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Chapter 1

Introduction

1.1. Electrical transmission systems.

The electrical transmission of signals and power is perhaps the most vital single con-
tribution of engineering technology to modern civilization.

Among its visible manifestations, the most impressive are the high voltage transmission
lines on tall steel towers that cross the countryside in all directions. Carrying thousands
of megawatts of power, these lines link remote generating stations to urban load centers, or
unite into cooperative complexes the power production facilities of large geographical
areas.

Equally obvious and important, if neither impressive nor attractive, are the millions
of miles of pole-lines that parallel city streets, rural highways and railways everywhere.
The conductors of these lines may be delivering kilowatts or megawatts of power to
domestic and industrial users, or may be transmitting telephone, teletype and data signals,
at milliwatt power levels and kilohertz frequencies, over distances usually not exceeding
a few dozen miles.

Every radio and television receiver is a terminal of another kind of electrical trans-
mission system, in which the signal power at megahertz frequencies propagates freely
from a transmitting antenna through the earth’s atmosphere, guided only by the con-
ductivity of the earth’s surface, or by that of the ionospheric layers of the upper atmos-
phere. An essential but unobtrusive component of most television receiver installations
is an electrical transmission line that conveys signal power at the picowatt or nanowatt
level from the antenna to the receiver terminals.

At microwave frequencies of several gigahertz, wavelengths are small and antennas
in the form of arrays, horns or paraboloidal “dishes” can have apertures many wavelengths
wide. This makes possible the confinement of microwave signals or power into directed
beams with small divergence angles. Towers supporting such antennas can be seen at 20
to 50 mile intervals in most regions of the United States. The electrical transmission
systems of which they are a part carry all types of communication signals, including tele-
vision video, telephone, data and control, at power levels of a few watts, over distances up
to a few thousand miles. Similar antennas with even greater directivity are employed in
microwave radar stations, in the uhf scatter-propagation circuits of the Arctie, and for
communication, control and telemetering in all satellite projects, whether terrestrial, or
exploratory in outer space.

Unknown to most laymen, a substantial amount of the electrical transmission of signals
and power occurs on buried transmission circuits. The greatest mileage of these is in the
form of twisted pairs of small wires, paper or plastic insulated, which are packed by the
hundreds into cables in underground conduits. Carrying telephone, teletype and data
gignals within the exchange areas of cities, some of these lines operate at voice frequencies,
others at carrier frequencies as high as 100 kilohertz and still others are multiplexed with
pulse code modulation utilizing frequencies up to 1 or 2 megahertz. Also in city areas,
partly buried and partly airborne are the vhf coaxial or shielded pair transmission lines
handling the signals of multichannel cable television services.
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Between cities, in the United States and in many parts of Europe, buried coaxial
transmission lines operating at frequencies up to several megahertz carry all types of com-
munication signals from teletype to television over distances of hundreds or thousands of
miles, providing better security against enemy action, natural catastrophes and various
kinds of signal interference than is offered by microwave link circuits.

The reliable worldwide intercontinental communication provided via terrestrial satel-
lites is backed up by thousands of miles of less romantic but equally sophisticated carrier
frequency circuits on submarine coaxial cable, with built-in amplifiers every few miles,
that cross most of the oceans of the world.

Finally, in addition to all the relatively long transmission systems that have been
enumerated, the totality of electrical transmission engineering includes the endless variety
of shorter transmission line segments that perform many different functioms within the
terminal units of the systems. Ranging in length from a few millimeters in microwave
circuits to inches or feet or hundreds of feet in devices at lower frequencies, and serving
not only as transmission paths but in such other applications as resonant elements, filters
and wave-shaping networks, many of these transmission line circuit components present
more challenging design problems than all the miles of a long uniform line.

From the above summary, it can be seen that electrical transmission systems fall
structurally into two distinct groups, according to whether the signals or power are guided
along a path by a material “line”, or propagate in the earth’s atmosphere or space.

The attention of this book is confined solely to systems in the first of these two groups,
and more specifically to systems consisting of two uniform parallel conductors, as defined
in Chapter 2. The methods developed are applicable equally to two-wire low frequency
electric power transmission lines, to telephone and data transmission lines of all types at
all frequencies, and to all of the vhf, uhf and microwave two-conductor lines used in con-
temporary electrical engineering, at frequencies up to many gigahertz.

1.2. Analytical methods.

Electrical engineers are fully aware that, in principle, a complete analysis of any
electrical problem involving time-varying signals can be made only through the use of
electromagnetic theory as expressed in Maxwell’s equations, with explicit recognition that
the electric and magnetic fields throughout the region of the problem are the primary
physical variables. In studying the modes of propagation of microwaves in hollow metal
pipes, the radiation properties of antennas, or the interaction of electromagnetic waves
with plasmas, for example, electrical engineering students always make direct use of
electromagnetic theory.

However, it is not possible to solve the electromagnetic integral or differential equa-
tions either conveniently or rigorously in regions containing or bounded by geometrically
complicated metal or dielectric structures, and the basic analytical discipline of electrical
engineering curricula has from the beginning been that of lumped element circuit analysis,
not electromagnetic theory. This employs the idealized concepts of two-terminal resistances,
inductances and capacitances to represent the localized functions of energy dissipation,
magnetic-field energy storage, and electric-field energy storage, respectively. Voltages and
currents, which are related by integral or differential expressions to electric and magnetic
fields, are the primary electrical variables.

~ The method is an adequate substitute for electromagnetic theory when the occurrences
of the three functions mentioned can be separately identified, and when the dimensions of a
circuit are sufficiently small that no appreciable change will occur in the voltage or current
at any point during the time electromagnetic waves would require to propagate through
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the entire circuit. The size criterion is obviously a function of frequency. At the power
line frequency of 60 hertz, the methods of lumped element circuit analysis are applicable
with high accuracy to circuits several miles long, while at microwave gigahertz frequencies
the same methods may be useless for analyzing a circuit less than an inch across.

In addition to the techniques of electromagnetic theory and of lumped element circuit
analysis, electrical engineers make use of a third analytical procedure for electrical problems,
which combines features that are separately characteristic of each of the other two methods.
It extends the application of the concepts of lumped element circuit analysis to circuits
which can be indefinitely long in one dimension, but which must be restricted and uniform
in the other dimensions throughout their length. The analysis discloses propagating waves
of the voltage and current variables, analogous to the waves of electric and magnetic fields
that are solutions of Maxwell’s equations. The method is known as distributed circuit
analysis.

The principal subject matter of this book is the application of distributed circuit analysis
to uniform two-conductor transmission lines. Frequent use is necessarily made of lumped-
element circuit concepts and methods, particularly when dealing with situations at trans-
mission line terminals, and electromagnetic theory is required to develop expressions relating
the distributed circuit coefficients of a uniform line to its materials, geometry and
dimensions.

By judicious conversion of symbols, much of the theory presented in this book can
also be applied directly to the analysis of any other physical forms of uniform one-
dimensional transmission systems. Examples are the propagation of plane transverse
electromagnetic waves in homogeneous media, and mechanical wave transmission systems

including physical and architectural acoustics, underwater sound, and vibrations of strings,
wires and solid rods.

1.3. The evolution of electrical transmission systems.

A brief review of the historical development of electrical transmission engineering can
help to explain several features of the present scene.

The subject had an improbable beginning in 1729 when Stephen Gray, a 63 year old
pensioner in a charitable institution for elderly men, discovered that the electrostatic
phenomenon of attraction of small bits of matter could occur at one end of a damp string
several hundred feet long when an electrostatically charged body (a rubbed glass tube) was
touched to the other end. He concluded that “electric effluvia” were transmitted along
the line.

Sixty years earlier, councillor Otto von Guericke of Magdeburg, Germany, (famous for
the evacuated Magdeburg hemispheres that teams of horses could not pull apart) had noted
that short threads connected at one end to his primitive electrostatic machine became
charged throughout their length, but no one deduced the concept of electrical transmission
from this observation until after Gray’s time.

Gray established that electrostatic transmission occurred along his moist packthread
lines if they were supported by dry silk threads, but not if they were supported by fine
brass wires. This first distinction between electric conductors and electric insulators was
further developed in the succeeding five years by French botanist Charles DuFay, who also
reported the existence of two different kinds of electricity, eventually labeled positive and
negative by Benjamin Franklin in 1747.

Only 24 years elapsed after Gray’s experiments before the inevitable armchair inventor
proposed in the “Scots Magazine” of Edinburgh for February 17, 1758, that an electrical
communication system for use over considerable distances might be constructed by employ-
ing a transmission line of 26 parallel wires (each wire identified at each end for one letter
of the alphabet) supported at 60-foot intervals by insulators of glass or “jewellers’ cement”.
A sequence of letters was to be transmitted, using Gray’s technique, by touching a charged
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object to each of the appropriate wires in turn. At the receiving end, bits of paper or
straw would be seen jumping successively to the ends of the corresponding wires. Between
1770 and 1830 several electrostatic telegraph systems were constructed in various parts of
the world, over distances up to'a few miles. None of these achieved any practical success,
but the earlier ones may be said to have firmly established the transmission line concept. -

Volta’s discovery of the chemical pile in 1800 and Oersted’s discovery of the magnetic
effect of a current in 1820 resulted in the experimental magnetic telegraphs of Gauss,
Henry and others in the early 1830’s and these were followed by the first commercial electro-
magnetic telegraphs of Wheatstone and Cook in England in 1839, and of Morse in America
in 1844. In both cases, transmission lines of buried insulated wires were tested first, but
with poor results, and open wire lines on poles or trees were quickly adopted. By 1850
there were thousands of miles of fairly crude telegraph transmission lines in operation in
the United States and Europe. Their design and construction was purely empirical. No

test instruments existed, and even Ohm’s law was unknown to most of the “electricians” of
the time.

As telegraph land-lines were extended, the need arose for underwater cables across
rivers, lakes, and larger expanses of water. In spite of the inadequacies of the insulating
material available at the time, a successful 40-mile submarine cable was laid across the
English Channel in 1851, and within two or three years submarine cables up to 300 miles
in length had been laid in various parts of Europe. The operation of these long underwater
telegraph circuits soon revealed a new transmission phenomenon, that of signal distortion.
The received signals, recorded as pen traces on paper tapes, lost the squareness familiar
on land-line circuits and became blurred attenuated waverings of a jittery baseline.

Promoters were naturally stimulated by the prospect that a transatlantic sub-
marine cable might provide the first instantaneous communication link between Europe and
America, but they hesitated to risk the large amount of capital required without some
reasonable assurance that useful signals could traverse an underwater cable many times
longer than the longest then in use. For advice they turned to William Thomson, professor
of natural philosophy at the University of Edinburgh. This may be the first instance of
the employment of a professional consultant on a major commercial venture in electrical
engineering. Thomson (later Sir William and ultimately Lord Kelvin) carried out in
1855 the first distributed circuit analysis of a uniform transmission line. He represented
the cable by series resistance and shunt capacitance uniformly distributed along its length.
He fully appreciated that a more complete investigation of the cable’s signal transmission
properties might require attributing distributed series inductance and distributed shunt
conductance (leakage) to the cable. By trial calculations, however, he found that at
telegraph-signal frequencies the effects of the inductance would be negligible, and from
measurements on cable samples he satisfied himself that leakage conductance could be kept
low enough to be unimportant. Thomson’s published paper of 1855 makes profitable
reading for electrical engineers even today.

Thomson provided additional assistance of a more practical nature to the cable
promoters by inventing more sensitive receiving galvanometers than any in existence, and
by directing the manufacture of purer copper, with conductivity several times greater than
that of the commercial metal then available. After various mechanical difficulties were
surmounted, a cable designed to Thomson’s specifications was successfully laid across the
Atlantic in 1858, and carried messages for a few weeks before the insulation failed. Fur-
ther financing of the cable project was delayed by the Civil War in the United States, but
in the decade after 1866 numerous cables were laid, some of which were still in operation
as telegraph circuits until fairly recently.
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The technological problems encountered in the design and operation of long submarine -
cables were 80 much more sophisticated than those associated with land-line telegraphs that
a new class of technical personnel gradually developed, consisting of men with a substantial
knowledge of electrical principles and techniques. The world’s first professional associa-
tion of electrical engineers was the Society of Telegraph Engineers, founded in England in
1871, and most of its charter members were submarine telegraph engineers. The Society
added “and Electricians” to its title in 1880, and became the present day Institution of
Electrical Engineers in 1889, five years after the formation of the American Institute of
Electrical Engineers in the United States.

The invention of the telephone in 1876 immediately made evident further complications
in the use of transmissgion lines for electrical communication. The frequencies required for
voice reproduction were hundreds of times higher than those used in telegraphy. Attempts
at inter-city telephony over the telegraph lines of the time, which generally consisted of
single iron wires with the ground as a return circuit, were frustrated by the low level and
garbled unintelligibility of the received signals. In the ensuing 40 years, improvements in
long distance voice frequency telephony developed slowly but steadily through a combination
of empirical discoveries and theoretical studies.

The man chiefly responsible for a new and more complete mathematical analysis of
signal propagation on transmission lines was Oliver Heaviside, one of the most unusual,
and at the same time most productive engineer-mathematicians of all time. A nephew of
Charles Wheatstone, the prominent electrical scientist and telegraph inventor, and brother
of a well-known telegraph engineer, Oliver Heaviside worked for a few years in the British
telegraph industry, then “retired” (according to a major encyclopedia) in 1874 at age 24,
to spend the next fifty years of his life in almost total seclusion. During that half century
his publications on transmission lines, electric circuit theory, vector analysis, operational
calculus, electromagnetic field theory, and numerous other topics, did more to define the
concepts and establish the theoretical methods of modern electrical engineering than has
the work of any other one individual. Transmission line theory as developed in several of
the chapters of this book is entirely the work of Oliver Heaviside, and was first published
by him during the 1880’s. Modern presentations of Maxwellian electromagnetic theory are
also essentially in the form created by Heaviside.

By the end of the 19th century, experience and analysis had indicated that long voice
frequency telephone circuits, still the most challenging transmission line problem, worked
best when constructed of two large low-resistance copper wires, mounted as widely spaced,
well insulated open-wire pole lines. The use of ground-return was abandoned. From his
equations Heaviside had noted that on most practical lines, voice signals should travel with
reduced loss and with greater fidelity if the distributed inductance of the line could be
increased without adversely changing the other distributed circuit coefficients. In the
United States, Michael Pupin of Columbia University and George Campbell of the Bell
Telephone Laboratories conceived about 1900 that a practical alternative to the difficult
process of increasing the uniformly distributed inductance of a line might be the insertion
of low resistance lumped inductance coils at intervals of a mile or so along the line. The
technique, known as “loading”, is discussed briefly in Section 5.8 on page 60. It proved
extremely successful, and loading coils were connected into tens of thousands of miles of
open wire and cable telephone circuits in a period of about thirty years. Loading permitted
the economy, in long telephone lines, of using smaller gauge copper wires than would
otherwise have been needed to give the same electrical efficiency and quality of transmission.

The carbon microphone of telephony is an electromechanical amplifier, whose electrical
power output can be a thousand times greater than its mechanical voice-power input. From
about 1890 on, much effort was expended in attempts to develop this property into an
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amplifier unit that could be inserted into long telephone lines to offset the effects of re-
sistance and leakage. The results never became sufficiently satisfactory to be used on a
commercial scale. The peak potential of passive voice-frequency telephone circuits is well
exemplified by the historic occurrence in 1911 of a brief telephone conversation between
New York City and Denver, Colorado. The circuit consisted of two large-conductor pole-
mounted transmission lines between the two cities, connected in parallel. No amplifiers
were involved, and the low-resistance, high-inductance lines could not benefit from any
practical form of loading. The circuit could handle only a single voice frequency signal,
and its operation proved that telephony over a distance of two thousand miles was an
economic impossibility for the technology of the time. In a country more than three
thousand miles across, this was an unpleasant conclusion.

At this critical juncture in the progress of electrical communication, Lee De Forest in
1912 offered the telephone industry his primitive erratic triode amplifier, incorporating the
thermionic “audion” he had invented in 1907. Two years of intensive research in the
industry’s laboratories improved the device to the point of making transcontinental telephony
a realized achievement in 1915. With vacuum tube amplifiers the losses of small con-
ductor lines could be offset inexpensively by stable amplifier gain, and distortion could be
reduced to any desired value by networks “equalizing” the characteristics of a line over any
range of signal frequencies.

In possession of a practical solution to the problems of distance and signal quality,
telephone engineers looked for new methods of cost reduction. It was obvious that the
greatest rewards lay in the possibility of using the expensive transmission lines for several
voice frequency signals simultaneously. Pursuit of this goal, in many different ways,
became a major activity of the telephone industry for the next fifty years and still receives
considerable attention.

Military interest in electronic tubes and their associated circuitry during World War I
greatly accelerated the development of amplifiers, oscillators, filters and other devices, and
helped make feasible by 1919 the first installations of long-distance carrier-frequency tele-
phone systems, in which several voice frequency channels of bandwidth about 4 kilohertz
are translated to different higher frequency intervals for transmission. Early carrier
systems (the technique is now known as ‘“frequency division multiplexing”) handled three
telephone channels in each direction on a single two-wire cable pair or open-wire trans-
mission line, using frequencies up to about 30 kilohertz.

It is perhaps the greatest irony of electrical engineering history that the loading
technique, which was the salvation of the long distance telephone industry in the first
quarter of the century, had converted every loaded transmission line into a low-pass filter,
incapable of transmitting any frequencies above 3 or 4 kilohertz, and hence useless for
carrier frequency systems. From 1925 to 1940, most of the millions of loading coils pre-
viously installed were removed. ’

While the wire-line communication industry was evolving from the very limited
capabilities of passive voice-frequency transmission line circuits to the virtually unlimited
potentialities, for continental purposes at least, of multi-channel carrier-frequency circuits
using vacuum tube amplifiers, the technology of communication by freely propagating
electromagnetic waves was developing simultaneously. Marconi’s experiments of 1895 to
1902 showed that local and intercontinental telegraphy could be accomplished without wires,
using hertzian waves. Wireless telegraphy quickly became a glamorous and highly pub-
licized activity, but in spite of dire forebodings it offered no significant competitive threat
to any of the established telephone and telegraph services using land lines or submarine
cables until after the development, during World War I, of medium power thermionic



CHAP. 1] INTRODUCTION 7

vacuum tubes as transmitters and various sensitive vacuum tube circuits as receivers. (It
did create still another distinctive body of technical personnel, however, and the Institute of
Radio Engineers, founded in 1912, resulted from the merger of two small societies of wire-
less telegraph engineers. In 1963 the I.R.E. merged with the A.LLE.E. to form the
Institute of Electrical and Electronics Engineers.)

Wartime progress led to the founding in the early 1920’s of the radio broadcasting
industry, using frequencies around one megahertz, whose technological principles have
undergone only minor changes since that time. Subsequent exploration of higher frequencies
discovered the extraordinary world-wide propagation characteristics of “short waves”
between 3 and 30 megahertz, and radio telephone circuits at these frequencies, adopted by
the telephone industry before 1980 for the first intercontinental telephone service, remained
the only commercial solution to that problem for the next thirty years.

During this decade the rapidly increasing proportion of electrical engineers employed in
carrier frequency telephony and high frequency radio found it necessary to deal with trans-
mission circuits many wavelengths long, whose analysis required the use of distributed cir-
cuit methods. The study of Heaviside’s transmission line theory began to appear in a few
electrical engineering curricula, generally at the graduate level, using textbooks by Stein-
metz, Dwight, Fleming, Pierce, Johnson and Kennelly, among others.

The 1930’s witnessed the extension of the technology of electronic devices and circuits
from frequencies in the tens of megahertz to frequencies of several hundred megahertsz,
with such applications as FM broadcasting and mobile telephone service, and the beginnings
of television and radar. The theory of uniform transmission lines was incorporated into
several undergraduate curricula, often as an optional subject. Popular textbooks dealing
with the subject included those by Terman, Everitt and Guillemin.

Finally, the concentrated attention given to the whole field of uhf and microwave
engineering during World War 11, with the subsequent development of commercial tele-
vision, microwave communication links, radio and radar astronomy, and the innumerable
applications of these frequencies in space exploration and continuing military uses, made
it obvious that transmission line theory must become a bagic topic in all electrical
engineering curricula.

The realization of this result was marked by the publication in the period 1949-1954 of
a large number of widely used textbooks. Among the authors were Skilling, Johnson,
Kimbark, Cramer, Ryder, Jackson and Karakash. These were the successors to a few
textbooks that appeared during the war period, of which the most influential were probably
the two by Sarbacher and Edson and by Ramo and Whinnery. Since 1955 new textbooks on
transmission line theory have appeared less frequently.

The “high frequency frontier” of electrical engineering has in the last two decades been
pushed to frequencies beyond one hundred gigahertz, using solid state and free electron
devices, and with quantum-electronic lasers able to generate power at frequencies all the
way from hundreds of gigahertz through hundreds of terahertz in the infra-red, visible and
ultra-violet regions of the spectrum, the very concept of a frontier has lost most of its
meaning.

At frequencies for which the free space wavelength is less than a few millimeters, two-
conductor electrical transmission systems operating in the mode implicit in distributed
circuit theory are little used. Other analytical formulations, such as those of electromagnetic
theory, or of geometrical or physical optics, become appropriate. To the extent that the
interests of electrical communication engineers are scattered over a far wider region of
the electromagnetic spectrum than was the case a few years ago, the relative importance of
transmission line theory in their total study program has begun to diminish. Two-con-
ductor lines, however, will always remain a basic transmission technique, and for their
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analysis Heaviside’s theory will always be as fundamental as Maxwell’s equations are to
electromagnetics, since the theory is in fact a direct application of the primary electro-
magnetic relations to the principal mode of propagation on such lines.

1.4. References.

The following is a list of a few historic references and some of the more recent text-

books in the field of distributed circuit transmission line theory.

An exposure to the pithy personality of Oliver Heaviside, through the introductory

Chapter 1 of his Electromagnetic Theory, is an interesting experience.

King’s Transmission Line Theory contains a complete bibliography of transmission line

textbooks published before 1955.

1,

2.

10.

11.

12,

Heaviside, O., Electromagnetic Theory, Dover, 1950.

Adler, R.B., Chu, L.J., and Fano, R. M., Electromagnetic Energy Transmission and
Radiation, Wiley, 1960.

King, R. W.P., Transmission Line Theory, McGraw-Hill, New York, 1955.
Magnusson, P. C., Transmission Lines and Wave Propagation, Allyn and Bacon, 1965.
Moore, R.K., Traveling-Wave Engineering, McGraw-Hill, New York, 1960.

Ramo, S., Whinnery, J.R., and Van Duzer, T., Fields and Waves in Communication
Electronics, Wiley, 1965.

Stewart, J. L., Circuit Analysts of Transmission Lines, Wiley, 1958.

Arnold, A.H. M., “The Alternating-Current Resistance of Parallel Conductors of Cir-
cular Cross-Section”, Jour. I.E. E., vol. 77, 1935, p. 49-58.

Carter, P.S., “Charts for Transmiésion Line Measurements and Calculations”, RCA
Review, vol. 3, 1939, p. 355-68.

Smith, P. H., “Transmission Line Calculator”, Electronics, vol. 12, 1939, p. 29-31.

Smith, P. H., “An Improved Transmission Line Calculator”, Electronics, vol. 17, 1944,
p. 130-133 and 318-325.

Smith, P. H., Smith Charts—Their Development and Use, a series published at intervals
by the Kay Electric Co. Number 1 is dated March 1962, and number 9 is dated
December 1966.



Chapter 2

Postulates, Symbols and Notation

2.1. Postulates of distributed circuit analysis.

The distributed circuit analysis of uniform transmission lines, begun by William
Thomson (Lord Kelvin) in 1855 and completed by Oliver Heaviside about 1885, is derived
by applying the basic laws of electric circuit analysis to systems described by the following
postulates.

Postulate 1. The uniform system or line consists of two straight parallel conductors.

The adjective ‘“uniform” means that the materials, dimensions and cross-sectional
geometry of the line and its surrounding medium remain constant throughout the length
of the line. Typically, a signal source is connected at one end of the system and a terminal
load is connected at the other end, as shown in Fig. 2-1.

transmission line
signal e —

terminal
source - —— load

Fig. 2-1. Basic transmission line circuit.

This postulate does not require that the two conductors be of the same material or have
the same cross-sectional shape. The analysis is therefore valid for a conductor of any
material and cross section enclosing another conductor of any material and cross section,
for a wire parallel to any conducting plane or strip, and for many other useful constructions
in addition to the simple example of two parallel wires of circular cross section and of the
same diameter and material.

The analysis is applicable to systems with more than two parallel conductors, provided
these are interconnected in such a way as to present only two terminals at the points of
connection of source and load. Systems may also involve shielding conductors that are not
connected to the line at any point.

Fig. 2-2 shows the cross-sectional configurations of the conductors for several uniform
two-conductor transmission lines used in engineering practice.

O
oo ® (9 =

parallel-wire coaxial shielded pair image
line line line line

stripline stripline

Fig. 2-2. Conductor cross sections for several practical transmission lines.

9
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In general, twists or bends in a transmission line violate the “uniformity’” postulate and
create effects not explainable by the distributed circuit theory. These effects will be
negligible if the rate of the twist or bend does not exceed about one degree in a length of
line comparable with the separation of the line conductors.

The uniformity postulate is also violated by any discontinuities in a line, such as the
termination points of an otherwise uniform system, or the point of connection between two
uniform lines that differ physically in some respect. In the vicinity of discontinuities like
these, phenomena will occur which are not in accord with distributed eircuit theory. The
anomalous behavior is usually confined to distances not greater than a few times the
separation of the line conductors, on either side of the discontinuity.

Postulate 2. The currents in the line conductors flow only in the direction of the
length of the line.

This is a basic premise of elementary electric circuit analysis, and it may seem unneces-
sary that such a requirement should have to be stated in making a distributed circuit
analysis of transmission lines. It is a fact, however, that under certain conditions signals
can propagate on any uniform transmission line with either the whole of the line current
or a component of it flowing around the conductors rather than along them. These cases
are known as “waveguide” modes of propagation. They are discussed further in Section 2.2.

Postulate 2 means that distributed circuit transmission line theory does not recognize
the existence of waveguide modes.

Postulate 3. At the intersection of any transverse plane with the conductors of a
transmission line, the instantaneous total currents in the two conductors are equal in
magnitude and flow in opposite directions.

In elementary network theory the postulate equivalent to this for a simple loop circuit
such as Fig. 2-1 would be that the current is the same at all points of the circuit at a given
instant. Postulate 8 allows the instantaneous currents to be different at different cross
sections of the line at the same instant. Clearly this is not possible without violating
Kirchhoff’s current law unless currents can flow transversely between the two conductors

at any region of the line’s length. Provision for such transverse currents is made in
postulate 5.

Postulate 4. At the intersection of any transverse plane with the line conductors there
is a unique value of potential difference between the conductors at any instant, which is
equal to the line integral of the electric field along all paths in the transverse plane, between

any point on the periphery of one of the eonductors and any point on the periphery of the
other.

Like postulate 3, this postulate has the consequence of ruling out waveguide modes, for
which the line integral of the electric field is in general not independent of the path.

Postulate 5. The electrical behavior of the line is completely described by four dis-
tributed electric circuit coefficients, whose values per unit length of line are constant every-
where on the line. These electric circuit coefficients are resistance and inductance uniformly
distributed as series circuit elements along the length of the line, together with capacitance

] uniformly distri shunt circuit elements along the length
of the line.

It is an essentia' part of this postulate that the values of these distributed circuit
coefficients at a given frequency are determined only by the materials and dimensions
of the line conductors and the surrounding medium. They do not vary with time, nor with
line voltage or current. The line is thus a linear passive network.
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Postulate 5 has a direct relation to postulates 8 and 4. The line currents of postulate 3
are accompanied by a magnetic field. The distributed line inductance is a measure of the
energy stored in this magnetic field for unit length of line, per unit current. There is
power loss as the line currents flow in the conductors. The distributed line resistance is a
measure of the power logs in unit length of line per unit current.

Similarly the line potential difference of postulate 4 is associated with an electric
field. The distributed line capacitance is a measure of the energy stored in this electric
field per unit length of line, for unit potential difference. There is power loss in the
medium between the conductors because of the potential difference. The distributed line
conductance is a measure of the power loss in unit length of line, for unit potential difference.

The existence of distributed shunt circuit coefficients accounts for the possibility dis-
cussed in connection with postulate 8, that the conductor currents can be different at dif-
ferent cross sections of the line. Conduction currents or displacement currents will flow
transversely between the conductors, as a function of the potential difference between them
or its time rate of change, respectively. The line currents at two separated cross sections
of the line will differ by the amount of the transverse current in the intervening length
of line.

2.2. Waveguide modes and electromagnetic theory.

In Chapter 1 it was noted that a complete analysis of the transmission properties of
any transmission line system can be made by starting with Maxwell’s equations, and seeking
a solution subject to the boundary conditions imposed by the line conductors. Such an
analysis reveals all the “waveguide” modes mentioned under postulates 2 and 4. These
fall into two categories known as TE (transverse electric) and TM (transverse magnetic)
waves, distinguished respectively by field distributions with components of magneiic or
electric field parallel to the length of the line. For any transmission line structure there
is an infinite number of these modes, each with its own specific patterns of electric and
magnetic fields.

Any TE or TM mode can be propagated on a particular transmission line only at fre-
quencies above some minimum cutoff frequency, which is calculable for each separate
mode from the dimensions and materials of the transmission line. For lines whose con-
mmwwwm
to tens of thousands of megahertz. Hence in most practical uses of transmission lines, at
Irequencies from d-c_to uhf there is no poss1b111ty of TE or TM modes being propagated.
When transmission lines are used at microwave or millimeter-wave frequencies, care must
sometimes be taken to avoid the occurrence of such modes, since their presence will
invariably result in excessive line losses and other undesirable consequences.

No useful applications have yet been made of the TE and TM modes that can propagate
on two-conductor transmission lines at extremely high frequencies. Within single con-
ductors in the form of hollow metal pipes, however, the TE and TM modes are the basis of
the invaluable microwave technique of waveguide transmission.

Although the TE and TM modes cannot propagate in any transmission system at fre-
quencies below a cutoff frequency which is in the microwave frequency range for typical
line constructions, the field patterns of one or more of these modes are invariably generated
by irregularities and discontinuities in a system. When the frequency is below the cutoff
frequency for the modes excited, the field patterns are unable to propagate as waves. They
do, however, diffuse or penetrate a short distance from their point of origin, a distance not
greater than a few times the conductor separation of the transmission system. They are
responsible for the anomalous behavior of transmission lines, mentioned in Section 2.1,
postulate 1, that occurs in the vicinity of discontinuities and is not explainable by dis-
tributed circuit theory.
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2.3. The TEM mode.

The analysis of any uniform two-conductor transmission line by the methods of electro-
magnetic theory reveals one other unique mode in addition to the TE and TM infinite
sequences of modes. This single mode differs from the others in that its electric and
magnetic fields are everywhere transverse to the direction of the conductors’ length, and
there is no cutoff frequency other than zero. Designated TEM (transverse electromagnetic),
this mode has the field representation that corresponds to the voltages and currents of the
distributed circuit theory of transmission lines.

The electric and magnetic field patterns for the TEM mode in a circular coaxial line are
shown in Fig. 2-8. They are the only possible distribution of electric and magnetic fields
that can simultaneously satisfy the postulates listed in Section 2.1 and the basic laws of
electromagnetism, for this geometry of conductors.

‘ — — — = H field

Fig. 2-3. Electromagnetic field pattern for the TEM (transverse elec-
tromagnetic) mode in a coaxial transmission line.

24. Distributed circuit analysis and electromagnetic theory.

The analysis of transmission lines by distributed circuit methods is not independent of
the analysis by field methods, since the calculation of the circuit coefficients used in the
former can be made only from a knowledge of the electric and magnetic fields associated
with the line voltages and currents. '

The practical advantage of the distributed circuit method of analysis is that it uses the
circuit analysis language of voltages, currents, impedances, etec. It is customary in engi-
neering practice, even at frequencies up through the microwave region, to designate the
sources and loads used with transmission systems by their equivalent circuits, rather than
by a statement of the spatial conditions they impose on electric and magnetic fields.

The combination of an analysis of transmission line behavior in circuit terms with the
equivalent circuit specification of sources and loads, permits studying the overall system of
source, line and load with the help of all the powerful techniques that have been developed
in electric network theory.

A complete analysis by electromagnetic theory, on the other hand, of the detailed dis-
tributions of the electric and magnetic fields associated with a source-line-load system
would raise insuperable mathematical difficulties for any structure with other than exceed-
ingly simple and continuous geometry throughout.

2.5. Coordinates, coefficients and variables.

Before the postulates of equivalent circuit transmission line analysis stated in Section 2.1
can be embodied in equations, it is necessary to select symbols for coordinates, variables
and physical coefficients, and to establish a few sign conventions, There are “standard” sym-
bols recommended by major electrical professional societies for a few of the quantities to be
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labelled, but for most of the decisions involved there are no generally accepted guides. The
result is that current textbooks and journal articles on transmission line topics contain a
regrettable variety of notation, to which the reader must adjust in each context.

A brief discussion of the reasons for the choices used in this book, together with com-
ments on the possible merits of alternatives, is offered in the next few sections for the
benefit of readers who like to compare several accounts of the same topic from different
sources.

2.6. Choice of coordinate notation.

So far as transmission is concerned, the transmission line problem is one-dimensional,
with a single coordinate axis parallel to the length of the line. In this book the symbol z
is selected for this coordinate.

It is tempting to choose x for this coordinate, as in the one-dimensional problems of
elementary mathematics. However, the analysis of many other transmission systems of
interest to engineers, such as waveguides, vibrating strings, transversely vibrating rods,
electromagnetic wave beams, etc. requires the use of coordinates in the transverse plane
as well as in the direction of propagation. The use of z and y for these transverse coordi-
nates has been adopted quite unanimously, and it is therefore appropriate to select z as the
universal symbol for the longitudinal coordinate of all transmission systems. Supporting
this choice is the applicability of cylindrical coordinates, with their longitudinal z-coordinate,
to the analysis of the many forms of transmission line that have circular elements or
circular symmetry.

2.1, 'Choice of origin for longitudinal coordinate.

An unexpected development that arises in setting up the distributed circuit theory of
transmission lines is that, for certain important purposes, more significance attaches to
the distance of a point on the line from the terminal load than to its distance from the
signal source. This has led some writers to base their entire analysis on a longitudinal
coordinate whose origin is at the load. Some take the additional step of locating this load-
origin at the left end of the line, with the signal source at the right.

On the whole it seems more appropriate that a signal moving from a source to a load
should be moving in the direction of an increasing coordinate, and since it is universal
practice mathematically to have the coordinates of a one-dimensional problem increase
from left to right, the analysis in this book uses the convention that the signal source is at
the left-hand end of the line, the terminal load is at the right-hand end, and the longitudinal
coordinate 2z has its origin at the signal source.

When occasion demands, the distance of a point on the line from the terminal load is
indicated by a coordinate d, with origin at the load and increasing from right to left.

The symbol ! is used at all times for the total length of the line.

Fig. 2-4 shows a complete transmission line system, with all the symbols for longitudinal
coordinates and distances according to these chosen conventions.

L ! -
r —
signal =0~ == terminal
source O] load
| | |
I 2 | d I
z=0 : d=0

Fig.2-4. Coordinates on a transmission line circuit.
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2.8. Symbols for current and voltage.

The dependent variables in the distributed circuit analysis of transmission lines are
current and voltage, which are functions of time at any point on the line, and functions of
position on the line at any instant. The functional expressions describing these relations
are determined by the signal source, the terminal load, and the distributed circuit coefficients
and total length of the line.

In elementary circuit analysis it is generally accepted notation to use lower case letters
as symbols for the instantaneous values of time-varying dependent variables. Capital letters
are used for d-¢ quantities, and for the complex number or phasor values of a-c quantities
which have constant amplitude harmonic variation with time.

In the analyses in this book, d-c currents and voltages seldom occur. QCapital letfer
_symbols for current and voltage therefore represent complex. number phasor values.
Their magnitudes are rm@nitudesLnot peak values. Unless specifically designate
as quantities at the signal source or terminal load ends of the line, they are functions of
position along the line. Lower case symbols for current or voltage represent instanta-
neous values, which must also be understood to be functions of the coordinate z.

As a symbol for current the letter 4, I (from the French word intensité) replaced all com-
petitors long ago.

For voltage or potential difference the letter ¢, E (presumably for electromotive force)
has had majority approval for several decades.

As long as physicists paid little attention to electrie circuit theory, and engineers even
less to electromagnetic field theory, only minor confusion resulted from using the same
symbol E for the two important concepts of potential difference and electric field strength.
This segregation no longer exists and the confusion is now serious. It is sometimes avoided
by using special symbols, such as script letters, but these are awkward for note-takers and
typists. The situation can be satisfactorily resolved by using the symbol v,V for voltage.
In technical writing V is widely used for the concept of volume, and v for the concept of
velocity. Neither of these occurs frequently enough in the same context with the concept
of voltage to constitute a hazard.

In summary, the notation for dependent variables in the transmission line theory of this
book is as follows:

ior i(z,t) = instantaneous current at a specific point on a transmission line, i.e. the
current at time ¢ at coordinate z;

IorI(z) = complex rms value of a constant amplitude harmonically varying cur-
rent at coordinate z;

rms magnitude of I or I(z).

|| or [1(z)|

The symbols v, v(z, t), V, V(2), |V| and |V(2)| have corresponding meanings for voltage or
potential difference.

A sign convention relating current directions and voltage polarities must be adopted, to
avoid ambiguities when a circuit analysis is made of a transmission line section. The con-
vention used is standard in elementary circuit theory, for two-terminal networks.

Thus at a coordinate z on a transmission line as shown in Fig. 2-5(a) below, an in-
stantaneous voltage v(z, t) in the time domain may be represented by an arrow drawn from
one line conductor to the other in the transverse plane at z. The head of the arrow has
positive polarity, and the voltage v(z,t) is positive when the arrow is directed from the
lower conductor to the upper, as in the figure.

Similarly, the line currents at coordinate z are indicated by two arrowheads, one in each
line conductor, the two pointing in opposite directions according to postulate 3 of Section
2.1. The sign of the current is positive when the current in the upper line conductor flows
in the direction of increasing z, as in the figure.



CHAP. 2] POSTULATES, SYMBOLS AND NOTATIONS 15

i(z, t) _ _ 1(2)
+
{a) vz, t) (d) V@)
—— - — e
i(z, t) I(2)
z z

—_— —

Fig. 2-5. Sign conventions for current and voltage in transmission line
analysis: (a) in the time domain; (b) for phasors.

It can be noted that if the portion of the transmission line circuit to the left of the
coordinate z is removed, the sign conventions adopted have the usual simple implication for
the two-terminal passive network to the right of the coordinate z, that a positive applied
voltage causes a positive current to flow.

Fig. 2-5(b) illustrates the corresponding conventions for phasor notation. Here the
implication is that if V(2) in the direction shown is chosen as a real reference phasor, the
direction shown for I(z) represents a phasor current with a non-negative real part.

Example 2.1.
What meaning can be given to the symbols i(t), I(t), [v]|, V(z, t) in view of the definitions given above?

Three of these four symbols have no meaning within the definitions stated.
Since the symbol 7 is for a current which is a function of both z and ¢, to write it as i(¢t), a function
of ¢t alone would require additional explanation.

The symbol I is for a current whose manner of time-variation is implicitly understood. To desig-
nate it as I(t), explicitly a function of time, is either unnecessary or implies some additional form of time
variation (such as modulation) superimposed on the harmonic variation. An auxiliary definition would
have to be supplied to give meaning to this symbol. The same reasoning applies to the term V(z, t).

Since the symbol v stands for an instantaneous value of voltage at a particular point on the line, its
meaning is a scalar quantity, which could be either positive or negative. |v| is the magnitude of v, and is
a positive quantity by definition.

29. Symbols for distributed circuit coefficients.

These are the symbols about which there is the greatest measure of agreement in trans-
mission line writings. The definitions are:

R = total series resistance of the transmission line per unit length, including both
line conductors, or both combinations of conductors making up the two sides of
the line. In mks units, K is in ohms/meter. (If the interconductor space of a
transmission line is filled with a material that is magnetically lossy, i.e. which con-
verts electromagnetic field energy into heat in proportion to the square of the
magnetic field B in the medium, these losses will be represented by a contribution
to R, in the equivalent circuit.)

L = total series inductance of the transmission line per unit length, including induct-
ance due to magnetic flux both internal and external to the line conductors. In
mks units L is in henries/meter.

G = shunt conductance of the transmission line per unit length. This is the circuit
representation of losses that are proportional to the square of the voltage between
the conductors or the square of the electric field in the medium. Usually G
represents internal molecular lossiness of dielectric insulating materials, rather
than an actual charge flow leakage current. In mks units G is in mhos/meter.

C = shunt capacity of the transmission line per unit length. In mks units C is in
farads/meter.
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It must be noted carefully that the symbols R, L, G and C as defined here have different
meanings and dimensions from those with which the reader has become familiar in the
study of lumped element networks. In that context the symbols mean the resistance,
inductance, etc. of a two-terminal element postulated to have negligible dimensions. Here
they mean resistance, inductance, ete. per unit length of a four-terminal or two-port circuit
with non-zero length and with uniformly distributed circuit coefficients. Using mks units,
R in the former case would be expressed in ohms, while in the transmission line case it is
‘expressed in ohms/meter, and a similar distinction holds for the other three symbols.

To avoid this ambiguity, writers have occasionally used modified symbols for the dis-
tributed circuit quantities, such as R’, r, R, R/l, R, etc. Most, however, use the notational
procedure followed in this book, that R, L, G and C when not subscripted are the distributed
circuit coefficients. When subscripted they represent lumped circuit elements in two ter-
minal networks, the subscript indicating the function of the network, as described in the
next section. '

2.10. Symbols for terminal quantities and elements.

Notation is needed to distinguish voltages, currents and connected impedances at the
gignal source and terminal load ends of a transmission line from the same quantities at
arbitrary points along the length of the line. This book follows common practice in using
subscripts for the purpose. Transmission line writings show much variety in the choice
of these subscripts. For the signal source end of the line, subscripts s or S (for source or
sending-end), g or G (for generator) and o or O (for origin) are found, while for the ter-
minal load end of the line r or R (for receiver), ! or L (for load) and ¢ or T (for termination)
are all in common use,

Because R, L and G occur prominently in the analysis as symbols for the distributed
circuit coefficients, it seems unwise to use them as subscripts with a totally different refer-
ence. The symbols S and T seem to offer minimum opportunity for confusion, and are
adopted in this book as the subscripts referring respectively to the signal source end of the
line and the terminal load end.

Example 2.2.
What are the meanings of ir, Vg, Ig, I, Vi, |I7|, and Ly, in the notation defined above?
ip is the instantaneous current (at time t) at the terminal load end of the line.

Vg is the complex rms value or phasor rms value of the time-harmonic voltage of a generator. con-
nected at the input or signal source end of the line. It is mot the symbol for the phasor voltage at the
input terminals of the line, which would be V (2 =0). If the connected generator had zero internal im-
pedance, or if the line current were zero at z =0, Vg and ¥ (z=0) would have the same value, but as
symbols they represent different quantities.

Ig, I, and V, have no meaning within the definitions stated. |Iy| is the rms magnitude of the phasor
current at the terminal load end of the line. It is identical with |I (z=1)] where I (z=1) is the phasor line
current at z = [, since by definition the total length of the line is L

Ly represents a lumped inductance connected at the terminal load end of the line. It could also be
the inductance component of the simple series circuit equivalent to any more complicated linear network
connected as terminal load. ‘

2.11. Notation for impedance and admittance.

Three occurrences of impedance quantities (or admittance quantities) need to be dis-
tinguished in transmission line theory. These are:

1. Impedances or admittances connected at the line terminals. A terminal load
impedance has the symbol Zr in this text, with components Ry and jXr. From previous
definitions it is clear that Zr = Vr/Ir always, this being a complex number equation
involving the ratio of two phasors.
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Similarly, the internal impedance of a generator connected at the signal source end of
the line has the symbol Zs (= Rs + jXs). In general Zs is not equal to Vs/Is, since the latter
ratio depends on the total transmission line circuit, while Zs can have any arbitrary value,
entirely independent of the transmission line.

2. A unique quantity appearing in transmission line equations, that has the dimensions
of impedance and is determined solely by the distributed circuit coefficients of the line and
the signal frequency. This is now universally called the “characteristic impedance” of a
transmission line and given the symbol Z, (with components R, and X,). In the past it
has often been called the “surge impedance” or the “iterative impedance” of a line. Sym-
bols Z., Z; and Z; have occasionally been used for it.

3. The impedance given by the ratio of the phasor line voltage to the phasor line
current at any cross section of the line. The notation Z(2) or Z(d) is appropriate for this
(with corresponding symbols for real and imaginary components) according to whether
the particular point on the line is located by its coordinate relative to the signal source end
or the terminal load end of the line as origin. The impedance at a specific numerical
coordinate requires expanded notation such as Z(z=3) for a point 3 meters from the
source end of the line.

This text does not make explicit use of the concepts of distributed line impedance
Z = R+ joL or distributed line admittance Y =G +joC found in many treatments of
transmission line theory.

The corresponding admittance definition and symbol can be substituted for any of the
above occurrences of impedance language. Thus:

Yr = 1/Zr = Gr+Br, Yo = 1/Zo = Go+7iBo, Y(2) = 1/Z(2) = G(z) + jB(2)

Either impedance or admittance may of course also be expressed in polar form: Z(z) =
| Z(z)l LN
Example 23. What are the meanings of G(z=0), B(z=1), X (d =5), Y(3), Z(0)?

G (2= 0) means the conductance component (i.e. the real part) of that admittance which is the ratio
of the phasor current at the signal source end of the line to the phasor voltage at the same position.
This is clearly entitled to the notation Gy, i.e. the conductance component of the input admittance Yi,,
of the line. (Note that the symbol G here has no connection with the symbol G used for one of the dis-
tributed circuit coefficients of the line. The duplication is unfortunate but is well entrenched in contem-
porary notation.)

B (z=1) means the susceptance component (i.e. the imaginary part) of that admittance which is the
ratio of the phasor current to the phasor voltage at the terminal load end of the line. Since this ratio
is necessarily identically equal to the terminal load admittance connected to the line, it follows that
B (z = l) = BT‘

X (d=5) means the reactive component (i.e. the imaginary part) of that impedance which is the
ratio of the phasor voltage to the phasor current at a point on the line 5 m from the terminal load end.

Y(8) and Z(0) have no meaning since they are ambiguous as to whether the coordinate referred to is
z or d.

2.12. Notation for transient response.

In introductory textbooks on the theory of lumped element circuits it is common prac-
tice to use a generalized notation in which voltages, currents, impedances and admittances
are shown as functions of the complex frequency variable s. Circuit response for steady
‘gtate harmonic signals of angular frequency o is then obtained by substituting j. for s,
while time-domain response is obtained by Laplace transform methods.

Since the theory of distributed circuits is no more than the extension of lumped element
circuit theory by the addition of a space variable, it might seem reasonable to take the
same generalized approach to transmission line theory by writing all equations in terms
of the complex frequency variable s. That no textbooks have so far been written in this
form is evidence that elementary methods have not yet proved profitable for studying
the general transient response of transmission line circuits. It is therefore realistic
to develop transmission line theory in terms of the steady state angular frequency variable o.



Chapter 3

The Differential Equations
of the Uniform Transmission Line

3.1. Time domain and frequency domain.

Two illustrations of complete transmission line circuits are shown in Fig. 3-1, incor-
porating the notational definitions of Chapter 2. In Fig. 3-1(a) the source signal voltage
is any general function of time, and the electric circuit features of the source and terminal
load are described by networks of resistance, inductance and capacitance. In Fig. 3-1(b)
the source signal voltage is a constant amplitude harmonic function of time at some angular
frequency o rad/sec. The circuit representations of the source and terminal load are
replaced by the respective impedance values Zs and Zr at that frequency.

signal
source
—l equivalent
RLC
network i(z, t)
O~ “O—{ terminal
load
'v(z, t) . RLC
—— . —Q—{ network
signal iz, t)
source | |
voltage
V4(2)
(a)
Z S "—'1
I(z)
—o- - —O0—
V(z) Zy
+ - o—-
I(z)
Vs 2 s
2=0

(b

Fig.3-1. Complete transmission line circuits, including signal sources
and terminal loads: (@) in the time domain; (b) in the fre-
quency domain.
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Fig. 3-1(b) is obviously the form in which the circuit would be drawn when it is desired
to determine a steady state a-c solution at a specified frequency. In a typical situation values
might be given for the angular frequency », the rms phasor source voltage Vs, the imped-
ances Zs and Zr at frequency o, and the distributed circuit coefficients R, L, G and C for
the transmission line at that frequency. The desired information would be the rms phasor
values of the voltages and currents at the input and terminal load ends of the line, and
the variation of the phasor voltage and current along the length of the line. The analysis

developed in the next few chapters permits simple and precise determination of all of these
quantities.

A complication arises from the fact that in practical cases the actual signals handled
by a transmission line circuit are never confined to a single frequency, but cover a finite
bandwidth. - Common examples are the audio frequency range of voice signals, the video
frequency range of television picture signals, and the harmonic frequencies in the Fourier
spectrum of switching transients or lightning induced surges on 60-hertz power lines.

Because the behavior of real transmission lines always varies finitely with frequency,
a signal of non-zero bandwidth is always perceptibly distorted in transmission. The nature
of the distortion for such a multi-frequency signal is that the phase and amplitude relations
among the signal’s component frequencies are not the same at the output of the transmission
line ag they were for the original signal at the input.

Pursuing the discussion of Section 2.12, page 17, the distortion suffered by any general
signal pattern on a transmission line might in principle be analyzed by solving the circuit
equations of the line in the time domain, i.e. as differential equations involving time and
space derivatives of instantaneous currents and voltages, or by solving the equations in the
complex frequency domain. The main obstacle to the practicability of these approaches
is the physical fact that the transmission line distributed circuit coefficients R, L, G and C
are not independent of frequency and are not simple functions of frequency. This raises
formidable mathematical difficulties.

The alternative is to solve the transmission line circuit for phase and amplitude changes
between input and output at several different frequencies in the bandwidth of the signal.
The distortion of the time pattern of a complex signal can then be obtained by a synthesis
procedure, if desired. Except for signals involving pulses or other sharp discontinuities,
however, transmission line distortion of finite-bandwidth signals is generally interpreted
directly from data on phase and amplitude variations with frequency over the signal
bandwidth, rather than from comparison of time patterns.

Differential equations are derived in this chapter for both the time domain circuit of
Fig. 8-1(a) and the frequency domain circuit of Fig. 3-1(b), assuming the distributed circuit
coefficients constant in each case.

3.2. Equations in the time domain.

The differential equations for a uniform transmission line are found by focusing atten-
tion on an infinitesimal section of line of length Az, located at coordinate z on the line,
remote from the line’s terminations. This line section has total series resistance R Az, series
inductance L Az, shunt capacitance C Az and shunt conductance G Az, from the postulates
of Chapter 2. Its equivalent circuit as a two-port network can be drawn in a number of
different ways, incorporating these circuit elements. One such circuit is the L-section of
Fig. 3-2 below.

Inspection of this circuit shows that the output voltage of the section differs from the
input voltage because of the series voltages across the resistance and inductance elements,
while the output current differs from the input current because of the shunt currents
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Fig.3-2. Equivalent circuits of an infinitesimal portion of a uniform
transmission line: (a) in the time domain; (b) in the fre-
quency domain.

through the conductance and capacitance elements. Using the instantaneous quantities
of Fig. 8-2(a), these relations are expressed by the following equations, derived by applica-
tion of Kirchhoff’s laws to the circuit:

v(z+A4az,t) — v(z,t) = av(z,t) = -—-Raziz,t) — LAz at’ (3.1)
i(z+az,t) — iz, t) = Az, t) = -—Gazv(zt) — Caz a_v%%i) (3.2)

Dividing by Az and then letting Az approach zero leads to the partial differential equations

ov(z,t) az(z, t)
oz = —Ri(z,t) — L—— (3.9)
ai(azz, H _ —Gu(zt) — Cav(z t) (3.4)

The objection can be raised, legitimately, that in equation (3.2) it is not v(z,f) and its
derivative that produce the current Ai(z,t), but the voltage v(z + Az, ) and its derivative.
However, if the voltage v(z + Az, t) is expanded in a Taylor’s series about z, the terms of
(8.2) are obtained, together with additional terms involving (Az)? (Az)?, etc. These are
higher order small quantities which can be dropped on proceeding to the limit. There is
no way of arranging the equivalent circuit elements of the length Az of line that avoids
this step.

The physical facts involved in equations (3.3) and (3.4) are very s1mply stated and
could have been written directly from the postulates of Chapter 2 without the help of
Fig. 3-2(a) or equations (3.1) and (3.2). Equation (3.8), for example, states in the language
of differential calculus that the rate of change of voltage with distance along the line at any
point of the line is the sum of two longitudinally distributed voltages. One of these, caused
by the line current flowing through the distributed series resistance of the line, is propor-
tional to the instantaneous value of the line current at the point. The other, caused by
the time varying line current flowing through the distributed inductance of the line, is
.proportional to the instantaneous value of the time rate of change of the line current
at the point. The respective constants of proportionality for the two are the line’s
geries resistance per unit length and series inductance per unit length.

From the postulates of the analysis these are the only possible circuit phenomena that
could cause the line voltage to vary with position on the line. The signs of the various
terms are dictated by the original choice of sign conventions for voltage and current on
the line.

Equation (3.4) can be interpreted in a similar fashion.
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Any intuitive impression that the signs in (3.8) and (3.4) must result in the line voltage
and current always decreasing with increasing distance along the line, is without foundation.
The instantaneous values of the line voltage and its time derivative, at a specific point on
the line at a specific instant, may have either sign and the signs of the two are independent
of each other. The same is true for the current and its time derivative. The actual instan-
taneous values of all of these four quantities at any point will be functions of the total
line circuit of Fig. 3-1(a).

Equations (3.3) and (3.4) are two simultaneous first order linear partial differential
equations, with constant coefficients, in the dependent variables v and ¢ and the independent
variables z and . They are of a sufficiently complicated nature that no conclusions can be
drawn from them by simple inspection.

3.3. Solving the equations in the time domain.

A complete solution of equations (3.3) and (3.4) would find expressions for v and i as
functions of z and £, subject to boundary conditions determined by the nature of the devices
connected at the two ends of the line, i.e. the source signal generator (with its equivalent
circuit) at 2 =0, and the terminal load circuit at z=1.

The usual first step to take in attempting to solve such simultaneous equations is to
eliminate one of the variables. This is achieved by taking the partial derivative with
respect to z of all the terms in equation (3.3), thus:

Pv(z,t) _ 0zt . 8 [8i(z0)
922 > Lo \"a (3.5)
The order of differentiation in the right-hand term can be changed, giving
Pz, t) _ _poizt) . 8 [diz,F)
—z - "E— L3\ ez (5.6)
When the right-hand side of (3.4) is substituted for 8i(z, t)/z in (3.6), the result is
2 2
"—%%’?l = Lca’;(;'t) + (LG +RC) &Y "”("' ) 4 RGw(, ) 3.7)

If the alternative procedure of taking the partial derivative with respect to z of all
terms in (3.4) is followed, substituting in the result an expression for 9v(z,t)/3z obtained
from (3.3), a differential equation in i(z, t) is obtained which is similar to (3.7), i.e.,

Pi(z, 1) _ iz, t) az(z t)
92 LC =

The fact that i(z, t) and v(z, t) obey the same differential equation does not mean that they are
identical functions of 2z and ¢ in a practical problem, since in general the boundary condi-
tions are not the same for the two variables.

+ (LG+RC) 222 | RGi(z,t) (3.8)

The derivation of equations (3.7) and (3.8) has involved no special assumptions or
approximations beyond the postulates-of Chapter 2. They are therefore complete descrip-
tions of the possible interrelations of the voltage and current and their derivatives on a
transmission line, under conditions for which the postulates are valid. It has already
been noted that one of the postulates of the analysis is violated for practical lines by the
fact that the distributed circuit coefficients R, L, G and C are always to some extent variable
with frequency, and hence are functions of the time derivatives of voltage and current.
This is particularly true of R and G. For any practical problem, the accuracy of solutions
of (3.7) and (3.8) with R, L, G and C assumed constant will depend in a complicated manner
on the range of values of the instantaneous current and voltage and their derivatives, and
on the range of variability of the distributed circuit coefficients for the signals being trans-
mitted. No simple criteria can be established.
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When R, L, G and C are assumed to be constants for all values of the current and voltage
and their derivatives, equations (3.7) and (3.8) are second order linear partial differential
equations in the time coordinate and one space coordinate. They are similar to several
“standard” partial differential equations of mathematical physics, for which numerous
solutions can be found in reference books. Unfortunately these two equations are just a
little more complicated than any of the standard equations, and it is not possible to write
any simple complete general solution for them, in the form of i or v as a function of z and £.

If the generality of the transmission line specifications is reduced by postulating that
one or two of R, L, G and C are sufficiently small to be set equal to zero, one or more of the
terms on the right of equations (3.7) and (3.8) will disappear. Most of the simpler equations
that result fall into the “standard” categories mentioned, and useful solutions to them are
easily found for meaningful sets of boundary conditions. Some of these “reduced” equa-
tions represent specific transmission line applications closely enough for practical purposes.
The case L =G =0, for example, is an adequate description of a single conductor sub-
marine telegraph cable as used at low frequencies for so-called d-c telegraph transmission.
The distributed circuit coefficients R and C for such a cable are very precisely constant
for all aspects of the signals involved. The case R =G =0 describes a “lossless” line.
While no ordinary line is completely lossless, the resulting simple equation gives useful
information about the transmission properties of short lengths of large conductor (hence
low loss) high frequency transmission lines, such as might be used to carry television signal
power from a transmitter to an antenna.

34. Equations in the frequency domain.

To develop differential equations describing transmission line behavior in the frequency
domain, the simplest procedure is to return to the infinitesimal L-section of Fig. 3-2(b).
Two phasor equations can be written:

Viz+az) — V() = AV(z) = —RAzI(z) — joLAzI(z) (3.9)
I(z+4z) — I(z) = AI(R) = —GAzV(2) — jouC Az V(2) (3.10)

Each term of these equations is a complex number. Each is implicitly a harmonic function
of time at angular frequency » radians per second. The zero phase angle reference for the
complex numbers when expressed in polar form is arbitrary. Convenient choices for
this reference may be the source voltage phasor, or the voltage phasor at the input end
or the terminal load end of the line.

As an equation in instantaneous voltages (the form to which Kirchhoff’s law applies),
equation (3.9) would take the following form, using the customary conventions of phasor
circuit analysis:

Re {(V(2) ¢t} = —RAzRe {I(2)e*t} — L AzRe {joI(z) et} (3.9a)
where Re { } means the real part of the complex number in the braces. R Az and L Az are
real numbers by definition. »

A similar equation can be written for instantaneous currents from equation (3.10).

Dividing equations (3.9) and (3.10) by Az and letting Az approach zero, leads to the
differential equations
dV(2)/dz = —(R+joL)I(2) (3.11)

dl@)ldz = — (G +juC) V(2) (3.12)

These are not written as partial differential equations, since V and I are here explicitly
functions of only the single variable z. It is not even necessary to be perpetually reminded
that V and I are functions of 2z, and the equations can be further simplified to
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dV/idz = —(R+jeL)l (3.13)
dlldz = —(G+juC)V (8.14)

As was noted for equations (3.3) and (3.4), the physical facts embodied in these equa-
tions are easily comprehended, and the equations could be written down directly from the
postulates of Chapter 2. Equation (3.18) states that the rate of change of phasor voltage
with distance along the line, at a specific point of the line, is equal to the series impedance
of the line per unit length multiplied by the phasor current at the point. Equation (3.14)
states that the rate of change of phasor current with distance along the line, at a specific
point, is equal to the shunt admittance per unit length of the line multiplied by the phasor
voltage at the point.

Since these are complex number equations, each carries information about both mag-
nitude and phase angle variations. No simple conclusions can be drawn from them by
inspection. As was noted for the corresponding equations (3.8) and (3.4) in the time domain,
it is incorrect to deduce from the negative signs in equations (3.13) and (3.14) that the
voltage and current diminish steadily with distance along the line.

Solving these simultaneous linear first order ordinary differential equations with con-
stant coefficients for separate equations in V and I, produces two second order equations:

d2V/dzt — (R+ juLl)(G+joC)V = 0 (3.15)
d2I/dz? — (B + joL)(G +juC) = 0 (3.16)

These equations are of much more elementary form than equations (3.7) and (3.8) and their
solutions in terms of V and I as phasor functions of z can be written directly in simple
expressions, as is done in the next chapter. This greater simplicity is the basis for the
comments in Section 3.3 that it is realistic to study transmission line theory with primary

attention to solutions which are functions of the real angular frequency variable », while
lumped constant networks can be usefully studied through more general solutions of the

equations in the time domain or in the complex frequency domain.

Most of the remainder of this book consists of investigation of the solutions of equations
(3.15), (3.16), (3.7) and (3.8) for various line constructions (expressed by values of the
distributed circuit coefficients R,L,G and C which are either constants or expressible as
functions of the frequency o), and various terminal connections of sources and loads (which
are the boundary values for the solutions).

All of the possible voltage and current relations that can occur on transmission lines
defined by the postulates of Chapter 2 must be solutions of these equations.

Solved Problems

3.1. The distributed circuit coefficients of a 19 gauge cable pair transmisgion line at « = 104
rad/sec are: R = 0.053 ohms/m, L = 0.62 microhenries/m, G = 950 micromicromhos/m,
C = 39.5 micromicrofarads/m. At a coordinate z on the line the instantaneous cur-
rent is given by i(t) = 75 cos 10* milliamperes. (a) Find an expression for the volt-
age gradient along the line at the point 2, in volts/m. (b) What is the maximum
possible value of the voltage gradient?

(a) The voltage gradient is given in the time domain by equation (3.3) as
/fdz = —Ri — Laifot = —0.053(0.075 cos 10%f) + (0.62 X 10—6)(10¢ X 0.075 sin 104¢)
= —38.98 X103 cos10%t + 0.46 X 1073 sin 104 = 4.01 cos (104t — 3.03) millivolts/m

(b) The maximum voltage gradient is 4.01 millivolts/m, when cos (104 — 3.03) = 1.
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3.2.

33.

34.

35.
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For the transmission line of Problem 3.1, the phasor voltage at a point on the line
has an rms magnitude of 16.5 volts, the signal frequency being 1100 hertz. Assume
the values given for R,L,G and C to be valid at this slightly different frequency.
(a) Find an expression for the phasor current gradient along the line at the same
point. (b) What is the rms phasor magnitude of the transverse current between the
two conductors along 10 cm of line length at the point, and what is the phase angle
of this current relative to the line voltage at the point? (¢) What is the maximum
instantaneous current gradient along the line at the point?

(a) The current gradient along the line is given in the frequency domain by equation (2.14) as
dl/dz = —(G+jeC)V
= —[950 X 10—12 4+ j(2r X 1100)(39.5 X 10~12)](16.5 + j0)
— (0.016 + j4.51) X 10— ¢ amperes/m

(b) Equation (8.10) indicates that the change of the longitudinal current along a short section of
line is the negative of the transverse current for the same section. Hence the transverse current
for 10 cm length of line is 0.1(0.016 + j4.51) X 10— 8 amperes, expressed as a phasor quantity, the
reference phasor of zero phase angle being the line voltage at the point. The transverse current
leads the line voltage by tan—14.51/0.016 = 89.7° and is almost a purely capacitive current.

(¢) Since the magnitudes of all the phasor quantities used in (a) and (b) are rms values, the maximum

instantaneous current gradient along the line is V/2)0.016 + j4.51] X 106 = 6.38 micro-
amperes/m.

Supplementary Problems

() Redraw the circuit of Fig. 3-2 as a symmetrical T-network, with the series resistance and series
inductance of the section divided into two equal portions.

(d) Redraw the circuit of Fig. 3-2 as a symmetrical z-network, with the shunt conductance and
shunt capacitance of the section divided into two equal portions.

(¢) Redraw the circuit of Fig. 3-2 as an inverted L-network, with the shunt conductance and shunt
capacitance at the left.

For each of the circuits of Problem 8.3, establish appropriate time-domain notation for v and ¢ at
each node of the network, For each circuit write the exact equations corresponding to equations
(3.1) and (3.2). By making a Taylor’s series expansion of either v or ¢ about the coordinate z, show
that the exact equations reduce in every case to (3.1) and (8.2) on proceeding to the limit by letting
Az approach zero.

Rewrite equation (3.7) for a lossless transmission line having R = G = 0.

(a) Show that for the resulting equation
v(z,t) = f1(t—VLC2) + fa(t + VLC2)

is a solution, where f; and f, are any continuous functions having first and second derivatives.

(b) What dimensions are indicated for the quantity VLC ? Ans. (b) Reciprocal velocity.

(The discussion presented in deriving equation (4.6), page 27, shows that a term of the form
fi(t — VvLC z) describes a traveling pattern, moving in the direction of increasing z with a velocity
given by the ratio (coefficient of t)/(coefficient of z) and subject to no distortion as it travels. The
time shape of the pattern can be found by plotting f; as a function of time for some constant value
of z, such as z = 0. A term f,(t + vVLC 2) similarly describes a pattern moving in the direction of
decreasing z.)
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3.6.

3.7.

3.8.

3.9.

3.10.

Show that for the very special case of a transmission line whose distributed circuit coefficients are
related by R/L = G/C a solution to equation (3.8) is

i(z,t) = e—RVC/ILzf (¢t —VLCz) + eRVC/Lz fy(t + \VLC2)

A line with these properties is known as a “Heaviside distortionless line” and is mentioned further
in Chapter 5, page 49. The time pattern of any signal traveling in one direction on such a line
is the same at every cross section, except for a scale factor. The amplitude diminishes exponentially
as the pattern travels. ' :

For the transmission line of Problem 3.1, the voltage at a coordinate 2z, is found to be given by
v(t) = 30 sin (102t + #/6) volts, as a function of time. Derive an expression for the current gradient
along the line at the point z, in amperes/m, assuming the values given for B,L,G and C to be valid
at this much lower frequency. Ans. 0.121 X 10—6 cos (102t — 2.86) amperes/m.

(a) For the lossless transmission line of Problem 3.5, show that if the voltage on the line is given
by w(z,t) = v, fi(t — VLC2) where v, is a constant and f; is any continuous function with
first and second derivatives, then the current is given by i(z, t) = v(z, t)/VL/C.

(b) For the Heaviside distortionless line of Problem 8.6, show that if the voltage on the line is given
by w(z,t) = vye RVC/Lzf (t —\/LCz), where f; meets the conditions stated in (a), then the
current on the line is (2, t) = v(z, t)/VL/C.

(The current-voltage relation that holds in these special cases (a) and (b) is shown in Chapter 5
to be an adequate approximation for all “low-loss” transmission lines. It does not, however, apply
to typical lines used at low signal frequencies such as voice frequencies.)

For all ordinary transmission lines used at frequencies up to hundreds of megahertz, the ratio R/L
is much larger than the ratio G/C. However, for lines with solid dielectric insulation used at
microwave frequencies, the relation for the Heaviside distortionless line of Problem 3.6 might be
attained, with distributed circuit coefficients having the values: R = 0.15 ohms/m, L = 0.375 micro-
henries/m, G-= 30 micromhos/m, C = 75 micromicrofarads/m. If the time pattern of input voltage to
this line is v(t) = v, f1(¢), determine (a) the time pattern of the voltage at a point 800 m along
the line from the input terminals and (b) the time pattern of the current at the input terminals of
the line. It is assumed that the signals on the line are traveling away from the input terminals.

Ans. (a) The time pattern of voltage at the distant point is the same as at the input terminals, but
is delayed by 4.2 microseconds and reduced in magnitude by a factor 0.18. (b) The time pattern
of current at the input terminals is the same as the time pattern of voltage, with the ordinate
scale changed from volts to amperes in the proportion 0.014 amperes/volt.

Show that if L = G = 0, equations (3.7) and (3.8) become identical with the one-dimensional ‘heat
flow” or “diffusion” equation of classical mathematical physics, when appropriate changes are
made in the symbols.

(Thus if the voltage at the input end of such a transmission line is increased from zero to a
constant value at ¢ = 0 (the beginning of a dot or dash of telegraph code), the subsequent variation
of voltage with time at the distant terminal load end of the line will have the same time pattern as
that of the temperature rise at one end of a thermally insulated rod of homogeneous material after
the temperature at the other end has been raised at ¢ =0 by some constant amount above an
initial thermal equilibrium value. This is the problem solved by William Thomson (Lord Kelvin)
in 1853-66 when he was investigating the practicability of a transatlantic submarine telegraph
cable.)



Chapter 4

Traveling Harmonic Waves

4.1. Solutions of the differential equations.

Equations (3.15) and (3.16), page 23, are the differential equations governing the voltage
and current distributions along a transmission line, when the voltage and current have
time-harmonic variation at angular frequency », and the values used for the distributed
circuit coefficients R, L, G and C are the values appropriate to that frequency.

The solutions of these relatively simple equations are
V(z) = Vie " 4+ Vyetr* (4.1)
I(2) = Lew* + I,e** (4.2)

Here V(2) and I(z) are respectively the phasor voltage and phasor current at any coordinate
z on the line. V4, V;and I, 1, are also phasors (i.e. complex number quantities) and are the
sets of two arbitrary coefficients that occur in the solution of second order ordinary dif-
ferential equations. y is defined by

v} = (R+joL) G + ]mC)
from which y = V(R + joL)(G + juC) (4.3)
From equation (4.3) the value of y is expressed by a complex number.

Equations (4.1) and (4.2) have been derived from (3.15) and (3.16) by straightforward
mathematical processes. Their physical implications can be appreciated most directly by
separating the magnitude and phase aspects of the terms e~*2 and e*%, and by temporarily
reintroducing the harmonic time variation term e¢*t, Defining the real and imaginary parts
of y by the relation v = atiB (4.4)

(4.1) can be written as an equation in instantaneous voltages, following the rules used in
presenting (3.9a):

’U(Z, t) — |f}ll e~ Re {ei(mt—Bz+El)} + lf}2| etz Re {ei(mt+Bz+€g)} (4.1‘1)

where |T71| and |f>2! are the peak amplitudes of the arbitrary phasor coefficients V; and V.
(the phasor symbols V; and V, as used in this book stand for rms amplitudes), e~* and e**=
are real numbers by definition, and £ and £, are the respective phase angles of the
arbitrary phasors V; and V.. The terms Re{e’“"#2+&} and Re{e’“**#*%’} are numbers
varying harmonically in time, and in distance along the line, with peak value unity and with
values at t =2 =10 determined by £ and ¢,

Equation (4.2) can be rewritten similarly as an equation in instantaneous currents.

4.2. The meaning of the solutions.

The physical meaning of equations (4.1) and (4.2) is found by focusing attention on the
harmonic variation terms. Thus the first term on the right of (4.1a) describes an instan-
taneous voltage which is a function of both z and f. Its greatest instantaneous value is

26
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[Vi|. At the coordinate z=0 the maximum instantaneous value occurs at the times t
which satisfy (of +£) = nx, where n=0,1,2,.... At every coordinate z on the line
the voltage varies harmonically with time, with constant amplitude |f’1[ e, At any
instant the pattern of voltage as a function of position along the line is a harmonic pattern
in the coordinate z, with amplitude diminishing exponentially as z increases. The interval
between zero-value points of the pattern (determined by the wavelength, see Section 4.8)
has the same value everywhere on the line.

At a selected position z; on the line, at a chosen instant ¢, the voltage represented by the
first term on the right of equation (4.1a) is determined by the value of the phase factor
(ot, — Bz, +¢,) and the value of the exponential amplitude factor e~ At a slightly later
instant of time £, + Af, the value of the term (ot — gz, + £)) will have changed at the point 2,
but the original value will be found at a slightly different location on the line 2; + Az such

that
oft, + At) — Bz, + A7) + ¢, = ot, — Bz, +

Hence oAt— Az = 0 (4.5)

The interpretation of this result is that a point of specific phase value on the harmonic
voltage pattern moves to greater values of z as time increases, according to the relation
Az/Al = o/B. Proceeding to the limit,

Altir_po Az/At = dzfdt = v, = o/ (4.6)
The derivative dz/dt¢ is a velocity. It is represented by the symbol v, for phase velocity
because it is the velocity with which a point of constant phase value travels along the
transmission line. (An additional velocity concept, that of group velocity, is needed when
dealing with situations where the phase velocity on a transmission system is not the same
for all the Fourier component frequencies of the signal. For most transmission lines used
at high frequencies this complication does not arise, and the phase velocity and group
velocity have the same value.)

Applying the same reasoning to the phase factor (ot + 82 +¢,) in (4.1a), it is found that
the change of sign of the Bz term relative to the ot term alters the meaning to a traveling
voltage pattern moving in the direction of decreasing z, with the same magnitude of phase
velocity as for the first wave. Thus the two terms on the right of (4.1a) describe harmonic
voltage patterns traveling in the only two possible directions on the transmission line,
and the sign of the index of the real exponential term in each case indicates that the am-
plitude of the wave pattern diminishes as it travels.

Returning to equation (4.1) it can now be stated that a term of the form V.e " or
Vie~ @iz represents a harmonic voltage pattern or wave, of phasor value V; at 2=0,
traveling in the direction of increasing z with phase velocity v, = /8, diminishing expo-
nentially in amplitude as it travels, according to the term e—**. Similarly a term of the form
Vae*7? or Vie*(®+#z represents ‘a harmonic voltage wave, of phasor value Vs, at 2=0,
traveling in the direction of decreasing z with phase velocity of magnitude |vy| = «/B, di-
minishing exponentially in amplitude as it travels, according to the term e~ 2=, It is
important to note that V, is the phasor value of the first wave as it leaves the point z =0,
while V. is the phasor value of the second wave as it arrives at 2 = 0. Clearly Vi+ V2= Viny,
the phasor voltage at the input terminals of the line.

43. Current waves.

All references to voltage patterns or voltage waves in Sections 4.1 and 4.2 apply iden-
tically to current patterns and current waves, because of the fact that equation (4.2) is of
exactly the same form as (4.1).
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It was noted earlier in a similar context that this does not mean that the current pattern
on a transmission line is of necessity a replica of the voltage pattern. It does mean that
harmonic current waves can travel in either direction on the line, that they will always have
phase velocity of magnitude |v,|=0o/B, and that they will diminish exponentially in
amplitude by a factor e~ as they travel over a length |z| of the line. The current wave
traveling in the direction of increasing z will have phasor value I; at z = 0, and the current
wave traveling in the direction of decreasing z will have phasor value I, at 2= 0. It will
be seen in subsequent chapters, however, that the phase relation of I, to I is never the same
as that of V. to V1.

4.4. Reflected waves.

It is reasonable to ask at this point how, for the circuit of Fig. 3-1(b), page 18, on
which the above analysis is based, there can be voltage and current waves traveling in both
directions on the transmission line when there is only a single signal source. The answer
lies in the phenomenon of reflection, which is very familiar in the case of light waves, sound
waves, and water waves. Whenever traveling waves of any of these kinds meet an obstacle,
i.e. encounter a discontinuous change from the medium in which they have been traveling,
they are partially or totally reflected.

In the transmission line case, if a switch is closed at time ¢t =0 to connect the source
Vs to the circuit of Fig. 3-1(b), voltage and current waves will start traveling along the
line in the direction of increasing z. If when they reach the end of the line at z =1, the
terminal load impedance Zr connected there requires different magnitude and phase rela-
tions between voltage and current than the relations that exist for the arriving waves,
then reflected voltage and current waves will come into existence at the termination. The
phasor values of the reflected waves will be such that when they are combined with the
phasor values of the arriving waves, the boundary conditions at the termination imposed
by the connected impedance Zr will be satisfied.

The reflected voltage and current waves will travel back along the line to the point
z=0, and in general will be partially re-reflected there, depending on the boundary con-
ditions established by the source impedance Zs. The detailed analysis of the resulting
infinite series of multiple reflections is given in Chapter 8.

4,5. 'The line with no reflected waves.

For the remainder of this chapter attention is directed to equations (4.1) and (4.2) with
Ve:=1I,=0, ie. transmission lines on which waves are traveling only in the direction
away from the source. This case is often referred to as the “infinite line”, since if a hypo-
thetical line were infinitely long, no reflected wave would return in any finite time after
connecting the signal source, or alternatively, for any finite value of the factor « the mag-
nitude of voltage and current waves reflected back over an infinite length of line would
necessarily always be zero. However, the concept of an infinitely long line is an unattractive
one, and it is sufficient to say that the case to be studied first is that of a line on which
there are no reflected waves. It will be seen later that this situation can be achieved for a
line of finite length by suitable choice of the terminal load impedance.

In the absence of reﬁécted waves, equations (4.1) and (4.2) become
V — Vl e—az e—iBz (4.7)
I — I1 ez e—iﬂz (4.8)
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4.6. The attenuation factor «.

When a physical quantity diminishes steadily as a function of some increasing inde-
pendent variable, it is common usage to say that the quantity is “attenuated”. Thus the
loudness or intensity of a sound wave from a localized source is attenuated as the spherical
wave pattern travels away from the source, or the concentration of a solution is attenuated
when additional solvent is added. It is therefore appropriate to say that the voltage and
current waves on a transmission line are attenuated with distance according to the term
e~ %, and to refer to the quantity «z as the measure of the attenuation produced by length
z of line. The quantity « is then called the “attenuation factor” of the line. In textbooks
a ig very often referred to as the ‘“attenuation constant” of a line, ‘but since it varies
markedly with frequency for typical lines, the implication of the word ‘“constant” is not
satisfactory. e is also commonly called the “attenuation coefficient” of a line.

Since the index of an exponential number must be dimensionless, the quantity «z is a
dimensionless real number, « and z being real by definition. It has proved to be convenient,
nevertheless, to establish a named unit for a specific increment of this dimensionless index
of an exponential term.

A current or voltage wave is said to experience an attenuation of N mepers when its
magnitude changes by a factor e~¥ as the wave travels between two points on a transmission
line. Correspondingly, a length of transmission line is said to have an attenuation of
N nepers when a current or voltage wave changes in magnitude by a factor e~V on traveling
over the length of line. The word neper comes from the Latin form of Napier, the name
of the 16th century Scottish mathematician who invented logarithms.

Example 4.1.

By what factor is the magnitude of a phasor voltage wave reduced if the wave experiences an attenu-
ation of 1 neper? '

The voltage magnitude is reduced by the factor e—1, or 0.368.

Example 4.2. ’

"If a current wave suffers a reduction in magnitude by a factor of 10 on traveling over a particular
length of transmission line, what is the attenuation of the transmission line section in nepers?

The attenuation of the line section is N nepers, where e~VN = 0,100.

Then —N = log, 0.100 = —2.303, and N = 2.303 nepers.

The relation between the neper and the decibel is explained in Section 4.11, where
certain limitations in the applicability of the above definition of attenuation are also
discussed.

From the definition of the neper, and the fact that «2 i dimensionless, the unit for the
attenuation factor « must be one neper per unit length, or one neper/meter in the mks
system. This is consistent with the dimensions of « (i.e. reciprocal length) dictated by the
defining equations (4.3) and (4.4).

Example 43.

© Electric power at a certain frequency is transmitted from a source to a load by a 500 m length of
uniform transmission line, with no reflection of voltage or current waves at the load. The input voltage
to the line is 250 volts rms, and the voltage at the load is 220 volts rms. What is the total attenuation
of the line, and what is the attenuation factor of the line, at the power frequency?

The total attenuation of the line is N nepers, where e~ N = 220/250 = 0.880. Then —N = log, 0.880 =
—0.128, and N = 0.128 nepers. .

The attenuation factor « is the attenuation per unit length. Hence

« = N/600 = 0.128/500 = 2.56 X 10—4 nepers/m
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Example 44.

A telephone line has an attenuation of 1.50 X 10—4 nepers/m at a frequency of 1000 Hz. The line
is 50 km long, If the input current to the line is 650 mA rms at 1000 Hz, what is the line current at
the load, assuming no reflected current wave is present on the line?

The attenuation of the 50 km length of line is «l = (50 X 103)(1.50 X 10—4) = 7.50 nepers. If Iy is the
line current at the load in mA rms, then e~ 750 = I../650, and I} = 650e—7-50 = 0.360 mA rms.

Example 4.5.

If the phasor voltage is V(z;) at a point distant z; from the input terminals of a transmission line,
and is V(z;) at a point distant 2z, from the input terminals, and z, > 2,, find an expression for the total
attenuation in nepers of the length of line between z; and z,, assuming no reflected waves on the line.
What is the attenuation factor « for the line?

The total attenuation of the line length (2, —2;) is N nepers, where e~V = |V(2,)/V(z;)|. Thus
N = —log. |V(z))/V(zy)].

For 2z, > 2z; the ratio of the voltage magnitudes is less than unity and its logarithm is negative,
making N a positive number. Since N = al, where [ is the length of line whose attenuation is N nepers,
a = N/l = N/(zy — z;) nepers per unit length of line. The unit of length in the expression for « will be
the unit of length in which 2z; and 2, are measured. ’

4.7. 'The phase factor B.

The term e~#* that appears in equations (4.7) and (4.8) is a complex number of mag-
nitude unity and phase angle —gz radians. Hence this term does not affect the magnitude
of the phasors V and I as a function of 2, but only the phase angle. The term states that
when there are harmonic voltage and current waves traveling on a transmission line
in the direction of increasing z, the phase angles of the phasor voltage and current decrease
uniformly and at the same rate, with increasing z along the line. The rate of decrease of
phase angle with distance is evidently 8. radians per unit length of line, since the product
of 8 and a line length gives a dimensionless angle in radians.

B is called the “phase factor” of the line. It has also been called the “phase propagation
constant”, or the “phase propagation coefficient”. It is measured in units of radians per
unit length, or radians/meter in the mks system. This is consistent with the dimension of
reciprocal length required by the defining equations (4.8) and (4.4).

Equations (4.7) and (4.8) state that the phase of the voltage and current phasors at
coordinate z on the line differ from the corresponding phases at the input terminals of the
line (z=0) by an angle —8z radians. The time taken for a point of constant phase on a
harmonic signal pattern to travel a distance z is by definition z/v,, where v, is the phase
velocity for harmonic waves at the signal frequency  rad/sec. The phase of the signal
supplied by the source to the input terminals of the line increases at the rate » rad/sec, and
therefore increases by »z/v, radians in the time a reference point of constant phase on the
signal pattern takes to travel the distance z. This is clearly the same amount by which the
phase angle of the voltage or current at the point z lags the respective phase angle at 2 =0.

Hence —gz = —o2/vp, Or vp = /B, a result established by somewhat different reason-
ing in Section 4.2.

4.8. The wavelength of waves on the line.

In a harmonic space pattern (for example, a graph of a sine wave), the distance over
which the phase changes by 2 rad is called a ‘“wavelength” of the pattern. Giving this
distance the generally accepted symbol A leads to the relation BA = 2=, hence

B =2x/A or X =2q/8 (4.9)

Calculation of the quantity g8 for a transmission line, using equations (4.3) and (4.4), is
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therefore the basis for determining analytically both the phase velocity and the wavelength
for harmonic voltage and current signals on the line at any angular frequency » rad/sec.
For harmonic waves of any kind it is always true that phase velocity is equal to the product
of frequency and wavelength. Combining (4.6) and (4.9) verifies this result for harmonic
waves on transmission lines.

Example 4.6.

On a radio frequency transmission line the velocity of signals at a frequency of 125 MHz is
2.10 X 108 m/sec. What is the wavelength A\ of the signals on the line, and what is the value of the phase
factor 8 at that frequency?

From the relation A = v,/f, where f is the frequency in hertz, A is in some length unit, and v, is in
the same units of length per second,

A = (2.10 X 108 m/sec)/(1256 X 108 Hz) = 1.68m and hence B = 2z/A = 8.74 rad/m

Example 4.7.

The phase factor of a transmission line is calculated to be 0.123 rad/m at a frequency of 4.50 MHz,
The line is 500 m long. Find the wavelength and phase velocity of the waves on the line, the phase
difference between the phasor voltages at the two ends of the line, and the time required for a reference
point on the signal pattern to travel the full length of the line.

Wavelength A = 2z/8 = 51.1 m.
Phase velocity v, = o/ = 27 X 4.50 X 106/0.123 = 2.30 X 108 m/sec.
Phase difference over 500 m of line = gl = 61.5 rad.

Travel time for a point of constant phase = l/v, = 2.17 pu sec.

4.9. Some implications of « and p.

Equations (4.3) and (4.4) show that « and 8 have the same physical dimensions of
reciprocal length. The addition of the words nepers and radians respectively to the names
of their units does not change this fact. As has been seen, however, « and B represent
totally different aspects of the propagation of harmonic waves on transmission lines, because
mathematically o occurs as a factor in the real index of an exponential term, while g oceurs
as a factor in the imaginary index of an exponential term.

When the electrical properties of a transmission line are given in the form of values of
the distributed circuit coefficients R, L, G and C at signal angular frequency « rad/sec, « and
B must be calculated from (4.8) and (4.4), i.e. from

a+ 78 = V(R +7<L)(G + juC) (4.10)

This is a somewhat complicated complex number relation involving the numerical values of
five different quantities, and for arbitrary values of these quantities no simple statements
_can be made about the dependence of « and 8 on R,L,G and C, or about the variation of
« and 8 with frequency.

Any a priori opinion that voltage and current waves always travel on transmission lines
with the “velocity of light” (i.e. the velocity of plane electromagnetic waves in unbounded
space or 8.00 X 108 m/sec) is obviously invalid, since the velocity must be calculated from
equations (4.6) and (4.10), and the latter does not give a constant value for /8 that is
independent of the actual values of the individual distributed circuit coefficients.

On the other hand, the values of BR,L,G and C for any specific transmission line are
by no means entirely independent of one another, and it does turn out that for a transmission
line whose interconductor medium is predominantly air or “space”, if R and G are small
enough or if the frequency is high enough the velocity of voltage or current waves on the
line is extremely close to the ‘“velocity of light”.
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These conditions do not hold for typical telephone transmission lines at voice frequencies,
and the velocity of waves on such lines can be much less than fifty percent of the velocity
of light and highly variable with frequency.

4.10. The characteristic impedance Z,.

Equations (4.7) and (4.8) show that the ratio of the magnitudes of V and I, and the
relative phases of V and [ are the same at all points on a uniform transmission line on which
there are no reflected waves, since the terms e~ and e~#= are identical in the two equations.

