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Editors’ Foreword

Mathematics has been expanding in all directions at a fabulous
rate during the past half ecentury. New fields have emerged,
the diffusion into other diseciplines has proceeded apace, and
our knowledge of the classical areas has grown ever more pro-
found. At the same time, one of the most striking trends in
modern mathematics is the constantly increasing interrelation-
ship between its various branches. Thus the present-day
students of mathematics are faced with an immense mountain
of material. In addition to the traditional areas of mathe-
matics as presented in the traditional manner—and these
presentations do abound—there are the new and often en-
lightening ways of looking at these traditional areas, and also
the vast new areas teeming with potentialities. Much of this
new material is scattered indigestibly throughout the research
journals, and frequently coherently organized only in the
minds or unpublished notes of the working mathematicians.
And students desperately need to learn more and more of this
material.

This series of brief topical booklets has been conceived as a
possible means to tackle and hopefully to alleviate some of
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vi Editors' Foreword

these pedagogical problems. They are being written by active
research mathematicians, who can look at the latest develop-
ments, who can use these developments to clarify and con-
dense the required material, who know what ideas to under-
score and what techniques to stress. We hope that they will
also serve to present to the able undergraduate an introduction
to contemporary research and problems in mathematics, and
that they will be sufficiently informal that the personal tastes
and attitudes of the leaders in modern mathematics will shine
through clearly to the readers.

The area of differential geometry is one in which recent
developments have effected great changes. That part of
differential geometry centered about Stokes’ Theorem, some-
times called the fundamental theorem of multivariate calculus,
is traditionally taught in advanced calculus courses (second or
third year) and is essential in engineering and physics as well
as in several eurrent and important branches of mathematies.
However, the teaching of this material has been relatively
little affected by these modern developments; so the mathe-
maticians must relearn the material in graduate school, and
other scientists are frequently altogether deprived of it. Dr,
Spivak’s book should be a help to those who wish to see
Stoke’s Theorem as the modern working mathematician sees
it. A student with a good course in caleulus and linear algebra
behind him should find this book quite accessible.

Robert Gunning
Hugo Rossi

Princeton, New Jersey
Waltham, M assachusetls
August 1965



Preface

This little book is especially concerned with those portions of
“advanced ecaleulus” in which the subtlety of the concepts and
methods makes rigor difficult to attain at an elementary level.
The approach taken here uses elementary versions of modern
methods found in sophisticated mathematics. The formal
prerequisites include only a term of linear algebra, a nodding
acquaintance with the notation of set theory, and a respectable
first-year calculus course (one which at least mentions the
least upper bound (sup) and greatest lower bound (inf) of a
set of real numbers). Beyond this a certain (perhaps latent)
rapport with abstract mathematics will be found almost
essential.

The first half of the book covers that simple part of ad-
vanced calculus which generalizes elementary calculus to
higher dimensions. Chapter 1 contains preliminaries, and
Chapters 2 and 3 treat differentiation and integration.

The remainder of the book is devoted to the study of eurves,
surfaces, and higher-dimensional analogues. Here the modern
and classical treatments pursue quite different routes; there are,
of course, many points of contact, and a significant encounter
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viii Preface

occurs in the last section. The very classical equation repro-
duced on the cover appears also as the last theorem of the
book. This theorem (Stokes’ Theorem) has had a curious
history and has undergone a striking metamorphosis.

The first statement of the Theorem appears as a postseript
to a letier, dated July 2, 1850, from Sir William Thomson
(Lord Kelvin) to Stokes. It appeared publicly as question 8
on the Smith’s Prize Examination for 1854. This competitive
examination, which was taken annually by the best mathe-
matics students at Cambridge University, was set from 1849 to
1882 by Professor Stokes; by the time of his death the result
was known universally as Stokes’ Theorem. At least three
proofs were given by his contemporaries: Thomson published
one, another appeared in Thomson and Tait's Treatise on
Natural Philosophy, and Maxwell provided another in Elee-
tricity and Magnetism [13]. Since this time the name of
Stokes has been applied to much more general results, which
have figured so prominently in the development of certain
parts of mathematics that Stokes’ Theorem may be con-
sidered a case study in the value of generalization.

In this book there are three forms of Stokes’ Theorem.
The version known to Stokes appears in the last section, along
with its inseparable companions, Green's Theorem and the
Divergence Theorem. These three theorems, the classical
theorems of the subtitle, are derived quite easily from a
modern Stokes' Theorem which appears earlier in Chapter 5.
What the classical theorems state for curves and surfaces, this
theorem states for the higher-dimensional analogues (mani-
folds) which are studied thoroughly in the first part of Chapter
5. This study of manifolds, which could be justified solely on
the basis of their importance in modern mathematies, actually
imvolves no more effort than a careful study of curves and sur-
faces alone would require.

The reader probably suspects that the modern Stokes’
Theorem is at least as difficult as the classical theorems
derived from 1t. On the contrary, it is a very simple con-
sequence of yet another version of Stokes’ Theorem; this very
abstract version is the final and main result of Chapter 4.
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It is entirely reasonable to suppose that the difficulties so far
avoided must be hidden here. Yet the proof of this theorem
18, in the mathematician’s sense, an utter triviality—a straight-
forward computation. On the other hand, even the statement
of this triviality eannot be understood without a horde of
difficult definitions from Chapter 4. There are good reasons
why the theorems should all be easy and the definitions hard.
As the evolution of Stokes’ Theorem revealed, a single simple
prineiple can masquerade as several difficult results; the proofs
of many theorems involve merely stripping away the disguise.
The definitions, on the other hand, serve a twofold purpose:
they are rigorous replacements for wvague notions, and
machinery for elegant proofs. The first two sections of
Chapter 4 define precisely, and prove the rules for manipulat-
ing, what are classically described as “expressions of the form”
Pdz + Qdy + Rdz,orPdxdy + Qdydz + Rdzdx. Chains,
defined in the third section, and partitions of unity (already
introduced in Chapter 3) free our proofs from the necessity of
chopping manifolds up into small pieces; they reduce questions
about manifolds, where everything seems hard, to questions
about Euclidean space, where everything is easy.

Concentrating the depth of a subject in the definitions is
undeniably economieal, but it is bound to produce some
difficultics for the student. [ hope the reader will beencour-
aged to learn Chapter 4 thoroughly by the assurance that the
results will justify the effort: the classical theorems of the last
section represent only a few, and by no means the most im-
portant, applications of Chapter 4; many others appear as
problems, and further developments will be found by exploring
the bibliography.

The problemis and the bibliography both deserve a few
words. Problems appear after every section and are nuin-
bered (like the theorems) within chapters. I have starred
those problems whose results are used in the text, but this
precaution should be unnecessary—the problems are the most
important part of the book, and the reader should at least
attempt them all. It was necessary to make the bibliography
either very incomplete or unwieldy, since half the major
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branches of mathematics could legitimately be recommended
as reasonable continuations of the material in the book. I
have tried to make it incomplete but tempting,

Many eriticisms and suggestions were offered during the
writing of this book. I am particularly grateful to Richard
Palais, Hugo Rossi, Robert Seeley, and Charles Stenard for
their many helpful comments.

I have used this printing as an opportunity to correct many
misprints and minor errors pointed out to me by indulgent
readers. In addition, the material following Theorem 3-11
has been completely revised and corrected. Other important
changes, which could not be incorporated in the text without
excessive alteration, are listed in the Addenda at the end of the
book.

Michael Spivak

Waltham, Massachuseits
March 1968
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Functions on Euclidean Space

NORM AND INNER PRODUCT

Euclidean n-space R" is defined as the set of all n-tuples
(x', . . . ,x") of real numbers ' (a “1-tuple of numbers" is
just a number and R! = R, the set of all real numbers). An
element of R” is often called a point in R", and R!, R?, R? are
often called the line, the plane, and space, respectively. If x
denotes an element of R", then x is an n-tuple of numbers, the
ith one of which is denoted x'; thus we can write

x = (®55 5 12",

A point in R" is frequently also called a veector in R",
because R", with z 4+ y= (2'+y', ... 2"+ y") and
ar = (ax', . . . ,az"), as operations, is a vector space (over
the real numbers, of dimension n). In this vector space there
is the notion of the length of a vector z, usually called the
norm |z| of » and defined by |.r| = 'S/(:c'}2 o DR o (:c“):
If n = 1, then |;z:-F is the usual absolute value of . The rela-
tion between the norm and the vector space structure of R™ is
very important.
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I-1 Theorem. Ifzx,y & R" and a € R, then

(1) |z > 0, and |zl = 0 4f and only if z = 0.

(2) |Zr 28 y] < |z| - lyl; equality holds if and only if z and y
are linearly dependend.

3) |z 4 9] < l2f + Jyl.

@) laz| = |a] - [2].

Proof

(1) is left to the reader.
(2) If x and y are linearly dependent, equality clearly holds.
If not, then Ay — z # 0 for all A\ € R, so

0< y—zl*= ) Oy —ai?
i=1
] n n
=) @) -1 ) 2+ ) @)
i=1 i=1 i=1
Therefore theright side is a quadratic equation in A with no
real solution, and its diseriminant must be negative. Thus

4 (5: z*'y*’)“ = i (z%)? - i (¥)? < 0.
i=1 p=1 i=]

(3) |z +yl* = Z2,4G* + y')?
ml(f)z + E].wl (ﬂi)g + 22?::.13‘3;
< I£|2 + |11,|rl2 + 2|r| iy] by (2)
= (lzl + )™
(4) laz| = V22 1(az)? = Va®2,(z)® = |a| - lz]. 1

The quantity =P ,z'y* which appears in (2) is called the
inner product of 2 and y and denoted (z,;). The most
important properties of the inner product are the following,.

1-2 Theorem. If z, .\, x5 and y, y1, y2 are vectors in R"
and a © R, then

(1) (=) = (y,x) (symmetry).
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(2) {az,y) = (z,ay) = alz,y) (bilinearity).
{1 + 29, ) = {z1,y) + (2,9
(x, y1 + y2) = (&,31) + (z,y2)

(3) (z,x) 2 0, and (z,2) = 0 if and (positive definiteness).
only 1f z =0

@) lz| = Viz,2).

) (O 7
(5) (x,y) = |z + ol 3 |z — o] (polarization identity).

Proof

(1) (zy) = Zha2'y' = ZL,y's' = (y,2).
(2) By (1) it suffices to prove

{Msy) = ﬂ‘:x:y}:
(@1 + 22, y) = (T1,y) + (£2,9)-

These follow from the equations

(azg) = ) (') =a ) 2% = afzy),
i=1 i=1

(z1 + 22, 9) = z (z1' + 22yt = i 'yt + j Ty’

£=1 i=1 i=1

= (T1,y) + (Z2,9)-

(3) and (4) are left to the reader.
2 _ | — a2
5) lz + o - |z — o]
=HEz+yz+9)—(—yz—y) by (4)
= l{z,z) + 2{z,y) + (wy) — (z,2) — 2(z,¥) + (¥,¥))]
='¢Eyh I

We conclude this section with some important remarks
about notation. The vector (0, ... ,0) will usually be
denoted simply 0. The usual basis of R™ is e, . . . ,e,,
where e; = (0, . . . ,1, ... ,0), with the 1 in the 7th place.
If T: R® — R™ is a linear transformation, the matrix of T with
respect to the usual bases of R™ and R™ is the m X n matrix
A = (ay;), where T'(e;) = ZT ,a,;e; —the coefficients of T(e;)
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appear in the ith column of the matrix. If 8: R™ — R? has
the p X m matrix B, then 8¢ T has the p X n matrix BA
[here S e T(x) = S(T(x)); most books on linear algebra denote
Se T simply 8T]. To find T(z) one computes the m X 1
matrix

1
Y Ei1y - o« - g T

bir]
y ﬂml] . 0w Ja;m.n In

then T(x) = (', ... ™). One notational econvention
greatly simplifies many formulas: if + € R" and y € R™, then
(x,y) denotes

L L SRR ) B = | Lt

Problems. 1-1.* Prove that |z| < E:-‘_,l |=1].

1-2, When does equality hold in Theorem 1-1(3)? Hint{: Re-examine
the proof; the answer is not “when z and y are linearly depend-
ent,"

1-3. Prove that [z — y| < |z| + |y|. When does equality hold?

1-4. Prove that | [z| — |y| | < |z — #|.

1-5. The quantity |y — z| is called the distanee between z and y.
Prove and interpret geometrically the “triangle inequality’':
lz — 2| < e —y| + |y — .

1-6. Let f and g be integrable on [a,b].

(a) Prove that |Iifgl < {J.E,ﬁ}i . {_rggzji'f. Hint: Consider
separately the cases 0 = J‘E(f — Ag)® for some A ER and 0 <
J-E:'ff — ag)* for all A € R.

{b) If equality holds, must f = g for some » € R? What if
fand g are continuous?

(e) Show that Theorem 1-1(2) is a special case of (a).

[-7. A linear transformation 7: R™— R"™ i3 norm preserving if
1’1"{':::l| = |x|, and inner produect preserving if (7z,Ty) = {(z,1).

(a) Prove that T is norm preserving if and only if T is inner-
product preserving.

(b) Prove that such a linear transformation T is 1-1 and T 1 is
of the same sort.

1-8. If z,y € R™ are non-zero, the angle between z and y, denoted
Z{z,y), is defined as arccos {{x.y}f]zl . |‘yf'}. which makes sense by
Theorem 1-1(2). The linear transformation T is angle preseryv-
ing if T is 1-1, and for z,y # 0 we have Z(Tz,Ty) = Z(z,y).
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(a) Prove that if T is norm preserving, then T is angle pre-
serving.

(b) If thereisa basiszy, . . . ,on of R™and numbers Ay, . . . JAn
such that T'z; = Mzi, prove that T is angle preserving if and
only if all |A; are equal.

{e) What are all angle preserving T: R* — R"?

cos 4, sin 8
—pin 6, cos @

Show that T is angle preserving and if z # 0, then Z(z,7Tx) = 0.
1-10.* If T: R™— R" is a linear transformation, show that there is a
number M such that |T(h)| < M|h| for h € R™ Hint: Estimate
|T{h}[ in terms of thi and the entries in the matrix of T.
1-11. If z,y € R"and z,w € R™, show that {(z,2),{y,w)} = {z,¥) + (z,w)

and |(r,2)| = v/|z|* + |2|>. Note that (z,2) and (y,w) denote
points in R™+™,

1-12.* Let (R™)* denote the dual space of the vector space R™ If
r € R", define ¢ € (R™* by e(y) = (z,54). Define T: R*—
(R™)* by T(z) = ¢z. Show that T is a 1-1 linear transformation
and conclude that every ¢ © (R™* is ¢, for a unique z € R™.

1-13.* If z,y € R"™ then r and y are called perpendicular (or orthog-
onal) if (z,5) = 0. If z and y are perpendicular, prove that
|z + yl* = [z]* + [o]*.

1-9. If 0 < 6 < r, let T: R®* — R? have the matrix

SUBSETS OF EUCLIDEAN SPACE

The closed interval [a,b] has a natural analogue in R®, Thisis
the closed rectangle [a,b] X [¢,d], defined as the collection of
all pairs (z,y) with z € [a,b] and y € [¢,d]. More generally,
if ACR™ and BC R", then 4 X B C R™™ is defined as
the set of all (z,y) € R™" with € A and y € B. In par-
ticular, R®™™ = R" X R*. If ACR™ BCR", and C C
R?, then (A X B) X C = A X (B X C), and both of these
are denoted simply 4 X B X (; this convention is extended to
the product of any number of sets. The set [ay,by] X - '+ X
[an,bs] C R" is called a closed rectangle in R", while the set
(@1,b1) X -+ - X (@n,b,) C R" is called an open rectangle,
More generally a set U C R" is called open (Figure 1-1)
if for each z € U there is an open rectangle A such that
& ACU.

A subset C of R" is closed if R" — (' is open. For exam-
ple, if C contains only finitely many points, then (' is closed.
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%.

=

*

g )

=

FIGURE I-1

The reader should supply the proof that a closed rectangle in
R" is indeed a closed set.,

If A CR"and 2 & R", then one of three possibilities must
hold (Figure 1-2):

1. There is an open rectangle B such that » & B C 4.

2. There is an open rectangle Bsuchthat: € B C R" — 4.

3. If B is any open rectangle with * & B, then B contains
points of both 4 and R" — A.

FIGURE 1-2
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Those points satisfying (1) constitute the interior of A, those
satisfying (2) the exterior of A, and those satisfying (3) the
boundary of A. Problems 1-16 to 1-18 show that these terms
may sometimes have unexpected meanings.

It is not hard to see that the interior of any set A is open,
and the same is true for the exterior of A, which is, in fact, the
interior of R™ — A. Thus (Problem 1-14) their unton is open,
and what remains, the beundary, must be closed.

A collection © of open sets is an open cover of A (or, briefly,
covers A) if every point £ & A is in some open set in the
collection 0. For example, if © is the collection of all open
intervals (a, a + 1) fora € R, then 01is a cover of R. Clearly
no finite number of the open sets in ® will cover R or, for that
matter, any unbounded subset of R. A similar situation can
also occur for bounded sets. If @ is the collection of all open
intetvals (1/n, 1 — 1/n) for all integers n > 1, then © is an
open cover of (0,1), but again no finite collection of sets in
O will cover (0,1). Although this phenomenon may not appear
particularly scandalous, sets for which this state of affairs
cannot occur are of such importance that they have received a
special designation: a set A is called compact if every open
cover O contains a finite subcolleetion of open sets which
also covers A.

A set with only finitely many points is obviously compact
and so is the infinite set A which contains 0 and the numbers
1/n for all integers n (reason: if @ is a cover, then 0 & U for
some open set [/ in ©; there are only finitely many other points
of A not in U, each requiring at most one more open set).

Recognizing compact sets is greatly simplified by the follow-
ing results, of which only the first has any depth (i.e., uses any
facts about the real numbers).

1-3 Theorem (Heine-Borel). The closed inierval [ab] 1s
compact.

Proof. If @ is an open cover of [a,b], let

A = |r:a < x < band [a,7] is covered by some finite number
of open sets in 0}.
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FIGURE 1-3

T

Note that a & A and that A4 is clearly bounded above (by b).
We would like to show that b € 4. This is done by proving
two things about a = least upper bound of A; namely, (1)
ac Aand (2) b = a.

Since 0 is a cover, « € U for some U in ©. Then all
points in some interval to the left of a are also in U (see Figure
1-3). Since « is the least upper bound of 4, there is an z in
this interval such that x € 4. Thus [a,z] is covered by some
finite number of open sets of @, while [x,a] is covered by the
single set U. Hence [a,a] is covered by a finite number of open
sets of @, and @ € A. This proves (1).

To prove that (2) is true, suppose instead that « < b.
Then there is a point &’ between a and b such that [a,z'] C U.
Since « & 4, the interval [a,a] is covered by finitely many
open sets of @, while [a,z’] is covered by /. Hence 2’ € A4,
contradicting the fact that « is an upper bound of A. ||

If B C R™ is compact and » © R", it is easy to see that
fx} X B C R""™ is compact. However, a much stronger
assertion can be made.

1-4 Theorem. If B is compact and © is an open cover of
ta] X B, then there is an open sel U C R" conlaining x such
that U7 X B is covered by a finite number of sets in ©.

Proof. Since {x} X B is compact, we can assume at the
outset that @ is finite, and we need only find the open set U
such that U7 X B is covered by @.

For each y & B the point (&) is in some open set W in o,
Since W is open, we have (xy) € U, X V, C W for some
open rectangle (/, X V,. The sets V, cover the compact set
B, so a finite number V,, ...,V also cover B. Let
U=U,MN-"-NU, Thenif (z',)f)) €U X B, we have
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FIGURE 1-4

y' e vV, for some 7 (Figure 1-4), and certainly z' & U,,.
Hence (2',y') € U,, X V,,, which is contained in some W
mno |

1-5 Corollary. If A C R" and B C R™ are compaci, then
A X B C R*"™ {s compael.

Proof. 1f ©@isanopen coverof 4 X B, then @ covers {z] X B
for each x © A. By Theorem 1-4 there is an open set I7, con-
taining & such that U; X B is covered by finitely many sets
in 0. BSinee A is compact, a finite number U,,, . . . ,U,, of
the U, cover A. Since finitely many sets in @ cover each
U.; X B, finitely many coverallof 4 X B. |

1-6  Corollary. A, X - - - X Ay is compact if each A; is.
In particular, a closed rectangle in R* is compact.
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1-7 Corollary. A closed bounded subset of R™ is compael.
(The converse is also true (Problem 1-20).)

Proof. If A C R" is closed and bounded, then 4 C B for
some closed rectangle B. If @ is an open cover of A, then ©
together with R™ — A is an open cover of B. Hence a finite
number Uy, . . . ,U, of sets in ©, together with R* — A per-
haps, cover B. Then Uy, . . . ,U, cover 4. ||

Problems. 1=14.* Prove that the union of any (even infinite) number
of open sets isopen. Prove that the intersection of two (and hence
of finitely many) open sets is open. Give a counterexample for
infinitely many open sets.

1-15. Prove that {x € R™: |x — a| < r| is open (see also Problem 1-27).
1-16. Find the interior, exterior, and boundary of the sets

[z € R™: |z] <11
lz € R™: || = 1]
|z & R™: each z'is rational].

1-17. Construet a set A C [0,1] X [0,1] such that A contains at most
one point on each horizontal and each vertical line but boundary
A =[0,1] X [0,1]. Hint: It suffices to ensure that A contains
points in each quarter of the square [(,1] X [0,1] and also in each
sixteenth, ete.

1-18. If A C [0,1] is the union of open intervals (a;h;) such that each
rational number in (0,1) is contained in some (a;h;), show that
boundary 4 = [0,1] — A.

1-19.* If A iz a closed set that contains every rational number r € [0,1],
show that [0,1] C A.

1-20. Prove the converse of Corollary 1-7: A compact subset of R is
elosed and bounded (see also Problem 1-28).

1-21.* (a) If A 15 closed and £ & A4, prove that there is a number
d > 0 such that tg,r ~—-.1'.I >dforally © A.

(b) Tf A is closed, B is compact, and A N B = (&, prove that
there 18 d > 0 such that |g,.r —z| >dforall y € A and z € B.
Hint: For each b € B find an open set U containing b such that
this relation holds for z € U N B.

() Give a counterexample in R?® if A and B are closed but
neither is compaect.

1-22.* If U is open and €' < U is compact, show that there is a compact
set [} such that C C interior D and D < U.
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FUNCTIONS AND CONTINUITY

A function from R™ to R™ (sometimes called a (vector-
valued) function of n variables) is a rule which associates to
each point in R™ some point in R™; the point a function f
associates to r is denoted f(z). We write f: R® — R™ (read “f
takes R™ into R™ or *f, taking R™ into R™,” depending on con-
text) to indicate that f(z) € R™ is defined for x € R®. The
notation f: 4 — R™ indicates that f(z) is defined only for z in
the set A, which is called the domain of f. If B C 4, we
define f(B) as the set of all f(x) forz € B, and if C C R™ we
define f~Y(C) = {z € A: f(z) € C|. The notation f: 4 — B
indicates that f(A) C B.

A convenient representation of a function f: R? — R may
be obtained by drawing a picture of its graph, the set of all
3-tuples of the form (z,y,f(z,y)), which is actually a figure in
3-space (see, e.g., Figures 2-1 and 2-2 of Chapter 2).

If f,g: R® — R, the functions f + ¢, f — g, f - g, and f/g are
defined precisely as in the one-variable case. If f: 4 — R™
and g: B— RP, where B C R™, then the composition
gof is defined by go f(z) = g(f(z)); the domain of gof 1s
ANSYB). If f: A — R™ is 1-1, that is, if f(z) # f()
when x # y, we define f~': f(A) — R” by the requirement that
S~ z) is the unique x € A with f(z) = 2

A function f: 4 — R™ determines m component functions
fiy oo AR by f@@) = ('), . . . @), If con-
versely, m functions ¢, . . . ,gm: 4 — R are given, there
is a unique function f: 4 — R™ such that f' = g;, namely
flz) = (g1(x), . . . ,gm(x)). This function f will be denoted
(g1, . . . ,gm), so that we always have f= (f', ... ™).
If 7: R" — R" is the identity function, »(z) = =z, then ='(z) =
z'; the funetion »* is called the ith prejection function.

The notation lim f(x) = b means, as in the one-variable case,

that we can get f(x) as close to b as desired, by choosing = suf-
ficiently close to, but not equal to, 2. In mathematical terms
this means that for every number & > 0 there is a number
8 > 0 such that | f(z) — b| < & for all x in the domain of f which
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satisfy 0 < |z — a| < 8. A function f: A — R™ is called con-
tinuous at a € A if lim f(z) = f(a), and f is simply called con-

r—+a
tinuous if it is continuous at each a € A. One of the pleasant

surprises about the concept of continuity is that it can be
defined without using limits. It follows from the next theorem
that f: R® — R™ is continuous if and only if f~'(U) is open
whenever U ( R™ is open; if the domain of f is not all of R", a
slightly more complicated condition is needed.

1-8 Theorem. If A C R" a function f: A — R™ is contin-
wous if and only if for every open set U C R™ there is some open
sel V C R™ such that f~Y(U) = VN A.

Proof. Suppose f is continuous. If a & fY(U), then
f(a) € U. Bince U is open, there is an open rectangle B with
fla) € B C U. Since f is continuous at a, we can ensure
that f(z) € B, provided we choose z in some sufficiently
small rectangle € containing a. Do this for each a € f~(U)
and let V be the union of all such €. Clearly f~Y(U) =
VM A. The converse is similar and is left to the rcader. |

The following consequence of Theorem 1-8 is of great
importance.

1-9 Theorem. Iff: A— R™ is conlinuous, where A C R",
and A 18 compact, then f(A) C R™ is compact.

Proof. Let © be an open cover of f(A). For each open set
U in © there is an open set Vg such that f~(U) = Vg M A.
The collection of all Vi is an open cover of A. Since 4 is
compact, a finite number Vy,, . . . ,Vy, cover A. Then

Uy, . . . Uncover f(A). |

If f: A — R is bounded, the extent to which f fails to be
continuous at @ & A can be measured in a precise way. For
& > 0 let

M(a,f,8) = sup|f(z):x € A and |z — a| < 8},
m(a,f,8) = inf{f(z):x € A and |z = a! < §8}.
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The oscillation o(f,a) of f at a is defined by o(f,a) =
lim[M(a,f,8) — m(a,f,6)]. This limit always exists, since
50

M(a,f,6) — m(a,f,8) decreases as § decreases. There are two
important facts about o(f,a)

I1-10 Theorem. The bounded function f is continuous atl a tf
and only if o(f,a) = 0

Proof. Let f be continuous at a. For every number € > 0
we can choose a number § > 0 so that ]_f(:r} - _f'{a}| < € for
all z € A with |z — a| < §; thus M(a,f,8) — m(a,f,8) < 2¢.
Since this is true for every g, we have o(f,a) = 0. The con-
verse is similar and is left to the reader. |]

1-11 Theorem. Let A C R" beclosed. Iff: A — R iz any
bounded function, and € > 0, then {x € A: o(f,x) > &} is
closed.

