.2 Necessary and sufficient conditions for orthopolarity

Consider a triangle ABC and points X, Y, Z situated on its circumcircle. Triangles
ABC and XYZ are called orthopolar triangles (or S-triangles)'® if the Simson—
Wallance line of point X with respect to triangle ABC is perpendicular (orthogonal)
to line Y Z.

Let us choose the circumcenter O of triangle ABC at the origin of the complex

plane. Points A, B, C, X, Y, Z have the coordinates a, b, c, x, y, z with
la| = |b| = |c| = |x| = |y| = |z| = R,

where R is the circumradius of the triangle ABC.

Theorem 3. Triangles ABC and XY Z are orthopolar triangles if and only if abc =
xyz.

Proof. Let P, Q, R be the feet of the orthogonal lines from the point X to the lines
BC, CA, AB, respectively.

Points P, O, R are on the same line; that is, the Simson—Wallance line of point X
with respect to triangle ABC.

The coordinates of P, Q, R are denoted by p, g, r, respectively. Using the formula
in Proposition 1, Section 4.5, we have

! be b+
==—|lx——= c
P=3 R

1( ca_+ n )
=—(x——=x+c+a),
=3 R2

Y L T
r—2 X sz a .

We study two cases.

10This definition was given in 1915 by Romanian mathematician Traian Lalescu (1882-1929). He is
famous for his book La géometrie du triangle published by Librairie Vuibert, Paris, 1937.
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Case 1. Point X is not a vertex of triangle ABC.
Then P Q is orthogonal to Y Z if and only if (p — g) - (y — z) = 0. That is,

(b —a) T (y—2)=0
R2

or
& —a)(R* —ex)(y —2) + (b — a)(R* — cX)(F — 2) = 0.
‘We obtain
(-8l omomonnfe-2) (52
y—2)+®—-—a)| R —c =0,
b a c X y Z
hence

1
—(@—=b)c—x)(y —2) ——(@—b)(c—x)(y —2) =0.
abc xXyz

The last relation is equivalent to
(abc —xyz)(a—Db)(c—x)(y —2) =0

and finally we get abc = xyz, as desired.

Case 2. Point X is a vertex of triangle A BC. Without loss of generality, assume that
X =B.

Then the Simson—Wallance line of point X = B is the orthogonal line from B to
AC. It follows that B Q is orthogonal to Y Z if and only if lines AC and Y Z are parallel.

This is equivalent to ac = yz. Because b = x, we obtain abc = xyz, as desired. O

Remark. Due to the symmetry of the relation abc = xyz, we observe that the
Simson—Wallance line of any vertex of triangle XY Z with respect to ABC is orthog-
onal to the opposite side of the triangle XY Z. Moreover, the same property holds for
the vertices of triangle ABC.

Hence ABC and XY Z are orthopolar triangles if and only if XY Z and ABC are

orthopolar triangles. Therefore the orthopolarity relation is symmetric.

Problem 1. The median and the orthic triangles of a triangle ABC are orthopolar in
the nine-point circle.

Solution. Consider the origin of the complex plane at the circumcenter O of triangle
ABC.Let M, N, P be the midpoints of AB, BC, CA and let A’, B’, C’ be the feet of
the altitudes of triangles ABC from A, B, C, respectively.

Ifm,n, p,a’, b, c are coordinates of M, N, P, A’, B, C’ then we have

1 1 1
m=§(a+b), n=§(b+c‘), p=§(6+a)
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-] +b+ bea) =2 +b+ be
a =—\a C——a)]l=—-1\a cC— —
2 R2 2 a)’

1 ca 1 ab
r_ = e r_ e
b—z(a+b+c ) c <a+b+c 2).

and

b 2
The nine-point center Og is the midpoint of the segment O H, where H(a + b + ¢)

1
is the orthocenter of triangle ABC. The coordinate of Og is w = E(a +b+c).
Now observe that

(a—w)b—-—w)(c—w)=m—w)(n—w)(p —w) = %abc,

and the claim is proved.

Problem 2. The altitudes of triangle ABC meet its circumcircle at points Ay, By, Cy,
respectively. If A’} Bi, Ci are the antipodal points of A1, By, C1 on the circumcircle
ABC, then ABC and A B|C| are orthopolar triangles.

bc ca ab
Solution. The coordinates of Ay, By, C; are ——, ——, ——, respectively. Indeed,

a c
the equation of line AH in terms of the real productis AH : (z —a)- (b —c) = 0.

b
It suffices to show that the point with coordinate _x lies both on AH and on the

a
. . . . be |b]|c| R-R
circumcircle of triangle ABC. First, let us note that | ——| = ] = = = R,
a a
hence this point is situated on the circumcircle of triangle ABC. Now, we show that

b
the complex number 2 satisfies the equation of the line A H. This is equivalent to
a
b
(—C+a>~(b—c) —0.
a

Using the definition of the real product, this reduces to

<£+a) (b—c)+<@+a) B-7) =0

a a

abc  _ bc R? R?
(F*“)(”‘C”(;*“) (7‘7) =0.

Finally, this comes down to

ab¢c _ R aR?
(b—c) F—i—a———— =0,

or

a be

a relation that is clearly true.
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A A
B,
Bj
C
C/
B C
A
Figure 4.12.
. bc ca ab .
It follows that A, B, C| have coordinates —, > respectively. Because
a C

we obtain that the triangles ABC and A B{C are orthopolar.

Problem 3. Let P and P’ be distinct points on the circumcircle of triangle ABC such
that lines AP and AP’ are symmetric with respect to the bisector of angle BAC. Then
triangles ABC and AP P’ are orthopolar.

A

Figure 4.13.

Solution. Let us consider p and p’ the coordinates of points P and P’, respectively.
It is clear that the lines P P’ and BC are parallel. Using the complex product, it follows
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that (p — p’) x (b — ¢) = 0. This relation is equivalent to
(p=pP)b~0)— (P~ pHb—c)=0.

Considering the origin of the complex plane at the circumcenter O of triangle ABC,
we have

SO

) , 1 1
R (p—p)b—-0)| = — =0
bc  pp’
Therefore bc = pp/, i.e., abc = app’. From Theorem 3 it follows that ABC and
AP P’ are orthopolar triangles.

4.10 Area of the Antipedal Triangle

Consider a triangle ABC and a point M. The perpendicular lines from A, B, C to
MA, M B, MC, respectively, determine a triangle; we call this triangle the antipedal
triangle of M with respect to ABC.

Recall that M’ is the isogonal point of M if the pairs of lines AM, AM’; BM, BM’;,
CM, CM'’ are isogonal, i.e., the following relations hold: m = Am, m =
M'BA, MCA = M'CB.

B//

Figure 4.14.

Theorem. Consider M a point in the plane of triangle ABC, M’ the isogonal point
of M and A" B"C" the antipedal triangle of M with respect to ABC. Then

area[ABC] _ |R>— OM"”| _ |p(M")|
area[A”B"C"] 4R2 T 4R2

where p(M') is the power of M’ with respect to the circumcircle of triangle ABC.
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Proof. Consider point O the origin of the complex plane and let m, a, b, c be the
coordinates of M, A, B, C. Then

R?> = aa = bb = ¢t and p(M) = R> — mm. (1)

Let O1, Oz, O3 be the circumcenters of triangles BMC, CM A, AM B, respectively.
It is easy to verify that O, O», O3 are the midpoints of segments MA”, MB", MC",

respectively, and so
area[ 01 07 03] _ 1 2
area[A”B"C"] 4’

The coordinate of the circumcenter of the triangle with vertices with coordinates

71, 22, 23 1s given by the following formula (see formula (1) in Subsection 3.6.1):

_ 212122 — 23) + 2222(23 — 21) +2323(21 — 22)

20 —
21z 1
22 22 1
73 73 1

The bisector line of the segment [z1, z2] has the following equation in terms of real
1
product: |:z — z(zl + Zz)] -(z1 —z2) = 0. It is sufficient to check that z o satisfies this

equation as this implies, by symmetry, that zp belongs to the perpendicular bisectors
of segments [z2, z3] and [z3, z1].
The coordinate of O is

mni(b — ¢) + bb(c — m) + cc(m — b)

z0, =

m m 1
b b 1
c ¢ 1
_ (R* —mim)(c—b) _ p(M)(c—b)
a w1l |mom 1|
b b 1 b b 1
c ¢ 1 c ¢ 1
Let
a a 1
A=|b b 1
c ¢ 1
and consider
1 m ? 1 1 m m 1
a:bel,ﬂzzcEl,
c ¢ 1 a a 1
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and
m m 1
V=Al 4 ¢
b b 1

With this notation we obtain

(xa+pBb+ye)- A
= Zm(az— ac) — Zﬁ(ab —ac) + Za(bE—EC)

cyc cyc cyc

b
:mA+RZZ(a——(2—C>=mA,
c

cyc
and consequently

aa+ b+ yc=m,
since it is clear that A # 0.

We note that «, 8, y are real numbers and ¢« + 8 + ¥y = 1, so «, B, y are the
barycentric coordinates of point M.

Since
L le=bpn)  (e—a)p(M) - (a=b)-p(i)
0 o A s 0, ﬁA s 03 )/A P
we have
; z0, z0; 1
7 z0, 0, 1
area[010203]_ zo, Z0; 1
area|ABC] L-A
4
b—c b-c¢
1AMy 1 comee
A AT apy| TG @B
a—b a—-b y
_ pz(M) 1 c—a c¢c—a
| A aBy |a—-b a-b
VAN VEN 3)
A3 By A aBy
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Relations (2) and (3) imply that

areal ABC]  |Aapy|
area[A”B"C"]  4p2(M) "’

“)
Because «, 8, y are the barycentric coordinates of M, it follows that
m =aza+ Bz +yzc.
Using the real product we find that
OM? =zy -2y = (aza + Bzp + vzc) - (@za + Bzp + vzc)

=@+ +yIR*+2) apza-zs

cyc

= @+ B2+ )R (2_14_32)
= Y)R +2ZaﬂR

cyc 2
=@+ B+y)’R* =) apAB*=R*—) aBAB’.

cyc cyc

Therefore the power of M’ with respect to the circumcircle of triangle ABC can be
expressed in the form
p(M)=R*— OM* = " aBAB>.
cyc

On the other hand, if «, B, y are the barycentric coordinates of the point M, then its

isogonal point M’ has the barycentric coordinates given by

By BC? aCA?
o = Y ﬂ/ — Y
ByBC? +ayCA? + aBAB?’ ByBC? + ayCA? + aBAB?’
;L aBAB?
Y T ByBC?t ayCA?  aBAB?
Therefore
,O(M/) — Za’ﬁ’ABz
cyc
B afy AB? . BC?. CA? _ apyAB*BC?CA? )
~ (ByBC2?2+ayCA?2 +aBAB2)? p2(M)
On the other hand, we have
4 i \* |4 2 AB?.BC?.CA?
A2=|(2.LA) | = |2 arealaBC]| = : (6)
i 4 i R?

The desired conclusion follows from the relations (4), (5), and (6). (Il
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Applications. 1) If M is the orthocenter H, then M’ is the circumcenter O and

arcalABC]  R* 1
area[A”B"C"]  4R> 4

2) If M is the circumcenter O, then M’ is the orthocenter H and we obtain

arcal ABC] _ |R?> — OH?|
area[A"B"C"] 4R?

Using the formula in Theorem 8, Subsection 4.6.4, it follows that

areal ABC] _ |QR+r)? — 57|
area[A”B’C"] ~ 2R2

3) If M is the Lemoine point K, then M’ is the centroid G and

arcal ABC] _ |R?> — 0G|
area[A”B"C"] ~ 4R?

Applying the formula in Corollary 9, Subsection 4.6.4, then the first formula in
Corollary 2, Subsection 4.6.1, it follows that

area[ABC] _ 2(s>—r> —4Rr) o+ p7+y?
area[A”B"C"] ~ 36R2 - 36R?

where «, B, y are the sides of triangle ABC.
From the inequality &> + %+ 32 < 9R? (Corollary 10, Subsection 4.6.4) we obtain

area| ABC] - 1
area[A”B"C"] — 4’

4) If M is the incenter I of triangle ABC, then M’ = I and using Euler’s formula
O01? = R? — 2Rr (see Theorem 4 in Subsection 4.6.2) we find that

arcal ABC]  |R*—OI?| 2Rr _r
area[A”B"C"]  4R2 T 4R? T 4R’

Applying Euler’s inequality R > 2r (Corollary 5 in Subsection 4.6.2) it follows that

area[ ABC] - 1
area[A”B"C"] — 4’

4.11 Lagrange’s Theorem and Applications

Consider the distinct points A1(z1), . .., A,y(z,) in the complex plane. Let my, ..., m,
be nonzero real numbers such thatm| + --- +m, #0.Letm =m + --- + m,.
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The point G with coordinate

1
26 = —(miz1 + - +muzy)
m

is called the barycenter of set {Aq, ..., Ay} with respect to the weights m1, ..., m,.
Inthe case m; = --- = m, = 1, the point G is the centroid of the set {Ay, ..., A,}.
When n = 3 and the points Ay, A», Az are not collinear, we obtain the absolute

barycentric coordinates of G with respect to the triangle AjA>A3 (see Subsection

4.7.1):

mi nmy m3
le = /‘LZ2:_9 MZ3:_'
m m m
Theorem 1. (Lagrange“) Consider the points Ay, ..., A, and the nonzero real
numbers my, ..., my such thatm = my + - - - + my, # 0. If G denotes the barycenter
of set {Aq, ..., An} with respect to the weights my, ..., my,, then for any point M in

the plane the following relation holds:
n n
Y miMAT =mMG?+ Y m;GA (1)
j=1 j=1

Proof. Without loss of generality we can assume that the barycenter G is the origin
of the complex plane; that is, zg = 0.
Using properties of the real product we obtain for all j = 1, ..., n, the relations

MA? =lzm —z,‘l2 =(zm —zj) (zm — 2j)

= lzm|* — 2zm “Zj+ |Zj|2,
ie.,
MA% = |ZM|2 —2zm - zZj + |Zj|2.
Multiplying by m; and adding the relations obtained for j = 1, ..., n, it follows
that

n n
ijMAi = ij(lel2 —2zpm -z + |Zj|2)

n n
2 2
=m|zm| _ZZM'(E m;z; +E m;|zl
j=1 j=1

1y, oseph Louis Lagrange (1736-1813), French mathematician, one of the greatest mathematicians of the
eighteenth century. He made important contributions in all branches of mathematics and his results have

greatly influenced modern science.
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n
2 2
=mlzpm|” — 2zpm - (mzg) + ijlzl,'l
j=1

n n

2 2 2 2

= m|zm| +ij|zj| =mlzy — ZG| +ij|Zj—ZG|
j=l1 Jj=1

n
2 2
=mMG>+) m;GA3. O
j=1
Corollary 2. Consider the distinct points Ay, ..., A, and the nonzero real numbers

mi, ..., my such thatmy + - - - +m, # 0. For any point M in the plane the following
inequality holds:

n n
Zm,-MAﬁzijGAﬁ, )
j=1 j=1

with equality if and only if M = G, the barycenter of set {A1, ..., A,} with respect to
the weights my, ..., my,.

Proof. The inequality (2) follows directly from Lagrange’s relation (1). ]
If mi =---=my, =1, from Theorem 1 one obtains:
Corollary 3. (Leibniz!?) Consider the distinct points Ay, ..., A, and the centroid

G of the set {Ay, ..., A,}. For any point M in the plane the following relation holds:

n n
Y MAZ=nMG*+ ) GAL 3)
=1 =1

Remark. The relation (3) is equivalent to the following identity: For any complex

numbers z, 71, ..., Z, We have
1 n 5 2 n
DMEBIEE +3
= j=1

Applications. We will use formula (3) in determining some important distances in a

2
7 —

21+ -+
n

21+ -+
ST

triangle. Let us consider the triangle ABC and let us take n = 3 in the formula (3). We
find that for any point M in the plane of triangle ABC the following formula holds:

MA? + MB* + MC? =3MG? + GA> + GB* + GC? )
where G is the centroid of triangle ABC. Assume that the circumcenter O of the

triangle ABC is the origin of complex plane.

12Gottfried Wilhelm Leibniz (1646-1716) was a German philosopher, mathematician, and logician who
is probably most well known for having invented the differential and integral calculus independently of Sir

Isaac Newton.
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1) In the relation (4) we choose M = 0 and we get
3R> =30G* + GA* + GB* + GC.
Applying the well-known median formula it follows that
4
GA>+ GB>+ GC? = §(m§ +mg+m3)
4 1 1
_ T (B2 2y _ 021 — (o2 2 2.
9;4[(/3 +y) —@ll= @+ B4y

where «, 8, y are the sides of triangle ABC. We find
1
0G? = R* = S + B2 + 7). (5)

An equivalent form of the distance OG is given in terms of the basic invariants of
triangle in Corollary 9, Subsection 4.6.4.

2) Using the collinearity of points O, G, H and the relation OH = 30G (see
Theorem 3.1 in Section 4.5) it follows that

OH?>=90G* =9R? — (& + B2+ y?) (6)

An equivalent form for the distance O H was obtained in terms of the fundamental
invariants of the triangle in Theorem 8, Subsection 4.6.4.
3) Consider in (4) M = I, the incenter of triangle ABC. We obtain

1
IA2 £ IB2+1C* =3I1G? + g(oﬂ + B>+ ).

A

Figure 4.15.

On the other hand, we have the following relations:

L iB=—"_ 1c=-L_

] A ’ - ] B ’ - ] C )
s — s — sin —
2 2 2

IA =
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where r is the inradius of triangle ABC. It follows that

2 ! + ! + !
A B C
sin? 3 sin? — sin? —

2 2

I1G* =

1 1 2 2 2
3 3(a +B8°+v9)

Taking into account the well-known formula

2 A =P —y)
smm- =

2 By

we obtain

I By By (s —a)
2 ) A _Z(s—ﬂ)(s—y) _Z(s—a)(s—ﬁ)(s—y)

cyc sin 5 cyc cyc

:%Zﬂy(s—a):%[SZﬁy—%fﬂy]

cyc
s

k2

where we have used the formulas in Subsection 4.6.1. Therefore

1
[s(s2 +r2+ 4Rr) — 12sRr] = —2(s2 +r2— 8Rr),
r

1 1
1G? = 3 [s2+r2—8Rr—§(ot2+ﬂ2+y2)]

1 2 1
= |s>+r>2—8Rr — (s> —r* —4Rr) | = = (s> + 57> — 16Rr),
3 3 9
where the first formula in Corollary 2 was used. That is,
1
1G* = §(s2 +5r2 — 16Rr), (7)

hence we obtain again the formula in Application 1), Subsection 4.7.2.

Problem 1. Let z1, 25, 23 be distinct complex numbers having modulus R. Prove that

9R% — |z1 + 20+ 3% - V3

lzi —z2l - lz2—z3l - lz3—z1l = R

Solution. Let A, B, C be the geometric images of the complex numbers z1, z2, z3

and let G be the centroid of the triangle ABC.

. . 21+22+23
The coordinate of G is equal to — and |z1 — 22|l =y, |22 — 3] = @,

lz3 —z1l = B.
The inequality becomes
9R?—90G* _ /3
R

1
By > ey
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Using the formula
1
0G2 = R2 — §(O[2 + ,32 =+ yz),

(1) is equivalent to

3 4K
ozz—i—ﬁz—i—yzz%—: ’;Q V3 =4KV/3.

Here is a proof of this famous inequality, by using Hero’s formula and the AM-GM
inequality:

(s—a+s—/3+s—y)3 $3
N =

27 27

K=1/s(s—a)s—pB)s—y) 5\/

_ P @Bty 3@+ +yY) @+ B4y
343 123~ 1243 43

We now extend Leibniz’s relation in Corollary 3. First, we need the following result.

Theorem 4. Let n > 2 be a positive integer. Consider the distinct points Ay, ..., Ay
and let G be the centroid of the set {A1, ..., An}. Then for any point in the plane the
following formula holds:

n

n’MG*=n) MAS - Y AA} 8)
j=1 1<i<k<n

Proof. We assume that the barycenter G is the origin of the complex plane. Using

properties of the real product we have

MA? =lzm — 21> = em — 2j) - (em — 2) = lzm* = 2zm - 2j + 17517
and
AiA; = Lz =l =zl = 2z - 2+ el

where the complex number z; is the coordinate of the point Aj, j =1,2,...,n.
The relation (8) is equivalent to

n
wlemlP =nYy (eml® —2zm -2+ 121D — Y 1zl =2z -z + ).

j=1 1<i<k<n

That is,

n n
ny lgP =2y e+ Y, (ul =2z + ).
j=1 J=1

1<i<k<n
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Taking into account the hypothesis that G is the origin of the complex plane, we

have

doamzi=zum- (Z@) =n(zm -z6) =n(zm - 0) =0.
j=1

j=1

Hence, the relation (8) is equivalent to

The last relation can be obtained as follows:

1 n n
0=zl =2626 = 2 (ZZi) : <ZZ/<>
i=1 k=1

n
zn—lz (Z|Z/’|2+2 Z zi~zk).
j=1

1<i<k<n
Therefore the relation (8) is proved. O

Remark. The formula (8) is equivalent to the following identity: For any complex
numbers z, z1, ..., Zn, W€ have

1 n
a2 le—al -
nj:1

Applications. 1) If Ay, ..., A, are points on the circle of center O and radius R,
then taking in (8) M = O, it follows that

21+t 2 2

n

1

2

= - E |zi — zkl”-
n

1<i<k<n

7z —

> AAL=n*(R* - 0G).

1<i<k<n

If n = 3 we obtain the formula (5).
2) For any point M in the plane the following inequality holds:

iMA?z% Z A A2,
j=1

1<i<k<n

with equality if and only if M = G, the centroid of the set {Aq, ..., A,}.

Let n > 2 be a positive integer, and let k be an integer such that 2 < k < n. Consider
the distinct points Ay, ..., A, and let G be the centroid of the set {Ay, ..., A,}. For
indices i; < --- < ig let us denote by G;, . ;, the centroid of the set {A;, ..., A;}.

We have the following result:
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Theorem 5. For any point M in the plane,

. n\ v 2 200 n 2
(n k)<k>;MAJ + n?(k 1)(k>MG

=kn(n—1) Z MG} ;. )

1<ij<-,ix<n
Proof. It is not difficult to see that the barycenter of the set {G;,..;, : 1 <ij <--- <
ix < n}is G. Applying Leibniz’s relation one obtains

n n

2 2 2
.EIMAj:nMG +EIGA-, (10)
j= j=

n
Y owa,=(ue ¥ ec,

1<ij<--<ip<n 1<ij<---<ix<n

i1k

k k
Z MA? =kMG? ., + Z Gi.iy AL (12)
s=1 s=1

Considering in (12) M = G and adding all these relations, it follows that

k
Z Z GA%r =k Z GGiZl"'ik

1<i|<--<ip<n s=1 1<ij<--<ix<n

k
+ > D G AL (13)

1<ij<--<iy=<ns=1
Applying formula (8) in Theorem 5 for the sets {Ay,..., A,} and {A;,, ..., A},

respectively, we get

n
n*MG? =nZMA§ — Z Ai A7, (14)
j=1 1<i<k<n
k
202 2 2
MG ., =kY MA; — Y Ay A;. (15)
s=1 1<p<q=<k
Taking M = Gj,...;, in (15), it follows that
‘ 2 _ |1 2
> G Al = . > Ai AL (16)
s=1 1<p<qg=<k

From (16) and (13) we obtain

k
2. D Gal=k ) GG,

1<i|<--<ip<n s=1 1<i|<--<ig<n
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D DD S (7)

1<ij<--<ix<nl1<p<g<n
()G) (GG
1)\k) & ., 5 1\2/)\k 5
—X;GAjzk Y GG, + 7 o oAl (8)
j=

il N
(I’l 1<i|<--<iy<n n 1<i<k=<n
1

If we rearrange the terms in formula (17), we get

2
From relations (10), (11), (14) and (18) we readily derive formula (9). O
Remark. The relation (9) is equivalent to the following identity: For any complex
numbers z, z1, ..., Z, We have
n 2
n 2 2 n 21+ -+
(n —k)<k>;|z—z,| +n*(k — 1)<k) -
2

Z_Zi1+"'+Zik
k

—kn(n—1) Z

1<ii<--<ix<n

Applications. 1) In the case k = 2, from (9) we obtain that for any point M in the

plane, the following relation holds:

n
2 2 2 _ 2
(n—2)Y MA>+n’MG*=4 > MG},
j:] 1<ii<iz<n
In this case G, ;, is the midpoint of the segment [A;, A;,].
2) If k = 3, from (9) we get that for any point M in the plane, the relation

n
(n—3)n-—2) ZMA§ +2n%(n — 2)MG? = 18 Z MG}, ;.

j=1 1<iy<ip<iz<n

holds. Here the point G, ;,;, is the centroid of triangle A;; A;, A;;.

4.12 Euler’s Center of an Inscribed Polygon

Consider a polygon A1 A» --- A, inscribed in a circle centered at the origin of a com-
plex plane and let ay, az, .. ., a, be the coordinates of its vertices.
By definition, the point E with coordinate

aptay+---+an
2

is called Euler’s center of the polygon AjA; --- A,. In the case n = 3 it is clear that

IE =

E = Oy, the center of Euler’s nine-point circle.
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Remarks. a) Let G(zg) and H (zg) be the centroid and orthocenter of the inscribed
polygon AjAj - -+ A,. Then

oG OH
ZE:nZ_G:Z_HandOEZn —_
2 2 2 2

Recall that the orthocenter of the polygon A1 A3 - - - A, is the point H with coordi-

nate zg =a; +ax+---+ay.
b) For n = 4, point E is also called Mathot’s point of the inscribed quadrilateral
A1Ar2A3A,.

Proposition. In the above notation, the following relation holds:

ZEA,? =nR*>+ (n —4)EO>. )

i=1

Proof. Using the identity (8) in Theorem 4, Section 2.17,

n2~MG2=an:MAiZ— > AAl

i=1 I<i<j<n
for M = E and M = O, we obtain
n
nz-EGzznZEAiz— Z AiA2~, ()
i=1 1<i<j<n
and
n*-0G*=nR>— > AAL 3)
1<i<j<n
n
Setting s = Z a;, we have
i=1
K s s| n—2 n—2
EG =l —zl =5~ =|5| == =""S.0F. @)
2 n 2 n n

From the relations (2), (3) and (4) we derive that
n
nZ:EAl2 =n?. EG*—n*.- OG* +n*R?
i=1
= —2)20E>—40E>+n’R*>=n(n —4)- EO* + n’R?
or, equivalently,

n
> EA} =nR*+(n—-4)EO?,
i=1

as desired. O
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Applications. 1) For n = 3, from relation (1) we obtain
09A? + 09A3 + 09A% = 3R* — 003. Q)

Using the formula in Corollary 9.2, Subsection 4.6.4, we can express the right-hand
side in (5) in terms of the fundamental invariants of triangle A1 A2 Aj3:

3 1 1
09A + 09A3 + 09 AT = ZRZ - Erz —2Rr + Esz. (©6)

From formula (5) it follows that for any triangle A; A, A3 the following inequality
holds:
09A} + 09A% + 09A3 < 3R?, (7

with equality if and only if the triangle is equilateral.
2) For n = 4 we obtain the interesting relation

4
> EA} =4R%. 8)
i=1

The point E is the unique point in the plane of the quadrilateral A1 Ay Az A4 satisfying
relation (8).

3) For n > 4, from relation (1) the inequality

n
> EA} > nR? )

i=1

follows. Equality holds only in the polygon A1 A3 - - - A, with the property E = O.
4) The Cauchy—Schwarz inequality and inequality (7) give

3 ) 3
(Z R- ogA,-) < (BRY) Y. 0sA? < 9R%.
i=1 i=1

This is equivalent to
O9A1 + O9Ar + O9A3 < 3R. (10)

5) Using the same inequality and the relation (8) we have

4 ) 4
(R 3 EAi> <4R>.> EA; = 16R*
i=1 i=1
or, equivalently,

4
ZEA,- < 4R. (11)
i=1
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6) Using the relation

2EA; =2le —aj] =2 ‘% —a| =15 = 2441,
the inequalities (4), (5) become

D l—ar+ay+as] <6R

cyc

and, respectively,
Zl —ay +ay+az +as| <8R.

cyc

The above inequalities hold for all complex numbers of the same modulus R.

4.13 Some Geometric Transformations of the
Complex Plane

4.13.1 Translation

Let zg be a fixed complex number and let #,, be the mapping defined by
t, :C—=C, t,z) =z+z0.

The mapping 1, is called the translation of the complex plane with complex num-
ber zg.

M'(t;(2))

M(z)

Mo(z0)

Figure 4.16.

Taking into account the geometric interpretation of the addition of two complex
numbers (see Subsection 1.2.3), we have Fig. 4.16, giving the geometric image
of t,,(z).
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In Fig. 4.16 OMoM'M is a parallelogram and O M’ is one of its diagonals. There-
fore, the mapping f,, corresponds in the complex plane C to the translation o, of
vector W() in the case of a Euclidean plane.

It is clear that the composition of two translations #;, and #,, satisfies the relation

Iz 01z =1z142,-

It is also clear that the set 7 of all translations of a complex plane is a group with
respect to the composition of mappings. The group (7, o) is Abelian and its unity is
to = I, the translation of the complex number 0.

4.13.2 Reflection in the real axis

Consider the mappings s : C — C, s(z) = z. If M is the point with coordinate z, then
the point M'(s(z)) is obtained by reflecting M across the real axis (see Fig. 4.17). The
mapping s is called the reflection in the real axis. It is clear that s o s = I¢.

M(z)
o
M'(s(2))
Figure 4.17.
4.13.3 Reflection in a point
Consider the mapping so : C — C, so(z) = —z. Since so(z) + z = 0, the origin O

is the midpoint of the segment [M (z)M'(z)]. Hence M’ is the reflection of point M
across O (Fig. 4.18).

The mapping s is called the reflection in the origin.

Consider a fixed complex number z¢ and the mapping

50 C—=>C,  55(2) =220 — z.

If zo, 2, 57, (2) are the coordinates of points Mo, M, M ’, then M is the midpoint of the
segment [M M’], hence M’ is the reflection of M in My (Fig. 4.19).

The mapping s,, is called the reflection in the point Mo(zo). It is clear that the
following relation holds: s, o 5;, = I¢.
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M(z)
0 >
M'(—z)
Figure 4.18.
M'(so(2))
My(zp)
M(z)
o
Figure 4.19.

4.13.4 Rotation
Let a = costy + i sinty be a complex number having modulus 1 and let r, be the
mapping given by r, : C — C, r,(z) = az. If z = p(cost + i sint), then

ra(z) = az = p[cos(t + to) + i sin(t + 10)],

hence M’ (r,(z)) is obtained by rotating point M (z) about the origin through the angle
to (Fig. 4.20).

The mapping r, is called the rotation with center O and angle 7y = arga.

4.13.5 Isometric transformation of the complex plane

A mapping f : C — C is called an isometry if it preserves distance, i.e., for all
21,22 € G | f () — f(22)| = |21 — 22l

Theorem 1. Translations, reflections (in the real axis or in a point) and rotations

about center O are isometries of the complex plane.
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M'(r,(2))

AN
N\
\

\
fo M(z)

Figure 4.20.

Proof. For the translation 7., we have

120 (z1) — 175 (z2)| = [(z1 + z0) — (22 + 20)| = |21 — 22|
For the reflection s across the real axis we obtain
Is(z1) —s(z2)| = |z1 — 22|l = |z1 — 22| = |z1 — 22l,
and the same goes for the reflection in a point. Finally, if r, is a rotation, then
Ira(z1) — ra(22)| = laz1 — azz| = |allz1 — z2] = |21 — 22|, since |a| =1. O

We can easily check that the composition of two isometries is also an isometry.
The set 1zo(C) of all isometries of the complex plane is a group with respect to the
composition of mappings and (7, o) is a subgroup of it.

Problem. Let A1 A2A3A4 be a cyclic quadrilateral inscribed in a circle of center O
and let Hy, H>, H3, Hy be the orthocenters of triangles Ao A3A4, A1A3A4, A1AA4,
A1 A A3, respectively.

Prove that quadrilaterals A1 Ay A3z Aq and Hy H, H3 Hy are congruent.

(Balkan Mathematical Olympiad, 1984)

Solution. Consider the complex plane with origin at the circumcenter, and denote
by lowercase letters the coordinates of the points denoted by uppercase letters.

Ifs =a;+ay+az+ag,thenhy =ar+az+as =s—aj,h) =s—az, hy = s —as,
hs = s — as. Hence the quadrilateral Hy H, Hz Hy is the reflection of quadrilateral
A1AyA3 A4 across the point with coordinate %

The following result describes all isometries of the complex plane.

Theorem 2. Any isometry is a mapping f : C — C with f(z) = az + b or
f() =az+ b, wherea,b € Cand |a| = 1.
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Proof. Letb = f(0),c = f(1) and a = ¢ — b. Then
la| =lc =0l =1f() - fO)]=]1-0=1.

Consider the mapping g : C — C, given by g(z) = az+»b. Itis not difficult to prove
that g is an isometry, with g(0) = b = f(0) and g(1) = a + b = ¢ = f(1). Hence
h = g~ o f is an isometry, with 0 and 1 as fixed points. By definition, it follows that
any real number is a fixed point of &, hence h = 1¢ or h = s, the reflection in the real
axis. Hence g = f or g = f o s, and the proof is complete. ]

The above result shows that any isometry of the complex plane is the composition
of a rotation and a translation, or the composition of a rotation with the reflection in

the origin O and a translation.

4.13.6 Morley’s theorem

In 1899, Frank Morley, then professor of mathematics at Haverford College, came
across a result so surprising that it entered mathematical folklore under the name of
“Morley’s Miracle.” Morley’s marvelous theorem states that: The three points of in-
tersection of the adjacent trisectors of the angles of any triangle form an equilateral
triangle.

The theorem was mistakenly attributed to Napoleon Bonaparte, who made some
contributions to geometry.

There are various proofs of this nice result: J. Conway’s proof, D.J. Newman’s proof,
L. Bankoff’s proof, and N. Dergiades’s proof.

Here we present the new proof published in 1998, by Alain Connes. His proof is
derived from the following result:

Theorem 3. (Alain Connes) Consider the transformations of a complex plane f; :
C— C fi(z) =aiz+ b, i =1,2,3, where all coefficients a; are different from zero.
Assume that the mappings f1o f>, f20 f3, f3o f1 and fi o fr o f3 are not translations,
i.e., equivalently, ayay, aas, azay, ajazaz € C\ {1}. Then the following statements
are equivalent:

(D fiofiofi=lc

(2) j3 =1land a + jB + j?y = 0, where j = ajazas # 1 and a, B, y are the
unique fixed points of mappings f1 o f2, f2 o f3, f3 o f1, respectively.

Proof. Note that (f1 o 2)(z) = ajazz + a1by + by, ajax # 1,

(f20 f3)(2) = azazz + axb3 + b2, azaz # 1,

(f3o f1)(@) = azaiz + azb; + b3, aza; # 1.
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. airby + by ayazby + azby
Fix(f10 f2) = = - =ag,
1 —aja az—j
) azbz + by arazbz + ayb
Fix(f20 f3) = = - =B,
1 —azas3 ay—J
. azby + b3 ayazby + arbs
Fix(f30 f1) = 7 = : =y,
— azaj a — J

where Fix( f) denotes the set of fixed points of the mapping f.
For the cubes of fi, f2, f3 we have the formulas

@) =ajz+bia? + a1 + 1),

@) = a3z + by(ad +ay + 1),
@) = a3 + b33 a3 + 1),
hence
(fi o f3 o f)(@) = aja3a3z + ajasbs(a3 +as + 1)
+ajby(al +az 4+ 1) + bi(@® +ay + 1).

