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Preface

This Fourth Edition of Schaum’s Outline of Theory and Problems of Strength

of Materials adheres to the basic plan of the third edition but has several distinctive
features.

1.

Problem solutions are given in both SI (metric) and USCS units.

About fourteen computer programs are offered in either FORTRAN or
BASIC for those types of problems that otherwise involve long, tedious
computation. For example, beam stresses and deflections are readily deter-
mined by the programs given. All of these programs may be utilized on most
PC systems with only modest changes in input format.

The presentation passes from elementary to more complex cases for a variety
of structural elements subject to practical conditions of loading and support.
Generalized treatments, such as elastic energy approaches, as well as plastic
analysis and design are treated in detail.

The author is much indebted to Kathleen Derwin for preparation of most of

the computer programs as well as careful checking of some of the new problems.

WiLLiaM A. NASH
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Chapter 1

Tension and Compression

INTERNAL EFFECTS OF FORCES

In this book we shall be concerncd with what might be called the internal effects of forces acting
on a body. The bodies themselves will no longer be considered to be perfectly rigid as was assumed
in statics: mnstead. the calculation of the deformations of various bodies under a variety of loads will
be one of our primary concerns in the study of strength of materials.

Axially Loaded Bar

The simplest case to consider at the start is that of an initially straight metal bar of constant cross
section, loaded at its ends by a pair of oppositely directed collinear forces coinciding with the
longitudinal axis of the bar and acting through the centroid of each cross section. For static equilibrium
the magnitudes of the forces must be equal. If the forces are directcd away from the bar, the bar is said
to be in tension: if they are directed toward the bar, a state of compression exists. These two conditions
are illustrated in Fig, 1-1.

Under the action of this pair of applied forces, internal resisting forces arc set up within the bar
and their characteristics may be studied by imagining a plane to be passed through the bar anywhere
along its length and oriented perpendicular to the longitudinal axis of the bar. Such a plane is
designated as g-a in Fig. 1-2(a). If for purposes of analysis the portion of the bar to the right of this
plane is considered to be removed. as in Fig. 1-2(b). then it must be replaced by whatever effect it exerts
upon the left portion. By this technique of introducing a cutting plane. the originally internal forces
now become external with respect to the remaining portion of the body. For equilibrium of the portion
to the left this “effect™ must be a horizontal force of magnitude P. However. this force P acting normal
to the cross-section a-a is actually the resultant of distributed forces acting over this cross section in
a direction normal to it.

At this point it is necessary to make some assumption regarding the manner of variation of these
distributed forces, and since the applied force P acts through the centroid it is commonly assumed that
they are uniform across the cross section.

Bar in tensicn (a)
P —_— P
Pl Rl — =
Bar in compresalon (&)

Normal Stress

Instead of speaking of the internal force acting on some small element of area. it is better for
comparative purposes to treat the normal force acting over a unit arca of the cross section. The
mtensity of normal force per unit area is termed the normal stress and is expressed in units of force
per unit area. e.g.. Ib/in’ or N/m”. If the forces applied to the ends of the bar are such that the bar is
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in tension, then tensile stresses are set up in the bar; if the bar is in compression we have compressive
stresses. IU1s essential that the line of action of the applied end forces pass through the centroid of each
cross section of the bar.

Test Specimens

The axial loading shown in Fig. 1-2(a) occurs frequently in structural and machine design problems.
To simulatc this loading in the laboratory, a test specimen is held in the grips of either an electrically
driven gear-type testing machine or a hydraulic machine. Both of these machines are commonly used
in materials testing laboratories for applying axial tension.

In an effort to standardize materials testing techniques the American Society for Testing Materials
(ASTM) has issued specifications that are in common use. Only two of these will be mentioned here,
one for metal plates thicker than 1% in (4.76 mm) and appearing as in Fig. 1-3, the other for metals over
1.5in (38 mm) thick and having the appearance shown in Fig. 1-4. As may be seen from these figures,
the central portion of the specimen is somewhat smaller than the end regions so that failure will not
take place in the gripped portion. The rounded fillets shown are provided so that no stress
concentrations will arise at the transition between the two lateral dimensions. The standard gage length
over which clongations are measured is 8in (203 mm) for the specimen shown in Fig. 1-3 and 2in
(57 mm) for that shown in Fig. 1-4.

The elongations are measured by either mechanical or optical extensometers or by cementing an
electric resistance-type strain gage to the surface of the material. This resistance strain gage consists
of a number of very fine wires oriented in the axial direction of the bar. As the bar elongates, the
electrical resistance of the wires changes and this change of resistance is detected on a Wheatstone
bridge and interpreted as clongation.

g | ™
203 mm L et 51 mmj |

i A = &

Fig. 1-3 Fig. 1-4

Normal Strain

Let us suppose that one of these tension specimens has been placed in a tension-compression
testing machine and tensile forces gradually applied to the ends. The elongation over the gage length
may be measured as indicated above for any predetermined increments of the axial load. From these
values the elongation per unit length, which is termed normal strain and denoted by €, may be found
by dividing the total elongation A by the gage length L, that is, e = A/L. The strain is usually expressed
in units of inches per inch or meters per meter and consequently is dimensionless.

Stress-Strain Curve

As the axial load is gradually increased in increments, the total elongation over the gage length
is measured at each increment of load and this is continued until fracture of the specimen takes place.
Knowing the original cross-sectional area of the test specimen the normal stress. denoted by o, may
be obtained for any value of the axial load by the use of the relation

L
A

o=
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o ¥ B
]
!
P ;‘r
¥ [
0 e ‘l-cIO‘
P Fig. 1-8
3 L
0 -0 i} .
0
Fig. 1-5 Fig. 1-6 Fig. 1-7 Fig. 1-9

where P denotes the axial load in pounds or Newtons and A the original cross-sectional area. Having
obtained numerous pairs of values of normal stress ¢ and normal strain e, the experimental data may
be plotted with these quantities considered as ordinate and abscissa, respectively. This is the
stress-strain curve or diagram of the material for this type of loading. Stress-strain diagrams assume
widely differing forms for various materials. Figure 1-5 is the stress-strain diagram for a medium-carbon
structural steel, Fig. 1-6 is for an alloy steel, and Fig. 1-7 is for hard steels and certain nonferrous alloys.
For nonferrous alloys and cast iron the diagram has the form indicated in Fig. 1-8, while for rubber the
plot of Fig. 1-9 is typical.

Ductile and Brittle Materials

Metallic engineering materials are commonly classed as either ductile or brittle materials. A ductile
material is one having a relatively large tensile strain up to the point of rupture (for example, structural
steel or aluminum) whereas a brittle material has a relatively small strain up to this same point. An
arbitrary strain of 0.05 in/in (or mm/mm) is frequently taken as the dividing line between these two
classes of materials. Cast iron and concrete are examples of brittle materials.

Hooke’s Law

For any material having a stress-strain curve of the form shown in Fig. 1-5, 1-6, or 1-7, it 1s evident
that the relation between stress and strain is linear for comparatively small values of the strain. This
linear relation between elongation and the axial force causing it (since these quantities respectively
differ from the strain or the stress only by a constant factor) was first noticed by Sir Robert Hooke in
1678 and is called Hooke’s law. To describe this initial linear range of action of the material we may
consequently write

o= Fe

where E denotes the slope of the straight-line portion OP of each of the curves in Figs. 1-5, 1-6,
and 1-7.
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Modulus of Elasticity

The quantity E, i.e., the ratio of the unit stress to the unit strain, is the modulus of elasticity of the
material in tension, or, as it is often called, Young's modulus* Values of E for various engineering
materials are tabulated in handbooks. A table for common materials appears at the end of this chapter.
Since the unit strain € is a pure number (being a ratio of two lengths) it is evident that E has the same
units as does the stress, for example Ib/in’, or N/m’. For many common engineering materials the
modulus of elasticity in compression is very nearly equal to that found in tension. It is 1o be carefully
noted that the behavior of materials under load as discussed in this book is restricted (unless otherwise
stated) to the linear region of the stress-strain curve.

MECHANICAL PROPERTIES OF MATERIALS

The stress-strain curve shown in Fig. 1-5 may be used to characterize several strength characteris-
tics of the material. They are:

Proportional Limit

The ordinate of the point P is known as the proportional limit, i.e., the maximum stress that may
be developed during a simple tension test such that the stress is a linear function of strain. For a
material having the stress-strain curve shown in Fig. 1-8 there is no proportional limit.

Elastic Limit

The ordinate of a point almost coincident with P is known as the elastic limit, i.e., the maximum
stress that may be developed during a simple tension test such that there is no permanent or residual
deformation when the load is entirely removed. For many materials the numerical values of the elastic
limit and the proportional limit are almost identical and the terms are sometimes used synonymously.
In those cases where the distinction between the two values is evident the elastic limit is almost always
greater than the proportional limit.

Elastic and Plastic Ranges

That region of the stress-strain curve extending from the origin to the proportional limit is called
the elastic range: that region of the stress-strain curve extending from the proportional limit to the point
of rupture is called the plastic range.

Yield Point

The ordinate of the point Y in Fig. 1-5, denoted by o,,, at which there is an increase in strain with
no increase in stress is known as the yield point of the material. After loading has progressed to the
point Y, yielding is said to take place. Some materials exhibit two points on the stress-strain curve at
which there is an increase of strain without an increase of stress. These are called upper and lower yield
points,

*Thomas Young was an English physicist, born in 1773, who worked in a number of areas such as mechanics, light, and heat
Before Young, historians had been unabie to decipher stone tablets cut or painted in the characters (hieroglyphics) employed
by Egyptians several thousand years p.c. Young, 2 master of eleven languages, was the first to successfully decipher any of the
characters based upon study of the famous Rosetta stone found in 1799. His work, followed by that of Champollion in France,
led 1o complete decipherment of the ancient language.
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Ultimate Strength or Tensile Strength

The ordinate of the point U in Fig. 1-5, the maximum ordinate to the curve, is known either as the
ultimate strength or the tensile strength of the material.

Breaking Strength
The ordinate of the point B in Fig. 1-5 is called the breaking strength of the material.

Mednlus of Resilience

The work done on a unit volume of material, as a simple tensile force is gradually increased from
zero to such a value that the proportional limit of the material is reached, is defined as the modulus
of resilience. This may be calculated as the area under the stress-strain curve from the origin up to the
proportional limit and is represented as the shaded area in Fig. 1-5. The units of this quantity are
in-Ibfin’, or N-m/m?® in the SI system. Thus, resilience of a material is its ability to absorb energy in
the elastic range.

Modulus of Toughness

The work done on a unit volume of material as a simple tensile force is gradually increased from
zero 1o the value causing rupture is defined as the modulus of toughness. This may be calculated as the
entire area under the stress-strain curve from the origin to rupture. Toughness of a material is its ability
to absorb energy in the plastic range of the material.

Percentage Reduction in Area

The decrease in cross-sectional area from the original area upon fracture divided by the original
area and multiplied by 100 is termed percentage reduction in area. It is to be noted that when tensile
forces act upon a bar, the cross-sectional area decreases, but calculations for the normal stress are
usually made upon the basis of the original area. This is the case for the curve shown in Fig. 1-5. As
the strains become increasingly larger it is more important to consider the instantaneous values of the
cross-sectional area (which are decreasing), and if this is done the true stess-strain curve is obtained.
Such a curve has the appearance shown by the dashed line in Fig. 1-5.

Percentage Elongation

The increase in length (of the gage length) after fracture divided by the initial length and multiplied
by 100 is the percentage elongation. Both the percentage reduction in area and the percentage
elongation are considered to be measures of the ducrility of a material.

Working Stress

The above-mentioned strength characteristics may be used to select a working stress. Frequently
such a stress is determined merely by dividing either the stress at yield or the ultimate stress by a
number termed the safety factor. Selection of the safety factor is based upon the designer’s judgment
and experience. Specific safety factors are sometimes specified in design codes.

Strain Hardening

If a ductile material can be stressed considerably beyond the yield point without failure, it is said
to strain-harden. This is true of many structural metals.
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The nonlinear stress-strain curve of a brittle material, shown in Fig, 1-8, characterizes several other
strength measures that cannot be introduced if the stress-strain curve has a linear region. They are:

Yield Strength

The ordinate to the stress-strain curve such that the material has a predetermined permanent
deformation or “set” when the load is removed i1s called the yield strength of the material. The
permanent set is often taken to be either 0.002 or 0.0035 in per in or mm per mm. These values are
of course arbitrary. In Fig. 1-8 a set ¢, is denoted on the strain axis and the line O'Y is drawn parallel
to the initial tangent to the curve. The ordinate of Y represents the yield strength of the material,
sometimes called the proof stress.

Tangent Modulus

The rate of change of stress with respect to strain is known as the tangent moduius of the material.
It is essentially an instantancous modulus given by E, = do/de.

Coefficient of Linear Expansion

This is defined as the change of length per unit length of a straight bar subject to a temperature
change of one degree and is usually denoted by a. The value of this coefficient is independent of the
unit of length but does depend upon the temperature scale used. For example, from Table 1-1 at the
end of this chapter the coefficient for steel is 6.5 % 10 °°F but 12 X 10 °°C. Temperature changes in
a structure give rise to internal stresses, just as do applied loads.

Poisson’s Ratio

When a bar is subject to a simple tensile loading there is an increase in length of the bar in the
direction of the load. but a decrease in the lateral dimensions perpendicular to the load. The ratio of
the strain in the lateral direction to that in the axial direction is defined as Poisson’s ratio. 1t is denoted
in this book by the Greek letter u. For most metals it lies in the range 0.25 to 0.35. For cork, p is very
nearly zero. One new and unique material, so far of interest only in laboratory investigations, actually
has a negative value of Poisson’s ratio; i.e., if stretched in one direction it expands in every other
direction. See Problems 1.19 through 1.24.

General Form of Hooke’s Law

The simple form of Hooke's law has been given for axial tension when the loading is entirely along
one straight line, i.e.. uniaxial. Only the deformation in the direction of the load was considered and
it was given by

a
E

€=

In the more general case an element of material is subject to three mutually perpendicular normal
stresses oy, 0,, 0., which are accompanied by the strains €., €, €., respectively. By superposing the strain

components arising from lateral contraction due to Poisson’s effect upon the direct strains we obtain
the general statement of Hooke’s law:

1

€ = '—i—E[O'\ G 0':)] € = E[‘T\ - o + U‘H €. = %{0’: —plo- + ‘Tb‘]]

See Problems 1.20 and 1.23.
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Specific Strength

This quantity is defined as the ratio of the ultimate (or tensile) strength to specific weight, i.e.,
weight per unit volume. Thus, in the USCS system, we have

b /b
i/ "

and, in the SI system, we have

so that in either system specific strength has units of length. This parameter is useful for comparisons
of material efficiencies. See Problem 1.25.

Specific Modulus

This quantity is defined as the ratio of the Young’s modulus to specific weight. Substitution of units
indicates that specific modulus has physical units of length in either the USCS or SI systems. See
Problem 1.25.

DYNAMIC EFFECTS

In determination of mechanical properties of a material through a tension or compression test. the
rate at which loading is applied sometimes has a significant influence upon the results. In general,
ductile materials exhibit the greatest sensitivity to variations in loading rate, whereas the effect of
testing speed on brittle materials, such as cast iron, has been found to be negligible. In the case of mild
steel, a ductile material, it has been found that the yield point may be increased as much as 170 percent
by extremely rapid application of axial force. It is of interest to note, however, that for this case the
total elongation remains unchanged from that found for slower loadings.

CLASSIFICATION OF MATERIALS

Up to now, this entire discussion has been based upon the assumptions that two characteristics
prevail in the material. They are that we have

A homogeneous material, one with the same elastic properties (£, u) at all points in the body

An isotropic material, one having the same elastic properties in all directions at any one point of
the body.

Not all materials are isotropic. If a material does not possess any kind of elastic symmetry it is
called anisotropic, or sometimes aeolotropic. Instead of having two independent elastic constants (E, u)
as an isotropic material does, such a substance has 21 elastic constants. If the material has three
mutually perpendicular planes of elastic symmetry it is said to be orthotropic. The number of
independent constants is nine in this case. Modern filamentary reinforced composite materials, such as
shown in Fig. 1-10, are excellent examples of anisotropic substances.
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Fig. 1-10 (a) Epoxy bar reinforced by fine filaments in one direction; (b) cpoxy plate reinforced by fine filaments
in two directions.

ELASTIC VERSUS PLASTIC ANALYSIS

Stresses and deformations in the plastic range of action of a material are frequently permitted in
certain structures. Some building codes allow particular structural members to undergo plastic
deformation, and certain components of aircraft and missile structures are deliberately designed to act
in the plastic range so as to achieve weight savings. Furthermore, many metal-forming processes
involve plastic action of the material. For small plastic strains of low- and medium-carbon structural
steels the stress-strain curve of Fig. 1-11 is usually idealized by two straight lines, one with a slope of
E, representing the elastic range, the other with zero slope representing the plastic range. This plot,
shown in Fig. 1-11, represents a so-called elastic, perfectly plastic material. It takes no account of still
larger plastic strains occurring in the strain-hardening region shown as the right portion of the
stress-strain curve of Fig. 1-5. See Problem 1.26.
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If the load increases so as to bring about the strain corresponding to point B in Fig, 1-11, and then
the load is removed, unloading takes place along the line BC so that complete removal of the load
leaves a permanent “set” or elongation corresponding to the strain OC.

Solved Problems

11. InFg. 1-12, determine the total elongation of an initially straight bar of length L. cross-sectional
area A, and modulus of elasticity £ if a tensile load P acts on the ends of the bar.

P —— P
___,#

| L 4 sl

Fig. 1-12

The unit stress in the direction of the force P is merely the load divided by the cross-sectional area,
that is, ¢ = P/A. Also the unit strain € is given by the total elongation A divided by the original length, Le.,
€ = A/L. By definition the modulus of elasticity E is the ratio of ¢ to €, that is,

o PA PL PL
E _——= — = —— = ——
e aL An " ATUE

Note that A has the units of length, perhaps inches or meters.

L2. A steel bar of cross section 500 mm? is acted upon by the forces shown in Fig. 1-13(a). Determine
the total elongation of the bar. For steel, consider E = 200 GPa.

A K C D A B
SO KN g w15 kN I0KN o 4SKN  SOKN <t et SO KN

losm,| Im 1.25m

) (b)
B C C D
KN gmfm e 3SKN ASKN emfm e 45N
(c) ()
Fig. 1-13

The entire bar is in equilibrium, and hence all portions of it are also. The portion between A and B
has a resultant force of 50 kN acting over every cross scction and a free-body diagram of this 0.6-m length
appears as in Fig. 1-13(b). The force at the right end of this segment must be 50 kN to maintain equilibrium
with the applied load at A. The elongation of this portion is, from Problem 1.1:

(50,000 N) (0.6 m)

A = .
1 (500 % 107 m?) (200 % 10° N/m?)

= (L0003 m

The force acting in the segment between B and C is found by considering the algebraic sum of the
forces to the left of any section between B and C. i.e., a resultant force of 35 kN acts to the left. so that
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a tensile force exists. The free-body diagram of the segment between B and C is shown in Fig. 1-13(¢) and
the elongation of it is
_ (35,000 N) (1 m)

(500 X 10~ m?) (200 x 10° N/m?)

A, = 0.00035 m

Similarly, the force acting over any cross section between C and D must be 45 kN {o maintain
equilibrium with the applied load at D. The clongation of CD is

~ (45,000 N) (1.25 m)
(500 X 10~ ¢ m?) (200 x 10° N/m?)

A, = 0.00056 m

The total elongation is
A=A +A+ A, =000121 m or 1.21 mm

1.3. The pinned members shown in Fig. 1-14(a) carry the loads P and 2P. All bars have
cross-sectional area A,. Determine the stresses in bars AB and AF.

Ci,r

L

]
i
|
|
|

A

2L
AB AF
2
——*—'. A, 1
X A
Fig. 1-14{a) Fig. 1-14(&)

The reactions are indicated by C., C,. and A,. From statics we have
4
IM = —(2PL)— P2L)+ A,3L) =0 A = EP

A free-body diagram of the pin at A is shown in Fig. 1.14(b). From statics:

P 1 4pP\V's
= —— AF) = = —-—
F = +75( F)=0, AF 3

2 8
F,=(AB)+——=(AF)=0: AB=——
IF, = (AB) + 7= (AF) = ©; 3P

The bar stresses are
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14. A component of a power generator consists of a torus supported by six tie rods from an
overhead central point as shown in Fig. 1-15. The weight of the torus is 2000 N per meter of
circumferential length. The point of attachment A is 1.25 m above the plane of the torus. The
radius of the middle line of the torus is 0.5 m. Each tie rod has a cross-sectional area of 25 mm’.
Determine the vertical displacement of the torus due to its own weight.

1.25m

- - Torus

Fig. 1-15

A free-body diagram of the torus appears in Fig. 1-16 where 7 denotes the iensile force in each rod.
Summing forces vertically:

125

(15

) - (2000%)277(0.5 m) =

T=1120N

Let us examine the deformation of a typical tie rod, such as AB. Figurc 1-17 shows how AB clongates
an amount BB’ given by

A=BR = ATE (112(}“)(334“1) = (L0003 m or (.3 mm
Q
(25 ) {57 )znoxm
A pr—
A
ﬂ
1.25m
{
'.l' ‘?Bn

Fig 1-16 Fig. 1-17
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Since B is on the torus, it (8) must move to B" which is vertical below B. From Fig. 1-16 we have
0.3

()

which is the vertical displacement of the rigid torus.

= 0.32mm

BB = (0.3)$ =

In Fig. 1-18, determine the total increase of length of a bar of constant cross section hanging
vertically and subject to its own weight as the only load. The bar is initially straight.

T

|=

p— -

Fig. 1-18

The normal stress (tensile) over any horizontal cross section is caused by the weight of the material
below that section. The elongation of the element of thickness dy shown is

Ayy
dA = ——d
AE ©
where A denotes the cross-sectional area of the bar and vy its specific weight (weight/unit volume).
Integrating, the total elongation of the bar is
A _J;LAyydy _AyL* (AyL)L WL

e e = m— =

AE AE 2 2AE 2AE

where W denotes the total weight of the bar. Note that the total elongation produced by the weight of the
bar is equal to that produced by a load of half its weight applied at the end.

In 1989, Jason, a research-type submersible with remote TV monitoring capabilities and
weighing 35,200 N was lowered to a depth of 646 m in an effort to send back to the attending
surface vessel photographs of a sunken Roman ship offshore from Italy. The submersible was
lowered at the end of a hollow steel cable having an area of 452 X 10™* m? and E = 200 GPa.
The central core of the cable contained the fiber-optic system for transmittal of photographic
images to the surface ship. Determine the extension of the steel cable. Due to the small volume
of the entire system buoyancy may be neglected, and the effect of the fiber optic cable on the
extension is also negligible. (Note: Jason was the system that took the first photographs of the
sunken Titanic in 1986.)
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1.7

The total cable extension is the sum of the extensions due to (a) the weight of Jasen. and (b) the weight
of the steel cable. From Problem 1.1, we have for (a)

PL (35,200 N) (646 m)

MTAET (452 10 °m?) (200 X 10° N/m?) 0252m

and from Problem 1.5, we have for (b)

WL

ﬁ = —
’ 2AE

where W is the weight of the cablc. W may be found as the volume of the cable

(452 x 107 m?) (646 m) = 0.292 m’

which must be multiplied by the weight of steel per unit volume which, from Table 1-1 at the end of the
chapter is 77 kN/m. Thus, the cable weight is

W = (0292 m") (77 kN/m®) = 22,484 N
so that the elongation due to the weight of the cable is

(22.484 N) (646 m)

A, =
> T 252 x 10 *m?) (200 x 10° N/m?)

= 0.080 m

The total elongation is the sum of the cffects,

A=A +A,=0252+0.080 =0332m

Two prismatic bars are rigidly fastened together and support a vertical load of 10,0001b, as
shown in Fig. 1-19. The upper bar is steel having specific weight 0.283 Ib/in’, length 35 ft, and
cross-sectional area 10 in®. The lower bar is brass having specific weight 0.300 Ib/in®, length 20 ft,
and cross-sectional area 8in’. For steel E = 30X 10°Ib/in’. for brass E = 13 X 10°1lb/in
Determine the maximum stress in each material.

The maximum stress in the brass bar occurs just below the junction at section B-B. There, the vertical
normal stress is caused by the combined effect of the load of 10,000 1b together with the weight of the entire
brass bar below B-B.

10,000 b

Fig. 1-19



14

1 .9.

TENSION AND COMPRESSION [CHAP. |

The weight of the brass bar is W, = (20 x 12)(8){0.300) = 576 1b.
The stress at this scction is
P 10.000 + 576
= — =——— = 320 lblin°
o= m 20 1b/in

The maximum stress in the steel bar occurs at section A-A. the point of suspension. because there the
cntire weight of the stecl and brass bars gives rise to normal stress, whereas at any lower section only a
portion of the weight of the stecl would be effective in causing stress.

The wcight of the steel bar is W, = (35 % 12) (10) (0.283) = 1185 b.

The stress across section A-A is

P 10000 + 576 + 1185

== =1 ‘2
T a 0 1RO Ib/in

A solid truncated conical bar of circular cross section tapers uniformly from a diameter 4 at its
small end to D at the large end. The length of the bar is L. Determine the elongation due to
an axial force P applied at each end. See Fig. 1-20.

--—x—--n',r,-—
PAd.____ // :_ + > P
t ¥
Fig. 1-20

The coordinate x describes the distance from the small end of a disc-like clement of thickness dx. The
radius of this small element is readily found by similar triangles:

d x(D—d)
y=—=4 —
2 L 2

i

The clongation of this disc-like element may be found by applying the formula for extension duc to
axial loading. A = PL/AE. For the element. this expression becomes

Pdx
da = R

. [ d L X ( D—d )
2 L 2
The cxtension of the entire bar is obtained by summing the elongations of all such elements over the
bar. This is of course donc by integrating. If A denotes the clongation of the entire bar,

A= L /A = ! 4P dx _4PL
T ) Hd+WLD-dFE  7DdE

E

Two solid circular cross-section bars. one titanium and the other steel, each in the form of a
truncated cone, are joincd as shown in Fig. 1-21(a) and attached to a rigid vertical wall at the
left. The system is subject to a concentric axial tensile force of SO0 kN at the right end, together
with an axisymmetric ring-type load applied at the junction of the bars as shown and having a
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horizontal resultant of 1000 kN. Determine the change of length of the system. For titanium,
FE =110 GPa, and for steel, £ = 200 GPa.

Ring load

25 rra

Titanium
alloy

S5C0 KN

P\ P P
045 m I 050 m

Fig. 1-21(a)

A free-body diagram of thc system appcars as shown in Fig. 1-21(b)

A

1500 kN = * 1000 kN = 500 kN
\______..-—--'""

Fig. 1-21(b)

and a free-body diagram of each bar is shown in Fig. 1-21(c).

Titanium

1500 kN - Q & | 500 kN 00 kN 500 kN

alloy
Fig. 1-21(c)

We may now apply the result of Problem 1.8 to cach bar and obtain

4(1.500.000 N) (0.45 m)

- = 0.00156
(010 m) (0.05 m) (110 % 10° N/m?) m

‘l"l‘l

4(500,000 N) (0.90 m)

= = 0.00082
0,07 m) (0.05 m) (200 X 10° Nim?)  ©

Asr

Using superposition,

A = Agr + A = 0.00238 m or 2.38 mm
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1.10. A large-scale pumping system to lift water consists of a pump of weight W in a circular
cylindrical housing (with vertical axis) suspended from an axisymmetric thick-walled tube of
variable radial thickness [see Fig. 1-22(a)]. Find the variation in outer radius R along the height
so that the normal (vertical) stress in the tube is constant. The specific weight of the tube
material is y and the inner radius is R;, which is constant.

We introduce the coordinate y, with origin at the top of the pump and extending positive upward as
shown. Let us consider the free-body diagram of a ring-shaped element of the tube located a distance y
above the top of the pump and of height dy as shown in Fig. 1-22(b).

s
N7

1 b4t |t g

bR «IRY T R

L :F“_ ’ { ’ _‘?-__I*_‘jj‘"

housing
(a) ®)

Fig. 1-22

The cross-sectional area of the lower surface of this ring is
A =mR-R]) ()

and the area of the upper surface is (A + dA). The weight of the material in the ring is yA dy. For vertical
equilibrium we have

ow(A +dA) - aw(A) — yAldy) = 0 (2)
Simplifying:
ou(dA) = yA(dy) (3)

At the lower end (y = 0) of the tube, we denote the tube cross-section area by A,. Integrating Eq. (3)
between the lower end (y = 00) and the elevation y, we have

A dA ¥
= =j X (ay) (4)
A o
An v =1}
A v
Thus: In—=— 5
A o » )
A = Auewr"’u {6)
At y = 0, we have for vertical equilibrium
w
Ty = A_o (7)

so from (1), (6). and (7) we have the radius at any elevation y as

R = R? +——gmia (8)

Ty
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1.11. 'The pin-connected framework shown in Fig. 1-23(a) consists of two identical upper rods AB and
AC. two shorter, lower rods BD and DC, together with a rigid horizontal brace BC. All bars
have cross-sectional area A and modulus of elasticity E. Determine the vertical displacement
of point D due to the action of the vertical load P applied at D as well as the distributed load

g per unit length.

A
30
LV 2LN2
LAZ L2
0 ¢ o C
D
(b) (c)
Fig. 1-23

Let us consider a horizontal cutting plane passed through the system slightly above BC. The free-body
diagram is shown in Fig. 1-24 where F, represents the force in each of the bars AB and AC. From

statics:

EF,,=-P—q(%)(2)+2Fzsin60"=0
P+( 2 L
V2 )9
Fz=‘T—" (1)
a4
I\
/f \\
7! | \
Y
Bh\‘ ‘ ‘f ‘ L\\\“C
D
P
Fig. 1-24

To determine the dropping of bar BC we consider the deformation of bar AB, as shown in Fig. 1-25.
The increase of length of AB is given by

~(35)

AE

Bup =
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and the vertical projection of this is

(%)
pp - \V2/
AE cos 30°
Substituting F, from (7). this is
aPL  4qlL?
BB" = +
I2AE  3AE (2)

Fig. 1-25 Fig. 1-26

Let us now consider another horizontal plane passed through the system just below BC. The free-body
diagram is shown in Fig. 1-26 where F; represents the force in each of the bars BD and DC. From

statics:
2F. = —P+2F cosd5° =0
PV2
F, = 5 (3)

We must now determine the lowering of point D due to the action of the load P acting on bars BD
and DC (see Fig. 1-27). The increase of length of BD is

FiL
AE
and the vertical projection of this is
F L
AE cos45° 8 ,
A
Substituting (3), we find the vertical projection to be N il ;
PL /<\4£°JI
AE (4) NN
E Agp \>/
The actual drop of point D is the sum of (2) and (4):
45°
A, 4PL PL 4qu
GZAE AE 3AE D
PL ql’
= 1.942 — + 1.333— 5
AE AE %) Fig. 1-27
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1.12. Consider the system of two pinned end bars AB and CB (which is vertical) subject to the single
horizontal force P applied at the pin B (see Fig. 1-28). Bar AB has area A,. length L,. and
Young's modulus E,. The corresponding quantities for bar CB are A,, L,, and E,. Determine
the horizontal and vertical components of displacement of pin B.

The free-body diagram of the pin is shown in Fig. 1-29(a) where F; and F; denote the forces bars AB
and CB, respectively. exert on that pin. Each of thesc bar forces has been assumed to be positive in the
direction shown: i.e., cach bar is assumed to be in tension. Should the equilibrium equations indicate a
negative value for cither of these bar forces, that would signify that we have assumed the direction
incorrectly and that the bar is in compression. Figures 1-29(b) and 1-29(c) indicate the effects that the pin
at B exerts on bars AB and CB8, respectively. These are of course equal and opposite to the values shown
in Fig. 1-29(a).

Fig. 1-28

For equilibrium of the pin at B, we have
ZF,=P-Ficosd45° =0 (7)
IF. = F,~ F,sind5° = ( (2)

Solving,
FE=P\V2 FE=pP 3)

which indicates tension in each bar. Let us think of temporarily )
unlocking the bars at B by removing pin B. Bar AB thcn C
stretches an amount BB’ and bar CB stretches an amount BB”, @

as shown in Fig. 1-30. These extensions are found from Problem '
F-

1.1 to be )
¥
FL,  PV2
BB = —— = L (4)
FL,  PL - F:

P AR T AL ©)
However, the final position of the pin must be the same after B P
the pin is considered to be reintroduced, so the bar AB must

undergo a rigid-body rotation about pin A and bar CB must (@)
rotate about pin C. The point B’ on AB (extended) must move /

along a circular arc with center at A, but for the very small

dcformations that we consider this arc may be replaced by a K

dotted straight line B’ B” perpendicular to AB’. Likewise point A 4

B" on CB (extended) must move along the horizontal dotted 45°

line B"B" as rotation takes place about pin C. The intersection

of these two dotted lines at B” must be the true, final position

of the pin B. Fig. 1-29
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From the geometry of Fig. 1-30 we have

V2pPL, 1 _ PL,

BD = BB’ c0sd5° = e 6
o AE, V2 AE ©)
. PL,
B'D = BB'sin45° = —— 7
sin AL ()
Pl PlL,
B'G=BD+DG=—2+—2
AL ALK, (8)
GB" = B'G {45° triangle) 9)
PL, PL, FPL, )
=BD+ GB" = + + 10
B = B0+ OB - (S5 0
2PL, PL,
AE T AE ()
Finally, from Fig. 1-30 the vertical displacement of B is
PL,
A, =BB' = 12
v=B 2.5, (12)

In 1989 a new fiber-optic cable capable of handling 40,000 telephone calls simultaneously was
laid under the Pacific Ocean from California to Japan, a distance of 13,300 km. The cable was
unreeled from shipboard at a mean temperature of 22°C and dropped to the ocean floor having
a mean temperature of 5°C. The coefficient of linear expansion of the cable is 75 X 107°/°C.
Determine the length of cable that must be carried on the ship to span the 13,300 km.

The length of cable that must be carried on board ship consists of the 13,300 km plus an unknown
length AL that will allow for contraction to a final length of 13,300 km when resting on the ocean floor.
From the definition of the coefficient of thermal expansion (Chap. 1), we have

AL = al(AT)
AL = (75 x107°rC)[13,300 km + AL} (22 - 5)°C (a)
Solving, we find
AL = 16.96km
The percent change of length is thus
(16.96) (100) _ 0.13%

13,300 + 16.96



CHAP. 1] TENSION AND COMPRESSION 21

1.14.

so that the underlined term in Eq. (a) is of minor consequence. Thus, the required length of cable at
shipboard temperature is approximately 13,317 km.

An elastic bar of variable cross section is loaded by axial tension or compression at its ends as
shown in Fig. 1-31. The variation of cross-sectional dimension may be known either analytically
or numerically along the dimension in the axial direction. Write a FORTRAN program for
change of length of the bar for the cases of (a) a bar of solid circular cross section and (b) a flat
slab of constant thickness f as shown in Figs. 1-31(b) and 1-31(c), respectively. The contour of
the bar is described by the equation y = Ae®*, where x is the axial coordinate.

Fig. 1-31

The equation derived in Problem 1.1 may be applied to cach subsegment of length dx as shown in Fig.
1-31(a). The cross-sectional area of each such subsegment is taken to be constant and we then apply the
relation

_PL
AE

to this scgment, where the length of the segment is dx and A is the cross-sectional area of the segment.
Clearly A may be found if the equation y = y(x) for the cross section is known, or, alternatively,
measurcments may be made at a number of stations along the length of the bar and the area found
numerically at each such station.

This approach is represented by the following FORTRAN program which is self-prompting. Tensile
loadings are regarded as positive and compressives as negative.

Note that in the equation describing the shape of the bar, y = Ae®, e represents the base of
natural logs, and A and B are parameters of the contour. Note in particular that this A is nor
cross-sectional area.

A

LRSS SR 222 2 20 2 23 3 2 223 R st is s ot st s s st sttt i as s i s asss

00020 PROGRAM SLBTEN2({INPUT,OUTPUT)
R LR R R L e e T e O T YT

00040*

00050%* AUTHOR: KATHLEEN DERWIN

00060* DATE : FEBRUARY 5, 1989

00070*

00080* BRIEF DESCRIPTION:

00090* THIS PROGRAM DETERMINES THE CHANGE OF LENGTH OF A BAR DUE

00100* TO AXIAL TENSION OR COMPRESSION. THE BAR MAY BE A CONSTANT
00110* THICKNESS, VARIABLE WIDTH RECTANGULAR SLAB, OR A SOLID CIRCULAR

00120* ROD WITH VARIABLE DIAMETER. IN EITHER CASE THE SHAFT IS CENTRALLY
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00130* LOADED BY AN AXIAL FORCE.

00140* THE VARYING WIDTH (OF THE SLAB) OR DIAMETER (OF THE ROD) MAY
00150* BE DESCRIBED EITHER ANALYTICALLY AS Y = A*E " (B*X) WHERE X IS THE
00160* GEOMETRIC AXIS OF THE BAR, OR NUMERICALLY USING THE MAGNITUDE OF
00170* Y AT EACH END OF N SEGMENTS, MEANING N+1 VALUES.

00180*
00190#* INPUT:
00200* THE USER IS PROMPTED FPOR THE TOTAL BAR LENGTH, THE ELASTIC

00210%* MODULUS, AND THE AXIAL LOAD. THE USER IS THEN ASKED IF THE

00220* BAR IS BOUNDED BY A KNOWN FUNCTION, AS WELL AS THE SHAPE OF ITS
00230* X-SECTION. FOR THE CASE OF THE SLAB, THE UNIFORM THICKNESS IS
00240 ALSO ASKED FOR... IF THE FUNCTION IS KNOWN, THE CONSTANTS ARE
00250* THEN PROMPTED AND THE ENDPOINTS OF THE BAR ON THE X~AXIS INPUTTED;
00260* ALTERNATELY, THE NUMBER OF SEGMENTS AND MEASURED HEIGHTS/DIAMETERS
00270* MUST BE ENTERED.

00280*

00290* OUTPUT:

00300* THE TOTAL ELONGATION OF THE BAR IS DETERMINED AND PRINTED.
00310*

00320% VARIABLES:

00330* L,T,EM ==~ LENGTH,TBICKNESS,ELASTIC MODULUS OF BAR
00340* A,B ~-- CONSTANTS OF Y = A*E “(B*X) GOVERNING BAR BOUNDA
00350* X0,XN ~=-~ ENDPOINTS OF SHAPT ON X-AXIS

00360* P === CENTRALLY APPLIED AXIAL LOAD

00370* AA(100) ~-- INDIVIDUAL SEGMENT HEIGHTS/DIAMETERS
00380+ AREA =-— X-SECTIONAL AREA OF EACH SMALL INCREMENT
00390* ANS -=~ DETERMINE IF USER HAS A KNOWN FUNCTION
00400* TYPE -=~ DETERMINE BAR X-SECTION

00410* DELTA ~~-~ UNIFORM BAR ELONGATION

00420* LEN ~-~ LENGTH OF INCREMENTAL ELEMENT

00430*
ODQADRARR R AR R AR AR AR AR AR R AR R A AR AR RRARRRR R AR AR RARRRRR AR AR AR AR RRRRRRARRRRARARARS

OO,‘sOitit***"tlit‘**i.ii**.i*&ti***t*#*ﬁ*RQ**!**.**QR***.#*Q**#**ﬁ***t*tt.t&‘
00460+ MAIN PROGRAM

oo‘?oﬁi***i**.ﬁt***i***ﬁ*ﬂﬁ*.ﬂﬂ**Rﬂﬁ.**t*****ﬂ**ﬁ**.*.t**#‘***tﬂ*t*ﬁ.*!.i**ﬁﬂ
oo‘so*****i**i****t**ﬁtt***iﬁl**iﬁ.*!*iﬁ***it****t‘litﬁl*itttt***ﬁ**i.iiﬁ*iﬁ&*

00490*

00S500* VARIABLE DECLARATION

00S10*

00520 REAL I,T,L,EM,A,B,X0,XN,P,DELTA,ARA{100),AREA,LEN

00530 INTEGER ANS,TYPE,NUM,J

00540*

00550% USER INPUT PROMPTS

00560*

00570 PRINT*, 'ENTER THE TOTAL LENGTH OF THE BAR (IN M OR INCHES):'
00580 READ*, L

00590 PRINT*, 'ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI) :*'
00600 READ* ,EM

00610 PRINT*, ‘ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) :'
00620 READ*, P

00630 PRINT#*, 'PLEASE DENOTE THE BAR X~SECTIONAL SHAPE:'

00640 PRINT*, 'ENTER 1--SLAB ; 2--CIRCULAR ROD'

00650 READ*,TYPE

00660+

00670* IF A SLAB, PROMPT FOR ITS THICKNESS

00680*

00690 IF (TYPE.EQ.l) THEN

00700 PRINT*, 'ENTER THE THICKNESS OF THE SLAB (IN M OR INCHES):'*
00710 READ*, T

00720 ENDIF

00730 PRINT*, "DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?"'
00740 PRINT*, 'ENTER 1--YE§ ; 2--NO'

00750 READ*, ANS

00760*

00770* IF ANS EQUALS ONE, THE USER KNOWS FUNCTION. PROMPT
00780* FOR CONSTANTS AND ENDPOINTS.
00790*

00800 IF (ANS.EQ.1l) THEN



CHAP. 1] TENSION AND COMPRESSION

00810 PRINT*,'F(X) = A®*E "(B*X)'

00820 PRINT*, 'ENTER A,B:'

00830 READ* ,A,B

00840 PRINT*, 'ENTER THE X-COORDINATE FOR BOTH ENDS OF THE BAR:'
00850 PRINT#*,' (IN M OR INCHES):'

00860 READ*, X0, XN

00870*

00880 AREA = 0
00890 L=XN-X0
00500 LEN=L/50
00910 DO 20 I = X0,XN,LEN

00920 Y1=(A*(2.71828%*%(B*1)))*2
00930 ¥Y2=(A*(2.71828**(B*(I + LEN))))}*2

00940 Y=(Y1+Y2)/2

00950 IF(TYPE.EQ.1) THEN

00960 AREA=1/(Y*T) + AREA

00970 ELSE

00980 AREA=4/(3.14159*(Y#**2)) + AREA

00990 ENDIF

01000 20 CONTINUE

01010*

01020* IF ANS EQUALS TWO, THE USER DOES NOT KNOW FUNCTION.
01030* PROMPT FOR NUMBER OF SEGMENTS AND MEASURED HEIGHTS/DIAMETERS.
01040*

01050 ELSE

01060 PRINT*, 'ENTER THE NUMBER OF SECTIONS TO BE CALCULATED:'
01070 READ* , NUM

01080 IF(TYPE.EQ.1) THEN

01090 PRINT*, 'ENTER THE HEIGHTS OF THE ENDS FOR SECTIONS 1 TO N:'
01100 PRINT*, ' (IN M OR INCHES):'

01110 ELSE

01120 PRINT*, 'ENTER THE DIAMETERS OF THE ENDS FOR SECTIONS 1 TO N:'
01130 PRINT*,'(IN M OR INCHES):'

01140 ENDIF

01150*

01160* INPUT MEASURED HEIGHTS/DIAMETERS

01170*

01180 DO 30 J=1,NUM+1

01190 READ* ,AA(J)

01200 30 CONTINUE

01210*

01220 AREA = 0

01230 LEN = L/NUM

01240 DO 40 J = 1,NUM+1

01250 Y=(AA(J)+AA(JT+1))/2

01260 IF(TYPE.EQ.1) THEN

01270 AREA = 1/(Y*T) + AREA

01280 ELSE

01290 AREA = 4/(3.14159%(Y*%*2)) + AREA

01300 ENDIF

01310 40 CONTINUE
01320 ENDIF

01330*

01340* DETERMINING THE ELONGATION OF THE LOADED BAR
01350*

01360 DELTA= ( P*LEN*AREA) /EM

01370*

01380 PRINT 50,DELTA

013950*

gi:ggﬁso FORMAT( 2X, ' THE DEFORMATION OF THE BAR IS:',FB.5,' (M OR IN.)')
01420 STOP

01430 END
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A bar of variable solid circular cross section is bounded by the curve y = 8¢ °°'* and extends
from x = 0 to x = 180in. It is subject to an axial tensile load of 100,000 Ib as shown in Fig. 1-32.
The material is steel, for which E = 30 x 10°Ib/in’. Use the FORTRAN program of Problem
1.14 to determine the elongation of the bar.

Q
3
[
I
|

[

[T e ..

Fig. 1-32

Since the contour is bounded by the curve of the form y = A¢®*, we have A = 8 and B = —~0.01. The
bar extends from x = () to x = 180 in and entry of these data into the program of Problem 1.14 leads to
an axial elongation of 0.03176 in.

run

ENTER THE TOTAL LENGTH OF THE BAR (IN M OR INCHES):

? 180

ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI}) :

? 30E+6

ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) =

? 100000

PLEASE DENOTE THE BAR X-SECTIONAL SHAPE:

ENTER 1--SLAB : 2-—-CIRCULAR ROD

? 2

DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?
ENTER 1--YES ; 2--NO

71

F(X) = A*E"(B*X)

ENTER A,B:

? 8,-0.01

ENTER THE X-COORDINATE FOR BOTH ENDS OF THE BAR:
(IN M OR INCHES):

? 0,180
THE DEFORMATION OF THE BAR IS: .03176 (M OR IN)

SRU 0.804 UNTS.

A flat slab of variable depth is bounded ¢ ¥ = 0250

by the curve y = 0.25¢"%%* and extends /

from x =4m to x = 10m as shown in 385 kN 385 kN

Fig. 1-33. The slab is 10 mm thick and 2 4 10 x
is subject to an axial tensile force of
385 kN. Use the FORTRAN program of N | B
Problem 1.14 to determine the elonga-

tion of the slab. Take E = 200 GPa. Fig. 1-33
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To enter the program of Problem 1.14, we must set A =0.25 and B = 0.025. The input data then
appear as

run

ENTER THE TOTAL LENGTH OF THE BAR (IN M OR INCHES):
26

ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI) :

?2 200E+9

ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) :
? 385000

FLEASE DENOTE THE BAR X-~-SECTIONAL SHAPE:

ENTER 1--SLAB : 2--CIRCULAR ROD

21

ENTER THE THICKNESS OF THE SLAB (IN M OR INCHES):
? 0.01

DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?
ENTER 1--YES ; 2--NO

? 1
F(X) = A*E"(B*X)
ENTER A,B:

? 0.25,0.025
ENTER THE X-COORDINATE FOR BOTH ENDS OF THE BAR:

(IN M OR INCHES):
? 4,10
THE DEFORMATION OF THE BAR IS: .00198 (M OR IN)

The elongation of the bar is thus 0.00198 m or 1.98 mm.

Consider two thin rods or wires as shown in Fig. 1-34(a). which are pinned at A, B, and C and
are initially horizontal and of length L when no load is applied. The weight of each wire is
negligible. A force Q is then applied (gradually) at the point B. Determine the magnitude of
Q so as to produce a prescribed vertical deflection & of the point B.

(&

Fig. 1-34

This is an extremely interesting example of a system in which the elongations of all the individual
members satisfy Hooke’s law and yet for geometric reasons deflection is ner proportional to force.

Each bar obeys the relation A = PL/AF where P is the axial force in each bar and A the axial
elongation. Initially each bar is of length L and after the entire load Q has been applied the length is
L’. Thus

PL

L'_L=TE (1)
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The free-body diagram of the pin at B is shown in Fig. 1-34(b). From statics,

SF, = 2Psina-Q=0 or Q= 2P(£)

L\‘
) _ WL -L)AE 8 28AE( L
Using (/). R e ( r L,) @)
But (LY =L"+¥ )
SAE
Consequently Q= 2 7 ( - V'Lf+ 6’) (C))
Also, from the binomial thecorem we have
2y 1.2 1 62
V,z"' 2= — = b=t
(8 (1)
L 1 33) Ry
and thus 1 L(l+£§) 1 (l YR REYE (6)
2L°
From this we have the approximate relation between force and displacement,
2AES &  AE¥
S A TERE ?)

which corresponds to (4).

Thus the displacement 8 is nor proportional to the force Q even though Hooke’s law holds for each
bar individually. 1t is to be noted that Q becomes more nearly proportional 1o & as & becomes larger,
assuming that Hooke's law still holds for the elongations of the bars. In this example superposition does
not hold. The characteristic of this system is that the action of the external forces is appreciably affected
by the small deformations which take place. In this event the stresses and displacements are not linear
functions of the applied loads and superposition does not apply.

Sernmary: A material must follow Hooke'’s law if superposition is to apply. But this requircment
alone is not sufficient. We must see whether or not the action of the applied loads is affected by small
deformations of the structure. If the effect is substantial, superposition does not hold.

For the system discussed in Problem 1.17, let us consider wires each of initial length 5 fi,
cross-sectional area (.1 in%. and with E = 30X 16°Ib/in®. For a load Q of 201b determine the
central deflection 8 by both the exact and the approximate relations given there.

The exact expression relating force and deflection is Q = 2635 | \/L“L+ 6’)' Substituting the given
. 28(0.1) (30 x 10°) 60 . . .
numerical values, 20 = (60) ( 1 - ViG0y 1 5 ) Solving by trial and error we find 6 = 1.131 in.

3]
The approximate relation between force and deflection is O = AR Substituting,

_(01) (30X 107)8°
20 = &

from which 8=1.1291n

A square steel bar S0 mm on a side and 1 m long is subject to an axial tensile force of 250 kN,
Determine the decrease in the lateral dimension due to this load. Consider E = 200 GPa and
w=03.
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121

The loading is axial. hence the stress in the direction of the load is given by

P _ (250%10'N)
A (0.05m)(0.05m)

The simple form of Hooke's law for uniaxial loading states that E = g/e. The strain € in the direction

of the load is thus (100 x 10°)/(200 x 10%) = 5% 10 4
The ratio of the lateral strain 1o the axial strain is denoted as Poisson's ratio, i.e..

= 100 MPa

a"__

_ lateral strain
axial strain

The axial strain has been found to be 5 x 10 *. Consequently, the lateral strain is p times that value,
or (0.3)(5x10 %) = 1.5x 10 Since the lateral strain is 1.5 X 10 %, the change in a 50 mm length is
7.5 % 107* mm, which represents the decrease in the lateral dimension of the bar.

It is to be noted that the definition of Poisson’s ratio of two strains presumes that only a single uniaxial
load acts on the member.

Consider a state of stress of an element such that a stress o, is exerted in one direction, lateral
contraction is free to occur in a second (z) direction, but is completely restrained in the third
(y) direction. Find the ratio of the stress in the x-direction to the strain in that direction. Also,
find the ratio of the strain in the z-direction to that in the x-direction.

Let us examine the general statement of Hooke's law discussed earlier. If in those equations we sct
o. = 0. ¢, = 0 so as to satisfy the conditions of the problem, then Hooke’s law becomes

& = £lo.~ o, +0)] @
1

& = ¢lo,— (o, +0)] =0 )
1

€= "E-IU*MUJGJI (c)

From (b), o, = uo,
1 ) 1— 42
Consequently, from (a) € = E(ox - o) = E O

Solving this equation for o, as a function of €, and substituting in (c), we have

n wl+p) 6 FE JLE,
= ——_— + = - P
&= " plotpo) E 1-4 1-gu

We may now form the ratios

; E
L s and o
€ 1—pu € l—pu

The first quantity, E/(1 — p?), is usually denoted as the effective modulus of elasticity and is useful in the
theory of thin plates and shells. The second ratio, p/(1 — ), is called the effective value of Poisson’s ratio.

Consider an elemental block subject to uniaxial tension (see Fig. 1-35). Derive approximate
expressions for the change of volume per unit volume due to this loading.

The strain in the direction of the forces may be denoted by e,. The strains in the other two orthogonal
directions are then each —pue,. Consequently, if the initial dimensions of the element are dx, dy, and dz
then the final dimensions are

(+e)dr  (1-pe)dy (1 pe)dz
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Fig. 1-35

and the volume after deformation is
V=11 + €)dx][(1 — ne)ay] [(1 - pe,)dz]
= (1+ &) (1 —2ue)dxdydz
= (1~ 2ue, + €)dxdydz
since the deformations are so small that the squares and products of strains may be neglected.

Since the initial volume was dx dy dz, the change of volume per unit volume is

AV
=0~ 2we
Hence, for a tensile force the volume increases slightly. for a compressive force it decreases.
Also, the cross-sectional arca of the element in a plane normal to the direction of the applied force
is given approximately by A = (1 — ue Y dyvdz = (1 — 2ue ) dydz.

L22. A square bar of aluminum 50 mm on a side and 250 mm long is loaded by axial tensile forces

1.23.

at the ends. Experimentally, it is found that the strain in the direction of the load is 0.001.
Determine the volume of the bar when the load is acting. Consider u = 0.33.

From Problem 1.21 the change of volume per unit volume is given by

AV
= (1~ 24) = 0001(1 ~ 0.66) = 0.00034

Consequently. the change of volume of the entire bar is given by
AV = (50) (50) (250) (0.00034) = 212.5 mm*

The original volume of the bar in the unstrained state is 6.25 % 10° mm?®. Since a tensile force increases
the volume, the final volume under load is 6.252125 X 10° mm®. Measurements made with the aid of lasers
do permit determination of the final volume under load to the indicated accuracy of seven significant
figures. Ordinary methods of measurement do not of course lead to such accuracy.

The general three-dimensional form of Hooke’s law in which strain components are expressed
as functions of stress components has already been presented. Occasionally il is necessary to
express the stress components as functions of the strain components. Derive these expres-
sions.

Given the previous expressions

1
€ = E[ar - P’(at 24 tT:)] (I)
ﬂ=%thm+mH @)

& = Floe— ulo,+ o) ®)
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let us introduce the notation
e=¢€+e +e (4)
6=0,+0,+0, (5)

With this notation, (/), (2), and (3) may be readily solved by determinants for the unknowns o, o,,
o, to yield

o, = wE e+ £ E, (6)
(+m(-20) 1+p
rE E

. = + 7

M CEIRTTEE AR T )
8. E

ST w0 2w T TraS ®

These are the desired expressions.
Further information may also be obtained from (/) through (5). If (). (2). and (3) are added and the
symbols e and @ introduced. we have

1
=—(1-2u)e 9
e=5(l-2 £}
For the special case of a solid subjected to uniform hydrostatic pressure p, o, = o, = 0. = —p. Hence
=3(1 - 2u)p P E
=— - - 10
¢ E o T T3z (10)

The quantity E/3(1 —2u) is often denoted by K and is called the butk modulus or modulus of volume
expansion of the material. Physically, the bulk modulus K is a measure of the resistance of a material to
change of volume without change of shape or form.

We see that the final volume of an element having sides dx.dy,dz prior to loading and subject to
strains €,.€,, €, is (1 + €)dx (1 +¢)dy (1 +€)dz = (1 + € +¢€, +€)dxdydz.

Thus the ratio of the increase in volume to the original volume is given approximately by

e=¢+tete

This change of volume per unit volume, e, is defined as the dilatation.

A steel cube is subject to a hydrostatic pressure of 1.5 MPa. Because of this pressure the volume
decreases to give a dilatation of —107°. The Young’s modulus of the material is 200 GPa.
Determine Poisson’s ratio of the material and also the bulk modulus.

From Problem 1.23 for hydrostatic loading the dilatation e is given by Eq. (10)

o= 2= 2Wp
E

Substituting the given numerical values, we have

10-5 - —31—2u) (15 X 10° Njm?)

200 x 10° N/m?

from which p = 0.278. Also from Problem 1.23 the bulk modulus is
E
K=———

31 -2
which becomes

9 2

_ 200X 10" N/m” _ 150 MPa

3(1 — 0.556)



30 TENSION AND COMPRESSION [CHAFP: |

1.25. Determine the specific strength and also the specific modulus in the USCS system of (a)
aluminum alloy, (b) titanium alloy, and (c) S-glass epoxy. Use materials properties given in
Table 1-1.

By definition, specific strength is the ratio of the ultimate stress 1o the specific weight of the maicrial
and specific modulus is the ratio of Young's modulus to the specific weight.

(a) From aluminum alloy we have

80,000 Ibin®

i h = ————— = B13.0001
Specific strengt 0. Tofin’ XN in
) 12 % 10° Ibfin® )
= ——= =
Specific modulus YT 122 % 10%in
(b) For titanium alloy we have
L 140000 Iblin® .
Specific strength = e int 864,200 in
17 = 10° Ibfin®
. _ XA0TIbART e o
Specific modulus = =~ i ! 5 X 10" in
(c) For S-glass cpoxy we have
275,000 Ibjin® )
i = ———— = 3 [ X
Specific strength = ===y 3.6 x10%n
9.6 x 10" Ibfin’
>Ci lus = — = 125 X 10"
Specific modulus 0.0766 Iofin® 107 in

Comparison of these specific strengths reveals that the composite material (S-glass epoxy) is much
stronger on a unit weight basis than cither of the metals, and it also has a slightly higher modulus, indicating
greater rigidity than either of the metals,

1.26. Consider a low-carbon square steel bar 20 mm on a side and 1.7 m long having a material yield
point of 275 MPa and £ = 200 GPa. An applied axial load gradually builds up from zero (o a
value such that the elongation of the bar is 15 mm, after which the load is removed. Determine
the permanent elongation of the bar after removal of the load. Assume elastic. perfectly plastic
behavior as shown in Fig. 1-36.

Yield begins when the applied load reaches a value of
P = o, (arca)
= (275 % 10° N/m?) (0.020 m)

= 110,000 N

a (MPa)

A B

—_—

1 (NHK2 —

Fig. 1-36
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1.27.

1.28.

1.29.

1.30.

