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Preface

This Outline is designed for use by both undergraduates and graduates who
find they need to master the basic methods and concepts of tensors. The material
is written from both an elementary and applied point of view, in order to provide
a lucid introduction to the subject. The material is of fundamental importance to
theoretical physics (e.g., field and electromagnetic theory) and to certain areas of
engineering (e.g., aerodynamics and fluid mechanics). Whenever a change of
coordinates emerges as a satisfactory way to solve a problem, the subject of
tensors is an immediate requisite. Indeed, many techniques in partial differential
equations are tensor transformations in disguise. While physicists readily recog-
nize the importance and utility of tensors, many mathematicians do not. It is
hoped that the solved problems of this book will allow all readers to find out what
tensors have to offer them.

Since there are two avenues to tensors and since there is general disagreement
over which is the better approach for beginners, any author has a major decision
to make. After many hours in the classroom it is the author’s opinion that the
tensor component approach (replete with subscripts and superscripts) is the
correct one to use for beginners, even though it may require some painful initial
adjustments. Although the more sophisticated, noncomponent approach is neces-
sary for modern applications of the subject, it is believed that a student will
appreciate and have an immensely deeper understanding of this sophisticated
approach to tensors after a mastery of the component approach. In fact,
noncomponent advocates frequently surrender to the introduction of components
after all; some proofs and important tensor results just do not lend themselves to
a completely component-free treatment. The Outline follows, then, the tradition-
al component approach, except in the closing Chapter 13, which sketches the
more modern treatment. Material that extends Chapter 13 to a readable introduc-
tion to the geometry of manifolds may be obtained, at cost, by writing to the
author at: University of North Carolina at Asheville, One University Heights,
Asheville, NC 28804-3299.

The author has been strongly influenced over the years by the following major
sources of material on tensors and relativity:

J. Gerretsen, Lectures on Tensor Calculus and Differential Geometry, P.
Noordhoff: Goningen, 1962.

1. S. Sokolnikoff, Tensor Aralysis and Its Applications, McGraw-Hill: New
York, 1950.

Synge and Schild, Tensor Calculus, Toronto Press: Toronto, 1949.

W. Pauli, Jr., Theory of Relativity, Pergamon: New York; 1958.

R. D. Sard, Relativistic Mechanics, W. A. Benjamin: New York, 1970.

Bishop and Goldberg, Tensor Analysis on Manifolds, Macmillan: New York,
1968.

Of course, the definitive work from the geometrical point of view is L. P.
Eisenhart, Riemannian Geometry, Princeton University Press: Princeton, N.J.,
1949.

The author would like to acknowledge significant help in ferreting out
typographical errors and other imperfections by the readers: Ronald D. Sand-
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strom, Professor of Mathematics at Fort Hays State University, and John K.
Beem, Professor of Mathematics at the University of Missouri. Appreciation is

also extended to the editor, David Beckwith, for many helpful suggestions.

Davib C. Kay
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Chapter 1

The Einstein Summation Convention

1.1 INTRODUCTION

A study of tensor calculus requires a certain amount of background material that may seem
unimportant in itself, but without which one could not proceed very far. Included in that prerequisite
material is the topic of the present chapter, the summation convention. As the reader proceeds to
later chapters he or she will see that it is this convention which makes the results of tensor analysis
surveyable.

1.2 REPEATED INDICES IN SUMS

A certain notation introduced by Einstein in his development of the Theory of Relativity
streamlines many common algebraic expressions. Instead of using the traditional sigma for sums, the
strategy is to allow the repeated subscript to become itself the designation for the summation. Thus,

n
ax, tax,tax;+---+a,x,= z ax;

i=1

becomes just a,x,, where 1=i=n is adopted as the universal range for summation.

v

EXAMPLE 1.1 The expression a,x, does not indicate summation, but both a,x, and a,x; do so over the
respective ranges 1=i=n and 1=j=n. If n=4, then

QX = a3, X, t X, + asx, +a,x,

Xy =a,%, tapX, T a6+ a,x,

Free and Dummy Indices

In Example 1.1, the expression a,x; involves two sorts of indices. The index of summation, i
which ranges over the integers 1,2, 3, ..., n, cannot be preempted. But at the same time, it is clear
that the use of the particular character j is inessential; e.g., the expressions a,x, and a, x represent

retr wv

exactly the same sum as a,x; does. For this reason, j is called a dummy index. The index i, which

may take on any particular value 1,2,3,...,n independently, is called a free index. Note that,
although we call the index i “free” in the expression a,x;, that “freedom” is limited in the sense that
generally, unless i = k,

A% 7 a4%;
EXAMPLE 1.2 If n =3, write down explicitly the equations represented by the expression y, = a, x,.
Holding i fixed and summing over r =1, 2, 3 yields
Y= anx, ta,x, +a;x,
Next, setting the free index i =1, 2, 3 leads to three separate equations:

yi=a;x; tanx, t+a;x,
Y2 =y X1+ a5X, t a,5x,
V3= asx, +azux, tasx,

Einstein Summation Convention

Any expression involving a twice-repeated index (occurring twice as a subscript, twice as a
superscript, or once as a subscript and once as a superscript) shall automatically stand for its sum

1



2 THE EINSTEIN SUMMATION CONVENTION [CHAP. 1

over the values 1,2,3, ..., n of the repeated index. Unless explicitly stated otherwise, the single
exception to this rule is the character n, which represents the range of all summations.

Remark 1: Any free index in an expression shall have the same range as summation indices, unless
stated otherwise.

Remark 2: No index may occur more than twice in any given expression.

EXAMPLE 1.3 (a) According to Remark 2, an expressmn like a,x, is without meaning. (b) The meaningless
expression ax,x, might be presumed to represent a }(x,) which is meaningful. (¢) An expression of the form
a,(x, +y,) is considered well-defined, for it is obtained by composition of the meaningful expressions a,z, and
X, +y,=z,. In other words, the index i is regarded as occuring once in the term (x, +y,).

1.3 DOUBLE SUMS

An expression can involve more than one summation index. For example, a;x;y; indicates a
summation taking place on both i and j simultaneously. If an expression has two summation
(dummy) indices, there will be a total of n” terms in the sum; if there are three indices, there will be
n’ terms; and so on. The expansion of a;x,;y; can be arrived at logically by first summing over i, then
over j:

aux,y; = ayx,y; + ayx,y; + ayx;y, + oo+ a,x,y; [summed over i]
=(a; Xy, tapx,y, - +agx,y,) [summed over j]
+(ay X597 + ApXoy, + 000+ ay,X,5,)
+ (363, T X3y, + 00+ as,x3y,)

+ (anlxnyl + an2xny2 teeet annxnyn)
The result is the same if one sums over j first, and then over i.

EXAMPLE 1.4 If n =2, the expression y, = ca,.x, stands for the two equations:

rS

V1= Clallxl + c1a21x1 + C1a12x2 + Clazzxz
1 2 1 2

Vo = Colly Xy T Gy X, T C,a15X, T Cha5,X,

1.4 SUBSTITUTIONS

Suppose it is required to substitute y, = a,.x; in the equation Q = b,y x;. Disregard of Remark 2
above would lead to an absurd expression hke Q b,a,xx;. The correct procedure is first to 1dent1fy
any dummy indices in the expression to be substltuted that coincide with indices occurring in the
main expression. Changing these dummy indices to characters not found in the main expression, one
may then carry out the substitution in the usual fashion.

STEP 1 Q=b,yx;,, y, =ax; [dummy index j is duplicated]

STEP 2 y; = [change dummy index from j to 7]

lr r

STEP 3 Q=0b,(a,x)x;=a,bxx, [substitute and rearrange]

ir l] ry

EXAMPLE 1.5 If y,. =a,x;, express the quadratic form Q =g, y,y; in terms of the x-variables.
First write: y, = a,x,, y, = a,.x,. Then, by substitution,

Q=g (a,x)a,x,)=g,a,a,xx,

or Q=h,xx, where h, =g.a,a,.

rsTrTs 2



CHAP. 1] THE EINSTEIN SUMMATION CONVENTION 3

1.5 KRONECKER DELTA AND ALGEBRAIC MANIPULATIONS

A much used symbol in tensor calculus has the effect of annihilating the “off-diagonal” terms in
a double summation.

Kronecker Delta

G (1 Q=]
=8§i=80=
9;=8,=8 —{0 Y (1.1)
Clearly, §,; = §; for all i, j.
EXAMPLE 1.6 If n=3,
8,x.x; = 1x,x, + 0x,x, + Ox,x; + Ox,x, + Ix,x, + Oxpx; + Ox,x, + Oxyx, + 1xyx,

(xl) +(x2) +(x3) = XX

In general, 8,xx;, = x,x; and 8’a,x, = a x,.

EXAMPLE 1.7 Suppose that T7°=g'a, y, and y, = b, x,. If further, a,b, =3¢, find T in terms of the x,.
First write y, = b_,x,. Then, by substitution,

T'=g,a,b,x =g,8,x=gx,

rr:stt

Algebra and the Summation Convention

Certain routine manipulations in tensor calculus can be easily justified by properties of ordinary
sums. However, some care is warranted. For instance, the identity (1.2) below not only involves the
distributive law for real numbers, a(x + y) = ax + ay, but also requires a rearrangement of terms
utilizing the associative and commutative laws. At least a mental verification of such operations must
be made, if false results are to be avoided.

EXAMPLE 1.8 The following nonidentities should be carefully noted:

a;(x, +y)Fa,x, +a,y,
a,x,y; # ayy.x;
(a; +a;)x,y, #2a,x,y
Listed below are several valid identities; they, and others like them, will be used repeatedly from
now on.

a;(x; +y;)= al]x} +a,y; (1:2)
a;X,y; = a;yx; (1.3)
4;X.X; = a;X,X; (1.4)

(a; +a;)xx;=2a,xx, (1.5)

(a;—a)xx,=0 (1.6)



4 THE EINSTEIN SUMMATION CONVENTION [CHAP. 1

Solved Problems

REPEATED INDICES

1.1 Use the summation convention to write the following, and assign the value of n in each case:
(@) ayby+ayby, +aybs+a,by,
(®) a;lbll + a12b12 + "‘13b13v+ a14b14 +_a15b1_5 +ahis
(€) €}y + €ot g+ Cyyt Css + Cog o €5y + Cgq (1=i=38)

(@) a;,b,, (n=4); (b) ayb,, (n=6); (¢ Cj‘j (n=28).

1.2  Use the summation convention to write each of the following systems, state which indices are
free and which are dummy indices, and fix the value of n:

(@) cux,tepx,+tepx;= 2
ConXy + CpXp + Cp3x3 = —3 (j=1,2)
Cy X H X, HCypxs= 5

1 2 3 4 _
(b) apx,+ayx, tax;+a;x,= bi

(@) Setd,=2,d,=-3, and d,=5. Then one can write the system as ¢, x; =d; (n=3). The free
index is i and the dummy index is j.

(b) Here, the range of the free index does not match that of the dummy index (r» =4), and this fact
must be indicated: '

ax,=b, (j=1,2)

The free index is j and the dummy index is i.

1.3  Write out explicitly the summations
c,(x; +y) CiX;+ Cr Yy
where n =4 for both, and compare the results.

cx; +y) =c,(x; +y) te(x, +y,) Hoy(xy +y,) + C4(X'4 +y4)
=cxyt eyt X, F 6y, Fexg ey, + C§x4 tey,
CX; T Cyp=C Xy F X, texy e, ey tc,y, T/C3Y3 tc,y,

The two summations are identical except for the order in which the terms occur, constituting a special
case of (1.2).

DOUBLE SUMS
= — i
14 Ifn=3,expand Q=a XX
1j 2f 3j
Q=a’xx;+a"x,x;+ a’x;x;
11 12 13 21 22 23 31 32
=a'xx, Fatxx, Fatxxs +atnx, +avxx, + atxxg + a’xgx, @ xx, +axx,

1.5  Use the summation convention to write the following, and state the value of n necessary in
each case:

(@) ay by, tayb,+asb,+ @130y +a3byy + a35b,5 + a3bsy + ay by, + agsby,
1 1, .1 1,02 . .
? (b)) '8 tE T By TEn T EL +g§2 +g§1 +g§z
¢ L] [ ‘, . N



CHAP. 1] THE EINSTEIN SUMMATION CONVENTION 5

(@) a,by;+ayby, +asby,=ab, (n=3).

ij¥ i
(b) Setc,=1for cach i (n=2). Then the expression may be written

811C; T 812C; + 85:C; + g5,¢,= (g;l + 8% +glz_l + 82,)C;
= (gljkcjck)ci = gl/kcicick
r.s_t
x'y'z

1.6 If n =2, write out explicitly the triple summation ¢

rst

Any expansion technique that yields all 2° =8 terms will do. In this case we shall interpret the
triplet rst as a three-digit integer, and list the terms in increasing order of that integer:

r.os_t __ 1. 1.1 1.1 2 1.2 1 1.2 2
CoelXY'Z =Ci XY 2 01Xy 2 T 00X Y2 +Cxyz
211 2.1_2 2.2.1 2.2, 2
T XY Z T XY 2Tt Cpn Xy XYz

1.7  Show that ¢;xx; =0 if a;=i—].

Because, for all i and j, a;, = —a;, and x,x; = x,x,, the “off-diagonal” terms a,;x.x; (i<j;no sum)

and a,x,x, (j>1i;nosum) cancel in pairs, while the “diagonal” terms a,,(x,)* are zero to begin with.
Thus the sum is zero.
The result also follows at once from (1.5).

1.8  If the a; are constants, calculate the partial derivative

Reverting to Z-notation, we have:
Z a;x.x; = z a;xx; + 2 a;xx; + z a;xx; + 2 ;X .x;
ij ik i=k itk i

i=k
jk jrk j=k j=k

=C + <2 ak]‘xj>xk + <Z aik‘xi)xk toa,(x)

=k ik

where C is independent of x,. Differentiating with respect to x,,

14
T(E ai].x,.x].)=0 + 2 ag.x; + > a,x, + 2a.,.x,
X Nij j*k

i#k

= 2 a,x; + 2 a,x;
J i

or, going back to the Einstein summation convention,

0
(9—xk (aijxi'xj) =Xt agx, = (a, + a,)x,

SUBSTITUTIONS, KRONECKER DELTA
1.9  Express bijyiy]. in terms of x-variables, if y, = ¢, x; and bc, = 8.

by,y, = b"(c,x,)(c,x,) = (b7c, )x,c,x, = 8¢, c,x, = x,0,%, = ¢ x

rjs?s rvrvistts  jvjsts ity

1.10 Rework Problem 1.8 by use of the product rule for differentiation and the fact that
ax
£=5

~ “pg
(9xq
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J d ( ax; ‘9xj>
o, (a,xx;)=a; ¢9 (xx;) = X; 3%, X, 7%,
=a,(x;8, +x,8,) = ax; + a,x
- (aik + akt)xt

1.11 If a; = a;, are constants, calculate

2

d
0x, dx,

(az]xzx}

Using Problem 1.8, we have

L @) = g | @) = o o )

9x, 9%

14 7
= 0—,_xk (2a,x,) =2a, a_xk (x;) =2a,8,; =2a,

1.12 Consider a system of linear equations of the form y'=a x and suppose that (b;;) is a matrix
of numbers such that for all i and j, b, a” = 8/ [that i 1s the matrix (b;;) is the inverse of the
matrix (a”)]. Solve the system for x, in terms of the v

Multiply both sides of the ith equation by b,, and sum over i:
by =bua'x,=8/x,=x,

orx,=b.y’

1.13  Show that, generally, a,,(x; + y,)z;, # a;3 X2, + @Y%,

Simply observe that on the left side there are no free indices, but on the right, j is free for the first
term and i is free for the second.

1.14 Show that c,(x; +y,)z;= c;x;z; + ¢;;y,2;.
Let us prove (1.2); the desired identity will then follow upon setting a,;, =c;,.

a;x; +a;y, = Za”x, + Eauy] E(ﬂ,,X, +a;y;)

= E a[j(‘xj + yj) = aij(xj + y]')
i

Supplementary Problems

1.15  Write out the expression a,b, (n=26) in full.

1.16  Write out the expression Rj.,“. (n=4) in full. Which are free and which are dummy indices? How many
summations are there?

1.17  Evaluate 8x, (n arbitrary).

1.18  For n arbitrary, evaluate (a) 8, (b) 8,8, (c) 8,;0%C-

ij
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1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

Use the summation convention to indicate a,;b,, + a,,b,, + a,.b,,, and state the value of n.

Use the summation convention to indicate
2 2 2
ay;,(x,)" +axx, + 13X, X5 + @y, X%, + ay,(x,) + Ay X,X5 + a5 XX, + @y%%, + as5(x5)
Use the summation convention and free subscripts to indicate the following linear system, stating the
value of n:
Yi= X tepx,
Yo = € Xyt Cp0X,

Find the following partial derivative if the a, are constants:

aJ
5}; (@ x;, tapx, +a,x) (k=1,2, 3)

Use the Kronecker delta to calculate the partial derivative if the a,; are constants:

9 (ax)
x, 0

Calculate
J 2
— [a;x,(x;
axk [ ij 1( ]) ]
where the a,; are constants such that a,, = a;,.

Calculate

a
‘9_xz (aijkxixjxk)

where the a4, are constants.
Solve Problem 1.11 without the symmetry condition on a,;.
Evaluate: (a) bj‘)’i if y, =T/, (b) a,y;if y,=b,x;, (c) ayy,y;y, if y, = byx,.

If &, =1 for all i, prove that
(a) (a,+a,+ ~-~+an)ZEeisjaiaj
(b) ai(1+xi)Eai8i+aixi

() a,.,.(xi + x].) EZaije,.xj it a;,=a,



Chapter 2

Basic Linear Algebra for Tensors

2.1 INTRODUCTION

Familiarity with the topics in this chapter will result in a much greater appreciation for the
geometric aspects of tensor calculus. The main purpose is to reformulate the expressions of linear
algebra and matrix theory using the summation convention.

2.2 TENSOR NOTATION FOR MATRICES, VECTORS, AND DETERMINANTS

In the ordinary matrix notation (a,-j), the first subscript, i, tells what row the number a; lies in,
and the second, j, designates the column. A fuller notation is [a,],,,, which exhibits the number of
rows, m, and the number of columns, n. This notation may be extended as follows.

Upper-Index Matrix Notation

1 1 1 1 11 12 13 in
a, a, as...a, a a a
. 2 2 2 21 22 23 2n
i1 —|a; a a a il =Z|a a° a a
@ =) 50 2 T2 (=) © 0 S
1 2 3
al’ ay aj a, a™ a™ a” a™

Note that, for mixed indices (one upper, one lower), it is the upper index that designates the row,
and the lower index, the column. In the case of pure superscripts, the scheme is identical to the
familiar one for subscripts.

EXAMPLE 2.1 .
11 1 1 1 1
; C, ¢ €3 : d, d, d; ;
[Cj]23E[ 2 2 2] . [dz{]BE‘: 2 2 2 E[dj]23
c, €, G5 d1 dz d3
yu y12
y21 yzz e
[x:]14E[x1 x; x; x;] [y, = y31 y32
41 42
y y
- Vectors

A real n-dimensional vector is any column matrix v = [x;],, with real components x; =x,,; one
usually writes simply v = (x;). The collection of all real n-dimensional vectors is the n-dimensional
real vector space denoted R".

Vector sums are determined by coordinatewise addition, as are matrix sums: if A=[a,],, and
B=[b,],,,, then

‘ A+B= [aij + bij]mn
Scalar multiplication of a vector or matrix is defined by

/\[aij]mn = [/\aij]mn

Basic Formulas

The essential formulas involving matrices, vectors, and determinants are now given in terms of
the summation convention.
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Matrix multiplication. 1f A=[a,],, and B=[b,],,, then
AB=[a,b ], (2.1a)

ir~rj

Analogously, for mixed or upper indices,
AB= [al]]mn[bl]]nl\ = [aib;]mk AB= [aij]mn[bij]nk = [airbrj]mk (2'1b)
wherein i and j are not summed on.
Identity matrix. In terms of the Kronecker deltas, the identity matrix of order # is
I = [6ij]nn = [az]nn = [6ij]nn
which has the property /A = AI = A for any square matrix A of order .

Inverse of a square matrix. A square matrix A =[a,],, is invertible if there exists a (unique) matrix
B=[b,],,, called the inverse of A, such that AB= BA =1. In terms of components, the criterion
reads:

a.b.=b.a.=29§. (2.2a)
or, for mixed or upper indices,
ab’ = .bia; = 6; a'b’ =b"a" = 8" (2.2b)

Transpose of a matrix. Transposition of an arbitrary matrix is defined by A" =[a,],, = [ai]om
where a;; = a; for all i, j. If A" = A (that is, a;=ay; for all i, j), then A is called symmetric; if
A"=— A (that is, a;=—a,; for all i, j), then A is called antisymmetric or skew-symmetric.

Orthogonal matrix. A matrix A is orthogonal if A"= A~ (or if A"A= AA" =1).

Permutation symbol. The symbol e, , (with n subscripts) has the value zero if any pair of
subscripts are identical, and equals (—1)” otherwise, where p is the number of subscript transposi-
tions (interchanges of consecutive subscripts) required to bring (i jk...w) to the natural order
(123...n).

Determinant of a square matrix. If A= [a;],., is any square matrix, define the scalar

det A=e,

iigiy . i, B0 821, A3i, " " By

(2.3)
Other notations are |Al, |a;]|, and det (a,). The chief properties of determinants are
|AB| = |Al|B| |AT|=|A] (2.4)

Laplace expansion of a determinant. For each i and j, let M,; be the determinant of the square matrix
of order n —1 obtained from A =[a,],, by deleting the ith row and jth column; M, is called the
minor of a; in |A|. Define the cofactor of a; to be the scalar

A;=(-1)M,  where k=i+j (2.5)
Then the Laplace expansions of |A| are given by
Al aa S 2T o xpansons) @6)
Scalar product of vectors. 1f u=(x,) and v=(y,), then |
w=u-v=u'v=ux,y, : 2.7)

If u=v, the hotation uu=u’=v’ will often be used. Vectors u and v are orthogonal if uv =0,
Norm (length) of a vector. If u=(x,), then ’
lull = Vu* = vz, (2.8)



10 BASIC LINEAR ALGEBRA FOR TENSORS [CHAP. 2

>Angle between two vectors. The angle 6 between two nonzero vectors, u=(x;) and v={(y,), is
defined by

XiYi
VXX; VYV
It follows that § = #/2 if u and v are nonzero orthogonal vectors.

Vector product in R”. If u=(x,) and v=(y,), and if the standard basis vectors are designated

uv
cos 0= = O=o6=mw) 2.9)
[[ull {[¥]

i=(5,) i=(5;,) k=(3;3)
then
X y= ; ; ;( _ xZ x3 s xl x3 . xl x2 k (2 10
URV=14 2 A = Y2 Y3 Yi Vs Y1 Y2 -10a)
Yi Y2 V3

Expressing the second-order determinants by means of (2.3), one can rewrite (2.10aq) in terms of
components only:

uXv=(e;x;y;) (2.10b)

2.3 INVERTING A MATRIX

There are a number of algorithms for computing the inverse of A=[a,],,, where |A|#0 (a
necessary and sufficient condition for A to be invertible). When n is large, the method of elementary
row operations is efficient. For small n, it is practical to apply the explicit formula

_ 1
1_ L1 T
A |A| [Aij]nn (2'11a)
Thus, for n =2,
-1
ag, a12:| 1 [ a;, _alz]
= 2.11b
, [‘121 oY) |A| L —aa a1 ( )
- in which |A| = a,,a,, — a,,a,,; and, for n =3,
ay, Ay Gy - 1 A, Ay Ay
ay1 Gy 0Oa3 = m A, Ay Ay (2.11¢)
as; 4y ds; A Ay Ay
in which
A = aya;— ayas, A, = (8,505 — a1383,)

2.4 MATRIX EXPRESSIONS FOR LINEAR SYSTEMS
AND QUADRATIC FORMS

Because of the product rule for matrices and the rule for matrix equality, one can write a system
of equations such as

in the matrix form
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In general, any m X n system of equations
a;x; = b, (l1=i=m) (2.12q)

can be written in the matrix form
Ax=h (2.12b)

where A={[a,],,, x=(x;), and b=(b,). One advantage in doing this is that, if m=n and A is
invertible, the solution of the system can proceed entirely by matrices: x= A 'b.

Another useful fact for work with tensors is that a quadratic form Q (a homogeneous
second-degree polynomial) in the # variables x,, x,, . . . , x,, also has a strictly matrix representation:

0 =a,xx,=x"Ax (2.13)

gy

where the row matrix x’ is the transpose of the column matrix x = (x;) and where A=[a,],,.
EXAMPLE 2.2

Ay G A || % aq%;
[xp x, x5][ G20 G Gy || Xaf=[x, x, x]| %% =[xi(aijxj]=aijxixj

a31 a32 a33 x3 a3fxf

The matrix A that produces a given quadratic form is not unique. In fact, the matrix
B=%(A+ A") may always be substituted for A in (2.13); i.e., the matrix of a quadratic form may
always be assumed symmetric.

EXAMPLE 2.3 Write the quadratic equation
3x° +y* —22° = Sxy —6yz =10

using a symmetric matrix.
The quadratic form (2.13) is given in terms of the nonsymmetric matrix

3 -5 0
A={0 1 -6
0 0 -2

The symmetric equivalent is obtained by replacing each off-diagonal element by one-half the sum of that
element and its mirror image in the main diagonal. Hence, the desired representation is

3 =5/2  0]|f=*
[x y z]] -5/72 1 -3 [y}—lo
0 -3 —-2]lz

2.5 LINEAR TRANSFORMATIONS

Of utmost importance for the study of tensor calculus is a basic knowledge of transformation
theory and changes in coordinate systems. A set of linear equations like

y=3x+2y )
defines a linear transformation (or linear mapping) from each point (x, y) to its corresponding image
(x, ¥). In matrix form, a linear transformation may be written X = Ax; if, as in (I), the mapping is
one-one, then |A|# 0. .

There is always an alias-alibi aspect of such transformations: When (x, y) is regarded as
defining new coordinates (a new name) for (x, y), one is dealing with the alias aspect; when (%, y) is
regarded as a new position (place) for (x, y), the alibi aspect emerges. In tensor calculus, one is
generally more interested in the alias aspect: the two coordinate systems related by x = Ax are
referred to as the unbarred and the barred systems.
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EXAMPLE 2.4 In order to find the image of the point (0, —1) under (I), merely set x =0 and y = —1; the
result is

F=50)-2(-1)=2  §=3(0)+2(-1)=—2

Hence, (0, —1) =(2, —2). Similarly, we find that (2,1) = (8, 8).

If we regard (x, y) merely as a different coordinate system, we would say that two fixed points, P and Q,
have the respective coordinates (0, —1) and (2, 1) in the unbarred system, and (2, —2) and (8, 8) in the barred
system.

Distance in a Barred Coordinate System

What is the expression for the (invariant) distance between two points in terms of differing
aliases? Let x = Ax (| A| #0) define an invertible linear transformation between unbarred and barred
coordinates. It is shown in Problem 2.20 that the desired distance formula is

dx,3)=V&-y) Gx-y) = Vg, A%, A, (2.14)

where [g;],,=G= (AA") ' and x—§=(Ax,). If A is orthogonal (a rotation of the axes), then
8; =9 and (2.14) reduces to the ordinary form

ij>
d(x,y) = ”i - 3_’” = VAx, Ax,

[cf. (2.8)].

EXAMPLE 2.5 Calculate the distance between points P and Q of Example 2.4 in terms of their barred
coordinates. Verify that the same distance is found in the unbarred coordinate system.
First calculate the matrix G =(AA7) "' = (A ')A (see Problem 2.13):

a[3 2], mmw-come > 4= k[ 2]

d G_i[zz]T_i[zz]:L[z—3][22}=L[13—11]
an “161-3 5] "16L-3 51725612 sli-3 slT256L-11 29
Hence g,, = 13/256, g,, = &,, = —11/256, and g,, =29/256. Now, with x —y=[2-8 —-2- 8]"
(2.14) gives:

(-6 10",
d* =g, Ax, A%,

256( 6)* +2- 256( 6)(— 10)+256( 10)?
_13(36) —22(60) + 29(100)
N 256 ' B

In the unbarred system, the distance between P(0, —1) and Q(2,1) is given, in agreement, by the
Pythagorean theorem:

d?=0-2+(-1-1)>=8

2.6 GENERAL COORDINATE TRANSFORMATIONS

A general mapping or transformation T of R"” may be indicated in functional (vector) or in
component form:

x = T(x) or x,=T(x;, x5, ...,%,)

In the alibi description, any point x in the domain of T (possibly the whole of R") has as its image the
point 7(x) in the range of T. Considered as a coordinate transformation (the alias description), T sets
up, for each point P in its domain, a correspondence between (x;) and (x;), the coordinates of P in
two different systems. As explained below, T'may be interpreted as a coordinate transformation only
if a certain condition is fulfilled.
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Bijections, Curvilinear Coordinates

A map T is called a bijection or a one-one mapping if it maps each pair of distinct points x #y in
its domain into distinct points T(x) # T(y) in its range. Whenever T is bijective, we call the image
x= T(x) a set of admissible coordinates for x, and the aggregate of all such coordinates (alibi: the
range of T'), a coordinate system.

Certain coordinate systems are named after the characteristics of the mapping 7. For example, if
T is linear, the (x,)-system is called affine; and if T is a rigid motion, (x,) is called rectangular or
cartesign. [It is presumed in making this statement that the original coordinate system (x,) is the
familiar cartesian coordinate system of analytic geometry, or its natural extension to vectors in R".]
Nonaffine coordinate systems are generally called curvilinear coordinates; these include polar
coordinates in two dimensions, and cylindrical and spherical coordinates in three dimensions.

2.7 THE CHAIN RULE FOR PARTIAL DERIVATIVES

In working with curvilinear coordinates, one needs the Jacobian matrix (Chapter 3) and,
therefore, the chain rule of multivariate calculus. The summation convention makes possible a

compact statement of this rule: If w=f(x,x,,x,,...,x,) and x;=x,(u;, ty,...,u,) (i=
1,2,...,n), where all functions involved have continuous partial derivatives, then
ow af dx; )
_ 9 9% (I1=j=m) (2.15)

du;  dx; du;

Solved Problems

TENSOR NOTATION
2.1 Display explicitly the matrices (a) [b!],,, (b) [b;]24, (©) [67]ss.

by b,
@ (b= Z Z () [b]=[z Z Z Z]
bt b
ALl I S
(¢) [67],=|08"" 8% &% {0 1 0]
53 5§32 §% 0 01

From (a) and (b) it is evident that merely interchanging the indices i and j in a matrix A = [a;],., does
not necessarily yield the transpose, A”.

2.2 Given

a —a —a 2 4 -6
A=|2b b —b B=]-1 -2 3
4¢ 2¢ —2c 3 6 —9
verify that AB # BA.

2a+a—3a 4a+2a—6a —6a —3a+9a 0 00
AB=14b—-b-3b 8b—-2b—6b —12b+3b+9b(=|0 0 0|=0O
8c—2c—6¢c 16¢c—4c—12¢ —24c+6¢+18¢c 0 0 0
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2.3

24

2.5

2.6
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2a+8b—24c —2a+4b—12¢ —2a-—4b+12¢c
but BA=| —a—4b+12c a—2b+6¢ a+2b—6¢c |#0
“L3a+12b—36¢c —-3a+6b—18c —3a—6b+18¢
Thus, the commutative law (AB = BA) fails for matrices. Further, AB = O does not imply that A = O or
B=0.

Prove by use of tensor notation and the product rule for matrices that (AB) = B'A”, for any
two conformable matrices A and B.

Let A=[a,l,.., B=[b,l«, AB=[c;],., and, for all i and j,

mn?

I ’
a.=a, b,.j—bj,. C;=¢Cy

Hence, A" ={a}],.» B" = [b, 1> and (AB)" = [c],,.- We must show that B’A" =[c} ], By definition
of matrix product, B’A" =[b, a.

irlyj

14> and since

7

blad.=b.a =ab.=c,=c,

rrj rivtjr jriri ji ij

the desired result follows.

Show that any matrix of the form A = B'B is symmetric.

By Problem 2.3 and the involutory nature of the transpose operation,

A"T=(B'B)'=B"(B")'=B'B=4

From the definition, (2.3), of a determinant of order 3, derive the Laplace expansion by
cofactors of the first row.

In the case n =3, (2.3) becomes

all 012 a13
yy Gy x| = |a,./.| = €x81:05; 3,
a3, Q3 O3

Since e, =0 if any two subscripts coincide, we write only terms for which (jjk) is a permutation of
(123):

|aij| = €038 00033 T €1358,1105305, + €5130,,8,,03,

T €,3101505305, T 3150430, 05, 1 €3;,0,385,05,
= 1055053 — Q1105303 ~ Q105053+ A1505305, + A4305,05;, — G,305,05,
= 0,,(8y,853 — G5305,) = @1,(0,,055 — 05384,) + a,5(85,05, — a3,a5,)
But, for n =2, (2.3) gives

Gy Qi

4y, as, =+A = €,0,5,05 T €305, = (ydy; — Ayl

and the analogous expansions of —A,, and + A ;. Hence,

|aij| =a A, tanA,tasAL = aAy

as in (2.6).
Evaluate:
_ 5 =2 15
@ |5 7 @ |- 0w
15 0 30
b. —2a

(a) e b ' =b-b—(-2a)(-2c)= b° ~ dac
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(b) Because of the zeros in the second column, it is simplest to expand by that column:
5 =2 15

~-10 10 5 15 5 15
-10 0 10 =—(—2)‘ +o' —0|_
50 30 15 30 15 30 10 10
-10 10

=2‘ =2(10)(15)]‘} 3| =300(-2-1)= ~900

15 30

2.7  Calculate the angle between the following two vectors in R’
x=(1,0,-2,-1,0) and y=1(0,0,2,2,0)
We have:
xy = (1)(0) + (0)(0) + (=2)(2) + (=1)(2) + (0)(0) = =6
X =140+ (-2 + (-1’ +0°=6
y'=0"+0"+2>+2>+0*=8
and (2.9) gives

cose———_6 =—ﬁ or 9:5_77
V6-V8 2 6

2.8 Find three linearly independent vectors in R* which are orthogonal to the vector 3,4,1, -2).

It is useful to choose vectors having as many zero components as possible. The components
(0,1,0,2) clearly work, and (1,0, —3, 0) also. Finally, (0,0, 2, 1) is orthogonal to the given vector, and
seems not to be dependent on the first two chosen. To check independence, suppose scalars x, y, and z
exist such that

0 1 07 [0 #0)+ y(1) +2(0)=0
1 ol |ol |o (1) +y(0) +2(0)=0
MolTY -3t 27 o or x(0)+ y(=3) + 2(2) =0
2 0 1 0 x(2)+y(0) +z(1)=0

This system has the sole solution x =y =z =0, and the vectors are independent.

2.9  Prove that the vector product in R’ is anticommutative: x X y=—yXXx.
By (2.10b),
XXy= (eijkxjyk) and yxXx= (eijky/xk)
But e, = —¢,,, so that

CiinYiXe = CuxiViX; = Tl YiX; T "X Vi

INVERTING A MATRIX
2.10 - Establish the generalized Laplace expansion theorem: a,,A  =|A| 3.

Consider the matrix

a4y G 1
;1,.1' a2 o ‘a.m‘ row r
A¥=| ... .
a, a, ... a, row s
_‘.Zn.l. anz e ann—
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which is obtained from matrix A by replacing its sth row by its rth row (r # s). By (2.6), applied to row r
of A*,
det A* = a,].A:; (not summed on r)
Now, because rows r and s are identical, we have for all j,
* * —
Arj=(_1)pAsj:(_l)pAsj (p=r—ys)

Therefore, det A*=(—1)"a,;A,;. But it is easy to see (Problem 2.31) that, with two rows the same,
det A* =0. We have thus proved that

a,A,;=0 (r#s)

and this, together with (2.6) for the case =, yields the theorem.

Given a matrix A =[a,],,, with |A|#0, use Problem 2.10 to show that
AB=1  where B—L[A X
’Al ijdnn
Since the (i, j)-element of B is A /| A],
1 | Al
AB= [aik(A/'k/|A|)]/m = m [|A|6ij]nn = W [ ij]nn =

[It follows from basic facts of linear algebra that also BA = I; therefore, A™' = B, which establishes

(2.11a).]
-2 0 1
A:[ 3001 0}
2 -2 3

Use (2.11¢). To evaluate | A|, add twice the third column to the first and then expand by the first
row:

Invert the matrix

0 0 1 3 1
Al =13 1 0 =1~h8 _2‘=—6—8=—14
8 -2 3
Then, computing cofactors as we go,
1 3 -2 -1 -3/14 1/7 1/14
A"=_—14 -9 -8 3|=| 9/14 4/7 -3/14
-8 -4 -2 4/7 217 1/7

Let A and B be invertible matrices of the same order. Prove that (a) (A7) =(4™")" (i.e.,
the operations of transposition and inversion commute); (b) (AB y'=B7'A""

(a) Transpose the equations AA™' = A™'A = I, recalling Problem 2.3, to obtain
(AHYAT=ATA Y =I"=1
which show that A is invertible, with inverse (A7) =(A"")".
(b) By the associative law for matrix multiplication,
(ABY(B™'A™")=A(BB )AT'=AIA'=AA""=1
and, similarly,
(B7'A™Y(AB)=1
Hence, (AB) '=B"'A7"
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LINEAR SYSTEMS; QUADRATIC FORMS
2.14 Write the following system of equations in matrix form, then solve by using the inverse matrix:

3x —4y=—18
—5x+8y= 34

The matrix form of the system is

I M e (1)

The inverse of the 2 X 2 coefficient matrix is:

[—g —g]_lzm——zﬁm[g §]=[5%4 3}4]

Premultiplying (1) by this matrix gives

1[;]=[534 3}4][_;§]=[_§]

orx=-2,y=3.

2.15 If [bY]= [aij]_l, solve the n X n system
Vi = ax, (1)
for the x; in terms of the y,.
Multiply both sides of (1) by »* and sum on i:
by, = b*a,x; = 8%x, = x,

Therefore, x; = b”y,.

2.16 Write the quadratic form in R*
Q =7x; —4x,x, +3x,x, — x5 + 10x,x, + x5 — 6x,x, + 3x>

in the matrix form x"Ax with A symmetric.

7 0 —4 3 * 7 0 -2 3/2{[*x
0 -1 0 10| *= 0 -1 0 51 X,
O0=[x;, x, x;3 x,] 0 0 1 =6 || x5 =[x, x x;3 x] -2 0 1 =3 || x,
0 0 0 3jL%s 3/2 5 =3 3L x4

LINEAR TRANSFORMATIONS

2.17 Show that under a change of coordinates x; = a;x;, the quadric hypersurface ¢ xx;, =1
transforms to ¢, x,x; = 1, where
- . . -1
i = Csb,b with ;) = (a;)

rs~ ri”sj

This will be worked using matrices, from which the component form can be easily deduced. The
hypersurface has the equation x"Cx = 1 in unbarred coordinates, and x = Ax defines a barred coordinate
system. Substituting x=Bx (B = A™') into the equation of the quadric, we have

(Bx)"C(Bx)=1 or x'B"CBx=1

Thus, in the barred coordinate system, the equation of the quadric is X"Cx =1, where C = B"CB.
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DISTANCE IN A BARRED COORDINATE SYSTEM

2.18

2.19

2.20

Calculate the coefficients g,; in the distance formula (2.14) for the barred coordinate system in
R’ defined by ¥, = a,x;, where a;, =a,, =1, a;, =0, and a,, =2.

We have merely to calculate G = (AA”)™", where A = (a,):

AAT—[l 0][1 2]2[1-1+0 1-2+0 }=[1 2]
“L2 1ilo 1 2-1+0 2-2+1-1 25

[ 3] =55l =05

Thus, g, =5, 81, =81 = =2, 8§, =1

By (2.11b),

Il

(AAa")™

Test the distance formula obtained in Problem 2.18 by finding the distance between the aliases
of (x,)=(1,—3) and (y;) = (0, —2), which points are a distance V2 apart.

The coordinates for the given points in the barred system are found to be

Sl F Y ) A P

or (x;,)=(1,—1) and (y;) = (0, —2). Using the g, calculated in Problem 2.18,

dx,5)=V5(1-0)> =2-2(1 = 0)(=1+2) + (-1 +2)°=V2

Prove formula (2.14).

In unbarred coordinates, the distance formula has the matrix form

dx,y)=[x—yll=VEx—-y) x~y) -

Now, x= Ax or x= Bx, where B= A™'; so we have by substitution,

d(x,y) = V/(Bx — By)"(Bx - By) = V(BE - §))'Bx - )
=VE-3)BBE-7)=VE-¥)Gx-Y)
= d(X,¥)
where G=B'B=(A")A7'=(A")"A"' =(AA") ", the last two equalities following from Problem
2.13.

RECTANGULAR COORDINATES

2.21

Suppose that (x')=(x, y,z) and (x')=(%, y, z) (the use of superscripts here anticipates
future notation) denote two rectangular coordinate systems at O and that the direction angles
of the x'-axis relative to the x-, y-, and z-axes are (e, B;,7;), i=1,2,3. Show that the
correspondence between the coordinate systems is given by x= Ax, where x=(x, y, z),
x=(x, y, z), and where the matrix

cos a; Ccos B; C€Os Yy,
A=|cosa, cospfB, cosvy,
COs a3 COS B35 COS 7y,

is orthogonal.
) o = . > =
Let the unit vectors along the x-, y-, and z-axes be i = OP, j= OQ, and k = OR, respectively (see

Fig. 2-1). If x is the position vector of any point W(x, y, z), then

Xx=xi+yj+zk
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1 P
— ! R
k ! !
z
T x-axis VIEW OF AXES FOR
— - - BARRED COORDINATES
W(x s Yo Z) .
B
o y
0 i
i
X
Fig. 2-1

We know that the (x, y, z)-coordinates of P are (cos «;, cos B;, cos v,). Similar statements hold for the
coordinates of Q and R, respectively. Hence:

s |

i=(cos a;)i+ (cos B,)j + (cos y, )k
j = (cos a,)i+ (cos B,)j + (cos y,)k
k = (cos a,)i + (cos B;)j + (cos y,)k

| Comae |

Substituting these into the expression for x and collecting coefficients of i, j, and k:
X=(xcosa, +ycosa,+zcosa,)i
+ (% cos B, + y cos B, + z cos B,)j
+ (X cosy, + ¥ cos vy, + z cos y, )k
Hence, the x-coordinate of W is the coefficient of i, or
x=xcosa, + ycosa, + zcosa,
Similarly,
y=xcos B, + ycos B, + zcos S,
z=xcosy, + ycosy, + zcosy,
In terms of the matrix A defined above, we can write these three equations in the matrix form
x=A"% (1)
Now, the (i, j)-element of the matrix AA” is
COSs a; COs a; + cos B, cos B; + cos v, cos v,
for i, j=1, 2, 3. Note that the diagonal elements,
(cos @)’ + (cos B) + (cosy)  (i=1,2,3)

— o 5 5 > —

are the three quantities OP+ OP, OQ- OQ, OR- OR; i.e., they are unity. If i # j, then the correspond-
- = 5 — - —

ing element of AA” is either OP+ OQ, OP- OR, or OQ - OR, and is therefore zero (since these vectors
are mutually orthogonal). Hence, AA” = I (and also A”A = I), and, from (1),

Ax=AATx =%
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CURVILINEAR COORDINATES
2.22 A curvilinear coordinate system (¥, y) is defined in terms of rectangular coordinates (x, y) by
x=x"—xy
y=xy
Show that in the barred coordinate system the equation of the liney =x—1isy=x >~ % [In
the alibi interpretation, (1) deforms the straight line into a parabola.]

(1)

It helps initially to parameterize the equation of the line as x =¢, y = ¢ — 1. Substitution of x = ¢,

y =t — 1 in the change-of-coordinates formula gives the parametric equations of the line in the barred
coordinate system:

i=—tt-1)=t

y=tt—1)=¢—t (2)

Now ¢ may be eliminated from (2) to give y = ¥* — x.

CHAIN RULE

2.23 Suppose that under a change of coordinates, X; = X,(x;, X5, . . ., X,) (1=i=n), the real-
valued vector functions (7,) and (7,) are related by the formula

=1 2% 1
i r&-fi ()

Find the transformation rule for the partial derivatives of (T,)—that is, express the 9T,/ dx; in
terms of the 47T,/dx,—given that all second-order partial derivatives are zero.

Begin by taking the partial derivative with respect to x; of both sides of (1), using the product rule:

T, 4 { ax,}_aT, X, o 9 {ax,}
gx, dx, U7 ox,) ox; ox, "7 ox; L ox,

By assumption, the second term on the right is zero; and, by the chain rule,
aT, oT, ox,
Consequently, the desired transformation rule is

dT, 9T, dx, dx,

i

9%, dx, 9%, 9%,

Supplementary Problems

2.24  Display the matrices (a) [u"]ss, (b) [u"]s5, (¢) [u”]ss, (d) [8']s-
2.25 Carry out the following matrix multiplications:

3 -1 241
SR ] H IO ) P

0dL2
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2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

Prove by the product rule and by use of the summation convention the associative law for matrices:
(AB)C= A(BC)

where A=(a,), B=(b,), and C=(c;) are arbitrary matrices, but compatible for multiplication.

Prove: (a) if A and B are symmetric matrices and if AB = BA = C, then C is symmetric: (b) if A and B
are skew-symmetric and if AB= —BA = C, then C is skew-symmetric.

Prove that the product of two orthogonal matrices is orthogonal.

Evaluate the determinants

11 -1 1 0

s 2 1 -1 10 111
(@) ‘1 51 @ 3 0 1 @ o1 000
1 -1 2 11 01 1

11 00 0

In the Laplace expansion of the fourth-order determinant |a, |, the six-term summation €31 81202030 4,
appears. (a) Write out this sum explicitly, then (b) represent it as a third-order determinant.

Prove that if a matrix has two rows the same, its determinant is zero. (Hint: First show that
interchanging any two subscripts reverses the sign of the permutation symbol.)

Calculate the inverse of

0 1 2
SRR (]

(a) Verify the following formulas for the permutation symbols e, and e, (for distinct values of the
indices only):

L= (=)= (k=)
o=l =ik =il k= gl
(b) Prove the general formula:
e :(iz_il)(iz_il)"'(in_i1)(i37i2)"'(in_iz)"'(in_in—l)E ip_iq

et |i2_i1lli3_i1!"'lin_i1t|i3_i2|'”|in_izl”'lin_inﬂl P>q Iip_iql

Calculate the angle between the R®-vectors x = (3,-1,0,1,2,-3) and y =(-2,1,0,1,0,0).
Find two linearly independent vectors in R* which are orthogonal to the vector 3,-2,1).

Solve for x and y by use of matrices:

3x—4y=-23
S5x+3y= 10

Write out the quadratic form in R’ represented by Q = x’Ax, where
1 4 3
A=14 2 0
30 -1

Represent with a symmetric matrix A the quadratic form in R*

— 2__ .2 2 _ _
Q==3x]—x;+X;—x,x, — X, %X, + 6x,x,
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2.39

2.40

2.41

2.42

BASIC LINEAR ALGEBRA FOR TENSORS [CHAP. 2

Given the hyperplane c,x, =1, how do the coefficients ¢, transform under a change of coordinates
X, =a,x?
i gy

Calculate the g, for the distance formula (2.14) in a barred coordinate system defined by x = Ax, with
1 =2
A= [2 3]

Test the distance formula of Problem 2.40 on the pair of points whose unbarred coordinates are (2, —1)
and (2, —4).

(a) Show that for independent functions ¥; = x,(x, x,, ..., X,),
dx;, dx,
ox, 9%, O @)
(b) Take the partial derivative with respect to x, of (1) to establish the formula
3°x, ox, d’x, 0%, 0%,
= 2)

dx,9x, 9%,  OX,0%, ox, Ix,



Chapter 3

General Tensors

3.1 COORDINATE TRANSFORMATIONS

At this point the notation for coordinates will be changed to that usual in tensor calculus.

Superscripts for Vector Components

The coordinates of a point (vector) in R” will henceforth be denoted as (x', x> x° . . ., x"). Thus,
the familiar subscripts are now replaced by superscripts, and the upper position is no longer reserved
for exponents alone. It will be clear by context whether a character represents a vector component or
the power of a scalar.

EXAMPLE 3.1 If a power of some vector component is to be indicated, obviously parentheses are necessary,
thus, (x*)* and (x" ')’ represent, respectively, the square of the third component, and the (n — 1)st component
raised to the fifth power, of the vector x. If u is introduced as a real number, then u” and u> are powers of u and
not vector components. If (¢c)* appears without explanation, the parentheses indicate the use of the superscript k
as an exponent and not as the index of a vector component.

Rectangular Coordinates

Coordinates in R" are called rectangular (also rectangular cartesian or cartesian) if they are
patterned after the usual orthogonal coordinate systems of two- and three-dimensional analytic
geometry. A general definition that is workable in this setting is, in effect, an assertion of the
converse of the Pythagorean theorem.

Definition 1: A coordinate system (x') is rectangular if the distance between two arbitrary points
P(x',x% ..., x") and Q(y", y% ..., y") is given by

PQ=V(x' =y Y + (P =y )Y+ + (" —y" ) =V/5,Ax AX/

i

where Ax' = x’ —-y.

Under orthogonal coordinate changes, which are isometric, the above formula for distance is

mvanant (cf. Section 2.5). Hence, all coordinate systems (') defined by X' = a'x", where (a 1) is such

that aja}=§,, are rectangular. It can be shown that these are the only rectangular coordmate
systems whose origin coincides with that of the (x')-system.

Curvilinear Coordinates

Suppose that in some region of R" two coordinate systems are defined, and that these two
systems are connected by equations of the form

T #=xLx%...,x") (A=i=n) (3.1)

where, for each i, the function, or scalar field, x'(x', X, . . . , X") maps the given region in R" to the
reals and has continuous second-partial derivatives at every point in the region (is class C*). The
transformation 7, if bijective, is called a coordinate transformation, as in Section 2.6. If (x') are
ordinary rectangular coordinates, the (x¥') are called curvilinear coordinates unless 7 is linear, in
which case (x*) are called affine coordinates. :

For convenience, the three most common curvilinear-coordinate systems are presented below. In
each case, a “reverse” notation is employed: the two- or three- dimensional curvilinear system (x' ) is
defined by the mapping J that takes 1t mto a rectangular system (x*) of the same dimension.

Polar coordinates (Fig. 3-1). Let (¥, x°) = (x, y) and (x', x*) = (r, 8), under the restriction r > 0.

23
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y
P(r, 6)
x = rcos @
v y 3 {y =rsinf
U
+ x
Fig. 3-1

Then,

<

g

: {)El=xl cos x° (3.2)

=2 1 _. 2
=X Sinx

1 =152 =252

g EVE)THED)
x*=tan"' (x%/x")

(The inverse given here is, in the equation for x° valid only in the first and fourth quadrants of the

x,X,-plane; other solutions must be used over the other two quadrants. Likewise for the 6-coordinate

in the cylindrical and spherical systems.)
Cylindrical coordinates (Fig. 3-2). If (x', X7, )=(x, y,z) and (x, x°, x*) = (r, 0, z), where r >0,

- X 2 X
' =x"cos x* x =V ED + (%)
g .« dz2_ 1 2 g o -1 0222
T =x sinx J x> =tan"" (x/x")
3 -

_ =3
X =X

(3.3)

Spherical coordinates (Fig. 3-3). If (x, x,, X;) = (x, y, z) and (x', x*, x’) = (p, @, ), where p >0
and 0= =,

L =VEY+EYHE)
P=cos ! ENEY +E+E)) (B4)

x’=tan" "' (£¥x")

=1 | 2 3
X =x sinx"cosx
. =2 . 2 . 3
T 1x°=x"sinx*sinx v
-3 1 2
X=X cosx

-1

(Caution: In an older but still common notation for spherical coordinates, 6 denotes the polar angle
and ¢ the equatorial angle.)

X =rcosf
J3: {y=rsin0

=2

(r, 6) — polar
coordinates for Q
in xy-plane

Fig. 3-2
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y J:)ly=psinegsind

X = p sin ¢ cos 6
{z=pcos¢

(r, 6) —polar
coordinates for Q
in xy-plane

Fig. 3-3

The Jacobian

The »” first-order partial derivatives 9x/dx’ arising from (3.1) are normally arranged in an n X n
matrix,

o' axl o ox']
ax'  ox® ax"
9% 9x° ax’
J= T aZ T e (3.5)
ax" ax" ax"
| ox' ax’ ax" |

Matrix J is the Jacobian matrix, and its determinant # = det J is the Jacobian, of the transformation
T.

EXAMPLE 3.2 In R’ let a curvilinear coordinate system (x') be defined from rectangular coordinates (x') by
the equations

T {fl =x'x’

)E-Z — (x2)2

Since 9x /ax' = x%, 9xYox® = x', 9x%ox" =0, and dx¥dx* = 2x> the Jacobian of J is
1
F=1 5| =2

A well-known theorem from analysis states that J is locally bijective on an open set  in R” if
and only if # #0 at each point of %. When ¢ 0 in % and 7 is class C” in %, then (3.1) is termed
an admissible change of coordinates for U.

EXAMPLE 3.3 The curvilinear coordinates of Example 3.2 are admissible for the regions x*>0 and x*> <0
(both open sets in the plane). See Problem 3.1.

In an admissible change of coordinates, the inverse transformation __1 (the local existence of
which is guaranteed by the theorem mentioned above) is also class C°, on 4, the image of % under
J. Moreover, if ' has the form

VX =XE x5 (1=i=n) (3.6)

-
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on %, the Jacobian matrix J of ' is the inverse of J. Thus, JI=JI=1, or

=i r J i or )
8xr (9)5 - _)fr 6?x. _5i (3.7)
ax" 9x’  dx 9x’

[cf. Problem 2.42(a)]. It also follows that § =1/¢.

General Coordinate Systems

In later developments it will be necessary to adopt coordinate systems that are not tied to
rectangular coordinates in any way [via (3.1)] and to define distance in terms of an arc-length
formula for arbitrary curves, with points represented abstractly by n-tuples (x', x* ..., x"). Each
such distance functional or metric will be invariant under admissible changes of coordinates, and
admissible coordinate systems will exist for each separate metric. Under such metrics, R” will
generally become non-Euclidean; e.g., the angle sum of a triangle will not invariably equal .

Although the curvilinear coordinate systems presented above are explicitly associated with the
Euclidean metric (since they are connected via (3.1) with rectangular coordinates and Euclidean
space), those same systems could be formally adopted in a non-Euclidean space if some purpose
were served by doing so. The point to be made is that the space metric and the coordinate system used
to describe that metric are completely independent of each other, except in the single instance of
rectangular coordinates, whose very definition (see Definition 1) involves the Euclidean metric.

Usefulness of Coordinate Changes

A primary concern in studying tensor analysis is the manner in which a change of coordinates
affects the way geometrical objects or physical laws are described. For example, in rectangular
coordinates the equation of a circle of radius a centered at the origin is quadratic,

()El)z 4 ()ZZ)Z — a2

but in polar coordinates, (3.2), that same circle has the simple linear equation x' = a. The reader is
no doubt familiar with the sometimes dramatic change that takes place in a differential equation
under a change of variables, which is nothing but a change of coordinates. This idea of changing the
description of phenomena by changing coordinate systems lies at the heart of not only what a tensor
means, but how it is used in practice.

3.2 FIRST-ORDER TENSORS

Consider a vector field V= (V') defined on some subset & of R” [that is, for each i, the '
component V' = V*(x) is a scalar field (real-valued function) as x varies over ¥]. In each admissible

coordinate system of a region 9 containing ¢, let the n components ViV ...,V of V be
expressible as n real-valued functions; say, as

T, 1 ..., T" in the (x')-system
and ~ _ _ ,

T, T? ..., T" in the (x')-system

where (x') and (x') are related by (3.1) and (3.6).

Definition 2: The vector field V is a contravariant tensor of order one (or contravariant vector)
provided its components (7*) and (7") relative to the respective coordinate systems
(x') and (x") obey the law of transformation

_, gx'
contravariant vector T' =T’ o (1=i=sn) (3.8)
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EXAMPLE 3.4 Let € be a curve given parametrically in the (x*)-system by
X'=x(t) (ast=b)

The tangent vector field T = (T") is defined by the usual differentiation formula

&'

dt

Under a change of coordinates (3.1), the same curve is given in the (x¥')-system by
=x()=2Ex0), X°@), ..., x"(1) (as=t=b)

and the tangent vector for € in the (¥‘)-system has components

'i_di_i
T_dt

T =

But, by the chain rule,

dx' _ 9x' dx’ - ax’
= T =T ==

dt  ox" dt ot dx
proving that T is a contravariant vector. (Note that because T is defined only on the curve €, we have & = € for
this particular vector field.) We conclude in general that under a change of coordinates, the rangent vector of a

smooth curve transforms as a contravariant tensor of order one.

Remark 1: In some treatments of the subject, tensors are defined to possess certain weights, with
(3.8) replaced by

. 0x !
ax"

weighted contravariant vector T'= (I=i=n) 3.9)
for some real-valued function w (the “weight of T”).
In framing the next definition we (arbitrarily) shift to a subscript notation for the components of
the vector field.

Definition 3: The vector field V is a covariant tensor of order one (or covariant vector) provided its
components (T;) and (T,) relative to an arbitrary pair of coordinate systems (x') and

(x"), respectively, obey the law of transformation

ax

covariant vector T,=T, o (1=i=n) (3.10)
3 .

EXAMPLE 3.5 Let F(x) denote a differentiable scalar field defined in a coordinate system (x') of R”. The
gradient of F is defined as the vector field

VF= (c?F oF o”F)

(9x13(9x2)"'3axn

In a barred coordinate system, the gradient is given by VF = (9 F/dx"), where F(x) = Fox(X). The chain rule for
partial derivatives, together with the functional relations (3.6), gives

(9F ¢9F ﬁx
0%’ ax ax

which is just (3.10) for T, = dF/dx’, T, = 9F/3x". Thus, the gradient of an arbitrary differentiable function is a
covariant vector.

Remark 2: Tangent vectors and gradient vectors are really two different kinds of vectors. Tensor
calculus is vitally concerned with the distinction between contravariance and covariance,
and consistently employs upper indices to indicate the one and lower indices to indicate
the other.
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Remark 3: From this point on, we shall frequently refer to first-order tensors, contravariant or
covariant as the case may be, simply as “vectors”; they are, of course, actually vector
fields, defined on R”". This usage will coexist with our earlier employment of “vectors”
to denote real n-tuples; i.e., elements of R". There is no conflict here insofar as the
n-tuples make up the vector field corresponding to the identity mapping V'(x) =
x' (i=1,2,...,n). But the vector (x') does not enjoy the transformation property of
a tensor; so, to emphasize that fact, we shall sometimes refer to it as a position vector.

3.3 INVARIANTS

Objects, functions, equations, or formulas that are independent of the coordinate system used to
express them have intrinsic value and are of fundamental significance; they are called invariants.
Roughly speaking, the product of a contravariant vector and a covariant vector always is an
invariant. The following is a more precise statement of this fact.

Theorem 3.1: Let S’ and T, be the components of a contravariant and covariant vector, respective-
ly. If the inner product E = S'T, is defined in each coordinate system, then E is an
invariant.

EXAMPLE 3.6 In Examples 3.4 and 3.5 it was established that the tangent vector, (§') = (dxdr), to a curve €
and the gradient of a function, (7,) = (#F/dx"), are contravariant and covariant vectors, respectively. Let us
verify Theorem 3.1 for these two vectors. Define

dF dx”

E=ST,= ax’ dt

Now, by the chain rule,
dF

dt

so the assertion of Theorem 3.1 is that the value of
d ; _d .
LGN ESA0)

is independent of the particular coordinate system (x) used to specify the curve. To visualize this, the reader
should study Fig. 3-4, which shows how the composition F = Fo(x'(t)) works out in R’ It is apparent here that
the map F entirely bypasses the coordinate system (x', x°, x*). Thus, F—and with it, dF/dt—is an invariant with
respect to coordinate changes.

b

REAL INTERVAL

REAL LINE

Fig. 3-4
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3.4 HIGHER-ORDER TENSORS

Tensors of arbitrary order may be defined. Although most work does not involve tensors of
order greater than 4, the general definition will be included here for completeness. We begin with the
three types of second-order tensors.

