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Preface

The concepts and theory of signals and systems are needed in almost all electrical engineering fields
and in many other engineering and scientific disciplines as well. They form the foundation for further
studies in areas such as communication, signal processing, and control systems.

This book is intended to be used as a supplement to all textbooks on signals and systems or for self-
study. It may also be used as a textbook in its own right. Each topic is introduced in a chapter with
numerous solved problems. The solved problems constitute an integral part of the text.

Chapter 1 introduces the mathematical description and representation of both continuous-time and
discrete-time signals and systems. Chapter 2 develops the fundamental input-output relationship for
linear time-invariant (LTI) systems and explains the unit impulse response of the system and
convolution operation. Chapters 3 and 4 explore the transform techniques for the analysis of LTI
systems. The Laplace transform and its application to continuous-time LTI systems are considered in
Chapter 3. Chapter 4 deals with the z-transform and its application to discrete-time LTI systems. The
Fourier analysis of signals and systems is treated in Chapters 5 and 6. Chapter 5 considers the Fourier
analysis of continuous-time signals and systems, while Chapter 6 deals with discrete-time signals and
systems. The final chapter, Chapter 7, presents the state space or state variable concept and analysis
for both discrete-time and continuous-time systems. In addition, background material on matrix
analysis needed for Chapter 7 is included in Appendix A.

| am grateful to Professor Gordon Silverman of Manhattan College for his assistance, comments, and
careful review of the manuscript. | also wish to thank the staff of the McGraw-Hill Schaum Series,
especially John Aliano for his helpful comments and suggestions and Maureen Walker for her great
care in preparing this book. Last, | am indebted to my wife, Daisy, whose understanding and constant
support were necessary factors in the completion of this work.

HWEI P. HSU
MONTVILLE, NEW JERSEY






To the Student

To understand the material in this text, the reader is assumed to have a basic knowledge of calculus,
along with some knowledge of differential equations and the first circuit course in electrical
engineering.

This text covers both continuous-time and discrete-time signals and systems. If the course you are
taking covers only continuous-time signals and systems, you may study parts of Chapters 1 and 2
covering the continuous-time case, Chapters 3 and 5, and the second part of Chapter 7. If the course
you are taking covers only discrete-time signals and systems, you may study parts of Chapters 1 and 2
covering the discrete-time case, Chapters 4 and 6, and the first part of Chapter 7.

To really master a subject, a continuous interplay between skills and knowledge must take place. By
studying and reviewing many solved problems and seeing how each problem is approached and how it
is solved, you can learn the skills of solving problems easily and increase your store of necessary
knowledge. Then, to test and reinforce your learned skills, it is imperative that you work out the
supplementary problems (hints and answers are provided). | would like to emphasize that there is no
short cut to learning except by "doing."






Contents

Chapter 1. Signals and Systems 1
1.1 Introduction 1
1.2 Signals and Classification of Signals 1
1.3 Basic Continuous-Time Signals 6
1.4 Basic Discrete-Time Signals 12
1.5 Systems and Classification of Systems 16
Solved Problems 19
Chapter 2. Linear Time-Invariant Systems 56
2.1 Introduction 56
2.2 Response of a Continuous-Time LTI System and the Convolution Integral 56
2.3 Properties of Continuous-Time LTI Systems 58
2.4 Eigenfunctions of Continuous-Time LTI Systems 59
2.5 Systems Described by Differential Equations 60
2.6 Response of a Discrete-Time LTI System and Convolution Sum 61
2.7 Properties of Discrete-Time LTI Systems 63
2.8 Eigenfunctions of Discrete-Time LTI Systems 64
2.9 Systems Described by Difference Equations 65
Solved Problems 66
Chapter 3. Laplace Transform and Continuous-Time LTI Systems 110
3.1 Introduction 110
3.2 The Laplace Transform 110
3.3 Laplace Transforms of Some Common Signals 114
3.4 Properties of the Laplace Transform 114
3.5 The Inverse Laplace Transform 119
3.6 The System Function 121
3.7 The Unilateral Laplace Transform 124
Solved Problems 127
Chapter 4. The z-Transform and Discrete-Time LTI Systems 165
4.1 Introduction 165
4.2 The z-Transform 165
4.3 z-Transforms of Some Common Sequences 169
4.4 Properties of the z-Transform 171
4.5 The Inverse z-Transform 173
4.6 The System Function of Discrete-Time LTI Systems 175
4.7 The Unilateral z-Transform 177
Solved Problems 178
Chapter 5. Fourier Analysis of Continuous-Time Signals and Systems 211
5.1 Introduction 211
5.2 Fourier Series Representation of Periodic Signals 211
5.3 The Fourier Transform 214
5.4 Properties of the Continuous-Time Fourier Transform 219

vii



5.5 The Frequency Response of Continuous-Time LTI Systems 223

5.6 Filtering 227
5.7 Bandwidth 230
Solved Problems 231
Chapter 6. Fourier Analysis of Discrete-Time Signals and Systems 288
6.1 Introduction 288
6.2 Discrete Fourier Series 288
6.3 The Fourier Transform 291
6.4 Properties of the Fourier Transform 295
6.5 The Frequency Response of Discrete-Time LTI Systems 300
6.6 System Response to Sampled Continuous-Time Sinusoids 302
6.7 Simulation 303
6.8 The Discrete Fourier Transform 305
Solved Problems 308
Chapter 7. State Space Analysis 365
7.1 Introduction 365
7.2 The Concept of State 365
7.3 State Space Representation of Discrete-Time LTI Systems 366
7.4 State Space Representation of Continuous-Time LTI Systems 368
7.5 Solutions of State Equations for Discrete-Time LTI Systems 371
7.6 Solutions of State Equations for Continuous-Time LTI Systems 374
Solved Problems 377
Appendix A. Review of Matrix Theory 428
A.1 Matrix Notation and Operations 428
A.2 Transpose and Inverse 431
A.3 Linear Independence and Rank 432
A.4 Determinants 433
A.5 Eigenvalues and Eigenvectors 435
A.6 Diagonalization and Similarity Transformation 436
A.7 Functions of a Matrix 437
A.8 Differentiation and Integration of Matrices 444
Appendix B. Properties of Linear Time-Invariant Systems and Various Transforms 445
B.1 Continuous-Time LTI Systems 445
B.2 The Laplace Transform 445
B.3 The Fourier Transform 447
B.4 Discrete-Time LTI Systems 449
B.5 The z-Transform 449
B.6 The Discrete-Time Fourier Transform 451
B.7 The Discrete Fourier Transform 452
B.8 Fourier Series 453
B.9 Discrete Fourier Series 454
Appendix C. Review of Complex Numbers 455
C.1 Representation of Complex Numbers 455
C.2 Addition, Multiplication, and Division 456
C.3 The Complex Conjugate 456
C.4 Powers and Roots of Complex Numbers 456
Appendix D. Useful Mathematical Formulas 458
D.1 Summation Formulas 458
D.2 Euler's Formulas 458

viii



Index

D.3 Trigonometric Identities

D.4 Power Series Expansions

D.5 Exponential and Logarithmic Functions
D.6 Some Definite Integrals

458
459
459
460

461






Chapter 1

Signals and Systems

1.1 INTRODUCTION

The concept and theory of signals and systems are needed in almost all electrical
engineering fields and in many other engineering and scientific disciplines as well. In this
chapter we introduce the mathematical description and representation of signals and
systems and their classifications. We also define several important basic signals essential to
our studies.

1.2 SIGNALS AND CLASSIFICATION OF SIGNALS

A signal is a function representing a physical quantity or variable, and typically it
contains information about the behavior or nature of the phenomenon. For instance, in a
RC circuit the signal may represent the voltage across the capacitor or the current flowing
in the resistor. Mathematically, a signal is represented as a function of an independent
variable . Usually ¢ represents time. Thus, a signal is denoted by x(¢).

A. Continuous-Time and Discrete-Time Signals:

A signal x(¢) is a continuous-time signal if ¢ is a continuous variable. If ¢ is a discrete
variable, that is, x(¢) is defined at discrete times, then x(¢) is a discrete-time signal. Since a
discrete-time signal is defined at discrete times, a discrete-time signal is often identified as
a sequence of numbers, denoted by {x,} or x[n], where n = integer. Illustrations of a
continuous-time signal x(¢) and of a discrete-time signal x[n] are shown in Fig. 1-1.

x(1) x[n]
\V -2
9!
0 tV 5-4-3-2-1 01 2 3 456 n
(a) )]

Fig. 1-1 Graphical representation of (a) continuous-time and (b) discrete-time signals.

A discrete-time signal x[n] may represent a phenomenon for which the independent
variable is inherently discrete. For instance, the daily closing stock market average is by its
nature a signal that evolves at discrete points in time (that is, at the close of each day). On
the other hand a discrete-time signal x[n] may be obtained by sampling a continuous-time

1



2 SIGNALS AND SYSTEMS [CHAP. 1

signal x(¢) such as
x(ty), x(t)),...,x(t,),...
or in a shorter form as

x[0], x[1],..., x[n],...
or Xy XqyeensXpyeon

where we understand that
x,=x[n] =x(t,)

and x,’s are called samples and the time interval between them is called the sampling
interval. When the sampling intervals are equal (uniform sampling), then

X, =x[n] =x(nT;)

where the constant 7, is the sampling interval.
A discrete-time signal x[n] can be defined in two ways:

1. We can specify a rule for calculating the nth value of the sequence. For example,
(3 )" n>0
0 n<o
or ) ={1,5. 4., ()"}

2. We can also explicitly list the values of the sequence. For example, the sequence
shown in Fig. 1-1(b) can be written as

x[n]=x,=

{x,}=1{...,0,0,1,2,2,1,0,1,0,2,0,0,...}
or {x,}=1(1,2,2,1,0,1,0,2}

We use the arrow to denote the n =0 term. We shall use the convention that if no
arrow is indicated, then the first term corresponds to n = 0 and all the values of the
sequence are zero for n <0.

The sum and product of two sequences are defined as follows:
{c.} ={a,} + (b} —>c,=a,+b,
{Cn] = {a'l}{bll} - Cn = anbn

{c,} =ala,) —c,=aa, a = constant

B. Analog and Digital Signals:

If a continuous-time signal x(¢) can take on any value in the continuous interval (a, b),
where a may be — and b may be +x, then the continuous-time signal x(¢) is called an
analog signal. If a discrete-time signal x[n] can take on only a finite number of distinct
values, then we call this signal a digital signal.

C. Real and Complex Signals:

A signal x(¢) is a real signal if its value is a real number, and a signal x(t) is a complex
signal if its value is a complex number. A general complex signal x(¢) is a function of the
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form
x(1) =x,(1) +x,(1)
where x,(¢) and x,(¢) are real signals and j=vV—1.

Note that in Eq. (1.1) ¢t represents either a continuous or a discrete variable.

D. Deterministic and Random Signals:

(1.1)

Deterministic signals are those signals whose values are completely specified for any
given time. Thus, a deterministic signal can be modeled by a known function of time 1.
Random signals are those signals that take random values at any given time and must be
characterized statistically. Random signals will not be discussed in this text.

E. Even and Odd Signals:
A signal x(¢) or x[n] is referred to as an even signal if
x(—t)=x(t)
x[—n] =x[n]
A signal x(t) or x[n] is referred to as an odd signal if
x(—t)=—x(t)
x[—n] = —x[n]

Examples of even and odd signals are shown in Fig. 1-2.

x[n]

(1.2)

(1.3)

x(1)
> o}
0 t -4
(a)
x(1)

(©

o

i

Iy
[
Gre————
@ m—

o—
01 4
®)

x[n)

1 2 3 4
@

Fig. 1-2 Examples of even signals (a and b) and odd signals (¢ and d).

=y
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Any signal x(¢) or x[n] can be expressed as a sum of two signals, one of which is even
and one of which is odd. That is,

x(1) =x,(r) +x,(1)

1.

x{n] =x,[n] +x,[n] .

where x,(t)=3{x(t) +x(—1)) even part of x(t) (1.5)
x,[n] =3{x[n] +x[—n]} even part of x|[n] '

x, (1) =3{x(t) —x(—1)} odd part of x(t) (1.6)

x,[n] =3{x[n] —x[—-n]} odd part of x[n]

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal (Prob. 1.7).

F. Periodic and Nonperiodic Signals:

A continuous-time signal x(¢) is said to be periodic with period T if there is a positive
nonzero value of 7 for which

x(t+T)=x(t) all ¢ (1.7)

An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or Fig. 1-3(a) it follows
that

x(t+mT)=x(t) (1.8)

for all + and any integer m. The fundamental period T, of x(t) is the smallest positive
value of T for which Eq. (1.7) holds. Note that this definition does not work for a constant

x(1)

AAAAAAANA

~y

1
_JZNJ_L!II,OIL,I]J .

Fig. 1-3 Examples of periodic signals.
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signal x(¢) (known as a dc signal). For a constant signal x(¢) the fundamental period is
undefined since x(t) is periodic for any choice of T (and so there is no smallest positive
value). Any continuous-time signal which is not periodic is called a nonperiodic (or
aperiodic) signal.

Periodic discrete-time signals are defined analogously. A sequence (discrete-time
signal) x[n] is periodic with period N if there is a positive integer N for which

x[n+N]=x[n] all n (1.9)

An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it
follows that

x[n+mN] =x[n] (1.10)

for all n and any integer m. The fundamental period N, of x[n] is the smallest positive
integer N for which Eq. (1.9) holds. Any sequence which is not periodic is called a
nonperiodic (or aperiodic) sequence.

Note that a sequence obtained by uniform sampling of a periodic continuous-time
signal may not be periodic (Probs. 1.12 and 1.13). Note also that the sum of two
continuous-time periodic signals may not be periodic but that the sum of two periodic
sequences is always periodic (Probs. 1.14 and 1.15).

G. Energy and Power Signals:

Consider v(t) to be the voltage across a resistor R producing a current i(¢). The
instantaneous power p(t) per ohm is defined as

)= v(t)i(t) 2

t 1.11
p(t) = —— =i*(1) (1.11)
Total energy E and average power P on a per-ohm basis are
E=[ ir)dt joules (1.12)
1 .12
P=lim — [ 2(1)dt watts (1.13)
Tow -T/2

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is
defined as

E=[ |x(0)f (1.14)
The normalized average power P of x(t) is defined as

P= lim lfm

2
x(t)[*dt 1.15
Jm — _ml (1)l (1.15)

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is
defined as

o

E= Y |x[n][ (1.16)

n=-o
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The normalized average power P of x[n] is defined as
N

1
P i 2
Jlim 21\'14_1"=E_N|,\¢[n]| (1.17)

Based on definitions (1.14) to (1.17), the following classes of signals are defined:

1. x(¢) (or x[n] is said to be an energy signal (or sequence) if and only if 0 < E < o, and
so P=0.

2. x(t) (or x[n] is said to be a power signal (or sequence) if and only if 0 < P < o, thus
implying that £ = o,

3. Signals that satisfy neither property are referred to as neither energy signals nor power
signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and
then the average power of this signal need only be calculated over a period (Prob. 1.18).

1.3 BASIC CONTINUOUS-TIME SIGNALS
A. The Unit Step Function:

The unit step function u(t), also known as the Heaviside unit function, is defined as

0 t<0

which is shown in Fig. 1-4(a). Note that it is discontinuous at ¢ = 0 and that the value at
t = 0 is undefined. Similarly, the shifted unit step function u(t —¢,) is defined as

u(t)={l £>0 (1.18)

1 t>t

which is shown in Fig. 1-4(b).

u(t) u(r -1y

~vY
e

0

(@) b)
Fig. 1-4 (a) Unit step function; (b) shifted unit step function.

B. The Unit Impulse Function:

The unit impulse function 6(t), also known as the Dirac delta function, plays a central
role in system analysis. Traditionally, 6(t) is often defined as the limit of a suitably chosen
conventional function having unity area over an infinitesimal time interval as shown in
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m|—

e—0

B /

—| € |-
Fig. 1-5

Fig. 1-5 and possesses the following properties:

5(')={80 1+0

fj 8(t)dr=1

But an ordinary function which is everywhere 0 except at a single point must have the
integral 0 (in the Riemann integral sense). Thus, 8(¢) cannot be an ordinary function and
mathematically it is defined by

[ #(1)5(t)dr = 4(0) (1.20)

where ¢(t) is any regular function continuous at ¢ = 0.
An alternative definition of 8(t) is given by

b d’(O) a<0<b
[ #()s(1)dr = {0 a<b<0 or 0<a<b (1.21)
“ undefined a=0 or b=0

Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an
ordinary Riemann integral. In this sense, 6(¢) is often called a generalized function and
(1) is known as a testing function. A different class of testing functions will define a

different generalized function (Prob. 1.24). Similarly, the delayed delta function &(¢ —¢,) is
defined by

[ 3(0)8( = 15) dr = 6(10) (1.22)

where ¢(t) is any regular function continuous at ¢ = ¢,. For convenience, &(¢) and 8(t ~ 1)
are depicted graphically as shown in Fig. 1-6.
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&(1) 8(t - 1)

-y
=y

0

(@) (&)
Fig. 1-6 (a) Unit impulse function; (b) shifted unit impulse function.

Some additional properties of 8(¢) are

8(at) = |—:1—[6(t) (1.23)
8(—t)=28(t) (1.24)
x(1)8(t) =x(0)8(¢) (1.25)

if x(¢) is continuous at ¢ = 0.
x(8)8(t —ty) =x(t,)8(t —ty) (1.26)

if x(¢) is continuous at 1 = 1,,.
Using Egs. (1.22) and (1.24), any continuous-time signal x(¢) can be expressed as

x(1) =f:0x(7)6(t —r)dr (1.27)

Generalized Derivatives:

If g(¢) is a generalized function, its nth generalized derivative g(¢) =d"g(t)/dt" is
defined by the following relation:

fi¢(:)g‘"’(r)dt = ( —1)"/_00 & (t)g(t)dt (1.28)

where ¢(1) is a testing function which can be differentiated an arbitrary number of times
and vanishes outside some fixed interval and ¢X(¢t) is the nth derivative of ¢(t). Thus, by
Eqgs. (1.28) and (1.20) the derivative of 8(¢) can be defined as

[ $(1)3'(1)di = - $(0) (1.29)

where ¢(t) is a testing function which is continuous at ¢t = 0 and vanishes outside some
fixed interval and ¢'(0) =d¢(t)/dt|,-o. Using Eq. (1.28), the derivative of u(t) can be
shown to be 8(r) (Prob. 1.28); that is,

du(t)
dt

8(t)=u(t)= (1.30)
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Then the unit step function u(t) can be expressed as

u(t) =f_rm6(‘r)d‘r (1.31)

Note that the unit step function w(t) is discontinuous at t = 0; therefore, the derivative of
u(t) as shown in Eq. (1.30) is not the derivative of a function in the ordinary sense and
should be considered a generalized derivative in the sense of a generalized function. From
Eq. (1.31) we see that u(t) is undefined at ¢t = 0 and

_ /1 t>0
u(t)_{o t<0

by Eq. (1.21) with ¢(¢) = 1. This result is consistent with the definition (1.718) of u(t).

C. Complex Exponential Signals:
The complex exponential signal
x(t) =el“ (1.32)

/

x(1) 7

7
P
"“'J\"—_,S—’]\— /\ /\ f\

_\1___\/___\1\.. V V

B

-~

-~
~
~

(@)

N\ x(1)

b
Fig. 1-7 (a) Exponentially increasing sinusoidal signal; (b) exponentially decreasing sinusoidal signal.
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is an important example of a complex signal. Using Euler’s formula, this signal can be
defined as

x(t) = e’ = cos wyt +jsin w,t (1.33)

Thus, x(¢) is a complex signal whose real part is cos w,¢ and imaginary part is sin wyf. An
important property of the complex exponential signal x(¢) in Eq. (1.32) is that it is
periodic. The fundamental period T, of x(¢) is given by (Prob. 1.9)

2 '
Ty=— (1.34)

Wy

Note that x(t) is periodic for any value of w,.

General Complex Exponential Signals:
Let s =0 + jw be a complex number. We define x(r) as
x(t)=e" =7t =¢%(cos wt +jsin wt) (1.35)

Then signal x(¢) in Eq. (1.35) is known as a general complex exponential signal whose real
part e’’cos wt and imaginary part e’ sinwt are exponentially increasing (o> 0) or
decreasing (o < 0) sinusoidal signals (Fig. 1-7).

Real Exponential Signals:
Note that if s = o (a real number), then Eq. (1.35) reduces to a real exponential signal
x(t)y=e" (1.36)

x(1)

~y

(a)

x(1)

\

i 4

(b)
Fig. 1-8 Continuous-time real exponential signals. (a) o > 0; (b) o < 0.
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As illustrated in Fig. 1-8, if o > 0, then x(¢) is a growing exponential; and if o <0, then
x(1) is a decaying exponential.

D. Sinusoidal Signals:
A continuous-time sinusoidal signal can be expressed as
x(t) =Acos(wyt + 6) (1.37)

where A is the amplitude (real), w, is the radian frequency in radians per second, and @ is
the phase angle in radians. The sinusoidal signal x(¢) is shown in Fig. 1-9, and it is periodic
with fundamental period

2T
= —

(1.38)

o)

The reciprocal of the fundamental period T}, is called the fundamental frequency f,:
1
fo= = hertz (Hz) (1.39)
T,

From Eqgs. (1.38) and (1.39) we have
wy =27 f, (1.40)

which is called the fundamental angular frequency. Using Euler’s formula, the sinusoidal
signal in Eq. (1.37) can be expressed as

Acos(wyt + 0) =A Re{e/“v'+9} (1.41)

where “Re” denotes “real part of.” We also use the notation “Im” to denote “imaginary
part of.” Then

A lmfe/ @+ = 4sin(w,yt + 6) (1.42)
x(1)
A+ To=5
Acos
; T
+-4

Fig. 1-9 Continuous-time sinusoidal signal.



12 SIGNALS AND SYSTEMS [CHAP. 1

1.4 BASIC DISCRETE-TIME SIGNALS
A. The Unit Step Sequence:

The unit step sequence u[n] is defined as

1 n>0
u[n]—{O n < (1.43)
which is shown in Fig. 1-10(a). Note that the value of u[n] at n =0 is defined [unlike the
continuous-time step function u(¢) at ¢ = 0] and equals unity. Similarly, the shifted unit step
sequence u[n — k] is defined as

uln—k1={y =X (1.44)

which is shown in Fig. 1-10(b).

uin)

(a) (b)
Fig. 1-10 (a) Unit step sequence; (b) shifted unit step sequence.

B. The Unit Impulse Sequence:

The unit impulse (or unit sample) sequence 8[n] is defined as
1 n=20
6[n]-{0 n=9 (1.45)

which is shown in Fig. 1-11(a). Similarly, the shifted unit impulse (or sample) sequence
6[n — k] is defined as

1)1 n==k
8[(n—k] = {0 o (1.46)
which is shown in Fig. 1-11(b).

d(n) d[n - k]

(a) (b)
Fig. 1-11 (a) Unit impulse (sample) sequence; (b) shifted unit impulse sequence.
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Unlike the continuous-time unit impulse function 8(¢), 8[n] is defined without mathe-
matical complication or difficulty. From definitions (1.45) and (1.46) it is readily seen that

x[n]8[n] =x[0]8[n] (1.47)
x[n]8[n—k] =x[k]|8[n —k] (1.48)
which are the discrete-time counterparts of Eqs. (1.25) and (1.26), respectively. From
definitions (1.43) to (1.46), 8[n] and u[n] are related by
8[n) =u[n] —u[n-1] (1.49)
uln] = i 5[ k] (1.50)
k= —o

which are the discrete-time counterparts of Egs. (1.30) and (1.31), respectively.
Using definition (1.46), any sequence x[n] can be expressed as

oo

x[n] = Y x[k]é[n—k] (1.51)

k= —

which corresponds to Eq. (1.27) in the continuous-time signal case.

C. Complex Exponential Sequences:

The complex exponential sequence is of the form

x[n] = e/ (1.52)
Again, using Euler’s formula, x[n] can be expressed as
x[n] =€’ =cos Qyn + jsin Qyn (1.53)

Thus x[n] is a complex sequence whose real part is cos ,n and imaginary part is sin Qn.

Periodicity of e/?";
In order for e/™" to be periodic with period N (> 0), {, must satisfy the following
condition (Prob. 1.11):
Qy m c 1.54
=N m = positive integer (1.54)
Thus the sequence /%" is not periodic for any value of Q. It is periodic only if Q,/21r is
a rational number. Note that this property is quite different from the property that the
continuous-time signal e/’ is periodic for any value of w,. Thus, if Q, satisfies the
periodicity condition in Eq. (/.54), Q,# 0, and N and m have no factors in common, then
the fundamental period of the sequence x[n] in Eq. (/.52) is N, given by

N 2
0=m(Q_0) (1.55)

Another very important distinction between the discrete-time and continuous-time
complex exponentials is that the signals e’“’ are all distinct for distinct values of w, but
that this is not the case for the signals e/%”,
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Consider the complex exponential sequence with frequency (Q, + 27k), where k is an
integer:

ej(ﬂo+2-rrk)n — ejﬂonejZ-rrkn — ejﬂun (].56)

since e’2™*" =1. From Eq. (1.56) we see that the complex exponential sequence at

frequency ), is the same as that at frequencies (Q,+27), (Q,+4m), and so on.

Therefore, in dealing with discrete-time exponentials, we need only consider an interval of

length 27r in which to choose 2. Usually, we will use the interval 0 < Q, <27 or the
interval —m <Q, <.

General Complex Exponential Sequences:
The most general complex exponential sequence is often defined as
x[n] = Ca” (1.57)

where C and « are in general complex numbers. Note that Eq. (1.52) is the special case of
Eq. (1.57) with C=1 and a = ¢’*h.

Il

x[n] = cos(%T n)

(a)

1 P 11— |-
I“[ 1[“1

b)
Fig. 1-13 Sinusoidal sequences. (a) x[n]= cos(wn /6); (b) x[n] = cos(n /2).
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Real Exponential Sequences:

If C and « in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four
distinct cases can be identified: a > 1,0<a <1, —~1<a <0, and a < — 1. These four real
exponential sequences are shown in Fig. 1-12. Note that if « =1, x[n] is a constant
sequence, whereas if @ = —1, x[n] alternates in value between +C and —C.

D. Sinusoidal Sequences:

A sinusoidal sequence can be expressed as
x[n] =Acos(Qyn +6) (1.58)

If n is dimensionless, then both (), and 6 have units of radians. Two examples of
sinusoidal sequences are shown in Fig. 1-13. As before, the sinusoidal sequence in Eq.
(1.58) can be expressed as

A cos(Qyn + ) =A Re{e/ v +9) (1.59)

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same
observations [Egs. (1.54) and (1.56)] also hold for sinusoidal sequences. For instance, the
sequence in Fig. 1-13(a) is periodic with fundamental period 12, but the sequence in Fig.
1-13(b) is not periodic.

1.5 SYSTEMS AND CLASSIFICATION OF SYSTEMS

A. System Representation:

A system is a mathematical model of a physical process that relates the input (or
excitation) signal to the output (or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system
is viewed as a transformation (or mapping) of x into y. This transformation is represented
by the mathematical notation

y=Tx (1.60)

where T is the operator representing some well-defined rule by which x is transformed
into y. Relationship (1.60) is depicted as shown in Fig. 1-14(a). Multiple input and/or
output signals are possible as shown in Fig. 1-14(5). We will restrict our attention for the
most part in this text to the single-input, single-output case.

S Syslem  —— Syslem

X
X,

(a) (b)

Fig. 1-14 System with single or multiple input and output signals.

P
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B. Continuous-Time and Discrete-Time Systems:

If the input and output signals x and y are continuous-time signals, then the system is
called a continuous-time system [Fig. 1-15(a)]. If the input and output signals are discrete-time
signals or sequences, then the system is called a discrete-time svstem [Fig. 1-15(b)].

x(n Svs ¥ x{n] S vinl
’ y.f]l\em ‘ r y?]l‘em ‘
(a) (b)

Fig. 1-15 (a) Continuous-time system; (b) discrete-time system.

C. Systems with Memory and without Memory

A system is said to be memoryless if the output at any time depends on only the input
at that same time. Otherwise, the system is said to have memory. An example of a
memoryless system is a resistor R with the input x(t) taken as the current and the voltage
taken as the output y(¢). The input-output relationship (Ohm’s law) of a resistor is

y(1) = Re(1) (L.61)

An example of a system with memory is a capacitor C with the current as the input x(r)
and the voltage as the output y(t); then

.
()= [ x(r)dr (1.62)

A second example of a system with memory is a discrete-time system whose input and
output sequences are related by

n

y[n] = Y x[k] (1.63)

k= —mx

D. Causal and Noncausal Systems:

A system is called causal if its output y(¢) at an arbitrary time ¢ = 1, depends on only
the input x(¢) for ¢ < t,. That is, the output of a causal system at the present time depends
on only the present and /or past values of the input, not on its future values. Thus, in a
causal system, it is not possible to obtain an output before an input is applied to the
system. A system is called noncausal if it is not causal. Examples of noncausal systems are

y(t)=x(r+1) (1.64)
y[n] =x[-n] (1.65)

Note that all memoryless systems are causal, but not vice versa.
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E. Linear Systems and Nonlinear Systems:

If the operator T in Eq. (1.60) satisfies the following two conditions, then T is called a
linear operator and the system represented by a linear operator T is called a linear system:

1. Additivity:
Given that Tx, =y, and Tx, =y,, then
T{x, + x5} =y, +; (1.66)
for any signals x, and x,.

2. Homogeneity (or Scaling):

T{ax}=ay (1.67)

for any signals x and any scalar a.
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a
nonlinear system. Equations (/.66) and (/.67) can be combined into a single condition as
T{a,x, + a,x,} =a,y, +a,y, (1.68)

where a, and a, are arbitrary scalars. Equation (/.68) is known as the superposition

property. Examples of linear systems are the resistor [Eq. (1.6/)] and the capacitor [Eq.
(1.62)). Examples of nonlinear systems are

y=x? (1.69)

y = COS X (1.70)

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.67)] of linear

systems is that a zero input yields a zero output. This follows readily by setting a« = 0 in Eq.
(1.67). This is another important property of linear systems.

F. Time-Invariant and Time-Varying Systems:

A system is called time-invariant if a time shift (delay or advance) in the input signal
causes the same time shift in the output signal. Thus, for a continuous-time system, the
system is time-invariant if

T{x(t —7)}=y(t —17) (1.71)
for any real value of 7. For a discrete-time system, the system is time-invariant (or
shift-invariant) if

T{x[n —k]}=y[n —k] (1.72)
for any integer k. A system which does not satisfy Eq. (1.71) (continuous-time system) or
Eq. (1.72) (discrete-time system) is called a time-varying system. To check a system for

time-invariance, we can compare the shifted output with the output produced by the
shifted input (Probs. 1.33 to 1.39).

G. Linear Time-Invariant Systems

If the system is linear and also time-invariant, then it is called a linear time-invariant
(LTI) system.
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H. Stable Systems:

A system is bounded-input /bounded-output (BIBO) stable if for any bounded input x
defined by

x| <k, (1.73)
the corresponding output y is also bounded defined by
lyl<k, (1.74)

where k, and k, are finite real constants. Note that there are many other definitions of
stability. (See Chap. 7.)

I. Feedback Systems:

A special class of systems of great importance consists of systems having feedback. In a
feedback system, the output signal is fed back and added to the input to the system as
shown in Fig. 1-16.

x(1) )
System .

Fig. 1-16 Feedback system.

Solved Problems
SIGNALS AND CLASSIFICATION OF SIGNALS
L.L1. A continuous-time signal x(¢) is shown in Fig. 1-17. Sketch and label each of the

following signals.
(a) x(t = 2); (b) x(21); (c) x(¢/2); (d) x(—1)

x(t)

3
3

o

11 [ W T S >
-2-101 2 3 45 t

Fig. 1-17
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(@)
(b)
(c)
(d)
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x(t — 2) is sketched in Fig. 1-18(a).
x(2t) is sketched in Fig. 1-18(b).
x(t/2) is sketched in Fig. 1-18(c).
x(—1) is sketched in Fig. 1-18(d).

x(r-2) x(21)
3 F 3 F
r- =
B ¥y
L1 1 [ 11 -> [ | 1 L1 -
-1 01 2 3 4 5 6 7 ! 2-1 01 2 3 T
(a) (b)
x(1/2) x(-1)
3 F - 3
L1 [ W W N U | 1 [ U BT T [ |

-y
~Y

-1 01 23 456 7 89 S5 -4-32-101 2

© (d)
Fig. 1-18

1.2. A discrete-time signal x[n] is shown in Fig. 1-19. Sketch and label each of the
following signals.

(@) x[n = 2); (b) x[2n]; (¢) x[—n); (d) x[—n + 2]

x{n]

| I]
Hrl o >
1012345 n

Fig. 1-19
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(a)
(b)
(c)
(d)
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x[n — 2] is sketched in Fig. 1-20(a).
x[2n] is sketched in Fig. 1-20(b).
x[—n] is sketched in Fig. 1-20(c).
x[—n + 2] is sketched in Fig. 1-20(d).

21

x[n-2) x[2n)
| I I
01234567 n
(a) (b)
x[-n] x[-n+2)
L 3 L 3
[1] ‘
—o—o—1 r L—H 4> = r
5-4-32- 01 n 32 01 2 n
() (d)

Fig. 1-20

1.3. Given the continuous-time signal specified by

x(t) = {3—“'

determine the resultant discrete-time sequence obtained by uniform sampling of x(¢)
with a sampling interval of (a) 0.25 s, (b) 0.5 s, and (¢) 1.0 s.

-1<t<1
otherwise

It is easier to take the graphical approach for this problem. The signal x(t) is plotted in
Fig. 1-21(a). Figures 1-21(b) to (d) give plots of the resultant sampled sequences obtained for
the three specified sampling intervals.

(a) T,=0.25s. From Fig. 1-21(b) we obtain
x[n]=1{...,0,0.25,0.5,0.75,1,0.75,0.5,0.25,0,...)

!

(b) T,=0.5s. From Fig. 1-21(c) we obtain
x[n]={...,0,05,1,0.5,0,...}



22 SIGNALS AND SYSTEMS [CHAP. 1

x(1) x[n] = x(n/4)

1

-1 0 l ! -4 -3-2-101 2 3 4 n

(a) b

x[n] = x(n/2) x[n] = x(n)

N l
— l | —— > © - =
-2 -1 0 1 2 n -1 0 1 n

(c) )

Fig. 1-21

(¢) T,=1s. From Fig. 1-21(d) we obtain

x[n]=1{...,0,1,0,...} = 8[n]

1.4. Using the discrete-time signals x,[n] and x,[n] shown in Fig. 1-22, represent each of
the following signals by a graph and by a sequence of numbers.

(a) y,[nl=x[n]+x,[n]; (b) y,[n]=2x[n]; (c) yyln]=x,[n]lx,(n]

x,[n} X[n]

3

il

2-10 123 4567 n
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(a) y,[n]is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain
y[n]=1{...,0,-2,-2,3,4,3,-2,0,2,2,0, ...}
1

(b) y,[n] is sketched in Fig. 1-23(b). From Fig. 1-23(b) we obtain

y2[n] = ("'90’2)47670v074,4,0, ...}

(¢) y,ln]is sketched in Fig. 1-23(c). From Fig. 1-23(c) we obtain

yiln] = {...,0,%,4,0, )

winl = x[n] + x,(n] yolnl = 2x[n]
6 F
4 4
? 2
2 F I 2@
5 | | L
2 - 3
2 4 —— _— 0
L_1214567 n 21012345617 n
¢d |2
(a) (b)
y;["] = x|["]-le"]
4
-
29
—_————e
2 -1 012 3 45 6 17 n
()
Fig. 1-23

LS. Sketch and label the even and odd components of the signals shown in Fig. 1-24.

Using Egs. (1.5) and (1.6), the even and odd components of the signals shown in Fig. 1-24
are sketched in Fig. 1-25.
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x(1) x(1)
4 4
48‘05’
01 2 45 v 0 r>
(a) (b)
x{n] x(n]
4 lL 4
01 23456 n 101 2345 n
(¢) (d)
Fig. 1-24
1.6. Find the even and odd components of x(¢) = e’
Let x(¢) and x,(¢) be the even and odd components of e’, respectively.
e =x,(t) +x,(1)
From Eqgs. (1.5) and (1.6) and using Euler’s formula, we obtain
x,(t)y=3(e’"+e /") =cost
x,(1) = $(ef = i) =jsint
1.7.  Show that the product of two even signals or of two odd signals is an even signal and

that the product of an even and an odd signal is an odd signal.

Let x(r)=x,(t)x,(¢). If x,(¢) and x,(¢) are both even, then

x(—t)=x(=t)xy(—1) =x,(£)x,(t) =x(¢)

and x(¢) is even. If x(¢) and x,(¢) are both odd, then

x(=1)=x(=0)x(—1) = —x ()] =x ()] =x,(1)x,(1) =x(1)

and x(¢) is even. If x () is even and x,(¢) is odd, then

(=) =x (=) x(—t) =x,()[—x,(1)] = ~x,(1)x,(1) = —x(1)

and x(¢) is odd. Note that in the above proof, variable t represents either a continuous or a

discrete variable.
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x (1) x(1)
4 4 F
2 F 2 -
L 5 -
[ B ) 11 1 1 > B T B | 1
S 0 5 t
)
(a)
x (1) x,(D
4 4 P
| i

(b)
x,(n] x,[n]
4 4}
-
2 2 F
5 -4 -3 2 -] i
5-4-3-2-1 01 23 435 n ll[ll 1
L .2
(c)

-0
&;ﬁ
[
—'—~
[ ) £
-
z
=y
| JN
[ ] £y
I | 1) T
o
2

@t o
[
o
L IR |
L

(@
Fig. 1-25
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Show that

(a) If x(¢) and x[n] are even, then

fjax(t)dt = 2f0ax(t)dt
k

k
Y. x[n] =x[0] +2 §1X[n]

n=—k
(b) If x(¢) and x[n] are odd, then

x(0)=0  and x[0] =0

faax(t)dt=0 and Y x[n] =0

(a) We can write

[ xyae=[° x(f)dt+[:x(r)d:

Letting t = —A in the first integral on the right-hand side, we get

[° x(t)di = [x(=2)(~d)) =f0ax(—)«)d)«

Since x(1) is even, that is, x(—A) =x(A), we have

f:x(—,\)dA =[:x(/\)d)« =f0“x(z)dz

Hence,
/_ax(t)dt=[0x(r)dz+/0x(z)dz=2f0x(:)dz
Similarly,
k -1 k
ka[n]= ZkX[n]+x{0]+ 2 x[n]
n=- n=-— n=1

Letting n = —m in the first term on the right-hand side, we get
~1 k

L x[n]= X x[-m]

n=—k m=1
Since x[n] is even, that is, x[ —m] = x[m], we have
k k k

le{—m] = L x[m]= ¥ x[n]

m= m=1 n=1
Hence,
k k

k k
L x[n]= X x[n]+x[0]+ X x[n]=x[0] +2 X x[n]
n=1 n=1

n=-k n=1

(CHAP. 1

(1.75a)

(1.75b)

(1.76)

(1.77)

(b) Since x(t) and x[n] are odd, that is, x(—¢) = —x(¢) and x[—n}= —x[n], we have

x(-0)=-x(0) and  x[-0]= —x[0]
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Hence,
x(—=0) =x(0) = —x(0) =>x(0) =0
x[—-0] =x[0] = —x[0] = x[0] =0
Similarly,
a 0 a a a
f_ax(z)dt=f_ax(t)dz+[0x(t)dz=[0x(—A)dA +f0x(z)d1
- —fox(A)dA+f0x(r)d:= —fox(z)dz+f0x(:)d:=0
and
k -1 k k k
ka[n]= Y x[n]+x[0]+ ¥ x[n]= ¥ x[-m]+x[0]+ ¥ x[n]
n=-— n=—k n=1 m=1 n=1
k k

k k
= - Z_:lx[m]+x[0]+ Z_:x[n]= - glx[n]+x[0]+ ;‘,x[n]
=x[0]=0

in view of Eq. (1.76).