Therefore f13 o f23 ) f33 = idc if and only if afagag = 1land
33 2 3 2 2 _
ajaybz(as +az + 1) +ajby(as +ax + 1) + bi(ay +a; +1) =0.

To prove the equivalence of statements (1) and (2) we have to show that a+ j8+ j2y
is different from the free term of f13 ) f23 ) f33 by a multiplicative constant. Indeed,

using the relation j3 = 1 and implicitly j2 + j 4+ 1 = 0, we have successively:

a+jp+ity=a+if+(=1—jy=a—y+jB-v)

_ aiasby +azby  mazby + axbs n .(ala2b3 +aiby  aazb; +azb3)
as —j ay — j ar—j ay—j
ajarazby + ayazby —ayazbyj —azbyj — a2a§b1 —apazbz + arazbj + arbzj
(a2 — a3z — )

+jala%b3 +ajaphy —ajapb3j —arbyj — ajapazby — ajapbz + azazbyj +azbsj
(ay — j)az = j)

1 (sz — masby j* — ajazbyj — azby j — axa3by — arazbz + azbs j
a —j az — j

N a1a3bsj + ajazbrj + arashs — a1byj? — by j* + azasby j* + a2b3j2>
a—j
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1
(a1 — a2 — a3 — )

(a1baj — by — atasbyj — arasby j — ayazalby — by j

+ ajarbzj — b2j2 + arazby + a1a3b2j2 + a3b1j2 + a2a§b1j + arazbzj — azb3j2
+arb3 j? + by j* + b3 j — arazbaj? — azby j* + axazby j* + arazbs

— a1a3b3j* — ajaobr j* — arazbsj + arby + by — azazby — azbz)
_ 1
(a1 — j)az — j)(az — j)

(—ar1byj* — atazbrj — ajasbyj — azby j

— ama3by — ayazby — ajasbs j* — ajaxby j* — azbs)
1 222 3 9

= — arayaibr + ajaraib

@1 = lar — Dlas =y 12eb2 F @it

2 2 2 2 3 42 332
+ ajaazby + araxa3by + axazby + arazbz + ajayazbs + ajaya3by 4 axb3)

1
= — PP T— [aza_qz,bl (I+a + a%) + a13a2a§b2(1 +ar + a%)

+ arb3(1 + a3z + al3 + a%agag)]
2
aa2dy 33 2
= — ajasbs3(1+az +a
@ — lar — D — e tata

+a3by(1 +ay 4 a3) + bi(1 + ar + ad)]. O

Theorem 4. (Morley) The three points A'(a), B'(8), C'(y) of the adjacent trisec-

tors of the angles of any triangle ABC form an equilateral triangle.

C

Figure 4.21.

Proof. (Alain Connes) Let us consider the rotations fi = ra oy, f2 = B2y, f3 =
1~ 1~ 1~
rc2; of centers A, B, C and of angles x = §A’ y= §B, 7= §C (Figure 4.21).

Note that Fix(f] o f2) = {A’}, Fix(f2 o f3) = {B’}, Fix(f3 o f1) = {C’} (see Fig-
ure 4.22).
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A//
m
A B

x / h
A= [fr(A)
Figure 4.22.

X
Figure 4.23.

To prove that triangle A’ B’C’ is equilateral it is sufficient to show, by Proposition 2
in Section 2.4 and above Theorem 3, that f13 o f23 o f33 = 1. The composition s4cosap
of reflections ss¢ and s4p across the lines AC and AB is a rotation about center A
through angle 6x.

Therefore f13 = s4c o s4p and analogously f23 = sga o sgc and fz3 = SCB O SCA-
It follows that

3 3 3
fiofiof; =sacosapospaospcoscposca=Ic. (|

4.13.7 Homothecy

Given a fixed nonzero real number k, the mapping hy : C — C, hi(z) = kz, is called
the homothecy of the complex plane with center O and magnitude k.

Figures 4.24 and 4.25 show the position of point M’(h;(z)) in the cases k > 0 and
k <O0.

Points M (z) and M’(hy(z)) are collinear with the center O, which lies on the line
segment M M’ if and only if k < 0.

Moreover, the following relation holds:

lOM'| = [k||OM].

Point M’ is called the homothetic point of M with center O and magnitude k.



4.13. Some Geometric Transformations of the Complex Plane 159

M(z))

M'(hi(2))
(@] k>0
Figure 4.24.
A
M(z))
0 k<o
M'(hi(2))
Figure 4.25.

It is clear that the composition of two homothecies Ay, and hy, is also a homothecy,
that is,

hi o hiy = hiyky-

The set H of all homothecies of the complex plane is an Abelian group with respect
to the composition of mappings. The identity of the group (H, o) is A1 = ¢, the
homothecy of magnitude 1.

Problem. Let M be a point inside an equilateral triangle ABC and let My, My, M3
be the feet of the perpendiculars from M to the sides BC, CA, AB, respectively. Find
the locus of the centroid of the triangle M1 M M3.

Solution. Let 1, &, £2 be the coordinates of points A, B, C, where ¢ = cos 120° +
i sin 120°. Recall that

?+e+1=0ande’ =1.

If m, my, my, m3 are the coordinates of points M, My, M>, M3, we have

1
m1=§(1+e+m—en_1),
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1 2 —_
my = 5(8+8 +m —m),

_l 2 o2
m3_2(5 +14+m—¢e“m).

Let g be the coordinate of the centroid of the triangle M| M, M3. Then

1 1 m
g = §(m1+mz+m3)=8(2(1+s+sz>+3m—m1+e+sz)>=5,

1
hence OG = EOM.
The locus of G is the interior of the triangle obtained from A BC under a homoth-
ecy of center O and magnitude > In other words, the vertices of this triangle have

. 11 1,
coordinates —, —¢&, —&°.
2°2°2

4.13.8 Problems

1. Prove that the composition of two isometries of the complex plane is an isometry.

2. An isometry of the complex plane has two fixed points A and B. Prove that any
point M of line AB is a fixed point of the transformation.

3. Prove that any isometry of the complex plane is a composition of a rotation with a
translation and possibly also with the reflection in the real axis.

4. Prove that the mapping f: C — C, f(z) =i -Z+ 4 — i is an isometry. Analyze f
as in problem 3.

5. Prove that the mapping g: C — C, g(z) = —iz + 1 + 2i is an isometry. Analyze g

as in problem 4.
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Olympiad-Caliber Problems

The use of complex numbers is helpful in solving Olympiad problems. In many in-
stances, a rather complicated problem can be solved unexpectedly by employing com-
plex numbers. Even though the methods of Euclidean geometry, coordinate geometry,
vector algebra and complex numbers look similar, in many situations the use of the
latter has multiple advantages. This chapter will illustrate some classes of Olympiad-
caliber problems where the method of complex numbers works efficiently.

5.1 Problems Involving Moduli and Conjugates
Problem 1. Let z1, 22, 23 be complex numbers such that
lzil = lz2] = lz3l =r >0

and 71 + 72 + z3 # 0. Prove that

z122 t 2223 H 2321 | _ -
21+z22+23 '

Solution. Observe that

Then

2122 + 2223 + 2321
21 +22+ 23

2 — | — —
2122+ 2223 + 2321 2122 + 2223 + 2321
Z1+ 22+ 23 21+t
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r r r r r r
_UnF0B3ABA oz o 22 3B U2
21+z22+2z3 2?2 ’

as desired.

Problem 2. Let 71, zo be complex numbers such that

lz1] = |z2l =7 > 0.

2 2
21+ 22 21— 22 1
uall s zZ 3
2+ z120 r?—ziz2 r

Solution. The desired inequality is equivalent to
rz1 +22)\? rz1 —22)\?
2 + 2 > 1.
re+2z122 re—2z122

z1 = r(cos2x + i sin2x) and zp = r(cos2y + i sin2y)

Prove that

Setting

yields

r(z1 + z22) _ r2(cos 2x +isin2x +cos2y +isin2y) _ cos(x —y)
r24+z1z0  r2(1 +cos(2x +2y) +isin2x +2y))  cos(x +y)

Similarly,
r(zi —z2) _ sin(y —x)
r2—zizp  sin(y +x)’

Thus

<r(z1 + 12>2 n (r(zl - Zz))2 _ cos’(x —y) sin(x — y)

2tz r2—ziza)  cos?(x+y)  sin’(x 4 y)
> cos?(x — y) +sin*(x —y) =1,
as claimed.

Problem 3. Let z1, 22, 23 be complex numbers such that

lz1] = lz2] = |z3] =1

and 5 5 5
é Z Z
Sl ERNE L ST LE BN SO
2223 2123 2122
Prove that

lz1 +z2 + z3] € {1,2}.
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Solution. The given equality can be written as
a+5+3+21253=0
or
_ .3 3 3
—4z12223 = 7] + 25 + 23 — 3212223
— 2 2 2
= (21 + 22 +23)(2] + 25 + 25 — 2122 — 2223 — 2321)-

Setting z = z1 + 22 + 23, yields
2 —32(z122 + 2223 + 2321) = —4212223.

This is equivalent to

3 11
=723 |3z{—+—+—| —4].
21 22 Z3

The last relation can be written as

P =nnnlBi@i+n+n) -4, e, 22 =zu20z01z7 -4).

2
Taking the absolute values of both sides yields |z|? = |3|z|> — 4]. If |z| > ﬁ’ then
2
1z]? — 3|z|2 + 4 = 0, implying |z| = 2. If |z] < ek then |z|? + 3|z|> — 4 = 0, giving
|z| = 1, as needed.

Alternate solution. It is not difficult to see that |z? + zg + z§| = 1. By using the
algebraic identity

uu+v)yv+w)(w+u) =w+v+w)(uv + vw + wu) — uvw

foru = z?, v = z%, w = zg, it follows that

3 3y/.3 3 3 3 3 3 3v/.,3.3 3.3 3.3 333
(Z] + Z2)(Z2 + Z3)(Z3 +Zl) = (Z] + 25 +Z3)(Z122 +ZzZ3 + Z3Z1) — 213223

1 1 1
333.3 3 3 333
= 21Z2Z3(Z1 + 2y + Z3) 3 + 3 + =3~ 212223

=83n@ 45+ zg)(z? +23+ zg) - BB5

= z?z%zg — z?z%zg =0.

Suppose that z3 +z3 = 0. Then z; + 22 = 0 or z3 — z122 + z3 = 0 implying
z% + z% = —2zjzp or z% + z% = 2122
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On the other hand, from the given relation it follows that zg = —Z712223, yielding
3 =-uz.
We have

21 ) 13

Z Z Z 4 Z Z
:3+(_1+_2>+<_1+_3)+<_2+_3>

22 21 23 22 23 71

2 2
—344t8
2122 2233 2321 2122

This leads to |z1 + 22 + 231> = 1 if 23 + 25 = —2z1z2 and |21 + 22 + z3]> = 4 if
z% + z% = z1z2. The conclusion follows.

1 1 1
|ZI+Z2+ZS|2:(ZI+22+Z3)< +—+—)

2 2 2 2
71 +z 3+azn2 3tz
=341 =243 -

Problem 4. Let z1, 7o be complex numbers with |z1| = |z2| = 1. Prove that
|zt + 1 +lz2+ 1+ z1z2 + 11 = 2.

Solution. We have
|z1 + 1| 4+ |z2 + 1| + |z122 + 1]

>z + 1+ lziz2+ 1= (22 + DI = |z1 + 1] + |z122 — 22|
> lz1+ U+ lz2llzr = U = lz1 + 1] + 21 — 1
>la+l+z =1 =2|z]=2,
as claimed.

Problem 5. Let n > 0 be an integer and let 7 be a complex number such that |z| = 1.
Prove that

nll 4zl + 1+ 2+ 1+ 22+ [T+ 22+ 1+ 2 > 2n
Solution. We have

a4zl + 1+ 22+ 1+ 2+ 1+ 22+ 1+ 22
n n
=Y (4l + 1+ + )71+ 2%
k=1 k=1
n n n
> Y e =Y 2K =) i = K+ 1+ 2K
k=1 k=1 k=1

n n
=Y M= +lz+2D =) =+ 1+ =2,
k=1 k=1

as claimed.



5.1. Problems Involving Moduli and Conjugates 165

Alternate solution. We use induction on .
For n = 1, we prove that |1 + z| + |1 + 22| + |1 4+ z3| > 2. Indeed,

2=l4+z+2+1—z0+DI <M +zl+ 122 + 1+ |z]]1 + 27
=14z +1+2+1+2°
Assume that the inequality is valid for some 7, so
nll4zl+ 114+ 22+ + 1+ 22" > 20,

We prove that
A DI+ zl + 14+ 4 A T+ 2T 1+ 22 1+ 22P > 2n 2.
Using the inductive hypothesis yields
(4 DIL+z] + [T+ 22+ 4 [1+ 27T |1 22
> 2+ |1+ 2] + |14 22" + |1 4 227
=2n+ |1 +z| + |zl|1 + 222 + |1 + 2213
>4 |14+z—z(1+22"2) + 142" =2m 42,

as needed.
Problem 6. Let z1, 22, 23 be complex numbers such that
I)lzil =lz2l = lz3l = 1;
2)z1+z2+3#0;
Jzi+z+3=0
Prove that for all integers n > 2,

|z} + 25 + 251 €{0,1,2,3}.
Solution. Let
s1=2z1+z22+23, S$2=2122+ 2223 +2321, 3 = 212223
and consider the cubic equation
3

Z —S112+szz—S3=0

with roots z1, 22, z3.
Because z% + z% + z% = (0, we have

52 =25, (1)
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On the other hand,

1 1 1
S2=53(—+—+—)=S3(H+5+E)=S3~ﬂ. ()
21 2 23

The relations (1) and (2) imply s% = 2s3 - 57 and, consequently, |s1|? = 2|s3| - [57] =
2|s1|. Because s1 #~ 0, we have |s1| = 2, so s; = 24 with [A| = 1.

. . 1 2 2 S2 2)\,2
From relations (1) and (2) it follows that s = —s7 = 2A” and 53 = =

—_ = = )x3.
. . ST 2
The equation with roots z1, z2, z3 becomes

2 -+ -2 =0
This is equivalent to

(z—=M@E*—rz+2%) =0.

1 3
The roots are A, Ae, —AsZ,where ¢ = — + i%.
Without loss of generality we may assume that z; = A, zo = A¢, z3 = —Ag2. Using

the relations 2 — & + 1 = 0 and &3 = —1, it follows that

Ep =2} + 25 + 25 = A"+ A"e" + (=1)"A"e*"|
=|14¢&" + (=1)"e™|.
It is not difficult to see that Ey4¢ = Ej for all integers k and that the equalities
Eoy=3, E=2, E,=0, Ej
settle the claim.

Alternate solution. It is clear that z%, z%, z% are distinct. Otherwise, if, for example,
Z% = Z%, then 1 = Izgl =|- (z% + z%)l = 2|z%| = 2, a contradiction.
From z3 + z3 + z3 = 0 it follows that z, z3, z3 are the coordinates of the vertices

of an equilateral triangle. Hence we may assume that z% = sz% and z% = szz%, where
€2 + e+ 1 = 0. Because z2 4.2

5 = €&"z7 and z% = szz% it follows that z, = :|:£221 and
z3 = *ez1. Then

|2} + 25+ 25 = (1 + (Ee)" + (FeHMZ]] = |1+ (£&)" + (£e)"] € {0, 1,2, 3}

by the same argument used at the end of the previous solution.

Problem 7. Find all complex numbers z such that

lz—lz+ 1=z + |z = 1]l
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Solution. We have
lz—lz+ 1| =z + 1z — 1]

if and only if
lz—lz+ 1P =z + 1z — 1%

ie.,

—=lz+1D)-@=lz+ 1D =G+ Iz—1) - @+ |z = 1.
The last equation is equivalent to
2 T—G+Dz+ U +z+1P =224+ @+D -z — 1+ ]z — 1%
This can be written as
2+ 1P =1z = 1P = @+ - (z+ 1 +lz = 1D,

e C+DEED—G=DGE-D=C+2)-(z+1]+]z—1).

The last equation is equivalent to
26+2)=@+2)-(Jz+ 1+ |z—1]), ie,z+2=0,

orlz+ 1|+ |z =1 =2.
The triangle inequality

2=z+D)—@G=-D|<|z+1]+|z—-1]

167

shows that the solutions to the equation |z + 1|+ |z — 1| = 2 satisfy z+ 1 = ¢(1 — 2),

where ¢ is a real number and r > 0.

It follows that z =

, 80 7 is any real number with —1 <z < 1.

The equation z + z = 0 has the solutions z = bi, b € R. Hence, the solutions to the

equation are
{(pi:beR}U{aeR:ae[-1,1]}.

Problem 8. Let 71, 22, ..., 2n be complex numbers such that |z1| = |z2] = ---
|zx| > 0. Prove that
n n
Zi
re(33 ) =0

J=1k=1%k
if and only if “

sz =0.

k=1

(Romanian Mathematical Olympiad — Second Round, 1987)
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Solution. Let

Then

and since 7 - Zx = r2 for all k, we have

= (5) (57)

n
Hence S is a real number, so ReS = § = 0 if and only if Z zr = 0.
k=1
Problem 9. Let A be a real number and let n > 2 be an integer. Solve the equation

Mz+ZH =iz —-2").
Solution. The equation is equivalent to
'A+i) =2(=A+10).

Taking the absolute values of both sides of the equation, we obtain |z|" = |z]| = |z],
hence |z]| =0 or |z] = 1.

1
If |z| = 0O, then z = 0O which satisfies the equation. If |z| = 1, then 7 = — and the

z
equation may be rewritten as
ot A+
Ati
A+ .
Because T = 1, there exists ¢t € [0, 27r) such that
i
A+ ..
— = COSt +1isIint.

A+

Then

t+2kn . t+2km
+ 1 sin
n—+1 n—+1

Zk = COS

fork =0, 1, ..., n are the other solutions to the equation (besides z = 0).
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Problem 10. Prove that

6z —1i
2+ 3iz

< lifandonlyif |z| <

W =

Solution. We have

< lifand only if |6z —i| < |2 4 3iz|.

The last inequality is equivalent to
162 — i|? < |2+ 3iz|?, ie., (62 —i)(6Z +i) < (2 + 3i2)(2 — 3i7).

We find
36z-7+6iz —6iz+1<4—06i7+ 6iz+ 927,

ie., 27z -7 < 3. Finally, z7 < % or, equivalently, |z| < %, as desired.

Problem 11. Let z be a complex number such that z € C \ R and

1 2
1+t R
1 —z+ 272
Prove that |z] = 1.
Solution. We have
1 +z+4 22 Z Z
—  — =142———— eRifandonly if ———— € R.
1—z+2z? l—z+22 YT 2
That is,
l—z+22 1

1
=—-——14z€eRR, ie,z+ - €R.
z Z z

The last relation is equivalent to
r _ 1, _ 2
z+2=z+%, Le, (z—2)( —[z]7) =0.

Wefindz=Zor|z| =1.

Because z is not a real number, it follows that |z| = 1, as desired.

169

Problem 12. Let 71, 22, . . ., z2n be complex numbers such that |z71| = -+ = |z, = 1

(5 (1)

Prove that 7 is a real number and 0 < 7 < n?.
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1
Solution. Note that 7y = — forallk = 1, ..., n. Because
Zk

it follows that z is a real number.

Let z; = cos ay + i sin o, where «y are real numbers. for k = 1, n. Then

n n n n
z= Zcosak—i—iZsinak Zcosak—iZSinak
k=1 k=1 k=1 k=1

n 2 n 2
= (Z Cosak> + (Z sinock> > 0.
k=1 k=1

On the other hand, we have

n
7= X:(cos2 o + sin? o) +2 Z (cosa; cosaj + sina; sinaj)

k=1 1<i<j<n

—1
=n+2 Z cos(ai—a./)§n+2<;):n+2%:n27

I<i<j<n

as desired.

2

Remark. An alternative solution to the inequalities 0 < z < n~ is as follows:

= (5 (595 ()

Tn \ n 2 n 2
Du| < (ZIZH) =n’,
k=1

(B (o) el < (5

soO§z§n2.

Problem 13. Let 71, 22, z3 be complex numbers such that

2+ 2+z3#0 and 71| = |z2] = |z3].

1 1 1 1
Re(_+_+_>.Re(_)zo.
71 2 23 21 +22+23

Solution. Let » = |z1| = |z2| = |z3| > 0. Then

Prove that

NN =B =nBB=r
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and
1 1 I Zi+22+73  z1+2+23

21 22 13 r

2 2
On the other hand, we have

1 At n+z3
Zi+2+z3  lz+z+zsl?

1 1 1 1
Re|—+—+—) - Re| ———MM—
21 22 73 21+22+23
e e — P Re(z1 + 25 F 22 2
=Re(zl+zi+z3)-Re( 21+ z22+23 >=( <23(Zl+22+Z3)2) .
r ré|z1 + z2 + z3|

and, consequently,

lz1 + 22 + z3/2

as desired.

Problem 14. Let x, y, z be complex numbers.
a) Prove that

x|+l +lzl < x+y—z|l+lx—y+zl+]|—x+y+z|.

b) If x, y, z are distinct and the numbers x +y —z, x —y + z, —x + y + z have

equal absolute values, prove that
2(0x[+ Iyl +lzD < lx+y—zl+Ix—y+zl+|—x+y+z|
Solution. Let
m=—-x+y+z, n=x—-y+z, p=x+y—2z

We have
n+p m+p m-+n

a) Adding the inequalities

1 1 1
x| < E(Inl +1ph, Iyl = E(Iml +1pD, Izl = z(l’ﬂl + In))

yields
X[+ 1yl + [z] < |m[+ |n] + [p],

as desired.
b) Let A, B, C be the points with coordinates m, n, p and observe that numbers
m, n, p are distinct and that |m| = |n| = |p| = R, the circumradius of triangle ABC.
Let the origin of the complex plane be the circumcenter of triangle ABC.
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The orthocenter H of triangle ABC has the coordinate & = m 4 n 4 p. The desired

inequality becomes
|lh —m|+|h —n|+|h—p| < |m[+|n| +|pl|

or
AH +BH + CH <3R.

This is equivalent to

3
cosA—i—cosB—i—cosCﬁE. @))
Inequality (1) can be written as
A+ B A—B cC 3
2 cos + cos +1—251n2—§—
2 2 2 72

or

. C A-B\*> ,A-B
0 < [2sin — — cos + sin ,
2 2 2

which is clear. We have equality in (1) if and only if triangle ABC is equilateral, i.e.,

. 2 .2
m=a,n=age,p= asz, where a is a complex parameter and &€ = cos ? +1isin ?
In thi : ? 22

nthiscasex = ——,y = ——¢g,z7 = ——¢&“.
2T 72 2
Problem 15. Let 2o, 21, 22, - - . , 2n be complex numbers such that

(k+ Dzg41 —i(n —k)zp =0

forallk € {0,1,2,...,n—1}.
1) Find zo such that
20tzi+-- 4z, =2"

2) For the value of zo determined above, prove that

Gn+1)"

2 2 2
lzol" +lztl" + -+ 2™ < —

Solution. a) Use induction to prove that
k(N
k=1 k z0, forallk € {0,1,...,n}.

Then
z0+z1+ -+ 2z, =2"if and only if zo(1 + i)" = 2",

ie.,zo= (1 —i)".
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b) Applying the AM-GM inequality, we have

2 2 2
n n n
lzol?> + 12112 + - + |zal? = |zo)? <<0> + (1> R <n> )

s (2n . (2n 2"
= |zo|” - | =2". :EZn(Zn—l)-n(n—i—l)

n

’

<z<2n+(2n—l)+~-~+(n+l)>"_ Bn+ 1)

n! n n!
as desired.

Problem 16. Let 71, 22, z3 be complex numbers such that
Z1 +22+23 = 2122 + 2223 + 2321 = 0.

Prove that |z1| = |z2| = |z3].

Solution. Substituting z; +z> = —z3 in 2122 + 23(z1 +23) = 0 gives 22> = 23, s0
|z1] - [z2] = |z3]?. Likewise, |z2| - |z3] = |z1/* and |z3]|z1| = |z2|*. Then

2 2 2
2117 + |z21" + |z3]7 = |z1llz2] + lz2llz3] + 2311211,

ie.,
(21l = |22D* + (22| = [z3D* + (Iz3] = 21D = 0,
yielding |z1] = |z2] = |z3].

Alternate solution. Using the relations between the roots and the coefficients, it
follows that z1, z», z3 are the roots of polynomial 2 - p, where p = z1z2z3. Hence
z? —p= zg —p= zg — p =0, implying z? = z% = zg, and the conclusion follows.
Problem 17. Prove that for all complex numbers z with |z| = 1 the following inequal-
ities hold:

V2<|l—z+1+2% <4

Solution. Setting z = cost + i sint yields

|1 — z| =\/(1 —cost)? +sin®t =2 —2cost =2

Lt
sin —
2

and

11+z2% = \/(1 + 08 21)2 + sin?2r = /2 + 2 cos 2t

1t
= 2| cost| =2‘1—2sin2§‘.

V2 ) _t
It suffices to prove that - <la|l+ |1 —=2a°| <2, fora = smE e [—1,1]. We
leave this to the reader.
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Problem 18. Let 71, 22, 23, 24 be distinct complex numbers such that

22— 21 2 —123
Re —— =Re — =0.
24— 21 4—23

a) Find all real numbers x such that
lz1 — 221" + 121 — zal® < |22 — z4|* <22 — z3l" + |z — z3[".

b) Prove that |z3 — z1| < |z4 — 22|.

Solution. Consider the points A, B, C, D with coordinates zy, z2, 23, 24, respec-

tively. The conditions

22— 21 22—23
= Re
24— 21 24— 23

Re =0

imply BAD = BCD = 90°. Then |z1 —z2| = AB and |71 — z4| = AD are the lengths
of the sides of the right triangle A B D with hypotenuses BD = |72 — z4|.

The inequality AB* + AD* < BD” holds for x > 2.

Similarly, |zo — z3] = BC and |z4 — z3] = CD are the sides of the right triangle
BCD, so the inequality BD* < BC* + C D" holds for x < 2. Consequently, x = 2.

Finally, AC = |z3 — 21| < BD = |z4 — 72|, since AC is a chord in the circle of
diameter BD.

Problem 19. Let x and y be distinct complex numbers such that |x| = |y|. Prove that
: lx + ¥y < |x|
—|x < |x].
5 y

Solution. Letx = a+iband y = c+id, witha, b, ¢,d € R and a+b% =2+ d2.
The inequality is equivalent to

(@a+c)?+ b +d)? < 4@+ b

or
(@a—c’+B-—d)?* >0,

which is clear, since x # y.

Alternate solution. Consider points X (x) and Y (y). In triangle XOY we have

OX = OY.Hence OM < OX, where M is the midpoint of segment [XY]. The
x +

coordinate of point M is ) , and the desired inequality follows.

Problem 20. Consider the set

A={ze€eC:z=a+bi, a>0,]z] <1}.
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Prove that for any z € A there is a number x € A such that

_l—x
Z_l+x'
1—x

Solution. Let z € A. The equation z = 1 has the root

+x
11—z 1—a-—ib
X = = .
1+z l+a+ib

where @ > 0 and a? 4+ b2 < 1.

To prove that x € A, it suffices to show that |x| < 1 and Re(x) > 0. Indeed, we

have 5 )
1-— b
Ix|? = % < lifand only if (1 — a)? < (1 + @)%,
a
i.e., 0 < 4a, as needed.
1—|z?

Moreover, Re(x) = > 0, since |z| < 1.

11+ 2
Here are more problems involving moduli and conjugates of complex numbers.
Problem 21. Consider the set

A={zeC:|z] <1},

a real number a with |a| > 1, and the function

1+az
A=A, f(»)= .
Z+a

Prove that f is bijective.

Problem 22. Let z be a complex number such that |z] = 1 and both Re(z) and Im(z)
are rational numbers. Prove that |2 — 1| is rational for all integers n > 1.
Problem 23. Consider the function

141t
1—ti

f:R—>C, f@)=

Prove that f is injective and determine its range.

Problem 24. Let z;, zo € C* such that |z; + z2| = |z1| = |z2]. Compute o
22
Problem 25. Prove that for any complex numbers z1, 22, . . ., 2, the following inequal-

ity holds:

2
(Izil + lz2l 4+ -+ lzal + 121 + 22+ -+ - + 2a)
> 2zl + - H P+l + 22+ 4 2l
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Problem 26. Let z1, z2, ..., 22, be complex numbers such that |z;| = |z2] = -+ =

|zon| and argz) < argzp < --- < arg zo, < m. Prove that
lz1 + zon| < |22 + 22011 < - < |z + Znpa1 |-

Problem 27. Find all positive real numbers x and y satisfying the system of equations

1
«/3x(1+—):2,
xX+y

1
Jy (1 - —> = 44/2.
X+y
(1996 Vietnamese Mathematical Olympiad)

Problem 28. Let z1, z2, z3 be complex numbers. Prove that z; + z + z3 = 0 if and
only if |z1| = |z2 + z3|, |z2] = |z3 + z1| and |z3| = |z1 + z2].

Problem 29. Let z1, 25, ..., 2, be distinct complex numbers with the same modulus
such that

2324+ Zn—12n + 2124 Tn—1Zn + -+ 2122 Zn—2 = 0.
Prove that
2122+ 2223+ -+ 20—12, = 0.
Problem 30. Let a and z be complex numbers such that |z + a| = 1. Prove that
_ 11-2ja]]
T2

Problem 31. Find the geometric images of the complex numbers z for which

1z + d?|

7" -Re(z) =7" - Im(z),

where n is an integer.

Problem 32. Let a, b be real numbers with @ + b = 1 and let z, zo be complex

numbers with |z1| = |z2] = 1.
Prove that 21 + 2]
<1 22
lazi + bza| > —————.
Problem 33. Let k, n be positive integers and let z1, z2, ..., z, be nonzero complex

numbers with the same modulus such that
4+ +E =0

Prove that
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5.2 Algebraic Equations and Polynomials
Problem 1. Consider the quadratic equation
a*? +abz+c* =0

b
where a, b, c € C* and denote by 71, 73 its roots. Prove that if — is a real number then
c

21
|z1]| = |z2| or — € R.
22

b
Solution. Let t = — € R. Then b = t¢ and
c

A = (ab)? —4a? - ? = a*P(* — 4).

If |t] > 2, the roots of the equation are

—tac +acvVt? —4 ¢
212 = :Z(—tivt2—4),

2a?

.. . 21 .
and it is obvious that — is a real number.

22
If |#] < 2, the roots of the equation are

22 =5 (2 iVA—1),
a

hence |z1| = |z2] = % as claimed.
a
Problem 2. Let a, b, ¢, z be complex numbers such that |a| = |b| = |c| > 0 and
az*> + bz + ¢ = 0. Prove that
V51 V51
<lzl =
2 2

Solution. Let » = |a| = |b| = |c| > 0. We have

laz?| = | — bz — c| < |b||z| + |cl,

++/5
R
On the other hand, |¢| = | — az? — bz| < |a||z|* + b|z], such that |z|2 +|z]| — 1 > 0.

hence r|z2| < r|z| + r. It follows that |z|> — |z] — 1 < 0, so |z| <

Thus |z| > , and we are done.

Problem 3. Let p, g be complex numbers such that |p|+|q| < 1. Prove that the moduli
of the roots of the equation z*> + pz + q = 0 are less than 1.
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Solution. Because 71 +z2 = —p and 7122 = ¢, the inequality |p|+ |g| < 1 implies
|21 4+ 22| + |z122] < L. But [|z1]| — [22]] < |z1 + z2], hence

|z1] — |z2 + Iz1llz2] — 1 < Oif and only if (1 + [z2[)(|z1| — 1) <O
and
|z2] — |z1] + |z2]lz1] — 1 < Oif and only if (1 + |z1])(|z2] — 1) < O.

Consequently, |z1] < 1 and |z2| < 1, as desired.

Problem 4. Let f = x? + ax + b be a quadratic polynomial with complex coefficients
with both roots having modulus 1. Prove that f = x*+|a|x+|b| has the same property.

Solution. Let x; and x; be the complex roots of the polynomial f = x>+ ax + b
and let y; and y, be the complex roots of the polynomial g = x> + |a|x + |b].

We have to prove that if |x1| = |x3| = 1, then |y1| = |y2| = 1.

Since x1-xp = b and x1+xp = —a, then |b| = |x1]||x2| = 1 and |a| < |x1]|+|x2| = 2.

The quadratic polynomial g = x2+|alx + 1 has the discriminant A = |a|>—4 < 0,

—la| £i/4 —|a|?
> .
It is easy to see that |y;| = |y2| = 1, as desired.

hence

V1,2 =

Problem 5. Let a, b be nonzero complex numbers. Prove that the equation
3 2 A - _
az” +bz"+bz+a=0

has at least one root with absolute value equal to 1.

. . 1.
Solution. Observe that if z is a root of the equation, then — is also a root of the

. . ) 1
equation. Consequently, if z1, z2, z3 are the roots of the equation, then —, —, — are
71 22 23

the same roots, not necessarily in the same order.
1 1
If zx = — forsome k = 1, 2, 3, then |zx|> = zxZx = 1 and we are done. If z; # —

Zk Zk
for all k = 1, 2, 3, we may consider without loss of generality that

1 1 1
1 = =, 2 ==, 3 = —.
22 23 <1

The first two equalities yield z1 - 22 - z2 - 73 = 1, hence |z1] - |z2|% - |z3] = 1. On the
a .
other hand, z1z2z3 = ——, 0 |z1]|z2]|z3] = 1. It follows that |z2| = 1, as claimed.
a

Problem 6. Let f = x* 4+ ax? + bx* + cx + d be a polynomial with real coefficients
and real roots. Prove that if | f(i)| = 1 thena=b=c=d = 0.
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Solution. Let x{, x3, x3, x4 be the real roots of the polynomial f. Then
f=0&—=x)& —x2)(x —x3)(x — x4)

and

FO =1+l 1 rad 1 14

Because | f(i)| = 1, we deduce that x; = x = x3 = x4 = 0 and consequently
a=b=c=d =0, as desired.
Problem 7. Prove that if 11z'° + 10iz° + 10iz — 11 = 0, then |z| = 1.
(1989 Putnam Mathematical Competition)
o 11—10iz

11z 4 10i

V11242206 + 10%(a2 + b2)
© /112(a2 + b2) + 2206 + 102

Let f(a,b) and g(a, b) denote the numerator and denominator of the right-hand
side. If |z] > 1, then a®> + b> > 1, s0 g(a,b) > f(a,b), leading to |z°| < 1, a
contradiction. If |z| < 1, then a® + b*> < 1, s0 g(a, b) < f(a, b), yielding |z°| > 1,

Solution. The equation can be rewritten as z If z = a + bi, then

9
4

11 —10iz
11z + 10

again a contradiction. Hence |z| = 1.

