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Preface

This is the first volume of a two-volume textbook! which evolved from a
course (Mathematics 160) offered at the California Institute of Technology
during the last 25 years. It provides an introduction to analytic number
theory suitable for undergraduates with some background in advanced
calculus, but with no previous knowledge of number theory. Actually, a
great deal of the book requires no calculus at all and could profitably be
studied by sophisticated high school students.

Number theory is such a vast and rich field that a one-year course cannot
do justice to all its parts. The choice of topics included here is intended to
provide some variety and some depth. Problems which have fascinated
generations of professional and amateur mathematicians are discussed
together with some of the techniques for selving them.

One of the goals of this course has been to nurture the intrinsic interest
that many young mathematics students seem to have in number theory and
to open some doors for them to the current periodical literature. It has been
gratifying to note that many of the students who have taken this course
during the past 25 years have become professional mathematicians, and some
have made notable contributions of their own to number theory. To all of
them this book is dedicated.

! The second volume is scheduled to appear in the Springer-Verlag Series Graduate Texts in
Mathematics under the title Modular Functions and Dirichlet Series in Number Theory.






Contents

Historical Introduction

Chapter 1
The Fundamental Theorem of Arithmetic

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Introduction 13

Divisibility 14

Greatest common divisor 14

Prime numbers 16

The fundamental theorem of arithmetic 17

The series of reciprocals of the primes 18

The Euclidean algorithm 19

The greatest common divisor of more than two numbers 20
Exercises for Chapter 1 21

Chapter 2
Arithmetical Functions and Dirichlet Multiplication

2.1
22
23
24
2.5
26
2.7
28
29

Introduction 24

The Mo6bius function u(n) 24

The Euler totient function @(n) 25

A relation connecting ¢ and u 26

A product formula for ¢(n) 27

The Dirichlet product of arithmetical functions 29
Dirichlet inverses and the Mbius inversion formula 30
The Mangoldt function A(n) 32

Multiplicative functions 33

2.10 Multiplicative functions and Dirichlet multiplication 35
2.11 The inverse of a completely multiplicative function 36

vii



2.12 Liouville’s function A(n) 37
2.13 The divisor functions o,(n) 38
2.14 Generalized convolutions 39
2.15 Formal power series 41
2.16 The Bell series of an arithmetical function 42
2.17 Bell series and Dirichlet multiplication 44
2.18 Derivatives of arithmetical functions 45
2.19 The Selberg identity 46
Exercises for Chapter 2 46

Chapter 3
Averages of Arithmetical Functions

3.1 Introduction 52

3.2 The big oh notation. Asymptotic equality of functions 53

3.3 Euler’s summation formula 54

34 Some elementary asymptotic formulas 55

3.5 The average order of d(n) 57

3.6 The average order of the divisor functions g,(n) 60

3.7 The average order of ¢(n) 61

3.8 An application to the distribution of lattice points visible from the origin 62

3.9 The average order of u(n) and of A(n) 64

3.10 The partial sums of a Dirichlet product 65

3.11 Applications to p(n) and A(n) 66

3.12 Another identity for the partial sums of a Dirichlet product 69
Exercises for Chapter 3 70

Chapter 4

Some Elementary Theorems on the Distribution of Prime
Numbers

4.1 Introduction 74
4.2 Chebyshev’s functions y(x) and 3(x) 75
43 Relations connecting 3(x) and n(x) 76
44 Some equivalent forms of the prime number theorem 79
4.5 Inequalities for n(n) and p, 82
4.6 Shapiro’s Tauberian theorem 85
4.7 Applications of Shapiro’s theorem 88
4.8 An asymptotic formula for the partial sums ) ., (1/p) 89
4.9 The partial sums of the Mobius function 91
4.10 Brief sketch of an elementary proof of the prime number theorem 98
4.11 Selberg’s asymptotic formula 99
Exercises for Chapter 4 101

Chapter 5
Congruences

5.1 Definition and basic properties of congruences 106
5.2 Residue classes and complete residue systems /09
5.3 Linear congruences 110

viii



54 Reduced residue systems and the Euler-Fermat theorem 113

5.5 Polynomial congruences modulo p. Lagrange’s theorem 114

5.6 Applications of Lagrange’s theorem 115

5.7 Simultaneous linear congruences. The Chinese remainder theorem 117

5.8 Applications of the Chinese remainder theorem 118

5.9 Polynomial congruences with prime power moduli 120

5.10 The principle of cross-classification 123

5.11 A decomposition property of reduced residue systems 125
Exercises for Chapter 5 126

Chapter 6
Finite Abelian Groups and Their Characters

6.1 Definitions 129

6.2 Examples of groups and subgroups 130

6.3 Elementary properties of groups 130

6.4 Construction of subgroups 131

6.5 Characters of finite abelian groups 133

6.6 The character group 135

6.7 The orthogonality relations for characters 136

6.8 Dirichlet characters 137

6.9 Sums involving Dirichlet characters 140

6.10 The nonvanishing of L(1, y) for real nonprincipal y 141
Exercises for Chapter 6 143

Chapter 7
Dirichlet’s Theorem on Primes in Arithmetic Progressions

7.1 Introduction 146
7.2 Dirichlet’s theorem for primes of the form4n — land4n + 1 147
7.3 The plan of the proof of Dirichlet’s theorem 148
74 Proof of Lemma 74 150
7.5 Proofof Lemma 7.5 151
7.6 Proof of Lemma 7.6 152
7.7 Proof of Lemma 7.8 153
7.8 Proof of Lemma 7.7 153
79 Distribution of primes in arithmetic progressions 154
Exercises for Chapter 7 155

Chapter 8
Periodic Arithmetical Functions and Gauss Sums

8.1 Functions periodic modulo & 157

8.2 Existence of finite Fourier series for periodic arithmetical functions 158
8.3 Ramanujan’s sum and generalizations 160

84 Multiplicative properties of the sums s,(n) 162

8.5 Gauss sums associated with Dirichlet characters 165

8.6 Dirichlet characters with nonvanishing Gauss sums 166

8.7 Induced moduli and primitive characters 167



8.8 Further properties of induced moduli 168

8.9 The conductor of a character 171

8.10 Primitive characters and separable Gauss sums 171

8.11 The finite Fourier series of the Dirichlet characters 172

8.12 Polya’s inequality for the partial sums of primitive characters 173
Exercises for Chapter 8 175

Chapter 9
Quadratic Residues and the Quadratic Reciprocity Law

9.1 Quadratic residues 178

9.2 Legendre’s symbol and its properties 179

9.3 Evaluation of (—1|p)and (2|p) 181

94 Gauss’lemma 182

9.5 The quadratic reciprocity law 185

9.6 Applications of the reciprocity law 186

9.7 The Jacobi symbol 187

9.8 Applications to Diophantine equations 190

9.9 Gauss sums and the quadratic reciprocity law 192

9.10 The reciprocity law for quadratic Gauss sums 195

9.11 Another proof of the quadratic reciprocity law 200
Exercises for Chapter 9 201

Chapter 10
Primitive Roots

10.1 The exponent of a number mod m. Primitive roots 204
10.2 Primitive roots and reduced residue systems 205
10.3 The nonexistence of primitive roots mod 2% for o« > 3 206
104 The existence of primitive roots mod p for odd primes p 206
10.5 Primitive roots and quadratic residues 208
10.6 The existence of primitive roots mod p* 208
10.7 The existence of primitive roots mod 2p* 210
10.8 The nonexistence of primitive roots in the remaining cases 211
109 The number of primitive roots mod m 212
10.10 The index calculus 213
10.11 Primitive roots and Dirichlet characters 218
10.12 Real-valued Dirichlet characters mod p* 220
10.13 Primitive Dirichlet characters mod p* 221
Exercises for Chapter 10 222

Chapter 11
Dirichlet Series and Euler Products

11.1 Introduction 224
11.2  The half-plane of absolute convergence of a Dirichlet series 225
11.3 The function defined by a Dirichlet series 226

X



114 Multiplication of Dirichlet series 228

11.5 Euler products 230

11.6 The half-plane of convergence of a Dirichlet series 232

11.7 Analytic properties of Dirichlet series 234

11.8 Dirichlet series with nonnegative coefficients 236

11.9 Dirichlet series expressed as exponentials of Dirichlet series 238

11.10 Mean value formulas for Dirichlet series 240

11.11 An integral formula for the coefficients of a Dirichlet series 242

11.12 An integral formula for the partial sums of a Dirichlet series 243
Exercises for Chapter 11 246

Chapter 12
The Functions {(s) and L(s, ¥)

12.1 Introduction 249
12.2 Properties of the gamma function 250
12.3 Integral representation for the Hurwitz zeta function 25/
12.4 A contour integral representation for the Hurwitz zeta function 253
12.5 The analytic continuation of the Hurwitz zeta function 254
12.6 Analytic continuation of {(s) and L(s, x} 255
12.7 Hurwitz’s formula for {(s,a) 256
12.8 The functional equation for the Riemann zeta function 259
129 A functional equation for the Hurwitz zeta function 261
12.10 The functional equation for L-functions 261
12.11 Evaluation of {{—n, @) 264
12.12 Properties of Bernoulli numbers and Bernoulli polynomials 265
12.13 Formulas for L(0, y) 268
12.14 Approximation of {(s, a) by finite sums 268
12.15 Inequalities for |{(s, a)] 270
12.16 Inequalities for |{(s)] and | L(s, )| 272
Exercises for Chapter 12 273

Chapter 13
Analytic Proof of the Prime Number Theorem

13.1 The plan of the proof 278

13.2 Lemmas 279

13.3 A contour integral representation for ¥ ,(x)/x? 283

134 Upper bounds for |{(s)| and |{'(s)| near the linec = 1 284

13.5 The nonvanishing of {(s) on the lineo =1 286

13.6 Inequalities for |1/{(s)| and |{'(s)/((s)] 287

13.7 Completion of the proof of the prime number theorem 289

13.8 Zero-free regions for {(s) 291

13.9 The Riemann hypothesis 293

13.10 Application to the divisor function 294

13.11 Application to Euler’s totient 297

13.12 Extension of Polya’s inequality for character sums 299
Exercises for Chapter 13 300

X1



Chapter 14
Partitions

14.1 Introduction 304

14.2 Geometric representation of partitions 307

14.3  Generating functions for partitions 308

144 Euler’s pentagonal-number theorem 311

14.5 Combinatorial proof of Euler’s pentagonal-number theorem 313

14.6 Euler’s recursion formula for p(n) 315

14.7 An upper bound for p(n) 316

14.8 Jacobi’s triple product identity 318

149 Consequences of Jacobi’s identity 321

14.10 Logarithmic differentiation of generating functions 322

14.11 The partition identities of Ramanujan 324
Exercises for Chapter 14 325

Bibliography 329
Index of Special Symbols 333

Index 335

Xii



Historical Introduction

The theory of numbers is that branch of mathematics which deals with
properties of the whole numbers,

1,2,3,4,5,...

also called the counting numbers, or positive integers.

The positive integers are undoubtedly man’s first mathematical creation.
It is hardly possible to imagine human beings without the ability to count,
at least within a limited range. Historical record shows that as early as
5700 Bc the ancient Sumerians kept a calendar, so they must have developed
some form of arithmetic.

By 2500 BC the Sumerians had developed a number system using 60 as a
base. This was passed on to the Babylonians, who became highly skilled
calculators. Babylonian clay tablets containing elaborate mathematical
tables have been found, dating back to 2000 Bc.

When ancient civilizations reached a level which provided leisure time
to ponder about things, some people began to speculate about the nature and
properties of numbers. This curiosity developed into a sort of number-
mysticism or numerology, and even today numbers such as 3, 7, 11, and 13
are considered omens of good or bad luck.

Numbers were used for keeping records and for commercial transactions
for over 5000 years before anyone thought of studying numbers themselves
in a systematic way. The first scientific approach to the study of integers,
that is, the true origin of the theory of numbers, is generally attributed to the
Greeks. Around 600 BC Pythagoras and his disciples made rather thorough
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Historical introduction

studies of the integers. They were the first to classify integers in various ways:

Even numbers: 2,4, 6 8,10,12, 14, 16, ...

Odd numbers: 1,3,5,7,9,11,13,15,...

Prime numbers:  2,3,5,7,11,13,17, 19, 23,29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71,73,79, 83,89,97, ...

Composite numbers: 4,6,8,9, 10,12, 14, 15, 16, 18, 20, . ..

A prime number is a number greater than 1 whose only divisors are 1 and
the number itself. Numbers that are not prime are called composite, except
that the number 1 is considered neither prime nor composite.

The Pythagoreans also linked numbers with geometry. They introduced
the idea of polygonal numbers: triangular numbers, square numbers, pen-
tagonal numbers, etc. The reason for this geometrical nomenclature is
clear when the numbers are represented by dots arranged in the form of
triangles, squares, pentagons, etc., as shown in Figure 1.1.

! é& L&

28

.Djﬁ "1‘

Figure 1.1

Another link with geometry came from the famous Theorem of Pythagoras
which states that in any right triangle the square of the length of the hy-
potenuse is the sum of the squares of the lengths of the two legs (see Figure 1.2). |
The Pythagoreans were interested in right triangles whose sides are integers,
as in Figure 1.3. Such triangles are now called Pythagorean triangles. The
corresponding triple of numbers (x, y, z) representing the lengths of the sides
is called a Pythagorean triple.

2



Historical introduction

Z
y x24yl=g2

X

Figure 1.2

A Babylonian tablet has been found, dating from about 1700 BC, which
contains an extensive list of Pythagorean triples, some of the numbers being

quite large. The Pythagoreans were the first to give 2 method for determining
infinitely many triples. In modern notation it can be described as follows:
Let n be any odd number greater than 1, and let

x=n y=3in*-1, z=3in>+1.

The resulting triple (x, y, z) will always be a Pythagorean triple with z = y
+ 1. Here are some examples:

x 3 5 7 911 13 15 17 19

y 4 12 24 40 60 84 112 144 180

z 5 13 25 41 61 85 113 145 181
There are other Pythagorean triples besides these; for example:

x 8 12 16 20

y 15 35 63 99

z 17 37 65 101

In these examples we have z = y + 2. Plato (430-349 Bc) found a method for
determining all these triples; in modern notation they are given by the
formulas

X = 4n, y =4n? — 1, z=4n* + 1.

Around 300 BC an important event occurred in the history of mathematics.
The appearance of Euclid’s Elements, a collection of 13 books, transformed
mathematics from numerology into a deductive science. Euclid was the
first to present mathematical facts along with rigorous proofs of these facts.

5
3 3244%=52 5!\5%12%132

4 12

Figure 1.3



Historical introduction

Three of the thirteen books were devoted to the theory of numbers (Books VII,
IX, and X). In Book IX Euclid proved that there are infinitely many primes.
His proof is still taught in the classroom today. In Book X he gave a method
for obtaining all Pythagorean triples although he gave no proof that his
method did, indeed, give them all. The method can be summarized by the
formulas

x=ta®>—b?, y=2ab, z=ta*+ b?,

where t, a, and b, are arbitrary positive integers such that a > b, a and b have
no prime factors in common, and one of a or b is odd, the other even.

Euclid also made an important contribution to another problem posed
by the Pythagoreans—that of finding all perfect numbers. The number 6
was called a perfect number because 6 = 1 + 2 + 3, the sum of all its proper
divisors (that is, the sum of all divisors less than 6). Another example of a
perfect number is 28 because 28 =1+ 2+ 4+ 7 + 14,and 1, 2, 4, 7, and
14 are the divisors of 28 less than 28. The Greeks referred to the proper
divisors of a number as its “parts.” They called 6 and 28 perfect numbers
because in each case the number is equal to the sum of all its parts.

In Book IX, Euclid found all even perfect numbers. He proved that an
even number is perfect if it has the form

2P-127 — 1),

where both p and 27 — 1 are primes.

Two thousand years later, Euler proved the converse of Euclid’s theorem.
That is, every even perfect number must be of Euclid’s type. For example, for
6 and 28 we have

6=22"12>-1)=2-3 and 28 = 237123 - 1)=4.7.
The first five even perfect numbers are
6, 28, 496, 8128 and 33,550,336.

Perfect numbers are very rare indeed. At the present time (1975) only 24
perfect numbers are known. They correspond to the following values of p
in Euclid’s formula:

2,3,5,7,13,17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11,213, 19,937.

Numbers of the form 27 — 1, where p is prime, are now called Mersenne
numbers and are denoted by M, in honor of Mersenne, who studied them in
1644. It is known that M, is prime for the 24 primes listed above and com-
posite for all other values of p < 257, except possibly for

p = 157, 167, 193, 199, 227, 229;
for these it is not yet known whether M, is prime or composite.
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Historical introduction

No odd perfect numbers are known; it is not even known if any exist.
But if any do exist they must be very large; in fact, greater than 10%° (see
Hagis [29]).

We turn now to a brief description of the history of the theory of numbers
since Euclid’s time.

After Euclid in 300 BC no significant advances were made in number
theory until about AD 250 when another Greek mathematician, Diophantus
of Alexandria, published 13 books, six of which have been preserved. This
was the first Greek work to make systematic use of algebraic symbols.
Although his algebraic notation seems awkward by present-day standards,
Diophantus was able to solve certain algebraic equations involving two or
three unknowns. Many of his problems originated from number theory and it
was natural for him to seek integer solutions of equations. Equations to be
solved with integer values of the unknowns are now called Diophantine
equations, and the study of such equations is known as Diophantine analysis.
The equation x2 + y? = z? for Pythagorean triples is an example of a
Diophantine equation.

After Diophantus, not much progress was made in the theory of numbers
until the seventeenth century, although there is some evidence that the
subject began to flourish in the Far East—especially in India—in the period
between AD 500 and aD 1200.

In the seventeenth century the subject was revived in Western Europe,
largely through the efforts of a remarkable French mathematician, Pierre de
Fermat (1601-1665), who is generally acknowledged to be the father of
modern number theory. Fermat derived much of his inspiration from the
works of Diophantus. He was the first to discover really deep properties of
the integers. For example, Fermat proved the following surprising theorems:

Every integer is either a triangular number or a sum of 2 or 3 triangular
numbers; every integer is either a square or a sum of 2, 3, or 4 squares; every
integer is either a pentagonal number or the sum of 2, 3, 4, or 5 pentagonal
numbers, and so on.

Fermat also discovered that every prime number of the form 4n + 1
such as 5, 13, 17, 29, 37, 41, etc., is a sum of two squares. For example,

5=12+ 22 13 =22 + 32, 17 =12 + 42, 29 =22 + 5%,
37 =1% + 6%, 41 = 4> + 52,

Shortly after Fermat’s time, the names of Euler (1707-1783), Lagrange
(1736-1813), Legendre (1752-1833), Gauss (1777-1855), and Dirichlet
(1805-1859) became prominent in the further development of the subject.
The first textbook in number theory was published by Legendre in 1798.
Three years later Gauss published Disquisitiones Arithmeticae, a book which
transformed the subject into a systematic and beautiful science. Although he
made a wealth of contributions to other branches of mathematics, as well
as to other sciences, Gauss himself considered his book on number theory
to be his greatest work.
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In the last hundred years or so since Gauss’s time there has been an
intensive development of the subject in many different directions. It would be
impossible to give in a few pages a fair cross-section of the types of problems
that are studied in the theory of numbers. The field is vast and some parts
require a profound knowledge of higher mathematics. Nevertheless, there
are many problems in number theory which are very easy to state. Some of
these deal with prime numbers, and we devote the rest of this introduction
to such problems.

The primes less than 100 have been listed above. A table listing all primes
less than 10 million was published in 1914 by an American mathematician,
D. N. Lehmer [43]. There are exactly 664,579 primes less than 10 million,
or about 64%,. More recently D. H. Lehmer (the son of D. N. Lehmer)
calculated the total number of primes less than 10 billion; there are exactly
455,052,512 such primes, or about 43 %, although all these primes are not
known individually (see Lehmer [417).

A close examination of a table of primes reveals that they are distributed
in a very trregular fashion. The tables show long gaps between primes. For
example, the prime 370,261 is followed by 111 composite numbers. There are
no primes between 20,831,323 and 20,831,533. It is easy to prove that arbitrar-
ily large gaps between prime numbers must eventually occur.

On the other hand, the tables indicate that consecutive primes, such as
3 and 5, or 101 and 103, keep recurring. Such pairs of primes which differ
only by 2 are known as twin primes. There are over 1000 such pairs below
100,000 and over 8000 below 1,000,000. The largest pair known to date
(see Williams and Zarnke [76]) is 76 - 3!3° — 1 and 76-3'3° + 1. Many
mathematicians think there are infinitely many such pairs, but no one has
been able to prove this as yet.

One of the reasons for this irregularity in distribution of primes is that no
simple formula exists for producing all the primes. Some formulas do yield
many primes. For example, the expression

x2 — x + 41
gives a prime for x = 0, 1, 2, ..., 40, whereas
x* — 79x + 1601
gives a prime for x = 0, 1, 2, ..., 79. However, no such simple formula can
give a prime for all x, even if cubes and higher powers are used. In fact, in
1752 Goldbach proved that no polynomial in x with integer coefficients can
be prime for all x, or even for all sufficiently large x.

Some polynomials represent infinitely many primes. For example, as
x runs through the integers 0, 1, 2, 3, ..., the linear polynomial

2x + 1
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gives all the odd numbers hence infinitely many primes. Also, each of the
polynomials

4x + 1 and 4x + 3

represents infinitely many primes. In a famous memoir [15] published in
1837, Dirichlet proved that, if a and b are positive integers with no prime
factor in common, the polynomial

ax +b

gives infinitely many primes as x runs through all the positive integers.
This result is now known as Dirichlet’s theorem on the existence of primes
in a given arithmetical progression.

To prove this theorem, Dirichlet went outside the realm of integers and
introduced tools of analysis such as limits and continuity. By so doing he
laid the foundations for a new branch of mathematics called analytic number
theory, in which ideas and methods of real and complex analysis are brought
to bear on problems about the integers.

It is not known if there is any quadratic polynomial ax? + bx + ¢ with
a # 0 which represents infinitely many primes. However, Dirichlet [16]
used his powerful analytic methods to prove that, if a, 2b, and ¢ have no
prime factor in common, the quadratic polynomial in two variables

ax? + 2bxy + c¢y?

represents infinitely many primes as x and y run through the positive integers.

Fermat thought that the formula 22" + 1 would always give a prime for
n=20,1,2,... These numbers are called Fermat numbers and are denoted
by F,. The first five are

Fo=3, F,=5  F,=11, F,=257 andF, = 65537,

and they are all primes. However, in 1732 Euler found that F s is composite;
in fact,

Fs =232 4+ 1 = (641)(6,700,417).

These numbers are also of interest in plane geometry. Gauss proved that if
F, is a prime, say F, = p, then a regular polygon of p sides can be con-
structed with straightedge and compass.

Beyond Fs, no further Fermat primes have been found. In fact, for 5 <
n < 16 each Fermat number F, is composite. Also, F, is known to be com-
posite for the following further isolated values of n:

n = 18,19, 21, 23,25, 26,27, 30, 32, 36, 38, 39,42, 52, 55, 58, 63,73, 77,
81,117, 125, 144, 150, 207, 226, 228, 260, 267, 268, 284, 316, 452,
and 1945.

The greatest known Fermat composite, F 4,5, has more than 1082 digits, a
number larger than the number of letters in the Los Angeles and New York
telephone directories combined (see Robinson [59] and Wrathall [77]).
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It was mentioned earlier that there is no simple formula that gives all the
primes. In this connection, we should mention a result discovered in 1947
by an American mathematician, W. H. Mills [50]. He proved that there is
some number A4, greater than 1 but not an integer, such that

[A% 7] is prime forall x = 1,2,3,...

Here [4%"] means the greatest integer < A>". Unfortunately, no one knows
what A is equal to.

The foregoing results illustrate the irregularity of the distribution of the
prime numbers. However, by examining large blocks of primes one finds
that their average distribution seems to be quite regular. Although there is
no end to the primes, they become more widely spaced, on the average, as
we go further and further in the table. The question of the diminishing
frequency of primes was the subject of much speculation in the early nine-
teenth century. To study this distribution, we consider a function, denoted
by n(x), which counts the number of primes <x. Thus,

n(x) = the number of primes p satisfying2 < p < x.

Here is a brief table of this function and its comparison with x/log x, where
log x is the natural logarithm of x.

X 7(x) x/log x 7(x) / loz S
10 4 43 093
10? 25 21.7 1.15
10° 168 144.9 1.16
10* 1,229 1,086 1.11
103 9,592 8,686 1.10
108 78,498 72,464 1.08
107 664,579 621,118 1.07
108 5,761,455 5,434,780 1.06
10° 50,847,534 48,309,180 1.05

10%° 455,052,512 434,294,482 1.048

By examining a table like this for x < 10, Gauss [24] and Legendre [40]
proposed independently that for large x the ratio

X
n(x)/ log x

was nearly 1 and they conjectured that this ratio would approactr 1 as x
approaches co. Both Gauss and Legendre attempted to prove this statement
but did not succeed. The problem of deciding the truth or falsehood of this

8



Historical introduction

conjecture attracted the attention of eminent mathematicians for nearly
100 years.

In 1851 the Russian mathematician Chebyshev [9] made an important
step forward by proving that if the ratio did tend to a limit, then this limit
must be 1. However he was unable to prove that the ratio does tend to a
limit.

In 1859 Riemann [58] attacked the problem with analytic methods, using
a formula discovered by Euler in 1737 which relates the prime numbers to
the function
1
nS

Us) = f

for real s > 1. Riemann considered complex values of s and outlined an
ingenious method for connecting the distribution of primes to properties
of the function {(s). The mathematics needed to justify all the details of his
method had not been fully developed and Riemann was unable to com-
pletely settle the problem before his death in 1866.
Thirty years later the necessary analytic tools were at hand and in 1896
J. Hadamard [28] and C. J. de la Vallée Poussin [71] independently and
almost simultaneously succeeded in proving that
lim @O_g_’f =

x—wo x

L

This remarkable result is called the prime number theorem, and its proof was
one of the crowning achievements of analytic number theory.

In 1949, two contemporary mathematicians, Atle Selberg [62] and Paul
Erdds [19] caused a sensation in the mathematical world when they dis-
covered an elementary proof of the prime number theorem. Their proof,
though very intricate, makes no use of {(s) nor of complex function theory
and in principle is accessible to anyone familiar with elementary calculus.

One of the most famous problems concerning prime numbers is the
so-called Goldbach conjecture. In 1742, Goldbach [26] wrote to Euler
suggesting that every even number >4 is a sum of two primes. For example

4=2+2 6=3+3  8=3+5,
10=3+7=5+5 12=5+7.

This conjecture is undecided to this day, although in recent years some
progress has been made to indicate that it is probably true. Now why do
mathematicians think it is probably true if they haven’t been able to prove it?
First of all, the conjecture has been verified by actual computation for all
even numbers less than 33 x 10°. It has been found that every even number
greater than 6 and less than 33 x 109 is, in fact, not only the sum of two odd
primes but the sum of two distinct odd primes (see Shen [66]). But in number
theory verification of a few thousand cases is not enough evidence to con-
vince mathematicians that something is probably true. For example, all the

9
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odd primes fall into two categories, those of the form 4n + 1 and those of the
form 4n + 3. Let 7,(x) denote all the primes <x that are of the form 4n + 1,
and let 75(x) denote the number that are of the form 4n + 3. It is known that
there are infinitely many primes of both types. By computation it was found
that 7,(x) < m4(x) for all x < 26,861. But in 1957, J. Leech [39] found that
for x = 26,861 we have n,(x) = 1473 and m4(x) = 1472, so the inequality
was reversed. In 1914, Littlewood [49] proved that this inequality reverses
back and forth infinitely often. That is, there are infinitely many x for which
my(x) < ma(x) and also infinitely many x for which #4(x) < 7,(x). Con-
jectures about prime numbers can be erroneous even if they are verified by
computation in thousands of cases.

Therefore, the fact that Goldbach’s conjecture has been verified for all
even numbers less than 33 x 10 is only a tiny bit of evidence in its favor.

Another way that mathematicians collect evidence about the truth of
a particular conjecture is by proving other theorems which are somewhat
similar to the conjecture. For example, in 1930 the Russian mathematician
Schnirelmann [61] proved that there is a number M such that every number
n from some point on is a sum of M or fewer primes:

n=p+ps+-+pug (for sufficiently large n).

If we knew that M were equal to 2 for all even n, this would prove Goldbach’s
conjecture for all sufficiently large n. In 1956 the Chinese mathematician
Yin Wen-Lin [78] proved that M < 18. That is, every number »n from some
point on is a sum of 18 or fewer primes. Schnirelmann’s result is considered a
giant step toward a proof of Goldbach’s conjecture. It was the first real
progress made on this problem in nearly 200 years.

A much closer approach to a solution of Goldbach’s problem was made
in 1937 by another Russian mathematician, I. M. Vinogradov [73], who
proved that from some point on every odd number is the sum of three primes:

n=p;+ps+ps (n odd, n sufficiently large).

In fact, this is true for all odd n greater than 3*'* (see Borodzkin [5]). To date,
this is the strongest piece of evidence in favor of Goldbach’s conjecture. For
one thing, it is easy to prove that Vinogradov’s theorem is a consequence of
Goldbach’s statement. That is, if Goldbach’s conjecture is true, then it is
easy to deduce Vinogradov’s statement. The big achievement of Vinogradov
was that he was able to prove his result without using Goldbach’s statement.
Unfortunately, no one has been able to work it the other way around and
prove Goldbach’s statement from Vinogradov’s.

Another piece of evidence in favor of Goldbach’s conjecture was found
in 1948 by the Hungarian mathematician Rényi [57] who proved that there
is a number M such that every sufficiently large even number n can be
written as a prime plus another number which has no more than M prime
factors:

n=p+ A
10
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where 4 has no more than M prime factors (n even, n sufficiently large).
If we knew that M = 1 then Goldbach’s conjecture would be true for all
sufficiently large n. In 1965 A. A. Buhstab [6] and A. I. Vinogradov [72]
proved that M < 3, and in 1966 Chen Jing-run [10] proved that M < 2.

We conclude this introduction with a brief mention of some outstanding
unsolved problems concerning prime numbers.

1. (Goldbach’s problem). Is there an even number >2 which is not the
sum of two primes?

2. Is there an even number > 2 which is not the difference of two primes?

Are there infinitely many twin primes?

4. Are there infinitely many Mersenne primes, that is, primes of the form
2P — | where p is prime?

S. Are there infinitely many composite Mersenne numbers?

6. Are there infinitely many Fermat primes, that is, primes of the form
22"+ 17

7. Are there infinitely many composite Fermat numbers?

8. Are there infinitely many primes of the form x? + 1, where x is an integer?
(It is known that there are infinitely many of the form x? + y?,and of the
form x% + y* + 1, and of the form x2 + y? + z2 + 1).

9. Are there infinitely many primes of the form x? + k, (k given)?

10. Does there always exist at least one prime between n? and (n + 1) for
every integer n > 1?

11. Does there always exist at least one prime between n”? and n* + n for
every integer n > 1?

12. Are there infinitely many primes whose digits (in base 10) are all ones?
(Here are two examples: 11 and 11,111,111,111,111,111,111,111.)

w

The professional mathematician is attracted to number theory because
of the way all the weapons of modern mathematics can be brought to bear on
its problems. As a matter of fact, many important branches of mathematics
had their origin in number theory. For example, the early attempts to prove
the prime number theorem stimulated the development of the theory of
functions of a complex variable, especially the theory of entire functions.
Attempts to prove that the Diophantine equation x" + y" = z" has no
nontrivial solution if n > 3 (Fermat’s conjecture) led to the development of
algebraic number theory, one of the most active areas of modern mathe-
matical research. Even though Fermat’s conjecture is still undecided, this
seems unimportant by comparison to the vast amount of valuable mathe-
matics that has been created as a result of work on this conjecture. Another
example is the theory of partitions which has been an important factor in the
development of combinatorial analysis and in the study of modular functions.

There are hundreds of unsolved problems in number theory. New
problems arise more rapidly than the old ones are solved, and many of the
old ones have remained unsolved for centuries. As the mathematician
Sierpinski once said, “...the progress of our knowledge of numbers is

11
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advanced not only by what we already know about them, but also by realizing
what we yet do not know about them.”

Note. Every serious student of number theory should become acquainted
with Dickson’s three-volume History of the Theory of Numbers [13], and
LeVeque’s six-volume Reviews in Number Theory [45]. Dickson’s History
gives an encyclopedic account of the entire literature of number theory up
until 1918. LeVeque’s volumes reproduce all the reviews in Volumes 1-44 of
Mathematical Reviews (1940-1972) which bear directly on questions com-
monly regarded as part of number theory. These two valuable collections
provide a history of virtually all important discoveries in number theory from
antiquity until 1972.

12



The Fundamental Theorem of
Arithmetic

1.1 Introduction

This chapter introduces basic concepts of elementary number theory such
as divisibility, greatest common divisor, and prime and composite numbers.
The principal results are Theorem 1.2, which establishes the existence of
the greatest common divisor of any two integers, and Theorem 1.10 (the
fundamental theorem of arithmetic), which shows that every integer greater
than 1 can be represented as a product of prime factors in only one way
(apart from the order of the factors). Many of the proofs make use of the
following property of integers.

The principle of induction If Q is a set of integers such that

(@) 1eQ,
(b) ne Q impliesn + 1€0Q,

then
(c) all integers >1 belong to Q.

There are, of course, alternate formulations of this principle. For example,
in statement (a), the integer 1 can be replaced by any integer k, provided that
the inequality >1 is replaced by >k in (¢). Also, (b) can be replaced by the
statement 1,2, 3, ..., n e Q implies (n + 1) e Q.

We assume that the reader is familiar with this principle and its use in
proving theorems by induction. We also assume familiarity with the following
principle, which is logically equivalent to the principle of induction.

The well-ordering principle If A4 is a nonempty set of positive integers, then A
contains a smallest member.

13



1: The fundamental theorem of arithmetic

Again, this principle has equivalent formulations. For example, “positive
integers” can be replaced by “integers > k for some k.”

1.2 Divisibility
Notation In this chapter, small latin letters a, b, ¢, d, n, etc., denote integers;
they can be positive, negative, or zero.

Definition of divisibility We say d divides n and we write d|n whenever n = ¢d
for some c¢. We also say that n is a multiple of d, that d is a divisor of n,
or that d is a factor of n. If d does not divide n we write d } n.

Divisibility establishes a relation between any two integers with the
following elementary properties whose proofs we leave as exercises for the
reader. (Unless otherwise indicated, the letters a, b, d, m, n in Theorem 1.1
represent arbitrary integers.)

Theorem 1.1 Divisibility has the following properties :

(@) nln (reflexive property)

(b) d}n and n|m implies d|m (transitive property)

(c) dln and d|m implies d)(an + bm) (linearity property)

(d) din implies ad|an (multiplication property)
(e) ad|an and a # 0 implies d|n (cancellation law)

® 1in (1 divides every integer)
(2) n|0 (every integer divides zero)
(h) O|n impliesn =0 (zero divides only zero)

(i) dlnandn # Oimplies |d| < |n| (comparison property)

() dlnand n|d implies |d| = |n|
(k) d|n and d # O implies (n/d)|n.

Note. If d1n then n/d is called the divisor conjugate to d.

1.3 Greatest common divisor

If d divides two integers a and b, then d is called a common divisor of a and b.
Thus, 1 is a common divisor of every pair of integers a and b. We prove now
that every pair of integers a and b has a common divisor which can be ex-
pressed as a linear combination of a and b.

Theorem 1.2 Given any two integers a and b, there is a common divisor d of a
and b of the form

d = ax + by,
14



1.3: Greatest common divisor

where x and y are integers. Moreover, every common divisor of a and b
divides this d.

PrOOF. First we assume that @ > 0 and b > 0. We use induction on n,
where n =a + b. If n = 0 then a = b = 0 and we can take d = 0 with
x = y = 0. Assume, then, that the theorem has been proved for 0, 1,2, . . .,
n — 1. By symmetry, we can assume a > b. If b =0 take d = a, x = 1,
y=0.1f b = 1 apply the theorem to a — b and b. Since (@ — b) + b =
a =n — b < n — 1, the induction assumption is applicable and there is a
common divisor d of a — b and b of the form d = (a — b)x + by. This d
also divides (a — b) + b = a so d is a common divisor of g and b and we
have d = ax + (y — x)b, a linear combination of a and b. To complete the
proof we need to show that every common divisor divides d. But a common
divisor divides a and b and hence, by linearity, divides d.

Ifa < 0 or b < 0 (or both), we can apply the result just proved to |a| and
{b|. Then there is a common divisor d of |a| and |b| of the form

d = |alx + |b}y.

Ifa<0,l|alx = —ax = a(—x). Similarly, if b < 0, [b]y = b(—y). Hence d
is again a linear combination of @ and b. [ ]

Theorem 1.3 Given integers a and b, there is one and only one number d with
the following properties :

(@ d=0 (d is nonnegative)
(b) dlaand d|b (d is a common divisor of a and b)
(c) ela and e|b implies e|d (every common divisor divides d).

Proor. By Theorem 1.2 there is at least one d satisfying conditions (b) and (c).
Also, —d satisfies these conditions. But if &’ satisfies (b) and (c), then d|d’
and d'|d, so |d| = |d’|. Hence there is exactly one d > 0 satisfying (b)
and (c). O

Note. In Theorem 1.3, d = 0 if, and only if, a = b = 0. Otherwise d > 1.

Definition The number d of Theorem 1.3 is called the greatest common
divisor (gcd) of @ and b and is denoted by (a, b) or by aDb. If (a, b) = 1
then a and b are said to be relatively prime.

The notation aDb arises from interpreting the gcd as an operation per-
formed on a and b. However, the most common notation in use is (a, b) and
this is the one we shall adopt, although in the next theorem we also use the
notation aDb to emphasize the algebraic properties of the operation D.

15



1: The fundamental theorem of arithmetic

Theorem 1.4 The gcd has the following properties :

@) (a,b)=(b,a)

aDb = bDa (commutative law)
(b) (a, (b, ¢) = ((a, ), ©)

aD(bDc) = (aDb)Dc (associative law)
(©) (ac, be) = |c|(a, b)

(ca)D(ch) = |c|(aDb) (distributive law)
d @l)=(ULa=1 (a0 =(0a=]al

aD1 = 1Da = 1, aD0 = 0Da = |a|.

PRrROOF. We prove only (c). Proofs of the other statements are left as exercises
for the reader.

Let d = (a, b) and let e = (ac, bc). We wish to prove that e = |c|d. Write
d = ax + by. Then we have

(1 cd = acx + bey.

Therefore cd|e because cd divides both ac and bc. Also, Equation (1) shows
that e|cd because elac and e|bc. Hence |e] = |cd|, or e = |c¢|d. L]

Theorem 1.5 Euclid’s lemma. If a|bc and if (a, b) = 1, then a|c.

PRrOOF. Since(a, b)) = 1 wecanwrite 1 = ax + by. Thereforec = acx + bcg
But a|acx and a|bcy, so a|c.

1.4 Prime numbers

Definition An integer n is called prime if n > 1 and if the only positive
divisors of n are 1 and n. If n > 1 and if » is not prime, then »n is called
composite.

ExaMmpPLES The prime numbers less than 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, and 97.

Notation Prime numbers are usually denoted by p, p’, p:, 9, ¢, q;.

Theorem 1.6 Every integer n > 1 is either a prime number or a product of
prime numbers.

PrOOF. We use induction on n. The theorem is clearly true for n = 2. Assume
it is true for every integer <n. Then if n is not prime it has a positive divisor
d # 1,d # n. Hence n = cd, where ¢ # n. But both c and dare <nand >1
so each of ¢, d is a product of prime numbers, hence so is ». O

Theorem 1.7 Euclid. There are infinitely many prime numbers.

16



1.5: The fundamental theorem of arithmetic

EucLID’s PROOF. Suppose there are only a finite number, say p,, p,, . . ., p,.
LetN =1+ p;py---p,. Now N > 1 so either N is prime or N is a product
of primes. Of course N is not prime since it exceeds each p;. Moreover,
no p; divides N (if p;| N then p; divides the difference N — p,p,---p, = 1).
This contradicts Theorem 1.6. W

Theorem 1.8 If a prime p does not divide a, then (p, a) =

PROOF. Let d = (p,a). Then d|p so d=1 or d =p. But d|la so d #
because p ¥ a. Hence d = 1. ﬁ

Theorem 1.9 If a prime p divides ab, then p|a or p|b. More generally, if a
prime p divides a product a, - - - a,, then p divides at least one of the factors.

PRrOOF. Assume p|ab and thatp } a. We shall prove that p|b. By Theorem 1.8,
(p, @) = 1 s0, by Euclid’s lemma, p|b.

To prove the more general statement we use induction on n, the number of
factors. Details are left to the reader.

1.5 The fundamental theorem of arithmetic

Theorem 1.10 Fundamental theorem of arithmetic. Every integer n > 1 can
be represented as a product of prime factors in only one way, apart from the
order of the factors.

PrOOF. We use induction on #. The theorem is true for n = 2. Assume, then,
that it is true for all integers greater than 1 and less than n. We shall prove
itis also true for n. If n is prime there is nothing more to prove. Assume, then,
that n is composite and that » has two factorizations, say

) n=piprPs = qidz 4
We wish to show that s = ¢ and that each p equals some q. Since p, divides
the product q,q, - - - ¢, it must divide at least one factor. Relabel ¢4, 45, ..., ¢,

so that p,|q,. Then p, = g, since both p, and g, are primes. In (2) we may
cancel p; on both sides to obtain

n/py=pyps=4qz 4.

If s> 1ort>1then 1 < n/p; < n. The induction hypothesis tells us that
the two factorizations of n/p; must be identical, apart from the order of the
factors. Therefore s = ¢ and the factorizations in (2) are also identical, apart
from order. This completes the proof. ]

Note. In the factorization of an integer n, a particular prime p may occur
more than once. If the distinct prime factors of n are p,,...,p, and if p;
occurs as a factor a; times, we can write

a

— a r
n=p*--p,

17



1: The fundamental theorem of arithmetic

or, more briefly,
r
n=[]p*
i=1

This is called the factorization of n into prime powers. We can also express 1
in this form by taking each exponent g; to be 0.

Theorem 1.11 If n = [ [i_{ p, the set of positive divisors of n is the set of
numbers of the form [ |i=, p', where 0 < ¢; < a; fori=1,2,...,r.
PrOOF. Exercise.
Note. If we label the primes in increasing order, thus:
Py =2, P, =3, P3=35,..., p, = the nth prime,

every positive integer n (including 1) can be expressed in the form

@
n= npiai
i=1

where now each exponent a; > 0. The positive divisors of n are all numbers of
the form

Ci

—

Di

i=1

where 0 < ¢; < a;. The products are, of course, finite.

Theorem 1.12 If two positive integers a and b have the factorizations

a= .l:-[lpiai’ b= l_[ P,

then their gcd has the factorization
(a, b) = [] p"
i=1

where each ¢; = min {a;, b;}, the smaller of a; and b;.

PROOF. Letd = | |2 p. Since ¢; < g;and ¢; < b, we haved|aand d|bsod
is a common divisor of @ and b. Let e be any common divisor of a and b, and
write e = [[2, p;*. Then e; < a; and e; < b; s0 ¢; < ¢;. Hence e|d, so d is
the ged of a and b. 1

1.6 The series of reciprocals of the primes

Theorem 1.13 The infinite series Y ;- ,1/p, diverges.

Proor. The following short proof of this theorem is due to Clarkson [11].
We assume the series converges and obtain a contradiction. If the series

18
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converges there is an integer k such that

= 1 1

m=k+1 Pm 2

Let Q = p, - - pi, and consider the numbers 1 + nQ forn = 1,2,... None
of these is divisible by any of the primes py, ..., p;. Therefore, all the prime
factors of ! + nQ occur among the primes p, . 1, px+ 2. . - . Therefore for each

r > 1 we have
Flosi(5 0
n=11+nQ t=1 m=k+1pm

since the sum on the right includes among its terms all the terms on the left.
But the right-hand side of this inequality is dominated by the convergent

geometric series
«© 1 t
20

Therefore the series ) o ; 1/(1 + nQ) has bounded partial sums and hence
converges. But this is a contradiction because the integral test or the limit
comparison test shows that this series diverges. #

Note. The divergence of the series ). /p, was first proved in 1737 by
Euler [20] who noted that it implies Euclid’s theorem on the existence of
infinitely many primes.

In a later chapter we shall obtain an asymptotic formula which shows
that the partial sums ) %_, 1/p, tend to infinity like log(log n).

1.7 The Euclidean algorithm

Theorem 1.12 provides a practical method for computing the ged (a, b) when
the prime-power factorizations of g and b are known. However, considerable
calculation may be required to obtain these prime-power factorizations and
it is desirable to have an alternative procedure that requires less computa-
tion. There is a useful process, known as Euclid’s algorithm, which does not
require the factorizations of a and b. This process is based on successive
divisions and makes use of the following theorem.

Theorem 1.14 The division algorithm. Given integers a and b with b > 0, there
exists a unique pair of integers q and r such that
a=bg+r, withO<r<hb.
Moreover, r = 0 if, and only if, b|a.

Note. We say that q is the quotient and r the remainder obtained when b
is divided into a.
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1: The fundamental theorem of arithmetic

PROOF. Let S be the set of nonnegative integers given by
S = {y:y = a — bx, x is an integer, y > 0}.

This is a nonempty set of nonnegative integers so it has a smallest member,
say a — bq. Letr = a — bq. Then a = bg + r and r > 0. Now we show that
r<b. Assume r>b. Then 0 <r—b<r. But r—beS since r — b=
a — b(g + 1). Hence r — b is a member of S smaller than its smallest member,
r. This contradiction shows that r < b. The pair g, r is unique, for if there were
another such pair, say ¢, v, then bg + r=bq' +r soblg —q)=r —r.
Hence b|(r — r). If ¥ — r # 0 this implies b < |r — r'|, a contradiction.
Therefore ¥ = r and q' = q. Finally, it is clear that r = 0 if, and only if,
bla. Od0

Note. Although Theorem 1.14 is an existence theorem, its proof actually
gives us a method for computing the quotient g and the remainder r. We
subtract from a (or add to a) enough multiples of b until it is clear that we have
obtained the smallest nonnegative number of the form a — bx.

Theorem 1.15 The Euclidean algorithm. Given positive integers a and b, where
bt a. Letry = a,r, = b, and apply the division algorithm repeatedly to

obtain a set of remainders ry, rs, . . ., I, ',y defined successively by the
relations
ro =Triq, + ra, O<ry,<ry,
ry =raq; + s, 0<ry<ry,
rn—2=rn—lqn—l+rm 0<rn<rn—19
Fp—y = Tpqy + P+ Fpy1 = 0

Thenr,, the last nonzero remainder in this process, is (a, b), the gcd of a and b.

ProoF. There is a stage at which r,,; = 0 because the r; are decreasing
and nonnegative. The last relation, r,_, = r,q, shows that r,|r,_ . The next
to last shows that r,|r,-,. By induction we see that r, divides each r;. In
particular r,|r, = b and r,|ro = a, so r, is a common divisor of a and b.
Now let d be any common divisor of a and b. The definition of r, shows that
d|r,. The next relation shows that d|r;. By induction, d divides each r; so
d|r,. Hence r, is the required gcd. d

1.8 The greatest common divisor of more
than two numbers

The greatest common divisor of three integers a, b, ¢ is denoted by (a, b, c¢)and
is defined by the relation

(a, b, c) = (a, (b, ¢)).
20



Exercises for Chapter 1

By Theorem 1.4(b) we have (a, (b, ¢)) = ((a, b), ¢} so the gcd depends only on
a, b, ¢ and not on the order in which they are written.

Similarly, the ged of n integers ay, ..., a, is defined inductively by the
relation

(@, ..., a,) = (ay, (@, ..., a,)

Again, this number is independent of the order in which the a; appear.

Ifd = (a,, ..., a,) it is easy to verify that d divides each of the q; and that
every common divisor divides d. Moreover, d is a linear combination of the
a;. That is, there exist integers x, ..., X, such that

@y, ...,a,)=ax; + -+ a,x,.

If d = 1 the numbers are said to be relatively prime. For example, 2, 3, and 10
are relatively prime.

If(a;, a;) = 1 wheneveri # jthenumbersay, ..., a,aresaid to be relatively
prime in pairs. If a,, . .., a, are relatively prime in pairs then (aq, ..., q,) = L.
However, the example (2, 3, 10) shows that the converse is not necessarily
true.

Exercises for Chapter 1

In these exercises lower case latin letters a, b, ¢, . .., X, y, z represent integers.
Prove each of the statements in Exercises 1 through 6.

1. If{a,b) = l and if c|a and d|b, then (¢, d) = 1.

2. If (a, b) = (a, ¢) = 1, then (g, bc) = L.

3. If(a,b) = I, then (d", b*) = Lforalln > 1, k > 1.

Zfﬁ' 4, If (a,b) = 1, then (a + b, a — b) is either 1 or 2.

5. If {a, b) = 1, then (a + b, a* — ab + b?) is either 1 or 3.
6. If (a, b) = 1 and ifd|(a + b), then (a, d) = (b, d) = 1.

7. A rational number a/b with (a, b) = 1 is called a reduced fraction. If the sum of two
reduced fractions is an integer, say (a/b) + (c/d) = n, prove that |b{ = |d|.

8. An integer is called squarefree if it is not divisible by the square of any prime. Prove
that for every n > 1 there exist uniquely determined a > 0 and b > 0 such that
n = a’b, where b is squarefree.

9. Foreach of the following statements, either give a proof or exhibit a counter example.
(a) If b*|n and a®|n and a®> < b?, then a|b.
(b) If b? is the largest square divisor of n, then a*|n implies a|b.

10. Given x and y, let m = ax + by, n = ¢x + dy, where ad — bc = +1. Prove that
(m, n) = (x, y).

11. Prove that n* + 4 is composite if n > 1.

21



1: The fundamental theorem of arithmetic

In Exercises 12, 13, and 14, q, b, ¢, m, n denote positive integers.

12.

13.

14,

15.
16.
17.

18.

19.

20.

21.

22,

23.

24,

22

For each of the following statements either give a proof or exhibit a counter example.

(a) If a"|b" then a|b.
(b) If n"|m™ then n|m.
(c) Ifa"|2b" and n > 1, then alb.

If (a, b) = 1 and (a/b)" = n, prove that b = 1.

(b) If n is not the mth power of a positive integer, prove that n'/™ i

is irrational.

If (a, b) = 1 and ab = ¢", prove that a = x" and b = y" for some x and y. [Hint:
Consider d = (a, ¢).]

Prove that every n > 12 is the sum of two composite numbers.
Prove that if 2" — 1 is prime, then # is prime.
Prove that if 2" + 1 is prime, then n is a power of 2.

If m # n compute the ged (@*” + 1, a*" + 1)in terms of a. [Hint: Let A, = a*" + 1
and show that 4,|(4,, — 2)if m > n.]

The Fibonacci sequence 1,1,2,3,5,8,13,21,34, . .. isdefined by the recursion formula
G,+1 = a, + a,_1, With a; = a, = 1. Prove that (4,, a,+,) = 1 for each n.

Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a
linear combination of 826 and 1890.

The least common multiple (Ilcm) of two integers a and b is denoted by [a, b] or by
aMb, and is defined as follows:

[a, b] = |ab|f{a,b) ifa+#O0andb #0,
[a,b] =0 ifa=0o0rb=0

Prove that the lem has the following properties:

(a) Ifa=T]%,p"andb = []Z, pl then [a, b] = [ |2, p, where ¢; = max{a;, b;}.
(b) (aDb)Mc = (aMc)D(bMc).

(c) (aMb)Dc = (aDc)M(bDc).

(D and M are distributive with respect to each other)

Prove that (a, b) = (a + b, [a, b]).

The sum of two positive integers is 5264 and their least common multiple is 200,340.
Determine the two integers.

Prove the following multiplicative property of the ged:

a k b h
(ah, bk) = (@, b)(h, "’(m ’ m)(m : m)

In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (b, k) = 1.



Exercises for Chapter 1

Prove each of the statements in Exercises 25 through 28. All integers are
positive.

25.
26.

27.

28.
29.

If (a, b) = 1 there exist x > 0 and y > 0 such that ax — by = 1.

If (a, b) = 1and x* = y* then x = n®and y = n®for some n. [Hint : Use Exercises 25
and 13.]

(@) If (a, b) = 1 then for every n > ab there exist positive x and y such that n =
ax + by.
(b) If (a, b) = 1 there are no positive x and y such that ab = ax + by.

Ifa > 1then (@ - 1,a" — 1) = ™" — 1.

Given n > 0, let S be a set whose elements are positive integers <2n such that if
and barein S and a # b then a ¥ b. What is the maximum number of integers that S
can contain? [Hint: S can contain at most one of the integers 1, 2, 2%, 23, ... at
mostone of 3,3-2,3-22, .. etc.]

. If n > 1 prove that the sum

is not an integer.
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Arithmetical Functions and
Dirichlet Multiplication

2.1 Introduction

Number theory, like many other branches of mathematics, is often concerned
with sequences of real or complex numbers. In number theory such sequences
are called arithmetical functions.

Definition A real- or complex-valued function defined on the positive
integers is called an arithmetical function or a number-theoretic function.

This chapter introduces several arithmetical functions which play an
important role in the study of divisibility properties of integers and the
distribution of primes. The chapter also discusses Dirichlet multiplication,
a concept which helps clarify interrelationships between various arith-
metical functions.

We begin with two important examples, the Mdbius function p(n) and
the Euler totient function ¢(n).

2.2 The Mobius function u(n)

Definition The Mobius function u is defined as follows:

ml) =1
Ifn > 1, write n = p;** - - p,™. Then
un) = (“1)kifa1 =a,=--=a-=1,
M(n) = 0 otherwise.

Note that u(n) = 0 if and only if n has a square factor > 1.
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2.3: The Euler totient function ¢(n)

Here is a short table of values of uny:

n: 1 2 3 4 5 6 7 8 9 10
wn): 1 -1 -1 0 -1 1 -1 0 0 1

The Mobius function arises in many different places in number theory.
One of its fundamental properties is a remarkably simple formula for the
divisor sum Y 4, p(d), extended over the positive divisors of n. In this formula,
[x] denotes the greatest integer <x.

Theorem 2.1 If n > 1 we have
1 1 ifn=1,
S uld) = [— L
din n 0 lfn > 1.
PRrOOF. The formula is clearly true if n = 1. Assume, then, that n > 1 and
writen = p,* - - - p,**. In the sum Z,”,, u(d) the only nonzero terms come from

d = 1 and from those divisors of n which are products of distinct primes.
Thus

Yould) = (1) + pulpy) + -+ wp) + wpip) + o0+ WP 1Py

din

+ oo+ upipy Pl

k AV AV
=1+(1>(~1)+(2>(—1) +---+(k)(—1) =(1~1f=0 M

2.3 The Euler totient function ¢(n)

Definition If n > 1 the Euler totient ¢(n) is defined to be the number of
positive integers not exceeding » which are relatively prime to n; thus,

(1) o) = ¥ 1,
k=1

where the ' indicates that the sum is extended over those k relatively
prime to n.

Here is a short table of values of ¢(n):

n: 1 2 3 4 5 6 7 8 9 10
o(n): 1 1 2 2 4 2 6 4 6 4

As in the case of u(n) there is a simple formula for the divisor sum ) 4, ¢(d).
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2: Arithmetical functions and Dirichlet multiplication

Theorem 2.2 If n > 1 we have

Y o(d) = n.

din

PROOF. Let S denote theset {1, 2, . . ., n}. We distribute the integers of Sinto
disjoint sets as follows. For each divisor d of n, let

Ad) = {k:(k,n) = d, 1 <k < n}.

That is, A(d) contains those elements of S which have the gcd d with n.
The sets A(d) form a disjoint collection whose union is S. Therefore if f(d)
denotes the number of integers in A(d) we have

@) T fd)=n.

dln

But (k,n) = d if and only if (k/d,n/d) =1, and 0 < k < n if and only if
0 < k/d < n/d. Therefore, if we let g = k/d, there is a one-to-one correspon-
dence between the elements in A(d) and those integers g satisfying 0 < g < n/d,
(g, n/d) = 1. The number of such g is ¢(n/d). Hence f(d) = ¢(n/d) and (2)
becomes

Y ¢@(n/d) = n.

din

But this is equivalent to the statement ) 4, ¢(d) = n because when d runs
through all divisors of n so does n/d. This completes the proof. »

2.4 A relation connecting ¢ and u

The Euler totient is related to the M&bius function through the following
formula:

Theorem 2.3 If n > 1 we have
n
oln) = . u(d) .
din d

PrOOF. The sum (1) defining ¢(n) can be rewritten in the form

“ 1
o= £ [

where now k runs through all integers <n. Now we use Theorem 2.1 with n
replaced by (n, k) to obtain

om=73 Y ud="73 Y ud.

k=1 dl(n, k) k=1 din
dlk
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2.5: A product formula for ¢(n)

For a fixed divisor d of n we must sum over all those kintherangel < k <n
which are multiples of d. If we write k = gd then 1 < k < n if and only if
1 < g < n/d. Hence the last sum for ¢(n) can be written as

njd n/d n
)= Y ud) =) ud))y 1= Z#(d)g-
ding=1 d|n gq=1 din
This proves the theorem. (|

2.5 A product formula for ¢(n)

The sum for ¢(n) in Theorem 2.3 can also be expressed as a product extended
over the distinct prime divisors of n.

Theorem 2.4 For n > 1 we have

3) o) =n]] (1 - 1).

pin p
Proor. For n = 1 the product is empty since there are no primes which
divide 1. In this case it is understood that the product is to be assigned the
value 1.

Suppose, then, that n > 1 and let p,, ..., p, be the distinct prime divisors
of n. The product can be written as

@ 10 -)-10-3)

1 1 1 (—1y
=1-Y—+)—- o ———
Zpi ZPin Zpipjpk DiP2 " Dr

On the right, in a term such as ) 1/p;p ;Px it is understood that we consider
all possible products p;p;p, of distinct prime factors of n taken three at a
time. Note that each term on the right of (4) is of the form +1/d where d
is a divisor of n which is either 1 or a product of distinct primes. The numera-
tor +1 is exactly u(d). Since u(d) = 0 if d is divisible by the square of any p;
we see that the sum in (4) is exactly the same as

_/_tid_)
dlnd.

This proves the theorem. O

Many properties of ¢(n) can be easily deduced from this product formula.
Some of these are listed in the next theorem.
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2: Arithmetical functions and Dirichlet multiplication

Theorem 2.5 Euler’s totient has the following properties:

(@) o(p*) = p* — p* ! for prime p and o > 1.

(b) @(mn) = p(m)p(n)(d/¢(d)), where d = (m, n).

(©) @lmn) = @(m)ep(n) if (m, n) = 1.

(d) a|b implies p(a)| @(b).

(€) o(n) is even for n > 3. Moreover, if n has r distinct odd prime factors,
then 27| p(n).

PRrOOF. Part (a) follows at once by taking n = p* in (3). To prove part (b)

we write
o) _ 1‘[(1 _ 1).

n pin p

Next we note that each prime divisor of mn is either a prime divisor of m
or of n, and those primes which divide both m and n also divide (m, n). Hence

H(l - %)1‘[(1 - 1) @lm) o(r)

4 m n

(p(mn) — <1 _ 1) — pim pln —
mn plmn 14 1 1) (P(d) '
pl(l:n1n)<

p d
for which we get (b). Part (c) is a special case of (b).

Next we deduce (d) from (b). Since a|b we have b = ac where 1 < ¢ < b.
If c =b then a =1 and part (d) is trivially satisfied. Therefore, assume
¢ < b. From (b) we have

_ olac) = I )
&) o(b) = ¢lac) = p(a)e(c) @ do(a) o)’

where d = (a, ¢). Now the result follows by induction on b. For b =1 it
holds trivially. Suppose, then, that (d) holds for all integers <b. Then it
holds for ¢ so ¢(d)| ¢(c) since d | c. Hence the right member of (5) is a multiple.
of ¢(a) which means ¢(a)| (b). This proves (d).

Now we prove (e). If n = 2%, a > 2, part (a) shows that ¢(n) is even. If n
has at least one odd prime factor we write

p—1 n
= e T — 1 = — 1 A
@(n) npllnl > H, > plhl -1 C(n)pl l”I(p )

where c(n) is an integer. The product multiplying c(n) is even so ¢(n) is even.
Moreover, each odd prime p contributes a factor 2 to this product, so 2"| @(n)
if n has r distinct odd prime factors. O
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2.6: The Dirichlet product of arithmetical functions

2.6 The Dirichlet product of arithmetical
functions

In Theorem 2.3 we proved that

on) = 3, d) .

din

The sum on the right is of a type that occurs frequently in number theory.

These sums have the form
n
Z S (d)g<a>
din

where fand g are arithmetical functions, and it is worthwhile to study some
properties which these sums have in common. We shall find later that sums
of this type arise naturally in the theory of Dirichlet series. It is fruitful to
treat these sums as a new kind of multiplication of arithmetical functions,
a point of view introduced by E. T. Bell [4] in 1915.

Definition If f and g are two arithmetical functions we define their Dirichlet
product (or Dirichlet convolution) to be the arithmetical function A
defined by the equation

hn) = ¥, f(d)g<g>-
dln

Notation We write f * g for h and (f * g)(n) for h(n). The symbol N will be
used for the arithmetical function for which N(n) = n for all n. In this nota-
tion, Theorem 2.3 can be stated in the form

@ =pux*N.
The next theorem describes algebraic properties of Dirichlet multi-
plication.
Theorem 2.6 Dirichlet multiplication is commutative and associative. That is,
for any arithmetical functions f, g, k we have
f*g=g=*f (commutative law)
(f*g)xk= fx(g=*k) (associative law).

Proor. First we note that the definition of fx ¢ can also be expressed as
follows:

(f xg)) = Y fla)b),

ab=n

where a and b vary over all positive integers whose product is n. This makes
the commutative property self-evident.
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2: Arithmetical functions and Dirichlet multiplication

To prove the associative property we let A = g * k and consider f * 4 =
f *(g * k). We have

(f * A)n) = Z f(@)A(d) Z f(@ Z g(b)k(c)

= 3 S@gbko)

In the same way, if we let B = f * g and consider B * k we are led to the same
formula for (B * k)(n). Hence f * A = B = k which means that Dirichlet
multiplication is associative. U

We now introduce an identity element for this multiplication.

Definition The arithmetical function 7 given by
1 1 ifn=1,
Inmp=|-|= .
(m) |:nj| {0 ifn>1,
is called the identity function.
Theorem 2.7 For all fwe have I f = fx I = f.
PrROOF. We have

o0 =5 sai3) = % sl | = son

din

since [d/n] = 0ifd < n. O

2.7 Dirichlet inverses and the Modbius
inversion formula

Theorem 2.8 If f is an arithmetical function with f(1) # O there is a unique
arithmetical function f~*, called the Dirichlet inverse of f, such that
frft=fT1xf=1L
Moreover, {1 is given by the recursion formulas
1
)= —, f'n)= Zf() 'd) forn> 1.
S ) i

d<n

PrOOF. Given f, we shall show that the equation (f x f~!)(n) = I(n) has a
unique solution for the function values f ~'(n). For n = 1 we have to solve the
equation

(f = f7H1) = I(1)
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2.7: Dirichlet inverses and the Mébius inversion formula

which reduces to

fOfi =1

Since f(1) # O there is one and only one solution, namely f (1) = 1/f(1).
Assume now that the function values f ~!(k) have been uniquely determined
for all k < n. Then we have to solve the equation (f = f~)(n) = I(n), or

Z«>lw=
din
This can be written as

ff Yn) + d;f( ) = 0.

If the values f ~'(d) are known for all divisors d < n, there is a uniquely
determined value for f ~*(n), namely,

7 /()

d<n

flm) =

since f(1) # 0. This establishes the existence and uniqueness of f ! by
induction. d

Note. We have (f * g)(1) = f(1)g(1). Hence, if f(1) # 0 and g(1) # O then
(f * g)(1) # 0. This fact, along with Theorems 2.6, 2.7, and 2.8, tells us that,
in the language of group theory, the set of all arithmetical functions f with
f(1) # 0 forms an abelian group with respect to the operation #, the identity
element being the function I. The reader can easily verify that

(f*g) 7' =f""xg™" if f(1) # Oand g(1) # 0.

Definition We define the unit function u to be the arithmetical function such
that u(n) = 1 for all n.

Theorem 2.1 states that Zdl,, iw(d) = I(n). In the notation of Dirichlet
multiplication this becomes

wru=1

Thus u and g are Dirichlet inverses of each other:

1

u=upu" and p=u"l

This simple property of the Mdbius function, along with the associative
property of Dirichlet multiplication, enables us to give a simple proof of the
next theorem.
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2: Arithmetical functions and Dirichlet multiplication

Theorem 2.9 M&bius inversion formula. The equation

(6) fn) = ; 9(d)
implies
™ o) = £ sian(;)

Conversely, (7) implies (6).

Proor. Equation (6) states that f = g * u. Multiplication by u gives f* u =
(g*u)*pu=g=@x*p =gx*I =g, which is (7). Conversely, multiplication
of f * u = g by u gives (6). O

The Mébius inversion formula has alre _gy been 1llustrated by the pair of
formulas in Theorems 2.2 and 2.3: ) ,& ¢L
WN\/

n=Y od, on=y
din d|n

2.8 The Mangoldt function A(n)

We introduce next Mangoldt’s function A which plays a central role in the
distribution of primes.

Definition For every integer n > 1 we define
logp if n = p™for some prime p and some m > 1,
An) = :
0 otherwise.

Here is a short table of values of A(n):

n: 1 2 3 4 5 6 7 8 9 10
An): 0 log2 log3 log2 log5 0 log7 log2 log3 O

The proof of the next theorem shows how this function arises naturally
from the fundamental theorem of arithmetic.

Theorem 2.10 If n > 1 we have
®) logn =Y A().

din

PrOOF. The theorem is true if # = 1 since both members are 0. Therefore,
assume that n > 1 and write

r
n= Hpkak-
k=1
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2.9: Multiplicative functions

Taking logarithms we have

log n= Z ay 10g Dr-
k=1

Now consider the sum on the right of (8). The only nonzero terms in the sum
come from those divisors d of the form p," for m = 1,2,...,a, and k =
1,2,...,r. Hence

Y Ad) =) Z Ap™ = ;; Z log py = Z a log p, = log n,

din k=1m=1

which proves (8). O
Now we use Mobius inversion to express A(n) in terms of the logarithm.