To find an expression from which to calculate this ratio of magnitudes and this relative
phase, it is necessary to return to equation (3.13):

dV/idz = — (R + jol)I (3.13)
Differentiating equation (4.7) with respect to 2,
dV/idz = —(a+jB)Vie e =

Substituting into (8.13) this value for dV/dz, and the value for I from (4.8),

—(a+7B)Vie **e 2 = —(R+joL)l e e =
Vi _ R+jul

or I, = «+3B
Substituting for « + j8 from (4.10) into this result, and making use also of (4.7) and (4.8)
for V;and I,

vV _ R + joL — R + joL

T = . — = \| A (4.11)

V(R + joL)(G + joC) G + joC

Thus the ratio of the phasor voltage to the phasor current on a uniform transmission line
on which there are no refiected waves is the same at all points of the line, and is a complex
number quantity determined entirely by the distributed circuit coefficients of the line and
the signal frequency.

Since physically this quantity on the right of (4.11) has the dimensions of impedance,
and since it is “characteristic” of the line itself and of nothing else except the frequency, it
is appropriately named the “characteristic impedance” of the line. It is assigned the
symbol Z, = Ro+jXs, and as a function of the line’s distributed circuit coefficients is

given by
Zy = Ro + jXo = -\’—g—-::-_—';%g (4.12)

—_— ~
In many contexts it is more convenient to use the reciprocal quantity, the “characteristic
admittance” of a transmission line, defined by

Yo = Go+ 7By = 213 = ‘\’—_gi;zg (4.19)

The unit for Z, is ohms and for Y, is mhos, when R,L,G and C are in the electrical units
of the mks system.
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Although the characteristic impedance of a transmission line is a very important and
realistic physical quantity that directly governs the phasor relations between harmonic
voltages and currents on a line, it is nevertheless a somewhat intangible entity. It does
not “exist” on a line in any simple and obvious sense. It cannot be measured directly with
an impedance-measuring bridge by making a single impedance measurement on an arbitrary
finite length of line. It can be calculated from the distributed circuit coefficients of the
line at any frequency using equation (4.12). For certain idealized conditions it can be
determined directly from the dimensions and materials of the line, using formulas developed
in Chapter 6. Experimentally it can be determined for a given sample of transmission
line by making at least two impedance measurements of the input impedance of suitably
chosen lengths of the sample with suitably chosen terminal load impedances. (See Section 7.5.)

Commercially available transmission lines are commonly labeled as having certain
definite values of characteristic impedance such as 50 ohms, 800 ohms, etc., with the
implication that the value is not only independent of frequency, but is purely resistive.
This is obviously not in agreement with the nature of equation (4.12), which for fixed values
of B,L,G and C might be expected to give a wide range of magnitudes and phase angles
for Z, as » is varied from zero to very high frequencies. It will be seen in Chapter 5 that
for most practical transmission lines the actual values of R,L,G and C are such that at
frequencies above a few tens or hundreds of kilohertz, the characteristic impedance does
attain an approximately constant value, whose phase angle does not exceed a few degrees.
For these same lines at lower frequencies, however, the magnitude of Z, may rise by a factor
of 10 or more over the asymptotic high frequency value, and its phase angle may become
as large as 45°.

Fig. 4-1 shows a transmission line circuit where the terminal load has been designated
simply as a “nonreflecting termination”. From what has been said earlier in this section,

Vil = VII = Z, (4.14)

where V: and I, are the phasor voltage and current at the input terminals of the line and
V and I are the phasor voltage and current at any coordinate z on the line, including the
terminal load end of the line where z=1.

| ! S
I "'l
o O nonreflecting
Z inp B termination
o~ —O— Zr
z =0 z=1
V= V1
I = Il

Fig.4-1. A transmission line circuit of length [ with nonreflecting
termination, illustrating notation at the input terminals.
The line has characteristic impedance Z,.

The concept of the “input impedance” of the line can only mean the ratio of the phasor
voltage to the phasor current at the input terminals. Hence for the circuit of Fig. 4-1,

Zmp = Vi, = Z,

and since the same phasor ratio must hold at z =1, it follows that Zr = Z, also, since the
phasor voltage V (2=1) is identically the phasor voltage across Zr at z =1, and the phasor
current I(z=1) is identically the phasor current through Zr at z=1.
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These results apply only for the conditions postulated in writing equations (4.7) and
(4.8), i.e. that there are no reflected waves on the line. Two significant conclusions can be
drawn:

(1) The only value of impedance that can be connected as a terminal load on a trans-
mission line and constitute a nonreflecting termination is an impedance equal to the
characteristic impedance of the line.

(2) The input impedance of any length of a uniform transmission line terminated in its
characteristic impedance (i.e. nonreflectively) is equal to the characteristic im-
pedance of the line.

From equation (4.14) the second conclusion can be generalized to the statement that the
impedance at any point on a transmission line terminated nonreflectively is equal to the
characteristic impedance of the line. The meaning of “the impedance at any coordinate
z of the line” must be correctly understood, however. It is not the impedance that would
be measured by an impedance bridge connected to that point of the line (with appropriate
short-circuiting of the voltage source or open-circuiting of the current source connected to
the line’s input terminals), because the phasor voltage V applied by the generator in the
impedance bridge to the line at the cross section z would create not only the phasor line
current I on the load side of that cross section as shown in Fig. 4-2, but would also create a
current I’ in the portion of the line on the sig-
nal source side of the cross section. The two

currents would be entirely independent of one ' I 1
another. Evidently the physical meaning of :;i'r':: v terminal
the impedance Z(z) at a coordinate z of a trans- (inactive) | load

mission line, defined as the ratio of the phasor
voltage V at the coordinate z to the phasor e
current I at coordinate 2z, and following the «\V”B aob
sign conventions in Fig. 3-1(b), must be the e"’ uf
input impedance of the total line circuit on

the terminal load side of the cross section at

coordinate z. It could be measured directly Fig.4-2. An impedance measuring bridge con-
by an impedance bridge connected to the line nected at a P‘;’“;‘;;‘ a ,tra;‘s‘t‘;“;?wnt,lme

. . . causes currents OW 1n DO irections
at that p01.nt only by cutt}ng the line a?.t that from the point, and does not measure
cross section and removing the portion on the quantity defined as the impedance
the signal source side. of the line at that cross section.

Example 4.8.

A parallel wire transmission line used in a carrier telephone system has a characteristic impedance of
700 — 7160 ohms at a frequency of 8.00 kHz. The terminal load impedance connected to the line is equal
to the characteristic impedance. If a signal voltage of 10.0 volts rms at 8.00 kHz is connected to the input
terminals of the line, what is the phasor input current and what is the real power supplied by the signal
source to the line?

From the conditions stated, the input impedance of the line is equal to its characteristic impedance.
The current and power calculations are then simply those for an a-c¢ circuit consisting of a voltage of

10.0 volts rms connected across an impedance of 700 — j160 ohms. Taking the voltage as a reference phasor
10 + jO volts,
Iy, = (10.0+ 50)/(700 —j160) = 13.7 + j2.93 mA

The real power input to the line is given most directly by
Hinpl?* Binp = (14.0 X 1073)2(700) = 0.137 watts
This power is dissipated partly in the attenuation of the line, and partly in the load. {From equation (4.12)

the fact that Z; is complex indicates that R and G are not both equal to zero, and from equation (4.10) this
means that the line has a finite attenuation factor a.]
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Example 4.9.

A coaxial transmission line used to transmit substantial amounts of power at a frequency of 100 MHz
has the following distributed circuit coefficients at that frequency: R = 0.098 ohms/m; L = 0.32 X108
henries/m; G = 1.50 X 10~8 mhos/m; C = 34.5 X 10—12 farads/m. Find the characteristic impedance of the
line at the frequency of operation.

From equation (4.12),

Z, = Ry + jX,

0.098 + (27 X 108)(0.32 X 10-6)
1.50 X 10-8 + j(2r X 108)(34.5 X 10— 12)

_ 0.098 + j201 = 108 201/(x/2) — 4.87X10—% rad
(1.50 + 721,700) x 10-¢ 21,700/(x/2) — 6.91 X 10—5 rad

= 96.2/—2.09X10-¢rad = 96.2— j0.02 ohms

The nearly real value for Z, obtained in Example 4.9 is typical of low-loss lines at very
high frequencies. Inspection of the arithmetic shows that the inclusion of R and G in the
calculations has not affected the value of R,, but has been responsible for the appearance of
the reactance component X, which is far too small to be of any practical consequence.
Criteria for deciding when R and G can be ignored in calculating Z, from equation (4.12)
are developed in Chapter 5.

In converting a complex number to polar form, the usual procedure is to express the
phase angle as the angle whose tangent is the ratio of the imaginary part of the complex
number to the real part. For the complex numbers encountered in Example 4.9, this would
require stating the phase angles to the nearest 0.001°, to retain the significant figure
accuracy of the data, i.e. 0.098 + 7201 = 201 /89.972°, and similarly for (1.50 + ;21,700) x
10-¢ To complete the problem, the angle for this latter number must then be subtracted
from the former angle, the result divided by two, and the sine and cosine of the resultant
angle (in this case a very small fraction of a degree) used to determine the real and
imaginary components of the final complex number answer.

Trigonometric tables for making calculations when angles are expressed to the nearest
0.001° are awkward to use and not readily available. For most transmission line problems
the solutions can be obtained more quickly and easily by small angle approximation
methods. The details of the solution given for Example 4.9 illustrate the process of stating
the phase angles of R + joL and G + joC in the form of their deviation in radians from =/2.
Thus the actual phase angle of the complex number 0.098 + 7201 is tan~—!(201/0.098) =
tan—! 2050, an angle that cannot be read meaningfully from most standard sets of tables.
The deviation of the phase angle of 0.098 + j201 from =/2 rad, however, is tan—! (0.098/201),
and the radian measure of this angle can be written directly without tables as
0.098/201 = 4.87 X 104 rad.

If the deviation of the phase angle of a complex number from /2 does not exceed 0.1 rad,
the sine of the angle can be taken as unity and the cosine as the value of the deviation in
radians, with accuracy better than 1%. Conversely, for the final calculation of the com-
ponents of Z, from a magnitude and a very small phase angle, the cosine of the small phase
angle is unity and the sine is equal to the value of the angle in radians.

4.11. Nepers and decibels.

Electrical engineers make much use of the language of decibels, which originated in the
- telephone industry. Its basic justification is that the response of human senses to stimuli
such as sound and light is fairly closely proportional to the logarithm of the power level of
the stimulus, when other factors such as frequency are held constant. Hence a quantity
proportional to the logarithm of the power level of such a signal is an approximate measure
of its physiological effect. In telephony, where physiological effect is the delivered com-
modity, these logaritimic measures are highly appropriate.
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Even apart from the physiological justification, however, logarithmic measures simplify
many calculations and designations that are commonly needed in communication systems.
Between the signal source and the terminal load in a typical extended communication circuit,
the signal will pass through many structurally distinct units, including lengths of different
types of uniform line, amplifiers, attenuating networks, filters, etc. Each of these will
modify the signal power level by some factor greater or less than unity. The ratio of the
power delivered to the terminal load to the power supplied by the source is the product
of all these factors. If the effect of each of these circuit units is designated by the logarithm
of the factor by which it modifies the signal power, instead of by the factor itself, then the
logarithm of the effect of all the units combined is the sum of the logarithms of the effects
for each of the separate units. Addition is thus substituted for multiplication in calculating
the cumulative effect of cascaded elements in a transmission system.

Decibels by definition are units for the logarithmic measure of the ratio of two power
levels, using logarithms to the base 10. Any two power levels P, and P; differ by D decibels

according to
D (db) = 10 logio (P1/P) (4.15)

If the logarithm is positive, P, is said to be D db above Ps; if negative, P, is D db below P-.
An absolute meaning can be given to the decibel value of a power level by making P: a
standard reference value. If P;is 1 watt, the decibel value of a power level P, calculated by
equation (4.15) is designated = D dbw, i.e. D decibels above or below a power level of 1 watt.
One milliwatt is also commonly used as a reference value, with the corresponding designa-
tion = D dbm.

For an arbitrary two terminal pair net-
work as shown in Fig. 4-3, the input imped-

ance and the terminal load impedance willin  z, =g, +jx, — v, | Network V, RZer o
general have different values. If these are 2T 3%
respectively Z; = R1+ X and Z: = R+ j X,
the real power input P; to the network and the
real power P, reaching the load will be given Fig.4-3. A two-port linear passive network ter-
by minated in an arbitrary impedance.
Py = Ri|Vi/Z,2 and P: = R;|Vo/Z:f
Applying equation (4.15) to these power values, P; is D decibels above P;, where
|V1/ 1?
D (db) = 10 logio [Vo/Zop =———(R1/R2)

In the special case of Z; =Z; (hence R;= R;), this equation simplifies to

D (db) = 20log |Vi/Vy (4.16)

Equation (4.16) appears to be an equation expressing a decibel relation between two
voltages, but it has been derived from a decibel relation between power levels, and is a
formally correct use of decibel language only when the two power levels have the same
ratio to the squares of the respective voltage magnitudes. This requires that the imped-
ances across which the voltages exist have admittance values with equal conductance
components, a condition which is obviously satisfied if Z; = Z..

It is fairly general practice among communication engineers to apply (4.16) to two
signal voltages in a circuit that are across impedances not meeting the stated requirement.
Thus a voltage amplifier with a ratio of 1000 between output voltage magnitude and
input voltage magnitude will often be described as having a gain of 60 decibels, even in a
case where the input impedance and the load impedance have arbitrarily independent values.
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This is improper use of decibel notation, and will lead to erroneous results if equation
(4.15) is used to determine a power ratio from the decibel figure.

Nepers by definition are a logarithmic measure of the ratio of two voltage magnitudes
or two current magnitudes, the logarithm being to the base e. The equations from which the
definition is formulated are (4.7) and (4.8), which relate specifically to uniform transmission
systems on which waves are traveling in only one direction.

It has been shown in Section 4.10 that for the case of waves traveling in only one
direction on a uniform transmission line, the impedance at every point is equal to the
characteristic impedance of the line, Zo= Ro+jXo. If then the rms phasor voltage is
V(21) at coordinate z; on the line and V(22) at coordinate z;, the power levels at the two points
will be P(z1) = |V(21)/Zo]? Ro and P(z;) = |V(22)/Zo|* Ro. Since the impedance is the same in
the two locations, the decibel value of the ratio of the two power levels will be, from
equation (4.16), D (db) = 20 logio |V(21)/V(22)]. From the defining equation (4.7) and from
Example 4.5, the neper value of the ratio of the voltages is N = log. |V(21)/V(22)|. It follows

that D (db) = 20logw e’ = 8.686 N (4.17)

The attenuation factor « of a uniform transmission line appears in its defining equations
in the natural units of nepers per unit length. It can also be expressed in decibels per unit
length, using the conversion factor from equation (4.17) that 1 neper = 8.686 decibels, with-
out violating the definitions on which decibel notation is based. However, it must be
emphasized again that the attenuation between two points on a transmission line, whether
given in nepers or decibels, can be used to relate the voltages at the two points by equation
(4.16), or the power levels at the two points by equation (4.15), only if the impedance is the
same at the two locations. It is shown in Chapter 7 that when there are reflected waves on
a transmission line the impedance is a fairly complicated function of position, involving
the distributed circuit coefficients of the line, the frequency of the source, and the value of
the terminal load impedance. Under such conditions equations (4.15) and (4.16) are inap-
plicable, and the attenuation between two points on a transmission line is not the only
consideration determining the ratio of the power levels or of the phasor voltage magnitudes
at the points.

Several specialized uses of decibel notation, for transmission lines on which there are
reflected waves, are discussed in Chapters 8 and 9.

4.12. Phasor diagrams for V and I.

In the steady state analygis of lumped constant networks, phasor diagrams make use of
directed line segments to describe the phase and amplitude relations of the various harmonic
voltages and currents in a network.

When the technique is applied to trans-
mission lines an additional variable appears —
the position coordinate along the line. Fig. L
4-4 i a representative phasor diagram for the /
voltage and current at the input terminals -V

of a transmission line on which there are no
reflected waves, using the phasor voltage V;

1

as the zero degree reference phasor. (Since Fig.4-4. Phasor diagram of the time-harmonic
C/G exceeds L/R for all conceivable practical "",ltafe and E“J)re’f‘t ";: the input f.er'
transmission lines under reasonable condi- minals (i.e.2=0) of a transmission line

. . . terminated in its characteristic im-
tions, the phase angle of Z, is invariably neg- pedance, The phasors are related by

ative and I, leads V: when there are no v/, = Z,.
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reflected waves.) At a coordinate 2; along the line, equations (4.7) and (4.8) show that the
voltage and current phasors are smaller in magnitude by the factor ¢~ ** and retarded in
phase by angle 82, relative to the phasors at the input terminals where 2z =0. The cor-
responding phasor diagram is Fig. 4-5, for g8z, approximately 0.5 rad, and «z: about 0.2
nepers, the reference for magnitude and phase being the same as in Fig. 4-4. Similarly,
at a coordinate 2z; = 22;, the phasor diagram with the same reference is that of Fig. 4-6.

-V, >V,

Ie—(a+ipdz

Ve~ (a+iB)z Ie~2(atiB)z;

Ve~ 2a+iBz

Fig.4-5. Phasor diagram of the time-harmonic Fjg.4-6. Phasor diagram of the time-harmonic

voltage and current at the coordinate z, voltage and current at the coordinate
of the same transmission line referred 2y = 22, of the same transmission line
to in Fig. 4-4. The line has attenuation referred to in Fig. 4-4 and 4-5.

factor « and phase factor g.

An attempt to show the continuous varia-
tion with coordinate z of the phasor rela-
tions on a transmission line, by combining Ve~ (a+iB)z
diagrams like Fig. 4-4, 4-5 and 4-6 for small v,
intervals of z on a single chart, leads to
undue confusion. Taking the voltage phasors
separately, the desired result is achieved in
useful form by drawing the envelope of the
tips of the phasors. This gives a logarithmic
spiral such as Fig. 4-7, whose angular coordi-

nate is —pz, linearly proportional to distance Fig.4-7. The tip of the voltage phasor Ve~ (x+if)z
along the transmission line. The envelope ;{t ansf’ cz::dm:pe zf ontoa tranzmls;mn

. . . . me oI a nuation factor a and phase
fo,r the ?urrent phas.ors 18 a 31_m11ar spu:al factor 8 and terminated nonreflectively,
with a different starting reference and a dif- traces part of a logarithmic spiral as z
ferent radial scale. increases from z =0 to z=1

Example 4.10.

If the diagrams of Fig. 4-4 and 4-5 are combined on a single chart, what is the meaning of the phasor
joining the tips of the two voltage phasors, and of the phasor joining the tips of the two current phasors?

The phasor joining the tips of the two voltage phasors is the longitudinal phasor voltage along the line
between coordinates z =0 and z=2;. The phasor joining the tips of the two current phasors is the
phasor current flowing transversely between the line conductors (i.e. through the shunt conductance and
susceptance of the line) in the line section between z=0 and 2z =2z,

Phasor diagrams like Fig. 4-4, 4-5, 4-6 and 4-7 convey exactly the same information as
equations (4.7) and (4.8), information which is easily comprehended from the equations
themselves. For the more general case of transmission lines on which there are reflected
waves, the use of phasor diagrams provides unique assistance in visualizing voltage and
current relations along a line, the pattern of which is not directly obvious from the cor-
responding equations. Such diagrams are discussed in Section 8.8.
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4.1.

Solved Problems

A uniform transmission line is 15,000 m long. Its characteristic impedance is
200 + 70 ohms, and the signal velocity on the line is 65% of the “velocity of light”
infree space. The terminal load impedance connected to the line is not equal to the line’s
characteristic impedance. At the input end of the line a time-harmonic signal
source of rms amplitude 10 volts at a frequency of 50 MHz, and internal impedance
100 + jO ohms, is connected in series with a switch and the line’s input terminals.
The switeh is initially open.

(2) When the switch is closed, what is the’ initial phasor voltage at the input termi-
nals of the line, and what is the initial phasor input current to the line?

(b) For how long do the input voltage and current remain at the initial phasor values?

Equation (4.14) states that at any point on a transmission line where there are waves traveling
in only one direction, the ratio of the phasor voltage to the phasor current must be equal to the
characteristic impedance of the line.

At the instant the switch is closed, harmonic voltage and current waves will start to travel
along the transmission line toward the terminal load end, with velocity 0.65(3.00 X 108) =
1.95 X 108 m/sec. Signals will travel the full length of the line in a time 15,000/(1.95 X 108) = 77
microseconds, after the closing of the switch. Since the terminal load impedance is not equal to the
characteristic impedance of the line, voltage and current waves will be reflected from the terminal
load, and will reach the input terminals of the line 154 microseconds after the switch was initially
closed. During these 154 microseconds it will remain true at the input terminals of the line that
there are waves *raveling in only one direction, and the relation V/I = Z, will be valid there for
that length of time.

(a) If V; gnd I; are the initial phasor voltage and current at the input terminals of the line just
after closing the switch, then V;/I; =200, On applying Kirchhoff’s voltage law to the circuit
consisting of the source, the internal impedance of the source, and the input terminals of the
line, 10 — 100I; — V; = 0, where the sign conventions of Chapter 3 have been observed. Simul-
taneous solution of these two equations gives V; = 6.67 volts rms, and I, = 0.033 amperes rms.
It is obvious that this process is equivalent to assuming that the initial input impedance of the
line (before any reflected waves return to the input terminals) is equal to its characteristic
impedance.

(b) The input voltage and current retain their initial phasor values for 154 microseconds. At any
time later than 164 microseconds after the closing of the switch there will be waves traveling
in both directions at all points on the line. The input impedance of the line will no longer be
equal to its characteristic impedance, and the values of input voltage and current cannot be
determined by the methods of Chapter 4. Chapters 7, 8 and 9 deal with procedures for solving
transmission line circuits in these more general circumstances.

Although the source frequency of 50 MHz was not used in the solution, it is nevertheless of some
significance in the problem. If it had been 1 kHz, for example, the source voltage and current
would not in 154 mieroseconds be able to vary through a full cycle of the signal. There would then
be no literal meaning to a phasor value. Since the period of the 50 MHz source frequency is only
0.02 microseconds, the steady state time-harmonic variation of the voltage and current at the input
terminals is established, after the closing of the switch, in a time very short compared with the
time required for the signal to travel to the terminal load end of the line and back.

(The term “signal velocity”, not previously defined, has been used in the statement of the
problem. This is justified by demonstrations given in Chapters 5 and 6 that for all reasonable and
practical transmission line designs the phase velocity becomes quite independent of frequency at
frequencies above 104 or 105 Hz. Under these conditions all high-frequency signals, regardless of
their frequency spectrum or bandwidth, travel with the same velocity which can appropriately be
called the signal velocity. Under the same conditions the characteristic impedance of the line is also
independent of frequency and purely resistive. For typical transmission lines these simplified
relationships do not hold for signals at voice frequencies.)
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A signal source at a frequency of 2.6 MHz is connected to the input terminals of a
low-loss transmission line which is 125 m long and is terminated in its character-
istic impedance. The wavelength of the signals on the line is measured (by methods
described in Chapter 8) and found to be 92 m.

(¢) Determine the time delay between the instant of connecting the source to the
line and the arrival of a signal at the terminal load.

(b) What is the phase difference between the voltages at the two ends of the line in
the steady state?

(a) The signal velocity can be found from either of the equivalent relations v, = fA or v, = o/B,
where B = 27/A» and A is the wavelength on the line. Using the first expression, v, =
92(2.5 X 106) = 2.8 X 108 m/sec. Then the required time delay is ¢ = l/v, = 125/(2.3 X 108) =
0.54 microseconds.

(b) The phase of the voltage at the output terminals relative to that at the input terminals is given
by the term e~z of equation (4.7), with z = I. This term states that the phase of the voltage
at the terminal load will be less than (i.e. will lag) the phase of the voltage at the input
terminals by the amount 8! rad. Here 8 = 27/A = 27/92 = 0.068 rad/m, and B! = 8.5 rad.

It may also be observed that the phase changes in time at the rate 27 rad per period of the
signal. Hence the phase lag can be found from the time delay of the line as

27(0.54 X 10—6)/(0.4 X 10-6) = 8,5 rad

On an air dielectric transmission line for which the attenuation per wavelength is
negligible, the signal velocity is 100% (this is standard commercial notation, mean-
ing 100% of the ‘“free space” velocity of light, or 3.00 X 10® m/sec). A harmonic
signal voltage v(t) = 50 cos (107t +=/6) is connected to the input terminals of the
line at t=0. Draw a graph of each of the following:

(@) The valtage at the input terminals of the line as a function of time from ¢ =0
to ¢ = 1.0 microseconds.

(b) The voltage as a function of position on the transmission line at time ¢ =
0.2 microseconds.

(¢) The voltage as a function of position on the line at time ¢ = 1.0 microseconds.

(@) The voltage at the input terminals of the line is simply v(tf). This is -+43.3 volts at ¢t = 0; it
passes through zero at 107t + #/6 = #/2, or t = 0.105 microseconds; subsequent zero crossings
are at intervals of 107t = #», or ¢ = 0.314 microseconds. The graph is shown in Fig. 4-8.

v(t), volts
+50 <

T T
\/ 0.5 1.0 t, microseconds
_50 -

Fig. 4-8

(b) For a wave traveling in the direction of increasing z on a transmission line, the voltage at any
coordinate z on the line at any time ¢ is given by a function of the form f, (¢t — z/v,), according
to Problem 8.5, page 24, where f, is any function. Since in the present problem v, =
3.00 X 108 m/sec and the voltage at 2z =0 is o(t) = 50 cos (107t 4 #/6), it follows that the
voltage as a function of z and ¢ is v(z,£) = 50 cos {107[t — z/(3.00 X 108)] + #/6}, with the ad-
ditional stipulation that there is no voltage on the line at any .time ¢ for values of z greater than
z = vyt, this being the distance the signal advances on the line from the input terminals in
time t after being connected to the terminals.
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At t = 0.2 microseconds,
v(z) = 50 cos [107(0.2 X 106 — 3.33 X 10792) + #/6] = 50 cos (2.00 + /6 — 0.0332)

for 0 <z <wyt, where v, = (3.00X 108)(0.2 X 10-6) = 60 m. The resulting graph of v(2) is
shown in Fig. 4-9.

v(2), volts v(z), volts
+50 +50 -1

/I ' . _ ‘ '
/ 100z, meters \/ 100 200 300 2, meters
—50 —50

Fig.4-9 Fig. 4-10

(¢) The reasoning is exactly the same as in (b), but the pattern extends for a greater distance
z = vpt = 300 m along the line, as shown in Fig. 4-10.

(It should be noted that because the terms containing z and ¢ in the expression for v(z, t)
have opposite signs, a graph of v(z,t) as a function of z at fixed ¢ will be reversed along the
coordinate scale, or backward, relative to a graph of the same v(z, t) as a function of ¢ at fixed
z. For the harmonic voltage function of Figs. 4-8, 4-9 and 4-10, this reversal appears only at
the advancing front of the wave. If the voltage function had been an unsymmetrical one such
as a sawtooth pattern, the reversal would be clearly exhibited over the whole of the pattern.)

At time ¢t = 0 a switch is closed to connect a voltage source
v(t) = 10 sin (2#107¢ — =/3)

with negligible internal impedance, to the input terminals of a section of lossless
transmission line 36 m long. The line is terminated in its characteristic impedance
of 200 + jO0 ohms. The signal velocity on the line is 80% (see Problem 4.3). (@) Graph
the instantaneous voltage as a function of position along the line 0.15 microseconds
after the switch is closed. (b) Graph the instantaneous current as a function of
position along the line at the same instant used in (a). (¢) What is the next earliest
time at which the voltage pattern on the line will be the same as in part (a)?

(a) The signal velocity on the line is v, = 80% of 3.00 X 108 = 2.40 X 108 m/sec. In 0.15 microseconds
after the switch is closed the front of the wave will advance a distance z = v,t = (2.40 X 108)
(0.15 X 10—8) = 86 m, i.e. exactly to the terminal load end of the line. The wavelength of the
voltage pattern on the line is A = v,/f = 2.40 X 108/107 = 24 m. Hence the line is 1.50 wave-
lengths long. As a function of z and ¢ the voltage on the line is

v(z,t) = 10 sin [27107(¢ — 2/(2.40 X 108)) — /3] = 10 sin (27107t — 0.262z — #/3)

As a function of z at t = 0.15 microseconds, this is v(z) = 10 sin (—0.262z + 8.37), which is
valid from z =0 to z = v,t = 36 m. Fig. 4-11 is a graph of this voltage.

v(2), volts
+10 -
0 T T
12 24 w 36 2z, meters
—10

Fig.4-11
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(b) Since the transmission line is terminated nonreflectively, i(z,t) = v(z,t)/Z, everywhere and
always; and since Z, is real, the relation between the current pattern and the voltage pattern is
that they are identical in shape. The current pattern at the instant stated is therefore the
pattern of Fig. 4-11 with a current ordinate scale of 10/200 = 0.050 amperes per division sub-
stituted for the voltage scale of 10 volts per division.

(¢) The voltage and current patterns on the line will again be the same as in Fig. 4-11 after the
entire pattern has traveled an additional distance of one wavelength along the line. The time
required for this is ¢ = v,/A = 1/f = 1/107 = 0.1 microseconds. This time is the period of the
source frequency.

A coaxial transmission line for carrier telephony is 900 miles long, from New York City
to Chicago. The distributed inductance of the line is 0.425 millihenries/mile, and its dis-
tributed capacitance is 0.0715 microfarads/mile. The distributed resistance R and the
distributed conductance G are small enough to have no effect on the values of the phase
factor B and the characteristic impedance Z, at the frequencies of operation. (R and G
do cause attenuation, however, which is offset by amplifiers at intervals along the line.)
There are no reflected waves on the line. (a) How long is a telephone signal delayed in
transmission from New York City to Chicago? (b) Is the delay time of part (a) suffi-
cient to be annoying to persons conducting a conversation via the line? (c) When
the rms signal voltage at a particular point on the line is 5.0 volts, what is the rms
signal current at the point and what is the signal power passing the point?
(a) The condition that R and G do not affect 8 or Z, must mean that equation (4.10) can be written
as B =wVLC, and equation (4.12) can be written as Z, = \/m . (These simplifications do

not imply that « =0 and X, =0, but only that « € 8 and X, € R,, conditions that are
typical for most transmission lines at frequencies above a few kilohertz, as shown in Chapter 5.)

Then v, = o/ = 1/VLC = 1/1/(4.25 X 10-4)(7.15 X 10—8) = 181,500 miles/sec
The {ime delay of a signal over the length of the line is then
t = lv, = 900/181,600 = 4.96 milliseconds

(b) The annoyance of transmission delay on a telephone circuit is a matter for experimental
investigation, and is very much dependent on the loudness and quality of the signal. Evidence
shows that for signals of reasonable strength and clarity, delays as great as 25 to 50 milli-
seconds cause little inconvenience. A channel using re-transmission from a satellite in a fixed
position over the earth’s surface involves a delay of about 250 milliseconds, which is long
enough to create considerable confusion in telephone communication.

(¢) The characteristic impedance of the line is
Z, = VL/IC = V(4.25 X10-9/(7.16 X 10-8) = 77.1 ohms

The rms signal current will therefore be I = V/Z, = 5.0/77.1 = 0.0656 amperes, and the signal
power will be P = VI = V2/Z, = I2Z, = 32.5 milliwatts.

Two parallel wire transmission lines operated at radio frequencies have nominal
characteristic impedances of 300 ohms and 200 ohms respectively. Each is termi-
nated in its characteristic impedance. At their input terminals the two lines are
connected in parallel, and their inputs serve as the terminal load of a third parallel
wire transmission line which supplies power to the other two. (a) What must be
the characteristic impedance of the third transmission line if there are to be no
reflected waves on it? (b) How does power flowing on the third line divide between
the other two lines at the junction?
(a) The first two lines are terminated nonreflectively, so their input impedances are respectively
equal to their characteristic impedances of 300 ohms and 200 ohms. These impedances connected
in parallel constitute the terminal load impedance of the third line, which is therefore given by

Zy = 1/(1/200 + 1/300) = 120 ohms. If the third line is to be terminated nonreflectively, this
must be the value of its characteristic impedance.

(b) At the junction of the three lines the signal voltage is common to all of them. Taking it to be a
time-harmonic voltage of rms value V, the power on the third line is V2/120 watts, and on the
other two lines V2/200 and V2/300 watts respectively, Hence 60% of the power on the third
line flows onto the line of characteristic impedance 200 ohms, and 40% onto the line of char-
acteristic impedance 300 ohms.
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4.10.

A transmission line 400 ft long has an attenuation of 4.00 db/(100 ft) at its operating

frequency of 5.00 X 10° Hz. The phase velocity at that frequency is 170,000 miles/sec.

The line is terminated nonreflectively. For steady state conditions, make a graph of

the pattern of instantaneous voltage as a function of position along the line at an

instant when the voltage at the input terminals is passing through zero and rising.
From equation (4.1a), if there are no reflected waves on the line V, =0, and

A
v(z,t) = |Vy| e~ cos (ot — B2+ &)
where ¢, is the phase angle of V.
A time ¢ at which the input voltage of the line (i.e. at z = 0) is passing through zero and rising
is identified by (ot <+ £;) = 3x#/2.

Thus an expression for the instantaneous voltage as a function of position on the line that
satisfies all the stated conditions is

A 3r La .
v(z) = |Vle~ 2 cos 5 —Bz) = — |Vl e~ sin Bz
where ]911 is an arbitrary amplitude factor.

The attenuation factor a of the line is 4.00/(100 X 8.686) = 4.61 X 10—3 nepers/ft. The wave-
length on the line is_ A = v,/f = (170,000 X 5280)/(5 X 108) = 178 ft and B = 2»/A = 0.0353 rad/ft.

A
Then v(z) = e—4.61X10-3 gin 0.0353z if |V4| is taken as unity.

The graph of this voltage pattern is a distorted sine wave lying between symmetrical positive
and negative exponentially decaying envelopes, with the axis crossings at the equally spaced intervals
of a true sine wave. The ordinates of the envelopes are =1.00 at z =0, +e¢— 0481 = +0,632 at
z =100 ft, *=(0.632)2 = *0.399 at z = 200 ft, =(0.632)3 = =0.251 at z = 300 ft, and =+(0.632)4 =
0.169 at z = 400 ft. The pattern crosses the axis at intervals of one-half wavelength, or 89 ft.

Hence the zero crossings occur at z = 0,89, 178, 267 and 356 ft. From these data the graph is easily
drawn, Note that the voltage initially increases negatively as z increases from zero.

If for the transmission line of Problem 4.7 the input signal has a phasor amplitude
of 50 volts at the frequency of 5.00 x 10® Hz, make a graph of the phasor amplitude
of the voltage as a function of position along the line.

From equation (4.7), the phasor amplitude of the voltage as a function of position on the line
is given by |f’| = II/;,I le~az| [e—#6z|. But |e—%2| = e—az, |e=#2 =1, and from the data of the
problem [171[ = 50 volts. The equation for the required graph is then simply |T7| = 50e—2, This
is the upper envelope of the graph of Problem 4.7, with a change of voltage scale.

For any lossless transmission line (R = G =0) terminated in its characteristic imped-
ance, and carrying voltage and current waves of any arbitrary pattern, show that
the total energy stored in the distributed inductance of the line is equal to the total
energy stored in the distributed capacitance of the line.

For the theorem to be true in the general form stated, it must be true for each infinitesimal
length dz of the line. The energy stored in an inductance L, carrying an instantaneous current i(t)
is Wy = }Lg[i(£)]2. Hence the energy stored in the inductance of a length dz of the transmission
line at any coordinate z at any time ¢ is dW, = JL dz[i(z,t)]2. The energy stored in the capacitance
of the same line element at the same instant is dW¢ = 4C dz [v(z, t)]2. The line is terminated in its
characteristic impedance, and from equation (4.12) this is Z,=VL/C when R =G =0. Then
i(z,t) = v(z,t)/VL/C, and substituting this into the expression for dW; shows that dW, = dW,,
which proves the theorem. '

A uniform transmission line 50 m long and terminated in its characteristic imped-
ance delivers 1250 watts of radio frequency power to its terminal load. The input
power to the line is 1600 watts. Determine (a) the attenuation factor of the line
and (b) the efficiency of the line as a transmission system. (c¢) What is the ratio of
the peak phasor voltage magnitude at the midpoint of the line to the peak phasor
voltage magnitude at the input terminals?
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(@) The total attenuation of the line in decibels is 10 log,, (1600/1250) = 1.07. The attenuation
factor is then o = 1.07/(8.686 X 50) = 2.47 X 103 nepers/m. (If the power ratio is taken as
1250/1600, the decibel value is found to be —1.07. This is equivalent to saying that the trans-
mission line as a system element has a gain of —1.07 db. Attenuation is positive when gain is
negative, and vice versa. A transmission system with active elements, such as amplifiers, that
give it a net gain, is commonly said to have negative attenuation.)

(b) The efficiency of the line as a transmission system is defined in the usual manner appropriate to
any passive two-port device, as efficiency = (output power)/(input power) X 100%. In this case
it is (1250/1600) X 100 = 78.3%.

(¢) The phasor voltage at any coordinate z is given in terms of the phasor voltage at the input
terminals of the line by equation (4.7). The magnitudes of the corresponding voltages are related
A A
by |V| =[P,/ e~*= Then |V (z=25) = |V,|e—247x10-2x25 = 0,938V,

A gignal of 2.50 volts rms is connected to the input terminals of a uniform trans-
mission line whose attenuation at the signal frequency is 0.0010 nepers/m. The line
runs for 4000 m and is terminated by the input terminals of an amplifier with a gain
of 50 db, the input and output impedances of the amplifier being equal to the charac-
teristic impedance of the line. The output of the amplifier is connected to the input
terminals of another 4000 m length of the same transmission line, which is followed
by a second identical amplifier and a third 4000 m length of the same transmission
line. The final transmission line section is terminated in its characteristic imped-
ance., What is the signal voltage at the final terminal load impedance?

Attenuation is loss or negative gain. When expressed in nepers or decibels, attenuations and ampli-
fier gains are algebraically additive. The attenuation of each transmission line section in decibels is

0.0010 X 4000 X 8.686 — 34.7 db. The total attenuation of the system is then 3 X 34.7 — 2 X 50 =
4.1 db. From equation (4.16), the rms output voltage V,, for the system is given by

41 = 201logy|2.50/Vyyl or Vg, = 1.56 volts rms

The specifications for a form of “Twin-Lead” plastic insulated parallel wire trans-
mission line used as lead-in wire from television receiving antennas are: character-
istic impedance = 300 ohms, signal velocity = 82%, attenuation = 2.8 db/(100 ft) at
144 MHz. Find approximate values for the distributed circuit coefficients L and C
for the cable.

At the television frequency of 144 MHz, the attenuation factor of the line is « = 0.028/8.686 =
8.22 X 10-3 nepers/ft. Since the signal velocity is 82% = 0.82 X 8.00 X 108 X 3.28 = 8.07 X 108
ft/sec, the wavelength A on the line is A = v,/f = (8.07 X 108)/(144 X 10%) = 5.60 ft, and g = 27/A =
1.12 rad/ft. Clearly « <€ B. This justifies the approximation from equation (4.10) that g8 = oVLC
(so that v, = 1/VLC) and the approximation from equation (4.12) that Z, = VL/C. Using these
approximations, L = Zy/v, = 300/(8.07 X 10%) = 0.373 microhenries/ft, and

C = 1/v,Z, = 1/(8.07 X 108 X 300) = 4.1 picofarads/ft

Supplementary Problems

A switch is closed at ¢ = 0 to connect a signal voltage v(f) = 5.0 sin (27104 —7) to the input ter-
minals of a 30 mile length of uniform transmission line whose attenuation is 0.010 nepers/mile, and
on which the signal velocity is 165,000 miles/sec. The line is terminated in its characteristic
impedance. On a common time scale extending from ¢ =0 to ¢ = 0.3 milliseconds, graph the
voltage as a function of time at (a) the input terminals of the line, (b) the midpoint of the line,
(¢) the terminal load end of the line.

Ans. (a) v(t) = —5.0 sin 27104, from ¢t =0 to t = 0.3 milliseconds.
(b) v(t) = —4.8 sin 2710%4(t ~— 0.091 X 10-3), from ¢ = 0.091 milliseconds to ¢ = 0.3 milliseconds.
(¢) v(t) = —8.7 sin 27104(¢t — 0.182 X 10—3), from ¢ = 0.182 milliseconds to ¢ = 0.3 milliseconds.
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414,

4.15.

4.16.

4.17.

4.18.

4.19.

4.20,

421,

4.22,

The signal voltage connected to the input terminals of a lossless transmission line 300 meters long
is given by: v(t) =0, ¢ < 0; 2(¢) = 10(1 —107¢), 0 < t < 0.1 microseconds; v(t) =0, ¢ > 0.1 micro-
seconds. The signal velocity on the line is 80% of the free space velocity of electromagnetic waves.
Graph the voltage pattern on the line at (a) ¢ = 0.05 microseconds, (b) ¢ = 0.5 microseconds.

Ans. (@) v(z) =5 at z=0; v(2) =5+52/12, 0<2<12m; 2() =0, 2> 12 m.
®) v(z) =0, 2 <96 m; v(2) =10(2/24—4), 96 <2<120m; v(z) =0, z> 120 m.

A transmission line of characteristic impedance 80 + jO ohms and negligible losses branches at its
load terminals into three secondary transmission lines which all have the same characteristic
impedance Z; and are all terminated nonreflectively. Their input terminals are connected in parallel
as the terminal load of the first transmission line. (a) If the first transmission line is terminated
nonreflectively, what is the value of Z,? (b) If the phasor voltage magnitude is 1.00 volts rms on the
first transmission line, what is the power delivered to the terminal load impedances of each of the
secondary transmission lines?

Ans. (a) Zy = 240 ohms. (b) Power to each terminal load = 4.2 milliwatts.

From consideration of equation (4.12) show that the phase angle of the characteristic impedance
Z, of a uniform transmission line cannot lie outside the range —45° to -+45° for a line constructed
of ordinary passive materials (i.e. R, L, G and C all positive and real).

Show that for a uniform transmission line of low total attenuation (al € 1) and terminated in its
characteristic impedance, the efficiency of power transmission is given by (1 — 2al) X 100%.

A transmission line has an attenuation factor 0.050 nepers/mile and is terminated in its character-
istic impedance. For what length of line will the efficiency of power transmission by the line be
50%? What is the attenuation in decibels of such a length of line? Ans. 6.93 miles, 3.0 db.

For standard RG/58-U plastic dielectric flexible coaxial transmission line, two of the specifications
are that the signal velocity is 66% and that the attenuation at a frequency of 50 MHz is 2.7 db/100 ft.
If it were desired to use a length of this cable to delay a signal by 1.00 microseconds between two
points of a circuit operating at 50 MHz, what length of cable would be required and by what factor
would the signal voltage be reduced while undergoing the delay?

Ans. 650 ft. Voltage would be reduced to 0.133 of initial value, assuming the line terminated in its
characteristic impedance. (In radar circuits and many other applications it is often desired
to delay a signal by times of the order of a few microseconds. The numerical answers to this
problem explain why cables are awkward and inefficient for the purpose. Mechanical delay lines,
involving the much lower velocity of sound waves in solids, are commonly used. These require
transducers at each end to convert the electrical signal into mechanical form and back.)

If the characteristic impedance of a transmission line at a frequency of 5.0 kHz is 350 — 7125 ohms,
what is its characteristic admittance at the same frequency? What parallel combination of
resistance and capacitance connected as terminal load on the line would provide a nonreflective
termination? Amns. 0.00253 + 70.000906 mhos. 395 ohms in parallel with 0.0288 microfarads.

Referring to equation (4.12), what ratio relations must exist among the four distributed circuit
coefficients R,L,G and C of a uniform transmission line at any frequency « rad/sec to make the
characteristic impedance Z; real?

Ans. Z, as given by equation (4.12) will be real if the phase angle of the numerator term on the
right is equal to the phase angle of the denominator. This will be true if L/R = C/G, for
any value of o.

If the relation R/L = G/C exists among the distributed circuit coefficients of a uniform transmission
line, show that « = RVC/L =VRG, v, =1/VLC =VG/R/C, and Z,=VL/C=VR/G, all of

which are independent of frequency.



Chapter 5

Propagation Characteristics and
Distributed Circuit Coefficients

5.1. The nature of transmission line problems.

Transmission line engineering consists of designing transmission lines to meet desired
operating specifications. The statement of these specifications will usually include values
of the characteristic impedance Z,, the gttenuation factor 2, and the phasg factor 8 (or phase

3 L"f - 0 3 . . 3
velocity v,) that must be provided at one or more signal frequencies. Requirements in addi-
tion to these wave propagation characteristics may include ratings for voltage breakdown,
temperature rise at full load, or various aspects of mechanical behavior. Detailed discussion
of these non-propagation features of transmission lines is outside the scope of this book.

"7 The final solution of a practical transmission line problem will be in the form of a set
of prescribed data for the dimensions, cross-sectional configuration and materials of the
line conductors, and of the dielectric between them or surrounding them. It might therefore
be expected that appropriate design formulas should directly relate the physical attributes
of a line to its wave propagation behavior. Such expressions can indeed be constructed, but
their complexity makes their solution mathematically awkward, and they provide poor
insight into the consequences of varying any of the individual design parameters.

The experience of several decades seems to suggest that the best foundation for the
practice of transmission line design is a thorough familiarity with the results of trans-
misgion line analysis, for a wide variety of line constructions. Transmission line analysis,
in turn, appears to be best comprehended when the distributed circui i L. G

are used as an intermediate step between the physical data of dimensions and
materials, and the ultimate signal propagation characteristics.

This chapter deals with practical algebraic and numerical processes. for evaluating

_a, B and Z, for a transmission line at angular frequency o from the values of R,L,G and C
at that frequency. The reverse problem, finding R, L, G and C that will give desired values

of «, B and Z,, is also discussed. In Chapter 6 the functional relations between R,L,G and C
and the physical structure of a line are developed. When the results of this chapter are
combined with those of Chapter 6, the attenuation factor, phase factor and characteristic
impedance of any uniform line can be determined from its geometry and materials, or con-
versely, a line can be designed to provide desired values of those operating parameters.

5.2. Polar number solutions.

In Chapter 4 it has been shown that the propagation of voltage and current waves along
a uniform transmission line at angular frequency » is completely described by the attenua-
tion factor «, the phase factor B8, and the characteristic impedance Z,= R¢+ jXo, when
there are no reflected waves present. The quantities «, 8 and Z, are expressed in terms of
the distributed circuit coefficients of the line at angular frequency », by the equations

y = a+jB8 = V(R +joL)(G + juC) (5.1)

_ — ’R + joL
Zo = Ro+jXo = G ¥ 7aC (5.2)

46
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It is obvious that for any set of values of R,L, G, C and » these equations can be solved
in a straightforward manner by the standard methods of complex number algebra. To
perform the square root operation, the product and quotient of the complex numbers
involving the distributed circuit coefficients must be brought to polar form.

The arithmetical operations to be performed are:

a = |ylcosy, B = |y/siny

where W = VBTG IOPE, ¢ = & <tan—l% + tan“%)
and Ro = |Zo| cos o, Xo = |Zo|sin b,

R2 + m2L2 172 1 (DL
where 7 = \{Groam  ® = 3 (tan_"ﬁ - tan“%)
Example 5.1.

The distributed circuit coefficients of a parallel wire pole-mounted telephone line with copper con-
ductors 0.128 in. in diameter spaced 12 in. between centers are
R = 6.74 ohms/mile G = 0.29 micromhos/mile
L = 0.00352 henries/mile C = 0.0087 microfarads/mile

at a frequency of 1000 Hz. Find the attenuation, phase velocity and characteristic impedance of the line
at that frequency.

lvl = V{6.742 + (27 X 1000 X 0.00352)2}1/2 X {(0.29 X 10-8)2 + (27 X 1000 X 0.0087 X 10—8)2}1/2
= 0.0356/mile
1 22.1 54.7 X 106 1
= = -1 -l = o 0y — o
¥ 2<tan 6.74 + tan 0.29 X 10_6> 2(73.0 + 89.7°) 814
Then a 0.0356 cos 81.4° = 0.00534 nepers/mile = 0.00534 X 8.686 = 0.0434 db/mile

0.0356 sin 81.4° = 0.0352 rad/mile
vp ©/B = 6283/0.08362 = 178,500 miles/sec

w
b

and [Zo] = V(6.742 + 22.12)1/2 X 108/(0.292 + 54.72)1/2 = 650 ohms
80 = }(73.0°—89.7°) = —8.4°
R, = 650 cos(—8.4°) = 648 ohms
X, = 650 sin(—8.4°) = —95 ohms

In this example the phase angle of G + joC differs from 90° by only 0.3° of angle, while
the difference from 90° of the phase angle of R + joL is about fifty times as great. This is
a very typical illustration of the relative values that R,.L,G and »C are likely to have for
virtually all types of transmission lines over frequencies from kilohertz to gigahertz.

Setting G = 0 in the above example, instead of 0.29 micromhos/mile, would have no
effect on the calculated values of g, v,, |Zo| or Ry, and would change « and X, by only 2%.

The fact that the shunt conductance coefficient G of a transmission line is often variable
with time or not amenable to simple theoretical treatment (e.g. the effect of rain or ice on a
pole-mounted open wire line, or the local variations in paper-insulated twisted pair cable)
is therefore generally of little importance.

The dominant role of the phase angle of R+ joL (i.e. its deviation from 90°) in deter-
mining the phase angles y and 6, means that the attenuation of most practical transmission
lines is due largely to the distributed resistance R, and the distributed conductance G usually
makes little or no contribution to it. Exceptions are most likely to occur at very low fre-
quencies of a few hertz or extremely high frequencies of several gigahertz.

Example 5.2.

Find the attenuation and phase velocity at a frequency of 100 MHz for the transmission line whose
distributed circuit coefficients at that frequency are given in Example 4.9, page 35.

The magnitudes and phase angles of R + joL and G + jwC were determined in Example 4.9, with the
phase angles expressed in terms of their small deviations from »/2 rad. Using those values,

at+iB = V201/(z/2 — 4.88 X 10—%) X 0.0217/(z/2 — 6.91 X 10~5)

= V4.36/(x — 557X 10—%) = 2.09/(x/2 — 2.78 X 10—4)
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Again, trigonometric tables are not needed, since the sine of this angle is 1.000 and the cosine is equal
to the radian deviation of the angle from =/2.

Then « + j8 = b6581X10~¢ 4+ 7209 m—1. Hence
a = b.81X10~%nepers/m = 5.056X%X10-3 db/m
_ _ 27 X108 rad/sec _ s
v, = o/f = 509 radim 3.00 X 108 m/sec

In contrast with the earlier calculation for the characteristic impedance of this same line,
where the values of R and G were responsible only for the appearance of a small and
unimportant reactance component X, in the result, it is evident in this analysis that B and
G determine the value of the highly important attenuation factor «, which would be zero
if R and G were both zero.

Thus in solving equation (5.1) by polar number arithmetic, it is much more important to
retain full significant figure precision in expressing the phase angles of R+ joL and
G + joC than in solving equation (5.2). The imaginary part of Z, is of no practical concern
if it is small compared to the real part, but the real part of y is of prime interest no matter
how small it may be relative to the imaginary part.

Although it is always possible to solve (5.1) and (5.2) by the use of polar numbers, with or
without the help of small-angle approximations when applicable, the calculations are in
many cases made more quickly and conveniently using derivations that avoid complex num-
bers. For cases in which the small-angle approximations are valid, Section 5.3 shows that
very simple approximate real number expressions can be found for each of «, 8, Ro and Xo.
Section 5.4 develops perfectly general real number solutions of (5.1) and (5.2) which are
most effective when the phase angles of R + joL and G + joC are not close to 90°. The two
techniques are complementary in that the method of Section 5.3 can be used only at fre-
quencies above some minimum value for any particular transmission line, while the method
of Section 5.4 lacks precision unless the frequency is below a value that is specific for each
line. The latter method is particularly advantageous for making a series of calculations of
a, B, Ro and X, at small frequency intervals in the range of low frequencies used for trans-
mission of teletype signals, control data, and voice frequency telephony.

5.3. The “high-frequency” solutions.

The conditions that produce phase angles near 90° for the terms R+ joL and G + joC
are oL > R and «C > G, conditions that can always be met at some value of frequency for
any transmission line provided R and G do not themselves increase with frequency as rapidly
as the first power of the frequency. (It is shown in Chapter 6 that R is independent of
frequency at low frequencies and increases as the square root of the frequency at high
frequencies, while G, although usually increasing linearly with frequency, is too small at
low frequencies to affect the propagation characteristics of any line, and at high frequencies
approaches asymptotically a constant fraction of «C which is very small compared to unity.)

Equations (5.1) and (5.2) can be rewritten in the form

a«+ i = JjoVLC (1 + R/juL)"2 (1 + G/juC)'? (5.3)
Zo = Ro+ jXo = VLIC (1 + R/jeL)2 (1 + G/juC)V? (5.4)

When the inequalities «L/R > 1 and oC/G > 1 are satisfied, the imaginary terms of each
of the expressions in parentheses on the right are very small compared to unity. Expanding
these expressions by the binomial theorem, performing the indicated multiplications, and
equating real and imaginary terms respectively on the two sides of each equation, inde-
pendent explicit relations are obtained for «,B,R. and X, as real-number functions of
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R,L,G,C and o. If terms in the expansion as far as (R/joL)? and (G/jC)? are retained, the
results are

e« = (3RVC/L + 3GVL/C){1 — 3(R/2.L — G/2.C)?} (5.5)

B = oVLC{1 + }(R/2:L — G/2,C)?} (5.6)

Ro = VL/C {1 + ¥R/2uL — G/2.C)(R/2uL + 3G/24C)} (5.7

Xo = —V/L/C (R/2L — G/24C) {1 — }[(R/20L)? + 2(R/2L)(G/2.C) + 5(G/2.C)?]}  (5.8)

One of the most obvious features of these four equations is that each contains the term
(R/20L — G/2,C). 1t is apparent that if a transmission line’s distributed circuit coefficients
could be adjusted to make this factor equal to zero, then «, v, = /8, and R, would be inde-
pendent of frequency (to the extent that R,L,G and C are themselves independent of fre-
quency), and X, would be zero, making Z, real and independent of frequency. The relation
among the coefficients required to achieve this result is R/L = G/C. It was first noticed by
Oliver Heaviside in the 1880’s, and a line whose distributed circuit coefficients obey these
proportions is known as a “Heaviside distortionless line”, since it transmits signals of any
time pattern without change of wave shape.

Although the propagation characteristics of the Heaviside distortionless line are in
themselves highly desirable, the case is of little or no practical importance. A line designed
to meet this specification turns out to be uneconomiecal in its use of materials, and electrically
inefficient. Furthermore, the unavoidable frequency dependence of some of the distributed
circuit coefficients means that the Heaviside relation cannot be maintained with high
precision over a large signal bandwidth.

The more important conclusion that can be drawn from equations (5.3) to (5.6) is that if
oL/R and «C/G are sufficiently large compared to unity, then all the terms involving these
ratios can be dropped, and «, »/B8, Ro and X, are again independent of frequency (X, being
zero), still subject to B, L, G and C themselves being independent of frequency.

The resulting expressions, known as the “high frequency approximations” are

o = RIZ, + 3GZ, (5.9)
Ve = o/ = 1VLIC (5.10)
Z,., = R, = VLIC (5.11)

X, =0 (5.12)

where the result of (5.11) has been incorporated in (5.9).

The minimum frequency that will qualify as a “high” frequency and justify the use of
these simplified equations, depends on the actual values of B, L, G and C for a particular line,
and on the accuracy desired in the result. For some open wire transmission lines the
approximate formulas are adequately accurate at all frequencies above a few kilohertz.
Coaxial lines have lower ratios of L/R and C/G in general, and the approximate formulas
may be useful for them only when the frequency is above a few hundred kilohertz. Before
using (5.9) to (5.12) to evaluate o, v, and Z, from the distributed circuit coefficients at fre-
quency o, the values of the ratios «L/R and +C/G must always be checked to make sure the
approximate formulas will have the needed accuracy.

Inspection of equations (5.5) to (5.8) indicates that any fixed set of values for the ratios
oL/R and »C/G will not provide the same accuracy in all four of the approximate high
frequency formulas. For example, the approximate calculations for both « and 8 (or vp)
from equations (5.9) and (5.10) will differ by less than 1% from the values given by equation
(6.1) if oL/R and oC/G are both greater than 5. For these same conditions the error in the
approximation for R, could amount to as much as 14%, and X, instead of being zero could
be as great as 10% of R,.
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Conservatively, it can be said that the four approximate formulas are all sufficiently
accurate for practical purposes if both oL/R and «C/G are greater than 10, but the calcula-
tions may be good enough for many applications if these ratios exceed 4 or 5. Almost
invariably «C/G is much larger than «L/R, so that it is usually sufficient to check the value
of the latter. If the two ratios are nearly equal, the accuracy of the approximate formulas
is considerably increased, because of the term (R/2oL — G/2.C). The estimates listed above
are for the least favorable case, where one of the ratios has the minimum value stated and
the other is much larger.

It is shown in Chapter 6 that for most transmission lines of engineering interest, the
distributed circuit coefficients L and C may be very precisely independent of frequency
over the entire range of frequencies from a few tens or hundreds of kilohertz up to micro-
wave frequencies of several gigahertz. It is then true that for all operating frequencies
above the minimum frequency at which the approximate transmission line formulas are
valid, the characteristic impedance Z, (= Ro=V/L/C) and the phase velocity v, (=o/f=

1/y/LC) are quite literally “constants” of the line, for any particular line.

The distributed circuit coefficients R and G, on the other hand, increase steadily and
considerably with frequency. The attenuation factor « is a linear function of each and hence
cannot be considered a “constant” of a line over any appreciable range of frequencies. It
must be evaluated at suitable intervals of frequency, from values of R and G appropriate to
each frequency.

Although the reactance component X, of the characteristic impedance is also to a first
approximation a linear function of B or G (in equation (5.8)), it is in addition inversely
proportional to frequency. At frequencies for which the approximate high frequency
formulas give adequate accuracy for the calculations of a, v, and R,, the value of X, will
correspond to a phase angle for Z, not exceeding a few degrees. This angle will diminish
as the frequency increases. Consequently no attention need be paid to the behavior of Xo
(or the phase angle of Z,) as the frequency increases beyond the minimum value for which
X, is acceptably small.

Example 5.3.

The distributed circuit coefficients for a certain coaxial transmission line at its operating frequency of
2.00 megahertz are R = 24.5 ohms/mile, L = 296 microhenries/mile, G = 14.2 micromhos/mile and C =
0.111 microfarads/mile. (z) Are the approximate high frequency formulas accurate enough for calculating
a, v, and Z; at the stated frequency? (b) What are the values of a, 8,2, v, By and X, at that frequency?

(a) At 2.00 megahertz,
wL/R = (27 X 2.00 X 108)(296 X 10—6)/24.6 = 152

«C/G = (27 X 2.00 X 106)(0.111 X 10—8)/(14.2 X 10—6) = 98,200

Hence the approximate formulas will be extremely accurate.

(b) It is advisable to calculate Z, first, since its value is needed in calculating «. From equations (5.11)
and (5.12),

Zone = VL/C 4+ j0 = V(296 X 10—6)/(0.111 X 10~8) + jO0 = 51.6 -+ jO ohms

From equation (5.9),
aps = 3IR/Zy+ 3GZ, = 24.5/(2X51.6) + $(14.2 X 10-8 X 51.6)
= 0.237 + 0.00087 = 0.237 nepers/mile

At this moderately low frequency the losses caused by G are typically very small compared with the
losses caused by B. However, when G represents lossiness in dielectric insulation or supports, as is
usually the casc, it increases with frequency more rapidly than R does, and for this same transmission
line at gigahertz frequencies, G might contribute at least a few percent of the total attenuation,

From equation (5.10),
Bur = oVLC = 27 X 2.00 X 108+1/(296 X 10—6)(0.111 X 10—8) = 72.0 rad/mile
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Then A = 2#/8 = 27/72.0 = 0.0873 miles, and
v, = o/f = (27 X 2.00 X 108)/72.0 = 174,500 miles/sec

The fact that this phase velocity is somewhat below the free space velocity of electromagnetic waves
(186,300 miles/sec) must be attributed to the presence of insulating material, whether continuous or
periodic, used to support the center conductor of the line.

That the imaginary part of Z, is indeed negligible can be checked to a good approximation by
using the first terms in equation (5.8),

X, = —VL/C(R/2oL — G/2uC)
= —51.6[1/(2 X 152) — 1/(2 X 98,300)] from (a) above,
= —0.17 ohms

5.4. Solutions in the transition ranges of frequency.

Each of the examples presented so far in this chapter has provided transmission line
data in the form of values far the distributed circuit coefficients B,L,G and C at a single
specified frequency, from which the line’s propagation factors «, 8, v, and Z, were calculated
at that frequency. In such problems the ratios oL/R and «C/G can be evaluated from the
coefficients at the specified frequency to determine whether or not the simplified high fre-
quency approximate formulas may be used for the calculations. However, it would in
general not be legitimate to use the same data in attempting to find the lowest frequency at
which, for example, oL/R = 10, since the values of L and R might not be the same at that
lowest frequency as at the specified frequency.

Because of this fact that R,L,G and C each varies with frequency in individual ways
and for different reasons, it is never possible to state a single set of values of these quantities
for any transmission line, from which to determine the behavior of the line over a range
of frequencies from a few hertz to several gigahertz. In spite of this limitation two impor-
tant statements can be made that provide a basis for further classification of forms of
solution of equations (5.1) and (5.2), page 46. The justification for these statements is
developed in Chapter 6.

(1) If a frequency is found for which oL/R > 1 and «C/G > 1, so that the high fre-
quency approximate solutions can be used at that frequency, then the inequalities continue
to hold for all higher frequencies. This is equivalent to saying that B and G never increase
more rapidly than the first power of the frequency, which is true for all materials used in
practical transmission lines.

(2) For any transmission line there is a range of low frequencies starting at zero fre-
quency (d-c) and extending typically to a frequency in the region of several kilohertz or
several tens of kilohertz, throughout which the distributed circuit coefficients R,L and C
have constant values independent of frequency, and the distributed conductance G is either
constant or small enough to have no effect on the propagation behavior of the line. (In the
latter case G is considered to be constant and equal to zero.)

The range of low frequencies over which the distributed circuit coefficients of a line
remain effectively constant usually includes the frequencies regularly used for transmission
of voice, data and telegraph signals. The variations of the propagation factors of a line
with frequency in this range are therefore of interest.

Inspection of equations (5.1) and (5.2) shows that even when R, L,G and C do not them-
selves vary with frequency, the magnitudes and phase angles of y and Z, can be expected to
experience large fluctuations as the frequency rises from zero. The value of Z,, for example,
will change from R/G + jO at very low frequencies to /L/C + jO at very high fre-
quencies, and these values may differ by a factor of 10 or 100 or more. The changes with
frequency will occur most rapidly in the frequency ranges where the transitions occur from
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oC/G €1 to oC/G > 1 and from oL/R €1 to oL/R > 1, since in these frequency ranges
the phase angles of the terms G + joC and R + joL change from approximately zero to ap-
proximately 90°, and the magnitudes change from the magnitudes of the real parts to the
magnitudes of the imaginary parts. The two transition ranges of frequency are determined
by distinctly different aspects of a transmission line. They can be thought of as extending
approximately one decade above and one decade below the frequencies at which oC =G
and oL = R, respectively. For most lines the former frequency is of the order of one
hertz or less, while the latter is larger by a factor of several hundred or several thousand.
Hence the transition frequencies for the term G+ joC generally lie in a region of no
practical interest, while those for the term R + joL may be of considerable importance.

Example 5.4.

The distributed circuit coefficients R, L and C of a 19 gauge paper-insulated twisted-pair transmission
line in a telephone cable are constant over the frequency range from d-c to 30 kilohertz, having the values
R = 86 ohms/mile, L = 1.00 millihenries/mile, C = 0.062 microfarads/mile. The distributed conductance
G has a d-c value of 0.010 micromhos/mile, a value at 1 kilohertz of approximately 1.0 micromhos/mile, and
is directly proportional to frequency for frequencies above about 20 hertz. (a) At what frequency is
oL = R? (b) At what frequency is «C = G? (c¢) At the frequency for which «L = R, what are the values
of a,B,v, Ry and X,? (d) At the frequency for which «C = G, what are the values of the same five
quantities? (¢) What estimate can be made of the lowest frequency above which the high frequency ap-
proximate solutions for «,8,v, and Z, will be reasonably accurate? (f) What values are given for
a, B,v, and Z, by the high frequency approximate formulas at the frequency found in (e), if R, L and C are
assumed to have their constant low frequency values at that frequency, and G is assumed determined by the
law of variation stated for it?

(@) The frequency f at which oL = R is given by 27f(1.00 X 10—3) = 86 from which f = 13.7 kilohertz.

(b) At 1 kilohertz, oC = 27 X 1000(0.062 X 10—8) = 390 micromhos/mile, and «C/G = 390. Over the fre-
quency range in which G is directly proportional to frequency, the ratio «C/G will be constant at this
value of 390. Hence the condition «C = G can be reached only at a frequency so low that G has
attained its constant d-c value. This will occur at a frequency f given by 27£(0.062 X 10-8) =
0.010 X 10-6 or f = 0.026 hertz.

(c) a+ j8 = V(86 + j86)(13.7 X 10— + j0.0053) = (0.31 + 70.74) miles—1
v, = o/ = (2rX13,700)/0.74 = 116,000 miles/sec
o 86 + j86 _ .
By + jX, = \[13.7>< 10-% + jo.0058 ~ 140 — 758 ohms
(d) e+ jB8 = /(86 + 70.00016)(0.010 + 50.010) X 10-6 = (0.00102 + j0.00042) miles—1
v, = o/ = (27X 0.026)/0.00042 = 390 miles/sec
o 86 + 70.00016 _ iy
Ry, + jX, = %.0104_7.0-010) X108 = 72,000 — 530,000 ohms

(¢) The high frequency approximate formulas will be usefully accurate at frequencies for which «L/R and
wC/G exceed about 5 or 10. It has been seen that «wC/G = 390 for all frequencies above a few hertz.
On the other hand, oL/R =1 at 13.7 kilohertz and is directly proportional to frequency in the fre-
quency range where L and R are constant. The minimum frequency at which the approximate high
frequency formulas should be used is therefore governed entirely by the variation with frequency
of the term «wL/R, and a value of about 100 kilohertz would appear to be a reasonable estimate., More
exact information in Chapter 6 about the variation of B and L with frequency for a transmission line
using 19 gauge copper wires shows that at a frequency of 100 kilohertz, B will have risen about 35%
above its constant low frequency value, and L will have fallen by a few percent. These trends continue
at higher frequencies. The estimated minimum frequency for using the high frequency approximate
formulas might therefore be increased to about 200 kilohertz.

(N Zyne = VL/C + jO = 127 + jO ohms. Using the value of G at 200 kilohertz,

aps = $R/Zy+ 3GZy = 0.34 + 0.01 = 0.35 nepers/mile
vppe = 1/VLC = 127,000 miles/sec
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The simplicity of the calculations in part (f) is alluring, but for the data of this particular
problem none of the propagation factors determined from the high frequency approximate
formulas can be considered to be of useful accuracy. This is because the lowest frequency
at which the high frequency approximate formulas should be used (200 kilohertz) is much
higher than the highest frequency (80 kilohertz) at which the distributed circuit coefficients
R, L and C remain constant at their low frequency values. The disparity between these two
frequencies is not a universal feature of transmission line data, and there are practical
transmission lines for which the gap between the two disappears.

For the cable pair of the above example, it would of course always be legitimate to use
the simplified high frequency approximate formulas to determine o, vp and Z, at any fre-
quency above about 200 kilohertz, provided the values of R,L,G and C employed were the
values at the frequency of the calculation. It is true that at all frequencies above 200 kilo-
hertz, v, and Z, for this line are no longer affected by the values of R and G and are functions
only of the distributed circuit coefficients L and C. However, it must not be concluded that
at frequencies above 200 kilohertz the values of v, and Z, become constant and independent
of frequency. It is shown in Chapter 6 that for this 19 gauge line, the distributed inductance
L reaches a constant high frequency value only at frequencies above about 100 megahertz.
Both v, and Z, for this particular transmission line will change by several percent in the
frequency range from 200 kilohertz to 100 megahertz, even though the high frequency
approximate formulas are valid throughout this range.

The results of parts (¢) and (d) in Example 5.4 provide a typical illustration of the
enormous difference between the values of all the propagation factors of a transmission line
at the low transition frequency of the term G +joC and the values at the much higher
transition frequency of the term R + joL. Example 5.5 gives further detail on the variation
of the propagation factors of the same transmission line at frequencies between the two
transition frequencies. The large variations with frequency of a, v, Re and X, in the range
of frequencies used for transmission of voice, teletype and other low frequency signals,
means that such signals would suffer serious amplitude distortion and phase or delay
distortion when transmitted over considerable lengths of any simple uniform transmission
line. In practice these distortions are counteracted by the periodic insertion in the trans-
mission line of lumped-element equalizing networks whose transfer functions are comple-
mentary to those of the line sections between networks.

In addition to the polar number and high frequency approximation techniques for solving
equations (5.1) and (5.2), a third form of solution is available which is particularly useful
when it is desired to trace the variations with frequency of the attenuation factor, phase
velocity and characteristic impedance through the range of low frequencies in which the
distributed circuit coefficients R, L and C are effectively constant, and the distributed con-
ductance G is small enough to be neglected. The method is well suited to computer
programming.

Equation (5.1) is a complex number equation. It can therefore be written as two inde-
pendent equations, one relating the real parts on the two sides, the other relating the
imaginary parts. These two independent equations can then be solved simultaneously to
obtain explicit expressions for « and g8 as functions of R, L, G, C and ». The same procedure
applied to (5.2) yields explicit expressions for Ry and X, as functions of the same quantities.
It turns out that the same terms occur in all four of the resulting expressions, with
permutations of signs.

Squaring both sides of (5.1),
o® — B2+ 2jaB = RG — o’LC + j(oCR + oLG)
From the real terms, o — B2 = RG — «2LC (5.13)
From the imaginary terms, 2aB = oCR + oLG (5.14)
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Eliminating first g, then «, from (5.1:9) and (5.14),

a = {3[V(R?+ 2L)(G? + *C?) — »LC + RG]}12 (5.15)
B = F[V(R?+ L) (G? + »*C?) + o!LC — RG]}12 (5.16)
Similar operations on (5.2) result in
1
Ry, = —-\/(;2__*._—‘”—-._2_02 3V (R? + «*L?)(G? + 0®C?) + «’LC + RG]}'/? (5.17)
X, = =1 {(3[V(R? + «*L*)(G? + »*C?) — «*LC — RG]}”2 (5.18)

Xo can have either sign, determined by the relative values of R, L, G, C and o, but in the
development of equation (5.18) information about the sign of X, has been lost in the various
squaring and square root operations. It must be determined by an additional direct ref-
erence to equation (5.2), which shows that X, is positive if the phase angle of the numerator
is greater than the phase angle of the denominator, and conversely. Thus if oL/R > oC/G,
X, is positive. For most practical transmission lines «C/G > «L/R, and X, is negative.

Equations (5.15) to (5.18) have been derived from (5.1) and (5.2) without making any
approximations. They involve only elementary operations in real number arithmetic. It
might seem logical therefore that they would constitute the preferred method of calculating
a, 8, Ro and X, for any transmission line at any frequency, from the distributed circuit
coefficients R,L,G and C at that frequency. There are two principal reasons why this
is not so.

In the first place, for calculations at a single frequency equations (5.15) to (5.18) lack
convenience. They are difficult to remember, and the arithmetic involved provides numerous
opportunities for trivial errors. The fundamental equations (5.1) and (5.2), on the other
hand, are more easily remembered because they are so basic, and the expressions on the
right contain their own instructions as to the polar number operations to be performed.
Calculations using (5.1) and (5.2) never lose sight of the magnitudes and phase angles of the
terms R + joL and G + joC, and it is a simple matter to check the order of magnitude of the
final results from the original data.

Secondly, and of greater importance, at frequencies for which oL/R > 1 and oC/G > 1,
equation (5.15) gives an indeterminate answer for o. This is because the term under the
square root sign and the term «2LC become very nearly equal. The significant figures for
their difference disappear, although their difference is in general greater than the residual
term RG. The same indeterminacy occurs in (5.18) under the same conditions, but this is
of no consequence since it is merely saying that X, is small.

It is clear therefore that equations (5.15) to (5.18) are not the universal equations they
might appear to be, but are in fact exactly complementary to the high frequency approximate
equations (5.9) to (5.12). The latter provide the simplest solutions to (5.1) and (5.2) when
the ratios oL/R and »C/G are greater than 5 or 10, while the former provide workable
solutions when these ratios are less than 5 or 10. The polar number technique, employing
small angle approximations when necessary, can be used for any values of the ratios.

Example 5.5.

For the 19 gauge paper-insulated twisted-pair telephone cable transmission line whose distributed
circuit coefficients are given in Example 5.4, find the values of «,8,v,, By and X, at frequencies of
100, 300, 1000, 3000, 10,000 and 30,000 hertz.

Table 5.1 below shows how the various separate terms of equations (5.15) to (5.18) are conveniently
evaluated in sequence at the stated frequencies. «,B,vp, By and X, are then easily found from the appro-
priate combinations of these terms. It will be noted that if G =0 were used everywhere, instead of the
values for G given by the original data of the problem, there would be no perceptible change in the calcu-
lated results. This is likely to be true for most transmission lines at low frequencies.
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Table 5.1
Frequency R2 G2 w2L2 w2C?
hertz (ohms/mile)2 {mhos/mile)2 (ohms/mile)2 (mhos/mile)2
D*
100 7400 1.00 X 10—14 0.395 1.62 X 109
300 7400 9.0 xX10—14 3.55 137X 107®
1000 7400 1.00 X 10—12 39.5 1.562 X 107
3000 7400 9.0 X 10—12 355 1.37 <108
10,000 7400 1.00 X 1010 3950 1.52 X105
30,000 : 7400 9.0 x10-10 35,600 1.37 X104
R2 + 212 W?LC RG VDE
E A B F
100 7400 2.45 X105 8.6 X106 3.35 X103
300 7400 2.20 X 104 2.6 X105 1.01 X 102
1000 7440 245 X103 8.6 X105 3.36 X 102
3000 7760 2.20 X 102 2.6 X104 1,03 x 101
10,000 11,350 2.45 X101 8.6 X104 415x10-1
30,000 42,900 2.20 2.6 X10-3 2.42
a= 8= R, = X, =
VIF—A+B) | VIF+A—B) | vy=0/g | VIF+A+BYD | V3(F—A—B)YD
nepers/mile rad/mile miles/sec ohms ohms
100 0.040 0.041 15,300 1060 ~1030
300 0.071 0.072 26,200 616 —598
1000 0.125 0.134 46,900 345 —319
3000 0.20 0.25 75,400 214 —172
10,000 0.29 0.58 108,000 147 —75
30,000 0.33 1.52 124,000 130 —28

*@ is so small that G2+ »2C2 = »2C2,

Although the previously mentioned indeterminacy in the calculations of @ and X, is not numerically
demonstrated at the frequencies covered by the table, it is evident that the percentage difference between
the terms F' and A is diminishing rapidly with increasing frequency, while at the same time the ratio of
either of these terms to the term B is increasing.

Example 5.6.

At a frequency of 1000 hertz the distributed circuit coefficients of a transmission line are R = 10.1
ohms/mile, L = 0.0040 henries/mile, G = 0.30 micromhos/mile and C = 0.0080 microfarads/mile. Should
values for «, B8,v,, B, and X, at that frequency be calculated from equations (5.1) and (5.2) using polar
numbers, from the high frequency approximate equations (5.9) to (5.12), or from the transition frequency
equations (5.15) to (5.18)?

At the frequency of 1000 hertz, oL/R =25 and »C/G = 168. The low value of the former means that
the high frequency approximate formulas would not give usefully accurate results. If the calculations are
to be made at only the one frequency, they will probably be made most quickly and with fewest opportunities
for error by the polar number method using equations (5.1) and (5.2).
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The calculations of Table 5.1 were based on the assumption that for the 19 gauge copper
conductors of the transmission line involved, the distributed ecircuit coefficients R,L and C
were independent of frequency over the frequency range of the table, and the distributed
conductance G was too small to affect the results at any frequency. The criteria developed
in Chapter 6 show that the constancy of C is reliably established by the properties of insu-
lating media, and that for the relatively small wires of this cable pair, the phenomenon of
“skin effect” just begins to affect the values of R and L at the top frequencies of the table.
Up to 10 kilohertz the deviation of R and L from the constant low frequency values is less
than 1%. At 30 kilohertz, L diminishes by about 1% and R increases by 4%.

For a transmission line with larger conductors the distributed circuit coefficients R and L
will vary much more over the same frequency range. Some relevant data and results are
shown in Table 5.2 for an open wire transmission line consisting of 165 mil diameter
copper-steel wires spaced 12 in. between centers, the ratio of copper sheath cross-sectional
area to steel core cross-sectional area producing a resultant d-¢ conductivity 40% of the
value for solid copper conductors of the same outer diameter. The values given for the
distributed circuit coefficients were determined by experimental measurements at each
frequency.

Table 5.2

Frequency R L G* C* a vy R, X,
kilohertz ohms/mile mH/mile nepers/mile miles/sec ohms ohms
0.3 9.9 3.38 0.0071 149,000 731 —386
1.0 10.3 3.32 0.0085 174,000 617 —140
3.0 10.8 3.29 0.0092 178,500 597 —51
10.0 114 3.25 0.0098 182,000 591 —16
30.0 12.6 3.24 0.0108 182,300 590 -5
140.0 24.7 3.23 0.0211 182,500 - 589 —2

*The value of C is constant over the frequency range at 0.0093 microfarads/mile. For an open wire line the
value of G is largely governed by surface leakage at the supporting insulators. It shows little variation
with frequency, but is very much dependent on ambient atmospheric conditions. Measurements on this
line indicate a nominal average value for G of 0.50 micromhos/mile at all frequencies, too small to affect
any of the results.

It is strikingly apparent that over the frequency range 300 hertz to 30 kilohertz, the
percentage variations in the propagation factors a, vp, Ro and X, are very much smaller for
the transmission line of Table 5.2 than for the line of Table 5.1. This is due to the fact
that the upper transition frequency defined by «L/R =1 occurs at about 500 hertz for the
high-inductance low-resistance line of Table 5.2, and at 18.7 kilohertz for the relatively
low-inductance high-resistance line of Table 5.1. For the line of Table 5.2, in fact, the
high frequency approximate formulas are quite accurate above a frequency of about 5
kilohertz, and since C is constant and L is very nearly constant for frequencies above that
value, both v, and R, show little change at higher frequencies, and X, is small enough to be
negligible.

For the composite conductors of the line of Table 5.2, the distributed resistance R does
not vary according to any simple law in the frequency range covered by the table. At
frequencies above about 50 kilohertz both R and « should increase directly as the square
root of the frequency.
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55. Summary concerning the solutions of equations (5.1) and (5.2).

The criteria for choosing among the various solution procedures for equations (5.1)
and (5.2) that have been discussed in Sections 5.2, 5.3 and 5.4, and the principal reliable
generalities about the variations of R,L,G and C with frequency that affect the solutions
of those equations, can be summarized as follows:

(1) The distributed capacitance C of a transmission line is the least variable with fre-
quency of all the distributed circuit coefficients. If most of the medium surrounding the
conductors of a line is air, the value of C may remain constant within 1% from zero fre-
quency to gigahertz frequencies. If there is a continuous solid dielectric associated with the
conductors, as in a plastic filled coaxial line, the value of C may in some cases change by as
much as a few percent over several decades of frequency.

(2) For any transmission line there is a range of low frequencies, typically extending
from d-c to several kilohertz, in which the distributed circuit coefficients R and L do not
vary with frequency.

(8) It is shown in Chapter 6 that when the frequency increases above the range defined
by (2), there is a frequency interval of three or four decades in which the variation of
R and L with frequency obeys a very complicated law. For frequencies above this interval,
R increases directly as the square root of the frequency, and L becomes independent of
frequency.

(4) The distributed conductance G is directly proportional to the frequency, within a
few percent or less over many decades of frequency, for all transmission lines in which G
is due to molecular lossiness of dielectric material surrounding or supporting the con-
ductors. For such lines G is usually too small to affect the propagation factors of the line
at frequencies below the megahertz or gigahertz region.

If a line is exposed to outdoor weather, or to any other form of contaminating environ-
ment, the distributed conductance G is likely to be highly variable with time and unpredict-
able in value. Its variations must be measured experimentally before its effect on line
behavior can be understood.

(5) At frequencies for which «L/R > 1 and «C/G > 1 for any line, the simplified high
frequency approximate formulas (5.9) to (5.12) should always be used in calculating «, 8, 5,
and Zo (= Ro+j0). Under these conditions v, and Z, are independent of R and G, and Z,
has a sufficiently small phase angle to be considered real.

(6) The lowest frequency defined in (5), at which the high frequency approximate for-
mulas may be used, is not the same as the lowest frequency defined in (3), at which L
becomes independent of frequency. At frequencies above both of these lowest frequencies,
vp and Z, (= Ro+j0) become independent of frequency, and the term 3R/Z, in equation
(5.9) for « becomes proportional to the square root of the frequency. According to (4), the
term 4GZ, for any unexposed transmission line at high frequencies is directly proportional
to frequency. At low megahertz frequencies the latter term is usually very small compared
to R/2Z,, but since it increases more rapidly with frequency, the two terms may become of
comparable magnitude at high megahertz or gigahertz frequencies. +

(7) At the low frequencies of (2), the calculations of «, 8, ¥p, Ro and X, may be made by
either the polar number method using equations (5.1) and (5.2) directly, or by the real number
equations (5.15) to (5.18). For a calculation at a single frequency the polar number pro-
cedure is likely to be preferred. For calculations at several frequencies in the low frequency
range for the same line, (5.15) to (5.18) may be more efficient, and can be programmed for
computer use.

(8) At frequencies between the highest frequency defined in (2) and the lowest frequency
defined in (5) no helpful simplifications or quantitative generalizations are available. Cal-
culations may be made by either the polar number method or the real number equations
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(6.15) to (5.18). The values of R, L and G may all be undergoing considerable variation with
frequency, so that separate values for them must be used at each separate frequency.
Often G will be small enough to be neglected.

(9) If the conductors of a line are iron, or contain ferromagnetic material of any kind,
or if the interconductor space of a line contains any nonlinear materials such as ferrites or
ferroelectrics, the variations with frequency of the line’s distributed circuit coefficients
will not agree with the generalizations that have been listed, and the coefficients may also
vary with signal amplitude. Direct measurement of «,v, and Z, may be easier than any
attempt at analysis through R,L,G and C.

5.6. Solutions of the inverse form R, L, G, C = f(e, B8, Ro, Xo, o).

Further manipulations of (5.1) and (5.2) produce several additional relations between the
distributed circuit coefficients of a transmission line and its propagation factors, some of
which have computational usefulness in certain situations.

Multiplication of corresponding sides of (5.1) and (5.2) gives

(e +iB)(Ro+jXo) = R+ juL (5.19)
From the real terms of (5.19),
R = aRy— BXo (5.20)
From the imaginary terms of (5.19),
L M (5_2 1)_
Dividing corresponding sides of (5.1) by those of (5.2) gives
e+ i _ ,
Rt iXs = G + joC (5.22)
From the real terms of (5.22), «Ro + BXo 5.25)
R} + X; |
From the imaginary terms of (5.22),
—aXo + BRo
C @40 T Pivo 524
o(Rj + X3) (5.24)

Equations (5.20), (5.21), (5.23) and (5.24) appear to be general design equations for deter-
mining the distributed circuit coefficients that a transmission line would have to possess to
give a set of desired operating characteristics specified by values of a, 8, Ro and X, at fre-
quency o. The situation is, however, not as simple and straightforward as that statement
suggests.

It has been seen in the preceding sections of this chapter that at frequencies of a few
megahertz, the characteristic impedance of a typical transmission line can be very nearly
a pure resistance. It has also been pointed out that for the dielectric materials normally
used in high frequency transmission lines the value of G is too small to have any significant
effect on the propagation factors of a line at low megahertz frequencies. In proposing to
design a line for use at such frequencies, it might therefore seem entirely reasonable to
adopt the specifications Xo =0 and G = 0, along with specific values for «, 8 and R,.

Substituting these postulates into (5.23) gives the result « =0, which is incorrect
because the distributed line resistance R has not been required to be zero. Substituting these
postulates into (5.20) gives a value for R which is only half as great as the value given by the
high frequency approximate equation (5.9) for the same case.
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The explanation of these contradictions lies in the fact that it is not mathematically
possible as a consequence of (5.1) and (5.2) to have X, identically zero when G =0 and
o is finite. X, can be exactly zero for a line with finite attenuation only if the relation
R/L = G/C of the Heaviside “distortionless line” holds, as can be seen from (5.8), but this
means that G cannot be zero. It is possible for X, to be small enough to be unimportant
(relative to Ry) with G = 0, but even such a small value of X, can be significant in equations
(5.20) and (5.23), since for the high frequency line under discussion g is always much
larger than a.

The same difficulty does not arise in using equations (5.21) and (5.24), since the term
X is small compared with B8R, for the reasons already given, and can be dropped. Then
using v, = o/B, (5.21) becomes

L = Zo/vy (5.25)
and (5.24) becomes (assuming X, <€ Ry)
C = 1/(Zwwy) (5.26)
Equations (5.25) and (5.26) could have been derived directly from (5.10) and (5.11).

Further insight into the intriguing but somewhat academic problem associated with
equations (5.20) and (5.28) can be gained through another derivation. Let R+ X§ = |Zo
Then (5.23) becomes .

Gl|Zof2 = aRo + BX, ‘ (5.27)

Eliminating 8X, between (5.20) and (5.25),
2¢Ry = G IZ()I2 + R (5.28)

Eliminating R, between (5.20) and (5.25),

28Xo = G|Zo>—-R (5.29)
X 2
Dividing (5.29) by (5.28), B = %(%%) (5.30)
2
From (5.28), a = é% + Gglzgzl (5.81)

Equation (5.31) involves no approximations, and applies to all transmission lines at all
frequencies. It states that the relative contributions of a line’s distributed resistance R
and distributed conductance G to its attenuation factor « are proportional to R and G|Z,?
respectively. When |Z)| = Ry, equation (5.81) becomes the high frequency approximate
equation (5.9).