Problem 8. Let n > 3 be an integer and let a be a nonzero real number. Show that any

nonreal root z of the equation x" + ax + 1 = 0 satisfies the inequality

n

lz| =

n—1

(Romanian Mathematical Olympiad — Final Round, 1995)

Solution. Let z = r(cosa + i sinw) be a nonreal root of the equation, where o €
(0, 2) and & # 7. Substituting back into the equation we find r" cos na + ra cos o +

1 +i(r"sinna + rasina) = 0. Hence
r"cosna +racosa +1=0andr"sinno +rasina = 0.

Multiplying the first relation by sin«, the second by cos«, and then subtracting
them we find that r” sin(n — 1) = sin«. It follows that

r"|sin(n — Da| = |sina|.

The inequality |sinka| < k|sinc/| is valid for any positive integer k. The proof is
based on a simple inductive argument on k.
Applying this inequality, from r"|sin(n — 1)«| = |sin«|, we obtain |sina| <

n,

n—1

r(n — 1)| sina|. Because sin« # 0, it follows that " > 1,i.e., |z| >
n—



180 5. Olympiad-Caliber Problems

Problem 9. Suppose P is a polynomial with complex coefficients and an even degree.
If all the roots of P are complex nonreal numbers with modulus 1, prove that

P(1) e Rifand only if P(—1) € R.

P
Solution. It suffices to prove that P(( i) €
Let x1, x2, ..., x2, be the roots of P. Then

P(x) = Ax —x1)(x —x2) -+ (x — Xx20)

for some A € C*, and

P() _ al—xp(—x)---(I—x) 12—[ 1 —x
P(=1)  A(=1—=x)(=1=x2) (=1 —x2n) 1 '
From the hypothesis we have |x;| = 1 forallk = 1,2, ..., 2n. Then

1
1

l-x\ 1-% x x—1  1-x
I+ x _1+E_]+i_xk+1_ 1+
Xk

hence

PO\ B 1-—x\ &/ l-x
(P<—1>>—,Q(1+xk>—ﬂ<‘1+xk)
2n
ity o P
=D 1_[1+Xk_P(—1).

k=1

P
This proves that 7 M) is a real number, as desired.

Problem 10. Consider the sequence of polynomials defined by P1(x) = x> — 2 and
Pj(x) = Pi(Pj_1(x)) for j =2,3,.... Show that for any positive integer n the roots
of equation P, (x) = x are all real and distinct.

(18™ IMO - Shortlist)

Solution. Put x = z + z~!, where z is a nonzero complex number. Then P;(x) =
x2 =2 =(z4+z"1H% =2 =27z%+z7% A simple inductive argument shows that for all
positive integers n we have P, (x) = 2+ 777,

The equation P, (x) = x is equivalent to z2* +z 2" = z4+z~'. We obtain z2" —z =
= e, 2@ 1) = 272 (22" T —1). It follows that (22"~ —1)(z¥' 1 1) =
0. Because ged(2" —1, 2" +1) = 1 the unique common root of equations z2 ' —1 = 0
241

and z — 1 =0is z =1 (see Proposition 1 in Section 2.2). Moreover, for any root
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I'— 7. Also, observe

of equation (zZ'~! — 1)(z?'*! — 1) = 0 we have |z| = 1, i.e., 2~
that for two roots z and w of (z2'~! — 1)(z%"*! — 1) = 0 which are different from 1,
we have z+z~! = w+w™! ifand only if (z — w)(1 — (zw)~") = 0. This is equivalent
tozw = 1,i.e., w = z~! = Z, a contradiction to the fact that the unique common root
of 7271 —1=0and ' — 1 =0is 1.

It is clear that the degree of polynomial P, is 2". As we have seen before, all the

. -1 2](7'[ L. 2k7T
roots of P,(x) = x are givenby x = z+z~ ', where z = 1, z = cos —+i sin 1
n _
ST . 2smw
k=1,...,2" —2and z = cos + i sin ,s=1,...,2".
2n 4+ 1 2n 4+ 1

Taking into account the symmetry of expression z + z !, the total number of these

1
roots is 1 + 5(2" —-2)+ 52” = 2" and all of them are real and distinct.

Here are other problems involving algebraic equations and polynomials.

Problem 11. Let a, b, ¢ be complex numbers with a # 0. Prove that if the roots of the
equation azz + bz + ¢ =0 have equal moduli then ab|c| = |a|bc.

Problem 12. Let z1, zo be the roots of the equation 224741 =0andlet 23, 24 be the
roots of the equation z* — z + 1 = 0. Find all integers n such that I+ =25 +24

Problem 13. Consider the equation with real coefficients
X ra +bxt+exd +bx+ax+1 =0,

and denote by x1, x2, . .., X¢ the roots of the equation.
Prove that

6
]_[(x,f +1) = 2a — ¢)2.
k=1

Problem 14. Let a and b be complex numbers and let P(z) = az? + bz +i. Prove that
there is a zg € C with |z9| = 1 such that |P(z9)| > 1 + |a|.
Problem 15. Find all polynomials f with real coefficients satisfying, for any real num-
ber x, the relation f(x)f(2x2) = f(2x3 + x).

(215" IMO — Shortlist)

5.3 From Algebraic Identities to Geometric Properties

Problem 1. Consider equilateral triangles ABC and A’ B'C’, both in the same plane
and having the same orientation. Show that the segments [AA'], [BB'], [CC'] can be

the sides of a triangle.
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Solution. Let a, b, ¢ be the coordinates of vertices A, B, C and let a’, b’, ¢’ be the
coordinates of vertices A’, B, C’. Because triangles ABC and A’ B’'C’ are similar, we
have the relation (see Remark 1 in Section 3.3):

1 1
a b ¢ |=0. (D
a b
That is,
ab-—c)+b(c—a)+c(a—>b)=0. )

On the other hand the following relation is clear:
alb—c)+blc—a)+cla—->b)=0. 3)
By subtracting relation (3) from relation (2), we find
@—-ayb—c)+ ¥ —b)(c—a)+ (' —c)a—-b)=0. 4)
Passing to moduli, it follows that
@’ —allb —c| < | = bllc —al + |c" — clla — b]. ®)

Taking into account that |b — ¢| = |¢c — a| = |a — b|, we obtain AA" < BB" + CC'.
Similarly we prove the inequalities BB’ < CC’ + AA’ and CC’ < AA’ + BB’, hence
the desired conclusion follows.

Remarks. 1) If ABC and A’B’C’ are two similar triangles situated in the same
plane and having the same orientation, then from (5) the inequality

AA'-BC <BB'-CA+CC’'-AB (6)

follows. This is the generalized Ptolemy inequality. Ptolemy’s inequality is obtained
when the triangle A’ B’C’ degenerates to a point.

2) Taking into account the inequality (6), we have also BB’ - CA < CC' - AB +
AA’-BCand CC'- AB < AA’ - BC + BB’ - CA. It follows that for any two similar
triangles ABC and A’ B’C’ with the same orientation and situated in the same plane,
we can construct a triangle of sides lengths AA" - BC, BB’ - CA, CC’ - AB.

3) In the case when the triangle A’ B'C’ degenerates to the point M, from the prop-
erty in our problem it follows that the segments M A, M B, MC are the sides of a
triangle, i.e., Pompeiu’s theorem (see also Subsection 4.9.1).

Problem 2. Let P be an arbitrary point in the plane of a triangle ABC. Then
a-PB-PC+pB-PC-PA+y-PA-PB=>uafy,

where o, B, y are the sides of ABC.
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Solution. Let us consider the origin of the complex plane at P and let a, b, ¢ be the

coordinates of vertices of triangle A BC. From the algebraic identity

bc n ca n ab _q 0
(@=ba—-c) Gb-ob—-a) (c—alc—b
Passing to the absolute value, it follows that
|b]lc| Icllal la||b| 2
la —blla—c| |b—c|lb—a|l |c—allc—b]

Taking into account that |a| = PA, |b| = PB, |c| = PC,and |b—c| = «, |c—a| = B,
la — b| = y, the inequality (2) is equivalent to
PB-PC PC-PA PA-PB
+ + > 1,
By ya ap

i.e., the desired inequality.

Remarks. 1) If P is the circumcenter O of triangle ABC, we can derive Euler’s
inequality R > 2r. Indeed, in this case the inequality is equivalent to Rz(a +B84+y) >
afy. Therefore

R2 apy  _ Py _ 4R apy . arca[ABC]

> _—

> = = = = 2Rr,
a+B+y 2s 2s 4R s

hence R > 2r.
2) If P is the centroid G of triangle A BC we obtain the following inequality involv-
ing the medians my, mg, my,:

mogm megm m,m
aﬁ+ﬂy+ya
ap By ya

9
> _
4
with equality if and only if triangle ABC is equilateral. A good argument for the case

of acute-angled triangles is given in the next problem.

Problem 3. Let ABC be an acute-angled triangle and let P be a point in its interior.
Prove that
a-PB-PC+pB-PC-PA+y-PA-PB=ufy,

if and only if P is the orthocenter of triangle ABC, . . .
(1998 Chinese Mathematical Olympiad)

Solution. Let P be the origin of the complex plane and let a, b, ¢ be the coordinates
of A, B, C, respectively. The relation in the problem is equivalent to

lab(a — b)| + |bc(b — ¢)| + |ca(c — a)| = |(a = b)(b — ¢)(c — a)|.
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Let

ab bc ca

YT u—ob-0 P b-ac-a T c-bla-b

It follows that
lzt] +lz2] +1z3l=1 and z1+z22+23=1,

the latter from identity (1) in the previous problem.

We will prove that P is the orthocenter of triangle ABC if and only if z1, 23, z3 are
positive real numbers. Indeed, if P is the orthocenter, then since the triangle ABC is
acute-angled, it follows that P is in the interior of ABC. Hence there are positive real
numbers rp, rp, r3 such that

a b c

=_r1ia =_r2i7

b—c c—a a—>b

= —13i,

implying z; = riry > 0,22 = rar3 > 0, z3 = r3r; > 0, and we are done. Conversely,
suppose that z1, 72, z3 are all positive real numbers. Because

2 2 2
zz2 (b w3 [ ¢ w3z _ [ a
23 c—al’ 71 a—->b) "’ o) b—c

. a b c

it follows that , ,
b—c ¢c—a a-— ]

BP 1 CA, showing that P is the orthocenter of triangle ABC.

Problem 4. Let G be the centroid of triangle ABC and let R, Ry, R3 be the circum-
radii of triangles GBC, GC A, GAB, respectively. Then

5 are pure imaginary numbers, thus AP L BC and

Ri 4+ Ry + R3 > 3R,

where R is the circumradius of triangle ABC.

Solution. In Problem 2, consider P the centroid G of triangle ABC. Then
oa-GB-GC+B-GC-GA+y-GA-GB > apy, (1)

where «, B, y are the lengths of the sides of triangle ABC.
But !
o-GB-GC =4R; -arealGBC] = 4R - garea[ABC].

Likewise,

1 1
B-GC-GA =4R; - garea[ABC], y-GA-GB =4Rj3 - garea[ABC].
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Hence, the inequality (1) is equivalent to

4
g(Rl + Ry + R3) - area| ABC] > 4R - area| ABC],

i.e., Ri + R, + Rz > 3R.

Problem 5. Let ABC be a triangle and let P be a point in its interior. Let Ry, R, R3
be the radii of the circumcircles of triangles PBC, PCA, PAB, respectively. Lines
PA, PB, PC intersect sides BC, CA, AB at A1, By, C1, respectively. Let

PA; P B PCy
ki=——, hk=—, k=—.
AAq BB, CcCy

Prove that ki Ry +ky Ry +k3R3 > R, where R is the circumradius of triangle ABC.
(2004 Romanian IMO Team Selection Test)

Solution. Note that

_ area[ PBC] _ area| PCA] _ area| PAB]
1= areal ABC]’ 2= area[ ABC]’ 3 areal ABC]’
-PB-PC
But areal ABC] = OZ’% and area[ PBC] = QT. Two similar relations for
1

area[ PCA] and area[ P AB] hold.
The desired inequality is equivalent to
oa-PB-PC B-PC-PA y-PA-PB
R + R +R >R
afy afy afy

which reduces to the inequality in Problem 2.
In the case when triangle A BC is acute-angled, from Problem 3 it follows that equal-
ity holds if and only if P is the orthocenter of ABC.

Problem 6. For any point M in the plane of triangle ABC the following inequality
holds:

AM?sinA + BM’sin B+ CM’sinC > 6- MG - area ABC],

where G is the centroid of triangle ABC.

Solution. The identity
PO-+Ye-0+20c-N=ac-»NO0-Dc-0Ca+y+2 (1)

holds for any complex numbers x, y, z. Passing to the absolute value we obtain the
inequality

G-+ V-0l + 2@ == —ylly—zllz—xllx +y+z. ()
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Let a, b, ¢, m be the coordinates of points A, B, C, M, respectively. In (2) consider

x=m—a,y=m—b,z=m — c and obtain
AM? a4+ BM? - B+CM? -y > 3aBy MG. (3)

Using the formula area[ABC] = % and the law of sines the desired inequality

follows from (3).

Problem 7. Let ABC D be a cyclic quadrilateral inscribed in circle C(O; R) having
the sides lengths a, B, y, 6 and the diagonals lengths di and dy. Then

afyddid;

ABCD] >
area[ 1> SRA

Solution. Take the center O to be the origin of the complex plane and consider
a, b, ¢, d the coordinates of vertices A, B, C, D. From the well-known Euler identity

3

3 a =1 (1)
(@—b)a—c)a—d)

cyc

by passing to the absolute value, it follows that

3
)3 a =1 @
la — blla — c|la — d|

cyc

The inequality (2) is equivalent to

R3
Y ey 2! ©
&2 AB-AC - AD
or
Z R-BD-CD - BC > aByddds. 4)

cyc
But we have the known relation BD - CD - BC = 4R - area| BC D] and three other
such relations. The inequality (4) can be written in the form

4R4(area[ABC] + area[ BC D] + area[ CD A] + areal| DAB]) > afyddida

or equivalently 8R*areal ABC D] > afy8dyd,.

Problem 8. Let a, b, ¢ be distinct complex numbers such that
a—=b"+®B-0c)+Cc—-a)’ =0.

Prove that a, b, ¢ are the coordinates of the vertices of an equilateral triangle.
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Solution. Setting x = a —b,y = b —c,z =c —aimpliesx +y +z = 0 and
x7+ 37 + 77 = 0. Since z # 0, we may set o = fand,B: X.Hencea+,8:—1
Z <
and o’ 4+ 7 = —1. Then

o —ap+a*p — B+ —ap’ + O =1 (D
Lets = o 4+ 8 = —1 and p = ab. The relation (1) becomes
@°+ %) — pla® + B + pPe? + ) — pP = 1. @)
Because a2 + 2 =s2 —2p=1-2p,
ot + Bt = (@ + B 2077 = (1 —2p)* —2p* =1 —4p +2p?,

a8+ B0 = (@ + B ((@* + Y — &P = (1 —2p)(1 —dp + p?),

the equality (2) is equivalent to
(1=2p)(1 = 4p+ p>) — p(1 —4p +2p>) + p*(1 = 2p) — p* = 1.

Thatis, 1 —4p + p> —2p+8p> —2p> —p+4p> —2p3 + p> —2p> — p? = 1;ie,
—7p> +14p> —7p +1=1. We obtain —7p(p — 1)> =0, hence p =0or p = 1.

If p=0,then @ = 0or 8 = 0, and consequently x = 0 or y = 0. It follows that
a = b or b = ¢, which is false; hence p = 1.

From af = 1 and @« + B = —1 we deduce that ¢ and B are the roots of the
quadratic equation x> 4+ x + 1 = 0. Thus &> = 3 = 1 and || = |B| = 1. Therefore
|x| =|y| = |zl or |a — b| = |b — c| = |c — al, as claimed.

Alternate solution. Let x =a — b,y =b —c,z=c—a.Becausex + y+z=0
and x” + y7 +z7 = 0, we find that (x + y)” — x”7 — y7 = 0. This is equivalent to
Txy(x +y)(x* +xy +y%)? = 0.

But xyz # 0, so x> + xy + y> = 0, i.e., x> = y3. From symmetry, x> = y3 = 23,
hence |x| = [y| = [z].

Problem 9. Let M be a point in the plane of the square ABCD and let MA = x,
MB =y, MC =z, MD = t. Prove that the numbers xy, yz, zt, tx are the sides of a

quadrilateral.

Solution. Consider the complex plane such that 1, i, —1, —i are the coordinates of
vertices A, B, C, D of the square. If z is the coordinate of point M, then we have the
identity

=D+ D+iz+DE+i) —1lz+D)iz—-1) —i(z—D@E—-i)=0. (1)
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Subtracting the first term of the sum from both sides yields

i+ DE+i)—-1ez+i)z—0) —iz—DE—-i)=—-1z-i@+1D),

and using the triangle inequality we obtain
lz—illz+il+lz+ 1z + il + [z +illz— 1] = |z — 1]z
or yz +zt +tx > xy.
In the same manner we prove that
xXy+zt+itx >yz, xy+yz+ix=yz

and xy + yz + zt > tx, as needed.

Problem 10. Let z1, 22, z3 be distinct complex numbers such that |z1|
R. Prove that
1 1 1

+ +
lz1 —z2llz1 —z31  lz2 —zillz2 — 23] |23 — z1llz3 — 22|

Solution. The following identity is easy to verify

4 5 3

=lz2| = lz3| =

1
Eﬁ'

(z1 — z2)(z1 — 23) * (z2 — z1)(z2 — z3) * (z3 — z1)(z3 — 22) -

Passing to the absolute value we find that

| = Z Z% <Z |Zl|2

G @ — )@ —23) | 7 Gl 22lla -zl

=R2Z !

Se 121 — 22llz1 — 23]
i.e., the desired inequality.

Alternate solution. Let
a=lzn—zl B=lmz—zul rv=lu-zl|
From Problem 29 in Section 1.1 we have
af + By + ya < 9R%.

Using the inequality

v

(a,B—l—ﬁ)/—i—yoe)(i—i-L—i-L) 9

af By ya
it follows that
1 1 1 - 9

1
—t > >
af By ya af+By+ya " R?

v

as desired.
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Remark. Consider the triangle with vertices at 71, z2, z3 and whose circumcenter is
the origin of the complex plane. Then the circumradius R equals |z1| = |z2| = |z3]
and the sides are

a=lzz—zl, B=lzn—zl v=Ilzu—zl

The above inequality is equivalent to

ie.,
R2 R R’
We obtain R > 2r, i.e., Euler’s inequality for a triangle.

Problem 11. Let ABC be a triangle and let P be a point in its plane. Prove that
a-PAS+B-PB>+y-PC>?>3aBy- PG,
where G is the centroid of ABC.
2) Prove that
RY(R? —4r%) = 4r%[8R? — (&* + B> + ¥ 7).
Solution. 1) The identity
Py-2+Ye-0+2@ - =6 =N -0 +y+d (D)
holds for any complex numbers x, y, z. Passing to absolute values we obtain
Py =zl + IyPlz =2l + 2P lx =y = |x = ylly = zllz = x[lx + y + zl.

Leta, b, c, zp be the coordinates of A, B, C, P, respectively. In (2) take x = zp —a,
y =zp — b, z = zp — ¢ and obtain the desired inequality.

2) If P is the circumcenter O of triangle ABC, after some elementary transfor-
mations the previous inequality becomes R?> > 6r - OG. Squaring both sides yields

1
R* > 36r% - 0G?2. Using the well-known relation 0G? = R — 5(0!2 + 82 +y?) we
obtain R* > 36R?*r? — 4r?(a® + ,32 + yz) and the conclusion follows.

Remark. The inequality 2) improves Euler’s inequality for the class of obtuse tri-
angles. This is equivalent to proving that «> + 2 + > < 8R? in any such triangle.
The last relation can be written as sin? A + sin® B + sin? C < 2, or cos? A + cos? B —
sin> C > 0. That is,

1+cos2A 1+cos2B
2 2
which reduces to cos(A + B)cos(A — B) + cos>C > 0. This is equivalent to
cos C[cos(A — B) — cos(A + B)] > 0,1.e.,cos Acos BcosC < 0.

—1+coszC>0,
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Here are some other problems involving this topic.
Problem 12. Let a, b, ¢, d be distinct complex numbers with |a| = |b| = |c| = |d|
anda+b+c+d=0.

Then the geometric images of a, b, ¢, d are the vertices of a rectangle.

Problem 13. The complex numbers z;, i = 1, 2, 3, 4, 5, have the same nonzero mod-
ulus and

5
Yu=Y =0
i=1 i=1
Prove that 71, z2, . .., z5 are the coordinates of the vertices of a regular pentagon.
(Romanian Mathematical Olympiad — Final Round, 2003)

Problem 14. Let ABC be a triangle.

a) Prove that if M is any point in its plane, then
AMsinA < BMsinB + CMsinC.

b) Let A;, By, C1 be points on the sides BC, AC and AB, respectively, such that
the angles of the triangle A; B;C are in this order «, §, y. Prove that

ZAA] sina < Z BC sina.

cyc cyc
(Romanian Mathematical Olympiad — Second Round, 2003)
Problem 15. Let M and N be points inside triangle A BC such that

m:N/A\C and @:W

Prove that
AM -AN BM-BN CM-CN_

AB - AC + BA - BC + CA-CB

(39t IMO - Shortlist)

5.4 Solving Geometric Problems

Problem 1. On each side of a parallelogram a square is drawn external to the figure.

Prove that the centers of the squares are the vertices of another square.
Solution. Consider the complex plane with origin at the intersection point of the

diagonals and let a, b, —a, —b be the coordinates of the vertices A, B, C, D, respec-
tively.



Using the rotation formulas, we obtain

5.4. Solving Geometric Problems

. b+ ai
b=z0,+(a—zo)(=i)orzo, = T
Likewise,
_a—bi _—b—ai _—a+bi
T fe T T
It follows that
—— 20, — 204 a—bi—b—ai 1
040107 = ar = ar —argi = —,
s gz04—10l g—a+bi—b—ai g 2
so 0102 = 0104, and
— 04 — 2 — bi+b j b4
020304=arg204 zo4= a—i-.z—i- +?l=argz=—,
20, — 204 a—>bi+b+ai 2

s0 0304 = 03 0. Therefore 01020304 is a square.
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Problem 2. Given a point on the circumcircle of a cyclic quadrilateral, prove that the

products of the distances from the point to any pair of opposite sides or to the diagonals

are equal.

(Pappus’s theorem)

Solution. Let a, b, c, d be the coordinates of the vertices A, B, C, D of the quadri-
lateral and consider the complex plane with origin at the circumcenter of ABCD.

Without loss of generality assume that the circumradius equals 1.

The equation of line AB is

This is equivalent to

[T RN

2@—b)—7Z(a—b)=ab—ab, ie,z+abz=a+b.

Let point M/ be the foot of the perpendicular from a point M on the circumcircle to

the line AB. If m is the coordinate point M, then (see Proposition 1 in Section 4.5)

and

d(M,AB) = |m —m| = |m —

M =

m—abm+a+b

2

m—abn?—i—a—i—b’_‘(m—a)(m—b)

2

2m
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since mm = 1.

Likewise,
d(M,BC>=‘W . d(M.CD) = ‘w |
2 2m
d(M,DA)=‘w d(M.AC) = | Dm0
2 2m
and
d(M,BD):‘W‘_
2m
Thus,

d(M,AB) -d(M,CD) =d(M, BC) -d(M, DA) = d(M, AC) - d(M, BD),

as claimed.

Problem 3. Three equal circles C1(Oy;r), C2(O3; r) and C3(03; r) have a common
point O. Circles Cy and Cy, C and C3, C3 and Cy, meet again at points A, B, C respec-
tively. Prove that the circumradius of triangle ABC is equal to r.

(Tzitzeica’s] “five-coin problem”)

Solution. Consider the complex plane with origin at point O and let z1, 23, z3 be
the coordinates of the centers O1, O», O3, respectively. It follows that points A, B, C
have the coordinates z1 + z2, z2 + 23, 23 + 21, hence

AB = [(z1 +22) — (22 + z3)| = |21 — 23| = 0103.

Likewise, BC = 010, and AC = 0,03, hence triangles ABC and 00,03 are
congruent. Consequently, their circumradii are equal. Since 001 = 00> = 003 =
r, the circumradius of triangles O1 0,03 and ABC is equal to r, as desired.

Problem 4. On the sides AB and BC of triangle ABC draw squares with centers D
and E such that points C and D lie on the same side of line AB and points A and E
lie opposite sides of line BC. Prove that the angle between lines AC and DE is equal
to 45°.

Solution. The rotation about E through angle 90° mappings point C to point B,

hence .
. B —Zc!
zp =2+ (zc —zg)i and zg = =
—1
_ ZB — zZAl
Similarly, zp = 4
—1

1 Gheorghe Tzitzeica (1873-1939), Romanian mathematician, made important contributions in geometry.
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Figure 5.1.

The angle between the lines AC and DE is equal to

2C — Z4A (zc —za)(1 —=1) 1—i 7w
arg = arg : - =arg—— =arg(l +1) = .,
ZE — 2D zZp —zcl —zp +zal —i 4
as desired.

Remark. If the squares are replaced in the same conditions by rectangles with cen-
ters D and E, then the angle between lines AC and DE is equal to 90° — BAD.

Problem 5. On the sides AB and BC of triangles ABC equilateral triangles ABN
and ACM are drawn external to the figure. If P, Q, R are the midpoints of segments
BC, AM, AN, respectively, prove that triangle P QR is equilateral.

Solution. Consider the complex plane with origin at A and denote by a lowercase
letter the coordinate of the point denoted by an uppercase letter.

The rotation about center A through angle 60° maps points N and C to B and M,
respectively. Setting ¢ = cos 60° + i sin 60°, we have b = n - ¢ and m = c - €. Thus

_b+c m __c-¢ _n_b_be5 be?
Ty 1T Ty TR T Ty T Ty

To prove that triangle P QR is equilateral, using Proposition 1 in Section 3.4, it

p

suffices to observe that
P’ +q*+r7=pg+qr+rp.
Problem 6. Let AA’BB'CC’ be a hexagon inscribed in the circle C(O; R) such that

AA'= BB =CC’' =R.



194 5. Olympiad-Caliber Problems

B P C
Figure 5.2.

If M, N, P are midpoints of sides AA’, BB', CC’ respectively, prove that triangle
M N P is equilateral.

Solution. Consider the complex plane with origin at the circumcenter O and let
a,b,c,a’, b, ¢ be the coordinates of the vertices A, B, C, A’, B', C’, respectively. If
& = cos 60° + i sin 60°, then

d=a-¢ b=b-e =c-s.

The points M, N, P have the coordinates

ac+b be + ¢ ceta
) n= ) p .
2 2 2

It is easy to observe that
mz—i-nz—i—p2 =mn+np + pm;

therefore M N P is an equilateral triangle (see Proposition 1 in Section 3.4).

Problem 7. On the sides AB and AC of triangle ABC squares ABDE and ACFG
are drawn external to the figure. If M is the midpoint of side BC, prove that AM 1 EG
and EG =2AM.

Solution. Consider the complex plane with origin at A and let b, c, g, e, m be the
coordinates of points B, C, G, E, M.

b
Observe that g = ci, e = —bi,m = %, hence

_ —(b i
b .( +C):l—eiR*
g—e 2i(b +c¢) 2

and ]
Im —al = Ele — gl
Thus, AM 1 EG and 2AM = EG.
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G

E

F

B M c
Figure 5.3.

Problem 8. The sides AB, BC and CA of the triangle ABC are divided into three
equals parts by points M, N; P, Q and R, S, respectively. Equilateral triangles
MND, PQE, RSF are constructed exterior to triangle ABC. Prove that triangle
DEF is equilateral.

Solution. Denote by lowercase letters the coordinates of the points denoted by up-
percase letters. Then

2a + b a—+2b 2b+c

m = s n = s p = 5
3 3 3

b+ 2c 2c+a c+2a

qg= , = , s = .
3 3 3

Figure 54.

The point D is obtained from point M by a rotation of center N and angle 60°.

Hence 4 2b+ (a—b)
d=n+(m—n)8=a 3a 8,
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where & = cos 60° + i sin 60°. Likewise

b+2c+ (b —rc)e
e=q+(p—qe= 3

and
c+2a+(c—a)e

f=s+r—s)k= 3

Since
f—d _c+a—2b+(b~|—c—2a)8

e—d 2c—a—-b+Q@b—a—c)e

eb+c—2a+ (c+a—2b)(—s?))
2c—a—b+ 2b—a—c)e

_elb+c—2a)+(c+a—2b)(e—1))
- 2c—a—b+ 2b—a—c)e =

9

we have FDE = 60° and FD = FE , so triangle DEF is equilateral.
Problem 9. Let ABC D be a square of length side a and consider a point P on the
incircle of the square. Find the value of
PA*+ PB*+ PC* + PD.
Solution. Consider the complex plane such that point A, B, C, D have coordinates

_a\/i _a\/i, _ av?2 _ a«/z,
IA = R iB = ) L, Zc= R iD= ) L.

a
Letzp = 5 (cos x + i sin x) be the coordinate of point P.

Figure 5.5.
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Then

PA?> + PB?> + PC*+ PD* = |24 — zp> + |28 — 2p> + |z — 2P* + |2D — zp|?
2
a a2 a T
=) (ZA—ZP)(a—ﬁ)=4—+2—.—(2cosx+2cos(x+—)+
‘e 2 2 2 2

3 a? 5 5 2
+2cos(x + ) + 2cos x—i—? +4Z:2a +0+a” =3a".

Problem 10. On the sides AB and AD of the triangle AB D draw externally squares
ABEF and ADG H with centers O and Q, respectively. If M is the midpoint of the
side BD, prove that OM Q is an isosceles triangle with a right angle at M.

Solution. Let a, b, d be the coordinates of the points A, B, D, respectively.
H

Figure 5.6.

The rotation formula gives

a—z0 d—zg9
- =i,

b—zp a-—zg

SO
b+a+ (a—Db)i a+d+(d—a)
=—andZQ=—.

‘o 2 2

b+d
The coordinate of the midpoint M of segment [BD] is zjyy = %, hence

zo—zM_a—d+(a—b)i_l
20 —IM _a—b—i—(d—a)i _'
Therefore OM 1. OM and OM = QM, as desired.

Problem 11. On the sides of a convex quadrilateral ABC D, equilateral triangles

ABM and CDP are drawn external to the figure, and equilateral triangles BCN
and AD Q are drawn internal to the figure. Describe the shape of the quadrilateral
MNPQ.

(23" IMO - Shortlist)
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Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-

percase letter.

P
Figure 5.7.

Using the rotation formula, we obtain

m=a+ (b—-—a)e, n=c+ (b--c)e,
p=c+(d—ce, qg=a+(d-—a),
where
& = cos60° + i sin 60°.

It is easy to notice that
m+p=a+c+b+d—-—a—-ce=n+gq,

hence M N P Q is a parallelogram or points M, N, P, Q are collinear.
Problem 12. On the sides of a triangle ABC draw externally the squares ABMM’,
ACNN’' and BCPP'. Let A’, B', C' be the midpoints of the segments M'N’', P'M,
PN, respectively.

Prove that triangles ABC and A’ B'C’ have the same centroid.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter.
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NI
AI
MI
N
AN oE
T 2
T2
)
D G B,
M
B e c c’
F
B’ .
P’ P
Figure 5.8.

Using the rotation formula we obtain

n=a+ (c—a)iadm =a+ (b—a)(—i),

hence
, m'+n  2a+(c—b)i
a = = .
2 2
Likewise, ' '
b — 2b + (a — ¢)i and & — 2C+(b—ll)l.

2 2
Triangles A’B’C’ and A BC have the same centroid if and only if

a+b+c a+b+c
3 3
Since
_2a+2b+2c+(c—bt+a—c+b—a)i

/ b/ /
a+b +c >

=a+b+ec,

the conclusion follows.

199

Problem 13. Let ABC be an acute-angled triangle. On the same side of line AC as
point B draw isosceles triangles DAB, BCE, AFC with right angles at A, C, F,

respectively.
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Prove that the points D, E, F are collinear.

Solution. Denote by lowercase letters the coordinates of the points denoted by up-
percase letters. The rotation formula gives

d=a+b—-a)(—i), e=c+b—-0)i, a=f+(— f.

Then

a—ci a+c+(a—c)i_d+e

f=a=7= 2 2

so points F, D, E are collinear.

Problem 14. On sides AB and C D of the parallelogram ABC D draw externally equi-
lateral triangles ABE and CDF. On the sides AD and BC draw externally squares
of centers G and H.

Prove that EH F G is a parallelogram.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter.
Since ABC D is a parallelogram, we have a + ¢ = b + d.

F

E
Figure 5.9.
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The rotations with 90° and centers G and H mapping the points A and C into D

d— ai
and B, respectively. Thend — g = (a — g)i and b — h = (¢ — h)i, hence g = a,l
—i

b—ci

and h = ] .

—1i
The rotations with 60° and centers E and F mapping the point B and D into A
and C, respectively. Thena —e = (b —e)e and c — f = (d — f)e, where ¢ =

. a—be c—de
cos 60° + i sin 60°. Hence e = and f = 1 .
—¢ —¢
Observe that
g+h=d+b—(a.+c)i=(a+c)—(.a+c)i=a+c
1—1 1—i
and te—(b+de _a+ec—(a)
e+f=a c e _atce aC£=a+C’

1—e¢ 1—e¢
hence EH FG is a parallelogram.
Problem 15. Let ABC be a right-angled triangle with C = 90° and let D be the foot
of the altitude from C. If M and N are the midpoints of the segments [ DC] and [ B D],
prove that lines AM and CN are perpendicular.
Solution. Consider the complex plane with origin at point C, and let a, b, d, m, n

be the coordinates of points A, B, D, M, N, respectively.

B
N

D

Figure 5.10.

Triangles ABC and C DB are similar with the same orientation, hence

a—d_O—dord_ ab
d—0 d—0b Ca+b’
Then
d ab b+d 2ab+b?
m=—-—=———andn = = .
2 2a+b) 2 2(a +b)
Thus
ab
— 2(a + b) _a\_ T
Y0 T oab 12 arg( b) 2
2(a +b)

so AM 1L CN.
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Alternate solution. Using the properties of real product in Proposition 1, Section
4.1, and taking into account that CA L C B, we have

_( ab 2ab + b*
m-a-0-0= (505 -0) (St

_( 2a+b> <b 2a+b>_ 2a+b |?
“\"2@+n) \"20+0) T 2@ +0b)

(a-b)=0.
The conclusion follows from Proposition 2 in Section 4.1.

Problem 16. Let ABC be an equilateral triangle with the circumradius equal to 1.

Prove that for any point P on the circumcircle we have
PA*> + PB*> + PC? =6.

Solution. Consider the complex plane such that the coordinates of points A, B, C
are the cube roots of unity 1, €, &2, respectively, and let z be the coordinate of point P.
Then |z| = 1 and we have

PA2 4+ PR+ PC?=|z— 1>+ |z —¢)* + |z — &%)?
=z-DE-D+GE—FZ-8+@E—-e)ZT—7)
=3z —(U+e+e)7—Q+5+8Dz+ 1+ |e)* + %7
=3-07-0-z4+14+1+1=6,

as desired.
Problem 17. Point B lies inside the segment [AC). Equilateral triangles ABE and
BCF are constructed on the same side of line AC. If M and N are the midpoints of
segments AF and CE, prove that triangle BM N is equilateral.

Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter. The point E is obtained from point B by a rotation with center A and
angle of 60°, hence

e =a+ (b —a)e, where ¢ = cos 60° + i sin 60°.
Likewise, f = b + (¢ — b)e.
The coordinates of points M and N are

a+b+ (c—Db)e ct+a+ (b —a)e
m=—————"—andn=——"—

2 2

It suffices to prove that m = ¢. Indeed, we have

m—>b=(n—>b)e
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if and only if
a—b+(c—be=(+a—2be+ (b—a).
That is,
a—b=(@—-b)e+b—a)—1),
as needed.

Problem 18. Let ABC D be a square with center O and let M, N be the midpoints of
segments BO, C D respectively.
Prove that triangle AM N is isosceles and right-angled.

Solution. Consider the complex plane with center at O such that 1,i, —1, —i are
the coordinates of points A, B, C, D respectively.

B

D

Figure 5.11.

—1—i
2

i
The points M and N have the coordinates m = 2 andn = , SO

a—m 1_5 2—i

n—m  —1—i i  —1-2

2 2
Then AM 1. MN and AM = NM, as needed.

Problem 19. In the plane of the nonequilateral triangle A1AA3 consider points
B1, By, B3 such that triangles A1AyB3, AyA3By and A3A1 By are similar with the
same orientation.

Prove that triangle B By B3 is equilateral if and only if triangles A1 A2 B3, A2 A3 By,
A3 A1 Bj are isosceles with the bases A1 Az, A2 A3z, A3A1 and the base angles equal to
30°.
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Solution. Triangles A; A2 B3, A A3B1, A3A| B, are similar with the same orienta-
. by—ay by—a3 by—a
tion, hence = = = z. Then
ay —az az —as asz —daj

by =a; +z(a1 —a2), by =a3+z(a2—a3), by=a+z(az3 —ay).
Triangle By B> B3 is equilateral if and only if
bi+eby+e*b3 =0 or by +ebs+e’by =0.

Assume the first is valid.
Then, we have
b1 + eby + £*b3 = 0 if and only if

a3 + z(ar — a3) + eay + ez(a3 — ay) + %ar + £2z(a1 —ax) =0, ie.,
a3 + eay + 82a2 + z(ap — a3z + eaz — eay + 82a1 — 82a2) =0.

The last relation is equivalent to

& zlaa(1 —e)(1 4+ &) —are(l —¢e) —az(1 —e)] = —(az + ea; + 82a2), ie.,

2 1 1
az+ea; +¢ 022 = = —(c0s 30° + i sin 30°),
(1-e)azt+ear+e%a) 1—e /3

which shows that triangles A1 A2 B3, A2A3B1 and A3A| B, are isosceles with angles
of 30°.
Notice that a3 + ca; + £2an # 0, since triangle AjA> A3 is not equilateral.
Problem 20. The diagonals AC and CE of a regular hexagon ABCDEF are di-
vided by interior points M and N, respectively, such that

=

AM CN
——=—=r
AC CE
Determine r knowing that points B, M and N are collinear.
(2374 IMO)

Solution. Consider the complex plane with origin at the center of the reg-
ular hexagon such that 1, ¢, g2, 83, ¢ &5 are the coordinates of the vertices
B,C,D,E,F, A, where

T . 1+i/3
£ =COS— +1SIn — = ——.
3 3 2

Since
MC NE 1-r

MA ~ NC  r

)
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D C
M
E 0° B
F A
Figure 5.12.

the coordinates of points M and N are
m :8r+85(1 —r)

and

n =82r+8(1 —r),

respectively.

-1
The points B, M, N are collinear if and only 1f — € R*. We have

m—l=cr+e&(l—r)—1l=er—c>(1—r)—1

14+iv3  —1+iv/3 i3
= — l=r)=——+—02r—1
> > r) 2+ @2r -1
and
1
n—l=gr+e(l—r)—1=—r+ +"/_(1— " —1
1 3r iv3
- —_ _1_
273 1 -=r),
hence
m—1_ —1+i/3@2r—1) cR*
n—1  —(1+3r)+iv/3(1—r)
if and only if

V3 —r)— (1 +3r)-/30Qr—1)=0.

2 1

= % It follows r = —

7

This is equivalentto 1 — r = 6r2—r—1,ie.r

205

Problem 21. Let G be the centroid of quadrilateral ABC D. Prove that if lines GA and

G D are perpendicular, then AD is congruent to the line segment joining the midpoints

of sides AD and BC.



206 5. Olympiad-Caliber Problems

Solution. Consider «, b, ¢, d, g the coordinates of points A, B, C, D, G, respec-

tively. Using properties of the real product of complex numbers we have

GA L GDifandonlyif (a—g)-(d—g) =0, ie.,

a+b+c+d a+b+c+d
a— ) d——4 =0.

That is,
Ba—b—c—d)-Bd—a—-b—-c)=0

and we obtain
[a—b—c+d+2a—d)] - la—b—c+d—2a—d)]=0.
The last relation is equivalent to
(@a+d—-—b—-c)-(a+d—b—-c)=4a—d)-(a—4d), ie.,

a-+d b—i—cz_

= la —d|*. 1
> 7 la —d| ey
Let M and N be the midpoints of the sides AD and BC. The coordinates of points
d b
M and N are at and %, hence relation (1) shows that M N = AD and we are
done.

Problem 22. Consider a convex quadrilateral ABC D with the nonparallel opposite
sides AD and BC. Let G1, G, G3, G4 be the centroids of the triangles BCD, ACD,
ABD, ABC, respectively. Prove that if AG|y = BG3 and CG3 = DG4 then ABCD

is an isosceles trapezoid.
Solution. Denote by a lowercase letter the coordinate of a point denoted by an up-
percase letter. Setting s = a 4+ b + ¢ 4 d yields

_b+c+d_s—a s—b s—c s—d

gl_ 3 3 ) g2: 3 ’ g3: 3 ’ g4: 3

The relation AG|; = BG; can be written as
la — g1l =1b— gz, thatis, |4a —s|=14b—s]|.
Using the real product of complex numbers, the last relation is equivalent to
4a—s)-(da—s)=@Ab—5s)-(4b—y5), ie.,

16la)*> — 8a - s = 16|b|> — 8b - .
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We find
2(lal* — |b|*) = (a — b) - 5.

Likewise, we have
CG3 = DGy if and only if 2(|c|* — |d|*) = (¢ — d) - 5.
Subtracting the relations (1) and (2) gives
2(1a? = b =[P +1d) =@—-b—c+d) - (a+b+c+d).

That is,
2(jal* = 11> = el + 1d*) = la +d|* — |b+c|?, ie.,
2(aa@ — bb — ¢¢ 4+ dd) = at + ad +ad + dd — bb — bc — bc — c.

‘We obtain
ad —ad —ad + dd = bb — bc — be + ¢, ie.,

la —d> = |b—c|*.

Hence
AD = BC.

Adding relations (1) and (2) gives
2lal> = b? = 1dP + ) =@—-b—d+c) - (a+b+c+d),

and similarly we obtain
AC = BD.

207

6]

2

3)

“)

From relations (3) and (4) we deduce that AB||C D and consequently ABC D is an

isosceles trapezoid.

Problem 23. Prove that in any quadrilateral ABC D,

AC?.BD* = AB> . CD?* + AD> - BC?> —2AB-BC-CD - DA - cos(A + C).

(Bretschneider relation or a first generalization of Ptolemy’s theorem)

Solution. Let z4, zp, zc, zp be the coordinates of the points A, B, C, D in the com-

plex plane with origin at A and point B on the positive real axis (see Fig. 5.13).

Using the identities

(za —z¢c)(zB —zp) = —(za —zB) (2D — 2¢) — (za — zp)(2c — 2B)
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Figure 5.13.

and

(za —zc)(zp —zp) = —(za — 2B)(@p — 2¢) — (24 — zp)(2Cc — ZB)>
by multiplication we obtain
AC?.BD?> = AB> - DC*+ AD -BC> + 7 +73,

where

7= 1(za —2B)@Zp —2¢c)(za — 2p)(2Cc — 2B).

It suffices to prove that

72+7=—-2AB-BC-CD-DA - cos(A+C).

We have
zA —zp = AB(cosm +isinm),
zp —zc = DC[cos(2r — B — C) +isin(2r — B — C)],
z4a —2Zp = DA[cos(r — A) +isin(wr — A)]
and
zc —zp = BC[cos(m + B) + i sin(mw + B)].
Then

z+7=2Rez=2AB-BC-CD-DAcos(5tr —A—C)
=—2AB-BC-CD-DA-cos(A+C)

and we are done.
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Remark. Since cos(A 4+ C) > —1, this relation gives Ptolemy’s inequality
AC-BD < AB-DC+ AD - BC,

with equality only for cyclic quadrilaterals.

Problem 24. Let ABC D be a quadrilateraland AB = a, BC =b,CD =c¢, DA =d,
AC =dy and BC = dj.
Prove that

d3la*d* + b*c* — 2abcd cos(B — D) = d?[a*b* + ¢*d* — 2abed cos(A — C)]
(A second generalization of Ptolemy’s theorem)

Solution. Let z4, 25, z¢, zp be the coordinates of the points A, B, C, D in the com-
plex plane with origin at D and point C on the positive real axis (see the figure in the
previous problem but with different notation).

Multiplying the identities

(z —zp)[(za — 2B)(za — zB) — (zc — z2p)(2Cc — zD)]

= (z¢ —z4) - [(zp —24)(zB —2¢) — (2p — z4) (@D — 2¢)]

and

(zp —zp)[(za — 2B)(za — 2p) — (zc — 2B)(2c — ZD)]

= (zc —z4) - [(zp —24)(zB — 2¢) — (2p — z4) (2D — 2¢)]

yields

dila® - d* +b* - * — (za — 28)(za — 20)(zc — 28)(ZC — 2D)

— (zc —zB)(zc —zp)(za — 2B) (24 — ZD)]

=di[a® b* +c?-d* — (zp — 24) (2B — 2¢)@D — 24) (@D — 20)

—(zp —z4)(@p —z2¢c)(zB — z4) (2B — 20)].

It suffices to prove that

2Re(za —z28)(za — 2p)(zc — 2B)(zc — 2p) = 2abcd cos(B — D)

and

2Re(zp — z4)(zB — zc)(2B — z4)(2p — z2c) = 2abcd cos(A — C).

We have
zp — 24 = al[cos(mr + A+ D) +isin(wr + A + D)],
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zp — z¢ = b[cos(mr — C) + i sin(w — C)],
7D — 24 = d[cos(wr — D) + i sin(w — D)],
Zp — 2c = c[cosm +isinm],
zA4 — 2z = al[cos(A + D) +isin(A + D)],
z4 — zZp = d[cos D + i sin D],
Zc — zg = b[cos B + i sin B],

Zc — zp = ¢[cos0 + i sin0];

hence

2Re(za — zB)(za — zp)(zc — zB)(z2c — ZD)

= 2abcd cos(A + D + D + C) = 2abcd cos(2r — B + D) = 2abcd cos(B — D)

and
2Re(zp — za)(zB — 2¢)(zp — z4)(2D — 2¢)
=2abcdcos(m +A+D+ma—-C+nm—D+mn)
= 2abcd cos(4mr + A — C) = 2abced cos(A — C),
as desired.

Remark. If ABC D is a cyclic quadrilateral, then B + D = A + C = . It follows
that
cos(B — A) =cos(2B — ) = —cos2B
and
cos(A — C) = cos(2A — ) = —cos2A.

The relation becomes
d3[(ad 4 be)* — 2abed(1 — cos 2B)] = di[(ab + cd)? — 2abed(1 — cos 2A)].
This is equivalent to
d3(ad + be)* — 4abedd; sin® B = d? (ab + cd)* — 2abcdd? sin® A. (1)

The law of sines applied to the triangles ABC and A B D with circumradii R gives
di = 2RsinB and dp = 2Rsin A, hence d;sin A = djsin B. The relation (1) is
equivalent to

d3(ad + be)* = di(ab + cd)?,
and consequently
d> ab + cd
g ) ()
d; ad + bc
Relation (2) is known as Prolemy’s second theorem.
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Problem 25. In a plane three equilateral triangles OAB, OCD and OEF are given.
Prove that the midpoints of the segments BC, DE and FA are the vertices of an

equilateral triangle.

Solution. Consider the complex plane with origin at O and assume that triangles
OAB, OCD, OEF are positively orientated. Denote by a lowercase letter the coordi-
nate of a point denoted by an uppercase letter.

Let & = cos 60° + i sin 60°. Then

and
_b+c as+c _d+e cete f4+a es+a

2 2 0 "T 2 2 2 2
Triangle M N P is equilateral if and only if

m

m+a)n+w2p:0,

where
w = cos 120° + i sin 120° = &2.

Because
1
m+82n+84p=m+82n—8p=z(as—i—c—c—i—esz—esz—sa):O,

we are done.

We invite the reader to solve the following problems by using complex numbers.
Problem 26. Let ABC be a triangle such that AC?> + AB?> = 5BC?. Prove that the

medians from the vertices B and C are perpendicular.

Problem 27. On the sides BC, CA, AB of a triangle ABC the points A’, B’, C’ are

chosen such that
A'B _ B'C . C'A .

A'C  B'A CB
Consider the points A”, B”, C” on the segments B'C’, C'A’, A’ B such that
A//c/ C//B/ B//A/
A//B/ = C//A/ = B//C/ =
Prove that triangles ABC and A”B”C" are similar.

Problem 28. Prove that in any triangle the following inequality is true
R ma

2r = hy
Equality holds only for equilateral triangles.
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Problem 29. Let ABC D be a quadrilateral inscribed in the circle C(O; R). Prove that
AB? 4+ BC? + CD* 4+ DA? = 8R?

if and only if AC L B D or one of the diagonals is a diameter of C.

Problem 30. On the sides of convex quadrilateral ABC D equilateral triangles ABM,
BCN, CDP and DAQ are drawn external to the figure. Prove that quadrilaterals
ABCD and M N P Q have the same centroid.

Problem 31. Let ABC D be a quadrilateral and consider the rotations R 1, Rz, R3, R4
with centers A, B, C, D through angle « and of the same orientation.

Points M, N, P, Q are the images of points A, B, C, D under the rotations R, R3,
Ra, R1, respectively.

Prove that the midpoints of the diagonals of the quadrilaterals ABCD and MN P Q
are the vertices of a parallelogram.

Problem 32. Prove that in any cyclic quadrilateral ABC D the following holds:

a) AD + BCcos(A+ B) = ABcosA + CDcos D;

b) BCsin(A 4+ B) = ABsin A — CDsin D.
Problem 33. Let O, I, G be the 9-point center, the incenter and the centroid, respec-
tively, of a triangle ABC. Prove that lines O9G and Al are perpendicular if and only
ifA=",

3

Problem 34. Two circles w; and w; are given in the plane, with centers O and O»,
respectively. Let M| and M/, be two points on w; and ws, respectively, such that the
lines O1M { and OzMé intersect. Let M and M> be points on w; and w,, respectively,
such that when measured clockwise the angles Mi/OH/Il and Mmz are equal.

(a) Determine the locus of the midpoint of [M| M>].

(b) Let P be the point of intersection of lines O1 M| and O> M>. The circumcircle of
triangle M1 P M5 intersects the circumcircle of triangle O1 P O> at P and another point

Q. Prove that Q is fixed, independent of the locations of M| and M5.
(2000 Vietnamese Mathematical Olympiad)

Problem 35. Isosceles triangles A3A; 0> and AjA;O3 are constructed externally
along the sides of a triangle A1 A2A3 with O2A3 = O2A;1 and O3A1 = O3A;. Let O
be a point on the opposite side of line A» A3 from A1, with 0743\142 = %Al/()3\142 and
074;43 = %Al/Oz\A3, and let T be the foot of the perpendicular from O; to A>A3.
Prove that A O; L O, 03 and that

A0 ) o\ T

0,03 ArAsz

(2000 Iranian Mathematical Olympiad)
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Problem 36. A triangle AjA;A3 and a point Py are given in the plane. We define
Ay = Agy_3 for all s > 4. We construct a sequence of points Py, Py, P>, ... such that
Py is the image of Py under rotation with center A through angle 120° clockwise
(k=0,1,2,...). Prove that if Pj9gs = Py then the triangle A Ay A3 is equilateral.
7% IMO)

Problem 37. Two circles in a plane intersect. Let A be one of the points of intersection.
Starting simultaneously from A two points move with constant speeds, each point
travelling along its own circle in the same direction. After one revolution the two points
return simultaneously to A. Prove that there exists a fixed point P in the plane such

that, at any time, the distances from P to the moving points are equal.
(215 IMO)

Problem 38. Inside the square ABC D, the equilateral triangles ABK, BCL, CDM,
DAN are inscribed. Prove that the midpoints of the segments KL, LM, MN, NK
and the midpoints of the segments AK, BK, BL, CL, CM, DM, DN, AN are the
vertices of a regular dodecagon.

(19 IMO)

Problem 39. Let ABC be an equilateral triangle and let M be a point in the interior
of angle BAC. Points D and E are the images of points B and C under the rotations
with center M and angle 120°, counterclockwise and clockwise, respectively.

Prove that the fourth vertex of the parallelogram with sides M D and ME is the
reflection of point A across point M.

Problem 40. Prove that for any point M inside parallelogram ABC D the following
inequality holds:
MA-MC+MB-MD > AB - BC.

Problem 41. Let ABC be a triangle, H its orthocenter, O its circumcenter, and R
its circumradius. Let D be the reflection of A across BC, let E be that of B across
CA, and F that of C across AB. Prove that D, E and F are collinear if and only if
OH =2R.

(39" IMO - Shortlist)

Problem 42. Let ABC be a triangle such that ACB = 2ABC. Let D be the point
on the side BC such that CD = 2BD. The segment AD is extended to E so that
AD = DE. Prove that

ECB + 180° = 2EBC.

(39th IMO — Shortlist)
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5.5 Solving Trigonometric Problems

Problem 1. Prove that

14 n 3 n Sm n T n 9
c0s 7 008 =+ cos -+ cos —— +cos - = o
. . T LT .
Solution. Setting z = cos 1 +isin Tl implies that
-z —1-z 1

3 5 7 9 _ _ _ .
2+ 4+ +z +Z_zz—1 21 1=

Taking the real parts of both sides of the equality gives the desired result.
Problem 2. Compute the product P = cos 20° - cos 40° - cos 80°.

Solution. Setting z = cos 20° + i sin 20° implies z° = —1,Z = cos 20° — i sin 20°

2 4 8=
1 1 1
and cos 20° = “t ,cos40° = Zt ,cos 80° = &t . Then
2z 272 274
p_ @HDE+DE+D) @ -DE@+DE+DE+ D)
- 877 - 8z7(2—1)
20— 1 -z -1 1

T8 —2) 8(-1-2) 8§
Solution II. This is a classic problem with a classic solution. Let § =
cos 20 cos 40 cos 80. Then

S'sin 20 = sin 20 cos 20 cos 40 cos 80

1

= > sin 40 cos 40 cos 80
Ls 80 80

= —sin 80 cos
4
1 1 .

= —co0s 160 = — sin 20.
8 8

1
SoS§ =-.

Note that this classic solution is contrived, with no motivation. The solution using

complex numbers, however, is a straightforward computation.

Problem 3. Let x, y, z be real numbers such that
sinx +siny+sinz =0 and cosx+cosy—+cosz=0.
Prove that

sin2x 4+ sin2y +sin2z =0 and cos2x + cos2y + cos2z = 0.
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Solution. Setting z; = cosx 4+ isinx, zp = cosy +isiny, z3 = cosz + i sinz, we
have 71 + 22 +z3 = 0 and |71]| = |z2] = |z3]| = 1.
We have

G454+ = +n+5)? - 200+ 25 +5321)

1 1 1
= —2712223 <— + —+ —) = —2z12223(21 + 22 + 23)
21 3

= —2z1z2z23(z1 + 22 + 23) = 0.

Thus (cos 2x 4+cos 2y +cos 2z) +i(sin 2x +sin 2y +sin2z) = 0, and the conclusion
is obvious.

Problem 4. Prove that
3
cos? 10° + cos? 50° + cos> 70° = X
Solution. Setting z = cos 10° + i sin 10°, we have z° = i and

2 10 14
1 1 1
cos 10° = < 2-: , €0s50° = £ 2;5_ , cos70° = £ 2;7_ .

The identity is equivalent to
2 2 2
2Z2+1 + 71041 n 441 3
2z 273 277 2

02 P 2 o A 2 1 =61 e,

That is,

B 244 r1=0.

18

Using relation z'® = —1, we obtain

0420 S Ar1=0
or equivalently
G+ =L+ =0

That is,
@+ DEE+1)
- 6.1 - 0
254+1

)

which is obvious.
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Problem 5. Solve the equation
cosx +cos2x —cos3x = 1.
Solution. Setting z = cos x + i sin x yields
2 +1 Z+1 2 +1

Cosx = , COS2x = 7 cos3x = 3
2z 27 2z

The equation may be rewritten as

2 4 6
“4+1 Z“4+1 z22+1 .
2 + 22 — 7 =1, 1.e.,z4~|—z2+z5~|—z—z6—1—2z3=0
This is equivalent to
G- - -+ E - —z4+1)=0
or
E+DEE -2 —z+ 1) =0.
Finally we obtain
@+ DE-D*@+1=0.
Thus, z = lorz = —1 orz°> = —1 and consequently x € {2kw|k € Z} or
2k
x € (w4 2knlk € Z)orx € {H—n|keZ}.Thereforex € (knlk € Z) U

3
2k +1
2

wlk € Z}.
Problem 6. Compute the sums
n n
S = qk -coskx and T = qu -sinkx.
k=1 k=1
Solution. We have
n n
1+S+iT = qu(coskx +isinkx) = qu(cosx +isinx)k
k=0 k=0

1 — g™t (cosx + i sinx)"t!
1 —gcosx —igsinx

1= g"cos(n + 1)x + i sin(n + 1)x]
B 1 —gcosx —igsinx

1= q" 1 cos(n + Dx —ig" ' sin(n + Dx][1 — g cosx +igsinx]
g% —2qcosx + 1 ’
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hence
148= q" 2 cosnx — g™ cos(n + 1)x —gcosx + 1
N g% —2gcosx + 1
and
T_ q" % sinnx — ¢g"tlsin(n + 1)x + g sinx

g% —2qcosx + 1

Remark. If ¢ = 1 then we find the well-known formulas

. (n+ x . (n+ x
n sin — cos n sin si
Z coskx = = 2 and Z sinkx = 2
k=1 sin > k=1 sin >

Indeed, we have

1 cosnx —cos(n + 1)x — (1 — cosx)
Zcos kx =
k=1

2(1 — cosx)
2 1
ZSin)—CsinM — 25sin? X
— 2 2 2
= =%
4sin” —
2
2n+ Dx X . nx (n+ Dx
sin ——— — sin — sin — cos ———
_ 2 2 _ 2 2
= X = X
28in — sin —
2 2
and
L sinnx — sin(n + 1)x + sinx
Zsmkx = 71
= (1 —cosx)
X X X 2n+ Dx
2sin — cos — — 2sin — coOs ——
2 2 2 2
= —%
4sin” —
X 2n+ Dx .onx . (n+Dx
COS — — COS ———— sin — sin ——
2 2 _ 2 2
= X = X
2sin — sin —
2

Problem 7. The points A1, Az, ..., Ao are equally distributed on a circle of radius R
(in that order). Prove that A{Ay — A1Ay = R.

T T
Solution. Let z = cos 10 +i sin 0 Without loss of generality we may assume that

. 37 4
R = 1. We need to show thatZSlnE — 251n]—0 =1.
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In general, if z = cosa + i sina, then sina = £ 2; ! and we have to prove that
H—-1 -1

i3 iz
previous relation is equivalent to z8 — z® + z* — z2 + 1 = 0. But this is true because
B =24+ —22+ D@+ D) =274+ 1=0and 22 +1 #0.
Problem 8. Show that

= 1. This reduces to z® — z* 4+ z2 — 1 = iz>. Because z°> = i, the

T 2 3 1
COS — — COS — + COS — = —.
7 7 7

(5t IMO)

Solution. Let z = cos T +i sin z. Thenz’ +1 =0.Becausez # —landz’ +1 =

C+DE -2+ =22+ 72— 74 1) = 0it follows that the second facltor from the

1—z

above product is zero. The condition is equivalent to z(z> — z + 1) = 3

The given sum is
2

T 3
Z _cos — — —Re(z’ = 72 i
cos 7 cos 5 + cos 7 e(z”—z2"4+2)

1
Therefore, we have to prove that Re ( > = > This follows from the well-

1-23
known:
1 1
Lemma. If z = cost +isint and 7 # 1, then Re I =5
-z
Proof 1 1 1
roofj. = = =
11—z 1 — (cost +isint) (1 —cost) —isint
_ 1 . 1
1 Lt r t t t
251n2 E — 2 SIHECOS z 2SinE (SinE — 7 Cos E)
Lt . t t
_smE—i-zcosE _l_HcosE
- Lt ) Lt
2sin — 2sin —
2 2

Problem 9. Prove that the average of the numbers ksink® (k = 2,4,6,...,180) is
cot 1°.
(1996 USA Mathematical Olympiad)

Solution. Denote z = cost + i sint. From the identity

24274 +n" =4+ )+ )+
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1
— ZT][(ZH-Fl _ Z) + (Zn+1 _ ZZ) + o + (Zn+1 _ Zl’l)]
B nZn+1 Zn+1 —z

T z—1  (z—1)2

we derive the formulas:

. QCn+ 1)t
n (n+1)sin —— 1 Dt
choskt = - 2 — cos(n;i— ) , (D
k=1 2sin 5 4 gin? 5
2n+ Dt
n . 1y Neos————
stinkt:SIH(”+t) - 2 @)
k=1 4in? — 2sin —
2 2

Using relation (2) one obtains:

2sin2° +4sin4° +--- 4+ 178sin 178° = 2(sin2° + 2sin2 - 2° + - - - + 895sin 89 - 2°)

=90cot1°.

_5 sin90-2°  90cos 179° . 90 cos 179°
- 4sin? 1° 2sinle ) sin 1°

Finally,

1
%(2 sin2° +4sin4° + - - - + 178 sin 178° + 180 sin 180°) = cot 1°.

Problem 10. Let n be a positive integer. Find real numbers ay and ay, k,1 = 1, n,

k > [, such that

sin® nx

5— =do+ Z agjcos2(k —x

s~ x 1<i<k=<n

for all real numbers x # mm, m € Z.
(Romanian Mathematical Regional Contest “Grigore Moisil”, 1995)
Solution. Using the identities

n .
sinnx cos(n + 1)x
51=20032jx= - ( )
= sin x
and
1 sinnx sin(n + 1)x
S2=Zsin2jx= _( )
; sin x
j=1
we obtain

) 2 sinnx\2
Sl+SZ:<sinx) ’
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On the other hand,
S12 + S22 = (cos2x 4+ cos4x + --- + cos 2n)c)2

+ (sin2x + sin4x + - - - + sin 2nx)2
—n+2 Z (cos 2kx cos 21x + sin 2kx sin 2/x)

1<l<k<n

=n+2 > cos2(k—Dx,

1<l<k<n

hence sinzx\ 2
() =n42 3 cos2(k—Dx.
sin x
1<l<k<n
Setap =nand ay = 2,1 <! < k < n, and the problem is solved.
Here are some more problems.

Problem 11. Sum the following two n-term series for § = 30°:

cosf®  cos(20)  cos(30) cos((n — 1)0)
+ - — " and

)1+ ..
) cosf cos2 6 cos3 6 cos"" 14

ii) cos 0 cos @ + cos? 6 cos(20) + cos> 0 cos(30) + - - - + cos”™ 6 cos(nh).
(Crux Mathematicorum, 2003)

Problem 12. Prove that

2 -1
1 + cos>” (z) + cos? <—n> + -+ + cos>” <u>
n n n

oo )

Problem 13. For any integer p > 0 there are real numbers ag, ay, ..., a, with
ap # 0 such that

for all integers n > 2.

cos2pa = ag + aj sin2a+~-~+ap . (sin )P, forall a € R.

5.6 More on the n'" Roots of Unity

Problem 1. Let n > 3 and k > 2 be positive integers and consider the complex

numbers
2 . 27w
Z=C0S — +1sln —
n n

and
0=1—z47>—2 4 -+ (=DF 1L
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a) If k is even, prove that 6" = 1 if and only if n is even and g divides k — 1 or

k+1.
b) If k is odd, prove that 0" = 1 if and only if n divide k — 1 or k + 1.

Solution. Since z = —1, we have

L (=D

14z
a) If k is even, then
k k k
| _ ok 1_0052](_7T_,’sin2]<_n sin—n<sin—n—icos—n>
0 — A n no_ n n n
= = = T T
l+z 1+cosz—n+isin2—n cos—(cosz—i—isin—)
n n n n n
. km
sin —
k—1 k—1
= —i ;1{ <cos( )n+ising),
cos — n n
n
and
. km
sin —
0] = L
cos —
n
We have
k
|6] = 1 if and only if sin—n‘:’cosz).
n n
That is,
.ok L] 2k 21
sin©“ — =cos“ — or cos— +cos— =0.
n n

n n
The last relation is equivalent to

2k + 1
QEQZ_F]
n

k+ DHrm k—Dm .
0S cos =0, i.e.,
n n

C

M € 27Z + 1. This is equivalent to the statement that # is even and E divides
k+1 (?r k — 1. Hence, it suffices to prove that 0" = 1 is equivalent to |0 = %

The direct implication is obvious. Conversely, if || = 1, thenn = 2¢,¢t € Z; and ¢
divides k + 1 or k — 1. Since k is even, numbers k + 1, k — 1 are odd, hence t = 2] + 1

andn =4/+2,1 € Z.

Then
sin
n

k=Dr g M)

0 = =i (cos
n
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and
0" = —cos(k — ) =1,

as desired.
b) If k is odd, then

km km . km
1+0052]€_ﬂ+isin2k_ﬂ cos—(cos—+i31n—>

. 142K _ n no_ n n n
= = = g T T
I+z 1+cosz—n+isin2—n cos—(cos—+isin—)
n n n n n
km
COS;( k—1 ,,k—l)
= 7 | cos T 4+ isin .
cos — n n
n
We have .
b4 T
|6 = 1if and only if |cos —| = ‘cos—‘.
n n
That is,
5 ki s T 2k 2
COS“ — = Cc0s“ — SO COS—— = COos —.
n n n n

It follows that
. k+Dmr . (k—Dm
sin sin

n n

:O’

i.e., ndividesk +1ork — 1.
It suffices to prove that 6" = 1 is equivalent to |#| = 1. Since the direct implication
is obvious, let us prove the converse. If |§| = 1,thenk+1 = nt,t € Z. Thenk = nt%1

0= (-1) <cos (k_% +isin M) )

n

and

It follows that
0" = (=DM (cos(k — D +isink — D) = (=DM (=T =1,

as desired.
Problem 2. Consider the cube root of unity
2

2n+..
& = COS — 1S1In —.
3 3

Compute
(L+e)(1+e%)---(1+%).

Solution. Notice that 6> = 1, e2 + ¢+ 1 = 0 and 1987 = 662 - 3 + 1. Then

A +e)(1+e2) - (1487
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661
= [(1 +83k+1)(1 +83k+2)(1 +83k+3)](1 +81987)
k=0
661
=TT+ 4+ + D1 +¢) =0 +e)2(1 + &+ &2 + &)
k=0

= (1+ )20+ DI*? =2%(1 +¢)
1+iV3
— 9662(_ g2y — 662 ‘*‘2“/_ — 2661(] 4 i /3),
Problem 3. Let ¢ # 1 be a cube root of unity. Compute

Q—e+eHA—e>+eh .- (1 —e"+ ™).

Solution. Notice that 1 + & + ¢2 = 0 and &> = 1. Hence 1 — ¢ 4+ ¢2 = —2¢ and
1 +6&—¢2=—-2¢2
Then
1, if n = 0(mod3),
l—¢"+e =1 —2¢, if n=1(mod3),

—2¢%2 if n=2(mod3),

the product of any three consecutive factors of the given product equals
1-(=2¢) - (=2%) =22

Therefore
(I—e+eHA—e2+eh - (1 —e" 42

2n

273, if n = 0(mod3),
=1 225Hle if = 1(mod3),
252 it = 2(mod3).
Problem 4. Prove that the complex number
241
22—

Z

th

has modulus equal to 1, but 7 is not an n"-root of unity for any positive integer n.

Solution. Obviously |z| = 1. Assume by contradiction that there is an integer n > 1
such that z* = 1.
Then (2 4+ i)" = (2 —i)", and writing 2 +i = (2 — i) + 2i it follows that

Q-)"=Q2+)"

—Q-i+ ('I)(z L R (n " 1)(2 — D" + @iy
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This is equivalent to

Q)" =(=2+1) [<n>(2i —1)"22% 4 ( ! )(21')"_1}
1 n—1

= (=2 +1i)(a + bi),

witha, b € Z.
Taking the modulus of both members of the equality gives 2" = 5(a’ + b?), a

contradiction.

Problem 5. Let U, be the set of n*-roots of unity. Prove that the following statements
are equivalent:
a) there is a € U, such that 1 + o € Uy;
b) there is B € U, such that1 — 8 € U,.
(Romanian Mathematical Olympiad — Second Round, 1990)

1
Solution. Assume that there exists @ € U, such that 1+« € U,. Setting § = =
o
1 " 1
we have 8" = = = 1, hence B € U,. On the other hand,
14+« (1I+a)"
1-8= ¢ and (1 — B)" = o = 1, hence 1 — 8 € U,, as desired
Ta+1 T+ " '
. 1-8 . . =P
Conversely, if 8,1 — 8 € U,, set« = ——. Since " = ———— =1 and
ﬁ ‘Bn

1
14+a) = o = 1, wehave @ € U, and 1 + @ € U, as desired.

Remark. The statements a) and b) are equivalent with 6|x. Indeed, if o, 1 + o« € U,
then |o| = |1+«a| = 1. It follows that I = |14+«|? = (1+a)(1+@) = l+ata+|«|* =

_ 1 1 V3
l+a+oa+1=2+4+a+ —,1.e.,« = ——= £ i—, hence
o 2 2
1 3 27 2

l+a=—=-+i— =cos— xisin—.
2 2 6 6

Since (1 + «)" = 1 it follows that 6 divides n.

1 3 1 3
Conversely, if 7 is a multiple of 6, then both o = —3 +1i %— and 1 +«o = 3 +1i %

belong to U,,.
Problem 6. Let n > 3 be a positive integer and let ¢ # 1 be an n™ root of unity.

2
1) Show that |1 — ¢| > 7
n—
2) If k is a positive integer such that n does not divides k, then

ok
sin —
n

1
n—1

>
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(Romanian Mathematical Olympiad — Final Round, 1988)

Solution. 1) We have " — 1 = (¢ — 1)(¢"~! + ... 4+ & + 1) hence, taking into
account that & # 1, we find ”~! 4 ... + & + 1 = 0. The last relation is equivalent to
(" 1=+ +(e=1) = —n,ie., (e=D[e" 242" 34 . 4+ (n=2)e+(n—1)] = —n.
Passing to the absolute value we find that

n=le—1e" 242" 3+ F (n— D] < |e— 11" 2| +20e[" > +- -+ (n—1)).
Therefore
nn—1)

n§|1—8|(1+2+-~~+(n—1))=|1—£|T,

2
i.e., we find the inequality |1 — g| > —7 Moreover, equality is not possible since
n—

the geometric images of 1, ¢, ..., "1 are not collinear.
. 2kmr . 2kmw .
2) Consider &€ = cos —— + i sin —— and obtain
n n
2kn . 2km
l—-e=1—cos— —isin—.
n n
Hence

5 2dm\* ., 2km 2k ok
[1—¢l"=(1—cos— ) +sin“"— =2 —2cos — =4sin" —.
n n n n

Applying the inequality in 1), the desired inequality follows.
Problem 7. Let U, be the set of the n-roots of unity. Prove that
0, if n=0 (mod4),
( 1) 2, if n=1 (mod?2),
[(+1)-17%,
€ —4, if n=2 (mod4),

eel,
2, if n=3 (mod4).