1.31.

which corresponds to point A of Fig. 1-36. Note that in that figure the ordinate is stress and the
abscissa is strain. However, values on cach of these axes differ only by constants from those on a

force-elongation plot.
When the elongation is 15 mm, corresponding to point 8 in Fig. 1-36, unloading begins and the axial

strain at the initiation of unloading is

15 mm

— = (L.OOBR2
1700 mm

Unloading follows along line BC (parallel to AO) until the horizontal axis is reached. so that OC
corresponds to the strain after complete removal of the load. We next find the strain CF—but this is readily
found from using the similar triangles OAD and CBF to be

-2
[ 3
75 % 10°

e= 22X 50
200x10° Pa

Thus, after load removal the residual strain is
OC=0F-CF
= (L00882 — 0.O0138 = 0.00744
The clongation of the 1.7-m long bar is consequently
(1.7 m) (0.00744) = 0.0126 m or 12.6 mm

Supplementary Problems

Forces acting in the articulated joints in the human vertebrae may lead to excessive stresses and eventual
rupturc of the spinal discs. Mcasurcments of the adult disc indicate a surface arca of approximately
1000 mm’. Additional measurements during a lifting excrcisc indicate that a normal force of 708 N has
been developed. Determine the normal stress in the disc, Ans. 708 kPa

Laboratory tests on human tecth indicate that the area effective during chewing is approximately 0.04 in”
and that the tooth length is about 0.41 in, If the applied load in the vertical direction is 200 Ib and the
measured shortening is 0.0015 in, determine Young's modulus. Ans. 137 x 10°1Ibfin”

A hollow right-circular cylinder is made of cast iron and has an outside diameter of 75 mm and an inside
diameter of 60 mm. If the cylinder is loaded by an axial compressive force of 50 kN. determine the total
shortening in a 600-mm length. Also determine the normal stress under this load. Take the modulus of
clasticity to be 100 GPa and neglect any possibility of lateral buckling of the cylinder.

Ans. A =0.188mm, ¢ = 31.45 MPa

A solid circular stcel rod 6 mm in diameter and 500 mm long is rigidly fastened to the end of a square brass
bar 25 mm on a side and 400 mm long. the geometric axes of the bars lying along the same line. An axial
tensile force of 5 kN is applied at cach of the extreme ends. Determine the total elongation of the assembly,
For stecl. £ = 200 GPa and for brass £ = 9 GPa. Ans. 0477 mm

A high-performance jet aircraft cruises at three times the speed of sound at an altitude of 25,000 m. It has
a long, slender titanium body reinforced by titanium ribs. The length of the aircraft is 30m and the
cocfflicient of thermal expansion of the titanium is 10 X 10 “F°C. Determine the increase of overall length
of the aircraft at cruise altitude over its length on the ground if the temperature while cruising is 500°C
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above ground temperature, (Note: This change of length is of importance since the designer must account
for it because it changes the performance characteristics of the system.) Ans. (L1500 m

One of the most promising materials for use as a superconductor is composed of yttrium (a rare earth
metal), barium, copper, and oxygen. This material acts as a superconductor (i.c., transmits clectricity with
essentially no resistance losses) at temperatures up to —178°C. If the temperature is then raised to 67°C,
and the coefficient of thermal expansion is 11.0 X 10 “°C, determine the clongation of a 100-m long
segment duc to this temperature differential. Ans 0.27m

A solid circular cross-section bar in the form of a truncated cone is made of aluminum and has
the dimensions shown in Fig. 1-37. The bar is loaded by an axial tensile force of 80.0001b and
E = 10 X 10° Ib/in". Find the elongation of the bar. Ans. 0.00874 in

233

3y
L
t

BO,000 1~ = 50,000 Ib

—
i__

'’ ———-———h-l

Fig. 1-37

A solid conical bar of circular cross section is suspended vertically. as shown in Fig. 1-38. The length of the
bar is L. the diameter of the base is D. the modulus of clasticity 1s E. and the weight per unit volume is
v. Determine the clongation of the bar due to its own weight.

v

6F

Ans A=

A R

‘* _dawm o _18in !
! | |
. \
y -~ [ 8
[ 5 P=43.7501b
|81]‘l ,(// l
b g — === f/ﬁyy AN,
F C D
Fig. 1-38 Fig. 1-39

A Z-shaped rigid bar ABCD, shown in Fig. 1-39, is suspended by a pin at B, and loaded by a vertical force
P. At A a steel tic rod AF connects the section to a firm ground support at F. Take E = 30 x 10" Ibfin’.
Determine the vertical deflection at D. Ans. 0.099in
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1.36. The rigid bar ABC is pinned at B and at A attached to a vertical steel bar AD which in turn is attached
to a larger steel bar DF which is firmly attached to a rigid foundation. The geometry of the system is shown
in Fig. 1-40. If a vertical force P of magnitude 40 kN is applied at C, determine the vertical displacement
of point C. Ans. 9.17 mm

Fig. 1-40

1.37. A body having the form of a solid of revolution supports a load P as shown in Fig. 1-41. The radius of the
upper base of the body is r, and the specific weight of the material is ¥ per unit volume. Determine how
the radius should vary with the altitude in order that the compressive stress at all cross sections should be
constant, The weight of the solid is not ncgligible.  Ans. r = rye"™2F

iy
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In Problem 1.12 consider the force P to be 200001b, A, = 1.2in", L, =51t E, = 16 X 10" 1bfin°,
A, = L15in". L; =4 Mt and E, = 10X 10" Ibfin". Find the horizontal and vertical components of displace-
ment of pin B. Ans. A = 018%in: A, = 0064 in

InFig. 1-42. AB, AC, BC. CD.and BD are pin-connected rods. Point B is attached to point E by aspring whose
unstretched lengthis 1 m and whose spring constant is 4 kIN/m. Neglecting the weight of all barsand the spring,
determine the magnitude of the load W applicd at 22 that makes CD horizontal. Ans. SB3IN

The steel bars AB and BC are pinned at each end and support the load of 200 kN. as shown in Fig. 1-43.
The material is structural steel. having a yield poim of 200 MPa. and safety factors of 2 and 3.5 are
satisfactory for tension and compression. respectively. Determine the size of cach bar and also the
horizontal and vertical components of displacement of puoint B. Take £ = 200 GPa. Neglect any possibility
of lateral buckling of bar 8C.

Ans.  Arca AB = 1732 mmv’, area BC = 1750 mov’, A, = 0.37 mm (to right), A, = 1.78 mm (downward)

L ey

M0 kN

F

*
i
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1.41.

142,

1.43.

L44.

1.45.

1.46.

L47.

The two bars AB and CB shown in Fig. 1-44 are pinned at each c¢nd and subject to a single vertical force
P. The geometric and clastic constants of each arc as indicated. Determine the horizontal and vertical
components of displacement of pin B.
PL, PL, PL, PL,
Ans. A = - + A =—t !
V3AE, V3A,E. 3AE,  3A:E;

In Problem 1-41, the bar AB is titanium. having an arca of [000 mm’. length of 2.4 m, and £, = 110 GPa. Bar
CBisstecl having an arca of 400 mm’. length of 2.4 m.and £, = 200 GPa. What are the horizontal and vertical
components of displacement of the pin Bif P = 600kN?  Ans. A, = 283 mm. A, = 10.4 mm

A flat slab of variable width is bounded by the curve y = 10¢ "' and extends from the origin to v = 5in.
It is subject to an axial tensile load of 20.000 Ib and the material is steel for which E = 30 x 10" Ib/in°. The
slab thickness is 0.125 in. Usc the FORTRAN program of Problem 1.14 to determine the clongation of the
slab. Ans. 000275 in

A steel bar of solid circular cross scction is bounded by the curve v = 0.07¢ "™ and extends from the
origin 1o x = 5 m, It s subjcct to an axial tensile load of 1.5 MN and Young's modulus is 200 GPa. Usc the
FORTRAN program of Problem 1.14 to determine the elongation of the bar. Ans. 3.24mm

Considcr a state of stress of an element in which a stress o, 1s exerted in onc direction and lateral
contraction is completcly restrained in cach of the other two dircctions. Find the effective modulus of

elasticity and also the effective value of Poisson’s ratio.
£(1 —p)

0200+ eff. Poisson's ratio = 0

Ans.  eff. mod. =

A block of aluminum alloy is 400 mm long and of rectangular cross section 25 by 30 mm. A compressive
force P = 60 kN is applied in the dircction of the 400-mm dimension and lateral contraction is completely
restrained in each of the other two directions. Find the effective modulus of elasticity as well as the change
of the 400-mm length. Take E = 75 GPa and Poisson's ratio to be 0.33.

Ans.  eff. mod. = 114.5 GPa. change of length = —0.286 mm

Consider the state of stress in a bar subject to compression in the axial direction. Lateral expansion is
restrained to half the amount it would ordinarily be if the lateral faces were load free. Find the effective
modulus of elasticity.

E(1 - )

Ans. 5
l—p—p
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A bar of uniform cross section is subject to uniaxial tension and develops a strain in the direction of the force
of 1/800. Calculate the change of volume per unit volume. Assume p = 173, Ans.  1/2400 (increase)

A square steel bar is 50 mm on a side and 250 mm long. It is loaded by an axial tensile force of 200 kN,
If E = 200 GPa and p = 0.3, determine the change of volume per unit volume. Ans.  0.00016

Consider a low-carbon steel square steel bar 1in on a side and 70 in long having a material yield point of
40,000 Ib/in® and a Young's modulus of 30 X 10° 1b/in’. An axial tensile load gradually builds up from zero to
avalue such that the elongation of the bar is 0.6 in, after which the load is removed. Determine the permanent
elongation of the bar. Assume that the material is €lastic, perfectly plastic. Ans. 0.509in

Determine, from Table 1-1, the specific strength and also the specific modulus of (a) nickel, and (b) boron
epoxy composite. Use the SI system,

Ans.  (a) nickel: specific strength = 3563 to 8736 m, specific modulus = 2.41 X 10°m; (b) boron epoxy:
specific strength = 71.8 X 10" m, specific modulus = 11.0 X 10° m
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Table 1-1. Properties of Common Engineering Materials at 68 °F (20 °C)
Coefficient of
linear thermat
Specific weight Young's modulus Ultimate stress expansion
Material Ibfin'  kNm® bfin’ GPa Ibfin’ kPa 10e-6/°F  10e-6/°C | Poisson's ratio
1. Metals in slab. bar. o1 block form
Aluminum alloy 0.0984 27 10-12¢6 0-79 45-K0¢3 310-550 13 23 0.33
Brass 0.307 &4 14-1626 96-110 43-¥5¢3 300550 11 20 0.34
Copper 0.322 87 16-18¢6 112-120 33-55¢3 230-380 9.5 17 0.33
Nickel 0.318 87 30ets 21 45-110¢3 310-T60 72 13 0.31
Stect 0.283 77 28-30vts 195-210 80-200¢3 550-1400 6.5 12 .30
Titanium alloy 0162 4 15-17¢6 105-120 130-140¢3 K970 4.5-5.5 830 0.33
1. Nonmectatics n slab. bar, or block form
Concreie {composite) 0.0868 24 3606 25 40006000 2841 6 1
Glass 0.0955 26 T-12¢t 48-83 10,000 b 36 5-11 0.23
1. Matenals in filamentary (whisker) form:  |dia. <0.001 in (0.025 mm)]
Aluminum oxide 0.141 38 100-350¢6 690-2410 2-det 13.800-27 ((X)
Banum carbide 0.090 25 65¢6 450 leb 6900
Gilass 50et 345 [-3c6 TOK0-2040K)
Graphite 0.081 22 142¢6 580 It 20,000
IV. Composite materials (undicectionally reinforced in direction of loading)
Boron epoxy 071 19 3lef 210 198,000 1365 2.5 45
S-ghass-rcinforced cpoxy 0.0766 21 9,66 66.2 275,000 1900
V. Others
Graphite-reinforced cpoxy | 1.054 5 1566 104 190,000 1310
Kevlar-49 epoxy* 0.050 13.7 12.5¢6 Ré 220,000 1520

*Tradename of E 1 duPom Co.




Chapter 2

Statically Indeterminate Force Systems
Tension and Compression
DEFINITION OF A DETERMINATE FORCE SYSTEM

If the values of all the external forces which act on a body can be determined by the equations of
static equilibrium alone, then the force system is statically determinate. The problems in Chap. 1 were
all of this type.

Example 1

The bar shown in Fig. 2-1 is loaded by the force P. The reactions are R,. R;. and R,. The system
is statically determinate because there are three equations of static equilibrium available for the system
and these are sufficient 1o determine the three unknowns.

P

3 \
i v
Lz 133

Fig. 2-1

Example 2

The truss ABCD shown in Fig. 2-2 is loaded by the forces P; and P,. The reactions are R,, R,, and
R;. Again, since there are three equations of static equilibrium available, all three unknown reactions
may be determined and consequently the external force system is statically determinate.

The above two illustrations refer only to external reactions and the force systems may be defined
as statically determinate externally.

P,
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DEFINITION OF AN INDETERMINATE FORCE SYSTEM

In many cases the forces acting on a body cannot be determined by the equations of statics alone
because there are more unknown forces than there are equations of equilibrium. In such a case the
force system is said to be statically indeterminate.

Example 3

The bar shown in Fig. 2-3 is loaded by the force P. The reactions are R,, R;, R,, and R,. The force
system is statically indeterminate because there are four unknown reactions but only three equations
of static equilibrium. Such a force system is said to be indeterminate to the first degree.

Fig. 2-3

Example 4

The bar shown in Fig. 2-4 is statically indeterminate to the second degree because there are five
unknown reactions K;, R;, R;, Ry, and M, but only three equations of static equilibrium. Consequently
the values of all reactions cannot be determined by use of statics equations alone.

Fig. 2-4
METHOD OF ELASTIC ANALYSIS

The approach that we will consider here is called the deformation method because it considers the
deformations in the system. Briefly, the procedure to be followed in analyzing an indeterminate system
is first to write all equations of static equilibrium that pertain to the system and then supplement these
equations with additional equations based upon the deformations of the structure. Enough equations
involving deformations must be written so that the total number of equations from both statics and
deformations is equal to the number of unknown forces involved. See Problems 2.1 through 2.12.

ANALYSIS FOR ULTIMATE STRENGTH (LIMIT DESIGN)

We consider that the stress-strain curve for the material is of the form indicated in Fig. 2-5, i.e.,
one characterizing an extremely ductile material such as structural steel. Such idealized elastoplastic
behavior is a good representation of low-carbon steel. This representation assumes that the material
is incapable of developing stresses greater than the yield point.
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-
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Fig. 2-5

In a statically indeterminate system any inelastic action changes the conditions of constraint.
Under these altered conditions the loading that the system can carry usually increases over that
predicted on the basis of completely elastic action everywhere in the system. Design of a statically
indeterminate structure for that load under which some or all of the regions of the structure reach the
yield point and cause “collapse” of the system is termed limit design. The ultimate load corresponding
to such design is of course divided by some factor of safety to determine a working load. The term
“limit design,” when used in this manner, applies only to statically indeterminate structures. For
applications, see Problems 2.13 through 2.17.

Solved Problems

Elastic Analysis

In Problems 2.1 through 2.12 it is assumed that the system is acting within the linear elastic range
of action of the material.

2.1. In medical (orthopedic) applications it is occasionally necessary to lengthen a main bone of a
human leg or arm. This situation may arise if the bone has healed in a wrong configuration after
some accident, or alternatively the improper length may be due to a birth defect. One way to
accomplish this lengthening is for the surgeon to weaken the bone through the introduction of
one or two cuts near the outer surface of the bone, then attach the mechanical system shown
in Fig. 2-6 to the exterior of the leg. This system consists of a pair of metallic rings which encircle
the leg, with the rings being connected by a pair of parallel brass rods which are threaded at each
end. The distance between the rings can be varied over the months of treatment by turning the
nut at each end of each rod. Typically, the bone has a cross-sectional area of 1.2 in®, a modulus
of elasticity of 4.6X10°Ib/in?, and a length of 8in. The two brass rods have a total
cross-sectional area of 0.05 in?, a modulus of 13.5 X 10° Ib/in?, and 32 threads per inch. If the nut
at the end of the bar is turned # of a revolution to stretch the bone, determine the axial stress
arising in the bone.

Let us consider a section to be passed through the bone and perpendicular to the axial dimension of

the bone. The free-body diagram of the system is shown in Fig. 2-7 where P,,... represents the axial force
in the bone and P, is the axial force in each brass bar. For equilibrium:

Prone = Prog (1
From deformations of the system, we rcalize that the extension of the bone plus the shortening of each
rod is equal to the displacement of the nut along the bar. This latter quantity is §(3; in). Thus, we have
Ppone(Bin) 4 Proa(8in)
(1.2in%) (4.6 X 10°1b/in®) (005 in®) (13.5 X 10° Ib/in?)

= (8) (zin) 2)
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Solving (1) and (2) we find

Prone = 5881b
588 Ib
== = 490 Ib/in?
Trone = 1 2in? "
MNul
1 ce Home
Brass Haud
'P‘*nlh
punl 2 ,,Iunl r
Rod Bone Rod
Fig. 2-6 Fig. 27

2.2. Consider a steel tube surrounding a solid aluminum cylinder, the assembly being compressed
between infinitely rigid cover plates by centrally applied forces as shown in Fig. 2-8(a). The
aluminum cylinder is 3in in diameter and the outside diameter of the steel tube is 3.5in. If
P = 48,000 1b, find the stress in the steel and also in the aluminum. For steel, E = 30 X 10° Ib/in?
and for aluminum E = 12 X 10° Ibfin’.

Let us pass a horizontal plane through the assembly at any elevation except in the immediate vicinity
of the cover plates and then remove one portion or the other, say the upper portion. In that event the

portion that we have removed must be replaced by the effect it exerted upon the remaining portion and
that effect consists of vertical normal stresses distributed over the two materials. The free-body diagram

of the portion of the assembly below this cutting plane is shown in Fig. 2-8(b) where o, and o, denote the
normal stresses existing in the steel and aluminum respectively.

P Ost Tat O

e~ —]

{a)
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Let us denote the resultant force carried by the steel by P, (Ib) and that carried by the aluminum by
P, Then P, = A, 0, and P,, = A, 0, where A, and A, denote the cross-sectional areas of the steel tube
and the aluminum cylinder, respectively. There is only one equation of static equilibrium available for such
a force system and it takes the form

SF,=P-P,~P,=0

Thus. we have one equation in two unknowns. P, and P,, and hence the problem is statically
indeterminate. In that event we must supplement the available statics equation by an equation derived
from the deformations of the structure. Such an equation is readily obtained because the infinitely rigid
cover plates force the axial deformations of the two metals to be identical.

The deformation due to axial loading is given by A = PL/AE. Equating axial deformations of the stcel
and the aluminum we have

P,L _ PuyL
A“rEy AuFEdJ
P‘fL _ PNL
(m/4) [(3.5) — (3] (30 X 10°)  (wwid) (3)*(12 X 10°)
This equation is now solved simultaneously with the statics equation, P— P, — P, = (), and we find
P, = 0.448P, P, = 0.552°P.

For a load of P = 48,000 |b this becomes P, = 21,504 Ib and P, = 26,496 Ib. The desired stresses are
found by dividing the resultant force in each material by its cross-sectional area:

21,504 _ 26,496
(mi4) (3)° (mi4)[(3.5)° - (3]

from which P, =123P,

or

= 3050 Ib/in’ oy = 1038 Ib/in?

Tu =

2.3. The three-bar assembly shown in Fig. 2-9 supports the vertical load P. Bars AB and BD are
identical, each of length L and cross-sectional area A,. The vertical bar BC is also of length L
but of area A,. All bars have the same modulus E and are pinned at A, B, C, and D. Determine
the axial force in each of the bars.

Fig. 2.9

First. we draw a [ree-body diagram of the pin at B. The forces in each of the bars are represented by
P, and P, as shown in Fig. 2-10. For vertical equilibrium we find:

IF. =2P;sin8+P,—P=1( (1)
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We assume, temporarily. that the pin at B is removed. Next we examine deformations. Under the
action of the axial force P the vertical bar cxtends downward an amount

P L

T AE (2)

4

so that the lower end (originally at B) moves to B’ as shown in Fig. 2-11.

C A -
AN
"\ .-‘08
[ EL 6,
5O, in
pot’ ' 6
T
Fig. 2-11 Fig. 2-12

The compressive force in AB causes it to shorten an amount A shown as BB” in Fig. 2-12. The bar AB
then rotates about A as a rigid body so that B” moves to B™ dircctly below point C. From Fig. 2-12 the
vertical component of A is

P L
BB" = ———
A Esing

Next, we consider the pin to be reinserted in the system. The points B’ and B” must coincide

so that

Pl PL
A;E A, Esme@

(3)

Substituting Eq. (3) in Eq. (I) we find
_ Psin ¢
' 2sin0+a
Pa

Py = oo
2sin” 6+ @

where a = A,;/A,.

24. Consider the two identical bars AB and AC, each 0.5 m long. each with area A and E = 200 GPa.
They are pinned at A, B. and C. Bar DF has area 24 and E = 200 GPa. Bar DF is accidentally
made 0.8 mm too short to extend between A and D. Points A and F must be brought together
mechanically to form a frame consisting of the two isosceles triangles shown in Fig. 2-13. Find

NN
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the initial stresses in the bars prior to application of any external loading, The system of bars
lies on a frictionless horizontal plane.

It is evident that point A must be forced downward (creating compression in AB and AC) and the
end F of the vertical bar must be pulled upward to meet the (lowered) point A. The meeting point of A
and F is not necessarily midway between the initial locations of A and F, After these two points have met,
they are joined by a pin. At this stage there are no external applied loads on the three-bar system.
However, there are locked-in stresses in each of the bars.

We may find these initial stresses by designating compressive forces in AB and AC by P, and the
tensile force in FD by P, (Newtons). After these bars have been jointed by a pin, the free-body diagram
of that pin appears as shown in Fig. 2-14.

30° 130°
Py

Py Py

Fig. 2-14

For equilibrium of the pin:
2Pcos30°— P =0; or P =P,\3 n
As point A is mechanically forced downward, each of the bars AB and AC shortens an amount

_ Py(500)
AE

in the direction of the respective bar. With the pin at A removed, the deformed configuration appears as
shown in Fig. 2-15. The vertical component of 4, is given by

P,(500)
AE cos 30°
The deformation of the inclined bars may be visualized (see Fig. 2-15) by realizing that the compressed

4

-
T

I
B s o
2

Fig. 2-15

bar AB first shortens as A moves to A’, then the entire bar AB rotates as a rigid body about 8 so that A’
moves to A" actually along a circular arc whose center is at B, but for small angles of rotation the arc may
be replaced by the straight line A’A”.

The tensile force in bar DF causes the point F in the originally stress-free bar to move vertically
upward to F'. as shown in Fig. 2-16. F’ is the final position of F after the pin has been inserted at the
junction of all three bars. The vertical elongation of the bar is

_ Py(500c0s 30°)

A, 2AE

(2)

where 24 is the cross-sectional area of bar DF.
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Fig. 2-16

Thus, to close the gap of 0.8 mm between the bars, we must have

Py(500)  P,(S00cos30°)
= 0. 3
AEcos30° . 2AE 0.8 mm )
Substituting Eq. (/) in Eq. (3) we find
Py | (265)(P,V3) _
STTA- -+ 08

But £ = 200 GPa. so solving the above equations for normal stresses in the bars we find

P
oy = f = 168 MPa

P
o= ﬁ = 1455 MPa

2.5. The composite bar shown in Fig. 2-17(a) is rigidly attached to the two supports. The left portion
of the bar is copper, of uniform cross-sectional area 12 in? and length 12 in. The right portion
is aluminum, of uniform cross-sectional area 3 in” and length 8 in. At a temperature of 80°F the
entire assembly is stress free. The temperature of the structure drops and during this process
the nght support yields 0.001 in in the direction of the contracting metal. Determine the
minimum temperature to which the assembly may be subjected in order that the stress in the
aluminum does not exceed 24,000 Ib/in®. For copper E = 16 X 10°Ib/in?, a = 9.3 X 107%°F and
for aluminum E = 10 X 10°Ib/in?, a = 12.8 X 10" %°F.

It is perhaps simplest to consider that the bar is cut just to the left of the supporting wall at the right
and is then free to contract due to the temperature drop AT. The total shortening of the composite bar
is given by

(9.3 107%) (12)AT + (12.8 X 10"%)(8) AT

according to the definition of the coefficient of linear expansion. It is to be noted that the shape of the cross
section has no influence upon the change in length of the bar due to a temperature change.

Even though the bar has contracted this amount, it is still stress free. However, this is not the complete
analysis because the reaction of the wall at the right has been neglected by cutting the bar there.
Consequently, we must represent the action of the wall by an axial force P applied to the bar, as shown

3 " [ }=>»r
Yo 12 e o
(a) ®)

Fig. 2-17
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in Fig. 2-17(b). For cquilibrium, the resultant force acting over any cross section of either the copper or
the aluminum must be equal to P. The application of the foree P stretches the composite bar by an
amount

PU2) _,_ PB)
12(16 X 10°) ~ 3(10 x 10°)

If the right support were unyielding, we would equate the last expression to the expression giving the
total shortening due to the temperaturc drop. Actually the right support yields 0.001 in and consequently
we may write

P12) . P@B)
12(16 % 10%) ~ 3(10 < 10%)

The stress in the aluminum is not to exceed 24,000 Ibfin”, and since it is given by the formula o = PIA,
the maximum force P becomes P = Ao = 3(24,000) = 72,000 Ib. Substituting this value of £ in the above
equation relaling deformations, we find AT = 115°F. Therefore the temperature may drop 115°F from the
original 80°F. The final temperature would be ~35°F.

= (9.3% 10 }(12)AT+ (128X 10 *)(8)AT — 0.001

2.6. A bar (see Fig. 2-18) in the shape of a solid, truncated cone of circular cross section is situated
between two rigid supports which constrain the bar from any change of axial length. The
temperature of the entire bar is then raised AT. Assume that the cross sections perpendicular
to the longitudinal axis of symmetry remain plane and neglect localized end effects due to the
end supports. Determine the normal stress at any point in the bar.

O

I

Fig. 2-18

Let us introduce the coordinate system shown in Fig. 2-18 where x denotes the distance of a thin disc
from the left end of the bar, and dx is the thickness of the disc in the direction of the x-axis. The radius
of this disc is found from geometry to be

roX

r=rn+ %
If the support at the right end of the bar is considered to be temporarily removed, the entire bar will
expand in length an amount a{L) (AT), where o is the cocfficient of thermal cxpansion of the material,

We may now consider an axial force N Lo acl on the right end of the bar, as shown in Fig, 2-19,
to compress the bar back to its original length L. The disc of thickness dx compresses an amount (sc¢
Problem 1.1)

Ndx  N(dx)
AE ()

becausc of this axial force N (which, for equilibrium, must be constant over any cross section of the bar).
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2.7,

Fig. 2-19
The total compression of the bar due to N is found by summing the changes of length of all discs fromx = 0
tox = L:
“EN(dx)  NL* (' dx
Lﬂ w’E Emf,L (L + x)
Integrating,

JL de 1
, (L+x)? 2L

and setting the bar extension due to healing equal to bar compression due to the axial force N. we find

NI 1
a(L)(AT) = E:T;z; (-Z—L')
N = 2a(AT)E7rj

The axial normal stress is now found by dividing the force N by the cross-sectional area at any
station x,
2a(AT)E

— N J—
TE T A +aL)y

A hollow steel cylinder surrounds a solid copper cylinder and the assembly is subject to an axial
loading of 50,000 Ib as shown in Fig. 2-20(a). The cross-sectional area of the steel is 3 in?, while
that of the copper is 10in’. Both cylinders are the same length before the load is applied.
Determine the temperature rise of the entire system required to place all of the load on
the copper cylinder. The cover plate at the top of the assembly is rigid. For copper
E =16 X 10°1b/in®, a = 9.3 X 107%°F, while for steel E = 30 x 10°Ibfin?, a = 6.5 X 107°/°F.
One method of analyzing this problem is to assume that the load as well as the upper cover plate are
removed and that the system is allowed to freely expand vertically because of a temperature rise AT. In

50,000 Ib
r=—==
' ]

s s I g Al |

St - Cu St
20~

LT

AN

(b

Fig. 2-20
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that event the upper ends of the cylinders assume the positions shown by the dashed lines in Fig.
2-20(b).

The copper cylinder naturally expands upward more than the steel one because the coefficient of
linear expansion of copper is greater than that of sieel. The upward expansion of the steel cylinder is
(6.5 % 10 ©)(20)AT. while that of the copper is (9.3 % 10 *)(20)AT.

This is not of course the true situation because the load of 50.000Ib has not as yet been considered.
If all of this axial load is carried by the copper then only the copper will be compressed and the
compression of the copper is given by

_ PL _ 50000(20)
AE  10(16 % 10°)

The condition of the problem states that the temperature rise AT is just sufficient so that all of the
load is carried by the copper. Thus, the expanded length of the copper indicated by the dashed lines in the
above sketch will be decreased by the action of the force. The net expansion of the copper is the expansion
caused by the rise of temperature minus the compression due to the load. The change of length of the steel
is due only to the temperature rise. Consequently we may write

50,000(20)
10(16 % 10°)

A

(9.3 10 ®)(20)AT - =(65%10 ®)(20)AT  or AT = 111°F

28. The rigid bar AD is pinned at A and attached to the bars BC and £D, as shown in Fig. 2-21(a).
The entire system is initially stress free and the weights of all bars are negligible. The
temperature of bar BC is lowered 25°C and that of the bar ED is raised 25°C. Neglecting any
possibility of lateral buckling, find the normal stresses in bars BC and ED. For BC, which is
brass, assume E = 90 GPa, a = 20 X 107%/°C, and for ED, which is steel, take £ = 200 GPa and
a = 12X 10" °/°C. The cross-sectional area of BC is 500 mm® and of ED is 250 mm’.

A B
o L
VLol es

Brass]| |300mm 4, Py,

ta

i
R

2

g

5

>
.
H

Fig. 2-20

Let us denote the forces on AD by P, and P, acting in the assumed dircctions shown in the free-body
diagram, Fig. 2-21(b). Since AD rotates as a rigid body about A (as shown by the dashed line) we have
A, 1250 = A, 1350 where A, and A,, denote the axial compression of BC and the axial clongation of DE,
respectively.

The total change of length of BC is composed of a shortening due to the temperature drop as well
as a lengthening due to the axial force P,,. The total change of length of DE is composed of a lengthening
due to the temperature rise as well as a lengthening due 1o the force P,,. Hence we have

P(250)
(250) (200 x 10° x 10°

(g) [(ux 10 ©)(250(25) + ﬁ)] = ~(20%10 )(300)(25)

o Pul300)
(500) (90 % 10° % 10 %)
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2.9.

or 6.66P,, — 2.08P, = 153.0 X 10°

From statics, M, = 250P,,—600P, =0

Solving these equations simultaneously, P, = 10.99 kN and P, = 26.3 kN.
Using o = P/A for each bar, we obtain ¢, = 439 MPa and o;, = 52.6 kN.

Consider the statically indeterminate pin-connected framework shown in Fig. 2-22(a). Before
the load P is applied the entire system is stress free. Find the axial force in each bar caused by
the vertical load P. The two outer bars are identical and have cross-sectional area A,, while the
middle bar has area A,. All bars have the same modulus of elasticity, E.

The free-body diagram of the pin at A appears as in Fig. 2-22(b) where F, and F, denote axial forces
(1b) in the vertical and inclined bars. From statics we have

IF,=F +2Fcos6—-P=0

This is the only statics equation available since we have made use of symmelry in stating that the forces
in the inclined bars are equal. Since it contains two unknowns, F, and F;, the force system is statically

(b) (c)

Fig. 2-22

indeterminate. Hence we must examine the deformations of the system to obtain another equation. Under
the action of the load P the bars assume the positions shown by the dashed lines in Fig. 2-22(c).

Because the deformations of the system are smail, the basic geometry is essentially unchanged and
the angle BA'A may be taken to be 6. AEA’ is a right triangle and AE, which is actually an arc having
a radius equal in length to the length of the inclined bars, is perpendicular to BA’. The elongation of the
vertical bar is thus represented by AA’ and that of the inclined bars by EA’. From this small triangle we
have the relation

ﬁm = ﬁc‘q cosf
where Ay, and Ac, denote elongations of the inclined and vertical bars, respectively.

Since these bars are subject to axial loading their elongations are given by A = PL/AF. From that
expression we have

Fy(Llcos 8) F L
Agy=—————2  and Acs=
Ba AE “ T AE

Substituting these in the above equation relating Az, and A, we have

L  FRL LA
A,Eoosﬂ_A,,Emse or F;.—F.Av 0s° @
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Substituting 1his in the statics equation we find F, + 2F,(A,/A, )cos' 8 = P, or

P . Pcos’ 6
F= A ess ™ B

T (AJA,) +2cos* 6 (N

2.10. Two initially horizontal rigid bars AC and DG are pinned at A and G and are also connected
by elastic vertical bars BD and CF, each of rigidity AE, as shown in Fig. 2-23. The temperature
of bar BD is then raised by an amount AT. Determine the force in the two vertical bars.

l . . 4
¥ XX
D I8 (s

! A | I ————1-|

Fig. 2-23

Frec-body diagrams of the components, assuming all unknown forces are positive. in tension appear
as in Fig. 2-24.
For equilibrium of bar DG, we have

+H1EM; = —-F(L)- F(3L)y=0 ~FE+3F =0 (r

.

F,

B C
F, Fi
B C
D F
F, F,
1]
'Fl F, '
L
D

- -
- G G,

Fig. 2-24
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211

Fig. 2-25

We must now examine deformations of the system. To simplify this analysis, it is pcrmissible to assume
that the upper bar AC remains horizontal and that all distortion is due to rigid-body rotation of the lowcr
bar DG about G. This leads to the deformed position of DG as shown by the dotted line in Fig. 2-25. The
changes of length of the vertical bars arc indicated by 4, and 4, in that figure. From geometry. for a small
angle of rotation. we have

&
3L

f=

=~

from which
&, =38, (2)

The increase in length of bar BD is due partially to the force F it carries and partially to the increase
in temperature. It is

Fi(1.5L)
& =————+a(AT) (1. 3
1 AE TN (s (3)
For bar CF, the increase of length is duc only to the force £ in it. so we have
Fx(1.51)
5, =00 @)

AE
Solving Egs. (7). (2). (3). and (4) simultaneously. we have

F - _AAT)AE
! 10
3a(AT)AE
F=—— 1=
2 10

The ncgative sign accompanying the bar force F, indicates that bar BD is in compression, whereas bar CF
is in tension.

A two-dimensional framework consists of two bars AB and BH forming a 30° triangle with pins
at A, B, and H together with a horizontal bar GD, as shown in Fig. 2-26. Because of a
manufacturing error, the bar GD is slightly short of the length 21.. All bars have axial rigidity
AE. Determine the axial force in bar GD when the gap A is closed by mechanical action.

First, let us examine the forces acting at point B. In particular. we apply a horizontal force F at
the node B, and a free-body diagram of that node is shown in Fig. 2-27. For horizontal equilibrium.
we have

EF‘=F_'F3AC05300:0

from which

()
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2.12,

Fig. 2-26 Fig. 2-27

Next, let us examine displacements at the node B. Since we have just found that bar AB is in tension,
it will lengthen an amount Ag,, as shown in Fig. 2-28, where

Fua2L
By, = a2 @

The bar AB will then rotate as a rigid body about point A through the circular arc from B” to B'. which
for small deformations we approximate as a straight line from B” to B’. The horizontal projections of BB”
and B'B’ are denoted by A, and A,, respectively. From geometry we have

A; = A,sin30° = Ag, (tan 30°) (sin 30°) (3)
ﬁ3 = am 00830° (4)

The bar GD is subject to an equal and opposite force F, as shown in Fig. 2-29, and it elongates an
amount

F2L)
AE %)

F -

Fig. 2-28 Fig. 2-29

Thus, to bring points B and G together and close the gap, we have

A, + A+ Ffé)=n (6)

From Egs. (1) through (6), we have the required force in bar GD to close the gap A:

o AEA _2AEA
20(1 +1an’30°)  SL

The rigid horizontal bar ABC is supported by vertical elastic posts and restrained against
horizontal movement at A as shown in Fig. 2-30. A vertical load P acts at C. The extensional
rigidity of each post is indicated in the figure and each is of length L. Find the axial force in each
of the three posts.
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Fig. 2-30

Due to the load P the originally horizontal bar deforms to the configuration indicated by the dotted
line in Fig. 2-31. That is, it rotates as a rigid body about some point D (whose location is unknown) through
the angle a.

F, P
ﬁflil"‘-'ffn_é" B la’ cy
e HFAT"-‘L-IL“]AC
T z
Fig. 2-31

Figure 2-31 shows a free-body diagram of ABC where the forces exerted on ABC by the posts are
represented by F,. F». and F;. The change of length of each post is indicated by A in the figure. From the
geometry of the deformed system we have

_ A, _(RLIAE) _(F:LI2.5AE)
X X a—x

)
For this parallel force system there are two equations of static equilibrium. For the first equation we set

3 M= F,(2a) - Fy(a) =0

from which
Fi== (2)

If we now substitute (2) in (/). we find

(F;,LRAE) _(F,LR2.5AE)
X a—x

from which
x = (E) a 3)
For the second statics equation we write
IMg=—-Fua+Pa—Fa=0

Thus Fi=P-F, )
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The changes of length of posts C and A arc given by

L _FL
MTAET M7 ©)
From the gecometry of Fig. 2-31 we have
*l(' A,—[

and from Eq. (3):

A = (153):.\,. ©6)
Substituting (5) in (4), we find
Fy=(13Y) F, (7)
and from (2) and (7) we have
F,=(;)P: Fz=(i)P (8)
22 i1

Ultimate Strength (Limit Design)

In each of the following problems the elastoplastic behavior of the material is assumed to follow
the idealized stress-strain curve of Fig. 2-32.

The ultimate load, or limit load, determined in cach of the following problems is the maximum
possible load that can be applied to each system provided the stress-strain curve is of the type indicated
and the material has infinite ductility, i.e.. the flat region of the curve extends indefinitely to the

right.

ol —

Fig. 2-32

2.13. Consider the system composed of three vertical bars as indicated in Fig. 2-33(a). The outer bars
of length L are equally spaced from the central bar and a load P is applied to the rigid horizontal
member. Using limit design, determine the ultimate load P. The values of A and £ are identical
in all three bars.

Let us analyze the action as the load P increases from an initial value of zero. i.e., as it is slowly applied.
For equilibrium we have

2P, + P, =P ()
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2.14.

Y
Mo -

Fig. 2-33

where P, represents the force in each of the outer bars and P is the force in the inner bar [sec Fig. 2-33(b)].
Since the horizontal member is rigid. the vertical clongation of cach of the outer bars must equal that of
the central bar. Thus

or Py =3P (3)
Substituting this value in (/) we find
P, =3P P, =P (4)

From the time of yiclding of the central bar, the system deforms as if supported by only the two outside
bars (which still act elastically) together with a constant force o, , A supplicd by the central bar. The value
of P incrcases until yielding begins in cach of the outer bars, ic.. when Py = a,,A. The ultimate load
is thus

P,=2P+ Py=20,A+0,A=30,,A

It is to be noted that the deformation equation (2) is not employed to determine the ultimate load.

Reconsider Problem 2.9 for the case of three bars of equal cross-sectional arca. Determine the
ultimate load-carrying capability of the system.

For A, = A, = A the force in the vertical bar exceeds that in either inclined bar as indicated by (1)
of Problem 2.9. Thus. as P increascs, the central vertical bar is the first to enter the inelastic range of action
and its stiffness (effective value of AF) decreases. Any additional increase in the load P will cause no
further increase in F; which will remain at the limit value F¥ = ¢,,A. The central bar can now be replaced
by a constant upward vertical force FF and the system is now reduced to a statically determinate system
consisting of the two outer bars subject to an applied load P — F}. The load P can now be increased until
the outer bars also develop the yield stress. It is not necessary 1o consider deformations of the system: we
need look only at the equilibrium relation

P = F¥f+2F.cos@ ()

As the load P increases still more, the outer bars also reach the yield point and the force in each of them
becomes

Fg‘ = U\pA (2}
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The ultimate load thus corresponds to the situation when F¥ = F¥ = ¢,, A and this load is found from
(1) as
P, = o,,A(l + 2cos 8) 3)

This limit load should be divided by some safety factor 1o obtain a working load.

2.15. Suppose the three-bar system of Problem 2.9 is to withstand a load P = 200 kN, Compare the
bar weights required if the design is based upon (a) the peak stress just reaching the yield point,
and (b) ultimate load analysis. Assume that all bars are of identical cross section, that 8 = 45°,
and take the yield point of the material to be 250 MPa.

(a) According to the elastic theory of Problem 2.9, the force in the vertical bar becomes

2P

F = = 117kN
! 2+;2

If the stress in that bar is equal to the yield point, we have a required cross-sectional area of F, = A, a,,,.
Hence
17 x10° = A,(250) or A, = 468 mm?

(b) If the ultimate load analysis of Problem 2.14 is employed, the stresses in all three bars are equal
to the yicld point and from (3) of Problem 2.14 we find a cross-sectional area of

200 x 10° = 250A4;[1 + 2(0.707)] or Az = 331 mm’

Ultimate load analysis thus implies a 29 percent saving in cross-sectional area and the same weight
saving.

2.16. The frame shown in Fig. 2-34 consists of three pinned end bars AD, BD, and CD. The bars are
of identical material and cross section, and the ultimate load-carrying capacity of each is 30 kN.
Determine the ultimate vertical load P, that may be applied to the system at point D.

JOkN

30kN
Fap 35

Fig. 2-34 Fig. 2-35

Let us assume that bars BD and CD have reached yield. Examination of a free-body diagram for the
node D as shown in Fig. 2-35 leads to

ZF, =30sin35°— P,upsin70° =0

P.o = 183kN
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Thus, bar AD does not yield since the bar force for equilibrium is less than the 30 kN required for yield.
Summing vertically for equilibrium we have

SF, = —P,+183cos 70° + 30 + 30 cos 35° = 0
P. = 609 kN

2.17. A system composed of a rigid horizontal member AB supported by four bars is indicated in Fig.
2-36(a). The bars have identical cross sections and are made of the same material. Determine
the ultimate load P that may be applied to the system.

s “als apA
1 2
A C ; A
r |
b— o —§ -

ﬂ-f‘ awA owA "AmA
1 ‘ H
pr
A C .
L
a | Ze __.|
@ 3 3

(¢}

Fig. 2-36

Since the member AB is rigid, it is evident that, upon application of a sufficiently large load P, AB
may rotate as a rigid body about either point A or point B. (The ultimate load implies plastic deformation
in bar 2; hence it is not necessary to consider rotation about C.) It is necessary to determine the ultimate
loads corresponding to these two possibilities and then to select the smaller.

Let us first assume that yielding first begins in bars 1 and 2, in which case their effect can be
represented by the two constant forces o, A as indicated in Fig. 2-36(b). The bars 3 and 4 are still in the
elastic range of action and the forces in them are unknown. However, it is not necessary to determine the
forces since the ultimate load P, may be determined by summing moments about point B:

P, (2-33) —o,A(a) - 0,,A(2a) = ()

Solving,
P,=450,,A
Next, let us consider that yielding begins in bars 2, 3, and 4 as indicated in Fig. 2-36(c). Bar 1 is still
in the elastic range of action. Taking moments about point A:

4
(0,,Acosa)da + a,, Aa - P::?“ =0
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2.18.

2.19

2.21.

STATICALLY INDETERMINATE FORCE SYSTEMS TENSION AND COMPRESSION [CHAP. 2

Solving.
P, =0, A(1 +4cosa)

It is evident from inspection of P, and P, that, for all values of the angle a. the value of P is the smaller
of the two and thus Py, represents the ultimate load. When the applied load reaches this value, the system
is essentially converted into a mechanism and the rigid bar rotates about point A. Even in this condition
bar | is not working to its full capacity.

Supplementary Problems

Two initially straight bars are joined together and attached to supports as in Fig. 2-37. The left bar
is brass (or which £ = 90 GPa, a = 20x 10 *°C, and the right bar is aluminum for which E = 70 GPa.
a =25x10 °C. The cross-scctional area of the brass bar is 500 mm®, and that of the aluminum
bar is 750 mm-. Let us supposc that the system is initially stress free and that the temperature then
drops 20°C.

(a) If the supports are unyiclding. find the normal stress in each bar.

(b) If the right support yiclds 0.1 mm. find the normal stress in cach bar. The weight of the bars is
negligible, Ans.  (a) ay,, = 41 MPa, o, = 27.33 MPa; (b) o}, = 26.4 MPa, o, = 19 MPa

p——— 500 mm ——-—-L.‘.Sﬂ M -

Fig. 2-37

The framework shown in Fig. 2-38 consists of bars AD. AC. BC, and BD pinned at A. B. C. and D. and
also a fifth bar CD. The system is loaded by the equal and opposite forces P. All bars are of identical
material and cross section. Determine the decrease of the distance between A and B due to these
loads.

PIN2

AN
ns. AE

(V2+1)

Refer to the framework shown in Fig, 2-38.
Now. instcad of the two loads P, the
temperature of the entire system is raised by
an amount AT. Determine the change of
distance between A and B in terms of the
geometry of the system and the coef-
ficient of thermal cx}gansion a of the
material. Ans. LV 2a(AT)

Refer 1o Problem 2.6. If the conical
bar has a diameter at its small end
of 100mm. a length of Im. and is of
steel having E =200GPa and a cocffi-
cient of thermal expansion of 12 X 10 “FC,
determine the maximum axial stress in
the bar due to a temperature drop of
2rC. Ans. 96 MPa Fig. 2-38
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2.22. A compound bar is composed of a strip of copper between two cold-rolled steel plates. The ends of the
assembly are covered with infinitely rigid cover plates and an axial tensile load P is applied to the bar by
means of a force acting on each rigid plate as shown in Fig. 2-39. The width of all bars is 4 in, the steel plates
are cach } in thick and the copper is 3 in thick. Determine the maximum load P that may be applied. The
ultimate strength of the steel is 80,000 Ib/in? and that of the copper is 30.000 Ib/in". A safety factor of 3
based upon the ultimate strength of cach material is satisfactory. For steel E = 30 % 10°Ib/in” and for
copper E = 13 x 10°Ib/in’. Ans. P=762001b

ST I,

Fig. 2-39

2.23.  Analuminum right-circular cylinder surrounds a steel cylinder as shown in Fig. 2-40. The axial compressive
load of 200kN is applied through the infinitely rigid cover plate shown. If the aluminum cylinder is
originally 0.25 mm longer than the steel before any load is applied. find the normal stress in each
when the temperature has dropped 20K and the entire load is acting. For steel take £ = 200 GPa:
a = 12X 107%°C, and for aluminum assume E = 70 GPa, a = 25 < 10 *°C.

Ans. o, =9MPa, g, = 15.5MPa

*mmm

> /7 -
P rd

]
T

i

;-snmm-'
-85 mm =
b 13 mm~ ™

Fig. 2-40

2.24. The rigid horizontal bar AB is supported by three vertical wires as shown in Fig, 2-41 and carries a load
of 24,000 Ib. The weight of AB is negligible and the system is stress free before the 24.000-Ib load is applied.
After the load is applied, the temperature of all three wires is raised by 25°F. Find the stress in each wire

Steel ——p—
A-ozine| B?g’ . Copper
L_Gft = b an A 0Zin?
L 41t L =51t
3 2 —-
Al B
-
24,000 1b

Fig. 2-41
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2.25,

2.27.

as well as the location of the applied load in order that AB remains horizontal. For the steel wire take
E =30 x 10°Ib/in?, o = 6.5 < 107 °"°F, for the brass wire E = 14 x 10°1b/in’, @ = 10.4 X 10 *°F, and for
copper E = 17 X 10°1b/in?, & = 9.3 X 10 °°F. Neglect any possibility of lateral buckling of any of the
wires.  Ans. o, = 32,300 Iblin?, o, = 22,400 Ib/in?, o, = 21,400 Ibfin?, x = 0.273 ft

A system consists of two rigid end-plates, tied together by three horizontal bars as shown in Fig. 2-42.
Through a fabrication error, the central bar, (), is 0.0005L too short. All bars are of identical cross section
and of steel having £ = 210 GPa. Find the stress in each bar after the system has mechanically been pulled
together so that the gap A is closed.

Ans o= —-35MPa
o = 70 MPa

e
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Fig. 2-42

A structural system consists of three joined bars of different materials and geometries, as shown in Fig.
2-43. Bar (D) is aluminum alloy, bar @s is cold rolled brass, and bar () is tempered alloy steel. Properties
and dimensions of all three are shown in the figure. Initially, the entire system is free of stresses. but then
the right support is moved 3 mm to the right whereas the left support remains fixed in space. Determine
the stress in each bar due to this 3 mm displacement.

Ans. o, =223 MPa

oy = 446 MPa
N A=4x10 ' m’ ?:f(;ég:mz Ay=2x10*m’ N
s £, =70GPa : E; =200 GPa §
N N
- _ _ N
N L,=05m [,=-03m L,-04m \
Fig. 2-43

The bar AC is absolutely rigid and is pinned at A and attached to bars DB and CE as shown in Fig. 2-44.
The weight of AC is 50 kN and the weights of the other two bars are negligible. Consider the temperature
of both bars DB and CE to be raised 35°C. Find the resulting normal stresses in these two bars. DB is
copper for which £ = 90 GPa, a = 18 X 107°°C, and the cross-sectional area is 1000 mm’, while CE is steel
for which E = 200 GPa, a = 12X 10 *°C, and the cross section is 500 mm’. Neglect any possibility of
lateral buckling of the bars. Ans. o, =T2MPa, o, = —21.7MPa
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Fig. 2-44

The three bars shown in Fig. 2-45 support the vertical load of 5000 1b. The bars are all stress free and joined
by the pin at A before the load is applied. The load is put on gradually and simultaneously the temperature
of all three bars decreases by 15°F. Calculate the stress in each bar. The outer bars are each brass and of
cross-sectional area 0.4 in?. The central bar is steel and of area 0.3 in% For brass E = 13 x 10°Ibfin* and
a = 10.4 X 107 °FF and for steel E = 30 X 10°Ib/in? and a = 6.3 X 10 *°F.

Ans. o, = 3550 1b/in?, o,, = 10,000 Ib/in?

000 1h

Fig. 2-45

A framework consists of three pinned bars AD, BD, and CD as shown in Fig. 2-46. The load F = 8 kN acts
vertically at D. The cross-sectional areas of bars (D) and () are each 200 V'S mm?. the area of bar @is
400 mm?, L = 3 m, the elastic moduli are E, = 200 GPa, E, = 80 GPa, and E, = 100 GPa. Determine the
horizontal and vertical components of displacement of point D as well as the axial force in bar 2).
Ans.  —0.136 mm, —0.204 mm, 2.182 kN
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2.30.

231

2.32.

The rigid bar AD in Fig. 2-47 is pinned at A and supported by a steel rod at D together with a linear spring
at B. The bar carries a vertical load of 30kN applied at C. Determine the vertical displacement of
point D, Ans. (0.8 mm

me MN
k=25 "0 A
~Losm 05m__ 1
Bar
B___C
Ry NODANNN, AN L=05m "
A=50x 10 *m’
—=== ~——+%"‘ 0Sm { E=200GPa
L ]
30kN
Fig. 2-47

The curved rigid bar ADB is joined to the two elastic bars OA and OB
as shown in Fig, 2-48. For additional strength, it is desired to join bar OC
to ADB at the midpoint . However. through a manufacturing error OC
is fabricated 1.8 mm too short. Determine the initial stresses in these three
bars when point C is mechanically forced to D and these two points
pinned together. The area of each outer bar is three times that of the
central bar, and for all bars E = 200 GPa.

Ans.  Quter bars 43.6 MPa, central bar 75.5 MPa

The five-bar assembly of Fig. 2-49 was found to be slightly defective, i.e., Fig. 2-48

points A and C which ought to have coincided failed to coincide by a

distance A. After these points had been forced to coincide, the joint at that point was pinned. Determine
the forces existing in each bar. All bars have the same cross-sectional area.

V3 |\ AAE 1 AAE
A F,=F, = = _ F, = = - —_—
ns h=h=Fh (2+3?3) L = F (2+3x?3) L

The rigid bar AB is supported by the four rods shown in Fig. 2-50. The rods are each circular in cross section
and of 50 mm diameter. They have a yield point of 300 MPa. Using limit design determine the maximum
weight of the bar AB. Assume that the weight is uniformly distributed along the length. Ans. 1.38 MN




Chapter 3

Thin-Walled Pressure Vessels

In Chaps. 1 and 2 we examined various cases involving uniform normal stresses acting in bars.
Another application of uniformly distributed normal stresses occurs in the approximate analysis of
thin-walled pressure vessels, such as cylindrical, spherical, conical. or toroidal shells subject to internal
or external pressure from a gas or a liquid. In this chapter we will treat only thin shells of revolution
and restrict ourselves to axisymmetric deformations of these shells.

NATURE OF STRESSES

The shell of revolution shown in Fig. 3-1 is formed by rotating a plane curve (the meridian) about
an axis lying in the plane of the curve. The radius of curvature of the meridian is denoted by r, and
this of course varies along the length of the meridian. This radius of curvature is defined by two lines
perpendicular to the shell and passing through points B and C of Fig. 3-1. Another parameter, r,,
denotes the radius of curvature of the shell surface in a direction perpendicular to the meridian. This
radius of curvature is defined by perpendiculars to the shell through points A and B of Fig. 3-1. The
center of curvature corresponding to r, must lie on the axis of symmetry of the shell although the center
for r, in general does not lie there. An internal pressure p acting normal to the curved surface of the
shell gives rise to meridional stresses o, and hoop stresses o, as indicated in the figure. These stresses
are orthogonal to one another and act in the plane of the shell wall.

I

Axis of symmetry

_ hwher-order
terms

L]

Shell
Element -

Shell
Element

Parallel
Circle
Meridizn

Axis of symmetry

(a) h

In Problem 3.15 it is shown that

where h denotes the shell thickness. A second equation may be obtained by consideration of the
vertical equilibrium of the entire shell above some convenient parallel circle, as indicated in Problem
3.15. The derivation of the above equation assumes that the stresses o and o, are uniformly distributed
over the wall thickness.

63
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Applications of this analysis to cylindrical shells are to be found in Problems 3.1 through 3.6; to
spherical shells in Problems 3.7 through 3.11, and 3.16. 3.17; to conical shells in Problem 3.14; and to
toroidal shells in Problem 3.18.

LIMITATIONS

The ratio of the wall thickness to either radius of curvature should not exceed approximately 0.10.
Also there must be no discontinuities in the structure. The simplified treatment presented here does
not permit consideration of reinforcing rings on a cylindrical shell as shown in Fig. 3-2, nor does it give
an accurate indication of the stresses and deformations in the vicinity of end closure plates on
cylindrical pressure vessels. Even so, the treatment is satisfactory in many design problems.

-— F=-—- - -

Go)

Fig. 3-2

=~

| S

The problems which follow are concerned with stresses arising from a uniform inrernal pressure
acting on a thin shell of revolution. The formulas for the various stresses will be correct if the sense
of the pressure is reversed, i.e.. if external pressure acts on the container. However, it is to be noted
that an additional consideration, beyond the scope of this book, must then be taken into account. Not
only must the stress distribution be investigated but another study of an entirely different nature must
be carried out to determine the load at which the shell will buckle due to the compression. A buckling
or instability failure may take place even though the peak stress is far below the maximum allowable
working stress of the material.

APPLICATIONS

Liquid and gas storage tanks and containers, water pipes, boilers, submarine hulls, and certain
airplane components are common examples of thin-walled pressure vessels.

Solved Problems

3.1. Consider a thin-walled cylinder closed at both ends by cover plates and subject to a uniform
internal pressure p. The wall thickness is A and the inner radius r. Neglecting the restraining
effects of the end-plates, calculate the longitudinal (meridional) and circumferential (hoop)
normal stresses existing in the walls due to this loading.

To determine the circumferential stress o, let us consider a section of the cylinder of length L to be
removed from the vessel. The free-body diagram of half of this section appears as in Fig. 3-3(a). Note that
the body has been cut in such a way that the originally internal effect (o,) now appears as an external force
to this free body. Figure 3-3(b) shows the forces acting on a cross section.
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3.2,

3.3.

)

[ -4
[ €

(a} () (e)

Fig. 3-3

The horizontal components of the radial pressures cancel one another by virtue of symmetry about
the vertical centerline. In the vertical direction we have the equilibrium equation

ZF, = —20.hL +j pr(d8) (sin®)L =0
1]
Integrating,

pr
h

Note that the resultant vertical force due to the pressure p could have been obtained by multiplying the
pressure by the horizontal projecred area upon which the pressure acts.

To determine the longitudinal stress ¢; consider a section to be passed through the cylinder normal
to its geometric axis. The free-body diagram of the remaining portion of the cylinder is shown in Fig. 3-3(c).
For equilibrium

2o.hL = —prlfcosbl;  or o=

- r
2F, = —pmr +2qrha, = 0 or U;=§_h

Consequently. the circumferential stress is twice the longitudinal stress. These rather simple
expressions for stresses are not accurate in the immediate vicinity of the end closure plates.

The Space Simulator at the Jet Propulsion Laboratory in Pasadena, California, consists of a
27-ft-diameter cylindrical vessel which is 85 ft high. It is made of cold-rolled stainless steel
having a proportional limit of 165,000 Ib/in?. The minimum operating pressure of the chamber
is 107 torr, where 1torr = 1/760 of a standard atmosphere, which in turn is approximately
14.7Ibfin®. Determine the required wall thickness so that a working stress based upon the
proportional limit together with a safety factor of 2.5 will not be exceeded. This solution will
neglect the possibility of buckling due to the external pressure, and also the effects of certain
hard-load points in the Simulator to which the test specimens are attached.

From Problem 3.1 the significant stress is the circumferential stress, given by o, = prfh. The pressure
to be used for design is essentially the atmospheric pressure acting on the outside of the shell, which is

satisfactorily represented as 14.7 Ib/in” since the internal pressure of 10 ° torr is negligible compared to
14.7 Ib/in’>. We thus have

165,000  14.7(13.5) (12)

55 P h =0.036in

A vertical axis circular cylindrical wine storage tank, fabricated from stainless steel, has total
height of 25ft, a radius of 5 ft, and is filled to a depth of 20 ft with wine. An inert gas occupies
the 5-ft height H, above the liquid-free surface and is pressurized to a value of p, of 12 Ib/in?,
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If the working stress in the steel is 28,000 Ib/in’, determine the required wall thickness. The
specific weight of the wine is 62.4 Ib/ft’.

