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Preface

The purpose of this book is to provide a first course in Projective Geometry for
undergraduate majors in mathematics and for prospective teachers of high school
geometry. For the former it will furnish an introduction to the important concept of
projective spaces; for the latter it will introduce a more general geometry from which,
by proper specialization, the familiar metric geometry is obtained. Since only the
real geometry of one and two dimensions is considered here, every theorem may be
illustrated by a diagram in the construction of which nothing more than a straight
edge is required.

Chapter 1 begins with a brief survey of the geometry of Euclid and his associates.
That part of this geometry which is concerned solely with the incidence of points and
lines is called projective. The projective plane is then obtained by properly modifying
the fundamental plane of Euclidean geometry. In Chapters 1-6 and 8-12, the reader
will find the basic propositions of plane projective geometry developed entirely by
synthetic methods. :

Chapter 7 is concerned with an axiomatic approach. In the course of providing
models for the axioms, certain finite projective geometries are introduced. Since this
leads eventually to the geometry of points defined by number triples over the field of
real numbers of Chapter 15, the reading of the chapter may be postponed until that
time.

In Chapter 13 the procedure is reversed. Taking the projective plane as funda-
mental, modifications are made to obtain the affine prlane in which parallel lines
reappear. Additional modifications are made in Chapter 14 in order to define per-
pendicular lines and thus permit a return to the metric plane. Of interest here is the
fact, observed perhaps for the first time by the reader, that so much of the metrie
geometry with which he is familiar depends on parallelism rather than on perpendicu-
larity. Also to be noted is the great variety of metric theorems which often follow
from a single projective theorem.

In Chapters 15-17 the reader is introduced to analytic methods in projective geom-
etry. In these chapters an acquaintance with matrix algebra is assumed. For those
who would wish a brief review, the Appendix will be found helpful.

The final chapter parallels Chapters 13-14. Beginning with the set of all projective
transformations of the plane onto itself, the reader is led by successive steps to the
familiar rigid motions of Plane Analytic Geometry.

The author wishes to take this opportunity to express his gratitude to the staff
of the Schaum Publishing Company for their splendid cooperation.

FRANK AYRES, JR.

Carlisle, Penna.
August, 1967
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Chapter 1

. Introduction

EUCLIDEAN GEOMETRY

Until about 600 B.C., geometry consisted mainly of a collection of rules for finding areas
and volumes. These rules, together with certain facts concerning triangles, circles, ...
as developed by the Babylonians and the Egyptians, were based solely upon experience and
observation. The period from 600 B.C. to 300 B.C. covers roughly the rise and decline of
the classical Greek culture. This culture, with its emphasis on deductive reasoning and
knowledge for its own sake, completely changed the nature of mathematics and, in particu-
lar, the role of geometry. First of all, mathematics was made abstract. For example,
whereas to the Egyptians a line was a taut string, for the Greeks the words point, line,
triangle, circle, ... became mental concepts suggested by appropriate physical objects.
Secondly, the Greeks interpreted arithmetic and algebra in terms of geometry. A number,
for example, was a length; the product of two numbers was the area of a rectangle; the
product of three numbers ‘was a volume (even today we speak of 9 as the square of 3 and 8
as the cube of 2); and geometric constructions were devised to solve equations. The debt
which present day civilization owes the Greeks for making mathematics abstract is im-
measurable. It must be pointed out, however, that their conversion of arithmetic and
algebra into geometry was unfortunate.

The scene now shifts back to Egypt where Euclid, a professor of mathematics at the
University of Alexandria, after selecting ten axioms (he also made use of other assumptions
not explicitly stated) was able in his Elements to deduce all of the important results of the
classical Greek period. Much of the material included by Euclid is quite familiar since,
with only minor changes, it is the plane and solid geometry of high school. We have only
to recall a few of the theorems to realize that underlying all of this geometry is the notion
of measurement — the length of a line segment, the measure of an angle, ..., It was then a
geometry of touch but, as will be evident shortly, not always of sight.

The magnitude of the task which Euclid set for himself becomes apparent when it is
realized that the theorems to be included were the product of various schools—the Ionian
School established by Thales, the Pythagorean School in southern Italy, and the school
established by Plato in Athens—as well as of individuals, each using axioms of his own liking.
The first task then was to select an adequate set of axioms which would be universally ac-
ceptable. It was noted above that Euclid did not state explicitly all of his assumptions.
Among those not stated were:

A line which contains the vertex A and an interior point P of a triangle ABC also
contains a point D of the line segment BC.

In the plane determined by a point P and a line p, there exists at least one line
which passes through P and is parallel to p.

The omission of the first of these was probably due to its being considered too obvious
to be worthy of note. The omission of the second cannot be so simply explained and is,
indeed, indicative of a characteristic of Greek thought at the time. For, although Euclid
assumed in his second axiom the extension of a line segment in both directions and as far
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as one chooses, he used the axiom sparingly in that he extended a line segment only so far
as was necessary for the problem at hand. Thus, in keeping with Greek philosophy which
avoided the infinite, Euclid centered his attention on line segments and avoided considera-

tion of a line in its entirety. As a result, his fifth axiom
. W
If a line p intersects two lines r and s such that the sum of the interior angles on the

same side of p is less than two right angles, then the lines 7 and s intersect on that same
side of p.

which, together with the other axioms and tacit assumptions, implies the well-known

Parallel Axiom: Through any point P not on a given line p, there exists in the plane
determined by P and p one and only one line parallel to p.

was to plague geometers for the next two thousand years. During this period countless
attempts were made either to obtain the axiom as a consequence of the others or to replace
it by a simpler one. It was not until the middle of the 18th century that mathematicians
began to suspect there might exist geometries in which the Parallel Axiom did not hold.
The matter was finally settled early in the last century when Bolyai and Lobatchevski in-
dependently produced a self-consistent geometry in which essentially “one and only one
line” in the Parallel Axiom was replaced by “more than one line” and, a few years later,
Riemann produced another in which “one and only one line” was replaced by “no line”.
These are the so-called non-Euclidean metric geometries.

Today it is recognized that there are many geometries; in particular, there is a non-
metric geometry in which parallelism plays no role. A typical theorem of this geometry
(see Fig. 1-1)

If A, Ao, As are distinct points on a line r and if By, B, Bs are distinct points on
another line s which meets 7 in the point O, then the points of intersection Ci of A:B;
and AsBs, C» of A1Bs and AsBy, Cs of AiB: and A.B: are collinear (i.e. lie on a line).

was given by Pappus in the third century A.D. Being proved by the use of Euclidean
methods, the theorem was simply added to the propositions of Euclid’s geometry. It is
clear, however, that this theorem, concerned only with the joins of points and the inter-

sections of lines, is of a character quite different from the typical theorem of plane geometry.

Nevertheless, it was not until the 17th century that the principal theorems of this geometry
were established and not until the middle of the 19th century that the geometry was freed
g‘:ompletely of metric notions. '
h {13 T

-4

Fig.1-1

PROJECTIVE GEOMETRY

It has been noted that Euclid’s geometry is not always the geometry of sight; for ex-
ample, we never see parallel lines. If one stands midway the rails of a straight railroad
track, the rails appear to meet in a point on the horizon. Moreover, if a camera is used,
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the resulting picture will show the same phenomenon. OQOur concern from now on will be
with the geometry, roughly that of photography, called projective geometry.

In producing a picture, the camera (in effect) joins each point A in its range to a point
P in the lens by a straight line, that is, projects each point A from P, and then sections the
resulting lines by a plane = — the film. Corresponding te any point A in the range there is a
unique point A’, the intersection of the line AP and =, in the section. Also, corresponding
to any line ¢ which contains A but not P there is in the section a line ¢’ which contains A’.
This follows from the fact that P forms with the line ¢ a plane which, in turn, intersects
= in the line ¢’. Suppose now that the subject of our picture consists of a pair of inter-
secting line segments and a circle drawn on a vertical wall. For practical reasons, the size
of any subject is diminished in the picture. The important point is, however, that the
lengths of the line segments in the picture may be varied simply by changing the distance
of the lens from the wall. There are, moreover, other distortions. Although the picture
shows a pair of intersecting line segments, their angles of intersection will usually be
different from those in the subject; also, the circle will usually appear as an ellipse.

In Euclidean geometry, we study the lengths of line segments and measures of angles)'?

since they are invariant (unchanged) under rigid motions. It is now clear that these®
familiar notions will play no role in our new geometry. -

We must be careful, of course, not to endow projective geometry with certain of the
limitations of the camera. For instance, we shall assume that every point of space, ex-
cepting only the center of projection P, may be projected from P and that the sectioning
plane may be any entire plane = which does not contain P. Usually we will have the situa-
tion that to each point A ¢ P of the space there will correspond a unique point A’ in .
Such exceptions as there are, for example, when AP is parallel to = no correspondent A’
of A is obtained, are due to certain characteristics of Euclidean space. Recall that a line
P, not in the plane =, either meets » in a point or is parallel to .

Suppose A to be a point for which there is no correspondent in =. Let =’ be any plane
through A which does not contain P and let » and s be any distinct lines of =’ intersecting at
A. Denote by 77 and s’ respectively the correspondents in = of 7 and s when projected from
P. Now 7 and s’ must be parallel since otherwise their point of intersection would be the
correspondent of A. Moreover, by interchanging the roles of = and =’, we find that the cor-
respondents in =" of the parallel lines #* and s’ in = are the intersecting lines » and s.

It is now clear that so long as we deal with Euclidean space neither the property of being
a point nor #he property of being a pair of intersecting lines is invariant under a projection
and section. It is equally clear that this state of affairs is due solely to the existence in
Euclidean space of parallel lines and planes.

There are two avenues of escape from our position:

(1) Follow the pattern set by Euclid of postulating a space having precisely the prop-
erties desired.

(2) Begin with Euclidean space and somehow fashion it into another in which parallel-
ism and metric notions are completely absent.

We shall delay the first procedure, the axiomatic approach, until we have a better idea
of what projective geometry is about, that is, of what the invariants of projective geometry
are. In following the second procedure, the matter of metric notions can be easily taken
care of — we shall simply ignore all of them — while parallelism will be eliminated by provid-
ing ‘intersections’ for the parallel lines, parallel planes, etc. of Euclidean space.
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PROJECTIVE SPACE

From Euclid’s geometry we extract the following propositions:
(e¢) Any two distinct points determine one and only one line.

(b) Any three distinct non-collinear points, also any line and a point not on the line,
determine one and only one plane.

(¢) Two distinet coplanar lines, that is, two distinct lines in the same plane, either inter-
sect in a point or are parallel.

(d) A line not in a given plane either intersects the plane in a point or is parallel to the
plane.

(¢) Two distinct planes either intersect in a line or are parallel.

Note that these propositions are completely free of metric notions and are concerned only
with the joining of points and the intersecting of lines and planes.

In constructing a space for projective geometry, we propose to adjoin to Euclidean
space certain objects. These objects will not be defined but, for the purpose of distinguish-
ing between them, will be given names — ideal point, ideal line and ideal plane. Moreover,
in order that there be no possibility of confusion the points, lines and planes of Euclidean
space will now be called ordinary points, ordinary lines and ordinary planes of ordinary
space.

The ideal elements have no inherent pfoperties; as we proceed, we will endow them with
such properties as will insure that in the newly created space, that is, in projective space,
the following propositions hold for all possible combinations of ideal and ordinary elements:

(@/) Any two distinet points determine one and only one line.

(b’) Any three distinct non-collinear points, also any line and a point not on the line,
determine one and only one plane.

(¢) Any two distinct coplanar lines intersect in one and onl§ one point.
(d’) Any line not in a given plane intersects the plane in one and only one point.

(¢’) Any two distinet planes intersect in one and only one line.

Let us begin by considering an ordinary plane » and its ordinary lines. To each of these
ordinary lines we adjoin an ideal point (also called a point at infinity) in such a manner that
any two distinct intersecting ordinary lines will have distinct ideal points while any two
parallel ordinary lines will have the same ideal point. Let any ordinary line together with
its ideal point be called an augmented line. For the purpose of complete clarity, let » and s
be two distinet ordinary lines of =, let R, and S, be their respective ideal points, and con-

_sider the augmented lines (r, R.,) and (s, S.). When 7 and s intersect (in an ordinary point),
R., and S, are distinct; when r and s are parallel, B, and S, are identical and E. is then
the point of intersection of the augmented lines. Thus, (¢’) holds for (7, R.) and (s, S.) and,
hence, for any two augmented lines provided the ordinary lines are coplanar.

Define now an augmented plane as an ordinary plane together with the totality of ideal
points adjoined to its ordinary lines. It is clear that (a’) holds in an augmented plane when
one of the points is an ordinary point and the other is an ideal point as well as when both
points are ordinary points. There remains the case when both points are ideal points. If
these ideal points are to determine a unique line, it cannot be an augmented line. (Why 7
Let us then adjoin to the augmented plane containing (r,R.) and (s,S.) an ideal line P
which contains both R, and S. and so can be said to be determined by these points. Let
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(t, T..), where t is distinct from r and s, be any other augmented line of the augmented plane.
When r and t are parallel, T, = E,, and then (»,R,) and (¢, T,) intersect in E, on p.
Similarly, when s and t are parallel, (s, S.) and (¢, T.,) intersect in S,, on p,. Suppose now
that R.,, S, T., are distinct. If (¢’) is to hold in this case, that is, if (¢, 7T.) and p. are to
have one and only one point in common, it is necessary that T, lie on p,.. We conclude then
that the totality of ideal points adjoined to the ordinary lines of the ordinary plane =
constitute the ideal line p,. The resulting augmented plane will be denoted by (=, D).

Assume that an ideal line has been adjoined to each ordinary plane of ordinary space.
We shall leave for the reader to show that (d’) holds for any augmented plane and any
augmented line not on the plane. Consider next two augmented planes (p, 7) and (o, 8)
with p and ¢ distinet ordinary planes. Clearly, (e¢’) holds when p and ¢ intersect in an or-
dinary line. Suppose then that p and ¢ are parallel. In p take any ordinary line p and in ¢
any ordinary line ¢ parallel to p. Now the common ideal point P, adjoined to p and ¢ must
lie on both 7, and s,. Also if b is any ordinary line of p, not parallel to p, and d is any
ordinary line of « parallel to b, the common ideal point B, of b and d lies on both 7, and s...
Thus, 7., and s, must coincide and (¢’) holds for any two distinct augmented planes.

Although we do not give the details, it should not be surprising to find that if (b") is to
hold for three non-collinear ideal points it is necessary to adjoin to ordinary space an ideal
plane which contains these points (just as an ideal line containing the ideal points R, and
S.. was adjoined to the ordinary plane =). Also, if (¢’) is to hold when the two planes are
any augmented plane and this ideal plane, it is necessary that the ideal plane contain all of
the ideal points adjoined to all of the ordinary lines of ordinary space (just as it was found
necessary that the ideal line, containing R, and S., contain all of the ideal points adjoined
to all of the ordinary lines of the ordinary plane =). Ordinary space together with the ideal
plane will be called augmented space.

As a final step, we drop all distinctions between ordinary and ideal points, between aug-
mented and ideal lines, and between augmented planes and the ideal plane. For a time
we shall call any point, ordinary or ideal, a projective point; any line, augmented or ideal,
a projective line; and any plane, augmented or ideal, a projective plane. However, when
there is no possibility of confusion, we shall speak simply of the points, lines and planes
of projective space.

v
THE PRINCIPLE OF DUALITY

In the preceding section projective space was obtained by adjoining additional elements
to Euclidean space. It is to be noted that while certain basic words—point, line, plane—have
been retained, the meaning of each has been modified. The most obvious result of this can
be seen by comparing the propositions (a)—(e) of Euclidean geometry with their counter-
parts (a’)—(¢’) of projective geometry. There is a gain both in simplicity (the statements
(a’)—(¢’) are briefer) and in generality (emphasized here by the repetition of the word ‘any’).

A far more important gain is that the principle of duality, whereby for each proposition
another is obtained simply by the interchange of certain key words and such other changes
in notation and language as are necessary to render the statement meaningful, holds in
projective geometry but not in Euclidean geometry. There is a principle of duality for
the projective plane and another for projective space. Consider, first, a projective plane for
whose points and lines (a’) and (¢’) assert -

Any two distinet points determine one and only one line.
and
Any two distinct lines determine one and only one point.
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Either statement is obtained from the other by the simple exchange of the words ‘point’
and ‘line’. (Note that the word ‘plane’, whether implied or stated explicitly, is not changed.)
In addition to dual theorems in the projective plane (see Example 1.1 below) there are also
dual figures. For example, (1) the dual of the figure consisting of a point P and two lines
through it (see Fig. 1-2(a)) is the figure consisting of a line p and two points on it (see
Fig. 1-2(b)); (2) the figure consisting of a line and a point on it (also, of a line and a point
not on it) is self-dual, that is, the dual of either figure is another of the same type.

p

@ Fig.1-2 ®

Anticipating Example 1.1, we introduce a certain notation which will be useful through-
out this book. If A4,B,C,D are distinct points, everyone understands that by AB is meant
the line determined by the points A and B. Let us now agree that if a,b,¢,d are distinct
lines and if ¢ and b are coplanar, we shall mean by a- b the point of intersection of a and b.
Algo, assuming that all points and lines are in the same plane, let us agree that by AB-CD
is meant the point of intersection of the lines AB and CD, by AB-a is meant the point of
intersection of the Jines AB and a, and by (a-b)(c-d) is meant the line determined by the
points ¢+ b and ¢-d.

Example 1.1. ‘

Let the Theorem of Pappus (page 2) be restated as follows:

In a projective plane, let A, A,, Ay be distinet points on a line r and By, By, By be distinct points on
another line s; then the points C; = AyBg*AzB,, Cy = A;By*A3B,, C3 = ABy*AyB; are collinear.

