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Preface

Quantum Mechanics (henceforth QM) is without a doubt the most important and the most difficult branch
of physics. Our entire current understanding of the material universe is based upon it.

There are many useful introductory texts available today each with its own particular flavor and approach.
The approach taken in this volume is to present to the beginning student an extensive and rich selection of prob-
lems and solutions that cover all the main areas given in an introductory course in QM. Special emphasis was
piaced on presenting the basic concepts and resuits. Part of the task of assimiiating introductory QM invoives
mastery of the formal (mathematical) methods. Such mastery is necessary to be able to continue with the more
advanced topics. Effort was placed in presenting problems that demonstrate the application of QM to the solu-
tion of applied problems. We have also found it useful to include a chapter on numerical methods. The computer
is already firmly established as an important tool of the practicing physicist.

We wish to thank the following individuals for their contribution and assistance to the production of this
volume: Dr. Uri Onn, Zahir Millad, M.Sc., Moran Furman, M.Sc., and Arya Bart, M.Sc.

It is our hope that this volume will help the novice to QM to overcome the initial hurdles to mastering this
fascinating and important discipline.

YOAV PELEG
REUVEN PNINI
ELYAHU ZAARUR
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Chapter 1

Introduction

1.1 THE PARTICLE NATURE OF ELECTROMAGNETIC RADIATION

Isaac Newton considered light to be a beam of particles. During the nineteenth century, some experiments
concerning interference and diffraction of light demonstrated light’s wavelike nature. Later, optics was inte-
grated into electromagnetic theory and it was proved that light is a kind of electromagnetic radiation, However,
the phenomenon of black body radiation, which was studied toward the end of the nineteenth century, could not
be explained within the framework of electromagnetic theory. In 1900 Max Planck arrived at a formula explain-
ing black body radiation, and later proved that it can be derived by assuming the guantization of electromagnetic

vadration
FRELEENS BT,

In 1905, generalizing Planck’s hypothesis, Einstein proposed a return to the particle theory of light. He
claimed that a_beam of light of frequency v consists of photons, each possessing energy hv, where
h = 6.62x 10 Joules x second (Planck’s constant). Einstein showed how the introduction of the photon
could explain the unexplained characteristics of the photoelectric effect. About 20 years later, the photon was
actually shown to exist as a distinct entity (the Compton effect; see Probiem 1.3).

The photoelectric effect was discovered by Heinrich Hertz in 1887. It is one of several processes by which
electrons can be removed from a metal surface. A schematic drawing of the apparatus for studying the photo-
electric effect is given in Fig. 1-1.

 E
- ~—Il+}
O
1
MV
|
Fig. 1-1

The critical potential V, such that eV, = E_ _ (the maximum energy of the electrons emitted from the
anode) is called the stopping potential. The experimental results of the photoelectric effect are summarized in
Fig. 1-2.

{a) When light shines on a metal surface, the current flows almost instantaneousl

) =3 ’ ’
light intensity.

(b) For fixed frequency and retarding potential, the photocurrent is directly proportional to the light intensity.
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Current Current /

— /
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~107° Time Light intensity

(a) (b
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—\ /] /
N\ [l [

Vy Retarding Frequency
potential of light

(© )
Fig. 1-2

(¢) For constant frequency and light intensity, the photocurrent decreases with the increase of the retarding
potential V, and finally reaches zero whenV = V..

(d) For any given surface, the stopping potential V) depends on the frequency of the light but is independent
of the light intensity. For each metal there is a threshoid frequency v, that must be exceeded for
photoemission to occur; no electrons are emitted from the metal unless v > v, no matter how great the
light intensity is.

The experimental correlation between the stopping potential V|, and the frequency of light can be represented by
eVy = hv—hv, (1.1)

where /1 is the same for all metals (Planck’s constant).

e WL wT -y

i.2 THE DUALITY OF LIGHT

The double-slit experiment (Problem 1.4} shows that it is not possible to explain the experimental results
if only one of the two characteristics of light—wave or particle—is considered. Light behaves simultaneously
like a wave and a flux of particles; the wave enables us to calculate the probability of the manifestation of a
particle. The dynamic parameters of the particles (the energy E and the photon momentum p) are linked to the
wave parameters (the frequency v and the wave vector k) by the relations

(E = hv = ko /2
i.;:hk (12)

where # = h/2x. These are the Planck—Einstein relations.

1.3 THE DUALITY OF MATTER

Contemporaneously with the discovery of the photon, a fundamental phenomenon of atomic physics was
observed. It was discovered that an atom emits or absorbs only light with well-determined frequencies. This
fact can be explained by assuming that the energy of an atom can take on only certain discrete values. The exist-
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ence of such discrete energy levels was demonstrated by the Franck—Hertz experiment. Niels Bohr interpreted

The electrons move in orbits restricted by the requirement that the angular momentum be an integral mul-
tiple of h/2x. For a circular orbit of radius r, the electron velocity v is given by

mvyr = >— n=1,2,... (1.3)

(1.4)

where —e is the charge of the electron. We assume that the nuclear mass is infinite. Combining (/.3) and (/.4)
we obtain

2me?
Va = Tom (1.5)
and
1 n’h?
n = _E 2 ‘{16’)
4n° me©
The energy is
E, = gmi-S = - (1.7)
r n“h

Bohr postulated that the electrons in these orbits do not radiate, despite their acceleration; they are in stationary
states. Electrons can make discontinuous transitions from one allowed orbit to another. The change in energy
will appear as radiation of frequency
Py E - E' s 1 O
Vo= (1.0}
The physical basis of the Bohr model remained unclear until 1923, when De Broglie put forth the hypothesis
that material particles have wavelike characteristics; a particle of energy £ and momentum p is associated with
a wave of angular frequency ® = E/# and a wave vectork = p/h. The corresponding wavelength is therefore
2% h
= -0 = - (1.9)

=T

This is the De Broglie relation.

1.4 WAVE-PACKETS AND THE UNCERTAINTY RELATION

The wave and particle aspects of electromagnetic radiation and matter can be united through the concept
of wave-packet. A wave-packet is a superposition of waves. We can construct a wave-packet in which the waves
interfere with each other almost completely outside a given spatial region. We thus obtain a localized wave-
packet that can be considered an approximate description of a classical particle. A wave-packet consisting of a

superposition of plane waves may be written

1 ik-r
fr) = (2n)3/2“.g(k)e dk (1.10)
or in one dimension,
— _1 [~ fkx
f(.X) = mj_wg(k)e dk (1.]1)

The evolution of wave-packets is determined by the Schrddinger equation (see Chapter 3). When a wave-packet
evolves according to the postulates of quantum mechanics (see Chapter 4), the widths of the curves f(x) and
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g(k) are related by

AxAk> 1 (1.12)
Using the De Broglie relation p = hk, we have

ApAx>h (1.13)

This is the Heisenberg uncertainty relation, if we try to construct a highly localized wave-packet in space, then
it is impossible to associate a well-defined momentum with it. In contrast, a wave-packet with a defined momen-
tum within narrow limits must be spatially very broad. Note that since # is very small, the notions of classical
physics will fail only for a microscopic system (see Problem 1.14). The uncertainty relation acts to reconcile the
wave-particle duality of matter and radiation (see Problems 1.4 and 1.5).

Cancidarino a wave- nnr"l(nt

one should distinouish between phase velociry and group velocity. For a wave
SoAIIOANAW D ll‘s B YT ERY W y“\rl‘\\t WELW JIAV AN llls ;Jll LWL TY Wledd T4 VL SUL RS Y GAlIN AT RS VLIRS . A W e VY RRT
of angular frequency ® = 2mv and wave number k = 21/, the phase velocity is
2= 1.14
Vp = i Y (1.14)
This is the rate at which a point of constant phase travels through space. When a packet of waves differing in

frequency and in phase speed combines create a region of strong constructive interference, the speed v_ at
which the region advances is related to lhe angular frequency ® and wave number k of the component waves
by the relation

00

do

Vv, = 5

g dk

-~
g,
[
[

N

Solved Problems

1.1.  Consider the four experimental results of the photoelectric effect described in Section 1.1. For each
result discuss whether it would be expected on the basis of the classical properties of electromagnetic
waves.

We refer separately to each of the effects described in Fig. 1-2.

(@) An electron in a metal will be free to leave the surface only after the light beam provides its binding energy.
Because of the continuous nature of the electromagnetic radiation, we expect the energy absorbed on the
metal’s surface to be proportional to the intensity of the light beam (energy per unit time per unit area), the area
illuminated, a_nr_‘] the time of illumination. A g1mnle calculation (see Problem 1.11) shows that in the case of an
intensity of 107 ws m?, photoemission can be expected only after 100 h. Experimentally, the delay times that
were observed for the same light intensity were not longer than 10 3. Classical theory is thus unable to explain
the instantaneous emission of eiectrons from the anode.

(b) With the increase of light energy, the energy absorbed by the electrons in the anode increases, Therefore, clas-
sical theory predicts that the number of electrons emitted (and thus the current) will increase proportionally to
the light intensity. Here classical theory is able to account for the experimental result.

(¢} This result shows that there is a distribution in the energies of the emitted electrons. The distribution in itself

can within tha framawnrl af tha claccical thanry ha attrilatad tn tha varvine daosrasg nf hindinog Af alastenmc
WClkRy "Illll.ll Wik 1LALLIWY VLA VI IL Wwiddoiwval lllhvl} U dilliuuLvAg LV l.ll\t 'ﬂ.l.] llls UUELUUD i Ulllullls Ul VILALLULLY

to metal, or to the varying amount of energy transferred from the light beam to the electrons. But the fact that
there exists a well-defined stopping potential independent of the intensity indicates that the maximum energy
of released electrons does not depend on the amount of energy reaching the surface per unit time. Classical
theory is unable to account for this.

(d) According to the classical point of view, emission of electrons from the anode depends on the light intensity
but not on its frequency. The existence of a frequency below which no emission occurs, however great the light
intensity, cannot be predicted within the framework of classical theory.

In conclusion, the classical theory of electromagnetic radiation is unable to fully explain the photoelectric effect.

1.2.  Interpret the experimental results of the photoelectric effect in view of Einstein’s hypothesis of the quan-
tization of light.
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1.3.

As in Problem 1.1, we refer separately to each of the effects described in Fig. 1-2,

(@) According to the hypothesis that light consists of photons, we expect that a photon will be able to transfer its
energy to an electron in a metal, and therefore it is feasible that photoemission occurs instantaneously even at

a vam cmall ] intancity Thic ntvary tn tha Alaccical viaw: whinh meanncac that tha ~fala
«© V\.«l] 14i6n1 llslll lIlIUIlDlIJ 4 IIIO ID UUIII.I‘I.I)' LUV LUV MIQADDIVEL VIV VY, “lll\.&ll yl UPUD\.’D Lual uiv C‘llllbblull ulL U].Ubuullb

depends on continuous accumulation of energy absorbed from light.

(b) From quantum theory’s point of view, light intensity is equal to the energy of each photon multiplied by the
number of photons crossing a unit area per unit time. It is reasonable that the number of emitted electrons per
unit time (which is equivalent to the current) will be proportional to the light intensity.

(c) The frequency of the electromagnetic radiation determines the energy of the photons 2v. Therefore, the energy
transferred to electrons in a metal due to light absorption is well defined, and thus for any given frequency there
exists a maximum kinetic energy of the photoelectrons. This explains the effect described in Fig. 1-2.

(d) Equation (/./) can be given a simple interpretation if we assume that the binding energy of the eiectrons that
are least tightly bound to the metal is ¢ = hv,. The maximum kinetic energy of emitted electrons is Av ~ ¢,
Using the definition of stopping potential, eV is the maximum kinetic energy; therefore, eV, = hv - hv,,.

Consider the Compton effect (see Fig. 1-3). According to quantum theory, a monochromatic electro-
magnetic beam of frequency v is regarded as a collection of particlelike photons, each possessing an
energy £ = hvandamomentum p = hv/c = h/A, where Ais the wavelength. The scattering of elec-
tromagnetic radiation becomes a problem of collision of a photon with a charged particle. Suppose that
a photon moving along the x-axis collides with a particle of mass m. As a result of the collision, the
nhntnn 1€ ccattered at an analp 6, and its frequency is changed. Find the increase in the nhntnn T wave-

SRR 28 LARERLE ANALICAST 120 UL

length as a function of the scattering angle.

hv

—AAAA——— AN
’\Q

A *

Before collision After collision

Fig. 1-3

First, since the particle may gain significant kinetic energy, we must use it by relativistic dynamics. Applying
energy conservation we obtain

hv  + E, = v + E
(before coltision) - — e el (after collision) (1.3.1)
pllﬁtﬁﬁ p""ﬁCle pnoion panitic

whcre E, is the rest energy of the particle (E, = myc?). The magnitudes of the moments of the incident and scattered

PP Uy R AP Sy T

and  p.=—=g (13.2)

The scattering angle 0 is the angle between the directions of p, and p,. Applying the law of cosines to the triangle
in Fig. 1-4, we obtain

2 2 2
p°=pytP,—2pp, cos8 (1.33)
| = Y TR T S T ) el € s amm el bt Laebh aldon oF ST 2 T her o2 oo mblemZs
nEcaill tnat 101 a pnoton pCc = AV, NErelofe, imuitipiying oot 81a€s O (£.3.3) DY €7, we Oobiain
B2+ B2 - 2Ry V cos O = pic? (1.34)

ing (i.3.7) we have

hv-hv' = E—E,=> h*v2+h?v? - 28w = E* + E2 - 2EE (1.3.5)
0 0 0

C
e
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TN
/<° . \

Fig. 1-4

Relying on relativity theory, we replace E2 with E2+ p’c?. Subtracting (1.3.4) from (/.3.5), we obtain

~2R*vv' (1 -cos 8) = 2K} -2EE, (1.3.6)
Therefore, using (/.3.7),
Rvv' (1 —cos8) = E,(E-Ey) = myc’(hv - hV") (1.3.7)
h V-V ¢ ¢ . . .
We see that —— (1 —cos @) = —¢ = —— = = A'— A Therefore, the increase in the wavelength AX is
myc vV vV
AL = AN -A = 5 (1 —cos 8) (1.3.8)
myc
This is the basic equation of the Compton effect.
Consider a beam of light passing through two parallel slits. When cither one of the slits is closed, the

pattern observed on a screen placed beyond the barrier is a typical diffraction pattern (see Fig. 1-5).
When both slits are open, the pattern is as shown in Fig. 1-5: an interference pattern within a diffraction
envelope. Note that this pattern is not the two single-slit diffraction patterns superposed. Can this phe-
nomenon be explained in terms of classical particlelike photons? Is it possible to demonstrate particle
aspects of light in this experimental setup?

Inckient twamm inuidunt boum

inhmsit:(I Intensity I
Serwsn Suroun
Fig. 1-5

Suppose that the beam of light consisted of a stream of pointlike classical particles. If we consider each of these
particles separately, we note thai each one must pass through either one of 1he slits, Therefore, the pattern obtained
when the two slits are open must be the superposition of the patterns obtained when each of the slits is open sepa-
rately. This is not what is observed in the experiment. The paitemn actually obtained can be explained only in terms
of interference of the light passing simultaneously through both of the slits (see Fig. 1-6).

Yet, it is possible 10 observe particle aspects of light in this system: If the light intensity is very weak, the pho-
tons will reach the screen a1 a low rale. Then if a pholography plate is placed at the screen, the pattern will be formed
slowly, a point at a time. This indicates the arrival of separaie photons to the screen. Note that it is impossible to
determine which slit each of these photons passes through: such a measurement would destroy the interference

pattern,
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1.5.

L6.

hickden basa

IR i
\fiw UMN T e

Boaest

Fig. 1-6

mann A rAll_Aafimad ea = M T 83 oo

of an electron. A beam of electrons of well-defined momentum Py moving in
scatters light shining along the negative x-axis. A certain electron will scatter a certain photon that will
be detected through the microscope.

Figure 1-7 describes schematically an experimental apparatus whose purpose is to measure the position
a1l
L

Electron Photon

Fig. 1-7

According to optics theory, the precision with which the electron can be localized is

A

~ sin O

A

AX

(1.5.1)
where A is the wavelength of the light. Show that if we intend to minimize Ax by reducing A, this will
result in a loss of information about the x-component of the electron momentum,

According to quantum theory, recoiling light consists of photons, each with a momentum Av/ c¢. The direction
of the photon after scattering is undetermined within the angle subtended by the aperture, i.e., 26. Hence the mag-
nitude of the x-component of the photon is uncertain by

hv
Apx~27 sin 9 (1.5.2)
Therefaore,
hv A
AxApJ.~2T sin B'S-i-n"é~4nﬁ (1.5.3)

We can attempt to overcome this difficulty by measuring the recoil of the screen in order to determine more pre-
cisely the x-component of the photon momentum. But we must remember that once we include the microscope as
part of the observed system, we must also consider its location. The microscope itself must obey the uncertainty
relations, and if its momentum is to be specified, its position will be less precisely determined. Thus this apparatus
gives us no opportunity for violating the uncertainty relation.

Prove that the Bohr hydrogen atom approaches classical conditions when n becomes very large and
small quantum jumps are involved.
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Let us compute the frequency of a photon emitted in the transition between the adjacent states n, = nandn, =

2 met ch ch
rn— 1when n » 1. We define the Rydberg constant R = ———_.80,E, = —2R and E, = — R. Therefore, the fre-
quency of the emitted photon is hc e n

2 2
n,—n; (ny+n)(n,—n)
v="—,cR= > 5 cR (1.6.1)
neny ey
n,—n, = 1,s0 for n » 1 we have
n +n =2n nin? = n (162)

Therefore, v = 2cR/n’ . According to classical theory of electromagnetism, a rotating charge with a frequency f
will emit a radiation of frequency f. On the other hand, using the Bohr hydrogen model, the orbital frequency of the
electron around the nucleus is

Ve _ 4%me
T 2mr, T 33

.,
i
—
g,
=N
L
-

or f, = 2cR/n®, which is identical to v.

Show that the uncertainty relation Ax Ap > # forces us to reject the semiclassical Bohr model for the
hydrogen atom.

In the Bohr model we deal with the electron as a classical particle. The allowed orbits are defined by the quan-
tization rules: The radius r of a circular orbit and the momentum p = mv of the rotating electron must satisfy

pr=nh (n=1,2,...). To consider an electron’s motion in classical terms, the uncertainties in its position and
momentum must be neglig:bie when compared to r and p; in other words, Ax « r and Ap « p. This implies
axdp 1.7.1
——
rp < (1.7.1)
On the other hand, the uncertainty relation imposes
A v A s & A v A 1
L3A I_IIJ n LA l_lIJ 1
——Er—= >- (1.7.2)
rp°-r rp n
So71.7.1)ig incomnatible with ¢/ 7.2) unlegsg n » 1
I F AN RLARIRSLRApIRSN Awasy ‘ Fal e

At tha ammrabremem vrith arand o - gy v
ICULIVIL, LAl 15, 4 1ICUulluUll willl DPCCU V COIT [=n] P

e |
energy at the temperature T = 300K. Is it possible to observe a diffraction pattern when a beam of such
neutrons falls on a crystal? (b) In a large accelerator, an electron can be provided with energy over
1 GeV = 10° eV. What is the De Broglie wavelength corresponding to such electrons?

hat ia a -
i

r tatha v awacss thacaanl
Iy w l.l

Tiai ic avclagc lllUllllal

(@) The avc.ragc. thcrr.nal energy of an absoll te temperature T is £ = f'kT where & is the Bolzmann constant

= (1.8.2)

ForT = 300K we have

107
iV

&
,
~.
5
Pl

A = £
J3x1.67x 107 x 1.38 % 1072 x 300

1.4

o

(1.8.3)

This is the order of magnitude of the spaces between atoms in a crystal, and therefore a diffraction phenomenon
analogous to that of x-rays.

(6) We note that the electron’s rest energy is m,c’ = 0.5 x 10° eV. Therefore, if an energy of 10° eV is imparted
to the electron, it will move with a velocity close to the speed of light, and it must be treated using relativistic
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1.9.

1.10‘

1.11.

1.12.

1.13.

dynamics. The relation A = &/p remains valid, but we have E = ,/p*c? + m%c*. In this example, m c? is neg-
ligible when compared with £, and we obtain

-34 8
he 6.6x10 7 x3x10 _
L S = 12x10P m=12 fm (184)
£ 1.6 x 10

With electrons accelerated to such energies, one can explore the structure of atomic nuclei.

A

It

The wavelength and the frequency in a wave guide are related by

A= (19.1)

JVi-vi
Express the group velocity v g in terms of ¢ and the phase velocity v, = Av.

First we find how the angular frequency ® depends on the wave number k. We have ® = 2mv; sousing (/.9.7),
we have

ct it
k) = 2n i5+v0 =2n 4_nz+V0 (1.9.2)
Hence, the group velocity is
do 2n 2ke? >k 2n e 2

\:
)
[~
=
[\S ]
OO ]
)
RIS
+
<
o
N
Aa
N
Il
[ ()
a
<
Il
>|
]
|
zl
il
= |
WL
O
o
o —

Supplementary Problems

{2 T
Refer to Problem 1.9 and find the group velocity for the following relations: (@) v = % (water waves in shallow
pA
water; T is the surface tension and p the density). (B) v = J% (water waves in deep water).
3 |
Ans. (@) Ve = 3V (b) Vv, = 3V,

Suppose that light of intensity 107" W/nt normally falls upon a metal surface. The atoms are approximately 3 A
apart and it is given that there is one free electron per atom. The binding energy of an electron at the surfaceis 5eV,
Assume that the light is uniformly distributed over the surface and its energy absorbed by the surface electrons. If
the incident radiation is treated classically (as waves), how long must one wait after the beam is switched on until

P P | A QN

an ClCLII(JIl gdlllb CIlngll CIlCl’gy fo UC IClCdbCU asa pllUlUClCLlIOIl ! Ans. ﬁppfﬂ)&ll[ldlcly LOUG ycdl'b

Consider a monochromatic beam of light of intensity I and frequency v striking a completely absorbing surface.
Suppose that the light is incident along the normal to the surface. Using classical electromagnetic theory, one can

show that on the surface a pressure called the radiation pressure is acting, which is related to the light intensity by
P = ]/¢. Is this relation also valid from the point of view of guantum rhenrvo

A3 IS I &i0N ais valll 7ol poinl Ol uanid

hv
Ans. Yes. P = —~N_ where N is the flux of the photon beam.

Suppose that monochromatic light is scattered by an electron. Use Problem 1.3 to find the shift in the wavelength

when the scattering angle is 90° What is the fractional increase in the wavelenoth in the visible ernn {sav

I R0 scaliLing alional LIeast Loy Lo 3} 81D Of1 84y,

A = 4000 A)? What is the fractlonal increase for x-ray photons of A = 1 A?

1
Ans. AL = m—z(l -cos9) = 0.0243 A.Forh = 4000 A, the fractional shift is 0.006 p perc 14t

is 2 percent.

‘-n
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1.14. We wish to show that wave properties of matter are irrelevant for the macroscopic world. Take as an example a tiny
particle of diameter 1 jim and mass m = 10 ~ kg. Calculate the De Broglie wavelength corresponding to this par-
p H & B £ P g P

ticle if its speed is 1 mmy/s, Ans. A = 66x10° A

1.15. Consider a virus of size 10 A. Suppose that its density is equal to that of water (g/cr) and that the virus is located
in a region that is approximately equal to its size. What is the minimum speed of the virus? Ans, v =1m/fs.



Chapter 2

Mathematical Background

2.1 THE COMPLEX FIELD C

The complex field, denoted by C, is the field generated by the complex numbers a + bi, where @ and b are
real numbers and i is the solution of the equation x*+1 =0,ie,i = J1.If z = a +bi, then a is called the
real part of z and denoted Re (z); b is called the imaginary part of z and denoted Im (z). The complex conjugate
of z = a + bi is a — bi and is denoted by z. Summation and multiplication of complex numbers is performed in

the _Ql‘nwlnu manner:

(@a+bi) + (c+di) = (a+c) + (b+d) -i (2.1
(@a+bi) (c+di) = (ac-bd) + (bc+ad) (2.2}
If z # 0 we define z ' and division by z by
-1 z a -b
z = = + ! (2.3)
2z a+ b a + b
2 = wr (2.4)

Figure 2-1 represents a geometric realization of the complex field as points in the plane.

¥
z=a+ib
b 1+ .
-
-
-
A’
/”
Yo
(4 a X
Fig. 2-1

The distance between the point z and O is denoted Izl = Ja*+ b = J—é and is called the modulus of z. The

angle 0 is called the argument of z and denoted by arg(z). Since points in the plane can be characterized by polar

coordinates, i.e., a pair (r, 8) where r > 0 and 0 £ 8 £ 2%, one can write a complex number in terms of its mod-
ulus and argument. As one can easily verify,

a=rcosH b = rsin® (2.5)
and /b\
Ja +b 6 = tan“‘L;J (2.6)
PR P Y o SR £ ommn OO P 4 B R
alld LICICIVUIC ¢ = 7T LLUd U T 5111 v) —IC
-~ - A nFalivFaS ;Wal s WAL A AMETNTY 1
2.2 VECTORSPACESOVERC

i
. we Bibimins fan amal e (R e 7 e d 17.
1 ior€acn &, pin © and v, U inV:

.........
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1. V contains a unique element denoted O that satisfies
v+0=0+v =v (2.7)
0 is called the null vector,
2. ovisalsoin V.,
3. a(v+u) = oV +0ou.
4

(NJ_R\ = vy o Ry
(LT p = UV T v,

5 (- B)v = a(ﬁv).
6. 0.v=0,00-0=0,1-v=v.

An Important Example—C": Consider elements of the form (z,, z,, . .., z,), where the z; are complex
numbers. We define addition of such elements by
(ZppZayeeesZ) + (WL Wo oo, W) = (21 4W, 2+ Wy, 0,2, 4 W) (2.8)
and we define multiplication by a scalar (a complex number z) by
2(2y,25, ..., 2,) = (22,224, ...,122,) (2.9)

It can be verified that the collection of these elements has all the properties of a vector space over C. This impor-
tant vector space is denoted C".

Some Useful Definitions: A collection of vectors u,, . . ., u, in V span Vif every element in V can be writ-
ten as a {inear combinarion of the u’s; that is,

vV=au +--+au, (2.10)
where al, ...,a, are complex numbers. The vectors u,,...,u, are called linearly independent if
au +---+au, = 0implies a; = a2 =...=a,=0.1fu,...,u,are linearly independent and span V

cea alls ,1 a L,....... ~f Y] Tho o s e fe mallad el s A e oS e £1/ Quianncn Lot A7 io 1
uu:y are called a basis of V. The number 7 is unigue anda is called the dimension of V. JUppose that v is a coi-

lection of vectors from a vector space V. W is a subspace of V if: (1) for every v, w, in W, v + wis also in W; (2)
for every w in W and every scalar o, ouv is also in W.

L

Linear Operators: Let V be a vector space over the complex field C. A map T:V — V is an operator on
th conditi

V if it satisfies the following condition for every ¢, Bin C and every u, vin V:
Tov+Pu) = (X,T(v) + BT (w) (2.11)
If T and $S are linear operaiors, iheir sum, ihe linear operator 7 + §, is defined by
(T+8)(w) = T(u) +S(u) (2.12)
for every u in V. Similarly, we define the product of two linear operators by
(T-8)(v) = T[S(»] (2.13)

for every v in V. The set of linear operators equipped with addition and multiplication is therefore an algebra
over the complex field. For now, let us restrict ourselves to a finite dimensional vector space.
Assume e, ..., e, 1s a basis of V and let T be a linear operator on V. Applying Tto e, ..., e, we get

T(el) = 0get-+0 e,
: : (2.14)

T, =0, +---+0,.¢€,
[ R memn smmamm b o ATa_ - _£ s ot i o dmdia T DAl . _ P -
wher O, are L.Uluph:)\ iumbers. Now we define the mainix representation of i relative to the basis e b_y
ay a anq
ay; 4 %)

(2.15)
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Note that the matrix representation of an operator is dependent on the choice of basis. For infinite matrices it
is possible to sum and multiply infinite matrices like finite matrices, though one must pay attention to con-
vergence whenever infinite sums are involved. Linear operators are of great lmportance in quantum

mnnhqnlr‘c since as we ghall cee in the next chanters, thev represent n
mecg all see 1in the next chapters, they represent ph

momentum, etc.

Inner Product: An inner product on V is a function (&, v) from V X V to the complex field (i.e., taking
every pair of vectors to a complex number), that satisfies the following conditions for every u, v, &' in V and 0.
inC:

) (u, vy = (v, u)

(i) (u+u,v)y={u,v)+{u,v)
Gi) (o v) = o (u, v) (2.16)
(iv) {(u,u) >0 ifuz0

A vector space that has an inner product is called an inner product space.
We can use the inner product to specify some useful definitions. The norm of a vector v is

vl = (v, v) (2.17)

If vl = 1, then v is called a unit vector and is said to be normalized.
Two vectors u and v are said to be orthogonal if
(u,v) = 0 (2.18)

A set of vectors {u,} is orthogonal if any pair of two separate elements is orthogonal, that is, (u,i;uj) = 0 for
i # j. In particular, the set is orthonormal if in addition each of its elements is a unit vector, or compactly,

(uup =9, (2.19)

where 3, ; is the Kronecker delta function, which is O for i #/ and 1 otherwise. An important result, used fre-
quently in quantum mechanics, is the Cauchy—Schwartz inequality: For all vectors u and v,

[Cu, il < Jall - lIvl (2.20)

Operators and Inner Products: Suppose 7 is a linear operator on V and suppose V is an inner product
space. It can be shown that there is a unique linear operator denoted T that satisfies:

(Tu,v) = (u, T'v (2. 21)

for every u, v inVv. ThlS perator is called the conjugate operator of T.1f A = (aj\ is a complex matrix, A
defined as A" ( ) ie. fognd by swapping indices and taking the complex conjugate. If A represents
operator 7, then Al represents T", which justifies the use of the same symbol 1 in both cases. If T = T then T is
called a Hermitian operator or self-conjugate operator. If T = -T ,then T is called an anti-Hermitian opera-
tor. If T preserves the inner product, that is, {Tu, Tv) = or every u, vin V, then T is called a unitary

onovator WETT = T'T then T i< called tare v and 1 are called arthooonal 1f
U‘IC’“(U’- a1 £ X - F 3 £ ¢ U1l X 1 il iWAl U4 dlv alivu Uy l"usu”vul ll

(v,uy = 0.

E!/\.
NE

a narmal ano
a normac oper

2.4 EIGENVECTORS AND EIGENVALUES

Let T be a linear operator on V. A complex number A is called an eigenvalue (also known as characteristic
value) of T if it satisfies Tv = Av for some v in V. The vector v is called the eigenvector of T corresponding to

1 Tha cama dafinition halde far matricac Nata that if IV hac o hacic that nancicte af aicanuvactare Af T than Tic
A 1 0€ 8ame GEILNIUGI NGIGS 101 MariCes, (8NOwe Uial 11 v 11a8 4 0a61s uian COMsises O CIgenveliors O «, uilthi £ 15

represented relative to that basis as a diagonal matrix. Diagonal matrices are not only easy to work with, but
also reflect important characteristics of the physical system such as quanta of energy, and so forth.

Characteristic Polynomial: Suppose that a given linear operator T is represented in some basis by the
matrix A. The characteristic polynomiai of T is defined by
Al) = det (A —A) (2.22)
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where A is the parameter (scalar) and / is the identity matrix. The characteristic equation of T is defined by
AN =0 (2.23)
These expressions are independent of the basis chosen,
The following result provides a method for finding the eigenvalues of a matrix or operator: The scalar Ais
an eigenvalue of an operator T if and only if it is a root of its characteristic polynomial that is, A(?) =

1f 4 ITanaitinm tham tha I7 aninh thot TTATT ' & Az ~nal
il A m a nermitian or ulllLa.lJ umuni\, then there CI\IDLD a uuucu_y matrix J sucn tnat VAU isa ulasuua.l

matrix (this theorem will not be proved). Note also that if A and B are Hermitian matrices then a necessary and
sufficient condition that they can be simultaneously diagonalized is that they commute, i.e., AB = BA (see
Problem 2.13). These concepts have important physical meaning and will be discussed in greater detail in Chap-
ter 4.

Fourier Series: Consider a function f(x) over the interval 0 < x < /. The function is called square inte-

Jf £l dx (2.24)
0

is defined (i.e., convergent). It can be shown that the set of all such functions is an infinite dimensional vector
space, denoted L,(0, ). We can define for L,(0, /) an inner product
J
8 = J f)g(x) dx (2.25)
0

Every function f(x) in L,(0, /) can be expanded in a Fourier series,

= . 2n
flx) = L fe k,="Tn (2.26)
N = —oo
ik x

According to this relation, we can consider the functions e, = 7[ e as a “basis” of the infinite dimensional

e d T d e £ al

bdeC L’ZL.U9 l) L‘.VCI'y lU[lLllOﬂ (VCL[UI) lIl l[ll\ bdeC can [)t: CXpdﬂ(lC(l as a unedr LOTﬂDlnd[lO[l Ol ine Ddblb vec-
tors. It can be shown that the { ¢,} form an orthonormal basis, that is, (e, ej) 6,.1. The coefficients f, in the
expansion are called Fourier coefficients and are derived using the relation

| I. —tk"l
27
u “l.ﬁ/

Since the functions ¢ are npnndm of nprmd /, 1t 1s not di

above holds also for perlodlc functions f(x) of period /,

icult to show that the Fourier expa

Fourier Transform: Now consider a function f(x) defined on (—ee, <°) that is not necessarily periodic. We
can imagine f(x) to be an approximation of periodic functions whose period approaches e, The numbers &,

become nrooressivelv dencer until we have in the limit a continuons ranee of functions o'kx This is the intnitive

UOAVIIC PRVRITSSIFeLy URIISTT WO Qv e i Lt e a LU IAVLS 1Gaaft Vo auiavaaur A LRI &S LA Aunuu.nvv

basis of the following result:

f(x) = T/—;_;J F (kye'™ dk (2.28)
where Fik) is given by
rw —-ikx
Flk) = EJ fx)e “dx (2.29)
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F(k) and f(k) are said to be Fourier transforms of each other. The Parseval-Plancherel formula states that a
function and its Fourier transform have the same norm:

oo oo

TSR PN ,
] Pl = | 1Pkl (2.30)

2.6 THE DIRAC DELTA FUNCTION

In Section 2.3 we used the Kronecker §,,, function, which returns the value 1 whenever the integers n and
m are equal, and O otherwise. There is a contmuous analogue to Kronecker's &-function—the Dirac delta func-

L

2 o SOV St TR
{uIrac o-ruficiion). penne llb' lullLllUl’l Us{X} as

(=

[ 1 ) £ £
g for ) <x< 3
8, (x) = e (2.31)
[ 0 forix> 5

Consider the arbitrary function f(x), well defined for x = 0 with negligible variation over the interval
[~e/2, e/2]. If € is sufficiently small, then we have

j O (x)fixydx = f(O)I 3 (x)dx = f(0) (2.32)
Taking the limit as € — 0 we deﬁ_r:; the 8-function by -
Eliin()“‘ 3. (0)f(x) dX} =j d(x)f(x)dx =£(0) (2.33)
More generally, we can write - -
I 8 (x~xp)f(x)dx = fixy) (2.34)
One can easily show that r 3(x—y)dr = land that d(x-y) = Ofor x#y. Although we use the term 3-

)
function, it is not a function in the regular sense; it is really a more complicated object called a distribution (it
is not defined at the point x = y). That is, we only consider it when it appears inside an integral.

«
f -*J FOBd(x—y)dy (2.35)

As this is a linear operation that maps a function io a number, the &-function can be viewed as a functional,
The &-function is often used to describe a particle located at a point ry, = (xg, ¥4 Z,) in a three-dimensional

Euclidian space by defining a 8 (r —ry):
d(r-ry) =0(x- xO)S(y y0 (z—zo) (2.36)

"h

[a o NP x ___,L ...L,.l_ ST
10Nnc lnlcg O OVeT LIIC WIIUIC apdu: 15 1 lllUlLdLlllg C
whenr #r

Itis straightforward to demonstrate that the following results hold for the 8-function:

1. &%) = 8(x)

2. 8(ax) = l d(x)

Ia
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3. xd(x—xy) = x50(x —xp)
4-_" 8(x-y8(y-2)dy=8(y-2)
The 3-function and the Fourier Transform: The Fourier transform of the 8-function is
= —ikx | e
k) = 7=| Od(x-y)e “dx = =e¢ (2.37)
NeTle_ N
The inverse Fourier transform then yields
S(x—y) = LI g g o L) ey (2.38)
Y= am, T 2n) .
Solved Problems
2.1 - oQy Vo 7N oo 2 . -
2.1. The complex conjugate of z = a+bi is a~ bi,denoted by z. Show that (a) zz = lz|; (b) z + z is real;
(c)z +2, =z + 23 (d)z,2, = 2923 (e)|z, 22| = |z]||22|
(@) zz = (a+bi) (a-bi) = d+b = |z|’
(b) z+z = (a+bi) + (a-bi) = 2a, which is real
© z,+z, = {a,+b,i) + (ay+b,]) = {a;+b)) + (b +b,}i o
= (a,+a,) — (b, +b)i= (a,—bi) + (ay—byi) =2, +1,
(d) z,z, = (a;+b,0) (a,+by0) = (a,a,—Db,b,) + (a,b, +a,b,)i
= a,a,-b,by- (a,by+a,b))i= (a,~bi) (a,—byi) =z123
- - .- 2,2
() 2,2, = zy2,2y2, = 7)2,1425 = 2,212,25= |z)| 7|2y
{l+i)5
2.2. Calculatel vV— .
\i-iJ
1+i]5 (1+DH(1+H75 (1+D(1+DH73 (2: 5
Method a: (1,.‘ =[(|:;\(|_._.'\-| IV 2 —‘ F) =1 =1 (2.2.1)
Noa (4 [ L2 2N S 2 I | [ - a - /
1 +i)° ﬁ cos 45° + sin 45° ( e’ )5
Method b: (| :] = lr /-( ) “insa
N M L2 (cos 45° - sin 45° )_] e ")
i 5 i .. .
= (emn) = ™% = cos 90° + i sin 90° = i (2.2.2)
2.3.  Show that the sum and product of two linear operators are linear operators.
Suppose that T and S are linear operators, so
(T+S (u+av)=T(u+av) +S(u+av) = T(u) +al (v) +5(u) +as(v)
= (T+S) (u) +0(T+S) (v) (2.3.1)
and
(T-SY(u+oav)y =T[S(u+ov)] = T[S() + aS(v)]
=T[S(uw)] +aT[S(v)] = (T-5) (u) +o(T-5) (v) (2.3.2)
24, Let V be the space of infinitely differentiable functions in one variable. Prove that differentiation is a

linear operator.
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Wa dafina thae man i rom Vita UV
e define the map _ from V1o }
d 1l
L =@ (24.1)
and using basic calculus we get
d o , d d
LHUrag) = [f+ragl’ =" () +ogx) = 7.() +o7;(8) (24.2)
Let Vbe C", i.e., the collection of n-tuplesa = (a,,..., a,), where the a, are complex numbers. Show

n

that{a, b) = Laibi 1s an 1nner product of V.

i=1

We begin by checking the four conditions that an inner product on V must satisfy:

n 1
! - -,\_v T _v_, 7= \ P N
{a,b) = Laio,- = La,b, = (b, a) (23.4)
i=1 i=1
n n n
{(a+a,b) = z(a,-+a',)b, = a, b+ E d, b = (a,b)+(a,b) (2.5.2)
i=1 =1 (=1
and
n n
(@a,by = Y (aa)b = oy af = a(ab) (2.53)
=1 t=1
Finally

{(a,2) = za,c_z, = z"‘[all2 (2.54)

i=1 i=1

and is greater than zero if one of the g; is different from zero.

If A and B are operators, prove (a) (AT) - A (P)(AB) T B*A?; (c) A +AT, [(A —At) , and AATare
Hermitian operators.

(@)

(b}

(c)

Forevery u and vin V,

(Av,u) = (v, A'w) = (A", ) = (u, (AW = (A v w
Thus we obtain A = (A*)T.
For every u and v in V,

(v, (ABY'W) = (ABv,u) = (Bv,A"w> = (v, B'A"w) (2.6.1)

Hence, B'A" = (AB)*.
We write
+

A+AY = A"+ (AHh ' =Aa"rAa=4+4

(2.6.2)

Here we use the fact that the sum of conjugates is the conjugate of the sum, (A + B) T=a's B', whicb can
be easily verified, and we also use the result of part (a). .

[i(A-ANH1 " =ia-A"Y = ~i(A'-4) = i(a-A" (2.6.3)

where we have used the fact that the conjugate of a compiex number is the same as iis conjugate as an operator,
ie., z*¥ = z. And finally,

1 Tt

raatAT oA at *
(AA) = (A) A

— A A
- nn

_—
%]
=)
3

A

according to part (b).
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Show that the eigenvalues of a Hermitian operator are real.
Suppose A is an eigenvalue of T, and T = T'. For every v=0inV,
Adv,y = (Av,v) = (Tv,v) = (0, Tv) = (v, AV)
A, = Ay, v) (2.7.1)

Since (v, v) is a real positive number (v #0), it follows that A = A, so A is a real number. The fact that the eigen-
values of Hermitian operators are real is of great importance, since these eigenvalues can represent physical
quantities.

Show that eigenvectors that correspond to different eigenvalues of a Hermitian operator are orthogonal.
Suppose Tv = Av and Tu = pu, where p#A. Now,
Av,u)y = {(Av,) = (Tv,u) = (v, TTu) = (v,Tu) = (v,Uu) = }:l(v, ) (2.8.1)
s0,
(A=) (o) = (A-p) (v, w) = 0 (2.82)

(W = u,since T is Hermitian). But A — . = 0; therefore {v, u) = 0, ie., v and u are orthogonal.

Show that Hermitian, anti-Hermitian, and unitary operators are normal operators.

If T=T then TT' = T'T = T". Also, if T = -T' then TT" = T'T = -7°. If T is unitary, then

{Tu,Tv) = {u,v)forevery u, v in V. Using the definition of conjugate operator and taking 4 = v, we get
ke 4 N f o 7 (= A= Ld (=4 * =4

Cuyu) = (Tu, Tu) = (u, TT'u) (2.9.1)
{u, I-TTHu) = 0 (2.9.2)

for every u in V. Since I — TT is a Hermitian operator, it follows (prove!) that / - TT' = 0.This also completes the
proof of T being a normal operator.

Let V be the space of nonzero square integrable continuous complex functions in cone variable. For every

pair of funciions, define

fr N __ L£roN o A
» 8/ = JWX)gLx) dx (2.10.7)
Chrw that with thic dafinitian I7ic nn innae smendnat geaona
JLIUYY LIIAL YWILIL LD ULLIIHILIVEL ¥V 1D all 1111ICE lJl vuauuvlt Dl)abc
We must check the following conditions:
(8= I f)g)dx = I g)f(x)dx = (&.f) (2.10.2)

oo oo oo

[ o
] R0 @Ig®er = | 3@+ | f0Eds

(f+7.8
(2.10.3)

Fa+ e

and

oo oo

(af, 8) =J of(x)glx) dx =0J fgde = olf, 8 (2.104)

—oe —o0
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2.11.

2.13.

.l\)
Py
P S
b

oo

f
) =J FCeN® dx (2.10.5)

Since fis continuous and f # 0 in a neighborhood, its integral also differs from zero; hence {f, / # 0.

(@) Show that if {v, u) = (v, w) forevery vin V, then u = w. (b) Show that if T and S are two linear
operators in V that satisfy (Tv, u) = {(Sv, u) foreveryu, vinV,then § =

(a) The condition {v, u) = {v, w) implies that (v, u —w) = 0 for every v in V. In particular, if v = u—-w we

obtain
{u—w,u—w) =0 (2.11.1)
Hence, u —w = 0, thatis, u = w.
(b) According to part (a), (Tv, ) = (8Sv, u) for every v, u inVv |mnl sthatTyv = Sviie T = §
T at and R he Harmitian matrirae Show that and B can ha cimnltananncly diaonnalizad (that ¢ wit]
Bl f1 CRIBLL A7 LW A LW AT11ARAVHE LIKGARL B WY MFBANT YY LILGAL 71 GANIL A/ Wil Vi DAILUIVGRLEWASLOL uluéullu‘lbbu \Ll‘ub 194 ¥YYiUL
the same matrix U)) if and only it AB = BA
....... rriar _n o omprr o e Loan iagonal matrices. Hence
Suppose UAU = U, UDU = UJ, where [J, and 1/, are diagonal matrice ence,
~1 -1 - - ~1
UAB)U' = UAU'UBU ' = D,D, = D,D, = UBU'UAU™ = U(BA)U (2.12.1)

Multiplying on the right with U and on the left with U we get AB = BA. We leave it to the reader to prove the
other direction. This result is of great importance in quantum mechanics.

Show that the modulus of the eigenvalues of a unitary operator is equal to 1.
Suppose T is a unitary operator, and let v # 0 be an eigenvector with an eigenvalue A. Then,

(v,v) = (Tv,Tv) = {Av,Av) = li(vi vy (2.13.1)
Hence,

0
8]
1l

>
]

—
o
oy
o

Suppose that f is an integrable function. (@) If A# 0 is a real number and g{x) = f(Ax +y), prove
that
U okpra o )

Gk) = ye FL;) (2.14.1)
where F and G are the Fourier transforms of f and g, respectively. (b} Prove that if xf is also integrable,
then F(k) is a differentiable function, and

FIf'(x)] = Fl-ixf(x)] (2.14.2)
(a) By definition,
o o o
Gk) = J gx)e ™ dx = J Fx+y)e ™ dx = J fhx+ y)e(_’kd) (hﬂ)em/ki d{Ax+y)
= %e‘*"”*f F(s)et kN s ds = %e”"”‘F(%) (2.14.3)

o

—oo

(b) Consider the expression

Fem-Foy _ 1| o e
p 'JTJ fxe ( ; )dx (2.14.4)
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2.15.

2.19.

2.20.

2.21.

2.22.

2.23.
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(elhx l\ A o
Taking 'Elm()\ J = —tx, we obtain
1 f . —ikx
FIf'(nl = '“2“-J —ixflx)e " dx = Fl-ixf(x)] (2.14.5)
J2n
—ikx /k\
Show that (a) F [8 (x-x;)] = F[8 (x)] e *%; (b) FI8 (ax)] EG)
Ay Dy Aafinitinn
u) Uy ULILILIVULEy
1 1 ok ik »
FI8(x—xp] = —:f 8 (x—xp) e dx ——;f 8 (z)e e 0" dz = F [§(x)] %0 (2.15.1)
«/ZTCJ «/ZTCJ
)
— _._1_ —ixk — _._1_ .1. —tkz/u _ l (lf)
Fl[d8(ax)] = Ton d(ax)erdx = T a8 (z2)e dz = aF [8 2 il (2.15.2)

Supplementary Problems

Prove the triangle inequality for complex numbers; that is, show that |z, + z| < |z)| + |z,].

Show that the vectors (1, 1, 0), (0, 0, ﬁ), and (i, i, i) are linearly dependent over the complex field.
(0 1y .

Find the eigenvaiues and eigenvectors of the matrix A = \1 o/ Hint: If A is an eigenvalue, then Av = Av, or
(A~ADv = 0for some v #0; this implies that det (A —Al) = 0. Solve this equation for A, then substitute A and

find v. Ans. A =1, v,=(:), A, =—1, vzz(jl).

Show that the matrix
cos@ ~sinB

T = L " (2.19.1)
Msing cos /

x L .
is unitary. If u = [y) is a vector in the plane, what is the geometric interpretation of u — Tu?

| 1 1 1 1
Demonstrate that the system {;‘/‘2—; ﬁ sin &, ﬁ sin 2k, .. ., ﬁ cos &, ﬁ cos 2k, . .. } is also orthonormal.

Y

Consider the space of polynomials with degree less than or equal to n. We can think of each polynomial

p(x) = a,+a,x+---+a,x"asavector in the space C"" ' (aga,, ..., a,). In fact, this is the representation of
A
p(x) relative to the basis {1, x, ..., x"}. What is the matrix that represents the operator ax Telative to this basis?
( o1 0 - 0 \

0O 0 2 0
Ans, - .

0 0 : : n

0 0 : - 0

2
Find the Fourier transform of ¢ 2. Ans. F(t) = e* /2.
T TN DT

(a) Find the Fourier series of f(x) = show that i= ntl

3

3
x
n
=}

Ans.
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3.1 WAVE FUNCTIONS OF A SINGLE PARTICLE

In quantum mechanics, a particle is characterized by a wave funcrion y(r, t), which contains information
about the spatial state of the particle at time ¢, The wave function y(r, ?) is a complex function of the three coor-
dinates x, y, z and of the time . The interpretation of the wave function is as follows: The probability dP(r, ¢)
of the particle being at time f in a volume element dr = dx dydz located at the point r is

dP(r, 1) = Cly(r, t)| dr (3.1)

where C is a normalization constant. The rotal probability of finding the particle anywhere in space, at time 7,
is equal to unity; therefore,

{

JdP(r, H=1 (3.2)
A a1l nig ‘ 2 1\ nmd PN win nm— T A
Accordin E 10 (J.1 ) anda (J.2) WE CoOncIuae

(@) The wave function y(r, r) must be square-integrable, i.e.,

flw(r, o dr (3.3)

|
= lw(r, nl (3.4)
C

When C = 1 we say that the wave function is normalized. A wave function y(r, r) must be defined and contin-
uous everywhere.

3.2 THE SCHRODINGER EQUATION

Consider a particle of mass m subie o the potential V(r, r). The time evolution of the wave functio

governed by the Schrodinger equanon.

\ﬁ

TY(T,
it 3 = s=Voy(r, 5+ V(r, Hy(r, 1) (3.5)
T T T _ 2 2 82,8 2 a2 Dy . pg
wIierc v s e Lﬂplﬂclﬂﬂ UPC Ur OJ& T / O_y T O /0L .ray alcliloil L twu LIIpournalit properiics vl Lic

Schrodinger equation:

(a) The Schridinger equation is a linear and homogeneous equation in y. Consequently, the superposition
principle holds; that is, if y,(r, £), W(r, ), ..., W, (r, 1) are solutions of the Schrodinger equation, then
n

v = Zuiwi(r, 1) is also a solution.
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(b) The Schrodinger equation is a first-order equation with respect to time; therefore, the state at time ¢,
determines its subsequent state at all times.

3.3 PARTICLE IN A TIME-INDEPENDENT POTENTIAL

The wave function of a particle subjected to a time-independent potential V(r) satisfies the Schrodinger

equation:

P
iﬁL&— = —z—mVZ\p(r, 1)+ V(o)y(r, 1) (3.6)

;A ,.‘J .............. L,..
A dld wdaic LUllbld.llLb), 11CI

Performing a separation of variables y(r, 7) = o()x(?), we have x{t) = Ae e
¢(r) must satisfy the equation
»2

V() + VD)) = Aad(r) (3.7)

where 71 is the energy of the state E (see Problem 3.1). This is a stationary Schridinger equation, where a
wave function of the form

y(r. 0 = or)e™® = grye (38)

is called a stationary solurion of the Schrodinger equation, since the probability density in this case does not
depend on time [see Problem 3.1, part (b)]. Suppose that at time 7 = 0 we have

W, 0) = Y 4,0) (3.9)
n
where ¢ (r) are the snatia! parts of stationary states, W _(r, £) = 0(r)e '’ In this case, according to the super-
Ya\:/ ~ ~r r= * J Y T g\t v/ YA/ 4 (-] ~ r
position principle, the time-evolution of W(r, 0) is described by
PRI PN it £ 10
Wi, i) = g2 olre (3.10)
n
) R W ¥ S L L. CFr.. S WY o U DS N o [N FUNTI DS o~ PRV AP Ty w s B Y PR, FRRPR.J Y ol R oS
ror a/ree paruue we f1ave v, {) = U, alll uic s ol lgCI cquauu 1 18 Sallsiicd 'Dy sOonauons 01 Uie b II
k-r-or
w(r, ) = Ae' ’ (3.11)

where A is a constant; & and @ satisfy the relation @ = fik>/2m. Solutions of this form are called plane waves.
Note that since the y(r, 1) are not square-integrable, they cannot rigorously represent a particle. On the other
hand, a superposition of plane waves can yield an expression that is square-integrable and can therefore describe
the dynamics of a particle,

1 .
w(r, 8 = ng(k)e'[k'r"mm” d% (3.12)

A wave function of this form is called @ wave-packet. We often study the case of a one-dimensional wave-
packet,

oo

W, ) = /— g(k)e"“"“ @B} g (3.13)

3.4 SCALARPRODUCT OF WAVE FUNCTIONS: OPERATORS

With each pair of wave functions ¢(r) and y(r), we associate a complex number defined by

(o, ¥) = _[cb*(r)w(r) dr (3.14)

where (9, ) is the scalar product of ¢(r) and y(r) (see Chapter 2).
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An operator A acting on a wave function y(r) creates another wave function y'(r). An operator is called a
linear operator if this correspondence is linear, i.e., if for every complex number «, and a.,,

Aoy (r) + o,y,(r)] = o, Ay (1) + o,AY,(T) (3.15)
There are two sets of operators that are important:
(a) The spatial operators X, Y, and Z are defined by

(x WX, y, 2, 1) = XWX, y, 2, 1)
YW, y, 2, 1) = yW(x, ¥, 2, 1) (3.16)

Zw(x. v.z. 1) = zW(x. v.z. 1)
[ AN IR R D AN I & Bt I

1]

(b) The momentum operators p,, p , and p_ are defined by

f 9

Py, 2,0 = TN, Y, 2, 1)
fi d

PV, Y, 2, 1) = i(—;;w(x, ¥, 2, 0) (3.17)
fi o

PV Y, 2,1) = TR Y, 2, 1)

The mean value of an operator A in the state y(r) is defined by

(. 3
(A) = J\P’"(r) [Ay(n)] d'r (3.18)

AA = J(AD - (A (3.19)
where A” is the operator A - A.

Consider the operator called the Hamiltonian of the particle. It is defined by

I p’
H= __ZEV +Vr D= T vir, 1) (3.20)
where p? is a condensed notation of the operator pf + pfj + p2 Using the operator formulation, the Schrodinger
equation is written in the form

d t
i# "'ér )~ e, 1 (3.21)

If the potential energy is time-independent, a stationary solution must satisfy the equation
Hor) = E¢(r) (3.22)

where E is a real number called the energy of state. Equation (3.22) is the eigenvalue equation of the operator
H; the application of H on the eigenfunction ¢(r) yields the same function, multiplied by the corresponding
eigenvalue E. The allowed energies are therefore the eigenvalues of the operator A.

Consider a particle described by a normalized wave function W(r, ¢). The probability density is defined by
per. o) = |, 0l (3.23)
At time ¢, the probability dP(r, ¢) of finding the particle in an infinitesimal volume d’r located at r is equal to

dP(r,t) = p(r, Dd'r (3.24)
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The integral of p(r, f) over all space remains constant at all times. Note that this does not mean that p(r, f) must
be time-independent at every point r. Nevertheless, we can express a local conservation of probability in the
form of a continuity equation,

d"g{ DV . Jr.p =0 (3.25)

where J(r, ) is the probability current, defined by

Jo,n = 5 (W (V) -y (W] = JRe| v 7y |

)
v

Consider two regions in a space where their constant potentials are separated by a potential step or barrier,
see Fig. 3-1.

V(x) V(x)

(@) )

Fig. 3-1 (a) Potential step; (b) potential barrier.

We define transmission and reflection coefficients as follows. Suppose that a particle (or a stream of parti-
cles) is moving from region I through the potential step (or barrier) to region II. In the general case, a stationary
state describing this situation will contain three parts, In region I the state is composed of the incoming wave
with probability current J, and a reflected wave of probability current J . In region Il there is a transmitted wave
of probability current J.

The reflection coefficient is defined by

JR
= |=— 3.27
R 7, (3.27)
The transmission coefficient is defined by
S
T = J_l (3.28)

Solved Problems

3.1. Consider a particle subjected to a time-independent potential V(r). (@) Assume that a state of the particle
is described by a wave function of the form y(r, 1) = ¢(r)x(?). Show that (/) = Ae™*®' (A is constant)
and that ¢(r) must satisfy the equation

I .
5=V 0() + V(r)o(r) = hoo(r) (3.4.0)

where m is the mass of the narhr‘lr—- (b) Prove that the solutions of the

lead to a time-independent probablhty density.

1'D
f':
=
2
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(@) We substitute Y(r, 1) = ¢(r)y(¢) in the Schrédinger equation:

dy(s #
iﬁ¢(r)§—(,) = x(® [—27,,V2¢(r)] +X(OV(r)or) (3.1.2)

In the regions in which the wave function y(r, ) does not vanish, we divide both sides of (3.1.2) by ¢(r)y(0);
80 we obtain

ihdyn 1 [ ]
x(0 di T o) 55V 60 | + var) (3.1.3)

The left-hand side of (3./.3) is a function of ¢ only, and does not depend on r. On the other hand, the right-hand
side is a function of r only. Therefore, both sides of (3.1.3) depend neither on r nor on ¢, and are thus constants
that we wili set equal to A for convenience. Hence,

1 dy) _ . dllnyo)

x()y dr dt

= ho (3.14)

Therefore,

Iny( = J.—iw dt =—iwr+C = g1 =Ae'™ (3.1.5)

where A is constant. Substituting in (3./.3), we see that ¢(r) must satisfy the equation

Moo L
—2_mV O(r) +V(I)er) = nme(r) (3.1.6)

(b) For a function of the form y(r, 1} = $(r)e™™, the probability density is by definition

2 - —i i i 2
par, 5 = hy(r, 0" = [0 ™) [0r)e™)* = o(r)e ™ 0¥ r)e™ = |o(r)| (3.1.7)
We see that the probability density does not depend on time. This is why this kind of solution is caiied
“stationary.”

3.2.  Consider the Hamiltonian for a one-dimensional system of two particles of masses m, and m, subjected
to a potential that depends only on the distance between the particles X{ = X5,

P, 1 Pz
H=5—+5—+V(x —x,) (3.2.1)
2m, " 2m, v
(a) Write the Schrédinger equation using the new variables x and X, where
X+ myx
X = x;—x, (relativedistance) X = —————— (center of mass) (3.2.2)

(b) Use a separation of variables to find the equations governing the evolution of the center of mass and
the relative distance of ihe particies. Interpret your resulis.

(@) Interms of x, and x,, the wave function of the two particles is governed by the Schrodinger equation:

oy(x,, X5, 1) X BZW(xpxz: n Bz\y(xl, Xy 1)
th——=7— = Hy(x;, x,, ) = -5~ 2 ~ .
ot 12 2m, ax? 2my  3x?