Proof. Let B = {z € A: o(f,x) =2 e}]. We wish to show
that R® — B is open. If x &€ R"™ — B, then either # & A
or else € A and o(f,z) < €. In the first case, since A is
closed, there is an open rectangle €' containing z such that
CCR"— ACR"—B. In the second case there is a
¢ > 0 such that M(z,f,8) — m(z,f,6) < €. Let ¢ be an open
rectangle containing z such that [z — y| < & for all y € C.
Then if y € C there is a & such that |z — 2| < & for all 2
satisfying |z — y| < 8;. Thus M(y,f,8:) — m(y,f,8,) < ¢, and
consequently o(y,f) < & Therefore C C R" — B. |

Problems. 1-23.If f: A —+ R™ and a € A, show that llm flz) = b
if and only if l;m fi(z) = b fori = 1, . m

1-24. Prove that f: A — R™ is continuous at a if and only if each f* is.
1-25. Prove that a linear transformation T: R® — R™ is continuous.
Hint: Use Problem 1-10.
1-26. Let A = [{z,y) ER%: z > 0and 0 < y < 2.
(a) Show that every straight line through (0,0) contains an
interval around (0,0) which is in R? — A.
(b) Define f: R®—= R by f(z) =0 if t & A and f(z) = 1 if
z € A. For h € R? define gs: R— R by gp(t) = f(th). Show
that each gy is continuous at 0, but f is not continuous at (0,0).






Differentiation

BASIC DEFINITIONS

Recall that a funetion f: R — R is differentiable at ¢ € R if
there iz a number f'(a) such that

() Hmf(aﬁ- h) — fla) _

h—D -h

f'a).

This equation certainly makes no sense in the general case of a
function f: R® — R™, but can be reformulated in a way that
does. If A: R— R is the linear transformation defined by
Ah) = f'(a) - k, then equation (1) is equivalent to

. Jla + k) — fla) — Mh) _
(2) lim B T

0.

Equation (2) is often interpreted as saying that A\ 4 f(a) 1s a
good approximation to f at a (seec Problem 2-9). Henceforth
we focus our attention on the linear transformation A and
reformulate the definition of differentiabilify as follows.

15
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A function f: R — R is differentiable at a € R if there is a
linear transformation X: R — R such that

lim f@ TR = fla) = Ak) _ o

A—0 h

In this form the definition has a simple generalization to

higher dimensions:
A function f: R® — R™ is differentiable at ¢ & R" if there
i8 & linear transformation A: R® — R™ such that

i @+ B — @) — am)| _
A—+0 |h|

Note that h is a point of R™ and f(a + k) — fla) — A(h) a
point of R™, so the norm signs are essential. The linear trans-
formation A is denoted Df(a) and called the derivative of [ at
a. The justification for the phrase “the linear transformation
h’l‘ is

0.

2-1 Theorem. If f: R" — R™ is differentiable at a € R"
there is a unique linear transformation A: R" — R™ such that
o @+ R) = f@) = AB)| _
h— 0 [hl

Proof. BSuppose u: R" — R™ satisfies
i 1@+ k) — fla) — uh)|
m ~—-

. = (.
h—0 thl
If d(k) = f(a + k) — f(a), then
== | = =
i AR — w®)| . NR) — d(R) + d(B) — wh)|
A0 |kl h—0 I
) —dm)| . ld() — wd)]
o v N 122 QRN
S I I S Y
= ().

If z € R", then {x — 0 as t — 0. Hence for z £ 0 we have

it Ntz) — ulte)]  IMz) — n(@)]
= [IIm PR Sk TSRS ik 1
=0 il‘I"l'| |I]

I

Therefore A(z) = p(z). |}
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We shall later discover a simple way of finding Df(a). For
the moment let us eongider the function f: R* — R defined by
f(z,y) = sinz. Then Df(a,b) = A satisfies A(z,y) = (cos a) - z.
To prove this, note that

f(a + h, b+ k) — f(a,b) — A(h,k)]

.
(100 )
- m sin(a + ) — sina — (cos a) * h|
=0 (k)|

Since sin'(a) = cos a, we have

im |s1n(a -+ h) — sina — (cos a) ° h] _

1 0.
=0 |h[

Since |(h,k)| > |hl, it is also true that
lim |sm{a 4+ h) —sing — (cosa) .?t| = o

A0 |(h,K)|

It 1s often convenient to consider the matrix of Df(a):
R" — R™ with respect to the usual bases of R"™ and R™
This m X n matrix is called the Jacobian matrix of f at a,
and denoted f'(a). If f(z,y) = sin z, then f’(a,b) = (cos a, 0).
If f: R— R, then f'(a) is a 1 X 1 matrix whose single entry
is the number which is denoted f'(a) in elementary caleulus.

The definition of Df(a) could be made if f were defined only
in some open set containing a. Considering only functions
defined on R"™ streamlines the statement of theorems and
produces no real loss of generality. It is convenient to define
a function f: R® — R™ to be differentiable on A if f is differ-
entiable at a foreacha & A. If f: A — R™, then f is called
differentiable if f can be extended to a differentiable function
on some open set containing 4.

Problems. 2-1.* Prove that if f: R®— R™ is differentiable at
a & R", then it is continuous at a. Hinl: Use Problem 1-11).

2-2. A function f: R?— R is independent of the second variable if
for each z € R we have f(z,71) = f(z,y2) for all y,y2 € R. Show
that f is independent of the second variable if and only if there is a
function g: R— R such that f(z,y) = g(z). What 1s f'(a,h) in
terms of ¢'7
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2-3.

2-4,

2-5.

2-6.

2—1-

2-8.

2- g-
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Define when a function f: R* — R is independent of the first varia-
ble and find f'(a,b) for such f. Which functions are independent of
the first variable and also of the second variable?

Let g be a continuous real-valued function on the unit cirele
{z € R%: |z] = 1} such that g(0,1) = g(1,0) = 0 and g(—z) =
—g(z). Define f; R? = R by

Ke) — {Izi-f(ﬁ) z # 0,
0 z = 0.

(a) If z € R* and h: R — R is defined by h(¢) = f(iz), show that
h is differentiable.

(b) Show that f 18 not differentiable at (0,0) unless g = (.
Hint: First show that Df(0,0) would have to be 00 by considering
(h,k) with &k = 0 and then with & = 0,

Let f: R*— R be defined by
zly|
——— (z,y) #0,
flzy) = { v'2* +4°
0 {z,y) = L.

Show that f is a function of the kind considered in Problem 2-4,
go that f is not differentiable at (0,0).

Let f: R? — R be defined by f(z,y) = 4/ |z | Show that f is not
differentiable at (0,0).

Let f: R*— R be a function such that |f(z)] < |z|2. Show that
[ is differentiable at 0.

Let f: R — R® Prove that f is differentiable at « € R if and only
if f! and f* are, and that in this case

oy o (@),
I ({f’}’(n})
Two functions f,g: R — R are equal up to nth order at a if

lip 7@t W —g@+h) _
R0 h™
(a) Show that f is differentiable at a if and only if there is a
function g of the form gl(z) = aop + ailz — a) such that f and g are
equal up to first order at a.
(b) I f'(a), . . . ,f™(a) exist, show that f and the function g

defined by
- _f{ﬂ(a} —
sr{x}#zﬁ P e-a
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are equal up to nth order at a. Hint: The limit

n=1
(1)
IOED) il R
1= i
lim
T—a (x —a)®

may be evaluated by L'Hospital's rule.

BASIC THEOREMS

2-2 Theorem (Chain Rule). Iff: R" — R™ is differenti-
able at a, and g: R™ — R? s differentiable at f(a), then the
composition ge [: R® — RP? is differentiable at a, and

D(g = f)(a) = Dg(f(a)) > Df(a).

Remark. This equation can be written

(gof)'(a) = ¢'(f(a)) - f'(a).

If m =n = p = 1, we obtain the old chain rule.

Proof. Let b = f(a), let A = Df(a), and let u = Dg(f(a)).
If we define

(1) e(z) = f(z) — fla) — Mz — a),
2) ¥v(u) = g(y) — g(b) — uly — b),
(3) plz) = gof(zx) — gofla) — poXlx — a),

then
(4) l __‘F(L. 0,
alz—al
)|
5) lim = 0,
*) s [y —b]
and we must show that
fim 12 _ g
z—a |+ — @ .
[ 1

Now

p(z) = g(f(z)) — g(b) — w(X(z — a))
= g(f(z)) — g(b) — w(f(z) — fla) — o(x)) by (1)
= [g(f(z)) — g(b) — u(f(x) — f(a))] + u(e(x))
= ¢(f(z)) + u(e(z)) by (2).
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Thus we must prove

I Z61C2))] I

B

(7) lim M-l = {).

e 1T — @

Equation (7) follows easily from (4) and Problem 1-10. If
g > 0 it follows from (5) that for some § > 0 we have

W(f@)| < elf@) —b] i |f(z) — b| <5,

which is true if [z — a| < &, for a suitable §;. Then

W (f()| < e|f(@) — b]
= elo(z) + Az — a)
< gle(z)| + eM|z — a

for some M, by Problem 1-10. Equation (6) now follows
easily. |

2.3 Theorem
(1) If f: R" — R™ 1s a constant function (that s, if for some

y € R™ we have f(z) = y for all x € R"), then

Df(a) = 0.
(2) If f: R®™ — R™ is a linear transformation, then
Df(a) = f.

(3) If f: R" — R™, then f is differentiable at a € R" if and
only if each f' 1s, and

Df(a) = (Df'(a), . . . ,Df"™(a)).

Thus f'(a) is the m X n matriz whose ith row is (f*)'(a).
(4) If s: R* — R 1s defined by s(x,y) = x + y, then

Ds(a,b) =
(5) If p: R®— R is defined by p(z,y) = = - y, then
Dp(a,b)(z,y) = bz + ay.
Thus p'(a,b) = (b,a).



Differentiation 21

Proof

1) tim POt R =@ =0 _ . W=y =0 _,
h=s0 4] o (A
[ = —
h—0 |h'l
_ ligg @ + ) — f@) = fR) _

h—0 |l
(3) If each f* is differentiable at a and
A= (Dfl(ﬂ), v e ;W(ﬂ}}:

then
fla + k) — f(a) — A(R)

= (fY{a + k) — f'(a) — Df'(a)(h), . . . ,
f™(a + k) + f"(a) — Df™(a)(h)).

Therefore
o [f@ + k) — 7(@) = AR
1m
h—D FJFI'|
< lim E fita + k) — fia) — DF@®| _ o
A= ot |h|

If, on the other hand, f is differentiable at a, then f' =
x' e f is differentiable at @ by (2) and Theorem 2-2.

(4) follows from (2).

(5) Let Az,y) = bx + ay. Then

. |pla 4k, b+ k) — pla,b) — A(hk)!
lim
Chky—+0 I l E(h:;‘.”
hk
= lim ——-
armo | (AsR)]
Now
B2 if k] < |4l
%12 if [k] < k]

Hence |hk| < |h|* + |k|®. Therefore

|kl h® 4+ k* —
< ~ = VA 4+ k2,
1B = v/h2 12

hk| <
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80

lim IME]

-0 | (K| =01

2-4 Corollary. If f,g: R® — R are differentiable at a, then

D(f + g)(a) = Df(a) + Dg(a),
D(f - g)(a) = g(a)Df(a) + f(a)Dg(a).

If, moreover, g(a) # 0, then

g(a)Df(a) — f(a)Dg(a)
lg(a)]*

D(f/g)(a) =

Proof. We will prove the first equation and leave the others
to the reader. Since f + g = s (f,g), we have

D(f + g)(@) = Ds(f(a) g(a)) e D(f,9)(a)
= 5o (Df(a),Dg(a))
= Df(a) + Dy(a). 1|

We are now assured of the differentiability of those functions
fi: R*— R™, whose component functions are obtained by
addition, multiplication, division, and composition, from the
functions #* (which are linear transformations) and the fune-
tions which we can already differentiate by elementary
caleculus, Finding Df(z) or f'(x), however, may be a fairly
formidable task. For example, let f: R* — R be defined by
f(z,y) = sin(xy®). Sincef = sino (x!- [x%]?), we have

f'(a,b) = sin’(ab?) - [b2(x") (a,b) + a([xY)%)'(a,b)]
= sin’(ab?) - [b*(=") (a,b) + 2ab(x?)'(a,b)]
= (cos(ab?)) - [b%(1,0) + 2ab(0,1)]
= (% cos(ab?), 2ab cos(ab?)).

Fortunately, we will soon discover a much simpler method of
computing f’.

Problems. 2-10. Use the theorems of this section to find /' for the
following:
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(a) f(z,y,2) = zV.
(h) flz,y2) = (z¥2).
(e) f(z,y) = sin(z sin y).
(d) f(z,,2) = sin(z sinly sin 2)).
(e) flz,y.2) = z¥".
(F) flz,y,2) = av*=,
(g) flz,y,2) = (z + )"
(h) f(z,y) = sin(zy).
(i) flz,y) = [sin(zy)|®o" 2,
(i) flz,y) = (sin(zy), sin(z sin y), z¥).
2-11. Find f' for the following (where g: R — R is continuous):
@ faw = [
b) 1) = [2"%.
f[:} f{z.y,zl - J‘;i'n{:n sin(y ain ‘”ﬂ.
2-12. A function f: R™ X R™— RP is bilinear if for z,z;,7z: € R",
vz € R™ and 2 & R we have

I{Mly} = uf{z,y! ""f{ﬂ?,ﬂ#)*
flzr + z2.9) = flzrny) + flzo,u),
flz,n + y2) = flz,y) + flz,0).

(a) Prove that if f is bilinear, then

o R

(h.ky—0 '{hrk” e

(b) Prove that Df(a,b)(z,y) = fla,y) + f(=,b).
() Show that the formula for Dp(a,b) in Theorem 2-3 is a
special case of (h).
2-13. Define IP: R® X R" — R by IP(z,y) = (z,1).
(a) Find D(IP)(a,b) and (IP) (a,b).
(b) If f,g: R— R" are differentiable and h: R — R is defined hy
R(1) = (f(1),g(1)), show that

h(a) = {f'(a)T\gla)} + {f(a),g’(a)™).

(Note that f’(a) is an n X 1 matrix; its transpose-f'(a)Tisa 1 X n
matrix, which we consider as a member of R".)

() If f: R— R™ is differentiable and |f(¢)| = 1 for all ¢, show
that (f/(O)7T,f(0)) = 0.

(d) Exhibit a differentiable function f: R — R such that the
function |f| defined by |f|(t) = |f(t)| is not differentiable.

2-14. Let E, ¢ = 1, . . . ,k be Euclidean spaces of various dimensions.
A function f: Ey X - - - X Ey— R? is called multilinear if
for each choice of x; € E;, j # 1 the function g: E; — R? defined by
glz) = flzy, . . . ,2i—1,5,%ix1, « « . ,%k) 18 & linear transformation.
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(a) If fis multilinear and ¢ # 7, show that forh = (hy, . . . k),
with hy € E), we have
Yim Effall v oa s f'h'l'! * w o Th.iff Pow |ﬂ'-‘!]l 2
h—+0 [&|
Hint: If gle) = flay, . . . 2, . . o % « .. ,4x), then g is
bilinear.

(b) Prove that

&
Df(ay, . . . yax)(zy, . . . 20) = E flay, . . . @i ,ZTi0i1, .. . 48k).

1=1

2-15. Regard an n X n matrix as a point in the n-fold product R® X
- X R"™ by considering each row as a member of R".
(a) Prove that det: R" X - - - ¥ R™ — R is differentiable and

21)
D(det)(ay, . . . an)(x1, . . . ,Zn) = E det :.:.-].
i=1
\.aﬂ-J
(b) If a;;: R — R are differentiable and f() = det(a;;(t)), show
that
[au{!'h e 8 (0))
') = Edet aji'(t), . . . e (0)]-
Jom : )
Lﬂ'ﬂIUL . oe pﬂ'nn(”J

() If det(ag(t)) # 0 for all ¢ and by, . . . ,bu: R — R are dif-

ferentiable, let sy, . . . ,8,: R— R be the functions such that
81(t), . . . ,8a(1) are the solutions of the equations
ki)
Y w05 =b® =1
i=1

Show that s; is differentiable and find s,/(f).
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2-16. Suppose f: R™ — R" is differentiable and has a differentiable
inverse f~!: R™— R™ Show that (f~")(a) = [f'(f'a))]~"
Hint: fof~z) = z.

PARTIAL DERIVATIVES

We begin the attack on the problem of finding derivatives
“‘one variable at a time.” If f: R* — R and ¢ € R", the limit

o @ k. )~ flah e,
h—0 h

if it exists, is denoted D.f(a), and called the ith partial deriva-
tive of fat a. It is important to note that D;f(a) is the ordi-
nary derivative of a certain function; in fact, if g(z) =
f(at, . ..z, ... ,a"), then Dif(a) = g'(a’). This means
that D;f(a) is the slope of the tangent line at (a,f(a)) to the
curve obtained by intersecting the graph of f with the plane
' = a’, j # ¢ (Figure 2-1). It also means that computation of
D.f(a) is & problem we can already solve. If f(z!, . . . z")is

(a,b)

FIGURE 2-1
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given by some formula involving z' . .. 2" then we find
D;f(z', . . . ") by differentiating the function whose value
at z' is given by the formula when all 2/, for j # i, are
thought of as constants. For example, if f(z,y) = sin(zy?),
then Df(z,y) = y* cos(zy?) and Daof(z,y) = 2zy cos(zy?). Ii,
instead, f(z,y) = z¥, then Dif(z,y) = yz¥"' and D.f(z,y) =
x¥ log =,

With a littie practice (e.g., the problems at the end of this
section) you should acquire as great a facility for computing
D;f as you already have for computing ordinary derivatives.

If Dif(x) exists for all z & R", we obtain a function D,f:
R" — R. The jth partial derivative of this function at x, that
15, D;(D;f)(x), is often denoted D; ;f(z). Note that this nota-
tion reverses the order of 7 and j. As a matter of fact, the
order is usually irrelevant, since most funections (an exception is
given in the problems) satisfy D; ;f = D; ;f. There are various
delicate theorems ensuring this equality ; the following theorem
is quite adequate. We state it here but postpone the proof
until later (Problem 3-28).

2-5 Theorem. If D;;f and D;;f are conlinuous in an
open sel conlaining a, then

D; ;f(a) = Dj,if(a).

The function D;;f is called a second-order (mixed)
partial derivative of f Higher-order (mixed) partial
derivatives are defined in the obvious way. Clearly Theorem
2-5 can be used to prove the equality of higher-order mixed
partial derivatives under appropriate conditions. The order
of 4, ..., is completely immaterial in Dy, . . . ,uf
if f has continuous partial derivatives of all orders. A function
with this property is called a C” funetion. In later chapters
it will frequently be convenient to restrict our attention to C~
functions.

Partial derivatives will be used in the next section to find
derivatives. They also have another important use—finding
maxima and minima of functions.
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2-6 Theorem. Let A C R". If the maximum (or mini-
mum) of f: A — R occurs at a point a in the tnterior of A and
D;f(a) exists, then Df(a) = 0.

Proof. Let giz) =f(a%, ... ,z, ... ,a"). Clearly g
has a maximum (or minimum) at @', and g; is defined in an
open interval containing a'. Hence 0 = g¢/(a*) = Dif(a). |

The reader is reminded that the converse of Theorem 2-6
is false even if n = 1 (if f: R— R is defined by f(x) = 29,
then f'(0) = 0, but 0 18 not even a local maximum or mini-
mum). If n > 1, the converse of Theorem 2-6 may fail
to be true in a rather spectacular way. Suppose, for exam-
ple, that f: R* — R is defined by f(z,y) = z* — y* (Vigure
2-2). Then D.f(0,0) = 0 because g; has a minimum at 0,
while D4f(0,0) = 0 because g, has a maximum at 0. Clearly
(0,0) is neither a relative maximum nor a relative minimum.

F

FIGURE 2.2
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If Theorem 2-6 is used to find the maximum or minimum of
fon A, the values of f at boundary points must be examined
separately—a formidable task, since the boundary of 4 may
be all of A! Problem 2-27 indicates one way of doing this,
and Problem 5-16 states a superior method which can often
be msed.

Problems. 2-17. Find the partial derivatives of the following
funetions:
(&) flz,p2) = 2%
b) f(z,y,2) = =
{e) f{z,y) = sin(zsin y).
{d) flz,y,2) = sin{z sin(y sin z)).
(e) flz,y.z) = 2",
) flzyz) = 2>t
&) flz,y,2) = (x + y)~
(h) flz,y) = sin(zy).
(i) flx,y) = fsin{zy)P>*2.
2-18. Find the partial derivatives of the following functions (where
g: R — R is continuous):
@) flay) = [
®) flz.) = [30.
© flz) = [To.
d) fzy) = [ Eﬂ' b
2-19. If f(r,y) =z " (log z)(arctan(arctan(arctan(sin(cos zy) —
log(z 4+ ¥))))) find Dof(ly). Hint: There is an easy way to
do this.
2-20. Find the partial derivatives of fin terms of the derivatives of g and
hif
(a) flz,y) = glz)hiy).
(b) flz,y) = glz)hw.
(e) flz,w) = gl=).
(d) flz,u) = glw).
(e) flz,y) = glz + u).
2-21.* Let g1,92: R* — R be continuous. Define f: R* - R by

I W

fzy) = f gr(t,0dt + J gelz,t)dt.
i

(a) Bhow that Daf(z,y) = gelz,y).

(b) How should f be defined =0 that Dif(z,y) = gi(z,y)?

(¢) Find a function f R®*— R such that Dyf(z,y) = = and
D:f(z,y) = y. Find one such that Dif(z,y) = yand Dsf(z,y) = =
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2-22.* If f: R®*— R and D:f = 0, show that f is independent of the
second variable. If Dyf = Dsf = 0, show that jis constant.

2-23.* Iet A = ((2,4) ER* 2 <0,0orz > 0and y # 0}].
(a) If f: A— R and Dyf = Dgf = 0, show that f is constant.
Hint: Note that any two points in 4 can be connected by a
sequence of lines each parallel to one of the axes.
(b) Find a function f; A — R such that D;f = 0 but f is not
independent of the second variable.
2-24. Define f: R*— R by

2t — y?
_ 0
fay) = [ o v L
0 (z,4) = 0.
(a) Show that Daf(z,0) = z for all £ and D f(0,y) = —y for

all .
(b) SBhow that Dy 4f(0,0) = Dz 1f(0,0).
2-25.* Define f: R— R by

gt r #= 0,
rm={5 :iZg
Show that f is & C* function, and f%(0) = 0 for all 4. Hint:
ks 1/h
The limit f'(0) = lim : - lim {_—, can be evaluated by
o R h—+0 €

L'’Hospital's rule. It iz easy enough to find f'(z) for z # 0, and
f"(0) = lim f'(h)/h can then be found by L'Hospital's rule.
A=+

—(==1) 72 ={z1)"0 —_
2.26.* Let  f(z) = {; ¢ ig:_:ﬁ'

(a) Show that f: R — R is a C* function which is positive on
{(=1,1) and 0 elsewhere.

(b) Show that there is a " function g: R — [0,1] such that
glz) =0 for z <0 and g(z) =1 for z > e. Hint: If fig a C%
function which is positive on (0,g) and 0 elsewhere, let g{z) =

[517TE ¥
(¢) If @ €& R", define g: R* — R by

glz) = fllz* — a'lfe) - . .. - f(lz" — a™/2).
Show that g is & C* function which is positive on
(@' —gal +8) X -+ - X(a" —¢ga" +g)

and zero elsewhere.

(d) If A C R"is open and ¢ C A is compact, show that there is
a non-negative C* function f: A — R suech that f(z) > Oforz € C
and f = 0 outside of some closed set contained in A.

(e) Show that we ean choose such an f so that f: 4 — [0,1] and
fiz) =1 for z &£ C. Hint: 1If the function f of (d) satisfies
flz) 2 e for z € C, consider g o f, where g is the function of (b).
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2-27. Define g, h: {z € R%: |z| < 1] —= R? by

ﬂf-"-'-y} - {Ilyl ‘V/l S xi = HZ}:
Mzy) = @y, — V1 — 2% = ).

Show that the maximum of fon [z & R®: |1:[ = 1} is either the
maximum of feg or the maximum of fehon [z € R%: |2] < 1}.

DERIVATIVES

The reader who has compared Problems 2-10 and 2-17 has
probably already guessed the following.

2-7 Theorem. If f: R"— R™ i3 differentiable at a, then
D;fi(a) exists for 1 < 1< m, 1 <j < nandf(a)isthem X n
matriz (D;f'(a)).

Proof. Buppose first that m = 1, s0 that f: R®— R. Define
h: R—R" by h(z) = (a', . . . z, . .. ,a"), with z in the
jth place. Then D;f(a) =(fo h)'(a’). Hence, by Theorem
2-2,

(feh)'(a’) = f'(a) - B'(a?)
I"U]

=

]
= f'(a) - rI « jth place.

B
lo)
Since (f o h)'(a’) has the single entry D;f(a), this shows that
D;f(a) exists and is the jth entry of the 1 X n matrix f'(a).
The theorem now follows for arbitrary m since, by Theorem
2-3, each f' is differentiable and the ith row of f'(a) is

('@ 1

There are several examples in the problems to show that the
converse of Theorem 2-7 is false. It is true, however, if one
hypothesis is added.
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2-8 Theorem. If f: R"— R™, then Df(a) exists if all
D,f{(x) exist in an open set containing a and if each function

D;f* is continuous at a.
(Such a funetion fis called continuously differentiable at a.)

Proof. As in the proof of Theorem 2-7, it suffices to consider
the case m = 1, so that f; R*— R. Then

fla + k) — f(a) = fla' + k', a? . . . ,a") — fla', . . . ,a")
+ fla' + h',a® + R%,@?, . . . ,a")
— f(a* 4 k', 8% . .. @)
+ 2 a a
+ fla* + R, . .. @+ A"
_f[ﬂl + hl’ o ‘an—l*__'_hn'—lj ﬂ-ﬂj.
Recall that D f is the derivative of the function g defined by
g(z) = f(z,a® . .. ,a"). Applying the mean-value theorem
to g we obtain
.'r[ﬂl + hllaﬁ" = & w :E'“) _f(alr JRCI :ﬂ'ﬂ}
= hl- Dyf(by, a?, . .. ,a®)
for some b; between a' and a' 4+ h'. Similarly the ith term
in the sum equals
h*« Dif(a® + A, . . . @ AT by, L. . ") = RIDf(e)),
for some ¢;. Then

f@+h) — f@) — ) Dif(a) - b
i=1

i k] o

| Y (Difte) — Dif@) - k|

. i=1
= lim

A—0 1

R T |y
< lim Z [Di(e) = D@
< lim Z |Dif(e;) — Dif(a)]

A0 0N

=[}’

since D,f is continuous at a. |
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Although the chain rule was used in the proof of Theorem
2-7, it could easily have beeneliminated. With Theorem 2-8to
provide differentiable functions, and Theorem 2-7 to provide
their derivatives, the chain rule may therefore seem almost
superfluous. However, it has an extremely important corol-
lary concerning partial derivatives.