Second-Order Tensors

Let V= (V") denote a matrix field; that is, (V") is an n X n matrix of scalar fields V¥(x), all
defined over the same region % = {x} in R". As before, it will be assumed that V has a
representation (77) in (x') and (T”) in ('), where (x') and (x') are admissible coordinates related
by (3.1) and (3.6).

Definition 4: The matrix field V is a contravariant tensor of order two if its components (T") in (x")
and (T7) in (x') obey the law of transformation

s 0% 9%

ax" ax’

Again going over to subscript notation for the components of the matrix field, we state

contravariant tensor T’ =T (1=i,j=n) (3.11)

Definition 5: The matrix field V is a covariant tensor of order two if its components (7};) in (x' ') and
(T ) in (£') obey the law of transformation
- ax" ax’ ..
covariant tensor T, =T, — —; (1=i,j=n) (3.12)
ox dx
Theorem 3.2:  Suppose that (T ;) is a covariant tensor of order two. If the matrix [7],, is invertible
on A, with inverse matrix [T”] | then (T”) is a contravariant tensor of order two.

nno

Definition 6: The matrix field V is a mixed tensor of order two, contravariant of order one and
covariant of order one, if its components (7) in (x') and (7)) in (x') obey the law of
transformation

ax' ox’
mixed tensor T’ =T, —— ——
ox" 9x’

(1=i,j=n) (3.13)

Tensors of Arbitrary Order

Vector and matrix fields are inadequate for higher—order tensors. It is necessary to introduce a

generalized vector field V, which is an ordered array of n™ (m = p + q) scalar fields, (V:lf2 )

defined over a region % in R”"; let (T']‘:]2 ") denote the set of component- functlons in varlous

coordinate systems which are defined on %.

Definition 7: The generalized vector field V is a tensor of order m=p+gq, contravarlant of order p
and covariant of order g, if its components (T i i ) in (x') and (T'"? i ? ) in (x*)
obey the law of transformation

, 90X 9x2 ax'e ax™ 9x*2 9x’e

2 = e
general tensor T . "~ T Tsmmsq 7 Ix 9 37 a5k prn

(3.14)

with the obvious range for free indices.

3.5 THE STRESS TENSOR

It was the concept of stress in mechanics that originally led to the invention of tensors (fenseur,
that which exerts tension, stress). Suppose that the unit cube is in equilibrium under forces applied to
three of its faces {Fig. 3-5(a)]. Since each face has unit area, each force vector represents the force
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. 5
/v3 FACE 3

o

FACE 2

FACE 1

@) ®»

Fig. 3-5

per unit area, or stress. Those forces are represented in the component form in Fig. 3-5(b). Using the
standard basis e,, e,, e,, we have

vV,=0 e (stress on face 1)
v,=c"e, (stress on face 2) (3.15)
v, =o€, (stress on face 3)

Stress on a Cube Section

The question arises: What stress F is transmitted to a planar cross section of the cube that has
unit normal n? To answer this, refer to Fig. 3-6, which shows the tetrahedron formed by the cross
section and the coordinate planes. Let A be the cross-sectional area. By the assumed equilibrium of
the cube, the stresses on the xlxz-, x1x3-, and x*x>-bases of the tetrahedron are —V;, —V,, and —v,,
respectively, as shown componentwise in Fig. 3-6. Hence, the forces on these same bases are
B,(—V;), B,(—V,), and B,(—v,), respectively. For the tetrahedron itself to be in equilibrium, the
resultant force on it must vanish:

AF + B (=v3) + B,(—v,) + By(—v) =0
or, solving for F,
B, B, B,
F= Z Vi + X v, + Z

But B, is the projection of A in the x*x’-plane: B, = Ane, or B;/A = ne,. Similarly, B,/A = ne, and
B,/A = ne,. Substituting these expressions and the expressions (3.15) into (3.16), we find that

F=c"(ne,)e, (3.17)

v, (3.16)

Contravariance of Stress
Under Change of Coordinates

An interesting formula results from (3.17) when we change the basis of R’ by a transformation
of the form e, = a/f; (with |a/| # 0). In terms of coordinates,

x'e, = xi(a{fj) = (a{xi)fj = fjfj
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—a

, “m”lhh.

& o

b

—2

Fig. 3-6

That is, we have a new coordinate system (x') that is related to (x) via

¥ =alx' (3.18)
Note that here we have

o

ax

Substituting e, = a'f, into (3.17) yields the stress components (¢”) in the new coordinate system, as
follows:

F=o"”[n(af)|(alf,) = o" a,al(nf,)f, = &' (nf,)f,
- o ox' ox’

H =iy _ rs i j__ s T2 7%

with o'=07a,a,=0" 5 =5
A comparison of (3.19) with the transformation law (3.11) leads to the conclusion that the stress

. (3.19)
components a” define a second-order contravariant tensor, at least for linear coordinate changes.
p g

3.6 CARTESIAN TENSORS

Tensors corresponding to admissible linear coordinate changes, I : x'= a"].xj (|a’}| #0), are
called affine tensors. If (a') is orthogonal (and 7 is distance-preserving), the corresponding tensors
are cartesian tensors. Now, an object that is a tensor with respect to all one-one linear transforma-
tions is necessarily a tensor with respect to all orthogonal linear transformations, but the converse is
not true. Hence, affine tensors are special cartesian tensors. Likewise, affine invariants are particular
cartesian invariants. ‘

Affine Tensors

A transformation of the form J : x f= ai-xi (]a’}l #0) takes a rectangular coordinate system
(x') into a system (%') having oblique axes; thus affine tensors are defined on the class of all such
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oblique coordinate systems. Since the Jacobian matrices of J and J° ! are

ox'] o [ex
’=[§L—[“Jﬂn and J —[3;]

the transformation laws for affine tensors are:

(6], (3.20)

. o ik
aad T*, T"=daaT",

. T L rys Tl A R R
covariant T,=b;T,, b;biT,, Ty, =0b;b;b,T
. i i1s pr i i t r
mixed T, =ab T, T,=abbT

s J st

(3.21)

rst?

contravariant T =a, T, T’
T,

bl

j

Under the less stringent conditions (3.21), more objects can qualify as tensors than before; for
instance, an ordinary position vector x = (x') becomes an (affine) tensor (see Problem 3.9), and the
partial derivatives of a tensor define an (affine) tensor (as implied by Problem 2.23).

Cartesian Tensors
When the above linear transformation 7 is restricted to be orthogonal, then J =7 T, or
b, =a] (1=i,j=n)

so that the transformation laws for cartesian tensors are, from (3.21),

contravariant T'=a, T, T'=a,alT",
. i A
covariant T.=a,T,, I;=a,a T,,,
mixed T, =a,a/T;

A striking feature of these forms is that contravariant and covariant behaviors do not distinguish
themselves. Consequently, all cartesian tensors are notated the same way—with subscripts:

allowable
coordinate changes X, =a;x; Or X;=da,X (3.22)
cartesian _ _ .
tensor laws  T,=a,T, T,=a,a,T,,

Because an orthogonal transformation takes one rectangular coordinate system into another (having
the same origin), cartesian tensors appertain to the rectangular (cartesian) coordinate systems. There
are, of course, even more cartesian tensors than affine tensors.
Note that JJ” = [ implies $° =1, or § = £1. Objects that obey the tensor laws (3.22) when the
allowable coordinate changes are such that
= |aij =+1
are called direct cartesian tensors.

Solved Problems

CHANGE OF COORDINATES

3.1  For the transformation of Example 3.2, (a) obtain the equations for 7 ~'; (b) compute J from
(@), and compare with J -

(a) Solving ' = x'x% x* = (x")* for x" and x°, we find that

-1 1.2 1_ =1 =2

= _ x =x/Vx

ﬁz{x X 971:{ (1)
X

fzz(xz)z 2:\/?
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is a one-one mapping between the regions x> >0 and x> >0, and that

=1 _ .2 1=_—1/ x—2
T {’i xx gt {F T 2
x2=(x?)? = -V 2)

is one-one between x° <0 and X” > 0. Note that the two regions of the x'x*-plane are separated by
the line on which the Jacobian of J vanishes.
From Example 3.2,

_[ xl] 71__1_[2x2 ——x‘]
J—[O 25 and so J “aylo #

valid in both regions x2>0 and x*> < 0. Now, on x> >0, differentiation of the inverse transforma-
tion (1), followed by a change back to unbarred coordinates, yields

1 1

ax dx

) W F (X—Z)—1/2 -%EI(XZ)—GQ (x2)—1 _%xl(x2)—2
J: = =
ox*  9x° _2r~ -
o o 0 T U

It is seen that on x>0, J=J %
Similarly, from (2), with x> <0,
i _()-C-z)—uz %x—l(x—2)—3/2 +(x2)—1 _ %xl(xZ)—Z
J= = =J!
0 _% x—2)—1/2 O +%(x2)—l

3.2  For polar coordinates as defined by (3.2), (@) calculate the Jacobian matrix of J and infer the
region over which J is bijective; (b) calculate the Jacobian matrix of 7 ' for the region

ie.,

(a)

(®)

{(r,0)| r>0,—7/2<6<mu/2}

the right half-plane, and verify that it is the inverse of the matrix of (a).
J 1 2 Jd 1 2 2 1 . 2
—5 (x cosx”) — (x cosx”) cosx” —x sinx
J= ax ox _
9 (x" sin x*) 2 (x* sin x*) sinx> x'cosx®
ax' ax*

whence # = x'=r. Therefore, J is bijective on the open set r >0, which is the entire plane
punctured at the origin.

For 7~ we have, over the right half-plane,
ox _ ¥ x___F
ax! 1 /(f1)2 + (fz)z ax’ 3 /(il)z + (iz)z
ax® 1 [ x° ] -%° ox* x!
o' 1+ @)L @Y @@ o @V +E)
and so
X X cosx® sinx®
Fo| VEP+E VEY +E) | _
B ~x° it | sinx® cosx?
(x—l)2+ (£2)2 (.‘x-I)Z + (x—2)2 ~xl xl

Now compute J '

1 2 1 _: 2 .
| [ *¥'cosx® x'sinx I- cosx®  sinx”
-1 __ . 2 -7
J == . > sinx®> cosx*|=J
x| —sinx* cosx -— -
x x
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CONTRAVARIANT VECTORS

3.3

3.4

3.5

If V=(T") is a contravariant vector, show that the partial derivatives Tj. = 9T"9x’, defined in
each coordinate system, transform according to the rule

—; ox' ox*  _, 9% 9x’

TI-ZT; - —+ T S

J ax" 9x dx'dx’ gx’
Differentiate both sides of )
i r ax_l
T'=T o

with respect to x’, using the product rule:

Tizﬁfi_i< ,ai")_aT’ gx' ., 9 (@_E_)
ax ax! ax’ ax’
By the chain rule for partial derivatives, (2.15),
oT" _oT" ox° _ ., ox . 0 (a_f")_[ 9 (af")] ax’
ox’  ox’ ax’ " ox’ ox’ \ax"/  Lax’ \ox’

Substituting these expressions into (1) yields the desired formula.

T ogx ox ax’

(1)

ox’

Suppose that (T") is a contravariant vector on R” and that (T7) = (x’, x') in the (x)-system.
Calculate (") in the (x')-system, under the change of coordinates

=)’ #0
—2_ 1.2
X'=xx
By definition of contravariance,
. ax’ ax' x’
leTr r=T1_1+T2 -
dx ox dx

Note that the top row of the Jacobian matrix J is needed for the case i =1, and the bottom row is needed
for i=2.

7= ax' ax” . [ 0 2x2]
ox® gx| Lx¥ i
ax'  ox’
Thus,
T'=T"0)+ T?(2x*) =2x'x’? T?=T'(x*)+ T*(x") = (x*)’ + (x")’
which, in terms of barred coordinates, are
=27\2
Tt =032 T =5l + (x_l)
x

Show that a contravariant vector can be constructed the components of which take on a given
set of values (a, b, ¢, ...) in some particular coordinate system. (The prescribed values may
be point functions.)

Let (a, b, ¢, .. )= (a') be the given values to be assigned in the coordinate system (x'). Set V' = a'
for the values in (x"), and for any other admissible coordinate system ('), set V' = a’(9x"/dx"). To show
that (V') is a contravariant tensor, let (y) and (y') be any two admissible coordinate systems. Then,
vy =f(x %% ... ,x") and ' = g'(x', x% ..., x"), and, by definition, the values of (V') in (y') and (y")
are, respectively, T' = a’(dy"/dx") and T' = a’(dy'/dx"). But, by the chain rule,

- ,07—[ ra—ias :(9_1
T = r - Y Y - Ls QED

o ay* ox’ dy
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COVARIANT VECTORS

3.6  Calculate (T,) in the (x')-system if V= (T,)=(x*, x' +2x7) is a covariant vector under the
coordinate transformation of Problem 3.4.

To avoid radicals, compute J ™' in terms of (x'):

—x 1
i 2(x2)2 e
1
— 0
2x*
By covariance,
r 1 2
_ a
=7, %5=1,25+1,2% -1
X x

For i =1, read off the partials from the first column of J '
T, =T,(—x"2(x*)*) + T,(1/2x*) = —x'/2x* + x'/2x* + 1 =1
Similarly, for i =2, use the second column of J '
T,=T,(1/x*) + T,(0) =x*(1/x*) =1
‘Hence, (T,)=(1, 1) at all points in the (£')-system (' =0 excluded).

3.7  Use the fact that Vf is a covariant vector (Example 3.5) to bring the partial differential
equation

L4 1)
into simpler form by the change of variables ¥ = xy, y = (y); then solve.
Write Vf = (af/ox, 9fl9y) = (T,), (', x*) = (x, y), (£, ) = (%, y), and

F=

i

of _ g oox
ax’ '

Again calculating J first, then its inverse, we have

1 =x
(fi)z,-l_[y xr_ y 20y
ax'/ 0 2y o L
2y
so that
R R | 1 of
si= =T -==T y+T2 O_yax
of = ax’ —x 1 x af 1 of
—_= :T———:T-—— T +—=———— L 4 — L
ay "2 Traxt Tt 2y T 2y 2(y)* dx 2y dy
But, by (1),
af 1 ( of af)
ay  2y) Yox Y ay

which implies that f= F(x), a function of x alone; therefore, f = F(xy) is the general solution to (1).
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INVARIANTS
3.8 Prove Theorem 3.1.

We must show that if (S ") and (7,) are tensors of the indicated types and order, then the quantity
E = S'T, is invariant with respect to coordinate changes; that is, £ = E, where E=§ 'T,. But observe

that
§i= ,(9xr and 7_",.=Txa—)fl.
ox ax
so that, in view of (3.7),
_ o =i a s 01 =i ] s s
F=5T =551 2% _gr X X g7 80-5T,=-E
ax ox ax" ox "

3.9 Show that under linear coordinate changes of R”, x'=ajx’ (|aj|#0), the equation of a
hyperplane A x' =1 is invariant provided the normal vector (A;) is covariant.

In view of Theorem 3.1, it suffices to show that (T7) = (x) is a contravariant affine tensor. But this
is immediate:

which is the transformation law (3.21).

SECOND-ORDER CONTRAVARIANT TENSORS

3.10 Suppose that the components of a contravariant tensor T of order 2 in a coordinate system
(x") of RlareT'=1,T"7 =1, T?l = —1, and T** =2. (a) Find the components T"” of T in the
(x")-system, connected to the (x')-system via

it=(x")#0
2

= 1.2
X =X X

(b) Compute the values of the T at the point which corresponds to x' =1, x*=-2.
For economy of effort, the problem will be worked using matrices.
(a) Writing

i 0%
I'=J/= P
we have from (2.1D),
rs afl 0f] irs yrs

ax" ax* ST

That is,

_[2x1 0][ 1 1}[2)8 xz]_ 4(x'y 2x'x% +2(x")
L2 oMl-1 20l o x2S -2 2(xN) + ()
(b) At the point (1, —2),

T =401y =4 T =2(1)(=2) +2(1)* = -2
T2 =2(1)(-2)-2(1)’=—-6  T? =21 +(-2)’=6

3.11 Show that if (§") and (T") are contravariant vectors on R”, the matrix [U”]=[S'T"],,,, defined
in this manner for all coordinate systems, represents a contravariant tensor of order 2.
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Multiply
G o OX s 0%
=S o and T'=T i
to obtain
, ax’ 9x' ax’
i o__ i qr S = rs “r
U'=ST'=S5 ax’ ox" ax’
which is the tensor law. (The notion of the “outer product” of two tensors will be further developed in
Chapter 4.)

SECOND-ORDER COVARIANT TENSORS

3.12 Show that if 7, are the components of covariant vector T, then S, = T,T,— T.T, are the

i i tJ 7ot

components of a skew-symmetric covariant tensor S.

The skew-symmetry is obvious. From the transformation law for T,

- _ J r J s J s J r
TT,-T,0,=T,55 T,°5 - T,°5 - T, =
/ ox ax’ ox ax
ax" ax’ ax" ax’ ax ﬁx
=TT, — - .7 — _( r)
dx odx ax
~ a o"
or S. = X ox

Yo axt ax’

which establishes the covariant tensor character of S.

3.13 If a symmetric array (7)) transforms according to

i 0% 9%l 9% oaxk
show that it defines a second-order covariant tensor.

7 o'?x ax 5x &x

a (af’ axk>gx_’a_x , dx° ox'
4 \ox* ax*/ 95’ ox "% 957 o
x’ ox' ax' ox°
9% 9% % 9% ax

3.14 Let U=(U;) be a covariant tensor of order 2. Under the same coordinate change as in
Problem 3. 10 (a) calculate the components U, if U;; = x°, U, = U,, =0, U,, = x*; (b) verify

that the quantity 77 U, = E is an invariant, where the T" and T" are obtained from Problem
3.10.

(a) In terms of the inverse Jacobian matrix, the covariant transformation law is

_ ax" ¥ _ N
g,-%uy % _j U =7, J or U=7"vuj
To9xt " ox ! !
Substituting
1
_ — 0
2t 0 TS u=|* 0
Tl X T X1 Lo &
2(x1)2 xl
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we find
L _ X—Z xz 0 _.L 0 x1x2 + (xZ)Z B x2
U _ 2x1 2(x1)2 2x1 _ 4(X1)3 2(x1)2
0 l 0 x! ___'ﬁ_ l __L l
x1 2(x1)2 xl 2(x1)2 xl

from which the U,; may be read off.
(b) Continuing in the matrix approach, we note that E is the trace (sum of diagonal elements) of the

matrix TU".
[ 1 1][;;2 o]:[ X2 xl]
v [—1 21L0 X! -x* 2xt
E=x*+2x"
and
r 1 2_+_(x2)2 xZ
(x)? 2xle? + 2(x1)? XX _
Tl_]T (x ) X X ('x ) 4(x1)3 2(x1)2
= 2
x 1
L2xlx2—2(xl)2 2(x1)2+(x2)2 _—Z(xl)z e
[0 2x
= 2
—3% 22+ 2x"

3.15 Prove Theorem 3.2.

Observe first of all that if a covariant matrix (second-order tensor) U has inverse V in unbarred
coordinates, then U has inverse V in barred coordinates; i.e., (U)™' = U ™" Now, by Problem 3.14(a),

v=J'uj

Inverting both sides of this matrix equation, applying Problem 2.13, and recalling that JI = I, we obtain
F - j—lU—l(jT)fl =JUu YT

which is the contravariant law for U ™' [see Problem 3.10(a)].

MIXED TENSORS

3.16 Compute the formulas for the tensor components (Y_‘j.) in polar coordinates in terms of (Tj.) in
rectangular coordinates, if the tensor is symmetric in rectangular coordinates. (In contrast to
Section 3.1, it is now the curvilinear coordinates that are barred.)

The general formula calls for the calculations

., 0% 9x’ _ 9%, 9x’

=T — — = . P=1Ti
T] Ts ax7 a.x—:] ax’ s ax—j (T] Tz)
Using (2.1b), this may be written in matrix form as
T=JTI'=J"'TJ (1)

where T=[T'],, and where

j= [cos 0 —rsin 0]
sinf rcos@
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is the Jacobian matrix of the transformation from (r, ) to (x, y). Thus,
_ [ cos@ sing] {T} T, cos@ —rsiné
T=|_sing cosf T, T>|| sin6@ rcos@

r rodL
[ cos® sin@][ T cos@+ T,sin@ '—rT}sin(H—rT;cosG}

sin@ cos @ . > . . )
T,cos0+ T5;sin@ —rT,sin@ + rT,cosé

r r JL

The final matrix multiplication can be carried out routinely, simplifying by means of trigonometric

identities:
~ Ticos’ 6+ Tlsin20 + TZsin” 0 *% T;sin20 + rT, cos20 + % T2 sin 26
Ir= in 29 26 in 26
-T, Sl;r + T, i T2 s1121r T;sin’ 8 — T, sin20 + T3 cos® 9

Observe that T does not share the symmetry of T: T:=r"°T}.

3.17 Prove that the determinant of a mixed tensor of order two is invariant.

By (1) of Problem 3.16, we have—whether or not T is symmetric—
[ T|=|JTI 7 =TI [T = £ |T| $7' =T

GENERAL TENSORS
3.18 Display the transformation law for a third-order tensor that is contravariant of order two and

covariant of order one.
Take p=2 and g =1 in Definition 7 and, to avoid unnecessary subscripts, write i, j, k, r, s, ¢ in

place of i, i,, j,, 7, 7,,5,. Then (3.14) gives

=i =7 t
i _ qrs 9% 9% 0x
k to9x” 9x’ gx*

319 Let T= (Tsz_) denote a tensor of the order and type indicated by the indices. Prove that
S =(T,)=(T};) is a covariant vector.

The transformation law (3.14) for T is
ax' ax’ ax' ax" 9x*

rs

T4, = - :
kim tuv ax" axs &xk 3)21 0xm

Set I =i, m=j and sum:

dx' ax’ ox' ax" ax* . (af" af‘)(a)z’ _a__{’j) 9x'

TETij.'zTrx — s — —— == 7 — _— - —
k kif tuv (9X (9xs 0}-(—/: ﬂf' 5,x—j tuy ax 5}?' axs 0x—] ﬂfk
rs UuQu dxt rs axt axl
= Ttuvaras afk = Ttrs (?)Zk = Tt d.fk

CARTESIAN TENSORS
3.20  Show that the permutation symbol (e,) defines a direct cartesian tensor over R’ Assume that
e, is defined -the same way for all rectangular coordinate systems.
If the coordinate change is x, = a,x,, where (a,)"(a,,) = (5,,) and

|aij| =410, — A0, =1
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we must establish the cartesian tensor law (3.22):
€, =e,a,a (n=2)

ij rsir’js

We examine separately the four possible cases:

i=j=1 e,a,,a,,=a,4,~a,0,=0=é;,
i=1,j=2 e,a,a, =a,,a,,~ a4, =1=¢},
i=2,j=1 e,a,0a,,= 0,4, 450, =-1=¢y

i=j=2 e,a,0a, =050, 0,0, =0=¢éy

Prove that (a) the coefficients ¢;; of the quadratic form cijxixj =1 transform as an affine tensor
and (b) the trace c; of (c;) is a cartesian invariant.

—i i i gici iN _ fain—1 . i
(@) If x'=a’x’ and x" = b'x’, where (b)) =(a})”, the quadratic form goes over into
1= Cij(bifr)(bgfs) =C, XX
with ¢, = bibicij. But this formula is just (3.21) for a covariant affine tensor of order two.
(b) Assuming an orthogonal transformation, (b)) = (a})", we have

= ir _ i _
Hence, ¢,, = (b,a’)c,, = 8c,; = ¢;.

Establish the identity between the permutation symbol and the Kronecker delta:

€€kl = 88, — 8,10,k

(3.23)

The identity implies n = 3, so that there are potentially 3* = 81 separate cases to consider. However,
this number can be quickly reduced to only 4 cases by the following reasoning: If either i=jor k=1,
then both sides vanish. For example, if i = j, then on the left e,;, =0, and on the right,

6ik6jl - 6]‘161‘1( =0

Hence, we need only consider the cases in which both i # j and k # [. Upon writing out the sum on the
left, two of the terms drop out, since i # j:

(i=2,=3)

where (1'2'3") denotes some permutation of (123). Thus, there are left only two cases, each with two
subcases. '

€€ T €0 T €3;€30 = €193:€1

Case 1:  e,.,.,.€,,,#0 (withi=2', j=3"). Here, either k =2" and [ =3" or k=3' and [ =2". If the
former, then the left member of (3.23) is +1, while the right member equals

832833 = 853855, =1-0=1
If the latter, then both members equal —1, as can be easily verified.

Case 2: e,,,.e,,,=0 (with i=2', j=3"). Since k#1/, either k=1" or [=1" If k=1', then the
right member of (3.23) equals

8,11:85 — 85851,
If /=1, we have §,,,68,.,, — 8,.,.6,, =0—-0=0.

=0-0=0

This completes the examination of all cases, and the identity is established.
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3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

Supplementary Problems

Suppose that the following transformation connects the (x°) and (¥') coordinate systems:
- {f1=exp (x"+x%)
J =2 _ 1.2
X =exp(x —x°)

(a) Calculate the Jacobian matrix J and the Jacobian #. Show that # #0 over all of R’ (b) Give
equations for 7 ", (c¢) Calculate the Jacobian matrix J of 7 ~' and compare with J

Prove that if (7,) defines a covariant vector, and if the components §;; = T,T, + T,T, are defined in each
coordinate system, then (S,;) is a symmetric covariant tensor. (Compare Problem 3.12.)

Prove that if (7,) defines a covariant vector and, in each coordinate system, we define
oT, 9T,
i =T,
ox’  ax' !
then (T,) is a skew-symmetric covariant tensor of the second order. [Hint: Model the proof on
Problem 3.3.]

Convert the partial differential equation

of _ of

o ox ay

to polar form (making use of the fact that Vf is a covariant vector), and solve for f(x, y).

Show that the quadratic form @ = gt.jxix" is an affine invariant provided (g,) is a covariant affine tensor.
[Converse of Problem 3.21(a).]

Prove that the partial derivatives of a contravariant vector (T') define a mixed affine tensor of order
two. [Hint: Compare Problem 2.23.]

Prove that the Kronecker delta (8;), uniformly defined in all coordinate systems, is a mixed tensor of
order two.

Show that the permutation symbol (e,;) of order two, uniformly defined in all coordinate systems, is

not—Problem 3.20 notw1thstandmg—covar1ant under arbitrary coordinate changes. [Hint: Use x' =
=12

x'x% x> =x7, at the point (¥')=(1,2).]

By use of (3.23), establish the familiar identity for the vector product of three vectors,

u X (vxw)=(uw)v — (uv)w
or, in coordinate form,

et i€, 0w, ) = (ww))v, — (uv,)w,

(a) Show that if (T ) is a mixed tensor, then (T’ + T/) is not generally a tensor. (b) Show that a mixed
tensor of order two, symmetric in a given coordinate system, will transform as a symmetric tensor if the
Jacobian matrix is orthogonal

Prove: (a) If (T") is a mixed tensor of order two, T is an invariant; (b) if (S’ k) and (T') are tensors of
the type and order indicated, S, T’ is an invariant.
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If T=(T"*) is a tensor, contravariant of order 3 and covariant of order 2, show that S=(T})isa

contravariant vector.

Show that the derivative, dT/dt, of the tangent vector T=(T")= (dxdt) to a curve x'=x'(t) is a
contravariant affine tensor. Is it a cartesian tensor?

(a) Use the theory of tensors to prove that the scalar product uv=uu, of two vectors u=(u;) and
v=(v,) is a cartesian invariant. (b) Is uv an affine invariant?



Chapter 4

Tensor Operations;
Tests for Tensor Character

4.1 FUNDAMENTAL OPERATIONS

From two given tensors,
S=(Sh, 5) T2 (4.1)

Ji2 - g s

certain operations, to be described, will produce a third tensor.

Sums, Linear Combinations

Let p=r and g=s in (4.1). Since the transformation law (3.14) is linear in the tensor
components, it is clear that

S+T= (Slllz:z g Tilu'zz: .4112) (4.2a)

is a tensor of the same type and order as the original two tensors. More generally, if T, T,, ..., T,
are tensors of the same type and order and if A, A,, ..., A, are invariant scalars, then

M+ AT, +--+A,T, (4.2b)

is a tensor of that same type and order.

Outer Product
The outer product of the tensors S and T of (4 1) is the tensor

[ST=(S}7 " - T i) (4.3)

iz - hiy.
which is of order m =p + g + r + s (the sum of thc orders of S and T), contravariant of order p + r
and covariant of order g + s. Note that [ST] = [TS].

EXAMPLE 4.1 Given two tensors, $ = (§) and T = (T}), the outer product [ST] = (8.T,)=(P) is a tensor

because
L a-—i s u )
'Tk:<s, 7 ax-)(Tuai_k>=P§u ﬂ dx° gx*
ox ax" 9x’ ax*

Inner Product

To take the inner product of two tensors, one equates an upper (contravariant) index of one
tensor to a lower (covariant) index of the other, and sums products of components over the repeated
index. In effect, the contravariant and covariant behaviors cancel out, which lowers the total order of
the two tensors.

To state this more formally, set i, = u = [;in (4.1). Then the inner product corresponding to this
pair of indices is

ST=(S), "o rT ) (4.4)

h]z--g RS

It is seen that there will exist ps + rq inner products ST and TS; in general, all of these will be
distinct. Each will be a tensor of order

m=p+q+r+s—2

43
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EXAMPLE 4.2 From the tensors S = ($) and T = (T,,,,), form the inner product U= (U},) =(S"T,,,.)- We

have:
i _<Sp', ax" a_f’)( ax' 9x* ax’)
fem Ix? ox” sat g9k ax" ax”
ax* ax?\ ox! ox° ox' ax’ ax° oax'
:SrrT t<—P —_u> - s —m :SprT 15q 7 %k a-m
S\ 9x© o0x ax 9x" ox 9P 9x 9x” dx

—5oT ox’ ox’ ox' _ ., 9% ox ox'
Pt gx” gxk ax™ % 9x” gx* 9x”

which verifies that U is a tensor of order 3, contravariant of order 1 and covariant of order 2.

EXAMPLE 4.3 With (T,) and (T") as in Theorem 3.2,
T“T, =8,

As an inner product, the left side defines a second-order tensor that is contravariant of order one and covariant
of order one. This constitutes a new proof (cf. Problem 3.29) of the tensor nature of the Kronecker delta.

In the special case when S is a contravariant vector and T is a covariant vector, the inner product
ST is of the form S'T,, which is an invariant (Theorem 3.1). Because the tensor ST is of order

m=ptqgq+r+s—2=1+0+0+1-2=0

an invariant is regarded as a tensor of order zero.

Contraction
Another order-reducing operation, like the inner product but applying to single tensors, is that of
contracting a tensor on a pair of indices. In tensor S of (4.1) set i, =u = j; and sum on u; the
resulting tensor (Problem 4.7),
s =(sh (4.5)
is called a contraction of S, with contraction indices i, and j,. S’ is contravariant of order p — 1 and
covariant of order g — 1.

Combined Operations

It is clear that one may form new tensors from old in a variety of ways by performing a sequence
of the tensor operations discussed above. For example, one might form the outer product of two
tensors, then take an inner product of this with a third tensor; or contract on one or more pairs of
indices, either before or after taking a product. It is noteworthy that an inner product of two tensors
may be characterized as a contraction of their outer product: ST = [ST]". See Fig. 4-1.

$=(S}), T=(T,)———>ST=(S{'T,,)=[ST]’
PRODUCT

OUTER PRODUCT CONTRACTION

[ST) = (SiT,,)

Fig. 4-1
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4.2 TESTS FOR TENSOR CHARACTER

It is useful to have an alternative method for verifying tensor character that does not directly
appeal to the tensor transformation laws. Roughly stated, the principle is this: If it can be shown
that the inner product TV is a tensor for all vectors V, then T is a tensor. This idea is often referred
to as the Quotient Rule for tensors; the official Quotient Theorem is our Theorem 4.2 below.

The following statements are useful criteria or “tests” for tensor character; they may all be
derived as special cases of the Quotient Theorem.

(1) If T,V'=E is invariant for all contravariant vectors (V'), then (T,) is a covariant vector
(tensor of order 1).

(2) IfT, Vi= U, are components of a covariant vector for all contravariant vectors (V'), then
(T ) is a covarlant tensor of order 2.

3) I T,U ‘V/=E is invariant for all contravariant vectors (U') and (V'), then (T;) is a
covariant tensor of order 2.

4 1If (TU) is symmetric and 7,V 'V/ = E is invariant for all contravariant vectors (V'), then
(T,) 1s a covariant tensor of order 2.

EXAMPLE 4.4 Establish criterion (1). ‘ '
Since E is invariant, E = E, or T,V' = T,V'. Substitute in this equation the transformation law for (V'*) and
change the dummy index on the right:

T(V’ ‘“) TV or (Tj— T, 2% )V’ 0
ax’
The latter equat1on must hold when (V') is any of the contravariant vectors represented in (x') by
(8%),(8%),...,(8Y); their existence is guaranteed by Problem 3.5. Thus, for the kth of these vectors
(1=k=n), }
_ 9x' - 0x'
<Tk_Tz ﬁx > 1=0 or TsziW

which is the law of transformation—from (x') to (x')—of a covariant vector.

The method of Example 4.4 may be easily extended to establish the following result, which in
turn implies the Quotient Theorem.

Lemma 4.1: 1f T2 " UPUD ULV VE -V =E is an invariant for arbitrary
covariant Vectors (U E:)) U("’) (a=1,2,...,p) a_nd arbitrary contravariant vec-
tors (Vi‘;))EV(ﬁ) (B=1,2,...,q), then (Tm ' ’Tq) is a tensor of the type indi-
cated by its indices.

Theorem 4.2 (Quotient Theorem): If T'">

JiJ2 -

i, <k iy .. i
P VE=S81"""" are components of a tensor for an
g Jiz - - g
i1
arbitrary contravariant vector (V ), then (T} ]2
2- Jq]q +1

order indicated.

) is a tensor of the type and

4.3 TENSOR EQUATIONS

Much of the importance of tensors in mathematical physics and engineering resides in the fact
that if a tensor equation or identity is true in one coordinate system, then it is true in all coordinate
systems.

EXAMPLE 4.5 Suppose that in some special coordinate system, (x"), the covariant tensor T = (T,) vanishes.
The components of T in any other coordinate system, (x'), are given by

7=7, %% 9% 0104 40=0
/ ox ox’

Therefore, T =0 in every coordinate system.
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EXAMPLE 4.6 Consider a putative equation
R, U"= AWM, I, (1)

connecting six entities that may or may not be tensors. If it can be shown that (i) T=(7,)=(R,U k-
AW¥ M, U,) is a tensor, and (ii) a special coordinate system exists in which all T, are zero, then (1) is valid in
every coordinate system.

EXAMPLE 4.7 A second-order covariant tensor, or a second-order contravariant tensor, that is known to be
symmetric in one coordinate system must be symmetric in every coordinate system. (This statement does not
extend to a second-order mixed tensor; see Problem 3.16.)

Another application of the principle yields (Problem 4.15) a useful fact in tensor analysis, often
taken for granted:

Theorem 4.3: 1f (T,) is a covariant tensor of order two whose determinant vanishes in one
partlcular coordinate system, then its determinant vanishes in all coordinate systems.

Corollary 4.4: A covariant tensor of order two that is invertible in one coordinate system is
invertible in all coordinate systems.

Solved Problems

TENSOR SUMS

4.1 Show that if A and u are invariants and S’ and T’i are components of contravariant vectors, the
vector defined in all coordinate systems by (AS' + uT") is a contravariant vector.

Since A=A and & = u,
y Of — i r af‘ ( r ax_') r r ax_’
= = +
AS'+ 4T A(S ﬁx'>+“ T G (AS" + nT7) o

as desired.

4.2 Prove that (a) the array defined in each coordinate system by (7, — T;), where (T};) is a given
covariant tensor, is a covariant tensor; (b) the array defined in each coordinate system by
(T~ T}), where (T}) is a given mixed tensor, is not generally a tensor, but is a cartesian
tensor.

(a) By (4.2b), the array is a tensor if and only if (T;;)E(Tj,.) is a covariant tensor. But the
transformation law for (7 ;) gives

- ax" ox’ - ax* ax”
T,=T, = ~= or Ti>lf = T:r i =i
/ ax’ ox ! ox' ox
er - which shows that (T ) is indeed a covariant tensor.

(b) We give a second proof [recall Problem 3.32(a)], based on (4.2b). The question is whether
U; 'y=(T}) is a tensor. From the transformation law for (19,
_ _. S a5/
Ti=T ox’ o or gi=ys X
ax" 9x ! T 9x' dx

7

Thus, (U j.) does not obey a tensor law, unless, for all p, g,
ax?  ax? g
o')xq axﬁ J ('] )

i.e., unless the Jacobian matrix is orthogonal—as it is for orthogonal linear transformations

(cartesian tensors).
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OUTER PRODUCT
4.3  Show that the outer product of two contravariant vectors is a contravariant tensor of order
two.

With (S°) and (T') as the given vectors,
i ax' af’) 9x' ox’

i r s — QIS gr

ST (S ax’>(T ox’ T ax" ox*

which is the correct transformation law for the outer product to be a contravariant tensor of order two.

INNER PRODUCT
4.4 Prove that the inner product (T"U,) is a tensor if (T') and (U,) are tensors of the types

indicated.
With V,=T'U,,
V= (T’ ax,)(U, 9x 0—Jf) —(T'u,8') Xy L
ax ox’ ox wUraxt Ut ax

7

which is the desired transformation law.

4.5 Prove that if g=(g;) is a covariant tensor of order two, and U= (U ) and V= (V’) are
contravariant vectors, then the double inner product gUV= g, U‘V’ is an invariant.

The transformation laws are
=i
u 0X

ax"

ox’ oax' =, _
* X g=vu Vi=v

gij'grs aif afj &x’

Multiply, and sum over i and j:
oo —i=; ax’ ax’ 9x' ax’
UV: —"UIV} = tVLt - - — 3 u r 5 - r 5 —
g gz_, grsU ail z?)f] (9xt axu gr:U V 6t8u grsU V gUV

CONTRACTION
Assuming that contraction of a tensor yields a tensor, how many tensors may be created by

4.6
repeated contraction of the tensor T = (T7%,)?
Single contraction produces the four mixed tensors
Ty (T) (T (T,
and double contraction produces the two zero-order tensors (invariants) T and T, . Thus there are six
tensors, in general all distinct.
4.7  Show that any contraction of the tensor T = ( Ti.k) results in a covariant vector.

We may contract on either i = j or i = k. For (S,)=(T},), we have the transformation law

- 9x’ ax* ax’ ax’ ox' ox'
=T,.=T. - — == =T.8——==T,—==8,—=
Sk ik st ax é,xt axk str 3xk re axk t axk
and, for (U,)=(T},),
ax’ ax’

ox’ 9x* ox' Lo 0x .,
Y = e = Tsr =J = s -——]
x 0x

r

O=T = _9x ox
17T e gx o) ox

st * ax!

In either case, the transformation law is that of a covariant vector.
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COMBINED OPERATIONS

4.8

Suppose that § = (57) and T = (T’]) are tensors from which a contravariant vector V= (V') is

to be constructed using a combination of outer/inner products and contractions. (@) Show that

there are six possibilities for V, which can all be distinct. (b) Verify that each possible V is

obtainable as a contraction of an inner product ST.

(a) Writing [ST]=U=(U¥), we obtain the contravariant vectors as the double contractions of U:
wehH Wy o wwy Wiy Wy W)

vu

(b) The vector (U*)=(S“"T¥*) may be obtained by first taking the inner product (S;°T%) and then
contracting on i = u = /. Likewise for the other five vectors of (a).

TESTS FOR TENSOR CHARACTER

4.9

4.10

4.11

4.12

Prove criterion (2) of Section 4.2 without invoking the Quotient Theorem.

We are to verity that (7)) is a covariant tensor of order two if it is given that for every contravariant
vector (V), T ]V U, are components of a covariant vector. Start out with the transformation law for
(U)) [from (x' Y to (x° )]

ox’ = = ; 0x°

Uj = US 3)%7 or T,.jV‘ = T,-SVI th—fj

Now substitute the transformation law for V' [from (£') to (x*)]:

TV=T, (vp —) ox
ox’
Replace the dummy index i by p on the left and by r on the right:
ax" oax° - ax 4 -~
T V=TV’ Yoox o (T—T,S x x)v =0
x axl pi o'lx axl

The proof is concluded as in Example 4.4.

Prove criterion (3) of Section 4.2.

Here we must show that (7,) is a covariant tensor, assuming that T, U’ 'V’ is invariant. Using
criterion (1), we conclude that (T U') is a covariant vector. Using criterion (2), it follows that since
(U") is arbitrary, (T,) is a covariant tensor of order two, the desired conclusion.

Prove criterion (4) of Section 4.2.

We wish to show that if (T,) is a symmetric array such that 7 V' 'V’ is an invariant for every
contravariant vector (V" '), then (7)) is a (symmetric) covariant tensor of order two.

Let (UY) and (V') denote arbltrary contravariant vectors and let (W')= (U’ + V'), a contravariant
vector by (4.2a). Then,

T, WW’ T, (U +VHYU + V)
=T,UU + T, VU + T, UV +TVV’
=T, UV +T V'V +2T UV’
where the symmetry of (7T;) has been used in the last step. Now, by hypothesis, the left-hand side and

the first two terms of the rlght -hand side of the above identity are invariants. Therefore, T,,U" 'V’ must be
an invariant, and the desired conclusion follows from criterion (3).

Use Lemma 4.1 to write a proof of the Quotient Theorem, Theorem 4.2.
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4.13

In the notation of the theorem and lemma, S, " -UPUP - -UP VL VE -V is a
12 g i iy ip q

tensor of order zero, or an invariant, for arbitrary U and V,,,; that is,
y (8)

I 2108 S IO R 4020 12100 12N 1200 T2
T, 'kUil U52 Uip V(l)V(Z) V(q)v

Jij2 - - g

is an invariant, with (V*) also arbitrary. It then follows from Lemma 4.1 (with ¢ replaced by g + 1) that

( ;‘IZ o lqu) is a tensor, contravariant of order p and covariant of order g + 1.
From the above method of proof, it is clear that the Quotient Theorem is equally valid when the

“divisor” is an arbitrary covariant vector. This form of the theorem will be used in Problem 4.13.

Use the Quotient Theorem to prove Theorem 3.2.
If U=(U") is a contravariant vector, the inner product
V=TU=(T,U’)

is a covariant vector. Moreover, because [7],, has an inverse, it follows that as U runs through ail
contravariant vectors, V runs through all covariant vectors. Thus,

e lyr— ij
U=T 'V=(T"V)

is a tensor for an arbitrary (V.), making (T”) a contravariant tensor of order two.

TENSOR EQUATIONS

4.14

4.15

4.16

Prove that if (T'y,) is a tensor such that, in the (x')-system, T, =3T,, then T’ =3T, in
all coordinate systems.

We must prove that T*,, =3T,, in (¥'). But

7. 3T =T°F &fiﬂﬂﬂ_ P 3fi£££
Jki ljk rst axp &x—] ax—k (9x-l rst axﬂ ax—( 19)21 (9)?1(
N Y

rst 3x17 ax—} a‘x—k 02[ trs axp (9X_1 a-x—] ax—:k s

— TP — TP " =
( rst 3 trs) oxt ox’ 9x* ox

as desired.

Prove Theorem 4.3.
By Problem 3.14(a), the covariant transformation law has the matrix expression
T=J"TJ] whence |T|=$°|T|
Thus, |T| =0 implies |T| = 0.

Prove that if a mixed tensor (Tj.) can be expressed as the outer product of contravariant and
covariant vectors (U') and (V;) in one coordinate system, then (T") is the outer product of

those vectors in general.

We must prove that T’ = U'V; for any admissible coordinate system (x*). But, by hypothesis,

202y A r?jﬁ ‘9x5_( ra'x—i>< 6x5>_ r_grr afi_a__x_s._.
Tj U‘/] Ts 0xr ax_] U &xr ‘/5 &.f] (Ts U ‘/s) ax’ ax—]_o
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4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26
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Supplementary Problems

If (U') and (V') are contravariant vectors, verify that (2U° +3V") is also a contravariant vector.

Verify that the outer product of a contravariant vector and a covariant vector is a mixed tensor of order
two.

How many potentially different mixed tensors of order two can be defined by taking the outer product-of
S$=(S}) and T=(T},), then contracting twice? :

Show that if T}, are tensor components, T, is an invariant.
Prove that if Tj.k,U /= §! are components of a tensor for any contravariant vector (U 7), then (Tj.k,) is a
tensor of the indicated type. [Hint: Apply the Quotient Theorem to (M},)=(T,,). More generally,

the Quotient Theorem is valid for all choices of the inner product.]

Prove that if T",,S*' = U’, are tensor components for arbitrary contravariant tensors (S*'), then (T",,) is
a tensor of the indicated type. [Hint: Follow Problem 4.9.]

Prove that if T;k,U U'= V; are components of a tensor for an arbitrary contravariant vector (U "), and if
(T’,,) is symmetric in the last two lower indices in all coordinate systems, then (77,,) is a tensor of the
type indicated.

Show that Theorem 4.3 and Corollary 4.4 are equivalent.

Prove the assertion of Example 4.7.

Prove that if an invariant E can be expressed as the inner product of vectors (U,) and (V') in one
coordinate system, then E has that representation in any coordinate system.



Chapter 5

The Metric Tensor

5.1 INTRODUCTION

The notion of distance (or metric) is fundamental in applied mathematics. Frequently, the
distance concept most useful in a particular application is non-Euclidean (under which the
Pythagorean relation for geodesic right triangles is not valid). Tensor calculus provides a natural tool
for the investigation of general formulations of distance; it studies not only non-Euclidean metrics
but also the forms assumed by the Euclidean metric in particular coordinate systems.

Calculus texts often contain derivations of arc-length formulas for polar coordinates that
apparently apply only to that one coordinate system; here we develop a concise method for obtaining
the arc-length formula for any admissible coordinate system. The theory culminates in later chapters
with a method for distinguishing between a metric that is genuinely non-Euclidean and one that is
Euclidean but disguised by the peculiarities of a particular system of coordinates.

5.2 ARC LENGTH IN EUCLIDEAN SPACE

The classical expressions from calculus for arc length in various coordinate systems lead to a

general formula of the type
b —
Il dx' dx’
L —J; &ij E _dt dt (5.10)

where g, = gij(xl, X’ .. ., x") = g,; are functions of the coordinates and L gives the length of the arc
a=t=b of the curve x'=x'(t) (1=i=n).

EXAMPLE 5.1 The arc-length formula for Euclidean three-space in a rectangular coordinate system (x', x° x°)

may be recalled:
’ dx1>2 (dx2>2 <dx3>2 f”\/m
L—L \/<E Vo) ) A= )N g

This is (5.1a), with g, = 5,

The formula in Example 5.1 has the equally informative differential form
ds® = (dx')’ + (dx*)* + (dx’)* = 5, dx' dx’
More generally, (5.1a) is equivalent to
+ds® = &; dx' dx’ (5.1b)

EXAMPLE 5.2 For convenient reference, formulas for the Euclidean metric in the nonrectangular coordinate
systems heretofore considered are collected below.

Polar coordinates: (x', x*)=(r, 8); Fig. 3-1.
ds® = (dx")* + (x")(dx*)* (5.2)
Cylindrical coordinates: (x', x°, x*) = (r, 6, z); Fig. 3-2. .
ds® = (dx'y + (x" Y (dx*)* + (dx*) (5.3)
Spherical coordinates: (x', x°, x*) = (p, ¢, 0); Fig. 3-3.

51
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ds® = (dx" ) + (x)*(dx”)” + (x' sin x*)*(dx’)? (5.4)

Affine coordinates: (see Fig. 5-1).
ds® = (dx')* + (dx°)” + (dx*)’
+2cos a dx' dx* + 2cos B dx' dx® + 2cosy dx* dx’ (5.5)

Formula (5.5) is derived in Problem 5.9. Note that the matrix (g;) defining the Euclidean metric

is nondiagonal in affine coordinates.
Although formulated for Euclidean space, (5.1) is extended, in the section that follows, to

provide the distance concept for non-Euclidean spaces as well.

Fig. 5-1

5.3 GENERALIZED METRICS; THE METRIC TENSOR
Assume that a matrix field g = (g,) exists satisfying in all (admissible) coordinate systems (x)
and in some (open) region of space:
A. g is of differentiability class C? (i.e., all second-order partial derivatives of the g;; exist and
are continuous).
B. g is symmetric (i.e., g; = g;;)-
C. g is nonsingular (i.e., | g, #0).
D. The differential form (5.1b), and hence the distance concept generated by g, is invariant
with respect to a change of coordinates. :

Sometimes, particularly in geometric applications of tensors, a property sti- ..ger than C above is
assumed:

C'. g is positive definite [i.e., g,v' 'v/ >0 for all nonzero vectors v = (v, v°, U]

U_nder property C', |g;| and g,,, &5, - - - » &,, are all positive. Furthermore, the inverse matrix field
g is also posmve definite.
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For later use we define the arc-length parameter for a curve € : x' =x'(t) (a=t=b):
] ax' dx!
S(t) "J; €8 -6—1—1: E du (5.6a)
where ¢ = +1 or —1 according as

dx' dx’ - dx' dx’
giiEE=0 or gij-g;-ca<
The functional ¢ is called the indicator of the vector (dx"/du) relative to the metric ( g;)- One can, of
course, use absolute value signs instead of the indicator, but the latter notation works better in
algebraic manipulations. In terms of the arc-length parameter, the length of € is L = s(b).
Differentiating (5.64) and squaring yields the equivalent formula

ds\* dx' dx’
(3) =% & (>-68)
Finally, introducing the differentials
i dxi(t)
dx' = o dt

the values of which are independent of the choice of curve parameter, we retrieve (5.1b) as

eds’ = g dx’ dx’ (5.6¢)

EXAMPLE 5.3 Suppose that on R’ a matrix field is given in (x) by

x)yY-1 1 0
2\2
=] 1 &0 where  [(x') — 1)) %1
A o o
9
(a) Show that, if extended to all admissible coordinate systems according to the transformation law for covariant
tensors, this matrix field is a metric; i.e., it satisfies properties A—D above. (b) For this metric, compute the
arc-length parameter and the length of the curve

X

(a) Property A obtains since g, is a polynomial in x' and x? for each i, j. Since the matrix (g;) is symmetric,
property B holds. Since

2t—-1
2r 0=¢=1)
[3

1
2
3

o= W

o= S[Er-1 1
8179 1 @)

property C obtains. Property D follows from Problem 4.5.

= S I~ 1= 1) %0

(b) It is convenient, here and later, to rewrite (5.6b) as the matrix product

2 iNT i
(%) (%) (%) 6
Along the given curve, this becomes
] Qi-172-1 1 o[ 2
5<%> —[2 4 3 1 @ry’ 604 42
0 0 ) 3t

=641° + 64t* + 161" = (8¢ + 41)?



54 THE METRIC TENSOR [CHAP. 5

Hence, ¢ =1 and
" s(f) = J; (8u3 +4u) du = [2u4 + 2142]8 =26 +21
~from which L =2(1)*+2(1)* =4.

The properties postulated of g make it a tensor, the so-called fundamental or metric tensor. In
fact, property D ensures that

g,V'V =E

is an invariant for every contravariant vector (V') = (dxdt). (By solving an ordinary differential
equation, one can exhibit the curve that possesses a given tangent vector.) Then, in view of property
B, criterion (4) of Section 4.2 implies

Theorem 5.1: The metric g=(g;) is a covariant tensor of the second order.

In Problem 3.14(a), the matrix equation U =J "UJ was found for the transformation of a
second-order covariant tensor U. If (x) is a rectangular system and U =g is the Euclidean metric
tensor, then in (x'), U= G, and in (x'), U = G = I; thus we have proved

Theorem 5.2: 1f the Jacobian matrix of the transformation from a given coordinate system (x')toa
rectangular system (x') is J = (9x'/dx’), then the matrix G =(g;) of the Euclidean
metric tensor in the (x')-system is given by

G=1J"J (5.7)

Remark 1: Equation (5.7) illustrates the following well-known result of matrix theory: Any
symmetric, positive definite matrix A has a nonsingular “square root” C such that
A=C'C.

It should be emphasized that only the Euclidean metric admits of a representation of the form
(5.7). For, by very definition, if g is non-Euclidean, there exists no coordinate system (x") in which
G=1

EXAMPLE 5.4 Cylindrical coordinates (x') and rectangular coordinates (x') are connected through
%' =x"cos x’ x*=x"sinx’ P=x
Thus
cosx’ —x'sinx® 0
J=]|sinx® x'cosx® 0
0 0 1
and the (Euclidean) metric for cylindrical coordinates is given by
. cos x° sinx> 0]l cosx®> —x'sinx® 0
G=JJ=| —x"sinx® x'cosx” 0]l sinx®> x'cosx> 0

0 0 1 0 0 1
1 0 0
=10 (x')* 0
0 0 1

or g4, =833 =1, g, = (x")% and g, =0 for i # j. These results verify (5.3).

In spite of the apparent restriction to the Euclidean distance concept, in connection with such
results as Theorem 5.2, the reader should keep in mind that one is free to choose as the metric tensor
for R” any g that obeys properties A-D above. For instance, it can be shown by methods to be
developed later that the metric chosen in Example 5.3 is non-Euclidean.
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5.4 CONJUGATE METRIC TENSOR;
RAISING AND LOWERING INDICES

One of the fundamental concepts of tensor calculus resides in the “raising” or “lowering” of
indices in tensors. If we are given a contravariant vector (7") and if, for the moment, ( g;;) represents
any covariant tensor of the second order, then we know (Problem 4.4) that the inner product
(S)=( gUT’ ) is a covariant vector. Now, if (g;;) is in fact the metric tensor whereby distance in R" is
defined, it will prove useful in many contexts to consider (S,) and (7*) as covariant and contravariant
aspects of a single notion. Thus, we write 7, instead of S;:

T,= gijTj

and say that taking the inner product with the metric tensor has lowered a contravariant index to a
covariant index.

Because the matrix ( g;) is invertible (property C of Section 5.3), the above relation is equivalent
to

i ij
T =g'T,
where (g”) =( gl.].)_l; now we say that a covariant index has been raised to a contravariant index.
Definition 1: The inverse of the fundamental matrix field (metric tensor),
_— .
[gl}]nn - [gij]nn
is called the conjugate metric tensor.

Both metric tensors are freely applied to create new, more covariant (g) or more contravariant (g~ ')
counterparts to given tensors. Thus, starting with the mixed tensor (7}),

Tijk = girTi‘k
T{k = girT;:
and

T]k = gisT;k = gisger

5.5 GENERALIZED INNER-PRODUCT SPACES

Suppose that a metric g has been imposed on R” and that U and V are two vectors on the metric
space. It is essential to the definition of a geometrically significant inner product UV that its value
depend only on the vectors U and V, and not on the particular coordinate system used to specify
these vectors. (There are other requirements on an inner product, but they are secondary.) This fact
motivates

Definition 2: To each pair of contravariant vectors U= (U’) and V= (V") is associated the real
number

Uv=g. U’ Vi=UV,=UV’ (5.8)
called the ( generalized) inner product of U and V.
In similar fashion, the inner product of two covariant vectors is defined as
uv=g'UVv,=UV,=UV' , (5.9)

consistent with (5.8). We therefore have the rule:  To obtain the inner product of two vectors of the
same type, convert one vector to the opposite type and then take the tensor inner product.

Remark 2: It follows from Problem 4.5—or, more fundamentally, from property D of g—that the
inner product (5.8) or (5.9) is an invariant, as required.
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According to (4.2), the set of all contravariant vectors on R” is a vector space, as is the set of all
covariant vectors on R”. With an inner product as defined above, these vector spaces become
(generalized) inner-product spaces.

5.6 CONCEPTS OF LENGTH AND ANGLE

Expressions (2.7) and (2.8) readily extend to a generalized inner-product space, provided the
metric is positive definite. The norm (or length) of an arbitrary vector V= (V') or V=(V,) is the

nonnegative real number
[vl[=VV=VVV’ (5.10)

Remark 3: The norm of a vector—and thus the notion of a normed linear space—can be defined
abstractly (see Problem 5.14), without reference to an inner product.

EXAMPLE 5.5 Show that under the Euclidean metric (5.2) for polar coordinates, the vectors
(U =(3/5,4/5x") and (V) =(—4/5,3/5x")

are orthonormal.
Using matrices, we have:

3
1 oo || =
,. b 3 4 5
P =vv,=guv'=|3 2| A
o0 oY=
L S5x

[ 3

_[é i] 5

T L5 5x! 4_JC1

5

_o e

25 25kt

or ||U]| =1; likewise, || V|| = 1. Now we verify that the vectors are orthogonal:

| 1 0 —i

o 4 5
UV=g,U'V'= [§ —1]

/ 5 S5x 0 (xl) _3_

5x'

L 5
___12_{_%—0
25 25x'

Both normality and orthogonality depend, of course, on the metric alone, and not on the (polar) coordinate
system.

The angle 0 between two non-null contravariant vectors U and V is defined by
uv g;U 4
foiivil Vs, UPU* Vg, V'vV*

cos 6 = O=0=m) (5.11)
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That 6 is well-defined follows from the Cauchy—Schwarz inequality, which may be written in the form
Uv
1= ———=1
ol vl

(see Problem 5.13).
The tangent field to a family of smooth curves is a contravariant vector (Example 3.4), so that
(5.11) yields the geometrical

Theorem 5.3: 1In a general coordinate system, if (U') and (V') are the tangent vectors to two
families of curves, then the families are mutually orthogonal if and only if g, UV’ = 0.
EXAMPLE 5.6 Show that each member of the family of curves given in polar coordinates by
e’"=a(sec  + tan 6) (a=0) 1)
is orthogonal to each of the curves (limagons of Pascal)
r=sin@ + c (cz0) 2)

(Figure 5-2 indicates the orthogonality of the curve a =1 to the family of limagons.)
In polar coordinates x' = r, x> = §, and with curve parameter ¢, (1) becomes—after taking logarithms—

1
— =Ina + In|sect + tan¢| x’=t (1)
X

With curve parameter u, (2) becomes

x'=sinu + ¢ ¥=u 29
y
/a—O
c=3
c=2
c=1
c=0
a=1

N "

Fig. 5-2
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Differentiation of (1) with respect to ¢ yields
. —(—);—)2%:=sect:secx2 dd—x:=l
so that the tangent vector to family (1) is
(U, U?)=(—(x") sec x’, 1)

Similarly, the tangent vector to family (2') is

(V',V?)=(cos u, 1) = (cos x*, 1)
Applying Theorem 5.3, with the Euclidean metric tensor in polar coordinates,

g, UV =g UV +g,UV*+0
= (D[—(x")? sec x*](cos x*) + (x")*(1)(1)
=)+ ()P =0

" Observe that nonparametric forms of the tangent vectors are used in the orthogonality condition. This is
necessary because the metric tensor at the intersection point (x', x*) of a curve (1) and a curve (2) depends on
neither the parameter ¢ along (1) nor the parameter u along (2).

Solved Problems

ARC LENGTH
5.1 A curve is given in spherical coordinates (x) by

1
x'=t x2=arcs1n; 2=Vi-1

Find the length of the arc 1=¢=2.

By (5.4),
() (&) + e (F) vesmr(G)

so we first calculate the (dx"dt)*:
(&) -1 (&) -G s (5 -Gys) -
dt dt V1- 1/t £ —1) dt 2P -1 -1

ds)z_ 2 1 ( 1)2 £ 2r
Then (dt =1+t t2(t2—1)+ t ; -1 F2-1

and (5.1a) gives

2
1

L= L a- Ve

5.2  Find the length of the curve

1
Clx =1 =¢=

€ : {xz —; (1=t=2)
if the metric is that of the hyperbolic plane (x* > 0):

1
g11=g22=(x_2)‘2‘ 81281 =0
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Since (dx'/dt) = (0, 1), (5.6d) yields (¢ =1)
ds\’>

(%) =0 11{

21

and L=f1 ?dt=1n2

GENERALIZED METRICS
5.3 Is the form dx’ + 3 dx dy + 4 dy” + dz” positive definite?