+V () —x)wl, x, ) (3.2.3)

In order to transform to the variables x and X, we have to express the differentiations 3°/ ox? and 3’/ ox}in
terms of the new variables. We have

ox ox oX m, X m,
é—x—l = sz -7 a,x. m; +m, a){,, m, +m, (3.24}
Thus, for an arbitrary function f(x,, x,) we obtain
df(x, ) _FEX)ox o X)dX _ o (x, X) o (x, X)
dx, ~  odx O0x *tTox ox, ax ‘tm +m, oX (3.2.5)
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(b)
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Similarly,
af(xl""‘Z) - af(xv X)_Q’l af(xv X)a_X — af(X, X) m2 af(X.X) 326
9%, = ox on' 9X ox - ax ‘tm+m, oK (3.2.6)
or
9 _9, ™M 9 o __ 90, ™M 9 (3.2.7)
ax, dx ' m; +m,dX dx dx my+nm,dX fmsns

For the second derivatives in x| and x, we have

) G
32 - \axtm +max ox ' m, +m,0X (3.2.8)
)] 2

y m.o 39 m, aa(m, )Za*

= 32 T m +myaxdX T m +m,9K0x T \m +my) 5y

The wave function must be a smooth function for both x, and x,, so we can interchange the order of differen-
tiation and obtain

o 9 ( m, J J° 2m, PR
'-3?? ) ax?  \mytmy/ gy’ ml + m,adX dx (3.2.9)

For x, we have
82 ~ 9 V Q n, i\ ( m, \Zi 2my, 3 3 o
B_xg - \_5;‘( m, +m28XJ\ ET"ml +m28 X))~ “\m |+m2) aXZ m1+mzaxax {3.2.10)

Substituting (3.2.9) and (3.2.10) in (3.2.3), we get

L X0 # (- )28_2 2m_ 239
it Tt =-2m!_ m, +m, aX2+m1+m23X8x_W(x’X’[)

2

n, 2m, 9 9
m, +m ) ax? ~m, +maxax | Y& X 0+ VR X, 0

el 1

GXt A1 9
-"—"—3 T + V)W, X, 1) - (,,, e )wzw,x ) (3.2.11)
agA i

Since the Hamiltonian is time-independent, y(x, X, t) = ¢(x, X)) () (we separate the time and the spatial var-
iables; see Problem 3.1). The equation goveming the stationary part ¢{x, X) is Ho(x, X) = E,0(x, X), where
E,. 15 the total energy. Substituting in (3.2./1) we arrive at
B2 my + MmO\ o(x, X) 201 e X
-5\ T— + V(x)(x, X) — —L J > E, .00, X) (3.2.12)
2\ mm, ox 2\m +my) ax total
Performing a separation of the variables §(x, X) = E(on(X), (3.2.12) becomes
2 2 2
B2 1 (m|+m2)a§(x) v _fL a nx) £ 123
T Ex) m m ~_ 2 + ()— 2n(Xm. +m ~xsd + total (‘ * )
& SV 17 ax < N 2 gX
The left-hand side of (3.2./3) depends only on x; on the other hand, the right-hand side is a function only of X.
Therefore, neither side can depend on x or on X, and both are thus equal to a constatit. We set
2
B 1 1 W
S . vz = B (3.2.14)
L Il\ll}l'll‘r’llz dX
By inspection, we conclude that (3.2.1/4) is the equation governing the stationary wave function of a free par-
ticle of mass i, + riig, i.e.,
2
A' 1 d'mX)
A am aer = Ean) (3.2.15)
i i 2 OA
Note that the wave function corresponding to the center of mass of the two particles behaves as a free partlcle
of mass m, + m and enerev F This result is completely analoeous to the classical case. Returning to
mass m, +m, and energy E .. This result is completely analogous to the classical case. Returning to
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(3.2.13), the equation for the relative position of the two particles is

& (m +m2)3 g( )
2\ mm ax?

+ V(&) = Eqy—Een (3.2.16)

Equation (3.2.16) governs the stationary wave function of a particle of mass (m, + m,) /m m, held in a poten-
tial V(x) and having a total energy £, ~ E_ . Thus the relative position of the two particles behaves as a
particie with an effective mass (m, + m,) /m m, and of energy £, — £, heid in an effective potentiai V(x).
This is also analogous to the classical case.

3.3.  Consider a particle of mass m confined in a finite one-dimensional potential well V(x); see Fig. 3-2.

Vix)
P
P2 Yo
b3
|
Fig. 3-2
d d dv
Prove that (a) Sf) = (p) and (b) —— (p ) ( —z>, where (x) and (p) are the mean values of the
LA )

. : dv\. ,
coordinate and momentum of the particle, respectively, and <_d_x-> is the mean value of the force acting

on the particle. This result can be generalized to other kinds of operators and is called Ehrenfest’s
theorem.

(2) Suppose that the wave function y(x, ) refers to a particle. The Schrédinger equation is

dwixy _ ihdwny i
T9r T Im g CRVVED (3.3.1)

QU

. . . . “’*(x; [) — __ii w i % .
and its conjugate equation is 3 == 8 + ﬁV(x)\u (x, 1). [Notice that we assume V(x) to be

|

real.] The integra[J lw(x, )|” dx must be finite; so we get

. 2_ . 2 Coy(nn . dy(x 1)
Xh.[.]l, Iw(x, ) = xll,n_lm Wi, )" =0 and lenL Bx = XanL 3 =0 (3.3.2)
Hence, the time derivative of {x) is
X daf” , B oW(x, ¢
S d_r[ v x, g, ) dx = [ wa( Lon 0 des [ v Y ax (3.3.3)

—on —oo —oo

Substituting the Schrodinger equation and its conjugate gives

i [ v
dt = 2m o

J%“ *x, 0 "’ff ')dxl‘i_[ W DVO W, 1) de

-0

| H “"(’)w(xz)dx l.w(xt)-—%t—)dx] (3.34)
reo-|J ]

P

XW(X, [) dx + fLLJ W*(X, I)V(X)W(X, f) dx

- ik
Zm
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Integration by parts gives
d{x) ih By*(x,t ay*(x, 1 2
dr T T2m .:,l-r.nm{[ ox ox [x‘l’(x’ n]dx
[w (x, )x st’ )]_E [ 5 vwD l“‘ﬂé—‘dx} (3.3.5)
i &

Using (3.3.2), the first and third terms equal to zero; so we have

*
V0 2
dixy _ ih { J Bwa(;, D w0 d _J (x, D D
-

dt = 2m gl_[,n,, ox
d nd t
* [ Wa(; N Wa(i ! s [ v, )L) ] (3.3.6)

Eventually, integration by parts of the first term gives

4 4
d ih * x, )
—% = 2lm lim {Jn—[\u (X,I)W(x’t)]ig+2j W (x, I) ax dx-!
1 [ hay(, 1
= :[ *(x, D7 W(X I) = ={p) (3.3.7)
'IlJ_nw e
Consider the time derivative of (p):
d df Ady(x, 1) al avte nave, gx,
———;1? = ;J DT \U( dx = J. wax ; ax B+ I v, ’)az ( (3-38)

Since y(x, r) has smooth derivatives, we can interchange the time and spatial derivatives in the second term,
Using the Schrédinger equation, (3.3.8) becomes

dpy _ #[ PFvtmadven [ \V( 0,
7 = -%J_“ axz J’——dx-f- V(x)w x,H——

-+

w2 . 2w B
2m) Yo, 1) Py dx—_ v 035 [V i, nldx (3.39)

Integration by parts of the first term gives

_ o
Py*(x, oYX, * ™ (x, )3 y(x, 1
Ie 'r AL { 2y tx DY ,)} R (3.3.10)
Ox €—>=° i x x e 73 ax
Using (3.3.2), we arrive at
r
. d\II (x, )d !(X,
I = lim |- 33.11
£ oo [ v ox ox ? ] ( )
Again, integration by parts gives
! I [ r *( B w(x, nle l'i A \u(x, "dx . ;) wix, 1) ﬂdx 13.3.12)
-gl_l;nw _{“’ x, 1) 82 J J W(X,l) j J W(x;’) PYE
Returning to (3.3.9), we finally have
Lo _ f YOy x, !)Eﬂ%ﬁ”“[ v ')dg(x)"'(x, fdx
X X

1\:\' n [ dV\

—-J v (x, HV(x) \— (3.3.13)
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34 Consider a particle described bv a wave function w(r. 1. Calculate the tirne-derivative =
r J @Y 4 L8 WSy P oAb ARLY LW ulAv WL TG T e dt [
. op(r, 1)
p(r, ¢) is the probability density, and show that the continuity equation 3t V. J(r, 1) = Oisvalid,
where J(r, 1) is the probability current, equal to Re [w ( Vq!)]
er equation,
(34.1)

Uging the Schriding

2
- ﬁTanwr, 1) + V(E, O(r, 1)

ih—;
. . . dy*(r, 1) (l‘ D _ ﬁ2
Assuming V(x) is real, the conjugate expression is —iAi——=— V v*(r, 0 + V(r, Dy*(r, 1). According
to the definition of p(r, £), p(r, ) = y*(r, Hy(r, 1); hence
apr,n  av'(r, 1 (r n
5 = Y, w(r 0+ yr, r) (34.2)
Using (3.4.1) and its conjugate, we arrive at

(r,? h 1

e Y ) - [mvzw*(r, r)] y(r, )= V(r, Dy*(r, oy(r, n - y*(r, 1)[2,,, Viyr t)]
1 h
,-,;W*(r. nv(r, py(r, 1 = -5 [y*(r, z)Vzw(r, H—wy(r, z)Vzw r, 0l (3.4.3)

We set
Ir o = an r..,*(éw..“ = —ﬁ—-.rm*r- AV v A wape aTutoe a1 1244
Jid, i) ml\\.«Lw \l""/_] 2"”"“’ \Byt) ¥ Yyil, o) LACERF RS SECERY ]| {J.r.F)
Using the theorem V- (UA) = (VU ) A +U(V - A), we have
VI D = 5 (V) - (V) +4* (Vi) — (V) - (") —y (V) ]
k
= 5 WV -y Vi (345)
S0
ap(r n
+V - Jr,n =10 (34.6)
3.5. Consider the wave function
Yix, 1) = [Aeipx/h 4 Borip/h] ooip 1/ 2mh (35.1)
Find the probability current corresponding to this wave function
The probability current is by definition
) A Oy dy*
Jxn g = ZMI(W ax ~ ax ‘I’) (33.2)
(A*e P** 4+ B* ‘P"”") e 1/2mh, o direct calculation yields
A

The complex conjugate of y is y (x 1)
zmlL(Aap wxpl/u +B e:px/lz)k A ipx/h__ _f;Bef.cpx/fzJ k ﬁAm —tpx/u + B'r .px/nJ (Aexpx/fz +Be—sz/h)J

Jjox, 0 =
i V12 2 _
~1BI") - (~l4]* —~A"Be
(3.5.3)

— E( A 2 |B{2
1 O cur S mov mg m opposite direc-
-ip’t/2m * implies that the

Note that the wave function W(x, t) expresses a quperposmnn of two currents of narn cles
tions. Each of the currents is constant and time-independent in its magnitude. The term

particles are of energy pz/ 2m. The amplitudes of the currents are A and B
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3.8.
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Show that for a one-dimensional square-integrable wave-packet,

J. Jx)dx = {p) (3.6.1)

m

where j(x) is the probability current.
l'“' )
Consider the integral J Iy(x, {)Izdx. This integral is finite, so we have linil [w(x, n|” = 0.Hence,
X —> foo

[ Al (50 20050
J ) e = MJ [w 02 EED g, 250 (362)
Integration by parts gives
I'm auY:*(_r_, r) r " 18 fé dy(x, 1) ] fm dwlx, ;)
J_mw(x, DT gx dx = lim || v v, ')J-a_L ax Vo[ = _] Vi, 0 dx (3.6.3)
lllel’CfOft:, we lldVC
B [ %
r J(x)dx = ,;[ VG N30, N dx = % (3.6.4)
J o T o

cle of mass m hplr‘] ina nnp_r‘llmpnmr\nnl notential Vix\y Su
Cl¢ ¢l mass 7 held 1n g gne-dimensionatl petenial Vix). o>

3
) n some re

is constant, V(x) = V.Forthis region, find the stationary states of the particle when (@) E> V,(b) E<V,

and (¢) E = V, where E is the energy of the particle.

(@) The stationary states are the solutions of

2
A Q‘Q(—x)q—‘v’.j,(x) Eé(x) {3.7.1)
2m axz
For E >V, we introduce the positive constant k defined by £k’ /2m = E-V, so that
d
a¢(zx) +K200) = 0 (3.7.2)
The solution of this equation can be written in the form
O(x) = Ae*T+ A (3.7.3)
where A and A' are arbitrary complex constants,
(b) We introduce the positive constant p defined by ﬁ2p2/2m = V- E;so0 (3.7.1) can be written as
3(x
TN -p’om = 0 (3.74)
ax’
The general solution of (3.7.4) is ¢(x) = Be”  + B'e ™ where B and B' are arbitrary complex constants.
2
£y Whaw B = 1 wuin nua a ¢(x) = N gn hfe) i a lieaone flimatinem ~F v Afe) — M TOLIRTT) - e al mrAd 7 onea
\\) wwuell . — ¥ wWo llavo a 2 — \J, ou IP‘\A} 10 a 1uivdl LUuliviauin ul oA, q)\./\-} — L A TGO WIILIC o [ LY S % ~
complex constants, *
Consider a particle of mass m confined in an infinite one-dimensional potential well of width a:
o L<x<h
V(x) = i 2 2 (38.1)
oo otherwise

— l.

T eigenstates o
U UIC CIECIdLAaLes o

For x> a/2 and x < —a/?2 the potential is infinite, so there is no possibility of finding the particle outside the
well. This means that

w(x>g)=0 w(x<g)=0 (3.8.2)

Since the wave function must be continuous, we also have W(a/2) = Y(-a/2) = 0.For—a/2 <x < a/2the poten-
tial is constant, V(x) = O; therefore, we can rely on the results of Problem 3.7. We distinguish between three
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3 .9.

possibilities concerning the energy E. As in Problem 3.7, part (a), for E > 0 we define the positive constant &,
22:2 .~ — N . A < by ir iky o - - - P -
hTk"/2im = E, SO we obtain ¢(x) = Ae 4 Ae Imposing the continuous condifions, we arrive at

I Aeikan2 + Ale-ika’2 = II Ae-ikar2 +Aleitar2 = ) (3.8.3)
Multiplying (3.8.31) by ei*4/2 we obtain A" = —Ae'*®, Substituting A’ into (3.8.31) yields
Aeikar2 — Aetagikas2 = () (3.84)

Multiplying (3.8.4) by e-i*/2 and dividing by A [if A = 0 then y(x)=0] we obtain ek — ¢**¢ = (), Using the
relation e'® = cos @ + I sin 0. we have —2f sin (ka) = 0. The last relation is valid only if ke = nm, where n is an
integer, Also, since k& must be positive, n must also be positive. We see that the possible positive eigenenergies of
the particle are

= (3.8.5)

The corresponding eigenfunctions are

W,,(x) = Aeik,,x_Aeik,,ue—iknx = Aeints/e_ pinmla-x)/a = Aeinn/2[einn(,r/a_1/2) — gminm(x/a-1/2)]

Csin [nn(g—%)] (n=12..) (3.8.6)

where C is a normalization constant obtained by

a’/2
Y

. sin Em—(f - %)}m (3.8.7)
c J~zz/2 a
x 1 dx
Defining y = 273 and dy = -, (3.8.7) becomes
1 r° 2 . r’ 0 ) 1d i sin(Zmay)i® _a 3188
L] o -3] oo - SL- ST g
Therefore, C = ./2/a. Finally,
2 x 1
W (x) = ﬁsm I_mt( - — :ﬂ (3.8.9)
v Na L \a 2/]
Consider now the case when F<0. As in Problem 3.7, part (b), we introduce the positive constant p,
#%p?/2m = -E. Stationary states should be of the form y(x) = BeP + B¢, Imposing the boundary conditions,
we obtain
I Bepa2 L B'ovas2 = Il Bgver2y Blepar2 = (38.10)

Multiplying (3.8.101) by ef2/2 yields B' = —BeP®,s0 Be™/? — BeP*¢?*/? = (0. Multiplying by ¢?*/? and dividing
by B, we obtain | — e%P9 = 0. Therefore, 2pa = 0. Since p must be positive, there are no states with corresponding

negative energy.
Finally, we consider the case when E = 0. According to Problem 3.7, part (c), we have y(x) = Cx+C".
Imposing the boundary conditions yieids

a a
C5+C' =0 —C5+C'=0 (3.8.11)

Solving these equations yields C = C' = 0, so the conclusion is that there is no possible state with £ = 0.

Refer to Problem 3.8. At ¢ = O the particle is in a state described by a linear combination of the two
lowest stationary states:

y(x, 0) = oy, (x) + By, (x) (lof* + 1Bl = (3.9.1)
(a) Calculate the wave function y(x, ) and the mean value of the operators x and p_ as a function of time

(b) Verify the Ehrenfest theorem, m d (x)/dt = {p)).
(a) Consider part (¢) of Problem 3.1. The time-evolution of the stationary states is of the form

y,(x, 1) = y (xyexp(—iE,t/h) (3.9.2)
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Consequently, using the superposition principle gives

Y(x 1) = oy (x, 1) + By,(x, 1)

IR rrx 1\ —rtite)] T . s (x 1Y) [ —nifir )] 203
= a[,\/asml_nka—zJJexp N JJ+BLJa51nL nka—szexpL P JJ (3.9.3)
We now calculate
a’2 ma/2
{v\ = r w¥ry Ayvwrry NAr = T ¥our¥ey 0 + R¥u e ATy lorusfy O e Bur iy 1) Ax
\X/ J W, AW, AX LG YW LD+ 0 Wolh, X 1O (X 0+ PV 16X
—a’/2 by ]
ra/Z ru/2 l‘ ra/l 1
= aZJ x|y, x, 0] dx + BZJ x|yylx, t)|2dx +2Re ta*BJ xyi(x, Oy,(x, ) de (3.94)
—a/? —a/2 —-a/2

Consider each of the three elements separately:

ra/Z . r

2 a S x IV
A EJ Xy, (x, 0| dx = iJ X sin Ln\;— EJJ dx (3.9.5)
-as2 -as2
Defining y = g - %, dy = ‘% SO
@0 ~0 0
/, = aJ (2y + 1) sin? (my) dy = 2aJ ysin? (my)dy + aJ sin (my) dy (3.9.6)

-1 -1 -

Solving these integrals yields

- [y ysin(2ny) cos (2my) 1° fy sin2sy)® _ a a _ o y o
I = 2a|7 - an Y _|,,+al-2—_47f L, ="3%3=0 (3.9.7)
One can repeat this procedure to show that
ar’?2 2
1
I,= [ x|y, t)}zdx = - ,\:sm2 é—,—,ﬂdx =0 (3.98)
Y un2 —ar2 oo

. . . . . . . x 1Y].
Note that this result can arise from different considerations. The function f(x) = sin? 21:(5 - -)] Is an even
function of x: i h

fl=x)

lsinzn( X220 = [osinon[ 2+ 2017 = [ceinf 22 24 ) e 2n ||
L AN [/} /] L \dad /4 L AN \da Fay) J]

[Si“ 2“(3‘5)}2 = ) (3.9.9)

On the other hand, f(x) = x is an odd function of x; therefore, x sin’ [2m (x/a—-1/2)] is an even function
of x, and its integral vanishes from —a/2 to a/2.Consider now the last term in (3.9.4):

a’
2 I Lik
Iy= [ x\y’l"(x, Dy, Hdx = ;[ xsm (é— ) sm (——,—,ﬂexp(—iﬂ l,qu (3.9.10)
NG <74 \ Zma® )

1l

—-a’2 -a/s2
Defining y = x/a—1/2,dy = dx/a, and ® = 3n°A/2ma?*, we obtain

{}

0
) \ 1
I = ae"“”J‘ (2y + 1) sin (my) sin (2ny) dy = ae u"J. 2y + ])i[cos (®y) —cos (3ny) ] dy

162 _

= §?e (3.9.17)

Finally, returning to (3.9.4) we obtain

32a

16a )
(x) = ;—;22 Re (o*Be™™) = Q[Re(a*ﬁ) cos (@f) + Re (io*P) sin (o) ) (3.9.12)
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Consider the mean value of the momentum:

oy, (x, 1)

THE SCHRODINGER EQUATION AND ITS APPLICATIONS

Iy, (X, 1)

a/2 a’/2
X A
(Po = _‘. VTR 1) dx = -J. CRTHEDHRY W ACR)) [a ox  *P

We calculate separately each of the four terms in (3.9./3):

marsl - aas?

ay,(x, 1) 2n x 1 x 1

k__ T 1 " 7 _ == H = - - -

J Vi ox _an 2’*‘“["({2)]':"5[”({2”"‘
-a/

-a/

dx

33

}dx (3.9.13)

(3.9.i4)

. 1 . 1 .
sin [n(g - i):' is an even function of x and cos [n(i - —)] is an odd function, so their product is an odd func-

2

tion, and therefore the integral of the product between x = —a/2and x =

a/2 a/2
r ue* (x .r\ aw%(x’ I)dx ggE r a nl")ﬂr(fi-l-\~|nno I")n({ _1
J 2 A\ ¥y dx aa J nluLbu\a 2)J\.un Lau\a 2
-as2 -as/2
sin r2TT( I l—“ 1s an odd function of x and cos r2ic I l\
L™ a"2/] L“™a"2)

vanishes. We have

function, and thus the integral between x = —2/2 and a

~a

a/2 equals zero. Also,

—
s
D
;~
)

-

. T P A i
J IS an even one; tnerefore, thelr product is an odd
2

a1/
o BW (x, 1) anf| 1 I L
I= (T E ) 2 dx = — sin [n(f——)] cos [21!({—-)]9"“”@’ (3.9.16)
! a? a 2 a 2
—as? —a/2
x 1 dx .
Defining y = 273 and dy = =z the integral / becomes
0
_ 4_”_ —iwr : — 4_“ cos(n:y) COS(31Ty) ¢ - _ i —io
I= aze J.. sin(ny) cos (2ny)dy = -, [ T s :l_le = ze (3.9.17)
Finally.
l'”/z Q\tl( x, 1) 2n l’ fx 1V rix 1V
— - e - imt
r=J i (0 g —dx = J sm 21: - JJ [ La ZJJe dx (3.9.18)
-as2 -ars2
Using the same definitions used above, we arrive at
0
= 2_n,.im' f Qi £ MUY cme (M) Ay — 2—”,."“"[- cos (My) cos (3ﬂy)_]0 — Enim! /20 10
L= ac S (20ty) COS ARY)dy = ~ € |_— n - 6T Jfl = "3 (2.7.1%)
-1
Substituting the results in equation (3.9.13), we finally reach
8% —i i
(p) = 31“l>a Be @ ag*e W‘{ (3.9.20)
(b) In part (a) we obtain
16al { 3inl /3”[2,,1 \q
{ — | a* _ + aB* ! 3921
{(x(t)) = ﬂzl_ exp( P J af expL2ma2 JJ ( )
Therefore, we have
d 16a3in’h 2
m ,(:> = mn—{:: [—a*Bexpr—An 12t1+a[3*exp( 1 [a*Be™ '~ ap*e o] (3.9.22)
“e b A ma”

3.10. Refer again to Problem 3.8. Now suppose that the potential well is located between x

{ 0
Vix) = o

Y otherw

Find the stationary eigenstates and the corresponding eigenenergies.

OQand x = a:

(3.10.1)
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We begin by performing a formal shift of the potential well, ¥ = x—a/2, so the problem becomes identical to
Problem 3.8:

o otheryice (3.10.2)
| = ULlICl WIBC
Using the solution of Problem 3.8, the possible energies are
2422
h
E, =22 (3.10.3)
2ma
where n is a positive integer, The comresponding eigenstates are
k. [z 1Y
Y (x) = ’\/E sin Lnnk;—ijj (3.104)
Or, in terms of the original coordinate, we have
- g (n_m )
y,(x) = J; sin{ —=—amn (3.10.5)
Consider the step potential (Fig. 3-3): )
v {Vo x>0 (3.11.1)
=10 <o
V(x)
Yo
—_— ] pe———————————— =~ =~
_X‘>
I Il
X
Fig. 3-3
Consider a current of particies of energy £ > V, moving from x = —oo to the right. (@) Write the station-

ary solutions for each of the regions. (b) Express the fact that there is no current coming back from

= +oo to the left. (c) Use the matching conditions to express the reflected and transmitted amplitudes
in terms of the incident amplitude. Note that since the potential is bounded, it can be shown that the
derivative of the wave function is continuous for all x.

(a) Referring to Problem 3.7, part (a), we define

(E_Wy
kl - Ja.ruz.l.« k2 = L\ " Y] (3.11.2)

o,(x) = A e+ Ay e Opx) = A6 + Ay et (3.11.3)

(b) The wave function of form &'** represents particles coming from x = —eo to the right, and e ** represents
particles moving from x = +oo to the left. ,(x) is the superposition of two waves. The first one is of incident

martinlac meana anting feam laft tn rioht and 1o Af omnlitnda A4 tha aannnd « ie Af amnlifnda and roanea_
}l“l LTS Lo ) plvpusuuus ALNSLEL AWl b WS llélll ALl L3 VL (.uul_unuu\.« lll, Lilvw VWA LIN Wﬂ'\/ 1o Wi mllylliuu\/ nl [P Pis Y l\/l.'lv

sents reflected particles moving from right to left. Since we consider incident particles coming from x = oo
to the right, it is not possible to find in II a current that moves from x = +co to the left. Therefore, we set
= 0. Thus, ¢;(x) represents the current of transmitted particles with corresponding amplitude A,.
(c) First we apply the continuity condition of ¢(x) at x = 0, ¢,(0) = ¢,(0). So substituting in (3.11.3) gives

A+ Ay =4, (3.114)
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3.12.

dp(x
Secondly, —qal%) should also be continuous at x = 0; we have

dd,(x) Oy(x) .
S = kAt ik A et S = kAt (3.115)
. 00[0)  90,(0) )
ApplymgT =3, ve obtain
ik (A - A)) = ikA, (3.11.6)
Substituting A, gives A + A} = (A, — A}) K,/ k, which yields
Al ki-k
A_n =LAk, (3.11.7)
. . ky -k
Eventually, substituting (3./1.7) in (3./1 4) yields A,(l YTk ) = A,; therefore,
| 2
A, 2%
/Tl Y (3.11.8)

Refer to Problem 3.11. (@) Compute the probability current in the regions I and II and interpret each
term. (b) Find the reflection and transmission coefficients.

{2y FEnr a ctatianars otato dfv) the nrahahility cnrrant ic timo_indoanandant and annal tn
e/  TUL @olailiUlialy staiv YA ), thab piuUaULLily Vaiiviil 10 I IHUCPUTIiUciin allia Cyual v
fi dd(x) 39*(x)
*
Ty = 5~ *(x) 5 — 0053 (3.12.1)
Using (3.11.3) for region I, we have
fi * -tk x vk tkox : kox e v ik ox
Jix) = = [(Aje™ +A e Y(ik A= ik Ale™T
hk 3
i P, , - . ! | 2 f
— (A" Ay (kg AT v ik AR ] = — (|47 4] (3.12.2)
Simiiariy, for region I we have
A * thyx k k k ks o
J () = =—TAY e " ik )™ 1" —A o™ (—ik e 2] = —|A] (3.12.3)
fives 2mit Z AN z’ 2z X 27 J m 2 ' 4

The probability current in region I is the sum of two terms: fik,|A |/ m corresponds to the incoming current
et o 1o b b and EL | AT o a2 e bl waflantad artrrasnt {aving Framn maht o 1Ay
lllUVlllg 11uinl Il WV llélll, allu ILKI I/'lll /It LUIICDPUIIUD 1 Ul jouicicu vulion \lllUVllls 1HHulil llélll w ICI .
Note that the probability current in region II represents the transmitted wave.

(b) Using the definition of the reflection coefficient (see Summary of Theory, refer to Eq. 3.27), it equals

o]

. & [*hk,/m | A

A Rk /m 1A 3124
Substituting (3.11.7), we arrive at
g Bizh) kb (3.12.5)
(k, +ky)* (k, +ky) "
The transmission coefficient is
AfRkm kA 126
|4, Bk, /m k4 o
Substituting (3.1/.8), we arrive at
ky 2k, N\ dkk,
r= k_l(k.ﬂz) = (3.127)
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3.13. Consider a free particle of mass m whose wave function at time ¢ = Ois given by

oo

Ja 2 2
5,0 = — 7| ek kAR gk 3.13.1
yix, 0) 2m _ ( )
Calculate the time-evolution of the wave-packet y(x, f) and the probability density |y(x, t)|2. Sketch
qualitatively the probabhility density for 1 <0, t = 0, and ¢ > 0. You may use the following identity: For

any complex number & and B such that -n/4 < arg () < n/4,
PDO

2 2 ’7_t
J e OB gy = JE (3.13.2)
. 2 2
The wave-packet at ¢ = 01is a superposition of plane waves e** with coefficients (2my e @ %) 4 his is

: [ ™ 2 PR e H ikx 1 1 3 tkx —iEd
a Gaussian curve ceniered ai Kk = k,. The time-evolution of a piane wave e™* has the form e'**e ™

e'*xg-ih1/2m We set (k) = hk”/2m, so using the superposition principle, the time-evolution of the wave-packet
ir(x, 0) 1s
x, Q) is

=

o

2 2 by
i, ) = — | ek e T gy (3.13.3)
(2113)“".’4”
Our aim is to transform this integral into the form of (3.13.2). Therefore, we rearrange the terms in the exponent:
a’ 2 P it a a
a
=% (k=ko) +ilkx~a(k)] = —(;+’2—m)k2+(5ko+ix)k——4—k§
2 2 2 2
2 ( Lhy+ix } (a—k +ix) :
; 0 0
(e i), LIRS PR “22 31349
)| ()
it m it 2m
Substituting in (3.13.4) and using (3.13.2) yields
2,2
B G I TP
Ja TPNTT4/ \7k0+1x)
ylx, 1) = 174 exp - (3.13.5)
234g /‘ﬁ N it az+ QTfit
pV4 i) L m J
The conjugate complex of (3.13.5) is
( a ;) (az )2
¥ Jt_l exp _-T svn 5’(0— " 2 12 <
¥xn 23/4 1/4 Jaz y ‘XH{ Z_Ei_ﬁ_t J (2.43.0)
4 2m m
Hence,
(kg (kY . . (&%)
. o e\ \57) —Priatkyx | 52) —x-idthyx
Wi, 0™ = exp +
P00 (& b\ ifi) a* +2ifit/m a*-2ifit/m
NG I\ T "3 .
2 2 2
[ @hy  aiRAY (A ) 4Rk’ ]
5 ka‘+ 2)+zaf\7—x}+ m Xt

at vani’tsmt

f 2 1
= [— exp
ra’ /l + 4Rt/ mia L

[ 1 [ 24" (x—fkyt/m)"]

= [————————exp| - 3.13.7
'\/Raz,/1+4ﬁ212/m2a4 pL a4+4fi2t2/m2 _| ( )
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IW(x, )i

V&
I
- A

— | N — N

Fig. 3-4

The probability density is a Gaussian curve for every tlme t entered at x. = (fiky/m)t. (ie., the wave-packet

moves with a velocnty Ve = ﬁko/ m.) The value of ly(x, r)] is maximal for ¢ = O and tends to zero when £ — oo,
lne Wl(l[l'l 0]’ me wave-pacxel lS mlmmal IOI' i = U dIl(l ICI](IS {0 oo wncn [ — oo; see Flg 3-4

3.14. Consider a square potential barrier (Fig. 3-5):

J 0 x<0
V(.,) - Vg 0<x<l (3141)
[ 0 I<x
Vix)
Vo
0 ! .

Fig. 3-5

(a) Assume that incident particles of energy £ > V, are coming from x = —e. Find the stationary states.
Apply the matching conditions at x = 0 and x = [. (b) Find the transmission and reflection coefficients.
Sketch the transmission coefficient as a function of the barrier’s width /, and discuss the results.

(@) Similar to Problem 3.7, part (a), we define

PmE Pm(E-V,)
Thus, the stationary solutions for the three regions [ (x < 0), I (0 <x <}, and M (x> ) are

1 d(x) = Aye’'s + Aypel (3.14.3)
(O (x) = Aze™i™+ Aye it

Each of the solutions describes a sum of terms representing movement from left to right, and from right (o left.
We consider incident particles from x = —oo, 50 there should be no particles in region III moving from x =
to the left. Therefore, we set A’y = 0. The matching conditions at x = / enable us to express A, and A’ in
terms of A,. The continuity of ¢(x) at x = yields ¢,(}) = ¢(), so

Ae™ 4 Aye™l = A6 (3.14.4)
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The continuity of ¢'(x) yields
ik,Ae™Y — ik, Ay = ik Ase™ (3.14.5)
Equations (3.14.4) and (3.14.5) give

2k, J
(3.14.6)
' kz—kl itk +ky) 1
A2 = | Tox, A3
L -T2 -
The matching conditions at x = 0 yield
0,(0)=0,(0) = A, +A, =4,+A, (3.14.7)
and
0,0y = 0u0) = ikA —ik A = ikA - ik A, (3.14.8)
so we obtain
k +k, -k,
A = 2k, A+ 2k, A’ (3.14.9)
Using (3.14.6), we can express A, in terms of A,
r(k1+k2)2 tky ko)1 (ki_k2)2 ik +i()i-|
Avs | "o, e Y T, T A
[k, +k)? — (k- k)’ (k, + k) + (k- ky)? 1.,
= L K, cos (kyl) —i Ak, sin (kzl)Je' A,
[ -'%+K§ . 1 k[
= | cos (k,/) —zm sin (k,0) |e™'A, (3.14.10)
Similarly, we express A; in terms of A,:
. k -k, +k| +ky _ Cky+ k) (k) —ky) T (k, +k)(k,—k)) ei(k|+k2]1-|A
T 2k, LT 2k, T2 T dk k., : ' i 3
(K=K + (- k) G-k - (-4 L "
= kK, cos (kyl) +1i 2k k, sin (k,0) |A, = lekzsm (kylye" Ay (3.14.11)

(b) The reflection coefficient is the ratio of squares of the amplitudes corresponding to the incident and reflection
waves (compare to Problem 3,12):

|2
R = |4 (3.14.12)
A,
Using the results of part (a), we obtain
&2k T
[2k,k2 sin ("2’)J (k- 1) sit? (kyl)
“ e [kl +45 1 a2+ (- &) sin? (kyd) I
cos2(k,l) + LZklkz sin (kZI)J !
Finally, the transmission coefficient is
2 l KK
T = 1’:_3| - granT =l (3.14.14)
1 1— % 4kiks + (k) —k3) " sin? (k,0)
cos? (k,l) +Lle2J sin? (k,!) e b 2

The transmission coefficient oscillateg periodically as glfuncti onof [ (see Fig. 3-6) between its maximum value
(one) and its minimum value [1 + V,/4E(E-V,)] . When / is an integral multiple of nt/k,, there is no
reflection from the barrier; this is called resonance scattering (see Chapter 15).
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3.15.

4kl k3
4k k3 + (K3 4k3)?

Consider the square potential barrier of Problem 3.14. Find the stationary states describing incident par-
ticies of energy £ < V. Compute the transmission coefficient and discuss the results.

The method of solution is analogous to that of Problem 3.14, Referring to Problem 3.7, we define

2mE 2m(vg_E)
k, = J? p= {—ﬁ2—~ (3.15.1)

The stationary solutions for the three regions I (x < 0), II (0 < x < /), and III (x > I} are
fq.)l(x) - Aleik]x + A}eﬂ-klx
j Op(x) = A + Aye™ (3.15.2)

[q)m(x) = A}gl'k]x+Aée—ik1x

We describe incident particies coming from x = —eo, s0 we set A; = . Applying the matching conditions in x = {
gives
s ool s - e se
oul) = 0, () = Aze™ + Ay =A et (3.15.3)
. . I pl ki
oul) = o) = A,peP'—Aze? =ikjAye (3.154)

From (3.15.3) and (3.15.4) we obtain

A, = [p ;;k!e(ikl—ﬁ)i}AB A, = [p;;k’e(ik,wli]% (3.15.5)

The matching conditions at x = 0 yield
0,0=0,0) = A +A =A,+A4; {3.15.6)
10) = 03(0) = ik A, ~ik A = pA,-pA; {3.15.7

From (3.15.6) and (3.15.7) we obtain
ik, +p ik —p

A, = 2%, A, + 27K, A (3.15.8)
Using (3.15.5), we arrive at
[ (ik +p) (tk, — 0)* ] [ & —p? 1
_ VERG [adld (iky—p)i VR (k4 (ik, +p)i - | i r . ikt
e v A JAS = L i p sinh (pD) +cosh(pl)Je VA, (3.15.9)

Finally, consider the transmission coefficient:

2 1 I
= 2\2 = 2\2 (31510)

[lrziﬁ (
cosh?(pl) +L ék,v J sinh?(pl) I+L J sinh2(pl)

T = r"_S
A
1741

S
1=
~1

+p

©

2k,

©
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where we used the identity cosh? o ~ sinh? o0 = 1. Hence,

T AE Vo~ E) 3.05.11
- ] [./2mv,-El* (35-41)
4E (V- E) + Vg sinh | —5—|

We see that in contrast to the classical predictions, particles of energy E < V have a nonzero probability of crossing
the potential barrier. This phenomenon is called the runnel effect.

In this problem we study the bound states for a finite square potential well (see Fig. 3-7). Consider the
one-dimensional potential defined by

0 (x<~a/2)
Voo = 1 Yo —a’2<x<a/? (3.16.1)
0 (a/2<x)
Vix)
—af2 af2
X
1 It I
_V(]
Fig. 3-7

(a) Write the stationary solutions for a particle of mass m and energy —V,, < £ < 0 for each of the regions
I(x<—-a/2), I (-a/2<x<a/2),and Il (a/2 < x). (b) Apply the matching conditions at x = —a/2
and x = a/2.Obtain an equation for the possible energies. Draw a graphic representation of the equa-
tion in order to obtain qualitative properties of the solution.

(@) Referring to Problem 3.7, we define

omE /2m(E+V0)

P =J 52 k= N/T— (3.16.2)
ons are

Then the stationary solutions for each of the regions 2

[(b,(x) = AeP* + A'e™P
T oyx) = Be™ + Be ™t (3.16.3)
|

O x) = C'eP*+Ce™

[

Since $(x) must be bounded in regions I and IIT, we set A' = C' = 0; therefore,

J‘dh(X) = AP

d4(x) = Be'™ + Bk

Tiiv
l‘t’m(ﬂ = Ce™™ (3.164)
(b) The continuity of ¢p(x) and ¢'(x) at x = —a/2 yields
[Aefpaﬂ = Be-ika/2 4 B'pika/2
(3.16.5)

pAe—pa/2 = ikBe—ika/Z__"kB-eika/Z
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Similarly, the matching conditions at x = a/2 yield

{ CePa/2 = Beika/2 | pro-ikan2

A (3.16.6)
_pce_pa/Z = (kBe'*%/2 _ ik B o-ikas2
Hence, we can express B and B’ in terms of A:
(p+ik ) [ p-—ik , A
(pzlk (-p+ikyas2 J B = L_pzlk e(-p+:k)a/2 JA (3167)
AT n mmrbuapionita 12 A i £2 JK K) pm mbbnze
¥Y O dDUUDLILULD \J A7) \J.l U;U’ LU uuailil
- p k 1ka p lk —lka)
[C_(Q,._e -5 ]A
. (3.16.8)
(p+rk 1ka -k —lkﬂ)
ka 2 e - Foee Ja
To obtain a nonvanishing solution of (3./6.8), we must have
plo+ik ., p—ik .\ _(p+ik .. p—ik .
2k ¢ ke )= T e e ™) (3.16.9)
which is equivalent to
—ik\2
(g“k) = pltke (3.16.10)

Equation (3.16.10) is an equation for E, since p and k depend only on E and on the constants of the problem.
The solutions of (3./6.10) in terms of E are the energies corresponding to bound states of the well.
We shali transform (3./6.10) to express it in terms of k only. There are iwo possibie cases. The first one is

I (g::] = e (3.16.11)

The left-hand side of (3.16.1 1) is a complex number of modulus 1 and phase ~2 tan-! (k/p). (p + ik is the com-
plex conjugate of p — ik.) The right-hand side of (3./6./ 1) is also a complex number of modulus 1, and its phase

is T+ ka(—e'* = '™ . ¢ = ¢' " **V) Therefore, we have
an{ XY o (B ke) K r(r_t+lgz\1 ka) _  (ka) 1
wn()={5+5) = Srwl[(5+5 )= -w(5+5)- el )- gy ci612
and
ka
lan(‘z‘) = % (3.16.13)
2mV,
We define k, = 2 = Jk?+ p?, where the parameter k, is E-independent. Consider
1 (ka) K+ p? (ko)z
—_— = 2 - = = -
cos? (ka/2) 1+ tan?| 5 - Z (3.16.14)
Equation (3./6.11) is thus equivalent to the following system of equations:
(o (k) _ &
11 V2 7k, ]
(3.16.15)
tan (Ii—q\ >0
\ 2/

— k)2 _
I (E—'—] = oM (3.16.16)
Similar arguments as in case I lead us to

Yan AN
-2 tan-! Lg} kg = tan—=-— (3.16.17)
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Consider
ka) tan? (ka/2) k2
L[ ka) N
sin (2 T Tl (ka/D) T g2 (3.16.18)
Thus,
(PREZ
PUN2 /T &,
(3.16.19)
rqn(lig\/ﬂ
Ltan| 5 /<0

In Fig. 3-8 we represent (3.16.15) and (3.1/6./9) graphically. The straight line represents the function k/k, and

o3 ) anfos( )
sin 2 Ccos )

the sinusoidal arcs represent the functions and . The dotted parts are the regions where the

{ Ea

nie

condition on tanL —Z-J is not fulfilled.

n/a 2nfa In/a 4nja ke Smia k

Fig. 3-8

The intersections marked with a circle represent the solutions in terms of k. From these solutions it is possible
to determine the possible energies. From Fig. 3-8 we see that if k, < ®/a, that is, if

nl#?

T 2ma?

VeV, (3.16.20)
then there exists only one bound state of the particle. Then, if V| € V|, < 4V there are two bound states, and so
on. If V » V,, the slope 1/k; of the straight line is very small. For the lowest energy levels we have
approximately

k=" (n=1,23....) (3.16.21)
and consequently,
zﬁz 2
=20y, (3.16.22)
2ma’

3.17. Consider a particle of mass m and energy £ > 0 held in the one-dimensional potential =V ,6(x — a). (@)

Inteorate the stationary Schridineer equation between g — € and g + £. Takine the limit £ = 0. show
gr tr Y nger € ] een g —¢ - €. 1 £ — U, show

Qs I SikuilUiial SLAOGNE Yreauionn DOV 11 aiia & 2 ARy 0 L

that the derivative of the eigenfunction ¢(x) presents a discontinuity at x = @ and determine it. (b) Rely-
ing on Problem 3.7, part (a), ¢(x) can be written

A+ AjeR x<a

J‘b(x)

[tb(x)

_—
L
S
~N
e

S

Aze‘k'r + Apeikx x>a
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where k = 2mE/#?. Calculate the matrix M defined by

A, A,
=M| (3.17.2)
/

(a) Using the Schrédinger equation,

£ d%(x)
“2m dr?

+V8(x a)d(x) = Ed(x) (3.17.3)

Integrating between @ — € and @ + € yields

ﬁ2 rﬂ+€dz¢{ a+E ra»s
) ag @tV M-aewdr=Ef e d (3.174)

According to the definition of the §-function (see the Mathematical Appendix), the integration gives

12 ( dow)| doo)|
2m\ dx | -

VR R
JrVebl@) = EJ o) dx (3.17.5)

A=a+E |X=a—£

#t d . d
X>a x<a

We see that the derivative of ¢(x) presents a discontinuity at x = g that equals 2mV d(a)/ h2,
(b) We have two matching conditions at x = a. The continuity of ¢(x) at x = g yields

Aeka s Aleika = A e 4 Ay emike (3.17.7)
where the second matching condition is given in relation (3./7.6) and yields
3 (Ajike™ — Ajike %o — A, ike'™ + Ayike™ ) = —V (A e + Ajeika) (3.17.8)
Equations (3.77.6) and (3./7.7) enable us to express A, and Ay in terms of A, and A}
[ 4 -_—(l ri_‘i\,t .’f.‘i.é. —2ika a1
1 N T T o '
(3.17.9)
Ay = —m—v‘}ez"*ﬂa +( _ﬂ\,;-]
L N7,
We therefore have
A, A
L =M (3.17.10)
\Az/ \AlJ
where
mV, mV
1 e +._23_2lka
ik’ ikh
= (3.17.11)
mV, sika mv,
___361 —_—
ikh ikh?

3.18. Inthis problem we study the possible energies (E > 0) of a particle of mass m held in a §-function peri-
odic potential (see Fig. 3-9). We define a one-dimensional potential by

-
'~

<
PN
o
R —g
[N
By
oo
[
=

v R I
2ma L‘ o = nay
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Referring to Problem 3.7, part (a), for each of the regions Q_ [na <x < (n + 1) a}, the stationary solu-
tion can be written in the form

0 (x) = Bt 4 C ek (3.18.2)

. Q 1 $20 SAI 22 .
—2a -a 2a X
Fig. 3-9
(@) Use Problem 3.17 to find the matrix T relating the regions Q| and Q :
(Br) _ [ B0)
£2 310 2\
= I (2.40.2)
k Cn +1 ) kan
Prove that T is not a singular matrix. (b) Since T is a nonsingular matrix, we can find a basis (b, b,) of
c? consisting of eigenvectors of the matrix 7. We write
/D
Lo
(2)- 58
0

. 2 2 .
where B, B, are complex numbers. Impose the condition that|B,|” + |C |~ does not diverge for n — teo
to obtain a restriction on the eigenvalues of 7. Express this restriction in terms of the possible energies £,

(@) We compare the definitions of ¢, (x) and ¢, , ,(x) according to (3./8.2) and the definition of ¢(x) in Problem
3.17, part (b). The analogy is depicted in Table 3-1.

Table 3-1
Problem 3.17 | Problem 3.18
A, B ¢ kna
A Cnei"””
A, B, e kin+ha
A; CHle"‘("*""

Also, the boundary between the two regions £, and L2, | is setin x = (n+ 1) @, whereas in Problem 3.17
the boundary condition is imposed at x = a. Using this analogy we have
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[D ~tk{n+1)a _ n ,_—ikna(: _i)_ﬂ ,.lkllﬂ( ll \ -2ik(n+ Nu
Znxi = On€ A\ T 2ka) T \2ka )€
. . (3.18.5)
¢, e iw = g grine S ) prninrnay o ginef g L)
CEne€ L \zZka/ " N 2ka/
We therefore have
B'H 1 V Bn
c.. =T c. (3.18.6)
where
((1 A .LZ‘_. ke
T k 2kaJ‘2 “2ka® 3187
= 8.
.i,,ika ( _)"\ ~tka ( ‘
\ "2ka" vt ka/~ /

We see that T is not a singular matrix, since

A ANES,
det7T = (1+2k )(1——”2"1("5)+ %a) = 1 (3.18.8)

and therefore det T+ 0.

Since T is a nonsingular matrix, we can find a basis (b, b,) of C? consisting of eigenvectors of T with corre-
sponding cigenvalues &, and 0¢,; these eigenvalues are the solutions of the cubic equation det(7T- 1) =
By definition,

[Th, = ob,
3.18.9
iThz = a2b2 ( )
Using (3.18.4), we have (forn = 1,2,..))
(B _ I T T'(B,b, +B,b) = Bafb, +p,ab, (3.18.10)
LC J n times LC J
Consider
2 2 B,
B+l =l ¢ ]B,a" IbJ’ (3.18.11)
Therefore, |0t | < 1; otherwise lim (|B | |C,,|2) = 0. Similarly, we must have |t} < 1. We apply a similar
consideration for 7 — —es; "7
R
~ 1 =T A for n=12... (3.18.12)
\%“o/ \Yon/
Hence

TN
o
ERNES
—
I
“1
TN
o o
o =
N——~
|

-n ’ B — n B — M n
= T "(B,b, +B,b,) = a—,l,[T (o"b,) ] +j,[T (aby)]
1 2

= &[T (T 1 +B—[T "T"D,)] = E—b +E3b (3.18.13)
Therefore,
2 2 B, B,I?
B+l = | ol 22 e (3.18.14)
- o"
11

1,ie. the ejgen_va_ll_lec of T must be of modulus 1. Therefore, we can write

; otherwise |c1),,(x)|2 diverges for n — —, and similarly we must have |o;| > 1. Summing our results,
lox =
|o

det(T—¢*°1) = 0 (3.18.15)
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where ¢ is a real constant. So

ik ) ika ! J[( _A') ~jka i¢] }"2 =
[(I—Zka e -e 1+2k et _g _(Zka)2 =0 (3.18.16)
A rearrangement of (3‘18.]6) gives
{ 22 rf i ¢ 2\ A 22 U
Ika A0V ika | it 2ip _ lhd = (3.15.1/)
L 45%a 2J Ul 2Aa +L ! +2kaJe Je e (2ka)? 0
or
1—2|_cosfl’a\ J-~)-" si.n.f.lca\-lei“’-Lez"¢ =0 (3.1818)
L VS 2ka AR { I,
Consider the real part of (3.18.18):
A
1 —2[c0s(ka) + 312 sin (ka) ]cos ¢+cos(2¢9) =0 (3.18.19)

Using the relation cos (2¢) = 2 cos? ¢ — |, we arrive at
cosP = cos(ka) + ra sin(ka} (3.18.20)
Note that since k = «2mE/#?, (3.18.20) is a constraint on the possible energies E;

A
cos (ka) + Ska sin (ka) | <1 (3.18.21)

We can represent this inequality schematically in the following manner. The function

2
noo
flky = cos (ka) + 374510 (ka) (3.18.22)
behaves for & — = as cos(ka) approximately. The schematic behavior of f(k) is depicted in Fig. 3-10.
Fig. 3-10
We see that there are permitied bands of possible energies separated by domains where | (k)| 2 1,and therefore
the comresponding energy £ does not correspond to a possible siate. For £ — o the forbi duen ‘mmd s become

very narrow, and the spectrum of the energy is almost continuous.

3.19. Consider a particle of mass m held in a three-dimensional potential written in the form

Vix, y, 2) = V(x) + U(y) + W) (3.19.1)
Derive the stationary Schrodinger equation for this case, and use a separation of variables in order to
obtain three independent one-dimensional problems. Relate the energy of the three-dimensionai state to

the effective energies of the one-dimensional problem.
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3.20.

3.21.

3.22.

In our case the stationary Schrdinger equation is

hl
—5= V(D) + [V + UO) + W@ (D) = E¥(r) (3.19.2)

where W¥(r) is the stationary three-dimensional state and E is the energy of the state. We assume that ¥(r) can be
written in the form W(r) = ¢{x)x(y}y(z), so substituting in (3./9.2) gives

2
2,,,[( s )Jx(y)w)w(x)t m} (z)+¢<x)x(y)[ wte )H

+ (V) + UG) + W] 6x)X0) (@) = ESIXO)W(@) (3.19.3)
Dividing (3.19.4) by W(r) and separating the x-dependent part, we get
A2 1 d) [ # [ 1 a0 1 dve)
qu)(x) dx? +V(x) = _U(Y) + W(z) - Im x(y) dy2 ‘V(Z) ds? (3.19.4)

The left-hand side of (3.19.4) is a function of x only, while the right-hand side is a function of y and z, but does not
depend on x. Therefore, both sides cannot depend on x; thus they equal a constant, which we will denote by E . We
have

_—
[
—
0O
tin

e

We see that ¢(x) is governed by the equation describing a particle of mass m held in the one-dimensional potential
V(x). Returning to (3.79.4), we can write

L o' R PR ) W) s
2mx0) gy? +UY) = E~ X‘L @ - Tmy) dzZJ (3.19.6)

In (3.19.6) the left-hand side depends only on y, while the right-hand side depends only on z. Again, both sides must
equal a constant, which we will denote by E . We have

2 'y () U £ vy 3197

“Im dy? MxO) = EX0) (3.19.7)
Thus, %(y) is a stationary state of a fictitious particle held in the one-dimensional potential U(y). Finally, we have

# ()

“Im g +Wy(z) = E.y(2) (3.19.8)

where we set E, = E - E, — E . Hence, the three-dimensional wave function W(r) is divided into three parts. Each
part is cm_mmpd by a nnp-rhmencmnal Schridinger equation. The energy of the three-dimensional state equals the

2y a4 0f 210Mal Heidoa

sum of energies corresponding to the three one- d1menSlonal problems, E = E. +E +E_.

Supplementary Problems

Solve Problems 3.11 and 3.12 for the case of particles with energy 0 < E< V. Ans. R=1land T=0.

Consider a particle held in a one-dimensional complex potential V(x)(1 + i§) where V(x) is a real function and Eisa

real parameter. Use the Schriidinger equation to show that the probability current j = 2'r:uL Y 3;’ wa;;*) and
the probability density p = ¥ satisfy the corrected continuity equation a— %%) 2&‘;(x)p' {Hint: Compare
with Problem 3.4.)
Consider a particle of mass m held in a one-dimensional infinite potential well:

0<xsa (3.22.1)

V(x) = 1:

otherwise



48

3.23.

3.25.

3.26.

3.27.
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Find the stationary states and the corresponding energies.

2,2 3
3

Ans. E, = Tiz-—’; +V, (n=1,2,3,...).The corresponding states are the same as in Problem 3.10.
ma

Consider an electron of energy 1 eV that encounters a potential barrier of width 1 A and of energy-height 2 eV. What
is the probability of the electron crossing the barrier? Repeat the same calculation for a proton.

Ans. Foran electron T = 0.78; for a proton T = 4 X 107",

....... Do) omnemtons o ombomtial can]

R T S I . . 1 ~F easidal 1o A
\ ) Fp Y p LILIC Ul 1HaN)d i JLUN cucngy O 2 UCHLuullciy a pUlCllUdl WO I UL WIURIL { allud U Pl[l | 4 0
0 x<0
- > ~ . Vs B 3 I
Voo = 1 Yo O<x<i (3.24.1)
0 I<x

Find the transmission coefficient. (Hint: Compare with Problem 3.14.) (b) For which values of / will the transmis-
sion be complete, if the particle is an electron of energy 1 eVand V, = 4 eV?
1

Vs [ 2m(E+V0)l}
L+ B E+ vy o B

Ans. (@) T = (b)Y 1=27n A, where 7 is an integer.

An electron is held in a finite square potential well of width 1 A. For which values of the well’s depth V, are there
l )

exacily two possible bound stationary staies for the electron?
n’h?
Ans. V, <V <4V, whereV, = —— = 37.6 eV.
2ma
. . N .
Consider the wave function y(x) = ———. (@) Calculate the normalization constant N where « is a real constant.
2402
. . f2a3
(b) Find the uncertainty Ax Ap (be careful in calculating Ap!). Ans. (@) N = - (b) Ax Ap = -
Consider a particle of energy E > 0 confined in the potential (Fig. 3-11)
oo x<-a
0 —a<x<-b
vix) = Vo b<x<bh (3.27.1)
0 b<x<a
oo a<x

Show that for a stationary state with a nonvanishing probability of finding the particle to the right of the barrier (i.e.,
at b < x < a), there is also a nonvanishing probability of finding it to the left of the barrier (i.e., —a < x <—b). Note:
For E <V, this is another example of the tunnel effect of Problem 3.15.

v
I (x) I
| |
Yo
—-da -5 14 d X

Fig. 3-11
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3.28. Consider a particle of mass m confined in a one-dimensional infinite potential well:
V() = {O 0<x<.L (3.28.1)
o0 otherwise

2 nix 242,2
Suppose that the particle is in the stationary state, ¢,(x) = «[ZSi“(TJ of energy E, = ol Calculate (@)
m

2

1 1 5 25202 /1—_1—
ln2}v<p) = L2 ;(C)AxAp = nnh E_ .

() and (Y (BY{xD and (p2Y: () AxAn
WX DO (PP D) (X7, anC (P () AL Ap.

L |
Ans. (@ {x) = 3 (p) =0, (B)(xY) = L2[§ -

in L NS 2nta®
3.20 Concider a narticle of masce m held in the notential
3.29. Consider a particle of mass m held in the potentia
Vix) = -V, [8(x) + 8(x - D] (3.29.1)
where [ is a constant. Find the bound states of the particles. Show that the energies are given by the relation
¥ = o 1-20) 329.2)
\ o/ ' ’

where E = —#%p%/2mand a0 = 2mV,y/ &2,



Chapter 4
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4.1 INTRODUCTION

The State Space: In classical mechanics, the position of a particle is described by a vector having three
real number elements. Though an analogous description exists in quantum mechanics, there are many signifi-
cant differences. The state of a quantum mechanical system is described by an element of an abstract vector
space called the state space and denoted €. In Dirac notation, an element of this space is called a ket and is
denoted by the symbol | ).

Observables: In Chapter 2 the concept of a linear operator was introduced. The Hermitian operator is a
linear operator that is equal to its adjoint (see Section 4.6). A fundamental concept of quantum mechanics is the
observable. Anobservable is a Hermitian operator for which one can find an orthonormat basis of the state space
that consists of the eigenvectors of the operator. If the state space is finite-dimensional, then any Hermitian oper-
ator is an observable. In the Dirac notation, an operator is represented by a letter. Since the action of an operator

on a vactar vield nothar vactar an synreceinn of
11 (S L84

ca o o form Al alea renracante
AJiIA € YW J AED CRIANRAAWL Y WSl 4 B1D \/I\yl\/ﬂﬂlvll llY/ 3 1= A l\/yl\l\-’\l L34

the form / n

The Dual Space: Recall that a functional is a mapping from a vector space to the complex field. The dual
space of the state space € consists of all linear functionals acting on €. It is designated by £*. In Dirac notation
an element of £* is called a bra, and is designated by the symbol { |. We can associate with any ket |$) of £ an
element of £*, denoted by (¢|. The aciion of a bra (] on a ket {)) is expressed by juxiaposing the two symbols,
(wlx). By definition, this expression is a complex number. (The terms bra and ket come from “bracket.”) The
correspondence between € and €* is closely related to the existence of a scalar product in €.