Show that the complex exponential signal
x(1) = el
is periodic and that its fundamental period is 27 /w,.
By Eq. (1.7), x(¢) will be periodic if
e@ot+T) = glwyt

Since

ejwo(l +7T) — ejwolejon

we must have

e/ol =1 (1.78)
If w, =0, then x(¢) =1, which is periodic for any value of T. If w,+ 0, Eq. (1.78) holds if
2
w,T=m2mw  or T=m— m = positive integer
@y

Thus, the fundamental period T, the smallest positive T, of x(¢) is given by 27 /w,,.

Show that the sinusoidal signal
x(t) = cos(wyt + 6)
is periodic and that its fundamental period is 27 /w,.
The sinusoidal signal x(¢) will be periodic if
cos[wy(t + T) + 6] = cos(wyt + 8)
We note that
cos[wy(t + T) + 8] = cos[wyt + 6 + woT] = cos(wyt + 8)
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if
2
w,T=m2w or T=m— m = positive integer
Wy

Thus, the fundamental period T,, of x(¢) is given by 27 /w,,.

Show that the complex exponential sequence
x[n] = e/
is periodic only if /2w is a rational number.
By Eq. (1.9), x[n] will be periodic if

ejﬂn(n+N) — ejﬂ.,nejﬂoN — ejQUn

or
e/ = 1 (1.79)
Equation (1.79) holds only if
QN =m2m m = positive integer
or
Q, m .
TN rational number (1.80)

Thus, x[n] is periodic only if (/2 is a rational number.

Let x(¢) be the complex exponential signal
x(t) = el

with radian frequency w, and fundamental period T,=2w/w, Consider the
discrete-time sequence x[n] obtained by uniform sampling of x(¢) with sampling
interval T,. That is,

x[n] =x(nT,) = e
Find the condition on the value of T, so that x[n] is periodic.

If x[n] is periodic with fundamental period N,, then

elwon+ N, e]“’()"Txejw(lNllTs = gJwonT;

Thus, we must have

. 2
eloMTi =1 = Wy N, T, = TNOTJ =m2m m = positive integer
0
or
L_m ional b 1.81
— = — = rational number .
T (1.81)

Thus x[n] is periodic if the ratio T, /T, of the sampling interval and the fundamental period of
x(t) is a rational number.
Note that the above condition is also true for sinusoidal signals x(t) = cos(w,t + 6).
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1.13.

1.14.

Consider the sinusoidal signal
x(t) = cos 15t
(a) Find the value of sampling interval T, such that x[n]=x(nT,) is a periodic
sequence.
(b) Find the fundamental period of x[n]=x(nT,) if T, = 0.17 seconds.

(a) The fundamental period of x(¢)is Ty=2m/w,=2m/15. By Eq. (1.81), x[n]}=x(nT,) is

periodic if
T, T, m
—T—O = 37/ 15 = Fo (1.82)
where m and N, are positive integers. Thus, the required value of T, is given by
m m 2
T = (1.83)

_.__T = —_——
S N, ° N, 15
(b) Substituting T, = 0.17 = 7 /10 in Eq. (1.82), we have
T, =/10 15 3

T, 2m/15 20 4
Thus, x[rn]=x(nT,) is periodic. By Eq. (1.82)

The smallest positive integer N, is obtained with m = 3. Thus, the fundamental period of
x[n]=x(0.1wn) is N, = 4.

Let x,(¢) and x,(¢) be periodic signals with fundamental periods T, and T,, respec-
tively. Under what conditions is the sum x(¢) =x,(¢) + x,(¢) periodic, and what is the
fundamental period of x(¢) if it is periodic?

Since x,(¢) and x,(¢) are periodic with fundamental periods T, and T,, respectively, we
have

x, () =x(t+T,)=x,(t+mT)) m = positive integer

x,(t) =x,(t +T,) =x,(t +kT3) k = positive integer
Thus,

x(t) =x,(t+mT)) +x,(t +kT,)
In order for x(¢) to be periodic with period T, one needs
x(t+T)=x,(t +T) +x,(t + T) =x,(t + mT)) +x,(t + kT,)
Thus, we must have
mT,=kT,=T (1.84)

or
T, k .
— = — = rational number (1.85)
T, m

In other words, the sum of two periodic signals is periodic only if the ratio of their respective

periods can be expressed as a rational number. Then the fundamental period is the least
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common multiple of 7, and T,, and it is given by Eq. (1.84) if the integers m and k are relative
prime. If the ratio 7, /7, is an irrational number, then the signals x,(¢) and x,(¢) do not have a
common period and x(¢) cannot be periodic.

Let x,[n] and x,[n] be periodic sequences with fundamental periods N, and N,,
respectively. Under what conditions is the sum x[n] = x,[n]+ x,[n] periodic, and what
is the fundamental period of x[n] if it is periodic?

Since x,[n] and x,[n] are periodic with fundamental periods N, and N,, respectively, we
have

x[n]l=x[n+N]=x[n+mN,] m = positive integer

xy[n]=x,[n+ N} =x,[n+k&N,] k = positive integer
Thus,

x[n]=x,[n+mN,] +x,[n+kN,]
In order for x[n] to be periodic with period N, one needs
x[n+N]=x[n+N]+x,[n+N)=x,[n+mN,] +x,[n+kN,]
Thus, we must have
mN, = kN, = N (1.86)

Since we can always find integers m and k to satisfy Eq. (1.86), it follows that the sum of two
periodic sequences is also periodic and its fundamental period is the least common multiple of
N, and N,.

Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period.

T 2
(a) x(t)=cos(t+z) (b) x(t)=sin Tt
(¢) x(t)=cos %t-#sin %t (d) x(t)=cost +siny2t
(e) x(t)=sin’t (f) x(t)=eltm/2-1
(g) x[n]=elm/4n (k) x[n]=cosin
(i) x[n]=cos %n + sin ;n (j) x[n)=cos? %n

(a) x(t)—cos(t+ Z)—cos(on» 7 ) —w,=1

x(r) is periodic with fundamental period T, = 27 /w, = 2.

. 2m 2
(b) x(t)=smTt—->w0=_3_

x(¢) is periodic with fundamental period 7, = 27/w, = 3.

’

us o
(¢) x(¢)=cos 3! + sin zt =x,(t) +x,(¢1)

where x,(¢t) = cos(/3)t = cos w;t is periodic with T, =2m/w, =6 and x,(t)=
sin(7/4)t = sin w,¢ is periodic with T, =27/w,=8. Since T,/T,= %= 2 is a rational
number, x(¢) is periodic with fundamental period T, = 4T, = 3T, = 24.
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(d)

(e)

(f)

(g)

(h)

()

()
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x(£) =cos t +siny2t=x,(t) +x,(¢)

where x,(1)=cost =cosw,! is periodic with T, =27 /w, =2m and x,(1)=siny2t=
sin w,t is periodic with T, =2 /w,=V2m. Since T,/T,= V2 is an irrational number,
x(t) is nonperiodic.

Using the trigonometric identity sin? § = 3(1 — cos 28), we can write
x(t)=sin?t=3— 30082t =x,(t) +x,(¢)
where x () = 1 is a dc signal with an arbitrary period and x,(t) = — 3 c0s2f = — 3 cos w,!
is periodic with T, = 27 /w, = m. Thus, x(¢) is periodic with fundamental period T, = .
x(8) = /T /D=1 = g=ighm /Dl = g=igiwnt _y (= T
2

x(t) is periodic with fundamental period T, = 27 /w, = 4.
x[n] = eim/Hn = gifon () = il

4

Since ,/2m = 81 is a rational number, x[n] is periodic, and by Eq. (1.55) the fundamen-
tal period is N, = 8.

x[n]=cos tn = cos Qyn — Q=1

Since Q,/2m =1/8w is not a rational number, x[n] is nonperiodic.

T T
x[n] = cos i + sin i =x,[n]+x,[n]

where

™
x,[n] =cos 37 = cos Qn—o0,=

&1 W)y

™
x,[n] =sin 2 =cos Qn—Q,=

Since 1, /27 = 5 (= rational number), x,[n] is periodic with fundamental period N, =6,
and since Q,/2m7 =3 (= rational number), x,[n] is periodic with fundamental period
N, = 8. Thus, from the result of Prob. 1.15, x[n] is periodic and its fundamental period is
given by the least common multiple of 6 and 8, that is, N, = 24.

Using the trigonometric identity cos? 8 = (1 + cos 28), we can write

, T 1 1 T
x[n]) = cos gn=7 tycosn =x,[n] +x,[n]
where x,[n]=3=3(1)" is periodic with fundamental period N,=1 and x,[n]=
3 cos(m/4)n = 5 cos Qyn — O, =7/4. Since Q,/2m =4 (= rational number), x,[n] is
periodic with fundamental period N, = 8. Thus, x[n] is periodic with fundamental period
N, = 8 (the least common multiple of N, and N,).

1.17. Show that if x(¢ + T) =x(¢), then

[ox(ydi= [*"x(t)ya (1.87)
fOTx(:)dt=j”Tx(z)dt (1.88)

for any real «, B8, and a.



32

1.18.

1.19.
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If x(¢t + T)=ux(t), then letting t =7 — T, we have
x(1—=T+T)=x(7)=x(7-T)
and

fﬁx(z)dz=f"”x(f—T)d7=fa":r’}c(f)d7=f‘”rx(z)dt

a a+ T a+T
Next, the right-hand side of Eq. (1.88) can be written as

[ x@yar= [

a a

0x(t)dt+f”+rx(t)dt
0

By Eq. (1.87) we have

f”x(t)dt=fT

a a+

x(t)dt
7
Thus,

j;”rx(t)dt=fa:rx(t)dhL /()””k(z)dt
=/:+Tx(t)dt+ftliT;(t)dt=j;)Tx(t)dt

Show that if x(¢) is periodic with fundamental period T,,, then the normalized average
power P of x(t) defined by Eq. (1.15) is the same as the average power of x(f) over
any interval of length 7, that is,

T[,‘

P x(0)]* dt (1.89)

Ty
By Eq. (1.15)
L 12 5
P= lim = x(¢)| dt
im £ 7 1500

Allowing the limit to be taken in a manner such that 7 is an integral multiple of the
fundamental period, T = kT, the total normalized energy content of x(¢) over an interval of
length T is £ times the normalized energy content over one period. Then

1 T, 2 1 T, 2
P= lim | —k x()| dt) == 1] "Ix()]°d
[kT(, [ 1) ] r(,f(, | x(0)|* at

k—ox

The following equalities are used on many occasions in this text. Prove their validity.

N-1 1-a”

(@) Y a"={1-q a#l (1.90)
"0 N a=1
> 1

(b) Y a"= lal <1 (1.91)
n=0 l-a
ES) ak

(c) Y a"= lal < 1 (1.92)
Kk 1l -«
> a

(d) Y na"=— lal < 1 (1.93)
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(a)

(b)

(c)

(d)

SIGNALS AND SYSTEMS

Let
N—-1
S§= Y a"=14+a+a’+ -
n=0
Then

N-1

aS=a Y a"=a+a’+a’+ - +aV

n=0

Subtracting Eq. (1.95) from Eq. (1.94), we obtain
(1-a)S=1-a"

Hence if a # 1, we have

N-1 1 —a®
S= Y a"=
n=0 l1-a

If @ =1, then by Eq. (1.94)

N-1
Yar=1+1+1+-+1
n=0

For |al < 1, h}im a™ = 0. Then by Eq. (1.96) we obtain

N-1
Ya"= lim Y a"= lim
n=0

n=0 N—e

Using Eq. (1.91), we obtain
an=ak+ak+l+ak+2+
n=k

=a*(l+a+a’+ - )=a* ) a"
n=0

Taking the derivative of both sides of Eq. (1.97) with respect to a, we have

l—a

Nox | —a

IERRIRRY

and
d -3 -] d 0
—( Za")= Y —a"= ) na""'=
da n=0 n=0 da n=0

Hence,
1 2 1 i
— Y na"= ——— or Y na"
X p=o (] ___a)Z n=0

33

(1.94)

(1.95)

(1.96)

1.20. Determine whether the following signals are energy signals, power signals, or neither.

(a)
(c)
(e)

x()=e"u(t), a>0 (b) x(t) =Acos(wyt + 6)
x(t) = tu(t) (d) x[n]=(-0.5)"uln]

x[n)=uln] (f) x[n]=2e7"
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@ o0 1
(a) E=f |x(t)l2dl=f e 2 dt = 55 <*
> 0

Thus, x(¢) is an energy signal.
(b) The sinusoidal signal x(¢) is periodic with T, =2m/w, Then by the result from
Prob. 1.18, the average power of x(¢) is

1 Ty 2 w() 2w /wq 2 2
P=?0f0 [x(1)] dt—gfo A% cos?(wyt + 0) dt

A2w0 27 /w, 1 AZ
-5 fo U5[1 +cos(2wgt +26)] dt = — <o
Thus, x(¢) is a power signal. Note that periodic signals are, in general, power signals.
. T/2 y 7/2)’
() E=lim [ |x(¢)Pdt = lim [t de = tim a7 _,
T-x -T/2 T—ox /g Tox
1 1/ , 1 1y2 1(1/2)°
P= lim — )| dt = lim — t?dt = lim — =
fim [ (o) P = lim o fim 75 =

Thus, x(¢) is neither an energy signal nor a power signal.
(d) By definition (1./6) and using Eq. (1.91), we obtain

o

* 1 4
2
E= =Y 025" = = =<
L llnll = £ 025" = e = 5 <0

n=—x

Thus, x[n] is an energy signal.

(e) By definition (1.17)
N

P=1 L Ix[nlf

im
N-ox2N+1 n=-N

N

~ lim 2= |
N 2N+1,E'0 Now 2N+ 1

1
(N+1)=§<OO

Thus, x[n] is a power signal.
(f) Since [x[n]l=[2e’3"| = 2]e’| = 2,
N

1 N
P= i 2_ li 22
N 2N+1n§_N|x["]| N, R,

= lim 42N +1)=4<w

N-x= 2N +1

Thus, x[n] is a power signal.

BASIC SIGNALS
1.21. Show that

u(—t)={(1) >0 (1.97)
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Let r = —t. Then by definition (1.18)

com-y 128

Since 7> 0 and 7 < 0 imply, respectively, that t <0 and ¢ > 0, we obtain

0 t>0
"(—')={1 1<0

which is shown in Fig. 1-26.

u(-t)

i 4

Fig. 1-26

1.22. A continuous-time signal x(¢) is shown in Fig. 1-27. Sketch and label each of the
following signals.

(a) x(u(l —1); (b) x()u(t) —ult — D; (c) x(£)8(t — 3)

x(1)

B 4

Fig. 1-27
(a) By definition (1.19)

1 t<1
u(l_t)={0 t>1

and x(1)u(l — t) is sketched in Fig. 1-28(a).
(b) By definitions (7.18) and (1.19)

1 0<r<1
u(r) —u(r=1) = {0 otherwise

and x()[u(r) —u(r — 1)} is sketched in Fig. 1-28(b).
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(¢) By Eq. (1.26)
x()8(t—3)=x(3)8(t—3)=28(t—3)
which is sketched in Fig. 1-28(c).

x(Du(l-t) x(0) [u(r)-u(t-1)]

-y
A

1 0 1 0 I !
(@) (b)
x(0)8(1-3/2)
2
|
- 1 P
0 1 2 t
(9]
Fig. 1-28

1.23. A discrete-time signal x[n] is shown in Fig. 1-29. Sketch and label each of the
following signals.

(a) x[nlull —nl; (b) x[nXuln + 2] — u[nl}; (¢) x[n]é[n — 1]

x[n)

dal

3
-1 01 2 3 45
Fig. 1-29

3

(a) By definition (1.44)

1 <1
““—"]z{ﬂ :>1

and x[nlu[l — n) is sketched in Fig. 1-30(a).
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(b) By definitions (1.43) and (1.44)
uln +2] ~u[n] = {(1]

and x[nJ{u[n + 2] — u[n]} is sketched in Fig. 1-30(b).
(¢) By definition (1.48)

-2<n<0
otherwise

1 n=
x[n]6[n-1]=x[1]8[n—1]=8[n—1]={0 n-!
which is sketched in Fig. 1-30(c).
{njul1-n] x(n}{uln+2])-uln})
l | |
4320 01 23 n 320 01 23 o
(a) (b)
x[n]d|n-1]
3}
21 01 234 "
(c)
Fig. 1-30

1.24. The unit step function u(¢) can be defined as a generalized function by the following
relation:

f::¢(t)u(t)dt - ]:¢(z)dz (1.98)

where ¢(t) is a testing function which is integrable over 0 <t <o, Using this
definition, show that

1 >0
“(’)={0 120

Rewriting Eq. (1.98) as

f:o(b(t)u(t)dt=f_omd)(t)u(t)dt+/:°¢(t)u(t)dt=/:qu(t)dt
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we obtain

[° oru(yde= ["o()[1 - u(o) ar

This can be true only if

]_"¢(:)u(:)dz=0 and f:¢(:)[1—u(:)]dr=o

These conditions imply that
d(Hu(t)=0,t<0 and  S(£)[1-u(1)]=0,t>0
Since ¢(t) is arbitrary, we have
u(t)=0,1r<0 and l—u(t)=0,t>0
that is,

_ 1 t>0
u(t)_{() t<0

1.25. Verify Eqgs. (1.23) and (1.24), that is,
1
(a) 8(at) = l—a—lﬁ(t); (b) 8(—1)=48(1)

The proof will be based on the following equivalence property:
Let g,(¢) and g,(¢) be generalized functions. Then the equivalence property states that
g,(t) = g,(¢) if and only if

|~ #(0)s (1) di= fl¢(:)g2(:)d: (1.99)

for all suitably defined testing functions ¢(t).
(a) With a change of variable, at =1, and hence t=1/a, dt =(1/a)dr, we obtain the
following equations:

If a >0,

3 1
= 74’(0)

=0 , I

f:¢(t)6(at)dt - %]“ ¢(£)8(r)dr= %¢(£)

-

If a <0,

[~ oaadi=— [ o[ Z)o(ryar= - = [ o2 Js(r) ar

ol o

=0 l I

Thus, for any a

[~ (0s(a di= —(0)
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1.27.

(b)
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Now, using Eq. (1.20) for ¢(0), we obtain

© 1 l ©
[ (n)s(arydi = —(0) = o [ S(1)8(1) e

= [jm(b(t)ll?I&(t)dt
for any ¢(¢). Then, by the equivalence property (1.99), we obtain
8(at) = ‘—3’5(1)
Setting @ = — 1 in the above equation, we obtain
8(—1) = I—_l-l—la(t) =58(1)

which shows that 8(¢) is an even function.

(a) Verify Eq. (1.26):
x(1)8(t —ty) =x(10)8(1 — 1)
if x(¢) is continuous at ¢ =1¢,.
(b) Verify Eq. (1.25):
x(1)8(t) =x(0)8(1)
if x(¢) is continuous at ¢ = 0.
(a) If x(¢) is continuous at ¢ = t,, then by definition (1.22) we have
[ #O[x(0)8(=to)] dr = [ [$(1)x(1)]6(1 = 1) di = (1) x(1)
~x(1g) [~ (1)1 —t5) at
= [ #(0)[x(10)8(1 ~1)] dt
for all ¢(¢) which are continuous at ¢ = 1,. Hence, by the equivalence property (1.99) we
conclude that
x(1)8(t—ty) =x(1,)8(t—1,)
(b) Setting t,= 0 in the above expression, we obtain
x(1)8(r) =x(0)8(1)
Show that
(a) 18(1)=0
(b) sintd(t)=0

(¢)

costd(t—m)=—-6(t ~ )
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Using Egs. (1.25) and (1.26), we obtain
(@) t8(t)=(0)8(t)=0
(b) sint8(t) = (sin0)8(t) = (0)6(¢) =0
() costd(t—m)=C(cosm)o(t —m)=(-16(t —m)= —6(t — )

Verify Eq. (1.30):

, du(t)
d(t)=u'(t)= 7
From Eq. (1.28) we have
" d(tyu (1) de = —/_m & ()u(t) di (1.100)

where ¢(t) is a testing function which is continuous at ¢ = 0 and vanishes outside some fixed
interval. Thus, ¢'(¢) exists and is integrable over 0 < t < « and ¢(») = 0. Then using Eq. (1.98)
or definition (1.18), we have

= ~ [¢(») — $(0)]

o
0

[~ ey de=~["6(0)di= ~a(1)

- 9(0) = [~ (1) 8(1) d

Since ¢(t) is arbitrary and by equivalence property (1.99), we conclude that

du(t)
dt

8(t) =u'(t) =

Show that the following properties hold for the derivative of 8(1):
dé(1)
dt
(b) 18(t)=—-8(1) (1.102)

(a) Using Egs. (1.28) and (1.20), we have

@ | T 608 (1) dt = —$(0) where ¢/(0) = (1.101)

t=0

[ @ (ydi= - [ (0s(t)dt = ~4(0)
(b) Using Egs. (1.101) and (1.20), we have
« © d
[ el (n]di= [ [16()]&'(1) dr == — [16(1)]
= ~[6() +1'()]],.o= ~8(0)

(=0

- [ swawmar= [~ sl-a(n))dr

Thus, by the equivalence property (1.99) we conclude that
18 (1) = —-68(1)
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1.30.

1.31.

Evaluate the following integrals:
(a) fl (3t? + 1)8(1) dt

-1

2
(b) [t + Ds(r) dr

1

(c) fm (t2+ cosmt)8(t — 1) dt

o0

(d) f e~ '6(2t —2) dt

— 00
o0

(e) f e~'8'(t) dt

— 0

(a) By Eq. (1.21), with a= —1 and b =1, we have

1

f B2+ 1)8(1) dt = (312 +1)|,_o=1

-1

(b) By Eq. (1.21), with a =1 and b = 2, we have
[23r2+ 1)s(1) de =0
1
(¢) By Eq.(1.22)
fw (12+ cosmt)8(t — 1) dt =(1? + cos 7t)],_,

=1l4cosm=1-1=0

(d) Using Egs. (1.22) and (1.23), we have

[ esr-2ydi= [ e7s(2(1- 1)) i

— 00 —

w1 1
= TrT=8(t=1)dt=—=e"'
f_me 5 (1=1)di=e

(e) By Eq. (1.29)

=e l_g=1

t=0

* —IQr d —t
[ e §(1)dt==—(e™)

—

Find and sketch the first derivatives of the following signals:

(@) x()=u(t)—u(t—a),a>0
(b) x(t)=tlu(t) —u(t —a)), a>0

t>0

(c) x(t)=sgnt={1_1 (<0

(a) Using Eq. (1.30), we have
u(t)==5(t) and u(t—a)=06(t—a)

41
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Then
X(t)y=uw(t)—-u(t—a)=8(t) —8(t—a)
Signals x(¢) and x'(¢) are sketched in Fig. 1-31(a).

[CHAP. 1

(b) Using the rule for differentiation of the product of two functions and the result from part

(a), we have
X(t) =[u(t) —u(t—a)] +1[8(+) —8(t - a)]
But by Eqgs. (1.25) and (1.26)
t8(t)=1(0)8(t)=0 and t8(t —a) =ad(t—a)
Thus,
X'(t) =u(t) —u(t —a) —ad(t —a)

Signals x(¢) and x'(¢) are sketched in Fig. 1-31(b).
(¢) x(t)=sgnt can be rewritten as

x(t)=sgnt=u(t) —u(—t)
Then using Eq. (1.30), we obtain
X(t)y=u(t)—w(-t)=8(t) - [-5(1)] =258(¢)
Signals x(¢) and x'(¢) are sketched in Fig. 1-31(c).

x(1) x(1) x(1)
a
1 1
0 a ' 0 a t 0 IV
-1
x'(1) x'(0) x(t)
” 28(1)
8(1) 1
a
- - == -
0 l t 0 a t 0 t
-8(r-a) ‘
-ad(1-a)
(a) (b) (c)

Fig. 1-31
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SYSTEMS AND CLASSIFICATION OF SYSTEMS

1.32.

Consider the RC circuit shown in Fig. 1-32. Find the relationship between the input
x(t) and the output y(t)

(a)
(b)

(a)

(b)

If x(¢1)=v/t) and y(1) =v(1).
If x(¢)=0v,t) and y(¢) =i(s).

Applying Kirchhoff’s voltage law to the RC circuit in Fig. 1-32, we obtain
v(t) =Ri(t) +v.(t) (1.103)
The current () and voltage v (t) are related by

dv.(t)
dt

i(1)=C (1.104)

Letting v,(¢) = x(¢) and v (¢) = y(¢) and substituting Eq. (1.04) into Eq. (1.103), we obtain

dy(t
RC yd(t) +y(t) =x(1)
or
dy(t 1 1
ydt)+Ey(t)=R_C—X(t) (1.105)

Thus, the input-output relationship of the RC circuit is described by a first-order linear
differential equation with constant coefficients.

Integrating Eq. (1.104), we have
v (1) =lf’ i(r)dr (1.106)
C/_«
Substituting Eq. (1.106) into Eq. (1.103) and letting v (¢) = x(¢) and i(r) = y(¢), we obtain

1
Ry(1) + = [ (7Y dr=x(1)

or

1 . 1
y(’)ﬂ“ﬁ _wY(T)d‘r= Ex(f)

V() i(1) C = v

Fig. 1-32 RC circuit.
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Differentiating both sides of the above equation with respect to ¢, we obtain
dy(t) 1 1 dx(t)
+—=y(1) ==
o TR TR Ta

Thus. the input-output relationship is described by another first-order linear differential
equation with constant coefficients.

(1.107)

1.33. Consider the capacitor shown in Fig. 1-33. Let input x(¢) = i(¢) and output y(¢) = v (1).

(@) Find the input-output relationship.
(b) Determine whether the system is (i) memoryless, (if) causal, (iii) linear, (i) time-
invariant, or () stable.

(a) Assume the capacitance C is constant. The output voltage y(t¢) across the capacitor and
the input current x(¢) are related by [Eq. (1.106)]

1
y(1) =T{x(1)} =E/ﬁx(r)dr (1.108)

(b) (i) From Eq. (1.108) it is seen that the output y(¢) depends on the past and the
present values of the input. Thus, the system is not memoryless.

(i1) Since the output y(¢) does not depend on the future values of the input, the system
is causal.

(iii)  Let x(t) =a,x (1) + a,x,(¢). Then

1
s =Tx(0} = 5 [ (1) +aaxa(n)] dr

%frxxz(v') d'r]

:al

1
= x(nydr

+a,

=a, ¥ (1) +ayy,(1)
Thus, the superposition property (1.68) is satisfied and the system is linear.
(ir) Let y,(t) be the output produced by the shifted input current x,(¢) =x(f —¢,).

Then
R
yi(6) =T{x(t—1,)} = E/ﬁxx(f_’n)df
1 =iy
== ) dr=y(i-1)

Hence, the system is time-invariant.

T

— vn

g

|

i0) Q) c

Fig. 1-33
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r(f) = tu(r)

~y

0
Fig. 1-34  Unit ramp function.

(v) Let x(¢) =k,u(t), with k, # 0. Then
1 ki ok k,
= — =— = — = — 109
(1) Cj_mk,u(r)df Cfodf () =r(t)  (1.109)

where r(¢) = tu(t) is known as the unit ramp function (Fig. 1-34). Since y(t) grows
linearly in time without bound, the system is not BIBO stable.

1.34. Consider the system shown in Fig. 1-35. Determine whether it is (a) memoryless, (b)
causal, (c) linear, (d) time-invariant, or (e) stable.

(a) From Fig. 1-35 we have
y(t) =T{x(t)} =x(t)cos wt
Since the value of the output y(¢) depends on only the present values of the input x(z),
the system is memoryless.

(b) Since the output y(¢) does not depend on the future values of the input x(¢), the system
is causal.

(¢) Let x(¢)=a,x(t) + a,x(¢). Then
y(1) =T{x(1)} = [a;x,(1) + ayx,(1)] cos w1
=a,x,(t)cosw t +a,x,(t)cosw,t
=a,y,(1) +ayy,(1)
Thus, the superposition property (1.68) is satisfied and the system is linear.

Multiplier
x(1) ¥(1) = X(1) cos w1

-
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1.36.
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(d) Let y(¢) be the output produced by the shifted input x,(¢z) =x(¢ —¢,). Then
yi(1) =T{x(t —ty)} =x(t — ty) cos w ¢
But
y(t—ty) =x(t —ty)cos w.(t—ty) #y,(1)
Hence, the system is not time-invariant.
(e) Since |cos w t| < 1, we have

Iy()l=lx(1)cos w.t] <|x(t)l

Thus, if the input x(¢) is bounded, then the output y(¢) is also bounded and the system is
BIBO stable.

A system has the input-output relation given by
y =T{x} =x? (1.110)

Show that this system is nonlinear.

T{x, +x,} = (x, +x2)2 =xl+x2+2xx,
#T{x,} + T{x,} =x?+x?

Thus, the system is nonlinear.

The discrete-time system shown in Fig. 1-36 is known as the unit delay element.
Determine whether the system is (a) memoryless, (b) causal, (¢) linear, (d) time-
invariant, or (e) stable.

(a) The system input-output relation is given by
y[n]=T{x[n]} =x[n-1] (1.111)

Since the output value at n depends on the input values at n — 1, the system is not
memoryless.

(b) Since the output does not depend on the future input values, the system is causal.
(c) Let x|n]=ax,[n] + a,x,[n]. Then
yln]= T{“lxn[”] + “2x2[”]] =a;x|[n—1]+a,x,[n—1]
=a,y,[n] + a,y,[n]

Thus, the superposition property (1.68) is satisfied and the system is linear.

(d) Let y,[n] be the response to x,[n] =x[n —ny). Then
yiln]=T{x,[n]} =x,[n = 1] =x[n~1-n,]
and y[n—no)l=x[n—ny— 1] =x[n - 1-ny] =y,[n]

Hence, the system is time-invariant.

Xlﬂ] Unit )’l"] =Xl"'1]
L — delay p———-

Fig. 1-36 Unit delay element
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1.37.

1.38.

(e) Since
ly[n]l=Ix[n—-1])I<k if |x[n]l<k forall n

the system is BIBO stable.

Find the input-output relation of the feedback system shown in Fig. 1-37.

] 1

) '
A Unit ]

: 2 delay : ’

1 - ]

] ]

] ]

1 ]

] ]

e e e e c e e —————— )

Fig. 1-37

From Fig. 1-37 the input to the unit delay element is x[n] — y[n]. Thus, the output y[n] of
the unit delay element is [Eq. (1.111)]

y[n]=x[n—-1]-y[n—-1]
Rearranging, we obtain
y[n]+y[n—-1]=x[n-1] (1.112)

Thus the input-output relation of the system is described by a first-order difference equation
with constant coefficients.

A system has the input-output relation given by

y[n] = T{x[n]} = nx[n] (1.113)
Determine whether the system is (a) memoryless, (b) causal, (¢) linear, (d) time-in-
variant, or (e) stable.

(a) Since the output value at n depends on only the input value at n, the system is
memoryless.
(b) Since the output does not depend on the future input values, the system is causal.

(¢) Let x[n]=a,x,[n] +a,x,[n]. Then
y[n]=T{x[n]} = n{a,x,[n] +a,x,[n]}
=anx [n]+a,nx[n]=a,y[n] +a,y,[n]

Thus, the superposition property (1.68) is satisfied and the system is linear.
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x[n] = u[n) v(n) = nuln]
l 4
Ll
g .. t11]
0o 1 2 4 - 1 2 3 4

2y

Fig. 1-38

yi{n]=T{x[n —nyl} =nx[n —n,}
But yln—ny]l=(n—ny)x[n—ny]#y,[n]

() Let x[n]=uln]. Then y[n]=nu[n]. Thus, the bounded unit step sequence produces an
output sequence that grows without bound (Fig. 1-38) and the system is not BIBO stable.

y[n] = T{x[n]} = x[kyn] (1.114)

where k,, is a positive integer. Is the system time-invariant?

viln)=T{x,[n]} =x,[kon] =x[kon — n¢]
But yln =nol =x[ko(n —ng)] #y,[n]

Hence, the system is not time-invariant unless k, = 1. Note that the system described by Eq.
(1.114) is called a compressor. It creates the output sequence by selecting every & th sample of
the input sequence. Thus, it is obvious that this system is time-varying.

Consider the system whose input-output relation is given by the linear equation
y=ax+b (1.115)

where x and y are the input and output of the system, respectively, and a and b are

If b+ 0, then the system is not linear because x =0 implies y =b # 0. If b =0, then the

48
—C =
2 -1 n
(d) Let y,[n] be the response to x,[n]=x[n —ny]. Then
Hence, the system is not time-invariant.
1.39. A system has the input-output relation given by
Let y,[n] be the response to x,[n]=x[n —n,]. Then
1.40.
constants. Is this system linear?
system is linear.
1.41.

The system represented by T in Fig. 1-39 is known to be time-invariant. When the
inputs to the system are x,[n], x,[n], and x;[n], the outputs of the system are y,[n],
y,[nl, and y,[n] as shown. Determine whether the system is linear.

From Fig. 1-39 it is seen that

xy[n]=x,[n] +x,[n-2]
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x,[n} winl

21 01 2 3 4 n 2-1 012 3 4 n

x,(n]

w
d
BV

Fig. 1-39

Thus, if T is linear, then
T{x3[”]} =T{xl["]} + T{xz[" - 2]] =y [n]+y,[n-2]
which is shown in Fig. 1-40. From Figs. 1-39 and 1-40 we see that
ys[n]#y[n] +y,[n-2]

Hence, the system is not linear.

yln) Yoln - 2) viln) + wvyln - 2]

2 2I
+ Lt r1—0——»:
2. 01 2 3 4 n 2101 2 3 4 n 2101 2 3 4 n
Fig. 1-40

1.42. Give an example of a system that satisfies the condition of additivity (1.66) but not the
condition of homogeneity (1.67).
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1.43.

1.44.
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Consider a discrete-time system represented by an operator T such that
yIn]=T{x[n]} =x*[n] (1.116)
where x*[n}] is the complex conjugate of x[n]. Then
T{x\[n] +x,[n]} = {x,[n] +x,[n]}* =xt[n] +x3[n] =y\[n] +y,[n]
Next, if a is any arbitrary complex-valued constant, then
T{ax[n]) = {ax[n]}* =a*x*[n] = a*y[n] #ay[n]

Thus, the system is additive but not homogeneous.

(a) Show that the causality for a continuous-time linear system is equivalent to the
following statement: For any time ¢, and any input x(¢) with x(¢) =0 for ¢ <t,,
the output y(¢) is zero for 1 <¢,,.

(b) Find a nonlinear system that is causal but does not satisfy this condition.
(¢) Find a nonlinear system that satisfies this condition but is not causal.

(a) Since the system is linear, if x(¢) =0 for all ¢, then y(¢) = 0 for all ¢. Thus, if the system is
causal, then x(¢)=0 for ¢t <t, implies that y(t)=0 for ¢t <t,. This is the necessary
condition. That this condition is also sufficient is shown as follows: let x,(¢) and x,(¢) be
two inputs of the system and let y,(¢) and y,(¢) be the corresponding outputs. If
x () =x,(¢t) for t <ty, or x(¢t)=x (1)~ x,(1) =0 for t <t,, then y (¢) =y,(¢) for 1 <1,
or y(¢) =y (1) —y,(t) =0 for ¢t <¢,.

(b) Consider the system with the input-output relation

y(t) =x(1) +1

This system is nonlinear (Prob. 1.40) and causal since the value of y(¢) depends on only
the present value of x(¢). But with x(¢) =0 for ¢t <¢,, y(t)=1 for ¢t <1¢,,.

(¢) Consider the system with the input-output relation
y(t)=x(t)x(t+1)
It is obvious that this system is nonlinear (see Prob. 1.35) and noncausal since the value of

y(t) at time ¢t depends on the value of x(¢ + 1) of the input at time ¢ + 1. Yet x(¢) =0 for
t <t, implies that y(¢) =0 for r < t,,.

Let T represent a continuous-time LTI system. Then show that

T{e*'} = Ae* (1.117)
where s is a complex variable and A is a complex constant.

Let y(1) be the output of the system with input x(t) =e¢’". Then

T{e”'} =y(1)

Since the system is time-invariant, we have
T(0 ) =y(1+1,)
for arbitrary real t,. Since the system is linear, we have
T{e** W} =T(e* e*'v}) = e v T{e*} =e*'vy(1)

Hence, y(t+1ty)=e"oy(e)
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1.45.

1.46.

Setting ¢ = 0, we obtain
y(to) =y(0)e’ (1.118)
Since ¢, is arbitrary, by changing ¢, to ¢, we can rewrite Eq. (1.118) as
y(1) =y(0)e” = Ae*
or T{e*'} = Ae”
where A =y(0).

Let T represent a discrete-time LTI system. Then show that
T{z"}=Az" (1.119)
where z is a complex variable and A is a complex constant.
Let y[n] be the output of the system with input x[n]=z". Then
T{z"} =y[n]
Since the system is time-invariant, we have
T{z"*"} =y[n +n,]
for arbitrary integer n,. Since the system is linear, we have
T{z"*"} =T{z"z"0} =z"0T{z"} =z"0y[n]
Hence, y[n+ng]=z"y[n]
Setting n = 0, we obtain
y[ne] =y[0]z" (1.120)
Since n, is arbitrary, by changing n, to n, we can rewrite Eq. (1.120) as
y[n]=y[0]z" = Az"
or T{z"} =Az"

where A = y[0].
In mathematical language, a function x(-) satisfying the equation

T(x()} =Ax(") (1.121)

is called an eigenfunction (or characteristic function) of the operator T, and the constant A is
called the eigenvalue (or characteristic value) corresponding to the eigenfunction x(:). Thus
Eqgs. (1.117) and (1.119) indicate that the complex exponential functions are eigenfunctions of
any LTI system.

Supplementary Problems

Express the signals shown in Fig. 1-41 in terms of unit step functions.