Theorem 2.11 If n > 1 we have
Am) =), u(d)log =~ pdlogd.

d|n d d|n
Proor. Inverting (8) by the Mobius inversion formula we obtain

Am) =3 d)log =logn Y pld) — ) wd)og d

d|n dln dln

= I(nlog n — Y pld)log d.

dln

Since I(n)log n = 0 for all n the proof is complete. O

2.9 Multiplicative functions

We have already noted that the set of all arithmetical functions f with
f(1) # 0 forms an abelian group under Dirichlet multiplication. In this
section we discuss an important subgroup of this group, the so-called multi-
plicative functions.

Definition An arithmetical function f is called multiplicative if f is not
identically zero and if
f(mn) = f(m)f(n) whenever (m, n) = 1.

A multiplicative function f is called completely multiplicative if we also
have

f(mn) = f(m)f(n) forallm,n.

ExaMpLE 1 Let f(n) = n*, where « is a fixed real or complex number. This
function is completely multiplicative. In particular, the unit function u = f,
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2: Arithmetical functions and Dirichlet multiplication

is completely multiplicative. We denote the function f, by N* and call it the
power function.

ExaMPLE 2 The identity function I(n) = [1/n] is completely multiplicative.

ExamPLE 3 The Mébius function is multiplicative but not completely muiti-
plicative. This is easily seen from the definition of u(n). Consider two
relatively prime integers m and n. If either m or n has a prime-square factor
then so does mn, and both u(mn) and u(m)u(n) are zero. If neither has a square
factor write m = p, ---p, and n = g, - - - q, where the p; and g; are distinct
primes. Then p(m) = (— 1), w(n) = (—1) and u(mn) = (— 1" = pm)u(n).
This shows that u is multiplicative. It is not completely multiplicative since
pd) = 0 but p2)u(2) = 1.

ExaMpLE 4 The Euler totient ¢(rn) is multiplicative. This is part (c) of Theorem
2.5. It is not completely multiplicative since ¢(4) = 2 whereas ¢(2)o(2) = 1.

ExampLE 5 The ordinary product fg of two arithmetical functions f and g
is defined by the usual formula

(fg)(n) = f(n)g(n).
Similarly, the quotient f/g is defined by the formula

(—f—>(n) = &Q whenever g(n) # 0.
g g(n)

If f and g are multiplicative, so are fg and f/g. If f and g are completely
multiplicative, so are fg and f/g.

We now derive some properties common to all multiplicative functions.

Theorem 2.12 If f is multiplicative then f(1) = 1.

ProOOF. We have f(n) = f(1)f(n) since (n, 1) = 1 for all n. Since f is not
identically zero we have f(n) # O for some n, so f(1) = 1. O

Note. Since A(1) = 0, the Mangoldt function is not multiplicative.
Theorem 2.13 Given f with f(1) = 1. Then:
(@) f is multiplicative if, and only if,
f@* - p") = f(0:") - f(0,)

for all primes p; and all integers a; > 1.
(b) If f is multiplicative, then f is completely multiplicative if, and only if,

J0%) = f)

for all primes p and all integers a > 1.
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2.10: Multiplicative functions and Dirichlet multiplication

ProoF. The proof follows easily from the definitions and is left as an exercise
for the reader.

2.10 Multiplicative functions and Dirichlet
multiplication

Theorem 2.14 If f and g are multiplicative, so is their Dirichlet product f * g.
ProOF. Let & = f* g and choose relatively prime integers m and n. Then
mn
hmn) = 3 f (C)g<7>-
clmn

Now every divisor ¢ of mn can be expressed in the form ¢ = ab where aim
and b|n. Moreover, (a, b) = 1, (m/a, n/b) = 1, and there is a one-to-one
correspondence between the set of products ab and the divisors ¢ of mn.
Hence

hiomn) = a‘sz(ab)g(%) : ;nf(a)f(bw(g)g(g)
bin bin
-2 f(a)g(%) > f(b)g(g> = Hmh(n)

This completes the proof. O

Warning. The Dirichlet product of two completely multiplicative functions
need not be completely multiplicative.

A slight modification of the foregoing proof enables us to prove:
Theorem 2.15 If both g and f * g are multiplicative, then fis also multiplicative.

ProoOF. We shall assume that f is not multiplicative and deduce that f * g is
also not multiplicative. Let h = f * g. Since f is not multiplicative there
exist positive integers m and n with (m, n) = 1 such that

fmn) # f(m)f(n).

We choose such a pair m and n for which the product mnis as small as possible.
If mn=1 then f(1) # f(1)f(1) so f(1)# L. Since h(l) = f(l)g(l) =
f(1) # 1, this shows that h is not multiplicative.
If mn > 1, then we have f(ab) = f(a)f(b) for all positive integers a and b
with (g, b) = 1 and ab < mn. Now we argue as in the proof of Theorem 2.14,
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2: Arithmetical functions and Dirichlet multiplication

except that in the sum defining h(mn) we separate the term corresponding to
a = m, b = n. We then have

hm) = 3 f(ab)g<%> + flmmg(t) = 3 f(a)f(b)g(g)g(g) + f(mn)
bln bin
ab<mn ab<mn

> f(cﬂg(%)% f(b)g(g) ~ fm) ) + fGmn)

afm
= h(m)h(n) — f(m)f(n) + f(mn).
Since f(mn) # f(m)f(n) this shows that h(mn) # h(m)h(n) so h is not multi-
plicative. This contradiction completes the proof. O
Theorem 2.16 If g is multiplicative, so is g~*, its Dirichlet inverse.
PRroOF. This follows at once from Theorem 2.15 since bothgandg x g~ ! = I

are multiplicative. (See Exercise 2.34 for an alternate proof.) O

Note. Theorems 2.14 and 2.16 together show that the set of multiplicative
functions is a subgroup of the group of all arithmetical functions f with
f) #0.

2.11 The inverse of a completely
multiplicative function

The Dirichlet inverse of a completely multiplicative function is especially
easy to determine.

Theorem 2.17 Let f be multiplicative. Then f is completely multiplicative if,
and only if,

f7Yn) = un)f(n) foralln> 1.
PRrOOF. Let g(n) = u(n)f(n). If fis completely multiplicative we have
g* f)n) = ;u(d)f @f G) = f(n) ; wd) = fn)(n) = I(n)
since f(1) = 1 and I(n) = O for n > 1. Hence g = 1.
Conversely, assume f ~1(n) = u(n)f(n). To show that f is completely

multiplicative it suffices to prove that f(p*) = f(p)* for prime powers. The
equation f~Y(n) = u(n) f(n) implies that

%u(d)f @f (S) =0 foralln> 1.
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2.12: Liouville’s function A(n)

Hence, taking n = p° we have
O fDfEF + u@) fP)f (1) =0,

from which we find f(p°) = f(p)f(p*~"). This implies f(p®) = f(p)°, so f is
completely multiplicative. O

ExaMPLE The inverse of Euler’s ¢ function. Since ¢ = p* N we have
@ '=u"'« N ' But N"! = uN since N is completely multiplicative, so

-1

@ '=p" 1% uN = u* puN.
Thus

¢~ '(n) = ) du(d).

d|n

The next theorem shows that

o 'n) =111 - p).

pln

Theorem 2.18 If f is multiplicative we have

2ud)f@=T1a - f).

din pln

PROOF. Let
g(n) = Y. u(d)f(d).

dln

Then g is multiplicative, so to determine g(n) it suffices to compute g(p?). But

g = d}Z Hd)fd) = u)f(1) + up)f(p) =1 - f(p).
s

Hence

gin) =]Tg0 =[]0 - f(p). o

pln pln

2.12 Liouville’s function A(n)

An important example of a completely multiplicative function is Liouville’s
function A, which is defined as follows.

Definition We define A(1) = 1, and if n = p{* - - - p® we define
Ao = (= 1y
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2: Arithmetical functions and Dirichlet multiplication

The definition shows at once that A is completely multiplicative. The next
theorem describes the divisor sum of 4.

Theorem 2.19 For every n > 1 we have

1 ifnis a square,

an 0 otherwise.

Also, A~ (n) = | u(n)| for all n.

PROOF. Let g(n) = Y 4,A(d). Then g is multiplicative, so to determine
g(n) we need only compute g(p°) for prime powers. We have

g = Y M) =1+ Ap) + Ap?) + -+ + A9

dip*

et e [0 ifaisodd
T R Gl 1 ifaiseven.

Hence if n = [[f., p/* we have g(n) = [], g(p*). If any exponent g; is
odd then g(p;**) = 0so g(n) = 0.If all the exponents g; are even then g(p;*) = 1
for all i and g(n) = 1. This shows that g(n) = 1 if n is a square, and g(n) = 0
otherwise. Also, 17 1(n) = u(n)A(n) = p(n) = |um)|. O

2.13 The divisor functions o (n)

Definition For real or complex o and any integer n > 1 we define

o n) =Y d°

din

the sum of the ath powers of the divisors of n.

The functions g, so defined are called divisor functions. They are multi-
plicative because g, = u * N% the Dirichlet product of two multiplicative
functions

When a = 0, g4(n) is the number of divisors of n; this is often denoted by
d(n).

When o = 1, 6,(n) is the sum of the divisors of n; this is often denoted by
o(n).

Since o, is multiplicative we have

0P -+ ™) = 0u(p1*) - - 0Bi™).

To compute o,(p?) we note that the divisors of a prime power p° are

a

l’p,p29"',p7
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2.14: Generalized convolutions

hence
paz(a+1) _ 1
O.a(pa)=1a+pa+p2“+...+p‘m=——paj-—- lftx#O

The Dirichlet inverse of g, can also be expressed as a linear combination
of the ath powers of the divisors of n.

Theorem 2.20 For n > 1 we have

o=y d“u(d)u@.

d|n

PROOF. Since 6, = N** u and N*is completely multiplicative we have

o, = (N xu™! = (uN?) * p. O

2.14 Generalized convolutions

Throughout this section F denotes a real or complex-valued function
defined on the positive real axis (0, + o) such that F(x) = 0for0 < x < 1.

Sums of the type
Y a(n)F <—§—>

arise frequently in number theory. Here « is any arithmetical function.
The sum defines a new function G on (0, +o0) which also vanishes for
0 < x < 1. We denote this function G by a o F, Thus,

@ F)x) =Y a(n)FG).

n<x
If F(x) = 0 for all nonintegral x, the restriction of F to the integers is an
arithmetical function and we find that
(o © F)(m) = (o0 * F)(m)

for all integers m > 1, so the operation o can be regarded as a generalization
of the Dirichlet convolution x.

The operation o is, in general, neither commutative nor associative.
However, the following theorenmserves as a useful substitute for the associa-
tive law.

Theorem 2.21 Associative property relating - and *. For any arithmetical
functions a and f we have

© ao(foF)=(*p)eF.
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2: Arithmetical functions and Dirichlet multiplication

ProoF. For x > 0 we have

@o(Be Y= Tolw ¥ ﬁ(m)F< n) =3 a(n)ﬂ(m)F<—x—>
n<x m<xjn mn<x mn
k X
= Z(Z a(n)ﬁ( )) <ﬁ> N B)(k)F< )
k<x\nlk k<x
= {(a* f) ° F}(x).
This completes the proof. O

Next we note that the identity function I(n) = [1/n] for Dirichlet convolu-
tion is also a left identity for the operation o. That is, we have

(IoF)(x)= Y [%]F(%) = F(x).

Now we use this fact along with the associative property to prove the follow-
ing inversion formula.

Theorem 2.22 Generalized inversion formula. If a has a Dirichlet inverse o™ !
then the equation

]

(10) Gix) = za(n)F<§>
implies
(1) Fx) = Yo 1(n)G()

Conversely, (11) implies (10).
PrOOF. If G = oo Fthen
loG=ato(@eF)=(¢ '*a)o F=1oF=F,

Thus (10) implies (11). The converse is similarly proved. O
The following special case is of particular importance.

Theorem 2.23 Generalized M6bius inversion formula. If a is completely
multiplicative we have

G(x) = Y an)F <§> if, and only if, F(x) = ). y(n)a(n)G( >

PROOF. In this case a~'(n) = u(m)a(n). O
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2.15: Formal power series

2.15 Formal power series

In calculus an infinite series of the form

e2]

(12) Y a(mx" = a(0) + a(l)x + a)x*> + --- + a(Wx" + - -

n=0

is called a power series in x. Both x and the coefficients a(n) are real or
complex numbers. To each power series there corresponds a radius of
convergence r > 0 such that the series converges absolutely if |x| <r
and diverges if | x| > r. (The radius r can be + 0.)

In this section we consider power series from a different point of view.
We call them formal power series to distinguish them from the ordinary
power series of calculus. In the theory of formal power series x is never
assigned a numerical value, and questions of convergence or divergence are
not of interest.

The object of interest is the sequence of coefficients

(13) (a(0), a(1), ..., a(n), ...).

All that we do with formal power series could also be done by treating the
sequence of coefficients as though it were an infinite-dimensional vector with
components a(0), a(1), ... But for our purposes it is more convenient to
display the terms as coefficients of a power series as in (12) rather than as
components of a vector as in (13). The symbol x" is simply a device for
locating the position of the nth coefficient a(n). The coefficient a(0) is called
the constant coefficient of the series.

We operate on formal power series algebraically as though they were
convergent power series. If 4(x) and B(x) are two formal power series, say

A(x) = i a(n)x” and B(x) = i b(n)x",
n=0

n=0

we define:

Equality: A(x) = B(x) means that a(n) = b(n) for all n > 0.
Sum: A(x) + B(x) = Y 2, (a(n) + b(n))x".
Product: A(x)B(x) = Y2, c(n)x", where

n

(14) cn) = . a(k)b(n — k).

k=0

The sequence {c(n)} determined by (14) is called the Cauchy product
of the sequences {a(n)} and {b(n)}.

The reader can easily verify that these two operations satisfy the commuta-
tive and associative laws, and that multiplication is distributive with respect
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2: Arithmetical functions and Dirichlet multiplication

to addition. In the language of modern algebra, formal power series form a
ring. This ring has a zero element for addition which we denote by 0,

0= ) a(n)x", wherea(n)=0foralln >0,
n=0
and an identity element for multiplication which we denote by 1,

1= ) a(n)x", wherea(0)=1anda(n)=0forn> 1.

n=0

A formal power series is called a formal polynomial if all its coefficients
are 0 from some point on.

For each formal power series A(x Z,, o a(n)x" with constant coefficient
a(0) # Othere1saun1quelydeterm1ned formal power series B(x) = ) = b(n)x"
such that A(x)B(x) = 1. Its coefficients can be determined by solving the
infinite system of equations

a(0)b(0) = 1
a(0)b(1) + a(1)b(0) = 0
a(0)b(2) + a(Db(1) + a(2b(0) =

in succession for b(0), b(1), b(2), . . . The series B(x) is called the inverse of A(x)
and is denoted by A(x) ! or by 1/4(x).
The special series

Ax)=1+ ) ax"
n=1

is called a geometric series. Here a is an arbitrary real or complex number.
Its inverse is the formal polynomial

B(x) =1 — ax.
In other words, we have
1 =1+ ia"x"
1 —ax =1

2.16 The Bell series of an arithmetical
function

E. T. Bell used formal power series to study properties of multiplicative
arithmetical functions.

Definition Given an arithmetical function f and a prime p, we denote by
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2.16: The Bell series of an arithmetical function

f,{x) the formal power series
70 = T 107
and call this the Bell series of f modulo p.
Bell series are especially useful when fis multiplicative.

Theorem 2.24 Uniqueness theorem. Let f and g be multiplicative functions.
Then f = g if, and only if,

fAx) = g,x) for all primes p.

PrOOF. If f = g then f(p") = g(p") for all p and all n > 0, so f,(x) = g,(x).
Conversely, if f,(x) = g,(x) for all p then f(p") = g(p") for all n > 0. Since f
and g are multiplicative and agree at all prime powers they agree at all the
positive integers, so f = g. t

It is easy to determine the Bell series for some of the multiplicative
functions introduced earlier in this chapter.

ExaMpLE 1| M&bius function u. Since p(p) = —1 and p(p") = 0forn = 2
we have

px) =1—x.
ExaMPLE 2 Euler’s totient ¢. Since ¢(p") = p" — p" ! for n > 1 we have
<.0,,(X) =1 + Z (pn _ pn—l)xn — Z pnxn - x Z ‘ann
n=1 n=0 n=0

1 —x

- - it = .
( x)ngopx o

ExampLE 3 Completely multiplicative functions. If fis completely multiplica-
tive then f(p") = f(p)" for all n > 0 so the Bell series f,(x) is a geometric
series,

d 1
fp(x) = n;)f(P) X = 1—_@
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2: Arithmetical functions and Dirichlet multiplication

In particular we have the following Bell series for the identity function I,
the unit function u, the power function N* and Liouville’s function 4:

I(x)=1.
- = 1
up(x)—n;ox ={_x
Na( )_1+ i an..n __ 1
p(x) = ,,=1px_1—p“‘x'
= —1)x" = .
AP(X) ,,;o( )x 1+ x

2.17 Bell series and Dirichlet multiplication
The next theorem relates multiplication of Bell series to Dirichlet multi-
plication.

Theorem 2.25 For any two arithmetical functions f and g let h = f* g. Then
for every prime p we have

hy(x) = f(x)gp(x).
PRrOOF. Since the divisors of p" are 1, p, p2, . . ., p" we have
i pn n e
hp"y =Y f (d)g<*) = 2, f@)e" ")
d|p" d k=0

This completes the proof because the last sum is the Cauchy product of the
sequences { f(p")} and {g(p")}. O
ExaMPLE 1 Since p2(n) = A~ !(n) the Bell series of u? modulo p is

1
pi(x) = @ =1+x

ExAMPLE 2 Since 6, = N** u the Bell series of ¢, modulo p is

1 1 1
—px 1—x 1 —o,px+ px*

(00px) = N3lxhx) = 7

ExaMpLE 3 This example illustrates how Bell series can be used to discover
identities involving arithmetical functions. Let

f) =2,



2.18: Derivatives of arithmetical functions

where (1) = Oand v(n) = kifn = p,* .- - p,* Then fis multiplicative and its
Bell series modulo p is

2x 1+ x

1-x 1-=x

[ =1+ Y20 =14 Yox"=1+
n=1 n=1

Hence
Sox) = pp (xuylx)
which implies f = u® * u, or

2'0 =% ().

din

2.18 Derivatives of arithmetical functions

Definition For any arithmetical function / we define its derivative f' to be
the arithmetical function given by the equation

f'(n) = f(nlogn forn> 1.

ExampLEs Since I(n)logn = 0 for all » we have I' = 0. Since u(n) = 1
for all n we have u/(n) = log n. Hence, the formula 2,,,,, A(d) = log n can be
written as

(15) Axu=u.

This concept of derivative shares many of the properties of the ordinary
derivative discussed in elementary calculus. For example, the usual rules for
differentiating sums and products also hold if the products are Dirichlet
products.

Theorem 2,26 If f and g are arithmetical functions we have .

@ (f+g9) =1 +47.
b) (fxg) = f'*g+ [f*g.
© (f Y = —f"=(f * )"}, provided that f(1) # 0.

Proor. The proof of (a) is immediate. Of course, it is understood that
f + g is the function for which (f + g)(n) = f(n) + g(n) for all n.
To prove (b) we use the identity log n = log d + log(n/d) to write

TEPIOED) f(d)g(Z)log n

din

= X flalog dg(;';) +3 f(d)g(g)log(g)
=(f"*g)n) + (f * g)n).
45



2: Arithmetical functions and Dirichlet multiplication

To prove (c) we apply part (b) to the formula I’ = 0, remembering that
I = f + 1 This gives us

O=(fxf" Y= "1+ (/7Y
)
() =~f"*xf"1
Multiplication by f ~! now gives us
(7 ==(f"*fH*fT ==+ (fT1xf71)
But f~'% f~1 = (f * f)" ! so(c)is proved. O

2.19 The Selberg identity

Using the concept of derivative we can quickly derive a formula of Selberg
which is sometimes used as the starting point of an elementary proof of the
prime number theorem.

Theorem 2.27 The Selberg identity. For n > 1 we have

Amlog n + ¥, A(d)A<f> =Y u(d)log? >
i)~ & d

dfn
Proor. Equation (15) states that A = u = u'. Differentiation of this equation
gives us

Nxu+Axu =u"
or,sinceu’ = A * u,

ANxu+Ax(Axu)=u".

Now we multiply both sides by u = u~! to obtain

AN+ AxA=u"xp

This is the required identity. O

Exercises for Chapter 2
1. Find all integers n such that
(@) o) = n/2, (b) o(n) = ¢(2n), (©) o(n) = 12.
2. For each of the following statements either give a proof or exhibit a counter example.

(a) If (m, n) = 1 then (p(m), ¢(n)) = 1.
(b) If n is composite, then (n, @(n)) > 1.
(c) If the same primes divide m and n, then nep(m) = me(n).
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Exercises for Chapter 2

3. Prove that
¢ #)
on) & o’

4, Prove that ¢(n) > n/6 for all n with at most 8 distinct prime factors.

5. Define v(1) = 0, and for n > 1 let v(n) be the number of distinct prime factors of n.
Let f = u * v and prove that f(n) is either 0 or 1.

6. Prove that

Y ud) =

d?(n
and, more generally,

Y ud) =

{0 if m*|n for some m > 1,
d%jn

1 otherwise.

The last sum is extended over all positive divisors d of n whose kth power also
divide n.

7. Let u(p, d) denote the value of the M&bius function at the ged of p and d. Prove that
for every prime p we have

1 ifn=1,

Y ouldulp,d) =12 ifn=plax=1,
din 0 otherwise.

8. Prove that

> udlog™d =0

dln
if m > 1 and n has more than m distinct prime factors. [Hint: Induction.]

9, If x is real, x > 1, let @(x, n) denote the number of positive integers <x that are
relatively prime to n. [Note that ¢(n, n) = @(n).] Prove that

olx, n) = d%ud)[] and%(p(d 3)-[]

In Exercises 10, 11, and 12, d(n) denotes the number of positive divisors of n.
10. Prove that [, ¢ = n*®'2,

11. Prove that d(n) is odd if, and only if, n is a square.

12. Prove that Y, d(t)* = (3. d(1))*.

13. Product form of the Mébius inversion formula. If f(n) > 0 for all n and if a(n) is real,

a(1) # 0, prove that

g(n) = [] f@dF™® if, and only if, f(n) = [] g(@*"'?,

d|n din

where b = a™ !, the Dirichlet inverse of a.
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2: Arithmetical functions and Dirichlet multiplication

14. Let f(x) be defined for all rational x in 0 < x < 1 and let

F(n) = g <> F*(n) = él f(%)

k,m)=1

(a) Prove that F* = u x F, the Dirichlet product of u and F.
(b) Use (a) or some other means to prove that u(n) is the sum of the primitive nth
roots of unity:

n
/J(n) —= Z e2m’k/n.
(k‘n=)= 1

15. Let @, {n) denote the sum of the kth powers of the numbers <n and relatively prime
to n. Note that @4(n) = @(n). Use Exercise 14 or some other means to prove that

Zwk(d) Pttt

k
din n

16. Invert the formula in Exercise 15 to obtain, forn > 1,

1
¢1(n) = 5 ne(n),  and @an) = = n 2o(n) + - 3 H (1 - p).
pln

Derive a corresponding formula for ¢,(n).
17. Jordan’s totient J, is a generalization of Euler’s totient defined by

Jm =n [ (1 = p7H.

pln
(a) Prove that
=Yy ;Ld)( ) and nt=Y Jd)
d|n dln
(b) Determine the Bell series for J,.
18. Prove that every number of the form 2%~ (2% — 1) is perfect if 2* — 1 is prime.

19. Prove that if n is even and perfect then n = 247 (2% — 1) for some a > 2. It is not
known if any odd perfect numbers exist. It is known that there are no odd perfect
numbers with less than 7 prime factors.

20. Let P(n) be the product of the positive integers which are <n and relatively prime

to n. Prove that
4 N\ d
n)—n“""’ﬂ(d) .

dln

21. Let f(n) = [ﬁ] — [/n — 1]. Prove that f is multiplicative but not completely
multiplicative.

22. Prove that

=2 ‘P(d)‘fo( )

din
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23.

4.

25.

26.

27.

Exercises for Chapter 2

and derive a generalization involving a,(n). (More than one generalization is
possible.)

Prove the following statement or exhibit a counter example. If f is multiplicative,
then F(n) = [ ], f(d) is multiplicative.

Let A(x) and B(x) be formal power series. If the product 4(x)B(x) is the zero series,
prove that at least one factor is zero. In other words, the ring of formal power series
has no zero divisors.

Assume f'is multiplicative. Prove that:
(@) f~*(n) = u(n)f(n) for every squarefree n.
() £ = f(p)> = f(p*) for every prime p.
Assume f is multiplicative. Prove that f is completely multiplicative if, and only
if, £ ~1(p") = O for all primes p and all integers a = 2.
(a) If f is completely multiplicative, prove that
flgem)=(f-9+(f -

for all arithmetical functions g and h, where f - g denotes the ordinary product,

(f -9)n) = f(n)gn).
(b) If f is muitiplicative and if the relation in (a) holds for g = pand h = p?,
prove that f is completely multiplicative.

28. (a) If f is completely multiplicative, prove that

29,

(f9t=fg"!
for every arithmetical function g with g(1) # 0.

(b) If f is multiplicative and the relation in (a) holds for g = u~*, prove that f is
completely multiplicative.

Prove that there is a multiplicative arithmetical function g such that

z F(lkmy = ';f(d)gG)

for every arithmetical function f. Here (k, n) is the gcd of n and k. Use this identity to
prove that

Y (k, mul(k, n) = pln).
k=1

. Let f be multiplicative and let g be any arithmetical function. Assume that

@ SO =SSP - 9@ f"") for all primes pand all n > 1.

Prove that for each prime p the Bell series for f has the form

1
1= fp)x + glp)x*

Conversely, prove that (b) implies (a).

(b) Jolx) =
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2: Arithmetical functions and Dirichlet multiplication

31. (Continuation of Exercise 30.) If g is completely multiplicative prove that statement
(a) of Exercise 30 implies

fmf) =} g@d)f < P >
d|(m, n)

where the sum is extended over the positive divisors of the gcd (m, n). [Hint : Consider
first the case m = p° n = p°.]

32. Prove that

afmlo,n) = ) do ( )
dl(m n)

33. Prove that Liouville’s function is given by the formula

i = 1)

34. This exercise describes an alternate proof of Theorem 2.16 which states that the
Dirichlet inverse of a multiplicative function is multiplicative. Assume g is multi-
plicative and let f = g~ 1.

(a) Prove that if p is prime then for k > 1 we have
k
feH == Yap e .
t=1

(b) Let h be the uniquely determined multiplicative function which agrees with f
at the prime powers. Show that h = g agrees with the identity function I at the
prime powers and deduce that h x g = I. This shows that f = hso f is multi-
plicative.

35. If f and g are multiplicative and if a and b are positive integers with a > b, prove

that tlle 1unct10n h glven by
d4|n :

is also multiplicative. The sum is extended over those divisors d of n for which d°
divides n.

MOBIUS FUNCTIONS OF ORDER k.
If k > 1 we define y,, the M6bius function of order k, as follows:

#k(l) = 11
w(n) = 0if p**1in for some prime p,

.uk(n)z(_1)'ifn=plk“.prknpiai’ OSai<k,

w(n) = 1 otherwise.
In other words, p,(n) vanishes if » is divisible by the (k + 1)st power of some
prime; otherwise, y,(n) is 1 unless the prime factorization of n contains the
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kth powers of exactly r distinct primes, in which case y(n) = (—1)". Note that
i, = p, the usual Md&bius function.
Prove the properties of the functions p, described in the following exercises.

36. If k > 1 then w,(n*) = u(n).

37. Each function y, is multiplicative.

k( ): kﬂ(ik) k—l<f>'
pudn deInu 7 -1

L) = 3 ).

&+ 1|n

38. If k > 2 we have

39. If k > 1 we have

40. For each prime p the Bell series for g, is given by

1 — 2xF 4 x*+!

1 —x

(plx) =
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Averages of
Arithmetical Functions

3.1 Introduction

The last chapter discussed various identities satisfied by arithmetical func-
tions such as u(n), @(n), A(n), and the divisor functions o,(n). We now inquire
about the behavior of these and other arithmetical functions f(n) for large
values of n.

For example, consider d(n), the number of divisors of n. This function takes
on the value 2 infinitely often (when n is prime) and it also takes on arbitrarily
large values when n has a large number of divisors. Thus the values of d(n)
fluctuate considerably as n increases.

Many arithmetical functions fluctuate in this manner and it is often
difficult to determine their behavior for large n. Sometimes it is more fruitful
to study the arithmetic mean

foy == . Sk
k=1

Averages smooth out fluctuations so it is reasonable to expect that the mean
values f(n) might behave more regularly than f(n). This is indeed the case
for the divisor function d(n). We will prove later that the average d(n) grows
like log n for large n; more precisely,

. dn)
" GACTRE

This is described by saying that the average order of d(n) is log n.
To study the average of an arbitrary function f we need a knowledge
of its partial sums Y r_, f(k). Sometimes it is convenient to replace the
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3.2: The big oh notation. Asymptotic equality of functions

upper index n by an arbitrary positive real number x and to consider instead
sums of the form

Y k).

k<x

Here it is understood that the index k varies from 1 to [x], the greatest
integer <x.If0 < x < 1 the sum is empty and we assign it the value 0. Our
goal is to determine the behavior of this sum as a function of x, especially
for large x.

For the divisor function we will prove a result obtained by Dirichlet
in 1849, which is stronger than (1), namely

) Y dk) = x log x + (2C — )x + 0(/%)

h<x

for all x > 1. Here C is Euler’s constant, defined by the equation

1 1 1
= i I I | )
(3) C ,,li,r{:)(l +2+3+ +n ogn)

The symbol O(\/ x) represents an unspecified function of x which grows no

faster than some constant times \/;c This is an example of the “big oh”
notation which is defined as follows.

3.2 The big oh notation. Asymptotic equality
of functions

Definition If g(x) > 0 for all x > a, we write
f(x) = O(g(x)) (read: “ f(x) is big oh of g(x)”)

to mean that the quotient f(x)/g(x) is bounded for x > a; that is, there
exists a constant M > 0 such that

| f(x)] < Mg(x) forallx > a.

An equation of the form

f(x) = h(x) + O(g(x))
means that f(x) — h(x) = O(g(x)).. We note that f(t) = O(g(t)) for t > a
implies {7 f(¢) dt = O({} g(¢) dt) for x > a.

Definition If
fx)

lim— =
x—a g(x)

we say that f(x) is asymptotic to g(x) as x — o0, and we write

f(x) ~ g(x) as x — o0.
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3: Averages of arithmetical functions

For example, Equation (2) implies that

Y d(k) ~ xlog x asx — .

k<x

In Equation (2) the term x log x is called the asymptotic value of the sum;
the other two terms represent the error made by approximating the sum
by its asymptotic value. If we denote this error by E(x), then (2) states that

@) E(x) = 2C — )x + O(/x).

This could also be written E(x) = O(x), an equation which is correct but
which does not convey the more precise information in (4). Equation (4)
tells us that the asymptotic value of E(x) is (2C — 1)x.

3.3 Euler’s summation formula

Sometimes the asymptotic value of a partial sum can be obtained by com-
paring it with an integral. A summation formula of Euler gives an exact
expression for the error made in such an approximation. In this formula
{£] denotes the greatest integer <t.

Theorem 3.1 Euler’s summation formula. If f has a continuous derivative f'
on the interval [ v, x], where 0 < y < x, then

) 5 ﬂm=f7nur+fa—Uhﬂoa

+ fO)(x] — x) — fOULY] = p).
‘*‘?’PROOF. Let m = [y], kK = [x]. For integers n and n — 1 in[y, x] we have

f;mrmm=f(wwvmm=m—nuw—fm—m

n—1

={nf(n) — (n = Df(n — 1} = f(n).

Summing fromn =m + 1ton = k we find

k k
J [1fWdt= Y ()~ (—Dfa—D}— Y fl)

n=m+1 y<n<x

= kf(k) — mfm) — Y f(n),

y<ngx

hence

© ZfW=—fomm+mm—ww

=_rmfmm+mm—wm
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Integration by parts gives us

[ 1@y dt = xf(x) — 9 () — | 0 di

and when this is combined with (6) we obtain (5). ]

3.4 Some elementary asymptotic formulas

The next theorem gives a number of asymptotic formulas which are easy
consequences of Euler’s summation formula. In part (a) the constant C is
Euler’s constant defined in (3). In part (b), {(s) denotes the Riemann zeta
function which is defined by the equation

> 1
ls) = Zn— ifs > 1,

and by the equation /l

{(s) = lim <Z - — l-s‘) fo<s<l1. 9?—\ .

x>0 \n<x -

Theorem 3.2 If x > 1 we have:

(a) n;x— logx + C + OG). @/@

(b) Z— -+ {(s)+ O(x™%) if s>0,5# 1.

n<x N - \($
© T 5=004") ifs> 1.

s ?/q,
alisd

d) Zn“=a—+—+0(x") ifa > 0.

n<x 1

Proor. For part (a) we take f(z) = 1/t in Euler’s summation formula to

obtain
1 * dt *t — [t] x — [x]
= & _ 1=
; n fl t fl g x

=1ogx—f _[t]dt+1+0<l>
1

=logx+1—fwt:z[tJdt+fwt—[t]dt+0<)
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3: Averages of arithmetical functions

The improper integral [¥ (¢t — [t])t~ 2 dt exists since it is dominated by

[ t72 dt. Also,
o - 11
Osj d [I]dt<j St =-
2 Lt x

X

so the last equation becomes

Z— logx+1—rt—tmdt+0<>

nsx 1 i

This proves (a) with

C=1—J t_z[t]dt
t

1

Letting x — oo in (a) we find that

1im<z 1—1ogx)= 1 - rt_tzmdt,

X \n<Xx 1

so C is also equal to Euler’s constant.
To prove part (b) we use the same type of argument with f(x) = x™°
where s > 0, s # 1. Euler’s summation formula gives us

1 dt t—[t] x —[x]
;n—— —_SJ: ez dt +1— —

>

s [ o
Therefore
Q > L+ o,
et 1 —35
where

C(s)=1—l —sflwf_—mdt.

— 5 ts+1

If s > 1, the left member of (7) approaches {(s) as x — co and the terms x* ~*
and x~* both approach 0. Hence C(s) = {(s)if s > L. If0 <s <1, x™" >0

and (7) shows that
1 -5
11m< Yy —— s> = C(s).

X = 0 n<x

Therefore C(s) is also equal to {(s) if 0 < s < 1. This proves (b).
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3.5: The average order of d(n)

To prove (c) we use (b) with s > 1 to obtain

1 1 1-s
Y=l - ¥ o=+ 0 = 0

n>x n<x s—1

since x° < x5,
Finally, to prove (d) we use Euler’s summation formula once more with
f(t) = t* to obtain

Yot = fxt“ dt + o fxta—l(f = [Ddt +1 - (x — [x]x*

nsx 1 1

a+ 1 1 X
=X + 0<afta-1 dt> + 0(x%)

a+1 a+1 N
xa+1
~a+1+0(x). O

3.5 The average order of d(n)

In this section we derive Dirichlet’s asymptotic formula for the partial sums
of the divisor function d(n).

Theorem 3.3 For all x > 1 we have

®) Y d(n) = x log x + 2C — 1)x + 0(/x),

n<x
where C is Euler’s constant.

PRrOOF. Since d(n) = Y ,, 1 we have

Ydm=y ¥ 1

n<x n<x din

This is a double sum extended over n and d. Since d|n we can write n = gd
and extend the sum over all pairs of positive integers g, d with gd < x. Thus,

©) Tdm= 31

n<x .
gd<x

This can be interpreted as a sum extended over certain lattice points in the
qd-plane, as suggested by Figure 3.1. (A lattice point is a point with integer
coordinates.) The lattice points with gd = n lie on a hyperbola, so the sum in
(9) counts the number of lattice points which lie on the hyperbolas corre-
spondington = 1,2,..., [x]. For each fixed d < x we can count first those
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3: Averages of arithmetical functions

Figure 3.1

lattice points on the horizontal line segment 1 < ¢ < x/d, and then sum over
all d < x. Thus (9) becomes

(10) Ydm=Y ¥ 1

n<x d<x g<x/d

Now we use part (d) of Theorem 3.2 with « = 0 to obtain

Y 1= g + 0(1).
q<x/d
Using this along with Theorem 3.2(a) we find
x 1
Sdm = T {2 ; 0(1)} —x¥ 240

n<x d<x d<x

= x{log x+C+ 0(%)} + O(x) = x log x + O(x).

This is a weak version of (8) which implies

Y dn) ~ xlogx asx— o

n<x

and gives log n as the average order of d(n).

To prove the more precise formula (8) we return to the sum (9) which
counts the number of lattice points in a hyperbolic region and take advantage
of the symmetry of the region about the line g = d. The total number of
lattice points in the region is equal to twice the number below the line g = d
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3.5: The average order of d(n)

(VA NN N [L_)(I] — d lattice points on this segment

Figure 3.2

plus the number on the bisecting line segment. Referring to Figure 3.2 we

see that
Ydm=2Y {[ﬂ - d} + [Vx1

n<x d<Jx

Now we use the relation [ y] = y + O(1) and parts (a) and (d) of Theorem 3.2
to obtain

Ydm =25 {3 —d+ 0(1)} + 0(/)

n<x d<Jx
1
=%y --2% d + 0(/x)
d<x d<x

_ 2x{log Jx+C+ o<%>} - 2{% + O(ﬁ)} + 0(/%)

= xlog x + 2C — 1)x + O(/x).
This completes the proof of Dirichlet’s formula. O

Note. The error term O(\/;) can be improved. In 1903 Voronoi proved
that the error is O(x'/? log x); in 1922 van der Corput improved this to
O(x3%1°9), The best estimate to date is O(x*2>"*#) for every ¢ > 0, obtained
by Kolesnik [35] in 1969. The determination of the infimum of all 8 such that
the error term is O(x®) is an unsolved problem known as Dirichlet’s divisor
problem. In 1915 Hardy and Landau showed that inf § > 1/4.
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3. Averages of arithmetical functions

3.6 The average order of the divisor
functions a,(n)

The case « = 0 was considered in Theorem 3.3. Next we consider real « > 0
and treat the case o = 1 separately.

Theorem 3.4 For all x > 1 we have
1
(11) Y o,(n) = 3 {(2)x? + O(x log x).

Note. It can be shown that {(2) = n2/6. Therefore (11) shows that the
average order of 6,(n) is n2n/12.

Proor. The method is similar to that used to derive the weak version of
Theorem 3.3. We have

Yom= 3 Ya= %qu= Y Xy

n<x n<x gln d<x g<x/d
gd<sx
1/x\? x x? 1 1
= iy i | QU — 30 —
12i{2(d> +0<d>} 212&‘F * <x£§xd>
x? 1 1 1 5
=< ——+{2)+ Ol = | + Olx log x)= = {(2)x* + O(x log x),
2 X X 2
where we have used parts (a) and (b) of Theorem 3.2. d

Theorem 3.5 If x > land a > 0, a # 1, we have
e+ 1)
2=
where f = max{1, a}.

ProOF. This time we use parts (b) and (d) of Theorem 3.2 to obtain

2o =2 2qa=23 ) g

n<x n<x gin d<x g<x/d

1 X a+1 X xa+l 1 . 1
i) @) e o)

+1
X {"_a + o+ 1)+ Ox° 1)}

x4+ 0(xh),

o+ 1

—
xl—a
" 0<x“{ @) + O(x'“)})
1—a
e+ D) . NRCE
——a+—1x 1+0(x)+0(1)+0(x)—————a+1 X 1+0(xﬂ)

where f = max{1, a}. O
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3.7: The average order of ¢(n)

To find the average order of o,(n) for negative a we write « = — f8, where
B >0.

Theorem 3.6 If > 0 let 5 = max{0, 1 — B}. Then if x > 1 we have
Yo_4ny=(B+ Dx +0(x% if B#1,

n<x

={2)x + O(log x) if =1

PrOOF. We have
1 1
o_4n) = — = — 1
ngx g n<x din dﬁ d<x dﬂ qszx/d
1 {x 1
R T AT AR I P R PV

The last term is O(log x) if = 1 and O(x?) if B # 1. Since

x!-#
Z iy + B+ Dx + O(x"%) = {(B + Dx + O(x'F)
this completes the proof. O

3.7 The average order of ¢(n)

The asymptotic formula for the partial sums of Euler’s totient involves the
sum of the series

£ 1)
n=1 n2
This series converges absolutely since it is dominated by ) 7, n~2.In a later

chapter we will prove that

1 6

(12) gn OB

Assuming this result for the time being we have

ngx 'u(n) nzl ﬂrgn) n;x %

6 1 6 1
=t 0(&72) =t 0(35)

by part (c) of Theorem 3.2. We now use this to obtain the average order of ¢(n).
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3: Averages of arithmetical functions

Theorem 3.7 For x > 1 we have

(13) Z o(n) = o, x2 + O(x log x),
so the average order of @(n) is 3n/n’.

ProOOF. The method is similar to that used for the divisor functions. We start
with the relation

on) = Y. pd)
din
and obtain
Lot) = T Tudy= T uda= Tud 3 q

qd<x

2o () + o)

1 d 1
=§x22 %2—)+0(x2 2)

d<x d<x

1 6 1 3
== xz{—z + 0<—>} + O(xlog x) = S x* + O(xlogx). 0O
2 T X s

3.8 An application to the distribution of
lattice points visible from the origin

The asymptotic formula for the partial sums of ¢(n) has an interesting
application to a theorem concerning the distribution of lattice points in the
plane which are visible from the origin.

Definition Two lattice points P and Q are said to be mutually visible if the
line segment which joins them contains no lattice points other than the
endpoints P and Q.

Theorem 3.8 Two lattice points (a, b) and (m, n) are mutually visible if, and
only if, a — m and b — n are relatively prime.

Proor. It is clear that (a, b) and (m, n) are mutually visible if and only if
(a — m, b — n)is visible from the origin. Hence it suffices to prove the theorem
when (m, n} = (0, 0).

Assume (g, b) is visible from the origin, and let d = (a, ). We wish to
prove thatd = 1.1fd > 1then a = da’, b = db’ and the lattice point (@, b') is
on the line segment joining (0, 0) to (a, b). This contradiction proves that
d=1.
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3.8: An application to the distribution of lattice points visible from the origin

Conversely, assume (a, b) = 1.Ifa lattice point (¢, b') is on the line segment
joining (0, 0) to (a, b) we have

a = ta, b =th, whereQ <t <1,

Hence ¢ is rational, so t = r/s where r, s are positive integers with (r, s) = L.
Thus

sa’ = ar and sb’ = br,
so s|ar, s|br. But (s,r) = 1 so s|a, s|b. Hence s = 1 since (a, b) = 1. This
contradicts the inequality 0 < t < 1. Therefore the lattice point (a, b) is
visible from the origin.

There are infinitely many lattice points visible from the origin and it is
natural to ask how they are distributed in the plane.
Consider a large square region in the xy-plane defined by the inequalities

x| <r, |yl<r

Let N(r) denote the number of lattice points in this square, and let N'(r)
denote the number which are visible from the origin. The quotient N'(r)/N{r)
measures the fraction of those lattice points in the square which are visible
from the origin. The next theorem shows that this fraction tends to a limit as
r —» o0. We call this limit the density of the lattice points visible from the
origin.

Theorem 3.9 The set of lattice points visible from the origin has density 6/n*.

PrOOF. We shall prove that
N(@) 6

N S

The eight lattice points nearest the origin are all visible from the origin.
(See Figure 3.3.) By symmetry, we see that N'(r) is equal to 8, plus 8 times the
number of visible points in the region

{(x,y9):2<x<r, l<y<x},
(the shaded region in Figure 3.3). This number is
Nr=8+8 ) Y 1=8 3 oM.

2<n<r 1<m<n 1<n<r
(m,n)=1

Using Theorem 3.7 we have

24
N'(r) = - rt + O(r logr).
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3: Averages of arithmetical functions

Figure 3.3

But the total number of lattice points in the square is
N(r) = 2[r] + 1)? = 2r + 0(1))* = 4r% + O(r)

SO

24 , 6 log r
N’(r)_?r + O(rlogr)_P+ 0< . )
= pm =
N(r) r* + O(r) 1+ 0(1)
r

Hence as r — oo we find N'(r)/N(r) - 6/n2.

O

Note. The result of Theorem 3.9 is sometimes described by saying that a
lattice point chosen at random has probability 6/n” of being visible from the
origin. Or, if two integers a and b are chosen at random, the probability that

they are relatively prime is 6/n2.

3.9 The average order of u(n) and of A(n)

The average orders of u(n) and A(n) are considerably more difficult to deter-
mine than those of ¢(n) and the divisor functions. It is known that u(n) has

average order 0 and that A(n) has average order 1. That is,

lim 1 Y un)y=0

X n<x

and

lim 2 Y A = 1,

Xx— o0 X n<x



3.10: The partial sums of a Dirichlet product

but the proofs are not simple. In the next chapter we will prove that both these
results are equivalent to the prime number theorem,

lim n(x)log x _

X W X

1,

where n(x) is the number of primes < x.

In this chapter we obtain some elementary identities involving u(n) and
A(n) which will be used later in studying the distribution of primes. These
will be derived from a general formula relating the partial sums of arbitrary
arithmetical functions f and g with those of their Dirichlet product f * g.

3.10 The partial sums of a Dirichlet product
Theorem 3.10 If h = fx g, let

Hx)= Y hin), F(x)= } f(n), and G(x)= } gln).

n<x nsx n<x

Then we have

(14) Hx) =} f (")GG) = Y gnF <%>

n<x ngx

Proor. We make use of the associative law (Theorem 2.21) which relates the
operations - and *. Let

0 f0<x <,
U(x)———{l ifx > 1.

Then F = f o U, G = g o U, and we have
foG=fo(goU)=(f*g)oU=H,
goF:go(foU):(g*f)OU=H.

This completes the proof. (]

If g(n) = 1 for all n then G(x) = [x], and (14) gives us the following
corollary:

Theorem 3.11 If Fx) = ), <, f(n) we have

(15) DWIGEDY f(n)[ﬂ -3 F(x)

n<xdin n<x n<x n
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3. Averages of arithmetical functions

3.11 Applications to u(n) and A(n)

Now we take f(n) = u(n) and A(n) in Theorem 3.11 to obtain the following
identities which will be used later in studying the distribution of primes.

Theorem 3.12 For x > 1 we have

(16) ) M(n)[ ]

n<x

and

17) ¥ A(n)[ ] = log [x]".

n<x

PrROOF. From (15) we have

Zu(n)[ } Y Y ud=Y [l]zl

n<x n<x dln n<x n
and

Y A(n)|: :| =Y Y Ad) = ) logn = log[x]". ]

n<x n<x din n<x

Note. The sums in Theorem 3.12 can be regarded as weighted averages
of the functions u(n) and A(n).

In Theorem 4.16 we will prove that the prime number theorem follows
from the statement that the series

(n)

1 B

MM 8

converges and has sum 0. Using (16) we can prove that this series has bounded
partial sums.

Theorem 3.13 For all x > 1 we have

un)

n<x N

(18) <1,

with equality holding only if x < 2.

ProOOF. If x < 2 there is only one term in the sum, u(1) = 1. Now assume
that x > 2. For eachreal y let {y} = y — [ y]. Then

1= a2 |- (2= {2} =2 40— 5 ot
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3.11: Applications to u(n) and A(x)

Since 0 < {y} < 1 this implies

2 4|1+ g umf

n<x n<x

N =

fl=1+ 2

=1+{x}+ Y {}<1+{x}+[x]—1—x

2<n<x

Dividing by x we obtain (18) with strict inequality. O
We turn next to identity (17) of Theorem 3.12,

(17) y A(n)[ ] — log[x]",

n<x

and use it to determine the power of a prime which divides a factorial.

Theorem 3.14 Legendre’s identity. For every x > 1 we have

(19) [x]! = ] p®

P<Xx

where the product is extended over all primes <x, and

) p) = i[%].

m=1}{ P

Note. The sum for a(p) is finite since [x/p™] = 0 for p > x.

PROOF. Since A(n) = 0 unless n is a prime power, and A(p™) = log p, we have

log[x]!= } A(n)[ ] > Z [ ]log p= Y aplogp,
n<x p<xm=1 p<x
where a(p) is given by (20). The last sum is also the logarithm of the product
in (19), so this completes the proof. O

Next we use Euler’s summation formula to determine an asymptotic
formula for log[x]!.

Theorem 3.15 If x > 2 we have

21 log[x]! = x log x — x + O(log x),
and hence
(22) Y A(n)[ :| = x log x — x + O(log x).
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3: Averages of arithmetical functions

Proor. Taking f(z) = log ¢ in Euler’s summation formula (Theorem 3.1)
we obtain

S logn = J log t dt + f — 0 4 (x - [xDlog x

n<x
Yt — [t
=xlogx—x+1+f t[]
1

dt + O(log x).

This proves (21) since

e[, * 1 _
J; ; dt—O(f1 ?dt)—O(logx),

and (22) follows from (17). O

The next theorem is a consequence of (22).

Theorem 3.16 For x > 2 we have

(23) Y [’I—j] log p = x log x + O(x),

psx

where the sum is extended over all primes <x.
Proor. Since A(n) = 0 unless » is a prime power we have
L [2]am-5 2| |
n<x p m=1
pm<x

Now p™ < x implies p < x. Also, [x/p™] = 0 if p > x so we can write the
last sum as

¢ 5[ 2o 5. £

p<xm=1 P<x p<xm=2

Next we prove that the last sum is O(x). We have

zlogpz[ ]s Tlogpy X -leogpz<>

pPsx psx m=2D pP<Xx
1 1 logp

=x) logp- - ——=x

p;x p2 1 _1 pzs:x p(p - 1)

p

< logn
< = 0(x).
- xn‘éz nin — 1) (x)
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3.12: Another identity for the partial sums of a Dirichlet product

Hence we have shown that

y HA(n) ) [ﬂlog P+ O(x)

n<x P<Xx

which, when used with (22), proves (23). O

Equation (23) will be used in the next chapter to derive an asymptotic
formula for the partial sums of the divergent series Z (1/p).

3.12 Another identity for the partial sums of
a Dirichlet product

We conclude this chapter with a more general version of Theorem 3.10 that
will be used in Chapter 4 to study the partial sums of certain Dirichlet
products.
As in Theorem 3.10 we write
Fx)= 2 f(, G(x)= Y g(n), and H(x)= Y (f *g)(n)

so that

Hx) =} ) f(d)g( >= Zd f(dg(q).

n<x din
gqd<x

Theorem 3.17 If a and b are positive real numbers such that ab = x, then

(24) Z fag@= Y f (n)G( >+ Zbg(n)F <§> — F(a)G(b).

n<a
qd<x

e~

Figure 3.4

(o —
'
[

[ Sp——
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3: Averages of arithmetical functions

Proor. The sum H(x) on the left of (24) is extended over the lattice points in
the hyperbolic region shown in Figure 3.4. We split the sum into two parts,
one over the lattice points in 4 U B and the other over those in B U C. The
lattice points in B are covered twice, so we have

Hx)= Y ¥ fAg@+ Y Y fga)— Y Y fdglg),

d<a g<x/d g<b d<x/q d<a q<b

which is the same as (24). O

Note. Taking a = 1 and b = 1, respectively, we obtain the two equations
in Theorem 3.10, since f(1) = F(1) and g(1) = G(1).

Exercises for Chapter 3

1. Use Euler’s summation formula to deduce the following for x > 2:

lo
@ ¥ 28r 103" log X+ A+ 0( o8 ) where A is a constant.
X

nsx

(b)

= log(log x) + B + O(

1
, where B is a constant.
x log x

ZSnSXnIOgn
2. If x > 2 prove that

d 1 .
_(n_) =5 log? x + 2C log x + O(1), where C is Euler’s constant.
n

n<x

3 Ifx>2and « > 0,a # 1, prove that

)

din)  x'"*logx
nex N T il-a

+ {0 + O(x"' 7).

4. If x > 2 prove that:

a) ) pln )[,:l ROl O(x log x).

n<x

wn) | x
® 2= H g T Ol

5. If x > 1 prove that:

@ Yo —Zun)H +3.

o(n) pln) x]
b — = — =
( ) ﬁ;x n n<x n n
These formulas, together with those in Exercise 4, show that, for x > 2,
+0xlo x) and —=—~+Olox
Lo =3 c(z) (xlog)and 3, === 75) * Olog )
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10.

11.

Exercises for Chapter 3

If x = 2 prove that

@(n) 1 C log x
L Tty ‘% x>’

where C is Euler’s constant and

i M(n)log n

. In a later chapter we will prove that )=, u(m)n™* = 1/{(2) if « > 1. Assuming this,

prove that for x > 2 and o > 1, & 5 2, we have

o) _ ¥t 1 la—1)
Sent 2—ald (@

+ O(x' ~* log x).

. Ifa < 1 and x > 2 prove that

2-a

pln) _ x
E‘x n’ 1)

+ O(x'"*log x).

. In a later chapter we will prove that the infinite product HF (1 — p~2), extended

over all primes, converges to the value 1/{(2) = 6/a%. Assuming this result, prove
that

ifn>2.
n e 6 o

[Hint: Use the formula ¢(n) = n [],, (1 — p~!) and the relation

1 1+ x . 1
T 4x+x> 4= - mmx=%
l-x 1-—-x P

(b) If x > 2 prove that

If x > 2 prove that

1
3 a(;) = O(log x).

n<x

Let @4(n) = n Y gy | (d)1/d.
(a) Prove that ¢, is multlpllcatxve and that ¢,(n) = n Hm,, 1+pH

{b) Prove that
= gl

where the sum is over those divisors of n for which d?|n.
(c) Prove that

Yo=Y u(d)S( 2), where S(x) = ¥ o(k),
nsx ad</x k<x
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3: Averages of arithmetical functions

then use Theorem 3.4 to deduce that, for x > 2,

{2 ,
=_— O(x | .
Ex(m(n) xas t (x log x).
As in Exercise 7, you may assume the result Z,T;l unn™* = 1/{(a) for a > 1.
12. For real s > 0 and integer k > 1 find an asymptotic formula for the partial sums

(n,ky=1

with an error term that tends to 0 as x — oo. Be sure to include the case s = 1.

PROPERTIES OF THE GREATEST-INTEGER FUNCTION

For each real x the symbol [x] denotes the greatest integer < x. Exercises 13
through 26 describe some properties of the greatest-integer function. In these
exercises x and y denote real numbers, n denotes an integer.

13. Prove each of the following statements:

(@) If x = k + y where k is an integer and 0 < y < 1, then k = [x].
®) [x +n]=[x]+n

_f-Ix] if x = [x],
© [-x]= {—[x] -1 ifx# [x].

(d) [x/n] =[[x]/n] ifn=1
14. If 0 < y < 1, Wwhat are the possible values of [x] — [x — y]?

15. The number {x} = x — [x] is called the fractional part of x. It satisfies the in-
equalities 0 < {x} < 1, with-{x} = 0 if, and only if, x is an integer. What are the
possible values of {x} + {—x}?

16. {(a) Prove that [2x] — 2[x] is either O or 1.
(b) Prove that [2x] + [2y] > [x] + [y]1 + [x + y].

17. Prove that [x] + [x + %] = [2x] and, more generally,

"il l:x + S] = [nx].

k=0

18. Letf(x) = x — [x] — 3. Prove that

and deduce that

2

i 1
y f<2"x + —>| <1 forallm > 1and all real x.
n=1

19. Given positive odd integers h and k, (h, k) = 1,1leta = (k — 1)/2,b = (h — 1)/2.

(a) Prove that Y2_, [hr/k] + Y :_, [kr/h] = ab. Hint. Lattice points.
(b) Obtain a corresponding result if (b, k) = d.
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20.

21.

22.

23.

24.

25.

26.

Exercises for Chapter 3

If n is a positive integer prove that [ﬂ + \/n + 1] = [\/4n + 2].
Determine all positive integers n such that [\/;] divides n.

If n is a positive integer, prove that

12 n—17
[Sn + 13] " 25

25 3

is independent of n.

Prove that
ol x
Y A(n)l:;:l = [/x]
Prove that
X X
ngx I:\/%:I B nsz{:_r I:n—zjl
Prove that
n k n2
> |51-|5
k=112 4
and that

LB

Ifa =1,2,..,7 prove that there exists an integer b (depending on a) such that

AHE
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Some Flementary Theorems on the
Distribution of Prime Numbers

4.1 Introduction

If x > Olet n(x) denote the number of primes not exceeding x. Then n(x) — oo
as x — oo since there are infinitely many primes. The behavior of n(x) as a
function of x has been the object of intense study by many celebrated mathe-
maticians ever since the eighteenth century. Inspection of tables of primes
led Gauss (1792) and Legendre (1798) to conjecture that n(x) is asymptotic to
x/log x, that is,

lim n(x)log x _

X~ X

1.

This conjecture was first proved in 1896 by Hadamard [28] and de la Vallée
Poussin [71] and is known now as the prime number theorem.

Proofs of the prime number theorem are often classified as analytic or
elementary, depending on the methods used to carry them out. The proof of
Hadamard and de la Vallée Poussin is analytic, using complex function
theory and properties of the Riemann zeta function. An elementary proof
was discovered in 1949 by A. Selberg and P. Erdés. Their proof makes no
use of the zeta function nor of complex function theory but is quite intricate.
At the end of this chapter we give a brief outline of the main features of the
elementary proof. In Chapter 13 we present a short analytic proof which is
more transparent than the elementary proof.

This chapter is concerned primarily with elementary theorems on primes.
In particular, we show that the prime number theorem can be expressed in
several equivalent forms.
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4.2: Chebyshev’s functions ¢(x) and 3(x)

For example, we will show that the prime number theorem is equivalent
to the asymptotic formula

(1) Y Aln) ~ x asx — .

n<x

The partial sums of the Mangoldt function A(n) define a function introduced
by Chebyshev in 1848,

4.2 Chebyshev’s functions /(x) and 9(x)

Definition For x > 0 we define Chebyshev’s i-function by the formula

Wx) = ) An).

n<x

Thus, the asymptotic formula in (1) states that
2) lim — = 1.

Since A(n) = O unless n is a prime power we can write the definition of
Y(x) as follows:

W= TAm=Y YAp =Y ¥ logp

n<x m=1 p<xl/m

IA =

m=
pPTsx

1/m

The sum on m is actually a finite sum. In fact, the sumon pisemptyif x''™ < 2,

that is, if (1/m)log x < log 2, or if

log x
—— = .
m>10g2 0g; X

Therefore we have

Yx)= ) 2 logp.

m< logyx p<xl/m

This can be written in a slightly different form by introducing another
function of Chebyshev.

Definition If x > 0 we define Chebyshev’s 3-function by the equation

9(x) = ) logp,

p<x

where p runs over all primes <x.
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4: Some elementary theorems on the distribution of prime numbers

The last formula for y(x) can now be restated as follows:
3) Y= Y Hx'm).
m< logax

The next theorem relates the two quotients Y(x)/x and 9(x)/x.

Theorem 4.1 For x > 0 we have

Y _ 9 _ _(og x?

0< < -— .
x x 2\/;10g2

Note. This inequality implies that
lim <M _ %) —0

X X

X0

In other words, if one of Y(x)/x or 3(x)/x tends to a limit then so does the other,
and the two limits are equal.

PrOOF. From (3) we find
0 < yY(x) — Hx) = Yo ).

2<mg logax

But from the definition of 9(x) we have the trivial inequality

9(x) < ) log x < xlog x

p<x
$O
0<Yx) —9x) < ¥ xUmlogx'™) < (log, x)/x log \/x
2<m<logzx
2
_ 10gx~i;logx _ \/;(logx) .

log2 2 2log?2

Now divide by x to obtain the theorem. d

4.3 Relations connecting 3(x) and n(x)

In this section we obtain two formulas relating 3(x) and n(x). These will be
used to show that the prime number theorem is equivalent to the limit
relation

lim M=

X0 X

1.

Both functions n(x) and 9(x) are step functions with jumps at the primes;
7i(x) has a jump 1 at each prime p, whereas 3(x) has a jump of log p at p. Sums
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4.3: Relations connecting 3(x) and n(xv)

involving step functions of this type can be expressed as integrals by means of
the following theorem.

Theorem 4.2 Abel’s identity. For any arithmetical function a(n) let

Alx) = ) aln),

nsx

where A(x) = 0ifx < 1. Assume f has a continuous derivative on the interval
[y, x], where O < y < x. Then we have

@ T s = A0 - ADSO) - [ A0S dr

y<n<x

ProoF. Let k = [x] and m =[y], so that A(x) = A(k) and A(y) = A(m).
Then

k

Y amfmy= Y amfm= 3 {Al) - An-1}f()

y<nsgx n=m+1 n=m+1
k k—1
= 2 IA(n)f () — X A+ 1)

k-1
= 2 AW{f) — fin + D} + Ak S k) — Am)fm + 1)

n=m+1

k-1 n+ 1
=- X A(")f f@)dt + Ak)f(k) — Alm)f(m + 1)

n=m+1
k-1 n+1

=- A S dt + AK)f(k) — A(m)f(m + 1)

n=m+1 vn

AR F(0) dt + AR S() — j A0 f ) do

k

Il
|

m+1
—AIO) — | A0
= 4(916) — ADSO) - | CAG)f ) dt O

y

ALTERNATE PROOF. A shorter proof of (4) is available to those readers
familiar with Riemann-Stieltjes integration. (See [2], Chapter 7.) Since A(x)
is a step function with jump f(n) at each integer n the sum in (4) can be
expressed as a Riemann-Stieltjes integral,

Y, atf) = [ " 10 dA)

y<n<x
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4: Some elementary theorems on the distribution of prime numbers

Integration by parts gives us

2 am)fn) = f()AX) — f(NAY) — fo(l) df (¢)

y<n<x y

~ f040) - fDAO) - [ A0S @d O
y
Note. Since A(t) = 0if t < 1, when y < 1 Equation (4) takes the form

) 2 a(n) f(n) = Alx)f(x) — f:A(t)f (o) dr.

nsx

It should also be noted that Euler’s summation formula can easily be
deduced from (4). In fact, if a(n) = 1 for all n > 1 we find A(x) = [x] and (4)
implies

Y f) = f)Ix] = fODY] - fx[t]f (1) dt.

y<n<x

Combining this with the integration by parts formula

[rwi=xm -y - [ roa
y y
we immediately obtain Euler’s summation formula (Theorem 3.1).

Now we use (4) to express 3(x) and n(x) in terms of integrals.

Theorem 4.3 For x > 2 we have

(6) 3x) = m(x)log x — fx @ dt
2
and
_ Hx) * 8@
@ mx) = log x + L tlog?t

PrOOF. Let a(n) denote the characteristic function of the primes; that is,
1 if nis prime,
aln) = .
0 otherwise.

Then we have

ax)= Y 1= 3 an anddx)= Y logp= 3 almogn.

<x 1<n<x pP<x 1<n<x
p
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4.4: Some equivalent forms of the prime number theorem

Taking f(x) = log x in (4) with y = 1 we obtain

dx)= Y a(nlogn = n(x)log x — n(1)log 1 — ‘r _n_it‘)dt’

1<n<x 1

which proves (6) since n(t) = 0 fort < 2.
Next, let b(n) = a(n) log n and write

x)= ) bn) 01 " 9(x) = ) b(n).

3/2<n<x 1 ’ n<x
Taking f(x) = 1/log x in (4) with y = 3/2 we obtain
I(x) 9(3/2) 90
ni(x) = - f

32 tlog?t

b

which proves (7) since 3(t) = 0if t < 2.

4.4 Some equivalent forms of the prime
number theorem

Theorem 4.4 The following relations are logically equivalent

a(x)log x _

®) lim 1.
X0 x
9) lim @ =1.
(10) lim M = 1.
X

X—> 00

PROOF. From (6) and (7) we obtain, respectively,

@ _ mx)logx 1 fxEQ

X X X

dt

2t
and

n(x)log x g@ + log x J‘x 9(¢) dt
x  x x J,tlog?t’

To show that (8) implies (9) we need only show that (8) implies

limlf @dtzo.

x>0 X J2

1
But (8) implies n_(t_) = 0<——> fort > 2so
t log ¢

lf @d,=o(lj i),
X Jy, t X 2l0gt
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4: Some elementary theorems on the distribution of prime numbers

Now
"dz_J’ﬁdt J”‘ dt<\/§+x—\/§
, logt , logt =logt 7 log2 10g\/§
S0
1 (* dt
-] — -0 asx— 0.
x J, logt

This shows that (8) implies (9).
To show that (9) implies (8) we need only show that (9) implies
log x f" )de

li =
o , tlog?t

x=x X

But (9) implies 3(t) = O(t) so

log x J‘" 3(t) dt _O<logx * dt )

x J,tlog*t x J, log*t
Now
< dt Fod > dt Jx o ox=Jx
7, Pl TS, T
, log?t , log*t sxlog?t ” log®2 10g2\/;
hence

logx (* dt
x J, log?t

-0 asx— oo.

This proves that (9) implies (8), so (8) and (9) are equivalent. We know

already, from Theorem 4.1, that (9) and (10) are equivalent.

The next theorem relates the prime number theorem to the asymptotic

value of the nth prime.

Theorem 4.5 Let p, denote the nth prime. Then the following asymptotic

relations are logically equivalent:

(11) Jim "8 X _ )

X~ X

(12) lim "8 X _

X— 00 X

N
1 =1
(13) v 1 log
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4.4: Some equivalent forms of the prime number theorem

Proor. We show that (11) implies (12), (12) implies (13), (13) implies (12), and
(12) implies (11).
Assume (11) holds. Taking logarithms we obtain

lim [log n(x) + log log x — log x] = 0

X o

lim [log x(log ] + log log x - 1)} = 0.

or

xom log x log x
Since log x — oo as x — o it follows that

lim log n(x) 4 log log x —1)=o0
log x log x

from which we obtain
|
lim 108 ™)
oo lOg X

This, together with (11), gives (12).
Now assume (12) holds. If x = p, then n(x) = n and

n(x)log n(x) = n log n
so (12) implies
im " log n _

n—aoo p"

L.