Scalar Product: The basic properties of the scalar product are summarized below:

I (0lw) = (y|o)* (4.1)
11 (W!K}d_)’ +}"2¢2) = l,(w]¢})+7\2(¢2!1§{) (4.2)
1 My + A0, lW) = ATCO, W) + A (0 ly) (4.3)
v (wiy) is reai and positive; it is zero if and only if jy) = 0 (4.4)
Projector onto a Subspace of €: Let 19,), 10,), .. ., 1¢,,) be m normalized pairwise orthogonal vectors;
@l0) = 8, i,j=1,2,...,m (4.5)

I R %

We denote by €, the subspace of € spanned by these »7 vectors. The projector into the subspace £, 1s defined
by the linear operator

P, = D 160 (4.6)

i=1

Figure 4-1 presents a simple example of this concept, The set {6}, [¢,), |¢,) } is an orthonormal set of vectors.
The projection of an arbitrary vector |y) into the plane spanned by [0,) and |¢,) is given by P,ly) =

(@ N 10,7 + (0,1 o) -

n
=)
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19|
\ Iy
(0L 0)
/ T NI STH
Ih:) sz\\m
Fig. 4-1

4.2 POSTULATES IN QUANTUM MECHANICS

Postulate I: The state of a physical system at time ¢, is defined by specifying a ket | () ) belonging to
the state space €.
Postulate II: A measurable physical quantity A is described by an observable A acting on &.

Measurement of Physical Quantities: The extent of validity of a physical theory is continuously investigated
by confronting results calculated by the theory with measurements obtained in experiments. In the context of
quantum mechanics the measurement of physical quantity involves three principal questions:

(a) What are the possible results in the measurement?
(b) What is the probability of obtaining each of the possible results?
(¢) What is the state of the system after the measurement?

The answers to these questions in the context of quantum mechanics is found in the following three postulates.

Postulate III: The possible results in the measurement of a physical quantity are the eigenvalues of the
corresponding observable A.

We can now answer the second question for the case of a discrete spectrum. The generalization to the case
of a continuous spectrum is treated in Problem 4.2.

Postulate IV: Let A be a physical quantity with corresponding observable A. Suppose that the system is
in a normalized state y), so {wly) = 1. When A is measured, the probability P(a,) of obtaining the eigen-
value a, of A is

8a
= Y i’ (4.7)

i=1

where g, is the degeneracy of 4, and lu:), luf,), . luﬁ') form an orthonormal basis of the subspace €, that
consists of eigenvectors of A with eigenvalues a,,.

In Problem 4.3 we introduce a different (though equivalent) formulation of postulate 1V, The subspace ¢

of the state space defined in postulate IV is also called the eigenspace assocmted ith ¢ . The following postu-
late describes the state of the system after a measurement.

m

Postulate V: If the measurement of a quantity A on a physical system in the state |y) gives the result a_,

P, P B T R ST o caa o o7 Verl ; @ N PRy R ~ am [T QY
mimediately after the measurement, the state is given by ih
1

1€ normalized pI j ction of 1y, onto t he ei igenspace

=2

€, associated with a_; that 1s, A/W P |y), where P, is the projector onto €.
I!
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4.3 MEAN VALUE AND ROOT-MEAN-SQUARE DEVIATION

Consider a state described by a normalized ket, {y|y) = 1. The mean value of an observable A in the state
[y) is defined by

(Ayy = (WAW) (4.8)

The mean value of an observable has a clear physical meaning. Suppose the physical quantity represented
by the operator A is measured a large number of times when the system is in the state |y). Then (A)w
expresses the average of the results of the measurements (that is, the sum of each result multiplied by the
probability of obtaining it). The derivation of this property is given in Problem 4.5.

The root-mean-square deviation of the observable A is defined by

AA = J(A)y- (Ay, (4.9)
The root-mean-square deviation has a direct physical interpretation. It characterizes the dispersion of the meas-
urement results about (A)‘|J (see Problem 4.6).

44 COMMUTING OBSERVABLES

MV 2 bamrn ~dv e A nn S D ______ ‘,\n.n AD 1t DA ~ws .—;—t b PEUE by | P
CUISIUCTL LWO UiJCl datiuls, A dlid D lll gcncl Cll l.llC CA}JICG 10 AD dlild DA € 110t iae lllbdl_lllu 1J lL tion
of operators 1s not commutative. An important concept in quantum mechanics is the commutator [A, 8] of two

operators defined by

[A,B] = AB-BA (4.10)
Some useful properties of a commutator are given in Problems 4.7, 4.8, and 49 If [A, B] = 0, then A and B
are called commuting operators. Consider the following theorem.

A one A:I\‘.l\l\— rolalan A D 7 inpallad o nnsanmlaota oot A ozt ting Alhcamimllac i€ o)) il ntan e b oen b
MADUL UL UUdLL Y dUlCa 3,0, 0C,... iS Caica a Cor l[ teiC dCL U COMTUTILL lg ooYCT vVAaoiecs 11 dalt buupdllb cominuic, daiia
there exists a unique orthonormal basis of common eigenvectors. The uniqueness is within a multiplicative

factor.

P (BVaS S rh e

4.5 FUNCTION OF AN OPERATOR

Assume that in a certain domain the function F of variable x can be expanded in a power series in x;

F(x) = 20")(” (4.11)
n=0
The corresponding function of the operator A is the operator F(A) defined by a series that has the same coeffi-

CIUIILS un.

T
T
N’
e
BN
[
[ %Y
~—

o
= ::aAn
n

n=10

4.6 HERMITIAN CONJUGATION
The adjoint (or conjugate) of an operator A is denoted by A™. For every |¢) and |y) we have

(wlATIo) = (olAly)* (4.13)

The basic properties of the adjoint of an operator are derived in Problems 4.10 and 4.11. An operator A is Her-
mitian if it is identical to its adjoint:

A is Hermitian & A = At (4.14)
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An inspection of Eq. (4.13) shows that in order to obtain the Hermitian (or the adjoint) of any expression, it
suffices to apply the following procedure:

I. Replace the constants by their complex conjugates.
Replace the kets by the bras associated with them.
Replace the bras with the kets associated with them.

Ranl th + tay thai Ainint nn, 1.
~nEPacl e Operalors oY nCir agjoint opirators.

Il. Reverse the order of the factors (the position of the constants is of no importance). For example,

A(olABIY) — A* (wlB"A"le) (4.15)

4,7 DISCRETE AND CONTINUOUS STATE SPACES
A discrete set of kets {|u;), i = 1,2, ...} is orthonormal if it satisfies the following relation:
(iupy = 8, (4.16)

(wa|wa.) = d(a-a') (4.17)

A set of kets constitutes a basis of the state space ¢ if every ket {y) belonging to € has a unique expansion on
these kets:

) = D Cilu (4.18)
i
and for the continuous case:
W) = JC(G) wg) da (4.19)
It can be proved that an orthonormal set of kets constitutes a basis if and only if it satisfies the closure relation
(see Problems 4.13 and 4.14):

X', 1 P . v 1 s
L juuj = 1 klor the coniinuous case, J|wa)(wa| do. = lJ (4.20}
i

4 1 . . . . . s " . oo N N s N
where 1 denotes the identity operator in €. Using the notion of the projector onto the space spanned by the set
of kets, we can write these relations in an equivalent form:

P{u} =1 (orPi{w,} =1 (4.21)

4.8 REPRESENTATIONS

The validity of a physical theory is established by comparing experimentally obtained data with the data cal-
culated by theory. When a basis is chosen in the abstract state space, each ket, bra, and operator can be
characterized by specifying its coordinates for that basis. We say that the abstract object is represented by the
corresponding set of numbers. Using these numbers, the theory-prescribed calculations are performed. Choos-
ing a representation means choosing an orthonormal basis in the state space.

Representations of kets and bras: In a discrete basis { |u,) }, a ket |y) is represented by the set of numbers
C; = (u]y). These numbers can be arranged vertically to form a column matrix:

M

“

L)

(C) =

1

(4.22)
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A bra (¢ is represented by the sets of numbers b;k = {(0|u;), which are the complex conjugates the com-
pgnen}s of the ket |¢) associated with (¢|. These numbers can be arranged horizontally to form a row matrix,
(b, . b,,...). Inacontinuous basis {|w,)}, kets and bras are represented by a continuous infinity of numbers,
that is, by a function of o. A ket |y) is represented by the set of numbers C(o) = {(w ly),and a bra {¢] is

represented by b*(a) = (¢|w,). Once a representation is chosen, we can use the components of the ket and the
bra to calculate their scalar product. In the discrete case,

*® - .
(oly) = Z b'C; [m the continuous case, (ply) = J. *(o)C(a)do j’l (4.23)
i
Representations of Operators: Ina discrete basis {|u;)}, an operator is represented by the numbers
A = (ulAl) (4.24)

~—
|
-
AaY
(3%
L
s

For a continuous basis { |w )}, we associate with A a continuous function of two variables:

Ao, o) ={wlAlw,) (4.26)
As a consequence of (4.13),
(Ah),; = A% (4.27)
or
Ao, o) = A%, o) (4.28)

If A is Hermitian operator (A" = A), we have A (o', a) = A* (o', a). (Note that for the discrete case
Ay = Aj-‘,-.) In particular, the diagonal elements of a Hermitian matrix are always real numbers.

Change of Representation: We provide a simple method to obtain the representation of a bra, ket, or

anearator in a civen bacic whan ite renracantation in another hacic ic knawn For c;mn}; ity accume that wae nar

VRWIGUIL 1 G 1YWL UGSES YLV W IVHIVIVINGUIVAL L QI UIVL UGSy 13 RIRJ VI, 1 UL S1iL lC".)', AOUILIV tidL WU pPuil—

form a transformation from one discrete orthonormal basis { Ju,}} to another, {|v)}. Define the transformation
matrix;

S = uvy) (4.29)

(1 ki T (S,'k)* = (vklui) (4.30)

To pass from the components of a ket |y) represented in one basis to another, one applies the relation
W) = D (S eulw) (4.31)
i

or the inverse relation, (u|y) = ZSik(vkllp) . For a bra (¢| we have

k

@) = D (0l)S,,

(W) = > (ol (S*)k,] (4.32)

[
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Finally, the matrix elements of an operator A transform as

VA = D (SN Al S, WAl = Y S, vlAlv) (ST, (4.33)

'
]

Ir) - and |p) -representations: In Section 4.1 we noted that to every ket |¢) there corresponds a bra (#l.
The converse is not necessarily true; there are bras with no corresponding kets. Nevertheless, in addition to the
vectors belonging to €, we shall use generalized kets whose norm is not finite. At the same time, however, the
scalar product of those kets with every ket is finite. The generalized kets do not represent physical states; they
serve to help us analyze and interpret physical states represented by kets belonging to €.

r‘nncn'lnr thn nhvmr‘nl cvctnm nfn (lnoln antw‘ln Tnanfhnr uulh thn crn'n space af tha cycta wa introdnca
MOX ol e & LAAWw U il y W WL RN \)J I.\ill 1

another vector space, called the wave functlon space, denoted by F. This space consists of complex functions
of the coordinates (x, v, z) having the following properties:

(a) The functions y(r) are defined everywhere, continuous and infinitely differentiable.

(b) The integral jl\p(r)lz dF must be finite; i.e., W(r) must be square integrable.

To every function y(r) belonging to F there corresponds a ket |y) belonging to €. Using the wave functions
#(r) and w(r) corresponding to (¢| and |w), we define the scalar product of (¢| and |w):

(olw) = J-@*(r)w(r) d’r (4.34)

Consider two particular bases of F denoted { ﬁru(r)} and { Vpo(r) }. These bases are not composed of functions
belonging to F:

& (1) = 3(r-ry) (4.35)
and
v, (r) 1 et (4.36)
= 3/2
P (2mh)
Tao each £ (r) we associate a seneralized ket denoted by Ir.). and similarlv for v_ (r) we acsociate a oaneral-
To each ¢, (r) we associate a general et denoted by Ir,), and similarly for v, (r) we associate a general
ized ket |p,). The sets {|ry)} and {|py } constitute orthonormal bases in €:
A} ] 3
<r0|r0) = 8(ry~-ry) Jlr())("old" =1 (4.37)
where we also have the following relations:
|~ 3
(po| Py = 8(po-1y) Jieed 4’ = 1 (4.38)

We obtain two representations in the state space of a (spinless) particle: the { |r }- and { [p) }-representations.
The correspondence between the ket |y) and the wave function associated with it is given by

w(ry) = {ro|w) (4.39)

and

Wipy) = (py|W) (4.40)

where \.—p(p) is the Fourier transform of y(r). The value y(r)' of the wave function at the point r is the com-
ponent of the ket |y) on the basis vector Jr) of the |r)-representation. Also, the value y(p) of the wave function

he momentum space at b is the componen tha Lat lud ~m tha ha g Aftha I\ ranragantati

lll tne lllUll.lClll.ljlll Spact at pid uic LUlllPUllClll Ul lllC RO I‘P/ vl I.IIC U(lBlD VECWOT [p/ UL uie |ps- lGPlGDGlllallUll
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Exchanging between the |r)-representation and the {p)-representaion is accomplished analogously to the
case of continuous bases. Note that

1 -
(r|p) = (p|D)* = ——77e ™" (441)
(2mk)
Now, we have
riy) = J.<rlp> (plw) dp (4.42)
and inversely,
f 3
(plw) = J(pin(riw) d7 (4.43)
Therefore, using (4.41), we obtain
WO = ——5r .e"””‘wtp) dp (4.44)
(2 ﬁ)3/2
ind
_ 1 .
P = —"—=5 e ""r/ﬁ\y(r) d¥ (445)
(2wh)

The Operators R and P: Let [y) be a ket belonging to the state space and let y(x, y, z) = (r|y) = y(r)
be its corresponding wave function. The three observables X, ¥, Z are defined by their action in the

Ir\ -repregentations

T Lot anallIl

(rlXly) = x(r|y) (rlYy) = y(r|w) (rlZly) = z(r|w) (4.46)
The operator X acting on |y) yields the ket |y'), which corresponds to the wave function ' (x,y,z),

= xy (x, ¥, z), and similarly for Y and Z. The operators X, Y, and Z are considered to be the components of a vector
operatorR, Q|mrlarlv the operators P P and _P aredefined hv their actionin the In\-renrecenmlmn

c el alt yy S8 O, AL CRILCE AT ac L1 L CICIIl At}

(p|PJ¥> = p.(p|W) (PP Jw} = p,(P|W) (p|P|w) = p.(pIW (4.47)

P, Py, and P_ are the components of the vector operator P. The observabies R and P are of fundamental impor-
tance in quantum mechanics. Their commutation relations are called the canonical commutation relations:
(R, P} = i#d; (R,Ril =0 (PPl =0 (4.48)

Quantization Ruies: By quantization ruies we mean the method for obtaining the quantum-mechanics
analog of a classical quantity. Consider a system of a single particle. The observables (X, Y, Z) are associated
with the coordinates (x, y, 7) of the particle; the observables (P, P, P) are associated with the momentum
(P> Py» P,)- We shall often use the notation R for (X, Y, Z) and P for (Px Py P,). In classical mechanics, a phys-
ical quantity A related to a particle is expressed in terms of the particle’s position vector r and the momentum p.
To obtain the corresponding quantum-mechanics observable, replace r = R and p — P. Since the expression
obtained is not always Hermitian, we apply a symmetrization between R and P to obtain a Hermitian operator.
In Problem 4.29 we demonstrate this method. Note that there exist quantum mechanical physical variables which

have no classical equivalent (as spin). These quantities are defined by the corresponding observables.

49 THE TIME EVOLUTION

In the previous sections we paid no attention to the time evolution of a system but rather considered a definite
static state. We shall now present methods for treating the time evolution of a system. Consider the following
postulate:



CHAP. 4] THE FOUNDATIONS OF QUANTUM MECHANICS 57

Postulate VI: The time evolution of the state vector |y(r}) of a physical system is governed by the
Schrodinger equation:
L, dip(e)
lﬁ—'_\g‘, = HOly() (4.49)

where H(t) is the observable corresponding to the classical Hamiltonian of the system.

Some important implications of the Schrédinger equation must be noted:

{a) Since the Schridinger equation is a first-order differential equation in 4, it follows that if an
Iy(t,)) is given, the state [y()) is determined; therefore, the time evolution is deterministic. Note that inde-
terminacy appears only when a physical quantity is measured.

(b) Let |y, (1) and |y,(t)) be two different solutions of the Schrodinger equation. If the initial state is
W) = a iy, (8) + a, (Iw,(t,)), where a| and a; are complex numbers, then at time ¢ the system is in
the state (1) = a |y, (1)) + a,jy, ().

(c) At time ¢, the norm of the state vector remains constant:

@ =0 (4.50)

Sl
/'\
/-\
=
<

Time Evolution for a Conservative System: A physical system is conservative if its Hamiltonian does
not depend explicitly on time. In classical mechanics, the most important consequence of such an observation
is the conservation of energy. Similarly, in quantum mechanics, a conservative system possesses important
properties. Most of the probiems in this book concern conservative systems.

The time evolution of a conservative system can be found rather simply. Suppose the Hamiltonian H does
not denend exnllmtlv on time. The time evolution of the system that was mmn]]v in the state I\u(r \\ is found

using the following procedure

It} = Z}r‘,ank(rg) 10, (451)

where a,, (1) = (0, ,|y(t))- s
(b) To obtain [y(t)) for t > 15, multiply each coefficient a,,(t,) by e TR G here E, is the eigenvalue of
H associated with the state 19, ,):

WO = D D alt) e B g (4.52)

This procedure can be generalized to the case of the continuous spectrum of H. So,

() = ZIak (B tg) e 570 R0 ) dE (4.53)

The eigenstates of H are called stationary states.

Time Evolution of the Mean Value: Let |y(#)) be the normalized ket describing the time evolution of a
physical system. The time evolution of the mean value of an observable A is governed by the equation

d{A 1 dA
—f,,) = 7 A HOD () (4.39)
If A does not depend explicitly on time, we have
d(A> - 1 rys

o~
p——
>
|
=
=
=
™
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By definition, a constant of motion is an observable A that does not depend explicitly on time and commutes
with the Hamiltonian H. In this case,
d{A)

— =0 (4.56)
di

4.10 UNCERTAINTY RELATIONS

Ag we have seen in previous sectiong, the position or momentum of a particle in gquantum mechanics is not
characterized by a single number but rather by a continuous function. By the uncertainty of the position (or
momentum) of a particle, we mean the degree of dispersion of the wave function relative to a central value. This
quantity can be given a rigorous definition; however, that is beyond the scope of this volume.

The Heisenberg uncertainty relations give a lower limit for the product of the uncertainties of the position
and the momenium of a particle:

Ax Ap 2h/2 Ay Ap 24h/2 Az Ap.21h/2 (4.57)

For the case of a conservative system, there is also a relation between the uncertainty of time A¢ at which the
system evolves to an appreciable extent, and the uncertainty of energy AE:

AL AE>H (4.58)

This relation is distinguished from the Heisenberg uncertainty relations by the fact that ¢ is the only parameter
without a corresponding observable.

4.11 THE SCHRODINGER AND HEISENBERG PICTURES

In the formalism described in the previous sections we considered the time-independent operators that cor-
respond to the observables of the system. The time evolution is entirely contained in the state vector |y(¢)), This
approach is called the Schrédinger picture. Nevertheless, since the physical predictions in quantum mechanics
are expressed by scalar products of bras and kets of matrix elements of operators, it is possible to introduce a
different formalism for the time evolution. This formalism is called the Hei: venberg pi('ture. In this formalism,

____________ e PR R P <o

I.llC DldlC Ul I.UC b)’blclll lb UC\LliUCU U_y a I\Cl llldl UUCD nut Vd.l_y over I. WH\I)) I‘VUU)} 1llC UUDCrdeleS
corresponding to physical quantities evolve over time as

Ay = U (1, 1) A UL 1) (4.59)
where A is the observable in the Schridinger picture and

—iH (- r(,)]

U, L) = expl: » 3 (460)

The operator U(t, t,) is called the evolution operator, and is a unitary operator. Note that this operator describes
the time evolution of the state vector in the Schrédinger picture:

(1) = UL 1) Iy () (4.61)

Solved Problems

4.1.  Let Jy,)and |y,) be two orthogonal normalized states of a physical system:
(wilw) =0 and  (y |y = (y,|yy) =1 (4.1.1)

and let A be an observable of the system. Consider a nondegenerate eigenvalue of A denoted by o, to
which the normalized state |0, corresponds. We define P\ (ot,) = [{0,|y, )| and P,(a) =
|(¢ g\uz)\ (a) What is the interpretation of P,(a,) and P,(«, ) (b) A given partlcle is in the state
3y ) — 4ily,). What is the probability of getting &, when A is measured"
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4.3.

44.

(@) According to the postulates of quantum mechanics, P () is the probability of obtaining o, when 4 is meas-

ciaio D

lll'C(,l W[lllC l[lC \y\lclll lS ][l l[lC siaie NJ]) l [lC same lb lIlC cdase Wllll rz((x' ) ln [nc siaie NJz)
(b) The normalized state of the particle is

" 3,y — dily,) 3w —dilyy) 1 Gy, - 4ily.)) (4.1.2)
v = . . - =z —-4i o
J Gl +4iw,D) Gly,) - 4ity,)) Vo +16 > v
Using the postulates of quantum mechanics (see Summary of Theory, Section 4.2), the probability of measur-
ing o, is
Pla,) = = "

o
= 55 (3(0,]w)) —4i(0,[wo)) (3(0,[w))* +4i(0,|y)*)

= == [9{d [w S+ 161¢d Iwr S + 12idd Twhéd lwd*—12¢d lu b d lur V%]
;3\ I\T"lYlf'l l\‘ran[II \Tr]‘Y]I \THIY[/ \TﬂlYll \TnlYll 3
l #*
35 {9P (@) + 16Py(0,) + 2R[12i(0, |y, (9,|w,)*] } (4.13)
Consider postulate I'V introduced in the Summary of Theory, Section 4.2, and generalize for the case of
a continuous spectrum.
Consider a physical observable A. Suppose that the system is in a normalized state |y); (w]y) = 1. Let Ivﬂ)
form an orthonormal basis of the state space consisting of eigenvectors of A:
ALY = ahfy (4.2.1)
(s 74 LI's 74 i ’

The index P distinguishes between eigenvectors corresponding to the same degenerate eigenvalue « of A. This
index can be either discrete or continuous, and we assume that it is continuous and varies in the domain B{c). Since
the spectrum of A is continuous, 1t is meaningless to speak about the probability of obtaining an eigenvalue a. Alter-
natively, we should speak about the differential probability dP(o) of obtaining a result between  and o + do.. An

analogy to postulate I'V for the discrete case, we then have

[ [l(\’m\y)lzdﬁl
dP(a) = 1.! Il ¥ Jda (4.2.2)
B(o)

Con51der ogtulate IV for the case of a discrete spectrum. Show that an equivalent form for the proba-

tha onerator A g
Oof e ape Talor A IS

P(a,) = (WP, P |y) (4.3.1)

where P_ is the projector onto the eigensubspace of A associated with a,,.

Assume that |i1)), ]uf,), ...,and Iuin ) form an orthonormal basis of the eigensubspace associated with a,. By
definition,
RH
i o
= 2 Mkl (4.3.2)
=1
So,
£y & &n En &n
L . 2
WP ) = DD )l = 3D wle B, = D || (433
ol K Kok L Lo V<"1 A

izl =1 i=1 =1 i=1

Therefore, the two formulations are equivalent.

Consider two kets |y) and y') such that y') = ¢'®ly) where 0 is a real number. (2) Prove that if |y is
normalized, so is [¢'). (b) Demonstrate that the predicted probabilities for an arbitrary measurement are
the same for |y) and y'); therefore, W) and \') represent the same physical state.
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4.6.
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(a) We assume that |y) is normalized, or {y|y) = 1. Then
(W) = (yle®e®ly) = duly) = 1 (4.4.1)

(b) According to postulate IV (scc Sumrr;ary of Theory Section 4.2}, the probabilities predicted for a measurement
depend on terms of the form |( | uly)| or |(u W)l We have

) . 2
)|’ = iy @iy = eulipye Sty = [ty (44.2)
Therefore, the predicted probabilities for the states |y) and |y} are the same.

Consider a large number of measurements of an observable performed on the system. Show that the
mean value of an observable expresses the average of the results. Assume that the spectrum of the oper-
ator censists of both a discrete and a continuous part, but for simplicity assume it to be nondegenerate.

Consider first an eigenvalue a, belonging to the discrete part of the spectrum. From a quantity of N measure-
ments of A (the system being in the normalized state [y)) the eigenvalue a, will be obtained N(a,) times with

(¥ )

\ o~ Y s A
N Juoe 7 14,) {

£ I
G¢3.4)

where P(a,) is the probability of obtaining a, in a measurement. Similarly, if dN(a) expresses the number of
experimentis that yieid a resuit between o and o + do in the continuous part of the spectrum, we have

dN(o)
N Jnoe dP(a) (4.52)
The average of the results of the N measurements is the sum of the values divided by N. It is therefore equal to
1o 1
Average (N) =NL“ N(a,) NJ a dN(a) (453)
For N — <o, we obtain
A . . S5 e
Average (V 5 o0) = La,‘ Fa,) + J adr(o) (454)
Suppose now that ju,) for » = 1,2, ..., together with [v',), where o is a continuous index, form an orthonormal
basis of the state space consisting of eigenvalues of A:
Al = a,lu,) Alv,) = alvy) (45.5)

The closure relation of this basis is
- r
2+ ) doc= 1 (4.56)

So, using (4.5.4) we arrive at

h 2 . 2 A r
Average (N — o0) = Lan](qﬂun)i + Jolylvy)| do = Lan(w|un)(un|\p) +J olylv (v ly) da (4.5.7)
Using (4.5.5) we obtain

.
A\rgragg (N 3 e0)= ; (“'}‘A‘I” )(u !|u>.+ ("'I‘A'I ’ )( wlu-) do = <|.A[ : I

v = Wis i, 1\ a VIS Vo A Y al¥ = {wl [ TIAL Vo 'a"Jv
L
n n
Substituting the closure relation we finaily get
Average (N — o) = (ylA|y) {4.5.9)

Consider another formulation for the root-mean-square deviation of the operator A (in the normalized

state [y)):
= J((A-(A)D) (4.6.1)

L
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(a) Show that this definition is equivalent to that given in (4.9). (b) Use the formulation (4.6.1) to inter-
pret the term root-mean-square deviation.

(a) By the given definition we have
((A-(a)) = (4.62)
Note that in this equation the term {A) is actually a shortened form of {A) 1 , where 1 is the identity operator;
(A} is a scalar. Hence,
(wla -l = (wl@’-2a+ ) lw
Using the known definition of mean value, we have
(A7) - 2¢A)(A) + (A)

So the two definitions coincide.

(b) The root-mean-square deviation expresses the average of the square of the deviations of A from its mean value
{Ay. It therefore characierizes the dispersion of the measurement resuits about {A). For examplie, if the spec-
trum of A is continuous and the probability has a Gaussian shape, then {A) characterizes the peak of the curve
(the value of maximal probability), and AA characterizes the width of the Gaussian curve.

(wlalw) —2(A) (wlAly) + (A (wlw)  (4.63)

(4% — (4’ (4.64)

47 Prove that for the o

Neire i

@ [B,A] = -[A,
(A

identitiec ara valid:
e vahd:

y <Al , 11 To1lowin & 1igeniies ar ¥

(b) [A+B,C]
(c) [A,BC] =

(a) By definition,
[B,A] = BA-AB = —(AB-BA) = -[A, B] (4.7.1)
(b) By definition,
[A+B,C] = (A+B)C-C(A+B) = AC+BC-CA-(CB
= (AC-CA) + (BC-CB) = [A,C] + [B,(C] (4.7.2)
(¢) We write
(A, BC} = A(BC) - (BCYA = (ABC-BAC) + (BAC-BCA) = [A,BJC+B[A,C] (4.7.3)

4.8. Supposethe operalors A and B commute with thelr commutator e.,[B, [A,B]] = [A, [A,B]] =

Show that (a) (4, B"] = nB"~ [A Bl; (B (A", B] = nA" [‘,B].

(a) Consider the following procedure:
(A,B"] = AB"+B"A = ABB" ' —-BAB" ' +B(AB)B" ' -B(BA)B" *+---+B" " 'AB-B""'BA

= (A,B1B" '+ B[A,B]B"} +...+B" ' [A,B]

4.8.1)
Using the fact that B commutes with [A, B], we obtain ( )
(A, B"] = B '[(A,B] +B""'[A,B] +---+B""[A,B] = nB""'[4,B] (4.8.2)
(b) According to Problem 4.7, part (a), [A", B] = -8B, A"]. Using part (a) above, we obtain
[A" B} = —nA"""(B,A] = nA" {4, B] (4.8.3)

4.9. Consider the operators A and B presented in Problem 4.8. Prove that (a) for every analytic function F(x)

we have [A, F(B)] = [A,B]F(B), where F'(x) denotes the derivative of F(x). (b) edef =
oA B 1ABL2

(a) First we prove using induction that forevery n = 1,2, ... we have
(4,B"] = n(A,B]B""' 4.9.1)
Proof: For n = 1, (4.9.1) is clearly true. Suppose that this equation is verified for #. Then, using part (¢) in
Probiem 4.7 for n + i, we have

n+l

(A.B""'] = [A,BB"] = [A,B]B"+B[A,B"] = [A.,B]B"+Bn[A,B]B"_I {4.9.2)
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B and [A, B} commute, so we finally have
[A,B""'] = [A,B1B" +n[A.B1B" = (n+1) [A,B] 8" (4.9.3)
Equation (4.9.7) is therefore established. Consider now the expansion of F(x) in a power series, F (x) =
Zanx" . Using (4.9.1) we obtain
[

[A, F(B)] = [A’L“"B”J = La" [A,B"] = [A,B]Lna”B"‘] (4.94)

n n

The power series expansion of the derivative of F(x) is F(x) = Znanx"‘ L. Therefore, by inspection we
can conclude that n
(A, F(B)] = A, BIF (B) (4.9.5)
(by Consider an operator F(s) depending on the real parameter s:
F(s) = ette? (4.9.6)
The derivative of F with respect to s is

d d
dF [d_seA.s')eBs_*_eAs(IYeBs) = AeAseB\+eA:BeBs

ds =
= AeMeBt 4 oM Be e P = (A + e Be ) F(s) (4.9.7)
Using part (@) we can write
[e*,B] = —[B,e"] = —s[B,Ale* = s[4, Ble” (4.9.8)

Therefore, ¢*'B = Be* +5[A, B] e and ¢*'Be™* = B +s[A, B]. Substituting in (4.9.7) we obtain

‘2—f = (A+B+5s[A,B])F(s) (4.9.9)

Since A + B and [A, B] commute, we can integrate this differential equation. This yields

in

(A+BYs, (A B]s*/2 40 y
{7.7.4U)

APy
)€

Setting s = O we obtain F(0) = e* %5'° = 1.1 = 1. Finally, substituting F(0) and s = 1in (4.9.10), we

Alaoio AR _ A+B_[A B|/2
ooiain € ¢~ = ¢ €’ L

Let (| be the corresponding bra of the ket ly). We designate by |y') the result of the action of the oper-
ator A on |y), so [y') = Al\U) Let (y'| be the bra correspondmg to |y'). Prove that
{u] = (\ytAf (4.10.1)

Recall the basic definition of a bra as a functional acting on the state space. The two functionals
{y'| and (wIA are identical if their action on an arbitrary ket |¢} yields the same result; i.e., we have to show that

+
(wley = Cyla'le) (4.10.2)
Now, using Eq. (4.13) we have
(yla'ley = (olalyy* = (oy)* (4.10.3)
and annnrdingc tn the hacie nranertyv nf the ecalar nrndnet leee Ba 74 I 1o havs
ANl auLuIliiag O Uit Uasivc PIopuity U b svdial ploudct [o%% Dy, (7.4 J], WL 11dVe
U .
(wla'ley = w'lo (4.104)

1 o ~msrialoe craealbs N A — A AN £ A DN —
A 185 a COMmipIex nuimoer; }kl“lTD} =A +8 \u)\nu) =B

Derive the following properties of the adjmglofan operator: ?(a)(A ) = A;(b)(?»A)Jr = ?»*A*,where
f
A .

First, recall that two operators are identical if their matrix elements in a basis of the state space are the same.

R £ o o e — JalA A e

lllClClUlC ll 10T dlUilldly N)} LUIU |l+l} we lldVC \q)lﬂllq,l] = \q)lﬂzlw) lllCll z‘ll dJlU 1‘12 are lUCIlllLdJ lll lllC lUl'
lowing derivations we also use some basic properties of conjugation of complex numbers, given in Chapter 2.

{a Tle A I
AN

\ Nno wa hava
it uus ‘rl.})vvul

3
ave

wlayloy = (ola'tyy® @.11.1)
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and using (4./3) again, we have
(0la’lw)y = (wlalo)* (4.11.2)
Therefore,
leay 1oy = colalyy* = (Cwlaley s = (ylaigy (4.11.3)
(b) We write
t
(ol Aoy = Colralyy® = [Aolalp]®* = A*Colaly)* = A (wlalley = ol 2l @arg)
{c) We wriic
(wl (a+BYley = (ol(a+B)lyy* = [(@laly)+ (olBly)]*
= (olalwy* + @lBlw)* = Cyla'lo) + (wl8'lo) = (wla'+ 8Dy (a115)
(d) Let us define [x) = Bly). Using the results of Problem 4.10, we have {x| = (wIBT. Now,
(wl (48)'lo) = (0laBlw)* = (olaln* = (xl4ley = Cyla'a'le) (4.11.6)
4.12. Consider a Hermitian operator A that has the property A’ = 1. Showthat A = 1.
First we find the possible eigenvalues of A, Suppose Aly) = aly), so we have
) = A’ly) = A" (aly)) = ad’ly) = a?Aly) = o’ly) (4.12.1)
Therefore, o’ = 1. The possible values of a are then
1 B B
o=-5+ o0 -5, 1 (4.12.2)
Since A is Hermitian it eigenvalueg are real; therefore, the only posgible eigenvalue of A is @ = |, We can choose
an orthonormal basis of the state space consisting of eigenvalues of A, so Alu) = |u). Every state |¢) can be
expanded as

i) = Z]u,) [ or ) = J‘|us) ds if the basis has a continuous index]

Finally,
A =AY ey = D Ay = D lu) = 1oy

which implies A = 1.

(4.12.3)

(4.12.4)

4.13. Prove that if an orthonormal discrete set of kets {|i;), = 1,2, ...} constitutes a basis, then it follows that

D ) = 1

(4.13.1)

Let |y) be an arbitrary ket belonging to the state space. Since {|u)} is a basis, there exists, by definition, a

unique expansion fy) = ZCilu!). We use the orthonormalization relation (4./6) to obtain

£as lar \_vr"ll\_vﬂi_ﬂ
\i|\ ) = : Coluy |y = : G0 = ¢
J J
So,
!\#) = vC‘.!g') = v <!’,}w>!~4,‘) = [V!u )(u !‘I !m)

-
oY
e
Lo
L%}

N
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Note that since (u,-lql) is a scalar we could change the place of this expression. We see that for any ket |y) the action

of the operator P({|u)}) = Zlu,)(u,l on that ket yields the same ket Jy). Therefore, it is, by definition, the iden-

tity operator, P({|#)}) = 1.

Show that if the closure relation is valid for an orthonormal continuous set {|w_)}, then this set consti-
tutes a basis.

Let |y) be an arbitrary ket belonging to the state space, Using the closure relation we have

r
W) = 1w = Jbwodoma|w) do (4.14.1)
Defining C(a) =(w,|y)we have vy = J-C(Ot)lwu) do.. We see that any ket |y) has an expansion on the |w,). To

show thai this expansion is unique we assume thai we have iwo expansions:

ly) = fC(a)!w ) dot ) = fcm) w,) dor (4.14.2)
J J

and subtracting we obtain

j[C(a)—C‘(a)] wy) dow = 0 (4.14.3)

Applying (wu_| on this ket, J- [Cla)-C' ()] (wu,| wy) dou = 0 and using the orthonormalization relation we obtain
P
J [C(a)y-C'(a)] (o' -y da = 0 (4.14.4)

Equation (4./4.4) is valid only if C(a) ~C' (@) = 0. Therefore, for any o’ we have C(a') = C'(@'), and the expan-
sion of any ket |y) on {|w,)} is unique.

Suppose that in a certain basis [ |u;) ] the operators A and B are reprgsented by the matrices (A, ) and (Q l.j),

i
PETPIE A o emia oo b e

respectively; the ket [y) is represented by c¢;; and the bra (¢| by b, . (¢) Obtain the matrix representation
of the operator AB. (b) Find the representation of the ket A]y). (¢) Obtain an expression for the scalar
(0|Alw) in terms of the various representations.

(a) Consider the matrix element of AB:

(4B), = (ujABlu) = (u]alBlu) (4.15.1)

Using the closure relation we obtain
(AB), = D (Al Cu,lBlu) = Y AuBy (4.15.2)
3 %

(b) By definition, the ket Aly) is represented by the numbers ¢} = (u,|A|y). Using the closure relation between
A and |y), we can write

C;‘ = (u,“AIIW) = Z(U,‘Ml"‘l‘)(u,'l‘-lI) = zAzj('j (4.15.3)

and in a matrix form,

(4.154)
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(¢) We write

(¢lAly) = 2<¢|u,-><u,-IAIu,-><u,-]w> = sz-*A,-,c, (4.15.5)

Y] i)

or in a matrix form,

An Aptr Ay ¢

oAy = (b7 by ... .07 ...) LJ (4.1>.0)
A, Ay Ay
\ J

4.16. Suppose that [§,),where n = 1,2, ..., form an orthonormal basis for the state space of a physical sys-
tem. Let A be an operator with matrix elements A, = (9,|Al¢,). Show that the operator A can be

written as
Wil do

A=Y 4,100, (4.16.1)
H Tire T T

m,on=1

Recall that two operators are identical if and only if their matrix elements in a certain basis are identical. We
write, therefore, the matrix elements of the expression in (4./6./) as

= |
<¢,,|{ 2. A,,,,.I¢n,)(¢,.lJ 100 = D, (00 (60,1410, (0,[0)

moa=1 moan=1

o0

8‘,’"<¢m|Al¢n)6"1 = <¢AM|¢/) (4.16.2)
=1

mon=
where we used the orthonormalization relations (q;,.|q>j) =9,

4.17. Consider a two-dimensional physical system. The kets [y} and Jy,) form an orthonormal basis of the
state space. We define a new basis |¢,) and [¢,) by

0, = :/1—_2-(I%>+ Iw,)) l6,) = :/1-5- (v —w,)) (4.17.1)
An operator P is represented in the |y )-basis by the matrix
1&g
(a;) = ( . W (4.17.2)
-’ Lel)
Find the representation of P in the basis ¢}, i.e., find the matrix a;; = (¢,|Pl¢,).
Method 1: We define the transformation matrix T;; = (‘U,-|‘9,>- We calculate its elements; for example,
- | 1 1 R,
Iy o= (w9 = J—E(WII(I‘P.)H\I’;)) = J_ﬁ(l t0) = 7—'2' (4.17.3)
and
1 1 1
Ty = (W,|0) = ﬁ(Wz'('W])‘N’z)) = J—i(o_l) = _,\/—i (4.174)
and so on. Then we find
S afr) 17s)
b Py “173)
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4.19.
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2
The adjoint matrix is T —1'( bt \ Using the closure relation v"I Hw i i we obtain
1 = . = .
i} 1 ’\/ik 1 -1 J g L W, WI

=1

. N <
ay = (IPlop = L (¢L|W,)(W,|P|W,)(W,|¢f) = LTkn'aijle (4.17.6)

ij=1 ni=1
We can accomplish the calculation in matrix form:

ool Y ve Va0 ) v ) ree 1o )
(a“)—ﬁkl—lﬂel)fil—l)_zkl—ljkl+e—l+£)

}(2+2£ 0 ) (}+£ 0 )
= EL J:L J (4.17.7)
0 2+2¢ 0 I-¢
Method 2: Observing that {§,) are actuaily eigenveciors of P,
1
(14—1:(11:—:(”8]:(”5)—1:(‘] (4.17.8)
Vet )20 1) J2\ 1+e ) N2\ 1)
and
le |1 1 1 1-¢ 1 1
—_ = — = 1-8y— 4.17.9
[EIJZ[—I) ﬁ(—l+eJ ( )Ji[—l] ( )
Therefore,
Plo) = (1+€)lo)) Ploy = (1-8)16,) (4.17.10)
This implies that in the | )-representation P is diagonal:
( l+e 0O \
) = 4.17.11
ap = 7, J ( )

Refer to Problem 4.17 and obtain the representation of the ket e [y,) in the [y )-basis.
Since P is diagonal in the basis, it is easier to work in this basis. Hence,

eP|¢’|) =€ |¢’|) €P'¢2> = el_£|¢2) (4.18.1)

| +€

so we obtain

1 1 1., . _
ey = e TElo+ TR0 ) = 3 e TN+ el ) + ) — e )]
W2 N/REE O
1
= E[{e'+£+e"e) W)+ (e —e' 5wyl (4.182)
Therefore, e”ly,) is represented in the |y,) -basis as
el e +e’
ey=5 7, (4.183)
e ey

(a) Show that the ket jr), where r = (x, y, 7), is an eigenvector of the observable X with an eigenvalue
x. (b) Show that |p), where p = (p,, P, P.), is an eigenvector of P with an eigenvalue p,.

(@) Using the r-representation we have (r'|X|r) = x'(r'|r). Substituting the representation for {r'|r) we obtain

(KX =xd(r-r) = x8(r-r) (4.19.1)
where ' = (x', ¥, z'). Therefore, we have (F'[X|r) = x{r'|r). Since this holds for all I’ we have
X = xir) (4.19.2)

(b Inthe p-representation we apply the same method as in part (@), s0
(P'IPIP) = pAP'|P) = PSP -P) =p 8P -P) = pAP|D (4.19.3)
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Therefore, P|p) = p,|p). Inconclusion, since analogous arguments can be applied to the y- and z-components,
one can write

[xir) = xir) [P} = p,Ir)
jfw>=ﬂﬂ iay>=pmv (4.19.4)
2Ir) = zIr) P = o)

o fi
4.20. (a) Prove that (r|Ply) = ZV{(r|y). (b) Write an expression for {¢|p,|y) using the wave functions
corresponding to |¢) and |y).

(a) Consider, for example, the x-component (the y- and z-components can be treated in a completely analogous
manner). We have

(r|p Jw) = »[("IP)(PIPXIW) &’p (4.20.1)

where we use the closure relation of the p-representation. Using Eqs. (4.41) and (4.47) in the Summary of The-

ory we obtain

1 in- -
(rlPlwy = ——=7 re" "o wp)dp (4.20.2)
(ZmAy" " J
: L . = . hidy(r)
This expression is the Fourier transform of px\y(p), which is 7 =5 = We therefore have
(rlpJw) = 7 axw(r) (4.20.3)

(b) Suppose that ¢(r) and y(r) are the wave functions corresponding, respectively, to |¢) and |y); so
or) = (r|¢) w(r) = (r|y) (4.20.4)
Using the closure relation of the r-represemalion together with the result of part (a) we obtain

P -0 T,
nku;

(Olpw) = J (O|ry(r|p ) d’r = J¢» (75 dr (4.20.5)

4.21. Show that (a) [x,¥] = 0; (B} [p,,p,] = 0;(0)[x,p,] = iA;(dDxp,] = 0.

(@) Using the r-representation we obtain the action of [x, y] on an arbitrary ket [y):

(rllx yllwy = {rleyly) - (rlyxly) (4.21.1)
Using Eq. (4.46) in the Summary of Theory (Section 4.2), we arrive at {r| [x, y1|y) = x{r|yly} — y{(rix|y).
So

(rlx, y1w) = xy (rfy) - yx(rlw) = 0 (421.2)
Since this is valid for any (r| and arbitrary |y) , we have [x,y] =0.

(h) We annlv the same method in the p-representation:

(p|lp.p,]|W) = (Plp.p,|W) - (P|p,p.|W)

— m Imln FASY ETAN ;o Jwm ey n
= Py \pwyw/ —Py\l'wxlw S PAPIY B P ARV =V

i

—
£
b
~
o

-

(c) Wewrite (r|[x,p]|y) = (r|xp|y)- (rlpxx|\p) )

0 fio
(r|[x p|w) = x(r|p,]¥) - ,ax<r|¥|w> x;(l‘lw)—ga—x(x(rlw)) (4.214)

If u(!‘ ig the wave

i r ow(ry] _
(el pdjw = F[gP - LEHO)] 22 )—wnxax}=mwnﬂmnw (4215

Since the calculation is valid for all |y) and for any |r), we obtain [x, p ] = i#.
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(d) Again applying the method used in part (c), we obtain

(r|lx.p,1 1) = x(r|p,|y) - lay(rlxlw

i o Loy AT oy oy
= 7x5;\y(r) -7 73 (xw(r)) 7 an—y —wa =0 (4.21.6)
Consider the following operators:
Awrf v\
0y (x) = X’y (x) O (x) = x—~ (4.22.1)

Find the commutation relation [0, O,] .

Method 1: Substituting the operators O, and O, in the commutation relation we obtain

dy(x) d
[0, 0,0¥ = 0,(0,y (1)) - 0,0,y (%)) = 2 |x 52| 2L [Py ()]
oAy Y]
=X —x[Bx Y (x) + x4 . J = 3%y (x) (4.222)

Method 2: According to the action of x and p in the x-representation, we have O, =x* and O, = ixp/#.
Therefore,

i
[0,,0,] = 7[x° xp) (4.223)
Using Problem 4.2, part (b), we arrive at
3 )
[0,,0,]1= hx [xxp] = 7x 2( [x x]p+x[x pl ) = -3x3 (4.224)
Or equivalently, [0}, 0,1y (x) = -3x*y (x).
The '&l"lgul'd.r momentum is defined b_y L=rx P (fﬁf cXam ylb, LX yp,— Ll} ). Use the commutation

relations between r and p and the properties of the commutator denved in Proble 4.7 to find the fol-
lowing commutation relations: (a) [L, L (D) [L L.] and [L L] () [L L]

(a) By definition,

17 L] = [vn 1 (4231
[ gl 1 LA 1 1 7.&42.

1
£7
where we used the fact that yp, commutes with xp, and Ip, commutes with zp,. Using the relation derived
in Problem 4.1, part (c), we then have

ylp,2lp, +xlzplp, = ~ihyp, +ihxp, = ifL, (4.23.2)
(b) We write
2 . .
(Lol =L(L,L)+[L,LIL, =ikl L—ihL L, (4.23.3)
S-mi}ar}y,
[LLL]) = L,(L,L)+[L,LIL, = ihiLL +ihLL, (4.234)
(¢) We write
(L L) = [LLL)+[L,L]+[L}L)
= Q—ihl L — AL L +iRL L +iAL L =0 (4.235%)
v kA S Tl 2oal T el Y v Tk y
This result also holds for [L2, Ly] and [Lz, L]
A particle is described by the wave function
e N vosa
T\ils
y(x) = [5) er 2 (4.24.1)
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4.25.

4.26.

We begin by considering the matrix element of x:

(0 = {ylxly) = J xy)? dx = 4/1%_[ xe* dx = 0 (4.24.2)

X

2
where we used the fact that x¢®* is an odd function. Also,

I'(1/2 1
(X = J 12|W(X)|2 dx = A/‘JE-E_" e gy = 2«/%’. B dy = 2\/%—;03/2) =5 (4.24.3)
s 0

—oo

SO
Y [
AX = ‘\/(XZ) — (X) = J% (4.24-4)

In order to find Ap we calculate the wave function in the momentum representation:

_ 1 |' 1 (n)"/“ |' ‘ R
— —ipx/h _ it —ipwh _axtr2
‘I’(P) = Az e o W(X) dx = 2\ € ¢ “ dx

N2TTLY N2RT J

! (lt\_”“ 2__]t _Apz/laﬁz L(L)l“‘f—pz/%ﬁz

T [nklal ANaf T Ja\ma

Since lTJ(p) is an odd function we obtain (p) = 0, and

! 2 [ 2 2 Jn/2 ah?
2y = = — -p/ak - 2, p/ak - _
{p") ﬁ.ﬁr—"_l. pe dp % Jan) pe dp fhﬁlzr?_(}/aﬁ%a/z 3 (4.24.6)
e 0
s0 we obtain
—— o
a
8p = ) - (o = [ (4.24.7)

Eventually, the uncertainty relation will be Ax Ap = #/2.

This example demonstrates the basic nature of the uncertainty relation. If we choose a wave function with
smaller dispersion around the central position {.x}, we obtain a higher dispersion of the momentum around {x).

A particle is in the state |y) and its wave function is W(r) = (r|y). (a) Find the mean value of

the operator A = [r){r|. (b) Calculate (r|p|y). (c) Find the mean value of the operator k =
[Ir)r|p + pIr){r]] /2m, where p is the momentum operator and m is the mass of the particle.

(a) By definition,

(A) = (ylaly) = D (rlyy = yrnwr) = [yl (4.25.1)
(b) The x-component of {r|p|y) equals
Aoy(r)
(rlplw), = (rlp|w) = 753 (4.25.2)

fi fi
Therefore, (Flp|y), = [?V\y (r):| . Similarly for y and z, so we obtain (r|ply) = —I:V\y.
(c) By definition, '

1
(e W) = 55 [y n (rply) + (wlp[r)(r|y) ]

1 h h 1 A
= m[w*(r) FVw(r) + 3 Vy*(r) y(r) ] = Re[w*(;W)] (4.25.3)

This example demonstrates the basic nature of the uncertainty relation: If we choose a wave function with
smaller dispersion around the central position (x), we get a higher dispersion of the momentum around {p).

-
S
-

N

o

(&N

)
~—
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(@) Let [y) be an arbitrary ket with corresponding wave function y(r). Find the wavezfunction corre-
sponding to Tjy). {b) Show that T is a Hermitian operator. (¢) Find the operator T . What are the
possible eigenvalues of TT? (d) We define the operators

1 1
p, = 5(1+Tt) p_ = i(l—n) (4.26.2)
Tt mem sl lbsae Loas luia Al AaLlmn
rur dall d.lUllldl_)’ Lw’ § |l|,l/ WU dldU ucillic
lw,) = p,lw) ) =p v (4.26.3)

Show that [y _) and |y _) are eigenvectors of TT. (¢) Prove that the wave functions corresponding to |y )

and jy_) are even and odd functjons, respectively.
P

(a) We begin by considering the ket |y) = J y(r)|r) d‘zr, SO

Ty = J wr) [Te)| dF = J yr)-rdr (4.26.4)

Changing the integration variable to ' = —r, the wave function corresponding to TU[y) is
/-|1'rlm\ = r\ul’_r'\ sy 113 = rS: (w _ w'Y oy w'y ,-I3.-' — wf_w 4 DA K
\lllvlw/ J‘P\ l}\lll/ul JU\I l}v\ gy urs \'I\ n) 1 F.2lr.0)

(b) Using part (a) we have (r|n|\y) (-rjw). Therefore, (r|t = (-r|. On the other hand, tdkmg the Hermitian
conjugate of (4.26.1) yields (r]n = (—r|. Since this is valid for any {r| it follows that T = 7t
(¢) We have
T = TR = T-6 = | (4.26.6)

Since this is valid for any |r), we have n =1 Suppose that [¢) is an eigenvector of T with an eigenvalue
p. T|o) = pld). So, on the one hand we have

miey = Loy = 1) (4.26.7)
and, on the other hand, we have

TTlo) = T(ploY) = pTLidY = P10} (4.26.8)

Therefore, p> = 1. But since T is a Hermitian operator, its eigenvalues must be real. Therefore, the possible
eigenvalues are +1 and —1.
(@) Wehave

1
iy,) = o) = 5L+ Ty 1y) = r_,(mrc ) v (4.26.9)

Using part (¢) we arrive at

My = 5+ D) = piw) = ) (4.26.10)

Hence, [y,) is an eigenvector of TC with an eigenvalue + 1. Similarly, we can conciude that Iy ) is an eigen-
vector of TC with eigenvalue -1,
(e) Using part (a) we have (rlnl V¥,) = y,(-r). On the other hand, relying on part (d),

(rmlw,y = (rlwy = wem) (4.26.11)
Therefore, w (-r) = y (+r), and y_ is an even function. Similarly, ( |ﬂ.’|” = Y (-r)and
LI JFSY 7 b PR £ 4+ SIFTY Y-\ R
(rlmlyy = ~(rjy)y =~y (4.26.12)
Mh e €nane wrs (me) (YRS N TRy ey e W P, A |., LT PPN Y
Lnciciuie, Y () = —y_ (i), alld y_ lb an UUU lUilLllUll Noie lIldl w¢E Can Wl"llC dll_y |\|!] as |l+’) ll!+} + |\P_)
Thus we have obtained a method for separating a wave funciion into even and odd parts.

4.27. Consider a one-dimensional physical system described by the Hamiltonian

2

N
H = 5—+V(x) (4.27.1)
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(@) Show that [H, x] = —ifip/m. (b) For a stationary state find {p) (consider only square integrable
states).

(a) Considering the commutation relation,
1 » . 1 ih
[H,x] = 5 [P x] + [V),a] = 5.2p[p,x] +0 = ~7op (4.27.2)

(b) In a stationary state we have H|y) = Ay}, where A is the eigenvalue. Since H is a Hermitian operator, we
also have (ylH = Aly). Using part (a) we finally obtain

(1 = (lply) = F (ylHx—sHlyy = 5 A Cyledy) - Alyldyd] = 0 (427.3)

4.28. Consider a free particle in one dimension whose wave function at t = 0 is given by

oo
F

Y(x,0) = NJ

—oa

|kl 7k, rkx
&Mk o gy (4.28.1)

where N is a normalization constant and k is a real number. In a measurement of the momentum at time
t, find the probability P(p, 1) of getting a result between —p; and p;.

First note that the relation between the wave function of the particle y(.x, r) and its wave function in the
momentum representation y(p, #) is

o

1 oy~

yix, 1) = 77— |- o Py yip, t) dp (4.28.2)
NLZTTLY

(This is a Fourier transform.) Substituting k = p/# in y(x, 0) we obtain

o0

N —|pl/h ipt
W(x.0) = ﬁl. R VL (4.28.3)
Therefore,
~ N iplsBk
w(p. 0) = 7 2mAe” M (4.284)
From the normalization condition of l‘i:l(p, 0) we can find the constant &
2 2
- 2 21N |' sk 2N Ak,)
f laio. oy | dp = 2% FAl Ry o —b( —“\ 270k, | ] =20mk N =1 (4285)
J [ bV ] J1 il fl J r~ fI L \‘ 2 |(]J 1) 1 4
ML £ AT l A
10EIe1Iore, v = , ana
2k, |
-~2|p]/frku

\Il(P, 0) = Tk (4.28.6)

The Hamiltonian of a free particle is H# = p’ /2m. The basis |p) of the state space consists of eigenvectors of H:

Hip) = 2%[.0) = En (4.28.7)

Note that for every p, \—y (p, 1) is actually the coefficient of |p) in the expansion of the state of the particle | y(t) ) in
the basis |p):

oo

Iy
b)) = J v (p. 1) b} dp (4.28.8)

where \If(p, 1) = (p|y). The time evolution of [y(1)) is described by

o oo

@) = | wp, 0y e iphdp = == | ST T ) dp (4.28.9)
oo (

—oo
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Or equivalently,
1 (4.28.10)

2
_lplshk, - pt/2mh
el"‘ 0l
hk,

\I!(p, 1 =

So finally we obtain

g

- 2 1 [ 2 2
P(p,n =J |w(p, t)l dp = ﬁ_koJ' epozpmz L Hdp- ﬁkJ' exp(#—ﬁ—,fo) dp (4.28.11)

~D. -n. 0n
L4} 11 0

|

g

4,29, Consider a classical quantity f expressed in terms of the dynamic variables r and p, so that f(r, p). Sup-
pose that in f(r, p) there appears a term of the form r - p. Using the quantization rules, find the quantum

anh |nu| operator anrracnnnding tn tha tarm r . n
iccnanica Upvldivl CULTUSPULULLE WU ulv term 1 V-

Let the operator R correspond to
D.D;

o the lasswal coordinate r, and the operator P correspond to the classical
momentum p. Note that R - P i5 not ié :

t

(R-P)' = (XP,+YP +ZP) = PX+PY+PZ=P.R (4.29.1)

In order to obtain the Hermitian operator corresponding to r - p, we must perform a symmetrization of the operator

R.P:
2[R P+(R-P)] = 2(R P+P-R) (4.29.2)

As an exercise, prove that this operator is indeed a Hermitian operator.

4.30. Consider a physical system with a three-dimensional state space. An orthonormal basis of the state space
is chosen; in this basis the Hamiltonian is represented by the matrix

( 21 0)
H={1 20 (4.30.1)
LO 0 3J
(a) What are the possible results when the energy of the system is measured? (b) A particle is in the state
{ i

1 .
|y}, represented in this basis as —ﬁ[ —i |. Find (H),(Hz), and AH,

(a) The possible energies are the eigenvalues of H that are found by solving the equation det (H — ll) =0,o0r

2- 1 0
1 2-n 0 [ =@M -11G-Y = -4+ G-D @4302)
| o 0 3-al
= 3-0 (-2
Therefore, E, = land E, = 3. Note that £, is a nondegenerate eigenvalue where £, is degenerate, so a two-

dimensional subspace corresponds to it.
(b) Method 1: We write

( ()

210 i) i
L L ) _3
(y|Hly) =ﬁﬁ(——t i =i) (1)(2)(; —'l ] —§(—t i —f) ;z‘ }—3(l+1+3)—3 (4.30.3)
i i

\ PN
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Also,
32
1 210 i
(Y = (yle'lyy = 3 i -p| 120 i
003 ]
\ JLi) (4.30.4)
e 210 i.}_l o ‘ 1 1
=3 1 -0 120 || ~i |=3(=f i =) i |=3(1+1+9) =+
Loo3 i 3i ) {9 )
and
f 1 2 242
AH = (H2)._<H>2 = %—65 = —';/: (4305)
Method 2: We define
, i\ (03
|ul) = E —iJ |u2) = [OJ (4.30.6)
0 i
Thus, |y) J3|u|)+J3|u2).Note that ) and |u,) are eigenvectors of H
(.. ) (
q 210 i 1 !
Hu)=-—F| 120 —i | = F| =i |=u) = Eu) (4.30.7)
ﬁ\ 003 )L 0O ﬁ\ 0

Similarly, H|u ) = qu) = E,lu,). The eigenvectors Ju,) and |u,) are orthogonal since they correspond to dif-
ferent eigenvalues of H. So we obtai
2 5
[(u,l+[(u2|) (f|"1>+f|“2> 3E (u||ul)+3E (uy|uy) = +l =3 (4.30.8)

Also,

1 ] (R n Y( R n 3 g » 1 5 11 ,

() = (WiH'lw) = | 5001+ [30 JH [FE )+ [3E0e) ) = SE +3E =5 (4.309)
and AH = Jtdh_ it =9 /1
[ VLV A Y ¥y tv\ll / \ll/ any L o

T afam ¢t~ Nunlalaiee A 2N Qrevmsnrman st thhn novnmme: ~F thhn cuintasen o san marsorsenAd need o P TR ol . | e
INCICI W T1UUILI 2.0V, D PPUDC llldl uiC Clicl y 1 uic y LULIHL wdadd HICadUulCU alld d vdiur Ul £ = | wds
found. Subsequently we perform a measurement of a variable A described in the same basis by
( \
500
A=| 021 (4.31.1)
{0-i2)

(a) Find the possible results of A. (b) What are the probabilities of obtaining each of the results found in
part (@)?
(a) The possible results are the eigenvalues of A obtained by solving the secular equation

dt(a-21) = 5-HTE-V’ =11 = -1 B-H (1-}) (4.312)

Therefore, a, = 1, a, = 3,and a, = 5.
(b) Theenergy E = 1isanondegencrate cigenvalue of the Hamiltonian, so after the energy measurement the state
of the system is well defined by the eigenvector

Vs i AY
I
v = ﬁ[_ J (4.31.3)

< b
.
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Now we can find the eigenvectors of A corresponding to each of the eigenvalues obtained in part (a). This can

DC accompusncu (llI'CLlly [)y SOlVlIlg the cquauou
( 500 ]{ a W
02 B |=ga

0-i?2 b4

for each j. For example, for a, we have

( Sa = o
1 2B+ivy=p
-iB+2y =y
Therefore, o = 0. Choosing arbitrarily § = 1| we obtain y = 7, so after normalization we get
6 -4
'S A

\ i)

(o]

L)

In the same manner we obtain the eigenvectors of A corresponding to a, and a,:

1 0

H

Finally, the probability P(a) of a measurement yielding a,

| (L)
P(a)-‘[(m z)IL J

Similarly, we obtain
P(a2)=z‘(0 i -l

and

PO o PRy

A particle of mass m is confined within an infinite one-dimensional well, between x
T

l[lC 5Lauondr_y bldlCh N)"} [8)} l[lC PdI llLie COITCS p na o l lC CIi
o #n’
E = n =
2mL
- L 2 (naxy |
anatoine wave luI'!CUUI'Ib q) [.X) = AijHl\

is in the state [y (0)) =
function Y(x, ).