Ans. (a) x(t)= %[u(t) —u(t—2)]
b)) x()=u(t+D)+2u(t)—ut—1)—u(t —2)—u(t —3)
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x(r)
x(1) 3
2 ¥
1 F 1
L L (| - L 1 1 —
1 0 1 2 3 ' 1t 0 1 2 3 4 '
(@) (b)
Fig. 1-41
1.47. Express the sequences shown in Fig. 1-42 in terms of unit step functions.
Ans. (@) x[nl=uln]—uln — (N +1)]
(b) xlnl=~-u[-n-1]
(¢) xlnl=uln+2)—uln—4]
x{n] x[n)
1 + -
-4 3 2 -1
Lo oot L —— P NP T EE—
2101 2 N n I I ] I 1 3 n
F -1
(a) (b)

x[n]

11111

i
-4 - -1 0 2 3 45

(©)
Fig. 1-42
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1.48. Determine the even and odd components of the following signals:
(a) x(t)=u(r)
™
(b) x(t)=sin(w0t+ Z)
(¢) x[n]=e@n+m/D

(d) x[n]=8[n]
Ans. (a) x(t)=3%,x,(1)=4%sgnt
1 1
(b) x,(1)= ﬁcos wot, x, (1) = ﬁsin wy!

(¢c) x[n]l=jcos Qyn,x,[n]l= —sin Qyn
(d) xJIn]l=06[n}x [n]=0

1.49. Let x(¢) be an arbitrary signal with even and odd parts denoted by x,(r) and x,(t),
respectively. Show that

f x2(t) dt =/ x2(1) dt +/ x2(1) dt
Hint:  Use the results from Prob. 1.7 and Eq. (1.77).

1.50. Let x[n] be an arbitrary sequence with even and odd parts denoted by x[n] and x[n],
respectively. Show that

oo @ o

Y x[n)= X xl[n]+ X xi[n]

n=—ow n=—ow n=—o

Hint:  Use the results from Prob. 1.7 and Eq. (1.77).

1.51. Determine whether or not each of the following signals is periodic. If a signal is periodic,
determine its fundamental period.

T
(a) x(1)= cos(2t + 7 )

(b) x(t)=cos’t

(¢) x(t)=1(cos2mtIult)
(d) x(t)=e'™

(e) x[n]=e/M/9-m

2
f) x[n]=cos(%)

(g) x[n]=cos(2)cos(1—rﬁ)

2 4
mn . (mn ™
(h) x[n]=cos(—4— ) + sm(? ) - 2cos(7)
Ans. (a) Periodic, period =7  (b) Periodic, period =
(¢) Nonperiodic (d) Periodic, period = 2
(e) Nonperiodic (f) Periodic, period = 8

(g) Nonperiodic (h) Periodic, period = 16
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1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.

SIGNALS AND SYSTEMS

Show that if x[n] is periodic with period N, then

n n+N N ny+N
(a) Y xlkl= X x[k]l; () X xlkl= ¥ x[k]
k=n, k=ny+N k=0 k=n,

Hint: See Prob. 1.17.

(a) What is 6(21)?

(b) What is 8[2n]?

Ans. (a) 8Q21) = 318(1)
(b) 8[2n]=8[n)

Show that
§'(—t)=-8'(r)
Hint: Use Eqgs. (1.101) and (1.99).
Evaluate the following integrals:
(@) [ (cosmu(r)dr (b) [ (cos)é(r)dr
® 20 !
(c) f_x(cost)u(t-— 1) 8(¢) dt (d) [0 tsin=8(m — 1) dt

Ans. (a) sint
(b) 1 for t>0and O for ¢t <0; not defined for t =0
(¢ 0
(d) =

Consider a continuous-time system with the input-output relation
1 t+T/2

y(1)=T{x()} = = [ x(r)dr
T t-T/2

Determine whether this system is (a) linear, (b) time-invariant, (¢) causal.

Ans.  (a) Linear; (b) Time-invariant; (¢) Noncausal

Consider a continuous-time system with the input-output relation

oc

y() =T{x(t)} = ¥ x(1)8(t—kT,)

Determine whether this system is (a) linear, (b) time-invariant.

Ans.  (a) Linear; (b) Time-varying

Consider a discrete-time system with the input-output relation
y[n]=T{x[n]} =x*[n]
Determine whether this system is (a) linear, (b) time-invariant.

Ans.  (a) Nonlinear; (b) Time-invariant

[CHAP. 1
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1.59. Give an example of a system that satisfies the condition of homogeneity (1.67) but not the
condition of additivity (1.66).

Ans. Consider the system described by

1.60. Give an example of a linear time-varying system such that with a periodic input the correspond-
ing output is not periodic.

Ans.  y[n]=T{x[n]} = nx[n]

1.61. A system is called invertible if we can determine its input signal x uniquely by observing its
output signal y. This is illustrated in Fig. 1-43. Determine if each of the following systems is
invertible. If the system is invertible, give the inverse system.

x Yoo Inverse
———-1  System > e a——
system

Fig. 1-43

(a) y(t)=2x(¢)
) y(t)=x%1)
(©) y)= [ x(rydr

— %
n

(d) ylnl= Y x[k]

k= -
(e) ylnl=nx[n]
Ans. (a) Invertible; x(¢) = 1y(r)
(b) Not invertible
dy(1)

(c¢) Invertible; x(¢) =

(d) Invertible; x[n]=y[n]-yln —1]
(e) Not invertible



Chapter 2

Linear Time-Invariant Systems

2.1 INTRODUCTION

Two most important attributes of systems are linearity and time-invariance. In this
chapter we develop the fundamental input-output relationship for systems having these
attributes. It will be shown that the input-output relationship for LTI systems is described
in terms of a convolution operation. The importance of the convolution operation in LTI
systems stems from the fact that knowledge of the response of an LTI system to the unit
impulse input allows us to find its output to any input signals. Specifying the input-output
relationships for LTI systems by differential and difference equations will also be dis-
cussed.

2.2 RESPONSE OF A CONTINUOUS-TIME LTI SYSTEM AND
THE CONVOLUTION INTEGRAL

A. Impulse Response:

The impulse response h(t) of a continuous-time LTI system (represented by T) is
defined to be the response of the system when the input is §(¢), that is,

k(1) =T{5(1)} (2.1)

B. Response to an Arbitrary Input:
From Eq. (1.27) the input x(z) can be expressed as

x(1) =f:x(7)5(z—7)d7 (2.2)

Since the system is linear, the response y(t) of the system to an arbitrary input x(¢) can be
expressed as

y(t)=T{x(1)} = T{fm x(7)8(t— T)dT}

—

=f x(7)T{8(t — )} dr (2.3)
Since the system is time-invariant, we have
h(t —7)=T{8(t — 7))} (2.4)
Substituting Eq. (2.4) into Eq. (2.3), we obtain
y(0)= [ x(r)h(t~r)dr (2.5)

—0oC

56
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Equation (2.5) indicates that a continuous-time LTI system is completely characterized by
its impulse response A(t).

C. Convolution Integral:

Equation (2.5) defines the convolution of two continuous-time signals x(¢) and h(t)
denoted by

o

y(t)=x(1)*h(1) = [ x(r)h(1~r)dr (2.6)
Equation (2.6) is commonly called the convolution integral. Thus, we have the fundamental
result that the output of any continuous-time LTI system is the convolution of the input x(t)
with the impulse response h(t) of the system. Figure 2-1 illustrates the definition of the
impulse response A(¢) and the relationship of Eq. (2.6).

=——b— e —--
X System Y0 = X(0)  h(2)

Fig. 2-1 Continuous-time LTI system.

D. Properties of the Convolution Integral:
The convolution integral has the following properties.

1. Commutative:

x(t)y*h(t)=h(t)*x(t) (2.7)

2. Associative:
{x(e)x ()} hy(e) = x(t)*{h (1) hy(t)) (2.8)

3. Distributive:
x (1) (y(0)) +ho(0)} =x(0)* hy(1) +x(2) % o) (2.9)

E. Convolution Integral Operation:

Applying the commutative property (2.7) of convolution to Eq. (2.6), we obtain
y(t)=h(t)xx(t) = [ h(r)x(t = 7)dr (2.10)

which may at times be easier to evaluate than Eq. (2.6). From Eq. (2.6) we observe that
the convolution integral operation involves the following four steps:

1. The impulse response h(7) is time-reversed (that is, reflected about the origin) to
obtain A(—7) and then shifted by ¢ to form h(t — 7) = h[—(7 — t)] which is a function
of 7 with parameter ¢.

2. The signal x(7) and A(t — 7) are multiplied together for all values of 7 with ¢ fixed at
some value.
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3. The product x(7)h(t — 7) is integrated over all 7 to produce a single output value
y(1).

4, Steps 1 to 3 are repeated as ¢ varies over — to « to produce the entire output y(¢).

Examples of the above convolution integral operation are given in Probs. 2.4 to 2.6.

F. Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is u(¢); that is,

s(t) =T{u(r)) (2.11)
In many applications, the step response s(t) is also a useful characterization of the system.
The step response s(t) can be easily determined by Eq. (2.10); that is,
i t
s(t)=h(1)xu(t) = [ h(r)u(t =7)dr= [ h(r)dr (2.12)

Thus, the step response s(f) can be obtained by integrating the impulse response h(t).
Differentiating Eq. (2.12) with respect to ¢, we get

ds(t)
dt

Thus, the impulse response A(:) can be determined by differentiating the step response

s(t).

h(t) =s'(t) = (2.13)

2.3 PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS

A. Systems with or without Memory:

Since the output y(¢) of a memoryless system depends on only the present input x(r),
then, if the system is also linear and time-invariant, this relationship can only be of the
form

(1) = Kx(1) (2.14)
where K is a (gain) constant. Thus, the corresponding impulse response h(¢) is simply
h(t) = K5(t) (2.15)

Therefore, if h(t,) # 0 for ¢, +# 0, the continuous-time LTI system has memory.

B. Causality:

As discussed in Sec. 1.5D, a causal system does not respond to an input event until that
event actually occurs. Therefore, for a causal continuous-time LTI system, we have

h(t)=0 t<0 (2.16)

Applying the causality condition (2.16) to Eq. (2.10), the output of a causal continuous-time
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LTI system is expressed as

y(t)=f h(r)x(t—7)dr (2.17)
0
Alternatively, applying the causality condition (2.16) to Eq. (2.6), we have
t
y(z)=[ x(7)h(t —1)dr (2.18)

Equation (2.18) shows that the only values of the input x(¢) used to evaluate the output

y(t) are those for 7 <t.
Based on the causality condition (2.16), any signal x(¢) is called causal if

x(t)=0 <0 (2.19a)
and is called anticausal if
x(1)=0 t>0 (2.19b)

Then, from Egs. (2.17), (2.18), and (2.19a), when the input x(¢) is causal, the output y(¢)
of a causal continuous-time LTI system is given by

y(t)=f0'h(7)x(z—T)d7=[0’x(r)h(x—7)d~r (2.20)

C. Stability:

The BIBO (bounded-input /bounded-output) stability of an LTI system (Sec. 1.5H) is
readily ascertained from its impulse response. It can be shown (Prob. 2.13) that a
continuous-time LTI system is BIBO stable if its impulse response is absolutely integrable,
that is,

fe o}

[ Ih(r)ldr <o (2.21)

— Q0

2.4 EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS

In Chap. 1 (Prob. 1.44) we saw that the eigenfunctions of continuous-time LTI systems
represented by T are the complex exponentials e*', with s a complex variable. That is,
T{e*'} = re (2.22)

where A is the eigenvalue of T associated with e*’. Setting x(t) =e*' in Eq. (2.10), we have
y(t)=T{e*} =f h(r)e'""dr= [f h(t)e™"" d'r] e’
=H(s)e" = re” (2.23)

where A=H(s)=[ h(r)e dr (2.24)
Thus, the eigenvalue of a continuous-time LTI system associated with the eigenfunction e*’
is given by H(s) which is a complex constant whose value is determined by the value of s
via Eq. (2.24). Note from Eq. (2.23) that y(0) = H(s) (see Prob. 1.44).

The above results underlie the definitions of the Laplace transform and Fourier
transform which will be discussed in Chaps. 3 and 5.
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2.5 SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS
A. Linear Constant-Coefficient Differential Equations:

A general Nth-order linear constant-coefficient differential equation is given by

d"y(t)= Mo d*x(t)

ﬁ;ak Zbk

P p
k=0 dt k=0 dt

(2.25)

where coefficients a, and b, are real constants. The order N refers to the highest
derivative of y(t) in Eq. (2.25). Such differential equations play a central role in describing
the input-output relationships of a wide variety of electrical, mechanical, chemical, and
biological systems. For instance, in the RC circuit considered in Prob. 1.32, the input
x(t) =v,(1) and the output y(r)=r(t) are related by a first-order constant-coefficient
differential equation [Eq. (1.105)]

dy(t) 1 1

7 +—RTC-y([)=R—Cx(I)

The general solution of Eq. (2.25) for a particular input x(¢) is given by
y(1) =y, (1) +y,u(1) (2.26)

where y (1) is a particular solution satisfying Eq. (2.25) and y,(t) is a homogeneous
solution (or complementary solution) satistfying the homogeneous differential equation

N dkyh(t)
ak— =

| 0 (2.27)
k=0 dr*

The exact form of y,(¢) is determined by N auxiliary conditions. Note that Eq. (2.25) does
not completely specify the output y(¢) in terms of the input x(¢) unless auxiliary
conditions are specified. In general, a set of auxiliary conditions are the values of

dy(r) d""y(1)
dt >V AtV

y(t),

at some point in time,

B. Linearity:

The system specified by Eq. (2.25) will be linear only if all of the auxiliary conditions
are zero (see Prob. 2.21). If the auxiliary conditions are not zero, then the response y(z) of
a system can be expressed as

y(1) =yut) +y,1) (2.28)

where y, (1), called the zero-input response, is the response to the auxiliary conditions, and
y,(1), called the zero-state response, is the response of a linear system with zero auxiliary
conditions. This is illustrated in Fig. 2-2.

Note that y,(t) #y,(¢t) and y,(¢) #y (1) and that in general y,(¢) contains y,(¢) and
y,{t) contains both y,(¢) and y (1) (see Prob. 2.20).
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x(1) i s (1) (1)
Linear Y, () Y
system

+

+

Yo (1)
Fig. 2-2 Zero-state and zero-input responses.

C. Causality:

In order for the linear system described by Eq. (2.25) to be causal we must assume the
condition of initial rest (or an initially relaxed condition). That is, if x(¢) =0 for ¢ <, then

assume y(t) =0 for ¢ <t, (see Prob. 1.43). Thus, the response for ¢ > ¢, can be calculated
from Eq. (2.25) with the initial conditions

y(to) d"'y(t,)
-2,
dt dt
her dty(ty)  d¥y(1)
ere dtv dr* ey

Clearly, at initial rest y,(z) = 0.

D. Time-Invariance:

For a linear causal system, initial rest also implies time-invariance (Prob. 2.22).

E. Impulse Response:

The impulse response A(¢) of the continuous-time LTI system described by Eq. (2.25)
satisfies the differential equation

Noodka(t) M d*s(r)
_ = b 2.29
kgoak d[k k§0 k dtk ( 2 )

with the initial rest condition. Examples of finding impulse responses are given in Probs.

2.23 to 2.25. In later chapters, we will find the impulse response by using transform
techniques.

2.6 RESPONSE OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION SUM
A. Impulse Response:

The impulse response (or unit sample response) h[n] of a discrete-time LTI system

(represented by T) is defined to be the response of the system when the input is 8[n], that
is,

h[n] =T{8[n]} (2.30)
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B. Response to an Arbitrary Input:
From Eq. (1.5]) the input x[n] can be expressed as

x[n] = Y x[k]8[n—k] (2.31)
Since the system is linear, the response y[n] of the system to an arbitrary input x[»] can be
expressed as
y[n] =T{x[n]} =T{ X x[k]8[n—k]
k= —

x©

= Y x[k]T{8[n—k]) (2.32)

k=~
Since the system is time-invariant, we have
h{n—k] =T{é[n —k]} (2.33)
Substituting Eq. (2.33) into Eq. (2.32), we obtain

ylnl = Y x[k]h[n—k] (2.34)
k= —x
Equation (2.34) indicates that a discrete-time LTI system is completely characterized by its
impulse response h[n).

C. Convolution Sum:

Equation (2.34) defines the convolution of two sequences x[n] and h[n] denoted by
y[n] =x[n]xh[n) = Y x|[k]h[n—k] (2.35)
k= -

Equation (2.35) is commonly called the convolution sum. Thus, again, we have the
fundamental result that the output of any discrete-time LTI system is the convolution of the
input x{n] with the impulse response h{n] of the system.

Figure 2-3 illustrates the definition of the impulse response #[n] and the relationship
of Eq. (2.35).

8ln) LTI hin]

system yin = x(n] « hin]

x{n]

Fig. 2-3 Discrete-time LTI system.

D. Properties of the Convolution Sum:

The following properties of the convolution sum are analogous to the convolution
integral properties shown in Sec. 2.3.



CHAP. 2} LINEAR TIME-INVARIANT SYSTEMS 63

1. Commutative:

x[n]* h[n] =h[n]* x[n] (2.36)

2. Associative:
{x[n]* hy[n]}* hy[n] =x[n]*{h,[n]* hy[n]) (2.37)

3. Distributive:
x[n]# {,[n]) + ho[n]) =x[n]» i,[n] +x[n] * hy[n] (2.38)

E. Convolution Sum Operation:

Again, applying the commutative property (2.36) of the convolution sum to Eq. (2.35),
we obtain

y[n]=h[n]*x[n]=k=f_ H[k]x[n — k] (2.39)

which may at times be easier to evaluate than Eq. (2.35). Similar to the continuous-time
case, the convolution sum [Eq. (2.35)] operation involves the following four steps:

1. The impulse response h[k] is time-reversed (that is, reflected about the origin) to
obtain h[—k] and then shifted by n to form A[n — k]=h[—(k —n)] which is a
function of k with parameter n.

2. Two sequences x[k] and A[n — k] are multiplied together for all values of k with n
fixed at some value.

3. The product x[k]h[n — k] is summed over all k to produce a single output sample
ylnl.
4. Steps 1 to 3 are repeated as n varies over — to « to produce the entire output y[n].

Examples of the above convolution sum operation are given in Probs. 2.28 and 2.30.

F. Step Response:

The step response s[n] of a discrete-time LTI system with the impulse response h[n] is
readily obtained from Eq. (2.39) as

s(n]l =h[n]*u[n] = i hlklu[n—k] = i h(k] (2.40)

k= - k=~
From Eq. (2.40) we have
h{n] =s[n] —s[n - 1] (2.41)

Equations (2.40) and (2.41) are the discrete-time counterparts of Egs. (2.12) and (2.13),
respectively.

2.7 PROPERTIES OF DISCRETE-TIME LTI SYSTEMS
A. Systems with or without Memory:

Since the output y[n] of a memoryless system depends on only the present input x[n],
then, if the system is also linear and time-invariant, this relationship can only be of the
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form

y[n] = Kx[n] (2.42)
where K is a (gain) constant. Thus, the corresponding impulse response is simply

h[n] = K8[n] (2.43)

Therefore, if Alny]+ 0 for n, # 0, the discrete-time LTI system has memory.

B. Causality:

Similar to the continuous-time case, the causality condition for a discrete-time LTI
system is

h[n] =0 n<0 (2.44)

Applying the causality condition (2.44) to Eq. (2.39), the output of a causal discrete-time
LTI system is expressed as

y[n] = Y hlk]x[n—k] (2.45)
k=0
Alternatively, applying the causality condition (2.44) to Eq. (2.35), we have
y[n] = Y x[k]h[n-k] (2.46)
k= —ox

Equation (2.46) shows that the only values of the input x[n] used to evaluate the output
yln] are those for k < n.
As in the continuous-time case, we say that any sequence x[n] is called causal if
x[n] =0 n<0 (2.47a)
and is called anticausal if
x[n] =0 n=0 (2.47p)

Then, when the input x[#n] is causal, the output y[n] of a causal discrete-time LTI system
is given by
n

y[n]=k§0h[k]x[n—k]= Y x[k]h[n - k] (2.48)

k=0

C. Stability:

It can be shown (Prob. 2.37) that a discrete-time LTI system is BIBO stable if its
impulse response is absolutely summable, that is,

o

Y |h[k]l<w (2.49)

k= —=

2.8 EIGENFUNCTIONS OF DISCRETE-TIME LTI SYSTEMS

In Chap. 1 (Prob. 1.45) we saw that the eigenfunctions of discrete-time LTI systems
represented by T are the complex exponentials z”, with z a complex variable. That is,

T(z"} =Az" (2.50)
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where A is the eigenvalue of T associated with z". Setting x[n]=2z" in Eq. (2.39), we have

y{n]=T{z"}=ki h[k]z”"‘=[k§ hlk]z™*|z"
=H(z)z"=Az" (2.51)
where A=H(z)= i hlk]z7* (2.52)

k= —

Thus, the eigenvalue of a discrete-time LTI system associated with the eigenfunction z” is
given by H(z) which is a complex constant whose value is determined by the value of z via
Eq. (2.52). Note from Eq. (2.51) that y[0] = H(z) (see Prob. 1.45).

The above results underlie the definitions of the z-transform and discrete-time Fourier
transform which will be discussed in Chaps. 4 and 6.

2.9 SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS

The role of differential equations in describing continuous-time systems is played by
difference equations for discrete-time systems.

A. Linear Constant-Coefficient Difference Equations:

The discrete-time counterpart of the general differential equation (2.25) is the Nth-
order linear constant-coefficient difference equation given by

Y ay[n—k]= ¥ bux[n—k] (2.53)
k=0 k=0

where coefficients a, and b, are real constants. The order N refers to the largest delay of
yln] in Eq. (2.53). An example of the class of linear constant-coefficient difference
equations is given in Chap. 1 (Prob. 1.37). Analogous to the continuous-time case, the
solution of Eq. (2.53) and all properties of systems, such as linearity, causality, and
time-invariance, can be developed following an approach that directly parallels the
discussion for differential equations. Again we emphasize that the system described by Eq.
(2.53) will be causal and LTI if the system is initially at rest.

B. Recursive Formulation:

An alternate and simpler approach is available for the solution of Eq. (2.53). Rear-
ranging Eq. (2.53) in the form

M N
y[n]=ai Y byx[n—k]— Y a,y[n—k] (2.54)
0o \k=0 k=1

we obtain a formula to compute the output at time # in terms of the present input and the
previous values of the input and output. From Eq. (2.54) we see that the need for auxiliary
conditions is obvious and that to calculate y[n] starting at n = n,, we must be given the
values of y[n,—1], y[n,—2),..., y[n,— N]as well as the input x[n] for n >n,— M. The
general form of Eq. (2.54) is called a recursive equation since it specifies a recursive
procedure for determining the output in terms of the input and previous outputs. In the
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special case when N =0, from Eq. (2.53) we have
1 (M
sl = o-|  bustn 4] (2.55)
a9 \ k=0

which is a nonrecursive equation since previous output values are not required to compute
the present output. Thus, in this case, auxiliary conditions are not needed to determine

yln].

C. Impulse Response:

Unlike the continuous-time case, the impulse response h[n] of a discrete-time LTI
system described by Eq. (2.53) or, equivalently, by Eq. (2.54) can be determined easily as

1 (M N
h[n]=—{ Y b d[n—k] - X a.h[n—k] (2.56)
Ao \k=0 k=1
For the system described by Eq. (2.55) the impulse response h[n] is given by
1 M b 0 M
h[n] = — Zbks[n—k]={ n/ o =n= (2.57)
ay v o 0 otherwise

Note that the impulse response for this system has finite terms; that is, it is nonzero for
only a finite time duration. Because of this property, the system specified by Eq. (2.55) is
known as a finite impulse response (FIR) system. On the other hand, a system whose
impulse response is nonzero for an infinite time duration is said to be an infinite impulse
response (IIR) system. Examples of finding impulse responses are given in Probs. 2.44 and
2.45. In Chap. 4, we will find the impulse response by using transform techniques.

Solved Problems

RESPONSES OF A CONTINUOUS-TIME LTI SYSTEM AND CONVOLUTION

2.1. Verify Egs. (2.7) and (2.8), that is,

(a) x()*xh(t)=h(t)* x(1)
(b)) {x(D)xh(D)*h,(t) =x(t)x{h(t)* h(1))
(a) By definition (2.6)

x(t)xh(t) = [ x(r)h(t-r)d7

By changing the variable ¢t — r = A, we have

x(0)xh(t) = [ x(t=A)h(A)dr= [~ h(X)x(t=A)dA=h(t)*x(1)
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(b) Let x(1)xh (1) =f(t) and h(t)* h(1) = f,(¢). Then

0y =[xy =) dr
and (x(1)* (D))= ho(1) = f(1)* ho(1) = [ Fi(@ )yt~ o) do
- f:[/lx(f)hl(o —7) df]hz(t ~o)do

Substituting A = ¢ — 7 and interchanging the order of integration, we have

(0 h()+hot0) = [ x| [ B o(a =7 =3y aa | ar

Now, since
£a1) = [ It =2) dA
we have
falt=7) = [ (Wt =7 2) dA
Thus, () m(O)ho(0) = [ (1) foe = 7) dr

=x(1) = fo(1) =x(t) x{h,(1) x hy(1)}

2.2, Show that

(a)
(b)

(c)
(d)
(a)

(b)

(¢)

x(2)* 8(t) =x(t)
x(2)* 8(t —ty) =x(t —1t,)

x(xut) = [* x(r)dr

x(0) % u(t —t,) = f""’x(T) dr

By definition (2.6) and Eq. (1.22) we have
x(t)*é(t)=/iox('r) 8(t =) dr=x(), - =x(1)
By Egs. (2.7) and (7.22) we have
x(1)*8(1 —13) = 8(t — ty) * x(1) =[15(T—10)x(z—f)d7
=x(t=71)rar,=x(t— 1)
By Eqs. (2.6) and (1.19) we have
x(t) *u() = [:x(f)u(r —r)dr= [_lmx(*r) dr

. 1 T<¢t
t_ —_ .
since u(t —7) = {O >

67

(2.58)
(2.59)

(2.60)

(2.61)
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(d) In a similar manner, we have

x(t)*u(t—ty) =fm x(r)u(t—T—t(,)d'r=fl_'”x(7) dr
_ )= 1 T<t—1,
since u(t —r—1ty) = 0 r>t—t,
Let y(r) = x(t)* h(¢). Then show that
x(t=t)xh(t—t)=y(t—t,—1;) (2.62)
By Eq. (2.6) we have
y(1) =x(1)xh(1) = [~ x(r)h(1—7)dr (2.63a)
and x(t=1)sh(t=0)= [ x(r=1)h(t=7~1,)dr (2.63b)
Let  —t, =A. Then 7= +¢, and Eq. (2.63b) becomes
x(t=t1)<h(t=13) = [ x(Ah(t =1, =1~ A) dA (2.63¢)

Comparing Egs. (2.63a) and (2.63c), we see that replacing ¢ in Eq. (2.63a) by ¢t —¢t, —¢,, we
obtain Eq. (2.63¢). Thus, we conclude that

x(t=t)xh(t=t) =y(t—t,=1;)

The input x(¢) and the impulse response A(¢) of a continuous time LTI system are
given by

x(t)=u(r) h(t)y=e “u(t),a>0

(a) Compute the output y(t) by Eq. (2.6).
(b) Compute the output y(¢) by Eq. (2.10).

(a) By Eq. (2.6)
y(1) =x(t)<h(1) = [ x(r)h(t-7)dr
Functions x(7) and A(t — 1) are shown in Fig. 2-4(a) for t <0 and ¢t > 0. From Fig. 2-4(a)

we see that for t+ <0, x(7) and A(t — 1) do not overlap, while for ¢ > 0, they overlap from
r=0to 7 =1 Hence, for t <0, y(¢+) = 0. For t > 0, we have

t t
Y1) = [letndr =~ ‘e s
0 0

1 1
=e—ul’__(€al'_1)=_(1_e—at)
[44 o

Thus, we can write the output y(t) as

1
y(t)=;—(1—e“”)u(t) (2.64)
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(b) By Eq.(2.10)

y() =h(0)<x(0) = [ h(r)x(1 =) dr

69

Functions h(7) and x(¢ — 7) are shown in Fig. 2-4(4) for ¢t <0 and ¢ > 0. Again from Fig.
2-4(b) we see that for t <0, h(7) and x(¢ — ) do not overlap, while for ¢ > 0, they overlap

from =0 to 7 =t. Hence, for ¢t <0, y(z) = 0. For ¢ > 0, we have

1
y(t) = f’e_‘"d'r= —(1—-e™")
0 @
Thus, we can write the output y(¢) as

1
y(1) = (1= (1)

which is the same as Eq. (2.64).

x(T)

(2.65)

h(t-T)

t<0

x(t-T)

<0

Sy

! 0 T t 0
h(t-7) x(t-T)
t>0 1 t>0
1 ﬂ
0 1 T t 71
(@) (b)

Fig. 2-4
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2.5.

see that for ¢+ <0, x(7) and A(t — 7) overlap from 7= —oo to 7 =t, while for ¢ > 0, they overlap
from 1= —x to 7 = 0. Hence, for ¢t <0, we have
1
— L ar —a(t—71) — pat t 2ar - ___pat
y(1) f_me e dr=e f_we dr P (2.66a)
For ¢t > 0, we have
0 0 1
= ar ,~a(l—T) — p—al 2ar - — ,—al
y(t) f_we e dr=e [Ame dr= e (2.66b)
x(7)
__/ 1
0 T
h(r-T)
(1)
t<0
M- B
r0 T 0 ¢
h(t-7) (b)
t>0
1 H
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Compute the output y(¢) for a continuous-time LTI system whose impulse response
h(¢) and the input x(¢) are given by
h(t)=e *u(t) x(t)=eu(—1) a>0
By Eq. (2.6)

y(t)=x(t)*h(t)=fmmx(T)h(t—T)dT

Functions x(r) and h(¢ — 1) are shown in Fig. 2-5(a) for + <0 and ¢ > 0. From Fig. 2-5(a) we

|
i /

(@)
Fig. 2-§
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Combining Egs. (2.66a) and (2.66b), we can write y(t) as
1
y(t) = —e~cl! a>0 (2.67)
2a

which is shown in Fig. 2-5(b).

2.6. Evaluate y(¢)=x(t)* h(¢), where x(¢) and A(¢) are shown in Fig. 2-6, (a) by an
analytical technique, and (b) by a graphical method.

x(1) h(t)

(a) We first express x(t) and h(r) in functional form:
x(t)y=u(t) —u(t-13) h(t) =u(t) —u(t—2)

Then, by Eq. (2.6) we have

y(0) =x(0)xh(1) = [ x(1)h(1 = 7)d7
=f:[u(r)—u(r—s)][u(z—f)—u(z—T—Z)] dr
=fj;u(T)u(t—‘r)d‘r—fjxu(T)ll(t—z—T)dT

~ [ u(r=3ut =y dr+ [ u(z-Du(t-2-7)dr

' 1 0<r<t,t>0
Since u(ru(t—r) = {() otherrwise
1 0<r<t—=2,1>2
u(r)u(t=2-r1)= 0 otheTrwise

3I<r<t,t>3
otherwise

3<r<t—=2,t>5

1
0 otherwise

{
u(7’~3)u(1—7)={é
u(-r—3)u(r—2—1-)={
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we can express y(t) as

y(t) = (/O’df)u(z) - (L'—de)u(t—Z)

([ a3+ ([ arfuti-9)

=tu(t)—(t=2u(t-2)—(t=Nu(t-=3)+(t-5u(t-93)

which is plotted in Fig. 2-7.

pL0) ’ \ .

-1k R \\\ (t- uft- 3)
\ \
\ \
- (t-2u(t-2) \\ ‘\
Fig. 2-7

(b) Functions h(7), x(7) and k(¢ — 1), x(7)h(t — 7) for different values of ¢ are sketched in
Fig. 2-8. From Fig. 2-8 we see that x(r) and h(¢ — 7) do not overlap for t <0 and ¢ > 5,
and hence y(¢) =0 for t <0 and ¢ > 5. For the other intervals, x(7) and A(¢ — 7) overlap.
Thus, computing the area under the rectangular pulses for these intervals, we obtain

0 t<0

t 0<t<?2
y(t) =<2 2<t<3

5—t 3<t<Ss

0 5<t¢

which is plotted in Fig. 2-9.

2.7. Let h(t) be the triangular pulse shown in Fig. 2-10(a) and let x(¢) be the unit impulse
train [Fig. 2-10(b)] expressed as

x(t)=6,(t)= i 8(t —nT) (2.68)

Determine and sketch y(t) = h(r)* x(¢t) for the following values of T: (a) T =3, (b)
T=2()T=15.
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h(T)
1
. L 1 L :
-1 0 1 2 3 4 T
h(t - 1)
1<0
1
1 1 A 1 L 'l ;
t-z 1 10 | 2 3 4 T
-2
h(t-T1)
O0<1<2
1
1 1 L L 1 :
2 ] ' 0 1 ¢ 2 3 4 T
t-2
h(t-7)
2<1<3
]-
1 1 L 1 L 1 ;
2 -1 0' ] 2 3 4 5 T
t-2
h(t-T)
3<t<5
l—
L L 1 L Jl L :
2 -1 0 1 t 2 31 4 5 6
-2
h(r-7)
S5<t
1
L i L L Il L i [ :
2 -1 0 1 2 3 t 4 5 6 T
r-2

Fig. 2-8
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x(T)
1
1 [ L L :
-1 0 1 2 4 T
x(T)h(r - 1)
<0
I
A L i L ;
-1 0 1 2 4 T
x(T)h(t - T)
O0<r<2
1
1 L i 1 :
-1 0 1 2 4 T
x(T)h(t - T)
2<t<3
1k
- 1 ' 1 ;
-1 0 t 1 2 4 7
r-2
x(T)h(t - T)
3<t<5
1 -
L L 1 L :
-1 0 1 t 2 4 7
-2
x(T)h(t - T)
S<t
1
1 L 1 L L ;
-1 0 | 2 4 T
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-

h(1) 3,0

-»v

-2T 2T

~Y

(b)
Fig. 2-10

Using Egs. (2.59) and (2.9), we obtain

y(1) =h(t)*8.(t) =h(’)*[ i 5('—'17)]

n= —o

= f‘, h(t)*8(t—nT) = f‘, h(t —nT) (2.69)

(a) For T =3, Eq. (2.69) becomes

y(1)= ¥ h(—3n)

which is sketched in Fig. 2-11(a).
(b) For T =2, Eq. (2.69) becomes

y(t) = i h(t—2n)

n=—o
which is sketched in Fig. 2-11(b).
(¢) For T=1.5, Eq. (2.69) becomes

y(t) = i h(t— 1.5n)

n=-w

which is sketched in Fig. 2-11(c). Note that when T <2, the triangular pulses are no
longer separated and they overlap.
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¥

NN AN

T=3
A A 1 >
6 5 -4 3 2 0 1 2 3 4 5 6 7 '

(a)

¥

~y

2.8.

F Y| TR TR B I o R TR x 4 1 -~
6 5 4 3 2 | 0 1 2 3 4 5 6 7 1
(o
Fig. 2-11

If x,(¢t) and x,(¢) are both periodic signals with a common period T, the convolution

of x,(t) and x,(¢) does not converge. In this case, we define the periodic convolution
of x(¢) and x,(¢) as

(a)
(b)

(c)

T,
f(1) =x,(t)®x2(t)=f0 X (7)x,(t = 7)dr (2.70)
Show that f(¢) is periodic with period 7.
Show that
a+T,
f()= [ x(n)xyt 1) dr (2.71)
a
for any a.

Compute and sketch the periodic convolution of the square-wave signal x(t)
shown in Fig. 2-12 with itself.
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x()
A
-
To Ty 0 Ty To t
2 2
Fig. 2-12
x(T) x(1)
A A
-To o 0 ] To T To To 0 To Ty ' T
2 2 2 B
1 E | | 2 .
! x(t-7) 1 . x(t-71) L
T 1 Ty
0 | 0O<t< :" . 1 ! S <i1<mn
1 A I - | 1 L
= — Al - d
' ] 1 ) !
i ) ) 1 !
1 | ) ' !
' | 1 ' !
1 1 1 1 > L 1 ! >
o . . N ! b
To 0 0o To T D 0 To ¢ 1o 1 T
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Fig. 2-13
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(a) Since x,(t) is periodic with period T,, we have
XH(t+Ty—1)=x(t —7)
Then from Eq. (2.70) we have

f(1+T,) = fOT°x,(f)x2(: +Ty—7)dr

- fOT°x,(f)x2(r—T)df=f(r)

Thus, f(¢) is periodic with period 7.

(b) Since both x(7) and x,(7) are periodic with the same period T, x,(7)x,(t —7) is also
periodic with period T,. Then using property (1.88) (Prob. 1.17), we obtain

f(r)=fo"’xl(r)xz(t—f)dmja"”"xl(f)xz(,-f)df

for an arbitrary a.

(¢) We evaluate the periodic convolution graphically. Signals x(7), x(¢ — 7), and x(7)x(t — 1)
are sketched in Fig. 2-13(a), from which we obtain

A%t 0<t<T,/2

O A I (G ON(Q

which is plotted in Fig. 2-13(b).

PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS

2.9.

2.10.

The signals in Figs. 2-14(a) and (b) are the input x(¢) and the output y(t), respec-
tively, of a certain continuous-time LTI system. Sketch the output to the following
inputs: (a) x(¢ — 2); (b) 3x(¢).

(a) Since the system is time-invariant, the output will be y(¢ — 2) which is sketched in Fig.
2-14(c).

(b) Since the system is linear, the output will be 1y(¢) which is sketched in Fig. 2-14(d).

Consider a continuous-time LTI system whose step response is given by

s(t)=e""u(t)
Determine and sketch the output of this system to the input x(¢) shown in Fig.
2-15(a).

From Fig. 2-15(a) the input x(¢) can be expressed as
x(t)=u(t—1) —u(t-3)
Since the system is linear and time-invariant, the output y(¢) is given by
y(t)y=s(t—1)-s(t-3)
=e U Dy(r—1) —e " Dy(1-3)

which is sketched in Fig. 2-15(b).
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x(1) y(®)

(@) ®

wit-2)

=~y
~y

() (d)
Fig. 2-14

x(1) y(n

(=}
0~
w
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B |
<
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w
\
\
\
\
\
\
-

(a)

Fig. 2-15

2.11. Consider a continuous-time LTI system described by (see Prob. 1.56)

1 41,2

y(t)=T{x(1)} x(7)dr (2.72)

T t-T/2
(a) Find and sketch the impulse response h(t) of the system.
(b) Is this system causal?

(a) Equation (2.72) can be rewritten as

T (r) dr (2.73)

—o0c

y(1) = %f::mx(r)dr— %f
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Using Egs. (2.61) and (2.9), Eq. (2.73) can be expressed as

y(1) = lTx(t)*“(’+ ;) - —IT—x(t)*u(t - -;C)

1 T T
=x(t)*§; u(t+5—)—u(t——2-)]=x(t)*h(t) (2.74)
Thus, we obtain
1 T T -
W) = = u(t+—2~)—u(t—5”={(1)/T Oﬂi’fv;’STﬂ (2.75)

which is sketched in Fig. 2-16.