Thus, (12) implies (13).
Next, assume (13) holds. Given x, define n by the inequalities
Pn <x< Dn+1,
so that n = n(x). Dividing by n log n, we get

Pn < X Pa+1 _ Pr+1 (n + Diog(n + 1)
nlogn™ nlogn nlogn (n+ Dlogn + 1) nlogn '

Now let n — co and use (13) to get
X
li =1, Iim ———— =1
v 110G T % v m00log ()

Therefore, (13) implies (12).
Finally, we show that (12) implies (11). Taking logarithms in (12) we
obtain

lim (log n(x) + log log n(x) — log x) = 0

X=X

) log log m(x) log x _
3%%”@*@@ tog w9 | = °

or
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4: Some elementary theorems on the distribution of prime numbers

Since log n(x) — oo it follows that

: log log 7(x) logx \
fim (1 + log n(x) log n(x)) 0

or
log x
e log )

This, together with (12), gives (11). O

4.5 Inequalities for n(n) and p,

The prime number theorem states that n(n) ~ n/log n as n — oo. The in-
equalities in the next theorem show that n/log n is the correct order of
magnitude of n(n). Although better inequalities can be obtained with greater
effort (see [60]) the following theorem is of interest because of the elementary
nature of its proof.

Theorem 4.6 For every integer n > 2 we have
1 n

n

ProOOF. We begin with the inequalities

(15) < (2") <4
n
2 2n)!
where (:) = ;_'r% is a binomial coefficient. The rightmost inequality

follows from the relation

=1+ 1) = kgo <2k"> > (2:>
and the other one is easily verified by induction. Taking logarithms in (15) we
find
(16) nlog2 < log(2n)! — 2logn! < nlog4.
But Theorem 3.14 implies that

logn! = ) ap)log p

ps<n

where the sum is extended over primes and o(p) is given by
£
o= 3 [ ]
ofp) = — |
m=1 14 "
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4.5: Inequalities for n(n) and p,

Hence
£5
logrl (12p n
(17) log2n)! — 2logn! = ) ) {I}—] - 2[—]}10g p.
p<2n m=1 pr 148

Since [2x] — 2[x] is either 0 or 1 the leftmost inequality in (16) implies

[loan]
log p
nlog2 < ) ( Y 1) logp < ) log2n = n(2n)log 2n.

p<2n m=1 p<2n
This gives us

nlog2  2n log2 1 2n

8 = -
(18) m2n) = log2n log2n 2 g 4 log 2n

since log 2 > 1/2. For odd integers we have

@ +1)>7z(2n)>1 2n >1 2n 2n + 1 >1 2n + 1
rT= 4log2n” 42n + 1log2n + 1)~ 6log2n + 1)

since 2n/(2n + 1) > 2/3. This, together with (18), gives us

>1 n
6logn

n(n)

for all n = 2, which proves the leftmost inequality in (14).
To prove the other inequality we return to (17) and extract the term
corresponding to m = 1. The remaining terms are nonnegative so we have

2
log2n)! — 2logn!> ¥ {[—"] - 2[f]}1og p.
p<2n 14 D

For those primes p in the interval n < p < 2n we have [2n/p] — 2[n/p] = 1
S0

log(2n)! — 2 logn! > Z log p = 3(2n) — I(n).

n<p<2n

Hence (16) implies

H2n) — Hn) < nlog4.
In particular, if n 1s a power of 2, this gives

2t - 92) < 2 logd = 2" log 2.

Summingonr =0, 1,2, ..., k, the sum on the left telescopes and we find

Ikt < 2k*2 Jog 2.
Now we choose k so that 2* < n < 2¥*! and we obtain

9(n) < 9(2*+1) < 2¢*2 Jog 2 < 4n log 2.
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4: Some elementary theorems on the distribution of prime numbers

Butif 0 < o < 1 we have

(n(n) — n(n*log n* < > logp < 9(n) < 4nlog?2,

ni<p<n

hence

4n log 2 ) < 4n log 2
ologn ologn

n (4 log2 log n>
= + 1-alf
log n o n

n(n) <

Now if ¢ > 0 and x > 1 the function f(x) = x~ ¢ log x attains its maximum
at x = e, so n"°logn < 1/(ce) for n > 1. Taking « = 2/3 in the last

inequality for n(n) we find

n
logn’

n 3
n(n)<1—6g—n<610g2+;)<6

This completes the proof.

Theorem 4.6 can be used to obtain upper and lower bounds on the size

of the nth prime.

Theorem 4.7 For n > 1 the nth prime p, satisfies the inequalities

12
(19 én logn < p, < 12<n logn + nlog ?)

ProOF. If & = p, then k > 2 and n = n(k). From (14) we have

k
6 pn

nzn(k)<6logk= log p,

hence

! lo >1 1
p,,>6n g Dn 6n og n.

This gives the lower bound in (19).
To obtain the upper bound we again use (14) to write

1 k 1p
=qk) >~ ==
n=mk > S iogk = 6logp.’
from which we find
(20) p. < 6nlogp,.
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4.6: Shapiro’s Tauberian theorem

Since log x < (2/e)\/x if x > 1 we have log p, < (2/€)\/p,, so (20) implies
gyt
— n.
P <
Therefore

1l <logn+lo 12
20an gn ge

which, when used in (20), gives us

12
Pn < 6n<2 logn + 2 log —)
e
This proves the upper bound in (19). O

Note. The upper bound in (19) shows once more that the series

v 1

n=1Pn

diverges, by comparison with ) %, 1/(n log n).

4.6 Shapiro’s Tauberian theorem

We have shown that the prime number theorem is equivalent to the
asymptotic formula

(21) YA(m) ~1 asx— .

|-

In Theorem 3.15 we derived a related asymptotic formula,

(22) Y A(n)[ﬂ = xlog x — x + O(log x).

n<x

Both sums in (21) and (22) are weighted averages of the function A(n).
Each term A(n) is multiplied by a weight factor 1/x in (21) and by [x/n] in (22).

Theorems relating different weighted averages of the same function are
called Tauberian theorems. We discuss next a Tauberian theorem proved in
1950 by H. N. Shapiro [64]. It relates sums of the form ) , . . a(n) with those of
the form ), ., a(n)[x/n] for nonnegative a(n).

Theorem 4.8 Let {a(n)} be a nonnegative sequence such that

(23) y a(n)[ﬂ = xlogx + O(x) forallx > 1.

n<x
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4: Some elementary theorems on the distribution of prime numbers

Then:
(a) For x > 1 we have

T 4 _ 1og x + O(1).

n<x

(In other words, dropping the square brackets in (23) leads to a correct
result.)
(b) There is a constant B > 0 such that

Y a(n) < Bx forallx > 1.

n<x

(c) There is a constant A > O and an xy > O such that

Y a(n) > Ax  for all x > x,.

n<x

PROOF. Let

Sx) = Yam), T = za(n)[ﬂ.

n<x n<x

First we prove (b). To do this we establish the inequality

(24) S(x) — s(’é) < T(x) — 2T<%>.

We write

o) 522 [}
i 5 B

Since [2y] — 2[y] is either O or 1, the first sum is nonnegative, so

x x x
T(x) — 2T<§) > x/Z;le[;]a(n) = xu;‘ga(n) = S(x) — S<§>

This proves (24). But (23) implies
X X X
T(x) — 2T<§> = x log x + O(x) — 2(5 log 3 + O(x)) = O(x).

Hence (24) implies S(x) — S(x/2) = O(x). This means that there is some
constant K > 0 such that

S(x) — s@) <Kx forallx> 1.
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4.6: Shapiro’s Tauberian theorem

Replace x successively by x/2, x/4, ... to get
X X
o5)-s(8) =+
X X
o(5)-56) <

etc. Note that S(x/2") = 0 when 2" > x. Adding these inequalities we get

’

N &

’

Bl =

1 1
S 1ot )= .
(x)SKx( +2+4+ ) 2Kx

This proves (b) with B = 2K.
Next we prove (a). We write [x/n] = (x/n) + O(1) and obtain

T(x) =Y [%:Ia(n) =3 <n + 0(1))a(n) =x) % + 0( y a(n)>

ns<x n<x n<x n<x

Z———+O()

n<x

by part (b). Hence

—

% _ % T(x) + O(1) = log x + O(1).

n<x

This proves (a).
Finally, we prove (c). Let

A(x) = @ .

Then (a) can be written as follows:
A(x) = log x + R(x),

where R(x) is the error term. Since R(x) = O(1) we have |R(x)| < M for
some M > 0.

Choose a to satisfy 0 < o < 1(we shall specify « more exactly in a moment)
and consider the difference

AX) — Alax) = ), — =) — — 2

ax<n<x n<x n n<ax n
If x > 1 and ax > 1 we can apply the asymptotic formula for A(x) to write

A(x) — Alax) = log x + R(x) — (log ax + R(xx))
= —log a + R(x) — R(ax)
> —loga — [R(x)| — |R(ex)| = —loga — 2M.
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4: Some elementary theorems on the distribution of prime numbers

Now choose « so that —log o — 2M = 1. This requires log a = —2M — 1,
ora = e~ 2™~ Note that 0 < a < 1. For this «, we have the inequality

Ax) — Alax) = 1 ifx > 1/a.

But
1
A(x) — Alax) = Y aln) <— Yan) = 5t
wximex N 0X ;T ox
Hence
S >1 ifx> 1/
ox

Therefore S(x) > ax if x > 1/a, which proves (c) with A = a« and x, = 1/a.
U
4.7 Applications of Shapiro’s theorem

Equation (22) implies

Y A(n)[%} = x log x + O(x).

n<x

Since A(n) > 0 we can apply Shapiro’s theorem with a(n) = A(n) to obtain:

Theorem 4.9 For all x > 1 we have

(25) @ = log x + O(1).

n<x
Also, there exist positive constants ¢, and ¢, such that
Wx) < cix forallx > 1
and

W(x) = c,x  for all sufficiently large x.

Another application can be deduced from the asymptotic formula

y [f]mg p = xlog x + O(x)
pP=<x
proved in Theorem 3.16. This can be written in the form

(26) Y Al(n)[ﬂ = x log x + O(x),

n<x
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4.8: An asymptotic formula for the partial sums ) , .. (1/p)

where A, is the function defined as follows:

Ayn) = log p if nis a prime p,
=10 otherwise.

Since A;(n) > 0, Equation (26) shows that the hypothesis of Shapiro’s
theorem is satisfied with a(n) = A,(n). Since ¥(x) = Y <. Ay(n), part (a) of
Shapiro’s theorem gives us the following asymptotic formula.

Theorem 4.10 For all x > 1 we have

27) y l°§ P log x + 0Q1).

P<x

Also, there exist positive constants ¢, and ¢, such that
Ix)<cix forallx>1
and

Hx) = c,x  for all sufficiently large x.

In Theorem 3.11 we proved that

;)= zx(;)

for any arithmetical function f(n) with partial sums F(x) = ) ,<, f(n).
Since Y(x) = Y <. A(n) and 3(x) = Y, <. A,(n) the asymptotic formulas in
{(22) and (26) can be expressed directly in terms of (x) and 3(x). We state
these as a formal theorem.

Theorem 4.11 For all x > 1 we have

(28) y w(%) = xlog x — x + O(log x)

n<x

and

3 9(%) = x log x + O(x).

n<x

4.8 An asymptotic formula for the partial

sums ), (1/p)
In Chapter 1 we proved that the series ) (1/p) diverges. Now we obtain an

asymptotic formula for its partial sums. The result is an application of
Theorem 4.10, Equation (27).
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4: Some elementary theorems on the distribution of prime numbers

Theorem 4.12 There is a constant A such that

1
(29) Z— loglogx+A+0<lg > forall x > 2.
pr
ProoOF. Let
lo
Alx) = Z .ﬂ
p<x P
and let

1 if nis prime,
aln) = {0 otherwise.

Then

Z -= % and A(x) = Y #log n.

p<xp n<x n<x

Therefore if we take f(¢) = 1/log t in Theorem 4.2 we find, since A(t) = O for
t <2,

(30) I f "_AY

=xp logx ' J,tlog’t

From (27) we have A(x) = log x + R(x), where R(x) = O(1). Using this on
the right of (30) we find

1 *1 R
Z 1 ogx+0(9+f ogt+2 (l)~dt
pex P log x , tlog*t
31 X X
G — 140 +f dt +f RO 4,
log x 5 tlogt , tlog*t
Now
*dt
= log 1 - log 2
J; (log ¢ og log x — log log
and

* R() J *© R() J' * R(@)
ek L2 P — d
Ltlogztdt 2 tlogztdt . tlog?t t’_

the existence of the improper integral being assured by the condition R(t) =

0(1). But
© R@ fw i\ /1
L tlogztdt_()(x tlog?t -Ologx )
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4.9: The partial sums of the M&bius function

Hence Equation (31) can be written as follows:

)

1 ©  R(t) 1
— = l _ —_—— — .
20 oglogx + 1 —loglog?2 + f . dt + 0<log x)

, tloght
This proves the theorem with

* R(@)
A=1-— loglog2+ J‘z ;_l—(—)éz_t
4.9 The partial sums of the Mdbius function
Definition If x > 1 we define

M() = Y uln).

n<x

The exact order of magnitude of M(x) is not known. Numerical evidence
suggests that

IM(x)| < /x ifx>1,

but this inequality, known as Mertens’ conjecture, has not been proved nor
disproved. The best O-result obtained to date is

M(x) = O(xd(x))

where 6(x) = exp{— A4 log*° x(log log x)~!/3} for some positive constant A.
(A proof is given in Walfisz [75].)
In this section we prove that the weaker statement

fim M) _

X0 X

0

is equivalent to the prime number theorem. First we relate M(x) to another
weighted average of u(n).

Definition If x > 1 we define

H(x) = Y p(n)log n.

n<x

The next theorem shows that the behavior of M(x)/x is determined by
that of H(x)/(x log x).

Theorem 4.13 We have
(32) lim (M(x) - A ) =0

x x log x

X— a0
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4: Some elementary theorems on the distribution of prime numbers

ProoF. Taking f(r) = log ¢ in Theorem 4.2 we obtain

H(x) = ) un)logn = M(x)log x — JX MT(t)dt.

nsx 1

Hence if x > 1 we have

M(x) Hx) 1 J‘" M) it
X xlogx xlogxJ, t
Therefore to prove the theorem we must show that
. 1 * M(t
(33) lim ___j ~£dt = 0.
coo XlOgx J,

But we have the trivial estimate M(x) = O(x) so

Lx—]\@ dt = 0<f:dt) = 0(x),

from which we obtain (33), and hence (32). d

Theorem 4.14 The prime number theorem implies

fim M%) _

X X

0.

Proor. We use the prime number theorem in the form y(x) ~ x and prove
that H(x)/(x log x) = 0 as x — oo. For this purpose we shall require the
identity

(34) ~H®) = ~ Y uwlogn = Zu(n)wG).

nLx n<x

To prove (34) we begin with Theorem 2.11, which states that
An) = — 3 ud)log d

dln

and apply Mobius inversion to get

—pnlogn =Y u(d)A(Z).
din

Summing over all n < x and using Theorem 3.10 with f = pu, g = A, we
obtain (34).
Since ¥(x) ~ x, if ¢ > 0 is given there is a constant A > 0 such that

Wy
X

< ¢ whenever x > 4.
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4.9: The partial sums of the M&bius function

In other words, we have
(35) [¥(x) — x| < ex whenever x > A.

Choose x > A and split the sum on the right of (34) into two parts,
L+ 2
n<y y<nmn<x

where y = [x/A]. In the first sum we have n < y so n < x/A4, and hence
x/n > A. Therefore we can use (35) to write

Thus,
gefi) -2 4()-)
-3 zuofo(;)-3)
.
gl 25 2 )3

<x+£Z'—x<x+£x(l+logy)

n<y
< Xx + &x + ex log x.

In the second sum we have y < n < xson > y + 1. Hence

X
- <——< A4

n”y+1
because

< X <y+1
Yy = ) y -
The inequality (x/n) < A implies (x/n) < Y(A). Therefore the second sum is
dominated by xy/(A4). Hence the full sum in (34) is dominated by
(1 4+ ¢)x + exlogx + xy(A) < (2 + Y(A)x + ex log x
if e < 1. In other words, given any ¢ such that 0 < & < 1 we have
[HX)! < (2 + Y(A)x + exlog x if x > A4,

or

HO)L _2+94)
x log x log x
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4: Some elementary theorems on the distribution of prime numbers

Now choose B > A so that x > B implies (2 + Y(A))/log x < &. Then for
x > B we have

1H)|
x log x

< 2g,
which shows that H(x)/(x log x) - 0 as x — 0. O

We turn next to the converse of Theorem 4.14 and prove that the relation

(36) lim M® _ g

X0 X
implies the prime number theorem. First we introduce the “little oh”
notation.
Definition The notation
f(x) = o(g(x)) asx—> © (read: f(x) is little oh of g(x))
means that
lim J&) =0
= 9(X)
An equation of the form
f(x) = h(x) + o(g(x)) asx—>

means that f(x) — h(x) = o(g(x)) as x — 0.
Thus, (36) states that

M(x) = o(x) asx — oo,

and the prime number theorem, expressed in the form ¥(x) ~ x, can also be
written as

Y(x) = x + o(x) as x — o0.
More generally, an asymptotic relation
f(x) ~g(x) asx— ©
is equivalent to
f(x) = g(x) + o(glx)) asx — o0.
We also note that f(x) = O(1) implies f(x) = o(x) as x — 0.

Theorem 4.15 The relation
37) M(x) = o(x) asx — o

implies Y(x) ~ x as x — .
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4.9: The partial sums of the Mébius function

Proor. First we express y(x) by a formula of the type
(38) Yix)=x — 3 wdf(g + O1)
qd’sdx
and then use (37) to show that the sum is o(x) as x —» co. The function f
in (38) is given by
f(n) = 64(n) — logn — 2C,

where C is Euler’s constant and o,(n) = d(n) is the number of divisors of n.
To obtain (38) we start with the identities

K= Y1, ¥x=YAm, 1=Y H
n<x n<x n<x

and express each summand as a Dirichlet product involving the Mobius
function,

1=y u(d)ao( ) Ar) = Y, pd) log 5 ] Y. ().

d|n d|n dln

Then

[x] — ¥(x) —2C = Y {1 — A(n) — 2c[{}

n<x

; ‘; w(d) {ao< ) log > 5 2c}

Z wd}o,(q) — log g — 2C}

q,d
S

Zd wd) f(q).

It

This implies (38). Therefore the proof of the theorem will be complete if we
show that

(39) Y Wd)f(@) = ox) asx - oo.
qd,sdx
For this purpose we use Theorem 3.17 to write
(40) Zd ud)f(q) = Zb#(n)F (E) + 3 fn) ( ) — F(a)M(b)
qd,sx n< n<a

where a and b are any positive numbers such that ab = x and

F(x)= ) fn).

n<x
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4: Some elementary theorems on the distribution of prime numbers

We show next that F(x) = O(\/J_c) by using Dirichlet’s formula (Theorem 3.3)

Y aoln) = xlog x + 2C — )x + O(/x)
together with the relation
Y logn = log[x]! = x log x — x + O(log x).

These give us

F(x)= Y oon)— Y. logn—2C) 1

=xlogx + (2C — )x + O(\/;) — (x log x — x + O(log x))
—2Cx + 0O(1)

= 0(/x) + O(log x) + O(1) = O(/x).
Therefore there is a constant B > 0 such that
|F(x)| < B/x forallx > L.
Using this in the first sum on the right of (40) we obtain

Zy(n)F<f>‘sBz =< A/xb=

n<b n n<b

Ax

Ja
for some constant A > B > 0.
Now let & > 0 be arbitrary and choose a > 1 such that

(41)

A <
\/g .
Then (41) becomes
@2) Zbu(n)FG){ < ex

for all x > 1. Note that ¢ depends on ¢ and not on x.
Since M(x) = O(x) as x — oo, for the same ¢ there exists ¢ > 0 (depending
only on ¢) such that

M)l _ &

x > ¢ implies
p . X’

where K is any positive number. (We will specify K presently.) The second
sum on the right of (40) satisfies

Zf(n)MG){ < i LE= 5y U0

n<a n<a n<a n

(43)
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4.9: The partial sums of the Mobius function

provided x/n > ¢ for all n < a. Therefore (43) holds if x > ac. Now take

_ v S
K = Eﬂ —
Then (43) implies
(44) Y f(mM (3)‘ < ex provided x > ac.

The last term on the right of (40) is dominated by

|F@M(b)| < A\/a|M®b)| < A/ab < e/b/ab = &./xb < &x

provided that \/)_C > a, or x > a*. Combining this with (44) and (42) we
find that (40) implies

Zd ud)f(q) | < 3ex

qd<x

provided x > a®and x > ac, where a and ¢ depend only on &. This proves (39).

0
Theorem 4.16 If
A = 3 K
n<x N
the relation
45) A(x) =o(l) asx— ©

implies the prime number theorem. In other words, the prime number theorem
is a consequence of the statement that the series

converges and has sum 0.

Note. It can also be shown (see [3]) that the prime number theorem
implies convergence of this series to 0, so (45) is actually equivalent to the
prime number theorem.

Proor. We will show that (45) implies M(x) = o(x). By Abel’s identity we
have

M(x) = ) pn) = Hn) n = xA(x) — fo(t) dt,

n<x n<x N 1

)

M _ gy -1 f CA) dr.
X x J;
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4: Some elementary theorems on the distribution of prime numbers

Therefore, to complete the proof it suffices to show that

1 X
(46) lim - | A(t)dt = 0.

x=0 X J1
Now if ¢ > 0 is given there exists a ¢ (depending only on ¢) such that | A(x)|
< ¢if x > c. Since | A(x)| < 1 for all x > 1 we have
-1 &lx —
+ (x C).
X

c
< + <

% fo(t) dt

1

)lc ch(t) dt

1

l f A(t) dt
X <
Letting x — oo we find

lim sup

X a0

<§g,

% fA(t) dt

and since ¢ is arbitrary this proves (46). ]

4.10 Brief sketch of an elementary proof of
the prime number theorem

This section gives a very brief sketch of an elementary proof of the prime
number theorem. Complete details can be found in [31] or in [46]. The key
to this proof is an asymptotic formula of Selberg which states that

n<x

Y(x)log x + Y A(n)|//(§) = 2x log x + O(x).

The proof of Selberg’s formula is relatively simple and is given in the next
section. This section outlines the principal steps used to deduce the prime
number theorem from Selberg’s formula.

First, Selberg’s formula is cast in a more convenient form which involves
. the function

o(x) = e"*Y(e*) — L.

Selberg’s formula implies an integral inequality of the form

47 la(x)|x* < 2 J: J: lo(u)| du dy + O(x),

and the prime number theorem is equivalent to showing that a(x) —» 0 as
x — 00. Therefore, if we let

C = lim sup|a(x)|,

X o0

the prime number theorem is equivalent to showing that C = 0. This is
proved by assuming that C > 0 and obtaining a contradiction as follows.
From the definition of C we have

(48) la(x)] < C + g(x),
98



4.11: Selberg’s asymptotic formula

where g(x) = 0 as x — o0. If C > 0 this inequality, together with (47), gives
another inequality of the same type,

(49) la{x)] < C' + hix),

where 0 < C’ < C and h(x) — 0 as x — oo. The deduction of (49) from (47)
and (48) is the lengthiest part of the proof. Letting x — co in (49) we find that
C < C', a contradiction which completes the proof.

4.11 Selberg’s asymptotic formula

We deduce Selberg’s formula by a method given by Tatuzawa and Iseki
[68]in 1951. It is based on the following theorem which has the nature of an
inversion formula.

Theorem 4.17 Let F be a real- or complex-valued function defined on (0, o),
and let

G(x) = log x Y, F<§>

n<x

Then

Fixlogx + Y. F(%)A(n) =y ,u(d)G(%).

n<x d<x

Proor. First we write F(x)log x as a sum,
1 X X X X
1 = —JF{ - log — = — - .
F(x)log x ngx [n]F<n> og nng<n)log - g'; wd)

Then we use the identity of Theorem 2.11,

A = ¥, pid)log 5
din

to write

.

)) F(E)A(n) =Y F(f) Y. Hdlog -

n<x n<x n dln

Adding these equations we find

X x X n
F(x)log x + ”ng <;>A(n) = ’EXF(—’;) p u(d){log p + log 2}
X X
= ,.;x d‘zn F(; u(d)log T
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4: Some elementary theorems on the distribution of prime numbers

In the last sum we write n = gd to obtain
X X
) F(-—>u(d)log v Tuanoe 5 A(%)- wa3).
n<x dn n d d<x dq<ﬁd d<x

which proves the theorem. g

Theorem 4.18 Selberg’s asymptotic formula. For x > 0 we have

Y(x)log x + ). A(n)l//( ) = 2x log x + O(x).

n<x

ProoF. We apply Theorem 4.17 to the function F;(x) = y(x) and also to
F,(x) = x — C — 1, where C is Euler’s constant. Corresponding to F; we
have

Gy(x) = log x Y, l//( ) = x log? x — x log x + O(log? x),
where we have used Theorem 4.11. Corresponding to F, we have

Gz(x)=longF2<%>=long (—E— C - 1>

n<x n<x

1
xlong——(C+l)longl

n<x n<x

x log x(log x+C+ O<£>> — (C + Diog x(x + O(1))

= x log? x — x log x + O(log x).

Comparing the formulas for G,(x) and G,(x) we see that G,(x) — G,(x) =
O(log? x). Actually, we shall only use the weaker estimate

G1(x) — Go(0) = O(/x).

Now we apply Theorem 4.17 to each of F, and F, and subtract the two
relations so obtained. The difference of the two right members is

sl o} - f)- oz -

by Theorem 3.2(b). Therefore the difference of the two left members is also
O(x). In other words, we have

{W(x) — (x — C — 1)}logx + Y. {lﬂ<z> - (?I - C— 1)}A(n) = O(x).

nsx n
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Exercises for Chapter 4

Rearranging terms and using Theorem 4.9 we find that

Y(x)log x + Y, l#(%)A(n) =(x — C — llog x

n<x

+ Y (’—; —Cc- 1>A(n) + O(x)

n<x

= 2x log x + O(x). O

Exercises for Chapter 4

1.

Let S={1,5,9,13,17,...} denote the set of all positive integers of the form
4n + 1. An element p of § is called an S-prime if p > 1 and if the only divisors of p,
among the elements of S, are 1 and p. (For example, 49 is an S-prime.) An element
n > 1in S which is not an S-prime is called an S-composite.

(a) Prove that every S-composite is a product of S-primes.

(b) Find the smallest S-composite that can be expressed in more than one way as a

product of S-primes
This example shows that unique factorization does not hold in S.

Consider the following finite set of integers:
T ={1,7,11,13,17, 19, 23, 29}.

(a) For each prime p in the interval 30 < p < 100 determine a pair of integers
m, n, where m > 0 and n € T, such that p = 30m + n.

(b) Prove the following statement or exhibit a counter example:
Every prime p > 5 can be expressed in the form 30m + n, where m > 0 and
neT

. Let f(x) = x2 + x + 41. Find the smallest integer x > Ofor which f(x)is composite.

. Let f(x)=ao + a;x + -+ + a,x" be a polynomial with integer coefficients,

where a, > Oand n > 1. Prove that f(x)is composite for infinitely many integers x.

. Prove that for every n > 1 there exist n consecutive composite numbers.

Prove that there do not exist polynomials P and Q such that

n(x)=g%?)forx= 1,2,3,...

. Leta, <a, <+ < a, < x be a set of positive integers such that no a; divides the

product of the others. Prove that n < n(x).

. Calculate the highest power of 10 that divides 1000!.

. Given an arithmetic progression of integers

hoh+kh+2k....,h+nk,...,

where 0 < k < 2000. If h + nk is prime for n=1t, t + 1,...,t + r prove that
r < 9. In other words, at most 10 consecutive terms of this progression can be
primes.
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4: Some elementary theorems on the distribution of prime numbers

10. Let s, denote the nth partial sum of the series
hd 1
r=1 r(r + 1) '

Prove that for every integer k > 1 there exist integers m and n such that s, — s,

= 1/k.

11. Let s, denote the sum of the first n primes. Prove that for each n there exists an
integer whose square lies between s, and s, ;.

Prove each of the statements in Exercises 12 through 16. In this group of
exercises you may use the prime number theorem.

12. If a > 0 and b > 0, then n(ax)/n(bx) ~ a/b as x — 0.
13. If 0 < a < b, there exists an x, such that n{ax) < n(bx) if x > x,.

14. If 0 < a < b, there exists an x, such that for x > x, there is at least one prime
between ax and bx.

15. Every interval [a, b] with 0 < a < b, contains a rational number of the form
p/q, where p and q are primes.

16. (a) Given a positive integer n there exists a positive integer k and a prime p such that
10,1 < p < 10%n + 1)
(b) Given mintegersay,...,a,suchthat0 < a; < 9fori = 1,2,..., m, there exists
a prime p whose decimal expansion has a,, ..., a,, for its first m digits.

17. Given an integer n > 1 with two factorizations n = []-, p; and n = []i=, q.,
where the p; are primes (not necessarily distinct) and the g; are arbitrary integers
> 1. Let a be a nonnegative real number.

(a) Ifa > 1 prove that

(b) Obtain a corresponding inequality relating these sums if 0 < o < 1.

18. Prove that the following two relations are equivalent:

X x
(®) B(x) = x + 0<L>.
log x

19. If x > 2, let

* dt
Li(x) = f ozt (the logarithmic integral of x).
2 logt

(a) Prove that

Lix) = X + * dt 2
lx—logx , log?t log2’
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20.

21.

22,

23.

Exercises for Chapter 4

and that, more generally,

X n—1 J-
Li =—1 ns
ix) log x ( + k | log* x) log"’rl t

where C, is independent of x.

* dt =0( X )
, log"t log" x

Let f'be an arithmetical function such that

(b) If x > 2 prove that

Y f(pllog p = (ax + blog x + cx + O(1) forx > 2.

pP=<x

Prove that there is a constant 4 (depending on f) such that, if x > 2,

x *dt 1
,,éxf(p) =ax + (a + c)(log ot , log—zt) + bloglog x) + A4 + O(E—g—;).

Given two real-valued functions S(x) and T(x) such that

ZS< ) forall x > 1.
n<x

If S(x) = O(x) and if ¢ is a positive constant, prove that the relation

S(x) ~cx asx— o

implies
T(x) ~ cxlogx asx— o0.

Prove that Selberg’s formula, as expressed in Theorem 4.18, is equivalent to each of
the following relations:
@) Ylogx + ¥ iﬁ(—;)log p = 2xlog x + O(x).

pPEx
(b) Ylogx + ¥ 9(%)10;; p = 2xlog x + O(x).

P=<Xx
Let M(x) = Y, p(n). Prove that

M(x)log x + Y, M( >A(n) O(x)

n<x

and that

M(xlog x + ¥ M(;)log p = O(x).

p<x

[Hint: Theorem 4.17.]
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4: Some elementary theorems on the distribution of prime numbers

24. Let A(x) be defined for all x > 0 and assume that

T(x)= Y A(i> = ax log x + bx +o<—%:—> as x — oo,
wee \n log x

where a and b are constants. Prove that

A(x)log x + Y A(%)A(n) = 2ax log x + o(x log x) as x — 0.

nsx
Verify that Selberg’s formula of Theorem 4.18 is a special case.

25. Prove that the prime number theorem in the form y(x) ~ x implies Selberg’s
asymptotic formula in Theorem 4.18 with an error term o(x log x) as x — oo.

26. In 1851 Chebyshev proved that if y(x)/x tends to a limit as x — oo then this limit
equals 1. This exercise outlines a simple proof of this result based on the formula

(50) y w(%) = xlog x + O(x)
which follows from Theorem 4.11.
(a) Let & = lim sup(y(x)/x). Given ¢ > 0 choose N = N(g) so that x > N implies

Y(x) < (6 + &)x. Split the sum in (50) into two parts, one with n < x/N, the
other with n > x/N, and estimate each part to obtain the inequality

y ./,<_Z> < (8 + ¢)x log x + xy(N).

n<x

Comparing this with (50), deduce that 6 > 1.
(b) Let y = lim inf(f(x)/x) and use an argument similar to that in (a) to deduce that

xX=w

y < 1. Therefore, if y(x)/x has a limit as x — co theny = § = 1.

In Exercises 27 through 30, let A(x) = Z,,Sx a(n), where a(n) satisfies

(51) an) >0 foralln>1,
and
(52) nng<§—> = "gxa(n)[{l = ax log x + bx + O(IOZ x) as x — o0.

When a(n) = A(n) these relations hold witha = 1and b = — 1. The following
exercises show that (51) and (52), together with the prime number theorem,
Y(x) ~ x, imply A(x) ~ ax. This should be compared with Theorem 4.8
(Shapiro’s Tauberian theorem) which assumes only (51) and the weaker
condition Z,,Sx A(x/n) = ax log x + O(x) and concludes that Cx < A(x)
< Bx for some positive constants C and B.

27. Prove that

@) ZA(%)A(n) _ A<5>A(n) + ¥ l//<§>a(n) + 0(x)

n<x nsyx® \I n< X%
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and use this to deduce the relation

(b) @ f— ¥y A<5>A(n) +

xlogx oz \n

w<f> aln) = 2a + o1).

xlogx ,ciz \n

28. Let o = lim inf(A(x)/x) and let § = lim sup(A(x)/x).

X=x XxX—

(a) Choose any ¢ > 0 and use the fact that
AG) B + B))—: and ;1;(;) <+ s)§

for all sufficiently large x/t to deduce, from Exercise 27(b), that

B a ¢ ae
+>+-+=-+—=>2a
o 2+2+2+ 5 > 2a
Since ¢ is arbitrary this implies

B a
—+ =->2a.
oz+2+2_

[Hint: Let x — oo in such a way that A(x)/x — a.]

(b) By a similar argument, prove that

ﬁ+%+§32a

and deduce that « = f = a. In other words, A(x) ~ ax as x — co.
29. Take a(n) = 1 + u(n) and verify that (52) is satisfied witha = 1 and b = 2C — 1,

where C is Euler’s constant. Show that the result of Exercise 28 implies

lim - Y. u(n) = 0.

x>0 X ns<x

This gives an alternate proof of Theorem 4.14.

30. Suppose that, in Exercise 28, we do not assume the prime number theorem. Instead,

let
y = lim inf n//(x)’ 6 = lim sup M
X0 X 00 X
{a) Show that the argument suggested in Exercise 28 leads to the inequalities

B ad o ay
—4+—=—2=>2 —+ =<2
@+ 22, ﬁ+2+2_a

(b) From the inequalities in part (a) prove that
ay<a<f<dd

This shows that among all numbers a(n) satisfying (51) and (52) with a fixed a,
the most widely separated limits of indetermination,

A A
lim inf ﬁ and lim sup ﬁ R
X2 ® X X+ a0

occur when a(n) = aA(n). Hence to deduce A(x) ~ ax from (51) and (52) it
suffices to treat only the special case a(n) = aA(n).
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Congruences

5.1 Definition and basic properties of
congruences

Gauss introduced a remarkable notation which simplifies many problems
concerning divisibility of integers. In so doing he created a new branch of
number theory called the theory of congruences, the foundations of which are
discussed in this chapter.

Unless otherwise indicated, small latin and Greek letters will denote
integers (positive, negative, or zero).

Definition Given integers a, b, m with m > 0. We say that a is congruent to
b modulo m, and we write

)] a =b (mod m),

if m divides the difference a — b. The number m is called the modulus of

the congruence.
1

In other words, the congruence (1) is equivalent to the divisibility relation
m|(a — b).

In particular, a = 0 (mod m) if, and only if, m|a. Hence a = b (mod m) if,
and only if, a — b = 0 (mod m). If m } (a — b) we write a # b (mod m) and
say that a and b are incongruent mod m.
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ExAMPLES

1.19=7 (mod 12),1 = —1 (mod 2),32 = —1 (mod 5).
2. niseven if, and only if, n = 0 (mod 2).

3. nis odd if, and only if, n = 1 (mod 2).

4. a = b (mod 1) for every a and b.

5. If a = b (mod m) then @ = b (mod d) when d|m,d > 0.

The congruence symbol = was chosen by Gauss to suggest analogy with
the equals sign =. The next two theorems show that congruences do indeed
possess many of the formal properties of equations.

Theorem 5.1 Congruence is an equivalence relation. That is, we have:

(a) a = a (mod m) (reflexivity)
(b) a = b (mod m) implies b = a (mod m) (symmetry)
(¢) a=b (mod m)and b = ¢ (mod m)

imply a = ¢ (mod m) (tranmsitivity).

Proor. The proof follows at once from the following properties of divisi-
bility:

(a) m|O0.
(b) If m|(a — b) then m|(b — a).
(c) If m|(a — b)and m|(b — c)thenm|(a — b) + (b — c) =a — c. O

Theorem 5.2 If a = b (mod m) and o = B (mod m), then we have:

(@) ax + ay = bx + By (mod m) for all integers x and y.

(b) ax = bf (mod m).

(c) a" = b" (mod m) for every positive integer n.

(d) f(a) = f(b) (mod m) for every polynomial f with integer coefficients.

PRrOOF. (a) Since m|(a — b) and m|(a — ) we have
mix(a — b) + ylo — f) = (ax + ay) — (bx + By).
{b) Note that aa — bfi = a(a — b) + b(a — p) = 0 (mod m) by part (a).

{c) Take a = a and B = b in part (b) and use induction on n.
(d) Use part (c) and induction on the degree of f. O

Theorem 5.2 tells us that two congruences with the same modulus can
be added, subtracted, or multiplied, member by member, as though they were
equations. The same holds true for any finite number of congruences with
the same modulus.

Before developing further properties of congruences we give two examples
to illustrate their usefulness.
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5: Congruences

ExaMpPLE 1 Test for divisibility by 9. An integer » > 0 is divisible by 9 if,
and only if, the sum of its digits in its decimal expansion is divisible by 9.
This property is easily proved using congruences. If the digits of n in decimal
notation are ag, dy, . . ., Gy, then

n=ay+ 10a, + 10%a, + --- + 10%g,.
Using Theorem 5.2 we have, modulo 9,
10=1, 102=1,..., 10 =1 (mod 9)
$O
n=ay+a + -+ a (mod?9).

Note that all these congruences hold modulo 3 as well, so a number is
divisible by 3 if, and only if, the sum of its digits is divisible by 3.
ExampLE 2 The Fermat numbers F, = 2*" + 1 were mentioned in the
Historical Introduction. The first five are primes:

Fo=3, F,=5 F,=17  Fy=257, andF, = 65537

We now show that F is divisible by 641 without explicitly calculating F.
To do this we consider the successive powers 22" modulo 641. We have

22 =4, 2% = 16, 28 = 256, 216 = 65,536 = 154 (mod 641),
0
232 = (154)? = 23,716 = 640 = —1 (mod 641).
Therefore Fs = 232 + 1 = 0 (mod 641), so F5 is composite.

We return now to general properties of congruences. Common nonzero
factors cannot always be cancelled from both members of a congruence as
they can in equations. For example, both members of the congruence

48 = 18 (mod 10)

are divisible by 6, but if we cancel the common factor 6 we get an incorrect
result, 8 = 3 (mod 10). The next theorem shows that a common factor can
be cancelled if the modulus is also divisible by this factor.

Theorem 5.3 If ¢ > 0 then
a=>b (mod m) if,and onlyif, ac = bc (mod mc).
PRrROOF. We have m|(b — a) if, and only if, cm|c(b — a). O

The next theorem describes a cancellation law which can be used when
the modulus is not divisible by the common factor.
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Theorem 5.4 Cancellation law. If ac = bc (mod m) and if d = (in, c), then

a=bh (mod %)

In other words, a common factor ¢ can be cancelled provided the modulus
is divided by d = (m, c). In particular, a common factor which is relatively
prime to the modulus can always be cancelled.

PROOF. Since ac = bc (mod m) we have
mic
micla — b) SOE'E(a_b)'
But (m/d, c/d) = 1, hence m/d|(a — b). U

Theorem 5.5 Assume a = b (mod m). If d|m and d|a then d\b.

Proor. It suffices to assume that d > 0. If d|m then a = b (mod m) implies

a = b (modd). Butif d|athena = 0 (modd)so b = 0 (modd). [

Theorem 5.6 If a = b (mod m) then (a, m) = (b, m). In other words, numbers
which are congruent mod m have the same ged with m.

PROOF. Let d = (a, m) and e = (b, m). Then d|mand d}a so d|b; hence d|e.

Similarly, e|m, e|b, so e|a; hence e|d. Therefore d = e. O

Theorem 5.7 If a = b (mod m) and if 0 < |b — a| < m, thena = b.

ProOF. Since m|(a — b) we have m < |a — blunlessa — b = 0. d

Theorem 5.8 We have a = b (mod m) if, and only if, a and b give the same
remainder when divided by m.

ProoF. Write a=mg+r, b=mQ + R, where 0 <r <m and
0<R<mThena—b=r— R (mod m)and 0 < |r — R} < m. Now
use Theorem 5.7. O

Theorem 5.9 If a = b (mod m) and a = b (mod n) where (m, n) = 1, then
a = b (mod mn).

ProOF. Since both m and »n divide a — b so does their product since
(m,n) = 1. O

5.2 Residue classes and complete residue
systems

Definition Consider a fixed modulus m > 0. We denote by & the set of all
integers x such that x = a (mod m) and we call 4 the residue class a
modulo m.
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5: Congruences

Thus, a consists of all integers of the form a + mgq, where ¢ =0, +1,
+2,...

The following properties of residue classes are easy consequences of this
definition.

Theorem 5.10 For a given modulus m we have:

(a) & = b if, and only if, a = b (mod m).

(b) Two integers x and y are in the same residue class if, and only if,
x =y (mod m).

(c) The m residue classes 1,2, ..., # are disjoint and their union is the set
of all integers.

PRrOOEF. Parts (a) and (b) follow at once from the definition. To prove (c) we
note that the numbers 0, 1, 2, ..., m — 1 are incongruent modulo m (by
Theorem 5.7). Hence by part (b) the residue classes

.~ A N

0,1,2,...,m—1
are disjoint. But every integer x must be in exactly one of these classes because
x=gm +r where 0 <r <m, so x =r (mod m) and hence x € #. Since
0 = m this proves (c). O
Definition A set of m representatives, one from each of the residue classes

P

1,2, ..., m,is called a complete residue system modulo m.

ExAaMPLES Any set consisting of m integers, incongruent mod m, is a complete
residue system mod m. For example,

{1,2,...,m}; {0,1,2,...,m — 1};
{(IL,m+22m+3,3m+4,..,m.
Theorem 5.11 Assume (k, m) = 1. If {a,, ..., a,,} is a complete residue system
modulo m, so is {ka,, ..., ka,}.

Proor. If ka; = ka; (mod m) then a; = a; (mod m) since (k, m) = 1.
Therefore no two elements in the set {ka,, ..., ka,,} are congruent modulo m.
Since there are m elements in this set it forms a complete residue system. [J

5.3 Linear congruences

Polynomial congruences can be studied in much the same way that poly-
nomial equations are studied in algebra. Here, however, we deal with
polynomials f(x) with integer coefficients so that the values of these poly-
nomials will be integers when x is an integer. An integer x satisfying a
polynomial congruence

9] f(x) =0 (mod m)
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is called a solution of the congruence. Of course, if x = y (mod m) then
f(x) = f(y) (mod m) so every congruence having one solution has in-
finitely many. Therefore we make the convention that solutions belonging
to the same residue class will not be counted as distinct. And when we speak
of the number of solutions of a congruence such as (2) we shall mean the
number of incongruent solutions, that is, the number of solutions contained
in the set {1, 2, ..., m} or in any other complete residue system modulo m.
Therefore every polynomial congruence modulo m has at most m solutions.

ExaMPLE 1 The linear congruence 2x = 3 (mod 4) has no solutions, since
2x — 3 is odd for every x and therefore cannot be divisible by 4.

ExampLE 2 The quadratic congruence x? = 1 (mod 8) has exactly four
solutions given by x = 1, 3, 5, 7 (mod 8).

The theory of linear congruences is completely described by the next three
theorems.

Theorem 5.12 Assume (a, m) = 1. Then the linear congruence
A3) ax = b (mod m)

has exactly one solution.

PrOOF. We need only test the numbers 1, 2, ..., m, since they constitute a
complete residue system. Therefore we form the products a, 24, ..., ma.
Since (a, m) = 1 these numbers also constitute a complete residue system.
Hence exactly one of these products is congruent to b modulo m. That is,
there is exactly one x satisfying (3). |

Although Theorem 5.12 tells us that the linear congruence (3) has a unique
solution if (a, m) = 1, it does not tell us how to determine this solution
except by testing all the numbers in a complete residue system. There are
more expeditious methods known for determining the solution; some of
them are discussed later in this chapter.

Note. If (a, m) = 1 the unique solution of the congruence ax = 1 (mod m)
is called the reciprocal of a modulo m. If @' is the reciprocal of a then ba’ is
the solution of (3).

Theorem 5.13 Assume (a, m) = d. Then the linear congruence
) ax = b (mod m)
has solutions if, and only if, d|b.
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5: Congruences

ProOF. If a solution exists then d|b since d|m and d|a. Conversely, if d|b

the congruence
a b m
3 x = 1 <mod E)

has a solution since (a/d, m/d) = 1, and this solution is also a solution of (4).

O

Theorem 5.14 Assume (a, m) = d and suppose that d|b. Then the linear
congruence

(5) ax = b (mod m)
has exactly d solutions modulo m. These are given by
m m m
— =, ... - 1)=
(6) t,t+d,t+2d, ,t+d )d,
where t is the solution, unique modulo m/d, of the linear congruence
b
(7) g x= <mod g)

Proor. Every solution of (7) is also a solution of (5). Conversely, every
solution of (5) satisfies (7). Now the d numbers listed in (6) are solutions of (7)
hence of (5). No two of these are congruent modulo m since the relations

t+r%_=_t+s%(modm), with0 <r<d,0<s<d

imply

r% = s% (mod m), and hence r = s (mod d).
But0 <|r—s|<dsor=s.

It remains to show that (5) has no solutions except those listed in (6).
If y is a solution of (5) then ay = at (mod m) so y = ¢t (mod m/d). Hence
y =t + km/d for some k. But k = r (mod d) for some r satisfying 0 < r < d.
Therefore

m m m
kg=rg(modm) soy=t+rz(modm).

Therefore y is congruent modulo m to one of the numbers in (6). This com-
pletes the proof. O

In Chapter 1 we proved that the ged of two numbers a and b is a linear
combination of a and b. The same result can be deduced as a consequence of
Theorem 5.14.
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Theorem 5.15 If (a, b) = d there exist integers x and y such that
®) ax + by = d.

Proor. The linear congruence ax = d (mod b) has a solution. Hence there
is an integer y such that d — ax = by. This gives us ax + by = d, as required.
O

Note. Geometrically, the pairs (x, y) satisfying (8) are lattice points lying
on a straight line. The x-coordinate of each of these points is a solution of the
congruence ax = d (mod b).

5.4 Reduced residue systems and the
Euler-Fermat theorem

Definition By a reduced residue system modulo m we mean any set of @(m)
integers, incongruent modulo m, each of which is relatively prime to m.

Note. ¢(m) is Euler’s totient, introduced in Chapter 2.

Theorem 5.16 If {a,, a, . . . , Aym} is a reduced residue system modulo m and
if (k,m) = 1, then {ka,, ka,, . . . , ka,u} is also a reduced residue system
modulo m.

ProOOF. No two of the numbers ka; are congruent modulo m. Also, since
(a;, m) = (k, m) = | we have (ka;, m) = 1 so each ka; is relatively prime
to m. 0

Theorem 5.17 Euler-Fermat theorem. Assume (a, m) = 1. Then we have

a®™ =1 (mod m).

PROOF. Let {by, b,, . . ., b,m)} be a reduced residue system modulo m. Then
{aby, ab,, ..., ab,,} is also a reduced residue system. Hence the product of
all the integers in the first set is congruent to the product of those in the
second set. Therefore

bl v b(p(m) = a"’("')bl e b¢(m) (mOd m)

Each b, is relatively prime to m so we can cancel each b; to obtain the theorem.

O

Theorem 5.18 If a prime p does not divide a then
a* ' =1 (mod p).
ProoOF. This is a corollary of the foregoing theorem since ¢p(p) = p — 1. [
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5: Congruences

Theorem 5.19 Little Fermat theorem. For any integer a and any prime p we
have

a? = a (mod p).

ProOOF. If p ¥ a this is Theorem 5.18. If p|a then both a” and a are congruent
to 0 mod p. O

The Euler-Fermat theorem can be used to calculate the solutions of a
linear congruence.

Theorem 5.20 If (a, m) = 1 the solution (unique mod m) of the linear con-
gruence

) ax = b (mod m)
is given by
(10) x = ba®™ =1 (mod m).

ProoOF. The number x given by (10) satisfies (9) because of the Euler-Fermat
theorem. The solution is unique mod m since (a, m) = 1. O

ExaMPLE 1 Solve the congruence 5x = 3 (mod 24).

Solution
Since (5, 24) = 1 there is a unique solution. Using (10) we find

x =3-5924"1 = 3.57 (mod 24)
since ¢(24) = @(3)p(8) = 2 - 4. Modulo 24 we have 52 = 1, and
54 =55 =1, 57=5, so x = 15 (mod 24).

ExaMPLE 2 Solve the congruence 25x = 15 (mod 120).

Solution

Since d = (25, 120) = 5 and d|15 the congruence has exactly five solu-
tions modulo 120. To find them we divide by S and solve the congruence
5x = 3 (mod 24). Using Example 1 and Theorem 5.14 we find that the five
solutions are given by x = 15 4+ 24k, k =0, 1, 2, 3,4, or

x = 15, 39, 63, 87, 111 (mod 120).

5.5 Polynomial congruences modulo p.
Lagrange’s theorem

The fundamental theorem of algebra states that for every polynomial f
of degree n > 1 the equation f(x) = 0 has n solutions among the complex
numbers. There is no direct analog of this theorem for polynomial con-
gruences. For example, we have seen that some linear congruences have no
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solutions, some have exactly one solution, and some have more than one.
Thus, even in this special case, there appears to be no simple relation between
the number of solutions and the degree of the polynomial. However, for
congruences modulo a prime we have the following theorem of Lagrange.

Theorem 5.21 (Lagrange). Given a prime p, let
Sx)=co+cx+ -+ X"

bea polynomial of degree n with integer coefficients such that ¢, # 0 (mod p).
Then the polynomial congruence

(11) f(x) =0 (mod p)

has at most n solutions.

Note. This result is not true for composite moduli. For example, the
quadratic congruence x> = 1 (mod 8) has 4 solutions.

PROOF. We use induction on n, the degree of /. When n = 1 the congruence
is linear:

c1x + ¢o = (mod p).
Since ¢; # 0 (mod p) we have (cy, p) = 1 and there is exactly one solution.
Assume, then, that the theorem is true for polynomials of degree n — 1.
Assume also that the congruence (11) has n + 1 incongruent solutions
modulo p, say
Xgs Xy eeerXns

where f(x,) = 0 (mod p) for each k = 0, 1, ..., n. We shall obtain a contra-
diction. We have the algebraic identity

n

fx) = flxo) = Z (X" = xo") = (x — x0)g(x)

r=1

where g(x) is a polynomial of degree n — 1 with integer coefficients and with
leading coefficient c,. Thus we have

fa) = flxo) = (xx — X0)g(x,) = 0 (mod p),

since f(x,) = f(xo) = 0 (mod p). But x;, — xo # 0 (mod p) if k # 0 so we
must have g(x,) = 0 (mod p) for each k # 0. By this means that the con-
gruence ¢g(x) = 0 (mod p) has n incongruent solutions modulo p, con-
tradicting our induction hypothesis. This completes the proof. O

5.6 Applications of Lagrange’s theorem

Theorem 5.22 If f(x) = ¢o + ¢;x + -+ - + ¢,X" is a polynomial of degree n
with integer coefficients, and if the congruence

f(x) =0 (mod p)
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has more than n solutions, where p is prime, then every coefficient of f is
divisible by p.

Proor. If there is some coefficient not divisible by p, let ¢, be the one with
largest index. Then k < n and the congruence

Co +cyx + -+ ¢ x* =0 (mod p)
has more than k solutions so, by Lagrange’s theorem, p|c,, a contradiction.
(]

Now we apply Theorem 5.22 to a particular polynomial.

Theorem 5.23 For any prime p all the coefficients of the polynomial
fR=x—-Dx—=2x—p+1)—x""1+1
are divisible by p.

PROOF. Let g(x) = (x — 1)(x — 2)- - - (x — p + 1). The roots of g are the
numbers 1, 2, ..., p — 1, hence they satisfy the congruence

g(x) = 0 (mod p).

By the Euler-Fermat theorem, these numbers also satisfy the congruence
h(x) = 0 (mod p), where

h(x) = xP~' — 1.

The difference f(x) = g(x) — h(x) has degree p — 2 but the congruence
f(x}) =0 (mod p) ha_s p — 1 solutions, 1, 2,...,p — 1. Therefore, by
Theorem 5.22, each coefficient of f(x) is divisible by p. |

We obtain the next two theorems by considering two particular coefficients
of the polynomial f(x) in Theorem 5.23.

Theorem 5.24 Wilson’s theorem. For any prime p we have

(p— D!'= —1 (mod p).

Proor. The constant term of the polynomial f(x) in Theorem 5.23
is(p— D!+ 1 O

Note. The converse of Wilson’s theorem also holds. That is, if » > 1 and
(n — 1)! = —1 (mod n), then n is prime. (See Exercise 5.7.)

Theorem 5.25 Wolstenholme’s theorem. For any prime p > 5 we have
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PrOOF. The sum in question is the sum of the products of the numbers 1,
2,...,p— 1 taken p — 2 at a time. This sum is also equal to the coeffi-
cient of —x in the polynomial

g)=(x-Dx =2 (x—p+ 1)
In fact, g(x) can be written in the form
gx) = xP~1 = SxXPT 4+ SyxP T3 — 4 S, ix? = S, ,x + (p — D),

where the coefficient S, is the kth elementary symmetric function of the roots,
that is, the sum of the products of the numbers 1,2,...,p — 1, taken k at a
time. Theorem 5.23 shows that each of the numbers §;, S,,...,S,-, is
divisible by p. We wish to show that S,_, is divisible by p*.

The product for g(x) shows that g(p) = (p — 1)! so

p—D'=p" =S PP 2+ + S8, 30" =S, ,p+(p— D
Canceling (p — 1)! and reducing the equation mod p* we find, since p > 5,
pS,—, =0 (mod p’),

and hence S, _, = 0 (mod p?), as required. a

5.7 Simultaneous linear congruences. The
Chinese remainder theorem

A system of two or more linear congruences need not have a solution, even
though each individual congruence has a solution. For example, there is no x
which simultaneously satisfies x =1 (mod 2) and x = 0 (mod 4), even
though each of these separately has solutions. In this example the moduli 2
and 4 are not relatively prime. We shall prove next that any system of two or
more linear congruences which can be solved separately with unique solu-
tions can also be solved simultaneously if the moduli are relatively prime in
pairs. We begin with a special case.

Theorem 5.26 Chinese remainder theorem. Assume my, . . ., m, are positive
integers, relatively prime in pairs:

(my,m) =1 if i #k.
Let b, ..., b, be arbitrary integers. Then the system of congruences

x = b, (mod m,)

X E b, (mod m,)

has exactly one solution modulo the product m, - -- m,.
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PrOOF. Let M = m, - - - m,and let M, = M/m,. Then(M,, m;) = 1soeach
M, has a unique reciprocal M; modulo m,. Now let

X = blMlMll + szzM,z + + b,M,M’,

Consider each term in this sum modulo m,. Since M; = 0 (mod m,)if i # k
we have

x = M M; = b, (mod m,).

Hence x satisfies every congruence in the system. But it is easy to show that the
system has only one solution mod M. In fact, if x and y are two solutions of
the system we have x = y (mod m,) for each k and, since the m, are relatively
prime in pairs, we also have x = y (mod M). This completes the proof. [

The following extension is now easily deduced.
Theorem 5.27 Assume my, . . ., m, are relatively prime in pairs. Let by, . . .,
b, be arbitrary integers and let ay, .. ., a, satisfy
(g, m)=1 fork=1,2,...,r.

Then the linear system of congruences

a;x = b, (mod m,)

a,x = b, (mod m,)
has exactly one solution modulo mym, - - - m,.

PrOOF. Let a; denote the reciprocal of @, modulo m,. This exists since
(ay, my) = 1. Then the congruence a;x = b, (mod m,) is equivalent to the
congruence x = b,a; (mod m,). Now apply Theorem 5.26. O

5.8 Applications of the Chinese remainder
theorem

The first application deals with polynomial congruences with composite
moduli.

Theorem 5.28 Let f be a polynomial with integer coefficients, let m,, m,, . . .,
m, be positive integers relatively prime in pairs, and let m = mym, - --m,.
Then the congruence

(12) f(x) =0 (mod m)
has a solution if, and only if, each of the congruences
(13) fx)=0 (modmy) (i=12...,7)
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has a solution. Moreover, if v(im) and v(m;) denote the number of solutions
of (12) and (13), respectively, then

(14) wm) = v(m)v(my) - - - v(m,).

ProoF. If fla) = 0 (mod m) then f(a) = 0 (mod m;) for each i. Hence every
solution of (12) is also a solution of (13).

Conversely, let a; be a solution of (13). Then by the Chinese remainder
theorem there exists an integer a such that

(15) a=a; modm;) fori=1,2...,r,
SO

fla) = fla) =0 (mod m,).

Since the moduli are relatively prime in pairs we also have f(a) = 0 (mod m).
Therefore if each of the congruences in (13) has a solution, so does (12).

We also know, by Theorem 5.26, that each r-tuple of solutions (a,, . .., a,)
of the congruences in (13) gives rise to a unique integer a mod m satisfying
(15). As each g, runs through the v(m;) solutions of (13) the number of integers a
which satisfy (15) and hence (13) is v(m,) - - - ¥(m,). This proves (14). 0

Note. If m has the prime power decomposition

&y

m=pi-p

we can take m; = p;* in Theorem 5.28 and we see that the problem of solving
a polynomial congruence for a composite modulus is reduced to that for
prime power moduli. Later we will show that the problem can be reduced
further to polynomial congruences with prime moduli plus a set of linear
congruences. (See Section 5.9.)

The next application of the Chinese remainder theorem concerns the set
of lattice points visible from the origin. (See Section 3.8.)

Theorem 5.29 The set of lattice points in the plane visible from the origin
contains arbitrarily large square gaps. That is, given any integer k > 0
there exists a lattice point (a, b) such that none of the lattice points

@+r,b+s), 0<r<kO<s<k,
is visible from the origin.

PROOF. Let py, p,, .. ., be the sequence of primes. Given k > 0 consider
the k x k matrix whose entries in the first row consist of the first k primes,
those in the second row consist of the next k primes, and so on. Let m; be the
product of the primes in the ith row and let M, be the product of the primes
in the ith column. Then the numbers m; are relatively prime in pairs, as are
the M;.
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Next consider the set of congruences

= —1 (mod m,)
x = —2 (mod m,)
x=—k (mod my).

This system has a solution a which is unique mod m, -- - m,. Similarly, the
system

y= —1 (mod M,)

y = —k (mod M))

has a solution b which is unique mod M, --- M, = m, - - m,.
Now consider the square with opposite vertices at (a, b)and (a + k, b + k).
Any lattice point inside this square has the form

(a+r,b+s), whereO<r<k 0<s<k,

and those with r = k or s = k lie on the boundary of the square. We now
show that no such point is visible from the origin. In fact,

= —r (mod m,) and b = —s (mod M)

so the prime in the intersection of row r and column s divides both a + r and
b + s. Hence a + r and b + s are not relatively prime, and therefore the
lattice point (@ + r, b + s) is not visible from the origin. O

5.9 Polynomial congruences with prime
power moduli
Theorem 5.28 shows that the problem of solving a polynomial congruence
f(x) =0 (mod m)
can be reduced to that of solving a system of congruences
f(x) =0 (mod p*) i=12...,r),

where m = p,*t--- p,*. In this section we show that the problem can be
further reduced to congruences with prime moduli plus a set of linear con-
gruences.

Let f be a polynomial with integer coefficients, and suppose that for some
prime p and some « > 2 the congruence

(16) f(x) =0 (mod p%)
has a solution, say x = a, where a is chosen so that it lies in the interval

0<a<pt
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This solution also satisfies each of the congruences f(x) = 0 (mod p?) for
each § < a. In particular, a satisfies the congruence

(17) f(x) =0 (mod p*~1).
Now divide a by p*~! and write
(18) a=qp* ' +r, where0<r<p L

The remainder r determined by (18) is said to be generated by a. Since
r = a (mod p*~ ') the number r is also a solution of (17). In other words,
every solution a of congruence (16) in the interval 0 < a < p* generates
a solution r of congruence (17) in the interval 0 < r < p*~ 1.

Now suppose we start with a solution r of (17) in the interval 0 < r < p*~!
and ask whether there is a solution a of (16) in the interval 0 < a < p* which
generates r. If so, we say that r can be lifted from p*~ ! to p® The next theorem
shows that the possibility of r being lifted depends on f(r) mod p* and on the
derivative f'(r) mod p.

Theorem 5.30 Assume oo > 2 and let r be a solution of the congruence
(19) f(x) =0 (mod p*~ 1)

lying in the interval 0 < r < p*~ 1.

(a) Assume f'(r) # O (mod p). Then r can be lifted in a unique way from
a—1

p*~ " to p%. That is, there is a unique a in the interval 0 < a < p* which
generates r and which satisfies the congruence

(20) f(x) = 0 (mod p?.

(b) Assume f'(r) = 0 (mod p). Then we have two possibilities:
(by) If f(r) = 0 (mod p%), r can be lifted from p*~! to p* in p distinct
ways.
(by) If f(r) # 0 (mod p®), r cannot be lifted from p*~* to p~

Proor. If 7 is the degree of f we have the identity (Taylor’s formula)

(1) fx+h)=fx)+f'(xh+ f;('x) h* + -+ f(")fx) .

n

for every x and h. We note that each polynomial f®(x)/k! has integer co-
efficients. (The reader should verify this.) Now take x = rin (21), where ris a
solution of (19) in the interval 0 < r < p*~ !, and let h = qp*~ ! where g is an
" integer to be specified presently. Since a > 2 the terms in (21) involving h?
and higher powers of h are integer multiples of p*. Therefore (21) gives us the
congruence

fr+qp* " = fr) + f'()gp*™ " (mod p).
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Since r satisfies (19) we can write f(r) = kp*~ ! for some integer k, and the
last congruence becomes

f+qp*™") = {gf'(r) + k}p*~ ' (mod p?).
Now let
(22) a=r+qp* "

Then a satisfies congruence (20) if, and only if, g satisfies the linear congruence
(23) qf'(r) + k = 0 (mod p).

If f'(r) # 0 (mod p) this congruence has a unique solution g mod p, and if
we choose g in the interval 0 < g < p then the number a given by (22) will
satisfy (20) and will lie in the interval 0 < a < p*

On the other hand, if f'(r) = 0 (mod p) then (23) has a solution g if,
and only if, p|k, that is, if and only if f(r) = 0 (mod p%). If p.tk there is no
choice of g to make a satisfy (20). But if p|k then the p values¢=0,1, ...,
p — 1 give p solutions a of (20) which generate r and lie in the interval
0 < a < p* This completes the proof. O

The proof of the foregoing theorem also describes a method for obtaining
solutions of congruence (20) if solutions of (19) are known. By applying the
method repeatedly the problem is ultimately reduced to that of solving the
congruence

(24) f(x) =0 (mod p).

If (24) has no solutions, then (20) has no solutions. If (24) has solutions,
we choose one, call it r, which lies in the interval 0 < r < p. Corresponding
to r there will be 0, 1, or p solutions of the congruence

(25) f(x) =0 (mod p?)

depending on the numbers f'(r) and k = f(r)/p. If p ¥ k and p| f'(r) then r
cannot be lifted to a solution of (25). In this case we begin anew with a
different solution r. If no r can be lifted then (25) has no solution.

If p|k for some r, we examine the linear congruence

qf'(r) + k = 0 (mod p).

This has 1 or p solutions g according as p 4 f'(r) or p| f'(r). For each solution
g the number a = r + gp gives a solution of (25). For each solution of (25)
a similar procedure can be used to find all solutions of

f(x) =0 (mod p%),
and so on, until all solutions of (20) are obtained.
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5.10 The principle of cross-classification

Some problems in number theory can be dealt with by applying a general
combinatorial theorem about sets called the principle of cross-classification.
This is a formula which counts the number of elements of a finite set S which
do not belong to certain prescribed subsets S, ..., S,.

Notation If T is a subset of S we write N(T) for the number of elements of T.
We denote by S — T the set of those elements of S which are not in T. Thus,

consists of those elements of S which are not in any of the subsets Sy, ..., S,.
For brevity we write S;S;, S;S;Sx,..., for the intersections S; N Sj,
S;nS; NSy, ..., respectively.

Theorem 5.31 Principle of cross-classification. If Sy, . . ., S, are given subsets
of a finite set S, then

N(S— Os,.):N(S)— Y N©S)+ Y N(S:S)
i=1

1<isn 1<i<jsgn

— Y N(S:S;S) A+ -+ (=1)N(S,S, -+ S,

1<i<j<k<n

Proor. If T < S let N,(T) denote the number of elements of T which are
not in any of the first r subsets Sy, ..., S,, with No(T) being simply N(T).
The elements enumerated by N,_,(T) fall into two disjoint sets, those which
are not in S, and those which are in S,. Therefore we have

Nr—l(T) = Nr(T) + Nr—l(TSr)'
Hence
(26) N(T) = N,_((T) — N,_(TS,).

Now take T = S and use (26) to express each term on the right in terms of
N,_,. We obtain

Nr(s) = iNr—Z(S) - Nr—Z(SSr—l)} - {Nr—Z(Sr) - Nr—Z(SrSr—— 1)}
- Nr-Z(S) - Nr—Z(Sr- 1) - Nr—Z(Sr) + Nr—Z(SrSr—l)-
Applying (26) repeatedly we finally obtain

Nr(S)=N0(S)_-__21N0(Si)+ Y No(SiS) = -+ (=1/No(Sy -+ S,).