2-9 Theorem. Let gy, ... gm: R"— R be conlinuously
differentiable at a, and let f: R™— R be differentiable at
(g1(a), . . . ,gm(a)). Define the function F: R*— R by

F(z) = f(g1(), - . . gm(2)). Then
DiF(@) = ) Dif(gi(a), - - - 4m(@) - Digs(@).
i=1

Proof. The funection F is just the composition fe g, where
g= (g, ... ,gm). Since g; is continuously differentiable at
a, it follows from Theorem 2-8 that g is differentiable at a.

Hence by Theorem 2-2,

F'(a) = f'(g(a)) - 9'(a) =
Dlﬂl(a]r x I'Dﬂgl-(a')

(Dif(g(a)), - . . ,Duflg(a))) -
Digm(a), . . . \Dagm(a)

But D;F(a) is the ith entry of the left side of this equation,
while Z7,D;f(g1(a), . . . gm(a)) - Digj(a) is the ith entry
of the right side. |

Theorem 2-9 is often called the chain rule, but is weaker
than Theorem 2-2 since g could be differentiable without g;
being continuously differentiable (see Problem 2-32). Most
computations requiring Theorem 2-9 are fairly straightforward.
A slight subtlety is required for the function F: R*— R
defined by

F(z,y) = flg(z,y),h(x),k(y))
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where hk: R— R. In order to apply Theorem 2-9 define
hk: R*— R by

hzy) = hz)  k(zy) = k).
Then
Dlﬂ(‘try) = h"(.:l:} Dgﬁ(..“".-,y} = Dr
Dyk(z,y) = 0 Dak(z,y) = K'(y),

and we can write
F(zy) = fg(zu),hz,y),k(z,y)).
Letting a = (g(z,y),h(z),k(y)), we obtain

DIF(I"!y) = ,le(ﬂ) ; Dlﬂ(m!y} + Dﬁf{ﬂ) : hr('t}:
D.F(z)y) = Dif(a) - Dog(z,y) + D3f(a) - k'(y).

It should, of course, be unnecessary for you to actually write
down the functions 4 and £.

Problems. 2-28. Find expressions for the partial derivatives of the
following functions:
(a) Flz,y) = flg(x)k(y), g(=) + h(y)).
(b) Flz,y,2) = flg(z + w), h(y + 2)).
(e) Flzy,z) = f(z%y"2%).
(d) Flz,y) = flzr,g(z),h(z,y)).
2-29, Let f: R" — R. For z € R" the limit

lim fla + tx) *f{ﬂ}’
—0 4

if it exists, is denoted D.f(a), and called the directional deriva-
tive of f at a, in the direction z.
(a) Show that D, fla}) = Dif(a).
(b) Show that Dy.f(a) = tD.f(a).
(c) If fis differentiable at a, show that D.f(a) = Df(a)(x) and
therefore D,y f(a) = D.f(a) + D,f(a).
2-30, Let f be defined as in Problem 2-4. Show that D.f(D,0) exists for
all x, but if g = 0, then D, ,f(0,0) = D.f(0,0) 4+ D,f(0,0) is not
true for all z and. y.
2-31. Let f: R® - R be defined as in Problem 1-26. Show that D.f(0,0)
exists for all z, although f is not even continuous at (0,0).
2-32, (a) Let f: R— R be defined by

1
fiz) = :I:’Bin; Tz #0,
0 z = 0.
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Show that f is differentiable at 0 but f’ is not continuous at 0.
(b) Let f: R* — R be defined by

f@y) = Vit + 2
0 (x,y) = 0.

Show that f is differentiable at (0,0) but D;f is not continuous
at (D,0).

2-33. Show that the continuity of Dy’ at @ may be eliminated from the
hypothesis of Theorem 2-8.

2-34. A function f: R" — R is homogeneous of degree m if f(iz) =
i™f(x) for all . 1If fis also differentiable, show that

n

Z ' Dif (z) = mf(z).
f=1

Hint: If g(t) = f(iz), find g'(1).
2-35. If f: R" — R is differentiable and f(0) = 0, prove that there exist
gi: R* — R such that

f(z) = E 2'g:(z).

=]

Hint: 1f hy(t) = f(tz), then f(z) = [} h,'()dt.

INVERSE FUNCTIONS

Suppose that f: R— R is continuously differentiable in an
open set containing ¢ and f(a) = 0. If f'(a) > 0, there is an
open interval V containing e such that f'(z) > 0 for z € ¥,
and a similar statement holds if f'(a) < 0. Thus [ is increas-
ing (or decreasing) on V, and is therefore 1-1 with an inverse
function f~! defined on some open interval W containing f(a).
Moreover it is not hard to show that f~' is differentiable, and
for y & W that
P

YW = 5y
An analogous discussion in higher dimensions is much more
involved, but the result (Theorem 2-11) is very important.
We begin with a simple lemma.
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2-10 Lemma. Let A C R" be a rectangle and let f: A — R
be continuously differentiable. If there is @ number M such that
\D;f'(z)] < M for all x in the interior of A, then

1f@) — fy)| € n*M|z — y|
forall x,y € A.

Proof. We have

f) = fi@ = Y 156, . ™ e
f= 1

j=

_'f(yil CRE :yj_lrxj! o :-1"“}]'
Applying the mean-value theorem we obtain
Afi[yll e Fy,-l‘ m,--1_1] s I‘I“} —fi{yil' ‘. 0 !yj-li 2:1.’ A !IHJ

= (¥ — &%) - D;f'(z))
for some z;;. The expression on the right has absolute value
less than or equal to M - |y’ — 27|. Thus

fw) —f@l < Y I — |- M < nMly — =l
7=
since each |y’ — 2’| < |y — z|. Finally
Z Ifiw) — fi@w)| < n*M- |y —z|. |
2=

If) — 1@)| <

2-11 Theorem (Inverse Function Theorem). Suppose that
f: R" — R" s continuously differentiable in an open set contain-
ing a, and det f'(a) # 0. Then there is an open sel V containing
a and an open set W conlaining f(a) such that f: V. — W has a
continuous tnverse f—': W — V which is differentiable and for
all y € W satisfies

Y@ =1 e
Proof. Let A be the linear transformation Djf(a). Then

A is non-gingular, since det f'(a) = 0. Now D(A"'of)(a) =
D7) (f(a)) o Df(a) = A" o Df(a) is the identity linear
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transformation. If the theorem is true for A™! ¢« f, it is clearly
true for f. Therefore we may assume at the outset that X is the
identity. Thus whenever f(a + h) = f(a), we have

fla+ k) — fla) = NR)| _ |hl
1|

But

| — _ |
o @+ k) = g@ = awl _
0 k]

This means that we cannot have f(x) = f(a) for x arbitrarily
close to, but unequal to, a. Therefore there iz a closed ree-

tangle U containing a in its interior such that
1. f(z) # f(a) if x € U and = # a.

Sinee f ig continuously differentiable in an open set containing
a, we can also assume that

2. det f'(z) #0forz € U.

3. |D;fi(xy — Df'(a)| < 1/2n® for all 4, j, and « € U.
Note that (3) and Lemma 2-10 applied to g(z) = f(x) — =
imply for xy,zs € U that

f@) — 21 — (f(@2) — z2)| < $lan — 22,
Since
iy — x| = [f(x1) — flza)| £ f(21) — 21 — (fl22) — 22)]
.‘E" %lrl - x!lr
we obtain

4. lzy — x| < 2[f(x1) — flx2)| for 21,22 € U.

Now f(boundary ') is & compact set which, by (1), does not
contain f(a) (Figure 2-3). Therefore there is a number d > 0
such that |[f(a) — f(z)| > d for x € boundary U. Let
W = ly:|y — fla)| < d/2}. If y € Wandz € boundary U,
then

5. ly — f@| < |y — f@@).

We will show that for any y € W there is a unique z in
interior U such that f(z) = y. To prove this consider the
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function g: 7 — R defined by
9@ = v = f@)I* = Y & = f@n?
i=1

This function is continuous and therefore has a minimum on
U. If x € boundary U, then, by (5), we have g(a) < g(z).
Therefore the minimum of g does not oceur on the boundary
of /. By Theorem 2-6 there is & point x & interior U/ such
that D;g(x) = 0 for all 7, that is

Y 20} - f'@) Difi@) =0 forallj.

‘=1
By (2) the matrix (D;fi(z)) has non-zero determinant. There-
fore we must have y* — fi(z) = 0 for all 4, that is y = f(2).
This proves the existence of x. Uniqueness follows immedi-
ately from (4).

If V = (interior /) N\ (W), we have shown that the

function f: V— W has an inverse f~': W— V. We can
rewrite (4) as

6. [~y — Ny € 2|y — w2l for yry. € W.

This shows that f~! is continuous.

Only the proof that f~! is differentiable remains. Let
u = Df(x). We will show that ! is differentiable at y = f(z)
with derivative x~'. As in the proof of Theorem 2-2, for
z1 € V, we have

f(z1) = f(&) + p(z1 — z) + o(z1 — 2),
where
lo@@ — )| _ o

lim
Fi—+T .le = I|

Therefore
w6 f(zy) — f(z)) = 21 — 2 + p " e(z: — 2)).

Since every i, € W is of the form f(z) for some z; € V, this
can be written

W) ='@) + w7 — ») — v e ) = £71W)),
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and it therefore suffices to show that

fimn Lol y1) — W)

= 0.
iy Iyl == L‘J

Therefore (Problem 1-10) it suffices to show that

|w(f (1) — )l

= (.
iy ’yi = ?JJ

Now

lo(fY(y1) — ()
|yl - y[

_ el ) =7 on| ) — ')
) — @) lyr —

Since f~! is continuous, f~'(y1) — f~(3y) as y1— y. There-
fore the first factor approaches 0. Since, by (6), the second
factor is less than 2, the product also approaches 0. |

It should be noted that an inverse function f~' may exist
even if det f’'(a) = 0. For example, if f: R — R is defined by
f(z) = z*, then f'(0) =0 but f has the inverse function
I Yz) = vz, One thing is certain however: if det f'(a) = 0,
then f~! cannot be differentiable at f(a). To prove this note
that fof ' z) = 2. If f~' were differentiable at f(a), the
chain rule would give f'(a) - (f~1)'(f(a)) = I, and consequently
det f'(a) - det(f~YY(f(a)) = 1, contradicting det f’(a) = 0.

Problems. 2-36.* Let A CR" be an open set and f: A — R"
a continuously differentiable 1-1 function such that det f'(z) # 0
forallz. Show that f(4)isan openset and f~':f(A4) — A is differ-
entiable, BShow also that f(B) is open for any open set B C A,
2-37. (a) Let f: R*— R be a continuously differentiable function.
Show that fis not 1-1. Hint: If, for example, Dif(x,y) # 0 for all
(z,4) in some open set A, consider g: A — R? defined by g(z,y) =
(flz,y),9).
(b) Generalize this result to the case of a continucusly differen-
tiable function f; R® — R™ with m < n.
2-38. (a) If f: R— R satisfies f'(a) # 0 for all @ € R, show that f is
1-1 (on all of R).
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(b) Define f: R*— R? by f(z,y) = (¢*cos y, e*gin y). Show
that det f'(z,y) # 0 for all (z,y) but f is not 1-1.
2-39. Use the function f: R — R defined by

$~1— "‘sinllL x #(
* Lug : _
flz) = {2 T

0 =0,

to show that continuity of the derivative cannot be eliminated from
the hypothesis of Theorem 2-11.

IMPLICIT FUNCTIONS

Consider the function f: R*— R defined by f(z,y) = z* +
y* — 1. If we choose (a,b) with f(ab) = 0 and a # 1, —1,
there are (Figure 2-4) open intervals A containing a and B
containing b with the following property: if € A, there is
a unique y € B with f(z,y) = 0. We can therefore define

Hzp): flzy) = 0]

B, I
graph of g,

|
i

FIGURE 2-4
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a funetion g: A — R by the condition g(z) € B and f(z,g(z))
=0 (if b >0, as indicated in Figure 2-4, then g(z) =
V1 — z%). For the funetion f we are considering there is
another number b, such that f(a,b;) = 0. There will also be
an interval B, containing b, such that, when r € A, we
have f(x,gy(x)) = 0 for a unique g;(x) € B; (here gi(x) =
- V1 — z¥). Both g and g, are differentiable. These
functions are said to be defined implicitly by the equation
f(zy) = 0.

If we choose a = 1 or —1 it is impossible to find any such
function g defined in an open interval containing a. We
would like a simple eriterion for deciding when, in general,
such a function can be found. More generally we may ask
the following: If f: R®* X R— R and f(a, . . . ,a"b) = 0,
when can we find, for each (2!, . . . ,2") near (a', . . . ,a"),
a unique y near b such that f(z!, . .. 2"%y) = 0? Even
more generally, we can ask about the possibility of solving
m equations, depending upon parameters z', . .. 2", in m
unknowns: If

f,': R" X R"—> R 1
and
f‘.(a'l!‘ e o W Fan] bi! bt K R j‘bm) = D i:= II LB AL Tm?

when can we find, for each (z!, . . . ,z") near (a', . . . ,a") a
unique (y', . . . ,y™) near (b', ... b™ which satisfies
filtz', . .. 2%yl . .. y™ =07 Theansweris provided by

2-12 Theorem (Implicit Function Theorem). Suppose
J: R" X R™ — R™ s conlinuously differentiable in an open set
containing (a,b) and f(a,b) = 0. Lel M be the m X m matrix

(Dnyif'ad)) 1<4,j<m

If det M # 0, there is an open set A C R" containing a and an
open sel B C R™ containing b, with the following property: for
each x € A lhere s a unique g(x) € B such that f(x,g(x)) = 0.
The function g is differentiable.
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Progf. Define F: R"X R™"—>R" X R™ by F(zy =
(x,f(x,y)). Thendet F'(a,b) = det M 0. By Theorem 2-11
there is an open set W C R" X R™ containing F(a,b) = (a,0)
and an open set in R" X R™ confaining (a,b), which we may
take to be of the form A X B, such that F: A X B— W
has a differentiable inverse h: W — A X B. Clearly h 1s of
the form A(z,y) = (z,k(z,y)) for some differentiable function
k (since F is of this form). Let x: R® X R™ — R™ be defined
by w(z,y) = y; then # o F = f. Therefore

fzk(zy)) = feh(zy) = (wroF)oh(z,y)
=wo (Fobh)(x,y) = w(x,y) = v.

Thus f(z,k(x,0)) = 0; in other words we can define g(z) =
k(z,0). |

Since the function g is known to be differentiable, it is easy
to find its derivative. In fact, since f*(zx,g(x)) = 0, taking D;
of both sides gives

m

0 = Dif{(zg@) + ) Dural’@g@) - Dig(a)

L,yj=1, ... ,m

Since det M # 0, these equations can be solved for D,g(x).
The answer will depend on the various D;f*(x,g(x)), and there-
fore on g(x). This is unavoidable, since the function g is not
unique. Reconsidering the function f: R®* — R defined by
flz,y) = 2 + y* — 1, we note that two possible functions
satisfying f(z,g(z)) = 0 are g(z) = V1 — 2z and g(x) =
— V1 — 2. Differentiating f(z,g(z)) = 0 gives

Dyf(z,g(x)) + Daf(z,9(2)) - ¢'(z) = 0,

or
2z + 2¢(x) - ¢'(2) = 0,
g'(z) = —z/g(x),

which is indeed the case for either g(z) = V1 — ztor g(z) =

- V1 =22
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A generalization of the argument for Theorem 2-12 can be
given, which will be important in Chapter 5.

2-13 Theorem. Lel f: R"— R” be continuously differ-
entiable in an open set containing a, where p < n. Iff(a) =0
and the p X n matriz (D;f*(a)) has rank p, then there is an
open set A C R" containing a and a differentiable function h:
A — R" with differentiable inverse such that

Fohlz . .. 2% = (" 2T | ., 2%,

Proof. We can consider f as a function f: R"7 X R? — R?,
If det M # 0, then M is the p X p matrix (Dp_py;f*(a)),
1 £1,j < p, then we are preecisely in the situation considered
in the proof of Theorem 2-12, and as we showed in that proof,
there is h such that fo h(zY, . . . &) = (@, . .. ,a".
In general, since (D,f(a)) has rank p, there will be j; <

+ < jp such that the matrix (D;f'(a)) 1<i<p, j=

Ju + + « ;Jp has non-zero determinant. If g: R* — R™ per-
mutes the z’ so that g(z%, . . . ,2") = (. .. ,z%, . .. ,2%),
then fog is a function of the type already considered, so
((fog)ok)(z!, ... ,2") = (2" P, ... ") for some k.

Leth =gok. |

Problems. 2-40. Use the implicit function theorem to re-do Prob-
lem 2-15(c).

2-41. Let f: R X R— R be differentiable. For each z € R define g,:
R— R by gi{y) = f{z,y). Suppose that for each z there is a
unique ¥ with g./(y) = 0; let ¢{z) be this y.

(a) IFf Dy af(z,y) # 0 for all (z,y), show that ¢ is differentiable
and

_ Doaf(zelz))

D af(z,c(x))

Hint: g:'(y) = 0 can be written D:f(z,3) = 0.
(b) Show that if ¢’(z) = 0, then for some y we have

Dﬁ,]_f{-ﬂ,y} = 'nl
Daf(z,y) = 0.

(e) Let flz,y) = z(ylogy — y) — ylogz. Find

¢(z) =

max ( min f(z,y)).
(<z<2 j=y=l
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NOTATION

This section is a brief and not entirely unprejudiced discussion
of classical notation connected with partial derivatives.
The partial derivative Dif(z,y,2) is denoted, among devotees
of classical notation, by
af(z,p.2) af af
WA, g L

d
ar Py or E(zjylz} or a'_l':f('trylz}

or any other convenient similar symbol. This notation forces
one to write

af
E (u,0,w)

for Dyf(u,r,w), although the symbol

af(z,y,2) | " of (x,y,2)

[ (ufv!w]
T |(rpe) = (u) dx

or something similar may be used (and must be used for an
expression like Df(7,3,2)). Similar notation is used for D,f
and Dj3f. Higher-order derivatives are denoted by symbols
like
3% (x,y,2)

ay dx

When f: R — R, the symbol @ automatically reverts to d; thus

Dngf(-ﬂ,y,E} =

dsin ¢ ds8in x
vy noft '
dx dx

The mere statement of Theorem 2-2 in classical notation
requires the introduction of irrelevant letters. The usual
evaluation for Dy(f e (g,h)) runs as follows:
If fluw) is a function and u = g(z,y) and v = h(x,y),
then
of(g(z,y), hxy)) _ of(wp) du | af(uw) dv
dr © du ar dv dr

[The symbol du/dxr means 4/dx g(x,y) and 8/0u f(u,v) means
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Dif(u,p) = Dyif(g(x,y), h(xz,y)).] This equation is often written
simply
o _ ofow o v

e ———

ar du dx ov oxr

Note that f means something different. on the two sides of the
equation!

The notation df/dz, always a little too tempting, has inspired
many_(usually meaningless) definitions of dx and df separately,
the sole purpose of which is to make the equation

%,
df = 2 dx
work out. If f: R®— R then df is defined, classically, as
of

df = ——d:r + -—udy

(whatever dx and dy mean).

Chapter 4 contains rigorous definitions which enable us to
prove the above equations as theorems. It is a touchy
question whether or not these modern definitions represent a
real improvement over classical formalism; this the reader
must decide for himself.
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BASIC DEFINITIONS

The definition of the integral of a function f: A — R, where
A C R" is a closed rectangle, is so similar to that of the ordi-
nary integral that a rapid treatment will be given.

Recall that a partition P of a closed interval [a,b] 18 a
sequence typ, . . . ,b, where a=1{ <t ,, < - <k =0b
The partition P divides the interval [a,b] into k subintervals
[ti_1,t:]. A partition of a rectangle [a;,by] X * © - X [an,b]
is a collection P = (P, . . . ,P;), where each P; is a par-
tition of the interval [a;b;]. Suppose, for example, that
Py =1y, . . . 18 a partition of [ay,b;) and Py = 8y, . . . ,8
is a partition of [as,bs). Then the partition P = (Py,Ps) of
[@y,b1] X [as,bs] divides the closed rectangle [a1,bi] X [as,bs)
into & - [ subrectangles, a typical one being [;_1,4;] X [8;—1,8;].
In general, if P; divides [a;,b;] inte N; subintervals, then P =
(P, . .. ,Pn) divides [apbi] X - - - X [a,b,] Into N =
Ni- ...+ N, subrectangles. These subrectangles will be
called subrectangles of the partition P.

Suppose now that 4 is a rectangle, f: A — R is a bounded

46
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funetion, and P is a partition of A. For each subrectangle S
of the partition let

ms(f) = inf{ f(z): x € S},
Ms(f) = sup|f(x): x € S},

and let v(S) be the volume of S [the volume of a rectangle
[a’l:bi] > JRE L [ﬂnabnlf and also of (G[,ﬂ]) Ko X {'ﬂ'mbﬂ):
is defined as (by —a1): ... (by — ay)]. The lower and
upper sums of f for P are defined by

L(,P) = ) ms(f) - v(S) and U(f,P) = ), Ms(h) - v(S).

Clearly L(f,P) < U(f,P), and an even stronger assertion (3-2)
is true.

3-1 Lemma. Suppose the partilion P’ refines P (that 1s,

each subrectangle of P’ is contained in a subrectangle of P).
Then

L(f,P) S L(f,P") and  U(f,P) < U(f,P).

Proof. Each subrectangle S of P is divided info several sub-
rectangles Sy, . . . ,8; of P, so o(8) =v(S) + - +
v(Sa). Now mgs(f) < mg(f), since the values f(z) forz € 8§
include all values f(z) for x € S; (and possibly smaller ones).
Thus

ms(f) + 0(8) = ms(f) - v(Sh) + - -+ + ms(f) - v(Sa)
< mg(f) " 0(81) + + - 0+ ms(f) - v(Sa).

The sum, for all S, of the terms on the left side 18 L(f,P),
while the sum of all the terms on the right side 18 L(f,P").
Hence L(f,P) < L(f,P’). The proof for upper sums is
similar. |

3-2 Corollary. If P and P’ are any lwo parlilions, then
L(f,P") < U(f,P).

Proof. Let P” be a partition which refines both P and F’.
(For example, let P = (P}, . .. ,P!), where P! is a par-

—~
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tition of [a;,b;] which refines both P; and P.) Then
L(I,Pf] E L{I:P”} E U.(f!P”) 5 U{f,.P:L I

It follows from Corollary 3-2 that the least upper bound of
all lower sums for f is less than or equal to the greatest lower
bound of all upper sums for f. A function f/: 4 — R is called
integrable on the rectangle A if f is bounded and sup {L(/,P)}
= mnf{/(f,P)}. This common number is then denoted L;_f,
and called the integral of f over A. Often, the notation
_['Af(:c‘, e, xMdxt - - - de™is used.  If f: [a,b] — R, where
a <b, then [2f = [(anf. A simple but useful criterion for
integrability is provided by

3-3 Theorem. A bounded function f: A — R 18 inlegrable
if and only if for every € > 0 there is a partition P of A such
that U(f,P) — L(f,.P) < &

Proof. If this condition holds, it is clear that sup|{L(f,P)} =
inf{/(f,P)} and f is integrable. On the other hand, if f is
integrable, so that sup{L(f,P)} = inf{U(f,P)}, then for
any € > 0 there are partitions P and P’ with U(f,P) — L(f,P’)
< . If P" refines both P and F’, it follows from Lemma 3-1
that U(f,P") — L(j,P") < U(f,P) — L(f,P) << |

In the following sections we will characierize the integrable
functions and discover a method of computing integrals. For
the present we consider two functions, one integrable and one
not.

1. Let f: A — R be a constant function, f(z) = ¢. Then
for any partition P and subrectangle S we have ms(f) =
Ms(f) = ¢, so that L(f,P) = U(f,P) = Zsc-v(S) = ¢~ v(A).
Hence Lif =c v(Ad).

2. Let f: [0,1] X [0,1] — R be defined by

0 if z is rational,
1 if x is irrational.

flz,y) =

If P is a partition, then every subrectangle S will contain
points (z,y) with z rational, and also peints (z,y) with z
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irrational. Hence mg(f) = 0 and Mg(f) = 1, g0

L(f,P) = ;n “0(8) = 0

and

U(fP) = ) 1-u(8) = v(0,1] X [0,1]) = 1.

F:)

Therefore f is not integrable.

Problems. 3-1, Let f: [0,1] X [0,1] — R be defined by

0 if0<z <y,
Hey) = {1 ify<z<l.
Show that f is integrable and [ (0,1 (0.1 f = 4.
3-2, Let f: A — R be integrable and let g = f except at finitely many
points, Show that g is integrable and fAf = fﬁg.
3-3. Let f,g: A — R be integrable.
(a) For any partition P of A and subrectangle S, show that

mg(f) + msglg) < ma(f + g and Mg(f+g)
< Mg(f) + Msig)

and therefore

L(f,P) + L(g,P) SL(f+¢P) ed U(f+gP)
< U(£,P) + Ulg,P).

(b) Show that f + g is integrable and [, f + ¢ = [4f + [48-
(c) For any constant ¢, show that f atf = c_[ al
3-4, Let f: A — R and let P be a partition of A. Show that fis integra-
ble if and only if for each subrectangle 8 the function f|S, which
consists of f restricted to S, is integrable, and that in this case

3-5. Let f.,g: A — R be integrable and suppose f < g. Show that

[af < [ag.

3-6. If f: A — R is integrable, show that 1 f| is integrable and ”.Afl <

[ alz).

3.7. Let f: [0,1] X [0,1]1— R be defined by

0 z irrational,
flz,y) = {0 z rational, y irrational,
1/q z rational, y = p/g in lowest terms.

Show that fis integrable and J-{ﬂ.llxln.n J=0.
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MEASURE ZERO AND CONTENT ZERO

A subset A of R™ has (n-dimensional) measure 0 if for every
€ > 0 there is a cover {U,,U, U3, . . .} of A by closed rec-
tangles such that Z7 v(U;) < e It is obvious (but never-
theless useful to remember) that if 4 has measure 0 and
B C A, then B has measure 0. The reader may verifly that
open rectangles may be used instead of closed rectangles in
the definition of measure 0.

A set with only finitely many points clearly has measure 0.
If A4 has infinitely many points which can be arranged in a
sequence @i, as, a3, . . . , then A also has measure 0, for if
€ > 0, we can choose U; to be a closed rectangle containing
a; with »(U;) < /2. Then Z7_,»(U,;) < Z7_,&/2° = &.

The get of all rational numbers between 0 and 1 is an impor-
tant and rather surprising example of an infinite set whose
members can be arranged in such a sequence. To see that
this is so, list the fractions in the following array in the order
indicated by the arrows (deleting repetitions and numbers
greater than 1):

/
1/1 2/1 3/1 4/
/ #
0/2 1/2 2/2 3/2 4/2
e
0/3 1/3 2/3 3/3 4/3
/

Pl U o
0/1
/

N N N

0/4

N

An important generalization of this idea can be given.