If there were no gas pressure above the surface of the wine, the pressure (in any direction) at any
depth v below the liquid-free surface is given as p = yy, where vy is the specific weight (weight per unit
volume) of the wine. This is evident if we consider the pressure on 1 ft” of the horizontal cross section a

%\‘ :)‘Vl H,
¥ = [{] '
1]
Fig. 3-4

distance v below the liquid surface to be given by the weight of the column of wine above that section
divided by the 1-ft* area. The total pressure at the base (v = ) is thus (p, + yH) so that from Problem
3.1 the circumferential stress is

a‘_=(Pu+ yH)R )
h

where 1 is tank wall thickness,
The liquid has zero viscosity, and hence it can exert no tangential shearing stresses on the inside of
the tank wall. For vertical equilibrium the upward thrust of the gas pressure p, must be balanced by
longitudinal stresses o; distributed uniformly around the tank wall at the tank bottom as shown in Fig,

3-5. Thus
EF. = O‘;(Z'H‘R)h _‘p"'ﬂ'Rz = 0

R
oy = "i;; (independent of y) 2)
x>

I 4L
T
H, ! : :
] IP..'

S
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The circumferential stress (1) is clearly larger than the longitudinal stress (2) and thus controls design.
We have from (/)

3

L2 3
[ 12 Ibfin® + (62.4 Ib/ft )(1728 -~
h

from which the thickness is found to be A = 0.055 in.

)(240 in)] (60 in)
= 18.000 Ib/in?

A vertical axis circular cylindrical liquid storage tank of cross-sectional area A is filled to a depth
of 15 m with a liquid whose specific weight (weight per unit volume) y varies according to the
law ¥ = y,0(1 + 0.018z), where z is depth below the free surface of the liquid as shown in Fig.
3-6(a). The tank is 4 m in radius and is made of steel having a yield point of 240 MPa. The
specific weight of water 0 is 9810 N/m®. If a safety factor of 2 is applied. determine the
required tank wall thickness.

l YA(dz)
pA
z
dz —
T
15m
l (p+ dp)A
A
(a) (b)
Fig. 3-6

Let us draw a free-body diagram of a thin layer of liquid situated at a distance z below the liquid free
surface and of depth dz as shown in Fig. 3-6(b). The pressure at the top of the layer is p and at the bottom
of the layer is (p + dp). The weight of the layer of liquid is yA(dz) where it must be noted that 7y in this
problem is a function of z: that is. ¥ = y(z). Note that it is incorrect to use the equation p = yz from
Problem 3.3 since its derivation assumes that y is constant in the liquid whereas here y varies with
depth.

For vertical equilibrium of the element:

IF=(p+dp)A—pA-yAdz =10
from which
dp = yuo(l +0.0182) dz
Integrating:
z?

P = Yo [z + 0.018?] +C
To find the constant of integration C, we note that at the liquid-free surface z = 0. p = 0. Thus. C = 0. Thus.
the pressure at the tank bottom (z = 15m) is

Pwax = TH;O[IS + U‘W(IS)ZI
Since yu,o is 9810 N/m*, the peak pressure is

Pmax = [9810 Nfm*] [15 m + 0.009(15 m)’] = 167,000 N/'m’
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From Problem 3.1. this is the significant pressure that controls design, so

o = P
max h
e J000 N/m?
2402 10"‘mez= (167.000 hm ) (4 m)

from which the required tank wall thickness is

h = 00056 m or 5.6mm

Calculate the increase in the radius of the cylinder considered in Problem 3.1 due to the internal
pressure p.

Let us consider the longitudinal and circumferential loadings separately. Due to radial pressure p only,
the circumferential stress is given by o, = prih, and because o = Ee the circumferential strain is given by
€. = priEh.

It is to be noted that €. is a unit strain. The length aver which it acts is the circumference of the cylinder
which is 2. Hence the total elongation of the circumference is

2mpr’

A= €(2mm) = En

The final length of the circumference is thus 27r + 2mpr’/Eh. Dividing this circumference by 27 we find
the radius of the deformed cylinder to be r + pr’/Eh, so that the increase in radius is pr/Eh.

Due to the axial pressure p only, longitudinal stresses o, = pr/2h are set up. These longitudinal stresses
give rise to longitudinal strains € = prf2Eh. As in Chap. 1 an extension in the direction of loading, which
is the longitudinal direction here, is accompanied by a decrease in the dimension perpendicular to the load.
Thus here the circumferential dimension decreascs. The ratio of the strain in the lateral direction to that
in the direction of loading was defined in Chap. 1 to be Poisson’s ratio, denoted by u. Consequently the
above strain ¢, induces a circumferential strain equal to —pue and if this strain is denoted €, we have
€. = — upri2Eh, which tends to decrease the radius of the cylinder as shown by the negative sign.

In a manner exactly analogous to the treatment of the increase of radius due to radial loading only,
the decrease of radius corresponding to the strain €/ is given by upr2Eh. The resultant increase of radius
due 1o the internal pressure p is thus

=ﬁ_ﬂﬁ=ﬁ( _&)
A= T 2ER  ER\' T2

A thin-walled cylinder with rigid end closures is fabricated by welding long rectangular plates
around a cylindrical form so that the completed pressure vessel has the form shown in Fig. 3-7.
The angle that the helix makes with a generator of the shell is 35° at all points. The mean radius
of the cylinder is 20in, the wall thickness is # = 0.5in, and the internal pressure is 400 Ib/in°.
Neglect the localized effects at each end due to the end closure plates and determine the normal
and shearing stresses acting on the helical weld in the curved plane of the cylinder wall.

Fig. 3-7
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From Problem 3.1 the circumferential and longitudinal stresses in the cylinder are

2 ]
o, = P (00IAM) QOIN) _ ¢ 600 Ibyin?
h 0.5in

_br_ .

o, h 8000 Ib/in
Let us consider a small triangular element to be removed from the cylinder wall. with the clement
being bounded on its hypotenuse by the weld and along the other two sides by a generator together with
a circumference of the shell. The stresses found above (shown by solid vectors) act on the perpendicular
sides as shown in Fig. 3-8, and on the inclined side of the clement (coinciding with the helical weld) we
have the unknown normal stress o and shearing stress 7. The length of the hypotenuse of the element is

taken to be ds, in which case the side along a gencrator has the length ds cos 35° and the length in the
circumferential direction is ds sin 35°.

It is convenient to introduce #- and r-axes perpendicular to and along the helical weld. The n and ¢
components of the applied stresses are shown in Fig. 3-8 by dotted vectors. For equilibrium in thc

R
H BOOO Ihran”
A\

£
=%
dv sin 367

‘ LY Generator

16,000 Ib/in®
Fig. 3-8

n-direction, we have

2 F, = alds) (h) — BDOO(d's) (sin 35°) (h) (sin 35%) — 16,000(ds) (cos 35%) (h) (cos35°) = 0

.o = 8000 sin’ 35° + 16,000 cos® 35° = 13.370 Ibfin’
Similarly, in the tangential direction (i.e., in the direction along the helix). we have
ZF, = r(ds) (h) + 8000(ds) (sin 35°) (cos 35°) (h) — 16,00k ds) {cos 35°) (A1) (5in35°) = O
~.o7 = (B000) (sin 35%) (cos 35°) = 3760 Ibfin’

3.7. Consider a closed thin-walled spherical shell subject to a uniform internal pressure p. The inside
radius of the shell is r and its wall thickness is h. Derive an expression for the tensile stress
existing in the wall.

For a free-body diagram. let us consider exactly half of the entire sphere. This body is acted upon by
the applicd internal pressure p as well as the forces that the other half of the sphere. which has been

Y
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Fig. 3.9

removed, exerts upon the half under consideration. Because of the symmetry of loading and deformation,
these forces may be represented by circumferential tensile stresses o, as shown in Fig. 3-9.

This frece-body diagram represents the forces acting on the hemisphere, the diagram showing only a
projection of the hemisphere on a vertical plane. Actually the pressure p acts over the entire inside surface
of the hemisphere and in a direction perpendicular to the surface at every point. However, as mentioned
in Problem 3.1, it is permissible to consider the force exerted by this same pressure p upon the projection
of this area which in this case is the vertical circular area denoted by a-a. This is possible because the
hemisphere is symmetric about the horizontal axis and the vertical components of the pressure annul one
another. Only the horizontal components produce the tensile stress o,. For equilibrium we have

s

2h

From symmetry this circumferential stress is the same in all directions at any point in the wall of the sphere.

SF,=o02mh—pm*=0 o o,

A 20-m-diameter spherical tank is to be used to store gas. The shell plating is 10 mm thick
and the working stress of the material is 125 MPa. What is the maximum permissible gas
pressure p?

From Problem 3.7 the tensile stress in all directions is uniform and given by o, = prfZh. Substituting:

. p(10m)
¢ e
125 % 10° N/m 2(0.010m)
p =025MPa

The undersea research vehicle Alvin has a spherical pressure hull 1 m in radius and shell
thickness of 30 mm. The pressure hull is steel having a yield point of 700 MPa. Determine the
depth of submergence that would set up the yield point stress in the spherical shell. Consider
sea water to have a specific weight of 10.07 kN/m?.

From Problem 3.7 the compressive stress due to the external hydrostatic pressure is given by
o, = pri2h. The hydrostatic pressurc corresponding 1o yield is thus

s p(lm)
700 % 10° Nim® = 2003 m)

or p=42MPa
Since, as in Problem 3.3. we have p = yh, where vy is the specific weight of the sea water, we have
42 X 10°N/m? = (10.07 % 10° Nim?) (k) or  h=4170m

1t should be noted that this neglects the possibility of buckling of the sphere due to hydrostatic pressure
as well as effects of entrance ports on its strength. These factors, beyond the scope of this treatment, result
in a true operating depth of 1650 m.
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3.10.

3.1

Find the increase of volume of a thin-walled spherical shell subject to a uniform internal
pressure p.

From Problem 3,7 we know that the circumferential stress is constant through the shell thickness and
is given by
pl’
2h

ag. =

in all dircctions at any point in the shell. From the two-dimensional form of Hooke's law (see Chap. 1),
we have the circumferential strain as

€= E[o}— “"Uf] = ZEh[ - l-"]
This strain is the change of length per unit length of the circumference of the sphere. so the increase of
length of the circumference is

(27r)- ﬁ[l -

The radius of the spherical shell subject to internal pressure p is now found by dividing the circumference
of the pressurized shell by the factor 2. Thus the final radius is

[2m+(21¢r) —Zﬁ-(l—y)]/i'rr n
pr
or [r+25h 1 ,p.)] 2)
and the volume of the pressurized sphere is
4 [H'“—(l— )] 3)
37" 2R TH

The desired increase of volume due to pressurization is found by subtracting from (3) the initial
volume:

_An pr 14
AV = 3[r+w1(1 u)] S

Expanding and dropping terms involving powers of (p/E), which is ordinarily of the order of 1/1000, we
sce that the increase of volume due to pressurization is

AV = ‘J’Tpl"

(11—

A thin-walled titanium alloy spherical shell has a 1-m inside diameter and is 7 mm thick. It is
completely filled with an unpressurized, incompressible liquid. Through a small hole an
additional 1000 cm® of the same liquid is pumped into the shell, thus increasing the shell radius.
Find the pressure after the additional liquid has been introduced and the hole closed. For this
titanium allow E = 114 GPa and the tensile yield point of the material to be 830 MPa.

The initial volume of the spherical shell is

V= gmﬁ = gd-‘ (d = diameter)

3

= (1m)’ = 05236
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The volume of liquid pumped in is

3
f M L
e

so that the final volume of the incompressible liquid is
0.5236 m* + 0.001 m* = 0.5246 m®

which is equal to the volume of the expanded shell. The relation between pressure and volume change was
found in Problem 3.10 to be

2mpr?
AV =" (1 -

Eh (1-w
Substituting,

2m)p(0.5 m)* (0.67)

0.00l m* = (
= (114 10° N/m?) (0.007 m)
Salving,
p =303 MPa

It is well to check the normal stress in the titanium shell due to this pressure. From Problem 3.7
we have

o=

Pr
2h

(303 10° Nm’) (0.05m)
= 20007 ) = 109 MPa

which is well below the yield point of the material.

Consider a laminated pressure vessel composed of two thin coaxial cylinders as shown in Fig.
3-10. In the state prior to assembly there is a slight “interference” between these shells, 1.e., the
inner one is too large to slide into the outer one. The outer cylinder is heated, placed on the
inner, and allowed to cool, thus providing a **shrink fit.” If both cylinders are steel and the mean
diameter of the assembly is 100 mm, find the tangential stresses in each shell arising from the
shrinking if the initial interference (of diameters) is 0.25 mm. The thickness of the inner shell
is 2.5 mm, and that of the outer shell 2 mm. Take E = 200 GPa.

There is evidently an interfacial pressure p acting between the adjacent faces of the two shells. It is
to be noted that there are no external applied loads. The pressure p may be considered to increase the
diameter of the outer shell and decrease the diameter of the inner so that the inner shell may fit inside the
outer. The radial expansion of a cylinder due to a radial pressure p was found in Problem 3.5 to be pr'/Eh.
No longitudinal forces are acting in this problem. The increase in radius of the outer shell due to p. plus

1) mm p

Laminated Pressure Vessel Outer Cylinder Inner Cylinder

Fig. 3-10



CHAP 3] THIN-WALLED PRESSURE VESSELS 73

the decrease in radius of the inner one due to p, must equal the initial interference between radii. or
0.25/2 mm. Thus we have

p(0.05 m)? . p(0.05 m)? _ 0125 o
(200 % 10° Nfm?) (0.0025m) (200 % 10° N/m?) (0.002m) 1000
p = 11.1 MPa

This pressure, illustrated in the above figures, acts between the cylinders after the outer one has been
shrunk onto the inner one. In the inner cylinder this pressure p gives rise to a stress

_pr_ (111 X 10°Nm’) (0.05m) _

-222 MP:
e~y (0.0025 m) 2

In the outer cylinder the circumferential stress due to the pressure p is

pr (1.1 X 10* N/m*) (0.05 m)
P = 277MP
%=h (0.002 m) a

If, for example, the laminated shell is subject to a uniform internal pressure, these shrink-fit stresses
would merely be added algebraically to the stresses found by the use of the simple formulas given in
Problem 3.1. '

3.13. The thin steel cylinder just fits over the inner copper cylinder as shown in Fig. 3-11. Find the
tangential stresses in each shell due to a temperature rise of 60 °F. Do not consider the effects
introduced by the accompanying longitudinal expansion. This arrangement is sometimes used
for storing corrosive fluids. Take

E,, = 30 % 10° Ib/in® ay = 6.5 % 1075°F
E_, =13 % 10°Ib/in* o = 9.3 X 107°F

Steel
Copper

Fig. 3-11

The simplest approach is to first consider the two shells to be separated from one another so that they
are no longer in contact.

Due to the temperature rise of 60°F the circumference of the steel shell increases by an amount
2m(20.375) (60) (6.5 X 107%) = 0.0498 in. Also, the circumference of the copper shell increases an amount
2(20.125) (60) (9.3 %X 107*) = 0.0705 in. Thus the interference between the radii, i.e., the difference in
radii, of the two shells (due to the heating) is (0.0705 — 0.0498)/27 = (.00345 in. Again. there are no
external loads acting on either cylinder.

However, from the statement of the problem the adjacent surfaces of the two shells are obviously in
contact after the temperature rise. Hence there must be an interfacial pressure p between the two surfaces,
i.e., a pressure tending to increase the radius of the steel shell and decrease the radius of the copper shell
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Steel Cylinder Copper Cylinder

Fig. 3-12

so that the copper shell may fit inside the stecl one. Such a pressurc is shown in the free-body diagrams
of Fig. 3-12,

In Problem 3.5 the change of radius of a cylinder duc to a uniform radial pressure p (with no
longitudinal forces acting) was found to be pr’/Eh. Consequently the increase of radius of the steel shell
due 1o p, added to the decrease of radius of the copper one due to p, must cqual the interference; thus

p(20.375y N p(20.125)°
(30 107)(0.25) (13 x 10°)(0.25)

=000345 or p=1921bjin’

This interfacial pressure creates the required continuity at the common surface of the two shells when
they are in contact. Using the formula for the tangential stress, o = prih, we find the tangential stresses
in the steel and copper shells to be. respectively.

2(20.375 >
Ty = w—zgljZIZJSi_) = 1560 1b/in- and Ty =

| 19.2(20.125)

— in?
025 1550 Ibfin

Consider a thin-walled conical shell containing a liquid whose weight per unit volume is y [see
Fig. 3-13(a)]. The shell is supported around its upper rim and filled with liquid to a depth H.
Determine the stresses in the shell walls due to this loading. The geometric axis of the shell is
vertical.

Axis of symmetry '

@y + higher-order terms

b)
Fig. 3-13
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The state of stress in this shell is obviously axisymmetric. It is assumed that the shell thickness # is
small compared to H and R. The stresscs may be determined by consideration of the cquilibrium of a shell
element bounded by two closely adjacent parallel circles whose plancs are normal to the vertical axis of
symmetry of the cone and by two closely adjacent generators of the cone. Such an element. together with
the vectors representing the stresses e, in the horizontal direction and o, in the direction of a generator.
is indicated in Fig. 3-13(h). The quantity o, is called hoop stress and o, 1s termed the meridional stress.

In the diagram 6 represents the angular coordinate measured in a horizontal plane which is normal
to the vertical axis of symmetry of the shell. The radius of the cone there is r,. which is of course a function
of the location of the clement with respect to its position along the axis of symmetry. Another coordinate
useful for defining the geometry of the cone is r,, which corresponds to the radius of curvature of the shell
surface in a direction perpendicular to the gencrator. This is best illustrated by examining a scction of the
cone formed by passing a vertical planc through the shell axis as indicated in Fig. 3-14(a) below. It is evidem
that r, = r;cos a.

From geomctry we have

viana
cos o

ry = viana and so =

The hoop stresses in Fig. 3-13(b) may be visualized morc clearly by looking along the axis of symmetry.
as shown in Fig. 3-14(b). It is evident that each of the hoop forces vectors a(dv/cos a)h makes an angle
d®/2 with the tangent 10 the clement. The resultant of these hoop forces is 2o,h(dy/cos ) sin (d6/2) or,
since d&#2 is small, o,h(dv/cos o) df acting in a horizontal plane and directed toward the gcometric axis
of the shell. From Fig. 3-14(a) we scec that this resultant must be multiplied by cos o 10 determine the
component of this force acting in a direction normal 1o the shell surface. Also, it is evident that the
meridional forces corresponding to Fig. 3-14(a) cancel onc another. The liquid cxeris a normal pressure

ag + higher-order terms

Axis of symmetry

b

(a)

Fig. 3-14
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p as indicated in the figure and it acts over an area (r, d6) (dv/cos a). Thus, for equilibrium of the element
in a direction normal to the surface we have

dy dy
o,h(mm)(de) cosa — pro(df) —— = 0 ()

__Pro_pytana _pr
or o hcosae hcosa h

(2)

This expression holds anywhere in the conical shell. In the lower half, 0 <y < H, we have p = {H - v),
S0

_ HH-y)ytana

< 3
eos o for O<y<H (3)

L}
In the upper half. H<y<2H, p = 0, so o, = 0 in that region.
The other stress ¢, may be found by considering the vertical equilibrium of the conical shell. For
0 <y < H the weight of the liquid in the conical region abo plus that in the cylindrical region abed 1s held
in equilibrium by the forces corresponding to o, and we have from Fig. 3-15(a)

goh2mytanacosa — y[imy tana)’y + (H — y)m{y tan a)’] = 0 (4
ylana(Hy y")
=—|—=-= fi O<y<H
o % heosal2 3] y ()

Similarly, for H <y < 2H, the weight of all the liquid is held in equilibrium by the forces corresponding
to o, so that from Fig. 3-15(b)

agh(2my) (lana) cosa — yiar,H = 0 (6)
Since ry = Hian o we get
K}
Y ana o Hey<on )
6hy cos a

It is to be observed that the stresses associated with thesc axisymmetric deformations are statically
determinate; i.e., it was not necessary to use any deformation relations to determine the stresses. Thus the
relations are valid into the plastic range of action.

: i
O, Ty, ag & ¢

\_ ./

Fig. 3-15
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3.15.

Determine the hoop stresses and meridional stresses in a thin shell of revolution subject to an
internal pressure p.

This problem is readily solved as a generalization of Problem 3.14. The stresses may be determined
by consideration of the equilibrium of a shell element bounded by two closely adjacent parallel circles
whose planes are normal to the vertical axis of a symmetry of the shell and by two closely adjacent
generators, or meridians, of the shell (see Fig. 3-1). This element is analogous to that shown in Fig. 3-13(b)
of Problem 3.14, except that the vertical sides are curved rather than straighi.

The hoop stresses o, and the meridional stresses o, thus appear as shown in Fig. 3-16. We now require
two radn of curvature to describe this element. We use r, to denote the radius of curvature of the meridian
and r; to denote the radius of curvature of the shell surface in a direction perpendicular to the meridian.
The center of curvature corresponding to », must lie on the axis of symmeiry although the center for r,
does not (in general). Figure 3-17(a) shows the hoop forces as seen by looking along the axis of symmetry
and, analogous to Problem 3,14, they have a horizontal component 2o,hr, d¢{d6/2) directed toward the
shell axis. This is multiplicd by sin ¢ to obtain the component normal to the shell element. The meridional
forces appear as in Fig. 3-17(b) and they have a component normal to the shell given by a hr, d6dd. The

higher-order I

Axis of symmetry

Fig. 3-16

o hrgde + higher-order terms

Axis of symmetry

@

Fig. 3-17
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pressure p acls over an area (r,d6) (r, dd) so that the equation of equilibrium in the normal direction
becomes

aahry dﬂdéﬁiﬂ (t' + (l'@hﬁ.dﬁd(b - pfodﬂh dqf: =0

or, SINCE ry = 12 5in ¢, we gel

+

9o 98 _P
¥y r h (I)

This fundamential equation applies to axisymmetric deformations of all thin shells of revolution. A second
equation is obtained as in Problem 3.14 by consideration of the vertical equilibrium of the entire shell
above some convenient parallel circle. Again, these equations are valid into the plastic range of action.

Consider a constant-thickness thin-walled spherical dome of radius r loaded only by its own
weight g per unit of surface area. The dome is supported by frictionless rollers around its lower
boundary as shown in Fig. 3-18(a). Determine meridional and hoop stresses at all points in the
system.

._..
~
i
H]
=
R

Parallel
circle

Ty

{a) b)

Fig. 3-18

Let us consider the vertical equilibrium of a portion of the dome above some parallel circle defined
by the angle ¢ shown in Fig. 3-18(b). The variable angle a is introduced and the weight of the central
portion of the dome above the parallel circle is found by considering a ring-shaped element of radius
(rsin a) and meridional length (rde). The weight of the portion of the dome above the parallel circle is

=
f ql[27(r sin )] (rda)
a-=(
which becomes

27 g(1 — cos ¢)

The meridional stress o is uniformly distributed around the circumference of the parallel circle and
has an upward vertical resultant given by

27(r sin ¢p)hoy(sin )
For vertical equilibrium of the dome above the parallel circle, we thus have

2m(r sin p)ho,(sin ) — 27 g(1 —cos ) = 0
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or
_ rq
7T B + cos &)

This value, when introduced into Eq. () of Problem 3.15, lcads 10 a hoop stress o, given by

L B
oﬂ#h 1+cos¢ cosq')] &

(compression) N

3.17. The spherical dome of Problem 3.16 subtends an opening angle of 120°, has a wall thickness of
100 mm, and a radius of 50 m. It is constructed of concrete having a specific weight of
23.5 kN/m®. Determine meridional and circumferential stresses at (@) the apex of the dome, and
(b) the simply supported rim.
The meridional stress is given by Eq. (/) of Problem 3.16. In that equation ¢ denotes weight per unit
of surface area. Here, since the specific weight refers 10 a cube of concrete weighing 23.5 kN, the weight
per unit surface area is found by considering the 100-mm thickness to be

100
= (23 /m? —)=2350le
q = (23,500 N/m )(l m
The meridional stress at the apex, where ¢ = (F, is

(50 m) (2350 N/im?)
- — = —587.500 N/m? —0.587 MPa
767 T 01 m)[1 + cos0] "o

and at the rim, where ¢ = 60°, we have

__ (50m)(2350N/m?) _
7¢T "0 m)[1 +cos607]

The circumferential stress is given by Eq. (2) of Problem 3.16. At the apex this is

_ (50m) (2350 N/m?)
(0.1 m)
and at the rim, where ¢ = 60° it is

_ (50m) (2350 Nim?) 1
e (0.1m) 1+ cos 60°

-786,000 N/m*>  or —0).786 MPa

Ty

[ ! - cos()"] = — 587,500 N/m? or —().588 MPa
1 + cos()®

—00360"] = 195,000 N/m? or 0.195 MPa

Thus the circumferential stress is tensile at the rim and compressive at the apex. From Eq. (2) of
Problem 3.16, the circumferential stress is zero when

Treosd, %70

Solving by trial and error. we find ¢, = 51.8°,

3.8. Thin toroidal shells are sometimes employed as gas storage tanks in boosters for space vehicles.
One design considered by the National Aeronautics and Space Administration for possible
future use employs a torus of mean diameter 2b = 70 ft with a cross-section diameter of
2R = 5 ft as indicated in Fig. 3-19. The internal pressure p is 20 Ib/in> and the shell material is
2219 T87 aluminum alloy, having a yield point of 50,000 Ib/in? at room temperature. For this
material the yield point increases at lower temperatures, reaching 120 percent of the above value
at —300 °F. If a safety factor of 1.5 is employed, determine the required wall thickness.

First, we consider the vertical equilibrium of a ring-shaped portion of the toroidal shell above an
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Fig. 3-19

arbitrary plane, as indicated by the angle ¢. The meridional siress o, is readily found by considering the
pressure p to act on the horizontal projection of the curved area. Thus

2amyoghsing = wp(r, — b°)

or since sin¢ = (ro— bYR

_ pR(ra+ D)
o= ok ()
From (/) it is evident that the peak value of ¢, occurs al the innermost points A where
_LR(2oR)
{trqb}max Zh h _ .R (2)

If b = 0, the torus reduces to a sphere and (2) coincides with the stresses in a spherc as found in Problem
3.7. For the given dimensions we have R = 30in. b = 420 in, p = 201bfin’, and (2) becomes
50,000 _ 20(30) (840 — 30)
1.5 2h(420 — 30)

h = 0.0187 in 3)

If o, as given by (7) is substituted into (/) of Problem 3.15 (which holds for axisymmeiric deformation
of any thin shell of revolution) we obtain. for r, = R and r, = (b + R sin ¢)/sin ¢,

_PR

7o On

4)
at any point in the toroidal shell. Evidenily the peak valuc of o, as given by (2) excecds the value of oy
and hence the maximum value of o, controls the design. The required thickness is thus given by (3).

Supplementary Problems

One proposed design for an energy-efficient automobile involves an on-board tank storing hydrogen (in
a special nonvolatile form) which would be released to a fuel cell. The tank is to be cylindrical, 0.4 m in
diameter, made of type 302 stainless steel having a working stress in tension of 290 MPa. and closed by
hemispherical end caps. The hydrogen would be pressunized to 15 MPa when the 1ank 1s initially filled.
Determine the required wall thickness of the tank. Ans. h =52mm
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321

3.22,

3.23.

3.27.

A vertical cylindrical gasoline storage tank is 30 m in diameter and is filled to a depth of 15 m with gasoline
whose specific gravity is 0.74. If the yield point of the shell plating is 250 MPa and a safety factor of 2.5
is adequate, calculate the required wall thickness at the bottom of the tank. Ans. h =167 mm

The research deep submersible Aluminaur has a cylindrical pressure hull of outside diameter 8 ft and a wall
thickness of 5.5in. It is constructed of 7079-T6 aluminum alloy. having a vield point of 60,000 Ib/in’.
Determine the circumferential stress in the cylindrical portion of the pressure hull when the vehicle is at
its operating depth of 15,000 ft below the surface of the sea. Use the mean diameter of the shell in
calculations, and consider sea waier lo weigh 64.0Ib/fi>.  Ans.  54.800 Ibfin®

Derive an expression for the increase of volume per unit volume of a thin-walled circular cylinder
subjected to a uniform internal pressure p. The ends of the cylinder are closed by circular plates. Assume
that the radial expansion is constant along the length.

AV pr (5
—=E{Z_2
Ans. = Eh(z ")

Calculate the increase of volume per unit volume of a thin-walled steel circular cylinder closed at both ends
and subjected to a uniform internal pressure of 0.5 MPa. The wall thickness is 1.5 mm, the radius 350 mm,
and u = {. Consider £ =200GPa.  Ans. AVIV=10"

Consider a laminated cylinder consisting of a thin steel shell “shrunk™ on an aluminum one. The thickness
of each is 0.10 in and the mean diameter of the assembly is 4 in. The initial “interference™ of the shells prior
to assembly is 0.004 in measured on a diameter. Find the tangential stresses in each shell causcd by this
shrink fit. For aluminum £ = 10 X 10° Ib/in® and for stcel £ = 30 X 10° Ib/in°.

Ans. o, = 75001blin?, o, = —7500 Ib/in?

A spherical tank for storing gas under pressure is 25 m in diameter and is made of structural steel 15 mm
thick. The yield poini of the maierial is 250 MPa and a safety factor of 2.5 is adequate. Determine the
maximum permissible internal pressure, assuming the welded seams between the various plates are as
strong as the solid metal. Also, determine the permissible pressure if the seams arc 75 percent as strong
as the solid metal. Ans. p=024MPa, p = (.18 MPa

A thin-walled spherical shell is subject to a temperature rise AT which is constant at all points in the shell
as well as through the shell thickness. Find the increase of volume per unit volume of the shell. Let a denote
the coefficient of thermal expansion of the matenal. Ans. 3a(AT)

A liquid storage tank consists of a vertical axis circular cylindrical R
shell closed at its lower end by a hemispherical shell as shown in ]
Fig. 3-20. The weight of the system is carried by a ring-like support §)“— . JKE
at the top and the lower extremity is unsupported. A liquid of

specific weight y entirely fills the container. Determine the peak
circumferential and meridional stress in the cylindrical region of
the assembly, as well as the peak stresses in the hemispherical
I'BgiDI"I, ‘ Cylinder

Ans.

e o= YR _I*'_"’[ _ﬁ)
Cylinder: o, = p (H-R) o= H 3

YHR I

Hemisphere: S

¥
Reexamine Problem 3.18 with all parameters as indicated there | R \-/\
except that the shell material 1s now Ti-6Al-4V titanium alloy X oF N Hermsphere
having a yield point of 126,000 1b/in® at room temperature. If a

safety factor of 1.5 is used, determine the required wall thick-
ness, Ans, 0.0074in Fig. 3-20



Chapter 4

Direct Shear Stresses

DEFINITION OF SHEAR FORCE

If a plane is passed through a body, a force acting along this plane is called a shear force or shearing
force. It will be denoted by F,.

DEFINITION OF SHEAR STRESS

The shear force, divided by the area over which acts, is called the shear stress or shearing stress.
It is denoted in this book by 7. Thus

(4.1)

-
i
S Py

COMPARISON OF SHEAR AND NORMAL STRESSES

Let us consider a bar cut by a plane a-a perpendicular to its axis, as shown in Fig. 4-1. A normal
stress o is perpendicular to this plane. This is the type of stress considered in Chaps. 1, 2, and 3.

A shear stress is one acting along the plane, as shown by the stress 7. Hence the distinction between
normal stresses and shear stresses is one of direction.

Fig. 4-1

ASSUMPTION

It is necessary to make some assumption regarding the manner of distribution of shear stresses,
and for lack of any more precise knowledge it will be taken to be uniform in all problems discussed
in this chapter. Thus the expression 7 = F,/A indicates an average shear stress over the area.

APPLICATIONS

Punching operations (Problem 4.2), wood test specimens (Problem 4.3), riveted joints (Problem
4.5), welded joints (Problem 4.6), and towing devices (Problem 4.10) are common examples of systems
involving shear stresses.

82
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DEFORMATIONS DUE TO SHEAR STRESSES

Let us consider the deformation of a plane rectangular element cut from a solid where the forces
acting on the element are known to be shearing stresses 7 in the directions shown in Fig. 4-2(a).

The faces of the element parallel to the plane of the paper are assumed to be load free. Since there
are no normal stresses acting on the element, the lengths of the sides of the originally rectangular
element will not change when the shearing stresses assume the value 7. However, there will be a
distortion of the originally right angles of the element, and after this distortion due to the shearing
stresses the element assumes the configuration shown by the dashed lines in Fig. 4-2(b).

—— T
u I

(a) (b}

Fig. 42

SHEAR STRAIN

The change of angle at the corner of an originally rectangular element is defined as the shear strain.
It must be expressed in radian measure and is usually denoted by 1.

MODULUS OF ELASTICITY IN SHEAR

The ratio of the shear stress 7 to the shear strain vy is called the modulus of elasticity in shear and
is usually denoted by G. Thus

T

G= (4.2)
Y

G is also known as the modulus of rigidity.

The units of G are the same as those of the shear stress, e.g.. Ib/in’ or N/m?, since the shear strain
is dimensionless. The experimental determination of G and the region of linear action of 7 and y will
be discussed in Chap. 5. Stress-strain diagrams for various materials may be drawn for shearing loads,
just as they were drawn for normal loads in Chap. 1. They have the same general appearance as those
sketched in Chap. 1 but the numerical values associated with the plots are of course different.

WELDED JOINTS

In addition to the traditional techniques of gas welding and electric arc welding, the past few
decades have seen the emergence of two significant new methods, namely (a) electron beam welding
and (b) laser beam welding.
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Electron Beam Welding

In electron beam welding (EBW), coalescence of metals is achieved by having a focused beam of
high-velocity electrons striking the surfaces to be joined. This beam of electrons carries a very high
energy density that is capable of producing deep, narrow welds. Such welds can be produced much
more quickly and with less distortion of the parent metals than with either gas or arc welding. Negative
aspects of EBW are (i) surfaces to be joined must be very accurately aligned, and (ii) in certain
situations EBW must be done in a partial vacuum. Also, safety precautions must be taken to protect
personnel from the electron beam. (See Problem 4.12.)

Laser Beam Welding

In laser beam welding (LBW). joining of metals is carried out by having an optical energy source
focused over a very small spot, such as the diameter of a circle ranging from 100 to 1000 pm (0.004 to
0.040 in). The term “laser™ is an acronym for light amplification by stimulated emission of radiation.
Energy densities of the order of 10° watts/cm® (6 X 10° watts/in’) make the laser beam suitable for
welding of metals. Laser beams can produce welds of high quality, but precautions must be taken to
guard the operators of the laser, particularly with regard to damage to the human eye. One of the first
successful applications involved laser welding of thermocouple gages in the Apollo lunar probe in the
late 1960s. Types of systems in common use today include lasers of ruby, carbon dioxide, and various
rare earth materials. Common commercial applications in the 1990s include sealing of batteries for
digital watches and heart pacemakers, sealing of ink cartridges for fountain pens, joining telephone
wires in circuits, and a host of other applications in aerospace, automotive, and electronic consumer
items. (See Problem 4.13.)

Solved Problems

4.1. Consider the bolted joint shown in Fig, 4-3. The force P is 30 kN and the diameter of the bolt
is 10 mm. Determine the average value of the shearing stress existing across either of the planes
a-a or b-b.

Lacking any morc precise information we can only assume that force P is equally divided between the
sections a-a and b-b. Consequently a force of 3(30 x 10*) = 15X 10° N acts across cither of these plancs
over a cross-sectional area

i7(10)? = 78.6 mm’®

Thus the average shearing stress across cither plane is 7= {P/A = 15 X 10°/78.6 = 192 MPa.

P —at—st i1 P

Fig. 4-3
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42. Low-carbon structural steel has a shearing ultimate strength of approximately 45,000 Ib/in”.
Determine the force P necessary to punch a 1-in-diameter hole through a plate of this steel 3 in
thick. If the modulus of elasticity in shear for this material is 12 X 10° 1b/in?, find the shear strain
at the edge of this hole when the shear stress is 21,000 Ib/in®.

Let us assume uniform shearing on a cylindrical surface 1 in in diameter and § in thick as shown in Fig.
4-4. For equilibrium the force P is P = 74 = 7(1) (}) (45.000) = 53.100 Ib.

To determine the shear strain y when the shear stress 7 is 21,000 Ib/in?, we employ the definition
G = 7y to obtain y = #G = 21,000/12,600,000 = 0.00175 radian.

43. In the wood industries, inclined blocks of wood are sometimes used to determine the
compression-shear strength of glued joints. Consider the pair of glued blocks A and B which are
1.5in deep in a direction perpendicular to the plane of the paper. Determine the shearing
ultimate strength of the glue if a vertical force of 9000 Ib is required to cause rupture of the joint.
It is to be noted that a good glue causes a large proportion of the failure to occur in the
wood.

$000 1b

(a) (b) (¢)

Fig. 4-5

Let us consider the equilibrium of the lower block, A. The reactions of the upper block B upon the
lower one consist of both normal and shearing forces appearing as in the perspective and orthogonal views
of Figs. 4-5(b) and 4-5(c).

Referring to Fig. 4-5(c) we sce that for equilibrium in the horizontal direction

XF,=72)(1.5)cos75 —o(2)(1.5)cos15° =0 or o=02697
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For equilibrium in the vertical direction we have

ZF,=9000—1(2)(1.5)sin75° — ¢{2) (1.5)sin 15° = 0
Substituting ¢ = 0.2697 and solving, we find 7 = 2900 Ib/in".

The shearing stress in a piece of structural steel is 100 MPa. If the modulus of rigidity G is
85 GPa, find the shearing strain .
By definition, G = 7/y. Then the shearing strain y = #G = (100 % 10°)/(85 % 10"y = 0.00117 rad.

A single rivet is used to join two plates as shown in Fig. 4-6. If the diameter of the rivet is 20 mm
and the load P i1s 30 kN, what is the average shearing stress developed in the nivet?

Fig. 4-6

Here the average shear stress in the rivet is P/A where A is the cross-sectional area of the rivet.
However, rivet holes are usually 1.5 mm larger in diameter than the rivet and it is customary to assume
that the rivet fills the hole completely. Hence the shearing stress is given by

30,000 N

e 826X 107 Nim? 82.6 MP.
7 (7i4) [0.0215 m]? 107N or ¢

One common type of weld for joining two plates is the fillet weld. This weld undergoes shear
as well as tension or compression and frequently bending in addition. For the two plates shown
in Fig. 4-7, determine the allowable tensile force P that may be applied using an allowable
working stress of 11,300 Ibfin? for shear loading as indicated by the Code for Fusion Welding
of the American Welding Society. Consider only shearing stresses in the weld. The load is
applied midway between the two welds.

The minimum dimension of the weld cross section is termed the throat, which in this case is
3sin45° = 0353 in. The effcctive weld area that resists shearing is given by the length of the weld times
the throat dimension, or weld area = 7(0.353) = 2.47in* for cach of the two welds. Thus the allowable

PIT
et

Thtn&

Fig. 4-7
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4.7.

tensile load P is given by the product of the working stress in shear times the area resisting shear, or
P = 11,300(2) (2.47) = 56,000 Ib.

Shafts and pulleys are usually fastened together by means of a key, as shown in Fig. 4-8(a).
Consider a pulley subject to a turning moment 7 of 10,000 Ib-in keyed by a 3 X3 X 3in key to
the shaft. The shaft is 2 in in diameter. Determine the shear stress on a horizontal plane through

the key.
.
e
Key

T

{a)

Fig. 4-8

Drawing a free-body diagram of the pulley alone, as shown in Fig. 4-8(b), we see that the applied
turning moment of 10,000 lb-in must be resisted by a horizontal tangential force F exerted on the pulley
by the key. For equilibrium of moments about the center of the pulley we have

SM,=10000- F1)=0 or F=10000lb

It is to be noted that the shaft exerts additional forces, not shown. on the pulley. These act through
the center O and do not enter the above moment equation. The resultant forces acting on the key appear
as in Fig. 4-9(a). Actually the force F acting to the right is the resultant of distributed forces acting over
the lower half of the left face. The other forces F shown likewise represent resultants of distributed force
systems. The exact nature of the foree distribution is not known.

The free-body diagram of the portion of the key below a horizontal plane a-a through its midsection
is shown in Fig. 4-9(b). For equilibrium in the horizontal direction we have

SF,=10000-7})(3)=0 or 7=6670lbfin?

This is the horizontal shear stress in the key.

l | ~ | ~
N ~ . .
A ~
~ NP S
a a ¥ . v I
Lh- ! o . ’i“
]

Fig. 4-9
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A lifeboat on a seagoing cruise ship is supported at each end by a stranded steel cable passing
over a pulley on a davit anchored to the top deck. The cable at each end carries a tension of
4000 N and the cable as well as the pulley are located in a vertical plane as shown in Fig. 4-10.
The pulley may rotate freely about the horizontal circular axle indicated. Determine the
diameter of this axle if the allowable transverse shearing stress is 50 MPa.

Fig. 4-10

The free-body diagram of the pulley shows not only the cable tensions but also the forces Ry, and R,
exerted on the pulley by the circular axle. From statics we have

2 Fy = —Ry+4000sin60° = 0
Ry = 3464 N (— )

Z Fy- = Ry — 4000 — 4000 cos 60° =
Ry = 6000 N (1)

The resultant of R, and Ry is R = V/(3464)2 + (6000)° = 6930 N oriented at an angle 6 from the horizontal
given by

= t
@ = arctan N

= 60°

The force exerted by the pulley upon the axle is equal and opposite to that shown in Fig. 4-11. If we assume
that the resultant force of 6930 N is uniformly distributed over the cross section of the axle, the transverse
shearing stress has the appearance shown in Fig. 4-12. From Eq. (4.1). we have

6930 N
x [0 N/m® =
50 x 10" N/m YE
-—— f ———
600N 7 I'\
Sy

&
\77

&

364N

Fig. 4-11 Fig. 4-12
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where d is the unknown axle diameter. Solving.

d=133x10"*m or 13.3 mm

4.9. A building that is 60 m tall has essentially the rectangular configuration shown in Fig. 4-13.
Horizontal wind loads will act on the building exerting pressures on the vertical face that may
be approximated as uniform within each of the three “layers” as shown. From empirical
expressions for wind pressures at the midpoint of each of the three layers, we have a pressure
of 781 N/m? on the lower layer. 1264 N/m? on the middle layer. and 1530 N/m? on the top layer.
Determine the resisting shear that the foundation must develop to withstand this wind load.

/‘\__\
50m
\ \7
2(lm;\
2Um;\
1530 kN e—-
ZUm;\ ~
1264 kN ey
o
, —
by 781 kN e
P, b
FH
P, -—mm——l

Fig. 4-13 Fig. 4-14

The horizontal forces acting on these three layers are found to be
P, = (20 m) (50 m) (781 N/m*) = 781 kN
P, = (20 m) (50 m) (1264 N/m®) = 1264 kN
Py = (20 m) (50 m) (1530 N/m*) = 1530 kN

These forces are taken to act at the midheight of each layer, so the free-body diagram of the building has
the appearance of Fig. 4-14. where F,, denotes the horizontal shearing force exerted by the foundation
upon the structure, From horizontal equilibrium, we have

ZF,=1530+1264+ 781 - Fy, =0
Fy = 3575kN

If we assume that this horizontal reaction is uniformly distributed over the base of the structure, the
horizontal shearing stress given by Eq. (4.7) is

3575 kN

=——= 2} ,u' 2
™= Gom)som) - ZI8KNm

4.10. In the North Atlantic Ocean, large icebergs (often weighing more than 8000 MN) present a
menace to ship navigation. A recently developed technique makes it possible to tow them to
acceptable locations. The method involves the use of a remotely operated unmanned
submersible vehicle which drills a hole in the iceberg about 30 m below the water surface and
then inserts a cylindrical anchor in the hole as shown in Fig. 4-15. The anchor is a cylindrical
steel tube of diameter 100 mm and it is secured to the hole in the iceberg by injecting gaseous
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carbon dioxide through small holes in the tube. This gas quickly freezes and fills the narrow
annular space between the outside of the anchor and the inside of the hole in the ice. A
connection from the exposed end of the anchor permits a cable to be run to the towing vessel.
If the maximum allowable shear stress in the frozen carbon dioxide is 0.5 MPa, determine the
minimum length of the cylindrical anchor so that it will not be pullcd out from the iceberg under
a towing force of 200 kIN.

——— - - i o~ — e ——
I 30m

ki

Towing cable

Fig. 4-15

A [ree-body diagram of the cylindrical tube (anchor) is shown in Fig. 4-16. There, T represents the
towing force in the cable attached to the anchor and r is the shearing stress in the frozen carbon dioxide.
It is assumed that 7 is uniform at all points along the length /. of the anchor as well as around the
circumference of the tube. If 7is (1.5 MPa for horizontal equilibrium. we have

SFy=T—-aDLt=0
200,000 N — (0.1 m) £.(0.5 % 10° N/m?) = 0
L =127m

Fig. 4-16

It is occasionally desirable to design certaw. structural fasteners to be strong in tension yet
somewhal weak in transverse shear. One example of this is to be found in contemporary design
of four-engine wide-body aircraft. Each engine is attached to the main supporting frame inside
the wing [see Fig. 4-17(a)] by aluminum alloy bolts that are adequately strong to support the
dead weight of the engine plus additional loads occurring in flight. However, the alloying is such
that each bolt can carry only moderate transverse shear in the unlikely event of a “wheels-up”
emergency landing so that the engine will be torn free from the wing, If the ultimate transverse
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shear strength of each bolt is 120 MPa, the bolt diameter 20 mm, and four bolts secure the
engine to the wing, determine the horizontal {orce that must act between the ground and the
engine for separation of the engine from the wing to occur,

A free-body diagram of the engine together with the four bolts is shown in Fig. 4-17(b). There F,
represents ultimate shearing force in each bolt (F, = 7, A). where 7, represents the ultimate shear stress
and A the cross-sectional area of cach bolt. Also, F, represcnts the force exerted by the ground on the

bottom of the engine. Note that the underside of the aircralt fuselage is above the bottom of the engine.
We have

F, = 7(0.020 m)*(120 x 10° N/m®) = 37.7kN

and for horizontal equilibrium (neglecting dynamic effects)
ZF,=F,—4F, =0
F, = 4(37.7) = 151 kN

Engine
Fig. 4-17%(a)
K, F,
wf— olfj—
F, F,

Fig. 4-17(b)

4.12. A power reactor has certain of its pressurized components (sec Fig. 4-18) made of type 304
stainless steel, 2.5 in thick. Adjacent butt-welded sections are joined by electron beam welding
in a partial vacuum using a 200 kW system. The ultimate strength of the parent steel is
160,000 1b/in”. If the weld is assumed to be 100 percent efficient, determine the force that may
be transmitted through each 14 in wide section. Also, determine the force if 80 percent efficiency
is assumed.

For 100 percent cffectiveness of the weld we determine the cross-sectional area of the 14in by 2.5in
section to be (14in) (2.5 in) = 35in’. The allowable load P is then given by

P = (35in) (160,000 Ib/in*) = 5.6 x 10°1b
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/ 14 in /
p— o/
f

25in |

Weld

Fig. 4-18

For 80 percent effectiveness of the weld we have the allowable load

P = (5.6 % 10°1b/in”) (0.80) = 4.48 x 10°Ib

4.13. Two g in thick strips of titanium alloy 1.75 in wide are joined by a 45° laser weld as shown in
Fig. 4-19. A 100 kW carbon dioxide laser system is employed to form the joint. If the allowable

A5 |
P — A :  —
\ I
Laser 1—6“1
weld
Fig. 4-19

shearing stress in the alloy is 65,000 1b/in” and the joint is assumed to be 100 percent efficient,
determine the maximum allowable force P that may be applied.

PEL s
/ | —— X TN~ 4= g in
f b=175in
(a) 1)
Fig. 4-20

A free-body diagram of the right strip has the form shown in Fig. 4-20. There, ¢ denotes normal stress
in the weld on the 45° plane and 7 the shearing stress. These are, of course, forces per unit area on the 45°
plane and these must be multiplied by the area of the 45° plane which is bt/cos 45° where t denotes strip
thickness and b the width. For horizontal equilibrium we have

bt
SF = T(CW'SD) ~ PcosdS® = 0

_ Pcos45°
bt
P(1IV2)?
(1.75in) (% in)

T

65,000 1b/in” = or P=171101b
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4.14.

4.15.

4.16.

4.17.

4.18.

Supplementary Problems

In Problem 4.1, if the maximum allowable working stress in shear is 14,000 Ib/in’, determine the required
diameter of the bolt in order that this value is not cxeceeded. Ans. d = 0.585in

A circular punch 20 mm in diameter is used to punch a hole through a steel plate 10 mm thick. If the [orce
necessary to drive the punch through the metal is 250 kN, determine the maximum shearing stress
developed in the material. Ans. 7= 400 MPa

In structural practice, steel clip angles are commonly used to transfer loads from horizontal girders to
vertical columns. If the reaction of the girder upon the angle is a downward force of 10,000 1b as shown
in Fig. 4-21 and if two {-in-diamcter rivets resist this force, find the average shearing stress in each of the
rivets. As in Problem 4.5, assume that the rivet fills the hole, which is {5 in larger in diameter than the
rivet.  Ans 7200 Ibfin’

Fig. 4-21

A pulley is keyed (to prevent relative motion) to a 60-mm-diameter shaft. The unequal belt pulls, 77 and
715, on the two sides of the pulley give rise to a net turning moment of 120 N - m. The key is 10 mm by 15 mm
in cross section and 75 mm long, as shown in Fig. 4-22. Determine the average shearing stress acting on
a horizontal plane through the key. Ans. 7= 533MPa

Fig. 4-22

Consider the balcony-type structure shown in Fig. 4-23. The horizontal balcony is loaded by a total load
of 80 kN distributed in a radially symmetric fashion. The central support is a shaft 500 mm in diameter and
the balcony is welded at both the upper and lower surfaces to this shaft by welds 10 mm on a side (or leg)
as shown in the enlarged view at the right. Determine the average shearing stress existing between the shaft
and the weld.  Ans. 2.5MPa
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1|
|

U
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T Iy

Fig. 4-23

Consider the two plates of equal thickness joined by two fillet welds as indicated in Fig. 4-24. Determine
the maximum shearing stress in the welds. Ans. 7= 0707Plab

Fig. 4-24

A copper tube 55 mm in outside diameter and of wall thickness 5 mm fits loosely over a solid steel circular
bar 40 mm in diameter. The two members are fastened together by two metal pins each 8 mm in diameter
and passing transversely through both members, one pin being near each end of the assembly. At room
temperature the assembly is stress free when the pins are in position. The temperature of the entire
assembly is then raised 40°C. Calculate the average shear stress in the pins. For copper E = 90 GPa,
a = 18 x 107%°C: for steel E = 200 GPa. « = 12 X 10" °C, Ans. 7= 132MPa

The shear strength of human bonce is an important parameter when implants must be employed to maintain
the desired length of a fractured leg or arm. Substitute animal bone segments are sometimes employed but
it is necessary to select a substance having the same transverse shear strength as human bone. For this
purpose tests such as shown in Fig. 4-25 are first carried out on the substitute under consideration. If the
cross-sectional area of the animal bone is 150 mm?® and a transverse force F = 600 N is required to cause
shear fracture, find the mean transverse shear stress at fracture. Ans. 2MPa
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4.22. Inautomotive as well as aircraft applications. two picces of thin metal are often joined by a single lap shear
joint, as shown in Fig. 4-26. Here, the metal has a thickness of 2.2 mm. The ultimate shearing strength of
the epoxy adhesive joining the metals is 2.57 % 10° kPa, the shear modulus of the epoxy is 2.8 GPa, and
the epoxy is effective over the 12.7 x 25.4-mm overlapping area. Determine the maximum axial load P the
joint can carry. Neglect the slight bending effect that arises because the metal picces are not in the same
plane. Ans. 8290N

Epoxy
0127 mm

Fig. 4-26

4.23.  If the shear modulus of the epoxy in Problem 4.22 is 2.8 GPa, determine the axial displacement of one piece
of metal with respect to the other just prior to failure of the epoxy if the epoxy is 0.127 mm thick.
Ans. 0.0017 mm



Chapter 5

Torsion

DEFINITION OF TORSION

Consider a bar rigidly clamped at onc and twisted at the other end by a torque (twisting moment)
T = Fd applied in a planc perpendicular to the axis of the bar as shown in Fig. 5-1. Such a bar is in
torsion. An alternative representation of the torque is the double-headed vector directed along the axis
of the bar.

Wi
ety

T

Fig. 5-1

TWISTING MOMENT
Occasionally a number of couples act along the length of a shaft. In that case it is convenient to
introduce a new quantity, the mwisting moment, which for any scction along the bar is defined to be the
algebraic sum of the moments of the applied couples that lie to one side of the section in question. The
choice of side in any casc is of course arbitrary.

POLAR MOMENT OF INERTIA

For a hollow circular shaft of outer diameter D,, with a concentric circular hole of diameter D, the
polar moment of inertia of the cross-scctional area. usually denoted by J. is given by

kn
J=—(D)- D} 5.1
3 ) (5.1)
The polar moment of inertia for a solid shaft is obtained by setting D, = 0. See Problem 5.1. This
guantity J is a mathematical propcrty of the geometry of the cross section which occurs in the study
of the stresses set up in a circular shaft subject to torsion.

Occasionally it is convenient to rewrite the above equation in the form

_ TN NP2 _ P2
J= 32(;D,,-I— D,}(Do D)
- 3—’;(05 + D2)(D,, + D) (D, — D,)

96
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This last form is useful in numerical evaluation of J in those cases where the difference (D, — D;) is
small. See Problem 5.6.

TORSIONAL SHEARING STRESS

For either a solid or a hollow circular shaft subject to a twisting moment T the torsional shearing
stress 7 at a distance p from the center of the shaft is given by
Tp
= — 5.2
7= (52)
This expression is derived in Problem 5.2. For applications see Problems 5.4, 5.5, 5.9, 5.10, and 5.11.
This stress distribution varies from zero at the center of the shaft (if it is solid) to a maximum at the
outer fibers, as shown in Fig. 5-2. It is to be emphasized that no points of the bar are stressed beyond
the proportional limit.

Dy

Fig, 5-2

SHEARING STRAIN

If a generator a-b is marked on the surface of the unloaded bar, then after the twisting moment
T has been applied this line moves to a-b’, as shown in Fig. 5-3. The angle ¥, measured in radians,
between the final and original positions of the generator is defined as the shearing strain at the surface
of the bar. The same definition would hold at any interior point of the bar.

- ,

T T

Fig. 5-3

MODULUS OF ELASTICITY IN SHEAR

The ratio of the shear stress 7 to the shear strain vy is called the modulus of elasticity in shear and,
as in Chap. 4, is given by

G=" (5.3)
Y

Again the units of GG are the same as those of shear stress, since the shear strain is dimensionless.
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ANGLE OF TWIST

If a shaft of length L is subject to a constant twisting moment T along its length. then the angle
¢ through which one end of the bar will twist relative to the other is

7L

== (5.4)

where J denotes the polar moment of inertia of the cross section. See Fig. 5-4. This equation is derived
in Problem 5.3. For applications see Problems 5.5, 5.7, 5.8, 5.11. 5.12, and 5.13. This expression holds
only for purely elastic action of the bar.

Fig. 5-4

COMPUTER SOLUTION

For a bar of circular cross section and variable diameter, the angle of twist # is determined by
dividing the bar into a number of segments along its length, such that in each segment the diameter
may be taken to be constant. This procedure is well suited to computer implementation, and a
FORTRAN program for implementing it is given in Problem 5.14. (Sec also Problem 5.15.)

POWER TRANSMISSION

A shaft rotating with constant angular velocity w (radians per second) is being acted on by a
twisting moment 7 and hence transmits a power P = Tw. Alternatively, in terms of the number of
revolutions per second f, the power transmitted is P = 2#fT. (See Problems 5.9, 5.10 and 5.11.)

PLASTIC TORSION OF CIRCULAR BARS

As the twisting moment acting on either a solid or hollow circular bar is increased, a value of the
twisting moment is finally reached for which the extreme fibers of the bar have reached the yield point
in shear of the material. This is the maximum possible elastic twisting moment that the bar can
withstand and is denoted by T.,. A further increase in the value of the twisting moment puts the interior
fibers at the yield point, with yielding progressing from the outer fibers inward. The limiting case occurs
when all fibers are stressed to the yield point in shear and this represents the fully plastic twisting
momeni. It is denoted by T,.. Provided we do not consider stresses greater than the yield point in shear,
this is the maximum possible twisting moment the bar can carry. For a solid circular bar subject to
torsion it is shown in Problem 5.21 that 7, = 4T./3.
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Solved Problems

5.1. Denve an expression for the polar moment of inertia of the cross-sectional area of a hollow
circular shaft. What does this expression become for the special case of a solid circular shaft?

Let D, denotc the outside diameter of the shaft and D, the inside diameter. Because of the circular
symmetry involved, it is most convenient to adopt the polar coordinate system shown in Fig. 5-5.

<

—

D,

l——— D

ft—

Fig. 5-5

By definition, thc polar moment of incrtia is given by the intcgral

J= f pda
A

where A indicates that the integral is to be cvaluated over the entire cross-sectional area.
To evaluate this integral we select as an clement of area a thin ring-shaped element of radius p and
radial thickness dp as shown. The area of the ring is da = 27p(dp). Thus

124, ar
J= f F@mp)dp = (D3 D)
1

26,

The units of J are in* or m*. For the special case of a solid circular shaft, the above becomes J = 7D*%32,

where D denotes the diameter of the shaft.

5.2.  Derive an expression relating the applied twisting moment acting on a shaft of circular cross
section and the shearing stress at any point in the shaft.

In Fig. 5-6(a) the shaft is shown loadcd by the two torques T and conscquently is in static equilibrium.
To determine the distribution of shearing stress in the shaft, let us cut the shaft by a plane passing through
it in a direction perpendicular to the geometric axis of the bar.

The free-body diagram of the portion of the shaft to the left of this plane appears as in Fig. 5-6(b).
Obviously a torque 7 must aci over the cross section cut by the plane. This is true since the entire shaft

T

(a)

(

Fig. 5-6
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is in equilibrium, and hence any portion of it also is. The torque 7 acting on the cut section represents the
effect of the right portion of the shaft on the left portion. Since the right portion has been removed, it must
be replaced by its effect on the left portion. This effect is represented by the torque 7. This torque is of
course a resultant of shearing stresses distributed over the cross section. [t is now necessary to make certain
assumptions in order to determine the nature of the variation of shear stress intensity over the cross
section.

One fundamental assumption is that a plane section of the shaft normal to its axis before loads are
applied remains plane and normal to the axis after loading. This may be verified experimentally for circular
shafts, but this assumption is not valid for shafts of noncircular cross section.