The dus¥ of the theorem is

In a projective plane, let @y, d,, a3 be distinet lines through a point B and by, by, by be distinct lines
through another point S; then the lines ¢y = (ag*by)(ag*by), ¢35 = (ay-bs)(az*by), ¢z = (a;*by)(az* by)
are concurrent, that is, have a common point of intersection. (See Fig. 1-3.)

R

cy P

g

Fig.1-3

Although we shall soon restrict our attention solely to the projective plane and thus will
find little if any use for it, there is a principle of duality which operates in projective space.
For example, (a’) and (¢’) are dual statements, either being obtained from the other by the
interchange of the words ‘point’ and ‘plane’. (Note that here the word ‘line’ is not changed.)
Also, the space dual of the proposition
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Three distinct planes, not through the same line, determine one and only one point.
is the proposition
(b") Three distinct points, not on the same line, determine one and only one plane.

In reality, our proposition (b’) is a postulate. Its space dual is a theorem which, when
we accept the principle of duality, is automatically valid and, hence, no proof is necessary.
Recall that in Euclidean geometry, a proof was required.

It is customary to say: the point P is on the line p, the line p passes through the point P,
the line p lies in the plane =, the plane = passes through or contains the point P and the line
p, the lines p and q intersect in the point O, etc. The task of writing the dual of a given
definition, theorem, or proof of a theorem is greatly simplified by adopting the so-called
‘on’ language. We propose to adopt this and, thus, will write: the point P is on the line p,
the line p is on the point P, the line p is on the plane =, the plane = is on the point P and
the line p, the lines p and ¢ are on the point O, etec.

THE PROJECTIVE LINE

In an ordinary plane =, take any line ¢ and
any point O not on ¢ (see Fig. 1-4). Through O
pass a line p meeting ¢ in P. If we suppose p to
rotate counterclockwise about O, then P will
move along ¢ in the direction indicated by the
arrow. When p assumes the position OA, that
is, when p is parallel to ¢, there is no point P of
intersection. However, once p is beyond the
position OA, the point P reappears (but on the
other end of ¢) and, moving in the direction of
the arrow, traces the remainder of ¢. Thus,
although the motion of p about O is continuous, that is, is without jumps, the motion of P
along q is not. Now had we begun with a projective plane, every position of p would have
- determined a point on ¢. Thus, as p rotates about O, the projective line q is traced by the
continuous motion of P and we must conclude

Fig.1-4

A projective line behaves as if it were closed.

The reader should not attempt to form a mental picture of a closed straight line. However,
for the purpose of pointing out other distinctions between ordinary and projective lines,
we shall consider a circle or an ellipse as a model of a projective line (see Fig. 1-5(a)) and the
same curve with one of its points missing as a model of an ordinary line (see Fig. 1-5(b)).

Using Fig. 1-5(b) it is clear that
any point A on an ordinary line sep-
arates it into two segments, and
another point B on one of the segments b?’
is sufficient to distinguish it from the c
other segment. Using Fig. 1-5(a) it is
seen that for the projective line two
distinct points A and B are necessary
to separate it into two segments, and
another point C on one of the segments A B
is then sufficient to distinguish it from AB
the other segment. A second way of
describing this difference between the (@) ®)
ordinary and projective line is as fol- Fig. 1-5
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lows: Onan ordinary line there is just one path leading from one of its points A to another of

its points B; on a projective line, one may follow either of two paths AB or AB in moving from
a point A to another point B.

Consider now a projective line and on it mark four of its points (assumed distinet)
A, B,C,D. In considering the position of the pair C, D with respect to the pair A, B there
are two cases: (1) the pair C, D lies on one of the segments into which the pair A, B separates
the line (see Fig. 1-6(a)); (2) the points C, D lie singly on the segments into which the pair
A, B separates the line (see Fig. 1-6(b)). In the latter case, we say that the pair of points
A, B is separated by the pair C,D. Thus, if A, B,C,D are distinct points on a projective
line, the palr A, B is separated by the pair C, D provided the point C lies on one of the seg-
ments AB or AB and the point D lies on the other segment. Another way of putting this is

to say: If A, B C,D are distinet points on a projective line, the pair A, B is separated by
the pair C, D provided it is not possible to move along the line from A to B without meeting
some one of the pair C,D. It follows readily that if the pair C,D separates the pair A, B
then the pair 4, B separates the pair C, D.

(a) )
Fig.1-6 Fig.1-7

The plane dual of a projective line ¢ with four distinct points A, B,C,D marked on it
is a point @ with four distinct copianar lines a, b, ¢, d drawn through it. Consider in Fig.
1-7 the pair a, b and denote by ab and ab the two sections into which they separate the plane.
Without further ado, we state: If a,b,c,d are distinct coplanar lines on a point @, the pair

a, b will be said to be separated by the pair ¢, d provided the line ¢ lies in one of the sections
and the line d in the other.

PERSPECTIVE PENCILS IN A PLANE

By a figure in projective space will be meant any collection of points, lines and planes
of the space; by a figure in a projective plane will be meant any collection of points and lines
of the plane. In this section, attention will be restricted to two types of figures in a pro-
jective plane:

(a) the totality of points on one of the lines of the plane, called a pencil of points
(range of points or point-row). The pencil of points on the line p of Fig. 1-8(a)
below will be denoted by »(4,B,C,D, ...) where A,B,C,D, ... are distinet points
on p. The points A,B,C,D, ... are called elements and the line p is called the basis
of the pencil.

and the plane dual

(b) the totality of lines on one of the points of the plane, called a pencil of lines (flat-
pencil). The pencil of lines on the point P of Fig. 1-8(b) below will be denoted by
P(a,b,c,d,...) where a,b,¢,d, ... are distinct lines on P. The lines a, b, ¢, d,
are called elements and the point P is called the center of the pencil.
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(a) (®)
Fig.1-8

A one-to-one correspondence is said to exist between the elements of two pencils pro-
vided there exists a rule which associates with each element of one pencil (the first) a
unique element of the other (the second), and reciprocally, associates with each element of
the second a unique element of the first. In such a correspondence between two pencils
(also between two figures of any sort) each element and its associate are called corresponding
(homologous) elements. The identity correspondence in which each element of a given
figure is associated with itself is a somewhat trivial example.

Consider in Fig. 1-9(a) the pencil of lines P(a, b, ¢, d, .. .) sectioned by any line p not on
P. A one-to-one correspondence between the pencil of lines and the resulting pencil of
points (on p) is automatically established by the ‘on’ relation. For, to each line of the pen-
cil of lines on P is thereby associated a unique point, namely, that point, of the pencil on p,
which is on the line. Moreover, this association of line and point is reversible, that is, to
each point of the pencil of points on p is associated a unique line, namely, that line, of the
pencil of lines on P, which is on the point. Note that this correspondence is best indicated
by using the same letter (small and capital) to denote any line and the point associated
with it.

(®

P
/ \ »A,B,C,D,...) = p'(A",B',C",D',...)

EAA A

P(a, b,c,d,...) < P'(a, b, ¢, d',...)

(¢)
Fig. 1-9
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The one-to-one correspondence described above is called a perspectivity and is indicated
by writing
P(a,b,c,d,...) = p(4,B,C,D,...)

We say that the pencil of lines P(a, b,c,d, ...) is perspective with the pencil of points
p(4,B,C,D, ...) and note that

P(a,b,c,d,...) = p(A,B,C,D,...)

also implies p(4,B,C,D, ...) = P(a,b,c,d,...)

To distinguish this type of perspectivity from others yet to be introduced, we shall call it
an elementary perspectivity.

Consider in Fig. 1-9(b) the pencil of lines P(a, b, ¢, d, . . .) sectioned by two distinct lines
p and p’, neither of which is on P. From the above discussion it follows that two elementary
perspectivities
P(a,b,c,d,...) = p(4,B,C,D, ...)

and P(a,b,c,d,...) = p(4’,B,C, D, ...)
are established. These perspectivities, being reversible, may be combined as follows:
»(4,B,C,D,...) = P(a,b,c,d,...) = P4, B,C,D',...)

It is now clear that a one-to-one correspondence between the pencils of points on p and p’
(A and A/, B and B’, C and C’, . ..) has been established in which each point of the pencil
on p and its associate on p” determine a unique line of the pencil on P. We now replace the
sequence of elementary perspectivities immediately above by

p(4,B,C,D,..) = p(A,B,C", D, ...)

(to be read: the pencil of points p(4,B,C,D, ...) is perspective by means of the point P
with the pencil of points p’(47, B’,C’,D’, . ..) or the pencils of points p(4,B,C,D, ...) and
p’(A’,B’,C’,D’, . ..) are perspective from the point P). The point P is called the center of
perspectivity. Thus, we define

_Two pencils of points on distinct lines p and p’ are said to be perspective from a
point P if there is a one-to-one correspondence between the points of the pencils and if
the joins of corresponding points are on P.

In the above perspectivity, the point common to p and p’ plays a unique role. Let this
point be denoted by I, as a point on p, and by I’, as a point on p’. Then the correspondent
of I'is I’ =1 and I is called a self-corresponding or invariant point of the perspectivity.
We have . T

Theorem 1.1. In every perspectivity between two pencils of points on distinct lines » and
p’, the point I = p-p’ is self-corresponding.

When any two points (as B and C) on p and their correspondents (B’ and C’) on p’ are
known, the joins BB’ and CC’ of corresponding pairs uniquely determine P. Thus,

Theorem 1.2. Any perspectivity between two pencils of points on distinct lines p and p’ is
uniquely determined when any two distinct points on p, each of which is
distinct from p - p’, and their correspondents on p’ are known.
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The plane dual of a perspectivity between two pencils of points on distinct lines is a
perspectivity between two pencils of lines on distinct points, defined as follows:

Two pencils of lines P(a,b,¢,d,...) and P’(¢’,b’,¢’,d’, ...) on distinct points are
said to be perspective from the line p if there is a one-to-one correspondence between
the two pencils and if the intersections of corresponding lines are on p.

This perspectivity, illustrated in Fig. 1-9(c), is indicated by writing
P(a,b,c,d,...) = P'(a,b,c,d/,...)

Here, the line p is called the axis of perspectivity. For such perspectivities, we have by the
principle of duality,

Theorem 1.I'. In every perspectivity between two pencils of lines on distinct points P and
P’, the line i= PP’ is self-corresponding.

and

Theorem 1.2'. Any perspectivity between two pencils of lines on distinet points P and P’ is

uniquely determined when any two distinect lines on P, each of which is dis-
tinct from PP’, and their correspondents on P’ are known.

The reader is urged to write out in full the duals of the paragraphs above concerning Fig.
1-9(b) rather than to accept, without further investigation, the theorems stated in this
paragraph concerning Fig. 1-9(c).

PROJECTIVE PENCILS IN A PLANE
A perspectivity
P
201(A1, By, Cy, Dy, .. ) = pz(Az, B,,Cs, D., .. )

e

P3

was defined in the preceding section as establigh-
ing a one-to-one correspondence between two
pencils of points on distinct lines such that the
joins of corresponding points are on the point P;.
A perspectivity may also be thought of as a type
of transformation, that is, a method of passing
from the set of points on p: to the set on p2 or a
means of carrying the set of points on p; onto the
set on p.. Consider now a second perspectivity
P
pz(Az, Bz, Cz, Dz, . ) % pa(A;a, Ba, Ca, Da, A )
by means of which we pass from the set of points
on p: to the set of points on another line ps. The
effect of the two perspectivities carried out suc-
cessively (see Fig. 1-10) is a transformation by
which we pass from the set of points on p, to the
set of points on ps. Generally, the transforma-
tion will not be a perspectivity. To check this,
it is necessary only to join corresponding points
A;and As, Biand Bs, Ciand Cs, Dy and Ds, . . . of
Fig. 1-10 and verify that these lines are not con-
current or to verify that I, =pi-ps is not
invariant under the transformation. Such a Fig.1-10
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one-to-one correspondence between the two pencils is called a projectéye correspondence
or projective transformation and is denoted by '

pi(A1, By, Cy, Dy, . . .) @ps(Aa, Bs,Cs,Ds, . . .)

Thus,

A one-to-one correspondence between two pencils of points is said to be projective
provided the correspondence is the resultant of a sequence of perspectivities. More
briefly, such a correspondence is called a projectivity.

Fig. 1-11 illustrates a projectivity between two pegl( i&s“ of points on distinct lines
(/,:\((5‘}‘{( B SR -
pl(Ah B1,Cy, Dy, .. ) “-,x\/p4(-A4, By, Cy, Dy, .. )

N

defined by the sequence of pws

: P2

P \
pi(AsB1,Ci,Ds, . ..) =) Pa(As, B, Co, Do, ...} = PofAs,Bs, Co, Ds, ....)

e

Ps{As, By, Cy, Dy, .. .)

Fig.1-11

Similarly, a projectivity
(a) pl(Al, Bl, Cl, Dl, . ) PN pn(An, Bn, Cn, D‘n; . )

may be established by a sequence of perspectivities

o]
o]

Py 2 3 n-1

by Pr=P2x PsxE ‘R Pn

the only restrictions being that P; is not on p; and pi+1 is not on P.. We note in passing that

(1) A perspectivity between two pencils of points is a special case of a projectivity
between the pencils; the converse, however, is not true.

(2) The projectivity (a) is reversible, that is, (a) implies
(a') pn(An, Br, Cr, Dy, . . ) = (A4, By, Cy,Dy, .. )

the sequence of perspectivities establishing (¢’) being (b) written in reverse order.



CHAP. 1] INTRODUCTION 13

It is not necessary that all of the lines p1, ps, ps, . . ., P» above be distinet; in particular, if
p» = p1 then we have

(c) pl(A].) Bl, Cl, Dl) “ -) ~ pI(A‘IL) Bn, Cn, Dn, .. .)

For examples, the reader has only to extend the lines P24, P:B,, P:Cs, P:Ds, ... of Fig. 1-11
to meet p: in As, Bs, Cs, Ds, . . . respectively and extend Psds, PsBs, PsCs, PsDs, . .. of the same
figure to meet p; in As, Be, Cs, Ds, . . . respectively. Then

Py

P
pi(A1, B;,C1, Dy, ...) = Do(A2,Bs,Co,Ds, . ..) =
and (d) pu(A1, B, Ci, Dy, ...) = P1(4s5, Bs5 Cs,Ds, . ..)

p1(As, Bs, Cs, Ds, . . .)

also
Py Pg

P
p1(A1, B1,C1,Dy, ...) = ps(As, Bs,Co,Ds,...) = Ds(As, B3, Cs,Ds, ...) = Pi(Ae, B, Ce,Ds, . ..)

and (e) p1(A1, B1,C, Dy, ...) = Di(As, Bs,Ce,Ds, .. .)

Now there is, of course, only one pencil of points on the line p; and the effect of each of the
above projectivities is to carry this pencil of points into itself. Since each projectivity
requires that each point of p; have two labels, matters will be considerably simplified if we
think of each of these projectivities as between distinct pencils on the same line. Accord-
ingly, we shall speak of (c), (d), (¢) as projectivities between superposed pencils of points on
the line p:.

Dually, there are projectivities of a pencil of lines into itself which, for convenience, we
think of as projectivities between distinct pencils on the same point and speak of as projec-
tivities between superposed pencils on a point. ’

For an example, see Problem 1.13.

In a projectivity between superposed pencils, it may happen that one or more elements
are self-corresponding. (In a later chapter it is shown that if as many as three distinct
elements are self-corresponding, then every element is self-corresponding.) Self-correspond-
ing elements of superposed projectivities are more often called double elements (tnvariant
elements) of the projectivity. Examples of superposed projectivities having two double
elements are given in Problems 1.16 and 1.18.

THEOREMS ON PROJ ECTIVITIES

In the next two chapters answers will be found for the following questions:

(1) Given the projectivity (a) of the preceding section defined by the sequence of per-
spectivities (b), can this projectivity be defined by fewer than n — 1 perspectivities?

(2) Given the projectivity (a), under what conditions will it be, in fact, a perspectivity?

(8) Given two pencils of points on distinct lines p, and p. or superposed on the same
line p, under what conditions can a projectivity be established between them?

It must be remembered that while these questions concern pencils of points, there is a
dual of each concerning pencils of lines. Although it is possible to restrict our attention
solely to pencils of points and accept without further investigation the dual of each theorem
obtained, this procedure will not be followed here. In fact, we shall purposely shift back
and forth from theorems concerning points to theorems concerning lines. Generally, the
proof of a stated theorem and of its dual will not be given. Thus, it will be left for the
reader to supply the dual of any theorem and its proof when such is not included in the text.
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In Problem 1.4, we prove

Theorem 1.3. Given three distinct collinear points 4., Bi, C1 and another three distinet col-
linear points A,, Bz, C: on distinet lines or on the same line, there exists at
least one projectivity which carries A, By, C: into Az, Bs, C» respectively.

In Problems 1.5 and 1.6, we prove one part and the dual of another part of

Theorem 14. Given four distinct points 4, B, C, D on a line, there exist projectivities which

carry
(@) A,B,C,D into B,A,D,C. (b) A,B,C,D into D,C,B,A
(¢¢ A,B,C,D into C,D,A,B
respectively.

Solved Problems

1.1. In an augmented plane, let (7, R,) be any augmented line, let A, B,I be distinct or-
dinary points on this-line, and let P be any ordinary point of the plane not on r.
Project the points of the line from P and section by any augmented line (77, R.,) of the
plane which passes through I, is distinet from (r,R.) and does not pass through P.
Locate: (a) the correspondents of A, B and I; (b) the correspondent R’ of R.; (c) the
point R of (r, R.,) whose correspondent is E¢.

(@) The correspondent A’ of 4 is the point
of intersection of the projector (PA,S.)
of A and (#, R]); the correspondent
B’ of B is the point of intersection of
(PB,T,) and (',R]). Since the pro-
jector (PI,U,) of I meets (+',R) in I,
the correspondent of I is I itself.

