
TE
AM
FL
Y

Team-Fly®

Want to learn more?

We hope you enjoy this McGraw-Hill eBook! If you’d like more
information about this book, its author, or related books and web-
sites, please click here.

SCHAUM’S
OUTLINE OF

Theory and Problems of

SOFTWARE

ENGINEERING

This page intentionally left blank.

Theory and Problems of

SOFTWARE
ENGINEERING

DAVID A. GUSTAFSON
Computing and Information Sciences Department

Kansas State University

Schaum’s Outline Series
McGRAW-HILL

New York Chicago San Francisco Lisbon London Madrid Mexico City
Milan New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-Hill Companies,Inc. All rights reserved. Manufactured in the United States of America. Except as per-
mitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-140620-4

The material in this eBook also appears in the print version of this title:0-07-137794-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the
trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate train-
ing programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212) 904-
4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may
use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, spe-
cial, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim
or cause arises in contract, tort or otherwise.

DOI: 10.1036/0071406204

 abc
McGraw-Hill

v

Software Engineering is not just surveys of techniques and terminology; it includes
techniques that students must master. This book is designed for college students
taking courses in software engineering at the undergraduate and graduate level.
During my 25+ years of teaching software engineering at both the undergraduate
and graduate level, I have realized the need for solved examples and for guidance
to help students with these techniques.
This book is intended to be used in conjunction with a textbook or lecture notes

on software engineering. The background and motivation for diagrams, notations
and techniques are not included. Included are rules about proper construction of
diagrams. Instructions on using techniques are given. Rules are included about
applying techniques. Most important, examples and solved problems are given for
diagrams, notations, and techniques.
Writing this book was not a solitary effort. Many people have influenced this

book. In particular, I wish to acknowledge the following: Karen, my wonderful
wife, for all of her support and help in creating this book. Without her help, this
book would not have been done. Steve, who took time from his PhD studies to
critique many of the chapters. My students, who provided the original inspiration
for writing this material and who have read these chapters as individual readings,
have found mistakes, and have offered suggestions. I would like to thank Ramon,
who suggested this book, and the McGraw-Hill editorial staff for their help and
suggestions.

DAVID A. GUSTAFSON

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

vii

CHAPTER 1 The Software Life Cycle 1
1.1 Introduction 1
1.2 Software Life Cycle Models 3

CHAPTER 2 Software Process and Other Models 7
2.1 The Software Process Model 7
2.2 Data Flow Diagrams 9
2.3 Petri Net Models 10
2.4 Object Models 11
2.5 Use Case Diagrams 14
2.6 Scenarios 15
2.7 Sequence Diagrams 15
2.8 Hierarchy Diagrams 16
2.9 Control Flow Graphs 16
2.10 State Diagrams 17
2.11 Lattice Models 19

CHAPTER 3 Software Project Management 30
3.1 Introduction 30
3.2 Management Approaches 30
3.3 Team Approaches 31
3.4 Critical Practices 32
3.5 Capability Maturity Model 33
3.6 Personal Software Process 34
3.7 Earned Value Analysis 35
3.8 Error Tracking 36
3.9 Postmortem Reviews 37

CHAPTER 4 Software Project Planning 47
4.1 Project Planning 47

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For more information about this book, click here.

4.2 WBS–Work Breakdown Structure 47
4.3 PERT–Program Evaluation and Review

Technique 50
4.4 Software Cost Estimation 54

CHAPTER 5 Software Metrics 72
5.1 Introduction 72
5.2 Software Measurement Theory 73
5.3 Product Metrics 76
5.4 Process Metrics 83
5.5 The GQM Approach 83

CHAPTER 6 Risk Analysis and Management 91
6.1 Introduction 91
6.2 Risk Identification 91
6.3 Risk Estimation 92
6.4 Risk Exposure 92
6.5 Risk Mitigation 94
6.6 Risk Management Plans 94

CHAPTER 7 Software Quality Assurance 99
7.1 Introduction 99
7.2 Formal Inspections and Technical Reviews 99
7.3 Software Reliability 101
7.4 Statistical Quality Assurance 102

CHAPTER 8 Requirements 112
8.1 Introduction 112
8.2 Object Model 112
8.3 Data Flow Modeling 113
8.4 Behavioral Modeling 114
8.5 Data Dictionary 116
8.6 System Diagrams 117
8.7 IEEE Standard for Software Requirements

Specification 118

CHAPTER 9 Software Design 127
9.1 Introduction 127
9.2 Phases of the Design Process 128
9.3 Design Concepts 130
9.4 Measuring Cohesion 132
9.5 Measuring Coupling 135
9.6 Requirements Traceability 136

CHAPTER 10 Software Testing 145
10.1 Introduction 145

CONTENTSviii

10.2 Software Testing Fundamentals 145
10.3 Test Coverage Criterion 146
10.4 Data Flow Testing 154
10.5 Random Testing 155
10.6 Boundary Testing 157

CHAPTER 11 Object-Oriented Development 169
11.1 Introduction 169
11.2 Identifying Objects 171
11.3 Identifying Associations 175
11.4 Identifying Multiplicities 178

CHAPTER 12 Object-Oriented Metrics 183
12.1 Introduction 183
12.2 Metrics Suite for Object-Oriented Design 184
12.3 The MOOD Metrics 189

CHAPTER 13 Object-Oriented Testing 199
13.1 Introduction 199
13.2 MM Testing 200
13.3 Function Pair Coverage 201

CHAPTER 14 Formal Notations 208
14.1 Introduction 208
14.2 Formal Specifications 208
14.3 Object Constraint Language (OCL) 210

INDEX 219

CONTENTS ix

TE
AM
FL
Y

Team-Fly®

This page intentionally left blank.

SCHAUM’S
OUTLINE OF

Theory and Problems of

SOFTWARE

ENGINEERING

This page intentionally left blank.

1

The Software Life Cycle

1.1 Introduction
The software life cycle is the sequence of different activities that take place during
software development. There are also different deliverables produced. Although
deliverables can be agreements or evaluations, normally deliverables are objects,
such as source code or user manuals. Usually, the activities and deliverables are
closely related. Milestones are events that can be used for telling the status of the
project. For example, the event of completing the user manual could be a mile-
stone. For management purposes, milestones are essential because completion of
milestones allow, the manager to assess the progress of the software development.

1.1.1 TYPES OF SOFTWARE LIFE CYCLE ACTIVITIES

1.1.1.1 Feasibility—Determining if the proposed development is worth-
while.
Market analysis—Determining if there is a potential market for
this product.

1.1.1.2 Requirements—Determining what functionality the software
should contain.
Requirement elicitation—Obtaining the requirements from the
user.
Domain analysis—Determining what tasks and structures are
common to this problem.

1.1.1.3 Project planning—Determining how to develop the software.

Cost analysis—Determining cost estimates.
Scheduling—Building a schedule for the development.
Software quality assurance—Determining activities that will help
ensure quality of the product.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Work-breakdown structure—Determining the subtasks necessary
to develop the product.

1.1.1.4 Design—Determining how the software should provide the func-
tionality.
Architectural design—Designing the structure of the system.
Interface design—Specifying the interfaces between the parts of
the system.
Detailed design—Designing the algorithms for the individual
parts.

1.1.1.5 Implementation—Building the software.

1.1.1.6 Testing—Executing the software with data to help ensure that the
software works correctly.
Unit testing—Testing by the original developer.
Integration testing—Testing during the integration of the soft-
ware.
System testing—Testing the software in an environment that
matches the operational environment.
Alpha testing—Testing by the customer at the developer’s site.
Beta testing—Testing by the customer at the customer’s site.
Acceptance testing—Testing to satisfy the purchaser.
Regression testing—Saving tests from the previous version to
ensure that the new version retains the previous capabilities.

1.1.1.7 Delivery—Providing the customer with an effective software solu-
tion.
Installation—Making the software available at the customer’s
operational site.
Training—Teaching the users to use the software.
Help desk—Answering questions of the user.

1.1.1.8 Maintenance—Updating and improving the software to ensure
continued usefulness.

1.1.2 TYPICAL DOCUMENTS

1.1.2.1 Statement of work—Preliminary description of desired capabil-
ities, often produced by the user.

1.1.2.2 Software requirements specification—Describes what the finished
software will do.
Object model—Shows main objects/classes.

CHAPTER 1 The Software Life Cycle2

Use case scenarios—Show sequences of possible behaviors from
the user’s viewpoint.

1.1.2.3 Project schedule—Describes the order of tasks and estimates of
time and effort necessary.

1.1.2.4 Software test plan—Describes how the software will be tested to
ensure proper behavior.
Acceptance tests—Tests designated by the customer to determine
acceptability of the system.

1.1.2.5 Software design—Describes the structure of the software.

Architectural design—The high-level structure with the intercon-
nections.
Detailed design—The design of low-level modules or objects.

1.1.2.6 Software quality assurance plan (SQA plan)—Describes the activ-
ities that will be done to ensure quality.

1.1.2.7 User manual—Describes how to use the finished software.

1.1.2.8 Source code—The actual product code.

1.1.2.9 Test report—Describes what tests were done and how the
system behaved.

1.1.2.10 Defect report—Describes dissatisfaction of the customer with
specific behavior of the system; usually, these are software fail-
ures or errors.

1.2 Software Life Cycle Models
The four different software life cycle models presented in the following sections are
the most common software life cycle models.

1.2.1 THE LINEAR SEQUENTIAL MODEL
This model, shown in Fig. 1-1, is also called the waterfall model, since the typical
diagram looks like a series of cascades. First described by Royce in 1970, it was the
first realization of a standard sequence of tasks.

There are many versions of the waterfall model. Although the specific develop-
ment tasks will occur in almost every development, there are many ways to divide
them into phases. Note that in this version of the waterfall, the project planning

CHAPTER 1 The Software Life Cycle 3

activities are included in the requirements phase. Similarly, the delivery and main-
tenance phases have been left off.

1.2.2 THE PROTOTYPING MODEL
This software life cycle model builds a throwaway version (or prototype). This
prototype is intended to test concepts and the requirements. The prototype will be
used to demonstrate the proposed behavior to the customers. After agreement
from the customer, then the software development usually follows the same phases
as the linear sequential model. The effort spent on the prototype usually pays for
itself by not developing unnecessary features.

1.2.3 INCREMENTAL MODEL
D. L. Parnas proposed the incremental model.1 The goal was to design and deliver
to the customer a minimal subset of the whole system that was still a useful system.
The process will continue to iterate through the whole life cycle with additional
minimal increments. The advantages include giving the customer a working system
early and working increments.

1.2.4 BOEHM’S SPIRAL MODEL
B. Boehm introduced the spiral model.2 The image of the model is a spiral that
starts in the middle and continually revisits the basic tasks of customer com-
munication, planning, risk analysis, engineering, construction and release, and
customer evaluation.

CHAPTER 1 The Software Life Cycle4

Feasibility

Requirements

Design

Implementation

Testing

Fig. 1-1. Waterfall model.

1 D. Parnas. ‘‘Designing Software for Ease of Extension and Contraction.’’ IEEE Transactions on Software

Engineering (TOSE) 5:3, March 1979, 128–138.

2 B. Boehm.. ‘‘A Spiral Model for Software Development and Enhancement.’’ IEEE Computer. 21:5, May 1988,

61–72.

Review Questions

1. How does a phased life cycle model assist software management?

2. What are two required characteristics of a milestone?

3. For each of the following documents, indicate in which phase(s) of the software life
cycle it is produced: final user manual, architectural design, SQA plan, module speci-
fication, source code, statement of work, test plan, preliminary user manual, detailed
design, cost estimate, project plan, test report, documentation.

4. Order the following tasks in terms of the waterfall model: acceptance testing, project
planning, unit testing, requirements review, cost estimating, high-level design, market
analysis, low-level design, systems testing, design review, implementation, requirement
specification.

5. Draw a diagram that represents an iterative life cycle model.

Answers to Review Questions

1. How does a phased life cycle model assist software management?

The phased life cycle improves the visibility of the project. The project can be managed
by using the phases as milestones. More detailed phases will allow closer monitoring of
progress.

2. What are the two required characteristics of a milestone?

A milestone (1) must be related to progress in the software development and (2) must
be obvious when it has been accomplished.

3. Documents in the software life cycle:

Final user manual Implementation phase
Architectural design Design phase
SQA plan Project planning phase
Module specification Design phase
Source code Implementation phase
Statement of work Feasibility phase
Test plan Requirements phase
Preliminary user manual Requirements phase
Detailed design Design phase
Cost estimate Project planning phase
Project plan Project planning phase

CHAPTER 1 The Software Life Cycle 5

Test report Testing phase
Documentation Implementation phase

4. Order of tasks:

Market analysis
Project planning, cost estimating, requirement specification (may be done concur-
rently)
Requirements review
High-level design
Low-level design
Design review
Implementation
Unit testing
Systems testing
Acceptance testing

5. Draw a diagram that represents an iterative life cycle model. See Fig. 1-2.

CHAPTER 1 The Software Life Cycle6

Req Design Imp Test Delivery

T
im

e

Fig. 1-2. Iterative life cycle model.

7

Software Process and
Other Models

2.1 The Software Process Model
A software process model (SPM) describes the processes that are done to achieve
software development. A software process model usually includes the following:

� Tasks

� Artifacts (files, data, etc.)

� Actors

� Decisions (optional)

The notations used can vary. The standard software process model uses ovals
for tasks and processes. The artifacts are represented by rectangles and the actors
by stick figures. Many software process models do not include decisions. We will
use diamonds whenever we show decisions. The flow is shown by arcs and is
usually left-to-right and top-down. Arcs are normally not labeled.

The following are rules and interpretations for correct process models:

� Two tasks cannot be connected by an arc. Tasks must be separated by arti-
facts.

� A task is not executable until its input artifacts exist.

� There are one or more start tasks and one or more terminal tasks.

� All tasks must be reachable from the start task.

� There is a path from every task to the terminal task.

Software process models can be descriptive; that is, they can describe what has
happened in a development project. The descriptive model is often created as part
of a postmortem analysis of a project. This can be useful in terms of identifying
problems in the software development process. Or, software process models can be

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

prescriptive; that is, the software process model can describe what is supposed to
happen. Prescriptive software process models can be used to describe the standard
software development process. These can be used as training tools for new hires,
for reference for uncommon occurrences, and for documenting what is supposed
to be happening.

EXAMPLE 2.1

Figure 2-1 is a process model for unit testing software. There are two actors: the

tester and the team leader. The unit tester, of course, is responsible for the unit

testing. The unit tester uses the source code and the test plan to accomplish the

unit testing. The result of this activity is an artifact, the test results. The team

leader reviews the test results, and the result of this activity should be the approval

of the unit testing. This model does not explicitly show what happens when the

process is not successful. It could be inferred that the unit tester keeps testing until

he or she is happy. Similarly, if the team leader is not ready to give the approval,

then the process may be backed up to redo the unit testing.

EXAMPLE 2.2

Draw the process model showing decisions.

Adding decisions allows the process model to be more explicit about what happens

in all circumstances, as shown in Fig. 2-2.

CHAPTER 2 Software Process and Other Models8

Source
code

Test
results

Test
review

ApprovalUnit
testing

Test
plan

Team leaderUnit tester

Fig. 2-1. Process diagram for unit testing.

Source
code

Test
results

Test
review

OK
?

ApprovalUnit
testing

Test
plan

Yes

No

Team leaderUnit tester

Fig. 2-2. Process model with decisions.

2.2 Data Flow Diagrams
One of the most basic diagrams in software development is the data flow diagram.
A data flow diagram shows the flow of the data among a set of components. The
components may be tasks, software components, or even abstractions of the
functionality that will be included in the software system. The actors are not
included in the data flow diagram. The sequence of actions can often be inferred
from the sequence of activity boxes.

The following are rules and interpretations for correct data flow diagrams:

1. Boxes are processes and must be verb phrases.

2. Arcs represent data and must be labeled with noun phrases.

3. Control is not shown. Some sequencing may be inferred from the ordering.

4. A process may be a one-time activity, or it may imply a continuous
processing.

5. Two arcs coming out a box may indicate that both outputs are produced
or that one or the other is produced.

EXAMPLE 2.3

The unit testing example from the previous section can be depicted as a data flow

diagram, as shown in Fig. 2-3.

Figure 2-3 illustrates some of the rules. The phrases within the boxes are verb

phrases. They represent actions. Each arrow/line is labeled with a noun phrase

that represents some artifact.

The data flow diagram does not show decisions explicitly. The example shows

that the results of testing can influence further testing and that the results of the

test review action can also affect the testing (or retesting).

EXAMPLE 2.4

The calculation of the mathematical formula ðx þ y Þ � ðw þ zÞ can be shown as a

sequence of operations, as shown in Fig. 2-4:

CHAPTER 2 Software Process and Other Models 9

Source
code

Test
plan

Execute
unit tests

Review
test

results

Test
results Review

decision

Fig. 2-3. Data flow for unit testing.

2.3 Petri Net Models
The basic petri net model consists of condition nodes, arcs, event nodes, and
tokens. If the input condition nodes for an event node all have tokens, then
the event can fire, the tokens are removed from the input nodes, and tokens
are placed on all of the output nodes of the firing position. The condition nodes
are usually represented by circles and the event nodes by horizontal lines or
rectangles.

In a petri net model, the condition nodes usually represent some required
condition—for instance, the existence of a test plan. A token at the condition
means that the condition is met. An event node (the horizontal line) represents
an event that can happen (fire) when all the requirements are met (tokens in all the
condition nodes). Tokens are then placed at all the condition nodes that follow the
event.

EXAMPLE 2.5

A petri net model of testing is shown in Fig. 2-5.

There are a number of different variations on the basic petri net model.

CHAPTER 2 Software Process and Other Models10

Sum

Sum 1
Answer

Sum 2

Sum

Multiply

y

x

w

z

Fig. 2-4

Test plan

Unit testing

DisapproveApprove

Not okayResultsOK

Approval

SRC

Fig. 2-5. Petri net model.

2.4 Object Models
In object-oriented development (Chapter 11), both the problem in the problem
domain and the solution in the machine space are described in terms of objects. In
the solution, these objects normally become classes. As the requirements and
design phases of software development progress, the objects switch from being
representations of the things in the problem domain to being programming struc-
tures in the software.

Object models represent entities and relationships between entities. Each box
represents a type of object, and the name, attributes, and the methods of the object
are listed inside the box. The top section of the box is for the name of the object,
the second section is for the attributes, and the bottom section is for the methods.
An arc between two objects represents a relationship between the objects. Arcs
may be labeled in the center with a name of the association. The roles may be
labeled at the opposite end. Also, at each end a multiplicity may be given indicat-
ing how many different associations of the same kind are allowed.

The three major types of relationships are (1) inheritance, (2) aggregation, and
(3) association. An inheritance relationship implies that the object at the bottom of
the arc is a special case of the object at the top of the arc. For example, the top
object might be a vehicle and the bottom object a car, which is a kind of vehicle.
This is often called an ‘‘is-a’’ relationship. An aggregation relationship implies that
the object at the bottom of the arc is a component of the object at the top of the
arc. For example, the top object might be a car and the bottom object might be the
engine. This is often called a ‘‘part-of’’ relationship. The final type of relationship
is an association, and this arc implies that somehow one of the objects is associated
with the other object. For example, a ‘‘father-son’’ relationship is an association.
This relationship may be two-way, or it might only be one-way.

Although there are many different notations, we will use a notation compatible
with the Unified Modeling Language (UML) standard.1

EXAMPLE 2.6

Construct an object model for a library. The objects in the simple library shown in

Fig. 2.6 consist of the library, books, copies of books, and patrons.

None of the methods of the objects are shown. The library has an aggregation

relationship with book and with patron. That is, the library is really made up of

books and patrons. The relationship between book and copy is neither

aggregation nor inheritance. The object book represents the abstraction of a book,

while the copy is the physical item that is loaned out. The relationship between

patron and copy is called ‘‘loan.’’ From the view of copy, the role is ‘‘checked out

by’’ and from patron the role is ‘‘check out.’’ The multiplicities indicate that a copy

can either not be checked out or can have this relationship with only one patron at

a time (‘‘0.1’’). The other multiplicity, ‘‘0.*’’, indicates that a patron can have zero or

one or many relationships of ‘‘check out’’ at a time.

CHAPTER 2 Software Process and Other Models 11

1 See www.omg.org or www.rational.com or search for UML with your browser.

EXAMPLE 2.7

Construct an object model for a family-tree system that stores genealogical

information about family members.

Figure 2-7 indicates that everyone has a birthfamily. Every marriage has a father

person and a mother person. Many attributes have been left off the diagram, and

no functions are shown.

2.4.1 EXISTENCE DEPENDENCY2

One approach to clarifying the relationships is to introduce a different relationship
called existence dependency (ED). Existence dependency relationships are defined
as follows: A class (parent) can be associated with a lower class (child) if the lower
(child) class only exists when the upper (parent) class exists and each instance of the
lower (child) class is associated with exactly one instance of the upper (parent) class.
This relationship and inheritance can be used to represent any problem domain.

CHAPTER 2 Software Process and Other Models12

0..*

0..1 checked out by

loan

checked out

copy

library

patron book

title
author

name
address

status

Fig. 2-6. Object model of simple library.

family

family-tree

1 birthfamily

mother 1

father 1

child
0..*

0..*
marriage

person

marriages people

0..*
marriage

Fig. 2-7. Family-tree object model

2 Snoeck and Dedene. ‘‘Existence Dependency: The Key to Semantic Integrity between Structural and

Behavioral Aspects of Object Types.’’ IEEE TOSE, April 1998.

EXAMPLE 2.8

Construct an object model for a library using the existence dependency

relationships.

As shown in Fig. 2-6 in example 2.6, all the relationships except ‘‘loan’’ and

library-book satisfy the requirements of existence dependency. The relationship

‘‘loan’’ does not satisfy it, since a copy object can exist before the existence of the

patron object that is checking it out. However, a loan object can be created that

does satisfy the ED relationship. The object ‘‘book’’ cannot be a child of library,

since books can exist before and after a specific library. ‘‘Person’’ is added to the

diagram (see Fig. 2-8) to show the part of the patron that is not existence-

dependent on ‘‘library.’’

2.4.2 INSTANCE DIAGRAMS
Object diagrams represent types of objects. Thus, a box labeled ‘‘car’’
represents the attributes and functions of all cars. Sometimes the relationships
between instances of objects are not very clear in an object diagram. An
instance diagram shows example instances of objects and may clarify the
relationships.

EXAMPLE 2.9

Draw an instance model showing Fred, his wife Sue, their children Bill, Tom, and

Mary, and his parents Mike and Jean. (See Fig. 2-9.)

CHAPTER 2 Software Process and Other Models 13

person book

book

library

name
address

check
out

checked
out

title
author

patron copy

status

loan

loan
status

pnumber

Fig. 2-8. Library object model using ED.

2.5 Use Case Diagrams
A use case diagram is part of the UML set of diagrams. It shows the important
actors and functionality of a system. Actors are represented by stick figures and
functions by ovals. Actors are associated with functions they can perform.

EXAMPLE 2.10

Draw a use case diagram for the simple library. (See Fig. 2-10.)

The functions in the ovals are methods of the classes in the object model. The

patron object can borrow and return copies. The librarian actor is not an object on

the object model. The librarian in the use case shows that some functions—for

instance, catalog and shelve books—are not functions available to the patron.

CHAPTER 2 Software Process and Other Models14

Fred’s family tree

Mike’s birthfamily

Jean’s birthfamily

Mike & Jean

Mike

Jean

Fred

Sue

Bill

Tom

Mary

Fred & Sue

Sue’s birthfamily

child

child

child

child

child

child

child

father

mother
father

mother

Fig. 2-9. Instance diagram of Fred’s family tree.

Catalog
books

Shelve
books

Borrow

Return

Patron Librarian

Fig. 2-10. Use case for simple library.

2.6 Scenarios
A scenario is a description of one sequence of actions that could occur in this
problem domain.

EXAMPLE 2.11

Write a scenario for the library problem.

Fred, a patron, goes to the library and checks out a book. Two months later, he

brings the overdue library book back to the library.

2.7 Sequence Diagrams
A sequence diagram is part of the UML set of diagrams. The diagram has vertical
lines, which represent instances of classes. Each vertical line is labeled at the top
with the class name followed by a colon followed by the instance name. For
example, the first line is labeled with lib:main for the instance main of the
class library. Horizontal arrows depict function calls. The tail of the arrow is
on the line of the calling class, and the head of the arrow is on the line of the called
class. The name of the function is on the arrow. The wide block on the vertical line
shows the execution time of the called function. Returns are normally not shown.
Multiple calls to the same function are often shown as just one arrow.

EXAMPLE 2.12

Draw a sequence diagram for the scenario of Example 2.11. (See Fig. 2-11.)

This diagram is much closer to the design phase than the object model presented

in Example 2.8. There are functions used in this diagram that are not represented

in the earlier object model. Also, the sequence of calls represented in this diagram

is dependent on the actual design.

CHAPTER 2 Software Process and Other Models 15

checkout

chg status

checkout

checkin

chg status

return

patron : fred book : novel copy : 1lib : main

Fig. 2-11. Sequence diagram for checkout scenario.

2.8 Hierarchy Diagrams
A hierarchy diagram shows the calling structure of a system. Each box represents a
function. A line is drawn from one function to another function if the first func-
tion can call the second function. All possible calls are shown.

It is not one of the UML set of diagrams and is often not used in object-
oriented development. However, it can be a very useful diagram to understand
the dynamic structure of a system.

EXAMPLE 2.13

Draw a hierarchy diagram for the library program used in Example 2.12. (See Fig.

2-12.)

2.9 Control Flow Graphs
A control flow graph (CFG) shows the control structure of code. Each node (circle)
represents a block of code that has only one way through the code. That is, there is
one entrance at the beginning of the block and one exit at the end. If any statement
in the block is executed, then all statements in the block are executed. Arcs
between nodes represent possible flows of control. That is, if it is possible that
block B is executed, right after block A, then there must be an arc from block A to
block B.

The following are rules for correct control flow diagrams:

1. There must be one start node.

2. From the start node, there must be a path to each node.

3. From each node, there must be a path to a halt node.

CHAPTER 2 Software Process and Other Models16

patron::checkout

library::checkout

copy::checkout

book::chg status

Fig. 2-12. Hierarchy diagram.

EXAMPLE 2.14

Draw a control flow graph for the following triangle problem.

read x,y,z;
type = ‘‘scalene’’;
if (x == y or x == z or y == z) type =’’isosceles’’;
if (x == y and x == z) type =’’equilateral’’;
if (x >= y+z or y >= x+z or z >= x+y) type =’’not a triangle’’;
if (x <= 0 or y <= 0 or| z <= 0) type =’’bad inputs’’;
print type;

In Fig. 2-13, the ‘‘a’’ node represents the first two statements and the if

statement. The ‘‘type = isosceles’’ is in the node labeled ‘‘isosceles’’.

Similarly, the ‘‘c’’ node represents the next if statement, and the

‘‘equilateral’’ node represents the body of the if.

2.10 State Diagrams
The state of a machine or program is the collection of all the values of all the
variables, registers, and so on. A state diagram shows the states of the system and
the possible transitions between these states. A program or machine will have an
extremely large number of different states. However, many states will be similar in
how the machine will behave on the next input, and so forth. A group of states
with similar behaviors can be grouped together into a state. These states can be
diagrammed to show the transitions between the states. Many programs are best
described with a state diagram.

CHAPTER 2 Software Process and Other Models 17

a

c

e

g

i

equilateral

not a
triangle

bad inputs

isosceles

Fig. 2-13. Control flow graph for triangle program.

TE
AM
FL
Y

Team-Fly®

The following are rules for correct state diagrams:

1. There is one initial state.

2. Every state can be reached from the initial state.

3. From each state, there must be a path to a stop state.

4. Every transition between states must be labeled with an event that will
cause that transition.

EXAMPLE 2.15

Draw a state diagram for a fixed-size stack. (See Fig. 2-14.)

There are two approaches to state diagrams. In Fig. 2-14, only legal or non-
error transitions are specified. It is assumed that any transition that is not shown is
illegal. For example, there is no push transition from the full state. Another
approach is to show all transitions, including transitions that cause errors.

EXAMPLE 2.16

Draw a state diagram for a stack with all the error transitions shown. (See Fig.

2-15.)

State diagrams can be drawn directly from source code. Each function must be
examined for decisions that are based on the values of variables (the state of the
system).

CHAPTER 2 Software Process and Other Models18

new

empty normal full

push

push

pop

push

pop pop

Fig. 2-14. State diagram for a fixed-size stack.

new

empty normal full

push

push

poppop-error msg

push-error msg

push

pop pop

Fig. 2-15. State diagrams showing error transitions.

EXAMPLE 2.17

The following code is for a push method on a finite stack:

int push(int item) {
if (stackindex == MAX) {return ERROR;}
stack[stackindex++] = item;
return 0;
}

From this code, two states with different behavior of the function can be identified.

Note that the stackindex starts at zero. One state is related to the condition

stackindex == MAX, and the other state is related to the condition

stackindex!= MAX. Analysis of the increment will show that the second state is

stackindex < MAX (at least from this method). Analyzing the pop method will

reveal the empty state of the stack.

2.11 Lattice Models
A lattice is a mathematical structure that shows set relationships. Although not
used in software development very often, it is being used more to show the
relationships between sets of functions and attributes.

EXAMPLE 2.18

Draw a lattice model for a stack implementation that has attributes for an array

(s-array) and the index of the top element of the stack (index) and methods to

push, pop, val (displays top value), and depth. (See Fig. 2-16.)

The top node represents the set of all the attributes and the bottom node the

empty set. The nodes are annotated with the names of the functions that use that

subset of the attributes.

CHAPTER 2 Software Process and Other Models 19

s-array
index

(empty)

index s-array

push, val

pop, depth

Fig. 2-16. Lattice model for stack example.

Review Questions

1. What are the differences between a software life cycle model and a process model?

2. What is the difference between a descriptive process model and a prescriptive process
model?

3. Why are decisions more common in prescriptive process models than in descriptive
process models?

4. Why should tasks in a process model be separated by an artifact?

5. Why can’t a task in a process model start until its input artifacts exist?

6. Why does every node in a process model have to have a path from the start node to
itself and a path from itself to a terminal node?

7. In Example 2.3, how can a person distinguish between a test review that only occurs
after all the unit testing was complete and a test review that occurs after each module
has been unit tested?

8. What do data flow diagrams specify about control flow?

9. When does a petri net firing position fire?

10. What happens when a petri net firing position fires?

11. What is the difference between the problem domain and the solution space?

12. What changes in an object model from requirements to design?

13. Classify each of the following relationships as either an inheritance relationship, an
aggregation relationship, or a general association:

Car—Lincoln Town car
Person—Student
Library—Library patron
Book—Copy
Car—Driver
Patron—Book loan
Class—Students

14. Classify each of the following as a class or an instance of a class:

My automobile
Person
Fred
Vehicle
Professor
The CIS department

15. What is the relationship between a scenario and a state diagram showing all possible
sequences of actions?

16. In an interaction diagram, is the calling class or the called class at the head of the
arrow?

17. Explain why the aggregation relation is a relation in the problem domain and not in
the implementation domain.

18. Why don’t data flow diagrams have rules about reachability between the nodes?

CHAPTER 2 Software Process and Other Models20

Problems

1. Draw a process model for the task of painting the walls in a room. Include the
following tasks: choose color, buy paint, clean the walls, stir the paint, paint the
wall.

2. The author uses interactive sessions when he teaches a course that includes distance
learning students. The author divides the students into teams and posts a problem on
the Web page. The teams work on the problem using chat rooms, ask questions of the
instructor using a message board, and submit the solution via email. The instructor
then grades the solutions using a grading sheet. Draw a process model for the inter-
active sessions.

3. Draw a data flow diagram for the simple library problem.

4. Draw a data flow diagram for a factory problem.

5. Draw a data flow diagram for a grocery store problem.

6. Draw an object model for a binary tree.

7. Draw an instance diagram of the binary tree object model.

8. Draw an object model for the grocery store problem.

9. Draw an object model for the factory problem.

10. Write additional scenarios for the patron checking out books from Example 2.11.

11. Draw a state diagram for a graphical user interface that has a main menu, a file menu
with a file open command, and quit commands at each menu. Assume that only one
file can be open at a time.

12. Extend the object model shown in Fig. 2-17 for the library problem to include a
reservation object so patrons can reserve a book that has all copies checked out.

13. Build a state machine for the library problem with the ability to reserve books.

CHAPTER 2 Software Process and Other Models 21

library

patron
name

address

title
author

book

book

copy

copy status

loan status

loan

Fig. 2-17. Library problem object model.

Answers to Review Questions

1. What are the differences between a software life cycle model and a process model?

A software life cycle (SLC) model shows the major phases and the major deliverables,
while a process model depicts the low-level tasks, the artifacts needed and produced,
and the actors responsible for each low-level task.

2. What is the difference between a descriptive process model and a prescriptive process
model?

A descriptive process model describes what has happened in a software development.
It is often developed as the result of a postmortem analysis. A prescriptive model
describes what should be done during software development, including responses to
error situations.

3. Why are decisions more common in prescriptive process models than in descriptive
process models?

Decisions are more common in prescriptive process models because a prescriptive
process model is trying to cover what is done in alternative situations. Thus, it may
need to specify the decision that is used to decide what to do next. A descriptive
process model describes what happened, and alternative actions are usually not
included.

4. Why should tasks in a process model be separated by an artifact?

If one process follows another process, some information or document from the first
process is needed by the second. If this were not true, then the two processes would be
independent of each other and one would not follow the other. This information or
document should be identified and documented.

5. Why can’t a task in a process model start until its input artifacts exist?

If one process depends on information from another, this second process cannot start
until the first process is finished. Some other process notations allow concurrency
between two tasks, where the first process has to start before the second process starts
and the second process has to finish after the first process finishes.

6. Why does every node in a process model have to have a path from the start node to
itself and a path from itself to a terminal node?

If there is not a path from a start node to every node, then some nodes in the process
model are never reachable and can be eliminated. If there is not a path from the
current node to the terminal node, then there is an infinite loop. Neither of these
situations is desirable and they need to be investigated.

7. In Example 2.3, how can a person distinguish between a test review that only occurs
after all the unit testing was complete and a test review that occurs after each module
has been unit tested?

CHAPTER 2 Software Process and Other Models22

The label on the test results arrow implies that the output from the unit testing module
has the results of more than one execution. Thus, it implies that the test review occurs
only after multiple units are tested.

8. What do data flow diagrams specify about control flow?

Data flow diagrams do not specify control flow. Some sequence information may be
inferred but nothing else.

9. When does a petri net firing position fire?

A petri net firing position fires when there is a token on every input node of the firing
position.

10. What happens when a petri net firing position fires?

A token is placed on every output node of the firing position.

11. What is the difference between the problem domain and the solution space?

The problem domain is part of the real world and consists of entities that exist in the
real world. The solution space consists of software entities in the implementation of the
solution.

12. What changes in an object model from requirements to design?

Initially, the objects are entities in the problem domain. As the development moves
into the design phase, those objects become entities in the solution space.

13. Classify each of the following relationships as either an inheritance relationship, an
aggregation relationship, or a general association:

Car—Lincoln town car Inheritance
Person—Student Inheritance
Library—Library patron Aggregation
Book—Copy General association
Car—Driver General association
Patron—Book loan General association
Class—Students Aggregation

14. Classify each of the following as a class or an instance of a class:

My automobile Instance
Person Class
Fred Instance
Vehicle Class
Professor Class
The CIS department Instance

15. What is the relationship between a scenario and a state diagram showing all possible
sequences of actions?

The scenario would be just one path through part or all of the state diagram.

16. In an interaction diagram, is the calling class or the called class at the head of the
arrow?

CHAPTER 2 Software Process and Other Models 23

The called class is at the head of the arrow. The function on the arrow must be a
function of the class at the head of arrow.

17. Explain why the aggregation relation is a relation in the problem domain and not in
the implementation domain.

There is no difference in the implementation of an aggregation relation and other
association relations. In fact, it can be hard to decide if some relations are really
aggregations or not. For example, it is obvious that a car is an aggregation of the
car’s parts. However, it is not obvious whether a store should be considered an aggre-
gation of customers.

18. Why don’t data flow diagrams have rules about reachability between the nodes?

Data flow diagrams do not show control. Thus, two processes may not be linked in a
data flow diagram. If each process uses different input data and produces different
output data, and no output from one is used as an input for the other, there will not be
an arc between them.

Answers to Problems

1. Draw a process model for the task of painting the walls in a room. Include the
following tasks: choose color, buy paint, clean the walls, stir the paint, and paint
the wall.

See Fig. 2-18.

2. The author uses interactive sessions when he teaches a course that includes distance
learning students. The author divides the students into teams and posts a problem on

CHAPTER 2 Software Process and Other Models24

Choose
color

Buy
paint

Correct
paint

Stirred
paint

Painted
walls

Stir
paint

Clean
walls

Color
choice

Cleaned
walls

Paint
walls

Fig. 2-18. Process model from painting walls.

the Web page. The teams work on the problem using chat rooms, ask questions of the
instructor using a message board, and submit the solution via email. The instructor
then grades the solutions using a grading sheet. Draw a process model for the inter-
active sessions.

See Fig. 2-19.

3. Draw a data flow diagram for the simple library problem.

See Fig. 2-20.

CHAPTER 2 Software Process and Other Models 25

Create
teams

Create
task

Ask
questions

Answer
questions

Draft
answer

dag’s
email

Message
board

Team
list

Task
statement

IS
info

Task
statement

Grading
sheet

IS
infoCreate

grading
sheet

Submit
answer by

10:15

Class goals

Class list

Grading sheet

Prepare

Preinteractive
session activities

Process model for preparing for interactive session.

Process model for tasks during the interactive session.

Activities
during interactive
session

Student

Instructor

Instructor

Chat room

Send
participation
msg before

7:15

TL

Team
members
& TL

Fig. 2-19

4. Draw a data flow diagram for a factory problem.

See Fig. 2-21.

5. Draw a data flow diagram for a grocery store.

See Fig. 2-22.

6. Draw an object model for a binary tree.

See Fig. 2-23.

CHAPTER 2 Software Process and Other Models26

new book
catalog
book

shelve
book

return
book

borrowed
book

check out
book

checked in book

book
on shelf

Fig. 2-20. Data flow diagram for library problem.

filled order
fill orderbuild product

product

take an order make schedule

schedule

request

materials

order

Fig. 2-21. Factory problem data flow diagram.

select items

sales data

items

weekly needs order
identify needs

stock shelves
unload
delivery

weekly
order

filled
shelves order

grocery
list

call supplier

full cart groceries
check out

Fig. 2-22. Grocery store data flow diagram.

nval* val
node* left

node* right

node
nval

btree

node* tnode

addnode()
printree()

int value

Fig. 2-23 Binary tree object model.

7. Draw an instance diagram of the binary tree object model.

See Fig. 2-24.

8. Draw an object model for the grocery store problem.

See Fig. 2-25.

9. Draw an object model for the factory problem.

See Fig. 2-26.

CHAPTER 2 Software Process and Other Models 27

btree

nval

node

val
left

right

node

val
left

right

node

val
left

right

node

val
left

right

node

val
left

right

20

nval

30

nval

13

nval

10

nval

12

Fig. 2-24. Instance diagram for binary tree.

grocery store

item

customer

supplier

sale
upc code
price
quantity

upc
quantity

Fig. 2-25. Grocery store problem object model.

factory

customer

order

product

schedule

Fig. 2-26. Factory object model.