A generator on the surface of the shaft, denoted by O, A in Fig. 5-7, deforms into the configuration
O, B after torsion has occurred. The angle between these configurations is denoted by a. By definition, the
shearing unit strain v on the surface of the shaft is

Yy=tana =«

where the angle « is measured in radians. From the geometry of the figure.

_AB_ 1
T L

re

Hence .],.__L_

But since a diameter of the shaft prior to loading is assumed to remain a diameter after torsion has
occurred, the shearing unit strain at a general distance p from the center of the shaft may likewise be
written y, = pb/L. Consequently the shearing strains of the longitudinal fibers vary lincarly as the distances
from the center of the shaft.

RGN T T

. ————— o —.

Fig. 5-7 Fig. 5-8

If we assume that we are concerned only with the linear range of action of the material where the
shearing stress is proportional to shearing strain, then it is evident that the shearing stresses of the
longitudinal fibers vary linearly as the distances from the center of the shaft. Obviously the distribution
of shearing stresses is symmetric around the geometric axis of the shaft. They have the appearance shown
in Fig. 5-8. For equilibrium, the sum of the moments of these distributed shearing forces over the entire
circular cross section is equal to the applied twisting moment. Also, the sum of the moments of these forces
is exactly equal to the torque T shown in Fig. 5-6(b) above.

Thus we have
T= I Tpda
0

where da represents the area of the shaded ring-shaped element shown in Fig. 5-8. However, the shearing
stresses vary as the distances from the geometric axis; hence

T
—£ =~ = constant
pr

where the subscripts on the shearing stress denote the distances of the element from the axis of the shaft.
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5.3.

5.4.

Consequently we may wrile

r T N T r .
T= f ~(p)da = —”J p-da
(] P p [0

since the ratio 7,/p is a constant. However, the expression [;p° da is by definition (sce Problem 5.1) the

polar moment of inertia of the cross-scctional arca. Valucs of this for solid and hollow circular shafts are
derived in Problem 5.1. Hence the desired relationship is

7,/ Tp
T=="" o .
p T
It is to be emphasizcd that this cxpression holds enly if no points of the bar are stressed beyond the
proportional limit of the material.

Derive an expression for the angle of twist of a circular shaft as a function of the applied twisting
moment. Assume that the entire shaft is acting within the elastic range of action of the
material.

Let L denote the length of the shaft. J the polar moment of incrtia of the eross section, T the applied
twisting moment (assumed constant along the length of the bar). and G the modulus of elasticity in shear.
The angle of twist in a length L is represented by € in Fig. 5-9.

(—)

Fig. 5-9

From Problem 5.2 we have at the outer fibers where p = #:

e and _Ir
YU KO
i TL TL
By definition. the shearing modulus is given by G = 5 = rf;‘L Ty from which 6 = Tk Note that

8 is expressed in radians, i.e., it is dimensionless.
Occasionally the angle of twist in a unit length is useful. It is often denoted by ¢ and is given by
¢ = O/l = TIGT.

If a twisting moment of 10,0001b-in is impressed upon a 13-in-diameter shaft, what is the
maximum shearing stress developed? Also, what is the angle of twist in a 4-ft length of the shaft?
The material is steel for which G = 12 X 10° 1b/in’. Assume entirely elastic action.

From Problem 5.1 the polar moment of inertia of the cross-sectional area is

_r :zz)‘: L
J 32(0.,} 32(4 0.92in

The torsional shearing stress T at any distance p from the center of the shaft was shown in Problem
5.2 1o be 7, = Tpll. The maximum shear stress is developed at the outer fibers and there at p = jin

~10.0006)

Toax T o9y 9500 Ib/in®

Hence the shear stress varies linearly from zero at the center of the shaft to 9500 1b/in® at the outer fibers
as shown in Fig. 5-10.
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The angle of twist 6 in a 4-ft length of the shaft is

8= E} = m = ().0435 radian

F'gv 5'10

A hollow steel shaft 3 m long must transmit a torque of 25 kN - m. The total angle of twist in this
length is not to exceed 2.5° and the allowable shearing stress is 90 MPa. Determine the inside
and outside diameter of the shaft if ¢ = 85 GPa.

Let d, and d, designate the outside and inside diameters of the shaft, respectively. From Eq. (5.4) the
angle of twist is #§ = TL/GJ, where 6 is expressed in radians. Thus, in the 3-m length we have

5 ( rad ) 3 {25,000 N-m) (3 m)
T \573deg (85 % 10 N/m*) (%/32) (d — d}')
or d)—d} = (206 x 10 *ym*

The maximum shearing stress occurs at the outer fibers where p = d,/2. At these points from Eq. (5.2).
we have

_ (25000N-m)(d./2)
(7132) (d3 - d)
or d} ~d = (14144d,)(10 *) m*

90 % 10° N/m’

Comparison of the right-hand sides of these equations indicates that
206 X 10 * = 14144d,(10 %)

and thus d = 0.145m or 145 mm. Substitution of this value into either of the equations then gives
d, = 0.125m or 125 mm.

Let us consider a thin-walled tube subject to torsion. Derive an approximate expression for the
allowable twisting moment if the working stress in shear is a given constant 7,. Also, derive an
approximate expression for the strength—weight ratio of such a tube. It is assumed the tube does
not buckle, and the material is within the elastic range of action.

The polar moment of inertia of a hollow circular shaft of outer diameter D, and inner diameter D,
is J = (w/32) (D2 — D}). If R denotes the outer radius of the tube, then D,, = 2R, and further, if 1 denotes
the wall thickness of the tube, then D, = 2R - 2.

The polar moment of inertia J may be written in the alternate form

i= %[(m)‘ - Q2R-21)"] = glﬂ‘ ~(R-1)"] = %’ (4R1— 6R’* + 4Rt ~ 1)

-efa(g)-o(x) o(3) - (3]
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Neglecting squares and higher powers of the ratio /R, since we are considering a thin-walled tube, this
becomes, approximately, J = 2R’ 1.

The ordinary torsion formula is 7 = 7, J/R. For a thin-walled tube this becomes, for the allowable
twisting moment, T = 27R’7,,.

The weight W of the tube is W = yLA where vy is the specific weight of the material, L the length of
the tube, and A the cross-sectional area of the tube. The arca is given by

A= R~ (R—1y) = n@Re - &) = 7r2| X (L)
- R~ (R~ 1) = ateke ) = ot | - (2] |

Again neglecting the square of the ratio /R for a thin tube, this becomes A = 27Rt.

The strength—weight ratio is defined to be T/W. This is given by

I _ 2wRtT, _ &
W Z2aRily Ly

The ratio is of considcrable importance in aircraft design.

A solid circular shaft has a slight taper extending uniformly from one end to the other. Denote
the radius at the small end by q, that at the large end by b. Determine the error committed if
the angle of twist for a given length is calculated using the mean radius of the shaft. The radius
at the larger end is 1.2 times that at the smaller end.

I L
—x— |- dx |J

Fig. 5-11

Let us set up a coordinate system with the variable x denoting the distance from the small end of the
shaft (see Fig. 5-11). The radius at a section at the distance x from the small end is

r=a +—(h_a')"f
L
where L is the length of the bar.
Provided the angle of taper is small. it is sufficicnt to consider the angle d6 through which the shaded
element of length dx is twisted. This is obtained by applying the expression 6 = TL/GJ to the element of
length dx and radius r = @ + [(b — a)x/L]. For such an element the polar moment of inertia is

T T T emax]
I=pb=yr 2[” L
Thus do = T‘:]x_ rl
2]
2 L

The angle of twist in the length L is found by integrating the last equation. Thus

e'gﬂlﬁ%ﬁ_%(*é) (bfa) [“ (bl—La)x]-‘r‘3c;:~[TbL—a)(_$+$)

If b = 1.2a, this becomes @ = 1.40433TL/Gna". For a solid shaft of radius 1.1a

TL 1.36602TL
b = T T G
G5 (11a)
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Using these values of 6 and §,, we find
0.03831
P: = X =2,
erccnt error 140433 100 = 2.73%

Consider two solid circular shafts connected by 2-in- and 10-in-pitch-diameter gears as in Fig.
5-12(a). The shafts are assumed to be supported by the bearings in such a manner that they
undergo no bending. Find the angular rotation of D, the right end of one shaft, with respect to
A, the left end of the other, caused by the torque of 2500 Ib-in applied at D. The left shaft is
steel for which G = 12 X 10° Ib/in? and the right is brass for which G = 5 X 10° Ib/in’. Assume
elastic action.

F

F = 2500 Ib

(a) (¢}

Fig. 5-12

A free-body diagram of the right shaft CD [Fig. 5-12(b)] reveals that a tangential force F must act on
the smaller gear. For equilibrium, F = 2500 lb.
The angle of twist of the right shaft is
TL 3
5x10° Z’E( 1.25)°

A free-body diagram of the left shaft AB is shown in Fig. 5-12(¢). The force F is equal and opposite
to that acting on the small gear C. This force F acts 5in from the center line of the left shaft; hence it
imparts a torque of 5(2500) = 12,500 |b-in to the shaft AB. Because of this torque there is a rotation of
cnd B with respect to end A given by the angle 6,, where

~ 12,500(48)
12 x 10%(#/32) (2.5)°

6, = 0.0130 rad

It is to be carefully noted that this angle of rotation 6, induces a rigid-body rotation of the entirc shaft
CD because of the gears. In fact, the rotation of CD will be in the same ratio to that of AB as the ratio
of the pitch diameters, or 5:1. Thus a rigid-body rotation of 5(0.0130) rad is imparted to shaft CD.
Superposed on this rigid body movement of CD is the angular displacement of D with respect to C
previously denoted by 6,.

Hence the resultant angle of twist of D with respect to A is @ = 5(0.0130) + 0.075 = 0.140 rad.
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5.10.

5'1 1'

A solid circular shaft is required to transmit 200 kW while turning at 1.5 rev/s. The allowable
shearing stress is 42 MPa. Find the required shaft diameter.

In the SI system the time rate of work (power) is expressed in N -m/s. By definition 1 N-m/s is 1 W.
Power is thus given by P = Tw, where T is twisting moment and w is shaft angular velocity in
radians/second. Or, alternatively, P = 2#fT, where f is revolutions per second or hertz. Thus we have

200,000 N-m/s = 27(1.5 revis)T

T=21230N-m
As in Problem 5.2, the outer fiber shearing stresses are maximum and given by
16T
T ad
16(21,230 N -
Thus, 42 % 10° Nim? = SSELB0N " m)
wd-
Solving,
d = 138 mm

It is required to transmit 70 hp from a turbine by a solid circular shaft turning at 200 r/min. If
the allowable shearing stress is 7000 Ib/in?, determine the required shaft diameter.

In the USCS system the time rate of work (i.e., power) is expressed in Ib-in/s. By definition
6600 1b-in/s is 1 hp. Power is thus given by P = Tw, where T is the twisting moment and w is shaft angular
velocity in radians/second. Or, alternatively, P = 2#fT, where fis revolutions per second, usually termed
hertz. Here, we have

s -2 () ()1

from which 7= 220701b-in.
From Eq. (5.2), we have the peak shearing stresses at the outer fibers of the shaft as
_T(di2)y T1drz _ 16T
T T mtR
16,000 1b-in

rd?

Thus 7000 Ibfin® =

Solving, d = 2.52 in.

A solid circular shaft has a uniform diameter of 2 in and is 10 ft long. At its midpoint 65 hp is
delivered to the shaft by means of a belt passing over a pulley. This power is used to drive two
machines, one at the left end of the shaft consuming 25 hp and one at the right end consuming
the remaining 40 hp. Determine the maximum shearing stress in the shaft and also the relative
angle of twist between the two extreme ends of the shaft. The shaft turns at 200 r/min and the
material is steel for which G = 12 X 10°Ib/in®. Assume elastic action.

In the left half of the shaft we have 25 hp which corresponds to a torque 7, given by
_ 63.000x hp _ 63,000(25)
200

n

= 78801b-in

n

Similarly, in the right half we have 40 hp corresponding to a torque T, given by

_ 63,000(40)
200

T =12,6001b-in
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The maximum shearing stress consequently occurs in the outer fibers in the right half and is given by
the ordinary torsion formula:

_Tp _12,600(1) .,
L or T 732) ) 8000 Ib/in

The angles of twist of the left and right ends relative to the center are, respectively,

7880(60 .
880(60) = (.0250 rad and 0. = 12.600(60)

Lo 12 > 10°(m32) (2)} ° T 12 % 10%(=/32) (2)° = 0.0401 rad

Since 8, and #, are in the same direction, the relative angle of twist between the two ends of the shafi
is = 6-—6, = 0015 rad.

A circular cross-section bar is clamped at one end, free at the other, and loaded by a uniformly
distributed twisting moment of magnitude  per unit length along its length [see Fig. 5-13(a)].
The torsional rigidity of the bar is GJ. Find the angle of twist of the free end of the bar.

jaaaaalaait

dx

(1) (b)

Fig. 5-13

The twisting moment per unit length is denoted by ¢, and the coordinate x having its origin at the left
end is introduced. A free-body diagram of the portion of the bar between the left end and the section x
is shown in Fig. 5-13(b). An clement ol length dx is shown in that figure and we wish to determine the
angular rotation of the cylindrical element of length dx. For equilibrium of moments about the axis of the
bar. a twisting moment £x must act at the right of the section shown. This twisting moment ¢x imparts to
the clement of length dx an angular rotation (from Problem 5.3)

_ (1x) dx

do Gl

The total rotation of the left end with respect to the right end is found by integration of all such elemental
angles of twist to be

g - T (x) dx _I_L_z_
J GJ 2G7T

-0

A circular cross-section bar is clamped at one end, free at the other, and loaded by a twisting
moment distributed parabolically along the length as shown in Fig. 5-14(a). The torsional
rigidity of the bar is GJ and the moment intensity is 7}, at the clamped end. Find the angle of
twist of the free end of the bar.

Let us introduce a coordinate x having origin at B and extending positive to the left. The equation
of a parabola is of the general form

t=a’+bx+c

and for the given loading we have the conditions (a) when x =0, t, =0, (b) when x = L, t, = t,. and
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5.14.

Parabola

Fig. 5-14

(¢) when x = 0, dy/dx = 0. From these conditions we find & = 1,/L*. and b = ¢ = 0. Thus. the loading
intensity is described by the relation

A free-body diagram of the portion of the bar between B and a scction x is shown in Fig. 5-15(b). An
clement of length dy is also shown there and we scek to determine the angular rotation of that element.
The moment acting on the clement dx is found by equilibrium of twisting moments about the gcometric
axis of the bar to be equal to the sum of the distributed moments to the right of dx. This sum is found by
introducing an auxiliary variable x, and we have

dhis R N Iyx"
r, dy, = —(x\ydy, = —
J; _n ! -[. -0 L 0 l 3L°

From Problem 5.3. the angular rotation of the clement dx is

_tdx

o
ﬂGJ

and the total angle of rotation between A and B is found by integration to be

[ =1 t.dx [ A f"..l.': ["L!
f._u I GJ I 67 736

An elastic bar of variable-diameter circular cross section is loaded in torsion at its ends as shown
in Fig. 5-15. The variation of diameter may be known analytically, or through measurements at
a number of locations along the axial direction. Write a FORTRAN program to give the angle
of twist of one end of the bar with respect to the other.

*
-

i
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Let us divide the bar of length L into a number of infinitesimal subsegments each of length dx. so that
the cross section may be regarded as constant for cach such element. Then, we may determine the angular
rotation of each such element through use of the equation 8 = TL/G/ from Problem 5.3. For the element
of length dx, L is replaced by dx, and J is the polar moment of inertia of the cross section of the scgment.
This approach is represented by the following FORTRAN program which is applicable 1o any bar of
arbitrarily varying circular cross section where the bar contour is described by the equation

vy = Ae™

ODD1IORARRR A RARARRRAARRRRARRNARARRARARARAARNARRAARNARANRRARARAARA AR AN AAR

00020 PROGRAM TORSN2{INPUT,OUTPUT)
QODIONARAANNRRRRRARRARAANRARRARRARRARRARARAANARRARANAANARANARRRRRRARR A AN

00040*

00050* AUTHOR: KATHLEEN DERWIN

00060* DATE : FEBRUARY 5,1989

00070*

00080* BRIEF DESCRIPTION:

000950* THIS PROGRAM DETERMINES THE TOTAL ANGLE OF TWIST OF A CIRCULAR

00100* ROD DUE TO TORSIONAL LOADING. CONSIDER THE ROD TO BE OF SOLID
00110* CIRCULAR CROSS SECTION WITH A VARIABLE DIAMETER, LOADED

00120* BY A UNIFORM TORQUE.

00130* THE VARYING DIAMETER (OF THE ROD) MAY BE DESCRIBED

00140* EITHER ANALYTICALLY AS Y = A*E “(B*X) , WHERE X IS THE
00150*% GEOMETRIC AXIS OF THE ROD, OR NUMERICALLY USING THE MAGNITUDE OF
00160* Y AT EACH END OF N SEGMENTS, MEANING N+1 VALUES.

oo170*
00180* INPUT:
00190%* THE USER IS PROMPTED FOR THE TOTAL SHAFT LENGTH, THE SHEAR

00200* MODULUS, AND THE APPLIED TORQUE. THE USER IS THEN ASKED IF THE
00210* ROD IS BOUNDED BY A KNOWN FUNCTION...IF THE FUNCTION IS KNOWN, THE
00220% CONSTANTS AND THE ENDPOINTS OF THE ROD ON THE X~AXIS ARE INPUTTED;
00230% ALTERNATELY, THE NUMBER OF SEGMENTS AND MEASURED DIAMETERS

00240* MUST BE ENTERED.

00250*%

00260* OUTPUT:

00270* THE TOTAL ANGLE OF TWIST OF THE ROD IS DETERMINED AND PRINTED.
00280%

00290* VARIABLES:

00300* L,G -=-- LENGTH,SHEAR MODULUS OF ROD

00310* A,B ~== CONSTANTS OF Y=A*E " (B*X) GOVERNING ROD BOUNDAR
00320+ X0,XN ~== ENDPOINTS OF SHAFT ON X-AXIS

00330* T -== CENTRALLY APPLIED TORQUE

00340* AR(100) ~=— INDIVIDUAL SEGMENT DIAMETERS

00350* INER ~~- POLAR MOMENT OF INERTIA OF EACH SMALL INCREMENT
00360* ANS ~-- DETERMINE IF USER HAS A KNOWN FUNCTION

00370* TWIST ——- UNIFORM ANGLE OF TWIST

00380* LEN --- LENGTH OF INCREMENTAL ELEMENT

00390*

oo‘ootl*iiii&itiﬁﬁt***.li.0**************!ﬁ*ﬁ*i*t*ﬁ***tt*tiiili*liﬁitt**t**tﬁ
00‘10*iiiﬁﬁ****l*tiiﬁ*ﬁ&*tiﬁiiﬁiﬁtii*ii*t*.i‘Qtit**tt**t**t***ﬁﬁﬁﬁ*i*ﬁ*ﬁ*****
00420* MAIN PROGRAM

00430****t**iiiiiﬁ*tﬁ***iii.ii**i**ﬁi*iﬁﬁiﬁﬁﬁﬁ**tnt*tt**.ttttﬁ*t**itiit*ii*ii
004‘0**ﬁQ***ittiﬁﬁtii*ﬁﬁ***iﬁitliﬁ*****t**i**ﬁ.*iti*****tﬁﬁﬁt*iﬁ*****ﬁ*ﬁiiﬁii

00450*

00460* VARIABLE DECLARATION

00470%

00480 REAL I,T,L,G,A,B,X0,XN,TWIST,AA(100}, INER,LEN

00490 INTEGER ANS,NUM,J

00500%*

00510* USER INPUT PROMPTS

00520*

00530 PRINT*, 'ENTER THE TOTAL LENGTH OF THE ROD (IN M OR INCHES):"'

00540 READ* , L
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00550 PRINT*, 'ENTER THE SHEAR MODULUS (IN PASCALS OR PSI})

00560 READ*,G
00570 PRINT*, 'ENTER THE UNIFORM TORQUE (IN N-M OR LB-IN) :'

00580 READ* , T

00590 PRINT*, 'DO YOU KNOW THE FUNCTION DESCRIBING THE ROD?'
00600 PRINT#*, 'ENTER 1--YES ; 2--NO'

00610 READ*, ANS

00620*%

00630* IF ANS EQUALS ONE, THE USER KNOWS FUNCTION. PROMPT
00640* FOR CONSTANTS AND ENDPOINTS.

00650*

00660 INER =0
00670 IF (ANS.EQ.l) THER

00680 PRINT*, 'F(X) = A*E "(B*X) '

00690 PRINT*, 'ENTER A,B:’

00700 READ* ,A,B

00710 PRINT*, 'ENTER THE X-COORDINATE FOR BOTH ENDS OF THE ROD:'
00720 PRINT*, ' (IN M OR INCHES):'

00730 READ*,X0, XN

00740*

00750 L=XN-X0
00760 LEN=L/50
00770 DO 20 I = X0,XN,LEN

00780 Y1=A*({2.71828**{B*I))

00790 Y2=A%(2.71828%*( B*{I+LEN)))

00800 Y=({Y1+Y2)/2

00810 INER ={2./(3.14159*(¥Y**4)))+INER

00820 20 CONTINUE

00B30*

00840* IF ANS EQUALS TWO, THE USER DOES NOT KNOW FUNCTION.
00850* PROMPT FOR NUMBER OF SEGMENTS AND MEASURED DIAMETERS.
00860*

00870 ELSE

00880 PRINT#*, 'ENTER THE NUMBER OF SECTIONS TO BE CALCULATED:'
c0890 READ* , NUM

00900 PRINT#*, 'ENTER THE DIAMETERS OF THE ENDS FOR SECTIONS 1 TO N:'
00910 PRINT#®*,'(IN M OR INCHES):'

00920*

00930* INPUT MEASURED DIAMETERS

00540*

00950 DO 30 J=1,NUM+1

00960 READ* ,AA[J)

00970 30 CONTINUE

00980*

00950 LEN = L/NUM

01000 DO 40 J = 1,NUM+1

01010 ¥=(AA(J)+AA(J+1))/4

01020 INER =(2./(3.14159*%(Y**4)))+INER

01030 40 CONTINUE
01040 ENDIF

01050*

01060 TWIST = (T*LEN*INER)/G

01070 TWIST = TWIST*180/3.14159

01080 PRINT 50,TWIST

01090*

01100 50 FORMAT(2X,'THE ANGLE OF TWIST IS:',F9.3,' DEGREES.')
01110*

01120 STOP

01130 END

§.15. A solid circular cross-section shaft (see Fig. 5-16) lies along the x-axis and has a contour
described by the equation
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The contour extends from x = 0 to x = 25 in. The shear modulus of the material is 12 X 10° 1b/in?
and the shaft is loaded by a twisting moment of 23,000 Ib-in at each end. Use the FORTRAN
program of Problem 5.14 to determine the angle of twist between the ends.

-k L & A

23,000 Ib-in

x{in}

23,000 Ib+in

Fig. 5-16

Entering the above data into the program, we have the computer run:

ENTER THE TOTAL LENGTH OF THE ROD (IN M OR INCHES}:

? 25

ENTER THE SHEAR MODULUS (IN PASCALS OR PSI) :
? 12E+6

ENTER THE UNIFORM TORQUE (IN N-M OR LB-IN) :
? 23000

DO YOU KNOW THE FUNCTION DESCRIBING THE ROD?
ENTER 1--YES ; 2--NO

? 1

F(X) = A*E"(B*X)

ENTER A,B:

? 3,-0.05

ENTER THE X-COORDINATE FOR BOTH ENDS OF THE ROD:
(IN M OR INCHES):

20,25
THE ANGLE OF TWIST IS: .703 DEGREES.

5.16. A circular cross-section bar is clamped at each end and loaded by the distributed twisting
moments of magnitude 1, per unit length of the bar in one direction in the left region AB and
by the same intensity twisting moment but in the opposite direction in the right region BC (see
Fig. 5-17). If t; = 30N -m per meter of length, L = 0.7 m, and the maximum allowable shearing,
stress is 32 MPa, determine the required diameter of the bar.

Fig. 5-17

1>
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Let us solve this problem by superposition of solutions of two subproblems. These problems are Fig.
5-18(a). labeled 1. and Fig. 5-18(b). labeled 1.

M,

2,

11
(2]

Fig. 5-18

Let us temporarily release the end A of the bar and determine the rotation of A due to an arbitrary
end moment M, plus the two distributed loadings 1 and [1. Using the results of Problems 5.3 and 5.12, we
find that the angular rotation at A is given by

o hQLY ML) @n)L
4G G/ 2GJ

However, since we know that end A is rigidly clamped, 6, = 0. solving we find

M nlL
A 2 fl

coepppfonl

Fig. 5-19

Thus, the free-body diagram of the bar ABC appears as shown in Fig. 5-19.
From Fig. 5-19 the sum of the twisting moments about the x-axis is

EM‘ =MA”Mc+’]L_'f|L=O

which leads to

HL
M=

Thus, the variation of twisting moment along the length of the bar may be plotted as shown in
Fig. 5-20.
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nL

NI
A \u(_-fu/ C

Fig. 5-20

Alternatively, using the vector representation of twisting moment, we see that the free-body diagrams of
the left and right regions of ABC appear as shown in Fig. 5-21.

12 "t
2 nk 2
A —— D | <tit—
nL
*IB e —— CH-
ni nL
2 F)

Fig. 5-21

The free-body diagram of AB indicates that there must be a twisting moment t, L/2 acting as shown at B.
By Newton's law, there is an equal and opposite twisting moment acting at the left end of BC. Thus, there
is a nonzero moment at the midpoint B, as indicated by Fig. 5-21. It can be shown that the angular rotation
of the bar at B is zero.

From Fig. 5-21, the peak torque in the bar is 1, L/2, The maximum shearing stress occurs at the outer
fibers of ABC at the ends A and C as well as the midpoint 8. The peak stress is. from Eq. (5.2):

T(dn)
Tmax = 432
N.
16[301 mm %] (0.7m)
32 % 10° Nim?® = —

Solving, d = 17.4 mm.

A steel bar ABC, of constant circular cross section and of diameter 80 mm, is clamped at the
left end A, loaded by a twisting moment of 6000 N-m at its midpoint B, and elastically
restrained against twisting at the right end C (see Fig. 5-22). At end C the bar ABC is attached
to vertical steel bars each of 16-mm diameter. The upper bar MN is attached to the end N of
a horizontal diameter of the 80-mm bar ABC and the lower bar PQ is attached to the other
end Q of this same horizontal diameter, as shown in Fig. 5-22(a). For all materials £ = 200 GPa
and G = B0 GPa. Determine the peak shearing stress in bar ABC as well as the tensile stress
in bar MN.

Let us consider that bars MN and PQ are temporarily disconnected from the bar ABC. Then, from
Problem 5.3 the angle of twist at B relative to A is

o~ TL _ (6000N-m)(0.75 m)
Gl (G)(n/32)(0.08 m)*
Since no additional twisting moments act between B and C, this same angle of twist due to the 6000-N -m

loading exists at C, called 6.
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Length » 1.5 m

(®) (a)

Fig. 5-22

From Fig. 5-22(b) the horizontal diameter NQ of bar ABC must rotate to some true, final position
indicated by the dotted line. This is due to extension A of cach of the vertical bars, which is accompanied
by an axial force P in cach bar. For a small angle of rotation 8, we have A = (0.040 m) 8. The axial forces
P constitute a couple of magnitude P(0.08 m) = 7 which must act at the end C of bar ABC when the
vertical bars are once again considered to be attached to the horizontal bar ABC. This couple must act in
a sense opposite to the 6000-N-m load as shown in Fig. 5-22(a) since the elastic vertical bars tend to
restrain angular rotation of the end C.

The elongation of each vertical bar may be found from Problem 1.1 to be

_PL__ PASm) (T JO.08)(1.5m)
AE  (#/®)(0.016 my*E  (m/4)(0.016 m)'E

The angular rotation of end C of bar ABC may now be determined by (a) considering the effect of
the twisting moments of 6000 N - m and the ¢nd load T, and by (b) considering the angular rotation caused
by the axial force P in the vertical bars. Thus, for the same rotation of end C we have

(6000 N-m)(0.75m) T(1.5m) _ (Tc/0.8) (1.5m)

(G)(m32) (0.08 m)*  (G)(w/32)(0.08)* (=/4)(0.016 m)*(0.04 m) (E)
Solving, Te=1327N-m and P = T/0.08 = 16,587 N. The variation of twisting moment along ABC

TA [T 1T T ]13278m
B f C
m"i“‘ 4673 N-m

Fig. 523
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appears as in Fig. 5-23 so that the peak torsional shearing stress occurs at the outer fibers at all points
between A and B and is from Problem 5.2

16(4673 N-m)

= = 4.5 MP
TI1NIK ﬂ{(}_[}g m}\‘ N a
The axial stress in each of the vertical bars is
P 16,587 N
e — — .5
o a 0.008m)° 82.5 MPa

5.18. Determine the reactive torques at the fixed ends of the circular shaft loaded by the couples

shown in Fig. 5-24(a). The cross section of the bar is constant along the length. Assume elastic
action.

C A O el

Lg-—-ld— L3 ——

r

(@) (b)
Fig. 5-24

Let us assume that the reactive torques 7, and 7 are positive in the dircctions shown in Fig. 5-24(b).
From statics we have

"T]+T3_TR=O (I)

This is the only equation of static equilibrium and it contains two unknowns. Hence this problem is
statically indcterminate and it is necessary 10 aupment this equation with another equation based on the
deformations of the system.

The variation of torque with length along the bar may be represented by the plot shown in
Fig. 5-25.

The free-body diagram of the left region of length L, appears as in Fig. 5-26(a).

Working from left to right along the shaft, the twisting moment in the central region of length L, is
given by the algebraic sum of the torques to the left of this section. ie., 7y, — 7. The free-body diagram
of this region appears as in Fig. 5-26(b).

-.-Ll—.-c-—L-g—-‘!-— L3
|
+ —-’
T, N

| - L
Fig. 5-25
L, = L, - Ly v
(o) () (el
7. n T,-Te T, -7 Ty R
(@) {b) (©)
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5.19.

Finally, the free-body diagram of the right region of length L, appears as in Fig. 5-26(c).
Let 6, denote the angle of twist at the point of application of 7,, and 6. the angle at 7,. Then from
a consideration of the regions of lengths L, and £; we immediately have

_T.L

6, = I (2)
Tl

6, = Gl 3

The original position of a generator on the surface of the shaft is shown by a solid line in Fig. 5-26.
and the deformed position by a dashed line. Consideration of the central region of length L, reveals that
the angle of twist of its right end with respect to its left end is 8, + 6. Hence. since the torque causing this
deformation is T, — T, , we have

(Tl — T:_]Lz

= 4
6, + 6 GJ (4)
Solving (1) through (4) simultancously, we find
L.+ L L L L,+L,
To=T— "~Tzf and TR=-T.—E'~+T; '

It is of interest to examine the behavior of a generator on the surface of the shaft. Originally it was,
of course, straight over the entire length L, but after application of T, and T it has the appearance shown
by the broken line in Fig. 5-27.

PN
Ne Twial.‘/v

Fig. 5-27

Consider a composite shaft fabricated from a 2-in-diameter solid aluminum alloy, G = 4 X
10° Ib/in’, surrounded by a hollow steel circular shaft of outside diameter 2.5in and inside
diameter 2 in, G = 12 X 10° Ib/in®. The two metals are rigidly connected at their juncture. If the
composite shaft is loaded by a twisting moment of 14.000 |b-in. calculate the shearing stress at
the outer fibers of the steel and also at the extreme fibers of the aluminum. The action is
elastic.

Let T, = torque carried by the aluminum shaft and 7> = lorque carried by the steel. For static
equilibrium of moments about the geometric axis we have

T+ T,=T= 1400
where T = external applied twisting moment. This 1s the only equation from statics available in this
problem. Since it contains two unknowns, Ty and T, it is necessary to supplement it with an additional
equation coming from the deformations of the shaft. The structure is thus statically indcterminate.

Such an equation is easily found, since the two materials are rigidly joined: hence their angles of twist
must be equal. In a length L of the shaft we have, using the formula 6 = TL/GJ.

T.L B L
4x10%7/32) (2)* 12 x 10°(m32) [(2.5)* - (2)]

This equation, together with the statics equation, may be solved simultaneously to yicld

T, = 2600 1b-in (carried by aluminum) and T, = 11,400 1b-in (carried by steel)

or T, =0231T7,

The shearing stresscs at the extreme fibers of the steel and of the aluminum are, respectively,

L 11.400(1.25) 2600(1)

T (@) 25 - (2) v 1650 1b/in?

= 6300 Ibfin? and
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5.20. A stepped shaft has the appearance shown in Fig. 5-28. The region AB is Al2014-T6 alloy,
having G = 28 GPa, and the region BC is steel, having G = 84 GPa. The aluminum portion is
of solid circular cross section 45 mm in diameter, and the steel region is circular of 60-mm
outside diameter and 30-mm inside diameter. ‘Determine the peak shearing stress in each
material as well as the angle of twist at B where a torsional load of 4000 N - m is applied. Ends
A and C are rigidly clamped.

Fig. 5-29

The free-body diagram of the system is shown in Fg. 5-29.
The applicd load of 4000 N-m as well as the unknown end reactive torques are indicated by the
double-headed vectors above. There is only one equation of static equilibrium:

SM,= T, +Tr—4000N-m = 0

Since there are two unknowns 7, and 7. another equation (based upon deformations) is required. This
is set up by realizing that the angular rotation at B is the same if we determine it at the right end of AB
or the left end of BC. Using Eq. (5.4). we thus have

Ti(1.2m) _ Tx(2.0m)

(28 % 10°N/imY) S, (84 X 10° N/m®) Jsy S

The polar moment of inertia in AB is
3
Jar = OO _ 040 % 10 m*
32
and in BC it is
Jor = 3—’;{(0.060 m)* — (0.030 m)*] = 1.19 x 10~ m*
Thus, from the above Eq. (I). we have
T, = 01877, 2)

Substituting this relation in Eq. (/). we find
T, =630N-m and Te=3370N-m
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5'2 l.

The outer fiber shearing stresses in AB are given by

_ Tp _ (630N-m)(0.0225 m)

- = 352 MP
Tan =7y 0.40 % 10 *m* a4

and in BC by

_ Tp _ (3370N-m)(0.030 m)

7 119x10°ms ~ 5>0MPa

Tee

The angle of twist at B, using parameters of the region AB, is

_TL (630 N-m) (1.2 m)

o = 067510 0.039°
G~ (B X 10° Nim?) (040 x 10-F gty _ 0073 %107 rad —or

B

Consider a bar of solid circular cross section subject to torsion. The material is considered to
be elastic-perfectly plastic, i.e., the shear stress-strain diagram has the appearance indicated in
Fig. 5-30(a). Determine the distance from the center at which plastic flow begins in terms of the
twisting moment. Also determine the twisting moment for fully plastic action of the cross
section.

I"”
0

(a) (b)

Fig. 5-30

Even though torsion of the bar has caused the outer portion to have yielded it is still realistic to assume
that plane sections of the bar normal to its axis prior to loading remain plane after the torques have been
applied, and further that a diameter in the section before deformation remains a diameter, or straight line,
after deformation. Consequently the shearing strains of the longitudinal fibers vary linearly as the distances
from the ccnter of the bar.

Let us assume that plastic action begins at a distance p; from the center of the bar, so that the stress
distribution appears as in Fig. 5-30(b). Thus, the shearing stresses vary linearly as the distance of the fiber
from the center up to the point p, after which they are constant and equal to the yield point in shear.

From Fig. 5-30(b) we have for p<p,:

T,
=% o 7= (i] Tp
[y P

and for p> p;: 7 = 7,, = constant. Thus the twisting moment is

T= J"rpda )
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where da refers to the ring-shaped element shown in Fig. 5-8 of Problem 5.2. Using the above values of
shearing stress in the inner elastic region and outer plastic region, we have

& p r o (™ r
T=J (—-) T‘,pdﬂ*‘f rq,ptfa=ij p’da+7vpj pda
MRL o (L

Fi r
= Elj p*2mpdp + Tvpf plapdp = "'v:-(g - 2_31'T)p: + 2_;"-“"3
[ o =N
Solving for p,,
61 1"

Ty

P = [4!"' (2)
as the distance from the center at which plastic flow begins. For fully plastic action, that is, r = 7,, at all
points of the cross section, we sct p; = 0 to obtain the fully plastic twisting moment 7,;
2 44
Tp =§’" Typ Ig:"_w ()
But from Problem 5.2 if only the outer fibers of the bar are stressed to the yield point of the material
and all interior fibers are in the elastic range of action we have the maximum possible elastic twisting
moment T.:
T.= -'—;-‘im-‘ )
Comparison of (3) and (4) indicates that 7, = 47./3, that is, fully plastic action permits application
of a twisting moment 33} perccnt greater than the twisting moment that just causes plastic action to begin
in the outer fibers.

Consider a circular shaft having a concentrically bored hole. Determine the twisting moment
that it can carry for fully plastic action.

'

Fig. 5-31

As shown in Fig. 5-31, we denote the outer radius of the shaft by R, and the inner radius by R,. The
yield point of the material in torsion is denoted by 7,,. We return to Eq. (7) of Problem 5.21 and merely
change the limits of integration. That is,

K, K,
T= j Tppda = t,pj p(2mpdp)
R, Fi
27
3

Note that if we express the fully plastic moment in Eq. (3) of Problem 5.21 in terms of J for the solid shaft
it is not possible to obtain the correct fully plastic torsional loading for a hollow shaft merely by utilizing
(/J, —J,) where these Js correspond to the outside and inside boundaries of the hollow shaft, respectively.
It is necessary to determine the fully plastic load by rcturning to fundamentals and integrating as shown
above.

7.,[R3 — R}|
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5.23.

5.27.

5.28.

5.29.

Supplementary Problems

If a solid circular shaft of 1.25-in diameter is subject to a torque 7" of 2500 1b - in causing an angle of twist
of 3.12° in a 5-ft length. determine the shear modulus of the matenal. Ans. G = 11.5 X 10" Ibfin?

Determine the maximum shearing stress in a 4-in-diameter solid shaft carrying a torque of 228,000 Ib- in.
What is the angle of twisl per unit length if the maternal is steel for which G = 12 x 10° Ib/in??
Ans. 18,100 1b/in®, 0.000755 rad/in

A propeller shaft in a ship is 350 mm in diameter. The allowable working stress in shear is 50 MPa and the
allowable angle of twist is 1° in 15 diameters of length. If G = 85 GPa. determine the maximum torque the
shaft can transmit. Ans. 416kN-m

Consider the same shaft described in Problem 5.25 but with a 175-mm axial hole bored throughout its
length. The conditions on working stress and angle of twist remain as before. By what percentage is the
torsional load-carrying capacity reduced? By what percentage is the weight of the shaft reduced?

Ans. 6 percent, 25 percent

A compound shaft is composed of a 24-in length of solid copper 4 in in diameter, joined to a 32-in length
of solid steel 4.5in in diameter. A torque of 120,000 Ib-in is applied to each end of the shaft. Find the
maximum shear stress in each material and the total angle of twist of the entire shaft. For copper
G = 6 x 10°1b/in?, for steel G = 12 x 10° Ib/in’.

Ans. in the copper, 9520 Ib/in®; in the steel, 6700 Ib/in®;, 6 = 0.027 rad

In Fig. 5-32 the vertical shaft and pulley keyed to it may be
considered to be weightless. The shaft rotates with a uniform angular
velocity. The known belt pulls are indicated and the three pulleys
are rigidly keyed to the shaft. If the working stress in shear is
50MPa, determine the necessary diameter of a solid circular
shaft. Neglect bending of the shaft because of the proximity of the
bearings to the pulleys.  Ans. 29mm

Determine the reactive torques at the fixed ends of the circular shafi
loaded by the three couples shown in Fig. 5-33. The cross section of
the bar is constant along the length,

Ans. T, =36001b-in, T = 13.6001b-in

A hollow sieel shaft has an outside diameter of 4in and an inside
diameter of 3in. Determine the maximum torque the shaft can
transmit in fully plastic action if the yield point of the material in
shear is 22,000 Ibfin®. Ans. 214,0001b-in Fig. 5-32
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A bar of circular cross section is clamped at its left end, free at the right, and loaded by a twisting moment
t per unit length that is uniformly distributed along the middlc third of the bar as shown in Fig. 5-34. Find
the angle of twist of the free end of the bar.

21t

Aans 5GI

It is desired to transmit 90 kW by means of a solid circular shaft rotating at 3.5 r/s. The allowable shearing
stress is 45 MPa. Find the required shaft diameter. Ans. 774 mm

A hollow circular shaft whose outside diameter is threc times its inner diameter transmits 110 hp at
120 r/min. If the maximum allowable shearing stress is 6500 1b/in”. find the required outside diameter of
the shaft. Ans. 3.58in

A solid circular cross-section shaft lies along the x-axis and has a contour described by the equation
y = 0.074e "B

The shaft extends from x = 0 to x = 3 m. The shear modulus of the material is 3 GPa and the shaft is
loaded by a twisting moment of 42,100 N-m at cach end. Use the FORTRAN program of Problem 5.14
to determine the angle of twist between the ends of the bar. Ans. 2518°

A solid circular cross-section shaft lies along the x-axis and has a contour described by the equation
v = 8€‘ (HiII

The shaft extends from x = 0 to x = 180 in. The shear modulus of the material is 12 % 10" Ib/in°. and the
shaft is loaded by a twisting moment of 65,0001b-in. Use the FORTRAN program of Problem 5.14 to
determine the angle of twist between the ends of the bar. Ans. 1.861°

A solid circular cross-section shaft is clamped at both ends and loaded by a twisting moment 1 per unit
length as shown in Fig. 5-35. Determine the reactive twisting moments at each end of the bar.
Ans. My =3tL, M¢= L
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5.37.

5.38.

A solid steel shaft of circular cross section has a length of 300 mm and is tapered from 50-mm diameter
at the small end to 100-mm diamcter at the large end, as shown in Fig. 5-36, The shaft is subject to a twisting
moment of 1000 N - m applied at each end. For G = 80 GPa, determine the angle of twist between the ends
and the pcak shearing stress.  Ans. 048° 40.7 MPa

50 mm
L =3 _I0mm
e — — |
1000 N=m r 1000 N-m
e 300 mm

Fig. 5-36

A circular cross-scction steel shaft is of diameter S0 mm over the left 150 mm of length and of diameter
100 mm over the right 150 mm, as shown in Fig. 5-37. Each end of the shaft is loaded by a twisting moment
of 1000 N-m, If G = 80 GPa, determine the angle of twist between the ends of the shaft as well as the peak
shearing stress, Ans.  1.09° 40.7 MPa

l

~afam— 50 mm 100 mm
10(0 N-m t 1000 Nem

I-+— 150 mm —-*Ln—v 150 mm —=

Fig. 5-37



Chapter 6

Shearing Force and Bending Moment

DEFINITION OF A BEAM

A bar subject to forces or couples that lie in a plane containing the longitudinal axis of the bar is
called a beam. The forces are understood to act perpendicular to the longitudinal axis.

CANTILEVER BEAMS

If a beam is supported at only one end and in such a manner that the axis of the beam cannot rotate
at that point, it is called a cantilever beam. This type of beam is illustrated in Fig. 6-1. The left end of
the bar is free to deflect but the right end is rigidly clamped. The right end is usually said to be
“restrained.” The reaction of the supporting wall at the right upon the beam consists of a vertical force
together with a couple acting in the plane of the applied loads shown.

P
w ib/ft 3

W#W

Fig. 6-1

SIMPLE BEAMS

A beam that is freely supported at both ends is called a simple beam. The term “freely supported™
implies that the end supports are capable of exerting only forces upon the bar and are not capable of
exerting any moments. Thus there is no restraint offered to the angular rotation of the ¢nds of the bar
at the supports as the bar deflects under the loads. Two simple beams are sketched in Fig. 6-2.

lP 1 FUnit fength
-

| B |
.- oS .- %,
{a) (b)

Fig. 6-2

It is to be observed that at least one of the supports must be capable of undergoing horizontal
movement so that no force will exist in the direction of the axis of the beam. If neither end were free
to move horizontally. then some axial force would arise in the beam as it deforms under load. Problems
of this nature are not considered in this book.

122
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The beam of Fig. 6-2(a) is said to be subject to a concentrated force; that of Fig. 6-2(b) is loaded
by a uniformly distributed load as well as a couple.

OVERHANGING BEAMS

A beam freely supported at two points and having one or both ends extending beyond these
supports is termed an overhanging beam. Two examples are given in Fig, 6-3.

S S ]
.- - '

Fig. 6-3

P

STATICALLY DETERMINATE BEAMS

All the beams considered above, the cantilevers, simple beams, and overhanging beams, are ones
in which the reactions of the supports may be determined by use of the equations of static equilibrium.
The values of these reactions are independent of the deformations of the beam. Such beams are said
to be statically determinate.

STATICALLY INDETERMINATE BEAMS

If the number of reactions exerted upon the beam exceeds the number of equations of static
equilibrium, then the statics equations must be supplemented by equations based upon the
deformations of the beam. In this case the beam is said to be statically indeterminate. Examples are

shown in Fig. 6-4.

P »
l' s

[ \§r [ ]

(a) (b) (c)

——

Fig. 6-4

TYPES OF LOADING

Loads commonly applied to a beam may consist of concentrated forces (applied at a point).
uniformly distributed loads, in which case the magnitude is expressed as a certain number of pounds
per foot or Newtons per meter of length of the beam. or uniformly varying loads. This last type of load
is exemplified in Fig. 6-5.

A beam may also be loaded by an applied couple. The magnitude of the couple is usually expressed
inlb-ft or N-m.
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Fig. 6-5

INTERNAL FORCES AND MOMENTS IN BEAMS

When a beam is loaded by forces and couples, internal stresses arise in the bar. In general, both
normal and shearing stresses will occur. In order to determine the magnitude of these stresses at any
section of the beam, it is necessary to know the resultant force and moment acting at that section. These
may be found by applying the equations of static equilibrium.

Example 1

Suppose several concentrated forces act on a simple beam as in Fig. 6-6(a).

-

LA P SR A = +D

% SRR % b

(a) (®)

Fig. 6-6

It is desired to study the internal stresses across the section at D, located a distance x from the left
end of the beam. To do this let us consider the beam to be cut at D and the portion of the beam to
the right of D removed. The portion removed must then be replaced by the effect it exerted upon the
portion to the left of D and this effect will consist of a vertical shearing force together with a couple,
as represented by the vectors V and M, respectively, in the free-body diagram of the left portion of the
beam shown in Fig. 6-6(b).

The force V and the couple M hold the left portion of the bar in equilibrium under the action of
the forces R,, P,, P,. The quantities V and M are taken to be positive if they have the senses indicated
above.

RESISTING MOMENT

The couple M shown in Fig. 6-6(b) is called the resisting moment at section D. The magnitude of
M may be found by use of a statics equation which states that the sum of the moments of all forces
about an axis through D and perpendicular to the plane of the page is zero. Thus

EM():M"Rlx“'Pl(I“a)"'Pz(x“b}:O or M=R|x_‘P|(x‘ﬂ)“P2(x_b)

Thus the resisting moment M is the moment at point D created by the moments of the reaction at A
and the applied forces P, and P,. The resisting moment M is the resultant couple due to stresses that
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are distributed over the vertical section at D. These stresses act in a horizontal direction and are tensile
in certain portions of the cross section and compressive in others. Their nature will be discussed in
detail in Chap. 8.

RESISTING SHEAR

The vertical force V shown in Fig. 6-6(b) is called the resisting shear at section D. For equilibrium
of forces in the vertical direction,

EFE,.:R]_P]_P:_V:U or V=R1_P1_Pz

This force V is actually the resultant of shearing stresses distributed over the vertical section at D. The
nature of these stresses will be studied in Chap. 8.

BENDING MOMENT

The algebraic sum of the moments of the external forces to one side of the section D about an axis
through D is called the bending moment at D. This is represented by

Rix—P(x—a)— P,(x—b)

for the loading considered above. The quantity is considered in Problems 6.1 through 6.12. Thus the
bending moment is opposite in direction to the resisting moment but is of the same magnitude. It is
usually denoted by M also. Ordinarily the bending moment rather than the resisting moment is used
in calculations because it can be represented directly in terms of the external loads.

SHEARING FORCE

The algebraic sum of all the vertical forces to one side, say the left side, of section D is called the
shearing force at that section. This is represented by R, — P, — P, for the above loading. The shearing
force is opposite in direction to the resisting shear but of the same magnitude. Usually it i1s denoted
by V. It is ordinarily used in calculations, rather than the resisting shear. This quantity is considered
in Problems 6.1 through 6.12.

SIGN CONVENTIONS

The customary sign conventions for shearing force and bending moment are represented in Fig.
6-7. Thus a force that tends to bend the beam so that it is concave upward is said to produce a positive
bending moment. A force that tends to shear the left portion of the beam upward with respect to the
right portion is said to produce a positive shearing force.

Positive Bending Negative Bending
— C———3
M M
(0) Positive Shear (d) Negative Shear
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An easier method for determining the algebraic sign of the bending moment at any section is to
say that upward external forces produce positive bending moments, downward forces vield negative
bending moments.

SHEAR AND MOMENT EQUATIONS

Usually it is convenient to introduce a coordinate system along the beam, with the origin at one
end of the beam. It will be desirable to know the shearing force and bending moment at all sections
along the beam and for this purpose two equations are written. one specifying the shearing force V as
a function of the distance, say x, from one end of the beam. the other giving the bending moment M
as a function of x.

SHEARING FORCE AND BENDING MOMENT DIAGRAMS

The plots of these equations for V and M are known as shearing force and bending moment
diagrams, respectively. In these plots the abscissas (horizontals) indicate the position of the section
along the beam and the ordinates (verticals) represent the values of the shearing force and bending
moment, respectively. Thus these diagrams represent graphically the variation of shearing force and
bending moment at any section along the length of the bar. From these plots 1t is quite easy to
determine the maximum value of each of these quantities.

RELATIONS BETWEEN LOAD INTENSITY, SHEARING FORCE, AND BENDING
MOMENT

A simple beam with a varying load indicated by w(x) is sketched in Fig. 6-8. The coordinate system
with origin at the left end A is established and distances to various sections in the beam are denoted
by the variable x.

w(x)
x
A ——
|
Fig. 6-8

For any value of x the relationship between the load w(x) and the shearing force V 1s
dv

dx

and the relationship between shearing force and bending moment M is
y_dn
dx

These relations are derived in Problem 6.1. For applications see Problems 6.3 through 6.7.
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SINGULARITY FUNCTIONS

For ease in treating problems involving concentrated forces and concentrated moments we
introduce the function

Jalx) = x — a)"

where for n >0 the quantity in pointed brackets is zero if x < a and is the usual (x — a)" if x > a. This
is the singularity or half-range function. Thus, if the argument is positive the pointed brackets behave
just as ordinary parentheses. For applications see Problems 6.8 through 6.13.

COMPUTER IMPLEMENTATION

Determination of shearing forces and bending moments in a beam subject to a number of

concentrated forces, moments, and distributed loadings is best carried out on a computer. A simple
program suitable for PC implementation is given in Problem 6.13 and applications are given in

Problems 6.14 and 6.15.

Solved Problems

6.1.  Derive relationships between load intensity, shearing force and bending moment at any point
in a beam.

Let us consider a beam subjcct to any type of transverse load of the gencral form shown in Fig. 6-9(a).
Simple supports are illustrated but the following consideration holds for all types of beams. We will isolatc
from the beam the clement of length dx shown and draw a free-body diagram of it. The shearing force V

o= _ . V*t* V+dv
s, )H-Hﬂf

M

R, t-— X — {"— dx 'Rz I— dx-—l

@ )

Fig. 6-9

acts on the lcft side of the element, and in passing through the distance dx the shearing force will in general
change slightly to an amount V + dV. The bending moment M acts on the left side of the element and it
changes to M + dM on the right side. Since dx is extremely small, the applied load may be taken as uniform
over the top of the beam and equal to w Ib/ft. The free-body diagram of this elcment thus appears as in
Fig. 6-9(b). For equilibrium of moments about Q. we have
IMy=M~(M+dM)+ Vdx+wdx(dx/2) =0 or  dM = Vdx+ w(dxy
Since the last term consists of the product of two differentials, it is negligiblc compared with the other
forms involving only onc differential. Hence
dM = Vdx or V= ﬁ
dx

Thus the shearing force is cqual to the rate of change of the bending moment with respect to x.
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This equation will prove to be of considerable value in drawing shearing force and bending moment
diagrams for the more complicated types of loading. For example, from this equation it is evident that if
the shearing force is positive at a certain section of the beam then the slope of the bending moment
diagram is also positive at that point. Also, it demonstrates that an abrupt change in shear. corresponding
to a concentrated force, is accompanied by an abrupt change in the slope of the bending moment
diagram.

Further, at those points where the shear is zcro, the slope of the bending moment diagram is zero.
At these points where the tangent to the moment diagram is horizontal, the moment may have a maximum
or minimum value. This follows from the usual calculus technique of obtaining maximum or minimum
values of a function by equating the first derivative of the function to zero. Thus in Fig. 6-10 if the
curves shown represent portions of a bending moment diagram then critical values may occur at points
A and B.

o __._ C
/'F\ A
Bending
Moment

-

“NAL

Fig. 6-10

To establish the direction of concavity at a point such as A or B, we may form the second derivative
of M with respect to x, that is, d* M/dx?. If the value of this second derivative is positive, then the moment
diagram is concave upward, as al A, and the moment assumes a minimum value. If the second derivative
is negative the moment diagram is concave downward, as at 8, and the moment assumes a maximum
value.

However, it is to be carefully noted that the calculus method of obtaining critical values by use of the
first derivative does not indicate possible maximum values at a cusp-like point in the moment diagram, if
one occurs, such as that shown at C. If such a point is present, the moment there must be determined
numerically and then compared to other values that are possibly critical.

Lastly. for vertical equilibrium of the element we have

_av

wdx+V-(V+dV)=0 or W= -—
dx

This relation will be of value in establishing shearing force diagrams.

For the cantilever beam subject to the uniformly distributed load of w N/m of length, as shown
below in Fig. 6-11(a). write equations for the shearing force and bending moment at any point
along the length of the bar. Also sketch the shearing force and bending moment diagrams.

It is not necessary to determine the reactions at the supporting wall. We shall choose the axis of the
beam as the x-axis of a coordinale system with origin O at the left end of the bar. To determine the shearing
force and bending moment at any section of the beam a distance x from the free end, we may replace the

p— = — w Nim \ "”"!"‘-‘;‘"‘l w Nim R
| ! 4 -
o L F — (4] ——
i ap 1 —— 1
(a) (b)

Fig. 6-11
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6.3.

portion of the distributed load to the left of this section by its resultant. As shown by the dashed vector
in Fig. 6-11(b), the resultant is a downward force of wx N acting midway between O and the section x. Note
that none of the load to the right of the section is included in calculating this resultant. Such a resultant
force tends to shear the portion of the bar to the left of the section downward with respect to the portion

to the right. By our sign convention this constitutes negative shear.
The shearing force at this section x is defined to be the sum of the forces 1o the left of the section.

In this case. the sum is wx N acting downward: hence
V=—-wxN

This equation indicates that the shear is zero at x = 0 and when x = L it is —wl. Since V is a first-degree
function of x, the shearing force plots as a straight line connecting these values at the ends of the beam.
It has the appearance shown in Fig. 6-12(a). The ordinate to this inchined line at any point represents the
shearing force at that same point.

o 0 ]
\J wL Nlﬂ
Shear I Bending Moment 2

(a) (b)

Fig. 6-12

The bending moment at this same section x is defined to be the sum of the moments of the forces 10
the left of this section about an axis through point A and perpendicular to the plane of the page. This sum
of the moments is given by the moment of the resultant, wx N about an axis through A; it is

X
= — e IE
wx( ) m

The minus sign is necessary because downward loads indicate negative bending moments. By this equation
the bending moment is zero at the left end of the bar and —wL?2 at the clamped end when x = L. The
variation of bending moment is parabolic along the bar and may be plotted as in Fig. 6-12(b). The ordinate
to this parabola at any point represents the bending moment at that same point.

It is to be noted that a downward uniform load as considered here leads to a bending moment diagram
that is concave downward. This could be established by taking the sccond derivative of M with respect to
x, the derivative in this particular case being —w. Since the second derivative is negative, the rules of
calculus tell us that the curve must be concave downward.

Consider a simply supported beam 10 ft long and subject to a uniformly distributed vertical load
of 120 Ib per ft of length, as shown in Fig. 6.13(a). Draw shearing force and bending moment
diagrams.

The total load on the beam is 1200 Ib, and from symmetry each of the end reactions is 600 Ib. We shall
now consider any cross section of the beam at a distance x from the left end. The shearing force at this

o : = mififfon
N S
600 Ib @ 600 1b 600 Ib - 600 1b

Fig. 6-13
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section is given by the algebraic sum of the forces to the left of this section and these forces consist of the
600-1b reaction and the distributed load of 1201b/ft extending over a length x ft. We may replace the
portion of the distributed load to the left of the section at x by its resultant, which is 120x Ib acting
downward as shown by the dashed vector in Fig. 6-13(b). None of the load to the right of x is included in
this resultant. The shearing forcc at x is then given by

V =600 - 120x Ib

Since there are no concentrated loads acting on the beam. this equation is valid at all points along its length.
Evidently the shearing force varies linearly from V = 6001b at x =0 to V =600 - 1200 = —-600 b at
x = 10 ft. The variation of shearing force along the length of the bar may then be represented by a straight
line connecting these two end-point values. The shear diagram is shown in Fig. 6-14(a). The shear is zero
at the center of the beam.

The bending moment at the section x is given by the algebraic sum of the moments of the 6(0-1b
reaction and the distributed load of 120x Ib about an axis through A perpendicular to the plane of the
paper. Remembering that upward forces give positive bending moments, we have

M = 600x — l2{lx(§) Ib- ft

p——z = B. —-————-——T
600 [b[ | Bending /\wllh ft
Shear F Moment (O
O b e = ‘v_J |
10

x = 10~ -]

(@) b

Fig. 6-14

Again, this cquation holds along the entire length of the beam. It is to be noted that since the load
is uniformly distributed the resultant indicated by the dashed vector acts at a distance x/2 from A, i.c.. at
the midpoint of the uniform load to the left of the section x where the bending moment is being calculated.
From the above equation it is evident that the bending moment is represented by a parabola along the
length of the beam. Since the bar is simply supported the moment is zero at cither end and, because of
the symmetry of loading. the bending moment must be a maximum at thc center of the beam where
x = 5ft. The bending moment at that point is

M, _< = 600(5) — 60(5)" = 1500 1b -1t

The parabolic variation of bending moment along the length of the bar may thus be represented by
the ordinatcs to the bending moment diagram shown in Fig. 6-14(b).