(b) The projector of R is the augmented
line (s,R,), where s is the ordinary
line through P and parallel to . The

correspondent R’ of R is the point of B A B — R,
intersection of 7’ and s.
(¢) R is the point of intersection of » and
the line s’ passing through P and paral-
lel to r'. Fig.1-12

1.2. Assuming all points and lines are coplanar, which of the following propositions
belong to plane projective geometry? For each which does, write its plane dual.

(@) Four distinct points, no three collinear, have six joins.
(b) The diagonals of a parallelogram bisect each other.

(¢) If A, B, C are distinet non-collinear points and if D and E are distinct points such
that B, C, D are collinear and C, A, E are collinear, then there is a point F such that
A, B, F are collinear and D, E, F are collinear.

(d) The angle inscribed in a gemi-circle is a right angle.
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1.3.

14.

Propositions (b) and (d), concerned with lengths of line segments and the measure of an angle,
do not belong to projective geometry.

The dual of (a) is: Four distinet lines, no three concurrent, have six points of intersection.

The dual of (¢) is: If «, b, ¢ are distinct non-concurrent lines and if d and e are distinct lines
such that b, ¢, d are concurrent and ¢, a, ¢ are concurrent, then there is a line f such that a, b, f are
concurrent and d, e, f are concurrent.

Obtain two projectively related superposed pencils of lines.

Consider in Fig. 1-18 the pencil of lines P (ay, by, 1,4d;, .. .) sectioned by the line py, not on Py,
and the resulting peneil of points on p, projected from P,, distinet from P, and not on p;. In turn,
the pencil of lines on P, are sectioned by the line p,, distinct from p; and not on Py, and the result-
ing pencil of points on p, are projected from P; by the lines ay, by, €3, . . . By construction,

Py Py
Pl(al,bl,cl,dl,...) = Pg(ﬂ@,bg,@g,dg,...) = Pl(ag,b3,c3,d3,,,,)
and, hence, Pyley, by, e, dy, ...) = Pylag bs,e5,ds,...)

Py

)

By

V2

Py

Prove: Given three distinct collinear points A, Bi,C: and another three distinct
collinear points A, B, Cz, there exists at least one projectivity which carries A1, By, Cq
respectively into As, Bs, Cs.

In order to make perfectly clear the gist of the theorem and also to introduce a simplified nota-

tion which will hereafter be used in similar cases, suppose A, B{,C; on a line r and Ay, By, Cy on
another line s. We are to prove the existence of a projectivity

(@) MA,ByLCy...) = $(43,By, Cy, . ..)

between the pencils of points on = and ¢. Note that we are not concerned with the correspondents on
s of other points on #; hence it is possible that there are many different projectivities satisfying the
conditions of the theorem. Since we are concerned only with given triples of points, the notation
may be simplified accordingly by replacing (a) with

T(AI: Bl: Cl) ~ S(Az, Bz, Cz)

There are three cases to be considered:
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L.5.

®

(2)

(8
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Refer to Fig. 1-14(a). Suppose Ay, B, Cy; on line r and A,, B,,C, on another line s with
Ay = A, = rP- s. Let P = BjBy+CiCy. In the perspectivity thus established, we have
(A, B, Cy) = s(4,,B,,Cy)  and, hence, 7(4;, By, Cl)®s(A2, By, C;). The same conclusion is
reached, moreover, when r+s=B; =B, and when s =C, = C,.

©

Fig.1-14

Refer to Fig. 1-14(b). Suppose Ay, B;, C; on r and Ay, By, C3 on s with no one of r+s = A, = A,,
res =B, =B, r+s=C;=C, holding. On A4, take any point P distinct from A, and A,;
on A, take any line p distinet from A;4, and s. Project Ay, By, C; from P into A,,:Bs,Caon p
and let @ = ByBg+ CyC3. Then

P Q
7(Ay, By, C) = P(Ag By, C3) X s(As, By, Cy)

and A}, B,C;) = ${dg, By, Cy)

as required.

Refer to Fig. 1-14(¢). Suppose 4,, By, Cy and A,, By, C, are collinear on line 7. From any point
P, not on r, project A;, By, Cy into Ag, B;, Cs on any line s, not on P, Ay, B, or C;. Now, repeating
the procedure in (2), we can by the use of at most two perspectivities carry A, By, Cy into
A,, By, C, respectively. Then

Ay, By, C) = s(dg By, ()
as required.

Given four distinet points A, B,C,D on a line p, exhibit a projectivity such that

\p(A:B;C!D) ~ p(C,D,A,B)
This is part (¢) of Theorem 1-4 stated in the sim})ler notation of Problem 1.4. Refer to Fig.

1-15 below. Project the given points from any point P not on p, section by any line q on B distinet

from p and PB, and obtain the points A’,B,C’, D’ respectively. Note that B’ =

C

= B Join A’ and
meeting PD = » in the point D’’. Then
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pABlC,D) % qf,Ac’@Q;’;)C'@) = 0" Prp)

and : p(4,B,C,D) = p(C,D,A,B)

as required.

17

Fig.1-15

Fig. 1-16

1.6. Given four distinct lines a, b, ¢, d on a point P, obtain a projectivity such that

P(a,b,c,d) = P(b,a,d,c)

Consider in Fig. 1-16 the lines «, b, ¢,d on P sectioned by any line p, not on P, and the resulting

points A, B, C, D projected from @, any point on the line a distinct
Let QB=0b, QC=¢, QD =d’; ¢/+d=C"; BC' =¢”. Then

B(b,V,¢",p) =

Nle

P(a,b,c,d) = Qa,b’,¢,d)

and P(a,b,c,d) P(b,a,d,c)

>l

Supplementary Problems

1.7. Project a given circle into (a) another
circle, (b) an ellipse, {¢) a hyperbola,
(d) a parabola.

1.8. Given Fig. 1-17(a¢) and (b) in a projec-
tive plane. Describe each, deseribe its
plane dual, and illustrate by a figure.
Hint, Fig. 1-17(a) consists of two distinct
lines with two distinct points marked on
one of them and three distinet points
marked on the other such that none of the
five points is the point of intersection of
the lines. The plane dval consists of two~
distinet points with two distinct lines
through one of them and three distinet (a)
lines through the other such that none of
the five lines is the join of the points.

from P and not on p.

P(b,a,d,c)

(b}

Fig.1-17
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1.9.
1.10.

1.11.

1.13.

1.14.

1.15.

1.16.

1.17,

1.19.

1.20.

1.21.

1.22.
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Draw the figures for Problem 1.2(a), 1.2(¢) and for their duals.

Write the dual of the theorem of plane projective geometry: If Ry, R,, R; are distinct points on a

line 7, if S;, Sg, S5 are distinct points on another line s, and if the lines RS, R,S,, B3S; are on a point

P, then the points RSy ByS;, RaS3° R3S,, R3S;+R.S; are on a line p which is concurrent with »

and s. Draw figures to illustrate the theorem and its dual.

Using a circle as a model of the projective line, verify:

(¢) There are six distinet arrangements of four distinct points 4,B,C,D on a projective line.

() If A,B,C,D are four distinct points on a projective line, then either C,D separates A,B or
B, D separates A,C or A,D separates B, C. .

(¢) If A,B,C,D,E are distinct points on a projective line, if C,D separates A,B and if B,E
separates A, C then D,E separates 4, B.

(d) If A,B,C,D,E are distinct points on a projective line so that C,D separates A,B then D, E
can never separate more than two of 4,B; A,C; B,C.

Show that in a perspectivity between two pencils of points on distinet coplanar lines p and p/,

there is always one but never more than one self-corresponding point. State and prove the

plane dual.

(a) In Fig. 1-9(b) take any other point X on p and construect its correspondent X’ on p’; also, take
any other point Y’ on p’ and construct its correspondent ¥ on p.

(b) In Fig. 1-9(c) take any other line 2 on P and construct its correspondent x’ on P’; also, take any
other line ' on P’ and construct its correspondent ¥ on P.

In Fig. 1-11 let I; = py*po, Jy = Da*ps and K, = ps - Py

(@) In the projectivity p; = ps, locate on p, the correspondent of I; and of any other point X, on p,.

(b) In the perspectivity p1£ ps, locate on p; the correspondent J; of Jyp; then, in the projectivity
P1 = Py, locate on p, the correspondent of J;.

(¢) In the projectivity p, = P4, locate the correspondent K, on p, of K, on py; also, locate on py the
point L, whose correspondent on py is Ly = K.

In Fig. 1-13 express the projectivity Py = P, as a sequence of elementary perspectivities
Py(ay, by,e,dy, . ..) 7 P1(A, B, Cy Dy, o) = 00

In Fig. 1-13 let P = p;*ps; and s = PyP,. In the projectivity
Py(ay, by, 00,dy,...) = Pylag by e, ds, . .0)

obtain the correspondent of s, as s; itself. Thus s; is a double line of the projectivity. Show that
t, = PP, is also a double line of this projectivity. When will ¢; = s; and when will ¢ 7= 5,7

In Fig. 1-16 take any other line ¢ on P and construct its correspondent f. Does it appear that the
correspondent of f will be e?

Consider in Fig. 1-16 the perspectivity

P(b,e,d,...) = Q¥,c,d,...)
On p take any point S distinct from the four already marked and on S take any line s distinet from
p and on neither P nor Q. Let a*s =R, bes=DB', ¢*s= C', dvs=D"; b’+s=B", ¢/*s=0C",
d’'+s = D". {(a) Show that s(B’,C’,D’,...) and s(B",C",D",...) are projective. (b) Show that in
this projectivity both R and S are double points.

(@) On any line p take three distinct points 4, B, C. Project these points from P, any point not on
p, and section by any line on A, distinet from p and AP, to obtain the points A’,B’,C’. Let
@ = B'C+B(C'. Thus, show the existence of a projectivity such that p(4,B,C) = p(4,C,B).
(b) Similarly, obtain p(4,B,C) = p(B,A,C), »(4,B, 0 = p(B,C,A4), p,BC) = p(C,A,B)
and p(4,B,C) = »(C,B,A). )

State the dual of Theorem 1.3; call it Theorem 1.3’. Prove this theorem without appealing to the
principle of duality. =

In Fig. 1-14(c) the projectivity »(41, By, C1) ~ p(Ay, By, Cp) can be expressed as the product of no
fewer than three perspectivities. Give an example of two triples Ay, By, Cy and A,, By, Cy of distinet
points on the same line for which the projectivity can be expressed as the product of two

perspectivities.

Prove parts (¢) and (b) of Theorem 1.4; also prove parts (b) and (¢) of the dual of this theorem.



Chapter 2

Cross Ratio

RATIO OF DIVISION

It will be recalled that the properties of figures studied in plane Euclidean geometry
are precisely those which are invariant under the set of transformations (translations and
rotations) called rigid motions. In plane projective geometry the transformations con-
sist of projections and sections. It is natural to ask: Are there properties, other than
that of being a point or a line, which are invariant under projection and section? To
answer this, we return again to the Euclidean plane.

Consider in this plane any line p (see Fig. 2-1) and the segment AB determined by any
two of its distinct points A and B. Let there be established on p a sense of positive direc-
tion indicated by the arrow tip. (We could, of course, have selected the opposite direction
but it will not be difficult to show presently that choosing a direction rather than the direc-
tion chosen is significant.) Having chosen the direction, the line p will be called a directed
or oriented line and the segment AB, having both magnitude (length) and direction
(always from A to B) will be called a directed line segment. The segment BA has the
same magnitude as AB but opposite direction; hence, BA = —AB, and

AB+BA =0 (1)

A

*0

B

¢

Fig. 2-1

Let C, distinct from A and B, be any other point on . Since AB = AC + CB, (1) may

be written in the form
AC+CB+BA =0 (2)

It will be left for the reader to verify (see Problem 2.7) that both (1) and (2) are independent
of the particular orientation of p and that (2) is also independent of the position of C relative
to A and B.

Finally, let D, distinct from A, B, C, be any other point on p. In Problem 2.1, we verify

the relation
AB-CD + AC-DB + AD-BC = 0 3

When A, B, C are three distinct points on a directed line p, the ratio of division of the
segment AB by C, denoted by (AB, C), is defined as

(AB,C) = AC/BC (4)

When C is on the segment AB, as mFlgm 2w-51, AC and BC have opposite signs and so
(AB, C) < 0; when C is not on the segment AB, (AB,C) > 0. Again, it will be left for the
reader to show that (4) is independent of the orientation of p.

19
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CROSS RATIO IN THE EUCLIDEAN PLANE

Let A,B,C, D be any four distinct points (see Fig. 2-1) on a directed line p. The cross
ratio (double ratio) of A, B with respect to C, D, denoted by (4, B; C, D), is defined to be the
ratio of the division ratios (4B, C) and (AB, D), that is,

o AC JAD AC BD AC BD

A.B:CD) = Bc/BD = BC'AD ~ AD BC (5)

Since each of the division ratios is independent of the orientation of p, so also is (5).

When both of the points C and D are on the segment AB, both (AB, C) and (AB, D) are
negative; hence (4, B; C, D) is positive. When the point C is on the segment AB while D is
not, then (AB, C) is negative, (AB, D) is positive, and (4, B; C, D) is negative. We leave for
the reader to verify that (4, B; C, D) is positive when neither C nor D is on the segment AB
and that (4, B; C, D) is negative when D is on AB and C is not.

THE INVARIANCE OF CROSS RATIO

Consider in Fig. 2-2 the four distinct points
A, B,C, D on the directed line . From any point
P, not on 7, project these points onto any other
directed line s, not on P, to obtain the points
A’,B’,C’,D’. The basic theorem concerning A
crosg ratio in the Euclidean plane is

Theorem 2.1. The cross ratio of four distinct /} D/
points on a line is invariant un-
der projection and section. Fig. 2-2

To prove this, drop from P the perpendicular to » meeting it at H. Then ignoring all signs,

we have
AC $HP-AC area NAPC 1AP-CP sin LAPC sin ZAPC

(A.B:C,D) = BC  {HP-BC _ area ABPC _ }BP-CPsin .BPC _ sin LBPC
T AD  1HP-AD  area AAPD  }AP-DPsin /APD  sin ZAPD

BD  $HP-BD area ABPD 1BP-DP sin /BPD sin ZBPD

What we have actually _proved is
AC BD sin ZAPC sin £/BPD
A B = —_ Y= = -+ .
( \E i BC 4D ~ Sin BPC sin ZAPD ©

J
Now drop the perpendlclﬂar from P to the line s meeting it in K and repeat the above argu-
ment to obtain
A'C' B'D’ sin ZAPC sin Z/BPD
A’,B’; C’, D’ . = * . 7
( 3 ) B'C A'D sin «¢BPC sin £APD (7)

To complete the proof A:{}v}ien the points are labeled as in Fig. 2-2, it is necessary to show that
the sign in the right members of (6) and (7) is the same.

Let an orientation about P be fixed so that the angle APC, generated by revolving the
line AP counterclockwise about P into coincidence with CP, is positive. Then angle APD
is positive while angles BPC and BPD, being generated by clockwise rotation of BP

about P, are negative. As a consequence, we find that = AC and M, also BD and
. BC sin £BPC AD

sin £BPD A

ST ZAPD’ have the same sign. Moreover, this parity of sign is independent of both the

orientation on p and the orientation about P. Thus the sign is + in both right members of
(6) and (7) and so
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(4,B;C,D) = (A’,B’; ", D’)
as required. To show that Theorem 2.1 is independent of the order of labels, see Problem
2.11.
Dually, let us begin with any four distinct lines a,b,¢,d on a point P and let these lines
be cut by any lines r and s, not on P, in the sets of points A,B,C,D and A’,B’,C’", D’ re-
spectively. By Theorem 2.1, .

(A4,B;C,D) = (4’,B;C", D)

This suggests the definition (see Fig. 2-3):

The cross ratio in any order of four lines a,b,c,d on a point P is the cross ratio
in the same order of the four points A4, B,C, D in which these lines are cut by any line
not on P, i.e.,

(a,b;¢,d) = (4,B;C,D), (c,a;d,D0) = (C,A;D,B), etc.

P
A B
C/ \d
Fig. 2-3 Fig.2-4

Finally (see Fig. 2-4), let 4, B be any distinct points and let ¢,d be any distinct lines
on any point P +# A, B, neither line being on A or B. Let AB+¢ = C and AB-d = D.
We define the cross ratio of any two of the given elements 4, B, ¢,d with respect to the
other two to be the corresponding cross ratio of the four points 4, B, C,D; for example,

(A,B;c,d) = (A,B;C,D), (c,A;B,d) = (C,A;B,D), ete.

Similarly, letting PA =a and PB =0, we define
(4,B;e¢,d) = (a,b;¢,d), (¢,B;d,A) = (c,b;d,a), ete.