(a) Since E| = 'k /2mL” and E, = 2n2h2/mL2. we have,

1 2 ", l —tn: 1 m.-J —&tR At nr.z
() = 72[e"é"”'|¢1>+e"ﬁ:""mﬂ = ple MO g AR g )

PR Y .

/) Consider the case in whi

i

<t

0

is P(a) = |(&,|w)]". Thus,

) -

ergies

_
»

1
1ICI

1at time ¢

(4.31.5)

(4.31.6)

(4.31.7)

-~
4
[¥%)
[
CGo

S—

(4.31.9)

(4.31.10)

(4.31.11)

0 and x= L.

Fo WS NP D
U LIC parucic

[16,) +10,)] /~/2. (@) Find the time-dependent |y (7) ). (b) Calculate the wave

(4.32.2)
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(b) The wave function y(x, 1) is obtained by (x|y(¢)); that is

I ik i
Wix, 1) = {x|yn) = 7—5[(1'[%) eXPt—;ZfervL (x|, eXP[—mszL'H
m

1 [ inzfu] . (TU’) umthir) o 2mx 4323)
="~ eXp|—-——— i sm\| exp S |\ Ty DL
JL 2mL JL mi.’ L
4.33.  Show that the norm of the state vector evolving from the Schridinger equation remains constant.

g hy(r)) = —ﬁ Hnlw(n (4.33.1)
Taking the Hermitian conjugates of both sides of (4.33.7) we obtain
d 1 + |
DV = — WOIH (@) =~ (YOIH() (4.332)

since H{r) is an observable and it must therefore be a Hermitian operator. So we get

noor o
T= [l ’)'H(’)J|W(')>+<W(f)IL ,»,H(r)llu(t»j =0 (4.33.3)

dur(
(W)l dt

d d{w(t)
2V )y = — 4

4.34. The Hamiltonian of a particle in a potential V(r) is

2
H = 2—ml’ + V(R) (4.34.1)
(a) Write the Schrodinger equation in the r-representation. (b) Repeat part (a) in the p-representation.
(@) Consider the Schrodinger equation:
d
iﬁ;,lw» = Hlyy) (4.34.2)
PL,JBC““" thig equal ation into the r-basis , we obtain
l 2
in 3 (rlwi) = 2—m<r|P w0y + (VR wn) (4.34.3)
The wave function corresponding (o [y(1) is W(r, 1) = (r|y(s)). We also have
2 252 2 z/a2 3’ 32\ 2 g2 (4.34.4)
(rlP N(x)) = (rI(P\ +P'\_+P:)~\u(z)) = -# B_’+5_2+F Yy, 2,0 = ATV, 0 T
ATy =*
and we have {r{V(R)|y(r)) = V(ryy(r, r). Therefore,
L0 [ # _, 1
g0 = | -3,V + V) y(r, n (4.34.5)
(h) We begin by projecting the Schrédinger equation onto the p-basis:
L d 1 2
i3 (PIYOY = 3, (pIPlw0) + CpIVIR|yw) (4.34.6)

The wave tunction in the momentum representation is defined by \I;(p, n = {p|w)). So we have

(p’Pz)w» = pz@(p, ) (4.34.7)

In order to calculate the term (pr(R)lw(r)) in (4.34.6), we insert the closure relation in the p-basis between
V(R) and |y(1)), and obtain

(pIVIR)w(n) = J(pIV(R)Ip'><p’IW(r)> dp' (4.34.8)
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Using the closure relation in the r-basis we have

[ o ,
wwmwv=ﬁmnummmwﬂ=z;ngHWMMWmmM% (4.34.9)
We also have
(rlVR)|p) = viry(r|p) = virye™ P (4.34.10)
So, using Eqgs. (4.34.8) to (4.34.10) we see that
1 B - 3, .3
VIR)y(r)) = ——5|V(p-p Oydp' 4.34.11
(pIV(R)w(n) Gy 2 )V (PoPIWRLdp ( )
where
Vp-P) = =5 |vine™ PP gy (4.34.12)
(214)*"2 ) e
Note that l—/ P) is the Fourier transform of V(r). Finally, we have
. a\_V(pv [) PZ - 1 [_ . )
ih =g = =W (P 1)+ =— 5 | V(P - P wip.)d p (4.34.13)
ar 2m (2n5)*"2)

Consider the problem in the x-representation, We search for an operator A acting on a wave function y(x), with
Ay(x) = yix-10 (4.35.1)
Using the Taylor expansion, we can write

(—1) (n)
Yx=0) = Wx) - ly'x) + 3 9"(x0) + -+ Ty () + (4.35.2)
In the x-representation the momentum cﬁeramr acts as p y(x) = — ihoy(x)/ 0x. Therefore,
n

1{ 2 .
= Y(x) —hpx\v(X) +2.(5) Piy(x) + oo +n!(7 pUx) + o

<
—_
=
|
Al
-~
|

exv( i ) Y(x) (4.35.3)

Assume the validity of all the postulates given in the Summary of Theory except postulate II; i.e., we
introduce a system whose Hamiltonian is not Hermitian. Consider a system whose state space is two-
dimensional. Suppose |¢,) and |¢,) form an orthonormal basis of the state space and are eigenvectors

of the Hamiltonian with eigenvalues £, = 5& and E, = (4 -i)#, respectively. (a) Suppose that at

time 7 = 0 the system is in the state |¢,). What is the probability of finding the system at time ¢ in the
state [¢,)? (b) Repeat part (a) for [0,). () Interpret the results of parts (@) and (b).

(@) Using the postulates of quanium mechanics, the state vector at time f is

PO /2 Ve SR 17 P 4 a1
(e = e 0e,) = e o) (4.50.1)
12
The probability of finding the system in the state attime ¢ is, then, P (1) = e = 1.
P y g y ] 1
(&) In this case, we have
_iE,1rh (42

) = g, = ' 0,) (4.36.2)

. 2 2

The probability of finding the system in {§,) is P,{1) = Ieﬁlw*z')'{ =M,

() By inspection, we see that the state |¢,) is unstable. The probability of finding the system in this state decreases
exponentially. This is not the case for the state |¢,) , which is stable and remains in the initial state permanently.
This means that the Hamiltonian is not a Hermitian, and therefore cannot represent rigorously an independent
physical system. Nevertheless, the system could have been a part of a larger system, and then, phenomenoiog-
mallv the notion of complex energies proves to be useful for taking into account the ms:mhlhtv of siates.
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4.37. Consider a particle in a stationary potential V(r}). Show that

d(R) _(p aip) _
= m no—= —(VVR) (4.37.1)
I and II are known as the Ehrenfest equations and are analogous to the classical Hamilion-Jacobi
equations.
We begin by considering the Hamiltonian of the system:
2
Ir . p_.w(D\ iA4 27 2
07 = 2mTV\l\; (4.5/.2)

Since the observables p and V(R) do not depend explicitly on time. we have, according to Eq. (4.55),

d(R) 1 ! p’
— = #wRAHD) = g([R,m ) (4.37.3)
where we used the fact that R and V(R) commute. Using the canonical commuration relations we can obiain
2 ,
R L-} = zL/n\ /4.37.4)
L™ 2m] m ¥/ e
Hence, d(R)/dt = (p)/m Also, using Eq. (4.55) for p and Problem 4.9,
d(p) v
3 = ,ﬁ<[p HI) ,ﬁ< [p. V(R)]) = ,ﬁ< [-iAVV(R)]) = -(VV(R)) (4.37.5)
Compare with Problem 3.3

tt irddinger picture all the operators
berg picture and derive an equation expressing the time
Eq. (4.55) is also valid in the Heisenberg picture.
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(a) Inthe Schrodinger picture, combining the Schrodinger equation and Eq. (4.67), we have
) .
it G UG IV (1g) = H U 191V 400) (4.38.1)

Since this is valid for any ly (1,)) we obtain iR U, 1,)/9dr = H U(t, 1;). H, is a Hermitian operator, so we

also have —iﬁa—tUt(t, ty) = HsUt(t, t,). We differemiate Eq. (4.59) with respect to time and obtain

dA (1) d 4 s J

TR [EU (t, tO)J AU 1) + U (4 1A, l:a—t U, IO)] (4.38.2)
Substituting the time derivatives we arrive at

dA (1)

A
ai

Z W, tYH AU 1) + ;,U (t, t)AH Ut 1) (4.38.3)
Since U(t, rO)U*(t, t,) is equal to the identity operator, we insert this product between A and H_ and obain
dA (1) 1 + + ] + +
dH = —’;z [U (t, t(])H_yU(t9 t(])] [U (t9 t())AxU(L t(])] + i_ﬁ [U ([9 t())ASU(t, f())] [U (tv IO)HSU(L t())] (4‘38'4)

dA (D

Using (4.59) we finally obtain if = [A 0, HyD].

() The mean value of an operator in the Heisenberg picture is

(A®) = (yulAn®lwy) (4.38.5)
On the right-hand side of (4.38.5), only A,(r) depends on time. Therefore,
d{A dA (D
dr> - (v, [ i (4.38.6)
We assume that A is ime-independent in the Schrodinger equation, so using the result of part (a) we obtain
d{A1)
L2 (1A Hy0)]) (4.38.7)
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4.39.

4.40.

4.41.
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In this problem we show that for a conservative system the greater the energy’s uncertainty, the faster
the time evolution. Consider a Hamiitonian with a continuous spectrum, and assume that the spectrum

is nondegenerate. Consider a state [y(/,)) with an uncertainty energy AE and show that if Az is the time
interval at the end of which the system evolves to an appreciable extent, then

________________ , H1IETL

At AEZ2Hh (4.39.1)

ity = Ja(E)chE) dE (4.39.2)

where |0} is an eigenstate of A with an eigenvalue E. We define a state for which loE)]” has the form depicted in
Fig. 4-2.

la(EN?

Fig. 4-2

In this case AE represents the uncertainty of the energy of the system. Using (4.53), the state [y(z,)} evolves to

—1E (115} /A

—
o+
(V9]
O
Gy

~

Ieiod an — PV s N [P
Y ), = jpue)e Pg/ ac

won o |
J

In order to estimate the time interval during which the system evolves to an appreciable extent, we calculate the
probability of finding the system in a state |x). This probability is
2

[ \i2 r GE{t -1} /R
PO 0 = [(xlyi| = U alE)e (X 0g) dE| (4.39.4)
If AE is sufficiently small, we can neglect the variation of (| ¢} relative to the variation of a(E); therefore, replac-
ing {X|0,} by (X|0z,), we obtain
r 2
2 - -
PO 1= [CX0g,)| J a(E)e W A yE (4.39.5)

Thus, P(y, r) is approximately the square of the modulus of the Fourier transform of a(F) and using the properties
of the Fourier transform, the width Ar of P(y, 1) is related to AE by

Ar
ZFAEZ] (4.39.6)

where Ar is the time period during which there is an appreciable probability of finding the system in |y}, and there-
fore it can serve as an estimation of the time during which the system evolves to an appreciable extent.

Supplementary Problems

Consider the projector onto a subspace €, of € (see Section 4.1). Verify that P:, =P

m*

Repeat Probiem 4.13 for the case of a continuous set of kets,
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4.42.

4.43.

4.44.

4.45.

4.46.

4.47.

4.48.

Repeat Problem 4.14 for the case of a discrete set of a kets,

Consider the following four expressions (A is an operator):

IA PEIAN | LY

FOL U WO IS I R PR RY £ Laiiban foo FET U FOw Ny N N
ACVIRN AL 7AN ALY (i) (wid){ylA {iii) {Wid) AloXwl UV ) Al gialy)

(a) For each of the expressions, find whether it is a scalar, operator, ket, or bra. (#) Obtain the Hermitian conjugate

Ul CdL[l CADI camuu

Ans. _ (a) i) scalar; (i) bra; (i) operator; (V) ket. (b) () (olATw) (0w or (wlAle)* (w|e)*:

At
() (yjp)*A I‘P) (i) {y|¢)* N’)\(Plf‘l s (iv) {QlAly)¥(wia'.

Derive the expression of the scalar product

<¢I\v>=2bTCf and  (p|y) = J-b () C(o) da (4.44.1)

in terms of components of the ket and the bra in a given representation. (Hint: Use the closure relations.)
Show that £2¥*'* and ¢'*/* commute for every real number a. [Hint: Use Problem 4.9, part (b).]

Show that the transformation matrix between two orthonormal bases [Eq. (4.29)] is a unitary transformation, i.e.,
s§'=5's =

Derive Eqs. (4.31), (4.32), and (4.33) using the orthonormality and closure relations for the two bases
{lx} and {|v,}}.

Refer to Problem 4.28. (a) What is the form of the wave-packet at time ¢ = 0?7 (b) Calculate the product

:(b) AxAp = h/ 2.

T
AxApat 1=0. Ans. (@) y(x,0) = ,J?Ukzxz+1*
0

Using the Schrodinger equation, derive Eq. (4.54).

NMamiva Baa 74 8§82 anmArA S22y AF nnntnl AVA ¢ s Hirat ©3rmd ¢ha tinva avalikisam AF om aioamuantae ~F thoa TTneailen
AL/CILIVYD LLID- \'P.Jb] aniul \'T.JJ} i P\}ﬂl lCllC ¥ i |_l llll.l L FLOL 1131 lll I.llllb DV\}II.II, Uil U1 Al UIEDIIVC\JlUl Ul LIV LiAllliiivy
nian and then use property (b) of the Schriodinger equation; see Section 4.9.)

Find the operator describing a shift of p, in the x-direction momentum. (Hint: Compare to Problem 4.36.)

ipax/h
Ans. """,



Chapter 5

Harmonic Oscillator

5.1 INTRODUCTION

In this chapter we consider a particle moving under the harmonic oscillator potential,

Viy) = :l/rz ( k = constant) (5.1)
/ e =Ll [

YAAS T aAA A — LRsal ;

The general differential equation for the oscillator potential can be solved using a technique that is frequently
exploited in solving quantum mechanics probiems. Many problems in physics can be reduced to a harmonic
oscillator with appropriate conditions. In classical mechanics, for example, in expanding potentials around a
classical equilibrium point, to the second order, we obtain the harmonic potential kx?/2.

Schrédinger Equation: The Hamiltonian for the one-dimensional harmonic oscillator is

p2 kx*
H=5—-+5 (5.2)

where k = m@?. The variables @ and m are, respectively, the angular frequency and the mass of the oscillator.
We have

2 2 2 2 2 2
o R d  mw
H= Tt 55 = e ) (5.3)
i £ =T ldx‘ e
Thus the stationary Schrédinger equation is
2,2 b}
A dYx) may 5
_ﬁ——-dxz + 75 X Y(x) = Eyx) (54)

The eigenfunctions that are the solutions of the Schridinger equation are
RNV

/)C\ —12/232
v = 3 E”n\i)" (5.5)

where A = Jk/mo and H (G) are the Hermite polynomials. The eigenvalues of the harmonic oscillator that
are the eigenenergies are

AY
Jﬁw n=012,... (5.6)

o) -

/
£, = Ln+

5.2 THE HERMITE POLYNOMIALS

The Hermite polynomial H () is a polynomial of degree n that is symmetric for even n and antisymmetric
for odd n. The Hermite polynomial is a solution of the differential equation

dH(Q)  dH () (25" )
pE +26 g - a1 H© =0 (5.7)

This equation can be reduced to
£°HQ)  dH,©)
dc? N dg

+2nH () = 0 {5.8)

80
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The Hermite polynomials also satisfy the following relations:
dH (o)
dg

= 2nH (<) (5.9)

and
H, (&) = 26H.(0)~2nH, (<) (5.10)

The generating function of the Hermite polynomials is

oo

S(c1) = '+ = ZH;(!.;)[” (5.11)
n=0
and
H.(c) = 57,[5(4;, N (5.12)

More information on Hermite polynomials is given in the Mathematical Appendix.

Similar to the one-dimensional case, the Hamiltonian in the two-dimensional case is

pf+pf, m’ X mu)f,y2
H, = 2m T2 YT

(5.13)

In this case the Hamiltonian is separable in x and y, so the problem is reduced to two one-dimensional harmonic
oscillators, one in x and the other in y. The eigenfunctions in this case are

Vo, (59) =V, 0OV, ) (5.14)

where y, (x,) is the eigenfunction of the one-dimensional harmonic oscillator. The eigenvalue corresponding to
NS
anny (.X, y) Is

A
J (5.15)

o) —

5.4 OPERATOR METHODS FOR A HARMONIC OSCILLATOR

Eigenfunctions can be thought of as an orthonormal basis of unit vectors in an n-dimensional vector space
that is obtained by solving the Schrodinger equation. Here we will go a step further. We will find+lhe eigenvalues
spectrum and eigenfunctions using operators alone. The lowering and raising operators, a and a , are defined by

_ [refs. 2 ) R Gy
a= _Zh(x+mu) =2 T ma (5.16)

These operators are very useful tools for the representation of the eigenfunctions of the harmonic oscillator,
Note that the Hamiltonian of the harmonic oscillator can be written as

ﬁm( aa+ %) (5.17)

H

or

(5.18)

aa

X

1l

e

g
N

~+

|
B~
N—
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It can be proved that the commutation relations for these operators are

[a, a*] =1 [H,a] =-hwa [H, af] = fm)a’r (5.19)
Let us denote the nth state of the harmonic oscillator w_(x) as |n), so a and a satisfy (see Problem 5.10)
aln) = Wnln—1)

1a?|n) = Jn+ljn+1) (3.20)

Now we can justify the names lowering and raising operators for a and a*, respectively. Thus one can build the
state |n) as

1 n
In) = ﬁ(a*) 10y (5.21)

where |0) is the vacuum state (n = 0).

Solved Problems

5.1. A one-dimensional harmonic oscillator is characterized by the potential
1
Vix) = ikx (5.1.1)

where k is a real positive constant. It can be shown that the angular frequency is ® = Jk/m, where m
is the mass of the oscillator. (a) Solve the stationary Schrodinger equation for this potential and find the
stationary eigenstates for this system. (b) Refer to part (@), and find the energy eigenvalues of the oscil-
lator. What is the minimal energy eigenvalue? Explain.

{a) The Hamiltonian of this system can be written as

. 2;12
Iz}

= + ik (5.1.2)
or
- ﬁz d_z 'n_('oz 2 1
H = _2mdx2+ 5 X (5.4.3)
Thus, the eigenvalue equation is
ﬁ:Zd_z\.V_.S_x_) : ni‘?j..z...f_.\ — Eeio £ /1 4
2m g2 T2 S YW T AV (2-1.4)
2E _ . mo ,
We define € = 7o' and we change the variable to § = »J-ﬁ_X; hence, we have
d_w _ d(dydl) _ diy(dg) _ m(odzw
g d\dbdx) T ge\dx) T H g (1)
Therefore,
hod y (5 Ao
7 TR+ Ey (D) -F () =0 (5.1.6)
dg
or
2
\
> =0 (5.1.7)

de’
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For large £ (large x) the dominant part of the differential equation (5.7.7) is

dz\v 2
~-Cy=0 5.1.8
dl;z v ( )
The solution for this equation points to the asymptotic behavior of the wave function for large §:
y( -t (5.1.9)
So we can assume
2
wo) = HQe (5.1.10)
Substituting in (5.1.8) yields
a,zw d ' o
— = g H (De -CH (e ]
dgz dc C C
) n Lo, £n
= H'(Qye " =20H' Qe =T -H( e T+ H(De (5.1.11)
or
- ~ 2
J = [H' = 2LH + (C=1)H]e* (5.1.12)
ag’
Thus we have
(H' =200 + (- DHI P (e -CyHe ™7 = 0 (5.0.13)
We obtain the Hermite polynomials differential equation,
d H( dH(Z)
-2 e- 1 H
dC S—ag + (e~ DHE) = (5.1.14)
The wave function’s behavior around { = 0 (x = 0) is accounted for by these polynomials. In order to solve
this equation we substitute H({) = y‘a"C", so that
d_zl-_-{_v”‘an‘ _i‘vn—l_v”‘a . +2 /n+-.v" Y- 2RI -
dgz —L Lan— 135 = L G2 in+ ) 1)q (2.1.£5)
n=0 n=0
and
dH N .
) 27 = _Zzngnz; (5.1.16)
n=0
Hence,
y‘ [a,,,(n+2y (n+1) ~2na,+(e-1)a,) {'=0 (5.1.17)
n=0
Therefore all the coefficients of this series must vanish:
a, ,(n+2y(n+1H+(e-2n-1)a, =0 (5.1.18)
2n+1-¢
a"+2= (n+2) (n+1)an (5.1.19)

Weset a,#0 and a, = 0 to obtain the values of a,, a;, .. . a,,, (m=positive integer), and similarly a, =0
and @, = 0 1o obtain the values of a;, as, ..., a,, _, (m= positive integer). The a,, or a; values are com-
puted using a normalization condition for the wave function. ¢

As in part (@) we wish the wave function to asymptotically approach e~ ? for large . Tobegin, set the values

of the coefficients of H({) to zero for some value ». For that n, we obtain

2n+1-e =20 (5.1.20)
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Thatis, € = 2n+ 1, or

Ve PERY
i
En=(n+§Jﬁm (5.121)
Tlacn i ssin ~ladaics alin cienedimnti e meen At e s than arncae: cimamaralisas Wil st A cemacco comttenn tlha cicdn
nonce, wo ouviain uic Llud.llllLdllUll COLIUILIULE 10T UIT CLICT y CIBUllValqu. ¥y iuiuul all <l lgy JAVUUILT, LT ybl 1
reaches its minimal energy eigenvalue E, = fiw/2 at the temperature 7 = 0. This value is imposed by the

uncertainty relation

and is the minimal energy eigenvalue the system can have.

A particle with energy £ = £i/2 moves under the potential of a harmonic oscillator. Com

probability that the particle is found in the classically forbidden region. Compare this result to the prob-
ability of finding the particle in higher energy levels.

pute the
r

For the classical harmonic oscillator we have

X =A, cos (1) P =-mA msin (@) (5.2.1)
Hence the energy is
2 242
pFol ., mea,
E, = om tymwx = 3 (5.2.2)
2Eii 2Eii
which yields A, = «\j_z The classically forbidden region is |x| >A, or |x| >Aj'—2. Thus the probability of
mw m
finding the particle in the classically forbidden region is
-A, . oo
P, = _,f VL OW,(x) de YH0W,(x) dx = 2J[ Y)W, (x) dx
. A, A,
A"
P
= 1-2] yiov,0 dr (52.3)
Considering the ground state, we have
[ [ e
P, = 2J WEXWY(x) dx = ZJ?J e dx (5.24)
n
Ay 4o
Changing integration variables 1 = x/A we obtain
oo Ao/l
o] I' 2 2 2
P =LJ e”'dnzl_i" e " dn (5.2.5)
0 ﬁ ﬁ L
Ag/h 0
We have A /A = 1; hence,
!
Py=1 2f 5.2.6
v R N
0
Solving this numericaily we obtain P, = 0.1578 (see Problem 12.8).
For excited states the probability for being in the classically forbidden region is
t'An - 7 N . fAn s N N
i A XY 2,52 i of XY 2.2 (x
P =l—2J ——H —e“‘“dx=l——"‘_—J H -e‘”ld') 527
" T 17 2 ), 2 & (52.7)
Putting | = x/A, we arrive at
A/A
P p— ( Hime™ dn (5.2.8)
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5.3.

Using the known Hermite polynomials H,m) = 1, H,(n) = 2n, H,M) = 4n? -2, and A,/A = /3, we obtain:

4 3
P =] 2007 g 529
i Jr . n n { )
The numerical solutionis P; = 0.1116. Also we find
s .M

P, = l—l-J (1604~ 16n2+4) eV dy = l——l'J (4n*-4nt+1) e dn = 0.0951 {5.2.10)
2 4./n), Jnd ' -

Thus we have seen that P, = 0.1573, P, = 0.1116, and P, = 0.0951. Note that the value of P, is smaller for
higher energy levels. The reason for this is that particles with high energy are “‘more classical” than those with lower
energies, and hence the probability for particles in higher energy levels to be in the classically forbidden region is

less.

Using the uncertainty relation Ap Ax>#/2, estimate the energy ground state of the harmonic
oscillator.

The Hamiltonian of the harmonic oscillator is

n?  mo?
H = 5”;+—2”:~ : (5.3.1)
The expectation value of the energy is
(HY = E = (2%;) +'"—§)~2(x2) (5.3.2)
We can write
ap = (ph) - (p)’ Ax = (x%) - ()’ (5.3.3)

For the harmonic oscillator (p) = (x) = 0. The proof for these results is as follows:

o0 oo
- -

(x) =J v (x)xy, (x) dx =J |an(x)|2dx (5.34)

—oa —eco

The integral of the antisymmetric function x|y, (x)|” over a symmetric interval is zero; hence, (x) =
Similarly,

oo

oy (x)
(p) = —ih yE(x) dx (5.3.5)
el Tas 4 X A % h h
\,uanging variables to = X ana A = AJ’FD’ WwE Nave
dwy, (§)
(p) = —zﬁJ VD) 5 4 (5.3.6)
50,
dy, OH, (L) <7
LACNS e Ly (D) (5.3.7)
o5 ok Joaz"n
Thus we obtain
(p) = ———;ﬁ— w*(C)%e*gz’zdé— "ﬁjmw*(C)w(C)CdC (5.3.8)
Mﬁk2"rif— " d8 Y

Notice that

<x>~J VO (O = 0 (5.3.9)
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0H (1)
. . . . 0 . n . ]
As the Hermite polynomials are either symmetric or antisymmetric, the multiple H, ({) —ag is always antisym-
metric, and for the same reason that {x) vanishes, {p) also vanishes. Thus,

AP mod

E=-—=+—F" Ax" (5.3.10)
2m 2
. ) h
According to the uncertainty relation, the minimal value of Apis Ap = 577 hence,
g M M (53.11)
= + X 3.
8m Ax® 2
Finally, the minimal value of E (Ax} is obtained by
dE B )
=~ ! s+ mew Ax = 0 (5.3.12)
d(Ax) 4m (Ax)
So Ax, = /-—fl— Al
0 Axy = (5,0 Also,
i’ 34
d’E . = ———+me’ >0 (5.3.13)
d(ax) |, o\ 4m(AY)
Hence, the minimal value 1s
4’ oy fim Ao fo
= 3+ T (Axy)” = T+T =5 (5.3.14)

as we expected. Here we obtained the exact solution by relying on the lower bound of the uncertainty relation
Ax Ap = h/2. This follows from the result that in the ground state we have a Gaussian form of the eigenfunction:

W(‘) = (27[6)]/4 e4p\/fn€~ (4 \”)EIJ.(SE (5315)

Though the uncertainty relation is normally used to estimate the ground state energy eigenvalue. for the case given
above we can evaluate it exactly.

Find the eigenfunctions and eigenvalues of a two-dimensional isotropic harmonic oscillator; find the

degeneracy of the energy levels. The Hamiltonian of this system is

2 2
P, b1 2 2
H= =+ +5me’ (x +y) (5.4.1)
2m Zm L ) - ’

The Hamiltonian of the system can be separated into two parts, H = H + H_ where

_ P me H—p—%' mo'y® 542
At T2 sTamt T2 (>4.2)

H

Thus, the wave function can be written as a multiple of two functions. ¥ (x) (the eigenfunction of ) and y (y)
(the eigenfunction of H) with eigenvalues £, = Aw(n + [/2) and E, = hw(n +1/2), respectively. So we
have Hy = Ewy, where y(x, y) = y (x)y (¥); hence,

Hy(xe.y) = (H +H)wy 0w, 0) = Hy (0w 0+ y (OH g ()
= E‘v‘\p-\&E\w‘w} = (E +E)wy vy, (54.3)

Therefore
E=E+E = (n+a,+hHho=(n+ i (54.4)

The degeneracy of each state £ (1, n.) is computed as follows: (n + 1) is an integer that assumes all values from
0 to . We can see from Fig. 5-1 that (n + 1) = const. defines a line in the n_# space. One can also see that the
degeneracy of the state nis n + 1.
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5.5.

n,

No. ..
n+]=ni+nﬁ,+l=2\\

1 233\4 n,
n+l=n+n+1=4 ’

Fig. 5-1

4 . . . .
2

Consider a particle with charge +¢ moving under a three-dimensional isotropic harmonic potential:
1 29
V(ry = Fmwr (5.5.1)
in an electric field E = EX. Find the eigenstates and the energy eigenvalues of the particle.

T'he Hamiltonian of the system is

p:  mw’,
H = R -eEx (55.2)

We separate the Hamiltonian into three parts: H = H_+ H_+ H_, where

P} maw’
H, = 5-+ X —eEqx
_ o ome
Hy=5p*t727 (5.53)
I’;z m’ R
H = ‘2—m+ 5z

Notice that #_ and H_ are identical to the Hamiltonian of the one-dimensional harmonic oscillator, so we can
write the wave function as y (x, ¥, 2) = Wy, (xX) y, (¥) y; (2), where y, (y) and y, (2} are the wave functions of

the one-dimensional harmonic oscillator:
th mensionai harmon 1iator:

(SRS ] ohuf 1 15107 1C 050

[ ) = 1 H ( ) -yz/zf
V2 (0) = T, D) e
NTAZ S
- (5.54)
W,(Z) - ____Hﬁl(z) e—: 72
l J?t?d"n}'. ’
ith A = Iz Th ion of i
wit = ‘\/m(z)' e equation of y, (x) is 2
A2 mw
Hy (x) = Zm g T2 vy —eEpvy, = By (5.5.5)
Changing variables to § = i— Ly yiclds
Jhimo
dy, (2B, (eEy)7) o . 556
|t — |y, =Ly, = 5.6)
dg’ Lﬁw ﬁmofJ l ]
We obtain the differeniial equaiion for a one-dimensional harmonic oscillaior wiih ihe solution
1 2
¥ (5 = ——=H, (H)e*” (5.5.7)

NLIVAPS.
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or

1( E, \
5%— o ” (5.5.8)

2E, (eEy)
-—+ =2n+1 {559)
® fme?
so the energy eigenvalues are
2
1 (eEy)
(E)y = (n,+:1fl(o— UA (5.5.10)
N </ 2may’
In conclusion, the wave functions are
(X y,2) =y () g, () y;(2) (5.5.11)

and the energy eigenvalues are

E 2
- D

= E’n +1!:“,12 +E”3 = (n] +n, +n, +§ P (5.5.12)

G

5.6. Consider a particle with mass 7 in a one-dimensional harmonic potential. At ¢t = 0 the normalized
wave function is
1 174 226
yx) = (—J e

\nG /

(56.1)

2 A : . : .
where ¢ # e S aconstant. Find the probability that the momentum of the particle at ¢ > 0 is positive.

We denote by \Il(p, 1) the wave function of the particle in the momentum space at time ¢, The probability P for

P R - AT ARt Ta
d PUSIUYU HIUILvALILUII 1>

P = cin ] An IS AR
i WP 4 {5.0.47
0
WA ~ ot { A Tim rommhimatioan ~f tha aig T Aati 3 MArnAntee e
We can wrilte yi(p, #) as a 1in¢ar cComoination o1 tnc ciseﬁfuﬂyhuﬁs in the momentum space:

—i(n+ 1/2) Wt

v, D = ZC_,an(p)e (56.3)

n=0

where a)n(p) are the stationary eigenfunctions in the momentum space and the coefficients are C,, = (@_,,(x)!\]_l(x)).
Note that here ¢,(x) are the eigenfunctions in the coordinate space. y(x, r) can also be written as

-i(n+1/2)wr

—
La
=)
N

S

The functions ¢

x) eir F
x) ither netric or anti netric, as heir For ansf
conserved for every f; thus, y(p, 0) is symmetric, y(p, 0) = y(-p, 0), and also y(p, £} = y(-p, 1). Hence,
0

irier transform). This attribute is
£ ~ 2 rx ~ 2 f ~ 2 f ~ 2

J W(p, t)| dp = J |\V(—p, t)\ dp = —J ‘W(+P, t)l dp = J W(p, t)l dp (5.6.5)
0 O 0 —oa

Using the fact that \I}(p, ?) is normalized, that is,

oo ) 0

r e o

J v, ol dp =J v, ,,|2d,,+J oo, ol dp = 1 (5.6.6)

e 0 oo
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we obtain
o ]
~ 2 { ~ 2 [
P = l\u(p, t)| dp = v, t)’ dp = 5 (5.6.7)
0 ~o00
(a) Refer to the initial condition in Problem 5.6 and calculate w(x, 1). (b) Given thatat ¢ = 0 the particle
is in state
yix) = _2' [Op(x) +0,(x)] (5.7.1)

where ¢, (x) are the eigenfunctions of a one-dimensional harmonic oscillator. Compute the expectation
value of xat > 0.

h
{a) First, note that the given y(x) is not yy(x) (the eigenfunction) since G % o S0 10 find y(x, t) we must write
y(x) as a linear combination of the eigenfunctions ¢,(x):

yix) = ZC,,¢,,(x) (5.7.2)
and
-\ —i(n+ 1/ D wr
v n = Q C,0,me (5.7.3)
where
C, = (0, |yx) = J OXW(x) dx (5.7.4)
Now, writing A" = o Ve have
8,2) = —7—1:11({) expr—%(;—iﬁ (5.7.5)
Jr'722 L J
S0,
1 1 [ ( x] Lyl 1
Cn S e 172~ 2 Hn X exp[_ax (ﬁ'*'_i}-'dx (5.76)
(A2 Anl) (NIEG) ¢ L® YA ¢ 7/]

Recall that H, (x/A} are either symmetric (for even n) or antisymmetric (for odd »); hence, since H, (x/))

. . , 1 o1 1 ) . .
is anftsymmetric and exp [—Exz( T+ Pﬂ is symmetric, C, vanishes for odd n. Thus we need only compute

1 X 1> 6+ A7
Cz'" = m 172 HZm X_ exp _§X 120_2 dx (577)

_____rmHHQ'v‘Z )t [22s (5.7.8)
" «/n4m(2m)!lcj . Z’"L'le*'ﬁznje ‘J 2+62dq

2\0 26° ] 2
= H i an
"/7E4m(2m)! (l2+<52)." 2"'['\“2+62n ¢

—%0

¢,
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Using the identity

oo

-.—2 2 ! m
f Hy, (ax) e dv = il (a1 (5.7.9)
we get
Tem! | =M
C2n = J nm 67( "21) 2 L 2 ZJ (5710)
4" (m!) (M +0)\ o +A
or
yix, 1) = Z"z"“’zn (rye TR (5.7.11)
n=0
It is given that at 1 = O we have
1
Yy, 0) = ;/5 [&,0x) + ¢,(x)) (5.7.12)
Thus, for ¢ >0,
! —t1wi/2 -2
Wix. D) = Fgyxe o e (5.7.13)
By definition, the expectation value of x is

I
(0 = (yin Dy 0) = 5 ({00 |xl0y(x)) + {0, (0)|xl,(x))

ot

+ 700X, 00} + €' (0 (x) X 9y} ] (5.7.14)

Let us compute each part separately:

s o0

N

&
—
n

N

TP B PR Ll s N4 o . l./,\zr
(PN Pylx)) = J Q)P0 ax = J [0 “dx
Since |$,(x)|” is symmetric and x is an antisymmetric tunction, the intégration vanishes on a symmetric inter-

val, (¢o(0))xoy(x)) = 0, and also (¢,(1)|x|¢,(x}) = 0. We tumn now to compute

oo s0

, . _ * Ydy = ;_.l__ H ({)H (f) . »xz/?\ldx_ 5716
(Queolilo = | owe dr = = | M e (5.7.16)

We have H (x/A) = 1 and H (x/X) = 2x/} (see the Mathematical Appendix). Therefore,

o0

21 { [ 1
(G, (0) = (=73 e M dx = —— (5.7.17)
L2 22
[
or {Po(x)|xl o, (xpy = moand
I3
(0,(0lxl0y(x) = (G0, (x))* = T (5.7.18)

So, we finally obtain

(v = N 2 €°8 (@0) (5.7.19)
§8.8. Consider the one-dimensional harmonic oscillator with the Hamiltonian
2
1'-!'—L+1mco22 5.8.1
= 57%7 X (5.8.1)
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We define new operators

S =, [
P = T and Q=x/—= (5.82)

oo
so H=—= (Q + P }. (@) Compute the commutation relation [P, Q). (b) For the operators a and
a defmed as

Mo i
a= J_(Q+1P) = ﬁx+ P (5.8.3)
1 ) i
t_ o ’fll___ L
a = .Ji(Q iP) = /3% % mof (5.84)
compute a|n) and afln), where |n) is the eigenfunction of the oscillator for the nth energy state.
(a) We use the known commuuation relation [x, p] = ifi, so
m® 1 [, 2] , SR
(P, Q] = L/_ Xdrﬁ—} 7 psx] = i (5.85)

() Using the result obtained in part (@) we can write

+ 1 . . | S 2.
a'a = 5(Q-iP) (Q+iP) = 50"+ P ~i(PQ-0QP)]

1 . LD 2
=3(Q +P -ilP,Q]) =5(Q +P -1) (58.6)
so substituting in (5.8.7), we have
H = ﬁw(a’m%] (5.8.7)

. . t
Now we turn to compute the commutation relation @ and a :

1
[a'.a]l = 5[Q-iP.Q+iP] =i[Q,P] = -1 (5.8.8)
Thus, a'a —aa’ = —1. Therefore, we obtain
+ 1
H = kol aa -3 (5.8.9)
We also need to compute the commuutation relation of a and a' with H,
[a,H] = fioa,a'a) = hwla,a'la = hoa (5.8.10)
Similarly,
P B L . 1 ta . R . . + P
@ . H] = h®W|a,aa} = ®la,ala = -hwa (5.8.11)

Thus, using the eigenvalue equation of the energy Hln) = fim (n+ 1/2)|n), we can write

Hlny = ﬁm(a a+s )In) {5.812)
Therefore, a a|n) = nfn). Similariy,
Hiny = fioof aa’ - 1) (5.8.13)
+ 1
so aaTin) = (n+1)|n). Weapplya = “Fe [a H] on the state |n), so
1 t t
aH Ha 1 Ha

afln) = 7o T+ 3 Py [ny = = (n + a)a”n) + mln) {5.8.14)

or

AT U SR T R
H(a'ln)) = holn+3 j(a'in) (5.8.15)
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Hence, we conclude that afln) is a state that is proportional to |n + 1}, i.e.,
)=a'ln) = oln+1) (5.8.16)
where o, is a constant given by
o) = (y,|v,) = (nlaa'ln) (58.17)
We have already seen that aa'lny = (n+ 1) |n): thus ai = (n+1).Choosing a, = Jntl, we finally get

a'lny = Jn+ljn+ 1) (5.8.18)

Similarly, we apply a = ﬁn [a, H] on the state |n) and find

alny = Z—gln) - g—;‘lln) = (n + %) (aln)) - 0‘% (aln)) (5.8.19)
or
H(aln)) = ﬁw(n—%)(aln)) (5.8.20)
So we conclude that a|n) is a state that is proportionai to |n— 1}, i.e.,
h_Y=aln) = a_ jn-1) (5.8.21)
where o._ is also a constant
@ = (y_|y.) = (nla"aln) (5.822)
We have seen that a'a|n) = n|n); therefore of = n. Choosing o_ = Jn we get
ainy = Jfnjn—1) (5.8.23)

Note that if we apply a to the ground state |0) we get
al0y = 0 (5.8.24)
Thus, we introduce the lowering and raising operators a and a' defined above that satisfy

{ aln) = Jnjn— 1)

\ (5.8.25
afny=Jn+lin+1) )
Caomnute the matriy 2lemente of the anaratore v and n far the ane.dimencianal harmaonic necillatar
Compute the matnx elements of the operators x and p for the one-dimensional harmonic oscillator,
-}
y = {nldlN = l. M Y v (v Ay IZX B A
nk \AEILYS J WplA) A, (A) GA {J.7.1)
—_—0
OC
P
—_ — *
P = (1D = | 050 p0, () dx 592)
—o0
where ¢, (x) are the eigenfunctions of the harmonic oscillator.
. . . O
Let us write x and p using the towering and raising operators a and a' (see Problem 5.8):
l t t
x =3 slava) = J5—(a+a) (5.9.3)
bl RLLAY Y N I
Similarly,
mw 24 ( N . ’mu}fz( + 504
=5+ |—(a-a) =i a —-a 9.
P=5m ) =i ) (594)
from which we can now compute
(nlxk) = —"—(:;| (a+a)k) = —ﬁ—((nlalk) + (nla'lk) 595
= \Tmw = i ) (5.9.5)
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We have seen that

{alk> = Jklk-1)
a'lky = JE+1lk+1) (5.9.6)

Therefore, we have

(nlxk)y = ’l—(‘@(n!k—l)+~/k+-(nlk+l)) Ry Y at.

LA Vzmw - Mzmw N YR k-1 n,k+l) (5‘9 ’7/]
where
1 n=m
8, = 0 nem (5.9.8)
Hence,
[t s
(nlxk) = | [hn ¢ = e (5.9.9)
2mo -
0 otherwise
In the same way we can compute
. Imoh . imowh
{nlplk) = i T(nl(a'—a)lk) =i T((nlaflk)%nlalk)) (5.9.10)

Now using the relation (5.9.6) we have

T — ~ meh _
{n|plk) = tA/T(Jk+l(n|k+ 1) —Jk{nlk-1)) = 'JT("/k+ 18, ;.1 —~k8, ,_}) (59.11)

i _/"”’;ﬁ" k=n-1

so we obtain

= A 1
(nlplky =3 _, {@_(zn;) k= nal (59.12)
0 otherwise
Wa rnon averace £l BV and Zwlnl b in o miateiy fhee no
YL vail CI\FIUDD \fl|.A.|fl/ alig \fl|ll|f\/ Ml a lliauiA 1viL ay
01 0
~ 14
1 0 2
0 Jé 0 Jj cee
s [h . L
(njx|k) = ,‘jm 0 0 ,J3 0 - } (3.9.13)
and
0 -1 0
. f g
i 0 -J2
0.2 0-.3
motk " o
(niplk) = 1,\/_7:" 0o 0 .3 0-- (5.9.14)

As expecied, x and p are represented by Hermitian mairices.
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Consider a one-dimensional oscillator in the nth energy level. Compute the expectation values

& W B, P

‘What can you say about the uncertainty relation Ax Ap?

Using the operators a and a'., one can find that

i)
() = m(zm 1B} (5.10.1)
5 mwh
(P =5 (2n+1) (5.10.2)

and (p) = 0, (x) = 0. Therefore,

N (PP —(P)

fmooﬁ
- (2n+1)

Ap = =
. _
Ax = J(F) = {x) = }z—mw(2n+ 1)
i
Ax Ap = 3 (2n+ 1) (5.10.3)
Hence, the ground state satisfies the minimum of the uncertainty relation:
Av An = E /15 1N A\
LAA iRgs 2 (~V.IvV.T)

The simplest molecular crystals are formed from noble gasses such as neon, argon, krypton, and xenon.
The interaction between the ions in such a molecular crystal is approximated by the Lennard—Jones

o \12 G\
Vi) = ‘Wo[(:) -(:)] (S.ILD)

1.
PUl\allllﬂl.
The values of V; and & for the noble gasses are listed in Table 5-1.

Table 5-1
LN A _ 7 A YO
INC Al 12N AC
V,(eV) 0.0031 0.0104 0.0140 0.0200
o(k) 274 3.40 3.65 3.98
Find annroximatelv the eround state enerev of a single ion ic such a crvctial int: The 10n near the min-
SING SPPrOoXImae:y ine grou Swalh CHCIEY UL 4 SHIgL0 100 15 SLCA & LTYSias, 150, 240 100 nSal uid M

We begin by approximating the potential V() near the minima to a polynomial of the form

k
V=V, +3(r=r)" +0[(r=r,)’] (5-11.2)
where V,, is the value of V(r,,) and r,, are the minima. Hence,
av)| ([ .2 )
| = 4V0L— 1255 + 6*;J =0 = r,=2" (5.11.3)
thus, V(r,) = —V,. Similarly,
2 12 6 1%
o] (o)
k= dL(’)| = 4v,u,( 1561—42—31 =362 (5.11.4)
dr | \ ¥ re ) fo]

r=r,
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Now we can approximate the behavior of an ion in the crystal to the behavior of a harmonic oscillator. The ground

"
state of a harmonic oscillator with potential V(r) = U, + ( 5) (r—ry)’ is

2 > I
i nojk
Eg= " +Uy = 5A/;+U(, (5.11.5)
where m is the mass of the ion. Therefore,
Ak 3.2 v,
E0=Vm+§ -="g ;_Vo (5.11.6)

Supplementary Problems
5.12. Show that the eigenfunctions of the harmonic oscillator in the ground state and in the first excited state have inflec-
tion points wherever the condition V(x) = E is satisfied, i.e.,
mo?
—x = hm(n+ﬂ (5.12.1)
Z 2y

5.13. Find the eigenenergies and eigenfunctions for a particle moving under the potential

(2
me
o

(

-
NV
<D o

V(x) = (5.13.1)

t3

Hint: Itis easy to solve the Schrodinger equation for x > 0 and for x < O separately, and then demand that the eigen-
function for all values of x will be continuous.

Ans. The eigenfunctions are ¢, for n odd where ¢, are the eigenfunctions of the harmonic oscillator. The corre-

1
sponding eigenenergies are £, = fim(n + ;].
a - - - - AN L/

5.14. Consider an isotropic three-dimensional harmonic oscillator. (a) Perform a separation of variables and find the
eigenstates of the system. (#) Find the eigenenergies and determine the degeneracy of the levels.

L M, 0H, 0, @)
(RX)JI‘,\/Z(nI+n2+n3)

] B-1+n)! _ (n+1) (n+2)
e I 7

- 24y2+22)/2kz
[4

Ans. (@ w(x,y, z)
', nyl
n,lon,tngl

5.15. The wave function of a harmonic oscitlator at time ¢ = Ois
1
W(x0) = J24¢, + FAY, +Ad, (5.15.1)
e

where ¢, is the stationary eigenfunction of the oscillator for the nth state and A is a normalization constant. (a) Com-
pute the constant A, (b) Compute the eigenfunction W (x, ) for all values of 7. (c) Calculate the average (E) at times

1€ 1NE COTIM g ule Hic el pelran

t=0,t=n/w and r = 21/ w. (d) Find the expectation values (x) and (p) for 12 0.

3w/ 2 i L —Sns2 ) ‘71mr/2\_
+ ﬁQZE +¢3€ ),

A R A 1
Ans. (@A = ,ﬁ; (b) y(x, 1) = ,Jﬂdl‘l’.e
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5.16. Consider an isotropic two-dimensional harmonic oscillator. (a) Write the stationary Schrodinger cquatlo n for
manillatmn Calo Laantent:mem o £ lawdacnom nammdimatas (Y W -Cen tha atntl~e Al ,l nger eql 8t e ol

O8Ciuatdlr. DOiIve lllU Cquauuu llI L aicsian CooTainaics. /) ¥Yv 1o nic Stationar _y L,\lll hugvl oy dLlUll i P\J ar Coo1-

dinates and solve it for the ground state. Is this state degenerate?

Ans. (a) Schrédinger equation:

_1_(a_2+a_’-\w(x y)+’"—°’2(xz+y2)wx Y = EY(xy) (5.6.1)
2'"Lax2 ayZJ ’ 2 ’ ’ R
—
Yoo (X,¥) = J,m CXp[ - (K +y )} (5.16.2)
(b) Schrodinger equation:
2 2
L 18 ry (r, 8) +18\V—(:,_Ql+m£0 ,rz\,l,t(.r, 8) = Ey(r, &) (5.16.3)
Zmrdr ,.2 0e° 2
mm [ mo )
Yoo (7, 8) = Ajﬁexpk—TrJ (5.16.4)

and the state is not degenerate (ground state).

5.17. Compute the matrix elements (nlxz‘ my and ( nlpzlm) for the one-dimensional harmonic oscillator.

[A/m(m—l) n=m-2
| 2’ 3 (2m+ 1) n=m
Ans. (MM = 200 S E D) (mA D) n=m+2
[ O otherwise
Iw’m(m—.) n=m-2
| 2| mﬁm! -(2m+1) n=m
(nlp my = - 2 [T+ 1Y {57 2 O o — gL D
A \f’l T 1) \lll T L) e (LT
lo otherwise

5.18. Compute {n|px|m) for the one-dimensional harmonic oscillator.

in

5 m=n
iR p—— "
SN (r-1)n m=n-2

Ans, {n|px|m) =

ih
2N (n+2) (n+1) m=n+2

5.19. Compute the matrix elements (ni)cJ |m) and (n|x4|m) for the one-dimensional harmonic oscillator.

oYz,
e/ ~(+3)(n+2) (n+1) m=n+3
i(n+1) )2

3 ( Zmw 1 m=n+1

Ans <HIX|m>= fin \372
3(2:.11.@3] m=n-1

b 2
>( ) n(n—l)(n*Z) m=n-=3

2mw
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(h Y ——
\Zmw) Y(n+ 1) (n+2) (n+3)(n+4)

3
g

2
2
4(,\) nd(n+1) (n+2)
AN /
2
( ] (3n2+2n+l)

2mm

(4n-2)(2—,%]2m

ﬁ 2
(m) Jn(n~1)(n=2) (n-3)

"

97

(5.19.1)



6.1 INTRODUCTION

Acs in clasgical mechanics we introduce the auantum aneular momentum as the nnanht\/

s 211 C2aS5I0al IR AIRAINNCS WL 2R L I Qrallililil &llpsxial AR &5 AL QRealliit

L=rxp
Tom rmrzmendezoen swamabenoesan T neerd 1M Awa Aemanataen hatiise s samenacAantntiasen 100 astanias AnAandisntan
111 l.ludlllulll lllcblldlllbb La, l s Allul IJ aiv UPCI QAU 11lavl 15 ICPIUDC 1LRLIULLD 111 Ldllldliall vuuLullIalod
L= (L,L,L) P= (Pup,p) r=(xy2)
Thus,
; A 9 .38)
[ oy = _‘y‘p_—zpy = —t'wky’az—.'s'a_y)
, ( d 0 \
I =220 —xp = —ihl 2090~ - x=—
y Fx Tz \"ox dJz/
) ( d d )
L =xp —vyp. = —ikl xs-—y5=
< vy o SvXx gy “ox/
and also
2 2 2 2
L"=L +L +L,
In Cartesian coordinates the commutation relations between L. (j = x,y,z) are
J

6.2 COMMUTATION RELATIONS

(6.1)

(6.2)

b 8
CN
o

 —

(6.4)

(6.5)
(6.6)
(6.7)

Using the commutation relations in Section 6.1, one can also find another useful commutation relation:

(LL] = 0= [L%L) = [L'L) = [LAL) =0

[L,r]) = ,ﬁz L
[L,pr] = ’ﬁZ Ukpk

[L,p"] = [L.r"] = [L,r-p] =

where
[ 1 ijk have cyclic permutation
Ejx = -1 ijk have anticyclic permutation
0 otherwise

98

(6.8)

(6.9)

(6.10)

(6.11)
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6.3 LOWERING AND RAISING OPERATORS

We define the raising operator as

L, =L +iL, (6.12)
Similarly, the lowering operator is defined as
I =L —iI (6.13)
L =L -iL, (6.13)
SO we can write
L +L_ L, —-L_
L=~ L, =5 (6.14)
L, and L_ are not Hermitian operators, since it can be proved that
L,=1L' (6.15)
Moreover,
i
L' =Ll+5(L,L +L.L,) (6.16)
and also
Ll =L L +#L, (6.17)
L L, =L -L +4L, (6.18)
Thus, we have the commutation relations:
(50,1 =0 (6.19)
(L,L,] = &L, (6.20)
[L,L_] = 2kL, (6.21)

The operators L_ and L, enable us to represent all the eigenfunctions of L’ and L, using only one eigenfunc-
tion and the operators L, and L_.

6.4 ALGEBRA OF ANGULAR MOMENTUM
The operators L’ and L, describe physical quantities; hence, they must be Hermitian operators, that is,

2

Ly =L, =) =L (6.22)

One can verify that L2 and L, are commutative operators, (L2, L] = 0 [see Problem 6.2, part (a)]; it is thus
possible to find the simulation eigenfunctions of both L and L_ (I/m)), which comprise a complete orthonormal

basis:

72 2

LYmy = 1(I+ )& |lm) (6.23)
L |imy = mhk|im) (6.24)

Operating the lowering and raising operators on | /m) gives
Llmy= JI(I+ 1) —m(m+ DAL m+1)= J(I-m) (I+m+ )AL, m+1) (6.25)
Lim)=J1d+ 1) =mm=-D&l,m=-1)= J(U+m) (I-m+Dhjl,m=1) (6.26)

Note that if {/m) is an eigenvector of L? with eigenvalue / (/ + 1), then for a fixed ! there are (2! + 1) possible
eigenvalues for L,:

m=-l, -I+1,...,0,....,1-1,1 (6.27)
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Thus,
LItl)y=0 (6.28)
L |I,-)=0 (6.29)
The basis |/m) is orthonormal, i.e,
{dmilmy =28 8 (6.30)
17717272/ 1,0, %m,m, {6.20)

This basis is called the standard basis. The closure relation for the standard basis is

3 limy i = 1 (6.31)

6.5 DIFFERENTIAL REPRESENTATIONS

The representation of eigenveciors and eigenvalues is ofien more convenieni using spherical coordinaies
x = rsin® cos¢ y = rsin®sing z = rcos@ (6.32)
The representation of the angular momentum operators in spherical coordinates is
J = iﬁ(o-nmi+wi\
x VY 968 * tan90¢/
4_]_ = i_ﬁ.(-cgsm i + ﬂﬁ_\ (6.33)
y \ ¥ 08" tan09¢/
0
L. =—-ih3z
L - o0
which yields
(3 1 2 19
2 2 J g
_ e 0 i)
L, = te 3o+ cot@ 36 (6.35)
T A i)
L = he -39 + 1 cot@ 30 (6.36)

. 2 .
Thus, the eigenvectors of L™ and L, are functions that depend on the angles 8 and ¢ only; hence, we can repre-
sent the wave function as

v(r,8,0) = R(NY/(8,0) (6.37)
For a central potential V(r) = V(r), we find that Y_,m (8, ¢) are the spherical harmonics, where
lim) = /'8, 9) (6.38)
The algebraic representation of Y,’"(e, ¢) form>0is
va s - 1" 21_+1Ll_ﬂ pMy o Oy Limb /£ 30
L0, 0) = (—1) 'J 41 (1+m)!rl\buaU)e (0.37)

and for m <0,

m B |m 21+1(l—|m|)! (o] imo
Y,00,9) = (-1) —an —_(l+m)! P, (cos0)e (6.40)

P;"(x) are the associated Legendre functions defined by

m ! 2 ’"dm
Pi(x) = A(1-x) EP,(x) (641)
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where P, (x) are the Legendre polynomials,

! )
P = T of
= ( <)’ (642)

Note that the Y,m (9, ¢) are uniquely defined except for sign, which is changeable. The spherical harmonic func-
tions, the associated Legendre functions, and Legendre polynomials are described in detail in the Mathematical
Appendix.

6.6 MATRIX REPRESENTATION OF AN ANGULAR MOMENTUM

We have already mentioned in Chapter 4 that an operator can be represented in matrix form; this
representation depends on the basis vectors (eigenvectors) that we choose. For an angular momentum

operator we usually use the standard basis |/m), so every matrix element A,; that represents the operator A
satisfies
A = (LAl (643
ij NERERN {
Thus, for every | = const., we can write a (2/ + 1) x (2/ + 1) matrix for L? L, Ly, and L,; thatis,
(L% = il = 10+ A 3, (6.44)
(L)Y. = {LIL|l)) = jhS,. (6.45)
X Z,U ¥ 1 7 z]°v7 g iy A i
IL | f / $ / 8 (6.46)
(LY, = (LD = 3 IVU-m) (I+m+ D), +SU+m) (I-m+ 1§, ;] (0.40)
2 N IERYETIE BT Y _ﬁ'r//l ] 1y © I3 K] T 1 16 47)
(L)), = il = 3 [NU-m) U+m+ )8, .\ -~ {+m) (-m+1)5; ;_|] (0577
For I = 1, for example, we have
i 10y [1-1)
( 1 0 0 \ 1)
L* = 2h2L 0 1 0 J 110) (6.48)
0 0 n-1)
and
Ill) IlO) 1-1} 11y 110y [1-1)
0111 0 —i 0|11
5 1y " i | I11)
L =— 1 |10 L =—F7| i 0 i |l
N2 7 N2
K L o /n-1) Lo+ o Ji-p
1) 110y fi-1)
( 1 0 0 )Ill)
I = 0N 0N 0 1Tm 76 A0
l_dz IPL v v v Jllu/ (U.T?’
0o o0 -1/lI-1)

6.7 SPHERICAL SYMMETRY POTENTIALS

From classical mechanics we know that when a spherical symmetry potential V(x, y, z} = V(r) actson a
particle, its angular momentum is a constant of motion. In terms of quantem mechanics this means that the angu-
lar momentum operator L? commutes with the Hamiltonian:

p? R21a( .9\ 1?2

H = 5o+ Vi) = - 55,7 or )t =V (6.50)
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where the angular dependence of the Hamiltonian is found only in L*. We can thus split the wave function in two:
an angular part depending only on 6 and ¢, and a radial part depending only on r (see Problems 6.16 and 6.18).