It must be determined whether the polynomial Q = (u')* + 3u'y® + 4(u*)’ + (u*)” is positive unless
u' =u®=u’=0. By completing the square,

Q — (ul)z +3u1u2 + % (u2)2 + % (u2)2 4+ (u3)2 = <ul + % u2> + % (u2)2 + (u3)2

All terms are perfect squares with positive coefficients; hence the form is indeed positive definite.

5.4  Show that the formula (5.14) for arc length does not depend on the particular parameteriza-
tion of the curve.

Given a curve € : x'=x'(t) (a=t=b), suppose that x'=x'(f) (@=t=b) is a different
parameterization, where = ¢(f), with ¢'(t) >0 and a = ¢(a), b = ¢(b). Then, by the chain rule and
substitution rule for integrals,

dx' dx’

b dx' dx’ Jb\/ o
RRER = A S P30
i — . —

B dx' dx’| _f de’ dx’| - -

_L VI8 g ar | ¥ O 4= | |y gf g |4=L

TENSOR PROPERTY OF THE METRIC

dt

5.5  Find the Euclidean metric tensor (in matrix form) for spherical coordinates, using Theorem

5.2.
Since spherical coordinates (x') are connected to rectangular coordinates (x’) via
x'=x"sin x* cos x° x> =x"sin x*sin x° x> = x" cos x*

we have

. . . . 1 . 2 -

sin x* cos x° sin x* sin x° cos x° sinx”cos x> x'cosx®cosx® —x'sin x?sin x°
Ty _ 1 2 3 2 . 3 . . 2 . 3 2 . 3 - 2 3

JJ=| x'cosx*cosx’ x'cosx’sinx’ —x'sinx’|| sinx*sinx® x'cosx®sinx® x'sinx®cosx

1 . 2 . . -

—x'sinx’sinx®> x'sin x? cos x° 0 cos x° —x"'sin x” 0

Since G = J'J is known to be symmetric (see Problem 2.4), we need only compute the elements on or
above the main diagonal:

(sin® x*)(1) + cos® x> (x" sin x* cos x*)(1) — x" sin x? cos x> g1
G= 821 ((x")* cos® x*)(1) + (x')? sin” x 823
831 832 ((x")* sin® x*)(1)

where
g5 = (x" sin® x*)(—sin x° cos x> + cos x* sin x*) =0
85 = ((x")? sin x* cos x*)(—cos x* sin x> + sin x* cos x°) =0
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5.6

5.7

5.8
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1 0 0
Hence G=|0 (') 0

0 0 (x'sinx?)’

Find the components g,; of the Euclidean metnc tensor in the spemal coordmate system (x')
defined from rectangular coordinates (') by x' = x', x> =exp (x> — x').

We must compute J'J, where J is the Jacobian matrix of the transformation x* = ¥'(x, x%). Thus, we
solve the above equations for the x:

Fl=y! ’=x'+Inx?
Hence J= [ i (xzo)fl]
and G=[(1) (le)_l][} (X2O) 1]2[( 2)71 gzgi]

Or 8, =2, 8,81 = (x2)—1’ 822 = (x2)~2'

(a) Using the metric of Problem 5.6, calculate the length of the curve
% : x'=3t, =€ (0=t=2)
(b) Interpret geometrically.
(a) First calculate the dxdt:
dx' dx? .

o 3 ar

Then (&) =) w2 (NG e (%)

=2(9) +2¢ ‘(3)(e") + e (e*)=25

2
and L=L5dt=10

(b) From the transformation equations of Problem 5.6, the curve is described in rectangular coordi-
nates by x> = $x'; it is therefore a straight line joining the points which correspond to ¢ =0 and
t=2, or (0,0) and (6, 8). The distance from (0, 0) to (6, 8) is

V6: +8° =10

as found in (a).

Making use of the Euclidean metric for cylindrical coordinates, (5.3), calculate the length of
arc along the circular helix

x'=acost i =asint X =bt
with a and b positive constants, from =0 to t = ¢ > 0. See Fig. 5-3.

In cylindrical coordinates (x‘), where

'=x'cosx* x*=x'sinx®* i’=x
the helical arc is represented by the linear equations
1
X =a =t X’ = O=t=0)

ds 1 0 0770 0
(dt) =[0 1 b)|0 o Of|1|=[0 1 b)la’|=a"+b°
0 0 1
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5.9

e —

f
\

Fig. 5-3
whence L=L Va*+ b>dt=cVa* + b*

(Affine Coordinates in R®) Carpenters taking measurements in a room notice that at the
corner they had used as reference point the angles were not true. If the actual measures of the
angles are as given in Fig. 5-4, what correction in the usual metric formula,

3
PP, = \jgl(x;uxlz)z

should be made to compensate for the errors?

We are asked, in effect, to display g = (g;;) for three-dimensional affine coordinates (x"). Instead of
applying Theorem 5.2, it is much simpler to recall from Problem 3.9 that position vectors are
contravariant affine vectors—in particular, the unit vectors

u=(87) v=(85%) w=(5%)
along the oblique axes (Fig. 5-4). We can now use (5.11) in inverse fashion, to obtain:
gi;‘8i1 8£ _ 812 .
\/gpq&f‘s‘lz\/gmé;a; V811V 82 12

COos o =
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since, obviously, g,, = &,, = &5 =1 (*ds=dx' for motion parallel to u; etc.). Likewise,
cos B = g3 COS Y = &3

and the complete symmetric matrix is

1 cosa cosf 1 —0.01745 —0.00873
G=|cosa 1 cosy |=1| —0.01745 1 0.01745
cos B cosvy 1 —0.00873 0.01745 1

It follows that the carpenters must use as the corrected distance formula
PP, = Vg, (xi — x5)(x] — x3)

where the g, have the numerical values given above.

RAISING AND LOWERING INDICES

5.10 Given that (V’) is a contravariant vector on R’ find its associated covariant vector (V,) in
cylindrical coordinates (x) under the Euclidean metric.

1 0 0
[gij]33 = |:0 (x1)2 0:|
0 0 1

Since

and V, =g, V’, we have in matrix form,
Vi 1 0 07 v? V!
Va=|0 &) 0|l vii=| )V
Vi Lo o 1]lv? v?

5.11 Show that under orthogonal coordinate changes, starting with any particular system of
rectangular coordinates, the raising and lowering of indices has no effect on tensors, consistent
with the fact (Section 3.6) that there is no distinction between contravariant and covariant

cartesian tensors.

It suffices to show merely that g, = 6, = g” for any admissible coordinate system (x*), for then it will

follow that

T'=8"T,=T, T,=8T,=T, Ty=8T,=T]
and so on. To that end, simply use formula (5.7), with J = (aj.) an orthogonal matrix. Because J' = J 7,
we have G=J =1, or g, =8, as desired. Since G™' =1""=1, it is also the case that g” =§,.

GENERALIZED NORM

5.12 Show that the length of any contravariant vector (V') equals the length of its associated
covariant vector (V;).

By definition,
IV =VeVV  and | =VeVV,
But, since V'=¢"V, and g, =g;,,
8V'V' =8,(8"V)(g"V.) = 8,8"8"V,V. = 878"V, V,=g"VV,

and the two lengths are equal.
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5.13

5.14

Assuming a positive definite metric, show that the basic properties of the cartesian inner
product U-V are shared by the generalized inner product UV of contravariant vectors.

(a) UV=VU (commutative property). Follows from symmetry of (g,).
() U(V+W)=UV+UW (distributive property). Follows from (1.2).
(¢) (AU)V=U(AV) = A(UV) (associative property). Follows from AUV’ = U,(AV’) = AUV".

(d) U?z0 with equality only if U=0 ( positive-definiteness). Follows from the assumed positive-
definiteness of (g,).

() (UV)’=(U*)(V?) (Cauchy—-Schwarz inequality). This may be derived from the other properties,
as follows. If U =0, the inequality clearly holds. If U##0, property (d) ensures that the quadratic
polynomial

Q(A)=(AU+ V)’ =U°A" + 2UVA + V?
vanishes for at most one real value of A. Thus, the discriminant of Q cannot be positive:

(UV) = (U )(V*) =0

and this is the desired inequality.

A generalized norm on a vector space is any real-valued functional ¢[ ] that satisfies
(i) ¢[V]=0, with equality only if V=0;

(ii) S[AV]=[A| S[V];

(iii)) ¢[U+V]=¢[U]+ ¢[V] (triangle inequality).

Verify these conditions for ¢[V]=||V||, the inner-product norm under a positive definite
metric.

(i) and (ii) for ||V|| are evident. As for (iii), the Cauchy-Schwarz inequality gives

[U+V|>=(U+V)’=U"+V?+20V
= [Ull* + VI + 2 ol IVl = (ol + IV

from which (iii) follows at once.

ANGLE BETWEEN CONTRAVARIANT VECTORS

5.15

5.16

Show that the angle between contravariant vectors is an invariant under a change of
coordinate systems.

The defining expression (5.1) involves only inner products, which are invariants.

In R® the family of curves x> = x' — ¢ (parameterized as x' = ¢, X’ =t — ¢), has as its system of
tangent vectors the vector field U= (1, 1), constant throughout R” If (x') represent polar
coordinates, find the family of orthogonal trajectories, and interpret geometrically.

£ [3 (x9)2]

s0, by Theorem 5.3, the orthogonality condition becomes

cdx’ dx' a2, dx?
8;U" 7 = () 7 -+ (x)(1) au =0

or, eliminating the differential du,

The metric is given by

dx' + (x') dx* =0
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5.17
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Fig. 5-5

This is a variables-separable differential equation, whose solution is
x'= .
x*+d
The given family of curves in the usual polar-coordinate notation is r = 6 + ¢, which is a family of
concentric spirals (solid curves in Fig. 5-5). The orthogonal trajectories,
1
0+d
are also spirals, each having an asymptote parallel to the line § = —d; these are the dashed curves in Fig.
5-5.
Note: To solve this problem in rectangular coordinates—that is, to find the orthogonal trajectories
of the family

r

Y tan (Vx> + y*> — ¢)

X

under the metric (g,;) = (8,)—would be difficult or impossible. Quite often, the complication of the

metric involved in going over to a specialized curvilinear coordinate system is vastly outweighed by the
degree to which the problem is simplified.

Find the condition for two curves on a sphere of radius a to be orthogonal, if the curves are
represented in spherical coordinates by

€ : 0=f(e) and €, : 0=2g(e)

The two curves can be parameterized in spherical coordinates (x') = (p, ¢, 6) by

p=a p=a
€ :{e=t %Z:{szu
0= (1) 6= g(u)
At an intersection point (a, ¢, §,) the tangent vectors of €, and €, are, respectively,

U=(0,1, (%)) and vV=(0,1, g'(e))
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5.18

5.19

5.20

These are orthogonal if and only if g, UV’ =0, or

1 0 0 0
o 1 f(so)][o S 0 }{ 1 ]
v 0 0 (asin ‘Po) 8'(%)

=0+a"+ (asin ¢)’f'(@)g () = (@’ sin® @)[ese” @, + f(@0)g" ()]
Hence, the desired criterion is that f'(¢,)g’(¢,) = —csc” @, at any intersection point (a, ¢, 8,).

Show that the contravariant vectors U= (0, 1, 2bx”) and V= (0, —2bx’, (x')*) are orthogonal

under the Euclidean metric for cylindrical coordinates. Interpret geometrically along x' = a,
2 3 2

x“ =t x =bt.

1 0 0 0 0
&UV/=[0 1 26x°]|0 (x')* 0f —2bx*[=[0 1 2bx7] —2bx*(x'y
0 o0 1]l @& D%
=0-2bx’(x") +2bx*(x')* =0

The geometric interpretation is that x'=a, x>=1, x’ =bt’, for real t, represents a sort of
variable-pitch helix on the right circular cylinder » = a, having tangent field U. Therefore, any solution of

1 2 3
%=v1= %=V2=—2bx2 %=V3=a2
—_— (1)
or x1=a

will represent a curve on that cylinder that is orthogonal to this pseudo-helix. See Problem 5.28.

Show that in any coordinate system (x') the contravariant vector (recall Problem 3.5)
V=(g") is normal to the surface x* =const. (a=1,2,...,n).

Being “normal to a surface at the surface point P”’ means being orthogonal, at P, to the tangent
vector of any curve lying in the surface and passing through P. Now, for the surface x* = const., any such
tangent vector T has as its ath component

dx*®

T=dt=0

We then have:
V=gV’ T/ = g,]g"" T = g],g"" T = 8% T'=T"=0

and the proof is complete.

Show that in any coordinate system (x'), the angle 8 between the normals to the surfaces
x® = const. and x* = const. is given by

ap
Ve Ve”

By Problem 5.19, U= (g"*) and V=(g" ) are the respective normals to x* = const. and x* = const.
Therefore, by the definition (5.11)

cos 0 = (no sum) (1)

uv 8,8°8” T S
0TIV~ V.67 Ve,.678° Vo™ Voie® Ve Vg™

In consequence of (1), orthogonal coordinates are defined as those coordinate systems (x°) relative
to which, at all points, g7 =0 (i #j), or, equivalently, g, =0 (i #j). Obviously, orthogonal coordi-
nates need not be rectangular: witness polar, cylindrical, and spherical coordinates.

cos 8 =




66

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31
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Supplementary Problems

Using the Euclidean metric for polar coordinates, compute the length of arc for the curve
€ : x'=2acost, x’=t (0=t=7/2)

and interpret geometrically.

Is the form Q(u', v, u®) =8(u')” + (u*)’ — 6u'v’ + (u*)’ positive definite?

12 4 0
G=| 41 1
01 (x')

calculate the length of the curve given by x' =3 —1¢, x> =6t+3, x’=Int, where I=¢=e.

Using the metric

A draftsman calculated several distances between points on his drawing using a set of vertical lines and
his T-square. He obtained the distance from (1,2) to (4,6) the usual way:

V@E-172+(6-2)=5

Then he noticed his T-square was out several degrees, throwing off all measurements. An accurate
reading showed his T-square measured 95.8°. Find, to three decimal places, the error committed in his
calculations for the answer 5 obtained above. [Hint: Use Problem 5.9 in the special case x; = x5-=0,
with a = 95.8°.]

In curvilinear coordinates (x’), show that the contravariant vectors

U=(—x"/x}1,0) V= (1/x%0,0)
are an orthonormal pair, if (x) is related to rectangular coordinates (x’) through
i'=x* ¥=x 1 =x%

where x* #0.
Express in (x') the covariant vectors associated with U and V of Problem 5.25.

Even though (g;) may define a non-Euclidean metric, prove that the norm (5.10) still obeys the
following “Euclidean” laws: (a) the law of cosines, (b) the Pythagorean theorem.

(a) Solve system (1) of Problem 5.18. (b) Does the solution found in () include all curves orthogonal to
the given pseudo-helix? Explain.

Find the family of orthogonal trajectories in polar coordinates for the family of spirals x' = cx® (c=
const.). [Hint: Parameterize the family as x' = ce’, x* = €']

Find the condition for two curves, z = f(#) and z = g(6), on a right circular cylinder of radius a to be
orthogonal.

Let (x') be any coordinate system and (g,) any positive definite metric tensor realized in that system.
Define the coordinate axes as the curves €, : x'=15. (a=1,2,...n). Show that the angle ¢
between the coordinate axes €, and €, satisfies the relation
gaﬁ
COS p = ———=
¢ gozoz gﬁB

and is thus distinct, in general, from the angle 8 of Problem 5.20.

(no sum)
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5.32

5.33

5.34

Refer to Problems 5.20 and 5.31. (a) What property must the metric tensor (g,;) possess in (x') for the
coordinate axis €, to be normal to the surface x* = const. (in which case 6 = ¢)? (b) Show that the
property of (a) is equivalent to the mutual orthogonality of the coordinate axes.

Under the metric

_ 1 cos 2x>
G= [cos 2x° 1

compute the norm of the vector V= (dx’dt) evaluated along the curve x' = —sin 2¢, x* = ¢, and use it to
find the arc length between ¢t =0 and ¢ = 7/2.

] (2x*/7 nonintegral)

Under the Euclidean metric for spherical coordinates, (5.4), determine a particular family of curves that
intersect

orthogonally. (Cf. Problem 5.28.)



Chapter 6

The Derivative of a Tensor

6.1 INADEQUACY OF ORDINARY DIFFERENTIATION

Consider a contravariant tensor T = (T(x(¢))) defined on the curve € : x = x(z). Differentiating
the transformation law

=i

—; ax
Tl — r r
dx
with respect to ¢ gives
ar’ _ d1’ ox' , 9% dx
dae  dt ox ax’ox" dt

which shows that the ordinary derivative of T along the curve is a contravariant tensor when and only
when the x* are linear functions of the x".

Theorem 6.1: The derivative of a tensor is a tensor if and only if coordinate changes are restricted
to linear transformations. '

EXAMPLE 6.1 With T = dx/d! the tangent field along € (under the choice ¢ = s = arc length), the classical
formula for the curvature of €,

dr
dt
will hold in affine coordinates but will fail to define an invariant in curvilinear coordinates, since dT/dt is not a
general tensor. Clearly, to make the curvature of € an intrinsic property, we require a more general concept of

tensor differentiation. This will entail the introduction of some complicated, nontensorial objects called
Christoffel symbols.

-

6.2 CHRISTOFFEL SYMBOLS OF THE FIRST KIND

Definition and Basic Properties
The n® functions

1{ ¢ a J
Lp=3 |2 (g0 + -5 ()~ — (5] (6.10

are the Christoffel symbols of the first kind. In order to simplify the notation here and elsewhere, we
shall adopt the following convention: The partial derivative of a tensor with respect to x* will be
indicated by a final subscript k. Thus,

Fiik =3 (_gijk t 8kt gkij) (6.1b)
EXAMPLE 6.2 Compute the Christoffel symbols corresponding to the Euclidean metric for spherical coordi-
nates:
1 0 0
G=|0 (&' 0
0 0 (x)’sin®x?

Here, g,,, =2x', 35, =2x"sin” x°, g3, =2(x")" sinx” cos x’, and all other g, are zero. Hence, T, =0
unless the triplet ijk includes precisely two 2s (six cases) or precisely two 3s (six cases):

68
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1 1 1
oI, = ) 8t &unt8n)= -x' ol,,= P (—gzu'i'glzz_"gzu):x1 o Iy,= 2 (_g122+g221+g212)=X1

1 1 1
Lps= ) (=823 + 8232+ 8322) =0 Ly, = 2 (=852 + 8322+ 8223) =0 Iy, = 2 (—8325 F 8223+ 8235) =0
and

1 1.2 2 1 N2 2 2
o Iy = 2 (=851 T 83t §13s) = —x sin” x o I,= 2 (= 8325 + 8235+ 833) = (&) sinx” cos x

1 N2 . 2 2 1 12 2
o Iy= 2 (“ 8532 T 8323+ 8233) = —(x ) sinx” cos x o= 2 (8133 T 8331 T &513) =% sin” x

1 . 1 2 .
® = 2 (=855 T 8133 83) = x' sin® x* ®I,,= 2 (=825 + 8332+ 8323) = (xl) sin x” cos x°

(The nine nonzero symbols are marked with bullets.)

The two basic properties of the Christoffel symbols of the first kind are:
(i) T, =T, (symmetry in the first two indices)
(ii) all T, vanish if all g, are constant

A useful formula results from simply permuting the subscripts in (6.15) and summing:

Jg.
Bk T (6.2)

ox j ijk
The converse of property (ii) follows at once from (6.2); thus:
Lemma 6.2: In any particular coordinate system, the Christoffel symbols uniformly vanish if and

only if the metric tensor has constant components in that system.

- Transformation Law

The transformation law for the I';, can be inferred from that for the g;. By differentiation,

2=~ (g, 25, T2 - 28 0 O i’x_ox' ox" 9%
Bk ™ 5k \& 5 95 T 9t ox' ax) | 5 gxtex on | O¢ an axtox)
Use the chain rule on dg,,/dx":
agrs _ agrs axt — a_xt
ax—k &xl &fk =85t &)Ek

Then rewrite the expression with subscripts permuted cyclically, sum the three expressions (arrows
couple terms which cancel out), and divide by 2:

L, 9% 9x ox <_ ¥ ﬂ_ﬁﬂ)
Bije = " 8rst Gt 57T agk “\ ax*ex' ox’ __gx‘ox’ ox'
[ i
- 0% ox' axT (ﬁ&_x' 9%’ &xs>
8jki = 8sur oxr ax* a7 8sr oxax ox* oxiox® ox!
__ 9x' ax ox ( ’x' ax’ % ax‘)
B ™ 8 G5k o7t 90 v\ giaxt o | dpax ox*
give
- ox" ax’ oax' I’ ax”

Fijk =0

9x 9x L 6.3
rst (921 0x_} 3)21( grs &JEQ?)Z' 83?1‘ ( )
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From the form of (6.3) it is clear that the set of Christoffel symbols is a third-order covariant
affine tensor but is not a general tensor. Here again, conventional differentiation—this time, partial
differentiation with respect to a coordinate—fails to produce more than an affine tensor (recall
Problem 2.23).

6.3 CHRISTOFFEL SYMBOLS OF THE SECOND KIND

Definition and Basic Properties
The n° functions
Fijk =8 “T,

jkr

(6.4)

are the Christoffel symbols of the second kind. It should be noted that formula (6.4) is simply the
result of raising the third subscript of the Christoffel symbol of the first kind, although here we are
not dealing with tensors.

EXAMPLE 6.3 Calculate the Christoffel symbols of the second kind for the Euclidean metric in polar

coordinates.

Since

1 0
o= [0 (xl)Z]
we have:
=3 8&u=0 o= =3 (i + &1+ 8112) =0
oI, = 3 (8ot &t &i22) = -x' I,,= 3 (&2t &2t &) =0
o I =T0n =3 (8t 801 T &12) = x! Tp00 =3 80, =0

To continue,

1 0
o
" =o )]
From g,, =0= g,,, it follows that I, = ¢g"T,,, =¢"T},; (no sum). Therefore, when i =1,
o I},=—x' I, =0 otherwise

and when i =2,

o I2,=T2 =1/x' %, =0 otherwise

The basic properties of I';;, carry over to Fj-k:
(i) F’}k = qu. (symmetry in the lower indices)
(ii) all I}, vanish if all g; are constant

Furthermore, by Problem 6.25, Lemma 6.2 holds for both first and second kinds of Christoffel
symbols.

Transformation Law

Starting with

o 9% 9%’ )
ax* gx'/ Ik
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substitute for fjk, from (6.3) to obtain

o _( o OX a_f’)(r ax" ax” axw>+< o 9%’ af’)( 3°x" ax”>
jk g &xs 6xt uvw (9;,'} &.X_,'k ﬂfr g axs axt guv 6)2’(9)?" 8)5'

T 8" ax' o axt 57 ax' a?x“
uow 7t axs (9.X_f] ax—k 8w 0 ax.\‘ (9)2’6’)51(
w Ox5 9x* ax® . ox X"

uvt é;xs ﬁ ¢9fk g gut axs 0,\?’3fk

s

Since g'T,,, =T, and g*g,, = 8}, after changing indices this becomes

iy ox' 9x* ax' 9% ox’
. =r,— = ——=+——— 6.5
kst ax” gx 9x* axlax” dx (63)
The transformation law (6.5) shows that, like (T';;), (Fj.k) is merely an affine tensor.
An Important Formula
%" -, ox” , 0x" 9x'
.o Yty o T la TS oo (6.6)
dx'dx ox ox' dx

See Problem 6.24. Needless to say, (6.6) holds when barred and unbarred coordinates are
interchanged.

6.4 COVARIANT DIFFERENTIATION

Of a Vector
Partial differentiation of the transformation law _

= ax
Ti = Tr ool
ox
of a covariant vector T = (7)) yields
dT, oT, ox a°x"
gx*  ox* ax' " 9x"ox’

Using the chain rule on the first term on the right, and formula (6.6) on the second, results in the
equations

oT, dT, ox" ox° - dx , dx" 9x'
P g %=5)
e a2
which rearrange to
E—"T=<'9T’— , )ax'&_xs
5fk ikt t ﬁxs rstt ax—z &x—k

which is the defining law of a covariant tensor of order two. In other words, when the components of
dT/dx* are corrected by subtracting certain linear combinations of the components of T itself, the
result is a tensor (and not just an affine tensor).

Definition 1: In any coordinate system (x'), the covariant derivative with respect to x* of a covariant
vector T =(T,) is the tensor

T, s
T,= (Ti,k) = (W - Fz‘th)
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Remark 1: The two covariant indices are notated i and ,k to emphasize that the second index arose
from an operation with respect to the Kth coordinate.

Remark 2: From Lemma 6.‘2, the covariant derivative and the partial derivative coincide when the
g;; are constants (as in a rectangular coordinate system).

A similar manipulation (Problem 6.7) of the contravariant vector law leads to

Definition 2: In any coordinate system .(x"), the covariant derivative with respect to x* of a
contravariant vector T = (T") is the tensor

i (7T i
:(T,k)E(a +T,T >
Of Any Tensor

In the general definition, each covariant index (subscript) gives rise to a linear “correction term”
of the form given in Definition 1, and each contravariant index (superscript) gives rise to a term of
the form given in Definition 2.

Definition 3: 'In any_ coordlnate system (x' ) the covarzant derivative with respect to x* of a tensor

12 p iyip
T= (Tm2 ) is the tensor T , = (T, ;= iy ? ), where
iqi
T2 Thn. +TR T " + T " T
a2 - - jq’k ax" tk ® iz tk © jija - tk = jija - -+ g
112 _ 1112...1'1,_“__ ¢ iig .. iy
r]lk ty - F]zk jit - g quk Tfljz ceet (6'7)

That T , actually is a tensor must, of course, be proved. This can be accomplished basically as in

Problem 6.8, by use of Theorem 4 2 and an induction on the number of indices.

Theorem 6.3: The covariant derivative of an arbitrary tensor is a tensor of which the covariant
order exceeds that of the original tensor by exactly one.

6.5 ABSOLUTE DIFFERENTIATION
ALONG A CURVE

Because (T ) is a tensor, the inner product of (T ) with another tensor is also a tensor. Suppose
that the other tensor is (dx'/dt), the tangent vector of the curve € : x'=x'(¢). Then the inner

product
; dxr>
(T” dt

is a tensor of the same type and order as the original tensor (T"). This tensor is known as the
absolute derivative of (T') along €, with components written as

5T"> (dT dx’ ) P
( st ) =& +TLT" 7 where T = T'(x(t)) (6.8)
(see Problem 6.12). It is clear that, again, in coordinate systems in which the g; are constant,
absolute differentiation reduces to ordinary differentiation.

The definition (6.8) is not an arbitrary one; in Problem 6.18 is proved

Theorem 6.4 (Uniqueness of the Absolute Derivative): The only tensor derivable from a given
tensor (T") that coincides with the ordinary derivative (dT" ! dr) along some curve in a
rectangular coordinate system is the absolute derivative of (T*) along that curve.
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Remark 3: Theorem 6.4 concerns tensors with a given form in rectangular coordinates. Thus it
presumes the Euclidean metric (see Section 3.1).

Acceleration in General Coordinates

In rectangular coordinates, the acceleration vector of a particle is the time derivative of its
velocity vector, or the second time derivative of its position function x = (x'(¢)):

_( i): (i d_xl> = <d2xi)

ATW=\aE ar ) g

The (Euclidean) length of this vector at time f is the instantaneous acceleration of the particle:
a=Yy Bijaiaj

. . . . . d (dx'
Since derivatives are taken along the particle’s trajectory, the natural generalization of 7 (E)

i ) (dxi) B fii ;odx" dx’

si\ar) " T w

Hence, in general coordinates, we take as the acceleration vector and the acceleration

T ES . dx’ dxs)
a—(a)=(dt2 U @

a=YV|g,a'd| (6.10)

Note that positive-definiteness of the metric is not assumed in (6.10).

(6.9)

Curvature in General Coordinates

In Euclidean geometry an important role is played by the curvature of a curve € : x'= x'(t),
commonly defined as the norm of the second derivative of (x'(s)):

d’x' d’x’
AR ey

where ds/dt = \/Sij(dxi/dt)(dxj/dt) gives the arc-length parameter. The obvious way to extend this
concept as an invariant is again to use absolute differentiation. Writing

bl=<é_dxl)<ﬁ+ i dipgx_q>
(') = 8s ds/ \ g5t e ds ds

where the arc-length parameter s = s(¢) is given by (5.6), we have:

k(s) =YV |g,.jbibf| (6.12)

(6.11)

Geodesics

An important application of (6.12) in curvilinear coordinates is the following. Suppose that we
seek those curves for which « =0 (that is, the “straight” lines or geodesics). For positive definite
metrics, this condition is equivalent to requiring that
_di dx? dx?

pE +quxg—0 (z=1,2,...,n) (6.13)

The solution of this system of second-order differential equations will define the geodesics x' = x'(s).

bi
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EXAMPLE 6.4 In affine coordinates, where all g, are constant and all Christoffel symbols vanish, integration
of (6.13) is immediate:

¥=as+p"  (i=1,2,...,n)

where, s being arc length, g,.ja"aj = 1. Thus, from each point x = B of space there emanates a geodesic ray in
every direction (unit vector) a

6.6 RULES FOR TENSOR DIFFERENTIATION

Confidence in the preceding differentiation formulas should be considerably improved when it is
learned (see Problem 6.15) that the same basic rules for differentiation from calculus carry over to
covariant and absolute differentiation of tensors. For arbitrary tensors T and S, we have:

Rules for Covariant Differentiation

sum (T+8),=T,+S,
outer product  [TS],=[T S]+[TS ]
inner product (TS) =T, S+TS,

Since the absolute derivative along a curve is the inner product of the covariant derivative and
the tangent vector, the above rules for differentiation repeat:

Rules for Absolute Differentiation

5 T 68
+8)=— + —
sum (T S)= m
5 oT
outer product [TS] [ S] [ 5; ]
6 T 8S
inner product (TS) =— S +T 57

Solved Problems

CHRISTOFFEL SYMBOLS OF THE FIRST KIND
6.1  Verify that I';, =17,.
By definition,

Fijk = % (_gijk + gjki + gkij) and Fjik = % (_gjik + 8ixj + gkji)

But g, = &> &xi = iy AN iy = i by symmetry of g, and the result follows.

6.2  Show that if (g;) is a diagonal matrix, then for all fixed subscripts « and B # « in the range |
1,2,...,n

(@ T,.,=3% 8. (notsummed on a)

(B) ~Taup =Tope =Tpua =3 8aap  (nOt summed on a)

(¢) All remaining Christoffel symbols I';;, are zero.
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(a) By definition, T = 3(—g
(b) Since a # B,
¥raaB = ;% (_gaaB + gaBa + gBaa) = _% (_guaB + 0 + O) = % gaaB

wee T 8ana ¥ Baca) = 7 8aaa-

r

aBa=F

» Baa 3 (—gaBa + 8one T gaaB) =3 (-0--0+ guaB) =3 8aap
(c) Leti, j, k be distinct subscripts. Then g, =0 and g, =0, implying that T, =0.

6.3  Is it true that if all I';;, vanish in some coordinate system, then the metric tensor has constant
components in every coordinate system?

By Lemma 6.2, the conclusion would be valid if the I';;, vanished in every coordinate system. But
(T,;,) is not a tensor, and the conclusion is false. For mstance all F =0 for the Euclidean metric in
rectangular coordinates, but g,, = (x')® in spherical coordinates.

CHRISTOFFEL SYMBOLS OF THE SECOND KIND

6.4 If (g;) is a diagonal matrix, show that for all fixed indices (no summation) in the range
1,2,...,n,

BN )
@ To=Th= =5 (5mlg..]

(b) FZB 2g 88Ba (e #B)

(c) All other I' jx vanish.
(a) Both (g,) and (g,) ' =(g”) are diagonal, with nonzero diagonal elements. Thus,

@ af aa 1 1 &gaa (9 1
Dop =8"T 5 =8%T 5. = 7 (‘ —) =—3 (5 1n|gaa|>

2 ox® ox
() ‘ FBB =8 Fﬂ[ia = g_— <_E gBBa)

(c) When i, j, k are distinct, T, = ¢g"T,,, = g"T,,, =0 (not summed on 7).

6.5  Calculate the Christoffel symbols of the second kind for the Euclidean metric in spherical
coordinates, using Problem 6.4.

We have 811 T 1, 8, = (x')% and g,, = (x")* sin” x°. Noting that g, is a constant and that all 8ue
independent of x°, we obtain the following nonzero symbols from Problem 6.4(a):

F§1=Ffz=g(§ln(xl)2>=

3_3_«9<1 zz)_l
r r PR 2ln((x) sin” x°) =

Jd (1 .
r,=r,= e <§ In ((x*)* sin® x2)) = cot x°

Similarly, from Problem 6.4(b),

ML=~ 5y 7 0 = -

Iy =- L _07_1 ((x")?sin® x*) = —x" sin® x°
2(1) ox

= L — ((x")* sin® x*) = —sin x” cos x”

2(x) ax
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6.6
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Use (6.6) to find the most general 3-dimensional transformation x' = x'(x) of coordinates such
that (x') is rectangular and (x') is any other coordinate system for which the Christoffel

symbols are
I:il =1 1:52 =2 f‘; =3 all others=0
Since '}, =0, (6.6) reduces to the system of linear partial differential equations with constant
coefficients:

%" -, 9x’
—_— = FS —5 1
ax'dx’ v 9x (1)
It is simplest first to solve the intermediate, first-order system
qu; ( &x')
J s —r —r
A L = 2
aiz rz]us us axi‘ ( )

Since the systems (2) for r =1,2,3 are the same, temporarily replace #; by u,, and x" by a single
variable x; thus,

— =Tz (3)
For j =1, (3) becomes

=1 - =2 - =3 -

Fraie G, + 15,0, +05,0,=0

Hence i, is a function of x' alone, and the first differential equation integrates to give
i,=b,expx' (b, = constant)

In the same way, we find for j=2 and j=3:

i, =b,exp2x’ (b, = constant)
i, = b, exp 3%’ (b, = constant)

Now we return to the equations dx/dx’ = i, with the solutions just found for the u,.

a _ d _ a _
X b expi' X b, exp2i? X — b, exp 3 4
9% ! d 2 ox 3
Integration of the first equation (4) yields
x=hexpx' + ¢(x*x°)
and then the second and third equations give:
d _ _2 _
0—;—=b2 exp 2x° or ©=a,exp2x’ + Y(x’)
d _ -
Kﬁ=b3exp3x3 or Yy =a,exp3x’ + a,

This means that, with a, = b,
x=a,expx' + a,exp2x’ + a,exp3x’ + a,
so that the general solution of (1) is
X =ajexpx' + a,exp2x’ + ajexp3x’ + d (%)

forr=1, 2, 3.
The constants a} in (5) are unimportant; they merely allow any point in R> to serve as the origin of

the rectangular system (x"). The remaining constants may be chosen at will, subject to a single condition
(see Problem 6.27).
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COVARIANT DIFFERENTIATION

6.7

6.8

6.9

Establish the tensor character of T , (Definition 2), where T is a contravariant vector.

Beginning with the transformation law

ax’

r=T ax"

take the partial derivative with respect to ¥* and use the chain rule:

oT" 4 ( ., af") ax* 9T ax' ax’ . % ox
% = g —x = 5 =k T SoF =k
ox ax ox ox dx Jdx dx dx 9x

Now use (6.6), with barred and unbarred systems interchanged:

T _ aT" 9x' ax ( , 9xt o, 9x* ai”) ox
9% 9x Ix 9z~ + L ox' Lo ox’ ox"/ 9x*
Since (9x*/9x°)(dx*19x*)= 6% and T"(9x*/9x") = T", this becomes
oT  aT" ox' ox° . 9% ax o
ax*  9x* 9x" 9x* o 9xt ax” ke
or (by factoring and using the symmetry of the Christoffel symbols)
OT = = (aT’ s > dx' 9x’ = , 9%’ ax
& P uT ax’ T ax" ax* o TW=T, ax 9x*

Show that (7" i.x), as defined by (6.7), is a tensor, using the previously proven facts that T', '
and T, , are tensorial for all tensors (7" ") and (T)).

Let (V;) be any vector and set U, = T}V,. The covariant derivative of the tensor (U)) is the tensor
(U, «), where

avu; - 9 . . (9T] V L
U = ax” wU, = Ix~ (Ter) - ij(Tr‘/s) = V. + T P F TV,
But
WV, v, )
‘/r,k N &xk - Frk‘/s or (—9;": = ‘/’,k + Frch

When the above expression for dV,/dx* is substituted into the preceding equation and the terms
rearranged, the result is:

$

oT
<¢9—+F’kT —F]kT)V U,.-TYV,
X

jir.k

. s —
ie., . T .V, =tensor component

It follows at once from the Quotient Theorem (Theorem 4.2) that (T’;.,,c) is a tensor.

Extend the notion of covariant differentiation so that it will apply to invariants.

First note that the partial derivative of an invariant is a tensor:
JE _9E _9E ax
%' ox'  ox ox

Now, under any reasonable definition, (E;) must (1) be a tensor; (2) coincide with (JE/9x") in
rectangular coordinates. The obvious choice is therefore

- (%)
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6.10 Write the formula for the covariant derivative indicated by TZ’,.

. 9T}
TZ I ¥
’ ad

% + FlrzTZ + FizTZ - TZIT',’

6.11 Prove that the metric tensor behaves like a constant under covariant differentiation; i.e.,
gy, =0forall i, j, k.

By definition, since (g;) is covariant of order 2,

98 o
W - Fikgrj - ijgir = 8 — Fikj - iji =0
by (6.2). (In a similar manner, it follows that g’k =0; see Problem 6.34.)
Because of the above property of the metric tensor and its inverse, the operation of covariant
differentiation commutes with those of raising and lowering indices. For example,

Tj’,k = (girTrj)‘k = girTrj,k

8ijk =

ABSOLUTE DIFFERENTIATION

6.12 Prove that (6.8) is the result of forming the inner product of the covariant derivative (Tf i)
with the tangent vector (dx7dt) of the curve.
dx’ _dT'

. dx’ __<<9T" dx’ 9T dx’ —

Jdr W+F'fT)E—axfE A5 odt T dt

; dx’
+1. T ——
r,T a

6.13 A particle is in motion along the circular arc given parametrically in spherical coordinates by
x'=b, x> =m/4, x’=wt (t=time). Find its acceleration using the formula (6.10) and
compare with the result a = ro” from elementary mechanics.

From Problem 6.5, we have along the circle

. . o T b
r,=-x'=-b I, =—x"sin® x> = —b sin’ =73
1 . 1
r,=r,= =y F§3=—sinx2cosx2=—sm%cos%:—E
1 1
Fi3=F§1=;=E I‘§3=F§2=cotx2=cot%=l
with all other symbols vanishing. The components of acceleration are, from (6.9),
d’x' dx” dx’ (dx2>2 <dx3)2 ( b) bo?
T _ | st — 1 st 1 bt = _Z 2 _
a e + T, i dr 0+, ’ +T5, i 0+ 2 (w) 5
d*x* dx" dx’ dx' dx® (dx3)2 ( 1) o’
2 _ 2 . 2 YA Gr 2 (%r ) = 2_
a=—s + T T 0+ 2, i dr + I3, 7 0+ 3 () 2
a’x’ dx” dx’ dx' dx’ dx* dx’
3 _ 3 — 3 M YA 32 X
i Tl ar e SO ey s a7
Together with the metric components along the circle,
2
8. =1 gzzz(xl)2=b2 g33=(x1)zsin2x2= a5

the acceleration components give, via (6.10),
a=\g,a'a’ =\(1)(—bw2)’ + () (—02)* + 0= bwIV2
Upon introducing the radius of the circle, using (3.4) with x'=x=rand x’=0,

r=bhsin -~ = b

4 V2

. 2
we obtain a = rw”.
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6.14 Verify that x' =asecx’ is a geodesic for the Euclidean metric in polar coordinates. [In
rectangular coordinates (x, y), the curve is x = a, a vertical line.]

First choose a parameterization for the curve; say,

x'=asect

e (—mi2<t<7w/2) (1)
Parameter ¢ is related to the arc-length parameter s via

i 2 2\ 2
ds e d —\/(%> +(asect)2(ddit) =Va*sec’ ttan’ t + a’sec’ t

dar~ V& g Tdr
=(asect)V1+tan®t=asec’ ¢

dt  cos’t

or — =
ds a

so that for any function x()

dx _dx dt _cos’t dx
ds  dtds  a dr

d’x _d <coszt dx) dt cos'td’x  2sintcos’t dx
ds* ~ dt\"a dt)ds” PP T

ds a® drt a’ dt

Now, taking the nonzero Christoffel symbols from Example 6.3, we can rewrite the geodesic
equations (6.13) in terms of the independent variable ¢:

0= ' <£i_x_2)2_ cos ¢ d’x'  2sintcos’ t dx' (=) cos* ¢ <£)z
T2 2\4s) T2 ar pe dt x pe dt
or
d*x’ dx’ 1(ciJc2)2
a2 —(2tant)?—x W =0 (2)
and
0= d*’ + or2 dx' dx* _cos't d’x*  2sintcos’ t di2+ (i)(cos2 t)z dx' dx’
T s’ 2ds ds  a*  dr a dt "\ a dt dt
or
d*x? dx* (2) dx* dx?
i —(2tant)?+ ? E—dT—O 3

All that remains is to verify that the functions (1) satisfy the system (2)-(3). Substituting in (2):
a(sect + 2secttan” f) — (2 tan £)(a sec ¢ tan £) — (a sec £)(1) = 0

Substituting in (3):

0—(2tan )(1) + ( )(a sec ttan £)(1) =0 QED

asect

DIFFERENTIATION RULES
6.15 Prove the rules for covariant differentiation stated in Section 6.6.
(a) The sum rule obviously holds, as (6.7) is linear in the tensor components.
(b) LetT=( Tj.) and S = (S’) be two mixed tensors of order 2, with outer product U= (T£S7). Then,
) T7,S]+T7S],

aT? as
= < e +T0T, - Fika)Sf + Tf( axr s T F;kS:I)

q
P L+ T8
X
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aT? 98¢
= (%% so4 10 Z2) + TLUS 4 TRUL - TLUL - TLU

AU 1ax*

= Ufs‘{k
and this proof of the outer-product rule extends to arbitrary T and S.

(¢c) The inner-product rule follows from the outer-product rule and the following useful result: Con-
traction of indices and covariant differentiation commute. To prove this last, let R=(R}). Then,

y ARY
i k k
Rli,lsj = ( ax

aRik ) )
= ax’,‘ +TLRE+0=(R)), «QED

+TYRY+TIRY - F;,R§f>5f

6.16 Instead of Problem 6.15, why not: “Each rule is a tensor equation that is valid in rectangular
coordinates, where covariant differentiation reduces to partial differentiation. Therefore, each
rule holds in every coordinate system.”?

If the space metric is non-Euclidean, there is no way to transform to a rectangular coordinate system
(in which the rules would indeed hold).

6.17 Infer the outer-product rule for absolute differentation from the corresponding rule for
covariant differentiation.

Let x = x(¢) be any curve, and T(x(¢)) and S(x(¢)) two tensors defined on the curve. Then,

8 dx* dxk_[ dx” ] [ dx"]_[ST ] [ ss]
5—t[TS]—[TS],kE__([T.kS]-F[TS,k])W_ T'kgs + TS”‘E— = ES + TE?

UNIQUENESS OF THE ABSOLUTE DERIVATIVE
6.18 Prove Theorem 6.4.

Denote by AT/At any tensor that satisfies the hypothesis of the theorem. The tensor equation
AT _ 8T
At~ 6t

is valid in rectangular coordinates (x'), since, in (x"), both sides coincide with dT/dz. But then (Section
4.3) the equation holds in every coordinate system; i.e.,
AT 8T

At 8t

Supplementary Problems

6.19 Find the general solution of the linear system
02x—i .
P a’, = const.

with a’, symmetric in the two lower subscripts. [Hint: Set ¥y = 0%19x" — a},x"]
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6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

6.32

6.33

A two-dimensional coordinate system (x') is connected to a rectangular coordinate system (%) through
' =20x")Y + X7 ¥2=—x"+3x*

(a) Exhibit the metric tensor in (x').

(b) Calculate the Christoffel symbols of the first kind for (x') directly from the definition (6.1).

(a) Derive the formula
_ o
v ax'ox’ ox*
when (x°) is rectangular and (x') is any other coordinate system. [Hint: Interchange barred and
unbarred coordinate systems in (6.3)]. (b) Derive the analogous formula

3’x" ox'

7

i

T axiax® ox

when (') is such that all g;; arc constant. [Hint: Interchange barred and unbarred coordinate systems

in (6.5).]

Let the coordinate system (x') be connected to a system of rectangular coordinates (') via
x'=exp(x' +x%) x> =exp(x' —x7%)

Use Problem 6.21(b) to compute the nonzero Christoffel symbols of the second kind for (x°).

If
i'=—expdx' + expdyx’ + expd,x’
x’=2expdx' — expd,x’ + expdyx’
x°= expd;x' — 2expd,x’ + 3expd,x’

and if all I',, =0, find the T,
Derive (6.6) by solving (6.5) for the second derivative and then changing indices.

Prove that all I', vanish only if all g, are constant.

Calculate the nonzero Christoffel symbols of both kinds for the Euclidean metric in cylindrical
coordinates, (5.3).

Express the condition that the transformation (5) of Problem 6.6 be bijective (Section 2.6).

Show that if I';, are constant, then g, are linear in the variables (x); but that this is not necessarily true
if ", are constant. (For a counterexample, use the metric g,, = exp2x’, g, =g,, =0, g,, =1.)

What is the most general two-dimensional transformation x'=x'(x) of coordinates such that (x') are
rectangular and the Christoffel symbols I", in (x') are those for the metric of polar coordinates
(Example 6.3)?

Is the covariant derivative of a tensor with constant components equal to zero as in ordinary
differentiation? Explain your answer.

i

If T°,, are tensor components, write out the components of the covariant derivative, T s e

Show that &', =0 for all , j, k.

For any tensor T, verify that (g+T) , =g+*T ,, where * denotes either an outer or inner product.
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6.34
6.35

6.36

6.37

6.38

THE DERIVATIVE OF A TENSOR

Use Problem 6.32 and g,, g = 6; to show that the covariant derivative of g~ is zero.

Use the recursive method of Problem 6.8 to verify that (T;,) is a tensor.

Using tensor methods in polar coordinates, find the curvature of the circle

x'=b =t

If the metric for (x') is

ol

[CHAP. 6

(a) write the differential equations of the geodesics in terms of the dependent variables u = (x")” and
v =x?; (b) integrate these equations and eliminate the arc-length parameter from the solution.

Find the geodesics on the surface of a sphere of radius a by (a) writing the geodesic equations for the
spherical coordinates x* and x* (the x'-equation is trivial for x' = a = const. and may be ignored); (b)
exhibiting a particular solution of these two equations; and (c) generalizing on (b). Use Problem 6.5 for

the Christoffel symbols.



Chapter 7

Riemannian Geometry of Curves

7.1 INTRODUCTION

At this point, some new terminology is introduced, which commemorates the general formula-
tion of n-dimensional geometry by Bernhard Riemann (1826-1866).

Definition 1: A Riemannian space is the space R" coordinatized by (x"), together with a fundamental
form or Riemannian metric, g, dx'dx’, where g=(g;) obeys conditions A-D of
Section 5.3.

Thus, in our preliminary treatment of angles, tangents, normals, and geodesic curves, in Chapters 5
and 6, we already entered Riemannian geometry—though largely restricted to familiar 3-dimensional
coordinate systems and a positive definite (Euclidean) metric. The present chapter focuses on the
theory of curves in a Riemannian space with an indefinite metric. It also takes up geodesics from a
different viewpoint.

7.2 LENGTH AND ANGLE UNDER
AN INDEFINITE METRIC

Formulas (5.10) and (5.11) must be generalized to allow for changes in sign of the fundamental
form.

Definition 2: The norm of an arbitrary (contravariant or covariant) vector V is

IVI=Vevi=VeVV'  (e=e&(V))

where £( ) is the indicator function (Section 5.3).

Under this definition, || V|| =0, but it is possible that [[V|| =0 for V #0; such a vector is called a nuil
vector. Moreover, the triangle inequality is not necessarily obeyed by this norm (see Problem 7.8).
If V(¢) is the tangent field to the curve x' = x'(t) (a == b), then the length formula (5.14) may

be written as
b T b
dx' dx’
L:L N8 g5 ar dt=fa V()| dr (7.1)

The angle between nen-null contravariant vectors is still defined by (5.11), provided the new
norm is understood:

L g, UV’
IOIHIVIE Veig,,UTU" Ve,g, V'V

where ¢, = e(U) and ¢, = €(V). Because of the indefiniteness of the metric, we must distinguish two
possibilities in the application of (7.2).

Case 1: |UV|=||U||||V|| (the Cauchy-Schwarz inequality holds for U and V). Then 6 is
uniquely determined as a real number in the interval [0, 7].

Case 2: |UV|>||U]| ||V|| (the Cauchy-Schwarz does not hold). Then (7.2) takes the form
cos @ =k k| >1)

cos § = (7.2)

which has an infinite number of solutions for 6, all of them complex. By convention, we always
choose the solution
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] iln(k+Vk>=1) k>1
7+ iln(—k+Vk-1) k<-1

that exhibits the proper limiting behavior as k— 1" ork——1".

EXAMPLE 7.1 At the points of intersection, find the angles between the curves (i.e., between their tangents)
€, : (x\)=(10,0,¢) €, : (x})=(u,0,0,2—u’)
(t, u real), if the Riemannian metric is
e ds® = (dx')* + (dx*)* + (dx’)” — (dx*)?
[This is the metric of Special Relativity, with x* = (speed of light) X (time).]
The curves meet in the two points P(1,0,0,1) and Q(-1,0,0,1). At P, (where ¢ = u = 1) the two tangent

vectors are

U, = (dxi/dt), =(1,0,0,2),=(1,0,0,2)

V, = (dx/du), =(1,0,0, —2u), = (1,0,0, -2)
so that (7.2) gives
1(1)(1) + 1(0)(0) +1(0)(0) — 1(2)(-2)

08 O = eI + 107 + 100y —1(27] Vell(L) + 1(0)" +1(0)° — 1(-2)]
5 5
= VBV 3

and 6, =iIn[(5/3)+V(5/3)*—1]=iln3.

Similarly we calcuiate (for —t = u = 1)

U, =(1,0,0,-2)=V, V,=(1,0,0,2) =U,
so that 6, = 6.

7.3 NULL CURVES

If g is not required to be positive definite, a curve can have zero length.

EXAMPLE 7.2 In R* under the metric of Example 7.1, consider the curve

x'=3cost x*=3sint x =4 x'=5¢

for 0=t=1. Along the curve,
d i
(—i) =(—3sint,3cost,4,5)

2 dxi dxj . 2 2 2 2 _
8(5) =8 3 E—(—’:‘smt) +(Bcost)’+(4) —(5)°=0

and so the arc length is .
L= J:) 0dt=0

A curve is null if it or any of its subarcs has zero length. Here, a subarc is understood to be
nontrivial; that is, it consists of more than one point and corresponds to an interval ¢ = ¢t = d, where
c<d. A curve is null at a point if for some value of the parameter ¢ the tangent vector is a null
vector; i.e.,

d' d' o
8i "dr a
The set of t-values at which the curve is null is known as the null set of the curve.
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Under the above definitions, a curve can be null without having zero length (if there is a subarc
with zero length); but a curve having zero length is necessarily null at every point, and hence a null
curve. Example 7.2 gives such a curve.

EXAMPLE 7.3 Under the Riemannian metric
B (x1)2 _1]
G= [ 1 0
the curve (x', x*) = (t, |£’]/6) possesses a null subarc that renders the length of the curve much smaller than
might be expected. In fact, because dx'/dt=1 and dx’/dt= 8 t’/2, where 8 = =1 and is positive if 1 =0,
ix_i d_x’ = [( 1)2(ﬁ1>2_ d_xl d_x2
g ar LY\ dr dt
Since the quantity following the indicator is nonnegative, ¢ = +1 everywhere. But note that * — 8 £ =0 if
t=0. Hence,

] = e[t2(1) —2(1)(6 £/2)] = e — & 17)

99

999 0
sz_l Ve — Stldz:f_1 V2t dr + f

0

9 0
Odt= \/if_1 (1) dt

=-V27/22, =V2/2=0.707

The interpretation in rectangular coordinates (x', x°) is queer: As a particle travels less than a millimeter
along the curve, its “shadow” on the x'-axis travels a meter!

Nonexistence of an Arc-Length Parameter

For a positive definite metric, the arc-length parameter s is well-defined by (5.6) as a strictly
increasing function of the curve parameter ¢. (Then it is also the case that ¢ is a strictly increasing
function of s.) This fact allowed us freely to convert between the two parameterizations in the Solved
Problems to Chapter 6. However, it is clear that on a null curve, which possesses at least one interval
t, <t<t, of null points, it is impossible to define arc length s.

Indeed, even isolated points of nullity pose analytical problems. For if s'(t,) = 0, then the chain

rule,
dx'  dx' 1
A 50 (7.3)

breaks down at s,, the image of ¢, When necessary, we get around the difficulty by restricting
attention to curves that are regular.
Definition 3: A curve is regular if it has no null points (i.e., ds/dt>0).

It will be further assumed that all curves are of sufficiently high differentiability class to permit the
theory considered; usually, this will require the assumption that curves are of class C>

7.4 REGULAR CURVES:
UNIT TANGENT VECTOR

Let a regular curve € : x'=x(s) be given in terms of the arc-length parameter; the tangent
field is T = (dx’/ds). By definition of arc length,

s= |, 1Tl au

and differentiation gives 1= ||T(s)||, showing that T has unit length at each point of €.
When it is inconvenient or impossible to convert to the arc-length parameter, we can, by (7.3),
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obtain T by normalizing the tangent vector U= (dx'/dr):

1 1

TZWUZS—’(I_)U

(7.4)

In Problem 7.20 is proved the useful

Theorem 7.1: The absolute derivative §T/8s of the unit tangent vector T is orthogonal to T.

7.5 REGULAR CURVES:
UNIT PRINCIPAL NORMAL AND CURVATURE

Also associated with a regular curve € is a vector orthogonal to the tangent vector. It may be
introduced in two ways: (1) as the normalized 8T/8s, if it exists; (2) as any differentiable unit vector
orthogonal to T and proportional to 8T/8s when ||6T/8s||#0. The latter definition is global in
nature, and it applies to a larger class of curves than does the former.

Analytical (Local) Approach
At any point of € at which [|8T/8s|| #0, define the unit principal normal as the vector

-5/
N, = 8s 8s

The absolute curvature is the scale factor in (7.5):
6T

ST 8T’
"0=H"a7 = V8 55 55 (7.6)

This notion of curvature was informally defined in (6.12).

Calling this quantity ‘“‘curvature” is suggestive of the fact that in rectangular coordinates
|6T/65s|| = ||dT/ds|| measures the rate of change of the tangent vector with respect to distance, or
how sharply € “bends” at each point. Substitution of (7.6) into (7.5) yields one of the Frenet
equations:

(7.5)

ot
és

While this approach is simple and concise, it does not apply to many curves we want to consider;

for instance, a geodesic—as defined by (6.13 )—will not possess a local normal N, at any point. Even

if there is only one point of zero curvature and the metric is Euclidean, N, can have an essential
point of discontinuity there.

=k Ny (k,#0) (7.7)

EXAMPLE 7.4 The simple cubic y = x” has an inflection point at the origin, or s =0 (by arrangement). As
shown in Fig. 7-1,

lim N, = (0, 1) lim N, = (0,1)

To verify this analytically, make the parameterization x =¢, y = ¢, and calculate N, as a function of ¢
y y y p y 0

(s'(t)=V1+9").
U= (x'(1), y'(1) = (1,3¢%)

1 1
T= 7~ U= 1,3¢
s'(t) \/1+9z“( )
v _ 1 dr_ 6t .,
& =@ @ qrory 0
_|ar|___od__
T s | T v 9ty
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Fig. 7-1

1|t >
N -1 £=#(~-3t',1) (t#0)

° K, ds V149"

The scalar factor ¢/|¢| accounts for the discontinuity in N, at t=0 (s =0).

Geometric (Global) Approach
A unit principal normal to a regular curve € is any contravariant vector N = (N ‘(s)) such that,
along €,

A. N'is continuously differentiable (class C') for each i;

B. |IN||=1;
C. N is orthogonal to the unit tangent vector T, and is a scalar multiple of 81/8s wherever
||8T/8s|| #0.
The curvature under this development is defined as
8T . 8T’
Kk =¢N e eg;N 5s (e = ¢(N)) (7.8)
If the metric is positive definite, the Frenet equation
8T
e kN (7.9)

holds unrestrictedly along a regular curve (see Problem 7.13).

EXAMPLE 7.5 For the curve of Example 7.4, conditions A, B, and C allow precisely two possibilities for N:

+1 -1
N= ——————"W (—312, 1) or N= "‘?—-—;{"{)‘;—;
for —o < ¢ <o, Geometrically, these amount to reversing the normal arrows in cither the left half or the right
half of Fig. 7-1. The corresponding formulas for curvature are (¢ =1)
61 -6t
el S (R

(—3:51)

On curves having everywhere a non-null §T/8s, either N=N,, (with k = k,) or N=—N,, (with
Kk = —kK,). Thus, the global concept applies to all curves covered by the local concept and, in
addition, to all regular planar curves (see Problem 7.14) and all analytic curves (curves for which the
x' are representable as convergent Taylor series in s).



88 RIEMANNIAN GEOMETRY OF CURVES [CHAP. 7

7.6 GEODESICS AS SHORTEST ARCS

When the metric is positive definite, a geodesic may be defined by the zero-curvature conditions
(6.13), or, equivalently, by the condition that for any two of its points sufficiently close together, its
length between the two points is least among all curves joining those points.

The minimum-length development employs a variational argument. We need to assume that all
curves under consideration are class C (that is, the parametric functions which represent them have
continuous second-order derivatives). Let x' = x'(f) represent a shortest curve (geodesic) passing
through A = (x'(a)) and B = (x'(b)), where b — a is as small as necessary. Embed the geodesic in a
one-parameter family of C * curves passing through A and B:

x= X't u) = 2'(0) + (1 = a)(b — Dud'(1)

where the multipliers ¢(¢) are arbitrary twice-differentiable functions. The length of a curve in this

family is given by
b X' 9X’ b
L(u)= ; £8; —(%— 91 dt= ; Vwi(t, u) dt

with & =1 for a positive-definite metric. Since X'(t,0)=x'(t) (i=1,2,...,n), the function L(u)
must have a local minimum at u = 0. Standard calculus techniques yield the following expression of
the necessary condition L'(0) =0:

fb [w*m %8 & & d (2 g %)}(t—a)(b—t)d)k(t) di=0 (7.10)

ax* dt dt dt

in which
dx' dx’

w=w(t,0)=g; -

(7.11)

Since (t —a)(b —t)>0 on (a, b) and ¢*(¢) may be chosen arbitrarily, the bracketed expression in
(7.10) must vanish identically over (a, b), for k=1,2,..., n; this leads to (Problem 7.21)

d*x' ,dx dx* 1 dw dx' )
a7 + jkg;—dT—z_WEE (l——l,2,...,n) (712)

System (7.12), with w defined by (7.11), are the differential equations for the geodesics of
Riemannian space, in terms of the arbitrary curve parameter . Assuming that these geodesics will be
regular curves, we may choose ¢ = s = arc length. Then

_ ds>2_(ds)2__ - dw
w_<dt =\g) =W=1 and  50=0
so that (7.12) becomes

@' dr_
ds ds

d’x' ; .
EST + ij (l=1,2,...,n) (713)
which is precisely (6.13).

It must be emphasized that L'(0) =0 is only a necessary condition for minimum length, so that

the geodesics are found among the solutions of (7.12) or (7.13).