1<i<jsr

When r = n this gives the required formula. O
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ExaMpLE The product formula for Euler’s totient can be derived from the
cross-classification principle. Let p,...,p, denote the distinct prime
divisors of n. Let S = {1,2, ..., n} and let S, be the subset of S consisting of
those integers divisible by p,. The numbers in S relatively prime to n are those
in none of the sets S,, ..., S,, so

k=1
If d|n there are n/d multiples of d in the set S. Hence

NES) =2, N(S:S) = ——,..., NS, S,) = ,
Di DiD; P1 P

so the cross-classification principle gives us

n

n
o =n— 3 —+ — (=Y
i=1 Pi  1<i<j<r PiPj P1 Py

_ pd) 1
_nalnT_nLIn(l I’)T

The next application of the cross-classification principle counts the
number of elements in a reduced residue system mod k which belong to a
given residue class r mod d, where d|k and (r, d) = 1.

n

Theorem 5.32 Given integers r, d and k such that dlk, d > 0, k > 1 and
(r, d) = 1. Then the number of elements in the set

S={r+twd:t=12,...,k/d}
which are relatively prime to k is o(k)/o(d).

PrOOF. If a prime p divides k£ and r + td then p ¥ d, otherwise p|r, contra-
dicting the hypothesis (r, d) = 1. Therefore, the primes which divide k and
elements of S are those which divide k but do not divided. Call themp,, ..., p,,
and let

kK'=pips- Dm

Then the elements of S relatively prime to k are those not divisible by any of
these primes. Let

S; = {x:x €S and p;|x} i=12...,m).
If xe§; and x = r + td, then r + td = 0 (mod p,). Since p; t d there is a
unique ¢ mod p; with this property, therefore exactly one ¢ in each of the
intervals [1, p;], [p; + 1, 2pil, ..., [g — Dp: + 1, gp;] where gp; = k/d.
Therefore

Nisy = 2.

i
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Similarly,

k/d k/d
N(S;S) = L,...,N(s1 8, = _kd_
pip; P1° Pm
Hence by the cross-classification principle the number of integers in S which
are relatively prime to k is

1
kT1(1 -1
" ko o) _k 1 p|k< P) (k)
S—Us )=y B2 (1) =2 B2 TR
N( Y '> diw o dp|k'< ) dl_[(l—l) »(d) =

pld p

5.11 A decomposition property of reduced
residue systems

As an application of the foregoing theorem we discuss a property of reduced
residue systems which will be used in a later chapter. We begin with a
numerical example.

Let S be a reduced residue system mod 15, say

S=1{1,2,4,72811,13, 14}.

We display the 8 elements of S in a 4 x 2 matrix as follows:

1 2
4 8
7 11
13 14

Note that each row contains a reduced residue system mod 3, and the
numbers in each column are congruent to each other mod 3. This example
illustrates a general property of reduced residue systems described in the
following theorem.

Theorem 5.33 Let S be a reduced residue system mod k, and let d > 0 be a
. divisor of k. Then we have the following decompositions of S:

(a) S is the union of (k)/@(d) disjoint sets, each of which is a reduced residue
system mod d.

(b) S is the union of ¢(d) disjoint sets, each of which consists of @(k)/¢(d)
numbers congruent to each other mod d.

Note. In the foregoing example, k = 15 and d = 3. The rows of the matrix
represent the disjoint sets of part (a), and the columns represent the disjoint
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sets of part (b). If we apply the theorem to the divisor d = 5 we obtain the
decomposition given by the matrix

1 2 4 8
11 7 14 13 ]
Each row is a reduced residue system mod S and each column consists of
numbers congruent to each other mod 5.

Proor. First we prove that properties (a) and (b) are equivalent. If (b) holds
we can display the ¢(k) elements of S as a matrix, using the ¢(d) disjoint sets
of (b) as columns. This matrix has ¢(k)/@(d) rows. Each row contains a
reduced system mod d, and these are the disjoint sets required for part (a).
Similarly, it is easy to verify that (a) implies (b).

Now we prove (b). Let S, be a given reduced residue system mod d, and
suppose r € S;. We will prove that there are at least ¢(k)/¢(d) integers n in S,
distinct mod k, such that n = r (mod d). Since there are ¢(d) values of r in
S, and ¢(k) integers in S, there can’t be more than ¢(k)/@(d) such numbers n,
so this will prove part (b).

The required numbers n will be selected from the residue classes mod &
represented by the following k/d integers:

k
r,r+d,r+2d,...,r+t—id.

These numbers are congruent to each other mod d and they are incongruent
mod k. Since (r,d) = 1, Theorem 5.32 shows that ¢@(k)/@(d) of them are
relatively prime to k, so this completes the proof. (For a different proof based
on group theory see [1].) O

Exercises for Chapter 5

1. Let S be a set of n integers (not necessarily distinct). Prove that some nonempty
subset of S has a sum which is divisible by n.

2. Prove that 5n® + 7n° = 0 (mod 12) for all integers n.

n (mod 1365).
n (mod 4080).

3. (a) Find all positive integers n for which n!3
(b) Find all positive integers n for which n'”

4. (a) Prove that ¢(n) = 2 (mod 4) when n = 4 and when n = p°, where p is a prime,
p =3 (mod 4).
(b) Find all n for which ¢(n) = 2 (mod 4).

5. A yardstick divided into inches is again divided into 70 equal parts. Prove that
among the four shortest divisions two have left endpoints corresponding to 1 and
19 inches. What are the right endpoints of the other two?

6. Find all x which simultaneously satisfy the system of congruences

x =1 (mod 3), x = 2 (mod 4), x =3 (mod 5).
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10.

11.

12,

13.

14,

15.

16.

17.

Exercises for Chapter 5

. Prove the converse of Wilson’s theorem: If(n — 1)! + 1 = 0 (mod n), then n is prime

ifn> 1.

Find all positive integers n for which (n — 1)! + 1 is a power of n.

. If pis an odd prime, let ¢ = (p — 1)/2. Prove that

(g)* + (=1 =0 (mod p).

This gives ¢! as an explicit solution to the congruence x> + 1 = 0 (mod p) when
p =1 (mod 4), and it shows that g! = +1 (mod p) if p = 3 (mod 4). No simple
general rule is known for determining the sign.

If pis odd, p > 1, prove that

123252 ... (p — 2)* = (- 1)** V2 (mod p)
and

224262 ... (p — 1) = (~ 1)®* 12 (mod p).

Let p be a prime, p = 5, and write

1 1 1 r
L4+ +-+-=—.
2 3 p ps

Prove that p3|(r — s).

If p is a prime, prove that

(-
()

Let a, b, n be positive integers such that n divides a" — b". Prove that n also divides
(@ — b"f(a — b).

Also, if p*|[n/p] prove that

Let g, b, and x, be positive integers and define
X, =axX,_,+b forn=12,...
Prove that not all the x, can be primes.

Let n, r, a denote positive integers. The congruence n*> = n (mod 10% implies
n" = n (mod 10°) for all r. Find all values of r such that n" = n (mod 10°) implies
n? = n (mod 10°).

Let n, a, d be given integers with (a, d) = 1. Prove that there exists an integer m
such that m = a (mod d) and (m, n) = 1.

Let f be an integer-valued arithmetical function such that
fm+ n) = f(n) (mod m)
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for all m > 1, n > 1. Let g(n) be the number of values (including repetitions) of
S(), f(2), ..., f(n)divisible by n, and let h(n) be the number of these values relatively
prime to n. Prove that

hiny=n Z w(d) @

din

18. Given an odd integer n > 3, let k and ¢ be the smallest positive integers such that
both kn + 1 and tn are squares. Prove that n is prime if, and only if, both k and ¢
are greater than n/4.

19. Prove that each member of the set of n — 1 consecutive integers
n'+2,n+3...,n+n
is divisible by a prime which does not divide any other member of the set.

20. Prove that for any positive integers mand k, there exists a set of n consecutive integers
such that each member of this set is divisible by k distinct prime factors no one of
which divides any other member of the set.

21. Let n be a positive integer which is not a square. Prove that for every integer a
relatively prime to n there exist integers x and y satisfying

ax =y (modn) with0 < x < /nand0 < |y| < /n.

22, Letpbeaprime,p =1 (mod4),letg =(p — 1)/2,and leta = g!.
(a) Prove that there exist positive integers x and y satisfying 0 < x < \/E and
O0<y< ﬂsuch that
a*x? — y* = 0 (mod p).

(b) For the x and y in part (a), prove that p = x2 + y2. This shows that every prime
p = 1 (mod 4) is the sum of two squares.
(c) Prove that no prime p = 3 (mod 4) is the sum of two squares.
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Finite Abelian Groups and
Their Characters

6.1 Definitions

In Chapter 2 we had occasion to mention groups but made no essential use
of their properties. Now we wish to discuss some elementary aspects of group
theory in more detail. In Chapter 7 our discussion of Dirichlet’s theorem on
primes in arithmetical progressions will require a knowledge of certain
arithmetical functions called Dirichlet characters. Although the study of
Dirichlet characters can be undertaken without any knowledge of groups,
the introduction of a minimal amount of group theory places the theory of
Dirichlet characters in a more natural setting and simplifies some of the
discussion.

Definition Postulates for a group. A group G is a nonempty set of elements
together with a binary operation, which we denote by -, such that the
following postulates are satisfied:

(@) Closure. For everyaand bin G, a- b is also in G.

(b) Associativity. For every a, b, ¢ in G, we have (a-b)-c = a-(b-¢).

(c) Existence of identity. There is a unique element e in G, called the
identity, such thata-e = e¢-a = aforevery a in G.

(d) Existence of inverses. For every a in G there is a unique element b in G
such that a-b = b-a = e. This b is denoted by a~ ! and is called the
inverse of a.

Note. We usually omit the dot and write ab for a - b.

Definition Abelian group. A group G is called abelian if every pair of elements
commute; that is, if ab = ba for all a and b in G.
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Definition Finite group. A group G is called finite if G is a finite set. In this
case the number of elements in G is called the order of G and is denoted
by |G|.

Definition Subgroup. A nonempty subset G’ of a group G which is itself a
group, under the same operation, is called-a subgroup of G.

6.2 Examples of groups and subgroups

ExampLE 1 Trivial subgroups. Every group G has at least two subgroups,
G itself and the set {e} consisting of the identity element alone.

ExampLE 2 Integers under addition. The set of all integers is an abelian group
with + as the operation and 0 as the identity. The inverse of n is —n.

ExampLE 3 Complex numbers under multiplication. The set of all non-zero
complex numbers is an abelian group with ordinary multiplication of
complex numbers as the operation and 1 as the identity. The inverse of z is the
reciprocal 1/z. The set of all complex numbers of absolute value 1 is a
subgroup.

ExAMPLE 4 The nth roots of unity. The groups in Examples 2 and 3 are
infinite groups. An example of a finite group is the set {1, ¢, €2, ..., &" 1},
where ¢ = ™ and the operation - is ordinary multiplication of complex
numbers. This group, of order n, is called the group of nth roots of unity. It is a
subgroup of both groups in Example 3.

6.3 Elementary properties of groups
The following elementary theorems concern an arbitrary group G. Unless
otherwise stated, G is not required to be abelian nor finite.
Theorem 6.1 Cancellation laws. If elements a, b, ¢ in G satisfy
ac = bc or ca= cb,

thena = b.
PROOF. In the first case multiply each member on the right by ¢! and use
associativity. In the second case multiply on the left by ¢~ *. O
Theorem 6.2 Properties of inverses. In any group G we have:

(@) et =e.

(b) For everyainG,(a !)™! = a.

(c) Forallaand bin G, (ab)"' = b~ 'a~!. (Note reversal of order.)

(d) For all a and b in G the equation ax = b has the unique solution x =
a~'b; the equation ya = b has the unique solution y = ba™ .
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PRrOOF.

(a) Since ee = ee” ! we cancel e to obtaine = e .

(b) Since aa~' = e and inverses are unique, a is the inverse of a~!.
(c) By associativity we have

(ab)b 'a Y)Y =abb Va ' =aea ' =aa" ' =e

so b~ 'a™ ! is the inverse of ab.
(d) Again by associativity we have

a@'b)=(aa Y =b  and(ba Ya = bla 'a) = b.

The solutions are unique because of the cancellation laws. (]

Definition Powers of an element. If a € G we define a" for any integer n by the
following relations:

a®=e a"=ad""', a"

=(a” 'y forn>0.
The following laws of exponents can be proved by induction. We omit
the proofs.

Theorem 6.3 If a € G, any two powers of a commute, and for all integers m and n
we have

aman — am+n — anam and (am)n —_ amn — (an)m'
Moreover, if a and b commute we have

a"b" = (ab)".

Theorem 6.4 Subgroup criterion. If G’ is a nonempty subset of a group G, then
G’ is a subgroup if, and only if, G’ satisfies group postulates (a) and (d):
(@) Closure: Ifa,be G, thenab e G'.
(d) Existence of inverse. Ifae G',thena™' € G'.

Proor. Every subgroup G’ certainly has these properties. Conversely, if G’
satisfies (a) and (d) it is easy to show that G’ also satisfies postulates (b) and (c).
Postulate (b), associativity, holds in G’ because it holds for all elements in G.
To prove that (c) holds in G’ we note that there is an element a in G’ (since G’ is
nonempty) whose inverse a~* € G’ (by (d)) hence aa™! € G’ by (a). But aa™!
=esoe€e(. U

6.4 Construction of subgroups

A subgroup of a given group G can always be constructed by choosing any
element a in G and forming the set of all its powers a", n =0, +1, +2,...
This set clearly satisfies postulates (a) and (d) so is a subgroup of G. It is called
the cyclic subgroup generated by a and is denoted by <{a).
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Note that {a) is abelian, even if G is not. If a" = e for some positive
integer n there will be a smallest n > 0 with this property and the subgroup
<a) will be a finite group of order n,

a) ={a,a* ...,a" ', a" = e).

The integer n is also called the order of the element a. An example of a cyclic
subgroup of order n is the group of nth roots of unity mentioned in Section
6.2.

The next theorem shows that every element of a finite group has finite
order.

Theorem 6.5 If G is finite and a € G, then there is a positive integer n < |G|
such that a" = e.

PROOF. Let g = |G|. Then at least two of the following g + 1 elements of G
must be equal:

e a,a’, ..., a.

Suppose that a” = a°, where 0 <\ s < r < g. Then we have
e = ar(as)—l =g 5

This proves the theorem withn = r — s. O

As noted in Section 6.2, every group G has two trivial subgroups, {e} and
G itself. When G is a finite abelian group there is a simple process for con-
structing an increasing collection of subgroups intermediate to {e} and G.
The process, which will be described in Theorem 6.8, is based on the following
observation.

If G’ is a subgroup of a finite group G, then for any element a in G there is an
integer n such that ¢" € G'. If 4 is already in G’ we simply take n = 1. If
a ¢ G’ we can take n to be the order of a, since a” = e € G'. However, there may
be a smaller positive power of a which lies in G'. By the well-ordering principle
there is a smallest positive integer n such that a” € G'. We call this integer the
indicator of a in G'.

Theorem 6.6 Let G’ be a subgroup of a finite abelian group G, where G' # G.
Choose an element a in G, a ¢ G’, and let h be the indicator of a in G'. Then
the set of products

G'={xdxeGandk=0,1,2,,..,h — 1}

is a subgroup of G which contains G'. Moreover, the order of G” is h times
that of G',

|G"| = h|G'|.
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Proor. To show G” is a subgroup we use the subgroup criterion. First we
test closure. Choose two elements in G”, say xa* and ya’, where x, y € G’ and
0 <k < h,0 < j< h Since G is abelian the product of the elements is

1) (xy)a**..
Now k + j = gh + r where 0 < r < h. Hence

k+j _ aqh+r

a = a®™ = zd',

where z = a® = (a")? € G’ since a" € G'. Therefore the element in (1) is
(xyz)a" = wa’, where w € G’ and 0 < r < h. This proves that G” satisfies the
closure postulate.

Next we show that the inverse of each element in G” is also in G”. Choose
an arbitrary element in G”, say xa". If k = 0 then the inverse is x ~ ! which is in
G". If 0 < k < h the inverse is the element

ya"~%, where y = x~1(a")7},

which again is in G”. This shows that G” is indeed a subgroup of G. Clearly
G" contains G'.

Next we determine the order of G”. Let m = |G’|. As x runs through the
melements of G’ and k runs through the hintegers 0,1,2,...,h — 1 we obtain
mh products xa*. If we show that all these are distinct, then G” has order mh.
Consider two of these products, say xa* and ya’ and assume that

xa* =ya’ with0<j<k<h.

Thena* ™/ = x"'yand 0 < k — j < h. Since x™ 'y € G’ we must have a* 7 in
G’ so k = jand hence x = y. This completes the proof. (]

6.5 Characters of finite abelian groups

Definition Let G be an arbitrary group. A complex-valued function f defined
on G is called a character of G if f has the multiplicative property

f(ab) = f(a)f(b)
for all @, b in G, and if f(c) # O for some c in G.
Theorem 6.7 If fis a character of a finite group G with identity element e, then

f(e) = 1 and each function value f(a)is aroot of unity. Infact, if a" = e then

fay = 1.

Proor. Choose ¢ in G such that f(c) # 0. Since ce = ¢ we have

f@)f(e) = f(e)
so f(e) = 1.If a" = ethen f(a)" = f(a") = f(e) = 1. 4
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ExampLE Every group G has at least one character, namely the function which
is identically 1 on G. This is called the principal character. The next theorem
tells us that there are further characters if G is abelian and has finite order > 1.

Theorem 6.8 A finite abelian group G of order n has exactly n distinct characters.

PrOOF. In Theorem 6.6 we learned how to construct, from a given subgroup
G' # G, a new subgroup G” containing G’ and at least one more element a
not in G'. We use the symbol {G’; a) to denote the subgroup G” constructed
in Theorem 6.6. Thus

(G';a) = {xa*:xe G and 0 < k < h}

where h is the indicator of a in G'.

Now we apply this construction repeatedly, starting with the subgroup
{e} which we denote by G,.If G, # G we let a, be an element of G other than
e and define G, = (Gy; a;>.If G, # G let a, be an element of G which is not
in G, and define G; = (G,; a,). Continue the process to obtain a finite
set of elements a,, a,,...,q, and a corresponding set of subgroups G,,
G,, ..., G, such that

Gr+1 = <Gn ar>
with
GG, =Gy =0G.

The process must terminate in a finite number of steps since the given group
G is finite and each G,,, contains more elements than its predecessor G,.
We consider such a chain of subgroups and prove the theorem by induction,
showing that if it is true for G, it must also be true for G, , ;.

Itis clear that there is only one character for G,, namely the function which
is identically 1. Assume, therefore, that G, has order m and that there are
exactly m distinct characters for G,. Consider G,,; = {G,;qa,) and let h
be the indicator of a, in G,, that is, the smallest positive integer such that
a," € G,. We shall show that there are exactly h different ways to extend each
character of G, to obtain a character of G,,,, and that each character of
G, ., is the extension of some character of G,. This will prove that G, , , has
exactly mh characters, and since mh is also the order of G, ., this will prove the
theorem by induction on r.

A typical element in G, , ; has the form

xa,*, wherexe€G,and0 <k < h.

Suppose for the moment that it is possible to extend a character f of G, to
G, .. Call this extension f'and let us see what can be said about f(xa,). The
multiplicative property requires

fxa}) = f(x)f(a,)
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6.6: The character group

But x € G, so f(x) = f(x)and the foregoing equation implies

fxa) = f(0)f (@)

This tells us that f(xa,) is determined as soon as f(a,) is known.
What are the possible values for f(a,)? Let ¢ = a,". Since ¢ € G, we have
f(¢) = f(c), and since f is multiplicative we also have f(c) = f(a,)". Hence

f@) = 1),
so f(a,) is one of the hth roots of f(c). Therefore there are at most h choices

for f(a,).

These observations tell us how to define /. If f is a given character of G,,
we choose one of the hth roots of f(c), where ¢ = a,", and define f(a,) to be
this root. Then we define fon the rest of G, ; by the equation

03] f(xa) = f(x)f(a)

The h choices for f(a,) are all different so this gives us h different ways to
define f(xa,*). Now we verify that the function f so defined has the required
multiplicative property. From (2) we find

fxa*-ya)) = fxy-a ") = flxy)fia)*
= fXS @) (@)
= f(xa(ya/),
so fis a character of G, ;. No two of the extensions f'and § can be identical
on G,,, because the functions f and g which they extend would then be
identical on G,. Therefore each of the m characters of G, can be extended in h
different ways to produce a character of G, . ;. Moreover, if ¢ is any character

of G, . then its restriction to G, is also a character of G,, so the extension
process produces all the characters of G, ;. This completes the proof. [

6.6 The character group

In this section G is a finite abelian group of order n. The principal character
of G is denoted by f;. The others, denoted by f>, f5, ..., f,, are called non-
principal characters. They have the property that f(a) # 1 for some a in G.

Theorem 6.9 If multiplication of characters is defined by the relation

(fifi)la) = fla)ffa)

for each a in G, then the set of Eharacters of G forms an abelian group of
order n. We denote this group by G. The identity element of G is the principal
character f,. The inverse of f; is the reciprocal 1/f;.

ProOOF. Verification of the group postulates is a straightforward exercise and
we omit the details.
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6: Finite abelian groups and their characters

Note. For each character f we have | f(a)| = 1. Hence the reciprocal
1/f(a) is equal to the complex conjugate f{a). Thus, the function f defined by
f(a) = f(a)is also a character of G. Moreover, we have

- 1 _
f(a)=?(7)=f(a )

for every a in G.

6.7 The orthogonality relations for characters

Let G be a finite abelian-group of order n with elements a,, a,, ..., a,, and
let f,f,--., J, be the characters of G, with f; the principal character.

Notation We denote by A = A(G) the n x n matrix [a;;] whose element a;; in
the ith row and jth column is

a;j = flay.
We will prove that the matrix 4 has an inverse and then use this fact

to deduce the so-called orthogonality relations for characters. First we
determine the sum of the entries in each row of A.

Theorem 6.10 The sum of the entries in the ith row of A is given by

gﬂm={

n if f;is the principal character (i = 1),
0 otherwise.

PRrOOF. Let S denote the sum in question. If f; = f; each term of the sum is 1
and S = n. If f; # f,, there is an element b in G for which f(b) # 1. As a,
runs through the elements of G so does the product ba,. Hence

S =Y fiba) = fi(b) Y. fila) = f(b)S.
r=1 r=1
Therefore S(1 — fi(b)) = 0. Since fi(b) # 1 it follows that § = 0. O
Now we use this theorem to show that 4 has an inverse.

Theorem 6.11 Let A* denote the conjugate transpose of the matrix A. Then we
have

AA* = nl,
where I is the n x n identity matrix. Hence n™*A* is the inverse of A.
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6.8: Dirichlet characters

PrROOF. Let B = AA*. The entry b;; in the ith row and jth column of B is
given by

by = 3 fla)ffa) = 3 (hF)a) = ¥ St

where f, = f.f; = f/f;- Now f/f;= f, if, and only if, i = j. Hence by
Theorem 6.10 we have
b;; = {n ifi =,

0 ifi#].
In other words, B = nl. ad

Next we use the fact that a matrix commutes with its inverse to deduce the
orthogonality relations for characters.

Theorem 6.12 Orthogonality relations for characters. We have

n if a; = aj,

o $ nasa) = {5 F 7Y

PrOOF. The relation A4* = nl implies A*4 = nl. But the element in the ith
row and jth column of A*4 is the sum on the left of (3). This completes the
proof. O

Note. Since f,(a;) = fa) ' = f(a;" '), the general term of the sum in (3)
is equal to fya;”")fa;) = f,(a;” 'a;). Therefore the orthogonality relations
can also be expressed as follows:

d —1.y n ifai=aj,
rglﬂ(a; a_,) - {0 if ai # aj‘

When g, is the identity element e we obtain:

Theorem 6.13 The sum of the entries in the jth column of A is given by

z n ifa;=e,
@ Z e = {0 otherwise.

r=1

6.8 Dirichlet characters

The foregoing discussion dealt with characters of an arbitrary finite abelian
group G. Now we specialize G to be the group of reduced residue classes
modulo a fixed positive integer k. First we prove that these residue classes do,
indeed, form a group if multiplication is suitably defined.

We recall that a reduced residue system modulo & is a set of ¢(k) integers
{ay, ay, ..., a,4)} incongruent modulo k, each of which is relatively prime to
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6: Finite abelian groups and their characters

k. For each integer a the corresponding residue class 4 is the set of all integers
congruent to a modulo k:

d = {x:x =a (mod k)}.
Multiplication of residue classes is defined by the relation
(5) a-b=ab.

That is, the product of two residue classes 4 and b is the residue class of the
product ab.

Theorem 6.14 With multiplication defined by (5), the set of reduced residue
classes modulo k is a finite abelian group of order (k). The identity is the
residue class 1. The inverse of 4 is the residue class b where ab = 1 (mod k).

Proor. The closure property is automatically satisfied because of the way
multiplication of residue classes was defined. The class 1 is clearly the identity
element. If (a, k) = 1 there is a unique b such that ab = 1 (mod k). Hence
the inverse of a is b. Finally, it is clear that the group is abelian and that its
order is @(k). d

Definition Dirichlet characters. Let G be the group of reduced residue
classes modulo k. Corresponding to each character f of G we define an
arithmetical function y = x, as follows:

an) = f(@@) if(n, k) =1,
W) =0 if(nk)> L

The function y is called a Dirichlet character modulo k. The principal
character y, is that which has the properties

Uik =1,
) =9, if (n, k) > 1.

Theorem 6.15 There are @(k) distinct Dirichlet characters modulo k, each of
which is completely multiplicative and periodic with period k. That is, we
have

(6) x(mn) = y(m)g(n) for allm, n
and
x(n + k) = x(n) foralln.

Conversely, if y is completely multiplicative and periodic with period k,
and if x(n) = 0 if (n, k) > 1, then y is one of the Dirichlet characters mod k.

Proor. There are (k) characters f for the group G of reduced residue classes
modulo k, hence (k) characters x , modulo k. The multiplicative property (6)
of x, follows from that of f when both m and n are relatively prime to k.
If one of m or n is not relatively prime to k then neither is mn, hence both
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6.8: Dirichlet characters

members of (6) are zero. The periodicity property follows from the fact that
xs(n) = f(A) and that a = b (mod k) implies (a, k) = (b, k).

To prove the converse we note that the function f defined on the group
G by the equation

fA) = xn) if(n k)=1

is a character of G, so y is a Dirichlet character mod k. O

ExaMPLE When k =1 or kK =2 then ¢(k) = 1 and the only Dirichlet
character is the principal character y,. For k > 3, there are at least two
Dirichlet characters since ¢(k) > 2. The following tables display all the
Dirichlet characters for k = 3,4 and 5.

n 12 3 45

w11 1 10

n 123 n 12 34 L 1 -1 -1 10

a1 10 am 10 10 wpl 1 i —i —1 0

w1 =10 L) 10 =1 0 ) 1 —i i =10
k=3, 0k =2 k=4, pk) =2 k=5, ok =4

To fill these tables we use the fact that y(n)*® = 1 whenever (n, k) = 1,
s0 y(n) is a @(k)th root of unity. We also note that if y is a character mod k so is
the complex conjugate 7. This information suffices to complete the tables for
k=3and k = 4.

When k = 5 we have ¢(5) = 4 so the possible values of y(n) are +1and +i
when (n, 5) = 1. Also, x(2)x(3) = x(6) = x(1) = 1 so yx(2) and x(3) are re-
ciprocals. Since x(4) = x(2)* this information suffices to fill the table for
k = 5. As a check we can use Theorems 6.10 and 6.13 which tell us that the
sum of the entries is 0 in each row and column except for the first. The follow-
ing tables display all the Dirichlet characters mod 6 and 7.

n 1 2 3 4 56 n 1 2 3 4 5 6 7
yim) 10 0 0 1 0 11 1 1 1 1 1 1 0
L 1000 -1 0 1a(n) 1 1 -1 1 -1 ~-10
k=6, 0k =2 BN 1l o o —o -0 —1 0 w=¢
wam 1 0 o -0 @ 10
1) 1 —ow o 0 - 10
w6 1 —o -0 o o —10
k=T70k) =6
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6: Finite abelian groups and their characters

In our discussion of Dirichlet’s theorem on primes in an arithmetic
progression we shall make use of the following orthogonality relation
for characters modulo k.

Theorem 6.16 Let y,, ..., x,u denote the @(k) Dirichlet characters modulo k.
Let m and n be two integers, with (n, k) = 1. Then we have

W (o) if m=n (mod k),
2 1m () = {0 if m# n (mod k).

Proor. If (m, k) = 1 take a; = 7 and a; = m in the orthogonality relations
of Theorem 6.12 and note that m = A if, and only if, m = n (mod k). If
(m, k) > 1 each term in the sum vanishes and m # n (mod k). O

6.9 Sums involving Dirichlet characters

This section discusses certain sums which occur in the proof of Dirichlet’s
theorem on primes in arithmetical progressions.

The first theorem refers to a nonprincipal character y mod k, but the
proof is also valid if y is any arithmetical function that is periodic with
period k and has bounded partial sums.

Theorem 6.17 Let y be any nonprincipal character modulo k, and let f be a
nonnegative function which has a continuous negative derivative f'(x) for
all x = xo. Then if y = x > x, we have

™ Y. 1m)f(n) = O(f(x)).

x<n<y

If, in addition, f(x) = 0 as x — o0, then the infinite series
X 1)

converges and we have, for x > x,,

20

t) 2 xn)f (n) Z () f(n) + O(f(x)).

n<x n=

PROOF. Let A(x) = ), <, x(n). Since x is nonprincipal we have

k
= le(n) =

By periodicity it follows that A(nk) = Oforn = 2, 3,..., hence | A(x)| < ¢(k)
for all x. In other words, A{x) = O(1).
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Now we use Abel’s identity (Theorem 4.2) to express the sum in (7) as an
integral. This gives us

Y A f() = f(MAGY) — f)AX) - fyA(t)f (e de

= 0(f(y) + O(f(x)) + 0<Jy( =) dt) = O(f(x)).
This proves (7). If f(x) — 0 as x — oo then (7) shows that the series

ix(n)f(n)

converges because of the Cauchy convergence criterion. To prove (8) we
simply note that

Z mfm) = Y xm)f(m) + lim Y x(n)f(n).

n=1 n<x y—ow x<n<y

Because of (7) the limit on the right is O( f(x)). This completes the proof. []

Now weapply Theorem 6.17 successively with f(x) = 1/x, f(x) = (log x)/x,
and f(x) = 1/\/x for x > 1 to obtain:

Theorem 6.18 If y is any nonprincipal character mod k and if x > 1 we have

) & xn) 1
(9) ngx n B ngl n +0<X),
x(mlogn & x(nlogn log x
(10) ngx n B ngl n * 0( X >’

1 ) _ 5 2 0( ! )
( ) nng nzl *

6.10 The nonvanishing of L(1, y) for real
nonprincipal y

. We denote by L(1, y) the sum of the series in (9). Thus,

S xn
L1, ) = -X~(——)-
n=1 N
In the proof of Dirichlet’s theorem we need to know that L(1, y) # 0 when g
is a nonprincipal character. We prove this here for real nonprincipal char-

acters. First we consider the divisor sum of y(n).
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6: Finite abelian groups and their characters

Theorem 6.19 Let y be any real-valued character mod k and let

An) =, x(d).

d|n
Then A(n) = 0 for all n, and A(n) > 1 if n is a square.

PRrROOF. For prime powers we have
AP = 1) =1+ Y xp).
t=0 =1

Since y is real-valued the only possible values for y(p) are 0, 1 and —1. If
x(p) = 0 then A(p®) = 1; if y(p) = 1 then A(p*) =a + 1, and if y(p) = —1
then

0 ifaisodd
A(p®) = ’
*) {1 if a is even.

In any case, A(p”) > 1 if a is even.

Now if n = p,* --- p,* then A(n) = A(p,*')--- A(p,*) since A is multi-
plicative. Each factor A(p;*) > 0 hence A(n) > 0. Also, if n is a square then
each exponent g; is even, so each factor A(p;*) > 1 hence A(n) > 1. This
proves the theorem. O

Theorem 6.20 For any real-valued nonprincipal character y mod k, let

Ay =Y od) and B = Y %

d|n n<x

Then we have:
(a) B(x) - o0 as x — o0.
(b) B(x) = 2./xL(1, x) + O(1) forall x > 1.

Therefore L(1, ) # 0.

PROOF. To prove part (a) we use Theorem 6.19 to write
1 1

B(x) > Z 7 = Z
n

n<x
n=m?2

m<./x m

The last sum tends to co as x — oo since the harmonic series Y 1/m diverges.
To prove part (b) we write

1 x(d)
= —_— d) = —_—.
By =¥ —- Y= ¥

gd<x
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Now we invoke Theorem 3.17 which states that

Zd fdgla) = Y f( n)G< ) + Zg(n)F( > — Fla)G(b)

n<a n<b
qd<x

where ab = x, F(x) = )<, f(n), and G(x) = Y, ., g(n). We take a = b =
\/;c and let f(n) = x(n)/\/r_z, g(n) = 1/\/;1 to obtain

(12) B(x) = P }‘d—) z :"—[(E)G(n) X () F(J/%)G(/x).

n<Jx n<.x
By Theorem 3.2 we have
G(x)—zi—Z x+A+0<—-1—>
nSx\/r_l \/-)E

where A is a constant, and by Theorem 6.18, Equation (11), we have

F(x) = %n) = B + 0(})

where B = Y=, x(n)/\/n. Since F(/x )G(\/x) = 2Bx"* + O(1), Equation
(12) gives us

= 2 ol
+ Szﬁﬁ {B + 0(\/%)} — 2Bx'* + 0(1)

=2/x Y M+A f%+o<\/i; y |x(n)|>

n</x

1) ~ 2Bx'4 4+ 0(1)

= 2/x L(1, x) + 0(1).

This proves part (b). Now it is clear that parts (a) and (b) together imply that
L(1, x) # 0.

Exercises for Chapter 6

1. Let G be a set of nth roots of a nonzero complex number. If G is a group under
multiplication, prove that G is the group of nth roots of unity.

2. Let G be a finite group of order n with identity element e. If a,,...,qa, are n
elements of G, not necessarily distinct, prove that there are integers p and q with
l<p<g<nsuchthata,a,,, --a,=e.
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11.

12.

13.
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b
. Let G be the set of all 2 x 2 matrices (a d>’ where qa, b, ¢, d are integers with
c

ad — bc = 1. Prove that G is a group under matrix multiplication. This group is
sometimes called the modular group.

. Let G = {a) be a cyclic group generated by a. Prove that every subgroup of G is

cyclic. (It is not assumed that G is finite.)

. Let G be a finite group of order n and let G’ be a subgroup of order m. Prove that

m|n (Lagrange’s theorem). Deduce that the order of every element of G divides n.

. Let G be a group of order 6 with identity element e. Prove that either G is cyclic, or

else there are two elements a and b in G such that
G = {a, a%, a® b, ab, a’h},

with a3 = b? = e. Which of these elements is ba?

. A group table for a finite group G = {ay, ..., a,} of order n is an n x n matrix

whose ij-entry is g;a;. If g;a; = e prove that a;a; = e. In other words, the identity
element is symmetrically located in the group table. Deduce that if n is even the
equation x2 = e has an even number of solutions.

. Generalizing Exercise 7, let f(p) denote the number of solutions of the equation

xP = ¢, where p is a prime divisor of n, the order of G. Prove that p| f(p) (Cauchy’s
theorem). [Hint : Consider the set § of ordered p-tuples (a,, . .., a,) such that a,€ G
and a, - - - a, = e. There are n”~! p-tuples in S. Call two such p-tuples equivalent
if one is a cyclic permutation of the other. Show that f(p) equivalence classes contain
exactly one member and that each of the others contains exactly p members. Count
the number of members of S in two ways and deduce that p| f(p).]

. Let G be a finite group of order n. Prove that n is odd if, and only if, each element of

G is a square. That is, for each a in G there is an element b in G such that a = b*.

State and prove a generalization of Exercise 9 in which the condition “n is odd” is
replaced by “n is relatively prime to k™ for some k > 2.

Let G be a finite group of order n, and let S be a subset containing more than n/2
elements of G. Prove that for each g in G there exist elements a and b in S such that
ab =g.

Let G be a group and let § be a subset of » distinct elements of G with the property
that a € S implies a~* ¢ S. Consider the n? products (not necessarily distinct) of the
form ab, where ae€ S and b € S. Prove that at most n(n — 1)/2 of these products
belong to S.

Letfy, ..., f,, be the characters of a finite group G of order m, and let a be an element
of G of order n. Theorem 6.7 shows that each number f,(a) is an nth root of unity.
Prove that every nth root of unity occurs equally often among the numbers f;(a),
f5@), ..., fla). [Hint: Evaluate the sum

i i fr(ak)e- 2nikin

r=1k=1

27ifn

in two ways to determine the number of times ¢*™” occurs.]
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15.

16.

17.

18.

Exercises for Chapter 6

Construct tables showing the values of all the Dirichlet characters mod k for
k =8,9,and 10.
Let y be any nonprincipal character mod k. Prove that for all integers a < b we have

b

> xn)

n=a

1
< 3 p(k).

If y is a real-valued character mod k then y(n) = +1 or 0 for each n, so the sum

k

S = Z ny(n)

n=1
is an integer. This exercise shows that 125 = 0 (mod k).

@) If (a, k) = 1 prove that ay(a)S = S (mod k).

(b) Write k = 2%q where ¢ is odd. Show that there is an integer a with (a, k) = 1
such that ¢ = 3 (mod 2*) and a = 2 (mod q). Then use (a) to deduce that
125 = 0 (mod k).

An arithmetical function f is called periodic mod k if k > 0 and f(m) = f(n)
whenever m = n (mod k). The integer k is called a period of f.

(a) If f is periodic mod k, prove that f has a smallest positive period k, and that
ko lk.

(b) Let f be periodic and completely multiplicative, and let k be the smallest
positive period of f. Prove that f(n) = 0 if (n, k) > 1. This shows that f is a
Dirichlet character mod k.

(@) Let f bea Dirichlet character mod k. If k is squarefree, prove that k is the smallest
positive period of f.

(b) Give an example of a Dirichlet character mod k for which k is not the smallest
positive period of f.
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Dirichlet’s Theorem on
Primes in Arithmetical Progressions

7.1 Introduction

The arithmetic progression of odd numbers 1, 3, 5,...,2n + 1, ... contains
infinitely many primes. It is natural to ask whether other arithmetic pro-
gressions have this property. An arithmetic progression with first term 4 and
common difference k consists of all numbers of the form

(1) kn+hn=012,...

If h and k have a common factor d, each term of the progression is divisible
by d and there can be no more than one prime in the progression if d > 1.
In other words, a necessary condition for the existence of infinitely many
primes in the arithmetic progression (1) is that (h, k) = 1. Dirichlet was the
first to prove that this condition is also sufficient. That is, if (h, k) = 1 the
arithmetic progression (1) contains infinitely many primes. This result,
now known as Dirichlet’s theorem, will be proved in this chapter.

We recall that Euler proved the existence of infinitely many primes by
showing that the series ), p~*, extended over all primes, diverges. Dirichlet’s
idea was to prove a corresponding statement when the primes are restricted
to lie in the given progression (1). In a famous memoir [15] published in 1837
Dirichlet carried out this plan by ingenious analytic methods. The proof was
later simplified by several authors. The version given in this chapter is based
on a proof published in 1950 by Harold N. Shapiro [65] and deals with the
series Y p~ ! log p rather than ) p~'.

First we show that for certain special progressions it is easy to prove
Dirichlet’s theorem by a modification of Euclid’s proof of the infinitude of
primes.
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7.2 Dirichlet’s theorem for primes of
theform4n — 1 and 4n + 1

Theorem 7.1 There are infinitely many primes of the form 4n — 1.

Proor. We argue by contradiction. Assume there are only a finite number of
such primes, let p be the largest, and consider the integer

N=22.3.5...p—1.

The product 3 -5 - .- p contains all the odd primes <p as factors. Since N
is of the form 4n — 1 it cannot be prime because N > p. No prime <p
divides N, so all the prime factors of N must exceed p. But all of the prime
factors of N cannot be of the form 4n + 1 because the product of two such
numbers is again of the same form. Hence some prime factor of N must be
of the form 4n — 1. This is a contradiction. O

A different type of argument can be used for primes of the form 4n + 1.

Theorem 7.2 There are infinitely many primes of the form 4n + 1.

PRrROOF. Let N be any integer > 1. We will show that there is a prime p > N
such that p = 1 (mod 4). Let

m=(N!)?+ 1.
Note that m is odd, m > 1. Let p be the smallest prime factor of m. None of
the numbers 2, 3, ..., N divides m, so p > N. Also, we have

(N)? = —1 (mod p).
Raising both members to the (p — 1)/2 power we find
(NP~ = (=1)*" 1" (mod p).
But (N!)?"! = 1 (mod p) by the Euler-Fermat theorem, so
(=1)®~Y2 =1 (mod p).

Now the difference (—1)?~ 12 — 1 is either 0 or —2, and it cannot be —2,
because it is divisible by p, so it must be 0. That is,

(- 1)(1:- 2z - 1.
But this means that (p — 1)/2 is even, so p = 1 (mod 4). In other words,
we have shown that for each integer N > 1 there is a prime p > N such that

p =1 (mod 4). Therefore there are infinitely many primes of the form
4n + 1. (]

Simple arguments like those just given for primes of the form 4n — 1
and 4n + 1 can also be adapted to treat other special arithmetic progressions,
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7: Dirichlet’s theorem on primes in arithmetic progressions

such as 5n — 1,8n — 1, 8n — 3 and 8n + 3 (see Sierpinski [67]), but no one
has yet found such a simple argument that works for the general progression
kn + h.

7.3 The plan of the proof of Dirichlet’s
theorem

In Theorem 4.10 we derived the asymptotic formula

@ oep

Psx

= log x + O(1),

where the sum is extended over all primes p < x. We shall prove Dirichlet’s
theorem as a consequence of the following related asymptotic formula.

Theorem 7.3 If k > 0 and (h, k) = 1 we have, for all x > 1,

log p 1
3 =——logx + O(1),
R L. o el oErtow
p=h (mod k)

where the sum is extended over those primes p < x which are congruent to
h mod k.

Since log x — o0 as x — oo this relation implies that there are infinitely
many primes p = h (mod k), hence infinitely many in the progression
nk+hn=0,1,2,...

Note that the principal term on the right of (3) is independent of k. There-
fore (3) not only implies Dirichlet’s theorem but it also shows that the primes
in each of the ¢(k) reduced residue classes mod k make the same contribution
to the principal term in (2).

The proof of Theorem 7.3 will be presented through a sequence of lemmas
which we have collected together in this section to reveal the plan of the
proof. Throughout the chapter we adopt the following notation.

The positive integer k represents a fixed modulus, and # is a fixed integer
relatively prime to k. The ¢(k) Dirichlet characters mod k are denoted by

X1 X255 o)

with y, denoting the principal character. For y # x, we write L(1, ) and
L'(1, x) for the sums of the following series:

L(L X) - ZI %)’
L.y - - 5 Tl
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7.3: The plan of the proof of Dirichlet’s theorem

The convergence of each of these series was shown in Theorem 6.18. More-
over, in Theorem 6.20 we proved that L(1, x) # O if y is real-valued. The
symbol p denotes a prime, and ), . . denotes a sum extended over all primes
p=<X

Lemma 74 For x > 1 we have

logp 1 1 2{p)log p
X+ — ) %/(h =0 4 0(1).
L Th o EXtom WY T o
p=h (mod k)
It is clear that Lemma 7.4 will imply Theorem 7.3 if we show that
10
p<x p
for each y # ;. The next lemma expresses this sum in a form which is not
extended over primes.

Lemma 7.5 For x > 1 and y # x, we have

v xplogp L, p ¥ M) u(n)x(n

P<x n<x

+ O(1).

Therefore Lemma 7.5 will imply (4) if we show that
mx(n
) y K lx( ) _ o).

n<x

This, in turn, will be deduced from the following lemma.

Lemma 7.6 For x > 1 and y # 3, we have

pn)x(n)
n

(6) L1, Y, B2 = oq),

n<x

If L(1, ) # 0 we can cancel L(1, ) in (6) to obtain (5). Therefore, the
proof of Dirichlet’s theorem depends ultimately on the nonvanishing of
L(1, y)for all y # yx,. As already remarked, this was proved for real y # x, in
Theorem 6.20, so it remains to prove that L(1, x) # O for all y # x, which
take complex as well as real values.

For this purpose we let N(k) denote the number of nonprincipal characters
ymod k such that L(1,y) =0. If L(1,x) =0 then L(1,%) =0 and y # %
since y is not real. Therefore the characters y for which L(1, ) = 0 occur in
conjugate pairs, so N(k) is even. Our goal is to prove that N(k) = 0, and this
will be deduced from the following asymptotic formula.
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7: Dirichlet’s theorem on primes in arithmetic progressions

Lemma 7.7 For x > 1 we have

logp 1~ N(k)
@ L T e

p=1 (modk)

log x + O(1).

If N(k) # 0 then N(k) > 2 since N(k) is even, hence the coefficient of
log x in (7) is negative and the right member — — o0 as x — oo. This is a
contradiction since all the terms on the left are positive. Therefore Lemma 7.7
implies that N(k) = 0. The proof of Lemma 7.7, in turn, will be based on the
following asymptotic formula.

Lemma 78 If y # x, and L(1, x} = 0 we have

1,y Y B ”(” = log x + O(1).

n<x

7.4 Proof of Lemma 7.4

To prove Lemma 7.4 we begin with the asymptotic formula mentioned
earlier,

1
2) y 222 _jogx + O(1)
pP<x p
and extract those terms in the sum arising from primes p = h (mod k). The
extraction is done with the aid of the orthogonality relation for Dirichlet
characters, as expressed in Theorem 6.16:
o(k) N =
- Jolk) if m=n (mod k),
L i) = {0 ifm #n (mod k).
This is valid for (n, k) = 1. We take m = p and n = h, where (h, k) = 1, then
multiply both members by p~! log p and sum over all p < x to obtain

o) lo lo
®) R T CE
psxr=1 pP<x D
p=h (mod k)

In the sum on the left we isolate those terms involving only the principal
character y, and rewrite (8) in the form
@(k)

1 ) AP
O o) 3 EP- I(h)z“”"g’%z ,(h)z“”)"g”

p<x pP<x p<x
p=h (modk)

Now j(h) =1 and y,(p) = O unless (p, k) = 1, in which case y,(p) = 1.
Hence the first term on the right of (9) is given by

lo log log p log p
() y = F=y -3 =y o,
psXx p pP<x p pP<x p PEXx p
(r,)=1 plk
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7.5: Proof of Lemma 7.5

since there are only a finite number of primes which divide k. Combining
(10) with (9) we obtain

1 @(k) 1
o) Y logp _ y ogp Z Y x,(p)png+O(1)_

pPEXx p PEX PEx
p=h (modk)
Using (2) and dividing by ¢(k) we obtain Lemma 7.4. O

7.5 Proof of Lemma 7.5

We begin with the sum
X(m)A(n)
LT
nsx

where A(n) is Mangoldt’s function, and express this sum in two ways. First
we note that the definition of A(n) gives us

AMAm) _ & xp)log p
ngx n pgx a§=:1 p ¢ ’
pr=x

We separate the terms with a = 1 and write

(1) y x(n):(n) -y xpllogp y Z (p")logp
<x p<x p<pf<ax2

The second sum on the right is majorized by

_ logp o logn
Zlongzp— Lo -1 < -1~ O

=2

so (11) gives us
¥ Kpllogp _ y x(n);\(n)

pP<x p n<x

(12) + O(1).

Now we recall that A(n) = Y 4, u(d)log(n/d), hence
3 100 3 IO wdos’.

In the last sum we write n = ¢d and use the multiplicative property of y
to obtain

(13) 5 xn)A@n) _ ¥y d)x(d) 5y xc)loge

n<x h d<x d c<x/d c

Since x/d > 1, in the sum over ¢ we may use formula (10) of Theorem 6.18 to

obtain
x(c)og ¢ log x/d
= — ' 1 .
2z e H ”‘”O( x/d
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7: Dirichlet’s theorem on primes in arithmetic progressions

Equation (13) now becomes

@ Y HAD gy (d)x(d) N 0(2 1log x/d>'

n<x d<x ds::d X/d

The sum in the O-term is
1
= Y (logx — logd) = ([x]log x— Y log d) o)
d<x d<x

since

Y logd = log[x]! = x log x + O(x).

d<x

Therefore (14) becomes

A _

n<x d<x

uld )x(d)

+ 0(1)
which, with (12), proves Lemma 7.5. 0

7.6 Proof of Lemma 7.6

We use the generalized Mobius inversion formula proved in Theorem 2.23
which states that if o is completely multiplicative we have

n<x n<x

(15) G(x) = za(n)FG) if, and only if, F(x) = ¥ u(n)a(n)G( )

We take a(n) = x(n) and F(x) = x to obtain

(16) x= ) #(H)X(H)G< )
where
G(x) = Z X(n) = %n) .

By Equation (9) of Theorem 6.18 we can write G(x) = xL(l, ) + O(1).
Using this in (16) we find

x = zu(n)x(n){ L, x)+0(1)}—xL(1 0y HOR) o,

n<x n<x
Now we divide by x to obtain Lemma 7.6. a
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7.8: Proof of Lemma 7.7

7.7 Proof of Lemma 7.8

We prove Lemma 7.8 and then use it to prove Lemma 7.7. Once again we
make use of the generalized Mobius inversion formula (15). This time we
take F(x) = x log x to obtain

n<x

(17) x log x = Zﬂ(n)x(n)G< )
where

Glx) = ZX(") 103— =xlogx) =— ) -xy X(")lﬂ'

n<x n<x n<x

Now we use formulas (9) and (10) of Theorem 6.18 to get

G(x) = x log x{L(l, X+ 0(%)} + x{L'(l, 0+ 0(105 x)}

= xL'(1, ) + O(log x)

since we are assuming that L(1, y) = 0. Hence (17) gives us

n<x

xlogx =Y u(n)x(n){% L,y + 0<1og %)}

xL(1, 5 ¥ E2ED “(")"(") + o< Y (log x — log n))

n<x n<x

We have already noted that the O-term on the right is O(x) (see the proof of
Lemma 7.5). Hence we have

xlogx =xL'(1,x) ), %x(n) + O(x),

n<x

and when we divide by x we obtain Lemma 7.8. d

7.8 Proof of Lemma 7.7

We use Lemma 7.4 with h = 1 to get

logp 1 L ¢ wlplogp
18 ——log x + —— + 0(1).
® L T m (k) LI,
p=1 (modk)

In the sum over p on the right we use Lemma 7.5 which states that

3 HO8D __p 5 MO o

P<x n<x
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7: Dirichlet’s theorem on primes in arithmetic progressions

If L(1, x,) # O, Lemma 7.6 shows that the right member of (18) is O(1). But
if L(1, x,) = 0 then Lemma 7.8 implies
—L'(L )Y M = —log x + O(1).
Therefore the sum on the right of (18) is
1
—— {—N(k)log x + O(1)},
o0 {—N(k)og }

50 (18) becomes

logp 11— N(k)
Z p ok

p=1 (modk)

log x + O(1).

This proves Lemma 7.7 and therefore also Theorem 7.3. O
As remarked earlier, Theorem 7.3 implies Dirichlet’s theorem:

Theorem 7.9 If k > 0 and (h, k) = 1 there are infinitely many primes in the
arithmetic progressionnk + hyn =0,1,2, ...

7.9 Distribution of primes in arithmetic
progressions

Ifk>0and (a,k) = 1, let
Tx)= Y 1

P<Xx
p=a (mod k)
The function m,(x) counts the number of primes <x in the progression
nk +a,n=0,1,2,...Dirichlet’s theorem shows that 7,(x) - o0 as x — 0.
There is also a prime number theorem for arithmetic progressions which
states that
7(x) 1 x

(19) T{x) ~ m ~ mmg X

if (a, k) = 1. A proof of (19) is outlined in [44].
The prime number theorem for progressions is suggested by the formula
of Theorem 7.3,

as x — 00,

log p 1
— =——log x + O(1).
L Tp el E
p=h (modk)
Since the principal term is independent of h, the primes seem to be equally
distributed among the ¢(k) reduced residue classes mod k, and (19) is a
precise statement of this fact.
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Exercises for Chapter 7

We conclude this chapter by giving an alternate formulation of the prime
number theorem for arithmetic progressions.

Theorem 7.10 If the relation

nx)
(20) T x) ~ m as x — o0

holds for every integer a relatively prime to k, then
(21 T x) ~ my(x) asx — ©
whenever (a, k) = (b, k) = 1. Conversely, (21) implies (20).

PRrOOF. It is clear that (20) implies (21). To prove the converse we assume (21)
and let A(k) denote the number of primes that divide k. If x > k we have

mx)= Y 1=Ak + Y1

p<x P<x
prk
k

= Ak + Y 1= Ak)+ i (%)

a=1 pP<x
{(a,k)=1 p=a (modk) (a,k)=1

Therefore
n(x) — A(k) Lomy(x)

Tp(X) a1 T(x) ’
(@ k=1

By (21) each term in the sum tends to 1 as x — o0 so the sum tends to ¢(k).
Hence

(x)  A(k)
o) - e — (k) asx — oo.
But A(k)/m,(x) — 0 so w(x)/my(x) — @(k), which proves (20). g

Exercises for Chapter 7

In Exercises 1 through 4, h and k are given positive integers, (b, k) = 1,
and A(h, k) is the arithmetic progression A(h, k) = {h + kx:x =0,1,2,...}.
Exercises 1 through 4 are to be solved without using Dirichlet’s theorem.

1. Provethat, for every integer n > 1, A(h, k) contains infinitely many numbers relatively
prime to n.

2. Prove that A(h, k) contains an infinite subset {a;, a,,...} such that (g;,a) = 1 if
i J.
3. Prove that A(h, k) contains an infinite subset which forms a geometric progression

(a set of numbers of the form ar”, n = 0, 1, 2, ...). This implies that A(h, k) contains
infinitely many numbers having the same prime factors.
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7: Dirichlet’s theorem on primes in arithmetic progressions

4, Let S be any infinite subset of A(h, k). Prove that for every positive integer n there is a
number in A(h, k) which can be expressed as a product of more than n different
elements of S.

5. Dirichlet’s theorem implies the following statement: If & and k > O are any two
integers with (h, k) = 1, then there exists at least one prime number of the form
kn + h. Prove that this statement also implies Dirichlet’s theorem.

6. If (h, k) = 1, k > 0, prove that there is a constant A (depending on h and on k) such
that, if x > 2,

Y 1=——1—loglogx+ A +0<L>.
psx P oK) log x
p=h (mod k)
7. Construct an infinite set § of primes with the following property: If pe Sand g€ §
then(Gp — D, Mg - =(p,g- D=0 - L9 =1L

8. Letfbe an integer-coefficient polynomial of degree n > 1 with the following property:
For each prime p there exists a prime ¢ and an integer m such that f(p) = g™
Prove that ¢ = p, m = n and f(x) = x" for all x. [Hint: If g # p then g"** divides
flp+tg™*) — f(p)foreacht = 1,2,...]
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Periodic Arithmetical Functions
and Gauss Sums

8.1 Functions periodic modulo k&

Let k be a positive integer. An arithmetical function f'is said to be periodic
with period k (or periodic modulo k) if

Sn+ k)= f(n)

for all integers n. If k is a period so is mk for any integer m > 0. The smallest
positive period of f is called the fundamental period.

Periodic functions have already been encountered in the earlier chapters.
For example, the Dirichlet characters mod k are periodic mod k. A simpler
example is the greatest common divisor (n, k) regarded as a function of n.
Periodicity enters through the relation

(n+ k, k) = (n, k).
Another example is the exponential function
f(n) — eZm‘mn/k

where m and k are fixed integers. The number ¢?™™* is a kth root of unity
and f(n) is its nth power. Any finite linear combination of such functions, say

Z C(m)eZnimn/k
is also periodic mod k for every choice of coeflicients c(m). Our first goal is to
show that every arithmetical function which is periodic mod k can be
expressed as a linear combination of this type. These sums are called finite
Fourier series. We begin the discussion with a simple but important example
known as the geometric sum.
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8: Periodic arithmetical functions and Gauss sums

Theorem 8.1 For fixed k > 1 let
k_

1
g(n) — elnimn/k

m=0

Then

)0 ifktn,
90 =k it kin.

PROOF. Since ¢g(n) is the sum of terms in a geometric progression,

k—1
gn)= 3 x"
m=0

where x = ¢*™"* we have
k
Xk —
if 1,
g(n)=-[x-1 X
lk ifx = 1.
But x* = 1, and x = 1 if and only if k|n, so the theorem is proved. O

8.2 Existence of finite Fourier series for
periodic arithmetical functions

We shall use Lagrange’s polynomial interpolation formula to show that every
periodic arithmetical function has a finite Fourier expansion.

Theorem 8.2 Lagrange’s interpolation theorem. Let zq, zy, ..., 2, be k
distinct complex numbers, and let wy, wy, ..., w,_, be k complex numbers
which need not be distinct. Then there is a unique polynomial P(z) of degree
<k — 1 such that

Pz)=w, form=0,1,2... k-1

Proor. The required polynomial P(z), called the Lagrange interpolation
polynomial, can be constructed explicitly as follows. Let

A(@) = (z — zo)z — z1) -+ (2 — Zx—1)

and let

Then A,(z) is a polynomial of degree k — 1 with the following properties:
Az, # 0, Anz) =0 ifj#m.
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8.2: Existence of finite Fourier series for periodic arithmetical functions

Hence A,,(z)/A,(z.,) is a polynomial of degree k — 1 which vanishes at each
z;for j # m, and has the value 1 at z,,. Therefore the linear combination
k-1 A (Z)
P(z) = Wiy o
mgo Am(zm)
is a polynomial of degree <k — 1 with P(z;) = w; for each j. If there were
another such polynomial, say Q(z), the difference P(z) — Q(z) would vanish at
k distinct points, hence P(z) = Q(z) since both polynomials have degree
<k - 1. a

Now we choose the numbers z,, z,, ..., z;_, to be the kth roots of unity
and we obtain:

Theorem 8.3 Given k complex numbers wg, wy, . .., Wy_ 4, there exist k uniquely
determined complex numbers ay, ay, . . ., a,_, such that

k—1
(1) Wy = Z aneZm'mn/k

n=0
Jorm=0,1,2,..., k — 1. Moreover, the coefficients a, are given by the
Sformula

(2) Z —-21|:imn/k fOr n= 0’ 1, 2, ey k - 1

»w—-

PrOOF. Let z,, = e2™™* The numbers z,, z,, .. ., 2, are distinct so there is
a unique Lagrange polynomial

k-1
= ) a,z"
n=0

such that P(z,) = w,, foreachm = 0, 1,2,..., k — 1. This shows that there
are uniquely determined numbers g, satisfying (1). To deduce the formula (2)
for a, we multiply both sides of (1) by e~ 2™™'* where m and r are nonnegative
integers less than k, and sum on m to get

k-1

Z w —mer/k z a, Z eZm(n r)m/k
'm€

m=0 n=0 m=0

By Theorem 8.1, the sum on misQ unless k|(n — r). But |[n — r| <k — 10
k|(n — r)if, and only if, n = r. Therefore the only nonvanishing term on the
right occurs when n = r and we find

k—1
z wme-—mer/k — ka,.

m=0

This equation gives us (2). O
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8: Periodic arithmetical functions and Gauss sums

Theorem 8.4 Let f be an arithmetical function which is periodic mod k. Then
there is a uniquely determined arithmetical function g, also periodic mod k,
such that

k-1

f(m) = Z g(n)eZnimn/k.

n=0

In fact, g is given by the formula
1x! .
on) = T f(me™2mm
m=0

Proor. Let w,, = f(m)form =0, 1,2,...,k — 1 and apply Theorem 8.3 to
determine the numbers aq, a;, . . . , g, — ;. Define the function g by the relations
gm)=a,form=0,1,2,...,k — 1 and extend the definition of g(m) to all
integers m by periodicity mod k. Then f'is related to g by the equations in the
theorem. O

Note. Since both fand ¢ are periodic mod k we can rewrite the sums in
Theorem 8.4 as follows:

3 fm) = 3 et
and
@ g =~ T flmpe2rimk

k mmodk

In each case the summation can be extended over any complete residue
system modulo k. The sum in (3) is called the finite Fourier expansion of f and
the numbers g(n) defined by (4) are called the Fourier coefficients of f.

8.3 Ramanujan’s sum and generalizations

In Exercise 2.14(b) it is shown that the M6bius function p(k) is the sum of the
primitive kth roots of unity. In this section we generalize this result. Specifi-
cally, let n be a fixed positive integer and consider the sum of the nth powers
of the primitive kth roots of unity. This sum is known as Ramanujan’s sum
and is denoted by ¢,(n):

ck(n) — Z elaimn/k'
mmod k
(m,k)=1

We have already noted that this sum reduces to the M&bius function when
n=1,

uk) = (0.
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8.3: Ramanujan’s sum and generalizations

When k|n the sum reduces to the Euler ¢ function since each term is 1 and
the number of terms is ¢(k). Ramanujan showed that c,(n) is always an
integer and that it has interesting multiplicative properties. He deduced these
facts from the relation

) G = T dﬂ< )

d|(n, k)

This formula shows why ¢,(n) reduces to both u(k) and ¢(k). In fact, when
n = 1 there is only one term in the sum and we obtain c,(1) = u(k). And when
k|n we have (n, k) = k and ¢,(n) = Z,”k du(k/d) = (k). We shall deduce (5)
as a special case of a more general result (Theorem 8.5).

Formula (5) for ¢,(n) suggests that we study general sums of the form

6) 2 f d)g< >

di(n, k)

These resemble the sums for the Dirichlet convolution f * g except that we
sum over a subset of the divisors of k, namely those d which also divide n.
Denote the sum in (6) by s,(n). Since n occurs only in the ged (n, k) we have

sn + k) = si(n)

s0 s,(n) is a periodic function of n with period k. Hence this sum has a finite
Fourier expansion. The next theorem tells us that its Fourier coefficients are
given by a sum of the same type.

Theorem 8.5 Let s,(n) = Zd,(n, o f(@d)g(k/d). Then s(n) has the finite Fourier
expansion

() sn) = Y ame?rmk
mmod k
where
k\d
®) - ay(m) = ,,,(g,kf’(d’f(E)E‘

Proor. By Theorem 8.4 the coefficients q,(m) are given by

1 .
afm) = ¥ snje” 2mimmit
nmodk

P Z 2 f(d)g< ) 2,

n= ld]n

=~

Now we write n = cd and note that for each fixed d the index ¢ runs from 1
to k/d and we obtain

k/d
ak(m) Z f(d)g( ) Ze—Znicdm/k'

d|k =1
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8: Periodic arithmetical functions and Gauss sums

Now we replace d by k/d in the sum on the right to get
1 N k d — 2rwicm/d
afm) =73 fl=lgd) Y e :

k dlk d c=1

But by Theorem 8.1 the sum on ¢ is 0 unless d{m in which case the sum has
the value d. Hence

1 k
a(m) = ‘”Zk f <E>g(d)d
d|m

which proves (8). O

Now we specialize f and g to obtain the formula for Ramanujan’s sum
mentioned earlier.

Theorem 8.6 We have

an)y = Y du(S)

d|(n, k)

Proor. Taking f(k) = k and g(k) = u(k) in Theorem 8.5 we find

k> i
5, 4f8)- g
di(n, k) d, mmodk
where
_ L]t itmi=1,
am)= 3, ud)= [(m, k)] - {o if (m, k) > 1.
Hence

Y du A Y ermmk = ¢ (n). a
d|(n, k) d mmod k
(mk)=1

8.4 Multiplicative properties of the
sums s,(n)

Theorem 8.7 Let

s = 3 riaus)

d|(n, k)
where f and g are multiplicative. Then we have
9) Smlab) = s,{a)s(b) whenever (a, k) = (b, m) = 1.
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8.4: Multiplicative properties of the sums s,(n)

In particular, we have

(10) Smlab) = su(@) if (b,m) =1,
and
(11) Sm@) = sy(@)g(k) if (a, k) = 1.

PRrOOF. The relations (a, k) = (b, m) = 1 imply (see Exercise 1.24)
(mk, ab) = (a, m)(k, b)
with (a, m) and (b, k) relatively prime. Therefore
)= 3 sau("y)= T san(’y)
d|(mk, ab) d|(a, m)(b, k)
Writing d = dd, in the last sum we obtain

@)= ¥ Y f(dldz)g( mk >

dy|(a, m) d,|(b, k) m
m k
= 3 f(dl)g(d—> > f(dz)g<d—> = sn(@ksulb).
d,|(a, m) 1/ d,l(b, k) 2
This proves (9).
Taking k = 1 in (9) we get
Sm(ab) = Sm(a)sl(b) = Sm(a)
since s,(b) = f(1)g(1) = 1. This proves (10). Taking b = 1 in (9) we find
Smi@) = Sn(@)si(1) = sn(a)g(k)
since si(1) = f(l)g(k) = g(k). This proves (11). O

ExaMpLE For Ramanujan’s sum we obtain the following multiplicative
properties:
cmilab) = c(a)cy () whenever (a, k) = (b, m) = 1,
clab) = c,(a) whenever (b, m) = 1,
and
Ccoila) = cp(a@)u(k) whenever (a, k) = 1.

Sometimes the sums s,(n) can be evaluated in terms of the Dirichlet
convolution f * g. In this connection we have:

Theorem 8.8 Let f be completely multiplicative, and let g(k) = u(k)h(k), where
h is multiplicative. Assume that f(p) # 0 and f(p) # h(p) for all primes p,
and let

s = % siau5).

d|(n, k)
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8: Periodic arithmetical functions and Gauss sums

Then we have

F(k)g(N)

si(n) = F(N)

where F = f xgand N = kf(n, k).

Proor. First we note that

h(d)
%fd)“O() Zf() (@hid) = S16) 2. M)

h(p)
=/ k)p“.k< f(p))

Next, we write a = (n, k), so that k = aN. Then we have

) = dlZﬂf(cDu( ) () [ d>( )(?)