TE
AM
FL
Y

Team-Fly®

10. Write additional scenarios for the patron checking out books from Example 2.11.

Fred goes to the library and cannot find a book to check out.

Fred goes to the library and checks out two books. Then he goes back to the library
and checks out three more books. Fred returns the second three books on time. Fred
returns the first two books late.

11. Draw a state diagram for a graphical user interface that has a main menu, a file menu
with a file open command, and quit commands at each menu. Assume that only one
file can be open at a time.

See Fig. 2-27.

Note that ‘‘close file’’ was not mentioned in the problem spec but a transition out of
the ‘‘file open’’ state is required.

12. Extend the following object model for the library problem to include a reservation
object so patrons can reserve a book that has all copies checked out.

See Fig. 2-28.

13. Build a state machine for the library problem with the ability to reserve books.

See Fig. 2-29.

CHAPTER 2 Software Process and Other Models28

enter

quit

quit

end

file open file

close file

open file
not found

file
menu

main
menu

file
open

Fig. 2-27. State diagram for GUI.

library

reservation

loan

loan status

copy

copy status

book

book
title

author

patron
name

address

Fig. 2-28. Library object model.

CHAPTER 2 Software Process and Other Models 29

on reshelve
rack

overdue

checked out

reserved

available
put on shelf

put on reserved
not claimed

re
tu

rn
ed

 la
te

returned

overdue

claim
ed

check out

Fig. 2-29. State machine for library problem.

30

Software Project
Management

3.1 Introduction
Although the word ‘‘manager’’ may remind many of us of the manager in the
‘‘Dilbert’’ comic strip, management is important. Software project management is
the important task of planning, directing, motivating, and coordinating a group of
professionals to accomplish software development. Software project management
uses many concepts from management in general, but it also has some concerns
unique to software development. One such concern is project visibility.

The lack of visibility of the software product during software development
makes it hard to manage. In many other fields, it is easy to see progress or lack
of progress. Many software projects get stalled at 90 percent complete. Ask any
programmer if that bug that he or she found is the last bug in the software, and the
answer will almost always be an emphatic yes. Many of the techniques in software
management are aimed at overcoming this lack of visibility.

3.2 Management Approaches
A basic issue in software project management is whether the process or the
project is the essential feature being managed. In process-oriented management,
the management of the small tasks in the software life cycle is emphasized. In
project management, the team achieving the project is emphasized. This results
in important differences in viewpoint. In a process management approach, if the
team does not follow the prescribed software life cycle, this would be a major
difficulty. In a project management approach, success or failure is directly attrib-
uted to the team.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

3.3 Team Approaches
Organizing a group of people into an efficient and effective team can be a difficult
task. Letting a team develop its own paradigm can be risky. Choosing a team
organization based on the project and the team members may help avoid disaster.

One aspect of a team is the amount of structure in the team. While some groups
of programmers can work very independently, other groups need strong structure
to make progress. The chief programmer team mentioned in the next section is an
example of a strongly structured team. In a strongly structured team, small assign-
ments are made to each member. These are often called ‘‘inch pebbles’’ because the
assignments are small milestones. In a weakly structured team, the tasks are
usually of longer duration and more open-ended.

Some teams consist of people with similar skills. These teams often stay
together through many projects. Other teams are composed of people with differ-
ent expertise that are grouped into a team based on the need for specific skills for a
project. This is often called a matrix organization.

3.3.1 CHIEF PROGRAMMER TEAMS
IBM developed the chief programmer team concept. It assigns specific roles to
members of the team. The chief programmer is the best programmer and leads the
team. Nonprogrammers are used on the team for documentation and clerical
duties. Junior programmers are included to be mentored by the chief programmer.

EXAMPLE 3.1

Draw a high-level process model for a hierarchical team organization. (See Fig. 3-1.)

CHAPTER 3 Software Project Management 31

Make new
assignments

Perform
tasks

Determine
tasks

Assignments

Requirements Results

Team leader

Fig. 3-1. High-level process model for hierarchical team structure.

EXAMPLE 3.2

Company WRT has an IT department with a few experienced software developers

and many new programmers. The IT manager has decided to use highly structured

teams using a process approach to managing. Each team will be led by an

experienced software developer. Each team member will be given a set of tasks

weekly. The team leader will continually review progress and make new

assignments.

3.4 Critical Practices
Most studies of software development have identified sets of practices that seem
critical for success. The following 16 critical success practices come from the
Software Project Managers Network (www.spmn.com):

� Adopt continuous risk management.

� Estimate cost and schedule empirically.

� Use metrics to manage.

� Track earned value.

� Track defects against quality targets.

� Treat people as the most important resource.

� Adopt life cycle configuration management.1

� Manage and trace requirements.

� Use system-based software design.

� Ensure data and database interoperability.

� Define and control interfaces.

� Design twice, code once.

� Assess reuse risks and costs.

� Inspect requirements and design.

� Manage testing as a continuous process.

� Compile and smoke-test frequently.

EXAMPLE 3.3

The IT manager of company WRT needs a software process that will aid his

inexperienced software developers in successful software development. The

manager uses the best-practices list to ensure that his software process will

include important activities.

Practice 1: Adopt continuous risk management. The manager includes process

steps throughout the life cycle in which the possible risks are identified and

evaluated, and tasks are included to ameliorate the risks.

CHAPTER 3 Software Project Management32

1 A configuration management tool will store and safeguard multiple versions of source code and documenta-

tion. The user can retrieve any version.

Practice 2: Estimate cost and schedule empirically. The manager includes a

process step to estimate the costs at the beginning of the life cycle and steps to

reestimate the costs throughout the life cycle. Steps include archiving the data to

be used for future estimation.

Practice 3: Use metrics to manage. The manager chooses metrics and includes

steps for metric recording and steps for evaluating progress based on the metrics.

Practice 4: Track earned value. The manager includes steps to calculate earned

value (see below) and to post the calculations.

Practice 5: Track defects against quality targets. The manager establishes goals

for the number of defect reports that are received. Process steps for posting the

number of defect reports are included.

Practice 6: Treat people as the most important resource. The manager reviews

the whole software process to consider the impact on the programmer.

Practice 7: Adopt life cycle configuration management. The manager includes in

the process the use of a configuration management tool for all documents and

includes process steps to enter all documents and changes into the configuration

management tool.

Practice 8: Manage and trace requirements. The manager includes process

steps to acquire the requirements from the user and steps to trace each

requirement to the current phase of development.

Practice 9: Use system-based software design. The manager includes steps to

ensure a system-based design.

Practice 10: Ensure data and database interoperability. The manager includes

steps to check for interoperability between the data and the database.

Practice 11: Define and control interfaces. The manager includes steps to define

and baseline the interfaces.

Practice 12: Design twice, code once. The manager includes design review

steps.

Practice 13: Assess reuse risks and costs. The manager includes steps to

identify areas of potential reuse and steps to assess costs and risks.

Practice 14: Inspect requirements and design. The manager includes inspection

steps in both the requirements and design phases.

Practice 15: Manage testing as a continuous process. The manager includes

testing steps in all phases.

Practice 16: Compile and smoke-test frequently. The manager includes frequent

testing steps in the implementation phase.

3.5 Capability Maturity Model
The Software Engineering Institute (www.sei.cmu.edu) has developed the
Capability Maturity Models. The Software Engineering Capability Maturity
Model (SE-CMM) is used to rate an organization’s software development process.
An assessment of an organization’s practices, processes, and organization is used
to classify an organization at one of the following levels:

� Level 1: Initial—This is the lowest level and usually characterized as chaotic.

CHAPTER 3 Software Project Management 33

� Level 2: Repeatable—This level of development capability includes project
tracking of costs, schedule, and functionality. The capability exists to repeat
earlier successes.

� Level 3: Defined—This level has a defined software process that is documented
and standardized. All development is accomplished using the standard pro-
cesses.

� Level 4: Managed—This level quantitatively manages both the process and the
products.

� Level 5: Optimizing—This level uses the quantitative information to continu-
ously improve and manage the software process.

Most organizations will be assessed at level 1 initially. Improving to higher
levels involves large efforts at organization and process management. Level 5
has been achieved by only a few organizations.

3.6 Personal Software Process
Watts Humphrey2 has developed the Personal Software Process to improve the
skills of the individual software engineer. His approach has the individual main-
tain personal time logs to monitor and measure the individual’s skills. One result
of this is measuring an individual’s productivity. The usual measure of productiv-
ity is lines of code produced per day (LOC/day). Additionally, errors are timed
and recorded. This allows an individual to learn where errors are made and to
assess different techniques for their effect on productivity and error rates.
Additionally, the productivity can be used to evaluate the reasonableness of
proposed schedules.

EXAMPLE 3.4

Programmer X recorded this time log.

Date Start Stop Interruptions Delta Task

1/1/01 09:00 15:30 30 lunch 360 Code 50 LOC

1/3/01 09:00 14:00 30 lunch 270 Code 60 LOC

1/4/01 09:00 11:30 150 Code 50 LOC

12:00 14:00 120 testing

CHAPTER 3 Software Project Management34

2 W. Humphrey. Introduction to the Personal Software Process. Addison-Wesley, 1997.

The programmer spent 360 + 270 + 150 + 120 = 900 minutes to write and test a

program of 160 LOC. Assuming 5 hours per day (300 minutes/day), X spent

effectively 3 days to program 160 LOC. This gives a productivity of 53 LOC/day.

When X’s manager schedules a week to code a 1000 = LOC project, X is able to

estimate that the project will take about 4 weeks.

3.7 Earned Value Analysis
One approach to measuring progress in a software project is to calculate how
much has been accomplished. This is called earned value analysis. It is basically
the percentage of the estimated time that has been completed. Additional measures
can be calculated.

Although this is based on estimated effort, it could be based on any quantity
that can be estimated and is related to progress.

3.7.1 BASIC MEASURES
� Budgeted Cost of Work (BCW): The estimated effort for each work task.

� Budgeted Cost of Work Scheduled (BCWS): The sum of the estimated effort
for each work task that was scheduled to be completed by the specified time.

� Budget at Completion (BAC): The total of the BCWS and thus the estimate of
the total effort for the project.

� Planned Value (PV): The percentage of the total estimated effort that is
assigned to a particular work task; PV = BCW/BAC.

� Budgeted Cost of Work Performed (BCWP): The sum of the estimated efforts
for the work tasks that have been completed by the specified time.

� Actual Cost of Work Performed (ACWP): The sum of the actual efforts for the
work tasks that have been completed.

3.7.2 PROGRESS INDICATORS
� Earned Value (EV) = BCWP/BAC

= The sum of the PVs for all completed work tasks
= PC = Percent complete

� Schedule Performance Index (SPI) = BCWP/BCWS

� Schedule Variance (SV) = BCWP � BCWS

� Cost Performance Index (CPI) = BCWP/ACWP

� Cost Variance (CV) = BCWP � ACWP

EXAMPLE 3.5

Company LMN is partway through its project. The job log below indicates the

current status of the project.

CHAPTER 3 Software Project Management 35

Work Task

Estimated

Effort

(programmer-

days)

Actual Effort

So Far

(programmer-

days)

Estimated

Completion

Date

Actual Date

Completed

1 5 10 1/25/01 2/1/01

2 25 20 2/15/01 2/15/01

3 120 80 5/15/01

4 40 50 4/15/01 4/1/01

5 60 50 7/1/01

6 80 70 9/01/01

The BAC is the sum of the estimations. BAC = 330 days. BAC is an estimate of

the total work. On 4/1/01, tasks 1,2, and 4 have been completed. The BCWP is the

sum of the BCWS for those tasks. So BCWP is 70 days. The earned value (EV) is

70/330, or 21.2 percent. On 4/1/01 tasks 1 and 2 were scheduled to be completed

and 1,2, and 4 were actually completed. So BCWP is 70 days and BCWS is 30

days. Thus, SPI is 70/30, or 233 percent. The SV = 70 days �30 days = +40 days,

or 40 programmer-days ahead. The ACWP is the sum of actual effort for tasks 1,

2, and 4. So, ACWP is 80 programmer-days. CPI is 70/80 = 87.5 percent. The CV

= 70 programmer-days �80 programmer-days = �10 programmer-days, or 10

programmer-days behind.

EXAMPLE 3.6

On 7/1/01, assume that task 3 has also been completed using 140 days of actual

effort, so BCWP is 190 and EV is 190/330, or 57.5 percent. On 7/1/01, tasks 1, 2,

3, and 4 were actually completed. So BCWP is 190 days and BCWS is 250 days.

Thus, SPI is 190/250 = 76 percent. The SV is 190 programmer-days �250

programmer-days = �60 programmer-days, or 60 programmer days behind. ACWP

is the sum of actual effort for 1, 2, 3, and 4. So ACWP is 220 programmer-days.

Tasks 1 through 5 were scheduled to have been completed, but only 1 through 4

were actually completed. CPI is 190/220 = 86.3 percent, and CV is 190–220, or 30

programmer-days behind.

3.8 Error Tracking
One excellent management practice is error tracking, which is keeping track of the
errors that have occurred and the inter-error times (the time between occurrences
of the errors). This can be used to make decisions about when to release software.
An additional effect of tracking and publicizing the error rate is to make the

CHAPTER 3 Software Project Management36

software developers aware of the significance of errors and error reduction. The
effects of changes in the software process can be seen in the error data.
Additionally, making the errors and error detection visible encourages testers
and developers to keep error reduction as a goal.

The error rate is the inverse of the inter-error time. That is, if errors occur every 2
days, then the instantaneous error rate is 0.5 errors/day. The current instantaneous
error rate is a good estimate of the current error rate. If the faults that cause errors
are not removed when the errors are found, then the cumulative error rate (the sum
of all the errors found divided by the total time) is a good estimate of future error
rates. Usually, most errors are corrected (the faults removed), and thus the error
rates should go down and the inter-error times should be increasing. Plotting this
data can show trends in the error rate (errors found per unit time). Fitting a straight
line to the points is an effective way to display the trend. The trend can be used to
estimate future error rates. When the trend crosses the x-axis, the estimate of the
error rate is zero, or there are no more errors. If the x-axis is number of errors, the
value of the x-intercept can be used as an estimate of the total number of errors in
the software. If the x-axis is the elapsed time of testing, the intercept is an estimate
of the testing time necessary to remove all errors. The area under this latter line is
an estimate of the number of errors originally in the software.

EXAMPLE 3.7

Consider the following error data (given as the times between errors): 4, 3, 5, 6, 4,

6, 7. The instantaneous error rates are the inverses of the inter-error times: 0.25,

0.33, 0.20, 0.17, 0.25, 0.17, and 0.14. Plotting these against error number gives a

downward curve, as shown in Figure 3-2. This suggests that the actual error rate is

decreasing.

A straight line through the points would intersect the axis about 11. Since this

implies that the error rate would go to zero at the eleventh error, an estimate of the

total number of errors in this software would be 11 errors. Since seven errors have

been found, this suggests that there may be four more errors in the software.

3.9 Postmortem Reviews
One critical aspect of software development is to learn from your mistakes and
successes. In software development, this is called a postmortem. It consists of

CHAPTER 3 Software Project Management 37

0.4

0.3

0.2

0.1

0
1 2 3 4 5 6 7

Error Rates

8 9 10 11 12 13

Error

N
um

be
r

of
 E

rr
or

s

Fig. 3-2. Plot of error rates.

TE
AM
FL
Y

Team-Fly®

CHAPTER 3 Software Project Management38

Project Name

Project X

Start Date—Sept. 5, 00 Completion Date – Dec 8, 00

Management

measures

Size Effort

Subjective

comments on

estimation

Good

Effort was close in total.

Bad

Imp effort was underestimated.

Subjective

comments on

process

Good Bad

Team members did not complete asgn on

time.

Subjective

comments on

schedule

Good Bad

Not enough time for imp.

Quality Errors found.

Subjective

comments on

quality

Good Bad

System not tested well.

Problem:

Initial req

ambiguity

Description:

Format of input file was initially wrong

Impact:

2 weeks wasted

Problem: Description: Impact:

Problem: Description: Impact:

Problem: Description: Impact:

ave max

mccabe 4 30

Method/class 6 10

Attributes/class 10 15

LOC/class 150 500

Estimated Actual

12,000 min 10,000 min

Estimated Actual

3000 LOC 5000 LOC

Req Design Unit Integ Postdel

30

CHAPTER 3 Software Project Management 39

assembling key people from the development and the users groups. Issues consist
of quality, schedule, and software process. It is important that everyone feel free to
express opinions. A formal report needs to be produced and distributed. The
reports should not be sanitized.

EXAMPLE 3.8

Company JKL produced the postmortem report shown on p. 38.

Review Questions

1. What is meant by visibility?

2. What is the difference between a process approach and a project approach?

3. For a new project that is very different from any previous project, would a process or
project management approach be better?

4. What is the advantage of making many small, ‘‘inch-pebble’’ assignments?

5. Which earned value progress measures can decrease during a project?

6. For which of the earned value progress measures is a value greater than 1 good?

7. What would be the advantage of using the inverse of SPI and CPI?

Problems

1. Draw a process model for a team that has a weak structure and depends on the team
discussions to set directions and resolve issues.

2. Using the following time log, calculate the programmer’s productivity in LOC/day.
Assume that project 1 was 120 LOC and project 2 was 80 LOC.

Date Start Stop Interruptions Delta Task

2/1/01 08:30 16:30 60 lunch Proj 1 coding

2/2/01 09:00 17:00 30 lunch Proj 1 coding

2/5/01 09:00 17:30 30 lunch, 60 mtg Proj 2 coding

2/6/01 07:30 12:00 Proj 2 coding

CHAPTER 3 Software Project Management40

3. Using the following job log, calculate all of the basic measures and the progress
indicators. Is the project on schedule? Assume that it is currently 5/01/01.

Work Task

Estimated Effort

(programmer-

days)

Actual Effort

So Far

(programmer-

days)

Estimated

Completion Date

Actual Date

Completed

1 50 70 1/15/01 2/1/01

2 35 20 2/15/01 2/15/01

3 20 40 2/25/01 3/1/01

4 40 40 4/15/01 4/1/01

5 60 10 6/1/01

6 80 20 7/1/01

4. Use a spreadsheet to calculate the PV and the progress indicators for the following
project at half-month intervals from January 1 through September 1.

Work Task

Estimated Effort

(programmer-

days)

Actual Effort

(programmer-

days)

Estimated

Completion Date

Actual Date

Completed

1 30 37 1/1 2/1

2 25 24 2/15 2/15

3 30 41 3/1 3/15

4 50 47 4/15 4/1

5 60 63 5/1 4/15

6 35 31 5/15 6/1

7 55 58 6/1 6/1

8 30 28 6/15 6/15

9 45 43 7/1 7/15

10 25 29 8/1 8/15

11 45 49 8/15 9/1

5. A professor has 40 homework assignments and 40 exams to grade. The exams usually
take 3 times as long to grade as the homework assignments. Calculate the PV for each
homework and for each exam. After 5 hours, if the professor has half of the exams
done, how long should he estimate it will take to complete the grading?

6. Given the following inter-error times (that is, the time between occurrences of errors),
use plots to estimate the total original number of errors and the time to completely
remove all errors: 6, 4, 8, 5, 6, 9, 11, 14, 16, 19.

7. The project started on January 1 and should be finished by June 1. It is now March 1.
Complete the following table. Calculate EV, SPI, SV, and CV. Determine whether the
project is on time. Justify your answer. Show your work.

Job # Est. Time Actual Time Spent PV Due Date Completed

1 30 10 Feb. 1

2 20 30 Mar. 1 Yes

3 50 30 May 1 Yes

4 100 5 Jun. 1

Answers to Review Questions

1. What is meant by visibility?

Visibility is the attribute of being able to see the progress or lack of progress in a
project.

2. What is the difference between a process approach and a project approach?

A process approach is similar to an assembly line, where each person has a task to be
done. Developers may do the same task on multiple projects—for example, a test team
or a design team. A project emphasis would give the team the responsibility for the
whole effort in developing a project.

3. For a new project that is very different from any previous project, would a process or
project management approach be better?

Process management works well with projects that are well understood. A new, very
different project might be better managed by a project approach that emphasizes
success in the project.

CHAPTER 3 Software Project Management 41

4. What is the advantage of making many small, ‘‘inch-pebble’’ assignments?

If a deadline or assignment is missed, the project is behind. The smaller the time
between deadlines, the sooner it is evident if a project is behind. It is said that a project
can only slip the length of an assignment before the manager can see the delay.

5. Which earned value progress measures can decrease during a project?

All but the earned value, which must increase.

6. For which of the earned value progress measures is a value greater than 1 good?

For SPI and SV, a value greater than 1 implies that more is being accomplished than
was scheduled. For CPI and CV, a value greater than 1 implies that effort is less than
what was estimated. So all four of these are good if their values are greater than 1.

7. What would be the advantage of using the inverse of SPI and CPI?

The inverse of each could be used as a projection tool. If the inverse of SPI was 2, it
would imply that project will take twice as long as estimated. If the inverse of CPI was
2, it would imply that the project will take twice the effort that was estimated.

Answers to Problems

1. Draw a process model for a team that has a weak structure and depends on the team
discussions to set directions and resolve issues.

See Fig. 3-3.

CHAPTER 3 Software Project Management42

Discuss
issues

Project
direction

Discuss
issues

Perform
tasks

Assign-
ments

Require-
ments

Results

Fig. 3-3. Process model for team with weak structures.

2. Using the following time log, calculate the programmer’s productivity in LOC/day.
Assume that project 1 was 120 LOC and project 2 was 80 LOC.

Date Start Stop Interruptions Delta Task

2/1/01 08:30 16:30 60 lunch Proj 1 coding

2/2/01 09:00 17:00 30 lunch Proj 1 coding

2/5/01 09:00 17:30 30 lunch, 60 mtg Proj 2 coding

2/6/01 07:30 12:00 Proj 2 coding

The delta time for day 1 is 8 hours �1 hour for lunch = 420 minutes; day 2 is 8 hours
�30 minutes = 450 minutes. So the productivity for project 1 is 120 LOC/ 870 minutes
= 120 LOC/ 2.175 days = 55 LOC/programmer-day (assume 400 minutes per pro-
grammer day). The delta times for day 3 and 4 are 7 hours and 4.5 hours = 690
minutes. The productivity is 80 LOC/ 1.725 days = 46.4 LOC/programmer-day.
Overall, the programmer averaged 200 LOC/ 3.9 days = 51.3 LOC/programmer-day.

3. Using the following job log, calculate all of the basic measures and the progress
indicators. Is the project on schedule? Assume that it is currently 5/01/01.

Work Task

Estimated Effort

(programmer-

days)

Actual Effort

So Far

(programmer-

days)

Estimated

Completion Date

Actual Date

Completed

1 50 70 1/15/01 2/1/01

2 35 20 2/15/01 2/15/01

3 20 40 2/25/01 3/1/01

4 40 40 4/15/01 4/1/01

5 60 10 6/1/01

6 80 20 7/1/01

The BCWS is 50+35+20+40=145 programmer-days. The BAC is
50+35+20+40+60+80=285 programmer-days. The planned values (PVs) for the
work tasks are 17.5 percent, 12.3 percent, 7.0 percent, 14.0 percent, 21.1 percent, 28.1
percent. The earned value is 17.5 percent + 12.3 percent + 7 percent + 14 per-
cent=50.7 percent. The BCWP for 5/01/01 is the same as BCWS in this example
because the scheduled work has been completed. Thus, SPI=145/145=1.

CHAPTER 3 Software Project Management 43

CHAPTER 3 Software Project Management44

The schedule variance is 145 �145=0. The cost performance index = 145 /170 =
85.3 percent. This indicates that the actual effort is larger than the estimated effort. The
cost variance is 145 �170=�25. This also indicates that more effort has been required
than was estimated.

The project appears to be on schedule but is costing more than was planned.

4. Use a spreadsheet to calculate the PV and the progress indicators for the following
project at half-month intervals from January 1 through September 1.

Work Task

Estimated Effort

(programmer-

days)

Actual Effort

(programmer-

days)

Estimated

Completion Date

Actual Date

Completed

1 30 37 1/1 2/1

2 25 24 2/15 2/15

3 30 41 3/1 3/15

4 50 47 4/15 4/1

5 60 63 5/1 4/15

6 35 31 5/15 6/1

7 55 58 6/1 6/1

8 30 28 6/15 6/15

9 45 43 7/1 7/15

10 25 29 8/1 8/15

11 45 49 8/15 9/1

bcw pv acw sched actual

1 30 0.070 37 1-Jan 1-Feb

2 25 0.058 24 15-Feb 15-Feb

3 30 0.070 41 1-Mar 15-Mar

4 50 0.116 47 15-Apr 1-Apr

5 60 0.140 63 1-May 15-Apr

6 35 0.081 31 15-May 1-Jun

7 55 0.128 58 1-Jun 1-Jun

8 30 0.070 28 15-Jun 15-Jun

9 45 0.105 43 1-Jul 15-Jul

10 25 0.058 29 1-Aug 15-Aug

11 45 0.105 49 15-Aug 1-Sep

BAC 430

bcws bcwp acwp ev spi sv cpi cv

1-Jan 30 0 0 0.00 0 –30 0 0

15-Jan 30 0 0 0.00 0 –30 0 0

1-Feb 30 30 37 0.07 1.00 0 0.81 –7

15-Feb 55 55 61 0.13 1.00 0 0.90 –6

1-Mar 85 55 61 0.13 0.65 –30 0.90 –6

15-Mar 85 85 102 0.20 1.00 0 0.83 –17

1-Apr 85 135 149 0.31 1.59 50 0.91 –14

15-Apr 135 195 212 0.45 1.44 60 0.92 –17

1-May 195 195 212 0.45 1.00 0 0.92 –17

15-May 230 195 212 0.45 0.85 –35 0.92 –17

1-Jun 285 285 301 0.66 1.00 0 0.95 –16

15-Jun 315 315 329 0.73 1.00 0 0.96 –14

1-Jul 360 315 329 0.73 0.88 –45 0.96 –14

15-Jul 360 360 372 0.84 1.00 0 0.97 –12

1-Aug 385 360 372 0.84 0.94 –25 0.97 –12

15-Aug 430 385 401 0.90 0.90 –45 0.96 –16

1-Sep 430 430 450 1.00 1.00 0 0.96 –20

5. A professor has 40 homework assignments and 40 exams to grade. The exams usually
take 3 times as long to grade as the homework assignments. Calculate the PV for each
homework and for each exam. After 5 hours, if the professor has half of the exams
done, how long should he estimate it will take to complete the grading?

Assume a grading unit is equal to 1 homework assignment. Then this task has a total
of 40 � 1þ 40 � 3 ¼ 160 grading units. Each homework has a planned value of 1/160
= 0.625 percent, and each exam has a planned value of 1.875 percent. After 5 hours,
20 exams are completed, or 37.5 percent. Thus, 5/0.375 = 13.33 hours as the estimated
total time, or 8.33 hours left.

6. Given the following inter-error times (that is, the time between occurrences of errors),
use plots to estimate the total original number of errors and the time to completely
remove all errors.

6, 4, 8, 5, 6, 9, 11, 14, 16, 19

The inverses of the inter-error times are the instantaneous error rates. Plotting these
rates against the error number gives a plot that shows a trend of decreasing error rates,
as shown in Fig. 3-4.

CHAPTER 3 Software Project Management 45

0.3

0.25

0.2

0.15

0.5

0.05

0
1 2 3 4 5 7 86 9

Number of Errors
10 11 12 13 14 15 16 17

E
rr

or
 R

at
e

Fig. 3-4. Error rate plot.

Fitting a straight line would show an x-intercept of about 15. Using this as an
estimate of the total number of original errors, we estimate that there are still five
errors in the software.

The error rates can also be plotted against elapsed time (the sum of the previous
inter-error times), as shown in Fig. 3-5.

Fitting a straight line to these points would give an x-intercept near 160. This would
give an additional testing time of 62 units to remove all errors. The y-intercept would
be around 0.25. The area under this line would be 0:5 � 160 � 0:25, or 20 errors. This
would suggest about 10 errors left. The differences between these two estimates show
the roughness of this approach.

7. The project started on January 1 and should be finished by June 1. It is now March 1.
Complete the following table. Calculate EV, SPI, SV, and CV. Determine whether the
project is on time. Justify your answer. Show your work.

Job # Est. Time Actual Time Spent PV Due Date Completed

1 30 10 .15 Feb. 1

2 20 30 .10 Mar. 1 Yes

3 50 30 .25 May 1 Yes

4 100 5 .50 Jun. 1

BAC ¼ 200 BCWS ¼ 50 BCWP ¼ 70 ACWP ¼ 60

EV ¼ 70=200 ¼ 0:35 SV ¼ 70� 50 ¼ 20 SPI ¼ 70=50 ¼ 1:4 CV ¼ 70� 60 ¼ 10

The project is ahead of schedule.

CHAPTER 3 Software Project Management46

0.3

0.25

0.2

0.15

0.1

0.05

0

E
rr

or
 R

at
es

0 50 100 150
Time

200 250

Errors

Fig. 3-5. Error rates vs. elapsed time.

47

Software Project
Planning

4.1 Project Planning
Planning is essential and software development is no exception. Achieving success
in software development requires planning. Software project planning involves
deciding what tasks need to be done, in what order to do the tasks, and what
resources are needed to accomplish the tasks.

4.2 WBS—Work Breakdown Structure
One of the first tasks is to break the large tasks into small tasks. It means finding
identifiable parts of the tasks. It also means finding deliverables and milestones that
can be used to measure progress.

The work breakdown structure (WBS) should be a tree structure. The top-level
breakdown usually matches the life cycle model (LCM) used in the organization.
The next-level breakdown can match the processes in the organization’s process
model (PM). Further levels are used to partition the task into smaller, more
manageable tasks.

The following are rules for constructing a proper work breakdown structure:

1. The WBS must be a tree structure. There should be no loops or cycles in
the WBS. Iterative actions will be shown in the process model and/or the
life cycle model.

2. Every task and deliverable description must be understandable and
unambiguous. The purpose of a WBS is communication with team mem-
bers. If the team members misinterpret what the task or deliverable is
supposed to be, there will be problems.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

3. Every task must have a completion criterion (often a deliverable). There
must be a way to decide when a task is completed, because subtasks that
have no definite ending encourage false expectations of progress. This
decision is called a completion criterion. It may be a deliverable, for exam-
ple, a complete design for the project, and then a peer review can decide if
it is complete.

4. All deliverables (artifacts) must be identified. A deliverable must be pro-
duced by some task or it won’t be produced.

5. Positive completion of the tasks must imply completion of the whole
task. The purpose of the work breakdown schedule is to identify the
subtasks necessary to complete the whole task. If important tasks or
deliverables are missing, the whole task will not be accomplished.

EXAMPLE 4.1

In making a loaf of bread, the life cycle model for cooking might be as shown in

Fig. 4-1.

The process model for cooking might be as shown in Fig. 4-2.

The subtasks might be as follows:

Choose ingredients, Check on ingredients, Assemble ingredients, Add liquids,

Add yeast, Add small amount of flour, Make sponge (yeast and liquids), Let rise

CHAPTER 4 Software Project Planning48

Select
food

Assemble
ingredients

Cook
food

Eat food

Clean up

Fig. 4-1. Life cycle model for cooking.

Ingredients

Uncooked
food

Recipe

Mix

Cook Food

Cook

Fig. 4-2. Cooking process model.

first time, Add remaining flour, Knead, Let rise second time, Form into loaves, Let

rise third time, Bake, Slice, Butter, Eat, and Clean up.

These can be divided into the phases of the life cycle model and processes of

the process model (the leftmost are LCMs, those with one indent are PMs, those

with two indents are tasks, and the deliverables are on the right):

Select food

Choose ingredients List of ingredients

Check on ingredients Shopping list

Assemble ingredients

Assemble ingredients Assembled ingredients

Cook food

Mix

Add liquids Liquid in bowl

Add yeast Liquids with yeast

Add small amount of flour Liquids and flour

Make sponge (yeast and liquids) Sponge

Let rise first time Risen sponge

Add remaining flour and knead Kneaded dough

Let rise second time Risen dough

Form into loaves Loaves

Let rise third time Risen loaves

Cook

Bake Bread

Eat

Slice Slice of bread

Butter Buttered slice

Eat Good taste

Clean up

Clean up Clean kitchen

EXAMPLE 4.2

Team XYZ wants to develop a face recognition system for use on the robot. The

system is intended to greet visitors to the robotics laboratory. It should recognize

faces it has seen before with a reasonable reliability. The first pass on the work

breakdown might recognize the following subtasks:

Feasibility

Determine feasibility of vision.

Determine camera and software availability.

Schedule camera and vision software acquisition.

Risk Analysis

Determine vision risks.

Requirements

Specify requirements.

Design

Design prototypes.

Prototype vision.

CHAPTER 4 Software Project Planning 49

Implementation

Code the image capture.

Code the image processing.

Code the image comparison.

Integrate with other robot software.

Testing

Test image capture.

Delivery

Document.

Some of these subtasks are still very high level. These tasks may not have an
obvious and checkable deliverable. That is, it may not be easy to determine defin-
itively when a subtask has been completed. It is not suitable for a subtask to be
done when the developer feels that it is done. There must be some way to deter-
mine objectively when a subtask has been completed properly.

EXAMPLE 4.3

The team broke the subtask ‘‘Code the image capture’’ into a more detailed set of

subtasks, with each new subtask having a more specific deliverable and

completion criterion. The set of subtasks and deliverables are the following:

Install commercial camera driver. Installed driver

Test driver from windows

and save an image to file. Image file

Write routine to call driver from C++. Routine

Test C++ routine separately

and save an image to file. Image from C++ code

Test C++ routine from the main robot

control software and capture image. Image from main

4.3 PERT—Program Evaluation and Review
Technique

This technique creates a graph that shows the dependencies among the tasks. Each
task has an estimate of the time necessary to complete the task and a list of other
tasks that have to be completed before this task can be started (dependencies). The
graph may not always have only one starting subtask or only one stopping sub-
task. The whole task is only completed when all the subtasks are completed. The
graph can be used to calculate the completion times for all the subtasks, the
minimum completion time for the whole task, and the critical path of the subtasks.

4.3.1 ALGORITHM FOR COMPLETION TIMES
1. For each node, do step 1.1 (until completion times of all nodes are calcu-

lated)
1.1 If the predecessors are completed, then take the latest completions

time of the predecessors and add required time for this node.

CHAPTER 4 Software Project Planning50

2. The node with the latest completion time determines the earliest comple-
tion time for project.

EXAMPLE 4.4

Apply this algorithm to Table 4-1, which shows an example of tasks and

dependencies. The same dependencies are shown in Fig. 4-3. To apply the

completion time algorithm, start with subtask a; it has no dependencies, so it can

start at the initial time (say, 0). It can complete at time 0 þ 8 ¼ 8. Similarly, subtask

b can complete at time 0 þ 10 ¼ 10. See Table 4-2. Note that since these subtasks

are not dependent on each other or on anything else, they can start at time 0.

Their completion times are calculated without concern for lack of resources. That

is, for this completion calculation, it assumes that there are people available to do

both tasks at the same time.

Table 4-1 Subtasks

Subtask ID Time to Complete Task Dependencies

a 8

b 10

c 8 a,b

d 9 a

e 5 b

f 3 c,d

g 2 d

h 4 f,g

i 3 e,f

CHAPTER 4 Software Project Planning 51

a

b

c

d

e

f

g

h

i

8

8
3

4

10

9

2

5 3

Fig. 4-3. PERT diagram.

Table 4-2

Subtask ID Start Time Completion Time Critical Path

a 0 8

b 0 10 *

c 10 18 *

d 8 17

e 10 15

f 18 21 *

g 17 19

h 21 25 *

i 21 24

Since the completion times for subtasks a and b are now calculated, the

completion times for nodes c, d, and e can be calculated. Since the predecessors

of c finish at 8 and 10, subtask c can start at 10 and complete at 10 + 8 = 16. The

start time for d will be 8 and the completion time can be 8 + 9 = 17, and for e the

times will be 10 and 10 + 5 = 14.

Now we can process subtasks f and g. The start times can be 17 and 16,

respectively. The completion times will be 17 + 3 = 20 for f and 16 + 2 = 18 for g.

Subtasks h and i can now be calculated with both starting at 21 and h competing

at 25 and i at 24. Table 4-2 has all of the start and completion times.

4.3.2 CRITICAL PATH
The critical path is the set of tasks that determines the shortest possible completion
time. The completion time will be longer if there are insufficient resources to do all
parallel activities. However, the completion time can never be made shorter by
adding more resources.

4.3.3 ALGORITHM FOR MARKING CRITICAL PATH
1. Start with the node(s) with the latest completion time(s); mark it (them) as

critical.

CHAPTER 4 Software Project Planning52

2. Select the predecessor(s) of the critical node(s) with latest completion
time(s); mark it (them) as critical. Continue Step 2 until reaching the
starting node(s).

EXAMPLE 4.5

In Table 4-2 we can see the completion times of all of the subtasks. Subtask h has

the latest completion time, 25. Thus, we mark h as part of the critical path. The

predecessors of h are f and g. Subtask f has the latest completion time of those

two subtasks, so f is marked as part of the critical path.

Subtask f has c and d as predecessors. Since c has the later completion time, c

is marked as part of the critical path. Subtask c has a and b as predecessors, and

since b has the later time, it is part of the critical path. Since we are now at an

initial subtask, the critical path is complete.

4.3.4 SLACK TIME
Subtasks that are on the critical path have to be started as early as possible or else
the whole project will be delayed. However, subtasks that are not on the critical
path have some flexibility on when they are started. This flexibility is called the
slack time.

4.3.5 ALGORITHM FOR SLACK TIME
1. Pick the noncritical node with the latest ending time that has not been

processed. If the subtask has no successors, pick the latest ending time
of all nodes. If the subtask has successors, pick the earliest of the latest
start times of the successor nodes. This is the latest completion time for
this subtask. Make the latest start time for this subtask to reflect this
time.

2. Repeat Step 1 until all noncritical path subtasks have been processed.

EXAMPLE 4.6

The noncritical subtask with the latest completion time is subtask i. Since it has no

successors, the latest completion time, 25, is used. This is added as the latest

completion time for i. Since 25 is 1 later than 24, the start time is changed from 21

to 21,22. Now the latest nonprocessed, noncritical subtask is g. Since h is the only

successor of g, and h must start by 21, g must end by 21. So the completion time

of g becomes 19,21 and the start time becomes 17,19. The next subtask to be

processed will be d. It has successors f and g. Subtask f has to start by 18, so d’s

completion becomes 17,18, and its start becomes 8,9. The next subtask to be

processed will be e. Subtask e has g and i as successors. Subtask g’s latest start

time is 19 and i’s is 22, so subtask e becomes 10,14 for start times and 15,19 for

completion times. The last subtask to be processed is a. It has successors c and

d. Subtask a has to complete by 9, so the completion time will be 8,9, and its start

time will be 0,1. Table 4-3 summarizes the results.

CHAPTER 4 Software Project Planning 53

Table 4-3 Subtasks with Slack Time

Subtask ID Start Time Completion Time Critical Path

a 0,1 8,9

b 0 10 *

c 10 18 *

d 8,9 17,18

e 10,14 15,19

f 18 21 *

g 17,19 19,21

h 21 25 *

i 21,22 24,25

EXAMPLE 4.7 USING MICROSOFT PROJECT

Open MS Project (version 98). Select PERT view on left menu. Under the Insert

pull-down menu, insert a new task. Use the right mouse button to open task

information. Change the time for the task to 5 days. Drag from this task to create a

new task with a dependency on the first task, or go to the Insert menu to insert

another new task. Create the tasks and dependencies from Example 4.5. The

tasks on the critical path will be shown in red. Use the left menu bar to see the

Gannt chart view of this project.