If the design postulates G =0 and X, = 0 for a high frequency line are substituted into
(5.81), there results
R - 20£Ro (5.32)

which could also have been obtained from (5.9).

Equations (5.25), (5.26), and (5.32) are simple and useful design equations for deter-
mining the values of the distributed circuit coefficients R,L and C that a transmission
line must have to attain specified values of «, v, and Z,, provided the inequalities »L/E > 1
and oC/G > 1 hold. The second of these is ensured by the postulate G = 0. There are no
correspondingly useful and simple design formulas for the general case at lower frequencies.
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Equation (5.80) shows in clear and explicit form that the phase angle of the character-
istic impedance of a transmission line, given by 6, = tan—! (Xo/Ro) can vary between +a/B
(when R =0 and the line losses are all due to G) and —a/8 (when G =0 and the line losses
are all due to R). Reference to (5.31) shows that the phase angle of a line’s characteristic
impedance will always be negative if the line’s distributed resistance contributes more than
its distributed conductance to the total attenuation.

Physically the ratio «/8 represents 1/2r of the attenuation of one wavelength of line
in nepers. For practical lines at radio frequencies this is always a number much smaller
than unity, but the results of Table 5.1 show that at low frequencies a/8 can be very close
to unity for a line with small conductors of relatively high resistance. Equation (5.1) shows
that |o/B| =1 always.

5.7. Concluding remarks on design of high frequency lines.

It has been seen that the specification X, = 0 can be identically met only by making the
line losses due to G equal to the line losses due to R. But the insulating material in a line
that gives rise to G plays only a mechanical support role. The conductors are the essential
electrical elements. If the conductors of a line are designed to have the maximum value of
R that will limit the attenuation to a specified value, from equation (5.82), it is always pos-
gible to provide the mechanical support economically with material for which the resulting
value of G will contribute much less to the attenuation « than R does, at least at frequencies
up to the high megahertz or gigahertz region. To achieve equality of losses from R and G
while retaining the same total attenuation, the designer would have to make the conductors
larger (to reduce E) and the insulating material more lossy. Most of the cost and weight
of a line is for the conductors, and this procedure would be economically indefensible. The
designer therefore chooses a line whose losses are due predominantly to conductor resistance,
and for which the phase angle of the characteristic impedance is consequently not identically
zero. At frequencies from a few tens of kilohertz to several gigahertz the phase angle is
always small enough to have no adverse effects.

5.8. Inductive loading.

Inductive loading, as mentioned in Chapter 1, is the technique of inserting identical
lumped magnetic-core inductance coils in series with the conductors of a transmission line
" at equal intervals along the line.

The advantages of inductive loading of a transmission line can be appreciated in terms
of the solutions developed in this chapter in the light of two fundamental facts. First, at
all frequencies for which there are at least a few loading coils per wavelength on a trans-
mission line, the resistance and inductance of the lumped coils have exactly the same effect
on the line’s transmission properties as if they were uniformly distributed along the length
of the line. Secondly, it is possible in a lumped inductance coil with a magnetic core to
achieve a much higher ratio of inductance to resistance than exists for any ordinary trans-
mission lines. A loaded line therefore has a considerably higher ratio of L/R and hence of
oL/R at all frequencies.

An obvious consequence of a higher value of wL/R for a line is that the high frequency
approximate equations become applicable down to lower frequencies. Practical loading
pushes the lowest frequency for which oL/R > 1 and «C/G > 1 well down into the voice
frequency range for all telephone lines, and even below the lowest voice frequency, for low
resistance lines. The improvement resulting from this is not just the trivial one of simpli-
fied calculations, but lies in the fact that since R, L and C are all nearly constant for telephone
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lines over the voice frequency range, and G is too small to have significant effects, the values
of e, v, and Z, given by equations (5.9) to (5.11) approach the very desirable condition of being
independent of frequency on a loaded line, while they might vary by a factor of 2 or 3 or
more over the same frequency range of 300 to 3500 hertz, on the same line without loading.

When the high frequency approximate equations are valid, it follows from (5.7) that
loading increases the characteristic impedance of a line. For a given level of transmitted
power this means the voltage is increased and the current decreased relative to their
respective values on the same line without loading. The power losses in the distributed
resistance R are therefore reduced, and those in the distributed conductance G are increased,
as can also be seen directly from (5.15). The losses in G are still only a very small fraction
of the total losses, so the net result is a substantial decrease in the total attenuation factor
of the line, particularly at the higher voice frequencies.

Lumped inductance-coil loading of transmission lines has two serious disadvantages.
The first follows from equation (5.10), which indicates that the phase velocity on a line is
reduced when the effective distributed inductance is increased, for a fixed value of distributed
capacitance. Two-way telephone conversation on trans-continental voice-frequency tele-
phone circuits two or three thousand miles long would be adversely affected by the extra
gignal delay introduced by inductive loading.

The second disadvantage of lumped inductance-coil loading is a consequence of the fact
that a line loaded in this way is no longer a uniform distributed system. Instead it must
be regarded as a sequence of finite line sections, each consisting of a loading coil and the
section of line between two consecutive coils. Analysis of this composite system reveals that
it has the properties of a low-pass filter, characterized by a “cut-off”” frequency that is
inversely proportional to the square root of the product of the total series inductance per
line section and the total shunt capacitance per line section. If the circuit components
themselves are independent of frequency and signal strength, the transmission properties
of the loaded line regarded as a sequence of filter sections are practically independent of
frequency from zero frequency to within a few percent of the cut-off frequency, and there
is no transmission at frequencies above the cut-off frequency.

For any specified amount of loading (i.e. of added coil-inductance per unit length of line),
the cut-off frequency can be increased without limit by using more coils at smaller separa-
tions, with less inductance per coil. However, it turns out to be prohibitively expensive to
achieve useful amounts of loading with cut-off frequencies higher than a few Kkilohertz,
and there has been very little use of loading on commercial transmission line circuits
operating at frequencies above the voice-frequency range.

Coaxial lines have been continuously loaded by winding magnetic tape around the center
conductor. This avoids the cut-off frequency limitation, but the non-linearity of magnetic
materials introduces cross-talk when such a circuit is multiplexed.

Although loading is nowadays not able to make any useful contribution to commercial
telephone practice, there are specialized applications such as small-wire light weight tele-
phone lines for emergency military field use where it may still occasionally play a helpful
role.
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Solved Problems

For the transmission line of Example 5.1, page 47, find o, 8, By and X, at 1000 hertz
using the real number equations (5.15) to (5.18), pages 53 and 54.
From (5.15),
{%[{6.742 =+ (27 X 1000 X 0.00352)2}1/2 X {(0.29 X 16-6)2 + (27 X 1000 X 0.0087 X 10—6)2}1/2
— (27 X 1000)2 X 0.00352 X (0.0087 X 10—%) + 6.74 X (0.29 X 10—6)]}1/2

{4[0.00127 — 0.00121 + 0.0000019]}1/2 = (0.00008)1/2 = 0.005 nepers/mile

It will be noted that although the significant figures of the original data imply a precision of
about 1% or better, the meaningful precision in this calculated value for « is only about 10%. A
check shows that wL/R =3 and oC/G = 200. Under these conditions equations (5.15) and (5.18)
begin to show the indeterminacy in the calculations of « and X, which becomes total indeterminacy
when both ratios are greater than about 10. The indeterminacy does not occur for 8 (hence vp)
and Ro.

Within the estimated indeterminacy the above value for « agrees with the more precise value
found in Example 5.1.

Substituting the values calculated above for the appropriate terms into (5.16),
B = {}[0.00127 4 0.00121 — 0.0000019]}1/2 = (0.00124)/2 = 0.0352 rad/miles
which agrees with the result determined by the polar number method.
With better than 0.1% precision, for the data of this problem V@ F 2C2 = oC = 54.6 X 10-8,
and 1/V/GZ + <2C? = 1830. Then from (5.17),
R, = 1830{1{0.00127 + 0.00121 + 0.0000019]}1/2 = 644 ohms
which also agrees with the earlier result.
From (5.18),
X, = —1830{}[0.00127 — 0.00121 — 0.0000019]}1/2 = —1830 X 0.005 = —92 ohms

The deviation of this value from the correct value is much smaller than the inherent indeterminacy
in the calculation. The negative sign has been determined independently, from the fact that
«C/G > «L/R.

R
Il

For the transmission line of Example 5.1, page 47, find «, v, and Z, using the high
frequency approximate formulas (5.9) to (5.12). Compare the deviations of the results
from those obtained in Example 5.1 with the errors to be expected according to equa-
tions (5.5), (5.6) and (5.7).

From (5.11), Zons = Ry = VL/C = 1/0.00352/(0.0087 X 10—%) = 636 ohms. Since R/2wL = 0.153
and G/24C = 0.00266, R, according to equation (5.7) should be greater than VL/C by a factor

1 + (0.153 — 0.00266)(0.153 + 0.00898) = 1.011

The correct value of B, should then be 636 X 1.011 = 643 ohms, as found in Example 5.1.
From (5.9), using Z,y, from (5.11),
aye = 6.74/1272 4+ (0.29 X 10—6) X 318 = 0.00530 + 0.000092 = 0.00539 nepers/mile

According to equation (5.5) the correct value of a should differ from this high frequency
approximate value by the factor 1 — 1(0.153 — 0.00266)2 = 0.989. Hence the correct value should be
0.00539 X 0.989 = 0.00534 nepers/mile, confirming the result obtained by polar numbers.

From (5.10), vpns = 1/V/LC = 180,700 miles/sec. This corresponds to the high frequency approxi-
mation By = wVLC = 0.0348 rad/mile. According to equation (5.6) the correct value of 8 should be
greater than this by the factor 1+ }(0.153 —0.00266)2 = 1.011, or g = 0.0348 X 1.011 = 0.0352
rad/mile, as found previously, and v, = 178,500 miles/sec.

Finally, from (5.8), X, should be —636(0.150)(0.988) = —94 ohms, as previously obtained.

Although in this problem the lower of the two ratios «L/RE and »C/G is only 3.3, the error in the
values of a,v, and Ry incurred by using the high frequency approximate equations is just slightly
over 1%. The true phase angle for Z;, however, is about —8°, instead of the value zero given by
the high frequency approximation.
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5.3‘

54.

5.5.

For the transmission line of Example 5.3, page 50, at all frequencies above 1 mega-
hertz, the distributed resistance R is directly proportional to the square root of the
frequency and the distributed conductance G is directly proportional to the frequency.
The distributed inductance L and distributed capacitance C are constant over the
same frequency range. Determine the values of the attenuation factor «, the phase
velocity v, and the characteristic impedance Z, at frequencies of 1, 5, 10, 50 and 100
megahertz.,

From the values calculated in Example 5.3 for «L/R and «C/G at 2 megahertz, it is readily seen
that these vratios will always be greater than 100 for all of the frequencies listed. Hence the high
frequency approximate equations (5.9) to (5.12) will be very accurate.

Since (5.10), (5.11) and (5.12) do not involve R or @G, the characteristic impedance Z, will be
constant at the 2 megahertz value of 51.6 4 j0 ohms, and the phase velocity v, will be constant at
the 2 megahertz value of 174,600 miles/sec, for all frequencies from 1 megahertz to 100 megahertz
(and higher).

At 2 megahertz the attenuation factor o has a component 0.237 nepers/mile caused by distributed
resistance R, and a component 0.00037 nepers/mile caused by distributed conductance G. At any
frequency f megahertz, the former component will change to 0.237V/f/2 and the latter component

will change to 0.00037(f/2), from equation (5.9) and the stated laws of variation of B and G with
frequency. Then

a = 0287V1/2 + 0.00037(1/2) = 0.168 nepers/mile
At 5 megahertz, « = 0.237V5/2 -+ 0.00037(5/2)
At 10 megahertz, a = 0.237V10/2 -+ 0.00037(10/2) 0.530 nepers/mile
At 50 megahertz, « = 0.237V/50/2 + 0.00037(50/2) 1.19 nepers/mile
At 100 megahertz, e« = 0.237\/100/2 + 0.00037(100/2) = 1.69 nepers/mile

At 1 megahertz the contribution of G to the attenuation factor is not perceptible, but at 100
megahertz it is slightly greater than 1%.

At 1 megahertz,

0.376 nepers/mile

A high frequency transmission line operating at a frequency of 10 megahertz has an
attenuation factor « = 0.0022 db/m. Its phase velocity is 85%. What is the phase
angle of its characteristic impedance if the losses due to distributed conductance G
are negligible?

The phase angle of the characteristic impedance of a transmission line in terms of propagation
factors and distributed resistance and conductance is obtainable from equation (5.30). If G =0,
8o = tan—1(Xy/R;) = tan—1(—a/B). Here « must be in nepers/unit length and g8 in rad/unit length,
the length unit being the same for both.

From the data of the problem, a = 0.0022/8.686 = 0.000253 nepers/m, and B8 = /v,
(27 X 107)/(0.85 X 3.00 X 108) = 0.246 rad/m. Then ¢, = tan—1(—0.000253/0.246) = —0.00103 rad
0.06°, This very small phase angle is typical for low loss lines at high frequencies.

At a frequency of 3000 hertz, measurements (using methods described in Chapter 7)
on a transmission line whose dielectric is mainly air show the characteristic impedance
Zo to be 560 — j115 ohms, and the phase velocity to be 105,000 miles/sec. Determine
the attenuation factor of the line and the values of the distributed circuit coefficients
R, L and C at the frequency of the measurements.

The specification that the dielectric of the line is mainly air implies that the distributed con-
ductance G is to be taken as zero. From equation (5.80) with G =0, o/ = —X/R,, where g =
w/v, = (2r X 3000)/105,000 = 0.180 rad/mile. Then o« = —0.180(—115/560) = 0.0370 nepers/mile.

From equation (5.20),

R = aRy; — pX, = 0.0370 X 560 — 0.180 X (—115) = 20.7 + 20.7 = 41.4 ochms/mile
The equality of the two terms in equation (5.20) is an identity when G = 0.

From equation (5.21),

L = (aXo+ BRy)/w = [0.0870 X (—115) + 0.180 X 560]/(27 X 3000) = 0.00512 henries/mile

From equation (5.24),

C = (—aX,+ BRy)/[o(RE+ X3)] (0.0370 X 115 + 0.180 X 560)/[(2z X 8000)(5602 + 1152)]
0.0170 microfarads/mile

il
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A type of commercial coaxial transmission line widely used for transmission of a few
kilowatts of power in the frequency range 1 to 1000 megahertz is known as 50 ohm
7/8” standard rigid line. The designation means that the outer diameter of the
outer conductor of the line is 7/8”, that the characteristic impedance over the fre-
quency range is precisely 50 + 70 ohms, and that the conductors are smooth nonflexible
metal tubes. Additional specifications given by the manufacturer for this type of
line are: velocity v, = 99.8% over the frequency range; attenuation factor « =
0.0425 db/(100 ft) at 1 megahertz, 0.135 db/(100 ft) at 10 megahertz, 0.440 db/(100 ft)
at 100 megahertz, and 1.49 db/(100 ft) at 1000 megahertz. The line conductors are
of copper, and the center conductor of the line is supported by regularly spaced thin
discs of low loss teflon. Determine the distributed circuit coefficients R, L, G and C of
the line at frequencies of 1, 10, 100 and 1000 megahertz.

The fact that v, and Z, are independent of frequency over the stated frequency range means
that the high frequency approximate equations (5.9) to (5.12) are valid with high accuracy in that
range. Then from equation (5.25), L = Zy/v, = 50/(0.998 X 3.00 X 108) = 0.167 microhenries/m; and
from equation (5.26), C = 1/(Z,v,) = 1/(50 X 2.99 X 108) = 66.8 micromicrofarads/m.

It has been noted above, and is proved in Chapter 6, that for a transmission line whose con-
ductors are of nonmagnetic material, the distributed resistance R increases directly as the square
root of the frequency above some minimum frequency (below which the rate of increase with fre-
quency is less rapid), and that for a line protected against contaminating environments (such as a
coaxial line with a solid metal outer conductor) the distributed conductance G resulting from
dielectric losses in the insulating supports is directly proportional to frequency.

From equation (5.9) it follows conversely that if the attenuation factor « of a line increases
directly as the square root of the frequency over an appreciable range of frequencies, it must be
caused entirely by distributed resistance R in that range; while if « increases more rapidly than the
square root of the frequency over a frequency interval, it contains a component caused by distributed
conductance G in that interval.

Inspection of the attenuation factor data for the 7/8” standard rigid coaxial line shows that
between 1 and 10 megahertz « increases almost precisely as the square root of the frequency. It is
therefore a reasonable assumption that at 1 megahertz the contribution to the attenuation factor
from the distributed conductance G is negligible. Then from equation (5.22) or (5.9), R = 2aR, =
2 X 0.0425 X 50/(8.686 X 30.48) = 0.0161 ohms/m at 1 megahertz. Increasing as the square root of
the frequency, the values of R at the other frequencies will be 0.0509 ohms/m at 10 megahertz,
0.161 ohms/m at 100 megahertz, and 0.509 chms/m at 1000 megahertz.

If the attenuation factor at 1 megahertz is due entirely to the distributed resistance R, then the
contribution of R to the attenuation factor at 1000 megahertz would be 0.0425y1000 = 1.34 db/(100 ft).
The fact that the actual attenuation factor at that frequency is 1.49 db/(100 ft) indicates that there
is a contribution of 0.15 db/(100 ft) from the distributed conductance G. Using part of equation
(5.9), G at 1000 megahertz can be calculated from 0.15/(8.686 X 80.48) = G X 50/2; hence G = 28
micromhos/m. Writing « = ag + ag where ag = R/Z, and ag = §GZ,, the results for all four
frequencies can be tabulated as follows.

Frequency R G ar ag a
megahertz ohms/m mhos/m db/(100 £ft) db/(100 £ft) db/(100 ft)
1 0.0161 23 X109 0.0425 0.00015 0.0426
10 0.0509 23 X108 0.134 0.0015 0.135
100 0.161 23 X107 0.425 0.015 0.440
1000 0.509 23 X108 1.34 0.15 1.49

The initial hypothesis that the attenuation at 1 megahertz is due entirely to distributed resistance
R is seen to have been in error by less than \}%.

(A separate proof, based on other relations derived in Chapter 6, shows that the frequency of
1 megahertz is in fact high enough for the resistance of the copper conductors of the 7/8" standard
rigid line to be increasing directly as the square root of the frequency. For the same conductors
at a frequency of 0.1 megahertz, the rate of increase of resistance with frequency would be
much less.)



CHAP.5] PROPAGATION CHARACTERISTICS, DISTRIBUTED CIRCUIT COEFFICIENTS 65

5.7‘

5.8.

5.9.

For the transmission line of Problem 5.6 find at each of the frequencies 1, 10, 100 and
1000 megahertz, the length of line that will have a transmission efficiency of (a) 99%,
(b) 90%, (c) 50%, (d)10%, (¢) 1%. The transmission line is assumed to be terminated
always in its characteristic impedance. Plot the results on log-log coordinates of
length and frequency, and draw contours of constant percent transmission efficiency.

Transmission efficiency means (output power)/(input power). When a transmission line of
length ! has an attenuation factor a, the ratio of output voltage to input voltage or output current to
input current when the line is terminated nonreflectively is e—!, Hence the ratio of output power
to input power is ¢ 221, As a sample of the 20 calculations to be made, the length ! of 7/8" standard
rigid copper coaxial line having a transmission efficiency of 90% at a frequency of 1000 megahertz
will be given by e—2 % 1.491/(8.686 X 30.48) = 0,90, from which [ = 9.36 m. Toward the other extreme,
a line length ! having 10% transmission efficiency at a frequency of 1 megahertz will be given by
€72 % 0.04251/(8.686 X 3048) = 0,10, and ! = T170 m. (Note: 100 ft = 30.48 m).

An alternative form of solution is to use the attenuation factor in db/(100 ft) directly, and solve
for a length !’ in hundreds of feet. For the second case calculated the answer would be obtained
from 0.04250' = —10 log;( 0.10 and I = 235. Then the length is 235 X 100 = 23,500 £t = 7170 m.

For the transmission line of Examples 4.9, page 35, and 5.2, page 47, check that the
high frequency approximate equations are valid at the frequency of operation, and use
the equations to find o, v, and Z, at that frequency.

For the line in question, R = 0.098 ohms/m, L = 0.32 microhenries/m, G = 1.5 micromhos/m
and C = 34.5 micromicrofarads/m, all at a frequency of 100 megahertz. Then oL/R = 2060 and
«C/G = 14,600 at that frequency, and the high frequency approximate equations should give results
as accurate as those obtainable by any other method. From equations (5.11), (5.9) and (5.10)
respectively,

Z, Ry + j0 = VIIC = 963 + j0 ohms
a = 3R/Zy+ 1GZ, = 5.09X10~¢ + 0.72x10~4¢ = 5.81 X 10~4 nepers/m
1/YLC = 3.01X 108 m/sec

Vp

The trivial deviations from the resuits obtained with polar numbers are due to rounding off of
significant figures. At this fairly high frequency the distributed conductance G of the line has
contributed almost 15% of the total attenuation factor.

A standard RG-11/U flexible coaxial transmission line for use at frequencies up to a
few hundred megahertz, has the following specifications according to a handbook:
Zy = 75 ohms (nominally real); velocity = 66%; distributed capacity C = 20.5 micro-
microfarads/ft; attenuation factor in decibels/(100 ft) = 0.27 at 3.5 megahertz, 0.41
at 7 megahertz, 0.61 at 14 megahertz, 0.92 at 28 megahertz, 1.8 at 50 megahertz,
and 2.4 at 144 megahertz.

(a) Are the data for Zo, v, and C consistent?

(b) What is the value of the distributed inductance L?

(¢) Does the distributed conductance G contribute to the attenuation at all frequencies?

(d) Determine the distributed resistance R and the distributed conductance G over
the frequency range.

(a) It can be taken for granted that the high frequency approximation equations are valid for any
practical transmission line at frequencies of 3.5 megahertz and higher. When this is the case
equation (5.26) indicates a relation between Z, (real), v, and C. The stated data to be con-
sistent must agree with this equation. It is most convenient to use v, in m/sec. Then C =

1/(Zyv,) = 1/(756 X 0.66 X 8.00 X 108) = 67.3 micromicrofarads/m = 20.5 micromicrofarads/ft. The
data for Z,, v, and C is therefore consistent within better than }%.

(b) From (5.25), L = Zy/v, = 0.378 microhenries/m = 0.115 microhenries/ft.
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(¢) If the attenuation factor were due entirely to distributed resistance R, it would increase directly
as the square root of the frequency over the frequency range, assuming the lowest frequency
3.5 megahertz is above the range of low frequencies in which R has a complicated law of varia-
tion with frequency, as discussed in Chapter 6. Starting from 0.27 db/(100 ft) at 3.5 mega-
hertz, it should then be 0.38 db/(100 ft) at 7 megahertz, 0.54 db/(100 ft) at 14 megahertz, 0.76
db/(100 ft) at 28 megahertz, etec. Clearly the attenuation factor is increasing considerably more
rapidly than the square root of the frequency, even at 3.5 megahertz, and at all the listed fre-
quencies « must contain a component caused by distributed conductance G.

A suggested approach for determining B and G as a function of frequency is to designate
symbols for the values of R and G at any one frequency, and then to write equation (5.9) at that
frequency and one other frequency, incorporating the postulate that R should increase directly
as the square root of the frequency and G should increase directly as the frequency in the range
containing the two frequencies. The two equations can then be solved simultaneously for the
values of R and G at the chosen frequency.

The postulated laws of variation are likely to be most accurate at the highest frequencies,
and familiarity with the manner of variation of resistance with frequency for fairly small
wires such as the center conductor of this coaxial line suggests that R may not be increasing
as rapidly as the square root of the frequency at 8.5 megahertz (compare Table 6.2, page 80).
Then let R4 be the distributed resistance of the line in ohms/ft at 14 megahertz, and Gy, be
the distributed conductance of the line in mhos/ft at that frequency. Equation (5.9) at 14

megahertz gives
0.61/(8.686 X 100) = Ry ,/(2XT5) + G4 X 75/2

and at 144 megahertz (5.9) becomes
2.4/(8.686 X 100) = (B, X V144/14)/(2 X TB) + (G4 X 144/14) X T5/2

The unit of length in all terms is the foot. Solving these equations simultaneously, R;4 =
0.095 ohms/ft and G4 = 1.91 micromhos/ft. The values of R and G at other frequencies are
then easily found from the assumed laws of variation. When the resulting values of R and G
are used to compute the attenuation factor at other frequencies, deviations of a few percent
from the handbook values are found in some cases, the discrepancy being greatest at 3.5
megahertz.

5.10. A widely used type of loading for 19 gauge cable pair telephone transmission lines
consisted of coils having 44 millihenries inductance and about 3 ohms resistance
inserted in the line at intervals of 1.15 miles. The distributed circuit coefficients of
the loaded line were then R = 89 ohms/mile, L = 0.039 henries/mile, C = 0.062 micro-
farads/mile, and G as a function of frequency had the same values stated in Example
5.4, page 52. Determine the attenuation factor, phase velocity and characteristic
impedance of the loaded 19 gauge cable pair at frequencies of 300, 1000 and 3000 hertz,
and compare the results with those in Table 5.1, page 55, for the same line without
loading, at the same frequencies.

The values of wL/R are not quite high enough at frequencies of 300 and 1000 hertz for the high
frequency approximate equations (5.9) to (5.12) to be adequately accurate, but the values of the ratio
are too high at those frequencies for the real number equations (5.15) to (5.18) to be entirely free
of indeterminacy in the calculations of « and X, (see Problem 5.1). Hence the polar number method
is advisable at all three frequencies. The results are:

Frequency « vp Zy
hertz nepers/mile miles/sec ohms
300 0.050 17,900 901 — j423
1000 0.056 20,000 806 — j141
3000 0.0567 20,300 796 — j47

Comparison with the results of Table 5.1 at these frequencies shows that:

(1) The attenuation factor is reduced more than 71% at 3000 hertz, 556% at 1000 hertz, and 39%
at 300 hertz.
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5.12,

5.13.
5.14.

5.15.

5.16.

(2) Over the frequency range 300 to 3000 hertz, the attenuation factor varies by 66% of its 3000
hertz value, for the unloaded line, but by only 12% for the loaded line. The percent equaliza-
tion improvement is approximately the same for the phase velocity and the real part of the
characteristic impedance.

(8) The phase angle of the characteristic impedance is greatly reduced at all frequencies, beconung
less than 10° at 1000 and 3000 hertz.

(4) Although the phase velocity shows much less variation over the voice frequency range for the
loaded line than for the same line without loading, it is also reduced in value at all frequencies.
This is an unavoidable disadvantage of inductive loading that would be a serious hazard on lines
more than 1000 to 2000 miles long, because of the resulting transmission delay time.

Supplementary Problems

An open wire transmission line with copper conductors 0.165”” in diameter spaced 8’ between centers
has the following distributed circuit coefficients at a frequency of 1000 hertz: R = 2.55 ohms/km,
L = 1.94 millihenries/km, C = 0.0062 microfarads/km and G = 0.07 micromhos/km.

(a) Find the attenuation, phase velocity and characteristic impedance of the line at the stated
frequency, using polar numbers.

(b) Assuming R,L,G and C independent of frequency, what is the lowest frequency at which the
high frequency approximate formulas would be usefully accurate for this line?

(¢) If ¢, v, and Z, are calculated from the high frequency approximate formulas, what is the error
in ‘each compared with the accurate values obtained by the polar number method?

(d) How useful are the real number equations (5.15) and (5.18) for calculating a and X, for this line
at the frequency of 1000 hertz?

Ans. (a) R+ joL = 12.46/78.2° ohms/km; G+ juC = (39.0 X 10-6)/89.9° mhos/km; « = 0.00229

nepers/km; B8 = 0.0219 rad/km; v, = 287,400 km/sec = 96%; Z, = 565/—5.9° = 562 —
758 ohms.

(b) Approximately 1000 hertz.

(¢) Z, = VL/C = 559 ohms; v, = 1/YVLC = 288,300 km/sec = 96%; « = &R/Zo + 34GZ, =
0.00230 nepers/km. These values differ from those in part (a) by about 4% in each case,
in agreement with the indications of equations (5.5)-(5.7).

(d) The calculations for B, and X, have an arithmetical precision of about 5%, compared with
better than 1% for the calculations of part (a).

Show that if the calculations of Table 5.1, page 55, are extended to a frequency of 500 kilohertz,
using the low frequency values for R,L and C, and the formula value for G, the justified significant
figures for the terms F' and A become identical, and the value of B is too small to be meaningfully
combined with (F' — A) in the evaluation of a or X;. (This result would still occur if the true values
of B,L,G and C at 500 kilohertz were used.)

Derive equations (5.5), (5.6), (5.7) and (5.8) from (5.1) and (5.2).

On log-log coordinates of wL/R and «C/G covering the range 1 to 1000 for each, plot contours of the
percent error to be expected in using the high frequency approximate equations (5.9)-(5.11) according
to equations (5.5)-(5.7), and contours of the phase angle of Z, according to equation (5.8). Use
separate sheets of graph paper for each set of contours. (For wL/R and «C/G less than 2 or 3, the
contours will be inaccurate because of the higher order terms that were dropped when writing
equations (5.5)-(5.8).)

Write a computer program for equations (5.15)-(5.18) and use it to check the results of Table 5.1,
page 56. Insert additional frequencies of 20, 30, 50, 200, 500, 2000, 5000 and 20,000 hertz.

From the results of Problem 5.14 or the data of Table 5.1, page 55, plot a,v,, Ry, X, and |Z,| as
functions of frequency on semi-log graph paper, with frequency on the logarithmic scale. What
evidence is there, from straight line portions of the resulting curves, that any of the plotted quan-
tities varies as the logarithm of the frequency over appreciable ranges of frequency?
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5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

5.26,

5.217.

5.28.
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Repeat Problem b5.14, plotting the data on log-log graph paper. What evidence is there, from
straight line portions of the resulting curves, that any of the plotted quantities varies as some
power of the frequency over appreciable ranges of frequency? If there are such indications, what
power of the frequency is involved in each case?

Repeat Problem 5.14, plotting the data on semi-log graph paper, with frequency on the linear scale.
What evidence is there, from straight line portions of the resulting curves, that any of the plotted
quantities varies exponentially with frequency over appreciable ranges of frequency?

Using the data of Example 5.6, page 55, find «, g8, v, Ry and X, for the transmission line at a fre-
quency of 1000 hertz, using (a) the polar number method with equations (5.7) and (5.2), and (b) the
real number equations (5.15) to (5.18). Compare the times required to make each of the calculations.
What would be the effect of letting G = 0?

Show that if a transmission line has a component «; of its attenuation factor caused by losses in
the distributed conductance G, and a component ap caused by losses in the distributed resistance R,
then the phase angle 6, of the characteristic impedance is given by 6y = tan—1 (ag — ag)/B.

Derive equations (5.20) and (5.21) from equation (5.19), page 58.
Derive equations (5.28) and (5.24) from equation (5.22), page 58.

C |Z,)2
Derive the relation g = -2‘%'0 +w_2;2Tol’ analogous to equation (5.81). From this write a universal

expression for v, in terms of L, C, Ry and |Z,|, valid for all transmission lines at all frequencies.
Show that if |Zy] = R, the expression reduces to equation (5.10).

Show that if G =0, equations (5.20) and (5.30) lead to equation (5.82) for all values of X,
(Eliminate X, from the first two equations.)

A standard 9 rigid copper coaxial transmission line, used to transmit power levels of 1 megawatt
at frequencies up to 10 megahertz, and } megawatt at 200 megahertz, has a characteristic impedance
of 50 + j0 ohms and a velocity of 99.8% at frequencies above 1 megahertz. The attenuation factor
of the line varies directly as the square root of the frequency over the frequency range 1 to 100
megahertz, being 0.0038 db/(100 ft) at 1 megahertz and 0.038 db/(100 ft) at 100 megahertz. Find
the values of R, L and C for the line over the frequency range 1 to 100 megahertz, and determine a
formula for the maximum value of G over the range, on the assumption that G is directly propor-
tional to frequency.
Ans. L = 0.167 microhenries/m; C = 66.8 micromicrofarads/m; these are the same as for the stand-
ard 7/8” line of Problem 5.6, page 64, since Z, and v, have. the same values for the two lines.
R = 0.00144\/frequency in megahertz chms/m. G < 6 X 10—%frequency in megahertz) mhos/m,
to contribute less than 1% to the attenuation factor at any frequency between 1 and 100
megahertz.

Derive equations (5.15)-(5.18), page 53 and 54, from equations (5.1) and (5.2), page 46.

Show that if G is negligible, the condition wL/R > 1 is equivalent to the condition «/2av, > 1,
and that the high frequency approximate equations are therefore valid for a transmission line if a
harmonic wave on the line experiences an attenuation of not more than 2 or 8 db in one wavelength
on the line. :

There is no apparent limit to the number of relations that can be discovered among transmission
line factors and coefficients and characteristics. The following are all exact relations when G = 0.
Proof of some of them involves a little ingenuity. Any of the equations from (5.15) to (5.24) and
from (5.27) to (5.81) may be used in the proofs, since all of these are also exact equations, derived
without approximation from equations (5.1) and (5.2). Show that,if G = 0:

(@) a = Btané,, where Z, = |Z|/8,.
) Xo=RyV1— LC’vpz, where v, = /.

© a=p/1- (vp/vp)2, where w, = 1/VLC, = phase velocity on the same line if lossless, i.e. if L
and C retain the same values but R =G = 0.
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5.29.

5.30.

d) a=BY(We— W,)/(Wo+ W), where W is the average energy stored per unit length in the
distributed capacitance of the line, and Wi, is the average energy stored per unit length in the
distributed inductance of the line, when the line is terminated in its characteristic impedance.
Hint: Start by writing the ratio of (5.15) to (5.16). Note that W = 1C|V|2 and W, = }L|I|2
where V and I are the rms phasor voltage and phasor current on the line respectively, and
V/I = Z, for the conditions stated. For purposes of proof the line can be assumed of infinitesi-
mal length, although the relation holds for any length of line, regardless of its total attenuation.)

(e) Z,=1/(Cv,) — jRv,/20.

It is undoubtedly true that the distributed inductance of a transmission line, of either the parallel
wire or coaxial configuration, could be increased by winding either or both of the line conductors
in the form of solenoidal coils, while retaining the same outer dimensions of the conductors.

For any of the lines whose distributed circuit coefficients are listed in the examples or problems
of this chapter, show that replacing any of the conductors by solenoids of the same outer diameter,
regardless of the wire size used in the solenoid, will not result in reducing the attenuation factor
of the line.

Serious consideration is given to the idea of operating long transmission lines at liquid helium tem-
peratures. The conductor resistance for superconducting metals then becomes extremely small
even at radio frequencies, and the attenuation is greatly reduced, being determined by the distributed
conductance G.

If the distributed resistance R of a transmission line could be made effectively zero, would
capacitive loading in the form of lumped capacitors connected across the line at regular intervals
promise the same improvements that inductive loading is able to realize for lines whose losses are
due mainly to distributed resistance?

It can be seen from the second term on the right of equation (5.9), page 49, that if B were
negligible for a transmission line, a reduced attenuation factor would result from capacitive loading
provided the ratio of the total distributed capacitance to the square of the total distributed con-
ductance for the loaded line was greater than for the original line. If the dielectric surrounding
the line conductors was largely solid material, improvement could undoubtedly be obtained by adding
loading capacitors with air dielectric, but if the dielectric of the line itself was mainly air, as in the
case of a coaxial line with the center conductor supported by periodic small pins or thin discs of
dielectric material, it might be difficult or impossible to construct loading capacitors with a suffi-
ciently higher ratio of capacitance to conductance.



Chapter 6

Distributed Circuit Coefficients
and Physical Design

6.1. Introduction.

Chapters 2 through 5 have developed transmission line analysis as an investigation of
the propagation of voltage and current waves on uniform transmission lines defined by
uniformly distributed electric circuit coefficients. Chapter 7 and subsequent chapters
continue the same analysis. The present chapter, dealing with the derivation of expressions
relating the distributed circuit coefficients of a uniform line to its dimensions and materials,
involves topics and methods that are not directly part of this mainstream of transmission
line theory.

Books on introductory circuit analysis, using the circuit element concepts of lumped
resistance, inductance and capacitance, almost invariably omit any reference to the physical
nature or construction of the units embodying these circuit properties. It is assumed that
information is available in other sources on how to calculate the equivalent circuit of a
specific real object, or how to design an assemblage of metals and dielectrics and ferro-
magnetic substances that will provide a circuit element meeting a desired specification.
Since resistance, inductance and capacitance are in effect shorthand notations for relations
between currents, charges and electromagnetic fields in bounded physical structures, the
creation of formulas for the circuit representation of such structures is undertaken, in
various degrees, by textbooks on electricity and magnetism or electromagnetic theory.

It is equally true that many books on electromagnetic theory develop equations for some
or all of the distributed circuit coefficients for at least the simpler configurations of uniform
transmission lines, and this could be used as a justification for omitting all such information
from a transmission line textbook. There is, however, a fundamental difference of intent
between the study of elementary circuit analysis and the study of transmission line engineer-
ing. The former seeks to convey a working knowledge of a few abstract relations between
currents, voltages and circuit elements, with no thought of the specific situations in which
these may occur. The latter, on the other hand, has an inherent concern to maintain a
contact with physical reality, and to illustrate its theoretical analyses in terms of actual
lines used for the transmission of signals and power. To achieve this purpose, it is essential
that a transmission line textbook present a full discussion of the ways in which the dis-
tributed circuit coefficients of a line are dependent on its geometry and materials. Most of
the standard textbooks on the subject have accepted this obligation.

The solution of boundary value problems in electromagnetic theory has been the business
of mathematical physicists for a eentury. So far as the calculation of resistance, inductance
and capacitance for either lumped or distributed devices is concerned, there now exists a
voluminous amount of data on a wide variety of structures, but the mathematical form of
the results is reasonably elementary only for constant unidirectional currents or voltages,
and for structures with the simplest of geometries, such as concentric spheres, concentric
circular cylinders, or infinite parallel planes. When the frequency is other than zero, even for
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these idealized geometries, calculations of resistance and reactance in some frequency ranges
require uncommon mathematical functions for their expression, with the consequence that
approximate formulas and graphical representations are widely used. Slightly less simple
symmetries, such as parallel or concentric square or rectangular conductors, pose very
difficult mathematical problems. Computer methods are needed to obtain adequate solu-
tions, and the results are given in tables or charts.

It is an exceedingly fortunate fact that the transmission line constructions which are
found to be experimentally optimal, in the sense of making most effective use of materials
by providing minimum attenuation or maximum power handling capacity at the lowest
cost and in the least space, involve only the simplest possible geometries. These are the
lines whose cross sections are illustrated in Fig. 2-2, page 9. No important advantages, on

either technical or economic grounds, have ever been claimed for lines with more unusual
cross sections.

6.2. Distributed resistance and internal inductance of solid circular conductors.

By far the most widely used transmission line conductors are solid homogeneous wires
of circular cross section. They are used as the center conductors of coaxial lines, the con-
ductors of parallel wire or shielded pair or multi-conductor lines, and as the single conductor
of image lines. Next in importance are tubular conductors of circular periphery, which are
used in all of the above applications, and also as the outer conductor of coaxial lines and as
the shield of shielded pair lines. The analysis that follows shows that an exact solution in
functional form can be found for the distributed resistance and distributed internal induct-
ance of homogeneous isotropie circular conductors, both solid and tubular, for all frequencies
at which such conductors are used in transmission lines. Such exact solutions are not pos-
sible for the “stripline” constructions shown in Fig. 2-2, nor for any other practical trans-
mission line cross section involving finite widths of plane surfaces.

If a wire of circular cross section has radius ¢ meters, and is made of homogeneous
isotropic material of conductivity ¢ mhos/m, its resistance per unit length at zero frequency
(i.e. its d-c distributed resistance) is given by

Rs. = mr1a2 ohms/m (6.1)

For the same isolated wire, considered indefinitely long, the inductance per unit length

derived as the total magnetic flux linking unit length of the wire when the wire carries unit

current is found to be infinite. It does not follow from this that the distributed circuit

coefficient L for a transmission line is infinite. The conductors of a transmission line are

not infinitely long isolated wires, and one of them always prescribes a finite limit for the
integral determining the magnetic flux linking the other.

The distributed inductance of any conductor, whether isolated or not, consisis of two
parts. One part is caused by flux-current linkages inside the conductor itself, the other by
linkages of the total conductor current with flux external to the conductor. These will be
designated as L; and L., respectively, in units of henries/m. For a solid circular conductor
of radius a carrying current I of zero frequency, an expression for the internal inductance
L;4.. is found as follows, referring to Fig. 6-1 below.

The current in an infinitesimal tube of radius 7; and thickness dr; in the conductor’s
cross section is (I/=a®)(2xr1dr:). Referring to the definition that inductance is the flux link-
ing a “circuit” per unit current in the circuit, this tube of radius », and thickness dr,
evidently constitutes a fraction (2zr;dr1)/(=a?) of the conductor as a “circuit”.
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T
[

Y

X

‘@ —

Fig.6-1. Fractional “circuit” within a Fig.6-2. Longitudinal cross section of solid
solid circular conductor car- circular conductor in diametral
rying a d-c current. plane.

This fractional circuit is linked by all the magnetic flux inside the conductor between
the radii 1 and a (the flux lines being circles concentric with the conductor). At any radius
r in this interval the magnetic flux density B(r) is given by

271 \ra?

where p is the mks permeability of the conductor material. Thus the contribution to the
distributed internal inductance L;q. of the fractional circuit consisting of the tube of thick-
ness dr; at radius 7, is

dLl' d-c

B(r) = oL <§’—‘2> teslas (6.2)

12xridr: (° A i
1 #.,,;2 lj; drj; dzg— o henries/m (6.3)

where z is the coordinate in the direction of the length of the line, and r; is a constant during
the integration with respect to . The result is '

dLiae = pridri(a®—7}) henries/m (6.4)

The total internal inductance at zero frequency is obtained by integrating this with respect
to 71 from 0 to a, with the result

Lise = E’:—rhenries/m (6.5)
Thus the internal inductance of a solid circular conductor, when the current is uniformly
distributed over the conductor’s cross section, is independent of the radius of the conductor.
Calculations later in this chapter show that the internal inductance of the conductors of a
transmission line may constitute 10% or even more of the line’s total distributed inductance
at low frequencies. At much higher frequencies the distributed internal inductance of a
circular conductor becomes very small compared to its d-c value, and the distributed
reactance of its internal inductance asymptotically approaches being identically equal to
the frequency-dependent high frequency distributed resistance of the conductor.

Inspection of equation (6.4) indicates that for tubes of constant annular cross-sectional
" area, i.e. 2x71dr; = constant, the distributed internal inductance is greatest for small values
of 7. and approaches zero as r; approaches a. This means that at a given frequency the
distributed internal reactance of a small circular area at the center of a circular conductor
is much greater than the distributed reactance of the same area of conductor near the
periphery. If an a-c voltage exists between the ends of a section of the conductor, less
current will flow in the high reactance region at the center of the conductor than in an
equal area of cross section at a greater radius. The current distribution will then no longer
be one of constant density as was the case at zero frequency. The effect becomes more
pronounced the higher the frequency, until at sufficiently high frequencies the current flows
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only in a very thin skin at the conductor’s surface. Known as skin effect, this phenomenon
causes the resistance of conductors of any shape or material to increase markedly and
continuously with frequency for frequencies above some minimum value that depends on
the conductor’s size, permeability and conductivity, while at the same time the internal
inductance decreases continuously.

A quantitative analysis for skin effect in a homogeneous isotropic circular conductor is
obtained by applying Faraday’s law to a réctangular path in a radial plane of the conductor
as illustrated in Fig. 6-2 above. The radius of the conductor is a. The rectangle has length
Az in the coordinate direction z parallel to the length of the conductor, and infinitesimal
width dr in the radial direction. It is located at distance r from the center of the conductor.

A postulate of this analysis is that an external source is causing current to flow in the
conductor in the z direction, and that the resulting current density J. at any point in the
conductor’s cross section is in general a function of r, but for symmetry reasons is not a
function of angular position around the center of the conductor. The purpose of the
analysis is to find the manner in which J.(r) varies with r, and from this result to find the
effective resistance and internal inductance of the conductor per unit length, as a function
of frequency and conductor material.

At any radius 7 in the conductor theré will be an electric field E.(r) associated with the
total current density J.(r) according to the time-harmonic electromagnetic relation

Jz = O'Ez + waEz (6'6)

where ¢ is the conductivity of the conductor and e its permittivity. For the metals used in
transmission line conductors, information about the value of the permittivity ¢ is nebulous,
but there is no reason to believe that it differs appreciably from the value for free space,
¢, = 8.85 X 10~*2 farads/m. Since the conductivity of the metals is 10" mhos/m or higher,
it is readily seen that at all conceivable transmission line frequencies equation (6.6) becomes

Jz(r) = O'Ez('r) (6.7)
which means that J.(r) is entirely conduction current density.

Voltage will be induced in the rectangle of Fig. 6-2 because of the time-changing mag-
netic flux through it. This flux is produced by all the conductor current inside radius r.

Faraday’s law f E-dl = _:—t"; B-:dS becomes

{ Edr )+3E‘(T)}Az — Efr)az = j“’;:rAz j; ' p () 2nr dr” (6.8)

where 7’ is a dummy radial variable of integration, not to be confused with the coordinate
r giving the location of the rectangle.

Substituting E.(r) = J.(r)/s, multiplying both sides by r/(dr Az), differentiating both
sides with respect to 7, and finally dividing all terms by r,

82J.(7) " 18J:(r)
ar? r or

- jw,u.o'Jz(’r) = 0 (6'9)
The differentiation on the right merely removes the integration and substitutes the upper
limit for the variable.

Equation (6.9) is a modified form of Bessel’s equation of order zero. The order is zero
because the term —12J.(r)/r? in a Bessel equation of order v has coefficient zero. The equa-
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tion is a “modified” Bessel equation because the coefficient of the term in J.(r) is a negative
imaginary number rather than a positive real number. Formally, the solution of (6.9) can
be written

J.(r) = A1 Jo(V—=Jope 1) + A2 Yo(V/—Jopo 1) (6.10)

where the symbols Jo and Y, stand for Bessel functions of the first and second kinds
respectively, of order zero. (Other symbols are frequently used for Y,.) For real variables
these functions are evaluated from infinite series and are readily available in mathematical
tables. Such tables are not applicable, however, when the coefficient of r in the variable
is the square root of a negative imaginary number, since in this case the series expansion
will contain both real and imaginary terms. Equation (6.9) is of sufficient importance that
separate names have been given to the functions which are respectively the real and
imaginary parts of the Bessel functions of the first and second kinds of order zero, for the
specific form of complex variable occurring in that equation. One of several equivalent
sets of definitions for these special functions is

ber (x) = real part of Jo(\/—7 x) (6.11)
bei (x) = imaginary part of Jo(y/—7 x) (6.12)
ker (x) = real part of Yo(\/—7 ) (6.13)
kei (x) = imaginary part of Yo(y/—j ) (6.14)

where z is real.

For reasons explained later, it is desirable to write the variable in (6.10) in the form
V—=7V2r/8, where
d opo
Using (6.11) to (6.15), the general solution to (6.10) is

3
Jo(r) = A1<ber\/§r + 7 bei —‘/—2_—’"> + A2<ker—@ + j kei —Q) (6.16)

8 8 8

Because ker (x) is infinite at « = 0, A:; must equal zero when equation (6.16) is applied
to a solid circular conductor, since the location r = 0 is a line within the conductor. For
a tubular conductor the location r = 0 is not within the conductor’s cross section and A:
is in general not zero. For the solid circular conductor, then

T.r) = Al(berl/?+ jbei‘/fr) (6.17)

Although the primary purpose of this analysis is to find expressions for the distributed
resistance and internal inductance of a homogeneous solid circular conductor, as a function
of the conductor material and the frequency, it is of incidental interest to note the distribu-
tion of current density over the conductor’s cross section, which is given directly by
equation (6.17).

Convenient tables of ber (x) and bei () are available in H. B. Dwight’s Tables of Integrals
and Other Mathematical Data. Fig. 6-3 shows graphs of the magnitude and phase of J.()
plotted from equation (6.17) using these tables, with A,=1. Since ber(0)=1 and
bei (0) = 0, these graphs all show the magnitude and phase angle of the current density
at any value of 7/§ relative to the magnitude and zero reference phase angle respectively
at the center of the conductor.
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Fig.6-3(a). Ratio of the magnitude of the current density [J,(r)|
at any radius 7, inside a solid circular conductor, to
the magnitude of the current density |J,(0)] at the
center of the conductor, as a function of r in skin
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According to electromagnetic theory the currents and fields inside a solid circular con-
ductor are to be regarded as having penetrated into the conductor from the interconductor
fields of the transmission line at the conductor’s surface. It is therefore quantitatively
more significant to consider the current density at any radius r relative to the current density
at the periphery of the conductor, in magnitude and phase. The current density at the

surface is ‘/§
J.(a) = A1<ber——;6—‘1 + 7 bei \/?a> (6.18)

- where @ is the radius of the conductor. Substituting for A from (6.18) into (6.17),

Jo(r) _ berV27/8 + jbeiy2r/s
J:(a) ber V2a/8 + jbeiy/2a/s

which is the desired relation. The same result can be obtained graphically, for a specific
conductor at a specific frequency, by evaluating a/s for the conductor and marking a vertical
line at that value of 7/8 on one of the graphs of Fig. 6-8. If then all the current density
magnitude values for smaller values of 7/5 are divided by the current density magnitudes at
r/8 = a/8, and the phase angle at- 7/8 = a/8 is subtracted from the phase angle at all
smaller values of 7/8, the graph of the resulting magnitudes and phase angles versus
(r/8)/(a/8) or r/a will show the magnitude and phase angle of the current density at any
radius 7, relative to the magnitude and zero reference phase angle of the current density at
the conductor’s surface. Fig. 6-4 is such a graph for a/5 = 4.

(6.19)
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Fig.6-4. Phase and magnitude relations for the current density at ra-
dius 7 in a solid circular conductor of radius a relative to
the current density at the surface, at a frequency for which
a/s = 4.

It is evident from Fig. 6-3 that for values of a/8 less than 0.5, the current distribution
in a solid circular conductor is not perceptibly different from that for d-c, when a/s =0.
At a/8 =1, however, the change is quite noticeable, and when a/8 =5 there is a very
marked concentration of current close to the conductor’s surface. As a numerical example,
a/8 has the value 0.5 for a copper conductor 2 millimeters in diameter at a frequency of
1090 hertz, the value 1 at 4360 hertz, and the value 5 at 109,000 hertz. The suggestion from
Fig. 6-3 that at high enough values of a/$ a solid circular conductor might be replaced by a
thin-walled circular tube with negligible change in current distribution, and consequently
in a-c resistance, is perfectly correct. Surprisingly, it turns out that for a wall thickness
of about 1.65 the distributed resistance of a tubular conductor at high values of a/s is
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actually a few percent less than the distributed resistance of a solid conductor of the same
metal and outer diameter at the same frequency.

The distributed resistance R and distributed internal inductance L; of a solid circular
conductor at angular frequency o rad/sec ecan be combined in the concept of the distributed
internal impedance Z; of the conductors,

Z, = R+ joLi ohms/m | (6.20)

where it is not necessary to use a symbol R; since the distributed internal resistance of the
conductor is its total distributed resistance. In terms of electrical variables, the distributed
internal impedance of the conductor is the ratio of the longitudinal potential difference over
unit length of the conductor at the conductor’s surface to the total current in the conductor.
The longitudinal potential difference per unit length is identically the longitudinal electric
field at the conductor’s surface, which from equation (6.7) is E.(a) = J.(a)/e. Then if the
total current in the conductor is I,

Zi = R+ joli = ‘Jz#l—)
oLz
To relate the total current I. to quantities that have already appeared in the analysis, it is
necessary to refer to another electromagnetic relation, the Maxwell equation for time-
harmonic fields: curl E = —joyH. From the postulated symmetry of the problem, the only
field components present are E, and H,, and these quantities are functions only of the
coordinate r. The Maxwell equatlon in cylindrical coordinates then reduces to the single

relationship o

or

(6.21)

= jouH,(r) (6.22)

From Ampere’s law (i.e. the integral form of the second Maxwell curl equation), the
total current in the conductor will be equal to the line integral of H R around the conductor’s

iphery,
periphery I = 2-aH (a) (6.29)
Combining equatidns (6.7), (6.17) and (6.22),
1 al(r) _ V28 NVer LBy _
H¢(T) = 7—0)’;;7 = mA1<ber 5 + J bei 5 > (6.24)

where ber’ (x) = dber(z)/dx and bei’ () = dbei(x)/dz.
Putting r = a in equation (6.24) and combining with (6.23),

I. = M(b r"/§ + bel"/éa> (6.25)

].m‘u.a 3
Substituting for A from (6.18),

I = 21ra\/_/8 7.(@) ber’ /2a/8 + jbei’ V2a/s (6.26)
; Jopo ber V2a/8 + jbeiy/2als

Finally, substituting this value of I, in (6.21) gives

R+ joli = jR, [ ber2a/s + y.bex V2al/s (6.27)
V2ra \ber’ /2a/s + jbei’V/2als
:Here the symbol R, has been adopted for 0_18 = ;—’:

: R, is a surface resistivity in ohms per square, sometimes called the skin resistivity or
. high frequency surface resistivity, of the material defined by » and o at angular frequency
. Physically it is the d-c resistance between opposite edges of a square sheet of the
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metal having thickness equal to the skin depth 8, since it is experimentally confirmed for
the usual non-ferromagnetic conductor materials that the d-¢ value of o continues to hold
at all frequencies used on transmission lines.

Separate expressions for R and »L: are easily obtained from equation (6.27), and with
the help of (6.1) and (6.5), equations giving the ratios of the distributed resistance and
distributed internal inductance at any frequency to the same quantities at zero frequency
can be formulated. (See Problem 6.36.)

For practical purposes, calculations of data from (6.27) or from the equations derived
in Problem 6.36 can be divided into five sections, according to the value of a/$:

(1) When a/3 is less than about 0.5, the distributed a-c resistance of a conductor increases
over its d-c value given in (6.1) by less than 4%, and the distributed internal inductance
decreases by less than 1% from the d-c value given in (6.5).

(2) For all values of a/5 less than about 1.5, better than 4% accuracy is obtained from the
approximate formulas

R/Rae = 1+ (a/8)*/48 (6.28)
Li/Lige = 1 — (a/3)*/96 (6.29)
(8) When a/$ is greater than about 100, 1% accuracy is given by the very simple formulas
R = R./(2na) (6.30)

where R, = 1/(¢8) = Vou/(20) as defined in equation (6.27), and
oli = R or L; = Rle (6.31)

Equation (6.30) states that for very high values of a/8, which occur at frequencies of
tens or hundreds of megahertz for typical conductor diameters, the distributed a-c
resistance of a solid circular conductor is equal to the d-c resistance per unit length of a
plane strip of the conductor material having thickness § and a width equal to the
periphery of the circular conductor. This is an expression of the skin effect theorem
derived in Section 6.3. Alternative interpretations of (6.30) are that the distributed
a-c resistance of a solid circular conductor at sufficiently high frequencies is equal to
the d-c resistance per unit length of a surface skin of the conductor of thickness 8, or is
equal to the resistance per unit length of a strip of indefinitely thin sheet resistance
material having surface resistivity R, ohms/square, wrapped around a nonconducting
cylinder of radius equal to that of the conductor.

Equation (6.31) states that under the same conditions, the distributed internal
reactance of the solid circular conductor is equal to its distributed a-c resistance.

It is obvious that (6.30) and (6.31) also apply to tubular circular conductors whose
wall thickness is great enough to contain essentially the whole of the current distribu-
tion. For high values of a/s a wall thickness greater than about 38 ensures 4% accuracy
in using the equations. (See Section 6.3 and Fig. 6-7.)

(4) Equation (6.30) has better than $% accuracy for all values of a/8 greater than 4 if the
effective circumference of the peripheral skin of the conductor is calculated more appro-
priately from a radius (¢ — 43) instead of a. Then

1 R,

B = 52— p = Ze-0) (6.32)
R 3a? _ (a/8)?
and Rie = (@—3%88 ~ 2(a/s)—1 (6.33)
For the same range of a/5 the inductance ratio Li/Liq4. is given with equal accuracy
by an empirical formula I 1 1

Liae  R/Ra. + (R/Ra)® (6.34)
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(6) For values of a/§ between 1.5 and 4, there is no standard alternative to using data
calculated directly from equation (6.27). Tables and graphs of such data are available
in many sources. Table 6.1 shows the variation of R/R4. and Li/L;4.. for small intervals
of a/8 in the range 0 to 4. Linear interpolation in the intervals is accurate enough for
engineering purposes.

Table 6.1
. ald R/Rg-. Li/Lid-c ald R/Rg.c Li/Lia-c
0 1.000 1.000 2.3 1.404 0.805
0.5 1.001 1.000 24 1.454 0.783
0.7 1.005 0.998 2.6 1.505 0.760
0.8 1.009 0.996 2.6 1.557 0.737
0.9 1.014 0.993 2.7 1.610 0.715
1.0 1.021 0.989 2.8 1.663 0.693
1.1 1.030 0.984 2.9 1.716 0.672
1.2 1.042 0.978 3.0 1.769 0.652
1.3 1.057 0.971 3.1 1.821 0.632
14 1.075 0.962 3.2 1.873 0.613
1.6 1.097 0.951 3.3 1.924 0.595
1.6 1.122 0.938 34 1.974 0.578
1.7 1.152 0.924 3.5 2.024 0.562
1.8 1.187 0.908 3.6 2.074 0.547
1.9 1.225 0.890 3.7 2.124 0.533
2.0 1.266 0.870 3.8 2.174 0.520
2.1 1.309 0.849 3.9 2.224 0.507
2.2 1.355 0.827 4.0 2.274 0.495

Example 6.1.

Determine the distributed resistance and distributed internal reactance in ohms/m of a 19 gauge copper
wire at frequencies of 0, 60, 103, 104, 105, 106, 108 and 1010 hertz.

From wire tables the radius of a 19 gauge wire is 0.4558 X 10—3 m, and Rg4-c is given as 26.42 ohms/km
at 20°C. These figures are consistent with the copper having a conduectivity of 5.80 X 107 mhos/m, which is
officially defined as “100% conductivity” for copper at 20°C, and is the value invariably used for “room
temperature” resistance calculations on copper conductors, unless some other specific value is stated.

For this value of conductivity the skin depth in copper as given by equation (6.15) is § = 0.0661/\/f m,
where f is the frequency in hertz. Thus for the 19 gauge wire of this problem, the ratio /8 at the fre-
quencies listed has the sequence of values 0, 0.0633, 0.218, 0.689, 2.18, 6.89, 68.9 and 689. The first three
values fall in the first category of calculations listed above. These are followed by one in the second
category, one in the fifth, two in the fourth, and the final one in the third category.

The reference values for R and L; are Ra.c = 0.0264 ohms/m and Lide = po/87 = 5.00 X 10-8
henries/m. These are then also the values of R and L, for the 19 gauge copper wire at frequencies of 0, 60
and 103 hertz, where a/§ < 0.5.

At 10 kilohertz, with a/8 = 0.689, equations (6.28) and (6.29) should be used. The results are
R/Ra.c =1.006 and L;/L;,. = 0.998, which could also have been taken from Table 6.1 at a/§ = 0.7.

At 100 kilohertz, Table 6.1 is used, to find R/Rg4.. = 1.346 and L,/L;, . = 0.831.

For frequencies of 1 megahertz and higher, (6.23) and (6.84) are used. These automatically reduce to
~ the simpler forms of (6.20) and (6.81) when a/$ is large enough.

i A tabulation of all the results for 19 gauge copper wire at frequencies from 0 to 1010 hertz is given in
Table 6.2 below.
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Table 6.2
Frequency R L; oLy
hertz a/8 R/R4.c | ohms/m Li/Lig-e henries/m ohms/m oLi/R
0 0 1.000 0.0264 1.000 5.00 X 10—8 0 0
60 0.0633 1.000 0.0264 1.000 5.00 X 108 1.88 X 105 T.1X10—4
108 0.218 1.000 0.0264 1.000 5.00 X 108 3.14 X104 0.0119
104 0.689 1.005 0.02656 0.998 4.99 X 108 3.13 X103 0.118
105 2.18 1.346 0.0355 0.831 4.16 X108 0.0261 10.736
108 6.89 3.7 0.0980 0.289 1.45 108 0.0909 0.930
108 68.9 34.7 0.914 0.0288 144 X107 0.905 0.991
1010 689 344 9.09 0.00291 1.45 X 1010 9.09 1.000

It is quite clear from Tables 6.1 and 6.2 that a/8 increasing above unity marks the
beginning of rapid increases with frequency for the ratios R/R4.. and Li/L;g.. Also, from
Table 6.2 it can be seen that when a/8 approaches 100, the distributed resistance R begins
to increase quite precisely in proportion to the square root of the frequency, while the dis-
tributed internal inductance L; begins to vary inversely as the square root of the frequency.

The ratio a/é varies directly with conductor radius a, and with the square root of the
frequency, for solid circular conductors of the same material. Thus the same values of
R/Ra. and Li/L;qs.. that apply to a conductor of radius a at frequency f, will hold for a con-
ductor of the same material with radius 10a at a frequency /100, or with radius a/10 at a
frequency 100f. Pursuing these figures in both directions, a 40 gauge copper wire shows
no perceptible change in resistance from its d-c value for frequencies up to 1 megahertz,
while a solid copper conductor 2/ in diameter shows about 10% increase of resistance from
skin effect at a frequency of 60 hertz.

The ratio a/8 varies directly as the square root of the permeability and the square root
of the conductivity of the conductor material. Hence conductors of any non-magnetic
material except silver will have smaller values of a/5 than copper wires of the same diameter
at the same frequency, and the changes in their values of distributed resistance R and dis-
tributed internal inductance L; from the d-c¢ values will be less than for the copper con-

"ductors. Wires of iron, nickel;, or other ferromagnetic material may have values of a/s,
and hence of R/Rq., either larger or smaller than for copper wires of the same diameter at
the same frequency, depending on whether or not their relative permeability at the frequency
exceeds the ratio of the conductivity of copper to the conductivity of the ferromagnetic
material. Iron wires may have quite large values of relative permeability at frequencies up
to the low megahertz range, in which case the ratio of the distributed resistance of iron
wires to the distributed resistance of copper wires of the same diameter may become much
higher than would be determined by the ratio of their conductivities alone. '

Table 6.3 below lists the conductivities at 20°C, and the temperature coefficient of the
conductivity at that temperature, for some of the metals most commonly used as trans-
mission line conductors, .or as resistor materials or plating materials in high frequency
applications.

From Example 6.1 it has been seen that the skin depth 8 for 100% conductivity copper
at frequency f hertz and 20°C is given by § = 0.0661/\/fm. Fig. 6-3 shows that for a/s
greater than about 5 or 10, most of the a-c current in a solid circular conductor flows in a
peripheral skin of the conductor about two or three skin depths in thickness. At a frequency
of 1 megahertz in copper this thickness is approximately 0.1 millimeters, and it is smaller
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Table 6.3. Conductivities and temperature coefficients of common metals at 20°C.

Metal Conductivity Temperature Coefficient
mhos/m /°C (all negative)

Aluminum 3.54 X 107 0.0039
Brass (somewhat variable) 14 X107 0.002
Copper (annealed) 5.80 X 107 0.00393
Copper (hard drawn) 5.65 X 107 0.00382
Constantan 2.04 X 108 0.000008
Gold (pure) 410 X 107 - 0.0034
Iron* (pure) 1.00 X 107 0.0050
Lead 4.54 x 108 0.0039
Mercury 1.04 X 108 0.00089
Nickel* 1.28 X 107 0.0006
Silver 6.15 X 107 0.0038
Tin ' . 8.67 X 108 0.0042
Zine 1.76 X 107 0.0037

*The permeability of iron and nickel is very much dependent on processing techniques,
and must be determined experimentally for any specific conductors.

at higher frequencies. This suggests the possibility of using plated conductors in high
frequency applications, having a thin skin of more expensive high conductivity metal on a
core of inexpensive material whose conductivity does not affect the situation. The technique
is extensively used. For many years it was thought that silver was necessarily the best
plating material, since silver has the highest conductivity of all metals. However, careful
measurements have shown that the corrosion products on a silver surface in ordinary
atmospheres have intermediate conductivity, while those on a copper surface have very low
conductivity. The result is that high frequency currents in a copper conductor flow almost
entirely in the copper, below the surface corrosion layers, and the conductor’s effective
conductivity is that of the copper. For a silver conductor, on the other hand, an appreciable
fraction of the current flows in the corrosion material of intermediate conductivity (the
corrosion products are generally oxides and sulfides) and the effective conductivity of the
conductor as a whole may be substantially less than that of silver. If a silver surface is
protected against corrosion, including oxidation, by an extremely thin layer of plated or
evaporated gold or by a low-loss dielectric coating, a silver plated conductor will have the
lowest possible distributed resistance.

It is theoretically true, when a/8 > 1, that a plating thickness of 1.25 or greater, on any
base material whether conducting or not, will ensure a distributed conductor resistance
equal to or less than that of a solid circular conductor of the plating material, if there is
adequate protection from corrosion and from surface roughness effects.

The problem of surface roughness exists whether a conductor is solid or plated, and
is an obvious consequence of the small values of § at high frequencies. In the commercial
fabrication of circular metal rods or wire, microscopic surface imperfections appear, in the
form of pits, cracks, grooves, fissures, ete. At frequencies in the hundreds or thousands of
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megahertz, the skin depth in the material may be no greater than the dimensions of these
imperfections, with the result that the current flow path along the conductor’s surface is
not a straight line equal to the conductor’s length, but is a meandering path that may be
much longer than the conductor itself. The high frequency resistance will increase by a
corresponding faetor over the theoretical value. At microwave frequencies the realization
of distributed conductor resistances close to theoretical values for a given conductor material
may require special surface polishing techniques in addition to protection against corrosion.

6.3. Distributed resistance and internal inductance of thick plane conductors.

Plane conductors of finite width occur in several of the transmission lines illustrated
in Fig. 2-2, page 9, and it would be useful to be able to calculate the distributed resistance
and internal inductance of those conductors. However, a reasonably simple analysis of the
high frequency current distribution and distributed internal impedance of plane conductors
is possible only if the conductors are postulated to extend indefinitely in both directions in
the conductor plane. The general case of the distributed internal impedance of plane
parallel conductors of finite width, or such special cases as the distributed internal impedance
of finite width plane conductors within a rectangular, elliptical or circular shield or outer
conductor, can be solved only by approximation and computer methods, and there are no
universally accepted presentations of results for these cases, in the form of equations, tables,
or graphs. In practice, experimental measurements are often likely to provide information
on the distributed resistance and inductance of uniform transmission lines involving plane
conductors as quickly and accurately as attempts to solve the analytical problem.

The analysis of the idealized unbounded-plane case is worth inspection in spite of these
limitations, because for high values of a/$ it offers an easier solution to the practical problem
of the thin-walled circular tube than can be obtained from the equations of Section 6.2, and
because it provides a basis for approximate calculations in various other cases.

The longitudinal currents postulated in the distributed circuit analysis of transmission
lines will flow only if there is a longitudinal electric field at the conductor’s surface. An
electric field component normal to the surface will not generate such currents, nor will a
component parallel to the surface but transverse to the direction of propagation. In an
investigation of the power losses associated with high frequency current flow in a plane
metal surface, it is therefore most appropriate to consider a constant amplitude plane
transverse electromagnetic harmonic wave incident normally on such a metal surface and
partly reflected from it. The field components of the incident and reflected waves will
combine at the surface to produce a total tangential electric field component which is con-
tinuous across the boundary, and an accompanying tangential magnetic field component,
perpendicular to the electric field component and also continuous across the boundary. Let
these field components, as phasors, have directions and rms magnitudes given by E. and Hzo
at the metal surface, and by E.(y) and H.(y) at any distance y measured into the metal
normally from the surface.

The unbounded plane conductor can be thought of as one of two such conductors con-
stituting a parallel plane transmission line, with voltage and current waves propagating
in the longitudinal z direction on the line. The normal to the conductor surfaces is in the
¢ direction, and the conductor surfaces extend indefinitely in the transverse z direction.
The distributed resistance to be determined is the resistance of the conductors per unit
length in the z direction, per unit width in the z direction. Initially the conductors are
assumed to be indefinitely thick in the y direction. The distance between the conductors
is not relevant to the problem, and attention is directed to only one of the conductors, whose
surface is in the coordinate plane at y = 0, the direction of increasing y being into the metal.
The coordinate relations are shown in Fig. 6-5, below.
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Fig.6-5. Coordinate relations for investigating a-c current
flow in a thick metal sheet.

Maxwell’s equations for these time-harmonic fields are
curlE = —jopH (6.35)
curl H = (o + jue)E (6.36)
It has been seen in connection with equation (6.6) that the displacement current density
well in (6.36) is negligible compared to the conduction current density ¢E for all ordinary

metals at all frequencies up to 10'2 hertz or higher. (This would not be true if the con-
ductors were made, for example, of silicon.)

Dropping the term joe, the wave equation is obtained from (6.35) and (6.36) by taking
the curl of either and substituting into it from the other. This leads to

VE = jopsE (6.37)
and the same equation in H, where it is to be understood that (6.37) is actually three equa-
tions, one for each separate rectangular coordinate component of E. Since it has been
postulated that the only component of E is E., equation (6.37) becomes

2K *E, *E. .
ax; t S T eE T joucE., (6.38)

Since it hag also been postulated that the wave planes of the plane electromagnetic
wave being considered extend indefinitely in the x and z directions, the derivatives 8/dx and
4/9z must both be zero. Finally, then, (6.38) takes the elementary form

*E, .
ay2 = 7wy0Ez (6.39)
whose solution is E.(y) = Expe=m (6.40)

where y = Vjopo = (1+7)/8 and & = \/2/wpc is the same skin depth defined by equation
(6.15). It follows that
E(y) = Exe ¥e /5 (6.41)

for a wave traveling into the metal in the positive y direction.

The meaning of equation (6.41) is that the electric field of the wave suffers an attenua-
tion of 1 neper and a phase delay of 1 radian in traveling distance § through the metal.
(The propagation of voltage and current waves on a transmission line would be analogous
if the line had the properties R € oL and G > oC. The corresponding value of § would

be V2/(uLG).)
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At any point in the metal the current density produced by the electric field of equation
(6.41) flows in the z direction and is given by

JAy) = o Exy) (6.42)

The power loss per unit volume in the metal at any point is |[J.(¥)[?/¢c = ¢|E(y)|?, and the
power loss per unit area of metal surface is.

Poo= (oo (Cay zomn = [ omwra

. (6.43)
= j: o|Bufte - dy = o|EaP/2

where |E.(y)| is obtained from equation (6.41).

From (6.41), the field E. and consequently the current density J. fall to negligible frac-
tions of the surface values at a depth of less than 103, which at high frequencies can be a
very small distance. The limit of infinity on the integrals with respect to y in (6.43) could
be replaced by this distance.

A more tangible electrical variable in this skin effect situation than the tangential
electric field at the surface of the metal is the total current in the conductor per unit width
of surface. This is contained within a thickness of less than 105 at the surface of the metal.
It must be identified notationally as a surface-current density (mks units, amperes/meter),
physically distinct from the current density J. at a point (mks units, amperes/square meter)
If J.. is this surface current density,

Ju = f dz f dy J.y) = f cEne~ it dy = oEo8/(1+7) (6.44)
0 0 0

The phase relation here is meaningful, establishing that the total surface-current density
Js. lags the surface electric field E.0 by 45°. (Note, however, that the current density at a
point at the surface J.o must be in phase with E., according to equation (6.42). The distinc-
tion between the total surface-current density and the current density at a point at the
surface is a vital one.)

In the case of the solid circular conductor, a distributed internal conductor impedance
was defined in equation (6.21) by the ratio of the tangential electric field at the surface to
the total current in the conductor. The corresponding concept for plane conductors is a
longitudinally distributed internal impedance for unit width of conductor. Designating
this as Z. = R, +jX,, equation (6.44) shows that

Thus the real and imaginary parts of this distributed internal impedance, for unit width of
a plane conductor having thickness not less than about 10 skin depths, are both equal to the
quantity R, previously defined in (6.27), commonly known as the surface resistivity of the
material and numerically equal to the d-c resistance between opposite edges of any square
sheet of the material of thickness 5. The units of R, and hence of X; and Z, are ohms, or
ohms/square.

Substituting for [E.| from (6.44) into (6.43),
= |Jszlz/08 = |Jsz|2Rs ' (6.46)

According to (6.46) the power loss per unit area associated with the a-c surface-current
density J.. in amperes/(meter width of surface), for which the point current density J.
diminishes exponentially with depth into the metal, is the same as the power loss per unit
area that would occur if a current of the same total rms value (whether a-c or d-c) flowed
with constant point current density in a skin of the conductor of thickness 8. This result
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is known as the skin effect theorem. Its application to solid circular conductors when a/s
is of the order of 100 or greater has already been seen in equation (6.30).

The agreement of equations (6.30) and (6.81) with (6.45) for very large values of a/3 is a
recognition of the fact that when a circular conductor carries an a-c current, if the radius
of curvature of the conductor’s surface is very large compared to the skin depth, then the
surface can be regarded as a plane, and the skin effect calculations for plane surfaces are
applicable. :

The use of the name “skin depth” and a superficial misinterpretation of the skin effect
theorem sometimes lead to the erroneous impression that high frequency currents are
physically totally contained within a skin of thickness 8, at the surface of a plane conductor
or of a curved conductor whose radius of curvature is very large compared with 8. The
actual distribution of high frequency current in such cases, as given by (6.41) and (6.42) is
of course that the magnitude of the current density at a point diminishes exponentially
with distance into the metal, while the phase retards linearly with distance. At any point
within the metal, the amplitude reduction of the current density in nepers and the phase
lag in radians, relative to the surface values, are numerically equal.

Simple calculations show that the current density falls to somewhat less than 1% of its
surface magnitude at a depth of 55, and consequently to less than 0.01% of its surface mag-
nitude at a depth of 105. Thus conductors carrying time-harmonic currents of any
frequency need never be more than 58 to 108
thick for that frequency. Additional metal
would serve no electrical purpose. For rea-
sons to be explained, a plane conductor or a
circular metal tube conductor of fixed out-
gide radius @ > 8 actually have lower a-c
resistance when the metal thickness is about
1.68 than for either smaller or larger thick-
nesses, and their distributed resistance per
unit width of surface remains within 1% of 1.28
R, for all thicknesses greater than 33.

Ep

Closer inspection of equations (6.41) and
(6.42) reveals an interesting phenomenon as-
gociated with a-c¢ current flow in plane con-
ductors. If the plane conductor is imagined

to consist of a large number of uniform plane Fig.6-6. Summation of surface-current density
layers of equal thickness, the thickness Ay of phasors in consecutive layers of a thick
each layer being conveniently about 0.38, then metal sheet carrying a-c current. The
the longitudinal phasor current AJ,. in unit layers are 0.3 skin depths thick in the

direction normal to the metal’s plane

width of any layer (this is ar.l increment of the surface, and 1 m wide parallel to the
tqtal surface-current density J..) would be surface. The current flow is parallel
given by AJ,(¥) = AJ(0) e~ +9¥/% for a layer to the surface. The largest surface-
at depth y below the surface, where AJs(0) is current density phasor at the top of the
the phasor current in unit width of the layer diagram is for the layer at the surface

t the surface. Relative to the phasor current of the metal. The reference phasor is
_a : p . E,o, the tangential electric field at the
in the surface layer, the phasor currents in surface of the metal. The dashed line
layers farther into the metal are smaller in suggests that if the current beyond 1.5
magnitude and retarded in phase. Fig. 6-6 is skin depths into the metal could be elim-
a phasor diagram showing the cumulative ad- inated, the total surface-current density

it . . would be the same as in an indefinitely
dition of the phasor currents in consecutive thick sheet, but the losses would be re-

layers, for layers totalling 38 in thickness. duced.
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The value of y for each layer has been measured to the center of the layer. The value of
|aJs2(0)] in the first layer is an arbitrary scale factor. Since the center of the first layer
is at y = 0.158, its phase angle is —0.15 rad relative to the zero reference phasor given by
the tangential electric field at the surface.

Fig. 6-6 could also be obtained as the envelope of the successive phasors given by the
integral used in obtaining equation (6.44), with the upper limit varied through a sequence
of values ranging from 0 to 35 in suitable steps of 0.35.

The procedure of equation (6.43) for obtaining the power loss per unit area in an indef-
initely thick plane conductor for a-c currents is equivalent to evaluating [AJ.(y)%/(c Ay)
over an infinite set of layers, each having thickness Ay, on letting Ay become infinitesimally
small. The result would be only slightly different for Ay = 0.3 skin depths. It is obvious
from the convoluted form of the cumulative-phasor curve in Fig. 6-6 that the summation
or integral of (6.43) must be quite a bit greater, for the same total conductor current mag-
nitude, than if the incremental current phasors in successive layers all had the same phase.

These facts suggest qualitatively that some reduction of distributed surface resistance
for plane conductors (and circular tube conductors with large a/8) might be achieved by
making the metal thin enough to eliminate the “backward current” portion of the phasor
diagram of Fig. 6-6, without reducing the total current magnitude. This would make the
length of the cumulative-phasor curve more nearly equal to the chord representing the
total conductor current phasor.

The dashed total current phasor in Fig. 6-6 illustrates this hypothesis for a conductor
1.5 skin depths thick. The total current phasor in this case has almost exactly the same
magnitude as for the indefinitely thick metal, but the curve constructed by adding the cur-
rent phasors in successive layers is much shorter than before. The implication is that for
the same total current the .losses should be less in metal of thickness 1.58 than for greater
thicknesses. Although the model from which this conclusion has been drawn is somewhat
oversimplified, because the postulated electromagnetic waves in the metal are actually
reflected from the second surface of the thin sheet, and the combination of reflected waves
with original waves gives a current phasor pattern differing appreciably from that for 1.58
in Fig. 6-6, the reduction of a-c resistance in thin metal surfaces is nevertheless real.

Quantitative proof is given in Problem 7.10, page 147, where the analysis is made of a
transmisgion line analog. A graph of the variation with thickness of the distributed
resistance of a plane conductor, relative to the distributed resistance of an indefinitely
thick conductor, is shown in Fig. 6-7 below. It appears that the resistance can be reduced
by a maximum of about 8% for thicknesses of 1.58 to 1.68, and that 5% reduction is obtained
from about 1.38 to 2.08. Since the abscissa of the curve is metal thickness in skin depths,
it can be converted to a linear scale of thickness in meters at constant frequency, or to a
scale proportional to the square root of the frequency for a given metal of constant thickness.

The quantitative conclusions drawn from Fig. 6-7 are directly applicable to tubular
circular conductors for which the outer radius is very large compared to the skin depth.
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t/8

Fig.6-7. Ratio of the distributed a-c resistance per unit width for an
unbounded plane conductor of thickness /8 skin depths to the
distributed a-c resistance per unit width of an indefinitely
thick conductor of the same metal. For ¢/8 less than about
0.5, the distributed a-c resistance is equal to the distributed
d-c resistance. For t/8 greater than about 8, the distributed
a-c resistance is equal to R;.

6.4. Distributed resistance of tubular circular conductors.

Circular metal tubes are the optimum outer conductors for a coaxial transmission line,
and they may be used for the center conductor of such a line also, or for the two identical
conductors of a parallel wire line, in cases where solid conductors would be excessively heavy
or would involve unduly inefficient use of metal.

Unfortunately, rigorous analysis of the distributed resistance and distributed internal
inductance of circular tubular conductors, for all ranges of the ratio of wall thickness to
outside diameter and of the ratio of outside diameter to skin depth, is a considerably more
complicated and tedious procedure than the corresponding analysis for solid circular con-
ductors given in Section 6.2. Equations (6.9) and (6.10) are still the basic equations, but
boundary conditions must be met at two boundaries instead of one, and the coetfficient A; in
(6.10) is not zero.

The results of a complete analysis of the distributed internal inductance of tubular
circular conductors do not appear to be available in convenient form. Discussion of the
relative magnitudes of the distributed internal inductance and the distributed external
inductance for various transmission line designs is continued in Section 6.8, which also
includes a review of the procedures for estimating the value of the former.

The distributed a-c resistance of an isolated circular tubular conductor for a wide range
of the variables was computed several decades ago by H. B. Dwight, with results shown
graphically in Fig. 6-8 below. The top linear horizontal scale in \/f/Ra., where f is the
frequency in hertz and R4. the distributed d-c resistance in ohms/meter length, applies to
both solid and tubular circular conductors made of nonmagnetic material. For solid circular
nonmagnetic conductors /f/Ra.. is easily shown to be directly proportional to the variable
a/8 already used in discussing the distributed a-c resistance of such conductors. The
constant of proportionality is such that 1/f/Rs. =892 corresponds to a/8 =1. In cal-
culating this, it is found to be given by 1/\/,70 where p, (= 47 X 10~7 henries/m) is the mks
value of the permeability of nonmagnetic materials. Since t/a =1 corresponds to a solid
conductor, the curve in Fig. 6-8 for f/a =1 is a plot of the data of Table 6.1.
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Fig.6-8. Ratio of the distributed a-c resistance to the distributed d-c resistance of a

circular tubular conductor of outside radius a, inside radius b, and wall thick-
ness ¢ as a function of dimension parameters in skin depths, for several values .
of the ratio of wall thickness to outside radius. The variables a; and b, are
given by equations (6.47) and (6.48) respectively. The horizontal scale Vf/R4-c,
for which f is in hertz and R4-c is in ohms/m, applies only to nonmagnetic con-
ductor materials. The scales a; and b; apply to both magnetic and nonmagnetic
materials. The ratio of the two scales at any point is 892. (After H. B. Dwight.)
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For tubular conductors the scale conversion in Fig. 6-8 is a less direct one. The quantity
corresponding to a/8 for the solid circular conductor is \/2at — 2/ where a is the outside
radius of the conductor and t its wall thickness. It reduces to a/5 when t=a. To permit
further reference, this quantity is given the symbol a:«/5. Then

a/s = \/2at— /s (6.47)

When reference to the inside radius b of a tubular conductor is more convenient, the variable

bi/8 is defined by bi/s = \/2bt+ /s (6.48)

For a given tube a: and b: have identical values. The bottom horizontal scale of Fig. 6-8 is
the same for a/§, a./$ and b./s.

The coordinate quantity \/f/Ra. in Fig. 6-8 is unaffected by whether the conductor is
magnetic or not. The question therefore arises as to how the graph should be used for
conductors made of magnetic metals. The fact that the curve in Fig. 6-8 for solid conductors
(t/a = 1) agrees with the R/Ra.. figures from Table 6.1 where the permeability of the metal
is accounted for in the skin depth 3, indicates that the abscissa scale of a:/s and b./8 (or a/8
for solid conductors) is applicable to either magnetic or nonmagnetic conductors. For con-
ductors made of magnetic materials the scale \/f/Ra.. must not be used. It is clear from
Dwight’s writings that Fig. 6-8 was in fact constructed from expressions that derive from
equations (6.10) or (6.16), in which the variable has the form /2 /5.

Since there are no electromagnetic fields in the interior space of the tubular conductor
for which Fig. 6-8 was computed, and since the external fields and those within the metal
must be the same at all angular positions around such a conductor, the only transmission
line conductors to which Fig. 6-8 is directly applicable are the cases of a circular metal tube
used as either the center conductor of a coaxial line or as a conductor of a parallel wire line
whose two conductors are widely separated. However, if the ratio of a tube’s wall thickness
t to its external radius e does not exceed about 20%, the distributed resistance of a circular
tube used as the outer conductor of a coaxial line can also be taken from Fig. 6-8 with
adequate accuracy.

It i3 useful to classify the procedures for calculating the distributed a-c resistance of
circular tubular conductors into the same five categories that were established in Section 6.2
for solid circular conductors.

(1) At the lowest frequencies, the quantitative relation for solid circular conductors stated
in Section 6.2, that Ra../Ra.. < 1.005 for a/8 from 0 to 0.5, applies directly to tubular
conductors if the modified variable (1/t/a)(a/8) is substituted for a/s. This statement is
derived empirically from Fig. 6-8 and is a consequence of the shapes and interrelations
of the curves of that figure. It has no connection with the variables a:/$ or b:/8 derived
from the horizontal scale conversions.

(2) Using the modified variable (\//a)(a/8) in place of a/3, equation (6.28) gives the ratio
of the distributed a-c resistance to the distributed d-c resistance for circular tubular
conductors within $% for values of the modified variable up to 1.5. Equation (6.28)
then covers all of the portion of Fig. 6-8 for which Ra.c/Ra. lies between 1.0 and 1.1.

(8) For values of the unmodified variable a/$ greater than 100, the distributed a-c resistance
of circular tubular conductors is calculated from the same plane surface approximation
used for solid circular conductors. Equation (6.80) will give results accurate to 1%,
when a is the radius of the surface carrying the surface current, provided the tube’s
wall is “thick” (i.e. t/5 greater than about 3), a condition that will almost invariably
be satisfied for such large values of a/8. For tubular conductors used in transmission
lines the current carrying surface is the outside surface except when the tube is the
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outer conductor of a coaxial line, in which case it is the inside surface. In the unlikely
event that ¢/5 <3 when a/8 > 100, the distributed a-c resistance value given by (6.30)
for the appropriate surface must be multiplied by a correctlon factor from Fig. 6-7 for
conductors of “finite” thickness.

(4) For values of the unmodified variable a/s down to 4, equations (6.32) and (6.33) derived
for solid circular conductors also apply to tubular circular conductors, subject to the
two conditions stated in (3), and with the further modification that if the tube is the
outer conductor of a coaxial line, the sign in the denominator of each equation must be
changed to positive.

As in (8), if ¢/8 <3, the multiplying factor from Fig. 6-7 must be used. With a/s
as low as 4, if t/a is very small then ¢/8 may be considerably less than unity, in which
case the distributed a-c resistance of the conductor becomes equal to its d-c resistance,
as can in fact be seen directly in Fig. 6-8. What has happened in this case is that con-
ditions have fallen into a category already covered in (1) or (2) for the modified

variable (\/t/a)(a/8).