Solution. Consider the polynomial

[ =x"—1=[X-e.

eelUy

Denoting by P, the product in our problem, we have

[Te+ieE-1

2
Pn=l—[(8+é)=l—[8:—1=eeUn 1—[8

eelU,

eely,
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H(i+8) H(—i+£)

eel, ceU, =D @ (=07 =10 = 1D
(=" £(0) - (=pt (=pr=t

If n =0 (mod 4), theni" =1 and P, = 0.

Ifn =1 (mod 2), then (—=1)"~! = 1 and

Pi= (=" = D" =1 == =D =—(-)'=h=—(-1- D =2.

If n = 2 (mod 4), then (—1)"' = —1, (=i)" = i" = i? = —1,i" = —1, hence
(=1=D(=1-1

Pn = _1 =

If n =3 (mod 4), then (—1)"~! = 1 and

Po=(i"-1DG"-D=@@ D" —D=—G"—1)=—((=1)°-1) =2,

and we are done.

Problem 8. Let

.. 2m
+ 1 sin

, n>0,
2n +1 2n +1

w = COS

and let
1 2 n
z=—4w+owo 4+ - +ow".

Prove that:
a) Im(z%*) = Re(z%**1) = 0 for all k € N;
b) 2z + 1)2n+l + (27— l)Zn—H -0

Solution. We have ©*'*t! = 1 and

l+o+0*+ -+ =0.

Then
5+w+w2+-~-+w”+w"(w+w2+--~+w")+%=0
or
z—i—w”( —l>+l=0,
2 2
hence
1 0" -1
Zzz'w”—l—l'
L
a) We have 7 = E(‘in = —z. Thus z2* = 72k and 72%+1 = —72k+1 The
— 1

1)
conclusion follows from these two equalities.
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+ " 1+1 0
w _—— _——=
Z Z 5 )

b) From the relation

we obtain 2z + 1 = —w"(2z — 1). Taking into account that »?"t1 = 1, we obtain
2z + D2t = —(2z — H>"*! and we are done.
Problem 9. Let n be an odd positive integer and €y, €1, . . . , €,—1 the complex roots of

unity of order n. Prove that

n—1
l_[(a +be}) =a" +b"
k=0

for all complex numbers a and b.

(Romanian Mathematical Olympiad — Second Round, 2000)

Solution. If ab = 0, then the claim is obvious, so consider the case when a # 0 and
b #0.
We start with a useful lemma.
Lemma. If g, €1, . .., &,—1 are the complex roots of unity of order n, where n is an
odd integer, then
H(A + Bey) = A" + B",
k=0
for all complex numbers A and B.
Proof. Using the identity

n—1

x"—l:l—[(x—sk)
k=0

A .
for x = —— yields
B

(5 +1) = U( +a)).

and the conclusion follows. (Il
Because n is odd, the function f: U, — U, is bijective. To prove this, it suf-
fices to show that it is injective. Indeed, assume that f(x) = f(y). It follows that
x—y)x+y)=0.Ifx +y = 0, then x" = (—y)", i.e., | = —1, a contradiction.
Hence x = y.
From the lemma we have

n—1 n—1
[[@+bep) =[[@a+bej) =a" +b".
k=0 j=0
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n
Problem 10. Let n be an even positive integer such that — is odd and let

£0, €1, - - - » En—1 be the complex roots of unity of order n. Prove that
n—1 . .
[[@+bep) = (@ +b2)>
k=0

for any complex numbers a and b.

(Romanian Mathematical Olympiad — Second Round, 2000)

Solution. If » = 0 the claim is obvious. If not, let n = 2(2s4-1). Consider a complex
a
number « such that o> = 5 and the polynomial

f=X"-1=X-e)X —¢e1) (X —&p1).

We have
o 1\“ ) )
F(3)=(7) @iz @=ie,n)
and
o —1\* . .
f(_lT)Z e (¢ +igg) - (@ +iey—1),
hence
o o
f (7) f (—?) = (@ +ed) (@ +el)).
Therefore
n—1 5 n—1 a 5 n—1 5 5
N L
(a+bed)=b ]_[(E+ek)_b [T@®+ed
k=0 k=0 k=0
2
_ g _g _n 27\2s5+1 2 _gn g 2s+1
_bf<i)f< i>_b [@H™ +1I" =5 [(b) 1
2
25+1 25+1
+b n n
— p22s+D (a e ) = (a2 +b2)%.

The following problems also involve n™ roots of unity.

Problem 11. For all positive integers k define
Ui=1{zeC|=1)}.
Prove that for any integers m and n with 0 < m < n we have
UtUUU---UUp CUps1 YU 2 U---UU,.

(Romanian Mathematical Regional Contest “Grigore Moisil”, 1997)
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Problem 12. Let a, b, ¢, d, @ be complex numbers such that |a| = |b| # 0 and |c| =
|d| # 0. Prove that all roots of the equation

c(bx +aa)' —d(ax +ba)" =0, n=>1,
are real numbers.

Problem 13. Suppose that z # 1 is a complex number such that z” = 1, n > 1. Prove
that
n+D@2n+1)

|nz—(n+2)|§—6 1z — 12

(Crux Mathematicorum, 2003)
X
Problem 14. Let M be a set of complex numbers such that if x, y € M, then — € M.
y
Prove that if the set M has n elements, then M is the set of the nM'-roots of 1.

Problem 15. A finite set A of complex numbers has the property: z € A implies 7" € A
for every positive integer n.

a) Prove that Z z is an integer.

z€A
b) Prove that for every integer k one can choose a set A which fulfills the above

condition and Z z=k.
z€A
(Romanian Mathematical Olympiad — Final Round, 2003)

5.7 Problems Involving Polygons

Problem 1. Let z1,7z2,...,2, be distinct complex numbers such that |z1| =
|z2| = - - - = |znl. Prove that
zi+ 2 ? _(—D@m-2)
I<icjen |G T 2 '
Solution. Consider the points A1, A», ..., A, with coordinates z1, z2, ..., 2. The

polygon A1 A, - - - A, is inscribed in the circle with center at origin and radius R = |z1].
zi +2j

The coordinate of the midpoint A;; of the segment [A; A ] is equal to , for

1 <i < j <n.Hence
2 21 = 4045 and |z =z = AiA].

Moreover, 40Ai2j =4R? — A,-A;.

The sum 5
Zi +2zj
i —Zj

1<i<j=n
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equals

2 2 2
40Aij 4R _AiAj

1 n
= _— = 4R2 R .
Ai A7 2 Ai A7 2 A;A? (2)

1<i<j<n

2

I<i<j<n

The AM — H M inequality gives

1 ((3)*
2 ,»A22 Z AiAY

I<i<j<n J

I<i<j<n

Since Z A,~A§ < n?. R2, it follows that

I<i<j<n

Zi +2j
Zi —Zj

s ((’5))2'A2 B ()

I<i<j<n

4((6)° (n> _ (@) -G _m-hHu-2
n? - 2 ’
as claimed.

Problem 2. Let A{Aj - - - Ay, be a polygon and let a1, aa, . . ., a, be the coordinates of
the vertices A1, Ay, ..., Ay. If la1| = |laz] = - - - = |ay| = R, prove that
> lai+ajl* =nn—2)R.
I<i<j<n
Solution. We have

D o laitaiP= ) (a+a)@+a)

1<i<j<n 1<i<j<n

= Z (la;|* +la;* + a;ja; + @a,)

1<i<j<n

_ 2R2<Z> +3 aa; =n(n—DHR* + Xn:iaia—j— Xn:aia_i
i=1

i#j i=1 j=1
n n
=n(n— DR*+ (Zai> (Za) — nR?
i=1 i=1

2

=nn—2)R> + > n(n —2)R?,

n
2
i=1

as desired.
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Problem 3. Let z1, 22, . . ., 2n be the coordinates of the vertices of a regular polygon
with the circumcenter at the origin of the complex plane. Prove that there are i, j, k €
{1,2,...,n} such that z; + zj = zy if and only if 6 divides n.

2 2 _
Solution. Let ¢ = cos _7[ +1i s1n—n Then z, = z1 .eP~L for all p=1,n.

We have z; +z; = 2k 1fand only 1f 14+ e/~ =gk i je.,
(j—im [ G-—dr .. (j—i)n] 2k—iyr 2k —i)m
2cos cos +i sin =cos —+i sin .
n n n n n
The last relation is equivalent to
. 2k — i
n 3 n
hence 6 divides 7.
Conversely, if 6 divides n, let
1 i k=241
1 =1, = — , —
1=3 6
and we have z; + z; = zy, as desired.
Problem 4. Let 71, z2, . .., 2, be the coordinates of the vertices of a regular polygon.

Prove that
Z%+Z%+"'+Z,2,=Z122+12Z3+"'+Zn21-

Solution. Without loss of generality we may assume that the center of the polygon

is the origin of the complex plane.

k—1

Let z; = 7167, where

2 .. 2w
g=cos— +isin—, k=1,...,n.
n n

The right-hand side is equal to

n
2122 2223 + -+ 2p21 = ZZiZkJrl

1 — g2
_ZZZZkl 1.8. 2:0
1—¢

On the other hand,

1_8211
2,22 _ 2
z1+z2 EZ—EZ =472 =0

and we are done.
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Problem S. Let n > 4 and let ay, as, ..., a, be the coordinates of the vertices of a
regular polygon. Prove that

aay +araz + - - - +aya; = araz + araq + - - - + ayan.

Solution. Assume that the center of the polygon is the origin of the complex plane
and q; = alsk_l, k=1,...,n, where

2 .. 27
£ =C0S— +1isin—.

n n
The left-hand side of the equality is
k-1 o 1™
ajaz + axaz + - +ana1—a1;8 _a181_82 =0.
The right-hand side of the equality is
1 — g
Z o2k — 2 2 - =0,
-
and we are done.
Problem 6. Let z1, 22, . . ., 2, be distinct complex numbers such that
lzil = lz2l = - = |za] = 1.
Consider the statements:
a)z1, 22, . - - , Zn are the coordinates of the vertices of a regular polygon.

b)Z+25+  + 2 =n(=D)"ziz0 - 2,
Decide with proof if the implications a) = b) and b) = a) are true.

Solution. We study at first the implication a) = b).

2 L. 2T . . .
Let ¢ = — + isin—. Since z1, 22, ..., 2, are coordinates of the vertices of a

n n
regular polygon, without loss of generality we may assume that
w=z&""1 for k=T,n
The relation b) becomes

Zrlz(l +e"+ 82n 4ot 18n(n—l)) — n(_1)n+lzr1181+2+---+(n—1).

This is equivalent to
n+1 nn—1) .
n=n(—1)""e¢" 2, ie.,

-1 2 —-1) 2
1= (=" cos ne - 1) 2w + i sin rn—D 27 )
2 n 2 n



5.7. Problems Involving Polygons 233

We obtain
1= (=" (cos(n — D)7 +isin(n — Dn), ie., 1 = (=) (=",

which is valid. Therefore the implication a) = b) holds.
We prove now that the implication b) = a) is also valid.
Observe that

1
In- (=" ziz0- - zal = nlzi| - |22l -+ - |zal = 1,

hence
]+ +-+ 2, =n.

Using the triangle inequality we obtain

n={+z 4+l <GB+ gl =1+ 14+ 1 =n,

n times
hence the numbers z7, 75, ..., z;; have the same argument. Since |z]| = [z5| = -+ =
|z;| = 1, it follows that z} = zJ = --- = z;, = a, where a is a complex number with
|a| = 1. Numbers z1, 22, ..., 2, are distinct, therefore there are the n'M-roots of a, and

consequently the coordinates of the vertices of a regular polygon.

Problem 7. Let A, B, C be 3 consecutive vertices of a regular n-gon and consider the
point M on the circumcircle such that points B and M lie on opposite sides of line
AC.

Prove that MA + MC = 2M B cos 7.

(A generalization of the Van Schouten theorem; see the first remark below)

Solution. Consider the complex plane with origin at the center of the polygon and
let 1 be the coordinate of Aj.

2r . . 2m kel - i —

If ¢ = cos — +isin —, then ¢ is the coordinate of Ax, k = 1, n.

Without losg of generalnity, assume that A = A, B = Ay and C = Aj3. Let zpy =
cost + isint, t € [0,2m) be the coordinate of point M. Since point B and M are
separated by the line AC, it follows that 4—7T <t.

Then "

t
MA = |zp — 1 =\/(cost— 1)2 +sin’r = +/2 — 2 cos =2sin§;

. t T
MB = |z — €| =251n<———>
2 n

21
el B

and

N~

MC = |zy — €7 =2sin(
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The equality
b4
MA+ MB =2MC cos —
n

is equivalent to

t t 2 t
2sin — + 2 sin r_- = 4sin r.r cosz,
2 2 n 2 n n

which follows using the sum-to-product formula in the left-hand side.

Remarks. 1) If n = 3 then we obtain the Van Schouten theorem: For any point M

on the circumcircle of equilateral triangle ABC such that M belongs on the arc AAC ,
the following relation holds:

MA+ MC = MB.

Note that this result also follows from Ptolemy’s theorem.
2) If n = 4, then for any point M on the circumcircle of square ABC D such that B

and M lie on opposite sides of line AC, we have the relation
MA+ MC = v2MB.

Problem 8. Let P be a point on the circumcircle of square ABC D. Find all integers
n > 0 such that the sum

Su(P) = PA" + PB" + PC" + PD"

is constant with respect to point P.

Solution. Consider the complex plane with origin at the center of the square such
that A, B, C, D have coordinates 1, i, —1, —i, respectively.

Let z = a + bi be the coordinate of point P, where a, b € R with a?+pr=1.

The sum S,,(P) is equal to

Sp(P) =[(a— 1?4512 +[a*+ (b — D> +[a+ D>+ 5712 + [a> + b+ 1)*]?
=21+t +a-af+a+0i+0-b8).

n 2 42
Set P = A(1,0). Then S,(A) = 2" +2". For P = E (%, g), we get

Sp(E) =22 —V2)7 +22 4 V2)1.

Since S, (P) is constant with respect to P, it follows that S,,(A) = S, (E) or 2%2 +
2" =202 -2)% +22+V2)%.
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It is obvious that 2°% > 2(2 — v/2)3 forall n > 1. We also have 2" > 2(2+ /2)?
for all n > 9. The last inequality is equivalent to

n
1 2 2
—>< +f) for n>09.

4 4

The left-hand side member of the inequality decreases with n, so it suffices to notice
that 0
1 242
- > .
4 4

Therefore the inequality S,(A) = S,(E) can hold only for n < 8. Now it is not
difficult to verify that S, (P) is constant only for n € {2, 4, 6}.

Problem 9. A function f: R* — R is called Olympic if it has the following property:
given n > 3 distinct points Ay, Aa, ..., A, € R? if f(A1) = f(A) =---= f(A))
then the points A1, Ay, ..., A, are the vertices of a convex polygon. Let P € C[X] be
a nonconstant polynomial. Prove that the function f: R*> — R, defined by f(x,y) =
|P(x + iy)|, is Olympic if and only if all the roots of P are equal.

(Romanian Mathematical Olympiad — Final Round, 2000)

Solution. First suppose that all the roots of P are equal, and write P (x) = a(z—zp)"
for some a,zo € Candn € N.If Ay, Ay, ..., A, are distinct point in R2 such that
f(AD) = f(A) =--- = f(An), then Ay, ..., A, are situated on a circle with center
(Re(zo), Im(zg)) and radius /] f (A1) /a], implying that the points are the vertices of a
convex polygon.

Conversely, suppose that not all the roots of P are equal, and write P(x) =
(z—2z1)(z—z2) Q(2) where z; and z; are distinct roots of P (x) such that |z; —z2| is min-
imal. Let / be the line containing Z; = (Re(z1), Im(z1)) and Z; = (Re(z2), Im(z2)),
and let z3 = %(Zl + z2) so that Z3 = (Re(z3), Im(z3)) is the midpoint of [Z]Z>].
Also, let 51, 57 denote the rays Z3Z; and Z3Z>, and letd = f(Z3) > 0. We must have
r > 0, because otherwise z3 would be a root of P such that |71 — z3| < |z1 — 22|,
which is impossible. Because f(Z3) =0,

Jlim_ £(2) = +oo.
Zesy

and f is continuous, there exists a point Z4 € s1, on the side of Z; opposite Z3, such

that f(Z4) = r. Similarly, there exists Zs € s>, on the side of Z, opposite Z3, such

that f(Zs) = r. Thus, f(Z3) = f(Z4) = f(Zs5) and Z3, Z4, Z5 are not vertices of a

convex polygon. Hence, f is not Olympic.



236 5. Olympiad-Caliber Problems

Problem 10. /n a convex hexagon ABCDEF, A+ C+E =360° and
AB-CD-EF =BC-DE - FA.

Prove that AB - FC - EC = BF - DE - CA.
(1999 Polish Mathematical Olympiad)

Solution. Position the hexagon in the complex plane and leta = B — A, b =
C —B,..., f = A — F. The product identity implies that |ace| = |bdf|, and the

b —d —

angle equality implies — - — - —f is real and positive. Hence, ace = —bdf. Also,
a ¢ e

a+b+c+d+ e+ f = 0. Multiplying this by ad and adding ace + bdf = 0

gives a’d + abd + acd + ad* + ade + adf + ace + bdf = 0 which factors to

a(d+e)(c+d)+d(a+b)(f +a)=0.Thus
la(d +e)(c +d)| = |d(a + D)(f + a)l,

which is what we wanted.

Problem 11. Let n > 2 be an integer and f : R* — R be a function such that for any
regular n-gon A1Ay --- Ay,

fAD) + f(A2) + -+ f(A) = 0.

Prove that f is identically zero.
(Romanian Mathematical Olympiad — Final Round, 1996)

2 2
Solution. We identify R? with the complex plane and let { = cos —— + i sin —.
n n
Then the condition is that for any z € C and any positive real z,

3 fe+1ch) =0,

j=1

In particular, for each of k = 1, ..., n, we have

n

fe=¢ct+¢hy=o.
j=1
Summing over k, we have

n n

NN fe-a-¢gmeh =o.

m=1 k=1

For m = n the inner sum is nf(z); for other m, the inner sum again runs over a
regular polygon, hence is 0. Thus f(z) = 0 for all z € C.

Here are some proposed problems.
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Problem 12. Prove that there exists a convex 1990-gon with the following two prop-
erties:
a) all angles are equal;
b) the lengths of the sides are the numbers 12,22,32 .. ,1989%, 1990% in some
order.
(3157 IMO)

Problem 13. Let A and E be opposite vertices of a regular octagon. Let a, be the
number of paths of length n of the form (Py, Py, ..., P,) where P; are vertices of the
octagon and the paths are constructed using the rule: Py = A, P, = E, P; and P4
are adjacent vertices fori =0,...,n—land P; # E fori =0,...,n — 1.

1
Prove that ay,_1 = 0 and ap, = E(x”_l —y" Y, foralln = 1,2,3,..., where
x=24++2andy=2— 2.
Q215 IMO)

Problem 14. Let A, B, C be three consecutive vertices of a regular polygon and let us
consider a point M on the major arc AC of the circumcircle.
Prove that
MA-MC = MB* — AB*.

Problem 15. Let AjA; --- A, be a regular polygon with the circumradius equal to 1.
n

Find the maximum value of max 1_[ PA; when P describes the circumcircle.
j=l1
(Romanian Mathematical Regional Contest “Grigore Moisil”, 1992)

Problem 16. Let AjA» - - - Ay, be a regular polygon with circumradius equal to 1 and
consider a point P on the circumcircle. Prove that

n—1

2 2
Z PAi - PA L =21
k=0

5.8 Complex Numbers and Combinatorics

Problem 1. Compute the sum

3§1(_1)k 6n 3k
2k +1 '

k=0

Solution. We have

3n—1( 1k< 6n )3k_3n—1( 6n )( 3)k
,;_) 2k + 1 _ZO 2%+1)
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3n—1 3n—1
6”)- w1 (6” ) U1
= § : (iV3)Hk = — § (iv/3)
= <2k+1 i3 = 2k + 1
1 1 T T\ 167
= —Im(1 +iv3)" = —Im|2 ~ +isin=—
iﬁm( +iv/3) iﬁm[ (cos3+lSln3>]

1
= ——Im[2% (cos 27rn + i sin27rn)] = 0.
iv3

n

Problem 2. Calculate the sum S,, = Z (Z) cos ka, where o € [0, i ].
k=0

Solution. Consider the complex number z = cosa + i sina and the sum 7,, =
n

Z (Z) sin k.. We have

k=0

n n
Sy +iT, = Z (Z)(coskoz +isinka) = Z (Z)(cosa +i sina)k

k=0 k=0

_ Z (”)Zk P )
k=0 k

The polar form of complex number 1 + z is
14+cosa+isina = 2 cos? ¢ + 2i singcos ¢
- 2 272
o o L«
=2cos — (cos — 4+ isin —)
2 2 2

since o € [0, r]. From (1) it follows that
S+'T—<2 a)n( na+,,na)
W+ iT, = 0052 0052 zsm2 ,

ie.,
a\n no a\" . no
Sy = (2 cos —) cos— and T, = (2 cos —) sin —.
2 2 2 2

Problem 3. Prove the identity

(()-C)-0)-) (-6 ) ==
(D)) ()= = (D) =() ()~

and observe that
(1 +0)" = x5 + yul. (1
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Passing to the absolute value it follows that
0 + ynil = 1L+ 0" = |1 +i]" = 2%.

This is equivalent to x? + y2 = 2"
Remark. We can write the explicit formulas for x, and y, as follows. Observe that
T T\\" n T T
A+ = (ﬁ(cosz—i—isinZ)) =22 (cosnT—i—isinnT).

From relation (1) we get
n nim n ., NT
Xy =22 COST and y, =22 smT.

Problem 4. [f m and p are positive integers and m > p, then
"V (") () () +
0 p 2p 3p

2]
—g 1+ 22: (cos]ﬂ>mcosw
p = P P

Solution. We begin with the following simple but useful remark: If f € R[X] is
2 2
a polynomial, f = a9 + a1 X + -+ + a,X™, and ¢ = cos — + i sin — is the p'

p
primitive root of unity, then for all real numbers » the following relation holds:

2p+...:l(f(x)+f(ex)+~--+f(8p71x))- (D

ao + apx? + azpx
p

To prove (1) we use the relation

p, if plk,

T4ef e 4. 4P Dk ,
0, otherwise,

on the right-hand side.
Consider the case when p is odd. Using relation (1) for polynomial f = (14+X)™ =

m m m .
+ X+ 4+ X™ we obtain
0 1 m

m m m 2 1 m m —1_\m
(™ \er s x4 = —((14x)"+ (1 +ex)" +- -+ (1+eP~ X)) (2)
0 p 2p p

Substituting x = 1 in relation (2) we find

1
sp=(m)+<m>+<m>+-~-=—(2m+<1+e)m+~-~+(1+8”‘>'">- @)
0 p 2p p
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k 2k o 2km .
From &% = cos —— + i sin — it follows that forall k =0, 1,..., p — 1
p p
kr \"™ k k
(14 Hm =2m (cos—n> (cosm id +isinm n>.
p p p

Using the relation e? ¥ = &k we find
(1+ &P~y = (1 4 k) = (1 4 gkym

m ( kn)m ( mkmwr . mkn)
=2"{cos — cos — i sin .
p p p

Replacing in (3) we obtain

p—1 p—1

1 p—1 = -
==Y A+ == > a4+ A+

P> =0 =1

| =

p—1

1 2 km \"™ km km
= |2m4m (cos—) (cosm—+isinm )
p =l p p p

m2< kn)m< mkmr . mkn)
+2 cos — coS — i sin
=1 p p p

m mkm
=— 01142 <cos —) 0S
p Z

p

. . S p
Consider now the case when p is an even positive integer. Because ¢2

= —1 we
have

1 1 P
p=—D (+e)"=— 2'"+Z<1+e">'"+ Z (1+65"
P =0 p k=5+1

P
21

1 kr\" k k
= — 2m+z2m(cos—n> <cosmn+isinmn>+
p p p p

k=1

m ( kn)m < mkmw . . mkn)
+ 2" | cos — cos — i sin
k=1 p p

L1

m z km ’" mkrw
=—|14+2 cos — | cos
p =1
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Problem 5. The following identity holds:

<n> ( n ) ( n ) on P‘l( kn)” (n — 2m)km
+ + R - CcOs — | €0S ——————.
m m+ p m+2p p p

P =0
Solution. Let 9, €1, ..., 51 be the pth roots of unity. Then
p—1 n n
et a)" :Z(k)(e’g‘”’+-~-+e’;:’f). (1)
k=0 k=0

Using the result in Proposition 3, Subsection 2.2.2, it follows that

kom e _ { p. if plk —m),

£ = 2
0 p=1 0, otherwise. @
Taking into account that
Ek_’n (1 + gk)m
< 2mkmr . 2mkrr> < kn)" < nkmw . nkn)
= | cos —isin 2cos — cos — + i sin —
4 p 4 4 p
km \" —2m)k —2m)k
=2" (cos _n) (cos —(n m)kn +isin —(n m) n)
p p p
and using (1) and (2) the desired identity follows.
Remark. The following interesting trigonometric relation holds:
p—1 n
km —2m)km
Z (cos —) sin M =0. 3)
k=0 P P

Problem 6. Consider the integers a,, by, ¢,,, where
(" + " + " +
“=\o) " \3 6 ’
" + " + " +
1 4 7 ’
" + " + " +
2 5 8 ’
Show that:

1) as + bg + ci — 3a,b,c, = 2"
2) a,% +b£ —i—c,% — ayb, — byc,, — cpa, = 1.

3) Two of integers ay,, b, ¢, are equal and the third differs by one.

by

Cn
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Solution. 1) Let € be a cube root of unity different from 1. We have
A+ D" =ay +bp+cn, (148)" =ay+bpe +cne®, (145" = ay + bpe? + cpe.
Therefore
@+ b3+ —3apbpcy, = (@n + by + cp)(@n + bue + &) (an + bpe? + cue)
=2"(1+&)"(1 +&2)" = 2" (=) (—e)" = 2.
2) Using the identity
B+ —xyz =+ y+ )0+ ¥+ 22 —xy — yz —zx)
and the above relation it follows that
a,% + bﬁ + c,% —ayb, — byc, — cpa, = 1.
3) Multiplying the above relation by 2 we find
(@n = bn)* + by — cu)* + (cn — an)* = 2. (1)

From (1) it follows that two of a,, b, ¢, are equal and the third differs by one.

Remark. From Problem 5 it follows that

an = % |:2"+cos%+(—1)"cosznT”} — % (2"+2(:05%)’
:%<2n+2008@>7
cp = % |:2” +cos@ + (=1)" cos m}
=%<2"+2cos@>'

It is not difficult to see that
a, = by ifandonlyifn =1 (mod 3),
ap, =cpifandonlyifn =2 (mod 3),
by, =cpifandonlyifn =0 (mod 3).

Problem 7. How many positive integers of n digits chosen from the set {2, 3,7, 9} are
divisible by 3?

(Romanian Mathematical Regional Contest “Traian Lalescu”, 2003)
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Solution. Let x;,, y,, z, be the number of all positive integers of n digits 2, 3, 7 or 9

which are congruent to 0, 1 and 2 modulo 3. We have to find x,,.

) 27 . 2w .
Consider ¢ = cos KR + i sin = It is clear that x, + y, + z, = 4" and

Xp + Eyn + 822, = Z g2 3190 — (g2 4 g3 4 &7 4 %) = 1.
J1+j2+j3+ja=n
It follows that x, — 1 + ey, + €2z, = 0. Applying Proposition 4 in Subsection 2.2.2
we obtain x, — 1 = y, = z, = k. Then 3k = x, + y, + z» — | = 4" — 1 and we find
1 1
k= 5(4” —1).Finally x, =k + 1 = 5(4" +2).

Problem 8. Let n be a prime number and let ay, as, ..., a, be positive integers.
Consider f (k) the number of all m-tuples (c1, ..., cm) satisfying 1 < ¢; < a; and
m

Zci =k (mod n). Show that f(0) = f(1) =--- = f(n — 1) ifand only if n|a; for
i=1

some j € {l,..., m}.

(Rookie Contest, 1999)

2 2
Solution. Let ¢ = cos — + i sin —. Note that the following relations hold:
n n

m
[[X+ X2+ + X0 = 3 xeresen
i=1 1<c¢i<a;

and

m

fO+ fMe+-+ fn—De" = Y gt =T +e>+ -+ %),
1<cj<a; i=1
Applying the result in Proposition 4, Subsection 2.2.2, we have f(0) = f(1) =
... = f(n — 1) if and only if f(0) + f(1)e + --- + f(n — 1)e"~! = 0. This is
m
equivalent to l_[(a +e2 4. 4&%) =0,ie,e+e2+ -+ &% = 0 for some
i=1
Jjef{l,...,m}. Itfollows that %/ — 1 =0, i.e., nla;.
Problem 9. For a finite set of real numbers A denote by |A| the cardinal number of A
and by m(A) the sum of elements of A.
Let p be a prime and A = {1,2,...,2p}. Find the number of all subsets B C A
such that |B| = p and p|m(B).
(36t IMO)

2 2
Solution. The case p = 2 is trivial. Consider p > 3 and ¢ = cos — + i sin —.

p p
Denote by x; the number of all subsets B C A with properties |B| = p and m(B) = j
(mod p).
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Then
p—1
j=0 BCA,|Bl=p I<ci<-<=cp=2p

The last sum is the coefficient of X” in (X + &)(X + &) - - - (X + &2P). Taking into
account the relation X? — 1= (X = 1)(X —¢&) - - - (X — e?~1) we obtain (X + &)(X +
€2) -+ (X + &2P) = (XP + 1), hence the coefficient of X7 is 2. Therefore

p—1
Z x]'SJ = 2,
j=0

ie.,xo—2+xe+-- ~+xp_18p_1 = 0. From Proposition 4, Subsection 2.2.2, it follows

2
thatx0—2:x1:-~-:x,,_1:k.Weﬁndpk:xo+~-~+xp_1—2:< p)_2
p

1 2
hence k = — (( p) — 2>. Therefore, the desired number is
p p

1 2p
x0=2+k=2+— -2].
p p

1 <2n+1

Problem 10. Prove that th b 23k is not divisible by 5
rooiem rove a e num erkZ::O 2k+1) 1S no. wisioile by for any

integer n > (.
(16% 1IMO)

Solution. Since 2 = —2 (mod 5), an equivalent problem is to prove that S, =

“~ (2n+1
Z (2: 1 1) (—2)¥ is not divisible by 5. Expanding (1 + i~/2)*"*! and then separat-

k=0
ing the even and odd terms we get
(1 +ivV2)2 = R, +iv/28S,, (1)
" 2n+1 r
where R, = Z ( ok )(—2) .

k=0
Passing to the absolute value from (1) it follows that

32 = R} + 25, )
Since 32 = —1 (mod 5), the relation (2) leads to
R2+28>=43 (mod 5). (3)

Assume by contradiction that S, = 0 (mod 5) for some positive integer n. Then
from (3) we obtain R,% = +3 (mod 5), a contradiction since any square is congruent
to 0, 1, or 4 modulo 5.
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Here are other problems concerning complex numbers and combinatorics.

n

2
Problem 11. Calculate the sum s, = Z (Z) coskt, where t € [0, ].
k=0
Problem 12. Prove that following identities:

1)) <g>+(z>+<g)+=%( "+2%+1cos%).

(Romanian Mathematical Olympiad — Second Round, 1981)

() )+ )

= l |:2"+ (\/34_-11)" c ﬂ+ (f_ b coszn_n:|.

5
2n 2n-1 5

z A A

Problem 13. Consider the integers A,, B,, C, defined by

)46
e )+ 0)
w=()-6)-0)

The following identities hold:
1) A’% + B}% + Cr% - Aan - Bncn - CnAn = 3";
2) A2+ A,B, + B2 =3""1.

Problem 14. Let p > 3 be a prime and let m, n be positive integers divisible by p such
that n is odd. For each m-tuple (cy, ..., cm), ¢ci € {1,2, ..., n}, with the property that

m
pl Z ¢;, let us consider the product ¢y - - - ¢;,,. Prove that the sum of all these products

i=1 ; m
are divisible by <—) .
4
Problem 15. Let k be a positive integer and a = 4k — 1. Prove that for any positive
integer n, the integer

5, = (g) _ (’;)a + <Z>a2 — <Z>a3 + - - - is divisible by 2",

(Romanian Mathematical Olympiad — Second Round, 1984)
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5.9 Miscellaneous Problems

Problem 1. Two unit squares K1, Ko with centers M, N are situated in the plane so
that MN = 4. Two sides of K1 are parallel to the line M N, and one of the diagonals
of K3 lies on M N. Find the locus of the midpoint of XY as X, Y vary over the interior
of K1, K», respectively.
(1997 Bulgarian Mathematical Olympiad)
Solution. Introduce complex numbers with M = —2, N = 2. Then the locus is the
set of points of the form —(w + xi) 4+ (y + zi), where |w|, |x| < 1/2 and |x + y|, |x —
y| < ~/2/2. The result is an octagon with vertices (1 +4/2)/24i/2,1/2+(1++/2)i /2,
and so on.

Problem 2. Curves A, B, C and D are defined in the plane as follows:

X
A: s N 2— 2:— R
{(x y)ixt =y x2+y2}

y
B=1{(x,y):2 - =3¢,
{(x y) xy+x2+y2 }

C ={(x,y): x> =3xy%> + 3y = 1},
D ={(x,y): 3x2y —3x —y3 = 0}.

Prove that AN B =C N D.
(1987 Putnam Mathematical Competition)

Solution. Let z = x+yi. The equations defining A and B are the real and imaginary
parts of the equation z> = z~! 4 3i, and similarly the equations defining C and D are
the real and imaginary parts of z3 — 3iz = 1. Hence for all real x and y, we have
(x,y) € AN B if and only if 72 = 77! 4 3i. This is equivalent to 2 —3iz=1,ie.,
(x,y) e CND.

Thus ANB=CND.

Problem 3. Determine with proof whether or not it is possible to consider 1975 points
on the unit circle such that the distances between any two points are rational numbers
(the distances being taken along the chord).

(17" IMO)

Solution. There are infinitely many points with rational coordinates on the unit cir-
cle. This is a well-known result arising from Pythagorean triangles and the correspond-
ing equation:

m? + n’ = p2.
Any such point A(x4, y4) can be represented by a complex number

ZA=XA+iys =cosag +isinoy
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where o4 is the argument of the complex number z4 and cosa 4, sina4 are rational
numbers.
Taking on the unit circle complex numbers of the form

zi = cos20 + 1 sin2a4

we have for two such points:

Izi - z%l = V/(cos 204 — cos2ap)? + (sin20 4 — sin2ap)?