THE TWENTY-FOUR CROSS RATIOS

Recall that we are working in the Euclidean plane. Since, in Fig. 2-1, (4,B;C,D) <0
while (4, C; B,D) > 0, it is evident that the value of the cross ratio of four points (four
lines or two points and two lines) depends upon the order in which these elements are
set down in (—,—; —,—). Corresponding to the twenty-four distinet permutations of four
distinct symbols, there is the same number of cross ratios. The number of distinet cross
ratios, however, is not twenty-four. For, taking due regard to signs, we find that

AC BD _ BD AC _ DB CA _ CA DB

AD BC ~ BC AD ~ DA CB  CB DA
and, hence,

(A,B;C,D) = (B,A;D,C) = (D,C;B,A) = (C,D; A,B)
Thus, -

Theorem 2.2. The value of a cross ratio remains unchanged when any twd of the four ele-
ments are interchanged simultaneously with the other two elements.
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As a result, the twenty-four cross ratios fall into six sets of four each. Setting
(A,B; C,D) = A, these sets together with their values are

(@) (4,B;C,D) = (B,A;D,C) = (D,C;B,4) = (C,D;A,B) =\
() (4,B;D,C) = (B,A;C,D) = (C,D;B,A) = (D,C; A,B)
() (A,C;B,D)

\

_\ 1//\' 1

o

(C,A;D,B) = (D,B;C,A) = ( ) = 1—2A
(d) (A4,C;D,B) = (C,A;B,D) = (B,D;C,A) = (D,B;A,C) = 1/(1—1)
(e) (A,‘D;C,B) = (D,A4;B,C) = (B,C;D,A) = (C B;A,D) = M(A—1)
(i (A,D;B,C) = (D,A;C,B) = (C,B;D,A) = (B,C;A,D) = (A—1)/x
To complete the table, consider in Fig. 2-1 the four distinet points 4, B, C, D on the line

p and set (A,B;C,D) = Then (4,B;D,C) = ‘;}g ig 1 jg gg 1/x and (8b)
follows by Theorem 2.2. We have proved

B,D;A,C

S

Theorem 2.3. In any cross ratio, the interchange of the elements of one pair changes the
value of the cross ratio into its reciprocal.

Consider next (4,C;B,D) = ég gg From (3), we have ig gg + jg ]g,gj 1. so

that (A,C;B,D)+(4,B;C,D) = 1 and (4,C;B,D) = 1—._ Then (8¢) follows by
Theorem 2.2. We have proved o

Theorem 2.4. In any cross ratio, the interchange of the means (inner two elements) or the
interchange of the extremes (outer two elements) changes the value of the
cross ratio into its arithmetic complement.

The remainder of the table follows readily and will be left for the reader to complete.

We have now

Theorem 2.5. If the value of any one of the eross ratios of four points is known, the values
of all the cross ratios are determined.

Example 2.1.

Suppose (4,B;C,D) = 8; then (4,B;D,C) = 1/3, (4,C;B,D) = —2, (4,C;D,B) = —
(A,D; C,B) =38/2, and (4,D;B,C) = 2/3. Now, by Theorem 2.2, the values of all twenty-four cross
ratios are known.

Suppose some two of the points 4,B,C,D are coincident. There are three cases:

(i) When A and B coincide, then (4,4;C,D) = AC AD = 1 and similarly when C and
. . AD "AC ~
D coincide.
.\ AA BD .
(ii) When A and C coincide, then (A4, B A, D) = 0 and similarly when B and
AD BA
D eoincide. e
o . AC BA ..
(iii) When A and D coincide, then (A,B;C,A) = A4 BC and the ratio is not defined.

We shall agree to write (4,B;C,A) = (4,B; B,D) = = to indicate that as D approaches
A, also, as C approaches B, the numerical value of (4, B; C, D) increases without limit.
It is not difficult to show that, conversely, if a cross ratio has one of the values 0,1,
then some two of the points coincide.

Suppose next that three of the points, say A, B, C, are fixed while D traces out the line
p. When the points have the position indicated in Fig. 2-1, then (4,B;C,D)<0. As D
moves to the right, the value of AC/BC remains fixed while the value of BD/AD remains > 0
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and tends to 1; thus, (4, B; C, D) tends to the value of AC/BC. As D moves to the left,
BD/AD remains > 0 but decreases. As noted above, when D coincides with B then
(A,B;C,D)=0. As D continues from B to C, (4, B; C, D) increases in value from 0 to 1,
the latter value being attained when D coincides with C. As D continues from C to A4, the
value of (4, B; C, D) increases from 1 to «, the latter denoting its value when D coincides
with A. As D moves to the left from A, the value of (4, B; C, D) is negative and increases
to that of AC/BC.

Finally, suppose some two of the six values of the cross ratios are equal. There are
two cases:

Case 1. A=1/n. Then x2=1 and r»=:=x1. It was noted above that when A=1,
two of the four points coincide and the six values become only three, namely, 0,1, . When
A = —1, the six values again reduce to three, namely, —1, 3 and 2.

Case 2. A=1/(1—21). Then A is one of the roots of A>—A+1=0 and the values of
the cross ratios are imaginary numbers. This case does not occur here.

CROSS RATIO A PROJECTIVE PROPERTY

Consider now an augmented plane (=, p.). Let A,B,C,D be any four distinet ordinary
points (see Fig. 2-5) on any augmented line (r,R.) and let P be any ordinary point not on 7.
Let (7, R;,) be another augmented line, not on P, so chosen that the correspondents
A’,B’,C’", D respectively of the four points A,B,C,D when projected from P onto (v, R;)‘
are ordinary points. In this projection, denote by R’ the correspondent of R, and by R the
point whose correspondent is R,,. By Theorem 2.1 we have

(A,B;C,D) = (A’,B’; C", D) 9)

’

s

\_‘_R'oo R ©
& \,9

- % - Cb’
Fig. 2-5 Fig. 2-6

Next, suppose (see Fig. 2-6) that the lines (r,R,) and (1, Ry) and the points A,B,C,D
are as before but that the center of projection is an ideal point P, distinct from both R,
and R.,. The projectors of A,B,C,D on (r, R,) are parallel lines which meet (v, R) in dis-
tinet ordinary points, say A7, B”,C”,D’””. 1t is easy to show that

(4,B;C,D) = (A”,B";C",D") )

We now return to Fig. 2-5 and consider the case of three ordinary points and the ideal
point on (r,R,), say A,B,C,R,. Their correspondents on (7, R;) are the ordinary points
A’,B’,C’",R'. Now (R’,A’; B’,C") is defined but (R, A;B,() is not. Since we are at liberty
to define (R, A; B, C) as best suits our purpose, we take

(R,,A;B,C) = (R',A’; B", (") 97)
that is, we define
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The cross ratio of three ordinary points and the ideal point on any augmented line
is the cross ratio (in the same order) of their correspondents resulting from any projec-
tion onto another augmented line provided only that these correspondents be ordinary
points.

When, however, the center of projection is the ideal point P, of Fig. 2-6, the correspond-
ents A”,B”,C”, R, consist of three ordinary points and the ideal point of (», R.). In this
case, neither (R, A; B, C) nor (R., A”’; B”,C") is defined. Consider (X,A4;B,C) = %i,—g— %%
X
where X is such that B, X separates 4,C. As X->R,, xc 1. This suggests (see Prob-
lem 2.18) the definition (R, 4;B,C) = AC/AB. Then (R,,A’; B", C"y=A"C"/A”B"” and,
since AC/AB = A”C”/A”B"” (prove this), we have

(Rw,A; B, C) — (R;” A//; B/I, Cn) (9///)

What we have done here is to extend the concept of cross ratio so that (9) holds when, of
the four points, three are ordinary and the other is the ideal point on (r,R,). We are now
in a position to state:

For any perspectivity between the points of two distinct augmented lines of an aug-
mented plane, the cross rdtio of any four points on one of the lines is equal to the cross
ratio, in the same order, of their correspondents on the other line.

Also, since a projectivity is a sequence of perspectivities, we have

For any projectivity between the points of two distinct augmented lines of an aug-
mented plane, the cross ratio of any four points on one line is equal to the cross ratio,
in the same order, of their correspondents on the other line.

In our attempt to so define cross ratio that (9) will hold for any four collinear points in
the augmented plane, there remains a final case, namely, when the four points are distinet
ideal points A, Bw, Co, D, of p,. Clearly, the center of projection is an ordinary point of
the plane as also are the correspondents of the ideal points. Suppose

P
pco(AoorBooy Coo: Dooy .. -) fl pl(A” B,y C’y D’, s -)

~

2

and pw(Aooy Beo’ Ceo: Doc) .. ) = p2(A”, B”, C", D”, .. )

Then (A, B, C’, D', ...) = pA”,B",C",D”, .. 2)
and we define

The cross ratio of four distinct ideal points is the cross ratio of any four collmear
ordinary points into which they may be projected.

In extending cross ratio to the augmented plane, the additional definitions needed have
been made so that the following theorem be valid:

Theorem 2.6. If in the augmented plane a projectivity is established between two pencils
of points on the same or.on distinct augmented lines (two pencils of lines on
the same or on distinct points), the cross ratio of any four elements of the
first pencil is equal to the cross ratio of their correspondents, taken in the
same order, in the second pencil.

This suggests the question: If A,B,C,D are any four distinct points on a line, if
A’,B’,C’,Ir are four distinct points on the same or on another line, and if (A,B;C,D) =
(A4’,B’; C’, ), does it necessarily follow that a projectivity of the form
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(4,B,C,D,...) = (A",B,C",D, ...)

exist or, in the simplified notation of Chapter 1, does it necessarily follow that (4, B,C,D) =
(A47,B’,C’,D’)? That the answer is yes is shown in Problem 2.2.

We are now in a position to state for the projective plane
Al et

Theorem 2.7. If A,B,C,D are four distinct collinear points and if 47, B’,C’, D’ are another
four distinct collinear points, on the same or on distinct lines, then

(4,B,C,D) = (A’,B’,C’",D’) implies (4,B;C,D) = (A’,B;C", D)
and, conversely,

(4,B;C,D) = (A’,B’;C’,D") implies (4,B,C,D) = (4",B,C",D")

By Theorem 1.3, there is at least one projectivity which carries any three given collinear
points A, B, C respectively into any other three given collinear points A’,B’,C’. Let X be
any other point collinear with the first triple and denote by X’ its correspondent in this
projectivity. Then, by Theorem 2.7,

(4,B;C,X) = (A4, B; (", X')
and (note the query in Problem 2.3) we have

Theorem 2.8. (The Fundamental Theorem). Given in a projective plane three distinct col-
linear points (three distinct concurrent lines) and another three distinct
collinear points (another three distinct concurrent lines) on the same or on
distinct lines (on the same or on distinct points), there is one and only one
projectivity which carries the first triple A,B,C (a,b,c) respectively into
the second triple A, B’,C" (o, b’, ¢’).

Note. In saying that two triples of distinct points on distinet lines p: and p. determine
one and only one projectivity, we are not concerned with the various sequences of perspec-
tivities from which the projectivity is inferred. The gist of the theorem is: If X is any
other point on p; then, irrespective of the sequence of perspectivities which eventually carry
A, B, C respectively into A7, B’, C’, the x:orrespondent of X is always the same point X’ on
p2. As a consequence, we have

Theorem 2.9. Any projectivity p: < p2 (P1 = P2), with p1 # p2 (P1+ P3), for which P = py*p2
(p = F1Ps) is self-corresponding, is a perspectivity.

For a proof, see Problem 2.4.

An important use of Theorem 2.9 is in proving collinearity of triples of points and concur-
rency of triples of lines. For an example, see Problem 2.5.

Other consequences of Theorem 2.7 are:

Theorem 2.10. If A,B,C,D are any four distinct points on a line, then (4,B,C,D) =
(B’A,vD) C) = (Dy C)B:A) 'R_(C,D,A,B).
and

Theorem 2.11. Separation is a projective property of four distinct collinear points (four
distinct concurrent lines).

" A valid objection to cross ratios as defined here and to theorems resulting from their use
can be raised in view of the fact that these ratios were defined in terms of lengths of line
segments. It will be our policy to give, whenever feasible, a proof independent of cross
ratios of the more important theorems. Theorem 2.10 will be used frequently in later chap-
ters and we point out that it was proved originally in Problems 1.5, 1.6, 1.22 of Chapter 1.
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Solved Problems

For A, B, C, D distinct collinear points, verify
AB-CD 4+ AC*DB + ADBC = 0

The verification is made by repeated use of (2), page 19. For the triple A,B,C we have
AC + CB + BA = 0; whence, AC = AB + BC. Similarly, for the triple A,B,D we have AB =
AD + DB and for the triple B,C,D we have CB = CD + DB. Then

AB+CD+ AC+DB + AD+BC = AB(CD+ DB) + BC(DB+AD) = AB+CB+ BC+*AB = ¢

Given, in the augmented plane, any four distinct collinear points A,B,C,D and any
other four distinct collinear points A/, B’,C’, D’ on the same line or on distinct lines.
Show that

(A,B;C,D) = (A’,B’;C",D’) implies (A,B,C,D) = (A",B’,C", D)

By Theorem 1.3 there always exists at least one projectivity which carries A, B, C respectively
inte A’, B’, C’. Suppose this projectivity carries D into D"”. By Theorem 2.6,

(4,B;C,D) = (4',B'; ¢",D")

But (A,B;C,D) = (A',B';C',D")
hence (4",B; C, ') = (4',B;C,D")
Then (B'AI’D') = (B'A',D”)

and we conclude that D’ = D',

Given, in an augmented plane, three distinct ordinary points A, B, C on an augmented
line and a (real) number A. Construct the point X on the line such that (4, B; C, X) = A.

From (A,B;C,X) = g—g% = A it is evident that X =B when A=0; X=C when A=1;

and X = P_, the ideal point collinear with A,B.C, when A = AC/BC. Excluding these values of
A, there are two cases:

() A > 0. Refer to Fig. 2-7(a). Through A pass any line (q, @,) distinet from AB = (p,P,_,) and
orient this line so that the direction from 4 toward @ is positive. On (¢, @,) mark two points
B’ and C’ such that AC'/BC’ = A. Let P = BB'+CC’ and through P pass a line ¢’ parallel
to g. That p+q¢ = X, the required point, follows by Theorem 2.6, that is,

(4,B,C,X) % (4,B,C,Q,) andso (4,B;CX) = (A,B;C,Q,) = (AB,C") = )

(i1} A < 0. Refer to Fig. 2-7(b). With due regard for signs, the procedure here is identical with
that for (i) and will not be repeated. Why can we be sure there is just one point X?

q
q » p 2
\A X —wpP,
B c

©
b

(@ Fig. 2-7 ®)
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2.4.

Prove: Any projectivity p = ' (P = P’), where p # p’ (P = P), for which Q = p+p’
(¢ = PP’) is self-corresponding, is a perspectivity.

Consider in Fig. 2-8, the lines p and »’ inter- R
secting in @. On p take two distinet points A and
B, also distinct from Q. Suppose their corre-
spondents in the projectivity are respectively
A’ and B’ so that

»Q 4,B,...) = p(QA4,B,...)
Let R = AA’*BB’. Then
R
pQ,4,B,...) = p@QA"B,...)

hence, by the Fundamental Theorem the given
projectivity must be this perspectivity. The
second part of the theorem follows by the prin-
ciple of duality. Fig. 2-8

Prove the plane dual of the Theorem of Pappus: In a projective plane, let a4, as, as be
distinct lines on a point R and by, by, bs be distinet lines on another point S; then the
lines ¢1= (a2 bs)(as b2), c2= (a1-bs)(as*bi), ¢s = (a@1*b2)(az+b:) are concurrent.’

3 R S D
Co
by A8 .
A,
¢f v
b, “
ag
b3a3 !
Fig. 2-9

In Fig. 2-9,let ¢;*¢; =P and RS = p. It appears that ¢; is on P and this is what we are to
prove. To construct the proof we need two perspective pencils of lines in which, say, ¢; and ¢y are
corresponding elements and which include lines whose Tntersections determine ¢3. Consider
Ay = ag+b; on ¢; and Ay = ay+ by on ¢, as the centers of ‘hese pencils. On A; we need a line
thTough one of the known Poifits on e; and on A, we need a . ae through the other known point on
¢g. Take for these lines u = ¢y by)(ag*by) and v = (ay+b, ‘as* b3) respectively, Now

o

2 —— T b]_
Al(cb Uu, b3; az) = R(aB’ a’lr D, aZ) and AZ(czx @, ‘b‘Sr ’I)) = R(asy a1, P, (Lz)

and so Aq(e,u, b3,00) = Aglcy,aq, b5, "

Since by is a self-corresponding element, the projectivity is in real \‘ry the perspectivity

Al(cly U, a2) = A2(d2) ay, ’U)
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Note that this perspectivity meets the requirements listed above, that is, ¢; and ¢y are corresponding
elements while u+a; and ay+v are on ¢z By definition, P =c¢y*¢;, aycu=a;*b; and ap*v =
a5+ b; are collinear points. Then P is on (a;*by)(uy*by) = ¢3 and so c;,09, ¢35 are concurrent as
required.

The point P is called the point of Pappus for the two triples of lines on distinct points KB and S.

We are now in a position to write a more tidy proof: In Fig. 2-9, let RS =p, ay*b3= A,
ay by = Ay (a;*by)(aybg) = u, (ay*by)(ey°by) =v. Now
‘ b

iy

by
Aqley, u, bg, a) = Rag, a4, p, ay) Ayles, ay, bs, v)

~

and so Ayley,u, b a9) = Ag(eg, a4, bg, V)

But this is a perspectivity; that is,
Al(cly u, a2) = AZ(CZr ay, /U)

Then ¢1*¢p @ *%=01°by, @Gy*v =as-b; are collinear and so o¢3=(a;* by)(as*dy) is on
€,* ¢y = P as required.

Prove the Theorem of Pappus: In a projective plane, let Ai, As, As be distinct points
on a line r and Bi, Bs,Bs be distinct points on another line s; then the points
Cl = Ang'AsBz, Ce: = A1Bs'A3B1, Cs; = A1B2'AzBl are collinear.

In Fig. 2-9, let r+s =P, ABy-ABy=U, A;B;*AB3=V, CC;=p. Now
B P By
(C1, U, By, Ap) = (A3 A, P,A) = (Co 41, Bs V)
and thus (C1,U,Bs, 4y) = (Coy Ay, B, V)

But this is a perspectivity, that is,
(C, U, 4y = (CpAY)

Then C;Cs AU = A;By, A,V = AyB; are concurrent at A;B,*AyB, = C; and, hence, the points
C;,C,, C3 are collinear.

Fig.2’-9

: The line p = CIC;Cg . called the line of Pappu,s,g for the two triples of points on the distinet
lines 7 and s. i i

(
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2.1.