4.4 Software Cost Estimation
The task of software cost estimation is to determine how many resources are
needed to complete the project. Usually this estimate is in programmer-months
(PM).

There are two very different approaches to cost estimation. The older approach
is called LOC estimation, since it is based on initially estimating the number of
lines of code that will need to be developed for the project. The newer approach is
based on counting function points in the project description.

4.4.1 ESTIMATION OF LINES OF CODE (LOC)
The first step in LOC-based estimation is to estimate the number of lines of code in
the finished project. This can be done based on experience, size of previous pro-

CHAPTER 4 Software Project Planning54

jects, size of a competitor’s solution, or by breaking down the project into smaller
pieces and then estimating the size of each of the smaller pieces. A standard
approach is, for each piecei, to estimate the maximum possible size, maxi, the
minimum possible size, mini, and the ‘‘best guess’’ size, besti. The estimate for
the whole project is 1/6 of the sum of the maximums, the minimums, and 4 times
the best guess:

Standard deviation of S ¼ ðsd2 þ sd2 þ . . .þ sd2Þ1=2
Standard deviation of EðiÞ ¼ ðmax�minÞ=6

EXAMPLE 4.8

Team WRT had identified seven subpieces to their project. These are shown in

Table 4-4 with their estimates of the size of each subpiece.

Table 4-4 Subpiece Size Estimate (in LOC)

Part Max Size Best Guess Min Size

1 20 30 50

2 10 15 25

3 25 30 45

4 30 35 40

5 15 20 25

6 10 12 14

7 20 22 25

The estimates for each section are as follows:

p1ð20 þ 4 � 30 þ 50Þ=6 ¼ 190=6 ¼ 31:6

p2ð10 þ 4 � 15 þ 25Þ=6 ¼ 95=6 ¼ 15:8

p3ð25 þ 4 � 30 þ 45Þ=6 ¼ 190=6 ¼ 31:6

p4ð30 þ 4 � 35 þ 40Þ=6 ¼ 220=6 ¼ 36:7

p5ð15 þ 4 � 20 þ 25Þ=6 ¼ 120=6 ¼ 20

p6ð10 þ 4 � 12 þ 14Þ=6 ¼ 72=6 ¼ 12

p7ð20 þ 4 � 22 þ 25Þ=6 ¼ 133=6 ¼ 22:17

The estimate for the whole project is the sum of the estimates for each section:

Whole ¼ 31:6 þ 15:8 þ 31:6 þ 36:7 þ 20 þ 12 þ 22:17 ¼ 170:07 LOC

CHAPTER 4 Software Project Planning 55

The estimate for the standard deviation of the estimate is as follows:

Standard deviation ¼ ðð50 � 20Þ2 þ ð25 � 10Þ2 þ ð45 � 25Þ2
þ ð40 � 30Þ2 þ ð25 � 15Þ2 þ ð14 � 10Þ2 þ ð25 � 20Þ2Þ:5
¼ ð900 þ 225 þ 400 þ 100 þ 100 þ 16 þ 25Þ:5
¼ 1766:5 ¼ 42:03

4.4.2 LOC-BASED COST ESTIMATION
The basic LOC approach is a formula that matches the historical data. The basic
formula has three parameters:

Cost ¼ � � KLOC � þ �

Alpha, �, is the marginal cost per KLOC (thousand lines of code). This is the
added cost for an additional thousand lines of code. The parameter beta, �, is an
exponent that reflects the nonlinearity of the relationship. A value of beta greater
than 1 means that the cost per KLOC increases as the size of the project increases.
This is a diseconomy of scale. A value of beta less than 1 reflects an economy of
scale. Some studies have found betas greater than 1, and other studies have betas
less than 1. The parameter gamma, �, reflects the fixed cost of doing any project.
Studies have found both positive gammas and zero gammas.

EXAMPLE 4.9

Company LMN has recorded the following data from previous projects. Estimate

what the parameters for the cost estimation formula should be and how much

effort a new project of 30 KLOC should take (see Table 4-5).

Table 4-5 Historical Data

Proj. ID Size (KLOC) Effort (PM)

1 50 120

2 80 192

3 40 96

4 10 24

5 20 48

Analyzing or plotting this data would show a linear relationship between size and

effort. The slope of the line is 2.4. This would be alpha, �, in the LOC-based cost

estimation formula. Since the line is straight (linear relationship), the beta, �, is 1.

The gamma, �, value would be zero.

CHAPTER 4 Software Project Planning56

4.4.3 CONSTRUCTIVE COST MODEL (COCOMO)
COCOMO is the classic LOC cost-estimation formula. It was created by Barry
Boehm in the 1970s. He used thousand delivered source instructions (KDSI) as his
unit of size. KLOC is equivalent. His unit of effort is the programmer-month
(PM).

Boehm divided the historical project data into three types of projects:

1. Application (separate, organic, e.g., data processing, scientific)

2. Utility programs (semidetached, e.g., compilers, linkers, analyzers)

3. System programs (embedded)

He determined the values of the parameters for the cost model for determining
effort:

1. Application programs: PM ¼ 2:4 � ðKDSIÞ1:05
2. Utility programs: PM ¼ 3:0 � ðKDSIÞ1:12
3. Systems programs: PM ¼ 3:6 � ðKDSIÞ1:20

EXAMPLE 4.10

Calculate the programmer effort for projects from 5 to 50 KDSI (see Table 4-6)

Table 4-6 COCOMO Effort

Size Appl Util Sys

5K 13.0 18.2 24.8

10K 26.9 39.5 57.1

15K 41.2 62.2 92.8

20K 55.8 86.0 131.1

25K 70.5 110.4 171.3

30K 85.3 135.3 213.2

35K 100.3 160.8 256.6

40K 115.4 186.8 301.1

45K 130.6 213.2 346.9

50K 145.9 239.9 393.6

CHAPTER 4 Software Project Planning 57

TE
AM
FL
Y

Team-Fly®

CHAPTER 4 Software Project Planning58

Boehm also determined that in his project data, there was a standard develop-
ment time based on the type of project and the size of the project. The following
are the formulas for development time (TDEV) in programmer-months:

1. Application programs: TDEV ¼ 2:5 � (PM) 0.38

2. Utility programs: TDEV ¼ 2:5 � (PM) 0.35

3. Systems programs: TDEV ¼ 2:5 � (PM) 0.32

EXAMPLE 4.11

Calculate the standard TDEV using the COCOMO formulas for projects from 5 to

50 KDSI (see Table 4-7).

Table 4-7 COCOMO

Development Time

Size Appl Util Sys

5K 6.63 6.90 6.99

10K 8.74 9.06 9.12

15K 10.27 10.62 10.66

20K 11.52 11.88 11.90

25K 12.60 12.97 12.96

30K 13.55 13.93 13.91

35K 14.40 14.80 14.75

40K 15.19 15.59 15.53

45K 15.92 16.33 16.25

50K 16.61 17.02 16.92

4.4.4 FUNCTION POINT ANALYSIS
The idea of function points is to identify and quantify the functionality required
for the project. The idea is to count things in the external behavior that will require
processing. The classic items to count are as follows:

Inputs
Outputs
Inquiries
Internal files
External interfaces

Inquiries are request-response pairs that do not change the internal data. For
example, a request for the address of a specified employee is an inquiry. The whole
sequence of asking, supplying the name, and getting the address would count as
one inquiry.
Inputs are items of application data that is supplied to the program. The logical

input is usually considered one item and individual fields are not usually counted
separately. For example, the input of personal data for an employee might be
considered one input.
Outputs are displays of application data. This could be a report, a screen

display, or an error message. Again, individual fields are usually not
considered separate outputs. If the report has multiple lines, for instance, a line
for each employee in the department, these lines would all be counted as one
output. However, some authorities would count summary lines as separate
outputs.
Internal files are the logical files that the customer understands must be

maintained by the system. If an actual file contained 1000 entries of personnel
data, it would probably be counted as one file. However, if the file contained
personnel data, department summary data, and other department data, it would
probably be counted as three separate files for the purposes of counting function
points.
External interfaces are data that is shared with other programs. For example,

the personnel file might be used by human resources for promotion and for pay-
roll. Thus, it would be considered an interface in both systems.

4.4.4.1 Counting Unadjusted Function Points

The individual function point items are identified and then classified as simple,
average, or complex. The weights from Table 4-8 are then assigned to each item
and the total is summed. This total is called the unadjusted function points.

There is no standard for counting function points. Books have been written
with different counting rules. The important thing to remember is that function
points are trying to measure the amount of effort that will be needed to develop
the software. Thus, things that are related to substantial effort need to generate
more function points than things that will take little effort. For example, one
difference between approaches to counting function points is related to summary
lines at the bottom of reports. Some software engineers feel that a summary line
means another output should be counted, while others would only count the main
items in the report. The answer should be based on how much additional effort
that summary line would require.

Specific rules are not as important as consistency within the organization.
Working together and reviewing other function point analyses will help build
that consistency. Additionally, reviewing the estimate after completion of the
project might help determine which items took more effort than indicated by
the function point analysis and perhaps which items were overcounted in terms
of function points and did not take as much effort as indicated.

Note: Try to make your function points consistent with effort necessary for
processing each item.

CHAPTER 4 Software Project Planning 59

Table 4-8 Function Point Weights

Simple Average Complex

Outputs 4 5 7

Inquiries 3 4 6

Inputs 3 4 6

Files 7 10 15

Interfaces 5 7 10

EXAMPLE 4.12

The department wants a program that assigns times and rooms for each section

and creates a line schedule for the courses. The department has a list of sections

with the name of the assigned professor and the anticipated size. The department

also has a list of rooms with the maximum number of students each room will hold

There are also sets of classes that cannot be taught at the same time. Additionally,

professors cannot teach two courses at the same time.

This program is much more difficult than the complexity of the inputs and

outputs. It has two main inputs: the file with the list of sections, assigned professor,

and anticipated size, and the file with the list of rooms with the maximum size.

These two files, although simple to read, will be difficult to process, so they will be

rated complex. There will be an additional file with the sets of classes that cannot

be taught at the same time. Again, this file is simple in structure but will be difficult

to process. The last line has a restriction that is not an input or output.

There is an output, the line schedule. This is a complex output. There are no

inquiries or interfaces mentioned, nor any mention about files being maintained.

4.4.5 PRODUCTIVITY
One of the important measures is the productivity of the software developers. This
is determined by dividing the total size of the finished product by the total effort of
all the programmers. This has units of LOC/programmer-day. An alternative is to
measure the productivity in terms of function points per programmer-day.

Note that productivity includes all the effort spent in all phases of the software
life cycle.

EXAMPLE 4.13

Company XYZ spent the following effort for each life cycle phase of the latest

project (see Table 4-9). Calculate the effort in terms of LOC/programmer-day and

in terms of function points/programmer day. The function point estimate was 50

unadjusted function points. The finished project included 950 lines of code.

CHAPTER 4 Software Project Planning60

Table 4-9 Effort During Phases

Phase Programmer-Days

Requirements 20

Design 10

Implementation 10

Testing 15

Documentation 10

The total effort was 65 programmer-days. This gives a productivity of 950/65 =

14.6 lines of code/programmer-days. Using unadjusted function points (fp), the

productivity is 50 fp/65 days = 0.77 fp/programmer-days.

4.4.6 EVALUATING ESTIMATIONS
To evaluate estimations, a measure needs to be calculated. Tom DeMarco pro-
posed the estimate quality factor (EQF). DeMarco defines the EQF as the area
under the actual curve divided by area between the estimate and the actual value.
This is the inverse of the percentage error or the mean relative error. Thus, the
higher the EQF, the better was the series of estimates. DeMarco said that values
over 8 are reasonable.

EXAMPLE 4.11

The following estimates were given for a project that cost 3.5 million dollars when it

was completed after 11.5 months:

Initial 1.5 months 5.5 months 8 months

2.3 million 3.1 million 3.9 million 3.4 million

The total area is 11.5 months times 3.5 million = 40.25 million month-dollars. The

difference between the actual curve and the estimate is |2:3 � 3:5| � 1:5 + |3:1�
3:5| � 4 + |3:9 � 3:5| � 2:5þ |3:4 � 3:5| �3:5 ¼ 4:75 million month-dollars. The ratio is

40:25=4:75 ¼ 8:7.

CHAPTER 4 Software Project Planning 61

4.4.7 AUTOMATED ESTIMATION TOOLS
Numerous tools are available on the Internet that will calculate COCOMO or
COCOMO2. Most have very simple interfaces. Search for COCOMO using any
browser, and it should find multiple sites.1

Review Questions

1. What is the distinction between a WBS and a process model?

2. Why should a WBS be a tree?

3. What happens when there is not a completion criterion for a task in a WBS?

4. What is the advantage of using a PERT diagram?

5. Why does delaying a task on the critical path delay the whole project?

6. Is the critical path important if only one person is working on a project?

7. What is the importance of slack time?

8. Why is slack time based on the earliest time of the latest start times of successor tasks?

9. Draw a diagram that shows economy of scale and diseconomy of scale. Label the
diagram and explain which is which.

10. It is very common to use the default version of estimation. Consider the last time
someone asked you to give an estimate of anything. Was the estimate you gave the
default definition of an estimate or DeMarco’s proposed definition of an estimate?

11. Why should the parameters for cost estimation be determined from a company’s data?

Problems

1. Create a WBS for the task of painting a room. Assume that the process model is for
home work projects with activities: plan work, buy supplies, do work, clean up.

CHAPTER 4 Software Project Planning62

1 A couple of useful sites are sunset.usc.edu/research/COCOMOII or www.jsc.nasa.gov/bu2/COCOMO.html.

2. Create a WBS for the software development of the software for the following dental
office:

Tom is starting a dental practice in a small town. He will have a dental assistant,

a dental hygienist, and a receptionist. He wants a system to manage the

appointments.

When a patient calls for an appointment, the receptionist will check the

calendar and will try to schedule the patient as early as possible to fill in

vacancies. If the patient is happy with the proposed appointment, the

receptionist will enter the appointment with the patient name and purpose of

appointment. The system will verify the patient name and supply necessary

details from the patient records, including the patient’s ID number. After each

exam or cleaning, the hygienist or assistant will mark the appointment as

completed, add comments, and then schedule the patient for the next visit if

appropriate.

The system will answer queries by patient name and by date. Supporting

details from the patient’s records are displayed along with the appointment

information. The receptionist can cancel appointments. The receptionist can

print out a notification list for making reminder calls 2 days before

appointments. The system includes the patient’s phone numbers from the patient

records. The receptionist can also print out daily and weekly work schedules

with all the patients.

3. Create a WBS for the software development of the software for the following B&B
problem:

Tom and Sue are starting a bed-and-breakfast in a small New England town.

They will have three bedrooms for guests. They want a system to manage the

reservations and to monitor expenses and profits. When a potential customer calls

for a reservation, they will check the calendar, and if there is a vacancy, they will

enter the customer name, address, phone number, dates, agreed upon price, credit

card number, and room number(s). Reservations must be guaranteed by 1 day’s

payment.

Reservations will be held without guarantee for an agreed upon time. If not

guaranteed by that date, the reservation will be dropped.

4. Create a WBS for the software development of the software for the following auto-
mobile dealership problem:

An automobile dealer wants to automate its inventory. It can record all of the

cars that a customer purchases. It records all repairs. It records all arriving

shipments of repair parts. The dealer wants daily reports on total daily repairs,

daily sales, and total inventory. This report is called ‘‘dailyreport.’’ The dealer

also keeps track of all customers and potential customers that visit the dealership.

The dealer also wants a monthly report showing all visits and purchases by

customers listed by day of the month. The dealer also wants the ability to query

about any customer or potential customer.

5. Draw the PERT diagram for the tasks of Problem 1.

6. Draw the PERT diagram for the given set of tasks and dependencies. Complete the
table showing the critical path and the slack times.

CHAPTER 4 Software Project Planning 63

Node Dep Time Start Finish

a 10

b a 5

c a 2

d a 3

e b,c 7

f b,d 9

g c,d 5

h e,f,g 6

7. Draw the PERT diagrams for the given set of tasks and dependencies. Complete the
table showing the critical path and the slack times.

Node Dependencies Time Start Time Stop Time

a 10

b e 10

c d,f 10

d a,f,b 20

e a,f 8

f a 5

8. Estimate the cost parameters from the given set of data:

Project Size (KLOC) Cost (programmer-months)

a 30 84

b 5 14

c 20 56

CHAPTER 4 Software Project Planning64

d 50 140

e 100 280

f 10 28

9. Estimate the cost parameters from the given set of data:

Project Size (KLOC) Cost (programmer-months)

a 30 95

b 5 80

c 20 65

d 50 155

e 100 305

f 10 35

10. Calculate COCOMO effort, TDEV, average staffing, and productivity for an organic
project that is estimated to be 39,800 lines of code.

11. Calculate the unadjusted function points for the problem description of Problem 2.

Answers to Review Questions

1. What is the distinction between a WBS and a process model?

A process model describes the software activities in a generic sense, that is, for many
different projects. It describes the process, the artifacts produced and used, and the
actors responsible for the activities. A process model is a graph; it can have cycles and
so on. A work breakdown structure is a tree that expands the process model’s activities
with details and necessary subtasks that are specific for a particular project. A WBS
task that appears in every project should also be in the process model.

2. Why should a WBS be a tree?

CHAPTER 4 Software Project Planning 65

If there are loops in a WBS, it means that some task recursively depends on itself,
which is impossible. A loop will normally happen when some task is not defined
properly. If there are two paths to a task, it normally means that two different
higher-level tasks depend on that common subtask. It only needs to be shown (and
done) once.

3. What happens when there is not a completion criterion for a task in a WBS?

It means that it will not be clear if progress is being made or when it is done. It also
may mean that it is not clear what actually needs to be done. For example, a subtask
such as ‘‘research XXX’’ is not well specified. There should be a goal to the research
and that should be clearly stated in the task description.

4. What is the advantage of using a PERT diagram?

Although the WBS will develop a list of tasks, it may be difficult to see which tasks
have to be done first and which tasks will determine the final completion time. These
tasks are on the critical path.

5. Why does delaying a task on the critical path delay the whole project?

The critical path is defined as the set of tasks that determine the minimum time for
completing the project. Practically, if a task is on the critical path and it is delayed, that
means the start time and ending time of the next task on the critical path will be
delayed. This will ripple down to the last task on the critical path, and the project
will be delayed.

6. Is the critical path important if only one person is working on a project?

It is important only if all tasks are on the critical path. If there are tasks not on the
critical path and those tasks cannot be done in parallel since there is only one person,
the time required for those tasks will have the be added to the time of the critical path
to determine the completion time.

7. What is the importance of slack time?

Although tasks not on the critical path do not determine the minimal completion time,
if those tasks are not done in a timely fashion, the completion time will be delayed. The
slack time shows the range of time in which that task must be completed.

8. Why is slack time based on the earliest of the latest start times of the successor tasks?

Slack time is based on the earliest such start time because if that task was delayed past
that start time, that task would not be completed in time and the ripple effect would
delay the whole project.

9. Draw a diagram that shows economy of scale and diseconomy of scale. Label the
diagram and explain which is which.

A line that curves upward shows a diseconomy of scale. That is, with bigger
projects, the cost per unit of size increases. A line that curves downward shows
an economy of scale. That is, the bigger the project, the cheaper the cost per unit
of size. See Fig. 4-4.

CHAPTER 4 Software Project Planning66

10. It is very common to use the default version of estimation. Consider the last time
someone asked you to give an estimate of anything. Was the estimate you gave the
default definition of an estimate or DeMarco’s proposed definition of an estimate?

When my students ask when an assignment will be graded, I too often give the time it
would take if I did not have any other tasks to do and I was not interrupted. That
answer is not realistic because there are always more pressing tasks and interruptions.

11. Why should the parameters for cost estimation be determined from a company’s data?

Each company has different practices, standards, policies, and types of software that it
develops. It is unrealistic to expect that the parameters found to be good predictors by
large defense contractors should be the same as those for small, in-house development
projects.

Answers to Problems

1. Create a WBS for painting a room.

(Process model activities are not shown.)

a. Select color for room Color decided
b. Buy paint Cans of paint
c. Buy brushes Brushes
d. Prepare walls Clean walls
e. Open paint cans Opened cans
f. Stir paint Stirred paint
g. Paint walls Painted walls
h. Clean up Cleaned and painted walls

CHAPTER 4 Software Project Planning 67

C
os

t

Size

beta > 1
diseconomy

beta = 1

beta < 1
economy

Fig. 4-4

TE
AM
FL
Y

Team-Fly®

2. Create a WBS for the dental office problem.

(The life cycle phases and the PM activities have been left off.)

Develop risk assessment Assessment spec
Estimate effort Cost estimate
Plan schedule Schedule
Review risks, estimation, and schedule with dentist Dentist’s approval
Design object model Object model
Review object model with dentist Dentist’s approval
Get specs of patient records system Specs
Develop prototype interface with patient records Working prototype
Review form of reminder list with receptionist and dentist Dentist’s approval
Review form of daily and weekly schedule with dental staff Dentist’s approval
Review design of class model with team Review document
Implement Compiled code
Unit test successfully with C0 coverage Test report
Integrate system Compiled code
System test Test report
Training and alpha testing in dental office Test report
Review system with dental staff Dentist’s approval
Acceptance test by staff Dentist’s approval
Deliver user manual and documentation Manuals delivered

3. Create a WBS for the B&B problem.

(The PM activities and the deliverables have been left off.)

Feasibility Analysis
Discuss Web-based options with Tom and Sue.
Determine if Web-based or stand-alone system.

Requirements
Elicit requirements from Tom and Sue.
Build requirements document.
Review requirements with Tom and Sue.

Design
Design prototype reservation system.
Design expense and profit section.

Implementation
Build prototype reservation system.
Implement expense and profit section.

Testing
Test prototype.
Test expense and profit section.

Delivery
Review prototype with Tom and Sue.
Review total system with Tom and Sue.

4. Create a WBS for the automobile dealership problem.

(The life cycle phases and the PM activities have been left off.)

CHAPTER 4 Software Project Planning68

Requirements
Elicit requirements from dealer.
Build requirements document.
Review requirements with dealer.
Create preliminary user manual.
Review preliminary user manual.
Build test cases.

Design
Design prototype automobile system.
Design format for reports.

Implementation
Build prototype automobile system.
Implement queries and reports section.
Review prototype with dealer.
Implement final version.

Testing
Test final version at dealership.

Delivery
Train staff
Deliver documentation.

5. Draw a PERT diagram for painting a room:

The PERT diagram is shown in Fig. 4-5.

6. Draw a PERT diagram and complete the table.

(Critical path indicated with asterisks in table.) See also Fig. 4-6.

CHAPTER 4 Software Project Planning 69

a

d

c

f
eb

g h

Fig. 4-5. PERT diagram for painting.

a

d

c

g

f

e

h

b

Fig. 4-6. PERT diagram.

Node Dep Time Start Finish

a 10 0 10*

b a 5 10 15*

c a 2 10,24 12,26

d a 3 10,21 13,24

e b,c 7 12,26 19,33

f b,d 9 24 33*

g c,d 5 13,28 18,33

h e,f,g 6 33 39*

7. Draw a PERT diagram and complete the table for the given set of tasks and depen-
dencies.

Node Dependencies Time Start Time Stop Time

a 10 0 10

b e 10 23 33

c d,f 10 53 63

d a,f,b 20 33 53

e a,f 8 15 23

f a 5 10 15

Everything is on critical path; no slack times. See Fig. 4-7.

CHAPTER 4 Software Project Planning70

e

f

b

d

c

a

Fig. 4-7. PERT diagram

8. Estimate the cost parameters from the given set of data.

Cost ¼ 3:8 � Size (KLOC)

9. Estimate the cost parameters from the given set of data.

Cost ¼ 4:0 � Size (KLOC) +5.0

10. Calculate COCOMO effort, TDEV, average staffing, and productivity for an organic
project that is estimated to be 39,800 lines of code.

An organic project uses the application formulas. Cost ¼ 2:4 � (KDSI)1:05

Cost ¼ 2:4 � 39:81:05 ¼ 2:4 � 47:85 ¼ 114:8 programmer-months
TDEV ¼ 2:5 � (PM)0:38 ¼ 2:5 � 6:06 ¼ 15:15 months
Average staffing ¼ Cost/TDEV ¼ 114:8=15:15 ¼ 7:6 programmers
Productivity ¼ 39,800 LOC/(114.8 PM � 20 days/month) ¼ 17:3 LOC/programmer-
day

11. Calculate the unadjusted function points for the problem description of Problem 2.

Type Simple Average Complex Total

Inputs Patient name

Appt completed

Appt purpose

Cancel appt 13

Outputs Comments Calendar

Supporting details

Appt information

Notification list

Daily schedule

Weekly schedule

38

Inquires Query by name

Query by date

Verify patient

Check calendar

Available appt

18

Files Patient data 10

Interfaces

Total 79

CHAPTER 4 Software Project Planning 71

72

Software Metrics

5.1 Introduction
Science is based on measurement. Improving a process requires understanding of
the numerical relationships. This requires measurement.
Software measurement is the mapping of symbols to objects. The purpose is to

quantify some attribute of the objects, for example, to measure the size of software
projects. Additionally, a purpose may be to predict some other attribute that is not
currently measurable, such as effort needed to develop a software project.

Not all mappings of symbols to objects are useful. An important concern is the
validation of metrics. However, validation is related to the use of the metric. An
example is a person’s height. Height is useful for predicting the ability of a person
to pass through a doorway without hitting his or her head. Just having a high
correlation between a measure and an attribute is not sufficient to validate a
measure. For example, a person’s shoe size is highly correlated to the person’s
height. However, shoe size is normally not acceptable as a measure of a person’s
height.

The following are criteria for valid metrics1:

1. A metric must allow different entities to be distinguished.

2. A metric must obey a representation condition.

3. Each unit of the attribute must contribute an equivalent amount to the
metric.

4. Different entities can have the same attribute value.

Many times, the attribute of interest is not directly measurable. In this case, an
indirect measure is used. An indirect measure involves a measure and a prediction
formula. For example, density is not a direct measure. It is calculated from mass
and density, which are both direct measures. In computer science, many of the

1 R. Harrison, S. Counsell, R. Nithi. ‘‘An Evaluation of the MOOD Set of Object-oriented Software Metrics.’’

IEEE TOSE 24:6, June 1998, 491–496.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

‘‘ilities’’ (maintainability, readability, testability, quality, complexity, etc.) cannot
be measured directly, and indirect measures for these attributes are the goal of
many metrics programs.

The following are criteria for valid indirect metrics:

1. The model must be explicitly defined.

2. The model must be dimensionally consistent.

3. There should be no unexpected discontinuities.

4. Units and scale types must be correct.

5.2 Software Measurement Theory
The representational theory of measurement has been studied for over 100 years.
It involves an empirical relation system, a numerical relation system, and a rela-
tion-preserving mapping between the two systems.

The empirical relation system (E, R) consists of two parts:

� A set of entities, E

� A set of relationships, R

The relationship is usually ‘‘less than or equal.’’ Note that not everything has to
be related. That is, the set R may be a partial order.2

The numerical relation system (N, P) also consists of two parts:

� A set of entities, N. Also called the ‘‘answer set,’’ this set is usually numbers—
natural numbers, integers, or reals.

� A set of relations, P. This set usually already exists and is often ‘‘less than’’ or
‘‘less than or equal.’’

The relation-preserving mapping, M, maps (E, R) to (N, P). The important
restriction on this mapping is called the representation condition. There are two
possible representation conditions. The most restrictive version says that if two
entities are related in either system, then the images (or pre-images) in the other
system are related:

x rel y iff MðxÞ rel MðyÞ3

The less restrictive version says that if two entities are related in the empirical
system, then the images of those two entities in the numerical system are related in
the same way:

MðxÞ rel MðyÞ if x rel y

CHAPTER 5 Software Metrics 73

2 A partial order is strictly defined as an order that satisfies three axioms: every element is related to itself, the

relation cannot hold both ways between two elements, and transitivity. It is not required to be total. That is, not

every two elements are related.

3 ‘‘x is related to y if and only if the mapping of x is related to the mapping of y.’’

Classical measurement theory authors have used both versions. The advantage
of the second version is that partial orders in the empirical system can be mapped
to integers or reals that are both totally ordered.

EXAMPLE 5.1 HEIGHT OF PEOPLE

The classic example of mapping an empirical system to a numerical system is the

height of people. In the empirical system, there is a well-understood height

relationship among people. Given two people who are standing next to each other,

everyone would agree about who is taller. This is the empirical system: people are

the entities and the well-understood relation is ‘‘shorter or the same height.’’

The numerical system is the real number system (either metric or imperial units)

with the standard relation of less than or equal.

The mapping is just the standard measured height of people. This is usually

measured barefoot, standing straight against a wall.

The representation condition (either version) is satisfied, since if Fred is shorter

than or equal to Bill, then Fred’s measured height is less than or equal to Bill’s

measured height.

EXAMPLE 5.2

Develop a measure, BIG, for people that combines both weight and height.

Empirically, if two people are the same height, the heavier is bigger, and if two

people are the same weight, the taller is bigger. If we use this notion, we can have

a partial order that most people would agree with. The only pair of persons that we

would not order by this would be if one was heavier and the other was taller.

Numerically, we can use a tuple, < height, weight >. Each part of the tuple would

be a real number. Two tuples would be related if both parts were related in the

same direction. That is, if x ; y are tuples, than x is less than or equal to y in

‘‘bigness’’ if xheight ¼< yheight and xweight ¼< yweight. This is also a partial order,

and both versions of the representation condition are satisfied.

5.2.1 MONOTONICITY
An important characteristic of a measure is monotonicity. It means that the value
of the measure of an attribute does not change direction as the attribute increases
in the object. For example, the count of lines of code will not decrease as more
code is added.

EXAMPLE 5.3

A linear function is monotonic, since it always goes in the same direction. A

quadratic function is usually not monotonic. For example, y ¼ 5x � x2 is not

monotonic in the range x ¼ 0 to x ¼ 10. From x ¼ 0 to x ¼ 5, y increases. From

x ¼ 5 to x ¼ 10, y decreases.

5.2.2 MEASUREMENT SCALES
There are five different scale types: nominal, ordinal, interval, ratio, and absolute.

The least restrictive measurement is using the nominal scale type. This type
basically assigns numbers or symbols without regard to any quantity. The classic

CHAPTER 5 Software Metrics74

example for a nominal scale measure is the numbers on sports uniforms. We do
not think that one player is better than another just because the number on one
uniform is bigger or smaller than the number on the other uniform. There is no
formula for converting from one nominal scale measure to another nominal scale
measure.

In an ordinal scale measure, there is an implied ordering of the entities by the
numbers assigned to the entity. The classic example is class rank. If a student is
ranked first, her performance has been better than a student who is ranked second,
or third, or any other number greater than 1. However, we never assume that the
numerical difference in rank is significant. That is, we don’t assume that the
difference between the first and second student is the same as the difference
between the 100th and 101st student. Any formula that converts from one ordinal
scale measure to another ordinal scale measure for the same entity must preserve
the ordering.

In an interval scale measure, the amount of the difference is constant. An
example is temperature. There are two instances of temperature measures that
are commonly used, Fahrenheit and Celsius. The formula for converting from a
Celsius scale measure to a Fahrenheit scale measure is 9=5 � xþ 32. With any two
interval scale measures for the same attribute, the formula for conversion must be
of the form axþ b.

In a ratio scale measure, the amount of the difference is constant and there is a
well-understood zero that any scale measure would use. For example, money,
length, and height are measurements using ratio scales. These measurements
have well-understood notions of zero: zero money, zero height, and zero length.
Any formula for converting from one set of units to another—from centimeters to
inches, for example—would just use a multiplicative constant.

The absolute is a counting scale measure. The units are obvious and well under-
stood. Counting marbles is an example of an absolute scale measure.

5.2.3 STATISTICS
Not all statistics are appropriate for all scales. The following indicates which
common statistical methods are appropriate:

Nominal scale: Only mode, median, and percentiles
Ordinal scale: The above and Spearman correlations
Interval scale: The above andmean, standard deviation, and Pearson correlations
Ratio scale: All statistics
Absolute scale: All statistics

EXAMPLE 5.4 AVERAGES

Temperature is an interval scale measure. Thus, it makes statistical sense to give

an average temperature. However, the numbers on baseball players’ uniforms are

a nominal scale measure. It does not make sense to give the average of the

numbers on a team’s uniforms. Similarly, the average ranking of the students in a

class or the average of a student’s rankings in a number of classes is not

appropriate.

CHAPTER 5 Software Metrics 75

5.3 Product Metrics
Product metrics are metrics that can be calculated from the document independent
of how it was produced. Generally, these are concerned with the structure of the
source code. Product metrics could be defined for other documents. For example,
the number of paragraphs in a requirements specification would be a product
metric.

EXAMPLE 5.5 LINES OF CODE

The most basic metric for size is the lines of code metric. There are many

different ways to count lines of code. The definition may be a simple as the

number of NEW LINE characters in the file. Often comments are excluded from the

count of lines. Sometimes blank lines or lines with only delimiters are excluded.

Sometimes statements are counted instead of lines.

5.3.1 McCABE’S CYCLOMATIC NUMBER
McCabe’s cyclomatic number, introduced in 1976, is, after lines of code, one of the
most commonly used metrics in software development. Also called ‘‘McCabe’s
complexity measure’’ from the title of the original journal article, it is based on
graph theory’s cyclomatic number. McCabe tries to measure the complexity of a
program. The premise is that complexity is related to the control flow of the
program. Graph theory uses a formula, C ¼ e� nþ 1 to calculate the cyclomatic
number. McCabe uses the slightly modified formula:

C ¼ e� nþ 2p

where:
e ¼ Number of edges
n ¼ Number of nodes
p ¼ Number of strongly connected components (which is normally 1)

EXAMPLE 5.6

Determine the cyclomatic number from the control flow graph shown in Fig. 5-1.

There are 8 nodes, so n ¼ 8. There are 11 arcs, so e ¼ 11. The cyclomatic

number is C ¼ 11 � 8 þ 2 ¼ 5:

A planar graph is a graph that can be drawn without lines crossing. The Swiss
mathematician Leonhard Euler (1707–1783) proved for planar graphs that

CHAPTER 5 Software Metrics76

a

e

b

f

c

g

d

h

Fig. 5-1. Control flow graph.

2 ¼ n� eþ r, where r ¼ number of regions, e ¼ number of edges, and n ¼ number
of nodes. A region is an area enclosed (or defined) by arcs. Using algebra, this can
be converted to r ¼ e� nþ 2. Therefore, the number of regions on a planar graph
equals the cyclomatic number.

EXAMPLE 5.7

Label the regions in the control flow graph from Example 5.6 with Roman

numerals.

As shown in Fig. 5-2, there are five regions. Region I is the outside of the

graph.

Calculating the cyclomatic number from control flow graphs is time-consuming.
Constructing a control flow graph from a large program would be prohibitively
time-consuming. McCabe found a more direct method of calculating his measure.
He found that the number of regions is usually equal to one more than the number
of decisions in a program, C ¼ �þ 1, where � is the number of decisions.

In source code, an IF statement, a WHILE loop, or a FOR loop is considered one
decision. A CASE statement or other multiple branch is counted as one less deci-
sion than the number of possible branches.

Control flow graphs are required to have a distinct starting node and a distinct
stopping node. If this is violated, the number of decisions will not be one less than
the number of regions.

EXAMPLE 5.8

Label the decisions in the control flow graph of Example 5.6 with lowercase letters.

As shown in Fig. 5-3, from node a, there are three arcs, so there must be two

decisions, labeled a and b. From nodes c and f, there are two arcs and so one

decision each. The other nodes have at most one exit and so no decisions. There

are four decisions, so C ¼ 4 þ 1 ¼ 5.

CHAPTER 5 Software Metrics 77

a

e

b

f

c

g

d

h

I II III IV V

Fig. 5-2. Control flow graph with roman numerals.

d
a a

e

b

b

f

c

c
g

d

h

I II III IV V

Fig. 5-3. Control flow graph with lowercase letters.

TE
AM
FL
Y

Team-Fly®

EXAMPLE 5.9

Calculate the cyclomatic number using the invalid control flow graph shown in Fig. 5-4.

The cfg is the same as earlier examples, except that the c-h arc has been replaced

by an h-c arc. This will not change the counts of nodes, edges, or regions. Thus,

the first two methods of counting the cyclomatic number will not change. However,

decision d has been eliminated, so the third method will not give the same answer.

However, this is not a valid cfg, since there is now no stopping node.

Threshold Value

An important aspect of a metric is guidance about when the values are reasonable
and when the values are not reasonable. McCabe analyzed a large project and
discovered that for modules with cyclomatic number over 10, the modules had
histories of many more errors and many more difficulties in maintenance. Thus, 10
has been accepted as the threshold value for the cyclomatic number in a module. If
the cyclomatic number is greater than 10, efforts should be made to reduce the
value or to split the module.

5.3.2 HALSTEAD’S SOFTWARE SCIENCE
Maurice Halstead was one of the first researchers in software metrics. He did his
work in the late 1960s and 1970s. His goal was to identify what contributed to the
complexity in software. He empirically looked for measures of intrinsic size. After
finding what he felt were good measures and prediction formulas, he tried to
develop a coherent theory. His simple metrics are still considered valid, while
his more complex metrics and prediction formulas have been found to be suspect.

Basic Entities—Operators and Operands

The basic approach that gave Halstead good results was to consider any program
to be a collection of tokens, which he classified as either operators or operands.
Operands were tokens that had a value. Typically, variables and constants were
operands. Everything else was considered an operator. Thus, commas, parenth-
eses, arithmetic operators, brackets, and so forth were all considered operators.

All tokens that always appear as a pair, triple, and so on will be counted
together as one token. For example, a left parenthesis and a right parenthesis
will be considered as one occurrence of the token parenthesis. A language that
has an if-then construction will be considered to have an if-then token.

Halstead also was concerned about algorithms and not about declarations, i/o
statements, and so on. Thus, he did not count declarations, input or output

CHAPTER 5 Software Metrics78

a a

e

b

b

f

c

c
g

d

h

I II III IV V

Fig. 5-4. Invalid control flow graph.

CHAPTER 5 Software Metrics 79

statements, or comments. However, currently most organizations would count all
parts of a program.

Halstead’s definitions of operator and operand are open to many interpreta-
tions. No standard has been accepted for deciding ambiguous situations. The good
news is that as long as an organization is consistent, it doesn’t matter. The bad
news is that people in one organization cannot compare their results with the
results from other organizations.

The author recommends a syntax-based approach where all operands are user-
defined tokens and all operators are the tokens defined by the syntax of the
language.

Basic Measures—g1 and g2

The count of unique operators in a program is 	1 (pronounced ‘‘eta one’’), and the
count of unique operands in a program is 	2 (pronounced ‘‘eta two’’).

The total count of unique tokens is 	 ¼ 	1 þ 	2. This is the basic measure of the
size of the program.

EXAMPLE 5.10

Identify the unique operators and operands in the following code that does

multiplication by repeated addition.