= /2[1 —cos2(ap — aq)] = \/2 - 2sin’(apg — ap) = 2| sin(ag — ap)|
= 2|sinap cosas — sinag cosag| € Q.
Answer: Yes, it is possible.

Problem 4. A rourist takes a trip through a city in stages. Each stage consists of three
segments of length 100 meters separated by right turns of 60°. Between the last seg-
ment of one stage and the first segment of the next stage, the tourist makes a left turn
of 60°. At what distance will the tourist be from his initial position after 1997 stages?

(1997 Rio Plata Mathematical Olympiad)

Solution. In one stage, the tourist traverses the complex number

x = 100 + 1008 + 10082 = 100 — 100~/3i,

T .. T
where &€ = cos — + i sin —.

Thus in 1997 stages, the tourist traverses the complex number

1 — 81997
z=x+xe+xe> 4 4 xe'? =x1— = xe?.
—&
Hence, the tourist ends up |z| = |xe?| = |x| = 200 meters away from his initial

position.

Problem 5. Let A, B, C, be fixed points in the plane. A man starts from a certain
point Py and walks directly to A. At A he turns by 60° to the left and walks to Py such
that P0)A = AP. After he performs the same action 1986 times successively around

points A, B, C, A, B, C, ..., he returns to the starting point. Prove that ABC is an
equilateral triangle, and that the vertices A, B, C, are arranged counterclockwise.
7% IMO)

Solution. For convenience, let A|, Ay, Az, A4, As, ... be A, B, C, A, B, ...,

respectively, and let Py be the origin. After the k™M step, the position P will be Py =

4 4
Ar + (Pr—1 — Ap)efork = 1,2, ..., where € = cos ?71 + i sin ?71 We easily obtain

Pe=(1—e)(Ax +eAp1 + &2 Apa +--- + 1A,
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The condition P = Pjogg is equivalent to Ajggg+cA 985+ - -+ A, 4619854, = 0,
which havinginmind that Ay = Ay = A7=--- , Ay =As=Ag3=--- ,A3 = Ag =
Ag = -- -, reduces to

662(A3 +cAr+e2A)) = (14 4+ + (A3 + Ay +£%41) =0,

and the assertion follows from Proposition 2 in Section 3.4.

Problem 6. Let a, n be integers and let p be prime such that p > |a| + 1. Prove
that the polynomial f(x) = x" + ax 4+ p cannot be represented as a product of two
nonconstant polynomials with integer coefficients.

(1999 Romanian Mathematical Olympiad)

Solution. Let z be a complex root of the polynomial. We shall prove that |z| > 1.
Suppose |z|] < 1. Then, z" + az = —p, we deduce that

p=I"+azl = zlI" " +a| < 1" + Ja] <1+ |al,

which contradicts the hypothesis.

Now, suppose f = gh is a decomposition of f into nonconstant polynomials with
integer coefficients. Then p = f(0) = g(0)h(0), and either |g(0)] = 1 or |h(0)| = 1.
Assume without loss generality that |g(0)| = 1. If z1, z2, ..., zx are the roots of g,
then they are also roots of f. Therefore

=g = |z1z2-- -zl = lz1llz2l - - - |zk] > 1,

a contradiction.

Problem 7. Prove that if a, b, ¢ are complex numbers such that

(@+b)a+c)=hb,
b+co)b+a)=c,
(c+a)(c+b)=a,

then a, b, c are real numbers.

(2001 Romanian IMO Team Selection Test)

Solution. Let P(x) = X3 —sx? 4 gx — p be the polynomial with roots a, b, c. We
have s =a+ b+ c,q = ab + bc + ca, p = abc. The given equalities are equivalent

to
sa+bc=0>b,

sb + ca = c, (D

sc+ab=a.
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Adding these equalities, we obtain ¢ = s — s2. Multiplying the equalities in (1) by
a, b, c, respectively, and adding them we obtain s(a2 +b:+ c2) +3p =gqor, aftera
short computation,

3p = —3s% 4+ 52 + 5. 2)

If we write the given equations in the form
s—c)s—b)=b, (—a) s—c)=c, (—>b)(s—a)=a,

we obtain ((s — a)(s — b)(s — ¢))? = abc, and, by performing standard computations
and using (2), we finally get

s(4s —3)(s + )2 = 0.

If s =0, then P(x) = x3,s0a =b=c=0.Ifs = —1, then P(x) = x> + x? —

4 6
2x — 1, which has the roots 2 cos _r( 2 cos _r( 2 cos il (this is not obvious, but we
can see that P changes its sign on the intervals (-2, —1), (—1, 0), (1, 2) of the real

3 1
line, hence its roots are real). Finally, if s = 3/4, then P(x) = x3— sz + Rx e
which hasrootsa = b = ¢ = 1/4.

Alternate solution. Subtract the second equation from the first. We obtain (a +
b)(a—b) = b—c. Analogously, (b+c)(b—c) = c—a and (c+a)(c—a) = a—b. We can
see that if two of the numbers are equal, then all three are equal and the conclusion is
obvious. Suppose that the numbers are distinct. Then, after multiplying the equalities
above, we obtain (a + b)(b + ¢)(¢c +a) = 1, and next: b(b + ¢) = c(c + a) =
a(a + b) = 1. Now, if one of the numbers is real, it follows immediately that all three
are real. Suppose all numbers are not real. Then arga, argb, argc € (0, 2). Two of
the numbers arga, arg b, arg c are contained in either (0, ) or in [, 27r). Suppose
these are arga, argb and that arga < argh. Then arga < arg(a + b) < argb and

arga < arga(a+b) < arg(a+b) < argb. This is a contradiction, since a(a +b) = 1.

Problem 8. Find the smallest integer n such that an n X n square can be partitioned
into 40 x 40 and 49 x 49 squares, with both types of squares present in the partition.
(2000 Russian Mathematical Olympiad)

Solution. We can partition a 2000 x 2000 square into 40 x 40 and 49 x 49 squares:
partition one 1960 x 1960 corner of the square into 49 x 49 squares and then partition
the remaining portion into 40 x 40 squares.

We now show that n must be at least 2000. Suppose that an n x n square has been
partitioned into 40 x 40 and 49 x 49 squares, using at least one of each type. Let

—2n+" _271 dé& —2n+" _271 Orient th that
— = ) X
{' COS 20 1 S1In 20 an COS 49 1 S1In 49 rien en n square Sso thal
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two sides are horizontal, and number the rows and columns of unit squares from the
top left: 0,1,2,...,n — 1. For 0 < j, k < n — 1, and write {j&‘k in square (j, k). If
an m X m square has its top-left corner at (x, y), then the sum of the numbers written

x+m—1y+m—1 m m
e (55 (5)
>y de=ee (5 (o)

j=x

in it is

The first fraction in parentheses is 0 if m = 40, and the second fraction is O if
m = 49. Thus, the sum of the numbers written inside each square in the partition is O,
so the sum of all the numbers must be 0. However, applying the above formula with
(m,x,y) = (n,0,0), we find that the sum of all the numbers equals 0 only if either
¢" —1oré&" — 1 equals 0. Thus, n must be either a multiple of 40 or a multiple of 49.

Let @ and b be the number of 40 x 40 and 49 x 49 squares, respectively. The area
of the square equals 40? - @ + 49% - b = n?. If 40|n, then 40?|b and hence b > 40°.
Thus, n? > 492 - 40> = 1960%; because # is a multiple of 40, n > 50 - 40 = 2000. If
instead 49|n, then 492|a, a > 492, and again n? > 19602. Because 7 is a multiple of
49, n > 41 - 49 = 2009 > 2000. In either case, n > 2000, and 2000 is the minimum
possible value of n.

Problem 9. The pair (21, 72) of nonzero complex numbers has the following property:
there is a real number a € [—2, 2] such that z% —az1z2 + z% = 0. Prove that all pairs
(], 25), n =2,3,..., have the same property.

(Romanian Mathematical Olympiad — Second Round, 2001)

. 21 . . .
Solution. Denote t = —, t € C*. The relation z% —aziza + z% = 0 is equivalent

22
a+iv4—a?
to 12 — at + 1 =O.WehaveA=a2—450,hencet=fand
a’ —a? . o, .
[t] = I+ 1 = 1.Ift = cosa +isina, then — = " = cosna + i sinna
Z

2
and we can write z%” —anz}z5 + z%” = 0, where a, = 2cosna € [-2,2].

Alternate solution. Because a € [—2, 2], we can write a = 2 cos «. The relation
z% —az1z2 + z% = 0 is equivalent to

Z—1+Z—2=200so¢ @)
22 2

and, by a simple inductive argument, from (1) it follows that

Problem 10. Find

Imzd

min =
zeC\R Im°z
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and the values of z for which the minimum is reached.

Solution. Let a, b be real numbers such that z = a + bi, b # 0. Then Im(z)5 =
5a*h — 10a*b> + b> and

% =5(f)4 — 10(5)2+ 1.

an2
Setting x = (Z) yields

I 5
M) Sy 10x 1 =50 — 1) — 4,

Im° 7

The minimum value is —4 and is obtained for x = 1 i.e., for z = a(l £ i),a # 0.

Problem 11. Let 71, z2, z3 be complex numbers, not all real, such that |z1| = |z2| =
|z3| = 1 and 2(z1 + z2 + z3) — 3712223 € R.
Prove that

b1
max(arg zy, arg 7o, arg z3) > 5

Solution. Let z; = cost, +isint, k € {1, 2, 3}.
The condition 2(z1 + z2 + z3) — 3z12223 € R implies

2(sinty + sinty + sin#3) = 3sin(¢] + 1 + 13). (D)

.. b4 T

Assume by way of contradiction that max(tq, t2, 13) < g hence 11, 1, 13 < E Let
n+n+n

= —— €

T b1d
3 (O, E) The sine function is concave on [O, —), SO

6
hH+n+1n

3 2

. . . .
g(sm t1 +sint, + sint3) < sin

From the relations (1) and (2) we obtain

sin(t] + 1 + 13) < sin t1+h+13
2 - 3 '

Then

sin3¢ < 2sint.

It follows that

4sin’t — sint > 0,
. .2 1 . 1 b . . w
i.e., sin“t > 7 Hence sint > > thent > o which contradicts that ¢t € (O, E)

V4 .
Therefore max(ty, tr, t3) > ra as desired.
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Here are some more problems.

Problem 12. Solve in complex numbers the system of equations

x|yl + ylx| = 222,
ylzl +zlyl = 2x2,
zlx| + x|z| = 2y

Problem 13. Solve in complex numbers the following:

x(x —y)x —2z2)=3,
Yo —x)y—2 =3,
72(z—x)(z—y)=3.

(Romanian Mathematical Olympiad — Second Round, 2002)

Problem 14. Let X, Y, Z, T be four points in the plane. The segments [XY] and [ZT]
are said to be connected if there is some point O in the plane such that the triangles
OXY and OZT are right isosceles triangles in O.

Let ABCDEF be a convex hexagon such that the pairs of segments [AB], [CE],
and [BD], [E F] are connected. Show that the points A, C, D and F are the vertices
of a parallelogram and that the segments [BC] and [A E] are connected.

(Romanian Mathematical Olympiad — Final Round, 2002)

Problem 15. Let ABC DE be a cyclic pentagon inscribed in a circle of center O which
has angles B = 120°, C = 120°, D = 130°, E = 100°. Show that the diagonals BD
and C E meet at a point belonging to the diameter AO.

(Romanian IMO, Team Selection Test, 2002)
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Answers, Hints and Solutions to

Proposed Problems

In what follows answers and solutions are presented to problems posed in previous
chapters. We have preserved the title of the subsection containing the problem and the

number of the proposed problem.

6.1 Answers, Hints and Solutions to Routine Problems
6.1.1 Complex numbers in algebraic representation (pp. 18-21)

l.a)z1 +z220+23=1(0,4); b)z122 + 2023 + 2321 = (—4,5);
©) 212223 = (=9, 7);  d) 2] + 25 + 23 = (=8, —10);

2z 311 65 2+23 152 72
L+ 2+ 2= (T ) pL 2= (0 ),
2 3 2 130 83 5 +25 221 221

2.9)2=(7,-8); b)z=(-7-4);

)_(23 2>. Oze (0.7
c)z = B,—E, z=(=9,7).

1 V3 1 3\

3.a)z1 = 55 )ae=l"y "5 )
(#7)o=(-7)
b)z1 =(-1,0),z22 = =, ,23 = )
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(1,0), for n =4k;
4-Zn:Zk= (1,1), for n=4k+1,
k=0 0,1, for n=4k+2;
0,0), for n=4k+3.
5.00z=(1,1); bzi=@2,1,20=(=2,—1).
6. 72 = (a2 _ b2’ 2ab); 3= (a3 . 3ab2, 3a2h — b3);
7t = (a* — 6a*b? + b*, 4a’b — 4ab?).

a+~a?*+b?
7.21 = — sgnb

a+ a2+b —a + va? + b?
n=|—/—F—
2

8. For all nonnegative integers k we have
= (k0 = ((—DF, —(—dF); =0, —2(-d)b);
7% = (22(=4)k, —2(=4)%); for k > 0.

1 3
9.a)x=Z,y=Z; b)x=-2,y=8;, ¢c)x=0,y=0.

11 547 4
10.2) 8 +51i; b)4—43i; ©)2; d)Z—T“/_i; )_+E

11.a) —i; b)Eg =1, Egy1 =140, Egpro =1, Eg3=0; ¢ 1; d)—
V2 V2 V2 V2

12.a) z; = 74‘17,22————1—
b) z —Q—iﬁz —£+l£
) ) 2
st VI+V3 VAo
21,2 = ) ) .
13.zeRorz=x+iywithx?2 4+ y>=1.
14.a)fle1;
b)EzZEz.

15. We substitute a formula for the definition of modulus.

16. From the identity

we obtain
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where

a= ,a>0.

Since
A —3a-2=@-2)@>+2a+1) =(@a-2)(a+1)?
we have a < 2, as desired.
17. The equation |z + 2| =1is equivalent to |z° +7Z%> = 1. That s, (2 +Z2) (T +

2 1 2 . . .
z22)=1.Wefind (z2+7%)%*=1or (zz + Z—z) = 1. The last equation is equivalent to

1 3
+D2=z%or (z* =22+ D(* + 22+ 1) = 0. The solutions are :I:Ei + \/7_ and
3 1
:|:£ + —i.
2 2

18.z ¢ {j:\/g iiﬁ}.

19.2€{0,1,—1,i, —i}.

1
< 7 is equivalent to |2 — z| < |z|, and consequently (2 —

20. Observe that
z
2)(2 —7) < z-z. It follows that 4 < 2(z + z) = 4Re(z), as needed.

21.a2 + b2+ ¢ —ab — be — ca.

—6+ /21 7
22.a)zl,2=++2i; bz=—c+dii =2+

243 1 13 9
d)z1,2=T\/_+§i; e)zz=—1,12=—5—6i; f)22=—?—§i.
23.m e {1,5).

24. 7 = -2y+2+iy,y e R
25.z =x +iywithx?2 +y2 =1.

26. From |z1 + 22| = /3 it follows that |z; +22|% = 3, i.e., (z1 +22)(Z1 + 22) = 3. We
obtain |z1]2 + (2122 + Z122) + |z2|? = 3. That is, 2122 + 2122 = 1. On the other hand
we have |21 — 22> = |211> — (2122 + Z122) + |22/* =2 — 1 = 1, hence |21 — 22| = 1.

. 1 V3 . 3 .
27. Letting ¢ = —5 + 17 and noticing that > = 1, we obtain n = 3k, k € Z.

28. Note that z = 0 is a solution. For z # 0 passing to absolute value we obtain
Iz"~! = |z, i.e., |z| = 1. The equation is equivalent to z* = iZ - z, which reduces to
z" = i. The total number of solutions is n + 1.

29. Let

a=|nn—z| B=lzz—zl v=I|u-—2z2l
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Since the following inequality,
ap + By +ya <o’ +p7+y?
holds, and
o’ + % +y? =3(a1l’ + 2l + |2 — |+ 2+ )

<3(z11* + 221> + |22]* = 9R?,
it follows that
af + By + ya < 9r2.

30. Observe that
lu—z| _ |u—z|

lw| = |v| - = = — <
uz — 1 |luz — 1]

if and only if

lu —z| < |uz —1].
This is equivalent to

u—zf* < fuz — 1%,

We obtain
(u—2)@—2) < @z—Dz—1),
ie.,
ul? + |2 — w1z = 1 < 0.
Finally

(1u*l = Dzl = D = 0.
Since |u| < 1, it follows that |w| < 1 if and only if |z| < 1, as desired.

31. z% + Z% + Z% = (z1 + 22+ 23)% — 2(z122 + 2223 + 2321)

1 1 1
= —2712223 (z_ +—+ —) = —2212223(Z1 + 722 +73) = 0.
1

22 3
2
32. The relation |zx| = r implies zx = — fork € {1, 2, ..., n}. Then
Zk
2 2 2 2 P2 2

_ 21 2 23 n 2

E =
2 2 2

om 21t22 22+23  Znt2
r . . ...

— <122 2223 Znll = FE

2n ., 1
2122 Zn

r
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hence E € R.
33. Notice that
0-W=w0-T=23-3="r
and
z1z2+z3 € Rifandonly if 22 + 23 = 71 - 22 + Z3.
Then
r? _ A2tz st 2273 + 21

212223 N 2120 +r?z3 N 2123 + 12z 2223 + 12z
@i—=D2—-z3) za—-1 -1 zm-1 z1—-2
(2—z) @1 —rY)  zi—r 2

2 -t ozt n-n =1
Hence z1z2z2 = r? and consequently r3 = r2. Therefore r = 1 and 712223 = 1, as
desired.

34. Note that x} = x3 = —1.

a)—1; b)1; c)Considern € {6k, 6k + 1,6k £ 2, 6k £ 3).
35.2) x* + 16 = x* + 2 = (x? + 4i)(x? — 4i)

= [x2 4+ (V2(1 + )21[x* — (V2(1 +1))?]

= (x +V2(=1 + D)) (x + V201 = ) (x — V2(1 + i) (x + V2(1 +i)).
V3

3 3 3 2 1 .
b)x’ —27=x>—-3"=(x—-3)(x —3e)(x — 3¢ ),WhereS=—§+—z.

2
O +8=x3+22 = +2)(x + 1 +iv3)(x + 1 —iV3).
Dxt+x24+1=02—)@2 - =2 —eHr—&?)

1 3
=x—-8&8x+ex—2(x+¢), wheree = ) + gi.
18 26
36.a) x2 — 14x + 50 = 0; b)xQ—?x+?=0; )xr+4x+8=0.

37. We have
2)|z1 + z2| - |22 + 23] = 2|z2(z1 + 22 + 23) + z123] < 2|22l - 21 + 22 + 23] + 2|z1]]z3],
and likewise,

2|z2 + z3| - 123 + 21l = 2lz3llz1 + z2 + z3] + 2|z2lz1],

2|z3 + z1l - 121 + z2] < 2|z1llz1 + z2 + 23] + 2|z2]1z3].

Summing up these inequalities with

2
lz1 + 22 + 22 + 23> + 13 + 2112 = 21 + 22 + [z31* + |21 + 22 + 23]
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yields

(21 + 22> + 12 + 32 + 123 + 211D < (21l + |22l + |z3] + 21 + 22 + z31).

The conclusion is now obvious.

6.1.2 Geometric interpretation of the algebraic operations (p. 27)

3.

a) The circle of center (2, 0) and radius 3.
b) The disk of center (0, —1) and radius 1.
¢) The exterior of the circle of center (1, —2) and radius 3.

1 1
d M= {(x,y)eRzlxz—z}U{(x,y)eIRzpc <—§,3x2—y2—3<0},
ey M ={(x,y) eR* -1 <y <0).
f)M:{(x,y)eR2|—l<y<l}.
Q) M = {(x,y) e R®|x?> 4+ y? — 3x + 2 = 0}4.

1
h) The union of the lines with equations x = —3 and y = 0.

M ={(x,y) e R?|y =10 —x?, y > 4}.

5.23=+/3(1 —i)and 2 = V3(1 +1).

M={(x,y) eR¥x2+y2+x=0, x #0, x # —1}

U{(0,y) € R?|y # 0} U {(—1,y) € R?|y # 0}.

. The union of the circles with equations

x24+y2—2y—1=0 and x*>+y>+2y—1=0.

6.1.3 Polar representation of complex numbers (pp.39-41)

1.

3 7
W =321 = b)r=8,t*=%; Or=51"=m;

1 1
d r= \/5, t* = arctanz +m;, e)r= 2\/3, t* = arctan <_§) + 2.
16 12

xr=1Ly=v3 br=—y=-7 9r=-2y=0;

dx=-3,y=0 e)x=0,y=1 Hix=0,y=—4.
2m —argz, if argz #0,

.arg(z) = { ;

0, if argz = 0;

T+ argz, if argz € [0, ),
arg(_z)=i g gz € [0, m)

—m +argz, if argz € [, 2m).

. a) The circle of radius 2 with center at origin.

b) The circle of center (0, —1) and radius 2 and its exterior.
¢) The disk of center (0, 1) and radius 3.
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d) The interior of the angle determined by the rays y =0, x <0and y = x, x <0.
e) The fourth quadrant and the ray (OY’.
f) The first quadrant and the ray (O X.

3
g) The interior of the angle determined by the rays y = \/T_x, x <0and y = +/3x,
x < 0.
h) The intersection of the disk of center (—1, —1) and radius 3 with the interior of

3
the angle determined by therays y = 0,x > 0Oand y = Tx, x> 0.

1 2 2
5.a)z1 = 12(cos%+isin%>; b)zp = 3 (cos%—i—isin?);

) 471+,, T d) 18 57r+,.571
c = c0S — + i sin —; = cos — +isin — );
3 3 3 “ 3 3
2 2
e)z5 =+ 13 |:cos <271 — arctan 5) + i sin <2n — arctan 5)],
37 3

f)26=4(c0s7+lsm7ﬂ)
6.a)z1 =cos2m —a) +isin(2r —a),a € [0, 27);

b) z —2‘cosg‘-[cos(z—g)+isin<n —g>]ifae[0 T);

2= 2 2 2 2 i

2
37 a . (371 a .
12—2’005— CcoS 5 73 +isin 5 73 ifa € (m,2m);

C)Z3=\/§|:COS a+77>+zs1n<a+77>:|ifae [0%]
23 =«/§[COS(G—%)+i;in(a—%>]ifa € (%,271);

d) z4—2sm%[cos (7‘[ +zsm (rr g)]ifa e [0, m);

74 = 2sin% [cos <— — —) ~+ i sin (— — %>:| ifa € [, 2m).

0k T
7.a)12f<cosT+151nT>; b) 4(cos 0 + i sin0);

Sm Sm T .. T
c) 482 (cos - + i sin E)’ d) 30 (cos > + i sin E>

8.a)|z| = 12,argz =0, Argz = 2km, argz = 0, arg(—z) = m;

11m 117 137 T
b = 144/2, = — A — + 2k = , —2) = —.
)2l =142, argz = =, Argz = —— + 2k, arg T = ——, arg(—2) = 5
Sm 1
9. a) |z|—213+213,argz:?; b) |z|:?,argz:n
5n
¢) |z| = 2 t! COSTT[ ,argz € {0, }.
10.If z = r(cost + i sint) and n = —m, where m is a positive integer, then
Z,,:Z_m_i_ 1 1 cos0+isin0

T zm T pm(cosmt +isinmt) ™ cosmt +isinmt
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= im[cos(o —m)t +isin(0 — m)t] = r~"(cos(—mt) + i sin(—mt))
r

= r"*(cosnt + i sinnt).

11. a) 2" sin” % [cos w + i sin —n(rc _ a)] ifa € [0, 7);
S5t — Sm —
2" sin” % [cosw + i sin —n( i a)] ifa e [m,2n];
b) 2" + ! —ZCosmT
St = =
6.1.4 The n'™ roots of unity (p. 52)
T T
LAy = 4 2kn
1.a)ze = V2 | cos & 5 +isin 2 5 Jkefo,1);
T T
— +2km — + 2km
b) zx = cos 2 5 + i sin 2 5k e{0.1h
T ok T 2k
¢) zx = cos & 5 +isin 2 5 sk €{0, 1}
4 4w
— 4+ 2km — +2km
d)zx =2 [ cos -2 + i sin = k€ {0,1};
2 2
3 3
T ok Ty ok
2.a)zk=coszT+isinzT,k€{0,1,2};
2k 2k
b)Zk:3<cosn+Tn+isinn+Tn>,k6{0,1,2};
T T
— +2km — + 2k
¢) 2 = 2 | cos 4 5 +isin 4 T | kel0. 128
S S
— 4+ 2km — +2km

d)Zk=COS3T+iSiH3T7k€{Ov1a2};

e)z0=3+1i,21 = (3+1i)s, 20 = (3+i)e?, where 1, &, £2 are the cube roots of 1.

S S
24 okn = 4 2kn
3-a)Zk:\/§ COS4T+iSiH4T ,k€{0,1,2,3},
T b
2y okn = 4 2kn
b) 2k = V2 cos6 2 +isin6 ) ,ke{0,1,2,3};
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z+2k71 z+2k71
¢) 7t = cos 2 1 +isin 2 7 kel0.1,2,3)
3 3
T 4 2k Ty ok
d)Zk=\4/§ COSZT-FI.SiHQ'T ,k€{0,1,2,3};

e)zo=2+i,21=-2—i,0=—-14+2i,z3=1-2i.
2% 2%
4.7 = cos =% 4isin =L ke{0,1,....n—1},ne{56,78,12}.
n n

: 2 2 )
5.a)Considere; = ¢/, ¢, = ¢* where ¢ = cos =+ sin —H.Then £j-gf = /T Let
n n
r be the remainder modulon of j +k. Wehave j+k =p-n+r,r €{0,1,...,n—1}
andgj - g =P"'= (") &' =¢" =& € Uy.
1 1 n
1

b)Wecanwrite ¢, = — = — = — =¢""J e U,.
Y ej &l &l

™

2k . 2km
6.a)zx =5 <cosT +zslnT>,k € {0,1,2};

n+2kn . w4+ 2km
b)zx =2 COST+lsmT ,ke{0,1,2,3};

3 3
— +2km — +2km

c)zx =4 | cos 2 3 +isin 2 3 ,k€{0,1,2};
T ok T ok

Az =3 | cos 2 fisin 2—— |k € {0,1,2).

7. a) The equation is equivalent to (z* — i)(z> — 2i) = 0.
b) We can write the equation as (z> + 1)(z> +i — 1) = 0.
¢) The equation is equivalent to z® = —1 +i.
d) We can write the equation equivalently as (z° — 2)(z> + i) = 0.

8. It is clear that any solution is different from zero. Multiplying by z, the equation

is equivalent to z° — 5z* + 10z — 1022 + 5z — 1 = —1, z # 0. We obtain the
2k + 1
binomial equation (z — 1)° = —1, z # 0. The solutions are z; = 1 4 cos % +
2k + 1
zsin%,k =0,1,3,4.

6.1.5 Some geometric transformations of the complex plane (p. 160)

1. Suppose that f, g are isometries. Then for all complex numbers a, b, we have
|f(g(a)) — f(gb)| = |g(a) — g(b)| = |a — b, so f o g is also an isometry.

2. Suppose that f is an isometry and let C be any point on the line AB. Let f(C) = M.
Then MA = f(C) f(A) = AC and, similarly, MB = BC. Thus [MA — MB| = AB.
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Hence A, M, B are collinear. Now, from MA = AC and MB = BC, we conclude
that M = C. Hence f(M) = M and the conclusion follows.

3. This follows immediately from the fact that any isometry f is of the form f(z) =
az+bor f(z) =az+ b, with |a| = 1.
4. The function f is the product of the rotation z — iz, the translation z — z +4 — i,

and the reflection in the real axis. It is clear that f is an isometry.

5. The function f is the product of the rotation z — —iz with the translation z —
z+142i.

6.2 Solutions to the Olympiad-Caliber Problems
6.2.1 Problems involving moduli and conjugates (pp. 175-176)

Problem 21. At first we prove that function f is well defined, i.e., | f(z)| < 1 for all z
with |z] < 1.

Indeed, we have | f(z)| < 1 if and only if‘% <1l,ie,|1+az? < |z+af® The

last relation is equivalent to (1 +az)(1 +az) < (z +a)(Z +a). Thatis, 1 + |a|?|z|> <
|a|2 + |z|2 or equivalently (|a|2 — 1)(|z|2 — 1) < 0. The last inequality is obvious since
|z| <1, and |a| > 1.

To prove that f is bijective, it suffices to observe that for any y € A there is a unique
z € A such that

1+ az
) = = .
f@ 1a =
‘We obtain
ay — 1
z= =—f(=y),
a—y

hence |z| = | f(—y)| < 1, as desired.
Problem 22. Let 7 = cos ¢ + i sin ¢ with cos ¢, sing € Q. Then

2 —1= cos2ng +isin2np —1 =1 —25in2n<p+2i sinng cosng — 1

= —2sinng(sinng — i cos ny)

and
122" — 1| = 2|sinng|.

It suffices to prove that sinng € Q. We prove by induction on n that both sin n¢ and
cos ng are rational numbers. The claim is obvious forn = 1.

Assume that sinng, cosng € Q. Then

sin(n 4+ 1)p = sinng cos ¢ + cosnpcosp € Q
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and
cos(n + 1)¢ = cosngcos¢ — sinngsing € Q,
as desired.
1 .
Problem 23. To prove that the function f is injective, let f(a) = f(b). Then 1 + al. _

1+ bi

%. This is equivalentto 1 +ab + (a — b)i = 1 +ab + (b — a)i,i.e,a = b, as
— bi

needed.

The image of the function f is the set of numbers z € C such that there is t € R
with

1+t
e=10=9"y
ti . z—1 . . . -
From z = - we obtain t = - ifz # 1. Thent € Rifand only if t = 7. The
1—ti i(14+2)

z—1 z—1

15" Sage e @ DEHD = @DE-D.

last relation is equivalent to

It follows that 2z7 = 2, i.e., |z] = 1, hence the image of the function f is the set
{z € R||z| = 1 and z # —1}, the unit circle without the point with coordinate z = —1.
Problem 24. Let -2 = ¢ ¢ C. Then

21

lz1 + z1t| = |z1] = |zitfor [L +£] = |t] = 1.
It follows that t7 = 1 and
l=1+P=0+D)A+D)=1471+7+1,

hence 12+t + 1 =0.
Therefore ¢ is a nonreal cube root of unity.

Alternate solution. Let A, B, C be the geometric images of the complex numbers
21, 22, 21 + 22, respectively. In the parallelogram O AC B we have OA = OB = OC,
hence AOB = 120°. Then

22 _ Cos 120° + i sin 120° or <X = cos 120° + i sin 120°,
21 22
therefore
22 2 . . 2m
— = c0S — =+ isin —.
71 3 3

Problem 25. We prove first the inequality

lzkl < lz1l + |22l + - F lze—t | F 2wt [+ Flzal +lzr 22+ -+ 2
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forall k € {1, 2, ..., n}. Indeed,

ol =11+ 2+ F a1+ + e+ +20)
— (14224 F -1+ 21+ z20)l
<lzi+z+-+zad+lzl+ -+ lze—t] + lzes1 ] + - -+ |zal,

as claimed.
Denote Sy = |z1| + - -+ + |zg—1] + |zk41] + - - - + |z, | for all k. Then

lzk] < Sk + 121 + 22+ -+ + 24|, forall k. (1)

Moreover,
|zt +z2 4+ +zal < lzil +lz2l + -+ + |zal. 2

Multiplying by |zx| the inequalities (1) and by [z1 + z2 + - - - + z,| the inequalities
(2), we obtained by summation:

1z 2P+ FlzlP Fla+ o+ +ml?

n n
<la 4+ Fzl Y el + D Sk
k=1 k=1
Adding on both sides of the inequality the expression

1z 2P+ FlzlP Flz 2+ + zl?

yields
2 2 2 2
2(Jz1l" +lz2l"+ -+ lzal" +Hlzr 224+ -+ zal)
< (zil+ -+ 2l + 121+ 224+ 2D
as desired.
Problem 26. Let M, M», ..., My, be the points with the coordinates z, z2, .. ., 22,

and let Ay, Az, ..., A, be the midpoints of segments M|My,, MoMs,_1, ...,
Mn Mn+l .

The points M;, i = 1, 2n lie on the upper semicircle centered in the origin and with
radius 1. Moreover, the lengths of the chords M1 M»,, MoM>,—1, ..., My M, 11 are in

a decreasing order, hence OA1, OA,, ..., OA, are increasing. Thus

21 + 2on
2

Zn + Zn+1
2

=

22 + 22n—1
> =< =<

and the conclusion follows.
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A
M,
Mn +1
M o M,
2n—1
Ar
MZn Al Ml
Figure 6.1.
Alternate solution. Consider z; = r(cost; +isint;),k = 1,2, ..., 2n and observe
that forany j = 1,2, ..., n, we have

2 . . )
|zj + zon—j+1|7 = |r[(cost; + costrp—j4+1) + i(sint; + sintp,—j41)]|

= r2[(cos tj + cos tzn—j+1)2 + (sint; + sin tzn_jH)z]

= r?[2 4 2(cos tjCOStry—jy1 +sintjsinty,_ji1)]

2 Dn—j+1 — 1

= 2r2[1 +cos(typ—jy1 — ;)] = 4r2 cos >

Dp—j+1 — I . -
Therefore |z + z2,— j+1| = 2r cos ————— and the inequalities

[z1 +zonl < lz2 +22n—1l < -+ < |z + 2yl

are equivalentto ty, —t] > to—1 —tr > -+ >ty —1y. Because 0 <) <fp <--- <
ty, < m,the last inequalities are obviously satisfied.
Problem 27. It is natural to make the substitution «/x = u, ./y = v. The system

becomes

u? + v2 V3’
v(l— 1 )_4&
u? + 0?2 V1

But u? + v? is the square of the absolute value of the complex number z = u + iv.
This suggests that we add the second equation multiplied by i to the first one. We

U —iv (2 ,4ﬁ)

obtain

u+lv+m= ﬁ-i_lf
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The quotient (u — iv)/(u? + v?) is equal to 7/|z|* = Z/(zZ) = 1/z, so the above
equation becomes

1 2 442
zt+-=|—F5+i i .
z \V3 VT
Hence z satisfies the quadratic equation
242
2 .
= |—=+i—4=)z+1=0
(ﬁ V7 )

with solutions

1 2 2v2
— )i == V2],
<¢§ \/21) ( V7 )
where the signs + and — correspond.

This shows that the initial system has the solutions
2
1 2 \? 2V2
= (L 2) (221
(ﬁ «/21) ' ( V7 )

where the signs + and — correspond.

Problem 28. The direct implication is obvious.
Conversely, let |z1] = |z2 + z3], |22] = |z1 + 23|, |z3] = |z1 + z2]. It follows that

211 + |22l + 1231 = lz2 + 23 + |23 + 211 + |21 + 22
This is equivalent to

2121 + 2272 + 2323 = 2222 + 2273 + 2223 + 2323
+ 23721 + 2123 + 2121 + 2121 + 2122 + 2221 + 2222,  i.e.,

2121 + 22072 + 2373 + 2122 + 2221 + 2123 + 2123 + 2223 + 2322 = 0.
‘We write the last relation as
(z1 + 22+ 23)(Z1 +22 +73) =0,

and we obtain
lzZ1+ 22+ 237 =0, ie,z1+220+23 =0,
as desired.