Null Geodesics

Consider the case of indefinite metrics and class 6> curves which may have one or more null
points. Since, at a null point, w =0 in (7.11) the variational theory breaks down, because L(u) fails
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to be differentiable at such a point. Analogous to the zero-curvature approach, we consider the more
general condition for geodesics

d’x ,odxl dx* sU’ )

dz F]kgt_ dt= 5t =0 (1—1,2,...,n) (7.14)

where U = U’ = (dx'/dt) is the tangent vector field. By properties of absolute differentiation,

dw d i ; 6U’
ggijU U]) - (Sgl]U U ) 28gz]U

&~ a
along a solution curve to (7.14); so w = const. along the curve. Since the curve has at least one point
of nullity, w = 0 at all points, whence the curve is a null curve—called a null geodesic. In summary,
the following system of n + 1 ordinary differential equations in the n unknown functions x'(¢) will
determine the null geodesics:

=0

d’x' ; dx" dx’ .
F‘F rs dt dt =0 (1—1,2,...,11)
dx" dx’
8:s dr dt =0 (715)

EXAMPLE 7.6 If the g, are constants, (7.15) has the expected general solution
¥ =xi+akt with gijaiaj=0
Imagining the x’ to be rectangular coordinates, we interpret the null geodesics as a bundle of straight lines

issuing from the arbitrary point x,; each line is in the direction of some null vector a. By elimination of the a
the equation of the bundle is found to be

gij(xi - xi))(xj - xé) =0

In particular, for the space of Special Relativity (g,; = £, = £33 = — 844 = 1, &; = 0 for i #j), the null geodesics
compose the 45° cone

(=) (07— g+ (0 - xg) = (- xg)

—see Fig. 7-2.
|
| J(xl _ x(ll)z + (2 - x%)z + (3 - xg)z
o |
N N 4
\\ x2 X = xg
\ v
7/
N\ s
N/
-
/ x
/

Fig. 7-2
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Solved Problems

LENGTH IN RIEMANNIAN SPACE

7.1

7.2

7.3

7.4

Determine the indicator of the tangent vector U to the curve
x'=r  xX=r x=t
(—% <t <) if the fundamental form is
(@) (dx')” + () (dx>)’ + (x")(dx’) — 6dx" dx® + 2x'x” dx” dx®
(b) (dx')” +2(dx*)* + 3(dx’)’
(@) (B2)* +4(20)% + 1°(1)* — 6(31*)(1) + 2(£*)()(26)(1) = 9¢° + 9¢* — 187° = 9%(F* +2)(£* — 1)

Since ¢* + 2 is always positive,

+1 t=1
-1 0<t<1
e(U) =1 +1 =0
-1 -1<t<0
+1 t=-1

() &(U)=+1, because the form is positive definite.

Show that the following matrix defines a Riemannian metric on R”:

2 1
G= [_;1 ’;2] (x'>0, —x' <x*<x")

We must show that conditions A-~D of Section 5.3 are satisfied.

A. Since each g, is linear in the x', it is differentiable to any order.

B. By observation, the matrix is symmetric.

C. |g,l=(*)?~(x")*<0 over the given domain.

D. Extend the matrix to a tensor g by using the tensor transformation laws to define the g,; in

terms of the g,;. This will then make the quadratic form g, dx’ dx’, hence the distance formula
an invariant.

Find the null set of the curve € : x*=(x')> (x'>0) under the metric of Problem 7.2.

Let € be parameterized by x' =¢, x> =¢> (¢>0). Then, along %,

dx' dx’ £ —t][l]_ [ -7 }z 2
8 g ar ~ U Zt]{ 2lloe) =0 2| gm0 =3)

which, for positive ¢, vanishes only at £ =V3/2.

Find the arc length of the curve € in Problem 7.3 from x' =0 to x' = 1.

Again using ¢ = x', observe that

i J
g, % %<0 for 0<t<V3/2
Hence,
1 V372 1
L=f Vet (4t - 3) dz=f tV -4 =3)dt + fw Va4 -3 dt
\/'/2

3V3+1
Viiz 12 ~0.516

- _ 3/2 x 2 qN\3/2
12 (3-41) > (41 - 3)
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7.5  Write g =det G for the determinant of a Riemannian metric. Prove that | g| is a differentiable
function of the coordinates.

Applying the chain rule to |g| =V/g? we have

ilgl _ g ag
=5 1
0xl |g] 8x' ( )

Since dg/dx’ exists (Property A) and |g|# 0 (Property C), the right-hand side of (1) is well-defined.

7.6  Show that under the metric & ds” = (dx')” — (dx®)* — (dx”)* — (dx*)* (another version of the
metric for Special Relativity), the curve

x'=Asinht x*’=Acosht x’=Bt x*=Ct 0=t=1)
with A>= B*+ C is null at each of its points.
dx' dx’ _ (di‘)z_ <i{f)2_ (d_ff_ (fi)
8iar “ar ~ \dr dt dt dt
= (A cosh t)* — (Asinh t)> = B> - C*
= A’(cosh®t — sinh>t)— B>~ C*=A’-B*-(C*=0

7.7 At the point of intersection (0, 0), find the angle between the curves
1 1_ 4
Clx =212 ,{x =u —1
6 {xzztz—l 6 x* =250+ 50u — 175
if the Riemannian metric is given by & ds” = (dx')> — 2 dx' dx’.

At t=1, T=(dx"/dt)=(2,2); at u =1, U= (dx'/du) = (4, 100). Hence, using matrices,
_ 1 -1 4 1_
o= 2 o[ o) = 20
1 112
Im=eiz 2] 1 T3][3]= o9 =4

ol = et 100 o] 0] = =78 =784

1 01L100
and cos f = ﬂ = —é
V4V784 7

This is Case 2 of Section 7.2; we have

25 25\?
0=mw + iln(7+ (7> —1)277 + iln7

7.8  Verify that the vectors of Problem 7.7 do not obey the triangle inequality.
As calculated, ||T|| + ||U|| =2 + 28 =30. But

T+U||*=¢[6 102 L-1re = g,(—1188) = 1188
-1 oJl102

whence ||T + U|| =34.46 > ||T|| + ||U]|.

ARC-LENGTH PARAMETER,
UNIT TANGENT VECTOR

7.9  Let € : x'=x'(t) be any non-null curve. (a) Prove that arc length along € is defined as a
strictly increasing function of 7. (b) Exhibit the arc-length parameterization of €.
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7.10

7.11
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(a) For t, <t,, the Mean-Value Theorem of calculus gives
s(t,) — s(t) = (t, ~ t,)s'(7) (t, <7<ty
The right-hand side is nonnegative, so that s(¢,) = s(¢,). But, in view of the identity
s(t,) — (1) = [s(2) — s(t5)] + [s(25) — s(2))]

where ¢, is any point in (¢,, ¢,), the equality s(¢,) = ¢ = s(¢,) would imply s(¢;) = c; i.e., s(¢) would
be constant on [¢,, t,], making s'()=0 on (¢,, ¢,) and thus making € a null curve. We conclude
that

s(t,) <s(t,) whenever t, <t,

(b) The strictly increasing function s(f) will possess a strictly increasing inverse; denote it as ¢ = 6(s).
Then € admits the parameterization x' = x'(6(s)).

(a) In rectangular coordinates (x, x*) but adopting the metric of Problem 7.7, find the null
points of the parabola € : x'=1¢,x*=¢ (0=t=1). (b) Show that the arc-length parame-
terization of € is differentiable to all orders except at the null points. (c) Find the length of €.

d) () dede

@ (G) =G 2% G
so there is only one null point, at t=1/4.

(b) s= J; Ve(l—4u) du

Thus, for 0=t=1/4,
s=f0 V1—4udu= é [1—(1-4)7

and, for 1/4=t=1/2,

1/4 I 1
s=L V1—4udu+J;/4V4u—1du= 3 [1+4r—1)""7]
Inversion of these formulas gives
%[1—(1—6s)2'3] 0=s=1/6

t=0(s)= (1)

1
4
It is evident that 6(s) is infinitely differentiable except at the null point s =1/6 (the image of
¢ =1/4); the same will be true of the functions x' = 8(s), x> = 6°(s).

(¢) Sett=1/2 in the applicable expression for s:

[1+(6s—1?] 1/6=s=1/3

_1‘_ _ 3/2_1
s=z+2-1)")=3

Find the arc length of the same curve € as in Problem 7.10, but with the normal Euclidean
metric, ds” = (dx')* + (dx*)’.

ds (dxl)z (d.x2>2_ 5
Now P i + ) = Var +1
so that

1/2 1z
L=f0 \/mdt:[% T+ %ln(2t+\/4tz+l)] _V2 1“4(“\5)::0.574

0

as compared to L =0.333 in Problem 7.10.
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7.12

Using the arc-length parameterization found for the curve € in Problem 7.10(b), compute the
components 7'(s) of the tangent vector and verify that this vector has unit length for all
s#1/6.

We have (T°) = (6’,2600'), where 6 = (s) is the function defined by (1) in Problem 7.10(b). Hence,
IT||> = e(6'* — 460'%) = (1 — 46)6"*
But, by (1) of Problem 7.10(b),

(1—6s)°" 0=s=1/6 o' = (1-6s)""" 0<s<1/6
—(6s—1)*?  1/6=s5s=1/3 (6s—1)7'"°  1/6<s<1/3

Therefore, ||T||>=(e)(x1)=+1, or |T||=1 (s#1/6).

1—4(9:{

UNIT PRINCIPAL NORMAL, CURVATURE

7.13

7.14

Prove that the Frenet equation (7.9) holds at each point of a regular curve when the metric is
positive definite.

At a point where ||8T/8s|| #0, we have (from property C of N),
oT

N=/\g (1)

from some real A. Take the inner product with the vector N in (1); with & = &(N),
8T
eN? = EI\NE; = Ak or 1= 2k 2)

Then A =1/, and substitution into (1) yields (7.9).
At a point where ||§T/8s|| =0, both §T/8s =0 (because the metric is positive definite) and k =0
(by (7.8)); the Frenet equation then holds trivially.

For any regular two-dimensional curve € : x'= x(s), define the contravariant vector

N=(N)=(-T,/VIgl, T,V g (7.16)
where T = (T") is the unit tangent vector along € and g = det (g;). Show that N is a global
unit normal for €.

We must show that the three properties of Section 7.5 are possessed by the given vector (except
possibly at null points).

A. Since € is regular, the T, and with them the T, = g T’, are in C’. The same is true of |g|

i

(Problem 7.5), which function is strictly positive. Therefore, the N* are also in C".
B. By (2.11), g"' =g,,/g, g =g = —g,,/g, and g” = ¢,,/g. Hence,

”N”2 = |g11(T§/‘gD +2g,,(— T1T2/|g|) + gzz(Ti/lgDI

= I%I leg*’ T3 + 288" T, T, + g¢"'T7|
=M| PP T =TT = 2
g 18T T =TT =T
and so [|INJ| = [|T|| = 1.
C. N is orthogonal to T:
N'T, = — T, T, + T, T,=0

VIl " Vsl

Furthermore, when ||8T/8s|| #0, then N, is defined and is also a vector orthogonal to T (by
Theorem 7.1). In two dimensions this implies N= =N, = A(8T/$§s).
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7.15 For the curve and metric of Problem 7.10, determine the local normal N, and, using Problem

7.16

7.14, a global normal N. Verify that the two stand in the proper relationship.
We have g, =1, g5 =8, = —1, &, =0 (all constants), and T = (6",260"); therefore, for s #£1/6,

ST dT " 12 ”
5 = s - (020 +260")
_ [ =657 (1-65)72" + (1—65)"*"") 0<s<1/6
(=2(6s = 1) (6s—1) > —(6s—1) *?)  1/6<s<1/3
4 lS_T | ar a1’ _ 2(1—6s)*
an os |~ V& gy Tds T | 2(6s—1)7"

(1-65)7"% 1(1—65)"° + 3(1—6 )y
Thus, /l { (—(6s—1) 151 (65 — 1)"'° = (65 S_ 1)41/3)

With g = —1, Problem 7.14 gives (s # 1/6):
1(1-65)""7 +1(1—6s)"
%(65‘ _ 1)—1/3 _ %(6.5' _ 1)1/3

o T = PR Bl ¢ ) M
Tz_gij]__Tl*—O _{—(6.5‘—1)_1/3

T,=g,T'=T'-T*=6'(1-20)= {

. _ ((1_6s)—1/3 1(1 6s)—1/3+ %(1_63)1/3)
N=(-T,,T,)= {((65 —1)7Y% 365 — 1) = (65 — )

It is seen that, as expected, N=+N, for s<1/6 and N= —N, for s >1/6. neither N, nor N is
defined at the null point s = 1/6. For comparison, recall the situation in Examples 7.4 and 7.5: there the
discontinuity in N, occurred at a regular point (the cubic has no null points under the Euclidean metric),
and N (either choice) was defined everywhere.

Under the metric of Special Relativity (Example 7.1), a regular curve € is given by

3s 45
x1=s2 xzzg XSZ? x4:S2
for 0=s=1. (a) Verify that s is arc length for %, and show that the absolute derivative,
8T/8s, of T is a null vector at every point of the curve (hence, a local principal normal N is
nowhere defined on €). Construct a global principal normal for € in such a manner that the
corresponding curvature function is nonzero. Is more than one curvature function possible?

(a) We have (T')=(2s,3/5,4/5,2s) and
|g, T'T’| = |4s® + (9/25) + (16/25) — 4s°| =1

hence, s is an arc-length parameter. Also, since the g, are constant, all Christoffel symbols vanish
and
8T _dT
bs

= =(2.0,0,2) H H V22 + 02+ 0> -2%=0

for all s.

(b) Any differentiable unit vector orthogonal to T will do for N, which then determines the curvature
through (7.8). In the orthonormality conditions
4

2sN1+%N2+§N3—2sN4=0

(N'? +(N?)Y +(N*)> —(N*)* = =1
we may successively set N'=N*=0, N>=N*=0, and N>=N"=0 to obtain three candidate
normals:
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4 3 1 3
M0 200) el (2 2000)
' 575 2 VO25) +4s° N S

1 4
Nl (<4 0.200)

V(16/25) + 4s°

The constant N, yields k, =0; but N, and N, yield the distinct curvature functions

-1 -1
K:h th
2 1, 252 3 1, 252

Vit Ss it s

Note that the Frenet equation is invalid for all these normals.

7.17  Refer to Problems 7.10 and 7.15. Calculate the curvature functions k, and «, and discuss the
variability of k, over the parabolic arc 0=s=1/3.

Our previous results show that both curvatures are defined everywhere except s = 1/6, with k = K,
on0=s5<1/6 and k = —k, on 1/6 <s=1/3 (cf. Problem 7.13). By Problem 7.15,

Ty _ 2
dsl |1—6s]

(s#1/6)

whence K= (s#1/6)

2
1-6s
It is seen that k, has the same value, 2, at s=0 (the vertex, or point of greatest Euclidean
curvature) and the undistinguished point s =1/3. Moreover, near the ordinary (from the Euclidean
viewpoint) point s = 1/6, the absolute curvature becomes arbitrarily large.

7.18 (a) For any regular two-dimensional curve, derive the formula for absolute curvature

3T* 8T!
1 2
=V —— T .
Ko |g| ‘T Ss Ss (717)
(b) Use (7.17) to check Problem 7.17.
(@) By (7.8) and the remarks made following Example 7.5,
8T’ sT! 8T
Ko = |K|= i s | T 1™ e T (1)
Choosing the global normal (N°) established in Problem 7.14, we have:
=T T y v
N, =g N1+g N2=(gg22)( 2>+(_gg21)< 1 )Z___(gle +g22T)=——T2

N, =g, N' +g,N* = (‘8812)<\/%) " (ggu)<\/T|1?|)

Y 11 12 Y 1
=X (g"T, +g"T,)=—L-T
Vigl ' 7 Vgl

Substitution of these components in (1) yields (7.17).
(b) For the metric of Problem 7.10,
1 -1
G= [—1 0]

g =det G = —1 and absolute derivatives reduce to ordinary derivatives. Thus we can rewrite (7.17)
in terms of the curve parameter ¢, as follows:

a(5)

dr X1

dT* dt ., dT" dt| ]de_Tszl

dt 1 ‘T 3 (Tl)z
dr ds dt ds| s'(t) dt dt '

s'(1)

1
Ko=1T
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Substitution of s'(f) =V/|1 —4¢| (¢#1/4) and the components of the unit tangent vector,
L1 oax' _ 1 21azx2 2t

O AREI0) =50 & ~ 50
gives:
22
T -4

(t#1/4)

From Problem 7.12,
|1 — 4] =1 —46(s)| = |1 — 65]*"

yielding exact agreement with Problem 7.17.

7.19 Compute the absolute curvature of the logarithmic curve € : x'=1, ¥=aln t,fori =t<a,
if the Riemannian metric is

g ds’> = (dx')’ — (dx*)’

As the g, are constants (with g = —1), we can proceed as in Problem 7.18(b). This time, the most
convenient version of (7.17) is
i)
dt

(r*y
=Vigl s'(2)

Substituting
1\ 2 d 2 2 1
s@—J]“ x =;V?T?#m
1 1 t
s@)m p
1 dx’ a
2 ———
T Th) dar a2 — 12
we find: k, = at(a® — )"
7.20 Prove Theorem 7.1.
Along a regular curve we have
IT||> = eTT=1 or TT=¢

where the indicator & is constant, |¢|=1, on the curve. By the inner-product rule for absolute
differentiation, and the fact that the absolute derivative of an invariant is the ordinary derivative,

8T 6T 6T 6T
T+TY—ZT§ d() 0 or Tg—O

GEODESICS
7.21 Establish (7.12).

Start with the conditions

2 98y dx’ dx’ d( i dxi)
w ax

o 8ik dt

Wk dt dr o dt (1)
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By use of the product and chain rules, the expression on the right may be written

2 dw ( dxi) +2w~”2(% dxj) dx’ 4212 d*x

gikﬁ ax’ ar ) ar w8 e

dt

Put this back in (1), multiply both sides by w'’? and go over to the notation g,, = g, /dx*:
y g gl]k gt]

de e dwdd Al d AW
8ijk ar dr 8ix dr dt 8ikj ar di 8ik ar
which rearranges to

d*x' dx’ dx’ dx’ dx' 1 dw dx'

zgik? 8 i ar T 28w g @ w8 ar dr

Making use of the symmetry of g,;, the third term on the left may be split into two similar terms, yielding

pe X ddad | addd 1 dwdd
i g~ Bk gy Tar T 8miar dr T 8K dr dr T ow B dr d
Divide by 2, multiply by g”*, and sum on k:
or CF up A1 dwdd L d d 1 dw
Lode ik dt dt 2w dt dt ar’ *odt dr 2w dt dt

which is (7.12).

7.22 In a Riemannian 2-space with fundamental form (dx')’ — (x°) *(dx’)>, determine (a) the
regular geodesics, (b) the null geodesics.

Here g,, =1, g,,=8,, =0, g,, = —(x*)"?; Problem 6.4 gives

d |1 _ 1
F§2= E [5 ln(xz) 2:| = —)?
as the only nonvanishing Christoffel symbol.
(a) The system (7.13) becomes
d2 1 dz 2 1 dx2 2
e P R N
ds ds®*  x* \ds
The first equation integrates to x' = as + x,. In the second, let u = dx’/ds:
du 1 , du _dx’ o,
udxz xzu—O or i or u=cx
from which
dx2 2 dx2 2 2 cs
L or 2 ¢ ds or  x =uxge

As our notation indicates, an arbitrary point (x;,x2) is the origin (s =0) of a family of
geodesics that seems to depend on two parameters, @ and c¢. However, s must represent arc length,

so that
dx1)2 dx2 2
ilz(— _ 2\—2 _)= 2_ 2
ds (%) ds ¢ _C
Hence, either a® = ¢ + 1 (the fundamental form is positive) or ¢> = a® + 1 (the fundamental form is
negative). Both cases may be accounted for by a single parameter, A, if s is eliminated between the
parametric equations for x' and x*:

regular geodesics  x* = x. exp [A(x' —x)] (|A]#1)

N
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= —0.1
A(:ulﬁl = -10 (null)
Fig. 7-3
(b) System (7.14), in t, becomes
d’x! o dzxz_l<d_x2)2=0
ar’ a’ ¥’ \dt

dx1>2 5 _2<dx S
()~ (G =0
It is clear that the solution may be found by formally replacing s by ¢ in part (a) and setting a* = ¢*.
Thus, the null geodesics through (x,, x;) are given by
null geodesics x=xoexp[+(x" — x0)] and x* =xZexp[—(x' — x})]

Note that the null geodesics correspond to the exceptional values A = *1 in part (a). Figure 7-3 is a
sketch of the geodesics through the point (1, —1) in cartesian coordinates.

7.23 Without converting to arc length, verify that in spherical coordinates, under the Euclidean

metric
ds’ = (dx")’ + (x" dx*)* + (x" sin x* dx’)?

any curve of the form € : x'=asect,x’=t+b,x =c(a, b, c constant) is a geodesic. (It
should be apparent that € is a straight line.)

The equations (7.12) must be verified. The Christoffel symbols Fijk for spherical coordinates are
(Problem 6.5):

._ 1 _ .1 1 _ 122
i=1 IN,=-x, I';;=-x sin“x
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. 2 _p2 _ 2 a2 2
i=2 I',=I,, ==, I'5;=—sinx"cosx

1
1
X

1
1

i=3 TI,=TIi=-=, I'},=T},=cotx’

=

The derivatives of the x'(¢) are:

dx’ d*x!
—— =gsecttant, —= = (asec?)(tan’¢+sec’t
dt dr’

dx® d*? dx®  d*°
— = 1, =0 and E = 7 =

With e =1, (7.11) gives
dx' dx’  [dx'\? dx*\? ) dx*\?
wee, 5 = () () rotsnen( )
=(asecttant)’ + (asect)’(1)> +0=a"sec’ ¢

1 dw (4a’sec’ f)(secttant) _
and w di 7 sec” ¢ =2tant

For convenience in the verification of (7.12), let LS denote the left side, and RS the right side, of the
equation in question. We obtain:

. d2xl . (dx2)2 L (dx3>2
i=1 LS_7+F22E— +T;, ar
= (asect)(tan’ t +sec’ t) — (asec £)(1)* + 0 =2a sec t tan® ¢

d 1
RS = (2tan £) -—;7 =(2tan f)(asecttan t)=2asecttan’ t=LS

d22 dl d2 d3 2
i=2  LS="S + 20, - o +r§3(%) =0+

Jsect (asecttant)(1) +0=2tan¢

2

RS=(2tant)%=2tant=LS

. d*’ dx' dx’
i=3 1S= i :

Bodr dt

3 d_xzdi3_0
Bodr odr

+ 2r + 2

3

Rs=(2tant)%=o=Ls

Supplementary Problems

7.24 Determine the fundamental indicator £(U) if (U’) = (2t, —2¢t,1) at the point (x')= (£, —¢’, ). The
Riemannian metric is given by

2x' X 0
(g)=| x* 2x* 0 (4x'x* # (x*)’)
0 0 1

7.25  Find the null points of the curve € : x'=¢, x*=¢' (¢ real), if the metric is

eds®=8(x" dx')’ -2 dx' dx’

7.26  Find the arc length of the curve in Problem 7.25 if 0=¢=2.
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7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.35

7.36

7.37

7.38

7.39
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Find the null points of the curve € : x'=¢ +1, x> =, x° =1, if the metric is
e ds® = (dx')” — (ax*)’ — (x* dx’)?
Find the arc length of the curve in Problem 7.27 if 3 =t =1.

Find the angle between the curves
x' =5t x'=u
€ :{x"=2 €, : 1x*=2
x> =3¢ x*=3u’/25
at each of the points of intersection, if the fundamental form is (dx')” — (dx”)* — (dx’).
If & ds® = (dx')* — (dx*)’, (a) find the length L of the curve € : x' =127 x> =8¢, for 0=¢=2. (b)

Find an arc-length parameterization, x' = x'(s), for €, with s =0 corresponding to r=1. (¢) Show that
the x'(s) are differentiable to all orders except at points of nullity.

Find the arc length of the curve of Problem_7.30, but with the Euclidean metric.

Compute T = (dx’/ds) from the arc-length parameterization found in Problem 7.30 and verify that T has
unit length at all points except s =0.

Calculate the components N’ of the unit principal normal of the curve of Problem 7.30, using (7.16)
(Problem 7.14).

Calculate both the curvature « and the absolute curvature , for the curve of Problem 7.30. Discuss the
numerical behavior of «, along the curve.

Use the formula of Problem 7.18(b) to confirm the value of k, found in Problem 7.34.

Compute k, under the Euclidean metric for the curve of Problem 7.30; compare with the result obtained
in Problem 7.34. For convenience, let ¢ =0 correspond to s = 8.

Without calculating an arc-length parameter, find the vectors T and N, and the curvature «, for the
“parabola” x' =t, x’=¢> (0=r= %) under the Riemannian metric

eds®=(dx'y’ — 2dx' dx’

Show that the first-quadrant portion (x’ >0) of the hypocycloid # of four cusps
(xl)2/3+(x2)2/3:a2/3 (a>0)
may be parameterized as x' = a cos’ #, x* = asin’ ¢, with 0= ¢ = #/2. Find the arc length under the two
metrics
(@) eds’=(d' Y — (@Y (b) ds*=(dx')+ (dx®)?

(c) Without computing an arc-length parameter, find T and «, for % under both metrics.

(@) Determine the Christoffel symbols of the second kind for the Riemannian metric & ds” = x'(dx")” +

x*(dx*)>. (b) Without converting to an arc-length parameter, verify that all curves x'=t X =

(at® + b)*">, where a and b are arbitrary constants, are geodesics.



Chapter 8

Riemannian Curvature

8.1 THE RIEMANN TENSOR

The Riemann tensor emerges from an analysis of a simple question. Starting with a covariant
vector (V) and taking the covariant derivative with respect to x” and then with respect to x* produces
the third-order tensor

((‘/t)])k =V, x)
Does the order of differentiation matter, or does V, ;, =V, ,; hold in general?

Standard hypotheses concerning differentiability suffice to guarantee that the partial derivative of
order two is order-independent,

(92‘11- B 0,’2‘/1

axlox®  ax"ox’
but due to the presence of Christoffel symbols, such hypotheses do not extend to covariant
differentiation. The following formula is established in Problem 8.1:

Vj,kz - Vj,lk = Rj'kl‘/i (8.1)
i al—‘lﬂ ar;k r i r i
where Ry, = T T o + 0, -, 1, (8.2)

The Quotient Theorem (covariant form) immediately implies

Theorem 8.1: The n* components defined by (8.2) are those of a fourth-order tensor, contravariant
of order one, covariant of order three.

(R;k,) is called the Riemann (or Riemann—Christoffel) tensor of the second kind; lowering the
contravariant index produces

Ry = 8 R (8.3)
the Riemann tensor of the first kind.

In answer to our original question, we may now say that covariant differentiation is order-
dependent unless the metric is such as to make the Riemann tensor (either kind) vanish.

8.2 PROPERTIES OF THE RIEMANN TENSOR

Two Important Formulas

The Riemann tensor of the first kind can be introduced independently via the following formula
(see Problem 8.4):
aT

_ jli arjki r ,
Rijkl - 0xk - éxl + Filrrjk - Fikrrjl (8~4)

From (8.4) there follows

R -

ikl — E

2 2 2
1 ( a2g,l g g 978y >
=t — = = — — +r,1r5,—-1,T" 8.5
&x’ﬁxk axzaxl ax]axl axzaxk ilr~ jk ikr® jl ( )
EXAMPLE 8.1 Calculate the components R,,, of the Riemann tensor for the metric of Problem 7.22,
e ds® = (dx'y — (x*) *(dx*)’

101
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The nonvanishing Christoffel symbols are T', = —(x*)™" and T,,, = g,,'3, = (x*) . The partial-derivative
terms in (8.4) vanish unless all indices are 2; but then the two terms cancel. Likewise the Christoffel-symbol
terms either vanish or cancel. We conclude that all sixteen components R, = 0.

Symmetry Properties

Interchange of k and / in (8.2) shows that R’,, = —R’,,, whence R, = —R;,. This and two
other symmetry properties are easily established at this point; Bianchi’s (first) identity will be
demonstrated in Chapter 9.

first skew symmetry R, = —R,,
second skew symmetry R ikl = _R,'jlk (8.6)
block symmetry R, =R, .

Bianchi’s identity Ry + Ry + Ry =0

Number of Independent Components

We shall count the separate types of potentially nonzero components, using the above symmetry
properties. The first two properties imply that R, , and R, . (not summed on a or c) are zero. In the
following list, we agree not to sum on repeated indices.

(A) Type R, , a<b: n,=,C,=n(n—-1)/2

(B) Type Ry, b<c: ng=3-,Cy=n(n—1)(n—-2)/2

(C) Type R,,. 01 R, a<b<c<d (for type R,,,., use Bianchi’s identity): n.=2-,C,=
n(n—1)(n-2)(n—-3)/12

In (A) the count is of combinations of n numbers two at a time (for @ and b). In (B) one
partitions the index strings into the three groups (with ,C; in each group) for which

abcc

a<b<c b<a<c b<c<a

Either subtype of (C) has as many members as there are combinations of » numbers four at a time
(for a, b, ¢, and d).
Summing n,, ny, and n., we prove

Theorem 8.2: There are a total of n’(n° — 1)/12 components of the Riemann tensor (R,;,) that are
not identically zero and that are independent from the rest.

Corollary 8.3: In two-dimensional Riemannian space, the only components of the Riemann tensor
not identically zero are Ry, = Ry101 = ~Rip = —Ryiqs.

EXAMPLE 8.2 For the metric of spherical coordinates,
ds® = (dx")* + (x" dx*)* + (x" sin x* dx*)’

list and calculate the nonzero components R,,,, if any.
By Theorem 8.2 with n =3, there are six potentially nonzero components:

(A) Ry Ry, Ry
(B) Riys Ryps(=Ryms)s Risgs(= Ryysy)

Because R, = giiRi‘kl (diagonal metric tensor; no summation), we may instead compute the mixed components.

From Problem 6.5,
i=1 I, =-x' Iy,=-x"sin’x*
1

. 2 2 2 : 2 2
i=2 I';=I3=—, I';;=-sinx cosx
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and (8.2) gives:
0, 9Ty,

212 oxt - 07x2
1 1
1 _ ‘9F33 _ ar}!l

313 &xl &xl

or5, oI,

+F;2ri1 —Fglrizz -1 _Fizrh —F;IF;2=O

R

r ol ropto_ 22 1 1 31
+T,,I, -, =—sin" x* + r,,r, + r5,r5,=0

R, = ot [T, =57 = —cos2x” + Th,I%, — TL,I2, = —cos2x° — sin® x* + cos®x* =0
ary, oT,
1 23 21 r ol rol _ 3 2 1
Ry = Ix! - I +I5.T, - rr,= I‘231—‘;1 -I505,=0
or, T}
1 22 23 r 1 r 1 1 1 3 1
Ry = _ﬂx—3 - a2 +I5,0, -5, = Il = 15,05, =0

1 _‘9F;3_‘9F;2+Frr1_rrr1__21. 2 2 L2l iyl
3237 52 o 33l 2 221 ,3= 74X SInx COS X 33l 22 324 33
= —2x'sinx’ cos x” + x'sinx”cos x> + (cot x*)(x" sin® x*) =0

Therefore, R,,, =0 for all i, j, k, 1.

8.3 RIEMANNIAN CURVATURE

The Riemannian (or sectional) curvature relative to a given metric ( g;;) is defined for each pair of
(contravariant) vectors U= (U’), V=(V"') as
R, UV UV 3
G UPV‘IU’VS (qurs =gprgqs - gpsgqr) (8'7)

pars

K=Kx;U,V)=

This sort of curvature depends not only on position, but also on a pair of directions selected at each
point (the vectors U and V). By contrast, the curvature « of a curve depends only on the points along
the curve. Although it would seem desirable for K to depend only on the points of space, to demand
this would impose severe and unrealistic restrictions, as will become apparent in Chapter 9.

EXAMPLE 8.3 The numerator of (8.7) is an invariant, because (R ;%) 18 a tensor. As for the denominator, the
identity
GrarsV Vi)V i)V i = (VaVis)) (Ve Vea) = (Vi Vi) ) (Vi Vis)) (8.8)

pars

implies that the denominator is an invariant and proves (Lemma 4.1) that (G,;1,) is also a tensor. It follows that
K(x; U, V) is an invariant, and thus it serves to generalize the Gaussian curvature of a surface to higher
dimensions.

Helpful in the calculation of K is the fact that the G, possess exactly the same symmetries as the R, (see
Problem 8.19). Moreover, if g = (g;) is diagonal, all the nonzero Gz, Will be derivable from the type-A terms

Gpor = 82081s (a < b; no summation)

EXAMPLE 8.4 Evaluate the Riemannian curvature at any point (x') of Riemannian 3-space in the directions
() U=(1,0,0) and V=(0,1,1), and (b) U=(0,1,0) and V= (1,1, 0), if the metric is given by

8 =1 g22:2x1 g33=2x2 gij:() if i#j
From Problem 6.4, the nonzero Christoffel symbols are:
1 1 1
F;2=-—1 Ff2:F§1:2_x1 F§3:_2—x_1 ngzrgzzz—xz

Since n =3, only six (by Theorem 8.2) components of the Riemann tensor need be considered: Rz, Riss,
Ry323 Riz135 Ry1p5 and Ry,5,. The metric being diagonal, we compute:
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oy, ol | o, . 1

Rip= 53 = 22+ TLL, ~ Tl =0-0+0- M4l = 55

1 ) 2 1 1 _ 2 _ 3 1
R;;3=0 R = A R=0 Ri,;=0 Rlszzm

which yield the three terms
(A) R = gllR;IZ =1/2x, Ry = 822R§23 =1/2x"
(B) Rys= gaaRiaz =1/2x"

Theorem 8.2 also applies to the G,,,; but we may take the shortcut indicated in Example 8.3:

A) G2 = 81180 2x", Gi33= 81183 = 2% Goypy = 822833 = dx'x’
Let us now give an expanded form of (8.7) in the case that type-C terms are absent. It is convenient to define
the n* functions
_luvt uvl|ut U
vVijkl =y Vj‘ vE V! (8.9)
of two vectors U= (U*) and V= (V*). Observe that the W, ,, possess all the symmetries of the R,,,, (or the G,).
Looking at the numerator of (8.7), we see that a given type-A coefficient from the basic set generates, via its
skew symmetries, the 4 terms

R, (U VUV = U VUV - UVUV + U VU V) =R s Waras

and these precisely exhaust the 2 X 2 = 4 terms in which the coefficient R, involves the same distinct integers, a
and b, in the first pair of indices as in the second pair. A given type-B coefficient from the basic set will
generate, via its skew symmetries and block symmetry, the 8 terms

Rabac(W + Wacab) = 2R W

abac abac’’ abac

and these exactly correspond to the 2° X 2 =8 ways of writing R, such that the first and second index-pairs
contain the common integer a but are otherwise composed of distinct integers b and c. Analyzing the
denominator of (8.7) in the same fashion, we obtain as the desired formula:

2 RababWabab + 2 2 RabacWabac

K= type A type B (810)
Z GababWabab + 2 Z GubacWabac
type A type B

It is understood that the summation convention does not operate in (8.10); the indicated summations are over
all the nonzero, independent R, (G,;,,), according to type. Now to the problem at hand.

(a) For the data, (8.10) becomes

R51uWinis + RogosWosos + 2R 55, W.

K — 1212 1212 2323 2323 3132 3132
G1212W1212 + Gl313W1313 + G2323W2323
Ul _[1 0 0]
For [V]_[O 11
we have
1 of 0 0|
W1212=l0 1 =1 W2323:|1 1 =0
0 11|10 0 1 0’
W3132=.1 0”1 1] =0 W1313:|0 ] =1
and so
_ (17261 + (1/2x)(0) +2(1/2x1)(0) _ 1

K

(2x")(1) + 2x7)(1) + (4x'x*)(0) 4x'(x' + x%)

(v) For [vI=[7 1 ol
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we have
0 1y’ 1 0
Wi = 1 1 =1 W,y = ‘ 0 =0
0 00 1 0 o
Wi = 0 || 1 =0 W,,= ‘ 0 =0
whence

(1/2x Y1)+0+0 1
(2x")(1)+0+0 4(x )

Observations on the Curvature Formula
I. If n=2, (8.7) reduces to
Ry = Ry
811822 " 8 %2 4

(see Problem 8.7). Thus, at a given point in Riemannian 2-space, the curvature is
determined by the g, and their derivatives, and is independent of the directions U and V.

II. The extension of (8.10) to include type-C terms is as follows:

K:

(8.11)

Z RababWabnb + 2 2 RabaCWabac + 2 2 Rabcd(Wabcd adb(‘) + 2 2 Racbd( acbd Wadc‘b)

K __ lype A type B type C type C
2 GababWabab + 2 Z Gabac abac + 2 E Gabcd( abed adbc) + 2 E Gacbd( acbd Wadcb)
type A type B type C type C

(8.12)

(see Problem 8.9).

III. If linearly independent U and V are replaced by independent linear combinations of
themselves, the curvature is unaffected; i.e.,

Kx; AU+ vV, pU+ V) =K(x; U, V) (8.13)

Therefore, at a given point x, the curvature will have a value, not for each pair of vectors U
and V, but for each 2-flat passing through x.

Isotropic Points

If the Riemannian curvature at x does not change with the orientation of a 2-flat through x, then
x is called isotropic. From (8.11), we have

Theorem 8.4: All points of a two-dimensional Riemannian space are isotropic.

It is not immediately clear whether any metric (g,) could lead to isotropic points in R", n = 3.
But such is the case. Indeed, as is shown in Problem 8.12, R” under a hyperbolic metric is isotropic at
any point.

8.4 THE RICCI TENSOR

A brief look will be given a tensor that is of importance in Relativity. The Ricci tensor of the first
kind is defined as a contraction of the Riemann tensor of the second kind:

Tk oT~ :
R,=R:, = axlfk - ax} + T TE =TT, (8.14)

Raising an index yields the Ricci tensor of the second kind:

R;=g"R,, (8.15)
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By use of the following simple consequence of Laplace’s expansion (2.5):

Lemma 8.5: Let A=[a,(x)],, be a nonsingular matrix of multivariate functions, with inverse
B =[b,(x)],,. Then

(th) b,

J
5;<1n]detA|)_detA I

the definition (8.14) may be put into a form (Problem 8.14) that makes ev1dent the symmetry of the
R..

i

ij ox a / ( ) | I) \/_ ﬁx (V Irq) + Flrsri] (816)
Here, as always, g =det G.
Theorem 8.6: The Ricci tensor is symmetric.

After raising a subscrlpt to define the Ricci tensor of the second kind, R = g”Rs , and then
contracting on the remaining pair of indices, the important invariant R = R, results called the Ricci
(or scalar) curvature. By (8.16),

R= o] 3555 VIR — i (VI ) (8.17)

Solved Problems

THE RIEMANN TENSOR
8.1 Prove (8.1).

By definition of the covariant derivative,

3 r r
1 Jk ( ),k= y (‘/i‘j)_rik(vr,j)_rjk(‘/i,r) (1)
Substitute
v
V.= =i-Ty,
o] 3x '
in (1), carry out the differentiation, and remove parentheses:
az‘/i &Ff] s aV av s r V r s
ik = T~ ok Ve Ty gk Tk al Vo =T o= + TL,TLV, 2)
Interchanging j and k yields
_— az‘/l drfk § §V r V 5 S
‘/i.k/' - 5xi&xk - ﬁxi I/s - sz Ix j Fx] 07 Urrkv rk/ 9x ijl zer (3)

Subtracting (3) from (2), one sees that the first, third, fourth, sixth, and seventh terms on the right of
(2) cancel with the first, fourth, third, sixth, and seventh terms on the right of (3), leaving

_ &F'! r s ﬂka
Vi =Viwy = =52V, + LIV, + V,~I/T5,V,

ars, 9T
=(—k - +I7,T% —r'r;)v R, V.
ax’  ax" v y
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8.2

8.3

Show that at any point where the Christoffel symbols vanish,
Ry + Ry + Rjy =0
In this case the expression for R’,, reduces to just aI",/dx* — 9T, /dx". Therefore,

AL N Ty 6Ty, N AV2Y

k

i i
Rl + Ry + Riye = ox*  ox’ ax'  ax’  ox’  ox

As all the terms cancel, the desired relationship is proved.

Prove that for an arbitrary second-order covariant tensor (T)
Tiu—Tiun= R,le + RJHT

(The general formula,

P
Ti1i2 ikl T i g i wul, Cigi1Sigyt iy ‘(8-18)
which is credited to Ricci, is similarly established.)
A direct approach would be quite tedious; instead, first establish that
ViV, =-R,V’ (1)

for any contravariant vector (V') (see Problem 8.16). Now observe that (V“T,,) is a covariant vector, to
which (8.1) applies. Thus,

(VqTiq),kl - (VqTiq),lk RkaVqT (2)
By the inner-product rule for covariant differentiation,

(V'T,) = V5T, + VT,
3)
VIT,) 0=V + VT, + VT,  + VT,

ig,l iq,k
Interchange k and [:
(VqTiq),lk = VfllkTiq + Vq T, it Vq qu Ve qu 1% 4)
Subtraction of (4) from (3) will cancel the middle two terms on the right-hand sides, leaving
RkaVquq = (V,qkl - Vqlk)T + (th kT iq,lk)Vq %)
Now use (1) in the right member of (5):
Rjleqqu =-R; leqT +(T, gkl iq,lk)Vq
which may be rearranged into
[(Tiq,kz ,q w) (leIT + qulTs)]Vq =0

But (V') is arbitrary, so the bracketed expression must vanish. QED

PROPERTIES OF THE RIEMANN TENSOR

8.4

Establish (8.4).
By definition,
ars arjk

1/k1 gzs g(s gu‘

g,SFr.,ka - gisr;krsrz

J is j ag; d is S g,
= (g kﬂ) - il/i l-‘5'1 - (g llk) + glls Fj‘k + Fr rki F’k rli
dx ax~ dax ax" ! /
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‘91—‘71‘ al—\ki r agir r 0gir
= 3x]k - a;l + ij( ax - rrli) - Fﬂ(a”xk - rrki)
Recall from (6.2) that for arbitrary index /,
0gir
ox -, =T,
By substitution,
Ty, T . .
Rijkl = ax]k - (9;1 + rilrrjk —Fikrrjl

8.5  Establish the first skew-symmetry property, R;;, = — R,

To save writing, let

ij 1 J 2gt‘j d 2gk[ ij r
Glgl = 5 <&xk¢9x1 Ix'ox and H}Zz = rijrrkl
Note the obvious symmetry properties
GZ:GZ:GZc and HZI=HII:I=HZ‘¢
Also, it is clear that G¥, = Gg’; furthermore,
Hjcjl = (grsrjj)r;cl = F;j(gsrr;cl) = Ffjr‘klx = Hz]'j'l
Now, by (8.5),
il i i i
R = Gljk - Gl,]; + Hjlk - Hj]l(
j jk jl jk ik il ik il
and Rjikl = G,{,i— Gt{I +Ht{k_ H:I = Gjl - ij+ sz - ij= _Rijkl

8.6 List the independent, potentially nonzero components of R, for n =5 and verify the formula
of Theorem 8.2 in this case.

Type A: Rypp Riziss Rigas Risis

R, Ropnay Rasss
Ryus4 Rasas
R 545
Type B:  Ryys, Rigiss Riziss Rizies Rusiss Ruass
R,123s Roiass Rainss Raszas Rpsasy Rouss
Rii5 Rases Ripsss Rigsss Ranss, Rauss
Rz Riiass Rasss Ruzass Ruzsss Rusus
Rsis5, Rsiss, Rsisas Rsysss Rsysss Rsssa
Type C: Ry Rizsss Rizsss Risuss R,sus
Rias Rizass Risss Rissss Raogss

There are 10 components of types A and C each, and 30 of type B; or 50 altogether. From the formula,

P —1)  5%(5°-1) (2524 _ s
12 - 12 @ 12

0

RIEMANNIAN CURVATURE
8.7 Prove (8.11).
By Corollary 8.3 and the corresponding result for the Giju,
_ R UVIUNY' R (UNY(V —2U0'VUY + (U (V)] | R Rie
G UVUV G, [((U YWV 20 VUV +(U(V'Y] Gui 818282

pqrs
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8.8

8.9

Calculate K for the Riemannian metric ¢ ds” = (x') (dx")* — (x") "*(dx*)? using the result of
Problem 8.7.

We have only to calculate R,,,, = g,,R;,,. The nonvanishing Christoffel symbols are, by Problem
6.4,

1 1 1
rh:_; l_‘;z:—; F?Z=F§1=—?
Consequently,
ars, aI, 1
;12 = 212 - 221 + ngrh - F;J‘:z =z 0+ Fézril - F§1F;2
dx x (x)
__t 1 <*L>, (,i)@l) -1
(x1)2 xl xl xl xl (xl)Z
and _ gnR;u _ R;12 _ (xl)_z =1

811822 82 _(xl)_z

Derive the form (8.12) of the curvature equation.

We need only establish the summations over the type-C terms in the numerator; the rest of the work
was done in Example 8.4.

First of all, let us verify that all R,,, with { jk/ a permutation of abcd, where a<b <c<d are
distinct integers, are generated by the skew and block symmetries of the three components R, R, ,.»
and R_,,.. Examination of Table 8-1, which uses an obvious notation for the symmetry operators, shows
that all 4! =24 permutations are accounted for. Consequently, the type-C part of the numerator of
(8.12) is [cf. the equation preceding (8.10)]

2 2 Rabchabcd +2 z Racdeacbd t2 2 Radchadbc (1 )
Table 8-1
Subscript Chain
Symmetry
Operator abcd achd adbc
I abcd acbd adbc
S, bacd cabd dabc
S, abdc acdb adcb
S,S,=S,S, badc cadb dach
T B | c¢dab | bdac | bcad
BS,=S,B cdba bdca becda
BS,=S,B dcab dbac cbad
BS.S,=S,S,B dcba dbca cbda |

The first summation is over all a < b < ¢ <d that yield a nonzero R, in the basic set; similarly for
the second summation. The third summation does not involve the basic set, but the symmetries of R,
(shared by W,,,) allow its absorption in the first two summations. Thus, by Bianchi’s identity,

2R iy Waane =20 Ropea = Rocas Woaase = 2R 1peaWasne = 2R caWaaer 2)

and substitution of (2) in (1) produces the expression given in (8.12).
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8.10 Prove (8.13).

We have
AU + 2V AU + V)
pwU' + 0V pU + oV’

l AU* +pVE AU + V!

W, (AU + oV, pU + oV) = \ pU + oV* pU'+ oV

r v|P Ul !
= },U, ® Vi v Ve V! = (Aw - Vﬂ)zvvi,'kz(U, V)
so that the quantity (Aw — vu)’ factors out of all terms in (8.12) for K(x; AU + 1V, uU + wV), leaving

K(x; U, V).

8.11 Find the isotropic points in the Riemannian space R’ with metric
8 =1 g22=g33=(x1)2+1 8;=0 (i#7j)
and calculate the curvature K at those points.

Follow Example 8.4. By Problem 6.4, the nonzero Christoffel symbols are

1 1
X X
l_‘;2= -x' I‘;3=—x1 F%2=F§1: (x1)2+1 Fiazr;: (x1)2+1
Then:
oT) x' 1
R§12=a7212+rizru rr,=-1- WYl (—x")=- WY1
aT, x! 1
R;m ax 33 + F;3F11 F;F; =-1- (xl)z 1 ("xl) = _W
=T F2 =—x'. x! _ (xl)2
323 33 (x1)2 11 (xl)z 1
R;13 = Rizs = R?z)z =0
which give

(A) Ry, = 811R212 [(xl)z + 1]_]’ Ri35 = 8uR 313 _[(x ) + 1]_ R,z 822R§23 = —(x1)2
The corresponding terms for the denominator of (8.10) are

(A G =8180n= (x1)2 +1, Gi3i5= 811833 = (xl)z +1, Gup3 = 82283 = [(x ) + 1]
_[(x1)2 +1]° W1212 [(x1)2 + 1] Wisis (x ) W, 1,5
[(x ) + W,y [(x ) + 1Wias + [(x ) +1] W03
s Wt Wi (x ) [(x ) + HW,a05

Wiz + Wiz + [(x ) + 1w,

2323

Thus

=-[(")*+1]

If K is to be independent of the W,,, (which vary with iae direction of the 2-flat), then (x")*=1, or
x' = +1. Therefore, the isotropic points compose two surfaces, on which the curvature has the Value
K=-[1+1]%-1=-1/4.

8.12 Show that every point of R’ is isotropic for the metric
— (x])—Z(dxl)Z + (xl)—Z(dXZ)Z + (x1)~2(dx3)2

Problem 6.4 gives as the nonvanishing Christoffel symbols:

1 1 1
FL:_F T;2=; F§3=—
1 1
Fizzr;:_y Fis':r;:_;
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As in earlier problems, we proceed to calculate a basic set of Riw> via R, = gil.R",.k, (no sum).

ar;, oI} . , 1
;12 = a;f - axzzl + Fzzrll - l—‘21Fi2 =~ -0+ F;2r11 - F;lr;2

'y
e A3 E

Similarly, R}, = —1/(x')>. For the remainder, the partial-derivative terms all drop out, yielding
L
(')’

R§23 = F;3Ffz - F;2F33 = Fézrfz -0=-
R;D = Rf23 = Riaz =0
Our basic set is thus
(A Ryp= Ri3i3= Ryspn = _1/(x1)4
and, by Example 8.3,
(A) G, =G313=Goaps = 1/(3‘1)4
is a basic set of G,,,. Formula (8.10) or (8.12) now gives

_ RipoWiaio + RizisWisis + RospsWosos _ [_(x1)74](W1212 T Wit W2323)‘_

B G1212W1212 + GISIBWISIB + G2323W2323 [(xl)_4](W1212 + W1313 + W2323) B

It is seen that this Riemannian space is more than just isotropic; it is a space of constant curvature.

K

-1

THE RICCI TENSOR
8.13 For the metric of Example 8.4, calculate (a) R;;, (b) Ri., (c) R.

(a) From R, = Rf.‘,.k = R;l.l + R}, + R}, and the fact that g; =0 for i#j, it follows that

i

ij2 if
R, = gllRlijl + gzzRZijZ + g33R3i/'3 1)
where g'' =1, g**=1/2x", g =1/2x". Now, a basic set of the R, was computed as
1 1 1
Rip(Z —Rypn) = — Z_X-T Ry555(= —Rys3) = ey Rys(= —Ry) = T

and the only other nonzero components of the form R, generated by these are

1 1 1
Ry = _2_xl Ry = _W 3213 "Z_xl
Hence, the nonzero R,, may be read off from (1) as
1
R, = g22R2112 = _m
1 1
Ry, = gllR1221 + g33R3223 = _g - m
22 _ 1
Ry; =8 Ry, =~ dxi?
1
R,= g33R3123 = _:‘xl—xz = 833R3213 =R,
(b) R;=g"R,,=g"R, (no summation on i)
(o) R=R1+Ri+Ri=g11R11+g22R22+g33R33

-0l el me g o)) - GRS
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8.14 Derive (8.16) from (8.14).
Formula (8.14) involves two summations of the form I';,. By (6.4) and (6.1b),

A sr 1 Sr 1 sr 1 sr 1 rs
I =8l =5 8" ("8t 8 T 8:) = =3 8 8 ¥ 5 878 T 5 8 8ur
_1 ﬂgr: _ 9 A TaT
2 g grsz 2 g - o"xi (11’1 Igl)

where Lemma 8.5 was used in the last step. Now substitute in (8.14):

_*(nV]gh IT; ~ é'(ln\/—)

l} rTs

ij axiaxj ax’ + Ftsrr]
=a2(1nv\/l_gl)_( 1 \/mafij+ 1 a(\/\g) >+rr
o Wl Ve T T ot

_9 (ln\/_) 1
prepr ey T (WTglTy) + IiT

is© rj

Supplementary Problems

8.15 The absolute partial derivatives of a tensor T= (T’ ") defined on a 2-manifold .# : x'=x'(u,v) are

defined as

8T ( axk> 8T ( axk)"

Sbl Ti""k du and 61) Tj""k Jv
Since (9x/du) and (dx'/dv) are vectors, the inner products produce a pair of tensors of the same type
and order as T; thus the operation of absolute partial differentiation may be repeated indefinitely. Prove
that if (V) is any contravariant vector defined on .,

i(éV‘)_i <§_V_’>: ; 0x dx
du v \ du s ou dv
[Hint: Expand the left side and use Problem 8.16.]

8.16 Prove that for any vector (V'), V',, = V', = =R, V"

8.17 For an arbitrary second-order contravariant tensor (T"), show that
Tfjl.cl - Tfjllk = _RikITsj - RkaTiS
[Hint: Lower superscripts and use Problem 8.3.]

8.18 For an arbitrary mixed tensor (Tj) show that

T'},k, - Tj',lk - —Riszj' + Rj'lei

8.19  Verify the symmetry properties (8.6) for the G, [see (8.7)] and for the W,,, [see (8.9)].
8.20 Derive (8.5) from (8.4). [Hint: Tt is helpful to adopt the notation g,,, for &Zg,.j/o’?xk&xl.]

8.21 List the independent (nonzero) components of R, when n =4 and verify Theorem 8.2 for this case.

8.22 Calculate the Riemannian curvature K for the metric & ds” = (dx')* — 2x'(dx*).
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8.23

8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.31

8.32

8.33

8.34

8.35

8.36

Confirm that K =0 for the Euclidean metric of polar coordinates,
ds® = (dx'y’ + (x' dx*)’
(a) by a calculation; (b) by noting that K is an invariant.

Rework Example 8.4 for the pairs (a) U,,=(1,0,1), V,,=(1,1,1) and (b) U,,=(0,1,0), V,, =
(2,1,2). (c) Explain why the answers should be the same for (a) and (b).

Let the surface of the 3-sphere of radius a be metrized by setting x' = a in spherical coordinates and then
allowing x', x” to replace x? x°, respectively:
ds®> = a*(dx')’ + (a sin x')*(dx*)*
Determine K for this non-Euclidean R>.
If the metric for Riemanhian R’ is given by
811 =f(x2) 82 = g(x2) 833 = h(x2)
and g, =0 for i # j, write explicit formulas for (a) K(x*; U, V), (b) R.

Specialize the results of Problem 8.26 to the case f(x*) = g(x*) = h(x?).

Find the isotropic points for the Riemannian metric
ds® = (In x*)(dx")? + (In x*)(dx*)* + (In X*)(dx*)>  (x*>1)

and find the curvature K at those points. [Hint: Use Problem 8.27.]

Show that R® under the metric

2 X2

8= ¢€ 8n=1 833 =€ gij=0 (i?éj)

has constant Riemannian curvature with all points isotropic, and find that curvature.

Show that in a Riemannian 2-space [for which (8.11) holds]: (a) R, = —g,K, (b) R;=—8'K, and (c)
R=-2K.

Calculate the Ricci tensor R; for Problem 8.13 using (8.16), and compare your answers with those
obtained earlier.

Use Problem 8.30 to calculate the Ricci tensors of both kinds and the curvature invariant for the
spherical metric of Problem 8.25.

Calculate the Ricci tensors of both kinds and the curvature invariant for the (hyperbolic) metric of
Problem 8.12. [Hint: Problem 8.27 can be used to good advantage here.]

Prove that for any tensor (T7), symmetric or not, T% = T" . [Hint: Use Problem 8.17 and the

symmetry of the Ricci tensor.]

Is identical vanishing equivalent for the Riemannian curvature and the Ricci curvature invariant? Can
you find an example where one is zero everywhere but not the other?

Is constancy in space equivalent for the two curvatures K and R?



Chapter 9

Spaces of Constant Curvature;
Normal Coordinates

9.1 ZERO CURVATURE AND THE EUCLIDEAN METRIC

A fundamental question has run unanswered through preceding chapters: How can one tell
whether a given metrization of R” is Euclidean or not? To be sure that the meaning of ‘“Euclidean” is
clear, let us make the formal

Definition 1: A Riemannian metric g = (g;;), specified in a coordinate system (x'), is the Euclidean
metric if, under some permissible coordinate transformation (3.1), g = (§;).

Now, a coordinate system (¥') in which g, = 8; is (by Definition 1 of Chapter 3) a rectangular
system. Hence our question amounts to: Does a given Riemannian space admit rectangular
coordinates or does it not? _ _

Suppose that a rectangular system (x') does exist. Then K =0, since all Christoffel symbols
vanish in (x). But Riemannian curvature is an invariant, so that K =0 in the original coordinates
(x") as well. Moreover, by invariance,

g, U'U'=0'0U'z0
Thus, the necessity part of the following theorem is immediate.

Theorem 9.1: A Riemannian metric (g;) is the Euclidean metric if and only if the Riemannian
curvature K is zero at all points and the metric is positive definite.

To prove the sufficiency portlon we set up a system of first- order partial differential equations
for n rectangular coordinates x" as functions of the given coordinates x’ (j=1,2, ..., n). The system
that immediately comes to mind (Theorem 5.2) is G = J'J, or

ax* ax* L s

ax g S
But (9.1) is generally intractable because of its nonlinearity. Instead, we select the linear system that
results when barred and unbarred coordinates are interchanged in (6.6) and then the T jx are equated
to zero:

S x") (9.1)

9°x" gx"

—  T(x)=— 9.2

axIO’)XJ t](x) axr ( )

Setting w = x* and u,= ax*1ox' yields the desired first-order system

aw
TaT Y
ax (9.3)
qu;, ., ’
o~ Lits

EXAMPLE 9.1 It is proved in Problems 9.7 and 9.8 that when K =0, (9.3) is solvable for a coordinate system
(x*) for which all g, are constants (i.e., all I}, = 0); from these coordinates, rectangular coordinates can be
reached, provided (g,,) is positive definite. To make these results plausible, consider the two-dimensional metric

gu=1" 81,8170 g22=(x7-)7-

This metric is obviously positive definite and, because the only nonvanishing Christoffel symbol is I';, = 1/x? it
has R,,,, =0=K. It is possible to solve (9.1) directly for the corresponding cartesian coordinates, and then to
verify that that solution is contained in the general solution to (9.3).

114
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Introduce the notation
-1

=2

ox

flzaxl szo"—)Cz f3Eax1 f4zg (1)
whereby (9.1) becomes the algebraic system
fefi=1
LE+AL=0 (2)

fatfi=@y
System (2) can be solved for three of the f; in terms of the fourth—say, f;:

fi=h f=xV1-f] fi=-V1i-fi fi=xf, 3)

Now (1) becomes two simple first-order systems in x' alone and x* alone:

‘(9)21 ax’ >
=f r=-V1-f;

7]
I: : and 1I: afz
x! X
axzzxzvl—ff axzzxzfl

The unknown function f, is determined by the requirements that the two equations I and the two equations II
both be compatible:

Lo L @VI=F)  amd VTS5 6

The only function satlsfylng these two compatibility conditions is
f, =const. =cos ¢

and I and II immediately integrate to give

1
= xlcos¢+§(x2)2sin¢ +c

) (4)
#’=—x'sing + 5 **Y’cos ¢ +d
We are, of course, free toset ¢ =c=d =0 in (4).
Turning to (9.3), we have to solve

ow ow
R

du Ju du Ju u
2y — =0 Zl= 20 =2 rz =22
(2) ax C i 0 3) ax e Ul 2

Note that these equations include their own compatibility conditions! For instance, the second equation (2) and
the first equation (3) ensure the compatibility of the two equations (1). The fact that system (9.3) is
automatically compatible whenever K = 0 is crucial to the proof of Theorem 9.1. Integrating the above equations

in the order (3)-(2)-(1), we get:
w=ax" +a,(x*) +a, (a,, a,, a, = const.)
or, replacing the index &,
P =dix' +adi () + a (a¥ = const.) (%)

As announced, (3) includes (4).

For subsequent use, the following compatibility theorem for quasﬂmear systems [which include
linear systems such as (9.3)] is stated here, without proof:

Theorem 9.2: The quasilinear first-order system

du
g’]\.:FM(uO,ul;...,u LX) (A=0,1,...,m; j=1,2,...,n)
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where the functions F,; are of differentiability class C', has a nontrivial solution for
the u,, bounded over some region of R”, if and only 1f

IF,; o—'FAj IF,, IF,,
= .+ - = lsi<k=s
., F, o'?xk o, F, P (A=0,1, ,myl=sj<k=n)

[The v-summations run from 0 to m.]