Z = 0;
while X > 0

Z = Z + Y ;
X = X-1 ;

end-while ;
print(Z) ;

operators

= ; while-endwhile > +-print ()

operands

Z 0 X Y 1

thus, 	1 = 8 and 	2 = 5

Potential Operands, g2*

Halstead wanted to consider and compare different implementations of algo-
rithms. He developed the concept of potential operands that represents the mini-
mal set of values needed for any implementation of the given algorithm. This is
usually calculated by counting all the values that are not initially set within the
algorithm. It will include values read in, parameters passed in, and global values
accessed within the algorithm.

Length, N

The next basic measure is total count of operators, N1, and the total count of
operands, N2. These are summed to get the length of the program in tokens:

N ¼ N1 þN2

EXAMPLE 5.11

Calculate Halstead’s length for the code of Example 5.10.

operators

= 3
; 5
while-endwhile 1
> 1
+ 1
- 1
print 1
() 1

operands

Z 4
0 2
X 3
Y 2
1 1

There are 14 occurrences of operators, so N1 is 14. Similarly, N2 is 12.

N ¼ N1 þ N2 ¼ 14 þ 12 ¼ 26.

Estimate of the Length (est N or N_hat)

The estimate of length is the most basic of Halstead’s prediction formulas. Based
on just an estimate of the number of operators and operands that will be used in a
program, this formula allows an estimate of the actual size of the program in terms
of tokens:

est N ¼ 	1 � log2 	1 þ 	2 � log2 	2

EXAMPLE 5.12

Calculate the estimated length for the code of Example 5.10.

The log2 of x is the exponent to which 2 must be raised to give a result equal to

x . So, log2 of 2 is 1, log2 of 4 is 2, of 8 is 3, of 16 is 4:

log2 of 	1 ¼ log2 8 ¼ 3

log2 of 	2 ¼ log2 5 ¼ 2:32

est N ¼ 8 � 3 þ 5 � 2:32 ¼ 24 þ 11:6 ¼ 35:6

while the actual N is 26. This would be considered borderline. It is probably not a

bad approximation for such a small program.

From experience, I have found that if N and est N are not within about 30
percent of each other, it may not be reasonable to apply any of the other software
science measures.

CHAPTER 5 Software Metrics80

Volume, V

Halstead thought of volume as a 3D measure, when it is really related to the
number of bits it would take to encode the program being measured.4 In other
words:

V ¼ N � log2ð	1 þ 	2Þ

EXAMPLE 5.13

Calculate V for the code of Example 5.10.

V ¼ 26 � log2 13 ¼ 26 � 3:7 ¼ 96:2

The volume gives the number of bits necessary to encode that many different
values. This number is hard to interpret.

Potential Volume, V*

The potential volume is the minimal size of a solution to the problem, solved in
any language. Halstead assumes that in the minimal implementation, there would
only be two operators: the name of the function and a grouping operator. The
minimal number of operands is 	2

�:

V� ¼ ð2þ 	�2Þ log2ð2þ 	�2Þ

Implementation Level, L

Since we have the actual volume and the minimal volume, it is natural to take a
ratio. Halstead divides the potential volume by the actual. This relates to how
close the current implementation is to the minimal implementation as measured by
the potential volume. The implementation level is unitless.

L ¼ V�=V

The basic measures described so far are reasonable. Many of the ideas of
operands and operators have been used in many other metric efforts. The remain-
ing measures are given for historical interest and are not recommended as being
useful or valid.

Effort, E

Halstead wanted to estimate how much time (effort) was needed to implement this
algorithm. He used a notion of elementary mental discriminations (emd).

E ¼ V=L

The units are elementary mental discriminations (emd). Halstead’s effort is not
monotonic—in other words, there are programs such that if you add statements,
the calculated effort decreases.

CHAPTER 5 Software Metrics 81

4 Encoding n different items would require at a minimum log2 n bits for each item. To encode a sequence of N,

such items would require N � log2 n.

Time, T

Next, Halstead wanted to estimate the time necessary to implement the algorithm.
He used some work developed by a psychologist in the 1950s, John Stroud. Stroud
had measured how fast a subject could view items passed rapidly in front of his
face. S is the Stroud number (emd/sec) taken from those experiments. Halstead
used 18 emd/sec as the value of S.

T ¼ E=S

5.3.3 HENRY–KAFURA INFORMATION FLOW
Sallie Henry and Dennis Kafura developed a metric to measure the intermodule
complexity of source code. The complexity is based on the flow of information
into and out of a module. For each module, a count is made of all the information
flows into the module, ini, and all the information flows out of the module, outi.
These information flows include parameter passing, global variables, and inputs
and outputs. They also use a measure of the size of each module as a multiplicative
factor. LOC and complexity measures have been used as this weight.

HKi ¼ weighti � ðouti � iniÞ2

The total measure is the sum of the HKi from each module.

EXAMPLE 5.14

Calculate the HK information flow metrics from the following information. Assume

the weight of each module is 1.

mod # a b c d e f g h

ini 4 3 1 5 2 5 6 1

outi 3 3 4 3 4 4 2 6

mod a b c d e f g h

HKi 144 81 16 225 64 400 144 36

HK for the whole program will be 1110.

CHAPTER 5 Software Metrics82

5.4 Process Metrics
Productivity

Productivity is one of the basic process metrics. It is calculated by dividing the
total delivered source lines by the programmer-days attributed to the project. The
units are normally LOC/programmer-day. In many projects in the 1960s the pro-
ductivity was 1 LOC/programmer-day. In large projects, the typical productivity
will range from 2 to 20 LOC/programmer-day. In small, individual projects, the
productivity can be much higher.

EXAMPLE 5.15

The project totaled 100 KLOC. Twenty programmers worked on the

project for a year. This year included the whole effort for the

requirements, design, implementation, testing, and delivery phases.

Assume that there are about 240 workdays in a year (20 days a

month for 12 months, no vacations). The productivity is 100,000

LOC / 20 � 240 days = 20.8 LOC/programmer-day.

5.5 The GQM Approach
Vic Basili and Dieter Rombach developed this approach at the University of
Maryland. GQM stands for goals, questions, and metrics. The idea is to first
identify the goals of the approach. Next, questions are developed related to
these goals. Finally, metrics are developed to measure the attributes related to
the questions.

EXAMPLE 5.16

Use the GQM approach for the problem of customer satisfaction.

Goal—Customer satisfaction

Questions—Are customers dissatisfied when problems are found?

Metric—Number of customer defect reports

Review Questions

1. Explain why the height example satisfies the criteria for valid metrics.

2. A study of grade school children found a high correlation between shoe size and
reading ability. Does this mean that shoe size is a good measure of intelligence?

CHAPTER 5 Software Metrics 83

3. Explain why money is a ratio scale measure and not just an interval scale.

4. Explain why GPA is not sound by measurement theory.

5. Why is complexity not readily measurable?

6. What is the advantage of having a partial order on the empirical relation system?

7. Why is the number of decisions plus 1 an important method for calculating McCabe’s
cyclomatic number?

8. Why is monotonicity an important characteristic of a size or effort metric such as
Halstead’s effort metric?

Problems

1. Identify the proper scale for each of the following measures:

LOC
McCabe’s cyclomatic number
Average depth of nesting
Maximum depth of nesting

2. Show that the temperature scales of Celsius and Fahrenheit are an interval scale using
the Celsius temperatures of 20, 30, and 40 degrees.

3. Show that McCabe’s cyclomatic number satisfies the representational theory of
measurement.

4. Show that McCabe’s cyclomatic number is an interval scale measure.

5. Calculate McCabe’s cyclomatic number on the following source code. Draw a control
flow graph. Label the regions with Roman numerals.

read x,y,z;

type = ‘‘scalene’’;

if (x == y or x == z or y == z) type =‘‘isosceles’’;

if (x == y and x == z) type =‘‘equilateral’’;

if (x >= y+z or y >= x+z or z >= x+y) type =‘‘not a triangle’’;

if (x <= 0 or y <= 0 or| z <= 0) type =‘‘bad inputs’’;

print type;

CHAPTER 5 Software Metrics84

Answers to Review Questions

1. Explain why the height example satisfies the criteria for valid metrics.

Criteria 1: Different people can be different heights.
Criteria 2: Any two people that we feel are related in height, their numerical heights
would agree.
Criteria 3: Each additional height on a person matches the increase in numerical
height.
Criteria 4: Different people can be the same height.

2. A study of grade school children found a high correlation between shoe size and
reading ability. Does this mean that shoe size is a good measure of intelligence?

No, shoe size correlates well with age. Age correlates well with reading ability. Neither
would be a good measure, since neither would satisfy the representation condition.

3. Explain why is money a ratio scale measure and not just an interval scale.

Money has a well-understood notion of zero. In all monetary systems, there is a zero
and it is equivalent to zero in all other systems. The intervals are fixed. Thus, if you
have twice as much in U.S. dollars as I do, it will still be twice as much if we convert
both our monies into British pounds (assuming no conversion penalties and using the
same exchange rate).

4. Explain why GPA is not sound by measurement theory.

For grade points to be averaged, then grade points must be an interval scale. This
implies that the difference between values is comparable. That is, the difference
between an A and a B is the same as the difference between a D and an F.
Normally, this is not even considered when allocating grades.

5. Why is complexity not readily measurable?

Complexity is not well defined. There are many aspects to complexity, and each person
may have a slightly different interpretation of what is complex. In fact, complexity
could be considered the interaction between a person and the code.

6. What is the advantage of having a partial order on the empirical relation system?

The empirical relation system must have an accepted relation. It is often easier to find a
partial order that is well accepted, whereas finding agreement on all cases might be
difficult.

7. Why is the number of decisions plus 1 an important method for calculating McCabe’s
cyclomatic number?

It would be very time-consuming to have to construct the control flow graph for large
programs.

8. Why is monotonicity an important characteristic of a size or effort metric such as
Halstead’s effort metric?

If adding more code can cause the value of the effort metric to decrease, then the
metric’s behavior is not understandable. It may also mean that the metric can be
manipulated.

CHAPTER 5 Software Metrics86

Answers to Solved Problems

1. Identify the proper scale for each of the following measures:

LOC Absolute
McCabe’s cyclomatic number Interval
Average depth of nesting Ordinal
Maximum depth of nesting Ordinal

2. Show that the temperature scales of Celsius and Fahrenheit are an interval scale using
the Celsius temperatures of 20, 30, and 40 degrees.

The Fahrenheit equivalents are 68, 86, and 104 degrees. The difference between the
lowest and middle is 10 Celsius and 18 Fahrenheit. The difference between the bottom
and the top is twice that, 20 Celsius and 36 Fahrenheit.

3. Show that McCabe’s cyclomatic number satisfies the representational theory of
measurement.

For the empirical system, consider the set of all control flow graphs. The relation is
that one CFG is less than or equal to the second CFG if the second CFG can be built
out of the first by adding nodes and arcs.

The numerical system (Answer Set) can be the integers. The relation on the integers
is the standard less than or equal.

The mapping is the formula e� nþ 2. There are only two operations, adding nodes
and adding arcs. Adding an arc means increasing the e value. Adding a nodes means
adding a node on an arc. This means that both e and n increase by 1, so the value stays
the same. Thus, for any two CFGs x and y, if x is less than y, then y can be created
from x by adding arcs and nodes. Thus, the value of the mapping must either increase
or stay the same. Therefore, the less stringent representation condition is satisfied. (The
more stringent representation condition cannot be satisfied, since the order on the
CFGs is a partial order).

4. Show that McCabe’s cyclomatic number is an interval scale measure.

Since McCabe’s cyclomatic number is one more than the number of decisions, every
interval in the cyclomatic number is caused by that number of additional decisions. So
the difference between 2 and 3 is the same as the difference between 10 and 11. It is not
a ratio scale measure because there is not a clear zero. In fact, the cyclomatic number
cannot be zero.

5. Calculate McCabe’s cyclomatic number on the following source code. Draw a control
flow graph. Label the regions with Roman numerals.

read x,y,z;
type = ‘‘scalene’’;
if (x == y or x == z or y == z) type =‘‘isosceles’’;
if (x == y and x == z) type =‘‘equilateral’’;
if (x >= y+z or y >= x+z or z >= x+y) type =‘‘not a triangle’’;
if (x <= 0 or y <= 0 or| z <= 0) type =‘‘bad inputs’’;
print type;

CHAPTER 5 Software Metrics 87

See Fig. 5-6 for the control flow graph.

The number of regions is 5, so the cyclomatic number is 5. It can also be counted with
decisions. There is a decision about which way to exit nodes a, c, e, and g. Thus, there
are 4 decisions. The cyclomatic number is the number of decisions plus 1, so it is 5. It
can also be counted using the formula e� nþ 2. Here, e ¼ 12, and n ¼ 9, so
e� nþ 2 ¼ 5.

6. Calculate McCabe’s cyclomatic number from the control flow graph shown in Fig. 5-5.

Note that the graph is not planar (that is, drawn without crossing lines). Removing
arcs until the graph is planar and then counting an additional region for each removed
arc can calculate the cyclomatic number. In this graph (see Fig. 5-7), the arc e-g was
removed, the regions were counted, and then region VIII was added for arc e-g. The
count of decisions is seven (two decisions each on nodes a and c, one decision each on
b, e, and f). The e� nþ 2 ¼ 16� 10þ 2 ¼ 8.

CHAPTER 5 Software Metrics88

not a
triangle

bad inputs

equilateral

isosceles

a

c

e

g

i

II

III

IV

V

I

Fig. 5-6. Control flow graph.

a

b

e

d

c

g

h i

f

j

III

IV

V

VI
VII

VIII

II

I

Fig. 5-7. Control flow graph.

TE
AM
FL
Y

Team-Fly®

7. Calculate Halstead’s basic measures on the triangle code from Problem 5.

operators operands
read 1 == 5 string 5
, 2 or 6 x 9
; 7 and 1 y 8
type 6 >= 3 z 8
= 5 <= 3 0 3
if 4 + 3
() 4 print 1

	1 = 14 	2 = 5 	 = 19 	2* = 3
N1 = 51 N2 = 33 N = 84
Est N = 14 � log2 14 + 5 � log2 5
= 14 � 3.8 + 5 � 2.3 = 64.7 + 11.5 = 76.2
V = 84 � log2 19 = 84 � 4.25 = 357
V� = 5 log2 5 = 5 � 2.3 = 11.5
L = 11.5 / 357 = 0.032

8. Calculate Halstead’s basic measures on the factorial code given below:

int fact (int n) {
if(n == 0)

{ return 1 ; }
else

{ return n * fact (n-1) ; }
}

operators: int 2; () 3; { } 3; if 1; == 1; return 2; ‘‘;’’ 2; else 1; * 1; —1

operands: fact 2; n 4; 0 1; 1 2;
basic counts
	1 = 10 	2 = 4 	 = 14 	2* = 1
N1 = 17 N2 = 9 N = 26
Est N = 10 � log2 10 + 4 � log2 4 = 10 � 3.32 + 4 � 2.0 = 33.2+ 8.0 = 41.2
V = 26 � log2 14 = 26 � 3.8 = 98.8

V� = 3 log2 3 = 3 * 1.6 = 4.8
L = 4.8 / 98.8 = 0.048

9. Use the code section from the problem statement to draw the control flow graph and
calculate McCabe’s cyclomatic number using all three approaches. Show which lines
of code are represented by which nodes. On the CFG, label the regions with Roman
numerals and the decisions with lowercase letters.

See Fig. 5-8.

E ¼ 8, N ¼ 6 (or extra nodes might be at the end of the ifs, so E ¼ 9 and N ¼ 7 or
E ¼ 10 and N ¼ 8Þ ¼> so C ¼ 8� 6þ 2 ¼ 4
Regions ¼ 4 ¼> C ¼ 4
Decisions ¼ 3 ¼> C ¼ 3þ 1 ¼ 4

CHAPTER 5 Software Metrics 89

10. In Problem 9, count Halstead’s 	1 and 	2. Calculate 	 and N. Count all strings as
occurrences of one operand called ‘‘string.’’ Show your work.

Operators

token count token count token count

cin 1 � 3 ; 6

if 3 () 3 > 2

{} 4 cout 5 � 5

‘‘string’’ 5 < 1 else 1

Operands

token count operands token count token count

a 4 b 2 c 2

10 1

Note: The quotes could be counted separately from the strings. The else could be
counted as part of an if-else so the if would have two occurrences.

	1 ¼ 12 	2 ¼ 4 	 ¼ 16
N1 ¼ 30 N2 ¼ 9 N ¼ 48

CHAPTER 5 Software Metrics90

"part 2"

"part 1"

"hello"

"part 3"

"exiting"

a

b

cI

II

III

IV

Fig. 5-8. Control flow graph

91

Risk Analysis and
Management

6.1 Introduction
A risk is the possibility that an undesirable event (called the risk event) could
happen. Risks involve both uncertainty (events that are guaranteed to happen
are not risks) and loss (events that don’t negatively affect the project are not
risks). Proactive risk management is the process of trying to minimize the possible
bad effects of risk events happening.1

There is disagreement about what risks should be managed. Some experts
suggest that only risks that are unique to the current project should be considered
in risk analysis and management. Their view is that the management of risks
common to most projects should be incorporated into the software process.

6.2 Risk Identification
This is the process of identifying possible risks. Risks can be classified as affecting
the project plan (project risks), affecting the quality (technical risks), or affecting
the viability of the product (business risks). Some experts exclude events that are
common to all projects from consideration for risk management. These experts
consider those common events as part of standard project planning.

1 Roger Pressman, Software Engineering: A Practitioner’s Approach, 5th ed, McGraw-Hill, New York, 2001,

145–163.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

EXAMPLE 6.1

Consider a project that involves trying to develop safety critical software on cutting-

edge hardware. List risks and classify each as project, technical, or business and

as common to all projects or special to this project.

Risk Project Technical Business Common Special

Hardware not available X X

Requirements incomplete X X

Use of specialized methodologies X X

Problems achieving required reliability X X

Retention of key people X X

Underestimating required effort X X

The single potential customer

goes bankrupt

X X

6.3 Risk Estimation
Risk estimation involves two tasks in rating a risk. The first task is estimating the
probability of the occurrence of a risk, called the risk probability, and the second
task is estimating the cost of the risk event happening, often called the risk impact.
Estimating the risk probability will be hard. Known risks are much easier to
manage, and they become part of the software process. The new risks that are
unique to the current project are those most important to manage. The cost of the
risk may be easier to determine from previous experience with project failures.

6.4 Risk Exposure
Risk exposure is the expected value of the risk event. This is calculated by multi-
plying the risk probability by the cost of the risk event.

CHAPTER 6 Risk Analysis and Management92

EXAMPLE 6.2

Consider two dice. Consider a rolling a 7 as an undesirable event that would make

you lose a pot of $60. Calculate the risk probability and the risk impact of rolling a

7. Calculate the risk exposure.

The risk probability is 6 cases out of 36 combinations, or 1/6. The risk impact is

$60. The risk exposure is 1/6 times $60, or $10.

6.4.1 RISK DECISION TREE
A technique that can be used to visualize the risks of alternatives is to build a risk
decision tree. The top-level branch splits based on the alternatives available. The
next split is based on the probabilities of events happening. Each leaf node has the
risk exposure for that event. The sum of the risk exposures for all leafs under the
top-level split gives the total risk exposure for that choice.

EXAMPLE 6.3

A friend offers to play one of two betting games with you. Game A is that you toss

a coin twice. He pays you $10 if you get two heads. You pay him $2 for each tail

you toss. Game B is that you also toss a coin twice, but it costs you $2 to play and

he pays you $10 if you get two heads. Which game should you play?

The risk decision tree is shown in Fig. 6-1. Both games total to $0.50. Thus,

each time you play, your average gain is 50 cents. No matter which game you

choose.

CHAPTER 6 Risk Analysis and Management 93

0.5 *
_ $2 = _ $1.00

Game A

Game B

0.25 * $10 = $2.50

0.5 *
_ $2 = _ $1.00

0.25 *
_ $4 = _ $1.00

0.25 * $10 _ $2 = $2.00

0.25 *
_ $2 = $0.50

2 heads _ 0.25

1 heads _0.5

0 heads _
0.25

2 heads _ 0.25

1 heads _0.5

0 heads _
0.25

Fig. 6-1

6.5 Risk Mitigation
Risk mitigation is the proactive strategy of trying to find ways to either decrease
the probability of the risk event happening or the impact of it happening. While
there are no magic ways to reduce risk, a common approach is to try to resolve
risks related to uncertainty early. For example, if there is concern about particular
systems that need to be used, investigating those systems early is better. Often, a
prototype can be built that would identify problems early.

EXAMPLE 6.4

Consider the risks identified in the risk identification problem. Suggest an approach

for either decreasing the probability or decreasing the impact or both.

Risk Decrease Probability Decrease Impact

Hardware not available Accelerate dev. of hardware Build simulator

Requirements incomplete Increase review of

requirements

Use of specialized

methodologies

Increase staff training, hire

experts

Problems achieving required

reliability

Design for reliability

Retention of key people Pay more Hire additional personnel

Underestimating required

effort

Hire external estimator Build in slack time,

reestimate often

The single potential

customer goes bankrupt

Have external evaluation of

area

Identify other potential

clients

6.6 Risk Management Plans
A risk management plan must include an identifier, a description of the risk, an
estimate of risk probability, an estimate of risk impact, a list of mitigation stra-
tegies, contingency plans, risk triggers (to determine when contingency plans
should be activated), and responsible individuals. Additional fields might include
current and/or past status of related metrics.

CHAPTER 6 Risk Analysis and Management94

EXAMPLE 6.5

Develop a form for risk management and insert sample data.

Risk ID: 1-010-77 Prob: 10 percent Impact: very high

Description: Specialized hardware may not be available.

Mitigation strategy: Build simulator, accelerate hardware development.

Risk trigger: Hardware falling 1 week or more behind schedule.

Contingency plan: Outsource hardware development as backup, deliver system on simulator.

Status/date/responsible person:

Created – Jan 1,01 – Fred Jones

Sim. completed – Feb 10, 01 – Bill Olson

Review Questions

1. Why is risk management important?

2. Consider driving to the airport to catch a plane on an airline that you have not used
before. What risks might be unique to this trip to the airport, and which ones might be
managed as part of the normal trip to the airport?

Problems

1. Analyze the potential risks for the dental office problem in Chapter 4, Problem 2.
Classify the risks as normal or unique to this project.

2. Consider a project that has 0.5 percent probability of an undetected fault that would
cost the company $100,000 in fines. Calculate the risk exposure.

CHAPTER 6 Risk Analysis and Management 95

3. Consider the use of an additional review for Problem 2 that would cost $100 but
eliminate such a fault 50 percent of the time. Calculate this new risk exposure with
using the additional review. Is the additional review approach better?

4. What would change in Problem 3 if the additional review was only effective 10 percent
of the time?

5. Build a decision tree for the problem in Example 6.3 if in Game A, the payoff was
$5.00 and if the cost of playing in Game B was $4.00. Should you play either game?

6. Company X has historical data that shows a normal error rate of 0.0036 errors per
KLOC. A study of a new review technique shows that it costs $1000 per 100 KLOC
and decreases the number of errors by 50 percent. Assume that each error costs the
company an average of $10,000. The current project is estimated to be 50 KLOC in
size. Calculate risk exposure for each approach. Is the new review technique worth
doing?

Answers to Review Questions

1. Why is risk management important?

Risks can be managed and the effect of risks can be minimized. However, minimizing
risk requires that you identify and manage risks.

2. Consider driving to the airport to catch a plane on an airline that you have not used
before. What risks might be unique to this trip to the airport, and which ones might be
managed as part of the normal trip to the airport?

Normal risks—Running out of gas, flat tires, weather delays, traffic accidents, forget-
ting suitcases

Unique risks—Construction on highway to airport, possibly different terminal, check-
in delays specific to this airline

Solutions to Problems

1. Analyze the potential risks for the dental office problem in Chapter 4, Problem 2.
Classify the risks as normal or unique to this project.

CHAPTER 6 Risk Analysis and Management96

Normal risks—Misunderstanding user desires, miscommunication with user, user
hardware problems, cost overrun, project delays, and so on

Unique risks—Interfacing with patient record system

2. Consider a project that has 0.5 percent probability of an undetected fault that would
cost the company $100,000 in fines. Calculate the risk exposure.

The risk exposure is the sum of the risk exposure for each possibility.

0:005 � 100,000þ 0:995 � 0 ¼ $500

3. Consider the use of an additional review for Problem 2 that would cost $100 but
eliminate such a fault 50 percent of the time. Calculate this new risk exposure with
using the additional review. Is the additional review approach better?

0:0025 � 100,100þ 0:9975 � 100 ¼ 250:25þ 99:75 ¼ $350:00

The additional review approach is better.

4. What would change in Problem 3 if the additional review was only effective 10 percent
of the time?

The risk exposure would increase.

0:0045 � 100; 100þ 0:9955 � 100 ¼ 450:45þ 99:55 ¼ �550:00
and be marginally worse than the nonadditional review approach.

5. Build a decision tree for the problem in Example 6.3 if in Game A, the payoff was
$5.00 and if the cost of playing in Game B was $4.00. Should you play either game?

The risk decision tree is shown in Fig. 6-2. In both games you would expect to lose
money. In game A you would lose an average of $0.75, and in Game B you would lose
an average of $1.50.

CHAPTER 6 Risk Analysis and Management 97

0.5 *
_ $4 = _ $2.00

Game A

Game B

0.25 * $5 = $1.25

0.5 *
_ $2 = _ $1.00

0.25 *
_ $4 = _ $1.00

0.25 * $10 _ $4 = $1.50

0.25 *
_ $4 = $1.00

2 heads _ 0.25

1 heads _0.5

0 heads _
0.25

2 heads _ 0.25

1 heads _0.5

0 heads _
0.25

Fig. 6-2

6. Company X has historical data that shows a normal error rate of 0.0036 errors per
KLOC. A study of a new review technique shows that it costs $1000 per 100 KLOC
and decreases the number of errors by 50 percent. Assume that each error costs the
company an average of $10,000. The current project is estimated to be 50 KLOC in
size. Calculate risk exposure for each approach. Is the new review technique worth
doing?

Case 1—No review

0:0036 � 50 KLOC � $10,000 ¼ $1800

Case 2—With review

0:0018 � 50 KLOC � $10,000þ $500 ¼ $1400

Yes, it is better to do the review.

CHAPTER 6 Risk Analysis and Management98

TE
AM
FL
Y

Team-Fly®

99

Software Quality
Assurance

7.1 Introduction
There are many ways to define quality. None are perfect. It is like the old saying,
‘‘I know it when I see it.’’

One definition is that ‘‘quality is the totality of features and characteristics of a
product or service which bear on its ability to satisfy a given need’’ (British
Standards Institution).

Another definition is that quality software is software that does what it is
supposed to do. The lack of quality is easier to define; it is customer dissatisfac-
tion. The usual measure is defect reports.

The main technique for achieving quality is the software review or walk-
through. The goal of inspections is to find errors. Formal approaches have been
shown to work better than informal approaches. The metric used most often to
evaluate inspections is errors-found/KLOC. The efficiency may be measured in
terms of errors-found/hour-spent. Much experimentation has been done on how
much preparation time is optimal. Some work has also been done on how long the
inspection meeting should last.

7.2 Formal Inspections and Technical Reviews
A formal inspection is a formal, scheduled activity where a designer presents
material about a design and a selected group of peers evaluates the technical
aspects of the design.

The details of how a formal inspection or technical review is done can vary
widely. The following aspects are usually accepted as what distinguishes a formal
inspection from other reviews:

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Knowledgeable peers are used.
The producer is an active participant.
An explicit, completed product is inspected.
The primary purpose is to find defects.
A formal inspection is used routinely in software development.
Specific roles are assigned.
The inspection uses the specific steps of formal inspections.
At least three people are involved in the inspection.

7.2.1 INSPECTION ROLES
Although there are variations, the following are the basic roles that most inspec-
tions use:

Moderator—The moderator selects the team, conducts the inspection, and
reports the results.

Reader—The reader is often not the producer of the product; however, the
reader will guide the team through the work product during the inspection
meeting.

Recorder—The recorder maintains the records of the inspection and accurately
reports each defect.

Producer—The producer is the one who originally produced the product. His or
her role is to answer questions during the inspection. The producer is also
responsible for correcting any problems identified in the inspection. He or
she then reports the corrections to the moderator.

7.2.2 INSPECTION STEPS
Following are the basic steps in an inspection:

1. Overview—When the producer satisfies the entrance criteria, the inspection
is scheduled. The producer then conducts an overview. It acquaints the rest
of the inspection team with the product to be inspected.

2. Preparation—The inspection team members study the product. The time
spent in preparing is controlled based on the size of the product in KLOC.
The members may use a checklist to focus on significant issues.

3. Inspection meeting—The moderator supervises the inspection meeting.
Some approaches use a reader other than the producer to actually conduct
the inspection. The recorder makes a complete record of issues raised. All
members of the inspection team sign the report. Any team member may
produce a minority report if there is a disagreement.

CHAPTER 7 Software Quality Assurance100

4. Rework—The producer reviews the report and corrects the product.

5. Follow-up—The moderator reviews the report and the correction. If it
satisfies the exit criteria, the inspection is completed. If not, the moderator
can either have the producer rework the product or reinspection can be
scheduled.

7.2.3 CHECKLISTS
A checklist is a list of items that should be checked during the review. Sometimes
the items are expressed as questions to be answered.
The value of a checklist is that it focuses the attention of the reviewer on

potential problems. Every fault that is found should be analyzed to see if it
warrants a checklist item to focus on that problem. (I recall a long debugging
process caused by a semicolon directly after the condition in an IF statement in
Cþþ. Now any checklist for Cþþ programs I write includes checking for semi-
colons at the end of decision conditions.)
Checklist items that are not effective in finding faults during inspections should

be considered for removal. Too many checklist items will lessen the effectiveness of
the inspection.

7.3 Software Reliability
Reliability is the probability of not failing in a specified length of time. This is
usually denoted by R(n), where n is the number of time units. If the time unit is
days, then R(1) is the probability of not failing in 1 day. The probability of failing
in a specified length of time is 1 minus the reliability for that length of time
(FðnÞ ¼ 1�RðnÞ).
Software reliability is a measure of how often the software encounters a data

input or other condition that it does not process correctly to produce the right
answer. Software reliability is not concerned with software wearing out. A better
analogy for software failures is picking marbles out of a bag or throwing darts
blindfolded at balloons on a wall.

7.3.1 ERROR RATES
If an error happens every 2 days, then the instantaneous error rate would be 0.5
errors per day. The error rate is the inverse of the time between errors (inter-error
time). The error rate can be used as an estimate of the probability of failure, F(1).
Unless we know some trend, the best estimate of the short-term future behavior is
the current behavior. So if we find 20 errors on one day, our best estimate for the
next day is 20 errors.

CHAPTER 7 Software Quality Assurance 101

EXAMPLE 7.1

If an error happens after 2 days, what is the probability that the system will not fail

in 1, 2, 3, and 4 days?

If an error happens every 2 days, we can use 0.5 as the instantaneous error

rate. It can also be used to estimate the failure probability for 1 day. Thus, F(1) =

0.5. Then, Rð1Þ ¼ 1� Fð1Þ ¼ 0:5: Rð2Þ ¼ 0:25: Rð3Þ ¼ 0:125: Rð4Þ ¼ 0:0625.

If we can see a trend in the error rates, then we can estimate the error rate
better. Instead of using equations to fit the data, plots of the failure rate can be
used to visualize the behavior.
If x is the inter-failure time, 1=x is the instantaneous failure rate. Plot the

instantaneous failure rate versus either failure number or the elapsed time of the
failure. Try to fit a straight line to the points. The value of the line at the current
time can be used for the error rate.
The intersection of this line with the horizontal axis indicates either the fault

number where the failure rate goes to zero, or the amount of time necessary to
remove all the faults. When the x-axis is the elapsed time, then the area under the
straight line (units are time � failure/time) represents the number of faults.
Thus, empirical data about how often the software fails during testing or

observation is used to estimate the current rate. Theoretical ideas will be used
to refine the predictions for longer periods of time.

7.3.2 PROBABILITY THEORY
F(1) is the probability of failing on the next execution. It is equal to theta, the
percentage of test cases that fail.1 The failure probability can be estimated by the
current instantaneous error rate or by the estimated error rate from the error rate
plots.
If we know R(1), then the probability that we can execute n test cases without

failure is RðnÞ ¼ Rð1Þn.
Note that FðnÞ is not Fð1Þn. FðnÞ ¼ 1� ð1� Fð1ÞÞn.

7.4 Statistical Quality Assurance
Statistical quality assurance (SQA) is the use of statistics to estimate the quality of
software. Executing the code with a small set of randomly chosen test cases will
give results that can be used for estimating the quality. This is sometimes called a
software probe. The error rate on the randomly chosen sample can be used as an
estimate of the error rate in the finished project.
If the percentage of correct executions is high, then the development is going

well. If the percentage of correct executions is low, then remedial action may be
appropriate for the development process.

CHAPTER 7 Software Quality Assurance102

1 A failure is usually defined as external behavior that is different from what is specified in the requirements.

7.5 IEEE Standards for SQA Plan
An important part of achieving quality is to plan for quality, that is, to plan those
activities that will help to achieve quality. The IEEE Standards Association has
developed a standard (Std 730-1989) for software quality assurance plans.
The following is part of the sections specified in IEEE Std 730-1989:

1. Purpose—This section shall list the software covered and the portions of
software life cycle covered.

2. Reference Documents—This section shall list all the documents referenced
in the plan.

3. Management

3.1 Organization—This section shall describe the structure of organiza-
tion and the responsibilities, and usually includes an organizational
chart.

3.2 Tasks—This section shall list all of the tasks to be performed, the
relationship between tasks and checkpoints, and the sequence of the
tasks.

3.3 Responsibilities—This section shall list the responsibilities of each
organizational unit.

4. Documentation

4.1 Purpose—This section shall list all required documents and state how
documents will be evaluated.

4.2 Minimum documents—This section shall describe the minimum
required documentation, usually including the following:

SRS—Software Requirements Specification

SDD—Software Design Description

SVVP—Software Verification and Validation Plan

SVVR—Software Verification and Validation Report

User documentation—Manual, guide

SCMP—Software Configuration Management Plan

5. Standards, Practices, Conventions, and Metrics

This section shall identify the S, P, C, and M to be applied and
how compliance is to be monitored and assured. The minimal
contents should include documentation standards, logic structure
standards, coding standards, testing standards, selected SQA product,
and process metrics.

6. Reviews and Audits—This section shall define what reviews/audits will be
done, how they will be accomplished, and what further actions are
required.

7. Tests—This section shall include all tests that are not included in
SVVP.

CHAPTER 7 Software Quality Assurance 103

8. Problem Reporting—This section shall define practices and procedures for
reporting, tracking, and resolving problems, including organizational
responsibilities.

9. Tools, Techniques, and Methodologies—This section shall identify the spe-
cial software tools, techniques, and methodologies and describe their use.

10. Code Control—This section shall define the methods and facilities to main-
tain controlled versions of the software.

11. Media Control—This section shall define the methods and facilities to
identify, store, and protect the physical media.

12. Supplier Control (for outsourcing)—This section shall state provisions for
assuring that software provided by suppliers meets standards.

13. Records—This section shall identify documentation to be retained and
methods to collection, maintain, and safeguard the documentation.

14. Training—This section shall identify necessary training activities.

15. Risk Management—This section shall specify methods and procedures for
risk management.

EXAMPLE 7.2

Develop Section 3 and Section 8 of an SQA plan for a software development

project. Assume a project manager named Bill; an external test team consisting of

Tina, the leader, Donna, and Helen; a separate configuration management (CM)

group consisting of Mike, Sam, and Joe; and a separate external quality assurance

(QA) team consisting of John and James.

See Fig. 7-1.

Section 3

3.1 Organization

3.2 Tasks

All documents will be reviewed. A configuration management tool will manage all

documents and source code modules. All test plans will be done during the

CHAPTER 7 Software Quality Assurance104

Manager

PM (Bill) TM (Tina)

Soft. engineer

Soft. engineer

Donna Sam James

Helen Joe

CM (Mike) QA (John)

Fig. 7-1. Section 3 SQA plan.

requirements phase and include an adequate number of test cases. Formal

inspections will be conducted at the end of each phase.

3.3 Responsibilities

The project team is responsible for all development, including requirements,

design, and implementation. The project team produces the test plan as part of the

requirements. They are also responsible for all documentation, including the user

manuals and training documents.

The test team is responsible for testing the base-lined version of the source

code. The test team will use the test plan developed during requirements.

Additional test cases will be developed to satisfy every-statement coverage of the

code. Any discrepancies in the test plan and/or requirements or testing will be

reported to the overall manager.

The configuration management team will be responsible for accepting software

configuration items and assigning version numbers.

The quality assurance team will be responsible for overseeing all reviews, walk-

throughs, and inspections. The QA team will track all problem reports.

Section 8

All problems identified outside of the development unit must be reported to the QA

team for assignment of a problem report number. The manager of each team will

approve the corrections of problem reports assigned to that team. The QA team

will be responsible for tracking all problems and weekly reporting to the overall

manager.

Review Questions

1. What are the differences between reviews and formal technical reviews?

2. How can you evaluate a checklist?

3. What revisions to a checklist should be done?

4. What factors influence the effectiveness of a formal technical review?

5. How is the effectiveness of a formal technical review measured?

6. What happens if a producer cannot resolve an issue?

7. What happens if one or more members of the inspection team disagree with the
majority?

8. If an honest die is rolled 5 times, what is the probability of not seeing a 6 in any of the
rolls?

9. If an honest die is rolled 5 times, what is the probability of seeing a 6 on at least one of
the rolls?

CHAPTER 7 Software Quality Assurance 105

Problems

1. Build a checklist for reviewing Cþþ code.

2. Build a checklist for reviewing software designs.

3. Draw a process model for a formal inspection.

4. Assuming that the tests are representative of the operational situation, calculate the
reliability of a software system that has had 10 errors in 200 test cases.

5. Assume that FTR technique A requires 2 hours/KLOC preparation and allots
1 hour/KLOC review time and FTR technique B requires 1 hour/KLOC preparation
time and 4 hours/KLOC review time. Also assume that in a controlled experiment with
the same source code, technique A finds 12 errors/KLOC and B finds 14 errors/KLOC.
Compare the two techniques for effectiveness.

6. If the software had 5 failures in 100 tests during 10 days of testing, what would be a
good estimate of the reliability of the software over the next day? Week?

7. Develop an SQA plan for the B&B problem (Chapter 4, Problem 3).

8. Error 1 occurred after 4 days, and error 2 occurred 5 days later. Plot the error rate
versus error number graph and the error rate versus time graph, and estimate the
number of errors in the system and the time to remove all the errors.

Answers to Review Questions

1. What are the differences between reviews and formal technical reviews?

An inspection or formal technical review (FTR) requires an explicit, completed pro-
duct. The producer must be an active participant in the review/inspection. The inspec-
tion/FTR must be part of the defined software process. The primary purpose is to find
defects. The inspection must follow the specified process with the specific roles and
steps.

2. How can you evaluate a checklist?

Use it in reviewing software code/documents. Record the issues identified with each
checklist item. Record the faults found after the item was successfully reviewed.

3. What revisions to a checklist should be done?

Items that are not associated with the detection of faults should be removed. Faults
that are detected during later phases of the life cycle should be used to generate new
checklist items.

CHAPTER 7 Software Quality Assurance106

4. What factors influence the effectiveness of a formal technical review?

The preparation time and the review time.