The beam AD in Fig. 6-15 is supported between knife edges at B and C and subject to the end
couples indicated. Draw the shearing force and bending moment diagrams.
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The resultant of the end loadings is a couple

M, M,
22
which must be maintained in equilibrium by another couple of that magnitude but oppositely directed. This

reactive couple arises from the vertical force reactions R at B and C. The moment of the couple
corresponding to these forces must be M,/2 for equilibrium, so we have

L M,
k375
_Ml
R_L

For the coordinate systcm shown, the shearing force at any point a distance x to the right of A is given
by the sum of all vertical forces to the left of x. Thus, for the three regions of the bcam we have

L

V=0 D<x<—
LM L_ _3L
L 47"
V=10 T":I":L

Analogously. the bending moment at the point x is given by the sum of the moments of all forces and
couples to the left of x, Thus, we need the three equations

M=-M, (l<x<%
M,( L) L 3L
=—-M+—1{x—— —<x<—
M M, 7 .x 2 2 x
M, L M, 3L
= +— == —-— —<x<
M M, 73 > 2 x<< L

(@) Shear

X
1
rJi__E _“‘l -—

(k) Bending Moment

Fig. 6-16
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6.5.  The simply supported beam shown in Fig. 6-17(a) carries a vertical load that increases uniformly
from zero at the left end to a maximum value of 600 Ib/ft of length at the right end. Draw the
shearing force and bending moment diagrams.

] 3600 Ib

800 1b/ft

e
f . «—
R, (a) (0)
T
800 Ib/ft
i cl .
(4]
l A J
1200 th 1= fm b
L z
(c)
Fig. 6-17

For the purpose of determining the reactions R, and R, the entire distributed load may be replaced
by its resultant which will act through the centroid of the triangular loading diagram. Since the load varies
from 0 at the left end to 600 Ib/ft at the right end, the average intensity is 300 Ib/ft acting over a length of
12 ft. Hence the total load is 3600 Ib applied 8 ft to the right of the left support. The free-body diagram
to be used in determining the reactions is shown in Fig. 6-17(b). Applying the equations of static
equilibrium to this bar, we find R, = 12001b and R, = 2400 1b.

However, this resultant cannot be used for the purpose of drawing shear and moment diagrams. We
must consider the distributed load and determine the shear and moment at a section a distance x from the
left end as shown in Fig. 6.17(c). At this section x the load intensity w may be found from the similar
triangles OAB and OCD as follows:

w _ 600

X
2 o w—(l—z)eombm

The average load intensity over the length x is }(x/12) 600 Ib/ft because the load is zero at the left end. The
total load acting over the length x is the average intensily of loading multiplied by the length. or
}1(x/12)600] x Ib. This acts through the centroid of the triangular region OAB shown., i.e., through a point
located a distance §x from O. The resultant of this portion of the distributed load is indicated by the dashed
vector in Fig. 6-17(c). No portion of the load to the right of the section x is included in this resultant
force.

The shearing force and bending moment at A are now readily found to be

1/ x
V=1200- E(Eﬁﬂﬂ)x— 1200 — 2542

_ 1/ x x\ 25
M = 1200x z(lzfm)"(:;)‘lm“ 3 X

These equations are true along the entire length of the beam. The shearing force thus plots as a
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parabola, having a valuc 12001b when x = 0 and —24001b when x = 12 ft. The bending moment is a
third-degree polynomial. It vanishes at the ends and assumes a maximum value wherc the shear is zero.
This is true because V' = dM/dx, and hence the point of zero shear must be the point where the tangent
to the moment diagram is horizontal. This point of zero shear may be found by setting V = (

0 = 1200 — 25x° or x=691

The bending moment at this point is found by substitution in the general cxpression given above:
M, _us = 1200(6.94) — 25(6.94)-‘ = 55201b-11

The plots of the shear and moment equations appear in Fig. 6-18.

6.94' ———|
T

Shear Bending Moment
(a) (b)

Fig. 6-18

6.6. The cantilever beam AC in Fig. 6-19 is loaded by the uniform load of 600 N/m over the length
BC together with the couple of magnitude 4800 N - m at the tip C. Determine the shearning force
and bending moment diagrams.

The reactions at A must consist of a vertical shearing foree together with a moment to prevent angular
rotation. To find thesc reactions, we writc the statics cquations

SF,= Ry~ (600N/m)(2m) = 0 (1)
YEM,=M,—-4800N-m— (1200N)-(3m) =0 )

y
1 600 N/m
A E i 'S x
| s B
y 4800 N-m

Fig. 6-19

Solving,
R,=1200N M, =8400N-m

For the coordinate system shown, the shearing force at any point a distance x to the right of A is given
by the sum of all forces to the left of x, Thus we must write the two equations

V =1200N 0<x<2m 3
V =1200N - 600{x - 2)N 2<x<d4m <)
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Likewise, the bending moment at this point x is given by the sum of the moments of all forces (and
couples) to the left of x about peint x. This is given by the two equations

M = —8400 N-m + 1200x 0<x<2m (5)

(x—2)N ]
2
Plots of Egs. (3) through (6) appear in Fig. 6-20(a) and 6-20(b), respectively. The nature of the concave

region of the bending moment in BC is determined by taking the sccond derivative of the bending moment
Eq. (6) in BC:

M=—8400N-m+IZtHIt—(ﬂllem)[(x—l)N (6)

a'M
dx’

= 600

Since this is negative for values of x in BC. the plot in BC of bending moment is concave downward. The
bending moment in AR is scen from Eq. (5) to be a linear function of x: hence the bending moment in
AB plots as a straight linc connecting the end couplc of —8400 N -m with the bending moment at B of
—6000 N -m as detcrmined from Eq. (6).

™

12006 N

. |
T A B C
(@) Shear
6000 N-m l 1451H}N-m

8400 N'm L — ’ T

(&) Bending Moment

Fig. 6-20

The beam AC is simply supported at A and C and subject to the uniformly distributed load of
300 N/m plus the couple of magnitude 2700 N -m as shown in Fig. 6-21. Write equations for
shearing force and bending moment and make plots of these equations.

It is necessary to first determinc the reactions from the equilibrium equations
+ 2 XM, =2700N m+ R(6 m) — (300 N/m) (6 m) (6 m) = O )
ZF,= Ro+ Re— (300 Nfm) (6m) =0 2)

1

300 N/m
L
L r 3
Al Fi) x
o Bl
2700 N'm
dm—{~—3m Im—=

Ry Rc

Fig. 6-21
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Solving,
R, =450N R =1350N
For the coordinate x as shown the shearing force a distance x from point A is described by the three
rclations
V = 450N 0<x<3m 3)
V = [450 — 300(x — 3)| N Im<y<6m 4)
V = [450 — 300(x — 3) + 1350] N 6m<x<9m (5)
Likewise the bending moment in cach of these three regions of the beam is described by
M= (450x)N-m 0<x<3m ©)
Mz[45[h—3(]()(,r—3)(%—3”?d»m Am<x<6m (7)
M= 450,\‘—300("_3)2+ISm(,n‘—ﬁ)]me 6m<x<9m &)

Plots of these equations appear in Fig. 6-22. In regions BC and CD it is necessary to determinc that the
sccond derivative of the bending moment from Eq, (7) and Eq. (8) is ncgative in cach of these regions,
and that hence in each case the curvature of the bending moment plot is concave downward.,

aSUNil_\mTN i

{c) Shear

1687.5 N-m
1350 N-m
| 5

t

2700 N'm

(b) Bending Momen)

Fig. 6-22

Singularity Functions

The techniques discussed in the preceding problems are adequate if the loadings are continuously
varying over the length of the beam. However. if concentrated forces or moments are present, a distinct
pair of shcaring force and bending moment equations must be written for each region between such
concentrated forces or moments. Although this presents no fundamental difficulties, it usually leads to
very cumbersome results. As we shall see in a later chapter, these results are particularly unwieldy to
work with in dealing with deflections of beams.

At least some compactness of representation may be achieved by introduction of so-called
singularity or half-range functions. Such functions were applied to beam analysis by Macauley in 1919
and this technique of analysis sometimes bears the name of Macauley’s method, although the functions
were actually used in the 19th century by A. Clebsch. Let us introduce, by definition, the pointed
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brackets {(x — a) and define this quantity to be zero if (x — a) <0, that is, x < g, and to be simply (x — a)
if (x —a) > 0. that is. x >a. That is, a half-range function is defined to have a value only when the
argument is positive. When the argument is positive, the pointed brackets behave just as ordinary
parentheses. The singularity function

flx) = &x —a@)"
obeys the integration law
S (x - ﬂ>"+|
f_,(y_“)ndy= i1 for n=0

The singularity function is very well suited for representation of shearing forces and bending
moments in beams subject to loadings of the type discussed in Problems 6.4 through 6.7. This is clear
since, say in Problem 6.4 for shearing force, the effect of a single concentrated load is not present
(explicitly) in the equation for V for points along the beam to the left of that force, but it immediately
appears in the equation for V when one considers values of x to the right of the point of application
of the force.

The use of singularity functions for the representations of shearing force and bending moment
makes it possible to describe each of these quantities by a single equation along the entire length of
the beam, no matter how complex the loading may be. Most important, the singularity function
approach leads to simple computer implementation.

6.8. Use singularity functions to write equations for the shearing force and bending moment at any
position in the simply supported beam shown in Fig. 6-23.

’_’__g lwoom
:

Rle

36 1R2

Fig. 6-23

From siatics the reactions are easily found to be
R, =30001b R; = 1000 1b
For the coordinate system shown, with origin at O, we may write
V = 3000{x)* — 4000{x — 1)°Ib
which indicates that V = 30001b if x <1 ft and V = 3000 — 4000 = —10001b if x > 1 ft.
Similarly.
M = 3000{x)' — 4000{x — 1)* Ib - ft (2)

which tells us that M = 3000x Ib- fuif x < I ft and M = 3000x — 4000{x — 1} Ib-ft if x> 1{t.

The relations (1) and (2) hold for all values of x provided we remember the definition of singularity
functions. Use of these equations leads 10 the shearing force and bending moment diagrams shown in
Fig. 6-24.
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6.9. Consider a cantilever beam loaded only by the couple of 2001b-ft applied as shown in Fig.
6-25(a). Using singularity functions, write equations for the shearing force and bending moment
at any position in the beam and plot the shear and moment diagrams.

A B\ /4 B\
oC 1 — o 4 £
. \i/ 200 Ib-ft I \*, w0 A Iu,
|—_ 3 - 'y ' ¢ ' ¢ Vi
(a) (b)
Fig. 6-25
A free-body diagram is shown in Fig. 6-25(b),
where V, and M, denote the reactions of the support- / x
ing wall. From statics these are found to be V, =0, - | y
M, = 2001b-ft. N 200101t \
We introduce the coordinate system shown in
which case the shearing force everywhere is (a)
V=0 (1)
In writing the expression for bending moment, Shear
working from left to right it is clear that there is no b
bending moment to the left of point A. At A the applied
load of 2001b-ft tends to bend the portion AB into a
curvature that is concave downward, which according to 200101
our sign convention is negative bending. Thus the Bending Moment
bending moment anywhere in the beam is )
(c
M = —200(x - 6)° Ib-ft 2)
Fig. 6-26

Plots of (1) and (2) appear in Fig. 6-26.
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6.10. Consider a cantilever beam loaded by a concentrated force at the free end together with a

uniform load distributed over the right half of the beam [see Fig. 6-27(a)]. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam
and plot the shear and moment diagrams.

P ‘ P

w/Unit length R % rUnit lenglh

M,
B o[ x
| i B
- L "‘
r 2 2 v,
{(a) b

Fig. 6-27

A free-body diagram is shown in Fig. 6-27(b). From statics the wall reactions are found to be

although for the case of a cantilever it is not necessary to find thesc prior 10 writing shearing force and

bending moment equations.
With the coordinate system shown, with origin at O, the effect of the concentrated force P as well as

the distributed load is to produce negative shear according to our shearing force sign convention. Thus we
may write

V= —P(x)"-w(x-gy (7

which indicates shearing force at any position x if one remembers the definition of the bracketed term.
Likewise. the bending moment at any position x is

M = —P(x) —%(x—%)z 2)

The loaded beam together with plots of the shear and moment equations are shown in Fig. 6-28.
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Fig. 6-28
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6.11. In Fig. 6-29(a) a simply supported beam is loaded by the couple of 1 kN-m. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam
and plot the shear and moment diagrams.

" §1\1'ij )

Al B e

: - s
||:N»€” Z:‘l;""‘ f 1kN
.lltN

Shear

(b)
| kN-mTI\
Nl!kﬂ-m

Bending Moment
(3]

Fig. 6-29

The beam is loaded by one couple, and the only possible manner in which cquilibrium may be crcated
is for the reactions R at the supports A and C to constitute another couple. Thus, these reactions appear
as in Fig. 6-29(b). For equilibrium,

IMs=3R-3=0 from which R =1kN
Thus the two forces R shown constitute the reactions nccessary for equilibrium.

Inspection of the problem reveals that between A and B the shearing force is negative (according o
our sign convention shown in Fig. 6-7) and also the bending moment is negative from the same figure. Just
as soon as we consider points on the beam to the right of B, that couple of 3kN m tends to produce

bending which is concave upward, and thus positive from Fig. 6-7. Thercforc the expressions for V and
M are

= -’ kN
M=—-(1)(x)+3x—-2" KkN-m

Shear and moment diagrams are plotted in Figs. 6-29(b) and 6-29(c). From these it is evident that when
a couple acts on a bar the bending moment diagram exhibits an abrupt jump or discontinuity at the point
where the couple is applied.

6.12. The overhanging beam AE is subject to uniform normal loadings in the regions AB and DE,
together with a couple acting at the midpoint C as shown in Fig. 6-30. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam
and plot the shear and moment diagram.

To first determine the reactions, we have from statics
+ ) Mg = (3001b/t) (1 f1) (0.5 ft) + 150 1b- ft + Rp(3 f1) — (300 1b/t) (1 ft) (3.5ft) = 0 (73]
SF,=-3001b+Rz+Rp—300Ib=0 (2)
Solving,
Ry, =2501b and Rg=3501b (3)
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150 1b-fi

Fig. 6-30

For the coordinate system shown and remembering the definition of the singularity function. we

may write

® ® ® ®
= =300()" + 300¢x ~ 1)' + 350(x — 1) + 250(x — 4)' — 30(Kx — 4)' (4)
l ® l ® ®
M= —3(]0(1:}'% + 300(x — 1)' @ + 350¢ — 1) — 150K — 2.5)"

© @

T
+250(x—4)'-300(x—4}'9~—;-)— %)

Equations (¢) and (5) each contain quantities designated by the numerals circled above the terms.

Terms may be interpreted as follows for shearing force V:

I

118

Iv.

VL

The shearing force V acting in region OB of Fig. 6-30 is. for any value of the coordinate x in AB.
simply the sum of all applied downward normal forces to the left of x. i.e.. 300x. which is term (7).
Such forces tend to produce the type of displacement shown in Fig. 6-7(d). hence we must prefix the
load 30(¢x} by a negative sign.

Continuing, the first term (1) in Eq. (4) holds for all values of x ranging from x = 010 x = 5 ft. That
is. the singularity functions are defined as being zero if the guantity in brackets () is negative, but
there is no way to specify an upper bound on the coordinate x shown in term (7). Consequently, we
must annul the downward 300 Ib/ft load to the right of point B and this may be accomplished by
adding an upward (positive) uniform load to the right of B, i.c., for all values of x > 1 ft, which is term
(@) . But this upward uniform load has now annulled the actual downward uniform load in region DE.
We will return to this shortly.

Immediately to the right of B the upward reaction Ry has a shear effect of 350 1b upward so that it
tends to produce displacement such as shown in Fig. 6-7(c), which we 1erm positive. hence the positive
sign in term (3).

The applicd couple of 1501b-ft has no force effect in any direction. hence does not appear in
Eq. (4).

Immediately to the right of D' the upward reaction R, has a shear effect of 250 Ib upward so that it
tends to produce displacement such as shown in Fig. 6-7(c), which we term positive. hence the positive
sign in term (3).

As mentioned in (1I). the true downward uniform load in DE has temporarily been annulled. hence
we must introduce the term (5) to return it and make the external loading correct.

Equation (4) in terms of singularity functions now correctly specifies the vertical shear at all points

on the beam from O to E. A plot of this is given below in Fig. 6-31(a).

In a nearly comparable manner, the bending moment from O to E may be written, except that now

account must be taken of the applied moment of 150 Ib- ft at C. The moment equation is given in (5) and
a plot of it from & to E appears in Fig. 6-31(b).
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1
250 Ib
Shear 501b + 77 s /*7%

(a)

Bending <z
Moment |

150 Ib-R 1150 Ib-ft
()]

Fig. 6-31

6.13. The simply supported beam AD is subject to a uniform load over the segment BC together with
a concentrated force applied at C as shown in Fig. 6-32. Using singularity functions. write

equations for the shearing force and bending moment at any point in the beam and plot shear
and moment diagrams.

The vertical reactions at A and D mus! first be determined from statics:

+ D EMy=45Ry— 12kN(3.5m) — (20kN)(35m) =0

R;, = 24.89kN
SF, =R, +2489KN—12kN - 20kN = 0
R.=7.11kN
12 kN
1 10 kN/m
. S T N f';
- B c ks
f 25m | 1m ! im
Rjr | 1 Rh
Fig. 6-32
. 32m
l |71 kN

Shear {///%" L 2] 28N

(@) \14.39 KN

.

20.37 kN-m

Bending \
Moment |

LA
(b)
17.78 kN-m 19.89 kN-m

Y

Fig. 6-33
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Introducing the coordinate system shown in Fig. 6-30 we can proceed as in Problem 6.12 and write
V=711-10{x - 2.5)" — 12{(x — 3.5)"

(x —2.5)"
2

M= T71Kx)' = 10{x = 2.5)! - 12{x = 3.5)

From these equations the shear and moment diagrams may bc plotted as shown in Figs. 6-33(a)
and (b).

Computer Implementation

6.14. Consider a straight beam simply supported at any two points. Loading is by a system of
concentrated forces, couples, and distributed loads that may (@) be uniform along a portion of
the beam length. or (b) increasc (or decrease) linearly. Write a computer program in BASIC
to determine shearing force and bending moment at significant locations in the beam.

N — e

'Ph
M, Wy we ‘ 11_ T_wfﬂ

N EEEER] | |

1 -‘l. L4 4 s & TiAB I )
F4 “'

I-'—f-' 12 L] Ld L-; -1-11’- ---—L-,—l-

P, Py

Fig. 6-34

Let us represent the loadings by the terminology of Fig. 6-34. It is first necessary to employ equations
of statics to determine the reactions at points A and B. Next, we introduce numbers 1,2, ... to designate
points of application of concentrated forces (including reactions), moments, and left and right end
coordinates of distributed loads. Positive directions of all such loads are indicated in Fig. 6-34. The applied
moment M5 is taken positive in the direction indicated because its vector representation (shown by the
double-headed vector) is parallel to the z-axis and in the positive direction of that axis.

Use of the method of singularity functions leads to the BASIC program listed below. If more detailed
information is needed concerning values of shearing forces and bending moment between number points,
one may mercly introduce additional points wherever desired.

00100 REM THIS PROGRAM IS DEVELOPED TO EVALUATE THE SHEAR FORCES
00110 REM AND BENDING MOMENTS.

00120 DIM $(20), P(21), E(21), D(20,2), T(21,2), B(21,2)
00130 REM

00140 REM S IS SEGMENT LENGTH

00150 REM P IS POINT LOAD

00160 REM E IS EXTERNAL MOMENT

00170 REM D IS DISTRIBUTED LOAD

00180 REM T IS SHEAR FORCE

00190 REM B IS BENDING MOMENT

00200 REM

00210 PRINT " PROGRAM FOR SHEAR FORCES AND BENDING MOMENTS "
00220 PRINT S "

00230 PRINT
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00240 PRINT " PLEASE ENTER THE NUMBER OF SEGMENTS: "

00245 INPUT N

00250 PRINT

00260 PRINT " PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TO RIGHT.
00270 FOR I=1 TO N

00280 INPUT S({I)

00290 NEXT I

00300 PRINT

00310 PRINT " PLEASE ENTER THE NUMBER OF POINT LOADS: *

00315 INPUT N1

00320 PRINT

00330 FOR I=1 TO Nl

00340 PRINT " LOCATIONS AND LOADS: "

00345 INPUT I1, P(I1)

00350 NEXT I

00360 PRINT

00370 PRINT " ENTER THE NUMBER OF EXTERNAL MOMENTS: "

00375 INPUT N2

00380 PRINT

00390 FOR I=1 TO N2

00400 PRINT " ENTER THE LOCRTIONS AND MOMENTS: "

00405 INPUT L, E(L)

00410 NEXT I

00420 PRINT

00430 PRINT " ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS: "
00435 INFUT N3

00440 PRINT

00450 FOR I=1 TO N3

00460 PRINT " ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT "
00465 INPUT N4, D(N4,1), D(N4,2)

00470 NEXT I

00480 PRINT

00490 LET T(1,2)=P(1)

00500 LET B(l,2)=-E(1)

00510 FCR I=1 TO N

00520 LET T(I+1,1)=T(I,2)+(D(I,1)+D(I,2))*S(I)/2

00530 LET T({I+1,2)=T(I+1,1)+P(I+1)

00540 LET T2=((2*D{I,1)+D(I,2))*S(I)"2)/6

00550 LET B{I+1,1)=B(I,2)+T(I,2)*S(I1)+T2

00560 LET B(I+1,2)=B{I+1,1)-E(I+1)

00570 NEXT I

00580 PRINT

00590 PRINT "LOCATION","SHEARLEFT","SHEARRIGHT","MOMENTLEFT", "MOMENTRIGHT"
00600 FOR I=1 TO N+1

00610 PRINT I,T(I,1),T(I,2),B(I,1),B(I,2)

00620 NEXT I

00630 END

“Adapted from a program in Basic Problems for Applied Mechanics: Statics, William Weaver. Jr.. McGraw-Hill. New
York. 1972

6.15. Use the BASIC program of Problem 6.14 to determine significant shearing forces and bending

moments in the simply supported beam shown in Fig. 6-35.

BOO by 10,000 Tb-fi

IERREERENERE R

} 4
A & 3 /) Bt
RA'—-— - 126t — ——— .11'1—-1!135

Fig. 6-35
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It is first necessary to determine the reactions. From statics,
+1EIM, = —(96001b) (6 f1) — 10.0001b- ft + R(17f1) =0
ZF. =R4+Rp—96001b=0
Solving,
R, = 56241b R, =39761b

Input to the program is

Number of segments: 3
Length of each segment: 12,2,3
Number of point loads (the reactions): 2
Location and magnitude of point loads: 1, 5624

4, 3976
Number of external moments: 1
Location and magnitude of moments: 3, -10,000
Number of segments loaded by distributed load: 1
Segment number, load left, load right: 1, -800, -800

The computer output is shown below.

PLEASE ENTER THE NUMBER OF SEGMENTS:
23

PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TO RIGHT.
12

2

3

LI BELS BELN |

PLEASE ENTER THE NUMBER OF POINT LOADS:
? 2

LOCATIONS AND LOADS:
? 1,5624
LOCATIONS AND LOADS:
? 4,3976

ENTER THE NUMBER OF EXTERNAL MOMENTS:
21

ENTER THE LOCATIONS AND MOMENTS:
? 3,-10000

ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS:
21

ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 1,-800,-800

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
1 0 5624 0 0
2 -3976 -3976 9888 9888
3 -3976 -3976 1936 11936
4 -3976 0 8 8

A simply supported beam is subject to a uniform load of 2 kN/m over the region shown in Fig.
6-36. Use the BASIC program of Problem 6.14 to determine shearing forces and bending
moments at significant points, including the midpoint of the length of the beam.

First, we must determine the end reactions from usc of the statics equations. These are readily found
to be 2kN at each end.
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2 kN'm
1] N
‘5 2 3 4 s ;
2kNLIm-le-—-—Im--+im«—'2kN
Fig. 6-36

For use of the program, it is necessary to number significant points along the length. These are usually
points of application of applied loads. However. here we are asked for the shear and moment at the
midpoint of the distributed load. Thus, we introduce an additional numbered point there with the result
indicated in Fig. 6-36.

The input and output of the computer program are shown below.

PLEASE ENTER THE NUMBER OF SEGMENTS:
2 4

PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TQO RIGHT.
1

i B3 ) g

ot et fd

PLEASE ENTER THE NUMBER OF POINT LOADS:
2

)

LOCATIONS AND LOADS:
? 1,2000
LOCATIONS AND LOADS:
? 5,2000

ENTER THE NUMBER OF EXTERNAL MOMENTS:
20

ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS:
? 2

ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 2,-2000,-2000
ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 3,-2000,-2000

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
1 0 2000 0 0
2 2000 2000 2000 2000
3 0 0 3000 3000
4 -2000 -2000 2000 2000
5 -2000 0 0 0
SRU 0.129 UNTS.

RUN COMPLETE.
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Supplementary Problems

For the cantilever beams loaded as shown in Figs. 6-37 and 6-38, wrile equations for the shearing force and
bending moment at any point along the length of the beam. Also. draw the shearing force and bending moment

diagrams.

6.17.
LkN 2kN
Flm 1 Im
oL__ } ——=2z
Ans.
1kN
Shear V=—-1kN for0<x<l1lm
= —3kN forl<x<2m
Z'N_L_ M= —xKkN-m for0<x<1lm
=—x—-2(x—-1)kN:'m forl<x<2m
Bending
Moment '
1kN-m j-N-m
Fig. 6-37
6.18.
TAKN 1.2kN
3 2] l v
. x
3 | llSkN [
f' Tm T 8at T Lar i
Ans.
Shear 1 V=21kN for0<x<2
21KN — _ - -
' I | V// A jl!kl\l V=21-24=—03kN for2<x<3
i oI V=21-24+15=12 for3<x<4
N M = 21xkN-m for 0 <x<2
M=2I1x - 24(x—2) for2<x<3
Bending M=21x—-24x—-2)+1.5(x—3) for3<x<4
Muoment .
: I].HRN‘m
1
51 kN-m

Fig. 6-38
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For the heams of Problems 6.19 through 6.25 simply supported at the ends and loaded as shown. write
cquations for the shearing foree and bending moment at any point along the length of the beam. Also, draw the
shearing force and bending moment diagrams.

6.19.
o —— & ——-1—-— v
200 Ib/1t
100 Ib/ft
Pabbiidd z
[#] ———
Ans.
TI.\
soo il . V = 500 — 100x Ib for 0<x <4
!— 45 !\mlh V=100=200(x —4) Ib for 4 <v <8t
Shear 4 M = 500x — 50¢ Ib- ft for 0<x <4t
M = 500x — 400(x — 2) — 100{(x — 4)Y' 1b-ft for 4 <x <&t
~ |
/\25 o
[
Bending Moment
Fig. 6-39
6.20.
15 kN/m
z
. 1,
1 | ——
L Jors TR 1 | | PR— TP— m—-'
O 5m
Ans.

T+
NT. \ V =20kN for 0<x<0.5m

Sh

™ |.,_,333m__{\, I:im V=20-15(x—-0.5) for0.5<x<25m

V = —=10kN for 25<xy<45m

23 3kN m M = 20xkN-m for 0<x<0.5m
10 kN-m 20 kN-m "
XK M=20x-75x-05"kN-m for0.5<x<25m
Bending
Moment | M =10z kN-m for0<z<2m

Fig. 6-40
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6.22.

o

An

T

5620 Ib

Shear _L

SHEARING FORCE AND BENDING MOMENT

—~ 20kNm
of N N W W M
Im I m Im 1m

1.375 kN-m

1 kN-m
Fig. 6-41
800 Ib/ft 10,000 1b-fiy
z
- z
Y —_—

L—*dw———lei: '

™~

-L—?.oa'-—-l . IF;

11,940 lb-1t
n
19,700 1b-ft
4

Bending Moment

Fig. 6-42

V =1kN
V=1-2(x—1)kN

V =3kN
M=I1xkN-m

x—1
2

X

M=lx—(x—l}(

Mﬂlx—Z(x—l}(

1)+4
)+4

]

*
—

N ‘

M= Lt—?(x—l)(

V = 5620 — 800x [b
V= —39801b

M = 5620x — 400x* Ib- ft

M = 5620x — 9600(x — 6) Ib- ft
M = 3980z

[CHAP 6

for0<x<1m
for1<x<3
for 3<x<4
for0<x<lm

forl<x<?2

for2<x<3

for3<x<4

for 0<x <121t

for 12 <x <17ft
for0<x<12ft

for 12<x<14ft
for0<z<3fi
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6.23.

TOkN
20 k N/m

o[ S

ok
L—Im 2im _!

Ans.

eo:r!: V = 60 kN forD<x<lm

Shear _{ V =60—70—20(x — 1) kN for 1 <x<3m

G\ls{:m M=60xkN-m for0<x<Im
1OKN -+ for [<x<3m

M=60x—70(x—3)— 10(x —1)’kN-m

Bending Moment

Fig. 6-43
6.24.
a000-6 3500 1b
I.‘Ur l ] ———
s ;
- zﬂ'_"L T TiaA - aa -
Ans.
-

Z//f/ T:}_l;Slb

7 4

6625 1h-fl
_Y .
Fig. 6-44
V=0 for0<x<2ft
Vv =18751Ib for2<x<16ft
V=-331251b for l6<x<18M1
M = 4000 b -t forO<x<2ft
M = 4000 + 187.5(x - 2) Ib-fi for 2<x<16ft

M = 4000 + 187.5(x — 2) — 3500(x — 16) ft  for 16 < x < 181t



150 SHEARING FORCE AND BENDING MOMENT [CHAP. 6

6.25.
1000 b/t
- -z
I 1 .
o —_—
: s
! o]
Ans. v=ﬁn)u—%:i(1mm)1b for 0<x< 12t

1—-\

6000 1b -t

Shear 4 17 V = —6000 + — (1000) Ib for 0< z< 12f1
\|le 24

M = 6000x —;;(Iikll)lb-Il for 0< x< 121t
48,000 b 1 2
_L; Ny 3

Bending Moment M=6000:—;—2Hf)ﬂf})lb-[t for 0< =< 12 fi

Fig. 6-45

For Problems 6.26 through 6.29 use singularity functions to write the equations for shearing force and bending
moment at any point in the beam. Plot the corresponding diagrams.

6.26.

10 kN SkN ISkN
I m

e
A

|| ———i
Ans.
T TKN
I7kN | 2kN V(x) = 17¢x)" - 10{x — 1)° = 5 - 2)"
- T 1 U — 15(x — 3)" kN
13kN
i 3
Shear M(x) = 17¢x)" = 10(x — 1) = 5(x — 2)

— 15(x — 3y kN-m

28 KN-m 26 kN m

} m'7/——-\
[

Bending Moment

Fig. 6-46
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6.27.
2 kN/m
t1s { x
ol | ——
WAV ROS
btmeee 2w m -

2kt I - V(x) = 200" = 2¢e — Y + 2(x — 3 + 200 — 9H"KN
- 1—' M(x) = 200" — 1x — 1)° + 1{x — 3> + 2(x — 4)' kKN-m
M. J2WN

FJkN-m
2kN-m ’2 kN-m
Bending

Moment
Fig. 6-47
6.28.
T
200 Ib/ft
0 4 =z
l-—- 10 10’ —-L— 10" e
Ans.

Vix) = —334(x)" — S(x — 10)° + 2334{x — 20)"

T 5
n:m 1600 |:>|\ M(x) = ~334(x)" - $(x -

Shear Lo J Jse

l

Bending Moment

Fig. 6-48

10Y" + 2334(x — 20)’

151
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6.29,
1000 Njm
A B c
| Im ! im
Ans. (a)
I V = —166.7() + 750(x — 1)°
583N M = —55.6(x)" + 750(x — 1)

L =

167 N :‘_\J:N_—N E]m
|

I

(B) Shear
A _—-i
I 3 |0‘N' m
JS.QET—‘U o

{c) Bending Momeni
Fig. 6-49

6.30. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-50. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant
points along the length of the beam. Draw approximate representations of these results.

30 b/t
400 b f1
! / 3 4 x
oL 1 |
A \F e
I——zo' 20 !~ 10—
Fig. 6-50

Ans.

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
2 -47.5 -47.5 -950 -550
3 -47.5 300 -1500 -1500
4 0 0 0 0
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4751b mm|q-\\\\
i —_—

Shear [
aﬂ"di"f $50 1b f1
T !
930 Ilb 4 1500 b fr
4

Fig, 6-51
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6.31. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-52. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant

points along the length of the beam.

2250 N-m
® kN;m

C FENEREEERE!
i é;ém

S R

Fig, 6-52
Ans.
LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT
1 0 0 0
2 -8000 11125 -6250

3 -4875 0 0

MOMENTRIGHT
-2250
~-6250

0



Chapter 7

Centroids, Moments of Inertia, and Products of
Inertia of Plane Areas

FIRST MOMENT OF AN ELEMENT OF AREA

The first moment of an element of area about any axis in the plane of the area is given by the
product of the area of the element and the perpendicular distance between the element and the axis.
For example. in Fig. 7-1 the first moment dQ, of the element da about the x-axis is given by

dQ. = yda
About the y-axis the first moment is
dQ, = xda

For applications, see Problems 7.2 and 7.12.

-~ % — i
a1

.

Figo 7"—

FIRST MOMENT OF A FINITE AREA

The first moment of a finite area about any axis in the plane of the area is given by the summation
of the first moments about that same axis of all the elements of area contained in the finite area. This
is frequently evaluated by means of an integral. If the first moment of the finite area is denoted by
Q.. then

0.= f do.

For applications, see Problems 7.1 and 7.3.

CENTROID OF AN AREA
The centroid of an area is defined by the equations

xda vda

A A

=
H

i
IS

154
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where A denotes the area. For a plane area composed of N subareas A, each of whose centroidal
coordinates X; and ¥, are known, the integral is replaced by a summation
N

> %A,
L (7.1
; i

> i

=t (7.2)

N

S

=
I

e
I

For applications see Problems 7.2, 7.3, and 7.12.
The centroid of an area is the point at which the area might be considered to be concentrated and

still leave unchanged the first moment of the area about any axis. For example. a thin metal plate will
balance in a horizontal plane if it is supported at a point directly under its center of gravity.

The centroids of a few areas are obvious. In a symmetrical figure such as a circle or square, the
centroid coincides with the geometric center of the figure.

It is common practice to denote a centroid distance by a bar over the coordinate distance. Thus
X indicates the x-coordinate of the centroid.

SECOND MOMENT, OR MOMENT OF INERTIA, OF AN ELEMENT OF AREA

The second moment, or moment of inertia, of an element of area about any axisin the plane of the area
is given by the product of the area of the element and the square of the perpendicular distance between
the element and the axis. In Fig. 7-1. the moment of inertia d/, of the element about the x-axis is

dl, = y’da
About the y-axis the moment of inertia is
dl, = x*da

SECOND MOMENT, OR MOMENT OF INERTIA, OF A FINITE AREA
The second moment, or moment of inertia, of a finite area about any axis in the plane of the area
is given by the summation of the moments of inertia about that same axis of all of the elements of area

contained in the finite area. This, too, is frequently found by means of an integral. If the moment of
inertia of the finite area about the x-axis is denoted by [, then we have

I = I dl, = I yida (7.3)

I = I dl, = I x’da (7.4)

For a plane area composed of N subareas A, each of whose moment of inertia is known about the x-
and y-axes, the integral is replaced by a summation

L=>), L= (L)
i=1 i=1

For applications, see Problems 7.4, 7.6, 7.7, 7.8, 7.9, and 7.10.
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UNITS

The units of moment of inertia are the fourth power of a length, in® or m®.

PARALLEL-AXIS THEOREM FOR MOMENT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for moment of inertia of a finite area states that the moment of inertia
of an area about any axis is equal to the moment of inertia about a parallel axis through the centroid
of the area plus the product of the area and the square of the perpendicular distance between the two
axes. For the area shown in Fig. 7-2, the axes x; and y pass through the centroid of the plane area.
The x- and y-axes are parallel axes located at distances x, and y, from the centroidal axes. Let A denote
the area of the figure, I, and I, the moments of inertia about the axes through the centroid, and I,
and I, the moments of inertia about the x- and y-axes. Then we have

I, = I+ A()? (7.5)
I, =L+ A(x,)? (7.6)
This relation is derived in Problem 7.5. For applications, see Problems 7.6, 7.8, 7.11, and 7.12.

LY

——

ﬁg- 7"2

RADIUS OF GYRATION

If the moment of inertia of an area A about the x-axis is denoted by 7,, then the radius of gyration
r, is defined by

i
= = 7.7
n=Jz (7.7)
Similarly, the radius of gyration with respect to the y-axis is given by
1,
r, = N A (7.8)

Since [ is in units of length to the fourth power, and A is in units of length to the second power,
then the radius of gyration has the units of length, say in or m. It is frequently useful for comparative
purposes but has no physical significance. See Problems 7.10 and 7.11.
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PRODUCT OF INERTIA OF AN ELEMENT OF AREA

The product of inertia of an element of area with respect to the x- and y-axes in the plane of the
area is given by

dl,, = xyda

where x and y are coordinates of the elemental area as shown in Fig. 7-1.

PRODUCT OF INERTIA OF A FINITE AREA

The product of inertia of a finite area with respect to the x- and y-axes in the plane of the area is
given by the summation of the products of inertia about those same axes of all elements of area
contained within the finite area. Thus

I, = j xy da (7.9)

From this, it is evident that /., may be positive, negative, or zero. For a plane area composed of N
subareas A, each of whose product of inertia is known with respect to specified x- and y-axes, the
integral is replaced by the summation

Ly = (L), (7.10)
i=1

For applications see Problems 7.13 and 7.15.

PARALLEL-AXIS THEOREM FOR PRODUCT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for product of inertia of a finite area states that the product of inertia
of an area with respect to the x- and y-axes is equal to the product of inertia about a set of parallel
axes passing through the centroid of the area plus the product of the area and the two perpendicular
distances from the centroid to the x- and y-axes. For the area shown in Fig. 7.2, the axes x; and y pass
through the centroid of the plane area. The x- and y-axes are parallel axes located at distances x; and
y) from the centroidal axes. Let A represent the area of the figure and I, , . be the product of inertia
about the axes through the centroid. Then we have

IX_U = pr,y(,-'*'Axl)’l (7'If)
This relation is derived in Problem 7.14. For applications see Problems 7.15 and 7.16.

PRINCIPAL MOMENTS OF INERTIA
At any point in the plane of an area there exist two perpendicular axes about which the moments

of inertia of the area are maximum and minimum for that point. These maximum and minimum values
of moment of inertia are termed principal moments of inertia and are given by

—\a
(L oae = (%) + J (%) + (L, (7.12)

(fx.)min = (!I ; fy) - ‘/(%) + (fx_v)z (7.13)

These expressions are derived in Problem 7.17. For application, see Problem 7.18.




158 CENTROIDS, MOMENTS OF INERTIA, PRODUCTS OF INERTIA [CHAP. 7

PRINCIPAL AXES

The pair of perpendicular axes through a selected point about which the moments of inertia
of a plane area are maximum and minimum are termed principal axes. For application, see
Problem 7.16.

The product of inertia vanishes if the axes are principal axes. Also, from the integral defining
product of inertia of a finite area, it is evident that if either the x-axis, or the y-axis, or both, are axes
of symmetry, the product of inertia vanishes. Thus, axes of symmetry are principal axes.

Type of section Arca Location of centroid

—r-lbl-.—

% Geomelri¢
Rectangle 1 bh .
(2)
Triangle _T
d 1 h
¥ _l 2 W @
by e
®)
e T Geometnic
come
T_ R’ or EDE center

Semicircle
(d)
Quartrant of circle
2
G 7R - 4R
1 |-¢—R—>|
w | e

e X ] "!
Sector of circle
o

Fig. 7-3
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INFORMATION FROM STATICS

Most texts on statics develop the properties of plane cross-sectional areas shown in Fig. 7-3 that
will be needed in the present chapter. Those areas include (a) the rectangle, (b) the triangle, (¢) the
circle, (d) the semicircle, (e) the quadrant of a circle, and (e) the sector of a circle.

7.1.

and

Solved Problems

The shaded area shown in Fig. 7-4 is bounded by the curves

¥ =%
y=x

Determine the y-coordinate of the centroid of this area which ends at (1.1).
We select an element that is horizontal (thus all points in this element have the same “y") and

=

-".

(0.1)

i
T S20TaTaaTe

Fig. 7-4

extending from curve y, to y; as shown in Fig. 7-4. The height of the element is dy. From the definition

of the location of the centroid,

we can write

in which case we have

y=

Iyda

Y=72

da = (x; — x,)dy

I (2 = x0) () (dy)

1
f (x2—x,)dy
(1

I
f O ~ ) () ()

, = % = 0.229
J' 0" =) dy
0
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Although the integrations involved in this problem are simple, for more complex problems one should
resort to computers. A number of symbolic operations are available on proprietary software that permit
easy and rapid treatments of such computations.

7.2. A circular cross section has a sector having a central angle 26 removed as shown in Fig. 7-5.
Locate the y-coordinate of the centroid of the shaded area.

#=0

s

R

Fig. 7-5 Fig. 7-6

From the summary at the beginning of this chapter, we have for a sector of central angle 26 the area
and centroid given by 6R” and 2Rsin 6/38, respectively (see Fig. 7-6). The area of the entire circle having
its centroid at its geometric center is also given in that summary.

By definition the y-coordinate of the centroid of the shaded area in Fig. 7-4 is given by

S yda o Zyda

YT A r A

Here we consider the shaded area to be composed of the three components consisting of the lower
semicircle (I), the upper semicircle (Z), and the sector that has been removed (3). Thus the net shaded area

is represented as shown in Fig. 7-7.
g v

Fig. 7-7

Using these components in the finite summation (7.1), we have
© &) ®

T 4R) T ,(4R) Z(ZR , )
— —— |+ =R = - —_—
ZR( Iw) 2 3 oR BGsmﬂ

7R? — 6R?

y=

_ £(Rsin 6)
T (76
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7.3.

74.

A thin sheet of metal 600 mm by 1000 mm has its two upper corners folded over along the
inclined lines AC and DF as shown in Fig. 7-8. In the regions bounded by the dotted lines, the

metal thus becomes doubly thick. Determine the y-coordinate of the centroid of the folded
sheet.

t
250 mm
4
1000 mm
x
I0Cmm 30 mm
Fig. 7-8
By definition, the y-coordinate of the centroid is
- d Zy, A
y= ‘[':4 2 o —: :

where the numerator in each expression represents the first moment of the area about the x-axis. In the
numerical evaluation, the triangles ABC and DEF have been removed but replaced by triangles ACG and
DFH accounting for the double thickness. Thus we have

HNBCA NAGC
- (600) (1000) (500) — 2|r% (250) (250) [1000 — %—Dﬁ —+ 2;;(250) (250) [750 + 2%];
¥ (600) (1000)

= 491.3 mm

Determine the moment of inertia of a rectangle about an axis through the centroid and parallel
to the base.

v
-— b —1
-
g SN
T
h
2
|
Fig. 7-9

Let us introduce the coordinate system shown in Fig. 7-9. The moment of inertia I, about the x-axis
passing through the centroid is given by 1, = f y? da. For convenience it is logical to select an element

such that y is constant for all points in the element. The shaded area shown has this characteristic.
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hal y3 kil l s
I, = hdy = bl 2| = bk
f v [3I 2

This quantity has the dimension of a length to the fourth power, perhaps in* or m®.

Derive the parallel-axis theorem for moments of inertia of a plane area.

Ve
‘; —-ra:'
1= da ¥’ Zg
G t T
"
[
Fig. 7-10

Let us consider the plane area A shown in Fig. 7-10. The axes x; and y; pass through its centroid.,
whose location is presumed to be known. The axes x and y arc located at known distances v, and x,.
respectively, from the axes through the centroid.

For the element of arca da the moment of inertia about the x-axis is given by

dl, = (v, + v Ydua

For the entire area A the moment of inertia about the x-axis is
I = Idlt = I(_‘lﬁ +yv'Yda = f{}’.}’da+ any‘ da +J’(y'}:da

The first integral on the right is cqual to v} f da = v} A because y, is a constant. The second integral on
the right is equal to 2y, | y'da = 2y,(0) = 0 because the axis from which y' is measured passes through

the centroid of the area. The third integral on the right is equal to /.. i.c.. the moment of inertia of the
arca about the horizontal axis through the centroid, Thus

!l = !I.a, + A{_V|)2

A similar consideration in the other direction would show that
= Ll,+ Alx )y

This is the parallcl-axis thcorem for plane areas. 1t is to be noted that one of the axes involved in each
equation must pass through the centroid of the area. In words. this may be stated as follows: The moment
of inertia of an area with reference to an axis not through the centroid of the area is equal to the moment
of inertia about a paralicl axis through the centroid of the arca plus the product of the same arca and the
square of the distance between the two axes.

The moment of incrtia always has a positive value, with a minimum value for axes through the centroid
of the area in question.

Find the moment of inertia of a rectangle about an axis coinciding with the base.
‘The coordinate system shown in Fig. 7-11 is convenicnt. By definition the moment of inertia about the

x-axis is given by /, = f y da. For the clement shown y is constant for all points in the element. Hence

L Ik
I, = y’bdy=b[y—] = Lon
(M 3 3
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'Y
-—b——l

AAAAIAAY, Eftg
'l
3 B

This solution could also have been obtained by applying the parallel-axis theorem to the result
obtained in Problem 7-4. This states that the moment of inertia about the base is equal to the moment of
incrtia about the horizontal axis through the centroid plus the product of the arca and the square of the
distance between these two axes. Thus

Fig. 7-11

1 AN
1_=j'-|- "-':— "+ —-) = — 3
I o T AN lzbh bh(z 3 bh

7.7. Determine the moment of inertia of a triangle about an axis coinciding with the base.

v

fie |

T
b —
Fig. 7-12

LI

Let us introduce the coordinate system shown in Fig. 7-12. The moment of inertia about the horizontal

base is
L=jfm

For the shaded elcment shown the quantity y is constant for all points in the elcment. Thus

h
L= I y'sdy
0

By similar triangles, s/b = (h — y)/h, so that

hb b " " !
L= [ e nay=iln [ va - ["yay] = pow
T m" ) ] 12

7.8. Determine the moment of inertia of a triangle about an axis through the centroid and parallel
to the base.
Let the x-axis pass through the centroid and take the x-axis to coincide with the base as shown in
Fig. 7-13.
From Fig. 7-3(b) the x-axis is located a distance of /3 above the base. Also. the parallcl-axis theorem
tells us that

I,=1_+A(y)
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But {, was determined in Problem 7.7, and A and y, (= h/3) are known. Hence we may solve for the desired
unknown, /, .. Substituting,

I, 1 h\? 1
—_ _ + = — = — 3
lzbh I, zbh(3) or I, bh

“ 36

o b —l
Fig. 7-13

7.9. Determine the moment of inertia of a circle about a diameter.

ﬁgo 7‘14

Let us select the shaded element of area shown in Fig. 7-14, and work with the polar coordinate
system. The radius of the circle is r.

To find 7, we have the definition [, = J' ¥ da.

But y = psin ® and da = pd@dp. Hence

2w £r 2 1 r
I, = J J psin’ Bpdedp = f sin’ Bdﬂ[zp‘]n
11} [1] 1]

4 2w 777"
= %J' sin’ 0d6 = e
[}
If D denotes the diameter of the circle, then D = 2r and I, = 7wD*/64. This is half the value of the polar
moment of inertia of a solid circular area (see Problem 5.1).
The moment of nertia of a semicircular area about an axis coinciding with its base is

1 #D*  =D*

L=3 & =1
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7.10. Determine the moment of inertia about both the x- and y-axes as well as the corresponding radii
of gyration of the plane area shown in Fig. 7-15.

¥
y=64 — x}/25

X dx

_L.—«wm——l-—wmm-—-!
Fig. 7-15

Let us select the shaded element of width dx and altitude y shown in Fig. 7-15. From Problem 7.6 we
have the moment of inertia of this element about the x-axis as

dl, = {bi’ = }(dx)y"*

Now, we must integrate over all values of x from —40 mm to +40 mm to account for all such elements.

Thus,
1 xa)
I, = jd!, = EJ’
x=—40
2 x =40 xz K
A5

= 3.197 ¥ 10° mm*

y'dx
3

The same element may be employed to determine the moment of inertia of the entire area about the
y-axis. By definition we have

dl, = x*da

=40
I,:[df,=f x*ydx
x=-40

x= 30
=2I 12(64—-"-2-)&
x=( 25

= 1.092 x 10 mm*

To determine the radii of gyration, it is first necessary to find the area under the curve. It is
given by
A= f ydx
2

x=40 x ,
=72 - =
J;:O (64 25) dx = 3413 mm

which becomes

from which we have

, \/f:,_ 3197 X 10°mm* _
* A 3413mm?
/i 1.092 % 10° mm*
P b= P dtata LS T X'
" \/; 3413 mm? mm
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7.11. Two channel sections are attached to a cover plate 16 in long by j in thick, as indicated in Fig.
7-16. Locate the centroid of the cross section and determine the moment of inertia and radius
of gyration about an axis parallel to the x-axis and passing through the centroid.

2.6in

0.25in

Axis of
symmetry

——
R—
]
5
o
El

5in Sin —I | 1

—-i Id— 260 - 025=235in

Fig. 7-16 Fig. 7-17

Let us first consider a single channel section. as shown in Fig. 7-17. The area of the cross section is
A = 2(})(2.60 — 0.25) + 10(}) = 4.85in”

and from Problem 7.4 together with the parallel-axis theorem we have the moment of inertia of the channel
about an axis parallel to the x-axis and passing through the centroid of the channel (the x,-axis) as

@ @ ©)
Lo = 13() (10)" + 2{i5(2.35) ()" + (235) () (5 — )
= 73.90in*
where term (1) corresponds to the moment of inertia of the vertical rectangle about the x,-axis, term (2)
corresponds to the moment of inertia of one horizontal rectangle about the x,-axis through the centroid
of the horizontal rectangle, and term (@) indicatcs the transfer term from the parallel axis theorem to pass
from axis x, to axis x,.

Now, we may write the moment of inertia of the entire assembly about the x-axis by applying the result
of Problem 7.6 to the cover plate and applying the parallel axis theorem to /,, to obtain

1, = }(16) (1) + 2{73.87 + 4.85(5.5)"} = 441.8in°
The centroid of the cross section of the entire assembly is determined from the definition

Zyda
A

©) @
16) (3) (5) + 2[(4.85)(5.5 .
_UODE) +AGEN )] _ 500
(16) () +2(4.85]
where the terms represented by () correspond to the horizontal cover plate and the terms numbered (@)
correspond to the channels.

In:
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Now that we have located the centroidal axis x; of the assembly, we may employ the parallel-axis
theorem to transfer from the x- to the xg-axis:

]«I - Il’t, + AG)Z
aa 8in* = 1, + (1776 in%) (3.13 in)°
I, = 268.48in*

The corresponding radius of gyration is

fL [268.48 )
P, = 7"= ——— =38%in

V 17.76

7.12. A plane section is in the form of an equilateral triangle, 200 mm on a side. From it is removed
another equilateral triangle in such a manner that the width of the remaining section is 30 mm
measured perpendicular to the sides of both equilateral triangles. as shown m Fig. 7-18.
Determine the location of the centroid of the remaining (shaded) area as well as the moment
of inertia about the axis through the centroid and parallel to the x-axis.

i 200 ;mm I

Fig. 7-18

It is necessary to determine the size of the inner triangle that has been removed. From the geometry
of Fig. 7-18 it is evident that BE = 60 mm because of the 30° angle between BE and BC. Thus the altitude
h of the “removed™ triangle DEF is

h = 200cos 30 — 30 — 60 = 83.21 mm
The length of a side of this triangle is

83.21
DF = m = 96.08 mm

From symmetry the centroid lies on the y-axis and its location is found by the definition

[yda or ZydA
A A

where the numerator represents the first moment of the area about the x-axis. Using the known location
of the centroid of a triangle and its area, as given in the summary at the beginning of this chapter,
we have

_ 3(200) (200 cos 30) (% cos 30) — 3(96.08) (83.21) {30 + 83.21/3}
v= 1(200) (200 cos 30) — }(96.08) (83.21)

= 57.72 mm
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To determine the moment of inertia of the shaded area in Fig. 7-18, we begin by finding the moment
of inertia of that area about the x-axis. This is accomplished by taking the moment of inertia of the outer
triangle ABC about the x-axis using the result of Problem 7.7, then subtracting the moment of inertia of
the inner triangle D EF about that same axis. This latter value is calculated by first determining the moment
of inertia of DEF about an axis through the centroid of DEF using the result of Problem 7.8, then
employing the parallel-axis theorem to transfer that value to the x-axis. Thus,

I, = $5(200) (200 cos 30)* — [(96.08) (83.21) + 3(96.08) (83.21) [30 + 83.21/31%)
= 71.74 X 10° mm*
Utilizing the parallel-axis theorem, we have
I.=1+AQF)
71.74 X 10° mm* = I, + {3(200) (200 cos 30) — 3(96.08) (83.21)} (57.72 mm)?
I, = 27.35 X 10° mm*

7.13. Determine the product of inertia of a rectangle with respect to the x- and y-axes indicated in
Fig. 7-19.

el

.

"_‘—'l I"u

|
L

—t—

Fig. 7-19

We employ the definition /,, = nyda and consider the shaded element shown. Integrating,

v=h rx=b y=h xl ]
L, = J I xydxdy = f [3] ydy
y=0 Jx=0 y=0 o
b?

2qh p2p2

¥ bh
=} === 1
2[2}0 4 0

7.14. Derive the parallel-axis theorem for product of inertia of a plane area.

In Fig. 7-20. the axes x; and y pass through the centroid of the area A. The axes x and y are located
the known distances y, and x,, respectively, from the axes through the centroid.
For the element of area da the product of inertia with respect to the x- and y-axes is given by

dl,, = (x, +x")(n +y")dxdy

For the entire area the product of inertia with respect to the x- and y-axes becomes

lr;y = Jdlx)' = Ij(xl +x )Y, +y')dxdy

=ij.yldxdy+Ijx'y,dxdy+Ifx,y'drdy+fjx'y'dxdy
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7.15.

| ¥

Fig. 7-20

The first integral on the right side equals x, y, A since x, and y, are constants. The second and third integrals
vanish because x” and y" are measured from the axes through the centroid of the area A. The fourth integral
is equal to /,,,, that is, the product of inertia of the area with respect to axes through its centroid and
parallel to the x- and y-axes, Thus, we have

Ir)=‘rlyl"q+‘rx,_—,y;_-, (1)

This is the parallel-axis theorem for product of inertia of a plane area. It is 10 be noted that the xs- and
Yo-axes must pass through the centroid of the area. Also, x, and y, are positive only when the x- and
y-coordinates have the location relative to the x;-ys system indicated in Fig. 7-20. Thus, care must be taken
with regard to the algebraic signs of x; and y,.

Determine I,, for the angle section indicated in Fig. 7-21.

The area may be divided into the component rectangles as shown. For rectangle 1 we have, from (1)
of Problem 7.13,

(I,)1 = (10)? (125)% = 39 % 10* mm*

For rectangle 2 we employ (1) of Problem 7.14. The product of inertia of rectangle 2 about axes through
its centroid and parallel 1o the x- and y-axes vanishes because these are axes of symmetry. Thus, for
rectangle 2, I, = 0. The parallel-axis theorem of Problem 7.14 thus becomes

(I.,): = (42.5)(5) (65) (10) = 13.8 X 10* mm*
For the entire angle section we thus have

1, =39 x10* + 13.8 x 10* = 52.8 x 10° mm*

3 ¥o
v 2
10
,.IE'“‘Eq i *“mm
- -
x
125mm e G ¢
¥ |7
1

I 0 10 mm

L @ | [omr . Lol
I 75 mm I |._—15mrn——|

Fig. 7-21 Fig. 7-22
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7.17.

CENTROIDS, MOMENTS OF INERTIA, PRODUCTS OF INERTIA [CHAP. 7

Determine the product of inertia of the angle section of Problem 7.15 with respect to axes
parallel to the x- and y-axes and passing through the centroid of the angle section. See Fig.
7-22.

It is first necessary to locate the centroid of the area, that is, we must find x and y. We have
_125(10) (5) + 65(10) (42.5)

x 125(10) + 65(10) _ L/Bmm
_125(10) (62.5) + 65(10) (5) _
Y= T asa0) 650y e8mm

Now we employ the parallel-axis theorem of Problem 7.13; that is,
IL,=xA+l,,,
In Problem 7.15 we found I,, = 52.8 X 10° mm®. Thus
52.8 X 10* = 17.8(42.8) (1900) + I,
whence

I

AGde

= —92 X 10 mm*

Consider a plane area A and assume that /,, I, and /,, are known. Determine the moments of
inertia /,, and /,, as well as the product of inertia I, ,,, for the set of orthogonal axes x,-y, oriented
as shown in Fig. 7-23. Determine also the maximum and minimum values of 71,,.

Fig. 7-23

The moment of inertia of the area with respect to the x,-axis is

I,= J,yﬁda= J(ycosﬂwxsinﬂ)zda

ms’ﬂjyzda+sinzﬂffda—2ﬂn9msﬁj1yw

= I,cos” 8+ I, sin® § — 21,,.sin Hcos 6

_, (1+cos26 1 - cos26
=L|—— )~ Ll—

) —I,,sin26
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Or
+ -1,
L;=(“ J>’)+("" ”)mmze—nﬁmze )
2 2
Analogously, I,, may be obtained from (/) by replacing 6 by 6+ #/2 to yield
Lq=(hzh)—(hglﬂomze+nﬁmze (2)

The value of 6 that renders /,, maximum or minimum is found by setting the derivative of Eq. (1) with
respect to 6 equal to zero. Thus, since 1., I,, and I,, are constants we have from (7)

dl!

d—; = —(I,—1,)sin26 - 2I,,cos 26 =0
Solving,
fjl
tan26 = - I -1 C))
")
_I:y
Fig. 7-24
Equation (3) has the convenient graphical interpretation shown in Cases 1 and II of Fig. 7-24.
If now the values of 26 given by (3) are substituted into (/), we obtain
L+, L-LV.
= (252) = (552 )+ €y @

where the positive sign refers to Case I and the negative sign to Case II. These maximum and minimum
values of moment of inertia correspond to axes defined by (3). The maximum and minimum values
of moment of inertia are termed principal moments of inertia and the corresponding axes are termed
principal axes.