(5) For combinations of a/8 and t/a or t/8 not covered by any of the four categories above,
Fig. 6-8 is used directly, with the horizontal scale in a: or b:, after one of those quantities
has been calculated from (6.47) or (6.48).

A final precaution must be repeated, that for the unusual combination of a/8 fairly
small and t/a fairly large (i.e. a very thick walled tube at a low to intermediate fre-
quency) the value given by Fig. 6-8 for Ra../Rs. may be as much as several percent in
error for a tubular conductor used as the outer conductor of a coaxial line. The
inaccuracy is partially discounted if the distributed resistance of the outer conductor
of the coaxial line is much less than that of the inner conductor, as is often true.

Example 6.2.

A coaxial transmission line has a solid copper center conductor 0.100”” in diameter. The outer conductor
is a tube of outside diameter 0.375"" and wall thickness 0.0100”’. The line is used at carrier frequencies
between 60 kilohertz and 10 megahertz. Determine the distributed resistance of each of the conductors
at the highest and lowest frequencies used on the line.

Using a for the outer radius of the inner conductor and b for the inner radius of the outer conductor,
the quantities a/8, b/8, t/5, a,/8, and t/b must be evaluated first, to identify the category of each of the four
distributed resistance calculations.

The skin depth 8 is given by equation (6.15) which for 100% conductivity copper (¢ = 5.80 X 107 mhos/m)
becomes & = 0.0661/\/fm when f is in hertz. From this, § = 270 X 10~4m at 60 kilohertz, and
§ =2.09X10~5m at 10 megahertz. The required values of the five ratios at the two frequencies are:

60 kilohertz 10 megahertz

For the inner conductor,

a/8 (@ = 1.27 X 1073 m) 4.71 61

For the outer conductor,

b/8 (b = 4.51 X103 m) 16.7 216

t/s (t = 2.54 X 1074 m) 0.94 12.2

a,/8 (equation (6.47)) 5.7 73.5

t/b 0.056 0.056

Two of the distributed resistance calculations fall clearly into category (4), one clearly into (3), and
one marginally (a/8§ = 61) into (8). For both calculations in category (4) the values of a/8 or a,/8 are low
enough for the results to be checked by the procedure of category (), i.e. by Fig. 6-8. For one of the
calculations in category (4) the value of t/§ is small enough to require a correction for insufficient wall
thickness. Evaluating the modified variable (Vt/a)(a/8) does not change the ¢lassification of any of the
calculations.
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The distributed resistance calculations are as follows.
Inner conductor at 60 kilohertz, category (4):

1 _ 1 _
Zr(@a—3008 2580 X 100(127 X 10~ — 135 X 10-H@70 X 104 — 0-00894 ohms/m

R a-c

In this calculation the length units for a, b and § must be the same as for o, in meters.

This result can be checked on Fig. 6-8 by a linear extrapolation of the curve for #/a = 1 to the ordinate
af/8 = 4.71. The result is Ra-c/Rda.c = 2.63 and since Ra-c from equation (6.1) is found to be 0.00340 ohms/m,
Ra.c is given as 0.00894 ohms/m.

Inner conductor at 10 megahertz, category (4):

_ 1 _
Bae = o 80X 100A 27X 107 — 104X 105209 X10-5 ~ 0-104 ohms/m

If this case is calculated as category (5) the result is 0.108 ohms/m, the difference being very small for
such a high value of a/8.

Outer conductor at 60 kilohertz, category (4):

1

Ra-e 27(5.80 X 107)(4.51 X 10-% + 1.35 X 10~4)(2.70 X 10~%)

= 0.00219 ohms/m

The change of sign in the denominator term, relative to equation (6.82) as used in the two previous
calculations, results from this being the outer conductor of a coaxial line. The current carrying surface is
the inside surface of the tube.

Since t/8 is only 0.94 for this tube at this frequency, there is a correction factor from Fig. 6-7 of 1,14
and the distributed resistance of the outer tube at 60 kilohertz is 0.00219 X 1.14 = 0.00250 ohms/m.

The result can be checked directly from Fig. 6-8. For a,/8 = 5.7, Ra-c/Rd-< is found to be between
1.07 and 1.08 for a tube whose ratio of wall thickness to radius is 0.0566. From a modification of equation

(6.1), Rae = ———i——— = 0.00233 ohms/m, and hence Rae = 0.00233 X 1.07 = 0.00250 ohms/m, within
o27(b + 4)t

about 3%.

Outer conductor at 10 megahertz, category (b):

1 1
o768 2x(5.80 X 107)(4.51 X 10-3)(2.09 X 10-5)

Ry 0.0292 ohms/m

6.5. Distributed circuit coefficients of coaxial lines.
(a) Distributed resistance.

Methods for calculating distributed resistances have been fully covered in Sections
6.2, 6.3 and 6.4, including Example 6.2. For coaxial lines used at frequencies of tens to
hundreds of megahertz and higher, a specific expression obtained from equation (6.30) is
worth noting:

Rui(coax) = zzi ’;) 1+ %) (6.49)
where Ruc(coax) is the total distributed resistance of the coaxial line at very high frequencies.
Here a is the outside radius of the inner conductor, b the inside radius of the outer conductor,
and R, =1/(¢8) = Vup/20 is the surface resistivity of the conductor material defined in
connection with equation (6.27) and assumed the same for both conductors. This expression
requires that the wall thickness of both conductors be greater than 38, and will give better
than 4% accuracy when a/8 > 100, which ensures that b/8 > 100. If the two conductors
are of different materials, equation (6.30) must be applied separately to each. For values
of a/8 <100 the distributed resistance must be calculated by one of the other methods
described in the preceding sections.



92 DISTRIBUTED CIRCUIT COEFFICIENTS AND PHYSICAL DESIGN [CHAP. 6

(b) Distributed capacitance.

Derivation of an expression for the distributed capacitance of a coaxial line is the sim-
plest of all the distributed circuit coefficient derivations, and no case has fewer complicating
factors in its practical calculations.

Fig. 6-9 shows the central cross section, in
a plane containing the axis, for a portion of
coaxial line included between two transverse
planes separated by distance Al. The facing
surfaces of the two conductors have radii ¢ and
b respectively, as prescribed in (a) above. It is
postulated that there is free charge 4+ AQ cou-
lombs uniformly distributed over the length Al
of the outside surface of the inner conductor of
the line and free charge — AQ coulombs similarly
uniformly distributed over the length Al of the
inside surface of the outer conductor. It is also
postulated that the electric charge distribution
on the two conductors is continuous on either Fig.6-9. Cross section of a coaxial transmis-
side of the length Al so that the electric flux sion line in a longitudinal diametral
lines throughout Al are everywhe.re radial. From gi::;b:::g ::;:zliz:nzz_r determining
symmetry the electric flux density at any point

in the interconductor space over the length Al is independent of angular position around the
axis of the conductors.

Al

_lr__..-___.{_———_...__

[ RSN I G I N P Iy

Crossing the length Al of any cylinder of radius r concentric with the line’s conductors,
where a <r<b, the total electric flux is AQ coulombs, and the radial electric flux density
D,(r) at any point on the cylinder is

- A1 _ A
Dr(r) T A 27r T 21

where p, is the uniformly distributed longitudinal charge density in coulombs/m over Al

coulombs/m? (6.50)

If the space between the conductors is filled with a homogeneous lossless isotropic
medium of (real) permittivity ¢ farads/m, the electric field E.(r) at radius r is

b :f”) = 5o volts/m (6.51)

Er(’l') e’ T

Postulate 4 of transmission line analysis, as given in Chapter 2, states that the potential
difference between the two conductors of a line at any cross section has a unique value
given by the line integral of the electric field along any path between the conductor surfaces,
which are equipotentials. Since in the present derivation Al can always be taken small
enough to ensure that there is negligible longitudinal potential difference along the length
Al of the conductors, it follows that the potential difference between the two conductors at

b
any cross section within Al is given by V. —V, = f —E.(r)dr, or
a

b o dr b
Vo Vo = . Sir = 3o loge a volts (6.52)

By definition the capacitance between any two conductors or conductor elements is the
ratio of the magnitude of either of the equal and opposite charges on them to the potential
difference associated with the charges. Then if AC is the capacitance between the conductors :
of a coaxial line for length Al, AC = AQ/(V,— V), and the distributed capacitance of the
line is C = AC/Al = (aQ/Al)/(Vs—V.). Using equation (6.52) and the relation AQ/Al=p,,
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2 ’,
c = Eel%/; farads/m (6.53)

If k! is the real dielectric constant of the lossless material filling the interconductor space,
k] =¢/e, where e, =8.85x10"12farads/m is the permittivity of free space. Equation
(6.53) can be written 55.6 k'

Tog. b/a micromicrofarads/m (6.54)

For most practical coaxial transmission lines the ratio b/a lies within a fairly narrow range
from about 2 to less than 10, and the logarithm is then confined to an even smaller range
from about 0.7 to 2. Except in unusual cases k: is the low dielectric constant of a low-loss
low-density material, or is a small average value for a line partly filled with dielectric beads
or discs. The distributed capacitance of a coaxial transmission line therefore usually lies
within the range of about 25 to 200 micromicrofarads/m, and values between 50 and 100
micromicrofarads/m are most common.

Distributed capacitance calculations differ from those for distributed resistance and
distributed inductance in that the effects of fields and currents within the metal of the
conductors are completely negligible, for all conceivable physical conditions. Equation (6.54)
is therefore a highly accurate and complete expression for the case to which it applies, of
smooth uniform conductors with isotropic homogeneous dielectric filling the interconductor
space. The complications introduced by a multi-strand center conductor or a braided outer
conductor are not amenable to simple analytical treatment, and the distributed capacitance
of such lines is usually determined by experimental measurement.

The dielectric constant k. of the insulating materials most widely used in coaxial trans-
mission lines, such as teflon, polyethylene and polystyrene plastics, and steatite ceramics,
varies by less than 3% over the frequency range from 60 hertz to 10 gigahertz or more, so
that the distributed capacitance is generally a true “constant” of the line. Other less com-
mon insulating materials, including bakelite, glasses, acrylic plastics, rubbers, etc., show
several percent variation of k. over the same frequency range.

(c¢) Distributed conductance.

In very rare instances the interconductor space of a coaxial transmission line is filled
with material which conducts electricity by the actual flow of charged carriers, either
electrons or ions. Damp earth, electrolytic solutions, and plasters or ceramics containing
dispersed carbon would be examples of such materials, whese current carrying properties
would be described by a true value of conductivity having the same significance as the
conductivity of a metal. The distributed conductance of a transmission line filled with
such a conducting dielectric is found, by appropriate application of equation (6.1), as the
conductance between the inner and outer cylindrical surfaces for the piece of material
filling unit length of the line (see Problem 6.31). Depending on the material, such a charge-
flow conductance value may remain constant from zero frequency up to a few hertz, or to a
few kilohertz, or even into the gigahertz frequency range.

Apart from these exceptional cases, which would exist only for special purposes and not
as lines intended for efficient transmission of signals or power, the zero frequency dis-
tributed conductance of coaxial transmission lines insulated with plastics or ceramics is

“normally so small as to be difficult to measure, and the distributed conductance at any
operating frequency is not caused by the flow of free charges but is a measure of internal
dielectric losses in the insulating material resulting from repeated reversals of the

- dielectric polarization by the a-c electric field. Since the loss is thus on a per cycle basis,

it tends to be directly proportional to frequency over wide ranges of frequency. It is then
desirable to have an expression for the distributed conductance of a transmission line that
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contains the frequency explicitly, the remaining terms in the expression being more or less
independent of frequency. This goal is achieved by the standard convention of designating
the permittivity or dielectric constant of a lossy (but nonconducting for d-c) dielectric by a
complex number. Thus for such a material

e = ¢ —J¢, ke = ke’—jk:’ = c’/co—fe"/eo (6'.55)

The distributed admittance of the distributed capacitance of a uniform transmission
line is given by G + jB, where G is one of the line’s four distributed circuit coefficients and
B = oC is the distributed susceptance of the line’s distributed capacitance C. If in equation
(6.58) for the distributed capacitance of a coaxial line the permittivity ¢ or the dielectric
constant k; is replaced by a complex number form from (6.55), then the quantity calculated
as the distributed susceptance B will have both real and imaginary parts. The negative
imaginary part of ¢ contributes a positive real part to the distributed admittance, which is the
distributed conductance of the line. Thus G+ jB = juC = jeu2x(¢ — je’)/(loge b/a) =
we”’2xn/(loge b/a) + jue'2n/(log. b/a). From the real parts of this relation,

44 2_”([

= JL 2
G = “7 Tog. b/a C tan$ (6.56)

where C = 2x¢/(log. b/a) as in equation (6.53), and tand = ¢’/¢'.

The quantity tan § used to designate the lossiness of a dielectric in a-¢ electric fields is
called the loss factor or the tangent of the loss angle for the material. It cannot be too
strongly emphasized that this use of the Greek letter 8 is in no way connected with the
previous use of the letter § for the skin depth in a conductor carrying a-c currents. It is an
unfortunate duplication that is firmly entrenched as the established notation in each case.

Equation (6.56) shows that the distributed conductance of a coaxial transmission line is
directly proportional to frequency, if the loss factor tan 5 and the line’s distributed capaci-
tance C are independent of frequency. The constancy of C has been discussed in (b) above.
For the most commonly used low loss insulating materials mentioned there, the loss factor
tan § lies between 1073 and 10~%, Tabulated values often indicate only that the loss factor
of polyethylene, for example, is less than 0.0002 for frequencies from hertz to gigahertz.
This usually means that the value was below the sensitivity of the measuring equipment.
Except at gigahertz frequencies, the value of G resulting from such low values of tan 3 is
likely to be too small to affect the attenuation factor « as determined by the methods of
Chapter 5. There is evidence that the precise value of tan § may vary considerably among
different samples of polymer plastic dielectrics, depending on impurities and thermal his-
tory. Values of tan § listed in standard handbooks for low loss materials should usually
be considered as approximate typical values only.

Example 6.3.

If the interconductor space of the coaxial transmission line of Example 6.2 is filled with teflon dielectric
having constant k, = 2.10 and constant tans = 0.00016 over the frequency range 10 megahertz to 10
gigahertz, determine the distributed capacitance C and the distributed conductance G of the line at fre-
quencies of 107, 108, 109 and 1010 hertz.

The distributed capacitance C has the same value at all the frequencies listed, given by equation
(6.58) as
C = 27(2.10 X 8.85 X 10—12)/(log, 0.1775/0.050) = 92.2 micromicrofarads/m

The distributed conductance G is then directly proportional to frequency, according to (6.56), and at
107 hertz has the value

G = 27 X107(92.2 X 10—12) X 0.00015 = 0.87 micromhos/m

The values of G at the other frequencies are respectively 8.7, 87 and 870 micromhos/m.
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(d) Distributed inductance.

Of the three distributed circuit coefficients so far considered for a coaxial line, the dis-
tributed resistance R is a quantity entirely “internal” to the conductors, being determined
completely by the conductor materials and dimensions and the frequency. It is in no way
dependent on the properties of the uniform medium filling the interconductor space. The
distributed capacitance C and the distributed conductance G, on the other hand, are
“external” quantities, being totally independent of the material of the conductors or of the
transverse extension of the conductors on either side of the interconductor space. They are
functions only of the nature and dimensions of the material filling the interconductor space,
and of the frequency.

The fourth distributed circuit coefficient, distributed inductance, is the only one of the
four such coefficients for a transmission line that in some cases has to be determined as the
sum of both “external” and “internal” components. It is true that at frequencies above
some minimum frequency that is typically in the megahertz region the distributed reactance
of the distributed internal inductance of cirecular or plane conductors becomes equal to the
distributed resistance of the conductors, as shown by equations (6.31) and (6.45), and since
oL/R > 1 always under such conditions, it follows that the distributed external inductance
must be very much greater than the distributed internal inductance for coaxial lines at
such frequencies. However, at low frequencies the distributed internal inductance of a
solid circular conductor as given by equation (6.5) can be a substantial fraction of the total
distributed inductance, for a coaxial line.

The expression for the distributed external inductance L. to be derived for a coaxial line
is independent of frequency if the magnetic properties of the material in the interconductor
space are not functions of frequency. It is the total distributed inductance of the coaxial
line at frequencies high enough to make a/5 > 100. At lower frequencies it must be added
to a distributed internal inductance term L; determined by methods reviewed in Section 6.8.

Referring to Fig. 6-10, a uniform coaxial
transmission line has circular conductors, the
outside radius of the inner conductor being a
and the inside radius of the outer conductor

T

being b, as in Fig. 6-9. Distributed external == b

inductance is a measure of the linkage of mag- |« dr |

netic flux in the interconductor space with the T. L : la

center conductor of the line as a distributed T 0

“circuit”. : :
Considering a section of the transmission | !

line of length Al between transverse planes, a :uﬁ Al :

total current I flows longitudinally in one direc-

tion in the inner conductor, and an equal current

flows in the opposite direction in the outer con- Fig.6-10. Cross section of a coaxial transmis-

ductor. From the symmetry of the line the cur- sion line in a longitudinal diametral

rents are uniformly distributed with respect to plane with notation for determining

angular position around the periphery of the distributed external inductance.

conductors, and the magnetic flux lines produced in the interconductor space by the current
in the center conductor are circles concentric with the conductor. Al is assumed short
enough that no quantities in the problem vary in the longitudinal direction.

The only component of magnetic flux density is B . and its value B ¢(r) at any point in
the interconductor space distant r from the central axis is
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B,(r) = pI/2zr teslas (6.57)

where . is the (real) permeability of the medium in the interconductor space.

The magnetic flux passing through the small rectangle of length Al and radial width dr
at coordinate dr in the radial plane is dy = B (r)aldr. Then the total flux in the inter-
conductor space linking length Al of the center conductor is

Ay = al f (w D@y dr = (1/2x)alp’Ilog, bla

The distributed external inductance of the line, L., defined as the amount of external flux-
circuit linkage per unit length per unit current, is then

L b
L = %ALZA'P = 'u—log — henries/m (6.58)

Except for peculiar situations, such as filling the 1nterconductor space of a coaxial line with
a ferrite material, the permeability n always has the value for free space, p,= 47X 1077
henries/m, which is an exactly defined value in the mks system of units.

The comments in (¢) above about the limited variation of b/a and of log. (b/a) for practical
coaxial lines are directly applicable here again, and mean that the distributed external
inductance L. of coaxial lines usually lies between about 0.1 and 10 microhenries/m. (In

contrast to the small range of values of L, and C for practical coaxial lines, the distributed
resistance R varies by a factor of 10° among common types of lines.)

Example 6.4.

For the transmission line of Examples 6.2 and 6.3 determine the distributed external inductance. Then
at a frequency of 10 megahertz find the characteristic impedance, phase velocity and attenuation factor of
the line.

The distributed external inductance L, at all frequencies is given by equation (6.58) with g, = g for
all nonmagnetic media in the 1nterconductor space. Thus L, = 2X10-7 log, 0.1775/0.050 = 0.253 micro-
henries/m.

From Example 6.2, the values of a/8 and b/8 for this coaxial line at 10 megahertz are 61 and 216
respectively, which according to Table 6.2 ensures that the distributed internal inductance of the center
conductor of the line is less than about 3% of its zero frequency value of 0.05 microhenries/m. It is therefore
somewhat under 1% of the distributed external inductance and can be neglected. At the value b/5 = 216
for the tubular outer conductor, equation (6.31) applies and L; = R/w = 0.00046 microhenries/m, where R
has the value 0.0292 ohms/m given in Example 6.2. This also is negligible in comparison with L,. Hence
for this coaxial line at a frequency of 10 megahertz, L = L, + L; = L, = 0.253 microhenries/m. A check
shows that at 10 megahertz L/R = 120, where R is the total distributed resistance of the line, and
«C/G = 1/(tan 8) = 6000. Hence the high frequency approximate equations of Chapter 5 are to be used
in determining Z,, v, and a. The results are

Z, = VL/C = V(2.63 X 10-7)/(92.2 X 10—12) = 52.4 ohms
vy, = IVLC = 2.07X108m/sec
a = R/2Z, 4+ GZy/2 = 0.00127 + 0.000023 = 0.00129 nepers/m

It is to be noted that dielectric losses contribute about 2% of the attenuation factor at this frequency.

(e) Summary of high frequency relations for the coaxial line.
If the conditions a/8 > 100, b/8 > 100, oL/R > 10 and »C/G > 10 all hold for a coaxial
line, which is likely to be the case for most lines at frequencies above some value between

1 and 100 megahertz depending on the line dimensions and materials, the following simplified
expressions are easily derived

_ /277' b .u'o b
% = |37 e 21rW o (6.59)
60 b 138 ’

= log = = ——logma ohms
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1 _ 1 1 _ 8.00x108 m/sec (6.60)
Vb€ \/E: V Boto \/’_GZ

Equations (6.59) and (6.60) both make the assumption, usually valid, that the material in
the interconductor space of the coaxial line has the magnetic properties of free space. If
this is not the case, Z, must be multiplied by, and v, must be divided by, the square root of
the relative permeability of the medium.

Vp =

6.6. Distributed circuit coefficients of transmission lines with
parallel circular conductors.

Measured by the number of miles in practical operation, parallel wire transmission lines
must constitute a large majority of transmission line installations. Telephone pole lines
and cable pairs and television antenna lead-in lines are among the most common examples.

The derivation of expressions for the distributed circuit coefficients of parallel wire lines
follows the same basic procedures used in the derivations for coaxial lines, but the departure
from cylindrical symmetry adds a complication. The effects of this distortion of symmetry
are known collectively as “proximity effect”. In the analyses for distributed capacitance,
conductance and external inductance of parallel wire lines, proximity effect can be allowed
for without too much difficulty, but the complete analyses of distributed resistance and
internal inductance for solid and circular tubular conductors are mathematically too cum-
bersome to be presented here. Tabulated data and approximate expressions are given in
(2) below and in Section 6.8.

(a) Distributed resistance.

For parallel wire transmission lines with identical solid circular conductors, the amount
by which proximity effect increases the resistance depends on the material and radius of
the conductors, and the frequency, combined in the variable a/8 as previously, and on the
“proximity”’ of the conductors, expressed by the ratio of the separation s of their centers

to the diameter 2a of each of them. The most complete analysis available is that of
A. H. M. Arnold.

In a d-c circuit (a/5 =0) there is no proximity effect even when the conductors are
virtually in contact at their adjacent surfaces (s/2a = 1). At any finite value of the con-
ductor separation there is a minimum value of /8 at which proximity effect increases the
distributed resistance perceptibly. With the conductors almost touching, for example, the
distributed resistance will increase about % from proximity effect when a/8 is approxi-
mately 0.5; but if the conductor axes are 8 diameters apart, the same increase in distributed
resistance will not occur until a/$ is increased to about 2. As s/2a increases from 8 to just
over 10, the minimum value of a/8 at which proximity effect increases the distributed
resistance by 1% rises from 2 to infinity; and for axial separations greater than 10 or 12
conductor diameters, proximity effect is negligible at all frequencies. This statement applies
to all the distributed circuit coefficients, and to lines with either solid or tubular circular
conductors. In some cases the effects become negligible at smaller separations.

At high frequencies for which a/8 > 100, proximity effect increases the distributed
resistance of solid circular conductors by a factor Pur given by the simple formula

1
VI = 1/(s/2a)

While the implication of infinite distributed resistance for conductors approaching contact
is not to be taken literally, predicted values greater than 2 for P.r when the adjacent
surfaces of the line’s conductors are only 1% of a diameter apart (s/2¢ = 1.01) have been
confirmed experimentally. '

th == (6.61)
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Equation (6.61) applies also to circular tubular conductors for the stated conditions of
a/s > 100, if the tube wall is thick, i.e. £/8 > 3.

Example 6.5. .

If the axes of the copper conductors in the 19 gauge cable pair transmission line of Example 5.4,
page 52, are separated on the average by 2.0 conductor diameters, determine the lowest frequency at which
proximity effect will increase the distributed resistance of the line by about 4%, using data for isolated 19
gauge conductors from Table 6.2, page 80. At a frequency of 3 X 108 hertz, find the distributed resistance
of the line. .

Interpolating among the approximate figures in the second paragraph of (e) above, it appears that for
8/2a = 2.0 there should be a 1% increase in distributed resistance for «/8 = 0.7 approximately. From
Table 6.2 this ratio occurs for 19 gauge copper wires at a frequency close to 10,000 hertz.

At a frequency of 8 X 108 hertz for the same wires, a/8 = 100. The distributed a-c resistance at that
frequency from equation (6.80) is 1.57 ohms/m, for each conductor of the transmission line. The high fre-
quency proximity effect factor from equation (6.61) is Py, = 1/y/1—(1/2)2 = 1.15. Hence the distributed
resistance of the parallel wire line at 3 X 108 hertz is 1.57 X 2 X 1.15 = 8.61 ohms/m. A small additional
factor caused by the increase in effective length due to twist of the wire pair has been neglected.

After equation (6.61), the next simplest approximate equation for the proximity effect
factor in parallel wire transmission lines having solid circular conductors applies to lines
for which s8/2a > 2, for all values of a/5. Designating the factor as P, under these

conditions,
1

N1 = f:(V2a/8)/(s/2a)?
where f1(\/2 a/8) is tabulated in Table 6.4 as given by Arnold. The actual function f; derives
from a Bessel equation similar to equation (6.27).

P, (6.62)

Table 64
V2ay/s f1 fa Ve2a,ls f1 fa V2a,/s f1 fa
0.2 0.000 0.000 2.3 0.436 0.201 4.8 0.731 0.240
0.3 0.000 0.000 2.4 0.470 0.205 5.0 0.739 0.236
04 0.001 0.001 2.5 0.502 0.208 5.5 0.760 0.223
0.5 0.002 0.002 2.6 0.5630 0.210 6.0 0.778 0.209
0.6 0.004 0.004 2.7 0.556 0.213 6.5 0.795 0.196
0.7 0.007 0.007 2.8 0.578 0.215 7.0 0.809 0.185
0.8 0.013 0.012 2.9 0.598 0.218 7.6 0.821 0.174
0.9 0.020 0.019 3.0 0.614 0.221 8.0 0.832 0.1656
1.0 0.030 0.029 3.1 0.629 0.224 9 0.849 0.148
1.1 0.044 0.040 3.2 0.641 0.227 10 0.864 0.135
1.2 0.061 0.064 3.3 0.652 0.230 11 0.876 0.123
1.3 0.081 0.070 34 0.661 0.233 12 0.886 0.113
14 0.106 0.088 3.6 0.668 0.236 14 0.902 0.098
1.5 0.135 0.106 3.6 0.676 0.238 16 0.914 0.086
1.6 0.167 0.123 3.7 0.681 0.240 18 0.923 0.077
1.7 0.203 0.140 3.8 0.687 0.242 20 0.931 0.069
1.8 0.240 0.156 3.9 0.692 0.244 25 0.944 0.056
1.9 0.280 0.169 4.0 0.696 0.245 30 0.953 0.047
2.0 0.320 0.180 4.2 0.705 0.246 36 0.960 0.040
2.1 0.360 0.189 4.4 0.714 0.245 40 0.9656 0.035
2.2 0.399 0.196 4.6 0.722 0.243 50 0.972 0.028
Above 50 | 1 — &/a, 8/ay

Finally, an equation stated by Arnold to give the value of the proximity effect factor for
all circular solid and tubular conductors at all separations and all frequencies, with an
accuracy of better than 4% in almost all cases, is
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1
= (6.63)
V1 — Ai/(s/2a)? + [A./(s/2a)¥]/[1 — As/(s/2a)]
where Ar = f1(V2a/8) + {1 — (a/a)? — (a/a)[1 — (a/a)] f+(V/2 a:/8)} fa(V2 a/8)
A2 = f2(VZa/8) + [1 — (a/a)?] fs(V2 as/8)
A = fs(\/iat/S) + [1 — (a:/a)?] fs(\/gat/S)
In these equations, a:=1/2at—* for a circular tubular conductor of outside radius a and
wall thickness ¢, as in equation (6.47). For a solid circular conductor t=a¢ and a:=a.

The functions fi, fs, fs, f4, f5 and fs are tabulated in Tables 6.4, 6.5 and 6.6 for all values
of the variable V/2 a,/8 (which is /2 a/s for solid conductors). The function f; is an empirical
one given by fr = (V/2a./8)3/[400 + (/2 a:/8)?].

Table 65
V2a,/3 f2 fs V2a,/s f2 fs
0.6 0.000 0.000 3.6 0.053 —0.026
1.0 —0.001 —0.002 3.8 0.046 —0.021
1.2 —0.001 —-0.003 4.0 0.039 ~0.017
14 —0.000 —0.005 4.2 0.033 -0.014
1.6 +0.003 —0.006 4.4 0.027 —0.011
1.8 0.011 —0.007 4.6 0.023 -—0.009
2.0 0.022 —0.010 4.8 0.020 —0.008
2.2 0.037 —0.015 5.0 0.018 —0.007
2.4 0.051 —0.022 5.5 0.014 —0.006
2.6 0.062 —0.028 6.0 0.012 -0.006
2.8 0.068 —0.033 7 0.009 —0.006
3.0 0.069 —0.034 8 0.007 —0.005
3.2 0.066 —0.033 10 0.005 —0.004
3.4 0.060 —0.030 Above 10 i-(S/a,t)z 2(3/a)t — *(8/0,,)2
Table 6.6
V2a,/8 fs fe V2a,/s f3 fe

0.0 0.09 0.03 4.0 0.41 0.33
0.2 0.09 0.03 4.2 0.46 0.30
0.4 0.09 0.03 44 0.51 0.27
0.6 0.08 0.02 4.6 0.56 0.24
0.8 0.08 0.02 4.8 0.60 0.21
1.0 0.06 0.00 5.0 0.64 0.19
1.2 0.02 *0.00 (—0.05) 5.2 0.67 0.17
14 *0.00 (~1.2) *0.00 (0.91) 5.4 0.69 0.16
1.6 *0.02 (0.17) *0.00 (—3.2) 5.6 0.70 0.156
1.8 *0.06 (0.11) *0.00 (—0.09) 5.8 0.71 0.15
2.0 *0.07 (0.09) 0.44 6 0.72 0.14
2.2 0.08 0.44 7 Q.76 0.13
24 0.08 0.44 8 0.79 0.11
2.6 0.10 0.44 9 0.83 0.08
2.8 0.12 0.44 10 0.85 0.07
3.0 0.156 0.44 12 0.87 0.05
3.2 0.19 0.43 14 0.89 0.03
34 0.24 0.42 16 0.90 0.02
3.6 0.29 0.39 18 0.93 0.00
3.8 0.35 0.36 20 0.93 *0.00

Above 20 1— 8/a,; *0.00

Values marked with an asterisk are artificial values which should be used in equa-
tions (6.62) and (6.68). When VZ2a,/8 > 20, the true value of f; is 3/a; — 5/64.
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Arnold notes that the peculiar behavior of equation (6.63) when As/(s/2a)>=1 has no
physical meaning and the arithmetical anomaly should be avoided by using the starred
figures in Table 6.6 instead of the proper values of the functions f; and fs in a certain range

of \/§ a/8. This is a very minor complication that will seldom be encountered.

(b) Distributed. capacitance.

The derivation of an expression for the
distributed capacitance of a parallel wire ' Y

transmission line, including proximity effect,
is a somewhat indirect procedure. Consider line z = —d PEY) h e va
two indefinitely long parallel lines lying in carries linear carries linear
the 2z coordinate plane at locations = = +d :‘;f‘:f:l;’;';,’;,‘; j:f T enaity
and z = —d, as shown in cross section in Fig. \ T2 "1
6-11. On each line, electric charge is uni- ” 0,0 x
formly distributed longitudinally, the linear |
charge density being + p, coulombs/m for the ' —d +d
line at x = +d, and — p, coulombs/m for the
line at z = —d.

The electric potential difference between :
any two points in the field of an indefinitely Fig.6-11. Coordinates in a plane transverse to two
long uniformly distributed line of charge is infinitely long parallel lines of charge,
a function of the linear charge density on the having equal and opposite linear densi-

: seps s . ti f ch .
line, the permittivity of the surrounding 168 of charge

medium, and the radial distances of the two points from the line. At any point p(z,%) in
an zy plane transverse to the charge lines of Fig. 6-11, the potential relative to a zero
reference potential on the axis xr =y =0 is ¥* = +(p/2x¢')(log, d/r,) from the field of the
positively charged line, and V,~ = —(p/2x¢)(log, d/r,) from the field of the negatively
charged line, 7, and 7 being respectively the distances from the point p to the positively and

negatively charged lines. The total potential difference between the point p and the axis
2=y =20 is then

P r
Ve = K:,loge;;:? volts (6.64)

An equipotential line in the transverse plane will be described by the relation

ro/ry = constant K = ¢ "»'" (6.65)

From the coordinates of the point », 1 =V(d—«)? + %* and 7. =V/(d+2)® + ¥?. Com-
bining these expressions through r./r1 = K, the equation of an equipotential line becomes

2
2 — 2zd %—J_“—-‘—KK—J + = (6.66)

where the actual potential at any specific equipotential line (relative to zero potential at
£ =y = 0) is determined by the value of K, using (6.65).

o\ 2
Adding d? G i II§2> to both sides of (6.66) completes a square with the first two terms,

resulting in a more comprehensible equation for an equipotential line

R
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Equation (6.67) is the equation of a family of circles, with K as a parameter and d as a
scale factor. For any potential (i.e. value of K) an equipotential line is a circle of radius
2Kd/(1 — K?) whose center has z coordinate d(1 + K?)/(1 — K?) and ¥ coordinate zero. Fig.
6-12 shows a few equipotential circles as given by equation (6.67) for parallel line charges.

The derivation of an expression for the
capacitance of a parallel wire transmission
line from equation (6.67) is accomplished by

making use of the physical fact that at any
cross section the circumferences of a trans-
mission line’s conductors are equipotential .

lines in the electric field. Hence the field pat-
tern of any specific parallel wire transmission
line will be found by fitting the cross section

pattern of the outside surface of the two con- Fig.6-12. Equipotential lines in a plane transverse
ductors to a pair of equipotential circles in to two infinitely long parallel lines of
Fig. 6-12, making whatever scale changes are charge, having equal and opposite linear

require d. densities of charge.

For any specified potential difference between the conductors (balanced relative to the
center point between them) the equivalent linear charge density p, can be determined from
the equations, and the distributed capacitance is the ratio of the distributed charge to the
potential difference.

It is important to note that for conductors of finite radius, the separation 2d of the
equivalent lines of charge producing the field is not the same as the separation s of the axes
of the conductors. The difference between these two quantities represents the embodiment
of proximity effect in the calculation.

If a parallel wire transmission line has circular conductors of radius e, the axes of the
two conductors being separated by distance s, then from equation (6.67)

a = 2Kd/(1—-K?) (6.68)
s/2 = d(1+K?»/(1-K?) (6.69)

Eliminating d from these equations and solving for s/2a,
8/2a = ¥K+1/K) (6.70)

From (6.65), K = ¢*V?’"t, If there is a potential difference V between the conductors of a
parallel wire line, balanced with respect to the central axis, then one conductor is at
potential +V/2 and the other at potential —V/2. In (6.65) this corresponds to V, = =V/2.
For V,=+V/2, K = e*™"/?, and substituting this into (6.70),

8/2a = $(e*™V/n 4 "™y = cosh =e'V/p, (6.71)

Since p,/V is the distributed capacitance C of the line, being the ratio of the magnitude
of one of the equal and opposite linear charge densities on the conductors to the potential
difference between them, it follows from (6.71) that

— 77'6’
C = “osh=T3/2a farads/m (6.72)

' c 2TBR, L erofarads)
or m micromicroiarads/m
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It is an identity that cosh~! z = log. (* + V/22—1). For 2 > 1 this becomes cosh—!x =
log. 2xz. The approximation involves an error of less than 4% for x > 5. Applying this
result to (6.72),

c = farads/m if s/a > 10 (6.73)

e
Tog. s/a

Equation (6.73) is the expression for the distributed capacity of a parallel wire trans-
mission line that would be arrived at by elementary methods ignoring proximity effect,
for s/a > 1. Referring back to comments in (a) above, it appears that in the range of s/2a
from 5 to 10, proximity effect modifies the distributed resistance of a parallel wire trans-
mission line appreciably, but has no effect on the distributed capacitance.

Comparison of numerical values for the distributed capacitance of parallel wire trans-
mission lines from (6.73) with values for the distributed capacitance of coaxial lines from
(6.58) shows that for lines of average design the former are usually less than 50% of the
latter.

(¢) Distributed conductance.

The distributed conductance of any transmission line depends on the loss factor or
conductivity of the medium surrounding the conductors, and on the geometry of the line,
in exactly the same manner that the distributed capacitance depends on the permittivity of
the medium and the line’s geometry. This means that equation (6.56), presented in the
discussion of coaxial lines, is in fact directly applicable to uniform transmission lines
having conductors of any shape or arrangement, provided all of the electric field pattern
of the line lies within the medium described by the dielectric constant &, and loss factor
tan 8. The bounded geometry of a coaxial line, or of any other line with a self-shielding
configuration of conductors, assures that this requirement is satisfied if the medium fills
the interconductor space inside the outer conductor. For a coaxial line whose interconductor
space is only partly filled with insulating beads or discs, separate determinations of G and
C can be made for the air-dielectric and material-dielectric fractions of the line, and from
these reliable average values for the line as a whole can be calculated.

For a parallel wire transmission line, on the other hand, the requirement that the
electric field surrounding the conductors be entirely contained within a surrounding
dielectric medium would literally demand that the medium be of indefinitely great extent,
and even a more practical goal such as 99% containment would necessitate that the medium
around and between the conductors have a thickness considerably greater than the distance
between the conductor axes.

The presence of solid dielectric material in the interconductor electric field of any
transmission line increases the distributed circuit coefficients C and G, relative to air
dielectric, without affecting R or L. Both of the changes increase the attenuation factor e.
This can be seen directly, for high frequencies, from equations (5.9) and (5.11); and a con-
sideration of phase angle relations in equation (5.1) shows that it is true at all useful
frequencies. For the efficient transmission of signals and power, there is therefore always
a premium on minimizing the amount of solid dielectric material in the interconductor
electric fields of a transmission line.

The many commercial types of small diameter coaxial transmission lines whose inter-
conductor space is filled with plastic dielectric have been desighed primarily to achieve a
high degree of flexibility, combined with adequate electrical uniformity and mechanical
stability. This objective is attained at an increase in cost and an increase in attenuation
factor over a line with identical conductors but with an interconductor space only partially
filled with dielectric.

To minimize the cost and the undesirable effects of dielectric material, practical parallel
wire transmission lines use the smallest possible amount of insulating material for periodic
supports or spacers, or in the form of a thin web maintaining the spacing between the
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conductors of a flexible line. Unfortunately for analytical purposes, expressions for the
distributed capacitance and conductance of such lines cannot be derived in any generalized
form.

Frequently an estimate of relative volumes of air and solid dielectric can suggest that
the solid insulating material in the structure of a particular line occupies too little space to
produce a significant value of distributed conductance or to have any measurable effect on
the distributed capacitance. For lines incorporating a substantial amount of solid dielectric,
such as the standard “Twinline” used for connecting television receivers to antennas, the
values of C and G must be determined by direct measurement at any operating frequency.

Example 6.6.

The conductors of the 19 gauge cable pair transmission line of Example 6.5 are insulated by a machine
which embeds them in liquid paper pulp. With the separation between conductor axes maintained at 2.0
conductor diameters, the pulp is dried and forms a solid dielectric that extends far enough in all directions
around the conductors to protect the line electrically and mechanically from dozens of similar parallel wire
transmission lines in the same cable. The average values of distributed capacitance and distributed con-
ductance for the 19 gauge cable pair line are respectively C = 0.062 microfarads/mile and G = 1.0
micromhos/mile at a frequency of 1 kilohertz. Assuming the electric field of the line is completely contained
within the homogeneous paper insulation, and that the value of distributed conductance is entirely due to
dielectric loss rather than charge-flow conductivity, determine the average value of the dielectric constant
k. and the loss factor tan & for the insulating material.

It is convenient to do the calculation in metric units, using (6.72). The distributed capacitance of the
line is (0.062 X 10—9)/1609 = 38.5 micromicrofarads/m. From the dimension data, 8/2¢ = 2.0 and
cosh—1 8/2¢ = 1.32. Then from the second equation of (6.72), 27.8 k//1.82 = 38.5, or k, = 1.83, a reason-
able value for the dielectric constant of a rather porous material.

In using (6.56) to determine tan §, any length units may be used for C and G provided they are the
same for both. Using the values per mile, and a frequency of 1 kilohertz,

1.0 X108 = (27 X 1000)(0.062 X 10—8)(tan8) or tans = 0.0026

This is typical of the values of tan § for many organic materials, such as paper, wood, and bakelite and
acetate plastics, but is higher by a factor of 10 or more than the values for the best low loss plastics.

(d) Distributed inductance.

All the introductory remarks in Section 6.4(d) about the relative magnitudes of the
distributed internal inductance and the distributed external inductance of coaxial lines also
apply to parallel wire lines. Although the distributed external inductance of parallel wire
lines tends to be considerably higher than that of coaxial lines, for the same geometrical
reasons that make the distributed capacitance tend to be lower, the distributed internal
inductance also tends to be somewhat higher because the parallel wire line has two identical
conductors, usually solid, while one of the coaxial line’s conductors is a thin walled tube.
The distributed internal inductance of the two cases at various frequencies is discussed in
Section 6.8. The net result is that the ratio of the distributed internal inductance to the
distributed external inductance is typically only a little smaller for parallel wire trans-
mission lines than for coaxial lines.

The derivation of an expression for the distributed external inductance L. of a parallel
wire transmission line, taking proximity effect into account, follows a pattern identical to
that of the derivation of equation (6.72) for the distributed capacitance. Magnetic quantities
take the place of electric quantities, and the conductor circumferences are identified as
lines of constant magnetic vector potential. The result is

L, = (u,/v)(cosh™'s/2a) henries/m or L, = 0.4 cosh~!s/2a microhenries/m (6.74)

x

where p/ is the real part of the mks permeability of the medium surrounding the con-
ductors. For all insulating materials used in practical transmission lines, p/ = p, =
47 X 10~7 henries/m.
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Example 6.7.

To complete the calculations on the 19 gauge cable pair transmission line of Examples 6.5 and 6.6,
determine its distributed external inductance and total distributed inductance at a frequency of 1 kilohertz,
and compare the results with the stated distributed inductance at that frequency (Example 5.4, page 52)
of 1.00 millihenries/mile.

For 8/2a = 2.0, cosh—1(8/2a) = 1.82, as in Example 6.5. From equation (6.74) the distributed external
inductance of the line is then 0.4 X 1.832 = 0.63 microhenries/m = 0.58 X 1609 = 0.85 millihenries/mile. At
the low frequency of 1 kilohertz, Table 6.2 shows that the distributed internal inductance of a 19 gauge
isolated wire is the same as its d-c value of 0.050 microhenries/m = 0.080 millihenries/mile.

At the frequency of 1 kilohertz, a/8 from Table 6.2 is 0.22, and from Fig. 6-8 or the discussion in
Section 6.6(a) the distributed resistance of the conductors is not increased by proximity effect under these
conditions. It can therefore be assumed that the distributed internal inductance is also not affected.

The total distributed internal inductance for the two wires of the line is then 0.160 millihenries/mile,
and the total distributed inductance of the line is 0.85 + 0.16 = 1.01 millihenries/mile. The difference
between this calculated value and the stated average value of 1.00 millihenries/mile is covered by the
slightly nominal nature of the latter figure.

(e) Summary of high frequency relations for the parallel wire transmission line.

If the conditions a/8 > 100, oL/R > 10 and «C/G > 10 all hold for a parallel wire trans-
mission line, which is usually the case at frequencies above some value between 1 and 100
megahertz depending on the line dimensions and materials, the following simplified expres-
sions can be obtained from equations (6.72) and (6.74),

P ,
zZ, = m,w cosh~1(s/2a) = —1—; £ cosh-1s/2a = 120, cosh™!s/2a
=k, N % VE, C(6.75)

_ 120 S s \2_ _ 276 S S\ _ ohms
- (G = e )

and if s/2a > 10, then within 3%,

z, = 120 log, s/a = ﬁlog10 s/a ohms (6.76)

For all values of s/2a,

o = 1 — 1 1 _ 38.00x108

Equations (6.60) and (6.77), for the high frequency phase velocity on coaxial lines and
parallel wire lines respectively, are identical. They carry no information about the
geometry of the lines or the metal of their conductors. The numerical result is the value of
the phase velocity for plane transverse electromagnetic waves in an unbounded medium
having the properties of the insulating material filling or surrounding the line conductors.
This follows from the fact, discussed in Chapter 2, Section 2.3, that the elecfric power
traveling along a transmission line is a plane transverse electromagnetic (TEM) wave
guided by the conductors. At high enough frequencies the propagation of the waves in the
interconductor medium is not affected by the bounding conductors. At lower frequencies
equation (5.6), page 49, shows that either distributed resistance or distributed conductance
separately will reduce the phase velocity below the value for an unbounded medium, but

if both are present there is some mutual cancellation of effects according to the term
{(R/2sL) — (G/2.C)}2.

As was the case for equations (6.59) and (6.60), the interconductor medium is assumed in
(6.75), (6.76) and (6.77) to have the magnetic properties of free space. Otherwise Zo must
be multiplied by and v, divided by the square root of the relative permeability of the medium.
If the relative permeability is complex and has a sufficiently large phase angle, an
additional contribution to the distributed resistance of the line will be created. This situa-

m/sec (6.77)
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tion is likely to occur only in a research context. Its analysis is easily developed by analogy
with the method used in Section 6.5(¢) to handle complex dielectric permittivity. (See
Problem 6.32.)

Example 6.8.

Three sizes of circular copper tubing, having outside diameters respectively of 1.00”, 1.50"” and 4.00”’
and all with wall thickness 0.100"/, are available to make a transmission line to be used at 100 megahertz.
The maximum transverse dimensions of the line must not exceed 4.00”. Assuming that dielectric supports
will have negligible effect on either the distributed capacitance or the losses of any proposed line, what
arrangement of the conductors, as either a coaxial line, or a parallel wire line with identical conductors,
will result in the lowest attenuation factor? (Make a guess before proceeding.)

There are five possible designs of transmission line that use the available conductors and meet the
conditions stated. Two are coaxial with the 4" tube as outer conductor, one is coaxial with the 1.5 tube as
outer conductor, and two are parallel wire lines with the 1”7 and 1.5”” tubes respectively as conductors. The
coaxial line with the 1.5” tube as outer conductor will obviously have higher attenuation than the coaxial
lines with a 4" tube as outer conductor, since its distributed resistance is higher and its characteristic
impedance is lower than for either of them. No calculations need therefore be made for it. There is no
self-evident basis for rejecting any of the other four possibilities. (Some design ecriteria for “optimum”
transmission lines for various purposes and subject to various specifications are developed in Section 6.9.)

Since 8 for copper at 100 megahertz is 6.61 X 10—8 m, it is obvious that /5 > 100 for all of the
conductors, and the resistance calculations can be made by the simplest high frequency formulas (6.30) or
(6.49), with the simplest correction for proximity effect, equation (6.61), used where necessary. The attenua-
tion calculations for each of the four lines are then as follows:

(1) Coawial line with 4’ outer conductor and 1" inner conductor.
From (6.69), characteristic impedance = 138 log,, 1.90/0.50 = 80.1 ohms.

I . _ 0.00261 1.90
From (6.49), distributed resistance = 27(1.90 X 0.0254) (1 + 0.50

been made of R, =.1/08 = 2.61 X 10— 7y/f ohms/square for copper when f is in hertz, and of the conversion
factor 1”7 = 0.0254 m.)

From (5.9), attenuation factor = 0.04138/(2 X 80.1) = 2.57 X 10—¢ nepers/m.

> = 0.0413 ohms/m. (Here use has

(2) Coacxial line with 4" outer conductor and 1.5 inner conductor.
From (6.59), characteristic impedance = 138 logy, 1.90/0.75 = 57.9 ohms.

0.00261 1+ 1.90
27(1.90 X 0.0254) 0.76

From (5.9), attenuation factor = 0.0804/(2 X 57.9) = 2.62 X 10—¢ nepers/m.

From (6.49), distributed resistance =

> = 0.0304 ohms/m.

(8) Parallel wire line with 1’ conductors.

Minimum attenuation for this line will occur with the conductors as far apart as possible, since this
will maximize Z; in equation (5.9) and will at the same time minimize R by minimizing proximity effect.
Therefore s = 4.00” — 2a = 3.00"".

From (6.75), characteristic impedance = 276 log,, (3.00/1.00 -+ V/(8.00/1.00)2—1) = 211.6 ohms.

0.00261
27(0.050 X 0.0254)

From (6.61), proximity effect factor = 1/v/1 —1/(3.00/1.00)2 = 1.060.

Distributed resistance of conductors including proximity effect = 0.0695 ohms/m.

From (5.9), attenuation factor = 0.0695/(2 X 211.6) = 1.64 X 10—4 nepers/m.

From (6.80), distributed resistance of conductors if isolated = 2 = 0.0656 ohms/m.

(4) Parallel wire line with 1.5" conductors, 8 = 2.50".
From (6.75), characteristic impedance = 276 log,, (2.50/1.50 + V/(2.50/1.50)2—1) = 131.9 ohms.

0.00261

From (6.80), distributed resistance of conductors if isolated = 2 m

= 0.0437 ohms/m.



106 DISTRIBUTED CIRCUIT COEFFICIENTS AND PHYSICAL DESIGN [CHAP. 6

From (6.61), proximity effect factor = 1//1 —1/(2.50/1.50)2 = 1.118.
Distributed resistance of conductors including proximity effect = 0.0489 ohms/m.
From (5.9), attenuation factor = 0.0489/(2 X 131.9) = 1.86 X 10—* nepers/m.

Worth noting from these results are the fact that the two parallel wire lines have substantially lower
attenuation factors than either of the coaxial lines, in spite of having higher distributed resistance values,
and the fact that for each type of line the 1” conductor gives lower attenuation than the 1.5” conductor.
Both facts are of course due to the relative values of the characteristic impedances involved. It does not
follow that conductors of 0.756" or 0.50’' outside diameter will give still lower attenuation in either type
of line. For each case, subject to the fixed maximum lateral dimension, there is an optimum value of
conductor diameter for the parallel wire line or inner conductor diameter for the coaxial line that provides
minimum attenuation. With smaller conductors the distributed resistance rises more rapidly than the
characteristic impedance, and the attenuation factor increases. (See Section 6.9 and Problem 6.15.)

6.7. Distributed circuit coeﬂicient§ of transmission lines with
parallel plane conductors.

Elementary methods can derive exact expressions for the distributed circuit coefficients
of transmission lines with parallel plane conductors only in the idealized case of conductors
which are portions of infinite parallel planes. The infinite plane specification eliminates the
effects of the curved electric and magnetic field lines that occur at the edges of finite plane
conductors, effects which are not easy to analyze mathematically. The equations for the
idealized case apply with useful accuracy to lines with conductors of finite width if the
conductor width is sufficiently large compared with the separation of the conductors.

Parallel plane transmission lines with conductors many times wider than their
separation have no particular electrical virtues, their attenuation being greater than for
parallel wire or coaxial transmission lines of comparable maximum transverse dimensions,
or containing comparable amounts of metal, but profitable use can sometimes be made of
their space-saving geometry and the fact that they have a higher degree of self shielding
than lines with parallel circular conductors. The stripline constructions of Fig. 2-2, page 9,
are commercial types of line that take advantage of these properties.

Even though the expressions for the distributed circuit coefficients of the idealized
parallel plane transmission line are seldom accurately applicable to practical situations,
they are worth noting because their simple form is so easily remembered, and they can often
serve as a bagis for a useful estimate of coefficient values for a line having some other
design.

(a) Distributed resistance.

The distributed resistance per unit width of single infinite plane conductors, in which the
currents are excited by fields from one side only, has been fully dealt with in Section 6.3.
For a two-conductor line with plane parallel conductors of width w and thickness £, assuming
the idealized fields of infinite planes, the distributed resistance at any value of the ratio
t/8 will be 2/w times the values given in Section 6.3 for conductors of finite thickness. At
low frequencies the result is equal to the distributed d-c resistance of the conductors, as
usual. At frequencies sufficiently high that the conductors are at least three skin depths
thick, the result is ‘

R = 2R.,/w ohms/m : (6.78)

For intermediate frequencies the distributed resistance is the value given by equation
(6.78) multiplied by a factor from Fig. 6-7, page 87.
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(b) Distributed capacitance.

If two infinite parallel plane conductors carry equal and opposite uniform surface charge
densities of magnitude p, coulombs/m?, the electric flux field is entirely confined to the space
between them, is normal to the conductor surfaces, and has constant density D = P,
coulombs/m2. The electric field E, also constant everywhere and normal to the surfaces, is
given by E = D/¢ = p /¢ volts/m, where ¢ is the real part of the permittivity of the
medium between the conductors. The potential difference V between the conductors is then
V = Ed = pd/¢ volts. The capacitance per unit area, being the ratio of the magnitude of
one of the surface charges per unit area to the potential difference between the conductors,
is ¢’/d farads/m2. The distributed capacitance of the parallel plane conductor is therefore
given approximately, when w/d > 1, by

C = fw/d farads/m = 8.85 k/w/d micromicrofarads/m (6.79)

(c) Distributed conductance. b

The distributed conductance of all transmission lines is given by equation (6.56), in
terms of the distributed capacitance of the line and the loss factor of the interconductor
medium, assuming that the distributed conductance is due entirely to molecular dielectric
loss mechanisms. For the idealized parallel plane transmission line neglecting edge effects
this takes the specific form

G = »8.85k/w/d tan$ micromicromhos/m (6.80)

For this expression to be applicable, the interconductor medium whose loss factor is tan §
must contain all of the electric field surrounding the line conductors. The condition is
fulfilled for parallel plane conductors if the medium fills the space between them.

(d) Distributed inductance.

Practical applications of parallel plane transmission lines are based primarily on the
geometrical fact that the total volume occupied by the line can be made small and one
dimension can be made very small, with no reduction in the surface area of the conductors
or increase in the high frequency distributed resistance R. At the same time the lines
retain a high degree of self-shielding.

If a transmission line has to be designed so that its cross section is contained within a
rectangular area of which one edge is much longer than the other, a line with parallel plane
conductors will have a lower attenuation factor and much better power handling capacity
than either a coaxial line or a parallel wire line with circular conductors when the aperture
ratio of the rectangle exceeds some minimum value, and will have much smaller external
fields than the parallel wire line.

It is shown in Section 6.8 that the distributed internal inductance of tubular and plane
conductors is proportional to the thickness ¢ at low frequencies for which 8 > ¢, and to the
skin depth 8§ at high frequencies for which ¢ > 8. The expression derived in this section for
the distributed external inductance of a line with parallel plane conductors shows that it is
proportional to the separation d between the facing surfaces of the conductors. Since d
might be comparable to or even smaller than ¢ for a parallel plane line, it is possible at low
frequencies for the distributed internal inductance of such a line to constitute the greater
part of the total distributed inductance, a result not possible for any reasonable design of
coaxial or parallel wire line with circular conductors.

In calculating the distributed inductance at low and intermediate frequencies for lines
with parallel plane conductors, therefore, particular attention must be paid to the relative
importance of the distributed internal inductance. If d/§ > 100 the distributed internal
inductance is always negligible, for all values of conductor thickness t.
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A single isolated infinite plane conductor parallel to the zz plane and carrying an instan-
taneous surface current in the z direction of density Js. amperes/(meter width of plane in
the = direction) has a constant magnetic field of value H. = J:/2 throughout the whole of
space on one side of the plane, and a constant field of equal magnitude and opposite sign on
the other side of the plane. When two such conductors are paralle]l to one another and
carry currents of equal density in opposite directions, the fields between the conductors
are additive and those outside the conductors cancel. Thus the magnetic flux density
between the conductors of a parallel plane transmission line, neglecting edge effects caused
by finite conductor width, is constant at the value B, = =’/ J_ teslas, where y/ is the real
part of the mks permeability of the medium between the conductors. The sign is determined
by the sign of the z directed current in one of the conductors. The magnitude of the total
magnetic flux |y| between the conductors per unit length of conductor in the 2z direction is
|¢| = |B,Jd = p. dJ,,. The conclusion that all of this flux links all of the current in the
conductors as a “circuit” requires the hypothesis that the flux lines after extending indef-
initely laterally in the space between the conductors are self-closing by returning in the
unbounded space outside the conductors, where their vanishingly small density constitutes
zero field.

If the actual conductors in the parallel plane transmission line have finite width w, but
the currents and fields are those of infinite planes, the current magnitude in each line
conductor will be I=J,w amperes. The distributed external inductance of the line,
defined as the total flux external to the conductors linking the circuit per unit current,
becomes

L= - %3, henries/m (6.81)

For a nonmagnetic medium in the interconductor space, p’ = p, = 4w X 10~7 henries/m and
L, = 1.256d/w microhenries/m.

(e) Summary of high frequency relations for the parallel plane transmission line.

Subject to the conditions that d/s > 100, w/d > 1, «L/R > 10 and »C/G > 10, the fol-
lowing simplified expressions can be obtained from equations (6.79) and (6.81):

B {u,'..d/w _ 1 [md _ 871d ,
ZO = 7 w/d = W E_o E = ‘/—k_e’ 1'; Oth (6.82)

_ 1 _ 1 1 _ 3.00x10®
P T VG @ wld)  VE Vi, VE,

In these equations it is again assumed that the interconductor medium is nonmagnetic.

v m/sec (6.83)

Example 6.9.

A parallel plane transmission line used at 10 megahertz has copper conductors 1.00"”” wide and 0.050"
thick, spaced 0.100”. The interconductor space is filled with material of dielectric constant 2.25 and loss
factor 0.00025. Neglecting edge effects, determine the characteristic impedance, the attenuation factor and
the phase velocity at the frequency of operation. Compare the results with the values for a coaxial line
whose total conductor periphery is equal to the combined width of the two plane conductors (i.e. 2za + 27b = 2w)
and for which the ratio b/a = 8.5, the interconductor space being filled with the same medium. (The
reason for choosing b/a = 8.5 is given in Section 6.9.)

The skin depth in copper at 10 megahertz is 2.09 X 10—5 m so that d/s > 100 and ¢/8 > 100. A check
shows that oL/R > 10 and «C/G > 10 are both satisfied.

The characteristic impedance of the parallel conductor line, from the high frequency equation (6.82)
is 25.1 ohms.

The distributed resistance from (6.78) is R = 2 X 0.000825/0.0254 = 0.0650 ohms/m.

The distributed capacitance from (6.79) is 199 micromicrofarads/m, and the distributed conductance
from (6.80) is 8.13 X 10—8 mhos/m.
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The attenuation factor is therefore
« = 0.0650/(2 X 26.1) + 4(3.13 X 10~6) X 251 = 0.00129 + 0.000039 = 1.33 X 10—3 nepers/m
The phase velocity from (6.88) is
v, = 8.00X108/1.5 = 2.00 X 108 m/sec

For the coaxial line meeting the stated conditions, the relations a+b=w/r and b/a =35 give
a =0.0707" =179 X103 m, and b = 3.5a = 0.247" = 6.28 X 10—3% m.

The characteristic impedance from equation (6.59) is 50.1 ohms.

The distributed capacitance from (6.54) is 99.7 micromicrofarads/m, and the distributed conductance
from (6.56) is then 1.56 X 10—¢ mhos/m.

Finally the attenuation factor of the coaxial line is

a = 0.094/(2 X 50.1) + }(1.56 X 10-6) X 50.1 = 0.000937 + 0.000030 = 9.8 X 10—* nepers/m

The coaxial line in the above example has an attenuation factor about 25% smaller than
that of the parallel plane line, with the same area of metal sheet of the same thickness in
unit length of each. The calculation for the parallel plane line neglected edge effects, and
allowance for these would increase the advantage of the coaxial line by a few percent. The
equality of the contribution to the attenuation factor from the distributed conductance in
the two cases is an identity (see Problem 6.29).

If the same amount of metal sheet were made into two circular conductors for a parallel
wire transmission line with the maximum transverse dimension equal to that of the parallel
plane transmission line, the conductors being fully surrounded by the same medium, the
attenuation factor would be much less than for either the coaxial or the parallel plane lines,
but the external fields of the parallel wires line would be appreciable at greater distances
from the conductors than for the parallel plane line.

Reducing the separation of the parallel plane conductors by 50% would reduce the char-
acteristic impedance, as given by the idealized equations, by the same amount. The dis-
tributed resistance would not change, and the contribution of the distributed resistance to
the attenuation factor would therefore be doubled. The contribution from the distributed
conductance would remain constant, so that the total attenuation factor would increase by
somewhat less than 100%.

If the separation between the parallel plane conductors is steadily increased, the entire
field pattern begins to change drastically, becoming similar to that of a parallel wire trans-
mission line for values of d/w much greater than unity. The attenuation factor decreases
sharply, but the idealized theory ceases to be usefully accurate when d/w exceeds 0.1.

6.8. Distributed internal inductance for plane and tubular circular
conductors of finite thickness.

In Sections 6.2 and 6.8, full derivations were presented of expressions for the distributed
resistance of solid circular conductors, and plane conductors of unlimited area and thickness,
respectively, as a function of frequency. An inherent feature of those derivations was that
the resulting expressions, equations (6.27) and (6.45), also gave values for the distributed
internal inductance of the two cases.

The much more elaborate mathematical investigations that resulted in Fig. 6-8, page 88,
for the distributed resistance of circular tubular conductors at low and intermediate values
of the parameter a./8, and in equation (6.63) for the influence of proximity effect on the
distributed resistance of solid and tubular circular conductors under all conditions, would
also have provided information about distributed internal inductance. Unfortunately, the
main practical application which the authors of those two major studies had in mind was
power transmission at frequencies of 50 and 60 hertz, where oL; is generally too small to
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merit attention. Their published works contain the very complicated equations from which
L; can be determined, with or without proximity effect, but the extensive numerical com-
putations required were made only for the real parts of the expressions, yielding Ra-c/Ry.c.

It is the purpose of this section to discuss the conditions under which the distributed
internal inductance of a transmission line’s conductors is a significant part of its total
distributed inductance, and to review the methods and data available for calculating dis-
tributed internal inductance for the types of transmission lines dealt with in Sections
6.5, 6.6 and 6.7. For some situations exact values are readily determined, for others

adequate approximations can be made, and for still others a judicious guess may be the best
available solution.

A simple and useful criterion for estimating whether or not the distributed internal
inductance can be ignored in any particular transmission line application, can be derived
from the flux-circuit linkage definition of inductance, combined with the fundamental
electromagnetic fact that across any boundary between two materials the tangential com-
ponent of magnetic flux density B is continuous.

The tangential B-field at the surface of a conductor being continuous means that its
value just inside the metal is equal to its value just outside the metal in the adjacent inter-
conductor space. Inside the metal the B-field diminishes to zero, either exponentially (as in
a plane conductor several skin depths thick), or linearly (as in an isolated solid circular
conductor at zero frequency) or according to some other law. The diminishing flux
densities farther from the surface into the metal also link a decreasing fraction of the
conductor current as a “circuit”. If the tangential B-field at the surface of a conductor in a
transmission line is designated B., and most of the flux of this field is contained within a
metal thickness I from the surface, then as a rough average estimate, about half the flux
within the metal will link about half the circuit, per unit length, and a resulting approximate
expression for the distributed internal inductance is {B.l/ic, where ic is the instantaneous
total current in the conductor, causing the field B, at the surface. (It i3 an encouraging
coincidence that this procedure happens to produce exactly the correct answer for the dis-
tributed internal inductance of a solid circular conductor at zero frequency. For that case
B, = pi/(27a), l,=a, and the resulting distributed internal inductance is given as p,/8~
henries/m, the value found in equation (6.5) by formal analysis.)

In the interconductor space, the value of B does not fall to zero, and all of its flux links
the whole circuit. If the distance between facing conductor surfaces of a transmission
line is 1, the amount of flux-circuit linkage in the interconductor space will be fairly rep-
resented in most cases by the product B.l.. It may be greater or less than this, depending
on the cross section of the line, but usually by only a small factor less than 2. The distributed
external inductance of the line will therefore be given approximately by Bl./ic.

The ratio of distributed external inductance to distributed internal inductance is finally
21./l;, where an additional factor of 2 has been introduced because a line has two conductors.

The distance I, is an obvious quantity, independent of frequency, for any transmission
line. The distance L, on the other hand, varies widely with frequency. At frequencies low
enough for the current density to be nearly constant over a conductor’s cross section, I is
the radius of a solid circular conductor, or the thickness of tubular or plane conductors.
At frequencies high enough to make a/8 or t/5 greater than 8 or 4, L can be equated with
sufficient accuracy to the skin depth 8. In the small range of intermediate frequencies
between these two regions, l; can be taken conservatively as whichever value is greater.

Example 6.10.
For the 19 gauge cable pair line of Examples 6.6 to 6.7, the ratio 8/2¢ = 2.0, and a = 4.56 X 10~4 m.
Estimate what percent of the total distributed inductance of the line is distributed internal inductance, at
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frequencies of 104, 10% and 108 hertz. Make the same estimate at the same frequencies for a 3}" standard
rigid transmission line whose inner conductor has an O.D. of 8.34 X10~2m with wall thickness
2.14 X 10—3 m, and whose outer conductor has LD. of 7.80 X 102 m and wall thickness 2.49 X 10-3 m.

At each separate frequency the skin depth in the copper conductor metal is the same for the two lines,
with values 6.61 X 10—4 m at 104 hertz, 6.61 X 10~5 m at 10¢ hertz, and 6.61 X 10— ¢ m at 108 hertz.

For the 19 gauge cable pair the distance between facing conductor surfaces is 2a¢ =9.12X10—4m.
At 10% hertz, /; must be taken as @ since a/3 < 1. Therefore 2L/l 24 and the distributed internal
inductance must not be disregarded. At 108 hertz, a/8 =10 and !, can be taken as 8. Then 2L/l = 30.

In this case the distributed internal inductance is estimated as being a few percent of the total, and if not
considered negligible would at least not need to be calculated very accurately.

At 108 hertz the distributed internal inductance will clearly be negligible.
The distance between facing surfaces of the 8} standard rigid coaxial line is 2.23 X 10-2 m. At 104
hertz the wall thicknesses are somewhat over 8 skin depths and [; = 8 can be used, giving 2l /l‘ = 85.

The situation is the same as for the 19 gauge cable pair at 108 hertz. At 108 hertz and 108 hertz distributed
internal inductance is negligible for this large diameter coaxial line.

Distributed resistance values for all the types of conductors considered earlier in this
chapter are always given, in the low frequency range from zero to some upper limit, by a
factor multiplying the distributed d-c resistance for the entire cross section of the conductor
(Table 6.1 and Fig. 6-8, for example). At frequencies diminishing from very high values
down to some lower limit, calculations make use of the skin effect theorem and distributed
resistance values are given by a factor multiplying the distributed d-c¢ resistance of a
peripheral skin of the conductor of thickness 8, this skin depth § being itself a function of
frequency (Fig. 6-7, for example). Use of the theorem requires that metal thicknesses and
conductor radii be not less than 3 or 4 skin depths. At frequencies between the upper and
lower limiting frequencies for these two categories of calculations, tables, graphs, or
elaborate formulas are required.

The same classifications apply to calculations of distributed internal inductance of
circular conductors. Expressions for the d-c distributed internal inductance are therefore
needed for each type of conductor investigated. The only such expression developed so far
is equation (6.5) for the solid circular conductor.

The d-c¢ distributed internal inductance of a circular tubular conductor depends some-
what, in the case of coaxial lines, on whether the tube is the inner or outer conductor of
the line. The difference in the two values, for the same tube, is large in the case of thick
walled tubes (f/a = 0.3, for example), but only a few percent for thin walled tubes
(t/a = 0.05) and disappears for extremely thin walled tubes (t/a = 0.005). The value for
a tube used as the inner conductor of a coaxial line also applies to the same tube used in a
parallel wire line or an image line, with correction by a proximity effect factor if necessary.

Expressions for the d-c distributed internal inductance of a circular tubular conductor
are developed through the same mathematical procedures employed to obtain equation
(6.5) for a solid circular conductor. The result for an isolated tube, which applies to the
inner conductor of a coaxial line and the other equivalent cases, is

1 — 4(ai/a)® + 3(ai/a)* + 4(a/a)* log. (a/as) \
Lige = £ :
¢ (tube) 8 [1 — (a/a)?)? henries/m (6.84)
where a is the external radius of the tube and a: its internal radius. Equation (6.84)
reduces to (6.5) when a;=0.

Making the substitution f=a —a;, and expanding the logarithm as a power series in
(t/a), the first few terms of (6.84) are

. 4/t 2 /t\* 1 /¢tY .
Lig. (tube) = g’:; [-3- <—&> - -1—5(E> ~ 10 <E>:! henries/m (6.85)
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The accuracy of this expression is better than 1% for t/a < 0.5, and for small values of
t/a it is much more convenient to use than equation (6.84).

When a circular tubular conductor is the outside conductor of a coaxial line, the magnetic
flux density in the metal of the outer conductor at any point is caused by the whole of the
current in the inner conductor and a portion of the current in the outer conductor. The
flux in any increment of radius in the outer conductor also links all of the current in the
inner conductor and a portion of the current in the outer conductor. The total situation
can be expressed by an integral similar to that used in obtaining (6.84), with the result

4log. (a/a) — 3 + 4(ala) — (a/a)
Lig.. (coax. outer) = % og. (a/a:) i ——-(Fai /i()z;]/a) (a/a) henries/m (6.86)

which expanded in powers of t/a becomes

2
Lis. (coax. outer) = -8“; [% (i—) + g <£-> + g <£>3 + 3_3 <a£>4:| henries/m (6.87)

Equation (6.87) converges less rapidly than (6.85) but is accurate to better than 4%
for t/a as large as 0.25.

Equations (6.84) and (6.86) are plotted in Fig. 6-13 for a wider range of wall thicknesses
than would ever be encountered in practical transmission lines. Inspection of the numerical
values shows that for the same outside diameter a, the ratio of the d-c¢ distributed internal

inductance of a circular tube to that of a solid circular conductor is roughly equal to the
ratio of their metal cross sections.

L;q4.c (tube)

Fig.6-13. Ratio of the d-c distributed internal inductance of a circular
metal tubular conductor of inside radius a;, outside radius a,
and wall thickness t, to the distributed d-c internal induct-
ance of a solid circular conductor of the same metal and
same outside radius.

An expression for the d-c distributed internal inductance per unit width of infinite plane
conductors of finite thickness is obtained by extending the analysis of Section 6.7(d). It
derives from the fact that if the longitudinal d-c current in the plane conductors has density
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Js: a8 a surface current, and flows in opposite directions in the two conductors, the tangential
B field at the facing conductor surfaces is pJ,. Inside the conductors the field diminishes
linearly from this value to zero at the outside surfaces. The resulting value for the dis-
tributed internal inductance per unit width of plane is

Liqc (plane, per unit width) = 34uf henries/m (6.88)

where ¢ is the thickness of each conductor. For a parallel plane transmission line with
identical conductors of width w, but with £/ small enough that the field pattern in the inter-
conductor space is essentially that for infinite planes, equation (6.88) gives

L;4c (plane transmission line) = $ut/w henries/m (6.89)

Applied to a tubular conductor of radius a, w1th t <€ a, the conductor would approximate
a plane of width 2ra, with the result L;a. (tube) = (u/8x)(4/3)(t/a) henr1es/m, in agreement
with the first terms in equations (6.85) and (6.87).

In Section 6.3 a transmission line analog was used (Problem 7.10) to investigate the
ratio Ra-c/R, for unit width of plane conductors of thickness ¢, over the critical range of
t/8 from about 0.5 to 3, the results being presented in Fig. 6-7. The same analog provides
information about the ratio oL,/R, for the plane conductors, as shown in Fig. 6-14. It is
known from equation (6.45) that for large enough values of /5, Rac = oL, = R_ for unit
width of infinite plane conductors, and it is known that for low enough frequencies
(t/8 < 0.5), oL;=owLis.. Fig. 6-14 covers the transition between these two limits. For
small values of t/a it applies also to tubular conductors.

15

1.0 ol

0.5

wLi/R,

0.2

0.1

0.05 sk 3
0.1 0.2 0.5 1 2 b

/8

Fig.6-14. Ratio of the distributed internal inductance per unit width
of an unbounded plane conductor of thickness /8 skin depths
to the limiting high frequency value R,/w for a conductor of
indefinite thickness. For values of ¢/ less than about 0.5,
the value of L; is equal to the distributed d-c internal induct-
ance of the metal sheet.

10

For t/8 < 0.5 in Fig. 6-14 inspection shows that oL /R, = §t/8 with high accuracy.
From this L, = 2R t/(808) = 2t/(8w08?) = 2wpot/6wo = ut/3 henries/m for unit width of the
plane. From equation (6.88) this is equal to L;q..
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Analogous to equation (6.29) for solid circular conductors, a power series expression can
be used to express the variation of Li/Lis. for £/8 as high as 1.5. This is

L4 (plane) = 1 — 0.020(¢/5)  (6.90)
Lia-.

This equation is also adequately accurate for tubular conductors having the reasonable
values of t/a likely to be encountered in practical transmission line conductors.

A gimilar expression can be found for R/Ra4. for plane and tubular conductors,

R-%c (plane) = 1 + 0.075(t/8)* (6.91)

The question to which no universal answer seems to have been published is that of the
influence of proximity effect on distributed internal inductance. Considering the evidence
from equations (6.28) and (6.29) for solid circular conductors and from equations (6.90) and
(6.91) for plane and tubular conductors, it can be concluded that proximity effect like skin
effect will reduce the distributed internal inductance of a conductor and that the percent
reduction will be considerably less in any situation than the percent by which proximity
effect increases the distributed resistance of the same conductor.

Fortunately, the combination of circumstances that would require accurate information
about the proximity effect factor for distributed internal inductance occurs rather rarely
in transmission line practice. The most unfavorable situation would be a parallel wire
line with solid circular conductors, the facing surfaces of the conductors being separated
by only a few percent of a conductor radius, operating at a frequency to make a/8 have a
value near 2. These conditions make the distributed internal inductance comparable in
magnitude to the distributed external inductance, with a proximity effect factor that might
be as small as 0.8 or 0.85. There is no recognized basis for making an accurate analysis
of the total distributed inductance of a line for such a case.

Appropriate changes in any of the factors specified can improve the situation. Increas-
ing the conductor separation, changing to tubular conductors, or increasing the frequency
will all reduce the relative value of the distributed internal inductance, and the first change
will reduce the proximity effect factor. When the facing conductor surfaces are at least
a conductor diameter apart (s/2e¢ = 2), the distributed internal inductance will be less than
20% of the total distributed inductance, and the proximity effect factor will be not less than
0.87 according to equation (6.62) and Table 6.4. Proximity effect can then not modify the
total distributed inductance value by more than about 2%, and the factor need be known
only very roughly.

All of the above facts combine to justify the general conclusion that the influence of
proximity effect on the total distributed inductance of a parallel wire transmission line will
always be less than, and except in inconceivably extreme situations much less than, its
influence on the line’s distributed resistance. It is therefore suggested as a working
hypothesis that unless the proximity effect factor for distributed resistance is found from
equations (6.61), (6.62), or (6.63) to be at least 1.05, it can be assumed that proximity effect
will not change the value of the line’s total distributed inductance. If the proximity effect
factor for distributed resistance lies between 1.05 and 1.25 it may be a fair guess that the
distributed internal inductance value should be divided by the square root of that factor.
For higher values of the distributed resistance factor no suggestions are offered for accurate
determination of the total distributed inductance, and experimental measurements may be
the best procedure. .

Example 6.11.
Complete the analysis of the 19 gauge cable pair transmission line of Examples 6.5, 6.6 and 6.7, by
finding the distributed internal inductance at frequencies of 102, 104, 108 and 108 hertz.
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The information about the line needed for purposes of the calculation is 8/2a¢ = 2.0, @ = 4.56 X 10—4 m,
and from Table 6.2, page 80, a/8 = 0.0689, 0.689, 6.89 and 68.9 at the four frequencies listed.

At 102 hertz, with a/8 = 0.0689, L;= L., . = po/8r henries/m for an isolated 19 gauge conductor,
from Tables 6.1 or 6.2 and equation (6.5). From equation (6.62) and Table 6.4, page 98, the proximity effect
factor for resistance for solid conductors at a/8 = 0.0689 is 1.000. Hence the total distributed internal
inductance of the line is (for two conductors) 0.100 microhenries/m. The distributed external inductance of
this line was determined in Example 6.6 as 0.58 microhenries/m. The distributed internal inductance is
therefore about 16% of the total.

At 104 hertz, with a/8 = 0.689, the situation has changed by only about 0.3% from the value of dis-
tributed internal inductance at 102 hertz,

At 108 hertz, with a/8 = 6.89, Table 6.2 shows that the distributed internal inductance for the isolated
conductors has dropped to 29% of its d-c value. Equation (6.62) shows a proximity effect factor of 1.12 for
resistance for these solid conductors, close to the limiting high frequency value from equation (6.61) of 1.15.
The procedure suggested above is that the distributed internal inductance in this case be estimated as
being reduced by a factor 1/v1.12 = 0.95. The total distributed internal inductance of the line is then
2(uo/87) X 0.29 X 0.95 = 0.0274 microhenries/m, which should be accurate within better than 2%. Since
this is only about 6% of the total distributed inductance of the line, it need not be known with better than
10% accuraey, and the inclusion of the proximity effect factor has no effect on the final total value. This
illustrates the typical phenomenon that, as proximity effect becomes greater, the fraction of the total
distributed inductance affected by it becomes less. Only for extremely closely spaced conductors will a
critical calculation problem arise, in a small range of frequencies.

At the frequency of 108 hertz, L,/L,, . is about 3%, and this percentage of 24,/8z has dropped to the
negligible amount of about 4% of the total distributed inductance of the line.

6.9. Optimum geometries for coaxial lines.

In designing a coaxial transmission line, the diameter of the outer conductor is often
determined by considerations of space or cost. The size of the center conductor does not
change the space occupied by the line and its cost is a minor part of the total. It can then
be adjusted to achieve various desirable electrical properties. It can be seen, for example,
from equation (6.49) for the high frequency distributed resistance of a coaxial line, and
from equation (6.59) for its high frequency characteristic impedance, that the high frequency
attenuation factor of such a line as given by equation (5.9), page 49, becomes indefinitely
large when o is approximately equal to b (Zo = 0) and when a becomes vanishingly small
(R increases to large values more rapidly than the logarithmic term in Z,.) There is there-
fore an optimum intermediate value of a, when b is fixed, for which the line has a minimum
high frequency attenuation factor. (Note, however, that if a is fixed and b allowed to vary,
the attenuation factor will diminish continuously for indefinite increase of b, and there is no
optimum value for b other than infinity.)

Making the indicated substitutions for R from (6.49) and for Z, from (6.59) into (5.9),
the high frequency attenuation factor of a coaxial line having G =0 is

a,, (coax.) = (Rs/27b)[1+ (b/a)]/[120 log. (b/a)] nepers/m (6.92)

Differentiating with respect to b/a and equating to zero leads to log. (b/a) =1+ (a/b). This
is a transcendental equation which must be solved graphically or from tables. The result
is b/a = 3.592, and the corresponding characteristic impedance for an air dielectric line
from equation (6.59) is 76.64 ohms. The minimum in the attenuation factor as a function.
of b/a is a broad one, showing less than 4% variation from b/a =8.2 to b/a=4.1, and
only 5% increase at b/a =2.6 and b/a=5.2.

If a transmission line is to handle a maximum amount of power for a fixed value of b,
the design must be optimized to avoid breakdown rather than to reduce the attenuation
factor. The principal types of failure are dielectric breakdown due to excessive electric
field in the interconductor space, and thermal breakdown due to excessive temperature rise
of the center conductor.
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From the geometry of a coaxial line, maximum electric field will always occur at the
surface of the inner conductor. Substituting into equation (6.51) an expression for the
distributed longitudinal charge density p, obtained from (6.52), the maximum electric field
at r = a is found in terms of the potential difference Vi, — V. between the conductors to be
Enex = (Vo — Va)/[a log. (b/a)]. If the voltage on the line varies harmonically with time and
has rms value V volts, the peak value of Vi, — V., will be V2V, and the power transmitted by
the line is V%/Z, since Z, is real at high frequencies. The final expression for the maximum
electric field in terms of the power level and the line dimensions is

Enax = V120P/[aV/log. (b/a)] volts/m
where P is the power level in watts. The differentiation is much easier if the expression
is inverted. Taking d(1/Emax)/da = 0 gives directly log.(b/a) = %, b/a = 1.649, and
Zo = 30 ohms.

Optimum design for protection against thermal breakdown through overheating of the
center conductor requires assumptions about the processes of heat transfer between the
conductors and from the outer conductor to its surroundings, both of which are very
sensitive to the condition of the conductor surfaces. On the simple but rather inaccurate
assumption that the outer conductor temperature remains close to the line’s ambient tem-
perature, regardless of the temperature of the inner conductor, it is easily shown that.
minimum power dissipation occurs in the inner conductor, for constant transmitted power
and constant dimension b, with b/a =1 and Z, = 60 ochms if the dielectric is air.

If a section of coaxial line is used as a capacitor, or as a delay line or wave-shaping
network, the desired objective may be that it should withstand the highest possible value
of applied voltage, for a fixed value of outside diameter. From the equation for FErex in
terms of Vi, — V. given above, this requires maximizing a log.(b/a) with b constant. The
result is b/a =1 and Z, = 60 ohms.

Large rigid conductor coaxial lines for high power use are generally designed with
Zo = 50 ohms, which appears to be a compromise value for optimization against breakdown.
The attenuation factor is 10% higher than for a line of the same outside diameter having
Zo, = 76.6 ohms. Low power dielectric filled flexible coaxial lines are available in several
values of Zo, the most widely used having characteristic impedances near 50 ohms or near
75 ohms. The latter are effectively optimum design for minimum attenuation factor at
constant outside diameter. The former are close to optimum design for minimum center
conductor heating, for constant diameter and temperature of the outside conductor. When
the interconductor space of a coaxial line is filled with solid dielectric, the assumption
becomes reasonably correct that the temperature of the outer conductor is not affected by
the heating of the center conductor. Dielectric, whether lossy or lossless, does not affect
the optimum design for minimum attenuation factor.

Solved Problems

6.1. An indefinitely long straight solid circular conductor has radius a, carries a d-c cur-
rent of I amperes, and is made of metal whose mks permeability is p henries/m.
The surrounding medium has zero conductivity and permeability n,, henries/m. De-
scribe the variation of the magnetic flux density B in the conductor and the surround-
ing medium, as a function of the radial distance r from the central axis of the
conductor. ‘

The H field within and surrounding the wire is determined by the current distribution alone and
is independent of the magnetic properties of the materials. From the symmetry of the problem the
H field and the B field have only H, and B, components in the cylindrical coordinate system whose
2 axis coincides with the axis of the conductor. Applying Ampere’s law to any transverse circular
path of radius r inside the conductor and concentric with it gives Hy = Ir/(2ra?) amperes/m, since
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6.2,

6.3.

6.4.

6.5.

the current enclosed by the path is the fraction r2/a2 of the total conductor current I. Outside the
conductor all paths enclose the total current I, and Hj, = I/(2rr) amperes/m. The B field is every-
where equal to the H field multiplied by the mks permeability. Thus for r <a, By = ulr/2ra?
teslas (or webers/m2) and increases linearly with » from the center of the conductor to its periphery.
For r> a, By = ppl/2rr. There is a discontinuity in B, at r = a unless g, = p. In the medium
outside the conductor, B,, falls off inversely as the distance r from the conductor’s axis. For a copper
coriductor in air or in a plastic dielectric, u = g, = py, the mks permeability of free space; but for
an iron conductor in air or for a copper conductor embedded in ferrite, the two permeabilities will
have different values and B, will either decrease or increase discontinuously at the conductor surface.

(a) A current of 5 amperes d-c flows in a 16 gauge copper wire having 100% con-
ductivity. Determine the current density as a function of position inside the wire.

(b) At a frequency which makes 1/2a/5 =10, a current of rms value 5 amperes
flows in the same wire. What is the ratio of the rms magnitude of the current
density at the surface of the wire to the value found in (a)?

(¢) What is the frequency in (b)?

(a) The radius of 16 gauge wire is 6.455 X 104 m. The d-c current density is constant over the
cross section of the wire at the value J;4.. = I/(za2) = 3.82 X 106 amperes/m?2.

(b) The surface current density in the a-c case is given in terms of the total conductor current by
equation (6.26), page 77, where J,(a) will be an rms current density if I, is an rms current. From
tables, ber (10) = 138.84, bei (10) = 56.37, ber’ (10) = 51.20 and bei’ (10) = 185.31. Substituting
I, = 7a2J,4.. , and noting that 2/(wuc) = 82, equation (6.26) gives

Ve(@/Jzae| = 3(V2 a/8) Vi{[ber (10)]2 + [bei (10)]2}/{[ber’ (10)]2 + [bei’ (10)]2} = 5.19

(¢) When VZ2a/s =10, =9.13X10"3m for 16 gauge wire. From & = 0.0661/\/7 for 100%
conductivity copper when f is in hertz, the frequency is 523 kilohertz.

If a solid circular conductor of radius a carries an a-c¢ current of sufficiently high
frequency, the reactance of the distributed internal inductance L; is equal to the
distributed internal resistance R according to equation (6.31), page 78. This requires
a/8 =100. Show that under these conditions Li/Lia. = 1/(R/Ra.), a relation that
is confirmed in Table 6.2, page 80, for large values of a/s.

It is known from equation (6.1), page 71, that Rg.c = 1/(owa?) ohms/m, and from (6.5) that
L; 4. = #87 henries/m. Since under the conditions stated L; = R/w, the problem is to demonstrate
the identity (R/w)/(u/87) = (1/owa?)/R, or R2 = (wp)/(8720a?). Using wpe/2 = 1/82, this becomes
R? = 1/(472%a208), which is in agreement with equation (6.20), using R; = 1/(¢8). Hence the identity
is established.

An iron wire of diameter 0.128”” used in a telephone circuit has relative permeability
150 at frequency 1000 hertz. Determine the distributed resistance and distributed
internal inductance of the wire at that frequency at 20°C.