=Y f( ) (Nd)h(Nd).

dla

Now w(Nd) = w(N)u(d) if (N, d) = 1, and u(Nd) = 0 if (N, d) > 1, so the last
equation gives us

500 = W) 3 f(%)u(d)h(d F@UNIN) T wd) "
. =1 N, d) 1

1 (1 h(p))

= f(a)u(N)h(N) H ( fz))) f(@)u(N)h(N) 22" plaN hf(P)
N H<1 (p))

" W70

_ F() f(N) _ FQuN(N) _ F(g(N)
S@HNIN) Zo5 b =5y = F)

ExaMpLE For Ramanujan’s sum we obtain the following simplification:

k
w(k)u<(n, k)>
(wn)

P\, k)

aln) = e(k)u(N)/o(N) =
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8.5: Gauss sums associated with Dirichlet characters

8.5 Gauss sums associated with Dirichlet
characters

Definition For any Dirichlet character y mod k the sum

k

Gln, x) = 3, x(m)e?mm*
1

is called the Gauss sum associated with y.
If y = y,, the principal character mod k, we have y,(m) = 1 if (m, k) = 1,

and y,(m) = 0 otherwise. In this case the Gauss sum reduces to Ramanujan’s
sum:

k
Gn, x,) = Z eZmimnik — cx(n).
m=1
(m,k)y=1

Thus, the Gauss sums G(n, ) can be regarded as generalizations of Ramanu-
jan’s sum. We turn now to a detailed study of their properties.

The first result is a factorization property which plays an important role
in the subsequent development.

Theorem 8.9 If y is any Dirichlet character mod k then
G(n, ) = 7(n)G(1, x) whenever (n, k) = 1.

ProOF. When (n, k) = 1 the numbers nr run through a complete residue
system mod k with r. Also, | x(n)|* = x(n)i(n) = 1 so

xr) = x(mx(n)x(r) = x(n)x(nr).

Therefore the sum defining G(n, x) can be written as follows:

G, x) = Z x(r)e*™ % = y(n) Z x(nr)emnrlk

rmod k rmodk
= ) Y xmye* ™ = 7m)G(1, x).
mmod k
This proves the theorem. d

Definition The Gauss sum G(n, ¥) is said to be separable if

(12) G(n, x) = x(MG(1, ¥).

Theorem 8.9 tells us that G(n, ) is separable whenever n is relatively
prime to the modulus k. For those integers n not relatively prime to k we
have the following theorem.
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8: Periodic arithmetical functions and Gauss sums

Theorem 8.10 If y is a character mod k the Gauss sum G(n, x) is separable for
every n if, and only if,

G(n, ) =0 whenever (n, k) > 1.

PROOF. Separability always holds if (n, k) = 1. But if (1, k) > 1 we have
%(n) = 0 so Equation (12) holds if and only if G(n, ) = 0. O

The next theorem gives an important consequence of separability.
Theorem 8.11 If G(n, ) is separable for every n then

(13) |G(1, x)|? = k.
PrOOF. We have

1G(, I?

k
G(1, Y)G(1, x) = G(1, x) Z f(m)e ™ 2mimik

m=1

1l

1]

k ko k
Z G(m, X)e —2mim/k _ Z Z X(r)eZn:imr/ke - 2mim/k
1

m m=1r=1

k k
= 2 ) X XTI = ky(1) = k,

r=1 m=1

since the last sum over m is a geometric sum which vanishes unless r = 1.

8.6 Dirichlet characters with nonvanishing
Gauss sums

For every character y mod k we have seen that G(n, y)is separableif(n, k) = 1,
and that separability of G(n, x) is equivalent to the vanishing of G(n, y) for
(n, k) > 1. Now we describe further properties of those characters such that
G(n, ) = 0 whenever (n, k) > 1. Actually, it is simpler to study the comple-
mentary set. The next theorem gives a necessary condition for G(n, ¥) to be
nonzero for (n, k) > 1.

Theorem 8.12 Let y be a Dirichlet character mod k and assume that G(n, x) # 0
Sfor some n satisfying (n, k) > 1. Then there exists a divisor d of k, d < k,
such that

(14) x(@) =1 whenever (a,k) = 1and a =1 (mod d).

Proor. For the given n, let g = (n, k) and let d = k/q. Then d|k and, since
q > 1, we have d < k. Choose any a satisfying (@, k) = 1 anda = 1 (mod d).
We will prove that y(a) = 1.
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8.7: Induced moduli and primitive characters

Since (a, k) = 1, in the sum defining G(n, ) we can replace the index of
summation m by am and we find

G(n, ) = Z X(m)eZﬂ:inm/k = Z X(am)eZninam/k

mmod k mmod k

= X(a) Z X(m)eZninam/k.

mmod k

Since a =1 (mod d) and d = k/q we can write a = 1 + (bk/q) for some
integer b, and we have

anm _ nm | bknm _nm  bnm _mm  od 1)
kK k gk k qg k

since q|n. Hence e?™nam/k = g2minmik and the sum for G(n, ) becomes

Gn, x) = xla) Y, x(me*™™* = x(a)G(n, y).

mmod k

Since G(n, x) # O this implies y(a) = 1, as asserted. O

The foregoing theorem leads us to consider those characters y mod k
for which there is a divisor d < k satisfying (14). These are treated next.

8.7 Induced moduli and primitive characters

Definition of induced modulus Let y be a Dirichlet character mod k and let d
be any positive divisor of k. The number d is called an induced modulus
for y if we have

(15) (@) =1 whenever(a,k)=1anda =1 (mod d).

In other words, d is an induced modulus if the character y mod k acts like
a character mod d on the representatives of the residue class 1 mod d which
are relatively prime to k. Note that k itself is always an induced modulus
for y.

Theorem 8.13 Let x be a Dirichlet character mod k. Then 1 is an induced
modulus for y if, and only if, x = x;.

ProoF. If y = yx, then y(a) = 1 for all a relatively prime to k. But since every a
satisfies a = 1 (mod 1) the number 1 is an induced modulus.

Conversely, if 1 is an induced modulus, then y(a) = 1 whenever (q, k) = 1,
$0 ¥ = x, since y vanishes on the numbers not prime to k. O
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8: Periodic arithmetical functions and Gauss sums

For any Dirichlet character mod k the modulus k itself is an induced
modulus. If there are no others we call the character primitive. That is,
we have:

Definition of primitive characters A Dirichlet character y mod £ is said to be
primitive mod k if it has no induced modulus d < k. In other words,
x is primitive mod k if, and only if, for every divisor d of k, 0 < d < k,
there exists an integer a = 1 {mod d), (g, k) = 1, such that y{a) # 1.

If k > 1 the principal character y, is not primitive since it has 1 as an
induced modulus. Next we show that if the modulus is prime every non-
principal character is primitive.

Theorem 8.14 Every nonprincipal character y modulo a prime p is a primitive
character mod p.

ProofF. The only divisors of p are 1 and p so these are the only candidates
for induced moduli. But if ¥ # y, the divisor 1 is not an induced modulus
so x has no induced modulus < p. Hence y is primitive. [

Now we can restate the results of Theorems 8.10 through 8.12 in the
terminology of primitive characters.

Theorem 8.15 Let y be a primitive Dirichlet character mod k. Then we have:

(@) G(n, x) = 0 for every n with (n, k) > 1.
(b) G(n, y) is separable for every n.
©) 16, »I* = k.

Proor. If G(n, x) # 0 for some n with (n, k) > 1 then Theorem 8.12 shows
that y has an induced modulus d < k, so y cannot be primitive. This proves (a).

Part (b) follows from (a) and Theorem 8.10. Part (c) follows from part (b)
and Theorem 8.11. O

Note. Theorem 8.15(b) shows that the Gauss sum G(n, x) is separable if
is primitive. In a later section we prove the converse. That is, if G(n, x) is
separable for every n then y is primitive. (See Theorem 8.19.)

8.8 Further properties of induced moduli

The next theorem refers to the action of y on numbers which are congruent
modulo an induced modulus.

Theorem 8.16 Let y be a Dirichlet character mod k and assume dlk, d > 0.
Then d is an induced modulus for x if, and only if,

(16) x(a) = x(b) whenever (a, k) = (b,k) = 1 and a = b (mod d).
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8.8: Further properties of induced moduli

PrOOF. If (16) holds then d is an induced modulus since we may choose b = 1
and refer to Equation (15). Now we prove the converse.

Choose a and b so that (a, k) = (b, k) = 1 and a = b (mod d). We will
show that y(a) = x(b). Let a’ be the reciprocal of a mod k, aa’ = 1 (mod k).
The reciprocal exists because (a, k) = 1. Now aa’ = 1 (mod d) since d|k.
Hence y(aa’) = 1 since d is an induced modulus. But aa’ = ba’ = 1 (mod d)
because a = b (mod d), hence y(aa’) = x(ba'), so

xa)x(a’) = xb)x(a').

But x(a’) # 0 since y(a)y(a’) = 1. Canceling y(a’) we find y(a) = x(b), and
this completes the proof. a

Equation (16) tells us that y is periodic mod d on those integers relatively
prime to k. Thus y acts very much like a character mod d. To further explore
this relation it is worthwhile to consider a few examples.

ExampLE 1 The following table describes one of the characters y mod 9.

n 1 2 3 4 5 6 7 8 9

x(n) 1 -1 0 1 -1 0 1 -1 0

We note that this table is periodic modulo 3 so 3 is an induced modulus for y.
In fact, y acts like the following character { modulo 3:

Since x(n) = Y(n) for all n we call y an extension of . It is clear that whenever
is an extension of a character ¥ modulo d then d will be an induced modulus
for .

ExaMpLE 2 Now we examine one of the characters y modulo 6:

n 1 2 3 4 5 6

x(n) 1 0 0 0 -1 0

In this case the number 3 is an induced modulus because y(n) = 1 for all
n =1 (mod 3) with (n, 6) = 1. (There is only one such n, namely, n = 1.
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8: Periodic arithmetical functions and Gauss sums

However, y is not an extension of any character ¥ modulo 3, because the
only characters modulo 3 are the principal character ¥,, given by the table:

n 1 2 3

Yum) 11 0

and the character  shown in Example 1. Since y(2) = 0 it cannot be an
extension of either ¥ or ¥,.

These examples shed some light on the next theorem.

Theorem 8.17 Let y be a Dirichlet character modulo k and assume d|k, d > 0.
Then the following two statements are equivalent:

(@) d is an induced modulus for y.
(b) There is a character Y modulo d such that

(17) x(n) = Y(n)x,(n) for all n,

where x, is the principal character modulo k.

ProoF. Assume (b) holds. Choose n satisfying (n,k) = 1, n = 1 (mod d).
Then y,(n) = ¥(n) = 1 so y(n) = 1 and hence d is an induced modulus. Thus,
(b) implies (a).

Now assume (a) holds. We will exhibit a character y modulo d for which
(17) holds. We define y(n) as follows: If (n, d) > 1, let y(rn) = 0. In this case
we also have (n, k) > 1 so (17) holds because both members are zero.

Now suppose (n, d) = 1. Then there exists an integer m such that m =
n (modd), (m, k) = 1. This can be proved immediately with Dirichlet’s
theorem. The arithmetic progression xd + n contains infinitely many primes.
We choose one that does not divide k and call this m. However, the result
is not that deep; the existence of such an m can easily be established without
using Dirichlet’s theorem. (See Exercise 8.4 for an alternate proof.) Having
chosen m, which is unique modulo d, we define

¥(n) = x(m).
The number y(n) is well-defined because y takes equal values at numbers
which are congruent modulo d and relatively prime to k.
The reader can easily verify that y is, indeed, a character mod d. We shall
verify that Equation (17) holds for all a.
If (n,k) =1 then (n,d) =1 so Y(n) = x(m) for some m = n (mod d).
Hence, by Theorem 8.16,

x(n) = x(m) = Y(n) = Y(n)x,(n)
since y,(n) = 1.
If (n, k) > 1, then x(n) = x,(n) = 0 and both members of (17) are 0. Thus,
(17) holds for all n. d

170
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8.9 The conductor of a character

Definition Let y be a Dirichlet character mod k. The smallest induced modulus
d for y is called the conductor of y.

Theorem 8.18 Every Dirichlet character y mod k can be expressed as a product,

(18) x(n) = Y(n)y,(n) for alln,

where x, is the principal character mod k and Y is a primitive character
modulo the conductor of .

Proor. Let d be the conductor of y. From Theorem 8.17 we know that y can
be expressed as a product of the form (18), where y is a character mod d.
Now we shall prove that ¢ is primitive mod d.

We assume that  is not primitive mod d and arrive at a contradiction.
If 4 is not primitive mod d there is a divisor q of d, ¢ < d, which is an induced
modulus for . We shall prove that this g, which divides k, is also an induced
modulus for y, contradicting the fact that d is the smallest induced modulus
for y.

Choose n = 1 (mod g), (n, k) = 1. Then

xn) = Y (n) = Yin) = 1

because g is an induced modulus for . Hence g is also an induced modulus
for x and this is a contradiction. Ol

8.10 Primitive characters and separable
Gauss sums

As an application of the foregoing theorems we give the following alternate
description of primitive characters.

Theorem 8.19 Let y be a character mod k. Then y is primitive mod k if, and
only if, the Gauss sum

Gln,x) = ), rmpe*=m

mmod k
is separable for every n.

PROOF. If y is primitive, then G(n, ) is separable by Theorem 8.15(b). Now
we prove the converse.

Because of Theorems 8.9 and 8.10 it suffices to prove that if y is not
primitive mod k then for some r satisfying (r, k) > 1 we have G(r, x) # 0.
Suppose, then, that y is not primitive mod k. This implies k > 1. Then y hasa
conductor d < k. Let r = k/d. Then (r,k) > 1 and we shall prove that
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8: Periodic arithmetical functions and Gauss sums

G(r, ) # O for this r. By Theorem 8.18 there exists a primitive character
¥ mod d such that y(n) = Y(n)y,(n) for all n. Hence we can write

Glr,y)= Y, Y(myme*™* = 3 y(m)e>rmk

mmod k mmod k
(m, ky=1
. k :
= Z l//(n,l)ebum/fl — (p(d) Z l/I(m)eme/d’
mmod k (p( ) mmodd
(m,k)y=1 (m,dy=1

where in the last step we used Theorem 5.33(a). Therefore we have

(k)
G(r, x) = G(1, ¥).
"0 =@
But |G(1, ¥)|*> = d by Theorem 8.15 (since ¥ is primitive mod d) and hence
G(r, y) # 0. This completes the proof. a

8.11 The finite Fourier series of the Dirichlet
characters
Since each Dirichlet character y mod k is periodic mod k it has a finite
Fourier expansion
k

(19) wm) = 3 an)e’ ™™,

n=1
and Theorem 8.4 tells us that its coefficients are given by the formula

k
= Z x(m)e - 21:imn/k.

The sum on the right is a Gauss sum G(—n, y) so we have
1
(20) ay(n) = 7 G(=n, 2).
When y is primitive the Fourier expansion (19) can be expressed as follows:

Theorem 8.20 The finite Fourier expansion of a primitive Dirichlet character
x mod k has the form

(21) X(m) = % Zli(n)e—lm'mn/k

where
_ G,y 1
(22) (1) = \/E \/E

The numbers 1,{y) have absolute value 1.

Z X m)elmm/k
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8.12: Polya’s inequality for the partial sums of primitive characters

PROOF. Since y is primitive we have G(—n, x) = ¥(—n)G(1, y) and (20)
implies a,(n) = j(—n)G(1, y)/k. Therefore (19) can be written as

G

k
xm) = 1, %) Z Z(_n)eZnimn/k — M i Z(n)e_z"i"‘”/“,

n=1 k n=1

which is the same as (21). Theorem 8.11 shows that the numbers 7,(y) have
absolute value 1. O

8.12 Polya’s inequality for the partial sums

of primitive characters

The proof of Dirichlet’s theorem given in Chapter 7 made use of the relation

Y x(m)

m<x

< olk)

which holds for any Dirichlet character y mod k and every real x > 1. This
cannot be improved when y = yx; because ) %, xi(m) = @(k). However,
Polya showed that the inequality can be considerably improved when y is a
primitive character.

Theorem 8.21 Pélya’s inequality. If x is any primitive character mod k then
for all x > 1 we have

23)

Y x(m) ‘ Jk log k.
PROOF. We express x(m) by its finite Fourier expansion, as given in Theorem

8.20

X(m _ jxj Z X( )e—men/k

and sum over all m < x to get

S 2lm) = \"}’9 Z i) 3

since y(k) = 0. Taking absolute values and multiplying by ﬂ we find

(24) Vk| X

say, where

k-1
= ;If(n)l,

| <3

Z e 2rimn/k

m<x

msx n=1

f(n) = Z e—2uimn/k'

m<x
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8: Periodic arithmetical functions and Gauss sums

Now

f(k —_ n) = Z e"z"i’”(““")/k = Z e2m‘mn/k — m

m<x m<x

SO

| f(k — n)| = | f(n)]. Hence (24) can be written as

(25) Jk

Now f(n) is a geometric sum of the form

Y. x(m)

m<x

<2y [fm).

n<k/2

fy= 3y
m=1

where r = [x] and y = e 2™"* Here y # 1 since 1 < n < k — 1. Writing

z = e "k we have y = z2 and z% # 1 since n < k/2. Hence we have
r 2 -
o y-1_ Lz-1 =z
S =y =z = -1
y—1 z¢ -1 z—z
SO
sin rn
2=z e—nirn/k — enirn/k k 1
(26) |f(n)| = 1| T |, —mmk mink | :
z—-z e —e . Tmn . TN
sin — sin —
k k

Now we use the inequality sin t > 2t/x, valid for 0 <t < /2, with ¢ =
nn/k to get

| f)] < 5= e

2nn  2n
nk

Hence (25) becomes
1
Yam)| <k Y ;<klogk,

Jk
m<x n<k/2

and this proves (23). O

Note. In a later chapter we will prove that Polya’s inequality can be
extended to any nonprincipal character. For nonprimitive characters it
takes the form

Y x(m) = 0(/k log k).

m<x

(See Theorem 13.15.)
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Exercises for Chapter 8

1. Let x = 2"/ and prove that

n

n—1
kx* =
,‘glx x_l

2. Let ((x)) = x — [x] — 4 if x is not an integer, and let ((x)) = 0 otherwise. Note that
((x)) is a periodic function of x with period 1. If k and n are integers, with n > 0,

prove that
k 12 mm | 2nkm
-}=- = t — si .

3. Let ¢,(m)denote Ramanujan’s sum and let M(x) = Z,,Sx u(n), the partial sums of the
Mébius function.

(a) Prove that

Seim=Y dM(S)-

k=1 djm

In particular, when n = m, we have

T cm = ¥ dM<T>.
k=1 dim d
(b) Use (a) to deduce that
M(m)=m ZM 3 c{d).

dim d k=1

Zom-gali)i]

4. Let n, a, d be given integers with (a, d) = 1. Let m = a + gqd where q is the product
(possibly empty) of all primes which divide n but not a. Prove that

(c) Prove that

m = a (mod d) and (m, n) = 1.
5. Prove that there exists no real primitive character y mod kifk = 2m, where m is odd.

6. Let x be a character mod k. If k, and k, are induced moduli for y prove that so too is
(ky, k), their ged.

7. Prove that the conductor of y divides every induced modulus for .

In Exercises 8 through 12, assume that k = k,k, - - - k,, where the positive
integers k; are relatively prime in pairs: (k;, k;) = 1if i # j.
8. (a) Given any integer a, prove that there is an integer a; such that

g;=a (modk) andag;=1 (modk) forallj+#i.
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8: Periodic arithmetical functions and Gauss sums

10.

11.

12.

13.

14

15.

176

(b) Let y be a character mod k. Define x; by the equation

xi{a) = xlay),

where q; is the integer of part (a). Prove that y; is a character mod k;.

. Prove that every character y mod k can be factored uniquely as a product of the

form y = x, x, - x,, where x; is a character mod k;.

Let f(x) denote the conductor of y. If y has the factorization in Exercise 9, prove

that /() = f0t) -~ ()

If x has the factorization in Exercise 9, prove that for every integer a we have

d k
G(05 X) = HX.‘(E)G(G;', Xi)’
i=1 i
where g; is the integer of Exercise 8.

If x has the factorization in Exercise 9, prove that y is primitive mod k if, and only if,
each y; is primitive mod k;. [Hint: Theorem 8.19.]

Let x be a primitive character mod k. Prove that if N < M we have

£

m=N+1 M

2

This exercise outlines a slight improvement in Polya’s inequality. Refer to the proof
of Theorem 8.21. After inequality (26) write

1 1 K2 dy
Lifels ¥ ——<——u [
n<ki2 k2 G T Gin T ! sin il
k k k

Show that the integral is less than — (k/m)log(sin(n/2k)) and deduce that

<\/I;+1~2r\/lzlogk.

This improves Polya’s inequality by a factor 2/x in the principal term.

Y, x(n)

n<x

The Kloosterman sum K(m, n; k) is defined as follows:
K(m, n; k) — Z eZni(mh-th')/k
hmod k
(h,k)=1

where 4’ is the reciprocal of h mod k. When k|n this reduces to Ramanujan’s sum
ci(m). Derive the following properties of Kloosterman sums:
(@) K(m, n; k) = K(n, m; k).
(b) K(m, n; k) = K(1, mn; k) whenever (m, k) = 1.
(c) Given integers n, ky, k, such that (k,, k,) = 1, show that there exist integers n,
and n, such that
n = nyky? + nyk,? (mod kik,),
and that for these integers we have

K(m, n; kik;) = K(m, ny; k,)K(m, ny; k).
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Exercises for Chapter 8

This reduces the study of Kloosterman sums to the special case K(m, n; p*), where
p is prime.

If n and k are integers, n > 0, the sum

Glk;n) = Y e*mirin
r=1
is called a quadratic Gauss sum. Derive the following properties of quadratic Gauss
sums:
(@) G(k;mn) = G(km; n)G(kn; m) whenever (m, n) = 1. This reduces the study of
Gauss sums to the special case G(k; p), where p is prime.
(b) Let p be an odd prime, p f k, a > 2. Prove that G(k; p*) = pGlk; p*~ ) and
deduce that

a/2

ik ) = p if a is even,
P = peY2G(k; p) if o is odd.

Further properties of the Gauss sum G(k; p) are developed in the next chapter
where it is shown that G(k; p) is the same as the Gauss sum G(k, ) associated with a
certain Dirichlet character y mod p. (See Exercise 9.9.)
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Quadratic Residues and the
Quadratic Reciprocity Law

9.1 Quadratic residues
As shown in Chapter 5, the problem of solving a polynomial congruence
f(x) = 0 (mod m)

can be reduced to polynomial congruences with prime moduli plus a set of
linear congruences. This chapter is concerned with quadratic congruences
of the form

(1) x? = n (mod p)

where p is an odd prime and n # 0 (mod p). Since the modulus is prime we
know that (1) has at most two solutions. Moreover, if x is a solution so is
—x, hence the number of solutions is either 0 or 2.

Definition If congruence (1) has a solution we say that n is a quadratic
residue mod p and we write nRp. If (1) has no solution we say that n is
a quadratic nonresidue mod p and we write nRp.

Two basic problems dominate the theory of quadratic residues:

1. Given a prime p, determine which n are quadratic residues mod p and
which are quadratic nonresidues mod p.

2. Given n, determine those primes p for which n is a quadratic residue mod p
and those for which n is a quadratic nonresidue mod p.

We begin with some methods for solving problem 1.
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9.2: Legendre’s symbol and its properties

ExaMpLE To find the quadratic residues modulo 11 we square the numbers
1,2,...,10 and reduce mod 11. We obtain

1’=1, 2% =4, 32 =09, 42 = 5, 5% = 3 (mod 11).
It suffices to square only the first half of the numbers since
6% = (-572 =3, 7P = (-4 =5,...,100 = (- 1)* =1 (mod 11).
Consequently, the quadratic residues mod 11 are 1, 3, 4, 5, 9, and the non-
residues are 2, 6, 7, 8, 10.

This example illustrates the following theorem.

Theorem 9.1 Let p be an odd prime. Then every reduced residue system mod p
contains exactly (p — 1)/2 quadratic residues and exactly (p — 1)/2
quadratic nonresidues mod p. The quadratic residues belong to the residue
classes containing the numbers

. 2
) 12,22, 3{...,(%) :

Proor. First we note that the numbers in (2) are distinct mod p. In fact, if
x?=y? (mod p)with1 < x <(p—1)2and1 <y < (p — 1)/2, then

(x = y)(x + y) = 0 (mod p).
Butl < x + y<psox — y=0 (mod p), hence x = y. Since
(p — k> = k* (mod p),
every quadratic residue is congruent mod p to exactly one of the numbers

in (2). This completes the proof. td

The following brief table of quadratic residues R and nonresidues R was
obtained with the help of Theorem 9.1.

R: 1 1,4 1,2,4 1,3,4,5,9 1,3,4,9,10,12
R: 2 2,3 3,56 2,6,7,8,10 2,567,811

9.2 Legendre’s symbol and its properties

Definition Let p be an odd prime. If n # 0 (mod p) we define Legendre’s
symbol (n|p) as follows:

(nip) = +1 ifnRp,
PP=-1 itnRp.

If n = 0 (mod p) we define (n|p) = 0.
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9: Quadratic residues and the quadratic reciprocity law

ExaMpLES(1|p) = 1, (m?|p) = 1,(7|11) = —1, (22|11) = 0.
Note. Some authors write <E> instead of (n|p).
4

It is clear that (m|p) = (n|p) whenever m = n (mod p), so (n|p) is a
periodic function of n with period p.
The little Fermat theorem tells us that n””?~! = 1 (mod p) if p ¥ n. Since

nf l-1= (n(p—l)/2 _ 1)(n(p—1)/2 + 1)
it follows that n?~ 12 = +1 (mod p). The next theorem tells us that we get
+1ifnRp and —1 if nRp.
Theorem 9.2 Euler’s criterion. Let p be an odd prime. Then for all n we have
(n|p) = n®~ V2 (mod p).
Proor. If n = 0 (mod p) the result is trivial since both members are con-

gruent to 0 mod p. Now suppose that (n|p) = 1. Then there is an x such
that x2 = n (mod p) and hence

WP~ I2 = (<30 V2 = x4 = 1 = (n]p) (mod p).

This proves the theorem if (n|p) = 1.
Now suppose that (n|p) = —1 and consider the polynomial

flx)=x@®- 12— 1
Since f(x) has degree (p — 1)/2 the congruence
f(x) =0 (mod p)

has at most (p — 1)/2 solutions. But the (p — 1)/2 quadratic residues mod p
are solutions so the nonresidues are not. Hence

n?~ Y2 £ 1 (mod p) if(n|p)= —1.
But n»~12 = +1 (mod p) so n?»~ 12 = —1 = (n|p) (mod p). This com-

pletes the proof. O

Theorem 9.3 Legendre’s symbol (n|p) is a completely multiplicative function

of n.

PrROOF. If p|m or p|n then pimn so (mn|p) = 0 and either (m|p) = 0 or
(n|p) = 0. Therefore (mn|p) = (m|p)(n|p)if p|m or p|n.
If p ¥ m and p 4 n then p ¥ mn and we have

(mn|p) = (mn)?~ D2 = mP= D2~ D2 = (m|p)(n|p) (mod p).
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But each of (mn|p), (m|p) and (n|p) is 1 or —1 so the difference

(mn|p} — (m|p)(n|p)
is either 0, 2, or — 2. Since this difference is divisible by p it must be 0.
Note. Since (n|p) is a completely multiplicative function of n which is
periodic with period p and vanishes when p|n, it follows that (n|p) = x(n),

where x is one of the Dirichlet characters modulo p. The Legendre symbol is
called the quadratic character mod p.

9.3 Evaluation of (—1|p) and (2|p)
Theorem 9.4 For every odd prime p we have

e B 1 if p=1 (mod 4),
(=11p) = (= 1) ”/2—{_1 if p=3 (mod 4).

ProOF. By Euler’s criterion we have (—1|p) = (—1)*~ 12 (mod p). Since
each member of this congruence is 1 or — 1 the two members are equal. []

Theorem 9.5 For every odd prime p we have

1 if p= 41 (mod B),

(2p) = (=11 = {—1 if p= +3 (mod 8).

Proor. Consider the following (p — 1)/2 congruences:

p-1=I1(-1 (mod p)
2=2(-1)? (mod p)
p—3=3-1)3> (mod p)
4 = 4-1)* (mod p)

p— 1
=2~ (= )" (mod p),

where r is either p — (p — 1)/2 or (p — 1)/2. Multiply these together and note
that each integer on the left is even. We obtain

-1

2:4-6---(p—1)= (p >!(—1)”““'+“"”/2 (mod p).

This gives us

2(p—1)/2<p_;_1>! = <p ; 1)!(—1)“’2‘1)/8 (mod p).
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9: Quadratic residues and the quadratic reciprocity law

Since ((p — 1)/2)! # 0 (mod p) this implies
2P= 12 = ()-8 (mod p).

By Euler’s criterion we have 2%~ /2 = (2|p) (mod p), and since each

member is 1 or —1 the two members are equal. This completes the proof.
[

9.4 Gauss’ lemma

Although Euler’s criterion gives a straightforward method for computing
(n|p), the calculation may become prohibitive for large n since it requires
raising n to the power (p — 1)/2. Gauss found another criterion which
involves a simpler calculation.

Theorem 9.6 Gauss’ lemma. Assume n # 0 (mod p) and consider the least
positive residues mod p of the following (p — 1)/2 multiples of n:

p—1

3 2n,3n, ...,
() n, Zn, on 2

n.

If m denotes the number of these residues which exceed p/2, then
(nlp) = (=D
PRrOOF. The numbers in (3) are incongruent mod p. We consider their least

positive residues and distribute them into two disjoint sets 4 and B, according
as the residues are <p/2 or > p/2. Thus

A= {al,az,...,ak}

Il

where each g; = tn (mod p) for some t < (p — 1)/2and 0 < g; < p/2; and

B={b.b,,...,b,}

where each b; = sn (mod p) for some s < (p — 1)/2 and p/2 < b; < p. Note
thatm + k = (p — 1)/2 since A and B are disjoint. The number m of elements
in B is pertinent in this theorem. Form a new set C of m elements by sub-
tracting each b; from p. Thus

C={cy,Cs,...,Cp}, Wherec,=p—b,.

Now 0 < ¢; < p/2 so the elements of C lie in the same interval as the elements
of A. We show next that the sets A and C are disjoint.

Assume that ¢; = a; for some pair i and j. Then p — b; = a;, or a; + b;
=0 (mod p). Therefore

tn + sn=(t+ sjh =0 (mod p)

for some s and t with 1 <t < p/2, 1 < s < p/2. But this is impossible since
ptnand 0 <s +t < p. Therefore 4 and C are disjoint, so their union
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9.4: Gauss’ lemma

A u C contains m + k = (p — 1)/2 integers in the interval [1, (p — 1)/2].
Hence

-1
AUuC=1{a;,a5,-..,8,,C15Cy 3 Cu} = {1,2,...,3——5—}.

Now form the product of all the elements in 4 U C to obtain

p—1
alaz---akclcz---c,":( L

2

Since ¢; = p — b; this gives us

(’1;—1)' = 4,185+ &(p — b)(p — b))+ (p — by)

= (—1"aja, --- aybyb, --- b,, (mod p)

= (= 1)"n(2n)(3n) - - - (” ; 1 n> (mod p)

= (= 1)@~ 1)/2<p___2__1>! (mod p).

Canceling the factorial we obtain
n?~ 12 = (—1y" (mod p).

Euler’s criterion shows that (—1)™ = (n|p) (mod p) hence (— 1)" = (n|p) and
the proof of Gauss’ lemma is complete.

To use Gauss’ lemma in practice we need not know the exact value of m,
but only its parity, that is, whether m is odd or even. The next theorem gives
a relatively simple way to determine the parity of m.

Theorem 9.7 Let m be the number defined in Gauss’ lemma. Then

-2y p*—1
Y [;] + (1 — 1) —5— (mod2).

3
I

t=1

In particular, if n is odd we have

v -Zl)/z[%"] (mod 2).

3
I

t=1

ProoF. Recall that m is the number of least positive residues of the numbers

p—1
2

n,2n3n,..., n
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9: Quadratic residues and the quadratic reciprocity law

which exceed p/2. Take a typical number, say tn, divide it by p and examine
the size of the remainder. We have

tn = |it_nj| + {t—n}, where 0 < {t—'l} < 1,
p p 14 14
» p » p p ts

say, where 0 < r, < p. The number r, = tn — p[tn/p] is the least positive
residue of tn modulo p. Referring again to the sets 4 and B used in the proof
of Gauss’ lemma we have

SO

{rl, ra, ...,r(p_l)/z} = {al, az, ...,ak, bl’ ""bm}‘

Recall also that

-1
{1,2,...,1)7}={al,az,...,ak,cl,...,cm}

where each ¢; = p — b;. Now we compute the sums of the elements in these
sets to obtain the two equations

(p—1)/2 k m

r, = Zai+ ij

t=1 i=1 j=1
and

(p—1)/2

Z t= Za+ Zc = Za + mp — Zb~.

In the first equation we replace r, by its definition to obtain
k m (p=1)2 (CE2 Tk P
Lot Xb=n ) t-p ¥ ||
i= j=1 t=1 t=1 p

The second equation is

k n (p—1)/2
i=1 ji=1 =1
Adding this to the previous equation we get

e=D2 =02y,
mp+22a—(n+1)z p Y [;]

t=1

2_ 1 by
=(n+1)pT—p y [—"]

t=1
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9.5: The quadratic reciprocity law

Now we reduce this modulo 2, noting that n + 1 = n — 1 (mod 2) and
p = 1 (mod 2), and we obtain

2_ 1 w-yp
m=n-17 ) [%] (mod 2),
t=1

which completes the proof. O

9.5 The quadratic reciprocity law

Both Euler’s criterion and Gauss’ lemma give straightforward though
sometimes lengthy procedures for solving the first basic problem of the
theory of quadratic residues. The second problem is much more difficult.
Its solution depends on a remarkable theorem known as the quadratic
reciprocity law, first stated in a complicated form by Euler in the period
1744-1746, and rediscovered in 1785 by Legendre who gave a partial proof.
Gauss discovered the reciprocity law independently at the age of eighteen
and a year later in 1796 gave the first complete proof.

The quadratic reciprocity law states that if p and g are distinct odd primes,
then (p|q) = (q|p) unless p = g = 3 (mod 4), in which case (p|q) = — (g]p).
The theorem is usually stated in the following symmetric form given by
Legendre.

Theorem 9.8 Quadratic reciprocity law. If p and q are distinct odd primes, then

@ (pla)(glp) = (= 1)~ a1
Proor. By Gauss’ lemma and Theorem 9.7 we have
(qlp) = (="
where
(p—1)/2
m= ) [ﬂ] (mod 2).
=1 P
Similarly,
(plg) = (=1)
where

s=1

n= “ —21:)/2[%] (mod 2).

Hence (plq)(glp) = (—1)"*", and (4) follows at once from the identity
- V2 yq @ 2l g p—lg-1
5 H " [— _p-lg-1
tgl 14 s§1 q 2 2
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9: Quadratic residues and the quadratic reciprocity law

To prove (5) consider the function

f(x,y) = gx — py.

If x and y are nonzero integers then f(x, y) is a nonzero integer. Moreover,
as x takes the values 1, 2,...,(p — 1)/2 and y takes the values 1, 2,...,
(g — 1)/2 then f(x, y) takes

values, no two of which are equal since

0= fx, )= fx—x,y—y)#0.

Now we count the number of values of f(x, y) which are positive and the
number which are negative.

For each fixed x we have f(x, y) > 0 if and only if y < gx/p, or y <
[gx/p]. Hence the total number of positive values is

qu
» .

— pu

(p—1)/2

x=1
Similarly, the number of negative values is

~1)/2[ s, ]
(q—1)/ 12

y=1 \__q

Since the number of positive and negative values together is

p—1qg—1
2 2
this proves (5) and hence (4). |

Note. The reader may find it instructive to interpret the foregoing proof
of (5) geometrically, using lattice points in the plane.

At least 150 proofs of the quadratic reciprocity law have been published.
Gauss himself supplied no less than eight, including a version of the one
just given. A short proof of the quadratic reciprocity law is described in an
article by M. Gerstenhaber [25].

9.6 Applications of the reciprocity law

The following examples show how the quadratic reciprocity law can be
used to solve the two basic types of problems in the theory of quadratic
residues.

ExampLE 1 Determine whether 219 is a quadratic residue or nonresidue
mod 383.
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9.7: The Jacobi symbol

Solution

We evaluate the Legendre symbol (219|383) by using the multiplicative
property, the reciprocity law, periodicity, and the special values (—1|p) and
(2]p) calculated earlier.

Since 219 = 3 - 73 the multiplicative property implies

(2191383) = (3]383)(73/383).
Using the reciprocity law and periodicity we have
(3]383) = (383]3)(—1)B383-DA-D/4 — _(_1[3) = — (1)@~ D2 = |,
and

(73]383) = (383]73)(— 1)383- D34 — (18|73) = (2]73)(9]|73)
(_1)((73)2~1)/8 =1

Hence (219]383) = 1 so 219 is a quadratic residue mod 383.

ExAMPLE 2 Determine those odd primes p for which 3 is a quadratic residue
and those for which it is a nonresidue.

Solution
Again, by the reciprocity law we have

(31p) = (pI3)(— 1P~ M= D = (— )P~ DI2(p|3).

To determine (p|3) we need to know the value of p mod 3, and to determine
(= 1)~ /2 we need to know the value of (p — 1)/2 mod 2, or the value of p
mod 4. Hence we consider p mod 12. There are only four cases to consider,
p=1,57,or 11 (mod 12), the others being excluded since p is odd.

Case 1. p =1 (mod 12). In this case p = 1 (mod 3)so (p|3) = (1|3) = L
Also p = 1 (mod 4) so (p — 1)/2 is even, hence (3|p) = 1.

Case 2. p =5 (mod 12). In this case p = 2 (mod 3) so (p|3) = (2]3)
(— 1)@ -8 — _1 Again, (p — 1)/2 is even since p = 1 (mod 4), so (3|p)
—1.

Case 3. p = 7 (mod 12). In this case p = 1 (mod 3),s0 (p|3) = (1{3) = 1.
Also (p — 1)/2 is odd since p = 3 (mod 4), hence 3[p) = — 1.

Case 4. p = 11 (mod 12). In this case p = 2 (mod 3) so (p|3) = (2|3) =
—1. Again (p — 1)/2 is odd since p = 3 (mod 4), hence (3|p) = 1.

Summarizing the results of the four cases we find

3Rpifp = +1 (mod 12)
3Rpifp = +5 (mod 12).

(!

9.7 The Jacobi symbol

To determine if a composite number is a quadratic residue or nonresidue
mod p it is necessary to consider several cases depending on the quadratic
character of the factors. Some calculations can be simplified by using an
extension of Legendre’s symbol introduced by Jacobi.

187



9: Quadratic residues and the quadratic reciprocity law

Definition If P is a positive odd integer with prime factorization

the Jacobi symbol (n| P) is defined for all integers n by the equation

r

(6) (n|P) = [Tnlp)*,

i=1

where (n|p;) is the Legendre symbol. We also define (n]1) = 1.

The possible values of (n| P) are 1, — 1, or 0, with (n| P) = 0 if and only if
(n, P) > 1.
If the congruence

x* = n (mod P)

has a solution then (n|p;) = 1 for each prime p; in (6), and hence (n|P) = 1.
However, the converse is not true since (n|P) can be 1 if an even number of
factors — 1 appears in (6).

The reader can verify that the following properties of the Jacobi symbol
are easily deduced from properties of the Legendre symbol.

Theorem 9.9 If P and Q are odd positive integers, we have

@) (m|P)(n|P) = (mn|P),

(b) (n|P)(n|Q) = (n| PQ),

(c) (m|P) = (n|P) whenever m = n (mod P),
(d) (@*n|P) = (n|P) whenever (a, P) = 1.

The special formulas for evaluating the Legendre symbols (—1|p) and
(2| p) also hold for the Jacobi symbol.

Theorem 9.10 If P is an odd positive integer we have

™ (—11P) = (= 1)y*-172
and
®) @IP) = (=10,

PrROOF. Write P = p, p, - - - p,, Where the prime factors p; are not necessarily
distinct. This can also be written as

P=]fl(1+pi—1)=1+__il(p,-—l)+ Y- Do~ 1)+

i#j
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9.7: The Jacobi symbol

But each factor p; — 1 is even so each sum after the first is divisible by 4.
Hence

P=1+ i(p,-— 1) (mod 4),
i=1

or
1 m 1
5 = ; 5 — 1) (mod 2).
Therefore
(=11P) = [T(=1lp) = [T(=1e D2 = (=)D,
i=1 i=1
which proves (7).
To prove (8) we write
P* =[] +p? - —1+—Z@2—1y;2@1 =)+

i=1 i#j

Since p; is odd we have p2 — 1 = 0 (mod 8) so
Pr=1+ ) (p/ — 1) (mod 64)
i=1

hence

l(pZ —1)= i l(pi2 — 1) (mod 8).
8 i=18

This also holds mod 2, hence

2I1P) = [1Q2Ip) = [T(= 1)@~ V8 = ()P~ 18
i=1 i=1
which proves (8). O
Theorem 9.11 Reciprocity law for Jacobi symbols. If P and Q are positive odd
integers with (P, Q) = 1, then
(PIQ)(QIP) = (— 1)~ xe-1re,

PrROOF. Write P = p; --- p,., Q = q, - - - ¢,,, Where the p; and g; are primes.
Then

(PIO)QIP) = H EI(pllq, (g;lp) = (=1,

say. Applying the quadratic reciprocity law to each factor we find that
m n 1 1 m 1 n 1
r= Z Z se:i—-1D5(@—-1)= Z 5 — I)Z 5(g; — 1.
i=1j=12 2 i=12 j=12
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9: Quadratic residues and the quadratic reciprocity law

In the proof of Theorem 9.10 we showed that

1

1
1E(p,,« =3P -1 (mod?2),

M=

and a corresponding congruence holds for ) ¥(g; — 1). Therefore

P-10-1
r = TT (mod 2),

which completes the proof. l:l

ExaMPLE 1 Determine whether 888 is a quadratic residue or nonresidue of
the prime 1999.

Solution
We have

(888]1999) = (4]1999)(211999)(111]1999) = (111]1999).
To calculate (111]1999) using Legendre symbols we would write
(11111999) = (3]1999)(3711999)

and apply the quadratic reciprocity law to each factor on the right. The
calculation is simpler with Jacobi symbols since we have

(111]1999) = —(1999|111) = —(1]111) = —1.

Therefore 888 is a quadratic nonresidue of 1999.

ExampLE 2 Determine whether — 104 is a quadratic residue or nonresidue of
the prime 997.

Solution
Since 104 = 2-4-13 we have

(—104]997) = (—1[997)(21997)(13]997) = —(13]997)
= —(997|13) = —(9|13) = —1.

Therefore — 104 is a quadratic nonresidue of 997.

9.8 Applications to Diophantine equations

Equations to be solved in integers are called Diophantine equations after
Diophantus of Alexandria. An example is the equation

©) V=x3+k

where k is a given integer. The problem is to decide, for a given k, whether
or not the equation has integer solutions x, y and, if so, to exhibit ail of them.
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We discuss this equation here partly because it has a long history, going
back to the seventeenth century, and partly because some cases can be
treated with the help of quadratic residues. A general theorem states that the
Diophantine equation

¥ = fx)

has at most a finite number of solutions if f(x) is a polynomial of degree
>3 with integer coefficients and with distinct zeros. (See Theorem 4-18 in
LeVeque [44], Vol. 2.) However, no method is known for determining the
solutions (or even the number of solutions) except for very special cases.
The next theorem describes an infinite set of values of k for which (9) has
no solutions.

Theorem 9.12 The Diophantine equation
(10) V=x*+k
has no solutions if k has the form
(11) k=(n—1)>—4m?,
where m and n are integers such that no prime p = —1 (mod 4) divides m.

ProOF. We assume a solution x, y exists and obtain a contradiction by

considering the equation modulo 4. Since k = —1 (mod 4) we have

(12) y?2 =x3 — 1 (mod 4).

Now y?> = 0 or 1 (mod 4) for every y, so (12) cannot be satisfied if x is even

or if x = —1 (mod 4). Therefore we must have x = 1 (mod 4). Now let
a=4n-1

so that k = a® — 4m?, and write (10) in the form

(13) y:+am* = x* + a® = (x + a)(x* — ax + a?).
Since x = 1 (mod 4)and a = —1 (mod 4) we have
(14) x?—ax+a*=1—-a+a*= —1 (mod 4).

Hence x? — ax + a® is odd, and (14) shows that all its prime factors
cannot be =1 (mod 4). Therefore some prime p = —1 (mod 4) divides
x? — ax + a?,and (13) shows that this also divides y*> + 4m?2. In other words,

(15) y* = —4m? (mod p) for some p = —1 (mod 4).

But p ¥ m by hypothesis, so (—4m?|p) = (—1|p) = —1, contradicting (15).
This proves that the Diophantine equation (10) has no solutions when & has
the form (11). O
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9: Quadratic residues and the quadratic reciprocity law

The following table gives some values of k covered by Theorem 9.12.

n 0 0 0 0 1 1 1 1 2 2 2 2
m 1 2 4 51 2 4 5 1 2 4 5
k -5 —-17 —-65 —100 23 11 -—-37 -73 339 327 279 243

Note. All solutions of (10) have been calculated when k is in the interval
—100 < k < 100. (See reference [32].) No solutions exist for the following
positive values of k < 100:

k=6,7,11,13, 14,20, 21, 23,29, 32, 34, 39, 42, 45, 46, 47, 51, 53, 58,

59,60,61,62,66,67,69,70,74,75,77,78, 83, 84, 85, 86,87, 88,90,
93, 95, 96.

9.9 Gauss sums and the quadratic
reciprocity law

This section gives another proof of the quadratic reciprocity law with the
help of the Gauss sums

(16) Gln, ) = Y, xr)e™™™,

rmod p

where y(r) = (r|p) is the quadratic character mod p. Since the modulus is
prime, y is a primitive character and we have the separability property

(17 G(n, x) = (n|p)G(1, 1)

for every n. Also, Theorem 8.11 implies that |G(1, )| = p. The next theorem
shows that G(1, x)? is +p.

Theorem 9.13 If p is an odd prime and x(r) = {r|p) we have

(18) G(1, p* = (—1Ip)p.

PrOOF. We have
p—1p-1

G(l, X)Z - Z z (l'lp)(Slp)e“i"”’/”.

r=1 s=1
For each pair r, s there is a unique ¢t mod p such that s = #r (mod p), and
(rIp)(sip) = (r|p)(trip) = (*|p)(tIp) = (t|p). Hence

p—1p-1 p—1 p—-1

Gl = Y 3 (lpe?™ P = Y (t]p) Y. e¥mri o,

t=1 r=1 t=1 r=1
The last sum on r is a geometric sum given by

pilebu'r(l +0/p _ -1 ifpy(1+1),
p—1 ifpll+ 1)

r=1
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Therefore
G, = — Z(tlp)+@— D - 1ip)= — Z(tlp)+p( 1{p)

=(—1lpp
since Y 7= (t|p) = 0. This proves (18). O
Equation (18) shows that G(1, )? is an integer, so G(1, x)?" ! is also an

integer for every odd g. The next theorem shows that the quadratic reciprocity
law is connected to the value of this integer modulo q.

Theorem 9.14 Let p and q be distinct odd primes and let y be the quadratic
character mod p. Then the quadratic reciprocity law

(19) (lp) = (=1~ DA D(p|q)
is equivalent to the congruence
(20) G(1, x*~* = (qlp) (mod g).

PrOOF. From (18) we have
1) G(L, )7~ = (—1|p)a=V2pa=1r2 — (_1)lp=Dia-1r4pa-172,
By Euler’s criterion we have p~ /2 = (p|q) (mod gq) so (21) implies
(22) G(L, 1)~ = (= 1P~ D= D(p|q) (mod g).

If (20) holds we obtain

(qlp) = (=)~ D" D%(p|q) (mod g)

which implies (19) since both members are + 1. Conversely, if (19) holds then
(22) implies (20). O

The next theorem gives an identity which we will use to deduce (20).

Theorem 9.15 Ifp and q are distinct odd primes and if x is the quadratic character
mod p we have

(23) GLY " '=(@lp) X -+ X (i - 1glp).

rimodp rgmodp
ri+-+ry=q (mod p)

ProoF. The Gauss sum G(n, x) is a periodic function of n with period p.
The same is true of G(n, y)? so we have a finite Fourier expansion

G, )" = Y a/m)ermmme,

mmod p
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where the coefficients are given by

(24) aq(m) = 1 Z Gn, X)qe—lnimn/p.

nmod p

From the definition of G(n, x) we have

Gn, y)* = Z (ry|p)e™™i® o Y (r,| ple?inralp

rymod p rqgmod p
— .. 2nin(ry +-+rg)/
= 2 0 X (ryeeerg|p)e?tine P,
rymodp rqmod p

so (24) becomes

1 .
aq(M) = — z N Z (rl . rqlp) Z e2mn(rl+---+rq—"l)/l’.

rymod p rqgmod p nmod p

The sum on n is a geometric sum which vanishes unless r; + --- + r, =
m (mod p), in which case the sum is equal to p. Hence

(25) afm)=Y - 3 (ry---rglp)

rimod p rqmod p
ri+-+rg=m (mod p)

Now we return to (24) and obtain an alternate expression for a,(m).
Using the separability of G(n, y) and the relation (n|p)? = (n|p) for odd ¢
we find

1 ; 1
am) = » G(1, 0 X (nlpe™?mmP = ’ G(1, 0)*G(—m, ¥)

nmod p
1
= G(1, )%m|p)G(—1, x) = (m|p)G(1, x)*~!

since
G(1, YG(—1, ) = G(1, G, x) = |G, PI* = p.

In other words, G(1, )?" ! = (m| plam). Taking m = g and using (25) we
obtain (23). [

PROOF OF THE RECIPROCITY LAW. To deduce the quadratic reciprocity law
from (23} it suffices to show that

(26) Y o Y (ryerglp) =1 (mod g),

rymodp rgmod p
where the summation indices r,, ..., r, are subject to the restriction
(27) ry+ -+ +r, = q (mod p).
194



9.10: The reciprocity law for quadratic Gauss sums

If all the indices ry, ..., r, are congruent to each other mod p, then their
sum is congruent to gr; for eachj = 1, 2, ..., g, so (27) holds if, and only if,
gr; = q (mod p),
that s, if, and only if r; = 1 (mod p) for each j. In this case the corresponding
summand in (26) is (1]p) = 1. For all other choices of indices satisfying (27)
there must be at least two incongruent indices among ry, ..., r,. Therefore
every cyclic permutation of ry,...,r, gives a new solution of (27) which
contributes the same summand, (r, - - - r,| p). Therefore each such summand
appears g times and contributes 0 modulo ¢ to the sum. Hence the only

contribution to the sum in (26) which is nonzero modulo g is (1|p) = 1. This
completes the proof. U

9.10 The reciprocity law for quadratic Gauss
sums

This section describes another proof of the quadratic reciprocity law based
on the quadratic Gauss sums

(28) Gnym) = Y e?rinrim,

r=1

If p is an odd prime and p J n we have the formula
(29) G(n; p) = (n|p)G(1; p)

which reduces the study of the sums G(n; p) to the case n = 1. Equation (29)
follows easily from (28) or by noting that G(n; p) = G(n, x), where x(n) = (n|p),
and observing that G(n, x) is separable.

Although each term of the sum G(1; p) has absolute value 1, the sum
itself has absolute value 0, \/p or . /2p. In fact, Gauss proved the remarkable
formula

Jm ifm =1 (mod 4)

1 ) . 0 ifm=2 (mod 4)
. [ mim/2y _
(30) G(1;m) =5 /m(1 + i)(1 + ™™™ i/ ifm = 3 (mod 4)
(1 +i)/m ifm=0 (mod 4)
for every m > 1. A number of different proofs of (30) are known. We will
deduce (30) by treating a related sum

m—1 .
S(a, m) = Z emarzlm’
r=0

where a and m are positive integers. If a = 2, then S(2, m) = G(1; m).

The sums S(a, m) enjoy a reciprocity law (stated below in Theorem 9.16)
which implies Gauss’ formula (30) and also leads to another proof of the
quadratic reciprocity law.
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9: Quadratic residues and the quadratic reciprocity law

Theorem 9.16 If the product ma is even, we have

(31) S(a, m) = \/% <1\2"> S, a),

where the bar denotes the complex conjugate.

Note. To deduce Gauss’ formula (30) we take a = 2 in (31) and observe
that S(m, 2) = 1 + e~ ™m2,
Proor. This proof is based on residue calculus. Let g be the function defined
by the equation

m-1

(32) g(z) — Z enia(z+r)2/m‘

r=0

Then g is analytic everywhere, and g(0) = S(a, m). Since ma is even we find
a—1
g(Z + 1) _ g(z) — eniazzlm(eZniaz _ 1) — eniazzlm(eZm'z - 1) Z e2ninz'
n=0

Now define f by the equation

g2
f(Z) - eZm’z -1
Then f is analytic everywhere except for a first-order pole at each integer,

and f satisfies the equation

(33) fe+1) = f&) + ol2),

where

(34) (p(Z) = eniaz2;m aile2m’nz.
n=0

The function ¢ is analytic everywhere.
At z = 0 the residue of fis g(0)/(2ni) and hence

(35) S(a, m) = g(0) = 2mi Res f(z) = f f(2) dz,
z=0 b4

where 7 is any positively oriented simple closed path whose graph contains
only the pole z = 0 in its interior region. We will choose y so that it describes
a parallelogram with vertices A, A + 1, B + 1, B where

1 . 1 .
A=—5- Re™*and B = — 5+ Re™4,

as shown in Figure 9.1. Integrating f along y we have

J;f= A+1f+ B+1f+ B f+J<BAf

A A+1 B+1
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9.10: The reciprocity law for quadratic Gauss sums

-— B+1

N=

A > A+1

Figure 9.1

In the integral {57} f we make the change of variable w = z + 1 and then

use (33) to get

B+1

fw)ydw = ij(z + 1)dz = ij(z) dz + Jj(p(z) dz.

A+1

Therefore (35) becomes

B A+1 B+1
(36) S(a, m) = f o(z)dz + f(z)dz — f(z) dz.

A A B
Now we show that the integrals along the horizontal segments from A4 to
A+ landfromBto B + 1tend to0as R —» + o0. To do this we estimate the
integrand on these segments. We write

_ lg(@)]
(37) |f(z)|_|e21:iz_1|’
and estimate the numerator and denominator separately.
On the segment joining B to B + 1 we let

. 1 )
y)y=t+ Re™*, where — ! << L
From (32) we find
S ] Re™/4 2
(38) lgly®)]| < Z exp{ma(t + ': +7) } |
r=0

where exp z = ¢°. The expression in braces has real part

—na(\/2tR + R? + \/2rR)

m
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9: Quadratic residues and the quadratic reciprocity law

Since |e**7| = e*and exp{ — na\/er/m} < 1, each termin (38) has absolute

value not exceeding exp{ — naR*/m}exp{ — \/EnatR/m}. But —1/2 <t < 1/2,
so we obtain the estimate

|gLy(O)]] < me™2eRI@me = xak?m,
For the denominator in (37) we use the triangle inequality in the form
€27 — 1] > ||e?™) — 1.
Since |exp{2niy(t)} | = exp{ —27nR sin(rn/4)} = exp{ ~\/§nR}, we find
[€2™® — 1] > 1 — ¢~ V2R

Therefore on the line segment joining B to B + 1 we have the estimate

me” 2aR/(2m)e—1mR2/m
[f2) < [ = o= VI =o(1) asR — + .

A similar argument shows that the integrand tends to 0 on the segment
joining 4 to 4 + 1 as R —» + o0. Since the length of the path of integration
is 1 in each case, this shows that the second and third integrals on the right
of (36) tend to 0 as R — + oo. Therefore we can write (36) in the form

(39) S(a, m) = quo(z) dz + o{l) asR — + 0.

To deal with the integral jﬁ ¢ we apply Cauchy’s theorem, integrating
¢ around the parallelogram with vertices 4, B, o, —o, where « = B + 1 =
Re™*, (See Figure 9.2.) Since ¢ is analytic everywhere, its integral around this
parallelogram is 0, so

(40) wa ¥ L"’ w[Ton ]| :<p -

A - X

Figure 9.2
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9.10: The reciprocity law for quadratic Gauss sums

Because of the exponential factor e™**/™ in (34), an argument similar to that
given above shows that the integral of ¢ along each horizontal segment — 0
as R — + o0. Therefore (40) gives us

B a
f¢=f @ +o(l) asR— +oo,
A —a
and (39) becomes
41) S(a, m) = f o(z)dz + o(1) asR — + oo,

where o = Re™*. Using (34) we find
a—1

a a-1 a
J oz)dz = Y | ererime?nin gz = Y o="miaf(g, m, p, R),
—a n=0

—a n=0

o - 2
I(a,m,n, R) = f exp{t;—a <z + %) }dz.

Applying Cauchy’s theorem again to the parallelogram with vertices —a, o,
a — (nm/a), and —a — (nm/a), we find as before that the integrals along the
horizontal segments — 0 as R —» + 00, 50

a — mnja . 2
I(a,m,n,R) = f exp{% <z + Eaﬂ) }dz + o(l1) asR — +oco0.

—a—nmja

where

The change of variable w = /a/m(z + (nm/a)) puts this into the form

m (e
Ia,m,n,R) = [— f e™ dw + o(l) as R —» +oco.
a J-ajam

Letting R -» + oo in (41), we find

a—1 o, m R./aJme™i/4 -
42) S(a,m)y= Y e ™™ [— lim ™ dw.
n=0 4 R- + o ¢ —R/a/memi/4
By writing T = ,/a/mR, we see that the last limit is equal to
Teni/4

. Tw2
lim e dw =1
T— +co o —Te™i/4

say, where I is a number independent of a and m. Therefore (42) gives us

(43) S(a, m) = \/% 15(m, a).
To evaluate I we take a = 1 and m = 2 in (43). Then S(1,2) =1 + i and
$(2,1) = 1,s0 (43) implies I = (1 + i)/\/E, and (43) reduces to (31). O
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9: Quadratic residues and the quadratic reciprocity law

Theorem 9.16 implies a reciprocity law for quadratic Gauss sums,

Theorem 9.17 If h > 0,k > 0, h odd, then

(44) G(h; k) = f; L+1i (A + e~ ™™2)Gk; R).

PRrOOF. Take a = 2h, m = k in Theorem 9.16 to obtain

45) Gl k) = S(2h, k) = k 1\/» fl +i2 Z o mikr?/(2h)
We split the sum on r into two parts corresponding to even and odd r.
Forevenr we write r = 2swheres =0,1,2,...,h — 1.For odd r we note that
(r + 2h)* = r? (mod 4h) so the sum can be extended over the odd numbers
in any complete residue system mod 2h. We sum over the odd numbers in the
interval h < r < 3h, writing r = 2s + h, where s =0, 1,2,..., h — 1. (The
numbers 2s + k are odd and distinct mod 2h.) This gives us ’

2h—1 ) h—1 ) h-1 )
e—nikr 1(2h) = e-—-nik(Zs) /(2h) + e—nik(2s+h) 1(2h)
rZ:O SZO s;o
h-1
— Z e 2niks2/h(1 + e-—nihk/Z)
s=0
= (1 + e""™2)G(k; h).
Using this in (45) we obtain (44). O

9.11 Another proof of the quadratic
reciprocity law

Gauss’ formula (30) leads to a quick proof of the quadratic reciprocity law.
First we note that (30) implies

G(1; k) = i%~ V4 Jk
if k is odd. Also, we have the multiplicative property (see Exercise 8.16(a))
G(m; n)G(n; m) = G(1; mn) if (m,n) = 1.
Therefore, if p and g are distinct odd primes we have

Glp; q9) = (pl9)G(1; @) = (plg)i~ 1)2/4\/‘
Glg; p) = (qlp)G(1; p) = (glp)i®~ V"% /p

and
G(p; 9)G(g; p) = G(1; pg) = i®9~ V™%, /pg.
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Exercises for Chapter 9

Comparing the last equation with the previous two we find
(plq)(q!p)i“"_ D2Hp-1%)/4 _ jpa~ 1)2/4’
and the quadratic reciprocity law follows by observing that

i((pq—l)z—(q—l)z"(l’- 124 _ (_ 1)(17—1)(11"1)/4‘ O

Exercises for Chapter 9

1. Determine those odd primes p for which (—3|p) = 1 and those for which (—3|p) =
-1

2. Prove that 5 is a quadratic residue of an odd prime pif p = +1 (mod 10), and that
51s a nonresidue if p = +3 (mod 10).

3. Let p be an odd prime. Assume that the set {1, 2, ..., p — 1} can be expressed as the
union of two nonempty subsets S and T, S # T, such that the product (mod p) of any
two elements in the same subset lies in S, whereas the product (mod p) of any
element in S with any element in T lies in 7. Prove that S consists of the quadratic
residues and T of the nonresidues mod p.

4. Let f(x) be a polynomial which takes integer values when x is an integer.
(a) If a and b are integers, prove that

Y (fax +blpp= Y (f®Ip) if(ap) =1,

xmod p xmod p

and that
Y @@ip)=@lp) ¥ (fx)|p) foralla.

xmod p xmod p

(b) Prove that

Y (ax +blp)=0 if(a,p) =1

xmod p
(c) Let f(x} = x(ax + b), where (a, p) = (b, p) = 1. Prove that
p-1 p—1

Y (fx)ipy= 3 (@ + bx|p) = —(alp).

x=1 x=1

[Hint: As x runs through a reduced residue system mod p, so does x', the
reciprocal of x mod p.]

5. Let x and f be integers whose possible values are + 1. Let N(e, f) denote the number
of integers x among 1, 2, ..., p — 2 such that

(x[p)=a«  and(x + 1|p) = B,

where p is an odd prime. Prove that
p-2
4N@ B) = Y {1 + alx|p)}{l + Blx + 1ip)},
x=1
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9: Quadratic residues and the quadratic reciprocity law

and use Exercise 4 to deduce that
AN, f)=p—2—p ~af — «~1|p)

In particular this gives

Ny =2 A D),

N(-1, -1) = N(-1, 1)=%ﬂ’
N(1, =1) = 1 + N(L,1).

6. Use Exercise 5 to show that for every prime p there exist integers x and y such that
x4+ y* + 1 =0 (mod p).

7. Let p be an odd prime. Prove each of the following statements:
p—1
@ Y rrlp)=0 ifp=1 (mod4).
r=1

(b) pf r=”(”4'1) ifp=1 (mod 4).

p—1 p—1

© Xr (rlp)—pzr(rlp) if p =3 (mod 4).

r=1 r=1

p-1 3 p_1
@ Y rilp = 5P Y. rrlp) ifp=1 (mod4).
r=1 r=1

p—1 p—1 p-1

© Y r*trip)=2p 3 r’rlp) — p> L r’rlp) ifp =3 (mod 4).
r=1 r=1 r=1
[Hint: p — r runs through the numbers 1,2,...,p — 1 with r.]

8. Let p be an odd prime, p = 3 (mod 4),and let g = (p — 1)/2.

(a) Prove that

{1 —2(2lp}Zr(rlp)—p Z,( rlp)-

r=

[Hint: As r runs through the numbers 1,2, ..., g then r and p — r together run
through the numbers 1,2,...,p — ,asdo 2r and p — 2r.]
(b) Prove that

p-1 q
{QIp -2 X rrlp=p Zl(rlp)-
r=1 r=
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9. If p is an odd prime, let x(n) = (n|p). Prove that the Gauss sum G(n, x) associated
with y is the same as the quadratic Gauss sum G(n; p) introduced in Exercise 8.16
if (n, p) = 1. In other words, if p ¥ n we have

P

G, )= Y xm)e*™™? = Y e = G(n; p).

mmod p r=1
It should be noted that G(n, ) # G(n; p) if p|n because G(p, x) = 0 but G(p; p) = p.

10. Evaluate the quadratic Gauss sum G(2; p) using one of the reciprocity laws. Com-
pare the result with the formula G(2; p) = (2|p)G(1; p) and deduce that (2|p) =
(= 1)P*~ V78 if p is an odd prime.
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Primitive Roots

10.1 The exponent of a number mod m.
Primitive roots

Let a and m be relatively prime integers, with m > 1, and consider all the

positive powers of a:
a,a%,a’, ...

We know, from the Euler-Fermat theorem, that a®™ =
ever, there may be an earlier power a’ such that o/ = 1
interested in the smallest positive f with this property.

1 (mod m). How-
(mod m). We are

Definition The smallest positive integer f such that
a’ =1 (mod m)
is called the exponent of a modulo m, and is denoted by writing
J = expya).
If exp,(a) = @(m) then a is called a primitive root mod m.

The Euler-Fermat theorem tells us that exp,,(a) < ¢(m). The next theorem
shows that exp,,(a) divides ¢(m).

Theorem 10.1 Given m > 1, (a, m) = 1, let f = exp,(a). Then we have:
(@) a* = a" (mod m) if,and only if,k = h (mod f).

(b) @* =1 (modm) if,and only if, k = 0 (mod f). In particular, f | p(m).
(c) The numbers 1,a,d?, ..., a’ ~! are incongruent mod m.
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10.2: Primitive roots and reduced residue systems

PRrOOF. Parts (b) and (c) follow at once from (a), so we need only prove (a).
If a* = a" (mod m) then ™" = 1 (mod m). Write

k—h=qf+r, whereO<r<f

Then 1 =d"* = g¥*" = qa" (mod m),sor = 0and k = h (mod f).
Conversely, if k =h (mod f) then k — h=gqf so a** =1 (mod m)
and hence a* = a" (mod m). a

10.2 Primitive roots and reduced residue
systems

Theorem 10.2 Let (a, m) = 1. Then a is a primitive root mod m if, and only if,
the numbers

(1 a,a’, ..., a%"™
form a reduced residue system mod m.

PRrOOF. If g is a primitive root the numbers in (1) are incongruent mod m, by
Theorem 10.1(c). Since there are ¢(m) such numbers they form a reduced
residue system mod m.

Conversely, if the numbers in (1) form a reduced residue system, then
a®™ =1 (mod m) but no smaller power is congruent to 1, so a is a primitive
root. (]

Note. In Chapter 6 we found that the reduced residue classes mod m form
a group. If m has a primitive root a, Theorem 10.2 shows that this group is
the cyclic group generated by the residue class 4.

The importance of primitive roots is explained by Theorem 10.2. If m
has a primitive root then each reduced residue system mod m can be expressed
as a geometric progression. This gives a powerful tool that can be used in
problems involving reduced residue systems. Unfortunately, not all moduli
have primitive roots. In the next few sections we will prove that primitive
roots exist only for the following moduli:

m =1, 2,4, p% and 2p°*,

where p is an odd prime and o > 1.