Problem 29. Leta = |z1| = |z2| = -+ = |zx|- Then
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and
n—1 n—1 a4
2122+ 2223+ -+ pn—12n = ZkZk+1 =
(14
=—— (324" Zn+ 2124 Zn+ -+ 21220 - Zn_2) = 0;
2122 Zn
hence
2122+ 2223+ + 2p—12p =0,
as desired.
Problem 30. Let
z =ry1(costy +isinty)
and
a =ry(costr) +isint).
We have
l=|z4a|l= \/(rl cost| 4 rpcos1p)? 4 (r1 sinty + rp sinty)?
_ /|2 2
=\/r{ + 1y +2rirpcos(t; — 12),
SO 5 5
1—ri—r
cos(t] —h) = — 1 2
2rir
Then
2 20 1.2 .- 2 ..
|27+ a”| = |r{(cos2t; + isin2ty) + ry(cos 2t; + i sin 21)|
= \/(rlz cos2t| + r22 cos 2t)?% + (rl2 sin 2¢] + r22 sin 21)
= \/rf + rg + 2r12r22 cos2(t; — )
= rf + ré‘ + 2r1ra(2cos2(t; — o) — 1)
2
1—r2—r2
4 4 2.2 1 2
= |ri+r+2riry - 2| ———=) -1
1 2 172 < 2"17'2 )
= \/er +2rf +1—2r2 = 2r3.
The inequality

|1 —2|al]
V2

122 +a?| >

267
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is equivalent to

1—2r})?
ot 4 2ry 1 =2, —2r% > % ie.,

4ri1 —i—4r§1 —4;’12 —4r22+2 > 1 —4r12+4r22.
‘We obtain
@r; —1)* =0,

and we are done.

Problem 31. It is easy to see that z = 0 is a root of the equation. Consider z = a+ib #
0,a,beR.

Observe that if a = 0, then b = 0 and if b = 0, then a = 0. Therefore we may
assume that a, b # 0.

Taking the modulus of both members of the equation

a7’ = b7" (1

yields |a| = |b| or a = %b.

Case 1. If a = b, the equation (1) becomes

(a+ia)" = (a —ia)".

14i\"
( +’_> =1, ie,i" =1,
1—1i

which has solutions only for n = 4k, k € Z. In that case the solutions are

This is equivalent to

z=a(l+i), a#0.
Case 2. If a = —b, the equation (1) may be rewritten as

(a—ia)' =—(a+ia)".

1—i\"
=1 Qe (i) = —1,
<1+i> Le. (=1)

which has solutions only for n = 4k + 2, k € Z. We obtain

That is,

z=a(l—i), a#0.

To conclude,

a)if n is odd, then z = 0;

b)if n =4k, k € Z, then z = {a(l 4 i)|a € R}, i.e., a line through origin;
c)ifn =4k + 2,k € Z, then z = {a(l —i)|a € R}, i.e., a line through origin.
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Problem 32. Let z; = cost| + i sin#; and zp = costy + i sin#,. The inequality

|z1 + z2|

b >
lazi + bzo| > >

is equivalent to

\/(a cost] +bcostr)? + (asint; + bsint)?

> %\/(cos t1 + cosr)? + (sint; + sinty)2.
That is,
2v/a% + b2 + 2abcos(t] — 1) > /2 + cos(t] — 1), ie.,
4a% + 41 — a)®> + 8a(1 — a) cos(t; — 1) > 2 + 2cos(t; — 12).
We obtain

8a? — 8a +2 > (8a® — 8a + 2) cos(t] — 1), i.e., 1 > cos(t] — ),

which is obvious. 1
The equality holds if and only if 1| = 15,1i.e., 21 = z200ra =b = —.

2

Problem 33. Let r = |z;| = |z2] = - -+ = |zx| > 0. Then
LI —Hk+5k+ +Ek
&k kT Tk 2k

1
Z’m(ZIIC-FZé‘I—""}—Zﬁ):O,

as desired.

6.2.2 Algebraic equations and polynomials (p. 181)

Problem 11. Let r = |z1| = |z2|.
The relation ab|c| = |a|bc is equivalent to

ablc| _ lalbc

aala|  aala|’

This relation can be written as

That is,
—(x1 +x2) - |x1x2| = — (1 +X2) - x1x2, e,

2 2 2
(x1 + x2)r° = |x1["x2 + x1]x2|".
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It follows that

(x1 + x2)r? = (x1 + x2)r?,

which is certainly true.

Problem 12. Observe that z3 = z3 = land z3 =z = —1.If n = 6k + r, withk € Z
andr € {0, 1,2,3,4,5}, then 2 +z) =z} + 2z} and 2 + 2 = 2 + 2.

The equality 7} + 25 = z5 + zj is equivalent to 7} + z, = z5 + 2 and holds only
for r € {0, 2, 4}. Indeed,

D)if r =0, then 20 + 29 =2 = 29 +z%;

B+ =(@m+u)?—2pnu=12-2-1=-1
iii)ifr =4,thenz} + 3 =z1+=1andzd +zf = —(z3+w) =—-(-) =L

The other cases are:

ivyr=1thenz1+20=—1#3+z24=1;
Vr=3thenzj+z3=1+1=2#2z+z=-1-1=-2;

viyr =Sthenz} + =2+ =—-1#2+z=—-+H) =1
Therefore, the desired numbers are the even numbers.

Problem 13. Let

f(x)=x6+ax5+bx4+cx3+bx2+ax+1

6

6
= ]_[(x —xp) = H(xk —x), forallx € C.
k=1

k=1
We have
6 6 6
[Te2+ D =[]+ -[Jox == f=i)- £
k=1 k=1 k=1

=@ +ad +bi*+cil+bi*+ai+ 1) (% —ai’ +bi* —ci’ +bi?—ai+1)
= (2ai — ci)(=2ai + ci) = 2a — ¢)?,

as desired.

Problem 14. For a complex number z with |z| = 1, observe that
P(2) 4+ P(—z) = az® + bz +i +az® — bz +i = 2(az® +1i).
It suffices to choose zg such that az(z) = |ali. Let

a = |a|(cost +isint), t€][0,2n).
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The equation az? = |ali is equivalent to

zz—cos(n—t>+isin(n—t)
Tt (Tt
Zp = COS Z_E + i sin Z_E s

Therefore, we have

Set

and we are done.

P(z0) + P(—z0) =2(|z]i +i) =2i(1 + |a|).
Passing to absolute values it follows that
[P(z0)| + |P(—=20)| = 2(1 + |a).

Thatis, [P(zo)| = 1+ |a] or |P(—z0)| = 1+ |al.
Note that |zg| = | — zo| = 1, as needed.

Problem 15. Let z be a complex root of polynomial f. From the given relation it
follows that 27> + z is also a root of f. Observe that if |z| > 1, then

223 + 2] = 21222 + 1] > 2]Qlz> = 1) > Iz].

Hence, if f has a root z; with |z;] > 1, then f has a root z2 = 2z? + z1 with
|z2| > |z1]. We can continue this procedure and obtain an infinite number of roots of
fs21,22,... with--- > |z2| > |z1], a contradiction.

Therefore, all roots of f satisfy |z] < 1.

We will show that f is not divisible by x. Assume, by contradiction, the contrary
and choose the greatest k > 1 with the property that x* divides f. It follows that
f(x) = x*(a + xg(x)) with a # 0, hence

f@2x?) = x* (@ + 2 x?g2x?) = x* (a1 + xg1(x))
and
F2x3 4 x) = xFQx% + DR+ @x% + Dxg(x) = x*(a + xg2(x)),

where g, g1, g» are polynomials and a; # O is a real number. The relation
F)f2x2) = f@2x3 +x) is equivalent to xKa + xg()xH(ay + xg1(x)) =
x¥(a + xg>(x)) which is not possible for a # 0 and k > 0.

Let m be the degree of polynomial f. The polynomials f(2x2) and f(2x3+x) have
degrees 2m and 3m, respectively.
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If f(x) = byux™ 4+ --- + by, then f(2x%) = 2"b,x* + --- and f(2x> +x) =
2mp. x3 4 ... From the given relation we find by, - 2™ - b,, = 2™b,,, hence b, = 1.
Again using the given relation it follows that f 2000 = £(0), ie., bg = by, hence
by = 1.

The product of the roots of polynomial f is £1. Taking into account that for any
root z of f we have |z| < 1, it follows that the roots of f have modulus 1.

Consider z aroot of f.Then |z| = 1 and 1 = 223 +z| = |z||222 + 1| = 222+ 1| >
|2z2| — 1 = 2|z|> — 1 = 1. Equality is possible if and only if the complex numbers 27>
and —1 have the same argument; that is, z = =i.

Because f has real coefficients and its roots are i, it follows that f is of the
form (x2 + 1)" for some positive integer n. Using the identity G2+ DEx*+1) =
(2x3 + x)? + 1 we obtain that the desired polynomials are f(x) = (x2 4 1)", where n
is an arbitrary positive integer.

6.2.3 From algebraic identities to geometric properties (p. 190)

Problem 12. Let A, B, C, D be the points with coordinates a, b, c, d, respectively.

Ifa+b=0,thenc+d=0.Hencea+b =c+d,ie., ABCD is a parallelogram
inscribed in the circle of radius R = |a| and we are done.

If a + b # 0, then the points M and N with coordinates a + b and ¢ + d, respec-
tively, are symmetric with respect to the origin O of the complex plane. Since AB is
a diagonal in the thombus O AM B, it follows that AB is the perpendicular bisector
of the segment O M. Likewise, C D is the perpendicular bisector of the segment O N.
Therefore A, B, C, D are the intersection points of the circle of radius R with the per-
pendicular bisector s of the segments OM and ON, so A, B, C, D are the vertices of

a rectangle.

Alternate solution. First, let us note that from a + b + ¢ +d = 0 it follows that
a+d=—b+c),ie,|la+dl = |b+c|. Hence |a + d|* = |b + ¢|* and using
properties of the real product we find that (a +d) - (a+d) = (b+c¢) - (b+c). That is,
la|>+|d|*+2a-d = |b|*>+ |c|> +2b - c. Taking into account that |a| = |b| = |c| = |d|
one obtainsa -d =b - c.

On the other hand, AD?> = |d —al> = (d —a) - (d —a) = |d|* + |a|* = 2a -d =
2(R2—a-d). Analogously, we have BC%? =2(R%*=b-c¢).Sincea-d = b-c, it follows
that AD = BC, so ABCD is arectangle.

Problem 13. Consider the polynomial

PX)=X 4aX*+bX +cX’+dX +e
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with roots zx, k = 1, 5. Then

02—221 =0 and b:Zlezzé<ZZ1)2—%Zz%=0.

Denoting by r the common modulus and taking conjugates we also get

~ 2 2
0= 211 = Z— = —211221324,
21

212232332425

from which d = 0 and

A A
0= 22122 = Z —_— = Zmzzzs;

2122 11222324735

therefore ¢ = 0. It follows that P(X) = X3 +e,50721,22, ..., z5 are the fifth roots of
e and the conclusion is proved.

Problem 14. a) Consider a complex plane with origin at M. Denote by a, b, c the
coordinates of A, B, C, respectively. As a(b — ¢) = b(a — ¢) + c(b — a) we have
lallb —a| = |b(a —c) + c(b — a)| < |blla —c| + |c||b — a|. Thus AM - BC <
BM-AC+CM-ABor2R-AM -sinA <2R-BM -sinB +2R-CM - sin C which
gives AM -sinA < BM -sinB+ CM -sinC.

b) From a) we have

AAj-sine < ABp -sinf + ACq - siny,
BB; -sinf < BAj -sina 4+ BCj -siny,
CCy-siny <CAp -sina + CBy - sin 8,

which, summed up, give the desired conclusion.

Problem 15. Let the coordinates of A, B, C, M and N be a, b, ¢, m and n, respec-
tively. Since the lines AM, BM and CM are concurrent, as well as the lines AN, BN
and CN, it follows from Ceva’s theorem that

sin m sin @ sin @

—— — —— =1, (D
sin MAC sinMBA sinMCB
sinB/ATV sinC/BW sinA/CTV
. =1. 2)

sinNAC sinNBA sinNCB
By hypotheses, BAM = NAC and MBA = CBN. Hence BAN = MAC and
NBA = CBM. Combined with (1) and (2), these equalities imply

sinm . sinA/C7V = sinm . sinN/C\B.
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B

M

Figure 6.2.

Thus,
cos(m + 2@) —cosNCM = cos(m + ZF&\B) — cos m/l

and hence m = @
Since m = ]m, W = Fﬁ and m = m, the following complex
ratios are all positive real numbers:
m—a c—a m—b c—b m—c a-—c

: , : and : .
b—a n-—a a—b n-—»>b b—c n-—c

Hence each of these equals its absolute value, and so

AM - AN BM - BN CM-CN

AB - AC * BA - BC * CA-CB
_m—a)n—a) (m—-b)n—b) (m—c)n—c)
(b—a)c—a)  (@a—b)(c—b) (b—c)a—c)

6.2.4 Solving geometric problems (pp.211-213)

Problem 26. Let a, b, ¢ be the coordinates of the points A, B, C, respectively. Using
the real product of the complex numbers, we have

AC? + AB?> =5BC? ifand only if |c — a|* + |b — a|> = 5|c — b?, i.e.,

(c—a)-(c—a)+b—a)-(b—a)=5(—D>b) (c—D>).

The last relation is equivalent to
2—2a-c+a*+b*—2a-b+a*=5>- 10b~c—|—5b2, i.e.,

20> —4b* —4c> —2a-b—2a-c+ 10b-c = 0.
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It follows that
a? =2 -2 —a-b—a-c+5b-c=0, ie,
(a+c—ﬂﬂ(a+b—&ﬂ:&so(a;c—49~<a;b—c>=0

The last relation shows that the medians from B and C are perpendicular, as desired.

Problem 27. Denoting by a lowercase letter the coordinates of a point with an upper-
case letter, we obtain

a,zb—kc’ b,zc—ka’ c,za—kb
1—k 1—k 1—k
and
,_—kb  (I+kHa—kb+c)
1—k (1 —k)? ’
H__w—kd_(y+ﬁm—km+@
o1 —k (1 —k)? '
y b —ka'  (1+k)c—k(b+a)
1—k (1 —k)2
Then

" —a’ (1+k>(c—a)—k(a—rc) _c—a
b'—a"  (14+k)(b—-—a)—k(a—b) b—a’
which proves that triangles ABC and A” B”C" are similar.

Problem 28. Consider the complex plane with origin at the circumcircle of triangle
ABC and let z1, z2, z3 be the coordinates of points A, B, C.

The inequality > > % is equivalent to
r o

. K 2K
2rmy < Rhy, ie.,2—my < R=——.
N o

Hence am, < Rs.

Using complex numbers, we have

22+23

2amyg = 2|z2 — 23| |21 — = (z2 — 23)2z1 — 22 — 23)|

= |z2(z1 — 22) + 21(z2 — 23) + 23(23 — 21)|
< lzz2llz1 — z2| + |z1llz2 — z3| + |z3llz3 — 21| = R(a + B + ¥) = 2Rs.

Hence am, < Rs, as desired.
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Problem 29. Consider the complex plane with origin at the circumcenter O and let

a, b, c, d be the coordinates of points A, B, C, D.
a—+c

The midpoints E and F of the diagonals AC and B D have the coordinates
b+d

7
Using the real product the complex numbers we have

and

AB? + BC? + CD? 4+ DA? = 8R? if and only if

(b—a)-(b—a)+(c—b)-(c=b)+(d—c)-d—c)+(a—d)-(a—d) =8R?, ie.,
2a -b+2b-c+2c-d+2d-a=0.
The last relation is equivalent to
b-(a+c)+d-(a+c)=0,1ie.,(b+d)-(a+c)=0.
We find

b+d a+c
2 2

=0, ie, OE L OF

orE=0orF=0.
That is, AC L BD or one of the diagonals AC and BD is a diameter of the circle
C.

Problem 30. Denote by a lowercase letter the coordinate of a point denoted by an
uppercase letter and let
& = cos 120° + i sin 120°.

Since triangles ABM, BCN, COP and DAQ are equilateral we have
m + be + ag? =0, n + ce + be? =0, p—i—ds—i—cez =0, ¢ +as+de?=0.
Summing these equalities yields
m+n+p+q) +@+b+c+d(e+e”) =0,

and since ¢ + 2 = —1 it follows that m +n + p +¢g = a + b + ¢ + d. Therefore the
quadrilaterals ABC D and M N P Q have the same centroid.

Problem 31. Denote by a lowercase letter the coordinate of a point denoted by an

uppercase letter. Using the rotation formula, we obtain
m=b+(@—->be, n=c+b-ce, p=d+(c—de qg=a+ (d-a)s,

where ¢ = cosa + i sina.
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Let E, F, G, H be the midpoints of the diagonals BD, AC, MP, NQ
respectively; then

_b+d 7 a+c _b+d+(a+c—b—de

=Ty JET 8 2

atc+b+d—a—c)e
5 .
Since e + f = g + h, then EGF H is a parallelogram, as desired.

Problem 32. Consider the points E, F, G, H such that

and h =

OE 1 AB, OE=CD, OF _1LBC, OF=AD,

0OGL1LCD, OG=AB, OH 1 AD, OH =BC,

where O is the circumcenter of ABCD.

We prove that EFGH is a parallelogram. Since OF = CD, OF = AD and
EOF = 180° — ABC = ADC follows that triangles EO F and ADC are congruent,
hence EF = GH. Likewise FG = E H and the claim is proved.

Consider the complex plane with origin at O such that F is on the positive real axis.
Denote by a lowercase letter the coordinate of a point denoted by an uppercase letter.
We have

lel=CD, |fl=AD, |g|=AB, |h|l=BC.

Furthermore,

FOG=180°-C=4, GOH=B, HOE=C,
hence
f=|fl=AD, g=|gl(cosA+isinA)= AD(cosA+isinA),
h = |h|[cos(A + B) 4+ isin(A + B)] = BC[cos(A + B) +isin(A + B)],
e =le|[cos(A+ B+ C)+isin(A+ B+ C)] =CD(cos D —isinD).
Since e + g = f + h, we obtain
AD + BCcos(A+ B) +iBCsin(A 4+ B)
=CD(cos D —isinD)+ AB(cos A +isinA)

and the conclusion follows.
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Problem 33. Consider the complex plane with origin at the circumcenter O of the
triangle. Let a, b, ¢, w, g, z; be the coordinates of the points A, B, C, O9g, G, I, re-
spectively.
Without loss of generality, we may assume that the circumradius of the triangle
ABC is equal to 1, hence |a| = |b] = |c| = 1.
We have
a+b+c a+b+c alb —c|+ bla — c| + cla — b|
Ty 8T T YT T T S b= fla—c

Using the properties of the real product of complex numbers, we have

O9G L Al ifandonly if (w — g) - (a — z7) =0, ie.,

a+b+c (a—>b)la—c|+ (a—c)la—b| _
6 la—bl+b—cl+la—c|

This is equivalent to
(a+b+c)-[(@a—b)la—c|+(a—c)la—->b]]=0, ie.,

Re{(a +b+0)@—b)la—c|+ @—0)la—bll) =0.

‘We find that
Re{la — c|(aa + ba + ca — ab — bb — cb)

+ |la — bl(aa + ba + ca — ac — bc — cc)} = 0. (D
Observe that
aa=bb=cc=1 and Re(ba —ab) = Re(ca —ac) =0,
hence the relation (1) is equivalent to
Re{la — c|(ca — cb) + |a — b|(ba — bc)} =0, i.e.,
la — c|(ca +¢a —¢h — cb) + |a — b|(@b + ab — bc — bc) = 0.
It follows that
la — c|[(bb — bc —Tb + ¢€) — (aa — ca — ¢a + ¢©)]
+ |a — b|[(bb — bc — ¢b + ¢¢) — (aa —ab — ab + bb)] =0, ie.,
la —cl(1b —cl> —la —c) +la = bl(Ib— c* —la — b*) = 0.
This is equivalent to

AC -BC?> - AC3>+ AB-BC? - AB> =0.
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The last relation can be written as
BC?*(AC + AB) = (AC + AB)(AC? — AC - AB + AB?),

s0 AC - AB = AC? + AB?> — BC>.

We obtain
COs A = l ie., A= —,
2 3
as desired.
Problem 34. (a) Let a lowercase letter denote the complex number associated with
the point labeled by the corresponding uppercase letter. Let M’, M and O denote

the midpoints of segments [M{ Mé], [M{M3] and [0 0>], respectively. Also let

mj — 01 ma — 02 T . . ..
= — = — , so that multiplication by z is a rotation about the origin
mj — o1 m, — 02

mi +my

through some angle. Then m = equals

1 1
1+ z(m' —o1)) + 2+ z(my — 02)) =0 +z(m' — o),

i.e., the locus of M is the circle centered at O with radius OM’.
(b) We shall use directed angles modulo . Observe that

OM\My = QPM; = QPO = Q0,0;.

Similarly, QT/IZ\M] = Q/Oz\Ol, implying that triangles QM M> and QO 0, are
similar with the same orientations. Hence,
q—01 _q—m
q—02 q— my’

or equivalently

g—o1 _(g—m)—(q—01) o1—m _ o—m
gq—o02 (q—my)—(q—0) o02—my 03—my

Because lines O1 M| and O, M), meet, 01 — m} # 02 — m/, and we can solve this
equation to find a unique value for g.

Problem 35. Without loss of generality, assume that triangle A1 A2 A3 is oriented coun-
terclockwise (i.e., angle Aj A A3 is oriented clockwise). Let P be the reflection of O
across T.

We use the complex numbers with origin O, where each point denoted by an up-
percase letter is represented by the complex number with the corresponding lowercase
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letter. Let & = ax/p for k = 1, 2, so that z — & (z — zo) is a similarity through angle
P/Ol\Ak with ratio Oy A3/ Oy P about the point corresponding to zg.

Because O and A lie on opposite sides of line Ay A3, angles Ay A3 01 and A»A3A|
have opposite orientations, i.e., the former is oriented counterclockwise. Thus, an-
gles PA301 and A2 03A; are both oriented counterclockwise. Because P/A3\01 =
2A2/A3\02 = Aml, it follows that isosceles triangles PA3 01 and A O3A; are
similar and have the same orientation. Hence, 03 = a1 + {3(a2 — a1).

Similarly, 0o = a; + ¢2(az — ay). Hence,

03 — 02 = ({2 — §3)a1 + G3a2 — $a3

= {(ax — a3) + 53(52p) — $2(83p) = §2(az — a3),
or (recalling that oy = O and t = 2p)

03 — 07 ¢ a) — aj la — a3
= () = = — .
ap — oy p — 01 2 t—o0

Thus, the angle between [O1A1] and [O; O3] equals the angle between [OT] and
1
[A3A3], which is /2. Furthermore, 0,03/01A1 = §A3A2/01T, or O1A1/0203=
201T/A3A3z. This completes the proof.

Problem 36. Assume that the origin O of the coordinate system in the complex plane
is the center of the circumscribed circle. Then, the vertices A1, A,, A3 are represented

by complex numbers wi, w2, w3z such that
|lwi| = |wz2| = |w3| = R.

2 . 27 ) 3
Let e = cos— +isin—. Then ¢~ 4+ ¢ + 1 = 0 and &> = 1. Suppose that Py
is represented by the complex number zg. The point P; is represented by the complex
number
z1 =206 + (1 — &)wy. (1)

The point P, is represented by
22 = 206" + (1 = wie + (1 — ),

and P3 by
3 =208 + (1 —e)wie? + (1 — &)wpe + (1 — &)ws
=20 + (1 — &) (wie” + wae + w3).
An easy induction on n shows that after n cycles of three such rotations, we obtain

that Ps,, is represented by

230 = 20 + n(1 — &) (w1e? + wre + w3).



6.2. Solutions to the Olympiad-Caliber Problems 281
In our case, for n = 662 we obtain
21996 = 20 + 662(1 — &) (w1e* + wae + w3) = 2.
Thus, we have the equality
wie® + wye + w3 = 0. )
This can be written under the equivalent form
w3 = wi(l+¢) + (—e)wy. 3)

Taking into account that 1 + & = cos % +i sin % the equality (3) can be translated,

using the lemma on p. 218, into the following: the point A3 is obtained under the
rotation of point A| about center A, through the angle z. This proved that A1 A>A3 is
an equilateral triangle. 3

Problem 37. Let B(b,0),C(c,0) be the centers of the given circles and let
A(0,a), X(0, —a) be their intersection points. The complex numbers associated to
these point are zp = b, z¢c = ¢, z4 = ia and 7y = —ia, respectively. After rotating A
through angle ¢ about B we obtain a point M and after rotating A about C we obtain
the point N. Their corresponding complex numbers are given by formulas:

zm = (la—b)w+b=iaw+ (1 —w)b

and

zy = iaw+ (1 — w)c.

Figure 6.3.

The required result is equivalent to the following: the bisector lines /sy of the seg-
ments M N pass through a fixed point P (xg, yo). Let R be the midpoint of the segment
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1
MN.Then zgp = —(zp + zn)- A point Z of the plane is a point of Iy if and only if
the lines RZ and M N are orthogonal. By using the real product of complex numbers

we obtain
(Z M+ IN

> )'(ZN_ZM)=O~

This is equivalent to

1 2 2
z-(ay —zm) = §(|ZN| = lzm1?).

By noting that z = x + iy we obtain
x(c — b)(1 —cost) — y(c — b)sint = %qzmz —lzu ).
After an easy computation we obtain
lzm|? = 2b% 4+ a® — 2b cost — 2abssint

and
lzn|? = 2¢* + a* — 2¢% cost — 2acsint.

Thus, the orthogonality condition yields
x(l —cost) —ysint = (b+c) — (b+c)cost —asint.
This can be written in the form
(x—=b—c)(1 —cost) =(y —a)sint.

This equation shows that the point P (xg, yo) where xo = b+ ¢, yo = a is a fixed point
of the family of lines /37y .

The point P belong to the line through A parallel to BC and it is the symmetrical
point of X with respect to the midpoint of the segment BC. This follows from the
equality

4oy = b+c
Zp+z2x = 5
Problem 38. Let A(1+i), B(—1+i), C(—1—i), D(1—1i) be the vertices of the square.

Using the symmetry of the configuration of points, with respect to the axes and center

O of the square, we will do computations for the points lying in the first quadrant.
Then L, M are represented by the complex numbers L(+/3 — 1), M((~/3 — 1)i). The
V3-1, V3-1
5=+ )
2 2

midpoint of the segment LM is P

. Since K is represented by

2 —

1 3
K(—i(v/3 = 1)), the midpoint of AK is Q(E +1i ) In the same way, the
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B(-1+1) i A(l +1)
Ml
SR p
-1 ® 0 » 1
N L
q
K
C(-1-1) —i D1 -1i)
Figure 6.4.

2
— —— 5z

is sufficient to prove that SR = RP = PQ and SRP = RPQ = < For any point

X we denote by Zx the corresponding complex number. We have

2—-V3 i —2+V3 i
midpoint of AN is R( 2\/— + %) and the midpoint of BL is S(i + ! ) It

RS?=1|Zs— Zg|* = (=2 +V/3)? =7 — 44/3,
‘ﬁ—l N3-1 2-3 i
) +1 - -

2

RP?=|Zp — Zg|* =
|Zp Rl 5 5 >

2J/3-3  J/3-2
+1
2 2

L VA-32+ V322
B 4

28 — 164/3
_ B3, 44/3.
4
Using reflection in O A, we also have P Q> = RP? =7 — 44/3.

For angles we have

S Sy

2
7—43
_(12-73)(T+4V3) V3

T 27 —-43)(T+4V3) 2

—

cos SRP =

Gy

—

This proves that SRP = < In the same way, cos RPQ = 5 and RPQ = <
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Problem 39. Let 1, ¢, £2, be the coordinates of points A, B, C, M, respectively, where
& = cos 120° + i sin 120°.

o
\%
Figure 6.5.

Consider point V such that M EV D is a parallelogram. If d, e, v are the coordinates
of points D, E, V, respectively, then

v=e+d—m.
Using the rotation formula, we obtain
d=m+ (¢ —m)e and e=m+(82—m)82,

hence

v=m—|—£2—ms~|—m+s4—m82—m

=m+82+8—m(82+8)=m—1—|—m=2m—1.
This relation shows that M is the midpoint of the segment [AV] and the conclusion
follows.

Problem 40. Consider the complex plane with origin at the center of the parallelogram
ABCD. Leta, b, c,d, m be the coordinates of points A, B, C, D, M, respectively.

It follows that c = —a and d = —b.

It suffices to prove that

Im —al - |m +al +|m —blim + b| = |a — blla + bl
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or
im* — a*| + |m* — b*| > |a* — b?|.
This follows immediately from the triangle inequality.
Problem 41. Let the coordinates of A, B, C, H and O bea, b, c, h and o, respectively.

Consequently, a@ = bb = ¢c¢ = R*> and h = a + b + ¢. Since D is symmetric to A
with respect to line BC, the coordinates d and a satisfy

d—b b _ _
=(4 . or (b—2)d— (b—c)a+ (be —be) =0. (1)
c—b c—b
Since ) SN )
E—E:——R b-c and bE—Ec:—R ® _c),
bc bc

by inserting these expressions in (1), we obtain that

_ —bc + ca + ab _k—2bc

k]

d

a a

E:

R*(—a+b+c) R*(h—2a)
bc - bc ’
where k = bc + ¢ + ab. Similarly, we have

ezk—%g EZR%h—%{ fzk—zw ond 7=R%h—%)
b ca c ab
Since
d d 1 e—d e—d
A=le e L=\ 7.3
fof1
(b —a)(k —2ab) R%*(a — b)(h — 2¢)
ab abc
(c —a)(k —2ca) R*(a —c)(h —2b)
ca abc

R%(c — a)(a — b)
- a’b?c?

—(ck —2abc) (h —2c)
(bk — 2abc)  —(h — 2b)
—R%(b — ¢)(c — a)(a — b)(hk — 4abc)

a?b?c?

and 1 = R2k/abc, it follows that D, E and F are collinear if and only if A = 0.

This is equivalent to hk — 4abc = 0, i.e., hh = 4R?. From the last relation we obtain
OH =2R.
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Problem 42. Let the coordinates of A, B, C, D and E be a, b, ¢, d and e, respectively.
Thend = (2b + ¢)/3 and e = 2d — a. Since ACB = 2A/B\C, the ratio

a—0b\? b-c
<c - b) a—c
is real and positive. It is equal to (AB? - AC)/BC?. On the other hand, a direct com-
putation shows that the ratio
e—c (c—b 2
b—c’ <e - b>

1 <(b—a)+2(c—a)>2<4(b—a)—(c—a)>
b—c)p 3 3

is equal to

4 (b-a)’c—a) 4 AB?.AC
27 b—c3 27 BC3
which is a real number. Hence the arguments of (¢ — c)/(b — ¢) and (c — b)? /(e — b)?,
namely, ECB and 2EBC , differ by an integer multiple of 180°. We easily infer that
either EC\B = 2E/I§\C or E/C\B = 21;?/1-5’\6' — 180°, according to whether the ratio is
positive or negative. To prove that the latter holds, we have to show that AB>-AC/BC?>

is greater than 4/27. Choose a point F on the ray AC such that CF = CB.

A

Figure 6.6.

Since ACBF is isosceles and A/C\B = 2A/ZR’, we have C/Iﬁi = 1@ Thus
AABF and AACB are similar and AB : AF = AC : AB. Since AF = AC + BC,
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AB? = AC(AC + BC). Let AC = u? and AC + BC = v%. Then AB = uv and
BC = v? — u%. From AB + AC > BC, we obtain u/v > 1/2. Thus

AB?-AC  uh? (u/v)* (1/2)* 4

BC? (0 —u?3 (-3 (I—1/43 27

’

and the conclusion follows.

6.2.5 Solving trigonometric problems (p.220)

Problem 11. (i) Consider the complex number

z= (cos6 +isinf).
cos 6
From the identity
n—1
1-7"
> =7 M
k=0 —Z
we derive
e - —(cosnbt +1i sinn6)
Z g (coskf +isinkf) = cos 19
i=0 0% 1— (cosf +isinf)
cosf
1 ..
cosd — m(cos nd + i sinnd) sin n6 N .cos" 8 — cosnb
= = 1 .
—isinf sin6 cos"—16 sin @ cos"—16
It follows that
”Z_i coskf sinné
cosk0  sinfcos" 16

k=0

and we just have to substitute 6 = 30°.
(ii)) We proceed in an analogous way by considering the complex number z =
cos @ (cos 6 + i sinf). Using identity (1) we obtain

n+1

- 72—z
$omrnt”
k=1 <
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Hence

n
Z cosk 0 (cos kO + i sin k)
k=1

__cosf(cos® +isinb) — cos"t B (cos(n + 1)0 + i sin(n + 1)0)
B sin? 6 — i cos 6 sin 6

cos@(cosO +isin@) — cos" ! O(cos(n + 1)8 + i sin(n + 1)0)
= sin@(cos @ + i sin6)

) cos"t 9 (cosnb + i sinnd)
= 1[c0tan0 — - ]
sin 6

sinnf cos"t o
=+ (cotan@ -

cos"t1 6 cosnod )
sin @

sin @
It follows that

N sinnd cos"*! o

E cos"Ocosk) = ———

Pt sin 6
Finally, we let & = 30° in the above sum.
Problem 12. Let
2 L 27
w = CO0S — 41 SIn —
n n

for some integer n. Consider the sum
S}’L — 4}1 + (1 +w)2n + (1 _,’_w2)2n + + (1 +wn—1)2n.

Forallk=1,...,n — 1, we have

X 2kn . 2km km kmr . km
l1+w"=1+cos— +isin— =2cos— | cos — +1isin—
n n n n n

and ' .
(1 + f)?" = 2% cos?" —n(cos 2k + i sin2kw) = 4" cos>" —ﬂ

n n

Hence
n—1

Sn — 4l’l + Z(] +wk)2n
k=1

=4" |:1 + cos? (%) + cos?” (27”) + -+ + cos?” (@)} . (1)

On the other hand, using the binomial expansion, we have

n—1 n—1
_ kon 2n 2n\ 4
1= 3140 —§:<<0)+(1)w+

k=0
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2n\ o 20N ok 2n -1k (21
+<2)") + +(n>w loan-1)? o

2n 2n 2n i YAl S
= . Jk
”(0) +”<n>+”<2n> 2 (1) 2 e

}'#n -

2n i PN AV 2n
n+n<”>+ (J) 1 — o n+n<”> @

j=1
i#n

The relations (1) and (2) give the desired identity.

Problem 13. For p = 0,take ag = 1. If p > 1, let z = cos @ + i sin« and observe that
22P = cos2pa + i sin2pa,

272P = cos2pa — i sin2pa
and

2p —2p
cos2pa = % = 5[(cosa +isina)?” + (cosa — i sina)?”].

Using the binomial expansion we obtain

2 2 2
cos2pa = ( (f) cos?? o — < 2})) cos??2asin®a + -+ (—1)7 <2p) sin?? a.
p

Hence cos 2pe is a polynomial of degree p in sin” «, so there are ag, ai, . . . , ap €R
such that

cos2pa = ag +ay sin® o + - - - +a, sin?? o for all o« € R,
with

2 2 _ 2 _ 2
a, = <§)—(2”>(—1)P 1+<f)(—1)P 2+~-~+(21’j>(—1>”
o ((2)+ () )

6.2.6  More on the n'" roots of unity (pp. 228-229)
Problem 11.Let p =1,2,...,mand letz € Uj,. Then z” = 1.

Note thatn —m+1,n—m+42, ..., n are m consecutive integers, and, since p < m,
there is an integer k € {(n —m + 1,n —m + 2, ..., n} such that p divides k.
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Let k = k'p. It follows that z¥ = (zP)¥ = 1,50z € Ux C Up—s1 U Up—mia U
---UU,, as claimed.
Remark. An alternative solution can be obtained by using the fact that
(an _ 1)(an—l —1)--- (an—k—l—l -1
(@ —=D@-1—=1)---@(a—1)

is an integer for all positive integers @ > 1 and n > k.