The radius a of the wire in metric units is 1.63 X 103 m. The conductivity of iron at- 20°C
from Table 6.3 is 1.00 X 107 mhos/m. The skin depth 8§ in iron at 1000 hertz must be calculated
directly from equation (6.15), page T4, and is 4.12 X 10~4¢ m. The value of a/§ is then 3.96. From
Table 6.1, R/Rg4.c for this value of a/8 is about 2.25, and L/L;4 . is about 0.499. The value of Rg.c
for the iron wire from equation (6.1) is 0.0120 ochms/m. Hence the distributed resistance R for the
wire at 1000 hertz is 2.70 ohms/m. Since L;, . from (6.5) is 7.50 microhenries/m, the distributed
internal inductance of the wire at 1000 hertz is 3.74 microhenries/m.

For an a-c surface current produced in a plane conductor of indefinite thickness by
a uniform tangential a-c electric field, determine the percent of the total power loss
in the conductor, per unit area of surface, that occurs in distances from the surface
of 0.5,1, 1.5, 1.6, 2, 3, 4 and 5 skin depths.

The result for any distance is obtained from equation (6.48) on changing the upper limit of the

integral from infinity to the desired distance y in skin depths. The percent is then found to be
given by 100(1 — e¢—2¢/8), Numerical values are
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Distance from surface in skin depths 0.5 1 1.5 1.6 2 3 4 b

Percent of total power loss,

from surface to that distance 632 86.6 950 959 982 99.75 99.97 99.995

Although the magnitude of the current density diminishes as e—¥/3, g0 that at a distance of 58
into the metal from the surface the current density is still nearly 1% of the surface value, the
losses vary as the square of the current density at any distance and it can be seen that more than
99% of the losses occur in about 2.5 skin depths.

It is mentioned in Section 6.3, referring to the results of a transmission line analog in Problem
7.10, that if an unbounded plane conductor of thickness about 1.68 is substituted for an unbounded
plane conductor of indefinite thickness (i.e. any thickness greater than a few §) the power loss per
unit area of surface in the total metal thickness is reduced about 8%. Fig. 6-6, page 85, shows
that the magnitude of the total surface current density for a given tangential electric field is the
same, within about 1%, in a surface layer of thickness 1.6 on a thick plane conductor as in an
indefinitely thick surface layer (compare also the results of Problem 6.6 below). The data table of
this problem, however, suggests that “removing” the current pattern beyond a thickness of 1.68
would reduce the losses by only 5%. The extra 3% is a consequence of the reflection of the electro-
magnetic waves from the second surface of the metal, mentioned in Section 6.3. The resulting
modified current distribution in the metal is slightly more uniform and hence produces less loss
for the same total current than the exponentially decaying current distribution from which Fig. 6-6
was constructed. An alternative explanation is that the presence of the reflected wave modifies the
distributed internal admittance of the conductor, making the real part a little smaller than the value
given by the reciprocal of equation (6.45).

A tangential electric field of rms phasor value E.o exists over the surface of a plane
conductor. The plane surface of the conductor extends indefinitely in the z and 2
directions and the conductor is indefinitely thick in the y direction perpendicular to
the surface. Using E., as a real reference phasor, determine an equation for the
total phasor surface-current density per unit width of surface in the = direction, con-
tained between the surface plane ¥ =0, and a parallel plane at distance y into the
metal from the surface. Make calculations from the equation, a graph of which would
give the curve of Fig. 6-6, page 85, for the case Ay = 0.

The answer is obtained in the same manner as equation (6.44), page 84, but with the upper limit
of the integral changed to y instead of infinity. Thus

J.0toy) = fl dx fy dy [oE ,4(1 + j0) e~ (1+D¥/8)
Carrying out the integration, and usir:)g the :elation R, = 1/05, this becomes
Jee (0toy) = (E/[R(1+3)]}1 — e-1+Du/5)
Rationalizing the first term and using ¢~ = cosx — j sin x,
Jez0toy) = (E/2R){1 — e~v/5(cosy/s — siny/8) — j[1 — e~ ¥/5(cos y/8 + sin y/8)]}
Several points on the required curve are shown in the following table.

y/8 Js (0 to )/ (E o/2R,) Magnitude Phase Angle
0.3 0.512 — 70.075 0.5618 —8.3°
0.6 0.856 — 70.250 0.891 —16.3°
0.9 1.064 — j0.428 1.147 —21.9°
1.2 1.171 — 50.611 1.323 —27.6°
1.6 1.206 — 70.762 1.430 —32.8°
1.8 1.198 — 70.877 1.486 —36.2°
2.1 1.167 — j0.957 1.610 —39.4°
2.4 ) 1.128 — j1.006 1.511 —41.8°
2.7 1.088 — j1.032 1.602 —43.6°
3.0 1.057 — 71.042 1.486 —44.6°
4 0.999 — 71.025 1.433 —45.7°
b 0.992 — 71.004 1.412 —45.3°
10 1.000 — 51.000 1.414 —45°
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6.7.

6.8.

The result is constant at the last value for all thicknesses greater than 105, and is in agreement
with the magnitude and phase relations given by equation (6.45), page 84. When the above points
are plotted on the graph of Fig. 6-6, the locations of the first ten points agree very precisely with
the locations of the points determined by summing surface-current incremental phasors for layers
0.38 thick.

For the same plane conductor and tangential phasor value of electric field described
in Problem 6.6, determine the length of the arc of the curve of Fig. 6-6 from the
origin to each of the points tabulated in Problem 6.6, relative to the length of the
chord from the origin to each point, and relative to the length of the chord from the
origin to the point at infinite y.

The magnitude values in Problem 6.6 are the chord lengths from the origin to any point on the
curve of Fig. 6-6, expressed in units of E,/2R,, the chord length to the point for infinite y being
1.414 in these units. The length of the arc of the curve from the origin to any coordinate y in the
conductor is given by the same integral used in Problem 6.6, with the phase information removed.
The result has no particular physical meaning, but the ratio of the arc length from the origin to
the chord length over the same portion of the curve gives some impression of the relative inefficiency
of a “thick” conductor compared to a conductor of optimum thickness. In the same units used in
Problem 6.6, the arc length from the origin to coordinate y is

1 v
f dx f dy |oE 4(1 + j0)| e~ +Hw/8| = (E, /R — e~¥/%)
0 °
The results are tabulated below, with the chord lengths repeated from Problem 6.6 for comparison.
(arc length)/(length of (chord length)/(length of (arc length)/
y/8 chord for infinite y) chord for infinite y) (chord length)
0.3 0.366 0.366 1.00
0.6 0.637 0.630 1.01
0.9 0.838 0.812 1.03
1.2 0.987 0.938 1.05
1.5 1.097 1.012 1.08
1.8 1.179 1.050 1.12
2.1 1.240 1.068 1.16
2.4 1.285 1.068 1.20
2.7 1.318 1.062 1.24
3 1.343 1.050 1.28
4 1.388 1.014 1.37
b 1.405 0.998 141
10 1414 1.000 1.414

The copper inner conductor of a coaxial transmission line is a circular tube of outside
diameter 0.250””7 and wall thickness 0.015””. Determine its distributed resistance
at frequencies of 10, 103, 105 107 and 10° hertz. Compare the range of frequencies
over which its distributed resistance remains within 4% of its d-c distributed resist-
ance with the corresponding frequency range for a solid circular copper conductor
of the same outside diameter.

The calculation requires significant quantities which have the following values at the different
frequencies:

10 hertz 108 hertz 105 hertz 107 hertz 109 hertz

s, m 209X10-2 | 209X10-3 | 2.09X10¢ | 2,09 X10-5 | 2.06X10-¢
a/$ 0.1562 1.52 15.2 152 1520

a; =151 X103 m

a,/8 0.0723 0.723 7.23 72.3 723

t/8 0.0182 0.182 1.82 18.2 182
R,, ohms 8.25 X107 | 826X 10-8 | 825X 105 | 825X 10—4 | 8.25 X103
R3.c = 2.42 X 103 ohms/m
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At 10 hertz, with a/8 = 0.152, Ra-c = Rg.c = 2.42 X 10—3 ohms/m.

At 10% hertz, with a/8 = 1.52, Ra-c/Rg-c would be almost 1.10 for a solid conductor, but on
consulting Fig. 6-8 for a,/8 = 0.723 for a tubular conductor with t/a = 0.12, it is clear that
Rgac/Ry-c is less than 1.005, and the distributed resistance is again 2.42 X 10—3 ohms/m.

At 105 hertz, with a/8 = 15.2, Ra-c/Rd-c for a solid conductor can be found quickly from equa-
tion (6.83), page 78, as 7.86. But Ra.c for the tube is greater than that of a solid conductor of the
same outside diameter by a factor of 4.43. Hence if (6.33) were directly applicable to the tube, the
result would be Ra-c/R4.c = 7.86/4.43 = 1.77. However, the tube wall at this frequency is only
1.84 skin depths thick, and there is a correction factor from Fig. 6-7 to be applied. The distributed
a-¢ resistance for a tube of wall thickness 1.84 skin depths is in fact less than that for an
indefinitely thick tube, to which equations (6.22) and (6.88) would apply, by a factor of about 0.93,
indicating a corrected ratio for Ra.c/R4.c of 1.77 X 0.93 = 1.65. The graphical result from Fig. 6-8
for @,/6 =17.23 and &/8 =0.12 is 1.66. Hence the distributed resistance of the conductor is
4.02 X 10—3 ohms/m.

At 107 hertz, with /5 = 152 and ¢/8 = 18.4, the distributed resistance is given by equation
(6.30) and is exactly the same as for a solid conductor of the same outside diameter. The result is
4,14 X 10—2 ohms/m, and Ra.c/Rg.. = 17.1.

At 10 hertz, equation (6.80) again applies, giving a distributed resistance value higher by
precisely a factor of 10. The result is 0.414 ohms/m, and Ra-c/Rd-. = 171.

The highest frequency at which R/Rg4.c remains less than 1.005 for the solid conductor is taken
as the frequency for which a/8 = 0.5. This is found to be about 104 hertz, For the tubular con-
ductor it is not possible to calculate the corresponding limiting frequency directly and it must be
found empirically from Fig. 6-8. With t/a¢ = 0.12, it appears from Fig. 6-8 that Ra./Rac < 1.005
when a,/§ < 2, approximately. This occurs at a frequency of about 7700 hertz, with § = 7.556 X 10~4m
and t/6 = 0.50. Although Fig. 6-7 cannot be considered applicable with high precision to this
situation with a/8 as low as 4.4, it does show that for plane conductors the distributed a-c resistance
is quite precisely equal to the d-c resistance when t/§ is as low as 0.5. Hence the figure of 7700
hertz should be reasonably accurate, indicating that the frequency range of constant distributed
resistance for the tube is about 70 times as great as the range for a solid conductor of the same
outside diameter.

A pair of circular coaxial metal tubes is used as an electrostatic capacitor. The outside
diameter of the inner conductor is 2 em and the inside diameter of the outer conductor
is 16 ecm. The tubes are 3.5 m long. The center conductor is supported by thin
transverse dielectric discs, which occupy 5% of the interconductor volume and are
made of material having dielectric constant 3.2.

() What is the total capacitance of the capacitor, neglecting anomalous “edge effects”
at the ends?

(b) If breakdown occurs in the line when the electric field in the air dielectric portions
exceeds 1.5 X 108 volts/m, what is the maximum voltage that can be applied to
the capacitor?

(c) Find the breakdown voltage of the capacitor if the outside diameter of the inner
conductor is increased to 4 cm without changing the outer conductor.

(d) Find the breakdown voltage of the capacitor if the outside diameter of the inner
conductor is increased to 8 cm without changing the outer conductor.

{a) The capacitance must be calculated as the sum of two separate components, one for the air
dielectric portion of the line, and the other for the portion filled with solid dielectric. Using
equation (6.54), page 93, the distributed capacitance of the air dielectric portion is 55.6/(log, 7.5) =
27.6 micromicrofarads/m. The air dielectric portion is 95% of the total length. Hence its
capacitance is 3.5 X 0.95 X 27.5 = 91.5 micromicrofarads. For the solid dielectric portion the
capacitance is similarly 3.5 X 0.05 X 55.6 X 3.2/(log, 7.5) = 15.5 micromicrofarads. The total
capacity of the line is then 91.5 4 15.5 = 107 micromicrofarads.

(b) For any specific line geometry, equation (6.52) shows that the linearly distributed charges on
coaxial conductors are directly proportional to the applied voltage. Equation (6.51) states that
the electric field in the interconductor space is directly proportional to the linearly distributed
charges, and is a maximum at the smallest value of r in the interconductor space, i.e. at the
outer surface of the inner conductor.
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6.10.

6.11.

When the breakdown field of 1.5 X 106 volts exists at the surface of the inner conductor in
the air dielectric portions of the line, the magnitude of the distributed charge on each conductor

18 27(8.85 X 10-12)(1 X 10—2) (1.5 X 108) = 8.33 X 10~7 coulombs/m

From equation (6.52) the voltage between the conductors will then be
8.33 X 10— 7 log, 7.5/(2x X 8.85 X 10—12) = 30,300 volts

(c) When the outside radius of the center conductor is 2 cm, the breakdown voltage is
(65.6 X 10—12)(2 X 10—2)(1.5 X 108) log, 3.75/(55.6 X 10—12) = 39,700 volts

(d) When the outside radius of the center conductor is 4 cm the breakdown voltage is
(4 X 10—2)(1.56 X 108) log, 1.876 = 87,600 volts

The results of parts (b), (¢) and (d) illustrate a phenomenon investigated analytically in Section
6.9, that for a fixed size of the outer conductor there is an optimum size of the inner conductor
that results in minimum electric field in the interconductor space for a given applied voltage.

A coaxial transmission line has circular tubular copper conductors with walls 0.050”
thick, the inside diameter of the outer conductor being 1.25”, and the outside diameter
of the inner conductor 0.375”. The center conductor is supported by a continuously
spiraled dielectric webbing which fills 20% of the interconductor space. At a fre-
quency of 200 megahertz the phase velocity on the line is measured to be 93%, and the
attenuation factor to be 0.635 db/(100 ft). Determine the equivalent average dielectric
constant and loss factor of the material in the interconductor space.

The frequency is high enough to ensure that a/s > 100 and ¢/ > 1 for both conductors. A
rough check shows also that «L/R > 1 and «C/G >1. It follows that the attenuation factor of
the line is given by equation (5.9), page 49, using equation (6.59) for the characteristic impedance
Z,, (6.49) for the distributed resistance R, and (6.56) for the distributed conductance G. Using (6.60)

for the phase velocity, the real part of the average dielectric constant of the interconductor medium

is found from
k. (average) = [(3.00 X 108)/(0.93 X 3.00 X 108)]2 = 1.16

The portion ap of the attenuation factor caused by conductor resistance is
[R,(1 + b/a)/(22b)]/[60 log, (b/a)/Vk]] = 2.26 X 10-3 nepers/m = 0.598 db/(100 ft)

The portion of the attenuation factor due to dielectric loss is then o« = 0.635 — 0.598 =
0.037 db/(100 ft) = 1.40 X 10—4 nepers/m. From (5.9) the distributed conductance that would produce
this attenuation is G = 2¢g/Z;, = 2.80 X 1074/67.3 = 4.17 X 10—8 mhos/m. Using equation (6.56),

tans = G/oC = 4.17 X 10-8/[(2r X 200 X 108)(27 X 1.16 X 8.85 X 10-12)/1.206] = 7.2 X 10-5

Show that the characteristic impedance Z, of a coaxial transmission line as given by
equation (6.59), page 96, is equal to the d-c resistance between two concentric circle
metallic electrodes on a surface resistance sheet (such as a thin carbon film deposited
on a plane of nonconducting material), the d-c surface resistivity of the sheet being
877/Vk! = 120x/1/k] ohms/square, the outside radius of the inner circular electrode
being a, and the inside radius of the outer circular electrode being b.

For a circular ring of radius » and radial width dr on the resistance sheet, the d-c resistance
between the inner circumference and the outer circumference is dR = p,(dr)/27r ohms, where p,

is the d-c surface resistivity of the sheet in ohms/square. The resistances of such rings filling the
area between the contact electrodes at r =a and r=1>0 are m series between the electrodes.

.. Hence the total resistance between the electrodes is

f dR = (py/2x) log, (b/a) ohms

and if R, = 120z/Vk. ohms/square, R = (60/Vk.) log, (b/a) = Z, ohms.
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6.13.

6.14.
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This relation derives from the fact that the wave impedance or intrinsic impedance for plane
transverse electromagnetic waves in an unbounded medium of dielectric constant k. and low loss

factor is
Zyem = Vule = QIVE]) Viley = 371/VEL ohms

Show that the thickness 1.55 to 1.65 of plane metal sheet conductor shown in Fig.
6-7, page 87, to have minimum distributed high frequency resistance is very close to
1 wavelength thick for the waves propagating in the metal.

In the analysis of Section 6.3, all field quantities for the plane waves propagating in the metal
vary in amplitude by a term e~ ¥/8 and in phase by a term e~ /8, when the wave is traveling in the
direction of increasing y. According to the latter term, the phase will change by 27 radians in a
distance Ay given by Ay/8 = 27. But in a harmonic space pattern, the distance in which the phase
changes by 27 radians is defined as the wavelength A of the pattern. Hence in the metal, A = 275 =

6.283, and } wavelength would be 1.573, very close to the sheet thickness found to have minimum
distributed a-c resistance.

At a high frequency » rad/sec a coaxial transmission line has distributed external
inductance L. henries/m, distributed resistance R ohms/m, and negligible distributed
internal inductance L; when the interconductor space is air filled. Show that if the
interconductor space could be filled with a magnetic medium having relative perme-
ability k,, and magnetic loss factor tan §, such that /& —1 > oL (tan$ )/R, the
attenuation factor of the line will be reduced if the medium has a dielectric constant
of unity and no dielectric losses.

Since the attenuation factor of an air dielectric transmission line at high frequencies is given
by agp = E/(2VL,/C) nepers/m when there are no dielectric losses, the requirement on the medium
is that the square root of the factor by which the distributed external inductance is increased on
adding the medium must exceed the factor by which the distributed resistance is increased from
magnetic losses. (See Problem 6.32.) The total distributed external inductance in the presence of
the medium is k,L,, and the total distributed resistance is (R + wL, tan 8m). The properties of
the medium must then satisfy VknL,/L, > (R + «L  tan 3,,)/R which converts to the expression
stated in the problem.

At low frequencies a useful amount of the desired result can be achieved by winding thin mag-
netic metal tape (such as Permalloy) around the center conductor of a coaxial line. At higher
frequencies ferrite materials have high values of k,, and low values of tan §,, but they also exhibit
dielectric losses, which according to equation (5.9) are accentuated by the value of k. Their use as
an interconductor medium in coaxial lines can result in reduced attenuation for certain designs of
line at low and intermediate frequencies.

A coaxial transmission line is to be designed to transmit 50 kilowatts of power at a
frequency of 100 megahertz over a distance of 100 ft with at least 90% efficiency.
What is the minimum diameter of a coaxial line with copper conductors and air
dielectric that will meet the efficiency specification? Will the minimum diameter
line handle the stated amount of power?

The attenuation of the line in decibels is 10 log,, (50,000/45,000) = 0.457 db = 0.0526 nepers.
Since the line is 30.48 m long, the attenuation factor is 0.0526/30.48 = 0.00172 nepers/m. For fixed
outside diameter, a coaxial line of minimum attenuation has b/a = 3.6 (see Section 6.9) and for an
air dielectric line this corresponds to Z, = 76.6 ohms. Then o = [4.6R,/(2sb))/153.2, and since
R, = 2.61 X 10~3 ohms for copper at 108 hertz, b to give the desired value of attenuation is found
to be 0.725 cm.

The peak voltage on the line, assuming it to be terminated in its characteristic impedance will be
\/§ V50,000 X 76.6 = 2760 volts. The interconductor distance being about 0.5 cm, the maximum
electric field is of the order of 500,000 volts/m (a more precise value could be determined from
equations (6.51) and (6.52)). This is a fairly high value of electric field, but would be tolerable in a
well-maintained line. From the thermal point of view the line must dissipate 5 kilowatts in 100 feet,
or 50 watts per foot of length. There is no simple basis for demonstrating that this would
result in the temperature of the center conductor rising to more than 300°F, which may be con-
sidered excessive. For steady power transmission of 50 kilowatts at 100 megahertz, manufacturers
recommend a copper transmission line with outside diameter about 3’’.
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6.15.

6.16.

Assuming that a parallel wire transmission line with circular tubular or solid con-
ductors is operated at high enough frequencies that its characteristic impedance is
given by equation (6.75), the resistance of its conductors if isolated is given by equa-
tion (6.30), and the proximity effect factor for resistance is given by (6.61), show that
if the radius of the conductors is varied while the separation of their axes is held
constant, there is an intermediate value of the conductor radius at which the line has
a minimum attenuation factor. Find an approximate value for the ratio s/2¢ (s being
constant) that gives the minimum value for the attenuation factor.
Combining the conditions stated, the attenuation factor of the line is

2E, 8/2a 1

w8 \/l__'_mi 120 cosh—1s/2a
Letting 8/2a = x, the problem stated in its simplest terms is to find the value of 2 that minimizes
2/[V1 — (1/x)2 (cosh—1 x)]. Although this is not an impossible analytical task, an adequate solution
is found much more quickly by making calculations for several values of x. The attenuation factor

is found to be constant within about 4% for values of s/2¢ from 2.1 to almost 2.5, with a minimum
close to 2.32.

nepers/m

a

Determine the attenuation factor at a frequency of 1 kilohertz for a parallel conductor
transmission line whose copper conductors are tubes of outside diameter §”” and wall
thickness 74’’, the separation between the adjacent surfaces of the conductors being
3. The line is assumed to have air dielectric.

Since a/5 = 2.3, equation (6.61) cannot be used for calculating the proximity effect factor for
resistance, and since 8/2a = 1.833, equation (6.62) is also not considered to be accurate. The full
calculation of equation (6.63) must therefore be used.

The various quantities required in the calculation are a,=3.55 X 103, a,/a =0.746, «,/8 =1.70,
and 8/2e¢ = 1.333.

The next stage of the calculations gives 4; = 0.56, A, = 0.041, A; = 0.28.

The relative effect of the various terms is then finally indicated by P = 1/v/1 —0.314 4+ 0.016 =
1.19. It is evident that the error incurred in P by dropping A, and A; from the calculations would
be about 1%. Equation (6.62) gives P = 1.17, a deviation of 2% from the value given by the more
complete formula.

For a,/8 =1.70 and t/a = 0.333, Fig. 6-8 gives Ra-c/Ra-c 2 1.02. R4 is found by the usual
formulas to be 8.70 X 10—4 ohms/m for the two conductors. Hence the value of the distributed line
resistance R = 1.19(1.02)(8.70 X 10—4) = 1.06 X 10—3 ohms/m.

In Section 6.9 a rough criterion L,/L;= 2l,l; is developed for the ratio of a line’s distributed
external inductance L, to its distributed internal inductance L; In this expression l, is the inter-
conductor distance in which magnetic flux contributes to L., and [, is the estimated thickness of the
region inside the conductors in which magnetic flux contributes to L;. In the present problem
t/s < 0.8, s0 /; must be taken as equal to ¢{. Since the facing surfaces of the conductors are sep-
arated by 2¢, 21/} = 4, and L; is a substantial part of the line’s total distributed inductance L.
The value of L, from equation (6.74) is 0.318 microhenries/m. The value of L4, for the two
tubular conductors from equation (6.84) is 0.044 microhenries/m. Equation (6.90) and the accompany-
ing discussion in Section 6.8 suggest that this should be reduced about 1% because t/8, being
approximately 0.8, is a little higher than the maximum value at which L; for tubular and plane
sheet conductors can be assumed to remain within -}% of L;4... Section 6.8 emphasizes that there
is no very accurate information available about the influence of proximity effect on distributed
internal inductance, but that it is plausible to reduce L; by the square root of the proximity effect
factor for resistance, found above to be 1.19. The net result of all these corrections is to give a
value 0.040 microhenries/m for L; which adds to L, to give L = 0.358 microhenries/m, with a
probable error not exceeding about 1%.

The distributed capacitance of the line from equation (6.72) is 85.0 micromicrofarads/m, and since
it is obvious that oL/R > 1 and «C/G > 1, the characteristic impedance of the line is VL/C =
101 ohms, more than 5% higher than the value given by equation (6.75), which neglects distributed
internal inductance.

Finally, the attenuation factor is « = R/2Z, = 5.25 X 10—8 nepers/m.
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6.23.
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6.25.
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6.27,
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Supplementary Problems

The distributed internal inductance and the distributed resistance of a solid circular conductor
change by less than 1% from the d-c values at all low frequencies for which a/§ < 0.5, where a is
the radius of the conductor, and & the skin depth given by equation (6.15), page 74. Show that over
this same range of frequencies wL;/R = }(a/8)2, within }%.

(a) For isolated wires of each of the following AWG sizes (same as B & S sizes), determine the
highest frequency at which the distributed resistance will remain within 4% of the d-c value:
000, 0, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, and 40.

(b) Find an empirical equation from this data, relating 7., (X) to fi, (16), where f1,(16) is the fre-
quency determined in part (a) for 16 gauge wire, and f, (X) is the frequency for wire of any
gauge X,

Ans. (a) 79.3, 126, 200, 318, 804, 2030, 5140, 18,000, 32,850, 83,100, 210,000, 530,000 and 1,337,000

hertz.

(b) The equation is fi, (X) = 5140(1.261)(X—16) hertz. For use in the equation the wire size
000 must be called size —2. The nature of the equation can be found from plotting fs, (X)
against X on various types of graph paper. The plot on semilog paper with X on the
linear scale is a straight line.

From some source (e.g. Dwight’s Tables of Integrals and Other Mathematical Data) find power series
suitable for expressing ber x, bei x, ber’ , and bei’ z, fcr small values of x. Then derive equations
(6.28) and (6.29) from (6.27).

Show that for a solid circular conductor having a/8§ > 100, equation (6.88) is consistent with (6.30),
and that under these conditions E/Rg. = §a/8 and Ly/L;q. = 1/(3a/9).

A solid circular aluminum conductor has diameter 1.60””. Determine the ratio of the current density
at the center of the conductor to the current density at the surface, at frequencies of 60, 200 and
1000 hertz. Assume a temperature of 20°C,

Ans. 66% at 60 hertz, 22% at 200 hertz, 0.60% at 1000 hertz.

Extend Table 6.1, page 79, by calculating Ra.c/Ra-c for a solid circular wire at the following addi-
tional values of a/s: 5, 10, 20, 40, 60, 80, 100. Ans. 2.77, 5.26, 10.25, 20.25, 30.25, 40.25, 50.25.

From the preceding problem it appears that for a/5 > 20, Bac/Rd-e = 4(a/8)+ 1. Show that this
is consistent with equation (6.8%) when the division of the latter is carried out to two terms.

Determine the distributed internal impedance of a copper sheet at frequencies of 60, 103, 108 and

10% hertz, assuming copper of 100% conductivity at 20°C. Assume the metal to be many skin

depths thick at each frequency.

Ans. (2.02 + j2.02) X 10—6 ohms/square at 60 hertz; (8.23 + 78.23) X 106 ohms/square at 10% hertz;
(2.61 + j2.61) X 10—4ohms/square at 108 hertz; (8.23 + 78.23) X 10—3 ohms/square at 10? hertz.

At a frequency of 108 hertz determine the distributed internal impedance of plane sheets of alumi-

num and lead, and of a plane sheet of iron having a relative permeability of 200 at that frequency.

The temperature is 20°C in each case.

Ans. (3.33 + j3.38) X 10—4 ohms/square for aluminum; (9.833 4+ 79.33) X 10—4 ohms/square for lead;
(8.91 + j8.91) X 10—3 ohms/square for iron.

What wall thickness should a circular tubular copper conductor of outside radius 0.100”’ have if its
distributed resistance is to remain within 1% of the d-c value for all frequencies up to 108 hertz?
Ans. a/8 being very large, a tubular conductor with £/ =05 or t=238.3X10-8m will achieve
the desired result.

Show that for a circular metal tube of outside radius @, inside radius b, and made of nonmagnetic
material, Vf/Ra. = 892a,/8 = 892b,/5 where f is in hertz, Ra.c is the distributed d-c resistance of
the tube in ohms/m, and a,; and b, are defined by equations (6.47) and (6.48) respectively.

A 12 gauge copper conductor carries a current of 5 amperes at a frequency of 107 hertz. What is

the power loss per meter length of conductor, and how does it compare with the result for a d-c

current of the same magnitude flowing in the same conductor?

Ang. At 107 hertz the power loss is 3.2 watts/m, about 25 times as great as the d-c power loss of
0.130 watts/m.
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6.29.

6.30.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

Show that if a medium of dielectric constant ¥, and loss factor tan & fills the interconductor space
of any transmission line, the contribution of the distributed conductance to the attenuation factor
at high frequencies is ag = (v tan §)/2v, nepers/m.

If a coaxial transmission line with circular conductors has an outer conductor whose inside radius
is 3.50”/, what must be the radial distance between the facing conductor surfaces of the line to give
the line a distributed capacitance of 1000 micromicrofarads/m, the interconductor medium being air?
Ans. 0.189 in,

Show that if the medium filling the interconductor space of a coaxial transmission line has a con-
ductivity ¢,, mhos/m, the distributed conductance of the line is given by G = 270,,/(log, b/a) mhos/m.

Show that if the interconductor space of any transmission line is filled with material having a com-
plex permeability u,, — ju,, in mks units, or relative permeability (u, — up)/ug = km — ki, and
k,./km’ = tan §,,, then the distributed external inductance of the line is increased by the factor
k,, over its value with a nonmagnetic medium in the space, and a contribution R,, = oL tan §,,
ohms/m must be added to the usual distributed resistance of the conductors, where L, is the dis-
tributed external inductance with the magnetic medium present.

For a coaxial line operated at 108 hertz, the outside diameter of the inner conductor is 0.500’’ and
the inside diameter of the outer conductor is 1.75””. Both conductors are several skin depths thick.

(@) What is the distributed resistance of the line if both conductors are copper?

(b) By what percent will the distributed resistance of the line be increased if the outer conductor
is changed to aluminum, the center conductor being copper?

(¢) By what percent will the distributed resistance of the line be increased if the inner conductor of
the line is changed to aluminum, the outer conductor being copper?

(d) By what percent will the distributed resistance be increased if the outer conductor is changed
to pure iron with a relative permeability of 50 at 108 hertz, the inner conductor being copper?
Ans. (a) 0.0842 ohms/m; (b) 4%; (¢) 18%; (d) 113%. The result shows that changing the outer con-
ductor of a coaxial transmission line from copper to lighter and less expensive aluminum has
little effect on the distributed resistance and attenuation factor of the line. The magnetic
permeability of iron makes it unsuitable for the same purpose.

Show that for copper R, = 2.61 X 10~7 \/,7 ohms/square, where f is in hertz.

Show that if the interconductor space of a coaxial transmission line is filled with a material of
dielectric constant k., and loss factor tan 3, the ratio b/a of the radii of the facing conductor surfaces
that will give minimum high frequency attenuation for a fixed size of outer conductor is 3.592, for
all values of k, or tan &.

From equation (6.27), page 77, determine explicit expressions for Ra.c/Rd< and «L;,/Bga-. for a solid
circular conductor of radius a defined by mks permeability s and conductivity ¢ at angular
frequency w.

Ra-c x berz bei’z — beix ber'z

Ans. = = where # = V2a/s
Ra-c 2 ber'2z + bei'’xy vz
oLy «  berx ber'x + beix bei'x
Rac 2 ber'?x + bei'?x



Chapter 7

Impedance Relations

7.1. Reflection coefficient for voltage waves.

In Chapter 4 it was shown that when a uniform transmission line is terminated in an
impedance equal to its characteristic impedance, there are no reflected waves on the line,
and the impedance at any point of the line (including the input terminals) is also equal to
the line’s characteristic impedance. “The impedance at any point of the line” was found
to mean the input impedance of the line section on the load side of the point, when the
portion of the line on the generator side of the point is removed.

When a uniform transmission line is wotf terminated in its characteristic impedance, but
is terminated in some arbitrary impedance Zr + Z,, there are always reflected waves on
the line, and the impedance at every point of the line differs from the characteristic
impedance Z,.

Referring to the general transmission line circuit of Fig. 7-1, the expression for the
phasor voltage at any coordinate z of the line is, from Section 4.1,
V = Vie 7"+ Vaetr? (7.2)

where Vi and V. are phasor coefficients whose values are determined by the voltage and
internal impedance of the signal source connected at z =0, the attenuation and phase
factors of the line, the line length I, and the terminal load impedance Zr connected at z =1.

signal o terminal load
seurce oo imped Zr

z _L d
T

l

Fig.7-1. General transmission line circuit.
Applying equation (3.13), page 23, to (7.1),
dVidz = —(R+joL)l = —yVie " + yVie*¥*
from which I = ETVjE(Vle-w— Vaet?) (7.2)
From equation (4.12), page 32,
¥ _ G + joC _ i
R +joL — VR+ij T Z,
Thus I = Zio(vle-w — Vietn) (7.8)
A comparison of equation (7.3) with (4.2) shows that when the phasor current on the line is

described in the general form
I = Lie* + Iet? (7.4)

the relation between the phasor current coefficients I, and I, (for the harmonic current waves
traveling respectively in the direction of increasing z and the direction of decreasing z) and

126
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the corresponding phasor voltage coefficients ¥V, and Vs, is
Iy = Vi/Z, I, = —Vy/Z, (7.5)

The difference of sign is a fundamental distinction between the two pairs of waves (each
pair consisting of a voltage wave and a current wave) traveling in the two directions on a
transmission line. A direct consequence is that if the phasor values of the two voltage
waves at a specific point on a transmission line differ in phase by y radians, the phasor
values of the two current waves at the same point will differ in phase by ¢ + » radians.
From (7.3) the magnitudes of the current phasors are directly proportional to the magnitudes
of the corresponding voltage phasors. The manner in which these magnitude and phase
relations affect the “standing wave” patterns of voltage and current along a transmission
line is discussed in Chapter 8.

The impedance at any point on a transmission line is given by the ratio of the phasor
voltage (equation (7.1)) to the phasor current (equation (7.3)) at the point. At the terminal
load end of the line this ratio is constrained to be equal to the connected terminal impedance.

Thus
Vie=l) _ 7 ]:Vle‘“+Vze+ﬂ]
I(z=1) *Vie "= Viet?

where Vie~ is the phasor value at z =1 of a harmonic voltage wave traveling in the
direction of increasing z, and Vse** is the phasor value at z =1 of a harmonic voltage wave
traveling in the direction of decreasing z. In the general transmission line circuit of Fig.
7-1 to which this analysis applies, the only connected signal source initiates a harmonic
voltage wave traveling in the direction of increasing z. It must be concluded that the wave
traveling in the direction of decreasing 2z comes into existence through a physical process of
reflection, the reflection occurring at the terminal load end of the line and being a function
of the connected impedance Zr.

Zr (7.6)

In any discussion of reflected wave phenomena, whether the waves be sound waves,
water waves, light waves, etc., the concept of a “reflection coefficient” is introduced. The
natural definition of such a concept is

value of reflected wave at point of reflection

reflection coefficient value of incident wave at point of reflection

The word “value” here is deliberately unspecific, since it may have different meanings in
different situations.

For a linear system, if the incident waves are harmonic in time, the reflected waves
will also be harmonic in time and of the same frequency. For harmonic voltage waves on a
transmisgion line the appropriate definition of a reflection coefficient becomes

phasor value of reflected voltage wave
-reflection coefficient _ at point of reflection
for harmonic voltage waves ~  phasor value of incident voltage wave
at point of reflection

The ratio of two phasor quantities is a complex number. For the terminal load end of the
line the reflection coefficient for phasor voltage waves is designated as p,, where

pr = lpg| €°r (7.7
From (7.6), pr = Vaet"/Vie™ = (Vo/Vi)e* (7.8)

The magnitude of this complex number reflection coefficient is the ratio of the magnitude
of the reflected wave to the magnitude of the incident wave at the point of reflection. The
phase angle of the reflection coefficient establishes the phase relation between the



IMPEDANCE RELATIONS

128 [CHAP. 7

reflected and incident waves at the point of reflection, often referred to as “the phase
change on reflection”.

Dividing all four terms on the right of (7.6) by Vie~", and making use of (7.8), gives a
simple relation between the reflection coefficient, the terminal load impedance Zr and the
characteristic impedance Z, of the line,

Z,/Zy = (1+p.)/(1—p;) (7.9)

The dimensionless ratio Zr/Z, is called the normalized value of the impedance Zr. Any
actual complex terminal load impedance in ohms will have different normalized values when
it is connected to transmission lines with different values of characteristic impedance Zo.

In Chapter 8 there is described a basic measurement technique, used with transmission
lines at very high frequencies, that easily and directly yields values of the magnitude |p,]|
and the phase angle ¢, of the complex reflection coefficient p,. If the reflection coeflicient
is written as p, = |p,| cos ¢, + 7lp;| sin¢,, and the normalized terminal load impedance
is written as Z1/Zo = R1/Zy + jX1/Zs, the components of the normalized terminal load
impedance can be found from the reflection coefficient data by using the following expres-
sions derived from (7.9):

Rr 1 — e
Zy ~— 1 + leg? — 2,p1,] COS ¢ (7.90)
Xr 2o sin ¢,
£T = 9
) Zo = TP — 2hlcoss (7:9%)
Solving (7.9) for p,,
pr = (Z,—2Z)Z . +2Z) = (Z,/2,—1)/(Z2,/Z, + 1) (7.10)

Equation (7.10) states that the reflection coefficient at the terminal load end of a transmis-
sion line is, as might be expected, a function solely of the terminal load impedance con-
nected to the line and of the characteristic impedance of the line. More succinctly, it is a
function solely of the normalized value of the terminal load impedance.

The following table shows the value of the reflection coefficient as a complex number,
and its magnitude and phase angle, for several easily calculated cases of representative
terminal load impedances.

Table 7.1
Zr/Z, Pr el b Nature of the termination
‘1 + 50 0 + 50 0 indeter- Equal to characteristic impedance.
minate

0+ j0 -1 4+ jO 1 T Short circuit.
infinite 1+ 50 1 0 Open circuit.

. . If Z, is real, Zy is a pure inductive reactance,
0+l 0+ 1 =/2 equal in magnitude to Z,. )

. , _ If Z, is real, Z; is a pure capacitive reactance,
0—s1 0-i1 1 /2 equal in magnitude to Z,.

. . If Z, is real, Zy is a pure resistance,
2+140 3+ 90 ] 0 equal to 2Z,.

. . If Z, is real, Zy is a pure resistance,
3+ 40 -3+ 90 ] T equal to }Z,.
n + jO n—1. 4 n—1 0 If Z, is real, Zy is a pure resistance,
n>1) nt1 '’ n+1 greater than Z,.
n+ jO _[(n—1 + 0 n—1 - If Z, is real, Z; is a pure resistance,
n<1) n+1 7 n+1 less than Z,.
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It will be noted that except for the special cases of short circuit, open circuit, and
nonreflective terminations, the normalized terminal load impedances expressed by simple
real or imaginary numbers correspond to physically simple terminations of pure resistance
or pure reactance only when Z, is essentially a pure resistance, i.e. when the “high fre-
quency” approximations of Chapter 5 are valid. Equations (7.9) and (7.10) correctly relate
impedances and reflection coefficients, however, whether Z, is real or complex. Section 7.6
discusses some unusual situations that arise when Z, is complex. In the remainder of this
section, and in Sections 7.3, 7.4 and 7.5, all stated relations between the voltage reflection
coefficient p, and the normalized terminal load impedance Zr/Z, are true when Z, is real
but many of them are not true if Z, is complex.

Some of the reflection coefficient values in Table 7.1 can be understood directly from
physical reasoning. A terminal load impedance that contains no resistive component, for
example, cannot absorb power from an incident wave and must be totally reflecting. The
magnitude of the reflection coefficient is therefore unity for all purely reactive terminations,
as well as for open circuit and short circuit terminations. Purely resistive terminations of
normalized value other than unity dissipate a finite fraction of the power of the incident
wave and reflect the balance. The magnitude of the voltage reflection coefficient is then
necessarily less than unity.

At a short circuit termination the voltage must always be identically zero, a result that
can only be achieved by having the reflected voltage wave always instantaneously equal in
magnitude and opposite in sign to the incident voltage wave. For harmonic waves this is
equivalent to saying that the voltage reflection coefficient must have a magnitude of unity
and a phase angle of r radians. The result shown in Table 7.1 for an open circuit termina-
tion, that the reflection coefficient has magnitude unity and phase angle zero, shows that
the instantaneous voltage at such a termination has the maximum possible value and is
always equal to twice the instantaneous voltage of the incident wave. Normalized terminal
load impedances with a finite imaginary component always produce reflection coefficients
with phase angles other than 0 or =, the phase angles lying between 0 and += for inductively
reactive terminations, and between 0 and —= for capacitively reactive terminations, when
Z, is real.

Example 7.1.

A transmission line with characteristic impedance 50 + j0 ohms is terminated in a load impedance
25 — j76 ohms., What is the reflection coefficient for voltage waves at the terminal load end of the line?

By equation (7.10),
or = (Zp—2Z0)/(Zp+2Zy) = {(256— j75) — (50 + j0)}/{(26 —~ 775) + (50 + j0)}

= 0.333 — j0.667 = 0.745/63.4°
Example 7.2

From the data of Example 7.1, find the normalized value of the terminal load impedance, and use it
to determine the reflection coefficient.

The normalized value of Zp is Z;/Z, = (25 — §76)/(50 + jO) = 0.50 — §1.50. Then from equation (7.10),
pr = (2yp/Zy—1)/(Z1/Zy+1) = (0.50 —51.50 —1)/(0.50 —j1.50+ 1) = 0.333 — j0.667, as before
Example 7.3.

The reflection coefficient produced by the connected terminal load impedance on a low loss transmission
line is —0.65 + j0.25. The characteristic impedance of the line is 52 + 0 ohms. Find the numerical value
of the terminal load impedance.

The magnitude |p7| of the reflection coefficient is 0.696. By equations (?.9a) and (7.9b),

_R_T 3 1 — |pg|2 _ 1 — ]0.696|2 0.183
Zy, T 1+ lppl2 — 2lpg| cos gy 1 + 0.6962 — 2(—0.65) )
Xr _ 2 |pr| sin ¢r _ 2(0.25) = o177
Zy 1+ |pg|2 —.2|op| coser 1 + [0.6962 — 2(—0.65)

Then By + jXr = (0.183 +40.177)(62 + j0) = 9.52 + 79.20 ohms
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The transmission line circle diagram introduced in Chapter 9 provides an easily
visualized perspective of the relation between normalized terminal impedances and the
reflection coefficients they produce, for all values of impedance. The results of the table
above, and of Examples 7.1, 7.2, and 7.8 should be confirmed later using the chart.

7.2. Input impedance of a transmission line.

The impedance at any point on a general transmission line terminated in an arbitrary
impedance Zr is, from equations (7.1) and (7.3),
V(Z) - z [Vle‘”’z + V26+7‘:|
I(z2y ~— “°|Vie " — Viet™
Since Z(z) differs from Z, only because Zr differs from Z,, Z(z) must be expressible in terms
of Zr and Z,, together with the coordinate z, and the length ! and propagation factors
« and B for the ling.

Dividing all the terms on the right of (7.11) by V, and substituting p,e~2*=V,/V, from

Z(z) = (7.11)

v 29l g+
Z(Z) _ e~ 4+ PTe_ etz
0 - [e—yz — PT 6_2‘”€+72 (7.12)
Multiplying all terms on the right of (7.12) by e",
Z(Z) _ etvi—-2) 4 Pr e~ vi—2)
L] - e+‘)’(l—2) —_— pTe—y(l—z) (7-18)

which shows that the normalized value of Z(z) at any coordinate z on a line is most gimply
expressed as a function of the distance [ — 2z measured from the terminal load end of the line.
The coordinate of any point on a line measured from the terminal load end has already been
designated by the symbol d in Chapter 2. Thus

Z(d) _ et7d 4 PTe—yd :
° - etvd — pTe—vd (7'14)
Substituting for p, from equation (7.10),
Z:d) _ Bw‘(ZT/Zo +1) + C-Yd(ZT/Zo - 1) (7 15)
e e%2:/Zy+1) - e "Z1/Zo—1) )
Zd) _  (Zr/Zo)(e*?+ e ) + (eti—e 79
or Zo T (€T+ e + ZrlZo)(eT—e ) (7.16)

Equations (7.14), (7.15) and (7.16) are all expressions from which it is possible to cal-
culate by complex number arithmetic the impedance at any point on a transmission line,
the point being distant d from the terminal load end of the line, the line being terminated
in impedance Zr, and the properties of the line itself being described by the complex propa-
gation factor y (= «+ jB) and the characteristic impedance Z,.

Equation (7.16) can be stated more concisely using hyperbolic functions, in three
different formas:

Z(d) _ Zrcosh(a+jB)d + Zosinh(a+jB)d .17
Zs = Zicosh(aTi0)d ¥ Zrsinh (« T76)d (7.17)
Z(d) _ (Zr/Zo) + tanh («+78)d (7.18)
Zo 1+ (Z1/Z,) tanh(«+37B)d :

%‘fl = tanh [(a-+78)d + tanh~! (Z0/Z0) (7.19)
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With sufficient accuracy for most engineering purposes, the normalized impedance at
a coordinate d on a transmission line, Z(d)/Z,, is determined very quickly and easily by
making use of the transmission line circle diagram described in Chapter 9. However, if
greater numerieal precision is desired, the calculation is probably made most efficiently by
using equation (7.14). Equation (7.18) is a particularly useful form for demonstratmg the
relation between Z(d)/Z, and Z1/Z, in several special cases. :

As noted at the beginning of this chapter, “the impedance at a specifie point on a line”
means the input impedance of the portion of the line on the terminal load side of the point.
It is convenient to rewrite (7.18) to make it an explicit expression for the normalized input
impedance Zump/Zo of a length ! of transmission line:

Zwy _ _Z1/Z, + tanh (e« +3jB)
Zo 1 + (Z1/Z,) tanh (a + jB)I

It is easily seen that in the simplest special case of Zr = Z,, this somewhat formidable
equation reduces to Zip/Zo =1, consistent with all previous results for a transmission line
terminated nonreflectively.

(7.20)

7.3. “Stub” lines with open circuit and short circuit terminations.

Postulating « =0 and Zr=0 in (7.20), the equation will give the normalized input
impedance of a length I of transmission line, terminated in a short ecireuit and having
“negligible” attenuation. The result is, making use of the relation tanhjgl = j tangl,

Zinp/Zo = j tan ﬁl (7.21)
If the same transmission line section has an open circuit termination (Zr = ), the result is
Zinp/ZO = - j cot Bl (7.22)

Since for low-loss transmission lines Z, is very accurately a pure resistance, these equations
show that the input impedances of low-loss line sections with either short circuit or open
circuit terminations are pure reactances. From the relation B = 2«/A (equation (4.9),
page 30), it follows that over the range of lengths I =0 to I = /2, where A is the wave-
length on the transmission line, the input reactances of these line sections with either ter-
mination span the range from —« to +w, thus providing the equivalent of all possible
values of induetance and capacitance.

At frequencies above a few hundred megahertz, a wavelength becomes a physical length
small enough to be incorporated in laboratory or industrial apparatus. The attenuation
of such line sections is easily made very small (i.e. « € 8). Under these conditions short
lengths of low-loss line with either open circuit or short circuit terminations can play the
role that lumped inductanees and capacitances play in low-frequency circuits. Such line
sections are known as ‘“stub” lines, and are important components of very-high-frequency
circuitry. Some of their applications are discussed in Chapters 8 and 9.

Example 74.
A section of low-loss transmission line is 0.40 wavelengths long and is terminated in a short circuit.
Its characteristic impedance is 73 + jO ohms. The frequency of operation is 200 megahertz. Determine the
input reactance of the line section, and the value of inductance or capacitance to which it is equivalent.
By equation (7.21), -
Zinp = §Zp tan27l/x = j(78+ j0) tan (2.51 rad) = —j53.4 ochms
This is a capacitive reactance, and the equivalent value of capacitance C,, is obtained from 53.4 = 1/(<C).

Thus
Cinp = 1/(63.40) = 1/(53.4 X 27 X 200 X 10%) = 14.9 micromierofarads
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Example 7.5. .

A low-loss transmission line has distributed capacitance of 52.5 X 10—12 farads/m, distributed induct-
ance of 2.48 X 10—7 henries/m, and negligible distributed resistance and conductance. It is operated at a:
frequency of 500 megahertz. What is the shortest length of line, with open circuit termination, that
will have an input susceptance of +0.025 mhos?

The calculations can be made entirely in admittance notation by writing, from (7.22), Y,,,/Y, =
1/(Z,,/2¢) = j tan Bl for a line with open circuit termination and negligible losses. From the distributed
circuit coefficients L and C of the line, Y, = 1/Z, = VC/L = 0.0147 + jO mhos, and B8 = oVLC = 11.2
rad/m. Then the required length ! of transmission line is given by (0 + j0.025)/(0.0147 + j0) = j tan 11.2/,
and I = 0.093 m + nA\/2, where A\ = 27/8 = 0.56 m, and = is any integer.

7.4. Half-wavelength and quarter-wavelength transformers.
If «a=0 and gl = fr in equation (7.20), n being any integer, the result is

since tannr = 0. ZiwolZo = ZrlZo (7.23)

This relation states that the input impedance of any low-loss section of transmission
line an integral number of half wavelengths long is identically equal to the terminal load
impedance connected to the section. Such a line section is therefore a “one-to-one” imped-
ance transformer, differing from a lumped element low frequency transformer because of
the requirement of specific physical length. It is generally referred to as a “half-wave-
length transformer” and can serve a useful purpose in high frequency transmission line
circuitry as a device to present at some convenient location an impedance existing at some
other location that may be inaccessible or awkwardly located.

The same function could obviously be performed by a transmission line of characteristic
impedance equal to the circuit impedance in question, but it has been seen in Chapter 6 that
the range of characteristic impedance magnitudes that transmission lines can be designed
to have is in fact very limited, and the phase angle of a characteristic impedance can
differ appreciably from 0° only for lines whose attenuation per wavelength exceeds several
decibels.

Example 7.6.

A high frequency generator has been designed to have an output impedance of 25— j50 ohms, so that
it will be conjugately matched to a load of 25+ 750 ohms, to which it is to supply power. The operating
frequency is 150 megahertz. The load terminals are separated by about 8 ft from the generator terminals.
What length and what characteristic impedance must a section of air dielectric low-loss transmission line
have, to connect the load to the generator and present at the generator terminals an input impedance
equal to the load impedance?

The required transmission line must be a “half-wavelength transformer” (i.e. a line section some
integral number of half-wavelengths long) since it is not possible for a transmission line to have a char-
acteristic impedance of 256 4 j50 ohms.

The distance of “about 8 ft” is approximately 2.4 m. From Chapter 6, the phase velocity of voltage
waves on an ‘“‘air dielectric” transmission line is the velocity of light in free space, or 3.00 X 108 m/sec.
The wavelength on such a line at the operating frequency of 150 megahertz is then

A = v /f = (3.00 X 108)/(150 X 10%) = 2.00 m
A suitable length of transmission line to connect the load to the generator would therefore be 14 wavelengths
or 3.00 m, = 9.84 ft. A section one wavelength long would be too short.

Although the line could in principle have any value of characteristic impedance, it is indicated in
Chapter 8 that the peak values of voltage and current along such a line (which may lead to breakdown if
the power level is high) will be lowest if the purely resistive characteristic impedance of this low loss
line is equal to the magnitude of the complex terminal load impedance, in this case 56 ohms.

An important consideration in any engineering installation of a half-wavelength trans-
former of this sort would be the behavior of the system as a whole over the finite bandwidth
of frequencies that all practical transmissions must utilize. At frequencies different from
the exact designated operating frequency of the problem, the transformer section of line
will not be precisely an integral number of half-wavelengths long, and its input impedance
will not be identically equal to its terminal impedance.
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- The general problem of connecting a source to a load by a transmission line, subject to
various stated specifications about matching impedances, minimizing peak voltages or cur-
rents, etc., can have many different solutions and the “half-wavelength transformer” is a
relatively minor one. Another solution is discussed in the next paragraph, and others are
dealt with in Problem 7.7 and in Chapters 8 and 9. '

If «a=0 and Bl =nx/2 in (7.20), where n is any integer, the tan gl term becomes
indefinitely large and any finite value of Zr/Z, is negligible by comparison. The result is

Zinp/ZO = 1/(ZT/ZO) (7.24)

This relation states that the normalized input impedance of any low-loss section of trans-
mission line an odd number of quarter-wavelengths long is the reciprocal of the normalized
terminal load impedance connected to the section. Such a line section is referred to as a
‘“quarter-wavelength transformer” and is used in high-frequency transmission line circuitry
as a device for connecting a high-impedance load to a low-impedance source or a low-
impedance load to a high-impedance source. The two impedances involved may not have
arbitrary “high” and “low” values, but must meet two specific requiremerjts.

From (7.24), Zwp X Zr = Z;. Since Z, is purely resistive for the low-loss high-frequency
transmission line section being used, a first requirement on Zy, and Zr is that they must
have phase angles of equal magnitude and opposite sign. Secondly, their geometric mean
must be a value which is physically achievable as a characteristic impedance for the type
of transmission line being used. In practice, the quarter-wavelength transformer is gen-
erally used to connect resistive loads to sources with resistive output impedances.

Example 7.7.

An antenna array used at a frequency of 40 megahertz has an input impedance of 36 + jO ohms at that
frequency. The generator supplying power to the antenna has an output impedance of 500+ jO ohms and
is located about 100 feet from the antenna terminals. A parallel wire transmission line with characteristic
impedance 500 + jO ohms runs from the generator to the vicinity of the antenna terminals. Design a
quarter-wavelength transformer, using parallel wire transmission line on which the phase velocity is 97%
of the free space velocity of light, to connect the antenna to the main transmission line and provide an
impedance match.

The characteristic impedance of the transmission line section used for the quarter-wavelength trans-
former must be Z, = \/Zinp Zy = V(86 + j0)(500 + j0) = 134 + jO ochms, a value that can be obtained for a
parallel wire line by spacing the conductors just a few diameters apart.

The free space wavelength at the operating frequency of 40 megahertz is 7.50 m. On a line for which
the phase velocity is 97% of the free space value, the wavelength at the same frequency is 7.27 m. The
quarter-wavelength .transformer must therefore be 1.82.m. long. The overall final result would have the
appearance shown in Fig, 7-2.

Pl ——— . — —

power antenna
source array

S S S Y
. 95’ approx. ' 182 m J
j
Z, = 500 + j0 =g, = 1

134 + jO

Fig.7-2. A high impedance source connected to a low impedance load
by a quarter wavelength impedance matching transformer.
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Since the “quarter-wavelength transformer” principle operates for low-loss line sections
that are any odd number of quarter-wavelengths long, another possible solution of Example
7.7 would be to use a 4} wavelength section of the line whose characteristic impedance is
134 ohms. The length of this section would be about 101.5 ft. In practice, however, this
solution would be a poor one, since actual signals always occupy a finite range of frequencies.
Over any small frequency interval the range of variation of the term gl in (7.20) for a 4}
wavelength line section would be 17 times as great as for a 1 wavelength line section. In
the solution illustrated by Fig. 7-2, the 95 ft of line with characteristic impedance 500 ohms
would have little effect on the frequency sensitivity of the system, because this characteristic
impedance is equal to the impedance of the source to which the line is connected. These
statements can easily be checked quantitatively by using the transmission-line c1rc1e diagram
discussed in Chapter 9.

It has been pointed out in Section 2.1 that the uniformity postulate underlying the trans-
mission line analysis of this book is violated in the vicinity of terminations and other dis-
continuities on transmission lines. In the use of quarter-wavelength or half-wavelength
transformers, such discontinuities occur at each end, either where the line section is con-
nected to a source or load, or where it is connected to a transmission line section of different
characteristic impedance. The main practical consequence of this departure from idealized
conditions is that the optimum length of these transformers in specific applications is likely
to differ slightly from the value calculated using the equations of uniform lines. The dif-
ference is generally much less than one transverse dimension of the line, and the experi-
mentally optimum length is best found by starting from the calculated value and making
small adjustments.

7.5. Determination of transmission line characteristics from impedance measurements.

When an arbitrary length of any general transmission line is terminated in an open
circuit or a short circuit, its input impedance is determined completely by the propagation
factors « and B, the characteristic impedance Z, and the line length I. From (7.20), if
Zr=0 (but «+0) the input impedance Z.. of a line of length ! with short circuit ter-

mination is

Zse = Zotanh (a4 jB) (7.25)
The input impedance Z,. of the same line with open circuit termination is

Zoc = Zocoth (a + .7,8)1 (7.26)

If Z,c and Z,. are measured at the same frequency, for a line section of length [, then
Zo, a, B, and 1 will have the same values in both of the equations (7.25) and (7.26). Multi-
plying together the corresponding sides of these equations gives

Zo =YV Zchoc (7'27)

This is a valuable and universally valid equation by which the characteristic impedance of
any type of uniform transmission line can be obtained from two impedance measurements
made on a sample length of the line, using two readily available terminal load impedances.

Two precautions must be observed in making the measurements needed for this calcula-
tion. First, the impedance-measuring device must be capable of measuring ‘“balanced”
impedances if the line conductors are symmetrical (e.g. a parallel-wire line or a shielded
pair), or of measuring “unbalanced” impedances if the line has one of its two conductors
acting as a shield or “ground” (e.g., a coaxial line or a stripline). Second, the length of line
I cannot be completely arbitrary but must be chosen so that both Z.. and Z,. have values
appropriate to the impedance-measuring device. It is obvious, for example, that for an
extremely short section of any line Z,. might be too small and Z,. too large to be accurately
measurable by any available bridges. Use of the transmission line charts discussed in
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Chapter 9 will show that line-section lengths close to any odd number of eighths of a wave-
length are particularly appropriate. For such line lengths Z., Z,. and Z, will all have
similar magnitudes. If the wavelength is only approximately known, measurements can be
made at several values of ! until this condition is found.

The attenuation factor « and the phase propagation factor 8 can also be calculated from
the measured impedances Zs. and Z,.. Dividing corresponding sides of (?7.25) by those of

(7.26),
V ZselZo,. = tanh (a + ]B)l

Expanding this hyperbolic tangent in exponential form, using y = o+ jg,
V Zsc/Zoc = (1 - 6_271)/(1 + e—2vl)
which gives v _ 1+ V ZSC/ZDC

T 1—VZlZn

. 1 + V Zsc/Zoc
(e+iB)l = Yloge — F7——
1 - \/ Zsc/Zoc

The logarithm of a complex number expressed in polar form Ae is defined by

Taking logarithms of both sides,

loge Ae’* = logs A + j(¢ +2nx)

The attenuation factor « is therefore given by

a = le oge—iL—— ”?“Z“ nepers/m (7.28)

when ! is in meters. The phase propagation factor g8 is given by

g = —1—{<phase angle of 1+ VZidZo lZ“/Z“) + 2%71'} radians/m (7.29)
21 1 - V Zsc/Zoc

This method does not determine a unique value for 8, but a series of values differing con-
secutively by =/l rad/m. In a practical case it may sometimes be difficult to decide which
value in the series is the correct answer.

Example 7.8.

At a frequency of 20.0 megahertz the input impedance of a section of flexible coaxial transmission line
32.0 m long is measured, first with the line terminated in a short circuit and then with the line terminated
in an open circuit. The respective values obtained are Z,, = 17.0 + j19.4 ohms and Z,. = 115 — j138 ohms.
Find the attenuation factor, the phase propagation factor, and the characteristic impedance of the line.

The impedances are needed in polar form for all of the calculations. Z,, = 25.7/48.8° and Z,, =
179/—50.2° ohms. The characteristic impedance from (7.27) is then Z, =VZ, Z,, = 68/—0.7° ohms.

For determining « and g8 the quantity /Z,/Z, = 0.378/49.5° = 0.245 + j0.288 is required. Using
equation (7.28),

1 log, |1:246 + 70.288

2(32.0) °%¢ |0.755 — 70.288

The phase angle of the term (1.245 + j0.288)/(0.755 — j0.288) is found to be 33.9°. From equation (7.29),
B = (0.59 + 2n7)/(2 X 82.0) rad/m, but there is no basis for choosing the value of =.

At the frequency of the measurements, the free space wavelength is 15.0 m and the corresponding
value of g8 would be found from 8 = 2#/\ = 0.419. Since the line contains plastic dielectric it is expected
that the wavelength on the line may be as much as 30% shorter than the free space value, but the figure
is not known accurately. Hence 8 might conceivably lie between about 0.50 and 0.65. The above equation
gives 8 =040 for n =4, =050 for n =5, =060 for n =6, and B8 =0.70 for n=17.

«

0.0072 nepers/m
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On the evidence available, there is no conclusive basis for choosing between the two intermediate
values. The data indicates that the line section is between two and three wavelengths long. By making
the same impedance measurements on a shorter length of line, lower values of » will occur in the equation
for B and there will be less doubt about which value should be chosen.

For a section of the same line 1.50 m long, the impedance values measured were Z,, = 0+ j88 ohms
and Z, = 0—j52 ohms, the resistive component in each case being less than 1 ohm. From these values
the characteristic impedance is calculated as 68/0° ohms.

Because the quantity VZ,.Z, = 0+ j1.30 is purely imaginary, the attenuation factor « is indicated
as having value zero. The phase angle of the term (1 + 71.30)/(1 — j1.80) is 105° or 1.83 rad. From equa-
tion (7.29), B = (1.83 + 2n7)/(2 X 1.50) = 0.61 rad/m for » = 0, or 270 rad/m for n = 1. It is
clear now that n = 6 gave the correct value in the previous data and that the measured value of B is
0.60 (or 0.61) rad/m. It is also evident that measurements on this short length of line cannot be used to
obtain a value for the attenuation factor a.

Consideration of the equations shows that this method of determining « and g from
measurements of Z.. and Z,. will give the best results for « when the line section has a
total attenuation of about 3 db, and will give the least ambiguous results for 8 when the
line is about one-eighth wavelength long. Except at frequencies in the kilohertz range, a
single piece of any practical transmission line will not satisfy both of these conditions, so
that measurements of a« and B8 should usually be made on two different line sections, one
much longer than the other. Measurements on either section will give satisfactory data
for the determination of Z,.

7.6. Complex characteristic impedance.

The characteristic impedance of a transmission line was originally defined in terms of
the line’s distributed circuit constants, and given by equation (4.12) as

Zo = V(R + 5oL)/(G + joC)

Since R, L, G, C and o are all positive real numbers for a passive transmission line, it follows
from this expression that the phase angle of Z, must lie between —45° and +45° or, if
Zo= Ro+ 37X, the ratio Xo/Ro must lie between —1 and +1. The extreme values occur
when either R> oL and G € oC, or R € oL and G > oC. For either of these sets of
conditions the defining equation (4.10), « + j8 = V(R + joL)(G + joC), shows that «=8.

Noting that 8 = 2x/A, the relation « = 8 has the physical meaning that the attenuation
of the line is 2r nepers per wavelength or 54.6 decibels per wavelength. Transmission linesv
useful at high frequencies have attenuations per wavelength smaller than this value by
several orders of magnitude, but Table 5.1, page 55, shows that a standard type of telephone
cable-pair can have « very nearly equal to 8 (and |Xo| nearly equal to Ro) at frequencies
below about 1 kilohertz.

Neither a large value of attenuation factor « in nepers per meter, nor a large total
attenuation ol in nepers, is a sufficient condition to ensure that the characteristic impedance
of a transmission line will have a substantial phase angle. The attenuation over one
wavelength of line, <\ nepers, must be large, and it must be caused predominantly by one
of R or G and not by a combination of the two. It has already been noted that if the losses
are due equally to R and G, Z, is real, no matter how high the losses are.

When the characteristic impedance of a transmission line has an appreciable phase
angle, some peculiar results arise, which need further discussion. If, for example,
Zo = Ro + jXo and the line has a terminal load impedance Zr = 0 — jXo, the reflection
coefficient determined from equation (7.10) is

pr = (= iXo— Ro— jXo)/(—jXo + Ro+ jXo) = —1— j2Xo/Ro
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and the magnitude of this is greater than unity. The question arises as to whether the
transmission line equations predict a reflected wave at the termination having a higher
power level than the wave incident on the termination, in violation of the principle of
conservation of energy.

To determine the conditions leading to the maximum possible magnitude of the reflection
coefficient, and the value of this maximum, equation (7.10) is written in the form
_ ZrlZo—1 |Z7/Zo| e!® — 1 _ |Z1/Zo| cos 0 — 1 + §|Z1/Zo| sin g
Pr Zo/Zo+1 — |Z1/Zo| e + 1 " |\Z+/Zo|cos 8 + 1 + j|Zr/Zo| siné

Taking the magnitude of numerator and denominator,

ol = \Z1/Zof? + 1 — 2|Z1/Zy| cos §
r Z1/ZoF + 1 + 2 |Zx/Z| cos

(7.80)

For any value of |Zr/Z,|, the magnitude of the normalized terminal load impedance, this
expression shows that the magnitude of the reflection coefficient will be greatest for the
largest negative value of cos 6, where § is the phase angle of the normalized terminal load
impedance. It has been seen that the phase angle of Z, lies between the limits + 45°. There
are no limitations on the value of Zr except that it must be a passive impedance. Hence
its phase angle can lie anywhere in the range +90°. The phase angle of Zr/Z, can therefore
have any value between = 185° and the angles in this range whose cosines have the greatest
negative values are the extreme angles +185° and —135°, for which the cosine is -1h/2.

Inserting this value for cosé into equation (7.30), the value of |Z1/Zo| that will give
maximum |p,| is found by differentiating the right-hand side and equating to zero. The
result is |Z7/Zo| =1. When this is substituted into (7.30), the maximum possible value of
o] is found to be 1+ /2, or about 2.41.

The basic equation for steady-state power calculations in linear electric circuits with
single-frequency voltages and currents is P = VI*, where V is the rms phasor voltage
between two points of the circuit and I* is the complex conjugate of the rms phasor current
at those points, expressed with reference to a suitable convention for polarity. P is the
complex power in the circuit, its real part representing real power and its imaginary part
representing an oscillating flow of stored energy.

The power passing any point z on a transmission line will be given by V(z)I(2)* where
V(2) and I(z) are the usual rms phasor values of the voltage and current, respectively, at
the coordinate z. If the reflected wave at any point of a transmission line had a real power
level higher than that of the incident wave at the same point, the net power would be in the
direction of the reflected wave, and the real part of V(2)I(z)* at that point would be
negative.

To establish that the principle of conservation of energy is not violated on a transmis-
sion line even when the magnitude of the reflection coefficient at a point on the line exceeds
unity, it is sufficient to show that the real part of V(2)I(z)* can never be negative for any
possible values of Z, and Z.

Appropriate general expressions for the phasor voltage and current at any point of a
transmission line on which there are reflected waves are equations (7.1) and (7.3). These

can be rewritten
V(z) = Vie™ {1+ (Vo/V1)e™} , (7.81)

I(z) = (Vi/Zo)e™* {1 — (V2/V1)e™} (7.32)
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In these equations Vi, Vs, Z; and e*¢ are all complex numbers. Converting the term
(Vo/V1)e?® to the form (V:e"?)/(Vie~*?), it is seen to be the ratio, at coordinate z, of the
phasor voltage of the reflected wave to the phasor voltage of the incident wave. It can
therefore be symbolized by an equivalent reflection coefficient p(2) at that point. It iz in
fact the reflection coefficient that would be created at coordinate 2 if the line were terminated
there by impedance Z(z), the input impedance of the line section on the terminal load side of

that point. It follows that
p(2) = (Z(2) — Zo)/(Z(2) + Zo) (7.33)
The power P = V(2)I(2)* at coordinate z of the transmission line is then
P = View®e #® {1+4p(2)} (VI/Z7) e~ € {1 — [p(2)]*}
= |Vi/ZoPZoe™*= {1 — |p(2)* + p(2) — [p(2)]*}

It is obvious that p(z) — [p(2)]* = j2 {imaginary part of p(z)}, which will be written
72 Im p(2). Using Zo = Ro+jX, and P = P,+ jP; separate expressions for the real and
imaginary parts of P are obtained:

Poo= [ merte i - o - 2 gom )} (7.34
2 Ry
P = | [ xoem {1 ~ lo(@) + 2 3o Tm p(z)} (7.35)

The condition that P, should never become negative is that
p(2)? + 2(Xo/Ro) Imp(z) = 1

Expanding p(z) from (7.33) with Z, = Ro+jX, and Z(2) = R(2) + jX(z), it is easily found
that this reduces to the condition |Xo/Ro =1, which has already been seen to be true.

The conclusion is somewhat surprising, though inescapable, that a transmission line can
be terminated with a reflection coefficient whose magnitude is as great as 2.41 without there
being any implication that the power level of the reflected wave is greater than that of the
incident wave. Such a reflection coefficient can exist only on a line whose attenuation per
wavelength is high, so that even if the reflected wave is in some sense large at the point of
reflection, it remains so for only a small fraction of a wavelength along the line away from
that point. These large reflection coefficients are an example of the phenomenon of
“resonant rise of voltage” in series resonant circuits. The resonant circuit in this case
congists of the Thévenin equivalent circuit of the transmission line and its source, relative
to the load terminals, combined with the load impedance. The large reflection coefficients
are obtained only when the reactance of the terminal load impedance is of opposite sign to
the reactance component of the characteristic impedance.

Consideration of equation (7.34) reveals that the coefficient on the right, multiplied by
the first term (unity) in the braces, represents the real power that would be calculated for
the incident wave alone (i.e. the wave moving in the direction of increasing 2) at coordinate
z, while the coefficient multiplied by the second term represents the real power that would
be calculated for the reflected wave alone, at the same point. The third term on the right
represents interaction between the two waves.

The fact that the third term is zero if X, = 0 indicates that on transmission lines whose
characteristic impedance is real (whether the line is lossy or not), the power at any point of
the line is correctly given by the difference between the incident power and the reflected
power at the point. When the characteristic impedance of the line is complex, however,
(which requires that the line be lossy), this is not the case and calculation of the power at
any point requires the full detail of equation (7.34). A line with losses can have a real char-
acteristic impedance only if the distributed-circuit coefficients obey the Heaviside relation
R/L = G/C.
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Z, _.L& Zy complex o

Z7

Fig.7-3. Transmission line circuit having source impedance equal to
the complex characteristic impedance of the transmission line.

A second interesting problem that arises
in connection with transmission lines having

complex characteristic impedance is illus- Zo
trated in Fig. 7-8. A source whose internal

impedance is equal to the transmission line’s 7
characteristic impedance Z,, is connected to a 0
lossy line for which Z, is complex. If the ter-

minal load impedance Zr connected to the line

is made equal to Z,, there will be no reflected

waves on the line and all the real power inci-

dent on Zr will be absorbed there. If, how-

ever, the transmission line circuit of Fig. 7-3 Fig.7-4. Thévenin equivalent circuit of a length
is redrawn as an equivalent lumped element °lfl trat’;s’.mts.’sl‘.’" h;e hazlllng complex
circuit in Fig. 7-4, replacing the transmission ;e?l:?'::e f;:i;cg 225:1 i:,lcti;e lii:,:ucrﬁ:;:;:
line and its source by an equivalent Thévenin teristic impedance, and the terminal load
source, the internal impedance of this source impedance being the conjugate of that
will be Zo. By the maximum power transfer impedance. The terminals shown are the
theorem, this Thévenin source will deliver load terminals of the transmission line.

maximum power to a load impedance Z¥, the complex conjugate of the line’s characteristic
impedance, and not to a load impedance Z,. Applying this result back to the transmission
line circuit of Fig. 7-8, the conclusion must be drawn that more power will be delivered to a
terminal load impedance Z% that produces a reflected wave on the line than to a terminal
load impedance Z, that produces no reflected wave.

The proof that this is indeed the case is straightforward, but is too long to be presented
here. The explanation, briefly, lies in the fact that with the Z % terminal load impedance the
reflected and incident voltage and current waves combine in such a manner that the line
losses, in the two or three eighths of a wavelength of the line adjacent to the termination,
are reduced, by exactly the amount of the extra power that reaches the load. Since the
extra power is appreciable only when Z% differs significantly from Z,, and since this occurs
only if the line’s attenuation is at least a few decibels per wavelength, the reflected wave
has a negligible effect on the line losses beyond a small fraction of a wavelength from the
termination.

It follows from remarks at the beginning of this section, that the distinction between
terminating a transmission line in its characteristic impedance and terminating the line in
the conjugate of its characteristic impedance, is likely to have practical consequences only
at frequencies below the kilohertz region. The technique of reducing the attenuation factor
of a voice frequency telephone line by “loading’” the line with inductance coils, as discussed
in Section 5.8, is an application of the principle that there is greater power transfer to the
conjugate impedance termination.
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7.7. Transmission line sections as two-port networks.

One of the basic categories of networks studied in network theory is that of two-port
networks, also known as two-terminal-pair networks, four-terminal networks, four-poles and
quadripoles. A “port” of a network is defined as any pair of terminals at which the instan-
taneous current into one of the terminals is equal to the instantaneous current out of the
other terminal. It is obvious that any section of uniform transmission line is a two-port
network, and more specifically that all uniform transmission line sections are reciprocal
symmetrical two-port networks. Unless they involve ferroelectric or ferromagnetic mate-
rials they are also linear networks.

The variables in the study of linear passive reciprocal two-port networks are the time-
dependent voltages and currents at the two ports, four quantities in all. The object of two-
port network theory is to develop formulas expressing useful relationships among various
choices of pairs of these four quantities, in terms of the nature of the network. The nature
of the network is defined by the results of specified measurements made at the network
terminals. If the detailed structure of the network is known the results of these measure-
ments can be calculated from elementary circuit theory. For transmission line two-ports
the results are calculated from transmission line theory.

Among the four quantities comprising the input and output currents and voltages of a
two-port network, it is possible to choose two pairs in six different ways. For each set of
pairs two simultaneous equations can be written expressing each of the quantities of one
pair as functions of the two quantities in the other pair. Of the six possible sets of equa-
tions, four are distinct and are assigned specific names. The other two involve only reversing
the network or interchanging the variables.

Two-port network theory is developed with reference to the circuit of Fig. 7-5(a). The
notation normally used in the theory identifies the voltage and current at the left port of
the network by the symbols V; and I, respectively, and the voltage and current at the port
on the right by the symbols V. and I; respectively. Since all of these symbols have been
extensively used with quite different meanings in this book, it is necessary to adopt some
other notation for the two-port analysis of transmission lines. The choice of V; and I; for
quantities on the left as “input” quantities, and Vr and Ir for quantities on the right as
terminal load or “output” quantities is consistent with notation employed earlier in this
and in previous chapters. The conventional choice of sign in two-port network analysis for
the current on the right is opposite to that used for a terminal load current in transmission
line theory. Fig. 7-5(b) shows the two-port of Fig. 7-5(a) with transmission line notation
for the variables.

I, I, I; . ~Ir
[« e ey | e e ] ———————"
two-port two-port
Vi network [ Ve Vi r network Vr
['s VO— T ['s SHE— N
(a) Notation in network theory. (b) Notation in transmission line theory,

Fig.7-5. Notation for two-port network analysis.

For lumped element two-port networks it is customary to perform the analysis in the
complex frequency domain, the time-variable currents and voltages being identified by their-
Laplace transforms. It has already been pointed out in Chapter 2 that for transmission
line circuits this more generalized analysis has no particular advantages. The analysis of
transmission line two-port networks is therefore carried out in the radian frequency or o
domain, with the currents and voltages expressed as phasors.
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Referring to Fig. 7-5(a), one set of simultaneous equations relating the four current and
voltage phasors can be written formally as

Vi = zuli + 2122

(7.36)
Ve = zauly + 22l
In the notation of Fig. 7-5(b) these become
Vi = zuli + ziz(—Ir) (7.87)

Vr = anli + zrr(—Ir)

The coefficients on the right have the dimensions of impedance, since they transform
phasor currents to phasor voltages. Furthermore, it is obvious that zy=V/I; when
Ir =0, ie. when the terminals on the right of the network are open circuited. Similar
statements can be made for all four of the impedance coefficients, with the result that they
are collectively known as the “open circuit impedance parameters” of the network. They
are commonly written as a 2 X2 matrix. (The use of the lower case letter z for these
coefficients is the standard convention.)

Example 7.9.

Determine the open circuit impedance matrix of a length ! of uniform transmission line, having char-
acteristic impedance Z,, attenuation factor « and phase factor 8.

The input impedance from either side of the transmission line section, when the terminals on the
other side are open circuited, is given by equation (7.20) as Z;,, = Z, coth (« + jB)l. Hence this is the value
of z; and zpp. The coefficient zyp; is the value of the ratio V;/I; when Iy =0. This cannot be written by
inspection, but must be determined from (7.1) and (7.8) with the help of (7.8).

When the transmission line circuit of Fig. 7-1 has an open circuit at the right (Z; infinite), and an input
current I; at the left, (7.7) and (7.8) lead to

Vr=V() with z=1, or Vy=Vie "+ Vye" where y =a+jB
I, = I(z) with z=0, or Ii=V,/Z,—V,/Z,
Vi{e= + (Vo/Vy)e}
Vil = Vy/Vy)
Noting from equation (7.8) that V,/V; = ppe~?1, and that for open circuit termination ppy =1+ 350, it
is easily found that 2z = Zy/[sinh (a+ jB)!]. A similar derivation for zi; = V;/(—I;) with I; =0 gives

the same result, as is to be expected from the symmetry of the transmission line network. The open circuit
impedance matrix of the section of uniform transmission line is therefore

Z, coth (a + 7B} Zy cosech (a + jB)
Z, cosech (¢ + jB) Z, coth (a + jB)

Then a2y = (Vell)i=0 = 2o

The open circuit impedance matrix has application in solving problems involving two or
more uniform transmission line sections connected in series at both their input and output
terminals, or problems in which the input and output ports of a single section of uniform
transmission line are connected in series with the input and output ports respectively of
any two port network.

If the ports of a section of uniform transmission line are connected in parallel at each
end with the corresponding ports of other uniform transmission line sections, or any other
two-port networks, the useful matrix representation of the transmission line section is
known as the short circuit admittance matrix, derived from the equations

I = yuVi+ y12Ve

(7.38)
Io = yaVi+ y22Ve
referred to Fig. 7-5(a), which in the notation of Fig. 7-5(b) become
L = yaVi+ yuVr (7.39)

(=Ir) = yniVi+ yrrVr
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In these equations the coefficients on the right are admittances, and it is easily seen that
each is the ratio of a phasor current to a phasor voltage when one or the other port of the
network is short circuited. They are known collectively as the “short-circuit admittance
parameters” of the network, and their matrix is the short circuit admittance matrix. The
terms of this matrix for a section of uniform transmission line are given in Problem 7.35.

The interconnection of two two-port networks in series at the input ports and in parallel
at the output ports is an important combination in feedback control systems. Analysis of
the case is carried out using the equations

Vi = huli+ hiVs

(7.40)
I: = holi + hoV2

for Fig, 7-5(a), or Vi = hili + hixVr

7.41
(—Ir) = hndi + herVr ( )

for Fig. 7-5(b).

The coefficients on the right are known as “hybrid parameters”, since one is an imped-
ance, one an admittance, one a voltage ratio and one a current ratio. All are different
from the coefficients in (7.37) and (7.89). Their matrix is the hybrid matrix of the network.
Interchanging I and V produces the inverse hybrid matrix, useful in analyzing the case of
two-port networks connected in parallel at their input ports and in series at their output
ports. The symbols gy, etc., are used for the terms in the matrix when referred to Fig. 7-5(b).
For the hybrid matrix and inverse hybrid matrix of a section of uniform transmission line,
see Problem 7.36.

In practical transmission line systems incorporating sections of uniform transmission
line as component two-ports, cascade connection of the transmission line sections with other
two-ports such ag attenuators, equalizers, amplifiers, etc., occurs far more frequently than
the series connection, parallel connection, or series-parallel connection to which the matrices
of (7.87), (7.39) and (7.41) are relevant. In the cascade connection the output port of one
two-port is connected to the input port of another, and the appropriate equations relate the
pair of input quantities of a two-port to the pair of output quantities. Referred to Fig. 7-5(a)

the “transmission equations” are
V1 = AVz —_ BIz

I, = CV,— DI,

The sign convention for the output current is changed, since the direction of the output
current of one two-port must be identical with that of the input current of the succeeding
two-port in cascade connection. In transmission line notation these equations become

Vi = AVy + Blr
Ii - CVT+DIT

Like the hybrid parameters, the “transmission parameters” A, B, C and D all have dif-
ferent physical connotations. Their matrix is the transmission matrix or chain matrix of
the network. Interchanging the subscripts ¢ and T produces the inverse transmission
matrix. For the terms of the transmission matrix and inverse transmission matrix of a
uniform transmission line see Problem 7.37.

(7.42)

(7.48)

The various sets of equations (7.36) through (7.43), together with the two inverse sets
mentioned, express all possible relations between pairs of phasor input and output voltages
and currents for two-port networks, with no reference to any sources or terminal loads
connected to the networks. In all of these equations two of the signal variables must be
known before the others can be calculated. Connecting a terminal load impedance Zr to the
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output port of a two-port network establishes a relation between two of the variables, since
it must be true that .V1/Ir = Z,. It is then possible to eliminate either Ir or Vr from at
least one of the equations in each of the above pairs, and in every case the two equations
that result can be solved to give a relation between some pair of the signal variables. Using
the equations (7.39) for example, if Vr/Ir = Zz, the second equation gives Ir = znli/(2,, + Z,)
and on substituting this into the first equation, Vi/I; = zu + 2ir2zr/ (277 + Z1). For a trans-
mission line section zs = 277 = Zocothyl and 2m = 2ir = Z, cosechyl; hence

cosech? yl }
coth yl + (Z+1/Z,)

Use of the identity coth?z — cosech?z = 1 establishes that this result is identical with
that given by equation (7.20).

Vil = Znp, = Zo{cothyl—

If I; is eliminated from equations (7.39) instead of Ir, the result for a transmission line

section is _
Vi/lr = Zo{coth®yl + (Z1/Zo) coth yl — cosech? yl}/(cosech yl)

which reduces to Vi/lr = Z,sinhyl + Zr coshyl (7.44)

This is a useful “transfer impedance” formula for evaluating terminal load current in terms
of input voltage, or vice versa, for the transmission line circuit of Fig. 7-1, page 126. The
input voltage is the value at the actual input terminals of the line. A similar expression
for the transfer admittance Ii/Vr for the circuit of Fig. 7-1 can be determined from (7.39)
or directly from (7.1) and (7.3) in the form

I/Vr = (Zrsinhyl + Z, coshyl)/Z} (7.45)

Example 7.10.

A transmission line 1250 ft long has a characteristic impedance of 50 + jO ohms, an attenuation factor
1.50 db/(100 ft) at the operating frequency of 2.00 megahertz, and the phase velocity on the line at that
frequency is 70%. The line is terminated in an impedance 100 — ;200 ohms. If the voltage at the input
terminals of the line has the rms reference phasor value 10 + j0 volts, determine the phasor current in the
terminal load impedance.

Using equation (7.44), the calculations can be made either by expressing the hyperbolic functions in
exponential form, or by using the identities

sinh(x+jy) = sinhxcosy + j coshﬁc siny, cosh(z+jy) = coshxzcosy + jsinhesiny
The total attenuation of the line is ol = 1.50 X 12.5/8.686 — 2.16 nepers. The total phase shift is
Bl = ol/v, = (27 X 2,00 X 108) X (1260 X 0.305)/(0.70 X 3.00 X 108) = 22.798 = Tr + 0.807 rad
Then vyl = ol + jBl = 2.16 + j22.798.

For use in the identities, sinhal = 4.278, coshal = 4.393, sin gl = —0.722, cos 8l = —0.692. Hence
sinh yl = —2,960 — 78.172 and coshyl = —3.040 — 78.089. Finally

10 + jO
50(—2.960 — ;3.172) + (100 — 7200)(—3.040 — ;3.089)

(—9.19 — j1.21) X 103 rms amperes = (9.27 X 10~3)/3.272 rad rms amperes

IT =
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Solved Problems

Show that the reflection coefficient for harmonic current waves produced by a ter-
minal load impedance Zr connected to a transmission line of characteristic impedance
Zy is the negative of the reflection coeflicient for harmonic voltage waves on the line
produced by the same terminal load impedance.

Referring to Fig. 7-1, page 126, the definition of the reflection coefficient for harmonic current
waves at the terminal load end of the line must be {phasor value at z =1 of harmonic current wave
traveling in direction of decreasing z (i.e. reflected wave at point of reflection)}/{phasor value at
z =1 of harmonic current wave traveling in direction of increasing z (i.e. incident wave at point of
reflection)}. From equations (7.4) and (7.5) this ratio is (—V,e"/Zy)/(Vie~ "/ Zy) = —V,e2/V,. This
is the negative of pp, the complex number reflection coefficient for harmonic voltage waves at z =1
as given by (7.8).

It follows from (7.10) that the reflection coefficient for harmonic current waves is given in terms
of the terminal load impedance Z; and the line’s characteristic impedance Z, by (Z, — Z1)/(Zy + Z7)-
To avoid undue confusion in this text, no separate symbol is assigned to the reflection coefficient for
harmonic current waves. All references to reflection coefficients are to reflection coefficients for
harmonic voltage waves unless there is a specific statement to the contrary; and the reflection
coefficient for harmonic current waves, when used, is simply taken as —pr.

Find expressions corresponding to equations (7.9), (7.9a), (7.9b) and (7.10), page 128,
for a transmission line of characteristic admittance Y, (= 1/Z,) terminated in a ter-
minal load admittance Yr = Gr+jBr (= 1/Z1).

It is evident that Y, /Y, = 1/(Z;/Z,). Equation (?.9) then becomes simply Y;/Y, =
(1 — pp)/(1 + pr). Equation (?.9a) cannot be rewritten directly, since it is not true that Gr = 1/Rq,
and a similar statement applies to (7.90). The easiest procedure is to return to the expression
Y/Yy= (1 —pp)/(1+pg), letting pr = |pp| €i¢r = |pg| (cos ¢7 + j sin ¢7). On rationalizing the re-
sult, the equations in real and imaginary terms respectively are the equations equivalent in admit-
tance notation to (7.9¢) and (7.9b) in impedance notation. Thus
Gr _ 1 — jorl? By — 2py| sin ¢r

- = nd - =
Y, T+ orl® + 2lor| cospr Y, 1 + |orl2 + 2]pg| cos¢r

The actual terms are the same in admittance and impedance notation, but two of the signs are
different.