9.2 FLAT RIEMANNIAN SPACES

A Riemannian space, or the determining metric, is termed flat if there is a transformation of
coordinates x' = x'(x) that puts the metric into the standard form

eds’=g(dX') + &,(di°)’ + - + g, (d")’ 9.4)

where ¢, = =1 for each i. This condition generalizes the concept of the Euclidean metric. The
essential distinction between the two concepts revolves about positive-definiteness; the analogue to
Theorem 9.1 with positive-definiteness removed is:

Theorem 9.3: A Riemannian space is flat if and only if K =0 at all points.

Corollary 9.4: 1f K=0, then R=0.

Proof: If K=0, then by Theorem 9.3 the space 1s flat, and hence the g; are constant for some
coordinate system (x'). It follows that all I‘Uk, F‘Jk, k> R, and R vanish. Therefore, R =R! =0,
and since Ricci curvature is invariant, R =0.

1]7

Remark 1: Problem 8.35 shows that the converse of Corollary 9.4 does not hold.

EXAMPLE 9.2 Consider the Riemannian metric
e ds® = (dx')” + 4(x*)’(dx®) + 4(x*)’(dx’)” — 4(x*)*(dx*)?
(a) Calculate the Riemannian curvature. (b) Find a solution of system (9.3) from which it may be inferred that
the space is flat.
(a) Using Problem 6.4, we find as the nonvanishing Christoffel symbols
I e
Because F;k =0 unless i = j = k, the partial-derivative terms drop out of (8.2), leaving

R, =T, r,—T, rt,=rIr,-T,I%=0 (not summed)

which in turn implies that R,;,, =0 and K=0.
(b) For the above-calculated Christoffel symbols
duy du, _u du, U, du, u,

=0

2
2 = 22 olis _Hs R
ax' x> x° X x axt  x

with du,/dx; =0 for i #j. Integrating,

u, =f; (xz’ X, x4) U, = xzfz(xlv X%, x4) U = x3f3(x1’ X7, x4) U, = x4f4(x17 X%, x3)
for arbitrary functions f,. But the remaining equations (9.3), dw/dx' = u,, give rise to the compatibility
relations
Ju, 9u;
' ax'

which are satisfied only if f, = ¢, = const. Therefore,

w=a,x"+a,(x*)’ + a,(x’)* + a,(x*)* + a
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and the transformation must be of the general form
i =aix' + ak(P) + k(7Y + al(x*) + at (a¥ constants)

We wish to specialize the constants so that the covariant law G = J'GJ will hold, with G correspond-
ing to (9.4). As a preliminary guess, set

b, 0 0 0 O
0 b, 0 0 O
k _ 2

[a;]ss = 0 0 b, 0 0

0 0 0 b, O

so that the covariant law becomes
1 b, £ b,
4(x*)? _ 2b,x° £, 2b,x°
4 = 2b.x° £ 2b,x°
—4(x*y 2b,x* £y 2b,x*

By inspection, the choice b, =b,=b,=b,=1 will render ¢, = ¢, = ¢, = —¢, = 1.

In connection with (9.4) there is an interesting theorem (Sylvester’s law of inertia). Define as the
signature of a flat metric (g,;) the ordered n-tuple

(sgn €,,sgne,,...,sgne,)
composed of the signs of the coefficients in the standard form (i.e., the signs of g,,,..., g,,)-

Theorem 9.5: The signature of a flat metric is uniquely determined up to order.

9.3 NORMAL COORDINATES

It is possible to introduce local, quasirectangular coordinates in Riemannian space the use of
which greatly simplifies the proofs of certain complicated tensor identities.

Let O denote an arbitrary point of R", and p = (p’) an arbitrary direction (unit vector) at O.
Assuming a positive-definite metric, consider the differential equations for geodesics,

d’*x' . odx’ dx®

PRI S (8-3)
[cf. (7.13)], along with initial conditions
dx' i
-‘cg —o =p (9.6)

Here the arc-length parameter is chosen to make s =0 at O.

Remark 2: Under an indefinite metric, there could exist directions at O in which arc length could
not be defined; see, e.g., Problem 7.22. There would then be no hope of satisfying (9.6)
with (p') arbitrary.

It can be shown that for a given p, the system (9.5)-(9.6) has a unique solution; moreover, for each
point P in some neighborhood ¥ of O, there is a unique choice of direction p at O such that the
solution curve x' = x'(s) (a geodesic) passes through P. Accordingly, for each P in ¥, take as the
coordinates of P

y' = sp’ : 9.7)

where s is the distance along the geodesic from O to P. The numbers (y’) are called the normal
coordinates (or geodesic or Riemannian coordinates) of P.

EXAMPLE 9.3 Show that if the Riemannian metric ds” = g, dx' dx’ for R” is Euclidean and there is a point O
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at which g,, =0, then normal coordinates ( y') with origin O are constant multiples of (z'), for some rectangular
coordinate system (z').

Because g,, =0 at point O, the vectors T = (1/v/g;, 0) and S = (0, 1/7/g5,) are, at O, an orthonormal pair.
The space, being Euclidean, admits a rectangular coordinate system; in particular, a system (z*) with origin O
and unit vectors T and S (Fig. 9-1). Again because the space is Euclidean, the straight line segment OP is the
unique geodesic connecting O with the arbitrary point P. With s = ‘OP and p the direction vector of OP, we have
the vector equation

2’ T+ 2°S=sp

or componentwise,

1 1 ) 1 1 2( 1 ) 2 __ .2
= = d = =
z < 7)) =P =y an \ygs)=w"=>

QED.

Fig. 9-1

The chief value of Riemannian coordinates resides in the following theorem (Problem 9.10).

Theorem 9.6: If the metric tensor (g;) is positive definite, then, at the origin of a Riemannian
cqordinate system (y'), all ag,.,./ay", aglay", T, and I are zero.

Remark 3: Recall that neither the partial derivatives of the metric tensor nor the Christoffel
symbols are tensorial. Thus, their (y*)-representations can vanish at O without their
(x')-representations doing so. For instance, because the transformation between (x)
and (y') has J=1 at O, (6.5) gives:

‘ 9%y
! —y
ij(x)|0— axiaxt o
The right side is generally nonzero, unless the coordinate transformation happens to be
linear.

EXAMPLE 9.4 Prove Bianchi’s first identity, R, + R, + R, = 0.

iklj iljk

Theorem 9.6 implies that at O, the origin of normal coordinates,
YAV
{

Rijkl - ayk ‘9y
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If we use the notation I, for 9T, /dy’, for arbitrary i, j, k, I, then
Rijkl = Fjlik - rjkil
R iklj = ijil - rklij
Riljk = Flkij - Fljik

On summing these three relations and observing the cancellations which take place, we see that the desired
identity holds at O in the coordinates (y'). This tensor identity must therefore remain valid at O in the alias
coordinates (x"). But O is any point of R", and the proof is complete.
EXAMPLE 9.5 Prove Bianchi’s second identity,

Rijkl,u + Rijlu,k + Rijuk,l =0 9.8)

Working with the Riemann tensor of the second kind, we have, at the origin O of normal coordinates,

R - IRy 3 (&I‘;,_ IT’,
Jkiu ayu ayu ayk ayl

_ i i
_rjlku rjklu

+ F;’Irik - F;’kril>

i
»

since terms like (4T7,/9y*)T';, vanish along with the I';, at O. From this, permutation of subscripts yields

i i i _
Rjkl,u + leu,k + Rjuk,l =0

at O, and the validity of (9.8) at O follows from the fact that covariant differentiation commutes with the
lowering of a superscript (Problem 6.11). We conclude, as in Example 9.4, that (9.8) holds generally in (x').

A positive definite metric has been tacitly assumed, both here and in Example 9.4. The assumption can be
dropped; see Problem 9.13.

9.4 SCHUR’S THEOREM

From Chapter 8 it is known that although every point of Riemannian two-space is isotropic, the
curvature (= R,,,,/g) can still vary from one isotropic point to the next. However, Problems 8.11,
8.12, 8.28, and 8.29 suggest that a different situation prevails in R>. To prove the general theorem,
known as Schur’s theorem, it is necessary to establish a preliminary result, a generalization of (8.11).

Lemma 9.7: At an isotropic point of R” the Riemannian curvature is given by

R R
K — abcd = abcd 99
gacgbd - gadgbc Gabcd ( )

for any specific subscript string such that G, ., #0. [If G,,., =0, then R, , = 0 also.]

For a proof, see Problem 9.8.

Theorem 9.8 (Schur’s Theorem): If all points in some neighborhood 4 in a Riemannian R”" are
isotropic and n Z 3, then K is constant throughout that neighborhood.

For a proof, see Problem 9.14.

9.5 THE EINSTEIN TENSOR

The Einstein tensor is defined in terms of the Ricci tensor R,; and the curvature invariant R

(Section 8.4):
i _ pi 1 i
Gj=Rj—§6jR (9.10)
It is clear that (G’}) is in fact a mixed tensor of order two. .
As a direct generalization of the notion of the divergence of a vector field V= (V") relative to
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rectangular coordinates (),

oVt  av? v v’
divV=—5 4+ —5 4+
ox ox

ax" ax’

we define the divergence of the general tensor T = (T’jll'fz”jq’i’) with respect to its kth con-
travariant index to be the tensor

divT= (T2 7 ') (9.11)

Jifp - dgs 7
In Problem 9.15 is proved

Theorem 9.9: For any Riemannian metric, the divergence of the Einstein tensor is zero at all
points.

Solved Problems

ZERO CURVATURE AND THE EUCLIDEAN METRIC
9.1 Test the compatibility conditions (Theorem 9.2) for the system

duy _ Uy du, 5

= —_ = 2
! Ix’ X Uy (1)

If it is compatible, solve the system.

In the notation of Theorem 9.2, there is only the condition corresponding to A=0,j=1, k=2to be

satisfied.
dF,, F4 dF,, \ dF,, P4 dF,,
du, (27 gx? T quy L0 ax’
4 <”0) 2 J <u0> d 2 Uy J 2
— (=2 +— =2 =+ —= (2
Ju, o X Uy PRCA E (2x7u,) RS (2x7u,)

2 2
2x7ug _ 2x°uy
1 1
X X

Therefore, the system is compatible. The first equation (1) integrates to u, = x' ¢(x*); the second
equation then gives

x'¢'=2x"x"¢p whence ¢ =cexp (x*)’

Hence the solution of (1) is u, = cx' exp (x*)>

9.2  Show that R® under the metric ds® = [(x')* + (x*)’1(dx")* + [(x")* + (x*)*)(dx?)” + (dx*) is
Euclidean.

This metric has g,, = const., and g,, and g,, independent of x°. Problem 6.4 then shows that I, =0
whenever i, j, or k equals 3; consequently, of the six independent components of the Riemann tensor,
only R,,,, is possibly nonzero. But (from Problem 6.4), with z= (") + ()

1 2 1

X X X
r,== rl,=T,== rh,=-=
11 P 12 21 - 22 -
2 1 2
X X
2 _ _r 2 _p2 _ A 2 _ A
rn - P F12 - Iﬂ21 - P rzz
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so that

R! ar‘;z _ ‘9F;1
2127 o x>

SR sl (L) £ () 2 () 2 (1)

Consequently, R,,,, =0=K. As the metric is clearly positive definite, Theorem
9.1 implies that the space is Euclidean.

+ F22F;l + I‘221_‘21 F21 12 1-‘211-‘;2

9.3  For the Euclidean space of Problem 9.2, exhibit a transformation from the given coordinate
system (x') to a rectangular system (').

Using the Christoffel symbols as calculated in Problem 9.2, we obtain from (9.3) the following
system for the u;:

du, xlu1 - xzu2 du, xzu1 + xlu2 du,

1= 2= —5=0 (1)
ox z ax z ox
du, xzul + x1u2 u, —xlu1 + xzu2 du,

T 2 = 5=0 (2)
dx z dox z dx
du, du, du,
—5 =0 — =0 — =0 3
ax' 9x> ax> ( )

Thus u, and u, are functions of x', x* alone, and u, = const. Since the 8, are all polynomials of degree 2
in x', x*, use the method of undetermined coefficients, assuming polynomial forms

u=a,(x'Y+bx'x>+c,(x*)V+dx' +tex’+f  (i=1,2)

The (compatibility) relation du,/dx” = du,/dx" implied by the second equation (1) and the first equation
(2) requires

b, =2a, 2¢,=b, e,=d,
Similarly, du,/dx" = —du,/dx” implies
2a,=—b, b, =-2c, d,=—e,

Using the first equation (1), or z(du,/dx") = x'u, — x’u,, we get:
a,=0 a,=0 ¢, =b, b,=—c, d = ~e, fi=0=~f,
It follows that b, = b, = ¢, = ¢, =0, and therefore (renotating d, and e,)
u, =ax' + bx’ u, = bx' — ax’ u,=c

[Note: This solution of (1)-(2)—(3) may be obtained by the method of characteristics, without any
prior assumptions. ]
The first equations (9.3),

aw 7 aw
oo+ b e o
3
ax ox ax
may now be integrated to give
a
=3 () + bx'x* — % @Y +ex’+d

or, replacing x* and corresponding superscripts, and with d =0,

k k
—k _ 5 (xl)z + bAxly? — % (xz)z T ck(xz)z
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It is clear that we may take ¢'=c*=0=4a>=5and ¢’ = 1:

—1_1112 112_1122

x—2a(x)+bxx 2a(x)

-2 _1_ az(xl)z I e 1 az(xz)z
2 2

=3 3

X=x

The Jacobian matrix is
1_1 1.2

a'x' +b'x* b'x'—a'x> 0
J=|a%"+b%* bx'—a’x® 0
0 0 1
Since J7J = G, we must have
@)y +@)=1 a'b' +a’b*=0 (b +(b*)Y =1
so take a' =0, a° =1, b*=0, b' = 1. The transformation is, finally,

5 1
Fl=xly? §t= 3 [(xl)z_(xz)z] B=y

FLAT RIEMANNIAN SPACES
9.4 Determine whether the following metric is flat and/or Euclidean:
e ds’ = (dx') — (x**)(dx’)  (n=2)

Since the metric is not positive definite, it cannot be Euclidean. To determine flatness, it suffices to
examine R,,, = g,,R5,,. But Problem 6.4 shows that R;,, = 0; hence the space is flat.

9.5  Show that if the metric tensor is constant, the space is flat and the coordinate transformation
X = Ax, where A is a rank-n matrix of eigenvectors of G = (g;;), diagonalizes the metric (i.e.,
g, =0if i+#J).
Since all partial derivatives of g, are zero, all Christoffel symbols will vanish and all R, =0,
making K = 0. Thus, by Theorem 9.3, the space is flat. By Chapters 2 and 3, if x = Ax, then J= A and
G=J'GI=A'GA
However, since G is real and symmetric, its eigenvectors form an orthogonal matrix which we now

choose as A, with
AGA™'= AGA" =D (diagonal matrix of eigenvalues of G)

Hence, G= AGA"=D  QED.

9.6 Find the signature of the flat metric
e ds® = 4(dx')? + 5(dx?)* — 2(dx’)’ + 2(dx*)? — 4dx’ dx’ — 4dx’ dx* — 10dx’° dx’

In view of Problem 9.5, it suffices to find the eigenvalues A of G = (g,;). The characteristic equation
is

4—x 0 0 0
0 5-A -2 =2
IG=Ml=| § "3 2-a -5
0 -2 -5 2-2

5-2 -2 -2 5= 2 0

S(4-N)| =2 —2-A -5 |=—(@-A)| -2 24r -3+

2 -5 2-a 2 57—

=—(4=N[(5=2)29— A1) +8(5-A)]=—(4 = N5~ )BT 1%)=0
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9.7

9.8

from which the eigenvalues are A = +4, +5, +V37, —V37. This means that there is a transformation
which changes the metric into the form
e ds” = 4(dx") + 5(dx’)’ + V37(dx>)* — V3T(dx*)’ = (dx ')’ + (dx>) + (dxi>)” — (dx*)’

with the obvious change of coordinates. Hence, the signature is (+ + + —), or some permutation thereof
(Theorem 9.5).

Show that the conditions R, =0 are sufficient for the compatibility of (9.3).

In the notation of Theorem 9.2, (9.3) takes the form (with m = n)

_ duy _
A=0 W—Foj:uj

du,
A>0 dxj_F”

The corresponding compatibility conditions are

A=0 &u I, =6ul’

Jort vk re vy

0T, (®)

r

or u,I", = u,T'};, which holds trivially, and

I ) or”,
A>O &I uTl +M,W:3,F,\kusrvj+“

Toax!

AjTsT vk

which rearranges to
arj\] arj\k s r s r
< ax~ - ax +F,\jrsk_r,\krsj>urzo

w

r
R/\kj

Thus, R,,,; =0 forces R},; =0 and compatibility.

Prove Lemma 9.7.
As (R,,,) and (G,,,) are tensors [see Example 8.3] and K is an invariant,
(Tijkl) = (Rijkl - KGijkl)
is a tensor of the same type and order. It must be proved that all T, = 0 at an isotropic point P. Since K
is independent of direction at P, so are the T,,,; and (8.7) gives
TijkIUiViUkVI =0 (Tijkl = Tijkl(P)) 1

If we define the second-order tensor (S, ) = (TijkIVle), we find that S, = S,,, and by (1), S, UU*=0
at P for any (U’). It follows that all §,, =0 at P. Now set V' =8§_. Then, at P,

0=S5,= Tijkléiafz =T

iaka
for arbitrary (fixed) index a. Next set V' =§’ + &} for arbitrary fixed indices a and b:

0=T,V'V'= Tijkl(si + 82)(62 + 32) = Tra ¥ Tiaro T Titra + Titrs

ijkl

or T, + Tipip = 0. Therefore, since T, obeys the same symmetry laws as R, and G,
Tijkl Ty = 0 (2)
Tijkl + Tiklj + Ty = 0 ’ (3)
Adding (2) and (3),
2Tijkl + Tiklj =0 “4)

But, from (2), T,,; = T 4, so that (4) implies T, =0, as desired.
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Prove Theorems 9.1 and 9.3.

We already know that if the space is either Euclidean or flat, K=0. Suppose, conversely, that K=0;
then every point is isotropic, and Lemma 9.7 implies that all R, vanish. It then follows from Problem
9.7 that there exists a coordinate system (x' "y for which I‘ =0 or g, = const. By Problem 9.5, there
exists another coordinate system, (y'), in which the metric takes the form (for real constants a,.)

& ds” = e,a(dy' )’ + e,a5(dy’)’ + - + e,an(dy")
The transformation y' = a,y’, ¥ =a,y% ..., y" = a,y" now reduces the metric to
eds”=e,(dy")" + ex(dy”)’ + - + g, (A" 1)

and the space is flat. This proves Theorem 9.3. If the given metric is positive definite, thenin (1), &, =1
for each i. In this case the metric is Euclidean, proving Theorem 9.1.

NORMAL COORDINATES

9.10

9.11

9.12

Prove Theorem 9.6.

If (y*) are normal coordinates, then the geodesic through O and any point P in some neighborhood
N of O has the parametric form

y'=sp'  (p'=const)

This geodesic thus obeys the differential equations

dy' _ a’y' _
s P and e =0
But it must also satisfy (9.5), 8T/8s =0, in the coordinates (y’):
2.0 j k
ay’ o & Ay

ds® i* ds ds
Thus, by substitution, r 4 p* =0 for all directions (p‘) at O. But '’ i is symmetric for each i; hence,
F =0 at O for all i, j, k. Also, I';;, =g, I';, =0; hence, &g /9y*=0 at O, by (6.2). Finally, since

ij

gijgj, = 8!, the product rule for differentlatlon yields dg/ay* =0 at O.

Prove that at the origin of a Riemannian coordinate system (y'),

ar’; 9Ty, . _
= (all j and k; summed on i)
dy dy
Since Fijk and dg”/dy* all vanish at the origin O of the Riemannian coordinate system,
ar’, 9 . . 9 [1 1,
Jji__ ir — ir _ ir
3yk = 52 (g Fjir) =8 6—yk [z (_gjir + 8, t grji)] =3 4 (—gjirk t 8 t grjik) (1)

at O, with g, = d°g,/dy"dy". But, since g" =g",

8" ik = & 8jirk = 8 i = & Brj
and (1) becomes

arl/i _ 1 ir _ 1 ir _ arici
dyk =3 8 8irjix = ) 8 8irk; T ayj

Prove the identity R;;;, + Ry u = Rigurj + Rigjus-

Covariant differentiation of Bianchi’s first identity, (8.6), gives R
the second identity, (9.8), yields

Rijkl,u + R

ijklu Riklj,u + Riljk,u =0. Then

iljk,u —Riklj,u =Ryt Rikul,j
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9.13

Show that Bianchi’s identities remain valid under an indefinite metric.

One can appeal to the topological fact that, at a given point P of R”, the directions for which a given
metric (g;) is indefinite span, at worst, a hyperplane. Hence, normal coordinates are poss1ble along
geodesics whose tangent vectors (p') at P do not lie in the hyperplane; Problem 9.10 gives I’ P p¥=0
for these directions. But the I"],c are continuous, and any direction in the hyperplane is the limit of a
sequence of directions not in the hyperplane. It follows that I i p'p’ =0 for all (p"), yielding Theorem
9.6 and the Bianchi identities.

SCHUR’S THEOREM

9.14

Prove Schur’s theorem (Theorem 9.8).
By Lemma 9.7, R, = G,;,K throughout #. Take the covariant derivative of both sides with respect
to x*, then permute indices (G, , =0 because g, , =0 in general):

t]kl u Gz;le R =G, K Rijuk,l =G,

ijluk ijlu tjuch,l
Add the three equations and apply (9.8):

GuK,+GuK, +G, K, =0 (1)

ijlu ijuk
Multiply both sides of (1) by g g’ and sum. Since
g, g{lGijkl = g' gjjl(gikgjl - gilgjk) = 6:85 - sti =n’—n
8"8"G = 8"8" (848 — 81.8:) =818, — 8,8, =8, — nd;,
i i Ji 1
878" G = 88" (88 — 8 81u) = 8.8, — 88, =8, — nd,
that summation yields the relation
0=(n*—n)K, + (8% —ndi)K, + (8, - nd)K,
=(m*-mK,+(1-nK,+(1-nK,=nm-2)(n- 1)K,

For nz3, K, = dK/dx" =0. Since u was arbitrary, K must be constant over . QED

THE EINSTEIN TENSOR

9.15

9.16

Prove Theorem 9.9.
We must prove that G;, = 0. Multiply both sides of (9.8) by g"g’* and sum:
0=8"¢" Riyuru = 8"8  Rijuri = 88" Rjuurc
= 8" Rt~ 8" Rl = 8" Ries = 8" Ryuro = 8" Ryuic = 8"Ris

1
=R, -Ri,~R.,=2(1 R, ~RL,)

or, changing u to i and k to r, 36]R , — R, =0. But, by Problem 6.32, 8;,=0 for all i, j, r; hence,

(R; - % 8;R> =0 or G, =0

Show that G,, the associated Einstein tensor obtained by lowering the index i in G’}, is

symmetric.

l]’

By definition,

1 1
G gsz g,k( - E 9 R> Rij - E gin

which is obvioﬁsly symmetric (by symmetry of the Ricci tensor).
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Supplementary Problems

9.17  Solve, if compatible, the'system du,/dx’ = F, ;» With

(a) F, =x%2u, F,, = x'/2u,

— 1 _ 2 _ 1 _ 2
) Fo = upx Fo, =ux Fi,=upx F,=ux

9.18  Verify that ds® = (dx')* + (x")*(dx”)’ represents the Euclidean metric (in polar coordinates).

9.19 Consider the metric & ds® = (dx')* — (x" dx*)> — (x" dx*)’. Show that R,,,, =2 and that, therefore, the
space is not flat.

9.20 Determine whether the following metric is flat and/or Euclidean:
eds’ =(dx'y — (x")’(dx*)* (n=2)
9.21 Determine whether the following metric is flat and/or Euclidean:
ds® = (dx')” + (x*)*(dx*)* + (dx°)?
9.22 Find the signature of the metric for R’ given by
£ds®=2(dx")? + 2(dx*)’ + 5(dx’)’ — 8dx' dx’ — 4dx' dx’ — dx* dx’

9.23  Prove that R}, =0. [Hint: Use the first of (8.6).]

9.24 Use Problem 9.11 to obtain a simplified proof for Problem 8.34.

9.25 Show that the Einstein invariant, G = G, vanishes if the space is flat. [Hint: Use Corollary 9.4.]

9.26 In the general theory of relativity one encounters the Schwarzschild metric,
e ds® = e®(dx")? + (x")*[(dx*)’ + (sin® x*)(dx’)?] — e¥(dx*)®

where both ¢ and  are functions of x' and x* only. Calculate the nonzero components of the Einstein
tensor.



Chapter 10

Tensors in Euclidean Geometry

10.1 INTRODUCTION

There exists a startling correlation between formulas of differential geometry, developed to
answer questions about curves and surfaces in Euclidean 3-space, and tensor identities previously
introduced to handle changes of coordinate systems. Differential geometry was used to great
advantage by Einstein in his development of relativity.

The metric will be assumed to be the Euclidean metric, and to emphasize this fact we shall
designate the space by E°, which means R’ with the metric

ds® = (dx')? + (dx*)* + (dx’)’

Moreover, we shall use the familiar notation (x, y, z) in place of (xl, X, x3).

10.2 CURVE THEORY; THE MOVING FRAME

A curve € in E’ is the image of a class C* mapping, r, from an interval $ of real numbers into E,
as indicated in Fig. 10-1. The image of the real number ¢ in ¥ will be denoted

r(t) = (x(1), y(1), 2(1)) (10.1)

a vector field of class C°.

Vector ~
r (5, ~

[ é 1
X L g t ]
Fig. 10-1
Regular Curves
The tangent vector of € is given by
dr _ . (dx dy dz)
dt " \drdr dr _ (10.2)

€ is said to be regular if #(¢) # 0 for each ¢ in 4.

Remark 1: This corresponds to the definition of regularity, given in Section 7.3, in the case of a
positive definite metric.

127
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EXAMPLE 10.1 An elliptical helix (Fig. 10-2) is a helix lying on an elliptical cylinder x*la> + yb*=1in
xyz-space; it is given by € : x=acost, y=bsint, z=ct, with Jthe entire real line. The pitch is defined
as the number c. If a = b, the helix is called circular, with radius a.

//
o~

T ——— N
~
~
\\_0 \¥] ;
9

X

Fig. 10-2

EXAMPLE 10.2 The space curve € : x=¢, y=at’, z=b' (F=R) captures the salient local fea-
tures of all curves; it is known as the twisted cubic. As indicated in Fig. 10-3, the projection of € in the xy-plane
is a parabola, y = ax’; its projection in the xz-plane is a standard cubic curve, z = bx’; in the yz-plane, the
semicubical parabola (y/a)’ = (z/b)>.

|
|
I
I \ys = BB
\ t=1 1 _____
\ //’J’-_
a |
| ™~ < [ Y
7= bx3 N
| b /|\
-
/
~
//
x y = ax’?
Fig. 10-3

Arc Length

Since the Euclidean metric is positive definite, every regular curve has an arc-length parameteri-
zation r = r(s), such that
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dr

=)

(The dot, as in F, is used to denote differentiation with respect to ¢, and a prime, as in r’, denotes
dlfferentlatlon with respect to s.) The mapping t— s defined by (10.3) has the inverse relatlon s—>t
given explicitly by ¢ = ¢(s), where ¢ is also differentiable:

i, 1
= (s) = Tl (10.4)

ds
du or i = ||¥|l (10.3)

The Moving Frame

Three vectors of fundamental importance to curve theory will now be discussed. Two of them

were introduced in Chapter 7: the unit tangent vector—the (unique) vector
_ . _(dx dy dz)
T=r'= (ds “ds ’ ds

—and the unit principal normal—any unit, class C' vector N that is orthogonal to T and is parallel to
T’ wherever T' # 0. The binormal vector associated with a curve is the unit vector B=T X N [for the
cross product, see (2.10)]; B is uniquely determined once N has been chosen.

Not all regular curves have a principal normal vector (see Problem 10.1). However, it was
proved in Problem 7.14 that all planar curves possess a principal normal, of the form

N = (—sin 6, cos 6, 0) (plane z =0)
if T =(cos 6, sin 6, 0). The following result provides further information.

Theorem 10.1: Every planar curve has a principal normal vector. If a space curve has a principal
normal vector, that vector lies in the plane of the curve for any nonstraight planar
segment of the curve. Along any straight-line segment, the principal normal can be
chosen as any class C' vector orthogonal to the unit tangent vector.

At each point of € where N can be defined, the mutually orthogonal triplet of unit vectors T, N,
B constitutes a right-handed system of basis elements for E’. This triad, which changes contmuously
along € (Fig. 10-4), is often called the moving frame or moving triad; the plane of T and N is known
as the osculating plane.

Fig. 10-4
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The moving frame has been defined for the arc-length parameterization. When it is necessary to
use the original parameter ¢ instead, the following expressions may be established (Problem 10.4) for
any point at which ¥# 0 and ¥ X ¥ #0:

T=L Nzg(i-i')i‘—(i'i‘)i' B= rXi

|| el T x &) =& x| (10.5)

Here, £ = +1, the choice of sign depending on the choice of N as a class C ! vector.

10.3 CURVATURE AND TORSION
Two important numbers, or more accurately, scalar fields, are associated with space curves.

Definition 1: The curvature k and forsion T of a curve € : r=r(s) in E’ are, respectively, the real
numbers

k =NT' and 7=—-NB' (10.6)

The sign of k will depend on that chosen for N; however, since B and B’ change in sign
together with N, 7 is uniquely determined.

It follows (cf. Problem 7.13) that the absolute values of curvature and torsion are given by
ko= || =T and 7o =|7[=[B'] (10.7)

Thus, «, measures the absolute rate of change of the unit tangent vector and the amount of
“bending” a curve possesses at any given point, while 7, measures the absolute rate of change of the
binormal and the tendency of the curve to “twist” out of its osculating plane at each point. The
significance of negative values for « and 7 will become apparent later.

Remark 2: It can be shown that the two functions x = k(s) and 7 = 7(s) determine the curve € up
to a rigid motion in E>.

In the t-parameterization of €, we have (Problem 10.7):
_gllFx gl
#[1?

where e = +1 and [F i F] represents the 3 X 3 matrix having as row vectors f, i, and r. [Recall the
identity

_ det[{ £

and =
[ x £

(10.8)

a-(bXxc)=det[abc]

for the triple scalar product of three vectors.]

Serret—Frenet Formulas
The derivatives of the vectors composing the moving triad are given by
T' = kN T 0 «x OT
N'=-«kT+7B or N{ =[-« 0 7|[N (10.9)
B’ =—7N B 0 —7 0ILB

Note the skew-symmetry of the coefficient matrix. The first of these formulas was established in
Problem 7.13; the other two are derived in Problem 10.8.

10.4 REGULAR SURFACES

Surfaces are generally encountered in the calculus in the form z = F(x, y); that is, as graphs of
two-variable functions in three-dimensional space. Here, however, it is more convenient to adopt the



CHAP. 10} TENSORS IN EUCLIDEAN GEOMETRY 131

Definition 2: A surface & in E* is the image of a C> vector function,
r(x’, x%) = (f(x', x%), g(x', ¥*), h(x', x*))
which maps some region ¥ of E* into E>.

(See Fig. 10-5; in general, primes will designate objects in the parameter plane (x') corresponding to
those on the surface in xyz-space.) The coordinate breakdown of the mapping r,

x = f(x', x°) y =g(x', x) z=h(x', x°) (10.10)

is called the Gaussian form or representation of .

$
% P(x, 3 2)
xl
Vector r (x!, x2)—|
E3
X
Fig. 10-5
Point P is a regular point‘of & if
i j k
d dh
Jr or —fl &_gl —
H—XIXEC—ZE dx° dx Ix [#0 (10.11)
of o8 oh

ox® ax* ox’
at P’; otherwise, P is a singular point. If every point of & is a regular point, then & is a regular
surface.

Remark 3: Condition (10.11) is tantamount to the linear independence of the two vectors
(9r/dx"), and (dr/3x”) . Equivalently, and of more geometrical interest, the condition
ensures that every curve in & through P which we take to be the image under r of a
regular curve in ¥ through P’, is, in a neighborhood of P, regular in the sense of
Section 10.2.

EXAMPLE 10.3 For a C° function F, show that the graph z = F(x, y) is a regular surface.
The surface has the Gaussian representation

x=x' y=x" z=F(x', x*)
and thus
i j k oF
x| 0 aFiaxt =<——1,—‘7—}Z,1)¢0
ax ax 0 1 oF/ox’ Jx Iax

at an arbitrary surface point P. (This would be true if F were merely class C".)
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Subscript Notation for Partial Derivatives

From now on, write

o gr i’r
ax' =h 55 - ax'ox' ~ ete.

so that, e.g., (10.11) takes the compact form r; Xr, # 0.

10.5 PARAMETRIC LINES; TANGENT SPACE

Let (x') be taken as coordinates—for the moment, rectangular coordinates—in the parameter
plane E’, yielding two (orthogonal) families of coordinate lines:

xl =t xl =
{ 2 and { 2
x'=d xX=0
If (c, d) runs over ¥ (the pre-image of surface ¥), then the images under r of these two families are
the two sets of parametric lines (or coordinate curves) on &:

r=r(t,d)=p()  r=r(c,o)=q(0)
e
1 2
X =curves X =curves

Figure 10-6 suggests that the net of parametric lines is orthogonal also. This is not, of course, true in
general. In fact, since the tangent fields to the x'-curves and the x*-curves are respectively dp/dt =r,
and dq/do =r,, the net is orthogonal if and only if r,r, =0 at every point of &.

%
] M~
(@)
8 / // il x2 =
e cor}s\t.
P'(c, d)
A
—
%!
(S —
x! = const.
Tangent
plane at P

Fig. 10-6

For surface curves in general, the tangent vector of a curve passing through r(c, d) is a linear
combination of the vectors r, and r,, as the following analysis shows. Let the curve be given in the
parameter plane as €' : x' = x'(¢), x> = x’(¢); then the corresponding curve on the surface is

€ : r=r(x'(t), X)) =r(t)
with tangent vector
. dr dx'  or dx’ 1 5 ;
= — — —_—— e = + = ; .
r o di + o7 di ur,+ur,=ur, (10.12)

Here, u' = dx'/dt, u* = dx*/dt, so that the vector (') in the parameter plane is the tangent to €’ at
P’ (see Fig. 10-6).
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Definition 3: The collection of linear combinations of the vectors r,(P) and r,(P) is called the
tangent space of & at P. The unit surface normal is the unit vector n in the direction of
r, Xr,:

n= —llj: (r;xr,) (E=|r, xr,||>0) (10.13)

The geometric realization of the tangent space is obviously the tangent plane at P, and the surface
normal can be identified with a line segment through P perpendicular to this tangent plane; that is,
orthogonal to the surface at P, as indicated in Fig. 10-6.

To summarize this whole affair, the linearly independent (by regularity) triad of vectors r,r,,n
forms a moving frame for the surface, as shown in Fig. 10-7, much in the manner that a moving triad
exists for a regular curve having a principal normal.

Fig. 10-7

10.6 FIRST FUNDAMENTAL FORM

Consider a curve on the regular surface ¥ : r=r(x', x*) givenby € : r= r(x'(), X*()) =r(1),
with pre-image €’ : x'=x'(f) in the parameter plane. Using (10.12) and recalling that the
(Euclidean) inner product is distributive over linear combinations of vectors, arc length along € is
calculated as

(%)2 =[|¢||* = ki = (u'r,)(w'r)) = g u'v’ (10.14a)
in which
8 =TT, (1=i,j=2) (10.15)
and, as above, u' = dx’/dt. In the equivalent differential form,
ds’ = g, dx' dx’' = (10.14b)

the arc-length formula is known as the First Fundamental Form (abbreviated FFF) of the surface .
In view of (10.12) and the regularity of &, ||f]| =0 if and only if u' = u*> = 0; this proves

Lemma 10.2: The FFF of a regular surface is positive definite.

Lemma 10.2 implies that g=det(g,;)>0; in fact, we can use Lagrange’s identity,

(r, x r2)2 = (r%)(rg) - (1'11'2)2
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to establish that
g=FE’ (10.16)
cf. (10.13).

EXAMPLE 10.4 Compute the FFF for the right helicoid (Fig. 10-8),

2 1 - 2 2
r=(x'cosx’ x'sinx", ax’)

We have:
= (cos x7, sin x%, 0) r, = (—x"sin x’, x' cos x°, a)
whence g, =r'=cos’x’ + sin’x> + 0°=1
g1, = 1,1, = (cos x*)(—x" sin ) + (sin x*)(x" cos x*) =0
= (=x')(sin” x%) + (x')*(cos’ x*) + a® = (x')* + @’
and I=(dx')” +[(x")* + a’](dx*)?

Helix x! =1

Fig. 10-8

Along w1th the FFF, tensor calculus enters the picture. For the intrinsic properties of a particular
surface ¥ in E’ (the properties defined by measurements of distance on the surface) are all implicit in
(10.14b), which can be interpreted as a particular Riemannian metrization of the parameter plane.
Thus the study of intrinsic properties of surfaces becomes the tensor analysis of Riemannian metrics
in R°—and this may be conducted without any reference to E’ whatever. Observe that the metrics
under consideration will all be positive definite (Lemma 10. 2) but not necessarily Euclidean (see
Theorem 9.1). Accordingly, we shall drop the designation E? for the parameter plane, which shall
henceforth be referred to general coordinates (x').

EXAMPLE 10.5 The metric for R” corresponding to the right helicoid (Example 10.4) is non-Euclidean, as is
demonstrated m Problem 10.27. Now the parameters x' and x2, which are actual polar coordinates in the
xy-plane of E' (see Fig. 10-8), formally keep that significance when the plane is considered abstractly as
parameter space. This is an instance of the formal use of a familiar coordinate system in a non-Euclidean space,
as mentioned in Section 3.1.

Unit Tangent Vector
If € : r=r(x'(t), x*(¢t)) is any curve on ¥, then by (10.12) and (10.14a),

i
ur;

r i
T=gm= 77+ (10.17)

[[£] Vgu'u*
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Angle Between Two Curves

Let €, and €, be two intersecting curves on & that correspond to x'=¢'(t) and x' = ¢'(0) (i=
1,2) in the parameter plane. Writing u’ = d¢/dt and v’ = dy/do, we have for the angle 0 between T,
of €, and T, of €,:

o=T,1,= 15 v, g0 (10.18)
COS = =3 . = .
TP Vg Vg, o' Ve, uPu® Ve, o'
Compare (5.11).
Theorem 10.3: The angle between the two parametric lines through a surface point is
cos=—212__ (10.19)

V811V 82

Corollary 10.4: 'The two families of parametric lines form an orthogonal net if and only if g,, = 0 at
every point of &.

10.7 GEODESICS ON A SURFACE

A further link with tensors is provided by the concept of geodesics for regular surfaces. One can
intuitively imagine stretching a string between two points on a surface, and pulling it tight: on a
sphere this would lead to a great circular arc, and on a right circular cylinder, a helical arc. Since
from our point of view the surface is dlsregarded and (g;) is taken as a metric for the parameter
plane, the problem has already been worked out (Section 7.6).

Relative to the FFF of &, define the Christoffel symbols through formulas (6.1) and (6.4), n =
[Problem 10.48 gives an equwalent ‘extrinsic” definition, in terms of the vector r.] Then a geodeszc
on ¥ is any curve r =r(x'(¢), x°(¢)) in the surface whose pre- image in the parameter R” satisfies the
system of differential equations (7.11)—(7.12); if t = s = arc length the governing system is (7.13).
[Remember that the (non- Euchdean) distance measured by s in R” is the Euclidean distance along
the geodesic as a curve in E’]

Similarly, harking back to Section 6.5, the intrinsic curvature of a curve € in & is the function

K(s)=Vg,bb’' (10.20)
—cf. (6.12)—where the intrinsic curvature vector (b') (in R?) is given by (6.11).

Remark 4: Intrinsic curvature can be shown to be the instantaneous rate of change of the angle
between the tangent vector of € and another vector in the tangent space that is
“transported parallelly” along the curve. Here, the term “parallel” refers to a certain
generalization of Euclidean parallelism (see Problem 10.22).

Theorem 10.5: A curve on a surface is a geodesic if and only if its intrinsic curvature « is identically
zero.

In contrast to the above intrinsic characterization of geodesics, there is an interesting and useful
extrinsic characterization, proved as Problem 10.18. It adds a visual dlmensmn that often allows the
immediate identification of a geodesic.

Theorem 10.6: A curve on a regular surface is a geodesic if and only if a principal normal N of the
curve can be chosen that coincides with the surface normal n at all points along the
curve.
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10.8 SECOND FUNDAMENTAL FORM
By taking the dot product of the surface normal with-the second partial derivatives of r with
respect to x' and x7, )
fy=nr; , (10.21)
we generate the coefficients of the Second Fundamental Form (SFF) of a surface:
fdx'dx’' =11 (10.22)

Curvature of a Normal Section

If % is a plane containing the surface normal n at some point P of & (Fig. 10-9), the curvature of
the normal section of & (the curve of intersection of & and &), denoted 6, is given at point P by
the formula

RISTS |
g = == 10.23
Kg gklukul I ( )

where (u') = (dx'/dt) gives the direction, at P’, of the curve corresponding to Cy in the parameter
plane; see Problem 10.23.

Fig. 10-9

As & rotates about n, the curvature k, of %5 at P is periodic and will reach an absolute
maximum and an absolute minimum; let
max Kg = K; min kg = K, (10.24)

The two section curves having these two extremal curvatures are called principal curves, and their
directions are the principal directions. If k, = k, at P, all the normal sections at P have the same
curvature and unique principal directions do not exist. (In this case, P is called an umbilical point of
the surface.)

Surface Curvature
Two measures of the curvature of a surface & are commonly used.

Definition 4: The Gaussian curvature of & at point P is the number K = k; k,; the mean curvature is
the number H = k, + «,.
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It will be proved in Problem 10.25 that the extreme curvatures «, and «, are the roots of the
following quadratic equation in A:

(811822~ 8’%2))‘2 —(f1182 * f2811 — 2f128)A + (fin fra — 1) =0 (10.25)
The relations between the roots and the coefficients of a polynomial equation then give:

K= fufzz_ffz H=f11g22+f22gu_2f12g12
gugzz_giz gugzz_g%z

(10.26)

10.9 STRUCTURE FORMULAS FOR SURFACES
Two fundamental sets of relationships involve the parts of the moving triad of a surface,

(ry, Ty, m).

Equations of Weingarten

Smce n’ =1, 3(n®)/dx' =2nn, —O (i=1,2). Hence, for each i, n, lies in the tangent space:
n,=ur, +u ;T,, for certain scalars u¥. Similarly, from orthogonality,

0=(nr,),=nr;, +nr; or nr,=—f,
It follows (Problem 10.28) that '
;= _gikfijrk (10 2761)

for i =1, 2. From the explicit form of the inverse metric matrix ( g”), (10.27a) may be spelled out as
follows:

_ 812f12 = 80t o+ 8i2fi1 — &ufiz r

n, =
1 g 1 g 2
(10.27b)
_8ufn —8nfn 82fi2 — 8u bt
i i el Y
8 8
Equations of Gauss
Since (r,,r,,n) is a basis for E°, we can write r;= r1 +ul T2 u, /. Evaluation of the
coefficients (Problem 10.29) leads to
=Tt iTx (10.28)

An Identity Between FFF and SFF
Since r,;, =r,;, (10.28) implies (T;r, + f;m), = (T}, r, + fin);, or
(F Dl T Fq T fpn+ fijnk = (T Tt karsj + fun + ﬁ‘k“j

Dot both sides with r; and use the definition r,r, = g,. and the relations r,r, =I,,, (Problem 10.48)
and rn=0:

(F;j)kgsl + F:jrskl + fijnkrl = (F?k)‘gsl +T; rsﬂ +f'kn'rl
Now substitute for the n, from (10.274) and use r,;r,=g, and g"g, = §; to simplify the result:

arfk an X X}
_.ﬂjfkl—'—fikf}l:gsl( ax! - a"_ + LT, "Fx,rrk

Finally, introducing the Riemann tensor via (8.2) and (8.3), we obtain
Ry = fufu = fuFiu (10.29)
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The left member of (10.29) depends only on the coefficients of I together with their first and
second derivatives; the right member depends only on the coefficients of II. This essential
compatibility relation between the two fundamental forms must hold at every point of a regular
surface.

The ‘Most Excellent Theorem’ of Gauss
By (10.26) and (10.29),

_ f11f22 _fiz _ R1212
2
811822 — 812 4

Thus, the numerator of K can be derived entirely from the FFF. Since the denominator is also
obviously from the FFF, we have:

K

(10.30)

Theorem 10.7 (Theorema Egregium): The Gaussian curvature is an intrinsic property of a surface,
depending only on the First Fundamental Form and its derivatives.

Remark 5: The motive for the definition (8.7) of Riemannian curvature is now apparent.

10.10 ISOMETRIES

The practical question of whether inhabitants of a fog-enshrouded planet could, solely by
measuring distances on the surface of the planet, determine its curvature, is answered in the
affirmative by Theorem 10.7. A further important conclusion can be drawn.

Suppose that two surfaces, FO W=Dt x*) and P rP =rP(x!, x?), are defined
over the same region ¥ of the plane and that the First Fundamental Forms agree on . This will
obviously set up a correspondence between 1 and ¥ in E’ that is bijective between small
patches (induced by the neighborhoods of %" over which both r") are bijective) of the two surfaces.
This correspondence is called a local isometry between & M) and #® because the two surfaces are,
patch for patch, metrically identical. But then (Theorem 10.7) the Gaussian curvatures K® and K®
must be equal at corresponding points.

Theorem 10.8: If two surfaces are locally isometric, their Gaussian curvatures are identical.

In the case of constant Gaussian curvature K, Beltrami’s theorem tells us that there is a
parameterization for & for which the FFF takes on the form:

ds®> = a*(dx')* + (a*sinh® x")(dx*)*  if K=-1/a’<0
ds’> = (dx')” + (dx*)? if K=0
ds* = a*(dx")” + (a® sin® x")(dx*) ifK=1/a">0

EXAMPLE 10.6 The plane and the sphere are surfaces of constant zero curvature and constant positive
curvature, respectively. For a surface of constant negative curvature, see Problem 10.49.

Beltrami’s theorem implies a partial converse of Theorem 10.8:

Theorem 10.9 (Minding’s Theorem): If two surfaces are of the same constant Gaussian curvature,
they are locally isometric.

Remark 6: A proof of Theorem 10.9 for zero curvature was given in Problem 9.9.
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Solved Problems

CURVE THEORY; THE MOVING FRAME
10.1 The curve

z=0 z=t'
lies partly in the xy-plane and partly in the xz-plane (Fig. 10-10). Show that it is regular of
class C’, but that it possesses no principal normal vector.

xX=1 x=1
% : [y=t4 (r<0) {y 0 (t=0)

~
<N
I n
o =

<

Fig. 10-10
The component functions for r(¢) are
_ _le <o _ {0 1<0
=i Ho={ =0 w-{% I
When ¢t <0, y() =4£. As t—0,
i YO =YO) _ _0 lim (t) y(O) 0_,
t——0 t—0 —-0 t —+0 z—>+0 t

hence, y(¢) is differentiable at t = 0. Clearly, y(¢) = 0 for > 0. A similar analysis applies to z(¢). Hence:

4¢ <0 ... _{0 t<0
Y= { t=0 Z(t)_{4t3 t=0
which are continuous functions. Continuing the analysis up to the third derivatives:
24¢ <0 . _ [0 <0
o= { tz0 20 =12 =0

Hence, x(t) being differentiable to all orders, r(¢) is of class C ® Furthermore, because i(f) =1, i(r) #0
for all 7 and € is regular. However, the principal normal, which exists for the separate parts of € (lying
in the xy-plane for <0 and in the xz-plane for ¢ >0), cannot possibly be continuous at ¢ = 0, let alone
differentiable. Hence, %€ does not possess a principal normal.

10.2 (a) Describe the curve r = (cos £, sin ¢, tan ' t), where 0=t and where the principal value of
the arctangent is understood. (b) Find the arc length between the points r(0) and r(1).
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10.3

10.4
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(a) This is a form of the circular helix, except that the pitch decreases with increasing ¢. The curve lies
on the right circular cylinder x* + y* = 1; beginning at (1,0, 0), it winds around the cylinder and
approaches the circle x* + y* =1, z = 7/2 asymptotically as t—> .

. 1 ) dS_\/ 2 2 1
) r—( sin ¢, cos ¢, 211 or 7 sin” ¢t + cos t+(12+1)2

A numerical method of integration is required. Using Simpson’s rule on a programmable
calculator, one obtains

PV 2+

Find the moving frame for the curve

3-30 4+4r0
€ r=< 5 ,———5——,3),‘) (t real)

Show that the binormal vector B is constant, so that the curve is actually planar.

Making the calculations required in (10.5):

-9 127
I e \ (e

5 75 25
—9¢%/5 2 —32 47
ond oo G ,412t/5,3)=( 31,4t,5)
Vet +1 SV +1
_ (18t 24t )
‘( 5 5 0
i i k
9, 12,
_Z i 72t 4t —18¢
ixi=| 730 50 3 =(FT2 - 0) -2 (43,0
18 24
5 5

18)¢
l|i-xi‘H=JV42+32+02:18[z|

_ 18 24 )_(_ 162 5 162 216 5 216 )
(k)i = (9¢* +9)( t, — 5 t,0)= 5 = t, 5 < 0
L. (9-18 5 2412 )(_9 » 12 2 ) ( 162 . 216 3>
(rr)r—(—25 £+ 75! +0 5 r, 54t

e e (162 216 B ) (_g 12 2)

(FE)F (rr)r—( s L5 t, =541 ) =18t 5035 3t

-1849/5, —12/5,31") _ &t (3,—4,5¢°)
GV +1)(18|1) Il svVit+1

Now choose & = +1 when ¢t <0 and —1 otherwise, making

and N=¢

(3, —4,51%) (—18¢/5)(4,3,0) _ —81(4 3 ) (4 3 )
N=->2>_2>2—"""7 =g ~—— A/ ={=- =
Vel B 180 i \5-5:97\55°0

Establish the general formulas (10.5) for the moving frame of the curve € : r=r(¢), with an
arbitrary parameter ¢.
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By definition,

ds dt

S=lEl=@" o =i
and we have at once for the unit tangent vector
dt F
=pl=p — = ——
T=r'=r ph H

To obtain a principal normal, first calculate

% el = ’% (FF)"? = % ()3 + ) = ﬁ
(Note the general formula d||u||/df = wu/||u]|.) Hence,
4 IF17 = =112 6l =~
and T=# % +i ‘% l#] " = ﬁ _ (Hrrrﬁ: _ Htllzma(ﬁ)r
. d )E— GEE X (X F)
T g = S -

where the last step used the vector identify u X (v X w) = (uw)v — (uv)w. It follows that N can be
constructed by normalizing the vector

N¥=—F X (F XF)
Since ¥ and f X i are orthogonal, ||N*|| =||#|| || X #|| and so, provided ¥ x i #0,
EXE)XE () — (F0)F

N=eg—Dr =€ 7o
flex il [l [lE]] 1 &]

Finally, for the binormal vector, with v=¢ X0,

VX P @)y —(@Evr _ [Fl°v - (0)F -V

R R T I Ivl

B=TxN=—x¢
| |

CURVATURE AND TORSION

10.5 Find the curvature and the torsion of the circular helix
s . s bs
r:(acosz,asmz,?) (c=Va*+b%)
where s is arc length.

By differentiation with respect to arc length,
a . s a s b S .
T=r’=(—-sm—,—cos—,—) T'=(——2cos—,——zsm—,0)
c c’c c’c c

Normalizing T’, choose

and, correspondingly,

i i k
a s a s b
sin - —cos - — b . s b s a
B=TXN= c ¢ c ¢ =(—Sln—,—2COSZ,—
s
—cos—- —sin- 0
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b
B’=<—cos—,—sm—,0>
¢’ ¢’
Then, by (10.6),
a s a . ,S8 a b s b ., b
kK=—cos = + —sin°= + 0°=— T=—cos’ = + Ssin’ = + 0°=—
[ C [4 Cc Cc c 4 c c

[If we introduce the “time” parameter ¢ = c¢s, we then have:

dz b

e_2_,
dt ¢*

i.e. the rate at which the helix rises out of the xy-plane (its osculating plane at ¢ =0) is given by its
(constant) torsion. |

10.6 Find the curvature and torsion of the curve r=(£* + tV2, 1 — tV2,2t73) (¢ real).
Use the formulas (10.8):

F=Q2t+V2,2t-V2,28)  |lEll =V @t + V2 + (2t — V2 + 4 =27 + 1)
F=(2,2,41) F=(0,0,4)

i i k
FXE=[204V2 2t-V2 28| =40 - V2, — (£ + tV2),V2)
2 2 4t

(X F)* = 16[(£ — tV2)* + (£ + tV2)* +2] =32(* + 1)°
det[F i F] =F- (@ X F) = (0,0,4)-4(> — V2, —* — tV2,V2) = 16V2
eV32(¢7 + 1) s 16V2 1

8P +1) V20 +1)) | RE+1)? VI +1)

Hence K=

10.7 Prove (10.8).
Using the results of Problem 10.4, we have

KZNT':<8 (fxf)xt).(_fx(i-xi‘)) Il x (&% )]

T = < =il - =g — —
el e e[l €[] fje < £]]
£l ||E % #||* sin® (7r/2) [lE x |
= - O = -
IE[[ i #] EE

The torsion requires the computation of B’. By (10.5),

rXi v
eB= T = T
e x &l v
. d( v 1. df1 voowv VPV = (vi)y
whence eB=—<—>=—v+—(———>v=—— =
de vl /vl de vl vl vil? [Ivil®
But v=d(f X ¥)/dt = (f X ) + (f X¥) =F X F; hence,
. B |lEXE|PE X F) = [(F X £)(E X F)](F X )
eB’' = o = NHERYIE
1] el 1 &l
Dot this with
eN = (£F)f — (FF)rF

]l 1l &
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from (10.5), and use u-(u X w) =0:

_ () e E|° [ @ X )] -0-0+0 _ ||éf]*(~det [¥ £ ])

NB’ NTERTERV = e o
(lefl® e x &l* llEll™ fle x £[]°
det [ ¥ ]
or T= 2
[l x ]

108 Prove () N' = —«T+ 7B, (b) B' = —7N.

(a) Since NN =1, N’ is orthogonal to N, which puts it in the plane of T and B. Therefore, for certain
real A and u,

N =AT+ uB (1)
Dot both sides by T, then by B, and use TN =0, x =NT’, and 7= —NB":

TN’ = AT+ uTB=X1  or A=-T'N=—«
BN'=7=ABT+ uB*=p

Substitution for A and u in (1) then yields the desired results.
(b) From B=T XN and part (a),

B'=T' XN + TXN'=(xN)XN + Tx (—«T + 7B)
=04+0+7(TXB)=7(—N)=—-7N

10.9 Prove that if a curve has k' =0 at some point, then N” is orthogonal to T at that point.

From N’'=—«T + 7B, it follows that N"= —x'T— xT'+ 'B+ 7B’. but «’=0; and from the
Serret—Frenet formulas for T' and B’ we obtain

N’= —-k(«kN)+ 'B+ 7(—7N) = (—K2 — TZ)N +7'B
As N" is in the plane of N and B, it is orthogonal to T.

SURFACES IN EUCLIDEAN SPACE
10.10 Show that a surface of revolution is regular and exhibit the unit surface normal.
The Gaussian form of a surface of revolution about the z-axis (Fig. 10-11) is
r=(fx")cosx’, flx')sinx’, g(x"))  (fx')>0)
0 r,=(f'(x")cos x*, f'(x")sinx’ g'(x"))  r,=(—f(x")sin x> f(x')cos x> 0)
and r, Xr, = (—fg' cos x°, —fg’ sin x>, ff'(cos” x* + sin> x*)), with norm
E=\f%'"cos’ x> + figsin’ x> + ff 7 =f\f2+g?

Now f= f(x") # 0; further, the generating curve is regular, which means that, with ¢ = x’, the tangent
vector of that curve,

dx dz)_ , ,
(E’O,E _(fvoag)

is non-null and f'> + g'*> # 0. Therefore, E # 0 and the surface is regular.
The unit surface normal is

1 ( g 2 g .2 [ )
n=—(r,Xr,)=|——2—— cos x°, — sin x°,
g ® )=\ Vi7+g” V2 +g”
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Generating curve
{x = f) = f&x)
z = gl) = gx")

0Q = f&)

Fig. 10-11

10.11 Identify the x'- and x’-curves for the right helicoid (Example 10.4) and describe the behavior
of the unit surface normal along an x'-curve.

The x'-curves (x* = const.) are given by
r=(0,0, ax’) + x'(cos ¥*,sin x>, 0)  (x'=0)
thus, they are rays parallel to the xy-plane. The x*-curves (x' = const.) are given by
Vil +y =x! z=ax’

. . . . 1
i.e., circular helices of radii x".

We have:
r, = (cos x°, sin x> 0) r, = (—x"sinx’ x' cos x*, a)
z
~1V
n,~ 1
/7
/
/
/
/ w
______ ——— - y
| T~
\ S~
\ x2 ~
u

Fig. 10-12
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i i K
r,Xr,=| cosx’ sinx’ 0= (asinx’, —acosx’, x")
—x'sinx®> x'cosx’ a
and e r, Xr, _< a sin x° —acos x° x! >
ey X 1| Va2 +(x')? Ve + (') T Va? + (x1)

= (cos w)u + (sin w)v

where o =tan"' (x"/a), u= (sin x*, —cos x>, 0), v= (0, 0, 1). On an x'-ray, u and v are fixed unit vectors,
while o increases from 0 to a 7/2 as x' increases from 0 to «. Thus, n traces out a quarter-circle as the
ray is described (see Fig. 10-12).

10.12 Find the FFF for any surface of revolution, and specialize to a right circular cone.
With r, and r, as obtained in Problem 10.10,

B =n = (f cos )+ (fsin ) + (8 =17+ g
81, = 8 =TT, =—f'fcosx’sinx®> + f'fsinx®cosx®+(g')(0)=0
8, =1,1, = (—f sin x*)* + (f cos x*)* + 0° = f?

and
I=(f"+g"*)dx") + f(dx*) (1)
For a right circular cone (Fig. 10-13), f=x' and g = ax'; hence,
I=(1+a*)(dx")* + (x")*(dx*)’ 2)
2z
z
1
P
a |
X = xl
iz = ax! |
Iz a y
' y
|
x 1\‘JQ x catenary: {ch : Zx(l:OSh x
X
Fig. 10-13 Fig. 10-14

10.13 Find the FFF for the catenoid (Fig. 10-14) and compute the length of the curve given by
x'=t x*=1t (0=t=In(1+V2)).

Here f(x') = acosh x', g(x') = ax', and (1) of Problem 10.12 gives, along the curve,
g

d5>2_ 2 2 1<dx1>2 2 2 1<dx2 2'_ 2 2
(dt =(a"cosh” x') i + (a” cosh” x7) dt) =2a" cosh” ¢
and

In (1+V2)
L=aV2 cosh t dt = aV2sinh [In (1 + V2)] = aV2

0
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10.14 Let €, and %, be two curves on the right circular cone r= (x" cos x%, x" sin x%, 2x") whose
pre-images in the parameter plane are

1 1
L lx =3-1 CJx =0>0
G {x2=t/2 % {x2=a'2
At the lzr)omt of intersection, find the angle between €, and €,, and show that orthogonality in
the x'x*-plane does not carry over to the cone.

The intersection point P’ of the two pre-image curves is determined by the simultaneous equations
t
3—t=o0o and 5= o’

which give 1=2, 7 =1, and P’ = (1, 1). Thus, the two tangent vectors at P’ are:

=2 =y we=(Z)]

Considered in the Euclidean sense, (u') and (v') are orthogonal.
To express the angle between tangents at the image of P’, we adopt the metric (2) of Problem 10.12
(with a =2) and apply (10.18) for x' =1, x*=1:
1+2)EHM+ 1Y (3)Q) _ —4

08 0 = D =3¢0

Therefore, the curves are not orthogonal at the image of P'.