2.8,

2.9.

2.10.

2.11.

2.12.

2.13.

2.14,

2.15.

2.16.

217,

2.18.

g

2.19.

2.20.

Supplementary Problems

(@) Show that (1) and (2), page 19, are independent of the orientation of 2.
(b) Show that (2) is independent of the position of C relative to A and B.

Hint. When three distinct marks are made on the line p, there are six different ways in which the
labels 4, B, C may be given to them. Each must be investigated.

Show for three distinct points 4, B, C on a line that the six division ratios have values #, 1/r, 1 —»,
1 r  r—1
1—r'y=1" 7

Why is (4B, C) not a projective invariant?

Show: (ab) + (ba) = 0, (ac) + (cb) + (ba) = 0,
(ab) * (cd) + (we)+(db) + (ad)+(be) = 0

In Fig. 2-2, label the points (reading from left to right) B,C,D,A on r and B',C’,D’',A’ on s and
show (4,B;C,D) = (A',B"; C', D).

Complete the verification of (8), page 22.

. ?
From the similar triangles R'PA’ and RAP of Fig. 2-5, obtain R'A’ = M In the same
, RP PR’ RP PR/ AR
manner obtain R’'B’ = ———— and R'C’ = =——""", Then show (R, A; B,C)=(R',A"; B",C") =

BR CR
AC/AB, (A,B;C,R,) = (A",B’; C",R) = AC/BC, etec.

Show for five distinct points A,B,C,D,E on a line,
(4,B;C,D)*(A,B; D,E)*(A,B;E,C) = 1

Prove Theorem 2.11, page 25.

Hint. Let A, B,C,D be four collinear points such that the pair A, C is separated by the pair B, D.
If (4,B,C,D) = (A’,B’,C", D"\, prove that the points A’, C’ are separated by B/, D’.

In Figs. 2-7(a) and 2-7(b), AB = 6 units and AC = 10 units. For the same points A, B,C on p,
construct X when ¢ # p is any other line on B and again when ¢ # p is any other line on C for
(@) N =5/4 units, (b) A\ = —5/4 units. (For the purpose of checking, AX = 12 units in (a) and
AX = 4 units in (b).

Let A, B, C be distinct points on a line p such that AB = 12 units and AC = 8 units. Construct
X on p such that (a) (4,B;C,X) = —1, (t) (4,B;C,X)=2. (For the purpose of checking,
AX = 24 units in (a) and 6 units in (b).)

With the points A4, B, C, X as in Problem 2.17(a), carry out the following construction: On A take
any two distinct lines, neither of which is p; on C take any line, not p, meeting o in P and b in Q;
join B and P meeting b in B; join B and @ meeting ¢ in S. Then RS appears to be on X.

With the points A, B, C,X as in Problem 2.17(b), carry out the following construction: On A4 take
any two distinct lines, neither of which is p; on B take any line, not p, meeting @ in P and b in Q;
join C and P meeting b in R; join C and @ meeting @ in S; join R and S.

Answer the questions (2) and (3) raised on page 13.



Chapter 3

Desargues’ Two-Triangle Theorem

PLANE CONFIGURATIONS

By a plane configuration will be meant any figure in a projective plane consisting of an
points and as2 lines such that on each of the points are a:» of the lines and on each of the
lines are as; of the points. Such configurations will be represented symbolically by the ar-

ray <Zn le>- Among these are two types, called complete:
21 22

(@) The complete n-point consisting of n points, no three collinear, and the n(n —1)
lines determined by them.

and its dual

(a’) The complete n-line consisting of n lines, no three concurrent, and the n(n—-1)
points determined by them.

The complete 2-point, consisting of two distinet points and their join, and the complete
2-line, consisting of two distinct lines and their point of intersection, are trivial. The
simplest non-trivial complete plane configurations are the complete 3-point, consisting of
three non-collinear points and their joins, and the complete 3-line, consisting of three non-
concurrent lines and their points of intersection. In each of these there are au = 3 points
and as = 3 lines with a2 = 2 lines on each point and a@. = 2 points on each line. Each

is represented symbolically by the array < g g) and, hence, is self-dual. In view of this,

no sharp distinction will be made between the complete 8-point and the complete 3-line; in
fact, each will be called a triangle.

The next simplest complete plane configurations are the complete 4-point or complete
quadrangle and, its dual, the complete 4-line or complete quadrilateral.
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The complete quadrangle, consisting of
the four distinet points P, Q, R, S, no three
of which are collinear, and their six joins
is illustrated in Fig. 8-1(a) above. The four
given points are called the vertices and the
six lines are called the sides of the complete
quadrangle.

Two sides, not on the same vertex, are
called a pair of opposite sides of the com-
plete quadrangle. The three pairs of op-
posite sides determine three additional
points A, B, C called the diagonal points of

the complete quadrangl In the figure,

- these three points grgjnon-collinefjr and
determine a triangle, thediagonal tridngle
of the complete quadrangle.

Symbolically, the complete quadrangle
is represented by the array ( ‘21 3) .
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The complete quadrilateral, consisting
of the four distinct lines p, g, 7, s, no three
of which are concurrent, and their six
points of intersection, is illustrated in Fig.
3-1(b) below. The four given lines are
called the sides and the six points are called
the vertices of the complete quadrilateral.

Two vertices, not on the same side, are
called a pair of opposite vertices of the com-
plete quadrilateral. The three pairs of op-
posite vertices determine three additional
lines a, b, ¢ called the diagonal lines of the
complete quadrilateral. In the figure, these
three lines are non-concurrent and deter-
mine a triangle, the diagonal triangle of the
complete quadrilateral.

Symbolically, the complete quadrilat-

‘ eral is represented by the array < 6 2> .

3 4

Fig. 3-1(b)

The term complete quadrangle must be used here in order to distinguish it from the
simple quadrangle consisting of four points P, @, R, S, no three collinear, and the four lines
PPTQ/,%‘E:mﬁQobtained by joining the points eyclically. Dually, there is a simple quadri-
datergl consisting of four lines p, q,r,s, no three concurrent, and the four points p-q, q*r,
res, 8P obtaiggd by intersecting the lines cyclically.

We are not in a position to prove ... -

-

T e . . .
_=z——"The diagonal points (diagonal lines)
eral) are non-collinear (non-concurrent).

e

of any complete quadrangle (complete qﬁéﬁ?ﬂﬁt}\

e

N_Fﬁ‘or the present, however, we shall work under the assumption that they are.

o

Two complete #-points are said to be in perspective position if they are in one-to-one cor-
respondence and so situated that pairs of corresponding vertices are on concurrent lines.
The point of concurrency P is called the center of perspectivity and we say that the two
n~-points are perspective from P.
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Two complete n-lines are said to be in perspective position if they are in one-to-one corre-
spondence and so situated that pairs of corresponding sides are on collinear points. The
line of collinearity p is called the awxis of perspectivity and we say that the two n-lines are
perspective from p.

Two coplanar triangles, then, could be perspective from a point or be perspective from
a line or be perspective from both a point and a line. One of the most famous theorems of
plane projective geometry is

Desargues’ Two-Triangle Theorem. If two coplanar triangles A14:4; and B.B:B3
are perspective from a point P, they are perspective from a line p; and, conversely.

SPACE CONFIGURATIONS

By a space configuration will be meant any figure in projective space consisting of au
points, @z lines and as; planes such that on each of the points are a2 lines and ais planes, on
each of the lines are as: points and a.s planes, and on each of the planes are as: points and

011 a1z Q13
as: lines. Symbolically, such a configuration is represented by the array | a1 @22 @z
O31 O32 Q33

The simplest complete space configurations are the complete 4-point and its space dual,
the complete 4-plane. The complete 4-point consists of four non-coplanar points (vertices)
together with the six lines (edges) and the four planes (faces) determined by them. On each
of the points there are three lines and three planes, on each of the lines there are two points
and two planes, and on each of the planes there are three points and three lines. The com-

/4 38 3
plete 4-point is represented symbolically by | 2 6 2. We leave as an exercise the defini-
3314

tion and description of the complete 4-plane. Since the complete 4-point and the complete
4-plane will be found to be self-dual, either will be called a tetrahedron.

The section of a complete 4-point by a plane, not on a vertex, is represented symbolically
6 2
by < 3 4> . Tt consists of a triangle and a line not on a vertex of the triangle. Consider now

the triangles obtained by sectioning the complete 4-point by two distinet planes, neither on
a vertex. Since these triangles may be put into one-to-one correspondence so that the joins
of corresponding vertices are on a vertex of the tetrahedron, we say that the triangles are
perspective from a point. Also, if the sides of the two triangles can be put into one-to-one
correspondence so that the pairs of corresponding sides intersect in collinear points, we
say that the triangles are perspective from a line. Can you identify this line? Are the two
triangles always perspective from both a point and a line?

The space configuration of particular
interest to us is the complete space 5-point D
(see Fig. 3-2) consisting of the five points 7
(vertices) A,B,C,D,E, no four coplanar

and no three collinear, together with the ] ‘\
ten lines (edges) and the ten planes (faces) \
determined by them. The symbolic repre- ) P B

sentation is (2 10 3
3 310 Fig. 3-2
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THE DESARGUES CONFIGURATION

A section of the complete space 5-point ABCDE by a plane =, not on any of the vertices,
is shown in Fig. 3-3. Since the 5-point consists of ten lines and ten planes with three of the
lines on each of the planes and three of the planes on each of the lines, this plane section will
consist of ten points and ten lines with three of the points on each of the lines and three of

3 10
order to identify these points and lines, consider the triangle ABC projected from D and
again from E. The section by » consists of the triangles AiB,C; and A:B;C>. Denote by
P the intersection of the line DE and . Then the planes DEA, DEB, DEC intersect ~ in the
lines PAA,, PB1B,, PC.Cs respectively. Having thus accounted for seven of the points and
nine of the lines, we can say that, in-part, the section consists of two triangles A4:B,C; and
AsB:C; perspective from the point P. The remaining line is p, the intersection of the plane
ABC and =, on which lie the remaining points: As, the intersection of BC and = B3, the

the lines on each of the points. The symbolic representation of the section is (10 3> . In

Fig.3-3



B
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intersection of AC and =; and Cs, the intersection of AB and ». Now the line A1B;, in the
plane DARB, and the line A2B3, in the plane EAB, intersect on the line AB; thus they intersect
in the point Cs;. Similarly, A:C: and A,Cs intersect in Bs while BiC: and B:C: intersect in
A;. Hence the section (better known as the Desargues configuration) consists of the triangles
A;B:C; and A:BsC; perspective from the point P and also from the line p.

DESARGUES TWO-TRIANGLE THEOREM

The theorem, as stated on page 82, concerns two coplanar triangles. It consists of two
parts, — a theorem and its converse — which, in turn, are found to be a theorem and its
plane dual. A proof, using the Fundamental Theorem, is given in Problem 3.1 and another,
using the Theorem of Pappus, is indicated in Problem 3.34. Since our proof of the Funda-
mental Theorem and, hence, of the Theorem of Pappus employed cross ratios, we give now

a third proof. However, in order to avoid cross ratios, we must prove the more general
theorem:

If two triangles, coplanar or non-coplanar, are perspective from a point, they are
perspective from a line and conversely.

This consists of four parts — two theorems and their converses. We proceed now to list
these parts in proper order and to give proofs of the first three.

Part 1. If two non-coplanar triang}eq\@re perspective from a point, they are perspective
from a line. \ *‘w%“vmyfzg RN S ( g

Consider in Fig. 3-3 the non-coplanar triangles ABC and A:B:C. perspective from the
point E. The triangle ABC is a section of the tetrahedron EA.B:C: by a plane which meets
the face = = AsBsCs of this tetrahedron in the line p. Since the lines AB and A.B; are on
the same face EA2B; of the tetrahedron, they are on a point; since AB is on the plane ABC
and A,Bs is on the plane =, that point is Cs on p. Similarly, AC+AsCs=Bs and BC*B:C: =

. As are on p. Hence the triangles ABC and A,B»C» are perspective from the line p, as

required.

Part 2. If twoynon-coplanar trianglesiare perspective from a line, they are perspective

~ from a point. e

Congsider in Fig. 3-3 the non-coplanar triangles ABC and A:B.C; perspective from the
line p. Let AB-+AsB>=Cs AC-AxC:= Bs, and BC-+B:C,= As. The planes ABC3A:Bs,
ACB3A:C>, and BCA3B,C: have a point in common; call it E. Then the line AA,, being on
two of these planes, is on E; similarly, the lines BB: and CCs are on E. Hence the triangles
ABC and A:B:C- are perspective from the point E, as required.

Part 3. If two coplanar trianglesiare perspective from a line, they are perspective from
a point. LI VIR T B

In Fig. 3-3 let the triangles A:B:Cy ané A.B,C. in the plane = be perspective from the
line p. Then AiBi*A:B:=Cs A1C:i- AyC» = Bs, and BiC,*B:C:= As are on p. Through
» pass a plane distinct from = and in it take three lines, one through each of the points
As, Bs, Cs to form the triangle ABC. Now the non-coplanar triangles ABC and A.BiCy,
being perspective from the line p, are perspective from the point D. Similarly, the non-
coplanar triangles ABC and A:B:C: are perspective from the point E. Since AA; and AA;
are on the plane AA:A;, so also are the points D and E. Similarly, the sets of points
B,By,B:,D,E and C,C1,C:, D, E are each coplanar. Let A:A: DE = P; then BiBs*DE =
C,C;+ DE = P and the triangles A:1B:C: and A,B5C; are perspective from the point P, as
required.
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Part 4. If two coplanar triangles are perspective from a point, they are perspective
from a line.

Since the triangles of Parts 8 and 4 are coplanar, the theorem of Part 4 is the plane dual
of that of Part 3 and hence may be accepted as valid. On the other hand, the proof of
Part 3 is made in projective space and thus cannot be dualized in the plane. It is suggested
that the reader provide an independent proof and compare it with that given in Problem 3.2,

The Two-Triangle Theorem can be used to prove a number of interesting constructions
and theorems. As expected, the procedure in each is to locate a pair of triangles perspective
from a point (line) and hence perspective from a line (point). Although some of the
theorems may be valid both in space and in the plane, our concern from now on will be
limited strictly to a single plane. It will be understood then that when, for example, two
lines are given, they are coplanar; when four or more points are given, they are coplanar;
and when the dual of a construction or theorem is called for, the plane dual is meant.

Example 3.1.

Let there be given a line p and two distinet points A and B not on p. Without joining A and B (assume
that this is impossible for some reason), obtain the intersection of p and 4B.

Fig.3-4

In Fig. 3-4 we begin with the line p, the two points A, B and, assuming the construction possible, a
point X somewhere on p. In order to have perspective triangles we must add, in the most general way
possible, additional points and lines. Let g, distinct from p be any line not on 4 or B. On ¢ take any three
distinct points @, R, S and, joining them to A and B, obtain the lines ay, ay, a3 and by, by, bs. Now we look
for two triangles which by construction are perspective from a point and hence will be perspective from a
line. We would like, if possible, this line to be AB which, recall, is also to contain X. Since a; and ay are
on 4, b, and by are on B, and X is on p, we consider the triangle a;b;p and the triangle azbyr with r to be
determined. Let p+a; = H and p-b; = K; then the triangle a,b;p is the triangle QHK. Since QS is on
R, we try R as the center of perspectivity. Let A= HR, k =KR; T =h+as, U=k+b;. Then TU =1r
is the missing line. Now the triangles a,b,p and azbyr (QHK and STU), being perspective from R are per-
spective from a line. This line is on A =a;+ a3, B =b,-b;, and locates X = p-r as the intersection

of p and AB. See also Problems 3.3, 3.4.
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SUCCESSIVE PERSPECTIVITIES
Suppose the projectivity
11(A1, B1,Cy, Dy, . ..) = Pnt1(Ane, Bui1,Cni1, D1y .. )
follows from the given sequence of n successive perspectivities
() Ay By CiDs,...) 2 Dx(As,Bs,Co,Dsy...) 2 DoAsBs, Co, D, ..)

P, P, P
= Pps(A4,Bs,Cs, Dy, ...) = -+~ Prt+1{An+1, Bat1, Cavt, Dasy, .. ).

n

~

In Problem 1.4 it was shown that every projectivity between two pencils of points (pen-
cils of lines) on distinet lines (points) can be expressed as the product of at most two per-
spectivities and every projectivity between two pencils of points (pencils of lines) on the
same line (point) can be expressed as the product of at most three perspectivities. Another
proof of this theorem will be indicated by providing a systematic procedure for reducing
(i) to one or at most two perspectivities when p; # p.+1 and a succession of two or at most
three perspectivities when pi = pn+1. To effect such a reduction, it is necessary to know
under what conditions two consecutive perspectivities can be reduced to a single per-
spectivity and under what conditions three successive perspectivities can be reduced to two.
These questions are answered in the following theorems:

Theorem 3.1. If the distinet lines p1, P2, Ps are on a point O and if
pi(As, By, Cy, Dy, ...) = Da(As, Bs,Co,Ds, ...) % Ps(As,Bs,Cs,Ds,...)
there exists a point R on the line PQ such that
pi(As, B, C1, Dy, . ..) = Ds(A5,B5,Cs,Ds, ...)

ey

For a proof, see Problem 3.5.

Corollary. If p1, P2, Ps are distinet lines or if pi1 = p;, if ps is any line on pi- P2, and if
Py(Ay, B, Cy, Dy, ...) = ps(A2,Bs,Cao, D, ...) = Ds(As, By, Cs,Ds, ...)
there exists a point X on PQ such that
Py(Ay, B, C1, Dy, ...) = pb(As, B3, C5, D5, ...) = Ds(As,Bs,Cs,Ds, ..