Equation (7.10) in admittance notation becomes

(Yr/Y) — 1 1- Y /Y,

PT % WY +1 14 Yi/Y,

The reflection coefficient at the terminal load end of a transmissipn line is measured
(by techniques described in Chapter 8) as —0.45 — j0.15. The transmission line has a
characteristic impedance of 75+ j0 ohms. What is the value of the terminal load
admittance connected to the line?

The problem can be solved using admittance notation throughout, or in impedance notation with
ultimate conversion of the final answer. In admittance notation the equations to be used are those

developed in Problem 7.2. The characteristic admittance Y, of the transmission line is 1/(75 + j0) =
0.01338 + j0 mhos. The square of the magnitude of the reflection coefficient |pr|2 = (—0.45)% +

(—0.15)2 = 0.225, and the components of the reflection coefficient are |pr|cosg¢r=—0.45 and
lor] sin g7 = —0.15. Then
Gr 1 —0.225 By  —2(—0.15) _

2.38 and = 0.90

Y, = 1+0.225—2(0.45) Y, = ~ 0335
Finally, the value of the terminal load admittance Yy in mhos is

(2.38 + 70.90)(0.01333) = 0.0317 + 5j0.0120 mhos
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74.

7.5.

A transmission line with a characteristic impedance of 50 -+ j0 ohms is operated at a
frequency of 15.0 megahertz. The line is terminated in a resistance of 80 ohms
connected in parallel with a lossless capacitance of 450 micromicrofarads. Determine
the value of the complex reflection coefficient for harmonic voltage waves at the
terminal load end of the line, in component form and in polar form.

The characteristic admittance Y, of the line is 0.0200 + 70 mhos. The terminal load admittance
consists of 0.0125 mhos conductance for the resistor, and +oC = +0.0424 mhos susceptance for the
capacitor. Thus Yp = 0.0125 4+ j0.0424 mhos and Y /Y, = 0.625 + j2.12. Using the expression for
the reflection coefficient in admittance notation developed in Problem 7.2,

1—-Y/Y, 1~ 0.625 — j2.12

PT = T¥ Y /Y, 1+ 0.625+ j2.12

—0.544 — j0.594 = 0.807/227.6°

A section of transmission line connecting two units of a high frequency system is
1.380 wavelengths long at its frequency of operation, and has a total attenuation of
0.85 decibels. The characteristic impedance of the line is 60+ 70 ohms, and it is
terminated in an impedance of 40+ 730 ohms. Determine the input impedance of
the line.

The result could be obtained from any of the seven equations (7.14) to (7.20). To illustrate the
quantity of numerical work involved, the calculations will be presented for (7.14), for a modified
form of (7.14), and for (7.20).

Equation (7.14) requires numerical values for pg, €¥¢ and e¢—74, Since the normalized value of
the terminal load impedance is Zp/Z, = 0.667 + j0.500, the reflection coefficient from equation (7.10)

18
pr = (Zp/Zo—1)/(Z1/Zy+1) = —0.101 + j0.330 = 0.345/107.3°

The term e¥d must be expanded as ed¢iBd = gxd(cos Bd + j sin Bd), and similarly for the term
¢—7d. From the data of the problem, ad = 0.85 decibels = 0.85/8.686 = 0.0979 nepers, and gd =
2rd/n = 27(1.38) = 8.6705 rad. Then e2d = 1,108, e—od = 0.907, e¥fd = —0.7286 + ;j0.6850, and
e—iBd = —(,7286 — j0.6850. The total complex number calculation to be performed is therefore

Z(d)y _ 1.108(—0.7286 + j0.6850) + 0.907(—0.101 + j0.330)(—0.7286 — j0.6850)
Z, ~ 1.103(—0.7286 + j0.6850) — 0.907(—0.101 + j0.330)(—0.7286 — j0.6850)

where the terms in the denominator are the same as those in the numerator, but one sign is changed.
The result is Z(d)/Z, = 0.563 — j0.081, and Z(d) = 33.8 — j4.9 ohms. The time consuming and error
inviting parts of the calculation are the evaluation of ¢4, and of the products of complex numbers,
including the rationalization process.

A small but helpful reduction of the arithmetical work involved is achieved by dividing all terms
in equation (7.14) by e¥d, giving Z(d)/Z, = (1 + pre—2"9)/(1 — pre~2vd), For this calculation
e—20d = (0,822 and e—#28d = 0.0622 -+ j0.9981. The total complex number expression to be evaluated
is then

Z(d) _ 14 0.822(—0.101 + 50.330)(0.0622 + j0.9981)
Z, ~ 1-—0.822(—0.101 -+ 50.330)(0.0622 + j0.9981)

0.663 — 3j0.081

If the calculation is performed using equation (7.20), it is necessary to evaluate tanh (a+ j8)l =
tanh (0.0979 + j8.6705). Using

tanh (x + jy) = (sinh 2z + j sin 2y)/(cosh 22 + cos 2y)
this is found to be 0.1774 — j0.9230. The complex number expression to be evaluated is then

Z(d) _ (0.667 4+ j0.500) + (0.1774 — j0.9230)
Z, ~ 1+ (0.667+50.500)(0.1774 — j0.9230)

0.563 — 50.081

The final arithmetic is simplest in this last calculation, but is partly offset by the work of evaluating
the complex hyperbolic tangent.
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Show that equation (7.20) can be written in admittance notation by simply substituting
Y, for Z,, Yr for Zz, and Yin, for Ziy,.
Inverting both sides of the equation, Y,,,/Y, appears on the left. Substituting 1/(Y,/Y,) for
Zyp/Z on the right, the equation becomes
Yip _ 1+ [1/(Y1/Y,)] tanh vyl
Y, = 1/(¥Y{/Y, + tanhyl

and multiplying all terms on the right by Y;/Y, produces the required result.

When a lossless high frequency transmission line of attenuation factor «, phase factor
B and real characteristic admittance Y, is terminated in an arbitrary load admittance
Yr, there are two locations on the line in each half wavelength at which the normalized
admittance Y(d)/Y, (= [G(d) + jB(d)]/Y,) has a normalized conductance component
G(d)/Y, of unit value. If a susceptance —B(d) is connected in shunt with the trans-
mission line at any such point, the total normalized admittance at the point will be
1470, and there will be no reflected waves on the generator side of the point. The
susceptance —B(d) can be supplied by connecting a stub line (Section 7.3) in shunt
with the transmission line. The process is commonly known as “single stub matching”,
since the combination of the terminal load admittance, a short intervening portion
of the transmission line, and the stub line of suitable length, have produced a non-
reflecting or “matched” termination effective at the location of the stub. It is also
said that the terminal load admittance has been matched to the line by the single stub.

Derive an analytical expression for the location of the points on a general lossless
transmission line circuit at which the normalized admittance has the form Y(d)/Yo =
1+ 3jB(d)/Y,, and an expression for the value of B(d)/Y, at the points.

The normalized admittance at any point in a lossless transmission line circuit is given by equa-
tion (7.18) and Problem 7.6 as .
Y(d) _ Y1/Yy+ jtanpd
Yo -1 + j(YT/YO) tan ﬁd

where d is the coordinate of a point on the line measured as a positive quantity from the terminal
load end of the line, and Y;/Y, is the normalized value of the connected terminal load admittance.
To simplify the notation somewhat, let Y¢/Yy= Y4, = Gy, + iBr,. Then

Y(d)/Yy = {Gry + §(Bry + tan 8d)}/{1 — By, tan Bd + jGr, tan pd}
and the real part of this is

Gr,(1+ tan2 gd)
Gd/¥o = T—By, tan pdF T (Crn tan BV
This normalized conductance will equal unity at values of d such that
(Gin+ Bty — Gra)(tan? gd) — 2Br, tangd + 1—Gr,) = 0
By, = VGp,(1 + |Yrp|2 — 2G
or d = (1/p) tan-1 < o £ VGrpa( |Y ol Tn)> + ma/2
|YTnI2 - GTn

To find the normalized susceptance at the points where the normalized conductance is unity, the
least complicated procedure is to return to the original equations and write

Y(d)/Yy, = 1+ jBd)/Y, = (Y1/Y,+ jtan Bd)/[1 + j(Y1/Y,) tan 8d)

Cross multiplying, writing separate equations for the real and imaginary terms, and eliminating
tan 8d from the two equations leads to

B(@)/Yy = = V(1 +|Y1u2—2Gra)/Grp

Calculations for this matching problem from reflection coefficient and standing wave pattern
data are discussed in Problem 8.3, page 178. The calculations can also be made graphically using
the transmission line circle diagram (Smith chart), as described in Chapter 9. In the absence of a
Smith chart or standing wave data, the analytical expressions of this problem may be used; they
require only simple real number operations.
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7.9.

7.10.

Show that if the attenuation is negligible in the general transmission line circuit of
Fig. 7-1, page 126, the magnitude of the phasor voltage on the line has minimum
values at locations given by d,.../A = (1 + ¢,/7) + 4n, where ¢, is the phase angle
of the complex reflection coefficient p, and » is any integer.

The phasor voltage at any point on the line is given by equation (7.1) as V(2) = Ve~ 7% + Vyer?,
where V; and V, are phasor voltages determined by the connected source and load, and y = a + j8.
Taking out V; as a factor, and substituting for V,/V, from (7.8),

V() = Vi~ + pre—2 e
Changing the coordinate to d =1—2z,
V(d) = Ve 7U—d(1 + pye—2vd)
With negligible attenuation, y = j8. The magnitude of the phasor voltage at a location d is then
V()| = |Vye8U=D] |1 4 |pp]eitér—28d)]

The magnitude of V,e—##(~d) jg |V,| and is independent of d. The magnitude of 1 + |pg| €i¢®r — 284>
has a minimum value of 1 — |p;| when (¢r—28d) = 7 * 2nzr where n is any integer; hence this
equation determines the values of d at which |V(d)| is a minimum. Introducing B =2/ and
solving for the locations of the minima, defined as dy(yin), the result is dyyin)/A = 31+ ¢2/7) + in.
This shows that the locations of the voltage minima along the line are determined solely by the phase
angle of the reflection coefficient produced by the terminal load, and that successive voltage minima
are separated by one half wavelength. A more complete discussion of voltage magnitude patterns
on transmission lines is given in Chapter 8.

A transmission line 80 m long and operating at a frequency of 10.0 megahertz has an
attenuation factor of 1.50 X 102 nepers/m and a phase velocity of 2.75 X 108 m/sec.
The characteristic impedance is 50 + j0 ohms. The input impedance of the line is
measured to be 31.2 — 710.0 ohms. What is the value of the terminal load impedance
in ohms?

An explicit expression for Z,/Z, in terms of the data of the problem can be obtained from
equation (7.20), page 131, as

Zp _ Zuny/Zy — tanh(a+ i)l

Z, 1 — (Ziny/Zo) tanh (a + jB)1

which is symmetrical with (7.20) except for the signs. From the data of the problem, o« =
80(1.50 X 10—8) = 0.120 nepers, and Bl = ol/v, = (27 X 107)(80)/(2.75 X 108) = 18.278 rad. The quan-
tity tanh (0.120 4+ j18.278) can be evaluated using the expansion

"tanh (x % jy) = (sinh 2« = j sin 2y)/(cosh 2% + cos 2y)

The terms needed are sinh0.24 = 0.2423, cosh 0.24 = 1.0289, sin 36.556 = —0.9100, cos 36.566 =
0.4147. The result is tanh (0.12 4+ 18.278) = 0.1678 — j0.6303. The normalized input impedance
Zinp/Zy = 0.624 — j0.200. The terminal load impedance is finally calculated from

Zr (0.624 — j0.200) — (0.1678 — j0.6303)

Z, ~ 1— (0.624 — ;0.200)(0.1678 — j0.6303)
and Zp = (0.531 + j0.199)(50 + j0) = 26.6 + 79.9 ohms.

0.531 + 50.199

In Section 6.8 it was shown that the propagation in the direction of increasing z of
the electric and magnetic fields of a plane electromagnetic wave of angular frequency
o rad/sec into a metal of conductivity ¢« mhos/m and permeability » henries/m is de-
scribed by the term e~* =eg~*e¢~#2, with a= 8= 1/8 = Vepo/2 m~'. Analytically
this situation is exactly analogous to the propagation of voltage and current waves of
angular frequency o rad/sec on a transmission line having finite values for the dis-
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tributed circuit coefficients L and G, the values of the distributed circuit coefficients
R and C being zero. The analog of a finite thickness ¢ for the metal is a finite length
I for the transmission line. The analog of a value of surface-current density J.. (or
tangential component of magnetic field H;) at the “input” surface of the metal is an
input current Ii,, for the transmission line. The analog of the air beyond the metal,
at z>1t, is an infinite terminal load impedance connected to the transmission line
at z=1.

Show that a uniform transmission line having distributed circuit coefficients L
henries/m and G mhos/m, and terminated in an open circuit, has a minimum input
resistance component at a frequency for which the line is between 1 and 2 rad in
length, and determine the variation of the input resistance as a function of frequency
in the vicinity of the minimum value.

From equation (5.1), page 46, the propagation factors for the analog transmission line are
given by
a+ B8 = VieLG = 1+ §)VwLG/2 and a =8 = VoLG/2m™1

Similarly, Z, = Ry + jX, = VjoL/G = (1 + j) VoL/2G ohms. It will be noted that the distributed
inductance L of the transmission line has the same units as the permeability x of the metal, and that
the distributed conductance G of the transmission line has the same units as the conduectivity o of the
metal. The characteristic impedance Z, of the transmission line is in every way analogous to
the surface impedance of the metal Z, = R, + jX, = (1+ j)R,, as described in equations (6.27)
and (6.45). The general concept Z gy of the “wave impedance” of any medium at any angular fre-
quency « is given by the relation Zi gy = Vjou/(o + jue) in terms of the conductivity, permeability
and permittivity of the medium. For free space (or air) the value is enormously greater than for
a metal, at all frequencies, and this is the justification for considering the analog transmission
line to be terminated in an open circuit.

The normalized input impedance of any transmission line terminated in an open circuit is given
by equation (7.20) as

Zinp 1+ e
-—Zo— = cothyl = [

Using expressions stated above for y and Z,, the real part of this input impedance, normalized with
respect to the real part for a line of infinite length (i.e. RB,), is given by

By 1 + e—2VGLG72 — j2VeLG/2
VeL/2G 1 — e~2VaLolz — mVelcrz

Simplifying the notation by letting A = VwLG/21, and rationalizing, the result is

Rinp _ 1 — e~4A 4 2¢—24gijn 24

VoL/2G 1 + e 44 — 2¢724 ¢0324

Interpreting the-analog again, this expression gives the ratio at any angular frequency o of the
distributed resistance per unit width of a metal sheet of thickness A = ¢/§ skin depths to the
distributed resistance per unit width of an indefinitely thick sheet of the same metal. Clearly, when
A is large enough the ratio is unity.

The imaginary part of Z;,,/Z, is also of interest, since its analog is the distributed internal
reactance per unit width of the metal sheet. If this is normalized relative to the value for an
indefinitely thick sheet (which is the same as the distributed resistance per unit width for an
indefinitely thick sheet) the result is

Xinp 1 — e 44 — 2¢—24gin24
VeL/2G 1 + e 44 — 2724 c0g24

Values of the two ratios are given in the following table for a range of the variable A (whose
analog is metal sheet thickness in skin depths) from 0.05 to 4.
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7.12.

A =VuoLG/21 Rip/VeL/2G Xino/VaL/2G
(analog t/8) (analog R(plane)/R;) (analog wL;(plane)/R,)
0.05 20.00 0.0333
0.10 10.00 0.0667
0.20 . 5.000 0.1333
0.40 2.506 0.2665
0.60 1.686 0.3987
0.80 1.295 0.5279
1.00 1.0856 0.6504
1.20 0.9758 0.7611
1.30 0.9455 0.8103
1.40 0.9273 0.8545
1.50 0.9187 0.8932
1.60 0.9174 0.9262
1.70 0.9214 0.9534
1.80 0.9289 0.9699
1.90 0.9384 0.9913
2.00 0.9489 0.9993
2.20 0.9690 1.0154
2.50 0.9840 1.0082
3.00 1.0034 1.0062
4.00 1.0006 0.9992

A transmission line 250 ft long and having Z, = 51.5 + j0 ohms is termi-
nated in an impedance of 150 — 520 ohms. The line has an attenuation factor of
1.45 db/(100 ft), and the wavelength on the line is 63 ft. The harmonic input voltage
to the line has an rms value of 30.0 volts. Relative to the input voltage as a zero-
angle reference phasor, determine the rms phasor values at the line’s input terminals
of the harmonic voltage wave traveling in the direction from source to load, and of
the harmonic voltage wave traveling in the direction from load to source.

The phasor voltages to be evaluated are V; and V, in equation (7.1), page 126. From that equa-

tion V, + V, = 30.0 + jO, the rms phasor input voltage to the line. Eliminating p; between equa-
tions (7.8) and (7.10) supplies a second relation between V,, V,, and other data of the problem, in the

f
orm VoIV, = e—20e=128L(Z0/Zo — )/(Zy/Zo+ 1)

The normalized value Z;/Z, of the terminal load impedance is 2.913 — j0.3883. The total attenua-
tion ol of the line is 0.0145(250) = 3.625 db = 0.4173 nepers, and e—2al = ¢—0.8346 = (,4340. The
length of the line in wavelengths I/A = 250/63 = 3.9683, and Bl = 27l/A = 24.9336 rad. Then
e~ 1281 = cos 2Bl — j sin 281 = 0.9216 + j0.3880. The result of substituting these various quantities
is Vy/V, = 0.2060 + j0.0631. Eliminating V, between this equation and V;+ V, = 30.0 + ;0
gives V;=30/(14 0.2060 + j0.0631) and V;=24.808 — j1.298 volts rms. Finally, V,=5.192 + j1.298
volts rms,

Determine an equivalent lumped element series R-L-C circuit that will have the same
impedance at a frequency » rad/sec as the input impedance of a section of low loss
transmission line with short circuit termination, length less than 1% of a wavelength,
and total attenuation less than 0.5 db, the attenuation being caused entirely by dis-
tributed resistance R (i.e. G = 0).

The transmission line section described is actually too short in wavelengths to require analysis
as a distributed circuit. It is in effect a rectangular loop of wire being used as an inductor at low
frequencies. Its total series resistance is obviously Rl chms and its total series inductance (ignoring
the inductance of the short-circuiting conductor) is LI henries, where I is the length of the line and
R and L are respectively the distributed resistance and distributed inductance of the line.

The required equivalent lumped circuit is thus a resistance of Rl ohms in series with an induet-
ance of Ll henries. Because of the short circuit termination and the short line length in wavelengths,
the shunt reactance of the distributed capacitance of the line section is too great to affect this result.
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The attempt to derive this equivalent circuit from equation (7.20), is of interest because it
encounters an unexpected hazard that must sometimes be allowed for in using that equation.

For Z; =0, equation (7.20) becomes, without approximation, Zinpy/Zy = tanh (« + jB)I. Any
expansion of tanh (x + jy) shows that if = < 0.1 and y < 0.1, then tanh(z+ 7¥) = x + jy, within
3% for each term. It has been specified for the line in this problem that «l < 0.5 db or ol < 0.06
nepers, and /A < 0.01 or Bl < 0.06 rad; hence Zine/Zy = A+ jBl. The most inviting procedure
for introducing the line’s distributed circuit coefficients into the right hand side of this equation
is to use the approximate high frequency equations (5.11), (5.10) and (5.9) for a low-loss line having
G = 0. The equations give respectively Z, = VL/C, « = R/2Z, and B8 = «VLC. Substituting all
of these leads to Z;,, = Rl/2 + joLl ohms, corresponding to an equivalent lumped constant circuit
of a resistance Rl/2 ohms in series with an inductance LI henries.

The discrepancy between this series resistance component RI/2 and the intuitively obvious value
R! can be accounted for, in the case of a section of high frequency transmission line, by the inade-
quacy of the approximation Z, = VL/C. For a line whose losses are due entirely to distributed
resistance B, equation (5.30) gives Z, = VL/C{1 — j(a/B)}, which is approximate in magnitude but
exact in phase angle. Substituting this instead of Z, = VL/C into the approximate expression for

Z.n/Z, leads to
o0 Zy, = BRI+ joLli{l — (a/B)%

Since for low-loss lines at “high” frequencies /8 < 1, this gives the correct result for such lines.

However, the relation Z;,, = Rl + joLl should apply to all lines having ol €1 and pl<k1,
not just to lines operating under conditions meeting “high frequency” specifications. That it does
in fact apply to all lines can be seen by substituting the exact expressions

Zy = V(R+joL)/(G+juC) and a+ j8 = V(B + joL)(G + juC)

into Zy,,/Zy = ol + jBl. Thus the term (a/B)? obtained on using the high frequency approximate
equations is a consequence of the approximate nature of the expressions used for « and 8 and the
magnitude of Z,.

It is worth noting that if the transmission line of this problem had been specified as a Heaviside
distortionless line with R/L = G/C, then Z, would be real and the losses would be equally divided
between the distributed resistance R and the distributed conductance G. From equations (5.5) to
(6.8) it would follow that Z, = VL/C + jO, a = R/Z, and B = »VLC, all of these being exact
expressions. These substituted into Z;,,/Z, = o+ jBl give directly the correct result Zinp =
Rl + juLl.

For the other extreme of the distribution of line losses, a line with finite G but R =0, the
analysis using high frequency values for a« and 8 and the complex value for Z, gives to a first
approximation Z;,, = 0 + joLl, the expected result.

Repeat the analysis of Problem 7.12, for a transmission line section having ol < 0.1
and Bl < 0.1, with open circuit termination.

It is intuitively evident that the reactive element in a lumped circuit equivalent to an electrically
short (I/A < 1) section of low loss transmission line with open circuit termination must be simply
Cl, the total capacitance between the line conductors of length I. Tt is not directly obvious what the
resistive element should be, although it will not be vanishingly small, since the capacitive current
between the line conductors at any location must pass through the resistance of the line conductors
between the input terminals and that location.

The transmission line section is a distributed capacitor with terminals at one end. The conditions
al < 0.1 and B! < 0.1 have the consequence that the voltage between the line conductors is essen-
tially constant at all points along the section. Let the rms phasor value of this voltage be V volts and
the operating frequency » rad/sec. Then the total transverse displacement current between the line
conductors is wClV; and if B, is the effective resistance component of the input impedance of
the line section, the total power loss in the capacitor is («CIV)2R,,,.

Considering a cross section of the line at coordinate z measured from the input terminals, the
current in the line conductors at the point is the displacement current to the length [ —z of line
beyond z, of value «C(l—2)V. The power loss in length dz of line at z is therefore {wC(l—2)V}2 R dz,
and the total power loss in the line section is the integral of this from z =10 to z =1 The result
is (wCIV)2Rl/3; hence R;,, = RI/3.
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The derivation of this result from equation (7.20) proves to be quite devious. For open circuit
termination (Z; = infinite), equation (7.20) becomes Zinp/Zy = coth (a+ jB)l, with no approxima-
tions. Since coth (a + jB) = 1/[tanh (a + jB)!], the results of the approximations used in Problem
7.12 are easily tested. Using tanh (e + j8) = (a + jB)1, Ziy = Zy/{(a+ jB)l}. Then the exact expres-
sions Z, = V(R + juL)/(G+ joC) and e+ j8 = V(B + joL)(G + joC), with G =0, lead to the
result Z;,, = 0 — j(1/C). The reactance term is correct, but the resistance term is not acceptable
since the distributed resistance R of the line is not zero. If the high frequency approximations
a =R/2Z; and B = wVLC are combined with the expression Z; = VL/C {1 —j(«/8)}, as in Prob-
lem 7.12, the result obtained is Z;,, = 0 — j(1/wCl){1 + («/B)2}, and again the resistance term is
incorrect.

To obtain a meaningful solution it is necessary to return to the original equation Z;,,/Z, =
coth (e + jB8)! and retain an additional term in the power series expansion for a hyperbolic function
of a small complex number. A convenient identity is

coth (x + j¥) = (sinh 2z — j sin 2y)/(cosh 22 — cos 2y)
With & = ol and y = Bl, the power series for the respective functions to two terms are: sinh 22l =
2al + (220)3/3!; sin2Bl = 281 — (281)3/3!; cosh2al = 14 (2a)2/2!; cos2Bl = 1 — (280)2/2!.
Making these substitutions,
al + &(al)® — j{Bl — 3(B1)%}
(al)? + (8)?

Introducing Z, =V L/C {1—j(a/B)}, and evaluating the resistive component only, R;,, =VL/C(2al/3).
Finally, substituting o = R/2Z, gives the desired result R, = RI/3.

Zinp/ZO =

This problem and Problem 7.12 illustrate that combinations of approximations can create errors
that are not obvious consequences of any of the approximations separately.

Show that for high frequency transmission line sections with short circuit termina-
tion and low total attenuation (ol < 0.05 nepers) the input impedance is real and
approximately equal to Z¢/«l for line lengths close to an odd number of quarter
wavelengths, and the input impedance is real and approximately equal to Zsal for line
lengths close to an integral number of half wavelengths.

For the line sections mentioned the smallest value of 8l is #/2, for the one quarter wavelength
line. Hence o/8 is less than about 0.08 for all of the sections, and the phase angle of the char-
acteristic impedance does not exceed 2°. The calculation will be carried out for the largest negative
phase angle, which occurs when the attenuation of a line is due entirely to distributed resistance
R. The characteristic impedance of the line is then, to a good approximation, given by Z, =
VL/C{1— j(a/B)}. The input impedance of the line with short circuit termination is Zipp =
Zy tanh (a + 78)l. The complex hyperbolic tangent can be expanded as

(sinh 2al + j sin 281)/(cosh 2al + cos 281)
Combining this with the expression for Z, gives

{sinh 2al + (a/B) sin 28l + j[sin 281 — (a/B) sinh 2al]}
Zwp = VLIC cosh 2al + cos 281

For the values of al specified in the problem, good approximations are sinh2ql = 2« and
cosh2al = 1 + (2al)2/2!. The input impedance of the line is then real for values of ! that make

sin 28! = 2al(a/B), or cos28l = = V1 —4(al)2(a/B)? = * {1—2(al)2(a/B)2} since al(a/B8) € 1. The
positive sign corresponds to line lengths that are very close to an integral number of half wave-
lengths, and the negative sign to line lengths that are close to an odd number of quarter wavelengths.
Substituting into the expression for Z;,, gives

2al{l1 + («/B)2}

Zimy = VIO Tpie = 1= 2@ A
For the minus sign in the denominator the final result is
Zyy, = VLIClal = Zy/al
For the plus sign in the denominator the final result is

B 1+ (a/B)? L
Zywy = VL/ICal 1+ (21— (@/B)2} Zoal
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1t is evident that, in contrast with the case of Problem 7.12, the small phase angle of the character-
istic impedance has negligible effect on these results, and it is immaterial how the attenuation is
divided between distributed resistance R and distributed conductance G.

If the transmission line sections of this problem had open circuit termination instead of short
circuit termination, the input impedance would be Zjal for line sections an odd number of quarter
wavelengths long and Zy/al for line sections an integral number of half wavelengths long.

A transmission line circuit consists of a source having a resistive output impedance
Zs, and a terminal load having a resistive impedance Zr, the impedance match between
the two being achieved by a quarter wavelength transformer section of lossless trans-
mission line, of purely resistive characteristic impedance Zo=1/ZsZr. The signals
on the circuit occupy a frequency bandwidth from fo— Af hertz to fo+ Af hertz, with
Af/fo € 1. The transmission line section between source and load is one quarter
wavelength long at the frequency fo.

Derive an expression for the power transfer from source to load at the fre-
quencies fo = Af, relative to the maximum power transfer at frequency fo. Assume
the impedances Zs and Zr are not functions of frequency.

The power transfer will be less than maximum at a frequency slightly different from f, because

the transmission line section will not be exactly one quarter wavelength long, and its input impedance
will not be exactly equal to the source impedance.

If the phase velocity on the line section is v,, assumed independent of frequency, then B = /v,
and By = 2rfy/v, at the center frequency of operation. The line length [ is determined by Byl = »/2,
or 1= wv,/4f,. At frequency fy+4f, B = 2z(fo+Af)/v, and the input impedance of the lossless line
section of characteristic impedance Z, and length I terminated in Zp is, from equation (7.20),

Zyy Zy/Zy + § tan {(x/2)(1 + Af/fo)}
Zy 1+ j(Z/2}) tan {(=/2)(1 + Af/fo)}
Using the identity tan(z/2 + x) = — cot 2,
tan {(z/2)(1 + Af/f5)} = —cot{r Af/(2fo)} = —2f/(xAf) if Aflfg <1
Zinp ZT/Z6 - j2f0/(7"Af)
Then 7 = R 7
Zy 1 — §(Z1/Zo)(2f o)/ (z Af)

(Z1/Z){1 + 2fo/w AN} — § @f ol AL — (Z1/Z0)%}
1 4+ (Z1/Z0)%2fofw Af)2

Using Zg=VZgZ; and assuming fo/Af > 1 and VZ5/Zg(fo/af) > 1, this can be simplified to
Zyy = Zs + jZy(=/2)(Af/fo)(1 — Zs/Zr)

which recognizes that for the trivial case of Zg = Zy = Z;, the input impedance of the transmission
line section has this same value, at all frequencies.

Letting X(Af) = Zg(x/2WAf/fo)1 — Zg/Zy), the power transfer from a source of rms harmonic
voltage V and resistive output impedance Zg to the input of the transmission line section will have
the maximum possible value of V2/4Zg at frequency f, when X(Af) =0, and will be given by
|V/{2Zs + iX(Af)}|2 Zg at frequency fo+ Af. The ratio of the power transfer in the latter case to
the maximum value is then 1/{1 + [X(Af)/2Zg]2}.

The approximations that have been made are sufficiently accurate for most purposes if the
impedance transformation ratio of the transmission line section does not exceed 5 to 10, and if the
signal bandwidth is not more than a few percent. Within these same limitations, X(Af) will never
be a large fraction of Zg, and the power transfer will remain near maximum over the signal
bandwidth. When the limitations are exceeded the properties of the transformer must be calculated
from the initial equation for Z;,,/Z,.
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7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22,

7.23.

7.24.

7.25.

7.26.

Supplementary Problems
Derive equations (7.9a) and (7.9b) from equation (7.9), page 128.

Show that if there is a reflection coefficient for harmonic voltages waves pp = |pp| ¢i¢r at the ter-
minal load end of a transmission line, the normalized magnitude of the terminal load impedance is

|Z1/Zo] = V14 2]pg] coser + |PT]2/V 1 — 2 pg| cos g7 + [prl?
and the phase angle ¢ of the normalized terminal load impedance is
o = tan~1{(2|pr| sin ¢7)/(1 — |p7|2)}

If the reflection coefficient for harmonic voltage waves at the terminal load end of a transmission
line is 1/n + jO, show that the line is terminated in an impedance Z; = nZ,+ j0, or an admittance
Y5 = Y¢/n+ jO, where Z, is the characteristic impedance of the line and Y, = 1/Z,.

Show that all terminal load impedances or admittances of normalized magnitude unity connected
to any transmission line produce reflection coefficients whose phase angles are £90°, the angle being
+90° when the connected terminal load is inductive, and —90° when the connected terminal load is
capacitive.

Determine the value of a terminal load impedance of normalized form A + jA, where A is real,
which when connected to a transmisgion line will produce a reflection coefficient of magnitude 0.50.

Ans. 1.275+ j1.275 or 0.393 + 70.393

What identity of complex hyperbolic trigonometry is used to obtain equation (7.19) from equation
(7.18), page 130? Ans. tanh (4 + B) = (tanh A + tanh B)/(1 + tanh A tanh B)

A particular transmission line when terminated in a normalized impedance 1.25 — §0.42 has a nor-
malized input impedance of 0.84 4 j0.32, If the same transmission line were terminated in a
normalized admittance 1.25 — j0.42, what would be the value of its normalized input admittance?

Ang. 0.84 + j0.32 (see Problem 7.6)

From equations (7.21) and (7.22), page 131, write expressions for the normalized input admittance of
lossless stub lines having length [, phase factor 8 at their frequency of operation, and either short
circuit or open circuit terminations. Ans. Yy /Yy = 0—jeotBl; Yy,,/Yy = 0+ jtan gl

Using equation (7.22), show that if a transmission line has negligible attenuation, is terminated in
an open circuit and has a length [ less than 1% of a wavelength, its input impedance is equal to the
impedance of a capacitance of value Cl farads, where C is the distributed capacitance of the line in
farads/unit length.

A lossless transmission line of characteristic impedance 50 + 0 ohms is terminated in an admittance
0.0080 — 70.0120 mhos.
(a) Determine the locations of the points on the line, relative to the terminal load end, at which the
normalized admittance has the form 1 + jB(d)/Y,.
(b) Determine the values of B(d)/Y, at the locations found in (a).
(¢) PFind the lengths of stub line with short circuit termination that must be connected in shunt
with the line at the locations found in (@) to achieve single stub matching,
Ans. (a) 0.424 + n/2 wavelengths, and 0.266 + n/2 wavelengths. (b) B(d)/Y, = —1.84 at the former
points and +1.34 at the latter. (¢) 0.398 + n/2 wavelengths at the former points and 0.102 + »/2
wavelengths at the latter.

A signal source operating at 50 megahertz has an output impedance of 20 + j0 ohms. It is to supply
power through a coaxial line to a load having impedance 150 + j40 ohms. Design a quarter wave-
length transformer to match the source to the load.

Ang. The phase angles of the two impedances are not equal, so a quarter wavelength transformer
cannot provide perfect impedance matching. The load impedance can be made real by adding
a series capacitor of reactance —40 chms. The matching transformer would then have a
characteristic impedance Z; = /20 X 150 = 54.8 ohms. The free space wavelength at 50
megahertz is 6.00 m. If the transformer has predominantly air dielectric, its length would
be 1.50 m.
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7.27.

7.28,

7.29.

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.
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The input impedance of a section of transmission line with short circuit termination is measured
to be 33.6 — j34.0 ohms. The line section has a total attenuation of 8.75 db and is 15.38 wavelengths
long at its frequency of operation. What is the characteristic impedance of the line?

Ans. 50+ jO ohms

Show that the normalized input impedance of any section of transmission line terminated in a
short circuit is equal to the normalized input admittance of the same line section terminated in an
open circuit.

A coaxial transmission line 12 ft long is constructed of two copper tubes. The outside diameters
of the tubes are 0.250"” and 0.500"’ respectively, and the wall thickness of each is 0.080””. The inter-
conductor space is air filled. If there are “input” terminals at one end of the line and the other end
of the line is open circuited, determine an R-L-C lumped element series circuit whose impedance
would be the same as the input impedance of the transmission line section at (a) 60 hertz,
(b) 1.50 X 108 hertz.
Ans. (e) 0.0069 ohms in series with 361 micromicrofarads. (At this frequency ol <1, BI <1,
Ra-c = R4.c, and the results of Problem 7.18 apply.)
(b) Approximately 0.4 ohms in series with an inductance of 0.020 microhenries. (At this fre-
quency a/8§ > 1, t/§ > 1, I/x>1, and high frequency transmission line calculations
must be used.)

An air dielectric lossless high frequency coaxial transmission line is terminated in its characteristic
impedance. The wavelength on the line is A meters. Show that if a length of the line n)\/\flz meters
(where n is any integer) is filled with a lossless insulating material of dielectric constant k., the
input impedance of the line will continue to be equal to its characteristic impedance. (This is an
application of the half wavelength transformer principle.)

A lossless high frequency transmission line of length ! with open circuit termination is measured to

have at a certain frequency an input capacitance three times as great as its low frequency input

capacitance CI (where C is the distributed capacitance of the line). Determine the length of the line
in wavelengths.

Ans. There is an infinite sequence of solutions, the lowest value being 0.21 wavelengths. The problem
reduces to finding gl such that (tan gl)/gl = 8. Tables of (tan x)/x are available. The various
solutions in the infinite sequence are not related by any exact periodicity or integer ratio
relationships.

A 300 foot long section of flexible coaxial cable with plastic dielectric is measured to have an input
impedance of 96.8 + j0 ohms at a frequency of 17.4 megahertz, a frequency at which the cable is
exactly 8.00 wavelengths long. The line is terminated in an open circuit. The line’s characteristic
impedance is 50 4+ jO ohms. What is the attenuation factor of the line? Ans. 1.66 db/(100 £ft)

A lossless transmission line 1.25 wavelengths long having a characteristic impedance of 50+ j0
ohms is terminated by the input terminals of a second lossless transmission line 1.25 wavelengths
long having a characteristic impedance of 75 -+ jO ohms. The second line is terminated in a pure
resistance of 100 ohms. Determine the input impedance of the first line.

Ans. 44.5 ohms (Each line section is a quarter wavelength transformer.)

If the 19 gauge cable pair transmission line of Table 5.1, page 55, were terminated in an impedance
of 100 + 7300 ohms at a frequency of 1000 hertz, what would be the magnitude and phase angle of
the reflection coefficient for voltage waves at thie termination? Ans. 1.49/113.8°

Show that the short circuit admittance matrix for a section of uniform transmission line is

coth yl — cosech vyl
Z, Zy

— cosech vl coth yl
Z, Zy
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7.36. Show that the hybrid matrix for a section of uniform transmission line is

Zy tanh vl sech vl
—sechyl (tanhvl)/Z,

(tanh y1)/Z, —sech vyl
and the inverse hybrid matrix is

sech vyl Z, tanh yl

7.37. Show that the transmission matrix of a section of uniform transmission line is
cosh yl Zy sinh vl
(sinh yl)/Z, cosh vyl

and the inverse transmission matrix is the same.

7.38. Show that for the transmission line circuit of Fig. 7-1, page 126,

1 1
coshyl + (Zy/Zy) sinhyl’ I/l = coshyl + (Z24/Z) sinh yl

where V; and I; are respectively the phasor voltage and current at the input terminals of the line,
and Vp and I, are respectively the phasor voltage and current at the load terminals of the line.

VT/ Vi =



Chapter 8

Standing Wave Patterns

8.1. The phenomenon of interference.

It has been established in earlier chapters that all possible single frequency time har-
monic voltage distributions on a uniform transmission line are described by the equation

V() = Vie " + Vie*r? (8.1)

where V, and V; are arbitrary voltage phasors to be determined by boundary conditions at
the ends of the line, and v = «+jB8. The time harmonic variation of the voltage is repre-
sented by an implicit multiplying factor e, where /2 is the signal frequency in hertz.
The phase velocity of the voltage waves is v, = o/8, their wavelength is A =2x/8, and
they attenuate at the rate of « nepers per unit length of line. The corresponding equation
for single frequency time harmonic current distributions is

Iz) = Zio(vle—vz—vzeW) (8.2)

where Z, is the characteristic impedance of the transmission line. The current waves have
the same frequency, phase velocity, wavelength and attenuation as the voltage waves.

Equations (8.1) and (8.2) have specific reference to the transmission line circuit of
Fig. 8-1. The first term on the right of each of the equations describes a wave traveling
from the source toward the load, and the second term describes a wave traveling from the
load toward the source. The former may be called the “incident” wave, incident on the
terminal load, and the latter the “reflected” wave, produced by reflection from the terminal
load.

Zg line defined by a, 8, Z,
L ——)
Zy
o’

Vs

Fig.8-1. Basic transmission line circuit. When waves are reflected
from the impedance Z, a standing wave pattern is produced
on the line.

(It is worth noting that (8.1) and (8.2) are also applicable to Fig. 8-2 below, a distinctly
different transmission line circuit. Here a single source supplies signals to both ends of a
transmission line section, through networks that terminate the section in its characteristic
impedance at each end. There are waves of identical frequency traveling in both directions
on the line, but their amplitudes and phases are independently variable, and neither can be
called “incident” or “reflected” waves. The arrangement can be used to measure the phase
shift produced by a transmission line component inserted at one end of the line.)

156
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line defined by «, 8, Z,

-0~
—O—

? 9

r

signal
source

Fig.8-2. A transmission line circuit on which standing waves will occur
even when networks A and B terminate the line nonreflectively
at each end. The networks may have different values of
attenuation and phase shift.

In Chapter 7 it was shown that reflected waves oceur on a transmission line whenever
the terminal load impedance is not equal to the characteristic impedance Z, of the line.
The complex number reflection coefficient p, for harmonic voltage waves, produced at the end
of the line z=1 by a connected terminal load impedance Z,, was defined as the phasor
value of the reflected voltage wave to the phasor value of the incident voltage wave at the
load terminals. It was found to be given by

_ Vaetr _ ZrlZy— 1
Pr = Vie™ ZrlZy + 1
The reflection coefficient for harmonic current waves was found to be —p,.

(8.8)

Equations (8.1) and (8.2) can be rewritten to contain the reflection coefficient explicitly:

Ve = Viem 4 prem) = Vil + ppetie)
= Vle—'yl(ev(l—z) + pTe—v(l-z))
or Vid) = Vie(e™ + ppe ™) (8.4)
-l
and Id) = Klzﬁol(e“’— pre "9 - (8.5)

Whenever two waves of identical frequency travel in opposite directions on a trans-
mission system, whether the system be electrical or mechanical, solid, liquid or gaseous,
the fundamental phenomenon of interference or “standing waves” occurs. The magnitude
of each phasor wave variable, instead of diminishing steadily and exponentially from the
source to the terminal load end of the system, as is true when only one wave is present,
exhibits periodic maxima and minima along the system, at intervals determined by the
wavelength of the individual waves. The effect appears in its most striking form when
the two oppositely directed waves have equal amplitude and the transmission system has
zero attenuation. For harmonic voltage waves on a lossless transmission line this case is
most simply represented by letting «=0 (hence y=13B8), and p,=1+70. Then the
voltage magnitude as a function of position along the line is

|[V(d)] = A |cospgd| , (8.6)
and the current magnitude as a function of position is
[I(d)] = (A/Zo) |sin Bd| (8.7)

where A = |2Vie™"| is a scale factor determined by the total circuit of Fig. 8-1.
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Fig. 8-3 is a graph of equation (8.6). The V(@)
ordinate of the graph at any position d on the
line is proportional to the rms voltage that
would actually be measured between the line
conductors at that cross-section by an a-c
voltmeter or similar indicating instrument.

From the graph and the equation it is seen d
that there is a sequence of locations d. along
the line, given by Fig.8-3. A standing wave pattern on a lossless
transmission line when the incident and
Bdn = 7/2+4+0r (n=0,1,2,...) reflected waves have equal amplitudes.

at which the voltage is zero at all times. The separation of a consecutive pair of these
nodes is

Bdn — Bdn—1 = (#/2+02) ~ {z/2+(n—1)n} = =
Using B = 2#/A, dn — dn-1 = M2 (8.8)

Midway between the points of zero voltage in Fig. 8-3 are points where the phasor
voltage magnitude is a maximum and is twice the value for each of the individual traveling
waves. The two waves are said to combine with “constructive interference” at the points
of maximum voltage, and with “destructive interference” at the points of zero voltage. The
instantaneous voltage at any point of the pattern oscillates harmonically with time at the

"signal frequency, but the amplitude of the oscillation ranges from zero at the points
di, ds, ... to a maximum at the points midway between.

Comparison of equations (8.7) and (8.6) shows that for the particular case of a lossless
transmission line terminated in a voltage reflection coefficient p, =1+ 70, "the standing
wave pattern for the current waves is similar in shape to that for the voltage waves but is
displaced one quarter wavelength along the line. The general analysis of standing wave
patterns in Section 8.4 establishes that current maxima are always coincident with voltage
minima (and vice versa) on transmission lines having low attenuation per wavelength, for
all values of the reflection coefficient at the terminal load.

The standing wave patterns of voltage magnitude and current magnitude on a lossless
transmission line when there are waves traveling in only one direction on the line are found
from equations (8.4) and (8.5) by substituting « =0 and p, =0, with the results

V(@) = Ale#] = A (8.9)
@) = A/Z, (8.10)

where A is the scale factor |[Vie™"| as before,

and Z, is necessarily real for a lossless line.

Fig. 8-4 is a graph of these equations. Again, V(d)
the instantaneous voltage at any point on the

line oscillates in value harmonically with time,

but in this case the amplitude of the oscillation

is everywhere constant and equal to the ampli-

tude of the traveling voltage wave. A similar
statement applies to the pattern of current d
magnitude. With waves traveling in only one
direction on the line _there can.b,e no .lnter' Fig.8-4. The standing wave pattern on a lossless
ference, and no maxima or minima in the transmission line when the line is termi-
patterns. ] nated non-reflectively.
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Like the a-c meter readings of V(d) or I(d) whose graphs they represent, Fig. 8-3 and

- 8-4 give no information about the relative phases of voltage or current at each point. Phase
information is retained if equation (8.6) is written V(d) = A cos8d. This expression indi-
cates that in the voltage standing wave pattern produced on a lossless transmission line by
a voltage reflection coefficient p . at the terminal load end, the phase is constant over any
half wavelength of the pattern between successive points of zero voltage magnitude, but
changes by = radians (i.e. changes sign) in the adjacent half wavelengths. Similarly,
writing (8.9) as V(d) = Ae’® shows that the phase of the voltage in the pattern of Fig. 8-4
changes at a constant rate of g radians per unit length along the entire length of the line.

A direct illustration of how interference
produces standing waves is presented in Fig. P
8-5. Fig. 8-5(a) shows two segments of sine /\
~ wave patterns, identical in amplitude and
wavelength. These represent the localized in- , \ L
stantaneous values, along a portion of their —t ; —+ \ A
common line of travel, of two identical har- ) a’ ‘b' c/ ¢
monic waves of some physical variable, travel- \ /
ing in opposite directions. At points a, b and \\ / \ 7/
¢ the algebraic sum of the ordinates of the two
curves is zero, and at points a’, b’ and ¢’ the (@)
algebraic sum has maximum magnitude.

Fig. 8-5(b) shows the same two patterns

after a short time interval during which the /"\
two waves have traveled with equal speeds / \
in opposite directions through distance Az. ./ \
The algebraic sum of the ordinates is still zero \ N
at points a, b and ¢, and has maximum mag- \\ a \/ b AR
nitude at points ¢’, b’ and c¢’. \ /

Repeating this observation for several \_,/
values of Az establishes that the instantaneous )
value of the wave variable-is always zero at
points a, b and ¢, and oscillates harmonically
in time with maximum amplitude at points Fig.8-5. An illustration of the production of
a’, b’ and ¢’. The total result, as a magnitude standing waves by interference. The two
pattern, resembles Fig. 8-3. waves of equal wavelength and amplitude

are traveling in opposite directions with

Fig. 8-3 and 8-4 illustrate two extremes equal velocities. At the instant shown
of the possible voltage standing wave patterns in (a), the waves interfere destructively
on a lossless transmission line. The latter oc- at points a, b and ¢. In (b) each wave has
curs only for p, =0, which requires Zr = Zo. in (). Destructive insoctorence vl or
Fig. 8-3 was obtained from the specific case of curs at locations a, b and c¢. In each
pr =1+70 (Zr infinite) but similar patterns case constructive interference occurs at
consisting of a succession of positive half sine- o', b’ and ¢

wave segments are produced by all reflection

coefficients of magnitude unity, which result when Zr is a short circuit, an open circuit, or
any value of pure reactance. The locations along the line of the zeros or nodes of the pat-
terng differ for different values of purely reactive Zr.

Any general value of terminal load impedance Zr = Rr+jXr, with both Rr and Xr
finite, when connected to a uniform lossless transmission line will create a standing wave
pattern of voltage (or current) in which the minima are of nonzero amplitude, and the
ordinate of the pattern at the load terminals is neither a maximum nor a minimum of the
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pattern. A typical case is suggested by [V(d)|
Fig. 8-6.
The nature of the patterns of |V(d)| and

|I(d)] on a uniform transmission line in the d
completely general case of an arbitrary ter-
minal load impedance Zr connected to a line i . .

. 3 . ine, caused by a terminal load imped-
of arbitrary attenuation in nepers per wave- ance that produces a reflection coeffi-
length is discussed in Section 8.4. cient of magnitude about 0.4.

Fig.8-6. Standing wave pattern on a lossless

8.2. The practical importance of standing wave observations.

The observation and measurement of voltage or current standing wave patterns on high
frequency transmission systems has become an experimental technique of prime importance
for two reasons:

(1) An analytical expression can be derived (Section 8.4) relating the quantitative aspects
of a standing wave pattern on a uniform transmission line to the normalized value of
the terminal load impedance Zr/Z, connected to the line and the propagation factor
y=a+jB8 of the line. Connecting known values of Zr/Z, (open circuit, short circuit,
etc.) to the line, the attenuation factor « and phase velocity v, = /g can be found from
standing wave pattern measurements. When « and 8 are known, the normalized value
of any unknown terminal load impedance Zr/Z, connected to the line can be calculated
from the details of the standing wave pattern it produces. Standing wave observations
then provide a simple and precise impedance measuring procedure in a range of high
frequencies where impedance bridges and other techniques lack both simplicity and
precision.

(2) When the intended function of a transmission line circuit in the form of Fig. 8-1 is to
convey power or signals efficiently from a source to a load, the existence of voltage
and current standing waves on the line can impair the performance of the circuit in
several different ways. Standing wave observations provide convenient and direct
data from which to calculate or estimate the magnitude of these various effects. Stand-
ing wave measurements are so quickly and easily carried out that they can also be used
to monitor a circuit’s performance while adjustments are being made to achieve
optimum conditions.

The occurrence of standing waves on a transmission line circuit of the form of Fig. 8-1
is synonymous with the presence of reflected waves on the line, the reflected waves being
caused by a terminal load impedance that is not equal to the characteristic impedance of
the line. On practical high frequency transmission lines, for which the attenuation per
wavelength is low and the phase angle of the characteristic impedance is small, standing
waves can be responsible for any of the following adverse effects:

(a) At the maxima in the voltage standing wave pattern the voltage between the line con-
ductors exceeds the value required for delivering the same amount of power to a non-
reflecting load impedance Zr = Z,. The power capacity of the line, if limited by voltage
breakdown or by local heating of the dielectric in the interconductor space, is therefore
reduced.

(b) At the maxima in the current standing wave pattern, located between the voltage
maxima, the current in the line conductors exceeds the value required for delivering the
same amount of power to a nonreflecting load impedance. The power capacity of the
line, if limited by local heating of the line conductors, is therefore reduced. (For practi-
cal high frequency transmission lines the peak pulse power rating is usually determined
by voltage breakdown and the continuous power rating by conductor heating.)
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(¢) In the presence of standing waves the losses per wavelength in both the distributed
resistance R and the distributed conductance G of the line are greater than they would
be if the same amount of power were being delivered to a nonreflecting load.

(d) Since the presence of standing waves on a line means that Zr is not equal to Z,, it fol-
lows from equation (7.20), page 131, that the input impedance of a transmission line in
the circuit of Fig. 8-1 will vary with frequency (i.e. with line length in wavelengths).
The efficiency of power transfer from the source to the input terminals of the line will
therefore vary over the operating bandwidth of the system. The effect may be increased
if the terminal load impedance Zr has a reactive component which is itself a function of
frequency.

(e) If the source impedance Zs = Z, in the circuit of Fig. 8-1, then maximum power will be
delivered to a terminal load impedance Zr = Z,, and the presence of standing waves on
the line is positive evidence of less than optimum transmission efficiency. However,
when the source impedance is not equal to the characteristic impedance of the line, this
conclusion does not apply. The general case is discussed more fully in Chapter 9.

8.3. Instrumentation for standing wave measurements.

The most common commercial form of device for making standing wave measurements
on transmission lines consists of a section of air-dielectric coaxial line whose conductors
are rigid metal tubes two or three feet long, the center conductor being supported by
dielectric inserts at the ends of the section. A narrow longitudinal slot is cut in the outer
conductor along most of its length. An external carriage is arranged to move mechanically
along the length of the section, carrying a small probe-conductor which penetrates slightly
through the slot into the interconductor space of the line.

When this “slotted line section” is connected between a source and a terminal load in
the manner indicated by Fig. 8-7, the probe receives a small signal-frequency excitation
proportional to the magnitude of the voltage or electric field between the line conductors
at the probe’s location. The received signal is detected and amplified, and its magnitude
displayed or recorded as a function of the probe position along the slot. If the detector is
linear, the resulting graph is a standing wave pattern of relative r.f. voltage magnitude on
the slotted section of the line, of the type shown in Fig. 8-6. Very often the simple crystal
or bolometer detectors used with slotted line sections have square-law response at the low
signal levels received by the probe and the ordinates of the observed standing wave pattern
are proportional to the square of the r.f. voltage magnitude at each point of the line.

- isolator . O terminal
signal or load
source attenuator L o— —_— impedance

slotted line section

Fig.8-7. Use of a slotted line section to measure an impedance con-
nected directly to its output terminals. The attenuator or
isolator prevents changes in the measuring circuit from affect-
ing the frequency or power output of the signal source.

The radii of the conductors of the slotted line section, dictated mainly by mechanical
considerations, are large enough to ensure that the attenuation of the section has no detect-
able effect on the observed standing wave patterns, in most cases.
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For the circuit of Fig. 8-7, the details of the standing wave pattern observed in the
slotted section, whether the detector is linear or square law, provide data from which the
value of the terminal load impedance Zr, normalized relative to the characteristic impedance
of the slotted section, can be calculated. The geometry of the slotted section is sufficiently
precise that its high frequency characteristic impedance can be accurately determined from
equation (6.59), page 96, using k= 1. (The effect of the slot is negligible.) Thus the cal-
culated normalized value of Zr can be converted to a value in ohms.

When a slotted line section is inserted into a general transmission line circuit like that
of Fig. 8-1, either between the source and the input terminals of the transmission line as
in Fig. 8-8, or at any intermediate point of the line, it is important that there be no abrupt
change in transmission line geometry between the slotted section and the portion of the
main line on the terminal load side. Otherwise the uniformity postulate of Chapter 2 will
be violated, and phenomena will occur which are not covered by transmission line theory.
The reliability of calculations made from standing wave patterns in the slotted line section
may then be seriously affected.

s isolator O O—1 terminal
signal load
source or i

attenuator . e O e O] impedance
transmission line

slotted line section

Fig.8-8. Use of a slotted line section to measure the input impedance of a
section of transmission line having terminal load impedance Zr.

Standard practice is to use a slotted line section whose characteristic impedance is the
same as that of the transmission line to which it is connected and, if necessary, to make the
transition from the conductor radii of the slotted section to those of the main transmission
line by means of a coaxial line section with tapered conductors having a length of at least
a few quarter wavelengths. Under these conditions the presence of a standing wave on
the slotted section indicates that there are reflected waves and standing waves on the main
line. Conversely, adjustment of the terminal load impedance to eliminate the standing
wave in the slotted section will mean that the main transmission line is terminated
nonreflectively.

The only quantity that can be calculated from a standing wave pattern observed on a
slotted line section inserted in a transmission line circuit in the manner described by Fig.
8-8 is the input impedance of the portion of the transmission line on the terminal load side
of the slotted section, normalized with respect to the characteristic impedance of the slotted
section. To obtain information about the attenuation or phase velocity of the main trans-
mission line, or about the normalized or actual value of the terminal load impedance Zr,
standing wave patterns must be observed using two or three different lengths of the main
line, with open circuit and short circuit termination in addition to the Zr termination.

Although in principle the slotted line technique could be used to observe standing waves
on a transmission line at any frequency, the method becomes impractical at frequencies
below about one hundred megahertz. Inspection of Fig. 8-6 shows that the full description
of a voltage standing wave pattern on a transmission line having negligible attenuation
per wavelength requires observation over at least one quarter wavelength of line, including
a voltage minimum and an adjacent voltage maximum. For random positioning of the
pattern in the slotted section this would require that the slot be not less than one half
wavelength long. Mechanical considerations make the construction of a reasonably precise
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slotted line section difficult for lengths greater than three or four feet. This establishes a
lower frequency limit in the hundred megahertz region. The upper frequency limit of a
slotted line unit may be determined by any one of several factors, such as connector design,
probe circuitry, or propagation of the TE and TM modes discussed in Chapter 3. Typical
commercial slotted line sections are useful in the frequency range from a few hundred to a
few thousand megahertz. Special units can be obtained for higher and lower frequencies,
as can standing wave detectors for transmission lines with noncoaxial configurations, such
as parallel wires, striplines, and others illustrated in Fig. 2-2.

At frequencies for which the wavelength is between several feet and several hundred
feet, it is often practicable on open types of transmission line to obtain the data for a
standing wave pattern by direct measurement of the voltage at intervals along the line
itself, using a portable meter. At frequencies below the hundred megahertz region, how-
ever, the information available from standing wave patterns is usually obtained more
conveniently by other methods.

8.4. The analysis of standing wave patterns.

Since the pattern of the variations of voltage and current magnitude along the line is
not directly comprehensible in the general case from the complex number equations (8.1)
and (8.2), the analytical problem is to find expressions for |V(2)| and |I(2)|, in terms of the
components in the transmission line circuit of Fig. 8-1, whose graphical representation as
a standing wave pattern is easily visualized, and which directly relate measurable features
of the pattern to desired circuit information.

The analysis will be carried out in full for the standing wave pattern of voltage mag-
nitude on a line. A minor modification makes the same analysis applicable to the standing
wave pattern of current magnitude. The latter is little used in practice, because its observa-
tion requires a coupling loop in the slot of the slotted line section, which is mechanically
less convenient than a coupling probe.

Equation (8.4) is a general expression for the harmonic voltage V(d) at any coordinate
d on a uniform transmission line. The line has length I, characteristic impedance Z,,
propagation factor y = « +jB, and is terminated in an impedance Zr that produces a voltage
reflection coefficient p, at the terminal load end of the line in accordance with (8.3). A
voltage standing wave pattern, being a graph of |V(d)| as a function of d, has a shape which
is determined entirely by the terms yd and p,, i.e. by the normalized value of the terminal
load impedance, and by the total attenuation and total phase shift of the length of line
between the terminal load impedance and the point of observation of the pattern. The
shape of the pattern is not affected by the strength or internal impedance of the signal
source connected to the line, nor by the length or properties of the line between the source
and the point of observation. As noted previously, the term |V1e~" is a scale factor for the
pattern but does not influence its shape. The scale factor is a function of all the com-
ponents of the total transmission line circuit.

To obtain from equation (8.4) a graphable expression for |V(d)|, the voltage reflection
coefficient p, must be expressed as an exponential number,

P = |PT] eitr = g~ 2ptiv) (8.11)

from which p = logeL and ¢ = —i¢, (8.12)

Vel

Substituting from (8.12) into (8.4) and taking out a term e~®+® = /5
V(d) = Vie"Vp, (et @+ g+rd 4 g=(+iv g-vd) (8.13)
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Finally, using y = «+j8 and regrouping exponents,
V(d) = Vl e—vl \/";{e+(ad+p) + j(Bd+q) + e—(ad+p) —j(Bd+q)}

= 2Vie "\/p, cosh {(ad + ) + j(Bd + q)}
The complex hyperbolic cosine can be expanded using the identity

(8.14)

cosh(z+jy) = coshzcosy + jsinhzsiny
from which there follows the magnitude relation
|cosh (x +jy)] = {cosh?x cos?y + sinh2z siny}!/2
= {(sinh?z + 1) cos?y + sinh?x sin2y}¥/2
= {sinh?z + cos?y}/?

sinhz siny

o i
The phase angle of cosh (z + jy) is tan (cosh Z cosy

> = tan~!(tanh « tan ).
Applying these results to equation (8.14), the magnitude of the phasor voltage on a
transmission line as a function of distance from the terminal load end of the line is

|V(d) = |2Vie "Vp,| {sinh?(ed + D) + cos?(Bd + q)}'2 (8.15)

The variation of the phase angle £ of the phasor voltage as a function of the coordinate
d is given by
£d) = tan~!{tanh(ad +p) tan (8d + q)} (8.16)

Equation (8.15) is a graphable expression for the voltage standing wave pattern on a
transmission line for the perfectly general case of the transmission line circuit of Fig. 8-1.

Phase variation of the voltage along a transmission line when there are standing waves
present can be evaluated and plotted from (8.16), although the shape of the graph is not
easily visualized directly from this equation. The usual processes for making transmission
line circuit calculations from standing wave measurements make no reference to the relative
voltage phase £(d), but the phase information is important in many applications, such as
the feeding of the component antennas of an array from a common transmission line on
which there are standing waves.

It is worth noting that no approximations have been used in deriving (8.15) and (8.16)
from the general equation (8.1), and these equations are therefore valid for all values of
a, B and p..

In drawing a graph of a voltage standing wave pattern from (8.15), no significance
attaches to the value or the functional form of the scale factor term |2V e~"v/p.|. It can

therefore be replaced by any arbitrary real value of phasor voltage. Notation is simplified
by letting this value be unity. Then

|V(d)] = {sinh?(ad+p) + cos?(8d + q)}'/? (8.17)

8.5. Standing wave patterns on lossless lines.
When « =0, equation (8.17) becomes

[V(d)] = {sinh?p + cos?®(8d + q)} . (8.18)

Since sinh?p is a constant for fixed values of Zr and Zo, the standing wave pattern for |V(d)[?
is particularly easy to draw, being simply a cosine squared pattern with all ordinates offset
a constant amount from the zero axis. The term cos? (8d + ¢) oscillates in magnitude between
zero and unity, as a function of d. The offset term sinh?p is a function of |p,|, according
to equation (8.12). - The voltage maxima, which occur when cos?(8d +¢q) =1, are all of the
same magnitude, as are the voltage minima, which occur when cos?(8d +q) = 0.
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Using the symbol dvimm) for the d-coordinates of the voltage minima, and noting from
(8.12) that q = —4¢,, the relation cos?(Bdvimim +4q) =0 leads to

Aveminy/A = 31+ ¢, /7) = §n n=012... (8.19)
where X is the wavelength on the line.

The true voltage standing wave pattern, a graph of |V(d)| as a function of d, can be
obtained only by plotting the square root of the ordinates of the pattern of |V(d)]? at a
sufficient number of values of d. No simple functional expression for the curve is available.
The general nature of the result, already illustrated in Fig. 8-6, is that the minima become
sharper and the maxima become broader than in the curve for |V(d)2. This is the reason
for establishing the reference to minimum voltage points of the pattern in (8.19) rather
than maximum voltage points. If a voltage standing wave pattern is observed with a
square-law detector, the actual standing wave pattern obtained will be that of |V(d)? and
there is no difference in sharpness between the maxima and minima.

The specification of three quantities is sufficient to ensure that the shape of a voltage

standing wave pattern on a lossless transmission line can be drawn in full using equation
(8.17). These are:

(a) the ratio of the maximum voltage magnitude in the pattern to the minimum voltage
magnitude; '

(b) the location of any voltage minimum relative to the origin of coordinates d = 0;

(c) the distance between successive voltage minima.

Conversely, these are three quantities which can be directly measured from the data of
any voltage standing wave pattern.

Normally the frequency of the source will be a known quantity. From (8.19) the distance
required in item (c) is one half wavelength of the waves in the air dielectric slotted line
section at the frequency of the source, which is given by A/2 = ¢/2f, where f is the fre-
quency of the source in hertz, ¢ = 8.00 X 108 m/sec and X is in meters. If the frequency of
the source is not known, it can be determined from this same equation, using the measured
distance between successive voltage minima.

Item (a) suggests the desirability of defining a quantity known as the ‘“voltage standing
wave ratio” of a voltage standing wave pattern. This is designated by the notation VSWR
in most transmission line writing, and is defined by
[V(2) | max
[V(d)|min
where |V(d)|max is the voltage magnitude at a maximum in the voltage standing wave pattern,
and |V(d)|mn is the voltage magnitude at a minimum.

VSWR (8.20)

Referring to (8.14) it is apparent that

_ [sinh?’p+ 12 {costh LCA 14 e
VEWR = { sinh?p } ~ |sinh? p} = cothp = 7=
1+
or VSWR = P (8.21)
1- IPTl

using equation (8.12). Since |p,| is the ratio of the magnitude of the reflected wave to the
magnitude of the incident wave on the lossless line, this result shows that the maximum
voltage magnitude in the standing wave patterns is the sum of the magnitudes of the inci-
dent and reflected waves, while the minimum voltage magnitude in the standing wave
pattern is the difference of the same two magnitudes.
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Equations (8.19) and (8.21) present the important and valuable facts that the VSWR
of a voltage standing wave pattern on a lossless transmission line is a function only of
the magnitude of the voltage reflection coefficient at the reference location d = 0, while the
locations of the voltage minima in the pattern, expressed in wavelengths, are functions
only of the phase angle of the same reflection coefficient.

Example 8.1.

An air dielectric transmission line with low attenuatlon per wavelength at its operating frequency of
400 megahertz has a characteristic impedance of 50 + j0O ohms and is terminated in an impedance of
20 — j80 ohms. Describe the voltage standing wave pattern on the line.

The voltage reflection coefficient produced by the terminal load impedance is

Zr/Zy — 1 04— j16—1
pr = ZidZ,+1 - 04—jl6F1 0.80/5.20 rad
+
Then VSWR = 7l _ 180 _ 9.0, and

1= lpg| 020
dV(mln)/k = i‘(l+¢’1‘/7’)

The wavelength on the air dielectric line is A = ¢/f = (3.00 X 108)/(400 X 108) = 0.75 m, so that dy(miny =
0.164 X 0.75 = 0.123 m. The pattern can be sketched from the values of VSWR and Ay (miny/ A

I+

In = 1(1+520/r) = n = 0664 — 050 = 0.164

Equations (8.19) and (8.21) can be solved for |p,| and ¢,:

_ VSWR -1 '
IPT' - VSWR +1 (8.22)
¢ = dndvimin/A — 7 = 20n (8.23
T

Using equations (8.22) and (8.23) together with (7.9a) and (7.9b), page 129, the com-
ponents of the normalized impedance terminating a lossless transmission line can be cal-
culated from the numerical data of the voltage standing wave pattern.

Example 8.2.

On a lossless transmission line having a characteristic impedance of 73 + j0 ohms, there is a VSWR of
3.50. The distance between successive minima of the pattern is 45.5 cm, and there is a voltage minimum
86.8 cm from the load terminals. Determine the value of the terminal load impedance connected to the line.

Since the distance between successive minima of any standing wave pattern on a lossless line is one
half wavelength, A = 2X 455 = 91.0ecm and dym,/A = 36.8/91.0 = 0.404. From (8.22), |ogy| =
(8.60 — 1)/(8.50 + 1) = 0.556, and from (8.23), ¢p = 4z X 0.404 — 7 %= 2nr = 1.940 rad. For use in equa-
tions (7.9a) and (7.9b), cos ¢y = —0.360 and sin ¢y = 0.933. Then

1 — forf? 1 — 0.308
7. = = = 0.405
Rr/Z, 1 + |pgl2 — 2pg| cos ¢r 1 + 0.308 — 2(0.556 X 0.360)

and Ry = 0.405 X 73 = 29.6 ohms. Similarly,

2 |or| sin ¢r 2(0.566 X 0.933)
/2o 1 + Jpg|?2 — 2|pg| cos op 1.708

and Xp = 0.608 X 78 = 44.4 ohms.

Table 8.1 below summarizes the details of the voltage standing wave patterns that are
produced on lossless transmission lines by several easily des1gnated values of normalized
terminal load impedance.

The table shows that a purely resistive terminal load, of normalized value n + j0, pro-
duces a VSWR of n with a voltage maximum at the load if n > 1, and produces a VSWR of
1/n with a voltage minimum at the load if »n < 1.
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The table suggests, and this is demonstrated graphically for the general case in Chapter
9, that dvaniny/A lies between 0 and £ for all capacitively reactive terminations, and between
4 and 1 for all inductively reactive terminations.

The table confirms a statement made previously, that open circuit, short circuit, and all
purely reactive terminations produce patterns for which the VSWR is infinite, i.e. patterns
for which the minima are zero. It has been seen that such patterns consist of consecutive
positive half sine-wave segments.

Table 8.1
Zy/Z, er lor| #T VSWR Dy (miny/ A
equation (8.3) equation (8.21) equation (8.19)
0 -1+ 70 1 T infinite 0,1/2
infinite 1+ 40 1 0 infinite 1/4
1+ 50 0 0 none 1 none
0+ 31 0+ j1 1 /2 infinite 3/8
0—71 0-—71 1 —7/2 infinite 1/8
n+i0 (n>1) r 2 nl 0 n 1/4
n+40 R<1) n+1+;0 };: - /n 0,1/2

8.6. Standing wave patterns on transmission lines with attenuation.

In a voltage standing wave pattern on a lossless transmission line, the variations of the
voltage magnitude are confined between constant upper and lower limits along the line,
shown by (8.18) to be proportional respectively to coshp (= 4[1/V/]p,] + Vp,]] from equa-
tion (8.12)), and sinhp (= ${1/V]p,] — V]p,]])- The ratio of the two limits is everywhere

1
cothp = = VSWR, a constant.

1- I TI

If a line has attenuation factor «, it is seen from (8.17) that the corresponding upper and
lower limits or envelopes of the standing wave pattern are proportional to cosh («d + p) and
sinh (ed + p) respectively. The ratio of the limits at any value of d is

1+ |pTl e 2ad
T= o

1+ ¢~ %Cad+p)
coth (ad + p) = . m
Since all maxima and minima in any standing wave pattern occur at different values of
d, it appears from this equation that in a pattern on a line with attenuation all the maxima
and minima will each have different magnitude. This suggests that the VSWR concept
and its uses might not be applicable. Quantitatively it is found that for the important
case of lines with low attenuation per wavelength (/8 < 1), but any value of total attenua-
tion al, terminated in impedances that produce reflection coefficient magnitudes not too close
to unity (jp,| < 0.5 is a conservative criterion) the ratio of a maximum voltage magnitude\
in the standing wave pattern to an adjacent minimum voltage magnitude one quarter wave-
length away gives a VSWR value from which the line impedance Z(d) at any point in that
quarter wavelength of the line can be calculated with useful accuracy, using the value of
dvmin)/A appropriate to the point d in the interval at which Z(d) is evaluated.

Fig. 8-9 is a voltage standing wave pattern calculated from equation (8.17) for a trans-
mission line with an attenuation of approximately one neper/wavelength («/f8 = 1/6
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exactly), a case which is far from qualifying as “low attenuation per wavelength”. Ref-
erence to Table 5.1, page 55, shows that this value of «/8 could occur for a 19 gauge cable
pair at a frequency somewhat higher than 30 kilohertz, and that the three half wavelengths
of Fig. 8-9 would cover about 5 miles of the cable pair. On the other hand, for the standard
7/8” rigid 50 ohm copper coaxial line of Problem 5.6, page 64, at a frequency of 100 mega-
hertz, the attenuation factor « = 1.60 X 10~2 nepers/m, while the phase factor B8 = o/v, =
2.09 rad/m and o«/8="7.7X10"% Thus a standing wave pattern like Fig. 8-9 will nor-
mally occur only under conditions where it would not be usual practice to make standing
wave measurements, and a comparable pattern could occur on a high frequency slotted line
section only if the line conductors were made of some extraordinary material such as
intrinsic germanium, sintered ferrite, or carbon dispersed in a nonconducting binder. For
an ordinary metal conductor line with low dielectric losses the attenuation factor « increases
as the square root of the frequency at high frequencies, as shown in Chapter 6, and it is
evident that B = o/v, increases as the first power of the frequency, since v, is quite accu-
rately constant for such a line. Thus the quantity

a/B = (1/2x)(line attenuation in nepers/wavelength)

usually varies approximately inversely as the square root of the frequency in the frequency
range from a few megahertz to several gigahertz, for transmission lines of reasonable
construction.

—2.1

Vi)

1.3 1.2 11 1.0 0.9 0.8 0.7 0.6 0.6 0.4 0.3

Fig.8-9. Voltage standing wave pattern on a transmission line having a substantial
attenuation per wavelength., The magnitude of the reflection coefficient pro-
duced by the terminal load impedance is about 0.5, and the phase angle of the
reflection coefficient is about »/4 radians.

Although Fig. 8-9 is therefore not a realistic illustration of a possible voltage standing
wave pattern on a high frequency transmission line, its exaggerations help to emphasize
the important features of all standing wave patterns on lines having attenuation. The
pattern has four parameters which, graphically, are entirely independent. These are:
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(¢) The total attenuation ol covered by the range of the pattern. Since the median
ordinate of the two envelopes is 34[cosh (ad + p) + sinh (ad + p)] = (}e?)e*d, and
e* = 1/\/[p,] is a constant, the ratio of the median ordinate at d = to the median
ordinate at d = 0 is e*, and the total attenuation can be calculated from appropriate
measurements on the envelopes of any pattern.

(b) The total length of the pattern in wavelengths, gl/2x. One half wavelength on the
line is the distance between consecutive points of contact of the pattern with one
of the envelopes.

(¢) The value of p, which determines the ordinates of the envelope curves sinh (ad + p)
and cosh (ad +p) at d = 0.

(d) The value of g, which determines the phase at d = 0 of the oscillating portion of the
standing wave pattern deriving from the term cos?(8d + q) in equation (8.17).

Because of the independence of these four features, it is not possible to draw a “univer-
sal” standing wave pattern, applicable to all transmission line circuits through simple scale
changes. If, however, the functions sinhz and coshxz are plotted against 2, on a linear
scale of x increasing from 0 at the right to about 3 or 4 at the left, the following procedure
shows that all standing wave patterns of practical interest that might occur on any uniform
transmission line in the circuit of Fig. 8-1 lie between the two curves as envelopes, and
extend over some interval of the x scale determined by the quantitative details of the circuit.

The right hand limit z, of the interval on the x scale occupied by the standing wave
pattern occurring on a specific transmission line circuit is given by 1 = p = loge (1/V]p,])-
This point then corresponds to d = 0 on the transmission line, where the connected terminal
load impedance Zr produces the reflection coefficient p,. The left hand limit x. of the
interval occupied on the « scale is given by > = ol + p, where ol is the total line attenuation
in nepers. This point then corresponds to d =1 on the transmission line, where the source
is connected. Thus the interval x; to . on the x scale is converted to represent the length
d=0tod=1on th‘e}ansmission line, by the use of a scale factor and a shift of the origin.

At d =0, the ratio of the magnitude of the reflected voltage wave to the magnitude of
the incident voltage wave is |p,|, by definition. At any other value of d, on a line with
attenuation, the incident wave is larger in magnitude by the factor ¢2¢, and the reflected
wave is smaller by the factor e~*¢. Hence at a general point the ratio of the magnitude of
the reflected voltage wave to that of the incident voltage wave is |p,|e 224 = ¢ 2(ad*®»,
When (ad+p) =38, e 2+» =(,0025. The reflected wave magnitude is then only 1%
of the incident wave magnitude, the fluctuations in the standing wave pattern are about
1% of its average amplitude, and the undesirable consequences of standing waves :isted in
Section 8.2 are present to only a trivial extent. This is a major reason why the z scale in
the procedure described above need not be extended beyond z = 3 or 4. A second reason is
that most commercial slotted line sections will not measure VSWR values less than
about 1.01.

Having established that any specific standing wave pattern will lie between the curves
for sinhx and cosh, in an interval of # from z: to x2, and having converted the interval
between x; and s to correspond to the d coordinates of the transmission line, the final step
is to fit into this bounded space the fluctuating component of the pattern. This will
resemble a damped sinusoidal oscillation curve, diminishing in amplitude from right to left,
making contact with the sinh« lower envelope at values of d given by equation (8.19) and
with the cosh x upper envelope at values of d midway between the lower contact points. It
can be seen from Fig. 8-9 that when the attenuation per wavelength is large, the locations
of the points of contact with the lower envelope, given correctly by equation (8.19), are not



170 STANDING WAVE PATTERNS [CHAP. 8

in fact points of minimum voltage magnitude in the pattern, and the symbol dv(min) is
inappropriate. For practical high frequency lines the error introduced by this discrepancy
is not important.

For an idealized lossless transmission line having « = 0 identically, the interval z; to
x2 in the procedure described becomes a point of magnitude zero. The step of converting
it to a d coordinate scale introduces the indeterminacy 0/0. The implication is simply the
fact presented in Section 8.4 and Fig. 8-6, that the upper and lower envelopes of the stand-
ing wave patterns on such a transmission line are straight lines parallel to the d axis.

For the same transmission line circuit whose voltage standing wave pattern is given
by Fig. 8-9, the current standing wave pattern as determined in Problem 8.1, page 178, is
shown superimposed on the voltage pattern in Fig. 810. The points of contact of the
current pattern with either envelope lie midway between the points of contact of the voltage
pattern. If the attenuation does not exceed a few tenths of a decibel per wavelength, the
maxima and minima of the current pattern will occur at the same values of d as the minima
and maxima respectively of the voltage pattern, within the precision of experimental meas-
urements. However, when the attenuation per wavelength is as large as in Fig. 8-9 and
8-10, there is an obvious difference in the locations of corresponding maxima and minima
of the two patterns.

— 2.1

[V(d)| and |I(d)|

|
1.3 1.2 11 1.0 0.9 0.8 0.7 0.6 0.6 0.4 0.3
ad+p d=0

Fig.8-10. Same as Fig. 8-9 with the addition of the current standing wave pattern.

Fig. 8-11 below is a graph of |Z(d)| = |V(d)|/|I(d)] obtained from Fig. 8-10. It shows
that the fluctuations of the normalized impedance magnitude |Z(d)/Zo| along the line, cor-
responding to the voltage and current standing wave patterns of Fig. 8-10, are confined
between the envelopes coth (ed + p) and tanh («d + p). As noted previously, Z(d) is the input
impedance of the portion of the transmission line circuit on the terminal load side of the
coordinate d. When (ed +p) = 3, the value of |Z(d)/Z,| fluctuates only $% on either side of
unity. This means that the input impedance of any combination of transmission line
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section and terminal load impedance for which (ed+ p) =38, deviates less than 3% from
the characteristic impedance of the line. If (ad +p) =4, the deviation is less than 0.1%.
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Fig.8-11. The normalized impedance magnitude as a function of position along the line
for the standing wave pattern of Fig. 8-10.

The relative phase of the voltage in the standing wave pattern of Fig. 8-9, calculated
from (8.16), is shown in Fig. 8-12. In the absence of reflected waves the relative phase
would increase linearly at the rate of 2 rad/wavelength from d =0 to d=1.
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Fig.8-12. The relative phase of the voltage as a function of position along the line for
the standing wave pattern of Fig. 8-9.
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8.7: The problem of measuring high VSWR values.

On transmission line circuits intended for the efficient transfer of power from a source
to a load, the occurrence of VSWR values as high as 5 or 10 would be virtually inconceivable,
but there are transmission line measurement techniques at high frequencies that involve
observing VSWR values of 100 or higher.

Accuracy in experimental VSWR values requires that both the minimum and the maxi-
mum voltage magnitudes in a standing wave pattern be observed with the same adequate
precision. This in turn requires that the minimum voltage magnitude must be far above
the threshold sensitivity or noise level of the voltage-indicating circuitry. Unless there is
provision for insertion of a calibrated high frequency attenuator between the pickup probe
and the detector of a slotted line section, which is seldom the case in standard commercial
units, the ratio of two output-meter readings gives a VSWR value accurately only if the
assumed response law of the detector is valid over the range of signal levels in the pattern.
For the sensitive crystal and bolometer detectors generally used with slotted line sections,
the ideal small-signal square law response is unlikely to hold at the voltage maxima of a
pattern with high VSWR.

A second hazard in the measurement of high VSWR values arises from the fact that the
voltage magnitudes at the minima are very small. The attainment of sufficient sensitivity
to measure such low signal levels accurately may require increasing the penetration of the
pickup probe into the slot of the slotted section. This introduces a localized shunt admit-
tance across the line at the location of the probe. At a voltage minimum the line admittance
Y(d) is high and the effect of a small probe admittance is likely to be negligible, but at a
voltage maximum the line admittance is very low and the probe admittance may alter the
circuit sufficiently to change the voltage from its correct value.

_Both of the difficulties described are avoided if high VSWR values are measured by an
indirect method often referred to as the “double minimum’’ technique. It is exactly
analogous to the familiar procedure of measuring the @ of a resonant circuit by observing
the width of a resonance curve between the points on either side of resonance at which the
observed power level differs by 3 db from the power level at resonance.

A high value of VSWR can exist on the transmission line circuit of Fig. 8-1 only if the
magnitude of the reflection coefficient produced by the terminal load impedance is very near
unity, and only along that portion of the line, adjacent to the load terminals, for which
the total attenuation od does not exceed a very small fraction of one decibel. This is
equivalent to saying that a high value of VSWR is synonymous with a value of (od +p)
very small compared to unity. For such values of (ad + p), the approximations cosh («d +p) =1
and sinh (ad +p) = (ad +p) are accurate to better than 3% for (od-+p)=0.1, which
covers all VSWR values greater than 10. The “double minimum” method usually has no
particular advantages for VSWR values below 10.

Introducing these approximations into equation (8.17), the maxima of the voltage stand--
ing wave pattern occurring on that portion of a transmission line circuit for which
(ad+p)=1 will all have the same relative magnitude of unity at locations where
cos?(Bd +q) = 1, and the voltage minima on the same scale will have magnitudes of («d + p)
at the values of d for which cos?(8d + ¢) = 0. There is therefore no unique value of VSWR

on the line, but the relation
VSWR = 1/(adv(min) + D) (8-24)

gives the VSWR accurately at each voltage minimum in the pattern.

On each side of any voltage minimum in the pattern, the voltage magnitude will increase
rapidly as the term cos?(B8d + q) increases from zero. At d = dvmm * 3Ad such that
|cos [B(dv(miny * 3Ad) + q]| = (ad + D), the voltage magnitude will have increased by a factor

V/2 above the minimum value. For the case (384d) < 1, a Taylor series expansion produces
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the result 48 Ad = (ad +p) on dropping second order small quantities, and from equation
(8.24) it follows that
VSWR = 2/(BAd) (8.25)

In equation (8.25), Ad is evidently the width of the minimum in the standing wave pattern
between points where the voltage magnitude is greater than the adjacent minimum voltage
by the factor 2. The name “double minimum” method arises from the fact that with the
square law detectors usually used in standing wave observations, the output meter reading
at these same points is double the reading at the voltage minimum.

The advantages of this method over direct measurement of the maximum and minimum
voltages in a standing wave pattern are that the ideal law of the detector must be maintained
over a voltage range of only 1.4:1, instead of VSWR:1, and all the observations are made
in a region of the line where Y(d) is large, so that any effects of the shunt admittance of the
pickup probe are minimized.

In deriving equation (8.25) a term « Ad, representing the attenuation of the line across
the length increment Ad, was ignored. This is always justified, partly because o/8 <1
for the conditions postulated, and partly because the effects of line attenuation on the re-
spective locations of the observed points on the two sides of any voltage minimum are of
opposite sign, and cancel one another to a first approximation.

Example 8.3.

A slotted section of coaxial transmission line with copper conductors has a characteristic impedance
of 50 ohms at high frequencies. The inner diameter of the outer conductor is 0.96 em. The section is ter-
minated in a short circuit consisting of a plane transverse copper disc making firm contact with the
peripheries of the facing surfaces of the two conductors. Assuming no dielectric in the line, (a) locate
the voltage minima in the slotted section at a frequency of 800 megahertz, (b) find the widths (at V2 times
minimum amplitude in each case) of the three voltage minima nearest the short circuit plane, and (¢) find
the VSWR values at the locations of the minima.

The resistance between concentric circular contacts of facing radii @ and b (b > a) on a resistive sheet
of surface resistivity R, ohms/square is Ry = (R /2x) log, (b/a) ohms. (See Problem 6.11, page 121.) For
a copper plane under skin effect conditions, R, = 2.61 X 10—7 Vf ohms/square, where f is in hertz. The
characteristic impedance of an air-dielectric coaxial transmission line is Z, = 60 log, (b/a). Substituting
Zy = 50 gives log, (b/a) = 0.833. Hence the resistive component of the terminal load impedance presented
by the short circuiting plane to the coaxial transmission line at the frequency of 800 megahertz is

Ry = (2.61 X10~7/8 X 108) X 0.833/(27) = 9.8 X10—% ohms

From equation (6.45), page 85, the inductive reactance component X, of the terminal load impedance has
the same value.

To determine the required widths of the standing wave pattern at the voltage minima, it is necessary
to evaluate the attenuation factor o« and the quantity p = log, (1/V|pr|). The attenuation factor of the
line is given by equations (5.9) and (6.49) as

(R,/27b)(1 + b/a) [(7.838 X 10—3)/(27 X 0.0096)] X 3.30
= = + = -3
a 27, 160 4.03 X 10—3 nepers/m
The reflection coefficient magnitude is
Z1/Zy— 1 (9.8 X 10—4)(1 4+ 5)/50 — 1
el B . = - -5
lexl 272, + 1 l (9.8 X 10-9)(1 + /)/50 + 1 1—392x10

and p =log,(1+ 1.96 X 10-5 = 1.96 X 10—5, with high accuracy. The imaginary part of Z; has no
measurable effect on |p7| or on the departure of the phase angle of pp from = radians.

With ¢r = 7, the minima in the standing wave pattern are located at precise half wavelength intervals
from the plane of the short circuit, according to equation (8.19). The values of d at the first three minima
are therefore respectively 18.75, 37.50 and 56.25 cm on the air dielectric line at a frequency of 800 mega-
hertz. The corresponding values of (ad + p) are 7.756 X 104, 1.63 X 10—3 and 2.29 X 10—32 at the three minima,
and from (8.24) the VSWR values obtained as the ratio of any of the equal voltage magnitudes at the maxima
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along the slotted section to the voltage magnitudes at the minima are about 1290, 650 and 436, the highest
value occurring nearest to the load terminals. Using (8.25) and noting that g = 27/0.375 = 16.7 rad/m,
the widths of the three minima in the standing wave pattern, measured in the manner defined are
9.3X10~5m, 1.84 X10~4m, and 2.74 X10~*m. With an ordinary micrometer these distances can be
measured to an accuracy of a few percent.

The results of the example show that the impedance of a physically excellent short circuit
connected to a typical slotted line section is at or beyond the limit of sensitivity of standing
wave measurement methods, and that the measurement of any terminal load impedance
producing a VSWR ag high as only 10 or 20 must be corrected for the attenuation of the
slotted line section between the observed voltage minimum and the point of connection
of the impedance, if accuracy better than 5% to 10% is expected. With higher values of
VSWR the correction factors can become very large.

The procedure illustrated by the example can obviously be reversed, to provide a method
for determining the attenuation factor of a transmission line by measurement of the widths
of two or more successive minima in a voltage standing wave pattern produced on a line
by a short circuit termination.