The first three cases are easily settled. The case m = 1 is trivial. Form = 2
the number 1 is a primitive root. For m = 4 we have ¢(4) = 2 and 3% =
1 (mod 4), so 3 is a primitive root. Next we show that there are no primitive
roots mod 2% if a > 3.
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10: Primitive roots

10.3 The nonexistence of primitive roots
mod 2% for o > 3

Theorem 10.3 Let x be an odd integer. If o > 3 we have
) x°C2 = 1 (mod 2%,
so there are no primitive roots mod 2%,

PrOOF. If & = 3 congruence (2) states that x> = 1 (mod 8) for x odd. This is
easily verified by testing x = 1, 3, 5, 7 or by noting that

k + 1)? = 4k* + 4k + 1 = dk(k + 1) + 1

and observing that k(k + 1) is even.
Now we prove the theorem by induction on a. We assume (2) holds for
o and prove that it also holds for & + 1. The induction hypothesis is that

x¢(2°‘)/2 =1+ 2at’
where ¢ is an integer. Squaring both sides we obtain
x?C2 =1 4 2°*1 4+ 22%? = 1 (mod 2**?)

because2x > a + 1. Thiscompletes the proof since ¢(2%) = 2*~1 = @(2**1)/2.
O

10.4 The existence of primitive roots mod p
for odd primes p

First we prove the following lemma.
Lemma 1 Given (a,m) = 1, let f = exp,,(a). Then

eXpPn(a@)
&, f)

In particular, exp,(a*) = exp,(a) if, and only if, (k, f) = 1.

expn(a’) =

Proor. The exponent of a* is the smallest positive x such that
a* =1 (mod m).

This is also the smallest x > 0 such that kx = 0 (mod f). But this latter
congruence is equivalent to the congruence

x=0 (modé),

where d = (k, f). The smallest positive solution of this congruence is f/d,
s0 exp,(d*) = f/d, as asserted.
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10.4: The existence of primitive roots mod p for odd primes p

Lemma 1 will be used to prove the existence of primitive roots for prime
moduli. In fact, we shall determine the exact number of primitive roots
mod p.

Theorem 10.4 Let p be an odd prime and let d be any positive divisor of p — 1.
Then in every reduced residue system mod p there are exactly ¢(d) numbers
a such that

exp,la) = d.

In particular, when d = @(p) = p — 1 there are exactly ¢(p — 1) primitive
roots mod p.

Proor. We use the method employed in Chapter 2 to prove the relation
Y od) =n.
d|n

The numbers 1, 2,..., p — 1 are distributed into disjoint sets A(d), each set
corresponding to a divisor d of p — 1. Here we define

Ad) = {x:1 < x < p — 1 and exp,(x) = d}.

Let f(d) be the number of elements in A(d). Then f(d) > 0 for each 4. Our
goal is to prove that f(d) = ¢(d).

Since the sets A(d) are disjoint and sinceeach x = 1,2, ..., p — 1fallsinto
some A(d), we have

Y f@=p-1
dlp—1
But we also have
Y od)=p-1
dljp—1

SO
dlz_l{qJ(d) - f@d)} =0.

To show each term in this sum is zero it suffices to prove that f(d) < ¢(d).
We do this by showing that either f(d) = 0 or f(d) = ¢(d); or, in other words,
that f(d) # 0 implies f(d) = @(d).

Suppose that f(d) # 0. Then A(d) is nonempty so a € A(d) for some a.
Therefore

exp,(a) = d, hence a’ =1 (mod p).
But every power of a satisfies the same congruence, so the d numbers

3 a,a ..., a
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10: Primitive roots

are solutions of the polynomial congruence
4) x —1=0 (mod p),

these solutions being incongruent mod p since d = exp,(a). But (4) has at
most d solutions since the modulus is prime, so the d numbers in (3) must be
all the solutions of (4). Hence each number in A(d) must be of the form a*
forsomek = 1,2,...,d. When is expp(a") = d? According to Lemma 1 this
occurs if, and only if, (k, d) = 1. In other words, among the d numbers in (3)
there are ¢(d) which have exponent d modulo p. Thus we have shown that
fd) = ¢d)if f(d) # 0. As noted earlier, this completes the proof. O

10.5 Primitive roots and quadratic residues

Theorem 10.5 Let g be a primitive root mod p, where p is an odd prime. Then
the even powers

g% g% ..., g7 !
are the quadratic residues mod p, and the odd powers
g.9%...,9" 2
are the quadratic nonresidues mod p.
PROOF. If n is even, say n = 2m, then g" = (g™)? so
g" = x* (mod p), where x = g™.
Hence g"Rp. But there are (p — 1)/2 distinct even powers g2,...,g° !
modulo p and the same number of quadratic residues mod p. Therefore the

even powers are the quadratic residues and the odd powers are the non-
residues. a

10.6 The existence of primitive roots mod p*

We turn next to the case m = p* where p is an odd prime and « > 2. In
seeking primitive roots mod p” it is natural to consider as candidates the
primitive roots mod p. Let g be such a primitive root and let us ask whether
g might also be a primitive root mod p2. Now g?~! = 1 (mod p) and, since
®(p*) =p(p — 1) > p — 1, this g will certainly not be a primitive root
mod p? if g°~! = 1 (mod p?). Therefore the relation

g~ ' # 1 (mod p?)

is a necessary condition for a primitive root g mod p to also be a primitive
root mod p?. Remarkably enough, this condition is also sufficient for g
to be a primitive root mod p? and, more generally, mod p* for all powers
a > 2. In fact, we have the following theorem.
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Theorem 10.6 Let p be an odd prime. Then we have :

(a) If g is a primitive root mod p then g is also a primitive root mod p* for
all o > 1 if, and only if,

() g"" ' # 1 (mod p?).

(b) There is at least one primitive root g mod p which satisfies (5), hence
there exists at least one primitive root mod p* if o > 2.

ProOF. We prove (b) first. Let g be a primitive root mod p.Ifg?~! # 1 (mod p?)
there is nothing to prove. However, if g? "' = 1 (mod p?) we can show that
g1 = g + p, which is another primitive root modulo p, satisfies the condition

9. ' # 1 (mod p?).
In fact, we have
9" t=@+pPl=¢""+(p— 1)g" ?p+ tp?
=g*" ' + (p* — p)g* ? (mod p?)
=1 - pgf~? (mod p?).

But we cannot have pg?™2? = 0 (mod p?) for this would imply g7~ 2 =
0 (mod p), contradicting the fact that g is a primitive root mod p. Hence
g:" 1 # 1 (mod p?), so (b) is proved.

Now we prove (a). Let g be a primitive root modulo p. If this g is a primitive
root mod p*for all > 1 then, in particular, it is a primitive root mod p? and,
as we have already noted, this implies (5).

Now we prove the converse statement. Suppose that g is a primitive
root mod p which satisfies (5). We must show that g is also a primitive
root mod p* for all « > 2. Let ¢ be the exponent of g modulo p*. We wish
to show that t = ¢@(p®). Since g' = 1 (mod p*) we also have g' = 1 (mod p)so
¢(p)|t and we can write

6) t = q¢(p).
Now t|¢(p%) so 4¢(p)| @(p%). But ¢(p*) = p*~*(p — 1) hence
ap — DI 'p - 1)
which means g|p*~*. Therefore g = p? where B < a — 1, and (6) becomes
t=pp—1).

If we prove that = « — 1 then t = ¢(p®) and the proof will be complete.
Suppose, on the contrary, that § < « — 1. Then B < a — 2 and we have

t=pp—DIp" p - 1) = o(p* ).
Thus, since @(p*~?!) is a multiple of ¢, this implies,
V)] g°?* ™" =1 (mod p%).

209



10: Primitive roots

But now we make use of the following Lemma which shows that (7) is a
contradiction. This contradiction will complete the proof of Theorem 10.6.
O

Lemma 2 Let g be a primitive root modulo p such that
@®) g°~ 1 # 1 (mod p?).
Then for every o. > 2 we have
©) g°"" ™" # 1 (mod p).

PrOOF OF LEMMA 2. We use induction on a. For a = 2, relation (9) reduces
to (8). Suppose then, that (9) holds for «. By the Euler-Fermat theorem
we have

g"”" " =1 (mod p*Y)
SO
go’(p““) =14+ kpa—l

where p } k because of (9). Raising both sides of this last relation to the pth
power we find

-1
go") = (1 + kp* )P = 1 + kp® + k2 P(Pz )p2(a—l) + rp3e-b),

Now 20 —1>a+ 1 and 300 — 3 > a + 1 since « > 2. Hence, the last
equation gives us the congruence

g°?) =1 + kp* (mod p**1)

where p 4 k. In other words, g*?” # 1 (mod p**1) so (9) holds for a + 1
if it holds for a. This completes the proof of Lemma 2 and also of Theorem
10.6. O

10.7 The existence of primitive roots mod 2p*

Theorem 10.7 If p is an odd prime and a > 1 there exist odd primitive roots
g modulo p*. Each such g is also a primitive root modulo 2p*.

PrOOF. If g is a primitive root modulo p*sois g + p*. But one of g or g + p*
is odd so odd primitive roots mod p* always exist. Let g be an odd primitive
root mod p* and let f be the exponent of g mod 2p*. We wish to show that
J = ¢(2p"). Now f|9(2p%), and ¢(2p%) = ¢(2)p(p*) = ¢(p%) so f|e(p®). On
the other hand, g/ = 1 (mod 2p®) so g/ = 1 (mod p®), hence ¢(p*)| f since
g is a primitive root mod p® Therefore f = ¢(p*) = @(2p%), so g is a primitive
root mod 2p*. ad
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10.8 The nonexistence of primitive roots in
the remaining cases

Theorem 10.8 Given m > 1 where m is not of the form m = 1, 2, 4, p*, or 2p°%,
where p is an odd prime. Then for any a with (a, m) = 1 we have

a®™? = 1 (mod m),
so there are no primitive roots mod m.

PrOOF. We have already shown that there are no primitive roots mod 2*
if @ > 3. Therefore we can suppose that m has the factorization

s

m=2p,* - p;

where the p; are odd primes, s > 1, and o > 0. Since m is not of the form
1,2,4,p*or 2p*wehave a > 2if s = 1 and s > 2 if « = O or 1. Note that

o(m) = (2)p(p,*) - - - @(ps™).

Now let a be any integer relatively prime to m. We wish to prove that
a®™/2 = 1 (mod m).
Let g be a primitive root mod p,** and choose k so that
a=g* (mod p,*).

Then we have
(10) g®mi2 = gkw(m)/z = g'*®*) (mod 7Y
where

t = ko(Z)@(p2™) - - - (ps™)/2.

We will show that ¢ is an integer. If « > 2 the factor ¢(2%) is even and hence
tis an integer. If « = O or 1 then s > 2 and the factor ¢(p,*?) is even, so ¢ is an
integer in this case as well. Hence congruence (10) gives us

a®™? =1 (mod p,™).
In the same way we find
(11) a®™’2 = 1 (mod p®)

foreachi = 1,2,...,s. Now we show that this congruence also holds mod 2°
If « > 3 the condition (a, m) = 1 requires a to be odd and we may apply
Theorem 10.3 to write

a®?M? =1 (mod 2%.
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10: Primitive roots

Since ¢(2%)|¢@(m) this gives us
(12) a®™’? = 1 (mod 2%

fora > 3.
If « < 2 we have

(13) a®@ = 1 (mod 29).

But s > 1 50 @(m) = (2%¢(p,*') - - - @(ps™) = 2r(2*) where r is an integer.
Hence ¢(2%)| ¢(m)/2 and (13) implies (12) for « < 2. Hence (12) holds for all a.
Multiplying together the congruences (11) and (12) we obtain

a®™/?2 = 1 (mod m),

and this shows that a cannot be a primitive root mod m. O

10.9 The number of primitive roots mod m
We have shown that an integer m > 1 has a primitive root if and only if
m=1,2,4,p*or 2p%

where p is an odd prime and « > 1. The next theorem tells us how many
primitive roots exist for each such m.

Theorem 10.9 If m has a primitive root g then m has exactly @(¢@(m)) incongruent
primitive roots and they are given by the numbers in the set

S={g":1 <n < @(m),and (n, p(m)) = 1}.

ProOOF. We have exp,,(g) = ¢(m), and Lemma 1 shows that exp,,(g") = expn(9)
if and only if (n, ¢(m)) = 1. Therefore each element of S is a primitive root
mod m.

Conversely, if a is a primitive root mod m, then a = g* (mod m) for some
k=1,2,..., o(m). Hence exp,(g*) = exp.(a) = ¢(m), and Lemma 1 implies
(k, (m)) = 1. Therefore every primitive root is a member of S. Since §
contains ¢(¢(m)) incongruent members mod m the proof is complete. td

Although we have shown the existence of primitive roots for certain
moduli, no direct method is known for calculating these roots in general
without a great deal of computation, especially for large moduli. Let g(p)
denote the smallest primitive root mod p. Table 10.1 lists g(p) for all odd
primes p < 1000.
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10.10: The index calculus

Table 10.1 g(p) is the smallest primitive root of the prime p

P ap | p gp) | p ap) | »p gp) | p agp) | p g(p)
2 1 109 6 29 2 439 15 617 3 811 3
3 2 113 3 271 6 43 2 619 2 821 2
5 2 127 3 277 5 49 3 631 3 823 3
7 3 131 2 281 3 457 13 641 3 827 2
1m 2 137 3 283 3 461 2 643 11 829 2
13 2 139 2 293 2 463 3 647 5 839 11
17 3 149 2 307 S 467 2 653 2 853 2
19 2 151 6 311 17 479 13 659 2 857 3
23 5 157§ 313 10 487 3 661 2 859 2
29 2 163 2 317 2 91 2 673 5 863 5
31 3 167 5 331 3 499 7 677 2 877 2
37 2 173 2 337 10 503 5 683 5 881 3
4 6 179 2 347 2 509 2 691 3 883 2
43 3 181 2 49 2 521 3 701 2 887 5
47 5 191 19 353 3 523 2 709 2 907 2
53 2 193 5 359 7 541 2 719 11 911 17
59 2 197 2 367 6 547 2 727 5 919 7
61 2 199 3 373 2 557 2 733 6 929 3
67 2 211 2 379 2 563 2 739 3 937 S
mn 7 23 3 383 5 569 3 743 5 941 2
735 27 2 389 2 571 3 751 3 947 2
79 3 29 6 397 5 577 5 757 2 953 3
83 2 233 3 401 3 587 2 761 6 97 5
89 3 239 7 409 21 593 3 769 11 971 6
97 5 241 7 419 2 599 7 773 2 977 3
101 2 251 6 91 2 601 7 787 2 983 5
103 5 251 3 431 7 607 3 797 2 997 7
107 2 263 5 433 5 613 2 809 3

10.10 The index calculus

If m has a primitive root g the numbers 1, g, g%, ..., g*™ ! form a reduced
residue system mod m. If (a, m) = 1 there is a unique integer k in the interval
0 < k < ¢(m) — 1 such that

a = g* (mod m).
This integer is called the index of a to the base g (mod m), and we write
k =ind, a

or simply k = ind q if the base g is understood.
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.10: Primitive roots

The following theorem shows that indices have properties analogous to
those of logarithms. The proof is left as an exercise for the reader.
Theorem 10.10 Let g be a primitive root mod m. If (@, m) = (b, m) = 1 we have:

(@) ind(ab) = ind a + ind b (mod ¢(m)).
(b) ind " = nind a (mod @(m)) if n> 1.
(c)ind1 =0 and indg = 1.

(d) ind(—1) = em)/2 if m > 2.

(e) If g’ is also a primitive root mod m then

ind,a = ind, a-ind; g’ (mod ¢(m)).
Table 10.2 on pp. 216-217 lists indices for all numbers a # 0 (mod p) and

all odd primes p < 50. The base g is the smallest primitive root of p.
The following examples illustrate the use of indices in solving congruences.

ExampLE 1 Linear congruences. Assume m has a primitive root and let
(a, m) = (b, m) = 1. Then the linear congruence

(14) ax = b (mod m)
is equivalent to the congruence
ind a + ind x = ind b (mod ¢(m)),
so the unique solution of (14) satisfies the congruence
ind x = ind b — ind a (mod ¢(m)).
To treat a numerical example, consider the linear congruence
9x = 13 (mod 47).
The corresponding index relation is
ind x = ind 13 — ind 9 (mod 46).
From Table 10.2 we find ind 13 = 11 and ind 9 = 40 (for p = 47), so
indx =11 —40 = —29 = 17 (mod 46).
Again from Table 10.2 we find x = 38 (mod 47).
ExaMpLE 2 Binomial congruences. A congruence of the form
x" = a (mod m)

is called a binomial congruence. If m has a primitive root and if (g, m) = 1
this is equivalent to the congruence

nind x = ind a (mod ¢(m)),
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10.10: The index calculus

which is linear in the unknown ind x. As such, it has a solution if, and only if,
ind a is divisible by d = (n, ¢(m)), in which case it has exactly d solutions.
To illustrate with a numerical example, consider the binomial congruence

(15) x® = a (mod 17).
The corresponding index relation is
(16) 8 ind x = ind a (mod 16).

In this example d = (8, 16) = 8. Table 10.2 shows that 1 and 16 are the only
numbers mod 17 whose index is divisible by 8. In fact,ind 1 = Oandind 16 =
8. Hence (15) has no solutions if a # 1 or a # 16 (mod 17).

For a = 1 congruence (16) becomes

17 8ind x = 0 (mod 16),
and for a = 16 it becomes
(18) 8 ind x = 8 (mod 16).

Each of these has exactly eight solutions mod 16. The solutions of (17) are
those x whose index is even,

x=1,24,89,13,15,16 (mod 17).

These, of course, are the quadratic residues of 17. The solutions of (18) are
those x whose index is odd, the quadratic nonresidues of 17,

x=3,56,7,10, 11, 12, 14 (mod 17).
ExampLE 3 Exponential congruences. An exponential congruence is one of
the form

a* = b (mod m).

If m has a primitive root and if (a, m) = (b, m) = 1 this is equivalent to
the linear congruence

(19) xind a = ind b (mod ¢(m)).

Let d = (ind a, @(m)). Then (19) has a solution if, and only if, d|ind b, in
which case there are exactly d solutions. In the numerical example

(20) 25 = 17 (mod 47)

we have ind25 =2, ind 17 = 16, and d = (2, 46) = 2. Therefore (19)
becomes

2x = 16 (mod 46),

with two solutions, x = 8 and 31 (mod 46). These are also the solutions of
(20) mod 47.
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Table 10.2 Indices of all numbers a # 0 (mod p) for odd primes p < 50. The base g is the smallest primitive

root of p.
Primes
a 3 5 7 11 13 17 19 23 29 31 37 41 43 47
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 2 1 1 14 1 2 1 24 1 26 27 18
3 3 1 8 4 1 13 16 5 1 26 15 1 20
4 2 4 2 2 12 2 4 2 18 2 12 12 36
5 5 4 9 5 16 1 22 20 23 22 25 1
6 3 9 5 15 14 18 6 25 27 1 28 38
7 7 11 11 6 19 12 28 32 39 35 32
8 3 3 10 3 6 3 12 3 38 39 8
9 6 8 2 8 10 10 2 16 30 2 40
10 5 10 3 17 3 23 14 24 8 10 19
11 7 7 12 9 25 23 30 3 30 7
12 6 13 15 20 7 19 28 27 13 10
13 4 5 14 18 11 11 31 32 11
14 9 7 21 13 22 33 25 20 4
15 6 11 17 27 21 13 37 26 21
16 8 4 8 4 6 4 24 24 26
17 10 7 21 7 7 33 38 16
18 9 12 11 26 17 16 29 12
19 15 9 4 35 9 19 45
20 5 24 8 25 34 37 37




L1t

21 13 17 29 22 14 36 6
2 1t 26 17 31 29 15 25
23 20 27 15 36 16 5
24 8 13 29 13 40 28
25 16 10 10 4 8 2
26 19 5 12 17 17 29
27 15 3 6 5 3 14
28 14 16 34 11 5 22
29 9 21 7 41 35
30 15 14 23 11 39
31 9 28 34 3
32 5 10 9 44
33 20 18 31 27
34 8 19 23 34
35 19 21 18 33
36 18 2 14 30
37 32 7 42
38 35 4 17
39 6 33 31
40 20 22 9
41 6 15
42 21 24
43 13
44 43
45 41
46 23
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10.11 Primitive roots and Dirichlet characters

Primitive roots and indices can be used to construct explicitly all the Dirichlet
characters mod m. First we consider a prime power modulus p* where p is
an odd prime and « > 1.

Let g be a primitive root mod p which is also a primitive root mod p*
for all B > 1. Such a g exists by Theorem 10.6. If (n, p) = 1 let b(n) = ind, n
{mod p%), so that b(n) is the unique integer satisfying the conditions

n = g"™ (mod p%), 0 < b(n) < ¢(p9.
Forh=0,1,2,...,0(p" — 1, define y, by the relations

‘eZRihb(n)/fp(p") lfp * n,

@) 1) = {0 o

Using the properties of indices it is easy to verify that y, is completely
multiplicative and periodic with period p% so y, is a Dirichlet character
mod p%, with x, being the principal character. This verification is left as an
exercise for the reader.

Since

X;.(g) = e2mihe(r™)

the characters Yo, X1»---» Xo(ps—1 are distinct because they take distinct
values at g. Therefore, since there are ¢(p®) such functions they represent
all the Dirichlet characters mod p* The same construction works for the
modulus 2* if & = 1 or & = 2, using g = 3 as the primitive root.

Now if m = p,* --. p,*, where the p; are distinct odd primes, and if x; is a
Dirichlet character mod p*, then the product y = x, - - x, is a Dirichlet
character mod m. Since @(m) = p(p;*!) - - - @(p,*) we get @(m) such characters
as each y; runs through the ¢(p;*) characters mod p*. Thus we have ex-
plicitly constructed all characters mod m for every odd modulus m.

If « > 3 the modulus 2* has no primitive root and a slightly different
construction is needed to obtain the characters mod 2*. The following
theorem shows that 5 is a good substitute for a primitive root mod 2°.

Theorem 10.11 Assume o > 3. Then for every odd integer n there is a uniquely
determined integer b(n) such that

n = (=1 V255 (mod 2%, with 1 < b(n) < ©(2%)/2.
PROOF. Let f = exp,«(5) so that 5/ = 1 (mod 2%). We will show that f =

¢(2%)/2. Now f |¢(2%) = 2*~ !, s0 f = 2 for some f < « — 1. From Theorem
10.8 we know that

59972 = 1 (mod 2%,
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10.11: Primitive roots and Dirichlet characters

hence f < ¢(2%)/2 = 2*~ 2. Therefore f < a« — 2. We will show that § =
o —2.

Raise both members of the equation 5 = 1 + 2% to the f = 2 power to
obtain

S = (1429 =1+ 2272423 = 1 + 26731 + 21)

where r is an integer. Hence 5/ — 1 = 28*2¢ where ¢t is odd. But 2*|{(5/ — 1)
so a<B+2 or f>a—2 Hence f=0o—2 and f =22 = (29/2.
Therefore the numbers

(22) 55%...,5

are incongruent mod 2% Also each is =1 (mod 4) since 5 =1 (mod 4).
Similarly, the numbers

23) -5 -5,..., -5

are wncongruent mod 2* and each is = 3 (mod 4) since —5 = 3 (mod 4).
There are 2f = ¢(2°) numbers in (22) and (23) together. Moreover, we cannot
have 5°= —5% (mod 2*) because this would imply 1= —1 (mod 4).
Hence the numbers in (22) together with those in (23) represent ¢(2%) in-
congruent odd numbers mod 2% Each odd n =1 (mod 4) is congruent
mod 2% to one of the numbers in (22), and each odd n = 3 (mod 4) is con-
gruent to one in (23). This proves the theorem. O

With the help of Theorem 10.11 we can construct all the characters
mod 2* if & > 3. Let

(=102 ifnis odd,
0 if n is even,

(24 fln) = {

and let

. e2PMI2*2 ey is odd,
n) = if ni
g 0 if n is even,

where b(n) is the integer given by Theorem 10.11. Then it is easy to verify
that each of fand g is a character mod 2° So is each product

(25) Ya,dn) = f(nfg(n)

wherea = 1,2and ¢ = 1,2,..., ¢(2%)/2. Moreover these ¢(2%) characters are
distinct so they represent all the characters mod 2*.

Now if m = 2°Q where Q is odd, we form the products y = y,x, where
¥, runs through the ¢(2%) characters mod 2* and g, runs through the ¢(Q)
characters mod Q to obtain all the characters mod m.
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10: Primitive roots

10.12 Real-valued Dirichlet characters
mod p*

If y is a real-valued Dirichlet character mod m and (n, m) = 1, the number
x(n) is both a root of unity and real, so y(n) = +1. From the construction
in the foregoing section we can determine all real Dirichlet characters
mod p*.

Theorem 10.12 For an odd prime p and o > 1, consider the @(p*) Dirichlet
characters x, mod p* given by (21). Then y;, is real if, and only if, h =0
or h = @(p*)/2. Hence there are exactly two real characters mod p*.

PrOOF. We have ™ = +1 if, and only if, z is an integer. If p } n we have

1) = 2T oE")

so y4(n) = +1 if, and only if, ¢(p*)|2hb(n). This condition is satisfied for all
n if h = 0 or if h = @(p*)/2. Conversely, if @(p*)|2hb(n) for all n then when
b(n) = 1 we have @(p*)}|2h or @(p®)/2|h. Hence h = 0 or h = ¢(p*)/2 since
these are the only multiples of ¢(p”)/2 less than ¢(p%). (]

Note. The character corresponding to h = 0 is the principal character.
When o = 1 the quadratic character y(n) = (n|p) is the only other real
character mod p.

For the moduli m = 1, 2 and 4, all the Dirichlet characters are real.
The next theorem describes the real characters mod 2* when o > 3.

Theorem 10.13 If « > 3, consider the @(2%) Dirichlet characters x, . mod 2*
given by (25). Then y, . is real if, and only if, c = @(2%)/2 or ¢ = @(2%)/4.
Hence there are exactly four real characters mod 2% if o > 3.

PrOOF. If a > 3 and n is odd we have, by (25),

Xa,dn) = f(n)g(n)
where f(n) = +1 and

g(n)c — e2nicb(n)/2“‘2’

with 1 < ¢ <2°72 This is +1 if, and only if, 2*~2|2ch(n), or 2*3|ch(n).
Since ¢(2%) = 2*~! this condition is satisfied if ¢ = @(2%)/2 = 2*"2 or if
¢ = @(2%/4 = 2~ 3. Conversely, if 23| cb(n) for all n then b(n) = 1 requires
27 3esoc=22"30r2* 2since ] <c <2°72 O
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10.13 Primitive Dirichlet characters mod p*

In Theorem 8.14 we proved that every nonprincipal character y mod p
is primitive if p is prime. Now we determine all the primitive Dirichlet
characters mod p*.

We recall (Section 8.7) that y is primitive mod k if, and only if, ¥ has no
induced modulus d < k. An induced modulus is a divisor d of k such that

x(n) =1 whenever (n,k) = 1 and n = 1 (mod d).

If k = p* and y is imprimitive mod p* then one of the divisors 1, p, ..., p*~*
is an induced modulus, and hence p*~! is an induced modulus. Therefore,
x is primitive mod p® if, and only if, p* ! is not an induced modulus for .

Theorem 10.14 For an odd prime p and o > 2, consider the @(p®) Dirichlet
characters y, mod p* given by (21). Then ¥, is primitive mod p* if, and
only if,p t h.

Proor. We will show that p*~! is an induced modulus if, and only if, p|h.

If p ¥ n we have, by (21),

Xh(") — eZRihb(n)/tp(p“)’

where n = ¢g*™ (mod p®) and g is a primitive root mod p? for all g > 1.
Therefore

g"™ = n (mod p*~1).

Nowifn = 1 (mod p*~ ) theng"™ = 1 (mod p*~!)and, since g is a primitive
root of p*~ !, we have ¢(p*~!)|b(n), or

b(n) = to(p*~ ') = te(p")/p
for some integer t. Therefore

Xh(n) - eZm'ht/p‘

If p|h this equals 1 and hence y, is imprimitive mod p* If p / h take n =

1+ p* ". Thenn=1 (mod p* ') but n # 1 (mod p so 0 < b(n) < (p°).

Therefore p f ¢, p t ht and y(n) # 1. This shows that y; is primitive if p } h.
d

When m = 1 or 2, there is only one character y mod m, the principal
character. If m = 4 there are two characters mod 4, the principal character
and the primitive character f given by (24). The next theorem describes all
the primitive characters mod 2* for « > 3. The proof is similar to that of
Theorem 10.14 and is left to the reader.

Theorem 10.15 If « > 3, consider the ¢(2%) Dirichlet characters x, . mod 2*
given by (25). Then y, . is primitive mod 2% if, and only if, ¢ is odd.
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10: Primitive roots

The foregoing results describe all primitive characters mod p* for all
prime powers. To determine the primitive characters for a composite modulus
k we write

ar

k=pi™p
Then every character y mod k can be factored in the form

X=X ke

where each y; is a character mod p;*. Moreover, by Exercise 8.12, y is primi-
tive mod k if, and only if, each y; is primitive mod p;*. Therefore we have a
complete description of all primitive characters mod k.

Exercises for Chapter 10

1. Prove that m is prime if and only if exp,(a) = m — 1 for some a.
2. If (a, m) = (b, m) = 1 and if (exp,(a), exp,(b)) = 1, prove that
exp,(ab) = expn(a)exp,(b).

3. Let g be a primitive root of an odd prime p. Prove that —g is also a primitive root
ofpif p =1 (mod 4), but that exp,(—g) = (p — 1)/2if p = 3 (mod 4).

4, (a) Prove that 3 is a primitive root mod p if p is a prime of the form 2" + 1,n > 1.
(b) Prove that 2 is a primitive root mod p if p is a prime of the form 4g + 1, where g
is an odd prime.

5. Let m > 2 be an integer having a primitive root, and let (a, m) = 1. We write aRm if
there exists an x such that ¢ = x? (mod m). Prove that:

(a) aRm if, and only if, a®™? = 1 {mod m).

(b) If aRm the congruence x> = a (mod m) has exactly two solutions.

(c) There are exactly ¢(m)/2 integers a, incongruent mod m, such that (a, m) = 1
and aRm.

6. Assume m > 2, (a, m) = 1, aRm. Prove that the congruence x* = a (mod m) has
exactly two solutions if, and only if, m has a primitive root.

7. Let S,(p) = Y421 k", where p is an odd prime and n > 1. Prove that

0 (mod p) ifn#0 (modp— 1),

Sdp) = {_1 (mod p) ifn =0 (modp — 1).

8. Prove that the sum of the primitive roots mod p is congruent to u(p — 1) mod p.

9. If p is an odd prime > 3 prove that the product of the primitive roots mod p is
congruent to 1 mod p.

10. Let p be an odd prime of the form 2%* 4+ 1. Prove that the set of primitive roots
mod p is equal to the set of quadratic nonresidues mod p. Use this result to prove
that 7 is a primitive root of every such prime.
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11.

12
13.

14,

15.

16,

17.

18.

19.

Exercises for Chapter 10

Assume d|@(m). If d = exp,(a) we say that a is a primitive root of the congruence
x4 =1 (mod m).
Prove that if the congruence
x?™ =1 (mod m)
has a primitive root then it has ¢(¢p(m)) primitive roots, incongruent mod m.
Prove the properties of indices described in Theorem 10.10.
Let p be an odd prime. If (h, p) = 1 let
Shy={h"1<n<ep-1),0p-—1)=1}

If h is a primitive root of p the numbers in the set S(h) are distinct mod p (they are,
in fact, the primitive roots of p). Prove that there is an integer k, not a primitive root
of p, such that the numbers in S(h) are distinct mod p if, and only if, p = 3 (mod 4).

If m>1let p,,..., p, be the distinct prime divisors of ¢(m). If (g, m) = 1 prove
that g is a primitive root of m if, and only if, g does not satisfy any of the congruences
g*™"P =1 (mod mjfori=1,2,...,k

The prime p = 71 has 7 as a primitive root. Find all primitive roots of 71 and also
find a primitive root for p* and for 2p>.

Solve each of the following congruences:

(a) 8x = 7 (mod 43).
(b) x® = 17 (mod 43).
(c) 8 =3 (mod 43).

Let g be an odd prime and suppose that p = 4¢g + 1 is also prime.

(a) Prove that the congruence x> = —1 (mod p) has exactly two solutions, each
of which is quadratic nonresidue of p. '

(b) Prove that every quadratic nonresidue of p is a primitive root of p, with the
exception of the two nonresidues in (a).

(c) Find all the primitive roots of 29.

(Extension of Exercise 17.) Let g be an odd prime and suppose that p = 2"q + 1 is
prime. Prove that every quadratic nonresidue a of p is a primitive root of p if
a¥ # 1 (mod p).

Prove that there are only two real primitive characters mod 8 and make a table
showing their values.

Let x be a real primitive character mod m. If m is not a power of 2 prove that m has
the form

m= 2’p1 e p,
where the p; are distinct odd primes and o = 0, 2, or 3. If « = 0 show that
=1 = [T(=1ye- 7
plm

and find a corresponding formula for y(—1) when a = 2.
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Dirichlet Series and
Euler Products

11.1 Introduction

In 1737 Euler proved Euclid’s theorem on the existence of infinitely many
primes by showing that the series ) p~!, extended over all primes, diverges.
He deduced this from the fact that the zeta function {(s), given by

1
ns

) ©=3

for real s > 1, tends to oo as s —» 1. In 1837 Dirichlet proved his celebrated
theorem on primes in arithmetical progressions by studying the series

) Lis, x) = i @

where y is a Dirichlet character and s > 1.
The series in (1) and (2) are examples of series of the form

« f(n)
(3) ngl ns

where f(n) is an arithmetical function. These are called Dirichlet series with
coefficients f(n). They constitute one of the most useful tools in analytic
number theory.

This chapter studies general properties of Dirichlet series. The next
chapter makes a more detailed study of the Riemann zeta function {(s) and
the Dirichlet L-functions L(s, x).

224



11.2: The half-plane of absolute convergence of a Dirichlet series

Notation Following Riemann, we let s be a complex variable and write
s=0 +it,

where ¢ and t are real. Then n® = 5 198" = glotilogn _ oyt logn Thjg
shows that |n*| = n° since |e®| = 1 for real 0.

The set of points s = ¢ + it such that ¢ > a s called a half-plane. We will
show that for each Dirichlet series there is a half-plane ¢ > ¢, in which the
series converges, and another half-plane ¢ > o, in which it converges
absolutely. We will also show that in the half-plane of convergence the series
represents an analytic function of the complex variable s.

11.2 The half-plane of absolute convergence
of a Dirichlet series

First we note that if ¢ > a we have |n*| = n® > n”® hence

f(:l) < O
n a

n

Therefore, if a Dirichlet series Y f(n)n™* converges absolutely for s = a + ib,
then by the comparison test it also converges absolutely for all s with ¢ > a.
This observation implies the following theorem.

Theorem 11.1 Suppose the series Z | f(n)n™%| does not converge for all s or
diverge for all s. Then there exists a real number a,, called the abscissa of
absolute convergence, such that the series Z f(m)n™* converges absolutely
if 6 > o0, but does not converge absolutely if ¢ < a,.

PrOOF. Let D be the set of all real ¢ such that Z | f(n)n~*| diverges. D is not
empty because the series does not converge for all s, and D is bounded above
because the series does not diverge for all s. Therefore D has a least upper
bound which we call ,,. If ¢ < o, then g € D, otherwise ¢ would be an upper
bound for D smaller than the least upper bound. If 6 > o, then o ¢ D since
o, is an upper bound for D. This proves the theorem. a

Note. If Z | f(n)n™%| converges everywhere we define o, = —co. If the
series Y. | f(n)n™*| converges nowhere we define 6, = + co.

ExampLE 1 Riemann zeta function. The Dirichlet series Z;‘,°= 4 n~ % converges
absolutely for ¢ > 1. When s = 1 the series diverges, so o, = 1. The sum
of this series is denoted by {(s) and is called the Riemann zeta function.

ExaMpLE 2 If f is bounded, say | f(n)| < M for all n > 1, then ), f(n)n~*
converges absolutely for ¢ > 1, so ¢, < 1. In particular if y is a Dirichlet
character the L-series L(s, x) = Z x(n)n~* converges absolutely for ¢ > 1.
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11: Dirichlet series and Euler products

ExAMPLE 3 The series Y. n"n* diverges for every s so 6, = + c0.

ExampLE 4 The series Y, n~"n"* converges absolutely for every sso g, = — 0.

11.3 The function defined by a Dirichlet
series

Assume that ) f(n)n~* converges absolutely for ¢ > o, and let F(s) denote
the sum function

) F(s) = il % for 6 > a,.

This section derives some properties of F(s). First we prove the following
lemma.

Lemma 1l IfN > 1 and ¢ > ¢ > o, we have

S S
n=N

SN Y | fmin~e
n=N

PrOOF. We have

S S| < 1107 = 317l n==
n=N n=N =N

< N7C9Y | f(n)n" O
n=N
The next theorem describes the behavior of F(s) as 0 — + c0.

Theorem 11.2 If F(s) is given by (4), then
lim F(o + it) = f(1)

g+
uniformly for — o0 <t < + 0.
PRrOOF. Since F(s) = f(1) + Yoo, f(n)n™* we need only prove that the

second term tendsto O as ¢ — + 0. Choosec > o,. Thenfor ¢ > ¢ thelemma
implies

o f(n d _ A
> IO cr-e-0 ¥ | fyinc = 4
n=2 n n=2 2
where A is independent of ¢ and ¢. Since A/2° — 0 as ¢ & + oo this proves
the theorem. a

EXAMPLES {(6 + it) > 1 and L{6 + it, y) > 1 as 6 —> +co0.
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11.3: The function defined by a Dirichlet series

We prove next that all the coefficients are uniquely determined by the
sum function.

Theorem 11.3 Uniqueness theorem. Given two Dirichlet series

F@:i%? mum=§“?

n

both absolutely convergent for ¢ > a,. If F(s) = G(s) for each s in an infinite
sequence {s,} such that g, —» + 00 as k — oo, then f(n) = g(n) for every n.

PRrROOF. Let h(n) = f(n) — g(n) and let H(s) = F(s) — G(s). Then H(s;) = 0
for each k. To prove that h(n) = O for all n we assume that h(n) # O for some n
and obtain a contradiction.

Let N be the smallest integer for which h(n) # 0. Then

L _ w h(n) h(N) 2 h(n)
H('S)—n;N n B N® n=§+1 n*
Hence
WN) = N°H) - N° Y "
n=N+1 I

Putting s = s, we have H(s,) = 0 hence

WN) = —N* 3 h(gn~=.

n=N+1

Choose k so that o, > ¢ where ¢ > o,. Then Lemma 1 implies

© N Ok
O, ={ok—¢) - —
|h(N)] < N°%N + 1) nz%ﬂlh(n)ln (N n 1) A
where A is independent of k. Letting k — co we find (N/N + 1)) — 0 so
h(N) = 0, a contradiction. O

The uniqueness theorem implies the existence of a half-plane in which
a Dirichlet series does not vanish (unless, of course, the series vanishes
identically).

Theorem 11.4 Let F(s) = Z f(n)n~*° and assume that F(s) # O for some s with
6 > 0,. Then there is a half-plane ¢ > ¢ > o, in which F(s) is never zero.

PRrROOF. Assume no such half-plane exists. Then for every k = 1, 2, ... there
is a point s, with o, > k such that F(s,) = 0. Since 6, = + o0 as k — oo the
uniqueness theorem shows that f (n) = Ofor all n, contradicting the hypothesis
that F(s) # O for some s.
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11: Dirichlet series and Euler products

11.4 Multiplication of Dirichlet series

The next theorem relates products of Dirichlet series with the Dirichlet
convolution of their coefficients.

Theorem 11.5 Given two functions F(s) and G(s) represented by Dirichlet series,
F(s) = Z m foro > a,

and

G(s) = i (n) for e > b.

Then in the half-plane where both series converge absolutely we have

) F9GE) = 3 ”f,"),

=1

where h = f * g, the Dirichlet convolution of fand g:

hin) = 3 f( d)g< )

din

Conversely, if F(s)G(s) = Y_ a{n)n"*for all s in a sequence {s;} with o, — + o0
ask —> oo theno = f *g.

PrOOF. For any s for which both series converge absolutely we have

F(s)G(s) = Z Sfn~* Z glmm™* = Z Z S (n)g(m)(mn)~*.
n=1m=1
Because of absolute convergence we can multiply these series together and
rearrange the terms in any way we please without altering the sum. Collect
together those terms for which mn is constant, say mn = k. The possible values
ofkarel,2,..., hence

F(s)G(s) = i( }:zhf(n)g(m))k“ - kih(k)k-s

where h(k) = Y .<x f(n)g(m) = (f * g)(k). This proves the first assertion,
and the second follows from the uniqueness theorem. O

ExampLE 1 Both series ), n™* and ) p(n)n™* converge absolutely for ¢ > 1.
Taking f(n) = 1 and g(n) = u(n) in (5) we find h(n) = [1/n], so

) »“i’:) =1 ifo>1.
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11.4: Multiplication of Dirichlet series

In particular, this shows that {(s) # O for ¢ > 1 and that

o Mn) _ 1
am1 1 L)

ife > 1.

ExaMpLE 2 More generally, assume f(1) # 0 and let g = f~*, the Dirichlet
inverse of f. Then in any half-plane where both series F(s) = Y. f()n~* and
= Y g(n)n~* converge absolutely we have F(s) # 0 and G(s) = 1/F(s).

ExaMPLE 3 Assume F(s) = ), f(n)n™* converges absolutely for o > g, If
f is completely multiplicative we have f ~*(n) = p(n)f(n). Since | f~ 1(n)| <
{ f(n)| the series Z u(n) f(n)n~* also converges absolutely for ¢ > o, and we
have

i pn)f(n) 1 if

> a,.
e Fz 0
In particular for every Dirichlet character y we have
u(n)x(n) [
ifo> 1.
;  Lis, 1)

ExaMpLE 4 Take f(n) = 1 and g(n) = @(n), Euler’s totient. Since ¢(n) < n
the series ), p(n)n~* converges absolutely for o > 2. Also, h(n) = Y apn @(d)
= n so (5) gives us

"’(") Y2ots—1) ife>2

nln

Therefore

ifo > 2.

= o) _ L5 1)
PR T

ExaMpLE 5 Take f(n) = 1 and g(n) = n*. Then h(n) = Zdln d* = o,(n), and
(5) gives us

(6 - = 5 7 ifo > max(1, 1 + Rew).

n=1

ExAaMPLE 6 Take f(n) = 1 and g(n) = A(n), Liouville’s function. Then

1 ifn = m? for some m,
h(n) = a%l(d) = {0 otherwise,
so (5) gives us
l(n) -
ngl m= lm
n=square
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11: Dirichlet series and Euler products

Hence
S 109
L 26) ife > 1.

11.5 Euler products

The next theorem, discovered by Euler in 1737, is sometimes called the
analytic version of the fundamental theorem of arithmetic.

Theorem 11.6 Let f be a multiplicative arithmetical function such that the series
Z f(n) is absolutely convergent. Then the sum of the series can be expressed
as an absolutely convergent infinite product,

© Y ) =10+ 1) + 107+

extended over all primes. If [ is completely multiplicative, the product
simplifies and we have

(7) ;J == f(p)

p

Note. In each case the product is called the Euler product of the series.

Proor. Consider the finite product
PO = [[{l + f) + @) + -}
P<x

extended over all primes p < x. Since this is the product of a finite number
of absolutely convergent series we can multiply the series and rearrange
the terms in any fashion without altering the sum. A typical term is of the
form

™) fp*) = flpy"pa®™ - ™)
since f is multiplicative. By the fundamental theorem of arithmetic we can
write
=Y fi)
neAd
where A4 consists of those n having all their prime factors <x. Therefore

Y fo) = P = 3 fto

neB

where B is the set of n having at least one prime factor > x. Therefore

¥ fo) = Po| < 150l < T] 0l

n>x

As x — oo the last sum on the right — 0 since )’ | f(n)] is convergent. Hence

P(x) -~ Y f(n)as x > co.
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11.5: Euler products

Now an infinite product of the form [](1 + a,) converges absolutely
whenever the corresponding series Y. a, converges absolutely. In this case
we have

Y@+ fE) + 1< A+ 1)+ ) < Z,zlf(n)l-

Since all the partial sums are bounded, the series of positive terms

@+ D)+ |

converges, and this implies absolute convergence of the product in (6).
Finally, when f is completely multiplicative we have f(p") = f(p)" and
each series on the right of (6) is a convergent geometric series with sum

(11— fepy" o

Applying Theorem 11.6 to absolutely convergent Dirichlet series we
immediately obtain:

Theorem 11.7 Assume Y. f(n)n™* converges absolutely for ¢ > 0,. If fis
multiplicative we have

@ 2
®) f(:')=]_[{1+f—(f)+f(€s)+ } ifo > 0y,
n=1 n 4 p p
and if f is completely multiplicative we have
AL M= 77>

nln

It should be noted that the general term of the product in (8) is the Bell
series f,(x) of the function f with x = p™*. (See Section 2.16.)

ExampLes Taking f(n) = 1, u(n), ¢(n), 6,(n), A(n) and x(n), respectively, we
obtain the following Euler products:

{s) = Z——Hl_ - ifo>1L

:
—
=

=[]0 -p™ ifo>1
4

=1 i <o(n)=n l-p
n=1 1

= ifa>2.
—-p

s - ) = 3 % = T =5

if 6 > max{1, 1 + Re(®)},

ifo > 1,

xn) 1
oyon 1;[1 — xpp”*

ife > 1.
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11: Dirichlet series and Euler products

Note. If y = y,, the principal character mod k, then x,(p) = 0 if p|k
and y,(p) = 1if p ¥ k, so the Euler product for L(s, x,) becomes

1 1
L) =l —==11 = [T =p™) =[]t - p7).
prik 1 —p p 1= P77 ik plk

Thus the L-function L(s, x,) is equal to the zeta function {(s) multiplied by a
finite number of factors.

11.6 The half-plane of convergence of a
Dirichlet series

To prove the existence of a half-plane of convergence we use the following
lemma.

Lemma 2 Let s, = 0, + it and assume that the Dirichlet series Y, f(n)n~*
has bounded partial sums, say

Zf(n)n"so <M

n<x

Jor all x = 1. Then for each s with ¢ > o, we have

< auare(1 4+ 22)

o~ 0y

© Y flan

a<n<b

PrOOF. Let a(n) = f(n)n™*° and let A(x) = Z,,sx a(n). Then f(n)n * =
a(n)n®~*° so we can apply Theorem 4.2 (with f(x) = x*°~*) to obtain

b
Z f(n)n‘s = AbBPH® " — A@)a® " + (s — SO) fA([)tso—s—l dt.

a<n<b

Since | A(x)| < M this gives us

b
Y flmn™* | < Mb%° 4+ Ma™ 7 + |s — sOIMf o=~ gy
a<n<b .
bdo—d _ aao—a
< 2Ma™ " + |s — so| M |—
Go — 0
< 2Ma”°“’(1 + |_5__:_5_°_|) 0
o — 0,

ExampLEs If the partial sums ), f(n) are bounded, Lemma 2 implies that
Y f(n)n~* converges for ¢ > 0. In fact, if we take so = 6, = 0 in (9) we
obtain, for ¢ > 0,

< Ka™°

2 flns

a<n<b
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11.6: The half-plane of convergence of a Dirichlet series

where K is independent of a. Letting @ —» + o0 we find that Y f(n)n™*
converges if ¢ > 0. In particular, this shows that the Dirichlet series
o) (__ l)n

)

n=1 n

S

converges for ¢ > 0 since |y, (~1)"| < 1. Similarly, if y is any non-
principal Dirichlet character mod k we have (Z,,Sx x(n)] < (k) so

- X(n)

n=1 ns

converges for o > 0. The same type of reasoning gives the following theorem.

Theorem 11.8 If the series Y. f(n)n™* converges for s = 64 + ity then it also
converges for all s with ¢ > a,. If it diverges for s = a4 + ity then it
diverges for all s with o < d.

Proor. The second statement follows from the first. To prove the first
statement, choose any s with ¢ > 0,. Lemma 2 shows that

Y flom~®

a<n<b

< Ka%°™°

where K is independent of a. Since a’°”? — 0 as ¢ — + o0, the Cauchy con-
dition shows that Z f(n)n"* converges. 0

Theorem 11.9 If the series ), f(n)n™* does not converge everywhere or diverge
everywhere, then there exists a real number o, called the abscissa of
convergence, such that the series converges for all s in the half-plane ¢ > ¢,
and diverges for all s in the half-plane ¢ < o..

PRrROOF. We argue as in the proof of Theorem 11.1, taking o, to be the least
upper bound of all ¢ for which ) f(n)n~* diverges. O

Note. If the series converges everywhere we define ¢, = — 0, and if it
converges nowhere we define 6, = + o0.

Since absolute converge implies convergence, we always have g, > o,.
If 6, > o, there is an infinite strip 6, < ¢ < g, in which the series converges
conditionally (see Figure 11.1.) The next theorem shows that the width of
this strip does not exceed 1.

Divergence > Convergence

Conditional

Absolute convergence
convergence

e Ga

Figure 11.1
233



11: Dirichlet series and Euler products

Theorem 11.10 For any Dirichlet series with a_ finite we have
0<o,—0.<1.

Proor. It suffices to show that if Y. f(n)n™* converges for some s, then it
converges absolutely for all s with ¢ > 6, + 1. Let 4 be an upper bound for
the numbers | f(n)n~°|. Then

S| _fm]| 1 A
ns nSo ns—So - na—ao
s0 Y | f(mn~*| converges by comparison with Y n%e. 4
ExAMPLE The series
-1

converges if ¢ > 0, but the convergence is absolute only if & > 1. Therefore
in this example 6. = 0 and o, = 1.

Convergence properties of Dirichlet series can be compared with those
of power series. Every power series has a disk of convergence, whereas
every Dirichlet series has a half-plane of convergence. For power series
the interior of the disk of convergence is also the domain of absolute con-
vergence. For Dirichlet series the domain of absolute convergence may
be a proper subset of the domain of convergence. A power series represents
an analytic function inside its disk of convergence. We show next that a
Dirichlet series represents an analytic function inside its half-plane of
convergence.

11.7 Analytic properties of Dirichlet series

Analytic properties of Dirichlet series will be deduced from the following
general theorem of complex function theory which we state as a lemma.

Lemma 3 Let {f,} be a sequence of functions analytic on an open subset S
of the complex plane, and assume that {f,} converges uniformly on every
compact subset of S to a limit function f. Then f is analytic on S and the
sequence of derivatives { f,} converges uniformly on every compact subset of
S to the derivative .

PROOF. Since f, is analytic on S we have Cauchy’s integral formula

@ = [ 29y,

2ni Jopz — a

234



11.7: Analytic properties of Dirichlet series

where D is any compact disk in S, D is its positively oriented boundary,
and a is any interior point of D. Because of uniform convergence we can pass
to the limit under the integral sign and obtain
1
f@=L [ f2 4

27” aDZ_a

which implies that f is analytic inside D. For the derivatives we have

L[ S )
= 5 LD a7 dz and f'(a) = 27 Jop ———(Z — a7 dz

fala)

from which it follows easily that f,(a) » f’(a) uniformly on every compact
subset of S as n — . (]

To apply the lemma to Dirichlet series we show first that we have uniform
convergence on compact subsets of the half-plane of convergence.

Theorem 11.11 A Dirichlet series Y f(n)n™* converges uniformly on every
compact subset lying interior to the half-plane of convergence ¢ > o..

Proor. It suffices to show that Y f(n)n~* converges uniformly on every
compact rectangle R = [«, B] x [c, d] with a > ¢.. To do this we use the
estimate obtained in Lemma 2,

(10) Y fne

a<ns<b

< 2Ma“°“’(1 + lj;@)

6 — 0,

where s, = 6, + ity is any point in the half-plane ¢ > ¢, and s is any point
with ¢ > 6,. We choose s, = 6, where ¢, < g4 < a. (See Figure 11.2))

R=1a.B] X [c.d]

i
I
] 4 | I
T 1

g, S = 0p a [4 g

Figure 11.2

Then if se R we have ¢ — 6, > & — 0, and |sq — s| < C, where C is a
constant depending on s, and R but not on s. Then (10) implies

Y fn~®

a<n<b

C
< 2Ma"°‘“(1 + > = Ba’"*
@ — a,

where B is independent of s. Since a”®~* — 0 as ¢ — + oo the Cauchy condi-
tion for uniform convergence is satisfied. O
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11: Dirichlet series and Euler products

Theorem 11.12 The sum function F(s) = Y. f(n)n™* of a Dirichlet series is
analytic in its half-plane of convergence ¢ > o, and its derivative F'(s)
is represented in this half-plane by the Dirichlet series

(1) P = - 3 L8

obtained by differentiating term by term.
PROOF. We apply Theorem 11.11 and Lemma 3 to the sequence of partial
sums. g

Notes. The derived series in (11) has the same abscissa of convergence and
the same abscissa of absolute convergence as the series for F(s).

Applying Theorem 11.12 repeatedly we find that the kth derivative is
given by

foreo > o..

F®(s) = (— 1) i L(ﬂ(:;)_gnz

EXAMPLES For o > 1 we have

(12 COPH L
n=1 N
and
RONE
(13) ( nzl n

Equation (12) follows by differentiating the series for the zeta function term
by term, and (13)is obtained by multiplying the two Dirichlet series Z Am)n~*
and ) n~* and using the identity ) 4, A(d) = log n.

11.8 Dirichlet series with nonnegative
coefficients

Some functions which are defined by Dirichlet series in their half-plane of
convergence ¢ > ¢, can be continued analytically beyond the line ¢ = o..
For example, in the next chapter we will show that the Riemann zeta function
{(s) can be continued analytically beyond the line ¢ = 1 to a function which
is analytic for all s except for a simple pole at s = 1. Similarly, if x is a non-
principal Dirichlet character, the L-function L(s, x) can be continued an-
alytically beyond the line ¢ = 1 to an entire function (analytic for all s).
The singularity for the zeta function is explained by the following theorem of
Landau which deals with Dirichlet series having nonnegative coefficients.
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11.8: Dirichlet series with nonnegative coefficients

Theorem 11.13 Let F(s) be represented in the half-plane ¢ > ¢ by the Dirichlet
series

(14) Fo = 3 10,

n=1

where c is finite, and assume that f(n) > O for all n > ny. If F(s) is analytic
in some disk about the point s = c, then the Dirichlet series converges in the
half-plane ¢ > ¢ — ¢ for some € > 0. Consequently, if the Dirichlet series
has a finite abscissa of convergence o, then F(s) has a singularity on the real
axis at the point s = a,.

PROOF. Let a = 1 + ¢. Since F is analytic at g it can be represented by an
absolutely convergent power series expansion about a,

© F®(g)

(15) F(s) = )

K
s — a),
P ( )

and the radius of convergence of this power series exceeds 1 since F is
analytic at c. (See Figure 11.3.) By Theorem 11.12 the derivatives F*(a) can
be determined by repeated differentiation of (14). This gives us

F¥%) = (—1F Y. f(n)(log nfn~",

30 (15) can be rewritten as

k—a

(16) F(s) =

k=0 n=1

Since the radius of convergence exceeds 1, this formula is valid for some real
s =c — & where ¢ > 0 (see Figure 11.3) Then a — s = 1 + ¢ for this s
and the double series in (16) has nonnegative terms for n > n,. Therefore
we can interchange the order of summation to obtain

Flc —¢) = Z f(n) Z {(1+s—)logn}" z f(n) g1 +9) logn _ Z

c—&"°
k=0 k! n=1 n° n=1 N

In other words, the Dirichlet series Z f{n)n”* converges for s = ¢ — ¢, hence
it also converges in the half-plane ¢ > ¢ — . O

Figure 11.3
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11: Dirichlet series and Euler products

11.9 Dirichlet series expressed as exponentials
of Dirichlet series
A Dirichlet series F(s) = Y. f(n)n"* which does not vanish identically has a

half-plane in which 1t never vanishes. The next theorem shows that in this
half-plane F(s) is the exponential of another Dirichlet series if (1) 0.

Theorem 11.14 Let F(s) = ) f(n)n™* be absolutely convergent for ¢ > o,
and assume that f(1) # 0. If F(s) # 0 for o > 64 > 0,, then for ¢ > o,
we have

F(s) = €®
with
> fHm
G(s) = log f(1) + nz2 Tog n ——n
where f ~! is the Dirichlet inverse of f and f'(n) = f(n)log n.

>

Note. For complex z # 0, log z denotes that branch of the logarithm which
is real when z > 0.

PROOF. Since F(s) # 0 we can write F(s) = ¢%® for some function G(s) which
is analytic for ¢ > . Differentiation gives us

F'(s) = e9G'(s) = F(s)G'(s),
80 G'(s) = F'(s)/F(s). But

o flmlogn & f'(n) 12
_,,;1 n B ,,g‘, n® and F(s) ,,gl o
hence
1
6 - FO £ -5 U0,
Integration gives
‘ (f* £ Hm) s
G(s)=C+ ’;2 fog n

where C is a constant. Letting ¢ -» + 00 we find lim,. G(o + it) = C
hence

f(1) = limF(o + it) =

[-Audls o]

so C = log f(1). This completes the proof. The proof also shows that the
series for G(s) converges absolutely if 6 > o,. O
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11.9: Dirichlet series expressed as exponentials of Dirichlet series

ExXAMPLE 1 When f(n) = 1 we have f'(n) = log nand f ~(n) = u(n) so

(f' % f o) = Zlogdu( d) AGw).

Therefore if ¢ > 1 we have

(17 {(s) = €99
where
. Am) s
G(b) - nZZ lo og n ‘

ExampPLE 2 A similar argument shows that if f is completely multiplicative
and F(s) = Z f(n)n"* then in the half-plane of absolute convergence ¢ > o,
we have

F(s) = €
where
e f (n)l\(n)
Gls) = ,,gz logn

since (" * f~)(n) = Ya f(d)log du(n/d) f(n/d) = f(m)A(n).

The formulas in the foregoing examples can also be deduced with the
help of Euler products. For example, for the Riemann zeta function we have

1
{s) =
Ul—p
Keep s real, s > 1, so that {(s) is positive. Taking logarithms and using the
power series —log(l — x) = Y, x™/m we find

log 69 = ~ Tlog(l ~p) =L ¥ £.5= ¥ A

p m=1

—5°

where
1
Ai(n) = {m

0 otherwise.

if n = p™ for some prime p,

But if n = p™ then log n = m log p = mA(n) so 1/m = A(n)/log n. Therefore
A -
1 ) — s
og {(s) = ,,221 ogn”

which implies (17) for real s > 1. But each member of (17) is analytic in the
half-plane ¢ > 1 so, by analytic continuation, (17) also holds for ¢ > 1.

239



11: Dirichlet series and Euler products

11.10 Mean value formulas for Dirichlet
series
Theorem 11.15 Given two Dirichlet series F(s) =) f(nn™ and G(s) =

Y. g(n)n™* with abscissae of absolute convergence o, and o, respectively.
Then for a > ¢, and b > o, we have

tim 37 [/ o i - i = § S0
PrOOF. We have

(n)

nb

F(a + it)G(b — it) = ( i +,,)(§: > Z Z f(m)g(n) <m>

Z (na)g(bn) D) f (m)G(n) (m>

n= me1ns1 mn’
m#*n

f(m)g(n) (g)“‘ < i Ifrflr:l)l i Ig'(;)l

mn® \m

Now

e o]

m=1n=1

so the series is absolutely convergent, and this convergence is also uniform
for all t. Hence we can integrate term by term and divide by 2T to obtain

1T . .
T f . TF(a + it)G(b — it) dt

S(n)g(n) « flmygn) 1 f T it log(n/m)
- Z notb + my"z‘; . mn® 2T —Te dr.
m#n

i)
TN

But for m # n we have

T eit log(n/m)
f elt log(n/m) dt
-T

i log(n/m)

so we obtain

1 (T , .
5T J_ rF (a + it)G(b — it) dt
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11.10: Mean value formulas for Dirichlet series

Again, the double series converges uniformly with respect to T since (sin x)/x
is bounded for every x. Hence, we can pass to the limit term by term to
obtain the statement of the theorem. O

Theorem 11.16 If F(s) = )%, f(n)n™° converges absolutely for ¢ > o,
then for ¢ > o, we have

1 (7 2 2 1 fm)P?
(18) rhjr:oﬁ |F(a+1t)l dt--";1 el

In particular, if 6 > 1 we have

T )

@ tim oo (g + iR dc= 3 2= ceo)

n=1

log n = [@M(2g),

(b) lim LTJ (e + ir)|* dt = Z

T-+c02 n=1

1 i uz(n) _ C(ZO’)
© lim mTlC(a+tt)l ft= Y e =

1 (7 A 2 0o°(n) _ {*(20)
d) Thjr; ZTJ‘ [{(e + it)|* dt = ,.;1 T = Tldo)
PrOOF. Formula (18) follows by taking g(n) = f(n) in Theorem 11.15. To
deduce the special formulas (a) through (d) we need only evaluate the Dirichlet
series Z | f(n)|*n~2° for the following choices of f (n): (a) f(n) = 1;(b) fn) =
(—1)* log* n; (c) f(n) = w(n); (d) f(n) = o4(n). The formula (a) is clear, and
formula (b) follows from the relation

o)

M) = (<1t 5 ’°g "

To prove (c) and (d) we use Euler products. For (c) we have

= win) _mlor_ L
";1 n —1;1(1+P )“l;[l_p_s-—c(zs).

Replacing s by 20 we get (c). For (d) we write

RCEE [1{1+ 000hp™" + 0™ + -

=J[{1+2%p = +3%p 2 +..3} \‘\A
4 -
1—p™> [

=11 {,,go(" +p } o =m Y

x+1 1-x?
x—1° (1—x?*

since Y 2o (n + 1)2x" =

. Now replace s by 20 to get (d).
O
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11: Dirichlet series and Euler products

11.11 An integral formula for the coefficients
of a Dirichlet series

Theorem 11.17 Assume the series F(s) = ) =, f(mn™* converges absolutely
for 6 > a,. Then for ¢ > 6, and x > 0 we have

T . _
lim _I.J‘ F(O' + iz)xai»it dt = {f(n) lfx =n,

Toow 2T 0 otherwise.

Proor. For ¢ > g, we have

(19) —217 f_TTF(a +itx* T dt = f Z / (")< >it dt

- 2T n=1 0% Jor

since the series is uniformly convergent for all ¢ in any interval [— T,T]. If x
is not an integer then x/n # 1 for all n and we have

T 2 sin[T log<£>:|
f eil log(x/n) dt = n
-T log<f)
n

and the series becomes

which tends to 0 as T — co. However, if x is an integer, say x = k, then the
term in (19) with n = k contributes

[ (e f oo e
o (7 <) dt = f(k) + ZTnil = (>

The second term tends to 0 as T — oo as was shown in first part of the
argument. Od

and hence

o

x a0
3T L
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11.12: An integral formula for the partial sums of a Dirichlet series

11.12 An integral formula for the partial
sums of a Dirichlet series

In this section we derive a formula of Perron for expressing the partial sums
of a Dirichlet series as an integral of the sum function. We shall require a
lemma on contour integrals.

Lemmad If ¢ > 0, define (X 2} to mean limy_, ., [¢*i]. Then if a is any positive
real number, we have

1 ifa>1,
1 ¢+ ooi de 1 )
2_7Zi c—coia ?_ E lfa: 1,
0 f0<a<l
Moreover, we have
1 c+iT dZ ac
20 — e | K ——— if0 1
(20) ‘2m'£_.~T“ - 0 <a<l,

- 1
aT log(A)
a

1 c+iT dZ ac
21 — e L
( ) 27” J;_iTa Z ‘ - ﬂT lOg a lfa > 1’
and
1 (*tiTqz 1 ¢
2 2 dz _1f ¢ . _
@2) 2ni£_,-r z 2‘ST[T fa

ProOOF. Suppose first that 0 < a < 1 and consider the rectangular contour
R shown in Figure 11.4. Since a%/z is analytic inside R we have j"R a/zdz = 0.

Hence
c+iT c+iT b+iT b—iT
c—iT b+iT b—iT c—iT

c+iT b+iT

R

¢—iT b—iT
Figure 11.4
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11: Dirichlet series and Euler products

SO

X

b x 2 b b
<fa—dx+ Ta +f %,—dx

- T b

<2r*d Q2T 2 (—a) 2Td
=T7) 4 b_Tloga b -

Let b — oo. Then a® — 0, hence

c+iT dZ
J‘ a z

c—iT z

fc+iT N dz 24¢
a—| < —1
c—iT 2 T log(—)

a

This proves (20).
~b+iT D c+iT
) A
-b 0 c
b —iT . ¢c—iT
Figure 11.5

Ifa > 1 we useinstead the contour R shown in Figure 11.5. Hereb > ¢ > 0
and T > c. Now a?/z has a first order pole at z = 0 with residue 1 since

@ =e'"=1+zloga+ 0(z|*) asz-0.
Therefore

c+iT —b+iT —b—iT - dz
27 = (J‘ + f + f + f )a —
c+i —b+iT —b—iT z

c—iT +iT

hence
1 c+iT dz 1 c+iT —b+iT —b—iT dz
o | a—wl-—-;(f | )_
2niJoir z 2mi\J _p4ir ~b—iT c—iT z

We now estimate the integrals on the right. We have

c+iT dZ
[«
—-b+iT

c

<J“adx —fadx la
“J., T T —loga’

b+iT
U <2r? .
b— IT b
J“""T dz J" adx 1 4
a—| < < =—".
c~iT z - T Tloga

As b — oo the second integral tends to 0 and we obtain (21).
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11.12: An integral formula for the partial sums of a Dirichlet series

When a = 1, we can treat the integral directly. We have

c+deZ T ldy T y T dy
— = — = ————2dy+lc )
c—iT 2 -rc+ 1y -rc " +y _rc"+y

(T dy
=2leom,

the other integral vanishing because the integrand is an odd function. Hence

1 (*Tdz ¢ (7T dy 1 T 1 1 c
— — = 3 5 = —arctan — = - — —arctan —
2ni Jo_ir 2 Wl C“+ Yy T c 2 = T

Sincearctan ¢/T < ¢/T this proves (22), and the proof of Lemma 4 is complete.
O

Theorem 11.18 Perron’s formula. Let F(s) = ) 32, f(n)/n° be absolutely
convergent for ¢ > a,; let ¢ > 0, x > 0 be arbitrary. Thenif6 > 6, — c we

have :
1 ¢+ 00l z
—.f F(s+z)x?dz=z*f(:l)

2mi c— i n<x

where Y * means that the last term in the sum must be multiplied by 1/2 when
X is an integer.