6.8 ANGULAR MOMENTUM AND ROTATIONS

Let !\p be a state vector of a systemn in a certain coordinate system 0. To represent the state vector in

another coordinate system O' we defme the rotation operator U, such that the state vector in O' is given by

—a

'
/

vy = Uy ) (6.51)

For a system O' obtained by the rotation of O around an axis in the direction of 7 with an angle 8, U, is given as
Uy (8,7) = exp —04- L) (6.52)

where L is the angular momentum operator. L is said to be a generator of rotation. One can conclude from the
definition that

Wl = (WU, (6.53)
Note that to obtain U, we usually use the infinitesimal rotation operator:
Uy (d8, 7y = l—%dGL-r‘z (6.54)
Note also that !
Up(2m f)y = U (0,8) =1 (6.55)

tate vectors, but also for other operators or observables. Thus,

UR can be used as a rotation operator no St
i o A'in the svstem ' such that

only for
0 t

ot
Tanc
]

an observable A in the system O is transformed to 4 he system
A" = U,AU, (6.56)
Or similarly,
A=U AU, (6.57)
K 1 7
Solved Problems
6.1. Using the definition of angular momentum, L. = r X p, prove the following commutation relations:

@ [Lyr) = ih ) €yrs () [L,L] = ik ) €, L, (ij.k = x,3,2). Note that if A and B are

vector operators, then the kth component of the vector operator A x B is

A wl
(AxB), = ) £,AB, (6.1.1)
Use also the identity 2 €k Epnk = 8‘.m6j"—8,.n8jm.

(@) Using the definition L. = rx p we obtain L, = Zek,,rkp,; thus,

k!

(L,r ,] = Sqew.[rkpn ",] = S‘EH,(’} (P ,] + [f’,,, ".]Pr) (6.1.2)

k1 ki
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Using the commutation relations [r,, r,] = 0 and (p, z'j] = —iﬁS,j-, where
1 I=j
5 = { 6.1.3
b 0 otherwise ( )
we obtain
. . Y R T N
[L’, rJJ - Ltkﬂ(—lﬂj Oljrk = —=In : tk/l"k = —ran-,’kjrk = Inthjkrk (0.1.4)
ki k 4 &

(b) We decompose the commutation relation [L,, L = iﬁisl L, into the three following commutation rela-
k
tions: [L,, L] = ihL ,[L,L] = ikl and [L,L ] = ihLy. Note that
L, =(rxp), = ryP.—r.p, L}, = (rx p)_‘, =r.p.—-r.p. (6.1.5)
Thus,
[L,L]) = [r,p.~r.p,r.p.—1.p.l
= [rnypor.pd-[rpuropd=lr.p.r.pd+r.p,rpl (6.1.6)

We compute each part separately:

irepor.pd = rilpsropd + [r,rpdp.

=r.(r.p.p )+ lp,rlp) + G lrapd + L, rdp)p, (6.1.7)
Now, using the known relations
p.pd =6 (p.r.l = -it tr,p,l =0 erl=0 (6.1.8)
we obtain [r,p,, r,p,] = ~itrp,. Similarly,
[r'v p.r.p.l = r, (p.,r.p.]+ [r.\,, rp.1p.
=r.(rlp.pl+p.rip)+ (lrprlp.+rlr,pl)p. =0 (6.1.9)
and
lr.por.p) =r.lp,rpl+r rplp,
=r.(p,rlp+r.lpop )+ (r,rdp +r.lr,pl)p, =0 (6.1.10)
Also,
(rprpl =r.p,rpl+rorplp,
=r.([p,rlp. +r.lp,p 1)+ (Lrordp.+r r,pl)p, = ikrp, (6.1.11)
Thus, we obtain
(L.L] =ih(rp,-rp) = ih(rxp). = ihL, (6.1.12)
We leave it to the reader to prove the other two relations.
6.2.  Prove the following relations for the angular momentum operator: (a) [L2, L] =0;(b))LxXL = itL.
(@) The operator L? can be writtenas L2 = L2+ L?+ L2, and hence
(L2L] = [L2+L2+L3 L) = [LLL]+ (L3 L] + (LA L] (6.2.1)
We compute each part separately:
(L3L) =LL,L)+I[L,L)L, (6.22)
We have shown in Problem 6.1 that [L, L] = -[L,L,] = —itL,. Therefore,
(LLL] = —iA(LL +L]L) (6.2.3)

Similarly, using the commutation relation [L ,L.] = %L, we have

[(LLL] = L(L,L]+[L,LJL, = ik(LL +LL) (6.2.4)
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Since L, commutes with itself, [L2, L] = 0, we arrive at
(L%,L] = —ik(LL +L L) +ifi(LL +LL) =0 (6.2.5)

(b) We will compute separately the components of LxL:

[(LxL)X =L L -LL, = I[L,L] =ihL,
1(L><L) =LL-LL =1[L,L] =IihL, (6.2.6)
(LxLy.=LL,-LL = [L,L] =ikL,

Thus, summing over the three components we obtain L x L = jaL.

Consider a system of two particles; each particle has its own angular momentum operator, L, and L,.
Show that L = L, + L, is an angular momentum operator; in other words, show that L satisfies the
relation in part (b) of Problem 6.2.

‘A‘o'. nd L. a
S a4 MG L A

a3
T
Q
=
=
[N
3

for the sum L. = [,i+L2wehavg

Lit I Iy, IO LN util L1.. ¢ Wwe I,

ED

LxL = (L,+L;) x(L,+L;) = (L yxL)) + (L, xL,) + (L, xL,) + (L,xL)) (6.3.1)
In Problem 6.2, part (), we saw that if L is an angutar momentum operator, then L. x L. = jAL.. Thus,
LxL = itL, +izL,+ (L, xL,) + (L,xL)) = i# (L, +L;) + (L, xL,) + (L,xL))

=il + (L xL,) + (L, x L)) (6.3.2)
We will now compute the term L, x L,:
L, xL, = (Ll_\'L2:—LI:L2y)X+ (L Lo=L Ly) 3 + (LIA'LZ)'_LI_VL2x)2 (6.3.3)
Similarly,
L2 X l‘I = (L2yLI: _L2:le) x+ (L?.:le - LZxle)S’ + (L2xLly_L2yLl.r) z (634)
Since L, and L, are different operators, their components commutate; heace we obtain
(L, xL) + (L,xL)) =0 (6.3.5)
So finally,
LxL = (L,+L) x{L,+Ly) =is(L,+L,) = /AL (6.3.6)
Consider the following relations:
L, =L + iLy L = LI-—iLy (6.4.1)
Lim) = hJI(1+ 1) —m(m+ DI, m+ 1) (64.2)
L imy =8 JI(I+ 1y —m(m - D}, m-1) (6.4.3)
Lilm) = mh|im) (6.4.4)
L2)im) = [ (I + )& |)im) (64.5)

Consider a system of / = 1, and find the matrix representations of L,,L L, and L? in the basis of
eigenvectors of L_and L2.

are Hermitian operators, as are their matrix representations: for each

. For a system that has an angular momentum / = 1, the eigenvectors

? =y =
component of the matrix @; wehave a;;
of L, are

First we note thatthe L L L  and I?
= a},

1) correspondingto { =1, m =1
[0) correspondingto! = 1, m = 0 (6.4.6)
m

l -1} correspondingto/ = I,
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To find the matrix representation of L, we need to compute the following relations:

r

1 1 3
LI =5(L,+L)ID)=35L1)= Ti'())

1 3
LJ0) = 5(L,+L)I0) = NALEIR) (64.7)

L|-1 = %(L4+L_)I—l) = %L,{]—l) = %p)

If we choose the standard basis

ii)EL OJ iG)EL IJ i~i>EL OJ (6.4.8)
0 0 1
then the matrix representation of L _is
(0 1 0)
L = % ol (6.4.9)
LO 1 OJ
Cionilavly far 7 wa hava
Ullllllml], vl ‘_ly Yo liavwe
1 ih
L_,_!l) = 5 (L, —L )1} = =0}
i1 v .\/2
1 it
| L0 = 3 (L-L) 10 = F (-1 -1) (64.10)
1 ih
Ll = 5L =L k1) = = 20)
Hence,
[0 -i 0\
=— i 0 —iJ (6.4.11)
ﬁ[ 0 i 0
Also, for L, we have L,|1) = #{1), L,|0) = 0,and L |-1) = -£|-1); thus,
(1 0 0)
L.=# 0 1 0 (64.12)
.0 0 1.
For L? we have L2|1) = 2A2|1), L3[0) = 2#2|0), and L3|-1) = 2A2|-1); thus,
0 0
L2 = 242 1 0 (64.13)
N0 0 1/

6.5. What is the probability that a measurement of L, will equal zero for a system with angular momentum

(1)

1
of one and is in the state ——| 2 |?
~/1_4L 3 J

First we will find the eigenvectors of L, for/ = 1 in the basis of L ; i.e., we want to find the eigenvectors and
eigenvalues of
& ( 010 .
Bl 1ot (6.5.1)
\o10)/
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Assuming that the eigenvalues of L are £id/ /2, the secular equation of L, is
-A 1 0
det] 1 -A 1 =-AR-1D+A=2A-23=0 (6.5.2)

(NI 0 2 QY

Hence, A = 0, i'ﬁ and thus the cigenvalues of L are 2% or (. The cigenvector corresponding to the eigenvalue

fiis
o]
11y I — A1\ L RBINN 4 A 1N (£ & 2
iy — L UJ djiy oy iy {6.5.3)
¢
where |a|? + |82 + |c]? = 1is the normalization condition. Therefore,
AR BAIEY
7 101 b =8/ & {(6.5.4)
2
Lorole) o)
or
I b=."2a I a+c = S2(a+h) Il b = J2¢ (6.5.5)
From (6.5.51) and (6.5.5111) we obtain & = 2a = /2¢; thus, using the normalization condition, we have
1
a?+2a?+a? =1 = a= 3 (6.5.6)
Hence, the eigenvector |1}, is
YA
] i
I, = §t Vi J = 5 1)+ J310) + 1) (6.5.7)
1
Similarly, the eigenvector corresponding to the eigenvalue zero is
1( a )
|0),= §l b J = a|l)+ bj0) + -1} (6.5.8)
e
where a, b, and ¢ satisfy the normalization condition and
ﬁf 010 a)
ELIO lJle=0 (6.5.9)
010 ¢
or
I =0 Il a+c =20 (6.5.10)
Therefore, a2 +0+a2 =1 = a = 1/./2. Finally, the eigenvector |0}, is
] ) ]
M == = —=(iH-11 6.5.11
10), ﬁLOIJ ALY (6.5.11)
Also, the eigenvector corresponding to the eigenvalue —# is
{0
o
-1y, = { b J = a|l) + bj0) + ¢[-1) (6.5.12)
e
where a, b, and ¢ satisfy the normalization condition, and
f n 1 AN\ N 7 A
s 010 a a
5 101 b |=-kl b {6.5.13)
S VI B VAN . C
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6.6.

or
I b=-J2a I a+c=-42b nr b =-J2¢ (6.5.14)
Thus, b = -.f2a = —./2¢; using the normalization condition we obtain a2+ 2a2+a2 = | = g = 1/2. Hence,
1 ! 1
1, =3 -2 1 = 2(11)=J210) + |-1)) (6.5.15)
1)
So, we can write
1 ’ 1
lay=—7= < | = 7= (1) +2/0) + 3-1)) (6.5.16)
R 3 } o
In the basis of the eigenvectors of L , we have
o), = (Hodil), + (0ley|0), + (~Tloy-1), (6.5.17)
We compute the terms separately:
2+ ﬁ
ljo 6.5.18
{Olay = L -1 6.5.19
*'a‘Jz_s;(l‘3)'_ﬁ (6.5.19)
and
1 2-.J2
oy =——=1-2.2+3) = —;f— (6.5.20)
2./1a° ~ ! J1a
The probability that a measurement of L, yields zero is therefore
|
P (0) = |(Olo)? = 5 (6.5.21)

Apply the operators L, =L +iL and L =L -{L ontheeigenstates of L2 and L_ (}/m)) and interpret
the physical meaning of the results Follow the stages (a) Find the Hermltéan comugate of L. (b) Cal-
culate the norm of L +|1m) and L_|im). (c) Calculate the eigenvalues of L™ and L, for the state L |im)
and L_|im).

(@) The Hermitian conjugate of L, is L] = L, —iL}, butsince L, = L, and L, = L wehave L] = L_.
(b) The norm of L {Im) is
JLoim)? = (LoJom)?y (Llim) = (ol (LIL) Vim) = (iml (L_L,) i) (66.1)

W
L L o= (L~iL)(L4iL)=L3+Li—iL L +iLL = L2+L2+i[L,L) = L*~L}-&L,  (662)
Thus, subsntutmg L_L,, we obtain
|L w2 = {dm| (L_L,)m) = {Im| (L 2L~ 4L, ) \im)
= A2+ 1)y —m2-m] = R2[I(I+1) -m(m+1)] (6.6.3}
The norm of L_|Im) is ||L_lm)|? = {imIL, L_lim). Again,
LL = (L+iL)(L,—iL)=L2+L2+iL L ~iLL = L2-L2—i[L,L)=L2-L2+hL, (6.64)

Hence, we obtain

L ttm)|? = {m| (L2 - L2+ AL, ) Im) = R2[I(I+1) —m*+m]
= R+ 1) —m(m-1)] (6.6.5)
(¢) First consider the commutation relations:
(L2, L] = [LZ,LX+:Ly} = [12,L] Li[.’..z,.’..y} =0 {6.6.6)
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and
(L4L ] = [L3L,—iL) = [LAL]J-i[L3L] =0 (6.6.7)
This means that L2L, = L L?and L2L_ = L_L?. The eigenvalues of L? for L, |/m) and L_)lm) are

{Lz(gum)) L, (Lm)) = K I(1+1)L,|Im)

r /lel,,,\\ —_ )‘211‘1 . 1 T [ A Y
L_(L|imyy = ni{(i+1)L_jm

(6.6.8)

,_
[ wad
—~
[l
=z
3
—

]

That is, L,|/m) and L_|/m) are eigenstates of L2 with eigenvalues A2/ (! + 1). Before we continue to calculate
the eigenvalues of L, note that

[(L,,L) = [L,+iL,L]) = [L,L])+i[L,L]) = —ikL -AL, = -AL, (6.6.9)
Hence, L L,-LL, = -AL and L L, = L, L, +#AL,. Similarly,
(L,L)= (L -iL,L) = I[L,L]+illL, L] =-ihL +hL = AL (6.6.10)

Therefore, L L, —L,L = AL and LL_ = L_L,-#%L_.Thus, we can calculate
LLmy = (L,L,+AL){m) = L,L|im)+AL \imy = mhL,\Im)y+hL |im) = (m+1)RL \Im) (6.6.11)

and also

LL \lmy= (L L —#&L )[lmy= L_L|imy—AhL_|im)

mAL_|im) — AL _|Im) = (m—~1)hL_|Im) (6.6.12)

We see that L, [/m) and L_ |Im) are eigenstates of L with eigenvalues (m + 1) % and (m - 1) %, respectively.

To conclude:
(

Lim)| = 2JI(1+1) —m(m+1)
" 4 (6.6.13)
I tm) = 2SI+ 1)y =m(m=1)
L I
{Lz (L, [tmy) = R21(I+1) (L, |im))
Loz o pmyy = 8200+ 1) (L_m)) (6.6.14)
and,
(7 (7 e\ = & {2 1Y 7 s\
‘.a:\h+|ll'lt/} e \Frt T 1) \l.:+|ll'll/]
1L:(L+um>> = h(m=1) (L_{m) (66.15)

From (6.6.14) we see that L_|Im) and L_|im) are proporticnal to |{m’) (note that m’ is distinct from m). From
(6.6.15) we conclude that L |/m) is proportional to [/ ', m + 1) and that L_|/m) is proportional to |/ ', m — 1);

thus,
Liim)y~ll,m+1); L llmy~|l,m-1) (6.6.16)
Recall that the norm of |/ ', m + 1) and L_|/m} is 1; hence, from 6.6.13 we get
Limy = JI0+ 1)y —m(m+1) [,m+1) (66.17)
L)my=8aJi(l+)-m(m=-1)|I,m=-1) (6.6.18)

So we see that the operators L, and L_ allow us to “travel” between the eigenvalues of L? and L,. Note also
that L), ) = Oand L_|I,-0) = 0.

6.7. Compute the expressions ({m|L2[im) and (Im| (L, L) |{m) in the standard angular momentum basis.
We begin by representing L, and L, using L, and L :

L, +L L,-L
L, 2 and L, = —7;

(6.7.1)

Keeping in mind that

Llmy = aJId+1) —m(m+1) |, m+1) (6.7.2)
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and

L|imy=#aJI(I+ 1Y —m(m-1) |, m—1) (6.7.3)

the operator L? can be written as

1 1
L2=3(L,~L)2=7(L2-L:+2L,L_+2L_L,) (6.74)
The terms L2 and L2 do not contribute to the expression {{m|L2|/m) since
[¢trmlL2)imy ~{Imll, m +2) = 0
{m|L2 lim) ~ (mall, m=2) = 0 (6.7.5)
Thus to compute {/m|L2|/m) we consider only the contributionof L L, and L,L_; that is,
1 1
UmiL2mY = 3¢ml (L, L. +L L) my = 5 [mi (L L) WmY+ (Iml (L_L,) |Im)}
= g[Jl(l+ D —m(m-1){mL L, m—1)+JI({+ 1) —m(m+ 1) (ImL_)l, m+ 1))
K2
= 7[J1(1+ D —mm=DJIU+ 1) —m(m—1){m|im)
+J+ D) —m(m+ D) JI(T+ 1) —m (m+ 1) Imlim) ]
= %?[z(u -mim-1) +1({+1) —m(m+ 1]
= K201 01 1 1) _ »a21 IR T £)
T e le T oy e g {U.7.Uf
We turn now to compute {Im| (LXL_‘,) |{m). Using the operators L and L_, we obtain
1 1
LL =L +L)(L~L) = (LI-L2-LL +L L) (6.7.7)

Once again the terms of L2 and L? do not contribute to {{m| (LL) l{im); thus

!
Im|(L2 -1 +L_L,-L,L_)Im)) = - [{m

VIR [ Ll 42V

|

(m| (L L)\Im (L_L,-L,L_)lim)]

im oy d 1)

=1

b~ &

1\

i [l (L_L ) Im) — m) (L ,L_) lm)]

=£%[Jl(l+ D -m(m+ D) {mL_|l,m+ 1)-JI1(I+ 1) =m(m- DY {Im|L I, m—1)]

2
=%[«/l(l+l)—m(m+ DI+ 1) —m(m+ 1) (Imlim)

ih?m

— M+ Yy =mm-DJI(+ 1)y =m(m-1)Um|lm) ] = 5 (6.7.8)

6.8. Consider a particle with a wave function
Y(xy,z) = N(x+y+z)eliante:/oll (6.8.1)
ormalization con measure the value: ir
the probabilities that the measurements yield: (a) L? = 242, L_ = 0; (b) L2 = 2A%, L, = #; (c)
L? = 2A?, L = —h. Use the known relations

Y (6,0) = —Jgtsine et YN (0,4) = —Jgtcose Y;'(8,0) = —Jg—tsme et (6.82)

First, we will express ¥ (x, y, z) in spherical coordinates:

x = r sin® cos¢ y = r sinB sin¢ z = r cosB (6.83}

97

where N is a normalization constant and ¢ is a parameter. W
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where 2 = x? +y? +2°. So,
Y (r,8,0) = N[sinB(cos¢ + sind) + cosB] re—r*/e (6.8.4)
We write y (r, 6, ) as 2 multiple of two functions Yy (7, 8,¢) = R(r}T (8, ¢) where R(r) = Nre—=*/% and

T(8,¢) = Za,m ¥, (8,¢) = sin® cosd + sin® sind + cosd (6.8.5)
im

The coefficients a,, are determined by

= (ImIT (8, ¢)) = _]r (Y)Y 106, ) d6 dp (6.8.6)
Using the properties of spherical harmonics one can prove that
T(6,¢) = /? [ %(Y[' -Y) -Zl!.(y," +rh] + A‘ETHY?
=E[(1+i))f,“—(1—i)y,‘+./§y‘l’] (6.8.7)

To compute the probabilities, we must normalize the function T (8, ¢); we denote the normalized function by
T'(8,¢) = BT (8, ¢), where

BZJT*(B,¢)T(B, 0)do dp = 32%“(2+2+2) = 4nP? = 1 (6.8.8)

or B = 1/./4r. Hence we have

T'(8,9) = J-[(1+1)Y —(1=iy ¥+ .27 ] (6.8.9)
Thus, the probabilities are compuied as follows
(@) ForL? = 24% and L. = 0 we have
P =|1,0T%?2 = i,/iz—l {6.8.10)
G 3 8.
(b) Forl? = 247 and L= #i wehave
[ JN WA TR T I SNV bo BN ]__iz_l s Q1T
ro= (i, I ) = _J6 =3 (0.5.41)
(¢c) Forl? = 2#% and L, = — we have
1 +i2 1
= -— M2 = j—— = -
P =K1, -1T) 7 3 (6.8.12)
A symmetrical top with moments of inertia /= !y and /_ in the body axes frame is described by the
Hamiltonian '
. | S | I B
H =57 (L7+L]) +57L? (6.9.1)

Note that moments of inertia are parameters and not operators. L, L , and L, are the angular momen-
tum operators in the body axes frame. (a) Calculate the eigenvalues and the eigenstates of the
Hamiltonian. (b) What values are expected for a measurement of L, + L + L, for any state? (c) The
state of the top attime r = 0 is [/ =3, m = 0). What is the probablllty that tor a measurement of L
att = 4nl /h we will obtain the value £ ?

(@) We begin by writing the Hamiltonian as

H = —-l-- ,r
H=35T &

r

T CLULA Ty L,_zJL,L\,_z (69.2)
HL3) T 21 T 21 ) \ )

o

+ L

"‘m
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where L is the total angular momentum. Recall that if A is an operator that has the eigenvalues A;
(i = 1,...,n), the eigenvalues of f(A) (where f(A} is a function of A) are f(A;). Therefore, the eigenvalues
of the energy are

2
Em = 37ll+ ”*Lzl )ﬁ m? (6.9.3)

So the eigenstates of the Hamiltonian are those of L? and L,, i.e., the spherical harmonics Y;” (9, ¢) with the
eigenenergies E,
(b) Measuring L,+L, +L, for the top, we find the top at eigenstate Y] (8, ¢); that is, a measurement of

L +L +L, yields
x y 2y

+ -

+ 2i +L: )IY;"(er(p))

L +L L -L
YT (8, ) (L, +L,+L)IYT (8, ¢)) =¥ (8, ¢)I(

= (Y] (8, 9)IL.IY} (8,0)) = #im (6.9.4)

(¢) The state of thetopatt = 0isy(t=0,8,¢) = Y?(B, 0), which is an eigenstate of the Hamiltonian. A meas-
urement of L, for this state yields zero, and since it is an eigenstate of H, the top will always remain in this

stata “nrnfnrn the nrobability of the measurement of ﬁ 18 zero.
state, 22 e pro uity el ine

Y'I"(G, o) = C;"P;" (cos0) et (6.10.1)

where C T is a normalization constant and PT (x) are the associated Legendre functions defined by

||
2.Iml/2 4 -
Pl(x) = (1-x) m?, (x) = P]"(x) (6.10.2)
Compute the function Y7(6, ¢) for m = 0, £1.
d
Consider the Legendre polynomial P, {(x) = x; so Z\T(P‘ {(x)) = 1. Therefore, relying on (6./03.2) (see the
Mathematical Appendix), we have
D'y npl, A\ I 2 LY
P(x) =P (x) = NI-x (6.1G.3)
Similarly, P? (x) = x; thus, using (6.10.1) we obtain
Y| (8,0) = C,P)(cosB)e® = CsinBe” (6.10.4)
Also,
-1 -1 . -i¢ 0 Q
Y, (8,¢) = C, sinBe Y, (8,¢) = C,cosB (6.10.5)
Using the normalization condition we arrive at
2 4 P1 L
. o
J d¢J (Y1) (8,0) Y7'(8,0)sin6db=1 = Jdcpj (C)) cos28 dB= 1 (6.10.6)
0 0 o

b4

3
or, -7 (CO)2 cos? B d(cosB) = 1, thatis, cl = [=. Similarly,
1 1 4n

¢]

R VT 5

C,=¢C = LJ d‘i)J sin® ¢'* sin® ¢ sind dt‘;J = LmJ sin® © auJ ™ (6.10.7)
Q

Finally, we have



ANGULAR MOMENTUM [CHAP. 6

112
6.11. Solve the eigenvalue equation L2Y (6, ¢) = AA2Y (6, ¢), and find the eigenvalues of L2. Use the

-
(=N
[
Py
Y~
S

expression for L2 in spherical coordinates.
19 1 d }
\ els] /J

L= _52[ -
Lsin’® d0% * sin6 96
We begin by substituting the expression for L? in the eigenvalue equation, so we obtain
l a_z La(*ei)ye = -AY (8 6.11.2
| sin’6 70 + 56 a8\ *n0 3g | ¥ (6,0) = -AY(8,0) (6-112)
We solve this equation using the variables separation method; thus we substitute Y (6, ¢) = ® (¢) © (0) and get
@ d-(l) @ df de) . DR
sin 9 d¢) sme dekblnﬂ de) = —AQ(P)N(Y) (0.[1.5)
Q(0)P(d) )
— 5 we obtain
(6.11.4)

Dividing (6.11.2) by

de)

1 did sin® d{
We now have two parts: The first, T(’Z’ is a function of ¢ only, and the second, o dG\ sin@ a8 J + XA sin B

is a function of 8 only; the sum of these parts yields zero. Therefore, each of them must be a constant by itself. We

set
1 d2@ ]
> do7 = —m> (6.11.5)
and
sin@ d( 4O) L3 ,
om) (F)L sin8 —e-J+?\. sin“ @ = m? (6.11.6)
The solution of (6.11.5) is
P(P) = e (6.11.7)
To qualify as a periodic function, & (¢) must satisfy the condition ® (¢ + 2x) = ® (¢); that is e2%™ = 1, thus, m
must be an integer number, m = 0, 1, 2 Now (6.13.5) can be expressed in terms of x = cos8, where
d -
i = .—j\‘ i = ‘:inQ.i = ——A,/l—_x_'zii (6.11.8)
do ~— db dx dx dx ‘ 4
Substituting into (6./1.6), we now have
1-x2 d dd
) (Tx[(l—r)—ﬂ+k(1—x2)—m2—0 (6.11.9)
We rearraige (6./1.9) in order to obiain the usual form of the generalized Legendre equation:
d ,. do m?
Sla-s d_\,]+(1_]_'¥2)6 -0 (6.11.10)
Note that under the transformation v — —x, (6./1.10) is unchanged. This means that the solutions of the generalized
Legendre equation are either symmetric or antisymmetric in x. Consider the equation for m? = 0:
d ,.dO
2la-o 2] re =0 (6.11.11)
X
Assume that the solution can be represented by a power series: so © (x) = xﬂzanx"‘ We leave it for the reader
to show that by substitutin g we obtain P
y‘ ((s+n+2) (s+n+Da,, " "= [(s+n) (s+n+1y -1 (a"rH”)) =0 (6.11.12)
F-__}
n=0
Hence, each coefficient must vanish, and we have
(s+n+2y(s+n+1)a,,, = [(1+n) (s+n+1)-Ala, (6.11.13)
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or
_ +m(s+n+ ) -4

1= (sen+2)(s+n+ (6.11.14)

The function ©(x) is bounded at x = 1 (8 = 0}, sothe condition (s + n)(s+n + 1) =X = 0 must hold f r A. That

is, A must be of the form A = /({/ + 1), where / is an integer number. Hence, the eigenvalues of L2 are 221 ([ + 1).
The solution of (6.11.11) can be represented as

1 d!

0,0 = pga (-1 (6.11.15)

Similarly, the general solutions of (6.//.10) are
. (-H™ i deriml . dm
0, (x) = 2t (1- Z)I 2 delieimh (x2-1Y = (-1)"(1 - 2)‘ 1/29;--'-’_-’}).!(/\’) (6.11.16)

Consider a particie in a central potential. Given that jim) is an eigenstate of L2 and L : (a) Compute the
sum AL_E + AL;‘,’ . (b) For which values of / and m does the sum in part (a) vanish?

{a) The uncertainties ALZ and AL? are defined as

ALY = (L) - (L) ALY = (L) - (L) (6.12.1)
L,+L_ L,—-L_
Using the raising and lowering operators L, and L_, we write L, = 3 and L= oK . Therefore
we have
1 1
Li=32+L?+LL +L L) Li= -7 (L} 4L -L L -L_L) (6.12.2)
So
.
(LY = {miL |lm) = <1m|\ )um) =0
L _L (6.12.3)
(L) = UmlL Im)y = {Im]| )ll‘m) =0
since

{LJIm) = afl(I+1) —m(m+1)|l,m+1)

(6.12.4)
L iim)y=#fifI(I+1)—m(m-1))l, m—1)
Similarly, we can compute
(LY = {m|L2|lm) = z—‘(ﬁlm|(L‘+L‘ +L,L_+L_L,)jim)
| VP B N ot (1 s (6.12.5)
= 4(\lm (L, +L_ )My + m|(L+L‘7+ L7L+J|lm)J !
Relying on the properties of the raising and lowering operators we have
L|my—|l, m+2) LI|m)~|l, m-2) (6.12.6)
We also have
LLim)=L,(hJIU+D) —-m(m-1)|l,m-1) =R A+1)-m@m=1)]1|Im {6.12.7)
and
L LJmy=L_ (hJIU+1) —m(m+ 1)L m+1)) = R2[I(L+1)=m (m+ 1)} |Im) (6.12.8)
Thus we obtain
WWH =R+ 1) —mm-1D) +1(I+ 1) —m(m+ 1)) = 2R2[1(I + 1) —m?] (6.12.9)
Similarly,
(L = (LY = 2R [1(I1+ 1) —m?] (6.12.10)

Finally, we have
ALZ+ALL = (LD —(L)?+ (LD - (L)? = 4R2{I(I + 1) —m?} (6.12.11)
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(b) Using the result of part (a) we see thal AL2+AL2 vanishes when I(I+ l) —m2 0 that is, m2 =

Consider a system with a state function

AN

y(r,t=0) = N§ expL——r-iJ (6.13.1)
2r,

where § = x+iy; N is a normalization constant and r, is a given parameter. It is also given that the
eigenfunctions of L2 and L are the spherical harmonic functions

3¢& 0 3z -1 i*
Yll (x,y,2) = _«/;r; Y (xyz) = A/;t;' Y, (x,y,2) = 81tr (6.13.2)

(a) What are the values obtained from a measurement of L? and L,? Find also the probability for each

measurement, (b) Write the three eigenfunctions of L° and L, corresponding to the given spherical har-

monics. (¢) Find the values that are expected from a measurement of L,. What is the probability for each
value?

(@) Consider the operators L? and L_. They operate only on the part of the function that depends on the angles ¢
and 6. Note that we can write ¥ as

13/ —r2 1
y(r,t=0) = - TNr exp | 3,3 Y, (x,2) (6.13.3)
0

Hence, we see that the possible values in a measurement of L2 and L, are 242 and #, respectively, with a prob-
ability of 100 percent (since L2 and L. operate only on Y]I (x, ¥, z), which is an eigenfunction of these
operators with these eigenvalues).

(b) Consider a system K of which the X', y', and z' axes are parallel to the x, y, and z axes of our system. In this
systemn the operator L. is similar to L, in K; thus the eigenfunction of L. is also the eigenfunction of L, with
exchanging of x' = y; y' — z; 7’ = x. The eigenfunction of L_ is

Y ix v 2y /——&_ _ E X +1y 6.13.4
V(¥ = ~fgur = Ajgnm (0.03:4)
Therefore the eigenfunction of L_ is

3 y+iz 3 y+iz (6.13.5)

1
e N T T :

Since L? commutes with L_and L, (Y:) . 15 an eigenfunction of L_; it is also an eigenfunction of L2.
h X

Similarly,
1 _13x N 3 y-iz
(Yo = \anr (e, = = (6.13.6)

(c) Following parts (@) and (b), we use the expansion theorem to write (see Chapter 4)

(L2 VR, o 2tnh, + )
,t=0) = Nrexp| — - = + A3,
y(r ) r XPL 2'_(2) J"j 3L 0 Lr+ﬁ 1, e, J (6.13.7)
Consider only the part of y that is an eigenfunction of L, and L2:
( 1 i il 1 )
P(x.y.2) = of (Y")L-+A,—’§ [y -] ) (6.13.8)
. L ( 1 l) 1
where o is a normalization constant, { P| P) = a? § 5)= ’i . Therefore,

~

1 ] _
P(x,y,2) = ﬁ( (Y('))Ljf/i [ - (Y})L,]) (6.13.9)



CHAP. 6] ANGULAR MOMENTUM 115

The values expected from the measurements of L, and L2 are therefore as follows: For L2 = 242 and L, = 0,
I I
the probability is |( (Y5), |P>|2 = 5.ForL2? = 2h2and L, = #,the probability is [{ (¥}),, |P)|2 = 3. Finally,

, : 1
for L2 = 2? and L, = —fi, the probability is i( (Y[)LiP)i2 =3

6.14. Consider a particle in a spherical and infinite potential well:

Vir JO 0<r<a 614
ry = 4.
7 l el a<r ( )
(a) Write the differential equations of the radial and angular parts, and solve the angular equation. (b)

Compute the energy levels and the stationary wave equation for / = 0.

(@) We begin by writing the Hamiltonian of the system:

p? Al
H=5—4+V(r) = -5.V2+ V() (6.14.2)
where V2 in spherical coordinates is
2 2 2
nz_l_a__r..\ ll“—l——i{n:ni\| 1 _a-—.‘]_l—a——/..\___l'2 L TA 2y
v = r rZ\I} Trzlsine ae\muu ae}-rqinzea 2J = r rz\r} ﬁ2r2 (O.1%4.5)
Thus,
BE L
H=-507 a—r2(r) Yomett Vin (0144
The differential equation for the stationary wave function y{r, 0, ¢) is
h21 92 L2y
Hy = —s—=-—(rw) + 3 +Viny = Ey (6.14.5)

IZmrgpry Y Imr?

It is evident that [H, L?] = O; hence, we write W (r,0,0) = R, (1) Y;" (9, ¢) and obtain

A2 Y/ (8, 9) 3 R, (r)L2Y] (8, 9)
_m#r—é—rz[rkn,(r)] + 2 ’

+R (NV(NY(8,0) = ER, (Y (8,¢) (6.14.6)

2mr?

Since Y,"l (0, ¢) is the eigenfunction of L2, LzYlm (6,¢0) = R+ 1) Y;" (0, ¢). Hence, the radial equation is

A219° r e 1
_2711;5—?'2 [rR,, ("] + Lz——mr21(1+ D+ V(r)JR”/(r) = ER,,(r) (6.14.7)
(b) For! = 0 we have
#210°
“Imrae [rR, ()] +V(r)R,,(r) = ER, (1) (6.14.8)

We denote R, (r) = R{r). For r > a, the function must vanish (because V (r) is infinite]; therefore we have
forO0<r<a:
fi21 02

~amry3 TR0V = ER() (6.14.9)

hlo
We substitute U (r) = rR{r); hence, “marz = EU(r), or

2
2mE
3712/ + Tmz‘U(r) =0 (6.14.10)
The solution of (6.14.10) is
U(r) = A cos (kr) + B sin (kr) (6.14.11)

where k = y2mE/fR™. A and B are constants that can be determined using the boundary conditions:

I The value of U vanisheson r = 0: U(r=0) [rR(N]],_, =0
Il The vaiue of U vanisheson r = a: U(r=a) = [rR("N1| _, =0

U.
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Thus, from condition I we have U (0) = A = 0, and using the second condition,

Ufa) = Bsin(ka) =0 = ka = nm (6.14.12)
we obtain
£, = =2 6.14.13
n = 2m02n (.1 . )
Finally, to compute the value of B we use the normalization condition of the wave function R{r):
JBsin (kr) 0<r<
R(ry = 20 . r e (6.14.14)
d lo otherwise
Hence,
00 (73 o
sin? (k
[ R (r)|24mr2dr = [4 BZ’Mrzdr = 4EBZ[ sin (kr) dr
Yo 0 "o
AmB 1 Ul 2p2
= — [—:cos X sinx + :x—| _ 21z .B (6.14.15)
kL2 2714, nm/a '
s0 B = —=—=.Thus, for | = 0 we have
~2na
1 1. 2mE
wir,8,0) = R(r) = A %m;sm( 72 r) (6.14.16)
6.15. Consider the Hamiltonian of a three-dimensional iSOtrOpi" harmonic oscillator
1
H = (p2+p2+p2)+-——(x2+y2+22) (6.151)

(a) Write the Hamiltonian in spherical coordinates. (b) Find the eigenfunctions of the Hamiltonian in
spherical coordinates. (¢) Find the energy eigenvalues.

{a) We begin by writing

{ 2 ~2 ~2Y
2y n2en? = 2 2. % L % | 3y
Pytpi+p; = ﬁkaxz"'ayz"'azzj = AV (6.15.2)
which, in spherical coordinates, becomes
19%(r) I a( a) 1 az"
- 7= _§2 _— - Y
A h t’: arz + ) qlneae sinBb ae r ‘inzead)z_) (6.153)
) ) 19’
Using L? = —ﬁz[mﬁ( sinejﬁ) +-— A;MZ—I we arrive at
L3PeRs GBS 6in“go®”
A20°(r) L2
peyr = 9O L (6.15.4)
or 7
In spherical coordinates, the Hamiltonian is therefore
A219° (r) L mw?
“2mr art ot 2 r? (6.15.5)

{p) The anguiar dependence of the Hamiltonian comes oniy from L?; therefore, writing the eigenfunction in the
form y (r,0,¢) = R(r)Y, (6, ¢), we have

;1V (A M a2
aef) A\ Yy a-
Hy = 4o TSR (D) + b (0.0 + TR () Y] = By (6.156)
or
n2 Y, @2 B+ 1)

HR (Y] = *ﬂ%m(rR(r))+——‘——R(r)Y + 2 R(r)Y + 5 rZR(r)Y = ER(r)Y (6.15.7)
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We get the radial equation
A2 1 d? i+ mo’
~Smran UR()) + [—( = +=5r'[R(r) = ER(r) (6.15.8)
mr
. A2 1d%u (ﬁ21(1+1) ma? ) (r)
By substituting u (r) = rR (r), (6.1/5.8) becomes mrait\ ot T2 u(r) = ,or
dr 1(l+1 m2m? 2mE
(&ML 2 2 L = 0 (6.15.9)
m2w? ImE
We denote 2= (1) and EE%;SO we obtain
rd: 1(1+ I+ o, ]
l_drz S - Briee (6.15.10)

132

'
Note that for large r, the dominant part of (6.15.10) is Ld—rz - Bzrz)u(r) = 0. Therefore, for large r,
2

ulry —~g(ryehri/2 1511
AR § & VS I o
Let us compute
duw d
T3 = T (gebr Prgedi) = (§'e P Pget2Brge b+ Birige b
= (¢"-Be-Prg + Prrig) ebr2 (6.15.12)
Hence we have
r.. n -~ 1 ni.a 1(1+l)g ny 9 - _] —“rZ"‘—" P rEEy
Lg -Pg-2Prg +pirig-——37— —-p‘r‘g»-the i/t =0 (6.15.13)
The differential equation for g(r) is
! 1+1
g —2Prg+ (e-Pg——5— ( ) = (6.15.14)
We substitute g(r) = r‘Zanr" (for a;,#0),50 g' = Zan (n+s)rs+2-1 and
n=0 n=0
g = Za"(n +s)(n+s=1)rs*n-2 = ZaHZ (R+s+2)(n+s+1)yrs+n (6.15.15)
=0 n=-2

A\ =

Lan,z[(rz+s+2)(n+s+1) -l(l+l)]r“"+Lan[—2B(n+s) +e-Plrstr =0 (6.15.16)

n=-2 n=0

For n = -2 we have [s(s—1) -I(/+1)]a, = 0. Since a;#0, it follows that s = I + 1, For n = -1 we

have [(s+ 1)s—I(I+1}]a, = 0. Since s = !+ 1, we obtain @, = 0; s0
e-3B-2B(n+)

2T (nal+3)(n+1+2) 11+ 1)%

a (6.15.17)

The eigenfunction must be bounded for large r, so we must demand that g(r) be a polynomial of a finite degree:
i.e., we set a, = 0 for a certain n,:

e-3B-2B(n,+1)
(ng+1+3)(ny+1+2) -1{1+1) -

-
=
[ C)
tn
P
Go

N

ore = 3f+2B(ny+1) = ZmE""/ﬁZ. Thus the energy eigenvalues are

h? h? 3
E, = 2—m[3|3+2|3(n'+1)] = Z—m"—;i(-l-)[3+2(n’+l)] = (§+n'+!)ﬁu) (6.15.19)
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Consider the infinitesimal rotation operator:
Ugd6, i) = 1 -d6L - # (6.16.1)
Find the rotation operator for a finite angle 6. Hint: Define 46 = /N for N — oo,

Let Jy) be a state vector in a coordinate system 0. The state vector in coordinate systemn ' that rotates around

arn augie o (l‘ lative to u; is

) = (U@, 1" 1) (6.16.2)

Hence the rotation operator for a finite angle 0 is U (68, ) = (U(d6, ﬁ)]N. Defining d6 = 0/N, we arrive at

Q\N
Un(6, i) = nle L nﬁ (6.16.3)

o W
Recall that A!;m 1 + N) = ¢% so using this identity we finally obtain

1
[
+

-

—~—~
|
-y
s
5
D
—
| S |

U0, ) = lim

N o0

(6.16.4)

(@) Refer to Problem 6.16 and compute the rotation operator around ## = ¥ for / = 1. (b) Use the rota-
tion operator obtained in part (a), and find the representation of the eigenvectors of L in the standard
basis of L.
9 A ) .
(a) Consider the rotation operator U, =expL -3L nJ r i =y we obtain
i ’ <RI AL
Ug = exp(—ﬁeLyJ = Zn‘!(—zeLJ (6.17.1)
n=10
Let us compute
. (0 = 0) (0 -1 0)
= lti 0 iJ itl 0 IJ (6.17.2
7=z - == - 172)
2 0 i 0 /2 01 0
-1 0
O
<] =20 =2 0 (6.17.3)
TS ya
kl 0 —l)
and
R I I
YNo -2 o/ \o0 1 0o/
sO we obtain
2n+ 1 oo _ 2n L \2
v 13 Gl 2) X (3
(2n+ 1! 2n)! \ A
ns=s n=1
L had A a2a+l L \2 > n 2n
1 Ly ey (_,) (1)
=1-i7Y e 7)Y, e (6.17.5)
n=90 n=1
Note that
N (=1 e O ()"
sin@ = Z—(2n+ 01 cosf-1 = Zm1 (6.17.6)

n=0 n=1
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therefore,
L. IL.\2

Up = 1-i sinef+ (cos® — 1)(#) (6.17.7)

100 - 0 - 0 -1 0 I

Up=| 010 422 1 0 -1 [—(cos0-1)] 0 =2 0

oo1) Y*lo 1 o) 10 -1)

I + cosB sin® I —cos® )
2 - 2
. L2 . (6.17.8)
ﬂj cosH _ﬂj

- J2 J2

l1-cos8  sinB I +cosB

2 2 2 )
(b) To obtain the eigenvectors of L, by using the eigenvectors of L, we must rotate the eigenvectors of L. by
8 = m/2; hence, in this case we have
172 -1/42 172
Ugm/2,3) = | 1/J2 0 —1/J2 (6.17.9)
1/2 1742 i/2
Thus,
T . T . T,
N, = Ugl 3.¥)ID 0}, = Ugl 5.9 I0) FD, = Ugl 5.9 )1-1) (6.17.10)
where
(0 (0] 0

n = LSJ 0) = [(I)J 1) = m (6.17.11)

are the standard basis. Therefore,

1/2
_ 1 i i
I, = VJ2J =310+ 20+ 5H0) (6.17.12)
1/2
(172" 1
), = 0 |=-Zdn-1D) (6.17.13)
w2,
and
R Wi
I
-, = l—l/ﬁJ = §Il)—7|0>+5|—1) (6.17.14)

Supplementary Problems

6.18. Prove the following relations: (a) [L,, p,] = iﬁyle,,‘_ P.-BY[L,p?) = [L,r? = [L,r-p] = 0.
3
Recall that /, j, and k can assume the values x, y, and z, and that €y 15

1 ijk cyclic permutation of xyz
ijk anticyclic permutation of xyz (6.18.1)
| 0 otherwise
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6.19.

6.20.

6.21.

6.22,

o
o
W

6.24,

6.25.

ANGULAR MOMENTUM [CHAP. 6

Hint: By definition, L = rxpanduse L, = (rxp), = Ze:;k’:‘ P
iy
Prove the following relations for the angular momentum operator: (¢) L2 =L L p-hL,+L2% (b)
(L,L,]1 =tAL,.
Show that if the matrices of L, and Ly are real, i.e.,

Ul PV = (I
(ImlL |Im) (]

(VAT R Lhnl D 1P ' N¥ = /lv_nl’ 17 ' 620 1
KUY, (e N LR L) {0.20.1 ;

then the matrix of L_ is imaginary, (Im|L [I'my* = {Im|L [I'm"). Hint: Recall that L, L] =ikL,
For a system with an angular momentum { = 1, find the eigenvalues and eigenvectors of LxLy + Lny.

. . 1 . , \ 1 . .
Ans. v = [1,0); |vy) = 7—5(1'“, DHIL =135 vs) = 'ﬁ(—fll, D+, -1)

In a system with an angular momentum /! = 1, the eigenvalues of L, are given by |+ 1}, |0), and |-1), where

L+1) = fipHl) L}-1) = —hl-1) L, = |0) (6.22.1)

,
The Hamiltonian is H = _ﬁQ (L2-L?), where @, is a constant. Find (a) The matrix representation of H in the
basis |+ 1), [0), and |~1) ; (b) the eigenvalues and the eigenvectors.

Ans. (@) H 1) 10} |-1)

1 0 O0YHLD
H = ﬁmol 0 2 0 J 10)
0 0 1/FD

(b) The eigenvalues and eigenstates are wyfi (+1), 20,% (|0) ), and wyfe (}-1)).

Pnin shot 1o ambnalanl anardimatne thn cmanatmas T I U N PV
rruve ulae 1 BPIIU 1ILdl vuuluijidaied Lliv UkJ'CldI.UlD ‘JX’ LJy, aljyg LJZ alc WIILLGH ad
h 0 d
L = —7(sin¢ a5 tcosd cotB Q—A)
- [N vy Ty s
I ﬁ( 9 i)
Ly = 7 cos ae—sm(]) cot® 30 (6.23.1)
)
=" ido
The Hamiltonian of a three-dimensionai isotropic harmonic oscillator is
| , 1 3 .
H = 5 (p;+p;+p;) +5m0" (x* +y*+2?) (6.24.1)

1

Calculate the following commutationrelations: (a) [H, L ], (b) [H, H_],(¢)[L, H ), where H, = 2%"173 + émwzzz.

Ans. (@IH,L) = 0:(b) [H.H] = 0: () [L.H] = 0.

Prove that the time derivative of the mean value of the angular momentum operator L is given by
d{L
% = (rxVV) (6.25.1)
where V is the potential. What can you say about the time derivative of L for a central potential?

Ans. Foracentral potential, VVer = rxVV = 0, and the time derivative of L vanishes; thus, the eigenval-
ues of L” are time-independent.
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6.26. Use the following data to compute P, {x): (@) P,{x) is a polynomial of the fourth degree; () P, (1) = 1:(c)

6.27.

1

P, (x) is orthogonal to 1, x, x2, and X, e, J. x"P4 (x)dx =0 for k = 0, 1,2,3. Hint: Choose P {x) to be of

4
I
the form P (x) = zCkx“. Ans. P (x) = §(35x“+30x2+3).
k=0

Let [y) be a state function of a certain system and U, (8, n) be a rotation operator with angle 0 around n (n is a
unit vector), so that [y} = U,y is the state function rotated by angle 0 about n. Using a matrix representation,

i
show thatfor /=1, U, (8,n) = exp (—,zben . L) {this operator is the rotation operator for all values of /).



Chapter 7

Spin

7.1 DEFINITIONS

Spin is an intrinsic property of particles. This property was deduced from the Stern-Gerlach experiment.
The formal definition of the spin operator S is analogous to the angular momentum operator (see Chapter 6),

SHlo) = S(S+ 1) Ao (7.1)

|} being an eigenfunction of § “and § (5 + 1) the corresponding eigenvalues. We define also
g p

st =5'+5+8° (7.2)
where S,, 5, and §_ obey the following comimutation relations:
[5.5) = ihS. [5,5.] = ihsS, [s,S.1 = iﬁS), (7.3)
Analogous to angular momentum, the quantum number of spin in the z-direction 18 mg = -5, -S+1,...,+S,
and
S.joy = mghjo) (7.4)

inof 1/2 wehave m, = + 1/2 and two distinct eigenvectors

| 1
of S® and S_ denoted by |+§) and I-—i). These eigenvectors are called the standard basis, where

3.1 I ko1
S'lez) = 34°145) S.3) = 5143) (7.5)

As its name hints, it is this basis that is usually used, though alternative bases are of course available. Any wave
function in the spin space can be written as a linear combination of the standard basis.

7.3 PAULI MATRICES

The Pauli matrices ¢ = (0,, 6, 6_) are defined using

S = %o (7.6)
where
01 0 —i 1 0
o)(=(\1 “J G_\,=\!_ 0,] o::(\ _!J (7.7)
S being written in the standard basis. The commutation relations of the Pauli matrices are
{6,.6,} = 2ic, {6,,6.] = 2iG, (6.6,] = 2ig, (7.8}
Other useful relations for the Pauli matrices are
oi = oi = of =1 (7.9)
and also
(6-A)(c-B) = (A-Byl +i6- (AxB) (7.10)
where A and B arc iwo spatial vectors

—
N
[\
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7.4 LOWERING AND RAISING OPERATORS

Analogously to the angular momentum, we define the lowering and raising spin operators:

S)'=Sx+iS_V S‘=Sx—iSy {(7.11)
where
1 1 1
S.43) =0 Sﬁl+§) = ﬁ|-§) (7.12)
S l =f 'i') S -l- =) 7.3
+|_2> - |+2 6|—2> = ( . )

7.5 ROTATIONS IN THE SPIN SPACE

To find the representation of a state |o) in a given coordinate system that is rotated by an angle 6 around an
axis in the direction of the unit vector & (see Fig. 7-1), we compute

h

\
\
P
{/X//a AN

Y

o) = exp(—iﬁﬁ : S)\(x) (7.14)

Fig. 7-1

Thus, the rotation mairix is

: cos (0/2) i ~i¢
Up = exp(_ief,.s) = o sin (6/2) e (7.15)
\ A /7 sin (8/2)e” cos (0/2) ) ’
Notice that for ¢ = 0 (rotation around the z-axis) we have
( cos (6/2) ~sin (9/2)\
Up = | sinra/7 coc (0 /77 (7.16)
\ ol \U/ h} WD W/ H} /

which is a rotation of 82 around the z-axis. The rotation of a spin vector differs from that of a spatial vector.
O 1

Thio wacnle ia o H
This result is unique to the spin vector and can thus be

1 il L

spinor.

7.6 INTERACTION WITH A MAGNETIC FIELD

Consider a system consisting of particles with a spin S. Applying a magnetic field B will introduce an addi-
tional term to the free Hamiltonian H,,, so that

H=Hy+H = Hy+ -8 (7.17)
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7.1.

7.2

SPIN [CHAP. 7
Solved Problems

Calculate the commutation relation [G,, 6,], where j = x, y,z and G, are the Pauli matrices.

We begin by considering the Pauli matrices:

[0 1) (o -i)

0 0 i {1 )
=11 o %=l o) %=l o -1 )

Therefore, we see that

{0 1][0 —i) [0 —i)[o l]
(0,0l =00,-06,0, = -
) : tofli o) lioflto
=[" 0,]-[“’ (_)]=2i[1 0]=2i02 (7.4.1)
\0—1/\01/ L0 -1
Also,
(o Y1 o)Y(1 oYo =)
(opod =000 = o o) loa i o)
(0 i) [ 0 =i)
- _ - 2 1.2
LiOJL—iOJ 2ic, (7:42)
and, fipally,
[ss]=cs:cc=(l oo 1) [or1Y o)
200 =0800 =1 o )y o)1 o) o 1)
_[ o ”_ro“\:zzs (7.4.3)
L-1 o)1 o) y
So we conclude that
[o,0] 2ie 0, (7.1.4)

where

J 1 ijk have cyclic permutation
, = -1 ijk have anticyclic permutation
if .

[ 0 otherwise

—_
~3
.
in
N

1 1 1
Using the basis vectors of §, eigenvectors, calculate S ‘-l+§) and Sil—%) (i=1x,y,z), where |+§) and

| 1) are the eigenvectors of S, with eigenvalues +#/2 and —A/2, respectively.

2

The basis vectors of §_ eigenvectors are (see Summary of Theory, Section 4.2)

Al 0 Al o —i] ﬁ(l 0}
s=40 ) sy seia o2
VoV Ve LU B
and § = éO.Deno"nn by |+l\5( : ) '—1\5( 0 W we write
2 5-"2’\0)I2/k1’
1 rj(o Y @(0\ by
SER =3y oo )=2 1) 732 (72.2)
14 \ 4

Ao o Al V) A
SI|_§>=§L1 0 Jtl J=5L0J=§I+§> (7.23)

Note that §, produces a transition between the eigenstates of 5, so that when §, operates on one eigenstate it pro-
duces a multiple of the other. Similarly, for §:
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ot w0 =) ) a0 ai
=2 oo \o)TE )7 2R (7.24)
s VAP V2R .
1 al vo—I U al -t i 1
S5 = EL i 0 J[ 1J= §L 0 J= 212 (7.2.3)
And so, as expected,
sy (Lo} Al 1) e
Y T2l 0 -1 Jlo) T2 0 7 2 (7.2.6)
a0 o) o) &y
A HEE HEEE

7.3. (a)lfthe A-componem of an electron spin is +# /2, what is the probability that its component along a
1 4

duuu{luu 1. thﬂl fUllllD all auslu U Wlth {h ﬁl/z (S‘Ce F}g. 7 2)‘) (b) "‘"hal 13 lhc

average value of the spin along z'?

3

Fig. 7-2

1
(a) The present state of the electron is |+3}: the spin operator component along z' is
P 3 pin op! P 4

fi
S, =S-n=30-n (7.3.1)
where N is a unit vector along z'. In our case, n = X sinf cos¢ + 9 sin0 sind + £ cosO and therefore,
S, = S, sinBcos¢ + §, sinBsing + S, cosB (7.3.2)
The eigenvalues of S, are +£/2 or — £i/2, and the eigenvectors of S, with the basis eigenvectors of S, are
1 1 1
[+3Y = al+3)+ bl-3) (7.3.3)
2 y3 2
1 1 ﬁ 1 .
S 45y = +350+3) (734)
L &0 L
and
1, 1 1
F3)' = cl+3) +dl-3) (7.3.5)

)
where a, b, ¢, and d are complex constants. By substituting (7.3.2) and (7.3.3) into (7.3 .4) we obtain

1 h 1
(S, sinO cos¢ + Sy sin@sin ¢+ S cosB) (al+§) + bl—%)) = §(al+§> + bl—%)) (7.3.7)
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Using the known relations

1 A o1 1 i1
S+3) = 313 { S.F3) = 3+3)
1 ik 1 I, _ ik 1
1. &1 o1 Aol
S = gk %) = gy

so (7.3.7 ) turns into the form
f 1 1 hb i . | 1 1
—;—l { sin900s¢|—%) +isin@sin¢|—3) + cosG|+§)} +3 { sinfcosgh+5) — isinsinol+5) - C059|—§)}

ﬁ[ ! 1 )
=3 a|+2)+b|—§) (7.39)
Hence, we obtain

a sinB coso + ia sin sind — b cos® = b

| @ cos® + b sin® cos¢ - ibsinbsing = ¢ {(7.3.10)
o (1+cosB)b R SR e L2 o 12— 1 e (al2 1 M\
or d = Sine(cos¢+f§in¢)' |'7'2> ITHUADL Ucauuu Yool Lhua |u|2-r |l’7|’ -1 m1d|b| k + Sln e )
1, s0
, 2((;3\ 2f )
b o SN sin'® asinlzJeos \3) 2(9) -
_2+20059_£1 2(9\_ . 2(9\ = sin{ 5 (7.3.11)
leos | 5 lcos | 3 )
We choose b = ¢%sin (8/2); hence
A 8Y . (6)
(1 +cos@) (9) 0 2cos \ZJS"‘\zJ (9)
a = Tgae S5 je = —— g = cos{ 3 (7.3.12)
50 we obtain
1, ey 1. (® 1
[+3)" = cos\§_|+§)+sm\§_’e'°|—;) (7.3.13)
Since |_%)' is orthogonal to |+%)' we have
1 0 (6 0) .
{(+31-3) = ccosl 5 | +dsin| 5 je7* = 0= ¢ = —tan| 5 |e~'*d (7.3.14)
22 2 2 2

1
Note that |—§)' is also a unit vector, so |c|2 +|d|? = 1. Substituting ¢ we obtain [tan’ (8/2) +11|d? = 1
or ld|?2 = cosz(9/2). We choose d = —cos (8/2), and so ¢ = —e~*¢sin (6/2). Therefore,

|—%>' = —sin[g) '¢|+é)+cos(e) ) (7.3.15)

The present state of the electron represented by the basis eigenvectors of S is

1 111 1 1.1 0 1
30 = (#5155 + 35 2>i—§) = cos (z}l"zl + sin (5) i—§ {7.3.16)
Therefore, the probability that the spin component along z' is +f/2:
“+h [, 11 o 87
Pl5 )= (+§|+§) = cos | 3 (7.3.17)
and the probability thatitis -£/2;
) L, 10 .28
P[—i) = \ (—§|+‘ = sin (i) (7.3.18)

1 1
(b) The average value of the spin along z' is {S.) = (+§|S,.|+§). Using the relation

S:.|+%) = Sz.( cos(%)ﬁ%)‘ + sin( g)e"'¢|—2) ) ﬁ( cos(e)|+ 1) - sm( 9) '°|—2)') (7.3.19)
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we obtain
1 (e 1,
t+3) - sm[ 5)9"‘1—5) )

'0<+ 2|_2) J

(§.) = <+2|S |+2) = (+2|2(cos

NI D
\_./ N’

-
TN TN

h 20 .2 8
=3 cos (5)—sm (5‘)} = ﬁcgse (7.3.20)

7.4. Consider a particle with spin § = 1/2. (a) Find the eigenvalues and eigenfunctions of the operator
S+ Sy where S, is the spin operator in the i-direction (i = x, y, z). (b) Assume that |} designates the
eigenfunction of § +5, that belongs to the maximal eigenvalue and that the particle is in state I(x) If

WU IICasulc lllC Dl.}lll Lll lhc A‘UlleLlUll, Whal alC th vaiuca ana Lhcll PlUUablllllCD \L} lllC lJa.l llblc lb lll
state oty . Find, if possible, the direction n in which the spin measurement will with certainty yield the
value S, = A/2.