8.8. Multiple reflections.

Steady state harmonic conditions on a transmission line circuit have been assumed in all
discussions of wave propagation, impedance relations and standing wave patterns, up to
this point. In a lumped constant circuit the transient time interval during which steady
state conditions are established after switching a time-harmonic source into the circuit is
determined by a time constant which is a function of the value of the circuit components.
In a transmission line circuit there is in general a similar switching transient time interval
after the source is connected to the input terminals, but in addition there is another transient
interval, usually far longer, in which waves are partially reflected back and forth along the
length of the line while equilibrium is being established. An analysis of this multiple
reflection process prodyces some useful relations.

If in the circuit of Fig. 8-1, page 156, the source is connected to the transmission line by
closing a series switch at a certain instant, a harmonic voltage wave will start to travel
along the line. (The accompanying current wave is ignored in this analysis, as is any
switching transient.) The phasor value of this initial voltage wave at the input terminals
of the line is VsZo/(Zs + Zo), since the input impedance of the line is equal to its characteris-
tic impedance when there are waves traveling in only one direction on the line at the input
terminals. At coordinate z this initial harmonic voltage wave will have the phasor value

Z:/'iZ} e~7* at any time after the wave reaches that location. On reaching the terminal load
0

end of the line the voltage wave will be reflected by the complex reflection coefficient
pr =Z,/Z,—1)/(Z,/Z+ 1), and the phasor value of this first reflected wave when it returns
to the coordinate z will be VeZo

Zs + Z,°

At the input terminals of the line this first reflected wave will experience a reflection
coefficient p; = (Z,/Z,—1)/(Z;/Z,+ 1), and its phasor value when it returns to coordinate
z will be VeZ

S&o

m e_“ﬂ pT e—‘)’lps e_'Yz

rl —y(l—2)
pr€

By the superposition theorem the total phasor voltage at the coordinate z after an indefinite
time, i.e. the steady state value, is the sum of an infinite series of such contributions. Hence
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Viz) = _ZZi_Zg(e ¥+ p e~ 2e) [l + prps€ I + (pppse N2 + - - -]
_ _VsZ, e tppeMe (8:26)
T Zs+ Z, 1—ppe™2"
nd v(d VsZoe t €7+ pre "
a (d) Zs+Zo 1- prse—zyl (8.27)

Comparison of (8.27) with (8.4), page 157, shows that the undetermined coefficient Vi
in the latter is given by Vez
Sk

V1 = (ZS +Zo)(1 — PTPSe—zyl) (828)

in terms of the various elements of the circuit of Fig. 8-1.

Equation (8.27) demonstrates explicitly that the shape of a standing wave pattern rep-
resenting |V(d)| as a function of d on a transmission line is in no way affected by the quan-
tities V;, Z; and pg at the source. The effect of circuit parameters on the ordinate scale of
such a pattern can be calculated from (8.28) and (8.15).

A hint at the possibility of a resonance phenomenon in transmission line circuits is also
provided by (8.27), since the magnitude and phase of p,, p; and ¢~2" in the denominator term
are all independently adjustable, and their product can be made very nearly equal to 1+ j0
in a practical circuit. The investigation of transmission line resonant circuits by means of
(8.27) is discussed in Chapter 10.

8.9. Standing wave patterns from phasor diagrams.

Phasor diagrams provide a simple graphical perspective of the formation of standing
wave patterns, and the ordinates for constructing such patterns can be taken directly from
the diagrams.

For a lossless line, (8.4) becomes
Vid) = V, e #l(ee 4 p e~i9)

In this equation V,e~## ig a constant for any transmission line circuit and can be given the
arbitrary phasor value 14 70. Then at the load terminals of the transmission line where
d = 0, the phasor value of the incident voltage wave represented by the term e’ is also
1 + jO, and the phasor value of the reflected wave at the same location is p,, a function only
of Z1/Z,.

Fig. 8-13(a) below shows these two phasors, and their sum which on the same scale is
the phasor value of V(d) at d = 0. At any other value of d, the phase of the voltage wave
traveling in the direction of decreasing d (i.e. the incident wave before it reaches the load
terminals) is greater by the amount Bd radians, while the phase of the reflected wave
traveling in the direction of increasing d has decreased by the same amount. On a lossless
line there has been no change in the magnitudes of the phasors. The resultant phasor
diagram, for a value of Bd of about 1 rad, is shown in Fig. 8-13(b) below, obtained from
Fig. 8-13(a) by rotating the two phasors through equal angles in opposite directions.

For a standing wave pattern, only the magnitude of the sum of the two phasors is of
interest. This quantity is more easily visualized if the incident wave phasor is kept constant
at the value 14 70 for all values of d, and the reflected wave phasor is rotated clockwise
at the rate of 28d rad/m. It is then obvious from Fig. 8-13(c) that the maximum ordinate
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Vr

1+j0

(a) (%)

Fig.8-13. Phasor diagrams for the voltage of the incident wave, the voltage of the re-
flected wave, and the total voltage, at two points on a lossless transmission line.
(a) At the load terminals. The incident wave voltage phasor has the reference

value 1+ j0. The reflection coefficient is 0.625/7/4 rad.

(b) At a coordinate d such that Bd = /3 rad.

(¢) Phasor diagrams (a) and (b) combined to have a common incident voltage
' phasor. The circle is then the locus of the tip of all total-voltage phasors
on the line. The diagram gives correct relative magnitude information

for all V(d) phasors, but to obtain true relative phases each V(d) must
be multiplied by eifd,

in a standing wave pattern on a lossless line is proportional to 1+ |p,| and the minimum
ordinate is proportional on the same scale to 1 —|p,|, in agreement with (8.21). It is also
directly apparent that the lowest value of d at which a voltage minimum will occur will be
given by 2gd,..,= ¢, +=, in agreement with (8.19). Finally, if |p,| =1, the voltage
magnitude is seen to vary much more rapidly with d at a voltage minimum than at a voltage
maximum, but if |p,| < 1, the small fluctuations in the pattern are approximately sinusoidal.

When the transmission line has a finite attenuation factor «, the magnitude of the phasor
representing the incident wave increases with d by a term e*¢, while that representing the
reflected wave decreases by a term e~2% The phase changes are the same as in the lossless
case. The phasor diagram for any value of d is easily drawn, but no simple diagram displays
the phenomena for all values of d.

8.10. The generalized reflection coefficient.

All previous references to voltage reflection coefficients have been to the voltage reflec-
tion coefficient p, produced at the terminal load end of a transmission line by a connected
impedance Zr.

There has been considerable use, however, of the concept Z(z) or Z(d), the impedance at
a general coordinate z or d on a line, being the ratio of the phasor voltage to the phasor cur-
rent on the line at that coordinate. It has been demonstrated that the meaning of Z(z) or
Z(d) is the input impedance of that portion of a total transmission line circuit on the terminal
load side of the coordinate z or d, when separated from the portion of the circuit on the
signal source side.

It is meaningful to consider that at a general coordinate z or d a transmission line is in
effect “terminated” by the impedance Z(z) or Z(d) at that point, and that there is a voltage
reflection coefficient p(z) or p(d) at the point which is determined by the normalized value of
Z(2) or Z(d) in the same manner that p_ is determined by Zr/Z,. Using the abbreviated
notation p for this reflection coefficient at any general point on a transmission line, and the
abbreviated notation Z for the impedance at the point, we have

ZlZy— 1

— id
7 s S L (8.29)
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It must also be true that the standing wave pattern along the portion of a transmission
line circuit on the signal source side of any general point on the line is determined by the
reflection coefficient and impedance at that point, through exactly the same relations that
apply at the load terminals of the line. Thus

VSWR 1 + Jp) (8.30)
1— el
at any point, or conversely | = %ggvv—gl—i (8.31)

Since on a lossless line the VSWR value is the same everywhere, (8.31) indicates that
the reflection coefficient magnitude is the same for all points on such a line for any one value
of terminal load impedance, a conclusion that is easily understood physically.

Similarly, dvaun/A = (1 + ¢/=) + in (8.32)

where the meaning of dvcmim) is now the distance of any general point on a transmission
line from a voltage minimum in the standing wave pattern. In this case negative values
of dv(mimy/A result if the distance is measured to a voltage minimum on the terminal load
side of the point.

The converse equation to (8.32) is
¢ = 4n(dvanm/N) — 7 + 2nx . (8.33)

Using (8.31) and (8.33), with the help of (7.9a) and (7.9b), page 128, or their admittance
equivalents in Problem 7.2, page 144, the impedance or admittance at any point on a trans-
mission line whose attenuation per wavelength is small can be found directly from the
VSWR on the line, when the point’s location is measured in wavelengths from a voltage
minimum of the pattern. No reference need be made to either the value or the location of
the terminal load impedance connected fo the line.

By physical definition, the voltage reflection coefficient p at any general point on a trans-
mission line is given by

phasor value, at the point, of the voltage wave traveling toward the terminal load
phasor value, at the point, of the voltage wave traveling toward the signal source

It follows from (8.1) and (8.3) that

Va6 |4 V.
p = Vlze"‘" — ﬁe—zw — _erwle—zvd — PTe—2yd — IpTle——zad [¢ _2[3d (834)

Thus the magnitude of the voltage reflection coefficient at any general coordinate d on a
transmission line circuit is less than the value at the load terminals of the circuit by the
factor e—2¢4, involving twice the attenuation of the length of line between the two locations,
and the phase angle of the reflection coefficient at the coordinate d is less than that at the
load terminals by the amount 28d, which is twice the phase change that a single traveling
wave would experience between the points.

In evaluating the impedance at a coordinate d on a transmission line in terms of the
terminal load impedance and the propagation factors of the line, it may be easier to evaluate
pp from (8.8), p from (8.34), and the normalized components of the impedance at d from
(?.9a) and (7.9b) using p in place of p,, than to attempt to calculate the impedance at d more
directly from (7.20), page 131.
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Solved Problems

Derive an expression of the form of equation (8.15) from which the standing wave

pattern of current on the transmission line circuit of Fig. 8-1 can be plotted.

Starting with (8.5) and using (8.11) and (8.12), an equation for I(d) is obtained which differs
from (8.18) for V(d) only in the appearance of a multiplying factor 1/Z, and a negative sign for
the term e—(P+idde—vd, The result is that (8.14) becomes

2Vie=""Vor
Id) = ~——5—"T sinh {(ad +p) + j(pd + 0)}
The identity used is sinh (x + jy) = sinh cosy + j coshx siny, from which it is easily established
that |sinh (z + jy)| = (sinh2x + sin2y)1/2. Finally,
2Vie~ " Vor
@) = —I—Z‘——I
0
and the phase angle 5(d) of the current as a function of position is
7(d) = tan—! {coth (ad + p) tan (8d + q)}
The ratio of the coefficient of |V(d)| in (8.14) to the coefficient of |I(d)| in the equation above is
obviously |Z,}, so that in Fig. 8-10 the ratio of the scales for |V(d)| and [I(d)] is |Z,|.
If a line has negligible losses, it follows from the above expression for |I(d)| that
H(@)| max/ (D |min = cothp = (1+ lpg))/(1 — |or)) = VSWR
Hence the “current standing wave ratio” and the “voltage standing wave ratio” have identical values

on any low loss transmission line circuit and the symbol VSWR serves for both. (Some authors have
used SWR as a common symbol.)

{sinh2 (ad + p) + sin2 (Bd + ¢)}1/2

Show that if a low loss transmission line is to be designed to supply high frequency
power to a load impedance Zr, the lowest VSWR will occur on the transmission line
if the characteristic impedance of the line has the value Z, = |Z1| + j0.

Since the VSWR on a transmission line is a function of |p;| only, it is required to show that for
ZrlZy — 1

arbitrary fixed Z, and variable real Z,, the quantity |oy| = 777 1
1/4g

|Z7| + §0. The procedure is straightforward. Thus
RylZy + §Xypl/Zy— 1 R% — 2RyZy + Z + X3\ 112
lerl = Ry/Zy + jX1/Zg+ 1| ~  \RE+ 2R;Z, + Z% + X2

is minimized by Z, =

The value of VSWR = (1 + |p7|)/(1 — |p7|) is minimized by a minimum value of |pp| and hence also
by a minimum value of |or|2.

Equating to zero the derivative with respect to Z; of the square of the above expression for
lor| leads directly to the result Z; = R + X7, which proves the theorem.

Other practical solutions to this situation would make use of single stub matching or quarter
wavelength transformers. The choice among them would depend on the performance feature to be
optimized.

In Problem 7.7, page 146, design formulas were developed for the technique of
“single stub matching”. The technique is based on the fact that when there are
reflected waves on a transmission line, there are two locations in every half wave-
length of the line at which the real part of the normalized admittance is equal to unity.
If the susceptance at either of these locations is cancelled by the equal and opposite
susceptance of an appropriate stub line connected in parallel with the main line, the
normalized admittance at the point becomes 1+ 0. Reflected waves are eliminated
on the portion of the main transmission line between the gignal source and the point
of connection of the matching stub. In Problem 7.7 the locations and lengths of the
matching stubs were determined in terms of the normalized value of the terminal
load admittance, the locations being referred to the load terminals of the line. There
was no mention of a standing wave pattern on the line.
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8.4.

Show that if the voltage standing wave pattern on a transmission line is observed,
the solution of the single stub matching procedure can be expressed completely in
terms of the VSWR on the line, the locations of the two possible matching stubs per
half wavelength being referred to a voltage minimum in the pattern.

The normalized conductance at any point on a transmission line is given in terms of the voltage

reflection coefficient at the point by an expression from Problem 7.2, page 144, using notation
appropriate to a general point on the line:

GIYy = (1 — [p|®/(1 + |p]2 + 2 o] cos ¢)

Equating this to unity gives cos¢ = —|p|, or ¢ =cos~1(—|p]). Then using (8.81), ¢ can be
expressed as a function of VSWR.

The locations of the points at which matching stubs can be connected to the line are found,

relative to any voltage minimum in the standing wave pattern, by substituting for ¢ into (8.82).
—1(—

Thus dyminy/A = %{1 + M} %= 1n. The two solutions of cos—1(— |g|) can be expregsed

as —z & [cos—l]p|| where |cos—1|p|| is an angle less than #/2 radians. It follows that the points
for connecting matching stubs are given by dy(puiny/A = * |cos—1lp||/4z. They are equidistant on
either side of a voltage minimum and cannot be more than one eighth wavelength from a voltage
minimum. Using (8.81) their location can be expressed as a function of VSWR.

To find the lengths of the required matching stubs, use is made of the expression in Problem 7.2
for the normalized susceptance at any point on a transmission line where the reflection coefficient
is p: .

g B/Y, = —2]p| (sin9)/(1 + [o|2 + 2| cos 9)

At the points where the stub line is to be connected, cos¢ = — || and hence sing = *V1 — [p|2
Substituting these expressions, B/Y, = = 2|p|/V1 — |p|2. Since the normalized input susceptance
of a lossless stub line of length I with the customary short circuit termination is, as given by (7.21),
— cot I, the required stub lengths are [ = (1/8) cot—1(%2|p|/V1 — [p[2). On substituting for |p|
from (8.81), this becomes ! = (1/8) cot—1{= (VSWR —1)/VVSWR }.

Inspection shows that the stub line less than one quarter wavelength long is to be used at the

location on the terminal load side of the voltage minimum. The sum of the stub lengths for the
two different solutions is one half wavelength.

A transmission line 30 ft long operating at a frequency of 100 megahertz has a char-
acteristic impedance of 60+ j0 ohms, an attenuation factor of 8.0 db/(100ft) and a
phase velocity of 75%. The line is to provide a signal voltage of 40 volts rms across
a terminal load resistance of 1000 ohms. (a) What is the required rms voltage at the
input terminals of the line? (b) What are the peak values of voltage and current
along the line and where do they occur?

(a) From equations (8.15) or (8.17), page 164, the ratio of the voltage magnitude at d =0 on a
transmission line circuit to the voltage magnitude at d =1 is

. 1/2
VelVio| = sinh2 p + cos2 q
Vr/Vinl = sinh2 (al + p) + cos? (81 + q)

Quantities required in making the calculation are:
8.0/(8.686 X 30.48) = 3.02 X 102 nepers/m
w/v, = (27 X 108)/(0.75 X 8.00 X 108) = 2.79 rad/m

a

or = (Zp/Zo—D/(Z1/Zy+1) = (1000/60 — 1)/(1000/60 +1) = 0.887/0
p = log. (1/V|pr]) = 0.0598; ¢ = —J¢r = 0.

Since [=9.84m, al+p=0.857 and BI+q =27.45. Also, sinhp = 0.0598; sinh (al+p) =
0.365; cosg = 1; cos (Bl+ ¢) = —0.682. Then

0.0036 + 1
= \,— = 12
V2/V il 0.133 + 0.465 o1

and the rms value of the input voltage to the line must be 40/1.297 = 30.8 volts.
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(b) It is clear from the preceding calculation that the scale factor l2V1e—‘ﬂ\f;;l has the value
40/1/1.0036 = 89.9 volts rms. The attenuation per wavelength is 27a/8 = 27 X 3.02 X 10—2/2.79 =
0.068 nepers, which is small enough to justify the approximation that the voltage maxima occur
where cos? (8d+ q) =1, whence dy(maxy/A = ¢7/(47) + n/2 = n/2. The wavelength on the line
is wvp/f = 2.25 X 108/10% = 2.25 m. Hence the voltage maxima are located at 0,1.12,2.25, ..
meters from the load terminals. Because the line has a finite attenuation factor, the highest
voltage on the line will occur at the value of dy(,,.x) nearest the input terminals, i.e. at
d = 9.00 m.

At this location (ad + p) = 0.332, sinh (ad + p) = 0.338, and cos(8d + q) =1 by definition.
Then Vel = 39.0V08822 +1 = 42.1 volts rms or 59.6 volts peak

A current maximum will occur one quarter wavelength closer to the input terminals than the
above voltage maximum, at d = 9.56 m. The scale factor for the current standing wave pattern
is 39.9/Z, = 39.9/60 = 0.665 rms amperes. The maximum current at any point on the line is then

Imayl = 0.665v0.835562+1 = 0.705 amperes rms or 1.00 amperes peak

On a lossless transmission line two voltage waves traveling in opposite directions are
represented by the equations

Va(z,t) = V. cos (ot —pB2z) and Vu(z,t) = I,}z, cos (o + B2)

respectively, where f}a and ¥, are real. Derive an expression for the magnitude of the
peak phasor voltage as a function of position along the line, and for the value of the
VSWR on the line.

The instantaneous voltage at any point on the line is Vg (z,t) + Vy(2,t). Using
A
Va(z,t) = Vy(cosawt cos B2 + sin ot sin g2)

and Vy(2,8) = T,}b (cos wt cos Bz — sin wt sin B2)
the instantaneous voltage at any point is
{(,I>a + T?b) cos Bz} coswl + {(’/V\'a - f’b) sin Bz} sin wt
An inversion of the same identity has the form
Acoswt + Bsinot = A2+ B2cos (wt—y), where ¢ = tan—1(B/A)
Using this identity, the instantaneous voltage at any point is given by
(?7‘2, + f’% + 2 ﬁa T’/\'b cos 282)1/2 cos (wt — )

The peak phasor magnitude of this voltage is the coefficient of the term cos (vt +¢), and the func-
tional form of y is of no concern. The maximum phasor voltage occurs at the points on the line
where cos 2Bz = +1 and the minimum phasor voltage where cos28z = —1. It follows that
VSWR = ( V + Vb)/(V Vb) This result assumes V > V,,, which would be true on a low-loss
transmission line using the coordinate system of Fig. 8-1, with Z, = Z,.

A standard 7/8” rigid copper coaxial transmission line of characteristic impedance
50 + 70 ohms is to deliver 4.0 kilowatts of power at a frequency of 10 megahertz over
a distance of several hundred feet to a load. The rms value of current in the line con-
ductors must not exceed 15 amperes at any point. What is the highest value of
VSWR that can be tolerated on the line?

On a low loss line such as this the characteristic impedance has a very small phase angle, and
the power can be calculated independently for the waves traveling in the two directions on the line.
(See Section 7.6, page 186, specifically equations (7.84) and (7.85) with X, =0.)

If I, is the rms value of the harmonic current wave traveling toward the load and I, the rms
value of the harmonic current wave traveling toward the signal source, it follows from Section 7.6
that the power delivered to the load is I2Z,— I2Z, = Z(I, + I)(I, — I,) = 4000 watts. From Prob-
lem 8.5, the rms current value at the maxima in the current standing wave pattern is I, + I, which
must not exceed 156 amperes. With I,+ I, = 15, the above expression for the power gives I, —1I, =
4000/(50 X 15) = 5.33 rms amperes. From Problems 8.1 and 8.5, the VSWR is then given under
these limiting conditions by VSWR = (I, + I,)/(I, — I;,) = 2.81.
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8.7.

8.8.

The impedance of the load receiving the 4.0 kilowatts of power would therefore have to be such
as to produce a VSWR of less than 2.81 on the line of characteristic impedance 50 + j0 ohms.

It is desired to find the attenuation factor and phase velocity for a flexible high
frequency coaxial cable of characteristic impedance 50 + j0 ohms at a frequency of
500 megahertz. When a 50 foot length of the cable with short circuit termination
is connected as the transmission line element in the circuit of Fig. 8-8, page 162, the
standing wave pattern observed in the low loss slotted line section of characteristic
impedance 50 + j0 ohms has a VSWR of 3.25 with a voltage minimum 28.5 cm from
the input terminals of the cable being tested. When 18.50 cm is cut off the length
of the cable, the VSWR value changes only slightly, but the voltage minima in the
slotted section are found at 54.9 and 24.9 cm from the input terminals of the cable.
When a 25 foot length of the same cable is terminated in a short circuit and connected
to the slotted section, the observed VSWR is 6.35. Calculate the attenuation factor
and phase velocity for the cable.

From equation (8.34), the ratio of the reflection coefficient magnitudes at two locations d and d’
on & transmission line having attenuation factor « is |o(d)|/|p(d')] = e—2¢¢(d—d>, From the observed
VSWR values, |o(d)] = (VSWR — 1)/(VSWR + 1) = 2.25/4.25 = 0.530, and |p(d")| = 5.35/7.35 =
0.728. Using d—d’ =25 ft = 7.62 m,

log, (0.728/0.530)

— —_— e = -2 =
a = X762 2.08 X 10~2 nepers/m 5.51 db/(100 £t)

The nature of the terminal load impedance is not a factor in this measurement or calculation, but it
must be the same for each line length and should produce a reflection coefficient of high magnitude.

From equation (8.34) the difference in the phase angles of the reflection coefficients at two
locations d and d”’ on a transmission line is ¢(d) — ¢(d’) = —28(d —d”"). From the observed values
of dy(min), 8nd since the wavelength on the slotted section is 8.00 X 108/(5.00 X 108) = 0.60 m,

¢(d) = 417'dv(min)/}\ —a = 47‘)‘(0.285/0-60) —7 = 2.83 rad

and ¢(d”’) = 47r(0.249/0.60) — = = 2.08 rad. Used directly, this data would give a negative value for
B and for v,. The confusion arises from the fact that in calculating ¢(d) and ¢(d"”), both angles are
subject to an additional term *2nr where » may be zero or any integer. The choice of n =0 in
each calculation has given an incorrect answer. It is therefore necessary to test other values of »
and to decide from the results whether a unique acceptable answer is indicated. If two or more
answers are about equally reasonable on physical grounds, additional measurements must be taken
on other lengths of line until the uncertainty is resolved.

In the present case the simplest way to obtain a positive value for g is to increase ¢(d”) by 2.
(This is equivalent to choosing dymiyy = 0.549 from the original data.) Then ¢(d"’) =2.08+ 27 =
8.36 rad, B = (2.83 —8.36)/(—2 X 0.185) = 14.9, and v, = 27 X 5.00 X 108/14.9 = 2.11 X 108 m/sec =
70%. This is an acceptable result, and a test for other values of » shows that none gives a velocity
greater than about one half of this. The usual plastic dielectrics used in flexible cables have
dielectric constants much too small to produce such low velocities.

A low loss transmission line with phase velocity of 82% and characteristic impedance
of 75+ 70 ohms at the operating frequency of 50.0 megahertz is ferminated in an
impedance of 100 — 725 ohms. What phase difference exists between the phasor
voltage at the load terminals and the phasor voltage at a point 3.40 m from the load
terminals?

The answer will be obtained from equation (8.16), page 164. From the given data,
or = (Zp/Zy—1)(Z1/Zy+ 1) (1.333 — j0.333 —1)/(1.333 — 50.333 +1) = 0.160 — 50.120
= '0.20/—0.644 rad
Then p = log, (1/V|pr]) = 0.805 and tanhp = 0.667; ¢ = 0.322. Since
B = /v, = 27X 50X 106/(0.82 X 8.00 X 10%) = 1.275 rad/m
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8.9.

8.10.

8.11.

8.12.

8.13.
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Bd + q = 1.275 X 3.40 + 0.322 = 4.657 rad at the point in question, and tan(g8d+ q) = +18.0. The
statement of the problem implies « = 0. The phase of the voltage at the point is therefore
£(8.40) = tan—1(0.667 X 18.0) = tan—112.0 = 1.49 = ny rad. The phase must also be evaluated at
d = 0, where tan(8d+q) = tang = 0.334. Then ¢0) = tan—1(0.667 X 0.334) = tan—10.228 =
0.219 = n7r rad. The phase difference between the voltages at the two points is 1.49 —0.22 = ngr =
1.27 = nr rad. If there were no standing waves on the line, the phase difference between the voltages
at the same two points would be gd = 1.275 X 3.40 = 4.33 rad. Since the VSWR on the line is not
large, the actual phase difference should be not far from this value, and is evidently 1.27 -+ r = 4.41 rad.
With high VSWR values the phase discrepancy between the two cases can exceed one radian.

Supplementary Problems

An air dielectric transmission line operating at a frequency of 200 megahertz has a characteristic
impedance of 73 4 jO ohms., It is terminated in a 80 ohm resistor shunted by a capacitance of 16
picofarads. What is the VSWR on the line, and how far is the nearest voltage minimum in the
standing wave pattern from the load terminals? The line losses are assumed negligible.

Ans. VSWR = 3.35; dV(mln)h‘ = 0.030, or dv(mm) =0.046m

Solve Problem 8.9 if (a) the capacitance is disconnected, (b) the resistor is disconnected.
Ans. (a) VSWR = 2.43; dV(min) = 0. (b) VSWR = inﬁnite; dv(mm) =0.149 m

Show by scaling values from Fig. 8-9, page 168, that if the total length of the diagram represents
a transmission line 30 m long:

(a) the attenuation factor of the line is approximately 0.033 nepers/m = 0.29 db/m = 8.9 db/(100 ft);
(b) the wavelength on the line is approximately 31 m;

(¢) the magnitude of the reflection coefficient at d = 0 is approximately 0.55;

(d) the phase angle of the reflection coefficient at d = 0 is approximately 43°;

(¢) the normalized value of the terminal load impedance is approximately 1.4 + j1.5.

(More precise data, from which the curve was calculated, are: total attenuation ad for the length of
the diagram = 1.000 nepers; ratio g/a = 6.00; » = 0.300; ¢ = 1.200 — /2 = —0.371).

Show by consideration of multiple reflection of current waves on a transmission line that the expres-
sion for I(d) corresponding to equation (8.27) for V(d) is

Vge~n  e¥d — pre—7d

Zs + Z, " T prpge 2"

and that the ratio of V(d) from (8.27) to this expression for I(d) gives equation (7.20), page 131, for

Z(d). (Note. The reflection coefficient for current waves is always the negative of the reflection
coefficient for voltage waves.)

()

In equation (8.16), what is the location of the reference points of zero phase angle for the phasor
voltage in any standing wave pattern if the line has (a) negligible attenuation per wavelength,
(b) considerable attenuation per wavelength?

Ans. (a) The voltage maxima in the pattern. (b) The points of contact of the pattern with its upper
envelope,



CHAP. 8] STANDING WAVE PATTERNS 183

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

Show from equations (8.8) and (8.19) that dy )/ lies between 0 and 0.25 for all impedances whose
normalized imaginary component is negative, and lies between 0.25 and 0.5 for all impedances
whose normalized imaginary component is positive.

If a transmission line has an attenuation of a few decibels per wavelength, successive maxima and

successive minima in a standing wave pattern on the line differ so much in magnitude that there
is no literal meaning to the concept of VSWR.

Show that if a graph is made of the standing wave pattern of voltage magnitude produced on
such a line by some terminal load impedance, and the envelopes of the pattern are drawn, it is
meaningful to define the VSWR of the pattern at any coordinate d as the ratio of the ordinate
of the upper envelope to that of the lower envelope at that location, and that such a VSWR value
can be used in equation (8.31) to give the magnitude of the reflection coefficient at that point. Show
also that dymp)/A for the point at coordinate d can be usefully defined as the distance in wave-
lengths from that location to the nearest point of contact of the voltage standing wave pattern with
its lower envelope, in the direction of the signal source, and that this value of dy(min)/A can be used
in (8.33) to obtain the phase angle of the reflection coefficient at d. From the reflection coefficient
the normalized impedance at d can be calculated using (7.9a) and (2.9b).

There is a VSWR of 2.55 on a low-loss transmission line. Where can a stub line be connected in
shunt with the transmission line to remove the standing waves from the line on the signal source
side of the stub, and what must be the length of the stub?

Ans. Use the results of Problem 8.3. The stub line may be connected at a distance of 0.089 wave-
lengths on either side of any voltage minimum in the standing wave pattern. If the stub
is connected on the terminal load side of a voltage minimum, it should have a length of 0.127
wavelengths (plus any number of half wavelengths). If the stub is connected on the signal
source side of a voltage minimum, it should have a length of 0.373 wavelengths (plus any
number of half wavelengths).

There is a VSWR of 1.75 on a low loss transmission line whose characteristic impedance is 50+ 70
ohms. What is the value of the impedance at the voltage maxima and at the voltage minima in the
standing wave pattern on the line? Ans. 87.5+ jO ohms at the maxima; 28.5 ohms at the minima

Show that on a low loss transmission line the voltage magnitude at any coordinate d can be expressed
in terms of the voltage magnitude at a minimum of the pattern by

3 4 |o| 2 (8d 1/2
V@l = |V(d)mm {1 + FERET cos? (B +¢1)}

where [p| is the constant magnitude of the constant voltage reflection coefficient at all points of the
low-loss line, and —2gq is the phase angle of the reflection coefficient at the origin of the d coordinates,
which may be chosen anywhere on the line.

Then show that if the origin of the d coordinates is chosen at a voltage minimum (which makes
q = 7/2), the equation can be written in terms of the VSWR on the line as

V@) = |V(d)|mim {1 + (VSWR2 — 1) gin2 gd}1/2
Finally, show that if Ad is the distance between two points on either side of any voltage mini-

mum, at which |V(d)| = V2|V(d)|mm, then
in? (18ad) = 1/(VSWR2—1 4 vswgr = YL sin®(dAad)
sin? (48 ad) = 1/( ) an = S (32D

and for VSWR > 1 (corresponding to 48 Ad < 1) this result is in agreement with equation (8.25).

Show that the lowest VSWR value that can be measured by the method of Problem 8.18 is 1.414,
and that in measuring such a VSWR, the distance Ad = A/2.

Show that the normalized impedance at any point on a transmission line is given by Z/Z, =
(14 p)/(1—p) where p is the reflection coefficient at the point. Then show that the phase angle y of
the normalized impedance at any point is
2 |p] sin (—28d)

1 — |pl2
when d is measured from a voltage maximum in the standing wave pattern if the line has low
losses, or from a point of contact of the pattern with its upper envelope otherwise.

Yy = tan—1



Chapter 9

Graphical Aids to
Transmission Line Calculations

9.1. Transmission line charts.

The preceding chapters have developed several equations for calculating voltages, cur-
rents, impedances, reflection coefficients and standing wave data on transmission lines. The
variables in these equations have generally been complex numbers, and there have been
frequent occurrences of exponential numbers with complex exponents and of hyperbolic
functions of complex arguments.

Arithmetical evaluation of complex exponential and hyperbolic functions and of the
functions inverse to these are time-consuming, and the assistance available from mathe-
matical tables is less effective than for the corresponding functions of real variables. This
is undoubtedly the reason for the long history of the use of graphical aids in transmission
line calculations,

The graphs have taken many different forms. A Chart Atlas of Complex Hyperbolic
Functions, published by A. E. Kennelly of Harvard University in 1914 and widely used
for several decades, presented loci of the real and imaginary parts of the complex hyper-
bolic tangent and other functions over the complex variable or neper-radian plane. The
charts were intended particularly for the solution of impedance problems by the use of
equations (7.18), (7.19) and (7.20). Good significant-figure precision over a large portion of
the neper-radian plane was achieved by the large graph size of about twenty inches square,
and by presenting separate graphs of various portions of the plane on different scales. For
calculations on systems such as cable pairs and open-wire lines at voice frequencies and low
carrier frequencies, the charts are still useful; but for high frequency systems with low
loss per wavelength they are more cumbersome than other graphical forms now available.

Since the 1940’s there has developed a quite general agreement that one particular
form of transmission line chart, commonly known as the “Smith” chart, is more versatile
and more generally satisfactory than any of the others for solving the most commonly
encountered problems, particularly on high-frequency systems. It is named for P. H. Smith
of the Bell Telephone Laboratories, who in 1939 published one of the first descriptions of
the uses of the chart.

The Smith chart is plotted on the voltage reflection coefficient plane or p-plane, i.e. on
linear polar coordinates of p = |p|e’® where p is a general voltage reflection coefficient at
any point of a transmission line. Naturally the chart can also be considered as plotted on
rectangular coordinates of the real and imaginary components of p.

A third type of chart that was much used in the past and may still be encountered
occasionally is plotted on the normalized impedance plane, i.e. on rectangular coordinates
of general normalized impedance components R/Z, and X/Z,. To distinguish it from the
Smith chart in references, it is often euphemistically designated as the “Jones” chart. The
label “rectangular impedance” chart is also applied to it.

184
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One of the several important advantages of the Smith chart is that, within a circular
contour enclosing a finite area of the voltage reflection coefficient plane, it presents complete
information relating all possible values of normalized impedances, reflection coefficients
and standing wave pattern data for all transmission line circuits involving only passive
connected impedances. For the simple case when the characteristic impedance of a trans-
mission line is real, as is effectively true for most transmission lines used at high frequencies,
equation (7.10), page 128, shows that the magnitude of the voltage reflection coefficient at
the terminal load must lie between zero and unity for all passive values of terminal-load
impedance Zr, and equation (8.29), page 176, shows that this is then also true of the general
voltage reflection coefficient p at any point of any line, subject only to the limitation of low
attenuation per wavelength. The Smith chart for this case is completely contained within
a unit circle of the p-plane centered at the origin. This is the situation for which the Smith
chart as normally printed is primarily intended, i.e. passive transmission line circuits at
high frequencies, having low attenuation per wavelength to ensure that the characteristic
impedance is very nearly real and that the relation between standing wave data and reflec-
tion coefficient values is simple, but without restriction as to the total attenuation of the
circuit.

When the characteristic impedance of a transmission line is complex, as it is for tele-
phone lines at frequencies near 1 kilohertz, it has been seen in Section 7.6 that the reflection
coefficient may have a magnitude as great as 1 +\/§ , or 2414, From equation (7.10) it is
eagily found that a reflection coefficient of magnitude greater than unity can be produced
only by impedances whose normalized value has a megative real part. Such normalized
impedances can occur for certain ranges of Zr when Z, is complex, or can occur when Z, is
real if Zr has a negative resistance component, i.e. is an active network or device.

Extending the Smith chart to a radius of 2.414 in the reflection coefficient plane allows
it to handle all possible problems of transmission lines with complex characteristic imped-
ance and a partial range of situations involving active network elements connected to
transmission lines.

From the defining equation p = (Z/Z¢ — 1)/(Z/Zo + 1) it is easily seen that changing
Z1Zy to —Z/Z, results in a reflection coefficient p’ given by p’ = —1/p. This suggests that
a separate complete Smith chart for normalized impedances with negative real parts will be
identical with the standard chart for normalized impedances with positive real parts if the
plane on which the standard chart is plotted is recalibrated as the —1/p plane or negative
reciprocal reflection coefficient plane, by substituting 1/|p| for each |p| value of radial
coordinate, and = — ¢ for each ¢ value of angular coordinate.

The two charts taken together will handle transmission line problems with all possible
values of characteristic impedance and all possible values of connected impedances with
both positive and negative resistance components.

9.2. Equations for constructing the Smith chart.

In the form in which it is now always printed, the Smith chart displays orthogonal
curvilinear coordinates of normalized impedance components on the voltage reflection
coefficient plane. It is thus derived from the relation

_ ZlZy— 1

P = ZlZy+ 1

where p is the complex voltage reflection coefficient at a point on a transmission line, and
Z(Z, is the normalized value of the impedance at that point, understood to be the input

impedance of the total transmission line circuit on the terminal-load side of the point. In
terms of the traveling voltage waves on the line, p is the ratio at any point on the line of the

(9.1)
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phasor value of the reflected voltage wave, traveling toward the signal source, to the phasor
value of the incident voltage wave, traveling toward the terminal load.

The algebra of deriving the equations for the Smith chart is simplified by assigning
complex number notation to p and to Z/Z,. Let p=u-+jv, and let

ZIZo (=RlZy+ jX/Zo) = 20 = 1n+ jitu

the subscript n and the lower case letters implying that the impedance and its components
are in normalized form. Equation (9.7) becomes

Tn+jxn—'1

w+ v Tn+ jan+ 1 (9-2)
Cross multiplying and grouping real and imaginary terms yields two equations,
ra(u —1) — zv = —(u+1) 9.3)
TnV + 2n(u—1) = —v (9.4)
Eliminating z, and regrouping terms in order of powers of « and powers of v, gives
U(rn+1) = 2ur, + ¥3(1rn+1) = 1 — 1 (9.5)

Dividing all terms by (r»+ 1) and completing the square of the resulting two terms con-
taining «? and u, the result is

Tn |2 1
— 2 = = .
{u Tn+ 1} T (ra+1)* . (96)

On rectangular coordinates of # and v this is the equation of a circle whose center for
any value of r, is located at u = r./(r.+1), v =0, and whose radius is 1/(r.+1).

The following table gives the coordinates of the center, and the radius, for the circles
which are the loci of several constant values of 7, distributed over the zero-to-infinity range
of that variable. From the definition of % and v, these circles are on the reflection coefficient
plane or p-plane.

Table 9.1
Coordinates of
r, = RIZ, center of circle Radius of circle
u v '
0 0 0 1
1/7 1/8 0 7/8
1/3 1/4 0 3/4
1/2 0 1/2
3 3/4 0 1/4
/8 0 1/8
15 15/16 0 1/16

All of these circles except the last one are plotted in Fig. 9-1 below, the first being the
bounding circle of the standard Smith chart, |p| =1. The values listed have been chosen to
illustrate two features of the construction of the chart which are useful memory aids for
visualizing the relation of the 7, circles to one another. The unique positions of the nor-
malized resistance circles for 7, =0 and 7, =1 are easily remembered. The table shows
that the circles for normalized resistance values 0,1,8,7,15, ..., (2*—1) constitute a series
in which the radius of any circle is half the radius of the previous circle. All the circles
pass through the point 1, 0.
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The second feature to be noticed is that for any value of 7., the intersections with the
central horizontal axis of the chart of the circles for 7, and 7, = 1/r, occur at points sym-
metrical with respect to the center of the chart.

Fig.9-1. Coordinate circles for constant Fig.9-2. Coordinate circles for constant
normalized resistance on the normalized reactance on the
Smith chart. The radii of the Smith chart.

particular circles shown are re-
lated by simple fractions.

If the procedure in deriving (9.6) from (9.3) and (9.4) is repeated eliminating 7. instead
of z., an equation is found for the locus of any constant value of x. on the u,v coordinates.

h It i
The result is (—1)2 + (v — 1) = (/) 8.7)

from which the following table is constructed.

Table 9.2
Coordinates of
x, = X/Z, center of circle Radius of circle
u v
0 1 infinite infinite
0.2 1 5 5
—0.2 1 -5 5
*0.5 1 *2 2
*1 1 *1 1
*2 1 *0.56 0.5
*b 1 +0.2 0.2

These circles are plotted in Fig. 9-2, within the bounding circle |p| =1.

The most obvious symmetry exhibited here is the mirror-image symmetry about the
horizontal central axis of the chart, for the circles corresponding to values of x. of equal
magnitude but opposite sign. Inspection reveals another symmetrical aspect, similar to one
of the symmetries of the 7, circles. The point of intersection of any z, circle with the
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bounding circle of the chart is diametrically opposite to the point of intersection of the
circle for z. = —1/x, with the bounding circle. These two symmetries combine to give the
result that the point of intersection with the bounding circle for any x, circle is the mirror
image, with respect to the central vertical axis of the chart, of the point of intersection of
the 2, circle, when =z, = 1/2n.

The construction of the detailed Smith chart in its standard published form shown in
Fig. 9-3 is an extension of the procedures that have been described. The meanings of the
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Fig.9-3. A standard commercially available form of Smith chart graph paper. Copyrighted 1949
by Kay Electric Company, Pine Brook, N.J., and reprinted with their permission.



CHAP. 9] GRAPHICAL AIDS TO TRANSMISSION LINE CALCULATIONS 189

scales around the periphery of the chart and of the set of auxiliary scales accompanying
the chart at the bottom of the figure are discussed in succeeding sections of this chapter.

9.3. Reflection coefficient and normalized impedance.

From the description of the Smith chart given in Section 9.2, it can be used to solve
graphically problems that would be solved analytically by using equation (9.1).

Example 9.1.

A transmission line with characteristic impedance Z, =50 + jO ohms is terminated in an impedance
25 — j100 ohms, Determine the reflection coefficient at the terminal load end of the line.

The normalized terminal load impedance is z, = r, + jx, = (256 —j100)/(50 + 50) = 0.50 — 52.00.
Fig. 9-4 shows where this value of normalized impedance is located on the Smith chart. The angular scale
immediately outside the periphery of the Smith chart of Fig. 9-3 is a scale of reflection coefficient phase
angle, which shows a phase angle of 309° to the radial line through the normalized impedance 0.50 — j2.00.
Reflection coefficient magnitude is a linear radial scale reading from zero at the center of the chart to
unity at the periphery. The value for the point plotted on Fig. 9-4 can therefore be found as the ratio of
two lengths, (radius to the point)/(outer radius of the chart). In the standard chart of Fig. 9-3, the upper
right hand scale of the radial scales at the bottom of the chart is provided for making this measurement,
and when laid along the radial line through the normalized impedance 0.50 — 72.00, with the zero of the
scale at the center of the chart, it shows the magnituge of the reflection coefficient produced by this value
of normalized impedance to be 0.82. Thus the reflection coefficient produced by a normalized impedance
050—;9200 is p= 082[309° = 0.64 — j0.62, as shown in Fig. 9-5.

Fig.9-4. Location on the Smith chart of Fig.9-5. Reflection coefficient coordi-
the normalized impedance z, = nates of the point having nor-
0.50 — 72.00. malized impedance coordinates

2n = 0.50 — j2.00.

Example 9.2.

At a point on a transmission line the reflection
coefficient is measured as having a magnitude of
0.64. (A device called a reflectometer can make such )
a measurement.) If the impedance at that point of 0.22+j0
the line is a pure resistance, and the characteristic
impedance of the line is real, what is the normalized
value of the impedance at the point?

4.56 + 70

Fig. 9-6 shows the locus of all reflection coeffi-
cients of magnitude 0.64, and the locus of all nor-
malized impedances which are purely resistive when
normalized relative to a real charactesistic imped-
ance. There are two answers to the problem, one Fig.9-6. Two values of normalized pure resistance
at each of the intersections of the two loci. The an- that produce a reflection coefficient of
swers are r,+ jx, = 4.56+j0 or 0.22 4 ;0. 0.64.
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94. Coordinates for standing-wave data.

In Chapter 8 two simple equations were derived which respectively related voltage
standing-wave ratio to reflection coefficient magnitude, and the locations of voltage minima
to reflection coefficient phase angle. These were

VSWR = 1t (9.8)
1—lpl .
vimim/A = 11+ /=) = 4n 9.9)

Here p =|ple’® is the reflection coefficient at any point on a transmission line, VSWR is the
voltage standing-wave ratio it produces, and there is a voltage minimum in the standing-wave
pattern at a distance dvimimy/A in wavelengths from the point, in the direction of the signal-
source. The relations are valid only on lines which have low attenuation per wavelength,
since it is only for this case that the concept of voltage standing-wave ratio has a useful
empirical meaning. For such lines the characteristic impedance is real.

From equations (9.8) and (9.9) it is a simple matter to place coordinates of VSWR and
dvemimy/A on the reflection coefficient plane on which the Smith chart is drawn. Table 9.3
gives data for a few such coordinates.

Table 9.3
Reflection Voltage Reflection Distance of voltage minimum
coefficient standing-wave coefficient in wavelengths from
magnitude ratio phase angle point of reflection
|ol VSWR ¢ dveminy/A

0 1 0 0.25

0.2 1.5 /4 0.3125

0.5 3 /2 0.375

0.75 ( T 0.50 or 0

0.875 15 37/2 0.125

0.9376 31 27 0.25

The VSWR coordinates listed are plotted in Fig. 9-7 and the dv(min)/A coordinates in Fig. 9-8.

375

0.50
0.25

dy(min)/ N

0.125

Fig.9-7. Circle loci of constant VSWR
on the reflection coefficient
plane. The four intermediate
circles have radii proportional
to 1— ()", with »n = 1,2,3,
and 4.

Fig.9-8. Radial line loci of constant
dy(miny/A on the reflection co-
efficient plane.
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Comparison of the data and form of Fig. 9-7 with the data and form of Fig. 9-1 shows
that each VSWR circle is tangent to the r, circle of the same numerical value, the point of
tangency being on the ¢ = 0 radius. This is in agreement with a result shown in Chap-
ter 8, that if a transmission line is terminated in a normalized impedance of value 7, + j0,
with r, > 1, the VSWR produced is numerically equal to 7.

Printed forms of the Smith chart displaying both the (r.;2.) and the (VSWR, dvimin/)\)
pairs of coordinates are occasionally encountered, but the resulting density of lines in some
parts of the chart is confusing. Since VSWR is a function of |p| only, it can be determined
for any point on the chart by a radial scale derived from the radial scale for reflection
coefficient magnitude. Of the radial scales at the bottom of Fig. 9-3, the lowest one at the
left is a scale of VSWR determined from equation (9.8) in terms of the linear radial scale
of reflection coefficient magnitude. Similarly, since dvmim)/A is a function of ¢ only, it can
be measured for any point on the chart by a linear angular scale derived from the linear
angular scale for ¢, using equation (9.9). Such a scale is printed on the chart of Fig. 9-3
immediately outside the angular scale of reflection coefficient phase angle. (The ingcription
“WAVELENGTHS TOWARD LOAD” refers to a different use of the chart, discussed in
Section 9.6.)

Example 9.3.

At the terminal-load end of a low-logs transmission line there is a reflection coefficient of —0.30 + j0.55.
What is the voltage standing-wave ratio on the line, and where are the minima in the voltage standing-
wave pattern located relative to the terminal-load end of the line?

To enter the chart, the reflection coefficient must be expressed in polar form as p = 0.63/118.6°.
Fig. 9-9 shows this point on a Smith chart and indicates how the resulting VSWR value can be found,
either by reference to a radial VSWR scale, or by making use of the fact mentioned above that a nor-
malized impedance of value r,+ jO0 produces a VSWR equal to r,, when r,>1. The answer is
VSWR = 4.4. Fig. 9-10 shows that the value of dy(py;,)/» for the same point is 0.415, meaning that minima
in the voltage standing-wave pattern are located at 0.415, 0.915, 1.415, etc., wavelengths from the terminal-
load end of the line,

XVSWR =44

dy(miny/A = 0.415

Fig.9-9. The numerical value for a Fig.9-10. VSWR and dy(min/\ coordi-
VSWR coordinate circle is equal nates of a point on the Smith
to the numerical value of the chart.

normalized resistance coordi-
nate circle (r, >1) to which it
is tangent.

Two more of the radial scales at the bottom of Fig. 9-3 can now be explained in terms
of the scales that have been described above. On a line whose characteristic impedance is
real, it was shown in Section 7.6 that the power in a reflected harmonic wave is proportional
to the square of the phasor voltage magnitude of the wave. The magnitude of the reflection
coefficient for power under these conditions is then the square of the magnitude of the
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voltage reflection coefficient. The second scale from the top in the right-hand group of
radial scales in Fig. 9-3 is a radial scale of power reflection coefficient magnitude, derived
as the square of the voltage reflection coefficient magnitude scale immediately above it.

e
Goan

—— A

1
t
)
e

Fig.9-11. A Smith chart “slide rule”. The transparent radial strip,
with one end pivoted at the center of the Smith chart, has
eight radial scales similar to those of Fig. 9-3 printed on it.
A transparent cursor slides along the strip and is marked
with a single line transverse to the center line of the strip.
When the strip’s center line and the cursor’s transverse line
cross at a point on the chart, the cursor’s transverse line
shows eight types of information about the point, on the

strip’s radial scales. With permission of The Emeloid Co.,
Hillside, N. J.
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Many communication engineers become so attached to decibel notation that they prefer
to express all possible quantities pertaining to voltage, current or power in decibels relative
to some reference. Since VSWR is by definition a ratio of voltages, it lends itself directly
to a decibel formula like equation (4.15), page 86, with the result

Vmax
Vmin

Expressing a VSWR in decibels has no particular practical value, such as facilitating other
calculations, but has become a widely accepted conventional notation. Of the radial scales
in Fig. 9-3, the second from the bottom on the left gives the decibel values for the VSWR
values on the scale immediately below it, calculated from equation (9.10).

For the data of Example 9.3, the power reflection coefficient is 0.40, and the VSWR
is 13.0 db.

In a commercially available form of Smith chart “slide rule”, eight radial scales similar
to those of Fig. 9-3 are printed on a strip of transparent plastic, which is mounted at its
center point to rotate about the center point of a Smith chart printed on opaque plastic.
With the addition of a central diametral line on the transparent strip, and a transverse line
on a transparent plastic cursor that moves along the strip, the radial distance from the
center of the chart to any point on the chart can be referred to any of the eight radial scales,
in a manner indicated by Fig. 9-11 above.

VSWR indb = 201loge

= 20 logic VSWR (9.10)

Example 9.4.

The voltage standing wave pattern observed on
an air-dielectric coaxial line slotted section shows a
VSWR of 2.50, and there is a voltage minimum in
the standing wave pattern 8.75 ecm from the termi-
nal load end of the section. The characteristic im-
pedance of the section at the operating frequency
of 800 megahertz is 50 + jO ohms. What is the
value of the terminal load impedance?

The adjective “air-dielectric” establishes that
the phase velocity on the slotted section is the free
space value of 3.00 X 108 m/sec. The wavelength
on the line is therefore

A = (3.00 X 108)/(800 X 108) 0.376 m
Hence dy(miny/A = 0.0875/0.375 = 0.233

The point on the chart with- VSWR = 2,50 and this
value of dy(yumn)/M is located as shown in Fig. 9-12.

dv(min)/A = 0.283

The normalized impedance coordinates of this point Fig.9-12. Determination of the normalized ter-
are found to be 7, jz, = 2.35 —j0.50. The actual minal load impedance on a low-loss
value of the terminal load impedance in ohms is transmission line from standing wave
therefore (2.35— 70.50)(50 + j0) = 117 — j25 ohms. pattern data.

9.5. Coordinates of magnitude and phase angle of normalized impedance.

It is sometimes convenient to work with impedances expressed in polar form rather
than in complex-number component form. It would then be helpful to be able to perform
Smith-chart computations without having to bring all impedances to the complex-number
form required by the chart of Fig. 9-8. The derivation of the equations for the coordinates
(|2a], 6) on the reflection coefficient plane, where 2. = R/Zo + jX/Zo = |24 /8, is assigned as
Problem 9.21. The graphical nature of the result is shown in Fig. 9-18 below. The Smith
chart in this form is sometimes called a “Carter” chart, because it was first published by
P.S. Carter of R.C.A. in 1939. In addition to being useful for handling data in the coordi-
nates indicated, this chart illustrates another and very striking form of symmetry of the
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Smith chart. The vertical central diameter of the chart is the coordinate |z.| =1, i.e. the
locus of all impedances of normalized magnitude unity. Two impedances of equal phase

angle but with reciprocally related normalized magnitudes lie at mirror-image points
relative to this central vertical diameter.

0.5,
0.25
Iznl =0 |z"| =
—30°
—60°.
—90°
Fig.9-13. The Carter chart. Coordinates Fig.9-14. Determining an impedance of
of normalized impedance mag- normalized magnitude unity
nitude and phase angle on the that will produce a VSWR
reflection coefficient plane. of 3.00.

Example 95.

What impedance of normalized magnitude unity connected as the terminal-load impedance on a trans-
mission line will produce a VSWR of 3.00?

Fig. 9-14 shows the straight-line locus of all impedances of normalized magnitude unity, and the circle
locus of all points for which the VSWR is 3.00. These loci intersect in two points whose (r,, z,) or (|z,|,6)
coordinates are the answer to the question. The results are: |z,| = |Z3/Zo| =1, 6 = =53.1°; or 7, =
RT/ZO = 0-60, Ty = XT/ZO = =*0.80.

9.6. Impedance transformations on the Smith chart.

It was shown in Section 8.10 that if p = |p| e’ is the voltage reflection coefficient at any
coordinate d on a uniform transmission line, then the reflection coefficient p, = |p,| e/ at
any other coordinate d; is given by

p, = pe = g=2uB—d (9.11)
It follows that o) = |p| e2a@—® (9.12)
¢, = ¢ —2B(d,—d) (9.13)

At points on the signal-source side of d (i.e. d: > d), the reflection coefficient magnitude and
phase angle will both be less than at d. At points on the terminal load side of d (d: < d), the
reflection coefficient magnitude and phase angle will both be greater than at d.

Applied to the Smith chart, these results provide a very simple and direct graphical
procedure for finding the normalized impedance at any point on a transmission line in terms
of the normalized impedance at any other point on the line and the values of total attenuation
ol and phase shift gl for the length of line [ between the two points.
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In Fig. 9-15, . and x. are the normal-
ized components of the impedance at some
coordinate d on a transmission line having a
finite attenuation factor. It is desired to
know the normalized impedance components
r! and z, at a point d; on the line, d; being
on the signal source side of d. From equa-
tion (9.18) the reflection coefficient at coordi- «lon 1DB
nate d; will have a phase angle smaller by STEPS scale
28(d1—d) = (4=/A)(d1—d) than the phase
angle of the reflection coefficient at coordi-
nate d. The normalized impedance at the

point d, will therefore be on a radius of the d—~d

chart that lies clockwise (decreasing ¢) from X" W”L’L’;f,;}‘fﬁ,iﬂ?l“"
the angular location of the normalized im-

pedance at d, by an angle in radians which Fig.9-15. Use of Smith chart for determining
is. 4 times the length of transmission line in normalized impedance transformations

between two locations on a lossy trans-

wavelengths between the two points. The mission line.

angular scale on the chart to be used for

determining the impedance transformation between two locations on a transmission line
should therefore be a linear scale at the rate of 2r radians (one full rotation) around the
chart for every half wavelength. The outermost angular scale on the Smith chart of Fig.
9-8 is such a scale, and the inscription WAVELENGTHS TOWARD GENERATOR indicates
that transformation from a coordinate d to a coordinate d, is clockwise on this scale if d, is
closer to the signal source or generator than d is. Paired with the above scale and just
inside it, is an identical scale increasing in the counterclockwise direction and labeled
WAVELENGTHS TOWARD LOAD for transformations from d to d: when d, is on the
terminal load side of d. For these transformation problems the fact that the origin for both
angular coordinate scales is on the left hand horizontal axis has no significance. The Smith
chart “slide rule” mentioned in Section 9.4 permits rotation of the angular coordinate scales
relative to the main body of the chart, so that the origin of these scales can be set at any
desired point.

The magnitude of the reflection coefficient at the coordinate d, will differ from the value
at d by the factor e~2*¢41~®_  The normalized impedance at d, will therefore be closer to the
center of the chart than the normalized impedance at d, by a factor dependent on the total
attenuation of the line between the two locations. This attenuation is conveniently expressed
in decibels. Since 1 neper = 8.686 decibels, the reflection coefficient magnitude at d; > d
will be reduced by a factor ¢~2/8.6% = (0,794 for every decibel attenuation of the line between
coordinates d and d;. The procedure adopted on the Smith chart of Fig. 9-3 for handling
this factor graphically is the provision of a radial scale marked at 1 decibel intervals, but
without numbers, starting at the periphery of the chart where [p| =1. On the radial scales
of Fig. 9-8 this is the second scale from the top at the left. Comparison with the top right-
hand linear scale of reflection coefficient magnitude shows that the first 1-db step occurs
at |p| = 0.794, the second at |p| = 0.7942 = 0.631, etc. The intervals of this scale as printed
on the standard chart are too large, especially near the periphery, to permit taking full
advantage of the inherent precision of the chart. In interpolating between the marked
points, some effort must be made to allow for the nonlinearity of the scale.

Undoubtedly a large majority of the impedance-transformation calculations most com-
monly made using the Smith chart are for situations where the total attenuation of the line
length over which the transformation occurs is quite negligible. The calculations in these
cases involve only angular motion around the chart, the final point being at the same |p| or
VSWR coordinate as the original. Examples are the input susceptances of stub lines



196 GRAPHICAL AIDS TO TRANSMISSION LINE CALCULATIONS [CHAP. 9

(Section 7.3), the transformations of quarter-wavelength transformers (Section 7.4), the
input impedances of short feed lines terminated in transmitting antennas, and in general
the transformations occurring whenever a short section of transmission line acts as a con-
nector between two components of a high frequency cirecuit.

Example 9.6.

-An air-dielectric slotted section is connected to an air-dielectric transmission line of the same character-
istic impedance 50 + 70 ohms by a reflectionless connector. The transmission line is 8.76 m long and is
terminated in an antenna. On the slotted section the voltage standing wave pattern is observed to have a
VSWR of 2.25, and there are successive voltage minima at 0.180 and 0.630 m from the connector. The total
attenuation of the line and slotted section is negligible. What is the impedance of the antenna at the fre-
quency of the measurements?

Asg in Example 9.4, the use of the adjective “air-dielectric” is a way of indicating that the phase velocity
of the voltage waves on both the slotted section and the transmission line is the free space value for TEM
electromagnetic waves, 3.00 X 108 m/sec.

The separation of 0.450 m between consecutive voltage minima shows that the wavelength on the
slotted section is 0.900 m. The value is then the same on the transmission line, and the line length in wave-
lengths is 8.76/0.900 = 4.17 wavelengths.

For calculating the normalized impedance at the connector, the values VSWR = 2.26 and dyyin)/A =
0.180/0.900 = 0.200 are used. The result is r,+ jx, = 1.62 — j0.86, using the method of Example 9.4. The
location of the point on the Smith chart is shown in Fig. 9-16. This value of r, + jx, is the normalized
input impedance of the transmission line, which is 4.17 wavelengths long. The normalized terminal load
impedance connected to the line is therefore found by moving 0.17 WAVELENGTHS TOWARD LOAD,
i.e. counterclockwise, along the constant VSWR circle through the normalized input impedance point. The
4.00 wavelengths of the transmission line length have no effect on the result, since they merely represent
eight complete rotations around the chart back to the starting point. The normalized impedance of the
antenna as terminal load impedance, is found to be 0.77 + 50.70; and the impedance is (0.77 -+ 70.70)(50 + 70) =
87.56 + 785 ohms. The frequency of measurement is 3.00 X 108/0.900 = 333 megahertz.

Since the slotted section and the transmission line in this problem have the same characteristic
impedance, the same phase velocity, and the same attenuation (zero), it was not in fact necessary to
calculate the impedance at the connector as an intermediate step. If the slotted section and transmission
line are regarded as a single continuous length of uniform system, the terminal load antenna impedance
can be evaluated directly from the fact that it produces a VSWR of 2.25 and a dy(yi,)/A of 0.20 + 4.17 = 4.37.

Fig.9-16. Normalized impedance trans- Fig.9-17. Determining the attenuation
formation toward the load on factor and phase velocity of a
a lossless transmission line. transmission line from the nor-

malized input impedance of a
section of the line with short
circuit termination.
Example 9.7.
A section of flexible plastic-dielectric coaxial high-frequency transmission line is 24.25 m long. At a
frequency of 50.0 megahertz, its characteristic impedance is 72 + j0 ohms, and the input impedance of the
section is measured to be 105 + 7122 ohms at that frequency when the terminal-load end of the section is
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short-circuited. What is the attenuation factor of the line? What can be determined about the phase velocity
on the line from the measured impedance?

The normalized value of the measured input impedance is 1.46 + j1.70. The location of this point on
the Smith chart is shown in Fig. 9-17 above. Since the terminal load impedance is a short circuit, it is
located at the zero impedance point of the chart, at the left end of the central horizontal axis. Scaling the
radial distance from the periphery of the chart to the normalized input impedance point along the scale of
1 db steps, second from the top at the left in Fig. 9-8, it is found that the 24.25 m length of line must have
an attenuation of about 2.25 decibels. Hence the attenuation factor of the line is 2.25/24.25 = 0.098 db/m =
0.0107 nepers/m.

The angular distance measured clockwise from the radius through the short circuit point to the radius
through the input impedance point is 0.193 wavelengths. However, it is impossible that 24.25 m of trans-
mission line should be only 0.193 wavelengths long at a frequency of 50.0 megahertz, since this would indi-
cate a wavelength of 127 m and a phase velocity of 6.35 X 10? m/sec, more than twenty times the free space
velocity of plane electromagnetic waves. The length in wavelengths must therefore be some other term
in the series 0.193, 0.693, 1.193, 1.693, etc., all of which would involve identical motions on the chart.

The free space wavelength for TEM waves at a frequency of 50.0 megahertz is 6.00 m. The plastic
dielectrics most commonly used in flexible coaxial lines have a dielectric constant of about 2.25, and the
wave velocity on transmission lines filled with these materials will be less than the free space value by a
factor of about 1//2.25 = 0.67. The wavelength on the line may therefore be about 4.0 m, and the line
length in wavelengths would in that case be about 6.0. However, this approximate reasoning cannot
justify a decisive choice among the possible values 5.193, 5.693, 6.193, 6.693 and 7.198 offered by the measure-
ments. If the input impedance is measured for a shorter length of the same line, with short circuit termina-
tion, another sequence of values of the line length in wavelengths and hence of g and v, will be found.
Generally only one pair of terms will coincide. closely in the two series of B values or v, values, and this
will be the correct value for the line.

Example 9.8.

What must be the length of a stub line with
open circuit termination, in order that the stub shall
have a normalized input reactance of +0.75?

Entering the Smith chart at the open circuit or
infinite normalized impedance point as in Fig. 9-18,
on the outer boundary of the chart at the right
hand end of the central horizontal axis, the normal-
ized impedance .of any length of stub line (the name
implies negligible losses) will also be found on the
outer boundary of the chart, after clockwise rotation
(WAVELENGTHS TOWARD GENERATOR, the
generator being implicitly at the end opposite the 0.352
terminal load open circuit impedance) through -an wavelengths
angle corresponding to the length of the line in
wavelengths,

Fig. 9-18 shows that the rotation required to
reach the normalized reactance value of +0.75 is
0.352 wavelengths, which is an answer to the ques- Fig.9-18. The normalized input susceptance of a
tion. Other answers are 0.852, 1.352, 1.852, ete., section of lossless line with open circuit
wavelengths., termination.

o.c.

9.7. Normalized admittance coordinates.

A quarter wavelength section of lossless transmission line has the property of being an
inverter of normalized impedance values (see Section 7.4). The normalized value of the

input impedance of such a section is the reciprocal of the normalized value of its terminal
Jload impedance.

If any point on the Smith chart is taken as the normalized terminal load impedance of
a lossless transmission line section one quarter wavelength long, the normalized input
impedance of the section according to the method of Section 9.6 will be found by rotation
through one quarter wavelength (i.e. halfway around the chart) with no change of radial
distance from the center of the chart. The new point will thus be diametrically opposite
the original point. The quarter wavelength transformer property states that the numerical
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value of this normalized input impedance is the reciprocal of the normalized value of the
initially chosen terminal load impedance which, by definition, is the normalized admittance
value of that impedance.

It follows from this example that rotation of the (rn, #.) coordinates for the chart as a
whole through 180° on the reflection coefficient plane around the center of the chart will
substitute normalized admittance coordinates (g., b.) at every point for the normalized
impedance coordinates (7, 2.). The nature of the (g, b») coordinates is shown in Fig. 9-19.

The equation (g.+jbs) = 1/(ra+jxa) = 7a/(ri+27) — jau/(r2+ 22) shows that the sign
of b, is always opposite to that of x.. The upper half of the Smith chart contains all nor-
malized impedances for which «, is positive, or all normalized admittances for which b, is
negative. In the lower half of the chart the signs are reversed.
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Fig.9-19. The Smith chart with normalized conductance and suscept-
ance coordinates on the reflection coefficient plane.
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In the general study of circuit analysis and its application to such practical situations as
filters, matching networks, and electronic amplifiers, experience indicates that the language
of admittance, appropriate to parallel-connected circuit elements, has an importance fully
comparable to the language of impedance, appropriate to series-connected circuit elements.
In the case of transmission lines, when different transmission line sections are connected
together in a multi-branch system, they are almost invariably connected in parallel at the
junctions (Fig. 9-20(a)) rather than in series (Fig. 9-20(b)), for reasons that may be partly
electrical and partly mechanical. It is not in fact possible to connect a coaxial stub-line in
series with another coaxial line without destroying the shielding property of the outside
conductors, but a parallel-connected junction of the two raises no difficulties.

(@) (b

Fig.9-20. A branch transmission line connected (a) in parallel and
(b) in series with a main transmission line.

The analyses of Chapter 7 and the discussions of the Smith chart in the preceding sec-
tions have used impedance terminology much more freely than that of admittance, but this
was solely in the interest of better uniformity and continuity in the presentations, and must
not be taken to imply that the impedance language has priority of any kind. An engineer
using the Smith chart for calculations on transmission line circuits should be equally
well prepared to use the chart in either normalized impedance or normalized admittance
coordinates.

Unfortunately, textbooks and other writings about the Smith chart have used two dis-
tinctly different conventions as to the manipulative procedures to be used in switching
between normalized impedance and normalized admittance coordinates. The distinction
between the two conventions is a simple one on the surface, but it can be a source of con-
siderable confusion and error.

In the one convention, used in this book and already described above, the normalized
impedance and normalized admittance coordinate grids illustrated by Fig. 9-3 and Fig. 9-19
respectively, are used as separate plots or overlays on the reflection coefficient plane. The
absolute orientation of the coordinates of this plane is kept constant, with reflection coeffi-
cient phase angle increasing counterclockwise from zero at the right. Since any physical
structure connected to a transmission line as a terminal load impedance is uniquely identified
by the reflection coefficient it produces, this procedure leaves unchanged the geometric loca-
tion on the chart of all physical connotations, such as the point representing a short-circuit,
the point representing an open-circuit, the point representing any given assembly of resist-
ance-inductance-capacitance components, and the zero-reference angle for dymm/A coordi-
nates. This stability of all the physical correspondences on the chart is achieved at the
expense of having to rotate the (rn, 2.) coordinate grid to obtain the (g., b.) coordinate grid.
The design of the Smith-chart “slide rule” mentioned above facilitates the use of this con-
vention by permitting rotation of the coordinates within the unit circle relative to the
peripheral angular coordinates. In using this convention, the appearance of the unit
normalized-real-part circle on the right of the symbolic Smith chart of Fig. 9-21(a) below
signifies that normalized impedance coordinates are being used, while if the unit normalized-
real-part circle is on the left as in Fig. 9-21(b) below, normalized admittance coordinates
are being used.
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(a) : (b)

Fig.9-21. Symbolic representation of the relation between Smith
chart orientation and the use of normalized impedance or
normalized admittance coordinates. With the unit-normal-
ized-real-part circle on the right of the chart as in (a), the
chart is oriented for normalized impedance coordinates,
and the small circle represents unit normalized resistance.
When the small circle is on the left, as in (b), the chart is
oriented for normalized admittance coordinates, and the
small circle represents unit normalized conductance,

In the alternative convention, the (7., z.) coordinates as printed in Fig. 9-3 are declared
to be either normalized impedance or normalized admittance coordinates as needed, being
kept in the orientation shown in both cases. All the physical features of the chart are then
rotated through 180° when changing from the (7., #.) coordinates to the (g, b») coordinates.
The short-circuit point, for example, will be at the left for normalized impedance coordinates
and at the right for normalized admittance coordinates.

Printed Smith chart graph sheets generally have a statement on them reading “Imped-
ance or Admittance Coordinates”, which can be seen at the top of Fig. 9-3. They also have,
as mentioned in Section 9.8, a fixed peripheral angular scale identified as “Angle of Reflec-
tion Coefficient in Degrees”, reading counterclockwise from zero at the right. The discussion
of Section 9.2 has shown that (7., «.) coordinates appear in the form of Fig. 9-3 for such a
reflection-coefficient phase angle scale. Hence the label “Impedance or Admittance Coordi-
nates” is valid only when accompanied by the additional instruction that if the chart is to
be used in admittance coordinates, either the (7, 2.) coordinates must be rotated 180° on the
reflection coefficient plane to become (g, b,) coordinates, or the reflection coeflicient phase
angle scale (i.e. the entire reflection coefficient plane) and all of its physical concomitants
must be rotated 180° to allow the (7, Z») coordinates to become the (ga, bs) coordinates with-
out change of position. This book chooses the former of these alternatives.

/Example 9.9.

A VSWR of 8.25 is observed on a slotted-line section, with a voltage minimum 0.205 wavelengths from
the terminal load end of the section. What is the value of the normalized admittance at the terminal
load end?

Following the convention of Fig. 9-21(b), the point corresponding to VSWR = 3.26 and dymn)/A =
0.205 is located on the chart oriented for (g,, b,) coordinates as in Fig. 9-22 below. The normalized admit-
tance value is found to be 0.33 + j0.26. Note that the origin of the dy(nin)/» coordinates is still the left hand
radius of the chart.

Example 9.10.

What length of lossless transmission line with short circuit termination and characteristic impedance
of 75 4 jO ohms will have a capacitive input susceptance of 0.0250 mhos?

The characteristic admittance of the transmission line is Yy = 1/Z, = 1/(75+ j0) = 0.0133 + j0 mhos.
The normalized input susceptance required is therefore 0.0250/0.0133 = 1.87. The normalized input admit-
tance 0 + j1.87 is located on (g,,b,) coordinates as shown in Fig. 9-23 below. The required line length in
wavelengths is found as the angular distance in WAVELENGTHS TOWARD LOAD over which this
normalized admittance will transform to the infinite admittance of a short circuit. (Alternatively, the
required length is the angular distance in WAVELENGTHS TOWARD GENERATOR over which a short
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0.422
wavelengths

dyemim/A = 0.205

Fig.9-22. Determination of normalized ter- Fig.9-23. Normalized input susceptance of
minal load admittance from stand- a lossless line section with short
ing wave data on a lossless line. circuit termination.

circuit will transform to the desired value of
normalized admittance.) The result is found
to be 0.422 wavelengths, Answers of 0.922,
1.422, etc., wavelengths are equally correct.

Just as the Carter chart of Section
9.5 and Fig. 9-18 presented coordinates
of magnitude and phase angle of nor-
malized impedance on the reflection co-
efficient plane, so the same coordinates
rotated 180° on the plane become coordi-
nates of magnitude and phase angle of
normalized admittance, as indicated in
Fig. 9-24. Fig. 9-24 is obtained from
Fig. 9-13 by changing the sign of the _
phase angle coordmates, and chan.gmg Fig.9-24. The Carter chart with coordinates of mag-
the value on each normalized magnitude nitude and phase angle of normalized ad-
coordinate to its reciprocal. mittance.

0.256

lval =0

9.8. Inversion of complex numbers.

It is worth noting that the Smith chart can be used as a graphical device for finding the
reciprocal of any complex number, even if the calculation has no reference to transmission
lines.

Example 9.11.
Find the reciprocal of 244 — j38.

It is obviously not satisfactory to take these numbers directly into the Smith chart as (r,, «,).coordi-
nates, since the result would be indistinguishable from the infinity point of the chart. Inspection of Fig.
-13 shows that the magnitude and phase angle scales for normalized impedance or admittance are most
expanded in the vicinjty of the central vertical line of the chart, i.e. where the normalized magnitude is of
the order of unity.

If the complex number 244 — 38 is “normalized” relative to some simple real number such as 200 or
300, approximately equal to the magnitude of 244 — j38, the arithmetic is easy and the result will be located
on the (r,,«,) or (g,,b,) coordinates of the chart near the unit normalized magnitude locus. The “nor-
malized” reciprocal is found at the diametrically opposite point on the chart, and the final result obtained
by denormalizing this relative to the original normalizing reference.



202 GRAPHICAL AIDS TO TRANSMISSION LINE CALCULATIONS [CHAP. 9

Normalizing 244 — 788 relative to 200 gives
1.22 — j0.19. The location of this point on (r,,x,)
coordinates is shown in Fig. 9-25. Its reciprocal,
found as the coordinates of the diametrically opposite
point, has the value 0.80 4 j0.124. Multiplying by
1/200 denormalizes this, giving the result :

(4.00 + j0.62) X 103

which is the answer found for the reciprocal of
244 — j38. The probable error in each component in
such a calculation should not exceed about 1% of the
larger component. It will be seen that the “normaliz-
ing” and “denormalizing” processes in this operation
are not reciprocally related as they were in the
transformation calculations of Section 9.6, but are Fig.9-25. Use of the Smith chart to find the re-
identical. ciprocal of a complex number.

9.9. Other mathematical uses of the Smith chart.

From derivations given previously in this chapter and in Chapter 7, fairly simple
graphical procedures make it possible to use the Smith chart to evaluate complex hyperbolie
tangents and cotangents, i.e. tanh (x + jy) and coth (x + jy) and, as special cases of these,
circular tangents and cotangents tanz and cotx. It can also be used to evaluate complex
exponential numbers, e*+# and by extension sinh (z + jy) and cosh (x + j¥).

The demonstrations of the uses of the chart for some of these purposes are assigned
as problems below.

9.10. Return loss, reflection loss, and transmission loss.

Three of the radial scales shown on the Smith chart of Fig. 9-3 remain to be explained.
These are the two at the bottom right, and the one at the top left, designated respectively
as “return loss in db”, “reflection loss in db”, and “transmission loss coefficient”. As the
names suggest, they are various ways of expressing power relations on transmission lines
in the presence of both reflected waves and line attenuation. All three scales are valid only
for lines whose characteristic impedance is real. This requires that the attenuation per
wavelength on the lines be much less than one neper, but places no limitation on the allowed
total attenuation of a line. (If a line’s attenuation factor is caused partly by distributed
resistance R and partly by distributed conductance G, the specification on attenuation per
wavelength applies to the difference between the two contributions. For Heaviside’s “dis-
tortionless” line the difference is zero, and the characteristic impedance is always real, for
all values of attenuation per wavelength.)

The concept of “return loss” is a simple and straightforward one. At any specific point
on a uniform transmission line the power carried by the reflected wave (traveling from the
terminal load toward the signal source) will be less than the power carried by the incident
wave (traveling from the signal source toward the terminal load) when the magnitude of the
reflection coefficient at the terminal load end of the line is less than unity, or when there is
attenuation between the specific point and the terminal load.

The return loss in decibels at a point on a transmission circuit is defined as the total loss
or attenuation in decibels which the incident wave power at the point would have to expe-
rience to be reduced to the reflected wave power at the point. From this definition, and
from relations derived in Section 8.10,

return loss = 10 log[p|> decibels (9.14)
where p is the voltage reflection coefficient at the point in question.
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From equations (4.16), page 36, and (9.12), page 194, if the voltage reflection coefficient
at the terminal load end of a line is p,, and the line has an attenuation factor « nepers/m,
the return loss at a point distant d meters from the terminal load end of the line will be

iven b
g y return loss = 10log,, o> + 8.686 X 2ad decibels (9.15)

The value of the return loss at a point on a system is useful as an indication of the extent
to which reflected waves may be degrading the operation of the system at that point. Such
degradation might result, for example, from the reflected waves being disturbing echo
signals, or from their affecting the frequency or power output of a signal source by causing
the input impedance of the connected transmission line circuit to be different from the
characteristic impedance of the line. The design specifications for some forms of trans-
mission line communication circuits may state a minimum value of return loss that must be
maintained over some portion of the system.

It will be noted that the return loss scale (second from the bottom at the right in Fig.
9-3) is identical in structure to the scale of 1 db steps of transmission loss (second from the
top at the left) discussed in Section 9.6. It differs in having a numerical scale reading from
zero at the periphery of the chart to infinity at the center, and because of the “return”
factor, the scale increases by 2 decibels for each 1 db step of the transmission loss scale.

The concept of “reflection loss” (presented by the bottom scale on the right in Fig. 9-3)
embodies the proposition that power reflected by a terminal load impedance Zr not equal to
Z, is lost power, relative to the power that would be delivered to a nonreflecting terminal
load. The concept is directly applicable only to transmission line circuits of the form shown
in Fig. 9-26, in which the source impedance is equal to the characteristic impedance of the
line. The line may have any value of total attenuation provided the attenuation per wave-

length is small enough to ensure that the characteristic impedance has a negligible phase
angle.

=2, 1 Z, real o

Fig.9-26. A transmission line circuit to which the Smith chart’s radial
“Reflection Loss” scale is applicable.

For this circuit the power delivered to a nonreflecting terminal load impedance Zr= 2,
is $(|Vs|*/Zo)e~2* watts, since the input impedance of the line is also Z,. Applying the
multiple-reflection analysis of Section 8.8, page 174, to the circuit, this is also the power of
the initial wave that travels the length of the line and is incident on the terminal load, after
the source is connected to the line. If the terminal load impedance Zr is not equal to
Z,, the power in the first wave reflected by the termination will be 1(|V.*/Zs)e~2*|p,|?, where
pr = (Zr—Zo)(Zr+ Zo). At the signal source end of the line the reflection coefficient p4 =0
(because Zs= Z,), so that none of the power reflected by the terminal load impedance is
re-reflected on returning to the input end of the line. The above expressions for power
therefore give, respectively, the total power in the incident wave and the total power in the
reflected wave, at the terminal load impedance where reflection occurs. The power delivered
to the load is therefore given by }(|Vs*/Zo)e=2*(1 — |p,>). Reflection loss is defined from the
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ratio of this power to the power in the incident wave, and is invariably expressed in decibels.
It is often referred to in circuit language as “mismatch loss”. The definition is

reflection loss = —10log,,(1—|p,|?) decibels (9.16)

The negative sign in equation (9.16) is required by the convention that reflection loss is
always stated as a positive number of decibels.

If the transmission line of Fig. 9-26 is lossless, conservation of energy demands that
the presence of a singly reflected wave must cause the source to deliver less power to the
input terminals of the line by exactly the amount of power in the reflected wave. Since the
line length is arbitrary, the input impedance of the line may lie anywhere on the circle of
constant |p,| on the Smith chart, where p,, is the reflection coefficient produced by the terminal
load. Viewing the situation as a circuit problem, it is not at all obvious that the required
reduction in input power will occur identically for all of these possible values of input
impedance.

The following analysis confirms that the indicated reduction in power does occur, and
shows in addition that if the line has finite total attenuation (but a real characteristic
impedance) the reduction in power delivered by a nonreflecting source to a line, when the
terminal load impedance is changed from nonreflecting to reflecting, is equal to the power
in the reflected wave at the point of reflection less the power lost by the reflected wave in
the attenuation of the line.

Applying equations (7.1), (7.8) and (7.8) to the circuit of Fig. 9-26,
V(z=0)
I{(z=0)

Vip = Vi+ V2 = V1(1+pT6_2yl) (9.17)
Iimp = (Vl/Zo)(l —pTe‘z"‘) (9.18)

But Vi = Vs—ILiwpZs = Vs— IipZo. Therefore Vi(1+p,e7®) = Vs— Vi(l—pe?),
and V,;=34Vs, a result which could have been written directly by using the multiple reflec-
tion analysis of Section 8.8. It is important to note that this statement is not equivalent to
Vinp = Vs, which would be true only if Z, =Z  and p,=0.

Equations (9.17) and (9.18) can then be rewritten,
Vi = 3Vs(1+pe™?) (9.19)
Iy = ¥(Vs/Zo)(1— pre™2") ' (9.20)
From equations (9.19) and (9.20),
Xip _ 1 Vip _ LHpe™

Zinp —_ Rlnp +] — =
Z, Zy A Zo Iy 1—pre™?

which agrees with equation (7.14), page 130.

(9.21)

If Zr=Zo, p,=0. Then the power input to the line is Po = $|Vs|*/Zo, and the power
reaching the terminal load is Poe~2, If Zp <+ Z,, the power in the initial incident wave
reaching the terminal load (which is the only incident wave) is still Pye~24, The power in
the reflected wave at the point of reflection is Poe2%|p,|?, and the power received by the
load is Poe~2(1 — |p|%).

When the reflected wave returns to the input end of the line its power level is reduced by
a further factor e~2*, to become Poe~4* |p, |2
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It is desired to prove, using circuit analysis concepts, that for all values of Zr and v
the reduction in the power delivered by the source to the line when the terminal load imped-
ance is changed from Zr =2, to Zr+ Z, is identically equal to the amount of reflected
wave power that returns to the input end of the line.

If P, is the input power to the line when Zr » Z,, the problem is therefore to show that
Po— Py = Poe™*p,[2

or Pg = Py(1 — loo? e~ = $(|Vs[2/Zo)(1 — |p |2 e~
. ’r__ Vs 2 _ Vg 1 Rinp . .
Since P, = Zo ¥ Zm Ry = Zo L+ ZudZoF Zo the requirement is to prove that

1 Rinp
1+ Zup/Zof 2o
To simplify the arithmetical work, let p.e~2"=C+jD. Then C?+D?= |pr|? €74,
From equation (9.21),
Zw _ 1+(C+jD) _ 1-(C*+D+2;D
Zy 1-(C+3iD) =~ 1+ (C*+D?—2C
Rinp 1—(C*+D?

11 = Jp o) (9.22)

so that Z, - 11 G +D —2C (9.23)
1 1 1+ (C*+D? — 2C
Also, = - = 9.2
80 L+ Zinp/ ZoP 21+C+7D) | 4 (9-24)

1+(C*+D* —-2C
From equations (9.23) and (9.24),
1 . Bunp
14+ Zwp/Zo2  Zo
which proves the theorem.

Although the power delivered by the source to the line is thus shown to be reduced by
the amount of the reflected power returning to the input terminals, in agreement with the
conclusion obtained by applying the principle of energy conservation to the multiply
reflected wave model of the system, the implication of the latter reasoning that the reflected
wave power is entirely absorbed in the source impedance without affecting the total output
of the signal source generator, is incorrect. This is easily seen by considering the simple
case of changing Zr from Z, to 2Z, on a lossless line whose length is an integral number of
half-wavelengths.

The multiply reflected wave model deals directly only with current or voltage waves, not
with power. The phasor voltage at the input terminals of a line is the sum of the phasor
voltages of the incident and reflected voltage waves at that point, and the relative phase of
these two voltages can have any value whatever, depending on the terminal load reflection
coefficient p, and the electrical length of the line gl in radians. For the circuit of Fig. 9-26,
when the power input to the line is reduced by the amount of any reflected wave power
reaching the input terminals, this will in general result from a change in both the output
power of the signal source, and the amount of power dissipated in\ the source impedance
Zs =2 0.

The eighth and final radial scale in Fig. 9-8 to be discussed is the “transmission loss
coeflicient” scale at the top left. This scale purports to give the numerical ratio (not in
decibels) of a line’s attenuation losses in the presence of reflected waves to the attenuation
losses in the absence of reflected waves, for the same power delivered to the terminal load
in each case. In fact, the scale is applicable with useful accuracy only to certain relatively
unimportant situations.

= H1-(C+DY) = Hl-|pfe™)
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The analytical basis of the scale is as follows:

For the circuit of Fig. 9-26, with Z, real, the power input to the transmission line when
Zr=1Zo i3 Py=}|Vs|’/Z,, as seen previously. The power reaching the load is Poe~2*, and
the power dissipated by attenuation is the difference between these two figures, i.e.
Py(1—e~2¢), When Zr + Z,, but produces a refiection coefficient pr at the terminal load, it
has been shown above that the power input to the line falls to Po(1 — |p,|?¢~**"), while the power
delivered to the load becomes Poe~2¢(1 —|p,|?). The difference is Po(1 — e 2%)(1 + |p |* €72,
which is the power dissipated in the line. The ratio of this to the power dissipated in the
first case is (1 + |p,|?e~2*). Since this quantity must always be greater than unity, there is
always an absolute increase of attenuation losses for the transmission line circuit of Fig.
9-26, when the terminal load impedance Zr is changed from Z, (real) to some other value,
with no alteration in the signal source. (This argument requires that Z, be exactly real,
which is the unusual case of the Heaviside line whose losses are equally divided between
distributed resistance and distributed conductance.)

To make the power delivered to the load have the same value in both of the above cases,
all quantities in the second calculation must be multiplied by 1/(1 —|p,[?). It then follows

from the definition that .
1+ |PT| e~

1- ‘Ple
The transmission loss coefficient scale in Fig. 9-3 is calculated from this equation, with
e~ =1, Apparently, therefore, the scale is directly applicable only to lossless lines, for
which the transmission loss coefficient is meaningless, or to impractical lines whose char-
acteristic impedance is identically real. Actually, for practical high frequency lines whose
characteristic impedance is nearly but not exactly real, the scale gives useful approximate
values of the factor by which line losses are increased in the presence of reflected waves in
two cases. The first is that of lines many wavelengths long, with terminal reflection
coefficient p,. and low total attenuation (al <€ 1). A second somewhat more general applica-
tion is to any half-wavelength segment of a line with fairly low losses per wavelength
(e/B € 1), p, being replaced in this case by the reflection coefficient p at the center of the
particular half-wavelength segment.

It will be noted that if the total line attenuation exceeds about 20 db, the transmission
loss coefficient becomes 1/(1 — |p,|?), independent of the line attenuation. There is no radial
scale in Fig. 9-3 for this result.

transmission loss coefficient = (9.25)

In using the concepts of reflection loss and transmission loss coefficient to make calcula-
tions on transmission line circuits having the form of Fig. 9-26, with finite line attenuation,
care must be taken not to count any of the loss components twice. When the terminal load
impedance Zr is changed from Z, to some other value, without changing Vs, it has been seen
that several changes in the power relations in the circuit occur simultaneously: (a) a reflected
wave is created, which constitutes a nondissipative reduction in the power delivered to the
terminal load; (b) the reflected wave suffers dissipative power loss in the attenuation of the

line; (c) the input power to the line is reduced; (d) the total attenuation losses in the line
are increased.