3-4 Theorem. If A = A;\J Ax\J Az\J - + - and each
A ; has measure 0, then A has measure 0.

Proof. Let e > 0. Since A; has measure 0, there is a cover
{U{.;,;U{‘E,Ui”g, : % i of A; b}" closed rect&ngles such that
Z0(Us;) < &/2°. Then the collection of all U, ; is a cover
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of A. By considering the array

A S
Uipr Uiz Uy -
S A
Usy Use Uss
s
Uz Use Uss
/
we see that this collection can be arranged in a sequence
Vi, Vo, Va, . . .. Clearly 22 0(Vy) < Z7..6/2' =¢. |

A subset A of R" has (n-dimensional) content 0 if for every
g > 0 there is a finite cover {Uy, . . . ,U,} of A by closed
rectangles such that Z_ ,o(U;) <& If A has content 0,
then A clearly has measure 0. Again, open rectangles could
be used instead of closed rectangles in the definition.

3-5 Theorem. Ifa <b, then [a,b] C R does not have con-
tent 0. In fact, if Uy, . . . ,Un| 15 a finite cover of [a,b] by
closed intervals, then Z*_w(U;) =2 b — a.

Proof. Clearly we can assume that each U; C [a,b]. Let
a=1; <t < ... <t =>bbeall endpoints of all ;. Then
each »(U;) is the sum of certain {; — ¢;_;. Moreover, each
[t;—1,t;] lies in at least one U; (namely, any one which contains
an interior point of [t;_y,t;]), so Z% w(U,) 2 Z%_,(t; — t;—1)
=b—a |

If @ < b, it is also true that [a,b] does not have meagure 0.
This follows from

3-6 Theorem. If A is compact and has measure 0, then A
has content 0,

Proof. Let € > 0. BSince A4 has measure 0, there is a cover
{Uy,Us, . ..} of A by open rectangles such that Z>_,»(U;)
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< & Since A is compact, a finite number Uy, . . . U, of
the U; also cover A and surely Z7_,v(U;) <& |

The conclusion of Theorem 3-6 is false if A is not compact.
For example, let A be the set of rational numbers between 0
and 1; then A has measure 0. Suppose, however, that

{la1,b1], . . . J[an,bu]l covers A. Then A is contained in
the closed set [ay,bi] \J - - - \J[a,,b,], and therefore [0,1] C
[ay,bi) \J -+ - U [an,by]. It follows from Theorem 3-5 that

Z (b; — a;) > 1 for any such cover, and consequently A

=1

does not have content (.

Problems. 3-8. Prove that |a;,b1] X - - - X lan,ba] does not have
content 0 if a; < b; for each 7.
3-9. (a) Show that an unbounded set cannot have content 0,
(b) Give an example of a closed set of measure 0 which does not
have content 0.
3-10. (a) If C is a set of content 0, show that the boundary of € has
content 0.
(b) Give an example of a bounded set € of measure 0 such that
the boundary of € does not have measure 0.
3-11. Let 4 be the set of Problem 1-18. If 2®,(bi — a;) < 1, show
that the boundary of A does not have measure 0.
3-12. Let f: [a,h) = R be an increasing function. Show that {z: f is
discontinuous at x| has measure 0. Hinf: Use Problem 1-30 to
show that {z:e(f,z) > 1/n] is finite, for each integer n.
3-13.* (a) Show that the collection of all rectangles |a;,bi] X - X
[aq,bs] with all a; and b; rational ean be arranged in a sequence.
(b) If A C R™is any set and © is an open cover of 4, show that
there is a sequence 17y, Us, /5, . . . of members of @ which also
cover A. Hint: For each x € A thereisarectangle B = [ay,bi] X
«+ « % |an,ba] with all a; and b; rational such that t € B C [V
for some [/ £ 0.

INTEGRABLE FUNCTIONS

Recall that o{f,z) denotes the oscillation of f at .

3.7 Lemma. Lel A be a closed rectangle and let f: A — R be
a bounded function such that o(f,x) < € for all x € A. Then
there is a partition P of A with U(f,P) — L{f,P) < &- v(4).
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Proof. For each z & A there is a closed rectangle U,,
containing x in its interior, such that My (f) — my.(f) < &
Since A 1s compact, a finite number U,,, . . . U, of the
sets U, cover A. Let P be a partition for 4 such that each
subrectangle S of P is contained in some U,. Then Mg(f) —
mg(f) < & for each subrectangle 8§ of P, so that U(f,P) —

L(f,P) = Zs[Ms(f) — ms(f)] - v(8) <e-v(d). |

3-8 Theorem. Lel A be a closed rectangle and f: A - R a
bounded function. Let B = {x:f 1s nol continuous at z}.
Then f is integrable if and only if B 1s a sel of measure 0.

Proof. Suppose first that B has measure 0. Let & > 0 and
let B, = {2: o(f,x) > e}. Then B, C B, so that B. has
measure 0. Since (Theorem 1-11) B, is compact, B, has con-
tent 0. Thus there is a finite collection U, . .. U, of
closed rectangles, whose interiors cover B., such that Z_,v(U))
< & Let P be a partition of A such that every subrectangle
S of P isin one of two groups (see Figure 3-1):

o,

FIGURE 3-1. The shaded rectangles are in $1.
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(1) 8, which consists of subrectangles S, such that § C U;

for some 1.
(2) §2, which consists of subrectangles S with 8§ M B,

= .

Let |f(x)] < M for € A. Then Ms(f) — ms(f) < 2M
for every 8. Therefore

[Ms(f) — ms(f)] -0(8) <2M Y w(Uy) < 2Me.
S E &t i=1

Now, if S € 8§, then o(fx) <& for zr €S. Lemma 3-7
implies that there is a refinement P’ of P such that

}é‘ [Ms(f) — ms(f)] - 0(8") < &+ v(8)
sC S

for § & 8. Then

U(SP) — LGP = Y [Ms(f) = ms () - o(S)

S CSeEs
+ ) M) —mg(N]-u(S)
§'CSe 8
<2Me+ ) e u(S)
8 E 8

< 2Me + - v(A).

Since M and v(A) are fixed, this shows that we can find a
partition P’ with U(f,P") — L(f,P') as small as desired. Thus
f is integrable.

Suppose, conversely, that f is integrable. Bince B =
B,\UB,\JB,\J - - -, it suffices (Theorem 3-4) to prove
that each B,;, has measure 0. In fact we will show that
each B;;, has content 0 (since By, is compact, this is actually
equivalent).

If € >0, let P be a partition of 4 such that U(f,P) —
L(f,P) < g/n. Let § be the collection of subrectangles S
of P which intersect By;,. Then§ is a cover of Byj,. Nowif
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S € g, then Mg(f) — ms(f) = 1/n. Thus

LY uS) < ) [Ma(h) = ms(h]-o(S)

SEg S8
< 2 (Ms(f)— ms()] - o(S)
8

< =
n

and consequently Zgegv(S) < &. |

We have thus far dealt only with the integrals of functions
over rectangles. Integrals over other sets are easily reduced
to this type. If ¢ C R", the characteristic function x¢
of ' 18 defined by

C,
xc(x) = {: zg o

If C C A for some closed rectangle 4 and f: A — R is
bounded, then [¢f is defined as [4f- x¢, provided f- xc is
integrable. This certainly occurs (Problem 3-14) if f and
x¢ are integrable.

3-9 Theorem. The function x¢: A — R 18 inlegrable if and
only if the boundary of C has measure 0 (and hence content 0).

Proof. If z is in the interior of C, then there is an open
rectangle U with z & U C €. Thus x¢c = 1 on U and xc is
clearly continuous at z. Similarly, if « is in the exterior of C,
there is an open rectangle U with x € U C R" — (. Hence
xe = 0 on U and x¢ is continuous at . Finally, if z 18 in
the boundary of C, then for every open rectangle U/ containing
x, there i8 y, € UM C, so that xe(y1) = 1 and there is
y2 & UN (R® — (), so that xe¢(y2) = 0. Hence x¢ is not
continuous at z. Thus {z: x¢ I8 not continuous at z} =
boundary C, and the result follows from Theorem 3-8. |
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A bounded set ' whose boundary has measure 0 is called
Jordan-measurable. The integral [l is called the
(n-dimensional) content of ', or the (n-dimensional) volume
of €. Naturally one-dimensional volume is often called
length, and two-dimensional volume, area.

Problem 3-11 shows that even an open set C may not be
Jordan-measurable, so that [f is not necessarily defined even
if C' is open and f is continuous. This unhappy state of affairs
will be rectified soon.

Problems. 3-14. Show that if “g: A4 — R are integrable, so is
I

3-15. Show that if € has content 0, then € C A for some closed rectangle
A and (7 is Jordan-measurable and J‘ Axe = 0.

3-16. Give an example of a bounded set ' of measure () such that f Axe
does not exist.

3-17. If C is a bounded set of measure 0 and _f,q yo exists, show that
J.A xe = 0. Hint: Show that L(f,P) = 0 for all partitions P.
Use Problem 3-8.

3-18. If f: A — R is non-negative and Iﬂf = (), show that |r: f(z) = 0]
has measure (). Hini: Prove that |z: f(z) > 1/n] has content ().

3-19. Let U7 be the open set of Prohlem 3-11. Show that if f = xp
except on a set of measure 0, then fis not integrable on [0,1].

3-20. Show that an increasing function f: [a,h] — R is integrable on
[a,b].

3-21. If A is a closed rectangle, show that " C A is Jordan-measurable
if and only if for every ¢ > 0 there is a partition P of A such that
ESEELF{S? — ESES#{S] < g, where §; consists of all subrectan-
gles intersecting ' and §» all subrectangles contained in €.

3-22.* If A iz a Jordan-measurable set and z > 0, show that there iz a
compact Jordan-measurable set ' C A such that J-Ji_e 1 <e.

FUBINI’S THEOREM

The problem of calculating integrals is solved, in some sense,
by Theorem 3-10, which reduces the computation of integrals
over a closed rectangle in R", n > 1, to the computation of
integrals over closed intervals in R. Of sufficient importance
to deserve a special designation, this theorem is usually
referred to as Fubini’s theorem, although it is more or less a
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special case of a theorem proved by Fubini long after Theorem
3-10 was known.

The idea behind the theorem is best illustrated (Figure 3-2)
for a positive continuous function f: [a,b] X [e,d] — R. Let
to, . . . Jn be a partition of [ab]and divide [a,b] X [c,d]
into n strips by means of the line segments {£;} X [e,d].
If g, is defined by g.(y) = f(z,y), then the area of the region
under the graph of f and above {z} X [e,d] is

d d
f gz = f f(zy)dy.

The volume of the region under the graph of f and
above [fi_1,li] X [e,d] is therefore approximately equal to
(t; — ;1) - fff{x,y}dy, for any x © [t;_1,t:]. Thus

"

[ 1=} { f
[a,b] 3¢ o) i=1 [tat]xed

is approximately E;::I“rf"—ﬁi_.]}'_[‘ff{i'-f,ﬁ}dy, with z; in

|

graph of [

FIGURE 3-2
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[ti_1,t;]. On the other hand, sums similar to these appear in
the definition of [%([4f(x,y)dy)dz. Thus, if & is defined by
h(z) = [%g. = [4f(z,y)dy, it is reasonable to hope that h is
integrable on [a,b] and that

b b4
f f= f}t = f (f f(x,y}dy) dz.
[a,b]  [e.d] a o e

This will indeed turn out to be true when f is continuous, but
in the general case difficulties arise. Suppose, for example,
that the set of discontinuities of f 18 |zo) X [¢,d] for some
zy € [a,b]. Then f is integrable on [a,b] X [c,d] but A(zy) =
[2f(zo,y)dy may not even be defined. The statement of
Fubini’s theorem therefore looks a little strange, and will be
followed by remarks about various special cases where simpler
statements are possible.

We will need one bit of terminology. If f: A > R is a
bounded function on a closed rectangle, then, whether or not
f is integrable, the least upper bound of all lower sums, and
the greatest lower bound of all upper sums, both exist. They
are called the lower and upper integrals of f on A4, and
denoted

L!f and U!f,

respectively.

3-10 Theorem (Fubini’s Theorem). Let A C R" and
B C R™ be closed rectangles, and let f: A X B — R be integrable.
For x € A let g.: B— R be defined by g-(y) = f(x,y) and let

£(z) = L J ge = L J’ 7@ y)dy,
W) = U J g-=U J f(zy)dy.

Then £ and U are integrable on A and

.4;!3'{ =,!£ =4! (L!f(mszf)dy) dz,
f $= f=u =j (Uéff{ﬂay)dy) dz.

AxEB A
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(The integrals on the right side are called iterated integrals
for f.)

Proof. Let P4 be a partition of A and Py a partition of B.
Together they give a partition P of A X B for which any
subrectangle S 18 of the form S84 X Sp, where S4 15 a sub-
rectangle of the partition P4, and Sp is a subrectangle of the
partition Pg. Thus

L(P) = Y ms(f) - 0(8) = ) msuxss(f) v(84 X Sp)
g 84,88
- E (E msaxss(f) - vas)) - 9(84).
S84 8s

Now, if x € S4, then clearly mg,s,(f) < msz(g:). Conse-
quently, for x € S4 we have

D mscsalf) - 0(Sa) < ) msylgs) 9(Sm) < L [ g. = ().
S& Su B
Therefore

E (Z M axSa(f) 'U(Sa}) 0(S4) < L(8,P,).

S84 Snw
We thus obtain
L(f,P) < L(£,P4) < U(L,P,y) < U(W,Py) < U(f,P),

where the proof of the last inequality is entirely analogous
to the proof of the first. Since f is integrable, sup{L(f,P)} =
inf{U(f,P)} = [axsf. Hence

sup{L(€,Py)} = inf{U(L,P4)} = [axs/f

In other words, £ is integrable on A and _['Ang = _fAE. The
assertion for U follows similarly from the inequalities

L{f,P) < L(£,P4) < L(W,Py) < U(UP,) S UFP). |

Remarks. 1. A similar proof shows that

[ 1= [(L[s@niz)ay = [ (U [ sewiz) dy.

AXB
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These integrals are called iterated integrals for f in the reverse
order from those of the theorem. As several problems show,
the possibility of interchanging the orders of iterated integrals
has many consequences.

2. In practice it is often the case that each g, is integrable,
so that [awaf = [a([af(z,y)dy)dz. This certainly occurs
if f i8 eontinuous.

3. The worst irregularity commonly encountered is that g.
18 not integrable for a finite number of z © 4. In this case
£(z) = [pf(z,y)dy for all but these finitely many z. Since
[ 4£ remains unchanged if £ is redefined at a finite number of
points, we can still write [axaf = [4([af(z,y)dy)dz, pro-
vided that [ gf(z,y)dy is defined arbitrarily, say as 0, when it
does not exist.

4. There are cases when this will not work and Theorem 3-10
must be used as stated. Let f: [0,1] X [0,1] = R be defined
by

1 if z is irrational,

if z is rational and y is irrational,

1 —1/g if = p/g in lowest terms and y is
rational,

-

flzy) =

Then fisintegrable and jlﬂ.l}xfﬂ.ll f=1. Now Hf{.t,y)dy =1
if = is irrational, and does not exist if z is rational. There-
fore h is not integrable if h(z) = [f(zy)dy is set equal to 0
when the integral does not exist.

5. If A =Ja,by) X ¢+ -+ X[anb,) and f: A - R is suf-
ficiently nice, we ean apply Fubini’s theorem repeatedly to
obtain

for= (o (fO s aaat) - - ) e

6. If C C A X B, Fubini’s theorem can be used to evaluate
f cf, since this is by definition f Axe Xcf. Suppose, for exam-
ple, that
C=[-11] X [-1,1] = {(z): |@y)] < 1}.

fgf = f_lt (f_ll fzy) - xc(m,yjdy) dz.

Then
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Now
( }={I ify >V1—22ory< — V1 — 22
Xcl\,Y 0 otherwige.
Therefore

[ 1@ - xe@pdy = [ sendy + [ swaay.

In general, if € C A X B, the main difficulty in deriving
expressions for f.:nf will be determining C M ({z] X B)
forz & A. If CM (A X {y}) for y € B is easier to deter-
mine, one should use the iterated integral

fcf = fa (f,i f(z,y) 'xc(m.y)dz) dy.

Problems. 3-23. Let CC A X B be a pet of content 0. Let
A’ C A be the set of all z € A4 such that {y € B: (z,y) € C} is
not of content 0. Show that A'is aset of measure 0. Hinl: xois
integrable and [ixzxc = [aU = [48,50 [4U — £ = 0.

3-24. Let ¢ C [0,1] ¥ [0,1] be the union of all {p/g} ¥ [0, 1/g], where
p/q i8 & rational number in [0,1] written in lowest terms. Use C
to show that the word "measure’” in Problem 3-23 cannot be
replaced by ‘‘content.”

3-25. Use induction on n to show that [ay,by] X - - + X [a,.b.] 8 not a
set of measure 0 (or content 0) if a; < b; for each 1.

3-26. Let f: [a,b] — R be integrable and non-negative and let A, =
fzy:a<z<band 0 <y < f(z)]. Show that A is Jordan-
measurable and has area [2f.

3-27. If f: [a,b] X [a,b] — R ie continuous, show that

B fu
[, [ temazas = |, |, ferdyds

Hint: Compute j'cf in two different ways for a suitable set
C C [a,b] X [a,b].

3-28.* Use Fubini's theorem to give an easy proof that Dy of = Dg,f
if these are continuous. Hint: If Dysf(a) — Dsyf(a) > 0,
there 18 a rectangle 4 containing a such that Dy of — Dgf >
lon A.

3-29. Use Fubini's theorem to derive an expression for the volume of
a set of R? obtained by revolving & Jordan-measurable set in the
yz-plane about the z-axis.
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3-30. Let € be the set in Problem 1-17. Show that

ﬁﬂ*.l] (f{u.l! m{zﬂ}’ﬁ) dy = ];ﬂ.ll (ﬁn'u xc(y,x}dy) dzr = 0

but that f'['ﬂ‘],]x[ﬂ.]_] x¢ does not exist.
3-31. If A = [a,b1] X « + - X [an,bs] and fi: 4 — R is continuous,
define F: 4 — R by

Fz) ~ j;m.zw S L

What is D;F(z), for z in the interior of A7
3-32.* Let f: [a,b] X [¢,d] — R be econtinuous and suppose Dyf is con-
tinuous. Define F(y) = ﬂf{m,y}dz. Prove Leibnitz's rule: F'(y)
= [4Dof(z,y)dz. Hint: F(y) = [af(z.y)dz = [4 [¥Dof(z,4)dy +
flz,c))dz. (The proof will show that continuity of Dsf may be
replaced by considerably weaker hypotheses.)
3-33. If f: [a,b] X [c,d] — R iB continuovs and Dsf is continuous, define
F(z)y) = [ift,y)dt.
(a) Find DyF and D.F.
(b) If G(z) = [2=)f(t,z)dt, find G'(z).
3-34.* Let gy,g2: R®* - R be continuously differentiable and suppose
Ihges = Dagy.  As in Problem 2-21, let

flo,y) = ﬁ] 060t + [ st

Show that Dyf(z,y) = gilz,y).
3-35.* (a) Let g: R — R" be a linear transformation of one of the fol-

lowing types:

{ gles) =e  t#]
gle) = aej

{ﬂ(ﬂi) =e 1#]
glej) = ej + ek

gle) = &

glej) = &
If U is a rectangle, show that the volume of g(U) is |det g| -o(U).
(b) Prove that det g - v(U/) is the volume of g(I/) for any linear
transformation g: R* — R". Hint: If det g # 0, then g is the
ecomposition of linear transformations of the type considered in (a).
3-36. (Cavalieri’s principle). Let A and B be Jordan-measurable sub-
setsof R®%. Let A. = [(z,1): (z,5,¢) € A| and define B, similarly.
Suppose each A, and B, are Jordan-measurable and have the same

area. Show that 4 and B have the same volume.
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PARTITIONS OF UNITY

In this section we introduce a tool of extreme importance in
the theory of integration.

3-11 Theorem. Let A C R" and let © be an open cover of A.
Then there is a collection ® of C= functions ¢ defined in an open
sel conlaining A, with the following properties:

(1) Foreach x & A we have 0 < ¢(z) < 1.

(2) Foreach x € A there is an open set V eonlaining x such that
all but finitely many ¢ & @ areQ on V.

(3) For each x & A we have Z cpo(x) = 1 (by (2) for each z
this sum is finite in some open set containing x).

(4) For each ¢ € & there is an open sel U in O such that ¢ = 0
outside of some closed set conlained in U,

(A collection ® satisfying (1) to (3) is called a C” partition of
unity for A. If & also satisfies (4), it is said to be sub-
ordinate to the cover @. In this chapter we will only use
eontinuity of the functions .)

Proof. Case 1. A is compact.

Then a finite number U, . . . ,U/, of open sets in 0 cover A.
It clearly suffices to construct a partition of unity subordinate
to the cover {Uy, ... ,U,}. We will first find compact
sets D; C U; whose interiors cover 4. The sets D; are con-
structed inductively as follows. Suppose that Dy, . . . Dy
have been chosen so that {interior Dy, . . . , interior Dy,
Ukery - . . ,U,} covers A, Let

Cori=A— (int Dy\J - - Uint Dp\J Upya\J - - - \J U,).

Then Ciy1 C Upy is compact. Hence (Problem 1-22) we can
find a ecompact set D,y such that

Ci-+|, C interior Dk+1 and D*+1 C U;;+1.

Having constructed the sets Dy, . . . ,D,, let ; be a non-
negative C” function which is positive on D; and 0 outside of
some closed set contained in U; (Problem 2-26). Since
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{Dy, ... ,Dy}covers A, we have Y1(z) + -« * 4+ ¢u(2) >0
for all x in some open set {7 containing A. On U we can define

gl = () .
' Ui(z) + - o+ Palz)

If f: U = [0,1] is & C” function which is 1 on A and 0 outside
of some closed set in U, then ® = {f: ¢y, . . . [ ¢a} is the
desired partition of unity.

Case 2. A = A,\J A,\J A;\J -+ + |, where each A; is
compact and A; C interior Aipr.

For each 7 let ©; consist of all U/ M (interior Ay — Ai_3)
for U/ in ©. Then ©; is an open cover of the compact set
B; = A: — interior A;_,. By case 1 thereisa partition of unity
&, for B;, subordinate to 0. For each 2 € A the sum

o@) = ) @)
e €, all §

i1s & finite sum in some open set containing r, since if ¢t € A; we
have ¢(x) = 0 for ¢ € ®; with j > ¢ 4+ 2. For each ¢ in
each ®; define ¢'(z) = ¢(zx)/e(x). The collection of all ¢’ is
the desired partition of unity.

Case 3. A is open.

Let A4; =

[z € A: |z| < i and distance from z to boundary 4 > 1/},

and apply case 2.

Case 4. A iz arbitrary.

Let B be the union of all U/ in 0. By case 3 there is a par-
tition of unity for B; this is also a partition of unity for 4. |

An important consequence of condition (2) of the theorem
should be noted. Let € C A be compact. For each z & C
there is an open set V. containing z such that only finitely
many ¢ € @ are not 0 on V,. Since C is compact, finitely
many such V; eover . Thus only finitely many ¢ & ® are
not 0 on C.

One important application of partitions of unity will illus-
trate their main role—piecing together results obtained locally.
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An open cover © of an open set A C R" is admissible if
each U € © is contained in A. If & is subordinate to ©, .
f: A — R is bounded in some open set around each point of A4,
and {z: f is discontinuous at z} has measure 0, then each
{4 0-|f] exists. We define to be integrable (in the extended
sense) if E,E.,f 4 ¢ - | f| converges (the proof of Theorem 3-11
shows that the ¢'s may be arranged in a sequence). This
implies convergence of Z, E‘,U'A ¢ * fl, and hence absolute con-
vergence of Z,csf 4 ¢ f, which we define to be [4f. These
definitions do not depend on © or & (but see Problem 3-38).

3-12 Theorem.

(1) If ¥ is another partition of unity, subordinate to an admis-
stble cover ©' of A, then T, TJ'A VR [f| also converges, and

g fw'f= Z fsl".f-

pET A VEY A

(2) If A and f are bounded, then f is integrable in the extended
sense. '

(3) If A is Jordan-measurable and f 18 bounded, then this defini-
tion of j.Af agrees with the old one.

Proof

(1) Since ¢ ' f = 0 except on some compact set C, and there
are only finitely many ¢ which are non-zero on €, we can
write

pE®

This result, applied to |f|, shows the convergence of Z,c4
Zicefa v e |f], and hence of Z,caZyculfa ¥ e 1l
This absolute convergence justifies interchanging the order
of summation in the above equation; the resulting double
sum clearly equals E‘;,E\p_[_l ¥ *f. Finally, this result
applied to |f| proves convergence of Z, ¢ ofa ¥ I f].
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(2) If A is contained in the closed rectangle B and [f(z)| < M
forz € A, and F C & is finite, then

vgpjw'lfl 5_;,,. MJ"’= M[*;F#*EMU(B),

gince EpEF 72 < 1lonA.

(3) If € > 0 there is (Problem 3-22) a compact Jordan-meas-
urable ¢ C A such that J._,.l_c]. < €. There are only
finitely many ¢ & ® which are non-zeroon C. If FC ®
is any finite collection which includes these, and [ 4f has
its old meaning, then

SIS
< Mj (1- Fgr.p)

Problems. 3-37. (a) Suppose that f: (0,1) = R is a non-negative
continuous function. Show that [(o,1yf exists if and only if
!imu [ 1% exists.

E—*

(b) Let A, =[1—1/2%1—1/2""!]. Buppose thatf:(0,1)— R
satisfies [4,f = (—1)*/n and f(z) = Oforz & any An. Show that
[ 0,1)f does not exist, but limﬂ [(e.1—e) f = log 2.

E—*

3-38. Let A, be a closed set contained in (n, n 4+ 1). Suppose that
f: R— R satisfies [4 f = (—1)*/n and f = 0 for z & any A,.
Find two partitions of unity & and ¥ such that Z,cs/R ¢ - f and
Zyoew R ¢ - f converge absolutely to different values.

CHANGE OF VARIABLE

If g: [a,b] = R is continuously differentiable and f: R— R
is continuous, then, as is well known,

gih) b
[1=] G0

pla) a
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The proof is very simple: if ' = f, then (Feog)' = (fog) -¢';
thus the left side is F(g(b)) — F(g(a)), while the right side is
Fog(b) — Fog(a) = F(g()) — Fg(a)).

We leave it to the reader to show that if g is 1-1, then the
above formula can be written

f=[ 100l

"“le}} {urb}

(Consider separately the cases where g 18 increasing and where
g is decreasing.) The generalization of this formula to higher
dimensions is by no means so trivial.

3-13 Theorem. Let A C R" be an open set and g: A — R"
a I1-1, continuously differentiable function such that det g'(z)
#=0forallz € A. If f: g(A) — R 18 integrable, then

”[}f=j (f o g)|det ¢'|.