5. How is the effectiveness of a formal technical review measured?

Usually in the rate of discovery of faults. This can be measured both in faults-
found/KLOC and in faults-found/reviewer-hour.

6. What happens if a producer cannot resolve an issue?

If the manager cannot resolve the issue, there will probably be a reinspection going
through all the phases.

7. What happens if one or more members of the inspection team disagree with the
majority?

The minority will produce a minority report presenting their views.

8. If an honest die is rolled 5 times, what is the probability of not seeing a 6 in any of the
rolls?

ð5=6Þ5 ¼ 0:4018

9. If an honest die is rolled 5 times, what is the probability of seeing a 6 on at least one of
the rolls?

1� ð5=6Þ5 ¼ 1� 0:4018 ¼ 0:5982

Answers to Problems

1. Build a checklist for reviewing Cþþ code.

1. Are all pointers initialized in the constructor?
2. Are all variables declared?
3. Does every ‘‘{’’ have a matching ‘‘}’’?
4. Does every equality comparison have a double ‘‘=’’?
5. Are any while or if conditions closed with a ‘‘;’’?
6. Does every class declaration end with a ‘‘;’’?

The preceding are sample checklist items I developed based on personal experiences
of making Cþþ faults. In particular, I’ve spent a long time finding a fault caused by
item 5.

2. Build a checklist for reviewing software designs

1. Are all significant functions shown in design?
2. Are all significant attributes specified in design?
3. Are all names related to purpose and type and are they unambiguous?

CHAPTER 7 Software Quality Assurance 107

CHAPTER 7 Software Quality Assurance108

4. Are all relationships between classes specified?
5. Do all functions have the data necessary for the function to execute?

3. Draw a process model for a formal inspection.

See Fig. 7-2.

4. Assuming that the tests are representative of the operational situation, calculate the
reliability of a software system that has had 10 errors in 200 test cases.

Fð1Þ ¼ 10=200 ¼ 0:05
Rð1Þ ¼ 0:95

5. Assume that FTR technique A requires 2 hours/KLOC preparation and allots
1 hour/KLOC review time and FTR technique B requires 1 hour/KLOC preparation
time and 4 hours/KLOC review time. Also assume that in a controlled experiment with
the same source code, technique A finds 12 errors/KLOC and B finds 14 errors/KLOC.
Compare the two techniques for effectiveness.

Technique A took 80 percent of the time of technique B and found 85 percent of the
errors that B found. So A is slightly more efficient than B. From the point of view of
marginal improvement, it took 2 hours/KLOC more effort to find the last
2 errors/KLOC.

6. If the software had 5 failures in 100 tests during 10 days of testing, what would be a
good estimate of the reliability of the software over the next day? Week?

Fð1Þ ¼ 0:05 Rð1Þ ¼ 0:95

Next day?

Assume 10 tests per day (average from last 10 days). Rð10Þ ¼ Rð1Þ10 ¼ 0:9510 ¼ 0:598:

Next week?

Assume 70 tests. Rð10Þ ¼ Rð1Þ70 ¼ 0:9570 ¼ 0:027:

7. Develop an SQA plan for the B&B problem (Chapter 4, Problem 3).

Final
report

Report

Record

Results,
issues

Answer
question

Inspect

Preparation

Prepare

Product

Assignments

Overview

Give
overview

Schedule
inspection

RecorderReader

Moderator

ModeratorProducer

Resolve
issues

Fig. 7-2. Process model for inspection.

TE
AM
FL
Y

Team-Fly®

Section 1. Purpose

The XYZ Corporation is developing software for Tom and Sue’s Bed and Breakfast Inn.
This software is intended to maintain reservation information and help in monitoring
expenses and profits. This SQA plan is for version 1.0 to be delivered to Tom and Sue
by November 1.
This SQA plan covers the development life cycle of the complete system from require-

ments specification through software testing.

Section 2. Reference Documents

Statement of Work, version B&RSOW1.0 dated 1/1
XYZ Corporation Coding Standards, version 4.6, dated 7/8/95

Section 3. Management

3.1 Organization
Project lead (Tom)
Development group
(Bill, Jane, Fred)

SQA group
(John)

3.2 Tasks
Requirements analysis and specification
Project planning
Cost estimation
Architectural design
Low-level design
Implementation
Testing
Project monitoring
Inspections
Reviews
Documentation

3.3 Responsibilities
Project Lead—Tom
Responsibilities: Project planning, cost estimation, project monitoring, approvals of
all summary reports and plans

Requirements Lead—Bill
Responsibilities: Requirements analysis and specification
Team members: Jane, Fred

Design—Jane
Responsibilities: Architectural design

Implementation Lead—Jane
Responsibilities: Low-level design and implementation
Team members: Fred, Bill

Test Lead—Bill
Responsibilities: All testing and test reports
Team members: Fred

Documentation—Jane
Responsibilities: User manual

CHAPTER 7 Software Quality Assurance 109

SQA—John
Responsibilities: Conduct of all reviews, walk-throughs, and inspections, review of
all documents and reports, tracking of all problem reports, and submission of weekly
problem report

Section 4. Documentation

Software Requirements Specification
Software Design Using UML and OCL
Software Test Plan
Software Test Report
User Manual

Each document will be reviewed in the draft version and inspected in the final version. The
SQA lead (John) will be responsible for conducting all reviews and inspections.

Section 5. Standards, Practices, Conventions, and Metrics

XYZ Corporation Coding Standards will be used. The SQA team will conduct inspections
of all code to ensure compliance. The compliance report will be submitted to the project
lead.
Unadjusted function points will be counted on all components. LOC will be counted on

all classes.

Section 6. Reviews and Audits

The following reviews will be done. The SQA lead will conduct each review and submit the
report to the project lead for approval.

Reviews:
Software Requirements
Preliminary Design Review
Walk-Throughs of Each Class Design
Code Inspections

Section 7. Test

Testing will be accomplished according to a test plan to be developed by the SQA team
and approved by the project lead.

Section 8. Problem Reporting

All problems will be reported to the appropriate lead. If appropriate, the lead will submit a
problem report to the SQA lead, who will enter the problem report into the problem
tracking system. Resolution of the problem will be reported to the SQA lead. A weekly
problem tracking report will be submitted to the project lead.

Section 9. Tools, Techniques and Methodologies

None.

Section 10. Code Control

The XYZ Corporation configuration management system will be used.

CHAPTER 7 Software Quality Assurance110

Section 11. Media Control

N/A

Section 12. Supplier Control (for outsourcing)

N/A

Section 13. Records—Collection, Maintenance, and Retention

N/A

Section 14. Training

N/A

Section 15. Risk Management

N/A

8. Error 1 occurred after 4 days, and error 2 occurred 5 days later. Plot the error rate
versus error number graph and the error rate versus time graph, and estimate the
number of errors in the system and the time to remove all the errors.

As shown in Fig. 7-3, plotting error rate versus error number shows an intercept about
6. Thus, there are 4 errors left in the system.

As shown in Fig. 7-4, plotting error rates versus time elapsed shows an intercept
around 29 to 30. Thus, it should take about 20 more units to completely remove the
errors.

CHAPTER 7 Software Quality Assurance 111

0.3

0.25

0.2

0.15

0.1

0.05

0
1 2 3 4 5 6 7 8

Series 1

Fig. 7-3. Error rate versus error number.

Series 1

0 10 20 30 40 50

0.3

0.25

0.2

0.15

0.1

0.05

0

Fig. 7-4. Error rate versus time elapsed.

112

Requirements

8.1 Introduction
The goal of the requirements phase is to elicit the requirements from the user. This
is usually achieved by the development of diagrams and the requirement specifica-
tion after discussions with the user. The user then reviews the diagrams and
specification to determine if the software developer has understood the require-
ments. Thus, it is essential that the diagrams and specifications communicate back
to the user the essential aspects required of the software to be produced.
The following sections describe the diagrams and requirement specification that

are useful in achieving this communication.

8.2 Object Model
The basic approach in an object-oriented (OO) methodology is to develop an
object model (see Section 2.4) that describes that subset of the real world that is
the problem domain. The purpose is modeling the problem domain and not
designing an implementation. Thus, entities that are essential to understanding
the problem will be included even if they are not going to be included in the
solution. The attributes and methods included in the object model will also be
those needed for understanding the problem and not those that will just be impor-
tant for the solution.

The following are rules for object models for requirements:

1. All real-world entities that are important to understanding the problem
domain must be included.

2. All methods and attributes that are important to understanding the
problem domain must be included.

3. Objects, attributes, and methods that are only significant for the imple-
mentation should not be included.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

EXAMPLE 8.1

Draw an object model for the library problem (see Example 2.6).

See Fig. 8-1.

EXAMPLE 8.2

Draw an object model for simplified vi-like editor.

See Fig. 8-2.

8.3 Data Flow Modeling
Although not used much in OO development, data flow diagrams (see Section 2.2)
were essential parts of pre-OO software development. Data flow diagrams (DFDs)
still have an important role in the specification of many systems. The importance
of data flow diagrams is in specifying what data is available to a component.
Knowing the data available often helps in the understanding of what a component
is expected to do and how it will accomplish the task.

EXAMPLE 8.3

Draw a DFD for the simple Unix, vi-like editor.

See Fig. 8-3.

CHAPTER 8 Requirements 113

patron

loan copy

borrow
checkin

due-date

name

book

library

name

borrow
return

Fig. 8-1. Object model for library problem.

user

editfile
file

name
type

filename
fileptr
currentloc
mode

login

Fig. 8-2. Object model for simplified vi-like editor.

8.4 Behavioral Modeling
Behavioral modeling refers to the behavior of the system, usually from the user
point of view. These diagrams are used to specify aspects of the proposed system.
It is important that the diagrams capture the essential aspects of the system and
are able to communicate those aspects both to the developer and to the user for
confirmation that this is the system that he or she wants.

8.4.1 USE CASE
The use case diagram represents the functionality of the system from the user’s
point of view (see Section 2.5). All critical functionality must be mentioned.
However, routine functions that are implied by a higher-level phrase do not
have to be specifically mentioned (the danger of miscommunication must be
balanced by clarity). The textual requirements will detail these individual func-
tions.

EXAMPLE 8.4

Draw the use case diagram for an editor that is similar to a simplified Unix vi-like

editor.

See Fig. 8-4.

CHAPTER 8 Requirements114

Vi-like editor

Coverage

Test cases
Output

Inst. code

Analyze

Compile and
execute

Instrument
code

report

SRC

code

Fig. 8-3. Data flow diagram for Unix, vi-like editor.

Create
file

Save
file

Insert
text

Open
file

Modify
text

Fig. 8-4. Use case diagram for editor.

The essential functions in this diagram are file manipulation (create, save, and

open). Insert and modify are intended as higher-level phrases covering the typical

text-editing functions. Note that some capabilities such as search, copy, and move

may be neglected, since they are not mentioned explicitly.

8.4.2 SCENARIOS
A scenario is a sequence of actions that accomplishes a user task. Alternative
sequences are only shown by having a separate scenario for each alternative.
Scenarios are used to illustrate an important capability or proposed use of the
system.
In UML, an interaction diagram (see Chapter 2) is used to specify the scenarios.

Scenarios can also be specified by listing the sequence of actions.

EXAMPLE 8.5

Write scenarios for the simplified vi editor using each use case in Example 8.4.

Use semicolons to separate actions. Use parentheses to contain comments or

conditions.

Create file
vi filename (file does not already exist)

Open file
vi filename (file already exists)

Insert text
I ; <desired text> ; <esc>
i ; <desired text> ; <esc>
O ; <desired text> ; <esc>
o ; <desired text> ; <esc>
A ; <desired text> ; <esc>
a ; <desired text> ; <esc>

Modify text
cw ; <new text> ; <esc>
dw
dd
x

Save file
ZZ

Note: Not all sequences are shown. For the sake of brevity, not all operations are

shown. In an actual specification, efforts should be made to show all operations and

significant sequences of operations. In this example, each scenario represents only

a part of the use. Alternatively, each scenario could run from open file to close file.

8.4.3 STATE DIAGRAMS
The details of state diagrams were covered in Chapter 2. When being used as part
of the requirements specification, it is important that the states reflect domain
conditions that are understandable to the users. States that are only significant
to the implementation should be coalesced into domain significant states.
Additionally, the allowed transitions must include all allowed transitions from
the scenarios. Sequences that are not intended in the proposed system should

CHAPTER 8 Requirements 115

not be allowed in the state diagram. This may be difficult, since the existence of a
transition in a scenario does not prohibit other transitions.

The following are rules for using state diagrams in requirement specifications:

1. All states must be domain significant.

2. All sequences from scenarios must be allowed.

3. All prohibited scenarios must not be allowed.

EXAMPLE 8.6

Draw a state diagram for the simple vi-like editor.

See Fig. 8-5.

This state diagram is built by using understanding of the program to coalesce the

states into states that have domain relevance. This diagram represents well to the

user the behavior of the proposed simple vi-like editor.

8.5 Data Dictionary
A data dictionary is a table of information about each data element in the system.
Initially, in the requirements phase the data dictionary will be the data items from
the problem domain.
A typical entry will include the name of the item, in which class it is located, the

type of the data item, and the semantics of the item.

EXAMPLE 8.7

Build a data dictionary for the library problem in Example 2.6.

Name Class Type Size Semantics

Author Book String < 40 char Last name, first name
(may be truncated)

Book Book Object Abstract concept of the book
Book ID Copy Key Key to info about the book
Borrower Loan Key Key to patron who made this

loan
Copy Copy Object Library’s physical copy of a

book

CHAPTER 8 Requirements116

vi <filename>

cmd
mode

input
mode

A,a,I,i,O,o

<esc>

ZZ

<all other letters> <everything except <esc>>

Fig. 8-5. State diagram for simple, vi-like editor.

Copy ID Copy Key Key to physical copy being
borrowed

ISBN Book String 10-20 char International Standard Book
Number

Loan Loan Object A borrowing that is still
active

Name Patron String < 40 char Last name, first name
(may be truncated)

Patron Patron Object Registered holder of library
card

Title Book String < 50 char First 50 char of title from
title page

8.6 System Diagrams
A system diagram is a nonformally defined diagram used to give an overview of a
proposed system. It is often used when the more formally defined diagrams are too
limited to express the necessary overview. System diagrams usually incorporate
aspects of data flow and use case diagrams. They usually have ovals representing
processing parts of the system, data objects representing files and/or databases,
boxes representing data, and stick figures representing persons. Arcs are used to
show the flow into and out of functions. A challenge with systems diagrams is to
maintain consistency in the use of symbols and to give sufficient details.

EXAMPLE 8.8

Draw a system diagram for the simple vi-like editor.

See Fig. 8-6.

EXAMPLE 8.9

Draw a system diagram for a testing tool that instruments a source code, compiles

the instrumented code, executes that code with test cases, and then analyzes the

results.

See Fig. 8-7. Note that the output from the compiler process is another process.

CHAPTER 8 Requirements 117

Create
file

Open
file

Save
file

Working
file

File

Modify
text

Insert
text

User

Fig. 8-6. System diagram for simple, vi-like editor.

8.7 IEEE Standard for Software Requirements
Specification

The following SRS outline is based on IEEE 830-1993:

1. Introduction—This section is intended to provide an overview of the rest of
the specification.

1.1 Purpose—This section must describe the purpose of the SRS and the
intended audience.

1.2 Scope—This section must identify the product, explain what the
product will and will not do, and describe the application of the
software, including benefits, objectives, and goals.

1.3 Definitions—This section must identify all terms, acronyms, and
abbreviations used in the specification.

1.4 References—This section must identify all documents referenced else-
where in the specification.

1.5 Overview—This section must describe what the rest of document con-
tains.

2. Overall Description—This section is intended to provide the background to
understand the rest of the requirements.

2.1 Product Perspective—This section must put the product into perspec-
tive with other products. It will usually include a block diagram of the
larger system. It should specify constraints (e.g., system interfaces
with other software), user interfaces (e.g., screen formats, timing),
hardware interfaces, software interfaces (e.g., versions of interfaced
software), memory constraints, operations (e.g., modes of opera-
tions), and site adaptation constraints.

CHAPTER 8 Requirements118

Source file
Instrumented

code

Test coverage
analysis

Compiled
code

Output

Compiler

Test cases

Instrumentor

Analyzer

Fig. 8-7. System diagram for testing tool.

TE
AM
FL
Y

Team-Fly®

2.2 Product Functions—This section must include a summary of the
major functions of the product.

2.3 User Characteristics—This section must include the educational level,
experience, and technical expertise of the users.

2.4 Constraints—This section must include any other (e.g., regulatory)
constraint that is not covered in Section 2.1.

2.5 Assumptions andDependencies—This sectionmust include any assump-
tions that, if not true, would require changes to the requirements.

2.6 Apportioning of Requirements—This section must identify require-
ments that may be delayed to future versions of the product.

3. Specific Requirements—According to IEEE Standard 830: ‘‘This section of
the SRS should contain all the software requirements to a level of detail
sufficient to enable designers to design a system to satisfy those require-
ments, and testers to test that the system satisfies those requirements.’’ This
is an important criteria to remember: The SRS should be sufficiently
detailed so designs and tests can be constructed directly from the SRS.
Also, according to IEEE Standard 830: ‘‘These requirements should
include at a minimum a description of every input (stimulus) into the sys-
tem, every output (response) from the system and all functions performed
by the system in response to an input or in support of an output.’’

3.1 External Interface Requirements—This section must describe all
inputs and outputs of the system. This is detailing the information
from Section 2.1

3.2 Functions—This section must describe all the functions of the system.
These must include validity checks on inputs, responses to abnormal
situations, effect of parameters, and the relationship of outputs to
inputs.

3.3 Performance Requirements—This section must describe the static and
dynamic requirements.

3.4 Design Constraints—This section must describe any constraints on the
design.

Review Questions

1. What is the advantage of a DFD over other diagrams?

2. What is the purpose of behavior specifications and diagrams in requirement specifica-
tions?

3. What functions are important to include in use case diagrams?

CHAPTER 8 Requirements 119

4. What criteria should be used to evaluate scenarios?

5. What criteria should be used to evaluate state diagrams?

6. What is the advantage of a system diagram?

7. What can be a major problem with system diagrams?

Problems

1. Draw an object model for the B&B problem (see Problem 4.3).

2. Draw an object model for the dental office problem (see Problem 4.2).

3. Draw a DFD for the B&B system (see Problem 4.3).

4. Draw a DFD for the dental office system (see Problem 4.2)

5. Draw a use case diagram for the B&B problem (see Problem 4.3).

6. Draw a use case diagram for the dental office problem (see Problem 4.2).

7. Write scenarios for the B&B problem (see Problem 4.3).

8. Write scenarios for the dental office problem (see Problem 4.2).

9. Draw a state diagram for the B&B problem as a whole (see Problem 4.3).

10. Draw a state diagram for the data item reservation in the B&B problem (see Problem
4.3).

11. Draw a state diagram for the dental office problem (see Problem 4.2).

12. Draw a system diagram for the B&B system (see Problem 4.3).

13. Draw a system diagram for the dental office system (see Problem 4.2).

Answers to Review Questions

1. What is the advantage of a DFD over other diagrams?

The data flow through the system and the specific data that is available to each process
are clearly shown.

2. What is the purpose of behavior specifications and diagrams in requirement specifica-
tions?

The purpose is to communicate an overview of the proposed system to the user to
ensure mutual understanding of the overall behavior of the proposed system.

CHAPTER 8 Requirements120

3. What functions are important to include in use case diagrams?

The important functions are those critical functions that convey the required function-
ality.

4. What criteria should be used to evaluate scenarios?

Every significant sequence of functions needs to be shown from the user’s point of view.

5. What criteria should be used to evaluate state diagrams?

State diagrams need to show all possible transitions. Every arc in the diagram needs to
have an event that caused the transition. There must also be a path from the start node
to every node and from every node to a terminal node.

6. What is the advantage of a system diagram?

Being less formal, it can be more flexible in expressing ideas about the overall system.

7. What can be a major problem with system diagrams?

The lack of formality can lead to ambiguous diagrams with one symbol being used for
different ideas.

Answers to Problems

1. Draw an object model for the B&B problem (see Problem 4.3).

See Fig. 8-8.

2. Draw an object model for the dental office problem (see Problem 4.2).

See Fig. 8-9.

CHAPTER 8 Requirements 121

B&B

reservation

date

date
customer

make res.
cancel
arrive

check out

Fig. 8-8. B&B object model.

3. Draw a DFD for the B&B system (See Problem 4.3).

See Fig. 8-10.

4. Draw a DFD for the dental office system (see Problem 4.2).

See Fig. 8-11.

CHAPTER 8 Requirements122

dentist

appointment

daily sched.

date

procedures

patient

name

make appt.
cancel

Fig. 8-9. Dental office object model.

Check date

Record
expenses

Make
reservations

Reservations
& expenses

file
Record

payments

Payments

Expenses

Name

Date Avail. date

Date Availability

Finance report

Weekly schedule

Daily reservations

Confirmation

Generate
res. list

Report
finances

Answer
query

Finances

Fig. 8-10. Data flow diagram for B&B.

Date

Name

Date

Confirmation

Availability

Weekly schedule

Daily schedule
Generate
schedules

Answer
query

Check patient
data

Check date Make
appointment

Appointment
file

Patient
records

Patient
data

Avail. date

Fig 8-11. Data flow diagram for dental office.

5. Draw a use case diagram for the B&B problem (see Problem 4.3).

See Fig. 8-12.

6. Draw a use case diagram for the dental office problem (see Problem 4.2).

See Fig. 8-13.

7. Write scenarios for the B&B problem (see Problem 4.3).

Customer Call 1:

Customer calls about availability on a specified date.
Sue brings up calendar for that week.
There is a vacancy.
Sue quotes a price.
Sue gets name, address, telephone number, and credit card number.
Sue enters information.
Customer provides credit card to guarantee reservation.

Customer Call 2:

Customer calls about availability on a specified date.
Sue brings up calendar for that week.
There are no vacancies.

CHAPTER 8 Requirements 123

Owner

Make
reservation

Enter
payments

Cancel
reservation

Analyze
expenses

Enter
expenses

Print
weekly

schedule

Fig. 8-12. Use case diagram for B&B.

Make
appointment

Cancel
appointment

Query
appointments

Print
daily, weekly

schedule

Access
patient
records

Clerk

Dentist

Fig. 8-13. Use case diagram for dental office.

Customer Call 3:

Customer calls about availability on a specified date.
Sue brings up calendar for that week.
There is a vacancy.
Sue quotes a price.
Sue gets name, address, telephone number, and credit card number.
Sue enters information.
Customer guarantees reservation.
Reserve by date passes.
Another customer requests that date.
Nonguaranteed reservation is removed.

8. Write scenarios for the dental office problem (Problem 4.2).

1—Normal

A patient calls for an appointment. The patient’s name is recognized by the system.
The system suggests a time. The patient accepts that time, and the receptionist enters
the appointment. Two days before the appointment, the receptionist gets a reminder
list with the patient’s name and phone number. The receptionist calls to remind the
patient. The patient comes for the appointment. After the appointment, the dental
assistant schedules the patient’s next appointment.

2—New Patient

A patient calls for an appointment. The patient’s name is not recognized by the system.
The patient must be entered into the patient records system.

3—Multiple Appointments

A patient calls and wants to make 6-month appointments for the next 2 years. The
receptionist enters his name into the system and, when it is accepted, enters the agreed
upon appointments.

9. Draw a state diagram for the B&B problem as a whole (see Problem 4.3).

See Fig. 8-14.

CHAPTER 8 Requirements124

Start

Start
Date
found

Reservation
set

Date entered

Name entered
ConfirmedQuit

Enter expense,
enter payment,

cancel reservation

Fig. 8-14. State diagram for entire B&B problem.

10. Draw a state diagram for the data item reservation in the B&B problem (see Problem
4.3).

See Fig. 8-15.

11. Draw a state diagram for the dental office problem (see Problem 4.2).

See Fig. 8-16.

12. Draw a system diagram for the B&B system (see Problem 4.3).

See Fig. 8-17.

CHAPTER 8 Requirements 125

Create
reservation

Guest
checkout

Time
elapsed

Not
guaranteed

Guaranteed

Active

Cancel or
forfeit guarantee

Guarantee

Guest arrive

Fig. 8-15. State diagram for data item reservation.

Patient record
found and

possible appt.

Appointment
made

Start

Start

Quit

Enter valid
name

Confirm
appt

Confirmation returned

Enter invaild name, query date,
query by name, print schedule,
delete appt.

Fig. 8-16. State diagram for dental office.

Reservation
request

Query for
date

Availability

Query

Make
reservation

Enter
expenses

Generate
schedule

Analyze
expenses Expense

report

Schedule
report

Reservation
file

User

Owners

Fig. 8-17. System diagram for B&B.

13. Draw a system diagram for the dental office system (see Problem 4.3).

See Fig. 8-18.

CHAPTER 8 Requirements126

Patient
name and
date/time

Possible
appointment

Appointment
tool

Appointment
file

Patient
records

Set
appointment

Schedule
tool

Weekly
schedule

Daily
schedule

Query

Date

Schedule

User

Dentist

Fig. 8-18. System diagram for dental office.

127

Software Design

9.1 Introduction
Design is ‘‘the process of applying various techniques and principles for the pur-
pose of defining a device, a process, or a system in sufficient detail to permit its
physical realization.’’1 Design is also the most artistic or creative part of the soft-
ware development process. Few rules can be written to guide design.
The design process converts the ‘‘what’’ of the requirements to the ‘‘how’’ of the

design. The results of the design phase should be a document that has sufficient
detail to allow the system to be implemented without further interaction with
either the specifier or the user.
The design process also converts the terminology from the problem space of the

requirements to the solution space of the implementation. Some authors talk
about object-oriented analysis (OOA) objects, which are in the problem/domain
space, and object-oriented design (OOD) objects, which are in the solution/imple-
mentation space. For example, in the problem space we can talk about a real-
world object like a person; in the solution space we can talk about a Cþþ class
called person.
Gunter et al.2 write about the phenomenon in the environment (world) and the

phenomenon in the implementation (machine). A phenomenon can be visible or
hidden. The user-oriented requirements may be expressed in terms of the phenom-
enon, hidden or visible, from the environment. However, the specification that will
be used as the basis for development must sit between the environment and the
implementation and must be expressed in terms of a visible phenomenon from
each. This specification is the starting point for design and will be called the
development specification in this book.

1 Taylor, An Interim Report of Engineering Design, MIT, 1959.

2 Gunter, Gunter, Jackson, and Zave, ‘‘A Reference Model for Requirements and Specifications,’’ IEEE

Software, May/June 2000, 37–43.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

EXAMPLE 9.1

A robot is required to find specific brands of pop cans using a black-and-white

camera and to return the cans to a recycling location. Such a statement can be the

user-oriented requirements and consists of a phenomenon from the environment.

However, the pop cans are hidden phenomenon in the environment. That is, the

implementation will not know about pop cans; it will know about black-and-white

images of pop cans. This is the visible phenomenon. When the specification that

will be used as the starting point for design is written, it needs to talk in terms of

these images. It will be assumed (and may need to be verified) that only real pop

cans will give those images. For example, the problem will be much more difficult if

the walls of the environment are covered with ads that contain images of pop cans.

EXAMPLE 9.2

Identify which phenomenon is in the environment and which is in the

implementation in the library system.

The physical book is an environment-hidden phenomenon. The system never

knows about the book. When the librarian scans the book, he or she is really

scanning a bar code. This bar code is not the ISBN but has to reflect possible

multiple copies of a single book. This bar code is environment-visible. The

implementation probably uses a different identifier or pointer for the book data. This

internal identifier is implementation-hidden.

The specification for development needs to be written in terms of the bar code

on the book. Neither the physical book nor the internal identifier should be

mentioned in the development specification.

9.2 Phases of the Design Process
The following are phases in design:

Data design—This phase produces the data structures.
Architectural design—This phase produces the structural units (classes).
Interface design—This phase specifies the interfaces between the units.
Procedural design—This phase specifies the algorithms of each method.

EXAMPLE 9.3

Design the library classes/data structures from the data items in the object model

shown in Fig. 9-1 for the library problem (see Examples 8.1 and 2.6).

The data design and the architectural phases have been combined in this

example. The concentration in this example is on the loan and checkout

functionality, with little regard for the other necessary tasks, such as administration,

cataloging, assigning overdue fines, retiring books, and patron maintenance.

The domain entity ‘‘book’’ is probably not going to continue into the design. It will

be combined with ‘‘copy’’ into a class/data structure that stores all the information

about a copy. It will probably use the ISBN and a copy number as the unique

identifier. The patron information will be stored in a second data structure. Each

record is probably identified by an unique patron ID number. The loan information

may or may not be a separate data structure. If borrowing information needs to be

saved beyond the return of the book, then it had better be a separate class/data

CHAPTER 9 Software Design128

TE
AM
FL
Y

Team-Fly®

structure. Otherwise, the patron ID can be part of the copy class/data structure

along with the due date of the book.

Note in Fig. 9-2 that many data items have been added that are more in the

implementation/solution space than in the problem/domain space. It can be argued

that ‘‘ISBN’’ is part of the problem space instead of the solution space, but many

library systems do not allow normal users to search by ISBN.

9.2.1 INTERFACES
An interface specification is a specification of the external behavior of a module. It
should be complete enough so that the calling module knows exactly what the
called module will do under any circumstance. It should also be complete enough
so that the implementer knows exactly what information must be provided.
The interface specifications in an OO model are often the signatures of the

public methods and the semantics associated with the methods. Interfaces can
also be specified as part of a formal specification of the behavior of the whole
system.
Interfaces can also be the invariants, preconditions, and post-conditions for a

method.

CHAPTER 9 Software Design 129

patron

due date

copy

book

name

library

borrow
check in

loan

name

borrow
return

Fig. 9-1. Object model for library.

patron

library

loan

update status

loannumber
isbn

patronid
status

due date

borrow
return

borrow
return

patronid
name

address
loannumber list

bookcopy

isbn
copynumber

title
author
status

loannumber

borrow
check in

Fig. 9-2. Class diagram for library problem.

EXAMPLE 9.4

Design the interfaces for the borrow functions of the library problem using the

class diagram produced in Example 9.3.

Both patron and bookcopy have ‘‘borrow’’ methods. Presumably, calling one

or the other of these two methods creates the instance of loan. It is not clear from

the class diagram which method creates the instance. However, it might be clear if

the parameters and return type of each of these methods are specified.

method patron::borrow
input parameters – isbn
return type – int

0 if book is not available
1 if book is available and loan instance created successfully
-1 if error condition

method bookcopy::borrow
input parameter – loannumber
return type – int

0 if bookcopy is not available
1 if bookcopy updated successfully

9.3 Design Concepts
Two approaches to design are known as refinement and modularity:

Refinement—This design approach develops the design by successively refining
levels of detail. Sometimes this is called ‘‘top-down’’ design.

Modularity—This is a structuring approach that divides the software into
smaller pieces. All the pieces can be integrated to achieve the problem
requirements.

EXAMPLE 9.5

Refine the borrow book function from the library problem.

The top level starts with a function borrow book with two parameters, the title

of the book and the name of the patron.

The next refinement adds the notion of the loan entity. It probably has the

following parts: find book given book title, find the patron given patron name, and

create loan instance given IDS of book and patron.

The next refinement expands each part. Find book returns ISBN if book is

found and available, returns zero if book is not found, and returns –1 if book is in

use. Find patron returns patron ID if patron is found and is in good standing,

returns zero if patron not found, and returns –1 if patron is not eligible to borrow

books. Create loan returns 1 if created successfully.

9.3.1 ATTRIBUTES OF DESIGN
Three design attributes are as follows:

Abstraction—An object is abstract if unnecessary details are removed.
Similarly, abstraction in art tries to convey an image with just a few details.

CHAPTER 9 Software Design130

Abstraction in software design tries to let the designer focus on the essential
issues without regard to unnecessary low-level details. Good abstraction
hides the unnecessary details.

Cohesion—A material is cohesive if it sticks together. A procedure is cohesive if
all the statements in the procedure are related to every output. A class is
cohesive if all the attributes in the class are used by every method. That is,
cohesion in a module is achieved if everything is related. High cohesion is
generally considered desirable.
Originally, cohesion was defined in terms of types of cohesion.3 The types

included coincidental, logical, temporal, procedural, communicational,
sequential, and functional. Temporal cohesion was when all functions were
grouped together, since they had to be performed at the same time. Logical
cohesion was when the functions logically belonged together.

Coupling—Coupling is a measure of how interconnected modules are. Two
modules are coupled if a change to a variable in one module may require
changes in the other module. Usually the lowest coupling is desirable.

EXAMPLE 9.6

Evaluate the abstraction in the borrow functionality in the library problem.

The borrow function appears in three classes: library, patron, and

bookcopy. The best abstraction is if the borrow function in library knows as few

details about the patron and bookcopy functions as possible. For example, does

the borrow function need to know about the loan class?

As shown in Fig. 9-3, if the borrow function in library just calls the borrow

function in one of the lower levels, then it has good abstraction. That lower class

will be handle the details of creating the loan instance and passing the pointer to

the other lower-level class.

If, however, the borrow function in library knows about the loan class, it

can check the availability of the book, create the loan instance, and call both

lower-level borrow functions to set the values of the loan instance. (See Fig. 9-

4.)

CHAPTER 9 Software Design 131

3 W. Stevens, G. Myers, and L. Constantine, ‘‘Structured Design,’’ IBM Systems Journal, 13 #2, 1974, 115–139.

borrow

borrow

library bookcopy patron loan

borrow

create

Fig. 9-3

The version in Fig. 9.5 does not have good abstraction. That is, the details of the

lower-level classes have not been hidden from the borrow function in library.

9.4 Measuring Cohesion

9.4.1 PROGRAM SLICES
The values of variables in a program depend on the values of other variables.
There are two basic dependencies: data dependencies, where the value of x affects
the value of y through definition and use pairs, and control dependencies, where
the value of x determines whether code that contains definitions of y executes.

EXAMPLE 9.7 MULTIPLICATION BY REPEATED ADDITION

The following code calculates the product of x and y . The output variable z has a

data dependency on the variable x , since x is added to z. The output z has a

control dependency on the variable y , since y controls how many times x is added

to z.

CHAPTER 9 Software Design132

borrow

findstatus

library bookcopy patron loan

borrow

borrow

create

Fig. 9-4

borrow

borrow

library bookcopy patron loan

borrow

create

Fig. 9-5. Borrow interaction diagram—version 1.

z = 0;
while x > 0 do

z = z + y;
x = x –1;

end-while

Program slices can be calculated from either direction. An output slice finds
every statement that affects the value of the specified output. An input slice finds
every statement that is affected by the value of the specified input.
It is easier to calculate the program slices from a directed graph that has a set of

nodes, n, where each node is an input, an output, or a statement in the code. The
arcs, e, are the dependencies.
James Bieman and Linda Ott4 have used variable definitions and references as

the basic units instead of program statements. These definitions and references are
called tokens. Thus, every constant reference, variable reference, and variable
definition is a separate token.

EXAMPLE 9.8

Draw a directed graph showing the dependencies between the variables in the

code in Example 9.7. Use solid lines for data dependencies and dashed lines for

control dependencies.

From the graph in Fig. 9-6, we can see that the output slice will start from the

only output, z. The tokens z, z, y , z, and 0 from the statements z=z+y and z=0

are added to the slice. Next, the tokens x and 0 are added from the statement

while x> 0. Next, the tokens, x , x , and 1 from the statement x=x+1 are added.

This exhausts the statements, so everything in this program is in the output slice

for the variable z.

An input slice can start with the input variable x . The tokens x , 0, x , x , and 1

from the statements while x>0 and x=x-1 are added to the slice. Next, the

tokens, z, z, and y from the statement z=z+y are added. No other tokens can be

added. Thus, the input slice is everything except z=0.

An input slice for the variable y will only contain the initial y token and the

tokens z and y from the statement z=z+y.

CHAPTER 9 Software Design 133

while x > 0

x = x _ 1

z

0 x

y

1

z = 0

z = z + y

Fig. 9-6

4 James Bieman and Linda Ott, ‘‘Measuring Functional Cohesion,’’ IEEE TOSE, 20:8 August 1994, 644–657.

9.4.2 GLUE TOKENS
Bieman and Ott also defined some cohesion metrics using output slices. The
definitions are based on glue tokens, which are tokens (code sections) that are in
more than one slice, and superglue tokens, which are in all slices. Adhesiveness of a
token is the percentage of output slices in a procedure that contains the token.
There are three functional cohesion measures:

Weak functional cohesion (WFC)—The ratio of glue tokens to total tokens
Strong functional cohesion (SFC)—The ratio of superglue tokens to total tokens
Adhesiveness (A)—The average adhesiveness of all tokens

EXAMPLE 9.9

Calculate the functional cohesion measures for the following code fragment.

cin >> a >> b;
int x,y,z;
x=0; y=1; z=1;
if (a > b){

x = a*b;
while (10 > a){

y=y+z;
a=a+5;

}
else {

x=x+b;
}

Fig. 9-7 shows each token from the code. The arcs are drawn from each token

to all tokens that are immediately affected by the value of that token.

CHAPTER 9 Software Design134

a

x = a

a

b

a a=

a

a b

zy

y

y y z=

x

x

x z

x= b

b 0

5

5

1

110= = =

>

>

10

10

Fig. 9-7. Directed graph showing all the dependencies.

See Fig. 9-8.

There are no superglue tokens, so the strong functional cohesion (SFC) is equal

to zero. Out of 31 tokens, there are 12 glue tokens, so the weak functional

cohesion is 12/31 or 0.387.

There are four slices. Zero tokens have 100 percent adhesiveness. Four tokens

are on three slices, so they have 75 percent adhesiveness. Eight tokens are on

two slices, so they have 50 percent adhesiveness. The remaining tokens, 19, are

on only one slice, so they have 25 percent adhesiveness.

Adhesiveness is the average adhesiveness of all tokens, so

ð4 � 0:75þ 8 � 0:50þ 19 �0:25Þ=31 ¼ 11:25=31 ¼ 0:363.

9.5 Measuring Coupling
Coupling is a measure of how closely tied are two or more modules or classes. In
particular, a coupling metric should indicate how likely would it be that a change
to another module would affect this module. Many coupling metrics have been
proposed.
The basic form of a coupling metric is to establish a list of items that cause one

module to be tied to the internal workings of another module.

CHAPTER 9 Software Design 135

a

x

a

axy

a

a

a
x

x

x

a=

x

b

axy

b

y

y

y

y

y
y

y
y

5
a

z
y

zy zyy

z

x

axy
b

axy
0

0 1 1= = =

x
1

zy

10

ay ay

a
ay

x
x

x
x

a
a

z
z

x
x

b
x

a
ay

5=

=

=

ay

10 >

Fig. 9-8. Annotated tokens showing the slices on which the tokens occur.

Dharma’s Module Coupling

Dharma5 proposed a metric with the following list of situations to be counted:

di = Number of input data parameters
ci = Number of input control parameters
do = Number of output data parameters
co = Number of output control parameters
gd = Number of global variables used as data
gc = Number of global variables used as control
w = Number of modules called (fan-out)
r = Number of modules calling this module (fan-in)

Dharma’s module coupling indicator is the inverse of the sum of the preceding
items times a proportionality constant:

mc ¼ k=ðdi þ 2 � ci þ doþ 2 � coþ gd þ 2 � gcþ wþ rÞ
There are two difficulties with this metric. One is that an inverse means that the

greater the number of situations that are counted, the greater the coupling that
this module has with other modules and the smaller will be the value of mc. The
other issue is that the parameters and calling counts offer potential for problems
but do not guarantee that this module is linked to the inner workings of other
modules. The use of global variables almost guarantees that this module is tied to
the other modules that access the same global variables.