(b) From Fig. 2-16 or Eq. (2.75) we see that h(r)# 0 for ¢ <0. Hence, the system is not
causal.

h(t)

~i-

- 0 ™ t

Fig. 2-16

2.12. Let y(t) be the output of a continuous-time LTI system with input x(¢). Find the
output of the system if the input is x'(¢), where x'(¢) is the first derivative of x(r).

From Eq. (2.10)
y(1) =h(0)xx(1) = [ h(r)x(t=7)dr

Differentiating both sides of the above convolution integral with respect to ¢, we obtain

=~ d
= [ S [h()x(i-7)dr]

d o
(1) = Z[[_wh(r)x(:—r)df
= [" h(r)x'(1=7) dr=h(1) x x'(1) (2.76)

which indicates that y’(¢) is the output of the system when the input is x'(¢).

2.13. Verify the BIBO stability condition [Eq. (2.21)] for continuous-time LTI systems.

Assume that the input x(¢) of a continuous-time LTI system is bounded, that is,

x(t)l <k, all ¢ (2.77)
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Then, using Eq. (2.10), we have

1=|[ " h)x( =7y dn

s/f lh(r)x(t — 1)l dr

= [T h()lix(e =)l dr <k, [ ()l ds

since |x(t — 1)l <k, from Eq. (2.77). Therefore, if the impulse response is absolutely inte-
grable, that is,

fw lh(T)ldr=K <

then [y(¢)l < k,K = k, and the system is BIBO stable.

2.14. The system shown in Fig. 2-17(a) is formed by connecting two systems in cascade. The
impulse responses of the systems are given by h,(t) and h,(t), respectively, and

hy(t)=e *u(t) hy(t) =2e"u(t)
(a) Find the impulse response Ah(t) of the overall system shown in Fig. 2-17(b).
(b) Determine if the overall system is BIBO stable.

x(1) w(t) 0]
h() hy(t)  em—-
(a)
x(1) y(0)
e /(1) (f————
(2]
Fig. 2-17

(a) Let w(1) be the output of the first system. By Eq. (2.6)

w(t) =x(1)*hy(t) (2.78)
Then we have
y(£) =w(t) xhy(t) = [x (1) x hy(2) ] * hy(t) (2.79)
But by the associativity property of convolution (2.8), Eq. (2.79) can be rewritten as
y(t) =x(t)*[hy(t)x hy(1)] =x(t)* h(1) (2.80)
Therefore, the impulse response of the overall system is given by
h(t) =h(1)*hy(1) (2.81)

Thus, with the given A (¢) and h,(1), we have

h(1) = j':nhl(f)hz(t —r)dr= [:e‘zfu(r)ze-“-”u(r ~r)dr

= 2e"foc e Tu(tu(t—r)dr= Ze"[};‘e"’d‘r]u(t)

=2(e™"—e )u(t)
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(b) Using the above A(t), we have

[ =2 [ (e =y ar =2 [Tear- fd]

=2(1-3)=1<

Thus, the system is BIBO stable.

EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS

2.15. Consider a continuous-time LTI system with the input-output relation given by

(a)
(b)
(c)

(a)

(b)

(c)

y(r)= [ et Ix(r)dr (2.82)

Find the impulse response h(t) of this system.

Show that the complex exponential function ¢*' is an eigenfunction of the system.
Find the eigenvalue of the system corresponding to e*' by using the impulse
response h(t) obtained in part (a).

From Eq. (2.82), definition (2.1), and Eq. (1.27) we get
{
h(t)= [ e 8(rydr=e """ =" >0

Thus, h(t) =e u(1) (2.83)
Let x(¢)=e*". Then

] r .
Y(t)=f e—“”’e”d7=e“f ey
<

- —x

1

s+le“=/\e" ifRes> —1 (2.84)

Thus, by definition (2.22) e* is the eigenfunction of the system and the associated
eigenvalue is
1

= 2.85
s+1 ( )

Using Eqgs. (2.24) and (2.83), the eigenvalue associated with e* is given by

s

A =H(s) =fm h(T)e_”dT=f e Tu(t)e dr

—x

ifRes> —1

- fme—(s+|)7d7,=
0 s+1

which is the same as Eq. (2.85).

2.16. Consider the continuous-time LTI system described by

1 u+71/2
t)y=— .
¥( Tft—mx(f)df (2.86)
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(a) Find the eigenvalue of the system corresponding to the eigenfunction e*.
(b) Repeat part (a) by using the impulse function A(¢) of the system.

(a) Substituting x(7) =e¢*" in Eq. (2.86), we obtain

t+7T/2
y’ = S‘r
(1) Tf o

— (esT/Z e—sT/Z) est = Ae’!
sT

Thus, the eigenvalue of the system corresponding to e*' is

1
A _ —_ .!‘T/Z_ —sT/2 .87
(T2 (2.87)
(b) From Eq. (2.75) in Prob. 2.11 we have
1 T T 1/T ~T/2<t<T/2
h(t)y==|ult+ =|-ult—=||= =
(1) T u( 2) u( 2” (0 otherwise

Using Eq. (2.24), the eigenvalue H(s) corresponding to e*' is given by

H(s)=f h(r) e Tdr = T[

T/2 e ST dr = _17_ (esT/Z _e—:T/Z)

1/2

which is the same as Eq. (2.87).

2.17. Consider a stable continuous-time LTI system with impulse response A(t¢) that is real

and even. Show that cos wt and sin w! are eigenfunctions of this system with the same
real eigenvalue.

By setting s =jw in Eqgs. (2.23) and (2.24), we see that e/’ is an eigenfunction of a
continuous-time LTI system and the corresponding eigenvalue is

A=H(jw)= [ h(z)e " dr (2.88)

Since the system is stable, that is,

[ ih(r)ldr <o

then " ih(ry e de = [ Ih(r)lle I dr = [ IA(7)ldT <o

— —

since e 7“7\ = 1. Thus, H(jw) converges for any w. Using Euler’s formula, we have

H(jw) = j_°° h(r)e ™ dr= [ h(7)(coswr~jsinwr)ds

= [ h(r)coswrdr—j [ h(r)sinwrdr (2.89)
Since cos w7 is an even function of 7 and sin w7 is an odd function of 7, and if A(¢) is real and
even, then h(7)cos wt is even and h(7)sin w7t is odd. Then by Egs. (1.75a) and (1.77), Eq.
(2.89) becomes

H(jw) =2 h(r)cos wr dr (2.90)
0
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Since cos w7 is an even function of w, changing w to —w in Eq. (2.90) and changing j to —j in
Eq. (2.89), we have

H(-jw) =H(jw)* =2}:h(‘r)cos(—w‘r)d7

=2[:h(1-)cosw‘rd'r=H(jw) (2.91)
Thus, we see that the eigenvalue H(jw) corresponding to the eigenfunction e’“’ is real. Let the
system be represented by T. Then by Egs. (2.23), (2.24), and (2.91) we have
T{e’*'} =H(jw) e/’ (2.92a)
T{e 7'} =H(-jw)e " =H(jw)e ' (2.92b)
Now, since T is linear, we get
T(cos wt) = T{3(e™ +e 7)) = 1T{e™) + §T(e )
=H(jw){3(e™ +e7")} = H(jw) cos wt (2.93a)

1 ) . 1 ) 1 ‘
d T{sin wt) = T{ — (™' — /)| = —T(e'}) — —T(e /"
an {sin wt} <2j(e e )} 2 {ei*} T {e7)
1 ) .
=H(jw)(7(e"‘”—e—"‘”)}=H(jw)sinwt (2.93b)
J

Thus, from Egs. (2.934) and (2.93b) we see that cos wt and sin w? are the eigenfunctions of the
system with the same real eigenvalue H(jw) given by Eq. (2.88) or (2.90).

SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS

2.18. The continuous-time system shown in Fig. 2-18 consists of one integrator and one
scalar multiplier. Write a differential equation that relates the output y(¢) and the

input x(¢).
x() e(?) ()
3 - -
) J
g
Fig. 2-18

Let the input of the integrator shown in Fig. 2-18 be denoted by e(tr). Then the
input-output relation of the integrator is given by

y(1)= [ e(r)dr (2.94)
Differentiating both sides of Eq. (2.94) with respect to t, we obtain
dy(t
() =e(t) (2.95)

dt
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Next, from Fig. 2-18 the input e(t) to the integrator is given by

e(t) =x(t) —ay(r) (2.96)
Substituting Eq. (2.96) into Eq. (2.95), we get
dy(r) _
() —ay(t)
dy(t
or yd(t ) +ay(t) =x(t) (2.97)

which is the required first-order linear differential equation.

The continuous-time system shown in Fig. 2-19 consists of two integrators and two
scalar multipliers. Write a differential equation that relates the output y(¢) and the
input x(¢).

_
x(?) e(r) W)
p3 ] .
+ ﬁ f w(r) f
<-¢
Fig. 2-19

Let e(r) and w(r) be the input and the output of the first integrator in Fig. 2-19,
respectively. Using Eq. (2.95), the input to the first integrator is given by

dw(t)
e(t)=7—=——a,w(t)—a2y(t)+x(t) (2.98)
Since w(¢) is the input to the second integrator in Fig. 2-19, we have
dy(1)
1) = 2.99
w(n) = — (2.99)
Substituting Eq. (2.99) into Eq. (2.98), we get
d?y(t) dy(t)
P = —~a, o —a,y(t) +x(t)
d?y(t dy(t
or dt(z ) +a, cjl ) +a,y(t)=x(t) (2.100)

which is the required second-order linear differential equation.

Note that, in general, the order of a continuous-time LTI system consisting of the
interconnection of integrators and scalar multipliers is equal to the number of integrators in
the system.
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2.20. Consider a continuous-time system whose input x(¢) and output y(t) are related by
dy(t)

o +ay(t) =x(t) (2.101)

where a is a constant.
(a) Find y(¢) with the auxiliary condition y(0) =y, and
x(t)=Ke "u(t) (2.102)
(b) Express y(t) in terms of the zero-input and zero-state responses.
(a) Let
y(8) =y, (1) + (1)
where y () is the particular solution satisfying Eq. (2.101) and y,(t) is the homogeneous
solution which satisfies
dyu(t)
dt

+ay,(t)=0 (2.103)

Assume that
y,(t) =Ae™* t>0 (2.104)
Substituting Eq. (2.104) into Eq. (2.101), we obtain

—bAe " +ade " =Ke™
from which we obtain 4 = K/(a — b), and

y(1) = alfbe"” t>0 (2.105)
To obtain y,(1), we assume
ya(t) = Be*
Substituting this into Eq. (2.103) gives
sBe’' + aBe’* = (s + a)Be* =0

from which we have s = —g and
Yu(t) =Be™*
Combining y,(1) and y,(), we get
y(t) =Be ™ + afbe_bl t>0 (2.106)

From Eq. (2.106) and the auxiliary condition y(0) =y,, we obtain
K
a—b

B=y,-

Thus, Eq. (2.106) becomes

)=y~ ol Ta 4 K - 0 2.107
y el P t> (2.107)
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For t <0, we have x(¢) =0, and Eq. (2.101) becomes Eq. (2.103). Hence,

y(t) =Be 1 <0
From the auxiliary condition y(0) =y, we obtain
(1) =yge " 1<0 (2.108)

(b) Combining Egs. (2.107) and (2.108), y(t) can be expressed in terms of y,(t) (zero-input

response) and y, (1) (zero-state response) as

(e™ P —e ")u(t)

K
t = e‘ﬂl+
y(1) =y, g

b

=y,i(1) +y,(1) (2.109)

where y(t)=ye (2.110a)
K

yalt) = == (7" —e ™ u(1) (2.110b)
P

2.21. Consider the system in Prob. 2.20.

(a)

Show that the system is not linear if y(0) =y, # 0.

(b) Show that the system is linear if y(0) = 0.

(a)

(b)

Recall that a linear system has the property that zero input produces zero output (Sec.
1.5E). However, if we let K =0 in Eq. (2.102), we have x(r) =0, but from Eq. (2.109) we
see that

y(t) =ye ¥ #0 yo# 0
Thus, this system is nonlinear if y(0) =y, # 0.

If y(0) = 0, the system is linear. This is shown as follows. Let x,(r) and x,(¢) be two input
signals and let y (1) and y,(¢) be the corresponding outputs. That is,

dy.(t
(1) +ay,(t) =x,(1) (2.111)
dt
dy,(t)
;(t +ay,(1) =x,(1) (2.112)
with the auxiliary conditions
yi(0) =y,(0) =0 (2.113)

Consider
x(t) =a;x,(1) +a,x,(1)
where «, and a, are any complex numbers. Multiplying Eq. (2.111) by «, and Eq. (2.112)
by a, and adding, we see that
y(1) =a,y,(1) +a,y,(1)
satisfies the differential equation
dy(t)
dt

+ay(t) =x(t)

and also, from Eq. (2.113)
y(0) =, ,(0) +a,¥,(0) =0

Therefore, y(t) is the output corresponding to x(1), and thus the system is linear.
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2.22,

2.23.

Consider the system in Prob. 2.20. Show that the initial rest condition y(0) =0 also
implies that the system is time-invariant.

Let y,(t) be the response to an input x,(¢) and

x,(1) =0 t<0 (2.114)
dy (¢t
Then :1(: ) +ay,(t) =x,(1) (2.115)
and y(0)=0 (2.116)
Now, let y,(t) be the response to the shifted input x,(t) =x,(t — 7). From Eq. (2.114) we have
x,(t)=0 t<r (2.117)
Then y,(t) must satisfy
dy,(t
;E ) +ayy(t) =x5(1) (2.118)
and y.(7)=0 (2.119)
Now, from Eq. (2./15) we have
dy (t—1)
'—dt—— vay(t—7)=x,(1—-1) =x,(t)

If we let y,(¢t) =y (¢t — 7), then by Eq. (2.116) we have
Y1) =yi(7—7) =y,(0)=0
Thus, Egs. (2.118) and (2.119) are satisfied and we conclude that the system is time-invariant.

Consider the system in Prob. 2.20. Find the impulse response h(t) of the system.

The impulse response h(t) should satisfy the differential equation

dh(1)
—— +ah(1) =5(1) (2.120)
The homogeneous solution 4,(t) to Eq. (2.120) satisfies
dh(1)
+ah,(t) =0 (2.121)
dt
To obtain #,(1) we assume
h,(t) = ce*

Substituting this into Eq. (2.127]) gives
sce® +ace* = (s +a)ce’ =0
from which we have s = —a and
h,(t) =ce *u(t) (2.122)

We predict that the particular solution 4 ,(t) is zero since 4,(¢) cannot contain 8(¢). Otherwise,
h(t) would have a derivative of 8(t) that is not part of the right-hand side of Eq. (2.720). Thus,

h(t) =ce *u(t) (2.123)
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To find the constant ¢, substituting Eq. (2.123) into Eq. (2.120), we obtain
d
E[ce“”u(t)] +ace™""u(t) = 8(t)

du(t)

at

or —ace u(t) +ce” +ace “u(t) =8(t)

Using Eqs. (/.25) and (1.30), the above equation becomes

du(t)
ce =ce (1) =cd(t) =8(1)
dt
so that ¢ = 1. Thus, the impulse response is given by

h(t) =e “u(t) (2.124)

Consider the system in Prob. 2.20 with y(0) = 0.

(a) Find the step response s(f) of the system without using the impulse response
h(1).

(b) Find the step response s(r) with the impulse response A(t) obtained in Prob.
2.23.

(¢) Find the impulse response A(r) from s(r).
(a) In Prob. 2.20
x(t) =Ke ®u(t)

Setting K =1,b=0, we obtain x(¢) =u(t) and then y(¢+)=s(¢t). Thus, setting K =1,
b =0, and y(0) =y, =0 in Eq. (2.109), we obtain the step response

1
s(1) = —=(1=e~*)u(1) (2.125)
(b) Using Eqs. (2.12) and (2.124) in Prob. 2.23, the step response s(¢) is given by

s(l)=f: h(r)dr=[_' e ""u(r) dr

- [fferrarfutn = -

which is the same as Eq. (2.125).
(¢) Using Eqgs. (2.13) and (2.125), the impulse response h(t) is given by

d[1
h(t) =s'(1) = E[;(l —e-“')u(z)]

1
=e u(t) + —(1—e " )u'(1)
a
Using Egs. (1.25) and (1.30), we have
1 1 1
—(1—e (1) = —(1—e *)8(t) = —(1-1)8(t) =0
a a a

Thus, h(t)y =e “u(t)
which is the same as Eq. (1.124).
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2.25. Consider the system described by

89

y'(t)+2y(t)=x(t)+x'(2) (2.126)

Find the impulse response h(¢) of the system.

The impulse response A(t) should satisfy the differential equation

R(t) +2h(1) =8(1) +8'(1) (2.127)

The homogeneous solution 4,(t) to Eq. (2.127) is [see Prob. 2.23 and Eq. (2.122)]
h(t) =ce”*u(t)
Assuming the particular solution (1) of the form
h,(1) =c,8(1)

the general solution is

h(t) =ce”?u(t) +c,8(1) (2.128)
The delta function 8(¢) must be present so that A'(¢) contributes 8'(¢) to the left-hand side of

Eq. (1.127). Substituting Eq. (2.128) into Eq. (2.127), we obtain
~2c,e”u(t) +cie”Hu' (1) +¢,8'(t) + 2c,e 2 u(t) + 2¢,8(¢)
=8(t) +8'(¢)
Again, using Egs. (1.25) and (1.30), we have
(¢, +2¢,)8(t) +c,8'(t)=08(t)+8'(r)

Equating coefficients of §(¢) and 6'(¢), we obtain

¢, +2¢,=1 c,=1
from which we have ¢, = —1 and ¢, = 1. Substituting these values in Eq. (2.128), we obtain
h(t)=—e *u(t) +8(1t) (2.129)

RESPONSES OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION

2.26. Verify Eqs. (2.36) and (2.37), that is,

(a) x[n}* h[n]=hln]* x[n]
(b) {x[n}* h\[n]} = hy[n}=x[n}*{h,[n]* h,[n]}

(a) By definition (2.35)

0

x[n]xh[n)= Y x[k]h[n—k]

k=—0o

By changing the variable n — k = m, we have

oo

x[n)xh[n]= Y. x[n-mlh[m]= i h[m]x[n —m]=h[n]*x[n]

m= —@ m= —o

(b) Let x[n]* h|[n]=f[n) and h,[n]* h,[n] =f,[n]. Then

o

filn] = Z x[k]h[n—k]

k= —x
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2.27. Show that

(a)
(b)

()

(d)
(a)

(b)

(¢)

(d)

LINEAR TIME-INVARIANT SYSTEMS
nd  {xlaleh(nl) s halnl = fln) aln] = T filmlhln - m]
S R C IR REES
Substituting r =m — k and interchanging the order of summation, we have
(ladmlnl)ehalnl = £ sth)| T mlrnln-k-r])
Now, since
flnl= T mlrlhln=r]
we have
fln=K1= T hlrdhln=k=r]
Thus,  (xlalsmlnl)sholn) = £ k1L k]
=x[n]*f2[n]=x[n]*{hI[n]*hz[n]}
x[n]* 8[n]=x[n]
x[n]x8[n —nyl=x[n —ngl
x{nl*uln)= Y, x[k]
k= —o
x[nlxuln —n,l= ):“ x[k]
k=

By Eq. (2.35) and property (1.46) of §[n — k] we have

x[n)*8[n)= Y x[k]8[n—-k])=x[n]

k= —x

Similarly, we have

]

x[n]x8[n—nyl= Y x[k]8[n—k-ny]l=x[n—-n]

k= —%
By Eq. (2.35) and definition (/.44) of uln — k] we have
e} n
x[n}suln)= Y x[klu[n—-k]= 3} x[k]
k=~ k= -
In a similar manner, we have
oo n—ny

x[n]xuln—ne]= ¥ x[kJuln-k-n]= ¥ x[k]

k= —x k= —

[CHAP. 2

(2.130)
(2.131)

(2.132)

(2.133)
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2.28. The input x[n] and the impulse response A[n] of a discrete-time LTI system are given
by

x[n] =uln] h[n] =a"u[n] 0<a<l
(a) Compute the output y[n] by Eq. (2.35).
(b) Compute the output y[n] by Eq. (2.39).
(a) By Eq. (2.35) we have

®

ylnl=x[n]xh[n]= 3 x[k]a[n-k]

k= —x

Sequences x[k] and A[n — k] are shown in Fig. 2-20(a) for n <0 and n > 0. From Fig.
2-20(a) we see that for n <0, x[k] and A[n — k] do not overlap, while for n > 0, they
overlap from k =0 to k =n. Hence, for n <0, y(n] = 0. For n > 0, we have

y[n]= )E'.a"”‘
k=0

Changing the variable of summation k to m =n — k and using Eq. (1.90), we have

0 n ]_an+l
M= ¥ am= ¥ am=—
m=n m=0 -«
x[k]
—0— = >
2101 2 3 k
yln]
1
h(n - k] Y R Y -
e ']
n 0 k 2 -1 01 2 3 4 n
b)
hln - k)

n>0

1]
e ? ' I
0 n k
(a)
Fig. 2-20
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Thus, we can write the output y[n] as
o n+1

y[n]=(——-a—)u[n] (2.134)

l-a

which is sketched in Fig. 2-20(b).
(b) By Eq. (2.39)

y[n]=h[n1*x[n]=k=i_ W[k xln - k]

Sequences hlk] and x[n — k] are shown in Fig. 2-21 for n < 0 and n > 0. Again from Fig.
2-21 we see that for n <0, h[k] and x[n — k] do not overlap, while for n > 0, they overlap
from k=0 to k =n. Hence, for n <0, y[n]= 0. For n > 0, we have

l_an+1

= k:
y[n] an l-a

Thus, we obtain the same result as shown in Eq. (2.734).

h(k]

.o L‘JJ:

0 1

~y

xln - k)

TQ’TQ 1 n<0

>~y

x{n - k]

| ']U " R

-1 0
Fig. 2-21

~

2.29. Compute y[n]=x[n]* h[n], where

(a) x[nl=a"uln), h{n]=B"uln)
(b) x[n)=a"u[n)], hinl=a "u[—-n],0<a<1
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(a)

(b)

LINEAR TIME-INVARIANT SYSTEMS

From Eq. (2.35) we have

=]

yinl= ¥ xlklhln-k]= ¥ a*u[k]g"*uln k]

k=~ k=—e
= Y a*g" *u[klu[n-k]
k= —x
' (1 O0<k<n
Since ulkJuln - k] = {0 otherwise

we have

n

yln]= X a"B""‘=B"é0(a)k n>0

k=0

> |

Using Eq. (1.90), we obtain

) l _ (a/B)n+l
y[n] = B —_—1—(0/3) u[n] a+p
B*(n+ 1)u[n] a=
or y[n]= B__a (Bn+l__an+l)u[n] a#&ﬂ
B"(n+ 1)u[n] a=

e 5]

y[n]

k= - k= —c

i a "o u[kJu[k —n]

k= —o

For n <0, we have

_ 1 0<k
ulkJulk —n] = {0 otherwise
Thus, using Eq. (1.91), we have
© oG a n
yln]=a" Tea*=a™ T ()= —  n<0
k=0 k=0 l-a
For n > 0, we have
_J1 n<k
ulkJulk —n]= {0 otherwise
Thus, using Eq. (1.92), we have
-] X 2n an
y[nl=a™ ¥ (a?) =a™" = n>0
k=n

Y x[kJaln—k]= ¥ atulkla-"Ru[—(n k)]

93

(2.135a)

(2.135b)

(2.136a)

(2.136b)
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Combining Eqgs. (2.136a) and (2.136b), we obtain

Inl

y[n]= all n (2.137)

1-a?
which is sketched in Fig. 2-22.

yin]

.!TIJIII]TJ, N

210123
Fig. 2-22

3

2.30. Evaluate y[n]=x[n]* h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an
analytical technique, and (b) by a graphical method.

x[n] hln]

;1o 203 n 1012 n
Fig. 2-23

(a) Note that x[n] and h[n] can be expressed as
x[n]=68[n]+8[n—-1])+8[n—-2]+8[n-3]
h[n] =68[n)+8[n—-1]+6[n-2]
Now, using Egs. (2.38), (2.130), and (2.131), we have
x[n)xh[n] =x[n)*{8[n] +6[n~-1])+8[n~2]}
=x[n]*8[n]+x[n]*é[n—-1]1+x[n]*8[n-2]}
=x[n]+x[n—-1]+x[n-2]

Thus, y[n]=8[n]+8[n—-1]+8[n-2]+6[n-3]
+8[n—-1]1+8[n—-2]+68[n—-3]+8[n—4]
+6[n-2]+8[n—3]+6[n—4]+8[n-5]

or  y[n]=8[n}+28[n—-1]+38[n—-2]+386[n—-3]+28[n—-4]+6[n-5]

or y[n]={1,2,3,3,2,1}
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h(k) 1 x(k]
1

o —————— —_—
-1 01 2 3 4 k -1 01 2 3 4 k
hin - k} x[k}hin - k]
n<0
—‘—-[—I—I—O—%-O—O—O—O——> —_— obo—o—ooo—o——t
4 -3-2-1012 3 4 k -1 01 2 3 4 k
h(n - k) x(k)h|n - k]
II 1 n=0
-0—- —0—0—0—0—0—0—P
3-2-10 12 3 4 k -1 01 2 3 4 k
hln - k] x(kA(n - k]
I? [ n=1\ L[
—_———
2-10 1 2 3 4 k -1 01t 2 3 4 k
hln - k] xlk]hln - k]
[ ] n=2 LII
———o——LL—o—o-o—o—v —0 OO~
-1 01 2 3 4 k -1 01 2 3 4 k
hln - k) x(klh[n - k]
] ]I B I I I
'-l 00— +L -0—0—0 -
-1 01 2 3 45 k -1 01 2 3 45 k
hin - k) x{k}h[n - K}
LT [
——-—.—&—G' -0—0—0— —
-1 01 2 3 456 k -1 01 2 3 45 k
hln - k] x[k)hin - k]
II [ n=5 I
-1 01 2 3 4 5 6 k -1 01 2 3 45 k
hln - k) xtklhin - k]
II I n>$
-1 01 23 456 7 k -1 01 2 3 45 k
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2.31.

2.32.
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(b) Sequences hlk], x[k] and h[n — k), x[k]hln — k] for different values of n are sketched in
Fig. 2-24. From Fig. 2-24 we see that x[k] and h[n — k] do not overlap for n <0 and
n> 5, and hence y[n]=0for n <0and n>5. For 0 <n <5, x[k] and h{n — k] overlap.
Thus, summing x[k Jh[n — k] for 0 <n < 5, we obtain

y[0) =1 y[1]=2 y[2] =3 y[3]=3 y[4) =2 y[5]=1
or
y[n]={1,2,3,3,2,1}
which is plotted in Fig. 2-25.

Sy

If x,[n] and x,[n] are both periodic sequences with common period N, the convolu-
tion of x,[n] and x,[n] does not converge. In this case, we define the periodic
convolution of x[n] and x,[n] as

fln) =x,[n] @ x,[n] = kgox,[klxzin—kl (2.138)

Show that f[n] is periodic with period N.
Since x,[n] is periodic with period N, we have
x[(n—k)+N] =x)[n—k]
Then from Eq. (2.138) we have

N-1 N-1
fln+N]= kZOX.[k]xz[n +N-k]= kE x,[k]x[(n—k) +N]

= =0

N-1

= onn[k]xz[(n — k)] =f[n]

Thus, fln] is periodic with period N.

The step response s[n] of a discrete-time LTI system is given by
s[n] = a"u[n| 0<a<l

Find the impulse response h[n] of the system.
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From Eq. (2.41) the impulse response h[n] is given by
h[n]=s{n]-s[n—1]=a"u[n] —a" 'u[n-1]
={8[n]+a"u[n—-1]}) —a" u[n-1]
=8[n]-(1-a)a"'u[n—-1]

PROPERTIES OF DISCRETE-TIME LTI SYSTEMS

2.33. Show that if the input x[n] to a discrete-time LTI system is periodic with period N,
then the output y[n] is also periodic with period N.

Let A[n] be the impulse response of the system. Then by Eq. (2.39) we have

yinl= T H[k]x[n - k]

k= —x

Let n=m + N. Then
y[m+N]=ki hlk]x[m+N—-k]= i h[k)lx[(m—k) +N]
S k=—c
Since x[n] is periodic with period N, we have
x[(m=k)+N]=x[m-k]
Thus, ylm+N]= i hlklx[m—-k]=y[m]
k=-o

which indicates that the output y[n] is periodic with period N.

2.34. The impulse response h[n] of a discrete-time LTI system is shown in Fig. 2-26(a).
Determine and sketch the output y[n] of this system to the input x[rn] shown in Fig.
2-26(b) without using the convolution technique.

From Fig. 2-26(b) we can express x[n] as
x[n]=6[n—-2]-8[n-4]

hin) xfn]

=V

(a) (b)
Fig. 2-26
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Since the system is linear and time-invariant and by the definition of the impulse response, we
see that the output y[n] is given by

y[nl=h{n—-2]—h[n-4]
which is sketched in Fig. 2-27.

h(n - 2]

yln] = hln - 2] - h{n - 4]

0 1 4 5 n
hln - 4]

L1
|

©
T

Fig. 2-27

2.35. A discrete-time system is causal if for every choice of n, the value of the output
sequence y[n] at n =n, depends on only the values of the input sequence x[n] for
n <n, (see Sec. 1.5D). From this definition derive the causality condition (2.44) for a
discrete-time LTI system, that is,

h[n] =0 n<0
From Eq. (2.39) we have
y[n]= X h[klx[n-k]

=k_-23 h[k]x[n—k]+§: h[k)x[n k] (2.139)

Note that the first summation represents a weighted sum of future values of x{n]. Thus, if the
system is causal, then

Y h[k]x[n-k]=0

k=~
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2.36.

2.37.

2.38.

This can be true only if
h[n]=0 n<0
Now if A[n] =0 for n <0, then Eq. (2.139) becomes

yin]= ¥ Alk]x[n—k]
k=0

which indicates that the value of the output y[n] depends on only the past and the present
input values.

Consider a discrete-time LTI system whose input x[n] and output y[n] are related by

y[n] = _}’1‘_, 2k nx[k +1]

Is the system causal?
By definition (2.30) and Eq. (1.48) the impulse response h[n] of the system is given by

h[n] = i 2k=n§[k + 1] = i 27D gk +1]=2"1"+D i [k +1]

k= - k=—w» k= -
By changing the variable k + 1 = m and by Eq. (1.50) we obtain
n+1
h[n]=2"C"*D Y §[m]=2""*Du[n + 1] (2.140)

From Eq. (2.140) we have h[ — 1] = u[0] = 1 # 0. Thus, the system is not causal.

Verify the BIBO stability condition [Eq. (2.49)] for discrete-time LTI systems.
Assume that the input x[n] of a discrete-time LTI system is bounded, that is,
lx[n]l <k, all n (2.141)
Then, using Eq. (2.35), we have

oc

yinll=| & Alklxln-k]|< X h(kDixln-kli<k, 3 Ih[k]

k= —o k=—w k
Since |x[n—k)I <k, from Eq. (2.141). Therefore, if the impulse response is absolutely
summable, that is,
Z lh{k]l=K <

k=—o
we have

[y[n]l<k,K=k,<®
and the system is BIBO stable.

Consider a discrete-time LTI system with impulse response h[n] given by
h[n] = a"u[n|

(@) Is this system causal?
(b) Is this system BIBO stable?
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(a) Since A[n] =0 for n <0, the system is causal.
(b) Using Eq. (1.91) (Prob. 1.19), we have

S hkl= Y letulnll= ¥ lal = ——  Jal<1
k=0

k= —m k=—o 1-lal

Therefore, the system is BIBO stable if |a| < 1 and unstable if |a] > 1.

SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS

[CHAP. 2

2.39. The discrete-time system shown in Fig. 2-28 consists of one unit delay element and one
scalar multiplier. Write a difference equation that relates the output y[n] and the

input x[n].

«[n] ylnl
3
+
+
ety [+
¥n-1] y
Fig. 2-28

In Fig. 2-28 the output of the unit delay element is y[n — 1]. Thus, from Fig. 2-28 we see

that
y[n]=ay[n—1]+x[n]
or y[n] —ay[n—1]=x[n]

which is the required first-order linear difference equation.

(2.142)
(2.143)

2.40. The discrete-time system shown in Fig. 2-29 consists of two unit delay elements and
two scalar multipliers. Write a difference equation that relates the output y[n] and the

input x[n].

x[n} yln

(:J:m (}Jnil
y[n-2] elay yn-1] elay

Fig. 2-29
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In Fig. 2-29 the output of the first (from the right) unit delay element is y[n — 1] and the
output of the second (from the right) unit delay element is y[n — 2]. Thus, from Fig. 2-29 we
see that

y[nl=a,y[n—1]+a,y[n—-2]+x[n] (2.144)
or y[n]—a,y[n-1]-a,y[n—-2]=x[n] (2.145)

which is the required second-order linear difference equation.

Note that, in general, the order of a discrete-time LTI system consisting of the interconnec-
tion of unit delay elements and scalar multipliers is equal to the number of unit delay elements
in the system.

2.41. Consider the discrete-time system in Fig. 2-30. Write a difference equation that relates
the output y[n] and the input x[n].

x(n] qln] yin]
p p3 S o
+ { +

Unit
delay

qln-1]
Fig. 2-30

Let the input to the unit delay element be g[n]). Then from Fig. 2-30 we see that

a[n]=2q[n-1]+x[n] (2.146a)
y[n]=aq[n] +3q[n-1] (2.146b)
Solving Eqs. (2.146a) and (2.146b) for g[n) and q[n — 1] in terms of x[n] and y[n], we obtain
q[n] = 3y[n]+ 3x[n] (2.147a)
gln-1]=ty[n] - x[n] (2.147p)

Changing n to (n — 1) in Eq. (2.147a), we have
gln—1]=35y[n—1]+ 3x[n-1] (2.147¢)

Thus, equating Eq. (2.7147b) and (Eq. (2.147c), we have
sy[n] = 3x[n]=3y[n = 1]+ 3x[n-1]
Multiplying both sides of the above equation by 5 and rearranging terms, we obtain
y[n]l=2y[n—-1]=x[n] +3x[n—-1] (2.148)

which is the required difference equation.

2.42. Consider a discrete-time system whose input x[z] and output y[n] are related by
y[n] —ay[n—1] =x[n] (2.149)
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where a is a constant. Find y[n] with the auxiliary condition y[—1]=y_, and
x[n] = Kb"u[n] (2.150)
Let ylnl=y,[n]+y,[n]

where y [n] is the particular solution satisfying Eq. (2./149) and y,[n] is the homogeneous
solution which satisfies

y[n]—ay[n-1]1=0 (2.151)
Assume that
ypln]=Ab" nz0 (2.152)
Substituting Eq. (2.152) into Eq. (2.149), we obtain

Ab" — aAb"~" = Kb"
from which we obtain 4 = Kb/(b — a), and

y[n]l= b n>0 (2.153)

b—a
To obtain y,[n], we assume

yu[n]=Bz"
Substituting this into Eq. (2.151) gives

Bz"—aBz" '=(z-a)Bz""'=0

from which we have z =a and

yuln] = Ba" (2.154)
Combining y,[n] and y,[n], we get

y[n]=Ba" + ;)—f—;b"“ n>0 (2.155)
In order to determine B in Eq. (2.155) we need the value of y[0]. Setting n = 0 in Egs. (2.149)
and (2.150), we have
y[0] —ay[-1] =y[0] —ay_, =x[0] =K

or y[0] =K +ay_, (2.156)
Setting n = 0 in Eq. (2.155), we obtain

b
0]=B+K 2.157
y[0] P ( )
Therefore, equating Egs. (2.156) and (2.157), we have
K+ay_,=B+K
-a
from which we obtain
B K ?
— - b—a
Hence, Eq. (2.155) becomes
n+1l __ an+l
y[n]=y_,a"*"' + K————m n=0 (2.158)

b—a
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2.43.

For n <0, we have x[n] =0, and Eq. (2.149) becomes Eq. (2.151). Hence,
y[n] =Ba" (2.159)
From the auxiliary condition y[—1]=y_,, we have
y[-1]=y_,=Ba"!

from which we obtain B =y _,a. Thus,

y[n]=y_a"*! n<0 (2.160)
Combining Egs. (2.158) and (2.160), y[n] can be expressed as
n+1 _ an*l

y[n]=y_,a""'+K uln] (2.161)

b —

Note that as in the continuous-time case (Probs. 2.21 and 2.22), the system described by
Eq. (2.149) is not linear if y[ — 1] # 0. The system is causal and time-invariant if it is initially at
rest, that is, y[—1] = 0. Note also that Eq. (2.149) can be solved recursively (see Prob. 2.43).

Consider the discrete-time system in Prob. 2.42. Find the output y[n] when x{n]=
Ké[n]land y[-1]l=y_, =a.

We can solve Eq. (2.7149) for successive values of y[n] for n > 0 as follows: rearrange Eq.
(2.149) as

y[n)=ay[n—1]+x[n] (2.162)
Then
y[0] =ay[-1] +x[0] =aa + K
y[1) =ay[0] +x[1] = a(aa + K)
y[2] =ay[1] +x[2] =a’(aa + K)

yln]=ay[n-1]+x[n] =a"(aa +K) =a"*'a +a"K (2.163)

Similarly, we can also determine y[n] for n <0 by rearranging Eq. (2.149) as
1
yln=1]= — {y[n] ~x[n]} (2.164)
Then y[-1]=a

1 1
y[-2]= ;{y[—l]—x[—l]} = ;—a=a_la

M=31= = (-2 -+l -2]) a7

1
y[—n]=;{y[—n+1]—x[~n+1]}=a”'“a (2.165)

Combining Egs. (2.163) and (2.165), we obtain
y[n]=a"*'a+ Ka"u[n] (2.166)
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2.44. Consider the discrete-time system in Prob. 2.43 for an initially at rest condition.

2.45.

(a)
(b)
()

(a)

(b)

(c)

Find in impulse response A[n] of the system.
Find the step response s[n] of the system.
Find the impulse response A[n] from the result of part ().

Setting K =1 and y[—1] =a =0 in Eq. (2.166), we obtain
h(n]=a"u[n] (2.167)
Setting K=1, b=1,and y[—1]=y_, =0 in Eq. (2.161), we obtain

l_an+l

1—a

s[n}= ( )u[n] (2.168)

From Egs. (2.41) and (2.168) the impulse response h[n] is given by

h[n]=s[n1—s[n—11=(l“”m)u[nl—( = Jutn 13

1-a 1-a
When n =0,

-a

h[0]=(1_a)u[0]=1
When n > 1,
1 a"(l1-a
h[n]= T_—g[l—a"“—(l—a")] = _%a_) =a”"

Thus, h[n)=a"u[n]

which is the same as Eq. (2.167).

Find the impulse response A[n] for each of the causal LTI discrete-time systems
satisfying the following difference equations and indicate whether each system is a FIR
or an IIR system.