Proof. We begin with some important reductions.

1. Suppose there is an admissible cover © for A such that
for each U/ € 0 and any integrable f we have

é} f=!(f°y)|det 7).

Then the theorem is true for all of A. (Since g is auto-
matically 1-1 in an open set around each point, it is not sur-
prising that this is the only part of the proof using the fact
that g is 1-1 on all of A.)

Proof of (1). The collection of all g(U’) is an open cover of
g(A). Let ® be a partition of unity subordinate to this cover.
If ¢ = 0 outside of g(I7), then, since g is 1-1, we have (¢ ' f) e g
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= 0 outside of /. Therefore the equation

f e f= [ [(¢ 1) © gl|det ¢'|.
gl L7y
can be written

[ o1= [ 1o nealdet g
pld) A

Hence

(ff”—' Z (f‘!"'f= E ff(w'ﬂ"ﬂﬂdetﬂ'[
o(4) pE® o(4) vE® 4
=Y [en(segldet ¢

rED A

=I(fﬂ g}[det g’l.

Remark. The theorem also follows from the assumption
that

Zf = n_!ﬂ (f ° g)|det ¢'|

for V in some admissible cover of g(4). This follows from (1)
applied to g2,

2. It suffices to prove the theorem for the function f = 1.

Proof of (2). If the theorem holds for f = 1, it holds for
constant functions. Let V be a rectangle in g(4) and P a par-
tition of V. For each subrectangle S of P let fs be the con-
stant function mg(f). Then

LGB = ) ms(f) -o®) = ), [ fs

8 imt 8
= (fs o g)|det ¢’ < (f o g)|det ¢'|
gn"{iﬂ‘! ® Szrltii-?}
< [ (epldetl.
g

Since f;rf is the least upper bound of all L(f,P), this proves
that [vf < [ v)(fe g)|det ¢’|. A similar argument, letting
fs = Mg(f), shows that [vf > [,(v)(fog)ldet g’|. The
result now follows from the above Remark.
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3. If the theorem is true for g: A — R" and for h: B — R",
where g(4) C B, then it is true for he g: A — R".

Proaof of (3).

f= [ 1= [ (omldet ¥

heg(A) hig(A)) o(4)

) ;{ [(foh) o g] - [|det k| o g] - |det ¢'|
=[fa{hng)!det (h o g)'|.

4. The theorem is true if g is a linear transformation.
Proof of (4). By (1) and (2) it suffices to show for any open

rectangle U that
.[ 1= ! |det ¢|.
o(U)

This is Problem 3-35.

Observations (3) and (4) together show that we may assume
for any particular a € 4 that g’(a) is the identity matrix: in
fact, if T is the linear transformation Dg(a), then (T o g)'(a)
= [ ; since the theorem is true for T, if it is true for T o g it
will be true for g.

We are now prepared to give the proof, which preceeds by
induction on n. The remarks before the statement of the
theorem, together with (1) and (2), prove the case n = 1.
Assuming the theorem in dimension n — 1, we prove it in
dimension n. For each a € A we need only find an open set
U/ with a € U C A for which the theorem is true. Moreover
we may assume that g’'(a) = I.

Define h: A— R™ by h(z) = (g'(z), . . . ,¢" '(z),2").
Then h'(a) = I. Hence in some open U’ witha & U’ C 4,
the function h is 1-1 and det A'(z) # 0. We can thus
define k: A(U")— R" by k(z) = (£, . . . 2" L¢"(h7 ()
and g = ko h. We have thus expressed g as the composition
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of two maps, each of which changes fewer than n coordinates
(Figure 3-3).

We must attend to a few details to ensure thai I is a function
of the proper sorl. Since

(g" o A7) (k@) = (g")'(a) - [W'(@)]™" = (g")'(a),

we have Dy(g" e k= ")(h(a)) = Dyy™(a) = 1, so that L'(k(a))
= I. Thus in some open set V with h(a) & V C h(U’), the
function & is 1-1 and det k'(x) = 0. Letting U7 = k~'(V)
we now have g = ke h, where h: / = R" and £: V — R"
and h(T7) C V. By (3) il suffices to prove the theorem for A
and k. We give the proof for h; the proof for I s similar
and easier.

Let W C U7 be a rectangle of the form D X [a,,b,], where
D is a rectangle in R"™'. By Fubini's theorem

fi=[( [ 14 d)ar.

h{W) [awba]  RiDI |2n])
Let ho: D — R"' be defined by h-(z', ... 2" ") =
(g'x’, o .o @™, .. "M@, L. @), Then each A

is clearly 1-1 and

det (hy)' (2!, . . . 2" Y = detA’(?, . . . ") #0.
Moaoreaver
lde' - - - da™! = f 1 det - - - de™
MBS [en)) R (D)

Applying the theorem in the case n — 1 therefore gives

f 1 = f ( f 1de' - rf.;r.“"r) dx”
(W) lanbl  Ban(D)

= [ ( f dot(hp)' (2!, . . . 2" V|da' - - ff..l'n'_l) 4"
[

= [ ([ letwa, ... @az - - - @) dat
famba] D

= Hf det 2. |1

The condition det ¢'(x) # 0 may be climinated from the
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hypotheses of Theorem 3-13 by using the following theorem,
which often plays an unexpected role.

3-14, Theorem (Sard’s Theorem). Letg: A — R" be con-
tinuously differentiable, where A C R" 12 open, and let B =
|z € A: det g'(z) = 0}, Then g(B) has measure 0.

Proof. Let U C A be a closed rectangle such that all sides
of U have length [, say. Let & > 0. If N is sufficiently large
and U is divided into N™ rectangles, with sides of length /N,
then for each of these rectangles 8, if + € S we have

IDg(x)(y — z) — g(y) — g(@)| < €|z — ¥l < eVa (U/N)

for all y & 8. If S intersects B we can choose z € 8§ M B;
since det g’ (z) = 0, the set {Dg(z)(y — z): y &€ S} lies in an
(n — 1)-dimensional subspace V of R™ Therefore the set
lg@) — g(z): y € S} lies within € V/n (I/N) of V, so that
lg(w): y € 8} lies within € vVn (I/N) of the (n — 1)-plane
V 4+ g(z). On the other hand, by Lemma 2-10 there is a
number M such that

lg(@) — g()| < Mlz — y| < M Vn (I/N).

Thus, if S intersects B, the set {g(y): y € S} is contained in
& eylinder whose height is <2¢ V/n (I/N) and whose base is an
(n — 1)-dimensional sphere of radius <M V/n (I/N). This
cylinder has volume <C(l/N)"g for some constant C. There
are at most N” such rectangles 8, so g(U M B) lies in a set of
volume <C(I/N)"-e-N" = Cl"-e. BSince this is true for
all € > 0, the set g(U M B) has measure 0. Since (Problem
3-13) we can cover all of A with a sequence of such rectangles
U, the desired result follows from Theorem 3-4. J

Theorem 3-14 is actually only the easy part of Sard’s
Theorem. The statement and proof of the deeper result will
be found in [17], page 47.

Problems. 3-39. Use Theorem 3-14 to prove Theorem 3-13 without
the assumption det g'(z) = 0.
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3-40. If g: R® — R" and det g'(z) # 0, prove that in some open set

3-41.

containing r we can write g = T ogye - - « o gy, where g; is of
the form giz) = (2%, ... .fiz), . ..,z"), and T is a linear
transformation. Show that we can write g = g2 « - - oy if
and only if g'(z) is a diagonal matrix.
Define f: {r: r > 0] X (0,2x) — R* by f(r,6) = (r cos 8, r sin 8).
(a) Show that f is 1-1, compute fr,8), and show that
det f'(r,8) # 0 for all (r,8). Show that f{{r: r > 0] X (0,27)) is
the set A of Problem 2-23.
(b) If P = f~1, show that P(z,y) = (r(z,u),8(z,¥)), where

Hzy) = V2t + ¢t
arctan y/z z>0,y>10,
~ + arctan y/z r <0,

#z,y) = { 2x + arctan y/z z>0,y <0,
w2 r=0y>0,
3 /2 xr=0y <0

{Here arctan denotes the inverse of the function tan: ( —#/2,7/2)
— R.) Find P'(z,y). The function P is called the polar coor-
dinate system on 4.

{¢) Let C C A be the region between the circles of radii r; and
ro and the half-lines through 0 which make angles of 6, and #; with
the z-axis. If h: C— R is integrable and h(z,y) = g(r(z,v),6(z,%)),

show that
rs
f - f f ro(r,6)de dr.
C i

If B, = [(z,1): z* + y* < r?}, show that

r 2

J.& =-J er(r,ﬂ}dﬂdr.

(d) If C; = [—r;] X [—rr], show that

J’ E—!'.f"l'll'!} de dy = =(1 — g_ft]

and
-

Lf o (28t dz dy = (fr:':fm)!_

(e) Prove that
lim h[ e~ dr dy = lim [ e g dy

=t o0 F—s =
r
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ALGEBRAIC PRELIMINARIES

If V is a vector space (over R), we will denote the k-fold
product V X -+ X V by V*. A function T: V*— R is
called multilinear if for each 7 with 1 < ¢ < k we have

T!:I.-';, CR D Y - 'E.F;’, T ,H_;;} = T(t-’h iowoe My e ¥ o ,ﬂ;;}
+ T(fa"], CCI 13]‘5’! I !Wcj:
Plth, o o o @l v o oot} =@TW, o oo Boys s o Wi

A multilinear function 7: V* — R is called a k-tensor on V
and the set of all k-tensors, denoted 3*(V), becomes a vector
space (over R) if for 8,7 € 3*(V) and a € R we define

{JS + T}(”l: N s?)i:} = S(*"ll L :'m:) . = T(ﬂh LARE :-”k]!
{E‘S}[vln e rz"k} =a: .8(!-’1,. L2 b lv-t]*
There is also an operation connecting the various spaces 3*(V).
If S & 3*(V) and T € 3Y(V), we define the tensor product
S®TE3*(V) by

S® T(vy, . .. PrPkily - o+ PkAL)
= S{ﬂlr LI Jﬂk} ' T(”k—{—lj s pl’i=+l)-
75
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Note that the order of the factors S and T is crucial here since
S® T and T @ S are far from equal. The following prop-
erties of ® are left as easy exercises for the reader.

(S1+8)@T=80T4+80T,

ST+ T)=8T:+88 7T,y
@) @T=8S® @@l =a(S@T,

SMeU=8x (Te ).

Both (S® T)® U and S @ (T ® U) are usually denoted
simply S ® T ® U; higher-order produets ', ® - - - & T,
are defined similarly.

The reader has probably already noticed that 3'(V) is just
the dual space V*. The operation @ allows us to express the
other vector spaces 3*(V) in terms of 3'(V).

4-1 Theorem. Lel vy, .. . v, be a basis for V, and lel
@1, + - - yon be the dual basis, ¢i(v;) = 8;;. Then the set of all
k-fold tensor products

‘Pﬁ@"'@‘iﬂﬁ iﬂilr"‘:iﬁﬂgﬂ
48 a basis for 3*(V), which therefore has dimension n*,

Proof. Note that

i, @ * 1 @ enlvy, - . . i)
= bingit o 0 B
={I g =141, ... k=t
0 otherwise.

If wy, . . . ,w are k vectors with w; = Z7_,a;»; and T isin
3¥(V), then

Ty, -« . 00 = ) Grgc o Gy T - - 20)

= Z Tosy, « o« 4) 90 @+ + @ pplwy, . . . W)

by eae k=1

am1 T Wiy -« - Vi) en ® @ v

Consequently the ¢;, @ -+ + ® oy span 35(V).
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Suppose now that there are numbers a;,....; such that
ﬂ"] ----- t..t : l'Fr:L @ e @ ﬁﬂik = U-

Applying both sides of this equation to (v;, . . . ;) yields
,,,,, 7s=0. Thus the ¢; ® - -+ @ ¢; are linearly
independent. |J

One important construction, familiar for the case of dual
spaces, can also be made for tensors. If f: V — W is a linear
transformation, a linear transformation f*: 3*(W)— 3%(V)
is defined by

Ty, - - o i) = T(f(1), - - - S(ox)
for TE3*(W) and vy, . . . 2 €E V. It is easy to verify
that f*(S ® T) = f*S ® f*T.

The reader is already familiar with certain tensors, aside
from members of V*, The first example is the inner product
{,} € 3%(R™). On the grounds that any good mathematical
commodity is worth generalizing, we define an inner produet
on V to be a 2-tensor T such that T 18 symmetric, that is
T(rw) = T(wyw) for v, w € V and such that T is positive-
definite, that is, T(v,v) > 0if » % 0. We distinguish (,) as
the usual inner product on R". The following theorem
shows that our generalization is not too general.

4-2 Theorem. If T is an inner product on V, there is a
basis vy, . . . W, for V such that T(v:;v;) = &;;. (Such a
basis is called orthonormal with respect to T.) Consequenily
there 1s an isomorphism f: R* — V such that T(f(z),f(y)) =
(z,y) for z,y € R®. In other words f*T = (,).

Proof. Letw,, ... ,w, be any basis for V. Define
wf = Wi,
7 T'(wy’ ,w2) ;
Wy = Wy _— e h

T Twlw)
T(wa'ws)

[
T(ws wy') >

wy' = ws — —— w
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It is easy to check that T'(w/ w;") = 0if ¢ = _a.nd w;" # 0 so
that T(w/,w) > 0. Now definer; = w;-',/\/T{w,-’,wi’). The
isomorphism f may be defined by f(e:) = vi. |

Despite its importance, the inner product plays a far lesser
role than another familiar, seemingly ubiquitous funetion,
the tensor det € 5"(R"). In attempting to generalize this
function, we recall that interchanging two rows of a matrix
changes the sign of its determinant. This suggests the fol-
lowing definition. A k-tensor w € 3*(V) is called alternating
if

W(¥1, « o0 W5 e e e GGy e e o GUR)
== = w {t‘l 1-’ L L] - ,vj’ L] L] * Tﬂi* & & [ ,ﬂk)

foralle,, ... B EV,

(In this equation v; and v; are interchanged and all other ¢'s
are left fixed.) The set of all alternating k-tensors is clearly
a subspace A®¥(V) of 5%(V). Since it requires considerable
work to produce the determinant, it is not surprising that
alternating k-tensors are difficult to write down, There is,
however, a uniform way of expressing all of them. Recall
that the sign of a permutation ¢, denoted sgn o, is +1 if ¢ is
even and —1 if ¢ is odd. If T € 3*(V), we define Alt(T) by

1
Ait(T)(uh U jﬂk} - i?_! E sgn o - T(”ril}r .o :”ﬂ(k}l):
v = S

where Sy, is the set of all permutations of the numbers 1 to k.

4-3 Theorem

(1) If T € 35(V), then AW(T) € A*(V).
Q) If w € A¥(V), then All(w) = w.
(3) If T € 5%(V), then AL(AW(T)) = AI(T).

Proof

(1) Let (%,7) be the permutation that interchanges i and j and
leaves all other numbers fixed. If ¢ € S, let o =
¢ (,7). Then
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AT (01, - « o 25y « 0 v Wiy 0 o o 3VR)
='._l:_1. sgno* T(ven, - - Walidy =+ = GVala), « ¢« Wak))
o = Sk
1
== E E BEN T * T{'!J,ruj, B T U C TR ,1.',*{;;]:}
& Sk
1 !
= —sgno * T(voy, - - - Yorn))
=1
= —Al(T)(vy, . . . ,0%).

(2} If w e ﬁE{V), B..I]d o = (iljt}, then H{!Jg{';}, P ,i‘..*,,;m} =
sgno-w(vy, . .. ). Since every o 15 a product of per-
mutations of the form (zj), this equation holds of all @.
Therefore
A1, -+ - ) = 5 ), o, - )

e = S
1
= S8gn o - 8gn o * w(vy, . . . Vk)
cE S
= w{t’:, v ,Uh).

(3) follows immediately from (1) and (2). |

To determine the dimensions of A*(V), we would like a
theorem analogous to Theorem 4-1. Of course, if @ € A¥(V)
and 9 € AYV), then w ® 5 iz usually not in A*FY(V). We
will therefore define a new product, the wedge product
w A g € A¥THTV) by
(k + 1)1

k1

(The reason for the strange coefficient will appear later.) The
following properties of A are left as an exercise for the reader:

(w1t w2) Apg=w1 A n+ws A s,
@ Almtmn=uAnteAn,
aw A =w A ag=ale A1),
@ Ap= (=1 A w,
*w A n) = f*w) A *(n).

Alt(w ® 9).

whon=
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The equation (w Ay) AB=wA(pA8) is true but
requires more work.

4-4 Theorem
(1) IfS € 3¥V)and T € 34 V) and Al(S) = 0, then
AUS @ T) = AT ® S) = 0.

(2) Alt(Alt(e @ 1) @ 0) = Altlw @ 7 @ 0)
= Alt(w ® Alt(n @ 8)).
(3) If w € A¥(V), n € AY V), and 6 € A™(V), then

(A7) AB=wA (g A8

_k+l4m)!
= =T Altlw @ n @ 8).
Proof
(1)
(k+ D! AUS ® T)(vy, - - - Wist)
= Z 8gn o * S(Vs(1y, - - - Wotk)) ' TWathi1), « - - WoksD)
o= Skel
If ¢ C Sgy: consists of all ¢ which leave £+ 1, . . .,
k 4 [ fixed, then
8gn o S(Ue1y, -+« - Wotk) T TWatkgnys -+« Vatktn)
=0
= [ Z sgna’ - S(Waqry, - - |ﬂa’{ki}] Ty « - o Vgt
o' € 8
= {).
Suppose now that o €G. Let G0y = [0 0p: 0 E G}
and let v,oc1), + - . WYeoken = Wiy, - .+ . Wy Then
Z Hgnu"s(vﬂ{lh kil 8 Jur{k}) ! T(ur{k+lh i) :ﬂ'ik-}-f})
- [Egﬂﬁu' ; sgno’ - S(weqy, - - . .‘wr'tmﬂ
=t
cT(weyry -+« Wiat)

= (.
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Notice that G NG o= @. In fact, f e EGT NG - ay,
then ¢ = ¢' "0p for some o' EG and gy =0 (¢')"' € G,
a contradiction. We can then continue in this way,
breaking Sgy; up into disjoint subsets; the sum over each
subset is 0, so that the sum over Si; i8 0. The relation
Alt(T ® 8) = 0 is proved similarly.

(2) We have

Alt(Alt(p @ ) — 7 ® 8) = Ali(n ® 8) — All(yp ® §) = 0.
Hence by (1) we have

0 = Alt(w @ [Alt(y ® 8) — 7 @ 8])
= Alt(w @ Alt(n ® 8)) — Alt(w ® 3 ® 0).

The other equality is proved similarly.

(k414 m)!
(3) (w Ag) AB = F + Dlm Alt((w A7) ® &)

_k+i+mi k4D
ok D!'m! kI

Alt(e ® 7 ® 6).

The other equality is proved similarly. ||

Naturally w A (g A 8) and (w A n) A 8 are both denoted
simply @ A 5 A 8, and higher-order products wy A - -+ A wr
are defined similarly. If vy, . . . v, is a basis for V and
@1, - . - ,¢n is the dual basis, a basis for A¥(V) ean now be

constructed quite easily.

4-5 Theorem. The set of all
en AN A e 1Sy <y< " <HpHEn

is a basis for A*(V), which therefore has dimension

(ﬂ) 3 n! _
k] k'n — k)!
Proof. If o € A¥(V) C 3%(V), then we can write

w = ..., wen @ 0 @ e
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Thus

o=Altw) = Y o, aAltlps ® < - ® pu).

3 PR

Since each Alt(g;, @ - + + ® ¢y) is a constant times one of the
@i A A i, these elements span A*(V). Linear inde-
pendence is proved as in Theorem 4-1 (cf, Problem 4-1). |}

If V has dimension n, it follows from Theorem 4-5 that
A™(V) has dimension 1. Thus all alternating n-tensors on V
are multiples of any non-zero one. Since the determinant is
an example of such a member of A"(R™), it is not surprising
to find it in the following theorem.

4-6 Theorem. Let vy, ... v, be a basis for V, and lel
w& AMV). If wy = Z7_,a:v; are n veclors in V, then

wlwy, . . . rwn} - de‘t‘(aij) 'm{ﬂll e e )
Proof. Define n € 3"(R") by

n((@1, . - . @), - - (@1, - . o 8an))
= W(Eﬂ-]fy"', P ’Eﬂﬂjvj}q.

Clearly n € A™(R™) so n = X ' det for some A € R and \ =
ner, . . . €n) = w{ﬂlp T I

Theorem 4-6 shows that a non-zero w & A"(V) splits the
bases of V into two disjoint groups, those with w(vy, . . . ,va)
> 0 and those for which w(vy, . . . 0.) <O0;if vy, . . . 0,
and wy, . . . ,w, are two bases and A = (a;;) iz defined by
w; = Za;p;, then vy, . . . v, and wy, . .. W, are in the
same group if and only if det A > 0. This criterion is inde-
pendent of w and can always be used to divide the bases of V
into two disjoint groups. Either of these two groups is
called an orientation for V. The orientation to which a
basis vy, . . . v, belongs is denoted [vy, . . . v,] and the
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other orientation is denoted —[vy, . . . ,vx). In R™ we define
the usual orientation as [e;, . . . ,e,].

The fact that dim A"(R") = 1 is probably not new to you,
sinee det is often defined as the unique element w € A"(R")
such that w(e;, . . . ,e,) = 1. For a general vector space V
there is no extra criterion of this sort to distinguish a particular
w e A"(V). Buppose, however, that an inner product T for
Vis given. If vy, ... ,v, and wy, . . . ,w, are two bases
which are orthonormal with respect to T, and the matrix
A = (ay;) is defined by w; = Z]_ a;v;, then

8;; = T(w,w;) = Z @ik T (vg, v1)
ki1

= E ik k-

k=1

In other words, if AT denotes the transpose of the matrix A,
then we have A4 - AT = I, sodet A = +1. It follows from
Theorem 4-6 that if w & A™(V) satisfies w(vy, . . . w,) = +1,
then w(wy, . . . w,) = +1. If an orientation p for V has
also been given, it follows that there is a unique w & A™(V)
such that w(vy, . .. ,#,) =1 whenever vy, . . . », is an
orthonormal basis such that [v;, . . . #,] = u. This unique
w is called the volume element of V, determined by the
inner product T and orientation u. Note that det is the

volume element of R" determined by the usual inner product

and usual orientation, and that |det-(u1, .. . )| is the vol-
ume of the parallelipiped spanned by the line segments from
0 to each of vy, . . . ,v,.

We conelude this seetion with a construction which we will
restrict to R™. Ifw,, . .. ww—1 € R™ and ¢ is defined by

U3

-

elw) = det

Un_1
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then ¢ € A'(R™); therefore there is a unique z € R" such that

U1
(w,2) = ¢(w) = det
Va1
iH
This z iz denoted v; X * - - X v, and called the cross

produet of vy, . .. w,—;. The following properties are
immediate from the definition:

Veq1) X * * * X Vsin—1) =8gN o "t1 X * * * X Uy,

BUX S XARX Y Xt =G @K < X i),
X - X496 X - X
= X - XX XU

£ X e X X e M.

It is uncommon in mathematics to have a “product’” that
depends on more than two factors. In the case of two vectors
v,w € R?, we obtain a more conventional looking product,
v X w & R®. For this reason it is sometimes maintained
that the cross product can be defined only in R?,

Problems. 4-1.* Let ¢, . . . ,e, be the usual basis of R” and let
@1, - + + ,¢n be the dual basis.
(a) Bhow that e;, A - - - Ay (e, ... ,ey) = 1. What

would the right side be if the factor (k + 1)!/k"! did not appear in
the definition of A?
(b) Bhow that ¢;; A - « « A givy, . . . ) is the determinant
v

of the k& X ¥ minor of . obtained by selecting columns

Vie
£ « o0yt
4-2. If f: V—V is a linear transformation and dim V = n, then
J*: A%(V) — A™(V) must be multiplication by some constant c.
Show that ¢ = det f.
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4-3, If w & A™(V) is the volume element determined by T and g, and
Wy, « 0o« Wy E V, show that

lw(wy, . . . wal] = 4/ det (gi)

where gi; = T(w;w;). Hint: If vy, . . . o, i8 an orthonormal
basis and w; = I, apj, show that gy = ZF_; aicar;.

4-4. If w is the volume element of V determined by T and u, and
f: R"— V is an isomorphism such that f*T = () and such that

[fler), . . . ,flen)] = u, show that f*e = det.
4-5. If e: [0,1] = (R™™ is continuous and each (c'(f), . . . ,e™(f)) is
a basis for R", show that [¢!(0), . . . ,e™(0)] = [e}(1), . . . ,e™(1)].

Hini: Consider det o ¢.
4=6. (a) If v € R?, what isv X7
(b) If #1, . . . wa—1 E R™ are linearly independent, show
that [vy, . . . Wa—g, 1 X » © + X tp_1] is the usual orientation of
R™.
4-7. Show that every non-zero w & A"(V) is the wvolume element
determined by some inner product T and orientation u for V.
4-8. If w € A™V) is a volume element, define a ‘‘cross product”

vy X - ¢ X vg—1in terms of w.
4-9.* Deduce the following properties of the cross product in R?:
(8) ey X eg =0 eg X g1 = —eg ea X &1 = &3
€1 X €3 = €3 ea X ea =0 e3 X ea = —g
ey X eg = —ez ez Xeg=e es X eg = 0.

(b) v X w = (t*w® — v*uwder
+ (vPw! — vlw)es
+ (v'w® — viwl)e;.
(e) v x wi = |o| - [w! - |sin Ef, where 8 = Z(y,w).
o Xwuv)={ Xw w) =0.
(d) (v, wXz2) =(wzXv)=_(zvXuw
v X (wXz2) = {vzw — {vw)z
(v Xw) X z= {220 — (w2
(@) Iv X wl = vV {vo) - (w,w) — @w)?.
4-10, If wy, . . . ,wa—y € R", show that

lwy X ¢ 0 X wa_g| =/ det (gi7),

where gi; = (wiw;). Hint: Apply Problem 4-3 to a certain
(n — 1)-dimensional subspace of R™

4-11, If T is an inner produect on V, a linear transformation f: V —= V
is called self-adjoint (with respeet to T) if T'(z,f(y)) = T'(f(z),y)
forz,y € V. Tfuvy, ... ,v,isan orthonormal basisand 4 = (a;j)
is the matrix of f with respect to this basis, show that a:;; = aj.

4-12. If f1, . . . ,fn—1: R™— R", define f3 X - -+ X f—1: R™— R"
by fiX + ++ X fa=i(p) =f1(p) X - - + X fa—1(p). Use Prob-
lem 2-14 to derive a formula for D(f; X - - » X fa=1) when fi,

. ;Jn—1 are differentiable.
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FIELDS AND FORMS

If p € R", the set of all pairs (p,v), for v € R", is denoted
R",, and called the tangent space of R" at p. This set is
made info a vector space in the most obvious way, by defining

(plp) + {pr} = {Il', v + w}.l
e (pp) = (p,av).