9.6 Requirements Traceability
Requirements traceability tries to link each requirement with a design element that
satisfies the requirement. Requirements should influence design. If a requirement
does not have a corresponding part of the design or a part of the design does not
have a corresponding part in the requirements, there is a potential problem. Of
course, some requirements do not have a specific part of the design that reflects the
requirement, and some parts of the design may be so general that no part of the
requirements requires that section.

One approach to check traceability is to draw a matrix. On one axis will be
listed all the requirements items, and on the other will be the list of design items. A
mark will be placed at the intersection when a design item handles a requirement.

EXAMPLE 9.10

Draw a matrix showing the tracing of the requirements in the following description

of the B&B problem and the design.

Requirements:

CHAPTER 9 Software Design136

5 H. Dharma, ‘‘Quantitative Models of Cohesion and Coupling in Software,’’ Journal of Systems and Software,

29:4, April 1995.

Tom and Sue are starting a bed-and-breakfast in a small New England town. [1]

They will have three bedrooms for guests. [2] They want a system to manage the

[2.1] reservations and to monitor [2.2] expenses and profits. When a potential

customer calls for a [3] reservation, they will check the [4] calendar, and if there is

a [5] vacancy, they will enter [6.1] the customer name, [6.2] address, [6.3] phone

number, [6.4] dates, [6.5] agreed upon price, [6.6] credit card number, and [6.7]

room number(s). Reservations must be [7] guaranteed by [7.1] 1 day’s payment.

Reservations will be held without guarantee for an [7.2] agreed upon time. If not

guaranteed by that date, the reservation will be [7.3] dropped.

Design:

Class [A] B&B attributes: [A.1] day* daylist[DAYMAX];
[A.2] reservation* reslist[MAX]; [A.3] transaction*
translist[TRANSMAX]
methods: [A.4] display calendar by week

[A.5] display reservations by customer
[A.6] display calendar by month

Class [B] day attributes: [B.1] date thisdate
[B.2] reservation* rooms[NUMBEROFROOMS]
methods:[B.3] create(), [B.4] addreservation(),
[B.5] deletereservation()

Class [C] reservation attributes: [C.1]string name
[C.2] string address [C.3] string creditcardnumber
[C.4] date arrival [C.5] date guaranteeby
[C.6] int numberofdays [C.7]int roomnumber
methods: [C.8] create() [C.9] guarantee()
[C.10] delete()

Class [D] transaction attributes: [D.1] string name
[D.2] date postingdate [D.3] float amount
[D.4] string comments

CHAPTER 9 Software Design 137

A A.1 A.2 A.3 A.4 A.5 A.6 B B.1 B.2 B.3 B.4 B.5 C C.1 C.2 C.3

1 X

2 X

2.1 X X X X X X

2.2 X

3 X

4 X X X

5

6.1 X

C.4 C.5 C.6 C.7 C.8 C.9 C.10 D D.1 D.2 D.3 D.4

1

2

2.1

2.2 X

3

4

5

6.1

6.2

6.3

6.4 X X

6.5

CHAPTER 9 Software Design138

6.2 X

6.3

6.4

6.5

6.6 X

6.7

7

7.1

7.2

7.3

TE
AM
FL
Y

Team-Fly®

6.6

6.7 X

7 X

7.1

7.2 X

7.3 X

As shown in the tables above, there are a number of blank rows and blank

columns. Requirement 5 is related to vacancies. There is not explicit handling of

vacancies, although a vacancy should be the absence of a reservation on a

particular date. Requirement 6.3 is the customer phone number, and it is missing.

Requirement 6.5 is the agreed upon price, which is missing from the reservation

information. Requirement 7.1 mentions the 1 day’s payment, which is also not in

the attributes.

Column A.1 is the daylist, which is included to help search for vacancies. B and

B.1 are necessary but not specific to a requirement. C.8 is a constructor. D.1

through D.4 are details of the transactions, which are neglected in the

requirements.

Review Questions

1. Given the following design, indicate for the following ideas of coupling, cohesion, and
abstraction whether it is desirable to have a high or low value and how this design
exemplifies the term.

Class college
student* stulist[MAX]
course* courselist[MAX]

public:
addStudent(char* studentname)
addStudentToCourse(char* studentname, char*
coursename)
void displayStudent(char* studentname)
void displayStudentsInCourse(char* coursename)

Class course
student* classroll[MAX]

public:
void displayStudents()

CHAPTER 9 Software Design 139

Class student
char* name

public:
void displayname()

2. Why does Gunter restrict the terms/events that can be used in a specification? What is
the difference between a user’s requirements and a specification?

3. The proposed system is a face recognition based on image processing. The system will
have a camera and is intended to prevent nonemployees from entering the company’s
secret facilities by controlling the lock on the door. When a person tries to turn the
door handle, the system takes an image and compares it with a set of images of current
employees.
Classify each of the following events as to whether the events are in the environment

or in the system and whether the events are hidden or visible:

1. A person tries to turn the door handles.

2. The door is unlocked by the system.

3. An employee lets a nonemployee through the door.

4. An employee has an identical twin.

5. An image has the minimal number of similarities for the matching algorithm.

Problems

1. Draw scenarios for the interaction between a customer trying to buy a particular music
CD with cash and a clerk in the music store. Be sure to cover all possibilities. Use the
state machine model with the events being the arcs.

2. Calculate Bieman and Ott’s functional cohesion metrics for the following code seg-
ment. Draw a directed graph and show the flows.

cin >> a >> b;
int x,y,z;
x=0; y=1; z=1;
while (a > 0){

x = x + b;
z = z * b;
if (a > b){

y=y*a;
}
a=a-1;

}
cout << x << a << z << y;
}

CHAPTER 9 Software Design140

Answers to Review Questions

1. Given the following design, indicate for the following ideas of coupling, cohesion, and
abstraction whether it is desirable to have a high or low value and how this design
exemplifies the term.

Class college
student* stulist[MAX]
course* courselist[MAX]

public:
addStudent(char* studentname)
addStudentToCourse(char* studentname, char*
coursename)
void displayStudent(char* studentname)
void displayStudentsInCourse(char* coursename)

Class course
student* classroll[MAX]

public:
void displayStudents()

Class student
char* name

public:
void displayname()

Coupling—Low coupling is desirable, and this design has low coupling, since the
college class has no knowledge of the internals of the other classes and the other
classes do not need to know about college.

Cohesion—High cohesion is desirable, and this has high cohesion, since each class just
deals with its own attributes.

Abstraction—The design shows good abstraction. For example, the display method in
college does not include any details about lower-level display methods.

2. Why does Gunter restrict the terms/events that can be used in a specification? What is
the difference between a user’s requirements and a specification?

Gunter says that a user’s requirements must be specified in terms/events that are
known to the user and may include terms/events hidden to the machine, while a
specification is designed to be the basis of the implementation and must be specified
only in terms that are visible both to the machine and the world.

3. The proposed system is a face recognition based on image processing. The system will
have a camera and is intended to prevent nonemployees from entering the company’s
secret facilities by controlling the lock on the door. When a person tries to turn the
door handle, the system takes an image and compares it with a set of images of current
employees.
Classify each of the following events as to whether the events are in the environment

or in the system and whether the events are hidden or visible:

CHAPTER 9 Software Design 141

1. A person tries to turn the door handles. Environment Visible

2. The door is unlocked by the system. System Visible

3. An employee lets a nonemployee through the door. Environment Hidden

4. An employee has an identical twin. Environment Hidden

5. An image has the minimal number of similarities for the matching algorithm. System

Hidden

Answers to Problems

1. Draw scenarios for the interaction between a customer trying to buy a particular music
CD with cash and a clerk in the music store. Be sure to cover all possibilities. Use the
state machine model with the events being the arcs.

See Fig. 9-9.

2. Calculate Bieman and Ott’s functional cohesion metrics for the following code seg-
ment. Draw a directed graph and show the flows.

cin >> a >> b;
int x,y,z;
x=0; y=1; z=1;
while (a > 0){

x = x + b;
z = z * b;
if (a > b){
y=y*a;

}
a=a-1;

}
cout << x << a << z << y;
}

CHAPTER 9 Software Design142

Customer
enters store

Customer
leaves store

Clerk
finds
CD

Customer
doesn’t
find CD

Customer
leaves
storeCustomer

asks clerk

Clerk can’t
find CD

Pays cashFinds CD

Fig. 9-9. Directed graph.

See Fig. 9-10.

See Fig. 9-11.

CHAPTER 9 Software Design 143

a

a 0

x

x

x

x

x b

ba

a

a a

y

z

z

z

z z a

b
y

y

0

0 1 1

1

<= <=

<=

y y b<=

<=

<=

<=

>

<= 1

Fig. 9-10. Control flow graph.

<=

>

<= <=

<=

<=

<=

<=

<=

a

axyz

x

x

0

x

x

x

a

z

z

z

a

a

x

x

a

a

y

y

z

z
a

a

1

a

z

z

a

z

b

z

a

axyz

0

axyz

x

x

x

x

b

x 1

ayz

y

y

y

y

y

y

y

y

1

y

z

z

1

z

0

axyz

y

y

z

z

b

xyz

Fig. 9-11. Control flow graph.

There are 33 tokens. Four are superglue. Six (including the superglue tokens) are glue
tokens. The weak functional cohesion (WFC) is 6=33 ¼ 18:2 percent. The strong
functional cohesion (SFC) is 4=33 ¼ 12:1 percent. The adhesiveness is (4 � 1 + 2 � 0:7
5þ 27 � 0:25Þ=33 ¼ 12:25=33 ¼ 37:1 percent.
This program calculates three separate quantities. It is not surprising that it scores

low on the cohesion metrics.

CHAPTER 9 Software Design144

145

Software Testing

10.1 Introduction

Software testing is the execution of the software with actual test data. Sometimes it
is called dynamic software testing to distinguish it from static analysis, which is
sometimes called static testing. Static analysis involves analyzing the source code
to identify problems. Although other techniques are very useful in validating soft-
ware, actual execution of the software with real test data is essential.

10.2 Software Testing Fundamentals
Exhaustive testing is the execution of every possible test case. Rarely can we do
exhaustive testing. Even simple systems have too many possible test cases. For
example, a program with two integer inputs on a machine with a 32-bit word
would have 264 possible test cases (see Review Question 10.1). Thus, testing is
always executing a very small percentage of the possible test cases.
Two basic concerns in software testing are (1) what test cases to use (test case

selection) and (2) how many test cases are necessary (stopping criterion). Test case
selection can be based on either the specifications (functional), the structure of the
code (structural), the flow of data (data flow), or random selection of test cases.
Test case selection can be viewed as an attempt to space the test cases throughout
the input space. Some areas in the domain may be especially error-prone and may
need extra attention. The stopping criterion can be based on a coverage criterion,
such as executing n test cases in each subdomain, or the stopping criterion can be
based on a behavior criteria, such as testing until an error rate is less than a
threshold x.
A program can be thought of as a mapping from a domain space to an answer

space or range. Given an input, which is a point in the domain space, the program
produces an output, which is a point in the range. Similarly, the specification of
the program is a map from a domain space to an answer space.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

A specification is essential to software testing. Correctness in software is defined
as the program mapping being the same as the specification mapping. A good
saying to remember is ‘‘a program without a specification is always correct.’’ A
program without a specification cannot be tested against a specification, and the
program does what it does and does not violate its specification.
A test case should always include the expected output. It is too easy to look at

an output from the computer and think that it is correct. If the expected output is
different from the actual output, then the tester and/or user can decide which is
correct.

10.3 Test Coverage Criterion
A test coverage criterion is a rule about how to select tests and when to stop
testing. One basic issue in testing research is how to compare the effectiveness
of different test coverage criteria. The standard approach is to use the subsumes
relationship.

10.3.1 SUBSUMES
A test criterion A subsumes test coverage criterion B if any test set that satisfies
criterion A also satisfies criterion B. This means that the test coverage criterion A
somehow includes the criterion B. For example, if one test coverage criterion
required every statement to be executed and another criterion required every
statement to be executed and some additional tests, then the second criterion
would subsume the first criterion.
Researchers have identified subsumes relationships among most of the conven-

tional criteria. However, although subsumes is a characteristic that is used for
comparing test criterian, it does not measure the relative effectiveness of two
criteria. This is because most criteria do specify how a set of test cases will be
chosen. Picking the minimal set of test cases to satisfy a criterion is not as effective
as choosing good test cases until the criterion is met. Thus, a good set of test cases
that satisfy a ‘‘weaker’’ criterion may be much better than a poorly chosen set that
satisfy a ‘‘stronger’’ criterion.

10.3.2 FUNCTIONAL TESTING
In functional testing, the specification of the software is used to identify subdo-
mains that should be tested. One of the first steps is to generate a test case for every
distinct type of output of the program. For example, every error message should
be generated. Next, all special cases should have a test case. Tricky situations
should be tested. Common mistakes and misconceptions should be tested. The
result should be a set of test cases that will thoroughly test the program when it is
implemented. This set of test cases may also help clarify to the developer some of
the expected behavior of the proposed software.

CHAPTER 10 Software Testing146

In his classic book,1 Glenford Myers poses the following functional testing
problem: Develop a good set of test cases for a program that accepts three num-
bers, a, b, and c, interprets those numbers as the lengths of the sides of a triangle,
and outputs the type of the triangle. Myers reports that in his experience most
software developers will not respond with a good test set. I have found the same
experience in using this example in software engineering classes. Some classes will
even fail to include valid triangles in the test set.

EXAMPLE 10.1

For this classic triangle problem, we can divide the domain space into three

subdomains, one for each different type of triangle that we will consider: scalene

(no sides equal), isosceles (two sides equal), and equilateral (all sides equal). We

can also identify two error situations: a subdomain with bad inputs and a

subdomain where the sides of those lengths would not form a triangle. Additionally,

since the order of the sides is not specified, all combinations should be tried.

Finally, each test case needs to specify the value of the output.

Subdomain Example Test Case

Scalene:
Increasing size (3,4,5—scalene)
Decreasing size (5,4,3—scalene)
Largest as second (4,5,3—scalene)

Isosceles:
a=b & other side larger (5,5,8—isosceles)
a=c & other side larger (5,8,5—isosceles)
b=c & other side larger (8,5,5—isosceles)
a=b & other side smaller (8,8,5—isosceles)
a=c & other side smaller (8,5,8—isosceles)
b=c & other side smaller (5,8,8—isosceles)

Equilateral:
All sides equal (5,5,5—equilateral)

Not a triangle:
Largest first (6,4,2—not a triangle)
Largest second (4,6,2—not a triangle)
Largest third (1,2,3—not a triangle)

Bad inputs:
One bad input (�1,2,4—bad inputs)
Two bad inputs (3,�2,�5—bad inputs)
Three bad inputs (0,0,0 – bad inputs)

CHAPTER 10 Software Testing 147

1 G. Myers, The Art of Software Testing, New York: John Wiley, 1979.

This list of subdomains could be increased to distinguish other subdomains that

might be considered significant. For example, in scalene subdomains, there are

actually six different orderings, but the placement of the largest might be the most

significant based on possible mistakes in programming.

Note that one test case in each subdomain is usually considered minimal but
acceptable.

10.3.3 TEST MATRICES
A way to formalize this identification of subdomains is to build a matrix using the
conditions that we can identify from the specification and then to systematically
identify all combinations of these conditions as being true or false.

EXAMPLE 10.2

The conditions in the triangle problem might be (1) a ¼ b or a ¼ c or b ¼ c, (2)

a ¼ b and b ¼ c, (3) a < b þ c and b < a þ c and c < a þ b, and (4) a > 0 and

b > 0 and c > 0. These four conditions can be put on the rows of a matrix. The

columns of the matrix will each be a subdomain. For each subdomain, a T will be

placed in each row whose condition is true and an F when the condition is false. All

CHAPTER 10 Software Testing148

Conditions 1 2 3 4 5 6 7 8

a ¼ b or

a ¼ c or

b ¼ c

T T T T T F F F

a ¼ b and

b ¼ c

T T F F F F F F

a ¼< bþ c

or

b ¼< aþ c

or

c ¼< aþ b

T F T T F T T F

a ¼> 0 or

b ¼> 0 or

c ¼> 0

T F T F F T F F

Sample test

case

0,0,0 3,3,3 0,4,0 3,8,3 5,8,5 0,5,6 3,4,8 3,4,5

Expected

output

Bad inputs Equilateral Bad inputs Not

triangle

Isosceles Bad inputs Not

triangle

Scalene

TE
AM
FL
Y

Team-Fly®

valid combinations of T and F will be used. If there are three conditions, there may

be 23 ¼ 8 subdomains (columns). Additional rows will be used for values of a, b,

and c and for the expected output for each subdomain.

10.3.4 STRUCTURAL TESTING
Structural testing is based on the structure of the source code. The simplest struc-
tural testing criterion is every statement coverage, often called C0 coverage.2

10.3.4.1 C0—Every Statement Coverage

This criterion is that every statement of the source code should be executed by
some test case. The normal approach to achieving C0 coverage is to select test
cases until a coverage tool indicates that all statements in the code have been
executed.

EXAMPLE 10.3

The following pseudocode implements the triangle problem. The matrix shows

which lines are executed by which test cases. Note that the first three statements

(A, B, and C) can be considered parts of the same node.

Node Source Line 3,4,5 3,5,3 0,1,0 4,4,4

A read a,b,c * * * *

B type=‘‘scalene’’ * * * *

C if(a==b||b==c||a==c) * * * *

D type=‘‘isosceles’’ * * *

E if(a==b&&b==c) * * * *

F type=‘‘equilateral’’ *

G if(a>=b+c||b>=a+c||c>=a+b) * * * *

H type=‘‘not a triangle’’ *

I if(a<=0||b<=0||c<=0) * * * *

J type=‘‘bad inputs’’ *

K print type * * * *

CHAPTER 10 Software Testing 149

2 E. F. Miller developed the C0 and C1 naming system. His work contains many other criteria.

By the fourth test case, every statement has been executed. This set of test cases

is not the smallest set that would cover every statement. However, finding the

smallest test set would often not find a good test set.

10.3.4.2 C1—Every-Branch Testing

A more thorough test criterion is every-branch testing, which is often called C1 test
coverage. In this criterion, the goal is to go both ways out of every decision.

EXAMPLE 10.4

If we model the program of Example 10.3 as a control flow graph (see Chapter 2),

this coverage criterion requires covering every arc in the control flow diagram. See

Fig. 10-1.

Arcs 3,4,5 3,5,3 0,1,0 4,4,4

ABC–D * * *

ABC–E *

D–E * * *

E–F *

E–G * * *

F–G *

G–H *

G–I * * *

H–I *

I–J *

I–K * * *

J–K *

10.3.4.3 Every-Path Testing

Even more thorough is the every-path testing criterion. A path is a unique sequence
of program nodes that are executed by a test case. In the testing matrix (Example
10.2) above, there were eight subdomains. Each of these just happens to be a path.
In that example, there are sixteen different combinations of T and F. However,
eight of those combinations are infeasible paths. That is, there is no test case that

CHAPTER 10 Software Testing150

A,B,C

E

G

D

F

H

J

I

K

Fig. 10-1. Control flow graph for

Example 10.3.

could have that combination of T and F for the decisions in the program. It can be
exceedingly hard to determine if a path is infeasible or if it is just hard to find a test
case that executes that path.
Most programs with loops will have an infinite number of paths. In general,

every-path testing is not reasonable.

EXAMPLE 10.5

The following table shows the eight feasible paths in the triangle pseudocode from

Example 10.3.

Path T/F Test Case Output

ABCEGIK FFFF 3,4,5 Scalene

ABCEGHIK FFTF 3,4,8 Not a triangle

ABCEGHIJK FFTT 0,5,6 Bad inputs

ABCDEGIK TFFF 5,8,5 Isosceles

ABCDEGHIK TFTF 3,8,3 Not a triangle

ABCDEGHIJK TFTT 0,4,0 Bad inputs

ABCDEFGIK TTFF 3,3,3 Equilateral

ABCDEFGHIJK TTTT 0,0,0 Bad inputs

10.3.4.4 Multiple-Condition Coverage

A multiple-condition testing criterion requires that each primitive relation condi-
tion is evaluated both true and false. Additionally, all combinations of T/F for the
primitive relations in a condition must be tried. Note that lazy evaluation3 of
expressions will eliminate some combinations. For example, in an ‘‘and’’ of two
primitive relations, the second will not be evaluated if the first one is false.

EXAMPLE 10.6

In the pseudocode in Example 10.3, there are multiple conditions in each decision

statement. Primitives that are not executed because of lazy evaluation are shown

with an ‘‘X’’.

CHAPTER 10 Software Testing 151

3 A compiler does lazy evaluation when it does not generate code for tests that are not needed. For example, if

the first condition of an ‘‘or’’ expression is true, the second condition does not need to be tested.

if(a==b||b==c||a==c)

Combination Possible Test Case Branch

TXX 3,3,4 ABC-D

FTX 4,3,3 ABC-D

FFT 3,4,3 ABC-D

FFF 3,4,5 ABC-E

if(a==b&&b==c)

Combination Possible Test Case Branch

TT 3,3,3 E-F

TF 3,3,4 E-G

FX 4,3,3 E-G

if(a>=b+c||b>=a+c||c>=a+b)

Combination Possible Test Case Branch

TXX 8,4,3 G-H

FTX 4,8,3 G-H

FFT 4,3,8 G-H

FFF 3,3,3 G-I

if(a<=0||b<=0||c<=0)

Combination Possible Test Case Branch

TXX 0,4,5 I-J

FTX 4,�2,�2 I-J

FFT 5,4,�3 I-J

FFF 3,3,3 I-K

CHAPTER 10 Software Testing152

10.3.4.5 Subdomain Testing

Subdomain testing is the idea of partitioning the input domain into mutually
exclusive subdomains and requiring an equal number of test cases from each
subdomain. This was basically the idea behind the test matrix. Subdomain
testing is more general in that it does not restrict how the subdomains are
selected. Generally, if there is a good reason for picking the subdomains, then
they may be useful for testing. Additionally, the subdomains from other
approaches might be subdivided into smaller subdomains. Theoretical work
has shown that subdividing subdomains is only effective if it tends to isolate
potential errors into individual subdomains.
Every-statement coverage and every-branch coverage are not subdomain

tests. There are not mutually exclusive subdomains related to the execution
of different statements or branches. Every-path coverage is a subdomain
coverage, since the subdomain of test cases that execute a particular path
through a program is mutually exclusive with the subdomain for any other
path.

EXAMPLE 10.7

For the triangle problem, we might start with a subdomain for each output. These

might be further subdivided into new subdomains based on whether the largest or

the bad element is in the first position, second position, or third position (when

appropriate).

CHAPTER 10 Software Testing 153

Subdomain Possible Test Case

Equilateral 3,3,3

Isos – first 8,5,5

Isos – sec 5,8,5

Isos – third 5,5,8

Scalene – first 5,4,3

Scalene – sec 4,5,3

Scalene – third 3,4,5

Subdomain Possible Test Case

Not triangle – first 8,3,3

Not triangle – sec 3,8,4

Not triangle – third 4,3,8

Bad input – first 0,3,4

Bad input – sec 3,0,4

Bad input – third 3,4,0

10.3.4.6 C1 Subsumes C0

EXAMPLE 10.8—C1 Subsumes C0

For the triangle problem, in Example 10.3 we selected good test cases until we

achieved the C0 coverage. The test cases were (3,4,5—scalene), (3,5,3—

isosceles), (0,1,0—bad inputs), and (4,4,4—equilateral). These tests also covered

four out the five possible outputs. However, we can achieve C1 coverage with two

test cases: (3,4,5—scalene) and (0,0,0—bad inputs). This test is probably not as

good as the first test set. However, it achieves C1 coverage and it also achieves

C0 coverage.

10.4 Data Flow Testing
Data flow testing is testing based on the flow of data through a program.
Data flows from where it is defined to where it is used. A definition of data,
or def, is when a value is assigned to a variable. Two different kinds of use
have been identified. The computation use, or c-use, is when the variable
appears on the right-hand side of an assignment statement. A c-use is said
to occur on the assignment statement. The predicate use, or p-use, is when
the variable is used in the condition of a decision statement. A p-use is
assigned to both branches out of the decision statement. A definition free
path, or def-free, is a path from a definition of a variable to a use of that
variable that does not include another definition of the variable.

EXAMPLE 10.9—Control Flow Graph of Triangle Problem (Example 10.3)

The control flow graph in Fig. 10-2 is annotated with the definitions and uses of the

variables a,b, and c.

CHAPTER 10 Software Testing154

abc

p-use a,b,c

p-use a,b,c

p-use a,b,c

p-use a,b,c

p-use a,b,c
e

d

f

h

j

def type

def a,b,c type

c-use type

def type

def type

def type

g

i

k

p-use a,b,c

p-use a,b,c

p-use a,b,c

Fig 10-2. Control flow graph of triangle problem.

There are many data flow testing criteria. The basic criteria include dcu, which
requires a def-free path from every definition to a c-use; dpu, which requires a
def-free path from every definition to a p-use; and du, which requires a def-free
path from every definition to every possible use. The most extensive criteria is
all-du-paths, which requires all def-free paths from every definition to every
possible use.

EXAMPLE 10.10—Data Flow Testing of Triangle Problem

dcu—The only c-use is for variable type in node k (the output statement).

From def type in node abc to node k Path abc,e,g,i,k

From def type in node d to node k Path d,e,g,i,k

From def type in node f to node k Path f,g,i,k

From def type in node h to node k Path h,i,k

From def type in node j to node k Path j,k

dpu—The only p-use is for variables a,b,c and the only def of a,b,c is node abc.

From node abc to arc abc-d

From node abc to arc abc-e

From node abc to arc e-f

From node abc to arc e-g

From node abc to arc g-h

From node abc to arc g-i

From node abc to arc i-j

From node abc to arc i-k

du—All defs to all uses.

All test cases of dcu and dpu combined.

all-du-paths—All def-free paths from all defs to all uses.

Same as du tests.

10.5 Random Testing
Random testing is accomplished by randomly selecting the test cases. This
approach has the advantage of being fast and it also eliminates biases of the
testers. Additionally, statistical inference is easier when the tests are selected ran-
domly. Often the tests are selected randomly from an operational profile.

EXAMPLE 10.11

For the triangle problem, we could use a random number generator and group

each successive set of three numbers as a test set. We would have the additional

work of determining the expected output. One problem with this is that the chance

of ever generating an equilateral test case would be very small. If it actually

happened, we would probably start questioning our pseudorandom number

generator.

CHAPTER 10 Software Testing 155

10.5.1 OPERATIONAL PROFILE
Testing in the development environment is often very different than execution in
the operational environment. One way to make these two more similar is to have a
specification of the types and the probabilities that those types will be encountered
in the normal operations. This specification is called an operational profile. By
drawing the test cases from the operational profile, the tester will have more
confidence that the behavior of the program during testing is more predictive of
how it will behave during operation.

EXAMPLE 10.12

A possible operational profile for the triangle problem is as follows:

Description Probability

1 equilateral .20

2 isosceles – obtuse .10

3 isosceles – right .20

4 scalene – right triangle .10

5 scalene – all acute .25

6 scalene – obtuse angle .15

To apply random testing, the tester might generate a number to select the

category by probabilities and then sufficient additional numbers to create the test

case. If the category selected was the equilateral case, the tester would use the

same number for all three inputs. An isosceles–right would require a random

number for the length of the two sides, and then the use of trigonometry to

calculate the other side.

10.5.2 STATISTICAL INFERENCE FROM TESTING
If random testing has been done by randomly selecting test cases from an opera-
tional profile, then the behavior of the software during testing should be the same
as its behavior in the operational environment.

CHAPTER 10 Software Testing156

EXAMPLE 10.13

If we selected 1000 test cases randomly using an operational profile and found

three errors, we could predict that this software would have an error rate of less

than three failures per 1000 executions in the operational environment. See

Section 3.8 for more information on using error rates.

10.6 Boundary Testing
Often errors happen at boundaries between domains. In source code, decision
statements determine the boundaries. If a decision statement is written as x<1
instead of x<0, the boundary has shifted. If a decision is written x=<1, then the
boundary, x=1, is in the true subdomain. In the terminology of boundary testing,
we say that the on tests are in the true domain and the off tests are values of x
greater than 1 and are in the false domain.
If a decision is written x<1 instead of x=<1, then the boundary, x=1, is now

in the false subdomain instead of in the true subdomain.
Boundary testing is aimed at ensuring that the actual boundary between two

subdomains is as close as possible to the specified boundary. Thus, test cases are
selected on the boundary and off the boundary as close as reasonable to the
boundary. The standard boundary test is to do two on tests as far apart as possible
and one off test close to the middle of the boundary.
Figure 10-3 shows a simple boundary. The arrow indicates that the on tests of

the boundary are in the subdomain below the boundary. The two on tests are at
the ends of the boundary and the off test is just above the boundary halfway along
the boundary.

EXAMPLE 10.14

In the triangle example, the primitive conditions, a ¼> b þ c or b ¼> a þ c or

c ¼> a þ b, determine a boundary. Since these are in three variables, the

boundary is actually a plane in 3D space. The on tests would be two (or more)

widely separated tests that have equality—for example, (8,1,7) and (8,7,1). These

are both true. The off test would be in the other domain (false) and would be near

the middle—for example, (7.9, 4,4).

Note: For a discussion of object-oriented (OO) testing, see Chapter 13.

CHAPTER 10 Software Testing 157

Fig. 10-3. Boundary conditions.

Review Questions

1. What are the basic concerns with software testing?

2. Why is a specification needed in order to do testing?

3. Why is path testing usually impractical?

4. Does path testing subsume statement coverage?

5. Software testers have sometimes said ‘‘errors happen in corners.’’ What could this
mean?

6. Every-statement coverage is not a subdomain testing criterion. What is the significance
of this?

7. How would the operational profile be different for a point-of-sale terminal in a dis-
count store from a point-of-sale terminal in a ritzy store?

8. A software developer may unconsciously not test his or her software thoroughly. Why
would a testing coverage criterion help?

Problems

1. If a program has two integer inputs and each can be 32-bit integer, how many possible
inputs does this program have?

2. If a program has 264 possible inputs and one test can be run every millisecond, how
long would it take to execute all of the possible inputs?

3. A payroll program will calculate the weekly gross pay given an input of the number of
hours worked and current wages. A worker may not work more than 80 hours per
week, and the maximum wage is $50.00 per hour. Construct functional tests.

4. A program calculates the area of a triangle. The inputs are three sets of x,y coordi-
nates. Construct functional tests.

5. A program accepts two times (in 12-hour format) and outputs the elapsed number of
minutes. Construct functional tests.

6. A binary search routine searches a list of names in alphabetical order and returns true
if the name is in the list and returns false otherwise. Construct functional tests.

7. For the payroll program in Problem 10.3, identify the conditions and construct the test
matrix.

8. For the area of the triangle calculation of Problem 10.4, identify the conditions and
construct the test matrix.

9. For the elapsed time calculator of Problem 10.5, identify the conditions and construct
the test matrix.

CHAPTER 10 Software Testing158

TE
AM
FL
Y

Team-Fly®

10. For the binary search routine of Problem 10.6, identify the conditions and construct
the test matrix.

11. Find the minimal set of test cases that would achieve C0 and C1 coverage of the
triangle problem pseudocode from Example 10.3.

12. The following pseudocode implements the elapsed time problem of Problem 10.5 if the
elapsed time is less than 24 hours. Select test cases until every-statement coverage is
achieved. Select additional test cases to achieve every-branch coverage.

read hr1 min1 AmOrPm1
read hr2 min2 AmOrPm2
if (hr1 == 12)

hr1 = 0
if (hr2 == 12)

hr2 = 0
if (AmOrPm1 == pm)

hr1 = hr1 + 12
if (AmOrPm2 == pm)

hr2 = hr2 + 12
if (min2 < min1)

min2 = min2 + 1
hr2 = hr2 – 1

if(hr2 < hr1)
hr2 = hr2 + 24

elapsed = min2 – min1 + 60* (hr2 – hr1)
print elapsed

13. For the pseudocode of Problem 10.12, find a minimal set of test cases that will achieve
C0 and a minimal set of test cases that will achieve C1.

14. For the following code, identify all feasible paths, path tests, and data flow tests:

cin >> a >> b >> c; // node A
x = 5; y = 7;
if (a > b && b > c) {

a = a + 1; // node B
x = x + 6;
if (a = 10 || b > 20) {

b = b + 1; // node C
x = y + 4;
}

if (a < 10 || c = 20) { // node D
b = b + 2; // node E
y = 4
}

a = a + b + 1; // node F
y = x + y;
}

if (a > 5 || c < 10) { // node G
b = c + 5; // node H
x = x + 1;
}

cout >> x >> y; // node I

CHAPTER 10 Software Testing 159

15. Given the following code, draw the CFG and generate a minimal set of test cases for
each of the following criteria: C0, C1, dpu, and dcu.

cin>> a >> b // node A

if (b>a) {

x = b; // node B

if (b>20) {

x = x + 9; // node C

}

else {

x = x + 1; // node D

}

x = x + 1; // node E

}

else {

x = a // node F

if (a > 20_ {

x = x + 15; // node G

}

x = x – 5; // node H

}

if (b > a + 20) // node I

{

x = 20; // node J

}

cout << x; // node K

Answers to Review Questions

1. What are the basic concerns with software testing?

The basic concerns are how to select test cases and when to stop testing.

2. Why is a specification needed in order to do testing?

A specification is needed to decide when the actual behavior is correct or incorrect.

3. Why is path testing usually impractical?

Most programs have an infinite number of possible paths through the program.

CHAPTER 10 Software Testing160

4. Does path testing subsume statement coverage?

Yes, every statement is on some path. So covering every path will cover every state-
ment.

5. Software testers have sometimes said ‘‘errors happen in corners.’’ What could this
mean?

Errors tend to be more prevalent on boundaries. That is, faults in the source code often
affect some decision and thus produce an error on the boundary.

6. Every statement coverage is not a subdomain testing criterion. What is the significance
of this?

When using a subdomain testing criterion, it is easy to improve the coverage by
picking multiple test cases from every subdomain. This is also easy to analyze. This
is not the case with every-statement coverage.

7. How would the operational profile be different for a point-of-sale terminal in a dis-
count store from a point-of-sale terminal in an expensive store?

In the discount store, there will be more items marked with prices less than $10. In an
expensive store, there will be more large prices. The prices may also be rounded up to
the next amount.

8. A software developer may unconsciously not test his or her software thoroughly. Why
would testing a coverage criterion help?

A testing coverage criterion helps to force the tester to test many different parts of the
software.

Answers to Problems

1. If a program has two integer inputs and each can be 32-bit integer, how many possible
inputs does this program have?

Each 32-bit integer has 232 possible values. Thus, a program with two integer inputs
would have 264 possible inputs.

2. If a program has 264 possible inputs and one test can be run every millisecond, how
long would it take to execute all of the possible inputs?

That would be 106 tests per second, or 8.64 � 1010 tests per day. That is equivalent to
3.139 � 1013 tests per year. Since 210 ¼ 1024 is about equal to 1000 ¼ 103, 264 ¼ ð210Þ6:4
and is about equal to ð103Þ6:4 ¼ 1019:2. Dividing 1019:2 by 1013 give a value more than
105. Thus it would take at least 105 years to do all those tests.

CHAPTER 10 Software Testing 161

3. A payroll program will calculate the weekly gross pay given an input of the
number of hours worked and current wages. A worker may not work more than
80 hours per week, and the maximum wage is $50.00 per hour. Construct functional
tests.

Functional tests should include tests of normal pay and overtime and tests of the error
conditions.

Hours Wages Expected Output

30 40.00 1200.00

60 50.00 3500.00 (assume overtime)

81 50.00 Invalid hours

20 60.00 Invalid wages

4. A program calculates the area of a triangle. The inputs are three sets of x,y coordi-
nates. Construct functional tests.

The functional tests should include correct triangles, non-triangles, error conditions,
and the obvious orientation of the triangles.

Point 1 Point 2 Point 3 Expected Area

1,1 1,5 5,1 8

1,1 1,5 1,10 Not a triangle

10,10 0,10 10,0 50

0,0 0,10 10,10 50

0,0 0,0 0,0 0

5. A program accepts two times (in 12-hour format) and outputs the elapsed number of
minutes. Construct functional tests.

The functional tests should include tests of less than 1 hour, more than 1 hour, one
more than 12 hours, one that requires a carry of hours, and one with the times
reversed.

CHAPTER 10 Software Testing162

Start Time Stop Time Expected Elapsed Time

10:00 a.m. 10:40 a.m. 0:40

9:57 p.m. 11:40 p.m. 1:43

3:00 a.m. 9:15 p.m. 18:15

1:50 a.m. 3:40 a.m. 1:50

3:00 a.m. 7:24 a.m. 4:24

5:00 p.m. 4:00 a.m. Error

6. A binary search routine searches a list of names in alphabetical order and returns true
if the name is in the list and returns false otherwise. Construct functional tests.

The functional tests should include tests of the following:

The first name in the list
The last name in the list
A name before the first name
A name after the last name
A name in the middle
A name not in the list right after the first name
A name not in the list right before the last name

7. For the payroll program in Problem 10.3, identify the conditions and construct the test
matrix.

Condition

0<hours<=40 T F F F T F

40<hours<=80 F T F T F F

0<wages<=50 T T T F F F

Hours 30 50 90 50 30 �5

Wages 50 30 30 60 70 �5

Expected output 1500 1650 Error Error Error Error

CHAPTER 10 Software Testing 163

8. For the area of the triangle calculation of Problem 10.4, identify the conditions and
construct the test matrix.

Conditions

Collinear pts F T

Point 1 10,0 0,0

Point 2 10,10 0,5

Point 2 0,10 0,10

Expected area 50 Error

9. For the elapsed time calculator of Problem 10.5, identify the conditions and construct
the test matrix.

There are no conditions specified on the time. The only conditions could be that the
times are valid times.

10. For the binary search routine of Problem 10.6, identify the conditions and construct
the test matrix.

There are no conditions specified on the search.

11. Find the minimal set of test cases that would achieve C0 and C1 coverage of the
triangle problem pseudocode from Example 10.3.

C0 can be achieved with one test case of three equal values less than or equal to zero,
e.g., 0,0,0.
C1 can be achieved with two test cases: 0,0,0 and a scalene, e.g., 3,4,5.

12. The following pseudocode implements the elapsed time problem of Problem 10.5 if the
elapsed time is less than 24 hours. Select test cases until every-statement coverage is
achieved. Select additional test cases to achieve every-branch coverage

read hr1 min1 AmOrPm1

read hr2 min2 AmOrPm2

if (hr1 == 12)

hr1 = 0

if (hr2 == 12)

hr2 = 0

if (AmOrPm1 == pm)

hr1 = hr1 + 12

if (AmOrPm2 == pm)

hr2 = hr2 + 12

CHAPTER 10 Software Testing164

if (min2 < min1)

min2 = min2 + 1

hr2 = hr2 – 1

if(hr2 < hr1)

hr2 = hr2 + 24

elapsed = min2 – min1 + 60* (hr2 – hr1)

print elapsed

C0—Start Time Stop Time Expected Elapsed Time

12:00 p.m. 12:40 p.m. 0:40

9:57 p.m. 11:40 p.m. 1:43

5:00 p.m. 4:00 a.m. 12:00

C1—Start Time Stop Time Expected Elapsed Time

Tests above plus the following:

8:00 a.m. 12:40 p.m. 4:40

13. For the pseudocode of Problem 10.12, find a minimal set of test cases that will achieve
C0 and a minimal set of test cases that will achieve C1.