We may now determine I,,,, from

=fx.y.da
=f(stﬂi-ysinﬂ)(ymﬂ—xsinﬂ)da
= coszﬂfxyda-—sinzﬂfxyda

+sm8mﬂfy’da—sin9cmﬁjx3da

= I, (cos? 8 —sin*8) + (I, — I,) sin Bcos @

=10\ .
=( 3 ’)511126‘+L_vc0529 (5)
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From (5), I,,,, vanishes if

I,

(L, - I!.)
2

which is identical to condition (3). Since (3) defined principal axes, it follows that the product of inertia
vanishes for principal axes.

tan26 = —

A structural aluminum 6 Z 542 section has the nominal dimensions indicated in Fig. 7-25.
Determine /,, 1, I, and also the maximum and minimum values of the moment of inertia with
respect to axes through the point O.

The section may be divided into the component rectangles (1), (2), and ) as indicated. The result
obtained in Problem 7.4, together with the paraliel-axis theorem given in Problem 7.5, may be used to
determine /, and I

I, = 53 (6) + 2[:(3) G + (39 @) 28] = 25.27 in’
I, = 56) @ +2[5@) (3)° + @) (3p) (13)] = 9.08in"

¥
] 83" ——f
e | v
s p
3 2
e @ [ ﬁn !I
I . ~_
8 I B V)
- ™ =
_ a-. AT~
L4 ‘- ,_
V@ 3
s —1 ,
Fig. 7-25 Fig. 7-26

The product of inertia with respect to the x- and y-axes may be determined through use of the
parallel-axis theorem for product of inertia as given in Problem 7.14. It is to be noted that the product of
inertia of each of the component rectangles about axes through the centroid of each component and
parallel to the x- and y-axes vanishes because these are axes of symmetry. Hence, from (7) of Problem 7.14
we have for the entire Z-section

L, = 2[(3) 21 3D ()] = 10L.61in*

The maximum and minimum values of moment of inertia with respect to axes through the point O
may be found from (4) of Problem 7.17. From that equation

G (55%) 2 Y554+ oy

B (25.27 + 9.08)+ ;‘(25.27 - 9.08
2 N 2

(1)) omen = 31,38 in? )
(e )min = 2.98 in* @)

)2 +(11.6)?



CHAP. 7] CENTROIDS, MOMENTS OF INERTIA, FRODUCTS OF INERTIA 173

The orientation of these principal moments of inertia is found from (3) of Problem 7.17 to be

'{T}l
tan2f = — m
2
L6
(25.2? - 9.03)
2
6= —27°20", 11720’ A3)

The principal moments of inertia given in () and (2) correspond to the principal axes given by (3). These
principal axes are represented by the dashed lines in Fig. 7-26.

Supplementary Problems

7.19. The structural channel section has welded 1o it a horizontal reinforcing plate as shown in cross section in
Fig. 7-27. Determine the y-coordinate of the centroid of the composite section.  Ans. y = 4.56in

=
E]

E.
o5imd BN

=]
s Al

12m

C5m

—
0.5
n-rl_.—i
5

a1,
Fig. 7-27
7.20. The shaded area shown in Fig. 7-28 is bounded by a circular arc and a chord. Determine the location of
the centroid of the area with respect to the center of the circular arc.

_ 4R (sin’ @)
A =
" Y3726 - sin26)

O

G
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7.21.  An area consists of a circle of radius R from which a rectangle of dimensions a X 3a has been removed,
as shown in Fig. 7-29. Dctermine the moment of inertia of the shaded area about the x- and also the

y-axes.
y
/8
T s m°
. [ 7
> [
-l: F= \
5 b )
j_ :
Fig. 7-30
R aR*  9a*
A T4 AL
ns L=y =3

7.22. The shadcd area in Fig. 7-30 results from removing the central square from the outer square. Determine
the moment of inertia of the net area about the x-axis. Ans. I, =0.0781L"°

7.23. A thin reclangular sheet has semicircular and also triangular areas removed, as shown in Fig. 7-31. Locate
the centroid of the sheet and determine the moment of inertia about the horizontal axis passing through
the centroid.  Ans. ¥ = 370.8 mm, [, = 9937 % 10° mm*

100 mm
Fig. 7-31

7.24. A trapczoidal area has the dimensions indicated in Fig. 7-32. Determine the location of the centroid as well
as the moment of inertia about an axis through the centroid and parallel to the x-axis.
Ans. y=444mm. [, = 2414 x10°mm*

100 mm | 100 nam

= 200 mm

Fig. 7-32
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7.25. A thin-walled section (r < a) has the configuration indicated in Fig. 7-33. Locate the centroid of the cross
section and determine the moment of inertia of the area about an axis passing through the centroid and
parallel to the x-axis.  Ans. y=a, 1, =533a1+arl6

~ F

e
i
|--n-h-|
Fig. 7-33
7.26. An area of circular cross section from which three circular holes have been removed is shown in Fig. 7-34.

Determine the location of the centroid of the section and the moment of inertia of an axis passing through
the centroid and parallel to the x-axis.  Ans. y = —R/10, /., = 0.737R*

Fig. 7-34

7.27. Determine the moment of inertia of the diamond-shaped figure shown in Fig. 7-35 with respect to the
horizontal axis of symmetry.  Ans. I, = 85.4in*

l‘ . — e 2 r:I-
i

.l i, 3'
' t

Fig. 7-35 Fig. 7-36



176 CENTROIDS. MOMENTS OF INERTIA, PRODUCTS OF INERTIA [CHAP. 7

7.28. Determine the moment of inertia of a channel-type section about a horizontal axis through the centroid.
Refer to Fig. 7-36. What is the radius of gyration about this same axis?
Ans. I._=231in", r,_ = 240in

7.29. Locate the centroid of the channel-type section shown in Fig. 7-37 and determine the moment of inertia
of the cross-sectional arca about a horizontal axis through the centroid.
Ans. ¥ =3833mm, [, =33 % 10°mm*

50 mm 4 50 mm
—-i =200 mmM-=f200 mm l:t_
N WZS mm
O
T x
Fig. 7-37

7.30. A plane arca has the shape of a parallclogram as shown in Fig, 7-38. The y- and z-axes pass through the
centroid of the area. Determinc /, and /.. Ans. I, = ubh?, I, = Lhb(B? + %)

z —b—

Fig. 7-38 Fig. 7-39

7.31. Determine the product of inertia of a triangle with respect to the x- and y-axes indicated in Fig. 7-39.
Ans. b*H124

7.32. Determine the product of inertia of the triangle shown in Fig. 7-39 with respect to the axes x¢; and yg
passing through the centroid.  Ans. —-B K72

H)
7.33. For the plane area in Fig. 7-40 determine the mo- e
ments of inertia and product of inertia with respect T
to the x¢- and y-axes passing through the centroid. 7Smm /
Also, determine the principal second moments of 1
area with respect to the centroid.
Ans. I, = 400 % 10° mm*; 1, = 147 X 10° mm*
Lye = =58 % 10°mm™  (1,)max = 805 X 10° mm?,; 150 men L.
(L) oun = 142 % 10° mm* G TG
75 mm
i z
"75 mm-}'— 150 rnll—-l

Fig. 7-40



Chapter 8

Stresses in Beams

TYPES OF LOADS ACTING ON BEAMS

Either forces or couples that lie in a plane containing the longitudinal axis of the beam may act
upon the member. The forces are understood to act perpendicular to the longitudinal axis, and the
plane containing the forces is assumed to be a plane of symmetry of the beam.

EFFECTS OF LOADS

The effects of these forces and couples acting on a beam are (@) to impart deflections perpendicular
to the longitudinal axis of the bar and (b) to set up both normal and shearing stresses on any cross
section of the beam perpendicular to its axis. Beam deflections will be considered in Chaps. 9, 10,
and 11.

TYPES OF BENDING

If couples are applied to the ends of the beam and no forces act on the bar, then the bending
is termed pure bending. For example, in Fig. 8-1 the portion of the beam between the two downward
forces is subject to pure bending. Bending produced by forces that do not form couples is called
ordinary bending. A beam subject to pure bending has only normal stresses with no shearing stresses
set up in it; a beam subject to ordinary bending has both normal and shearing stresses acting
within it.

P P
| ]

Fig. 8-1

NATURE OF BEAM ACTION

It is convenient to imagine a beam to be composed of an infinite number of thin longitudinal rods
or fibers. Each longitudinal fiber is assumed to act independently of every other fiber, i.e., there are
no lateral pressures or shearing stresses between the fibers. The beam of Fig. 8-1, for example, will
defiect downward and the fibers in the lower part of the beam undergo extension, while those in the
upper part are shortened. These changes in the lengths of the fibers set up stresses in the fibers. Those
that are extended have tensile stresses acting on the fibers in the direction of the longitudinal axis of
the beam, while those that are shortened are subject to compressive stresses.

177



178 STRESSES IN BEAMS [CHAP. 8

NEUTRAL SURFACE

Therc always exists one surface in the beam containing fibers that do not undergo any extension
or compression, and thus are not subject to any tensile or compressive stress. This surface is called the
neutral surface of the beam,

NEUTRAL AXIS

The intersection of the neutral surface with any cross section of the beam pcrpendicular to its
longitudinal axis 1s called the newtral axis. All fibers on one side of the neutral axis are in a state of
tension, while those on the opposite side are in compression.

BENDING MOMENT

The algebraic sum of the moments of the external forces to one side of any cross section of the
beam about an axis through that section is called the bending moment at that section. This concept was
discussed in Chap. 6.

ELASTIC BENDING OF BEAMS

The following remarks apply only if all fibers in the beam are acting within the elastic range of
action of the material.

Normal Stresses in Beams

For any beam having a longitudinal plane of symmetry and subject to a bending moment M at a
certain cross section, the normal stress acting on a longitudinal fiber at a distance y from the neutral
axis of thc beam (see Fig. 8-2) is given by

o=— (8.1)

where I denotes the moment of inertia of the cross-sectional area about the neutral axis. This quantity
was discussed in Chap. 7. The derivation of this equation is discussed in detail in Problem 8.1. For
applications sce Problems 8.2 through 8.18. These stresses vary from zero at the neutral axis of the
beam to a maximum at the outer fibers as shown. The stresses are tensile on one side of the neutral
axis, compressive on the other. These stresses are also called bending, flexural, or fiber siresses.

Fig. 8-2
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Location of the Neutral Axis

When the beam action is entirely elastic the neutral axis passes through the centroid of the cross
section. Hence, the moment of inertia / appearing in the above equation for normal stress is the
moment of inertia of the cross-sectional area about an axis through the centroid of the cross section

of the beam.

Section Modulus

At the outer fibers of the beam the value of the coordinate y is frequently denoted by the symbol
¢. In that case the maximum normal stresses are given by

Mc M
o= 7 or o= (8.2)

The ratio I/c is called the section modulus and is usually denoted by the symbol Z. The units are
in® or m*. The maximum bending stresses may then be represented as

=_ 83
o= (8.3)
This form is convenient because values of Z are available in handbooks for a wide range of standard
structural steel shapes. See Problems 8.5, 8.9, and 8.12.

Assumptions

In the derivation of the above expression for normal stresses it is assumed that a plane section of
the beam normal to its longitudinal axis prior to loading remains plane after the forces and couples
have been applied. Further, it is assumed that the beam is initially straight and of uniform cross section
and that the moduli of elasticity in tension and compression are equal. Again. it is to be emphasized
that no fibers of the beam are stressed beyond the proportional limit.

Shearing Force

The algebraic sum of all the vertical forces to one side of any cross section of the beam is called
the shearing force at that section. This concept was discussed in Chap. 6.

Shearing Stresses in Beams

For any beam subject to a shearing force V (expressed in pounds) at a certain cross section. both
vertical and horizontal shearing stresses 7 are set up. The magnitudes of the vertical shearing stresses
at any cross section are such that these stresses have the shearing force V as a resultant. In the cross
section of the beam shown in Fig. 8-3, the vertical plane of symmetry contains the applied forces and
the neutral axis passes through the centroid of the section. The coordinate y is measured from the
neutral axis. The moment of inertia of the entfire cross-sectional area about the neutral axis is denoted
by I. The shearing stress on all fibers a distance y, from the neutral axis is given by the formula

V L3
T= EI yda (8.4)

ALl

where b denotes the width of the beam at the location where the shearing stress is being calculated.
This expression is derived in Problem 8.19. For applications see Problems 8.20 through 8.23. The
integral in (8.4) represents the first moment of the shaded area of the cross section about the neutral
axis. This quantity was discussed in detail in Chap. 7. More generally, the integral always represents
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__ R

N.A. Vo ‘
!

b— & —
Fig. 8-3

the first moment about the neutral axis of that part of the cross-sectional area of the beam between
the horizontal plane on which the shearing stress 7 occurs and the outer fibers of the beam, i.e., the
area between y, and c.

From (8.4) it is evident that the maximum shearing stress always occurs at the neutral axis of the
beam, whereas the shearing stress at the outer fibers is always zero. In contrast, the normal stress varies
from zero at the neutral axis to a maximum at the outer fibers.

In a beam of rectangular cross section the above equation for shearing stress becomes

v (kh*

where 7 denotes the shearing stress on a fiber at a distance y, from the neutral axis and 4 denotes the
depth of the beam. The distribution of vertical shearing stress over the rectangular cross section is thus
parabolic, varying from zero at the outer fibers to a maximum at the neutral axis. For application see
Problems 8.20 through 8.23.

Both the above equations for shearing stress give the vertical and also the horizontal shearing
stresses at a point, as discussed in Problem 8.19, since the intensities of shearing stresses in these two
directions are always equal.

PLASTIC BENDING OF BEAMS

The following remarks apply if some or all of the fibers of the beam are stressed to the yield point
of the material.

We shall consider a simplified stress-strain curve such as that of Fig. 8-4, where it is assumed that
the proportional limit and the yield point coincide. The yield region, i.e., the horizontal plateau of the
curve, is assumed to extend indefinitely. This conventionalized representation of ductile material
behavior is termed elastic-perfectly plastic behavior. Here, o,, denotes the yield point of the material
and e,, represents the strain corresponding to that stress. We shall assume that material properties are
identical in tension and compression.

ap -t

o
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Elastoplastic Action

For sufficiently large bending moments in a beam the interior fibers will be stressed in the elastic
range of action, whereas the outer fibers will have reached the yield point of the material. Such a stress
distribution may be as indicated in Fig. 8-5.

Fully Plastic Action

As bending moments continue to increase, a limiting case is approached in which all fibers are
stressed to the yield point of the material. This stress distribution appears in Fig. 8-6.

— —

-

-
-

N.A, N.A.

i

19

Location of Neutral Axis

When beam action is entirely elastic, the neutral axis passes through the centroid of the cross
section. However, as plastic action spreads from the outer fibers inward, the neutral axis shifts from
this location to another, which is determined by realizing that the resultant normal force over any cross
section vanishes. In the limiting case of fully plastic action, the neutral axis assumes a position such that
the total cross-sectional area is divided into two equal parts. This is discussed in Problem 8.29.

Fully Plastic Moment

The bending moment corresponding to fully plastic action is termed the fully plastic moment and
will be denoted by M,. For the stress-strain diagram assumed here no greater moment can be

developed.
For a beam of rectangular cross section the fully plastic moment is shown in Problem 8.25 to be

M, = bh?c,,/4 where b represents the width of the beam and h its depth.

Solved Problems

Elastic Bending of Beams

8.1.  Derive an expression for the relationship between the bending moment acting at any section in a
beam and the bending stress at any point in this same section. Assume Hooke's law holds.

The beam shown in Fig. 8-7(a) is lIoaded by the two couples M and consequently is in static
equilibrium. Since the bending moment has the same value at all points along the bar, the beam is said



182

STRESSES IN BEAMS [CHAP. 8

to be in a condition of pure bending. To dctermine the distribution of bending stress in the beam, let us
cut the beam by a plane passing through it in a dircction perpendicular to the geometric axis of the bar.
In this manner the forces under investigation become external to the new body formed. ¢ven though they
were internal effects with regard to the original uncut body.

M M M M
(|

> o % [
| E—

{a} (%)

Fig. 8-7

The free-body diagram of the portion of the beam to the left of this cutting plane now appears as in
Fig. 8-7(b). Evidently a moment M must act over the cross section cut by the plane so that the left portion
of the beam will be in static equilibrium. The moment M acting on the cut section represents the effect
of the right portion of the beam on the left portion. Since the right portion has been removed, it must be
replaced by its effect on the left portion and this effect is represented by the moment M. This moment is
the resultant of the moments of forces acting perpendicular to the cut cross section and in the plane of the
page. It is now necessary to make certain assumptions in order to determine the nature of the variation
of these forces over the cross section.

It is convenient to consider the beam to be composed of an infinite number of thin longitudinal rods
or fibers, Tt is assumed that every longitudinal fiber acts independently of every other fiber; that is, there
arc no lateral pressures or shearing stresses between adjacent fibers. Thus each fiber is subject only to axial
tension or compression. Further, it is assumed that a plane section of the beam normal to its axis before
loads are applied remains plane and normal to the axis after loading. Finally, it is assumed that the material
follows Hooke’s law and that the moduli of elasticity in tension and compression are equal.

Let us next consider two adjacent cross scctions aa and bb marked on the side of the beam. as shown
in Fig. 8-8. Prior to Joading, these sections are parallel to each other. After the applied moments have acted
on the beam, these sections are still planes but they have rotated with respect to each other to the positions
shown, where O represcnts the center of curvature of the beam. Evidently the fibers on the upper surface
of the beam are in a state of compression, while those on the lower surface have been extended slightly
and are thus in tension. The line cd is the trace of the surface in which the fibcers do not undergo any strain
during bending and this surface is called the neutral surface, and its intersection with any cross section is
called the newtral axis. The clongation of the longitudinal fiber at a distance v (measured positive
downward) may be found by drawing line de parallel to aa. If p denotes the radius of curvature of the bent
beam, then from the similar triangles ¢Od and edf we find the strain of this fiber to be

== ()

Thus, the strains of the longitudinal fibers are proportional to the distance y from the neutral axis.
Since Hooke's law holds, and thercfore £ = ofe, or o = Ee, it immediately follows that the stresses
existing in the longitudinal fibers are proportional to the distance y from the neutral axis, or

o=t @)
P
Let us consider a becam of rectangular cross section, although the derivation actually holds for any
cross section which has a longitudinal plane of symmetry. In this case, these longitudinal, or bending,
stresses appear as in Fig. 8-9.
Let da represent an element of area of the cross section at a distance y from the neutral axis. The stress
acling on da is given by thc above expression and consequently the force on this element is the product
of the stress and the arca da. that is,

Ey

dF = =2 da 3)
P
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L

Fig. 8-8 Fig. 8-9

M / M
P [ \
al b
btk Y0
a i3

However, the resultant longitudinal force acting over the cross section is zero (for the case of pure bending)
and this condition may be expressed by the summation of all forces dF over the cross section. This is done

by integration:
E E
J—ydaZ—Jyda=0 4)
P P

Evidently [ yda = 0. However. this integral represents the first moment of the area of the cross section
with respect to the neutral axis, since y is mcasurcd from that axis. But, from Chap. 7 we may write
Jyda = yA, where y is the distance from the neutral axis to the centroid of the cross-sectional area. From
this, yA = (; and since A is not zero, then y = (. Thus the neutral axis always passes through the centroid
of the cross section. provided Hooke’s law holds.

The moment of the elemental force dF about the neutral axis is given by

E
dM=de=y(?yda) (5)

The resultant of the moments of all such elemental forces summed over the entire cross section must be
equal to the bending momem M acting at that section and thus we may write

E 7
M = j Y da ©)
p
But I = [ y*da and thus we have
m=H )
p

It is to be carefully noted that this moment of inertia of the cross-sectional area is computed with respect
to the axis through the centroid of the cross section. But previously we had

Fyv
o= (8)
p
Eliminating p from these last two equations, we obtain
M
o= ©)

This formula gives the so-called bending or flexural stresses in the beam. In it, M is the bending moment
al any section, / the moment of inertia of the cross-sectional area about an axis through the centroid of
the cross section, and y the distance from the neutral axis (which passes through the centroid) to the fiber
on which the stress o acts.

The value of y at the outer fibers of the beam is frequently denoted by ¢. At these fibers the bending
stresses are maximum and there we may write

o=—- (10)
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A beam is loaded by a couple of 12,000 Ib - in at each of its ends, as shown in Fig. 8-10. The beam
is steel and of rectangular cross section 1 in wide by 2 in deep. Determine the maximum bending
stress in the beam and indicate the variation of bending stress over the depth of the beam.

12.000 Ib-in lm B 1]
T Ana. - NA.
: — I
—f17
Fig. 8-10 Fig. 8-11

From Problem 8.1, bending takes place about the horizontal neutral axis denoted by N.A. This axis
passes through the centroid of the cross section. The moment of inertia of the shaded rectangular cross
section about this axis is found by the methods of Chap. 7 to be

I = 5bh* = (1) (2)° = 0.667 in®

Also from Problem 8.1, the bending stress at a distance y from the neutral axis is given by o = My/l,
where y is illustrated in Fig. 8-11. Thus, all longitudinal fibers of the beam at the distance y from the neutral
axis are subject to the same bending stress given by the above formula.

Since M and I are constant along the length of the bar, evidently the maximum bending stress occurs
on those fibers where y takes on its maximum value. These are the fibers along the upper and lower surfaces
of the beam, and from inspection it is obvious that for the direction of loading shown the upper fibers are
in compression and the lower fibers in tension. For the lower fibers, y = 1 in and the maximum bending
stress is

_ 1200001)

= in?
0667 18,000 Ib/in

For the fibers along the upper surface y may be considered to be negative and we have

12,000(~1) .
— —— L — _1 l 2
0.667 8,000 Ibfin

Thus the peak stresses are 18,000 Ib/in? in tension for all fibers along the lower surface of the beam
and 18.000 Ib/in’ in compression for all fibers along the upper surface. According to the formula o = Myjl,
the bending stress varies linearly from zero at the neutral axis to a maximum at the outer fibers and hence
the variation over the depth of the beam may be plotted as in Fig. 8-12.

~= 18,000 1b/in? r-—

7

1"

N.A.

—w» 18,000 Ib/in? L—

Fig. 8-12
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8.3. A beam of circular cross section is 7 in in diameter. It is simply supported at each end and loaded
by two concentrated loads of 20.000 Ib each, applied 12 in from the ends of the beam. Determine
the maximum bending stress in the beam.

20,006 1b 20,000 1b
4 g 4
%
t Ire
20,000 1b 20,000 1b

/// .
4

Bending Moment

Fig. 8-13

Here the moment is not constant along the length of the beam, as it was in Problem 8.2. The loading
is illustratcd in Fig. 8-13 together with the bending moment diagram obtained by the methods of Chap.
6. It is 1o be noted that the portion of the bcam between the two downward loads of 20,0001b is in a
condition termed pure bending and everywherc in that region the bending moment is equal to
20,000(12) = 240,000 Ib-in.

From Problem 7.9 the moment of inertia of the shaded circular cross section about the neutral axis,
which passes through the centroid of the circle, is I = mD%64 = m(7)%64 = 118 in*.

The bending stress at a distance y from the horizontal neutral axis shown is o = My/l. Evidently the
maximum bending stresses occur along the fibers located at the ends of a vertical diameter and designated
as A and B. This maximum stress is the same at all such points between the applied loads. At point B,
y = 3.5in and the stress becomes

~ 240.000(3.5)

=171 2 i
118 20 Ib/in“ tension

At point A the stress is 7120 Ib/in? compression.

8.4. A steel cantilever beam 16 ft 8 in in length is subjected to a concentrated load of 320 1b acting
at the free end of the bar. The beam is of rectangular cross section, 2in wide by 3in deep.
Determine the magnitude and location of the maximum tensile and compressive bending
stresses in the beam.

The bending moment diagram for this type of loading, determined by the techniques of Chap. 6, is
triangular with a maximum ordinate at the supporting wall, as shown below in Fig. 8-14(a). The maximum
bending moment is merely the moment of the 320-1b force about an axis through point B and perpendicular
to the plane of the page. It is —320(200) = —64.0001b-in.

The bending stress at a distance y from the neutral axis, which passes through the centroid of the cross
section, is ¢ = My/I where y is illustrated in Fig. 8-14(b). In this expression / denotes the moment of inertia
of the cross-sectional area about the neutral axis and is given by

I'=33bh* = §5(2) (3)* = 4.50in®
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Fig. 8-14

Thus at the supporting wall, where the bending moment is maximum, the peak tensile stress occurs
at the upper fibers of the beam and is

_ My _ (=64.000)(~1.5)

— ;2
i 450 21.400 Ib/in

It is evident that this stress must be tension because all points of the beam deflect downward. At the lower
fibers adjacent to the wall the peak compressive stress occurs and is equal to 21,400 Ib/in®.

Let us reconsider Problem 8.4 for the case where the rectangular beam is replaced by a
commercially available rolled steel section, designated as a W6 % 153, This standard manner of
designation indicates that the depth of the section is 6 in, that it is a so-called wide-flange section,
and that it weighs 15} 1b per ft of length. Determine the maximum tensile and compressive
bending stresses.

7

N.A.

D

Fig. 8-15

MINN

[ % —— 4 —

Such a beam has the symmetric cross section shown in Fig. 8-15 and bending takes place about the
horizontal neutral axis passing through the centroid. Extensive handbooks listing properties of all available
rolled steel shapes are available to designers and abridged tables are presented at the end of this chapter.
From that table the moment of inertia about the neutral axis is found to be 28.1 in*.

The bending stress at a distance y from the neutral axis is given by o = My/l. At the outer fibers,
v = ¢ and

= —

oM _M

I ¥ ily
The ratio l/c is designated as the section modulus and is usually denoted by the symbol Z. The units are
obviously in'. From the abridged table we find Z to be 9.7 in*. Thus if one is concerned only with bending

stresses occurring at the outer fibers, which is frequently the case since we are often interested only in
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maximum stresses, then the section modulus is a convenient quantity to work with, particularly for
standard structural shapes.

The stresses in the extreme fibers at the section of the beam immediately adjacent to the wall are thus
given by

MM 64,000

= — = —_— in?
TSz Toq - 66Mlbin

Again, since the fibers along the top of the beam are stretching, the stress there will be tension. Along the
lower face of the beam the fibers are shortening and there the stress is compressive.

8.6. A cantilever beam 3 m long is subjected to a uniformly distributed load of 30 kN per meter of
length. The allowable working stress in either tension or compression is 150 MPa. If the cross
section is to be rectangular, determine the dimensions if the height is to be twice as great as the
width.

The bending moment diagram for a uniform load acting over a cantilever beam was determined in
Problem 6.2. It was found to be parabolic, varying from zero at the free end of the beam to a maximum
at the supporting wall. The loaded beam and the accompanying bending moment diagram are shown in
Fig. 8-16. The maximum moment at the wall is given by

M._3 = —30(3)(1.5) = —135kN-m

It is to be noted that this problem involves the design of a beam, whereas all previous problems in
this chapter called for the analysis of stresses acting in beams of known dimensions and subject to various
loadings. The only cross section that need be considered for design purposes is the one where the bending
moment is a maximum, i.e., at the supporting wall. Thus we wish to design a rectangular beam to resist
a bending moment of 135 kN - m with a maximum bending stress of 150 MPa.

Since the cross section is to be rectangular it will have the appearance shown in Fig. 8-17, where the
width is denoted by b and the height by h = 2b, in accordance with the specifications. The moment of
inertia about the neutral axis, which passes through the centroid of the action. is given by

I =5bh® = $b(2b) = 3b°

At the cross section of the beam adjacent to the supporting wall the bending stress in the beam is given
by ¢ = My/l. The maximum bending stress in 1ension occurs along the upper surface of the beam, since
these fibers elongate slightly, and at this surface y = —b and o = 150 MPa. Then

My _ —135 X10°(10°) (—b)

o= —};* or 150 %b“

from which & = 110 mm and A = 2b = 220 mm.

30 kN/m

— R

N.A, A
I35 EN-m _l

Bending Moment

Fig. 8-16 Fig. 8-17
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8.7. A cantilever beam is of length 1.5 m, loaded by a concentrated force P at its tip as shown
in Fig. 8-18(a), and is of circular cross section (R = 100mm), having two symmetrically
placed longitudinal holes as indicated. The material is titanium alloy, having an allowable
working stress in bending of 600 MPa. Determine the maximum allowable value of the
vertical force P.
A /Ra,diu.s of hola 'g
DG
p /(J L
1 1
: J C ;
, | g
2 15m - Radivs = & = 100 mm
Ee
(a) ®)
Fig. 8-18
It is first necessary to determine the section modulus of the beam. From Chap. 7, Problem 7.9, the
moment of inertia of a solid circular cross section about a diametral axis z is mRY4. Using this value for
the solid section and subtracting the moments of inertia of each of the holes about the same diametral axis
Z (from the parallel-axis theorem of Chap. 7), we have
mR* = [ RY* R\*{R\? .
I= T—Z{I(g) + ﬂ(g) (E) ] = 0.592R
The section modulus from Eq. (8.3) is
Z= 1 = M = 0.592R>
c R
The bending stresses in the uppermost and lowermost fibers, denoted by points A and B, respectively,
in Fig. 8-18(b) are, from Eq. (83) and using R = 0.1 m,
M
Omax = E
1.5m)
600 X 10°N/m? = il
0.592R°
Solving, P = 237 X 10° N, or 237kN.
88. The extruded beam shown in Fig. 8-19 is made of 6061-T6 aluminum alloy having an allowable

working stress in either tension or compression of 90 MPa. The beam is a cantilever, subject to
a uniform vertical load. Determine the allowable intensity of uniform loading.

~4———— 23} mm

30 mm —-

150

] i
G
mm
10 mm —ae] o 10 mati

1 w/ Unit length

-

T

Im

(a)

—-l |-n-— 1CG mm
{b)
Fig. 8-19



CHAP. 8] STRESSES IN BEAMS 189

It is first necessary to locate the centroid of the cross section. From the methods of Chap. 7.
we have

_ (200) (30) (15) + 3(180) (10) (90) _
(200) (30) + 3(180) (10)

It is next necessary to determine the moment of inertia of the cross section. Let us first work with the
x-axis through the top of the flange. From Chap. 7 the moment of inertia of the entire section about that

axis is

50.5 mm

|

I, = }(200 mm) (30 mm)® + 3{}(10 mm) (180 mm)*}
= 60.12 X 10° mm*

and from the parallel axis theorem of Chap. 7 we may now transfer to the x,; axis through the centroid
of the cross section to find

I, = 60.12 X 10°* mm* — (11,400 mm?) (50.5 mm)*
= 31.05 X 10° mm*
The peak bending moment occurs at the supporting wall and was found in Problem 6.2 to be
wil?
Mawr =5~
Next, applying Eq. (8.7) to the lowermost fibers (A) of the beam since those are the most distant from the
neutral axis through G, we have

[w(3 m)?] [(180 — 50.5) mm] (1 m/1000 mm)
(2)(31.05 x 10° mm*) (1 m/1000 mm)*

90 X 10 N/mn? =

Solving,
w = 4.80 kN/m

8.9. The simply supported beam AD is loaded by a concentrated force of 80kN together with a
couple of magnitude 30 kN - m, as shown in Fig. 8-20. From Table 8-2 at the end of this chapter
select a commercially available steel wide-flange beam capable of carrying these loads if the
peak allowable working stress in tension as well as compression is 160 MPa.

80 m'
C D
Ar |D3n KN-m
i B o

Re

L5m 1.25 m ——==

Im

Fig. 8-20

It is first necessary to determine the reactions at A and C from statics. We have
+J3IM,=—(80kN)(1m)+ R«(2.5m)—30kN-m =0
Re = 4 KkN
2F,=R,+44-80=0
R, = 36kN
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From the methods of Chap. 6. we can now construct the moment diagram which appears as in Fig. 8-21.
From Eq. (8.3) wc have oy, = M/Z. Substituting,

‘ -
160 X 10° N/m® = w

Solving,
Z=225%x10""m? or 225 % 10* mm*

as the minimum acceptable valuc of section modulus. From Table 8-2 we see that the W203 x 28 section
has a Z value of 262 x 10* mm’. which is adequate. Undoubtedly a more complete beam listing would
indicate other sections with a Z value more nearly cqual to the requircd minimum of 225 x 10* mm’. Only
typical beams are listed in Table 8-2 for the sake of brevity.

36kN-m

i
R

Fig. 8-21

30kN-m

|..—..|

If a steel wire 0.5 mm in diameter is coiled around a pulley 400 mm in diameter, determine the
maximum bending stress set up in the wire. Take E = 200 GPa.

Since the radius of curvature of the wirc is constant, 200 mm, it is evident from (7) of Problem &.1,
namely M = EI/R, that thc bending moment M must be constant everywhere in the wire. Thus the wire
acts as a beam subject to pure bending. An cnlarged sketch of a portion of the wire is shown in Fig. 8-22.
For any fiber in the wire at a distancc y from the neutral axis, the normal strain was found in (7) of Problem
8.1 to be

_Y
‘"R
where R denotcs the radius of curvature of the beam at that point.

The maximum strain occurs at the fibers where v assumes its maximum value, that is, %(U‘S) mm from
the neutral axis. The radius of curvature is approximatcly 200 mm. More accurately. this radius should be
measured to the neutral surface of the wire. but the value in that case would only differ from 200 mm by
0.25 mm and this quantity may rcasonably be neglected.

Thus the maximum strain at the outcr fibers of the wire is

(L)

0012
200 0.00125

The longitudinal fibers are subject to tensile stresscs on one side of the wire and compressive on the
other, with no other stresses acting. Hooke’s law may then be used to find the stress:
a = Fe = (200 x 10%)(0.00125) = 250 MPa

‘This is the maximum stress in the wire.
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8.11.

The simply supported beam shown in Fig. 8-23(a) is subject to a uniformly varying load having
a maximum intensity of w N per meter of length at the right end of the bar. If the beam is a
wide-flange section having the dimensions shown in Fig. 8-23, determine the maximum load
intensity w that may be applied if the working stress is 125 MPa in either tension or compression.
Neglect the weight of the beam.

I 154 mam I
| ]

i
,dﬂﬂm,_L z ‘
| |
Rut 6m jﬂz R:L‘”“ _—‘tﬂa
(®)

Fig. 8-23

4am

- v

3

—fzh- —fzh—

The reactions R, and R, may readily be determined in terms of the unknown w by replacing the
distributed load by its resultant. Since the average value of the distributed load is w/2 N/m acting over a
length of 6 m, the resultant is a force of magnitude 6(w/2) = 3w N acting through the centroid of the
triangular loading diagram, that is, 4 m to the right of R,. This resultant thus appears as in Fig. 8-23(b).
From statics we immediately have R, = wN and R; = 2wN.

i 1] R PN

' S 1 IR U ) S

Shear Diagram _L Bending Moment
(a) (b) ()

Fig. 8-24

The shearing force and bending moment diagrams for this type of loading were discussed in Problem
6.5. Let us introduce an x-axis coinciding with the beam and having its origin at the left support. Then at
a distance x to the right of the left reaction, the intensity of load is found from similar-triangle relationships
to be (x/6)w N/m. This portion of the loaded beam between R, and the section x appears in Fig. 8-24(a).
In accordance with the procedure explained in Problem 6.5, the shearing force V at the section a distance
x from the left support is given by

Ve _l x) _ __l s
=w 2(6 wx =w lzux

This equation holds for all values of x and from it the shear diagram is readily plotted, as shown in
Fig. 8-24(b). The point of zero shear is found by setting

w—fgwx?=0 fromwhich x=V12=346m

This is also the point where the bending moment assumes its maximum value.
The bending moment M at the section a distance x from the left support is given by

1/x\ x? 1,
M= wx 2(6)w3—wx 3f}wx

Again, this equation holds for all values of x and from it the bending moment diagram may be plotted as
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in Fig. 8-24(c). At the point of zero shear, x = 3.46 m, the bending moment is found by substitution in the
above equation to be

M, 346 = 3.46w — £w(3.46)° = 231w N-m

This is the maximum bending moment in the beam.
The bending stress on any fiber a distance y from the neutral axis of the beam is given by o = My/l.
The moment of inertia I of the beam is found from

_ 150250 [ 652109

L. 12 12

] = 95 x 10* mm*

The maximum tensile stress occurs at the lower fibers of the beam where y = 125 mm at the section where
the bending moment is a maximum. This stress is 125 MPa, and thus o = My/l becomes

(2.31w) (0.125)
b9 — =
125 % 10° <1 F(l - |2) or w =41 kN/m

Determine the section modulus of a beam of rectangular cross section.

Let & denote the depth of the beam and b its width. Bending is assumed to take place about the neutral
axis through the centroid of the cross section. The moment of inertia about the neutral axis is / = bA*/12.

Au the outer fibers the distance to the neutral axis is 4/2, and this is comrmonly denoted by ¢. The
maximum bending stresses at these outer fibers are given by

- Mc _M

Tmax I "E

The ratio I/c is called the section moduius and is usually denoted by Z. Then ¢, = MV Z. For the beam
of rectangular cross section,
_ L bRY12 _ bH

Z=2"m "6

The section modulus Z has units of m® or in®.

A beam is loaded by one couple at each of its ends, the magnitude of each couple being 5 kN -m.
The beam is steel and of T-type cross section with the dimensions indicated in Fig. 8-25(b).
Determine the maximum tensile siress in the beam and its location, and the maximum
compressive stress and its location.

It is first necessary to locate the centroid of the cross-sectional area since the neutral axis is known

to pass through the centroid. To do this we introduce the x-y coordinate system shown and use the methods
of Chap. 7. The y-coordinate of the centroid is defined by

yda
y= A
v
JEN-m A' 4
SkN-m T ; T
’/’4 3
100 mm /ﬁ | =g
-I- /? "!l-i’
ol
@ N

Hg, 625 (b)
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8.14.

where the numerator of the right side represents the first moment of the entire area about the x-axis. The
T-section may be considered to consist of the three rectangles indicated by the dashed lines and this
expresston becomes

_ _ 125(25) (62.5) + 2[50(25) (12.5)]
= =403
¥ 125(25) + 2[25(50)] mm
Thus, the centroid is located 40.3 mm above the x-axis. The horizontal axis passing through this point is

denoted by x as shown.
The moment of inertia about the x-axis is given by the sum of the moments of inertia about this same

axis of each of the three component rectangles comprising the cross section. Thus
I, = §(25) (125)* + 2[350(25)°] = 16.8 X 10° mm*
The moment of inertia about the x-axis may now be found by use of the parallel-axis theorem. Thus
L=1I_+A0)y 16.8 % 10° = I,_+ 5625(40.3))  and I = 7.7 x10*mm?*

Evidently for the loading shown, the fibers below the xg-axis are in tension, while the fibers above
this axis are in compression. Let ¢, and ¢, denote the distances of the extreme fibers from the neutral axis
(x) as shown. Obviously ¢; = 40.3mm and ¢, = 84.7 mm. The maximum tensile stress occurs in those
fibers along B-B and is given by o = Mc,/I, where I denotes the moment of inertia of the entire cross
section about the neutral axis passing through the centroid of the cross section. Thus the maximum tensile
stress is given by

= 5 X 10°(10%) (40.3)/7.7 X 10° = 26.2 MPa

MCl
o B e—
I

The maximum compressive stress occurs in those fibers along A-A and is given by o= Mc/i. To
provide a consistent system of algebraic signs, it is necessary to assign a negative value 1o c, since it lies
on the side of the x;-axis opposite to that of ¢;. Hence

o= _"".’f.% = 5X 10°(10%) (—84.7)/7.7 X 10° = —55 MPa

The negative sign indicates that the stress is compressive.

A simply supported beam is loaded by the couple of 1000 Ib - ft as shown in Fig. 8-26. The beam
has a channel-type cross section as illustrated. Determine the maximum tensile and compressive
stresses in the beam.

The bending moment diagram for this particular loading has been determined in Problem 6.11, where
it was found to appear as in Fig, 8-27.

The techniques of Chap. 7 may be employed to locate the centroid as lying 1.5 in above the x-axis and
the moment of inertia of the entire cross section about the xg-axis as 41.6in*.

In this problem it is necessary to distinguish carefully between positive and negative bending moments.
One method of attack is to consider a cross section of the beam slightly to the left of point B where the
1000 Ib- ft couple is applied. According to the bending moment diagram the moment there is —600 1b- fi

10—t
a ¥

@ 1 4 ] o
l B-I\ | T g v 38" wo
— [ 7 i
“A . L¥ —>2c f
- Rl AT S, 1.5 x 600 16 f1
1000 1b-fr Tb b N
(a) (b) Bending Moment

Fig. 8-26 Fig. 8-27
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and, according to the sign convention adopted in Chap. 6, since the moment is negative the beam is concave
downward at that section, as shown in Fig. 8-28, Thus the upper fibers are in tension and the lower fibers
in compression. Along the upper fibers a-a the bending stress is given by ¢ = My/I. Then

o = (7600)(12) (=3.5)
‘ 41.6

= 605 Ib/in’

Along the lower fibers b-b the value of y in the above formula for bending stress must be taken to be
positive, and there we have

_(=600)(12) (+1.5)
T = 416 N

c— —

Fig. 8-28 Fig. 8-29

—260 1b/in’

It is next necessary to investigate the bending stresses at a section slightly to the right of point B. There
the bending moment is 400 Ib - ft and according to the usual sign convention the beam is concave upward
at that section, as shown in Fig. 8-29. Here the upper fibers are in compression and the lower fibers in
tension. Along the upper fibers a-a the bending stress is

_400(12) (~3.5) _

. _ ‘o2
T, A6 400 Ibfin
Along the lower fibers b-b we have
. 400(12)(1.5) -
b A6 170 Ibfin

‘The maximum tensile and compressive stresses must now be selected from the above four values.
Evidently the maximum tension is 605 Ib/in® occurring in the upper fibers just to the left of point B: the
maximum compression is 400 Ibfin” occurring in the upper fibers also but just to the right of point B.

Consider the beam with overhanging ends loaded by the three concentrated forces shown in
Fig. 8-30. The beam is simply supported and of T-type cross section as shown. The material is
gray cast iron having an allowable working stress in tension of 35 MPa and in compression of
150 MPa. Determine the maximum allowable value of P.

From symmetry each of the reactions denoted by R is equal to P/2. The bending moment diagram
consists of a scries of straight lines connecting the ordinates representing bending moments at the points
A, B, C. D. and E. At B the bending moment is given by the moment of the force P/4 acting at A about
an axis through B. Thus

M, = —(EP)(I) =:§N-m

50 mm
P 73 mm | 75 mm

P P

4 2 4 N l
Yh—2_5m+2.5m “ ;
B C D ] 123 mm 7

I E ) —A A
Hn»#——jm—*lm-l 0 mem
R R

Fig. 8-30
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At C the bending moment is given by the sum of the moments of the forces P/4 and R = P/2 about an axis
through C. Thus

o= ()5 + (£) a5 - Enem

The bending moment at D is equal to that at B by symmetry and the moment at each of the ends A and
E is zero. Hence, the bending moment diagram plots as in Fig. 8-31.

A A_F”g E
7 Xk

Fig. 8-31

Using the techniques described in Problem 8.13, we find the distance from the lower fibers of the
flange to the centroid to be 58.7 mm and the moment of inertia of the area about the ncutral axis passing
through the centroid to be 40 X 10° mm*.

It is perhaps simplest to calculate four values of P based upon the various maximum tensile and
compressive stresses that may exist at each of the points B and C and then select the minimum of these
values. Let us first examine point B. Since the bending moment therc is negative. the beam is concave
downward at that point, as shown in Fig. 8-32. Evidently the upper fibers are in tension and the lower
fibers are subject to compression. We shall first calculate a value of P, assuming that the allowable tensile
stress of 35 MPa is realized in the upper fibers. Applying the flexure formula o = My/I to these upper
fibers, we find

(—Pl4)(0.116)
40 % 10%(10 )

Next we shall calculate a value of P, assuming that the allowable compressive stress of 150 MPa is set up
in the lower fibers. Again applying the flexure formula, we find

(—P/4) (0.0587)

35x10°= P =483kN

- x = =
150 X 10° T
Tension : Compression :
; Compression ; Tension
Fig. 8-32 Fig. 8-33

We shall now examine point C. Since the bending moment there is positive. the beam is concave
upward at that point and appears as in Fig. 8-33. Here, the upper fibers are in compression and the lower
fibers are subject to tension. First we will calculate a value of P, assuming that the allowable tension of
35 MPa is set up in the lower fibers. From the flexure formula we find

(P/8) (0.0587)
40 X 105107 %)

Last, we shall assume that the allowable compression of 150 MPa is set up in the upper fibers. Applying
the flexure formula, we have

(35 % 10°) = P =191 kN

(P/8) (—0.116)
40 X 105109

The mimimum of these four values is P = 48,3 kN. Thus the tensile stress at the points B and D is the
controlling factor in determining the maximum allowable load.

~150x 10° = P = 414kN
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8.16. The cantilever beam A BC supports a uniform load over its right half and is of rectangular cross
section with a square cutout as shown in Fig. 8-34. If the maximum permissible stress in either
tension or compression is 140 MPa, determine the allowable uniform load w per unit length of

the beam.
¥
¥
44 35 mm
\§:
A By 3 ¢ 1 .

% ] C A‘G
N 08m 08m F=35.65 mm
N |

X

(@
Fig. 8-34

It is first necessary to locate the neutral axis (N.A.) of the beam. For entirely elastic action this passes
through the cross section of the beam and is given by (see Chap. 7)

_ _ (80)(50) (40) ~ (30) (30) (55) _
YT e e0 - eoey  emT

Also, by the methods of Chap. 7. the moment of inertia about the x-axis is
1, = 5(50) (80)’ — [12(30) (30)° + (900) (55)’]
= (8193.25) (10)* mm"

Use of the parallel-axis theorem of Chap. 7 leads to the moment of inertia about an axis parallel to x but
passing through the centroid, ie.. the xg; axis:

1. = (8193.25) (10°) mm* — [(3100) (35.65)’] = 4253.39 X 10" mm’

The tensile fibers along the top surface of the beam are at a greater distance (44.35mm) than the
compressive fibers along the lower surface (35.65 mm). For these extreme fibers in tension we have

o Me
i
M(44.35 mm) (m/1000 mm)

140 X 10° N/m? =
0 M~ 425339 x 10° mm? (m/1000 mm)"*

Salving,
M, . =13372N-m
From the loading conditions, M, = M,,,. so

M, = My = (0.8m+04m)w(0.8m)

Salving,
= (13,372N-m)
(1.2m) (0.8 m)
= 13,929.6 N/m
ar w = 13.93 kN/m
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8.17.

8.18.

The beam shown in Fig. 8-35 is of constant width b but the depth varies in the x-direction and
further the depth is symmetric about the x-axis. Loading is due to a vertical force at the tip of
the beam where x = L and y = 0. Determine the equation of the beam contour y = h(x) so that
outer fiber bending stresses are equal to oy at all points on the contour of the beam.

{(a)

The bending moment equation ’due to the concentrated load is —P(L — x). From Problem 8.12, the
section modulus of any cross section 1s given by bh*/6. The outer fiber bending stresses along the top surface
are, from Eq. (8.3).

_ M _P(L-x) _6P(L—x)
Z  (bH6) bk

Since it is specified that this stress must be equal to oy everywhere along the top surface, we have

6P(L —x)
bk

_ [PE=x
h = bor

This determines the beam contour for constant strength at all points along the length of the beam. This
solution neglects the effect of the singular point (L, 0) at the point of load application on stress distribution
in the immediate vicinity of the force P.

a

Ty

Solving,

A cantilever beam of circular cross section has the dimensions shown in Fig. 8-36. Determine
the peak bending stress in the beam due to the concentrated force applied at the tip A.

To express the moment of inertia of the cross section at any point along the length of the beam in terms
of the given geometry, we must first determine where the extensions of the top and bottom fibers would
meet on the x-axis. From Fig. 8-36 we immediately have from similar triangles:

xg; x+L

d 25d
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Solving,
X, = 2L 1
=73 )
The bending moment at any station located a distance x from this fictitious point of intersection is
L
M=-P [x 2k 2)
3
If we designate the beam diameter by D at this location x. we have from geometry
x _x _ 3
D=4 S0 D= oL 3

so that the cross-sectional moment of inertia at the general location x is

lfr?hD"r ™ 3dx "_( 81d* )x" )
64 64120 (64) (16)L*
From Eq. (8.2) we find the outer fiber bending stresses to be
o= M.  P(x—2L13)(3xd2L) _ 256PL° [x - 2U3] )
I [Blwd®/(64) (16)L]x*  9md? x*

Note that Eqg. (5) indicates that thc peak bending stress does not occur at the clamped end x = L.
To find where the outer fiber stresses reach a maximum value, we take the derivative do/dx and set
it equal to zcro to locate the critical value of x. Thus,

do _ (ﬁﬁpL-‘)[x-‘u) —(x— 2U3)3x2] o
dx  \ 9md’ © -

X
Solving, x = L measured from point Q. Substituting this value of x in Eq. (5). we find the peak outer fiber
bending stress to be

(6}

312

_256PLY[L-2L13] _ 256PL-‘)( 1 )_302PL
T ond” IR '( 9rd? Ra'E

Note that from Eq. (5) the outer fiber bending stress at the clamped end x = (L + 2L./3) is 1.96 PL/d?,
which is less than the peak value.

In a beam loaded by transverse forces acting perpendicular to the axis of the becam, not only
are bending stresses parallel to the axis of the bar produced but shearing stresses also act over
cross sections of the beam perpendicular to the axis of the bar. Express the intensity of these
shearing stresses in terms of the shearing force at the section and the properties of the cross
section.

The theory to be developed applies only to a cross section of rectangular shape. However, the results
of this analysis are commonly used to give approximate values of the shearing stress in other cross sections
having a plane of symmetry.

M M+ dM
\ Pz ¢
c_rv d Yo [4
- - ' ---J—N.A

a b
l—-da:—-l L— b—-l
Fig. 8-37
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Let us consider an clement of length dx cut from a bcam as shown in Fig. 8-37. We shall denote the
bending moment at the left side of the element by M and that at the right side by M + dM. since in general
the bending moment changes slightly as we move from one section to an adjacent section of the beam. If
y is measured upward from the neutral axis, then the bending stress at the left section a-a is given by

_ My

77

where I denotes the moment of inertia of the entire cross section about the neutral axis. This stress
distribution is illustrated above. Similarly, the bending stress at the right section b-b is
(M + dM)y

1

Let us now consider the cquilibrium of the shaded element acdb. The force acting on an area da of
the face ac is merely the product of the intensity of the force and the area: thus

M
ada = —.rzda

The sum of all such forces over the left face ac is found by integration to be

[

¥o

Likewise, the sum of all normal forces over the nght face bd is given by
“(M+
J’ (M !dM)y da
Yu

Evidently, since these two integrals are unequal, some additional horizontal force must act on the shaded
element to maintain equilibrium. Since the top face ab is assumed to be free of any externally applied
horizontal forces, then the only remaining possibility is that there exists a horizontal shearing force along
the lower face cd. This represents the action of the lower portion of the beam on the shaded element. Let
us denote the shearing stress along this face by 7 as shown. Also, let b denote the width of the beam at
the position where 7 acts. Then the horizontal shearing force along the face cd i1s 7h dx. For equilibrium
of the clement acdb we have

‘M (M +dM)y
EF;,=J' -—fyda—f a1+ dM)y +I MY ta+ sbdx =0
¥y Yo

Solving,

- LAM "
T dx Y
But from Problem 6.1 we have V = dM/dx, where V represents the shearing force (in pounds or Newtons)

at the section a-a. Substituting,

Vil

- [ yda (1)

¥u

T

The integral in this last equation represents the first moment of the shaded cross-sectional area about
the neutral axis of the beam. This area is always the portion of the cross section that is above the level at
which the desired shear acts. This first moment of area is sometimes denoted by Q in which case the above
formula becomes

Y

~w @)

T

The units of [ yda or of Q are in* or m*.

The shearing stress 7 just determined acts horizontally as shown in Fig. 8-37. However, let us consider
the equilibrium of a thin element mnop of thickness ¢ cut from any body and subject to a shearing stress
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Fig. 8-38

7; on its lower face, as shown in Fig. 8-38. The total horizontal force on the lower face is 7,rdx. For
equilibrium of forces in the horizontal direction, an equal force but acting in the opposite direction must
act on the upper face, hence the shear stress intensity there too is 7;. These two forces give rise to a couple
of magnitude 7,¢dx dy. The only way in which equilibrium of the element can be maintained is for another
couple to act aver the vertical faces. Let the shear stress intensity on these faces be denoted by 7,. The
total force on cither vertical face is 7, ¢dy. For equilibrium of the moments about the center of the element
we have

EM, = nyidxdy ~ 1ytdydx =0 or T =T

Thus we have the interesting conclusion that the shearing stresses on any two perpendicular planes
through a point on a body are equal. Consequently, not only are there shearing stresses 7 acting
horizontally at any point in the beam, but shearing stresses of an equal intensity also act vertically at that
same point.

In summary, when a beam is loaded by transverse forces, both horizontal and vertical shearing stresses
arise in the beam. The vertical shearing stresses are of such magnitudes that their resultant at any cross
section is exactly equal to the shearing force V' at that same section.

A beam of rectangular cross section is simply supported at the ends and subject to the single
concentrated force shown in Fig. 8-39%(a). Determine the maximum shearing stress in the beam.
Also, determine the shearing stress at a point 1 in below the top of the beam at a section 1 ft
to the right of the left reaction.

G20 Ib
4 ) | 2’

C T
s

of
L |
|
2000 Ib 4000 1b —
(@)

The reactions are readily found from statics to be 2000 Ib and 4000 Ib as shown. The shearing force
diagram for this type of loading appears in Fig. 8-39(b).

From the shear diagram. the shearing force acting at a section 1 ft to the right of the left reaction is
2000 Ib. The shcaring stress 7 at any point in this section a distance y, from the neutral axis was shown in
Problem 8.19 and also Eq. (8.5) to be

? Shesring “Teooo s
é s 4000 th_
2 —

L)

Fig. 8-39

55

At a point lin below the top fibers of the beam, y,=1lin. Also, we have h=4in and

I = bh’112 = 2(4)/12 = 10.67 in". Substituting,
01

_———— = = in?
Tyo—1 2(10_67) 2 1 ) 280 Ibh’ln
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85210

From Eq. (I) it is clear that the peak shearing stress occurs at the neutral axis where y, = 0. Thus,
4000 (47

max = ——1) = 750 Ib/in?

Tmax 2(10.67) ( 4 I) "

Note that for a rectangular cross section this peak shearing stress is 50 percent greater than the average
shearing stress, which is given by

4000

— Y 2
Tnean = Ye) 500 Ib/in

Consider the cantilever beam subject to the concentrated load shown in Fig. 8-40. The cross
section of the beam is of T-shape. Determine the maximum shearing stress in the beam and also
determine the shearing stress 25 mm from the top surface of the beam at a section adjacent to
the supporting wall.

The shear force has a constant value of S0kN at all points along the length of the beam. Because of
this simple, constant value the shear diagram need not be drawn.

The location of the centroid and the moment of inertia about the centroidal axis for this particular
cross section were determined in Problem 8.15. The centroid was found to be 58.7 mm above the lower
surface of the beam and the moment of inertia about a horizontal axis through the centroid was found to
be 40 X 10° mm®.

Bmm gq 75 mm

. S50kN '—_Hz-_mmm __Imnr%

V '2]'—"'"““_ 4 J “A116.3 m
7 NaA. P |

58 7 mm [

50 mm

Pl omm—l | | ]

M-ﬂmrﬂ‘“«f

Fig. 8-40 Fig. 8-41

The shearing stress at a distance y, from the neutral axis through the centroid was found in Problem
8.19 ta be

¥ir
Inspection of this equation reveals that the shearing stress is a maximum at the neutral axis. since at that
point y, = 0 and consequently the integral assumes the largest possible value. It is not necessary to
integrate, however, since the integral is known in this case to represent the first moment of the area
between the neutral axis and the outer fibers of the beam about the neutral axis. This area is represented
by the shaded region in Fig. 8-41. The value of the integral could also, of course, be found by taking the
first moment of the unshaded area below the neutral axis about the line, but that calculation would be
somewhat more difficult.

Thus the first moment of the shaded area about the neutral axis is

50(116.3) (58.15) = 3.38 x 10° mm?

and the shearing stress at the neutral axis, where b = 50 mm, is found by substitution in the above general
formula to be

. 50x10°
"7 50(30 % 105

In this formula b was taken to be 50 mm, since that is the width of the beam at the point where the shearing

(3.38 X 10°) = 8.45MPa
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stress is being calculated. Thus the maximum shearing stress is 8.45 MPa and it occurs at all points on the
neutral axis along the entire length of the beam, since the shearing force has a constant value along the
entire length of the beam.

The shearing stress 25 mm from the top surface of the beam is again given by the formula
“ ‘ vda
Now, the integral represents the first moment of the new shaded area shown in Fig. 8-42, about the neutral
axis. Again it is not necessary to integrate to evaluate the integral, since the coordinate of the centroid
of this shaded area is known. It is 103.8 mm above the neutral axis. Thus the first momcnt of this shaded
area about the neutral axis is 50(25) (103.8) = 1.3 X 10* mm"”. and the shearing stress 25 mm below the top
fibers is

T

50 % 10°

- 5y =3
™= Soao 1o (3 10°) = 325 MPa

50 mm
b= 75 m;nj I-']'fu e

25 mm%_i
r 116.3 mm

a | (|

Fig. 8-42

Again, b was taken to be 50 mm since that is the width of the beam at the point where the shearing stress
is being evaluated. Since the shearing force is equal to 50 kN everywhere along the length of the beam,
the shearing stress 25 mm below the top fibers is 3.25 MPa everywhere along the beam.

The vertically oriented wide-flange section shown in Fig. 8-43 is loaded by a single horizontal
concentrated force of 6.5 kN directed parallel to the z-axis. Determine the horizontal shear
stress distribution on a flange at a section 3 m above the lower clamped end in the x-z plane.