=(1,2)

t=2

10.15 Prove Theorem 10.3 and verify Corollary 10.4 geometrically for the right helicoid (Example
10.4) and for any surface of revolution (Problem 10.12).

The proof consists merely in taking (@) =(1,0) and (v")=(0,1) in (10.18). (Compare Problem
5.31)

As is clear from Problem 10.11, the right helicoid is a ruled surface, generated by a half-line (an
x'-curve), pivoted on the z-axis, that rotates parallel to the xy- plane while the pivot point travels up the
z-axis. A given point P of the generator thus describes a helical x*-curve (Fig. 10-8), which is necessarily
everywhere orthogonal to the generator (i.e., to the x'-curves). As for surfaces of revolution, it is clear
that the parameter lines that match the revolved planar curve (x'-curves, or meridians) and the circles
traced by individual points of the planar curve (x*-curves, or parallels of latitude) are mutually
orthogonal. By previous computations, g,, =0 for both the helicoid and for the general surface of
revolution.

10.16 Show that under a change of coordinates x' = x'(¥', °), x> =x*(x", x%) in the plane, the
surface metric (g,) transforms as a second-order covariant tensor.

We have by substitution r(x’, x*) = r(x'(x", £%), x’(¥', °)) =1(¥ ', £°), the latter being the “new”
parameterization for &. To compute the metric under this parameterization, write (by the chain rule for
partial derivatives and the bilinearity of the inner product)

*=l__l__=6_f‘¢9_f'_<£axp> (01‘ 8x> (r ax”> <r 0_x">
By NN T 55 9 \ox? g%/ \ox® o P oxt 7 9%

ax? z?x dx? 8x
=rr — -
P g5t 9%’ = &ra ax' 0%

which is the correct formula for tensor character.

GEODESICS

10.17 (a) Find the Christoffel symbols of the second kind for the sphere of radius a. (b) Verify that
the great circles passing through the north and south poles (i.e., the x'-curves) are geodesics.
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10.18

10.19

(a) The FFF for the sphere of radius a may be calculated from Problem 10.12:
— 52 -0 = — 2 a2 1
=24 glz_O"gzl 8= @ SIN X

The formulas from Problem 6.4 can be used, since (g,) is diagonal; the nonzero Christoffel
symbols are found to be:

I, = —sinx' cos x' ri,=TI3 =cotx'
(b)) We want to show that the family of curves x' =1, x> =d=const. arc integral curves of the
differential system (7.11)—(7.12), which may be conveniently written as
dx' | ode a1 dxi[i ( dijdik)]
ar’ wdr de 2 dt Lde C\E* dr Tar

or, for the given metric,

. ! o 1 (dx2>2 1 dx' [d < Z(dx1>2 s 2 1 (dx2>2)]
i=1 e —(sinx cosx)—;lT =5 Elna i + (a smx)—c—it—

) d*x* Wdxtdet 1 dxz[d ]

i=2 ar +(2C0tx)ﬁﬁ—§7t ElnI

Since dx'/dt =1 and dx*/dt =0, both equations reduce to 0 =0, and the verification is complete.

Prove Theorem 10.6: A curve on a regular surface is a geodesic if and only if, by proper
choice of the principal normal, N=n.

Let any curve on the surface be given by € : r=r(x'(s), x°(s)), where s = arc length, Then,

dx'
T= r; %
and the first formula (10.9) gives
,_ dx dx’ <¢9ri dxi) _dx dx' dx’
N=T="ert e\ &) " & & ™ (1)
Dot both sides of (1) by the vector r, and use the resuit of Problem 10.48:
d*x' dx' dx’ d’x’ dx' dx’
kr,N= W rr, ds ds rr = d—S2 8x T ds ds ik (2)
Multiply both sides of (2) by g* and sum on k:
d’x' dx' dx’ d’x' dx’ dx’
Kkl — ! ax ax _ 1 ax”
g kr,N= ds O + ds ds 8 Lk ds> L ds ds 3)

Now if € is a geodesic, the right side of (3) vanishes, and this implies that kr,N=0 for k =1,2. If
k #0, then r,N=0=r,N; so that N is orthogonal to both r, and r, (thus to the tangent plane).
Therefore, but for orientation, N=mn. If k =0 at some point P and there is a sequence of points along
the curve approaching P for which « # 0, then, by continuity, N = n. Otherwise, k = 0 on an interval and
the curve is a straight line on that interval, in which case its principal normal N can be chosen to agree
with n. Conversely, if the curve has the property that N = n at all points, then r,N=r,n =0 and the left
side of (3) vanishes, showing that the pre-image of € satisfies the differential equations for a geodesic.

Apply Theorem 10.6 to the plane sections of a torus.

In Fig. 10-15 is shown a torus and various examples of plane sections. In (a), an elliptical-shaped
vertical section, the section cannot be a geodesic because the surface normal at P does not lie in the
plane of the curve (which contains the curve normal). In (b), a horizontal section that is a circle, again
the surface normals do not lie in the plane, and this section is not a geodesic. The circles shown in (c)
and (d) are geodesics, since the surface normal will coincide with a correctly chosen principal normal of
the curve.
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)]

Geodesics

Fig. 10-15

10.20 Demonstrate that the intrinsic curvature kK of a curve on a surface can be different from its
. 3
curvature k as a curve in E°.

One example is a circle on a sphere of radius a. If the circle also has radius 4, it is a great circle and,
hence, a geodesic with zero intrinsic curvature. But its curvature as a (planar) curve in E’is 1/a.
Another example is the circular helix: its curvature is nonzero as a curve in E®, but as a geodesic on a
circular cylinder its intrinsic curvature is zero.

SECOND FUNDAMENTAL FORM

10.21 (a) Find the SFF for the right circular cone of Problem 10.12. (b) At the point P(1,0, a),
calculate the curvature of the normal section having the direction j at P (see Fig. 10-16).

Fig. 10-16
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(@) From r=(x'cos x? x'sinx? ax') (x'>0), we obtain:
r, = (cos x°, sin x°, a) r, = (—x'sin x> x" cos x> 0)
r,;=(0,0,0) r,=r, =(-sinx’cosx’,0) r, =(—x"cosx’ —x'sinx?0)

and by Problem 10.10, n=(a’ + 1) '"*(—a cos x°, —asin x>, 1). The coefficients in II are thus

fiy=nr, =0, fio=f=nr, =0, f, =nr,, = (a2 + 1)_1/20)61-

(b) The direction j at P corresponds to the direction (x', u*) at P’ =(1,0) in the parameter plane,
where
j=u'r,(P)+ u’ry(P)

(0,1,0)=u'(1,0, a) + u*(0,1,0)

(0,1,0) = (u', v’ au')
Thus, u' =0 and u” =1. Appropriating I from Problem 10.12, we have

. = I(u’, u?) _ fzz(P)(u2)2 = £,(P) = a
F I(ul’ uZ) (a2 + 1)(u1)2 + (1)2(u2)2 22 A /az + 1

10.22 Develop geometrically a notion of “parallel transport” of a vector along a curve % on a
regular surface &.

Imagine 6, and with it &, as being rolled without slipping onto a fixed plane %, in such fashion that
the point of contact is aways on € and the tangent plane to & at the point of contacts always coincides
with . This maps € to a (planar) curve €* in ¥ that has the same arc-length parameter and the same
tangent vector. Then, any vector in & that is attached to the point of contact and that remains parallel to
itself (in the ordinary Euclidean sense) as the contact point describes €* may—under the inverse
mapping €*— €~—be considered as undergoing parallel transport along €. In general, parallel transport
of a given vector around a closed curve on a surface does not reproduce the initial vector.

10.23 Prove (10.23).

Start with the formula for the unit tangent vector of any curve € on ¥:

e ()
S U d

Then
- d < ui ) u[ . i ui .
T=—+ r,+ r,=0r,+ ———ru 1
dt \/gktukul nglukul nglukul ! )

where Q' is an abbreviation for the scalar coefficient of r,. Now the Frenet formula gives kN=T' =
T/V g u"u’; together with (1), this yields:

i uiuj
o .,

kN = S r; 2
\/gklukul gkluku, ' )
Dot both sides of (2) with n (the surface normal) and use the fact that r,n =0 for each i:
u'y’ u'n’
xknN = gk,ukul r,n= gklukul if 3)

If € is a normal section € at P, and «, N, and the right side of (3) are all evaluated at P, then « = kg,
nN=n’=1, and (3) becomes the desired expression

i
,.juu

= %1
St U

Kg
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CURVATURE OF SURFACES

10.24 Show that the maximum and minimum values of the function

10.25

10.26

10.27

au'u’ u’Au
Fu)= 21— = ——
® b u‘y’ u'Bu
where A =[a,l,,, B=[b;]5,, u= (u', u”) # (0, 0), with B positive definite, are the two roots
of the quadratic equation in A

_|ay = Aby ap = Abgy|
det (4~ AB)= @y = Aby Gy — Aby, =0 (1)

(hence, eigenvalues of B~ 'A), and that the extreme values of F occur for vectors u satisfying
(A — xB)u =0, where x takes on the two eigenvalues of B 'A (hence, eigenvectors of B7'A).

We may assume without loss of generality that A and B are symmetric. Let ¢4 be any simple closed
curve in the u'u’-plane having the origin in its interior. The Weierstrass theorem guarantees that F(u)
asumes a largest value on ¥; say, F(w) = M. Because F is constant on rays emanating from the origin
(F(Au) = F(u) for any A #0), the absolute maximum on % is both an absolute and a relative maximum in
the u'u’-plane; hence, the gradient of F must vanish at w. We have:

dF(u) _ (bklukul)(zapjuj) - (ai/uiuj)(szlul) _ 2 [
u” (b u'u'y b uu

a,u’ — Fu)(b,u")]

or VF(u) = uTZBu [Au — F(u) Bu]

Therefore, Aw — M Bw =0, which shows (i) that M is an eigenvalue of B ™A and thus is a root of the
characteristic equation (I); (ii) that w is an eigenvector belonging to M.

A like consideration of the minimum value, m, of F on ¥ leads to the other eigenvalue and
associated eigenvector.

Prove that the extreme normal curvatures k,, k, are the two roots of the quadratic equation
(10.25).

In Problem 10.24, take a, = f,; and b,, = g,,; expand (1) to obtain (10.25).

Prove that the two normal section curves through P on & giving rise to max kg = k; and
min kg, = k, are orthogonal when «k, # «, (that is, when P is not an umbilical point on &).

Let us prove the general result, in the notation of Problem 10.24. We have:
Aw — M Bw=10 Av — mBv=0

With the inner product of column vectors defined as p-q=p”Bq, multiply the first equation by v’ and
the second by w’, and subtract:

(m—M)v-w=0

Hence, if m# M, v and w are orthogonal.

Calculate K and H for the right helicoid. Show that as x' — 0, K tends to zero (the surface
becomes “flatter”” as the distance from its axis increases without bound).

From Problem 10.11 and Example 10.4,

1 .
n= W (asin x* —a cos x*, x")

r,, =(0,0,0) r,, =r,, = (—sin x’ cos x°, 0) r,, = (—x' cos x*, —x" sin x°, 0)
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so that
fiu=nr,; =0 fo=f=—al (x1)2+a2 =0
— £2 2 142 2 2
and K=f11f22_f122=0 a/l[(;‘)ja]____ 12‘1 50 asx'—>w
811822 ~ 812 ()" +a’] (") +a’]
H=f11g22+f22g11 — 21281, _ 0+0-2(0) =0
g11g22_gf2 4

STRUCTURE FORMULAS; ISOMETRIES
10.28 Complete the proof of (10.27a).
The relations n, = u/r, and n;r, = —f, imply
~fy= 4} 8k
Multiply both sides by g” and sum over i, obtaining u’; = — glsf,j. Hence,

k. _ _ Ik Ik
n,=ur,=—g fr,=—g fir,

10.29 Prove (10.28).

. .1 2 3 . _ s 3 . . .
, Let the equation r; = u,r, + u;r, + u;n be rewritten as r; = u,r, + u;n. Dot with n, obtaining
u, = f;; therefore,

r,=u;r +fn (1)
Dot (1) with r, and use Problem 10.48:
T = uyrr, +0 or T = U384
Solve for u;;:
gktrijk = u?jgktgsk or F;j = u:jsi = utt‘j

Substitute back into (1):

Tt
r;= Fijrt +fn

Supplementary Problems

10.30 (a) Describe geometrically the curve whose parametric vector equation is
r=(cost,sint,(1—1)7") (0=1<1)

What happens as t— 1? (b) Use a programmable calculator and Simpson’s rule to find the arc length for
0=1t=1/2 accurate to 6 places.

10.31 Find the exact length of the space curve r= (£ + tV2, £ —tV2,2t73) (-1=t=1).
10.32 (a) Using the arc-length parameterization of the right circular helix,
r=<acos%,asin%,%> (czm)
find the coordinate equations of the tangent line to the helix at any point P =r(s). (b) Show that the

tangent line intersects the xy-plane at a point Q =r*(s) such that PQ =s. (¢) By thinking of a string
wound along the helix, interpret the result of ().
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10.33

10.34
10.35

10.36

10.37

10.38

10.39

10.40

10.41

10.42

10.43

10.44

TENSORS IN EUCLIDEAN GEOMETRY [CHAP. 10

Show that for the curve y = x” in the xy-plane, parameterized as r = (1, *, 0), the vector T/||T’[| has an
essential point of discontinuity at ¢ =0.

Find the curvature and the torsion of the curve r= (¢, £ +a,t’ —a).
Prove that a curve is planar if and only if its torsion vanishes.

Prove that a planar curve with constant nonzero curvature « is a circle. [Hint: T = (cos 6, sin 6, 0) and
N = (—sin 6, cos 6, 0) imply k = 6’ or 6 = ks + a; show that the radius is 1/x.]

Verify the Serret-Frenet formulas for the circular helix.

Show that if included in the range of the map r(x, x%), the vertex of the right circular cone is a singular
point.

Calculate the unit normal for the catenoid as parameterized in Fig. 10-14 and show that the surface is
regular.

Find the length of the curve on the right helicoid (Example 10.4) given by x'=1¢, x> =Int, with
1=t¢=2, in the special case when the parameter a = 1.

Find the two possible directions for a curve €’ in the parameter plane whose image on the paraboloid of
Fig. 10-17 meets the circle x° + y> =4, z=4 at P(0,2,4) at an angle of m/3.

{

Fig. 10-17

Use Theorem 10.6 to show that an elliptical helix is not in general a geodesic on an elliptical cylinder.

Calculate the Christoffel symbols of the second kind for the right helicoid (Example 10.4). Show that
circular helices on the surface are geodesics.

Exhibit the SFF for the general surface of revolution (Problem 10.10).
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10.45

10.46

10.47

10.48

10.49

10.50

Establish the formulas below for any surface of revolution, with G=g'/f’ (see Problems 10.12 and
10.44):

GG’ fG' +g(1+G?
K=——0ss d H=—F>—554
garey - F flFTa+ ey
Use these formulas to verify that a sphere of radius a has Gaussian curvature 1/4° and mean curvature
—2/a.

(a) Calculate K and H for two different parameterizations of the paraboloid z = a(x” + y*): (i) as the
surface of revolution for which f=x', g=a(x")*; (i) as the surface r= (', % a(x')* + a(x?)?). (b)
Interpret the results of (a).

Infer from Problem 10.45 that H=0 for any catenoid. [A surface with H=0 at all points is called a
minimal surface. Among minimal surfaces are those that solve “soap-bubble” problems, which require a
minimum in surface area.]

Prove that I, =r,r,. [Hint: (r;x), =r,r, +rr,.]

Surfaces for which the Gaussian curvature is a negative constant are very rare. One such surface can be
constructed as follows. (a) A tractrix is the involute of a catenary (see Problem 10.32(c)). Write the
vector equation for the involute of the catenary r = (a cosh x',0, ax') (see Fig. 10-14). (b) Using
Problem 10.45, show that K = —1/a” for the tractroid generated by revolving the tractrix of (a) about the
z-axis.

Prove that the catenoid,
I=(a® cosh’ x")(dx")* + (a® cosh® x')(dx?)?
and the right helicoid,
I=(dc')’ +[(x") + a’)(dx*)?

are locally isometric.



Chapter 11

Tensors in Classical Mechanics

11.1 INTRODUCTION

Classical mechanics originated with the work of Galileo and was developed extensively by
Newton (it is often called Newtonian mechanics). It deals with the motion of particles in a fixed
frame of reference (rectangular coordinate system). The basic premise of Newtonian mechanics is the
concept of absolute time measurement between two reference frames at constant velocity relative to
each other (called Galilean frames). Within those frames, other coordinate systems may be used so
long as the metric remains Euclidean. This means that some of the theory of tensors can be brought

to bear on this study.

11.2 PARTICLE KINEMATICS IN RECTANGULAR COORDINATES
Let P be a particle whose path in E’ is given by

€ : x=(x'(1)
where ¢ represents time. The velocity vector of P is defined as
dx dx' dx* dx’

VE*E<_ - —)E(xl i i)
dt dt > dt ’ dt T
and the (instantaneous) velocity or speed as the scalar

v =¥l = VG + 60 + ()
Further, define the acceleration vector as
_dv _ (dle d’x’ d’x’
Cdt \df 4 ar

) =&, % )

and the acceleration as

a=flall = VG + @)+ (&)

If v=(v') and a= (a'), the preceding formulas have the component forms

i dx’ _ i 4= d’x' =Vdd
vi= v=Vuv'v e a
In terms of the geometry of the curve € we have v=vT, with v = ds/dt. Hence,
d ) . dT ds . 5
= — = = -+ _— = + 4
a=— @WT)=0T+vT=9T + v I 0T+ v°T

But T’ = kN, and so
a= 0T+ kv’N

Via the Pythagorean theorem, (11.7) implies

A/ 72 2 4
a=Vv +kv

EXAMPLE 11.1 Formula (11.7) serves to define the fangential and normal accelerations of P as

. d’s v’ )
b=5 and kv = > (p =radius of curvature)

(11.1)

(11.2)

(11.3)

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)
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respectively. For a particle with constant velocity, a = ||xv”N|| = |«| v*; i.e., the acceleration is proportional to
the absolute curvature.

11.3 PARTICLE KINEMATICS IN CURVILINEAR COORDINATES

There emerges the problem of expressing the preceding formulas in nonrectangular coordinate
systems. This is not merely an academic consideration, for there are important situations in which the
differential equations of motion can be solved only in polar or spherical coordinates (cf. Example
11.3), not to mention applications in relativistic mechanics.

Let us start with the definitions of the velocity and acceleration vectors in a barred rectangular
system:

_,_dx’ and _, dv’
v=— n a =—
dt dt
Because the tangent field of € is a tensor, the velocity components in an arbitrary coordinate system
(x') are just v’ = dx'/dt. However, as we found in Chapter 6, the acceleration components must be
written as absolute derivatives along € : a' = 8v"/6¢. Hence, in an arbitrary coordinate system (x'),
with (g;) representing the Euclidean metric, we have:
. dx' i dv' Vo d’x' ; dx” dx’

v :E a E"rr ?‘i‘rrs i dt (119)

and the speed and acceleration scalars are the invariants

v=7Y gijvivj a="y gijaia’ (11.10)

EXAMPLE 11.2 Formulas (11.9) give the contravariant components of velocity and acceleration. These are not
the components used in classical physics and vector analysis. There, the metric for an orthogonal curvilinear
coordinate system is written as

ds® = h3(dx, )’ + h3(dx,)’ + h2(dx, )

and one defines the physical components of the velocity vector as

dx dx dx
YoThig Ve Th Gt e =h

Thus, the physical components are related to the contravariant components via
V)= V8aa V" (a=1,2,3; no summation) (1)

Likewise for acceleration and force vectors. (See Problem 11.24.)
Let us illustrate the distinction by calculating the components of acceleration in cylindrical coordinates,
(', x% x°) = (x,, x,, x;) = (r, 6, z), for which g,, =1, g,, = (x')’, g, = 1. By Problem 6.26,

rl,=—x' 2, =T, =1/x' (all others zero)

so that (11.9) gives for the contravariant components

Loy e 2
A TwE T rda “Tar 2)
The physical components are then obtained from (1) as ‘
_d’r de\’ _ds dr do _dz
a(,)—?—ra a(e)—r?-FZEE a(z)—:_l—t‘z‘ (3)

Only the #-component differs between (2) and (3); but the difference is significant. For instance, the coriolis
acceleration of a particle is 246, as in (3).
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11.4 NEWTON’S SECOND LAW IN CURVILINEAR COORDINATES

The momentum vector of a particle of mass m is defined as M = mv. Relative to a rectangular
coordinate system (with the property of being an inertial frame), Newton’s second law of motion
effectively defines the force vector acting on a particle as F = dM/dt. Accordingly, in curvilinear
coordinates (x'), the law reads:

oM ov
F_W— 51 =ma (1111)
assuming a constant mass. Therefore, the contravariant components of force are given by
; ; d*x' ; dx’ dx’ )
F'=ma = m( P + I, o dr (11.12a)
and the covariant components by
. d*x dx’ dxs>
=g = . — 4 it
Fl glrF m<g1r dt2 Frm dt dt (11’12b)
By introducing a scalar invariant called the kinetic energy of the particle,
1 o
- - 2 - = B ij
T= 5 MVT= 5 mgvv
one can (see Problem 11.5) put (11.12b) into the equivalent Lagrangian form
d <aT> T
F = 7 o (11.13)

The partial derlvatlves in (11.13) are taken with T considered as a function of six independent
variables, the x* (via the g;) and the v".

EXAMPLE 11.3 (Motion under a Central Force) (a) Obtain the differential equation for the trajectory of a
particle acted on by a force that is always directed from (or toward) a fixed point O. (b) Solve the equation of
(a) when the central force is gravitational, thus determining the orbit of a satellite.

(a) By Problem 11.18, the motion will be confined to a plane through O. Take O as the origin of polar
coordinates (x', x*)=(r, 9) in the plane; the force field then has the form F= (F',0). Taking the
acceleration components from (2) of Example 11.2, we have as the equations of motion:

)]
F'=ma _m[dt P

o-m=olf+ 24 8]0
ma® mdt rodt dt " d

T2 d
The 6-equation has the first integral
. db

r’— = = g = const.

dt

(conservation of angular momentum), which can be used to change the parameter of the trajectory from ¢
to . Thus, writing u = 1/r, we have:

de _d0du’ <_ —zd_”)__ du
@@ o (N ) T g
d’r d’u £ d’u
@ =g ()= g
and the r-equation becomes
d’u
297 Tu=8w0) (1)

in which g(u, 8) = —F"(u"", ) /mq’u’.
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(b) For the gravitational field, F' = —k/r* = —ku® (k >0; attractive force), so that g(u, ) = Q = const. and
the solution of (1) is u=Pcosf + Q, or
_ 1/0
"1+ ecosf 2)

which is a conic having eccentricity e = P/Q and focus at O, the classical result.

11.5 DIVERGENCE, LAPLACIAN, CURL

The divergence of a contravariant vector u = (u') on E” is defined by (9.11), with use of Problem
8.14:

i i i
i

1 4
+M"\/—§g(\/?)

divu=u',=

The product rule for partial differentiation yields the compact form
1 4 ;
divu=-\/—§ E(ﬁul) (11.14)

Another notation for the divergence is V- u.

The Laplacian of a scalar field f is given by V’f=div (grad f). Since in general coordinates
divergence is defined for contravariant tensors only, while grad f= (df/dx') is a covariant tensor
(Example 3.5), we first raise the subscript and then find the divergence by (11.14):

. i 1 9 i Of
Vg < i ')z ] (,r y _,> 11.15
f=divig ax’ V8 ax' £ ax’ ( )
The Laplacian figures importantly in electromagnetic theory via the scalar wave equation,
a
Py f = k> V*f (k = const. = wave speed) (11.16a)

In carteszan coordmates only, one defines the Laplacian of a vector field as Vu= (V' ), where
Vi = =u_ + u , T+ u,,, and writes the vector wave equation,

192
_at_;' = K2V (11.16b)

as an abbreviation for three scalar wave equations.

EXAMPLE 11.4 Write the Laplacian for cylindrical coordinates.
Using g'' =1, g7 =1/(x")’, g =1, and g = (x')? in (11.15),

e [5 (= 35) 2 (5 7)o e 5]

2f22+f33 lfl

(x'>0)
D)

the last line employing subscript notation for the partial derivatives.

The curl of a vector field u= (u' ")—symbolized curlu, V X u, or rot u—is given in a rectangular
coordinate system (x') by

Ju*
curlu=\e;, o (11.17a)

where e, is the permutation symbol (Chapter 3). The definition may be rewritten as a determinantal
operator:
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€ €, €;

lu= 92 9 11.17b
curtu= ax' ax® x> (11. )
1 2 3
u u u

in which (e, e,,e,)=(i,j,k) is the standard orthonormal basis. Unlike the gradient and the
divergence, the curl cannot be extended to curvilinear coordinate systems by a tensor formula.

Remark 1: Not everything in mathematical physics is a tensor. Problem 11.11 shows that (11.17)
defines a direct cartesian tensor, but that is all. This is not to say that the curl operator
cannot be formulated and used in curvilinear coordinates (see any text in vector
analysis). It is only that the curl in spherical coordinates (say) and the curl in
rectangular coordinates are not related zensorwise.

Nonrelativistic Maxwell’s Equations

Let E = electric field strength
D = electric displacement
H = magnetic field strength
B = magnetic induction
J = current density
p = charge density
€ = dielectric constant
@ = magnetic permeability
¢ = velocity of light

Then the famous Maxwell’s equations may be written as follows:

curlE + %%]:-=0 divB=20
14D 1 (11.18)
cur]H—ZE=ZJ divD=p

From standard formulas in electromagnetic theory, D= €E, B= uH, and J = pu, where u denotes
the velocity field of the charge distribution; (11.18) becomes

oH
curlE= -2 2= divH =0
c ot
E
crlH=522 + 2y divE="
c Jdt c €

If the charge distribution is in free space (e =€, p =), a proper choice of units brings the
equations into the form

curlE=*lﬂ divH=0

c Jdt

| IE (11.19)
curlH= - — + £ divE=p

c Jt c

Work with Maxwell’s equations requires the vector identities listed below (see Problems 11.10
and 11.21).

V-(Vxu)=0 (for any u) (11.20)
Vx(Vxu)=YV-u)—Vu (11.21)
% (V-u)=V- % (11.22)

17 ou
E(VXU)ZVXE (1123)

11..
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Solved Problems

VELOCITY AND ACCELERATION

11.1  Find the velocity and acceleration vectors and the scalars v and a for a particle whose equation
of motion (along a twisted cubic) is x= (¢, #°, £’) (—1=¢=1). Determine the extreme values
of v and a, and where they are assumed.

v=(1,2¢,3¢) and v=V1+4£+9¢*
a=(0,2,6t) and a=V4+ 361

Hence v and a have maxima at t = =1, where v =V14 and a = V40. They have minima at ¢ = 0, where
v=1and a=2.

PARTICLE DYNAMICS

11.2 A particle travels at constant speed v on a curve with positive curvature. Show that its
acceleration is greatest where the curvature is greatest.

By (11.8) with =0, a = kv® or a/k = const.

11.3  Compute the contravariant acceleration components in a coordmate system (x') connected to
a rectangular coordinate system (x°) by x' = (x'), £ =x% ©° =x".

2x' 0 0][2x" 0 0 4x"Y 0 1
G=JTJ=|0 10| 0 10|=| 0 10

Use (5.7):

0 0 110 01 0 01
Hence, the Christoffel symbols are given by

d |1 1
r, = Py [E In 4(x1)2] =— (all others zero)
x
and (11.9) gives
R AT Y
a? Xt \dr ar’ ar’

NEWTON’S SECOND LAW

11.4 Show that Newton’s second law is consistent with Newton’s first law: A particle that is not
acted upon by an outside force is at rest or is in motion along a straight line at constant
velocity. Assume a rectangular coordinate system.

F =0 implies dv/dt =0, or v=d (constant). Then,
dx
==
which is the parametric equation for a point (if d =0) or%r a straight line (if d # 0), along which
v = ||d|| = const. J
/

/

or x=1d+x,

11.5 Prove the equivalence of (11.13) and (11.12b).
For simplicity, take m =1 in (11.13). By the chain rule and the symmetry of (g,),
d (aT) oT _ d _ 9T 98, _ dv 9T dg, _ dg, ,

@ “ow - a (&)

ag,. ox °F dt Jg,, ax' dar "’
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dvr 1 r..s agir dx: r dU’ 1 r..s s..r
=8&ir a 8rsi D) v i dt v =8 a2 8V T8&,Uv
v 1 1 1 dv”

=g —=~—g v+ g vV += g vVv=g —+T_ 00V
8ir gr T3 8 5 Ssir 5 8irs 8ir 7 i

The final expression is exactly the right-hand side of (11.12b) (for m =1).

11.6 Solve (1) of Example 11.3 when the force field is of the form
g(u, 8)= Au+ h(9)
where A is a constant and h(8) is periodic of period 2.

With primes denoting 6-derivatives, we must solve

u'+u= Au+ h(8) or u'+(1—Au=h()

The general solution to the homogeneous equation is
Pcos(V1I— A0 + ) A<l
u=3af+p A=1

Qexp(VA—10) + Rexp(-VA-10) A>1

A particular solution of the nonhomogeneous equation may be obtained in the form u = u,,w, where u,,
is any particular solution of the homogeneous equation. In fact, substitution in the differential equation
yields

2uw' +u W' =nh or (wiw') =u,h

and this last equation can be solved by two quadratures:

0 0 ¥
WO = | @R ds )=, | ()me) ds

o uy (W)

The integrals are easily evaluated when h(¢) is represented as a Fourier series.

11.7 If A(6)=0 in Problem 11.6, identify the orbits corresponding to (a) A=0, (b) A=1, (¢)
A=5/4.
(a) The curve 1/r= Pcos (6 + a), or rcos (0 + a) =1/P, is a straight line (Fig. 11-1).
(b) The curve 1/r=ab + B is a hyperbolic spiral that degenerates into a circle for a = 0.

(¢) The curve 1/r = Qe®* + Re”*? is a complex spiral which, in the case Q =0, R = 1, reduces to the
simple logarithmic spiral r = ”’>.

o=
AN

Fig. 11-1



CHAP. 11] TENSORS IN CLASSICAL MECHANICS 161

DIFFERENTIAL OPERATORS

11.8  Calculate the Laplacian for spherical coordinates by the tensor formula. (The calculation is
very tedious by other methods.)

We have
1 0 0 1 0 0
G=|0 (x') 0 G '=|0 (x")7? 0
0 0 (x'sinx?)? 0 0 (x'sinx?)?

and g = (x")*sin® x°, so that in (11.15),

Ve L = i) (g7 L g Ay go )

ox* ox’
Therefore,
Vg g ;7—f—(x)(smx) f
_i I _(sinx?) 2L
VE g° o (x)(smx)( Y o (smx)axz
3,_f= 1\2/ e 2 1 ‘7_f= 2 ‘9_f
Vg 9x (x")(sin x ) (xl sinx2)2 9 (cscx”) ox
and so

% [\/72 g ;—5,] = a% [(X‘)z(sin x%) ;—;] + a;iz [(sin ) a"—ﬂ + a% [(cscxz) j—;]

=2x'(sin x ) f + (x")*(sin x%) zf) + (cos x%) ;_3{2 + (sin x%) (szzf)z

°f
(9x%)?

In writing the final steps we convert to p = x', ¢ = x> and 6 = x*:

- e 2]

+ (csc x°)

1 [ . of 2 . 8*f af . *f asz
= - 2p sin ) — + SIn @) —5 + (cos ¢) —— + (sin ¢) —5 + (csc @) —=
P sin g L2P SN @) 5o+ (p7sing) ap2 T(Cos@) 5o+ (sin @) 902 T(e00) S
*f 1 9% 1 I’ 2 9f  cote If
=2t 35t 5 2 -t 7 .
p p” 99~  pTsin” @ 30 p dp p- 9

11.9  Calculate the divergence in spherical coordinates (p, ¢, 6) of (a) a contravariant vector,
u=(u'); (b) a vector specified by its physical components, u =Ugye; T Upe, T Ugye;.

(a) We plug into the formula (11.14):

i

o1 4 _du ;1 d
divu= 72— (VB = 75 + w2 2 (V)

_ o' Y 1 K2
ax’ (x')sin x> ox'

ou’ 2 co
= —u, + u1<—1) + u2<ﬁ2—> +u’(0)
ox X sin x

ou'  oud  oud 2 )
ivu=—+— +— + = ;' 4 (cot
Thus diva ap 20 0t u +(cot p)u

[(x')’ sin x°]
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(b) By Example 11.2, we apply (11.4) to the contravariant vector having components

1 Yo P ) s 4o
u =— u =— w=-— 3
1 X x' sinx

Hence, from (a),

. d d (U U@y <z>
divu=—u +—(——)+ ( +u cot x
axt T 9x* \ x! ax®> \x' sin x° M ( )
+ 2
P

Uy + 1 U, 1 dug, cot ¢

u — U
(p) p (¢)

ap p do psing 46

It is in this last form that “the divergence in spherical coordinates” is generally encountered in
reference books.

11.10 Establish in rectangular coordinates the identity

11.11

VX (Vxu)=V(V-u)—V’u (1)
(“curl curl equals grad div minus del-square”).

Both sides of (1) are (cartesian) vectors; we shall show that they are componentwise equal.
By (11.7), the ith component of curl u is eijk(&uk/ax’). Therefore, the ith component of curl (curl u)
is [use (3.23)]:

2k
d ( du > u d°u
e, .—\e,, —]=€, €., 5 =€,C 0 T
irs ax’ sjk ax] irs“ sjk axrax] sir~ sjk axrax]

d’u” 3*u’ 3%u

= (5,0 5, = AL
( ij rk zk r]) axraxj axraxt Ix dx

The first term on the right is recognized as the ith component of grad (div u), and the second term is (by
definition) the ith component of the Laplacian of the vector u. QED

Prove that the array represented in rectangular coordinates (x") by

_ ou*
curlu=\e;; P

is a direct cartesian tensor.

It suffices to show that (e,, ) is a direct cartesian tensor, since (au/ax’ ) is known to be a (direct)
cartesian tensor. Therefore, given the orthogonal transformation x* = a’x’, with Ia | = +1, define the
3 =27 quantities

19x dx éx i gt
T .=e =e,.a
ijk rst ¢9x (9X (9x rst*r¥s%e

We observe that:

(i) 7, =0 when two subscripts have the same value; e.g.,

- i2.2 - _ i2.2
Ty — €,,4,4,4, = eaaa e.a,.aa —Tian

rtsr’s rstrts

(i) Tias = ema:af‘f |a l— +1

(i) 7, changes sign when any two subscripts are interchanged; e.g.

k]l__ kjl_
Ty = €,4,8,0.4, e,,0,0,a, = —Ty,

rstr*s tsrrsTr

But these three properties identify 7, with é,,, and the proof is complete.
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11.12 Show that in a vacuum with zero charge (p = 0), the electric field E satisfies the vector wave

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

equation
2
J°E
> =c’V’E
at
From Maxwell’s equations (11.19), along with the identity (11.23),
19 _ 1(1&213)_ 1 §’E
VX (VxE)=—-2 2 (VxH)=-"{2 it & af

But V-E =0 and Problem 11.10 imply V x (V X E) = —V°E, and the wave equation follows.

Supplementary Problems

Show that if v is constant, a particle describes equal lengths of arc in equal periods of time.

(a) Show that a particle whose path is given by x = (cos ¢, sin ¢, cot £), for w/4 =t < /2, has velocity
decreasing to V2 as t—> /2. (b) What is the behavior of the acceleration as 71— /2?2 (c¢) Find the
extreme values of v and a for this particle.

For what kind of motion, if any, is a = dv/dt?

Develop a formula for a for a particle that has constant speed v.

Calculate the acceleration components (contravariant) in spherical coordinates (p, ¢, 8).

Prove that motion under a central force is planar.

Calculate the Laplacian for cylindrical coordinates (r, 6, z).

Show that V°f = g"f .. [Hint: Write (11.15) at the origin of Riemannian coordinates.]

Prove (11.22) and (11.23).

Prove that curl (grad f) =0 for any C? scalar field f.

Show that in a charge-free vacuum, H also satisfies the vector wave equation.

Show that, relative to an orthogonal curvilinear coordinate system (x', x% x*), an arbitrary contravariant
vector v=(v') has the representation
V=0 H Ve T U;es

where v, is the physical component and e, is the unit normal to the surface x* = const. [Hint: Use
Problems 5.19 and 5.20].



Chapter 12

Tensors in Special Relativity

12.1 INTRODUCTION

If the motion of a light pulse were an ordinary phenomenon, its velocity ¢ to one observer would
appear to a second observer, moving at velocity v relative to the first, to have the value ¢ — v. This
hypothetical property of light depends on the concept of absolute time measurement for all
observers. However, beginning with the landmark Michelson—Morley experiment in 1880, all
experimental data force us to abandon this reasonable hypothesis and to accept instead the now
undisputed fact that the velocity of light, rather than the measurement of time, is an absolute of
nature. Light is observed to have a single velocity, ¢=2.9979 X 10° m/s, 1ndependent of the
observer’s motion away from or towards its source. This calls for adjustments to the equations of
Newtonian mechanics which become major when high-velocity particles are involved.

12.2 EVENT SPACE

It is first necessary to wed the concepts of time and space. Thus, each event (atomic collision,
flash of lightning, etc.) is assigned four coordinates (¢, x, y, z), where ¢ is the time (in seconds) of the
event and (x, y, z) is the location (in meters) of the event in ordinary rectangular coordinates. Such
coordinates are called space-time coordinates.

Definition 1: An event L space is an R whose points are events, coordmatrzed by (x') = (x% x, x%, x°),
where x° = ct is the temporal coordinate, and (x', x’, x’) = (x, y, z) the rectangular
posztzonal coordinates, of an event Two events E (xl) and Ez(xz) are identical if
x; = x; for all i; simultaneous, if x? = x3; and copositional, if x; = x5 for i =1,2,3. The
spatial distance between E| and E, is the number

d=V(ax")? + (Ax)* + (Ax*) (12.1)

where Ax' = x} — xi fori=1,2,3.

Inertial Reference Frames

The general setting for Einstein’s Special Theory of Relativity (henceforth abbreviated SR)
consists of two or more observers O, O, O , moving at constant velocities relative to each other,
who set up space-time coordinate systems (x ) (x ), (x'), ... to record events and make calculations
for experiments they conduct. Such coordinate systems in uniform relative motion are called inertial
frames prov1ded Newton’s first law is valid in each system. All the systems are assumed to have a
common origin at some instant, which is taken as t=t=¢=---=0.

Light Cone
A flash of light at position (0, 0, 0) and time ¢ = 0 sends out an expanding spherical wave front,
with equation x” + yi+ 28 = or
() = () = () - () = (12.2)
(12.2) is the equation of the light cone in event space, relatlve to the inertial frame (x'). Figure 12-1

shows the projection of the light cone onto the hyperplane x* =0. In any other inertial frame, (x'),
the equation of the light cone is exactly the same (since all observers measure the velocity of light as

c):
E) - (&) - (@) - @) =0

164
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Future
>0

In Example 7.6 (using slightly different notation), we identified the light cone with the null geodesics
of R* under the metric of SR.

Relativistic Length
For an arbitrary event E(x), the quantity (x°)* — (x')* — (x*)” — (x*)* may be positive, negative,
or zero. The relativistic distance from E(x) to the origin E,(0) is the real number s =0 such that

e’ = ()Y - (') - () - () (s=x1)
More generally, the length of interval or relativistic distance between E,(x,) and E,(x,) is the unique
real number As =0 such that
e(As)” = (Ax°)* — (Ax")? = (Ax*)* — (Ax®)  (e==*1) (12.3)
where Ax'=x} —x! for i =0, 1,2,3. The chief significance of this length-concept is to be found in

Theorem 12.1: Relativistic distance is an invariant across all inertial frames.
For a proof, see Problem 12.6.

Interval Types
The interval between E,(x,) and E,(x,) is
(1) spacelike if (Ax')’ + (Ax*)” + (Ax’)’ > (Ax°)® (or e=—1; predominance of distance over
time); ,
(2) lightlike if (Ax°)* = (Ax")* + (Ax*)> + (Ax®)’ (equality of time and distance);
(3) timelike if (Ax’)’>(Ax')’ + (Ax*)* + (Ax’)® (or &= +1; predominance of time over
distance).

By Theorem 12.1, the categorization is independent of the particular inertial frame.
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12.3 THE LORENTZ GROUP AND
THE METRIC OF SR

Imagine two observers, O and O, in uniform relative motion at speed v. They approach each
other during negative time, coincide at zero time, and then recede from each other during positive
time (Fig. 12-2(a)). Let O and O set  up independent reference frames (x' ") and (x') by means of
identical but separate clocks, with ¢t =t =0 when O = O, and identical metersticks. Newton’s first law
will be assumed to hold in both frames, making them inertial frames.

®)
Fig. 12-2

Common observation of events sets up a correspondence
g ' =F&" 2 x5 x0) (12.4)

that is bijective, since each event is assigned a unique set of coordinates. In most of what follows, it
will be assumed that O and O perform a simplifying maneuver at the instant of coincidence, whereby
their x-axes point in the same direction along the line of motion and their y-axes and their z-axes
coincide. In the ensuing translation, the y-axes and the z-axes remain parallel (Fig. 12-2(b)).

Postulates of SR

(1) Principle of Relativity: The laws of physics are the same in all inertial frames.

(2) Invariance of Uniform Motion: A particle with constant velocity in one inertial frame will
have constant velocity in all inertial frames.
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(3) Invariance of Light Speed: The speed of light is invariant across all inertial frames.

Postulate 2 requires that the bijective transformation (12.4) be such as to map straight lines into
straight lines. Consequently, each F* must be a linear function. Since F'(0) =0, constants a; exist
such that _

T : x'=ayx (12.5)

Lorentz Matrices and Transformations

The invariance of the equation of the light cone (in consequence of Postulate 3) may be
expressed as

g,.[xix’ =0= g,.jiiij (12.6)

where gy, =1, g, =8,,= g3 =—1, and g, =0 for i## . Substitution of (12.5) in (12.6) yields
(Problem 12. 4)

gijaiaa{ = 8&rs (12.7a)
or, in matrix form,
A'GA=¢G (12.7b)
or, written out,
(ag)” = (aé)2 (a5)" = (ap)" =1
(a3)° = (a))" = (az)2 (@)y=-1 (j=1,2,3) (12.7¢)
aoao—aa aa a?a?=0 (i#))

It is easy to see (Problem 12 8) that requiring g x'x’ =0 to be invariant is tantamount to
requiring the 1nvar1ance of g,] =g for every value of g. Thus, (12.7) is a criterion for the
quadratic form g, x'x’ to be invariant.

Definition 2: Any 4 X 4 matrix (or corresponding linear transformation) that preserves the quadratic
form x"Gx is called Lorentz.

In Problem 12.10 it is shown that the set of Lorentz matrices constitutes a group (the Lorentz group)
under matrix multiplication.

Metric of SR

If the terms g; = g, are defined for the (x ")-system, then (12.7a) becomes 8= g,] val, which
makes (g;) a covariant tensor of the second order under Lorentz transformations of coordinates.
Accordingly, the metric for R* is chosen as

e ds’ =g, dx' dx’ = (dx’)* — (dx')* — (dx”)* — (dx*)? (12.8)

12.4 SIMPLE LORENTZ MATRICES

Let us suppose that O and O have performed an alignment of their xyz-axes. Then any right
circular cyhnder with axis along the line of relative motion must have the same equation in the two
systems; i.e., (x*)> + (x*)* is invariant. It follows (see Problem 12.11) that the Lorentz transforma-
tion for this 51tuat10n has the form

=0 0.0 0_1 0 1
X =awx tax =ax +bx

-1 _ 1.0 1 1E 0 1
g . {¥ =ax tax =dx +ex (12.9)
=2 2
X" =x
=3 _ 3
X =x
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By (12.7),
a—-d =1 b*—e’=-1 ab — de =0 . (12.10)

By considering the coordinates which O and O would assign to each other’s origin (see Problem
12.12), we find that
d=—(v/c)a=—Pa and a=e (12.11)

(The notation B = v/c is standard in SR.) From (12.10) and the fact that a > 0 (since both clocks can
be assumed to run in the same sense), it follows that

a=(1-B*)""=¢ b=-B(1-B)""*=d (12.12)

Therefore, the coordinate transformation takes on the simplified form

rfo X' - px C 1 -B 0-
Vi-p’ Vi-g® Vi-p’
gole="B2tr o a-| 2B __L_ g (12.13)
Vi-8 Vi-g* Vi-8
i2=x* 0 0 10
\z3 =3 L 0 0 0 1.
Any 4 X 4 matrix (linear transformation) of the form
a b 0 0
|p a 0 0
A=lo 01 0
0 0 01

where a’ — b* =1, will be termed simple Lorentz. The relative velocity in the physical situation
modeled by A is recovered as B = —b/a.

EXAMPLE 12.1 By Problem 12.9, the inverse of a simple Lorentz matrix is

a —-b 0 0
|- a 00
A= 0 0 10

0 0 01

which is itself a simple Lorentz matrix, corresponding to a reversal in sign of 8. [If the velocity of O with respect
to O is v, then the velocity of O with respect to O is —v.]

A Decomposition Theorem
The possibility of simplifying an arbitrary Lorentz matrix by a suitable rotation of axes can be
expressed in purely mathematical terms. (See Problems 12.14 and 12.15.)

Theorem 12.2: An arbitrary Lorentz matrix L = (a‘}) has the representation
L=R,L*R,
where L* is a simple Lorentz matrix with parameters a =|ag| = ea; and b=
—V(a))* — 1, and R, and R, are orthogonal Lorentz matrices defined by
R,=LRI(L*)™' and R,=[e, r' s t]" (12.14)

Here, e, =(1,0,0,0), r' = (e/b)(0, a(l), a3, a))=(0,r), s'=(0,s), t' =(0,t), with s
and t chosen to complete a 3 X 3 orthogonal matrix [r s t].

Corollary 12.3: If L= (a’}) connects two inertial frames, then the relative velocity between the

frames is
v=c\1-(a)? (12.15)
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12.5 PHYSICAL IMPLICATIONS OF THE
SIMPLE LORENTZ TRANSFORMATION

Length Contraction
For any fixed x°, (12.13) gives

b
Viep
If the frame O is moving at a uniform velocity v relative to O, distances in O appear to observer O to
be foreshortened in the direction of the motion by the factor \/1— B~ .

Ax' = Ax' or Ax'=\1-p*Ax' <Ax'

Time Dilation
For any fixed x', (12.13), inverted, gives

1 -
Ax’ = 1 Ax’ or At = ——— At > At

1-8° V1-g?
If the frame O is moving at a uniform veloczty v relative to O, the clock of observer O appears to
observer O to run slow by the factor \/1— g*.

Composition of Velocities

If O has velocity v, relative to O and O has velocity v, relative to O, then the Newtonian
composition of velocities predicts that O has velocity v, = v, + v, relative to O. Although the error
does not show up unless v, and v, are substantial fractions of the velocity of light, SR shows the
Newtonian theory to be incorrect. The correct formula (Problem 12.20) is

v, T,

it L S 12.16
1+ v,/ ( )

Uy =

12.6 RELATIVISTIC KINEMATICS

4-Vectors

We begin with ordinary velocity and acceleration of a particle within a single inertial frame (x).
By introducing the concept of proper time, we shall be able to obtain velocity and acceleration as
contravariant vectors with respect to Lorentz transformations (to be called 4-vectors from now on).
In general, (V') is a 4-vector if it transforms according to the law V'= a; V7, where (a ) is the
Lorentz matrix of (12.5). It is customary to use the following notation for 4—Vectors

vH=w° V) where vl=v, and v=(,viv’? )=V, V,,V,)

V® is referred to as the fime component of the vector and (V,,V,,V,) are the usual space
components. All indices are understood to range over the values 0, 1, 2, 3, unless specifically noted
otherwise.

Nonrelativistic Velocity and Acceleration
In the inertial frame (x') = (x, y, z) let a particle describe the class C? curve

¢ (x') = (ct, v(2) = (ct, x(¢), y(¢), (1))

Then we have the classical formulas

(v,)= <d ) (c,v) (12.17)
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=(0, a) (12.18)

where v = dr/dt and 6 = ||v|| = Vvl + v} +v;
dzxi)

@=(%5
where a=dv/dt and @ = ||a|| = Vd} + a, + a’ .

As defined, neither the velocity nor the acceleration is a tensor under Lorentz transformations.
In fact (Problem 12.22), if (,) and (4;) are the like quantities in (x'), then (12.13) yields the

relations
_ 3 v, —v oy, V1= _ v, V1-p?

=c= = i T— = 12.19
Po= 6= Yo T o v/ »Ta- vl Tz vvlc’ ( )
A __a(1-pY"7 e+ (e, 0a)0/))A - )
%o 0 * (1-vul/c) ¢ (1-v,v/c*)
(12.20)
_ _ [a.+ (v.a,—v,a) (/N1 = B
a. =
i (1-vv/c*)

The inverse relations can be quickly obtained by replacing v by —v and interchanging barred and
unbarred terms throughout. For example, the second formula in (12.19) inverts to

v, tv
VT T o
1+vov/c

which is just (12.16) as applied to v, = v, and v, = v.

Proper Time; Velocity and Acceleration 4-Vectors
Let us reparameterize the curve ¥, choosing now the quantity

s 10 axdx dr .5
TTeT 8 du du du or dr 1=07e (12.21)

where, as always, 0 < c. The new parameter 7 (a distance divided by a velocity) is known as the
proper time for the particle; by Problem 12.23, a clock attached to the particle (and thus accelerating
and decelerating along with it) reads .

When 7-derivatives replace ¢-derivatives, velocity and acceleration become tensorial; i.e., the
components

,_dx’ . du' d’x’
u'=— b= =5 (12.22)
are taken by (12.13) into
0_ p,1 — 8y’ + !
- L BL gl= P Y = a=d (12.23)
Vi-8 1-8
_ 0zl _ —8p° + p! _ _
go_b —Bb g ZBb XD p_ g g (12.24)

Vi-p? 1-p2
The important identities ' _
uu' =c’ ub' =0 (12.25)
are proved in Problem 12.24, and Problem 12.25 establishes the following connecting formulas

between the numerical values of the relativistic and the nonrelativistic components:

i U, i a; (va)v,

= b= + 12.2
V1-256%4c 1-0%c cz(l — l?z/cz)2 ( 6)
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Instantaneous Rest Frame

At time ¢ = 1,, the particle moving along % has instantaneous position P, =r(t,) and instanta-
neous speed U(t,). An instantaneous rest frame for the particle is an inertial frame that translates at
speed (¢, ) along the tangent to J¢ at P, in such manner that its origin coincides with P, at t =¢,. See
Fig. 12-3. '

Fig. 12-3

We shall say that a particle’s motion (with respect to frame O) is uniformly accelerated if its
spatial acceleration relative to an instantaneous rest frame O,

= 5-\/721 2, =2
a=a=Va,ta,+a;

does not vary along the trajectory ¥.

EXAMPLE 12.2 An electron fired at right angles into a uniform magnetic field undergoes uniformly
accelerated motion (in a circle).

12.7 RELATIVISTIC MASS, FORCE, AND ENERGY

The appropriate SR version of Newton’s second law depends on the concept of mass to be
adopted.

Rest Mass and Relativistic Mass

The rest mass of a particle is its mass as measured or as inferred from Newtonian mechanics in
any instantaneous rest frame for that particle.
The relativistic mass (in O) of a particle with spatial velocity v (with respect to O) is

N m

M= —F———

V1-57¢?

where m is the rest mass of the particle. As is shown in Problem 12.27, (12.27) is a necessary
consequence of conservation of momentum.

(12.27)
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Relativistic Momentum and Force
The 4-momentum of SR is defined by

(p)=(p"p) = (mu') = (17ww;) (12.28)

and the (nontensorial) Lorentz force (F,, F) is defined as the time derivative of the 4-momentum:
_dp® _d ( mc ) _d ( mv )

FO Cdt h dt V1-— 13\2/(:2 F= dt m (1229)

Like velocity, force becomes tensorial when proper time is introduced. Thus, the 4-force (Minkowski
force) of SR is defined as

_ dan'
(K‘)E(:%) (12.30)
From (12.21), we have the connecting formula
. F,
K'=—F——= (12.31)

V1-0%¢*

The following identities for the Lorentz and Minkowski forces are proved in Problem 12.29:

i o 1 1 _d< mc’ )
u,K'=0 K —ZVK FO_EVF VF——E W (12.32)

Relativistic Energy

According to the classical work-energy theorem, the rate at which work is performed on a
particle, (vF), equals the rate of increase of the particle’s kinetic energy. Thus, the last identity
(12.32) suggests the definition for SR

mc’
V1-2d%¢c
for the energy of a particle moving at speed 0. In the limit as ¢ — 0, (12.33) becomes
E=mc (12.34)

This is Einstein’s famous formula for the rest energy E of a particle with rest mass m.

E=

e’ (12.33)

12.8 MAXWELL’S EQUATIONS IN SR

It is helpful to look briefly at the way the metric for Special Relativity affects the formulas for the
divergence and the Laplacian, and to consider a new kind of matrix that will be useful in formulating
Maxwell’s equations.

Vector Calculus and Lorentz Transformations
For the metric of SR, all Christoffel symbols vanish, so that

i

d
diva= 22 (12.35)
ox

and

div (grad f)=0f= aii <gij %) =g’ aj"&];j
) c?zf B c72f ~ 072f ~ é‘zf
(0x°)"  (ax')"  (ax°)"  (ax')’
10
LTy (12.36)
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Note that in SR the Laplacian operator is notated [, with V> reserved for its spatial part. It is
verified in Problem 12.31 that O0f is an invariant under Lorentz transformations, which means that
the scalar wave equation has the same form, (Jf =0, in every inertial frame.

If we introduce the differential operator

gi=g L (12.37)
ax’
then we can express the equation of continuity for a vector (w,;)=(w,, w) as
'w, =0 (12.38)

(12.38) is equivalent to dw,/dt = ¢ div w.

Maxwell’s Equations in Event Space
First, introduce for any two 3-vectors U= (U') and V= (V') the two antisymmetric matrices

0o -vt -v* -v? 0 vt v v
i | VP 0 v’ -vu’ o _|-U 0 v o-v?
[f]]44: V2 _U3 0 Ul [f,'j]44= __U2 _V3 0 V] (1239a)
v our -Uut 0 -u® v vt o0
The second matrix may be obtained from the first by making the replacements V— —U and U—V;
because these replacements constitute an anti-involution—i.e., f —f7—the two matrices are said
to be dual to each other. In terms of individual components (e,,,, denotes the permutation symbol of
order 3): A .
ij _ ji 7 _ _y4 Pq _ U’
== [r=-V [ =y U (12.39b)
fz] —fji qu =U qu - epqu

in which i, j=0 and p, g = 1.

By their concoction, these matrices turn out to be tensors under Lorentz transformations
(provided the row-divergences vanish in all inertial frames); a proof is given in Problem 12.32.
Moreover, these tensors have the properties (Problem 12.33)

af% ofy;
C—— L"j =divU (12.40)
ax ox
and
a 1j 2j 3j a~ 0~ a 1 9
< L ,Lf )—c du+ L %Y ( U ﬁ f3’) arlv — 229 (15 41
ax’ 7 ax’’ ax’ c dt ax’ 7 ax’ 7 ox c Jdt

We now show how Maxwell’s equations in vacuum, (11.19), may be extended to space-time via dual
tensors of this sort. The equations are:

1 JH
divH=0 curlE + = oH =0 (12.42)
c Jt
N 1 /E _P
divE=p curl H c -V

in the last of which v is the classical spatial velocity (12.17) of the charge-cloud p. Define per (12.39)
the tensors

(12.43)

0 —-H, —-H, —H, ] . E, E, E,
i _ H1 0 E3 _Ez i — _El 0 H3 _Hz
= [F]] = [{2 _E3 0 E*1 g: = [F]]44 = _E2 _H3 0 I{1 (12.44)
H, E, —-E 0 ~-E, H, —H, 0

(with U =E and V= H). In view of the first equations (12.40) and (12.41), (12.42) may be written as
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JF"

- =0 12.45a
Similarly, if we make a 4-vector out of v and p by the prescription
)= <p, ’E’ v) (12.46)
(see Problem 12.52), then the remaining Maxwell’s equations, (12.43), are rendered tensorial as
=

oF _ (12.45b)

ax’

_ Equations (12.45) are the relativistic Maxwell’s equations, valid in every inertial frame. Because
F is antisymmetric, we have from (12.45b):

os'  9*F" PR ( .9 .
—=——=0 or —(g%)= ”—-> =9's,=0
ax'  ox'ox’ ax' (g's)=\8 ax'/ /

so that the covariant vector (s;) obeys the equation of continuity (12.38).

Solved Problems

EVENT SPACE

12.1 Calculate ¢ and As for the event pairs: (a) E,(5,1,-2,0) and E,(0,3,1,-3), (b)
E,(5,1,3,3) and E,(2, —1,1,1), (¢) E,(7,2,4,4) and E,(4,1,2,6), (d) E, =flash of light in
Chicago at 7 p.m. and E, = flash of light in St. Louis (400 miles away) at 7.000 000 61 p.m. (e)
Determine the interval type in each case.
(@) e(As)>=5°—(—2)* —(=3)*—32=25-4-9-9=3, or As=V3and e =1.
(b) e(As)’=9—-4-4—4=-3 or As=V3and e=—1.
() eAs)’=9—-1-4—-4=0,0orAs=0and e=1.
(d) With c= 186300 mi/sec, e(As)* = (0.002196¢)* — (400)*~7375 mi’, or As~85.8 mi and &=1.
(e) Timelike, spacelike, lightlike, and timelike, respectively.

12.2 Show that (a) simultancous events have a spacelike interval; (b) copositional events have a
timelike interval; (c) the interval between two light flashes is lightlike if they are simultaneous
to an observer who is present at the site of one of the flashes.

(a) e(As)® = 0% — (Ax')* — (AX")* — (Ax*)* <0
(b) e(As)” = (Ax")? —0>0

(c) Let the observer measure the proximate flash as FE,(0,0,0,0). The distant flash
E,(c At, Ax', Ax*, Ax*) will be registered simultaneously, at x° =0, if

_ V@xy + (@) + @)’
C

At

But then £(As)® =0 and the interval is lightlike. (Note that the (negative) time coordinate of E, is
calculated, not measured.)
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THE LORENTZ GROUP

12.3  Prove the following lemma involving the metric of SR, g, as given by (12.6).

12.4

12.5

Lemma 12.4: 1f C = (c,;) is a symmetric 4 X 4 matrix such that cl.jx"xj =0 for all (x) such that
g;xx’ =0, there exists a fixed real number A for which ¢, = Ag, (C = AG).

Observe that the vector (1, 1, 0, 0) satisfies gi].xixj = 0. Hence, substituting these components into
the equation ¢, x'x” =0 yields

Cop X CopEClotc; =0 or CopotT ¢ =0=cy =cy
(by symmetry of C). Similarly, using the vectors (1,0, +=1,0) and (1,0, 0, 1), we get
Coo= "C1 = —Cpy = —C35= A ¢;=0 (i=0or j=0)

Finally, employing the vectors (V2, 1, 1,0), (V2,1,0,1), and (V2,0, 1, 1), we obtain ¢,, = ¢,5 = ¢,; =
0.

Establish the transformation (12.7) between inertial frames under the postulates for SR.

From (12.6) and (12.5),

r. s _i

i Ve o wic) — EorNe sy i
8yXx _O—gijxx "gij(arx )(asx )_grsaiaj'xx
that is,

r s_i

8.4;a5xx’ =0  whenever  g.x'x’=0 (1)

Now apply Lemma 12.4 to (1), with g, aja}=c,, where C=(c,)= A"GA is symmetric. We obtain
8,.4;a; =g, or A'GA =G 2)

It remains to show that A=1. Since G*=I, multiplication of (2) by the matrix A~'G gives
(G(A'A")G) A = I, which shows that the inverse of A is

ag/h  —ay/A —allx —ay/A
4 1 2 3
1 —a,/A  a;/A a,/x  aj/A :
B=-GA'G= =[b’ 3
A —ay/A  ax @l dia S )
—ajiA ay/x dA Al
In particular, by = ag/A. Now since observers O and O are receding from each other at constant velocity

v and are using identical measuring devices, it is clear that each views the other in the samo way. It
follows that ag = by and A = aj/by =1 (see Problem 12.5).