The minimal test set for C0 will need at least two test cases. Hour 1 has to be 12 on one
test, hour 2 has to be 12 on one test, hour 1 has to be p.m. on one test, hour 2 has to be
p.m. on one test, minute 2 has to be less than minute 1 on one test and hour 2 has to be
less than hour 1 on one test. This can be done on two test cases.

Min C0—Start Time Stop Time Expected Elapsed Time

12:00 p.m. 10:40 a.m. 22:40

9:57 a.m. 12:40 p.m. 2:43

This also achieves C1 coverage because each of those conditions is also false on one of
these tests.

CHAPTER 10 Software Testing 165

14. The following are the feasible paths, path tests, and data flow tests.

Paths Truth a,b,c

AGI FxxF 4,8,12

AGHI FxxT 4,8,8

ABDFGI TFFF Infeasible

ABDFGHI TFFT 12,8,6

ABCDGI TTFF Infeasible

ABCDGHI TTFT 24,22,8

ABCDEFGI TTTF Infeasible

ABCDEFGHI TTTT 24,22,20

ABDEFGI TFTF Infeasible

ABDEFGHI TFTT 6,4,2

Node def c-use p-use

A a,b,c,x,y

ab,ag a,b,c

B a,x a,x

bc,bd a,b

C b,x b,y

D

de,df a,c

E b,y b

F a,y a,b,x,y

CHAPTER 10 Software Testing166

G

gh,gi a,c

H b,x c,x

I x,y

See Fig. 10-4.

15. The following are the paths, CFG, and minimal test cases for each of the following
criteria: C0, C1, dpu, and dcu.

Paths (feasible are numbered)

1. abceik TTF
2. abceijk TTT
3. abdeik TFF
4 .abdeijk TTT
5. afhik FTF
afhijk infeasible
6. afghik FFF
afghijk infeasible

CHAPTER 10 Software Testing 167

A

DF C

B

E

G

def a,b,c

p-use a,b,c

p-use a,b,c
c-use a def a

c-use b def ac-use d
def b

c-use c
def b

c-use a,b def a

c-use a,c

p-use a,bp-use a,b

Fig. 10-4

Minimal tests:

C0: inputs output
2. abceijk 10,30 20
3. abdeik 10,20 22
6. afghik 20,15 30
(must include 6, but could be 1 and 4)

C1: inputs output
C0 tests plus
6. afghik 20,15 30
(must include 6, but could be paths 1 and 4)

dpu: The only p-uses are for variable a and b. The only defs for a and b are in node
A. The minimal test set is equivalent to C1. It must include partial paths AB,
AF, BC, BD, FH, FG, IJ, and IK. This can be done with paths 1,4,5,6 or
paths 2,3,5,6

dcu: The defs of variable x are in nodes B,C,D,E,F,G,H, and J. The c-use for
variable x are in nodes C,D,E,G,H, and K. The defs of variables a and b
are in node A and the c-use of variable b is in node B and the c-use of variable
a is in node F. The minimal test set must include partial paths BC or BD, CE,
DE, FG or F..K, GH, H..J or H..K, JK, AB, and AF. This can be done with
any C1 test set.

See Fig. 10-5.

CHAPTER 10 Software Testing168

A

B

C D

E

I

K

J

H

F

G

Fig. 10-5

TE
AM
FL
Y

Team-Fly®

169

Object-Oriented
Development

11.1 Introduction
Object-oriented software is different than conventional software. There are poten-
tially many benefits to object-oriented development. Among these benefits are
simplification of requirements, design, and implementation. These benefits are
achieved by modeling the problem domain with objects that represent the impor-
tant entities, by encapsulating the functions with the data, by reusing objects
within a project and between projects, and by having a solution that is much
closer intellectually1 to the problem.
The Unified Modeling Language (UML) is the standard notation for object-

oriented models. The specification of the UML is available on the Web.2

11.1.1 INHERITANCE
One of the innovative ideas in object-oriented software is inheritance. Inheritance
comes from the recognition of the hierarchy of ideas and concepts, and how this
hierarchy/classification involves much inherent reuse of ideas and so on from the
higher-level concepts to the lower-level specialization of those concepts.
When two groups of entities are related by one being a specialization of the

other, there is the potential for an inheritance relationship. In an inheritance

1 Intellectual distance is a term used to describe how close two ideas are to each other—in this case, how close the

structure of the real-world problem is to the structure of the solution.

2 www.omg.org, or search with the keyword ‘‘UML.’’

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

relationship, the base class (the more general class) will contain all common attri-
butes. The derived class (the more specialized class) will inherit all the common
attributes from the base class.
For example, if one group of entities consists of vehicles and the other group of

cars, we can use inheritance. The cars can inherit from the vehicles. The cars can
share many of the attributes and operations of the vehicle class. All the common
attributes can be located in the base class. The derived class will automatically
inherit those attributes. This sharing saves effort.

EXAMPLE 11.1

Draw an object model that identifies all the commonalities between cars and

vehicles.

Fig. 11-1 shows that cars and vehicles both have bodies, engines, wheels

(maybe not four), headlights, brand names, manufacturer, and cost. (There are

probably many more.)

EXAMPLE 11.2

Draw an object model that identifies the commonalities in a library system that

handles books, magazines, pamphlets, movie videotapes, music CDs, audio book

tapes, and newspapers.

Figure 11-2 shows that all of these items have titles, publishers, acquisition

dates, catalog numbers, shelf location, loan status, and checkout limits.

Some example attributes have been added to some of the derived classes.

Note that audiobook could be derived from book, and newspaper and

magazine could both be derived from an object called serial or

periodical.

CHAPTER 11 Object-Oriented Development170

vehicles

name
manufacturer
cost
body
engine
wheels
headlights

cars

Fig. 11-1

11.1.2 POLYMORPHISM
Polymorphism means ‘‘able to assume many forms.’’ It refers to functions that can
deal with different versions or forms of the object or parameter list. In object-
oriented software, it often means a function that can deal with the base type or a
derived type. In the car/vehicle example, the base class will have polymorphic
functions for tasks that all vehicles perform but may perform differently, such
as turn corners. Each derived class will either use the base class function or provide
a version that is suitable for the derived class.

EXAMPLE 11.3

Find the functions in the library problem (Example 11.2) that can be common for all

of the items and the functions that will have to be specialized for the derived class.

Common—Checkout and check in functions (except maybe for checkout limitations).

Specialized—Cataloging functions will differ.

11.2 Identifying Objects
One approach to identifying the requirements of a proposed system is to start with
identifying the objects in the problem domain. These objects are usually nouns in
the problem statement.

11.2.1 THE NOUN-IN-TEXT APPROACH
In the noun-in-text approach, all the nouns in the text are identified. Different
nouns may be used for the same concept. These equivalent nouns and nouns
associated with each concept should be sorted into groups. Some nouns will be
related to the environment outside of the proposed system and may be removed.

CHAPTER 11 Object-Oriented Development 171

library item

title
publisher
acquisition date
catalog number
shelf location
loan status
checkout limits

book

author

cd

artist

audiobook

author

magazine pamphlet video

date

newspaper

date

Fig. 11-2

In each group, nouns representing the objects should be selected. Other nouns in
the group may become attributes or may be discarded.

EXAMPLE 11.4

Use the noun-in-text-description method to identify the objects from the following

grocery store problem:

A grocery store wants to automate its inventory. It has point-of-

sale terminals that can record all of the items and quantities that

a customer purchases. It has a similar terminal for the customer

service desk to handle returns. It has another terminal in the

loading dock to handle arriving shipments from suppliers. The

meat department and the produce departments have terminals to

enter losses/discounts due to spoilage.

Nouns:

grocery store, inventory, point-of-sale terminals, items, quantities, customer,

purchases, service desk, returns, loading dock, shipments, suppliers, meat

department, produce department, losses, discounts

Groups:

grocery store

inventory, items, quantities, returns, losses, discounts

shipments

suppliers

meat department, produce department

customers

Environment entities that are external to system:

point-of-sale terminals, service desk, loading dock, meat department, produce

department

However, meat items and produce items should be included to reflect the

different processing.

There is a choice of whether customers are external to the system or the system

knows and tracks customers. The decision is made to track customers.

Final list of objects and attributes:

grocery store

inventory

items with an attribute of quantity

customer

purchases

returns

shipments

suppliers

losses

discounts

meat items

produce items

See Fig. 11-3.

CHAPTER 11 Object-Oriented Development172

EXAMPLE 11.5

Use the noun-in-text-description method to identify the objects from the following

family tree problem:

Fred is studying genealogy and wants to build a program to store

the information that he finds out about his family. He comes from

a large family and has lots of uncles, aunts, and cousins.

It is not easy to apply the noun-in-text method to this example. The first sentence

is motivation and only the noun ‘‘family’’ is relevant. The second sentence repeats

the noun ‘‘family’’ and then lists nouns that are relationships between people. Unlike

the previous example, these relations are not derived classes. An uncle is not a

specialization of person; it is a relationship between persons.

Familiarity with the problem domain will be necessary to identify the objects. The

good set of objects for this problem is family tree, person, and family. See Fig. 11-4.

11.2.2 IDENTIFYING INHERITANCE
Inheritance is the ‘‘a-kind-of’’ relationship. The base class is the common object
and the derived classes are the specialized instances of the common object. A top-
down approach is to identify objects that sometimes take special processing or

CHAPTER 11 Object-Oriented Development 173

grocery
store

inventory

suppliers

shipment
item losses discount

produce meat

return purchase

customer

quantity

name
address

Fig. 11-3

family person

family tree

Fig. 11-4

sometimes have special attributes. This is usually an effective approach to finding
inheritance.
The opposite approach is also sometimes useful. It is a bottom-up approach,

which is to group all similar items and look for the commonality. The intersection
of all the similar items will become the base class.

EXAMPLE 11.6

Identify the possible inheritance in the grocery store (Example 11.4).

A top-down approach would help to realize that the meat department and the

produce department have special processing of the items. This would lead to a

base class of items and derived classes of meat and produce. An expert in the

domain of grocery stores could help to identify all the other derived classes that

can occur in a grocery store.

Additionally, a bottom-up approach would find the commonality among the

objects losses, discount, return, and purchase. This suggests that those

objects can be derived from an object transaction. See Fig. 11-5.

11.2.3 IDENTIFYING REUSE
Reuse is one of the promises of object-oriented software. However, reuse rarely
happens by itself. The first step in identifying reuse is a task called domain ana-
lysis. Domain analysis is the process of reviewing the problem domain to determin-
ing what objects and functions are common to all activities. Without good domain
knowledge, it will be hard to identify what commonalities exist between all similar
systems in that domain. For reuse to be effective, the parts that will be useful in
multiple solutions in that domain must be identified. This means understanding
the potential commonalities.
Approaches to reuse can be top-down or bottom-up. Bottom-up approaches

look for low- or middle-level classes that will be common in most solutions in that

CHAPTER 11 Object-Oriented Development174

grocery
store

transactioninventory

suppliers

shipment

produce meat

losses discount return purchase

item

quantity

customer

name
address

Fig. 11-5

domain. Top-down approaches see the commonality in the framework of the
solution and the differences in the low-level objects.
Unless reuse is a goal and identifying potential reuse and designing classes to be

reusable is a top priority, reuse will be elusive.

EXAMPLE 11.7

Identify reuse in the grocery store domain (Examples 11.4 and 11.6).

In the domain of grocery stores, it would seem that the commonality was in the

low-level objects. Most grocery stores handle the same sort of items. Some

middle-level activities would have a lot of commonality, for example, inventory

systems, stocking, and tracking sales.

11.2.4 USE CASE APPROACH
Another approach to identifying the requirements of a proposed system is to start
with identifying the scenarios. This approach views the activities as the best way to
determine the necessary functionality and the objects needed to support that
functionality.

EXAMPLE 11.8

Write scenarios for the grocery store problem (Example 11.7). Develop a list of

objects from the scenarios.

Most of the scenarios will be based on general domain knowledge and are not

derivable just from the short problem statement.

Scenario 1: The inventory is running low; the supplier is sent an order; the order

arrives at the shipping dock; the items and quantities are entered into the

inventory.

Scenario 2: The customer buys groceries and checks out; the customer database

is updated (the decision again is made to have the system track customers).

Scenario 3: A new customer enters the store and is asked to fill out a new

customer information form and receives the membership card.

Scenario 4: The produce clerk inspects the produce and throws away the old

lettuce; the inventory is updated.

From these scenarios, we can easily identify the following objects:

inventory, supplier, order, shipment, items, customer, membership
card, produce item

The inheritance relation between grocery item (base class) and produce item

(derived class) is clear.

11.3 Identifying Associations
After the objects in a domain are identified, the next step is to identify the associa-
tions between the objects. An association denotes a relationship between two
objects. The different kinds of associations were described in Section 2.4. An
association between objects means that in the implementation of the system,

CHAPTER 11 Object-Oriented Development 175

there will be a link between the objects. Thus, the importance of the associations is
that the associations determine what access an object has to other objects. This
access is essential to efficient implementation of functionality.
There are different approaches for determining the associations between

objects. One approach is to identify the associations that exist in the problem
domain.

EXAMPLE 11.9

Develop associations for the family tree problem of Example 11.5.

The problem statement mentions aunts, uncles, and cousins. These are all

associations (relationships). They are not the primitive associations. The basic

associations in genealogy are mother, father, and child. The inverse of

each of these associations is marriage, marriage, and birthfamily,

respectively.

Additionally, there is an association (aggregation) from the top object, family-

tree, to marriage and to person. These can be called marriages and

people, respectively. See Fig. 11-6.

Another approach to identifying associations is to think about the functionality
that is required. If one object is required to have functionality that requires access
to other objects, then an association, or a sequence of associations, must exist
between those objects.

EXAMPLE 11.10

A college wants a system that handles the courses, sections of courses, and

students. Draw an object model and identify the associations between the

objects.

The college will need to access the students for printing out student information.

To print out courses taken by students, there needs to be access from students to

sections. To print out the line schedule that prints the sections that are available,

there needs to be access to courses and then to sections for each course. See

Fig. 11-7.

CHAPTER 11 Object-Oriented Development176

family tree

family person

mother
father

children

birthfamily
marriges

peoplemarriages

birthfamily

marriage

marriage

child

father

mother

Fig. 11-6

11.3.1 EXISTENCE DEPENDENCY
Another approach is to use the existence dependency (Section 2.4.1) relationship
between objects to determine the required associations. Two objects have an
existence dependency relationship if the existence of the child object is dependent
on exactly one instance of the parent object. This means that the parent instance
exists before the child instance is created and the child instance is deleted before
the parent instance is deleted.

EXAMPLE 11.11

Use existence dependency to structure the associations in the library example,

Example 2.6.

Neither book nor person is existence dependent on library. However, their

participation in the library in terms of patron and copy, respectively, does satisfy

the existence dependency requirements. See Fig. 11-8.

CHAPTER 11 Object-Oriented Development 177

student course

section

college

coursesstudents

taken by

taking sections

Fig. 11-7

person book

book

copypatron

patron #

loan

loan status

status

library

name
address

checked
out

checked
out

title
author

Fig. 11-8

EXAMPLE 11.12

Use existence dependency to determine the association in the student section

problem of Example 11.10.

The object model developed in Example 11.10 does not satisfy the existence

dependency rules, since section cannot be existence dependent on student or

vice versa. Thus, an additional object called enrollment must be used. See Fig.

11-9.

11.4 Identifying Multiplicities
Multiplicities are restrictions on the associations between instances of objects. The
multiplicity is specified by an expression at the end of the association. The expres-
sion can be a single value, a range of values, or a list of ranges or single values. In
the range, the two values are separated by two periods.
The problem domain often has restrictions on how many relationships an

instance of an object can have with instances of other objects.

EXAMPLE 11.13

Use multiplicities to restrict how many times a copy of a book can be borrowed at

a given time.

As shown in Fig. 11-10 the 0..1 at the loan end of the association restricts a

copy to be participating in at most one loan relationship at a time. The 1 at the

copy end of the association requires a loan to have exactly one association with a

copy. That is, there cannot be a loan without exactly one copy associated with the

loan.

The check-out association restricts the loan instance to be associated with

exactly one patron. The patron can have the association with zero or more loan

instances.

CHAPTER 11 Object-Oriented Development178

college

course

section

enrollment

student

taken by

taking

courses

students

sections

Fig. 11-9

TE
AM
FL
Y

Team-Fly®

EXAMPLE 11.14

Determine the multiplicities for the student-section problem from Example 11.12.

All instances have to be related to exactly one parent instance. All parents have

to be related to 1 to n child instances. For example, a college without courses is

not allowed (by this model). For example, 0..�, specifies that there can be zero or

more relationships. And, every course has to be associated with one college.

See Fig. 11-11.

Review Questions

1. Why is a Ford automobile a specialization of a car and an engine is not?

2. What is the difference between an object and an attribute?

3. What are the goals of domain analysis?

CHAPTER 11 Object-Oriented Development 179

0..* 0..1

1 1
check
out

checked
out

patron

patron #

copy

status

loan

loan status

Fig. 11-10

college

student

enrollment

section

course

courses

taking

taken by

sections

students

1

1

11

1
1..n1..n

1..n

1..n

1..n

Fig. 11-11

Problems

1. Identify the objects from the following B&B problem statement:

Tom and Sue are starting a bed-and-breakfast in a small New England
town. They will have three bedrooms for guests. They want a system to
manage the reservations and to monitor expenses and profits. When a
potential customer calls for a reservation, they will check the calendar,
and if there is a vacancy, they will enter the customer name, address,
phone number, dates, agreed upon price, credit card number, and room
number(s). Reservations must be guaranteed by 1 day’s payment.
Reservations will be held without guarantee for an agreed upon time. If

not guaranteed by that date, the reservation will be dropped.

2. Identify the objects from the following dental office problem statement:

Tom is starting a dental practice in a small town. He will have a dental
assistant, a dental hygienist, and a receptionist. He wants a system to
manage the appointments.
When a patient calls for an appointment, the receptionist will check the

calendar and will try to schedule the patient as early as possible to fill in
vacancies. If the patient is happy with the proposed appointment, the
receptionist will enter the appointment with patient name and purpose of
appointment. The system will verify the patient name and supply necessary
details from the patient records including the patient’s ID number. After
each exam or cleaning, the hygienist or assistant will mark the appointment
as completed, add comments, and then schedule the patient for the next
visit if appropriate.
The system will answer queries by patient name and by date. Supporting

details from the patient’s records are displayed along with the appointment
information. The receptionist can cancel appointments. The receptionist
can print out a notification list for making reminder calls 2 days before
appointments. The system includes the patient’s phone numbers from the
patient records. The receptionist can also print out daily and weekly work
schedules with all the patients.

3. Draw an object model for the B&B problem (Problem 11.1).

4. Draw an object model for the dental office problem (Problem 11.2).

Answers to Review Questions

1. Why is a Ford automobile a specialization of a car and an engine is not?

A Ford automobile would have the same attributes and functions that a base class for
cars would have. Thus, a Ford automobile could be derived from that car base class.

CHAPTER 11 Object-Oriented Development180

However, an engine is a part of a car and not a specialization of a car. There are many
functions and attributes of cars that an engine would not have. Thus, an engine could
not be derived from a car base class.

2. What is the difference between an object and an attribute?

An object is an entity, while an attribute is a characteristic of that object. For example, a
person would be an object and the person’s height would be an attribute. Sometimes the
distinction may be hard. In the person/height example, person may be a base class and
there may be derived classes for tall person, short person, and medium-height person.

3. What is the goal of domain analysis?

The goal of domain analysis is to identify the parts that would be best to reuse in
future systems. The approach is to find commonality among possible systems in the
problem domain.

Answers to Problems

1. Identify the objects from the B&B problem statement.

Objects

bed-and-breakfast
bedroom
reservation
calendar
customer
guarantee
payment
expense

2. Identify the objects from the dental office problem statement.

Objects

dental office
patients
appointments
calendar
patient records
notification list
daily work schedule
weekly work schedule

CHAPTER 11 Object-Oriented Development 181

3. Draw an object model for the B&B problem.

See Fig. 11-12.

4. Draw an object model for the dental problem.

See Fig. 11-13.

CHAPTER 11 Object-Oriented Development182

B&B

calendar bedroom customer transaction

reservation
payment expense

1 1

1 1 1

1 1

0..n 0..n 0..n

0..n0..n1..n1..n

Fig. 11-12. B&B object model.

1
1

1

1

1

1
1

1..n

1..n

1 1..n

0..n
0..n 0..n

dental office

patientcalendarnotification list

schedule patient recordsappointment

weeklydaily

Fig. 11-13. Dental office object model.

183

Object-Oriented Metrics

12.1 Introduction
The measurement of object-oriented software has the same goals (see Chapter 5)
as the measurement of conventional software: trying to understand the character-
istics of the software. Object-oriented refers to a programming language and pro-
gramming style where the functions are encapsulated with the data. The
encapsulation is accomplished by limiting the accessibility to the data to functions
that ensure the integrity of the data. Additionally, object-oriented software
involves inheritance and dynamic binding. Object-oriented software is suppose
to model the real world and thus be easier to understand, easier to modify (main-
tain), and easier to reuse. However, much of the complexity of object-oriented
software is not evident in the static structure of the source code. The area of
object-oriented software measurement is a research area.
The metrics presented in Sections 12.2 and 12.3 are the current view of what is

significant. Chidamber and Kemerer proposed the metrics in Section 12.2.1

Section 12.3 presents the MOOD metrics.2 Much further work will be necessary
before there is consensus of which object-oriented metrics are useful.

12.1.1 TRADITIONAL MEASUREMENT
Measures from traditional software measurement could be applied. This might be
useful within large functions. However, software measurement for non-object-
oriented software uses the control flow graph (and variations such as the data
flow graph) as the basic abstraction of the software. The control flow graph does
not appear to be useful as an abstraction of object-oriented software. Little work

1 Shyam Chidamber and Chris Kemerer, ‘‘A Metrics Suite for Object Oriented Design,’’ IEEE TOSE

(Transactions on Software Engineering) 20:6 June 1994, 476–493.

2 Rachel Harrison, Steve Counsell, and Reuben Nithi, ‘‘An Evaluation of the MOOD Set of Object-Oriented

Software Metrics,’’ IEEE TOSE 24:6 June 1998, 491–496.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

has been published evaluating the use of McCabe’s cyclomatic number or
Halstead’s software science in object-oriented software development. The intuitive
problem with applying the traditional software metrics is that the complexity of
object-oriented software does not appear to be in the control structure.

12.1.2 OBJECT-ORIENTED ABSTRACTIONS
In most object-oriented software, the methods are small and the number of deci-
sions in a method is often small. Most of the complexity appears to be in the
calling patterns among the methods. There has been little work in this area, and
there is little agreement on which abstractions are significant. The more common
abstractions in object-oriented software development are the diagrams used in the
Unified Modeling Language (UML).

12.2 Metrics Suite for Object-Oriented Design
The Metric Suite for Object-Oriented Design is intended to be a comprehensive
approach to evaluating the classes in a system. Most of these are calculated on a
per class basis. That is, none of these evaluate the system as a whole. It is not clear
how to extend these metrics to the whole system. Averaging them over the classes
in a system is usually not appropriate.

12.2.1 METRIC 1: WEIGHTED METHODS PER CLASS (WMC)
The weighted methods per class metric is based on the intuition that the number of
methods per class is a significant indication of the complexity of the software.
Further consideration may be necessary to avoid giving full weight to trivial
methods, for example, get and set methods. The WMC includes the provision
for weighting the methods. Let C be a set of classes each with the number of
methodsM1; . . .,Mn. Let c1; . . ., cn be the complexity (weights) of the classes (the
value that is to be used for ci is not defined in the paper).

WMC ¼ 1
n
�
Xn

i¼0
ci �Mi

This is the only metric in the suite that is averaged over the classes in a system.
In the examples, we will assume ci is equal to 1.

12.2.2 METRIC 2: DEPTH OF INHERITANCE TREE (DIT)
The depth of inheritance tree metric is just the maximum length from any node to
the root of the inheritance tree for that class. Inheritance can add to complexity of
software. This metric is calculated for each class.

CHAPTER 12 Object-Oriented Metrics184

12.2.3 METRIC 3: NUMBER OF CHILDREN (NOC)
Not only is the depth of the inheritance tree significant, but the width of the
inheritance tree. The number of children metric is the number of immediate sub-
classes subordinated to a class in the inheritance hierarchy. This metric is calcu-
lated for each class.

12.2.4 METRIC 4: COUPLING BETWEEN OBJECT CLASSES
(CBO)
Coupling between modules has always been a concern (see Section 9.5). In object-
oriented software, we can define coupling as the use of methods or attributes in
another class. Two classes will be considered coupled when methods declared in
one class use methods or instance variables defined by the other class. Coupling is
symmetric. If class A is coupled to class B, then B is coupled to A. The coupling
between object classes (CBO) metric will be the count of the number of other
classes to which it is coupled.
This metric is calculated for each class.

12.2.5 METRIC 5: RESPONSE FOR A CLASS (RFC)
The response set of a class, {RS}, is the set of methods that can potentially be
executed in response to a message received by an object of that class. It is the
union of all methods in the class and all methods called by methods in the class. It
is only counted on one level of call.

RFC ¼ jRSj
This metric is calculated for each class.

12.2.6 METRIC 6: LACK OF COHESION IN METHODS
(LCOM)
A module (or class) is cohesive if everything is closely related. The lack of cohesion
in methods metric tries to measure the lack of cohesiveness.

Let Ii be the set of instance variables used by method i.
Let P be set of pairwise null intersections of Ii.
Let Q be set of pairwise nonnull intersections.

The LCOM metric can be visualized by considering a bipartite graph. One set
of nodes consists of the attributes, and the other set of nodes consists of the
functions. An attribute is linked to a function if that function accesses or sets
that attribute. The set of arcs is the set Q. If there are n attributes and m functions,
then there are a possible n �m arcs. So, the size of P is n �m minus the size of Q.

LCOM ¼ maxðjPj � jQj; 0Þ

CHAPTER 12 Object-Oriented Metrics 185

This metric is calculated on a class basis.

EXAMPLE 12.1

Calculate the Chidamber suite of metrics on the following example Cþþ program

that provides a link list of rectangles:

class point {

float x;

float y;

public:

point(float newx, float newy) {x=newx; y=newy;}

getx(){return x;}

gety(){return y;}

};

class rectangle {

point pt1, pt2, pt3, pt4;

public:

rectangle(float pt1x, pt1y, pt2x, pt2y, pt3x, pt3y, pt4x, pt4y)

{ pt1 = new point(pt1x, pt1y); pt2 = new point(pt2x, pt2y);

pt3 = new point(pt3x, pt3y); pt4 = new point(pt4x, pt4y);}

float length(point r, point s){return sqrt((r.getx()�s.getx())^2+
(r.gety()�s.gety())^2); }

float area(){return length(pt1,pt2) � length(pt1,pt3);}
};

class linklistnode {

rectangle* node;

linklistnode* next;

public:

linklistnode(rectangle* newRectangle){node=newRectangle; next=0;}

linklistnode* getNext(){return next;}

rectangle* getRectangle(){return node;}

void setnext(linklistnode* newnext){next=newnext;}

};

class rectanglelist {

linklistnode* top;

public:

rectanglelist(){top = 0;}

void addRectangle(float x1, y1, x2, y2, x3, y3, x4, y4) {

linklistnode* tempLinkListNode; rectangle* tempRectangle;

tempRectangle = new rectangle(x1,y1,x2,y2,x3,y3,x4,y4);

tempLinkListNode = new linkListNode(tempRectangle);

tempLinkListNode->setnext(top);

top=tempLinkListNode; }

float totalArea(){float sum; sum=0; linklistnode* temp; temp=top;

while (temp !=0){sum=sum + temp->getRectangle()->area();

temp=temp->getNext();}

return sum;}

};

CHAPTER 12 Object-Oriented Metrics186

Metric 1: Weighted Methods per Class

Class # Methods

point 3

rectangle 3

linklistnode 4

rectanglelist 3

WMC ¼ 13=4 ¼ 3:25 methods=class

Metric 2: Depth of Inheritance Tree (DIT)

There is no inheritance in this example.

Metric 3: Number of Children (NOC)

There is no inheritance in this example.

Metric 4: Coupling between Object Classes (CBO)

See Fig. 12-1.

The class diagram is annotated with arrows to show which functions (or

constructors) are called by each function (only calls in other classes are shown).

CHAPTER 12 Object-Oriented Metrics 187

rectanglelist

linkistnode

getNext
getRectangle
setNext

point

getx
gety

rectangle

addRectangle
totalArea

length
area

Fig. 12-1

Class Coupled Classes CBO

point rectangle 1

rectangle point, rectanglelist 2

linklistnode rectanglelist 1

rectanglelist rectangle, linklistnode 2

Metric 5: Response for a Class (RFC)

Class Response Set RFC

point point, getx, gety 3

rectangle rectangle, point,

length, getx, gety,

area

6

linklistnode linkListNode,

getNext,

getRectangle,

setNext

4

rectanglelist rectangleList,

addRectangle,

rectangle, setNext

totalArea,

getRectangle, area,

getNext

8

Metric 6: Lack of Cohesion in Methods (LCOM)

See Fig. 12-2.

The lines between length and the points are dashed because it depends on the

parameters as to which ones are actually accessed on a specific call.

CHAPTER 12 Object-Oriented Metrics188

linklistnode

getRectangle

getNext

setNext

rectanglelist

addRectangle

totalArea

top

next

getx

gety

point

rect

length

area

nodex

pt1

pt2

pt3

pt4

y

Fig. 12-2

TE
AM
FL
Y

Team-Fly®

Class LCOM

point max(0,(6� 4Þ � 4Þ ¼ 0

rectangle max(0,(12� 9Þ � 9Þ ¼ 0

linklistnode max(0,(8� 5Þ � 5Þ ¼ 0

rectanglelist max(0,(3� 3Þ � 3Þ ¼ 0

12.3 The MOOD Metrics
The MOOD (see page 183) suite of metrics is also intended as a complete set that
measures the attributes of encapsulation, inheritance, coupling, and polymorph-
ism of a system.
Let TC be the total number of classes in the system.
Let Md (Ci) be the number of methods declared in a class.
Consider the predicate Is_visible(Mm,i, Cj), whereMm,i is the methodm in class i

and Cj is the class j. This predicate is 1 if i !¼ j and Cj may call Mm,i. Otherwise,
the predicate is 0. For example, a public method in Cþþ is visible to all other
classes. A private method in Cþþ is not visible to other classes.
The visibility,V(Mm,i), of a method, Mm,i, is defined as follows:

VðMm;iÞ ¼

XTC

j¼1
Is_visibleðMm;i;CjÞ

TC � 1

12.3.1 ENCAPSULATION
The method hiding factor (MHF) and the attribute hiding factor (AHF) attempt to
measure the encapsulation.

MHF ¼
PTC

i¼1
PMd ðCiÞ

m¼1
ð1� VðMm;iÞ

PTC

i¼1
Md ðCiÞ

AHF ¼
PTC

i¼1
PAd ðCiÞ

m¼1
ð1� VðAm;iÞ

PTC

i¼1
AdðCiÞ

CHAPTER 12 Object-Oriented Metrics 189

EXAMPLE 12.2

Calculate MHF and AHF for the following C++ code:

Class A{
int a;

public:
void x();
void y();

};
Class B {

int b;
int bb;
void w();

public:
void z():

};
Class C {

int c;
void v();

};
TC = 3

method is_vis(A) is_vis(B) is_vis(C) V(Mm,i)

A::x() 0 1 1 1

A::y() 0 1 1 1

B::w() 0 0 0 0

B::z() 1 0 1 1

C::v() 0 0 0 0

MHF = 2/5 = 0.4

attribute is_vis(A) is_vis(B) is_vis(C) V(Am,i)

A::a() 0 0 0 0

B::b() 0 0 0 0

B::bb() 0 0 0 0

C::c() 0 0 0 0

AHF = 4/4 = 1.0

CHAPTER 12 Object-Oriented Metrics190

12.3.2 INHERITANCE FACTORS
There are two measures of the inheritance, the method inheritance factor (MIF)
and the attribute inheritance factor (AIF).

MdðCiÞ ¼ Number of methods declared in a class i
MiðCiÞ ¼ Number of methods inherited (and not overridden) in a class i
MaðCiÞ ¼ Md ðCiÞ þMiðCiÞ ¼ Number of methods that can be invoked in asso-

ciation with class i

MIF ¼

XTC

i¼1
MiðCiÞ

XTC

i¼1
MaðCiÞ

AdðCiÞ ¼ Number of attributes declared in a class i
AiðCiÞ ¼ Number of attributes from base classes that are accessible in a class i
AaðCiÞ ¼ AdðCiÞ þ AiðCiÞ ¼ Number of attributes that can be accessed in asso-

ciation with class i

AIF ¼

XTC

i¼1
AiðCiÞ

XTC

i¼1
AaðCiÞ

EXAMPLE 12.3

Calculate MIF and AIF from the following C++ code:

Class A{
protected:

int a;
public:

void x();
virtual void y();

};
Class B public A {

int b;
protected:

int bb;
public:

void z():
void y();
void w();

};
Class C public B {

int c;
void v();

};

CHAPTER 12 Object-Oriented Metrics 191

class Md Mi Ad Ai

A x(),y() none a none

B w(),z(),y() A::x() b,bb A::a

C v() B::w(),z(),y c B::bb

A::x()

MIF ¼ 5=11 AIF ¼ 2=6

12.3.3 COUPLING FACTOR
The coupling factor (CF)measures the coupling between classes excluding coupling
due to inheritance.
Let is_client(ci,cjÞ ¼ 1 if class i has a relation with class j; otherwise, it is zero.

The relation might be that class i calls a method in class j or has a reference to class
j or to an attribute in class j. This relationship cannot be inheritance.

CF ¼

XTC

i¼1

XTC

j¼1
is_clientðci; cjÞ

TC2 � TC

EXAMPLE 12.4

Calculate the coupling factor on the object model shown in Fig. 12-3 for the bed-

and-breakfast problem (Problem 11.4). Only assume a relationship if it is required

by the associations shown on the diagram.

CHAPTER 12 Object-Oriented Metrics192

B&B

customerbedroomcalendar transaction

reservation
payment expense

0..n 0..n

0..n0..n1..n1..n

0..n

1
11

111

1

Fig. 12-3

TC ¼ 7

Class is_client classes

B&B calendar, bedroom, customer, transaction

calendar reservation

bedroom reservation

customer reservation

transaction none

payment none

expense none

CF ¼ 7=42

12.3.4 POLYMORPHISM FACTOR
The polymorphism factor (PF) is a measure of the potential for polymorphism.

Let MoðCiÞ be the number of overriding methods in class i.
Let MnðCiÞ be the number of new methods in class i.
Let DCðCiÞ be the number of descendants of class i.

PF ¼
PTC

i¼1MoðCiÞPTC
i¼1½MnðCiÞ 	DCðCiÞ

EXAMPLE 12.5

Calculate the polymorphism factor on the Cþþ code from Example 12.3.

Class Mn Mo DC

A x(),y() none 2

B w(),z() y() 1

C v() none 0

PF ¼ 1=ð2 � 2þ 2 � 1þ 1 � 0Þ ¼ 1=6

CHAPTER 12 Object-Oriented Metrics 193

Review Questions

1. Why are McCabe’s cyclomatic number and Halstead’s software science not readily
applicable to object-oriented software?

2. What abstractions are available in object-oriented design to be used as the basis of
object-oriented metrics?

3. When should a metric for a whole system be different than either the sum or the
average of metrics calculated for each class?

4. Is a high LCOM good or bad?

5. Some people have suggested that, in LCOM, just using the difference between the size
of P and Q. That is, the use of the maximum of zero and this difference is not effective.
What would be the effect of this change?

Problems

1. Calculate the Chidamber metrics for the following code that maintains an array of
people/students:

class person{
char* name;
char* ssn;

public:
person(){name = new char[NAMELENGTH]; ssn = new

char[SSNLENGTH];}
~person(){delete name; delete ssn;}
void addName(char* newname){strcpy(name, newname);}
void addSsn(char* newssn){strcpy(ssn, newssn);}
char* getName(){return name;}
void virtual display(){cout << ‘‘the person’s name is

‘‘<<name;}
};
class student public person {
float gpa;

public:
void addGpa(float newgpa){gpa = newgpa;}
void display(){cout<<’’the student’s name is‘‘
<<getName()<<’’ and gpa is ‘‘ << gpa;}

};

CHAPTER 12 Object-Oriented Metrics194

class personlist {
person* list[MAX];
int listIndex;

public:
personlist(){listIndex = 0;}
void addPerson(char* newname, char*
newssn){list[listIndex]=new person;
list[listIndex]->addName(newname); list[listIndex]
->addSsn(newssn);
listIndex++;}

void addStudent(char* newname, char* newssn, float gpa)
{student* temp = new student;
temp->addName(newname); temp->addSsn(newssn);
temp->addGpa(newgpa);list[listIndex++]=temp;}

void display(){int j; for(j=0; j<listIndex; j++) list[j]
->display();}

};

Answers to Review Questions

1. Why are McCabe’s cyclomatic number and Halstead’s software science not readily
applicable to object-oriented software?

These two metrics are based on the size and complexity of an algorithm written as a
single function. Object-oriented functions are usually spread over a number of meth-
ods, often in different classes. Each object-oriented function is often small and rela-
tively simple. Thus, these two metrics will probably not give a good measure of the
complexity of the object-oriented system.

2. What abstractions are available in object-oriented design to be used as the basis of
object-oriented metrics?

The standard abstractions are the UML diagrams: object models, use case diagrams,
state models, and sequence diagrams. None of these appear to capture the essential
notion of complexity in object-oriented software.

3. When should a metric for a whole system be different than either the sum or the
average of metrics calculated for each class?

If the metric for the individual class is basically a size metric, such as LOC or number
of children, then it would make sense to sum those individual metric values to obtain a
metric value for the whole system or an average size per class. If the individual class
metric was an average, then an average of the averages might be reasonable—for
instance, the average number of parameters per function.

CHAPTER 12 Object-Oriented Metrics 195

However, neither the sum nor the average will be a good metric of the interactions
between classes.

4. Is a high LCOM good or bad?

Bad, since it implies a high lack of cohesion.

5. Some people have suggested that, in LCOM, just using the difference between the size
of P and Q. That is, the use of maximum of zero and this difference is not effective.
What would be the effect of this change?

It would allow discrimination between the more cohesive classes. Now a cohesive class
just maps to zero.

Answers to Problem

1. Calculate the Chidamber metrics for the code from the problem statement that main-
tains an array of people/students.

Metric 1: Weighted Methods per Class

Class # Methods

person 6

student 2

personlist 4

Note that the inherited functions were not counted.

WMC ¼ 12=3 ¼ 4 methods=class

Metric 2: Depth of Inheritance Tree (DIT)

CHAPTER 12 Object-Oriented Metrics196

Class DIT

person 0

student 1

personlist 0

Metric 3: Number of Children (NOC)

Class NOC

person 1

student 0

personlist 0

Metric 4: Coupling between Object Classes (CBO)

See Fig. 12-4.