PROOF. In the integral, ¢ is the real part of z, so the series for F(s + z) is
absolutely and uniformly convergent on compact subsets of the half-plane
6 + ¢ > o,. Therefore

c+iT ‘ x? B c+iT oo f(n)x

fc—iTF(5 * z);—dz B £ iT nzl nt: z
f(n) c+iT )

Z J‘ iT (n

dz

z

f(n) c+iT dz
g MO [(Ey L, 5 I

n<x I c—iT

+,M J‘C-HTQ

xS

fi

(n) c+iT )dZ
c—iT \N 7

the symbol + indicating that the last term appears only if x is an integer.
In the finite sum ) , ., we can pass to the limit T — oo term by term, and the
integral is 2ni by Lemma 4. (Here a = x/n,a > 1.) The last term (if it appears)
yields mif (x)x ~* and the theorem will be proved if we show that

c+iT z
(23) lim 5 /% f (5) z_,,
T-wnsx B Jeoir\n/ Z

>

c—iT 2
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11: Dirichlet series and Euler products

We know that {*i® (x/ny(dz/z) = 0 if n > x but to prove (23) we must

estimate the rate at which {77 tends to zero.

From Lemma 4 we have the estimate

J<c+iT ; dZ 2 ac
a —_—
c—iT z

< T <——1> f0<a< 1.
log —
a
Here a = x/n, with n > x. In fact, n > [x] + |, so that 1l/a =n/x >
([x] + 1)/x. Hence

z f(n) c+iT f zd_z
n>x n® c—iT \N z

<y [ f(n)] 2 f)c 1
-5 n T\n ([x]-}-l)
logl ———

X

2 x¢ [f(n)]
=7 z G+c
T l()g([x]x+ 1) o

-0 asT— .

This proves Perron’s formula. O

Note. If ¢ > o, Perron’s formula is valid for s = 0 and we obtain the
following integral representation for the partial sums of the coefficients:

1 c+ i V-4
-~ f BRCET I

n<x

Exercises for Chapter 11

1. Derive the following identities, valid for o > 1.

(@) ls)=s [s+]1 dx.
X

~—

1 “ n(x . .
(b) Z ==s — dx, where the sum is extended over all primes.
P p 1 X

1 = M(x)
(c) T S fl e dx, where M(x) = Y n).

n<x

)::
_%_: J; (x) dx, where ¢(x) = Y A(n).

n<x

(e) L(s,x) =s f %(2 dx, where A(x)= Y x(n
1

n<x

Show that (e) is also valid for ¢ > 0 if y is a nonprincipal character. [Hint:
Theorem 4.2.]
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Exercises for Chapter 11

2. Assume that the series ) 22, f(n) converges with sum 4, and let A(x) = Y, f(n).

(a) Prove that the Dirichlet series F(s) = Y 2., f(n)n™* converges for each s with
o > 0 and that

F L0 TR
o) ns xs+ 1
where R(x) = A — A(x). [Hint: Theorem 4.2.]
(b) Deduce that F(o) > Aaso - 0+.
(c) If e > 0and N > 1 is an integer, prove that

N @©
= 3 L0 AN f Ay)

ot n’ NS ys+1

dx,

dy.

(d) Write s = o + it, take N = 1 + [[¢]] in part (¢) and show that
|F(e +it)) = 0(Jt]'™°) if0<o<1.

3. (a) Prove that the series Z n~!~"has bounded partial sums if t # 0. When ¢ = O the
partial sums are unbounded.

(b} Prove that the series z n~ 1~ diverges for all real t. In other words, the Dirichlet
series for {(s) diverges everywhere on the line ¢ = 1.

4. Let F(s) = Y2, f(nin~* where f(n) is completely multiplicative and the series
converges absolutely for ¢ > a,. Prove that if ¢ > o, we have

F'(‘) Z f(n

n=1

In the following exercises, A(n) is Liouville’s function, d(n) is the number of
divisors of n, v(n) and x(n) are defined as follows: v(1) = 0, k(1) = 1; if
n=p"...pS*then v(n) = k and x(n) = a,a, - -- a;.

Prove that the identities in Exercises 5 through 10 are valid for ¢ > 1.

2 din?) 3 2 2"™in)  {(29)
5 ==, 8. .
,.; o {(2s) ; n LX)
o vin 1 {(s)E(25)(3s)
6. = 9. =20
Lo oL nxx " )
0 2v(n] B m ® 3v(n)K(n) _ &
T T @y 02 = =%y
11. Express the sum of the series ) %, 3*™k(n)A(n)n~* in terms of the Riemann zeta
function.

12. Letfbe a completely multiplicative function such that f(p) = f(p)? for each prime p.
If the series Y f{(n)n~* converges absolutely for ¢ > ¢, and has sum F(s), prove that
F(s) # 0 and that

A(n) Fi2s) ife>0o
F(s) @
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11:

13.

14.

15.

16.

17.

Dirichlet series and Euler products

Let fbe a multiplicative function such that f(p) = f(p)? for each prime p. If the series
Z wn)f(mn~* converges absolutely for ¢ > ¢, and has sum F(s), prove that F(s) # 0
and that

o F 2 g
Z )Iu(n)l (2s) ifo> o,
ne F(s)
Let f be a multiplicative function such that Y f(n)n~* converges absolutely for
¢ > 0,.If p is prime and ¢ > o, prove that
s = f()un) o v S)un)ulp, n)
1+ fp)p™) f—ns == JeP )L ——%,
n=1

where u(p, n) is the M6bius function evaluated at the ged of p and n.
[Hint : Euler products.]

Prove that

More generally, if each s; has real part g; > 1, express the multiple sum

©

a0
Y o Y myeem

my=1 mp=1
my.....ms =1

in terms of the Riemann zeta function.
Integrals of the form

24) 9 = f Af:’ dx,

where A(x) is Riemann-integrable on every compact interval [1, a], have some
properties analogous to those of Dirichlet series. For example, they possess a
half-plane of absolute convergence o > o, and a half-plane of convergence ¢ > o,
in which f(s) is analytic. This exercise describes an analogue of Theorem 11.13
(Landaw’s theorem).

Let f(s) be represented in the half-plane ¢ > o, by (24), where o, is finite, and
assume that A(x) is real-valued and does not change sign for x > x,. Prove that
f(s) has a singularity on the real axis at the point s = o..

Let A4n) = Y4, d°Ad) where A(n) is Liouville’s function. Prove that if ¢ >
max{1, Re(a) + 1}, we have

o Adn)  Us)(2s ~ 2a)
g )

and

Am)iqn) _ {2s)(s — a)
o (s

?Ms
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The Functions
{(s) and L(s, x)

12.1 Introduction

This chapter develops further properties of the Riemann zeta function {(s)
and the Dirichlet L-functions L(s, x) defined for ¢ > 1 by the series

{(s) = i and L(s, y) = i %

n=1

As in the last chapter we write s = ¢ + it. The treatment of both {(s) and
L(s, y) can be unified by introducing the Hurwitz zeta function {(s, a), defined
for ¢ > 1 by the series

(a)=y —

’ n=0 (n + a)s )

Here a is a fixed real number, 0 < a < 1. When a = 1 this reduces to the
Riemann zeta function, {(s) = {(s, 1). We can also express L(s, x) in terms
of Hurwitz zeta functions. If y is a character mod k we rearrange the terms
in the series for L(s, x) according to the residue classes mod k. That is,
we write

n=qgk+r, wherel <r<kandgq=012,...,

and obtain
(n) . gk +1) 1 ¢

L(s, ) = ) = rzl qzo (gk + ry ks Z x(r) Z <q N >
k

- k“ri x(r)C(s, i)
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12: The functions {(s) and L(s, x)

This representation of L(s, x) as a linear combination of Hurwitz zeta func-
tions shows that the properties of L-functions depend ultimately on those of
s, a).

Our first goal is to obtain the analytic continuation of {(s, a) beyond the
line ¢ = 1. This is done through an integral representation for {(s, a) obtained
from the integral formula for the gamma function I'(s).

12.2 Properties of the gamma function

Throughout the chapter we shall require some basic properties of the gamma
function I'(s). They are listed here for easy reference, although not all of them
will be needed. Proofs can be found in most textbooks on complex function
theory.

For g > 0 we have the integral representation

1)) I'(s) = fowxs_le‘x dx.

The function so defined for ¢ > 0 can be continued beyond the line ¢ = 0,
and I'(s) exists as a function which is analytic everywhere in the s-plane
except for simple poles at the points

s=0-1,-2 -3,...,
with residue (— 1)"/n! at s = —n. We also have the representation

n°n!
I(s) = li 0,—1,-2,.. ..
()= lm ey oS

and the product formula

1 d s)
— «pCs —s/n .
—— = se 1+-)e for all s,
I'(s) ,,Hl< n
where C is Euler’s constant. Since the product converges for all s, I'(s) is
never zero. The gamma function satisfies two functional equations,

2) (s + 1) = sI(s)
and
&) et —s) = prm

valid for all s, and a multiplication formula
1 m—1 ~1)/2,,.(1/2)~
4) I s + - - Tls+ — = (2r)m = D22 = ms (),

valid for all s and all integers m > 1.
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12.3: Integral representation for the Hurwitz zeta function

We will use the integral representation (1), the functional equations (2)
and (3), and the fact that T'(s) exists in the whole plane, with simple poles at
the integers s =0, —1, —2,... We also note that '(n + 1) =n!ifnis a
nonnegative integer.

12.3 Integral representation for the Hurwitz
zeta function
The Hurwitz zeta function {(s, a) is initially defined for ¢ > 1 by the series
i 1

wa=2 csap

Theorem 12.1 The series for {(s, a) converges absolutely for ¢ > 1. The
convergence is uniform in every half-plane ¢ > 1 + 6, 6 > 0, so {(s, a) is
an analytic function of s in the half-plane o > 1.

Proor. All these statements follow from the inequalities

o0

il('} +a)”f| = i(n+a)_“s Yn+ay 1o, O

n=1 n=1

Theorem 12.2 For ¢ > 1 we have the integral representation

© xs—le—ax

(5 I'(s)(s,a) = f —— dx.

o 1 —e”
In particular, when a = 1 we have

© 5—1,—x

T(s)(s) =j X e

dx.
o 1 —e™* X

Proor. First we keep s real, s > 1, and then extend the result to complex s
by analytic continuation.

In the integral for I'(s) we make the change of variable x = (n + a)t,
where n > 0, to obtain

o

I'(s) = f e *x* " tdx = (n + af f e~ a1 gy
0 V]

or

(n + a)~°T(s) = f e Me M1 gy,
0

Summing over all n > 0 we find
Us,a[(s) = Y, | e ™Me ' ldt,
n=0 J0O

251



12: The functions {(s) and L(s, )

the series on the right being convergent if ¢ > 1. Now we wish to interchange
the sum and integral. The simplest way to justify this is to regard the integral
as a Lebesgue integral. Since the integrand is nonnegative, Levi’s convergence
theorem (Theorem 10.25 in Reference [2]) tells us that the series

D18

e—nte—atts— 1

n=0

converges almost everywhere to a sum function which is Lebesgue-integrable
on [0, + o0) and that

o ®©

s, @) (s) Z _’”e"‘"t"l dt = Y e Me 4y,
0 n=0
Butift > 0 we have 0 < e™' < 1 and hence
Fomo |
n 0 l - e_t’

the series being a geometric series. Therefore we have

e—alts—l
-1

O

Z e—nte—arts-—l =
n=0 1—e
almost everywhere on [0, + ), in fact everywhere except at 0, so

© o © e—-atts 1
{(s, @)T°(s) = Ye M Tt = f —dt
0 n=0 o 1—e
This proves (5) for real s > 1. To extend it to all complex s with ¢ > 1 we note
that both members are analytic for ¢ > 1. To show that the right member is
analytic we assume 1 + 6 < ¢ < ¢, where ¢ > 1 and é > 0 and write

©
),
fO<t<1wehave ° ' <¢% and if t > 1 we have ! <!, Also,
since & — 1 > t for t > 0 we have

J~l e—atto‘—l le(l —a)rtb

dt < | —
o l—et T )y =1

1

e—atts- © -at _“‘
t < - .
= |d _f dt (f f )1_ = dt

1—e

1
dtSe(‘"")f P ldr = ,
o 1)

and

[ e-att 1 © ,—ate—1 © e—attc—l
——dt < —dt < ———dt =T , @).
; 1—e? L [—e "t J.o 1 ~e! (e)X(c, a)

This shows that the integral in (5) converges uniformly in every strip 1 + &
< 6 <c, where 6 > 0, and therefore represents an analytic function in
every such strip, hence also in the half-plane ¢ > 1. Therefore, by analytic
continuation, (5) holds for all s with ¢ > 1. O
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12.4: A contour integral representation for the Hurwitz zeta function

12.4 A contour integral representation for the
Hurwitz zeta function

To extend {(s, a) beyond the line ¢ = 1 we derive another representation in
terms of a contour integral. The contour C is a loop around the negative
real axis, as shown in Figure 12.1. The loop is composed of three parts
C,, C,,C5.C,isapositively oriented circle of radius ¢ < 2n about the origin,
and C,, C; are the lower and upper edges of a “cut” in the z-plane along the
negative real axis, traversed as shown in Figure 12.1.

C3<———

—~——

e 0
& C,

Figure 12.1

This means that we use the parametrizations z = re ™ on C, and z = re™
on C, where r varies from ¢ to + 0.

Theorem 12.3 If 0 < a < 1 the function defined by the contour integral

1 s— 1 az
I(s, a) = f z ¢ dz
c

2ni Jo 1 — ¢€°
is an entire function of s. Moreover, we have

(6) {s,a) =T — s)I(s,a) ifo>1.

ProoF. Here z° means r'e ™ on C, and r°e™ on C;. We consider an arbitrary
compact disk |s| < M and prove that the integrals along C, and C; converge
uniformly on every such disk. Since the integrand is an entire function of s
this will prove that I(s, a) is entire.

Along C, we have, forr > 1,

|Zs——1| — ra—1|e—m'(a—1+it)l — ra—lent < rM—lenM

since |s| < M. Similarly, along C5 we have, for r > 1,

|Zs—1| — ra—1|eni(a—1+it)| — ra——le—m < rM»lenM‘

Hence on either C, or C; we have, forr > 1,

ZS‘ leaz

1 —¢°

rM—lenMe—ar rM—lenMe(l—a)r

l—e" e —1

Bute’ — 1 > ¢/2 when r > log 2 so the integrand is bounded by ArM~! ¢~
where A is a constant depending on M but not on r. Since [ r™ ™ e” ™ dr
converges if ¢ > 0 this shows that the integrals along C, and C; converge
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12: The functions {(s) and L(s, x)

uniformly on every compact disk |s| < M, and hence I(s, a) is an entire
function of s.
To prove (6) we write

2nil(s, a) = (JC + L + J; >zs_1g(z) dz

where ¢(z) = e**/(1 — €°). On C, and C; we have g(z) = g(—r), and on C,
we write z = ce”®, where —n < 0 < . This gives us

2nil(s, a) = f rrleT™g(—r)ydr + i f e Diceig(ce'®) do

+ f r*le™g(—r) dr

= 2i sin(rs) f r*lg(—r)dr + ic* f e%g(ce®) do.

-n

Dividing by 2i, we get
nl(s, a) = sin(ns)l (s, ¢) + I,(s, ¢)
say. Now let ¢ —» 0. We find

) 00 rs~ le—-ar
fim (s, ¢) = J dr = T(s)(s, a),

-r
c—0 0 1—e

if ¢ > 1. We show next that lim,_q I,(s, ¢) = 0. To do this note that g(z)
is analytic in |z| < 27 except for a first order pole at z = 0. Therefore zg(z)
is analytic everywhere inside |z| < 2z and hence is bounded there, say
lg(z)| < A/lz]|, where |z| = ¢ < 2m and A4 is a constant. Therefore we have

g 4 A
[1,(s, ¢)| < % f e""?dﬂ < Ae™Merm 1,

If 6 >1 and ¢ > 0 we find I,(s, ¢) > 0 hence nl(s, a) = sin(ns)['(s){(s, a).
Since I'(s)I'(1 — s) = m/sin ©s this proves (6). O

12.5 The analytic continuation of the
Hurwitz zeta function

In the equation {(s,a) = I'(1 — s)I(s, a), valid for ¢ > 1, the functions
I(s, a) and T'(1 — s) are meaningful for every complex s. Therefore we can use
this equation to define (s, a) for ¢ < 1.
Definition If 0 < 1 we define {(s, a) by the equation
(7 {(s,a) = T(1 — 9)I(s, a).
This equation provides the analytic continuation of {(s, a) in the entire
s-plane.
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12.6: Analytic continuation of {(s) and L(s, y)

Theorem 12.4 The function {(s, a) so defined is analytic for all s except for a
simple pole at s = 1 with residue 1.

ProoF. Since I(s, a) is entire the only possible singularities of {(s, a) are the
poles of I'(1 — s), that is, the points s = 1, 2, 3, ... But Theorem 12.1 shows
that {(s, a) is analytic at s = 2, 3,..., so s = 1 is the only possible pole of
s, a).

Now we show that there is a pole at s = 1 with residue 1. If s is any integer,
say s = n, the integrand in the contour integral for I(s, a) takes the same
values on C, as on C; and hence the integrals along C, and C; cancel,
leaving .

Zn— 1eaz zn— leaz

I(",a)=%[—ij. ————dz = Res

z z
Czl—e z=0 1 — €

In particular when s = 1 we have

az az -1

I(1,a) = Res —— = lim —— = lim —— = lim — = —1.
z=01—'e' z-01_e z—*Ol_e z-0 €

To find the residue of {(s, a) at s = 1 we compute the limit
lim(s — 1){(s, @) = — lim(1 — $)I (1 — s)I(s,a) = —I(1, aAllim T (2 — )

s=1 s—1 s=1
=TI(1)=1.
This proves that {(s, a) has a simple pole at s = 1 with residue 1. U

Note. Since {(s, a) is analyticat s = 2, 3,...and I'(1 — s) has poles at these
points, Equation (7) implies that I(s, a) vanishes at these points.

12.6 Analytic continuation of {(s) and L(s, )

In the introduction we proved that for o > 1 we have
Us) = Lls, 1)

and
® Lis,2) = k™* ;x(r)c<s, 2)

where y is any Dirichlet character mod k. Now we use these formulas as
definitions of the functions {(s) and L(s, x) for ¢ < 1. In this way we obtain the
analytic continuation of {(s) and L(s, x) beyond the line ¢ = 1.

Theorem 12.5 (a) The Riemann zeta function ((s) is analytic everywhere
except for a simple pole at s = 1 with residue 1.
(b) For the principal character y; mod k, the L-function L(s, x,) is analytic
everywhere except for a simple pole at s = 1 with residue @(k)/k.
(c) If x # x1, L(s, x) is an entire function of s.

255



12: The functions {(s) and L(s, x)

Proor. Part (a) follows at once from Theorem 12.4. To prove (b) and (c)
we use the relation

le # Xla
Y )= {(p(k) :

rmodk if y = x1.

Since {(s, r/k) has a simple pole at s = 1 with residue 1, the function x(r){(s, r/k)
has a simple pole at s = 1 with residue x(r). Therefore

Res L(s, ) = lim(s — 1)L(s, ) = lim(s — 1)k~ Z x(r){(s —)

s=1 s—1 s—1 r=
1i 0 1fX¢X1,
7 20 = ok) . O
k=1 _q_)g ify = x;.

12.7 Hurwitz’s formula for {(s, a)

The function {(s, a) was originally defined for ¢ > 1 by an infinite series.
Hurwitz obtained another series representation for {(s, ) valid in the half-
plane ¢ < 0. Before we state this formula we discuss a lemma that will be used
in its proof.

Lemma 1 Let S(r) denote the region that remains when we remove from the
z-plane all open circular disks of radius r, 0 <r < m, with centers at
z=2nmi,n=0,+1, £2,... Thenif 0 < a < 1 the function

az

e

g(z) =

v

1—e
is bounded in S(r). (The bound depends on r.)
PRrOOF. Write z = x + iy and consider the punctured rectangle
Q) ={z:Ix| < Lyl <mlz| 2 r},

shown in Figure 12.2.

Figure 12.2
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12.7: Hurwitz’s formula for {(s, a)

This is a compact set so g is bounded on Q(r). Also, since |g(z + 2ri)| =
1g(2)], g is bounded in the punctured infinite strip

{z:|x| < L,|z—=2nnmi|2r,n=0, 11, £2,...}.

Now we show that g is bounded outside this strip. Suppose |x| > 1 and
consider

az

1—¢

eax eax

= < .
1 —e*| = |1 — e

l9(z)| =

For x > 1 we have |1 — ¢*| = ¢ — 1 and e** < €*, s0

e 1 1 e

= < = .
-1 1—e* 1—-¢e' e—1

fg(z)| < p

Also, when x < —1we have |1 — ¥ =1 — ¢*s0

PO DR L B T

S S e ST 1 el -1

Therefore |g(z)| < efle — 1) for |x| > 1 and the proof of the lemma is
complete. 0O

We turn now to Hurwitz’s formula. This involves another Dirichlet
series F(x, s) given by

@ 2minx

9) Fos)=Y &

n=1 N

s 7

where x is real and ¢ > 1. Note that F(x, s) is a periodic function of x with
period 1 and that F(1, s) = {(s). The series converges absolutely if ¢ > 1.
If x is not an integer the series also converges (conditionally) for ¢ > 0
because for each fixed nonintegral x the coefficients have bounded partial
sums.

Note. We shall refer to F(x, s) as the periodic zeta function.

Theorem 12.6 Hurwitz’s formula. If 0 < a < 1 and ¢ > 1 we have

T'(s)
@ny

If a # 1 this representation is also valid for ¢ > 0.

(10) {1 —s,a) = {e"™"?F(a, s) + e"*F(—a, s)}.

ProoF. Consider the function

1 75 leaz
Iy(s, a) = — dz,
N(s a) 27” fC(N) 1 - ez z

where C(N) is the contour shown in Figure 12.3, N being an integer.
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12: The functions {(s) and L(s, x)

o (2N + 2)mi

o0 R=QN+ m

Figure 12.3

First we prove that imy ., In(s, a) = I(s, a) if ¢ < 0. For this it suffices
to show that the integral along the outer circle tends to 0 as N — co.
On the outer circle we have z = Re®, —n < 0 < 7, hence

Izs—l, — le-leiO(s—l), — Ra—le—to < Ra—lenltl'

Since the outer circle lies in the set S(r) of Lemma 1, the integrand is bounded
by Ae™R°~1 where A is the bound for |g(z)| implied by Lemma 1; hence
the integral is bounded by

2nAe™ R,
and this - 0 as R — oo if ¢ < 0. Therefore, replacing s by 1 — s we see that

(11) lim I(1 —s,a)=I(1 —s,a) ifo> L

N-w

Now we compute Iy(1 ~ s, a) explicitly by Cauchy’s residue theorem. We
have

N N
I1—s,a)= — Y Rn)=— Y {R(n) + R(—n)}
n=- n=1
n# ON
where
Z—seaz
R(n)= R .
o= R (i75)
Now
z 7 Se™? e2nm’a z — 2nmi e2mzia
R(n) = lim (z — 2nmi) — = im - - ,
(n) z—vIZnni(Z nnl) 1 —e (2nni)s z-»12mti l—¢ (2nni)s
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12.8: The functional equation for the Riemann zeta function

hence

N 2nmia N - 2nmia

e e
Il =sa) = ,,; iy T ,,; (—2nmiy”

Buti™® =e ™2 and (—i)"* = "2 s0
—nis/2 % eZmu'a . enis/Z N e—2n1u'a
@ny = n

IN(I -9, a) = 21_[)5 e
n=1

Letting N — oo and using (11) we obtain

—ris/2 mis/2

I(l - S, a) = W F(a, S) + (21[)8

F(—a,s).

Hence

I'(s)

(1 —s,a)=TEI1 —s,a) = o

{e"™/2F(a, s) + e™'?F(—~a,s)}. O

12.8 The functional equation for the
Riemann zeta function

The first application of Hurwitz’s formula is Riemann’s functional equation
for {(s).

Theorem 12.7 For all s we have
(12) (1 —s) = 2(2n)—sr(s)cos<§>c(s) ‘X

or, equivalently,
s

(13) ) = 20T — s)sin<g—)c(1 _y

ProoF. Taking a = 1 in the Hurwitz formula we obtain, for ¢ > 1,

I'(s)

{—-s)= Gy

— mis, . TS, A1 — l"(s) s .
{e™™I2{(s) + e™2(s)} = oy 2 cos<7>C(s).

This proves (12) for ¢ > 1 and the result holds for all s by analytic continua-
tion. To deduce (13) from (12) replace s by 1 — . O

Note. Takings = 2n + 1in (12) wheren = 1, 2, 3, .. ., the factor cos(rns/2)
vanishes and we find the so-called trivial zeros of {(s),

{(=2n)=0 forn=1,23,...
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12: The functions {(s) and L(s, y)

The functional equation can be put in a simpler form if we use Legendre’s
duplication formula for the gamma function,

1
2rt227 BT(2s) = F(s)F(s + f)’

which is the special case m = 2 of Equation (4). When s is replaced by
(1 — s)/2 this becomes

2U20(1 — ) = r<1 ; S)r<1 - %)

Since

this gives us

2—Sn1/2r<1 - )
(1l — s)sin = = - 2/
;)
Using this to replace the product I'(1 — s)sin(ns/2) in (13) we obtain

J 1—35
—s2p S Vrr) = (-2 e
s F(z)C(s) n F( 3 )C(l s).
In other words, the functional equation takes the form

(s) = H1 — 3),

where
o) = n“""l"G)C(s)-

The function ®(s) has simple polesats = 0and s = 1. Following Riemann,
we multiply ®(s) by s(s — 1)/2 to remove the poles and define

1
¢(s) = 5 3(s — D).
Then &(s) is an entire function of s and satisfies the functional equation

&) = &1 = 9).
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12.10: The functional equation for L-functions

129 A functional equation for the Hurwitz
zeta function

The functional equation for {(s) is a special case of a functional equation
for {(s, a) when a is rational.

Theorem 12.8 If h and k are integers, | < h < k, then for all s we have

SR\ 2I(s) & ns  2mrh\,( r
(14) C<1 — S, z) = (znk)s r;lCOS<? - T)C<b, 7(‘)

Proor. This comes from the fact that the function F(x, s) is a linear combina-
tion of Hurwitz zeta functions when x is rational. In fact, if x = h/k we can
rearrange the terms in (9) according to the residue classes mod k by writing

n=gqk+r, wherel<r<kandgq=0,1,2,...

This gives us, for ¢ > 1,

(h ) i 21unh/k k o e2m'rhlk - Z eanrh/k Z
.+ k)

=1q= 0(qk+r)’

k ) r
=k* Z e2mrh/kc<s’ E)
r=1

Therefore if we take a = h/k in Hurwitz’s formula we obtain

hY _ TG & — mis/2_2mirh/k nis/2,,— 2nirkiiy e o T
C(l S, 'k) - (21Ik)s 'Z (e e + e e )C S, E

=1
2F(s) ns  2arh\ [ r
- Gy £ ( T)C(S’ 7;>’

which proves (14) for ¢ > 1. The result holds for all s by analytic continuation.
O

It should be noted that when h = k = 1 there is only one term in the sumin
(14) and we obtain Riemann’s functional equation.

12.10 The functional equation for L-functions

Hurwitz’s formula can also be used to deduce a functional equation for the
Dirichlet L-functions. First we show that it suffices to consider only the
primitive characters mod k.
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12: The functions {(s) and L(s, x)

Theorem 12.9 Let y be any Dirichlet character mod k, let d be any induced
modulus, and write

x(n) = Y(n)y,(n),

where Y is a character mod d and y, is the principal character mod k. Then

for all s we have
Lo = Lo ] (1-42).
plk p

PROOF. First keep 6 > 1 and use the Euler product
L5, = [1——.
14 1 — M
pS
Since x(p) = Y(p)x.1(p) and since y,(p) = 0 if plk and y,(p) =1 if p ¥ k we
find

Lo =[] — = T— 1 (1- 22

plkl___'/’(_P) pl_Mplk p
S ps
“wall(:-77)

This proves the theorem for ¢ > 1 and we extend it to all s by analytic
continuation. O

Note. If we choose d in the foregoing theorem to be the conductor of y,
then ¥ is a primitive character modulo d. This shows that every L-series
L(s, x) is equal to the L-series L(s, {) of a primitive character, multiplied
by a finite number of factors.

To deduce the functional equation for L-functions from Hurwitz’s
formula we first express L(s, y) in terms of the periodic zeta function F(x, s).

Theorem 12.10 Let y be a primitive character mod k. Then for ¢ > 1 we have
k h
(15) G(1, DL(s, x) = 3. Zh)F <E’ S),
h=1
where G(m, x) is the Gauss sum associated with y,

k
Glm, x) = Y x(r)e*™m.

r=1
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12.10: The functional equation for L-functions

PrOOF. Take x = h/k in (9), multiply by 7(h) and sum on h to obtain

k k © © k
2 i(h)F(ﬁ’ S> — Z z i(h)eZﬂ:inh/kn—s — Z nos Z )Z(h)ez"i""/"
h=1 k h=1n=1 n=1  h=

1

= Z n"*G(n, ).
n=1
But G(n, 7) is separable because ¥ is primitive, so G(n, ¥) = 2(n)G(1, ¥), hence

k ©
P z(h)FG, s) = (1, ) ¥ ™ = G(L, DLLs 2 O

Theorem 12.11 Functional equation for Dirichlet L-functions. If y is any
primitive character mod k then for all s we have

kST (s)

16 La-sx0= o

(e~ ™52 4 y(— De™23G(1, )L, ).

PROOF. We take x = h/k in Hurwitz’s formula then multiply each member
by x(h) and sum on h. This gives us

k h I PP h
(1) gt L)

. —h
b e 3 aor( 2 )}
W= k

Since F(x, s) is periodic in x with period 1 and x(h) = ¥(— 1)x(—h) we can
write

_h -
Z X(h)F(T’ s>= 2(=1) Z X(—h)F<—k—h,5>

kmod k hmodk

A1) Ttk —h)F(""‘ s>

b
hmod k k

= 11 5, ().

hmod k

and the previous formula becomes

: — ,}l = F(S) —nis/2 - mis/2 : <ﬁ )
;.;X(h)c<1 > k> @ny te + x(—De }h;x(h)F o3

Now we multiply both members by k*~! and use (15) to obtain (16). |
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12: The functions {(s) and L(s, x)

12.11 Evaluation of {(—n, a)

The value of {(—n, a) can be calculated explicitly if n is a nonnegative integer.
Taking s = —n in the relation {(s, a) = I'(1 — s)I(s, a) we find

U—=n,a)=TA + n)l(—n,a) = n'I(—n, a).

We also have

-n—1 h
I(—n, a) = Res (Z ¢ )

=0\ 1 — ¢

The calculation of this residue leads to an interesting class of functions known
as Bernoulli polynomials.

Definition For any complex x we define the functions B,(x) by the equation

zexz

e —1

> B
= Z ﬂz", where |z]| < 2n.
n=0 n!

The numbers B,(0) are called Bernoulli numbers and are denoted by B,.
Thus,

z < B
—— =Y Pz where|z| < 2n
-1 ,=n™’
n= .

Theorem 12.12 The functions B,{x) are polynomials in x given by

B,(x) = i(';)ka"'*.

k=0
PrOOF. We have
OOBII(X)"__ z xZ __ °°Bn" °°x""
,Z‘o n T e—1 %7 (,,Z‘on! Z><,,§0n!z >
Equating coefficients of z" we find
BiY) _ ¢ B X
n! S k! (n— k)
from which the theorem follows. d

Theorem 12,13 For every integer n > 0 we have

Bn+ 1((1)

(17 U=ma)=— -7
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12.12: Properties of Bernoulli numbers and Bernoulli polynomials

PrOOF. As noted earlier, we have {(—n, a) = n!I(—n, a). Now

-n—1_az uz
R
z=0 1 - e 2=0 & — 1
-n-2 5 Bul@ B, 1(0)
= - R n-2 __.m_ m — — —"_—
z=e§<z meo m! z ) (n+ 1)t >
from which we obtain (17). -

12.12 Properties of Bernoulli numbers and
Bernoulli polynomials

Theorem 12.14 The Bernoulli polynomials B,(x) satisfy the difference equation

(18) Bx+1)—B(x)=nx""" ifn=>1
Therefore we have
(19) B{0)=B/(1) ifn=2.

ProOF. We have the identity

e(x+ 1)z exz
z = zZe

-1 -1

z XZ

from which we find

® B,x + 1) — B,(x) oo i x" w1

! i
n=0 n: n=0 N:

Equating coefficients of z” we obtain (18). Taking x = 0in (18) we obtain (19).
Theorem 12.15 If n > 2 we have
Z (n
B, = B,.
£
PRrOOF. This follows by taking x = 1 in Theorem 12.12 and using (19). O
Theorem 12.15 gives arecursion formula for computing Bernoulli numbers.

The definition gives B, = 1, and Theorem 12.15 yields in succession the
values

1 1 1
Bo=1’ Bl=“‘2‘, Bz=g, B3=0, B, = 36,
B; =0 B—1 B,=0 By = 1 By =0
5 = Vs 6_1—2_’ 7=\ 8 — 30’ 9 —
5
BIO_%a Bll_o
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12: The functions {(s) and L(s, x)

From a knowledge of the B, we can compute the polynomials B,(x) by using
Theorem 12.12. The first few are:

1 1
Byix)=1, Byx)=x-x=, Byx)=x>-x+

2 6’
B(x)=x3—§xz+lx B(x)=x‘*—2x3+x2~L
3 2 27 4 30°

We observe that Theorems 12.12 and 12.15 can be written symbolically
as follows:

B,(x) = (B + x)%, B,=(B + 1)
In these symbolic formulas the right members are to be expanded by the
binomial theorem, then each power B* is to be replaced by B,.

Theorem 12.16 If n > O we have

20) (=) = — f";‘l.

Also, if n > 1 we have {(—2n) = 0, hence B,,,, = 0.

Proor. To evaluate {(—n) we simply take a = 1 in Theorem 12.13. We have
already noted that the functional equation

21) {1 —s) = 2(27t)“F(s)cos<%S>C(s)

implies {(—2n) = O for n > 1, hence B,,,, = 0 by (20). O

Note. The result B,, . ; = 0 also follows by noting that the left member of

z 1 > B
to=1 Zn
e’—1+22 +,,Zzn!z

is an even function of z.

Theorem 12.17 If k is a positive integer we have

K41 (2n)2k32k

@) ) = (=104

PrOOF. We take s = 2k in the functional equation for {(s) to obtain
{(1 = 2k) = 2(2m)~ T (2k)cos(nk)((2k),
or

By _ -2k k
= 5 = 22m)7 2k — D= 12N,

This implies (22). O
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12.12: Properties of Bernoulli numbers and Bernoulli polynomials

Note. If we put s = 2k + 1 in (21) both members vanish and we get no
information about {(2k + 1). As yet no simple formula analogous to (22)
is known for {(2k + 1) or even for any special case such as {(3). It is not even
known whether {(2k + 1) is rational or irrational for any k.

Theorem 12.18 The Bernoulli numbers B,, alternate in sign. That is,
(— l)k+ lek > 0.
Moreover, | B,,| = o0 as k - . In fact

202k)!

(23) (—l)kHsz ~ (2—”)27

as k — oo.

ProoF. Since {(2k) > 0, (22) shows that the numbers B,, alternate in sign.
The asymptotic relation (23) follows from the fact that {(2k) - 1 as k — oo.

Note. From (23) it follows that | B, ,/B,i| ~ k?/n* as k — co. Also, by
invoking Stirling’s formula, n! ~ (n/e)",/2mn we find

i1 k 2k+1/2
(—1) 32k~4n\/2n—e ask — oo.

The next theorem gives the Fourier expansion of the polynomial B,(x)
in the interval 0 < x < 1.

Theorem 12.19 If 0 < x < 1 we have

n! + 0 ekax

Qmy =, k"’

k#0

(24) B,(x) = —

and hence

2(2n)! i cos 2nkx
(2n)2n . an >

=1

By(x) = (=1

La1 220+ 1)! i sin 2mkx

B2n+l(x) = (_ ]‘) (2n)2n+1 o) k2n+1

Proor. Equation (24) follows at once by taking s = n in Hurwitz’s formula
and applying Theorem 12.13. The other two formulas are special cases of
(24).

Note. The function B,(x) defined for all real x by the right member of
(24) is called the nth Bernoulli periodic function. It is periodic with period 1
and agrees with the Bernoulli polynomial B,(x) in the interval 0 < x < 1.
Thus we have

Bn(x) = B,,(X - [x])
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12: The functions {(s) and L(s, x)

12.13 Formulas for L(0, y)
Theorem 12.13 implies

1
{0,a) = —B,(a) = 5~ a.

In particular {(0) = {(0, 1) = — 1/2. We can also calculate L(0, y) for every
Dirichlet character y.

Theorem 12.20 Let y be any Dirichlet character mod k.
(@) If x = x, (the principal character), then L(0, x,) = 0.
(b) If x # x1 we have

1 k
LO.0) = — 7 L)
r=1

Moreover, {0, x) = 0if y(— 1) = 1.

PrOOF. If y = y, we use the formula

Lis, 1) = @ TT (1 - p79)
plk
proved for ¢ > 1 in Chapter 11. This also holds for all s by analytic continua-
tion. When s = 0 the product vanishes so L(0, y,) = 0.
If x # x, we have

L0, 1) = k Al k | W
0,7 = r;X(r)C Y r;%(") L r;rx(r).
Now
k k k k
Z,IVX(V) = Zl(k =gk —r)=k ;X(k -r) = ;lrx(*—r)
= —x(=1) erx(r)-
Therefore if y(—1) = 1 we have Y *_,rx(r) = 0. O

12.14 Approximation of {(s, a) by finite sums

Some applications require estimates on the rate of growth of {(¢ + it,a)as a
function of 1. These will be deduced from another representation of {(s, a)
obtained from Euler’s summation formula. This relates {(s, a) to the partial
sums of its series in the half-plane ¢ > 0 and also gives an alternate way to
extend {(s, a) analytically beyond the line ¢ = 1.
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12.14: Approximation of {(s, a) by finite sums

Theorem 12.21 For any integer N > 0 and ¢ > 0 we have

N 1 1-s © -
25) Us,a)= ), TR _SIN(E%

dx.
Somtar | s—1 X

Proor. We apply Euler’s summation formula (Theorem 3.1) with f(r) =
{t + a)”® and with integers x and y to obtain

_ R R el 1
y<§5x(n+a)s_£(t+a)s * y (t‘*'a)”1

Take y = N and let x — oo, keeping ¢ > 1. This gives us

i 1 ® dt R e 1
R L S LT

n=N+1(n + a) vy (t+a) n t+a)

. L1 _WN+ait (=[]
C(s’“)_,,;o(n+a)s_ s—1 SJNW

dt.

or

This proves (25) for o > 1. If ¢ > 6 > 0 the integral is dominated by
L%’ (t + a)7% 1 dt so it converges uniformly for ¢ > & and hence represents
an analytic function in the half-plane ¢ > 0. Therefore (25) holds for ¢ > 0
by analytic continuation. (]

The integral on the right of (25) can also be written as a series. We split
the integral into a sum of integrals in which [x] is constant, say [x] = n,
and we obtain

<) x_[x] _ © n+1 X — u
Jowrarme= L1 arame- g

———du.
N =N Jn 0(u+n+a)erl
Therefore (25) can also be written in the form
N 1 _ (N + a)l—s ' =3} 1 u

R R I W N i

if 6 > 0. Integration by parts leads to similar representations in successively
larger half-planes, as indicated in the next theorem.

Theorem 12.22 If 6 > —1 we have

| N 1  (N+a'e
@ Usa- ) e =T
S d 1
‘ﬁ%“+hm”gﬁffﬁﬁ}
_ss+ 1) + 1)

£ [ o
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12: The functions {(s) and L(s, )

More generally, if 6 > —m, wherem = 1,2, 3, ..., we have

N 1 (N + a)~s Zoss+ 1) (s+r—1)
28 v’ - _
28) {s.a ,,;(,(n+a)s s—1 ,Z r+1)!

X {C(s +r,a) —

= (n + a)s+r

i_l_}

_s(s+1)---(s+m)

(m+ 1)!
um+l
s+m+1 du'
0 (n + a + u)
Proor. Integration by parts implies
udu u? s+ 1 u? du

= -+ ,
m+a+u*t 2+ a4+ uyft? 2 (n+a+uft?

so if ¢ > O we have

> ! udu 12 1
,,ZN fo (n+a+utt -5,,;,\, +a+ 1y*!
+ ° ! u® du
o (n+a+urt?
But if ¢ > 0 the first sum on the right is C(s + 1, a)— YN o(m+ a7 !and
(26) implies (27). The result is also valid for ¢ > — 1 by analytic continuation.
By repeated integration by parts we obtain the more general representation

in (28). O

12.15 Inequalities for |{(s, a)|

The formulas in the foregoing section yield upper bounds for |{(c + it, )|
as a function of ¢.

Theorem 12.23 (a) If 6 > 0 we have
(29) [0, a) —a™*| < {1 +0) ifo=1+3.

(b) If0 < 6 < 1 there is a positive constant A(8), depending on 8 but not on
s or a, such that

(30) |Us,a) —a”*| < A@)|t]® f1—6<o<2and]t]>1,
(Bl ls,a) —a™*| < AQ)|t)**° if—d<o<dand|t] > |,
(32) s, a)l <AQ)|tI™*'*° if —m—6<o< -—m+dand|t| > 1,

wherem =1,2,3,...
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12.15: Inequalities for [{(s, a)|

ProOF. For part (a) we use the defining series for {(s, a) to obtain

o« 1 2}

s, 0) —a™* < ¥ Z

n= 1(n+a)

{1+ o),

which implies (29).
For part (b) we use the representation in (25) when 1 —é <o <2 to
obtain

' o N 1 N+a)1 a
e )Y A +"f P +a)”“
N dx (N-i~a)l~cr s .
<1+f1 T ar 5] +—(N+ a)”

Sinces>1—56>0wehave(x +a)° > (x + a)' > x'"?s0

f (x+a)"_r d)f N;'

Also, since |s — 1| = |6 — 1 + it] = [t| = 1 we have

(N + ayl~°

T <(N+af <(N+ 17

Finally, since |s| < |a| + |t| < 2 + {z| we find

Is| _ 2+|t| 2+|t| 1
—N o1 —.
(N+a) < T (N +af ' < Ts g
These give us
_ N? 2+ |t} N°
ya) —a <14+ —+ (N + 1P —.
1l a) —a™ | <1+ =+ N+ 1P+ 75 —

Now take N = 1 + [|t]]. Then the last three terms are O(|¢|°), where the
constant implied by the O-symbol depends only on §. This proves (30).
To prove (31) we use the representation in (27). This gives us

N 1 N 1-a
o0 —a™l< ¥ o ( ,f_“)”

+ 2 IsH1 + 1,0 — a7 1)

1
15|Z( " )u+1 |5l|3+1|z(—+5)a—+2

As in the proof of (30) we take N = 1 + [|t|] so that N = O(|t|) and we
show that each term on the right is O(|¢|! *%), where the constant implied
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12: The functions {(s) and L(s, )

by the O-symbol depends only on 4. The inequalities —6 < ¢ < 6 imply
1-6<1-06<1+ 4 hence

N 1 N dx (N+a)}°

Y —— <1+ <14

n=1(n+a)d 1(X+a)a l—-o

N 11+6
<1+ T ogery,

Since |s — 1] > |t| = 1 the second term is also O(jt|' *%). For the third term
we use (30), noting that 1 —d <o+ 1 <1+ J and |s| = O(|t]), and we
find that this term is also O(|t|! *%). Next, we have

Nood
8 o | )

= O(|t[N~%) = O(|t]' %) = O(]t|' *9).
Finally,

it + 13, s = o1 [ ) = en

N

= O(1tPN*"1) = O(e[*),

This completes the proof of (31).
The proof of (32)is similar, except that we use (28) and note thata™” = O(1)
when ¢ < 0. ]

12.16 Inequalities for |{(s)| and | L(s, y)]

When a = 1 the estimates in Theorem 12.23 give corresponding estimates
for |{(s)|. They also lead to bounds for Dirichlet L-series. If ¢ > 1 + 8, where
& > 0, both |{(s)| and |L(s, x)| are dominated by {(1 + &) so we consider
onlysg <1+ 4.

Theorem 12.24 Let y be any Dirichlet character mod k and assume 0 < 6 < 1.
Then there is a positive constant A(J), depending on & but not on s or k,
such that for s = o + it with |[t| > 1 we have

(33) |L(s, x)| < A@)ke]**'*® if—-m—0<0< —m+6,.
wherem = —1,0,1,2, ...

Proor. We recall the relation
k-1 r
Lis, ) =k™*Y x(r)C(s, E)'
r=1
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Exercises for Chapter 12

Ifm=1,23,... we use (32) to obtain

k-1
|Lis, Ol < k77 )

r=1

C(Ss i) \ < km+6kA(5)|t'm+1+6
which proves (33) form > 1. Iim = 0 or —1 we write
l -5
X .
Since —m — § < 0 < —m + & we can use (30) and (31) to obtain
r r\— ¢
{=1)- )

so the second sum in (34) is dominated by A(8)|kt|™***2. The first sum is
dominated by

(34) Lis, x) = z LAY

k—a Skm+6A(5)|t|m+1+6,

k-1 1 k-1 s 1 k ‘s km+1+6 km+1+6
- < m? <14 fx"‘ dx = < ,
r=1 r’ ,;1 1 m + 1 + (S é
and this sum can also be absorbed in the estimate A(6)|kt|™*!*°. 0

Exercises for Chapter 12

1. Let f(n) be an arithmetical function which is periodic modulo .

(a) Prove that the Dirichlet series Z f(n)n"* converges absolutely for & > 1 and that

f(")_k ff(r)c< )ifo>1.

n=1 n*

(b) If Y *_, f(r) = O prove that the Dirichlet series Y. f(n)n~* converges for ¢ > 0
and that there is an entire function F(s) such that F(s) = Z f(n)n~*fore > 0.

2, If x is real and ¢ > 1, let F(x, s) denote the periodic zeta function,

@® e2m’nx

F(x,s)= Y,

n=1 n

5

If0 < a < 1and ¢ > 1 prove that Hurwitz’s formula implies

I'ilt —s)
(2 )1 s

F(a, ) { wi(l — s)/ZC(l -, (1) + em(s 1)/2C(1 —s, 1 - a)}

3. The formula in Exercise 2 can be used to extend the definition of F(a, s) over the
entire s-plane if 0 < a < 1. Prove that F(a, s), so extended, is an entire function of s.

4 If0<a<land0 < b < 1let

I'(s)

(D(a,b,s)—( 20y

(s, F(b, 1 + s) + {(s,1 —a)F(1 — b, 1 + s)},
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12: The functions {(s) and L(s, x)

where F is the function in Exercise 2. Prove that

ﬂa, b, s) _
[s)(—s)

e 2{{(s, a)l(—s, 1 — b) + {(s, 1 — a){(—s, b)}

+ e7™2{(—s, 1 = b)(s, 1 — a) + {(—s, b)(s, a)},
and deduce that ®(a, b, s) = ®(1 — b, a, —s). This functional equation is useful in

the theory of elliptic modular functions.

In Exercises 5, 6 and 7, &(s) denotes the entire function introduced in Section
12.8,

0) = 5 st - 1)n"$/2r<§>z:(s).

5. Prove that &(s) is real on the lines t = 0 and ¢ = 1/2, and that &(0) = £(1) = 1/2.

6. Prove that the zeros of &(s) (if any exist) are all situated in the strip0 < ¢ < 1 and lie
symmetrically about the lines t = 0 and ¢ = 1/2.

7. Show that the zeros of {(s) in the critical strip 0 < ¢ < 1 (if any exist) are identical
in position and order of multiplicity with those of &(s).

8. Let ¥ be a primitive character mod k. Define

0 ifx(-1=1,

“=“(X)={1 ifx(—1) = — 1.

(a) Show that the functional equation for L(s, ) has the form

a(s — a)
2

LA — s, 7) = e()2Qn) ks~ * cos<

s+a)/2 ,
o) = (5>( " F(° * “)L(s, 2.
Vi3 2

Show that &(1 — s, §) = &(x)&(s, x)-

9. Refer to Exercise 8.

)F(S)L(s, x), where |&(x)] = 1.

(b) Let

{a) Prove that &(s,y) # 0ifo > loro < 0.
(b) Describe the location of the zeros of L(s, ) in the half-plane ¢ < 0.

10. Let y be a nonprimitive character modulo k. Describe the location of the zeros of
L(s, ) in the half-plane ¢ < 0.

11. Prove that the Bernoulli polynomials satisfy the relations
B, (1 — x) = (= 1)"B,{x) and B,,, (}) = O for every n > 0.

12. Let B, denote the nth Bernoulli number. Note that
Bo=k=1-4-4 B,=s=1-4-4-4

>
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13,

14,

15.

16.

17.

Exercises for Chapter 12

These formulas illustrate a theorem discovered in 1840 by von Staudt and Clausen
(independently). If n > 1 we have

k]

BZn = In - Z
p—1|2n
where I, is an integer and the sum is over all primes p such that p — 1 divides 2n.
This exercise outlines a proof due to Lucas.

(a) Prove that

[Hint: Write x = log{1 + (¢* — 1)} and use the power series for x/(e* — 1).]
(b) Prove that

k!
k+1

B,= ) c(n, k),
k=0

where c(n, k) is an integer.

(c) Ha, b are integers witha > 2, b > 2 and ab > 4, prove that ab|(ab — 1)!. This
shows that in the sum of part (b), every term with k + 1 composite, k > 3, is an
integer.

(d) If p is prime, prove that

"g( 1),p—1>,"= ~1(modp) ifp—1nn>0,
=) r ) =1 0(modp) ifp—1sn

(e) Use the above results or some other method to prove the von Staudt—Clausen
theorem.

Prove that the derivative of the Bernoulli polynomial B,(x) is nB,_(x) if n = 2.

Prove that the Bernoulli polynomials satisfy the addition formula

" (n
B(x +y)= ) < )Bk(X)y""‘~
K=o\k
Prove that the Bernoulli polynomials satisfy the multiplication formula
m-1 k
Bmx) =mP~1 Y Bp<x + f>.
k=0 m
Prove that if » > 1 the Bernoulli numbers satisfy the relation
r 22kB2k B 1
o QN2r + 1 =20 @)

Calculate the integral {3 xB,(x) dx in two ways and deduce the formula

et

rFmo\r p+2—r=p+1

275



12: The functions {(s) and L(s, x)

18. (a) Verify the identity
uv et — 1 uv ( 1 1 >
= 1+ +
e =D —1) u+v u+v e —1 e -1

@y un—l+vn—1
=1+ Y —|———B,.
noz n! u+t+v

(b) Let J = |} B,(x)B,(x) dx. Show that J is the coefficient of p!q!uPv? in the
expansion of part (a). Use this to deduce that

p'q!

+1 :
. (=1 T q)!B,,ﬂ, ifp=>1,q=1,
B (x)B(x) dx =
J.o #B(x) 1 ifp=gq=0,
0 ifp>1,g=00rp=0,g>1

19. (a) Use a method similar to that in Exercise 18 to derive the identity

™y
2r,

(u + U) Z Z Bm(x)B (x) = Z Z Bm+n(x)

m=0n=0 ! m=0n=0 (2 )'

(b) Compare coefficients in (a) and integrate the result to obtain the formula

B er+n— r + ' ‘
B,(x)B,(x) = Z{(?)n + (2"r> } P _22(:‘) + (=1t (mm+nn)! B,

for m > 1, n > 1. Indicate the range of the index r.

20. Show thatif m > 1,n > 1and p > 1, we have

1
f B,(x)B,(x)B(x) dx
0

—2r—1)!
= —1P+l n MdB B .
( P Z {<2r) - <2r)m} m+n+p—2r! 2rPm+ntp-2

In particular, compute [} B,*(x) dx from this formula.
21. Let f(n) be an arithmetical function which is periodic mod k, and let
1 — 2nimn/k
gy =, X flme
mmodk
denote the finite Fourier coefficients of £ If

F)=k*Y f(r)C(s, %)

r=1

prove that

N r( ‘) LS, —1:is u . i
F(l —s)= on )S{ ’zrzlg(r)é<b —> ”r;g(—r)C<b, k>}
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22. Let x be any nonprincipal character mod k and let S(x) = Y., x(n).
(a) If N > 1 and ¢ > 0 prove that

N © S(x) — S(N
L(s, y) = Z Xr(:)-%sj. L)x‘:#

n=1

dx.

N

(b) If s = 0 + it with ¢ > 6 > 0 and |¢]| > 0, use part (a) to show that there is a
constant A(d) such that

[L(s, )| < A@)B(K)(|t] + 1)'~°
where B(k) is an upper bound for |S(x}|. In Theorem 13.15 it is shown that
B(k) = O(/k log k).
(¢} Prove that for some constant 4 > 0 we have

1
|L(s, p)| < Alogk ife>1———and0 <]t <2
log k

[Hint: Take N = k in part (a).]
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Analytic Proof of the
Prime Number Theorem

13.1 The plan of the proof
The prime number theorem is equivalent to the statement
(1) Y(x) ~ x asx — oo,

where Y(x) is Chebyshev’s function,

Yix) = ) Aln).
n<x

This chapter gives an analytic proof of (1) based on properties of the Riemann
zeta function. The analytic proof is shorter than the elementary proof
sketched in Chapter 4 and its principal ideas are easier to comprehend.
This section outlines the main features of the proof.

The function y is a step function and it is more convenient to deal with its
integral, which we denote by ¥,. Thus, we consider

Ya(x) = f W0 d
1

The integral y, is a continuous piecewise linear function. We show first that
the asymptotic relation

2 Py(x) ~ %xz as x — o0

implies (1) and then prove (2). For this purpose we express ¥/,(x)/x? in terms
of the Riemann zeta function by means of a contour integral,

Yilx) 1 el oxd {'(s) ,
& = fc_mi o 1)(— T»‘O) ds, wherec > 1.
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13.2: Lemmas

The quotient —{'(s)/{(s) has a first order pole at s = 1 with residue 1. If we
subtract this pole we get the formula

l//l(X) 1 1 2_ 1 ¢+ woi xs—l CI(S) 1 ‘
2 _§<1_)_c) —%J;_wi ——s(s-{-l)(_@—.s—l)ds’ fore > 1.

We let
NS B O
h(s)_s(s+1)< ) s——1>

and rewrite the last equation in the form

l/ll(x) 1 1 2 1 J-c+ooi _
3 -1 ==} =— S=1p(6) ds
G) x2 2 X 2 )i X' h(s) ds
X<~ 1 + o .
= h(c + it)e™ 98> dt.
2n J_
To complete the proof we are required to show that
Xt~ 1 + o0 .
@) lim - hic + it)e" 8% dt = 0.

Now the Riemann-Lebesgue lemma in the theory of Fourier series states that
+ o
lim f@e™dt =0
X0 — Q0
if the integral {* % | f(1)| dt converges. The integral in (4) is of this type, with x
replaced by log x, and we can easily show that the integral {*2 |h(c + ir)| dt
converges if ¢ > 1, so the integral in (4) tends to 0 as x — co. However, the
factor x°~ ! outside the integral tends to co when ¢ > 1,so we are faced with an
indeterminate form, oo - 0. Equation (3) holds for every ¢ > 1. If we could
put ¢ = 1 in (3) the troublesome factor x°~! would disappear. But then
h(c + it) becomes h(1 + it) and the integrand involves {'(s)/{(s) on the line
o = 1.Inthiscaseitis moredifficult to prove that the integral {* 2 [h(1 + it)| dt
converges, a fact which needs to be verified before we can apply the Riemann-
Lebesgue lemma. The last and most difficult part of the proof is to show that
it is possible to replace ¢ by 1 in (3) and that the integral {*3 |h(1 + it)| dt
converges. This requires a more detailed study of the Riemann zeta function
in the vicinity of the line ¢ = 1.
Now we proceed to carry out the plan outlined above. We begin with
some lemmas.

13.2 Lemmas

Lemma 1 For any arithmetical function a(n) let

Alx) = Y aln),

n<x
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13: Analytic proof of the prime number theorem

where A(x) = 0if x < 1. Then

5 Y (x — na(n) = fo(t) dt.
PROOF. We apply Abel’s identity (Theorem 4.2) which states that
© . atn) ) = A~ [ A0f10 d

if f has a continuous derivative on [1, x]. Taking f(¢t) = t we have

Yamf(n) = Y na(n) and A(x)f(x) = x Y a(n

nsx n<x n<x

s0 (6) reduces to (5). O

The next lemma is a form of L’Hospital’s rule for increasing piecewise
linear functions.

Lemma 2 Let A(x) = Y.<, a(n) and let A,(x) = [} A(t) dt. Assume also that
a(n) = 0 for all n. If we have the asymptotlc formula
7 Ax) ~ Lx* asx—> o
for some ¢ > 0 and L > 0, then we also have
8) A(x) ~ cLx*"! asx — 0.
In other words, formal differentiation of (7) gives a correct result.

Proor. The function A(x) is increasing since the a(n) are nonnegative.
Choose any > 1 and consider the difference 4,{(fx) — 4,(x). We have

Ay (fx) — Ay(x) = ﬁxA(u) du > fﬂxA(X) du = A(x)(fx — x)

X

= x(f — 1)A(x).

This gives us

AX) < 5— {41(Bx) — 4,00}

ﬁ
or
A 1A A
xc—l - ﬁ -1 (ﬂX)C x¢
Keep f fixed and let x — o0 in this inequality. We find
A(x) 1 . -1
llrjl_’stllp c1SB_(L/3 L)—Lﬁ_l.
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13.2: Lemmas

Now let 8 — 1 +. The quotient on the right is the difference quotient for the
derivative of x at x = 1 and has the limit ¢. Therefore

) <cL.

A
)] lim sup

c—1
x~wo X

Now consider any a with 0 <« <1 and consider the difference
A(x) — A;(xx). An argument similar to the above shows that
A(x) 1 —o

>L
X7l —a

lim inf

X— w0

As o —» 1 — the right member tends to cL. This, together with (9) shows that
A(x)/x°" ! tends to the limit ¢L as x — co. O

When a(n) = A(n) we have A(x) = ¥(x), A,(x) = ¥,(x), and a(n) = 0.
Therefore we can apply Lemmas 1 and 2 and immediately obtain:

Theorem 13.1 We have
(10) Yi(x) = Y (x — mA(n).

n<x
Also, the asymptotic relation ,(x) ~ x2/2 implies Y(x) ~ x as x — 0.
Our next task is to express ¥,(x)/x? as a contour integral involving the
zeta function. For this we will require the special cases k = 1 and k = 2 of

the following lemma on contour integrals. (Compare with Lemma 4 in
Chapter 11.)

Lemma 3 If ¢ > 0 and u > 0, then for every integer k > 1 we have

1 fetel u’’? i(l——u)" fo<u<l,
L f dz = 1K1
2mi ¢~ ooi 2(z + 1)(2 + k)

0 ifu>1,
the integral being absolutely convergent.

PRrROOF. First we note that the integrand is equal to u *I'(z)/T(z + k + 1).
This follows by repeated use of the functional equation I'(z + 1) = zI'(z).
To prove the lemma we apply Cauchy’s residue theorem to the integral

1 u *T(2)

il L 3
i Jem T + k+ 1)

where C(R) is the contour shown in Figure 13.1(a) if 0 < u < 1, and that in
Figure 13.1(b) if u > 1. The radius R of the circle is greater than 2k + ¢ so
all the polesat z = 0, —1, ..., —k lie inside the circle.
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13: Analytic proof of the prime number theorem

/ N 7/
! N / /
/ Ry \\ / R

1 L1
-2k -2 -10 C

e ~ - ——

) O<u<xi (b)y u>1

Figure 13.1

Now we show that the integral along each of the circular arcs tends to 0
as R —» . If z = x + iy and |z} = R the integrand is dominated by

u=? u u-¢

= < .
Z2z+ 1) (z+ k)| dzllz+1|--|z+ k| " Rlz+ 1| |z + k|

The inequality 4™~ < u™° follows from the fact that «™* is an increasing
function of x if 0 < u < 1 and a decreasing function ifu > 1. Nowifl <n <k
we have

lz+n|2|zl-n=R-n2R—-k>R/2
since R > 2k. Therefore the integral along each circular arc is dominated by

2nRu~°¢
——— = OR*
rRary ~ 0%
and this -0 as R — oo since k > 1.
If u > 1 the integrand is analytic inside C(R) hence [, = 0. Letting
R — o0 we find that the lemma is proved in this case.
If 0 < u < 1 we evaluate the integral around C(R) by Cauchy’s residue

theorem. The integrand has poles at the integersn = 0, —1,..., —k, hence
R e el =
“n )
Letting R — oo we obtain the lemma. O
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13.3: A contour integral representation for ¥ (x)/x>

13.3 A contour integral representation
for Y, (x)/x*
Theorem 13.2 If ¢ > 1 and x > 1 we have

) L (e x < cm)d

(11) X 2 ss+ D\ )

Proor. From Equation (10) we have ¥,(x)/x = Y <. (1 — n/x)A(n). Now
use Lemma 3 with k = 1 and u = n/x. If n < x we obtain

¢+ ool S
I

x  2miJ._,; s(s+ 1)

Multiplying this relation by A(n) and summing over all n < x we find

l// (X 1 ¢+ ooi A(n)(x/n)s ¢+ ool A(n n)s
,,;x 27 Jo_ i SIS + 1) oo 2mJ; wi S+ 1) ds

since the integral vanishes if n > x. This can be written as

c+ ol

(12) hb) i e

where 27if,(x) = A(n)(x/n)*/(s* + s). Next we wish to interchange the sum and
integral in (12). For this it suffices to prove that the series

1) S inenas

is convergent. (See Theorem 10.26 in [2].) The partial sums of this series
satisfy the inequality

% ¢+ i A(n)(x/n)c A(n) ¢+ i x¢ s < Ai A(n)

n=1 c— ool |SHS+ ll n= c— i lS||S+ ll - n=1 n“ i

where A is a constant, so (13) converges. Hence we can interchange the sum
and integral in (12) to obtain

¢+ i + ooi s Al
M=J Zf,,(s)ds—ﬁf a @ 4s

X c—-oi n=1 cw15(3+1)n1 n®
_ L ¢+ o0i x5 C(s)
= 2mi Lm,. S + 1)( C(s)) ds.

Now divide by x to obtain (11). Od
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13: Analytic proof of the prime number theorem

Theorem 13.3 If ¢ > 1 and x > 1 we have

Yilx) 1 N1 e
(14) 3 —5(1—;> _Zr_ifc_wix h(s) ds,
where
g L (e _ 1
1) h“)“s(s+1)( Us)  s— 1>'

ProoF. This time we use Lemma 3 with k = 2 to get

1 1 2 1 ¢+ ool x5

=l1—-=-] = —f — s,

2 x 2n0 J i S8+ (s + 2)
where ¢ > 0. Replace s by s — 1 in the integral (keeping ¢ > 1) and subtract
the result from (11) to obtain Theorem 13.3. U

If we parameterize the path of integration by writing s = ¢ + it, we find

x* 71 = x T 1x" = x*7 e 8> gnd Equation (14) becomes
l/jl(x) 1 1 2 . xc_l J~C+00i s\ it log x
(16) 2 a7 = C_wih(c + ite dr.

Our next task is to show that the right member of (16) tends to 0 as x — 0.
As mentioned earlier, we first show that we can put ¢ = 1 in (16). For this
purpose we need to study {(s) in the neighborhood of the line ¢ = 1.

13.4 Upper bounds for [{(s)| and [{'(s)]
near the line ¢ = 1

To study {(s) near the line ¢ = 1 we use the representation obtained from
Theorem 12.21 which is valid for ¢ > 0,

N N 1 oox_[x] Nl—s
(17 C(s)—n;IE—SJN S dx+s_1.

We also use the formula for {(s) obtained by differentiating each member
of (17),

N 1 0 — 1 0 —
(9 t=-3 B, [T Tlioex, XD
=1 N N x x
N'"SlogN  Nt-®
s—1 (s — 1)*°
The next theorem uses these relations to obtain upper bounds for |{(s)|
and |{'(s)].
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13.4: Upper bounds for |{(s)| and |{’(s)! near the line 6 = 1

Theorem 13.4 For every A > 0 there exists a constant M (depending on A)
suck that

(19) [(s)l < M log t and |{'(s)] < M log?t

Jor all s with 6 > 1/2 satisfying

A
(20) o> I—E—— andt > e.

Note. The inequalities (20) describe a region of the type shown in Figure
13.2.

Figure 13.2

ProoF. If 6 > 2 we have |{(s)| < {(2)and [{'(s)| < |{'(2)| and the inequalities
in (19) are trivially satisfied. Therefore we can assume ¢ <2 and t > e.
We then have

[s|<o+t<2+t<2t and|s — 1| >¢

so 1/]s — 1] < 1/t. Estimating |{(s)| by using (17) we find

N

1 o0
O

n=1

Nla

i 2t Nl‘”
a t ‘

Now we make N depend on ¢ by taking N = [¢t]. Then N <t < N + 1 and
log n < log tifn < N. The inequality (20) implies 1 — o < A/log t so

l - nl—“ _ le(l—n)logn < leA logn/ logt < leA — 0(}_)

7 n n n n n
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13: Analytic proof of the prime number theorem

Therefore
2t N+1 Ni-e N 1 1
Rl - = =ol-)=ox
one <N -0 andme =T 0<N> o)
SO

N
1) = O( Y ;) + O(1) = O(log N) + 0(1) = O(log ¢).

=1

This proves the inequality for {{(s)| in (19). To obtain the inequality for
|{'(s)] we apply the same type of argument to (18). The only essential difference
is that an extra factor log N appears on the right. But log N = O(log t) so we
get |{'(s)| = O(log? t) in the specified region. O

13.5 The nonvanishing of {(s) on the
lineoc =1

In this section we prove that {(1 + it) # O for every real . The proof is based
on an inequality which will also be needed in the next section.
Theorem 13.5 If ¢ > 1 we have

(21) C(o) o + i))*| o + 2it)| = 1.