(a)
(b)
(c)

(a)

ylnl=x[n]—-2x[n —2]+x[n - 3]
ylnl+2y[n — 11 =x[n] +x[n - 1]
yln] = 3yln — 21 =2x[n] — x[n - 2]

By definition (2.56)
h{n] =8[n] - 26[n — 2] +8[n — 3]
or
h[n]={1,0,-2,1}

Since A[n] has only four terms, the system is a FIR system.
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(b) hlnl= —2h[n—11+68[n]+68[n-1]
Since the system is causal, h[ — 1] = 0. Then

Hence,

h[0) = —2h[—1] +6[0) +8[—1]=6[0]) =1

A[1]= —2h[0] +8[1] + 8[0] = =2+ 1= —1
h[2) = —2h[1] +8[2) +8[1] = —2(—-1) =2
H[3] = —2h[2] + 8[3] + 8[2] = —2(2) = - 22

h[n]=~2h[n—-1]+6[n]+8[n—1]=(-1)"2"""
h[n)=8[n]+(-1)"2""'u[n-1]

Since A[n] has infinite terms, the system is an IIR system.

(¢) hlnl= ihln —2]+28[n]—8ln-2]
Since the system is causal, h[ —2] = h[ — 1] = 0. Then

Hence,

h[0] = Lh[-2] + 28[0] — 8[ —2] = 25[0] = 2
h[1] = Lh[—1] + 28[1] = 8[ ~1] =0

h[2) = LA[0] +25[2] - 8[0] = L (2) = 1=0
h[3] = th[1] +28[3] - 8[1] =0

h[n]=268[n]

Since h[n] has only one term, the system is a FIR system.

Supplementary Problems

2.46. Compute the convolution y(t) =x(t)* h(t) of the following pair of signals:

(@) x(1)= {(’)

(b) x(1)= {{)

(¢) x()=u(t—1),h(t)=e">u(t)

Ans. (@) y(t)= {3"

b) y(1)=

_a<t,‘<'a,h(t)={] —a<t‘5a

otherwise 0 otherwise
0<t<T h(t)={1 0<r<2T
otherwise’ 0 otherwise
— el [t] < 2a

[t|>2a

0 t<0

312 0<t<T

iT? T<t<2T

— 312+ 2T - 3T? 2T <t <3T

0 AT <t

() {a—-e " Mu(r-1)

105



106

2.47.

2.48.

2.49.

2.50.

2.51.

2.52.

LINEAR TIME-INVARIANT SYSTEMS

[CHAP. 2

Compute the convolution sum y[n]=x[n]* h[n] of the following pairs of sequences:

(a) x[nl=uln], hln]=2"ul—n]
(b) x[n]l=uln]—uln-N1 hnl=a"uln),0<a<1
(¢) x[nl=()ulnl, hlnl=58[n]— 36(n — 1]

I A n<0
Ans. (a) y[n] {2 0> 0
0 n<0
l_an+]
— N_
b) snl={ 1-a Pen=hol
1-a?
a"_N+l(l—) N—-1<n
—a

(¢) yln)=dln]

Show that if y(¢) =x(t)* h(t), then
y' (1) =x"(t)xh(t) =x(t)*h'(1)

Hint: Differentiate Eqgs. (2.6) and (2.10) with respect to .

Show that
x(£)*8'(1) =x'(1)
Hint: Use the result from Prob. 2.48 and Eq. (2.58).

Let y[n]=x[n]* h[n]. Then show that
x[n—n,]*h[n—n,]=y[n—n, —n,]

Hint: See Prob. 2.3.

Show that

ny+N-—1

xnl@x,[n]= L x[klx,[n—k]

k=ny,

for an arbitrary starting point n,,.

Hint:  See Probs. 2.31 and 2.8.

The step response s(¢) of a continuous-time LTI system is given by
s(t) = [cos wyt Ju(t)
Find the impulse response A(f) of the system.

Ans.  h(t) = 8(t) — wylsin wytlu(e)
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2.53. The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse
responses of the systems are given by

hy(t)y=e *u(t) and  h,(t) =2e'u(t)
(a) Find the impulse response h(t) of the overall system.

(b) Is the overall system stable?

Ans. (a) h(t)=(e 2 +2e ul(t)
(b) Yes

— hl([)

x(1) hiU)

ﬂ‘ hz([)

Fig. 2-31

2.54. Consider an integrator whose input x(¢) and output y(z) are related by
t
y(t)= [ x(r)dr

(a) Find the impulse response h(t) of the integrator.
(b) Is the integrator stable?

Ans. (a) h(t)=u(t)
(b) No

2.55. Consider a discrete-time LTI system with impulse response A[n] given by
h[n]=68[n—-1]
Is this system memoryless?

Ans. No, the system has memory.

2.56. The impulse response of a discrete-time LTI system is given by
H[n] = (2)"uln)
Let y[n] be the output of the system with the input
x[n]=28[n]+8[n-3]
Find y[1] and y[4).
Ans. y[1]=1and y[4]= 3.
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2.57. Consider a discrete-time LTI system with impulse response A[n] given by

Aln]= (%) uln-1]

(a) Is the system causal?
(b) Is the system stable?

Ans. (a) Yes; (b) Yes

2.58. Consider the RLC circuit shown in Fig. 2-32. Find the differential equation relating the output
current y(¢) and the input voltage x(¢).

dy(t) R dy(t) o L&

+ + = —
de? L dt Lc’ ‘) L dt

Ans.

+

) () 0! -

Fig. 2-32

2.59. Consider the RL circuit shown in Fig. 2-33.

(a) Find the differential equation relating the output voltage y(t) across R and the input
voltage x(1).
(b) Find the impulse response h(t) of the circuit.
(¢) Find the step response s(¢) of the circuit.
dy(t)
de

R
(b)Y h(t)= ze’(R/L)'u(l)

(¢) s()=[1—e RLy(t)

R
Ans. (a) + l—y(t) = Zx(t)

(1) y(1)
x(1) R § (1) el (1) ——-

:

Fig. 2-33
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2.60. Consider the system in Prob. 2.20. Find the output y(¢) if x(¢) =¢~*'u(t) and y(0) = 0.

Ans. te "u(t)

2.61. Is the system described by the differential equation

dy(t)
dt

+5y(t) +2=x(1)

linear?

Ans.  No, it is nonlinear.

2.62. Write the input-output equation for the system shown in Fig. 2-34.
Ans. 2y[n]—yln - 11=4x[n]+ 2x[n — 1]

x(n] yln]
b 4% b3 -
+ ‘ ¥

2.63. Consider a discrete-time LTI system with impulse response
1 n=0,1
h[n] - {0

otherwise
Find the input-output relationship of the system.

Ans. y[n)l=x[n]+x[n —1]

2.64. Consider a discrete-time system whose input x[n] and output y[n] are related by
yln] = 3y[n-1]=x[n]
with y[—1] = 0. Find the output y[n] for the following inputs:
(@) x[n]=G)uln);
(b) x[n]=(3)"uln]

Ans. (@) yln]l=6[(3)""" = (3)"* Nuln]
(b) ylnl=(n+1X3)"uln]

2.65. Consider the system in Prob. 2.42. Find the eigenfunction and the corresponding eigenvalue of
the system.
z

Ans. z", A =
z—a



Chapter 3

Laplace Transform and Continuous-Time
LTI Systems

3.1 INTRODUCTION

A basic result from Chapter 2 is that the response of an LTI system is given by
convolution of the input and the impulse response of the system. In this chapter and the
following one we present an alternative representation for signals and LTI systems. In this
chapter, the Laplace transform is introduced to represent continuous-time signals in the
s-domain (s is a complex variable), and the concept of the system function for a
continuous-time LTI system is described. Many useful insights into the properties of
continuous-time LTI systems, as well as the study of many problems involving LTI systems,
can be provided by application of the Laplace transform technique.

3.2 THE LAPLACE TRANSFORM

In Sec. 2.4 we saw that for a continuous-time LTI system with impulse response A(t),
the output y(¢) of the system to the complex exponential input of the form e*' is

y(1)=T{e") = H(s)e" (3.1)

where H(s)=fw h(t)e ' dt (3.2)

—oc

A. Definition:

The function H(s) in Eq. (3.2) is referred to as the Laplace transform of A(t). For a
general continuous-time signal x(¢), the Laplace transform X(s) is defined as

X(s)= [ x(t)e " di (3.3)

The variable s is generally complex-valued and is expressed as
s=o0+jw (3.4)

The Laplace transform defined in Eq. (3.3) is often called the bilateral (or two-sided)
Laplace transform in contrast to the unilateral (or one-sided) Laplace transform, which is
defined as

X,(s) =j:x(t)e”’ d (3.5)

110
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where 0~ =lim, _, ,(0 — ¢). Clearly the bilateral and unilateral transforms are equivalent
only if x(¢) =0 for ¢ < 0. The unilateral Laplace transform is discussed in Sec. 3.8. We will
omit the word “bilateral” except where it is needed to avoid ambiguity.

Equation (3.3) is sometimes considered an operator that transforms a signal x(¢) into a
function X(s) symbolically represented by

X(s)=2L{x(1)} (3.6)

and the signal x(¢) and its Laplace transform X(s) are said to form a Laplace transform
pair denoted as

x(1) = X(s) (3.7)

B. The Region of Convergence:

The range of values of the complex variables s for which the Laplace transform
converges is called the region of convergence (ROC). To illustrate the Laplace transform
and the associated ROC let us consider some examples.

EXAMPLE 3.1. Consider the signal
x(t)=e""u(t) a real (3.8)
Then by Eq. (3.3) the Laplace transform of x(t) is
X(s)=[ e u(t)etdi= [ e-tror g
()= (1) L.

—x
1 @
s+a

because lim, |, e """ =0 only if Re(s + a) > 0 or Re(s) > —a.

—_ e—(.\'+a)r

o+ s+a

Re(s) > —a (3.9)

Thus, the ROC for this example is specified in Eq. (3.9) as Re(s) > —a and is displayed
in the complex plane as shown in Fig. 3-1 by the shaded area to the right of the line
Re(s) = —a. In Laplace transform applications, the complex plane is commonly referred to
as the s-plane. The horizontal and vertical axes are sometimes referred to as the o-axis and
the jw-axis, respectively.

EXAMPLE 3.2. Consider the signal
x(t)y=—e “u(—t) a real (3.10)
Its Laplace transform X(s) is given by (Prob. 3.1)

1
X(s)=;+—a Re(s) < —a (3.11)

Thus, the ROC for this example is specified in Eq. (3.11) as Re(s) < —a and is displayed
in the complex plane as shown in Fig. 3-2 by the shaded area to the left of the line
Re(s) = —a. Comparing Eqgs. (3.9) and (3.11), we see that the algebraic expressions for X(s)
for these two different signals are identical except for the ROCs. Therefore, in order for the
Laplace transform to be unique for each signal x(¢), the ROC must be specified as part of the
transform.
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s-plane

a<0

Fig. 3-1 ROC for Example 3.1.

C. Poles and Zeros of X(s):

Usually, X(s) will be a rational function in s, that is,
ags" +a;s" '+ - +a,  ay (s—z,) (s —2,)
bys" +bys" T kb, by (s=py) (s p)

X(s

S—

(3.12)

The coeflicients a, and b, are real constants, and m and n are positive integers. The X(s)
is called a proper rational function if » > m, and an improper rational function if n < m.
The roots of the numerator polynomial, z,, are called the zeros of X(s) because X(s) =10
for those values of s. Similarly, the roots of the denominator polynomial, p,, are called the
poles of X(s) because X(s) is infinite for those values of s. Therefore, the poles of X(s)
lie outside the ROC since X(s) does not converge at the poles, by definition. The zeros, on
the other hand, may lie inside or outside the ROC. Except for a scale factor a,/b,, X(s)
can be completely specified by its zeros and poles. Thus, a very compact representation of
X(s) in the s-plane is to show the locations of poles and zeros in addition to the ROC.

Traditionally, an “x” is used to indicate each pole location and an “ ©” is used to
indicate each zero. This is illustrated in Fig. 3-3 for X(s) given by

2s +4 5 s+2
T 244543 T(s+1)(s+3)

Note that X(s) has one zero at s = —2 and two poles at s = —1 and s = —3 with scale
factor 2.

X(s) Re(s)> -1

D. Properties of the ROC:

As we saw in Examples 3.1 and 3.2, the ROC of X(s) depends on the nature of x(¢).
The properties of the ROC are summarized below. We assume that X(s) is a rational
function of s.
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Fig. 3-2 ROC for Example 3.2,

Jo

7
/

//

Fig. 3-3 s-plane representation of X(s)=(2s + 4)/(s? + 45 + 3).

Property 1: The ROC does not contain any poles.

Property 2: If x(t) is a finite-duration signal, that is, x(t) =0 except in a finite interval ¢, <t <1,
(—o <t, and ¢, <), then the ROC is the entire s-plane except possibly s =0 or s =

Property 3: If x(¢) is a right-sided signal, that is, x(1) = 0 for ¢ <t < e, then the ROC is of the form

Re(s) > Oy
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Property 4:

Property 5:

LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS  [CHAP. 3

where o,,,, equals the maximum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the right of the vertical line Re(s) = o,,,, in the s-plane and thus to the
right of all of the poles of X(s).

If x(¢) is a left-sided signal, that is, x(¢) =0 for ¢t >¢,> —x, then the ROC is of the
form

Re(s) <

Tmin

where o, equals the minimum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the left of the vertical line Re(s) = o, in the s-plane and thus to the left

of all of the poles of X(s).

If x(¢) is a two-sided signal, that is, x(¢) is an infinite-duration signal that is neither
right-sided nor left-sided, then the ROC is of the form

o, <Re(s) <o,

where o, and o, are the real parts of the two poles of X(s). Thus, the ROC is a vertical
strip in the s-plane between the vertical lines Re(s) = o, and Re(s) = o,.

Note that Property 1 follows immediately from the definition of poles; that is, X(s) is
infinite at a pole. For verification of the other properties see Probs. 3.2 to 3.7.

3.3 LAPLACE TRANSFORMS OF SOME COMMON SIGNALS
A. Unit Impulse Function 3(¢):
Using Egs. (3.3) and (1.20), we obtain

s = [ s(t)ede =1 all s (3.13)

B. Unit Step Function u(¢):

Zlu(t)] = ) e 'dt= eo“’dt
[u(0) = [ u(nyerdi= e
1 M|
=——e ¥ == Re(s) >0 (3.14)
R) o+ S

where 0% =lim, _, (0 +¢).

C. Laplace Transform Pairs for Common Signals:

The Laplace transforms of some common signals are tabulated in Table 3-1. Instead of
having to reevaluate the transform of a given signal, we can simply refer to such a table
and read out the desired transform.

3.4 PROPERTIES OF THE LAPLACE TRANSFORM

Basic properties of the Laplace transform are presented in the following. Verification
of these properties is given in Probs. 3.8 to 3.16.
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A. Linearity:
If

Then
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Table 3-1 Some Laplace Transforms Pairs
x(1) X(s) ROC
5(1) 1 All s
1
u(t) — Re(s)> 0
s
1
—u(—1) — Re(s) <0
s
1
tu(t) el Re(s)>0
k!
tu(r) ey Re(s)>0
1
e "u(t) Re(s) > —Re(a)
s+a
1
—e *u(—1t) Re(s) < —Re(a)
s+a
1
te ™ “'u(t) 5 Re(s) > —Re(a)
(s+a)
1
—te " u(—1) 5 Re(s) < —Re(a)
(s+a)
s
cos wqtu(t) m Re(s)>0
. Wy
sin wotu(t) -S7+—w%)' Re(s) >0
s+a

e % cos wytu(t)

e sin wytu(t)

(s+a)2+w(2)

Wo

(s+a)2+w(2)

Re(s) > — Re(a)

Re(s) > —Re(a)

xy(1) > X\(s)

x,(1) > Xy(s)

ayx,(t) +a,x,(t) e>a, X (s) + a, X,(s)

ROC =R,
ROC =R,

R'DR,NR,

115

(3.15)

The set notation A DB means that set A4 contains set B, while 4 N B denotes the
intersection of sets A4 and B, that is, the set containing all elements in both 4 and B.
Thus, Eq. (3.15) indicates that the ROC of the resultant Laplace transform is at least as
large as the region in common between R, and R,. Usually we have simply R'=R, NR,.
This is illustrated in Fig. 3-4.
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Fig. 3-4 ROC of a, X ,(s) + a, X,(s).
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B. Time Shifting:
If
x(t) —X(s) ROC =R
then x(t—ty) e X(s) R'=R (3.16)

Equation (3./6) indicates that the ROCs before and after the time-shift operation are the
same.

C. Shifting in the s-Domain:
If
x(t) > X(s) ROC=R
then e x(t)y > X(s—s,) R'=R + Re(s,) (3.17)

Equation (3.17) indicates that the ROC associated with X(s — s,) is that of X(s) shifted
by Re(s,). This is illustrated in Fig. 3-5.

D. Time Scaling:
If
x(t) e X(s) ROC =R

1 $
then x(at)<—»l——|X(;) R’ =aR (3.18)
a
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~
€
~.
€

NN

B+Re(sy)

»

4

NN

.

a+Re(sy)

-

NN

(a) ()
Fig. 3-5 Effect on the ROC of shifting in the s-domain. (@) ROC of X(s); (b) ROC of X(s — s,).

Equation (3.18) indicates that scaling the time variable ¢ by the factor a causes an inverse
scaling of the variable s by 1/a as well as an amplitude scaling of X(s/a) by 1/ lal. The
corresponding effect on the ROC is illustrated in Fig. 3-6.

E. Time Reversal:
If
x(t) > X(s) ROC=R

Z;
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then x(=t) > X(-s) R'= -R (3.19)

Thus, time reversal of x(t) produces a reversal of both the o- and jw-axes in the s-plane.
Equation (3.19) is readily obtained by setting a = — 1 in Eq. (3.18).

F. Differentiation in the Time Domain:

If
x(t) > X(s) ROC =R
dx(1)
then o > sX(s) R’ DR (3.20)

Equation (3.20) shows that the effect of differentiation in the time domain is multiplication
of the corresponding Laplace transform by s. The associated ROC is unchanged unless
there i1s a pole-zero cancellation at s = .

G. Differentiation in the s-Domain:

If
x(t) = X(s) ROC =R

dX(s)
ds

then —tx(t) e R'=R (3.21)

H. Integration in the Time Domain:

If
x(t) = X(s) ROC =R
then f, x(r)drH%X(s) R' = RN {Re(s) > 0) (3.22)

Equation (3.22) shows that the Laplace transform operation corresponding to time-domain
integration is multiplication by 1/s, and this is expected since integration is the inverse
operation of differentiation. The form of R’ follows from the possible introduction of an
additional pole at s = 0 by the multiplication by 1 /s.

I. Convolution:

If
x(t) e X\(s) ROC =R,
x,(t) e X5(s) ROC =R,
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Table 3-2 Properties of the Laplace Transform

Property Signal Transform ROC
x(1) X(s) R
xl(t) XI(S) Rl
xz(t) XZ(S) R2
Linearity a,x,(t)+a,x,(1) a, X ,(s)+a,X,(s) R'DR,NR,
Time shifting x(t—1ty) e s X(s) R'=R
Shifting in s e x(t) X(s —sy) R’ =R + Re(sy)
1
Time scaling x(at) mX(s) R =aR
Time reversal x(=1) X(-s) R'=—-R
dx(t)
Differentiation in ¢ o sX(s) R DR
dX(s)
Differentiation in s —tx(t) T R' =R
1
Integration fl x(r)dr ;X(s) R DR N {Re(s) > 0)
Convolution x ()% x,(1) X () X,(s) R'DR,NR,
then x,(1)* x,(t) = X,(s) X,(s) R'DR,NR, (3.23)

This convolution property plays a central role in the analysis and design of continuous-time

LTI systems.
Table 3-2 summarizes the properties of the Laplace transform presented in this

section.

3.5 THE INVERSE LAPLACE TRANSFORM

Inversion of the Laplace transform to find the signal x(¢) from its Laplace transform
X(s) is called the inverse Laplace transform, symbolically denoted as

x(t)=Z"X(s)} (3.24)

A. Inversion Formula:

There is a procedure that is applicable to all classes of transform functions that
involves the evaluation of a line integral in complex s-plane; that is,

1 C +joo
x(t)=— X(s)e* ds 3.25
=5 [ X) (3.29)
In this integral, the real ¢ is to be selected such that if the ROC of X(s) is o, < Re(s) <a,,
then o, <c¢ <o,. The evaluation of this inverse Laplace transform integral requires an
understanding of complex variable theory.
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B. Use of Tables of Laplace Transform Pairs:
In the second method for the inversion of X(s), we attempt to express X(s) as a sum
X(s)=X(s)+ - +X,(s5) (3.26)

where X(s),..., X, (s) are functions with known inverse transforms x,(¢),..., x,(¢). From
the linearity property (3.15) it follows that

x(t)=x,(t)+ - +x,(t) (3.27)

C. Partial-Fraction Expansion:

If X(s) is a rational function, that is, of the form
NGs) _ (s=2) o (s =2m)
D(s) ~ (s—py) - (s—p,)

a simple technique based on partial-fraction expansion can be used for the inversion of
X(s).

X(s)=

(3.28)

(a) When X(s) is a proper rational function, that is, when m <n:
1. Simple Pole Case:
If all poles of X(s), that is, all zeros of D(s), are simple (or distinct), then X(s) can be

written as

¢ n
X(s)=———+ " +— (3.29)
S —py s —D,

where coefficients ¢, are given by

cx = (s =Pi)X(5)s=p, (3.30)
2. Multiple Pole Case:

If D(s) has multiple roots, that is, if it contains factors of the form (s — p,)", we say that
p; is the multiple pole of X(s) with multiplicity r. Then the expansion of X(s) will consist of
terms of the form

A A, A,
+ s+ —— (3.31)
S —D; (s—p,-) (S—‘p,»)
|
where Ay = e k[ (s—p) X(s )] =p, (3.32)
(b) When X(s) is an improper rational function, that is, when m > n:
If m > n, by long division we can write X(s) in the form
¥ N(s) R(s) 333
= = + i
()= s =20+ B (3.33)

where N(s) and D(s) are the numerator and denominator polynomials in s, respectively,
of X(s), the quotient Q(s) is a polynomial in s with degree m — n, and the remainder R(s)
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is a polynomial in s with degree strictly less than n. The inverse Laplace transform of X(s)
can then be computed by determining the inverse Laplace transform of Q(s) and the
inverse Laplace transform of R(s)/D(s). Since R(s)/D(s) is proper, the inverse Laplace
transform of R(s)/D(s) can be computed by first expanding into partial fractions as given
above. The inverse Laplace transform of Q(s) can be computed by using the transform
pair

d*s(t)
dt*

st k=1,2,3,... (3.34)

3.6 THE SYSTEM FUNCTION
A. The System Function:

In Sec. 2.2 we showed that the output y(¢) of a continuous-time LTI system equals the
convolution of the input x(¢) with the impulse response 4(t); that is,

y(1) =x(1)* h(r) (3.35)
Applying the convolution property (3.23), we obtain
Y(s)=X(s)H(s) (3.36)

where Y(s), X(s), and H(s) are the Laplace transforms of y(¢), x(t), and A(t), respec-
tively. Equation (3.36) can be expressed as

Y(s)
- X(s)
The Laplace transform H(s) of h(t) is referred to as the system function (or the transfer
function) of the system. By Eq. (3.37), the system function H(s) can also be defined as the
ratio of the Laplace transforms of the output y(¢) and the input x(¢). The system function

H(s) completely characterizes the system because the impulse response A(r) completely
characterizes the system. Figure 3-7 illustrates the relationship of Egs. (3.35) and (3.36).

H(s) (3.37)

B. Characterization of LTI Systems:

Many properties of continuous-time LTI systems can be closely associated with the
characteristics of H(s) in the s-plane and in particular with the pole locations and the
ROC.

x(1) y(1)=x(t) » h(1)
X(s) Y(s)=X(s)H(s)
H(s) |

Fig. 3-7 Impulse response and system function.
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1. Causality:

For a causal continuous-time LTI system, we have
h(t)=0 t<0

Since h(t) is a right-sided signal, the corresponding requirement on H(s) is that the ROC
of H(s) must be of the form

Re(s) >

anlax

That is, the ROC is the region in the s-plane to the right of all of the system poles.
Similarly, if the system is anticausal, then

h(t)=0 t>0
and A(t) is left-sided. Thus, the ROC of H(s) must be of the form
Re(s) <o,
That is, the ROC is the region in the s-plane to the left of all of the system poles.

2. Stability:

In Sec. 2.3 we stated that a continuous-time LTI system is BIBO stable if and only if
[Eq. (2.2D)]

f'm |h(t)|dt <o

The corresponding requirement on H(s) is that the ROC of H(s) contains the jw-axis
(that is, s = jw) (Prob. 3.26).

3. Causal and Stable Systems:

If the system is both causal and stable, then all the poles of H(s) must lie in the left
half of the s-plane; that is, they all have negative real parts because the ROC is of the
form Re(s) > o,,,, and since the jw axis is included in the ROC, we must have o, ,, <0.

C. System Function for LTI Systems Described by Linear Constant-Coefficient Differential
Equations:

[n Sec. 2.5 we considered a continuous-time LTI system for which input x(¢) and
output y(¢) satisfy the general linear constant-coefficient differential equation of the form

X’::O d"y(t) M d"x(t)

= ) b, (3.38)

k=0
Applying the Laplace transform and using the differentiation property (3.20) of the
Laplace transform, we obtain

EakskY(s Ebk kX(S)

=0
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N M
or Y(s) ¥ aps*=X(s) ) bys* (3.39)
k=0 k=0
Thus,

o k
Y(s) ) Y bys

=Xm_.§%“ (3.40)
k=0

Hence, H(s) is always rational. Note that the ROC of H(s) is not specified by Eq. (3.40)
but must be inferred with additional requirements on the system such as the causality or
the stability.

H(s)

D. Systems Interconnection:

For two LTI systems [with 4 (¢) and h,(¢), respectively] in cascade [Fig. 3-8(a)], the
overall impulse response h(t) is given by [Eq. (2.81), Prob. 2.14]

h(t) =hy(1)* hy(t)
Thus, the corresponding system functions are related by the product
H(s)=H,(s)H,(s) (3.41)

This relationship is illustrated in Fig. 3-8(b).
Similarly, the impulse response of a parallel combination of two LTI systems
[Fig. 3-9(a)] is given by (Prob. 2.53)

h(t) =h(t) +h,(¢)
Thus,
H(s)=H,(s) + H,(s) (3.42)
This relationship is illustrated in Fig. 3-9(b).

x(1) 1) x(t) ()
() [— hy) 3 > W

h(t)=h (1) * hy(1)
(@)

X(s) Y(s) X(s) ¥(s)
Hys) Hys) —[re——— o >  H)

H(s)=H (s)H(s)
®)

Fig. 3-8 Two systems in cascade. (a) Time-domain representation; (b) s-domain representation.
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—’J h (1)

x(1) y( x(1) y(n
N ) h(t)=h, (D) +hy1)
(a)
4 Hl(s)
X(s) Y(s) X(s) Y(s)
— —————- = ]-[(_y) p——-
L—’— Hys) H(s)=H,(s)+H,(s)
)

Fig. 3-9 Two systems in parallel. (a) Time-domain representation; (b) s-domain representation.

3.7 THE UNILATERAL LAPLACE TRANSFORM
A. Definitions:

The unilateral (or one-sided) Laplace transform X,(s) of a signal x(¢) is defined as
[Eq. (3.5)]

oc

X(s)= [ x(1)e *ds (3.43)

The lower limit of integration is chosen to be 0~ (rather than 0 or 0%) to permit x(¢) to
include 8(¢) or its derivatives. Thus, we note immediately that the integration from 0~ to
0" is zero except when there is an impulse function or its derivative at the origin. The
unilateral Laplace transform ignores x(¢) for ¢ < 0. Since x(¢) in Eq. (3.43) is a right-sided
signal, the ROC of X,(s) is always of the form Re(s) > o,,,, that is, a right half-plane in
the s-plane.

ax?

B. Basic Properties:

Most of the properties of the unilateral Laplace transform are the same as for the
bilateral transform. The unilateral Laplace transform is useful for calculating the response
of a causal system to a causal input when the system is described by a linear constant-
coefficient differential equation with nonzero initial conditions. The basic properties of the
unilateral Laplace transform that are useful in this application are the time-differentiation
and time-integration properties which are different from those of the bilateral transform.
They are presented in the following.
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1. Differentiation in the Time Domain:

dx(t)
o —sX,(s)—x(07) (3.44)
provided that lim, ., x(¢)e*" = 0. Repeated application of this property yields
d*x(1) ,
pEERE X,(s)=sx(07)=x'(07) (3.45)
d"x(t
dtf' ) —s"X,(s)—s""x(07) —s"2x'(07) = -+ =x"TD(07) (3.46)
where x(07) = x(t)
7 S P
2. Integration in the Time Domain:
¢ 1
/ x(r) dr > ~X)(s) (3.47)
0
t 1 1 ,0-
| x(r)dr— —X)(s) + ;[ x(r)dr (3.48)

C. System Function:

Note that with the unilateral Laplace transform, the system function H(s) = Y(s)/X(s)
is defined under the condition that the LTI system is relaxed, that is, all initial conditions
are zero.

D. Transform Circuits:

The solution for signals in an electric circuit can be found without writing integrodif-
ferential equations if the circuit operations and signals are represented with their Laplace
transform equivalents. [In this subsection the Laplace transform means the unilateral
Laplace transform and we drop the subscript I in X,(s).] We refer to a circuit produced
from these equivalents as a transform circuit. In order to use this technique, we require the
Laplace transform models for individual circuit elements. These models are developed in
the following discussion and are shown in Fig. 3-10. Applications of this transform model
technique to electric circuits problems are illustrated in Probs. 3.40 to 3.42.

1. Signal Sources:
v(t) > V(s) i(t) —>1I(s)
where v(¢) and i(¢) are the voltage and current source signals, respectively.
2. Resistance R:

v(t) =Ri(t) <> V(s)=RI(s) (3.49)
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Circuit element Representation
t-Domain s-Domain
Voltage source OT O ?’) OT O _O
v(t) V(s)
Current source G @ {) O @ o
i(n 1(s)
) R Ks) R
Resistance O & AV O O+_’__-_W__O
+ - _
w(1) V(s)
it) L
Inductance O—> 4110 O
+ -
v(1)
1
sC
11
I
I(s)
. Cv(0) O
it) c C
Capacitance O—> 1% O V(s)
+ - 1 v(0)
v(1) 1) C . K _
+ : : -
Vi(s)

Fig. 3-10 Representation of Laplace transform circuit-element models.
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3. Inductance L:

di(t)
u(t)=L—d?—<—>V(s)=sL1(s)—Li(O‘) (3.50)
The second model of the inductance L in Fig. 3-10 is obtained by rewriting Eq. (3.50) as

1 1
1 =— + —i(0~ .
i(t) = 1(s) 1 V(s) ; i(07) (3.51)
4. Capacitance C:

dv(t)

i(t)=C—dt—— — [(s)=sCV(s)—Cv(07) (3.52)

The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as

1 1
U(t)«—-»V(s)=EI(s)+;u(0‘) (3.53)

Solved Problems

LAPLACE TRANSFORM

3.1. Find the Laplace transform of

(a) x(1)= —e “u(-1)
(b) x(t)=e"u(—1)
(a) From Eq. (3.3)

X(s)= —/m e u(—t)e *dt = —foue“”"”dt

— — o

1 0=

—_ e—(:+a)l
s+a

< —
= S+a Re(s) < —a

Thus, we obtain
1
—e "u( -1t _ < - .54
e u( )Hs+a Re(s) a (3.54)
(b) Similarly,
X(s)= fm e’u(—t)e *'dt= fo_e‘(“")’dt

— 00

0-

1

s—a

— e—(s-—a)l

Re(s) <a

—® s—a
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3.2.

3.3.
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Thus, we obtain

e“'u(—t) e—> - P— Re(s) <a (3.55)
A finite-duration signal x(¢) is defined as
x(t){aeo tlsts.tz
=0 otherwise

where 1, and ¢, are finite values. Show that if X(s) converges for at least one value of
s, then the ROC of X(s) is the entire s-plane.

Assume that X(s) converges at s = a,; then by Eq. (3.3)
X(s) < [ Ix(0ye ™ d = ["x(0) e de < oo
— tl
Let Re(s) = o, > 0,,. Then

fx |x(t)e @r*ion|dr = flzlx(t)le“”" dt
0 1

= flzlx(t)|e“’“‘e“"""°)’ dt
h
Since (o, — 0,) > 0, e 217" is a decaying exponential. Then over the interval where x(¢) # 0,

the maximum value of this exponential is e ~¢“1~°0" and we can write

fizlx(t) le" ' dt < e“"l"’”’"frzlx(t)Ie“’"’ dt <o (3.56)
f 1

1 !

Thus, X(s) converges for Re(s) = o, > o,,. By a similar argument, if o, < o, then
flzlx(t)|e“’lr dt < e“”l"’""zflzlx(t)le'””’ dt < (3.57)
I f

and again X(s) converges for Re(s) = o, <o,. Thus, the ROC of X(s) includes the entire
s-plane.

Let
e ¥ O<t<T
) = <t<
*(1) {0 otherwise
Find the Laplace transform of x(¢).
By Eq. (3.3)

f’e atg=st gy — /Te—(s+a)l dt
0 0

If

X(s)

_ |
s+ a

- ! [1 —e 97 (3.58)
o Sta

—(s 4
e s+a)

Since x(t) is a finite-duration signal, the ROC of X(s) is the entire s-plane. Note that from Eq.
(3.58) it appears that X(s) does not converge at s = —a. But this is not the case. Setting
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34.

3.5.

s = —a in the integral in Eq. (3.58), we have

X(-a)= [OTe—<“+“>' dt = fOsz =T

The same result can be obtained by applying L’'Hospital’s rule to Eq. (3.58).

Show that if x(¢) is a right-sided signal and X(s) converges for some value of s, then
the ROC of X(s) is of the form

where o_.. equals the maximum real part of any of the poles of X(s).

max

Consider a right-sided signal x(¢) so that
x(t)=0 1<t

and X(s) converges for Re(s) = o,. Then

SO RS -
= /w]x(f)le_""‘ dt < o

Let Re(s) = o, > a,. Then

* @K
f |x(l)|e“v11dt=f Ix(t)|e—a(,:e—(al_gu), di
1 A

< e“"l“’""lfmlx(r)le"’ﬂ’ dt <o

0

Thus, X(s) converges for Re(s) = o, and the ROC of X(s) is of the form Re(s) > a,. Since the
ROC of X(s) cannot include any poles of X(s), we conclude that it is of the form

Re(s) > 0.

where o,,,, equals the maximum real part of any of the poles of X(s).

Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the
following signals x(¢):

(a) x(t)=e " 2ult) +e > u(t)

(b) x(t)=e *ult) +e?u(—1t)

(c) x(t)=e*u(t) +e > u(—t)

(a) From Table 3-1

e“z‘u(t)Hﬁ Re(s) > -2 (3.59)
e Mu(t) — L Re(s) > -3 (3.60)

s+3
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(b)

(c)
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Jjw jo

\\§
N

(@) (b)
Fig. 3-11

We see that the ROCs in Eqgs. (3.59) and (3.60) overlap, and thus,
1 1 2s+3)
+ -
s+2 s+3 (s+2)(s+3)

X(s) = Re(s) > —2 (3.61)

From Eq. (3.67) we see that X(s) has one zero at s = — 3 and two poles at s = —2 and
s = —3 and that the ROC is Re(s) > —2, as sketched in Fig. 3-11(a).

From Table 3-1

1
Myt — > — .
e "u( )Hs+3 Re(s) 3 (3.62)
1
e*u(—t) i Re(s) <2 (3.63)
5 —
We see that the ROCs in Eqgs. (3.62) and (3.63) overlap, and thus,
-5

X(s) =

s+3—s—2=(s—2)(5+3) —3 <Re(s) <2 (3.64)

From Eq. (3.64) we see that X(s) has no zeros and two poles at s =2 and s = —3 and
that the ROC is —3 < Re(s) < 2, as sketched in Fig. 3-11(b).

From Table 3-1

eXu(t) e % Re(s) > 2 (3.65)
e"’u(-t)H—;%E Re(s) < -3 (3.66)

We see that the ROCs in Egs. (3.65) and (3.66) do not overlap and that there is no
common ROC; thus, x(¢) has no transform X(s).
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3.6. Let
x(t)=e
Find X(s) and sketch the zero-pole plot and the ROC for a > 0 and a <0.

The signal x(¢) is sketched in Figs. 3-12(a) and (b) for both a > 0 and a < 0. Since x() is
a two-sided signal, we can express it as

x(ty=e “u(t)y+e”u(—t) (3.67)

Note that x(¢) is continuous at ¢t =0 and x(0~) =x(0) =x(0*) = 1. From Table 3-1

1
Tyt — R > — .68
e u()<—>s+a e(s) a (3.68)
eu(—t) — - Re(s) <a (3.69)
-a
x(f)y=e-alt x(t)=e-alt
a>0 a<0
0 . 0 ;
(@) (b)
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If a > 0, we see that the ROCs in Eqs. (3.68) and (3.69) overlap, and thus,

[CHAP. 3

¥ 1 1 -2a R 3

= - = —a< < :
(s) s+a s—a s’-a’ a e(s) <a (3.70)
From Eq. (3.70) we see that X(s) has no zeros and two poles at s =g and s = —a and that the

ROC is —a < Re(s) < a, as sketched in Fig. 3-12(c). If a <0, we see that the ROCs in Egs.
(3.68) and (3.69) do not overlap and that there is no common ROC; thus, x(¢) has no

transform X(s).

PROPERTIES OF THE LAPLACE TRANSFORM

3.7.

3.8.

Verify the time-shifting property (3.16), that is,
x(t—ty) e X(s) R' =R
By definition (3.3)

Ax(t 1)) = [ x(t—19)e " dr
By the change of variables =t —t, we obtain

x(t—1y)) = fm x(r)e st dr

= e‘”"f x(t)eTdr = e *"0X(s)

with the same ROC as for X(s) itself. Hence,
x(t—1t,) > e X(s) R =R

where R and R’ are the ROCs before and after the time-shift operation.