A vector v & R" is often pictured as an arrow from 0 to »; the
veetor (p,v) © R", may be pictured (Iigure 4-1) as an arrow
with the same direction and length, but with initial peint p,
This arrow goes from p to the point p + v, and we therefore

p+o

FICURE #-1
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define p + v to be the end point of (p,p). We will usually
write (p,v) as v, (read: the vector v at p).

The vector space R", is so closely allied to R™ that many
of the structures on R" have analogues on R",. In particular
the usual inner product (,}, for R", is defined by (v,,w,), =
(v,w), and the usual orientation for R",is [(e1)p, . . . ,(ex)p].

Any operation which is possible in a vector space may be
performed in each R",, and most of this section is merely an
elaboration of this theme. About the simplest operation in a
vector space is the selection of a vector from it. If such a
selection is made in each R",, we obtain a vector field (Figure
4-2). To be precise, a vector field is a function F such that
F(p) € R", for each p € R", For each p there are numbers
FY(p), . .. F*(p) such that

F(p) = F'(p) - (er)p+ = * * +F"(p)* (en)s.

We thus obtain n component functions F': R® — R. The
vector field F' is called continuous, differentiable, ete., if the
functions F¥ are. Similar definitions can be made for a vector
field defined only on an open subset of R". Operations on
vectors yield operations on vector fields when applied at each
point separately. For example, if F and G are vector fields

FIGURE 4-2
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and f is a funetion, we define

(F + G)(p) = F(p) + G(p),
(F.G)(p) = (F(p),G(p)),
(f - F)(p) = f(p)F(p).

If 7y, . .. ,Fp_ are vector fields on R", then we can simi-
larly define

(Fi X+« XFp_y)(p) = Fi(p) X - -+ X Fa_1(p).

Certain other definitions are standard and useful. We define
the divergence, divF of F, as ., D/F". If we introduce
the formal symbolism

we can write, symbolically, divF = (V,F). If n =3 we
write, in conformity with this symbolism,

(V X F)(p) = (DoF* — DaF*(e1)y
+ (D3F" — DiF?)(es)y
+ (D1F* — DyF")(e3) -

The vector field V X F is called curl F. The names ‘“diverg-
ence” and ‘‘curl” are derived from physical considerations
which are explained at the end of this book.

Many similar considerations may be applied to a funection
w with w(p) € A¥(R™,); such a function is called a k-form on
R", or simply a differential form. If ¢i(p), . . . ,en(p)
is the dual basis to (e1)p, . . . ,(en)p, then

op) = ) wia® lea® A A eal)]
< <k
for certain functions w;, ... s, the form w is called continuous,
differentiable, etc., if these functions are. We shall usually
assume tacitly that forms and vector fields are differentiable,
and “differentiable’” will henceforth mean “C™’; this is a
simplifying assumption that eliminates the need for eounting
how many times a function is differentiated in a proof. The
sum w -+ n, product f * », and wedge product @ A n are defined
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in the obvious way. A function f is considered to be a O-form
and f - w is also written f A w.

If f: R® — R is differentiable, then Df(p) € A'Y(R"). Bya
minor modification we therefore obtain a 1-form df, defined by

df(p)(v,) = Df(p)(v).

Let us consider in particular the 1-forms dr*. It is customary
to let z' denote the function »'. (On R® we often denote
z!, =%, and z? by z, y, and 2.) This standard notation has
obvious disadvantages but it allows many classical results
to be expressed by formulas of equally classical appearance.
Since dz'(p)(vp) = dr'(p)(v,) = Dxi(p)(v) = v, we see that

dz'(p), . . . ,dz"(p) is just the dual basis to (e1)p, . . . ,(en)p.
Thus every k-form « can be written
W= Z Wiy, ..., {,d&"il F UL . dz**,
 TE S of 1

The expression for df is of particular interest.

4-7 Theorem. Iff: R" — R is differentiable, then
df = Dyf -dzt + -+ + + D,f - dz".
In classical notation,

dj‘—a—fdml-i- e oS,

 ox! ax"

Proof. df(p)(vp) = Df(p)(v) = ZLyv' - Dif(p)
= I, dz'(p)(vp) - Dif(p)- 1

If we consider now a differentiable function f: R® — R™ we
have a linear transformation Df(p): R®™— R™. Another
minor modification therefore produces a linear transformation
ft'. Rﬂ'p‘—i ij(p] dEﬁl’lEd h}r

fe(vp) = (Df(p) () 1(p)-

This linear transformation induces a linear transformation
f"': ﬂk(ﬂm”p}}—* J'LE{R“P). If wis a k-form on R™ we can
therefore define a k-form f*w on R™ by (f*w)(p) = f*(w(f(p))).
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Recall this means that if v;, . . . 0z € R"),, then we have
Me@) (v, . . o) = «(f(P)(favd), . . . Sa(vp)). As an
antidote to the abstractness of these definitions we present
a theorem, summarizing the important properties of f*, which
allows explicit calculations of f*w,

4-8 Theorem. If f: R"— R™ is differentiable, then
n ! n fi
(1) f4(dz’) = 22, D;f* - da/ = Z0_, — For dz’.

(2) [*(w1 + wi) = fH(w1) + [*(ws).
(3) f*(g*w) = (gof) - [t
(4) *(w A ) = a0 A f*n.

Proof
(1) f*{dz")(p)(vp) = dm‘(f(p}){pr}
= dm:ff(?})(z;;:d - Dif'(p), - . ., Zhv  Dif™0)) sy

=25 D:J”(‘PJ
= Z7_,D;f(p) - dz’(p)(v,).

The proofs of (2), (3), and (4) are left to the reader. |

By repeatedly applying Theorem 4-8 we have, for example,

f¥(Pdz' A dz* 4 Qdx? A dz?) = (Pof)[f*(dx") A f*(dz?)]
+ (Q o NIf*(dz?) A f*(dz?)].

The expression obtained by expanding out each f*(dz?) is quite
complicated. (It is helpful to remember, however, that we
have dz* A de* = (—1)dz* A de' = 0.) In onespecial case it
will be worth our while to make an explicit evaluation.

4-9 Theorem. If f: R" — R" is differentiable, then

f*hdz A -+ Adz™) = (hof)(detf')dz' A - - - A da™

Proof. Since
f*hdz' A - - - Ada™) = (hof)f*dz* A - - - A dz™),
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it suffices to show that
f*dz* A - - - Adz™) = (detf)dzt A - -+ A dx™.

Let p € R™ and let A = (a;;) be the matrix of f'(p). Here,
and whenever convenient and not confusing, we shall omit
“p" indz! A - - - A dz*(p), etc. Then

frdzt A s Adz)er, - - - )
= dgl A o Adz(feer, ¢ . Fred)

=de' A - A (Eﬂﬂﬂil---,zﬂﬁmﬂi)

=1 =]

= det(a;;) ol L dz"(er, . . . ,en),
by Theorem 4-6. |

An important construction associated with forms is a gen-
eralization of the operator d which changes 0-forms into
1-forms. If

w = Z Wiy, ..., pdxt A - o A dzh,

we define a (k + 1)-form dw, the differential of w, by

dw = E dwiy, .. Adzt A 0 A da™

B0 0 i
n

= Y Y Duwn..q) det A dgt A A deR

e v Lk =1
4-10 Theorem

(1) d{w + n) = dw + dn.
(2) If w 18 @ k-form and n i3 an [-form, then

d(w A n) =dw A n+ (—1) % A dn.

(3) d(dw) = 0. Briefly, d* = 0.
(4) If w is a k-form on R™ and f: R" — R™ is differenliable,
then f*(dw) = d(*w).
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Proof

(1) Left to the reader.

(2) The formula is true if w =dzs A -+ - A dz®* and
n=dz’t A - -+ Adz", since all terms vanish. The
formula 1s easily checked when w is a O-form. The gen-
eral formula may be derived from (1) and these two

observations.
(3) Since
e Dalwi,, .. .. wde® A dzt A -+ A da,
< 2' <k uz-l l
we have

L] L

dida) = 2 E ﬂ};l Dap(wis, ... c)dz* A da°

Adzh A - - - A dat,
In this sum the terms
D s(w;y, ... .a)dx? A dz™ A dz A - - - A dz™
and

t'g)df f\dI‘E j\d;[:'-l. O ﬂdﬁ:iﬁ

rrrrr

cancel in pairs.

(4) This is clear if w is a O-form. Suppose, inductively, that
(4) is true when w is a k-form. It suffices to prove (4) for
a (k + 1)-form of the type w A dz'. We have

F*(d(w A dz')) = f*(dw A dz' + (—1)*w A d(dz%))
= f¥(dw A dz') = f*(dw) A f*(dz?)
= d(f*» A f*(dz')) by (2) and (3)
= d(f*(w A dz)). |

A form w is called closed if dw = 0 and exact if w = dy, for
some 5. Theorem 4-10 shows that every exact form is closed,
and it is natural to ask whether, conversely, every closed form
is exact. If wis the 1-form P dz 4+ Q dy on R?, then

dw = (DyPdz + DyP dy) A dx + (D1Qdx + D2Qdy) A dy
— (D1Q — D.P)dz A dy.
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Thus, if dw = 0, then D, = D,P. Problems 2-21 and 3-34
show that there is a O-form f such that w = df = Dfdzr 4
Dofdy. If w is defined only on a subset of R?* however, such
a function may not exist. The classical example is the form

w=-—3——dr+ 2+ 5 4y

defined on R? — 0. This form is usually denoted d# (where
# is defined in Problem 3-41), since (Problem 4-21) it equals d6
on the set {(z,y): £ <0, or £ > 0 and y = 0}, where 0 is
defined. Note, however, that 8 cannot be defined continuously
on all of R? — 0. If w = df for some function f: R? — 0 — R,
then Df = D6 and Dyf = Db, so f = 0 + constant, show-
ing that such an f cannot exist.

Suppose that w = Z?_,w; dz*is a1-formon R" and » happens
to equal df = % ,D;f -dx’. We can clearly assume that
f(0) = 0. Asin Problem 2-35, we have

1
d
= [ = fiw) dt
&= [ 3

1 =n
= ! ‘Zl Dyf(iz) - 2 di
E wi(lr) - z* di.

=1

This suggests that in order to find f, given w, we consider the
function fw, defined by
1 n
Iu(z) = [ Z wiltz) - z* dl.
0 =1

Note that the definition of Jw makes sense if w is defined only
on an open set A C R" with the property that whenever
r & A, the line segment from 0 to z is contained in A4 ;such
an open set is called star-shaped with respect to 0 (Figure
4-3). A somewhat involved calculation shows that (on a
star-shaped open set) we have w = d(/w) provided that w satis-
fies the necessary condition dw = 0. The calculation, as well
as the definition of Jw, may be generalized considerably:
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FIGURE 4-3

4-11 Theorem (Poincare Lemma)., Ifj A C R" isan open
sel star-shaped with respect to 0, then every closed form on A
18 exact.

Proof. We will define a function I from [-forms to ({ — 1)-
forms (for each 1), such that 7(0) = 0 and « = I(dw) + d(/w)
for any form w. It follows that @ = d(fw) if do = 0. Let

L = u‘.d'{, {; dxll J'ﬁ\ pHe i'"\s dxi‘+
'I-J{ R q:l'_f

|||||

Since A is star-shaped we can define

dr't A - Adele A0 - A dah

(The symbol ~ over dz'= indicates that it is omitted.) The
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proof that @ = I(dw) + d(Jw) is an elaborate computation:
We have, using Problein 3-32,

d(Iw) = 1" | z _ (f ey, u{m)dﬂ)

det A - - 0 A dat

E Z Z (=1 (_{tIDJ (wi, .‘.,ﬁ}ff:.'?}di) xle

c €l w=1 f=1
il .
de? Adzh A - -0 Adrie A - - - A dai

(Explain why we have the factor ¢/, instead of t'~1.) We also
have

o) ~drt A dxtoN o A dat,

-----

dw = Z Z D ;(w;

el i =1

Applying [ to the (I 4+ 1)-form dw, we obtain

I{dw) = z Z ( f D (v, ... s;){tz)dt) o

i g i )
dzt A+ v 0 A dat

L 1
= Y Y Y = ([ tDjwn,... W) )dt) zie
a

< v fii =1 a=1
1

dz’ Adxv A - - - Adze A - - - A dxi

Adding, the triple sums cancel, and we obtain

d(Iw) + I(dw) = Z ( f (Y, .. a(t2)dt)
deft A -0 0 A dxh

») z(j (D )0

Crergipi=1
dz'v A - 0 - A datt
]

z ( Ed‘, [twiy, ..., :‘:(tr)]'ﬂ)
S v ei 0

s dzit A« o A dxt
C T s i

I
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Problems, 4-13. (a) If f: R®— R™ and g: R™— RP, show that

4-14.

4=15.

4-16.

4-17.

4-18.

4-19.

4-20.

(goflu = geofs and (gof)* = f*og"

(b) If f,g:R" — R, show that d(f-g) = f-dg + ¢ - df.
Let ¢ be a differentiable curve in R", that is, a differentiable func-
tion ¢: [0,1]— R"™ Define the tangent vector v of ¢ at { as
ea((er)e) = (€)@, . . . (€Y ew. If f: R"— R™, show that
the tangent vector to fecat Lis f, (v).
Let f: R— R and define ¢: R— R? by ¢(t) = (,f(t)). Show
that the end point of the tangent vector of ¢ at ¢ lies on the
tangent line to the graph of fat (¢, f(1)).
Let c: [0,1] — R" be a curve such that|c(t)|= 1 forall. Show that
¢(t)eqy and the tangent vector to ¢ at ¢ are perpendicular.
If f: R" — R", define a vector field f by £(p) = f(p), € R",.

(a) Show that every vector field F on R" is of the form f for
some f.

(b) Show that div f = trace f’.
If f: R" — R, define a vector field grad f by

(grad f)(p) = Dif(p) * (e1)p + + + + =+ Duf(p) - (en)s.

For obvious reasons we also write grad f = Vf. If Vf(p) = w,,
prove that D,f(p) = (v,w) and conclude that vf(p) is the direction
in which f is changing fastest at p.

If F is a veetor field on R?, define the forms

wh = Fldz 4+ Frdy + F? dz,
wp = Fldy Adz + Fdz A dz + FPdz A dy.

(a) Prove that

df = :rad n
{i{w’p} - WEu.rI Fr
d(wh) = (div F) dz A dy A dz.

(b) Use (a) to prove that

curl grad [ = 0,
div curl F = 0.

(e) If F' is a vector field on a star-shaped open set A and

curl F = 0, show that F' = grad f for some function f: A — R.
Similarly, if div F = 0, show that F = curl @ for some vector
field G on A.
Let f: U — R" be a differentiable function with a differentiable
inverse f~L: f(U/) = R". If every closed form on U is exact, show
that the same is true for f(U). Hint: If dw = 0 and f*w = dy,
consider (f™1)%.
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4-21.* Prove that on the set where 6 iz defined we have

—¥

=I=+ﬂ1d;-;+

dé dy.

..
2% +

GEOMETRIC PRELIMINARIES

A singular n-cube in A C R" is a continuous function e:
[0,1]" — A (here [0,1]" denotes the n-fold product [0,1] X -
% [0,1]). We let R® and [0,1]° both denote {0}. A singular
0-cube in A is then a function f: {0} — A or, what amounts to
the same thing, a point in A. A singular l-cube is often
called a curve. A particularly simple, but particularly
important example of a singular n-cube in R" is the standard
n-cube I": [0,1]" — R" defined by I"(z) = = for x & [0,1]".
We shall need to consider formal sums of singular n-cubes in
A multiplied by integers, that is, expressions like

2¢y + 3¢q — 4"-’3!

where ¢;, ¢, ¢3 are singular n-cubes in 4. Such a finite sum
of singular n-cubes with integer coefficients is called an
n-chain in A. In particular a singular n-cube ¢ is also con-
sidered as an n-chain 1:-¢. It is clear how n-chains can be
added, and multiplied by integers. For example

2(cy + 3cq) + (—2)(e1 + €3 + ¢2) = —2¢2 — 2¢3 + bey.

(A rigorous exposition of this formalism is presented in Prob-
lem 4-22.)

For each singular n-chain ¢ in A we shall define an (n — 1)-
chain in A called the boundary of ¢ and denoted de. The
boundary of /?, for example, might be defined as the sum of
four singular 1-cubes arranged counterclockwise around the
boundary of [0,1]?, as indicated in Figure 4-4(a). It is
actually much more convenient to define 8I% as the sum, with
the indicated coefficients, of the four singular 1-cubes shown
in Figure 4-4(b). The precise definition of /™ requires some
preliminary notions. For each 7 with 1 <7 < n we define
two singular (n — 1)-cubes If,, and If;,, as follows. If
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(a) ' (b)
FIGURE 4-4

z € [0,1]", then
IGn(@ = I"@', . . '_:xi_l.ﬂyﬁi, 5w i)
= {zlr . JI‘_lFGFIEI LS B ,In—i}'
I?ﬂ”{I) = I“{xlr r :Ii—lrlrzi: A :Iﬂ_]]
=@ ... 21 ... 2.

We call If; o the (i,0)-face of I" and If;,) the (z,1)-face
(Figure 4-5). We then define

aI" = E (—*l)i-i_“}'?irﬁ}.

i=la=0,1

For a general singular n-cube ¢: [0,1]" — 4 we first define the
(7,a)-face,

Ciia) = €2 ({T5a))
and then define

de = Z (—UHM{:{;,“}.
i=1 a=0,1

Finally we define the boundary of an n-chain Zaqc; by
A Zaw;) = Zad(e).

Although these few definitions suffice for all applications in
this book, we include here the one standard property of 4.
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H!,l'l
A "'*
I?i.ﬂ: I‘lzl.,l?
o a -
If!.ﬂl I"I.ll IE‘I.B]
(a) (b)

FIGURE 4-5

4-12 Theorem. If ¢ is an n-chain in A, then 9(dc) = 0,
Briefly, a* = 0.

Proof. let ¢ < j and consider (I o) .p- If x € [0,1]"72,
then, remembering the definition of the (j,8)-face of a singular
n-cube, we have

(I m (@) = l:-|.a}{ ;,])(I})

_ —1 ' —
- ft ﬂ}{z + o J"rf 1-8:-3:": v ,I“ }
- 1 1 ; i—1 ' —2
= Mz .. L2 e, ... 28 . L, V0
Similarly
U?iﬂ,ay){tn} = IH-H m{f(;a (x))
—1 : —2
= I{J"+—I ﬂ}{'l: " " . .x= .ﬂlmi, # .I" }
= Mzl ... 2 hart ... 28, .. @Y,

Thus (I?‘-_ﬂ})u.ﬂ} = (I?H—Lﬂ}}“-“} for 1 < L {If. may hf!‘{p to
verify this in Figure 4-5.) It follows easily for any singular
n-cube ¢ that (c(ia) (i = (c(j41.) (00 When @ < j. Now

3(dc) = (E Y (~1) )

= 1n=l]1

=Z Z Z E (= 1) (e i0y) (7.)-
i=1 a=0,1 =1 g=0,1
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In this sum (c¢ia) e 8nd (6¢js1.m) .0 Oceur with opposite
signs. Therefore all terms cancel out in pairs and d(d¢) = 0.
Since the theorem is true for any singular n-cube, it is also

true for singular n-chains. |

It 1s natural to ask whether Theorem 4-12 has a converse: If
dc = 0, is there a chain d in A such that ¢ = 4d? The answer
depends on A and is generally “no.” For example, define
¢: [0,1] = R? — 0 by ¢(f) = (sin 2mnt, cos 2rnt), where n is
& non-zero integer, Then ¢(1) = ¢(0), so dc = 0. But
(Problem 4-26) there is no 2-chain ¢’ in R* — 0, with d¢' = ¢.

Problems. 4-22. Let § be the set of all singular n-cubes, and Z the
integers. An n-chain is a function f: § — Z such that f(¢) = 0
for all but finitely many ¢. Define f 4 g and nf by (f + g)(c) =
fle) + gle) and nf(c) = n-f(c). Show that f+ g and nf are
n-chains if f and g are. If ¢ € §, let ¢ also denote the function f
such that f(e) = 1 and f{e’) = 0 for ¢’ = ¢. Show that every
n-chain f can be written aicp 4+ + + + + axex for some integers
ai, . . . ,0k and singular n-cubes ¢1, . . . Gk

4-23. For R > 0and n an integer, define the singular 1-cube ¢g »: [0,1] —
R* — 0 by ¢ra(t) = (R cos 2xnf, R sin 2rnf). Show that there
is a singular 2-cube ¢: [0,1]2 — R* — O such that cg, n — cr,n = dc.

4-24. If cis a singular 1-cube in R? — 0 with ¢(0) = ¢(1), show that there
ig an integer n such that ¢ — ¢y » = d¢? for some 2-chain 2.
Hint: First partition [0,1] so that each e([t,—;,4]) is contained on
one gide of some line through 0.

THE FUNDAMENTAL THEOREM OF CALCULUS

The fact that d* = 0 and 8% = 0, not to mention the typo-
graphical similarity of d and 9, suggests some connection
between chains and forms. This connection is established by
integrating forms over chains. Henceforth only differentiable
singular n-cubes will be considered.

If wis & k-form on [0,1]%, then w = fdz' A - - - A dz® for
a unique function f. We define

[0,1]* {0,1]*
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We eould also write this as

fdz' A -+ - Ads* = f fia*, . .. adz* - - - da¥,
[0,1]% [D,1]%

one of the reasons for introducing the functions z'.
If wis a k-form on A and ¢is a singular k-cube in 4, we define

w = ﬂ*l!.'r.
[l
Note, in particular, that
[fdzia N f (I)*(fdz A - - - A dz¥)

[o,1]*
- f f@', ... Zhdrt - - - dat,
[0, 1]*

A special definition must be made for k = 0. A 0O-form w i8
a funetion; if ¢: {0} — A is a singular O-cube in A we define

f w = w(e(0)).

€

The integral of w over a k-chain ¢ = Za,c; is defined by
PuslTa

The integral of a 1-form over a 1-chain is often called a line
integral. If Pdz + Qdyisa 1-form on R*and ¢:[0,1] — R?
is a singular l1-cube (a curve), then one ecan (but we will not)
prove that

f Pdz + Qdy = lim E [(t) — eX(t:i—1)] - P(c(t™))
[ 1=
+ [e*(t) — e*(timy)] - Q(e(th))

where fo, . . . ,l, is a partition of [0,1], the choice of ¢ in
[t;—1,t:] is arbitrary, and the limit is taken over all partitions
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as the maximum of |4; — t,-_i| goes to 0. The right side is
often taken as a definition of [P dr + @ dy. Thisis anatural
definition to make, since these sums are very much like the
sums appearing in the definition of ordinary integrals. How-
ever such an expression is almost impossible to work with and
is quickly equated with an integral equivalent to [ o, yje*(P dz
+ Qdy). Analogous definitions for surface integrals, that
i, integrals of 2-forms over singular 2-cubes, are even more
complicated and difficult to use. This is one reason why we
have avoided such an approach. The other reason is that the
definition given here is the one that makes sense in the more
general situations considered in Chapter 5.

The relationship between forms, chains, d, and 8 is summed
up in the neatest possible way by Stokes’ theorem, sometimes
called the fundamental theorem of calculus in higher dimen-
sions (if k = land ¢ = I, it really is the fundamental theorem
of calculus).

4-13 Theorem (Stokes’ Theorem). If w is a (k — 1)-
form on an open set A C R™ and ¢ is a k-chain in A, then

!dm=fm.

de

Proof. Suppose first that ¢ = I* and w is a (k — 1)-form on
[0,1]*. Then w is the sum of (k — 1)-forms of the type

R

fdz'' A - Adxt A 0 A daE,

and it suffices to prove the theorem for each of these. This
simply involves a computation:

Note that
Ifi*(fdz' A - - Adz A - - A de®)
[0, 1]t
0 if § 5 i,
= ff(:ci,...,a,...,z;‘}dz‘---dx* if j = i.
[0, 1]%
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Therefore
ffd:s‘n co AADA o A dat
ark
= (== [ Ih rdet A Ade
i=1a=0,11 10,i]%-
A A dz®)
= (=1 | f@', 1, z)dz! dz*
[0 1]e
+ (—=1)* | fl=?, 0, ... z%dz! - - - dz,
lo,1]&
On the other hand,
fdr[fda:‘h ce o A dEE A A dr¥)
.“:
=fD;fdz*'Adz‘n AdE A A dat

[0,1]*

[0,1]*

(—1)i! fD,;f

By Fubini's theorem and the fundamental theorem of caleulus

(in one dimension) we have

fd(f:ia:‘n A dE A

IE

1
= (-0 |
0

1 1
==yt [ o [ e e
i il
—f(ﬂ:], . ;0
= ('_1)!:_1 f{$1: ‘ ' rl
o
+ =" b g o oes
o
Thus

de

( J Dif(z,

- A dz)

. .m*}dzi) dz’

b : ok
1, z*)
Ve @det - - det e - dak
iiete s e v dx®
0, a¥dx! - - - dak,
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If ¢ is an arbitrary singular k-cube, working through the
definitions will show that

[om [o

de afk
Therefore

!dw = [ e*(do) -_-J' d(c*e) = ﬂ{ et = [ o

Ik dc

Finally, if ¢ is a k-chain Za.c;, we have
cfdm = Za;;{ dw = Zu;h[ W = hf w. ||

Stokes’ theorem shares three important attributes with
many fully evolved major theorems:

1. It is trivial,

2. It is trivial beeause the terms appearing in it have been
properly defined.

3. It has significant consequences.

Since this entire chapter was little more than a series of
definitions which made the statement and proof of Stokes’
theorem possible, the reader should be willing to grant the
first two of these attributes to Stokes' theorem. The rest of
the book is devoted to justifying the third.

Problems. 4-25. (Independence of parameterization). Let ¢ be a
gingular k-cube and p: [0,1}F — [0,1]* & 1-1 function such that
p([0,1]%) = [0,1]* and detp’(z) >0 for z € [0,1]*. If w is &

k-form, show that
f w = f{‘d.
c

rap

4-26. Show that [, d# = 2xn, and use Stokes’ theorem to conclude
that ¢p n 3 e for any 2-chain cin R? — 0 (recall the definition of
¢r.n in Problem 4-23).

4-27. Show that the integer n of Problem 4-24 is unique. This integer
i8 called the winding number of ¢ around 0.

4-28. Recall that the set of complex numbers C iz simply R? with
(ab) =a+4+bi. If aj, ..., 0. €EC let f: C— C be f(z) =
2 + a4 - . . 4@, Define the singular 1-cube egs:
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4-29.

4-30.

4-31.

4-32.

4-33.

[0,]] = C — 0 by e¢g.s = f°cgr,1, and the singular 2-cube ¢ by
els,l) = 1-cpn(8) + (1 = t)er s(s).

(a) Show that 8c = crs — ¢r.n, and that e([0,1] X [0,1]) C
C — 0if R is large enough.

(b) Using Problem 4-26, prove the Fundamental Theorem of
Algebra: Every polynomial 2™ 4 aiz™ ' 4+ - - - + aywithae; E C
has a root in C.