Theorem 3.2. 1f no three of the distinet lines p1, P2, s, s are concurrent and if
pi(Ay, B, C, D, ...) = Ds(As, By, C5, D, ...)
2 ps(As,Bs,Cs, Dy, ...) = Ds(As, Bs,Cs, Ds, .. .)
there exists a line p,, distinct from 1 and ps, and points S and T such that
pi(As, By, C1, Dy, ...) = D, (A B,,Cy.D,,...) = Ps(As,Bs,Cs, Dy, ..)
For a proof, see Problem 3.6.
Theorem 3.3. If pi, ps, ps, P« are distinct lines of which pi, p2, p+ are on a point O while ps;
is not (1, Ps, P+ are on a point O while p. is not) and if
pi(As, By, Cy, Dy, . ..) = Da(A2, By, Co,Ds, ...)
2 ps(As, Bs,Cs,Ds, ...) = Ps(As, B1,Cs,Ds, .. )
there exists a line p,,, distinct from p: and p4, and points S and T such that
pi(A, By, Cy, Dy, ...) 2 p,(A,B,,Cy,D,,...) = Pi(As,Bs,Cs, Dy, ...)

For a proof, see Problem 3.7.
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After applying the above theorems to (i) and the sequences which result after each ap-

plication of a theorem, it is clear:
(i) For the case pi+ Dn+1, We have 11 % D,. ;‘-]- Pn+1

which further reduces to 21 ; Pn+1 When p1, P, ,Pn+1 are concurrent.
(iii) For the case P1=pa+1, we have
U
p1(A1,Bl, Cy, Dy, .. ) = p**(A**,B**,C**,D**, .. )
v

w
= p***(A***,B***,C***,D***, - ) = pl(An+1,Bn+1, Cn+1, Dn+1, .. )

Al

which further reduces to Pi(As, ...) = D,, = Pi(Anss, ...) OF to PifAs,...) = Dy,

P1(Ansy, ...) when pi,p are concurrent.

**’p***

PERSPECTIVE QUADRANGLES

Consider in Fig. 8-5 the complete quadrangles Pi1Q:R1S: and P:Q:R-S: so situated that
the intersections A = PiQ:*P:Qs, D = P,R;*P:Rs, B = P1S;1*PsS:, G = Q.R:* Q:R,,
F = R.S:*R.S; areon a line 0. Let E = QuS1+@:S:. The triangles P:iQiR; and P:Q:R,,
being perspective from the line ADG = o, are perspective from O the common point on
PP, @:Q; and R:1R.. Similarly, the triangles P:R:S: and P:R.S: are perspective from the
line BDF = 0 and so are perspective from O = P;P;+ RiR>. Then SiS; is on O. Finally,
the triangles P1Q:S: and P:Q:S:, being perspective from O, are perspective from the line
AB = 0; hence E is on 0. We have proved

Theorem 34. Given two complete quadrangles so situated that the intersections of five
pairs of corresponding sides are on a line, then (i) the intersection of the
sixth pair of corresponding sides is on this line and (ii) the two quadrangles
are perspective both from a point and from a line,

Fig.3-5
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The set of six points in which a complete quadrangle meets a line, not on a vertex, is
called a quadrangular set of points. There are three cases: (a) the six points are distinct
as in Fig. 3-5; (b) two of the points 4 and F' (B and G) coincide, in which case the line o is
on the diagonal point A (B); (c¢) each of the two pairs of points A, F and B, G coincide, in
which case the line o is a side of the diagonal triangle of the quadrangle. (Our assumption
concerning the diagonal points of a complete quadrangle excludes the possibility of the six
points coinciding further.)

Fig. 3-6

For the case (¢), Theorem 3.4 may be restated as

Theorem 3.5. If two complete quadrangles are so situated that they have a side of their
diagonal triangles in common, and if the point of intersection of a fifth pair
of corresponding sides is on this line, so also is the point of intersection of
the remaining pair of corresponding sides.

QUADRANGULAR SETS

Returning to Fig. 3-5, consider the quadrangular set of points on o as defined by the
complete quadrangle P1Q1R1S:. Attention has been called to a natural pairing of the points
of this set — 4 and F', B and G, D and F — since the sides of the quadrangle on each pair are
also on a diagonal point. The points of the set may also be separated in four ways into two
triples such that the sides of the quadrangle on one triple are on the same vertex while the
sides on the other triple form a triangle. For example, the sides of the quadrangle on the
triple A, D, B are all on P, (we call A, D, B a point triple) and the sides on the triple F,E,G
form the triangle Q:R1S: (we call F,E,G a triangle triple). The quadrangular set will be
denoted by Q(A,D,B; F,E,G), that is, by a symbol of the form Q(point triple; triangle
triple). In the symbol the order in which the point triple is set down is immaterial; how-
ever, we shall agree that once the point triple is set down, the order of the triangle triple is
established by the pairing mentioned above. For example, we may write Q(A,B,D; F,G, E)
but not Q(4,B,D; E,F, G).

If the quadrangular set reduces to but five distinct points (say A and F' coincide) we shall
write Q(A, D, B; A, E, G); if the quadrangular set reduces to only four distinct points (4 and
F, also B and G, coincide) we write Q(4, D, B; A, E,B). This latter case will be considered
in detail in the next chapter. There a more useful symbol will be introduced.
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3.1.

3.2

3.3.

Solved Problems

Prove, using the Fundamental Theorem: If two coplanar triangles A;A:A4; and B1B»B3
are perspective from a point P, they are perspective from a line p.

Let AyB; = ¢;, A3By = ¢y, AsB3 = c3; we are given ¢, ¢y, ¢3 concurrent at P. Let A4, = a3,
AA;=ay AyA;=ay; BBy =b;, BBy =10, ByB3=by .‘3\1_ *by=Cy ap°by=0C, azeby=Cg

C,C3 = p. We are to prove C, is on p.

B .

Fig. 3-7

Let AsCs=d and ByC; =e. Then

o

a9 2
Ag(ay, a3,¢5,d) X Pleg, ¢4, 09, PCy) <. Bylby, by, 03, )

and Aglay, as,65,d) = By(by, by, co, €)

This projectivity is a perspectivity (why?) and the axis of perspectivity is on a,+b; = C, az*b; =
C; and d+e = C,. Hence, ay°by = C, is on p = C;C;, as required.

Prove without using the Fundamental Theorem: If two coplanar triangles are per-
spective from a point, they are perspective from a line.

Refer to Fig. 3-8. Let the triangles A,B;C,; and A,B,C, in the plane = be perspective from the
point P. Let C3 = AB;*A,B,, By =AC,+A4,C,, and Ay = B,C;*B,C,.

On P take any line, not on 7, and on it take distinct points D and E. In the plane DEAA,, let
A =DA,-FA,; in the plane DEBB,, let B = DB+ EB,; in the plane DEC,C,, let C = DC;-EC,.
By construction, the triangles ABC and AB,C; are perspective from D and hence are perspective
from the line of intersection p of their planes. Similarly, the triangles ABC and A,;B,C, are per-
spective from E and hence ‘are also perspective from p. Now AB+A B, and AB*A,B, are on p;
hence they are the same point C3;. Similarly, B; and A; are on p, as required.

State and prove the dual of Example 3.1, page 35.

Let there be given a point P and two distinct lines ¢ and b, not on P. Without intersecting
o and b (assume that this is impossible for some reason), obtain the join of P and the point of
intersection of a and b.

In Fig. 3-8 below let @, distinct from P, be any point not on a or b. On @ take distinct lines
q,7,s and, intersecting them with @ and b, obtain the points A, A, 4; and By, By, B3 Let
h=PA, k=PB; H=h-r; K=k+r; t=Az;H, u=B;K; R=t+u; z=PE. We assert that
x is the required line.
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Fig. 3-8

To prove this, consider the triangles A;BP and A;B3;R. Since they are perspective from the
line », they are perspective from a point. Now this point is on a = 4,43, b= BiB; and z = PR.
Thus « = PR is the required line. '

Prove the special case of the Theorem of Pappus: If Ai, Az A are distinct points on
a line 7, if Bi, B, Bs are distinct points on another line s, and if ¢; = AiBy, ¢2= ABs,
c3 = A3;B; are on a point O, then the points C1= A:Bs+ AsB;, Cs = A1Bs- A3B,,
Cs = A1Bs>+ A:B; are on a line concurrent with r and s.

Refer to Fig, 3-9. Let »+s = P. The triangles C;A,B, and C,A;B;, being perspective from
the line OA3B; (check this), are perspective from P and so Cj, Cy, P are collinear. Similarly, the

triangles C;A3B; and C34 By, being perspective from the line O4,B,, are perspective from P and so
Cy, Cs, P are collinear. Then Cy, Cy, €5, P are collinear as required.

Fig. 3-9

Prove: If the distinct lihes pi, p2, ps are on a point O and if
Q

pl(Al, Bl, Cl, Dl, . .) ; p2(A2,B2’ C2, D2) . -) = p3(A3’ B3y C3) DS; .. -)
there exists a point R on PQ such that

(a) p1(A1, B1,Cy, Dy, .. .) % ps(As, B3, Cs, D3, .. .)
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Refer to Fig. 8-10. The triangles A,;4,4, and B,B,B;, being perspective from O, are perspective
from the line PQ on which is the point B = A,4;-B,B,;. Similarly, the triangles AAxAq and
C,CyCy are perspective from PQ on which is the point R’ = A;A4+C,Cs. But, since B and R’ are

on both 4;4; and PQ, they must coincide. Thus we have (a) as required.

Prove: If no three of the distinct lines pi, po, ps, Ps are concurrent and if
p1(A1, B1,Cy, Dy, .. .) ; D2(As, By, C3, Ds, . . \)
p3(A3; B3; C3) D3y . -) ; p4(A4, B4, C4, D4, e .)

~

there exists a line p, and points S, T’ such that

(b)) DA, B, Ci,Dy,...) = p,(A,,B,,Cy,D,,...) = pi(As By Cs D, ..

Fig.3-11

)

Refer to Fig. 3-11. Let O = py*p; and Os = py3* py Take Py = 04,03, and on it obtain

P (A4, By, Cy, Dy, .. .) such that o
DAy, By, e, Dy, .. .) = 25(A5, B3, Cy, Dy, .. L)



DESARGUES’ TWO-TRIANGLE THEOREM [CHAP. 3

P
Now po(Ag, By, C, Dy, ...) = P1(A1, By, Cy, Dy, . 00)
hence, since py, Py, P, are concurrent, Theorem 3.1 applies, and there exists a point S on PQ such that

5
P1(A1, B, C, Dy, ) R P*(A*’B*,C*,D*: )

Similarly, since the lines p3, p4, p,, are concurrent, there exists a point T on QR such that

T
I’*(A*: B,, Ca D*; ) & paldy By Cy Dy .. )

and we have (b).

Prove: If pi,Ps, Ps, D« are distinct lines of which i, P2, P« are on a point O while ps is

not, and if P
P1(A1, By, Cy, Dy, .. ) = pz(Az, B3, C3, Ds, .. .)

ps(As, B3, Cs, Ds, . . ) % pi(As, By, Cs, Dy, . .-)

there exists a line p,_, distinct from p: and ps, and points S and T such that

Ay, Bi,Co, D, . ..) = Py(4 By, Cy, Dy, ..) = Pi(As By, CsDs..)

P
Dby
Py
»
Dy P2
(&)
By Vas
4, D3
Cy 3 D,
B, Ca
A, 3 B,
7 AN Dde
B ACa\Dy
0 A3 Dy

\

Fig. 3-12
Refer to Fig. 3-12. On Va3 = py* ps take any line p distinct from p,, p; and not on P. Project

the pencil on py, from P onto p. Then
pA4,B,C,D,...) = ps(As By, Cao, Dy, ...
Since p, py, p5 are concurrent, Theorem 3.1 assures the existence of a point U on PQ such that
p(4,B,C.D,...) = pdsBsCsDs, ...)
the lines p;, P, s P4 are such that no three are concurrent.

Q
= P3(A3,B3,C5, Dy, .. .)

P U R
In the sequence p;=X PR P33 Po
Then Theorem 3.2 assures the existence of a line p N and points S, T such that
s T
VSN p* X P4

as required.
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3.8.

3.9.

3.10.

3.11.

3.12,

3.13.

3.14.

3.15.

_3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

3.22,

3.23.

Supplementary Problems

(@) Four distinct points A4, Ay, Ag, A4, no three on the same line, determine a unique complete quad-
rangle. Show that these same points determine exactly three different simple quadrangles:
A AAA,, AjAA A AJAAA,.

(b) State and verify the dual of (a).

{¢) Describe the eomplete plane 5-point and its plane dual.

(d) Discuss as in (a) the simple plane 5-point and its dual. Enumerate several simple pentagons
determined by the five distinct points.

(¢) Same as (d) for the simple plane 6-point (hexagon) and its dual,

In obtaining the Desargues configuration, the triangle ABC (see Fig. 3-2) was projected from both
D and E. Repeat the discussion when the triangle BCD is projected from both A and E.

In the Desargues configuration (see Fig. 3-3) show:
(¢) There are ten pairs of perspective triangles,

(b) The complete quadrangle A B,C;P and the complete quadrilateral p, A;By, ByCs, CoA, are so
situated that each side of the gquadrangle is on a vertex of the quadrilateral. List four other
such pairs of quadrangles and quadrilaterals.

Let there be given in the same plane a triangle ABC and a point P. Let the joins of P and the
vertices meet the opposite sides of the triangle in A’, B, (' respectively. Construct the axis of per-
spectivity p of the triangles ABC and A’B’C’. Dualize.

The axis p is called the polar line of P while P is called the pole of p with respect to the triangle
ABC. Is p ever on P?

(a) Establish the Corollary to Theorem 3.1, page 36.

Pl P2 P3 b'e
(b) Reduce py(Ay, By, ...) % Pa(Ag, By, ...) X P1(Ag, By, .. ) T po(Ag, By, . ..) to p{Ay, By, .. ) %
po(Ay By, .2 )

State and prove the dual of Problem 3.4.

Prove: If three triangles are perspective in pairs from a common point P, their axes of per-
gpectivity are concurrent.

State and prove the converse of Problem 3.14.

In Fig. 1-1, take A, any other point on »; let BjA,+p=C, and A,;C,*s= DB, Prove
(A1, A9, A, Ay = (By, By, B3, By).

On any line r take four distinct points A;, Ay, A3, A4 and project them from any point P, not on 7,
into B, By, B;, B4 respectively on any other line s. Construet the line of Pappus p for the triples
Al’ Az,A3 and Bz,Bl,B4. Show that T = A4B1'33A2 is on P and (Al,Az,A3, A4) ~ (B2,BI,B4,B3).

Prove for the points of Problem 3.17:
(@) (A, Ag, Az Ay = (By By, By, By) (b) (A, Ay, Ag,A) = (Bs, By, By, By)

Prove: If a complete quadrangle PQRS and a complete quadrilateral pgrs are so situated that the
sides PQ, PR, PS, QR, QS of the quadrangle are on the vertices r=s,q*s, g7, p*s,p*7 respectively
of the quadrilateral, then the side RS of the quadrangle is on the vertex p-g¢ of the quadrilateral.

Given five points of a quadrangular set, construct the sixth point when (a) the given points are dis-
tinet, (b) two of the five points are coincident.

State and construct the dual of Problem 3.20,
Prove: If two triangles ABC and A’B'C’ are perspective from a point, the points R = AB-A'B’,
S=BC+'B'C’, T=CA+C'A'", U=AB'-A’'B, V=BC'-B'C, W=CA'-A(C" lie by threes on

four lines.

Prove the surmise in Problem 1.17, page 18. Hint. In the figure let pre=E, p*f=F; QE = e,
QF =f; ¢+d=F', ff-d=F'; BE'=¢", BF' = f"'. Prove e, ¢, f!" concurrent.
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3.24,

3.25.

3.26.

3.27.

3.28.

3.29.

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.
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(@) Prove: The diagonal triangle of a complete quadrangle is perspective with each of the four
triangles whose vertices are three of the vertices of the quadrangle. (b) Show that the complete
quadrilateral whose sides are the four axes of perspectivity obtained in () has the same diagonal
triangle as the complete quadrangle.

State and prove the dual of Problem 3.24.

In Fig‘. 3-9, let 4 = Ale'BIA3, B = AIB3'B1A2, C = A2Bi‘B2A3, D = A233‘32A1,
E=A;B,*B;A,, F=A;B,*BsA;; R=BE+AF, S=BD+AC, T =CE+DF. Prove: (a) the
lines AB,CD,EF are on O, (b} the points R, S,T are on p.

Given, as in Fig. 3-1(b), the quadrilateral pgrs having abc as diagonal triangle, Let (a*b)(p*7) =d,
(@a+dges)=e, (bee)prq)=Ff, (bec)r-s)=g, (cra)p+s)=4i, (cra)g*r)=j. Prove each of
the triples of lines d,g,4; d,f,7;e,f,4 ¢,9,§ concurrent.

Hint. Consider the triangles abe and prs perspective from g¢.

State and prove the dual of Problem 3.27.

Given a triangle abe and a line p not on a vertex. Construct a quadrilateral pgrs having abe as
diagonal triangle. Is the quadrilateral unique?

Hint. Let (a*be*p) = d, (a*c)bep) = g, (b-c)d*g) = h, then (a*h)(d-g) = s,
(@rh)(crd) =7, (Be7)(c*s) =q. ‘

Show that the quadrilateral of Problem 3.29 is determined when the diagonal triangle and any
side is given.

State and prove the dual of Problem 3;29; also, the dual of Problem 3.30.

The sides of a variable triangle pass through three fixed collinear points while two of the vertices
move along fixed lines » and s. Prove that the third vertex describes a line concurrent with + and s.

Through each vertex of a given triangle a line is drawn. Show that these lines are concurrent if
and only if their intersections with a given line z, together with the intersections of the sides of the
triangle with & form a quadrangular set.