Verify the time-scaling property (3.18), that is,

1 s
x(at)«—»——X(—) R' =aR
la| a

By definition (3.3)

Alx(at)) =fwwx(at)e"’dt

By the change of variables 7 = at with a > 0, we have

A{x(ar)) =%/°° x('r)e"“/‘”’d'r=lX(i) R =aR

- a a

Note that because of the scaling s/a in the transform, the ROC of X(s/a) is aR. With a <0,

we have

1 -
A{x(at)} = —[ x(1)e /D" ds

a

1 = 1 S
= - —[ x(r)e /N dr = ——x(—) R =
a’_» a

a
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Thus, combining the two results for a > 0 and a < 0, we can write these relationships as

1 s
x(at)«—»-—X(—) R'=aR
la| a

3.9. Find the Laplace transform and the associated ROC for each of the following signals:

(a)
(b)
(¢)

(d)

(e)
(a)

(b)

(c)

(d)

(e)

x(1) =8(t — 1)
x(8) =u(t —t,)
x(t) =e 2[u(t) —u(t —5)]

x(t)= Y &(t—kT)
k=0
x(t) = 8(at +b), a, b real constants

Using Egs. (3.13) and (3.16), we obtain
8(t — 1) > e~ all s (3.71)

Using Eqgs. (3.14) and (3.16), we obtain

—stg

u(t —ty) — Re(s) >0 (3.72)

Rewriting x(¢) as
x(t)y=e [u(t) —u(t=5)] =e u(t) —e >u(t-5)
=e 2u(t) —e eIyt -5)
Then, from Table 3-1 and using Eq. (3.16), we obtain
1

1 1
X = — W05 1 —e=56+2 S —
()= gz e e =55l ) Re(s) > —2

Using Egs. (3.71) and (1.99), we obtain

X(S) _ i e~ kT = f: (e,_(r)k - 1_57_ RC(S) >0 (3.73)
k=0 k=0 1-e
Let
f(t) =8(at)
Then from Egs. (3.13) and (3.18) we have
1
£(1) =8(at) = F(s) = all s (3.74)
b b
Now x(t)=6(at+b)=5[a(t+;) =f(t+;)

Using Egs. (3.16) and (3.74), we obtain

1
X(s) =e-"’/“F(s) = _l__lef”/“ all s (3.75)
a
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Verify the time differentiation property (3.20), that is,
dx(r)
dt

«s5X(s) R'DR
From Eq. (3.24) the inverse Laplace transform is given by
1 Cc+ e
x(t) = — X(s)e' ds 3.76
()= 5= X() (3.76)
Differentiating both sides of the above expression with respect to ¢, we obtain

de(t) 1 peip ;
- —mfc_jmsX(s)e ds (3.77)

Comparing Eq. (3.77) with Eq. (3.76), we conclude that dx(t)/dt is the inverse Laplace
transform of sX(s). Thus,

(1) X R' DR

Note that the associated ROC is unchanged unless a pole-zero cancellation exists at s = 0.

Verify the differentiation in s property (3.21), that is,

dX(s) R R
—tx(t) e -
x(1) o

From definition (3.3)

X(s) =f:x(t)e_"dt

Differentiating both sides of the above expression with respect to s, we have

dX(s) ® —st = —st
— =f_m(—r)x(t)e dt=/_m[—tx(t)]e dt
Thus, we conclude that
dx(s) R R
—tx(t) = =
Verify the integration property (3.22), that is,
1
[ x(r) d7 > —X(s) R'=R 0 {Re(s) > 0)
Let
(1) = [ x(r)dr = F(s)
df(t
Then x(t) = AS,

dt
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Applying the differentiation property (3.20), we obtain
X(s) =sF(s)
Thus,
F(s)=§X(s) R’ = RN {Re(s) > 0}
The form of the ROC R’ follows from the possible introduction of an additional pole at s =0

by the multiplying by 1/s.

3.13. Using the various Laplace transform properties, derive the Laplace transforms of the
following signals from the Laplace transform of wu(t).

(a) &(1) (b) &'(1)
(¢) tu(t) (d) e “ulr)
(e) te u(t) (f) cos wyru(t)

(g) e *cos wytult)
(a) From Eq. (3.74) we have

1
u(t)<—+; for Re(s) >0
From Eq. (1.30) we have
du(t)
8(t) =
(1) ar
Thus, using the time-differentiation property (3.20), we obtain
1
6(t)<——>s-s—=l all s
(b) Again applying the time-differentiation property (3.20) to the result from part (a), we
obtain
8'(t) e>s all s (3.78)
(¢) Using the differentiation in s property (3.21), we obtain
4! : R 0 3.79
tu(t -—|-]== > .
un—-2(5)-m R (3.79)
(d) Using the shifting in the s-domain property (3.17), we have
1
Myt — R > —
e (t) e Tra e(s) a

(e) From the result from part (¢) and using the differentiation in s property (3.27), we obtain

-3

- Re(s) > —a (3.80)

(f) From Euler’s formula we can write

cos wptu(r) = 1(e’0" + e 70Nu(t) = Le/“u(t) + Le 1“0'u(r)
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Using the linearity property (3.15) and the shifting in the s-domain property (3.17), we
obtain

1 1 1 s
tu(t b~ + = = R > .
cos wytu(t) e 25 jwy 255wy v v el e(s)>0 (3.81)

(g) Applying the shifting in the s-domain property (3.17) to the result from part (f), we

obtain
ot st+a
e~ cos wytu(t) e m Re(s) > —a (3.82)
Verify the convolution property (3.23), that is,
xy(1)* x5(1) = X, (5) Xo(5) R'SR,NR,

y(1) =xy(t)xxy() = [ x(r) st —7) dr

Then, by definition (3.3)

Y(s) = f:[[:x,(f)xz(f—T)dr]e-“dz

=/:Oxl(f)[/jmxz(t-—‘r)e_"dt]d‘r

Noting that the bracketed term in the last expression is the Laplace transform of the shifted
signal x,(t — 1), by Eq. (3.16) we have

Y(s) = /:x(r)e-"xz(s)df

= [/_“’mx(f)e—vdr]xz(s) = X,(5) X,(5)

with an ROC that contains the intersection of the ROC of X(s) and X,(s). If a zero of one
transform cancels a pole of the other, the ROC of Y(s) may be larger. Thus, we conclude that

xi(1)* xy(1) =X (5) Xa(5) R'SR,NR,

Using the convolution property (3.23), verify Eq. (3.22), that is,

f' x(f)dﬂ—»;X(s) R’ =R {Re(s)> 0}

— Co

We can write (Eq. (2.60), Prob. 2.2]

[ x(rydr=x(e)xu(2) (3.83)

From Eq. (3.14)

u(t)«—»; Re(s) >0
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and thus, from the convolution property (3.23) we obtain
1
x(1)#u(1) e ~X(s)
s

with the ROC that includes the intersection of the ROC of X(s) and the ROC of the Laplace
transform of u(¢). Thus,

f‘ x(f)dTH%X(s) R' =R {Re(s) > 0}

INVERSE LAPLACE TRANSFORM

3.16. Find the inverse Laplace transform of the following X(s):

1
(a) X(s)=——, Re(s)> —1
s+1

1
(b) X(s)=——, Re(s) < -1
s+1

(¢) X(s)= -Ts—, Re(s) >0
s°+4
+1
(s+1)+4

(a) From Table 3-1 we obtain

(d) X(s)= , Re(s) > —1

x(t)=e "u(t)
(b) From Table 3-1 we obtain
x(t)y=—e'u(—1)

(¢) From Table 3-1 we obtain

x(t)=cos2tu(t)

(d) From Table 3-1 we obtain

s(t)y=e""cos2tu(t)

3.17. Find the inverse Laplace transform of the following X(s):
+4

s?+4s+3°
+4

s?+4s+3’

25+ 4

X = - — < —
(c) X(s) Tias 13 2 Re(s) < ~1

(a) X(s)= Re(s) > —1

(b) X(s)= Re(s) < =3
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Expanding by partial fractions, we have

25+ 4 s+2 c (o
S a3 CGANG+3) s+1t533
Using Eq. (3.30), we obtain

s+2
= (s+ DX =25 | =1
s+2
c;=(s+ 3)X(S)|s=—3=2s—+—1 T 1
Hence,
1 1
X(s) = s+1 * s+3
(a) The ROC of X(s)is Re(s)> —1. Thus, x(¢) is a right-sided signal and from Table 3-1 we
obtain

x(t)=e u(t) +e > u(t) =(e ' +e3u(t)
(b) The ROC of X(s)is Re(s) < —3. Thus, x(¢) is a left-sided signal and from Table 3-1 we
obtain
x(t)=—eu(—t)—eYu(—t)=—(e " +e u(-1)
(¢) The ROC of X(s)is —3 <Re(s) < —1. Thus, x(¢) is a double-sided signal and from
Table 3-1 we obtain

x(t)=—e 'u(—t) +e du(t)

3.18. Find the inverse Laplace transform of
55+ 13

X(s)= s(s*+4s+ 13)

Re(s) >0

We can write

s244s+13=(s+2) " +9=(s+2—j3)(s+2+j3)

Then
Ss+ 13 S5s+13
X(s) = 5 = - :
s(s*+4s+13) s(s+2—j3)(s+2+j3)
c c, c
-5 s—(=2+3) +s—(—;-j3)
where
Ss+13
C‘=SX(S)|‘=°=m,=O=1
] Ss+13 1 _
C2=(S+2—]3)X(s)ls=—2+j3=m _1‘=A-2+j3= —5(1 + j)
_ 55+ 13 1 ,
C3=(s+2+]3)X(s)‘5=_2“,-3=m—) ,=_2_/'3= —5(1 )
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Thus,

11 . 1 1 . 1
O O T T T
The ROC of X(s) is Re(s) > 0. Thus, x(¢) is a right-sided signal and from Table 3-1 we obtain
x(1) = u() = 51 + eV u(y = 41 = e u(n)
Inserting the identity
e TN = g U 253 = o =21 (005 3t + jsin3t)
into the above expression, after simple computations we obtain
x(t) =u(t) —e ?(cos3t —sin3t)u(t)
= [1 - e~ (cos 3t — sin3¢) ] u(1)
Alternate Solution:
We can write X(s) as
5s+13 ¢ 38+ ¢4
X = v+ 5 it 3
As before, by Eq. (3.30) we obtain
Ss+13
¢, =sX(8)=0= ey My 1
Then we have
€35+ ¢4 Ss+13 1 -s+1

s+4s+ 13 s(s2+4s+13) s s +4s+13

Thus,
1 s—1 1 s+2-3
X =" TG+ 5  Graeo
1 s+2 3

2 2+ 2 2
s (s+2)+3 (s+2)" +3

Then from Table 3-1 we obtain
x(t) =u(t) —e ' cos3tu(t) +e ' sin3tu(t)
=1 —e'z’(cos3t—sin3t)]u(t)

3.19. Find the inverse Laplace transform of

X(s) s2+2s+5 Re(s) ;
§)= —m e(s)> —
(s +3)(s+5)
We see that X(s) has one simple pole at s = —3 and one multiple pole at s = —5 with
multiplicity 2. Then by Egs. (3.29) and (3.37) we have
9 Ay A,
X(s) = + + (3.84)

s+3 s+5  (5+5)°
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By Egs. (3.30) and (3.32) we have

s2+2s+5
(= (s+NXO)o = ——s| =2
(s+5)" |- 5
X . 5YX ()| s24+25+5
2= (s +5) Ao s =g | =10
X d[ iy H d|s’+25+5
=2 (s + 5)*X(s A
| 75 (s ) (s) s=-5 ds s+3 s= -5
s+ 65+ 1
- --!
(5+3) s=-5
Hence,
(s)_s+3_s+5—(s+5)2

The ROC of X(s) is Re(s) > —3. Thus, x(¢) is a right-sided signal and from Table 3-1 we
obtain
x(t) =2e Mu(t) —e u(t) — 10te >u(t)
=[2e Y —e %" — 10te " Ju(t)
Note that there is a simpler way of finding A, without resorting to differentiation. This is

shown as follows: First find ¢, and A, according to the regular procedure. Then substituting the
values of ¢, and A, into Eq. (3.84), we obtain

s+ 25+5 2 A, 10

= + —_—
(s+3)(s+5)° s+3 s+5 (5+5)°

Setting s = 0 on both sides of the above expression, we have
5 2 A 10

75 3 5 25

from which we obtain A, = — 1.

3.20. Find the inverse Laplace transform of the following X(s):

2s + 1
(a) X(s)= , Re(s)> =2
s+2
) X6 =87 Reer> 1
[ — > —
YV s+ 0
s+ 257246
(¢) X(s)= —5———, Re(s) >0
s+ 3s
W g B 206523 3
A XS == T
Since the ROC of X(s)is Re(s)> —2, x(r) is a right-sided signal and from Table 3-1 we
obtain

x(1)=28(t) —3e *u(t)
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(b) Performing long division, we have

Xy = SEEHT g, 3¥S oy, HrS
5?4 35+ 2 st + 35+ 2 c+De+2
Let
3s+5 €y ©2
Xl(s)=(s+])(s+2) Ts+1 +S+2
where
3s+5
a=(s+DX(8),._,= s+2 ’s=~l=2
3s+5
c;=(s+2)X,(5)],-_,= s+1 s=_2=]
Hence,
2 1
X(s)=l+_sT_1_+s+2

The ROC of X(s) is Re(s) > —1. Thus, x(t) is a right-sided signal and from Table 3-1
we obtain

x(t)=8(t)+ (2e "+e *")u(t)

(¢) Proceeding similarly, we obtain

s34+ 25246 3s+6
A(s) = 2435 s(s+3)
Let
3s+6 ¢, c,
Xi(s) = s(s+3) T s T s+3
where
3s+6
¢ =5Xy(8)],-0= s+ 3 s=0=2
3s+6
c;=(s+3)X(s)];-_3= =1
5 ls=-3
Hence,
2 1
X(s)=s—l+;+ T3

The ROC of X(s) is Re(s) > 0. Thus, x(¢) is a right-sided signal and from Table 3-1 and
Eq. (3.78) we obtain

x(£)=8(t) =8(t) + (2+e 3)u(t)

Note that all X(s) in this problem are improper fractions and that x(¢) contains 8(t) or
its derivatives.
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3.21. Find the inverse Laplace transform of

2+ 2se 2 +4e %
st+4s+3

X(s)= Re(s) > —1

We see that X(s) is a sum
X(s)=X,(s)+X,5(s)e >+ X;(s)e™*

where

X\(s)=

Xy(s) = X;(s) =

s2+4s5+3 s2+4s+3 s2+4s5+3
If
x,(t) > X(s) x,(1) = X5(s) x3(1) e X;5(s)

then by the linearity property (3.15) and the time-shifting property (3./6) we obtain

x(t) =x(t) +x,(t —2) +x5(t - 4) (3.85)
Next, using partial-fraction expansions and from Table 3-1, we obtain
1 1
X — — = -t _ ,—3
() =7~ g () = (e — e u(r)
X -1 3 -t -3t
2(8) = 7+ g a0 = (—e 7 4+ 3e ()
X 2 -t -3
() = g = g () =2(e T —e ()

Thus, by Eq. (3.85) we have
x(t)y=(e "' —eu(t) +[—-e "2+ 3e X Du(r-2)

+2[e Y — e DYy (1 - 4)
3.22. Using the differentiation in s property (3.21), find the inverse Laplace transform of

X(s)=—— Re(s) > —a

We have
d

ds

1 ) 1
st+a —(s+a)2

and from Eq. (3.9) we have

e u(t) «— Re(s) > ~a

s+a

Thus, using the differentiation in s property (3.21), we obtain

x(t)y=te "u(t)
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SYSTEM FUNCTION

3.23. Find the system function H(s) and the impulse response h(¢) of the RC circuit in Fig.
1-32 (Prob. 1.32).

(a) Let
x(1) =v,(1) y(t) =v(1)
In this case, the RC circuit is described by [Eq. (1.105)]

d 1 1
yd(t’) + =2y (1) = o3 (0)

Taking the Laplace transform of the above equation, we obtain
1

1
sY(s) + R;Y(S) = EX(S)

1 1
or (s+ EE)Y(S)_EEX(S)

Hence, by Eq. (3.37) the system function H(s) is

Y(s) 1/RC 1 1
X(s) s+1/RC RC s+1/RC

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse
response h(t) is

h(t)=£"YH(s)}= R—lce"/RCu(t)

(b) Let
x(t)=v,(1) y(t) =i(t)
In this case, the RC circuit is described by [Eq. (1.107)]

dy(1) 1 ()
dt +R_Cy(t)_E dt

Taking the Laplace transform of the above equation, we have

1 1
sY(s) + EY(S) = EsX(s)

1 1
+ — = —sX
or (s RC)Y(s) R (s)
Hence, the system function H(s) is
Y(s) s/R 1 s

H(s) = X(s) s+1/RC Rs+1/RC
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In this case, the system function H(s) is an improper fraction and can be rewritten as

B 1s+1/RC-1/RC 1 1 1
()= R~5Fi/Rc "R RICs+1/RC

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse
response A(t) is

1 1
h(t) =./"{H(s)} = —ﬁa(t) - Fc—e_l/RCu(t)

Note that we obtained different system functions depending on the different sets of input
and output.

3.24. Using the Laplace transform, redo Prob. 2.5.

From Prob. 2.5 we have
h(t) =e *u(t) x(t) =e*u(—t) a>0

Using Table 3-1, we have

Hs)= ——  Re(s)> a
X(S)="s—_1(; Re(s) <a
Thus,
1
Y(s)=X(s)H(s) = - GraG-a)  soa —a < Re(s) <a

and from Table 3-1 (or Prob. 3.6) the output is
! Itl
ty=—e™©
y(1) 2ae

which is the same as Eq. (2.67).

3.25. The output y(¢) of a continuous-time LTI system is found to be 2e > u(¢t) when the
input x(¢)is u(t).
(a) Find the impulse response h(t) of the system.
(b) Find the output y(¢) when the input x(¢) is e ‘u(t).

(a) x()=u(r), y(¢) =2e 3 u(t)
Taking the Laplace transforms of x(¢) and y(¢), we obtain
1
X(s)=— Re(s) >0
s
2
Y(s)=——= Re(s) > -3

s+3
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Hence, the system function H(s) is

Y(s) 2s
H(S)=m=s+3 Re(s)>—3

Rewriting H(s) as

2s 2(s+3)-6 5 6 R 3
= = — > —
s+3 s+3 s+3 e(s)

H(s)=

and taking the inverse Laplace transform of H(s), we have
h(t) =28(t) —6e Mu(t)

Note that h(t) is equal to the derivative of 2e~ *u(r) which is the step response s(t) of
the system [see Eq. (2.13)].

|
(b) x()=e 'u(t) e> —— Re(s)> ~1
s+1
Thus,
2s
Y(s)=X(s)H(s) = —————— Re(s) > -1

(s+1)(s+3)

Using partial-fraction expansions, we get

1 3
+
s+ 1 s+3

Y(s)= -

Taking the inverse Laplace transform of Y(s), we obtain

y(1)=(—e "+ 3e *")u(t)

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system
function H(s) must contain the imaginary axis, that is, s = jw.

A continuous-time LTI system is BIBO stable if and only if its impulse response A(¢) is
absolutely integrable, that is [Eq. (2.21)],

" (o) di <o
By Eq. (3.3)
H(s) = [~ h(1)e™ di

Let s =jw. Then

< ["lh(eye ! di= [ [h()|dr <<

|H(jo)] =‘[:h(z)e*iw'dz

Therefore, we see that if the system is stable, then H(s) converges for s =jw. That is, for a
stable continuous-time LTI system, the ROC of H(s) must contain the imaginary axis s = jw.



146 LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS  [CHAP. 3

3.27. Using the Laplace transfer, redo Prob. 2.14.
(a) Using Egs. (3.36) and (3.41), we have
Y(s) =X(s)H(s)Hy(s) =X(s)H(s)

where H(s) = H(s)H,(s) is the system function of the overall system. Now from Table

3-1 we have
M) =e () S H() =5 Re(s)> 2
ha() = 2e7u(0) > Hys) = ——  Re(s)> -1
Hence,
H(s) = H(5) Ho(s) - . Re(s) > -1

(s+1)(s+2) s+1 s+2
Taking the inverse Laplace transfer of H(s), we get
h(t) =2(e "'—e *)u(t)

(b) Since the ROC of H(s), Re(s) > —1, contains the jw-axis, the overall system is stable.

3.28. Using the Laplace transform, redo Prob. 2.23.
The system is described by
dy(1t)
dt
Taking the Laplace transform of the above equation, we obtain

sY(s) +aY(s) =X(s) or (s+a)Y(s)=X(s)

+ay(1) =x(1)

Hence, the system function H(s) is
Y(s) 1

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse
response h(t) is

() = e “u(r)
which is the same as Eq. (2.124).

3.29. Using the Laplace transform, redo Prob. 2.25.
The system is described by
y(t) +2y(t)y=x(t) +x'(t)
Taking the Laplace transform of the above equation, we get
sY(s) +2Y(s) = X(s) +sX(s)
or (s+2)Y(s)=(s+1)X(s)
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Hence, the system function H(s) is

Y(s) s+1 s+2-1 1

—X(s)_s+2= s+2 s+2

147

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse
response h(t) is

h(t) =8(t) —e Hu(1)

3.30. Consider a continuous-time LTI system for which the input x(¢) and output y(t) are
related by

y'(t) +y'(t) —2y(t) = x(t)

(a) Find the system function H(s).

(b) Determine the impulse response h(t) for each of the following three cases: (i)
the system is causal, (ii) the system is stable, (iii) the system is neither causal nor

(@)

(b)

stable.
Taking the Laplace transform of Eq. (3.86), we have
s2Y(s) +sY(s) — 2Y(s) = X(s)

or (s*+5—=2)Y(s) =X(s)
Hence, the system function H(s) is
Y(s 1 1
H(s) = (s)

X(s) si+s-2 (s+2)(s—1)

Using partial-fraction expansions, we get
1 1 1 1
= —_— + I
(s+2)(s-1) 3s+2 3s5s-1

(3.86)

(i) If the system is causal, then h(t) is causal (that is, a right-sided signal) and the

ROC of H(s) is Re(s)> 1. Then from Table 3-1 we get
h(1) = —3(e ¥ —e')u(r)

(ii) If the system is stable, then the ROC of H(s) must contain the jw-axis. Conse-
quently the ROC of H(s) is —2 < Re(s) < 1. Thus, A(t) is two-sided and from

Table 3-1 we get

h(t) = —se”2u(t) - se'u(—1)

(iii) If the system is neither causal nor stable, then the ROC of H(s) is Re(s) < —2.
Then h(t) is noncausal (that is, a left-sided signal) and from Table 3-1 we get

h(t) =3e 2 u(—t) — te'u(—t)

3.31. The feedback interconnection of two causal subsystems with system functions F(s)
and G(s) is depicted in Fig. 3-13. Find the overall system function H(s) for this

feedback system.
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x(r) e() (0
3 -1 F(s)

(1)

Fig. 3-13 Feedback system.

Let x(t) > X(s) y(t)y = Y(s) r(t) <> R(s) e(t) — E(s)
Then,
' Y(s) =E(s)F(s) (3.87)
R(s) =Y(s)G(s) (3.88)
Since

e(t)=x(t)+r(t)

we have

E(s)=X(s)+R(s) (3.89)
Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we
obtain

Y(s) = [X(5) + Y(5)G(s)| F(s)
or [1-F(s)G(s)]Y(s) =F(s)X(s)
Thus, the overall system function is
B Y(s) _ F(s)
CX(s) 1-F(s)G(s)

H(s) (3.90)

UNILATERAL LAPLACE TRANSFORM

3.32. Verify Eqgs. (3.44) and (3.45), that is,

dx(1) .
(a) THSXI(S)—X(O)
d*x(r)
(b) s —s5°X(s) —sx(07) —x"(07)

(@) Using Eq. (3.43) and integrating by parts, we obtain

-/?{dx(t) } =fmdx“)e"’dt

dt o~ dt
=x(t)e ;- +sfmx(t)e_“ dt
o

= —x(07) +sX,(s) Re(s) >0
Thus, we have
dx(t)

o T sKi(s) —x(07)
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(b) Applying the above property to signal x'(¢) = dx(t)/dt, we obtain
d*x(t) d dx(1)

dt?  dt dt
=52X,(s) —sx(07) —x'(07)

—s[sX;(s) —x(07)] —x'(07)

Note that Eq. (3.46) can be obtained by continued application of the above proce-
dure.

3.33. Verify Eqgs. (3.47) and (3.48), that is,
' 1
(a) f x(1)dr — —X,(s)
0~ N

' 1 1 .-
(b) f x(7)dr ;X,(s) + —s—fo x(7)dr

(@) Let s)= [ ‘x(r)dr

dg(t)
dt

Then =x(t) and g0™)=0

Now if
g(1) > Gy(s)
then by Eq. (3.44)
X;(s) =5G,(s) —8(07) =sG,(s)

Thus,

1
G,(s) = ;Xl(s)

0 [ x(r)d “x 5)
— —

r - 7)dr . 1 (

(b) We can write

' x(r)dr= 0>x('r)d‘r+ t_x('r)df
— —® 0

Note that the first term on the right-hand side is a constant. Thus, taking the unilateral
Laplace transform of the above equation and using Eq. (3.47), we get

f’ x(r)dre -l—X,(s) + %f_o;x(f)df

- A

3.34. (a) Show that the bilateral Laplace transform of x(¢) can be computed from two
unilateral Laplace transforms.

(b) Using the result obtained in part (a), find the bilateral Laplace transform of
€_2“|.
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(a) The bilateral Laplace transform of x(¢) defined in Eq. (3.3) can be expressed as

X(s) =f:x(t)e“'dt= fo;x(t)e""’dt+ j:x(t)e"’dt

= fxx( —t)e* dt + fxx(t)e"’ dt
0- 0~

Now [Tx(e)e " di=X,(s) Re(s) > o*
o-
Next, let
Z{x(-1)) =x;(s)=f°°x(—z)e-“dz Re(s) > o~
o-
Then  [Tx(—t)e"di= [ x(—t1)e™ " di=X; (~s) Re(s) <o~
U 0
Thus, substituting Eqs. (3.92) and (3.94) into Eq. (3.91), we obtain
X(s)y=X,(s)+X,(~5s) oc"<Re(s) <o~
(b) x(t) =e 2
(1) x(¢)=e"? for t > 0, which gives
1
-/l{x(f)}=X1(S)='s+—2 Re(s) > -2

2) x(t)=e? for t <0. Then x(—t)=e"* for t > 0, which gives

Alx(~0)) =X (s) = Siz Re(s) > -2
Thus,
Xy (-s)= = - : Re(s) <2
-5 +2 s—2
(3) According to Eq. (3.95), we have
X(8) = K,(5) + X (=5) = 5 ~
4
i —-2<Re(s) <2

which is equal to Eq. (3.70), with a = 2, in Prob. 3.6.

3.35. Show that
(a) x(07)= lim sX,(s)

§ X

(b) lim x(¢) = lim sX,(s)

t—ox s—0

[CHAP. 3

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
(3.98)

Equation (3.97) is called the initial value theorem, while Eq. (3.98) is called the final

value theorem for the unilateral Laplace transform.
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(a) Using Eq. (3.44), we have
dx(t)
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sX,(s) —x(07) = fo_-‘re-" dt
or dx(t) < dx(t)
= “Stdt + St dt
/0— a ¢ @ fo ar ¢
o dx(t)
_ 0+ ~st
——x(t)]o-+j(;+ ¢ dt
w dx(1)
= +y — - —st
=x(0") x(0)+f0+ e dl
Thus,
= dx(1)
- + AP 1}
sX,(s) =x(0 )+f0’ et
| L edx(r)
and lim sX,(s) =x(0") + lim e’ dt
s s o0t dt
= dx(t)
—_ + : -t —= +
=x(0 )+f0+ - (sll_{xle )dt x(0%)

since lim; e " =0.
(b) Again using Eq. (3.44), we have

wdx(t)

i

lif(\) [sX,(s) —x(07)]

I

i

lim x(
[—>®
Since

we conclude that

F=)

3.36. The unilateral Laplace transform is sometimes defin

sl'fhfo dr

= dx (1)
dt (

o dx (1)

=[o- dt

e dt

lim e’”) dt

s—0
dt =x(1)o-

t) —x(07)

IT})[SX,(S) -x(07)] = ler})[sX,(s)] -x(07)

limx(t) = linz)sX,(s)

ed as

LR} = X7 (5) = [ x(t)e " ds

151

(3.99)

with 0* as the lower limit. (This definition is sometimes referred to as the 0%

definition.)
(a) Show that

/{‘%’3} — X} (5) ~x(0°)

Re(s) >0

(3.100)
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(b) Show that
ZAu(1)} =% (3.101)
Z.{8(¢)} =0 (3.102)

(a) Let x(1) have unilateral Laplace transform X; (s). Using Eq. (3.99) and integrating by
parts, we obtain

e *'dt

dx(t) odx(t)
'/;{ dt }=j;+ dt

=x(t)e™" :++sf®x(t)e"’dt
0+
= ~x(0%) +s5X; (s) Re(s) >0
Thus, we have
dx(t)

o ST (s) —x(07)

(b) By definition (3.99)

ZAu(t)) =/0°°u(z)e-“d:=/°°e-“dr
. -

x

1 1
=—;e ”(V:; Re(s) >0
From Eq. (1.30) we have
du(t)
§(1) = yr (3.103)
Taking the 0* unilateral Laplace transform of Eq. (3./03) and using Eq. (3.100), we

obtain
ZA8(1)} =s% —u(0*)=1-1=0
This is consistent with Eq. (1.21); that is,
Z.{8(1)) =[(:a(:)e-ﬂdt=o

Note that taking the 0 unilateral Laplace transform of Eq. (3.103) and using Eq. (3.44),
we obtain

2 {8(1)} =sé -u(07)=1-0=1

APPLICATION OF UNILATERAL LAPLACE TRANSFORM

3.37. Using the unilateral Laplace transform, redo Prob. 2.20.
The system is described by
y'(t) +ay(t) =x(1) (3.104)
with y(0) =y, and x(¢) = Ke™""u(1).



CHAP. 3] LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS

3.38.

Assume that y(0) =y(07). Let
y(1) =Y, (s)

Then from Eq. (3.44)

y'(1) = sY;(s) —y(07) =sY;(s) —yo
From Table 3-1 we have

x(t)+—->X,(s)=—K—- Re(s) > ~b
s+b

Taking the unilateral Laplace transform of Eq. (3.104), we obtain

K
[s¥(5) =vo] +a¥,(s) = —

+a)Y,(s) =y, + ——
or (s+a)Y;(s) =y, s+ b
Thus,
Yo K
Y, = +
1(5) sta (s+a)(s+b)

Using partial-fraction expansions, we obtain
Yo K { 1 1 )

Y, = + -
1(5) s+a a-b\s+b s+a

Taking the inverse Laplace transform of Y,(s), we obtain

—— (e —e-'")]u(z)

y(t) = [yoe"”+

which is the same as Eq. (2.107). Noting that y(0*) =y(0) = y(07) =y,, we write y(¢) as

t) = —ar 4 -bt _ ,—at t>0
y(t) =yoe pamy e™")

Solve the second-order linear differential equation
y'(t)+5y'(t) +6y(t) =x(2)

with the initial conditions y(0) =2, y'(0) =1, and x(¢) =¢e ‘u(t).

Assume that y(0) =y(07) and y'(0) =y'(07). Let

y(t) = Y(s)
Then from Egs. (3.44) and (3.45)
Y'(1) <> s¥,(s) =y(07) =s¥,(s) -2
y'(t) e s2Y,(s) —sy(07) =y’ (07) =52Y,(s) = 25 — 1

From Table 3-1 we have

1
x(t) > X,(s) = T

153

(3.105)
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Taking the unilateral Laplace transform of Eq. (3.105), we obtain

or

Thus,

[s2Y,(s) = 25 — 1] + 5[sY,(5) = 2] + 6Y,(s) = L

s+ 1
, 1 252+ 135+ 12
(2 +55+6)Y,(s)=— +2s+11=—— =
s+ 1 s+ 1
252+ 135 + 12 252+ 135 + 12

V) = D (7 55556) ~ GrD (G2 (553)

Using partial-fraction expansions, we obtain

y b 19
= — + - —
(=375 32 2553

Taking the inverse Laplace transform of Y,(s), we have

y(1) = (ze 7"+ 6e % = e u(t)

Notice that y(0*)=2=y(0) and y'(0*) =1 =y'(0); and we can write y(¢) as

y(t)=3e"+6e -3¢ 120

Consider the RC circuit shown in Fig. 3-14(a). The switch is closed at ¢ = 0. Assume
that there is an initial voltage on the capacitor and v (07) = v,,.

(a) Find the current i(¢).
(b) Find the voltage across the capacitor v (t).

R i1 R i1
9{ ANN— ANN——»-

i
+ + +
b ve(t)

€ =5 o C == vl

—]

|<_

(a)

ve(07)=v,
(a) (b)
Fig. 3-14 RC circuit.

With the switching action, the circuit shown in Fig. 3-14(a) can be represented by the
circuit shown in Fig. 3-14(b) with ¢v,(¢) = Vu(t). When the current i(¢) is the output and
the input is ¢,(¢), the differential equation governing the circuit is

. 1 4 .
Ri(t) + Ef () dr=u(1) (3.106)

Taking the unilateral Laplace transform of Eq. (3.706) and using Eq. (3.48), we obtain

1 1 .0 %
~I(s) + ;—fomi(‘r)d‘r} - (3.107)

RI(s) + é
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where I1(s) =4{i(1)}
Now v (1) = Lr i(r)dr
C/
1 .-
and v(07) = Ef_ i(t)dr=uv,
Hence, Eq. (3.107) reduces to
1 vy V
(R+ a)l(s) + iy
Solving for I(s), we obtain
V—u, 1 V—-u, 1

I(s) = -
(=" R+1/G - "R s+i/RC

Taking the inverse Laplace transform of I(s), we get

e—r/RCu(t)

V_
i(t) =
When v(¢) is the output and the input is v(¢), the differential equation governing the
circuit is
dv(t) 1
+
dt RC
Taking the unilateral Laplace transform of Eq. (3.108) and using Eq. (3.44), we obtain

— (1) = —u(t) (3.108)

Ve(s) =0.(07) + p=Ve(s) =

or

Solving for V.(s), we have
1 Vg
RCs(s+1/RC) s+1/RC

V.(s) =

1 1 Vg
s s+1/RC s+1/RC
Taking the inverse Laplace transform of V.(s), we obtain
v(t) =V[1-e "R Nu(t) + vye "RCu(t)
Note that v (0*) = vy = v.(07). Thus, we write v (¢) as

0(1) = V(1= e™/F€) +ue™ A 120

3.40. Using the transform network technique, redo Prob. 3.39.

(a)

Using Fig. 3-10, the transform network corresponding to Fig. 3-14 is constructed as shown
in Fig. 3-15.
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R I(s)
MW

@ | <

+ Cs
®

Fig. 3-15 Transform circuit.

Writing the voltage law for the loop, we get
(R 1 )1 vy, V
+ = +—=—
Cs () s s

Solving for I(s), we have
V—-u 1 V—v 1
I(s) = 0 _ 0
s R+1/Cs R s+ 1/RC

Taking the inverse Laplace transform of /(s), we obtain

Loe"/RCu(t)

i(1) = —
(b) From Fig. 3.15 we have
1 Uy
Vi(s) = 1) + =
Substituting /(s) obtained in part (a) into the above equation, we get
V—u, 1 Vg

V)= e sGriRO) T

1 1 vy
=(V-v))| = - |+
s s+1/RC s

1 1 vy
=V|—- - +
s s+1/RC s+ 1/RC
Taking the inverse Laplace transform of V.(s), we have

v (1) =V(1—e "RYu(t) + vge RCu(1)

[CHAP. 3

3.41. In the circuit in Fig. 3-16(a) the switch is in the closed position for a long time before

it is opened at ¢ = 0. Find the inductor current i(¢) for ¢ > 0.

When the switch is in the closed position for a long time, the capacitor voltage is charged
to 10 V and there is no current flowing in the capacitor. The inductor behaves as a short circuit,

and the inductor current is ¥ =2 A.

Thus, when the switch is open, we have i(07) = 2 and v (07) = 10; the input voltage is 10
V, and therefore it can be represented as 10u(t). Next, using Fig. 3-10, we construct the

transform circuit as shown in Fig. 3-16(b).
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(@) (b)
Fig. 3-16

From Fig. 3-16(b) the loop equation can be written as

11 L+o] 201 10 10
= -1+ + — + —=—
s1(s) () + —I(s)+ — =~
1 20

or (-2-s+2+—s—)1(s)=l
Hence,

1 2s

I(s) = =

1s+2+20/s s+4s+40

2(s+2) -4 (s+2) 2 6

(s+2)°+6> (s+2)°+62 3 (s+2)°+6

Taking the inverse Laplace transform of I(s), we obtain
i(t) =e *(2cos6t — 5sin6t)u(t)

Note that i(0*) =2 =i(07); that is, there is no discontinuity in the inductor current before and
after the switch is opened. Thus, we have

i(t)y =e ?(2cos6r — 3sin6r) >0

3.42. Consider the circuit shown in Fig. 3-17(a). The two switches are closed simultaneously
at t = 0. The voltages on capacitors C, and C, before the switches are closed are 1
and 2 V, respectively.

(a) Find the currents i,(¢) and i,(¢).
(b) Find the voltages across the capacitors at t =0,

(a) From the given initial conditions, we have
ve(07)=1V  and Lef07) =2V

Thus, using Fig. 3-10, we construct a transform circuit as shown in Fig. 3-17(b). From
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1 IL+

R

5V

[CHAP.

“ | w

Dt Dy O

(b)

DI D

I T L
1'+ %r

C,=1F L

(@)
Fig. 3-17

Fig. 3-17(b) the loop equations can be written directly as
( 2 : )1 21 4
+ - —20,(s)=—

| 1(5) ~21(s) = -

~2I(s) + (2+ %)Iz(s) - —%

Solving for I)(s) and I(s) yields

; s+1  s+1+3 | 31
= = = +—
i(5) s+ 3 s+ % 45+ 3
1 1 3
s—1  s+l-2 301
L(s)=—T1=—T =1- 777
s+ 3 s+ 3 45+ 5

Taking the inverse Laplace transforms of /,(s) and I,(s), we get
(1) =8(t) + 3¢ "*u(r)
i(1) =8(t) — ze~"*u(t)

From Fig. 3-17(b) we have

1 1
Ve(s) = ;11(5) s

1 2
Vels) = ~h(s) + =

= veo —+-|
(

Substituting /,(s) and /,(s) obtained in part (a) into the above expressions, we get

1s+1 1

VC‘(S)=;s+1 +;
4

1s—3 2

Ve =SS
4
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Then, using the initial value theorem (3.97), we have

s+ 1
vC‘(0+) = sli?;sVCl(s) = slim T+ 1=14+1=2V

—w S+ 3

1
g1
0cf07) = lim sV (s) = lim 2 $2=1+2=3V

soo S+ g

Note that vc(07)#0.(07) and v (0%)#v-(07). This is due to the existence of a
capacitor loop in the circuit resulting in a sudden change in voltage across the capacitors.
This step change in voltages will result in impulses in i(¢) and i,(¢). Circuits having a
capacitor loop or an inductor star connection are known as degenerative circuits.

Supplementary Problems

3.43. Find the Laplace transform of the following x(¢):

(a) x(t)=sin wytu(t)
(b) x(¢t) = cos(wyt + Pu(t)
(c) x(1)=e""u(t) —e™u(-1)

(d) x(1)=1
(e) x(t)=sgnt
Ans.

Wg
(a) X(s)= 5—,Re(s)>0
$°+ wg

() X(s)= 7o ¢2_w‘ism¢, Re(s)>0
St w

0

25
(€) Ifa>0, X(s5)= 55— — ~a < Re(s) <a. If a <0, X(s) does not exist since X(s) does

not have an ROCS.
(d) Hint: x(t)=u(t)+u(—1)

X(s) does not exist since X(s) does not have an ROC.
(e) Hint: x(t)=u(t) —u(—1)

X(s) does not exist since X(s) does not have an ROC.