(a) We begin by writing 1the matrices

L I . B (7.4.1
RE RIS BECEE IIF R P 4
thus,
. ﬁ( 0 -l 1
A = Sl +S_\' = 2 ] n (74.2)
\ il U /
To find the eigenvalues of this operator (Afi/2). we must solve the equation det [A — (AR/2) 1] = 0; that
is,
I O
det{2{ 1+ Y J} =0= 2 [k-_'(l_t)(l*'l)] =0 (743)

So, A2—2 = 0, which yields A = +./2, and the eigenvalues of A are +# /2. The eigenfunction of A cor-
responding to the eigenvalue + %/ /2 is

N )

W ) —..ﬁ L+ —..V/._’Z J

\ 1
That is the state a|+§) + b|_§>’ where

. ~-2a+ (1-i)b=0
(2 )= (5] =1

1+ 7,\‘/5,\};/ L 0 ) (1+d)a-J2b=0

2 1 1 ) ] N .
Thus, ¢ = l—:b For a|+§) +b|—§) to be normalized we must satisfy the condition |a|2 +|b]? = 1; hence,
( l£\+ 1)|b|2 = 1 (7.4.6)
N C1f _l i e . o
which yields b = 1/J2 and a = F1- 2 < A Therefore, the first eigenstate |v|) = a|+2)
1 e—lll/4

+b|—§) isfound tobe Jv,) = 7 |+2 J_I 2) Similarly, for the second eigenfunction of A correspond-

ing to the eigenvalue —#i / J2 we obtain

LY 1= || =ker( So1-i) 747)
[CITr | Lisi ) -
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75.

(b)

(c)

SPIN [CHAP. 7

1 1
Orlvy = cl+§) + dl_?‘ where

_ . S22+ (1-i)d=0
(o))
L1+ L2 d 0 (l+Dc+.2d=0
1 ¥ ANL S\ J \ J
2 . o 1
s0 ¢ = -1, ;4 The normalization condition of [y vields d = 1/J2 and ¢ = i eI®4/ 2. and
ein’d ]
therefore, |v,) = I+2)+ /—l 2) so finally
L
(S\ * S}) |Vl> = 4’\/_§IVI> (S\ * S\) |\'2> - ﬁlv2> (749)
The maximal eigenvalue of § + S, is +#/./2; thus,
e /4
o) =) = 2 I+2)+[' 2) (7.4.10)
The values that can be obtained from a measurement of S_ are ££ /2. The probability for S_ = /2 is
fi -misalz |
P(E) = (+§|a> = e : =3 (74.11)
I ~Z
Therefore the probability for S. = -A/2 is
T A RN l
Pl—5)=1- b) =3 (7.4.12)

If the measurement of an observable gives only one result, then the state of the system is an eigenstate of that
observable; thus, the state |ot) is the eigenstate of a spin operator in a certain direction (the one we wish to
find). As we have seen in part (a),

7:4» ’4

o = vy = 7 i+2>+J:—2 2) (7.4.13)
|v,) is also an eigenstate of S + 5, with the eigenvalue # / ¢ J2 . that is
h f

(s +§)lo) = —/,—’Ia) = —,,-,(S|+S}.) loy = 5lo0) (74.14)

Hence, | is the eigenstate of (S, +S) / 2 and the measurement of ($,+5) /2 always yields the result
/2 . Note that ( Q 4 Q )/ /3 is the \nm operator in the direction of the \nmul unit vectorn = ¥ + \J where

aperalo a0 AQirec cClo

% and y are unit vcctors in the x and y directions, respectively.

Consider a particle with spin 1/2. (a) What are the eigenvalues and eigenvectors of § , S and §,?(h)
Consider a particle in eigenstate §,. What are the possible results and their probabllltles lf we measure
the z-component of the spin? (¢) At t = O the particle is in the eigenstate § , which corresponds to the

eigenvalue —# /2. The particle is in a magnetic field and its Hamiltonian is H = —S Find the state

at 7> 0. (d) If we measure S_at 7 = r|, what is the result? What is the result for a measurement of S, at
t = 1,? Explain the dlfference in r,-dependence. (¢) Calculate the expectation values of §_and S at
I =1.

(@)

Consider the matrices §,, S, and §_ written in the basis eigenvectors of §_,

(0
L1

ra)

1
—_—

1
value —% /2 we have I_’_.Z}: = [ (l) } The eigenvalues of §_ are AA/2, where det (S, — (AA/2) 1)
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that is,

0 1) A2 o) (ﬁ\'z.
®2 1 0 )72 0 a )] T2/

or A2 -1 = 0. Therefore, we obtain the eigenvalues +# /2. The eigenvector corresponding to the eigenvalue

1 1 |
+h/2is |‘+§')X = ai+§'): + f’i—i)_ EL

-A 1

N (7.5.2)

)

0 1 \( (1\ f_'l( a
3 b ) (7.5.3)

o1 Y a
sk =323 Vo |-

Solving (7.5.3) we obtain b = a. Now, I+§') must be normalized, so we set the condition |¢|* + {b|Z = 1.
Substituting for @ we obtain

o [
2bF = 1=>a=5b=— (7.5.4)
~'2
Thus, the eigenvector of S with eigenvalue +%/2 is
IR (R P (A ;
|+2 L= A'/i\ !} ; |+2):+}—2): (7.5.5)

The other eigenvector |-5) (with eigenvalue ~f/2) is obtained either from orthogonality and normalization

conditions (since the two eigenvectors belong to different eigenvalues), or in the same manner in which the
first eigenvector was obtained, We will follow the former course:

1 1 1 C
"?) = <'I+2>:+bl—§>:=( J ] (7.5.6)
and
[P ~EAY
Ll 1742 e d
(_‘|+_> = (¢ d) = =4+ —= =) (7.57)
a 2020 1742 2202
giving ¢ = —d. Using the normalization condition, |c|2+{d|> = 1; we can choose ¢ = -d = 1/./2 and
obtain

1 1 1 1 1 1
-3 = ﬁ[ N ) = —2(I+§>3—I—§>:] (7.5.8)

Similarly, the eigenvalues of S, are (£/2)A, where

( h 1\ (e o i)
detLS—EA )=L§}L l _AJ=0 (7.5.9
~ 12 1 — N. an tha Aliawmo.a livacs A8 © nea alaa L& /Y ned tha almamiasnta mmencemo dian s bha Al
U AT— 1 = U, du v cngcuvalucc Ul L)v O aldU i/ L alu uic CIEC LVLULLWUL LU IEDPUIIUIIIB i LIc Clgcll'
value +4/2 is
! 1 1 { a\
l+3), = al+§>:+bl—§>:EL A J (7.5.10)
where
A -
S =5 . T l=3 " | =3k, (7.5.11)
[N UL N vey

so ia = b. Using the normalization condition [a|?+|b|2 = 1 we obtain 2|b|2 = 1, so we can choose
b = 1/45 and ¢ = —i/}/’i. And finally, we obtain

oL h)
|+2)y = Nz —1|+2>:+|—'): (7.5.12)
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(b)

()
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Jeing the orthooonality relation of I_l\ to |4.l\ we have I_l\ = {-|+l\1 + dl_l\ and
vSImgine o gonaity a7y i*ta/y ~a/y (MY (mOYE
{ ]i+1'> ( d)r e ] S d 0 (7.5.13)
{—5l+52, = (C A~
S \ e ) RTA
, we get |c]2+dl2 = 2l¢|2 = 1. Thus, ¢ = 1/.J2 and

so d = ic, and from the normalization condition w

i/ 2; therefore,

Lo_ (.1
S AN

As we found in part (a), the eigenstates of S, are
l_L(l 1) I_L(l 1) 515
l+3), = 5 [+3). + +5). -3} = 5 [+3). ~ 3. (7.5.15)
1
If we measure the spin component in the z-direction, the state of the particle will be either |+§):, giving

1
S, =h/2,0r |—§)_, giving S, = —#i/2. The probability for S, = £/2 is

2
P(é\ = |(+llil\‘ = l (7.5.16)
\2/) T 2] T2 { )
and for §. = -A/2 is
7 ﬁ\ l |2 ]
Pl-3) = }(+2|_2> =3 (7.5.17)

1 1
o i 1 .
Note that if the initial state is either |+§)_l or |—-§)J we obtain the same results.

At ¢ = 0 the particle is in initial state:
L L( Lo ! )
|+2)X = ﬁ |+2):+|—2): (7.5.18)

d
We want to find the time evolution of this state, so we use the Schrodinger equation, iﬁa—‘f = Hy. As the
S

Hamiltonian is time-independent, we write W (r, s, 1) = & (r,s) d,(¢#); substituting in the Schradinger equa-
r 1 T ATF M~ T A=F~7 TIN"/7 [=] {=] b |
tion gives
at,(1)
b.(r. sy —= = G(NHb(r.s) (7.5.19)
Yi\trv) dt h AR A AV B ) LA

Assuming that ¢,(r) is of the form §,(¢) = e~F'/% where E is a constant, we obtain
E¢1(rs s) ekt = ¢2(’) H‘DI( r,s) = E(I)l(l', S) ¢2 (1) = ¢2([)H¢|(I’, s) {7.5.20)

and we must require that ¢,(r,s) = E¢, (r,s). In other words, ¢ (r, s) must be an eigenfunction of the Ham-
iltonian H. Note that

el
H="-§ = (const)§, (7.5.21)

Thus, the eigenstates of H are similar to the eigenstates of S_, where the eigenvalues of H are the eigenvalues
of §_ multiplied by the constant ¢B/mc . Therefore,

W(r ) = +3), =2t (7522)
and
lwy(r.s, 1)) = e""B"z""‘l+%): (7.5.23)
Also,
IWi(r,s)) = I—%): E = —% {7.5.24)

which gives

ly,(r,s,0)) = e"'“’”’""l—%)q (7.5.25)
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Therefore, each state of the particle can be written as

4 1 1
|w(r,s, 7)) = c|y,(r,8, 1))+ Bl Wy(r,8,1)) = ae-’fB’/z'"“l-A-i): + Be'/?""‘|—§)Z (7.5.26)
For our system, the initial condition is
| 1 1 1 1
yr, s, t=0)) = E(l+§): + I_i>z) = al+3), + [3|—§)Z (7.5.27)
hence ¢ = B = 1/J2, giving
. L R | o1 e
|\|j( r,s, t)) = ﬁkeﬂeuu Zme |+§): 4 eleB1/ Ime 1_§)~) (7.5.28)
(d) A measurement of S, or S, will give either +%./2 or -/ 2. The probability for a measurement S, = +£/2 is
h 1 2 1 —ie me T4 e 2 2 eBtl
PX(+§) = x(+§|\p(r,s, L) = ’§(€ By rame_ pieBr, 12 }y| = cos (m) (7.5.29)
and for S, = -A/2 we have
( ﬁ\ I 1 |2 [ —ieBi /2nic ieBi /2mc |2 . ZKEBI!\
PXL—-z-J = |X(—§|\|l(r, s, t,))‘ = |5 ! - )| = sin kQ_mC) (7.5.30)
Similarly, the probability for §, = +f/2 is
ﬁ' 2 1 g me 2 1
P:(+ ) <+2Iw(r $,1,)) ‘T G IS (7.5.31)
and for S, = -A/2,
( ﬂ | lu r,51[1)> = ILA o, s2m|” _ 1 (7.5.32)
AT2) T2 /2 | 2

(¢) We can calculate the expectation value of §; in two ways: the first by calculating W (r, s, t,)|S,|W(r, s, 1,))
and the second by summing over the products of the possibie values muitipiied by their probabiiity. In the sec-
ond possibility,

E (R K _( BN R[ ,feBr)) feBt,\1 4 {eBt.
(5) = +3P, +§J—2PXL——2-} = §Lcos LT_J—sm kfﬁ?” 5 ¢ L—m J (7.5.33)
Similarly,
Sy = ﬁP( ﬁ) ﬁP( E) ﬁ(l 1)-—0 7.5.34
<g>_+2;+2"2:_2 2_2" ()

Note that (S is not conserved in time; this is because [H, S.]

since

eB
(H,5.] = ——[5.,8.]=0

(a)Provethat [$2,5,] = 0where §? = 52+52
onalizes $2. Find the eigenvaiues of $2.

7.6.

(a) In Problem 7.1 we found that [0, Gy]

that S = AG/2 we write
(S, Sy] = RS, (S,.S.] = iAhS,
Hence,
(8%, 8.] = [S2+S}+S82%5.]

where i = x,y, z. We see that
[$2, 8] = §25,-5.52+58.5,-55.5§

g3 22

=5,(SS, - s:s,.)+(s,s: $.5)S,

Also,

[5%8.]

= 2i6,;[6,06,] = 2i6,;and (0,0,]

= S.[S,S.]+(S,S.1S,

eB
= [S. 5,1 #0, while (S is conserved

(7.5.35)

$2. (b) Show that the eigenvectors’ basis of S, diag-

= 2i0,; therefore, recalling

[S.S,] = &S, (7.6.1)

= Z (2,81 (7.6.2)
=S, [S,5.1+[5,5.]5, (7.6.3)

= —ih(5.5,+S.5) (7.04)
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and
[C2 €1 = C (€ €1 .0C C1C = _;4/0CC LCC\ (7 A S)
lUy,U:J uy[uy,u ] T luv, U_J U} b UyUXTUX }’ /.Uy
And finalty,
r o9 Lodeil roa [oJ ] > 0 o . y 3 on oo n -~ s
1921 = S 2 = =
(2,821 = p 1S} 8.1 = ii (5,5 +5.5,)-ih(5S5,+535) =0 {(7.6.6)

To obtain the matrix representation of $? we calculate it, using the matrices of S, 5, and §, in the basis of
the eigenvectors of §_; that is,

_h H0 i) S_{zfl 0 ) 767
I "2 o) 20 1) °
hence,
A2
§2 = SI+81+ 82 = (5) (02 +02+02) (7.6.8)
Using the known result that o7 = 1, we obtain
f\2 32 1 )
§t = 3(;) 1- T( bo (7.6.9)
LS - U 1 )

We see the S? is diagonalized (in the basis of the eigenvectors of ). From linear algebra we know that if a

vecior basis diagonalizes the mainix of an operator, then the basis is comprised of the operator’s eigenveciors,
1 1
i.e., I+§) and |—§) are also the eigenvectors of $2. In other words, we conclude that if the commutation relation

of two operators is zero, then we can find similar eigenvectors for both of them. To find the eigenvalue of $2

for the eigenvector |+3) we calculate

810 )2

1 1
So the eigenvalue of |+§) is 3A2/4, and the eigenvalue of |- 3) is

Lm0 o) 3 o) 3 1
32|_2)=4{01}[1 =7 = 53 (7.6.11)

1
Thus the eigenvalue of |~ §> is also 3£2/4. Note that if we set § = 1/2 to be the quantum number of the

3

A 1
7 [+3) (7.6.10)

<o

total spin, then (like the angular momentum theory) the eigenvalue 3%2/4 can be written as #25 (S + 1).

- , o 1 1,
7.7.  Find the result of applying the operators §_+ iSy and § - iSy on the eigenvectors |+§) and l—i) of §,.
What is the importance of these operators?

, 1 ] 1 Eo1 (ﬁ\ 1
(S +iSH V3= SH3Y4+iS+3) = s -2+ iz lil-=)Y = O (7.7.1}
AY X )’Il zl bal Ll _yl zl z I 2[ \ z/ 1 2! 1 7
and
N N AN L R
(S, +15)15) = S\=3) +iSl=3) = 5 I+ 3) + i3 Jil+3) = hi+3) (7.7.2)
For the operator S,— i§_ we have o
) 1 1 . 1 Aol Ay 1 1
(S~ iS)1+3) = SI+3) = iS,1+3) = 31-5) =13 )il-3) = Ab-5) (7.7.3)
and
. 1 || A1 F AV
(5= iS,)13) = S.b-3) - iS,l3) = 31 30 = (i3 ) (<) I+ 3) = 0 (7.74)
To conclude, we have
(’l.l\=n C |.l\___.l.|_l\ C |__l\=m.l\ C |_l\_r\ /77 &
U+|T2/ v U_ |1'2/ Ilr| 2/ U+| 2/ Ilr|1’2/ U_l 2/ - U l/ £ J’
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where §, =§ + iSy and § =5 - iSy. The latter relations justify calling S, a spin-raising operator, since it
increases the spin in z-direction from —#A/2 to + /2. Similarly, we cail §_ a spin-lowering operator, since it
lowers the z-component of the spin from +#/2 to —#/2. §, and S_ allow us to jump from one eigenstate of S,
to the other. They are very useful in spin calculation.

Using the operators S, and §_ compute the matrices S, and S ; show that §2 = §2 + §2+5S? is diag-
onalized in the basis of eigenvectors of §,.

The spin-raising §, operator and the spin-lowering S_ operator are defined as

S, =8, +i§, § = Sx—iS}. (7.8.1}
Hence, we can write
| o L.
S, = 3(5,+5.) S, = 53 (8,-5.) (7.8.2)
Therefore,
1 1
§* = §2+82+80 = S7+3(5, +8.)?-7(5,~5.)?
i i
=S247(S2+S,5 +5.5,452) —7(52-5,8 —S.5, +57)
=S2+3(S,5_ +5_S,) (7.8.3)
To find the matrix representation of $? we compute
zl_(zl )1_211 L1 1
S |+2) = | §; +2(S+S_ +8_8) |+2) = S:|+2)+23+S_ |+2) + 2S_ S+|+2)
AY 1 A 1 R?2 A2Y 1 3R 1
= (5) +3) +§S+"§)+0=(I +5)'+§> =7+ (7.84)
And also
21 1\ (n’) 1r(‘l(‘l (’{'\\l l\ Q2 1\ 1(1("|]\ ln [ J 1\
.)'|—-§} = \o;+i(o+o_ TO_0,) )|—§) = 9 i)#§o+o_ |—-§/+§o_o+|—§)
2 2 2 2
= (Z\ I—,lS-A-iLS I+r!\+ﬂ = (ﬁ—+i\|_ls = gi (7.8.5)
\2/ 720720 \4T2/)72°7 4 e
Therefore,
1 1
K3 3
4 \
| 1) 3h? 0
- 2
2 2 4 _ :ﬁ( 1 01
1= 32l 4101 (7.8.6)
which is diagonalized

For a particle with spin 1/2, compute in two ways the expectation value of i8,5,S,, where the

Ly .o : : < e o
particie wave function is _ﬁ\HE) +i—5)): (a) using S, and S_ operators, where §, = § +i§,
and §_ = 5 —iS; (b) in a direct way.

(@) Consider the matrices S, and §_:

| =~

(S,+8.) Sy = ($,+8.) (7.9.1)

DO | ==
[

S =

i
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Therefore,

A=iS.S,S, 8,(S +8 )(S,~S.)(S,+S ) = (SE—S+S_+S_.S§ ~S2)(S5,+5 )

1 PR
=32(5}-S5,85.85,+5.52-825, +5,82-85821+8 §.§ -§%) (7.9.2)
Recall that
1 1 1 1 1 ]
S,l+3) =0 S.=3) = hl+3) S_|+3) = hl-3) S5 =0 (7.9.3)
Hence, | |
Sik3) = 0 $i+3) = 0 (7.94)
Therefore, all the expressions in A that contain S2 or §? do not contribute to the expectation value, that is,
- 1 1 ] 1 1
@) = é[(%l +E 5!)-"&5.\-3 ( +3)+ §>H
1 1
= —[[qu +{- ﬂs S, 5_+8.8 SL(I+4)+ - Q)H (7.9.5)
It can be seen that
1 1 ]
S_S.S_l+3) = A= 3) $_8,8 -3 = (7.9.6)
and also,
1 1 1
S, 8.8, 1+35)=0 S, b3y = i3 (7.9.7)
Substituting in (7.9.5) we obtain
~ A3 1 1 1 1 1 1 1 1
{A —!("" ; )(i+§)+i— 5))—((+§i+\— i')(# §)+i+§>)JL =0 (7.98)

A S s -1
/=16 l\\"‘zl"’\— 2l
Sy

) ﬁ-‘z‘01][0_f](01]iﬁ»*(()l](o1](01]
A=isss ==t =
"tyx 8[\10,\[ 0,\10/ 8\10/\71 0/\10

0 1 0 1 im0 1
= ( 1 n ]( 1 n W = g ( ¥ n ) (799)
(VAN N S -l Uy
S N N O I B \
The particle wave function in the standard basisis —=| [+=) + |-2) |= — and, therefore,
»\/ T 27 ) 1 )

oo (o Y1) w
(A) = 7g U I)L Lo JL 1J=1—6_(1 I)L | =0 (7.9.10)
7.10. Consider the commutation relations:
[$,. 8,1 = iAs, (7.10.1)
[S.S,] = ihS, (7.10.2)
(S.S,] = ihS, (7.10.3)

Given that §,, S, and S, are Hermitian operators with eigenvalues +#./2, find the matrix representa-
tionof §,, §, and S. in a basis where §_ is diagonalized.

Note that S, S,, and §_ each have two eigenvectors and that they are Hermitian operators; thus we conclude
that their matrix representation is 2 x 2; so,

((a, b, ) ((a, b,) (ay b,)
S P S=l e o) N (7.104)
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7.11.

We want to express the matrices in a basis in which S, is diagonalized; thus we write

R/2 0 Al L0
§. = =3 7.10.
: ( 0 —h/2] 2[ 0 -1 ] (7105
Substituting §, and §_ in (7.10.3) gives
; e 0 NS . AY ﬁ a b NS 1 0 hY s a b hY
i -3 =i (7.10.6)
-1 ¢, d, ¢, d, 0 (-1 c, d,
or
é [( a, b! \_( a, —h! \] - i a, bz \ (7.107)
2 —¢, —d, J L ¢, —d, Jj L ) dzJ o
Thus, we obtain

( O ] = ( o ’ 1 = S, (7.10.8)

)
5 is a Hermitian matrix; i.e., .5 =35, 0r = . " |- Therefore, b, = ¢, =a. Hence,
ic, 0 ib] 0
/ 0 —io \ (4 o )
S=| . . s.=| | (7.10.9)
o 0 } o d,

or

1 —i o o

s"” 1 ( 0 "*HJ"L " | (o ) [a @)
- ) 0 )

Thus, we obtain

s, = L 0 - J S, = [ 0 o J (7.10.12)
w0 oo

Finally, we substitute S, and S, in (7./0./) and obtain

[0 aY 0 e} (0 -e) o o) 1 o) 71013
ua*okia' OJLia*oJka‘oJI_zko_lJ 10.19)
_ileyl2 —leyl? A 2 A2
(iR N B~ R Y LS B L o
[ L “\ -t N —lod= v
Thus, laj2 = A2/4. If we choose 0. to be areal positive number (o = £/2), we obtain the standard representation
nf C € and C
h h —i h
T T Y ° 710159
"\ 1 U} "\ ! U ) "k U - l}

Using the Pauli matrices prove: (a) (6-A) (6-B) = (A- B)l +ic- (AXB), where 6 =(0,, 0

- (-.9 \ -
G,), 1 is a 2x2 matrix, A =(A,, Ay, A). B =(B,B,B,) (b) cxpk—lz—n . 0')= cos (0/2) 1 -
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in - ¢sin (0/2). Recall that we can expand an operator Aina Taylor series, ed = Z (A) (see

Chapter 4).

(@) We begin by considering the Pauli matrices:

o) el e

w
[+

(A A-ia,)
“lAvia, A

(7.11.1)

—
~
(-
—~
[¥)

S

B -iB,
Similarly, - B = " |. Thus we obtain
B, +IB -B,
lA B -iB,
(0-A)y(c-B)y =| | .
\ nj-i-lny -A, A\ DJT!DV -,
((AB.+AB, +AB +iAB -iAB, AB.—iAB -AB +iAB,
"l 4B+ iAB,-AB, —iAB, AB +AB +iAB —iAB +AB, )
/ . i \
- (A B)l +l '(AxBy—AyBx) (A.B, -AB) +r(A.‘,Bz—A:By) J
(AB,~AB) +i(AB —~AB) i(AB ~AB)
0 0 1 0
=(A-Byl + AB,—A,B[' }+ AB—AB_[ ]+ AB. -AB ( )
( ) (A.B, "')\0—' (A,B, 1_)\_10/(yZ zy)\’_ol
(7.11.3)
Note that
( Ty oz 1
AxB=| A A Ao (AB.-AB)X+(AB -AB)y+ (AB -AB)? (7.1i4)
& 8, 5.
so that
(c-A)(c-B) = (A-B)l + (AxB)_ic_+ (AxB) ic, + (AxB),ic,
=A B+ic- (AxB) (7.11.5)
(by We expand the exponent as
L] o 1( 8 "
exp “'5“'0 = 2;1-, —1§n-0' (7.11.6)
n=>0
Note that
(n-0)" = J 1 foreven 1 ("= { l, e t:orev_e‘nn
[ n-c¢ forodd s U (=) (1) r-Dr2 for odd n

Thus we obtain
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el B o) ST (O N (e ]
P MY T Llem\2) T Ll eny 2, (00T
n=0 n=0
I (oY — (=1)% (@)n+i
=1 (2n)!L§J "“'GZ(an)!(i) (7.11.7)
n=0 n=20

N o o (=D
cosQ = L(2n)! simo = L (2n+ ])!a
n=0 n={
we eventually obtain
L] 6 . (6
exp(—':n-on = cos(;)l —in- 0‘s1n(,—,] (7.11.8)
£ A NL/ L/

7.12. Consider the eigenvectors of S, the spin component in n-direction, where n is a unit vector:

n = £ sin® cosd + ¥ sinO sind + 7 cosO (7.12.1)
Find the rotation operator Uy, where
I Ln.l\ = |.Ll\' J ol l\ = |- l\' (712 2)
‘-‘R!'zl I'2/ ~RY 2/ ) 2/ [ R
1 1 1 1
I_Lf\ and |_ f\ are the ctandard hacec nf § eicenvectarc- I.L,—\' and |Z —\' aro tha aiganuvacrtnee nf C
l' 2, AALING l 2, A % Wil JLVARLIVIMAL A LR WD PR U‘- Mj&hll'\l\ilvl Dy |l 2/ A1 NG | 2/ Al W Ll \(lé\lll'\l\-’luln i Un
with eigenvalues +% /2 and — % /2, respectively. Recall that
. 1 e 9\ 1 re 9\ 1
J I+§)' = cos(iJHi) + sintéje"vl— 5)
1 £ N\ 1 £ N\ 1 {7123)
i (o . 1 o 1
[ 3) = = sin 3 Je®le3) + cos\ 5 )1~ )
1 a0 1 { n N
L] Lh_|1 Vv
We choose |+2) = L 0 Jand - 2) = L | J so that
1 [ cos (8/2) J 1 L —sin(8/2)e-° J
+=) = —_ =) = 7124
k) sin(0,/2)e =2 cos (8/2) ( J

. . . b .. 1 1
Assume that the matrix representation of U, is Uy = [ a. ); then the condition (7.712.2) UR|—§) = |—§)' can
be written as c d

o)) - () e
c d 0 sin(B/2)e'® b sin (8/2)e!?
\ AV A NOEIET N T

Lo b _si o
Similarly, for Ugl—3) = |- we obtain ( , ) - r sin(8/2)e )

o ame ; so finally we get
L cos(B/2)

o[ a b)) _( cos8/2) -sin(@/2)ems |
TR —L c d} 7( sin(6/2)e'? cos (8/2) }

(cos/2y o ). 0 sin(8/2) cosd | [ 0 +sin(8/2)sing |
= + +
L 0 cos (6/2) J L sin(6/2) cos¢ 0 J L sin (0/2) sing 0 J
AP 6\ 8\ '
= cosk §)l —i sinkij(coscp)oy—i sinkij(—sinq))o_,
= Ccs(g)l —isin(g)(ﬁ- G) (7.12.6)
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Fig. 7-3
. . N Ixn
where it = £ sind + $ cosd (see Fig. 7-3). Note that &# = ; T, 80
|z xn
o 5o -
ixn = 0 0 1 | = -%sin@sing+ysinBcosp = |[2xn| = sin@ (7.12.7)
sinfcos¢ sinBsing cosH
In Problem 7.11, part (), we obtain the result
) 0 i9
cos(ijl—i s‘m(i)(&‘S) = exp(—?z‘l-S) (7.12.8)
So, in conclusion, the rotation operator is
9
Up = exp -Fb S (7.12.9)
P . . s - . Ixn
where & is a unit vector in the direction of the axis around which we want to rotate the system, & = L nisa
2 X n|

unit vector in the direction of the new z-axis, and 8 is the angle between the new and old z-axis.

Supplementary Problems

Prove that 62 = 62 = 02 = 1. where 1isa 22 unit matrix.

" A A A A A
Calculate the anticommutation relation [o, oj] R where we defined [ A. B 1+ = AB +BA,

Ans, [o, ol =10
(Bt s I
Show that the matrix of §2 = 52 + S2+ 52 is diagonalized in the basis of eigenvectors of both S and S,
| 1 1
Calculate the value of (S and AS, (i = x, ¥, z) for the spinor E(F’“’/zl%‘,) + o2 §>)_

h h h
Ans. (S = 35 coso, AS, = 7 sing; (S) = ,% cosd. AS, = 7 cos0; (S) = 0.AS, =

|

ST~

[l

0 . . .
. W Find the basis and the matrix representation

: ; . A - 1
The matrix representation of S, in a certain basis is §, = .
i 0-1y

of S,and §..
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L O N N 1( 1 1Y A o1 ) A o)
Ans. [F3) = :/_5\'+§>-+|_ 3, 3 = Ek”i)-'_‘_ » S = EL J; S = EL .

~J
j—
oo

Consider the rotation operator

. i0_ i3]
Up(B,i) = exp E“'S = exp{ 5i- O (7.18.1)

By rotating the eigenvectors of S_, find the eigenvectors of S and S, in the standard basis.

t 7 1 [
-3, = U ®=30a=5 3 = ﬁ“*ﬁ -5 )
{ T R 1/
b3, = Ud® =3 =-F)l+3) = 5{-ikg) +F3) )
(. m ) L A R T
=2 = U8 =30=-)b3) = Flkp +i-3),)



Chapter 8

8.1 A PARTICLE IN A CENTRAL POTENTIAL

T'he Hamiltonian of a particle of mass M placed in a central potential V(r) 1s
» 2
H=2 +V(r)——h V2+V(r) (8.1)
= aa - AL -
Livi Livd

. 2. . . .
where the Laplacian V~ in spherical coordinates is

, 19 1(32 1 2 1 azj

Vv =;;+—2 £§+ma_9+sin—2987)z (8.2)
Comparing (8.2) with the expression for the operator L obtained in Chapter 6, we see that H can be written as
B 19 )

H = —m;a—rirw r2L‘+V(r) (8.3)

The three components of L commute with L’ , and therefore according to (8.3) they commute also with H:
[H,L] = [H, L},] = [H, LZ] 0 (8.4)

We can now solve the three eigenvalue equations:

Hy(r, 8, ¢) = Ey(r, 8, ¢) (8.5)
Ly(r, 0, ¢) = Il + i y(r, 8, ) (8.6)
L.y(r,8,¢) = mhy(r, 6, 9) (8.7)

to determine those states that are eigenfunctions of H, Lz, and L_ (where we used the notations of Chapter 6).
Using separation of variables (see Problem 8.1), we get
v(r, 8,8) = R, (NY/(8, 9) (8.8)

where ¥, ; 1s the spherical nannomc function and R, (r) is the radial function (which does not depend on the
quantum number m). Since the Y, (o, o) are nonnallzed by definition:

f2n =m

j j (Y7 (¥))sin@dodo = 3,5, . (8.9)
[V (]

the normalization condition is

o0

| PRI dr = 1 (810)
0

According to Problem 8.1, the radial equation for R, (r) is

2 2 2
f ld +M+ Vf.r\.’R (Y = ER (N (8.11)
L 2Mrdr 2M7’2 * ’J nix’ s nN g { ]
We can simplify this equation by writing
1
R, (r) = U, (8.12)

—
N
>
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from which we have

a2d 1+ A
[‘2743?” (;;,,r_)z + V(r)] U,fr) = EU () (8.13)

o P/ .

Equation (8.13) is analogous to the one-dimensional problem of a particle of mass M moving in an effective

nnatantial 1V (Y whora
lJULL/llLlﬂl Veff\l Js ¥l
1+ 1)4"
Vi) = Vi + B (8.14)
2Mre
For the angular part we have the equations:
a n n
"'anYr 6,9) = mY, (8, ¢) (8.15)
1 (. .2 1 3| m m
- 5in 630 smea—e +m87)2 Y, (8,6) = 1([+1)Y,(8, ¢) (8.16)

8.2 TWO INTERACTING PARTICLES

Consider a system of two spinless particles of mass 71, and m, and positions r; and r,. We assume the
potential energy to depend only on the distance between the particles, V(r, —r,). The study of the motion of the
two particles is simplified if we adopt the coordinates of the center of mass:

M ¥+ M,
1M 2"z
r. = —""— (8.17)

cm m, + m,

and the relative coordinates:

-
L | H

1 2

—
Qo
—
Qo

~—

We can then derive the equations (see Problem 8.2):

Z

2
=3, vy ¥ OTem) = End(re) (8.19)
and
[ &, ] :
L“Z‘—LIV + V(r)_lx(r) = E_x(r) (8.20)
k I o sha ccaduinnd oo nf tha ¢t martinlan
willcelo H, Id UIC el e rriddddy Ul LG LWU lJal uvIvd
m.m
1 2

From Eq. (8./9) we conclude that the center of mass behaves like a free particle of mass =, + m, and energy
E_,. The relative motion of the two particles is determined by Eq. (8.20) and is analogous to the motion of a
particle of mass J. placed in a potential V(r).

8.3 THE HYDROGEN ATOM

. -2 ~19

The hydrogen atom consists of a E)roton of mass m_ = 1.67x 107 kgand chargee = 1.6 x 10 ¢, and

an electron of mass m, = 0.91 x 10~ 0 kg and charge —e. The interaction between these two particles is essen-
tially electrostatic, and the potential energy is

vy = =% (8.22)
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where r is the distance between the two particles. Since 7, is much greater than m,, the reduced mass W of the
system is very close to m :

m
.._‘—”:“,(1 _‘”\ (R3]
_ = \l ‘U-ﬁJ,

This means that the center of mass of the system is practically in the same place as the proton; the relative
motion can be identified, to a good approximation, with the electron.
According to Egs. (8.8) and (8.12), we may write the states of the system in the form

l m
Yo7 8.0) = SU,(NY](8, ) (8.24)
We introduce the Bohr radius a,, which characterizes atomic dimensions:
0
A
a, = —=052A (8.25)
pe
and the ionization energy of the hydrogen atom:
e’
E, = —=136 eV (8.26)
2R
To solve the radial equation for the hydrogen atom, we define p = r/a, and A,, = ,/-E,,/E, . The radial
. o 730 1 ‘q g 0 ki ki’
equation (&./J3) then becomes
d 1+ 2 .2
dp® p P
where we use the index & instead of # (7 = & + /). The radial equation is solved by performing a change of func-

tion (see Problem 8.1):

= R 0l e S o Y
U p) = e P, (p) (8.28)
and expanding &, in powers of p:
=0 q
EP) = p' D, Cup (829)
g=0
The coefficients Cq can be obtained from the recursion relation (see Problem 8.1)
2 Y (k-D! 21+ !
p !
- .
Co= CDNEFT) Gh=—g-Digi(g+2i+ 1 Co (8.30)

The solution for R, (p) can be written in the form

23 -I-1! +
Rnl(p) = _J(_) (n—) € p/zp]Ltz-x1+Il(p) (831)

na, 2.'1[(.'1+l)!]3

where LZ(p) are the associated Laguerre polynomials (for detailed information, see the Mathematical Appen-
dix). Some examples of the radial functions are

_ —r/a,
Rn: 1, 1:()(") = 2(a()) 3/26 (832)

R, 2 1=0P) = 2(2ay) _3/2(1 —ﬁ)e_ﬂzao (8.33)
0

1 » _,

_ ) ~-r/2a,

R,y -0 = (2ay) Rat
AN27T0

(8.34)
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8.4 ENERGY LEVELS OF THE HYDROGEN ATOM
For fixed /, there exists an infinite number of possible energy values:
E

E, = - — k=
ki (k+1)°

1,2,3 ...

FEach of them is ar least (')l +1 )- fold dPoPnf-mff- This essential rlpopnm "acy 1 results from the radial egu

\'
being independent of the quantum number m. Some of the energy values manifest accidental degeneracy

the E;; do not depend on & and / separately but only on their sum. We set » = k +/, and then

l
-5 X 13.6 eV

e re ’l

The shell characterized by » is said to contain n subshells, each corresponding to one of the values of [:

I =0,1,2,...,n-1
Each subshell contains 2/ + 1 distinct states corresponding to the possible values of m,
m=—-I+1,...,1-1,{

The total degeneracy of the energy level £,

|
2(n—
22’+')‘MT])’1 n = n?
1=0
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(8.35)

ation’
ation

Hre

(8.36)

(8.37)

(8.38)

(8.39)

If one takes into account the electron’s spin (which can be in one of two possible orientations) then the number

8, should be multiplied by 2.

For historical reasons (from the period in which the study of atomic spectra resulted in

C
rolisng nf T aun acanaia o of the
1 £7 a ed with lett

ines observed) the ed with letters of th

14
tlle LTS UUdLCIYOU LT

20

P I, B
various vaiucs o1 | arc s$50cCiat c L:dllll dllJIldUCl

(I=0) s
(I=1)op
(] — I\ e A
i ‘-’\/“
(I=3)of
1 _ AN o
\L=%) 75

in alphabetical order

8.5 MEAN VALUE EXPRESSIONS

mpirical classifi-

Las oo £11 0
as 101IOWS,

(8.40)

In the following list we include some mean value expressions of r* that are useful in many problems:

r)o
(r* EJ r** 2[R (M) dr
[\

a,
(n=350Br-1(+1)]

2n2

Y = 5= (57 +1=31([+1)]

(8.41)

(8.42)

(843)

(8.44)
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and

] 1
LA - 8.45
= an’ (1+1/2) (645

8.6 HYDROGEN-LIKE ATOMS

The results obtained above originate in calculations for systems of two particles with mutual attraction
energy inversely proportional to the distance between them. There are many physical systems that satisfy this
condition: deuterium, tritium, ions that contain only one electron, muonic atoms, positronium, etc. The results

are annlicahle ta thece cvcta nrnn-rlorl at we nranarlyv celact tha canctante intraduced in the calenlatinng
(S e ﬂl_lyll\.rﬂulu [S RN ¥ LW L) D] ﬂl\(lll\), l.ll\.lv AURLAS L‘lub Y W y i V ll] Dwibwl biIV WwUl1oMaRRILD lllbl\.luuv\lu LI1 Lilw WwEllWwULIALINALD.

For example, if the charge of a nucleus is Z, then ¢ — Ze? in all the calculations.

Solved Problems

8.1. (@) Write the eigenvalue equation for a particle in a central potential V{(r), and perform the separation of
variables in the wave function. Obtain the radial equation and the two angular equations. () Solve the

radial equation for the potential of the hydrogen atom V(r) = —e2/r.
(M OConcider tha Hamiltanian of thae cuctem
(a) Consider the Hamiltonian of the syste
‘19 L?
H = —ﬁ;a—rg(r) +2W2+V(r) (8.1.1)

We have the following eigenvalue equation:

(R o
_2ur'ar2(')+2 2

+ V(r)J i, 6,9) = Ey(r, 8,0) (8.1.2)

The three observables H, L?, and L commute. Thus we can look for functions y(r, 6, ¢) that are eigenfunc-
tions of L% and L_ as well. We have the following system of differential equations:

Hy(r,8,0) = Ey(r, 8,9 (8.1.3)
Ly, 0,0) = [([+ 1) & w(r, 8, ) (8.1.4)
and
Ly(r.8,¢) = mhy(r, 8, ¢) (8.1.5)
Note that we have three differential equations for y(r, 8, ¢), which is a function of three variables. Since
P O R DN .
- La 2% 1an630 T sin2 03 2J (8.1.6)
and I = _:ﬁi (see Chanter 61 (8 _I_d\ and (R 7 §) can ha ranlared hy
and L, g (se¢ Chapter 6), (8./.4) and (8.1.5) can be replaced b
( 3 13 1@ )
— Tt o038t sinl Oam? Yy(r,08,0) = 11+ 1) y(r, 8, 0) (8.1.7)
\ dU Y IOV ACAY S oL an )
and
ay(r, 6,
- w = my(r, 6, ¢) (8.1.8)
The solutions (s, 8, ¢) tothese euuatmnq corresponding to fixed values of / and m must be products of a func-

tion of » and the spherical harmonic ¥, "(8, 0):

y(r, 8,0) = R(Y, (8, 0) (8.19)
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Substituting (8.7/.9) in (8.1.2), (8.1.8), and (8./.9), we obtain
[ RLd I+ )

_211rd,~2 r+ e +V(r)}R(r) = ER(r) (8.1.10)

2 1 o 1 9 7m m
[—@+ma—9+—smzew}l’, O, =1({+1 Y, 6,0 (8.1.11)

and
a ny m
-i%Y, (9, 0) = m¥, (8, ¢) (8.1.12)

Equation (8.7.10) is the radial equation; (§././1) and (&8./.12) are the angular equations. From (8././2) we can
conclude that the ¢-dependence of ¥,'(8, ¢) is of the form ¢'™¢ . Thus ¥, (8, ) = G7(8)e'™® , where G|'(8)
is a function of 9 only.

We write the radial equation in the form

Rld LI+ 1) #2
|:_ﬁl;dr2 Y+ (211"3 + V(| R (r) = E,R,, (1) (8.1.13)

Introducing the function u,(r) = rR (r) we ammive at

[ #d rg+pw’ 1

I_i 2ug,? " zu’.z * V(’F)J Uy = Equ (n) (8.1.14)
We define an effective potential:
U+ DA’
Ver = Vi + =5 75— (8.1.15)

We may view (8.1./4) as a one-dimensional problem, i.e., a particle of mass i moving in the effective poten-
tial V 4, the one difference being that r assumes nonnegative values only. To express (8././4) in dimensionless
form, we define

pet #e -E r
E =33 dy = 7 A, = TH p=_ (8.1.16)
2% ue R “o

Equation (8.7/.14) becomes

[dz I(i+1)y 2
a +
dp? p’ p

Let us define u«,(p) = e P& (p); we now obtain

*?»f,J u(p) = 0 (8.1.17)

2
| L5 (2 DY) g (8.1.18)
Ldp? “™HdpTip~ pz |

with the boundary condition &,(0) = 0. An expansion of &, (p) in a power series of p yieldsg,(p) =

psz C,p?, where C,, is the first nonzero coefficient. Thus,
¢=0

dE () N
;’p - Z(q+5)cqpq o (8.1.19)

g="0
and
d°g,,(p)
dp?

= Z(CI+S) (g+s-1)Cp*" " (8.1.20)
q=1

Substituting (8.1.19) and (8./.20) into (8./.18). we obtain a power series on the LHS and zero on the RHS; thus

the coefficients of the powers of p equal zero. We assume that the solution of (8././3) behaves at the origin

as r':

Ry(ry ~ Cr (8.1.21)
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Substituting (8.1.21) to (8./.13) we obtain

{(I+1)-5s(s+1) =0 (8.1.22)
which is satisfied if s = ! or s = —(/+ ). Therefore, for a given value of E,,, there are two linearly inde-
pendent solutions of (8./.13). The solutions behave at the (;jrigin as r' and L/r'*!, respectively. The latter
solution must be rejected, as it can be shown that (E/r/*1) ¥, (8, ¢) is not a solution of the eigenvalue equation
(8.1.2) for r = 0. It follows that the solutions of (8./.13) go to zero at the origin for all [, since
u, (r) —~ Cr'*!', Therefore the condition u,, (0) = O should be added to (8.1.13). In the power series that

we obzaihi\?e now take the lowest term and equate its coefficient to zero. It follows that
[+ 1) +s(s-1)]C, =0 {8.1.23)
Since C,;#0, wehave s = —[ or s =7+ |. Next, we set the coefficient of the general term p?*°- 2 equal
to zero (for s = I + 1 ) and obtain the following recurrence relation:
q(q+2l+l)Cq=2[(q+1)7»“—l]Cq_, (8.1.24)
Hence, assuming that C, is known, we can calculate C,, C,, .... Since Cq/Cq_, — 0 when g — oo, the

series is convergent for all p. One can show that

C o= (1 q(i)q (k-Iy! 21+ 812
= CD\G31) r—qg-Dig+2i+ 1) (8.1.23)
where C, can be determined from the normalization condition
PR (H! dr = f !u“(r)!zdr (8.1.26)
J, J

A hydrogen atom can be viewed as two point-charged particles-—a proton and an electron with Cou-
lomb’s interacting potential between them. Write the Schrédinger equation for such a system and

&derdlc il inio iwo Pdl'lb orne UCerlDlIlg ihe moilon of ihe cenier of mass, and d.IlOlHCI' ucscnomg the
relative motion of the proton and the electron.

The Schrodinger equation for the proton and the electron is
RN
- —+— +V(ry lw = Ew (82.1)
\ &lm, m,] ")

where m, and m_ denote the mass of the prolon and the electron, respectively. The indices | and 2 refer to the

man bt man nemd tlan alacgeaim sanmantivaly Tha At ial hasti,ane hn canetioalas
PIOIULL alll LIC TLOLT UL, lCDPCLUVCl]. LI pUlC al UClWCCH UIC PﬂlllLlC) l)
l Ze?
Viry = V(r, —r,) = -Zeé? = —— 22
(r) = Vi, —ry) = — =, (8.2.2)
NI X))+ (V=) +{(z2,-2y)
Define the relative coordinates:
X, = X, — X, Y, =¥,-¥ 2, =z, 1, {8.2.3)
mor +nm,ry
and the center of mass coordinates r_ = — For the differential operators we have
cm m,+m,

P Yo Mm@ 3

= — = 824
ax? \m, +m,/ axt T m +m0x,0x. " g2 fo..4)
and
aZ ( m? ) a? 2me a?. 82
6‘_x, = m,tm.J g2 mp +m,ox,dx,, Ix2 (8.2.5)
97 97 9? 9°
Similar relations hold for the operators —; 37 S 5 5 - and ——. Substituting the operators into (8.2.1), we obtain
} 1 oy 2 OZI 022
ﬁz( 1 2 2 2 2 2 2 21
’V J d d } l( J d a—\ - ze” w=Ewvy (8.2.6)

T2\ mrml o, Mo, e, ) Tilan oy e )T Y T Y
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8.3.

84.

mm,

. P
where u is the reduced mass, U =
v ¢ m,+m,

. We separate the wave function W into two parts. The first part

depends only on the center-of-mass coordinates, while the second part depends only on the relative coordinates,
= o(r.,)x(r,). Substituting into (8.2.6). we arrive at

ﬁZ 1 ) ﬁl [l 2 Ze2 }
ey (rcm>[m_p+nu.vcm¢(’cm)} = LY+ o ) (8.2.7)

For (8.2.7) 10 be valid for all values of r_, and r,, each side of the equation must be equal to a constant. Therefore
we obtain two separate equations:

ﬁ2
|i2(m +m )chm+Ecmj|¢(rcm) =0 (8.2.8)
” ¢
and
(& 232 5 a
\zu" + =+ E jxr,) = (8.2.9)

E_ is the translational Kinetic energy of the center-of-mass frame and £ is the relative energy. Clearly we have

E =E_, +E,. To obtain the wave function of a hydrogen atom’s clectron one must solve (8.2.9) (see Problem
8.1).

. . . . ~r/a
The wavefuncuon of an electron in a hydrogen-like atom is y(r) = Ce ", where a = a,/Z;
A ~0NK tha Rahr radiie (tha rmiiclane cha iq 72 and tha am containag r\nl: one n]ar\t"t\n\
uo e i ID Lllb UUlll 1 AasIud \I.llC 1HHuwIcuo \.allblls\u 10 L‘C aimug I.ll\.« al.Ulll CULILALLLY lll‘, wivuiiuily

(a) Compute the normalization constant, (») If the nucleus number is A = 173 and Z = 70, what is the
probability that the electron is in the nucleus? Assume that the radius of the nucleus is
1.2%xAY? fm. (¢) What is the probability that the electron is in the region x, y, z > 07?

iy
(a) The normalization condition is J J J Yy dr = L Substituting y we have
oo 2n n .
CZJ rle ¥4 dr_[ dq;_[ sin@dd = 4nczj reidr = 1 (8.3.1)
0 Q [y} 0
The integral in (8.3.7) is
g ) al’ al a
e idr = [E] I3 = (5) 2t = :1- (8.3.2)
1 4\2 1
Therefore, C = (;ﬁ—'}) ==
4a NI

(p) Denoting by R the radius of the nucleus, the probability that the electron is found in the nucleus is

R 2n b4 R
P = J r2|W(r)|2er d¢J sin@dh = 4ItC2j rte”¥ /4 dr (8.3.3)
0 0 0 o
. -5 . 2 .
Since R is small comparedtoa (R~ | fm = 10 A and a~1 12\), we can consider |y|* as a constant in the
nucleus, i.e., ¢~ ¢7"/*- |, Thus, we have
R
4 4( RN 4 Zry\?
po 2 2 R I S0 D (r. =12 fm) (8.3.4)
aJ Na/ Na,/ N L
0

(¢) The wave function is independent of both © and ¢ (it is a symmetrical function). Thus the probability that the
electron is found in 1/8 of the space (i.e., in x, y, z > 0) is simply 1/8.

Compute the normalized momentum distribution of a hydrogen atom electron in states 1s, 2s, and 2p.
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The normalized momentum distribution is |y(p)|~, where y(p) is the wave function in the momentum repre-
sentation. In order to find y(p), we perform a Fourier transform of the wave function wy(r),

[
Pl ”"\ll(r) d3.r

Wp) = === 1. v (84.1)
Janwy'd
We then substitute in (8.4.7) the explicit forms of y, (r), y,(r), and Vo, (1), and obtain
l(g_a)s/z 1
WI,r(p) T\ h [(pgaz/ﬁ2+ l}}l’.
- _l_(2_a] | (8.4.2)
\l‘yls(p), - KZ h lr {;’?2&'2/”2 + l)}4
and
- ] (2.:1)3/2 ] [pza2 IJ
WY, = 5\ R > T4
RS pranie1say )\ R4
5 ] 261)3 1 p2a2 1 2 (841)
‘WZs(p)l = 9 2 ? ) 2 6 _2‘5_
(2m) [P/ k2 +1/4)1°\ &
There are three different eigenfunctions for the state 2p: m = -1, 0, |, Thus,
( 1/ a )1/2 ap,
Vo) = —izlz) @ y
‘ 2 oy AP R+ /0]
m=0 ] s (8.4.4)
{ | (P)lz 1 [a)3 (ap))
W, = \A 2 2
P TN g (R 1))
and
1 (a2 a(p xip))
Y, ) = il 7 P
i AL TROC I ANE
m = i] - Vs N2 ,.ZI.. P I, \2 (8.4.5)
2 I {a)y a(p, tip))
l V., = 52\ '
[vaptp) WL’J B (PP /h2+ 1/4)1°
8.5. Consider a wave function for a hydrogen-like atom:
1
Wir 8) = o= 1272 (6 7) Zre#? cosd (8.5.1)
T 61 Mn ~ Vs 1

where r is expressed in units of a,,. (a) Find the corresponding values of the quantum numbers », /, and
m. {b) Construct from y(r, 6) another wave function with the same values of n and /, but with a different
magnetic quantum number, m + 1. (¢) Calculate the most probable value of r for an electron in the state
corresponding to ¥ and withZ = 1,

(@) Consider the exponential factor in W(r, ©); it has the form exp (—/—Er). Since F = -Z*/n*, we conclude
that # = 3. The angular quantam number [ can be determined either by exploiting the factor r!, which multi-

plies the Laguerre polynomial in hydrogen-like wave functions, or by carrying out the following operation:
£ o o xlp o . [ Lo 3 Y]
L y(r,9) = L f(r) cosb =]Lr)t-m89k sinb 35 COSU}J
oy da 1 . )
=j(r)i_m%(smﬁ)ij =2f(ry cos® =1 (I+ 1) y(r, 0) (8.5.2)

Thus, / = 1. To find the magnetic quantum number, we use the operator L_:

L.y(r 6) = —13% () cosB] = 0 = my(r, 8) (83.3)

It follows then that m = 0.
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{b) In order to generate a new hydrogen-like wave function with a magnetic quantum number m + |, we use the
ldlbl[—lg OpCfdlUI L k CC Chaptt‘:r U) DlllLC l = l dllU m = U, we [ldVC
Ly, =JU-my(I+m+Dy, ., =2y, (8.5.4)
We use the differential representation of L
a
L =L +ilL =i(sindg~—i CoS0) 55 +1(COSH+1 sing) cotBz (8.5.5)
and obtain
1] a +i¢ N
LVY,.o=¢ %f(r) cosB = —e f(r) sinB® (8.5.6)
Combining (8.5.4) and (8.5.6) we obtain
W, = ﬁf () sinfe'® = *Slﬁz“z(s—zozfe-z'” sinBe’® (8.5.7)
(¢) The most probable value of 7 occurs when (ry)? assumes its maximum value. For Z = 1 we have
a(f\y) i L2 /3 ;../3( r:‘ > \
5, =0=5,(6-r)r'e =e K}'_S’ +12r (8.5.8)
We obtain the quadratic equation »°— 15r + 36 = 0; its roots are » = 12 and r = 3. Evaluating |ry| we find
that it is maximal for r = 12. Therefore, the most probable value of » is 124,

8.6, Consider a particle in a central field and assume that the system has a discrete spectrum. Each orbital
quantum number / has a minimum energy value. Show that this minimum value increases as /
increases.

We begin by writing the Hamiltonian of the system
B A’ 8( 8) ﬁl(l+1) v
=== e T+ V() (8.6.1)
# 3 ,3)
Using H, = - rza—rkrzgj + V(r) we have
REIU+ 1)
b — H 4 — 1R K X
n = 1111-2”, r2 [O.U.Lf
The minimum value of the energy in the state / is
B+ 1)
P
En’un = J [ 2m T} \‘I’i d3’. (863)
The minimum value of the energy in the state [/ + 1 is given by
P b - - -1
1+1 fL‘ (I+1)(1+2) »
Erin = J WHI[ *om 2 e dr (8.64)
Equation (8.6.4) can be written in the form
I I r* ﬁ,+] 13 r ]—11 l+l)—| 3 [
mm " I+lm r2 WHIGr + Jq’li-ll_” +2m _]W1+lar (6.0.2)
2 A2+ 1 .
Since |y, ,|” and m o2 e positive, the second term in (8.6.5) is always positive. Consider now the first term
R+ 1
is an eigenfunction of the Hamiltonian H# = H, + :;—m ( 2 ) and corresponds to the minimum
[ 2+ 1)]
J\y,+l d’r (8.6.6)

of (8.6.5). w,

eigenvalue of this Hamiltonian. Thus,
{ .1 #ie«nl . [ .

J v, LH0+m 2 JW( d’r < J WI+1LH0+2m
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Write the Schridinger equation for a two-dimensional hydrogen atom. Suppose that the potential is

—¢%/r, where r = Jx*+)*. Using separation of variables, find the radial and the angular equations.
Solve the angular equation. Describe the quantum numbers that characterize the bound states and the
degeneracies of the system.

Consider the Schrodinger equation in two dimensions:

w[12( ) 19y] &
-ﬂ[/‘ar('ar +’_Za¢2 —,“VzE‘V (8.7.1)

Performing a separation of variables y = R(+)®(6), we obtain the angular equation

3 (o) ,
= = —m' () (8.7.2)
do°
The constant m must be an inieger number, 0 the solution of (8.7.2} is
(D _ l REe 8 7
m(¢) /_T[( ( . 3)
Consider the radial equation:
22 AL 4 apY a2 2 2
h | dR 1dR " m €
~5 ik 3R — R = ER(r) (8.74)
2m{ gpr T ar nei” !

Every state R | () is characterized by the principal quantum number # and the absolute value of the anguiar quan-
tum number m. The energies of the system are £ Every state with mr # 0 is twofold degenerate, and the states
with m = 0 are not degencerate.

njmt*

The muon is a particle with fundamental properties, excepting mass, similar to those of the electron.
m, = 207m(, (8.8.1)

The physical system formed by a 1" and an electron is called muonium. Muonium behaves like a light
isotope of hydrogen, and the electrostatic attraction is the same as for a proton and an electron. Deter-
mine the ionization energy and Bohr radius.

The reduced mass of 1he system is

_ m"m“ _2£7 _(l L) 882
Mo = o wm, = 208" = U1 7208 )™ 8:8.2)

The Bohr radius is

. " { 13
a, (muonium) = “(’2=a‘)(H)k 1 +2TO) (8.8.3)
where a;; (H) is the Bohr radius of the hydrogen atom. The ionization energy is
E am) = Bk (1 (15 ]
¥, (muonium) = TS JHY T~ 300 (8.8.4)

4

where £ (H) = 13.6 eV isthe ionization energy of the hydrogen atom. The study of the muon is of greai interest.
The two particles that comprise the system are not subject to strong nuclear interactions, thus enabling energy levels
to be calculated with great precision.

Prove the following relation between the spherical harmonic functions:
Y, 0,0)Y,(8,9) = const. (8.9.0)

m=-/
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Use the expansion of the Legendre polynomials (see the Mathematical Appendix):

m =+

(1—|”‘I|) |m
(I+|m)!"

m=-/

P (cosy) = "cos8,) P cosB,)eim (#1 -0 (8.9.2)

where Y is the angle between two directions given by 8, ¢, and 0,, ¢,.

We write the spherical harmonic functions in the form

(~1)!m*lmb 2 [2I+ Ty (I-|m

|y
- \ |r~ ] "
Y,.(8,0) Jan 0+ |m|>, P, (cos0)eim (8.9.3)
Then,
m=+/ 21 1m=+l(1 | l)l
+ —|m
N vre oy, 00 = T ¥ ok | Prlcose)|| (8.9.4)
ya AR Ly (1)
m= -/ m= -/
We setin (8.9.2), 8, =0, = 0, and ¢, = ¢, = ¢ and obtain
l—|m il
P(cosy) = V U= |mh! P! (co s = Py =1 (8.9.5)
VT g (I imyi i A (8.5.0)
m=—f
Substituting (8.9.5) into (8.9.4) we artive at
m=+! a1 |
V Y¥50O MY, (8. &) = + (806)
Al A AT St I 41! { J
m=—i

Since (2/+ 1) /4x is a constant, we have established the proof.