The class diagram is annotated with arrows to show which functions (or constructors)
are called by each function (only calls in other classes are shown).

Class Coupled Classes CBO

person student, personlist 2

student person, personlist 2

personlist person, student 2

CHAPTER 12 Object-Oriented Metrics 197

addPerson
addStudent
display

addName
addSsn
getName
display

addGpa
display

person

personlist

student

Fig. 12-4

Metric 5: Response for a Class (RFC)

Class Response Set RFC

person person, addName, addSssm getName, display 5

student student, addGpa, person, getName 6

personlist personlist, addPerson, addStudent, addName, addSsn, addGpa, display 7

Metric 6: Lack of Cohesion in Methods (LCOM)

See Fig. 12-5.

Class LCOM

person max(0,(8� 5Þ � 5Þ ¼ 0

student max(0,(2� 2Þ � 2Þ ¼ 0

personlist max(0,(6� 6Þ � 6Þ ¼ 0

CHAPTER 12 Object-Oriented Metrics198

name

ssn

addName

addSsn

addGpa

display
gpa

list

listIndex

addPerson

addStudent

display

getName

display

Fig. 12-5
TE
AM
FL
Y

Team-Fly®

199

Object-Oriented Testing

13.1 Introduction
Testing object-oriented software presents some new challenges. Many conven-
tional techniques are still appropriate. For example, functional testing of object-
oriented software will be no different from functional testing of conventional
software. Test cases will be developed based on the required functionality as
described in the requirement documentation. However, structural testing of
object-oriented software will be very different. Two structural testing approaches
will be covered: MM testing and function pair testing

Conventional Software

The testing of conventional software is often based on coverage criteria defined on
the structure of the software. The standard approaches (see Chapter 10) include
statement coverage, branch coverage, and data flow coverage. These coverage
criteria are based on the control flow diagram or a modified control flow diagram.

Object-Oriented Software

Object-oriented software adds a new complexity to software testing. The control
flow diagram is no longer a good representation of the structure of the software. It
would be more appropriate to base structural testing on an object model.
However, no effective coverage measures of object models have been found.
The methods in the class should be tested with the techniques already presented.

The same coverage criteria can be applied to object-oriented software. Intuitively,
however, the statement and branch coverage criteria do not seem appropriate for
thoroughly testing the complexities of object-oriented software. The interactions
between methods need to be tested.
One approach to object-oriented testing is to cover all the calls to methods. This

is sometimes called MM testing.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

13.2 MM Testing
The MM testing (method-message) coverage requires that every method call be
tested. Thus, in every method, every call to another method must be tested at least
once. If a method calls another method multiple times, each calls needs to be
tested only once. This seems to be the most basic coverage criterion. The MM
testing does not subsume every-statement coverage (see Section 10.3.1).

EXAMPLE 13.1

Identify the MM testing coverage for the linked list of rectangles problem.

class point {
float x;
float y;

public:
point(float newx, float newy) {x=newx; y=newy;}
getx(){return x;}
gety(){return y;}

};
class rectangle {

point pt1, pt2, pt3, pt4;
public:

rectangle(float pt1x, pt1y, pt2x, pt2y, pt3x, pt3y, pt4x, pt4y)
{ pt1 = new point(pt1x, pt1y); pt2 = new point(pt2x, pt2y);
pt3 = new point(pt3x, pt3y); pt4 = new point(pt4x, pt4y);}

float length(point r, point s){return sqrt((r.getx()-s.getx())^2+
(r.gety()-s.gety())^2); }

float area(){return length(pt1,pt2) * length(pt1,pt3);}
};
class linklistnode {

rectangle* node;
linklistnode* next;

public:
linklistnode(rectangle* newRectangle){node=newRectangle; next=0;}
linklistnode* getNext(){return next;}
rectangle* getRectangle(){return node;}
void setnext(linklistnode* newnext){next=newnext;}

};
class rectanglelist {

linklistnode* top;
public:

rectanglelist(){top = 0;}
void addRectangle(float x1, y1, x2, y2, x3, y3, x4, y4) {

linklistnode* tempLinkListNode; rectangle* tempRectangle;
tempRectangle = new rectangle(x1,y1,x2,y2,x3,y3,x4,y4);
tempLinkListNode = new linkListNode(tempRectangle);
tempLinkListNode->setnext(top);
top=tempLinkListNode; }

float totalArea(){float sum; sum=0; linklistnode* temp; temp=top;
while (temp !=0){sum=sum + temp->getRectangle()->area();

temp=temp->getNext();}
return sum;}

};

CHAPTER 13 Object-Oriented Testing200

The calling structure is shown in the following. For each class, the functions of

that class are listed and then for each function that calls other functions, those

called functions are listed. For MM testing, every one of those calls must be

executed. For example, four calls to point will be made. No decisions are shown;

however, in this program, there are no decisions that affect the calling sequence.

class point
point()
getx()
gety()

class rectangle
rectangle()

point::point()
point::point()
point::point()
point::point()

length()
point::getx()
point::getx()
point::gety()
point::gety()

area()
length()
length()

class linklistnode
linklistnode()
getNext()
getRectangle()
setnext()

class rectanglelist
rectanglelist()
addRectangle()

rectangle::rectangle()
linklistnode::linklistnode()
linklistnode::setnext()

totalArea()
linklistnode::getRectangle()
rectangle::area()
linklistnode::getNext()

MM testing: Any test case that builds at least one rectangle and then gets the total

area will execute all of these calls.

13.3 Function Pair Coverage
Function pair coverage requires that for all possible sequences of method execu-
tions, those of length two must be tested. This is usually done based on a state
machine diagram or on a regular expression showing the possible method
executions.

CHAPTER 13 Object-Oriented Testing 201

Since a regular expression can be mapped to a finite state machine, these two
approaches are equivalent. Although the finite state machine used to describe the
behavior of a software system may not be minimal, having additional states will
increase the effectiveness of the test set.

EXAMPLE 13.2

Identify the function pair testing coverage for the linked list of rectangles program

of Example 13.1. Consider the calling structure of the functions.

class point

point()

getx()

gety()

class rectangle

rectangle()

point()point()point()point()

length()

getx()getx()gety()gety()

area()

length()length()

class linklistnode

linklistnode()

getNext()

getRectangle()

setnext()

class rectanglelist

rectanglelist()

addRectangle()

rectangle()linklistnode()setnext()

totalArea()

(getRectangle()area()getNext())*

Most of the regular expressions for the individual functions have a fixed list of

method calls. Only the totalArea function is zero-or-more repetition from the

while loop.

Putting all of these together into one regular expression and considering that the

rectanglelist has to be created first and then addRectangle or totalArea

could be done gives the following regular expression:

rectanglelist ((addRectangle rectangle point point point point
linklistnode setnext) | (totalArea (getRectangle area length getx getx
gety gety length getx getx gety gety getNext)*)

The function pair testing can be achieved by the following test sets:

1. Creating one rectangle, and then calculating the area

2. Creating two or more rectangles, and then calculating the area

3. Not creating any rectangles, and then calculating the area

4. Creating rectangles after calculating the area

CHAPTER 13 Object-Oriented Testing202

EXAMPLE 13.3

Identify the function pair testing coverage for the finite stack example shown in the

state machine in Fig. 13-1. The error transitions are shown as arcs without

destination states.

This example would require the following pairs in the tests:

1. new pop(on empty – error)

2. new push

3. push (from empty) push

4. push (from empty) pop

5. push (from normal to normal) push (still in normal)

6. push (from normal to normal) push (into full)

7. push (from normal to normal) pop

8. push (from normal to full) push (error)

9. push (from normal to full) pop

10. pop (from normal to normal) push (still in normal)

11. pop (from normal to normal) pop (still in normal)

12. pop (from normal to normal) pop (into empty)

13. pop (into empty) push

14. pop (into empty) pop (error)

EXAMPLE 13.4

Identify the function pairs that need to be covered for function pair testing coverage

for the following code example. Create the regular expression for each function

that has method calls within its body and for the whole program.

class D {
int x;
int Db(int s) {return 2*s;}
int Dc(int s) {return s;}

public:
D(){x=0;}
int Da(int s){if (x=1) {x=0; return Db(s);} else {x=1; return Dc(s);}}

};
class A {

int x;
int y;
D* m;

public:
A(){m=new D;}
virtual int Aa(int s){cout<<x; return m->Da(y);}

CHAPTER 13 Object-Oriented Testing 203

Pop

Pop
Pop

PushNew Push

Push pop

Push

Empty Normal Full

Fig. 13-1

void add(int s, int u){x=s;y=u;}
};
class B {

A* w[MAX];
int z;
int q;

public:
B() {z=0; q =1;}
int Bread(){cin>>s>>u; if (z= MAX) return 0;

if(s<q){w[z]=new A; w[z]->add(s,u);}
else {w[z]=new C; w[z]->add(u,s);w[z]->Atadd(s);}
z++; return z;}

int Ba(int s){q=w[s]->Aa(q); return q;}
};
class C public A{

int t;
public:

int Aa(int r) {cout<<t; return m->Da(t);}
void Atadd(int x) {t = x;}

};

Regular expressions of each function with function calls in its body:

class D
Da : (Db | Dc)

class A
A: D
Aa: Da

class B
Bread: e | (A add | C add Atadd)
Ba : Aa

class C
C: A
Aa: Da

Regular expression for possible calls:

B (Bread (e | A D add | C A D add Atadd)) | Ba Aa Da (Db | Dc))*

The function pair coverage must include the following pairs:

B Bread
Bread A
Bread C
Bread Bread
B Ba
Da Db
add Bread
add Ba
Da Dc
Atadd Bread
Atadd Ba
Db Ba
Db Bread
Dc Bread
Dc Ba

CHAPTER 13 Object-Oriented Testing204

Review Questions

1. How is functional testing of object-oriented software done?

2. Is statement coverage of object-oriented software useful?

3. Does MM testing subsume statement coverage? (See Section 10.3.1.)

4. What is the advantage of function pair coverage?

Problems

1. Given the following code, generate test cases that satisfy the criteria of MM testing and
every function pair testing:

class Threes {
char cout;

public:
Threes(){count = ’a’;}
void PlusOne(){ if(count == ’a’) count = ’b’; if(count == ’b’)
count = ’c’;
if(count == ’c’) count = ’a’; }

char* IsDiv() {if(count == ’a’){return ’yes’;}else{return
’no’;}}

}
class Num {
Threes* SumMod3; int last; int number;
void Digit(int newnum){int j; for (j=1; j<=newnum; j++)
SumMod3->PlusOne();}

public:
Num(){SumMod3 = new Threes;}
void Reduce() {while (number > 0){last = number – (number/
10)*10;
Digit(last); number = number/10;}

char* IsDivisibleBy3(int newnum) {number = newnum; Reduce;
return SumMod3->IsDiv();}

}
Main() {
Num* Test = new Num;
int value;
char* answer;
cin >> value;
answer = test->IsDivisibleBy3(value);
cout << answer;

CHAPTER 13 Object-Oriented Testing 205

Answers to Review Questions

1. How is functional testing of object-oriented software done?

Functional testing of object-oriented software is no different from functional testing of
conventional software.

2. Is statement coverage of object-oriented software useful?

Yes, statement coverage of object-oriented software should be done. It is probably the
most minimal acceptable coverage.

3. Does MM testing subsume statement coverage? (See Section 10.3.1.)

No, MM testing requires that every method call be tested. However, a section of
source code could not contain any method calls and thus not be tested by a set of
test cases that achieve MM testing.

4. What is the advantage of function pair coverage?

Function pair coverage ensures that combinations of calls be executed. In the stack
example (13.3), if the stack is called by an user interface, there may be only one call of
each function. Thus, a simple sequence of create, push, and pop might achieve
MM testing. Function pair coverage subsumes MM testing.

Answers to Problems

1. Given the following code, generate test cases that satisfy the criteria of MM testing and
every function pair testing:

class Threes {
char cout;

public:
Threes(){count = ’a’;}
void PlusOne(){ if(count == ’a’) count = ’b’; if(count == ’b’)
count = ’c’;
if(count == ’c’) count = ’a’; }

char* IsDiv() {if(count == ’a’){return ’yes’;}else{return
’no’;}}

}
class Num {
Threes* SumMod3; int last; int number;

CHAPTER 13 Object-Oriented Testing206

void Digit(int newnum){int j; for (j=1; j<=newnum; j++)
SumMod3->PlusOne();}

public:
Num(){SumMod3 = new Threes;}
void Reduce() {while (number > 0){last = number – (number/
10)*10;
Digit(last); number = number/10;}

char* IsDivisibleBy3(int newnum) {number = newnum; Reduce;
return SumMod3->IsDiv();}

}
Main() {
Num* Test = new Num;
int value;
char* answer;
cin >> value;
answer = test->IsDivisibleBy3(value);
cout << answer;

Regular expressions of calls:

main: Num IsDivisibleBy3
Num: Threes
Reduce: Digit *
IsDivisibleBy3: Reduce IsDiv
Digit: PlusOne*
Threes:
PlusOne:
IsDiv

MM testing:

The test set must execute all calls.
One test case, input 5—output no, should execute all.

Every function pair:

The test set must have a test for each IsDiv transition, so inputs 6 and 7 should
achieve coverage. The outputs are yes and no, respectively.

CHAPTER 13 Object-Oriented Testing 207

208

Formal Notations

14.1 Introduction
A formal notation is a notation that is mathematically based. Either the syntax
and/or the semantics of the notation have a mathematical foundation. Formal
notations have tremendous potential for reducing errors during software develop-
ment. The benefits have not been realized mainly because of the difficulty of
constructing and using formal specifications.
The problem with natural language is that it is ambiguous. Often, specifications

depend on the semantics/meanings of words to convey the understanding necessary.
Specifications are supposed to answer questions. Any specification, formal or

not, can be evaluated as to how well it can answer the developer’s questions about
the specified behavior. Formal specifications are able to answer the questions more
precisely.
There are three levels of formalism:

� Informal—Techniques that have flexible rules that do not constrain the models
that can be created

� Semiformal—Techniques that have well-defined syntax

� Formal—Techniques that have rigorously defined syntax and semantics

14.2 Formal specifications
A formal specification uses a formally defined model to make statements about the
software behavior. For example, a formal specification might use set notation as
its model. There must be a way to map from the software to the formal model, to
relate processes in the software to processes in the formal model, and to map
statements in the formal model back to statements in the software.
For example, we could specify the behavior of a stack using the mathematical

notation of a sequence. We could specify the mathematical equivalent for each of

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

TE
AM
FL
Y

Team-Fly®

the stack operations. Then, given a set of operations on the stack, we could map
those operations into operations on the mathematical sequence. After completing
the operations on the sequence, we could map the result back to the stack. Thus,
we could use the mathematical sequence to precisely specify the behavior of the
stack.
The statements that are usually made in a formal specification fall into three

categories: preconditions, post-conditions, and invariants.

14.2.1 PRECONDITIONS
A precondition is a statement associated with a function that must be true before
the function can execute. There are two styles of interpreting preconditions:

� Don’t specify error handling—If the precondition is not met, some error hand-
ling is done. This style assumes that the implementation will be extended to
handle those error conditions.

� Specify all error handling—It is assumed that the function will not be called if
the precondition is not met. Thus, the specification is extended to specify all the
error conditions that the implemented function will be expected to handle.

14.2.2 POST-CONDITIONS
A post-condition is also associated with a function. The post-condition specifies the
changes that occur by the completion of the function. Usually, the formal notation
has a notation for indicating the situation before the execution and the situation
after the execution completes. For example, some notations use an apostrophe to
mark the variable to represent the value of the variable after completion, and the
variables without an apostrophe represent the values before the function execution
starts.

14.2.3 INVARIANTS
An invariant is a statement that is always true. Actually, it may not be true during
the execution of a function or statement. However, it will be true before and after
completion of every function.1

An example of an invariant for a stack might be that the stack contains less
than or equal to the maximum number of allowed items. Another invariant might
be that some field is not null.

CHAPTER 14 Formal Notations 209

1 Even invariants may not be true at all times during actions within a function. For example, an invariant within

a loop might state a relationship involving two variables. However, the values of the variables might be updated

in two different statements. Between those two statements, the invariant might not be true.

14.3 Object Constraint Language (OCL)
Object Constraint Language (OCL) is part of the UML specification.2 It was
originally used to specify parts of UML. Currently, there is no tool that supports
the analysis of OCL statements in the UML specification.
OCL uses the object model to provide the context for the specification. Most

OCL statements evaluate to a collection of entities. OCL includes operations and
comparisons that can be applied to the resulting collection.
OCL statements are always written with a context. The context is usually a class

in the object model. The context is represent by an underlined name of a class.
The OCL expression self starts the navigation. It refers to an instance of the

class.

14.3.1 NAVIGATION
An OCL expression can use the rolename of the opposite side of an association,
the name of the association, or the name of the class. The result will either be a
collection or an element. If the multiplicity is 0 or 1, it will be a single object.
Otherwise, it will be a collection.

EXAMPLE 14.1

The following OCL statements all evaluate to the set of all loans of books currently

borrowed from the library (see object shown in Fig. 14-1).

CHAPTER 14 Formal Notations210

2 The OCL specification is available on the Web. Type ‘‘OCL’’ in a browser search tool or go to

www.software.ibm.com/ad/ocl.

library

patron

name

borrow
return

loan

due date
borrow

check in

copy

name

book

0..1

0..*

borrowed 1

1
1

11

1..*

1..*

1..*
holdings

cardholders

checked out by

check out

Fig. 14-1

library
self.holdings.copy.borrowed
self.cardholders.checkedout

The underlined library states the context. The self indicates an instance of the

class library. The expression self.holdings evaluates to the set of all instances

of class book. The expression self.holdings.copy evaluates to the set of all

copies of all books. The expression self.holdings.copy.borrowed

evaluates to the set of all instances of loans of books from the library.

The expression self.cardholders evaluates to the set of all instances of

patron. The expression self.cardholders.checkedout evaluates to the set

of all instances of loan.

14.3.2 INVARIANTS
Invariants in OCL are always written with a context that is shown as an under-
lined object name. Usually navigation is used to identify a collection or element
that is compared with another collection or element. Functions can be applied to
the result of the navigation.

EXAMPLE 14.2

Write an invariant for the library problem using the expressions from Example 14.1.

library
self.holdings.copy.borrowed = self.cardholders.checkedout

The underlined library states the context of this invariant. The invariant states

that the set of loans of books borrowed by cardholders is the same as the set of

book copies checked out.

library
self.holdings.copy = self.cardholders.checkedout.borrowed

The preceding invariant is correct type-wise, but it is not true. The expression

self.holdings.copy evaluates to the set of all instances of copy of book in

the library. The other expression evaluates to the set of all instances of copy of

book that are currently checked out. This would only be true if all the books in the

library were currently checked out.

14.3.3 ATTRIBUTES
The expression can also refer to the value of an attribute. The same dot notation is
used.

EXAMPLE 14.3

Write an invariant that says that ‘‘Grapes of Wrath’’ is not in the library.

book
self.name <> ‘‘Grapes of Wrath’’

The context is the class book. The expression self.name evaluates to the

value of the name of the book.

CHAPTER 14 Formal Notations 211

14.3.4 PREDEFINED OPERATIONS
OCL has many operations on collections: size, count(object), includes
(object), sum, and includesall(collection).

EXAMPLE 14.4

Write an invariant that says that no patron can have more than 10 books checked

out at a time.

Patron
self.checkedout->size < 10

The expression self.checkedout evaluates to the set of loans associated

with a patron. The operation size returns the number, and the invariant requires

the number to be less than 10.

14.3.5 PRE- AND POST-CONDITIONS
In OCL, the context of the pre- and post-conditions must be shown as an
underlined function. The syntax pre: and post distinguishes the pre- and
post-condition. The keyword result can be used to designate the result of
the operation.
The syntax @pre is used in OCL to specify the value before an operation.

EXAMPLE 14.5

Write pre- and post-conditions to ensure that a patron cannot check out more than

9 books.

patron::borrow
pre: self.checkedout->size < 9
post: self.checkedout->size < 10

or

post: self.checkedout@pre->size + 1 = self.checkedout->size

Review Questions

1. What kind of questions are specifications supposed to be able to answer?

2. Why would ambiguity be a problem?

CHAPTER 14 Formal Notations212

3. Why are mathematical notions, such as sets, a good foundation for specifications?

4. What is the difference between preconditions, post-conditions, and invariants?

Problems

1. Given the object model shown in Fig. 14-2, evaluate each of the given OCL state-
ments. If the statement is wrong, explain what is wrong and determine the simplest
correction.

L

self.c->size = 10

self.a = self.c.b.d

L::r() : int

pre: self.a.b = self.c.a

post: t = t@pre + 1

post: result = self.a->first.s

P

self.a.d->size > max

self.a.b = self.d.c

N::q() : int

pre: self.b->isEmpty

pre: self.d->forall(l |l.t < 10)

post: result = self.d->size

CHAPTER 14 Formal Notations 213

L

int t

int r()

M

floats

N

int r()

P

int x

d d

c c

b a

a{ordered} b

Fig. 14-2

2. Given the object model shown in Fig. 14-3, explain each OCL statement. What does it
specify? Is the OCL invariant reasonable? Is it always true?

familytree
a) self.person = self.marriage.child

marriage
b) self.child.birthfam = self
c) self.husband.birthdate < self.wife.birthdate

person
d) self.birthfam.child_include(self)
e) self.marriage->size = 1
f) self.marriage.wife.birthdate < self.birthdate

3. Write OCL constraints for a restaurant without a smoking section that seats customers
in order of arrival.

Class group
Char* name
Int number
Int arrivalorder

Class waitlist
Group* list[MAX]
Int listptr
Void addtolist(group* newgroup)
Group* seatnext()

Class restaurant
Waitlist* waiting
Void arrive(group* newgroup)
Group* seat()

CHAPTER 14 Formal Notations214

family tree

marriage

birthfam

marriage

startdate
enddate
#children

name
sex
birthdate

marriage

mother

father

child

person

personmarriage

Fig. 14-3

Answers to Review Questions

1. What kind of questions are specifications supposed to be able to answer?

Usually, the questions are about the behavior of the proposed software. Developers
should be able to use the specifications to determine exactly what the software should
do in a specified situation.

2. Why would ambiguity be a problem?

If the ambiguity means that the developer will interpret the specification differently
than what the user wants, then there will be a problem.

3. Why are mathematical notions, such as sets, a good foundation for specifications?

Mathematical notions such as sets are a good foundation for specifications because
sets and set operations are precisely defined. For example, the union of two sets is well
understood. If the behavior of a function can be defined as operations on specified sets,
then it will be easy to determine exactly what the function is supposed to do.

4. What is the difference between preconditions, post-conditions, and invariants?

A precondition is something that has to be true before a function can execute. A post-
condition is something that has to be true on completion of the function. An invariant
is something that should be true throughout the execution of the function. Actually,
most invariants are true between every operation.

Answers to Problems

1. All are okay except for pre:self.a.b = self.c.a, which should be pre:
self.a.b = self.c.d.

2. Given the object model shown in Fig. 14-4, explain each OCL statement. What does it
specify? Is the OCL invariant reasonable? Is it always true?

familytree
a) self.person = self.marriage.child

marriage
b) self.child.birthfam = self
c) self.husband.birthdate < self.wife.birthdate

CHAPTER 14 Formal Notations 215

person
d) self.birthfam.child_include(self)
e) self.marriage->size = 1
f) self.marriage.wife.birthdate < self.birthdate

a. This invariant says that the set of persons is the same as the set of all children or
every person has his or her birth marriage listed. This is a reasonable invariant, and it
is true if the data is complete.

b. This invariant says that every child has his or her birth family listed and it matches
the instance that points to the person as a child. This is reasonable and is always true.

c. This says that every husband is older than his wife. This invariant can be stated, but
it does not match reality.

d. This states that the set of children (siblings) reachable from the birthfam includes
the person. This is reasonable and is always true.

e. This states that the set of marriages for a person is only one. It does not match
reality.

f. Either your own birthday (if female) or your spouse’s (if male) is less than yours.
Not reasonable. Not always true.

3. Write OCL constraints for a restaurant without a smoking section that seats customers
in order of arrival.

Class group
Char* name
Int number
Int arrivalorder

Class waitlist
Group* list[MAX]
Int listptr
Void addtolist(group* newgroup)
Group* seatnext()

CHAPTER 14 Formal Notations216

family tree

marriage

birthfam

marriage

startdate
enddate
#children

name
sex
birthdate

marriage

mother

father

child

person

personmarriage

Fig. 14-4

Class restaurant
Waitlist* waiting
Void arrive(group* newgroup)
Group* seat()

Waitlist

Self.Listptr = self.list->size
Void waitlist::addtolist(group* newgroup)

Pre: self.listptr < MAX
Post: forall(i | list[i] = list[i-1]@pre)

List[0] = newgroup
Listptr = listptr@pre+1

Group* waitlist::seatnext()
Pre: self.listprt > 0
Post: Result = list[listptr@pre]

Self.listptr = self.listprt@pre - 1
Group* Restaurant::seat

Pre: waiting.waitlist->size > 0
Post: waiting.waitlist->size = waiting. waitlist@pre->size
- 1
Result = waiting.seatnext()
and forall (x : group | waiting.seatnext().arrivalorder
<= x.arrivalorder)

CHAPTER 14 Formal Notations 217

This page intentionally left blank.

TE
AM
FL
Y

Team-Fly®

219

Z1 (see Operand)
Z2 (see Operator)
Z2* (see Potential operand)

Absolute scale, 75, 86

Abstraction, 130–131, 141

Acceptance testing, 2, 3

Actor, 7

Actual cost of work performed, 35

ACWP (see Actual cost of work performed)

Adhesiveness, 134, 135, 144

Aggregation, 11, 24

AHF (see Attribute Hiding Factor)

AIF (see Attribute Inheritance Factor)

A-kind-of relationship, 173

Alpha testing, 2

Answer set, 73

Architectural design, 2, 3, 128

Artifact, 7

Associations, 11, 175, 176

Attribute Hiding Factor (AHF), 189, 190

Attribute Inheritance Factor (AIF), 191

B&B problem, 122–126, 136–139, 181, 182, 192

BAC (see Budget at completion)

Base class, 169

Basili, Victor, 83

BCW (see Budgeted cost of work)

BCWP (see Budgeted cost of work performed)

BCWS (see Budgeted cost of work scheduled)

Behavioral modeling, 114, 121

Beta testing, 2

Bieman, James, 133, 142

Boehm, Barry, 4, 57

Boundary testing, 157

Budget at completion (BAC), 35

Budgeted cost of work (BCW), 35

Budgeted cost of work performed (BCWP), 35

Budgeted cost of work scheduled (BCWS), 35

C0 coverage, 149

C1 coverage, 150

Capability maturity model (CMM), 33

CBO (see Coupling between object classes)

CF (see Coupling factor)

CFG (see Control flow graph)

Checklists, 101, 106, 107

Chidamber, Shyam, 183, 196

Chief programmer team, 31

CMM (see Capability maturity model)

COCOMO (see Constructive cost model)

Cohesion, 131, 132, 141, 142

Completion criteria, 48

Complexity, 86

Computation use, data flow metrics, 154

Constructive cost model, 57, 58, 62

Control flow graph (CFG), 16, 76, 77, 150

Cost analysis, 1

Cost estimation, 54–62

line of code based, 54, 56

parameters in, 56

Cost parameters, 56, 71

Cost performance index (CPI), 35

Cost variance (CV), 35

Coupling, 131, 135, 141, 185, 187, 197

Coupling between object classes (CBO), 185, 187, 197

Coupling factor (CF), 192

Coverage criterion in testing, 145, 146

CPI (see Cost performance index)

Critical path in PERT, 50, 52, 66

CV (see Cost variance)

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Cyclomatic number, 76, 77, 78, 86, 87, 88, 89

Data design, 128

Data dictionary, 116

Data flow diagram (DFD), 9, 23, 24, 113, 114, 121–123

Data flow testing, 145, 154–155

Decision tree, 93

Defect report, 3

Definition free path, 154

Deliverable, 1, 47, 48

DeMarco, Tom, 61

Dental office problem, 97, 122–126, 182

Dependencies, 50, 132, 133

Depth of Inheritance Tree (DIT), 184, 187, 196

Derived class, 169

Design, 2, 3, 127–144

architectural, 2, 3

attributes of, 130–132

cohesion, 131–135, 141–144

coupling, 131, 135–136, 141

detailed, 2, 3

interface, 2, 129–130

phases of, 128–139

traceability, 136

DFD (see Data flow diagrams)

Dharma, H, 136

DIT (see Depth of Inheritance Tree)

Domain analysis, 1, 174, 181

Domain space, 145

Earned value (EV), 35, 40–44, 46

Economy of scale, 56, 66, 67

Effort in software science, 81

Empirical relation system, 73

Encapsulation, 189

EQF (see Estimate quality factor)

Error rate, 37, 98, 101

plotting, 102, 111

Error tracking, 36, 45, 46

Estimate quality factor, 61

Eta1 (see Operand)

Eta2 (see Operator)

Euler, Leonard, 76

EV (see Earned value)

Every-branch testing, 150

Every path testing, 150

Every statement testing, 149

Exhaustive testing, 145

Existence dependency (ED), 12, 177

Factory problem, 26, 27

Failure, 101, 102

Failure rates, 102

Family tree problem, 12, 173, 176, 216

Fault number, 102

Formal notations, 208–217

Function pairs testing, 199–203, 206–207

Follow-up in inspections, 101

Formal inspection (see Inspection)

Formal notations, 208–217

Formal technical review (FTR), 99–101, 106–108

FPA (see Function point analysis)

FTR (see Formal technical review)

Function point, unadjusted, 59

Function point analysis, 58

Functional testing, 145, 146, 162, 163

Glue tokens, 134, 144

Goal question measure, 83

GQM (see Goal question measure)

Grocery store problem, 26, 27, 172, 174, 175

Gunter, C. A, 127, 141, 142

Halstead, Maurice, 78

Height, 74, 86

Henry, Sallie, 82

Hierarchy diagram, 16

Hierarchical team organization, 31

HK (see Information flow measure)

Humphrey, Watt, 34

IEEE SQA Plan, 103, 104, 109

IEEE SRS, 118–119

Implementation level in software science, 81

Inch-pebble, 39, 42

Incremental model, 4

Infeasible path, 150

Information flow measure, 82

Inheritance, 11, 169, 173

depth of tree (DIT), 184, 187, 196

number of children (NOC), 185, 187, 197

Inspection, 99–101, 108

roles in, 100

steps of, 100

Instance diagram, 13, 27

Instantaneous failure rate, 102

Integration testing, 2

Interface design, 2, 128

Interfaces, 129

Inter-failure time, 102

Interval scale, 75, 86

Invariant, 209, 211

Is-a relationship, 11

Is_visible, 189

Kafura, Dennis, 82

KDSI, 57

INDEX220

Lack of Cohesion in Methods (LCOM), 185, 188

Lattice model, 19

LCOM (see Lack of cohesion in methods)

Length, estimate of, 80

Length measure in software science, 79

Library problem, 11, 13–16, 21, 26, 28, 113, 116,

128–132, 170, 171, 177, 178, 210–212

Line of code (LOC), 76

Line of code, estimation based on, 55

Linear sequential model, 3

Management, critical practices in, 32

Marginal cost, 56

Market analysis, 1

Matrix, for testing, 148

Matrix organization, 31

McCabe, Thomas, 76

Measure, indirect, 72

Measurement, 72

statistics of, 75

Measurement scale, 74

Measurement theory, 73

Meetings, inspection, 100

Method hiding factor (MHF), 189, 190

Method inheritance factor (MIF), 191

Metrics, 72–90, 183–198

attribute hiding factor (AHF), 189, 190

attribute inheritance factor (AIF), 191

coupling between object classes (CBO), 185, 187,

197

coupling factor (CF), 192

depth of inheritance tree (DIT), 184, 184

lack of cohesion in methods (LCOM), 185, 188

method hiding factor (MHF), 189, 190

method inheritance factor (MIF), 191

MOOD, 183, 189–193

number of children (NOC), 185, 187, 197

object-oriented, 183–198

polymorphism factor (PF), 193

response for a class (RFC), 185, 188, 198

validation of, 72

weighted methods per class (WMC), 184, 187, 196

MHF (see Method hiding factor)

MIF (see Method inheritance factor)

Milestone, 1, 5, 47

Miller, Edward F., 149

MM testing, 199, 200, 206–207

Moderator, inspections, 100

Modularity, 130

Monotonicity, 74, 87

MOOD metrics, 183, 189–193

Multiple condition testing, 151

Multiplicities, 178, 179

Myers, Glenford, 147

NOC (see Number of Children)

Nominal scale, 74, 86

Noun-in-text approach, 171, 173

Number of Children (NOC), 185, 187, 197

Numerical relation system, 73

Object constraint language (OCL), 210–214

attributes values in, 211

invariants in, 211

navigation within, 210

pre- and post-conditions in, 212

predefined operations in, 212

Object model, 2, 11, 27, 28, 112, 129, 182

Object-oriented analysis, 127

Object-oriented design, 127, 169

Object-oriented development, 169–182

Object-oriented metrics, 183

Object-oriented testing, 199–207

Objects, 171–173

OCL (see Object constraint language)

Off test, 157

On test, 157

OOA (see Object-oriented analysis)

OOD (see Object-oriented design)

Operand, 78

Operational profile, 156

Operator, 78

Ordinal scale, 75, 86

Ott, Linda, 133, 142

Overview in inspections, 100

Parnas, David L, 4

Partial order, 73, 86

Part-of relationship, 11

Pearson correlations, 75

Personal software process (PSP), 34

PERT (see Program evaluation and review technique)

Petri net, 10, 23

PF (see Polymorphism factor)

Phased life cycle, 5

Planar graph, 76

Planned value (PV), 35

Polymorphism, 171

Polymorphism factor (PF), 193

Post-condition, 209, 212

Postmortem, 37

Potential operand, 79

Potential volume, 81

Precondition, 209, 212

Predecessor, 50,52

Predicate use, 154

Preparation in inspections, 100

Problems:

B&B, 122–126, 136–139, 181, 182, 192

INDEX 221

Problems (Cont.):

dental office, 122–126, 182

family tree, 173, 176, 216

grocery store, 172, 174, 175

library, 113, 116, 128–132, 170, 171, 177, 178, 210–212

restaurant, 216–217

stack, 203

student-section, 176, 178

testing tool, 118

triangle, 147–150, 154–156, 158

vi-like editor, 113–117

Procedural design, 128

Process management, 30, 41

Process metric, 83

Process model, 7, 8, 31, 48, 108

descriptive, 7

prescriptive, 8

Producer, inspections, 100

Product metric, 76

Productivity, 60, 83

Program evaluation and review technique (PERT), 50,

54, 66, 69, 70

Program slices (see Slices)

Programmer productivity, 34, 39, 43

Project planning, 47–71

COCOMO, 57–58, 71

cost estimation, 54–60, 71

critical path, 52, 69–70

estimate quality factor, 61

function point analysis, 58–60, 71

PERT, 50–54, 69–70

slack time, 53, 69–70

work breakdown structure, 47–50, 65–69

Project management, 30–46

capability maturity model, 33–34

chief programmer teams, 31

critical practices, 32–33

earned value analysis, 35–36, 43–46

error tracking, 36–37, 45–46

personal software process, 34–35, 39

post-mortem reviews, 37–39

programmer productivity, 43

Project planning, 1

Project schedule, 3

Prototype, 4

Prototyping model, 4

PSP (see Personal software process)

PV (see Planned value)

Quality, 99–111

Random testing, 145, 155

Range, 145

Ratio scale, 75, 86

Reader, during inspections, 100

Recorder, during inspections, 100

Refinement, 130

Regression testing, 2

Reliability, 101–102, 108

Representation condition, 73, 74

Requirements, 1, 112–126

data dictionary, 116

data flow diagrams, 113, 114

elicitation of, 1

object model, 112–113

scenario, 115, 121, 124

specification of, 2

state diagrams, 115, 121, 125

system diagram, 117, 121, 126

use case, 114, 121, 123

Requirements specification, 118

Response for a class (RFC), 185, 188, 198

Response set, 185, 188

Reuse, 174

Rework, during inspections, 101

Risk, 91–98

analysis, 91

decision tree, 93, 97

estimation, 92

exposure, 92, 97

identification, 91

impact, 92

management, 91

management plan, 94

mitigation, 94

probability, 92

Rombach, Dieter, 83

Royce, W, 3

RS (see Response set)

Scale, 74–75, 86–87

absolute, 75, 86

interval, 86

nominal, 74, 86

ordinal, 86

ratio, 86

Scenario, 15, 28, 115, 121, 124, 142

Schedule performance index (SPI), 35

Schedule variance (SV), 35

Scheduling, 1

Sequence diagram, 15

Shoe size, 86

Slack time, 53, 66

Slices, 132

Software cost estimation (see Cost estimation)

Software design (see Design)

Software life cycle, 1

Software life cycle models, 3

INDEX222

Software metrics (see Metrics)

Software probe, 102

Software process model, 7–8, 22

Software project management (see Project management)

Software project managers network (SPMN), 32

Software quality assurance, 1, 99

Software quality assurance plan, 3, 103

Software requirements (see Requirements)

Software science, 78, 79, 90

Software testing (see Testing)

SOW (see Statement of work)

Specification, formal, 208

SPI (see Schedule performance index)

Spiral model, 4

SQA (see Software quality assurance)

SQAP (see Software quality assurance plan)

SRS (see Requirements, specification of)

Stack problem, 18, 19, 203

Standard deviation, 55, 75

State diagrams, 17, 18, 28, 115, 121, 125, 201

Statement of work, 2

Statistical quality control, 102

Stopping criterion, 145

Strong functional cohesion, 134, 135, 144

Structural testing, 145, 149

Student rank, 75

Student-section problem, 176, 178

Subdomain testing, 148, 153

Subsumes, 146, 154

Successors, 53

Superglue tokens, 134, 135, 144

SV (see Schedule variance)

System diagram, 117, 121, 126

System testing, 2

Taylor, 127

Test case, 146

Test case selection, 145

Test matrix, 148, 163, 164

Test plan, 3

Test report, 3

Testing, 2, 145–168, 199–207

acceptance, 2, 3

Testing (Cont.):

alpha, 2

beta, 2

boundary, 157

data flow, 154

every-branch coverage, 150

every path coverage, 150

every statement coverage, 149

exhaustive, 145

functional, 145, 146, 162, 163

integration, 2

multiple condition coverage, 151

object oriented, 199–207

random, 145, 155–157

regression, 2

structural, 145, 149

subdomain, 153

unit, 2

Testing tool problem, 118

Theta, 102

Threshold value, 78

Time, in software science, 82

Token, 78

Traceability, 136–139

Triangle problem, 17, 147–150, 154–156, 158

UML (see Unified modeling language)

Unified modeling language (UML), 11, 115, 169, 184

Unit testing, 2

Use case, 175

Use case diagram, 14, 114, 121, 123

Use case scenarios, 3

User manual, 3

Volume, in software science, 81

Visibility, 30, 41, 189

Waterfall model, 3, 4

WBS (see Work breakdown structure)

Weak functional cohesion, 134, 135, 144

Weighted methods per class (WMC), 184, 187, 196

WMC (see Weighted Methods per Class)

Work breakdown structure (WBS), 2, 47, 65–68

INDEX 223