If wis a 1-form fdz on [0,1] with f(0) = f(1), show that there is
& unique number A such that w — X\ dx = dg for some function g
with g(0) = g(1). Hint: Integrate w — Adr = dg on [0,1] to
find \.

If w is a 1-form on R® — 0 such that dw = 0, prove that

w = Ado + dg
for some A € R and g: R* — 0— R. Hint: If
cr.1*(w) = Az dz + d(gr),

gshow that all numbers Ap have the same value A.

If w = 0, show that there is a chain esuch that [« = 0. Use this
fact, Stokes' theorem and #* = 0 to prove d* = (.

(a) Let 1, cg be singular 1-cubes in R® with ¢1(0) = ¢2(0) and ¢;(1)
= ¢2(1). Show that there is & singular 2-cube ¢ such that gc =
€1 — €2 + ¢3 — ¢4, where ¢a and ¢4 are degenerate, that is, c3([0,1])
and cy([0,1]) are points. Conclude that [qw = [qu if w is exact.
Give a counterexample on R? — 0 if w is merely closed.

(b) If w is a 1-form on a subset of R? and [, = [. for all ¢y,
ca with e1(0) = ¢a(0) and ei(l) = e2(1), show that w is exact.
Hint: Consider Problems 2-21 and 3-34.

(A first course in complez variables.) If f: C— C, define f to be
differentiable at zy & C if the limit

() = lim f2) = flzq)
— g = zp

exists. (This quotient involves two complex numbers and this
definition is completely different from the one in Chapter 2.)
If fis differentiable at every point z in an open set 4 and [ is
continuous on A, then fis called analytic on 4.

(a) Show that f(z) = z is analytic and f(z) = Z is not (where
x 41y = x — iy). Show that the sum, produet, and quotient
of analytic functions are analytic.

(b) If f = u + v is analytic on 4, show that w and v satisfy
the Cauchy-Riemann equations:

g dav d —d
aet ke and .—E = —.—E

ax o ay dz
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Hint: Use the faet that lim [f(z) — f(z0)]/(z — 2z0) must be the
22y
game for .=z 4+ (z+1¢:0) and z=20+ (0 +1-y) with
r,y — 0. (The converse is also true, if u and v are continuously
differentiable; this is more difficult to prove.)
{e) Let T: C— C be a linear transformation (where C is con-

gidered as a vector space over R). If the matrix of T with respect

to the basis {1,1) is (:’3) show that 7 is multiplication by & com-

lex number if and only if a = dand b = —¢.  Part (b) shows that
an analytic function f: C— C, considered as a function f: R? —
R2, has a derivative Df(zg) which is multiplication by a complex
number. What complex number is this?

(d) Define

dlw + 1) = dw + 1 .dy,

[otin=[w+i[n

(win) A@+A) =00 — g AN+t A0 + o AN,

and
dz = dz + 1 dy.

S8how that d(f-dz) = 0 if and only if f satisfies the Cauchy-
Riemann equations,

(e) Prove the Cauchy Integral Theorem: If f is analytic on 4,
then [.fdz = 0 for every closed curve ¢ (singular 1-cube with
e(0) = e(1)) such that ¢ = 8¢" for some 2-chain ¢' in A.

(f) Show that if g(z) = 1/z, then g dz [or (1/2)dz in classical
notation] equals i d# 4 dh for some function h: C — 0-+ R.
Conclude that .]' exall/2)dz = 2mrin.

(g) If f is analytic on |z: |z| < 1], use the fact that g(z) =
f(2)/z ia analytie in {2: 0 < |z| < 1} to show that

R ] M. 'E!:l*

if 0 <Ry, Ry <1. Use () to evaluate lim [.,.f(2)/2dz and
R0

conclude:

Cauchy Integral Formula: If f is analytic on {z: |z| < 1} and
¢ is & closed curve in [2: 0 < |zl < 1} with winding number n
around (, then

n - f(0) = ot

L 10,
-
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FIGURE 4-6
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4-34. If F: [0, 1]*—= R? and ¢ € [0,1] define F,: [0,1]— R® by F,() =

F(s,t). IfeachF,isa closed curve, F is called a homotopy between
the closed curve Fg and the closed curve F;. Suppose F and G are
homotopies of closed curves; if for each s the closed curves F, and
G, do not intersect, the pair (F,@) is called a homotopy between the
nonintersecting closed curves Fp, Gg and Fy, ;. It is intuitively
obvious that there is no such homotopy with Fg, &y the pair of
curves shown in Figure 4-6 (8), and F';, ) the pair of (b) or (e).
The present problem, and Problem 5-33 prove this for (b) but the
proof for (c) requires different techniques.

(a) If f, g: [0,1] > R?® are nonintersecting closed curves define

er.gt [0,112— R® — 0 by
cfolu,w) = flu) — glv).

If (F,G) is & homotopy of nonintersecting closed curves define
Cr: [0,1* — R® — 0 by

Craleuy) = cp,q,(u,p) = Flsu) — Gs,p).

Show that
aCFiﬂ (= EF.,G. s cFIIG'l'

(b) If w is & closed 2-form on R*® — 0 show that

[on [

ERy, Oy ory,a;
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MANIFOLDS

If U and V are open sets in R", a differentiable function
h: U— V with a differentiable inverse h~': V — U will be
called a diffeomorphism. (‘“Differentiable’” henceforth
means “‘C"".)

A subset M of R" is called a k-dimensional manifold (in
R") if for every point x € M the following condition is
satisfied:

(M) There is an open set U containing z, an open set V C R",
and a diffeomorphism h: U — V such that

RUN M) = VN (RE X {0))
={yev:iytt=".. =y* =0}

In other words, U M M is, “up to diffeomorphism,” simply
R* X {0) (see Figure 5-1). The two extreme cases of our
definition should be noted: a point in R” is a 0-dimensional
manifold, and an open subset of R" is an n-dimensional
manifold.
One common example of an n-dimensional manifold is the
109
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U
h
v
kix)
{a)
h
V

(b)

FIGURE 5-1. A one-dimensional manifold in R? and a lwo-dimen-
stonal manifold in R®,
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n-sphere 8", defined as |z € R""!: x| = 1}]. We leave it
as an exercise for the reader to prove that condition (1) is
satisfied. If you are unwilling to trouble yourself with the
details, you may instead use the following theorem, which
provides many examples of manifolds (note that §" = g—'(0),
where g: R**! — R is defined by g(z) = |z{® — 1).

5-1 Theorem. Let A C R" be open and let g: A — R?
be a differentiable funclion such that ¢'(x) has rank p whenever
glz) = 0. Then ¢g—'(0) is an (n — p)-dimensional manifold in
R".

Proof. This follows immediately from Theorem 2-13. ||

There is an alternative characterization of manifolds which
is very important.

5=2 Theorem. A subset M of R™ is a k-dimensional mani-
fold if and only if for each point x & M the follawing “coordinale
condition” is satisfied:

(C) There s an open set U containing x, an open set W C R,
and a 1-1 differentzable function f: W — R" sueh that

(1) fW) =MNUT,

(2) f'(y) has rank k for each y & W,

(3) 7L S (W) — W 1s continuous.
[Suelh a funetion f is called a coordinate system around z
(see Figure 5-2).]

Proof. If M is a lk-dimensional manifold in R" choose
h: U — V satisfying (M), Let W = {a € R*:(a,0) & h(])]
and define f: W— R" by fla) = h~'(a,0). Clearly f(IV) =
MN U and f! is continuous. If H: U—-R* is H(z) =
(hi(z), . . . , h¥@)), then H(f(y)) = y for all y € W; there-
fore H'(f()) - f'(y) = I and f'(y) must have rank k.
Suppose, conversely, that f: W — R" satisfies condition (C).
Let z = f(y). Assume that the matrix (D;f' (), 1 < 4,7 <k
has a non-zero determinant. Define g: W X R**— R" by
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FIGURE 5-2

g(a,b) = f(a) + (0,b). Then det g’(a,b) = det (D;f¥a)), so
det g'(y,0) # 0. By Theorem 2-11 there is an open set V,’
containing (y,0) and an open set V'3’ containing ¢(y,0) = z such
that g: Vy'— V' has a differentiable inverse h: V,' — V.
Since f~! is continuous, {f(a): (a,0) € V,'} = U N f(W) for
some open set U. Let Vo=V, MU and V; = g }Y(V,).
Then VoM M is exactly {f(a): (a,0) € V1} = {g(a,0): (a,0)
= VII: 80

RV M) =g ' (Vo M) = g Y({g(a,0): (a,0) € V1})
=ViN (REX {0}). 1

One consequence of the proof of Theorem 5-2 should be
noted. If fi;: Wy — R"™ and fo: Wy — R" are two coordinate
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systems, then

e fis [T f2(We)) — R?

is differentiable with non-singular Jacobian. If fact, f5'(y)
consists of the first & components of A(y).

The half-space H* C R is defined as {z € R*: 2 > 0}.
A subset M of R" is a k-dimensional manifold-with-
boundary (Figure 5-3) if for every point « & M either condi-
tion (M) or the following condition is satisfied:

(M'") There is an open set U containing z, an open set
V C R™, and a diffeomorphism A: U — V such that

MUN M) = VN (HF X {0})
={yEV:y*20andy**t = - - =y =0}
and h(z) has kth component = 0.

It is important to note that conditions (M) and (M’)
cannot both hold for the same z. In fact,if hy: Uy — V4 and
ho: Us— V., satisfied (M) and (M), respectively, then
ho o by~ ! would be a differentiable map that takes an open set
in R® containing h(z), into a subset of H* which is not open in
R*. Since det (hsoh,™") # 0, this contradicts Problem
2-36. The set of all points z € M for which condition M’ is
satisfied is called the boundary of M and denoted M. This

%

(a) (b)

FIGURE 5-3. A one-dimensional and a two-dimensional manifold-
with-boundary in R,
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must not be confused with the boundary of a set, as defined in
Chapter 1 (see Problems 5-3 and 5-8).

Problems. 5-1. If M iz a k-dimensional manifold-with-boundary,

5-2.

5-3.

5-4.

5-5.

prove that aM is a (k — 1)-dimensional manifold and M — aM is
a k-dimensional manifold.
Find & counterexample to Theorem 5-2 if condition (3) is omitted.
Hint: Wrap an open interval into a figure six.
() Let A C R" be an open set auch that boundary 4 isan (n — 1)-
dimensional manifold. Show that N = 4 \J boundary A is an
n-dimensional manifold-with-boundary. (It is well to bear in mind
the following example: if 4 = [z € R™: ';::| <lorl < {zl < 2}
then N = A4 U boundary A is a manifold-with-boundary, but
aN # boundary A.)

(b) Prove a similar sssertion for an open subset of an n-dimen-
sional manifold.
Prove a partial rcanverae of Theorem 5-1: If M  R" is a k-dimen-
gional manifold and z € M, then there is an open set 4 C R" con-
taining z and a differentiable funetion g: A — R" * such that A N M
= g~ Y(0) and g'(y) has rank n — &k when g(y) = 0.
Prove that a k-dimensional (vector) subspace of R is a k-dimen-
sional manifold.

/
/

FIGURE 5-4
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56. If f: R"— R™, the graph of fis [(x,y): ¥y = f(z)]. Show that
the graph of f is an n-dimensional manifold if and only if f is
differentiable.

5-7. Let K" = (s ER": z! =0and 2% ... 21 >0/, IfM C K"
18 a k-dimensional manifold and N is obtained by revelving M
around the axis z' = - . - = z"~! = 0, show that N is a (k + 1)-
dimensional manifold. Example: the torus (Figure 5-4).

5-8. (a) If M is a k-dimensional manifold in R™ and ¥ < n, show that

M has measure 0.
(b) If M is a closed n-dimensional manifold-with-boundary in
R", show that the boundary of M is 8M. Give a counterexample if

M is not closed.
(e) If M is a compact n-dimensional manifold-with-boundary

in R®, show that M is Jordan-measurable.

FIELDS AND FORMS ON MANIFOLDS

Let M be a k-dimensional manifold in R* and let f: W — R
be a coordinate system around =z = f(a). Since f'(a) has rank
k, the linear transformation fs: R*, — R", is 1-1, and fyx(R%,)
18 a k-dimensional subspace of R";, If g: V — R”™ is another
coordinate system, with z = g(b), then

ge(RE) = fo(f™ o g)a(RY) = fu(R,).

Thus the k-dimensional subspace f« (R*,) does not depend on
the coordinate system f, This subspace is denoted M, and
is called the tangent space of M at x (see Figure 5-5). In
later sections we will use the fact that there is a natural inner
product 7', on M, induced by that on R™.:if v,w & M, define
T.(v,w) = {v,w),.

Suppose that 4 is an open set containing M, and F is a differ-
entiable vector field on A such that F(z) & M. for each
re M. If f-~W— R" is a coordinate system, there is a
unique (differentiable) vector field G on Wsuch that f«(G(a)) =
F(f(a)) for each a € W. We can also consider a function F
which merely assigns a vector F(z) € M, for each z € M;
such a function is called a vector field on M. There is still
a unique vector field G on W such that f+(G(a)) = F(f(a)) for
a © W; we define F to be differentiable if G is differentiable.
Note that our definition does not depend on the coordinate
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FIGURE 5-5

system chosen: if g: V — R”™ and g, (H (b)) = F(g(b)) for all
b € V, then the component functions of H(b) must equal the
component functions of G(f~'(g(b))), so H is differentiable
if G is.

Precisely the same considerations hold for forms. A fune-
tion w which assigns w(x) € AP(M,) for each z & M is called
a p-form on M. If f: W— R"is a coordinate system, then
f*w is a p-form on W; we define w to be differentiable if f*w is.
A p-form « on M can be written as

o= Y wn..4dit A Ade™
f1< e <y

Here the functions oy, ., i, are defined only on M. The

definition of dw given previously would make no sense here,

since Dj(w;, ..., ;,) has no meaning. Nevertheless, there is a

reasonable way of defining dw.
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5-3 Theorem. There ts a unigue (p + 1)-form dw on M
such that for every coordinate system f: W — R™ we have

fHldw) = d(f*w).

Proof. If f: W— R" is a coordinate system with z = f(a)

and vy, . . . Wp41 © M, there are unique wy, . . . ,wpy1in
R*, such that fe(w:) = v Define dw(z)(n, . . . wpp1) =
d(f*w)(a)(wy, . . . ,wpy1). One can check that this definition

of dw(z) does not depend on the coordinate system f, so that
dw is well-defined. Moreover, it is clear that dw has to be
defined this way, so dw is unique. ||

It is often necessary to choose an orientation u, for each
tangent space M, of a manifold M. Such choices are called
consistent (Figure 5-6) provided that for every coordinate

(a)

(b)

FIGURE 5-6. (a) Consistent and (b) tnconsistent choices of orien-
tations.
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system f: W — R"™ and a,b & W the relation

[f«((er)a), - - - Fx((ex)a)] = s
holds if and only if

(Fe(len)s), « - . Se((er)s)] = mre.

Suppose orientations u, have been chosen consistently. If
f: W — R" is a coordinate system such that

[f*({el}n]:- 5 En pf*{(ek}ﬂ}] = BEji(a)

for one, and hence for every a € W, then f is called orien-
tation-preserving. If [ is nof orientation-preserving and
T: R* — R* is a linear transformation with det 7 = —1, then
feo T is orientation-preserving. Therefore there is an orienta-
tion-preserving coordinate system around each point. If fand
g are orientation-preserving and x = f(a) = g(b), then the
relation

[fe((e1)a), . . . Jel(er)a)] = pz = [ge((er)s), . . . ,gx((er)s)]

FIGURE 5-7. The Mibius strip, a non-orientable manifold. A
basis begins at P, moves to the right and around, and comes back to P with

the wrong arientation.
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implies that

(g7 o ellerda)y - . g7 o N)x((er)a)] = [ler)n, . . . (&),

so that det (g~' o f)’ > 0, an important fact to remember.

A manifold for which orientations g, can be chosen con-
sistently is called orientable, and a particular choice of the
u; is called an orientation u of M. A manifold together with
an orientation y is called an eriented manifold. The classical
example of a non-orientable manifold is the Mabius strip.
A model can be made by gluing together the ends of a strip of
paper which has been given a half twist (Figure 5-7).

Our definitions of vector fields, forms, and orientations can
be made for manifolds-with-boundary also. Il M isa f-dimen-
sional manifold-with-boundary and z & oM, then (aM), is
a (k — 1)-dimensional subspace of the k-dimensional vector
space M,. Thus there are exactly two unit vectors in M,
which are perpendicular to (aM),; they can be distinguished
as follows (Figure 5-8). If f: W — R” is a coordinate system
with W C H* and f(0) = z, then only one of these unit vectors
is fi (vy) for some vy with v® < 0. This unit vector is called the
outward unit normal #(z); it is not hard to check that this
definition does not depend on the coordinate system f.

Suppose that uis an orientation of a k-dimensional manifold-
with-boundary M. Ifz € aM, choosev, . . . wr_1 E (M),

so that [n(z), vy, . . . we_1] = pe. If it is also true that
[n(x), wy, ... we_1] = g, then both [vy, . . . ,wp_y] and
[wy, . . . ;awp_y] are the same orientation for (aM),. This

orientation is denoted (du);. It iseasy to see that the orienta-
tions (du),, for x € M, are consistent on M. Thusif M is
orientable, ) is also orientable, and an orientation u for M
determines an orientation du for M, called the induced
orientation. If we apply these definitions to H* with the
usual orientation, we find that the induced orientation on
R¥! = {z € H*: ¥ = 0} is (—1)* times the usual orienta-
tion. The reason for such a choice will become clear in the
next section.

If M is an oriented (n — 1)-dimensional manifold in R", a
substitute for outward unit normal vectors can be defined,
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Fell') = niy)

(o)

(b)

ie)

FIGURE 5-8. Some oulward unit normal vectors of manifolds-with-
boundary in R®,

even though M is not necessarily the boundary of an n-dimen-
sional manifold. If [v1, . . . ,tn_1] = we, we choose n(z) in
R”™, so that n(z) is a unit vector perpendicular to M, and
[n(z), v1, . . . a1 is the usual orientation of R",. We still
call n(x) the outward unit normal to M (determined by u).
The vectors n(x) vary continuously en M, in an obvious sense,
Conversely, if a continuous family of unit normal vectors n(r)
is defined on all of M, then we can determine an orientation of
M. This shows that such a continuous choice of normal
vectors is impossible on the Mabius strip.  In the paper model
of the Mébius strip the two sides of the paper (which has
thickness) may be thought of as the end points of the unit
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normal vectors in both directions. The impossibility of
choosing normal vectors continuously is reflected by the
famous property of the paper model. The paper model is
one-sided (if you start to paint it on one side you end up
painting it all over); in other words, choosing n(x) arbitrarily
at one point, and then by the continuity requirement at other
points, eventually forces the opposite choice for n(z) at the
initial point.

Problems. 5-9. Show that M. consists of the tangent vectors at (
of curves ¢ in M with ¢(t) = =z.

5-10. Suppose € is a collection of coordinate systems for M such that
(1) For each z & M there is f £ € which is a coordinate system
around z; (2) if f,g € €, thendet (/' o g)’ > 0. Show that there
is a unique orientation of M such that f is orientation-preserving
if f & e

5-11. If M is an n-dimensional manifold-with-boundary in R", define
p- a8 the usual orientation of M, = R", (the orientation u so
defined is the usual orientation of M). If x € M, show that
the two definitions of ni{z) given above agree.

5-12. (a) If F is a differentiable vector field on M C R", show that
there iz an open set 4 DM and a differentiable vector field F
on A with F(z) = F(z) for € M. Hint: 130 this locally and
use partitions of unity.

(b) If M is closed, show that we can choose 4 = R™

5-13. Let g: 4 — R? be as in Theorem 5-1.

(a) Ifz € M = g~'(0), let h: 7 — R™ be the essentially unique
diffeomorphism such that goh(y) = (" 7+, ... ,y") and
k{()) = z. Define f: R*?— R" by fla) = h(ha). Show that fs
is 1-1 so that the n — p veectors fy((e1)s), . . . ,Ja ({€a—p)o) are
linearly independent.

(h) Show that orientations u. ¢an be defined consistently, so
that M is orientable.

(¢) If p = 1, show that the components of the outward normal
at x are some multiple of Dig(z), . . . ,Duglz).

5-14. If M C R™ is an orientable (n — 1)-dimensional manifold, show
that there is an open set A C R" and a differentiable g: 4 —» R!so
that M = g~ %0) and ¢'(z) has rank 1 for 2 € M. Hini: Prob-
lem 5-4 does this locally. Use the orientation to choose consistent
local solutions and use partitions of unity.

5-15. Let M be an (r — 1)-dimensional manifold in R® Let M{(e) be
the set of end points of normal vectors (in both directions) of
length e and suppose ¢ is small enough so that M(g) is also an
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(n — 1)-dimensional manifold. Show that AM(e) is orientable
(even if M is not). What is M(g) if M is the Mdbius strip?

5-16. Let g: A — R? be as in Theorem 5-1. [If f: R*— R is differentiable
and the maximum (or minimum) of f on g~*(0) occurs at &, show
that there are Ay, . . . Ay € R, such that

"
(1) Difa) = ¥ NDig'a)  j=1,...
i=1
Hint: This equation can be written df{a) = E?_hl?t:dy‘(a} and is
obvious if g(z) = (" P*L, . . . 2.

The maximum of f on g~ '(0) is sometimes called the maximum
of f subjeect to the constraints g' = (. One can attempt to
find a by solving the system of equations (1). In particular, if
g: A — R, we must solve n + 1 equations

D;f(a) = ADjg(a),
gla) = 0,

in n + 1 unknowns a!, . . . ,a™x, which is often very simple
if we leave the equation g{a) = 0 for last. This is Lagrange’s
method, and the useful but irrelevant X is called a Lagrangian
multiplier. The following problem gives a nice theoretical use
for Lagrangian multipliers.

5-17. (a) Let T: R®* — R™ be self-adjoint with matrix A = (ay;), so
that a5 = . If f(z) = (Tz,z) = Ea.;,.,-::"z-‘, show that ﬂhﬂz} =
22;‘_[5-;“:.:-", By considering the maximum of (Tz,z) on S* !
show that there is z € 8™ ! and A € R with Tz = Az

(by If V= |y €R" {(z,y) = 0}, show that T(V) C V and
T V— V is gelf-adjoint.
() Show that T has a basis of eigenvectors.

STOKES’® THEOREM ON MANIFOLDS

If @ is a p-form on a k-dimensional manifold-with-boundary
M and ¢ is a singular p-cube in M, we define

f w = f c*w

" [0, 1]»
precisely as before; integrals over p-chains are also defined as
before. In the case p = k it may happen that there is an
open set W O [0,1]* and a coordinate system f: W — R" such
that ¢(z) = f(z) for z € [0,1]*; a k-cube in M will always be
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understood to be of this type. If M is oriented, the singular
k-cube ¢ is called orientation-preserving if f is.

5-4 Theorem. If cy,es: [0,1]— M are two orientation-
preserving singular k-cubes in the oriented k-dimensional mani-
fold M and w i3 a k-form on M such lhat w = 0 oulside of
e1([0,11¥) M ¢5([0,1]*), then

!w=!m.

Proof. We have

(Here ¢;? o ¢y is defined only on a subset of [0,1]* and the
second equality depends on the fact that w = 0 outside of
e1(10,11%) M ¢2([0,1]%).) It therefore suffices to show that

f(ﬂﬂ_lc'ﬂﬂ"ﬂz*(w} - fﬂa*(ﬁﬂ = f"’-
{0, 1]% [0,1]* o1

If co*(w) = fdz' A - - - A dz¥and ¢! o ¢ is denoted by g,
then by Theorem 4-9 we have
(c2 o er)*ca*(w) = g*(fda' A -+ - A dz")
= (fog)-detg' -dx' A - - - A dz*
= (fog): |detg'|-dz' A - - - A daF,

since det g’ = det(ca 'ee¢i)’ > 0. The result now follows
from Theorem 3-13. |

The last equation in this proof should help explain why we
have had to be so careful about orientations.

Let w be a k-form on an oriented k-dimensional manifold M.
[f there is an orientation-preserving singular k-cube ¢ in M such
that @ = 0 outside of ¢([0,1]%), we define

e

Theorem 5-4 shows _fM w does not depend on the choice of c.
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Suppose now that w is an arbitrary k-form on M, There is an
open cover & of M such that for each U & 0 thereis an orienta-
tion-preserving singular k-cube ¢ with U C ¢([0,1]¥). Let & be
a partition of unity for M subordinate to this cover. We

define
[ 3.l
FY=y

provided the sum converges as described in the discussion pre-
ceding Theorem 3-12 (this is certainly true if M is compact).
An argument similar to that in Theorem 3-12 shows that [
does not depend on the cover © or on &.

All our definitions could have been given for a k-dimensional
manifold-with-boundary M with orientation u. Let dM have
the induced orientation du. Let ¢ be an orientation-preserv-
ing k-cube in M such that ¢ oy lies in M and is the only face
which has any interior points in M. As the remarks after
the definition of du show, ¢(.0) i8 orientation-preserving if k is
even, but not if k is odd. Thus, if wisa (k — 1)-form on M
which is 0 outside of ¢([0,1]%), we have

f:.u - (—1}:’[ i,

Cik 0

On the other hand, ¢ o) appears with coefficient (—1)* in ac.

Therefore
a[w= f w= (—1)* fw‘=a£m.

(= 1)kaik,0 Cik.0)

Our choice of du was made to eliminate any minus signs in this
equation, and in the following theorem.

5-5 Theorem (Stokes’ Theorem). If M is a compact
oriented k-dimensional manifold-with-boundary and w s a
(kB — 1)-form omn M, then

de=a£w.

(Here aM is given the induced orientation.)

Proof. BSuppose first that there is an orientation-preserving
singular k-cube in M — dM such that o = 0 outside of
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¢([0,1]¥). By Theorem 4-13 and the definition of dw we have

fdw= fc*(dm} = fd{c*m) = [r:*m= fw.
c alk e

[0,1]% (0. 1%

Jdm=cfdw=&fm=0,

since @ = ) on de. On the other hand, J-aM w = 0sincew = 0
on aM.

Suppose next that there is an orientation-preserving singular
k-cube in M such that ¢ o) is the only face in M, andw = 0
outside of ¢([0,1])*. Then

Mfdw=cfdm= [m=a£m.

0

Then

Now consider the general case. There is an open cover 0
of M and a partition of unity ® for M subordinate to © such
that for each ¢ € & the form ¢ - w is of one of the two sorts
already considered. We have

ﬂ=d<n=d(; ¢) = ; de,

;dw!\w=0.
PP

Since M is compact, this is a finite sum and we have

;ldqa}\m:ﬂ.
pe=d

80 that

Therefore

Jdm
i1}
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Problems. 5-18. If M is an n-dimensional manifold (or manifold-
with-boundary) in R", with the usual orientation, show that
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J-.-'lffdicz M - -« A dr", as defined in this section, is the same as
| af, as defined in Chapter 3.