20 mm —={ |- 240 mm ~— 20 mm

vy 6SkN
(@)

- _ 1 z
” 3’ T ) Top view
H

(&)

Fig. 8-43 Fig. 8-44
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Figure 8-44 shows a typical horizontal cross section parallel to the x-z planc as well as dimensions of
the web and flange. The shear stress 7in this plane acts in the z-direction and at a distance z from the x-axis.
The specification of 3 m above the x-z plane is unimportant: all that matters is that the equation for shear
stress derived in Problem 8.19 does not apply at horizontal sections near either the bottom or top of the
vertically oriented bar. To apply Eq. (1) of Problem 8.19 to find = we must first determine the moment of
inertia of the cross section about the x-axis. From the methods of Chap. 7, we find

I = %(2) (20 mm) (200 mm)* + {5(240 mm) (20 mm)? = 2683 x 10° mm* (1

We next introduce a coordinate z running from the x-y plane in the direction of the z-axis, and appearing
as in Fig. 8-44. From Problem 8.19 we have here V = 6500 N, and the flange thickness b here is 0.02 m. The
integral in Problem 8.19 represents the first moment of the area extending from z to the extreme fibers
of the flange —that area is shaded in Fig. 8-44. Thus, we nced not integrate and we may cvaluate the first
moment of the shaded arca about the x’-axis by taking the product of the area and the distance of the
centroid of the area from the x’-axis: that is,

1+z

0.
[0.1 - z)(0.04m)]( -

m) or  (0.02)[(0.1) - '] m?

Equation (2) of Problem 8.19 now yields the desired shearing stress as

_ 6500 N
(26.83 x 10" °*m*) (0.02 m) (2)
= 12L.1[(0.1)* - %] (10%) 2)
At the point A where the value of z is zero, the peak shearing stress is found from Eq. (2) to be
74 = (121.1)[(0.1)° - 0] (10%) = 1.21 X 10° N/m* or  1.21 MPa

{(0.02) [(0.1)* — 2°} m’)

Consider a beam having an I-type cross section as shown in Fig. 8-45. A shearing force V of
150 kN acts over the section. Determine the maximum and minimum values of the shearing
stress in the vertical web of the section.

The shearing stress at any point in the cross section is given by

V [y
—}!—?‘[}da

as derived in Problem 8.19. Here, y, represents the location of the section on which 7 acts, and is measured
from the neutral axis as shown. In this expression, / represents the moment of incrtia of the entire cross
section about the neutral axis, which passes through the centroid of the section. I is readily calculated by
dividing the section into rectangles, as indicated by the dashed lines, and we have

= L(10) (350 + 2[5(200) (25)° + 200(25) (187.5)°] = 389 X 10° mm’*

d d |

! 25 mm
c bl [p ¢
Vo 200 mm
NA. _._ﬂ_.._\“_‘_‘._ dl lat [ 200mm g
25 mm

175 mm ¢ bpAb <
__I. 175 mm
25 mm

—-l '--Il]rnrn—r NA __afa A

100 mm—e] 0mm-e! la— i ke 0mm

Fig. 8-45 Fig. 8-46 Fig. 8-47
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Inspection of the general formula for shearing stress reveals that this stress has a maximum value when
¥o = 0, that is, at the neutral axis, since at that point the integral takes on its largest possible value. It 15
not necessary to integrate to obtain the value of f; yda, since this integral is shown to represent the first
moment of the area between y, = 0 (that is, the neutral axis) and the outer fibers of the beam. This area
is shaded in Fig. 8-46. For this area we have, taking its first moment about the neutral axis,

200
[ yda = 175(10) (87.5) + 200(25) (187.5) = 1.1 X 10° mm’
[

Consequently the maximum shearing stress in the web occurs at the section a-a along the neutral axis and
by substituting in the general formula for shearing stress is found 10 be

150 % 10°

The minimum shearing stress in the web occurs at that point in the web farthest from the neutral axis.
i.e.. across the section b-b. To calculate the shearing stress there, it is necessary to evaluate [ yda for the
area between b-b and the outer fibers of the beam. This is the shaded area shown in Fig. 8-47. Apgain, it
1s not necessary to integrate, since this integral merely represents the first moment of this shaded area
about the neutral axis. It is

200
J yda = 200(25) (187.5) = 9.375 X 10° mm?
175

The value of b is still 10 mm, since that is the width of the beam at the position where the shearing stress
is being calculated. Substituting in the general formula

150 x 10°
Towe = T T
100389 % 10°)
It is ta be noted that there is not too great a difference between the maximum and minimum values
of shearing stress in the web of the beam. In fact, it is customary to calculate only an approximate value

of the shearing stress in the web of such an I-beam. This value is obtained by dividing the total shearing
force V by the cross-sectional area of the web alone. This approximate value becomes

_ 100x 10°
Tav = (400) (10)

A more advanced analysis of shearing stresses in an I-beam reveals that the vertical web resists nearly
all of the shearing force V and that the horizontal flanges resist anly a small portion of this force. The shear
stress in the web of an I-beam is specified by various codes at rather low values. Thus some codes specify
70 MPa, others 9 MPa.

= (9375 X 10°) = 36.2 MPa

= 37.5MPa

Plastic Bending of Beams

8.24. Consider a beam of arbitrary doubly symmetric cross section, as in Fig. 8-48(a), subject to pure
bending. The material is considered to be elastic-perfectly plastic, i.e., the stress-strain diagram
has the appearance shown in Fig. 8-48(b) and stress-strain characteristics in tension and

Cuwp

L Y

(a) (3]
Fig. 8-48
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compression are identical. Determine the moment acting on the beam when all fibers a distance
y1 from the neutral axis have reached the yield point of the material.

Even though bending of thc beam has caused the outer fibers 1o have yielded it is still realistic to
assume that plane sections of the beam normal to the axis before loads are applied remain plane and
normal to the axis after loading. Consequently, normal strains of the longitudinal fibers of the beam still
vary linearly with the distance of the fiber from the neutral axis.

As the value of the applied moment is increased. the extreme fibers of the beam are the first to reach
the yield point of the material and the normal stresses on all interior fibers vary linearly as the distance
of the fiber from the neutral axis, as indicated in Fig. 8-49(a). A further increase in the value of the moment
puts interior fibers at the yield point, with yielding progressing from the outer fibers inward., as indicated
in Fig. 8-49(b). In the limiting case when all fibers (except those along the neutral axis) are stressed to the
yield point the normal stress distribution appears as in Fig. 8-49(c). The bending moment corresponding
1o Fig. 8-49(c) is termed a fully plastic moment. For the type of stress-strain curve shown in Fig. 8-48(b),
no greater moment is possible.

i i F— o
S R -

._r_.__.:.:_.__ e D
LA §'J

Neutral v N

Axis

J )

-

-

o
-

(a) Fully elastic (b) Elasto-plastic (¢) Fully plastic
action in all action action

except outer fibers
Fig. 8-49

For a beam in pure bending, the sum of the normal forces over the cross scction must vanish. Hence,
for the doubly symmetric section under consideration, it is evident from inspection of Fig. 8-49(b) that the
neutral axis must pass through the centroid of such a section; i.e., the area above the neutral axis must be
equal to the area below that axis. However, in Problem 8.29 it will be found that for a more gencral,
nonsymmetric cross section the location of the neutral axis after certain of the fibers have yielded is not
the same as that found for purely clastic action where the neutral axis passes through the centroid of the
Cross section.

From Fig. 8-48(b) we have for y <y,:

2% oo o= o
Yy »n Y

and for y > y,:0 = 0,, = constant. Thus the bending moment is

b Ls
M= Icryda = zj l’-a,,,ydﬁzj o,,yda
1] Y1 i3]

20- M €
=—% | yda+20,,| yda
Y o ¥

For a beam of rectangular cross section determine the moment acting when all fibers a distance
¥ from the neutral axis have reached the yield point of the material.
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Fig. 8-50

From the result of Problem 8-24 for the geometry indicated in Fig. 8-50 we have
cty )

1
M =222 (260) + 20, b0 -3

yi \3
b
= (bcz_g},i)g‘p

For the limiting case when y, = 0 which is indicated by Fig. 8-49(c) of Problem 8.24 the fully plastic
moment of this rectangular beam is
bh*

= Oy (1)

M,l‘! = t}"zo-vp = 4

It is to be noted that the maximum possible elastic moment, i.c.. when the extreme fibers have
just reached the yield point but all interior fibers are in the elastic range of action as indicated by
Fig. 8-49(a), is

— Oy, (2)

Thus, for a rectangular cross section, the fully plastic moment is 50 percent greater than the maximum
possible elastic moment.

Determine the fully plastic moment of a rectangular beam, 1 X 2 in in cross section, of steel with
a yield point of 38,000 Ib/in’. Compare this with the maximum possible elastic moment that this
same section may carry.

From (1) of Problem 8.25, the fully plastic moment is

M, = "j’" (38,000) = 38,0001b - in

From (2) of that samc problem. the maximum possible elastic moment is

ey

M. =~

(38.000) = 25,400 Ib-in

It is evident that M, is 50 percent greater than M..

For a beam of rectangular cross section (Fig. 8-51) determine the relation between the bending
moment and the radius of curvature when all fibers at a distance y, from the neutral axis have
reached the yield point of the material.

As in Problem 8.25, we assume that plane scctions before loading remain plane and normal to the
beam axis after loading. Because of this, normal strains of the longitudinal fibers vary linearly as the
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b
- 1
% NA. 1 .
Fig. 8-51

distance of the fibers from the neutral axis. Thus, if €,,, denotes the strain of the fibers at a distance y, from
the neutral axis and e, represents the outer fiber strain, we have

& _ S o
LI Ut
Consideration of the geometry of an originally rectangular element of length dx along the beam axis,
as shown in Fig. 8-52(a), reveals that after bending it assumes the configuration indicated in Fig. 8-52(b).
From that sketch we have

1 db e
—_—— = 2
R dx «¢ @)
|I___ dz
¢
N.A. .
(a) {b)
Fig. 8-52

dx y Ey,

since the fibers a distance y, from the neutral axis obey Hooke’s law: o, = E€,,. From Problem 8.25, the
moment corresponding to these strains is

n b .\o
M = (bf‘yu -5}’?)—” 4
Yi

Thus, from (3) and (4),

de M

dx  Eby(@-57) )
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Finally, from (2) and (5) we have
1 M
R EKMIM)V3 -2MIM,

where M, = bh* /6 as in Problem 8.25. This is the desired relation between the bending moment M and
the radius of curvature R. Equation (6) plots as shown in Fig. 8-53.

(6)

o[

Fig. 8-53

8.28. Consider a beam of rectangular cross section where b = 25 mm, h = 10 mm. The material is steel
for which ¢,, = 200 MPa and E = 200 GPa. Determine the radius of curvature corresponding
to the maximum possible elastic moment and also the radius of curvature for a moment of
100N -m.

From (2) of Problem 8.25, the maximum possible elastic moment is

_ 0.025(0.01)

M, (200 X 10°) = 83N -m

The curvature corresponding to this moment is found from (6) of Problem 8.27 to be

i 83
LI =02 R=5
R (200 x 10°)[(0.025) (0.01)112) V3 - 2 or m

The value of y, corresponding to a moment of 100 N - m may be found from Problem 8.25 to be 4 mm.
The curvature corresponding to this is found from (6) of Problem 8.27 to be
100

1
R~ (200 X 10°) [(0.025) (0.01)712) V3 — 20083 0312 or R=32Zm

8.29. Consider the more general case of a beam with a cross section symmetric only about the vertical
axis, as shown in Fig. 8-54(a). For fully plastic bending [Fig. 8-54(b)), determine the location of
the neutral axis.

Although the location of the neutral axis is unknown, let us denote the area of that portion of the cross
section lying below that axis by A, and the area of the portion above that axis by 4,. As shown by
Fig. 8-54(b). all fibers in A, are subject to a tensile stress equal to the yield point of the material and all
fibers in A; are subject 10 the same magnitude compressive stress. For horizontal equilibrium of these
forces, we have

UWA|_0.YPA2=0 (})
. A
from which A =A4;= 5 (2)
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Fig. 8-54

where A is the area of the entire cross section. Thus, for fully plastic action, the neutral axis divides the
cross section into two equal parts. This is in contrast to the situation for fully elastic action, where the
neutral axis was found in Problem 8.1 to pass through the centroid of the cross section.

Also, the sum of the moments of the tensile and compressive stresses must equal the applted moment
M,, the fully plastic moment. If y; and y, denote the distances from the neutral axis to the centroids of the
areas A, and A,, respectively, then from statics

aypA] ?I + U,pAz?z = MP (3)
From (2) this becomes
A _
"w;()’t +y)) =M, (4
M
= r 5
or % = () Gy +59) <)
This is frequently written in the form
M
Oyp = 'Zf' (6)

where Z, = (A/2) (y; +¥:) is termed the plastic section modulus.

For a W8 X 40 wide-flange section of steel having a yield point of 38,000 lb/in?, determine the
fully plastic moment. Compare this with the maximum possible elastic moment that the same
section can carry.
From Problem 8.29, the fully plastic moment M, is given by
M,=0,2,
where Z, is the plastic section modulus. For selected wide-flange sections Z, is tabulated at the end of this
chapter. In particular, for this section it is found to be 39.9 in*. Thus
M, = 38,000(39.9) = 1,520,0001b - in
The maximum possible elastic moment is M, = o, Z where Z is the usual (elastic) section modulus.
Thus
M, = 38,000(35.5) = 1,350,0001b- in

The plastic moment is only 12.6 percent greater than the maximum elastic moment for this particular
section. In fact, the fully plastic moment usually exceeds the maximum possible elastic moment by
approximately 12 to 15 percent for most wide-flange sections.

Consider the T-section shown in Fig. 8-55(a) in which all fibers in the vertical web at a distance
y: from the neutral axis have reached the yield point of the material, whereas all other fibers
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are still in the elastic range of action. Determine the location of the neutral axis and also the
moment that corresponds to this stress distribution.

The neutral axis (described by the unknown ¢;) may be located by investigating the normal forces over
the cross section as shown in Fig. 8-55(b). From geometry

ag Ty or o 5—q
— T Sr— —_— 0
S5—q »i 0 » »
% _ % ,_4-a
4—¢; W o o »i Tre
Ly p—w—f
el N o
v g v
N ° vat| TP T
4-¢ [
1 — e e R
e
— s — — vo—
{e) (b)
Fig. 8-55

For the resultant normal force to vanish

ZFy = (= y)()oy, +yl(l)(£2£)

{[F2s- ) G | - [ 52

from which we obtain the quadratic equation
A= @n+14)e +0i+43) =0 )

which determines ¢, for any specified value of y,. This locates the neutral axis. Note that since y; occurred
in the denominator in the above derivation, the equation should not be used to locate the neutral axis if
y1 = 0. Thus, when the action is entirely elastic the neutral axis passes through the centroid of the cross
section. As plastification increases (i.c., as y, decreases), the neutral axis shifts to the location indicated
by ().

The moment corresponding to the stresses in Fig. 8-55(#) may be found from

M=J'0'yda

- J.y —ao,(y)(1)dy + Iq a,,(y) (1) dy

(5— c,j- y
— Cl

5 1"‘)(«,,,) )3 dy

{4— ‘-1]

j “ "‘) () (1) @) dy

_CI

or m=22 2 RG s s-ap-2e-ar] @
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8.33.

For the T-section of Problem 8.31 determine the location of the neutral axis when the action is
fully plastic over the entire cross section. For fully plastic action determine the moment-carrying

capacity and compare this with the maximum possible elastic moment.

- oy
& -—
A -
N.A, — ~
1" _-:._:
b —of % |

(@) (®
Fig. 8-56

In this case, the normal forces appear as indicated in Fag. 8-56(b). For equilibrium of normal forces
over the cross section, we have

=0 (1) (e} + [0,p(5 — €1} (3) — 7, (4 — 1) ()] = 0

from which ¢; = 3.5 in. Thus, as mentioned in Problem 8.29, for fully plastic action the neutral axis divides

the cross section into two equal parts.
The moment corresponding to this fully plastic action is

M, = Iﬂydﬂ
(4-0q)

€ (5-cy)
jaw(y)<1)dy+ f o, (¥) (3)dy - f o) (2) dy

0 0

= o,,[ci — Te; +21.5]
For ¢; = 3.5 this becomes
M, =925q,,

By setting y; = ¢; in (1) of Problem 8.31, the neutral axis is located for the case of the maximum
possible elastic moment. This location is found to be ¢, = 3.07 in (i.c., the neutral axis passes through the
centroid of the cross section). The maximum possible elastic moment is found from (2) of Problem 8.31

to be
M, =5.320,

‘The fully plastic moment exceeds this value by 74 percent.

A beam is of square cross section, oriented as shown in Fig. 8-57, and carries a vertical load. 1f
only the extreme top and bottom fibers reach the yield point, determine the maximum allowable
elastic bending moment. Also, if the stress reaches yield at all fibers, determine the fully plastic

moment.
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Sils

Fig. 8-57

If tensile yield is reached at fiber B and compressive yield at fiber D, the stress distribution over the

cross section is given by (see Problem 8.1)
Mc
T @)

To determine /, we consider the cross section to consist of triangles ABC and ADC. For cach of these we
have, from Problem 7.7,

I = Lok’ 2)
So for the entire cross section the moment of inertia is
1/ 2a a

1=2(5(35)(35) |

ﬂ,ﬁ
2 3

So from Eq. (1) at the extreme fibers we have
a
M
(35)

(5)

_ (om)a-"\/i
12

Typ =

~M,

For fully plastic action over the entire cross section we have the stress distribution shown in
Fig. 8-58.
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The resultant of the compressive stresses above AC is

)

) g e

which acts at the centroid of triangle ABC, and the resultant of the tensile stresses below AC is

= l(ﬁ)(i)a T,
2 \/i \/i L 20
acting at the centroid of triangle ADC. These forces form a couple of magnitude
2

o (oo () -

It is also of interest to form the ratio M, /M.

(5]

&:—_——-zz
M,

(5

Supplementary Problems

A beam made of titanium, type Ti-6Al-4V, has a yield point of 120,000 Ib/in’. The beam has 1-in X 2-in
rectangular cross section and bends about an axis parallel to the 1-in face. If the maximum bending stress
is 90,000 Ib/in?, find the corresponding bending moment.  Ans.  60,0001b-in

A cantilever beam 3 m long carries a concentrated force of 35 kN at its free end. The material is structural
steel and the maximum bending stress is not to exceed 125 MPa. Determine the required diameter if the
bar is to be circular.  Ans. 204 mm

Two %—in X 8-in cover plates are welded to two channels 10 in high to form the cross section of the beam
shown in Fig. 8-59. Loads are in a vertical plane and bending takes place about a horizontal axis. The
moment of inertia of each channel about a horizontal axis through the centroid is 78.5 in®. If the maximum
allowable elastic bending stress is 18,000 Ib/in’, determine the maximum bending moment that may be
devcloped in the beam.  Ans.  1,232.0001b-in

Vol d sl r et d 3in

10in

LA

A SIIIIIISSD ) 1%‘m

TR
% Z ,4/////5

Bin

Fig. 8-59
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8.38.

8.39.

8.40.

8.41.

8.42.

8.43.
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A 250 mm decp wide-flange section with / = 61 X 10° mm® is used as a cantilever beam. The beam is 2 m
long and the allowable bending stress is 125 MPa. Determine the maximum allowable intensity of uniform
load that may be carried along the entire length of the beam. Ans.  30.5 kN/m

The beam shown in Fig. 8-60 is simply supported at the ends and carries the two symmetrically placed loads

of 60kN ecach. If the working stress in either tension or compression is 125 MPa, what is the required
moment of nertia of area required for a 250-mm-deep beam?  Ans 60X 10° mm*

60 kN 60 kN

{ ‘ ; 1
e LY

Fig. 8-60

Consider the simply supported beam subject to the two concentrated forces (60 kN each) shown in Fig.
8-60. Now, the beam is of hollow circular cross section as shown in Fig. 8-61, with an allowable working
stress in either tension or compression of 125 MPa. Determine the necessary outer diamcter of the
beam. Ans  174mm

20,000 1b
1000 Ib/ft

Fig. 8-61 Fig. 8-62

Consider a simply supported beam carrying the concentrated and uniform loads shown in Fig. 8-62, Select
a suitable wide-flange section to resist these loads based upon a working stress in either tension or
compression of 20,000 Ib/in?>.  Ans. W12 x 25

Select a suitable wide-flange section to act as a cantilever beam 3m long that carries a uniformly
distributed load of 30 kN/m. The working stress in either tension or compression is 150 MPa.
Ans.  W305 X 66

A beam 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The
beam is of rectangular cross section, 75 mm X 150 mm. Determine the magnitude and location of the peak
bending stress. Also, find the bending stress at a point 25 mm below the upper surface at the section
midway between supports.  Ans. 40 MPa, —26.8 MPa

Reconsider the steel beam of Problem 8-42. Determine the maximum bending stress if now the weight of
the beam is considered in addition to the load of 10 kN/m. The weight of steel is 77.0 kN/m”.

Ans. 43.6 MPa
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8.44. The two distributed loads are carried by the simply supported beam as shown in Fig. 8-63. The beam is
a W8 X 28 section. Determine the magnitude and location of the maximum bending stress in the beam.
Ans. 9000 1Ib/in?, 5.5 ft from the right support

8.45. A T-beam having the cross section shown in Fig. 8-64 projects 2 m from a wall as a cantilever beam and
carries a uniformly distributed load of 8 kN/m, including its own weight. Determine the maximum tensile
and compressive bending stresses.  Ans.  +38.5MPa, —81 MPa

4

1200 Ib/ft 25 mm

& i i

! 1.

1——-6’—-‘-—6'_4“._ s'_..l S0 mn_'n_zls ml:n_m mm

Fig. 8-63 Fig. 8-64

8.46. The simply supported beam AC shown in Fig. 8-65(a) supports a concentrated load P. The beam section
is rectangular, 60 mm by 100 mm, with two square cutouts as shown in Fig. 8-65(b). If the allowable working
stress is 120 MPa, determine the maximum value of P. Ans. 1.BOKN

L. B HoN ?/ 10 mm

05m |’ 1.5m |l /
(@) 4/?7/

Fig. 8-65

8.47. A simply supported steel beam of channel-type cross section is loaded by both the uniformly distributed
load and the couple shown in Fig. 866. Determine the maximum tensile and compressive stresses.
Ans. 31.2 MPa, —56.8 MPa

0 kN-m =~ |- 225 mm-—l |-

™
—I”;];” 40 mm 200 mm
3m l:ﬁm_.l —l-
Fig. 8-66
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848. A beam of circular cross section has the geometry shown in Fig. 8-67 and is subjected to a single
concentrated vertical force at its midpoint. Determine the location of the point of maximum bending stress
and the value of that stress. Ans. x= LA, a,,, = 0377 PLId?

y P
24
af 4—- - -~
I L L |
2 T 2 o
Fig. 8-67

849. A channel-shape beam with an overhanging end is loaded as shown in Fig. 8-68. The material is gray cast
iron having an allowable working stress of 50001b/in? in tension and 20.0001b/in’ in compression.
Determine the maximum allowable value of P. Ans. 24001b

2}1 P e et 200 Ib/ft t,__
%
S y
|—_ ¢ J'_ "_‘L’"I L J//:/j%‘?// “ R:-t 10 —iﬂz _L Z
Fig. 8-68 Fig. 8-69

8.50. In Fig. 8-69 the simply supported beam of length 10 ft and cross section 4 in X 8 in carries a uniform load
of 200 Ib/ft. Neglecting the weight of the beam, find (a) the maximum normal stress in the beam, (b) the
maximum shearing stress in the beam. and (c¢) the shearing stress at a point 2 ft to the right of R, and 1 in
below the top surface of the beam.  Ans.  (a) 705 Ib/in®, (b) 47 Ibfin?, (¢) 12.3 Ib/in?

8.51. Determine (a) the maximum bending stress and (b) the maximum shearing stress in the simply supported
beam shown in Fig. 8-70. Ans.  (a) 22,000 1b/in?, (b) 1660 Ibfin?

4000 Ib/ft

b
NN f

3

Fig. 8-70

8.52. For a bar of solid circular cross section, determine the amount by which the fully plastic moment exceeds
the moment that jusi causes the yield point to be reached in the extreme fibers. Ans.  69.6 percent
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8.53. Consider bending of a bar of isosceles triangular cross section (Fig. 8-71). The loads lie in the vertical plane
of symmetry. Determine the ratio of the fully plastic moment to the moment that just causes yielding of
the extreme fibers. Ans. 248

8.54. For the T-section shown in Fig. 8-72, determine the location of the neutral axis for fully plastic action.
Ans.  137.5 mm above the lowest fibers of the section

I I _4_25 " Hmm

e S

50 mm S0 mm

I—-— b -
_'1_|_ 150 mm i y:-[ _[t}ﬂrnm

] Tamm|
h

g TrT——
| —-ll's mt_ e 10 mm
Fig. 8-71 Fig. 8-72 Fig. 8-73

8.55. A bar of solid circular cross section of radius r is subject to bending. By what percent does the bending
moment required to cause plastic action at the distance r/2 from the neutral axis exceed that required to
just cause the yield point to be reached in the extreme fibers? Ans.  49.2 percent

8.56. For the section shown in Fig. 8-73 determine the value of y, which represents the point where elastic action
terminates and plastic flow begins, when the beam is subject to a bending moment of 20kN-m.
Also determine the radius of curvature. Take the yield point of the material to be 200 MPa, and
E =200 GPa. Ans. y;,=474mm, R=526m

8.87. A wide-flange section 600 mm high has welded to each of its flanges a 25 mm thick cover plate (see Fig.
8-74). The moment of inertia of the section is 1000 X 10° mm®. At a particular location along the length
of the beam, the transverse shear force is 300 kN. Determine the shear force per unit length existing in each
of the four welds. Ans. 146 N/mm

&00 mm S

. i
i |
25 mm | 320mumn U

Fig. 8-74
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Table 8-1. Properties of Selected Wide-Flange Sections, USCS Units
Weight per fool, Arca, 1 (about x-x axis). Z. I tabout y-y axis),

Designation® [bift in” in® in’ in*

WIS X T 700 20.56 11539 128.2 8.5
W IR x 55 55.0 16.19 BEY 9 982 420
W I2x72 720 21.16 597.4 915 195.3
W 12X 58 58.0 17.06 476.1 8.1 107.4
W12 x50 50.0 14.71 3945 67 56.4
W 12 % 45 45.0 1324 350.8 58.2 500
W 12 x40 400 17 3l 519 44.1
W 12X 36 36.0 10.59 280.8 45.9 237
W12 x 32 320 941 246.8 40.7 20.6
W 12x25 250 7.39 iK3.4 309 14.5
W 10 x 89 890 26.19 5424 99.7 180.6
W 10X 54 5440 15.88 305.7 60.4 103.9
W 10> 49 49.0) 14.40 29 54.6 9.0
W 10 x 45 450 13.24 248.6 49.1 532
W10 x 37 7.0 10.88 196.9 399 422
W 10 x 29 29.0 8.53 157.3 30.8 15.2
Wi x23 230 677 120.6 24.1 1.3
W10x21 21.0 6.19 106.3 215 9.7
W Bx40 0.0 11.76 146.3 355 490
W Bx35 35.0 iu.30 126.5 KNI 4?25
W Rx3l 0 9.12 109.7 274 Ry X)]
W Bx28 280 823 97.8 243 2.6
W 8x27 270 793 94.1 234 208
W Hx24 240 706 82.5 208 18.2
W Bx19 19.0 5.59 64.7 160 79
W 6x 15} 15.5 4.62 28. 9.7 9.7

Z, (plasuc section modulus),

in'
144.7
1n.e

8.1
R6.5
2.6
69
5§76
514
450
50

4.4
67.0
603
550
450
347
337
241

399
347

271
239
231
17.7

1.3

*The first rumbcr after the W 1s the normunal depth of the section in nches. The second number is the weight in pounds per foot of length.
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Table 8-2. Properties of Selected Wide-Flange Sections, SI Units
Mass per meter, Area, I (about x-x axis), z, I {(about y-y axis), Z, (plastic section modulus),
Designation* kg/m mm? 10* mm* 10° mm?* 10* mm?* 10° mm’
W 460 x 103 102.9 13,200 479 2100 326 2370
W 460 x 81 809 10,400 369 1610 17.4 1820
W 305 % 106 105.8 13,600 248 1590 81.0 1770
W 305 x 85 853 11,000 198 1280 44.6 1410
W 305x74 735 9480 164 1060 234 1190
W 305 x 66 66.2 8,530 146 952 20.7 1060
W 305 x 59 588 7.580 129 849 183 942
W 305x 53 529 6,820 117 750 9.83 840
W 305 x 47 47.0 6,060 102 665 8.55 736
W 305 % 37 36.8 4,760 76.1 505 6.02 572
W 254 x 131 1308 16,900 225 1630 749 1870
W 254 x 79 794 10,200 127 988 43.1 1100
W 254 %72 720 9280 113 893 38.6 986
W 254 x 66 66.2 8530 103 803 22.1 899
W 254 x 54 54.4 7.010 8.7 652 17.5 736
W 254 %43 42.6 5,490 653 504 6.31 567
W 254 x 34 338 4,360 50.0 394 4.69 551
W 254 x 31 309 3990 4.1 352 4.02 394
W 203 X 59 588 7,580 60.7 580 203 652
W 203 % 51 514 6,630 52.5 508 17.6 567
W 203 X 46 45.6 5.870 45.5 448 15.4 497
W 203 X 41 41.2 5,300 40.6 397 896 443
W 203 X 40 39.7 5110 39.0 383 863 391
W 203 x 35 353 4,550 34.2 340 7.55% 378
W 203 x 28 279 3,600 26.8 262 3.28 290
W 152%23 228 2,980 117 159 4.02 185

*The first number after the W is the nominal depth of the section in millimeters. The second number is the mass in kilograms per meter of length.



Chapter 9

Elastic Deflection of Beams:
Double-Integration Method

INTRODUCTION

In Chap. 8 it was stated that lateral loads applied to a beam not only give rise to internal bending
and shearing stresses in the bar, but also cause the bar to deflect in a direction perpendicular to its
longitudinal axis. The stresses were examined in Chap. 8 and it is the purpose of this chapter and also
Chap. 10 to examine methods for calculating the deflections.

DEFINITION OF DEFLECTION OF A BEAM

The deformation of a beam is most easily expressed in terms of the deflection of the beam from
its original unloaded position. The deflection is measured from the original neutral surface to the
neutral surface of the deformed beam. The configuration assumed by the deformed neutral surface
is known as the elastic curve of the beam. Figure 9-1 represents the beam in its original undeformed
state and Fig. 9-2 represents the beam in the deformed configuration it has assumed under the action
of the load.

I'P

i
Wé:* . ,,;3,, \0 : — ol

Fig. 9-1 Fig. 9-2

The displacement y is defined as the deflection of the beam. Often it will be necessary to determine
the deflection y for every value of x along the beam. This relation may be written in the form of an
equation which is frequently called the equation of the deflection curve (or elastic curve) of the
beam.

IMPORTANCE OF BEAM DEFLECTIONS

Specifications for the design of beams frequently impose limitations upon the deflections as well
as the stresses. Consequently, in addition to the calculation of stresses as outlined in Chap. 8, it is
essential that the designer be able to determine deflections. For example, in many building codes the
maximum allowable deflection of a beam is not to exceed 55 of the length of the beam. Components
of aircraft usually are designed so that deflections do not exceed some preassigned value, else the
aerodynamic characteristics may be altered. Thus, a well-designed beam must not only be able to carry
the loads to which it will be subjected but it must not undergo undesirably large deflections. Also, the
evaluation of reactions of statically indeterminate beams involves the use of various deformation
relationships. These will be examined in detail in Chap. 11.

220



CHAP. 9] ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD 221

METHODS OF DETERMINING BEAM DEFLECTIONS

Numerous methods are available for the determination of beam deflections. The most commonly
used are the following:

1. Double-integration method
2. Method of singularity functions
3. Elastic energy methods

The first method is described in this chapter, the use of singularity functions is discussed in Chap.
10, and elastic energy methods are treated in Chap. 15. It is to be carefully noted that all of these
methods apply only if all portions of the beam are acting in the elastic range of action.

DOUBLE-INTEGRATION METHOD

The differential equation of the deflection curve of the bent beam is

d'y
EI ™ (9.1)
where x and y are the coordinates shown in Fig. 9-2. That is, y is the deflection of the beam. This
equation is derived in Problem 9.1. In the equation E denotes the modulus of elasticity of the beam
and 7 represents the moment of inertia of the beam cross section about the neutral axis, which passes
through the centroid of the cross section. Also, M represents the bending moment at the distance x
from one end of the beam. This quantity was defined in Chap. 6 to be the algebraic sum of the moments
of the external forces to one side of the section at a distance x from the end about an axis through this
section. Usually, M will be a function of x and it will be necessary to integrate (9.1) twice to obtain an
algebraic equation expressing the deflection of y as a function of x.
Equation (9.7) is the basic differential equation that governs the elastic deflection of all beams
irrespective of the type of applied loading. For applications, see Problems 9.2 through 9.14 and 9.16
through 9.22.

THE INTEGRATION PROCEDURE

The double-integration method for calculating deflections of beams merely consists of integrating
(9.1). The first integration yields the slope dy/dx at any point in the beam and the second integration
gives the deflection y for any value of x. The bending moment M must, of course, be expressed as a
function of the coordinate x before the equation can be integrated. For the cases to be studied here
the integrations are extremely simple.

Since the differential equation (9.7) is of the second order, its solution must contain two constants
of integration. These two constants must be evaluated from known conditions concerning the slope or
deflection at certain points in the beam. For example, in the case of a cantilever beam the constants
would be determined from the conditions of zero change of slope as well as zero deflection at the
built-in end of the beam.

Frequently two or more equations are necessary to describe the bending moment in the various
regions along the length of a beam. This was emphasized in Chap. 6. In such a case, (9./) must be
written for each region of the beam and integration of these equations yields two constants of
integration for each region. These constants must then be determined so as to impose conditions of
continuous deformations and slopes at the points common to adjacent regions. See Problems 9.17
through 9.19.
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SIGN CONVENTIONS

The sign conventions for bending moment adopted in Chap. 6 will be retained here. The quantities
E and I appearing in (9.7) are, of course, positive. Thus, from this equation, if M is positive for a certain
value of x, then d”y/dx” is also positive. With the above sign convention for bending moments, it is
necessary to consider the coordinate x along the length of the beam to be positive to the right and the
deflection y to be positive upward. This will be explained in detail in Problem 9.1. With these algebraic
signs the integration of (9.7) may be carried out to yield the deflection y as a function of x, with the
understanding that upward beam deflections are positive and downward deflections negative.

ASSUMPTIONS AND LIMITATIONS

In the derivation of (9.7) it is assumed that deflections caused by shearing action are negligible
compared to those caused by bending action. Also, it is assumed that the deflections are small
compared to the cross-sectional dimensions of the beam and that all portions of the beam are acting
in the elastic range. Equation (9.7) is derived on the basis of the beam being straight prior to the
application of loads. Beams with slight deviations from straightness prior to loading may be treated by
modifying this equation as indicated in Problem 9.25.

Solved Problems

9.1.  Obtain the differential equation of the deflection curve of a beam loaded by lateral forces.
In Problem 8.1 the relationship

El
M=—= ()
P
was derived. In this expression M denotes the bending moment acting at a particular cross section of the
beam, p the radius of curvature to the neutral surface of the bcam at this same section, £ the modulus of
elasticity, and I the moment of the cross-sectional area about the neutral axijs passing through the centroid
of the cross section. In this book we will usually be concerned with those beams for which £ and [ are
constant along the entire length of the beam, but in general both M and ¢ will be functions of x.
Equation (/) may be written in the form
LM (2
p EI )
where the left side of Eq. (2) represents the curvature of the neutral surface of the beam. Since M will vary
along the length of the beam, the deflection curve will be of variablc curvature.

Let the heavy line in Fig. 9-3 represent the deformed neutral surface of the bent beam. Originally the
beam coincided with the x-axis prior to loading and the coordinate system that is usually found to be most
convenient is shown in the sketch. The deflection y is taken to be positive in the upward direction: hence
for the particular beam shown, all deflections are negative.

Ry mar—

'I
O~ —

Fig. 9-3
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9.2.

An expression for the curvature at any point along the curve representing the deformed beam is
readily available from differential calculus. The exact formula for curvature is
1_ &’ yldx* @3
P L+ (dide)P" )
In this expression, dy/dx represents the slope of the curve at any point; and for small beam deflections this

quantity and in particular its square are small in comparison to unity and may reasonably be neglected.
This assumption of small deflections simplifies the expression for curvature into

1 d
Hence for small deflections, (2) becomes d*y/dx* = M/EI or
d’y
EI=% =M (5)

This is the differential equation of the deflection curve of a beam loaded by lateral forces. In honor of its
codiscoverers, it is called the Euler-Bernoulli equation of bending of a beam. In any problem it is necessary
to integrate this equation to obtain an algebraic relationship between the deflection y and the coordinate
x along the length of the beam. This will be carried out in the following problems.

Determine the deflection at every point of the cantilever beam subject to the single concentrated
force P, as shown in Fig. 9-4.

¥
( ’ | . ﬂ“’ D

— .

Fig. 9-4 Fig. 9-5

The x-y coordinate system shown is introduced. where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. It is first
necessary to find the reactions exerted by the supporting wall upon the bar, and these are easily found from
statics to be a vertical force reaction P and a moment PL as shown.

The bending moment at any cross section a distance x from the wall is given by the sum of the
moments of these two reactions about an axis through this section. Evidently the upward force P produces
a positive bending moment Px, and the couple PL if acting alone would produce curvature of the bar as
shown in Fig. 9-5. According to the sign convention of Chap. 6. this constitutes negative bending. Hence
the bending moment M at the section x is

M= —-PlL~+ Px
The differential equation of the bent beam is

&y
EIE = M

where E denotes the modulus of elasticity of the material and I represents the moment of inertia of the
cross section about the neutral axis. Substituting,
d’y

_— = +
EI—5=—PL+ Px (1)
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This equation is readily integrated once to yield

d Px?
E:d—i = ~PLx+—+G, )

which represents the equation of the slope, where C, denotes a constant of integration. This constant may
be evaluated by use of the condition that the slope dy/dx of the beam at the wall is zero since the beam
is rigidly clamped there. Thus (dy/dx),-o = 0. Equation (2) is true for all values of x and y, and if the
condition x = 0 is substituted we obtain 0 =0+0+ C, or C, = 0.

Next, integration of (2) yields

2
Ely = —PL5—2—+ f{-+(‘z 3)

where C, is a second constant of integration. Again, the condition at the supporting wall will determine
this constant. There, at x = 0, the deflection y is zero since the bar is rigidly clamped. Substituting
(h-0=0inEq. (3),we find0=0+0+Cor ;=0.

Thus Egs. (2) and (3) with C, = C;, = 0 give the slope dy/dx and deflection y at any point x in the
beam. The deflection is a maximum at the right end of the beam (x = L), under the load P, and from
Eq. (3).

-pL>

Ely.. =
4 3

4

where the negative value denotes that this point on the deflection curve lies below the x-axis. If only the
magnitude of the maximum deflection at x = L is desired, it is usually denoted by A, and we have

PL’

Amax = EEE {5)

The cantilever beam shown in Fig. 9-4 is 3 m long and loaded by an end force of 20 kN. The
cross section is a W203 X 59 steel section, which according to Table 8-2 of Chap. 8 has
I1=60.7%10 °m* and Z = 580 X 10"°* m*. Find the maximum deflection of the beam. Take
E = 200 GPa.

The maximum deflection occurs at the free end of the beam under the concentrated force and was
found in Problem 9.2 to be, by Eq. (4),

PL* (20,000 N) (3 m)*

Ymex = T3ET T T 3(200 x 10° N/m?) (60.7 X 10 5 m?)

= —=0.0148 m or 14.8 mm

The negative sign of course indicates downward deflection. In the derivation of this deflection formula it
was assumed that the material of the beam follows Hooke's law. Actually. from the above calculation alone
there is no assurance that the material is not stressed beyond the proportional limit. If it were then the
basic beam-bending equation El(d”y/dx’) = M would no longer be valid and the above numerical value
would be meaningless. Conseguently, in every problem involving beam deflections it is to be emphasized
that it is necessary to determine that the maximum bending stress in the beam is below the proportional
limit of the material. This is easily done by use of the flexure formula derived in Problem 8.1. According
to this formula

Mc

T
where o denotes the bending stress, M the bending moment, c the distance from the neutral axis to the
outer fibers of the beam, and [ the second moment of area of the beam cross section about the neutral axis.
The maximum bending moment in this problem occurs at the supporting wall and is given by
M = (20,000 N) (3 m) = 60,000 N -m. Using this in the formula for bending stress, we have

M _ 60000N-m
arnnu'-E _SBOXI_O 6[‘[‘]3 = lO3MPa
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Since this value is below the proportional limit of steel, which is approximately 200 MPa, the use of the
beam deflection equation was justifiable.

9.4. Determine the slope of the right end of the cantilever beam loaded as shown in Fig. 9-4. For the
beam described in Problem 9.3, determine the value of this slope.

In Problem 9.2 the equation of the slope was found to be
dy Px?

EI-Z = —PLx+—
dx 2

At the free end, x = L, and

EI(%)FL =-PL*+ -'F—’;:j
The slope at the end is thus
(ﬂ) i %
dxj.., 2EI
For the beam described in Problem 9.3, this becomes

(g’_}:) _ —(20,000 N) (3 m)?
dr),_,  2(200 % 10° N/m?) (60.7 X 106 m")

= (0.0222 rad or 1.27°

9.5. Determine the deflection at every point of a cantilever beam subject to the uniformly distributed
load w per unit length shown in Fig. 9-6.

‘ v
§ w/Unit length

-

L

.

Fig. 9-6

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The equation
for the bending moment could be determined in a manner analogous to that used in Problem 9.2, but
instead let us seek a slight simplification of that technique. Let us determine the bending moment at the
section a distance x from the wall by considering the forces 1o the right of this section rather than those
to the left.

The force of w/unit length acts over the length L — x to the right of this section and hence the resultant
force is w(L — x) Ib. This force acts at the midpoint of this length of beam to the right of x and thus its
moment arm from x is 3(L — x). The bending moment at the section x is thus given by

M=—%@—ﬂ’

the negative sign being necessary since downward loads produce negative bending.
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The differential equation describing the bent beam is thus

[ —-E*(L—.t)z ()

d?
The first integration yields

\ L |
&y _wEoxy,

El
dx 2 3

G (2)
where C, denotes a constant of integration.

This constant may be evaluated by realizing that the left end of the beam is rigidly clamped. At that
point, x = (), we have no change of slope and hence (dy/dx),_, = 0. Substituting these values in (2), we find
0=wlL¥%6+ C, or C, = —wL%6. We thus have

dy

a _w. . p_ e .
EIS =2 (L-x) ")

The next integration yields
EFly=————"——-—x+0( 3

where C, represents a second constant of integration.
At the clamped end, x = 0, of the beam the deflection is zero and since (3) holds for all values of x
and y, it is permissible to substitute this pair of values in it. Doing this, we obtain
~wh? wil?

0= % + or G, = >

The final form of the deflection curve of the beam is thus

wL3x + wl?
6 24

Ely = 2 (L —x)'~ 3"

The deflection is a maximum at the right end of the bar (x = L) and there we have from (3’)
wl® wL*  wlL®

» - + =
Elyea 6 = 24 8

where the negative value denotes that this point on the deflection curve lies below the x-axis. The
magnitude of the maximum deflection is
wlL?

ama)r. = o 9
8EI “)

A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-7. Determine the
equation of the deflected beam as well as the deflection of the tip.

]xw
3

i
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Let us introduce a coordinate system having its origin at the tip of the beam. The intensity of loading
at any point x to the right of the tip is, from the properties of a parabola,

-

From statics it is known that for any parabolic area such as shown in Fig. 9-8 the area is given by
A = jah and the centroid C is located at x = 3a/4. Accordingly. it is now possible to determine the bending
moment at the point x as the sum of the moments of all loads Lo the left of x about that point. The resultant
of the loading to the left of x is 1xw and this rcsultant, shown by the solid arrow in Fig, 9-7. is located a

32
4

P
|_{

Fig. 9-8

distance 3x/4 from the tip, or. alternatively, (x/4) from position x. Thus, the bending moment at x is found,
with the aid of Eq. (/). to be

1 (x) wox?
— =AW = or

37 \4 NVE
and the differential equation of the deflection curve is
d?y wox?
— = O 2
dx’ 121° @
Integrating the first time, we find
dy  wp x°
& e ste )
When x = L, the slope dy/dx = 0, so from Eq. (3), wc have
3 3
0= Wol, +C, and therefore C, = ol
60
Integrating again, we have
wo X% wyl?
Ely = — —+ + 4
YT e e YT @
When x = L, y =0, so from Eq. (4), we have
W1)L4 W[)L‘ 1
0= ———+ 2 »= — —wyl?
%0 0 + G, and therefore C, 7 wol.
The desired equation of thc deflected beam is
3
Ely = — l .1"+£x -1 wolL*

36017 60 72
and the deflection at the tip is

E!}'],—:o = _%WQL“
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Obtain an expression for the deflection curve of the simply supported beam of Fig. 9-9 subject
to the uniformly distributed load w per unit length as shown.

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The total load
acting on the beam is wL and, because of symmetry, each of the end reactions is wlL/2. Because of the
symmetry of loading, it is evident that the deflected beam is symmetric about the midpoint x = L/2.

The equation for the bending moment at any section of a beam loaded and supported as this one is
was discussed in Problem 6.3. According to the method indicated there, the portion of the uniform load
to the left of the section a distance x from the left support is replaced by its resultant acting at the midpoint
of the section of length x. The resultant is wx b acting downward and hence giving rise to a negative

bending moment.
v
X ——-
w/Unit length
Tk, -

wL
2

wiL L

2] L

Fig. 9-9

The reaction wiL/2 gives rise to a positive bending moment. Consequently, for any value of x, the bending
moment is

wl X
M=—x—wx=
2x in:2

The differential equation of the bent beam is El{(d?y/dx*) = M. Substituting,
EI~L =22, 25 1)
Integrating,
E2="->--27 s @)

It is to be noted that dy/dx represents the slope of the beam. Since the deflected beam is symmetric
about the center of the span, i.e., about x = L/2, it is evident that the slope must be zero there. That is,
the tangent to the deflected beam is horizontal at the midpoint of the beam. This condition enables us to
determine C,. Substituting this condition in (2), we obtain (dy/dx),.,, = 0,

wlL 12 wl? wl’?
0=——-——+C, or C'=__2T
El—=—x"-—x'-— 2"
Integrating again, we find

Ely=—""~—"— 4G 3)
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9.8.

9.9.

This second constant of integration C; is readily determined by the fact that the deflection y is zero at the
left support. Substituting y,.o =0in (3), we find0=0-0-0+ G or C; = 0.
The final form of the deflection curve of the beam is thus

_wlL w o, wl? .
Ely =437 24" "2 * @)

The maximum deflection of the beam occurs at the center because of symmetry. Substituting x = L/2
in (3'), we obtain

Or, without regard to algebraic sign, we have for the maximum deflection of a uniformly loaded, simply
supported beam

- 4)

A simply supported beam of length 10 ft and rectangular cross section 1inX 3in carries a
uniform load of 200 Ib/ft. The beam is titanium, type Ti-5Al-2.5Sn, having a yield strength of
115,000 Ib/in? and E = 16 X 10° Ib/in’. Determine the maximum deflection of the beam.

From Problem 9.7 the maximum deflection is
5 wl?
Amx = 384 E1
Substituting,
_ S (200/12)(120)’
384 (16 x 10’]%1(1){3)3

Using the methods of Chap. 8, the maximum bending stress is found to be only 20,000 Ib/in?, well
below the nonlinear range of action of the material. Thus the usc of the deflection formula is justified.

= 1.25in

B

Consider the simply supported beam subject to the two end couples M, and M, as shown in Fig.
9-10. Determine the equation of the deflection curve and locate the point of peak deflection if
M 1= 0.

For equilibrium the resultant of the applied couples, that is, (M, — M), must be another couple
corresponding to the vertical reactions at the ends R, and Ry. From statics,

+)EMO=_M1+M2+RHL:0

L*I e M,
M,C‘Z‘ff %%_

Fig. 9-10



ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD [CHAPF. 9

Therefore,
M - M.
Re=—"7—(D
EF,.= —RL+R.R=0
Therefore,
M-M
R, = —‘3—3(1)

The differential equation describing the bent beam is thus

"

d’y
EIE;fi:Ml_RLI U)
dy x
Integrating. E:Z} = Mix— RS +G, 2)

We have no information concerning the slope anywhere in the beam. Hence it is not possible 1o determine
the constant of integration C, at this stage. Let us integrate again:

© R, x
Efy: MI‘Z___;‘§+CII+C2 (3)

We may now determine the two constants of integration through use of the fact that the beam
deflection is zero at each end. Accordingly,
When x = 0. ¥ = 0. so from Eq. (3) we have

0=0-0+0+G, and therefore C, = 0

Next, when x = L, y = 0. so we have from Eq. (3)

L R,
O0=M ———1+
M, > 3 L'+ C L
from which
_ ML ML
G=-73 6

so that the desired equation of the deflection curve is

..._ﬂ_l_l s M."M}_) 3_ (M]L MzL}
Ely = > X ( 6L X N + 6 X (4)
If M, =0, Eq. (4) becomes
MIX’ MzLx
Ely = 2—-—2=— 5
Y= L 6 (5)
d}._szl MzL
and E!dx— T 6 (6)

The point of peak deflection occurs when the slope given by Eq. (6) is zero. Solving Eq. (6) for this
value of x,

=7 (7)
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92.10.

At this point (for M, = 0) thc deflection is given by Eq. (5) to be

M,( L )-‘ M,L( L ) M,1\V3
Elypax == —F/| ——— = - 8
Bow =60 \V3) 76 \ VA 27 ()
Inspection of Eq. (4) for the case M, = M, = M indicates that

Ely = %xz - %x (9)

which indicates a parabolic deflection curve. Yet, Eq. (2) of Problem 9.1 indicates that if M = constant
along the length of the beam, the curvature (1/p) is conslant; i.e., the bar bends into a circular arc. The
reason for the very slight discrepancy is that Eq. (5) of Problem 9.1, thal is,
d’y
El i

incorporates the approximation
1 d%y

T
as explained in Problem 9.1. In reality the numerical difference between the parabola and the circular arc
is very small and in almost all cases may be neglected.

A simply supported beam is loaded by a couple M, as shown in Fig. 9-11. The beam is 2 m long
and of square cross section 50 mm on a side. If the maximum permissible deflection in the beam
is 5mm, and the allowable bending stress is 150 MPa, find the maximum allowable load M,.
Take E = 200 GPa.

It is perhaps simplest to determine two values of M,: onc based upon the assumption that the
deflection of 5 mm is realized. the other based on the assumption that the maximum bending stress in the
bar is 150 MPa. The truc value of M, is then the minimum of these two values.

¥
T —
F3

S ‘

Fig. 9-11

Let us first consider that the maximum deflection in the beam is 5 mm. According to Eq. (8). Problem
9.9, we have

My(2V3

0.005 = 3700 10°) () (0.05) (0.05)°

or M, =203kN-m

We shall now assume that the allowable bending stress of 150 MPa is set up in the outer fibers of the
beam at the section of maximum bending moment. Referring to Problem 9.9, since M, = 0. we find the
reactions at the ends of the beam are

M,

IR =7

so that they have the appearance shown in Fig. 9-12, and the bending moment diagram for the beam is as
shown in Fig. 9-13.
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Lo - ¥
—— = a0

R

Fig. 9-12 Fig. 9-13

The maximum bending moment in the beam is M,. Using the usual flexure formula, o = Mc/l, we have
at the outer fibers of the bar at the right end, i.e., at the section of maximum bending moment,

M,(0.025)
(12) (0.05) (0.05)’

Thus the maximum allowable moment is M, = 2.03kN-m.

150 % 10° =

or M, =3125kN-m

9.11. A simply supported beam is subjected to the sinusoidal loading shown in Fig. 9-14. Determine
the deflection curve of the beam as well as the peak deflection.

y q g = qq sin %
A B
WA O B
I__ ) B d:
| L 1
R, R
Fig. 9-14

It is first necessary to determine the total load on the beam. Let us consider the shaded element a
distance x from the end A and of width dx. If g denotes load per unit length, then the load corresponding
to the shaded element is g dx and the load on the entire beam is found by integrating:

2?01—'

aw

=L L
Load=I qd,t:j qosin%dx=
x 1]

=0

From statics, half of this load is carried at each end reaction. Thus,

L
R, = Ry = 2=
m

The bending moment at the point denoted by x is found as the sum of the moments of all forces to
the left of that point. To determine the moment about x of the portion of the sinusoidal load to the left
of x, it is necessary to introduce another variable of integration, u, corresponding to a second vertical
shaded element of width du, as shown in Fig. 9-15. The variable # must run from u = 0 to u = x so as to
yield the bending moment due to the sinusoidal load to the left of x.
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yy 9=%osiny g=ggsin 7
. /W
1 T i ¢ ¢
& | | [ | x
W dy
. x
2oL %ol
T 3
Fig. 9-15

Remembering the contribution that the left support makes to the bending moment, we have

M ._.ﬁx- Ilmqo[sin"w—-] (due) (x — )
m t={) L @

_qolL u=x ] 4=t g
= 71*—%[ .tsinfd”*“?ﬂj. us:nfdu

=() u=()
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()

In this integration u is a variable and x is to be (temporarily) regarded as a constant. The last integral (5)

in Eq. (/) must be integrated by parts, remembering that

fﬂ(sin 6) d6 = sin 6 — Bcos 6

Here, 6=

~|3

so that the last integral () becomes

If:xusinw—udu = E sinﬁ— ﬂ(:'::vs—w—”]MJr
w=>u L ﬂz L L 'L u=0
—L—z sin = --Ecm;E
v L T '8

The bending moment, Eq. (1), is thus

Lx u=x 2 X X
M=F—"-——qnx(-§)[—cmﬂ] +an [sinﬁ—fﬂcosﬂ—]
a

The differential equation of the deflected beam is thus

dzy (?'QLZ . TX
E"dxz =z sinp

Integrating the first time, we have

dy qol? ( L) x
— T — +
El sl b cos A G

2)

)

“)

)

(6)

As the first boundary condition, from symmetry, when x = L/2, dyfdx = 0. Substituting in Eq. (6), we find

C, = 0. Integrating again,

LS
Ely = — q‘;J (%r) sin%x+ G

(7)
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The second boundary condition is that when x = (), y = 0. Substituting in Eq. (7), we have C, = (. The
equation of the deflected beam is

L* .
Ely = — B> gin

) @

and the peak dcflection, at x = L/2, is

Determine the deflection curve of a simply supported beam subject to the concentrated force
P applied as shown in Fig. 9-16.

v P
¢ b _-l x
& — Tﬁ,
i L
Fig. 9-16

The x-y coordinate system is introduced as shown. The heavy line indicates the configuration of the
deformed beam. From statics the reactions are found to be R, = Pb/L and R, = FalL.

This problem presents one feature that distinguishes it from the other problems solved thus far in this
chapter. Namely, it is essential to consider two different equations describing the bending moment in the
beam. One equation is valid to the left of the load P, the other holds to the right of this force. The
integration of each equation gives rise to two constants of integration and thus there are four constants
of mtegration to be determined. All problems met thus far have offered only two constants.

In the region 10 the left of the force P we have the bending moment M = (Pb/L)x for 0 <x <a. The
differential equation of the bent beam thus becomes

d’y Pb
—5 = <x<
El R for 0O<x<a #))]
The first integration yields
dy PbxX
Eldx—L2+C. (2)

No numerical information is available about the slope dy/dx at any point in this region. Since the load is
not applied at the center of the beam, there is no reason to believe that the slope is zero at x = L/2.
However, for the slope of the beam under the point of application of the force P we can write

dy) Pba’
1 — =—++ 3
E (dt e 2L G )
The next integration of (2) yields
Pb x*
. + +
Ely 5L 3 Cix+ G 4)
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At the left support, y = 0 when x = 0. Substituting these values in (4) we immediately find C; = 0. It is
to be noted that it is not permissible to use the condition y = O at x = L in (4) since (1) is not valid in that
region. We have for the deflection under the point of application of the force P

Pba’

Elyx-m:E-"Cla (5)

In the region to the right of the force P the bending moment equation is M = (Pb/L)x — P(x — a) for
a<x<L. Thus

2z
El%=%x—f’{x—a} for a<x<lL 6)
The first integration of this equation yields
dy PbxX P(x—ay
[—=——-—+( 7
E dx L 2 2 i ()

Although nothing definite may be said about the slope in this portion of the beam., we have for the slope
under the point of application of the force P

dy ) Pba’
7= =
E (dx x=a 2L
Under the concentrated load P the slope as given by (3) must be equal to that given by (8). Consequently
the right sides of these two equations must be equal and we have

Pba’ Pbd*

L TG re o GG

+G (&)

Equation (7) may now be integrated to give

Pbx* P(x-a)
=S Ty
Ely=27% e ©9)

We may write for the deflection under the concentrated load

Pba’
Ely,-o =+ Ga+ G, (10)
The deflection at x = @ given by (5) must equal that given by (/0). Thus the right sides of these two
equations are equal and we have

Since C, = C,;, we have C, = 0.
The condition that y = 0 when x = L may now be substituted in (9), yiclding

Pbl? PP Pb
0= -2 4 GL LIRS
6 6 C3 or CJ 6L(b L)‘

In this manner all four constants of integration are determined. These values may now be substituted
in Egs. (¢) and (9) to give

P
E'ry=6_flx’—(L2—b2}x] for O<x<a )

Pb L
E!J’=E x:;__g(x_a)S_(Lz_bz)x] for a<x<L (9)

These two equations are necessary to describe the deflection curve of the bent beam. Each cquation
is valid only in the region indicated.
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If the load P acts at the center of the beam, the peak deflection which occurs at x = L/2 by symmetry

is given by Eq. (4') as
e B2 444
PL’

Ty “n

The simply supported beam described in Problem 9.12 is 14 ft long and of circular cross section
4 in in diameter. If the maximum permissible deflection is 0.20 in, determine the maximum value
of the load P if a = b = 7 ft. The material is steel for which E = 30 X 10° Ib/in®.