Two triangles A;A,45 and B B,B; such that A B, A,B,, A;B; are concurrent in a point C; while
A;Bg, AsB,, A3B, are concurrent in a point Cy are said to be doubly perspective; if, in addition
A4Bg, AsB,, A;B, are concurrent in a point Cy, the triangles are said to be triply perspective.
(@) Given a triangle A;4,4; and two distinct points By, By, locate Bj so that the triangles A;4,4;
and ByBsB; are doubly perspective.

(b) Verify that the two triangles of (a) are triply perspective.
(¢) Prove: If two triangles A,;4,A; and B,B,B; are perspective in any two of the orders

- A4 A5 A3 X By, By, By Ay, Ay, Ay = By, By, By Ay, Ag Ay T By, By, B,

they are also perspective in the third order.

(d) Show that any two of the triangles A;A,43, B{B;Bs, Cy, Cy, Cy are triply perspective with the
vertices of the third triangle as centers of perspectivity.

Show that the vertices of the three triangles of Problem 3.34(d) lie on three lipes in accordance with
the Theorem of Pappus. )

Prove the theorem of Problem 3.1 using the Theorem of Pappus.
Hint. In Fig. 3-7 let A,A;+BB;=Q, A,B;*A;B; =R, AA,*PQ= S, BBy,*PQ=T. Then,
applying the Theorem of Pappus to the collinear triples:

(@) A, P,By and A5 Q,4, find CyR,S collinear;
(b) By, P,A, and By, Q,B;, find CyR,T collinear;
(c) B,,A,,R and Q,8,T, find C,, Cy, C5 collinear.



Chapter 4

Harmonic Sets

HARMONIC SETS OF POINTS AND LINES

Consider in Fig. 4-1 the set A,B,D,E of four points obtained when the sides of the

complete quadrangle PQRS are sectioned by the side ¢ = AB of its diagonal triangle.

Fig.

4-1’, the dual of Fig. 4-1, exhibits the set a, b, d, e of four lines obtained when the vertices
of the complete quadrilateral pgrs are projected from the vertex C =a-b of its diagonal

triangle.

An examination of these figures suggests the following dual definitions.

Fig. 4-1

Four collinear points A, B, D, F are said
to form a harmonic set (harmonic tetrad)
of points when there exists a complete
quadrangle having two opposite sides on 4,
another two opposite sides on B, while the
third pair of opposite sides are singly on D
and E. The point D (E) is called the har-
monic conjugate of E (D) with respect to
A and B. This relation will be indicated
by writing H(A, B; D, E). Notice that in
H(A,B;D,E) A and B play_equal roles;
hence we might have written H(B, A; U, E).
Also, D and E play equal roles; hence
we might have used H(A,B;E,D) or
H(B,A; E,D).
the pair A, B is separated harmonically by
the pair D, L. -

When A, B, D are distinct points on a
line ¢, the harmonic conjugate of D with

In any case, we say that

45

Fig.4-1’

Four concurrent lines a, b, d, ¢ are said
to form a harmonic set (harmonic tetrad)
of lines when there exists a complete quad-
rilateral having two opposite vertices on @,
another two opposite vertices on b, while
the third pair of opposite vertices are
singly on d and e. The line d (e) is called
the harmonic conjugate of e (d) with re-
spect to @ and b. This relation will be
indicated by writing H(a,b; d,e). Notice
that in H(a, b; d, e) @ and b play equal roles;
hence we might have written H(b,a; d, e).
Also, d and e play equal roles; hence
we might have used H(a,b;e,d) or
H(b,a;e,d). In any case, we say that the
pair @, b is separated harmonically by the
pair d, e.

When a, b, d are distinct lines on a point
C, the harmonic conjugate of d with respect
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respect to A and B may be constructed as to @ and b may be constructed as follows:
follows: On A take any two distinet lines On ¢ take any two distinet points P = C
p # ¢ and s+ ¢; on D take any line 7 # c. and S+ C; on d take any point R # C.
Let pr =P, s'r=R; BP-s =8, Let PR =9p, RS =% (bp)S =3,
BR+p = Q. Then SQ+-c¢c = E is the re- (b*7)P = q. Then (s*q)C = e is the re-
quired point. quired line.

First, a word about the symbol H(A, B; D, E) adopted here. From Fig. 4-1, we find
(i) (A,B,D,E) = (S5,Q,C,E) = (B,A,D,E)
so that (A,B;D,E) = (B,A;D,E)

Now in view of the assumption concerning the diagonal points of complete quadrangles, we
conclude (4,B;D,E)=—1 and so may take H(4, B; D, E) as equivalent to this. However,
to avoid cross ratiogwe will consider H(A, B; D, E) as merely shorthand for ‘“the collinear
points 4, B, D, E form a harmonic set” or “the points A, B are separated harmonically by
the points D, E”’. We have

Theorem4.l. When A,B,D are distinct collinear points, H(A,B; D, E) implies A,B,D,E
are distinct collinear points.

Fig. 4-2 is Fig. 4-1’ with such changes in labels
as to make clear that the line s sections the har-
monic set of lines a, b, d, e in the harmonic set of
points A,B,D,E. (It is left for the reader to
verify that PQRS is a quadranglé associated with
these points.) Conversely, beginning with any
harmonic set of points on a line, a figure such as
Fig. 4-2 may be obtained by choosing as R any
point not on the line. Thus we have

Theorem 4.2. A harmonic set of points on a line
s is projected from any point R,
not on s, by a harmonic set of lines.

and its dual Fig. 4-2

Theorem 4.2’. A harmonic set of lines on a point R is sectioned by any line, not on R, in a
harmonic set of points.

Let four concurrent lines a, b, d, e be sectioned by the distinet lines 7 and s in the points
A,B,D,E and A’,B’,D’,E’ respectively. By definition (4,B,D,E) = (A’,B’,’,E’) and
Theorems 4.2-4.2’ imply: if H(A,B; D, E), then H(A’,B’; D’,E’). Since a projectivity is a
sequence of perspectivities, we have for any two sets of collinear points A,B,D,E and
A//’ BII’ Dr/’ E//’

Theorem4.3. If (A,B,D,E) = (A”,B”,D”,E"”), then
H(A,B;D,E) implies H(A”,B”;D”,E")
and conversely.

Let A,B,D,E be four collinear points such that H(A,B;D,E). By Theorem 2.10,
page 25, (A,B,D,E) = (D,E,A,B). Then H(D,E; A,B) and we have

Theoremd44, 1f A,B,D,E are four collinear points such that the pair A, B is separated
harmonically by the pair D, E, then the pair D, E is separated harmonically
by the pair A, B.
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Suppose, as in Fig. 4-1, that D is taken on the segment ;1%’ of ¢; clearly, when D= A
and D - B, then E is on the segment {1_@ In Problem 4.6 the reader is asked to verify

that when D is near A then E is near 4 and when D is near B then F is near B. Let D

describe the segment 2179, moving from A to B. This motion of D does not disturb the points
R,Q and, hence, does not disturb the lines AR, AQ,BR. On the contrary, the line CR
revolves counterclockwise about R, the point P moves from 4 to @ over the segment shown
in the figure, the line BP revolves clockwise about B, the point S moves from A to R over
the segment shown, and E moves from A to B over @ We leave for the reader to in-

vestigate the effect of reversing the direction of motion of D and state

Theorem 4.5. 1f D describes AB in a given sense, the harmonic conjugate £ of D with
respect to A, B describes @ in the opposite sense.

The directions for constructing the harmonic conjugate of D with respect to A, B allow
the two lines on A and the line on D to be any whatever, except that all be distinct from
0 = AB and that the two on A be distinct from each other. This freedom of choice follows
from Theorem 3.5, page 38, which states in effect that the location of F is fixed by that of
the other three points and is independent of the particular quadrangle used. Thus Theorem
3.5 may be restated here as '

Theorem4.6. If A,B,D are collinear points, the harmonic conjugate of D with respect to
A, B is unique.
and its dual as

Theorem4.6’. If a,b,d are concurrent lines, the harmonic conjugate of d with respect to
a, b is unique.

In Problem 4.1, we prove

Theorem 4.7. If A and B are two vertices of a complete quadrangle, E is its diagonal point
on AB, and D is on AB and the join of the other diagonal points, then
H(A,B;D,E).

In Problem 4.2, we prove

Theorem 4.8. If A’, B’,C’ are three distinet collinear points, one on each side of a given
triangle ABC, the lines which join the harmonic conjugate of each of these
points, with respect to the two vertices on the side of the triangle, to the
third vertex are concurrent.

Theorem 4.8 provides yet another procedure for proving three distinct lines eoncurrent.
Its dual is -

Theorem 4.8. If o/, b/, ¢’ are three distinet concurrent lines, one on each vertex of a triangle
ABC, the points in which the harmonic conjugate of each of these lines, with
respect to the two sides on the vertex of the triangle, meets the third side
are collinear.

HARMONIC PROPERTIES OF A COMPLETE QUADRANGLE

In a complete quadrangle, any two of its vertices are collinear with one vertex of its
diagonal triangle. Thus (see Fig. 4-3 below) each side of the quadrangle meets its diagonal
triangle in two points — a diagonal point and an additional point which will be called a
harmonic point associated with the quadrangle. For example, the side PQ of the complete
quadrangle meets the diagonal triangle in the diagonal point A4 and in the harmonic point
F = PQ-BC. In addition to F, the harmonic points for the complete quadrangle of Fig. 4-3
are D=PR-AB, F=QS-AB, G=RS-BC, I1=PS-AC, J=QR-AC. We have
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Fig. 4-3

Theorem4.9. On any side of a complete quadrangle are two vertices of the quadgangle, a
vertex of its diagonal triangle, and one of the harmonic points. )

RS bt T .

Theorem 4.10. On any side of the diagonal triangle of a complete quadrangle are two ver-
tices of the diagonal triangle and two harmonic points.

By projecting 4, B, D, E from C onto RS, we obtain 4, G, R, S respectively. Thus,

Theorem 4.11. The vertex of the diagonal triangle and the harmonic point on any side of
a complete quadrangle separate harmonically the vertices of the quadrangle
on that side.

Now the lines BR,BS,BA,BG are a harmonic set (Theorem 4.2) and their section
J,I,A,C by the line AC is a harmonic set (Theorem 4.2’). Thus we have

Theorem 4.12. The two sides of a complete quadrangle on any vertex of its diagonal triangle
are separated harmonically by the sides of the diagonal triangle on that
vertex.

and

Theorem 4.13. The diagonal points on any side of the diagonal triangle of a complete quad-
rangle are separated harmonically by the harmonic points (associated with
the quadrangle) on that side.

From Problem 8.28, page 44, we have

Theorem 4.14. The six harmonic points associated with a complete quadrangle lie by threes
on four lines.

HARMONIC NET ON A PROJECTIVE LINE

In Fig. 4-4, A, B, C are three distinct points on the line 0. On A take any line ¢+ o0 and
on ¢ take distinct points R+A and S+#A. Let BR-CS=D, AD=1{; CR-t=FE,

SE, 0=F,; FiRt=FE, SE;0=Fy F:R-t=FEs; SEs;+0=VFs;.... By construction,
we have H(A,C;B,F1), H(A,F1;C,F2), H(A,F2;F1,F3), s H(A,Fn—-l;Fn—%Fﬂ)r
The set of points

A, B,C,Fi,Fs,Fs,F, ... (1)

are said to constitute a harmonic sequence generated by the three given points A,B,C.
Since the elements of any harmonic set are distinct, it seems reasonable to suppose that all
points of (1) are distinct. (A proof will be given later.) Assuming this true, it is clear,
since the construction may be continued indefinitely, that the number of points in the har-
monic sequence is infinite.
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o
A\qt

Fig. 4-4

Let us begin once more with the points A,B,C on o. First construct F'; as before and
label it G1; then construct additional points on o to obtain a set

A,B,C,G1,Gs, Gs,G4,Gs, . .. (2)

such that for W = G,, where % is any positive integer, we have H(X,Y; Z, W), that is, W
is the harmonic conjugate of Z with respect to X and Y, for some triple of points X, Y,Z
which precede G in (2). For example, G4 might be such that H(A, Gs; G2, G4) or H(B, C; G1, G4)
or H(G1,Gs; G2,G4). In any event W = G, is said to be harmonically related to the given
points A, B,C. The set of all points harmonically related to A, B, C is called a harmonic net
(net of rationality) on o and is denoted by R(A4,B,C). We note first of all that there is
no systematic procedure, that is no rule of order, for locating the points Gs, Gs, G4, Gs, . .

Thus it will not be expected that all the G’s are necessarily distinet. Since the harmonic
- sequence generated by A,B,C is included in R(A,B,C), the harmonic net is also an
infinite set of points. The two sets, however, are never identical; for example, G4 de-
fined by H(B, C; G1, G4) is a member of the harmonic net but not of the harmonic sequence.

In Problem 4.4, we prove

Theorem 4.15. A harmonic net is determined by any three distinet points of the net.

HARMONIC NET ON AN AUGMENTED LINE

We go back for a moment to the augmented plane of Chapter 1 which, it will be recalled,
consists of the Euclidean plane together with a line of ideal points. Our purpose is to con-
struct the harmonic net R(P., Po, P1) where P; and P; are any two distinct ordinary points
of the augmented line (p, P.). Since this may be done, as will be seen, in a systematic man-
ner, we shall gain thereby a clearer picture of the harmonic net of the preceding section.
In the construction (see Fig. 4-5 below) use will be made of the distinct ideal points R, # P,
and S, # P, on the ideal line I,. Let P¢R.:P:S, = Eo, E.P, = t; PRt = E\,
E\S. p=Ps, PoR,-t=F, E:S. p=P;,.... That Py is the harmonic conjugate of P,
with respect to P, P;, and thus H(P,, P;; Py, P;), is verified by the following considerations:
On P, are the lines ¢ and l; on P, is the line PoR., meeting ¢ in Eo and 1., in R... Now PiE,
meets I, in S, P1R, meets ¢ in F; and E.S, meets p in P;. Consider now a coordinate
system established on p in which Py is the origin (i.e. the point with coordinate 0) and P; is
the unit point (i.e. the point with coordinate 1). Since

PyP; = PyP,+ PP, = PoP;: + EE,
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Fig.4-5

and E.E, = PoP,, it follows that P. is the point on p with coordinate 2. Thus by successive
steps using H(P.,Pn-1; Pn-2, P,), we can construct P, having coordinate =, for
n=23,4,....

Let PoSy*t=E_,, E_\R,p=P_; P1S,t=FE_, E_3R,»p=P_3.... Now P
is the point on p having —1 as coordinate, P_» is the point on p having —2 as coordinate, . . . .
Thus by successive steps using H(P., Pi—»; P2—n, P_»), we can construct P-, having —n as
coordinate, for n=1,2,3,4, ....

Next, let P, be defined by H(Pi, P_y; P, P;). In the construction (see Fig. 4-5) take on
P; the lines P;R. and P:S. and take on P» the line P,S. meeting PR, in K;=FE; and
P1Sw in Sm. Let P—1K1‘P1:Sw =TI, and P_lSw-PlRw = K; then P, = KL1‘]9. We show
that P.= Pi,;, the point on p having 1 as coordinate. Let KP,:P1S = L. From the similar
triangles LiP.P; and L1 KL, we have '

2 SO P, L, . §P1Eo 1

KL,  LL,  :PE, 4
Then P,P,=31iKL=1+2=1; PoP,=1% and P,= Py, Similarly, (see Problem 4.28), we
can construct Pi/., having 1/n as coordinate, for n =38,4,5,.... Finally, beginning anew

with any triple of points P.,, Po, P1/» and repeating the constructions of the two paragraphs
above, we locate the points
ooy P_siny P2/n, P—1/n, Po, Pyny Porny Pasmy o v

Thus far a systematic procedure has been outlined for locating on an augmented line a
set of points (i.e. a subset of the ordinary points of the line) in one-to-one correspondence
with the set of all rational numbers. Let Pg, Py, P, be any three distinct points of the subset
and consider the point P defined by H(Pa, Pv; Pc, P.). Then (see Chapter 2)
a—c¢c b—2z
(P, Pv; P, Py) o—z b —¢
and, since a, b, ¢ are rational numbers, so also is . Thus P; is a point of the subset and so
the subset is precisely R(P,, Po, P1).

-1
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Returning to Fig. 4-4 in the projective plane, let us relabel A as P,, B as Py, C as Py,

D as Eo, F1=G: as P, and repeat systematically the constructions outlined above. The
resulting subset of points on the projective line (i.e. the harmonic net) is again in one-to-one
correspondence with the set of all rational numbers. Here, however, we are not concerned
with any possible interpretation of the subscript a of the point P, of the net; the subscript
serves simply as a convenient label and nothing more.

4.1.

4.2.

Solved Problems

Prove: If A and B are two vertices of a complete quadrangle, F is its diagonal point
on AB, and D is on AB and the join of the other diagonal points, then H(A,B; D, E).
- The theorem follows immediately from Fig. 4-1 by taking ABQS as the complete quadrangle.

Give directions for constructing D when A,B,E (in that order) are given on a line; also, when
A, E,B (in that order) are given.

Prove: If A’,B’,C’ are three distinct collinear points, one on each side of a given
triangle ABC, the lines which join the harmonic conjugates of each of these points,
with respect to the two vertices on the side of the triangle, to the third vertex are
concurrent.