5-19. (a) Show that Theorem 5-5 is false if M is not compact. Hint: If
M is a manifold-with-boundary for which 5-5 holds, then M — aM
is also a manifold-with-boundary (with empty boundary).

(b) Show that Theorem 5-5 holds for noncompact M provided
that w vanishes outside of a compact subset of M.

5-20. If wis a (k — 1)-form on a compact k-dimensional manifold M,
prove that f;ur dw = (). Give a counterexample if M is not
compact.

5-21. An absolute k-tensor on V is a function n: V¥ — R of the form
lw| for w € A¥(V). An absolute k-form on M is & funetion n
such that n(z) is an absolute k-tensor on M. Show that _r MT
can be defined, even if M is not orientable.

5-22, If M; C R™ is an n-dimensional manifold-with-boundary and
Ms; C My — a8M;y is an n-dimensional manifold-with-boundary,
and M, Mg are compact, prove that

W = i,
ai M
where « is an (n — 1)-form on M;, and aM; and 3M 5 have the ori-
entations induced by the usual orientations of My and M, Hini:
Find a manifold-with-boundary M such that aM = oM \JoMand
such that the induced orientation on M agrees with that for
aM; on @M and is the negative of that for aMson aM ..

THE VOLUME ELEMENT

Let M be a k-dimensional manifold (or manifold-with-bound-
ary) in R™, with an orientation u. If 2z € M, then p, and the
inner produet T, we defined previously determine a volume
element w(r) € ﬁ"(M :). We therefore obtain a nowhere-zero
k-form & on M, which is called the volume element on M
(determined by ) and denoted dV, even though it is not gen-
erally the differential of a (k — 1)-form. The volume of M
is defined as [ dV, provided this integral exists, which is
certainly the case if M is compact. ‘“Volume” is usually
called length or surface area for one- and two-dimensional
manifolds, and dV is denoted ds (the “element of length’') or
dA [or dS] (the “element of [surface] area’).

A concrete case of interest to us is the volume element of an
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oriented surface (two-dimensional manifold) M in R® Let
n(z) be the unit outward normal at t € M. If w € A*(M,)

18 defined by
v
w(v,w) = det (w ),
n{x)

then w(v,w) = 1if v and w are an orthonormal basis of M, with
[vw] = pz. Thus dA = w. On the other hand, w(vw) =
(v X w, n(x)) by definition of v X w. Thus we have

dA(vw) = (v X w, n(x)).

Since v X w is a multiple of n(z) for v,w & M., we conclude
that

dA(vw) = |v X w|

if [v,w] = pe. If we wish to compute the area of M, we must
evaluate [[o,1)2¢* (d4) for orientation-preserving singular
2-cubes ¢. Define

E(a) = [Dic'(a)]* + [Dic*(a)]® + [Dic*(a))?,

F(a) = Dic'(a) - Dic'(a)
-4 Blﬂg(ﬂ} ~ Diﬂﬂiﬂ}
+ Dic%(a) - Dac(a),

G(a) = [Dac'(a)]* + [Dac*(a@)}® + [Dac*(a)]™
Then

c* (dA)((e1)a,(e2)a) = dA(ex((er)a)ex((€2)a))
= |(Dic*(a),Dic*(a),Dic*(a)) X (Dsc'(a),Doc*(a),Dac’(a))

= vV E(a)G(a) — F(a)®
by Problem 4-9. Thus

[ et @a) = [ vVEG=F
[0;1]2 [01]*

Caleulating surface area is clearly a foolhardy enterprise;
fortunately one seldom needs to know the area of a surface.
Moreover, there is a simple expression for dA which suffices for
theoretical considerations.
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5-6 Theorem. Let M be an oriented two-dimensional man-
ifold (or manifold-with-boundary) in R® and let n be the unit

outward normal. Then
(1) dA =nldy Ade+ndz Ade+nPdz A dy.
Moreover, on M we have

(2) n'dA = dy A dz.
(3) nt*dA = dz A dz.
(4) nddA = dz A dy.
Proof.

Equation (1) is equivalent to the equation

v
dA(v,w) = det (w )
n(zx)

This is seen by expanding the determinant by minors along
the bottom row. To prove the other equations, let z € R?,.
Since v X w = an(z) for some « € R, we have

(z,n(x)) - (v X w, n(z)) = {n(z))a = (zan(z)) = (z2 X w).
Choosing z = ey, es, and ez we obtain (2), (3), and (4). |

A word of eaution: if w € A*(R3,) is defined by

w = n'(a) - dy(a) A dz(a)
+ n*(a) + dz(a) A dz(a)
+ n’(a) - dx(a) A dy(a),

it 18 nol true, for example, that
nl(a) - w = dy(a) A dz(a).

The two sides give the same result only when applied to
vw & M,.

A few remarks should be made to justify the definition of
length and surface area we have given. If ¢: [0,1] — R" is
differentiable and ¢([0,1]) is a one-dimensional manifold-with-
boundary, it can be shown, but the proof is messy, that the
length of ¢([0,1]) is indeed the least upper bound of the lengths
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of inscribed broken lines. If ¢: [0,1]* — R", one naturally
hopes that the area of ¢([0,1]%) will be the least upper bound of
the areas of surfaces made up of triangles whose vertices lie in
¢([0,1]7%). Amazingly enough, such a least upper bound is
usually nonexistent—one can find inscribed polygonal surfaces
arbitrarily close to ¢([0,1]®) with arbitrarily large area! This
is indicated for a cylinder in Figure 5-9. Many definitions
of surface area have been proposed, disagreeing with each
other, but all agreeing with our definition for differentiable
surfaces. For a discussion of these difficult questions the
reader is referred to References [3] or [15].

Problems. 5-23, If M is an oriented one-dimensional manifold in
R"™ and ¢: [0,1] — M is orientation-preserving, show that

hf e*ds) = [ VIEVFEF - FIT
0.1] 0.1

5-24. If M is an n-dimensional manifold in R™ with the usual orienta-
tion, show that dV = dz! A - - - A dz™, so that the volume of
M, as defined in this section, is the volume as defined in Chapter 3.
(Note that this depends on the numerical factor in the definition of
w A g

5-25. Generalize Theorem 5-6 to the case of an oriented (n — 1)-dimen-
sional manifold in R®,

5-26. (a) If fi [a,b] = R is non-negative and the graph of f in the
ry-plane is revolved around the z-axis in R? to yield a surface M,
show that the area of M is

b
[ 2T E (R

(b) Compute the area of §%,
5-27. If T: R®— R™ is a norm preserving linear transformation and M
is a k-dimensional manifold in R"®, show that M has the same

volume as T(M).

5-28. (a) If M is a k-dimensional manifold, show that an absolute
k-tensor |dV| can be defined, even if M is not orientable, so that
the volume of M can be defined as | 4|dV|.

(b) If e: [0,2x] X (=1,1) — R*is defined by e(u,v) =

(2'cna u + vain(u/2)cos u, 2 sin u + v 8in(u,/2) 8in u, v co8 1/2),

show that ([0,2x) X (—1,1)) is a Mdbius strip and find its area.
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5-29.

5=30.

a-31.

If there i8 & nowhere-zero k-form on a k-dimensional manifold M,
show that M is orientable.
(a) If f: [0,1] — R is differentiable and ¢: [0,1] —+ R* is defined by
e(z) = (z,f(z)), show that ¢([0,1]) has length _H, '\/1 + (j"T’.

(b) Show that this length is the least upper bound of lengths of
ingeribed broken lines. Hint: f 0 =4 <1 € - - - <1, = 1,
then

o) — cltev)| =V (t: — ti-1)® + () — [ti—1))?
=Vt — -0 + f/60° — tio)?

for some 2; € [£;_1,1;].
Consider the 2-form w defined on R* — 0 by

;a_"z_i_y_a_"\_dz+;{_dzﬁdz +z|'i.i.'.-""'udy_
(z? + 3 + 29t

w

(a) Show that w is closed.
{b) Show that

(v X w, p)
w(p)(vpwy) = TR

For r > 0 let 8%(r) = |z € R%: |z| = r|. Show that w restricted
to the tangent space of 8*(r) is 1/r? times the volume element,
and that [g*) @ = 4r. Conclude that w is not exact. Neverthe-
less we denote w by d0 since, ns we shall see, d0 is the analogue of
the 1-form d8 on R* — 0.

(e) If vy is a tangent vector such that v = Ap for some A E R
show that de(p)(vs,w,) = 0 for all w,. If a two-dimensional
manifold M in R? is part of a generalized cone, that is, M
is the union of segments of rays through the origin, show that
jm de = 0,

(d) Let M C R® — 0 be a compact two-dimensional manifold-
with-boundary sueh that every ray through () intersects M at most
once (Figure 5-10). The union of those rays through 0 which
intersect M, isa solid cone C(M), The solid angle subtended by M
is defined as the area of C(M) M 82, or equivalently as 1/+* times
the area of C'(M) ™ 8%(r) for r > 0. Prove that the solid angle
subtended by M is ]J-H d6|. Hint: Choose r small enough so
that there is a three-dimensional manifold-with-boundary N (as in
Figure 5-10) such that aN is the union of M and C(M) N 8*(»),
and a part of a generalized cone. (Aectually, N will be a manifold-
with-corners; see the remarks at the end of the next section.)
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C{M)

M

FICURE 5-10

5-32. Let f, g: [0,1] = R® be noninterseeting closed curves. 1efine
the linking number [(f,g) of f and ¢ by (¢f. Problem 4-34)

-1
I(fg) = '™ [iﬂ'ﬂ.

Cfa

(a) Show that if (F,G) is a homotopy of nonintersecting closed
curves, then {(Fy,G) = H{(F1,G1).
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3=33.

(b) If r(u,p) = |f(u) — g(v)| show that

1 1
if,g) = Thl [ ‘/ [r{ul,v}lz = A{uw) du de
0 0
where
(1) () (%) (u) (%) (u)
Aluy) = det( (g")' (v) (g%) (v) (g®)' (v) )
i) —g't) fu) —g*le) i) — g

(c) Show that I(f,g) = 0 if f and § both lie in the zy-plane.
The curves of Figure 4-5 (b) are given by f(u) = (cos u, gin u, 0)
and gl#) = (1 +cosy, 0, siny). You may easily convince
yourself that ealeulating [(f,4) by the above integral is hopeless in
this ease. The following problem shows how to find I(f,4) without
explicit ealeulations.

(a) If (a,b,c) € R*? define

(x — aldy N dz + {y = bydz A de + (z — eddz A dyl
[z —a) + (¥ —b)*+ (z — )}

dﬁ{a 2

If M is a compact two-dimensional manifold-with-boundary in
R? and (a,b,c) & M define

SHabie) = f d0(a.b.0)-
M

Let {a,b,e) be a point on the same side of M as the outward normal
and (a',b',¢’) a point on the opposite side. Show that by choosing
{a,b,e) sufficiently close to (a',b',¢') we can make Qab,c) —
Q(a’b',c') as elose to —4dr as desired, Hint; First show that if
M = aN then Qla,b,c) = —drfor (a,be) EN — M and @(a,b,c) =
0 for {ab,e) & N.

(b) Suppose [fi([0,1]) = aM for some compact oriented two-
dimensional manifold-with-boundary M. (If f does not intersect
itself such an M always exists, even if fis knotted, see [6], page 138.)
Suppose that whenever g interseets M at z the tangent vector v of
g is not in M,. Let n™ be the number of intersections where v
points in the same direction as the outward normal and n— the
number of other intersections. If n = n* — n~ show that
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(e} Prove that

(y — bydz — (z — e)dy

pld

Dlﬂtﬂ,b,tﬁ} -

(z —eldr — (x — a)dz

D I:E‘Jb: ¢) = 3

(z = a)dy — (y — b)dz
i

DsQi(a,b,c) = =

‘-J-,._____' L-.!-.._____.- s-.,'-.,_____:

where r(z,1,2) = |(z,5,2)|.

(d) Show that the integer n of (b) equals the integral of Prob-
lem 5-32(b), and use this result to show that I(f,g) = 1if fand g
are the curves of Figure 4-6 (b), while I(f,g) = 0 if f and g are the
curves of Figure 4-6 (¢). (These results were known to Gauss
[7]. The proofs outlined here are from [4] pp. 409-411; see also
[13], Volume 2, pp. 41-43.)

THE CLASSICAL THEOREMS

We have now prepared all the machinery necessary to state and
prove the classical ‘‘Stokes’ type’’ of theorems. We will
indulge in a little bit of self-explanatory classical notation,

5-7 Theorem (Green’s Theorem). Let M C R® be a com-

pact two-dimensional manifold-with-boundary. Suppose that
a,8: M — R are differentiable. Then

ludx-i—ﬁdy == f(Dl,B“ Dsa)dz A dy
a

- [ -

(Here M is given the usual orientation, and 8 M the induced
orientation, also known as the counterclockwise orientation.)

Proof. This is a very special case of Theorem 5-5, since
dladx + dy) = (D18 — Daa)dx A dy. |
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“%5-8 Theorem (Divergence Theorem), Let M C R? be a
compact three-dimensional manifold-with-boundary and n the
unit outward normal on oM. Lel F be a differentiable veetor field
on M. Then

deumv - J{F,n) dA.
d

This equalion is also writlen in lerms of three differentiable fune-
tions o, B,v: M — R:

fff("-*‘ﬂ— 63).3”’ f (n'a + n*B + n’y) dS.

Proof. Define w on M by w = Fldy A dz+ F?'dz A dx +
F3dr A dy. Then dw = divF dV. According to Theorem
5-6, on M we have

ntdA = dy A dz,
ntdA = dz A dz,
nddA = dxr A dy.

Therefore on M we have

(Fn)dA = F'n'dA + F*n?dA + F*n3dA
= Fldy A dz+ Frdz A dx + FPdx A dy

— W+

Thus, by Theorem 5-5 we have

[divFay = [ du = £w= '!(F,n)dd. i
M M a a

5-9 Theorem (Stokes’ Theorem). Let M C R®bea com-
pacl oriented two-dimensional manifold-with-boundary and n the
unit ouwlward normal on M determined by the orientation of M.
Let M have the induced orientalion. Let T be the vector field on
aM with ds(T) = 1 and lel F be a differentiable vector field in
an open set containing M. Then

[ (v x F),nyd4 = ]{{F,T} ds.
M

a
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This equation 1s sometimes written

[ adr + fdy + yvdz =

aM
(8 _ 9B z(?_‘f_a_"') a(@d_é_“)]
f[ [ﬂ (Gy 62)+n dz dx T8 dx Ay a3
M

Proof. Define w on M by w=Fldr + F*dy + F*dz.
Since V X F has components D,F® — D;F? D,F' — D,F3
D1F? — DyF! it follows, as in the proof of Theorem 5-8, that
on M we have

(VX F),n)dA = (DoF* — D3F"dy A dz

+ (DgF' — D\F3)dz A dx
+ (D\F? — DyFYdz A dy

= dw.
On the other hand, since ds(T) = 1, on 8 M we have
Tl ds = dz,
T*ds = dy,
T*ds = da.

(These equations may be checked by applying both sides to
T, for x € M, since T, is a basis for (aM)..)

Therefore on dM we have
(F,TYds = F'T'ds + F*T*ds + F3T3 ds
=Fldz + F*dy + Fdz

:m-

Thus, by Theorem 5-5, we have

J((v X F)n) dA =Hf do= [w= [@T)ds |

aM G

Theorems 5-8 and 5-9 are the basis for the names div F and
curl . If F(z) is the velocity vector of a fluid at z (at some
time) then f.mr (F,n) dA is the amount of fluid “diverging”’
from M. Consequently the condition div F = 0 expresses
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the fact that the fluid is incompressible. If M is a disc, then
_fm (F,T) ds measures the amount that the fluid curls around
the center of the disc. If this is zero for all discs, then V X F
= 0, and the fluid is called irrotational.

These interpretations of div F and curl F are due to Maxwell
[13]. Maxwell actually worked with the negative of div F,
which he accordingly called the convergence. For Vv X F
Maxwell proposed “with great diffidence” the terminology
rotation of F,; this unfortunate term suggested the abbreviation
rot F which one occasionally still sees.

The classical theorems of this section are usually stated in
somewhat greater generality than they are here. For exam-
ple, Green’s Theorem is true for a square, and the Divergence
Theorem is true for a cube. These two particular facts can
be proved by approximating the square or cube by manifolds-
with-boundary. A thorough generalization of the theorems of
this section requires the concept of manifolds-with-corners;
these are subsets of R" which are, up to diffeomorphism,
locally a portion of R* which is bounded by pieces of (k — 1)-
planes. The ambitious reader will find it a challenging exer-
cise to define manifolds-with-corners rigorously and to
investigate how the results of this entire chapter may be
generalized.

Problems. 5-34. Generalize the divergence theorem to the case of

an n-manifold with boundary in R™,

5-35. Applying the generalized divergence theorem to the set M =
{r E R |z| < a] and F(z) = z,, find the volume of S+ =
{z € R*: |z| = 1] in terms of the n-dimensional volume of B, =
[z € R™: |z| € 1]. (This volume is #™%/(n/2)! if n iz even and
2t (n=i2/1 . 3.5. , ., -nif nisodd)

5-36. Define F on R® by F(z) = (0,0,ez%); and let M be & compact
three-dimensional manifold-with-boundary with M C {z: z° <
0}. The vector field F may be thought of as the downward pres-
sure of a fluid of density ¢ in |z: z* < 0}, Since a fluid exerts
equal pressures in all directions, we define the buoyant force on M,
due to the fluid, as —_[mr (Fmn)dA, Prove thefollowing theorem.
Theorem (Archimedes). The buoyant foree on M is equal to the
weight of the fluid displaced by M.
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Absolute differential form, 126
Absolute tensor, 126
Absolute value, 1

Algebra, Fundamental Theorem of,

1056

Alternating tensor, 78
Analytic function, 105
Angle, 4

preserving, 4

solid, 131
Approximation, 15
Archimedes, 137
Area, 56

element of, 126

surface, 126, 127

Basis, usual for R", 3
Hilinear function, 3, 23
Boundary
of a chain, 97, 98
of a manifold-with-boundary,
113

Roundary, of a set, 7
Buoyant force, 137

Cauchy Integral Formula, 106

Cauchy Integral Theorem, 106

Cauchy-Riemann equations,
105

Cavalieri's principle, 62

Chain, 97, 100

Chain rule, 19, 32

Change of variable, 67-72

Charaecteristic funetion, 55

Closed curve, 106

Closed differential form, 92

Closed rectangle, 5

Closed set, 5

Compact, 7

Complex numbers, 104

Complex variables, 105

Component function, 11, B7

Composition, 11

Cone, generalized, 131
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Consistent choices of orientation,
117

Constant function, 20
Constraints, 122
Content, 56
Content zero, 51
Continuous differential form, 88
Continuous function, 12
Continuous vector field, 87
Continuously differentiable, 31
Convergence, 137
Coordinate condition, 111
Coordinate system, 111

polar, 73
Counterclockwise orientation, 134
Cover, 7
Cross product, 84
Cube

singular, 97

standard n-cube, 97
Curl, 88, 137
Curve, 97

closed, 106

differentiable, %6
0", 26

IDegenerate singular cube, 105
Derivative, 16
directional, 33
partial, 25
higher-order (mixed), 26
gsecond-order (mixed), 26
Diffeomorphism, 108
Differentiable function, 15, 16,
105
continuously, 31
Differentiable eurve, 96
Differentiable differential form, 88
on a manifold, 117
Differentiable vector field, 87
on a manifold, 115
Differentiable = ™, 88
Differential, 91
Differential form, 8%
absolute, 126
closed, 92
continuous, 88
differentiable, 88
exact, 92

Index
Differential form, on a manifold,
117
differentiable, 117
Dimension

of a manifold, 109
of a manifold-with-boundary,
113

Directional derivative, 33
Distance, 4
Divergence of a field, 88, 137
Divergence Theorem, 135
Domain, 11
Dual space, 5

Element of area, 126

Element of length, 126

Element of volume, see Volume
element

End point, 87

Equal up to nth order, 18

Euelidean space, 1

Exact differential form, 92

Exterior of & set, 7

Facea of a singular cube, 88
Field, see Vector field
Form, see Differential form
Fubini's Theorem, 58
Function, 11
analytic, 105
characteristic, 55
component, 11, 87
composition of, 11
constant, 20
continuous, 12
continuously differentiable, 31
C”, 26
differentiable, 15, 16, 105
homogeneous, 34
identity, 11
implicitly defined, 41
see also Implicit Funetion
Theorem
integrable, 48
inverse, 11, 34-39
see also Inverse Function
Theorem
projection, 11
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Fundamental Theorem of Algebra,

1005
Fundamental Theorem of Caleu-
lus, 100-104

(Ginuss, 134
(Generalized cone, 131
Grad f, 96

Giraph, 11, 115
Gireen’s Theorem, 134

Half-space, 113
Heine-Borel Thearem, 7
Homogeneous function, 34
Homotopy, 108

Identity funetion, 11
Implicit Function Theorem, 41
Implicitly defined function, 41
Incom pressible fluid, 137
Independence of parameteriza-
tion, 104

Induced orientation, 119
Inequality, see Triangle inequality
Inner product, 2, 77

preserving, 4

usual, 77, 87
Integrable function, 48
Integral, 48

iterated, 59, 60

line, 101

lower, 58

of a form on a manifold,

123-124

of a form over a chain, 101

over a set, 55

over an open set, 65

surface, 102

upper, 58
Integral Formula, Cauchy, 106
Integral Theorem, Cauchy, 106
Interior of a set, 7
Inverse function, 11, 34-39
Inverse Funetion Theorem, 35
Irrotational fuid, 137
Iterated integral, 59, 60

Jacobian matrix, 17
Jordan-measurable, 56

143
Kelvin, T4

Lae locus, 106
Lagrange's method, 122
Lagrangian multiplier, 122
Leibnitz's Rule, 62
Length, 56, 126
clement of, 126
Length = norm, 1
Limit, 11
Line, 1
Line integral, 101
Linking number, 132
Liouville, 74
Lower integral, 58
Lower sum, 47

Manifold, 109
Manifold-with-boundary, 113
Manifold-with-eorners, 131, 137
Mathematician (old style), 74
Matrix, 1

Jacobian, 17

transpose of, 23, B3
Maxima, 26-27
Measure zero, 50
Minima, 26-27
Mébius strip, 119, 120, 130
Multilinear function, 23, 75
Multiplier, see Lagrangian multi-

plier

Norm, 1

Norm preserving, 4

Normal, see OQutward unit normal
Notation, 3, 44, 89

(One-one {1-1) funection, 11

One-sided surface, 121

Open cover, 7

Open rectangle, 5

Open set, 5

Orientable manifold, 119

Orientation, 82, 119
consistent choices of, 117
counterelockwise, 134
induced, 119
usual, 83, 87, 121
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Orientation-preserving, 118, 123
Oriented manifold, 119
Orthogonal vectors, 5
Orthonormal basis, 77
Oseillation, 13

Outward unit normal, 119, 120

Parameterization, independence of,
104
Partial derivative, 25
higher-order (mixed), 26
second-order (mixed), 26
Partition
of a closed interval, 46
of a closed rectangle, 46
of unity, 63
Perpendicular, 5
Plane, 1
Poincare Lemma, 94
Point, 1
Polar coordinate system, 73
Polarization identity, 5
Positive definiteness, 3, 77
Product, see Cross product, Inner
product, Tensor product,
Wedge product
Projection funection, 11

Rectangle (closed or open), 5
Refine a partition, 47
Rotation of F, 137

Sard's Theorem, 72

Self-adjoint, 85

Sign of & permutation, 78

Singular n-cube, 97

Solid angle, 131

Space, 1

see also 1Jual space, Euclidean

space, Half-space, Tangent
Bpace

Sphere, 111

Standard n-cube, 97

Star-shaped, 93

Index

Stokes' Theorem, 102, 124, 135
Subordinate, 63

Subrectangles of a partition, 46
Surface, 127

Surface area, 126, 127

Surface integral, 102
Symmetric, 2, 77

Tangent space, 86, 115
Tangent vector, 96
Tensor, 75
absolute, 126
alternating, 78
Tensor product, 75
Torus, 115
Transpose of a matrix, 23, 83
Triangle inequality, 4

Unit outward normal, 119, 120

Upper integral, 58

Upper sum, 47

Usual, see Basis, Inner product,
Orientation

Variable
change of, 67-72
complex, see Complex variables
function of n, 11
independent of the first, 18
independent of the second, 17
Vector, 1
tangent, D6
Vector field, 87
continuous, 87
differentiable, 87
on & manifold, 115
continuous, 87
differentiable, 115
Vector-valued function, 11
Volume, 47, 56, 126
Volume element, 83, 126

Wedge produet, 79
Winding number, 104



Addenda

1. It should be remarked after Theorem 2-11 (the Inverse
Function Theorem) that the formula for f~! allows us to con-
clude that f~! is actually continuously differentiable (and that
it is C~ if f is). Indeed, it suffices to note that the entries of
the inverse of a matrix A are C* functions of the entries
of A. This follows from *‘‘Cramer’s Rule”: (471, =
(det A7) /(det A), where A" is the matrix obtained from A
by deleting row ¢ and column j.

2. The proof of the first part of Theorem 3-8 can be simpli-
fied considerably, rendering Lemma 3-7 unnecessary. It
suffices to cover B by the interiors of closed rectangles U; with
Zo.0(U;) < g, and to choose for each z € A — B a closed
rectangle V., containing z in its interior, with My, (f) —
my,(f) < e. If every subrectangle of a partition P is con-
tained in one of some finite collection of U/s and V,’s which
cover 4, and | f(z)| < M for all zin A, then U(f, P) — L(f, P)
< ev(d) + 2Me.

The proof of the converse part contains an error, since
M, (f) — m,(f) 2 1/n is guaranteed only if the interior of S
intersects By;,. To compensate for thia it suffices to cover the
boundaries of all subrectangles of P with a finite collection of
rectangles with total volume < €. These, together with §,

cover B, and have total volume < 2e.
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3. The argument in the first part of Theorem 3-14 (Sard’s
Theorem) requires a little amplification. If U C A is a closed
rectangle with sides of length I, then, because U is compaet,
there is an integer N with the following property: if U is
divided into N™ rectangles, with sides of length I/N, then
|Djg*(w) — Djg'(z)| < &/n® whenever w and z are both in one
such rectangle S. Given z € 8, let f(z) = Dg(z)(2) — g(2).
Then, if z € §,

|D;fi(2)| = |D;g’(z) — Djg'(2)| < e/n’
So by Lemma 2-10, if z,y € §, then

|Dg(z)(y — z) — ¢() + 9(z)| = |f¥) — f(2)] < gz — ¥
< eVan (I/N).

4. Finally, the notation A*(V) appearing in this book is
incorreet, since it conflicts with the standard definition of
A¥(V) (a8 a certain quotient of the tensor algebra of V). For
the vector space in question (which is naturally isomorphic to
A¥(V*) for finite dimensional vector spaces V) the notation
Q%(V) is probably on the way to becoming standard. This
substitution should be made on pages 78-85, 88-89, 116, and
126-128.