With reference to Problem 12.4, give a “‘thought-experiment” which leads to the conclusion
that a) = bJ.

Consider the motion of O in O’s frame: Transform the point (ct, 0,0, 0) under J to get
x°=ct=agct or t=apt

. ~ . A 1 0
Thus, 1 second on O’s clock is ag seconds on O’s; reciprocally, 1 second on O’s clock is b seconds on
O’s. Thus, al = b).
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12.6 Prove Theorem 12.1 from (12.7). [Note that Problem 12.4 did not make use of Theorem 12.1,
so the proof will be logically correct.]

By (12.7), (g;) is a covariant tensor under Lorentz transformations, so that g, Ax’ Ax’ is an
invariant (under Lorentz transformations).

12.7 Verify that the following matrix is Lorentz:

V3

V2 0 0‘1

L, Yo 11
2 2 2

L, Yo 1 1
2 2 2

Vi V2

R R N

We verify directly the conditions (12.7c):

(
a0~} -0(-3)-0=2)-0  v20-(F)3)-(F)

() (20

- - (1 -(=2) -1 vavn- o) -m( %) -0=o0
1
3

ol

+5=0

1
2
12.8 Show that a matrix A which preserves x'Gx = 0 necessarily preserves x' Gx = g

This is really Problem 12.6 in another guise. By Problem 12.4, A must satisfy ATGA = G. But then
(Ax)"G(Ax) =x"(A"GA)x =x"Gx=¢

12.9 (a) Exhibit the inverse, B, of a given Lorentz matrix, A. (b) If we define a matrix A to be
pseudo-orthogonal when there exists a matrix J whose square is the identity and A TTA=1,
show that all Lorentz matrices are pseudo-orthogonal.

(@) Set A=1in (3) of Problem 12.4.

(b) If A is a Lorentz matrix, then G clearly fills the role of J in the definition of pseudo-orthogonal
matrix.

12.10 Prove that the Lorentz matrices compose a group under matrix multiplication.

We are required to show that (a) the product of two Lorentz matrices is Lorentz, (b) the inverse of
a Lorentz matrix is Lorentz.

(a) (PQ)'G(PQ)=Q"(P"GP)Q = Q"GO =G
(b) Using Problem 12.4 with A=1, B= A™'=GA'G, and
B'GB=(GA"G)"GB=GAG’B=GAB=G



CHAP. 12] TENSORS IN SPECIAL RELATIVITY 177

SIMPLE LORENTZ MATRICES

12.11 Derive the simple form (12.9) of the transformation equations for SR by considering how
observers O and O will view events occurring on a circular cylinder about their common
X-axis.

=]

Ez(q, 0, 1)

: //

Fig. 12-4

At any time ¢, let E, and E, be two events taking place at the points of space (g, 1, 0) and (q,0,1),
respectively, which lie on a unit cylinder about O’s x-axis (Fig. 12-4). Thus, with p = ct, we have
space-time coordinates E,(p, ¢,1,0) and E,(p, g, 0, 1). Since the axes of O are not turning with respect
to O’s, these two events will be viewed by observer O as E,(p, q,1,0) and E,(p* g*,0,1)
respectively. The transformation equations (12.5) give:

s

p=agp +ajq + aj p*=agp+ajq+a

@ [Tmarrdara = ap e+l
=a§p+afq+a§ O=a(2,p+afq+a§
O=a3p+aiq+a; 1=a3p+a§q+ag

Observing just the last equation of (I) and the third equation of (II), we may, since p and q are
arbitrary, take p=¢g =0, then p=1, g=0, and p=0, g =1. It follows that all six of the coefficients
vanish: aj=a=dl=a}=a’= a3 = 0. Using the third equation of (I) and the last equation of (II), we
find that a; = 4 = 1. It follows that the last two equations of 7 reduce to ¥> = x* and ¥ = x°. Now to
concentrate on the first two: If p =g =0, then event E, is (0,0, 1, 0)—occurring when t=7=0 at
x' =0, the instant when x'=0. That is, p = § =0, with the result aJ=al =0. Similarly, using E,,
p=q=0 implies p* =g*=0 and a3 = a} =0.

12.12 Consider event E,, a lightning flash at the point (v, 0,0) at time t=1s in O’s frame, and

event E,, a lightning flash at (—v,0,0) at time r=1s in O’s frame. By determining the
corresponding events in the opposing frames of reference, deduce (12.11).
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Since at ¢ =1 observer O has reached the point (v, 0,0), the lightning strikes O’s origin at time ¢.
Hence, E, has coordinates (c, v,0,0) in O and (ct, 0,0, 0) in O. Substituting these into J we obtain

ct=ac+ bv O=dc+ev
The second equation gives d = —Be.

Since O has progressed backwards to the point (-v, 0, 0) in _O_ at the time f =1 at which E, occurs,
this event has coordinates (ct, 0,0, 0) in O and (¢, —v,0,0) in O. Substituting these into 7 yields

¢ = act + b(0) —v = dct + e(0)

which upon division give d = —Ba. Hence, a=e.

Show that a 4 X 4 matrix is both Lorentz and orthogonal if and only if it has the form

=1 0 0 O
| 0o f
R=|¢ r, s, b (1)

0 ry s5 84

where the 3 X 3 matrix [r s t] is orthogonal.

A Lorentz matrix A = (a"].) is also orthogonal if and only if its inverse B, as obtained in Problem 12.4
(with A =1), is equal to A” and is itself orthogonal. This observation immediately yields the form (1).

Prove Theorem 12.2.

Since ||r||? = b7*[(ad)* + (a3)* + (a3)*] = b *[(a5)* —1] =1 (using Problem 12.36), the matrix
[r s t]is orthogonal and R, has the form of the matrix in Problem 12.13, making it Lorentz and
orthogonal. It follows that R, is orthogonal (and Lorentz), with R, '=RI; hence, L = R,L*R,.

Now, as the product of Lorentz matrices, R, is Lorentz; to show it is orthogonal, consider
LRX(L*)™", which may be written as

a, b, ¢, dyJf1 0 0 0 a —-b 00
a, b, ¢, d||0 ry s, {]||-b a 0 0
a, b, ¢, d||0 r, s, &, 0 010
a, by, c; dy|[0 ry s; 3 0 001

a, bgr,+cgr,tdyrs bys; +cos, +dos, bty + oty + dyts a -b 00

_ - a 00

- 0 010

0 0 01

[The omitted rows have the form (a, br,+cr,+drs, bis +es,+ds;, bty +ct,+ d;t;), with
i=1,2,3.] We first concentrate on proving that the top row and first column of this product are
(%1, 0,0,0). The 00-clement of the product is
€
aga + (byr, + cor, + dory)(—b) = gag + A B2+ 2+ d2)(—b)=e(@—bl—c;—dy)=¢

again using the fact that the transpose of a Lorentz matrix is Lorentz. The next element in the top row of
the product is

b
—agh + (bor, + ¢or, + dors)a = —ab + = (r)ea, = —ayb + ba,=0
For the third and fourth elements,

b b
bos, + o8, +dys, = e 0 and bot, + cot, + dyoty, = T rt=0
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Now for the first column of the product; its elements, beginning with the second, are (for i=1,2, 3)

aa+ (br +cr,+dr,)(—b)=caa,-

Hence, the product matrix becomes

(=
=]

coon
=

and the 3 X 3 matrix R must be orthogonal, since R, is Lorentz.

e(bb, +c,cot dd,)=0

Apply Theorem 12.2 to the Lorentz matrix of Problem 12.7, and demonstrate the physical
significance of this matrix by computing the velocity v between the two observers involved.

We proceed to calculate a, b, and the vectors r, s, and t:

=V3

e=1

Hence, we may take s= (0, 1,0) and t= (0,0, 1), yielding

—V3TI=-V2

1 00
1o -1 0
R:=lo 01
0 00
and

V3 V2 0 1 000
R |1 V62 12 120 -100
L1 V62 -1/2 -1/2/j0 0 1 0
Lo 0 -vZ2/2 VZ2]Jl0 0 0 1
(V3 V2 0 Vi V2 0
_| 1 -Vver2 112 1/2 V2 V3 0
1 -V6/2 -1/2 =12/l 0 o0 1
L0 0 -vZ2/2 VZ2JLo 0 o

By Corollary 12.3,
v=cV1-(V3)?*=

LENGTH CONTRACTION, TIME DILATION

_-0 O O

\/_
.\/_

[\

=o8%

0
0
1
0
0
0

—-o oo

[ E—
1l

Wi

1
r=-5 (V2,0,0)=(-1,0,0)

00
00
10
01

0 0 0
-V2/2  1/2 1/2
-V2/2 -1/12 -1/2

0 -V2/2 V2/2

12.16 A pole-vaulter runs at the rate (V3/2)c (in m/s) and carries a pole that is 20 m long in his
reference frame [the rest length of the pole is 20 m]. He approaches a barn that is open at both
ends and is 10 m long, as measured by a ground observer. To the ground observer, will the
pole fit inside the barn? What is the pole-vaulter’s conclusion?

To the ground observer, the pole undergoes length contraction with the factor \/1 — B2 where
B =V3/2. Hence, the length of the pole in the frame of the ground observer is

20/1- (V3

3/2’=10m

and so, for her, the pole exactly fits inside the barn (instantaneously). To the runner, however, the barn
is 10(1/2) =5 m long, so that the 20-m pole does not fit.

This example shows that order relations are not preserved under the Lorentz transformation.
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(the Twin Paradox) One of a pair of twins embarks on a journey into outer space, taking
one year (earth time) to accelerate to (3/4)c, then spends the next 20 years cruising to reach a
galaxy 15 light-years away. An additional year is spend in decelerating in order to explore one
of its solar systems. After one year of exploration (B =0), the twin returns to earth by the
same schedule—one year of acceleration, 20 years of cruising, and one year of deceleration.
Estimate the difference in the ages of the twins after the journey has ended.

In order to apply SR, replace the four periods of acceleration or deceleration by four periods of
uniform motion at speed (3/8)c (the time-average speed under constant acceleration). These account for
4 years by the earth clock; but to the space twin, who measures proper (shortest) time intervals, the time

lapse is (B =3/8)
4\/1~(3/8)>=3.71 years

Similarly, the 40 earth-years of cruising at 8 =3/4 corresponds to a proper-time interval of

40\/1 — (3/4)* =~26.46 years

Thus, the space twin has aged 3.71 +26.46 + 1~ 31 years while the earth twin has aged 4 +40+1=
45 years.

The space twin returns biologically younger by some 14 years. While the accelerations and
decelerations between the two twins were reciprocal, the forces in the situation acted on the space twin
alone.

Prove the basic integrity of (12.16) by solving algebraically for v, as a function of v, and v, to
verify that v, follows the correct format for composition of velocities.
Solving,
& —v, T U,
UV, = T——>
71—,/

which is precisely (12.16) under the substitution (v,, v,, v;)— (—v,, Vs, U,).

A light source at O sends a spherical wavefront (Fig. 12-5(a)) advancing in all directions at
velocity c; it reaches the ends of a diameter AB centered at O simultaneously, as determined
by O. But as far as O is concerned, the spherical wave, centered at O, moves with him
(invariance of the light cone) and therefore reaches point B before it reaches point A.
Calculate the time difference on O’s clock for these two events (light reaching B and light
reaching A) if 3 =1/2 and if AB=6m.

Since AB =6 m and O is the midpoint of segment AB, O assigns spatial coordinates B(3, 0, 0) and
A(-3,0,0) to the endpoints. It takes 3/c seconds for light to reach A and B, so O calculates the time
coordinate as x° = ¢(3/c) =3 m. The space-time coordinates of the two events are thus

E,(3,3,0,0) and E,(3,-3,0,0)
RN
e T N ——
\ -7 ~
/N /N h

Fig. 12-5
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Substitute_these values and B =1/2 into the first equation (12.13) to obtain 7, = V3/c, i, = 3V3/c.
Hence, At =2V3/c (in s), while At=0.

It is seen that simultaneity is not an invariant of Lorentz transformations.

12.20 Derive the composition of velocities formula, (12.16).

According to Section 12.4, we must have v, = —b,c/a, for i =1, 2, 3. Composing the simple Lorentz
transformations, we have
a, by 0 O0ffa, b, 0 O a,a,+bb, ab,+a,b, 0 0
b, a. 0 Ofjb, a, 0 0 ab, +ab, bb,+aa, 0 0
0 0 1 0ff0 0 1 0 10
0 0 0 140 0 0 1 0 0 01
whence a, = a,a, + b,b,, b, =a,b, + a,b,, and
_abye abic by _bye
_ _(ab,+ab)e  aa, a,a,  a, a, vt
3 a,a, +b.b, @94, | b.b, 1+ b.b, 1+ v,v,/c"
a1a2 alaZ alaZ

12.21 A physicist wants to compose two equal velocities v = v, = v, to produce a resultant velocity
that is 90% of the velocity of light. What velocity must he use?

From (12.16), 5 5
v _ 2B
1+ 07é o 0-90= 11 52

Solving the quadratic, 8 =0.627 (as compared to the Newtonian value 0.45).

0.90¢ =

VELOCITY AND ACCELERATION IN RELATIVITY

12.22 Establish (12.19) and (12.20), the Lorentz transformations of velocity and acceleration, that
define how O tracks the motion of a particle in O’s frame.

To simplify notation, let y=(1— 8*)""'% Then 7 is

ct = y(ct — Bx) X=y(—Bct+x) y=y zZ=z
Differentiate the first equation with respect to ¢ and use the chain rule:
dt dt 1
¢=c=pu,) di o dr y(1—vv,/c?)

Now differentiate the last three equations:

_ dt y(—v+uv) v, —v
=y(—Bc+ — = -

O =v(=Betu) dt  y(1—-vv,/c®) 1-vul/c?
_ dt v, v, V1—8*

T y(1—wvv /%) T - v.v/c®

5 dr _v,V1-p’

=g 1- vv/c?
By differentiation of the velocity components just found,

__dv, dr _ (@, —0)(1—v.v/c*)— (v, — V)0 —av/c®) ‘ 1

*oodt dt (1-vp/c?) y(1—v,v/c*)

_a,—apv/c’ tvav/cd—avic a(l-p7)"”
a y(1—-vv/c*)’ (1-vv/c?)
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_ a,(1-vwlc®)~v(0—auv/c’) 1-p° _at (aw, —v,a,)(v/c’)
Y (1-v,v/c*)? 1-ov /c’ (1-v/c*)

The formula for a, is derived as that for a,, with z replacing y throughout.

(1-8%

12.23 Show that if the curve of motion in O’s frame is the path of O itself, the clock in O’s frame
(the clock moving with the particle) measures proper time.

By (3) of Problem 12.4,
0= a0 — abi! — a2 — a3F
A=—a’x’+alx' +aw+alxd  (i=1,2,3)
Now the motion of O relative to itself is obviously ¥’ = x> = x> = 0. Hence,

x° = agcu x'=—alcu x*=—ajcu x*=—aScu
give the trajectory of O in O’s frame, with parameter u = t. Therefore, the tangent field to the trajectory
is ;
<%> = (ayc, —aic, —ajc, —asc)
so that the proper time parameter for this curve is defined as

r= [ VT @0 (e — @bey de= V@) — @7 — (@2’ — (@271 |,

Because the inverse transformation is Lorentz, the factor in front of the integral sign equals 1, and so
T=1.

12.24 Derive the identities (12.25).
By (12.21),
uiui = gijuiuj = (u0)2 - (ul)z — ()’ - (u3)2

— (@) - 0.~ 0,7~ @ %) =16 -0 T = ¢

and from this,

_i 2 _i iy i
O—dT(c)—dT(uiu)—Zu,.b

12.25 Establish the formulas in (12.26).
;odx'_dx' dr v,

YT o T A a1 od

N RHEF
dr dt \\1 - g2/ 1 dr
a(1— 0% — v, (1/2)(1 = 3%*) V3 (—2a,v, —2a,v, —2a,v,) /" gt
- 1-07¢ dr

_a(1- 5%y +vav, +au, +a,)/c a, (va)v,

_ i

(1-0%c*)? T 1-0Y3 T P -6ty

12.26 Derive the equation for uniformly accelerated motion along the x-axis of an inertial frame:
4
xz — (,'22‘2 =3
[44
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Let O be an instantaneous rest frame at some point ¢,, and let O be a given (stationary) frame in
which the motion curve is traced. Since the motion is along the x-axis of O,

v,=v,=a,=a,=0 and v,=v,=a,=a,=0

whereby 4, = a = const. (assuming a, >0). At ¢=1¢,, v = v, (the constant velocity of O is by definition
equal to the instantaneous velocity of the particle); thus, from (12.20),

a, (1—v%c?’"?  a,(1-0v2c?)"? a
*T El —v i)} X(l —vIAy (- vfj/cz)“2 (1)
Since ¢, is arbitrary, (1) must hold for all ¢. Writing x, X for the derivatives of x(¢), we have from (1):
k= a(c® - i°)’"? (2)
Make the substitution y = % and (2) becomes
3
c’ % =a(c’ —y?)"? or [ (cgc_—jzy)m- =fa dt 3)

Standard techniques of integration yield the first integral

cy
2 2 = ot (4)
Ve —y
(where we have taken the initial velocity to be zero). Solving (4) for y (assumed positive for positive £)
and then integrating the equation * = y(¢), we obtain

2 2,2 4 2
x=cV*+ atla or x —ct' =cla

(where we also take the initial position as zero). This is the desired equation, which represents a
hyperbola in the xt plane. By contrast, the Newtonian equation is the parabola x = Jar’.

RELATIVISTIC MASS, FORCE, AND ENERGY

12.27 Show that the observed mass of a particle with rest mass m, moving at velocity v, is
m=m(1-v"c*)"""? by considering the following experiment. Let each observer O and O
carry a ball with rest mass m near his origin and so situated as to collide obliquely at t =t =0
(when their origins coincide). See Fig. 12-6. Suppose this collision imparts reciprocal velocities
of £ in the positive x-direction and negative x-direction. Calculate the momentum of the
system before and after collision (which is preserved), and what each observer sees based on
the equations of SR; then take the limit as ¢ — 0.

The velocity vectors v, and v, of balls B, and B, before collision are, as seen by O, (0,0,0) =0 and
(v,0,0) =vi. Observer O calculates these vectors as v, =(—v,0,0) and v,=(0,0,0) (either by

[al]
&~

<
<

(a) Before impact
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reciprocity or by use of (12.19). After collision, observer O calculates the velocity of B, as v, =
(¢, 8,0) = &i + 8, assuming B, has the proper alignment with B,. Reciprocally, observer 0] calculates
the velocity of B, as v, = (—e, —8,0). To find v,, use the inverse of (12.19), with v, = —e and v, = —4:

it ._( —£+v).+<_5 1*.32>.
V2T UAT O 2! 1-cvicc N

Thus, observer O calculates the net momentum vector of the system as follows, using the rest mass m of
B, for m, and the “perceived mass” ri of B, for m,:

before impact ~ m,v, + myv, = m,;(0) + m,(vi) = rwvi

—&+ -8V 1-
after impact  m,v, + m,v,=m(ei+ 8j) + rﬁ[(%—%)x + (—lz—).]]

ev/c 1—evl/c
—<me+rﬁ———v_£ )i+<m6—nﬁ——6 1—32>_
1— sv/c? 1— ev/c? J

Since O is using the universal laws of physics as they apply to his frame (Postulate 1 of SR), the two
momentum vectors above must be the same. Hence,

v—¢ _Vi1-p?

v=me+m ———— nd O=m—m ——
e T vl : e i
(after division by 8). Now take the limit as £—0:
My = A and O=m-my1- 8>

The right-hand equation is the connection between m and 7.

Show that the Minkowski force is a 4-vector.

We must show that K’ = a; ‘Kl ifx'=a x’ where (a ) is any Lorentz matrix. Since 7 is invariant and
a = const. we may dlfferentlate the coordmate transformation with respect to 7 across the equal sign:

d—q_(fi)=a;(a"].xj) or i =au

(proving that (1) is a 4-vector). Multiply both sides by m and differentiate again, using the fact that the
rest mass of a particle is invariant:

_ii_——i__d_ —i_iij_iii_ N=ag K’/
—dT(mu)—dT(mu)—dT(ajmu)—ade(mu)—ajK

Establish (12.32).

Definition (12.30), K’ = d(mu')/dr = mb', along with the second identity (12.25), gives at once
uK' =0.
From u,K' = g, u'K’ = u’K" — u’K? =0 and the first formula (12.26), we have

v,K° v, K?
V1i—6%3 V1-64c

By (12.31) and ¢K® = vK,

=0 or cK®=vK

1 1
SVE=— K V1-6%c*=K°V1-06%c =F,

Using the first definition (12.29),

VF’CF d (__m_cz_>
dt V1-206%c’
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12.30 Show that as §—0, £ = mc* + imp? + O(9*/c*). Interpret this result.

The expression for relativistic energy, £ = mc’(1— 3°/¢*)”"'* may be expanded by the binomial

theorem:
(1+x)"=1+ax+‘a@%!lx2+-~- (—-1<x<1)
The result is
E=mc*+ % mi> + 3;’:34

Thus, at low speeds, the total energy of particle is very nearly the sum of its rest energy (which includes
all sorts of potential energy) and its classical kinetic energy.

MAXWELIL’S EQUATIONS IN SR
12.31 Prove that Of = O0f.

As the g, are constants, Of = g”f . = invariant.

12.32 Prove that if (F”) is any matrix of functions of the 3-vectors U and V such that §F”/gx’ =
0 (i=0,1,2,3) for all inertial frames and F(0, 0) =0 for all i, j, where 0= (0, 0, 0), then
(F”) is a second-order contravariant tensor under Lorentz transformations.

Let (u,) be any constant, covariant vector under Lorentz transformations [hence, (&,) = (bfu,) is
also constant]. Define

S'=u,F* §'=ua, F~
By the given conditions dF%/ax’ =0,
as"  _ gF" as’
= =u T =0=—
ax ax ox
Suppose that at some point (xp), S' = A'(S° S, S% §°); then,
as’ dh' a8’ ax* « dh'\ a8’
o =0=—5 % o or by ) =
ox s’ ax" o9x 8’/ 9x

for an arbitrary matrix (9S79x*) having 4876x' =0. By a well-known lemma (Problem 12.57), there
exists a real number A = /\(SO, St s S3) such that

ah’
as’
Now differentiate both sides of (1) with respect to S’:

x O°H X 5k

b¥ = A8% (1)

) — = X 2
AN A KL @)
which is symmetrical in j and /; therefore,
dA oA
2571 = G570 3
forallj, k,I. Let k=[#jin (3):
dA dA 2
L 0= 2 -9
as* a8’ or a8’
Hence A is constant with respect to the S’ and (1) inverts to give
an' ;
= Aa 4)

an— 7
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Integrating (4),
W=S8=xS"+T %)
For the special assignmént U=V=0, we have (since 0=0):
f = (u;)(0) + (,)(0) + (u5)(0) + (u,)(0) =0 6)
8= (£,)(0) + (#,)(0) + (3)(0) + (i2,)(0) =0
Together, (5) and (6) imply 7° =0 (i =0, 1,2, 3); consequently,
S'=Aa'Ss’ (7)
Similarly, there exists a real number u such that
§'= ,ub’}j / (8)
It follows that §* = _)\ai wbiS* = AuS’, or An = 1. But we can exploit the reciprocal relationship between
observers O and O, as in Problem 12.4; to show that A = u. Therefore, A=p =1 and (7) or (8)
becomes the transformation law of a (contravariant) 4-vector. Finally, we conclude from the Quotient

Theorem that if F*u, =S’ is a tensor for an arbitrary covariant vector (u,), (F”) is a second-order
contravariant tensor.

Prove the relations (12.40) and (12.41).
By (12.39) and the constancy of the g,
af” _af™ af"" 4 v

_ N= —— = —d
o')x] axo axq ﬂxq ( V ) axq leV
and, for p=1,2,3,
arr  afP®  afr? ar 9 A % aU" (1 av )
- = - = 4 - = — — S S
ox’ ax®  ox? ax®  ax? (&, U") 9x°  Frra gxT ¢ o ToudU 3

The other two formulas are derived from these by replacing U,V by V, —U.

Supplementary Problems

Suppose two events consist of light signals, and an observer sends one of the signals himself. Classify the
space-time interval between the events if the observer sees the distant light signal (a) before he sends his
own signal, (b) after he sends his own signal, (c) at the same time he sends his own signal.

Assuming that any velocity less than c is attainable, suppose that a concert in Los Angeles begins at
8:0508 p.m. and one in New York City, 3000 miles away (consider this the accurate distance), begins at
8:0506 p.m. could a person physically attend both events (opening measures only)? Is the pair of events
timelike or spacelike?

Show that the transpose of a Lorentz matrix is Lorentz.

Verify the expressions (12.12).

An event occurs at O’s origin at some time f. (a) How does O view this event? (b) What is the
significance of ag >0?

Write out the simple Lorentz transformation connecting inertial frames O and O that move apart at 80%
of the velocity of light.
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12.40

12.41

12.42

12.43

12.44

12.45

12.46

12.47

12.48

12.49

12.50

12.51

12.52

(a) Confirm that a photon (a particle with the velocity of light in some inertial frame) will be viewed as
having the velocity of light in all other inertial frames. () What must be the rest mass of such a particie?

Show that the following matrix is Lorentz, and use Theorem 12.2 to find the matrices L*, R, and R,,
and the velocity v between the two observers.

5/4  1/2 1/4 -1/2
-3/4 -5/6 —5/12 5/6
0 2/3 2/15 11/15
0 -1/3  14/15 2/15

L=

Verify that the following matrix is Lorentz and calculate the velocity between the two observers without
finding the simple Lorentz matrix L*.

3V3 1V3 23 —-1V3
1 1 1 0
1 0 1 -1
0 1NV3 —-1NV3 —-1V3

Show that by definition the proper-time parameter 7 is an invariant with respect to all Lorentz
transformations.

Verify the formula for the composition of velocities by (i) multiplying the two simple Lorentz matrices
below; (ii) calculating from (12.15) the velocities belonging to the two matrices and to their product;
(iii) showing that the three velocities obey (12.16).

13/12 5/12 0 0 17/8 -=15/8 0 0

L= 5/12 13/12 0 O L = —-15/8 17/8 0 0
! 0 0 1 0 2 0 0 10
0 0 01 0 0 01

An electron gun shoots particles in opposite directions at one-half the velocity of light. At what relative
velocity are the particles receding from each other?

Show that the composition of two velocities less than c¢ is also less than c.

How slow would your watch run relative to a stationary clock if you were moving at 2/3 the velocity of
light?

At the age of 20, an astronaut left her twin brother on earth to go exploring in outer space. The first two
years the spaceship gradually accelerated to a cruising speed 95 percent of the velocity of light. Traveling
at that speed for 25 years, it reached a distant galaxy (23.75 light years away) and then decelerated for
two years. Two years were spent exploring the galaxy before the journey back home, which followed the
schedule of the trip outward. How old is the astronaut when she rejoins her 80-year-old brother? (Use
an average rate for clock-retardation during the 8 years in acceleration/deceleration.)

How fast would a pole-vaulter have to run for his 20-foot pole to fit (instantaneously) inside a barn, in
the judgment of a ground observer for whom the barn is 19 feet 11 inches long?

An alternate definition of uniformly accelerated motion is motion under a constant Lorentz force. Verify
that the two definitions are equivalent for one-dimensional motion.

Show that g”a’a/ = g”.

s

Prove that the array (12.46) is a 4-vector.
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12.53

12.54

12.55

12.56

12.57
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Show that the matrices % and & of (12.44)) are connected via Fi= 281, 8. F - [Hint:  First evaluate
the matrix product GFG = P]

Define Faraday’s two-form by

0 —-E —-E, -E,

E 0 H, -H,|

E2 _]'{3 0 [—I1 - [¢'ij]44
3 H, —H, 0

iy

or, inversely, %= G®G. Show that (a) F is related to ® through F’= —3€,Py; (b) Maxwell’s
equations can be written in terms of the single matrix ® as
9Py 9Py IPu
k + J i
ox ax ax

P,
ox’

i

=0 8ix 8

The energy flux in an electromagnetic field is specified by the Poynting vector, p=E x H. By direct
matrix multiplication or otherwise, derive the formula

00 0 O
1 = ~ |* 0 p, —-p . . .
3 (FF-FF)=|, . 03 P12 (antisymmetric matrix)
ok ¥ 0

Verify that for simple Lorentz matrices A (hence, no rotation of axes allowed): (a) %(U,V)=
G#F(V,U)G; (b)) #(V,U)= B'%(V,U)B, where B=A""; and (¢) %#(U, V)= A%(U, V)A" (thereby
proving that (F”) is a contravariant tensor under simple Lorentz transformations).

Prove that if A=[A,],, satisfies A;B, =0 for every B=[B,],, that has zero trace (B, =0), then

i
A = A, for some real A. [Hint: First take B as having all elements zero, except for one off-diagonal

element. Then choose B,, = —B,, =1 (a # §8; no summation), with all other B, zero.]



Chapter 13

Tensor Fields on Manifolds

13.1 INTRODUCTION

The modern, noncoordinate approach to tensors will be introduced as an important alternative to
the coordinate-component approach employed exclusively in the previous chapters. This will entail
somewhat more sophisticated mathematics.

13.2 ABSTRACT VECTOR SPACES AND THE GROUP CONCEPT

Linear algebra provides a means of systematically studying the algebraic interplay between real
numbers (scalars) and a wide variety of different types of objects (vectors). Vectors can be matrices,
n-tuples of real numbers, functions, differential operators, etc. In this chapter, we shall adopt the
convention of using uppercase boldface characters for sets (of points, of real numbers, of elements of
a group, etc.), and lowercase boldface for vectors (as in the preceding chapters). However, the latter
will be gradually phased out in favor of light uppercase characters, not only for easier reading, but
also in conformity with notation used in many standard textbooks.

The concept of vector spaces requires a careful distinction between the scalars a, b, c, . . ., and
the objects of study (vectors), u, v, w, . ... We shall always identify the scalars with the ficld of real
numbers, although any field could serve for the construction of an abstract vector space.

Algebraic Properties of a Vector Space
In terms of two binary operations, the axioms for a vector space are as follows.

Addition Axioms
u + v is always a vector
utv=v+u
u+vy+w=u+(v+tw
There is a vector 0 such
that u+0=u.
5. For each u there is a vector
—u such that u + (—u)=0.

el S N

Scalar Multiplication Axioms

6. a-u=qu is always a vector
7. a(a+v)=au+av
8. (a+b)u=au+ bu
9. (ab)u=a(bu)
10. lu=wu

EXAMPLE 13.1 We give notation for four familiar vector spaces.
(a) R"=the n-tuples of reals under componentwise addition and scalar multiplication.

(b) P"=the polynomials (in a variable ) of degree n or less. If p(f) = at, q(t)=b,t, let p(t) + q(t) =
(a, + b))t and r-p(t) = (ra,)t"

(¢) C*(R)=the continuously k-times differentiable functions (of ), f : R—R (mapping the reals into
the reals). To define + and -, write f(¢) + g(¢) = (f + g)(¢) and r- f(¢) = (rf)(2).

(d) M"(R)=the n X n matrices over R. If A =(a,) and B = (b,), addition and scalar multiplication are
defined by A+ B =(a, + b,) and rA = (ra;).

189
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Algebraic Properties of a Group

Axioms 1-5 make a vector space an abelian (commutative) group under addition. In the general
definition of a group, the binary operation is designated as “multiplication” and the commutative
requirement is dropped.

Multiplication Axioms
uv belongs to the group.
(w)w = u(vw).
There is an identity element e such that eu = ue = u.

. . _1 —
For each u there is an inverse element u ' such that uu '

el N

-1
=u u=e.

EXAMPLE 13.2 Some frequently encountered groups follow.

(a) The reals R over ordinary addition; the reals over ordinary multiplication if 0 is removed from the set.

(b) The cube roots of unity, C* = {1, w, >}, over ordinary multiplication of complex numbers, where
= %(—1+ iV3). Groups of this type are called cyclic and are generally denoted by C* (the cyclic
group of order k). C* is necessarily abelian.

(¢) The 4-group {e,u,s,b}, under the rules wW=s*>=b>=¢, b=us, and the associative law of
multiplication. The 4-group is abelian, but it is not equivalent to the cyclic group on four elements,
c

(d) M"(R), under matrix addition.

(¢) GL(n, R)=the real, nonsingular n X n matrices under matrix multiplication; this is the general linear
group (nonabelian). GL(n, R) contains many very important smaller groups (called subgroups). Some
of these are: SL(n, R) =the real n X n matrices with determinant +1; SO(n) =the n X n orthogonal
matrices; and L(n) =the n X n Lorentz matrices [see the definition of L(4) in Section 12.3].

(f) GL(n,C)=the complex, nonsingular n X n matrices under matrix multiplication. An important
subgroup is the unitary group, U(n), consisting of all n X n Hermitian matrices (such that A™' = A7,
where the bar denotes complex conjugation).

13.3 IMPORTANT CONCEPTS FOR VECTOR SPACES

Basis

A basis for a vector space is a maximal, linearly independent set of vectors by, b,, . ... If this set
is finite, possessing n elements, the vector space is finite-dimensional, of dimension n. Otherwise, the
space is said to be infinite-dimensional.

EXAMPLE 13.3 (1) It is obvious that a basis for R” is the set of vectors
e, =(1,0,0,...,0), e,=(0,1,0,...,0), ..., e,=(0,0,...,0,1)

called the standard basis. (2) P" is finite-dimensional, of dimension n + 1; one basis is {¢'}, 0=i=n. (3) The
vector space of all polynomials is infinite-dimensional, as is the vector space C*(R). See Problem 13.4.

Isomorphisms, Linear Mappings

Two mathematical systems of the same type (such as two vector spaces or two groups) are called
isomorphic if they are structurally identical and differ only in nomenclature. In the case of two vector
spaces, an isomorphism is a one-to-one (bijective) linear mapping ¢ from one space to the other,
where the term linear refers to the properties (for all vectors u, v, and scalars a):

o(u+v)= o)+ ¢(v) and ¢(au) = ap(u) (13.1)

For groups, an isomorphism would be a bijection ¢ with the property ¢(uv) = y(u)y(v), for all
elements of the group. A more general mapping that is important for groups is a homomorphism,
which merely requires that y(uv) = ¢(u)y(v) for all u and v, without necessarily requiring one-to-
oneness.
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Product of Vector Spaces

If U and V are any two vector spaces, the ordinary cartesian product U XV, the set of ordered
pairs (u, v) with u in U and v in V, can be made into a vector space by defining addition and scalar
multiplication of pairs via

(p,q) +(r,s)=(p+r,q+s) and a(p, q) = (ap, aq)

Such a product space is denoted U V; if U=V, write UV as U®. More generally, the product of
any number of vector spaces V,,V,, ..., V,may be easily defined as above; this product is denoted
V,QV,QV,®:- ®V,. If V, =V, =---=V, =V, the product space is written V*. (This notation is
also often used for the fensor product of two vector spaces, a concept which will not be treated here.)

13.4 THE ALGEBRAIC DUAL OF A VECTOR SPACE

If a vector space V be mapped linearly into the reals R, satisfying (13.1), the mapping is called a
linear functional, or one-form. As in Example 13.1(c), we can make the set of all linear functionals
on V into a vector space itself, with the zero functional as that mapping which takes every vector in V
mto 0 in R.

Definition 1: The algebraic dual of a vector space V is the set V* of all linear functionals made into a
vector space under ordinary pointwise addition and scalar multiplication:

(f +8)) =f(v) + &) (Af)) = Af(v)

Since any linear functional on R” can be expressed as a linear function of the coordinates,
1 2 1 2
v=v'e, +v'e,+ - +v'e, — f(VV=apv +tap +---+av"

where a, = f(e;) for each i, the functional is completely determined by the n-tuple (a,, a,, ..., a,).

Differential Notation: One-Forms
Thus, different functionals correspond to different n-tuples, as

fe(a,ay, ... a,) ge (b, by,...,b,)
and it has become customary to represent linear functionals by the compact notation of one-forms:
o=a, dx' + aydd® + -+ + a,dx" o=b dx' + b*dx’ + --- + b, dx"

But why dx' for the coordinates? The motlvatlon comes from differential geometry. Recall that
any class C' multivariate function F(x', X%, , X ) on R”" has the gradient VF = (9F/dx") and the
directional derivative (in the direction (dx dx , dx™))

F
dF=——1dx1 + i;dx2+--- 1
dx ax

which, at a specific point in space, is a one-form that defines a linear functional on R” (i.e., the set of
all directions). Recall too that, just as in ordinary one-dimensional calculus,

dx = Ax = an unspecified real number

not necessarily small.

EXAMPLE 13.4 (o) In R’ find the image of v=(1,3,5) under the one-forms (linear functionals)
o=4dx' — dx’ o=2dx" + 3dx’ — dx’ o+o=6dx' + 2dx’ — dx’

(b) What is the relationship among w(v), o(v), and (o + o)}(v)?
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(@) o(V)=4-1-1-3+0-5=4-3+0=1
o(v)=2-1+3-3-1-5=2+9-5=6
(@+0)(V)=6-1+2:3-1:-5=6+6-5=7

) oW)+o(@W)=1+6=7= (0 + o)(V)

For vector spaces different from R" we agree to use the procedure of Example 13.4 on the
components of vectors relative to an arbitrary basis. That is, to evaluate the image of v=
v'b, +v’b,+- -+ "b, = v'b, under the one-form w = a, dx’, s1mp1y write

o(v) = w(v’b,) = (a, dx’ )(v’bj) =ayv' (13.2)

A dual reading of (13.2) gives a better understanding of the relationship between V and V*
(between vectors and one-forms). If we regard the a, as fixed (tantamount to fixing a basis in V)
while the v’ vary—the “normal” snuatlon—then a lmear map from V to R is uniquely defined. If, on
the other hand, the vector components v’ are held fixed and the coefficients a, are allowed to vary
(this amounts to fixing a basis in V*), a linear map from V* to R is defined (the latter map is actually
an element of the space V**). The expression a, v’ is bilinear in the two vector variables v and .

Theorem 13.1: If V is a finite-dimensional vector space, then V* is finite-dimensional, of the same
dimension, and is isomorphic to V.

A proof is given in Problem 13.6.

Dual Basis
A basisb;,b,,...,b, for V determines one for the dual space V* in a very natural way. Each v
in V has a representatlon v=v’ b; and thus defines a linear functional

e =v'dx' + vdx* + - + v"dx" (13.3)
Then the n linear functionals (vectors in V*) defined by
(P(bt) = Bi (l = 1’ 27 ceey n) (134a)

form a basis for V* (see Problem 13.6); we say that the basis {B'} in V* is the dual of the basis {b,}
in V. The evaluation rule (13.2) provides a simpler characterization of the dual basis:

B'™ =(e())('b)=(0-dx" +0-dx*+---+1-dx' +---+0-dx")(v'b;)=0v' (13.4b)

Thus, B’ = dx’ is the linear functional that picks out the ith component relative to {b,} of any vector
in V. A special application of (13.4b) gives

B'(b) =8 (13.5)
for all i, j.
EXAMPLE 13.5 The standard basis e = {e,, e,, ..., e,} for R" generates the standard basis for (R")*, given in
terms of one-forms as
B'@=dx’ Bi@=d> ... B)=da"
Suppose, then, that R® is referred to the (nonstandard) basis
b,=(1,1,0) b,=(1,0,1) b,=(0,1,1)

This may be written in terms of the standard basis {e,} through a formal matrix multiplication:

bl 1 1 0 e1
b,[=]1 0 1[/€
b, 0 1 1]Les

Express the dual basis {8} for (R*)* in terms of its standard basis (dx') as a similar matrix product.
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Let B'=a, dx' + a;dx’ + aj dx’; we must solve for the components a’. For i =1, we have from (13.5):
B'(b,)=B'(1,1,0)=a;-1+al-1+4a}-0=a}+al=x+y=1
B'(b,)=B'(1,0,1)=x-1+y-0+z-1=x+2z=0
B'(b,)=B'(0,1,1)=x-0+y-1+z-1=y+2=0

where x =a;, y=a,, z=a.). Solving, x = 1 =y, z=~1. A similar analysis may be used to determine the a°
$ 1 Y=a; 3 8 y Yy y i
and a;. The final result is
B'= dx'+ 3dx’—jdx’ B! P —ifa!
B>= ldx'— idx®+ idx’® or B> l=| % -4 Lllax?
Bl = —dar' + 1 + av’ B -1 1 il

Observe that the two basis-connecting matrices are formal inverses of each other.

Change of Basis in V and V*

~The result of Example 13.5 can be generalized. Let {b,} and {b,} be two bases for V, and let
{B’} and {B'} be the respective dual bases for V*. Then

b,=Ab, — B'=AB with (4)=(4)" (13.6)

the arrow denoting implication. (See Problem 13.7.)

13.5 TENSORS ON VECTOR SPACES

The concept of a multilinear functional is needed: If f(v',v>, ..., v"™) represents a mapping of
m vector variables into the reals such that the restricted mapping obtained by holding all but one of
the variables fixed is a linear functional, then f is said to be multilinear in all its variables.

Definition 2: A type-(;) tensor is any multilinear functional 7 : (V*)” ® V'—R mapping p
one-forms and g vectors into the reals; the real image is denoted

T, ...,0";v, ..., v

EXAMPLE 13.6 Let T represent a linear functional in what follows. A type-(}) tensor takes on real values
T(o) for all one-forms w as argument. As we shall see later, such a tensor can be identified with a contravariant
vector. A type-() tensor takes on real values 7(v) for all vectors v as argument; it can be shown to correspond
to a covariant vector. A type-(;) tensor takes on real values U(w;v) for all ordered pairs in V¥®V as
argument, with U a bilinear functional.

EXAMPLE 13.7 For n-dimensional vectors, the ordinary scalar product u-v=uv defines a type-(3) tensor, in
the form G(u, v) =uv, since the elementary properties of the scalar product make G a bilinear mapping of a
vector pair into the reals. More generally, an inner product defined arbitrarily by the quadratic form

G(a,v)=u"Ev

where E is an n X n matrix, defines a type-(3) tensor.

Definition 3: A type-(3) tensor G(u,v) is (i) symmetric if, for every u and v,

G(u, v) = G(v,u)
(il) nonsingular if
[G(u,v) =0, identically inu] — v=0

and (i) positive definite if, for any nonzero vector u, -
G(u,u)>0

A type-(3) tensor that is symmetric and nonsingular is called a metric tensor. (A positive definite
tensor is necessarily nonsingular.)
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EXAMPLE 13.8 Let C= [C;]M be a square matrix and let (a,) and (v") be the respective components of @ and
v relative to the standard basis in R” and its dual. Then the matrix product

T(w;v)=oCv= a,.Ci,.vj (a bilinear form)

defines a type-( 1) tensor over the vector space R”.

Tensor Components

In the three types of tensors considered in Examples 13.6-13.8, we may define tensor
components in the following manner, which may be generalized to arbitrary tensors in an obvious
way. Let b,,...,b, be a basis for V, and B',...,PB" its dual in V¥, Then, for each i, write

ype ()  T'=T(B")
type (3)  T,=T(b,)
type (1)  T;=T(B';b))

EXAMPLE 13.9 Find the components, relative to the standard basis for V=R", of a type-(1) tensor on V
constructed by the recipe of Example 13.8.
By construction, T(w;v) = a,C’v’, for all » and v. Substituting w =B” = dx” and v=b=e_, we find
T?=T(dx";e,)=67C.8,=C,
Thus, the components of T are independent of those of the arguments, @ and v, and depend only on the
components of the matrix C.

Effect of Change of Basis on Tensor Components
Under a change of basis, (13.6),
gpe (3) T'=T(R)=T(AB)=A,T(B)=TA,
ppe (3)  T,=T(b,) = T(Ab,) = A/T(b,) = T,A]
npe (})  T]=T(B,B’;b,) = T(AB', AB"; Ab,) = A,AJAT(B, B';b,) = T A A4,

EXAMPLE 13.10 If V is Euclidean R", the change of basis b,= A’ b, induces the change of coordinates
x'= A'x’, for which :

~i

E(a—i)=A and so J=J1'=A
ox

The above transformation formulas then reduce to the classical laws for affine tensors—compare (3.21).

13.6 THEORY OF MANIFOLDS

A manifold is the natural extension of a surface to higher dimensions, and also to spaces more
general than R™ It is helpful at first to think of a manifold as just a hypersurface in R".

By the term neighborhood of a point we shall understand either the set of all points in R” within
some fixed distance from the given point, or any set containing these points. A neighborhood of p
will be denoted U,,. If the concept used for distance in R™ is Euclidean, then every neighborhood U,
contains a solid, spherical ball (or “hyperball,” if n > 3), having some positive radius and centered at
p- A neighborhood of a point p in a set is the intersection of a neighborhood U, and the set. A set is
open if each of its points has a neighborhood completely composed of points of the set. An open
neighborhood is simply a neighborhood that is also an open set (in the case of a solid-ball
neighborhood, the outer boundary of the ball would have to be removed in order to make it an open
neighborhood).
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Descriptive Definition of a Manifold

A manifold is a set which has the property that each point can serve as the origin of local
coordinates that are valid in an open neighborhood of the point, which neighborhood is an exact
“copy” of an open neighborhood of a point in R". Though such a definition allows the manifold to lie
in a metric space, topological space, Banach space, or other abstract mathematical system, it is best
that we begin with manifolds in a simpler space, like R™. Accordingly:

Definition 4: A manifold is any set M in R™ which has the property that for each point p in the
manifold there exists an open neighborhood U, in M and a mapping ¢, which carries
U, into a neighborhood in R". The mapping is required to be a homeomorphism; i.e.

(1) @, is continuous.

2) ¢, is bijective from U, onto its range, ¢, (U,).
p 15 Dlject P 8C ¢\

(3) ¢, is continuous.

See Fig. 13-1.

Fig. 13-1

Coordinate Patches, Atlas

The neighborhoods U, for p in M provide a means for locally ascribing coordinates to M which
have the correct dimension (e.g., a plane lying in 3-space is actually 2-dimensional and, as a
manifold, has a coordinatization by pairs of reals instead of triples, as in Section 10.4). For any point
p in M, the pair (U,, ¢,) is called a coordinate patch (also chart, or local coordinatization) for M,
while any collection of such pairs for which the neighborhoods U, together cover M is called an atlas
for M. Since the coordinate patches make M n-dimensional at each point, M is sometimes referred to
as an n-manifold.

Often a finite number of charts is sufficient for an atlas (Example 13.11). It can be proved that if
a manifold in R™ is closed, and bounded in terms of the distance in R™, a finite number of charts will
always be sufficient.

EXAMPLE 13.11

(a) The 2-sphere, denoted S? is the ordinary sphere in 3-dimensional space ('), centered at (0, 0, 0) having
radius 4. It may be coordinatized by an atlas of only two charts, as follows. [Note that the usual spherical
coordinates (¢, 6) fail to give a one-one mapping at the poles, where 6 is indeterminate.]

2.1
1 2a°x
y (xI)Z +(x2)2+ a2
2 2a°x?
(xl)z +(x2)2 + a2
(xl)Z + (xz)z —a?
(x1)2 + (x2)2 + a2

y

3
y = ¢a
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As illustrated in Fig. 13-2, the chart corresponding to £ = +1 has U, centered on the south pole (whose
coordinates are x' = x> = 0) and including every point of the sphere except the north pole. The other chart
(¢ = —1) is the mirror image of the first chart in the equatorial plane. For a derivation of this atlas, see
Problem 13.15.

x
£l
y y?
N q = N(@©, 0, a)
~1- ep ®,
e=1 e = —1
U,
3?2 32
Y,
y! p = S(0, 0, —a) y! S
Fig. 13-2

b) The n-sphere 8™ in R*™! may be defined as the set of points (y') in R""* such that
P y P y
Y+ () =a
(centered at (0,0,0, . ..,0), radius a). A coordinate patch for a neighborhood of (0,0, ..., a) is:
y1:x1 y2:x2 yn=xn yn+1=\/a2_(x1)2_(x2)2___'7(xn)2
where the mapping is into the n-dimensional neighborhood (x')* + - - - + (x") <4 (the interior of §" ™).

Establishing the analogous patches around the other ‘“‘diametrically opposite” endpoints, we obtain an
atlas of 2n + 2 charts. (A smaller atlas requires a more clever approach.)

Differentiable Manifolds

Inevitably, there will exist pairs (U,, ¢,) and (U,, ¢,) whose neighborhoods overlap in M (Fig.
13-3); so the common region U, N U, =W, called an overlapping set, generates a map ¢ between the
images of W under ¢, and ¢,. Explicitly (trace the circuit in Fig. 13-3), o =g¢,° go;1.

It is clear that ¢ and ¢ ' are both continuous. If ¢ and ¢ " are of class C* (have continuous
partial derivatives of order k at each point) then the overlapping set W is said to be of class c.

U,

A
%z




CHAP. 13] TENSOR FIELDS ON MANIFOLDS 197

Definition 5: A differentiable manifold is a mamfold which possesses an atlas such that all
overlapping sets are of class C A C* (C” or C*) manifold has an atlas whose
overlapping sets are of class C* (C” or C®).

Remark 1: Recall the distinction between infinitely differentiable (C*) and analytic (C*).

One way to ensure that a manifold be C" in the present context is to demand that each ¢, and
! be class C*. As a matter of convenience, we assume from now on that all manifolds are c”
mamfolds

EXAMPLE 13.12 In the case of the spherical manifolds of Example 13.11, the mapping functions ¢, ' are
either rational with nonvanishing denominators or square roots of positive polynomials. These are certalnly c”
manifolds (in fact, C*).

To bring the notation closer to that of differential geometry (cf. Section 10.4), we now
redesignate the maps goljl linking M with coordinates (x'): let

cp;l(xl, X x)=r(xh M= K xY)
for 1 =j=m. (See Fig. 13-4.)

Up

/(x x2, ... "))

Fig. 13-4

13.7 TANGENT SPACE; VECTOR FIELDS ON MANIFOLDS

Intuitively expressed, a vector field V on a manifold M is simply a tangent vector to M which
varies in some continuous (and differentiable) manner from point to point (Fig. 13-5). More
precisely, it is a rule that gives a tangent vector at every point of M. One way to obtain a vector field
(if we are in R”) is to take the variable normal vector n and cross it with some fixed vector a; thus
V=nxa is a differentiable vector field. But this definition takes us outside the manifold (is
extrinsic). We seek a way to remain on the manifold itself (which is immediately applicable to
abstract manifolds not imbeddable in a familiar space); such endeavors are called intrinsic methods.

The clue is to consider some curve on M and to define V as the tangent field of that curve. If the
curve is defined through a coordinate patch by

c=r(x'(0), X°(1), . .., X"(@)) = (Y/(x', %% ..., X)) (1=j=m)
then the chain rule gives
de dr or dx ;
EAE—-EX-:E—V or V—Vl'i

where the vectors r, = dr/dx’ are themselves tangent to M.
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Fig. 13-5

Definition 6: For any (differentible) manifold M having coordinate patch U, at any point p, the span
of the vectors r,r,,...,r, [evaluated at ¢,(p)] is the tangent space at p, denoted

T,(M). The union of all tangent spaces T,(M), for ail p in M, is called the tangent
bundle of M, denoted T(M).

Although each T,(M) is a vector space, this does not guarantee that 7(M) is a vector space. For
example, the sum of a vector in T,(M) and a vector in T, (M) will not generally be tangent to M.

Definition 7: A vector field V on a manifold M is any C” function that maps M to its tangent bundle
T(M). That is, for each point p in M, the image V(p) =V, is a vector belonging to the
tangent space 7,(M) at p. Explicitly, for certain scalar functions Vv,

i i 9y’ .
V=V, = V;—,. (j=12,...,m) (13.7a)
x
A fundamental theorem regarding vector fields on manifolds may be proved from the basic
theory of systems of ordinary differential equations.

Theorem 13.2: Every vector field on a manifold M possesses a system of flow curves or integral
curves on M, defined as curves for which the tangent vector at each point coincides
with the given vector field at that point.

Notation

To de-emphasize the particular choice of coordinatization map ¢, : U,— R, it is customary to
omit the vector r from the above description of the basis for 7,,(M), and to write
d J d dr Jr ar

—, —,...,—% inplaceof —,—,..., =
ax'’ ox®’ T ax” P ox'’ 9x* ax

or, even more cursorily, 4, d,, . . . , d,. Many textbooks use this last notation exclusively, and write
(13.7a) as

V=V, (13.7b)

Such shorthand is particularly convenient when the coordinate maps <p;1 for a particular manifold
are unspecified (for example, when the manifold is defined by an equation F(y', y°, ..., y™) =0 for
some real-valued function F). In this situation, since r,, r,, . . ., r, are not explicitly defined, we use
the notation E,, E,, ..., E, to denote the coordinate frame on M, whose restriction to T, (M), for
each p in M, is a basis for T,(M). We make the identifications E; =9, (i=1,2,...,n), giving

V=V'E, (13.7¢)
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Extrinsic Representation of Vector Fields

It is possible to represent a vector field V on a manifold without reference to coordinate patches
(which often have the disadvantage of being complicated or difficult to construct); one can stay
entirely in the ( y) system, which we assume to be rectangular. Suppose M is given by a smgle

equatlon F(y', y ,...,y")=0, for some C* function F. A one-form o= w; dy', where o,
oy, ¥ ..., y ™), is said to be restricted to M if the point (y') is required to he on M; that is,
F(y', ¥y ..., y")=0. As is well known from multidimensional calculus, the gradient VF = (9 F/dy")
is normal to M, so that if we further require that the restriction of o map VF into zero,

dF _

Yoy

then V= is a vector field on M (having components dy").

EXAMPLE 13.13 Consider the paraboloid P in R? given by
FyLy, y)= (') +(y) =y’ =0

Show that the restriction of o =y'y* dy' + (y*)* dy®> + 2y°y” dy’ to P is a vector field on P.
We must show that the scalar product of (y'y? (y*)% 2y%y*) and VF = (2y',2y? —1) is zero:

(YY) + (y)Qy*) + Y )(=D) =[(y' Y + (b)) =y’ 12y* =0

13.8 TENSOR FIELDS ON MANIFOLDS

Dual Tangent Bundle

At each p in M, let T (M) denote the dual of the vector space T,(M), and denote by T*(M) the
union of all spaces T*(M) The set T*(M), called the dual tangent bundle of M, is not necessarily a
vector space (just as T(M) was not).

We need to make explicit certain elements of T*(M).

Differentials on M

The dlfferentlal of a function f : R"—>R is rlgorously defined as a two- Vector function
df : (R")>— R which maps each pair (x, v)—where x is a point in R" and v = (dx', dx’, . . ., dx") is
a direction in R"—to the real number

aftx,v) = <% f dx +:f dx + - a‘if,, dx" = £ dx' (13.8)

Here, the f; are evaluated at x. If f is any real-valued C* function on M, then the differential of

fo XY =N, x), YA 40 P U C L )|
called a differential field on M, is

df = % (flr(x))) dx' = j—yfk % dx' = (Vf-r,) dx’

—a one-form. Thus, df may be thought of as a mapping from M to 7*(M): we agree that the
evaluation of df at p is the one-form (Vf(p)-r(p)) dx' in T;(M).
Let us now compare the two kinds of fields on M.

Mapping Restricted to U,

vector field V : M— T(M) V=V'E, _
differential field df : M— T*(M) w = (Vf- E;) dx'
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Definition 8: A tensor field of type (i) on a manifold M is a mapping
T : [T*(M)] Q[T(M)]'— C*(R™) taking r differential fields and s vector fields on
M to real-valued C*-functions f on R”™. It is assumed that the evaluation of T at a
point p on M is given by
T, (o). ., 0V, ..., V)=T(w,,...,0;V,, ..., V,)=f(p)
and that each map 7, is multilinear.
EXAMPLE 13.14 (a) At each fixed p on M, the mapping 7, is a tensor [on the vector space

[T;(M)]"®[T,(M)]’, of type (5)], per Definition 2. (b) Any vector field V on M can be interpreted as a
type-(§) tensor field via a mapping T(w) = w(V'); compare Problem 13.20.

Solved Problems

ABSTRACT VECTOR SPACES AND THE GROUP CONCEPT
13.1 (a) Show that the set of polynomials
p(t) =1+t p(t)=t+ £ ps(t) = £+ pi(t) = £ -1

is a basis for the vector space P’ (polynomials of degree =3). (b) Find the components of the
polynomial p(z) = ¢ relative to this basis.

(a) Since the dimension of P’ is 4 and there are 4 vectors, it suffices to show they are linearly
independent. Suppose that, for all ¢,

MA+)+ A+ )+ 13+ )+ A E-1)=0
or A=A 1+ A+ A+ A+ )+ (A +AHE =0
Since this is an identity, we must have
0=A"= A =A"+ A=A+ =27+ "

Thus A'=A*% A'=—=A%=23; so the last equation gives A+ A'=0o0r A'=0, and all A’ vanish,
thus proving linear independence.

(b) To find the linear combination yielding p(¢) = ¢°, write
NA+ )+ A+ )+ 2A°E+ )+ 2 E -1 =7
ie. A =AY 1+ A+ A+ AP+ A+ (AP +H A -1 =0
or A=At AT === AT+ -1=0
Hence, A'=—A*=A>=21*=1/2. '

13.2  (a) Model the 4-group by manipulating an ordinary 83 by 11 sheet of paper, in the following
way: Let s be the operation of turning the sheet over sideways (as in a book) and setting it on
its original location; u, the operation of turning the sheet upside down (end-for-end); b, both
operations (s followed by u, resulting in a 180° rotation of the page, face up); and e, doing
nothing (identity). Interpret the group operation (multiplication) as one operation followed by
another (thus, for example, by the above definitions, b = su, reading from left to right). (b)
Show that the 4-group cannot be isomorphic to the cyclic group on four elements, C*,
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13.3

(a) This is one of those problems in mathematics that is best handled without formulas or equations.
By simple observation, the operation us also results in a 180° rotation; hence, b = su = us. It is also
clear that if we apply s twice, or u twice, the sheet is left in its original state; s* = u”> = e. Next,
observe that the associative law is valid, so long as we keep the order of the operations intact. It
follows that

b* = (su)(us) =s(u)’s=s"=e

When we multiply all the group elements by b, we obtain:
be=>b bb=¢e bu=(su)u=su’=s bs = (su)s = (us)s=u

Hence, the multiplication table for this group may be displayed and may be seen to coincide with
that for the 4-group:

. | e s u b
el e s u b
s| s e b u
ut u b e s
bl b u s e

(b) For the cyclic group, {e, z, 2%, z°}, with z* = e for some z, we could not have z* = e, which is the
characteristic property of all elements of the 4-group.

The simple Lorentz group can be studied by compressing the 4 X 4 matrices down to 2 X 2
matrices:

a b 0 0

b a 00 a b

0010 _)[b a] (= b*=1)
0001

Show explicitly that all real 2 X 2 matrices of the above form constitute an abelian group (the
group L(2)) under matrix multiplication, and that L(2) is a subgroup of the following two
larger groups:

b
d

SU(2) : matrices of the form I:z Z], ad —bc=1

GL(2,R) : matrices of the form [Z ], ad # bc

Since for a matrix in L(2),
ad—bc=a>—b*=1

all such matrices belong to SU(2), which, in turn, is a subgroup of GL(2,R). Now verify the group
properties:

(1) uv belongs to the group for all u, v.

_[a b _[ec d]
It A_[b a] B_[d c
_[a b[c d]_Tac+bd ad+bc}= b y]
then AB—[b a][d c]_[bc-i-ad bd + ac _[y x
and ¥ — y* = det AB = (det A)(det B) = (1)(1) = 1

(2) (uv)w = u(vw). Yes: matrix multiplication is associative.
(3) For some e and all u, eu = ue = u. Yes: the identity matrix has 1> —0> =1, so is a member of L(2).