The analysis has shown that these different aspects of the situation are not independent.
The power reduction (@) is equal to the sum of the power loss (b) and the power reduction (c).
The extra dissipative power loss (d) is identical to the power loss (b).

Example 9.12.

In a transmission line circuit having the form of Fig. 9-26, the magnitude of the source voltage is
10.0 volts r.m.s. The source impedance is equal to the characteristic impedance Z; = 50 + j0 ohms. The
terminal load impedance Z, is 150 + jO ohms. The line has a total attenuation of 6.00 db and is 100 wave-
lengths long., Find the reflection loss, the power reaching the load, the total power losses in the line, and
the power supplied by the source to the line.
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The terminal load reflection coefficient is 0.5 + jO, so that |py] = 0.5. From the radial scale of Fig. 9-3,
the reflection loss is found to be 1.25 db. For the same circuit with Z; = Z, = 50 + j0 ohms, the input
power to the line is easily calculated as 0.500 watts, the power delivered to the load is 0.125 watts, and the
power dissipated in the line attenuation is the difference, or 0.375 watts. From the definition of reflection
loss, the power reaching the load when Z; = 150+ jO ohms is P, given by 10 log,, (0.125/Py) = 1.25.
The result is P, = 0.0937 watts, a reduction of 0.031 watts from the case Z; = Z, Referring to the
derivation of equation (9.25), the factor by which reflected waves increase line losses when Vg remains
constant is given by the numerator of the equation, which has the value 1.062 for the above data. Hence
the line losses with Zp = 150 + j0 chms are 0.375 X 1.062 = 0.398 watts, an increase of 0.023 watts
relative to the case Z; = Z;. The reduction in the power delivered by the source to the line is finally
0.081 — 0.028 = 0.008 watts which can also be calculated from 0.500 |pp|2e—4ot,

Solved Problems

9.1. Use the Smith chart to solve the “single stub matching” problem previously considered

in Problems 7.7, page 146, and 8.8, page 178.

The problem has two parts: ,

(a) To show that on a transmission line having negligible attenuation per wavelength there are two
locations in every half wavelength at which the real part of the normalized admittance is unity,
to find the locations of these points, and to determine the normalized susceptance on the line at
each of the locations.

(b) To find the length of lossless stub line with open circuit or short circuit termination whose nor-
malized input susceptance will be equal and opposite to the values found in (a).

On the transmission line of part (a) there will be some value of VSWR created by the connected
terminal load. If the circle for this VSWR value is drawn on a Smith chart oriented for admittance
coordinates (Fig. 9-27(a)), it intersects the unit normalized conductance circle in two points 4 and B,
which are symmetrically above and below the left hand horizontal radius of the chart. Since this
radius represents the location of all voltage minima on the line (it has the coordinate dy(myin) = 0),
the points at which the normalized conductance on the line is unity occur in pairs at locations
equidistant on either side of any voltage minimum. The distance of each such point from a voltage

VSWR circle
129
+x/A
b,
+b,
‘B
() (b)

Fig.9-27. Use of the Smith chart to solve the single stub matching procedﬁre.

(@) The stub may be placed at +z/A (WAVELENGTHS TOWARD
GENERATOR) or —z/» (WAVELENGTHS TOWARD LOAD)
from any voltage minimum in the standing wave pattern. The
normalized input susceptance of a stub placed at +x/A must be
+b,, and the normalized input susceptance of a stub placed at
—z/\ must be —b,,.

(b) Determination of the matching stub lengths, .

!, is for a stub with short circuit termination to be placed at +x/A;

l, is for a stub with open circuit termination to be placed at +x/:;

| 13 is for a stub with short circuit termination to be placed at —«/x;
ly is for a stub with open circuit termination to be placed at —xz/\.

—z/\
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minimum can be read directly from the chart, as +z/\ in Fig. 9-27(a). The normalized susceptance
coordinates of the two points are of equal magnitude but opposite sign, and are found as b, in
Fig. 9-27(a). To find the lengths of stub lines required to achieve the matching operation, confusion
is reduced if reference is made to a second Smith chart, Fig. 9-27(b), on which the normalized admit-
tances ¥, = 0= jb, have been located. By the processes described in Section 9.6, four possible
lengths of stub line with open circuit or short circuit termination are found to be solutions to the
problem, as indicated in Fig. 9-27(b). I; is the length of a stub line with short circuit termination
that could be connected at point 4; I, is the length of a stub line with open circuit termination that
could be connected at point 4; I, is the length of a stub line with short circuit termination that could
be connected at point B, and [, is the length of a stub line with open circuit termination that could
be connected at point B.

Because of the poor detail in the scale of “1 db steps” accompanying the commercially
printed Smith chart, graphical calculations on lossy transmission lines cannot be
made with as good accuracy as calculations for lossless lines. Create an appropriate
table that can be used in place of the scale.

From equation (9.11), if a transmission line section of length I and attenuation factor a is ter-
minated in a short circuit at d = 0, the magnitude of the reflection coefficient at the input terminals
will be |p] = e—2¢l, since the magnitude of the reflection coefficient produced by a short circuit is
unity.

If the input terminals of the transmission line section were connected to a slotted line section
of the same characteristic impedance and negligible losses, the VSWR on the slotted section would
be 1+ |p))/(A—|p|) = (1 + e—2)/(1 —e—20l) = cothal. If the transmission line section itself has
low attenuation per wavelength, the VSWR near its input terminals will have this same value.

Table 9.4 shows these values of |[o] and VSWR as functions of ol in decibels. Since |p| is the
linear radial coordinate of the Smith chart, the values of ol are exactly the values that would be read
from the “1 db steps” scale, reading radially inward from the periphery of the chart, at any value
of |p| on the chart. The table can therefore be used to solve all problems dependent on equation
(9.12), such as Example 9.7.

Table 94

lo| | VSWR | lol |[VSWR| ol | |o| |[VSWR| al ol | VSWR| af

db db db db
1.00 | inf. 0 741 670 {131 | 48| 285 {319 | 22 157 €.59
99 | 199 043 | 73 | 642 | 1.37 | 47| 2.78 | 3.28 | .21 1.53 6.79
98| 99 087 | 72| 615 | 143 | 46 | 271 | 337 | .20 1.50 7.00
97 | 66 132 | 71| 590 | 1.49 | 45 | 2.64 | 347 | 19 1.47 7.22
96 | 49 177 | 70 | 5.67 | 155 | 44 | 2.67 | 357 | .18 1.44 7.46
95 | 39 222 | 69| 545 | 161 | 43 | 251 [ 367 | 17 141 7.70
94 | 32 268 | 68| 526 | 1.67 | 42 | 2456 | 377 | .16 1.38 7.96
93 | 276 814 | 67| 5.06 | 173 | 41 | 239 | 387 | .15 1.35 8.24
92 | 240 360 | 66 | 4.88 | 1.80 | .40 | 2.33 [ 3.98 | .14 1.32 8.564

a1 21.2 407 | 66 | 4.72 | 1.87 | .39 | 2.28 | 4.09 | .13 1.29 8.86
90 19.0 466 | .64 | 456 | 1.94 | .38 | 2.23 | 4.20 | .12 1.26 9.21
89 17.2 b1 63 | 441 | 2,01 | 37| 2.18 | 4.31 | .11 1.24 9.69
.88 16.7 .56 62 | 427 | 208 | 36 | 213 [ 443 | .10 1.22 10.0
.87 144 61 61| 413 | 215 ] 36 | 2.08 |4.55 | .09 1.20 104
\.86\& -] 86 B0 ) 400 1222 | 34 203 | 468 | .08 117 10.9
.85 12.3 1 569 | 3.87 | 229 | 33 | 1.99 |4.81 | .07 1.15 11.5
84 11.5 .76 b8 | 8.76 | 236 | 32 | 1.95 [ 494 | .06 113 122
83 10.8 .81 57| 366 | 244 | 81| 191 | 5.08 | .05 1.10 13.0
.82 10.1 86 .56 | 8566 | 2562 | .30 | 1.87 |b522 | .04 1.08 14.0
81 9.63 91 .66 | 346 | 260 | .29 [ 1.83 | 5.37 | .03 1.06 15.2
.80 9.00 .96 .54 | 336 (268 | 28 [ 1.79 | 552 | .02 1.04 17.0
.79 852 | 1.01 53 | 826 ;276 | 27| 1.75 | 5.68 | .01 1.02 20.0
8 8.10 | 1.07 52| 817 (284 | .26 | 1.71 | 5.85 | .005 1.01 23.0
7 7.90 | 113 51| 3.08 | 292 | .26 | 1.67 | 6,02 | .0025 | 1.005 | 26.0
.76 733 | 1.19 50| 3.00 | 3.01 | 24| 1.63 | 620 | .0010 | 1.002 | 30.0
5 7.00 | 1.25 49| 292 | 310 | 23| 1.60 | 6.39 | .0005 | 1.001 | 33.0
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9.3.

9.4.

9.5.

A transmission line is 2.00 wavelengths long at its frequency of operation. It is
terminated in a normalized impedance 0.25 — j1.80. What is the normalized input im-
pedance of the section if its total attenuation is (@) zero, (b) 1.0db, (c) 3.0db,
(d) 10.0db?

The normalized terminal load impedance is located in the fourth quadrant of the Smith chart,
fairly close to the perimeter, at a VSWR of approximately 20.

To find the normalized input impedance of the section, the first motion required is 2.00 WAVE-
LENGTHS TOWARD GENERATOR on a circle of constant VSWR. This results in returning
identically to the original point. The second motion required is to move radially inward by the
indicated amount of attenuation on the “1 db steps” radial scale of the Smith chart. This second
motion can be performed more accurately using Table 9.4, transferring between chart and table via
either reflection coefficient magnitude or VSWR.

The resulting normalized input impedances for the transmission line section are (a) 0.256 — j1.80,
(b) 0.68 — j1.62, (c) 1.11 —;j1.06, (d) 1.08 — jO.17. A progression toward the value 14 jO is evident,

and that would be the graphically determined answer if the total attenuation of the section exceeded
25 or 30 db.

There is a VSWR of 1.25 on a low loss transmission line. Determine the maximum
phase angle possible for the impedance at any point on the line.

Inspection of the Carter chart of Fig. 9-13 and 9-24 shows that the maximum phase angle of
the normalized impedance or admittance that can exist on a low loss transmission line for any
specific value of VSWR occurs at points where the normalized impedance magnitude is unity. At
such points the reflection coefficient phase angle is =90°. With a VSWR of 1.25, the normalized

impedance at such points is found from the Smith chart to be 0.98 = j0.21, and the phase angle is
tan—1(%+0.21/0.98) = +12.0°.

A resistive load of 800 + j0 ohms is matched to a parallel wire transmission line for
which Z, = 200 + j0 ohms by a quarter wavelength transformer consisting of a
quarter wavelength section of lossless parallel wire transmission line having a char-
acteristic impedance of 400+ jO0 ohms. At the design frequency the VSWR on the
200 ohm line is less than 1.01. Use the Smith chart to determine the percent by which
the frequency can be varied above and below the design value without causing this
VSWR to increase above 1.80.

The normalized value of the terminal load impedance relative to the characteristic impedance
of the transformer section of line is 2.00 + j0, which is assumed not to vary with frequency. This is

renormalized
transformed
impedance o

(@) : 9 b)
VSWR = 1.30-"

Fig.9-28. Determining the bandwidth of a quarter wavelength transformer
matching a constant resistive load to a low loss transmission line,
for a specified maximum value of VSWR,

(a) The locus of the impedance at the transformer input terminals,
normalized relative to the characteristic impedance of the trans-
former section.

(b) The transformer input impedance renormalized relative to the
characteristic impedance of the main transmission line, shown
with the VSWR specification.
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point A on the Smith chart of Fig. 9-28(a). Transformation of this normalized impedance over the
quarter wavelength of the transformer at the design frequency produces the point B at 0.50 + jO,
which is the input impedance of the transformer section normalized relative to the characteristic
impedance of the transformer section. At frequencies above and below the design frequency the
input impedance of the transformer section normalized in this way will lie respectively above or
below the point B, on the constant VSWR circle through 4 and B, part of which is shown in the
figure. When any normalized impedance on this circle is denormalized with respect to the character-
istic impedance of the transformer section (by multiplying by 400 + j0 ohms) and then re-normalized
with respect to the main transmission line (by dividing by 200 + jO ohms), the resulting normalized
value when plotted on a separate Smith chart determines the VSWR on the main transmission line
at the frequency corresponding to the original point. The locus of such denormalized re-normalized
values for a range of frequencies above and below the design frequency is shown on the Smith
chart of Fig. 9-28(b). It passes through the center point of the chart at the design frequency, in
agreement with the VSWR on the 200 ohm line being less than 1.01 at that frequency.

Also shown on Fig. 9-28(b) is the circle for constant VSWR = 1.30. This intersects the plotted
locus line at normalized impedance values of 1.02 = j0.27. These values transform back to the
chart of Fig. 9-28(a) on multiplying by (200 + 50)/(400 + 50), and become the points 0.51 = j0.135
on the VSWR = 2.00 circle for the transformer section of line. Drawing radial lines through these
points in Fig. 9-28(a) (not shown) indicates that the normalized load impedance 2.00 + jO transforms
to these values at the input of the transformer section for transformer section lengths of 0.278 and
0.222 wavelengths respectively. The transformer section which is 0.250 wavelengths long at the
design frequency has these lengths at 111% and 89% respectively of the design frequency. The total
circuit therefore has a bandwidth of +11%, usually given as 22%, within which the VSWR on the
main transmission line does not exceed 1.30. For a lower maximum VSWR specification the band-
width would be smaller,

Evaluate tanh (0.82 — j2.14) using the Smith chart.

From equation (7.20) the normalized input impedance of a transmission line section of length [
with short circuit termination is Z;,,/Zy, = tanh (al + jgl). The graphical procedure for finding the
normalized input impedance of such a line section is to start from the short circuit point Z/Z, =0,
move clockwise on the periphery of the chart gl/2r wavelengths on the scale WAVELENGTHS
TOWARD GENERATOR, and then move radially inward from the periphery through 8.686al
decibels on the “1 db steps” scale.

For this problem ol = 0.82 nepers, Bl = 2.14 rad, and the answer is Z;,,/Z,.

From the data, BI/2r = 0.340 wavelengths and ol = 0.82 X 8.686 = 7.12 db. Performing the
corresponding motions determines a point in the fourth quadrant of the Smith chart, for which
Z/Zy = 1.10 — j0.40. Hence tanh (0.82 —j2.14) = 1.10 — j0.40 with an accuracy of about 0.01 in
each component.

Inspection of the process shows that the real part of the hyperbolic angle fixes limits on the
range of both components of the hyperbolic tangent. When the real part of the angle has unit value,
the real part of the hyperbolic tangent is confined between about 0.75 and 1.3, and the imaginary
part cannot lie outside the range *+0.35. When the real part of the angle exceeds about 5, the hyper-
bolic tangent is 1.00 + jO, with an accuracy better than 1%, for all values of the imaginary part
of the angle.

Evaluate cot 133.2° using the Smith chart.

The basis for the calculation is the equation for the normalized input impedance of a length !
of lossless transmission line terminated in an open circuit, Z;,/Z, = 0 — j cot Bl. The angle in
degrees must be converted to radians, then divided by 2= to become a line length in wavelengths.
Thus I/A = 183.2(x/180)/27 = 0.370.

Starting from the open circuit point on the Smith chart (Z/Z, = infinite} and moving clock-
wise 0.370 wavelengths on the periphery (lossless line) finds a normalized input impedance 0 + j0.935
in the second quadrant. Hence cot133.2° = —0.985, with an accuracy of about 4%.

A “triple stub tuner” is a standard device used in many forms of high frequency
transmission systems to perform the function of matching a load to the system. It
is an alternative to the single stub matching process, and differs in employing three
variable-length stubs at fixed locations in the system instead of a single stub variable
in both length and location. In systems such as coaxial lines it has obvious mechanical
advantages.
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Fig. 9-29 represents a triple stub tuner
diagrammatically, showing three stubs of
variable lengths l;, Iz and I, with equal spac-
ings « between adjacent stubs. The length d ®
of the stub lines is generally adjustable
by means of movable short -circuiting
conductors.

Show that if the distance x between cen-
ter lines of adjacent stubs is 3A/8, and the by
stub lengths I;, I and Is are variable over at
least one half-wavelength, a triple stub tuner
can match any impedance or admittance,
connected at one end of it, to the transmis- AB CD EF
sion system of which the tuner’s longitudinal
section is a part, at the other end. Assume

A ls

that all parts of the system, including Fig.9-29. Schematic diagram of a triple
the stubs, have the same -characteristic stub tuner.
impedance.

In Fig. 9-29, reading from the signal source side of the triple stub tuner to the terminal load
side, A,B and C,D and E,F are three pairs of points such that the two points of each pair are
located at infinitesimal distances on either side of the points of connection of the three variable-
length stub lines. This means that there is no measurable length of transmission line between the
points A and B, but that adjustment of the length I, of the left hand stub line can cause the nor-
malized susceptance at point A to differ from that at point B by any amount of either sign. Similar
statements apply to the other two pairs of points. Point C is 3/8 wavelengths from point B, and
point ¥ is 3/8 wavelengths from point D. The locations of the signal source and terminal load are
immaterial.

Since the stub lines are invariably connected in parallel with the main transmission line, as is
also the case in single stub matching, reference is made to the Smith chart in admittance coordinates.

If the triple stub tuner correctly performs its function of matching a terminal load admittance,
connected at the right hand end, to the transmission line at the left hand end, the normalized admit-
tance at the point A must have the unique value 1+ j0. At the point B any normalized admittance
of the form 1 =* jb,, where b, is any magnitude of normalized susceptance, can be brought to the
value 1+ j0 at the point A by adjustment of the stub length /;,. The unit conductance circle on the
Smith chart of Fig. 9-30(a) is therefore the locus of all matchable admittances at the location B.

line locus of all
matchable normalized
admittances at B

line locus of all
matchable normalized
admittances at C

area locus of all
non-matchable normalized
admittances at E

area locus of all
non-matchable normalized
admittances at D

() (d)

Fig.9-30. Loci of matchable and non-matchable normalized admit-
tances at various locations in a triple stub tuner.
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Any normalized admittance at location B transforms to a value at location C that is found by
moving 3/8 wavelengths counterclockwise (toward load) along a circle of constant VSWR. The
entire circle locus of matchable normalized admittances at B therefore transforms to another circle
3/8 wavelengths counterclockwise, as shown in Fig. 9-30(b), which is the locus of all matchable
normalized admittances at C.

The graphical process of adding normalized susceptance to the normalized admittance value at
any point on the Smith chart consists of moving along a circle of constant normalized conductance.
Thus if the normalized admittance at point D had the value y,(D,) in Fig. 9-30(b), the adjustment of
stub length [, could change it at point C to a value on the locus of matchable normalized admittances
at C. If the normalized admittance at D had the value y,(D,) in the figure, on the other hand, no
value of I, could achieve this result. Hence the area within the normalized conductance circle tangent
to the circle which is the locus of all matchable normalized admittances at the point C is the locus
of all non-matchable normalized admittances at the point D, as indicated in Fig. 9-30(c). By the
same transformation process used between points B and C, the shaded circle shown in Fig. 9-30(d)
is the locus of all non-matchable normalized admittances at the point E.

The conclusion of the proof of universality for this particular triple stub tuner is that if the
normalized admittance presented at location F' by the connected terminal load lies outside the shaded
circle of Fig. 9-30(d), then stub length I3 could be adjusted for zero normalized input susceptance
and the matching process could be completed by adjustment of the stub lengths I, and I,. If, however,
the normalized admittance presented at the point F lies inside the shaded circle, stub length I; can
always be adjusted to produce at point E a normalized admittance lying outside the shaded circle,
and the matching procedure can be completed by adjustment of stub lengths I, and I, as before.
All normalized admittances at point F' can therefore be matched to the transmission line at point A.

It will be noted that for any particular value of the normalized admittance at point F' there is
no unique solution to the problem. Once stub length I5 has been set at an appropriate value, however,
only two specific settings are possible for stub length [,, and for each of these a unique setting of
! is required.

Triple stub tuners are invariably adjusted by trial and error, not by calculation, and the pur-
pose of this problem is to demonstrate that matching can always be achieved if a tuner is used whose
design meets the conditions specified.

A review of the operations undertaken in the various steps of Fig. 9-30 will show clearly that
if the separation of adjacent stubs in a triple stub tuner were any integral number of quarter
wavelengths, the matching procedure would not work, since the two outer stubs would then be
effectively in parallel. Spacings near 3/8 wavelength are often a good compromise between mechani-
cal convenience and electrical performance. In principle, spacings of any odd multiple of 1/8 wave-
length are satisfactory and variations of a few percent from these values are not serious. Large
values of the stub separation in wavelengths have the disadvantage of a reduced operating
bandwidth.

Supplementary Problems

Determine the range of reflection coefficient phase angles ¢ that can be produced by any normalized
impedance of the form =z, = 5.0 = jz,, where 0 <z, < «, Ans. —11.6° < ¢ < +11.5°,

What value of normalized admittance of the form A — jA will produce a reflection coefficient of
phase angle 45°? Ans. y, = 0.365 — ;0.365.

What value of normalized admittance of the form A + jA will produce a reflection coefficient of phase

angle 45°?7

Ans. This is not possible. All admittances A 4 jA are in the lower half of the Smith chart, while
all reflection coefficients of phase angle 45° are in the upper half.
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A low-loss transmission line of characteristic impedance 50 4 70 ohms is terminated in a resistance
of 150 ohms in series with a capacitive reactance of 30 ohms.

(a¢) What is the VSWR on the line?
(b) If the resistance component can be varied from 20 ohms to 500 ohms without changing the

reactance component, what is the lowest possible VSWR and what value of resistance will
produce it? Ans. (a) About 8.18, (b) About 1.77 with a resistance of 58.5 ohms,

Derive equation (9.7) from equation (9.2), page 186.

Use the Smith chart to show that the normalized input impedance of any transmission line section
with open circuit termination is numerically equal to the normalized input admittance of the same
transmission line section with short circuit termination, and that the normalized input admittance
of any transmission line section with open circuit termination is numerically equal to the normalized
input impedance of the same transmission line section with short circuit termination.

Use the Smith chart to verify the results of Examples 8.1 and 8.2, page 166.

The normalized admittances 0.5+ 7V/3.75, 1.0 +jV3.0, and 1.5+ jV/1.75 all have the same nor-

malized magnitude of 2.0. Which produces the lowest VSWR when connected as terminal load

admittance on a transmission line?

Ans. The last of the three. The Carter chart shows directly that for all terminal load impedances
or admittances of any given normalized magnitude value, the lowest VSWR will be produced
by the one with the smallest phase angle.

A transmission line is terminated in a normalized conductance of 3.75 in parallel with a variable
capacitor whose normalized susceptance at the operating frequency is variable from 0.20 to 5.0.
What range of values of dy(min)/A results when the capacitive susceptance is varied over its full
range? .

Ans. 0.0025 at b, = 0.20, to a maximum of 0.0215 at b, = 3.7, diminishing to 0.0205 at b, = 5.0.

Use the Smith chart to show that if a lossless transmission line is terminated in a load impedance
that produces a reflection coefficient of magnitude 0.44, the maximum impedance at any point on the
line has a normalized value of 2.57 + j0, and that the maximum normalized reactance component of
the impedance at any point on the line is = 1.08. Show that on the same line the maximum nor-
malized admittance at any point is 2.57 + 70 and the maximum normalized susceptance is + 1.08.

Use the Smith chart to verify the answers of Problems 7.3, 7.4, 7.5 and 7.9.

Use the Carter chart to demonstrate that the maximum and minimum admittance and impedance
values on any transmission line of low attenuation per wavelength are always purely resistive,
regardless of the terminal load connected to the line, and that they occur at minima or maxima of
the voltage or current standing wave patterns.

Starting from equation (9.1) and using the notation of equation (9.2) with z, = r,+ jz, = |2,|/0,
show that the locus on the reflection coefficient (u,v) plane of all points having any constant value
of |z,| is a circle with center at u = (|z,/2 + 1)/(|z4/2—1), v =0, and radius 2|z,|/|(|z,|> — 1)|, and
that the locus on the same plane of all points having any constant value of ¢ is a circle with center
at u=0,v=—cots, and radius cosecd. These are the data for drawing the Carter chart of
Fig. 9-13.

A low-loss transmission line has a characteristic impedance of 50 + jO ohms. When three different
terminal load impedances are separately connected to the line, the resulting standing wave patterns
on the line are described respectively by the following data:

(a) VSWR = 2.35, dy(min)/N = 0.395; (¢) VSWR = 2.35, dy(min)/A = 0.062

(b) VSWR = 2.85, dy(mmn)/A = 0.271;

What will happen to the VSWR value in each case when a 50 ohm resistor is connected in

parallel with the terminal load impedance?
Ans. (¢) Remains unchanged at 2.35; (b) reduced to 1.44; (c) increased to about 2.9:
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There is a VSWR of 3.0 on a lossless transmission line. (a) Where, relative to any voltage minimum
on the line, might stub lines be placed to remove the standing waves on the signal source side of the
stub? (b) What lengths of stub lines with either open cireuit or short circuit termination are required
to perform the matching operation, if the characteristic impedance of the stub lines is the same as
that of the transmission line itself?

Ans. (a) In the notation of Fig. 9-27(a), the locations A and B at which matching stubs might be
placed are respectively 0.083 wavelengths on the generator and load sides of any voltage
minimum on the line. (b) The normalized susceptance at point A is —1.15. A stub with short
circuit termination connected at A should be 0.386 wavelengths long to have a normalized
susceptance of +1.15 to cancel this value. With open circuit termination the stub required
at A should be 0.136 wavelengths long. At point B, required stub lengths are 0.114 wave-
lengths with short circuit termination and 0.364 wavelengths with open circuit termination.

The Smith chart lends itself to direct construction
of phasor diagrams, from which graphical evalua-
tion can be made of phase and amplitude relations
between harmonic voltages and currents at any
point on a transmission line.

In Fig. 9-81, if the left hand horizontal radius B D
of the chart (the directed line segment A) is desig- A
nated as a reference phasor 1+ j0, representing in
normalized form the phasor value Vie~7* at any
coordinate z on a transmission line of the harmonic
voltage wave traveling in the direction of increas-
ing 2, then the directed line segment B, joining the
center of the chart to the point on the chart identi-
fied as associated with the coordinate z, represents
the phasor value V,e* 7% at z of the harmonic voltage
wave traveling in the direction of decreasing z. This
follows from the fact that A = 1/0 and B = |p|/¢ Fig.9-31. A phasor diagram constructed
in the reflection coeflicient plane. on the Smith chart.

The directed line segment C is then the total phasor voltage V(z) at z, normalized relative to
Vle‘".

Show that the directed line segment D is the phasor value of the current I(z) at coordinate z,
normalized relative to (V;/Zy)e~7%, and that the acute angle between the extended line segments C
and D is the phase angle of the normalized impedance Z/Z, at coordinate 2, being positive in the
upper half of the chart and negative in the lower half. This makes it possible to measure the phase
angle of the normalized impedance at any point on the Smith chart with a protractor.

Show that C/D = (1+p)/(1—p) and note the result of substituting for p from equation (9.1),
page 185.

The phasor diagrams of Sections 8.9 and 4.12 can be drawn on the Smith chart in the manner
of Fig. 9-31, after suitable normalization.



Chapter 10

Resonant Transmission Line Circuits

10.1. The nature of resonance.

Any passive lumped element linear n-port electric circuit that contains at least one
inductor and one capacitor can exhibit the important phenomenon of resonance, if the
resistors in the circuit do not introduce excessive dissipation. Experimentally, the occur-
rence of resonance in a circuit is investigated by observing the variation with frequency of
some impedance, admittance, or hybrid parameter of the circuit, such as those described
for the special case of two-port networks in Section 7.7, page 140. When the magnitude
of the measured parameter passes through a maximum or a minimum at some frequency,
and its phase angle changes sign at or very close to the same frequency, resonance is the
most likely explanation. The diagnosis is confirmed if the circuit shows a decaying oscil-
latory response at the same or nearly the same frequency when excited by a discontinuous
signal such as a voltage step.

The principal practical applications of resonant circuits exploit the frequency sen-

sitivity property, in filter networks, or the oscillatory response property, in harmonic signal
generators.

A lumped element circuit containing a single inductor and a single capacitor has just
one resonant frequency, for measurements made at any prescribed pair of terminals. For
a transmission line circuit consisting of a length of low-loss line with low-loss terminations,
on the other hand, the uniform distribution of inductance and capacitance along the line
produces the distinctly different result that the circuit has an infinite series of resonant
frequencies, which under certain conditions may be quite precisely integral multiples of a
lowest or fundamental frequency.

In the frequency range from a few tens of megahertz to several gigahertz, resonant
transmission line sections are widely used in amplifiers, oscillators, filters, etc., because
their quantitative resonant properties, even for simple and inexpensive types of trans-
mission line, can be far superior to those of lumped element circuits in the same frequency
range. At frequencies above a few gigahertz the same functions are performed more
efficiently by cavity resonators.

10.2. The basic lumped element series resonant circuit.

The resonant properties of transmission line circuits are best appreciated through their
analogies with the familiar resonant properties of lumped element resistance-inductance-
capacitance circuits. A brief review of the latter will therefore be given to provide the
notation and context in which to understand the former. For reasons stated in earlier

chapters the analysis is presented in the radian frequency domain rather than the complex
frequency domain.

215
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The simplest analytical expression for resonant

R
behavior in a lumped element circuit is obtained °_IV\7\/__

from the circuit model of Fig. 10-1, consisting of
an ideal resistor, an ideal inductor and an ideal
capacitor in series. The elements are ideal in that

each embodies only a single circuit property, and S
in the assumption that the value of each is inde- °_\M,°\/—J
pendent of frequency or signal strength.

— C;

Fig.10-1. Lumped element series resonant

The input impedance of the circuit of Fig. 10-1 circuit consisting of an ideal re-
is . sistor R, an ideal inductor L, and
Zmp = R + jloLs—1/(«Cs)] (10.1) an ideal capacitor C, in series.

The use of a subscript on R, L and C serves as a reminder that the quantities are lumped,
and are not the distributed circuit coefficients of transmission line theory. The specific
subscript s refers to the elements being in series.

The radian resonant frequency «_ of any resonant circuit is defined to be the radian fre-
quency at which the input impedance (or other observed variable) is real. Hence for the
circuit of Fig. 10-1 o L, = 1/(»,C,) and

o, = 1/yL,C, (10.2)
The resonant impedance Z, of the circuit, defined as the impedance at the resonant frequency,
18 Z, = R, + 10 (10.9)

and in this particular case the resonant impedance is identical with the minimum value of
the input impedance magnitude |Znp|.

Equation (10.1) can now be written
Z,., = Z,1+ j(oL/R)(wlo,~ ole)] (10.4)

The analysis of a practical high frequency resonant circuit is of interest only in a very
narrow range of frequencies centering around «_. It is therefore appropriate to express the
angular frequency variable o a8 o =, + Ao, ie. in terms of its deviation Ao from the
resonant angular frequency. The coefficient o L /R, plays such a fundamental role in the
analysis of resonant circuits that it has become universal practice to designate it by the
symbol Q. or Q. It is sometimes called the ‘“quality factor” of the circuit, but more often
is referred to simply as the @Q-value or the resonant Q-value for the circuit. Introducing
Q- and Ao into equation (10.4) and expanding the final term by the binomial theorem gives

Z,, = Z{1 + j2Q (Aw/w)[1 — $(Aw/w) + $(Ae/0)? — $(Ao/e ) + - - -]} (10.5)

For frequency deviations from resonance not exceeding one percent, the reactive com-
ponent, the phase angle and the magnitude of Zi,, can all be obtained with better than 3%
accuracy from the approximate equation

Z., = Z[1+2Q,(a0/0)] (10.6)
v The @ value of a resonant circuit at its resonant frequency is a mesasure, exact or approxi-
mate, of all the important aspects of the circuit’s resonant behavior.

If a constant harmonic voltage at the resonant angular frequency o, having a reference
phasor value Vi, + 70, is connected to the input terminals of the circuit of Fig. 10-1, it is
evident from equation (10.1) that the resulting phasor current will be Vinp/Rs+50. This
current flows through the inductor L, and the capacitor C,, whose impedances at the resonant
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frequency are jo L, and —j/(,C,) respectively. The phasor voltages across the two elements
are therefore respectively jo L)V, /R =3jQV, , and —jV, /(oC.R,)=—jQ,V,, making
use of equation (10.2). Thus the magnitude of the phasor voltage across each of the reactive
components of the series circuit at the resonant frequency is exactly Q. times as great as
the magnitude of the phasor input voltage to the circuit. Since @, > 1 for circuits of prac-

tical interest, there is a “resonant rise of voltage” in the circuit.

If the harmonic voltage of constant magnitude Vi, connected to the terminals of the
circuit of Fig. 10-1 is varied in frequency, there will be a radian frequency », above resonance
at which Zi,, = Z,(1+71) and a radian frequency o, below resonance at which Zin, =
Z,(1—j1). Simple calculation shows that at each of these frequencies the input power to
the circuit will be one half of the input power at the resonant frequency. They are there-
fore generally known as the “half power frequencies” or the “8 db frequencies” of the circuit.
The difference between the two frequencies is a measure of the “sharpness” of the resonance
behavior of the circuit, and when expressed in hertz is commonly called the “bandwidth”
or the “3 db bandwidth” of the circuit.

From equation (10.4) it is easily found that the difference between the 3 db angular fre-
quencies o, and o, is related to the resonant @ value and the resonant angular frequency o, by

the simple and exact expression
0, T e, = u)r/QT (107)

The frequency deviations of o, and o, from «, are not equal in magnitude, and are not given
by any comparably simple expressions. (See Problem 10.7.)

It follows from equation (10.7) that the 3 db bandwidth of the circuit in hertz, designated
Afs, is given by Afs = £4Q, (10.8)
where f, = o ./2n is the resonant frequency of the circuit in hertz.

With an rms phasor input voltage Vi + O at the resonant frequency o, applied to the
input terminals of the circuit of Fig. 10-1, the rms phasor input current is Iinp = Vinp/ R, + 7O.
The maximum instantaneous energy stored in the magnetic field of the inductor L, then
occurs at the peak value of the harmonic current and is given by ﬁ’x., = 3L ?inp)2 =
3L«(V2 Vinp/Rs)2. The average power dissipation in the circuit is Pr, = (linp)?Rs = (Vinp)*/Rs.
From the defining relation Q@ = o L /R_ it follows directly that WLSIPR,S =Q,lo,.

This is a particular instance of a general expression for the resonant @ value of an
circuit or system, :
Q, = 2 maximum instantaneous energy stored during cycle (10.9)
oo total energy dissipated during cycle ’

where it is understood that the excitation is harmonic and at the resonant frequency.) Since

(10.9) makes no reference to specific elements, it can be regarded as a very basic physical
definition of resonant @ value, applicable to any type of system.

If in the circuit of Fig. 10-1 the capacitor is initially charged to voltage V, from a d-c
source and the input terminals of the circuit are then short circuited, the resulting well-
known “natural” response of the circuit is in the form of a damped oscillatory current

i(t) = (Vy/o,L,) e~ ¥%R/I ginw t (10.10)

where o, = V1/(LsCs) — (3Rs/Ls)? (10.11)
is the natural angular frequency of oscillation. Using (10.2) and the definition of @,, (10.10)

can be written
i(t) = Ie~“r2ert gin[o\/1 — 1/(2Q,)*] (10.12)
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Equation (10.12) shows that the resonant Q-value of the basic series resonant ecircuit
determines the fractional deviation of the circuit’s self-oscillation frequency from its defined
resonant frequency, and in combination with the angular resonant frequency o, determines
the damping factor of the natural oscillations.

A physical implication of equation (10.12) is that, after excitation to the same initial
signal level at the same resonant frequency, a high Q circuit will “ring” longer than a low
@ circuit. This governs the design of microwave “echo” cavities.

10.3. The basic lumped element parallel resonant circuit.

Of more practical importance than the series
resonant circuit of Fig. 10-1 is the parallel reso- o
nant circuit whose input impedance magnitude
passes through a maximum at or near the resonant
frequency at which it is real. The circuit of Fig. R, L —]—
10-2 is the simplest representation of a parallel ’
resonant circuit, and is the dual of the circuit of
Fig. 10-1. It is evident that for this circuit the

resonant frequency o, at which the input impedance o=
is real is identical W1th the frequency at which the
input impedance magnitude is a maximum, and  Fig.10-2. Lumped element parallel resonant
that the reactance of the inductor and capacitor cfr:;“t I‘éms's"“.‘g °lf .a’:i ideal T
are also equal in magnitude at this same frequency. smd T anl 1dea’ Inductor Ly
Thus ;n uarll ideal capacitor C, in
v arallel,

= VL, (10.19)

and Z =R +j0 (10.14)

In the admittance notation appropriate to this circuit, the methods used in Section 10.2

produce the result .
Yinp = Y'r [1 + ]Qr(“’/mr - mr/‘”)] (10'15)

where Y =1/Z =1/R +j0, and
Q, = R /(L) (10.16)

Equation (10.15) is similar in form to (10.4). Correspondingly similar forms of equa-
tions (10.5) and (10.6) can be written directly, and equations (10.7), (10.8), (10.9) and
(10.12) are then found to be applicable to the parallel resonant circuit without change.

Practical lumped element circuits deviate from the ideal representations of Fig. 10-1
and 10-2 in several ways. Inductors have internal distributed capacitance between wind-
ings. The plates and leads of capacitors have distributed inductance. All conductors are
subject to skin effect. Losses in capacitor dielectrics and inductor magnetic cores vary
with frequency. There may be radiation losses or various forms of coupling to the surround-
ings. The diverse physical forms of lumped elements prohibit any general analysis of these
phenomena. Except in extreme cases, however, the fractional errors they cause in calcula-
tions using equations (10.1) to (10.16) are only of the order 1/Q7, provided the values of
R,, L, and C,, or R,, L, and C, used in the equations are the effective values of these quan~
tities at the resonant frequency. Subject to this stipulation, the errors are negligibly small
in circuits of high @Q-value, and the equations establish meaningful concepts, relations and
notation for use in the analysis of resonant transmission line sections.
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10.4. The nature of resonance in transmission line circuits.

Before proceeding to a formal analysis of transmission line resonant circuits it is
instructive to consider a few simple situations and suggestions.

Example 10.1.

On a Smith chart show that if a length I; of low-loss high-frequency transmission line with short circuit
termination has an inductive input reactance, the reactance increases with increasing frequency. Show
that if a length I, of the same line with short circuit termination has a capacitive input reactance, the
reactance decreases with increasing frequency. What is the total length I, =+ 1, of two such low-loss
high-frequency transmission line sections with short circuit termination, whose input reactances (or sus-
ceptances) are equal in magnitude but opposite in sign?

Referring to the Smith chart of Fig. 10-3, any
point A on or near the periphery of the upper half
of the chart represents the normalized input imped-
ance of a length I, of transmiission line with short
circuit termination and low total attenuation, the
normalized impedance having a small real part and
a positive imaginary part. Since the characteristic
impedance of a “low-loss high-frequency” line is to be
assumed real, the input reactance of the line will be
inductive if 0 < [,/A < 0.25.

The angular location of the point A, being pro-
portional to ;/\, varies with the angular frequency o
according to ljw/(27v,). Since v, is virtually inde-
pendent of frequency for the type of line specified,
the point A for a fixed line length l; will move clock-
wise as the frequency rises, indicating that the input
reactance of the line section increases with increasing
frequency. The line section is therefore analogous to
a lumped inductor, but with the difference that the
gection’s input reactance is not in general directly
proportional to frequency.

Applying the above reasoning to a point B, on
or near the periphery of the lower half of the chart,
shows that the input impedance of a length I, of low-
loss high-frequency transmission line with short
circuit termination has a capacitive reactance if
0.25 < I,/A < 0.50, and that the capacitive reactance
decreases with increasing frequency. The line section
is therefore analogous to a lumped capacitor, but with
the difference that the section’s input reactance is not
in general reciprocally proportional to the frequency.

Fig.10-3. Point A on the Smith chart marks the

normalized input impedance of a low-
loss transmission line section with short
circuit termination whose length in
wavelengths [;/\ is less than 0.25. Point
B marks the normalized input imped-
ance of a similar line section whose
length in wavelengths is between 0.25
and 0.50.

It is clear that if the reactance magnitudes are equal at pomts A and B, the points are symmetrical
relative to the central horizontal axis of the chart, and !;+ 1, = /2. Hence the transmission line circuit
of Fig. 10-4 has at least one of the attributes of a series resonant circuit at the terminals X-X, that the
input reactance is zero at the frequency for which the circuit length is one half wavelength. Furthermore,
as the frequency is increased or decreased from this value, the input reactance becomes inductive or
capacitive, respectively, in analogy with the behavior of the circuit of Fig. 10-1.

[r: \2 L A2

|

[ 1 ? ]

XX
Fig.10-4. Around the frequency for which it is
one half wavelength long, the normal-
ized input impedance at terminals X-X
of a low-loss transmission line circuit
with short circuit terminations at each
end varies with frequency in the same
manner as the input impedance of a
lumped element series resonant circuit
in the vicinity of resonance.

X

Fig.10-5. Around the frequency for which it is one

half wavelength long, the normalized
input impedance at terminals X-X of a
low-loss transmission line cireuit with
short circuit terminations at each end
varies with frequency in the same man-
ner as the input impedance of a lumped
element parallel resonant circuit in the
vicinity of resonance,
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Similarly, the transmission line circuit of Fig. 10-5 above has zero input susceptance at the terminals
X-X, at the frequency for which the circuit length is one half wavelength, and as the frequency is increased
or decreased from this value, the input susceptance becomes capacitive or inductive, respectively, in analogy
with the behavior of the circuit of Fig. 10-2.

It is easily seen that the above statements continue to apply if the circuits of Fig. 10-4 and 10-56 are
any integral number of half wavelengths in length, and that the terminals X-X in either case may be
located anywhere along the length of the line.

Example 10.2.

A low-loss high-frequency transmission line has a distributed inductance of L henries/m and a dis-
tributed capacitance of C farads/m. For a length ! m of the line the total inductance L, is therefore given
by L, = Ll, and the total capacitance C, is given by C; = Cl. At the frequency at which a lumped element
circuit having inductance L, and capacitance C; would be resonant, what is the length of the transmission
line section in wavelengths?

Equation (10.2) or (10.13) gives the required angular frequency as « = 1/VC,L;. The phase velocity
on the low-loss high-frequency line is v, = 1/VLC. 1t follows directly that « = v/l and U\ =
1/(27) = 0.169. Since this result is independent of the nature of the terminations connected to the line
section, and since it disagrees with the result of Example 10.1, it must be concluded that the resonant

frequencies of transmission line circuits are not related in any significant way to the total inductance and
total capacitance of the circuits.

Example 10.3,

Using a Carter chart, show that as the frequency increases continuously from zero, the magnitude of
the normalized input impedance of any low-loss transmission line section with short circuit termination also
increases continuously from zero, until it reaches a maximum value at a frequency f, for which the line
length is very close to one quarter wavelength, that it then diminishes to a minimum value at a frequency
fa = 2fy, rises to another maximum value at f3 = 8f,, and continues to oscillate in this manner indefinitely
with increasing frequency. Show also that the impedance magnitudes at the maxima and minima are
respectively very large and very small compared to the characteristic impedance of the line.

wlfv,
o Contours are for : 2
constant [Z/Z,]
@ 0 9 e g2 )
K /
/

ol/v,

Fig.10-6. (a) A portion of a Carter chart showing that the magnitude
of the normalized input impedance of a section of low-
loss transmission line with short circuit termination in-
creases as the frequency increases from zero.

(b) When the frequency reaches the value at which the line
length is one quarter wavelength, the magnitude of the
normalized input impedance passes through an indefi-
nitely large maximum if the line has negligible losses
(periphery of the chart). The dashed line shows that if
the transmission line has appreciable attenuation that
increases with frequency, the maximum of the normal-
ized input impedance magnitude will occur at a fre-
quency for which the line length is slightly less than
one quarter wavelength.

Fig. 10-6 shows enlargements of portions of the Carter chart (Fig. 9-13, page 194) at the two ends of
the horizontal axis. Fig. 10-6(a) contains the short circuit terminal impedance of normalized magnitude
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zero. As the frequency increases from zero, the length in wavelengths of a transmission line section also
increases, and the point on the chart representing the normalized input impedance of a section with neg-
ligible losses moves clockwise along the periphery of the chart from the short circuit point. From the
coordinates of the chart it is obvious that the normalized input impedance magnitude increases with
frequency.

As the frequency continues to increase, the point representing the normalized input impedance enters
the portion of the chart’s periphery shown in Fig. 10-6(b), reaching infinite magnitude at a frequency for
which the line length is exactly one quarter wavelength. It then decreases to zero at precisely twice this
frequency, and the sequence continues indefinitely.

If the line losses are small but finite, the point representing the normalized input impedance of the
section at any frequency is displaced radially inward from the periphery of the chart by an amount that
depends on the total attenuation of the section at that frequency, as described in Section 9.6. For a total
attenuation independent of frequency, the point would move on a circular locus just inside the bounding
circle of the chart. For a total attenuation directly proportional to frequency, the point would move along
a true logarithmic spiral. Because of skin effect, the attenuation of air dielectric transmission lines at high
frequencies increases approximately with the square root of the frequency. The normalized input impedance
point on the Carter chart (or Smith chart) then moves on a spiral path with increasing frequency, but the
spiral is not an elementary one.

A portion of an exaggerated spiral is shown in Fig. 10-6(b). It demonstrates that if the attenuation
of a line section increases in any manner with increasing frequency, the frequencies for maximum nor-
malized input impedance magnitude will be slightly less than they would be for a lossless line section of
the same length and phase velocity. This is one of many second order effects in resonant transmission line
circuits analogous to those listed for lumped element circuits in Section 10.3.

10.5. Resonant transmission line sections with short circuit termination.

In the design of transmission line resonant circuits, the goal, almost invariably, is to
maximize the resonant @-value. From the energy definition of @ in equation (10.9), the ter-
minations forming parts of such circuits should then be chosen to have the smallest possible
losses. In principle, terminations of zero impedance, infinite impedance, or any purely
reactive impedance satisfy this requirement by having zero losses, and open circuit, short
circuit, purely inductive, or purely capacitive terminations should all be satisfactory. As
a practical matter, however, terminal inductors or capacitors always have higher ratios of
resistance to inductance, or of conductance to capacitance, than the line itself, and they
reduce the resonant Q-value of any line section to which they are connected. Under most
conditions open circuit terminations are electrically adequate, but they provide no mechanical
support between the line conductors. Except in special cases, resonant transmission line
circuits usually have a short circuit termination at one end, to combine low terminal loss
with conductor support, and to achieve the additional advantages, for coaxial lines, of
complete electrical shielding and precise termination location (by avoiding the fringing
fields that occur at any form of open circuit design).

The input impedance of any length ! of uniform transmission line with short circuit
termination, the line having characteristic impedance Z, ohms, attenuation factor « nepers/m
and phase factor g rad/m, at angular frequency o rad/sec, is given by equation (7.25),
page 134, as

Zmp = Zotanh (a+jB)l (10.17)

Using a standard identity this expands to

sinh 2«l + 7 sin 261
cosh 2«l + cos 28l

Zinp = Zo (10.18)

Adopting the simplifying assumption that Z, is real, the input impedance of the line sec-
tion will be real at all frequencies for which sin2g8l = 0, or 28l = nr, where n is any integer.
Since B = 2x/A, this relation is equivalent to /A = n/4, i.e. the frequencies at which the
input impedance is real are those for which the line length is an integral number of quarter
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wavelengths. Substituting g = o/vp, the corresponding frequencies are given by o, =
=nv,/(2l). If the phase velocity v, is independent of frequency, the indicated frequencies are
integrally related.

To establish that each of the frequencies at which the input impedance of the trans-
mission line circuit is real is a “resonant” frequency in the sense of Sections 10.2 or 10.3,
it is necessary to show from (10.18) that the variation of Zi,, with frequency in the vicinity
of each of these frequencies is similar to the variation with frequency of the input impedance
of a lumped element resonant circuit near resonance.

Two additional simplifying assumptions must be made. The first is that over a narrow
range of frequency centered at each of the resonant frequencies given by o, = =nv,/(2l),
there is negligible variation of the total line attenuation «l. The second is that the actual
value of the total attenuation ol is small enough to permit use of the approximations

sinh 2al = 24! and cosh2al =1+2(al)2. (For reasonable accuracy this requires ol < 0.05
nepers.)

With these assumptions it is easily found that |Zi,,| has a maximum value Zo/(ol) when
sin2pl = 0 and cos2Bl = —1 (i.e. when n is odd in the above relations), and has a minimum
value Zool when sin2pgl =0 and cos28l = +1 (i.e. when n is even).

At a frequency differing by a small fraction Ao/o, €1 from the resonant frequency o,
at any impedance minimum,

sin2g8l = sin {2(0, + A0)l/v,} = sin (2aul/v,)
= sin {28 l(Aw/a)} = 28 1(Aw/w)
and cos2Bl = +\/1—sin?2Bl = +1, where B, =o /v,

Defining Z = Z !, where «, is the line’s attenuation factor at the frequency o, equa-
tion (10.18) can now be written

Zey = Z. {1 + jA% <%>} (10.19)

A term (ol)? has been dropped, relative to unity, in the denominator.

Since this equation is identical in form with (10.6), it follows that in the vicinity of
every frequency o, at which |Zi,| is a minimum, the input impedance of a low-loss trans-
mission line section with short circuit termination displays the resonance behavior of a
lumped element series resonant circuit near resonance.

The indicated resonant Q-value of the transmission line resonant circuit is
Q, = B,/2q, (10.20)

To demonstrate that resonance behavior also occurs near the frequencies o, at which
|Zmp| i8 & maximum, the simplest procedure is to rewrite (10.17) in admittance form,

Yip = Yo coth(a+3jB) (10.21)

which can be expanded as sinh 2al ~  sin 281

cosh 2« — 7 sin 281

Making the same assumptions and approximations as before, the fact that » is now odd

in 28l = nr results in two sign changes, sin2gl = —28,l(Aw/w,) and cos2pl = —1. Defining
Y, =Y al, equation (10.22) becomes

Yo = Y, {1 + i <éﬂ>} (10.23)

r ‘”r

Ymp = Yo (10.22)

which is functionally identical to (10.6) and (10.19). The indicated resonant Q-value is the
value given in (10.20).
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In summary, the input impedance of a section of low-loss transmission line with short
circuit termination varies analogously to the input impedance of a series lumped element
resonant circuit around resonance, in the vicinity of all frequencies for which the line
length is an integral number of half wavelengths, and varies analogously to the input imped-
ance of a parallel lumped element resonant circuit around resonance, in the vicinity of all
frequencies for which the line length is an odd number of quarter wavelengths. The
resonant @Q-value at any resonant frequency is easily determined from the phase factor and
the attenuation factor of the line and is independent of the line length.

Example 10.4.

The specifications of standard rigid 7/8” copper coaxial line are given in Problem 5.6, page 64, for
frequencies of 1, 10, 100 and 1000 megahertz. At each of these frequencies determine the length of a
quarter wavelength resonant line section with short circuit termination, and calculate the resonant Q-value
and resonant input impedance in each case.

The phase velocity is given as 99.8% at all four frequencies. Hence v, = 0.998 X 3.00 X 108 =
2.99 X 108 m/sec. The values of B, = o, /v, and l= N4 = 27v,/(4e,) at the four frequencies are

fr @, B, A4
megahertz rad/sec rad/m m
1 6.28 X 1086 0.0210 74.9
10 6.28 X 107 0.210 7.49
100 6.28 X 108 2.10 0.749
1000 6.28 X 109 21.0 0.0749

The attenuation factors given for the line at the four frequencies in db/100 ft are respectively
0.0426, 0.135, 0.440 and 1.49. The characteristic impedance is 50.0 ohms. The resonant Q-values determined
from @, = B,/(2«,), and the resonant input impedances determined from Z, = Zy/(a,l) are

fr Qay arl Zr
megahertz nepers/m nepers Q, ohms wL/E
1 1.61 X 104 1.20 X 102 656.4 4,170 65.2
10 5.10 X 1014 3.82 X103 206 13,100 206
100 1.67 X103 1.24 X 103 632 40,200 652
1000 5.63 X 103 422 X104 1866 119,000 2062

The values of «w.L/R are added for comparison, since it is an identity (see Problem 10.10) that
Q, = «,L/R, where L and R are respectively the distributed inductance and resistance of the line, when the
losses are due entirely to distributed resistance. In Problem 5.6, page 64, the distributed inductance of the
line was calculated to be 0.167 microhenries/m, and the distributed resistances at the four frequencies had
the respective values 0.0161, 0.0509, 0.161 and 0.509 ohms/m.

From the above results it is seen that at frequencies of 1 megahertz and 10 megahertz, and almost up to
100 megahertz, the values of Q, and Z, available from quarter wavelength sections of even this heavy,
bulky, and expensive low-loss transmission line are not as high as can be obtained from simple compact
lumped element resonant circuits consisting of a wound coil and a parallel plate condenser. At the two
lower frequencies the circuit lengths are totally impractical.

At 100 megahertz the circuit length is about 30 in., but the Q-value and resonant impedance are con-
siderably higher than lumped element circuits could provide. Critical applications might justify use of
the line at this frequency.

At 1000 megahertz, the @-value and resonant impedance are enormous, by the standards of lumped
element circuits. The circuit length, however, is about 3 in., only three times the line’s diameter. Depend-
ing on the total structure to which the unit is connected, this could result in the stray fields at the open
input end substantially modifyjng the resonance performance.

As a general conclusion, it appears that resonant quarter wavelength sections of standard rigid
7/8’" copper coaxial line with short circuit termination would be very superior resonant circuits over the
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frequency range from about 100 megsahertz to 500 megahertz or somewhat higher, and their use might be
indicated in applications involving high power levels or requiring high selectivity.

10.6. The validity of the approximations.

All of the approximations made in deriving the resonant transmission line circuit rela-
tions of Section 10.5 improve in accuracy for circuits of higher resonant @-value. The
assumption that the line’s characteristic impedance is real, for example, is an approximation
to the fact first stated in equation (5.30), page 59, that the phase angle of the characteristic
impedance of a lossy line lies between the values tan—! (+«/8) and tan~! (—a/B8). The former
value applies if the losses are all due to distributed conductance, and the latter if the losses
are all due to distributed resistance. For high frequency lines with a substantial amount of
dielectric in the interconductor space, the phase angle will lie somewhere between the two
extremes. It follows from equation (10.20) that if a resonant transmission line circuit is
calculated or measured to have a resonant @-value of @Q,, the phase angle of the characteristic
impedance of the line cannot exceed approximately 1/(2Q,) rad and might be much smaller.

The accuracy of the approximations for sinhal and coshal depends on the total line
attenuation of being small. But «l/(8l) =1/(2Q,) and Bl for resonant circuits with short
circuit or open circuit terminations is a small multiple of =/2. Specifically, for a quarter-
wavelength circuit gl = 7/2 and ol = 1/Q,.

The accuracy of the approximation for sin [2(e, + Aw)l/v,] is good if it is not necessary
to vary Ao more than a few percent on either side of »,. The half-power or 8 db points of a
resonance curve will be covered by such variations if the value of Q. for the circuit exceeds
the reciprocal of twice the maximum fractional frequency deviation for which the approxi-
mation is acceptable.

The fact that the attenuation factor of high frequency transmission lines varies finitely
with frequency across the frequency range of a resonance curve introduces only a second
order correction in deriving (10.20) from (10.19) or (10.23) because the effects of this varia-
tion on the deviation of the two half power frequencies from the resonant frequency are
of opposite sign and cancel to a first approximation. The error introduced is of the order 1/Q2.

For many reasons, including limits to tolerable physical length, practical resonant trans-
mission line circuits very seldom have resonant @-values less than 100, and values of several

hundred are more typical. The approximations made in Section 10.5 are therefore almost
invariably highly accurate. ‘

When resonant circuits are constructed from parallel wire transmission line, allowance
may have to be made for an additional phenomenon. It has been established both theoreti-
cally and experimentally that open circuit or short circuit terminations of parallel wire
lines radiate as small dipole elements, with radiation resistance given by

Rra = 607%(s/A)2 ohms (10.24)

where g is the separation between conductor centers. Even with s/A as small as 0.01 this
resistance is likely to be considerably larger than the resistance of a typical short circuit
termination, and it may have a marked effect on the Q-value of the resulting circuit.
The radiation loss can be eliminated by terminating a parallel wire line with a short circuit
in the form of a plane transverse metal sheet about 1.3 wavelengths in diameter.

In contrast to the situation for lumped circuit elements, transmission line resonant
circuits designed from the formulas of this chapter and Chapter 6 can be expected to have
experimental characteristics agreeing very closely with the design specifications. Particu-
larly in the case of fully shielded coaxial line circuits or shielded pair circuits with short
circuit terminations at each end in the manner of Fig. 10-5, there are no significant intangible
factors not covered by the theory.
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10.7. Resonance curve methods for impedance measurement.

In Chapter 8 it has been seen that the normalized value of any impedance connected as
the terminal load of a transmission line can be determined from measurements of the
voltage standing wave pattern it produces on the line. When the unknown impedance
produces a reflection coefficient of magnitude fairly close to unity, the VSWR on the line is
high. Section 8.7, page 172, describes a technique by which such high VSWR values can be
determined in terms of the separation between two locations on the line, one on each side
of a voltage minimum, at which the voltage magnitude is /2 times the value at the minimum,
This procedure is obviously analogous to that of finding the “8 db” bandwidth of a resonant
circuit, but the circuit on which the measurement is made is not a resonant circuit, and the
independent variable is neither source frequency nor a circuit reactance. Because this

method observes signals at a voltage minimum, it requires a sensitive detector, and attention
to the reduction of noise and interference.

An alternative method of measuring transmission line terminal impedances that pro-
duce reflection coefficients of large magnitude takes advantage of the phenomenon of
resonance and observes the width of a resonance curve maximum of current or voltage,
instead of a standing wave minimum. The practical instrumentation of the method can
have any of several conmgurations, one of which is shown in Fig. 10-7. Here Zr is the
unknown terminal load impedance to be measured, which produces a voltage reflection
coefficient p, of magnitude close to unity. At the other end of the line the signal source
produces a reflection coefficient p, whose magnitude should be comparable to or larger than
that of p, for best accuracy in the final results. This can be achieved by using a source
having low internal impedance. The detector shown is a voltage probe, such as that used
in a slotted line section. . Its location on the line can be varied, relative to the location of the
impedance Zr. The resonance curve of output at the detector is obtained by varying the

line length I through a resonant value, usually by sliding contacts at or near the source end
of the line.

detector
probe

Zs m'a
Vs ZT

2%y

Fig.10-7. Circuit for measuring an unknown impedance Z; by reso-
nance curve observations. With distance d adjusted for
maximum detector output, the circuit length [ is varied
through a resonant value.

The voltage at a coordinate z on the transmission line cireuit of Fig. 10-7 is given by
equation (8.26), page 175, where Vs is the rms source voltage, Zs the source impedance, Zo
the line’s characteristic impedance, y = a+j8 the propagsation factor of the line, and the
other terms are as defined above. Since both z and [ ax#'independent variables,

VSZO e—‘izﬁ;e—zvlen

V(z’ l) = Zs + Zo 1‘_ prse—2'yl (10-25)

Taking out a factor ¢~ in the numerator, and noting that [ —2z = 7,

Vado 7" €t pse™™)
Zs+Zy 1- psp,re_vz"'l

v(d, 1)

(10.26)
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The experimental procedure, after the ecircuit has been assembled with the source,
detector and unknown Zr connected, is to vary I and d until a detector indication is found.
Then d is varied at fixed ! until the detector output is a maximum. Since only the exponen-
tial terms in (10.26) are functions of d or , it is easily seen that the value of d that maximizes
{V(d,1)| is the same for all values of . The distance between the detector probe and the
terminal impedance Zr is therefore fixed at the experimentally determined optimum value,
throughout a measurement. The adjustment of this value is not critical, since it is at a

smaximum in a standing wave pattern.

As a function of the circuit length [, the voltage magnitude |Va(l)| at the fixed coordinate
d is now given by

[Va@ = Tl_'—lf%%’_'l (10.27)
where |V’| is a phasor voltage magnitude that is not a function of I. Let |V’|=1.
Using the mathematical procedure of Section 8.4, page 168, let
psPr = lpgpr|e = e7HuH (20.28)
Then [Va()| - 1/(2@) = — 1/(2@) (10.29)
|sinh [(al +u) + §(8L + v)]| [sinh2 (al + ) + sin? (Bl + v)]/2

Although this resonance curve method of impedance measurement is usable for values
of |pgp,| from unity down to about 0.18, its advantages outweigh its additional mechanical
complexities in comparison with the slotted line standing wave method only for fairly
large values of |psp,|, say 0.8 or greater. For such cases, u = log. (1/V[pgp,]) < 0.1, and since
« i8 usually of the order 10-3 nepers/m for suitable transmission lines at frequencies
appropriate to the method, sinh?(al+u) changes only infinitesimally across the width
of a resonance curve. The maxima of |Va(l)| therefore occur quite precisely at the resonant
line lengths I, for which sin?(8l.+v) =0 or Bl + v = nx, where n is zero or any integer.
From (10.28) the phase angle ¢ of |pgp,| is determined from any resonant line length I by

¢ = =20 = 4x(l/) — n/2) (10.30)

The resonant value of |Va(l)| is |Va, given by

1/2V lpspy])

snh (al, + @)

which has the same voltage scale factor as (10.29).

Val = (10.81)

When (al,+u) < 0.1, the usual approximation can be made that sinh (al- +%) = (edr + u).
For a small line length change Al from a resonant line length I, sin [8(l+Al) + v] = BAl.
Substituting these approximations and the expression for |Va| from (10.31) into (10.29),

IVdr'
18 Al 2]1/2
[1 + <alr + u)
Comparison with equation (10.23) shows that |Va(l)| varies with I as a true resonance
curve, with a maximum at resonance. The value of |Va(l)| drops to |Val/V/2 for line length

changes Al’ on either side of any resonant length I, given by Al'/A = (al. +u)/(27). If W/A
is the width of the resonance curve in wavelengths between these ‘3 db” points,

Wir = 28U/ = (b +u)/x (10.33)

Va() = (10.32)
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Finally, from (10.30) and (10.33),
|Psp'1‘| = e~ 2wW/x—al,) (10.34)

If 2(=W/X — al,) is less than about 0.01, which can easily be the case for low-loss terminations
and low line attenuation, equation (10.84) can be simplified to

lpspTl = 1—-2(=W/r—al) (10.35)

With the values of « and A known, the complex number value of psp, can therefore be
determined from measured values of W and l,, using equations (10.30) and either (10.34) or
(10.35).

Provided the total circuit length I is variable over a sufficient range, both « and A can
be measured directly and accurately with the circuit itself, by observing resonance curves
at two consecutive values of I, without changing the line’s terminations. If the resonant
lengths are I, and I, with I/ >, the wavelength is obtained from l;—1, = /2. If the
widths of the corresponding resonance curves are respectively W and W’, it follows from

equation (10.33) that
a = 2a(W — W)/2 (10.36)
since % has the same value in both cases.

The information desired from this resonance curve procedure is the complex number
value of p,, from which the normalized components of the unknown terminal impedance
Zr can be calculated using equations (7.9a) and (7.9b), page 128. It is therefore necessary
to determine pg. This is done by connecting in place of Zr a short circuit for which

pr = —1+ 30 = 1/x. If the resulting resonance curve measurements are W and I/, the
final determination of p, = |p,|e?*T will be made from

$p = m+ dn(l—L)/A (10.87)
and |PT' — e—z{w(w—w")/x—a(l,—l,”)} (10.38)

where W and l. are the measurements with Zr connected. Equation (10.38) can be written
as . 7’

lpgl = 1 — 2{x(W—W")/A— a(l-— 1)} (10.39)
when the exponent is less than 0.01.

When this resonance curve method of impedance measurement is extended to values of
losor| between 0.18 and 0.80, the width in wavelengths of a resonance curve at the “3 db”
points can increase to a maximum value of 3. Many of the approximations made after
equation (10.29) are then unsatisfactory. The best procedure is to construct graphs relating
W/ to |,:Sp,,| for various values of the parameter aol,.

As alternatives to the detector arrangement in the circuit of Fig. 10-7, the resonance
curve procedure can be used with a low impedance coupling loop detector in series at either
the source end of the line or the Zr end of the line, or the source and Zr can be at the same
end of the line with a low impedance coupling loop detector connected as the termination
at the other end.
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Solved Problems

10.1. For a resonant section of low-loss transmission line terminated in a short circuit, show

that the definition of resonant @-value given by equation (10.9) is equivalent to the
value given by equation (10.20).

A quarter wavelength section will be assumed. The result will then apply to each quarter wave-
length section of any longer circuit.

For any element of length Ad at coordinate d of the line, the instantaneous energy stored in the
distributed capacitance of the element is W¢ = 3C Ad v(d, )2, and the instantaneous energy stored
in the distributed inductance of the element is W, = L Adi(d,t)2. The simultaneous power loss
is Py = Radi(d, t)2 + G Adv(d,t)?, where R, L, G and C are the usual distributed circuit coefficients
of the line at the operating frequency, and »(d,t) and i(d,t) are respectively the instantaneous
voltage and current values at coordinate d on the line at some instant ¢.

Since the short circuit termination on the line produces a voltage reflection coefficient
pr = —1 + 70, and the line losses are very small, it follows from the derivations in Chapter 8 that
the standing wave pattern of voltage magnitude on the line is very accurately one quarter of a sine
wave, increasing from zero at the short circuit to a maximum at the input terminals, and the
standing wave pattern of current magnitude is a mirror image of the voltage pattern, rising from
zero at the input terminals to a maximum at the short circuit.

Thus in phasor magnitude notation, |V(d)] = |Vy,,]singd and [I(d)| = |I7| cos 8d where the
coordinate d increases from the short circuit toward the input terminals. Comparing the scale
factor for |V(d)| in equation (8.15), page 164, with the scale factor for |I(d)| in the corresponding
equation in Problem 8.1, page 178, it is evident that |I;| = |V,,|/Zy, where Z, is the line’s character-
istic impedance.

In Chapter 8, attention was focused on the standing wave patterns of voltage and current
magnitude along a line as a function of the distance coordinate d, and the time variation of the
voltage and current were not discussed, except in Problem 8.5, page 180. In that problem it was
shown that if two equal amplitude harmonic voltage waves of angular frequency « and phase factor
B travel in opposite directions on a transmission line having negligible losses, the instantaneous
voltage at any time ¢ at any coordinate z can be represented for the two waves by the expressions
V, cos (0t — Bz) and V, cos (wt+ Bz) respectively. By a trigonometric identity, the sum of these
two expressions, which is the total voltage on the line as a function of z and ¢, becomes 2V, cos ot cos 8z.
Referring to equation (7.5), page 127, the corresponding current waves are represented by
(Vi/Z4) cos (wt — Bz) and (—V,/Zy) cos (wt+ Bz) respectively, and their sum is (2V,/Z) sin ot sin wz.

The functional difference of the expressions for current and voltage in the coordinate z is equiv-
alent to the difference noted above for the standing wave patterns of |V(d)| and |I(d)| on a low-loss
line terminated in a reflection coefficient of magnitude unity. The implications of the functional
difference of the time-varying terms, however, has not been explored in previous chapters. For
purposes of the present problem it has the important significance that at an instant when the voltage
at every point on the line is a maximum, the current is everywhere zero, and vice versa. This is
analogous to the fact that in the lumped element circuits of Fig. 10-1 and 10-2 the voltage across the
capacitor is a maximum at an instant when the current in the inductor is zero, and vice versa.

In calculating the peak energy stored in a transmission line resonant circuit, therefore, as
required in equation (10.9), it is sufficient to calculate either the total emergy stored im the line
section’s distributed capacitance at an instant when the voltage on the line is everywhere a maximum
or the total energy stored in the line section’s distributed inductance at an instant when the current
on the line is everywhere a maximum. The losses calculated for a full cycle, however, which are
also required in the equation, must include both the losses produced by line current in the line’s
distributed resistance, and the losses produced by line voltage in the line’s distributed conductance.

Evaluating the energy stored, and the line losses, along a quarter wavelength section of line
involves only the integrals

w2 ; /e
1/8) I sin2Bd d(@d) = A/8 and (1/8) f cos2Bd d(Bd) = /8
0 0

Combining all of the above, and taking V,, to be an rms phasor quantity, equation (10.9)

b
ecomes 3C(VZ |V, )2(0/8)

— — 2
Q = 2r BV o 2708 T G BN 2. F.C/(R/Z: + G)

where f, is the resonant frequency in hertz. Using Z;= VL/C and multiplying all terms by Z,,
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10.2.

10.3.

104.

w,VLC B
23RVCIL + GVLIC) ~ 2ar

from equations (5.5) and (5.6), subject to the “high frequency” approximations.

Q, =

It is obvious that the result will be the same for every separate quarter-wavelength of the stand-
ing wave pattern on a line of negligible losses, terminated in either an open circuit or a short circuit.

A parallel resonant circuit is to be created at the input terminals of an amplifier,
resonant at the amplifier’s operating frequency of 250 megahertz, consisting of the
amplifier’s input capacitance of 7.5 micromicrofarads connected in parallel with the
input terminals of a section of low-loss air-dielectric transmission line having short
circuit termination. What length of transmission line section is required, if the line’s
characteristic impedance is 80 -+ 70 ohms ?

For parallel resonance, the input susceptance of the transmission line must be equal in mag-
nitude and opposite in sign to the input susceptance of the amplifier. Then, from equation (7.21),
=Y, cot (0,l/vp) = —w,Coymp, Where w, is the resonant angular frequency, ! the line length, Camp
the input capacitance of the amplifier and Y, = 1/Z, is the characteristic admittance of the line.
Solving,

1 = (vp/oy) cot—1 (0,CompZ0)
(3.00 X 108)/(2x X 2.50 X 108) cot—1 [(2= X 2.5 X 108) X 7.6 X 10—12 X 80] = 0.166 m

This solution gives the shortest line length that will produce the desired resonance. Any integral
number of half wavelengths (0.60 m) can be added to this value.

A section of low-loss transmission line of length /A wavelengths has characteristic
impedance Z, and is terminated in a short circuit. There is a capacitance C con-
nected across the input terminals. What are the resonant frequencies of the
combination?
The equation for stating the problem is that used in Problem 10.2. Thus
Yy cot (v d/vy) = ,C
This is a transcendental equation in w,. It can be solved graphically or by testing a series of

‘numerical values. Also, tables of the function (cot x)/x are available, which can be used if the above

equation is brought to the form
[eot (wl/vp))/(wpl/vy) = v,C/(1Y )

Plotted against «,, the cotangent function for any value of l/v, has an infinite number of parts,
each extending in ordinate from minus infinity to plus infinity. The straight line represented by
the function w,CZ, on the same coordinates passes through the origin and has a finite slope. It
therefore intersects each of the cotangent curves at an «, coordinate which is & resonant frequency
of the circuit. It is evident that the resulting frequencies are not harmonically related.

For a resonant transmission line section one quarter wavelength long with short
circuit termination, determine the impedance that would be measured between the
line conductors at a cross section distant d from the short circuit, at the resonant
frequency. The line has attenuation factor «,, phase factor g, and characteristic
impedance Z, at that frequency.

The input admittance Y, at the location d is the sum of the input admittances of the two line
sections on either side. One section has length d and is terminated in a short circuit. The other
section has length (A\/4) — d and is terminated in an open circuit. Hence

Y4 = Y,[eoth(a,+jB,)d + tanh (e, + j8,) (M4 — d)]
Let (A/4) —d = z. Expanding the hyperbolic cotangent and tangent by equations (10.22) and (10.18)
respectively, noting that sin2g,z = sin28,d and cos 28,2 = —cos 28,d, and using the approxima-

tions sinh 2a,d = 2a,d, sinh2q,2 = 2a4, cosh2a,d = cosh2a,z = 1, both denominators become
1—cos28,d = 2sin2 8,d. Then
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10.5.

10.6.
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v, = 2a,d — jsin28,d 2az + jsin28,d\ _ ald+2z) _ a4
a = -0 2 sin? 8,d 2 sin2 8,d T sin2B8,d ~ sin2B,d

Y, is real at every cross section because the circuit is resonant. The input impedance at the cross
section d is Z; = 1/Yy = Zy/(e,M/4) sin2 g, d = Z, sin? B,d where Z, is the resonant impedance at
the input terminals of the resonant quarter wavelength section.

Since the energy storage and power loss relations are always those of the quarter wavelength
resonant circuit, the resonant Q-value governing the impedance variations at any location d must
have the constant value 8,/2a,. Thus the selectivity properties of the circuit are available at any
level of resonant impedance less than Z, by suitable choice of the connection location d. Although
the resonant impedance at the center of the quarter wavelength section is one half the resonant
impedance at its input terminals, this simple proportion does not hold at other locations.

A quarter wavelength resonant section of low-loss air-dielectric high-frequency
coaxial transmission line with short circuit termination has a resonant input imped-
ance Z, = Zo/al according to Section 10.5, where ! is the line length, Z, the characteristic
impedance (assumed real) and « the attenuation factor at the resonant frequency.
What ratio of the radii of the facing conductor surfaces b/a will result in the highest
value of Z,, if the value of the inner radius of the outer conductor b is fixed?

Since there are no dielectric losses, the attenuation factor is given by « = R/(2Z,) where R is
the total conductor resistance per unit length. Thus Z, = 2Z§/(Rl). In terms of conductor radii,
using equations (6.49), page 91 and (6.59), page 96,

_ 7200[log, (b/a)]2
T T (Rg/2rb)(1+ b/a)
The value of b/a (at constant b) that maximizes Z, is found in the usual way.
dZ,  2(a/b)log, (b/a) _ [log, (b/a)]? 0
d(b/a) ~ 1+ b/a 1+ b/a)?

after deleting the coefficients. This reduces to 2/(b/a) + 2 = log, (b/a), a transcendental equation
to be solved graphically or by trial. The approximate result is b/a = 9.1. The resulting coaxial line
has the very high characteristic impedance of 182 ohms, and is far from optimum by any other
criterion. The resonant Q-value of the circuit constructed from this line would be about 20% less
than for a line with the same outer conductor and a ratio b/a = 8.60 for minimum attenuation.

With a circuit of the form of Fig. 10-7, consisting of a length of air dielectric trans-
mission line operating at a frequency of 400 megahertz, a resonance curve of width
3.37 mm at the half power level is observed with a resonant line length of 0.703 m.
With the same termination a resonance curve of width 4.86 mm is observed when the
resonant line length is 1.078 m. Determine the attenuation factor of the line, and the

reflection coefficient at the source end if the termination is assumed to be a perfect
short circuit.

At the stated frequency the wavelength on the air dielectric line is 0.750 m, and the two resonant
line lengths differ by one half wavelength, Equation (10.86) therefore applies directly, and

a = 27(4.36X10~8 — 3.37 X 10-3)/0.7502 = 1.11 X 10~2 nepers/m

Using this value in equation (10.85) with |op| = 1, the value of |os| is found directly from either
set of data. Thus

losl] = 1 — 2[#(3.87X10-3)/0.76 — 1.1#X 10-2X 0.708] = 0.9874
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10.7.

10.8.

10.9.

10.10.

10.11.

10.12.

10.13.

Supplementary Problems

From equation (10.4), show that for the circuit of Fig. 10-1 the fractional frequency deviation
(w; — w,)/w, above resonance at which the circuit’s input impedance is Z 1 + j1), is given by

(01— oo, = 1/(2Q,) + 1/(8Q7) — 1/(128Q}) + -+
and that the equivalent statement for the corfesponding frequency w, below resonance is
(0= oplo, = 1/(2Q,) — 1/(8Q,)% + 1/(128Q;) + -~

Thus at the level of the half power pointe, the resonance curve for this ideal circuit is “off center”
by a fraction of approximately 1/(8Q,) of the width of the resonance curve at that level.

Show that for the circuit of Fig. 10-2, the phasor magnitude of the current in each of the reactive
elements of the circuit is Q, times as great as the phasor magnitude of the current supplied to the
circuit by the source, at the resonant frequency. This is the phenomenon of “resonant rise of
current”,

if equation (10.4) is equated to Z,, = Ry, + jXiy,, show that the graphs of {X;,;| and |Z,,,| plotted
against the frequency «» are symmetrical about the ordinate « = «,, provided the frequency scale is
logarithmic but not otherwise. If the frequency coordinates are normalized relative to «, and the
reactance and impedance magnitude coordinates are normalized relative to Z,, such graphs become
universal resonance curves for series resonant circuits. Equation (10.15) shows that #he same graphs
are also universal resonanee curves for parallel resonant circuits if |By,,| is substituted for |Xj,y|
and |¥Yy,p| for [Z,].

Show that the approximate expression Q, = B./2a, for the resonant @-value of any resonant section
of low-loss transmission line terminated in an open circuit or a short circuit is equivalent to the
expression Q, = o L/R if the line losses are caused entirely by R (i.e. G =0), to the expression
Q, = w,C/G if the line losses are oaused entirely by G (i.e. R = 0), and to the expressions Q,=
zw,L/R = (1 ~ )0,C/G if a fraction = of the losses is due to R and a fraction (1 — ) is due to G.
In these relations B, L, G and C are the line’s distributed circuit coefficients.

Standard RG-8/U flexible coaxial cable has a characteristic impedance of 52 ohms, a phase velocity

of 66%, and an attenuation factor of 2.05 db/(100 ft) at a frequency of 100 megahertz. What Q-value

will a resonant section of the line with open circuit or short circuit termination have at that fre-

quency and what are the resonant input impedances of a quarter wavelength section and a three-

quarter wavelength section with short circuit termination?

Ans. Q,= 205 for all the circuits mentioned. Z, = 18,600 chms for a one quarter wavelength
circuit and 4,680 ohms for a three-quarter wavelength circuit.

Applying the result of Problem 10.8 to the circuit of Problem 10.2, consisting of a 0.156 m length of
low-loss air-dielectric transmission line (Z, = 80 + jO ohms) with short circuit termination and a
capacitance of 7.5 micromicrofarads across its input terminals, determine the next two frequencies
above 250 megahertz at which parallel resonance will occur at the input terminals.

Ans. Approximately 1210 and 2180 megahertz,

Show by the methods of Section 7.7 or otherwise that if a voltage of rms phasor magnitude |V,| is
applied to the input terminals of any quarter wavelength section of transmission line with open
circuit termination, the rms phasor magnitude of the voltage Vy at the open circuit termination is
given by |Vy| = |V|/(sinh al) = |V|/(al) if the total attenuation of the line is small. This is a form
of “resonant rise of voltage”. Show that |Vq|/|V;| = 1.27Q,, analogous to the result obtained for
a lumped element circuit.

The device can be used as a transformer to develop high voltages, but is subject to the complica-
tion that the input impedance has the low value Zyal for low-loss lines. Hence a large source current
is required to produce a large output voltage.

This phenomenon must be protected against in very long high voltage commercial power lines
at 60 hertz. If for any reason the terminal load becomes disconnected from the line, while the
generator remains connected, the voltage at the end of the line remote from the generator can rise
to values far in excess of the operating voltage of the line.
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parallel plane line, 107
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Distributed circuit coefficients,
and electromagnetic theory, 12
and physical design, 70
and propagation characteristics, 46
from propagation factors, 68
postulates, 10
symbols, 15
Distributed conductance, 156
coaxial line, 93
parallel plane line, 107
parallel wire line, 102
Distributed inductance, external, 16
coaxial line, 86
parallel plane line, 107
parallel wire line, 103
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Distributed internal impedance,
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minimizing in coaxial lines, 116
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Frequencies,
definition of “high”, 49
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Graphical aids, 184
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Half wavelength transformer, 132
Harmonic waves, traveling, 26-28
Heaviside distortionless line, 49, 59, 206
Heaviside, Oliver, 59
High frequency, definition, 49
High frequency distributed
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High frequency propagation factors, 48
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Impedance at a point on a line, 34
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high frequency, coaxial line, 96
high frequency, parallel plane line, 108
high frequency, parallel wire line, 104
measurement, 134
Impedance matching, 133, 146, 178, 207
Impedance matrix, 141
Impedance measurement,
from resonance curve, 225
from standing waves, 161
Impedance notation, 16
Inductance, distributed external,
coaxial line, 96
parallel plane line, 107
parallel wire line, 103
Inductance, distributed internal,
plane conductor, 109-115
solid circular conductor, 71, 78
tubular conductor, 109-115
Inductive loading, 5, 60, 66
Input admittance,
lumped element resonant circuit, 218
transmission line resonant circuit, 222
Input impedance, 130
maximum in standing wave, 151
minimum in standing wave, 151

resonant circuit, lumped element, 216, 218

resonant circuit, transmission line, 221
stub lines, 131
transformer sections, 132
Inversion of complex numbers, 201
Iterative impedance, 17

Jones chart, 184

Kelvin, Lord, 4, 9
Ker and kei functions, 74

Loading coils, 66
Loading of transmission lines, b, 60
Lumped element resonant circuits, 215

Magnetic field, 12, 72, 82
Matching, single stub, 146, 178, 207
Matching, triple stub, 210
Matrix,
hybrid, 142, 155
open circuit impedance, 141
short circuit admittance, 141
transmission, 142, 155
Multiple reflections, 174

Nepers and decibels, 35
Non-reflective termination, 33
Normalized admittance,

from reflection coefficient, 144



Normalized impedance,
from reflection coefficient, 128
in standing wave, 171

Open circuit impedance matrix, 141
Open circuit termination, 129
Optimum conductor thickness, 148
Optimum geometries,

coaxial line, 115, 230

parallel wire line, 123

Parallel plane line, 9
distributed capacitance, 107
distributed conductance, 107
distributed inductance, 107
distributed resistance, 106
high frequency relations, 108
Parallel wire line, 9
distributed capacitance, 100
distributed conductance, 102
distributed inductance, 103
distributed resistance, 97
high frequency relations, 104
Permeability, 72, 80, 83
complex, 122, 125
non-magnetic media, 87, 96
Permittivity, 92
complex, 94
free space, 93
Phase factor, 30, 31
from impedance measurements, 135
Phase velocity, 27, 31, 49
coaxial line, 97 .
parallel plane line, 108
parallel wire line, 104
Phasor diagrams, 37
and standing wave patterns, 175
on Smith chart, 214
Phasor quantities, 22, 27
Plane conductors,
distributed internal inductance, 82, 109-115
distributed resistance, 82
optimum thickness, 149
Polar number solutions, 46
Postulates of analysis, 9
Power calculations with reflected waves, 138, 205
Power loss in plane surfaces, 86, 147
Propagation characteristics, 46, 57
Proximity effect, 97-100

Q value, 217
lumped element circuits, 216, 218
transmission line circuits, 222
Quarter wavelength line,
short circuit termination, 151
Quarter wavelength transformer, 133
bandwidth, 162, 209

Reactance component of characteristic
impedance, 50, 59, 150
Reflection coefficient, 126
and normalized impedance, 128, 129
and standing wave patterns, 165
for current waves, 144
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Reflection coefficient (cont.)
for various terminations, 144
generalized, 176
phase angle, 127
Reflection coefficient plane, 185
Reflection loss, 202
Resistance, distributed, 15
coaxial line, 01
parallel plane line, 106
parallel wire line, 97
plane conductors, 82
solid circular conductors, 71
tubular conductors, 86-90
Resonant circuits, 215
lumped element circuits, 215-218
transmission line circuits, 219-231
Resonant curve method for impedance
measurement, 225

Short circuit admittance matrix, 141, 1564
Short circuit termination, 128-131, 167, 173
Single stub matching, 146, 178, 207
Skin depth &, 74, 85
in copper, 80
Skin effect, 73
onset at low frequencies, 56
plane conductors, 82-86
solid circular conductors, 74-81
tubular conductors, 87-90
Slotted line section, 161
Smith chart, 184
attenuation scale, 195, 208
commercial form, 188
complex number inversion, 201
hyperbolic functions, 202, 210
normalized admittance coordinates, 197
normalized admittance transformations, 200
normalized impedance coordinates, 193
normalized impedance transformations, 194
normalized reactance coordinates, 187
normalized resistance coordinates, 186
orientation convention, 200
power reflection scale, 191
reflection coefficient scale, 189
reflection loss scale, 202
return loss scale, 202
slide rule form, 192
transmission loss scale, 202
trigonometric functions, 202, 210
VSWR scale, 190
VSWR scale in decibels, 198
Smith, P. ¥, 184
Standing wave patterns, 156-160
analysis, 163
from phasor diagrams, 175
lines with attenuation, 167-72
lossless lines, 164
of current, 170, 178
Smith chart data, 190
Stub lines, 131
Surface current density, 84, 85
Surface resistivity R, 77
Surface roughness, 81
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tan 8, 94
TE, TM and TEM modes, 11-12
Telegraph transmission lines, 4
Terminal quantities, symbols, 16
Textbooks, 7-8
Time domain differential equations, 19
Transfer impedance, 143, 156
Transition frequencies, 51
Transmission line basic circuit, 126
Transmission line equations,

frequency domain, 22

high frequeney solutions, 48

polar number solutions, 46

time domain, 19

trangition frequency solutions, 51

summary of solutions, 57
Transmission line history, 3-7
Transmission line resonant circuits, 215-231
Transmission line sections as two-port

networks, 140-143

Transmission line transformers, 132-133
Transmission loss coefficient, 202
Transmission matrix, 142, 166
Triple stub matching, 210
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Tubular conductors,

distributed internal inductance, 109-115

distributed resistance, 86-90
Two-port networks, 140-143

Velocity, phase, 27
at low frequencies, 31
at high frequencies, 49
coaxial line, 97
parallel plane line, 108
parallel wire line, 104
Velocity, signal, 39
Voltage minima, 147, 165
Voltage standing wave ratio, 165
Voltage symbol, 14
von Guericke, Otto, 4
VSWR, 165, 180
in decibels, 193
measurement of high values, 172, 183
minimum value, 178

Waveguide modes, 10

Wavelength on line, 30
Wavelengths toward generator, 195
Wavelengths toward load, 195