ProoF. We recall the identity {(s) = ¢ proved in Section 11.9, Example 1,
where

1

1 mp

Gls) = 3 Al) @ > 1).

n~*=
o= logn g‘ 2

m

ms

This can be written as

© e~1mt logp
-er(y £ e =iy 5, e
P m= 1 m p m=1

from which we find

1) = exp{z 5 M}

p m=1 mp

We apply this formula repeatedly with s = g, s = ¢ + it and s = ¢ + 2it,
and obtain

()| lo + it)|*| o + 2in)|
_ exp{z 5 3 + 4 cos(mt log p) + cos(2mt log p)}

p m=1 mpmo-
But we have the trigonometric inequality

34+4cosf +cos28>0
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13.6: Inequalities for [1/{(s)| and |{’(s)/L(5)|

which follows from the identity

3+4cosf+cos20=3+4cosb + 2cos*0 —1=2(1 + cos §)%
Therefore each term in the last infinite series is nonnegative so we obtain
(21). O
Theorem 13.6 We have {(1 + it) # O for every real t.
PROOF. We need only consider ¢ # 0. Rewrite (21) in the form

{(o + it)
c—1

4

22) {e — Do)}’ 1{(o + 2i)| = &—1—1

This is valid if 6 > 1. Now let 6 —» 1+ in (22). The first factor approaches
1 since {(s) has residue 1 at the pole s = 1. The third factor tends to |{(1 + 2it)].
If {(1 + it) were equal to O the middle factor could be written as

lo +it) — L + i)
c—1

4
= |{(1 +it)|* aso— 1+.

Therefore, if for some ¢ # 0 we had {(1 + i) = O the left member of (22)
would approach the limit |'(1 + it)|*|{(1 + 2it)| as ¢ — 1+. But the right
member tends to co as ¢ — 1 + and this gives a contradiction. O

13.6 Inequalities for |1/{(s)| and |{’(5)/{(s)]

Now we apply Theorem 13.5 once more to obtain the following inequalities

for [1/¢(s)| and |{'(s)/{(s)].

Theorem 13.7 There is a constant M > 0 such that

)

< Mlog’t and
& 4

<Mlog®t

g
£(s)
whenever 6 > 1 andt > e.

Proor. For ¢ > 2 we have

Ll _|eumw|_ &1
C-(;j - nglF Sn;l-n—ZSC(z)
and
{'(s) = An)
f | =2

so the inequalities hold trivially if ¢ > 2. Suppose, then, that 1 < ¢ < 2 and
t > e. Rewrite inequality (21) as follows:

1
[T + 0]~ Uo)* (o + 2it)| V4.
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13: Analytic proof of the prime number theorem

Now (¢ — 1){(0) is bounded in the interval 1 < ¢ < 2, say (6 — 1){(0) < M,
where M is an absolute constant. Then

C(G)S—M ifl<o<2
c—1

Also, {(6 + 2it) = O(log t)if 1 < ¢ < 2 (by Theorem 134),s0forl <o <2
we have
1 < M**(log t)'*  A(log t)'/*
o+~ (- 1D** (o — 1>

where A is an absolute constant. Therefore for some constant B > 0 we have

Blo — 1**

(23) [{(o + it)| > “log D

ifl<o<2andt >e.

This also holds trivially for ¢ = 1. Let « be any number satisfying 1 < o < 2.
Thenif 1 < 0 < a,t > e, we may use Theorem 13.4 to write

o +it) — la + it)] < rIC’(u +it)| du < (@ — o)M log? ¢

< f(ox — DM log? t.
Hence, by the triangle inequality,

1o + i) = |l + )| — Lo + it) — (o + ir)]

B(o — 1)34

> o + it)| — (@ — DM log? t > ~log 7

— (o — DM log?t.
Thisholdsif1 < ¢ < «,and by(23)italsoholdsfora < ¢ < 2since(a — 1)*/
>(a — 1)¥*. In other words, if 1 < 6 < 2 and t > e we have the inequality

B(x — 1)**

W— (a — l)M logzt

[lo + it)] =

for any « satisfying 1 < a« < 2. Now we make « depend on ¢ and choose a
so the first term on the right is twice the second. This requires

B 2M ) (logt)®’

Clearly o« > 1 and also a < 2 if t > ¢, for some t,. Thus, if t > t, and
1 <6 <2 wehave

C
- —_— 2 =T
o + i)l 2 (e = DM log™ t = Feorss -

The inequality also holds with (perhaps) a different Cife <t < ¢,.
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13.7: Completion of the proof of the prime number theorem

This proves that |{(s)| > Clog™" ¢ for all ¢ > 1, t > e, giving us a corre-
sponding upper bound for |1/{(s)|. To get the inequality for |{'(s)/{(s)| we
apply Theorem 13.4 and obtain an extra factor log? t. O

13.7 Completion of the proof of the prime
number theorem

Now we are almost ready to complete the proof of the prime number theorem.
We need one more fact from complex function theory which we state as a
lemma.

Lemma 4 If f(s) has a pole of order k at s = o then the quotient f'(s)[f(s) has a
first order pole at s = a with residue —k.

ProoF. We have f(s) = g(s)/(s — a), where g is analytic at « and g(x) # 0.
Hence for all s in a neighborhood of « we have

o= e e o
Thus
f_ -k g6
fls) s—a gl
This proves the lemma since g'(s)/g(s) is analytic at a. O

Theorem 13.8 The function

)1

Fo)= =79 ~s=1

is analytic at s = 1.
Proor. By Lemma 4, —{'(s)/{(s) has a first order pole at 1 with residue 1,
as does 1/(s — 1). Hence their difference is analytic at s = 1. O

Theorem 13.9 For x > 1 we have

2 ©
‘I/I(X) 1 (1 _ 1) — _}_I h(l + it)eit log x dt,
b 2n J

x? 2

where the integral = ., |h(1 + it)| dt converges. Therefore, by the Riemann—
Lebesgue lemma we have

(24) Yy(x) ~ x%2
and hence

Y(x) ~ x asx— oo.
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13: Analytic proof of the prime number theorem

PROOF. In Theorem 13.3 we proved that if ¢ > 1 and x > 1 we have

. 1 1 2 1 ¢+ oi B
ng)__i(l__) =2—mJ‘ x5~ 1h(s) ds,

X X c— i

gL (e _ 1
hls) = s(s + 1)( is) s-— 1)'

Our first task is to show that we can move the path of integration to the line
¢ = 1. To do this we apply Cauchy’s theorem to the rectangle R shown in
Figure 13.3. The integral of x*~'A(s) around R is O since the integrand

where

fﬂ . ,
1 +iT c+iT
~—
g
0 1 c
——-
1 —iT c—iT
Figure 13.3

is analytic inside and on R. Now we show that the integrals along the
horizontal segments tend to 0 as T — oo. Since the integrand has the same
absolute value at conjugate points, it suffices to consider only the upper
segment, t = T. On this segment we have the estimates

1 < 1
ss+ 1)~ T?

1

nd———1 <1<
WU+ V6| =T =T

Also, there is a constant M such that |{'(s)/{(s)] < M log®t if ¢ > 1 and
t > e. Henceif T > e we have

9
Ihis)| < Mlog” T

so that

i M log® log’ T
Sfx"l—£d0=ch’l o8 (c — 1)

f x°~1h(s) ds 1 T2 T2

1

290



13.8: Zero-free regions for {(s)

Therefore the integrals along the horizontal segments tend to 0 as T — oo,
and hence we have

¢+ ooi 1+ o0i

f x*"h(s)ds = J x5~ 1h(s) ds.
c—~ ol 1~ ool

On the line ¢ = 1 we write s = 1 + it to obtain

1 1+ o0i L 1 @© i
s— . o hi it)e't o8> gt
5 J; x°7 *h(s) ds 7 f_m (i + it)e

— i

Now we note that

f_]h(l +it)| dt = J_ee+ £°° N f_:.

In the integral from e to oo we have

M log®t
|h(1+it)|s-T02g—

50 [ |h(1 + it)| dt converges. Similarly, [Z¢, converges, so [ [h(1 + it)| dt
converges. Thus we may apply the Riemann-Lebesgue lemma to obtain
¥,(x) ~ x%/2. By Theorem 13.1 this implies y(x) ~ x as x — oo, and this
completes the proof of the prime number theorem. O

13.8 Zero-free regions for {(s)

The inequality |1/{(s)| < M log’ t which we proved in Theorem 13.7 for
¢ = 1l and ¢ > e can be extended to the left of the line ¢ = 1. The estimate is
not obtained in a vertical strip but rather in a region somewhat like that
shown in Figure 13.2 where the left boundary curve approaches the line
¢ = 1 asymptotically as ¢t — oo. The inequality implies the nonvanishing of
{(s) in this region. More precisely, we have:

Theorem 13.10 Assume o > 1/2. Then there exist constants A > 0and C > 0
such that

1o +it)] > Tog’ ¢

whenever

(25) <o<1 andt > e.

T log®t -
This implies that {(c + it) # 0 if o and t satisfy (25).
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13: Analytic proof of the prime number theorem

Proor. The triangle inequality, used in conjunction with Theorem 13.7,
gives us

(26) 1{lo + i = [0 + in)] — |1 + it) — {(o + it)]

B
> E)g—7£ =18 +it) — (o + it)],

for some B > 0. To estimate the last term we write

1 , rl
[ +it) — {(o + it)| = J {u+itydul| < J [{'(u + it)| du.

Since t > e we have log® t > logtso1 — (4/log® t) > 1 — (4/log t). Thus, if
o satisfies (25) for any 4 > 0 we can apply Theorem 13.4 to estimate
{{'(u + it)|, giving us

A MA

. _ . _ 2 2 el
(1 + it) — (o + it)] < M(1 — o)log?t < M log tloggt fog ¢’

Using this in (26) we find

B— MA
[{(e + it)| > og” 1
This holds for some B > 0, any A > 0 and some M > 0 depending on 4. A
value of M that works for some A also works for every smaller A. Therefore
we can choose 4 small enough so that B — MA > 0. If welet C = B — MA
the last inequality becomes | {(¢ -+ it)| > C log~7 t which proves the theorem
for all o and ¢ satisfying

<og<l, andt > e.

logdt
But the result also holds for 6 = 1 by Theorem 13.7 so the proof is complete.
O
We know that {(s) # 0if ¢ > 1, and the functional equation
- . [7s
{(s) = 2Q2n)! T — s)sm<7>l(1 — %)
shows that {(s) # 0 if ¢ < 0 except for the zeros at s = —2, —4, —6, ...

which arise from the vanishing of sin(ns/2). These are called the “trivial™
zeros of {(s). The next theorem shows that, aside from the trivial zeros,
{(s) has no further zeros on the real axis.

Theorem 13.11 If ¢ > 0 we have

o (_1y—1
@) (1-2%0=3 “0

n=1

This implies that {(s) < Oifsisrealand 0 < s < 1.
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13.9: The Riemann hypothesis

Proor. First assume that ¢ > 1. Then we have

oo @ 1

1= = =25 ——

n=1 n=1(2n)s
S (4274374 ) =227+ 467+
=1 =2 43 4 45T 6

which proves (27) for ¢ > 1. However, if ¢ > 0 the series on the right con-
verges, so (27) also holds for ¢ > 0 by analytic continuation.

When s is real the series in (27) is an alternating series with a positive sum.
If 0 < s < 1 the factor (1 — 2! 7%) is negative hence {(s) is also negative. [J

13.9 The Riemann hypothesis

In his famous 8-page memoir on n(x) published in 1859, Riemann [58]
stated that it seems likely that the nontrivial zeros of {(s) all lie cn the line
o = 1/2, although he could not prove this. The assertion that all the non-
trivial zeros have real part 1/2 is now called the Riemann hypothesis. In 1900
Hilbert listed the problem of proving or disproving the Riemann hypothesis
as one of the most important problems confronting twentieth century
mathematicians. To this day it remains unsolved.

The Riemann hypothesis has attracted the attention of many eminent
mathematicians and a great deal has been discovered about the distribution
of the zeros of {(s). The functional equation shows that all the nontrivial
zeros (if any exist) must lie in the strip 0 < ¢ < 1, the so-called “critical
strip.” It is easy to show that the zeros are symmetrically located about the
real axis and about the “critical line” ¢ = 1/2.

In 1915 Hardy proved that an infinite number of zeros are located on the
critical line. In 1921 Hardy and Littlewood showed that the number of zeros
on the line segment joining 1/2 to (1/2) + iT is at least AT for some positive
constant A4, if T is sufficiently large. In 1942 Selberg improved this by showing
that the number is at least AT log T for some 4 > 0. It is also known that
the number in the critical strip with 0 < t < T is asymptotic to T log T/2n
as T — o0, so Selberg’s result shows that a positive fraction of the zeros lie
on the critical line. Recently (1974) Levinson showed that this fraction is
at least 7/10. That is, the constant in Selberg’s theorem satisfies 4 > 7/20x.

Extensive calculations by Gram, Backlund, Lehmer, Haselgrove, Rosser,
Yohe, Schoenfeld, and others have shown that the first three-and-a-half
million zeros above the real axis are on the critical line. In spite of all this
evidence in favor of the Riemann hypothesis, the calculations also reveal
certain phenomena which suggest that counterexamples to the Riemann
hypothesis might very well exist. For a fascinating account of the story of
large-scale calculations concerning {(s) the reader should consult [17].
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13: Analytic proof of the prime number theorem

13.10 Application to the divisor function

The prime number theorem can sometimes be used to estimate the order of
magnitude of multiplicative arithmetical functions. In this section we use it to
derive inequalities for d(n), the number of divisors of n.

In Chapter 3 we proved that the average order of d(n) is log n. When n is
prime we have d(n) = 2 so the growth of d(n) is most pronounced when n
has many divisors. Suppose n is the product of all the primes <x, say

28) n=2-3-5 " pr-
Since d(n) is multiplicative we have
d(n) = d(2)d(3) - - - d(prexy) = 2°%.
For large x, n(x) is approximately x/log x and (28) implies that
logn= ) logp=9(x) ~ x
p<Xx
so 2™ is approximately 2 '°8" 1°¢ log" Now
2a logn __ ea logn log2 — na log 2
hence 2 108" log logn — 4 log2/log logn 1p gther words, when 7 is of the form (28)
then d(n) is approximately 2 087 108 log — y log 2/ log logn
By pursuing this idea with a little more care we obtain the following
inequalities for d(n).
Theorem 13.12 Let ¢ > 0 be given. Then we have:
(@) There exists an integer N(g) such that n = N(g) implies
d(n) < 2(1 +¢) logn/ log logn — n(l +¢£) log 2/ log log n'
{b) For infinitely many n we have

d(n) > 2(1 —¢) logn/ log logn _ n(l —¢) log2/ log logn'

Note. These inequalities are equivalent to the relation

y d(n)l
Jim su log d(n)log log n _

m st fog log 2.

PROOF. Write n = p,* --- p,™, so that d(n) = [ %=, (a; + 1). We split the
product into two parts, separating those prime divisors < f(n) from those
> f(n), where f(n) will be specified later. Then d(n) = P(n)P,(n) where

Pimy= [] (@+1) andPy(n)= ][] (a+ 1)

pi<f(n) piz f(n)
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13.10: Application to the divisor function

In the product P,(n) we use the inequality (a + 1) < 2° to obtain P,(n) <
25 where

k
Smy= Y a.
> fn

p )

Now
k
n=[lp*> [] p*= [l f®*= ",
i=1 pi2 f(n) pixf(m)
hence
logn
log n > S(n)lo n), or S(n) < .
g (m)log f(n) fog /()

This gives us
29) P,(n) < 2'oen logfim)
To estimate P,(n) we write
Pyn) = GXP{ Y. logla; + 1)}
pi<f(n)

and show that log(a; + 1) < 2log log n if n is sufficiently large. In fact,
we have

n>pf>2%
hence
logn > a;log 2, or g; < log n/log 2.
Therefore
log n .
1+a<1 +%<(logn)2 ifn > n,

for some n,. Thus n > n; implies log(l + a;) < log(log n)*> = 2 log log n.
This gives us

P,(n) < exp{2 loglogn Y, 1} < exp{2 log log nn(f(n))}.
pi<f(m)
Using the inequality n(x) < 6x/log x (see Theorem 4.6) we obtain
12f(n)log log n
30 Pi(n) < exp{————
(30) 1(n) p{ log £ ()

where ¢ = 12/log 2. Combining (29) and (30) we obtain d(n) = P,(n)P,(n) <
29" where

} — 2cf(n) log logn/ log f(n)
2

1+ Cf(n)loglogn

) = logn + cf(n)loglogn  logn logn
g = log f(n) "~ loglogn log f(n)
loglogn
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13: Analytic proof of the prime number theorem

Now we choose f(n) to make f(n)loglog n/logn — 0 and also to make
log f(n)/loglogn — 1 as n — co. For this it suffices to take

_ logn
F) = log log nf"
Then
logn 1+ o(1) logn logn
9) loglogn1 + o(1) loglog n( +ol) <l +¢) loglogn

if n > N(e) for some N(e). This proves part (a).

To prove part (b) we pick a set of integers n with a large number of prime
factors. In fact, we take n to be the product of all the primes < x. Then
n — oo if and only if x - co. For such n we have, by the prime number
theorem,

d(n) — 21r(x) - 2(1 +0(1))x/ Iogx.
Also for such n we have

logn =} logp = 9(x) = x(1 + o(1))

pP<Xx
S0
log n
=——=(1 1
X =1 T o) (1 + o(1))log n
hence

log(1 + 0(1)))
log log n

log x = log log n + log(1 + o(1)) = log log n<1 +
= (1 + o(1))log log n.
Therefore x/log x = (1 + o(1))log n/log log n and
d(n) = 2(1 +0(1)) logn/ log logn

forsuchn. Butl + o(1) > 1 — ¢ifn > N(g) for some N(g), and this proves (b).
O

Note. As a corollary of Theorem 13.12 we obtain the relation
(31 d(n) = o(n’)

for every 6 > 0. This result can also be derived without the use of the prime
number theorem. (See Exercise 13.13)
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13.11 Application to Euler’s totient

The type of argument used in the foregoing section can also be used to
obtain inequalities for ¢(n). When n is prime we have ¢(n) = n — 1. When n
has a large number of prime factors ¢(n) will be much smaller. In fact, if n
is the product of all primes <x we have

o(n) = nr[(l - —:—))

p=<x

The next theorem gives the asymptotic behavior of this product for large x.

Theorem 13.13 There is a positive constant ¢ such that, for x > 2,

1 c 1
1—--)= .
(32) pl;[x< p) log x + 0<log2 x>

Note. It can be shown that ¢ = e~ ¢, where C is Euler’s constant. (See [31].)

PROOF. Let P(x)denote the productin(32). Then log P(x) = Y, <, log(1 — 1/p).
To estimate this sum we use the power series expansion
logl— =+t s D Q<)
g - 2 3 n

with t = 1/p. Transposing one term we find, with a, = —log(l1 — 1/p) — 1/p,

0<a— b+t Il :
RARNTIRETS 2T T e
This inequality shows that the infinite series

o yer et =)o)

converges, since it is dominated by Y 2%, 1/n(n — 1). If B denotes the sum of
the series in (33) we have

1 1 1 1
0 —_ —_ < = — - — = — .
<B Exa" ,,gxa" - Ex n(n — 1) n§x<n n— 1) O<x>
Hence
1
Ya,=B+ 0(-),
pP<x X
or

—log P(x) = Y, ! + B+ 0<£>

P<x
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13: Analytic proof of the prime number theorem

But by Theorem 4.12 the sum on the right is log log x + 4 + O(1/log x) so

1
= — l — — — 1.
log P(x) loglogx — B— A + 0<log x>
Therefore
P(X) — exp{log P(X)} — e—B—Ae-— log loger(l/logx).

Now let ¢ = ¢” 874 and use the inequality ¢ = 1 + O(u) for 0 <u < 1 to

obtain
c 1 ¢ 1
Px)=—d1+0[— P =—40 .
<) log x { + <log x>} log x * <log2 x)

This completes the proof. O

Theorem 13.14 Let ¢ be the constant of Theorem 13.13, and let ¢ > 0 be given.
(a) There exists an N(g) such that

on) > (1 —¢ for all n > N(g).

log 1

(b) For infinitely many n we have

< 1 -
o) <(1+¢ log 1 g n
In other words,

lim inf

n—*oc

pn)loglogn
n

ProOF. We prove part (b) first. Take n = [ ], <, p. Then

40('1) ¢ 1
n Pll( B ;) " log x + 0(log2 x>'

Butlog n = 3(x) = (1 + o(1))x, so log log n = (1 + o(1))log x, hence

@(n) _ <l + o(1) 1 ol + o(1)
n log logn + O((log log n)2> " loglogn sd+9

log log n

if n = Nf{e) for some N(g). This proves (b).
To prove (a) take any n > 1 and write

1
@ - E[In (1 - 1_9> = P,(n)P,(n)
where

Pimy= T[] (1—;1;\), and P,(n)= [] <1——1).

pln / pin
p< logn p> logn
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13.12: Extension of Polya’s inequality for character sums

Then

1 1 Jim
. Faln) > zl;[ (1 - @) N <1 ~ log n)

p> logn

where f(n) is the number of primes which divide n and exceed log n. Since

n>[]p> [l p=(logn/®

pln pin
p> logn

we find logn > f(n)loglog n, so f(n) < log n/log log n. Since 1 — (1/log n)
<1, inequality (34) gives us

1 logn/ log logn 1 lognY) 1/ log logn
(35) Pyn)>{1- =31- .
logn log n

Now (1 — (1/u))* - e~ ! as u — oo so the last member in (35) tends to 1 as
n — oo. Hence (35) gives us

Py(n) > 14+ 0(l) asn— 0.

Therefore
O PP > 1+ olt) T] <1 - %) > (1 + o) ] (1 - %)
pln p< logn
p< logn
¢
if n > N(e). This proves part (a). .|

13.12 Extension of Polya’s inequality for
character sums

We conclude this chapter by extending Polya’s inequality (Theorem 8.21) to
arbitrary nonprincipal characters. The proof makes use of the estimate for
the divisor function,

d(n) = 0(n°)
obtained in (31).

Theorem 13.15 If y is any nonprincipal character mod k, then for all x > 2
we have

Y xm) = 0(/k log k).

m<x
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13: Analytic proof of the prime number theorem

PROOF. If y is primitive, Theorem 8.21 shows that

Y xm) < \/k log k.

m<x

Now consider any nonprincipal character ¥y mod k and let ¢ denote the
conductor of y. Then c|k, ¢ < k, and we can write

x(m) = Y(m)y,(m)

where y, is the principal character mod k and y is a primitive character
mod ¢. Then

Yamy= Y wm= Yym) Y ud) =Y 3 udwm)

m<x m<x m<x d|(m, k) m<x dlk
(mk)=1 dm

=Y ud) Y. ¥lgd) = Zu(d)lﬁ(d) Y ¥lq).

dlk g<x/d g<x/d

Hence

(36)

(M)i < Y [udW(d)|
m<x dlk

¥ Wlg) ‘ < Jclog "E | dW(d)|

q<x/d

because y is primitive mod ¢. In the last sum each factor | u(dW(d)| is either

Oor L. If [u(dW(d)| = 1 then |u(d)| = 1 so d is a squarefree divisor of k, say
d=pps-p,

Also, |Y(d)] = 1 so (d, ¢) = 1, which means no prime factor p; divides c.
Hence each p; divides k/c so d divides k/c. In other words,

T iuawai< ¥ 1-d(%) - of (%))

for every é > 0. In particular, d(k/c) = O(./k/c) so (36) implies

Y x(m) = 0< \/% Jelog c) = 0(/k log ¢) = O(./k log k). 0

m<x

Exercises for Chapter 13

1. Chebyshev proved that if y(x)/x tends to a limit as x -+ oo then this limit equals 1.
A proof was outlined in Exercise 4.26. This exercise outlines another proof based
on the identity

sy " Jp x*t
given in Exercise 11.1(d).

(a) Prove that (1 — s){'(s)/{(s) > 1ass — 1.

(37 dx, (6>1)
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Exercises for Chapter 13

{b) Let 6 = lim sup(y/(x)/x). Given & > 0, choose N = N(e) so that x > N implies

Y(x) < (6 + e)x. Keep s real, 1 < s < 2, split the integral in (37) into two parts,
{¥ + [@, and estimate each part to obtain the inequality

{'(s) (0 + ¢)
—ESC(£)+ =1

where C(e) is a constant independent of s. Use (a) to deduce that § > 1.
() Let y = lim inf(Y/(x)/x) and use a similar argument to deduce that y < 1.

Therefore if y/(x)/x tends to a limit as x — oo theny = § = 1.
. Let A(x) = Y, <, a(n), where
0 if n # a prime power,

=y
E nn=p.

Prove that A(x) = n(x) + 0(\/ x log log x).

. (@) If ¢ > 1 and x # integer, prove that if x > 1,

1 c+ 01 x5 1 L 1
—-J log {(s) —ds = n(x) + = n(x"?) + = w(x"3) + ---.
2 Jo i s 2 3

(b) Show that the prime number theorem is equivalent to the asymptotic relation

1 ¢+ ooi s
——f log C(s)x—ds~ X as x — o0.
27 Jo_ i s log x

A proof of the prime number theorem based on this relation was given by Landau
in 1903.

. Let M(x) =), ., pn). The exact order of magnitude of M(x) for large x is not
known. In Chapter 4 it was shown that the prime number theorem is equivalent to
the relation M(x) = o(x) as x — co. This exercise relates the order of magnitude of
M(x) with the Riemann hypothesis.

Suppose there is a positive constant 6 such that

M(x) = O(x% forx > 1.

Prove that the formula

Us)

which holds for o > 1 (see Exercise 11.1(c)) would also be valid for ¢ > 6. Deduce
that {(s) # O for ¢ > 6. In particular, this shows that the relation M(x) = O(x!/2*?)
for every & > 0 implies the Riemann hypothesis. It can also be shown that the
Riemann hypothesis implies M(x) = O(x'/>*%)forevery ¢ > 0.(See Titchmarsh [69],
p. 315)

1 ] J’w M(x)

= xs+ 1 dx’
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13: Analytic proof of the prime number theorem

5. Prove the following lemma, which is similar to Lemma 2. Let

Al(x)=f Mdu
1

u

where A(u) is a nonnegative increasing function for u > 1. If we have the asymptotic
formula

A (x) ~ Lx* asx — o0,
for some ¢ > 0 and L > O, then we also have
A(x) ~ ¢cLx* asx — 0.
6. Prove that

1 2+ o0i |8
—f Yias=0 ifo<y<L

2niJy_ i s

What is the value of this integral if y > 17

1 24+ o0i xs C’(5)> ‘
z—f *(‘m &

as a finite sum involving A(n).

7. Express

8. Let x be any Dirichlet character mod k with x, the principal character. Define

’ ’ ’

L L . L )
F(o,t) =3 I(a, 1) + 4z(0' +it, ) + z(a + 2it, ).

If ¢ > 1 prove that F{o, t) has real part equal to

- Z é(i Re{3x,(n) + dx(mn™" + ()~ 2"}

and deduce that Re F(o, t) < 0.

9. Assume that L(s, x) has a zero of order m > 1 at s = 1 + it. Prove that for this ¢
we have:

L/
(a) —(0'+zt x) = ——+O(l) aso — 1+,
and

(b) there exists an integer r > 0 such that

’

L
Lo+ 2 = —— +0(1) asc— 1+,
L g—1

except when x> = x, and t = 0.
10. Use Exercises 8 and 9 to prove that
L(1 +it,x) # 0 forallrealrif x> # x;
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11.

12,

13.

Exercises for Chapter 13

and that
L1 +it,x) #0 forallrealt # 0if y> = y,.
[Hint: Consider F(o,t)as 6 — 1+.]
Foranyarithmeticalfunctionf (n), prove that the following statements are equivalent:

(@) f(n) = O(n*) foreverye > Oandalln > n,.
() f(n) = o(n®) foreveryd > 0asn— .

Let f(n) be a multiplicative function such that if p is prime then
f(P™)—0 asp™— oo0.

That is, for every ¢ > 0 there is an N(g) such that | f(p™)| < ¢ whenever p™ > N(e).
Prove that f(n) > 0 as n — c0.

[Hint: There is a constant 4 > 0 such that | f(p™)| < A for all primes p and all
m > 0, and a constant B > 0 such that | f(p™)| < 1 whenever p™ > B.]

Ifoa > 0let g,(n) = Z,,,,, d”. Prove that for every 6 > 0 we have
o,n) = o(n**% asn - .

[Hint: Use Exercise 12.]
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Partitions

14.1 Introduction

Until now this book has been concerned primarily with multiplicative number
theory, a study of arithmetical functions related to prime factorization of
integers. We turn now to another branch of number theory called additive
number theory. A basic problem here is that of expressing a given positive
integer n as a sum of integers from some given set A4, say

A= {al’ az,.. ~},

where the elements a; are special numbers such as primes, squares, cubes,
triangular numbers, etc. Each representation of n as a sum of elements of A
is called a partition of n and we are interested in the arithmetical function
A(n) which counts the number of partitions of n into summands taken from A.
We illustrate with some famous examples.

Goldbach conjecture Every even n > 4 is the sum of two odd primes.

In this example A(n) is the number of solutions of the equation
(1) n=p + D2,

where the p; are odd primes. Goldbach’s assertion is that A(n) > 1 for even
n > 4. This conjecture dates back to 1742 and is undecided to this date.
In 1937 the Russian mathematician Vinogradov proved that every sufficiently
large odd number is the sum of three odd primes. In 1966 the Chinese
mathematician Chen Jing-run proved that every sufficiently large even
number is the sum of a prime plus a number with no more than two prime
factors. (See [10].)
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14.1: Introduction

Representation by squares For a given integer k > 2 consider the partition
function ri(n) which counts the number of solutions of the equation

2 ne=x2 4+ xd

where the x; may be positive, negative or zero, and the order of summands
is taken into account.

For k = 2, 4, 6, or 8, Jacobi [34] expressed r,(n) in terms of divisor func-
tions. For example, he proved that

ran) = 4{d,(n) — d3(m)},

where d,(n) and d;(n) are the number of divisors of n congruent to 1 and 3
mod 4, respectively. Thus, r,(5) = 8 because both divisors, 1 and 5, are
congruent to 1 mod 4. In fact there are four representations given by

5=22+4+12=(=2+12=(-2* +(=1)> =22 + (-1,

and four more with the order of summands reversed.
For k = 4 Jacobi proved that

ro(n) =Y. d = 8a(n) ifnisodd,

din

=24 d ifniseven.
d‘:)I(’ild

The formulas for r¢(n) and rg(n) are a bit more complicated but of the same
general type. (See [14].)

Exact formulas for r,(n) have also been found for k = 3, 5, or 7; they
involve Jacobi’s extension of Legendre’s symbol for quadratic residues.
For example, if n is odd it is known that

ran) =24 Y (mn) ifn=1 (mod4)

m<n/4

=8 Y (mln) ifn=3 (mod4)

m<nf2

where now the numbers x,, x,, x5 in (2) are taken to be relatively prime.

For larger values of k the analysis of r,(n)is considerably more complicated.
There is a large literature on the subject with contributions by Mordell,
Hardy, Littlewood, Ramanujan, and many others. For k > 5 it is known that
r(n) can be expressed by an asymptotic formula of the form

©) rn) = piln) + Ryln),
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14: Partitions

where p,(n) is the principal term, given by the infinite series

: il <G(h q)> —21:inh/q’

(h, q)

aki2pki2 =1

)

and R,(n) is a remainder term of smaller order. The series for p,(n) is called
the singular series and the numbers G(h; q) are quadratic Gauss sums,

puln) =

118

q
Glh; q) = ), &>,
r=1
In 1917 Mordell noted that r,(n) is the coefficient of x" in the power series
expansion of the kth power of the series

The function 3 is related to elliptic modular functions which play an im-
portant role in the derivation of (3).

Waring’s problem To determine whether, for a given positive integer k, there
is an integer s (depending only on k) such that the equation

4) n=x"+x*+-+x}

has solutions for every n > 1.

The problem is named for the English mathematician E. Waring who
stated in 1770 (without proof and with limited numerical evidence) that every
n is the sum of 4 squares, of 9 cubes, of 19 fourth powers, etc. In this example
the partition function A(n) is the number of solutions of (4), and the problem
is to decide if there exists an s such that A(n) > 1 for all n.

If s exists for a given k then there is a least value of s and this is denoted by
g(k). Lagrange proved the existence of g(2) in 1770 and, during the next 139
years, the existence of g(k) was shown for k = 3,4, 5, 6, 7, 8 and 10. In 1909
Hilbert proved the existence of g(k) for every k by an inductive argument
but did not determine its numerical value for any k. The exact value of g(k)
is now known for every k except k = 4. Hardy and Littlewood gave an
asymptotic formula for the number of solutions of (4) in terms of a singular
series analogous to that in (3). For a historical account of Waring’s problem
see W. J. Ellison [18].

Unrestricted partitions

One of the most fundamental problems in additive number theory is that
of unrestricted partitions. The set of summands consists of all positive
integers, and the partition function to be studied is the number of ways n
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can be written as a sum of positive integers < n, that is, the number of
solutions of

(5) n=a,-1+a,-2+"'
The number of summands is unrestricted, repetition is allowed, and the
order of the summands is not taken into account. The corresponding partition
function is denoted by p(n) and is called the unrestricted partition function,
or simply the partition function. The summands are called parts. For example,
there are exactly five partitions of 4, given by
4=34+1=242=2+14+1=1+14+1+1,
so p(4) = 5. Similarly, p(5) = 7, the partitions of 5 being
5=44+1=342=34+141=24+24+1=2+1+1+41
=14+14+1+1+1

The rest of this chapter is devoted to a study of p(n) and related functions.

14.2 Geometric representation of partitions

There is a simple way of representing partitions geometrically by using a
display of lattice points called a graph. For example, the partition of 15 given
by

6+3+3+2+1

can be represented by 15 lattice points arranged in five rows as follows:

If we read this graph vertically we get another partition of 15,
544+3+1+1+1

Two such partitions are said to be conjugate. Note that the largest part in
either of these partitions is equal to the number of parts in the other. Thus we
have the following theorem.

Theorem 14.1 The number of partitions of n into m parts is equal to the number of
partitions of n into parts, the largest of which is m.

Several theorems can be proved by simple combinatorial arguments
involving graphs, and we will return later to a beautiful illustration of this
method. However, the deepest results in the theory of partitions require
a more analytical treatment to which we turn now.
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14.3 Generating functions for partitions

A function F(s) defined by a Dirichlet series F(s) = Y f(n)n~° is called a
generating function of the coefficients f(n). Dirichlet series are useful generat-
ing functions in multiplicative number theory because of the relation

n"’m™* = (mm)”".

In additive number theory it is more convenient to use generating functions
represented by power series,

F) =Y, finpx"
because x"x™ = x"*™ The next theorem exhibits a generating function for
the partition function p(n).
Theorem 14.2 Euler. For | x| < 1 we have

© 1 3 .
ml;[J. 1 — x™ - ngop(n)x ’

where p(0) = 1.
Proor. First we give a formal derivation of this identity, ignoring questions
of convergence, then we give a more rigorous proof.

If each factor in the product is expanded into a power series (a geometric
series) we get

l‘i'i[ 1

n=11_x

=Q+x+x2+-9) 1+ +x+- )1+ X+ x5+ --)

n

Now we multiply the series on the right, treating them as though they were
polynomials, and collect like powers of x to obtain a power series of the form

1+ Y ak)x®.
k=1

We wish to show that a(k) = p(k). Suppose we take the term x** from the
first series, the term x2*2 from the second, the term x3** from the third, . .. ,and
the term x™ from the mth, where each k; > 0. Their product is

xkixZkay3ka L gmkm ok
say, where

k =k + 2k, + 3ky + - + mk,,.
This can also be written as follows:

k=(1+1+--+D+2+2+---+)+---+m+m+---+m),

308



14.3: Generating functions for partitions

where the first parenthesis contains k; ones, the second k, twos, and so on.
This is a partition of k into positive summands. Thus, each partition of k
will produce one such term x* and, conversely, each term x* comes from a
corresponding partition of k. Therefore a(k), the coefficient of x*, is equal to
p(k), the number of partitions of k.

The foregoing argument is not a rigorous proof because we have ignored
questions of convergence and we have also multiplied together infinitely
many geometric series, treating them as though they were polynomials.
However, it is not difficult to transform the above ideas into a rigorous proof.

For this purpose we restrict x to lie in the interval 0 < x < 1and introduce
two functions,

m

1 ©
Fm(X) = I—[ _1——xk . and F(X) = hl;ll

k=1

1
1 — x*

= lim F,{x).

m- oo

The product defining F(x) converges absolutely if 0 < x < 1 because its
reciprocal n(l — x¥) converges absolutely (since the series Z x* converges
absolutely). Note also that for each fixed x the sequence {F,(x)} is increasing
because

1
Fre1(x) = WFm(x) 2 Fp(x).

Thus F,(x) < F(x) for each fixed x, 0 < x < 1, and every m. Now F ,(x)
is the product of a finite number of absolutely convergent series. Therefore
it, too, is an absolutely convergent series which we can write as

F(x)=1+ fp,,,(k)x*.
k=1

Here p,(k) is the number of solutions of the equation
k=k1 +2k2 + "'+mk,,,.

In other words, p,,(k) is the number of partitions of k into parts not exceeding
m. If m > k, then p,,(k) = p(k). Therefore we always have

Pmlk) < plk)

with equality when m > k. In other words, we have

lim p,,(k) = p(k).

m— o

Now we split the series for F,(x) into two parts,

Folx) = éopm(k)x" Y pllr

k=m+1

T+ 3l

k=m+1
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Since x > 0 we have

S plk)x* < Folx) < F(x).
k=0

This shows that the series Y 2, p(k)x* converges. Moreover, since p,,(k) <
p(k) we have

kZ Prlk)x* < Z plk)x* < F(x)

=0 k=0

so, for each fixed x, the series ) p,(k)x* converges uniformly in m. Letting
m — oo we get

F(x) = lim F,(x) = lim i pulk)X* = i lim p,(x)x* = i p(k)x*,
k=0

m— o m—ow k=0 k=0 m- o

which proves Euler’s identity for 0 < x < 1. We extend it by analytic
continuation to the unit disk | x| < 1. O

Table 14.1 Generating functions

The number of partitions of n

Generating function into parts which are
11 = odd
ﬁ 1
- even
- 1 _ me
m=1
il 1
l:[l = squares
H ! imes
rim
1 —xF P
[T +xm unequal
m=1
1+ x> odd and unequal
m=1
[1a+x*m even and unequal
m=1
[Ta+xm) distinct squares
m=1
[T+ xp) distinct primes
I 4
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By similar arguments we can readily find the generating functions of many
other partition functions. We mention a few examples in Table 14.1.

14.4 Euler’s pentagonal-number theorem

We consider next the partition function generated by the product [ J(1 — x™),
the reciprocal of the generating function of p(n). Write

ﬁ 1-xm=1+ ia(n)x".
m=1 n=1

To express a(n) as a partition function we note that every partition of n
into unequal parts produces a term x" on the right with a coefficient +1 or
— 1. The coefficient is + 1 if x" is the product of an even number of terms, and
—1 otherwise. Therefore,

a(n) = pn) — p.(n),

where p,(n) is the number of partitions of »n into an even number of unequal
parts, and p,(n) is the number of partitions into an odd number of unequal
parts. Euler proved that p.(n) = p,(n) for all n except those belonging to a
special set called pentagonal numbers.

The pentagonal numbers 1, 5, 12, 22, ... were mentioned in the Historical
Introduction. They are related to the pentagons shown in Figure 14.1.

o G Gy

1 l+4=5 1+4+7=12 1+4+7+10=22

Figure 14.1

These numbers are also the partial sums of the terms in the arithmetic
progression

1,4,7,10,13,...,3n + 1, ...
If w(n) denotes the sum of the first n terms in this progression then

n—1 — 2
w(n)=Z(3k+1)=m—l—)+n=3n i
k=0 2 2

The numbers w(n) and w(—n) = (3n% + n)/2 are called the pentagonal
numbers.
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Theorem 14.3 Euler’s pentagonal-number theorem. If | x| < 1 we have

o]
[TA=x=1-x—-x>+x>+x7 —x?—x'%+ ..

m=1

=1+ Z( P 4 xoC0) = 3 (= 1o,

n= n=—ao

PRrOOF. First we prove the result for 0 < x < 1 and then extend it to the disk
[x| < 1 by analytic continuation. Define P, = S, = 1 and, forn > 1, let

= l_l(l - x’) and S" =14+ Z(_l)r{xw{r) + xw(_,)}.
r=1 r=1

The infinite product []J(1 — x™) converges so P, - [[(1 — x™) as n — o0.
We will prove (using a method of Shanks [63]) that

(6) 1Sy — Pal < mx"*1,
Since nx"*! — 0 as n — oo this will prove Euler’s identity for 0 < x < 1.
To prove (6) we let g(r) = r(r + 1)/2 and introduce the sums
F — Z( 1) 'l rn+g(r)
We show first that F, is a disguised form of S,. It is easily verified that
F, =8, =1 — x — x* Therefore, if we show that
Fp—F, y=8,— S orF,—S,=F,_y =S,y
this will prove that F, = S, for all n > 1. Now

n P ~
Fo—Fpoy= Y (1 52xm0 - Z( 1)' Xro= D)
r=0 r

In the first sum we write P, = (1 — x")P,_, and separate the term withr = n.
Then we distribute the difference 1 — x" to obtain

"o P,
Fn —_ F"_1 — (_l)nxn2+g(n) + Z (_l)r_"_lxrn+g(r)
r=0 Pr

n—

- Z( l)r (r+1)n+g(r) Z( 1) - r(n 1)+g(r)

r=0 r

Now combine the first and third sums and note that the term with r = 0
cancels. In the second sum we shift the index and obtain

F 1_( 1)" n2+g(n)+ Z( 1) 'l 1 r(n 1)+g(r)(x 1)

r=1 r

- p
_ —1y! n—1 it g(r—1)
';( A
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14.5: Combinatorial proof of Euler’s pentagonal-number theorem

But (x" — 1)/P, = —1/P,_; and r(n — 1) + g(r) = rn + g{r — 1) so the last
two sums cancel term by term except for the term with r = n in the second
sum. Thus we get

Fn___ . 1_( l)n n2+g(n)+( l)n n2+g(n— 1
But

nn + 1)

n? + g(n) = n® + 3

=w(—n) andn® + gn — 1) = w(n),

SO
Fn - Fn—-l = (_1)n{xw(n) + xa)(—n)} = Sn - Sn—l’

and hence F, = S, for all n > 1. In the sum defining F,, the first term is P, so

n

(7) Fn=Pn+ Z(_l) n rn+g(r)

r=1 Pr
Note that 0 < P,/P, < 1 since 0 < x < 1. Also, each factor x™ 9" < x"+!1
so the sum on the right of (7) is bounded above by nx"*!. Therefore |F, — P,|
< nx"*! and, since F, = S,, this proves (6) and completes the proof of
Euler’s identity. (]

14.5 Combinatorial proof of Euler’s
pentagonal-number theorem

Euler proved his pentagonal-number theorem by induction in 1750. Later
proofs were obtained by Legendre in 1830 and Jacobi in 1846. This section
describes a remarkable combinatorial proof given by F. Franklin [22] in
1881.

We have already noted that

[T-x)=1+ Y {pn) — pom)x"
m=1 n=1

where p.(n) is the number of partitions of n into an even number of unequal
parts, and p,(n) is the number of partitions into an odd number of unequal
parts. Franklin used the graphical representation of partitions by lattice
points to show that there is a one-to-one correspondence between partitions
of n into an odd and even number of unequal parts, so that p.(n) = p,(n),
except when n is a pentagonal number.

Consider the graph of any partition of n into unequal parts. We say the
graph is in standard form if the parts are arranged in decreasing order, as
illustrated by the example in Figure 14.2. The longest line segment connecting
points in the last row is called the base of the graph, and the number of
lattice points on the base is denoted by b. Thus, b > 1. The longest 45°
line segment joining the last point in the first row with other points in the
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“«—— Slope (s = 4)

>r—
- Buse th=2)

Figure 14.2

graph is called the slope, and the number of lattice points on the slope is
denoted by s. Thus, s > 1. In Figure 142 we have b = 2and s = 4.

Now we define two operations 4 and B on this graph. Operation A moves
the points on the base so that they lie on a line parallel to the slope, as
indicated in Figure 14.3(a). Operation B moves the points on the slope so that
they lie on a line parallel to the base, as shown in Figure 14.3(b). We say an
operation is permissible if it preserves the standard form of the graph, that is,
if the new graph again has unequal parts arranged in descending order.

i

> -o—-—0-&

I\

(a) Operation A4 (b) Operation B
Figure 14.3

If A is permissible we get a new partition of n into unequal parts, but the
number of parts is one less than before. If B is permissible we get a new
partition into unequal parts, but the number of parts is one greater than
before. Therefore, if for every partition of n exactly one of 4 or B is per-
missible there will be a one-to-one correspondence between partitions of n
into odd and even unequal parts, so p{n) = p,(n) for such n.

To determine whether A or B is permissible we consider three cases:
Db<s;2b=5;3)b>s.

Case 1: If b < sthen b < s — 1 so operation A is permissible but B is not
since B destroys the standard form. (See Figure 14.3.)

Case 2: If b = s, operation B is not permissible since it results in a new
graph not in standard form. Operation A is permissible except when the
base and slope intersect, as shown in Figure 14.4(a), in which case the new
graph is not in standard form.

Case 3:If b > s, operation A is not permissible, whereas B is permissible
except when b = s + 1 and the base and slope intersect, as shown in Figure
14.4(b). In this case the new graph contains two equal parts.

Therefore, exactly one of A or B is permissible with the two exceptions
noted above. Consider the first exceptional case, shown in Figure 14.4(a),
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14.6: Euler’s recursion formula for p(n)

0y h=s (by b=s+1
Figure 144 Neither A nor B is permissible.

and suppose there are k rows in the graph. Then b = k also so the number
n is given by

3k — k

n=k+k+1)+---+2k-1)= = (k).

For this partition of n we have an extra partition into even parts if k is even,
and an extra partition into odd parts if k is odd, so

peln) — pon) = (— 1)~

In the other exceptional case, shown in Figure 14.4(b), there is an additj. al
lattice point in each row so

3k —k 3k? + k
n=-——y + k= 7 = w(—k)
and again p,(n) — p,(n) = (—1)*. This completes Franklin’s proof of s

identity.

14.6 Euler’s recursion formula for p(n)

Theorem 14.4 Let p(0) = 1 and define p(n) to be 0 if n < 0. Then for n > 1
we have

@ pl)—pn—1)—pn—-2)+pn—-35+pn—-7+ =0,

or, what amounts to the same thing,

@

pln) = k;(— D Hp(n — k) + p(n — w(—k))}.
Proor. Theorems 14.2 and 14.3 give us the identity
<1 + i (=1 {x=® 4 x‘*"""})( i p(m)x"'> =1
k=1 m=0

If n > 1 the coeflicient of x" on the right is 0 so we immediately obtain (8)
by equating coefficients. O
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14: Partitions

MacMahon used this recursion formula to compute p(n) up to n = 200.
Here are some sample values from his table.

p(l) =1

p(5) =7
p(10) = 42
p(15) = 176
p(20) = 627
p(25) = 1,958
p(30) = 5,604

pl40) = 37,338

p(50) = 204,226
p(100) = 190,569,292
p(200) = 3,972,999,029,388

These examples indicate that p(n) grows very rapidly with n. The largest
value of p(n) yet computed is p(14,031), a number with 127 digits. D. H.
Lehmer [42] computed this number to verify a conjecture of Ramanujan
which asserted that p(14,031) = 0 (mod 11%). The assertion was correct.
Obviously, the recursion formula in (8) was not used to calculate this value
of p(n). Instead, Lehmer used an asymptotic formula of Rademacher [54]
which implies

)~
p(n) ~
4n\/§

where K = 7(2/3)"/2. For n = 200 the quantity on the right is approximately
4 x 10'? which is remarkably close to the actual value of p(200) given in
MacMahon’s table.

In the sequel to this volume we give a derivation of Rademacher’s
asymptotic formula for p(n). The proof requires considerable preparation
from the theory of elliptic modular functions. The next section gives a crude
upper bound for p(n) which involves the exponential ¢X¥" and which can be
obtained with relatively little effort.

asn — oo,

14.7 An upper bound for p(n)

Theorem 14.5 If n > 1 we have p(n) < eXV™, where K = n(2/3)'/2.

PROOF. Let
Fx)= [T =x""t =1+ Y pli),
n=1 k=1
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14.7: An upper bound for p(n)

and restrict x to the interval 0 < x < 1. Then we have p(n)x" < F(x), from
which we obtain log p(n) + n log x < log F(x), or

9) log p(n) < log F(x) + n log}c.

We estimate the terms log F(x) and n log(1/x) separately. First we write

(1-x") iog(l—x i

—s

log F(x) = —log
n=1 n=1 n=1m=1 M
© ] ® . | x™
_mglg’l—ngl(x ) —‘m=l;l - X
Since we have
1—x"

=l4+x4+x2+-+x"1

1-x

and since 0 < x < 1, we can write

me1 1 —x"
mx < < m,
1—x
and hence
ml—x) 1—x" m(l-x)
x x™ x™
Inverting and dividing by m we get
1 x™ r x" 1 x

IA

— <= — :
ml—x"ml—-—x""m?1-x
Summing on m we obtain

1 x" i m
yml —x™ l—x T 61—-x 6t

log F(x) =

where

Note that t varies from oo to 0 through positive values as x varies from
Oto 1.

Next we estimate the term n log(1/x). For t > 0 we have log(1 + t) <t
But

1 - 1 1
l+t=1+ x=—, solog— < t.
X X X
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14: Partitions

Now

2

i
— + nt.

1
1 1 Z
(10) log p(n) < log F(x) + n logx < &

The minimum of (72/6t) + nt occurs when the two terms are equal, that is,
when 72/(6t) = nt, or t = n/./6n. For this value of t we have

log p(n) < 2nt = 2nn/\/6' = Kﬁ
so p(n) < eXv" as asserted. O
Note. J. H. van Lint [48] has shown that with a little more effort we can
obtain the improved inequality
nekv®
6(n — 1

Since p(k) > p(n) if k > n, we have, forn > 1,

forn > 1.

(11) pln) < —

FO) > ¥ plloxt = pln) Y x* = 11’(")";.
k=n =n —

k
Taking logarithms we obtain, insteady of (9), the inequality
1
log p(n) < log F(x) + n log)—C + log(1 — x).

Since 1 — x = tx we have log(1 — x) = log t — log(1/x), hence
(10) can be replaced by
7.[2

(12) log pln) <

+(n— 1)+ logt.

An easy calculation with derivatives shows that the function

2

JWy =+ — 1)+ logt

has its minimum at

=1+ /1 + [4n — /6]
2n — 1)

Using this value of ¢ in (12) and dropping insignificant terms we obtain (11).

14.8 Jacobi’s triple product identity

This section describes a famous identity of Jacobi from the theory of theta
functions. Euler’s pentagonal number theorem and many other partition
identities occur as special cases of Jacobi’s formula.
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14.8: Jacobi’s triple product identity

Theorem 14.6 Jacobi’s triple product identity. For complex x and z with
x| < 1 and z # 0 we have

(13) [T = x™)A + "2 + x> 1272 = i xmzm

n=1 m=— oo

Proor. The restriction |x| < 1 assures absolute convergence of each of the
products [[(1 —x"), [T(1 + x*"'2%), [](1 + x> 'z72), and of the
series in (13). Moreover, for each fixed x with | x| < 1 the series and products
converge uniformly on compact subsets of the z-plane not containing z = 0
so each member of (13) is an analytic function of z for z # 0. For fixed z # 0
the series and products also converge uniformly for |x| < r < 1 hence
represent analytic functions of x in the disk |x| < 1.
To prove (13) we keep x fixed and define F(z) for z # 0 by the equation

(14) Fz)= [](1 + x> 122)(1 + x*"~1z72).
n=1

First we show that F satisfies the functional equation

(15) xz2F(xz) = F(z).

From (14) we find

—s

F(xz) = [T + x*"*1z3)(1 + x?""3272)

]

n

o

— n(l +x2m—122) l_[(l +x2'“1z_2).
m=2 r=0

Since xz2 = (1 + xz?)/(1 + x~'z~?), multiplication of the last equation
by xz? gives (15).
Now let G(z) denote the left member of (13) so that

(16) G(z) = F@)[] (1 = x*").
n=1
Then G(z) also satisfies the functional equation (15). Moreover, G(z) is an

even function of z which is analytic for all z # 0 so it has a Laurent expansion
of the form

17 Gz)= Y ayz*"

where a_,, = a,, since G(z) = G(z™'). (The coefficients a,, depend on x.)
Using the functional equation (15) in (17) we find that the coefficients satisfy
the recursion formula
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14: Partitions

which, when iterated, gives
@y = agx™ forallm >0

since 1 +3+ .-+ (2m — 1) = m*. This also holds for m < 0. Hence
(17) becomes

(18) Ge) = aglx) 3 xmzm

m= =

where we havewritten G,(z)for G(z) and ay(x) for a, to indicate the dependence
on x. Note that (18) implies ay(x) — 1 as x — 0. To complete the proof we
must show that aq(x) = 1 for all x.

Taking z = ¢™/* in (18) we find

Gx(eﬂi/4) _ i xmlim — i (_ l)nx(zn)z

aO(x) m=—o n=-—o

(19)

since i" = — i” ™ if m is odd. From (18) we see that the series on the right of
(19) is G,4(i)/ao(x*) so we have the identity

Gx(eni/4) _ Gx4(i)

20) a0 gl

We show next that G (¢™*) = G,4(i). In fact, (14) and (16) gives us

Ge™) = [T = x™(1 + x*"~2).
n=1
Since every even number is of the form 4n or 4n — 2 we have

H(l _ x2n) — l_[(l . x4n)(1 _ x4n—2)

n=1 n=1

SO
Gx(eni/4) — ﬁ(l _ x4n)(1 _ x4n—2)(1 + x4n—2) — ﬁ(l - x4n)(1 _ xSn—4)
n=1 n=1

(1= x®)(1 = x®7H(1 = x®"7%) = G.i).

s

n=1
Hence (20) implies ay(x) = aq(x*). Replacing x by x*, x*’, ..., we find
ag(x) = ao(x*) fork=1,2,...

But x** —» 0 as k — 00 and ay(x) - 1 as x — 0 s0 ay(x) = 1 for all x. This
completes the proof. d
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14.9: Consequences of Jacobi’s identity

14.9 Consequences of Jacobi’s identity

If we replace x by x? and z? by x” in Jacobi’s identity we find

) ©
(1 __ xlna)(l + xlna—a+b)(1 + x2na—a—b) — Z xam2+bm_
n=1 m=— oo
Similarly, if z2 = — x® we find

(1 _ xZna)(l _ x2na—a+b)(1 _ x2na—a—-b) — Z (_l)mxam2+bm‘

1 m=-w

s

n

To obtain Euler’s pentagonal number theorem simply take a = 3/2 and
b = 1/2 in this last identity.

Jacobi’s formula leads to another important formula for the cube of
Euler’s product.

Theorem 14.7 If | x| < 1 we have

(21) ﬁ(] —x"? = i (— 1) mxtm +m)/2
n=1

m=—ao

= Y (=1)"2m + 1)xm*+mi2,
m=0

Proor. Replacing z? by — xz in Jacobi’s identity we obtain
1—[(1 _ xZn)(l . XZ"Z)(I _ x2n—22-1) — Z (_l)mxm“rM(zm _ z—m—l)'
n=1 m=0

Now we rearrange terms on both sides, using the relations

s

(1—-x*"2z2"HY=(1- z“)ﬁ(l - xz7h)
n=1

n=1

and
Mz =l —z Yl 4z 4z 4 2T

Canceling a factor 1 — z~! we obtain

ﬁ(l - x*(1 — x*"z)(1 — x*"z7 1)

— Z (_l)mxm2+mzm(1 + Z—l + 772 4o+ Z—Zm).
m=0

Taking z = 1 and replacing x by x'/> we obtain (21). O
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14: Partitions

14.10 Logarithmic differentiation of
generating functions

Theorem 14.4 gives a recursion formula for p(n). There are other types of
recursion formulas for arithmetical functions that can be derived by logarith-
mic differentiation of generating functions. We describe the method in the
following setting.

Let A be a given set of positive integers, and let f(n) be a given arithmetical
function. Assume that the product

Fax) = [](1 = xy=rnm
neAd
and the series

G (x) = Z f(n)

ned 1

converge absolutely for |x| < 1 and represent analytic functions in the unit
disk |x| < 1. The logarithm of the product is given by

[}

log Faix) = — ¥ —jl-)log(l _y e 5 %GA(x"').

neAd neda N pm=1 M m=1

Differentiating and multiplying by x we obtain

x ) _ i = Y S = S S ) fm,

FA(X) m=1 m=1 ned m=1n=1

where y, is the characteristic function of the set A4,

(n) = 1 ifneA,
XA =0 iftng A

Collecting the terms with mn = & we find

f i Xa) f ()x™" = f; Fak)x*,

m=1n=1

where

Z 1@ f@) =Y 1@).

dlk
de A
Therefore we have the following identity,
(22) XFy(x) = F4(x) Y falk)x".
k=1
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14.10: Logarithmic differentiation of generating functions

Now write the product F 4(x) as a power series,
F 4x) = Z Da, f(n)x", where py, f(O) =1,
n=0
and equate coefficients of x" in (22) to obtain the recursion formula (24) in the
following theorem.

Theorem 14.8 For a given set A and a given arithmetical function f, the numbers
Pa, s(n) defined by the equation

(23) [T = xm~/n =1 + ipAJ(n)x"
n=1

neA

satisfy the recursion formula
(24) NP4, f(n) = Z fA(k)pA, f(" — k),
k=1

where p, [(0) = 1 and

Jalk) = %f (d).
de A

ExAMPLE 1 Let 4 be the set of all positive integers. If f(n) = n, then p 4 (n) =
p(n), the unrestricted partition function, and f,(k) = o(k), the sum of the
divisors of k. Equation (24) becomes

np(n) = 3, o(k)p(n ~ k),
k=1
a remarkable relation connecting a function of multiplicative number
theory with one of additive number theory.

ExaMPLE 2 Take A as in Example 1, but let f(n) = —n. Then the coefficients
in (23) are determined by Euler’s pentagonal-number theorem and the
recursion formula (24) becomes

n n—1
(25)  npa 4ln) = —kg,ld(k)p,a, An — k)= —aln) _kZIPA, sk)o(n — k),

where

(n) = (—=1)™ if nis a pentagonal number w(m) or w(—m)
Pa.sM =0 if n is not a pentagonal number.
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14: Partitions

Equation (25) can also be written as follows:
on—on—1)—on—-2)+on—5+on-17—
(= 1" 1w(m) if n = w(m),
=3(=1""tw(—m) ifn = w(—m),
0 otherwise.

The sum on the left terminates when the term a(k) has k < 1. To illustrate,
when n = 6 and n = 7 this gives the relations

a(6) = a(5) + a(4) — a(1),

a(7) = a(6) + o(5) — a(2) — 7.

14.11 The partition identities of Ramanujan

By examining MacMahon’s table of the partition function, Ramanujan was
led to the discovery of some striking divisibility properties of p(n). For
example, he proved that

(26) p(5m + 4) = 0 (mod 5),
(27 p(Tm + 5) = 0 (mod 7),
(28) p(1lm + 6) = 0 (mod 11).

In connection with these discoveries he also stated without proof two
remarkable identities,

(29) Z p(5m + 4x™ = 5 "’((xs)):,
and
3 NN
(30) Z p(Tm + S)x™ = ?“’(Z‘ ))4 + 49x %(Z;‘))T’
where
= f[1(1 — x".

Since the functions on the right of (29) and (30) have power series expansions
with integer coefficients, Ramanujan’s identities immediately imply the
congruences (26) and (27).

Proofs of (29) and (30), based on the theory of modular functions, were
found by Darling, Mordell, Rademacher, Zuckerman, and others. Further
proofs, independent of the theory of modular functions, were given by
Kruyswijk [36] and later by Kolberg. Kolberg’s method gives not only the
Ramanujan identities but many new ones. Kruyswijk’s proof of (29) is
outlined in Exercises 11-15.
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Exercises for Chapter 14
1. Let A denote a nonempty set of positive integers.

(a) Prove that the product

n (1 _ xm)- 1
meA
is the generating function of the number of partitions of n into parts belonging
to the set A.
(b) Describe the partition function generated by the product

[T + xm.
meA
In particular, describe the partition function generated by the finite product
fn=l 1+ x™.
2. If |x| < 1 prove that

(1 _ x2m— 1)~ 1,
1

ﬁ(l+x"‘)=

ﬁ::js

and deduce that the number of partitions of n into unequal parts is equal to the
number of partitions of n into odd parts.

3. For complex x and z with | x| < 1, let
fx,2)= [T = xm2).
m=1

(a) Prove that for each fixed z the product is an analytic function of x in the disk
|x] < 1, and that for each fixed x with |x| < 1 the product is an entire function
of z.

(b) Define the numbers a,(x) by the equation

@

flx,z)= Z a,(x)z".

n=0

Show that f(x, z) = (1 — xz) f(x, zx) and use this to prove that the coefficients
satisfy the recursion formula

an(x) = ax)x" — a,..1(x)x".
(c) From part (b) deduce that a,(x) = (— 1)"x""* 1/2/P (x), where
P,(x) = H(l - x").

r=1

This proves the following identity for (x| < 1 and arbitrary z:

- m —_ < (_1)" n(n+ n
ml;ll(l o Z) B ngo Pn(x) X ( 1)/22 ’
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14: Partitions

4. Use a method analogous to that of Exercise 3 to prove that if |[x| < 1 and |z] < 1
we have

0= = 2 p

m=1 n=0
where P,(x) =[], (1 — x").
S. If x # 1let Qg(x) = 1 and for n > 1 define

9= Mo

(a) Derive the following finite identities of Shanks:

x?

2 1
anm(m—l)/Z "Z 0.(x) XS2n+1)
b
m=1 s=0 Qs(x)

2n+1

nz mm=1)/2 _ z Q.(x) XS2n+ 1)
m=1 §s=0 Qs(x)

(b) Use Shanks’ identities to deduce Gauss’ triangular-number theorem:

© 12 @© 1_x2n
Z x'"("' 02— l—[ WT f0r|x| < 1.

m=1 n=1

6. The following identity is valid for |x| < 1:

© @

Z xm(m+l)/2 — H(l + xn~1)(1 _ XZ"}.

m=—o0 n=1
(a) Derive this from the identities in Exercises 2 and 5(b).
(b) Derive this from Jacobi’s triple product identity.

7. Prove that the following identities, valid for |x| < 1, are consequences of Jacobi’s
triple product identity:

(a) ﬁ(l — X1 — x> )1 — x4 = i (= 1ymgm(Sm+3)2,
(b) ﬁ(] . x5n)(1 . x5n—2)(1 . xSn—S) — i (_l)mxm(5m+ 1)/2.
n=1 e o

8. Prove that the recursion formula

n

np(n) = 3 o(k)p(n ~ k),

k=1

obtained in Section 14.10, can be put in the form

np(n) = i Y mp(n — km).

m=1 k<n/m

9. Suppose that each positive integer k is written in g(k) different colors, where g(k)
is a positive integer. Let p,(n) denote the number of partitions of # in which each
part k appears in at most g(k) different colors. When g(k) = 1 for all k this is the
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11.

12,

Exercises for Chapter 14

unrestricted partition function p(n). Find an infinite product which generates
p,(n) and prove that there is an arithmetical function f(depending on g) such that

np,(n) = Zf(kpgn—k)

Refer to Section 14.10 for notation. By solving the first-order differential equation
in (22) prove that if | x| < 1 we have

— x")~Smin xi(t) }
[T = xm ’-exp{f ; dtp,

neA 1]
where
H(x) = ) fak)x* and fuk)= Y f(d)
k=
' i
Deduce that
H mEmin — =% for |x| < 1,

where u(n) is the Mdbius function.

The following exercises outline a proof of Ramanujan’s partition identity

(p(XS)S B © o
pre where ¢(x) = nl:[l(l x"),

by a method of Kruyswijk not requiring the theory of modular functions.

Y p5m + 4x™ =5
m=0

(a) Let ¢ = e*™/* where k > 1 and show that for all x we have
k
[T —xeh=1-x~
h=1
(b) More generally, if (n, k) = d prove that

k
H(l _ xs"") — (l _ xk/d)d’
h=1
and deduce that
ﬁ —x" 21:inh/k) 1- xnk if (n, k) = 1,
h= 1 —=x" ifkn.
(a) Use Exercise 11(b) to prove that for prime g and |x| < 1 we have

g+1

9 q
— X" 21|:mhlq (p(x )
1 hI;II )= o(xT)

—18

n

(b) Deduce the identity

4

g pm)x" zzzsf hnl n(l X 2""'"/5)
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13.

14,

15.

If g is prime and if 0 < r < g, a power series of the form

a(n)an+r

L

is said to be of rype r mod g.
(a) Use Euler’s pentagonal number theorem to show that ¢(x) is a sum of three
power series,

@

o) = [T —x) =Ty + I, + I,

n=1

where I, denotes a power series of type k mod 5.
(b) Let & = e2™/5 and show that

11 flu

(c) Use Exercise 12(b) to show that

4
— x"o™) =[] + Id" + I,

h=1

u’:]g

o(x?*)
Ve o(x>)°’

where V, is the power series of type 4 mod 5 obtained from the product in part (b).

Y p(5m + 4)x5m+e =
m=0

(a) Use Theorem 14.7 to show that the cube of Euler’s product is the sum of three
power series,

Px) = Wo + W, + Wi,

where W, denotes a power series of type k mod S.
(b) Use the identity Wy + W, + W = (I, + I, + I,)* to show that the power
series in Exercise 13(a) satisfy the relation

Igl, = —1,2.

(c) Prove that I, = —x¢(x2%).

Observe that the product [ [i-, (I, + I,0" + I,«*") is a homogeneous potynomial
inly, I, I, of degree 4, so the terms contributing to series of type 4 mod 5 come from
the terms 1,4, I,1,%1, and 1,2 1,2

(a) Use Exercise 14(c) to show that there exists a constant ¢ such that

I/4 = 61145

where V is the power series in Exercise 13(c), and deduce that

@© ) (p(x25)5
Sm + A"t = ox*
P 4 o)
(b) Prove that ¢ = 5 and deduce Ramanujan’s identity
@ (p(xi)i
p(Sm + 4)x™ =5 .
; @(x)°
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