Problem 12. Rewrite the equation as
bx +aa\" d
ax+ba) ¢

. d .
Since |c| = |d|, we have |—| = 1 and consider
c

d
— =cost +isint, te€][0,2m).
c

It follows that
bxi + aa
— = u, (D
axy + ba
where

t+ 2k t+ 2k
T i T oo

n n

The relation (1) implies that

Ur = Cos

bouy — aa
X = ———

k=0,n—1.
b — auy

To prove that the roots x;, k = 0,n — 1 are real numbers, it suffices to show that
xx = xg forallk =0,n — 1.
Denote |a| = |b| = r. Then

r2 1 r2 _
-_— —_— .a ————— a
_ boup —aa b Uy a
k = =
b — auy [ |
b a ug
oa — bauy
= =xr, k=0,n-1,
aup — b

as desired.

Problem 13. Differentiating the familiar identity

N |
IR
k=0 X -
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with respect to x, we get

ank k1 x4+ Dx" + 1
X =
=1 (=12

Multiplying both sides by x and differentiating again, we arrive at

n
Yok =g,
k=1

where
n2x"™2 —@2n? 4+2n — Dx"M + (n+ D2 —x — 1

(x — 13

Taking x = z and using |z| = 1 (which we were given), we obtain

glx) =

8@ = Y Relt! = MEDENE D), )
k=1

On the other side, taking into account that z" =1, z # 1, we get
n(nz?> —2n+ Dz +n+2) _n(nz—(n+2))

(z— 1?3 (z—1)?
From (1) and (2) we therefore conclude that

HER2 1
Inz—(n+2)|§%6n+)lz—llz~

8(2) = (@)

Problem 14. Setting x = y € M yields 1 = ad € M.For x = 1and y € M we obtain
y

1 -1
—=y €M
y

1

If x and y are arbitrary elements of M, then x, y~' € M and consequently

X
Tl:XyEM.
y

Let x1, x2, ..., x, be the elements of set M and take at random an element x; € M,
k = 1, n. Since x; # 0 for all k = 1, n, the numbers xzx;, Xgx2, ..., xgX, are distinct

and belong to the set M, hence

{xkx1, xkx2, oo, X Xn} = {X1, X2, ..., Xp ).

h root

Therefore x;x - xgx2 - - - XpX;, = X1Xx2 - - - X, hence x,’: = 1, that is, xx is an n'
of 1.
The number x; was chosen arbitrary, hence M is the set of the n-roots of 1, as

claimed.
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Problem 15. a) We will denote by S(X) the sum of the elements of a finite set X.

Suppose 0 # z € A. Since A is finite, there exists positive integers m < n such that

7™ = 7", whence 7"~ = 1. Let d be the smallest positive integer k such that z* € 1.

Then 1, z, 72, ..., z9! are different, and the dth power of each is equal to 1; therefore
m

these numbers are the dth roots of unity. This shows that A \ {0} = U Uy, , where
k=1
U, ={z € C|zP =1}.Since S(Up) =0forp > 2,S(Uy) =1land U, NU,; = Up q)

we get

S(A) = Z SWn) =Y S(Un, N Uy)

k<l

+ Z Sy, N Uy NUg,) + - -+ = an integer.
k<l<s
b) Suppose that for some integer k there exists A = U Uy, such that S(A) = k.

Let p1, p2, ..., pe be the distinct primes which are not d1v1sors of any nj. Then
S(AUU,) =8SA)+SWUp) —SANU,) =k—-SU) =k—-1.
Also

S(AUUp;pyps Y Upipaps Y Upypaps Y Upspsps)
= S(A) + SWUp,paps) + SWpypaps) + SWUpypape) + SWUpspsps)
= S(ANUp pyps) =+ + SANUp, pyps O Up,pyps)
+ = SANUpiprps VUpipaps NV Upypaps O Upspspe)

6
=k+4-0-4SU)) — ZS(Upk) +108(Uy) = 5S(Uy) + S(Uv)
k=1

=k—44+10-54+1=k+2.

Hence, if there exists A such that S(A) = k, then there exist B and C such that
S(B) =k — 1 and S(C) = k 4 2. The conclusion now follows easily.

6.2.7 Problems involving polygons (p.237)

Problem 12. Suppose that such a 1990-gon exists and let AgAj --- A19g9 be its ver-
tices. The sides AxAx+1,k =0, 1, ..., 1989 define the vectors Ay Ax4+1 which can be
represented in the complex plane by the numbers

e =mwk, k=0,1,...,1989
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where w = cos 129% +isin 197;0. Here A1990 = Ag and ng, n1, ..., n19gy represents
a permutation of the numbers 12,22, ..., 19902.
Because %} m = 0, the problem can be restated as follows: find a permuta-
tion (no, n1,k:O , n19g9) of the numbers 12, 22 ... , 19907 such that
1989

Z nkwk =0.
k=0

Observe that 1990 = 2-5-199. The strategy is to add vectors after suitable grouping
of 2, 5, 199 vectors such that these partial sums can be directed toward the suitable
result.

To begin, let consider the pairing of numbers
(12,2%), (3%,4%), ..., (19882, 1989%)
and assign these lengths to pairs of opposite vectors respectively:
(Wk, Wr4995), k=0,...,994.
By adding the obtained vectors, we obtain 995 vectors of lengths
22— 17=3,4-3"=7, 6 —52 = 11;...; 19897 — 1988% = 3979

which divide the unit circle of the coordinate plane into 995 equal arcs.

Let By = 1, Biy,..., Bgos be the vertices of the regular 995-gon inscribed in
the unit circle. We intend to assign the lengths 3,7,11, ... ,3979 to the unit vectors
m%, ﬁl, e, @994 such that the sum of the obtained vectors is zero,

We divide 995 lengths into 199 groups of size 5:

(3,7,11,15,19), (23, 27, 31, 35, 39), ..., (3963, 3967, 3971, 3975, 3979).

Let 27T+' in 27 2 +isi 2 be the primiti ts of unit
= c0S — in—, w = cos — in— rimitive r ni
et cos — +isin—, = cos oo +isin 7o be the p e roots of unity

of order 5 and 199, respectively. Let Py be the pentagon with vertices 1, ¢, ;2, {3, {4.

Then we rotate P; about the origin O with coordinates through angles 6 = _7[ k=
1,..., 198, to obtain new pentagons P», ..., Piog, respectively. The vertices of Py
are o, a)kg, a)kg“z, a)k§3, a)k{“, k=0,...,198. We assign to unit vectors defined by
the vertices Py of the respective lengths:
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)

4’2

wC?".

§3

w3

y

Figure 6.7.

2k 43, 2k+7, 2k + 11, 2k 4+ 15, 2k4+19 (k=0,...,198).

Thus, we have to evaluate the sum:

198
> 1@k +3)0 + Qk+ o't + Qk+ D' e + 2k + 150 ¢ + 2k + 19)0* 4]
k=0

198 198
Y2kt A+ 47+ + e+ G+ T+ 12+ 1500 +19¢H) Y o,
k=0 k=0

Since 1 +¢ + 2+ +¢*=0and 1 + w + @? + - - - + @' = 0, it follows that
the sum equals zero.

Problem 13. It is convenient to take a regular octagon inscribed in a circle and note its
vertices as follows:

A=Ap, A1,A2, A3, Ay = E,A 3, A, A_1.

We imagine a step in the path like a rotation of angle 2—71 T about the center O
of the circumscribed circle of the octagon. In this way, a path i‘é a sequence of such
rotations, submitted to some conditions. If the rotation is counterclockwise we add the
angle z; if the rotation is clockwise we add the angle —z. The starting point is Ao,
which is represented by the complex number zo = cos0 + i sin(0. Any vertex Ay of

. 2k . 2km . .
the octagon is represented by zx = cos = +1i sin = It is convenient to work only

2k
with the angles ——, —4 < k < 4. But these k’s are integers considered mod 8, such
that z4 = z_4and Ay = A_4.
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y‘Az

A

Ao

A,
Figure 6.8.

We may associate to a path of length n, say (PgP; --- P,), an ordered sequence
(u,uz, ..., u,) of integers which satisfy the following conditions:

a)uy = 1l forany k = 1, 2, ..., n; more precisely u; = =1 if the arc(Py_1 Py) is
% and uy = —1 if the arc(Pr—1 Px) is —%;

b)uy+uy+---+upe{-3-2,—-1,0,1,2,3}forallk =1,2,...,n—1;
Qui+uy~+---+u, ==+4

For example, the sequence associated with the path (A9, A_1, Ao, A1, Az, A3, As)
is (—1,1,1,1, 1, 1). From now on we consider only sequences that satisfy a), b), ¢). It
is obvious that conditions a), b), c) define a bijective function between the set of paths
and the set of sequences.

For any sequence up, us,...,u, and any k, 1 < k < n, we call the sum s; =
uy + ur + - - - + ug a partial sum of the sequence. It is easy to see that for any k, s
is an even number if and only if &k is even. Thus, ap,—1 = 0. Thus we have to prove
the formula for even numbers. For small n we have a; = 0, a4 = 2; for example, only
sequences (1, 1, 1, 1) and (—1, —1, —1, —1) of length 4 satisfy conditions a)—c).

In the following we will prove a recurrence relation between the numbers a,, n
even. The first step is to observe that if s, = =4, then s,_» = =£2. Moreover,
if (uy,un,...,uy—2) is a sequence that satisfies a), b) and s,_» = =2 there are
only two ways to extend it to a sequence that satisfy c) as well: either the sequence
(u1,ua, ..., uy—2,+1,+1) or the sequence (uy, uz, ..., u,—2, —1, —1). So if we de-
note by x,, the number of sequences that satisfy a), b) and s,, = %2, then n is even and

ay = Xp—2.



296 6. Answers, Hints and Solutions to Proposed Problems

Let y, denote the number of sequences which satisfy a), b) and s;, = 0. Then n is

even and we have the equality

Yn = Xp—2 + 2yp_2. (D

This equality comes from the following constructions. A sequence (41, ..., Up—2)
for which s,_» = =£2 gives rise to a unique sequence of length n with s, =
0 by extending it either to (uy,...,u,—2,1,1) or (uy,uz,...,uy—1,—1,—1).
Also, a sequence (uy,...,u,—2) with s,_» = 0 gives rise either to sequence
(uy,...,up—2,1,—1) or (uy,...,u,—2,—1,1). Finally, every sequence of length n
with s, = 0 ends in one of the following “terminations”: (—1, —1), (1, 1), (1, —1),
(-1, 1).

The following equality is also verified:

Xp = 2xp-2 + 2yn—2. 2

This corresponds to the property that any sequence of length n for which s, = +2
can be obtained either from a similar sequence of length n—2 by adding the termination
(1, —1) or the termination (—1, 1), or from a sequence of length n — 2 for which
sp—2 = 0 by adding the termination (1,1) or the termination (—1, —1).

Now, the problem is to derive a, = x,_3, from relations (1) and (2). By subtracting
(1) from (2) we obtain x,_y = x,, —yp, foralln > 4, n even. Thus, y,_7 = x,—2—Xx,_4.
Substituting the last equality in (2) we obtain the recurrent relation: x, = 4x,_» —
2x,—4, for all n > 4, n even. Taking into account that x,, = a,, we obtain the linear
recurrent relation

anir =4a, —2a,_3, n =4, 3)

with the initial values a» = 0, a4 = 2.
The sequence (a,), n > 2, n even is uniquely defined by a = 0, a4 = 2 and

relation (3). Therefore, to answer the question, it is sufficient to prove that the sequence
1

(C2n)n=1,Ccon = E(Q ++/2)"71 — (2= 4/2)""1) obeys the same conditions. This is

a straightforward computation.

Problem 14. Consider the complex plane with origin at the center of the polygon.
Without loss of generality we may assume that the coordinates of A, B, C are 1, ¢, 82,

b4 b4
respectively, where & = cos — + i sin —.
n n
Let zpy = cost +isint,t € [0, 27) be the coordinate of point M. From the hypoth-

. . T
esis we derive that t > —. Then
n

t
MA = |zy — 1] =\/(cost— 12 +sin?t = v/2 — 2 cos :2sin§;
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2 t
MB:IZM—elz\/Z—Zcos(t——n>:2sin<——z>;
n 2 n
2 4 . ([t 2w
MC =|zy —e°|=_[2—2cos|t— — | =2sin| - ——);
n 2 n
2
AB=le— 1] = /2 —2cos 2% = 2sin ~.
n n

We have
1
MB? — AB? = 4sin? (- - Z) —4sin2 T
2 n n
( 2 ( 271))
2{cos— —cos |t — —
n n
2 < 271) 2 ( 271)
— =t - — — + |t - —
—2.2sin n " sin " "
2 2
2
=2sin—-2sin{-— — )| =MA-MC,
n
as desired.

Problem 15. Rotate the polygon A A5 - - - A, so that the coordinates of its vertices are

the complex roots of unity of order n, €1, €2, ..., &,. Let z be the coordinate of point
P located on the circumcircle of the polygon and note that |z| = 1.
The equality
n
Zn —1= H(Z —Ej)
j=1
yields

n n
=1 =[]lz—el=]]PA;
j=1 j=1

n
Since |z" — 1] < |z|" + 1 = 2, it follows that the maximal value of 1_[ PA? is 2 and
j=1
is attained for z" = —1, i.e., for the midpoints of arcs A;A; 1, j = 1,..., n, where
Apy1 = Ay
Problem 16. Without loss of generality, assume that points A have coordinates e¥~!
fork =1, ...,2n, where
T .. 7
£ =1C0S — +1iSIn—.
n n
Let o be the coordinate of the point P, || = 1. We have

k
PAjy1 = la — €|



298 6. Answers, Hints and Solutions to Proposed Problems

and
PAppipr = lo — ") = | + &4,

fork=0,...,n— 1. Then

n—1 n—1
2 2 k2 k2
PAL - PAY = la— & Ja + &

k=0 k=0

n—1
= (e —H@ -l + H@+25)]
k=0

n—1
= Z(z — oz’ — @b (2 + agt + @b
k=0
n—1 n—1 n—1
_ Z(z _ o252k _5282") = — a2 Zgzk _&2. Zgzk
k=0 k=0 k=0
=2n 2n
_2_28—1__28—1_
=2n—a" - o — = 2n,
e —1 ec—1

as desired.

6.2.8 Complex numbers and combinatorics (p. 245)

Problem 11. Let us consider the complex number z = cost + i sin¢ and the sum
n

2
t, = Z (Z) sin kt. Observe that

k=0

n

2 n 2
Sp ity = Z <Z) (coskt +isinkt) = Z (Z) (cost + i sint)k.

k=0 k=0

In the product (1 + X)*(1 4+ zX)" = (1 4+ (z + DX + zX?)" we set the coefficient

of X" equal to obtain

n\ (n\ | n! s 7
Z (k)(s)z - Z k!s!r!(z+1) < M

0<k,s<n 0<k,s,r<n
k+s=n k+s+r=n
s+2r=n

The above relation is equivalent to

n 2 [%]
> <Z> F=> (;k) (zkk) (z + D"k, )

k=0 k=0

The trigonometric form of the complex number 1 + z is given by

t t t t t t
1+ cost+isint =2cos>— + 2isin—cos — = 2cos — | cos — + i sin — ,
eost p Tesingcosy 2( 2+”2>
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since ¢t € [0, w]. From (2) it follows that

Sy ity cos — cos — +isin— |,
= 2k )\ k 2 2 2

hence (2]
2 2k 1\ t
Sn:Z " 2cos — cosn—,
= 2k )\ k 2 2
th = 2cos — sin —.
par 2k )\ k 2 2

Remark. Here we have a few particular cases of (2).

1)If z =1, then
n <Il>2 ( n ) (2k> 2n—2k (271) '
kz_() k =0 2k k n

2) If z = —1, then
) 0, if n is odd,
n
o (”) =
k=0 k

(_1)§< r/lz) if n is even.
n

1
3)Ifz=——,th
)Ifz 5 then

n 2 [%]
2k
(i) = L () G
= k = 2k )\ k
Problem 12. 1) In Problem 4 consider p = 4 to obtain
" + " 4+ " + —2n<1+2<cosn)ncosnn)
0 4 8 4 4 4
1 n nm
— (2 425 —).
4( + cos 1

2) Let us consider p = 5 in Problem 4. We find that

n n n n n n _2” 1+2< 71)'1 nn+2< 27r)n
0 4 g =3 cos 5 cos 5 cos 5 cos .

Using the well-known relations

T J5+1 2 51
Cos — = and cos— =
5 4 5 4

the desired identity follows.

299
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Problem 13. 1) Let ¢ be a cube root of unity different from 1. We have
(1—&)" = Ay + Bpe + Cpe?, (1 —eH)" = Ay, + Bre? + Cyue
hence
A2+ B2 —C2—A,B, — B,Cp — ChAy=(A, + Bue + C82)(An + By + Cre)

=(1—-e)'l—-e)'=0—-c—g&>+1)' =3".
2) It is obvious that A, + B, + C,, = 0. Replacing C,, = —(A, + B,,) in the previous
identity we get A2 + A, B, + C2 =3""1.
Problem 14. For any k € {0, 1, ..., p — 1}, consider x; = Z c1 -+ Cpy, the sum of

m
all products cg - - - ¢y such that¢; € {1,2,...,n} and Zci =k (mod p).

i=1

2r . 27w
If ¢ = cos — + i sin —, then
p p

p—1
(8+282+---+n8")m: Z Cl_.'cm8C1+‘..+Cm :Z-xkgk-
k=0

Taking into account the relation

ne"t? — (n+4 De"tl 4+ ¢ ne
e+2 4 +ne" = =
-1y e—1

(see Problem 9 in Section 5.4 or Problem 13 in Section 5.5) it follows that

n™ pi:l X
Y et (1)
e—-b" =

On the other hand, from ¢?~! + ... + ¢ + 1 = 0 we obtain that

1

1
=2 e (p =Dt p = D,

e—1
hence
n™ n\" )
m=(—;) 2 +2" 4t (p=De+p— D"
Put

XP242XP 3 4 (p=DX+p— D" =bo+ b1 X+ + bpp-) X" P72,
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and find
nm n m 4
m = (—;> o+ y1e+ -+ yp—1eP7), ()
where y; = Z bk.
k=j (mod p)

From (1) and (2) we get
X0 —ryo+ (x1 — ryDe + -+ (xpt — ryp,—)e? 1 =0,

m
n
where r = (——) . From Proposition 4 in Subsection 2.2.2, it follows that xo—ryy =
p

Xy —ry1=---=2Xxp_1 —ryp—1 = k. Now it is sufficient to show that r|k. But
pk=xo+ - +xp-1—rQo+-+yp-1)

=042+ +n)" —rbo+ -+ bup-2)

=(1+2+--4+n)"=r(1+2+---+(p—-1)",

‘ <n(n+ 1)>’" , (p(p— 1))'"
pE= 2 2 '

Since the right-hand side is divisible by pr, it follows that r|k.

and we obtain

Problem 15. Expanding (1+i+/a)" by binomial theorem and then separating the even
and odd terms we find

(I +iva)" =s, +iVat,. ey
Passing to conjugates in (1) we get
(1 —iva)" = s, —i/aty,. )

From (1) and (2) it follows that
Sp = %[(1 +iva)" + (1 —iya)']. (3)

The quadratic equation with roots z; = 1+iy/a and zp = 1 —i/a is 22 —2z+(a+1) =
0. It is easy to see that for any positive integer n the following relation holds:

Snt2 = 2841 — (1 + a)sp. 4

Now, we proceed by induction by step 2. We have sy = landsy =1 —a =2 — 4k =
2(1 — 2k), hence the desired property holds. Assume that on-l |s, and 2"*|sy,41. From
(4) it follows that 2" 1|5, 5, since 1 + a = 4k and 2"T1|(1 + a)s,,.
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6.2.9 Miscellaneous problems (p.252)

Problem 12. Using the triangle inequality, we have
20z = Ixlyl + ylxl| < Ixlly] + yllx],
so |z|% < |x] - |y|. Likewise,
y1> < Ixl-1z] and |z]” < |yllx].
Summing these inequality yields
e+ 152 + 127 < ellyl+ Ipllz] + z]1x].

This implies that

x| = Iyl = Iz] = a.

Ifa = 0, then x = y = z = 0 is a solution of the system. Consider ¢ > 0. The

system may be written as

2
x+y==2,

a

2
y+z=—x2,

a

2
z+x=—y2.

a

Subtracting the last two equations gives

2 2 2 . 2
x—y:;(y —x9), ie., (y —x) y+x+a =0.

2
Casel.If x = y,thenx =y = £ The last equation implies
a

2 4
Z Z
Z+— = 2—3~
a a-
This is equivalent to
3
2 (5> =24,
a a
hence
z ! z o ==
- = or — = .
a a 2

If z = a, then x = y = z = a is a solution of the system.
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N
>

Z)_‘—l:l:i

1:‘—
a 2

which is a contradiction.
2 2 2
Case2.Ifx + y=—=,then —= = =z%. We obtain z = +i anda = |z| = 1.
a a a

Consider z = i; then
x=@+y) -+ +z=22 -2 4z7=-2+i—2x"

or equivalently,

24 x+2—-i=0.
1
Thenx =i orx = —3 —i.Since |x| =a = 1,wehavex =i.Theny = 2x> —z =
—2—iand|y| =5 # a =1, so the system has no solution. The case z = —i had

the same conclusion.
Therefore, the solutions are x = y = z = a, where a > 0 is a real number.
Problem 13. In any solution (x, y,z) wehavex # 0,y #0,z #0andx # y, y # 2,

7z # x. We can divide each equation by others and obtain new equations:

x2 4 y? = yz + zx,
y2 422 =xy+zx, (1
z2+x2=xy+yz.

By adding them one obtains the equality
x2+y2+12=xy+yz+zx. 2)
After subtracting equations (1), the second from the first, one obtains x +y+z = 0.
By squaring this identity one obtains an improvement of (2):
2 2 2 _ —
xX“+y +z7=xy+yz+zx =0. 3)

Using (3) in (1) one obtains

xP=zy, yr=zx, ZZ=xy “4)

and also
3= y3 _ 3 — xyz.

It follows that x, y, z are distinct roots of the same complex number a = xyz. From

3 = xyz = a we obtain

x=3a, t=eYa, z=¢ea, )

-x3=y3=Z
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where €2 + ¢ 4+ 1 = 0, €3 = 1. When introduce relations (5) in the first equation
of the original system, one obtains a’(1 —e)(1 —&2) = 3. Taking into account the
computation

Q—e)1—-e>)=1—-c—&>+1=3,

we have a® = 1. Hence, we obtain using (5) that (x, y, z) is a permutation of the set
{1,¢,%).
Problem 14. Suppose that the triangles OXY and OZT are counterclockwise ori-
ented, and let x, y, z, ¢ be the coordinates of the points X, Y, Z, T and let m be the
coordinate of O. As these are right isosceles triangles we have x — m = i(y — m),
z—m = i(t—m). It follows thatm(1—i) = x—iy = z—it. We dedpce x—z=1i(y—1).
Reciprocally, if x —iy = z—it, the coordinate of O ism = xl— l,y , and the triangles
OXY and OZT are right and isosceles.
Let a,b,c,d, e, f be the coordinates of the given hexagon in that order. We can
writta —ib=c—ie,b—id =e—if.Itfollowsthata +d =c+ f,ie., ACDF is
a parallelogram.

Multiplying the first equality by i, we obtain b —ic = e —ia,i.e., BC and AE are
connected.
Problem 15. By standard computations, we find that on the circumscribed circle the
sides of the pentagon subtend the following arcs: AﬁBz 80°, BAC = 40°, CAD= 80°,
DAE = 20° and EAA= 140°. It is then natural to consider all these measures as multiples

2 4
of 20° that correspond to the primitive 18™ roots of unity, say @ = cos 8 +1i sin Th
We thus assign, to each vertex, starting from A(1), the corresponding root of unity:

B(w"), C(0%), D(®'9), E(w'!). We shall use the following properties of w:

0¥=1, ®=-1, d=0®* - +1=0. (A)
We need to prove that the coordinate coordinate of the common point of the lines
BD and CE is areal number.
The equation of the line BD is

z z 1
ot @t 1]|=0, (1)
wlO 10 1
and the equation of the line CE is
z z 1
0 @ 1]=0 )
T
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B

C(®®)

A(w)

Figure 6.9.

The equation (1) can be written as follows:
Z(a)14 _ 6()8) —2(0)4 _ a)l()) + (wlz _ 0)6) — 0

or
203 (@° — 1) + Zo* (@® — 1) + 0®(@°® — 1) = 0.

Using the properties of w we derive a simplified version of (1):
wt +74 0? =0. 1)
In the same way, equation (2) becomes
w+ZI—w (0 —1)=0. 2"
From (1’) and (2') we obtain the following expression for z:

—0" 4+ & — w? —+0?—w w—1
= 4 = =—1+ 3 .
ot —w w

w

To prove that z is real, it will suffice to prove that it coincides with its conjugate. It
is easy to see that

is equivalent to
o - =o' -,

ie., o' — ' = w* — », which is true by the properties of w given in (A).
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Antipedal triangle of point M: The triangle determined by perpendicular lines from
vertices A, B, C of triangle ABC to MA, M B, MC, respectively.

Area of a triangle: The area of triangle with vertices with coordinates z1, 22, z3 is the
absolute value of the determinant

; z1 z1 1

A=-— o 1
4 22 Z_Z

z3 z3 1

Area of pedal triangle of point X with respect to the triangle ABC:

arealABC]
4R?

Argument of a complex number: If the polar representation of complex number z is

area[PQR] = IxX — R?|.
z =r(cost™ +isint*), then arg(z) = t*.
Barycenter of set {A1, ..., A,} with respect to weights m, ..., m,: The point G
with coordinate zg = —(miz1 + - - - +muz,), where m =m| + --- + m,,.
m

Barycentric coordinates: Consider triangle ABC. The unique real number g, p,
e such that

Zp = Maa + Hpb + pec, where g + pp + e = 1.

Basic invariants of triangle: s, r, R
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Binomial equation: An algebraic equation of the form Z" + a = 0, where a € C*.

Ceva’s theorem: Let AD, BE, CF be three cevians of triangle ABC. Then, lines
AD, BE, CF are concurrent if and only if

FB DC EA

Cevian of a triangle: any segment joining a vertex to a point on the opposite side.
Concyclicity condition: If points My (zx), k = 1, 2, 3, 4, are not collinear, then they
are concyclic if and only if
3—22 3—2Z
BT BT R
21 —22 21 —Z24

3 — 11

Collinearity condition: M (z1), M2(z2), M3(z3) are collinear if and only if
R*.

2—21

Complex coordinate of point A of cartesian coordinates (x, y): The complex num-
ber z = x + yi. We use the notation A(z).

b
Complex coordinate of the midpoint of segment [AB]: z); = %, where A(a)
and B(b).
Complex coordinates of important centers of a triangle: Consider the triangle ABC
with vertices with coordinates a, b, c. If the origin of complex plane is in the circum-

center of triangle ABC, then:

1
e the centroid G has coordinate zg = g(a + b+ ¢);

b
e the incenter / has coordinate z; = w, where «, B, y are the sides
a+B8+y
length of triangle ABC;

o the orthocenter H has coordinate zg = a + b + c;

re@ +1gb + 1)

e the Gergonne point J has coordinate z; =
o +1g+T1y

, where ry, rg, 1)
are the radii of the three excircles of triangle;
o’a + p*b + yzc.

e the Lemoine point K has coordinate zx = ;
a2+ B2+ y2

e the Nagel point N has coordinate zy = (1 - g) a—+ (1 — é)b + (1 - Z) c;
s s s

1
o the center Oy of point circle has coordinate zp, = E(a + b +c).
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Complex number: A number z of the form z = a + bi, where a, b are real numbers
andi = +/—1.
1 _
Complex product of complex numbers @ and b: a x b = E(Eb —ab).
Conjugate of a complex number: The complex number 7 = a —bi, where z = a+bi.

Cyclic sum: Let n be a positive integer. Given a function f of n variables, define the

cyclic sum of variables (x1, x2, ..., x,) as

Zf(xl,xz,--.,xn)=f(xl,xz,.-.,xn)+f(x2,x3,-~~,xn,X1)
cyc

+"'+f(xnvxl,x2,-«~,xn71)

De Moivre’s formula: For any angle « and for any integer n,
(cosa + i sina)" = cosna + i sinna.

Distance between points M{(z1) and M»(z2): MMy = |72 — 71]-
Equation of acircle: z -7+ «a-z4+ o -7+ 8 =0, wherex € Cand B € R.
Equation of aline: o -7+ oz + B8 =0, whereax € C*, f e Randz = x +iy € C.

Equation of a line determined by two points: If P|(z1) and P»(z») are distinct points,
then the equation of line P; P, is

z1 21 1
2 72 1 ]=0.
z z 1

Euler’s formula: Let O and I be the circumcenter and incenter, respectively, of a
triangle with circumradius R and inradius r. Then

OI?> = R* = 2Rr.
Euler line of triangle: The line determined by the circumcenter O, the centroid G,
and the orthocenter H.
Extend law of sines: In a triangle ABC with circumradius R and sides «, 8, y the
following relations hold:

> _ P _ Y g
sin A sin B sin C

Heron’s formula: The area of triangle A BC with sides «, $, y is equal to

areal ABC] = /s(s — a)(s — B)(s — y),

1
where s = E(a + B + v) is the semiperimeter of the triangle.
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Isometric transformation: A mapping f : C — C preserving the distance.
Lagrange’s theorem: Consider the points A, ..., A, and the nonzero real numbers
mi, ..., my such that m = my + --- + m, # 0. For any point M in the plane the
following relation holds:
n n

miMAY =mMG* + " m;GA?,
=1 j=1

J

where G is the barycenter of set {A1, ..., A, } with respect to weights my, ..., m,.
Modulus of a complex number: The real number |z| = +/a? + b2, where z = a + bi.

Morley’s theorem: The three points of adjacent trisectors of angles form an equilateral
triangle.

Nagel line of triangle: The line 7, G, N.

n'™ roots of complex number zy: Any solution Z of the equation Z" — zo = 0.

n'™ roots of unity: The complex numbers
2km 2km
gg=cos— +isin—, ke{0,1,...,n—1}.
n n

The set of all these complex numbers is denoted by Uj,.

Orthogonality condition: If M (zx), k = 1, 2, 3, 4, then lines M| M, and M3 M, are

orthogonal if and only if
21— 22

i3 — 24

e iR*.

Orthopolar triangles: Consider triangle ABC and points X, Y, Z situated on its cir-
cumcircle. Triangles ABC and XY Z are orthopolar (or S-triangles) if the Simson—
Wallance line of point X with respect to triangle ABC is orthogonal to line Y Z.

Pedal triangle of point X: The triangle determined by projections of X on sides of
triangle ABC.

Polar representation of complex number z = x + yi: The representation z =
r(cost* +isint*), where r € [0, 0o0) and t* € [0, 27).

th oot of unity: An n™ root ¢ € U, such that ¢ # 1 for all positive

Primitive n
integers m < n.

Quadratic equation: The algebraic equation ax’+bx+c=0,a,b,ceC,a # 0.
1 _

Real product of complex numbers a and b: a - b = E(Eb + ab).

Reflection across a point: The mapping s, : C — C, s,,(z) = 2z0 — z.

Reflection across the real axis: The mapping s : C — C, s(z) = 7.
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Rotation: The mapping r, : C — C, r,(z) = az, where a is a given complex number.
Rotation formula: Suppose that A(a), B(b), C(c) and C is the rotation of B with
respect to A by the angle «. Then ¢ = a 4+ (b — a)¢, where ¢ = cosa + i sinc.

Similar triangles: Triangles A1 A2 A3 and Bj By B3 of the same orientation are similar

if and only if
a—ap by — by

az—a; by—b
Simson Line: For any point M on the circumcircle of triangle ABC, the projections
of M on lines BC, CA, AB are collinear.

Translation: The mapping ¢, : C — C, #;,(z) = z + 20.

Trigonometric identities

2

sin? x + cos? x = 1,

1 +cot?x = csczx,

tan® x + 1 = sec® x;
addition and subtraction formulas:

sin(a = b) = sinacosb * cosasinb,

cos(a £ b) = cosacosb Fsinasinb,

tana + tanb
tan(a £ b) = ———,
1 Ftanatanb
cotacoth F 1
cot(a+ b) = LILOOF 1
cota x cotb
double-angle formulas:
. . 2tana
sin2a = 2sinacosa = ————,
1 +tan2a
5 .9 1 —tanZa
cos2a =2cos“a—1=1—-2sin"a = ———,
1 +tan2a
2tan
tan2a = —a;
1 —tanZa

triple-angle formulas:
sin3a = 3sina — 4 sin’ a,

cos3a =4cos’a — 3cosa,

3tana — tan @
tan3a = —
1 — 3tan
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half-angle formulas:
.,a l—cosa
sin“ — = ,
2 2
,a 1l+cosa
cos” — = ——,
2 2
a 1 —cosa sina
tan - = " = ;
2 sina 1+ cosa

sum-to-product formulas:

. . . a+b a—>b
sina + sinb = 2 sin cos 7
a+b a—>b
cosa + cosb = 2cos cos 7
i b
tana +tanb = w;
cosacosbh
difference-to-product formulas:
a—>b a+b
sina — sinb = 2 sin cos -; ,
a—>b a+b
cosa — cosb = —2sin sin —; ,
sin(a — b)
tana — tanb = —;
cosacosbh

product-to-sum formulas:

2sina cos b = sin(a + b) + sin(a — b),
2 cosacosb = cos(a + b) 4+ cos(a — b),

2sinasinb = —cos(a + b) + cos(a — b).

Vieta’s theorem: Let x1, x2, . .., x, be the roots of polynomial

P(x) = apx" + ap_1x" '+ +aix +ao,

where a,, # 0 and ag, ay,

...,ap € C. Let s be the sum of the products of the x; taken
k at a time. Then

ap—k
s = (—DF ==,
dap
that is,

an—1

Xp+x2+ X =

bl
dn

an—2
XX+ T XX X1 Xy =
An

3

a
X1X2 Xy = (—1)”—0.
an
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regular n-gon, 42
Nagel line of a triangle, 108 rotation formula, 62



rotation with center, 153

S-triangles, 132

second Ptolemy’s theorem, 210
set of complex numbers, 2
similar triangles, 68

Simson, Robert, 125
Simson—Wallance line, 125
Spiecker point, 109

Steinhaus, Hugo Dyonizy, 122
subtraction, 3

Subject Index 321
sum of z1, z2, 1

translation, 151
Tzitzeica’s five-coin problem, 192
Tzitzeica, Gheorghe, 192

unit circle, 29

Van Schouten theorem, 233
von Nagel, Christian Heinrich, 105

Wallance, William, 125



	cover-image-large.jpg
	front-matter.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	back-matter.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts false
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