3.44. Find the Laplace transform of x(t) given by

1 L <t<t,
0 otherwise

x(f)={

1
Ans. X(s)= —[e 1 —e~ 2] all 5
s
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3.45. Show that if x(¢) is a left-sided signal and X(s) converges for some value of s, then the ROC
of X(s) is of the form

Re(s) < oin

where o equals the minimum real part of any of the poles of X(s).

min

Hint:  Proceed in a manner similar to Prob. 3.4.

3.46. Verify Eq. (3.21), that is,

dX(s)
ds

—tx(t) > R'=R

Hint: Differentiate both sides of Eq. (3.3) with respect to s.

3.47. Show the following properties for the Laplace transform:

(a) If x(¢)is even, then X(—s) = X(s); that is, X(s) is also even.
(b) If x(¢)is odd, then X(—s)= —X(s); that is, X(s) is also odd.
(c) If x(t)is odd, then there is a zero in X(s) at s =0.

Hint:

(a) Use Egs. (1.2) and (3.17).
(b) Use Egs. (1.3) and (3.17).
(¢) Use the result from part (b) and Eq. (1.83a).

3.48. Find the Laplace transform of
x(t) =(e 'cos2t—5e 2" yu(t) + ye*u(—t)

s+ 1 S 1 1 | < Re(s) <2
-~ - -1< <
(s+1)*+4 s+2 25-2’ s

Ans. X(s)=

3.49. Find the inverse Laplace transform of the following X(s);

(a) X(s) = ]—, Re(s) > —1
s(s + 1)

(b) X(s) = —]7 ~1 <Re(s) <0
s(s + 1)°

(c) X(s)= ]—,, Re(s) < —1
s(s + 1)°

@ X5)=—"1 _ Re(sy>-2
s+ 4s + 13

(e) X(s) = ——i— Re(s) >0

- (57 + 4)°

N Xs) = u ,Re(s) >—2

s+ 274+ 95 + 18
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Ans.

(@) x()=Q0A—-e"" —te ut)

(b) x(t)=—u(—t)—(1+1t)e "ult)

() x()=(=1+e " +te u(—-1)

(d) x(t)=e *(cos3t— §sin3t)u(t)

(e) x(t)= 5t sin2tu(s)

(f) x(t)=(— FZe %+ & cos3t+ 75 sin30)u(t)

3.50. Using the Laplace transform, redo Prob. 2.46.
Hint: Use Eq. (3.21) and Table 3-1.

3.51. Using the Laplace transform, show that

(@) x(t)x8(t)=x(1)
b) x()+8'()=x'(t)

Hint:

(a) Use Eq. (3.21) and Table 3-1.
(b) Use Eqgs. (3.18) and (3.21) and Table 3-1.

3.52. Using the Laplace transform, redo Prob. 2.54.
Hint:

(a) Find the system function H(s) by Eq. (3.32) and take the inverse Laplace transform of
H(s).

(b) Find the ROC of H(s) and show that it does not contain the jw-axis.

3.53. Find the output y(r) of the continuous-time LTI system with
h(t) =e 2u(t)
for the each of the following inputs:
(@) x(t) = e 'u(r)
() x(1) = e 'u(-1)
Ans.

(@) y(1) = (e "—e u(r)
(b) y(1) = e 'u(—t)+e ?'u(t)

3.54. The step response of an continuous-time LTI system is given by (1 — e~ ")u(t). For a certain
unknown input x(¢), the output y(r) is observed to be (2 — 3¢~ + ¢~ *)u(t). Find the input
x(1).

Ans. x(1) =21 — e 3)u(t)
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3.58.

3.56.

3.57.

3.58.

3.59.

3.60.
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x(t)
1 1 )
fc? a i ~O— = >
+

-

) —

Fig. 3-18

Determine the overall system function H(s) for the system shown in Fig. 3-18.

Hint:  Use the result from Prob. 3.31 to simplify the block diagram.
)

Ans HO) = a2

If x(¢) is a periodic function with fundamental period T, find the unilateral Laplace transform
of x(1).

1 T
Ans. X(s)= ——— [ x(D)e " di, Re(s)> 0
1—-e 0~

Find the unilateral Laplace transforms of the periodic signals shown in Fig. 3-19.

5

1 1—-e”

Ans. (a) m, Re(s) > 0; (b) m, Re(s)>0

Using the unilateral Laplace transform, find the solution of
y'(t) —y'(t) —6y(r) =¢
with the initial conditions y(0) =1 and y’(0) =0 for ¢ > 0.

Ans. y()= —te'+2e 2+ 3e¥, 120

Using the unilateral Laplace transform, solve the following simultaneous differential equations:
y'(£) +y(1) +x'(1) +x(1) =1
y'(1) —y(t) =2x(1) =0
with x(0) =0 and y(0) =1 for ¢ > 0.
Ans. x(t)=e "= 1, y(t)=2—-¢"",t20

Using the unilateral Laplace transform, solve the following integral equations:

(a) y(r)=1 +af'y(~r)d1-, t>0
0

b) y(t)=e¢'

1+ fo'e-fy(f)df], 1>0

Ans. (a) y(1)=e", 120; (b) y(t)=e*,120
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x(1)
ms—— ] je—— eeem—— ————

] 1 ] ! 1 )

1 ! ! | 1 ]
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] } ! 1 1 ]
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(@)

x(1)

1 ! ]
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! ] : 1 ! 1
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[l 0 1! ) 13 Yy 'R !
1 ]
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) ( [} ! !
®)

Fig. 3-19

3.61. Consider the RC circuit in Fig. 3-20. The switch is closed at ¢ = 0. The capacitor voltage before
the switch closing is v,. Find the capacitor voltage for ¢ > 0.

Ans. v (t)=v4e /RC 120

3.62. Consider the RC circuit in Fig. 3-21. The switch is closed at ¢ = 0. Before the switch closing,
the capacitor C, is charged to v, V and the capacitor C, is not charged.

(a) Assuming ¢, =c, =c, find the current i(¢) for ¢ > 0.
(b) Find the total energy E dissipated by the resistor R and show that E is independent of R
and is equal to half of the initial energy stored in C,.

[
T2 f

Fig. 3-20 RC circuit.
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S oA

t=0
C, = i) ;‘: c,

Fig. 3-21 RC circuit.

L

(c) Assume that R=0 and C, = C, = C. Find the current i(¢) for ¢ > 0 and voltages v(0")
and v (07).

Ans.
(@) i(1)=(vy/R)e 2/RC >0
(b) E=1iv2C

(©) (1) = 300C8(t), b0 ) =v4/2# v (07) = vy, 0 0) =0y /2 # 0 (07)=0



Chapter 4

The z-Transform and Discrete-Time
LTI Systems

4.1 INTRODUCTION

In Chap. 3 we introduced the Laplace transform. In this chapter we present the
z-transform, which is the discrete-time counterpart of the Laplace transform. The z-trans-
form is introduced to represent discrete-time signals (or sequences) in the z-domain (z is a
complex variable), and the concept of the system function for a discrete-time LTI system
will be described. The Laplace transform converts integrodifferential equations into
algebraic equations. In a similar manner, the z-transform converts difference equations
into algebraic equations, thereby simplifying the analysis of discrete-time systems.

The properties of the z-transform closely parallel those of the Laplace transform.
However, we will see some important distinctions between the z-transform and the
Laplace transform.

4.2 THE z-TRANSFORM

In Sec. 2.8 we saw that for a discrete-time LTI system with impulse response h[n], the
output y[n] of the system to the complex exponential input of the form z" is

y[n] =T{z"}=H(z)z" (4.1)
where
H(z)= i h{n}z™" (4.2)

A. Definition:

The function H(z) in Eq. (4.2) is referred to as the z-transform of h[n]. For a general
discrete-time signal x[n], the z-transform X(z) is defined as

0

X(z)= Y x[n]z™" (4.3)

n=—w

The variable z is generally complex-valued and is expressed in polar form as
z=re’? (4.4)

where r is the magnitude of z and (1 is the angle of z. The z-transform defined in Eq.
(4.3) is often called the bilateral (or two-sided) z-transform in contrast to the unilateral (or

165
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one-sided) z-transform, which is defined as
X,(z)= ¥ x[n]z™ (4.5)
n=0

Clearly the bilateral and unilateral z-transforms are equivalent only if x[n] =0 for n < 0.
The unilateral z-transform is discussed in Sec. 4.8. We will omit the word “bilateral”
except where it is needed to avoid ambiguity.

As in the case of the Laplace transform, Eq. (4.3) is sometimes considered an operator
that transforms a sequence x[n] into a function X(z), symbolically represented by

X(z)=3{x[n]} (4.6)
The x[n] and X(z) are said to form a z-transform pair denoted as
x[n] = X(z) (4.7)

B. The Region of Convergence:

As in the case of the Laplace transform, the range of values of the complex variable z
for which the z-transform converges is called the region of convergence. To illustrate the
z-transform and the associated ROC let us consider some examples.

EXAMPLE 4.1. Consider the sequence
x[n) =a"u[n) a real (4.8)

Then by Eq. (4.3) the z-transform of x[n] is

o0

X(z)= Y a"u[n)z"= é)(az")”

n= -

For the convergence of X(z) we require that
Y laz7Y" <
n=0

Thus, the ROC is the range of values of z for which laz ™! < 1 or, equivalently, |z| > |al. Then
1
1

= m:— |z| > |al (4.9)

X(z)=Y (az“‘)'x
n=0
Alternatively, by multiplying the numerator and denominator of Eq. (4.9) by z, we may write X(z) as

X(z)=;—i—a |z] > lal (4.10)

Both forms of X(z) in Egs. (4.9) and (4.10) are useful depending upon the application.
From Eq. (4.10) we see that X(z) is a rational function of z. Consequently, just as with
rational Laplace transforms, it can be characterized by its zeros (the roots of the numerator
polynomial) and its poles (the roots of the denominator polynomial). From Eq. (4.10) we see
that there is one zero at z =0 and one pole at z =a. The ROC and the pole-zero plot for
this example are shown in Fig. 4-1. In z-transform applications, the complex plane is
commonly referred to as the z-plane.
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Again, as before, X(z) may be written as

X(z)=;—i—a— lz| <lal (4.13)

Thus, the ROC and the pole-zero plot for this example are shown in Fig. 4-2. Comparing
Eqgs. (4.9) and (4.12) [or Eqgs. (4.10) and (4.13)], we see that the algebraic expressions of
X(2) for two different sequences are identical except for the ROCs. Thus, as in the Laplace

Im(z) Im(z)

'\ |

7
Z <

<

Re(z)

lr‘r:(z) Irx(z)
7y

N

|

Fig. 4-2 ROC of the form |z| <|al.
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transform, specification of the z-transform requires both the algebraic expression and the

ROC.

C. Properties of the ROC:

As we saw in Examples 4.1 and 4.2, the ROC of X(z) depends on the nature of x[n].
The properties of the ROC are summarized below. We assume that X(z) is a rational
function of z.

Property 1:
Property 2:

Property 3:

Property 4:

Property 5:

The ROC does not contain any poles.

If x[n] is a finite sequence (that is, x[n] =0 except in a finite interval N, <n <N,,
where N, and N, are finite) and X(z) converges for some value of z, then the ROC is
the entire z-plane except possibly z =0 or z = .

If x[n}]is a right-sided sequence (that is, x[n] =0 for n <N, < «) and X(z) converges
for some value of z, then the ROC is of the form

[2]> 7 or © >z >r ..

equals the largest magnitude of any of the poles of X(z). Thus, the ROC is
in the z-plane with the possible exception of z = .

where r_,,,
the exterior of the circle |z|=r

max

If x[n]is a left-sided sequence (that is, x[n]=0 for n > N, > —=) and X(z) converges
for some value of z, then the ROC is of the form

|zl <rpn Or  0<|zl<r,

min

is the smallest magnitude of any of the poles of X(z). Thus, the ROC is the
in the z-plane with the possible exception of z = 0.

where r ;.
interior of the circle |z]=r

min
If x[n] is a two-sided sequence (that is, x[n] is an infinite-duration sequence that is
neither right-sided nor left-sided) and X(z) converges for some value of z, then the
ROC is of the form

ry<lzl<r,

where r, and r, are the magnitudes of the two poles of X(z). Thus, the ROC is an
annular ring in the z-plane between the circles |z| =r, and |z|=r, not containing any
poles.

Note that Property 1 follows immediately from the definition of poles; that is, X(z)
is infinite at a pole. For verification of the other properties, see Probs. 4.2 and 4.5.

4.3 2-TRANSFORMS OF SOME COMMON SEQUENCES
A. Unit Impulse Sequence d{nl:
From definition (1.45) and (4.3)

X(z)= i 8[n]z7"=2z""=1 all z (4.14)

n=—ow
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Thus,
8[n] —1

B. Unit Step Sequence ulnl:
Setting a = 1 in Eqs. (4.8) to (4.10), we obtain
1 z

u[n]‘_—)l—z_I =z—1

C. z-Transform Pairs:

The z-transforms of some common sequences are tabulated in Table 4-1.

all 2

lz| > 1

[CHAP. 4

(4.15)

(4.16)

Table 4-1. Some Common z-Transform Pairs
x[n] X(z) ROC
8ln] 1 All z
1 z | .
>
uln] 1-z7"z-1 2l
[—n—1 L l2l< 1
el —n — <
ul=n =1l -z z-1 ‘
8ln —m) z™m All z except 0 if (m > 0) or « if (m < 0)
1 z
a"uln) —> |z] > |al
1—az zZ—a
1 z
—a"u[-n — 1] T |z <]al
1—az zZ—a
(n] az™! az 21> lal
na"uln zl>la
(1-az ’)2 (z —a)’
(=n—1] “ i |21 <lal
—na"ul—n — ) zl<la
(l—az“)2 (z-a)’
1 z 2
(n + Da"uln] . [ ] 121> lal
(1—az7 ')y Lz—a
(cos Qgmuln] 2~ (cos o) 2 121> 1
cos f2gmluln 27— (2cos Qg)z + 1 ‘
(sin Qn)uln) (sinf2o) 2 21> 1
>
SIn R MR 22— (2cos Qy)z + 1 ‘
0 ] z2—(rcos Qy)z o
n >
(r" cos Qymuln Zz—(ZFCOSQO)Z+r2 =T
0 myuln] (rsinly)z 2|
n o3 >
(r" sin Qomuln 22— (2rcos Qy)z +r? “a=r
an OSIISN_l l—aNz‘N ’Z|>0
0 otherwise 1-az™!
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4.4 PROPERTIES OF THE Z-TRANSFORM

Basic properties of the z-transform are presented in the following discussion. Verifica-
tion of these properties is given in Probs. 4.8 to 4.14.

A. Linearity:
If
x,[n] = X\(2) ROC =R,
x,[n] > X,(z) ROC =R,
then
a,x,[n] +a,x,[n] —>a,X,(z) +a,X,(z) R'DR,NR, (4.17)

where a, and a, are arbitrary constants.

B. Time Shifting:

If
x[n] «>X(z) ROC =R
then
x[n—ny| e>z7"X(z) R'=RN{0<]z] <} (4.18)
Special Cases:
x[n—1] —z71X(z) R'=Rn{0<]zl) (4.19)
x[n+1] —zX(z) R =R N {|z] <} (4.20)

Because of these relationships [Egs. (4.19) and (4.20)], z~! is often called the unit-delay
operator and z is called the unit-advance operator. Note that in the Laplace transform the
operators s~!=1/s and s correspond to time-domain integration and differentiation,
respectively [Egs. (3.22) and (3.20)].

C. Multiplication by zg:

If
x[n] > X(z) ROC =R
then
z
sz[n]«——»X(z—) R =1zy|R (4.21)
0

In particular, a pole (or zero) at z =z, in X(z) moves to z = z,z, after multiplication by
z¢ and-the ROC expands or contracts by the factor |z,|.

Special Case:

e/Mx[n] > X(e 7/ hz) R =R (4.22)
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In this special case, all poles and zeros are simply rotated by the angle €, and the ROC is
unchanged.

D. Time Reversal:

If
x[n] e X(z) ROC=R
then
1 1
x[—n]HX(;) R’=-E (4.23)

Therefore, a pole (or zero) in X(z) at z =2z, moves to 1/z, after time reversal. The
relationship R’ = 1 /R indicates the inversion of R, reflecting the fact that a right-sided
sequence becomes left-sided if time-reversed, and vice versa.

E. Multiplication by n (or Differentiation in z):

If
x[n] > X(z) ROC =R
then
nx[n]H—de(z) R'=R (4.24)
dz
F. Accumulation:
If
x[n] > X(z) ROC=R
then
U 1 z
k_Zﬂ;t[k]é—»1_2_1X(z)=z_1X(z) R' DR {lz|> 1) (4.25)

Note that X7 _ __x[k] is the discrete-time counterpart to integration in the time domain
and is called the accumulation. The comparable Laplace transform operator for integra-
tion is 1/s.

G. Convolution:

If
x\[n] > X\(z) ROC =R,
x,[n] e X,(2) ROC =R,
then
x\[n]* x,(n] > X (2)X,(2) R'DR,NR, (4.26)

This relationship plays a central role in the analysis and design of discrete-time LTI
systems, in analogy with the continuous-time case.
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Table 4-2. Some Properties of the z-Transform

Property Sequence Transform ROC
x[n] X(2) R
x,[n] X (2) R,
x,[n] X(2) R,
Linearity ax[n]+ayx,[n]  a,X(z2)+a,Xy(2) R'DR,NR,
Time shifting x[n —ny) z7 " X(z) R DRN{0 <]zl <)
z
Multiplication by z{ zgx[n] X( - ) R =[zylR
0
Multiplication by e/o" e/ x(n] X(e oz) R'=R
1 1
Time reversal x[—n] X ( - ) R = —
z R
. dx(z)
Multiplication by n nx[n) -z = R' =R
Accumulation Y. x[n] T X(z) R' DRN{z]> 1}
k=—o -
Convolution x,[n]* x,[n] X(2)X,(2) R'DR, NR,

H. Summary of Some z-transform Properties

For convenient reference, the properties of the z-transform presented above are
summarized in Table 4-2.

4.5 THE INVERSE z-TRANSFORM

Inversion of the z-transform to find the sequence x[n] from its z-transform X(z) is
called the inverse z-transform, symbolically denoted as

x[n] =37(X(2)) (4.27)

A. Inversion Formula:

As in the case of the Laplace transform, there is a formal expression for the inverse
z-transform in terms of an integration in the z-plane; that is,

1
x[n] = 2—7T—j¢CX(z)z”“dz (4.28)

where C is a counterclockwise contour of integration enclosing the origin. Formal
evaluation of Eq. (4.28) requires an understanding of complex variable theory.

B. Use of Tables of z-Transform Pairs:
In the second method for the inversion of X(z), we attempt to express X(z) as a sum
X(z)=X{(z)+ - +X,(2) (4.29)



174 THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS [CHAP. 4

where X (z),...,X,(z) are functions with known inverse transforms x,[nl],...,x[n].
From the linearity property (4.17) it follows that
x[n] =x,[n] + - +x,[n] (4.30)

C. Power Series Expansion:

The defining expression for the z-transform [Eq. (4.3)] is a power series where the
sequence values x[n] are the coefficients of z7". Thus, if X(z) is given as a power series in
the form

oo

Y x[n]z7"

n=—o

il

X[z]

= o 4x[ 2]z +x[ -1z +x[0] +x[1]z 7 +x[2) 272+ - - (4.31)

we can determine any particular value of the sequence by finding the coefficient of the
appropriate power of z~'. This approach may not provide a closed-form solution but is
very useful for a finite-length sequence where X(z) may have no simpler form than a
polynomial in z~' (see Prob. 4.15). For rational z-transforms, a power series expansion
can be obtained by long division as illustrated in Probs. 4.16 and 4.17.

D. Partial-Fraction Expansion:

As in the case of the inverse Laplace transform, the partial-fraction expansion method
provides the most generally useful inverse z-transform, especially when X(z) is a rational
function of z. Let

NG) | (zm2) (2= 2,)

S TP R PN e P #32)
Assuming n >m and all poles p, are simple, then
X(z)=ﬁ+ S L =£9+i i (4.33)
z z z-p, zZ-p, Z2=p, Z G Z-D
where
X(z)
co=X(2):-0 ¢ =(z2=px) z leen (4.34)
Hence, we obtain
z z n z
X(z)=co+clz_pl + +C"z—p,, =cy+ k§1CkZ_Pk (4.35)

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z) and using
Table 4-1, we can then invert each term, producing thereby the overall inverse z-transform
(see Probs. 4.19 to 4.23).

If m > n in Eq. (4.32), then a polynomial of z must be added to the right-hand side of
Eq. (4.35), the order of which is (m —n). Thus for m > n, the complete partial-fraction
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expansion would have the form

m-n n z
X(z)= Y b,z7+ Y ¢,
q=0 k=1

(4.36)
Z =Py

If X(z) has multiple-order poles, say p; is the multiple pole with multiplicity r, then
the expansion of X(z)/z will consist of terms of the form
A A A,

— 4 I+ —

z2=p (z-p) (z—p)

(4.37)

where

1 d*
Ak = T dzF (z—p;)

’X(z)] (4.38)

z

4.6 THE SYSTEM FUNCTION OF DISCRETE-TIME LTI SYSTEMS
A. The System Function:

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the
convolution of the input x[n] with the impulse response A[n]; that is [Eq. (2.35)],

y[n] =x[n]*h[n] (4.39)
Applying the convolution property (4.26) of the z-transform, we obtain
Y(z)=X(z)H(z) (4.40)

where Y(z), X(z), and H(z) are the z-transforms of y[n), x[n], and h[n], respectively.
Equation (4.40) can be expressed as

H(z)= —% (4.41)

The z-transform H(z) of h[n] is referred to as the system function (or the transfer
function) of the system. By Eq. (4.47) the system function H(z) can also be defined as the
ratio of the z-transforms of the output y[n] and the input x[rn). The system function H(z)
completely characterizes the system. Figure 4-3 illustrates the relationship of Egs. (4.39)
and (4.40).

x[n) yln)=x[n] * h|n]
X(2) Y(2)=X(2)H(z)

D —— H(Z) f—————-

Fig. 4-3 Impulse response and system function.
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B. Characterization of Discrete-Time LTI Systemas:

Many properties of discrete-time LTI systems can be closely associated with the
characteristics of H(z) in the z-plane and in particular with the pole locations and the
ROC.

1. Causality:
For a causal discrete-time LTI system, we have [Eq. (2.44)]
h[n] =0 n<0

since h[n] is a right-sided signal, the corresponding requirement on H(z) is that the ROC
of H(z) must be of the form

(2] > 7 pax

That is, the ROC is the exterior of a circle containing all of the poles of H(z) in the
z-plane. Similarly, if the system is anticausal, that is,

h[n] =0 n=0
then h[n] is left-sided and the ROC of H(z) must be of the form
lzl < T min

That is, the ROC is the interior of a circle containing no poles of H(z) in the z-plane.

2. Stability:

In Sec. 2.7 we stated that a discrete-time LTI system is BIBO stable if and only if [Eq.
(2.49)]

T Whln]i<=

n=—

The corresponding requirement on H(z) is that the ROC of H(z) contains the unit circle
(that is, |z] = 1). (See Prob. 4.30.)

3. Causal and Stable Systems:

If the system is both causal and stable, then all of the poles of H(z) must lie inside the
unit circle of the z-plane because the ROC is of the form |z|>r_,,, and since the unit
circle is included in the ROC, we must have r_,, <1.

C. System Function for LTI Systems Described by Linear Constant-Coefficient Difference
Equations:

In Sec. 2.9 we considered a discrete-time LTI system for which input x[n] and output
yln] satisfy the general linear constant-coefficient difference equation of the form

N M
Y ay[n—k] = Ebkx[n—k] (4.42)
k=0 k=0
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Applying the z-transform and using the time-shift property (4./8) and the linearity
property (4.17) of the z-transform, we obtain

M
Zakz kY(z) = Z bz *X(z

k=0
or
N M
Y(z) Y a,z7%=X(z) ) bz * (4.43)
k=0 k=0
Thus,
M
b, z7*
vie) Eb
H(z)= = k= (4.44)
X(z x
Z az
k=0

Hence, H(z) is always rational. Note that the ROC of H(z) is not specified by Eq. (4.44)
but must be inferred with additional requirements on the system such as the causality or
the stability.

D. Systems Interconnection:

For two LTI systems (with A,[n] and h,[n], respectively) in cascade, the overall
impulse response h[n] is given by

h[n] =h,[n] * hy[n] (4.45)
Thus, the corresponding system functions are related by the product
H(z)=H\(z)H,)(2) RDOR,NR, (4.46)

Similarly, the impulse response of a parallel combination of two LTI systems is given
by
h[n] =h,[n] + h,[n] (4.47)
and
H(z)=H\(z)+ H,(2) RDOR,NR, (4.48)

4.7 THE UNILATERAL z-TRANSFORM
A. Definition:

The unilateral (or one-sided) z-transform X,(z) of a sequence x[n] is defined as [Eq.
(4.5)]

X,(z)= éox[n]z_" (4.49)

and differs from the bilateral transform in that the summation is carried over only n > 0.
Thus, the unilateral z-transform of x[n] can be thought of as the bilateral transform of
x[nluln). Since x[nlu[n] is a right-sided sequence, the ROC of X,(z) is always outside a
circle in the z-plane.
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B. Basic Properties:

Most of the properties of the unilateral z-transform are the same as for the bilateral
z-transform. The unilateral z-transform is useful for calculating the response of a causal
system to a causal input when the system is described by a linear constant-coefficient
difference equation with nonzero initial conditions. The basic property of the unilateral
z-transform that is useful in this application is the following time-shifting property which is
different from that of the bilateral transform.

Time-Shifting Property:
If x[n]«< X,(z), then for m > 0,
x[n=m]—z7"X,(z)+z7" x[=1] +27" 2 x[=2] + - +x[-m] (4.50)
x[n+m] e zmX,(z)—z"x[0] =27 'x[1] = -+ —zx[m — 1] (4.51)

The proofs of Eqs. (4.50) and (4.51) are given in Prob. 4.36.

D. System Function:

Similar to the case of the continuous-time LTI system, with the unilateral z-transform,
the system function H(z) =Y(z)/X(z) is defined under the condition that the system is
relaxed, that is, all initial conditions are zero.

Solved Problems

THE z-TRANSFORM

4.1, Find the z-transform of

(a) x[nl= —a"u[-n-1]
(b) x[n)=a "ul-n-1]
(a) From Eq. (4.3)

o -1
X(z)=- )Y aw[-n-1]z7"=~ ) a"z"™"
n=—-® n=—ox
= — Z(a“’z)"=1— Y (a ‘z)'l
n=1 n=0
By Eq. (1.91)
i (a“z)'I = _ if la”'zl<1or|z|<lal
1-a7'z
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4.2.

4.3.

Thus,

—-a 'z z 1

X(z)=1- : Izl <lal (4.52)

1-a7'2z 1-a'z z—-a 1-az”

(b) Similarly,

X(z)= i a "u[-n-1]z7"= E (az)™"

n=—-o n=~o

Again by Eq. (1.91)

il 1
§ if |az| < 1 <—
ngu(az) - if laz| <1 or |z| il

Thus,

az z

1 1
= -1= = — < — 4.53
x(2) 1-az ! 1-az z—-1/a & lal ( )

A finite sequence x[n] is defined as

#*0 N, <n <N,
=0 otherwise

x[n]{

where N, and N, are finite. Show that the ROC of X(z) is the entire z-plane except
possibly z =0 or z = o,

From Eq. (4.3)

N,

X(z)= Y x[n)z™" (4.54)

n=N,

For z not equal to zero or infinity, each term in Eq. (4.54) will be finite and thus X(z) will
converge. If N, <0 and N, > 0, then Eq. (4.54) includes terms with both positive powers of z
and negative powers of z. As |z] — 0, terms with negative powers of z become unbounded,
and as |z] — «, terms with positive powers of z become unbounded. Hence, the ROC is the
entire z-plane except for z =0 and z = . If N, >0, Eq. (4.54) contains only negative powers
of z, and hence the ROC includes z = ». If N, <0, Eq. (4.54) contains only positive powers of
z, and hence the ROC includes z =0.

A finite sequence x[n] is defined as

x|n] = {5,3,-2,0,4,- 3}

Find X(z) and its ROC.
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From Eq. (4.3) and given x[n] we have

© 3
X(z)=

n=—o n=-2
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Y x[nlz7"= Y x[n]z™"

=x[-2]z%+x[-1])z +x[0] +x[1])z" "+ x[2)z 2 +x[3]z 3

=5z2+3z-2+4z"%2-3z"3

For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will
converge. Note that X(z) includes both positive powers of z and negative powers of z. Thus,
from the result of Prob. 4.2 we conclude that the ROC of X(z)is 0 <|z| < ce.

4.4. Consider the sequence

x[n] = (gn

O<n<N-1,a>0
otherwise

Find X(z) and plot the poles and zeros of X(z).

By Eq. (4.3) and using Eq. (1.90), we get

N-1 N-1
X(z2)= Y a"z"= ) (az7!)
n=0 n=0

1- (az")N

a
= — = = (4.55)

1—az™ z zZ—-a

From Eq. (4.55) we see that there is a pole of (N — 1)th order at z =0 and a pole at z =a.
Since x[n] is a finite sequence and is zero for n <0, the ROC is |z]| > 0. The N roots of the

numerator polynomial are at

z, = ae/ 2Tk /N)

k=0,1,...,N-1

(4.56)

The root at k =0 cancels the pole at z = a. The remaining zeros of X(z) are at

= qpiQ@Tk/N)
z, =ae

k=1,...,N—1 (4.57)

The pole-zero plot is shown in Fig. 4-4 with N =8,

Im(z)

z-plane
(N - Dth e ©
order pole e AN Pole-zero cancel
’ \\
! \
1 \]
] 1
-O— - 4 >
‘ ' Re(z)
1 [
\ ’
A ,
A ,
) ’
0\ l0

Fig. 4-4 Pole-zero plot with N = 8.
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4.5.

4.6.

Show that if x[n]is a right-sided sequence and X(z) converges for some value of z,
then the ROC of X(z) is of the form

[z > Foax or ©>|z|>r .

where r_.. is the maximum magnitude of any of the poles of X(z).

max

Consider a right-sided sequence x{n] so that
x[n}=0 n <N,
and X(z) converges for |z|=r,. Then from Eq. (4.3)

IX(2)l< i Ix[n]lrg” = i lx[n]lrg" < o

n=—o n=N,

Now if r, > r,, then

¥ llnlri= ¥ |x[n1l(ro:~;) -1 lenllfé"(:—;)—"

n=N, n=N, n=N,

< (2)—)\,l i lx[n]lry" <o

Fo n=N,

since (r, /ry)~" is a decaying sequence. Thus, X(z) converges for r = r, and the ROC of X(z)
is of the form

Iz)>rg

Since the ROC of X(z) cannot contain the poles of X(z), we conclude that the ROC of X(z)
is of the form

(P4 S

where r,,,, is the maximum magnitude of any of the poles of X(z).
If N, <0, then

X(z)= gvx[n]z’" =x[N]z7 M+ - 4x[-1])z+ iox[n]z’"

That is, X(z) contains the positive powers of z and becomes unbounded at z = . In this case
the ROC is of the form

© > |z} > rpa

From the above result we can tell that a sequence x[n] is causal (not just right-sided) from the
ROC of X(z) if z = is included. Note that this is not the case for the Laplace transform.

Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the
following sequences:

(a) x[n)= @) "uln] + (3)"uln]

(b) x[n)l=H)"uln]+ () "ul—n - 1]

(c) x[nl=@)"uln]+G)u[—n - 1]
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(a)

(b)
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From Table 4-1

1 z 1
(5) u[n]Hz_% lzl>§ (4.58)
1\" z 1
(3) u[n]Hﬁ lz|>§ (4.59)
We see that the ROCs in Egs. (4.58) and (4.59) overlap, and thus,
X(2) = —r t— = zz(,z—‘%), 2> = (4.60)
z=3 z=3 (s=3)(z-3 2

From Eq. (4.60) we see that X(z) has two zeros at z=0 and z = 3 and two poles at
z=14and z =4 and that the ROC is |z|> 3, as sketched in Fig. 4-5(a).

From Table 4-1

n

1 z 1
1\" z 1
(E) u[—n—l]«—»—z_% ]Zl<§ (462)
We see that the ROCs in Eqgs. (4.61) and (4.62) overlap, and thus
¥ z z 1 z 1 I2] 1 163
= —_—— e —— —<|zl< = .
O (S e 3 <lzl<y  (469)

From Eq. (4.63) we see that X(z) has one zero at z =0 and two poles at z= 1 and z = §

and that the ROC is 1 <|z| < 1, as sketched in Fig. 4-5(b).

Im(z) Im(z)

(@) (b
Fig. 4-5
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(¢) From Table 4-1

1\" z 1
1\" 1
(5) u[—n—l](—»—zjl Izl<§ (4.65)

We see that the ROCs in Eqgs. (4.64) and (4.65) do not overlap and that there is no
common ROC, and thus x[n] will not have X(z).

4.7. Let
x[n] =a" a>0 (4.60)

(a) Sketch x[n] for a <1 and a>1.
(b) Find X(z) and sketch the zero-pole plot and the ROC for a <1 and a > 1.

(a) The sequence x[n] is sketched in Figs. 4-6(a) and (b) for both a <1 and a > 1.
(b) Since x[n] is a two-sided sequence, we can express it as

x[n]=a"u[n]+a "u[-n-1] (4.67)
From Table 4-1
z
a"u[n]HZ—_—a |z|>a (4.68)
1

a "u[-n—-1]e - T~ 1/a |z|<; (4.69)

If a <1, we see that the ROCs in Eqgs. (4.68) and (4.69) overlap, and thus,
X(z)= —— - = it i a<lzl<~ (4.70)

z—a z-1/a a (z-a)(z—1/a) a

From Eq. (4.70) we see that X(z) has one zero at the origin and two poles at z =g and
z=1/a and that the ROC is a <|z| < 1/a, as sketched in Fig. 4-7. If a > 1, we see that
the ROCs in Eqgs. (4.68) and (4.69) do not overlap and that there is no common ROC,
and thus x[n] will not have X(z).

mlll?llm lnjnll”

Fig. 4-6
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Im(z)

Fig. 4-7

PROPERTIES OF THE z-TRANSFORM

4.8. Verify the time-shifting property (4.18), that is,
x[n—nyl —z7™X(z) R ORN{0<]|z| <)

By definition (4.3)

]

B{x[n—-nol}= ¥ x[n-nelz™"
By the change of variables m =n — n,, we obtain

®x

B{x[n—nyl}= ¥ x[m]z-mtm

ms=—o

=]

=z Y x[m]zTm=z""X(z)

m=—w

Because of the multiplication by z™"°, for n,; > 0, additional poles are introduced at z =0 and
will be deleted at z = . Similarly, if n; <0, additional zeros are introduced at z = 0 and will
be deleted at z = . Therefore, the points z =0 and z = » can be either added to or deleted
from the ROC by time shifting. Thus, we have

x[n—nyle>z7"X(2) R DRN{0<|z| < oo}

where R and R’ are the ROCs before and after the time-shift operation.
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4.9.

4.10.
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Verify Eq. (4.21), that is,

2
2gx[n] HX(—) R =|z,|R
20

By definition (4.3)

spalnl) = T (asla)z= Tl Z) -x(2

Zp

n=—-w n=—o

185

A pole (or zero) at z =1z, in X(z) moves to z =2,z,, and the ROC expands or contracts by
the factor |z,l. Thus, we have

z
z{,‘x[n]«—*X(——) R =1z¢|R
Zp

Find the z-transform and the associated ROC for each of the following sequences:

(a)
(c)
(e)

(a)

(b)

(c)

(d)

x[n]=26[n - n,) (b) x[n]=uln —n,]
x[n]=a""'uln + 1] (d) x[n]=ul-n]
x[n]=a "ul—n]
From Eq. (4.15)

8[n]e—1 all z
Applying the time-shifting property (4.18), we obtain

0<|zl, ng>0

5["—”0]4—+Z o (2l <0, 1y <0

From Eq. (4.16)

z
> 1
u[n] — P |z
Again by the time-shifting property (4.18) we obtain

Z Z_<n()— 1)

- o = 1<zl
uln—ny) ez P P lz) <o

From Egs. (4.8) and (4.10)
z
a"u[n] > —— Iz| > lal
z—a
By Eq. (4.20) we obtain

lal <lz] < ®

a" 'u[n+1] >z
z—a z-

From Eq. (4.16)

—_— >1
uln] = —— |z

(4.71)

(4.72)

(4.73)
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By the time-reversal property (4.23) we obtain

1/z 1 :
ul "]Hl/z—l"l—z lz| < (4.74)
(e) From Egs. (4.8) and (4.10)
z
a"u[n] e — |z| > |al
z—a

Again by the time-reversal property (4.23) we obtain

1/z 1 2] 1 475
“"uf - = <— :
a”"ul n]Hl/z-—a 1 —az z |al ( )

4.11. Verify the multiplication by n (or differentiation in z) property (4.24), that is,
dX(z)

R'=R
dz

nx[n] < -z

From definition (4.3)

®©

X(z)= ¥ x[n]z™"

n= —x

Differentiating both sides with respect to z, we have

I O
and
=S - E (a3l
Thus, we conclude that
ax(z)

nx[n] e -z R'=R

daz

4.12. Find the z-transform of each of the following sequences:

(a) x[nl=na"uln]
(b) x[n]=na""'uln]

(a) From Egs. (4.8) and (4.10)
z
n 4.
a"u[n] — P |z| > |al (4.76)

Using the multiplication by n property (4.24), we get

.\ d z B az
na u[n]H—zE(z_a)— o bl (4.77)
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4.13.

4.14.

(b) Differentiating Eq. (4.76) with respect to a, we have

net d z N z | | 478
na u[n]HZ;(Z_a)—(z_a)z |z|>|a (4.78)

Note that dividing both sides of Eq. (4.77) by a, we obtain Eq. (4.78).