=]
[
(=

The parity operator is defined hv the renla(‘ement r — -r(see Chapter 4). How does the p rity operator

> UC b CIC dlL 8] vje 13 L fatl

affect the electron’s wave fllIlC[lOl’l in a hydrogen atom?

In a hydrogen atom we can express the wave functions using the spherical coordinates (r, 8, ¢); we determine

how the parity operation affects these coordinates (see Fig. 8-1).

We see that under the parity operator r - r, 8 5 n—0 and ¢ — T+ 6. Since the radial part of the hydrogen
atom’s eigenfunctions depends only on r, we conclude that the parity operator affects only the spherical harmonics
part. For spherical harmonics we have Y,'(B, &) = a,(sinB) e"% thus,

Yim-0.m+0) = (-1)'Y/(® 0 (8.10.1)
Therefore, under the parity operator,

Y, 0,0) > (-1)'Y)(0,0) (8.10.2)
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d J d d
Moreover, since 38 7% and % > % it follows that the operators L, are not affected by the parity opera-
m
tion Smce we have o explicit form of V¥, (0 by applying the operator L_on Y,, we can conclude
! ’ {

Yin-0,m+0) = (-D)'Y/(8 ¢) (8.10.3)
In other words, under the parity operation
'@, 0) = (-D'Y®,0) (8.10.4)

Suppiementary Probiems

Consider a hydrogen atom in a state n = 2,/ =0, and m = 0. Find the probability that an electron has a value r
that is smaller than the Bohr radius. Ans. 0.176.

For an electron in the state # and / = n — | in a hydrogen-like atom, find the most probable value of r.

Ao [ H
rpyinl I —_— I /& ARE SR

Show that the degeneracy of the ath shell in a hydrogen atom equals 2n°. Take into account the spin of the electron
but not the spin of the proton.

The six wave functions of the state 2p for the hydrogen atom are

1 .
m; = +1, m, = 15, Yy, =A sinBe'?
L re r/2a,
m, = 0, m, = *5, y, = B—cosH (8.14.1)
- - r4 o MO
1 ’.e.—r/Za0 i
m. = =1 m = += w ., =C sinBe
{ ? 3 z’ T -1 aO
where « is the Bohr radius and A, B, and C are the normahzatlon constants (a) Compute the constants A, B, and

8,\,11.(16 G 2T, OA'[JLUO
Consider a hydrogen atom in the state with the quantum numbers » and /. Calculate the dispersion of the distance

|
of the electron from the nucleus. Note that the dispersion is defined by «/ (r*) — {r}?.

Jn2 (R +2) =121+ 1)

Ans. 2
In a hydrogen atom the wave function y(r) describes the relative motion of a proton and an electron. If the coordi-
nates of the center of mass of this system are x =0, y =0, and z = 0, show that the probability density of the
o ("HM\ | (m+M
proton equa 5 ", |W\ m l}l
For a two-dimensional hydrogen-like atom the Schridinger equationis (- V2 -2Z/r)y = Ey (in atomic units)
Use cylindrical coordinates to find the equations for R(r) and ®().
2
i O LAl R (22 w2 )
ns do? = -m®(e) rdrkrdr) L - e + J (r) =
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J -V, r<a
o P I IV S (VS L | n ey —
LONSIUCT & pdIlCIc 11 a spnerical weil, vivvJ — l

the particle’s energy spectrums.

0 rea Assuming that the angular momentum is zero find

£212
e n
and E = Zm - These equations can be

s
Ans.  The energy spectrums are given by ka = nx — arcsin (
solved either graphically or numerically (see Chapter 12).



Chapter 9

Particle Motion in an Electromagnetic Field

9.1 THE ELECTROMAGNETIC FIELD AND ITS ASSOCIATED POTENTIALS

Consider an electromagnetic field, characterized by the values of the electric field E(r, f) and of the mag-
netic field B(r, ). The fields E(r, #) and B(r, f) are not independent; they must satisfy Maxwell’s equations. It
is possible to introduce a scalar potential &(r, 1) and a vector potential A(r, t) such that

g l2A

E=- q)_car (9.1)
and

B=VxaA (9.2)

Using Maxwell’s equations, it is possible to show that we can always find ¢ and A. However, when E and B
are given, ¢ and A are not uniquely determined. When we choose a particular set of potentials, we say that we
choose a gauge. From one set of potentials (¢, A) we can obtain another set, (¢',A") by performing a gauge
transformation:

Laf(r, ¢
.- _E—fg;——) (9.3)
and
A = A+ Vf(r,0 (94)

where f(r, ¢) is an arbitrary function of r and 7 (see Problem 9.2). The equations describing the physical system
involve the potentials ¢ and A, but we shall see that in quantum mechanics, as in classical physics, the predic-
tions of the theory do not depend on the gauge chosen (that is, the particular set of ¢ and A describing the
electromagnetic field). This important property is called the gauge invariance (see Problem 9.5).

Let us consider two exampies of gauges describing a constant magnetic field in the z-direction, B = B,
First we have the symmetric gauge,

[SH]

, Xy z
1
A=—§pr=—§x y z (9.5)
0 0B
B, ’ 0‘
or A = 5 (-3 x,0). Another gauge is the Landau gauge:
A= (__B()y7 0’ 0) (9-6)

9.2 THE HAMILTONIAN OF A PARTICLE IN THE ELECTROMAGNETIC FIELD

Consider a particle of mass m and charge ¢. The classical equation of motion in the presence of electric and
magnetic fields E and B is

d’r

q
mo = qE+ .vXB (9.7)
The Hamiltonian that leads to this equation of motion is
10 e N{ g
=2m\PcA) \p—a) + g0 (98)

154
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In this chapter we use a semiclassical theory for particle motion in an electromagnetic field. In this theory
the field is analogous to a classical field, while the system is treated according to the postulates of quantum
mechanics. Thus, the particle is described by a wave function y(r, ¢), and the Hamiltonian is written as in (9.8),

hut now p, A, and ¢ represent the corresponding operators (see Problem 9.3),
When we perform a gauge transformation according to (9.3) and (9.4), the wave function describing the
particle transforms (see Problem 9.4) as

\]J'(r, ) = exp [(L'%f(r’ t)} y(r, ) (9.9)

9.3 PROBABILITY DENSITY AND PROBABILITY CURRENT

Given a wave function y(r, 1), the probability density is

= |y(rg 0’ (9.10)

where p expresses the probability of finding the particle at time 7 at the point r,. For particles with mass m and
charge g (without a magnetic moment), the probability current density is

1 TA 2
l_ (lll*w\lf_\IIVNI*) _ qA‘IH*\If_]

= 3L (WYY WYY - Ay (9.11)
If we consider a particle with spin S and a magnetic moment p , we have
s = ﬁ[? (W*VW—‘UV‘U*) - %AW*W} + E;*-CVX (¥*sy) (9.12)
The continuity equation
L:}—p+V-s=0 (9.13)

at

relates the probability density and the probability current (see Problem 9.3). Both p and s do not depend on the
gauge chosen, and they are said to be gauge-invariant; see Problem 9.5. The *“real” current corresponding to

parhr le of charee ¢ is defined hvy

Qi O LE I 1S LA VY

1 =gs (9.14)

9.4 THE MAGNETIC MOMENT

For a particle with a magnetic moment p in a magnetic field B, the interaction Hamiltonian is

=y

I

|

==]
-
\O
(S
Ln

S—

This term should be added to the Hamiltonian (9.8). An electron of spin S has a magnetic moment

g
H=-5,.8 (9.16)

where g, the gyromagnetic relation constant is very close to 2;

N T
A )T

Nnnn2
VULT 1

9.5 UNITS

Ve Ai i alantenmansnatia mwhanoe n trviney adant nna ~F tha ma thin ey

i UIDLUSSIIIS ClCCllUlllasllCllL prc lUlllena l IS L—UBlUllla.lj lU AUuuUp Ul O1 lllC 111 au_y PUDDIUIC D]chlllb Uf
units. The MKS system is popular in solving practical or engineering problems. In the study of the interaction
of electromagnetic radiation with the fundamental constituents of matter, it is more convenient to adopt the
Gaussian system of units. Therefore, as in the other chapters of this book, we have preferred to use the latter
system.
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Solved Problems

The classical equation of motion for a particle with mass m and charge ¢ in the presence of electric and
magnetic fields E and B are

ma = qE+‘—Zv><B (9.1.1)

. . . , dr . dv .
where a is the acceleration of the particle and v is its velocity (v =g =rada=_=r ) E and
B must satisfy Maxwell’s equations so it is possible to define the vector potential A (r, ¢) and the scalar

potential ¢ (r, r) such that

10A
I E=—V¢—z§; II B =VxA (9.1.2)
Show that the Hamiltonian
H = ,.L(n—gA_m(n—gA_W+adi (9.13)
Im\* ¢ J \r ¢ ] o ’

leads to the equation of motion. Use the Hamilton equations:

oH ) oH
p T p=-3
You can follow the following steps: (a) Write f as a function of p and A. (b) Write r as a function of
p and A. (c) Use (9.7 4II) to write p as a function of v and A. (d) Use the vector “chain rule,”

dA JA (dr dA

(9.14)

and the vector identity
(v.-V)A = - vx (VxA)+V (v A) (9.1.6)

dA
to find - (¢} Combine parts (a) to (d) to get the equation of motion.
(@) Using (9.1.41) and (9.1.3) we get

= splonip-1a) (p-2a) vao=i{p-1a) =y

—~
-

-
3>
w
=

g

=5 = alale-ta) -4 - a4

(¢) From (9.1 .4II) and (9.1.3) we arrive at

~Nar -1/ N/
art

b= 5 =i = [5p(p-Ea)-(p-2a ) 0o]

Recail that r and p are independent phase space variabies in Hamiiton’s approach, so V. p = 0. Using
Vip-p) =0, we write (9.1.9) as

p=,V[lP-7A) |[A)] -4V (9.1.10)
From (9.1/.7) and from (9.1.10) we have
p= ‘;’.V(V-A) -qVo (9.1.11)

(d) From (9.1.5) and (9.1.6) we obtain
dA 0A

— = — -vx ({VxA)+V (v A) (9.1.12)
FTERrT, ( ) +V (v A) (9.1.12)
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9.2.

9.3.

Finally, using (9.1.211) we have

dA 0dA
A=FF=_37_VXB+V(V A) (9.1.13)
(N Coambininas (O T Y (O T JTIV nnd Q1 12\ oa ~henin
1) \/Ulllvlllllls \_7.‘ Q) \7-‘ A0 ), ALl \711;1.}} Wu yuialil
. 1[q (1aA H
r = m[c(vxﬂ) -q 0_87+V¢ (9.1.14)

Multiplying (9.1.14) by m and using (9.1.2]) we finally get
mr =g(va)+qE {9.1.15)

which is the equation of motion.

Let A (r, t) and ¢ (r, t) satisfy Egs. (9.1.2). For given electric and magnetic fields E and B, are the
potentials A and ¢ determined uniquely? If not, explain this freedom.

Assume that A, and A,, ¢, and ¢, satisfy (9.1.2) with the same E and B, namely,

104, [( ]aAz)
E = —.Vq)l_z‘w = - ¢2+57 (9.2.1)
and
B=VxA =VxA, (9.2.2)

Now, if A and ¢ are determined uniquely, then we must have A, = A, and ¢, = ¢,. We define a=A, - A,
and ¢ = ¢, — ¢, and investigate whether a = 0 and ¢ = 0. From (9.2.2) we obtain

Vxa=0 (9.2.3)

Since the gradient of any function f(r, 7) satisfies V x (Vf) = 0, one can show that a = Vf for some function
fr, ). If we use (9.2.1) we obtain

lda
1_(df
From (9.2.4) we get Vo + EV 3;) = 0or
or C 9.2.5
=-z3; ¢ { )
where C(z) is a function of 1. Without loss of generality we can choose € = 0, since this corresponds to shifting
the energy by a constant. From (9.2.5) we therefore obtain
Ay ¥y laf Y2 le BV
a=yV ¢ = —3; (9.2.6)
cot

where f(r,t) is any function of r and 1. We see that a and ¢ are not necessarily zero The potentials A and ¢ are

not determined quqUCly SlﬂLCj iy aroumry The HOHquqUCHCSS in \¥.£.0) 1s cauca gauge ITCCC()m * This means

that if A and ¢ satisfy (9.1.2), then A’ and ¢’ obtained by the transformation equations
il A Lw H lavf
A= A+ Vf 0 =¢-25, (9.2.7)

are also potentials.

(@) Write the quantum Hamiltonian for a particle with mass m and charge g in the presence of an

electromagnetic field. (b)) What is the probability density for finding the particle in r = ry at

t = t,? (c) Obtain the equation of conservation of probability and find the probability current

density.

(a) From the classical Hamiltonian (9./.3) we reach the quantum Hamiltonian by replacing r and p with the oper-
aiors r and p . Remember, however, thai A (T, ) and ¢ (T, /) are funciions of r, so we musi aiso repiace r
with F in these functions. Thus we obtain

UV L
H = _Lp A(i-,z)) +q0(r,0) (9.3.1)
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(b) Let y{r, ) be the wave function of the particle. Then the probability density of finding the particlein r = r,

at i = £ is
plryty) = |‘V(rw fo)lz = yH(ry, 1) W(Tg 1) (9.3.2)

. ap
(c¢) First, let us calculate YR

dp _ 9 Loy LoV 031
FYSRR TAA G S T S T} (722
RV
Using the Schridinger equation and its complex conjugate —if 3 = (Hy)* we get
d 1
L= Yy -y ()] (9.34)
We use the coordinates representation
F=r p=-ihV (9.3.5)
In a coordinate representation, A (¥, t) becomes a vector function, so
A(f, 1) = A(r 1) (9.3.6)
and the quantum Hamiltonian 1s
go i394 2a ) (29 + A ) 4 0o
2m\tb T( } \:b TC } gy {7.2.7)
Equation (9.3.4) then gives
I PR NISARN
i {WZm[ -ihV + CA | —ihV + CA y*
PR PRV v .2
-y ih +.A ) it +CA W (9.3.8)
which can be written as
ap [ L rﬁ *Y v 2_q A v 1]
FTi —Vlz_mL,-(‘lf VY -yVy) - TAY ‘4’_” (9.3.9)
The equation describing the probability conservation is
%—? +V.s=0 (9.3.10)
where s is the probability current density. From (9.3.9) and (9.3./0) we conclude
1 |_ e Y 2_un.*u:—| 002 TT
{7541

szl\‘P "V Yy ‘P! c YV

which is the probability current density for a particle movmg in a region with an electromagnetic field. In a

vacuum 1t which there is no eleciromagnetic field, A = 0, and {$.3.11) is reduced io the known probability
current density described in Chapter 3.

According to the postulates of quantum mechanics, a given physical system is characterized by a state
vector |y). Consider a particle of mass m and charge g influenced by an electric field E and a magnetic
field B. In Problem 9.2 we have shown how different pairs of potentials A and ¢ can describe the same
E and B. In this problem we study how the state vector |y) depends on the choice of gauge (A and ¢).
Foliow these steps: (a) Write the Hamiltonian with A and ¢; then with A' and ¢’ relate A and ¢ by
(9.2.7). (b) Write the Schridinger equation for the two cases. (¢) Show that if Y is the solution of the

first Qr‘hrnr‘lmopr equation, then

“Lealiv

\Jl(r, N = Yy g (9.4.1)

is the solution of the second equation [where fis the same as in (9.2.7)]. (d) Discuss the results.

{a) According to (9./.3), the Hamiltonian for A and ¢ is

H = 2lm(" C{A) (P—’ )+q¢ (9.4.2)
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Similarly, for A" and ¢' we have

{p-Ea) o

el
NI_
3
TN
-]

|
[ B
>
N—’

Using (9.2.7) we obtain
(4, 4 ) ( 7, 4 ) q9f
f = Zm( P-cA-CV )\ P-CA-CVf) a0 -5,
The Schrddinger equation for the first case is

i - 42

159

(9.4.3)

(944)

(94.5)

We can use (9.4.2) to write the Schrédinger equation, in the coordinates representation, by replacing p with

—ihV, and obtain

For the second case we have

) = 2

Using (9.4.4) we have, in the coordinates representation,
ri1y/ a a 2 arf -~ r,?
gl Y A= 2VF ] v g0 L5 winn = in =g
Suppose that y(r, ¢) is a solution of (9.4.6). Define
(p(r, 1) = el 'V“"q;(r, "

1)
<
w2
ol
-
Q
173
~a
Q
3
-
T
I~
=
]
-
~a
<]
w
[=]
=
=)
Q
_,,
Do

equ(r, r)/(’hw(r, N+ e.qu(l". r}/('ﬁ( =

3 -
g fg‘ t)\l’(r f) + e'd/v :)/du[z (_IﬁV ) +q¢jlezqf(r. r)/rﬁw(r, )

'ﬁaw(r, t) - r: (laf(r, f) + ~|\-I'lfr N+ elaf(l‘, ek FL(: .'?1"7 _ K—I \2 —Jaf(l‘ Yeh (— PoY
(2 J A\, i) L2mk {2 c ) \P\l, 5}

We calculate the last term in the right-hand side of (9.4.7/1):
-7 N AY 7 - =
[LdﬁV—gAJ-LdﬁV—%A)F”WmW“wUJ)
{ r - a Y-
= L— ihV —A) Le"”" 'y‘"\ Vf(r t)—ihV - EA)_]‘V(“ 1))

= e-gfir yvpﬁ( q\_/“ ‘:I q )

= 1qfir Y ifi
cv T

hence,

a2 - [0  sgoe gl 497 - 4a ) T

So m(r ) 1s indeed the solution of the QPhrnd!nuer Pmm(mn (9.4.8).

(9.4.6)

(94.7)

(9.4.8)

{9.4.9)

(94.10)

-
B
EN
~
[

e

——
G
+a
—
[ 2]

~

(94.13)

We see that when we pass from one gauge to another, the state vector describing the system is transformed by
the unitary transformation e™4/("- Y% where f(r, 1) is the function relating the two gauges. For the wave func-
tion, the gauge transformation corresponds to a phase change that varies from one point to another and is
therefore not a global phase factor. However, the physical predictions obtained by using the wave functions y
and vy are the same, since the operators that describe the physical quantities are also transformed when we

change between the gauges (see Problem 9.5).

In Problem 9.4 we have shown that when we perform a gauge transformation

[AaA=A+W

1
]q’-’(b o- (a]:
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The wave function describing a particle of mass m and charge ¢ transforms according to
w0 =y n = ¢y ) (9.5.2)

(a) Do the probability density and the probability current change when we pass from one gauge to
another? (b) Suppose that at time f we want to measure a physical quantity Q . Does the probability of
obtaining an eigenvalue g of Q depend on the gauge? (Assume for simplicity that g is nondegenerate.)

{a) The probability density in the first gauge is

p(r, 0 = lyir,n* = wr,ny'(r, (9.5.3)
After the gauge transformation, and according to (9.5.2),
2 . * U

t\| = wir My (r. n-=
7 ALE VA ¢ AR r

L 1

wi(r, 1) e—igfir. Y ch m*{r N= wr OW (r. n (954)
1 s A P AN 7 1 ’

Y
We see that the probability density is gauge-invariant, Now, the probability current density in the first gauge is
{5 ~ 3
1 Jh 2q
s = z—if(w*Vw—Ww*) -Favy (9:5.3)
mil {
When we perform the gauge transformation (9.5./) we have

L e .
¢ = == e_,qf(r_,y(ﬁw*v{g'qj(r,IVzI:“Y,) _gan(r,rhﬁwvf g—qu(r.rqu,,*)]

T 2m i (
_ 2—(1 (A LA ¢ ptafTyeh gy (,,:'qf(r.ly{-h“nl
[ R Yool V}J
1 [arig 2g
= 3m | 7LlhcY VVAy+ y vw+ﬁ(wvfw \uva— (A+Vj)\yqu'
1 [n 2q ]
= 2m2[i

SUNNIUPI I PR S S

lly current ucna‘uy 1\ gdugc lllle idlll

[W*Vw—wVw*} - T Aty
p
r,

-

| Sy W
rooaoi
D is

{b) Suppose that §( he eigenfunction of @ corresponding to the eigenvalue g:

Q¢(r,n = qo(r, 1) (9.5.6)

According to the postulates of quantum mechanics (see Chapter 4), the probability of obtaining g when the
system is in the state y(r, 1) is

= (0ly) = ¢"(r,nW(r, 0 (9.5.7)
When we make the gauge transformation (9.5.7), the wave function ¢(r, r) will transform to
o(r, 1) — G(r.n) = & ’V“”q)(r ) (9.5.8)
The probability of abtaining ¢ will be determined according to (9.5.2) and (9.5.9):
= ¢TI Y ) = AR, eI T Y hy(e 1y = ¥ (r, i, ) = P, (95.9)

We can conclude by saying that all the physical predictions do not depend on the gauge that has been chosen.

9.6. A one-dimensional harmonic oscillator consists of a particle with mass m and potential energy

1,
Vix) = FmW-x (9.6.1)
In addition, this particle has a charge ¢ and 1s placed in a uniform electric field E parallel 1o the x-axis,
E = EX. (a) Find a suitable potential field ¢ (x) corresponding to the Ul ctric field. (b) Write the Ham-
iltonian of the particle. (¢) Perform a coordinate transformation y = ax + b (a and b are constants),

such that in the y-coordinate the Hamiltonian is similar to that of a one-dimensional harmonic oscillator
(with no charge). What are a and b? (d) Find the energy eigenvalues and eigenstates of the system.

(@) Wehave E = E% and we seek ¢(x, r) such that
E=-V¢ (9.6.2)
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Since B = 0, we seek a gauge in which A = 0. Integrating (9.6.2) we obtain ¢ (x) = —ex+c, wherecisa
constant of i‘r‘u’:g ration. Let us choose ¢ = §; then
d(x) = —&x (9.6.3)
The total Hamiltonian is
pt 1 .,
H = PR AR 2 (9.64)

The first term on the right-hand side of (9.6.4) is the standard Kinetic term, the second term is the harmonic
oscillator potential energy, and the third term is the electrical potential energy.
We will now write (9.6.4) in the following form:

-t

Py
H, =5+ ;m(ozy +H, {9.6.5)
where H, is aconstantand y = ax + b. Consider the kinetic term. We see that p, = p,,s0 @ = 1. Now we
can substitute y = x + b into (9.6.5) and obtain
H _p_§+1 W (x+b)’ +H, = iy 252 4 malbx + S mahl + H 9.6.6
v = 3, tam (x+b) 0 = 3y, t M@+ me by + 5me o (9.6.6)

From (9.6.4) and (9.6.6) we see that H = H_onlyif b = —¢/ma?® and H, = -€°/2me?. To conclude, if
we perform the coordinate transformation y = x — £/m®?, we get a one-dimensional harmonic oscillator with
no charge, and the energy shifted by —€°/2mae’.

The energy eigenvalues of a one-dimensional harmonic oscillator are

T AEEE
E, = iﬁm[rwi) (9.6.7)
comresponding to the eigenstate |y,). We have a shifted harmonic oscillator; thus, the energy eigenvalues are
now,
,
£, = shol nat)- 152 (9.6.8)
o T 2PN R)T 2 6
Its eigenfunctions are
£
Y, (¥) =W, x-— (9.6.9)
me

As a function of y, (9.6.9) expresses the standard one-dimensional harmonic oscillators’ eigenfunctions. Note
that as a function of x, however, those eigenfunctions are different,

Consider the constant magnetic field B = B ,Z. (a) Find the potential A corresponding to the symmetric

1

gauge A = %r x B . (b) Find the potential A corresponding to a nonsymmetric gauge. (c¢) Compute the

gauge function f(r, f) relating the two gauges used in parts (@) and (b).

(@)

(b)

l
In the symmetric gauge A = —5I ¥ B we get

Xy oz
A=—3lx y z |=-—x3yBi+5x8,% (9.7.1)
2 padul LR At
Lo 0 5,
50
B,
=75 (-n % 0) (9.7.2)

We can use any other gauge and find a different A. As an example, we can try to find A only in the x-direction,
A = A.&.In that case,

(x 3 3 ] )
VxA = % a%v a% = +(a£‘]f—(%)%=302 (9.7.3)
LA, 0 oJ
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By integrating (9.7.3) we obtain A =- B,y +c. Wecanchoose ¢ = 0, so

Ac = By A=A =0 (9.7.4)

We want to find the gauge function £(r) such that A = A + Vf (see Problem 9. 2). From (9.7.2) and (9.7.4)
we find that

B
[A- = ‘—f(—y,l‘, 0)
) (9.7.5)
A = B() (_.y’ 0! 0)
or, explicitly,
( By, .
A, = -5y =A:+0,f=-By+9,f
B, (9.7.6)
A, =5x= Ay+8yf— ayf
Hence,
of By of B
ox - 27 3y - 2% (9.7.7)
By integrating (9.7.7) we finally obtain
B,
fl,y= xy + const. (9.7.8)

9.8. A particle with mass m and charge ¢ is in a region of a constant magnetic field B. Assume that B is in
the Z -direction and use the Landau gauge; i.e., A = (-By, 0, 0). (a) What is the Hamiltonian of the par-
ticle? (b) Show that the Hamiltonian commutes with p, and p_. (¢) Work with the basis of the eigenstates
of p, and P, and use a separation of variabies to show that for the y-component, the Schridinger equa-
tion reduces to a Schrodinger equation of a harmonic oscillator (see Problem 9.6). (d) Find the
eigenstates and eigenenergies of the Hamiltonian.

(a)

b

()

The classical Hamiltonian is

. 1 /7 . N/ - N\
q 4 = Yp .4 dn s
H = ZmLp AJ Lp“cAJ - 2mLp+cBye,‘-J-Lp+cBye,‘-J (9.8.1)
where &, is a unit vector in the x-direction. The Hamiltonian operator is therefore
1 q 1 2q q Y
H = 2m(P2 +p?) +2m(p +2 By] = 2m[ +p +p2+-3yp +( Bj yz] (9.82)
To find the commutation relations between / and p or p, we use the known relations
tpop ) = (psp) = Ip.yl = Ip.zl = Ip.,y] =0 (9.8.3)
and obtain
[H 1 = L(fnz nl +2qB\1[n n]) (9 84d)
R m\ ‘P ¢ TV 1 4

2
By definition, [p_‘,px] =[p.pl = 0, so we easily find that [H, p.] = 0, and also for p,

(H.p] = sz[pf,p:] =0 (9.8.5)

Since H commutes with p, and p_, we can find eigenstates of H that are also eigenstates of p, and p_ (recall
also that [p,p] = 0). We use a separation of variables; namely, Y (x,y,2) = W (¥)y, () \uz(z) For
y, (x) and y.(z) we choose the eigenstates of p, and p,, respectively:
ip x/h
Vo) =y, () = e
s PR ip.z/h {9.8.6)
([ W.{(z) =\Vp:‘z) = '
S0
p xR ap /R

Y,y z) = e e Ny (y) (9.8.7)
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where p_ and p, are now constant numbers {these are the eigenvalues). Using (9.8.2) and (9.8.7) we get the
Schrodinger equation;

2qu'y+(g ) 1w(x y.2) = Ey(xy,2) (9.88)

1
Hy = [p%+p2+p2 +

Note that in (9.8.8), p, and p, are constant numbers and only p, and y are operators. Let us denote

1 L
5m (pf +p;) = g; then (9.8.8) can be written as

[1 (9BPY 1 (g¢BY ] e . “ R

LZmP2 e P+ 3wl e ) YA vy 2 = (E-a)w(xy 2) (9.8.9)

We see now that the y-component of the Schrodinger equation ts similar to the Hamiltonian of Problem 9.6

[see, for exampie, (9.6.4)]. In order to show that the y-component is identical to the Hamiltonian of a harmonic
oscillator we make a transformation similar to the one in Problem 9.6; that is,

[ Py

yoy=y+op

(9.8.10)
lP,\ —pP. =P,
The Schridinger equation (9.8.9) then becomes
L, 1(eBY., pf_'
Pt ol T )Y —|v = (F-a)y (9.8.11)
or
1, 1 43)24 ( p? )
|-9mP +7m( c )Y ]‘V =\E-3,. /¥ (9.8.12)
If we denote E = E—p?/2m, (9.8.12) becomes
rir ., 1 P—| - ~ -
I.Z_mpg + immg y‘J\y (x,y2) = Ey{x,y 1) (9.8.13}
2
where wz = (qB\ We gee that (0.8 13 is indeed a Schridineer equation for a one-dimensional harmonic
'B \(‘mj AR 7 : Ao~ ~ H v AImoenic
oscillator.
(d) Since (9.8.13) is the Schrodinger equation of a harmonic oscillator, we know its eigenvalues and eigenstates:
1 |
= ﬁmg(n+ ) = ﬁ—*( i) (9.8.14)
and
mm 174 2
v.(3) = ( ] e Y () (9.8.15)
where H, () are Hermite polynomials. The eigenvalues of the original Hamiltonian (9.8.2) are E [see (9.8.8)].
Hence,
_E L P Q( 1] L4 (9.8.16
E, E+2m—ﬁmC n+3f+a- 8.16)
where the eigenfunctions y, (x, y, z) are
’*nm N N ik r mwﬂ/ (‘ﬁ \N27 7 Cﬁ A
lp 1/ lP x 3
v, (x,¥,2) L exp[— ) Ly+qBJJH"L'V+qBJ (9.8.17)

9.9. Solve Problem 9.8 for a particle of spin 1/2 (an electron, for example) and with a magnetic moment
U =us.
r LI S

(a) We add to the Hamiltonian (9.5.2) the interaction energy between the spin and the magnetic field,

and obtain the total Hamiltonian:

P N\
p-3A|-p-B (9.9.2)
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The magnetic field is B = BZ, and we use the gauge A = (—By, 0,0) to obtain the Hamiltonian operator;

1 2¢Bp, gB\2 WB
H='27n[1’.3+1’3+1’§+ (2] ]

S, (9.9.3)

One can easily see that the Hamiltonian (9.9.3) commutes with p_and p,. The only term that we need to check

KB
(after using the results of Problem 9.8) is —¢—S_. Since the degrees of freedom of the spin are free from the
spatial ones, we have [p, S] = 0. Specifically,
[, BB _ [ HB(] oo
[P g R:] = | P75 °:] < (9.9.4)
Including the spin states, we use the basis of the eigenstates of p, and p, as well as of S2 and S, ; namely, our
wave function is

V5D K = €7 Ny (00 (5 = 1/2,5) (9.9.5)
where x (S = 1/2,5,) is the spin state of the electron that is an eigenstate of S? and §_:
4
SA(S=1/2,8) = 'S(S+ 1) (5=1/2,5) = 387 (5=1/2.5)) (9.9.6)
(+3)
SA(S=1/2,5) = hSx(S=1/2,8) = \i'z'/ﬁx(S =1/2,8) {9.9.7)
. . . . fi 1 1 _
We will represent the operator S using the Pauli matrices 8 = 50. The states x| 5,5 ) can be written as

1] 1 11 0
X\2p+z)=\0 X 3-3) =1 (9.9.8)
see Chapter 7.

In order to find the eigenfunctions and eigenvalues, we follow Problem 9.8, part (d). and write the Schrodinger
equation:

1 1 o K
(i?np +2mm§y +2m SBS JW(Y» ¥, Z) x$pm E‘I’(x’yv Z) x.spin (999)
where [following Problem 9.8, part (d), see (9.8./0) and (9.8.13)]
[-_ ., P
y=y+_g
i Bq (9.9.10)
w, = =

cm

and p,, S = 1/2,and S, = *£1/2 are constants. Dcﬁning

E=E- —+§BS (99.11)

we obtain from (9.9.9) a standard one-dimensional harmonic oscillator Schrodinger equation,

1 2 1 2 72 I
ImP;t 3mws )V = By (9.9.12)

with the eigenvalues E= hiwg (n+1/2) and the eigenfunctions ¥ (x, y, z) X,,,» Where y (x,y,2) is as
given in (9.8.17). Hence, the eigenvalues of our Schrodinger equation (9.9.9) are

£ @( 1) p: W
:flm(‘ n+§ +m—SBS: (9.9.13)

These eigenvalues are known as the Landau levels.

Consider the particle of Problem 9.8. (a) Assume that the particle is in a very large, but finite, box:
Osx<L,, L y < L ,and 0 <z <[ . Write the eigenfunctions in that case. (b) Find the number of

obnbas aa rgs

states per unit area (it me Xy-plane

(a)

Consider the Schrédinger equation

Hy (x,y,7) = Ey(x,y,7) (9.10.1)
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where H is given in (9.8.2). We also have the boundary conditions
I Y(x=0) =y(x=L) =0

zzl H yy=-L)=y=L)=0 (9.10.2)
l 1 y(z=20) =l|](z=Lz) =0

Tlairma thn aamnuntinm A€ vnmnalhlan A€ Denlldame O O namd /03 1 DN nand £ JN DN PR PRGRONEY £ s BN » I 4 WNERPL Iy
uoat 15 uic DUpd.lllLlUll Ui vaillavicoy Ul rruuielir) 7.0 W Fy.fv.o1 ), allu \ ¥ . IV.L1il ), WO leldbU k’ (o] U} wiLl
1
[wx(x) = —==sin (px)
,\/‘!Ll
1 (9.10.3)
V.(2) = ~E5=sin(p,2)
l-l.z
where
T
P;=fﬁ”1 n.=012,...
X
_ (9.10.4)
"
lp, = 7hn, n=012,...

aB 2
Assuming that L is very large such that %,;Ly » 1, the y-part of the wave function (9.8.15) will hardly be
affected by the boundary condition (9./0.211), as is the case for the W(y) wave function. The eigenstates are
therefore [see (9.8.17)]

.( L P

(m(n \ 1 (»mmB( cpx\z}

V(o y,z) =\ g nh / ZJ—SIDQPJX) sin (p, Z)expl_ T \y+qBJ i, q_B} (9.10.5)
The eigenenergies are [see (9.8.16)]
q 1 i
E"V"Z = ﬁr_n_(" + = ) Zm(L )nf (9.10.6)

where we used p. = nhn /L (see (9.10.4)). Note that (9 /0.6) does not depend on n,, so we have a
degeneracy.

The number of states in the xy-plane is the number of different possible #, and #,, such that the particle is
inside theregion 0<x<L ,-L £y<L .Wenote that in the y-direction we have a harmonic oscillator cen-
Snn = f-AA rga) 0 FNN n—;. FOQ TI13] Annitacimes tlans shan Ao Znelmemn o ean

(L) =] d )’0 = '—LP / (!D [dCC  ¥.0.1UVJald \ ¥.0.11)]. AXDSUINLIE Lldl UIC a€viaiions llUIll uu’f Equluuumu pUllll
y =y, are small, we need only to demand that —-L <y,<L . So

-L <—;§ <L, (9.10.7)
. c (mhY
Using (9.10.4) we get ~L < - kz-)
LnﬁcJLiL +S{preLL, (9.10.8)
The number of different states in the region 0 <x<L, and ~L <y<L is the number of different n_ in
(9.10.8), namely,
qB [ 0 nNnao
i, = %Lx"‘y (71uy)

Including the two spin states for each n_ we finally find the total number of states:

- .18
N=23LL, (9.10.10)
The number of states per unit area is, therefore,
B
. 2L
N nc Xy qb

(9.10.11)
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Refer to Problem 9.10. In the case p, = 0, show that the current I is indeed zero.

Using the definition of the probability current density (see Problem 9.3) we obtain the probability current:

. a [k .o ous) 24, ]
J =qszfnLTKWva—wvww-—;Aw*wJ (9.41.1)
Since ¥ is real, we have y*Vy - yVy* = 0, and so
7
J = -5 —Ay*y (9.11.2)

We have shown in Problem 9.5 that the probability current is gauge-invariant. So we can choose, for example, the
vector potential A = (-By, 0, 0) (see Problem 9.8). We have

Jy=J.=0
2 (9.11.3)

2}
—=

l'l-“ - 2mc'ByW*w

Using (9.10.5)and p, = 0, we easily see that y*y is an even function of y. The current I is

I = [J dx dy dz (9.11.4)
v
Wehave I, =1, = 0,s0
' L L I
5 . ) :
_48 2dy ) d o) dz 7
L= s5mc| v ldy] |y | de] |y.z)] d: (9.11.5)
—1'.“ Q0 0
L
.
. 2 . . f 2
Since |w(y)|” is an even function (only in the case where p. = 0), we finally get J w{mI'vydy =0 and

I = 0. The classical motion of the particle is a circle and so the total current in the x- or y-directions is zero.

For the particle in Problem 9.10 and electric field E = EJ: (a) Find the eigenstates and eigenvalues of
the particle. (b) If p, = O show that / _# 0 even though E is only in the y-direction. What is the drift
velocity?

(a) We add to the Hamiltonian (9.8.2) the potential energy:

Helet;!riv_‘ = q¢ (9.12.1)
where E = -V ¢. Since E = E$, we have ¢ = —Fy, and the total Hamiltonian is
s s N A . el Y » I s N - -
1 Z l 5 LqD[}._ B Z R
H = fn(i"gA) +q0 = 27,LP1+P3+113+ - ‘.v—2qu.V+(q—.) »J (9.12.2)
Working in a coordinate representation, we get the Schrodinger equation:
1 ? P } 29Bp, BY:
c[-ﬁz(—+f+— + \’_2quv+(¢;) yz]w(x,y,:) = Ev(v,yn) (9.12.3)
/_mL \ 2 a),.z 821) \C J

where we use the fact that H commutes with p,_and p.. The equation for y (y) is

eleclric
2Lm[ 2%2+(2qu‘r-2m5f1)y+(q(—?)2y2}w(y) = ey (y) (9.12.4

where € = E—;;—zpi Defining
y = y+%—(‘;,—i (9.12.5)

E B
where v, = % and Wy = Z—m,we get from (9.72.3)
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129 1 L) T o 1 &
2_mk-n 5;? ke Z;)’J‘IJUJ = ey(y) (9.1£.0)
where
= p? 1,
E = E—2—m+vao—§mvn (9.12.7)
The eigenstates of (9./2.6) are the standard harmonic oscillator eigenfunctions, and the energy spectrum is
Enxn)_n: = :“-",,_ 52 -piVp+ ;mv[z) = hw (n T;) Zm{ nzﬁz}nz_fiﬁ_li[_)”‘ +%mvf) {9.12.8)

Note that, unlike (9./0.6), (9.1/2.8) depends on n, and the degeneracy is removed (due to the electric field).

(b) The current (9.114) isI = JJ dx dy dz . Using (9.11.3) we have I, = I, = 0, and
L

q’'B l.y 2
I = 2mc ) W[y dy (9.129)

_Ly

. . . . 2
Notice, however, that in contrast to Problem 9.11, here even in the case where p, = 0, the function [y ()|
is not even since from (9.1/2.5) we can conclude that for p, = 0,

v
- D 1

y=y-o (9.4
Wy

1
4.1V

-2 - -
lq} (y)| is evenin y but not in y. If we make the coordinate transformation y ~ y in (9./2.9} we obtain

Ly—\'D/mB
2
I, gch (ﬁ%’i)lwbl%} (9.42.11)
VD ‘Ly""o/"‘a
Now using L » o, ve obtain
qZB - VD - 12 —
[ = 5 me [y+0—;8)’\v(y)| dy (9.12.12)

— oo

The first term (linear with y ) will give zero since the integrand is antisymmetric. The second term will give

q*B Vp 23 vp
e = 2mea, l\v(y)' dy= Imcwm, = 9V (9.12.13)

as we expected. v, is the drift velocny (vD = cE/B).

9.13. Consider a spinless particle of mass m and charge g, subjected simultaneously to a scalar potential V(r)

1
and a magnetic field B = B2 . Use the symmetric gauge A = —5r X B and find the Hamiitonian of the

particle. Write it as a sum of H corresponding to the case of no magnetic field and additional term H,.

We have

—
D
[ .
Ly
e
e

Using Eq. (9.5), we calculate

(p-2a)

i

2+§z[p- (rxB)+ (vxB) -p

qB, q’B;
2+——( PY+PX=yp +p) + Ty 2 (P4

qB q232 qB le
= pr+ = (xp,~yp) + 2o () =p7 +“—L * o

24y (9.03.2)



168

9.14.

PARTICLE MOTION IN AN ELECTROMAGNETIC FIELD

Substituting (9./3.2) in (9./3.1), we obtain

1, 9B OBy
H=5_p +2mCL:+ — (x“+y7) +V(r)

We see that H = H,+ H , where

and

. . Lo q
where [l denotes the Bohr magneton, [l = 2_n7c_

[CHAP.9

(9.13.3)

(9.13.4)

{9.13.5)

Polarized electrons, with a spin polarization (+) in the z-direction, enter a region of constant magnetic
field B = Bjx. The electrons move in the y-direction. After time T the electrons reach a Stern—Gerlach

apparatus in which tha mnnnnhn field i is1n fhn z- r‘hrnnhnn In\ Writa tha intaraction Hamil the
yy ANSLL, LA g lll-\/ Rllw LilLlWwil AW iivil ‘lwllll‘-vll CARL A1l Wliw

aids il WillCil uic LIQEa i

tr\nHJn in

region of a constant magnetic field. (b) In a detector D we can detect only electrons with spin polariza-
tion (-) in the z-direction. Find the values of B, such that all the electrons will reach the detector D. (c)
For the smallest value of B, [found in part (b)], What is the percentage of electrons that will reach D if

the traveling time in the constant magnetic field region is T/2 (not T)?

(a) The interaction between the electron and the magnetic field is due to the magnetic moment of the electron

2e
i = S and the external magnetic field B = B % The interaction Hamiltonian is
Fe mec & r
2¢B, 2eB,
Hy, =pn,  B="21"8%=""7§
c < m,c "x
We can use the two-vector representation of the +z spin states (see Chapter 7),
- 7 1 A
w2 - ()
k) - [,
0N

k= (7)

In this representation, the electron spin operator can be described by the Pauli matrices:

S=20

where

[
. e
a
Il
P
o
[as TR N
N
Q
H
=
—_— O
——

< -

(b) In order to find the state of the electrons at time r we d to solve the time-dependent Schridin
dly)
ar Hl|y)

The state |y) can be written as
W) = o (O+2) + o (D)-2)

2 2 . .
where o, +0_ = 1, or in the two-vector representation,

!m(g\\ = (g\( .1\ \ <+ (g\( 0\ = (a+(t)\
Wars/ 0 / -1*}

Vi) T e/
Using (9.14.5) and (9.14.8), the Schrodinger equation (9./4.6) becomes

w5lacin) = el o Nat) - el )

(9.14.1)

(9.14.2)

(9.14.3)

(9.14.4)

(9.14.5)

—-
o
[
RS
S0

~

(9.14.9)



CHAP. 9]

(c)

PARTICLE MOTION IN AN ELECTROMAGNETIC FIELD 169

Equation (9.14.9) is equivalent to the following two equations:

doL (1) do (1)
=g = 00 (1) II I~ = 0,0,() (9.14.10)
where w, = eB,/m,c. Making another derivative of (9./4./01I) we get
d*o (1) do. (1)
0 = W, (9.14.11)
dr’ o d ‘ ’
From (9.14.11) and (9.14.10 1) we obtain
d o (B ,
T = 00 (9.14.12)
dr
and similarly,
d’or, (1) )
T = — W0 (D) (9.14.13)
dt
The solutions of (9.14.12) and (9.14.13) are
{a,r(t) = a,cos (Wyt) + b, sin (w,f)
o(r} = a_cos (Wyl) + b_sin (1) (9-14.14)
where a, and b, are constants determined by the initial condition. The initial condition is
(1)
(e =0)) = |+2) = t 0) (9.14.15)

Soa, =1 and a_ = 0. From ai+ai =1 wegetb, =0 and b_ = 1. Thus the solutions of (9./4.14) are
{ou(t) = cos (W)
o_(n) = sin (@) (9.14.16)

and the quantum state (9.7/4.8) is

o [eos (e ) B
Wy = L sin ((L)Dt) } (9.14.17)
After a time T, the state of the electrons is
cos (w,T)
() = sin (w,T) (9.14.18)
If we want al!l the electrons to reach the detector D, we must demand that
[ SO | \_(0\ P 3 I I NN
Wy =12 ={1) {9.i14.19)
since the detector D detects only electrons with polarization —z. From (9.74.7/7) and (9.14.18) we obtain
|cos (w,T)| = 0 and |sin (w,T)| = 1, or, equivalently,
n
(oOT=§+m1 n=0+1,£2,. .. (9.14.20)
Using w, = eB,/m,c we finally get
mgc/n \
B, = eT\§+n”} (9.1421)
The minimum positive value for B, satisfying (9./4.20) is, forn = 1,
nm,c
(By) = 5T (9.14.22)

Assuming that B, equals (9.14.21), the quantum state [y(r)) after time T/2 is

cos (w,T/2)

W (T/2)) = | . (9.14.23)
PRSI sin (0, T/2) ) ‘ ’

Now, using (9.14.21), we have

€ B _ 9.14.24
Wy = m,c =T (9.14.24)
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Hence, from (9.74.22) and (9.14.23) we get

(cos (w,7/2) 1 ( I )
W (T/2)) = [sin(mOT/2) J vAS (9.14.25)
The probability of finding the electron in the detector D is
1 : 1
= I(_—z!\y(T/Z))I I—r )(9\| =z (9.14.26)
W2 T <

In this problem we examine how the energy levels of the hydrogen atom are modified in the presence of
a static magnetic field; this effect is called the Zeeman effect. We shall ignore here the effects of spin

{“normal® Zeeman effect). Qunnncn that the mass n'F the electron is m anr‘ 1ts charee is g fn\ Wn denote
o normas eeman eliecCt), suppose that the m ne elec ang i1s <narge 15 4.

by H the Hamiltonian of the electron in the hydrogen atom (without magnetic field). Write the eigen-
states of Hyy that are also eigenstates of L? and L. What are the corresponding eigenvalues? () Suppose
that the atom is placed in a uniform magnetic field B,, along the 2-axis. Write the new Hamiltonian. Are
the states of part (a) also eigenstates of the new Hamiltonian? How are the energy levels modified?

B H
qgm (x2 + yz) is negligible compared to fBOL: (this can be shown by a detailed

Assume that the term

calculation)

A0IL).

(a) The eigenstates of the Hamiltonian of the hydrogen atom can be written in the form

Ouim (1.8, 0) = R, (NY, (8, 0) (9.15.1)
The number » determines the energy level, £, = -E,/ n. The energy levels in a hydrogen atom are degener-
ate; for each  the number / can assume one of the values / = 0, 1,2, ..., n— 1, and m is an integer between

—I and /. The total degeneracy of the energy level F, is n* (without spin). The wave function ¢, is an eigen-
function of L? with an eigenvalue / (/ + 1) %%, and also an eigenfunction of L. with an eigenvalue m#i.
(b) According to Problem 9.13, the Hamiltonian is the sum of H,, and

22
g Mo B,

[Il - —ﬁDOL:T Sm LA Ty}

1 ’\

\
<)

s
VD

Now we assume (without a detailed proof) that the second term in (9.15.2) is negligible when compared to the
first one. Since ¢, (1) is aneigenstate of L, we have

(HCI + Hl) ¢r!!m (l') = H(]q).rz!m (l') - %BDL:q)n!m (l') = (E.l,v - ml.an) ¢n!n1 (l‘) (9153)

We see that ¢,,,, (r) are also eigenstates of the new Hamiltonian, but the energies are shifted by muB,,. Also,
the degeneracy is removed, because of the presence of the magnetic field.

An electron is constrained to move on a one-dimensional ring of radius R, see Fig. 9-1. At the center of
the ring there is a constant magnetic flux @ in the z-direction. (a) Find the vector potential A on the ring,
in the gauge in which it is independent of ¢. (») Write the Schrodinger equation for the constrained elec-

LY N wd

fron. \(,} ‘VVﬂd.I are [HC general Uounuary COI’]UI[IOI]S on me wave IUI’]C[IOI]S Ol [nC CleC[rOﬂ f\a) Find me
eigenstates and eigenenergies of the electron. Use functions of the form ¢*?.

Magnetic flux /- \
\ /T
NS

Fig. 9-1

€

]

\-




CHAP. 9] PARTICLE MOTION IN AN ELECTROMAGNETIC FIELD 171

(@) The magnetic field is B = B2 . The magnetic flux through the surface bounded by the ring is

(D=J.d.rJ.B “Rdy = J.d.x‘J.B <3y (9.16.1)

nside inside
the ring the ning
We would liketofind Aonr =R, suchthat B = V x A, and A does not dcpgnd on ¢ . From (9./6.1) we obtain
O= [[(VxA) 2dS (9.16.2)
JJ
§
where § is the surface bounded inside the ring. Using Stokes’s theorem we can write (9.76.2) ag
b = $ A dl (9.16.3)
J
A
where (' is the boundary of S, which is thering p = R, and dl is along the curve C. Now,
dl = (Rdo) o (9.16.4)
where ® is a unit vector tangential to the ring (in the “s-direction”). From (9.16.3) and (9./6.4) we find
2n
D = A R do (9.16.5)
J :

]

Using the gauge in which A does not depend on ¢, we get, from (9./6.5), @ = 2rRA,. Finally we obtain

JA,=A: =0

-
A~
b
=)
S

e

&
4

{A¢ = 2mR

(hy Considering the symmetry of the problem. it is more convenient to use cylindrical coordinates. To write the
Schrédinger equation we have to express the gradient V in cylindrical coordinates as follows:
.9 .10 0
V = pé“";+$l—)a—¢+fgj (2.16.7}

where p. ¢, and > are unit vectors in the p-, ¢-, and z-directions, respectively. Since the electron is constrained

to move on the ring, we have ¢ = R = const. and = = const. Thus, the only nonvanishing part of Vin
.19
(9.16.7) is 97 7. Applying (9./6.6) and (9./6.7) on the ring we get
'(. ¢ )3 L(.li €¢)3 ! (.i 5’2)2
H =5\ ~ihV A ) = 5\ ~hg3e~iamk) = 5, o\ 756~ c2n (9.16.8)

and the Schrédinger equation is

» 2
l (—iﬁi _ ‘_2\ iEhY = EnuA) 19 1’6 (7)}\
e T3 T 2w V@) Wi (9.16.

(¢) Since ¢ is defined over 2x, the general boundary condition for any function of\¢> determines that the function
w

will be periodic in 21, so we have |y (¢ + 21)| = |w(¢)| and similarly for 8_3)’ We consider only absolute
values——as in quantum mechanics it is only |l|1|2 that has a real physical meaning.

| - . L
(d) Check whether W(¢) = Ne‘“’ (k =const,) are solutions of (9.16.9). First, we find the normalization constant N:

‘,2)[

RJ (o)l’do = 21:R[\l]2 _ (9.16.10)
{

1
2nR

]

L
SoN = . Next, we use W) = Ne‘ in (9.16.9) and obtain

:

z,,iRz [ﬁzkz ‘ﬁk(i-_j:) +(2£1%-ﬂ =E (9.16.11)
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or, equivalently,

r A\ 72
Lﬁk—z—%) 2mR°E (9.16.12)
We define @, = é and write (9.16.12) as
(k ® )2 2mR25 (9.16.13
b,/ i’ 40.13)

1.
From the boundary condition and the wave function y (¢) = Ne‘” , we have
2k = 2nn n=0+0,%2,... (9.16.14)
From (9./6.13) and (9.16.14) we get the eigenenergies:

S22 . \2

52
E, = ——(r-ose 9.16.15
" 2mR’ ¢ ( )

and the eigenstates
V. (9) = ’—21:R {9.16.16)

Refer to Problem 9.16, Egs. (9.16.15) and (9.16.16). The magnetic field is zero on the ring (recall that
the flux is inside the ring but not on the ring). (a) In ciassical mechanics, a particle (electron), constrained

to move on the ring, will not be affected by the magnetic flux. Is this also the case in quantum mechan-

1009 Totha Aftha ala a i of tlaa £y D7 k) DlA ik
ics? istne chlsy of the ¢iectron a Luuuuuu Of tne nux @ \U) Piota Elapu uUDbllUlLlE |.uU 51 Uuuu state

of the electron as a function of @ (or ©/®@, ). (¢) The current on the ring can be defined by

i dH
l = TP (9.17.1)

where H 1s the Hamiltonian and @ the flux. Write the current operator / in the coordinates representa-

tion. (d) Calculate the expectation value of / in state W ,. Find the relation between the energy and the
current of the state y/, .

(a) Using (9.16.15) we can casily sec that the energy’s eigenvalues for the electron depend on @; thus, in contrast
to classical mechanics, in quantum mechanics a particle can be affected by a magnetic field even when the

maanatic fiald 1c 2arn in tha raoion vhich tha nartinla moves. This curnricinog nhanamam i by ag tha
magnelc feid 1s zerC 1n e reglon it wiicn INe partiCie moves, 1 0is SUIprising pnénomenum is Xnown as the

Aharonov-Bohm effect.
(b) The energy eigenvalues are

E, = " ( )2 9.17.2
- D 17,
" amp*\ @ (817)

The ground states depend on @ (or ®/® ). For -1/2<®/P, < 1/2, the minimum energy in (9./7.2) cor-
responds with n = 0 (Fig. 9-2). For ®/®, > 1/2 , the value n = 0 is no longer the minimum energy (the ground

- Iy =

i @ 3 3 @ 5
state). For 5 < (_I)_ <5, the minimum energy in (9./7.2) corresponds to # = 1. For 5< (-50 <3, W, ., is the
-1 + 1 i
ground state, and so on. For 7 <P/ < 5 the ground state 1s y,. So the ground state is periodic in
® /P, with period 1, as shown in Fig. 9-2.

2 Eground stale
2mik?

AAKNIA A

—5/2 —2 -3/2 -1 -1/2 1/2 1 32 2 52 /D,

n=-2 n=-1 : n=0 n=1 : n=2
ground state  *  ground state ! groundstate  groundstate :  ground state

Fig. 9.2
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9.18.

)
[
b

9.20.

hd
(=3
Yl

w
b2
g

(¢) Using (9.17.1) and (9.16.8) we have

R P G Rl G S 2

= PRENPS ’a¢—(b0 (9.17.3)
{d) The expectation value of 7 is
21 2
[ Dy = [ T Iy, ()R dp = [ e e | ii @/ \e”"gR d
m = | violy, ) e e 0)¢ R do
0 0
eh eh
= SamR (R @/ Q) = LR (n-D/ D) (9.17.4)
From (9.17.2) and (9.17.4) we obtain
m( II) (n) 2
E, = 1 (9.17.5)
Supplementary Problems
Consider an electron in a region of a constant magnetic field of 1 gauss in the z-direction. Assume that the electron
isinavery largebox, 0<x <L, -L Sy<L, and 0<z<L, Whatis the number of state per unit area (in the xy-

N
plane)? Ans. Accordingto (9.10.11), n = 7/ =80—3.

1 gB \? B \?
are the same (as they must be). Ans. H = ,—{ P t357y) P, 50X +p_?-|.

Using formula (9.9.2) solve Problem 9.3 for a charged particle with spin and a magnetic moment u .

1 2
Ans. (a) H = 2—m(—iﬁV—%A) -U.-B. (b)) p(ry) = WEr)w(ry).

3 u.c :
(s = rm(w*W—Ww*)— m%.Aw*wTVX (y*Sy). (9.20.1)
Conductivity is defined by

6= (9.21.1)

where i, is the total current per unit length and V is the electric potential. Consider Problem 9.12. In this case,
E = Eyand ¢ = -Ey.so V = 2EL . The total current in the x-direction is (i,,,), = Ni,. where N is the number
of states in a complete Landau level, which is given in (9.10.10y. Find ¢ for this case. Ans. © = el/h.
Coisider the following harmionic oscillator Hamiltonian:
1

Hy = 5(pi+p? +p)——mm§(x +3%) (9.22.1)

(@) Is it possible to find a basis of eigenstates that is common to H, and L,? (b) Assume that the oscillator has a
|

charge of ¢ and is placed in a region of constant magnetic field B = B,2. Use the gauge A = —5 7 x B and find the

corresponding Hamiltonian of the system.
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9.24.
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Ans. (a)Yes,since |Hy, L] = 0.
L2 2, o L ((qBo)z 1) ((4302 1) 98,
BYH = 2—m(px+p:+p;)+2—m S0 ) tameg )+ {5 ) Hamieg )y’ +m(pxy—pyx).

Refer to Problem 9.22. (a) Is it possible to find a basis of eigenstates that is common to L_ and the Hamiltonian of
9.22, part (b)? (b} Are the eigenstates of part (b) also the eigenstates of part (a)?

Ans.  (a) Yes,since [H,L.] = 0. (b) No,since [H,H | #0.

Consider a hydrogen atom placed in a constant magnetic field of 10 gauss. Calculate the wavelengths correspond-
ing to the three transitions between the levels 34 and 2p.

efi et I
Ans. E,=AEy; E,=AEy+5--B; Ey=AE,—5--B.A; = 6500 A; X, , = 6500 + 0.2 A,



Chapter 10

Solution Methods in Quantum Mechanics—Part A

10.1 TIME-INDEPENDENT PERTURBATION THEORY

The quantum mechanical study of a conservative physical system (whose Hamiltonian is not explicitly
time- dependem) is based on the eigenvalue equation of the Hamiltonian operator. Some systems, for example,

tho hn iNlatar are o1 o ananoh to he ¢n
tne nar ulUlli\- UaCuu.u.\.u, aiv ahul,ln.« Cilvugll w Uv oul‘led e"acﬂy. In geﬂeral, Ehe eq"auGu 1S not uulvuublv to ana-

lytic solutions and an approximate solution is sought, usually using computer-based numerical methods.

In this section we present the widely used time-independent perturbation theory. The approach of this
method is often encountered in physics: We begin by studying the primary factors that produce the main prop-
erties of the system, then we attempt to explain the secondary effects neglected in the first approximation.

Perturbation theory is appropriate when ihe Hamiltonian # of the system can be put in the form

H=H,+AW (10.1)

where the eigenstates and eigenvalues of H, are known and A is a parameter. The operator AW must be “much
smaller” than H,,, that is, the relation AW « H, i.e., A « 1 must hold and the matrix elements of W are compa-
rable in magnitude to those of 4. More precisely, the matrix elements of W are of the same magnitude as the
difference between the eigenvalues of H ;.

The Unperturbed State: We assume that the unperturbed energies (that is, the eigenvalues of H ) form a dis-
crete spectrum E , where p is an integral index. We denote the corresponding eigenstates by |¢ ), where the
additional index | dlstmgmshes between the different linearly independent eigenvectors correspondmg to the
same eigenvalue in the case of a degenerate eigenvalue. We have

Holoh) = Ejloh) (10.2)

where !q);) form an orthonormal basis of the state space,

[ <¢;I¢Jq> = 8,;48,‘_,'
i i (10.3)
122m@w1

Possible Effects of the Perturbation: When the parameter A is equal to zero, H (A)is equal to the unperturbed
Hamiltonian H,. The eigenvalues E (A) of H (L) generally depend on A. Figure 10.1 represents possible forms
of the variation of energy levels with respect to A.