The maximum deflection, given by (I/) of Problem 9.12, is Ay, = PLY48EI For a circular cross
section (see Problem 7.9), I = wD%64 = m4°/64 = 12.6 in®. Also, L = 14 ft = 168 in. Thus,

P(168)°
48(30 x 10°) (12.6)

With this load applied at the center of the beam the reaction at each end is 383 Ib and the bending
moment at the center of the beam is 383(7) = 2681 Ib- ft. This is the maximum bending moment in the
beam and the maximum bending stress occurs at the outer fibers at this central section. The maximum
bending stress is o = Mc/l. Then o, = 2681(12)(2)/12.6 = 5100 Ib/in’. This is below the proportional limit
of the material; hence the use of the deflection equation was permissible.

0.20 = or P="7651b

Consider the simply supported beam described in Problem 9.12. If the cross section is
rectangular, 50 X 100 mm and P = 20kN with a = 1 m, b = 0.5 m. determine the maximum
deflection of the beam. The beam is steel, for which F = 200 GPa.

Since a > b, it is evident that the maximum deflection must occur to the left of the load P. It occurs
at that point where the slope of the beam is zero.
Differentiating Eq. (4') of Problem 9.12, we find that the slope in this region is given by

dy Pb 2 yr2 2
E!dx—ﬁL[Sx (L7~ bY)]

Setting the slope equal to zero, we find x = VL2 — b%3 for the point where the deflection is maximum.
The deflection at this point is found by substituting this value of x in (4'):

V3
7
For the rectangular section I = 50(100)*/12 = 4.167 X 10° mm®*. Substituting,

20X 10°(0.5 X 10°) [(1.5 X 10°) - (0.5 X 10°V°P2(V3) (10°)
Yenax = 27(1.5 X 10°) (4.167 x 10°) (200 X 10°) B

ElY max (L* - b?y*?

—1.45mm

The negative sign indicates that this point on the bent beam lies below the x-axis.
From ¢ = Mc/I the maximum bending stress, which occurs under the load P, is 80 MPa. This is below
the proportional limit of steel, so the above deflection equations are valid.

The beam AC is simply supported at A and at C is pinned to a cantilever beamm CD as shown
in Fig. 9-17(a). Both beams have identical flexural rigidities El. The vertical load of 8 kN acts
at point B. Determine the deflection of point B,

Free-body diagrams of the flexible beams AC and CD appear as in Figs. 9-17(b) and 9-17(c),
respectively. For AC, because of symmetry the reaction at C is 4 kN and by Newton’s law the equal and
opposite force must be exerted at the end C of beam CD as shown in Fig. 9.17(c).
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9.16.

BkN
A C c D
L J Mp
o t
4kN 4kN  4kN 4kN
® (c)

Fig. 9-17

From Problem 9.2 the downward deflection of point C regarded as the tip of beam CD) is

PL* _(4kN)(1.5m)’ 45

A= 3 3E] El

This same deflection must describe the downward displacement of C regarded as the right end of beam
AC. Prior to the deformation of AC due to the 8-kN load, the displacement of point C (on AC) imparts
a downward displacement of half that, namely 2.25/E/ to point B, since the bar during this stage will rotate
as a rigid body about A. Then, the deflection of point B due to the &kN load must be considercd. From
Problem 9.12 this is

PL* _(8kN)(3m)' 45
48FE1  48EI  EI

The resultant deflection at point 8 is thus

45 225 _6.75

- )

A= Ert B T E

Determine the equation of the deflection curve for a cantilever beam loaded by a uniformly
distributed load w per unit length, as well as by a concentrated force P at the free end. See Fig.
9-18.

The deformed beam has the configuration indicated by the heavy line. The x-y coordinate system is
introduced as shown. One logical approach to this problem is to determine the reactions at the wall, then

——
u
e~

w¥ Lipit lengrh

-

e i
Y

b~

4—

Fig. 9-18
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write the differential equation of the bent beam, integrate this equation twice, and determine the constant
of integration from the conditions of zero slope and zero deflection at the wall.

Actually this procedure has already been carried out in Problem 9.2 for the case in which only the
concentrated load acts on the beam. and in Problem 9.5 when only the uniformly distributed load is acting.
For the concentrated force alone the deflection y was found in (3) of Problem 9.2 to be

P

= — —_— —
Ely=—PL> +— (1)

For the uniformly distributed load alonc the deflection y was found in (3°) of Problem 9.5 to be

_oow o wLlt Wl
Ely = 24(!. x) 6 x+ 4
It is possible to obtain the resultant effect of these two loads when they act simultaneously merely by
adding together the effects of each as they act separately. This is called the method of superposition. 1t is
useful in determining deflections of beams subject to a combination of loads, such as we have here.
Essentially it consists in utilizing the results of simpler beam-deflection problems to build up the solutions
of more complicated problems. Thus it is not an independent method of determining beam deflections.
According to this method the deflection at any point of a beam subject to a combination of loads can
be obtained as the sum of the deflections produced at this point by each of the loads acting separately. The
final deflection equation resulting from the combination of loads is then obtained by adding the deflection
cquations for cach load.
For the present beam the final deflection equation is given by adding Egs. () and (2):

(2)

X PYoow wl’ wlL®
_- —_— ——— — . +
Ely=-PLS+ == 2(L-x) =T x+ 20 )

The slope dy/dx at any point in the beam is merely found by differcntiating both sides of (3) with
respect to x.

The method of superposition is valid in all cases where there is a linear relationship between each
separate load and the separate deflection which it produces.

Determine the deflection curve of an overhanging beam subject to a uniform load w per unit
length and supported as shown in Fig. 9-19.

We replace the distributed load by its resultant of wi acting at the midpoint of the length L. Taking
moments about the right reaction, we have

wl? wl.?
M. =R b—- 3 =0 or R'='ﬁ,_
v
]
wfUnit length
Z
A ? 4
B
a b
R,| Iz,
L |
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Summing forces vertically, we find

wl?
TF, ='—2F+R2—WL =0
wl?
or Rz_WL_?b_

The bending moment equation in the left overhanging region is M = —wx’/2 for 0<x<a.
Consequently the differential equation of the bent beam in that region is

dy —wx?
El(d?) = for O<x<a (1)

Two successive integrations yield

d wx®
E"d_i='5T+C‘ )
wxt
Ely = —EE—+C]x+C2 (&)}

The bending moment equation in the region between supports is M = —wx*/2 + R\(x — a). The
differential equation of the bent beam in that region is thus

d’y wx? wl?
—_——= e —— g —— —
El ax 2 2 (x—a) for a<x<L (4)
Two integrations of this equation yield
dy wx' wl’ (x—a)
= ———— "
d« 23 2 2 ? ©)
_ owx* wLl’(x—a)
Ely = P b 3 + Cix+ Gy (6)

Since we started with two second-order differential equations, (1) and (4), and two constants of integration

arose from each, we have four constants C,, C;, C, and C, to evaluate from known conditions concerning

slopes and deflections. These conditions are the following:

1. When x = a, y = 0 in the overhanging region.

2. When x = a, y = 0 in the region between supports,

3. When x = L, y = 0in the region between supports.

4. When x = q, the slope given by (2) must be equal to that given by (5); consequently the right sides
of these equations must be equal when x = a.

Substituting condition (7) in (3), we obtain

0= % +Ca+ G, 7}
Substituting condition {2) in (6), we find
—wa*
0=-—2T+C30+C4 (8}
Substituting condition (3) in (6), we get
—wl® wlL?b®

0=

g TGLtG (9
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Finally. equating slopes at the left reaction by substituting x = a in the right sides of equations (2) and (5),
we obtain
—wa® —wa®

+=
6C'6

+C, (10)

Note that there is no reason for assuming the slope to be zero at the left support, x = a.
These last four Egs. (7). (8), (9), (/0) may now be solved for the four unknown constants C,, C;, C,.
C,. The solution is found to be

w(l'—-a') wl’b

R T 12 ¢
wa® w(L'—a')a wl?ab
GG " T (12)

The two equations describing the deflection curve of the bent bar are found by substituting these
values of the constants in (3) and (6). These equations may be written in the final forms

wx® w(l®—a*)x wl’bx wa* w(lL*—a')a wl’ab
—+ - b +

24 24b 12 24 24b 12
A O3 e — 3 dFS — 4% 4 4 4_ 4 g2
E!y=—£{-+"L(x ay w(L }x_wbe_FE w(lL a)a+uLab

24 12b 24b 12 24 24b 12

Ely = - for0<x<a (39

fora<x<lL
(6")

Problem 9.17, although involving relatively simple geometry and loading, is obviously very tedious

when solved by the method of double integration. Usually the method is well suited only to situations
where a single equation describes the entire deflected beam. Chapter 10 will be based upon use of
singularity functions (see Chap. 6) as a much-simplified approach to beam deflections far better
adapted to more complex conditions of loading and support than is the straightforward double-
integration approach. Also, the singularity function approach is very well adapted to computer
implementation, as will be shown in Chap. 10.

9.18. Determine the equation of the deflection curve for the overhanging beam loaded by the two

equal forces P shown in Fig. 9-20.

The x-y coordinate system is introduced as shown with the x-axis coinciding with the original unbent
position of the bar. The fact that the left end of the bar deflects from the coordinate curve presents no
difficulties. For the condition of symmetry it is evident that each support exerts a vertical force P upon
the bar.

The bending moment in the left overhanging region is

M= —-Px for D<x<a

d

i y
AN - *

« } $

l» lr
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and the differential equation of the bent beam in that region is

EI%= —Px for 0<x<a 73]

The first integration of this equation yields

d X
EIS = ~P5 +C, @)
Nothing definite is known about the slope dy/dx in this region. In particular, it is to be emphasized that
there is no justification for assuming the slope to be zero at the point of support x = a. We may denote
the slope there by the notation

d a
E!(d_i')x-a - _P(?) * Cl (3)
The next integration yields
P/x?
ey=~3(5)+cxrc @)

Since the beam is hinged at the support, it is known that the deflection y is 0 there. Thus, (y)y.. = 0.
Substituting y = 0 when x = a in (4), we find

0=-%+C,a+€z (5)

The bending moment in the central region of the beam between supports is M = ~Pa and the
differential equation of the bent beam in the central region is

d?
Elax_f: ~Pa for a<x<(L-a) (6)
Integrating, we obtain
d
Efay = —Pax+ G, )

Because of the symmetry of loading it is evident that the slope dy/dx must be zero at the midpoint of thc
bar. Thus (dy/dx),.., = 0. Substituting these values in Eq. (7), we find
L Pal.
0= —Pa(—) +C;  or  Cy=— (8)
2 2
Also, from Eq. (7) we may say that the slope of the beam over the left support, x = a, is given by
substituting x = a in this equation, This yields

E:(Q) - —pe+ 2L )

But the slope dy/dx as given by this expression must be equal to that given by Eq. (3), since the bent bar
at that point must have the same slope, no matter which equation is considered. Equating the right sides
of Egs. (3) and (9), we obtain

Paz
B =P PR (10)
2 2
2
or Cl=_.f’i+ﬂ (]I}
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Substituting this value of C; in Eq. (5), we find

=————+
0 6 3 3 +C, (12)
2Pa® Pa'L
o G-
The next integration of Eq. (7) yields
?  Pal
Ely = —Pa%+ —-:——(x)+ C, (13)

Again, it may be said that the deflection y is zero at the left support, where x = a. Although this same
condition was used previously in obtaining Eq. (5), there is no reason why it should not be used again. In
fact, it is essential to use it in order to solve for the constant C, in Eq. (13). Thus, substituting the values
(¥).-« = 0in Eq. (73). we obtain

Pa* Pa*L _Pa® PAL

0=‘-*2—-+ 2 +C, or C; T'—T (14)

Thus two equations were required to define the bending moment in the left and central regions of the
beam. Each equation was used in conjunction with the second-order differential equation describing the
bent beam. and thus two constants of integration arose from the solution of each of these two equations.
It was necessary to utilize four conditions concerning slope and deflection in order to determine these four
constants. These conditions were:

(a) When x = a, y = 0 for the overhanging portion of the beam.

(b) When x = a, y = 0 for the central portion of the beam.

{¢) When x = L/2, dy/dx = 0 for the central portion of the beam.

(d) When x = a, the slope dy/dx is the same for the deflection curve on either side of the support.

Finally, the equations of the bent beam may be written in the forms

Px* Pa’x Palx 2P Pi’lL

El =.__E__ > + > + 3 2 for O<x<a (15)
3 3
Ely=_fixi+fﬂfi+‘—p_a——fh£' for a<x<(L-a) (16)

2 2 2 2

Because of the symmetry there is no need to write the equation for the deformed beam in the right
overhanging region.

For the overhanging beam of Problem 9.18, each force P is 4000 1b. The distance a is 3 ft and
the length L is 16 ft. The bar is steel and of circular cross section 4 in in diameter. Determine
the deflection under each load and also the deflection at the center of the beam. Take
E = 30 x 10° 1b/in’.

The moment of inertia is given by [ = 7(4)*/64 = 12.6 in*, according to Problem 7.9 in Chap. 7. Also,
we have ¢ =3ft = 36in, L = 16t = 192 in. The deflection anywhere in the left overhanging region is
given by Eq. (15) of Problem 9.18. Under the concentrated force P we have x = 0, and substituting these
values in Eq. (15) we obtain

30 X 10412.6) (1)s~0 = 2(400? @6y’ 4000(32)’(192)

or (¥)i=o = —0.96in
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The deflection anywhere in the central portion between supports is given by Eq. (16) of Problem 9.18.
At the center of the beam we have x = 8ft = 96in and, as before a4 = 36in, L = 192 in, and P = 40001b.
Substituting in Eq. (/6), we find

(30 x 10‘!) (12.6)(¥),_sn = —4000(36) (%)2 + (4000) (36) (192) (96)

2 2
N 4000(36)°  4000(36)° (192)
2 2
Solving
Yr=sn = 0.69in

The maximum bending stress occurs at the outer fibers of the bar everywhere between the supports,
since the bending moment has the constant value of 4000(3) = 12,0001b - ft in this region. This maximum
stress is given by

M, _ (12,000)(12)(2)

= in?
I 126 22,800 Ibfin

o=

This is less than the proportional limit of the material.

A cantilever beam Fig. 9-21(a) lying in a horizontal plane when viewed from the top has the
triangular plan form shown in Fig. 9-21(b). The side view, Fig. 9-21(c), shows the constant
thickness /1 of the beam. Determine the deflection curve of the beam and also the deflection of
the tip due to the weight of the beam, which is vy per unit volume.

-*_
t
|
—_] =

A
S
(SO
T
¢
W!»J»
1

(@) ®) ©

Fig. 9-21

We introduce an x-y-z coordinate system having its origin at point O, the tip of the beam. The location
of an arbitrary cross section is denoted by x and the width there is u, as shown in Fig. 9-21(b). The overall
beam length and base width are denoted by L and b, respectively. From geometry we have

e

and the bending moment at section x is due to the weight of the portion of the triangular beam to the left
of x. That weight is

suxhy

and the resultant force corresponding to this weight acts at a distance x/3 from the cross-section x, as shown
in Fig. 9-21(c). Thus, the bending moment at x due to the weight of material to the left of x is

why x _  x’hy (_b_x) _ by’ )
2 3 6 \LJ L

M=—
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so that the differential equation of the deflected beam is

dax 6L @

However, I is a function of x. Consideration of the cross-section x indicates that I (about an axis z, paraliel
to the z-axis} is

1 1 X
[= L =L (—)h’
IZM 1 b L

so that the differential equation of the beam becomes

A, (x\,: ]y _ _bhy?
E[ub(f_)h]df* 6L ()
& 2

Integrating the first time, we obtain
(5)

and when x = L, dy/dx = 0; hence substituting in Eq. (5}, we have

2yL?

2yL?
3ER?

0= 3ER

+ C, and therefore C, =

Integrating again, we find

= +
3En) a TIERT TG ©

3

- - ( 2y )x‘ LL

As a second boundary condition, when x = L, y = 0, so from Eq. (6) we find
o Lo _ e

=T3R4 + AER +C;  and therefore ;= — SE

Thus, the equation of the deflected beam is

Y e, 2yl 4Lt

= - + _—
Y= Teer" T 3ERY T 2ER
which at the tip becomes
_
Yheo = 35

A cantilever beam is in the form of a circular truncated cone, of length L, diameter d at the small
end, and 24 at the large end, as shown in Fig. 9-22. The beam is loaded only by its own weight,
which is vy per unit volume. Determine the deflection at the free end.

From the geometry, we may extend the sloping sides until they intersect at distance x, from the left
end. By similar triangles we have

d 2
Xag Xao + L
from which x; = L. Also,
y_4d
x 2L
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|
L.Ml‘HI

Fig. 9-22

- (32)*
Y=\aL

The moment of inertia of any circular cross section a distance x from the point O is

mt d“).,
!=_=—
4 4(16L" *

The differential equation of the deflected beam is given by employing Eq. (5) of Problem 9.1 and using
as the bending moment at x the moment of the weight of the solid region ABCD which is found as the
moment of the weight of the complete solid cone OBCQO about x minus the moment of the cone OAD
about that same section. Remembering that the volume of a complete cone is § (base) (altitude) and that
the center of mass of a solid cone lies ; the altitude above the base, we have for the equation of the bent

beam
Elﬂ'ﬁ,-x‘]g=- %nfxy(i—)—%yw(g)zf_(x—gl,)} (1

This simplifies to the form

t_fi_ 16L"y:r[_d_2 L_d:__Bde:} @)
d®  3wd'E 41> X 4xt
The first integration leads to
dy 16L°%y d? 5 1 312d? 1
— T ————— —_—— —— —_— —_—— —_—— _|..
dx 3&5[ 4L=”Ld( 2x’) 4 ( Jx’)} G &
As the first boundary condition, when x = 2L, dy/dx = 0. Substituting in (3), we find
19L%y
C=rE
The next integration gives us
16L%y d X Ld® 1 Ld? 1 1907y
= ——r=— ===t — =} + +
¥ M‘E[ a2z 2 ( x) 4 ( sz)} e "t O )
and the second boundary condition is that when x = 2L, y = 0. From Eq. (¢) we have
29 Lty
= FE
The equation of the deflected beam is thus
164°%y d? Ld® (1 Ld* (1 9Ly  29L%y
() e 2
Y M‘EI s "2 \x) " 8 \&)| T ed?E" 6FE ©)
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The deflection of the tip is found by setting x = L in Eq. (5) and is

yL*
34°E

.V]l-f_ =

The beam of variable rectangular cross section shown in Fig. 9-23 is simply supported at the ends
and loaded by equal magnitude end couples each equal to PL as well as symmetrically placed
transverse forces each equal to 1.5P. The thickness / of the beam is constant. Determine the
manner in which the width must vary so that all outer fibers are stressed to the same value oy,
in both tension and compression. Also determine the central deflection of the beam.

Fig. 9-23

The end reactions are easily found from statics to each be 1.5P, as shown. The bending moment
diagrams corresponding to the force loadings and to the end couples arc found by the methods of Chap.
6 and are illustrated in Figs. 9-24(a) and 9-24(b), respectively. The resultant bending moment diagram is
found by superposition of these two to be that shown in Fig. 9-24(c).

1
I
+ VR T }
9 F 4w
@ ®) ©

Fig. 9-24

The outer fiber bending stresses in each of the regions AB and BC arc found for the rectangular cross

section through use of the results of Problems 8.1 and 8.12 to be
M. _ M _M_6M
YT Tz b )

where for the rectangular bar

bh?
i @)

Figure 9-24(c) together with Eq. (/) indicates that in the region BC (since the bending moment is
constant) the beam width must also be constant. In that region the cross scction must withstand a maximum
bending moment of 2.5PL and the value of the outer fibcr bending stresses is

 6(2.5PL)
Ty = _bmax 12 (&)
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Solving, we find the maximum width everywhere in BC to be

15PL
- 4
max O'nhz ( )
In the end region AB, the bending moment from Fig. 9-24(c) is
M=PL+1.5PL(%) for 0<x <L (5)

where x is measured positive to the right from the support at A. Since x = 0 at A. the width of the beam
there must be sufficient to withstand the bending moment PL. Thus. for the outer fiber bending stresses
at x = 0 to have the magnitude oy, we have

oM 6PL

'brmnhz blTIII'I h:

0y =

Solving,
6PL

Unhz

The same width b,,,, must also exist al the right end x = 3L by symmeitry. Equation (5) indicates a
linear variation of bending moment between A and B so that the width increascs linearly from A to B. The
resulting constant outer fiber bending stress beam thus appears as shown in Fig. 9-25.

Brin 6)

6
buh = Ebﬁ

Fig. 9-25

To find the peak deflection, which, because of symmetry, obviously occurs at the midpoint of BC where
x =3L/2. we must write the differential equations for bending in regions AB and BC. Because of
symmetry of loading and support, there is no need to consider CD since its behavior is symmetric to that

of AB. First,
In AB:
M =15Px + PL
Mc  (PL +1.5Px) (h/2)
and G == Toh 7)
Thus, b= (PL + I‘Sfx) (6) )
ooh

where b denotes the width of the bar at a distance x from A as indicated in Fig. 9-25. The moment of inertia
of the cross section a distance x from A is thus

1 [(PL+15Px)(6)],,
12 [ ah’ ©)
The differcntial equation of the bent beam in AB is
(PL+ 1.5Px)h] d’y
El—————1—==15Px+P
[ 200 0 x + PL (10)
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or
&y 2oy
2 EhC constant (1)
Integrating
d 20,
2 (E—;)1+C, (12)
Integrating a second time
20, x*
Y=g 7 POt G (13)

As a boundary condition, when x = 0, y = 0; hence C; = 0 from Eq. (13). Also, when x = L, the deflection
from Eq. (/3) is

20, L?
Yoot = g5+ CIL (14)
and the slope at x = L is, from ({2)
d}' ZG'OL
—1 =—=+C 5
dxl.., Eh ' ()

In BC. M = 2.5PL. and since the width b, in BC is constanl, the moment of inertia anywhere in
BC is

13bmaxh* (16)

so the bent beam in BC is described by the equation

bax b’ 1 d2y
— |—5 = 25PL 7
[ 12 ]dx’ 7
d’y 30PL
or e Eb i = constant (18)
Integrating,
dy 30PLx
- = +C 19
dx  Ebg,h (79)

As a boundary condition, from symmetry we know that at x = 3L/2. dy/dx = 0. Hence from (19)
we have

45PL°
O B
Integrating again.
30PL \ X 45PL?
v (a3 (m)”“’* (20)
When x = L. the deflections are represented by Egs. (/4) and (20), leading to
2037 orL?
——+CG L=~ + 21
2Eh bt @h

Finally, equating slopes at x = L as given by Eqs (/5) and (/9), we have

20,L c - 30PL?  45PL?
Eh YU Eb W Eb,

(22)
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Solving Eqs. (21) and (22), we find

45PL°
== Eb—,mhz and therefore C, =0
Hence in the region BC from Egq. (20), we have
33.75PL°
Yraalesea = =g =5

Consider the bending of a cantilever beam which remains in contact with a rigid cylindrical
surface as it deflects. The tangent to the cantilever is horizontal at point A in Fig. 9-26.
Determine the deflection of the tip B due to the load P.

P i — —— — — — —
—

Fig. 9-26

If the curvature of the cantilever at A is less than the curvature of the rigid cylindrical surface, then
the cantilever touches the surface only at point A and the deflection is exactly as found in Problem 9.2.
From Problem 9.1, the curvature of the beam at A is given by

and thus this curvature must be less than the curvature of the rigid surface, which is 1/R.

If. however, 1/R = PL/EI, then the beam comes into contact with the surface to the right of point A4,
We shall denote by P* the limiting value of the load given by P* = EliRL. For P> P* some region AC
of the beam will be in contact with the surface and at point C the curvature of the rigid surface 1/R is equal
to the curvature of the beam, that is, Px/El = 1/R from which x = EIl/PR.

The deflection at the tip B may now be found as the sum of

1. The deflection of C from the tangent at A, which is given by &, in the diagram and is found from the
relation

(R+8) =R +(L—x)
to be approximately

_ (L —x)?

& 2R
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2. The dcficetion of the portion of the beam of length x acting as a simple cantilever, given by
_ Px*  (ElY
3l 3P°R
3. The deflection owing to the rotation at point C, given by
koo L, )
R PR’ PR

3s

The desired deflection at the tip is thus

£ _ (EIY

5= 548,48 =
A TN TS

A thermostat consists of two strips of different materials of equal thickness bonded together at
their interface. Frequently this configuration takes the form of a cantilever beam, as in Fig. 9-27.
If F, and FE, denote the Young's moduli and @, and @, denote the coefficients of linear
expansion of the two materials, each of thickness A, determine the deflection of the end of the
cantilever assembly due to a temperature rise 7.

i

Fig. 9-27 Fig. 9-28

Let b represent the width of the assembly. As in Problem 8.1, we shall assume that a plane section
prior to deformation remains plane after deformation. The resultant normal forces F acting over each strip
must be numerically equal since no external forces are applied along the length of the beam. Thus a cross
section at any station along the Iength has Fig. 9-28 as its free-body representation.

The normal strain in the lower fibers of the top strip is found as the sum of (a) the strain due to the
normal load. F/FE, bh: (b) the strain duc to bending. which is M ,(h/2)/E,[ from Problem 8.1; and (c) the
strain due to the temperature rise, which is a; 7 as mentioned in Chap. 1. The sum of these strains must
be the same as the strain in the upper fibers of the lower strip. Thus

F M . (hi2) -F  My(h2) .
epnt E1 T TG B T &)
The curvatures at this interface must also be equal. Thus, from Problem 9.1,
1 MA 1 Mﬁ'
— T . - — I — 2
RE1I ™ RTEI @
and since R, = R.. we have
[ E
Mo = (5] M @)
From statics it is evident that
MA + Mﬂ = Fh (4}

from which

Fh Fh

My=——— My=—
71+ (E\E) AT+ (EJE,)

%)
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Substituting (5) in (/). we find

_ (02 - {!.) TbhEl Ez(E] + E:)

- 6
F= =B YETULE ©

and from (5) we get

(0‘2 - ﬂ[) Tbhz E% Eg
My=-5 2
EI+ E1+ 14E, E,

(7)

We may now use the result obtained in Problem 9.23 for the deflection § of a point on a cylindrical
surface (which represents the interface, since in pure bending the assembly deforms into a circular

configuration according to Problem 9.1) and express the deflection & of the end of the assembly as
LZ

=— 8

2R (8)

Substituting from Eq. (2),
ML

6
2E,1

From (7) we then get

 6(ay— @) TE, E, L
h(E} + E3 + 14E, E,)

A beam has a slight initial curvature such that the initial configuration (which is stress free) is
described by the relation y, = Kx*. The beam is rigidly clamped at the origin and is subjected
to a concentrated force at its extreme end. as shown in Fig. 9-29. As the force is increased, the
beam deflects downward and the region near the clamped end comes in contact with the rigid
horizontal plane. If the value of the applied force is P. determine the length of the beam in
contact with the horizontal plane and the vertical distance of the extreme end from the
plane.

L a P
v P
} R
ot A _Z
[¢] Z =
. Po b
P + 6EIK IQ

Fig. 9-29 Fig, 9-30

The initial curvature may be determined from the expression y, = Kx' so that the bending
moment arising from straightening the portion of the beam near the support is readily found to be
El(d*y,/dx?) = 6EIKx, where x is the length of beam in contact with the horizontal plane. If this expression
for moment is equated to the moment of the applied load about the point of contact, that is, P(a — x).
we have

FPa

6EIKx = Pla—x) whence x = P eEIR
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Since the beam is considered to be weightless, there is no normal force between the beam and the rigid
horizontal plane between the clamp at O and the extreme point of contact at A. The beam is flat between
O and A, A free-body diagram of the deformed beam thus appears as in Fig. 9.30. A simple statics equation
for equilibrium of moments about point A indicates that the clamp exerts a downward force equal to 6 ETK.
For vertical equilibrium there is a concentrated force reaction Q = P + 6EIK acting on the beam at the
extreme point of contact A.

We now seek the equation of the deflection curve in the region to the right of point A. In Problem
9.1, Eq. (5) indicated that for an initially straight beam bending moment M is proportional to the curvature,
d?yldx*. However, in the present problem it is necessary to modify (5) to say that the bending moment
M is proportional to the change of curvature since the beam is not initially straight, Thus, the
Euler-Bernoulli equation for the portion of the beam to the right of point A is

dz}’n dz}’ _
E"(F dzz)_m’ 2

where a new coordinate Z has been introduced. This coordinate runs along the x-axis but has its origin at
point A_ It is important to note that, as the beam deflects, the curvature decreases from its original value;
hence the quantity in parentheses on the left side of the equation is positive. Accordingly, the right side
must be written as positive. This does not contradict our previous sign convention of downward
forces giving negative moments since it was applied to initially straightr beams. If we substitute
El(d? y/dx*) = 6EIKx, the last equation becomes

d’y Pa
EIEE_Z— = 6EIK[PT&§-'K“+Z] —Pb+ PZ

Integrating twice and imposing the boundary conditions that y = dy/dZ = 0 at Z = 0, we obtain the desired
deflection
36(ElKa)®

Elveo = v sEIKY

The bar ABC in Fig. 9-31 has flexural rigidity E(3/) in region AB and flexural rigidity E7 in
region BC. The bar is pinned at A, supported by a roller at B, and subject to an applied bending
moment My at the free end. Determine the vertical deflection at B.

[ T %—1
)
8° '——P%}vw
uﬁ
T

Fig. 9-31

Let us introduce the x-y coordinate system shown, where x may designate a cross section in either AB
or BC. It is first necessary to delermine the reactions from statics, viz.,

]

+)EMB _M0+RAL=U ‘RA=_(1)

SF,=-R,+Rz=0 SRy ==2(1)
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We first write the differential equation of the deflected bar in region AB:

E(31)§‘%= —Rax for 0O0<x<L

Integrating,
d X
5(31)5” = —RaZ+C )
Integrating again,
R 3
E(3!)y=——2f--%+ Cx+ G )

As the first boundary condition we have: When x = 0, y = . Substituting in Eq. (2), we have
Cz =0
As a second boundary condition we have: When x = L, y = 0, and using R, = My/L we have

M, L?
0= »-‘L—"-—ﬂ—+c..r_+c2

:-;MOL
6

Thus, Cl

Next, we write the differential equation of the deflected beam in region BC:

2
‘EI%=_RAJ‘+R3(K—L) for L<x<(L+¢)
Myx  Mox
=77 + I RsL
:“MO

This result could also have been obtained by taking moments of applied loads to the right of any section
designated by “x™ in BC.
Integrating,
d
Elay = —Myx+C, )
Integrating again,

2
Ely = —M.;,-fz—+ng+C4 ()

As a third boundary condition at x = L, y = 0 in Eq. (4), so from (4)

Lz
0=—M; +CL + C, (5)
As the fourth boundary condition at x = L the slopes dy/dx as given by Egs. (1) and (3) must be equal.
This leads to
1 [Ral? ML) 1
351[ 2 e ]_Ell MoL +Cy] ©)

Solving Eq. (6) for Cj, then (§) for Cy, we find
G= %MQL; 4 = _IzﬁMDLI
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The equations of the deflected beam are thus

Mo 5 ML

E(BDy= _EI + Tx for O<x<L (7)
Ely = —%xz+gMﬂLr—f—3MﬂL2 for L<x<(L+C) (8)
When x = (L + C), we have from Eq. (8) the desired tip deflection:
lhric= %} [(—{%Qj+ gL(L +C) —éLz]
()

Supplementary Problems

The cantilever beam loaded as shown in Problem 9.2 is made of a titanium alloy, having E = 105 GPa. The
load P is 20kN, L = 4 m, and the moment of inertia of the beam cross section is 104 X 10° mm®. Find the
maximum deflection of the beam. Ans. —39mm

Consider the simply supported beam loaded as shown in Problem 9.12. The length of the beam is 20 ft,
a = 15 ft, the load P = 1000 1b, and / = 150 in®. Dctermine the deflection at the center of the beam. Take
E=30%10°Ib/in’.  Ans. —0.044in

Refer to Fig. 9-32. Determine the deflection at every point of the cantilever beam subject to the single
moment M; shown.  Ans. Ely = —M x%/2

"

Fig. 9-32

FEAARSAARAR A S,

The cantilever beam described in Problem 9.29 is of circular cross section, 5 in in diameter. The length of
the beam is 10 ft and the applied moment is 500 Ib- ft. Determine the maximum deflection of the beam.
Take E = 30 10° Ib/in’. Ans. —0.46%in

wiUnil Jeagih
.2 I

Fig. 9-33
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9.31.

9.32.

9.33.

9.34.

9.35.

Refer to Fig. 9-33. Find the cquation of the deflection curve for the cantilever beam subject to the
uniformly varying load shown.

wx'  wlix wl?

+
120L 24 30

Ans. Ely = -

A cantilever beam is loaded by the sinusoidal load indicated in Fig. 9-34. Determine the deflection of the
tip of the beam.  Ans  Ely],_, = —0.07385¢, "

L Ax
N 4= gy sin 5=

L2

Fig. 9-34

A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-35. Determine the equation
of the deflected beam as well as the deflection at the tip.
16 wy o, 8 56

_x(;L"x - _WUL‘

— 56 4 —_
fns s ol LBl = s TR T 0 945

945

The cross section of the cantilever beam loaded as shown in Fig. 9-33 is rectangular, 50 X 75 mm. The bar,
1 m long, is aluminum for which £ = 65 GPa. Dctcrmine the permissible maximum intensity of loading if
the maximum deflection is not to excced 5 mm and the maximum stress is not to exceed 50 MPa,

Ans. w = 14.1kN/m

Refer to Fig. 9-36. Determine the equation of the defiection curve for the simply supported beam
supporting the load of uniformly varying intensity.
L X ?L:.r)

Ans. Ely=w7(

T2 18 180

Fig. 9-35 Fig. 9-36
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9.36. Determine the equation of the deflection curve for the cantilever beam loaded by the concentrated force
P as shown in Fig. 9-37.
PZ Pd P P4’

P
Ans. E.'y=—g(a—x)"—7,t+? for0<x<a;Eiy=—7x+—6— fora<x<lL

P
W |
' a b

/i
!

Fig. 9-37

9.37. For the cantilever beam of Fig. 9-37, take P =5kN, a = 2m, and b = 1 m. The beam is of equilateral
triangular cross section, 150 mm on a side, with a vertical axis of symmertry. Determine the maximum
deflection of the beam. Take E = 200 GPa. Ans. —12.8mm

9.38. The cantilever beam shown in Fig. 9-38 is subjected to a uniform load w per unit length over its right half
BC. Determine the equations of the deflection curve as well as the maximum deflection.

wlx? 3wlix? L
§ o= — { g .( pu—
Ans  Eh T T for O<x 2
w(L —x)* TwLl?x 15wl® L
Ely = - - + fi —<x<L
y 2 FEIERET YR T
41 [wlt
Ay = — | —
384( El )

]
—

w/ Unit length

b=

AR
m-
-

Fig. 9-38

9.39. The simply supported overhanging beam supports the load w per unit length as shown in Fig. 9-39. Find
the equations of the defiection curve of the beam. Take coordinates at the level of the supports.

4 El __ﬂ“_}wL’x_wLx(&_ ) ﬂ‘_waL3+wLa L )2 ; 0<x<
mOEYTET T T s 2 24 48 4(2“ or x=a
wx* wl(x—a)® wl’x wlx (L )2
Ely= — —+ + - =
Y 12 48 4(2 a

+w_a“_waL3+wLa(£_ )2 ; <x<(a+bh)
24 48 4 \2 “ or  asx=la
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9.40.

9.41,

9.42.

9.43.

y w/ Unit length
S
| |
a b ' a
' L
Fig. 9-39

A simply supported beam with overhanging ends is loaded by the uniformly distributed loads shown in
Fig. 9-40. Determine the deflection of the midpoint of the beam with respect to an origin at the level of
the supports.

wa*(L — 2a)’

Ans 16E1

(above level of supports)

w/Unit length wi Unit length
s t e 14y

lL“'i' -

Fig. 9-40

For the beam described in Problem 9.40, determine the deflection of one end of the beam with respect to
an origin at the level of the supports.

wall. 3wad’

Ans. ET T SEI

(below level of supports)

The overhanging beam is loaded by the uniformly distributed load as well as the concentrated force shown
in Fig. 9-41. Determine the deflection of point A of the beam.
~wa’h  Pab® wa*

3EI + 1El " BEl (below level of supports)

Ans.

Figure 9-42 shows a cantilever beam in the form of a circular cone whose length L is large compared to
the base diameter D, If the only force acting is its own weight, which is y per unit volume, determine the
equation of the defiection curve.

2L s op
Ans. y 45ED2(x 2L L x)
w/Unit length r’
T A
a . b . b
? e
L

Fig. 9-41 Fig. 9-42
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9.44. For the overhanging beam treated in Problem 9.17 consider the uniform load to be 120 b/ft, a = 3 ft, and
b = 12 ft. The bar has a 3-in X 4-in rectangular cross section. Determine the maximum deflection of the

beam. Take E = 30 x 10" Ibfin®. Ans. —0.10in at x = 110.4in

945, A cantilever beam when viewed from the top [sce Fig. 9-43(a)] has a triangular configuration. The thickness
h of the beam is constant, as shown in the side view Fig. 9-43(b). Determine the defiection of the beam
due to a concentrated load P at the tip. Neglect the weight of the beam. Ans.  yl..o = —6PL1Ebh?

9.46. A cantilever bcam when viewed from the top has the configuration indicated in Fig. 9-44(a) and is of
constant thickness h. as indicated in Fig. 9-44(b). Find the equation of the deflection curve as the beam
bends under the action of the concentrated force P at the tip. Neglect the weight of the beam.

16P(L - x)'™ 4 . 16PL" (ﬁL"“)

Ans.y l 77 gPL X+ — ] Eh'a"
|, - e
Yoot = T ER "

®)
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9.47.

9.48.

9.49.

Fig. 9-45

A simply supported beam of length L is subjected to a uniformly distributed loading w per unit length.
The width b of the beam is constant and the height varies in such a manner that all outer fibers along both
the top and lower surfaces are subject to the same magnitude normal stress o, Dcterminc the variation
of height of the beam as a function of x. as shown in Fig. 9-45(b). Also determine the maximum deflection

of the beam.

2h, NVIx—?

max

wl?
A h=——— y. u=—0 _
Hs. i ¥ 0.0178 Eb(h)’

The cantilever beam of variable cross section shown in Fig. 9-46 is in the form of a wedge of constant width
b. The midplane of the wedge lies in the horizontal plane x-z. Find the deficction of the tip of the beam
due to its own weight y per unit volume.  Ans.  y|, = —yLYER

Two solid rigid cylinders I and 11 have their geometric axes in a horizontal plane spaced a distance L apart,
as shown in Fig. 9-47. A beam of flexural rigidity ET is then placed across the tops of the cylinders and
loaded by a centrally applied vertical force P. The beam deflects (dotted line) and is tangent to each of
the cylinders at the points designated as A. Determine the angle 6 describing this point of contact.
PL? ( 1 PLR)

4ET

Ans. 0=

16E1

L
| b=
hajb=

LRSI T




Chapter 10

Elastic Deflection of Beams:
Method of Singularity Functions

In Chap. 9 we found the elastic deflections of transversely loaded beams through direct integration
of the second-order Euler-Bernoulli equation. As we saw, the approach is direct but may become very
lengthy even for relatively simple engineering situations.

A more expedient approach is based upon the use of the singularity functions introduced in Chap.
6. The method is direct and may be applied to a beam subject to any combination of concentrated
forces, moments, and distributed loads. One must only remember the definition of the singularity
function given in Chap. 6; i.e., the quantity (x — @) vanishes if x <a but is equal to (x — a) if x > a.

There are several possible approaches for using singularity functions for the determination of beam
deflections. Perhaps the simplest is to employ the approach of Chap. 6 in which the bending moment
is written in terms of singularity functions in the form of one equation valid along the entire length of
the beam. Two integrations of this equation lead to the equation for the deflected beam in terms of
two constants of integration which must be determined from boundary conditions. As noted in Chap.
6. integration of the singularity functions proceeds directly and in the same manner as simple power
functions. Thus, the approach is direct and avoids the problem of the determination of a pair of
constants corresponding to each region of the beam (between loads) as in the case of double
integration exemplified in Chap. 9.

Most important, the singularity function approach leads directly into a computerized approach for
the determination of beam deflections. See Problems 10.16, 10.17, and 10.18.

Solved Problems

10.1. Using singularity functions, determine the deflection curve of the cantilever beam subject to the
loads shown in Fig. 10-1.

}‘I

P 2p

[ c
1 |

[ I i

4
Fig. 10-1

A

S,

el
o

In this case it is not necessary to determine the reactions of the wall supporting the beam at C.
From the techniques of Chap. 6 we find the bending moment along the entire length of the beam to
be given by

M= +P(x>'—2p(x-§‘-)l 1))

where the angular brackets have the meanings given in the section “Singularity Functions™ of Chap. 6,
pages 135-136. Thus, the differential equation for the bent beam is
d?y L\’
El—= = -P)' = 2P (x~—
dx? b <x 4) @)

260
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The first integration yields

(%)

dy &
i P2 2P 5 +C,

where C, is a constant of integration. The next integration leads to

L 3
POy ("_'Z>

El

261

(&)

)

)

(6)

(7)

)

= + +
Ely 23 2P 26) G0+ G
where G, is a second constant of integration. These two constants may be determined from the boundary
conditions:
(@) When x = L, dyldx = 0, so from (3):
PL? 3L\?
O0=——-—-P|— | +C
2 ( 4 ) !
(b) Whenx= L,y =10, so from (4):
PL® P(3L\}
0=_T_§(T) GL+G
Solving (5) and (6),
17 145
C, =—PL% C=— PL?
‘16 27 192
The desired deflection curve is thus
P P Ly 17 145
Ely=-—0V—-—{x—=) +—PL*x)— —PL?
y=-%® 3(" 4} TRAAART>

For example, the deflection at point B where x = L/4 is found from (8) to be

3
s 2] 0 Lo (L) -1y

6\a 16 " \a) 192
94.5PL3 0.492pP1°
er Vet = — 1921 or  ——p—

10.2. The cantilever beam ABC shown in Fig. 10-2 is subject to a uniform load w per unit length
distributed over its right half, together with a concentrated couple wiL?/2 applied at C. Using

singularity functions, determine the deflection curve of the beam.

w/Unit length

§ By 4 b b ¢ |
G e
M

\
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10.3.

ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS [CHAP. 10

It is first necessary to find from statics the shear and moment reactions exerted by the wall on the beam
at A. From statics we have

wl? L\ (3L
-+ -~ — —— =
DEMa=Ms-— w(z)(4) 0
Twl?
M=%
L wi,
EF‘,—RA W(E]—U. RA—'T

By the singularity function approach we may write the bending moment along the entire length of the
beam as

7 2
wL WL o+

gy

: o)

wlL
M——z*(x}

where, again, the singularity functions are as defined in Chap. 6. Thus the differential equation of the bent
beam is

L 1
X —=
dzy Tsz wl? L\ L '( 2)
EI ! 04 ~=Y—w(x-< 2
e (x) )+ ( 2) W(x 2) 3 (2)
Integrating,
L 1 L k]
dy wL (P Twl’ wl? (x' 5) w ("_ E)
—_=— - + - +
=722 g W3 1 2 3 G )
The first boundary condition is: When x = 0, dy/dx = 0. Substituting in (3), we find C, = 0.
Integrating again,
L\*? L\
o WL WL GF | wl (X_ 5) w (‘_ 5) i .
Y43 8 2 T2 2 6 4 2 )
The second boundary condition is: When x = 0, y = 0. Substituting in (4), we find C, = 0.
Thus, the desired deflection equation is
_wl ';'w]'_2 2, wil? Ly? w( L\*
Ely = a0 =T+ 5= (x-5) ~5:(x-3) 5)

This yields the deflection at the tip to be

El __wL‘ 'II"w.L"_‘_wi’f(L)2 w(L 4

Ner= "6 2 \2) 2 2)
by = - 13

or Y-t = = 3e0Fr

Consider a simply supported beam subject to a uniform load distributed over a portion of its
length, as indicated in Fig. 10-3. Use singularity functions to determine the deflection curve of

the beam.
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v
wo/Unit length
] —=
B
. » 4
R, L R,

Fig. 10-3

From statics the reactions are found to be

Wo

LZ__bZ
2L ¢ )

R, =
R, = woa—E(Lz b

The bending moment at any point x along the length of the beam is

M=R,x—1"2—°(x>2+~'§9(x—a}2 @)

Note that the last term on the right is required to cancel the distributed load represented by the term

- L;-" (xy
for all values of x greater than x = a. Thus
dz
E F =M = Ry(x)’ -—{x)z (1 —ay (2)
Integrating,
d
E1 = 2y - 2y + -0y 4 3)
dx 6
Finally,
_ R, s Wo, 4 Mo,
6(;) 24(x} +24(x ay'+ Cix+ G (4)
To determine C, and C,, we impose the boundary conditions that y = 0 at x = 0 and x = L. From (4) we
thus find
_ WDL]' Wob‘ WoL 2 2
C=% a1z &Y
Cz =0

The deflection curve is accordingly

)

3 4 2
Ely = wol?  wgb® wolb ]x

W, w,
12— p? 3_ 0, na 0, na _ -
121_( DY =g @ H @ +[ % 2L 12
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10.4. Consider the overhanging beam shown in Fig. 10-4. Determine the equation of the deflection
curve using singularity functions.

- 3
2

|
A —— | b,

Fig. 10-4 Fig. 10-5

From statics the reactions are first found to be R, = Pb/a and R, = P[1 + (bia)], acting as indicated
in Fig. 10-5. The bending moment at any point x along the entire length of the beam is

4y _p= 1 . 2
Thus EIF_M_ —Ri{(x) + Ryx — a) ( )
from which
dy IRI 2 RZ 2
——— T — — - +
Efdx 5 {xy + 2 {x—ay + C, 3)
R
Ely = "t + =0y + x4 4)
The boundary conditions are y = 0 at x = 0 and x = a. From these conditions, C, and C, are found from
(4) to be
Pab
C1 = -6— Cz =0

The deflection curve is thus

P, ., P b Pabx

= =P+ —=|1+=-|{x—ap+ — 5
Ely (x) 6(1 a)(x a +— (%)

10.5. Through the use of singularity functions determine the equation of the deflected cantilever
beam subject to the triangular loading together with the couple indicated in Fig. 10-6.

Fig. 106
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We must first determine the reactions at point A through the use of statics. There will be a vertical

shear reaction R, as well as a moment M, to prevent angular rotation at point A. From statics

wol?  wy

2 2

IEM, =M, - (LYGL)=0

Therefore
M, = iw,L?

W()L -
> 0

3F, = Ry~

Therefore

wy L

R, = 2

To write the expression for bending moment, let us first examine the contribution from the distributed
loading. At any position x to the right of point A, the load intensity from geometry is w = wy(x/L}) and the

resultant (shown by the dotted vector in Fig. 10-7) is of magnitude

2

LI
2 2L
and acts at a point distance $x from A. Thus, the moment at x due only to the triangular loading is
o x? (L) or - wpx®
°2L\3 6L

where the negative sign is inserted because this downward loading gives negative bending moment.

wor
2L
1
1

T—- —_—

? L)
bel

Fig. 10-7

Due to all loadings, that is, M,, R,, and the triangular load, the bending moment at any

location x is

5 wol  wex? x w.;,U( SL)”
M= —2w,[*+ - S+ =
6" T2 L 3T T2\ T
50 that the differential equation of the deflected beam is

d’y 5 wy L wox? wan( BL)U
W, - x——

2 el T 2 4
Integrating the first time, we obtain

dy 5 . . wl x¥ wg x* wﬂLl( 3L)'
_ = —— +———— e ——— —
e T R T B

(1)

2)

(3)
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As the first boundary condition, we have dy*/dx = 0 at x = 0 which when substituted in Eq. (3) yields
C, = 0. Integrating a sccond time, we obtain

vy (4)

4 3 2L 5 * 4
The second boundary condition, y = 0 at x = 0, leads. upon substitution in Eq. (4), to C; = 0. Thus the
beam deflection equation is

] 5 2 2
Ely = -]izwomu_“’“"-*__ﬂ,i wolL <__3L) G

5 , wol 5 wg w, L2 < SL)"
= — —w LAt L - RS 0=
Ely == w5l "4 \*
The deflection at the tip. x = L. is found from Eq. (5) to be

%)

E.l’y]_t= e = - 0.326‘-’”{, L‘t

10.6.

Using singularity functions, determine the equation of the deflection curve of the beam simply
supported at points B and C and subject to the triangular loading shown in Fig. 10-8.

x

To determine the external vertical rcactions at points B and C, we may replace the entire loading by
its resultant which acts through the centroid of the triangle. The magnitude of the entire load is the average

load per unit length, wy/2, multiplied by the beam length L, or w,L/2. This acts at a distance 2L/3 from
the left end A and is shown by the dotted vector in Fig. 10-8. From statics

Zp-=

L L2 L
+‘)EM”=R""—__W0 ( )

2 2 \37 4 =0
Therefore
wy L
R.=—2=
L .12
Swol  wyl
SF, =Rg+ ——=0
Fo=Ra =5 2
Therefore
_wyL
Ry = 12

At any station x measured from the origin at A, thc bending moment in terms of singularity functions
is given as the sum of the moments of all forces to the left of that station. Let us examine a portion of the
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triangular load of horizontal length x. The resultant of that much of the loading is shown by the dotted
vector in Fig. 10-9 and the resultant is of magnitude

Yoo XX
2 ‘L 2

and acts at a point distance {x from A. Thus, thc moment at x due only to the triangular loading is
WESIE SR
2L 3 6L

where the minus sign is inserted because according to our bending moment sign conventions in Chap. 6
downward loads give rise to negative bending moment.

Fig. 10-9

reactions) is

In terms of singularity functions, the bending moment at any station x due to all loadings (including

wolx?®  wol ( L) Sw,L < 3L)
M=—-———+— +—(x—— !
6L 12 \" 4 2 \*7 3 ()
so that the differential equation of the bent beam is
d*y welx)®  wol L> SwolL ( 3L
El—=———+—{x——) + f—— 2
dx’ o Tz etz 4) @
Integrating the first time, we obtain
dy Wo , s, Wol L\? S5w,L < 3..‘1,)2
- = ——=) + —=) + 3
Bl ™ 2™t g ( 4) w \\ ) o &)
and integrating again, we find
=m£L.s££(_L” 5 (_%’
Ely IZDL{JJ + 72 \X 4) + nw,,L x=) Cix+ G (4)
As boundary conditions, when x = L/4. y = (), so substituting in Eq. (4) we obtain
wy (L )5 L
= - —2 +C—+C» 5
120!..( i) TOqTe ©)
Also, when x = 3L/4, y = 0, and substitution in Eq. (¢) yields
Wy 3L 3 11’{1.[. (L)3 3L
- T = + + e C‘i 6
120L(4) ) TG te (6)
Solving Egs. (5) and (6), we obtain

C, = 0.0004666w,L*

» = —0.0001085w,, L*
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so that the equation of the deflected beam is

wo , s WoL [ L)“ Swy L Eh[.)3
— )+ -—=) + -
oL 7 <" i/ T\

+ 0.0004666w, Lx — 0.0001085w,, L* (7)

Ely = -

10.7. If the beam subject to triangular loading in Problem 10.6 is a W203 X 40 steel section, of length
L =4m, I=739>x10°mm* and w, = 80 kN/m, determine the deflection at the point D.
Using Eq. (7) of Problem 10.6, we have
_ wolL? . wplL (3_1_)‘ . Swol (&)3
120 72 \ 4 72 \ 4
+ 0.0004666w, L* — 0.0001085w, L*
~ 0.001031wy L
~ 0.001031w, L*
El
_ _ (0.001031) (80,000 N/m) (4 m)*
(200 % 10° N/m?) (39 X 10-° m°)
— 0.0027 m or —2.7mm

E}[ylx=L =

)

g

1

10.8. The beam AD in Fig. 10-10 is simply supported at A and C, loaded by a uniform load from B
to D, and also by a couple applied as shown at D. Determine the equation of the deflection curve
through the use of singularity functions,

;Qw B JuON 139_"

RA - R(_'

¥
l w,/Uinit length wolL?

Fig. 10-10

The reactions at A and C are assumed to be positive in the directions shown and are found from the
two statics equations 1o be

)EMA:RC(%]-%(%)}W';LQO 1)
2L
Solving,
R, = wol R, = wol
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The singularity approach lets us write the equation of the entire defiectcd beam in the form
( L
Wol X — =

oy

d’y 1
EIE = EWDL(X)I -

The applied couple does not appear directly in this equation but its effect is incorporated in the statics
equations (/) and (2). Integrating the first time

(-3) wrl-%)
2 xX== Ty
E;d_y= wLL.ﬂ_ﬂ 3 + woL - + Cyx) (4)

dx 6 2 2 3 2 2

L\? 20\
wol (x}* wy o 3) wo L (x_ 3 (x)*
0
Ely 12 3 6 4 4 3 G 2 G )

As boundary conditions we have: when x = 0, y = 0, from which Eq. (5) leads to C, = 0. Also, when
x = 2L, y =0, from which Eq. (5) gives us

C|_ = _0.03472W.[|L2
The required equation of the deflected beam is thus

woL{(x¥®  wy I\ wyL 2L>" s
- L R A 6
Ely 24(.r 3) P (x 3 woL’x (6)

10.9. In Problem 10-8 if the beam is a steel wide-flange section W203 % 51 (having I = 52.5 X 10° mm*
from Table 8-2 of Chap. 8), of length 6 m, and subject to a uniform load over BD of intensity
22 kN/m, determine the deflection at point B.
From the general equation of the deflection curve, Eq. (6) of Problem 10.8, we may write the
expression for the deflection at y = L/3 as

wol L L?
Elyliorn = % 57 0+0- 0.01736w, L2 (?)
= "O.MWQL‘
Substituting,
(22,000 Nfm) (6 m) (6 m)* (zz.om N ) , ( 6m )2
: -0.01736 6m)* | —
oo 36 27 m e
Yha=trs (200 % 10° N/im?) (52.5 % 10 °m*)

=-244x10?m or -244mm

10.10. The cantilever beam AD is loaded by the applied couples M, and M,/3, as shown in Fig. 10-11.
Use the method of singularities to determine the equation of the deflected beam.
For static equilibrium, there must be a reactive couple M, acting at point A, as well as possibly a
shear-type reactive force R,. From statics we find

+)ZM,,=M,,—M1+%=O and therefore MA=§M|

SF,=Ry=0



270

ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS [CHAP. 10

X
|

: A P A~
MJ‘ T 1 é—hx

4 2 4

N

Fig. 10-11

The bending moment for any valuc of x is

N 2 o _ L 11 MI 3L L]
M= §M|<«t} +M|<l :“) "3—(15 T) ()
so that the differential equation of the deflected beam is
dy 2 o L\" M, KT AN
Efdx’ = 3M,(x) + M, (x 4> 3 (x 2 ) (2)
Integrating the first time, we obtain
dy 2 ' LAY M/ 3L\!

and the first boundary condition is that dy/dx = 0 when x = 0. Hence, C, = 0.
Integrating a sccond time

2 My L\' M,/ 3L\
Ely = 3M.2+2<x 4) ﬁ(x 4>+Cz (4)

and the second boundary condition is that y = 0 when x = (). Hence ¢, = 0.
The equation describing the deflected beam is finally

Moy | @(I _£>- M, <x_3i_)-

3 7 a ()

Ely = —

10.11. The cantilever beam in Problem 10-10 is a steel wide-flange section W254 x 31, having

I =44.1x10"°m* and a length of 2m. Determine M, if the deflection at point D is to be
3 mm.
We employ Eq. (5) of Problem 10.10 and simplify it for the deflection at x = L to find

M, L?
16

Ely],_; = —

Substituting the given numerical values, we find the tip deflection to be

My(2m)’

B } 2 . = (M
(16) (200 x 10° N/m?) (44.1 x 10 * m?) 0.003m

Vlear =

Solving,
M, = 106 kN-m

10.12. Through the use of singularity functions determine the equation of the deflection curve of the

simply supported beam of Fig. 10-12 subject to the couple applied at B plus the linearly varying
load in CD.
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Fig. 10-12

Denoting the reactions at A and C by R, and R, assumed positive in the dircctions indicatcd and
writing the two statics equations for this parallel force system, we obtain

) 2L wofL\(2L 2 L
+)EMA=WHL"—R(_-(T)—?‘)(?)(T‘Fi'?)=0 (f)
w L
EF\.=R,,-R(.—?-;=0 2)

Solving, R, = ¥w,L and R, = Zw,L. Since ecach of these is positive, the assumed directions are
correct.
In terms of singularity functions, the differential cquation of the deficcted beam is

d’y 13 L\" 23 2L\

(-5 5)6) - 5)

— Wy . (3}
5) 3

where the cffect of the triangular loading in CD is represented as the last term in Eq. (7) using the
technique for triangular load discussed in Problem 10.6 and illustrated in Fig. 10-9.

L ) ! 2‘ - “’” 3

_"’“L'(x_? T 2 2L 4

dy 13 )
El'dx =3 wol )

+ G, #)

We have no boundary conditions on slope; hence we arc unable to determine C, at this time. Integrating
the second time

L)2 ( 2L>-‘ < 21_)-‘
_L o2 L 2L
13 ) ,(‘ 3/ 3, A 3

Ely = ggmol =3~ wold T3 T 3 8L~ 5

x+Ch
is 3 > + Cix +C (5)

As boundary conditions, we have x = 0 at y = 0, so from Eq. (5) we find C; = 0. Also, when x = 2L/3,
y = 0, from which we have from Eq. (5)

13 8L} wyl?® I7? 2L
0—'571W(}L(§) e 0—0+C|(?)
Solving,
C] = _n.nzsquLB
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The deflecction curve of the bent beam is thus

-

13 w,L? L\ 23 200w, 207
Elv = — 3T =) {x——) - L {x=-==3% —0.023 Lro%
y 54w.,L(x) 5 (.1. 3> IDSW"I <r 3 ) 0L (.x 3 ) 0.02366w, L(x)

10.13. Determine the equation of the deflection curve of the simply supported beam shown in
Fig. 10-13(a). Use singularity functions.

tv 200N 200N
' . ™~

o 100N oN-m  fOON/
z
1

! ) |
V I!F'Zn 2m im
im|] Iim 2m im Rlv Rs
(a) (b)

Fig. 10-13

The free-body diagram is shown in Fig. 10-13(b). From statics the reactions are readily found to be
R, =225N. R