Verify the convolution property (4.26), that is,
xi[n]* x;[n] & X,(2)X,(2) R'OR,NR,
By definition (2.35)

ac

yinl=xi[n]xxy[n] = X x,[k]x[n—k]

k=—oo

Thus, by definition (4.3)

vn=- % [ & x,[k]xz[n—k])z‘"= » xI[k]( S wln—klz

n=-o \k=—x k=~ n=—o

Noting that the term in parentheses in the last expression is the z-transform of the shifted
signal x,[n — k], then by the time-shifting property (4.18) we have

Y(z)= )E X[k][Z"‘Xz(Z)]=( i X[k]Z_")Xz(Z)=X1(Z)X2(Z)

k=~ =~

with an ROC that contains the intersection of the ROC of X(z) and X,(z). If a zero of one
transform cancels a pole of the other, the ROC of Y(z) may be larger. Thus, we conclude that

x[n}x x;[n) > X\(2) X,(2) R'DOR,NR,

Verify the accumulation property (4.25), that is,

n

Y x[k]Hl—%X(z)=—z_z—1X(z) R SR (2> 1)

k= —o

From Eq. (2.40) we have

yinl= % x[k]=x[n]+uln]

k= —o0

Thus, using Eq. (4.16) and the convolution property (4.26), we obtain

)=X(z)(zj1)

with the ROC that includes the intersection of the ROC of X(z) and the ROC of the
z-transform of u[n]. Thus,

Y(z)=X(z)(

1-z7!

n 1 z
Z x[k]Hl—_FX(Z)=Z—_—1X(Z) R'DR(\{IZ|>1}

k= —o
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INVERSE z-TRANSFORM

4.15. Find the inverse z-transform of
X(z2)=z}(1-3z2"")1-z"")(1+2z7") 0<|z]<oo (4.79)
Multiplying out the factors of Eq. (4.79), we can express X(z) as
X(z)=z*+3z—-3+z7!
Then, by definition (4.3)
X(z)=x[-2]z%+x[-1]z + x[0] +x[1]z"!
and we get
x[n]=1{...,0,1,}, =3,1,0,...}

!

4.16. Using the power series expansion technique, find the inverse z-transform of the
following X(z):

1
(@) X(z2)=——=,|z]>la
1 ~az

1
(b) X(z)= ———, |zi<lal
1—-az

(a) Since the ROC is |z]| > |al, that is, the exterior of a circle, x[n] is a right-sided sequence.
Thus, we must divide to obtain a series in the power of z~'. Carrying out the long
division, we obtain

l+az ' +a%z72+ -+

l—az—'(z

1-az"!

az™!
az" ‘' —a%z7?
a’z™?

Thus,
1 V2,2 K, —k
X(z)=1—:;=1+az“ t+a‘z" "+ - +a"z7" "+ -
~az

and so by definition (4.3) we have
x[n]=0 n<0
x[0]=1 x[1]=a x[2]=a? x[k] =a*
Thus, we obtain
x[n]=a"u[n]
(b) Since the ROC is |z| <lal, that is, the interior of a circle, x[n] is a left-sided sequence.

Thus, we must divide so as to obtain a series in the power of z as follows. Multiplying
both the numerator and denominator of X(z) by z, we have

X(z)=

Z—a
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and carrying out the long division, we obtain

—a+z|z
z—a"1z?
a~1z?
a 1z2-qa7%;3
2227
Thus,
X(Z)=m?1"= —a'z—a"z2? a7 - - —ahk— .
and so by definition (4.3) we have
x[n]=0 n>0
x[-1]=-a"! x[-2]=-a"? x[-3]=-a? -+ x[-k]=-a*
Thus, we get
x[n]=—-a"u[-n-1)

4.17. Find the inverse z-transform of the following X(z):

1
(a) X(2)= log(m)’ |z| > lal

1
®) X() = log| == ) 21 <l

1
(a) The power series expansion for log(1 — r) is given by

i |
log(1—r)y=-Y —r" Irl <1 (4.80)
n=1 n
Now
X ! ( ! ) log(1 : |z] > |al
= — == —az” >
(2) =log| T——= og(1-az™") z|>1a
Since the ROC is |z| > |al, that is, laz~!| < 1, by Eq. (4.80), X(z) has the power series
expansion
- ] n o ]
X(z)= Y —(az7') = ¥ —a"z7"
n=1 n n=1 n
from which we can identify x[n] as
x[n] = (1/n)a n>1
0 n<0
1
or x[n]=—a"u[n-1] (4.81)
n
1
(b) X(z)=log(—T)= —log(l —a~12) |z] <lal
1-a" 'z
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Since the ROC is |z] <|al, that is, |a~'z| < 1, by Eq. (4.80), X(z) has the power series
expansion

o 1 " — Qe l —n — a0 1
X(z)= )Y —(a7'z) = L —-—(a'z) = ¥ -—a"z"

n=1n n=—1 n n=-—1 n

from which we can identify x[n] as
_ 0 n>0
x[n]= -(1/n)a" n<—1
1

or x[n]= ——;a”u[—n-l] (4.82)

4.18. Using the power series expansion technique, find the inverse z-transform of the
following X(z):

(a)

(b)
(a)

(b)

1
X(z)= —— <=
(2= 7371 l21< 3
- >
X(2) 2z2-3z+1 21> 1

Since the ROC is |z] < %, x[nlis a left-sided sequence. Thus, we must divide to obtain a
series in power of z. Carrying out the long division, we obtain

z+3z2+ 723+ 1524+ -~
1—3z+222,z
z-322+223

3z2-227°
322-92% +62°
723 - 6z*4
7z% - 2124+ 1473
1524
Thus,
X(z)= " +152°+ 727+ 327 +2

and so by definition (4.3) we obtain
x[n]=1{...,15,7,3,1,0)

Since the ROC is [z|> 1, x[n] is a right-sided sequence. Thus, we must divide so as to
obtain a series in power of z~! as follows:

1,-143,-2,7,-3
52 t3z “tgz T+

222—3z+1|z

3 1,1

Z—35~ 32

Thus,
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and so by definition (4.3) we obtain
x[n)={0,3.3.5,.-.}

4.19. Using partial-fraction expansion, redo Prob. 4.18.

z z 1
(@) X(z)= 222-3z+1 2(z- D(z-3) Iz < 2
Using partial-fraction expansion, we have
X(z) 1 1 €, c,
2 222-3z+1 2(z-1)(z-%) RS z—~14
where c,=—1— =1 c=—;— =-1
2(2_ %) =1 ? 2(z-1) =172
and we get
z z 1
X(2)= =y~ 771 |zl < =

3 2
Since the ROC of X(z)is |z| < 3, x[n] is a left-sided sequence, and from Table 4-1 we
get

x[n] = —ul~n =11+ (3 u[-n~1]=[(3)" = 1|ul-n -1
which gives
x[n]=1{...,15,7,3,1,0}

z z
(b) X(z2)= - ; {z]>1
z—-1 z -

2

Since the ROC of X(z) is |z|> 1, x[n] is a right-sided sequence, and from Table 4-1 we
get

x[n]=uln]— (1) uln] = 1= (3)"|uln]
which gives

4.20. Find the inverse z-transform of

X(z)=

5 lz|>2
2(z=1)(z-2)

Using partial-fraction expansion, we have

X(z) B 1

¢y Ay A,
z

= = + + 4.83
(z-1)(z-2)° z-1 2-2 (z-2) (469
h ! 1 A ! 1

where C, = = = =
‘ (2_2)2 z=1 :

191



192 THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS [CHAP. 4

Substituting these values into Eq. (4.83), we have
1 1 A 1
= = +
(z=1)(z2-2)% 2z-1 z-2 (z-2)°

Setting z = 0 in the above expression, we have

1 Ay
—Z=—1—?+Z—)Al=—l
Thus,
z z F4
X(Z)=Z—1—Z—2+(z-——2)2 lz]>2

Since the ROC is |z| > 2, x[n] is a right-sided sequence, and from Table 4-1 we get
x[n]=(1-2"+n2"""Yu[n]

4.21. Find the inverse z-transform of

2235224243

X(z)= zl<1
(z) (z-1D(z-2) 121
¥ 22°=5z242z+4+3  223-5z22+42z+43
(2) = (z=1)(z-2) = z2-3z+2
Note that X(z) is an improper rational function; thus, by long division, we have
1
X(2)=2z414 5———=224+14 ————
() =2z 22-3z+2 ° (z-1)(z-2)
Le X !
t = -
()= ZThGEoD
X(z 1 c c c
Then l( )= =2+ 2y 2
z 2(z-1)(z-2) z z-1 z-2
) 1 1 1 .
where T G-(z-2) |, 2 “Tz-2 .,
1 1
CJ_z(z——l) Z=2_2
Thus,
X 1 z +l z
(=3 -7 %372
d X(2)=224 241 F lz1< 1
=2z+4 = - + = <
an (2) Z 2 z-1 2z-2 z

Since the ROC of X(z)is |zl < 1, x[n] is a left-sided sequence, and from Table 4-1 we get
x[n]=268[n+1]+38[n]+u[-n—-1]- 32"u[-n - 1]
=28[n+1]+38[n]+ (1 -2"""u[-n—-1]
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4.22. Find the inverse z-transform of
3
X(Z = _Z_:E |z|> 2
X(z) can be rewritten as
3 YK
X(z)=z—:3=32 (-Z—_E) [z|>2
Since the ROC is |z) > 2, x[n] is a right-sided sequence, and from Table 4-1 we have

2"u[n]

V4
z-2
Using the time-shifting property (4.18), we have

2n——l[ 1] -1 z ) 1
win -z (2—2 T z-2

Thus, we conclude that

x[n]=3(2)" 'u[n-1]

4.23. Find the inverse z-transform of

2244243
We see that X(z) can be written as
X(z)=(2z7'+27+327°) X (2)

where X(z)=

z22+4z+3
Thus, if
x,[n] = X,(2)
then by the linearity property (4.17) and the time-shifting property (4.18), we get
x[n]=2x[n-1)+x,[n—-3]+3x,[n~-5] (4.84)
X(z) 1 1 ¢ c,
z z°+4z+3 (z+1)(z+3) z+1 z+43

N 1 1 1 1

where T A3 he 2 Tzl 2
1 =z 1 z

Then X(z)=+= z]>0

2z+1 2243
Since the ROC of X(z)is |z| >0, x,[n] is a right-sided sequence, and from Table 4-1 we get

x[n]=4[(-1)" - (-3)"]u[n)
Thus, from Eq. (4.84) we get
x[n]=[(=D""" = (=3)"uln = 1]+ H{(-1)" = (=3)"]uln - 3]
+3[(=D"7 = (=3)"|uln - 5)



194 THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS

4.24. Find the inverse z-transform of

X(Z)= (1—_1)2 |z] > |al
-az
X : ” 121> lal
= = >
() (l—az")2 (z-a)’ “o
From Eq. (4.78) (Prob. 4.12)
na"~‘u[n] — . : 2 lz] > lal
—a
Now, from Eq. (4.85)
X(z)=z{(zja)2} |z| > lal

and applying the time-shifting property (4.20) to Eq. (4.86), we get
x[n]l=(n+1)a"u[n+1]=(n+1)a"u[n]

since x[~1]=0at n= —1.

SYSTEM FUNCTION

4.25. Using the z-transform, redo Prob. 2.28.
From Prob. 2.28, x[n]) and A[n] are given by

x[n] =u[n] h[n] =a"u[n] 0D<a<l
From Table 4-1
z
snl=uln] = X(z)= = 2>
h[n]=a"u[n]) —> H(z) = |z] > lal
ZI—a
Then, by Eq. (4.40)
22
() =X@OHD = gy
Using partial-fraction expansion, we have
Y(z) z <, c,
= = +
z (z=-1)(z-a) z-1 z-a
. z 1 z @
where c‘_—z—azﬂ_l-—a Cz_z-—lzqg—l—a
Thus,
z a z
Y(z) = - [z >1

[CHAP. 4

(4.85)

(4.86)

(4.87)
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Taking the inverse z-transform of Y(z), we get

1 a
uln] -

yln]=

a"u[n)] = (%)u[n]

l-a l-a

which is the same as Eq. (2.134).

4.26. Using the z-transform, redo Prob. 2.29.
(a) From Prob. 2.29(a), x[n] and Ah[n] are given by
x[n] =a"u[n] h[n] =B"u[n]
From Table 4-1

z
x[n]=a"u[n] —>X(z)= — |z > |al
zZ—a
z
h[n]=p"u[n] —H(z) = pr |z| > |8l
22
Then Y(z)=X(z)H(z) = ———————— |z| > max(a,
) =X(IH(2) = e (. B)
Using partial-fraction expansion, we have
Y(z) z G N c;y
z (z-a)(z-B) z2-a z-P
z a z B
where = = ;= = -
z-Bl,., a-p z—alz=p a—-fB
Thus,
v a z B z
(Z)_cx—Bz—a~a—Bz—B [z| > max(a, B)
a B an+l_ﬂn+1
d = n __ n —_ -
an y[n] [a-ﬁa a_BB ]u[n] ( poy u[n]
which is the same as Eq. (2.135). When a =8,
2
Y(z2)= —— |z] > a
()= oo
Using partial-fraction expansion, we have
Y(z) z Ay A,
z (z—a) z-a  (z-a)
where A=z, a=a
z Ay a
and

195
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(b)
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Setting z = 0 in the above expression, we have
Ay 1

=——+4 — >} =1
[¢4 04

Thus,

1z} > a

Y(z)= : + 5
z-a  (z-a)

and from Table 4-1 we get
y[n]=(a" +na™)u[n] =a"(1+n)u[n]
Thus, we obtain the same results as Eq. (2.135).
From Prob. 2.29(b), x[n] and h[n] are given by
x[n]=a"u[n] h[n}=a "u[ —n] 0<ax<l
From Table 4-1 and Eq. (4.75)

[CHAP. 4

lal

x[n]=a"u[n) > X(2) = Z-_Z: Iz] > |al
1
hln]=a""ul=n] —H(z) = l-az a(z-1/a) <
1 z 1
Then Y(z)=X(z)H(z) = T (i=a)z=1/a) a<|z|<;

Using partial-fraction expansion, we have

Y(z2) 1 1 1( ¢ c,y
z —;(z—a)(z—l/a) - _;(z—a " z-1/a
1 a 1 a
Where Cl:z—l/a z;,a,=—1—oz2 2T a z=l/a=1'—a
Thus,
1 z 1 b4 1
LS e e B - T

and from Table 4-1 we obtain

yin] = l_laza"“lnl— 1_1 2{_(21!_)"u[-n—1]}

a

1
a"u[-n—-1]=

oarulnl+ 10 1-a

- 1-a?

which is the same as Eq. (2.137).

4.27. Using the z-transform, redo Prob. 2.30.

From Fig. 2-23 and definition (4.3)

x[”]={1,1,1,1}<——»X(Z)=1+Z—l+z—22—3
Aln)={1,1,1} «H(z)=1+z""+2"2

[nl
S a
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Thus, by the convolution property (4.26)
Y(2)=X(2)H(z)=(1+z7"+z72+z7%)(1+2z7" +277)
=1+227'+3272 432742274 +273
Hence,
h[n]=1{1,2,3,3,2,1)

which is the same result obtained in Prob. 2.30.

4.28. Using the z-transform, redo Prob. 2.32.
Let x[n] and y[n] be the input and output of the system. Then

z
x[n]=u[n] <-—>X(z)=z_1 [z]>1
z
yln]=a"u[n] —Y(z) = 12| > lal
Z-a
Then, by Eq. (4.41)
b Y(z) z-1 2|
= = >
(=33 " 7=a e
Using partial-fraction expansion, we have
H(z) z—1 c, Cy
z —z(z—a)_z z—a
z—1 1 z—1 a—1 | -«
where ¢, = = — c,= = = —
z-al,-0 a Z i-a a a
Thus,
l-a =
H(z)=—— [z|>a
a a zZI—a
Taking the inverse z-transform of H(z), we obtain
1 —
h[n]=—8[n] - a"u[n]
a
When n =0,
1 |l —a
h[0]=— - =1
a a
Then
1 n=0
hin] = -(1-a)a™! n>1

Thus, A[n] can be rewritten as
h[n]=68[n]=68[n]- (1 —a)a" 'u[n-1]

which is the same result obtained in Prob. 2.32.
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4.29. The output y[n] of a discrete-time LTI system is found to be 2(3)"u[n] when the input
x[n]is uln].

(a) Find the impulse response h[n] of the system.
(b) Find the output y[n] when the input x[n]is (1)"u[n].

z
(a) x[n)l=uln] — X(2) = Py lz]>1
1 n
y[n]=2(§)u[n]<——>Y(z)=Z_.,T Izl>§
Hence, the system function H(z) is
Y(z) 2(z-1)
H = = >~
(z) X(2) z—1 12l 3
Using partial-fraction expansion, we have
H(z) 2(z-1) ¢ c,
z z2(z-%) oz -3
2(z—-1 2(z—-1
where C1=—(—-—1—2 =6 Cz=(—l = —4
Z—3 =0 z z=1/3
Thus,
H(z)=6—4— 2l > o
= —_— —— > p—
(2) z—1% z 3
Taking the inverse z-transform of H(z), we obtain
h[n]=68[n] - 4(%) u[n]
1\" z 1
(b) x[n]= (—) un)e—X(z)= — |z] > —
2 -3 2
Th V(2) = X(2)H(z) = i) 21> -
en, z2)=X(z )= —————— zZ|> -
-D-1 2
Again by partial-fraction expansion we have
Y(z) 2(z-1) c, ;)
= +
z (z—-—)(z—~) z—% z—3%
2(z—-1 2(z—-1
where c,=—(—l—) =-6 c2=—(—,—) =8
273 -1/2 277 =13
Thus,
Y(z)——6———+8 , lz] > =
2 Y 2

Taking the inverse z-transform of Y(z), we obtain

yin]=[-6(2)" +8(3)"|uln]
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4.30. If a discrete-time LTI system is BIBO stable, show that the ROC of its system function

4.31.

4.32.

H(z) must contain the unit circle, that is, [z]| = 1.

A discrete-time LTI system is BIBO stable if and only if its impulse response Al[n] is

absolutely summable, that is [Eq. (2.49)],

i [A[n]l <=

Now H(z)= Y h[n]z7"
Let z =¢/? so that |z| =]e/? = 1. Then

L hlnjen

n=—o

|H(e?) =

oc

< Y |h[n)e = i [h[n]l <=

n= —ot n= —

Therefore, we see that if the system is stable, then H(z) converges for z = ¢’?. That is, for a

stable discrete-time LTI system, the ROC of H(z) must contain the unit circle |z| = 1.

Using the z-transform, redo Prob. 2.38.
(a) From Prob. 2.38 the impulse response of the system is
h[n]=a"u[n]

z

Then H(z)= [z > |al

Z—a

Since the ROC of H(z) is |z| > lal, z = is included. Thus, by the result from Prob. 4.5

we conclude that h[n] is a causal sequence. Thus, the system is causal.

(b) If |al > 1, the ROC of H(z) does not contain the unit circle |z] = 1, and hence the system
will not be stable. If |a| < I, the ROC of H(z) contains the unit circle |z| = 1, and hence

the system will be stable.

A causal discrete-time LTI system is described by

y[n] = 3y[n=1] + gy[n = 2] =x[n]

where x{n] and y[n] are the input and output of the system, respectively.

(a) Determine the system function H(z).
(b) Find the impulse response h[n] of the system.
(¢) Find the step response s(n] of the system.

(@) Taking the z-transform of Eq. (4.88), we obtain
Y(2)~227'Y(z2) + $272Y(2) = X(2)

or (1=327 "+ 5272)Y(2) = X(z2)

(4.88)



200 THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS [CHAP.

Thus,

(b) Using partial-fraction expansion, we have

H(z) z < <y
z (z—3)(z—- %) =z—-% * z—;
z z
where C‘—z T z=1/2—2 cy= py z=1/4= -1
Thus,
z z 1
H(Z)=2E_m |z|>5

Taking the inverse z-transform of H(z), we get
hln) = [2(3)" = ()" ]uln)

() x[nl=uln]l— X(2)= —ZT [z|>1

(z=1D)(z-3)(z- %)

Again using partial-fraction expansion, we have

Then Y(z)=X(z)H(z) = [z >1

Y(z) 2 T
JCERICEHCER RIS
X ;2 8 22 2
where c =3 - T
' (z—%)(z—l) ier 3 ? (z-1)(z-3) z=1/2
22 1
3 (Z—l)(z—;) z=1/4 3
Thus,
v 8 z ) z 1 =z 1zl> 1
- _ + = >
(Z) 3z—1 z—% 32_% ‘

Taking the inverse z-transformation of Y(z), we obtain

ylnl=s(n]=[%-2(3)"+ 3()"]uln]
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4.33. Using the z-transform, redo Prob. 2.41.

As in Prob. 2.41, from Fig. 2-30 we see that
qln]=2q[n—1] +x[n]
y[n]=qln] +3q[n-1]

Taking the z-transform of the above equations, we get
0(z)=2z7'Q(z2) + X(z2)
Y(z)=0(z)+3z7'Q(z2)
Rearranging, we get
(1-22710(z) =X(z2)
(1+3271)Q(2)=Y(2)

from which we obtain

H(z) = Y(2) _ 1+3z:' (4.89)
X(z) 1-2z7!
Rewriting Eq. (4.89), we have
(1=-2z71Y(2) =(1+3z27")X(2)

or

Y(z)-2z7'Y(z) =X(z) +3z7'X(2) (4.90)
T;lkipg the inverse z-transform of Eq. (4.90) and using the time-shifting property (4.18), we
obtain

y[n]=2y[n—=1)=x[n] +3x[n-1]
which is the same as Eq. (2.148).

4.34. Consider the discrete-time system shown in Fig. 4-8. For what values of k& is the
system BIBO stable?

x[n]
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From Fig. 4-8 we see that
k
aln] =x[n) + Saln 1]

k
y[n]=q[n] + 5(1['1 - 1]

Taking the z-transform of the above equations, we obtain

k
0(2) =X(2) + 527'Q(2)

k
Y(2)=0(2) + 377'0(2)

Rearranging, we have

| R

(1——2“)Q(2)=X(Z)

X

1+ —z—l)Q(z) =Y(2)

w

from which we obtain

Y(z) Ll+(k/3)z"" z+k/3 k
H(z)= = — = lz| >| =
X(z) 1 =(k/2)z z—k/2 2
which shows that the system has one zero at z = —k /3 and one pole at z =k /2 and that the

ROC is |z| > |k /2|. Thus, as shown in Prob. 4.30, the system will be BIBO stable if the ROC
contains the unit circle, |z| = 1. Hence the system is stable only if k| < 2.

UNILATERAL 2-TRANSFORM

4.35. Find the unilateral z-transform of the following x[n]:
(a) x[n]=a"uln)
(b) x[n)=a"""uln + 1]
(a) Since x[n]=0 for n <0, X,(z) = X(z) and from Example 4.1 we have

1 z

X() =T —=~7;; |z| > |al (4.91)

(b) By definition (4.49) we have

X(z)= Y a"*u[n+1]z7"= Y a"t'z7"=a }, (az“)'l
n=0 n=0 n=0
1 az

—a—— = 21> lal (4.92)
1—az z—a

Note that in this case x[n] is not a causal sequence; hence X,(z) # X(z) [see Eq. (4.73) in
Prob. 4.10].
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4.36. Verify Eqgs. (4.50) and (4.51), that is, for m > 0,
(@) x[n-—m]le—>z"X(2)+z7" W [—-1]+z2" """ 2x[-2]+ -+ +x[—m]
B) x[n+m]le>zmX,(2) —z"x[0] — 2™ 'x[1] — - -+ —2zx[m — 1]

(a) By definition (4.49) with m > 0 and using the change in variable k =n — m, we have

-] ]

B/x[n—-m]}= Y x[n-m)z"= Y x[k]z"m*P

n=0 k=—m
=z""{ ix[k]z"‘+ —Zr:n x[k]z 7k
k=0 k=—1
=z7™X,(z) +x[- 1)z +x[-2)z%+ - -+ +x[-m]z"}
=z7"X,(z) +z " x[-1] + 27 %[ -2] + - +x[—-m])
(b) With m>0

<

8ilaln+ml) = T aln+mlz= ¥ alk]s

n=0 k
=z"{ Y x[k]z7%= ¥ x[k]z7*
k=0 k=0

=zm"{X,(z) — (x[0) +x[1]z""+ - +x[m - 1]Z—(m—1))}

=2"X,(2) —z"x[0] —z™ 'x[1] = -+ —zx[m — 1]

4.37. Using the unilateral z-transform, redo Prob. 2.42.
The system is described by
y[n] —ay[n 1] =x[n] (4.93)
with y[—1]=y_, and x[n] = Kb"u[n]. Let
y[n] = Y(2)
Then from Eq. (4.50)
yIn=1}e=z7Y(2) +y[-1]=27'Y(2) +y_,

From Table 4-1 we have

z
x[n] X, (z2) =K— Iz| > bl
z—b
Taking the unilateral z-transform of Eq. (4.93), we obtain

Y(2) —a{z7'Y (2) +y )} =Kz—i_b

z
or (1—az“')Y,(z)=ay_l+KZ—_5
z

zZ—a
or ( 2 )Y,(z)=ay_l+Kz—3
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Thus,

22

z
Y,(z)=ay_|z_a +K(z—a)(z—b)

Using partial-fraction expansion, we obtain

v z K b z z
= + —
i(2) ay_'z—a b—a( z—b az—a)

Taking the inverse z-transform of Y,(z), we get

a"ul[n]

b a
y[n]=ay_\a"u[n] +Kmb"u[n] —Kb

n+l _ n+!

= y_lan+|+K-——b——a——)u[n]

which is the same as Eq. (2.158).

[CHAP. 4

For each of the following difference equations and associated input and initial

conditions, determine the output y[n]:

(a) yln)— tyln — 1] =x[n}, with x[n]=(3)", y[-1]=1

(b) 3yln]—dyln —1]+yln — 2] =x[n], with x[n]=(3)", y[-1]=1, y[-2]=2

(a) xinl— X, (2) = z] Iz| > 3

3

Taking the unilateral z-transform of the given difference equation, we get

Y(z) - 3{z7'Y(2) +y[ - 1]} = X,(2)
Substituting y[—1] =1 and X,(2) into the above expression, we get

1 . 1 z
(1—52 )Y,(Z)=E+z %

z~% y 1 z
-2 = -+
or b4 i(2) 2 z-3
Thus,
v 1z z? 7 z )
= — + = — -
A A T S P T Y ey
Hence,
y[n]=7(%)"+[ —2(%)" n> —1
z
(b) x[n]—X,(2)= - |z) > 5
-2

Taking the unilateral z-transform of the given difference equation, we obtain

3Y,(2) —4{2_'}’,(2) +y[—1]} + {z"ZY,(z) +z7y[-1] +y[—2]} =X,(2)
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Substituting y[—1]=1, y[—2]=2, and X,(z) into the above expression, we get

z
(3-4z7'+z70)Y(z)=2-z""+ p
2

3(z-1)(z-3) 3z22-2z+3
or e T
Thus,
z(322-2z+3)
Y,(2) = _ 1 2_1
3(z-1)(z-3)(z—73)
3 z z 1 :z
T2z-1 z-1 2z-1%
Hence,
Mal=3-(1)+ 31" =2

4.39. Let x[n] be a causal sequence and
x[n] & X(z)
Show that
x[0] = zll_l;!;X(Z) (4.94)

Equation (4.94) is called the initial value theorem for the z-transform.

Since x[n] =0 for n <0, we have
X[z]= ¥ x[n)z " =x[0] +x[1)z™! +x[2]z" 2+ - --
n=0

As z — 0, z7" — ( for n > 0. Thus, we get
lim X(z) =x[0]
Z— o

4.40. Let x[n] be a causal sequence and
x[n) <> X(z)
Show that if X(z) is a rational function with all its poles strictly inside the unit circle
except possibly for a first-order pole at z =1, then

lim x[N] = lixlll(l—z")X(z) (4.95)

N>
Equation (4.95) is called the final value theorem for the z-transform.
From the time-shifting property (4.19) we have
B{x[n]l—-x[n-1]}=(1-27")X(2) (4.96)

The left-hand side of Eq. (4.96) can be written as
N

. (str]=sln =11} = fim ¥ (sln]=x[n=1]):""

n=0
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If we now let z — [, then from Eq. (4.96) we have

N
lim (1-z7")X(z) = Alllineo Y (x[n]-x[n-1]}= Al,i_r'nmx[N]

z=1 n=0

Supplementary Problems

4.41. Find the z-transform of the following x[n]:

(a) x[n]l=(3,1,- 3}

(b) x[n]=26[n+2]—-38[n-2]

(c) x[n]=3(-p"uln]-23)"ul-n—1]

(d) x{n]=3G)uln]-2(3)'ul-n—1]

Ans. (@) X(z)=1+z"'-1z720<|z|
(b)) X(2)=22>-3z730<|z|<w

2(5z2~-8) 1

(c) X(2)= m, 5<|Z|<3
(d) X(z) does not exist.

4.42. Show that if x[n] is a left-sided sequence and X(z) converges from some value of z, then the
ROC of X(z) is of the form

lzl<rpn or  O0<lzl<rgn

where r_;, is the smallest magnitude of any of the poles of X(z).

Hint: Proceed in a manner similar to Prob. 4.5.

4.43. Given z2(z-4)
X(z)= (z-1)(z-2)(z-3)

(a) State all the possible regions of convergence.

(b) For which ROC is X(z) the z-transform of a causal sequence?

Ans. (a) 0<lzl<1,1<]z1<2,2<)z]<3,|z|>3
(b) 1z1>3

4.44. Verify the time-reversal property (4.23), that is,

x| -

x[—n]HX(l) R

Zz

Hint: Change n to —n in definition (4.3).
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4.45. Show the following properties for the z-transform.
(a) If x{n)is even, then X(z~ ') = X(2).
(b) If x[n)is odd, then X(z7!)= —X(z2).
(¢) If x[n]is odd, then there is a zero in X(z) at z=1.
Hint: (a) Use Eqs. (1.2) and (4.23).
(b) Use Egs. (1.3) and (4.23).
(¢) Use the result from part (b).

4.46. Consider the continuous-time signal
x(t)y=e™™ t>0

Let the sequence x[n] be obtained by uniform sampling of x(¢) such that x[n] =x(nT,), where
T, is the sampling interval. Find the z-transform of x[n].

1

Ans. X(z2)= ——————
ns (Z) 1 —-e'"T‘Z_I

4.47. Derive the following transform pairs:

22— (cos () z

Q >1
(cos Ronjufn] — 22— (2cos Q,)z + 1 12|
0 Q (sin Qy)z 2> 1
n >
(sin Qnjuln] — 22— (2cos Qg)z + 1 z
Hint:  Use Euler’s formulas.
1 . 1 .
cos Qyn = E(e"’()" + ¢ 7Ifom) sin Qgn = z_j(emun — e/fm)

and use Eqgs. (4.8) and (4.10) with a = ¢ /%,

4.48. Find the z-transforms of the following x[n]:
(a) x[n]l=(n—3)u[n - 3]
(b) x[nl=(n-3)ln]
(¢) x[n]=uln]—uln~3]
(d) x[n]=n{uln] —uln -3}

-2

Ans. (a) —z———2-,|z|>1
(z-1)
-322+42

b)) —————, lzl>1
(z-1)
-2

(c) — zl>1

z2—4z724+3;73

d
(d) 217

,lzI>1
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4.49. Using the relation
z
a'u[n] e — [z]> lal
z—a

find the z-transform of the following x[n]:

(a) x[n]=na"'uln]
(b) x[n]=n(n - 1a""?uln]
(¢) x[nl=nn-=1---(n—k+ Da"*u[n]

Hint: Differentiate both sides of the given relation consecutively with respect to a.

z
Ans. (@) ——, |z|>lal
z-a

22
(b) ——)—3, |z] >al

(z—a
k'z

(¢) -(—Tl-, [z| > |al
zZ—a

4.50. Using the z-transform, verify Eqgs. (2.130) and (2.131) in Prob. 2.27, that is,

(a) x[n)*é[n]=x[n]
(b) x[nl*8ln —nyl=x[n—ngl

Hint: Use Eq. (4.26) of the z-transform and transform pairs 1 and 4 from Table 4-1.

4.51. Using the z-transform, redo Prob. 2.47.
Hint: Use Eq. (4.26) and Table 4-1.

4.52. Find the inverse z-transform of
X(z)=e" |z| >0
Hint: Use the power series expansion of the exponential function e’.

n

Ans. x[n]= Fu[n]

4.53. Using the method of long division, find the inverse z-transform of the following X(z):

Z

(a) X(Z)=m,|z|<l
Zz

(b) X(Z)=—_(z—1)(z—2)’l<lzl<2
V4

(¢) X(Z)=m,|z|>2

Ans. (@) x[n]={...,5,3,3,0}
(b) x[nl=(...,—3,—3,—-3,-1,-1,-1,...)

(¢) x[n]=1{0,1,3,7,15,...}
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4.54.

4.58.

4.56.

Using the method of partial-fraction expansion, redo Prob. 4.53.
Ans. (@) x[n]l=Q -2"ul-n-1]

(b) x[nl= —uln]-2"u[—n-1]

(¢) x[n]=(=1+2"uln]

Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response
hln].

1 1\?
Ans. H(z)= T%Z—_T’ hin}= (—2—) uln}

x{n} yin]

Consider the system shown in Fig. 4-10.

(a) Find the system function H(z).
(b) Find the difference equation relating the output y[n] and input x[n].

bo+b,z7 +b,z7?
3

Ans. (a) H(z)= — -
1+a,z7 ' +a,z

b)) ylnl+ayln—11+a,yln-2]=byx[n]l+ b x[n—- 1]+ b,x[n - 2]

x{n}
3 r@—

+

Fig. 4-10
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4.57. Consider a discrete-time LTI system whose system function H(z) is given by

z 1
H(Z) b Z————;‘ IZ] > -é-
(@) Find the step response s[n].
(b) Find the output y[n] to the input x[n] = nu[n].
Ans. (@) sln]=[2-(3)"luln]
(b) yln]=20(2)"+n - 1uln]

4.58. Consider a causal discrete-time system whose output y[n] and input x[n] are related by

y[n] = 3y[n— 11+ 4y[n - 2] =x[n]

(a) Find its system function H(z).
(b) Find its impulse response A{n].

z? 1
OG- 72
(b) hln]=[3(3)" - 2(3)"uln]

Ans. (a) H(z)=

4.59. Using the unilateral z-transform, solve the following difference equations with the given initial
conditions.

(a) y[n)-3yln— 1]=x[n], with x[n]=4uln], y[-1]=1
(b) ylnl-5yln—1]+ 6yln — 2] =x[n], with x[n]=uln), y[-1]=3, y[-2]=2

Ans. (a) ylnl=-2+93), n=> -1
(b) ylnl=3+82)"-323" n= -2

4.60. Determine the initial and final values of x[n] for each of the following X(z):

o 2z(z- ) 1
(a) X(Z)— m, |z|> 5
V4
(b) X(z)= m, IZ|> 1

Ans. (a) x[0]=2, x[=]=0
(b) x[0}=0, x[=]=1



Chapter 5

Fourier Analysis of Continuous-Time
Signals and Systems

5.1 INTRODUCTION

In previous chapters we introduced the Laplace transform and the z-transform to
convert time-domain signals into the complex s-domain and z-domain representations that
are, for many purposes, more convenient to analyze and process. In addition, greater
insights into the nature and properties of many signals and systems are provided by these
transformations. In this chapter and the following one, we shall introduce other transfor-
mations known as Fourier series and Fourier transform which convert time-domain signals
into frequency-domain (or spectral) representations. In addition to providing spectral
representations of signals, Fourier analysis is also essential for describing certain types of
systems and their properties in the frequency domain. In this chapter we shall introduce
Fourier analysis in the context of continuous-time signals and systems.

5.2 FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS
A. Periodic Signals:

In Chap. 1 we defined a continuous-time signal x(¢) to be periodic if there is a positive
nonzero value of T for which

x(t+T)=x(t) all ¢ (5.1)
The fundamental period T, of x(¢) is the smallest positive value of T for which Eq. (5.1)

is satisfied, and 1/T,=f, is referred to as the fundamental frequency.
Two basic examples of periodic signals are the real sinusoidal signal

x(t)=cos(wyt + ) (5.2)
and the complex exponential signal
x(t) =e/ (5.3)

where wy=27/T,=27f, is called the fundamental angular frequency.

B. Complex Exponential Fourier Series Representation:

The complex exponential Fourier series representation of a periodic signal x(¢) with
fundamental period T, is given by
2

x(t) = Z ckef"“’ﬂ‘ wy=—— (5.4)
T,

k= —o

211
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where ¢, are known as the complex Fourier coefficients and are given by

1 .
cp=—= [ x(t)e K dt (5.5)
TO T
where fT denotes the integral over any one period and 0 to 7, or —T,/2 to T,/2 is
commonly used for the integration. Setting & = 0 in Eq. (5.5), we have
1
Co= x(t)dt (5.6)
Tn Ty

which indicates that ¢, equals the average value of x(¢) over a period.

When x(¢) is real, then from Eq. (5.5) it follows that
c_,=c¢r (5.7)

where the asterisk indicates the complex conjugate.

C. Trigonometric Fourier Series:

The trigonometric Fourier series representation of a periodic signal x(¢) with funda-
mental period 7|, is given by

a, * ) 2
2 45 Ty
where a, and b, are the Fourier coefficients given by
a, = x(t)cos kw,tdt (5.9a)
Ty 1,
by= [ x(t)sinkw,tdt 5.9p
=T fn, (1) sin ka, (5.9)

The coefficients a, and b, and the complex Fourier coefficients ¢, are related by
(Prob. 5.3)

a
7():‘70 ap=Ccptc_y by =J(c, —c_x) (5.10)
From Eq. (5.10) we obtain
Ck=%(ak —jby) C—k=%(ak +jby) (5.11)
When x(¢) is real, then a, and b, are real and by Eq. (5.10) we have

a,=2Re[c,] b, = —2Im[c,] (5.12)
Even and Odd Signals:

If a periodic signal x(¢) is even, then b, = 0 and its Fourier series (5.8) contains only
cosine terms:
2

a =<}
x(1) ==+ ¥ a,cos kot wy = — (5.13)
2 k=1 TO
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If x(t) is odd, then a, =0 and its Fourier series contains only sine terms:

* ) 27
x(t) =) b, sin kwyt wy=—— (5.14)
k=1 TO

D. Harmonic Form Fourier Series:

Another form of the Fourier series representation of a real periodic signal x(¢) with
fundamental period T, is

* 2
x(t)=Cy+ Y, Cycos(kwyt —0,)  wo=—
k=1 T,
Equation (5.15) can be derived from Eq. (5.8) and is known as the harmonic form Fourier
series of x(¢). The term C,, is known as the dc component, and the term C, cos(kw,t — 6,)
is referred to as the kth harmonic component of x(t). The first harmonic component
C, cos(wyt — 8,) is commonly called the fundamental component because it has the same
fundamental period as x(¢). The coefficients C, and the angles 6, are called the harmonic
amplitudes and phase angles, respectively, and they are related to the Fourier coefficients
a, and b, by

(5.15)

a b
C0=70 C,=Va;+b} 6, = tan~' — (5.16)

Ay

For a real periodic signal x(¢), the Fourier series in terms of complex exponentials as
given in Eq. (5.4) is mathematically equivalent to either of the two forms in Egs. (5.8) and
(5.15). Although the latter two are common forms for Fourier series, the complex form in
Eq. (5.4) is more general and usually more convenient, and we will use that form almost
exclusively.

E. Convergence of Fourier Series:

It is known that a periodic signal x(¢) has a Fourier series representation if it satisfies
the following Dirichlet conditions:

1. x(t) is absolutely integrable over any period, that is,

Luuﬂm<w (5.17)

2. x(t) has a finite number of maxima and minima within any finite interval of ¢.

3. x(t) has a finite number of discontinuities within any finite interval of ¢, and each of
these discontinuities is finite.
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