(4) Given u, u”'u=uu"" = e for some u".

R R I B ]
b a T2-p2l-b  a. -b a

which is in L(2).
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(5) uv=vu (abelian group).

SV

[ca+db cb-I—da]:[x }’]:AB

da+cb db+ca y x

VECTOR SPACE CONCEPTS

13.4 (a) Show that the space P of all real-valued polynomials in a real variable x is infinite-

13.5

dimensional. (b) Conclude that C*(R) is infinite-dimensional.

(a) Suppose that P had the finite basis {p,, p,,..., p,}. Then, for any real polynomial p(x), there
exist constants a,, ..., a, such that
a,p,(x) + a(x) + - +a,p,(x) = px) (1)
Write (1) for the n+ 1 values x, <x, <---<x,,, as a matrix equation:
pi(xy) pa(xy) pa(x1) p(xy)
R P I e R B @
Pr(*,11) P2(*,14) Pa(Xui) ] LPxes)

n+1

The column vectors on the left are elements of R"" ', and as there are r of them, they do not span
R""" (see Problem 13.5). To finish the proof, we have only to choose a vector on the right of (2)
that is not in the span of those on the left—say, (z,,z,,...,2,,,)—and then to exhibit a
polynomial p that takes on those values at x,,x,,...,x,.,. The polynomial provided by
Lagrange’s interpolation formula does the job.

(b) For any k, the vector space C*(R) contains the infinite-dimensional subspace P; thus, it too is
infinite-dimensional.

The set S of all linear combinations of a fixed set of n vectors, {b,,b,,...,b,}, is called the
span of the given vectors; it is obviously a vector space. Prove that this space has dimension
m = n, with equality if and only if the given vectors are linearly independent.

First we show that any n + 1 vectors in S are linearly dependent. Suppose, on the contrary, that
{u,,u,,...,u, ,} are linearly independent. Then, because the sequence of vectors

u b, b, ... b

n

is necessarily dependent, the well-known exchange lemma tells us that a sequence

u b, ...b_, b b

ji—1 Bj+1 oo By

also spans S. Repeating the argument n» — 1 times, we arrive at the result that the vectors
u, U, ;, ... u, u

span S, making u,,, dependent on them—a contradiction.

If, therefore, {b,} is linearly independent, it constitutes a basis for S, and m = n. On the other
hand, if only m < n of the b, are linearly independent, the above argument shows that any basis consists
of exactly m vectors.

DUAL SPACE
13.6 Prove Theorem 13.1.

It is almost trivial that any two vector spaces of dimension # are isomorphic [if {b{"} and {b{*} are
bases, set up the correspondence v'b{"” < v'b™®]. Thus it is necessary to prove only that V* is
n-dimensional if V is; in other words, to prove that the set of vectors {B'} defined by (13.4) (i) is
linearly independent and (ii) has V* as its span. (Problem 13.5 will then immediately yield Theorem
13.1)
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Proof of (i): By (13.5),for j=1,2,...,n,
AB(W)=0 — AB(b)=0 — A8;=0 — A,=0
Proof of (ii): 1If B(v) is an arbitrary element of V*, then, by (13.4b),
B(¥) =B(v'b,) =B(b,) v' = B(b,) B'(V)

that is, B is a linear combination of the B

13.7 Prove the inverse relation between the matrices A and A of (13.6).

By definition b, = A’b and B’ = A’ B*, so look at (13.5): B’(b,)=8!. By the algebra of mappings
and the fact that each B’ and B* is linear, we have

=B/(b,) = (A/B")(b,) = A/B“(b,) = A/B"(A}b,)
_AkAiB (br) Alk isr_A]kAi

that is, AA = 1.

TENSORS ON VECTOR SPACES

13.8 Which of the following represent linear mappings of (R*)* (taking the one-forms on R’ into
the reals), and so constitute (contravariant) tensors of type (§)?

(@) T(a, dx' + a,dx’ + a,dx’)=a,a,a, (b) T(a,dx")=a,—a,
(¢) T(a,dx)=1 (d) T(a,dx')=0
(b) and (d)—the only linear mappings.

13.9 Associated with a particular basis {b;} of a vector space of dimension n, we are given some set
of numbers {C}/; i, j,k=1,...,n}. Then we define another set of numbers (and assume a
similar definition for all changes of bases), {C}; i, j,k=1,...,n}, such that

Cl=AALACY
and call these numbers the components of the “tensor” C on the new basis {b,}. Show that
this “tensor” is indeed a tensor per Definition 2.

We have only to define the functional
T(w,, 0,;v) = T(a,p’, b,p’; v*b,) = a,b,Civ"
which, by inspection, is a type (}) tensor. We have:

TV =T(B', B’;b,) = T(5'B", 6B°; 8b,) = 6:8/C°8, = C}

ros e

TV =T(B', B’;b,) = T(AIB, A/B*; Ab,) = A,AiAkT(B , B b,)=ALALAC=C]

which show that T and C coincide in all coordinate systems.

13.10 In terms of the components g, of a metric tensor G(u, v), show that:

(a) G is symmetric if and only if g, = g, for all i, j.
(b) G is nonsingular if and only if |g,|#0.
(c) G is positive definite if, for all vectors (u' ) #0, giu w0 and g, >0.

By Section 13.5, g, = G(b
two vectors in V,

:»b,) where {b,} is some basis for V. Then, if u=u ‘b, and v = v'b, are any

G(u,v)=u U]G(bl, J) g”u ‘v’
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(@) G(u,v)= G(v,u), for all u,v, if and only if
) gijuivj = gijuiuj = gj,.uivj or (g;— gii)uivf =0

for all real u', v/, which is true if and only if g, = g;;.

(p) In matrix form, the nonsingularity criterion reads:
[u'Gv=0, forallu] — v=0
But u”Gv vanishes for all u if and only if Gu is the zero vector. Hence the criterion takes the form
Gv=0 — v=0

which defines G as a nonsingular matrix (a matrix with nonvanishing determinant).

(¢) For each fixed u and a scalar parameter A, we have
g, (u' + Ab)(u’ + Ab]) = g, (u' + A87)(u’ + A8]) = G(u, w) + bA + g, A* = P(})

where b= (g,; + gjl)u’. If u is not in the span of b, the quadratic form is, by hypothesis, nonzero.
Hence, the discriminant of P(A) is negative:
2

4g,,

b*> —4g,,G(u,u) <0 or G(u, u) > =0

It only remains to note that if u=«b, (x #0), then G(u, u) = k°g,,, which is again positive.

13.11 Show that positive-definiteness of a type-(3) tensor G implies its nonsingularity.

If G(u, v) =0 for all u and some v, then G(v, v) =0; and so, by positive-definiteness, v=_0.

13.12 A covariant tensor A(u, v) is antisymmetric if and only if A(u, v) = — A(v, u), for all u, v. Show
that a criterion for antisymmetry is:

A(u,u)=0 (all u)
By bilinearity,
A@u+v,u+v)= A, u)+ A(u, v)+ A(v,u) + A(v,v)
Thus, if A(a, u)=0 for all u,
0=0+ A(u,v)+ A(v,u)+0 or Au,v)=—A(v,u)

Conversely, suppose A(u, v) = — A(v, u), for all u and v. Then, with u=v, we have A(u, u) = — A(u, u),
or A(u,u)=0.

MANIFOLDS

13.13 (a) Show that the 1-sphere S' (a circle in R®) can be made into a C” 1-manifold by
constructing an atlas with two charts. (b) Show that a one-chart atlas does not exist [thus, a
circle is not homeomorphic to a line or interval].

(a) The standard parameterization of the circle,

1
-1 _ Jy =acos@
A {y2=asin0 (0=6<2m)

is insufficient, since the inverse map ¢ is discontinuous at point p (Fig. 13-6). But if we define

1 1 1 1
o [y'=acosx " - y' =acosx .
: . —r<x < : .
®p {y2=asmxl (C7<x <m) ®q {y2=asmx1 (0<x <2m)

then (8' —gq, ¢,) and (8" -p, @,) will constitute an atlas. Since there are no ‘singular’ points
involved, it is clear that ¢,, ¢, and their inverses are C”.
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\
£ £ ) ) x!
- 0 T 27
Fig. 13-6

(b) Suppose (U, ¢) covered ' (U=S") and ¢ mapped S to the real line (x'), with both ¢ and ¢ '
continuous. It is not too difficult to see that ¢ maps the circle to a closed interval I: for continuous
maps take bounded, closed sets to bounded, closed sets, and connected sets to connected sets; and
the only bounded, closed, connected subsets of the real line are closed finite intervals. For any
point P on the circle let P’ be its diametrically opposite point. The map g(¢£) = ¢[(¢ ~'(£))] takes a
real number ¢ in I, maps it to a unique point P on S', goes to the (unique) diametrically opposite
point P’, and returns to a unique real number ¢’ in I it is thus a continuous map from I to I. As
such, it must (by a familiar theorem of analysis) have a fixed point:

g(t,)=1t, for some ¢, in I

But this means that ¢ sends some pair of diametrically opposite points on S' to the same real
number, denying one-oneness of ¢.

13.14 A manifold in R* is defined by the charts (k=...,-2,-1,0,1,2,...;x' >0)
yl—x cosx cosx
. y2—x cos x° sin x° w 3 m
4

y —a(x +x)

(a) Show that on each coordinate patch, the mappmg I, is one-to-one; hence, ¢y,
r(k) : U(k)—>R exists. (b) Show that both ¢, and go(k) are continuous. (¢) Show that the
manifold is generated by a line in R* movmg along an axis orthogonal to 1t with the axis, in
turn, orthogonal to the hyperplane y*=0 (use vector geometry in R*). Verify that the
parameter x' measures the distance from a given point on the manifold to the axis. (d) Show
that the parametric section x> = 0 is a right helicoid (Example 10.4), lying in the hyperplane
y* =0 (R? coordinatized by y', y°, y*).

(a) Assume that r,(x) =1, (u'); we want to show that (x, x°, ) = (u', u’, u*). Now,

x' cos x* cos x* = u' cos u® cos u’

3 3
. . — tanx =tanu
x* cos x* sin x* = u' cos u” sin u® }

But, for U, the argument of the tangent function is restricted to a range of 7 units; so =0’ Tt
follows that

ax*+x)=a(® +u’) — F*=u

. . . . 1 1
Finally, from x'sin x> = &' sin 4>, we obtain x' = u'.
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(b) From the form of ¢, =r,, this function is C”. To solve for (x') in terms of (y) (to find @),
write

() + () + () = (x")*(cos” x*)(cos” x* + sin® x°) + (x')*(sin® x*) = (x")*

or x' =V(y)* + (») + (¥*)* (since x' >0). Then

3 3
.2 y
sinx” ===
XNV G
or, for a suitable branch of the function sin™',

x%mn%VwT+éW+UW>

It is seen that

=V + O+ )

f:mﬁ(Wff+$W+uW>

Py -

Y ( y )
a VO + O+ ()
is continuous (in fact, C7).

(c) The axis orthogonal to y* =0 is the vector e, in R*. At the point y* = a(x* + x’) = const. on the
manifold, we have (with x% x* constants and x' = f)

3 2 . .
y' = tcos x” cos x y?=tcosx’sinx’  y’=tsinx®*  y*=const.

—a straight line with direction vector orthogonal to e,. A previous calculation gives the distance
from (y', ¥% y°, y*) on M to (0,0, 0, a(x* + x*)) as

VO + (P +(y7) =x

(d) Set x’=0 and the map reduces to

y'=x'cosx®> y’=0 y'=x'sinx® y'=ax’

13.15 Derive the charts of Example 13.11(a), using stereographic projection (Fig. 13-7).

As P is a “convex” combination of Q and N,

(% ¥ ¥*) = A", 2% 0) + (1 - 2)(0,0, a) (1)
Y3
N(0,0,
~N
_____ D
N \
______ NP ¥ )
- — k&\ YZ
\ \\
\\ // o(x', x2, 0)

Fig. 13-7
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To determine A (A >0), write
@ = (') + () + () = (A + (A +[(1 - Ma)?
and solve, obtaining
Amo 2
@'Y+ @)Y +a’
[Note that A is less than or greater than 1 according as P lies in the northern or southern hemisphere;

A #0, so this patch omits the north pole.] Together, (1) and (2) yield the chart ¢ = +1; the chart ¢ = —1
is obtained by changing a to —a in the above (stereographic projection from the south pole).

(2)

VECTOR FIELDS ON MANIFOLDS

13.16 The hyperboloid of one sheet 4(y')* +4(y*)*~ (y*)’ =16 is a C* 2-manifold M, by the
coordinatization (k =1, 2)

y1 =2cos x' cosh x*
40(7(1) : {y>=2sinx' cosh x* ((k—2)77<x1<k7r)
y3 =4 sinh x*
“{ith Uy =U,and p=(2,0,0), Uy,, =U_and g = (-2, 0, 0). Represent the vector field on M
given by
(V') = (4 sinh x* 4 cosh x%)

in terms of (a) a vector basis for the tangent space T,(M), and (b) extrinsically. (c) Describe
this field geometrically.

(a) By the usual tools of surface theory (Section 10.5):

r=(2cos x' cosh x*, 2 sin x' cosh x?, 4 sinh x?)
E, =r, = (-2sin x" cosh x° 2 cos x" cosh x> 0)
E, =r, =(2cos x' sinh x% 2 sin x" sinh x> 4 cosh x?)
V=V'E, = (-8sin x" sinh x” cosh x* 8 cos x' sinh x* cosh x> 0)
+ (8 cos x' sinh x* cosh x% 8 sin x' sinh x? cosh x°, 16 cosh? x%)
= (4(cos x" — sin x") sinh 2x”, 4(cos x* + sin x") sinh 2x% 16 cosh® x°)

(b) From the equations for y', y? y* we may calculate:
3

1
cosh x* = 3 V'Y + (y°) sinhx?= >y

1 2

Y Y

Y/ ey oy g oY Oy

N

so that
El = (_y27 yls 0)
1.3 2.3
yy Yy N2 272
E=( , VO T )
COVOY 0 2VGY ()
V=02V + (5 ‘
V=VE ==y, ¥y’ 0)+ (y'y yy% 4(0') +4(»°))
=’ =y, Y+, (5°) +16)
(using the equation of the hyperboloid). Hence, in terms of the coordinates ),

V=0o=y(y' =y dy' + y’(y' +y>)dy’ + [(y*)* + 16] dy®
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(c) See Fig. 13-8 and note that the first component is zero in the plane y' = y®. Hence, along the curve
of intersection, the field is always parallel to the y’y’-plane. Similarly, along y' = —y’, the field is
parallel to the y'y*-plane. On the circle y* =0 the field is (0,0, 16), or vertical. Since the third
component is =16, there is always a vertical component.

Fig. 13-8

13.17 Show that the restrictions of (a) oy, =y'dy’ — y>dy' and (b) 0, = (Y —y)dy' — (Y +
y)dy? + (y' +y?) dy’ to the sphere (y')° + (%)’ + (y*)’ = a® are vector fields. (See Fig.
13-9 for a graph of selected values of ,.) By the well-known ‘‘Hairy-Ball Theorem” (every
head of hair has a cowlick), every continuous vector field on S’ (and also on S, for all even
integers n) is zero at some point on the sphere. In fact, the field must vanish at some point of
an arbitrarily selected, open hemisphere. (¢) Find the zero points explicitly.
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13.18

(a) The normal vector to 8% is w =2y' dy' + 2y* dy* + 2y’ dy’ and

05 0=y + (D) + Oy =0

1
(b) 75 0= = Y)Y = IO YY)
=y1y2 _ y1y3 . ylyz _ y2y3 + y1y3 + yzy3 =0
() Ifo,=0, —y*=y'=0and 0°=0>+(y’)’ = a’, or y* = =a. Thus, the zero points are (0,0, £a).
For 0,=0,
VoY= tyi=yleyi=0 - yl=yi=—y!

and (')’ + () + (¥’ =a’>=3(y")? or y' = +a/V3. Hence, the zero points are *(a/V3,
—alV3, —alV3).

Consider a manifold whose coordinatization is not easily determined (SO(n), of Example
13.2(e), is such a manifold in R" ) for which, therefore, base vectors r; = E, for T,(M) are
unavailable. Develop a reasonable definition of 7,(M) in this situation, whlch possesses the
salient properties of a “tangent space” at point p.

To get an idea of what may be desirable, examine the case when the vectors r,r,,...,r, are
available. Each tangent vector has the form V'=V'r,, and when V is the tangent vector of a curve € on
M—the image of €’ : x'=x'(¢) in the coordinate space R"—then

dx' . dx
V= PR or Vi= a
Thus (V') is a direction vector. Recall that
r=r(x’, ..., x")=r(y'(x} ..., x"), Y (x'. .., x"), ., YT X))
J 1 2 m
whence ri=< yiaz}%‘-7~-',i}i_i—>
dx =~ ox Ix

Thus when we write V'r, we are actually indicating the m directional derivatives
. l}‘yj . A
Vi—=W .V 1=j=m
o =V (I=j=m)

with each y/(x',x%, ..., x") a C” real-valued function (defined on M if we identify the points of M with
their coordinates (x') in R™). It is customary to let the directional derivative of a functionf : R*—Rin
the direction V' be denoted

V(f)=Vf+V

Thus, each vector V maps a differentiable, real-valued function f to its directional derivative in the
direction V. The properties of this mapping are immediate: If f and g denote any two differentiable
functions from M to R, with fg denoting the ordinary product of two functions, and if a and b are two
scalar constants, then

linearity V(af +bg)=aV(f) + bV(g)
Leibniz’ rule V(fo)=V(fg + fV(g)
With this in mind, and armed with the knowledge that the directional derivatives of all functions on

M would be enough information to construct the basis {r,} when r is known, we frame

Definition 9: By C”(p) will be understood the real-valued C* functions on U,, such that any two
functions that agree on some neighborhood of p are identified.

Definition 10: The tangent space T,(M) at p is the set of all mappings V, : C”(p)— R that satisfy for
all @, b in R and f, g in C”(p) the two conditions
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(i) V,(af +bg)=aV,(f) + bV,(8)
(i) V,(f=V,(f)g + fV,(2)
with the vector-space operations in T,(M) defined by
(U, +V,)(N=U,())+V,(f)
(aV,)(f) =aV,(f)

Any V, in T,(M) will be called a tangent vector to M at p. This definition has the advantage not only
of dispensing with coordinates, but of enabling one to extend naturally a mapping F : M—N (from
one manifold to another) to a mapping F, : T,(M)— T,.(N) at each point p in M, where p’ = F(p).
Such an extension cannot be accomplished using the more elementary definition.

Remark 2: The vectors of T,(M) as originally defined, if regarded as mappings on C”( p), are members
of the abstract T,(M) (Definition 10). In more advanced treatments it is shown that the
reverse is true and that dim 7,(M)=dimM = n. Hence, the two approaches to tangent
spaces are equivalent.

TENSOR FIELDS

13.19 Show that tensor fields always have the property of being bilinear with respect to scalar
functions (as well as to scalar constants), unlike differential operators.

We must show that for any scalar function f on M and any tensor 7 of type (?),
TV, oo s fV, . V)=fT(V,,...,V,..., V)
This is true, since it is true at each point p of M:

T,(Vieeo oo [V V=TV (Wi oo V) = (D) TV o+ Vi, V)
=fT,(Vys... V..., V)

13.20 Show how to interpret the tangent vector to a curve on a surface S as a (contravariant) tensor
of type ().
Let ¢ =c(¢) be a given curve on M =S, with
de _ dy dx'

c*(t): Z - axi dt

Define for any one-form @ = a, dz' the linear mapping from 7*(M) to R:

_dx (dx)
Tw)=a G =elg
Under the standard basis {dz', dz° ..., dz"} of T;(M), and with o =dz’ = 3; dz’,
. N dxdx
T'=T(dz)=8] - =

(We saw earlier that the dx”/dt were contravariant components.)
13.21 Show how to interpret the gradient of a function as a tensor of type (7).
Let f have gradient Vf= (Jf/dx’). Define the linear mapping
V)=V’ a—f, (a—fl ﬁxed)
ox ax
Use the basis {E,, E,, ..., E,} for T,(M); then with V=E,=6/E,,
of _ of

T.=T(E)=8§ =L =
;= T(E) foxt T ax
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13.22

13.23

13.24

13.25

13.26

13.27

13.28

13.29

13.30

13.31

13.32

13.33

Supplementary Problems

The set of all 2 X 2 matrices of the form
[:1 0]
0 =1
where all possible combinations of signs are taken, forms a four-element subset of GL(2,R). Is it a

subgroup?

Prove that SU(n), the set of all n X n matrices over the complex numbers having determinant +1, is a
subgroup of GL(#n, C). [Hint: det AB = (det A)(det B) holds for complex matrices.]

Show that the operator L(f) = J, f(x) dx is a linear functional over the set of continuous, real-valued
functions on [0, 1].

In terms of the standard basis {dx'} of (R*)*, a new basis is defined by
B'=dx' — 2dx’ B>=2dx' + dx’ B’ =dx' +dx’

Find the corresponding dual basis {b,} for R’ in terms of (e,), using (13.6). Check your answer by
making several calculations of the form w(v) = @(?) (a change of basis does not affect the value a linear
functional assigns to a vector).

Consider a tensor T(w;v) over a vector space of dimension # and its dual, with components T (a)
Show that the trace 7(T) = T, is invariant under changes of bases. (b) Find (T) for the tensor deﬁned
by T(w; v) = w(v).

Show that every metric tensor G induces a one-to-one mapping (which is an isomorphism, since it is
linear) G : V—V* from a vector space to its dual, under the definition: For each fixed u in V, let G(u)
be the linear functional G(u)(v) = G(u,v), for all v in V. This proves for vector spaces of arbitrary
dimension:

Theorem 13.3: 1If V possesses a metric tensor, then V is isomorphic to its dual V*.

Find a convenient atlas showing that the set in R* given by the equation
OO+ - =

can be made into a C” 3-manifold. [Hint: Use radicals, as in Example 13.11(b); here, 6 charts will
suffice.]

Show that the restriction of o =y'dy’ — y*dy' + y’>dy* — y*dy’ on R* to the sphere S°
nonzero vector field on S>

Extend Problem 13.29 to the sphere §** ' (k=2).

Show that if there are only two points, p, and p,, on S” where a vector field is zero, those points must be
antipodal (endpoints of a diameter).

Show, by geometric reasoning, that there exists a continuous, nonzero vector field on the torus.

Show that the restrictions of the following one-forms to 8% (y')>+ -+ (y°)’ =1, are vector fields on
S$% and find the points where they are zero:

(a) a-=y2 dyl _ yl dy2 + y4 dy3 _ y3 dy4
(b) 0_:(yz_y3_y4) dyl + (y3_y1)dy2 + (yl_y2+y5) dy3 + yl dy4 _ y3 dyS



13.35

13.36

13.37

TENSOR FIELDS ON MANIFOLDS [CHAP. 13

Although no nonvanishing continuous vector field exists on the 2-sphere S’ there are three, mutually
orthogonal, unit vector fields on S® CR* These are, in the extrinsic representation of S?,

g ==y dyl + Y dy + yidy -y dy'
o, ==y dy' = y'dy’ +y' dy’ + ydy
oy =—ytdy' + Y dy -y dy’ + y'dy'
Show this. [Note: Manifolds with such vector-field bases are called parallelizable. The manifolds s', 8%

S”— and no other n-spheres—and the torus are examples.]

Without resorting to coordinate patches, express extrinsically the collection of tangent spaces (M), if M
is the hyperboloid of one sheet (y')* —4(y*)" +4(y’)" = 4.

For the manifold M of Problem 13.35, consider the coordinate patch
y1=x1 y2=x2 y3=\/1—(x1/2)2+(x2)2

valid for y*>0. Find an expression for an arbitrary vector in T,(M).

One way to show that two surfaces meet at right angles is to show that along the curve of intersection the
normal vector to one lies in the tangent space of the other. Illustrate this idea for the sphere
(y*)? + (y*)* + (¥*)* =16 and the cone (y*)*=9(y")" +%( y*)’, the latter coordinatized by

y1=x1 y2=x2 )’3:3 (x1)2+(x2)2



Answers to Supplementary Problems

CHAPTER 1

115 ab, ta,b,+ab;+ab, +abs+ab,

1.16 R;kl + R?kz + R:;kfi + R‘;m. The index i is a dummy index, while j and k are free indices; there are 16
summations.
1.17 x;

i
118 (a) n; (b) 8,8,=8,=n;(c) ,c;,=c,=c, Tt c,tey+--+c,,
1.19 a,b, (n=3)

1.20 axx; (n=3)

1.21 y,=cx; (n=2)

1.22 a, (k=2,3)

J d
1.23 d_xk (ax;))=a; c?—xk (x,)=a,0, =a,

1.24 a,[(x,)* +2x,x,] [not summed on k]

125 (a, +a, +a,)xx,

1.26 a,, +ta,

1.27 (o) b’}T:’; (b) a;b,,x,; (¢) a,;b,b,b, x xx,

1.28 (¢ aii(x,. + x].) = al.].(ij,. + e,.xj) =a,ex, taex, =a,ex, +a,ex,=2a,¢x;

CHAPTER 2
PRTRNE R
B B T EIRE T 100000
2.24  (a) and (b) 2w B uzs:| (©) B ouR ue (d) |:0 100 0 0}
u31 u32 u33 u34 u35 u41 u42 u43 O 0 1 0 O 0
S u? U
5
1 2 —4
225 o] w33
2.29 (a) 17; (b) 0; (¢) —1
230 (a) —a,,8,0550,, 1 0,,0,,05,0,5 F Q150,,05,0,, ~ 050,305, — 0,505,050, + 0,,0,,4550,,

Gy Gz3 Gy

(b) —a4, 4z, Q33 4y,

=a;,A,,

Ay Qu3 Oy

213
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13 2

- 1
232 (@) [_g ;] (b) ;{1 4 2}
: 3 2 -1

2.33 One need verify only that (i) interchanging a pair of consecutive indices changes the sign of a single
factor in the product; (ii)

M2 =Tl1=1

P>q lp—ql
234 27/3
2.35 One pair are (2,3,0) and (-3, —2,5).
x] [-1
2.36 [y] - [ 5]

237 Q=x]+2x;—x5+8x,x, +6xx,

-3 -1 -4 3
-+ -1 00
— 2
238 A= 10 10
3 0 00
2.39 ¢, =c,b,;, where (b)) = (aij)_l.

240 g,,=13/49,g,,=g,, =4/49, g,,=5/49

241 dX,y)=3=d(x,y)

CHAPTER 3
323 (a) $=-2exp(2x')<0

1 1 -1=2
o-1 . Jx =3ln(x'x°) 1 2
(b) J : {xz___ % In ()EI/)ZZ) (x , X >0)
© jz[l/Zil 1/222}= exp(x' +x°)  exp(x'+x))]"
1/2x" -1/2x7 exp (x' —x°) —exp(x' —x?%)

3.26 Z—g =0, so that f(x, y) = f(r) = f(\Vx* + y?) = g(x* + ).

, 0x' 9x’ _ 9x' ax

3.29 = :
s ax” gx’ ax" gx’

=90

:ﬁ’j

;
3.30 The inverse Jacobian matrix at (1,2) is
=2 =1
solxt x| _[2 1]
7= [ 0 1 ] B [0 1
By Problem 3.14(a), covariance of the matrix
would imply the matrix equation

0
1
0 17 [ 0 2
or [—1 0]‘[—2 o]

which is patently false.
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3.35

3.36
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(a) (T’ + T!) represents a tensor if and only if

ax’ ax* ox’ ox* ax’ ox”
Tr + T: - — = Tr - = + s - =
(T, ) ax" gx! S ax” ox’ " ax’ oxt

which requires that JTJ = JTTJ”. This last relation, in turn, generally requires that J=J"; i.e., J
must be an orthogonal matrix.

(b) T=JTJ, so that 77 =T it j=J7

As T is a tensor (Example 3.4), it is an affine tensor: 7' = a.T". Thus,
dr’ _ , dT’
da ~ Y dr
showing dT/dt also to be an affine tensor. Any affine tensor is a fortiori a cartesian tensor.

(a) i, = (a,u)au,)=a,a,uu =8 uu =uu

ir”is”r”s rsr’s ror

(b) No, because distance and angles are not preserved under arbitrary linear transformations.
Specifically, consider x' =3x", x* = x" + x> A scalar product in (¥') is

u,v, = QBuy, u, tu,) Bu,, v, +v,)=10u,v, + uv, + u,v, + u,v,

This clearly will not coincide with u,v, + w,v,.

CHAPTER 4

4.19

4.23

Write [ST] = (UJ%)). There are (3) ways of choosing locations for the contraction indices « and v among

the contravariant indices, and, for each of these, (3) ways of choosing locations among the covariant
indices. A given quartet of locations can be filled in 2 inequivalent ways. Thus, the desired number is

HEG

First, use the device of Problem 4.11 to establish that T",, UV are tensor components for all (U*) and
(V"); then apply the Quotient Theorem twice.

CHAPTER 5

5.21

5.22

5.23

5.24

5.25

5.26

5.27

5.28

L = amr; semicircle of radius a.
No: 0(1,0,3)=—1.

L=2+e¢

The true distance formula, P, P, = \/(x! — x1)* + (x> — x2)* — 0.2021125(x} — x1)(x* — x2), yields 4.751.
for an error of +0.249.

x>’ X 0
G=|x'x 1+(x") 0
0 0 1
(U)=(0,1,0), (V;) = (x, x', 0)

(@ JU+V|P=U+V)Y=U+V>+20V=||U||> + |[V*|| + 2 ||| ||V]| cos 6
(b) Take 6= 7/2 in (a).

(a) x*=Cexp(—2bx’/a’) (a one-parameter family of spirals on the cylinder x* = a)
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(b) No: the curves of (a) have tangent field V all along their length; but, for orthogonality, it is
necessary only that the tangent at intersections with the pseudo-helix be V. For example, the curve
x*=x>on x' =a is also orthogonal to the pseudo-helix at the point x* = —a”/2b, x> = a*/4b.

529 x'=dexp(—(x*)72) (d = const.)

5.30 f'(6,)g'(8,) = —a’ at intersection points.

5.32 (a) g = AM(a)8’,, which is tantamount to g7 =g, =0 for i # j.
533 ||Vll=1,L=m/2

534 x'=a,x’=bcotx’ + c (c=const.)

CHAPTER 6

—i 1 i i_r i i i
6.19 x'= 5 axx+bx +c (the b’ and ¢’ constants)

_[16(x'y* +1 4x‘—3]
6.20 (a) G—[ Al —3 10

(b) T,,=16x",T,,=4, all others 0
6.22 The values, in (x'), of the 9x"/d%’ are easiest found by inverting J = (9x'/3x’). Final results are:
FL =1‘§2 =1—‘§2 = F;l =1
6.23 From Problem 6.21(b), F;k =0 for j# k; while, for j = k = a (no summation on «),
i _ 0 af') ax"_< af')a_x": ;
Foa = 517 <¢9x°‘ 97~ \da 5y ) g7~ dede

1

626 T, =T,,=T,,=x;T3= I2,=1/x, T}, =-x
a'expx' 2a)exp2i’ 3a)exp3i’

6.27 F=|a*expx' 2aiexp2i’ 3aiexp3i’|=[6exp (¥ +2x°+3%°)]det(a))#0
adexpx’ 2aiexp2i’ 3ajexp3x’

Hence the condition is det (a’) #0.
6.29 %' =Ax'sinx® + Bx'cosx” + C' (i=1,2), with

A' B!
A2 B.’l

1
X

#0

for a bijection.

6.30 No, because of the presence of Christoffel symbols in (6.7).

i

. T )
i — jrs i u u i u i u i
6.31 Tjrs,k = ax* + Fuijr_v - ij T,,— Frijus - rskaru
6.36 «=1/b
d*u  d’v
6.37 — =—=0
(a) ds? ds?

(b) x*=p(x')Y’+gq (atwo-parameter family of “parabolas”)
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3\ 2

(a) d’x’ L2 2 (dx =
— (sinx” cos x7) ﬁ) =0

2
ds
d*’
52

2 d 3
+ (2 cot x%) % d_); =

(b) xzzzll-s =0

(c) The solution (b) represents an arc of a particular great circle (x> + z> = 4 in the usual cartesian
coordinates) on the sphere. By symmetry of the sphere, all great-circular arcs, and only these, will
be geodesics.

CHAPTER 7

7.24

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

7.33

7.34

7.36

7.37

7.38

7.39

_[+1 o<]d=112
711 d>112

t=0,1
L=8V2/3

t=V5/3 [r=0, which makes y=|g,| =0, is disallowed]
L =(64+11V11)/216 = 0.465

0=iln2 at (0,2,0); 6 =cos ' (7/4V11) at (5,2, 3)

(&) L=8(1+3V3)=~49.57
(b) x'=3(os*” +4), x> = (05> +4)*? where

_{—1—1 —8=5>0
7711 0=s5s=24V3

(c) The null points are =0 (s=—8) and t=1 (s =0).
L=8(5V5—-1)=81.44

For s #0, T=(2[s| "’ , Vo +457") and ||IT||? = |- o| = +1
N'=T> N°=T"!

For s # -8, 0,

-2
K= ——F—e—— Ky = |k
3sVas®? +4 o=l
2
Ko = |K| = 3|s|(s2/3 _4)1/2

At the null point (0, 0), both Euclidean and Riemannian absolute curvatures become infinite; but at the
null point (12, 8), only the Riemannian curvature becomes infinite.

(s #8)

T=[1-4¢] "(1,2¢), N=|1—-4e| "*(1,1-2¢), k =21 — 41|72

(@) L=a. (b) L=3a/2. (c) Riemannian: T = |cos 2¢| "*(=cos 1, sin 1), K, = (2/3a)(csc 2t)|cos 27| *'2;

Euclidean: T = (—cos t, sin ¢), k, = (2/3a) csc 2¢

(@) T}, =1/2x", T2, =1/2x> others zero
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CHAPTER 8

8.16

8.22

8.24

8.25

8.26

8.27

8.28

8.29

8.32

8.33

8.35

8.36

By Problem 6.34 and (8.1),
kal - Vflk = gf’(vr,kl - Vr,lk) = g_irRikIVs '
=g"(8.R)V' = (&"R,.)V'= -R,V'
K=1/4(x")
xt+ X2
A(x" Y (1 +2x%)
(©) Upy=-Uuy *+ V0, Vioy = Uy + Vg

(a) and (b)) K=

K=1/d
Basic sets of nonvanishing terms are:

1 . 7 ‘g’ 1 f'n 1 , h? hyg
(A) R1212=_Z<2f _fT_fT)s R1313=_Z f?_’ R2323:_Z<2h - — - g)

and

(A) Gp.=f8 Giss=fh, G,ap3 = gh
so that

R1212W1212 + R1313W1313 + R2323W2323

a) KGx*U,V)=
® ( ) J8Wiso + fAW, 5,5 + AW,

2
(b) R= —fg_h (AR 1, + 8R 315 + fRys03)

—2(In |f')"(W1212 + W,35,) — (In |f|)’2W1313

a) K(&x*U,V)=
(@ KG30.V) FWrps ¥ Wyss + Wy)

3 4f//f_3fl2
) R="

Isotropic points compose the surface x* = e ™>'% over which K = 2¢%27.

K=-1/4

Ry=-1, R, =R, =0, Ry, =sin’x'; R' = —1/a>=R?, R\ =0=R?; R= —2/d°
R, =R,,=R,;=2/(x")’, others 0; R} = R} = R} =2, others 0; R =6
g;=(x")’s, has R=0, K+ 0 (use Problem 8.27).

No implication either way.

CHAPTER 9

9.17

9.20

9.21

9.22

(@) uy==Vx'x*+a  (a=const.); (b) incompatible
flat, non-Euclidean
Euclidean

(++-)
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9.26 With the notation f, = ¢9f/z9xi for any function f:

_ Y 1
i Ly
( ) xl (xl)Z
Yu Lot e L) ,d,(fﬂ oL 904‘1’4) -G?
( 4 +2x1 2x* te 2+4 4 =G
Gt= I ol P _ 1 :I Gl=— —¢/x! G*= “¥ !
4= (xl)z e o (xl)Z 4T TP /X 1= a8 X

CHAPTER 10

10.30 (a) The curve lies on a right circular cylinder of unit radius, beginning at the point (1,0, 1) and rising
in helix fashion, approaching « asymptotic to the vertical line x =cos1, y =sin1i, as t— 1.

1/2 1_[\4
() L=j0 °((1_’) dr ~1.13209039

10.31 16/3

10.32 (a) T=(—(a/c)sin(s/c), (a/c)cos(s/c), b/c). Hence the tangent line, r(¢) =r + (T, has the coordinate
equations
s s at s bs

s at . .
X=acos—- — —sIn - y=as1n—+—cos— z=
c Cc C C C C C

bt
+ _
¢
(b) Q corresponds to t = —s and PQ = ||—sT|| =s.

(¢) The interpretation is that Q can be thought of as the free end of the taut string as it is unwound
from the helix. [The locus of Q, r* =r(s) — sr'(s), is called an involute of the helix.]

T ¢/t .
10.33 T (1+25z8)”2( 5¢1,0)
3./>
10.34 K= 200V2 =0

(1+50¢%)°"?

10.35 Let the curve r =r(s) lie in the plane br = const., where b = const. and ||b|| = 1. Differentiate twice with
respect to s: bT =0 and bT’ = 0; hence, b(kN) =0 or bN = 0. It follows that b =B, the binormal vector,
so that B’ =0 and 7 = —B'N = 0. Conversely, if 7 =0 for a curve r =r(s), then B'=—-7N=0and Bis a
constant unit vector. Define the function Q(s) =B - (r(s) — r(0)); we have

Q' =Br'=BT=0
whence Q = const. = Q(0) = 0. Therefore, the curve lies in the plane

Br = Br(0) = const.

1038 E=|x'|Va’+1=0atx'=0.

10.39 E=4°cosh®x'>0, n= (~cos x% —sin x sinh x")

cosh x'
10.40 L= f 'St 1 ;[9 \/_+ln—(\/—+1)}
10.41 (v, v?) =(V12729,V17/29) or (—V12/29, V17/29)

2x'!
5 ; all others zero

1043 T2, =T = 7(;8)2 o
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Igl/_flfg! 2 fgl 5 5
. N=t2r—(dx') + d
10.44 L8 oy s @)
) _ 4q’ ‘  4a[1+24°(x")]
1046 (a) () K= [1+4a2(x1)z]2 s = [1+4a2(x1)2]3/2
S K= 4q’ H= 4a[l +2a%(%") +2a°(x*)"]
(i) = Tl +4a2(fl)2 +4a2(f2)2]2 > L +4a2(fl)2 +4a2(f2)2]3/2

(b) Consistent with the invariance of K and H, the change of parameters fl=x'cosx’ X°=
+! sin x>—i.e., the transformation from polar to rectangular coordinates in the parameter plane—
takes the forms (i) into the forms (ii).

10.49 (a) r*=(asechx’,0,ax’ — atanh x")

10.50 The two FFFs correspond under the mapping X' = a sinh x', ¥ =x"

CHAPTER 11

11.14 (@) v=V1+ esc't— V2 (b) 4=V1 t desc' tootl t — 1; (¢) maxv=V5, maxa=V17]

(no minima)
11.15 Rectilinear motion [use (11.8) to show that k must vanish].

11.16 From (11.7) and (10.9), a= —«*0’T + kv*N + k70°B.

d’p ) <d0)2 <d¢>2 d’e 2 dp do . (d())z
1 _ _ 2 v _ *¥ 2 — et it S
1117 a (psin” @) T P\ ) @ % + b i di (sin ¢ cos @) )

T ar dr?
d 2 dp de de de
3_ 7 it it __—
e paa " (2c0t ) T &

11.18 Let the center of force be the origin of rectangular coordinates for E°, with the particle’s path given by
r =r(¢). By Newton’s second law, fr= mf, so that

d o (f )_
dt(rXr)—rXr—rx ¥ =0
and r X ¥ = p = const. It follows that p-r=0.

2 2 2
IS NS N SR

11.19 V°
f ar’  r* 4o 9z> r ar

CHAPTER 12

12.34 (a) timelike; (b) spacelike; (c) lightlike

12.35 Yes: travel at 4167 mi/sec < c. Timelike interval.

12.36 Premultiply A’"GA = G by AG, and postmultiply by AT'G.

12.38 (a) t=af, x' = —abet, X’ = —apct, X’ = —agct. (b) a%>0 if ¢ and  have the same sign; that is, if the
clocks of the two observers are both turning clockwise or both counterclockwise.

5 4 4 5
—0_ =2 o_ T 1 =1 _ _* o, 2 1 -2 _ 2 -3 _ .3
12.39 x—3x 3x X 3x+3x X X X X



12.40

12.41

12.42

12.45

12.47

12.48

12.49

12.50

12.52

12.54
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(b) zero
5/4 -3/4 0 0 10 0 0 1 0 0 0
LH— -3/4 5/4 0 0 R = 01 o0 0 R = 0 -2/3 -1/3 2/3
0 0 10 1710 0 4/5 -3/5 210 1/3 2/3  2/3
0 0 01 0 0 3/5 4/5 0 -2/3 2/3 -1/3
v=1(3/5c
_ 2
v=y3¢
v=(4/5)c
Approximately 25% slow.

About 45 years old.
=17 000 mi/sec

For constants F and 4= ﬁ/m, and with F= (ﬁ, 0,0) and v=(v,,0,0), (12.29) becomes identical with
(1) of Problem 12.26.

Since 357/dx' =0= gs’/ax’ (the equation of continuity), (s') may be identified with the vector (%) of
Problem 12.32.

(a) By analogy with the evaluation of e, P,, in Problem 12.53,

0 -9, o, -0, 0 _Hl -H, —H,

* 0 -9 ® * 0 E, —-E, ”
[ eijkl(_q)kl)]44 =l % 003 _ : =1 * 0 3 E; =[F],,

* * * 0 * * % 0

(b) Let (abcd) denote a permutatior of (0123). Then ®,, = —e,, ,F** (no summation) and

90 9Dy 0Dy _ IF IF* aF*
ax° ax ot €abcd 9x° €cabd ax’ €head 9%
aF  gF" 9F* aF"
= T€ibca 3 7+ 7)== 7= 0
x ax ox ax

The second set of equations is derivable directly from (12.45b), the definition of ®, and the fact
that the g, are constants.

CHAPTER 13

13.22  Yes; it is isomorphic to the 4-group.

13.26 (a) By (13.6),

13.27

T:=T(B'b,) = T(AIB’, A'b,) = AJALT(B),b,)y=85T, =T/
(b) «(T)=n

Suppose that G(u,) = G(u,). Then G(u,, v) = G(u,, v), or by symmetry, G(v,u,) = G(v, u,) for all v
By nonsingularity, u; =u,.
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13.28

13.30

13.31

13.32

13.33

13.35

13.36

13.37

ANSWERS TO SUPPLEMENTARY PROBLEMS

y1 =\ﬂ12—(x1)2—(x2)2+(x3)2 y1: _\/az_(xl)z_(xz)2+(x3)2
2 __ .1 2_ .1
y =X - y =x
_ . _ Ll
qppl AL, U,:y >0 <P7:, S U, :y<0
y =x y =x
p=1(a,0,0,0) —-p=(-a,0,0,0)
4_ .3 4_ .3
\y =X i=x
yi=x! y'=x' U, : y’>0
y==Va - - @+ Y yi=x U,y
‘P_I . 3 2 U 2>0 §071 r:(0909a70)
g - =x .y -
q §4:x3 U;q : y2<0 y3=i\ﬂ12—(x1)2—(x2)2+(x3)2 .
\ qg=1(0,a,0,0) Ly =

0'=y2 dyl _ y] dy2+y4 dy3 _ y3 dy“ + yﬁ dys _ ys dy6 + o+ ka dyzk—x _ y2k~1 dyzk

If p, and p, are not antipodal, there exists a closed hemisphere containing neither one, on which the
given (continuous) vector field is nonzero—an impossibility by Problem 13.17(b).

As shown in Fig. 13-10, let a unit tangent vector be constructed to a generating circle; as the circle is
revolved to generate the torus, the tangent vector is obviously propagated continuously to all points of
the torus.

Fig. 13-10

Zero points are: (a) (0,0,0,0, *a); (b) =(0, a/V3,0,a/V3,alV3).

With o =2(y" dy' — 4y* dy> + 4y’ dy’), o =fdy' + gdy’ + hdy’ must be orthogonal to w, for C~
functions f, g, h. Hence,

Yf-4y’g +4y’h =0

Replace f, g by 4y°F, y°G, and solve for k. Similarly, replace g by y'G and h by y, H and solve for f; etc.
All possible tangent vectors are given by one of three distinct types (F, G, H denote arbitrary C”~
functions of y’, y? y*):

(1) o=4y’Fdy' + y’Gdy* + (y°G-y'F) dy’
(2) o=Ay’G-4y°’H)dy' + y'Gdy’ + y'Hdy’
(3) o=4y’Fdy' + (y'F+y’H)dy> + y’"Hdy’
U=Ulr,=QU'W4-(x")" +4(x*),20°V4 - (x')* +4(x*)", —x'U" + 4x°U?)
for any two C™ functions U', U? on (x', x°).

The normal vector to the sphere is represented by o =y' dy' + y*> dy* + y> dy’; the tangent space of
the cone is given by

(U, Uy, Bx'UM + 337U (') + (¢))71?)
Set U'=y' and U*=y>



Absolute derivative, of a tensor, 72
uniqueness of, 72, 80
partial derivative on 2-manifolds, 112

Acceleration, in curvilinear coordinates, 73
nonrelativistic, 169
in rectangular coordinates, 154
relativistic 4-vector, 170

Admissible change of coordinates, 25

Affine coordinates, 12, 23

Affine invariants, 31

Affine tensors, 31

Angle, between curves on a surface, 135
between vectors, 10, 56

Antisymmetry, 9, 204

Arclength, of curves in space, 51, 53, 129
of curves on a surface, 133

Arc-length parameter, 53, 128, 129

Atlas, coordinate patches of, 195
for a sphere, 195, 196

Associated metric (see Conjugate metric tensor)

Associated tensor (see Raising, lowering indices)

Barred, unbarred coordinates, 11
Basis, change of, 30, 193
dual, 192
of R’ 10
standard, 10, 61, 190 (for R™)
of a vector space, 190
Beltrami’s theorem, 138
Bianchi identities:
first, 102, 108
second, 119
Bijection, 12
Bilinear functional, 193
Binormal vector, 129

Cartesian coordinates (rectangular), 13, 23
Cartesian invariants, 31
Cartesian tensor, 31, 32
Catenoid, 145, 153
Cauchy-Schwarz inequality, 57, 63, 83
Central force, 156
gravitational, 157
Chain rule for partial derivatives, 13
Chart, 195
Christoffel symbols, definition, 68, 70
for cylindrical coordinates, 81
for polar coordinates, 70
for spherical coordinates, 69, 75
transformation laws, 69, 71
Circular helix, 141

Index
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Compatibility conditions, for partial differential
equations, 115, 116
for zero curvature, 123
Components:
of vectors, 23
of tensors, 26
physical, 161, 163
Composition of velocities (relativistic), 169
Cone:
circular, 145
light, 164, 165
Conjugate metric tensor, 55
Constant curvature, 138, 153
(See also Zero curvature)
Continuity equation, 173
Contraction, of indices (tensors), 173
of length (relativity), 169
Contravariant:
tensor, 26, 29
vector, 26, 28
Coordinate axes (generat), 66
Coordinate patch (frame), common notation for,
198
for a manifold, 195
for a sphere, 195, 196
Coordinate system:
admissible change of, 25
affine, 13, 23
Cartesian (rectangular), 13, 23
curvilinear, 13, 23
cylindrical, 24
general, 26
normal (geodesic), 117
polar, 23
spherical, 24
transformation of, 25
Coordinates (see Coordinate system)
Coriolis force, 155
Covariant, derivative of a tensor, 71, 72
Covariant tensor, 27, 29
Covariant vector, 27, 28
Cubic curve (twisted cubic), 128
Curl, 157, 158
Curvature:
of a curve, 68, 73, 86, 87, 130 (formula)
Gaussian, 136, 137 (formula)
geodesic, 73
intrinsic (for curve on a surface), 135
invariant (Ricci), 106
and isometry, 138
mean, 136, 137 (formula)
of normal section, 136
Riemannian, 103, 105 (formula)
zero (Riemannian), 114, 116



Cmve:
definition, 127
length of, 51, 53, 85
parameterization by arc length, 53, 128, 129
null, 84
planar, 129
regular, 85
space, 27, 28, 51, 127
on a surface, 132, 135, 136
Curvilinear coordinates, 13, 23
axis of, 66
Cylindrical coordinates, 24, 51
Christoffel symbols for, 81
definition, 24
metric tensor, 51
Cyclic group, 190

Derivative:
absolute, 72

absolute partial derivative on 2-manifolds, 112

covariant, 71, 72
of a determinant, 106
of metric tensor, 78
of tensors, 68, 71, 72, 74 (product rule)
Determinant, of metric tensor, 91
of a square matrix, 9
Differentiability class of a function, 23
Differentiable manifold, 197
Differential fields on a manifold, 199
Differential forms (as linear functionals), 191
Differential geometry, 127
Differentiation (see Derivative)
Dilation of time (relativity), 169
Dimension of space, 190
Directional derivatives (manifolds), 199
Distance formula, 12
(See also Metric, Length)
Divergence, in spherical coordinates, 161
of a tensor, 120, 157
Dot product (see Scalar product)
Dual tangent bundle, 199
Dual tensors (see Raising, lowering indices)
Dual of vector space, 191, 192 (basis)
Dummy index, 1
Dynamics (see Kinematics of a particle)

Eigenvalues and eigenvectors, 122, 150
Einstein:
invariant, 126
and Special Relativity, 164
summation convention, 1
tensor, 119, 120
Elliptical helix, 128
Energy:
Einstein’s equation for, 172
Newtonian concept, 156

INDEX

Energy (continued):
relativistic, 185

Equation of continuity, 173

Equations of Gauss, 137

Euclidean space, 54, 114

Event space, 164

Faraday’s 2-form, 188
Field (see Matrix field; Vector field)
First curvature (see Curvature)
First Fundamental Form, of catenoid, 145
of general surface, 133
of helicoid, 134
of right circular cone, 145
of surface of revolution, 145
Flat space, 116
Flow curves (manifold), 198
Force: .
central, 156, 157
gravitational, 157
Lagrangian formula for, 156
Lorentz (relativistic), 172
Minkowski (relativistic 4-vector), 172
(See also Newton’s second law)
Forms, differential, 191
Four-group, 190
Four-vector (relativity), 169
Frame (of reference):
coordinate, of manifolds, 195
Galilean, 154
inertial, 164
moving, of a curve, 129, 130 (formulas)
moving, of a surface, 133
of observer, in relativity, 164, 166
Free indices, 1, 2
Frenet equations, 86, 87, 130
Functional (linear), 191
Fundamental indicator, 53, 83
Fundamental form or tensor, 54, 83
(See also Metric)

Galilean frame, 154
Gauss:
equation (formula) of, 137
theorem of, 138
Gaussian curvature, 136
Gaussian representation of surfaces, 131
General linear group, 190
Geodesic:
as curve of zero curvature, 73
null, 73, 88, 89
as shortest arc, 88
on a surface, 135
Geodesic coordinates (see Normal coordinates)
Geodesic curvature, 73
Gradient, 157




Group:
cyclic, 190
definition of, 190
four-group, 190
general linear, 190
Lorentz, 166, 176
unitary, 190

Hairy-ball theorem, 208

Helicoid, 134

Helix, 128, 141

Hermitian matrices, 190
Homeomorphism, 190

Hyperbolic motion (relativity), 183

Identity element of group, 190
Identity matrix, 9
Index (indices):
for matrices, 8
notation, 1
range of, 2
tensor notation, 8, 23, 26
Indefinite metric:
Cauchy-Schwarz inequality, 83
definition, 83
indicator of, 53, 83
Indicator, 53, 83
Inertial frames, 164
Inner product, as a contraction, 44
of tensors, 43
of vectors, 55
Inner-product space, 55
Instantaneous rest frame, 171
Intervals in space-time, 165
Integral curves (see Flow curves)
Intrinsic curvature (curves), 135
Intrinsic properties (surfaces), 134
Invariant:
relativistic distance, 165
Ricci curvature, 106
Riemannian curvature, 103
tensor symmetry, 46
zero-order tensor, 44
Inverse, of Jacobian matrix, 26
of a matrix, 9, 10
of a transformation, 25
Involute (of catenary), 153
Isomorphism, 190
Isometry:
between catenoid and helicoid, 153
definition, 138
(See also Curvature)
Isotropic point, 105, 119

Jacobian, 25
Jacobian matrix, 25

INDEX
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Kinematics of a particle, in curvilinear coordinates,
155
in rectangular coordinates, 154
in Special Relativity, 169, 170
Kinetic energy, 156, 172, 185
Kronecker delta, definition, 3
generalized (permutation symbol), 9

Lagrange multiplier method, application of, 150,
175, 185, 188
Lagrange’s identity, 133
Lagrangian form of second law of motion, 156
Laplacian:
in cartesian coordinates, 157
in cylindrical coordinates, 163
relativistic, 173
in spherical coordinates, 161
Length:
of a curve, 51, 53, 85
of interval (relativity), 165
of a vector, 9, 56
(See also Arc length; Contraction)
Light cone, 164, 165
Light velocity, 164
Lightlike interval, 165
Linear:
combination (tensors), 43
combination (vectors), 202
functional, 191
group, 190
independence, 15, 190
transformation, 11
Lorentz force, 172
Lorentz group, 166, 176
Lorentz matrix, 167
simple, 168
Lowering, raising indices, 55

Magnitude of vector (see Length)
Manifold, definition of, 194, 195
differentiable, 197
parallelizable, 212
Mass, relativistic, 171
Matrices, basic definitions involving, 9, 10
Matrix field, 29
Maxwell’s equations, in Newtonian mechanics, 158
in Special Relativity, 173, 185
Mean curvature, 136, 137
Metric (metric tensor):
for affine coordinates, 52
for cylindrical coordinates, 51
determinant of, 91
Euclidean, 26, 51, 54, 114
general, 26, 52, 54, 193
non-Euclidean, 26, 114
for polar coordinates, 51
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Metric (metric tensor) (continued):

for Riemannian geometry, 83
for Special Relativity, 84, 89, 165
for spherical coordinates, 51
Michelson—Morley experiment, 164
Minding’s theorem, 138
Minimal surfaces, 153
Minkowski force (4-vector), 172
Mixed tensor, 29
Momentum:
Newtonian, 156
relativistic, 172

Motion equations (see Kinematics of a particle)
Moving frame (on a curve) 129, 130 (formulas)

Multilinear functional, 193

Natural basis (see Standard basis)
Newtonian mechanics, 154

Newton’s second law, in curvilinear coordinates,

156

in Special Relativity, 172
Non-Euclidean metric, 26, 52, 54
Norm of a vector:

Euclidean length, 9

generalized (Riemannian metric), 56, 63
Normal coordinates, 117
Normal vector, principal, 86, 87, 129
Normed linear space, 56
Null:

curve, 84

geodesic, 88, 89

point of curve, 84

vector, 83

One-form, 191

Order, of differentiation, 101
of a tensor, 29

Orthogonal:
coordinates, 65
families of curves, 57
matrix, 9
trajectories, 57
transformation, 31
vectors, 9

Osculating plane, 129

Outer product, 43

Parallel transport, 135, 149

Parallelizable manifolds, 212

Parametric equations, for curves, 127, 128
for surfaces, 131

Parametric lines, 132

Permutation symbol, 9

Perpendicularity (see Orthogonal)

Physical components, 155, 161, 163

Pitch of helix, 128

INDEX

Planar curve, 129
Polar coordinates, Christoffel symbols for, 70
definition, 23
metric for, 51
Position vector, 28

Positive-definiteness, of bilinear functionals, 193

of inner product, 63

of metric tensor, 52
Principal curvatures, 136
Principal normal (curve), 86, 87, 129
Product:

inner, 43

outer, 43

scalar, 43

of vectors, 10

of vector spaces, 191
Product rule, 74
Proper time, 170
Pseudo-orthogonality (Lorentz matrices), 176
Pythagorean theorem, 66

Quadratic forms, 10
Quotient theorem, 45

Raising, lowering indices, 55
Range of free indices, 2
Rectangular coordinates, 13, 23
Regular curves, 85, 127
Regular surfaces, 131
Relativistic:
acceleration, 170
energy, 172
force, 172
mass, 171
motion, 170
velocity, 170
Relativity, special theory, 164
postulates for, 166
Rest mass, 171
Ricci curvature invariant, 106
Ricci tensor, 106
Riemann, Bernhard, 83
Riemann tensor, 101
Riemann-Christoffel tensor, definition, 101
symmetry properties, 102
Riemannian:
coordinates (see Normal coordinates)
curvature, 103, 105 (formula)
space, 83
Right helicoid, 134

Scalar multiplication, 8, 189

Scalar product (vectors), 9

Schur’s theorem, 119

Schwarz inequality (see Cauchy—Schwarz
inequality)



Schwarzschild metric, 126
Second Fundamental Form, of a cone, 148, 149
definition, 136
of surface of revolution, 152
Second curvature (see Torsion of a curve)
Second law of motion (see Newton’s second law)
Serret—Frenet formulas (see Frenet equations)
Signature of flat metric, 117
Singular point (surface), 131
Simultaneity (relativity), 164, 181
Skew-symmetry (see Antisymmetry)
Space:
of constant curvature, 138
event space (relativity), 169
Euclidean, 54, 114
flat, 116
R", 23
Riemannian, 83
Space components (relativity), 169
Space curve, 127
Space-time, 164
Spacelike interval (relativity), 165
Special theory of relativity (see Relativistic; Re-
lativity)
Sphere, coordinate patches of, 195, 196
Spherical coordinates, Christoffel symbols for, 69,
75
definition, 24
metric for, 51
Standard basis, 10, 18, 30, 61, 190
Stereographic projection, 206
Stress tensor, 30, 31
Subgroup, 190
Subscripts, superscripts (see Index)
Suffix (see Index)
Sum of tensors, 43
Summation convention, 1, 2, 3
Surface, definition of, 131
Surface of revolution, curvature of, 153
First Fundamental Form for, 145
Gaussian form of, 143, 144
Sylvester’s theorem, 117
Symmetry:
of bilinear functionals, 193
of matrices, 9
of tensors, 46

Tangent bundle (manifold), 197, 198, 209
(generalized)
dual, 199
Tangent plane, 133
Tangent vector (curve), 85, 127, 129
as a tensor, 27
Tensor:
cartesian, 31, 32
components of, 26

INDEX
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Tensor (continued):
contravariant, 26, 29
covariant, 27, 29
differentiation of, 68, 71, 74
metric (fundamental), 52, 54
mixed, 29
noncoordinate definition, 193, 200
order of, 29
symmetry of, 106
on vector space, 193
(See also Einstein tensor; Ricci tensor; Riemann

tensor)

Tensor field (manifold), 200

Tests for tensor character, 45

Theorema egregium, 138

Time, absolute, 164

Time component (relativity), 169

Time dilation (relativity), 169

Timelike interval (relativity), 165

Torsion of a curve, 130

Torus, 147

Trace of a matrix, 38

Transformation:
affine, 31
of Christoffel symbols, 69, 71
of coordinates, 23
linear, 11
Lorentz, 167
orthogonal, 9

Tractrix and tractroid, 153

Transpose of a matrix, 9

Triad (see Moving frame)

Triple scalar product, 130

Triple vector product, 41

Twin paradox (relativity), 180

Twisted cubic, 128

Umbilic point (surface), 136
Uniform acceleration (relativity), 171
Unitary group, 190

Vector:
contravariant, 26, 28
covariant, 27, 28
length of, 9, 56
in R”, 8
(See also Position vector)
Vector field, 26
on a manifold, 197, 198
Vector product in R? 10
Vector space, 8
axioms, 189
Velocity:
composition of two velocities. 169
of light, 164
nonrelativistic, 169
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Velocity (continued):

of a particle, 154
relativistic, 170

Wave equation, 157
Weighted tensor, 27

INDEX

Weingarten’s formulas, 137
Work-energy equation, 172

Zero curvature, 114, 115
vanishing Ricci curvature, 116
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