Tr th f A
In the case of a nondegenerate energy level, the perturbation may either affect the energy level (E, in Fig

10.1) or not affect it (as in case of E ). For a degenerate energy level, it is possible that the perturbation * sphts
it into distinct energy levels, as in the case of E; in Fig. 10.1. We say then that the perturbation removes the
degeneracy of the corresponding eigenvalue of H,. The perturbation may also leave the degeneracy of an
energy level, as in the case of Eg in Fig. 10.1.

Approximate Solution for the Eigenvalue Equation: We are looking for the eigenstates |y (1)) and eigen-
values £ (A) of the Hamiltonian H (A):

HM iy Q) = EM) v ) (104)

175
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EN)

Fig. 10-1

We shall assume that £ (A) and |y (L)) can be expanded in a power series of A in the form

E(A) =¢gq+he +-- + e, (10.5)

g (R)) =10y + AL+ + A7|q) (10.6)

When the parameter is equal to zero, we have the energy level and eigenstate of the unperturbed Hamiltonian.
When A « 1, each element in the series expansions (/0.5) and (/0.6) is much smaller (in general) then the pre-

vious one; in practice, it usually suffices to consider ¢ n"'v the first few elements. The element containing A is

called the first-order correction, the one containing A% s called the second-order correction, etc.

10.2 PERTURBATION OF A NONDEGENERATE LEVEL

Consider a particular nondegenerate eigenvalue £, of the unperturbed Hamiltonian, with eigenvector 0,
(this eigenvector is unique to within a constant factor). We now give first- and second-order corrections for the

P T Y [ P 1 PR P Ry

CICIgy level and LuucSpuuumg cngcu'vcuu: (the derivation is glvcn in Problem 10. 1).

T R 1 T
E (A) = a”+Mq)n|W|q)")+A LLW +U(A,) (£10.7)
pE T n="p

(W) = 10 >+x22<¢” e, 0L

p#ER I
RS oh I IR CALCRICAER IS wB <q>,,|WI¢ owley]
NSV 0 02 o Pp/ T AR (1v.e)
E -E (E,-E, ) (E, E)
( )
pEn | n 14 R
Note that the fi der correction for the energy level is simply the mean value of the perturbation term AW
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10.3 PERTURBATION OF A DEGENERATE STATE

Assume that the level E: is g, -fold degenerate. We present a method for calculating the first-order cor-
rection for the energies and the zero-order correction for the eigenstates. The derivation is given in Problem
i0.8.

Arrange the numbers (Q) |W|¢n) ina g Xg, matrix (i is the row index and {' the column index). This
1.

u/(") o 6 s (m

nterv  vohinly wa
atliA, wilivll vwuo

not identical to

Th\.« f;rS{AU‘ d\.. \'Urrect;nns € of the anaraov lavel F are aigenvaliiee af tha matmy bl/(") The 7ern.arder

4 11 Awvl O l VA N Mllvléj IwYwl Lo ﬂl;'i Mls\rll?jllu\aﬂ oL LIIAWIA ¥F [ R SASA FCH RV VI AN ey )

eigenstates corresponding to £, are the eigenvectors of W' Let €, (j=1,2,...f() be the roots of the
. . ") .

characteristic equation of Wi (that is, the eigenvalues of W ) The degenerate energy level splits, to the first

order, into f(1 distinct sublevels:

E, A = E 4 e f=1,2,...,flh<g (10.9)
. KN 1 v 7 J i on i 4
When f(D = g we say that to first order the perturbation W completely removes the degeneracy of the level
E When f(l) <g, the dPoPneraov is only partially ern\/Pd or not at all if f(]) = 1.

Suppose that a specnﬁc sublevel E, (l) = +7&€' is g-fold degenerate in the sense that there

are ¢ linearly independent eigenvectors of W correspondmg to it. We distinguish between two com-
pletely different situations:

1. Suppose that there is only one exact energy level £ (A) that is equal to the first order to E, ;. This energy
is g-fold degenerate. [In Fig. 10.1 for example, the energy £ (A) that approaches E;’ when A - 0 is two-
fold degenerate.] In this case the zero-order eigenvector |0) of H (A) cannot be completely specified, since
the oniy condition is that this vector belongs to the g-dimensional eigensubspace of / (A} corresponding
to £ (). This situation often arises when the H, and AW possess common symmetry properties, implying
an essential degeneracy of H ().

2. A second possibility arises when several different energies £ (L) are equal to first order to E, .. The dif-
ference between these energies appears in calculation of the second or higher orders, In [hlS case an
eigenvector of H (A) corresponding to one of these energies certainly approaches an eigenvector of £ ;

for A — 0; the inverse however, does not hold.

10.4 TIME-DEPENDENT PERTURBATION THEQRY
Consider a physical system with Hamiltonian H,. We assume the spectrum of H, to be discrete and
nondegenerate (the formulag can be generalized to other situations). We have
Hylo,) = E,19,) (10.10)
Suppose that H, is time-independent but that at + = 0 a time-dependent perturbation is applied to the system
H(t = H,+ A W() (10.11)

where A is a parameter, A « 1, and W(¢) is an operator of the same magnitude as £, , and zero for + < 0. Sup-
pose that the system is initially in the state |¢,), which is an eigenstate of H, with eigenvalue £,. We present an
expression for calculating the first-order approximation of the probability P,.(f) of finding the system in another
eigenstate |¢) of H,, at time 7. The derivation of this expression is given in Problem 10.12.

7\’2' t |2
P = 5 Joe'mf'lmﬁ(t') dr (10.12)
where w,, is the Bohr angular frequency, defined by
E,-E,
O = —7 (10.13)
and ‘D,f(!‘) is the matrix element of W (¢):

W) = (o Wlo) (10.14)
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Consider now the case of transition between a state |¢,) and a state |¢f) of energy E belonglgg to a con-
tinuous part of the spectrum of H,. In this case the probability of transition at time ¢, |\q)f|\p (0 )| is actually
a probability density. That is, we must integrate the probability density over a range of final states in order to
give a physical prediction.

The time-dependent perturbation theory can be applied to this situation. One very important result is
Fermi’s golden rule. This formula relates to the case of a constant perturbation. It can be demonstrated that in
this case, transitions can occur only between states of equal energies. The probability density £, of transition
from |¢,) to |¢f) increases linearly with time, and

dpP ,‘(t) 2n
W= j, = ﬁIWAW(r)Iw,)I P(E) (10.15)

where p(Ep) is the density of the final states.

Solved Problems

10.1. Derive the formulas for the first- and second-order energy corrections for a time-independent perturba-
tion. Also, derive the first-order corrections to the eigenstates. Assume that there is no degeneracy.

We write the Hamiltonian in the form # = H; + AW, where H,, is the Hamiltonian of the unperturbed system
and W is the perturbation { A « 1). We assume that the eigenstates |w(X)) and the eigenenergies E(A) of the per-
turbed system can be expanded in a power series of A:

WAy = [0y + A1)y + - - - + A¥lg) (10.1.1)

and
EA) = gg+he + -+ + Mg, (10.1.2)

Substituting into the Schrédinger equation we obtain

[ T . ]
(Hy+ AW) qum ZA" 2&%) (10.1.3)
o 1Le=0 J
Then, by equating the coefficients of successive powers of A we obtain
H 0y = £,l0) (10.14)
o7 (] 1 I4
(Ho—g)ID+ (W—£D|0) =0 (10.1.5)
and
(Hy—-e) 12>+ (W-£g)1)-5,J0) = 0 {10.1.6)
For the nth order we obiain
(1 c Yl (T _ o Vin N el _2Na ... _el\ =0 (1N 17
\EEpy COF kS TR (SPAG iz Colre &~f vy A (EVal /g

Note that we are free to choose the norm and the phase of hy(\)), so we require that [y()A)) is normalized and that
its phase is such that the inner product {0|y(R)) is a real number. This implies that

1
(0[0) = 1 011y = (110) = 0 (012) = (2]0) = —5(1|1) (10.1.8)
For the nth order we obtain
1
Oln) = (n|0) = -5 ({n— 1) + (n =2+ + (2]n=2) + (1[n- 1)) (10.1.9)

Note that when A — 0, wehave g, = E,(IO). Using (10.1.4), we conclude that |¢,) is proportional to |0); therefore,
we choose |6 ) = |0). Multiplying (J0.7.5) on the left by (¢ |,

(0,| (Hy—€) [ 1) +{¢,| (W-€)|0) = 0 (10.1.10)
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[y
=)
™

The first term in (/0.1.10) is zero; therefore,

(6,IWI0) = (0,IW¢, (10.1.11)

fl

8]
For the first order we have

EM\

"+ 10, W, Y+ O(K) (10.1.12)

We see that the first-order correction to the energy 1s simply equal to the mean value of the perturbation term W in
the unperturbed state |¢,}. Multiplying (/0.1.5) by the basis vectors (¢)p| we obtain
(0

(0, (Ho— E™Y 1) + (0,| (W=£)]9,) = 0 (p#n) (10.1.13)
This leads to the equation
(E" ~ E™) (0,|1) +(0,IW¢,) = 0 (10.1.14)
where we used the orthogonality of the basis vectors. Then,
(0,10 = £ E9 (0,IWlo, (p#n) (10.1.15)
Since (¢,[1} = (0[1) = 0, we armive at
(6,1Wl¢,)
Iy = EW”’P) (10.1.16)
pen i

Therefore, to the first order, the eigenvectors |¢,(A)) of H that correspond to the unperturbed state |¢,) can be writ-

(0,IWo,)
v, () = 19,7+ 12 ) :()[,) 0,9+ OX) (10.1.17)

pEN

To obtain the second-order correction of the energy we multiply (10.1.6) by (¢ ]

(0, (Hy = E")[2) + (0,| (W -2 [1) - £,{0,|0,) = 0 (10.1.18)
This leads to €, = (¢,|W|1). Substituting (/0.1.16) for [y(A)) we arrive at
(¢,IW]6,)
p#En r

Therefore, to the second order, the energy is given by

, [0, M0,
EA) = E +M¢,,|W|¢n>+xzz|5(¢,,”)—¢m,| o) (10.1.20)

nEn
p 3

Consider a narm_‘le in the two-dimensional, symmetrical, infinite potential well. The particle is Qubje__
to the perturbation W = Cxy, where C is a constant. () What are the eigenenergies and eigenfunctions
of the unperturbed system? () Compute the first-order energy correction. (¢) Find the wave function of

the first excited level.

(a) For the unperturbed system, the wave functions and eigenenergies are (see Chapter 3)

2 R, X A,y
v, n’ (x,y) = Zsin I sin wa (10.2.1)
2,2
T h
,E(l).)nl = szz("fﬁL"g) (10.2.2)
(b) The first-order correction to the energy is given by
A, = (v, Wy, (10.2.3)
Thus,
4C‘.L /,‘..,..I N2 rL /T‘i]\z Lz,C
(1y = | in| —— = —
AE"] vy = LZJ xsmL T xJ de ysmL T ) dy = 2 (10.2.4)
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(¢) In order to find the wave function of the first excited level we compute the following matrix elements:

WO = Wl = L (10.2.5)
256
WS = (W) = Rt (10.2.6)

Thus, the eigenvalue equation can be written as

/ \
1 256
4 4 u
20 8in (”'W - J ') (10.2.7)
256 1 ”2J L)
g1n® 4
1 256 1 1 1 .
where 7‘1‘2 = 4 Sl L C u = J-. u, = ﬁ oru, = ﬁ, U, —ﬁ. Note that as the first excited

level is twofold degenerate, there are two solutions for the wave functions:

e
=)
[
Oo
S

() W)

(1)__L(G+G\ (h _ L {
v —ﬁLwLZ "’2-1J LY _ILWIZ WZIJ

10.3. Consider a harmonic oscillator with a force constant & and a reduced mass m. The small perturbation

W = ax3 is annhpd to the oscillator, ("nmnntp the first-order correction to the wave functions and first

|13 81044

nonvamshmg correction to the eigenenergies.
Y gt ani oo AL 2l curcdain 1o mivoee laws
LHC [1allllitoiilali O LG SY S0 10 ZIVel DY

Rrdt

H=H,+W=—5—"+5kx* +ax? (10.3.1)
The eigenenergies for the unperturbed Hammltonian are E,(, ' = (n+1/2) %o, and the eigenfunctions are given by
I fo 2
0P = J—— J— e 2H (Jox) (10.3.2)
2N

where .= m®/fi and H, are the Hermite polynomials. Note that when we compute the first-order correction EY,
we obtain an integral with an integrand of an odd function; the integral therefore vanishes and we have the result

A (n‘ax3|k) = 0. For the second-order correction we obtain
2 2 2 2 2
por = N KAWRE [alaxlne )] {Galaxine )] [aladln- D [alawln-3
L AN (U (U 0 O * r(0 (0 * r(0 (0 * r(0® O (10.3.3)
,‘#nc‘n Ly n n+3 n n+1 Ly P | Ln Lp-3

Nata

PNV

t
matrix elements are

(n+1)(n+2) (n+3)

(n|ax3|n+3) = a(nlx2|n+2)(n+2|x|n+3) =a 20 (10.3.4)
3

(nlax3[n+ 1y = al{nlx xn) (nlxln + 13] = 3a % (10.3.5)

3
(n|ax3|n -1 = a(nlx2|n - Ddn-2lxln-1) + (n’x2|n)(n|xln— ) = 3a % (10.3.6)

y8a’

and
s A~

(n|ax3|n—3) = a(n|x2|n~2)(n~2!x|n—3) = aJ'“L;%X—YI;ﬁ (10.3.7)



CHAP. 10] SOLUTION METHODS IN QUANTUM MECHANICS—PART A 181

10.4.

Substituting into (10.3.3) yields

15a% 11
2 _ 2
E5 = o 3(?1 +n+3—O’J (103.8)

The same matrix elements are required to calculate the first-order correction to the wave functions; hence, we obtain

2
o = 4\0 Y‘me ) = ¢ + a “ jaln—1) (n=2) 1 O(a
¢ .2 )

Pr 5 ‘-'L‘E:O)_Ek(uwk' (a 7 T 2hwo| 34 20 e
k#n
q (0) n+l (o) 1 ](”%l) ("’""Lz) (H+3) (0) i 2
+3n[550n1 =3+ 1) [5020,0 -3 0 0,05 | +0E) (10.3.9)

Consider a particle of mass m in a one-dimensional infinite potential well of width a:

[ n n
0 O

IA

rd
=

X>d
Vix) = iw otherwise (104.1)
The particle is subject to perturbation of the form
W(x) = aw,d(x~a/2) (104.2)

where « is a real constant with dimension of energy. (a) Calculate the changes in the energy level of the
particle in the first order of . (b) This problem can be solved without using perturbation theory; find

the exact solution. Defining & = A/2mE/ﬁ2, show that the possible levels of energy are given by one
of the following equations:

o5 5)-2
sin| 7 =0 or tan ;) _—mau)o (10.4.3)

How do these results depend on the absolute value and sign of ®,? Show that for w;, — 0 one obtains
the results of part (a).

(@) For the unperturbed system the energy eigenvalues and eigenfunctions are given by

0 E . {max) ) nihin’
Y, (x) = »\/5 smL P ) E = —r (10.4.4)
The first-order corrections of the energy eigenvalues are given by
a
2 f Ty a szn n odd
AE®" = (y Oy ™y = = SmZ(-—La_)-,sﬁ_ch = (10.4.5)
n YT v aj Vg STy 2/ Lo n even ! f

(b) Turning now to the exact solution, we divide the well polential into two regions: [ and II, as shown in Fig. 10-2.
The wave function for region [ is y,(x) = Asin (kx), and for region I, W(x) = Bsin[k(a-x)].

V{x)

From the boundary condition W,(x = a/2) = W, (x = a/2) we have A = B. Using the normalization condition

a
J [y(x) |2dr = | weobtain A = B = J/21tn/a®. Hence, from the discontinuity relation between the derivatives
o
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Y (x = a/2) and Wy (x = a/2) we obtain

w2+ €
2m
v (x=a/2) Vi(x = a/2y - ;? lim J‘ W(l) —sm (kxydx
g0

2m
Yi(v=as’2) - e J2aw, sin (kas/2) (10.4.6)

2ma®

Therefore, k£ cos (ka/2) = —k cos (ka/2) — “sin (ka/2).s0

2

2ma(0, Bk
sin (ka/2) = tan (ka/2) = -

2k cos (ka/2) = (10.4.7)

maw,

For sin (ka/2) = 0. we obtain the unperturbed solution corresponding to &k = nn/2, where n is an even number.
As 0, — 0 weget —h"/maw, = too, which from (/0.4.7) occurs when ka/2 = n/2+nn,or k = nn/a forodd
n. We introduce == —ka/2 + nn/2, where s is an odd number. In this case, tan (ka/2) = cot -, Using the expan-
sion of cot x in the vicinity of zero we can write

o= = T2 —kar2 - N2 T maw, (104.5)

Note that the last equality comes from (/0.4.7). Therefore,

T -m(o()
=10 (10.4.9)

and L = — U expression
e ,\]\ a/ 4 ) & ¥
i = _l_(ﬂ_” (E_’_’\z gn’mq)w ' 10.4.70)
_2ka+,\j\u}+ﬁlj (104.10)
£
and the expansion J/ 1 +€ = | T+ (€ « 1) we obtain
]rn'n f \ mn ngv\“
=5 —+—J]+ J:—+ (10.4.11)
O
The energy f_‘.:gen_vdlllf'\ are therefore
ﬁll‘i‘ ﬁzn’ 2
E = =250 20, (10.4.12)

The first term on the right-hand side of (/0.4.12) corresponds to the unperturbed energy eigenvalues, and the second
term 1s the first-order correction that we obtained in part (a).

Consider a particle with mass m in a two-dimensional square box of length L. There is a weak potential
in the box given by

Vir,y) = V(}LZS (X=x)0(¥y—¥,) (10.5.1)

(a) Evaluate the first-order correction to the energy of the ground state. () Write the expressions for the
second-order correction to the energy, and the first-order correction to the wave function of the ground
state. Explain how you would calculate the expressions tor (x,, v,) = (L/2,L/2).(c)Findanexpres-
sion for the energy of the first excited state to the first order in V. What is the difference between the
energy sublevels for (v, v,) = (L/4,L/4)? (d) For the first excited state, find the points (.x,, v,)
defining a potential V(x, y) that do not remove the degeneracy. Explain your result in terms of the sym-

meotry af tha nraohlom
|8 U1 il pruviviii,

(a) The eigenfunctions and eigenenergies of the unperturbed state are (see Chapter 3)

(()]( 2 . (K” ) . (n/\ J E(()] n:ﬁz ( , kz (1052}
X, V) = 78Iy 7 X sy 7V = SN +K D
vohy) = e L- o= )
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The ground state is nondegenerate, but since £, = E 2(1 ’, the first excited state is degenerate. For the ground
state, the first-order correction of the energy is
Lal
[
E(l) = {“‘(0) |V|I|I(p)\ = — S;nz( E)Sip}( nTy\V ! 25 (x—x ) (v—v.)drdv
1 AT ¥ B B B g DO lJ J UL \[L /o AN [0 A\ JOS TS
L (U]
o ™) . ("o e
= 4V, sin?| 7~ Jsin?| 7~ ) (10.5.3)
(b) For the second-order correction of the energy of the ground state we have
) (0
@ [ v
Ey =

(V] (0
EH _Er;‘k
nk
(nky=(1,

a0 2 .2
nk 2(2—!1 —k )
(mky= (1, 1) 2mL
[avasin 52 in T2 s 5 s )]
4V sin sin{ —— /sin\ = /sin| 7
L L L L
= z 0 (10.5.4)
n R 522
nk 2( n )
(n. k)= (1. 1) 2ZmL
When (x5, y,) = (L/2,L/2) we obtain
2
lé‘.’;sin\%n} sinz(r%k) 37_"/22,7“"2( 1 \
¥
E® = Z — = - Z —_— (10.5.5)
Tk . h (2-n?-k?
n, k —(2-n"=-k*) odd n, &
by ey 2mL N mdy e (11 /
For the first-order correction of the ground state we have
() (o
wih = Y W MY o
ns= (©
EII _Enl
nk
(aky (1. 1)
] Mo {4 )
= z 25 JjL—zsm( T Jsm( 13 JVOL S(x—x)b(y-yy)
nk - 2(2 n —k ) -
(n k) = (1, 1y =M
n 2 T nky
XQm(’mq ‘T'), dy "sin{'ﬁqsm( > 1
JSIM T A VE UL S
(Tcx()) (Ttyo) (TCI’IXO) Tckyo)
— 4V,sin 7 /sin 7 Jsin 7 sm[‘ L2 (rax) . (mky)
= n2ﬁ2(2—n2—k2) Zsmk T JsmLT) (10.5.6)
mk ’7m12
(n,k)#(l,l) indihie
We turn to the case where x, = y, = L/2. We substitute n = 2p + | and & = 2¢ + 1 and obtain
4mLV 2p + 1) nx 2q+ )R
vl = Z — (—1)“"sin[( pL) ]sin[( qL) y} (10.5.7)
BE PP+ +p+a)
p.g=0
(¢) The first excited state is degenerate, Efz) = EZ?); according to Sec. 10.3, the secular equation will be
| Vis i Ef:) Vi | 0 (10.5.8)
h o
‘ V21,|2 V21,21 - Elz
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Thus we obtain

! 2 2
El(z) = §[V1z. 2+ Voo ® '\/(VIZ, 2= Var2) "+ 4Vig '] (10.5.9)

nnx, rky, mix, nmy
Voiim = 4V, sin A sin\ 7~ sin A sin(—,:— (10.5.10)

Forx, = y, = L/4 weobtain V; , = V; , = Vaiz = Voo = 2V, ,s0

(
1 0
EY = 502V + 2V, .2V, -2V, +42vy') = {4‘, (105.11)
0
(d) The degeneracy will not be removed if
(Viz 1= Vo) + 4|V, [P = 0 (10.5.12)
Thus,
X 2ny 2rx Ty, \1? X, )2 2nx Ty 2ny
Lsm‘( Lo)smﬂ{ L 0}—51[\‘( Lg)sinz( LU)} +4sm(TO) Sinz( L OJSi"lz(—L—Q)Sl‘IZ( T 0) =0
SO
nx Zny N P znx N JTcy N lzﬂx AN //\_y hY
sinz( Lo)sm (TO)+ sinzk"z—oninz(—L—o) =0 > sin( 2 [)J = sin(——L‘OJ =0 (10.5.13)

l'lcuu: each of the variables x, and can assume the values 0, L, and L/2; altogeth
0 Yo &Y

in the two-dimensional box. These nine points are the only points where the symme
removed when the perturbation is applied.

Qo %
= o
=
[y}
- B
e
2
o
=
-
w
=)
3
e

10.6. Consider a particle of mass m subjected to the Hamiltonian
2 2 2
[ P mo
mt T3 0Lr<yg
= (106.1)
2
P2
r>a
L 2m

where r = «x? + y%. Use the second-order perturbation to find the corrections to the ground state
energy.

One can write the Hamiltonian in the following form:
2

H = 571 +%mm2r2 +V () = Hy+ V(r) (106.2)
where the perturbation is
[ O 0<r<a o
V= —m(:uzr2 /2 r>a (1063
2 )

The wave function of H, for the ground state is ¢q,(r) = A/—A/; cxpL Y J where A = Jf/mm and
2

o

EO = . (In the function 9., one of the zeros corresponds to an eigenfunction of the unperturbed Hamiltonian,
and the other zero corresponds to the ground state.) For the first order in V we have
> _ r 7 bl |
2 [ (1 2) fo 2|
E, = ﬁw—; zmm - cxp rdr = hio——>5 5 exp 1+ ? (1064)

ho wa’ wa’
or Ey= ko — 7[1 + r_nﬁ_a:l exp(—m ﬁa . This result is valid for m « ma’a’. In the second order, the first

state that contributes to the energy correction is ¢, (7) atenergy 3%iw, yielding the contribution
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([ () (’_)rdﬁ_ el (A LA AT
MwU" EREA AL )" 2’”0[ P A UPE) T x“JUJ

hw| | mwaZ\( mwa. mw ad\12
- [exp(— - JL 1+ - JJ (10.6.5)
Hence, we obiain approximaiely
E,=to- ﬁm( 1+ mod )exp( _m(;:aZ /)— ﬁ?w[ + m:az + "lzzzaszexp(—zm;az) (10.6.6)

Note that this analysis is incorrect only if £ > mw' a’/2.

Consider now a three-dimensional problem. In a given orthonormal basis the Hamiltonian is represented
by the matrix

=
-

(1 0 g\ (0 C
i = 0 3 0 C 0 0O (1071)
0 0 -2 0 C|

k

andCisa (‘on sta

Jk J

nt, C«l (a) Find the exact e1ggn\ml_

Hereil = 1:!0+_’:'1l

es of H. (b) Use the second-

u U
eigenvalues. (¢) Compare the results of s (a) and

order perturbation to determine part b).
(mY Tha aicanvalnes nf H are the rante nf the aquation det (H _ X/ = 0
1829 20 ClgllivVaiutcs Ul 47 aiv ulc 10U U1 wivc Cyuautil UL N} Uy
1-2 C 0
~ ’ o~ a_1 n ’ -~ .\|l_)\' c I e m oA A D P - 2 = .
U=( L dI—A U = (L—Z~A.)| C 3_}\| S(C-2-A) AN -4A+3-C | (10.7.2)
0 0 C-2-h
2
Thus A = C-2, 2441 +C".
(b) The second-order correction to the energy may be writtenas £, = E” +E (" + E{?, or
e _ =0 1 H:A HJ(:
(Eyi = (H)y + (H )i + ('))—E(m (10.7.3)
El I ;

La:

It can be seen that (H )11 = 1, 3, and -2. The first-order energy correction is given by H11 =0, H, 52 =0,
and H,, = C. For the second correction we have

(2} 12 Zl I"i
E = O _gO + (m E(m =35%t3° 3 (10.7.4)
HyH, Hy,H, 2 . 2
E(zz) = ,9\2 2{ + ,0‘23 32,0\ = ,,C T+ ,,0 = CT‘ (10.7.5)
B -E7EY gD 3513 0
and
Hl HI HI HI
» i3 2Ty
i = E‘;)) _E(lo) +E(3‘” _E(z(), (10.7.6)
Thus,
CZ
E,=1-5 (10.7.7)
(,2
E,=3+% (10.7.8)
and
E,=-2+C (10.7.9)
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(¢) Weexpand 2 £ 41 + C? in a binomial series:
2¢A/1+CZ=2¢(1+%C2+--~)=3+%c2, 1-5¢? (CP« 1y (10.7.10)
This gives the same resuii io ihe second-order corrections (/8.7.7) and (/0.7
Derive the first-order correction of a degenerate state according to perturbation theory (Section 10.3).
We assume that the energy level £, is g-fold degenerate, so we have g orthonormal vectors |¢f,) such that
Holby = E,10,) (108.1)

We add a perturbation AW to the Hamiltonian H, and we seek the possible energy levels £ corresponding to the
first-order correction state |0):
[Hy+AW]|0) = (E,+%e)|0) (10.8.2)

We have

(o5IWI0) = (¢,

Using the closure relation for the basis { |¢[",)} we obtain

0} (10.83)

NN By K]
2. 2. (&Iwle,) e,
pK
Since [0) is an eigenvector of H, with the eigenvalue £, it is orthogonal to every |¢§) for p'=p, so

0) = £(0,]0) (10.8.4)

<+ o A
D (aiwiop (a7]0) = e(4;[0) (10.8.5)

K=l
We define the matrix { W’} by
Wi = (0,IWl0o)) (10.8.6)

Equation (/0.8.5) is equivalent to the vector equation W"|0) = £|0}. Therefore the possible values of € are the solu-
tions of

det(W'-11) = 0 (10.8.7)

Consider an electron of mass m in a three-dimensional box with energy 3n*4%/ma”. A weak electric
field in the z-direction and of strength € is applied to the system; the perturbation is then W = ec€z.
Compute the first-order correction to the electron’s energy.

A free electron in the three-dimensional box has energy n°A%n°/2ma®; and so n’ + n’ +n} = 6. Three vec-
tors satisfy this condition:

(n,n,n) = (1,1,2) (n,n,n) = (L1 (non,n) = (2,1, 1) (10.9.1)

The state is therefore threefold degenerate. The wave functions for these three possibilities are

FS 8 Qi n—t P E'X ol 2_7&-’ Fi
P2 = A}gm“( a )Dlll( a )mu( P ) [10.9.2

8. (mx) . (2my) . (
G2 = ,J—lsmkj)sm\ 2 jsinl

2ny n z
0y = Esin(—?)sin[;)})sin(%j (10.94)

and

g roney ( Ty f N 2 ‘ez a
(2,1,1]z12, 1, 1) = ;‘,,J s1n2L p Jer sinzk';deJ ZS‘"ZLZJd: = c_zJ zsinZK—a—)dz =5 (10.9.5)
0 0 0 0
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10.11.

It can be similarly shown that (2, 1, 1]z|1,2, 1} = (2, 1, 1]2]1, | = {1,2,1|z]1, 1,2) = 0. Thus all the off-
diagonal matrix elements vanish and the energy is given by
3nth?  ee

S (10.9.6)
ma* <

Consider a hydrogen atom placed in a uniform static electric field € that points along the ? -direction.
The term that corresponds to this interaction in the Hamiltonian is

W = —eez {10.10.1;
Note that for the electric fields typically produced in a laboratory, the condition W « H,, is satisfied. The
appearance of the perturbation removes the degeneracy from some of the hydrogen states. Thig phenom-

enon is called the Srark effect. Calculate the Stark effect for » = 2 in a hydrogen atom,

Before we explicitly calculate the matrix elements of the perturbation, we note that the perturbation has
nonzero matrix elements only between states of opposite parity; as we are considering level # = 2, the relevant
states are those with / = 0 and / = 1. Using symmetry, the m-values of the two states must be equal. Therefore,

2s 2p,m=0 2p,m =1 2p,m = -1
( 0 (25|W12p, m = 0) 0 0)
2p, m =0Q|W|2s 0 00
W, = (2p IWi2s) (10.10.2)
0 0 00
\ 0 0 00

An explicit calculation gives (2p, m = 0|W|2s} = 3ea,g, where a, is the Bohr radius. Note that the matrix ele-
ment is linear in €, so this correction is called the linear Stark effect. We transform to the basis that diagonalizes

the perturbation; this basis is

I ‘ 10.10.3
2, :—1,2, =l’ 2, :0+2, =0, 25’ =0—2’ =10 ()
{12p.m h 12p,m )ﬁﬂsm Y+ 12p, m ») ﬁ( |m Y —12p, m '}
Schematically, Fig.10-3 depicis how the linear Siark effect removes some of the degeneracy of the # = 2 level

Jea,e
< % 2p,m=-1)and 2p,m=1)
38;06

(125, m=0)—12p, m=0Y

3
Fig. 10-3

Consider a planar molecule consisting of four atoms: one atom is of type A and the three other atoms are
of [ype D s€e l"lg 10-4. An eleciron in the mUlCLUlC can be IUUI\(.I ina VlLll'll[y of each atom. if the CICC'
tron is close to atom A, it has energy E D if it is close to any of the B atoms, it has energy
Eém where E O < E ©) We denote the states by

(1) = (1000) 12) = (0100) 13) = (0010) [4) = (0001) (10.11.1)
(a) For the first approximation, the electron cannot move from one atom to another. Using the basis

{11),12), 13}, 14>}, write the Hamiltonian H, for this approximation. (b) For the case in which an electron
can move from an atom B to atom A and back, but cannot move from one B to another, we denote by a
the energy associated with the transition from atom A to an atom B, where a « E,. Write the perturbation
in this case. (¢) Using penurbation theory, calculate the second-order correction to the energy of the state

PR o PR [PPSRy o ctntan 1D nmd AN (D M al il nts aunatl] ,....A,\oiﬁns to the

|1/ and the tirst-order correction to the states |L/, |.J/, ana [4,. (djacuiaie exaciy the coitect
energies of the states. Show that when a « £, one obtains the result of part (c).
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/E\ (2)
®
L

GY e
N

o/
Fig. 10-4

In the basis {|1}, 12}, |3}, 14)} the Hamiltonian H is represented by the following matrix:
/E,(O’ 0 0 0\

(0
E o 0
Hy=| =~ ° Lo o (10.11.2)
Lo o0 o
o)
0o o o E
The perturbation matrix representing the transitions between the state |1} and each of the states {2}, |3}, or |4)
is
(0 aaa)
a'0 00
— | (10.11.3)
a,000
\ai0 0 0/

The energy level E 1(0) is nondegenerate. For the perturbation W the second-order correction is, in accordance
with (/0.6),
4

2
E®@ - E® 4wy - N 1wl [CGitwl Dl = g0, _3a (0 ilg
I 1 AR RAN B L‘E(O) E(()) =~ E (0) E(O) {4, B

- (O . ; S o . .
The energy ievel £, is threefold degenerate, so we need to use perturbation theory for a degeneraie state.
Since the matrix elements of W between the states |2), |3}, and |4} are zero, the secular equation 1s

det 0 0-¢ 0 =0 (10.11.5)
0 0 0-¢ )
and therefore —€° = 0 , and the first-order correction to energy level E;o) is zero:
EY = EY E\V = E® E\" =g (10.11.6)

We see that to the first order the degeneracy is not removed.
The total Hamiltonian is

(E;‘” a a a W
900
a
H = . 20 E;()) 0 (10.11.7)
~(0)
\ a 0 0 £ 7

To find the eigenenergies of H, we must solve the quadratic equation det (H-A1) = 0. An explicit calcu-

Tatirme oiuans

lﬂllUll 5] AAYN]

-0 (EY -0 =322 -1 =0 (10.11.8)

or
)

EP ) [ED —2) (B -0 -34% =0 (10.11.9)
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Thus we obtain

Ay = 5[( E" + By + J( EC - By 4 124 Ay = EY (10.11.10)

We see that the degeneracy level E ’ is not completely removed by the perturbation, but it is partly removed.
For a « E( we have

(0 (0 (0) (0) 12a*
l = (E + E;7')Y £ (E| E, )‘l+ o o2
L N LLy —Ey; )
1 2
gJ(Eﬁ"HEz‘”’) + (Ei[O)—Ezlu))(l +ﬁﬂ (10.11.11)
L UE” - E") ]
So
3a? 0 3a?
A =BV ———— A, = B, o — (10.11.12)
El(o) _ E;O) 2 2 E_(U) _ E(O)

0}
This is in accordance with the second-order correction for the £, {

the level E'}".

(10.11.4) and the first-order correction for

10.12. Derive the transition probability equation for the first-order time-dependent perturbation theory.
Let c,(#) be the components of the vector |W(?)) in the {19,}} basis:

W)= D c,mlo,) (0 = (0,|w(n) (10.12.1)

n

We define W,, = (¢,|W()]¢,}. The Schrodinger equation is

d
==l AN = [H L AWea Tl 10 19 9,
ucdt”’;\;;/ Lid g T NPV T Ty 4Vl L)
By multiplying (/0.12.2) by (¢,| and using (/0.12.1) we obtain
de (1)
ih—— dar =E. (r)+2lw NG IAG)! (10.12.3)

Using the Bohr angular frequency ®,, = (E, - E,) /# and the substitution ¢ () = a,()e 5" (10.12.3) becomes
da ()
iﬁ—'a‘rr—‘ = lz e W (a1 (10.12.4)

We write b (1) in the form of a power series expansion in A:
a(n = a'm+ a0+ M al )+ (10.12.5)
We seek the solution to the first order in A. For <0 we assume the system to be in the state [¢,}, so according to
(10.72.1) and the relation between « (1) and ¢, (1) we have
a(1=0) = 3, (10.12.6)

If we substitute (/0./2.5) in (/0.12.4) and equate the coefficient of A" on both sides of the equation, we obtain [by
using (10.12.6}]

dbth
g = Z"'“’""W"k(’)% =W, () (10.12.7)

»
Ly

Equation (/(0.7.7) can be integrated to obtain
pl
1 .
alb = z_fLJ e W () dr' (10.12.8)

0
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Finally, the transition probabillt P, (1) between the states |¢) and [, is, according to (10.12.1), equal to | (t)|

T oa. ala o P Py mn _
l‘\UtC Lhat uf(l) nuu LfU} ll.dVl: 13 lC same muuuma auu to lllC lllhl o1 db’l

ah=a" 1y +xa” (10.12.9)

Since the transition is between two different stationary states, we have b‘ ‘(t) 0, and consequently

where we used (/0.12.8).

Consider a one-dimensional harmonic oscillator with angular frequency o, and electric charge g. At
time ¢ = 0 the oscillator is in ground state. An electric field is applied for time T, so the perturbation is

—aex 0<t=t

111121
W(n = (1U.43.1)
0 otherwise
1Y) Y a fiald ot re nn'h anAd vi0a (A TTaime Firgt_nrdae cactchotion tlhacem; Anla
WllDlD C lD Cl ll\.'lu oLl sl allvu A 1d a L. () woal 15 l1oL=uiLucia l}Cllul Latiuil uicu y LAlvu-

(S~
2N o)
@
=
“’ c:
C}
a
[¢']
o3
=
<

late the probability of transition to th
a transition to n = 2 is impossible.

(@) We denote by P, the probability of transition from the ground state to n = 1; then, according to the first-
order time-dependent perturbation theory,

2 2

1 @ B
P =5 |. e (1|1W0) dr| = re' w’drr (%) (—g€x) ¢o(x) dx (10.13.2)
# 0 | |n J, . |
where ¢0(x) and ¢,(x) are the energy eigenfunctions in the coordinate representationfor n = 0 and n = 1,
erpCLllVCly Ublllg ff:Sullb lUf a hdllIlUIllL UBLIIIdlUr wE KIIUW [nd[ (hCC l.,lldpll:l' D)
| 1/ x 1 1/ x}?
Oy (x) = s CRP (—i x -‘ o, (x) = mexp[—i X 1 (10.13.3)
o x L o/ | Ty L 0/ J
)
where X, = /: Substituting these in (/0.73.2) we obtain
2
f 2 Msin(av2)]?
Py = ““( ae Wdr‘ = ! ,d_tl = ..(q?) ( mﬂm 1 (10.13.4)
01 % zmnwo‘ I 2miq, | w/Z |
() To the first ordcr for the transition n = 0 — n = 2 we can write
2
|
PR = e f &n’ (2{W|0) dt (10.13.5)
We have
‘ ﬁ 1 .’L 1
(2|WI0y = (2] (~gex)|0) = —GS,\/m(QHG +a)|0y = 0 (10.13.6)

where we used the relation x = Aj (a+ a?) (see Chapter 5). Therefore, Pi,jz)(‘c) = 0.

2mo

10.14. Consider a one-dimensional harmonic oscillator embedded in a uniform electric field. The field can be

considered as a small perturbation and depends on time according to

e(t) = ; exp[ (;)2] (10.14.1)

where A is a constant. If the oscillator was in ground state until the field was turned on at ¢t = 0, com-
pute in the first approximation, the probability of its excitation as a result of the action of the
perturbation.
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Consider the total momentum p imparted to the oscillator by the field over the duration of the perturbation:

} eA B _ury?
p= ee(t)ydt = "\/—7—5 e dt = eA = const, (10.142)

We see that p does not depend on the time constant © of the perturbation. This means that the areas under the curves
of Fig. 10-5 are equal for every 1.

£(1)

P = L 174 10y, !
= € dr (10.14.3)
T e |
where V, = Jr y*y \.,-,rn(o) dyx is the matrix element of the perturbation and ©,, = !E;O) 75,50)!/” Let

e, m, and ® denote the charge, mass, and natural frequency of the oscillator, respectively, where x denotes its devi-
ation from its equilibrium position. In the case of a uniform field, the perturbation is given by

Vix,t) = —exe() ~x (10.14.4)
The oscillator is the ground state (7 = 0), so the nonvanishing elements of the perturbation matrix are
P h r)?
Voo = Vg = — 7. [s=exp|-| = 10.14.5
0 10 JaeN 2me P\ (10.14.5)
Thus, in the first approximation, a uniform field can produce a transition of the oscillator only to the first excited
. Q (0 . .
state. If we substitute (/0.745)and ®,, = ©,, = !E; ):En )g/.”: = winto (/0./4.3) we obtain
2 ‘ - :
t
— r f;xn[u‘f—('f-l,!t (10.14.6)
T 2nttmiw ‘J L N ‘ ‘ ’
0 o2 b 2
f . . ipx - ax f: B*/a .
Using the ldentnyJ e dr = [Ze#/¢ we arrive at
2 - .
| J— - L iw)‘J 10.14.7
o = Imht*P| 2 (@1 (10.14.7)

We conclude that for a given classically imparted momentum p, the probability of the excitation decreases with the
increase of T; so for T» 1 /w this probability is extremely small. This is the case of a so-called adiabatic pertur-
bation. On the contrary, for a rapid perturbation 1« 1 /@ the probability of excitation is constant. Note that in the

ilimit T — 0.
lime() = AB() = 2o (10.14.8)

so we have a sudden perturbation. In this case, the probability assumes the value

2
n

limPo = 5he (10.14.9)

which is equal to the ratio of the classically imparted energy p®/2m to the difference between the energy levels of
the oscillator, fiw. The criterion for the applicability of perturbation theory is that the probability of excitation must
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be small compared to the probability that the oscillator will remain in the ground state:

Py« (1=Py) or Py «l (10.14.10)
It is apparent from (10.74.7) that
2 A 2
é’_m - __(fzm) «ho (10.14.11)

is a sufficient condition for (/0.74.10). However, if the field’s change is sufficiently adlabauc that is, T» 1/,
then condition (/0.74.11) is too rigorous and perturbation theory can be applied. (This is if p ?/2m is of the order
of hw.)

Consider a linear oscillator in its ground state. Suppose that the equilibrium point begins ata time ¢ = 0
to move slowly and uniformly and at time ¢ = T it stops. Using the adiabatic approximation find the
probability that the osciliator will be excited. What is the validity of this approximation. (In an adiabatic
approximation one assumes that the perturbation changes very slowly with time. It turns out that for adi-
abatic perturbation, the probability of excitation is very small.)

The Hamiltonian of the oscillator at + 20 has the form

1 1
H() = 5.7 +5ma [x-a@)? (10.15.1)

where a(t), the position of the equilibrium point, is v ¢ according to the given condition, with v, = const. being
the velocity of the equilibrium point. The instantaneous eigenfunctions of the Hamiltonian (70./6.7) have the form

mw )4 ] mo m
- —— - 2 et
Y, = (nﬁ) ,Texp[—?—ﬁ— (x—a(1)) —‘Hn -4 7 [x—a(n] (10.15.2)
A N2 n! T - l_ C _]
. oH 2
The matrix element of the onerator — = —mm’ v_[x — a(n] computed from thege functions is nonzero onlv for the
The matnx element of the operator = o 1 X — a{r)] computed these functions 1s nonzero only for the
transition n =0 — n =1 (recall that the initial state is the ground state), being equal to
LY & BN 3
\T7 )y = e 5 10.15.3
ot ho = MO Vol Tme (10.15.3)
Evid r!tl the spectrum of the energy levels of the oscillator does not chang ge da unnc the motion of the equilibrium

equili
point; i.e., all the @ are constant. The probability amplitude of the first excited state is obtained by substituting

W, = O, S0

S S N A S _ J__”l__ fwr
C|(1)~—I_ﬁm2mw V[M/me(e -1) =iy, Zﬁ(x)(e -1 (10.15.4)

Therefore, the probability that at time ¢ the oscillator will be in the first excited state is
2
,  mvy
N~ = —(I_ng{m_ﬂ\ (I0.I5.5
\ II hm had 1 D e

~—

Note that this probability oscillates with time. Thus, the probability of excitation for 1> T is

"
<

ny

PT) = g (1 - cos (@0)) (10.15.6)

For the adiabatic approximation to be valid, the inequality P (T) « I must hold for all ¢, This is equivalent to the
condition

[ho e
Yo < (10.15.7)

Consider a hydrogen atom in its ground state at time ¢ = 0. At the same time a uniform periodic electric
field is applied to the atom. (a) Find the minimum frequency that the field needs in order to ionize the

dlUlll \U} Ubillg [.)Cl wur DdllUll lllCUl_y lll(.l lllC prUDlellLy Ul lUﬂlLdllUIl [.)Cl' unit lll[lC t\bbumc [na[ Wnell
the atom becomes ionized, its electron becomes free.

(¢) The equation for the transition probability per unit time from a state in a discrete spectrum to a state in a ¢on-
tinuous spectrum, under the action of a periodic perturbation, has the form
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k<
1-1
h':
(3«‘

Aw) dv (10.16.1)

whcrc o is the frequcncy of the periodic perturbation, » represents the set of quantum numbers that character-

a tha atatae ~f tha dicprata cnactm dv is the corresponding infinitesimal enerey interval of the conti
ize the states of the discrete spectrum, dv 1§ e corresponQing infinitesimai energy mnterva: of tne continuous

spectrum, E, © is the unperturbed energy level in the discrete spectrum, E, is the unperturbed energy level in
the continuous spectrum, and V,, is the matrix element of the perturbation operator for the considered transi-
tion. The perturbation operator has the form

W = e(E(-r) = e(E, - r)sin(wr) = Vexp (—iorn +V*exp (iwr) (10.16.2)
where E(r) is the electric field, |E| its amplitude, and V is given by
A ie
Vo= — Ny FI0 TR 20
L4 2 l-l(] B [tv.r v J’
0
Note that the 8-function in(/0.16.1)assures that the transition takes place only when E|, E( ) -hw = 0;
therefore,
1 (0)
Opin = F(E, —E ) in (10.16.4)
Since the hydrogen atom is in its ground state, we have
me* o
(E,—E"y . = o (10.16.5)
which gives us the minimum frequency of the electric field needed to ionize the atom.
(b) Consider the matrix element V,, = wtf/ ,,0) d’r. For ‘U(.:)) we take the ground-state wave function of the
hydrogen atom:
= oo (7) -
0) - - =
v, = exp [a == (10.16.6)
A St AN =~ 7
For y, we take approximately
1
TES exp (k- r) (10.16.7)
Y Jsn
where v = B2 s A Wse shoe w80} il et e e e liaad e R fa ooty Qaibeadi el
IcI Y = K /=i, INOLT LAl lv" 15 1HOT1allLtd W u llly ala va 13 NULalIlZLouU W O \V v ) S IVIDAIGRITIN] lg

H
all this into V, we obtain

! 3
V,, = 2 3J exp( ik - (—IJE“ -rdr (10.16.8)
8nina
To calculate the integral, we use the spherical coordinates (r, 8, ¢) . We assume that K is directed along the
polar axis, and we denote the angle between k and E; by x. The scalar product E,, - r is
E —p)r[hnvr‘ngﬂ-&cin‘v cinB cos(d—d V1 (10160

]
Ly r SX COSU+ siny sin® Cos (@ — Q) ) {10.10.3Y)

where ¢, is the corresponding coordinate of E. Substituting (/0./6.9) into (/0.16.8) (denoting z = cos8) we

obtain
ieE, l ” r eE, cos)X  16a°k
V,, = —T—— cos)X exp(—ikrl—;jrldr di = —/—"" 3 (10.16.10)
na (2a) YalYe ) o ] ny (La)y (L +k7a”)
Let us now tumn to dv:
mi
dv = &’k = kzdde = kﬁdE =37 —dQ, dE, (10.16.11)

. 1 Tt e e o 232 e ary i ol Can 1 I
where we nave used ine reianorn EU = K 7 L4m(daé; 18 dll CICmCeIt O LI S011A dllglc wi

stituting (/0.16.13) and (10.16.14) into (10.16.1), we obtain

IR 1213 anc?y
dp,, = B 1 cos x = x8(E, - E'" _hw)dQ, dE, (10.16.12)
(1+k*d®)

The probability of ionization when the electron makes a transition with a final wave vector k within the element
d(Q, is obtained by integrating (/0.16.12) over dE, . Using the properties of 8-function in (/0./6.12), we have
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to consider only the point where £, = E(O) + f; thus it follows that

Zmk, .Zm(w w

mln)

2 _
kS = 2 7 (10.16.13)
and | + ka* = . We now have
min 64 3((1)
a min w 32 2
dP, = A\ o / (wm;n_ l) E,cos"y dQ, (10.16.14)

[The probability is denoted now by dP, since (10.76.]4) depends only on k.] We use the fact that cos? x =
i /3, and iniegrate (/0.16./4) over the angies. We finaily obtain the total probability of the atom i
unit time:

2 O\ s
P = Tzk } kOTO_ ]J E, (10.16.15)

10.17. Consider a quantum system with two stationary eigenstates |1) and |2). The difference between their

eigenvalues is given by £, — £ = Aiw,;. Attime t = 0, when the system is in state |13, a small pertur-
bation that does not change in time and equals H' is applied. The following matrix elements are given:
(IH'1}y =0 Q2H'|1) = hy QH'2) = —hw (10.17.1)

(@) Using the first-order time-dependent perturbation theory, calculate the probability of finding the sys-
tem at time / in the state |1), and the probability of finding it in the state [2}. (b) Solve exactly the
Schridinger equation and find | y(¢) ). (¢) What is the probability that at time # the system is in state [2)?
When is the approximation used in part (@) a correct one? At what time (for the first order) will the sys-
tem be with probability | in state |2)?

{¢) From first-order time-dependent perturbation theory we have P, , »,, andsince there are only two eigenstates
for the system, we obtain

Py = 1Py (10.17.2)
' 2
n 1 w1 , . .
Using the formula P .° = || e /" W, (1) dt’| wearrive at
%o |
! 2 ' 2
U e e o[ 1 2
-~ — o W IIMHNN ') = —A m P T DL R (' _ 1y
4 = .1 < Nejdl yif s = 208 = et — Wl & — iy
==y ‘J A OlJ 0|m)2, |
0 0
2
| a2 _ oy [ 008204 gin (g .'/2)|
= w() { = (1)[)‘ : ]!
I(Dql ImZI
S T N A I A L AN ) alain fon /Y12
_ 2] o e TSI\ Wy i &) _ 2| SHL R, 1/ 2
= wyle L = o, e (10.17.3)
Wy @,
- 2,2
Since wy 1< 1, P, =i « }andthus @, 7« 1. The two inequalities @), 7« 1 and @y« | are the con-
ditions for applicability of the first-order approximation. Consequently, P, v = 1 =P, = 1.

(b)) Method 1: By diagonalization of the Hamiltonian H = H, + H'. First, we express the Hamiltonian explicitly
in the basis of the eigenstates |1) and |2):

(B hey ) (B hoy)
H = = (10.17.4)
\ﬁmo Ez_ﬁ(’)zlJ kﬁm() E, J (
where we used the relation £, - E; = hw,. The eigenvalue equationis Hv = Av, then (E, - Ay - (ﬁm0)2 =
Oand A, , = E, + Aw,. For two cigenvectors v, and v, we obtain

V= L('] _ ()L
TR\ T 2R TR
So, for the state | y(#)} we have

i

(1) +12)) v 1) —12)) (10.17.5)

%ﬂ—

lw(n) = e M vy +a, ey (10.17.6)



CHAP. 10] SOLUTION METHODS IN QUANTUM MECHANICS—PART A 195

Using the initial condition |y(t = 0)) = [I) we get a, = a, = l/ﬁ , so eventually

I —x(El+ﬁmo)r/ﬁ

lw(n) = 5(e

-iE, /h

1
+ e“A(El —flmo)l/ﬁ) |1> + § (e_‘ (E, +ho)vh _e” (E| -hmn)r/ﬁ) |2)

[cos ((1)01) [1) — sin (@,?) |2)] (10.17.7)

Method 2: Explicit solution of the Schridinger equation. We write {y(1) ) in the form
—thr/f:

() = Cne I+ G e B M) (10.17.8)
() .
Substituting this into the Schrodinger equation ii——,— Y = (Hy+ H')|y(r)) we obtain

[ E Py A
| Cune ™50, (e '/ﬁJI1)+1h|_Cz(t)e'Ezr/h—[%zCz ‘E””Jm

= (Hy+H) [C, (0 e Iy +Cy (0 e 12)] (10.17.9)

Multiplying (10.17.9) by (1| we get

_ iE ‘
m[c’ () e Eh T‘Cl(t) e"En'/“] = C (0 B (U D + QD) + Cy0) e 57 ((L{Hg|2) + (1]H12))

—1E\ 1/ flE-ll/ﬁ

=E C()e +C, () hage (10.17.10)
which leads to
iKC (1) = 7' Cy(t) hay, (10.17.11)
1
where @, = 7 (E, - E)|). In the same way, multiplying (/10.17.9) on the left by (2| we arrive at
ihCa(W) = C\() €' hw,— C, (1) hiw,, (10.17.12)

Equations (/0.1/7.11) and (10.17.12) give a system of differential equations with coefficients C,(¢) and
C,(1):

[iﬁC (1) = e7'C, (1) hwy,

(10.17.13)
iRC 5 (1) = C,(1) €' hw, - C, (1) o,
i .
Extracting C,(¢) from the first equation, C,(¢) = (xTC 1 () e'®a', and differentiating:
0
i 1@ LM
Ca(n) = c (e 2"+ jw, C I(t)e 21 (10.17.14)
Wy
Substituting these two expressions into the second equation in (/0.17.13) we get
. )
C,(n+w,Ci(n) =0 (10.17.15)
Using the initial condition C, (+ =0) = 0, (10.17.15) gives C,(¢) = cos (w,r). Thus, we can calculate the
coefficient C,(¢) and find C2 (1) = —i sin(w,t) '“2’, s0 eventually,
() = e 1" [cos (myr) 1) - i sin (@,1) 12)] (10.17.16)
Note that the results of the two methods coincide.
{c) The probability of finding lhe systeim in state {2) is given by
2 [
Py = 2|y )" = sin? (wgyt) (10.17.17)

The approximation used in part (a) is thus correct when @yt = 1. The system will be in state [2) when P = 0

I .
=1l A t t1ea
= 2 T iWR

-y T = I A
Of ﬂ.‘lol = R € iy, Atames

T
I =+—+— ke N th sotam will ha
. N T € iV, 1L ¢ Vil OF
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10.18.

10.19.

10.20.

10.21.

10.22.

10.23.

10.24.
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Supplementary Problems

Repeat Problem 10.3, using the raising and upper operators, a and a', respectively.

Consider a one-dimensional oscillator with a linear perturbation Ax. For the ground state energy, compute the first

. . . . 2
two orders of the perturbation (use dimensionless units). Ans. E(A) = 1 -LX°/4.
A small perturbation, W = ax*, is applied to a harmonic oscillator with force constant k and reduced mass m. Com-
pute the first-order correction to the eigenenergies and first nonvanishing correction to the wave functions.
w _ 3af 1y, 3 _ 3*/50 ()
Ans. E, = on,?(n +n+5 ) b, =0 - b
A = LUJ

Consider the Hamiltonian H = Hy+ V (x, y), where H, = mu)z(x2 +y2) /2 is the free Hamiltonian, where
Vix,y) = Xmm‘xy is a perturbation. (a) Find the exact ground state. (b) Using the second-order perturbation, cal-
culate the ground state energy.

mo 2h [ mo(fT-A+ T+A)x)
Ans. (a) Yo(x,y) = E“_)‘) CXP(— a7 J
= = 2N 7 = = N
e L_mm(JI—A+Jl+A)_v )ex Lm(ﬂ(Jl—A.—Jl+/L)ny
*P 4k P 2f
a2, ] a2
A
(2) E(Z) = —ﬁ-gw,wheretheexactresultis E, = iﬁ(sJ(A/l —A+J1+A) sfw)—A 8w+---

A particle with mass m and electric charge ¢ moves in a one-dimensional harmonic potential, subjected to a weak
electric field €. () Calculate the corrections to the energy levels and to the eigenstates of the first nonvanishing
N b b PR e e o4 PR, Y P I AN

U"J.C[ {U) Laicuiaie ll'lC elecric UlpUlC moiImncnt 0 the paricic. l(} DUIVC pars [(J} anu o) CXdC[ly, dnﬂ COlIldeC ll'lC
Tesults to the approximate solutions.

Fgs) 2 cnz
Ans. (@) AE = ;;wz, y,) = M)n)«EeJ Nz'q’"-') J";‘I¢n+.>J P =

A plane rotator with electric dipole moment d and an inertia moment / is subject to a uniform electric field E that
lies in the plane of rotation. Calculate the first nonvanishing corrections to the energy levels of the rotator. Consider

the field E as a small perturbation. Hint: The perturbation is W = —d - E.
2 2 2
2 hn I (Ed)
Ans. E, = E,(IO)+E,(,) = STt ( .
< fiT(dmt - 1)
Consider the Hamiltonian
2 2
PPy
H=75 2m+2mm0 (X} +X5) + Vg (x; =5 (10.24.1)

1
where V (x,-x,) = mezl (x, —xz)z. (a) Find the exact energy of this system. (b) Assuming that W =

V. (%, = X,) , use the second-order perturbation to compute the energy of the ground state.

[ 2 2
Ans. (@) Ey, = (N+1/2)80)+ (n+ 1/} ywy+w, (N.a=0,1, ...}, wheie
2 4 2 4
I | I RO, AW PO O
E . = :ﬁmq+:ﬁwgﬁ+¢\f =AW+ 7 -T2+ (BYE, = Ao+ 7~ ~72
2 2 40, " 16 4oy, 164

In the first approximation, compute the energy of the ground state of a two-electron atom or ion having a nuclear
charge Z. Considering the interaction between the electrons as a small perturbation.

Ans. E=E™ +EV = -(zzjz)
. 8
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10.26. Consider a quantum system that has an orthonormal basis of three unperturbed states. The perturbed Hamiltonian

10.27.

is represented by the matrix:

(E 0 a \

0O E b

a* p* F,
\

H = (10.26.1)

where E, > E,. Use a second-order nondegenerate perturbation to find the perturbed eigenvalues. Diagonalize the
matrix and find the exact eigenvalues, Repeat using a second-order degenerate perturbation. Explain the inconsis-
tencies arising from the different approaches.

nEmn (0]

Ans. Denote {1) = 0] 2) = ‘ l , and |3) = 0 . Using a nondegenerate perturbation, AED = 0, so
0 0 1
\J / \J
2 2 2 2
a b ; al” + |b
EI(I%) = bl_l Fa AEr('hr%) = % AEnz\) = LT!‘——";-TI— (.10202)
27 E By Ey £y— Ly
The exact solution is
lal* + oI laf” + |B}}
AE,, =0 AE,, = E,-E, AEj, = __E—z—:E_l_ (10.26.3)

2 2
al +1b
Using a degenerate perturbation, AE, = 0; AE,, = |E|—_|Z:|‘
275

Consider a imolecule consisting of three atoms arranged on a line; see Fig. 10-6.

(3) 1) (2)

N N /N

B A B

\

Fig. 1

If an electron is i