Refer to Fig. 4-6. Construect the harmonic
conjugate C" of C’ with respect to A,B; then o
H(A,B; C’,C"). Let A" =BC+B'C” and B" =
AC-A'C". That A” and B" are the remaining
harmonice conjugates of the theorem follows from

(4,B,C',C") = (C,B,A",A")
and (4,B,C',C") %= (A,C,B',B")
AII
Now
(A4,C,B’,B") A% (4,B,C,C") '.% (C,B,A’,A")

and so (4,C,B',B") = (C,B,A",A")

B/I
From (i), page 46, C
(C,B,A’",A") = (B,C,A’A") B’

and se (4,C,B",B") = (B,C,A",A")

But this is a perspectivity; hence AB,A’'B', A""B"
are on C’. Similarly, BC, B'C’, B"’C"” are on A’
and CA,C'A’,C"A"” are on B’. Then the tri-

angles ABC and A”’B"'C" are perspective from the 0
line A’B’C’. Finally, they are perspective from a 4 c” B c’
point, that is, AA", BB, CC"’ are concurrent as

required. Fig.4-6

Note. There follows from A’ = BC+B'C"”, B" = AC+A'C”, C" = AB+A’B': If the sides of
a triangle are cut by any line not on a vertex, the harmonic conjugates of any two of these inter-
sections, each with respect to the vertices on the side of the triangle, are collinear with the third
intersection,
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4.3.

44.
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Consider in Fig. 4-7 the complete quadrangle PQRS, its diagonal triangle ABC, and
the associated harmonic points D,E,F,G,I,J. Let DI-PQ =K, DJ ‘RS =1L,
EI-RS=M, EJ-PQ=N. Prove the triples of points (a) B,K,M and (b) B, N, L
are collinear.

Fig. 4-7

(@) We have (4,C,1,J)= (4,5,M,G) and
(4,C,1,7) 2 (A,P,K,F) = (4,5,M,,6)

where M, = BK+RS. Since H(4,C;1,J) we have H(A,S; M,G) and H(A,S; M, G). Then, by
Theorem 4.6, M; = M and so M is on BK.

(b) A proof similar to the above may be given. We vary the procedure here by attempting a proof
using Theorem 4.8’. First, we need a triangle having B, L, N singly on its sides; try triangle
AQR. Next, we need a point X such that the harmonic conjugate of AX with respect to AQ
and AR meets RQ in B, the harmonic conjugate of QX with respect to QA and QR meets AR
in L, and the harmonic conjugate of RX with respect to RA and RQ meets AQ in N. Since

(G,F,C,B) = (R,Q,7,B) |

~

we have H(R, Q; J, B); then X must lie on 4J. Similarly, H(4, R; G, L) requires X to lie on GQ
and H(A, Q; F, N) requires X to lie on FR.

The proof then consists in showing that AJ,GQ,FR are concurrent. Consider on RS the
distinet points S, G, R and on PQ the distinet points P,F, Q. By the theorem of Problem 3.4,
page 40, the points SF+PQ =Y, S@Q +PR=C, GQ+FR =X are collinear with A, Thus X
lies on AC; the lines AJ, GQ, FR are concurrent; and the points B, L, N are collinear.

Prove: A harmonic net is determined by any three distinct points of the net.

Let X,Y,Z be three distinct points of (2), the harmonic net R(4, B, C). Then, beginning with
A,B, C we obtain X, Y, Z after constructing a finite number of harmonic sets, the first of which is
H(A,C: B,Gy). Now H(A,C; B, Gy) implies H(A,C; G, B). Hence the points harmonically related
to A,B,C are also harmonically related to A,G.,C, that is, R(A,B,C) = R(A,G.,C). Since Y is
harmonically related to 4,G;,C we have, after a finite number of steps, E(4,B,C) = RA4,Y, C)
and, similarly, R(4,B,C) = R(X,Y,() = R(X,Y,Z).
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4.5.

4.6.

4.7.
4.8.

4.9.

4.10.
4.11,

4.12,

4.13.

4.14,
4.15,

4.16.

4.17.

4.18.

£.19.

4.20.

4.21.

4.22,

Supplementary Problems

If a,b,d, e are four distinct concurrent lines such that H(a, b; d, ¢), there are seven other arrange-
ments of these lines which are also harmonie sets. List them.

Partial Ans. H(a,b; e,d), H(d, ¢; a, b).

On s line take three distinet points A, D, B in that order. Construct the harmonic conjugate of D
with respect to A and B when (a) D is near A, (b) D is near B, (c¢) D is equidistant from A and B.

State the dual of Problem 4.6 and make the constructions.

What would you consider a natural choice for the harmonic conjugate of D with respect to A and
B of Problem 4.6 when (a) D = A, (b) D = B?

Prove: H(A,B; C,D) and H(A’,B’; C’,D) on distinet lines implies AA’, BB’, CC’ concurrent.
Hint. (A,B,C,D) x (A',B,C", D).

Prove: H(A,B;D,E) if and only if (A,B,D,E) = (A4,B,E, D).

Call the line of Pappus p in Fig. 3-9, page 40, the polar line of O with respect to r and s and call
O the pole of the line p with respect to r and s, Let A B;+p = §;. Show that @, is the harmonic
conjugate of O with respect to A; and B;. Thus prove: As a line revolves about a point O meeting
two distinet lines # and s (neither on O) in the points R and S respectively, the harmonice conjugate
of O with respect to B and S describes the polar line of O with respect to r and s.

Discuss the dual of Problem 4.11.

For any position of the revolving line in Problem 4.11, let BS+p = Q. Show that the polar line of
Q with respect to r and s passes through O. Thus, prove: If, with respect to two distinct lines r
and s, the polar line of a point O is on a point @, then the polar line of @ with respect to r and
s is on O.

Discuss the dual of Problem 4.13.

On a line p take four distinet points A, B, C, D such that H(A,B; C,D). Project these points from
any point P, not on p, and section by any other line q on A, but not on P, obtaining the points
A,B’,C', D', respectively. Show that @ = CD’-C'D is on the line PB.

State and prove the dual of Problem 4.15.

Using Fig. 4-3, page 48, show that the complete quadrilateral whose vertices are the six harmonic
points of the complete quadrangle PQRS has the same diagonal triangle as the quadrangle.

Use the result of Problem 4.17 to obtain an alternate construction to that of Problem 3.29, page 44,
of the complete quadrilateral when its diagonal triangle and one side are given.

Give an alternate construetion to that of Problem 3.31, page 44, of the complete quadrangle when
its diagonal triangle and one vertex are given.

Prove Theorem 4.2, page 46, without using the notion of cross ratio. Hint. In Fig. 4-1, let QA = q,
QB=b, QD=d, QE =e¢; AB=p, BS=q, AR=7r, PR=3s and obtain H(a, b;d,e) from the
complete quadrilateral pqrs.

Using Fig. 4-6, prove:
(a) Theorem 4.8’
Hint. Take o = 04, b’ = OB, ¢’ = OC.
(b) Let the lines joining the vertices of the triangle ABC to a fixed point O, not on a side, meet the

opposite sides in A, B, ", then the points in which each side of the given triangle meets the
join of the two points (of A'/, B",C") not on that side are collinear.

(@) In Fig. 4-7 there are four sets of harmonic points on RS; list them. Show that (A,G; M,R) =
4,G;L,8) = —1.
(b) Excluding the points X, Y from Fig. 4.7, there are in all twelve sets of harmonic lines; list them.
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4.23.

4.24,

4.25.

4.26.

4.27.

4.28,
4.29,
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Using Fig. 4-7 prove: The triples of points K,C,L and M,C,N are collinear.

Let » and s be two distinct lines intersecting at O and let P be any point not on either of these
lines, Construct the harmonic conjugate of OP with respect to » and s. (a) Show that this line is
the line of Pappus for any triple of points Ay, A5, A on r and By, By, By on s so selected that
A By, AyBy, AsBg are concurrent at P, that is, show that the line is the polar line of P with respect
to.r and s. (b) Show that any line on P which meets the lines 7, s in distinct points B, S respectively
meets the polar line of P with respect to r and s in a point T such that H(R,S; P, T).

Given a triangle ABC and a point P distinet from the vertices, construct the polar lines ¢, b, ¢ of P
with respect to the pairs of lines AC,CB; AB,BC; BA, AC respectively. Let ¢<b=A4’, ¢ra =B,
b+a=C" (a) Show that the triangles ABC and A’B’C’ are perspective. Label the axis of per-
spectivity p. (b) Show that p is the polar line of P with respect to the triangle ABC as defined in
Problem 3.11, page 43. (¢) Construct the polar line of @, any point on p, with respect to each of
the triangles ABC and A’B’C’ and show that these lines meet on p.

In Fig. 4-8, A, B,D are any three distinct points on a line while A’, B/, D’ are the harmonic con-
jugates of each of these points with respect to the other two, that is, H(A, B; D,D"), H(B,D; A, A",
H(D,A; B,B’). The points C=PR+QS, E=PQ-ST, F=PS-QU are diagonal points of
complete quadrangles associated with the harmonic sets and G = PR -ST. Prove:
(a) G=PR-QU. 7 P s

Hint. Suppose Gy =PR+QU. Then (4,B,D,D') % (Q,F,U,Gy) = (D, B,A,A)).
(6) The triples A,C,F; B,C,E; D,E,F are collinear.

Hint. Suppose AC-UQ =F,. Then (4,B,D,D')=(5,Q,D,C) = (U,Q,B',F,) and

(D,A,B,B"Y= (Q,U,F,B’).

Using Fig. 4-5, verify:

(@) HP,,Py; Py,Py) and H(P,, Py; Py, P,).
Hint, Take, as before, the lines ¢ and I, on P, and on P, take the line Py K meeting ¢ in E,
and I, in R, Then PyE*l_=8,, PyR_*t=FE, and EyS_ *p=P;

(b) H(P_,P_y; Py, P_,) and H(P_,P_y; P_1,P_3).

(¢) H(P;,P_y; Py, Pyy3) and H(Py, P_q; Py, Pyyy).
Hint. On P; take P;R_ and P;S_, on P; take P3S_ meeting P, B
Let P_1Ky+P;S, = Ly = Ey; then L,K-<p = Py

(d) H(P,, Py P,,P_,) for n=1,2,3,
Hint. On P take t and I_; on P, take P,R_ meeting t in E, and [, in B,. Then PR <t =
Eyand [Eo(PoEy-l,))p=E_,

Using Fig. 4-5, construct: (@) Ps; (B) Py5, Pays Pyssy (€) Py, P95 Pogys.

0 in K2 and Plsw in SOO'

On a projective line take three distinct points and label them in order Py, P;,P,. Construct and
label a number of points of R(P,, Py, P)).



Chapter 5

Projectivities

PROJECTIVITIES AND THE PAPPUS CONFIGURATION

In Chapter 1 a projectivity, p: = p», between two distinct pencils of points on distinct
lines, pi+ pn, or on the same line, p: = p», was said to be established whenever the two
pencils in question were members of a sequence of perspectivities

Py m—2 Ppq
% v % pm_l = m
Dually, a projectivity, Pi = P., between two distinct pencils of lines on distinct points,
P; + P,, or on the same point, P: = P,, was said to be established whenever the two pencils
in question were members of a sequence of perspectivities
PL2P2P2 -
By the Fundamental Theorem, every projectivity between two pencils of like forms is
completely determined when three elements of one pencil and their correspondents in the
other pencil are given. Combining this with the results of Problem 1.4, page 15, we have

Theorem 5.1. A projectivity between two pencils of points on distinct lines (two pencils
of lines on distinct points), which is not a perspectivity, can always be ex-
pressed as a product of exactly two perspectivities. A projectivity between
two superposed distinet pencils can always be expressed as a product of not
less than two and not more than three perspectivities.

The problem of constructing the projectivity when three distinct elements of one pencil
and their correspondents in the other pencil are given, is essentially that of locating the
correspondent of any fourth element of either pencil. Precisely:

If distinet points A4, B, C, D on one line and distinct points A’, B’,C’ on another line
or if distinct points A, B,C,D; A’, B’,C’ on the same line are given, locate the point D’
which, in the projectivity established by the triples of points A,B,C and A’,B’,(’, is
the correspondent of D. One procedure for solving this problem is as follows:

(i) Establish the projectivity (4,B,C) = (4’,B’,C’) by a minimum sequence of per-
spectivities,
(ii) Note the effect of this sequence of perspectivities on D.
, A somewhat less tedious procedure will now be given. For this purpose, consider in
Fig. 5-1 below the two projective pencils of points 7(4,B,C,D, ...) and s(4’,B’,C", D, .. .)
on distinct lines. Let AA’=a, BA’=0, CA’=¢, DA’=d, ...; AB =0V, AC =7,
AD’=d’, ... . Since

A(a,b,c,d,...) = 74,B,C,D,...) = (A, B,C",D/,...) = Alg,b,¢,d’,...)

PaS

we have A’'(a,b,c,d,...) = Ao, b, 0, d’, .. .)

55



56 PROJECTIVITIES [CHAP. 5

b/

Fig. 5-1

But this is a perspectivity (why?) and so the points b-b’,¢-¢’,d-d’, ... are on a line p, the
axis of the perspectivity A’ % A. This line p will now be called the axis of projectivity of

r ~ 8. Since p contain§ b5 = BA’-B’A and ¢-¢’ = CA’-(C’4, it follows that p is the line
of Pappus for the triples 4,B,C and A’,B’,C’. Now the line of Pappus ¢q for the triples

A,B,D and A’,B’,D’ is on both b+b’ and d-d’; hence, ¢ =p. We have proved

Theorem 5.2. 1f two pencils of points »(4,B,C,D, ...) and s(A’,B’,C",D’, ...) on distinct
lines are projective, the axis of projectivity is the line of Pappus for any
triple of distinct points of one pencil and their correspondents in the other
pencil,

Its dual is

Theorem5.2’. If two pencils of lines R(a,b,¢,d,...) and S(a’,¥’,¢’,d’,...) on distinct
points are projective, the center of projectivity is the point of Pappus for
any triple of distinct lines of one pencil and their correspondents in the other
pencil.

We return to our problem and state the following partial solution:

If A,B,C,D are distinct points on a line » (see Fig. 5-2) and A’, B’, C’ are distinct
points on another line s, the correspondent I’ of D on 7 in the non-perspective pro-
jectivity established by the triples A, B, C and A’, B’, C’ is located by

(a) Constructing the line of Pappus p for the two triples,

(b) Joining D to any of the points A7, B’, C” (say C’) and marking its intersection X"
with p,

(¢) Joining X’ and C and marking its intersection D’ with s.

In this construction C’D+ CD’ is on p and by Theorem 5.2, D and D’ are correspondents
in the projectivity (4,B,C) = (47, B’, ("), as required.

Fig.5-2
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We leave for the reader to show that the above construction holds without change when
the projectivity r < s is in reality a perspectivity. For the case of a projectivity between
superposed pencils of points, see Problem 5.1.

PROJECTIVITIES BETWEEN SUPERPOSED PENCILS

In the identity projectivity »(A,B,C,D,...) = r(4,B,C,D, ...), every point is a self-
corresponding point (double point). Since a projectivity is uniquely determined by any three
of its elements and their correspondents, we have

Theorem 5.3. If a projectivity between two sﬁperposed pencils of points (pencils of lines)
has three double points (double lines), the projectivity is the identity, that is,
every point (line) is a double point (double line).

It follows that a projectivity (not the identity) between two superposed pencils could,
perhaps, have no double element, one double element, or two distinct double elements. The
existence of projectivities having just one double element and of projectivities having two
distinct double elements was established in Problem 1.16, page 18. Another example of a
projectivity with two double elements is given in Problem 5.2. The projectivity of Problem
1.6, page 17, has no double element; however, we are not at the moment in a position to
prove this.

In Problem 5.8, page 60, we prove

Theorem 54. Every non-identity projectivity between superposed pencils having a given
double element can be constructed as the product of two perspectivities.

Problem 5.3 also provides constructions of projectivities for which one double element
and two distinct pairs of distinet corresponding elements are known. Two constructions,
which appear to be different, are given since each may be found in the literature. In the
next section it will be shown that they are, however, essentially the same.

From Problem 5.3, there also follows

Theorem 5.5. If a non-identity projectivity between two superposed pencils has one double
element it has a second which may, however, coincide with the first.

With respect to its double elements, non-identity projectivities between superposed

pencils are called elliptic when they have no double element, are called paraboliec when they

, have just one double element, i.e., two double elements which are coincident, and are called
@yperbolzc when they have two distinct double elements.

We shall hereafter restrict M, N (m,n) to denote double points (double lines) of pro-
jectivities having double elements. By the Fundamental Theorem,

/ /(1) A hyperbolic projectivity is defined by giving
(i) TIts double elements and any pair of distinct corresponding elements.

(ii) One of its double elements and any two distinct pairs of distinet corresponding
elements.

(iii) Any three distinct pairs of distinct corresponding elements.

//(2) A parabolic projectivity is defined by giving
(i) Its double element and any pair of distinct corresponding elements.

(ii) Any three distinet pairs of distinct corresponding elements.
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Thus, (M,N,A) = (M,N,A’) is a hyperbolic projectivity. Since a parabolic projectivity
is a hyperbolic projectivity with coincident double elements, a parabolic projectivity with
double point M rhay be indicated by (M,‘M, A) = (M,M, A"). '

On a line o take any four distinct points M,N, X, X’ such that H(M,N; X, X"). By
Problem 5.2 we know that the projectivity (M,N,X) = (M,N, X”) is hyperbolic with M,N
the double points. From the discussion in Chapter 4, we also know that as X describes the
line o in either direction, its correspondent X’ describes the same line in the opposite direc-
tion. We say, in this case, that the projectivity is opposite.

On the other hand, in the hyperbolic projectivity of Fig. 5-6(a), we conclude with the
help of Problem 5.12, that as z revolves about O in either direction, its correspondent z’
revolves about O in the same direction. In this case, we say that the projectivity is direct.

Using a circle as a model of the projective line, it is not difficult to see that if a variable
point X describes the line moving in one direction while its correspondent X’ describes the
line moving in the opposite direction, then the projectivity X = X’ will always have two
distinet double points. Thus, with the existence of elliptic projectivities yet to be estab-
lished, we state

Theorem 5.6. Every opposite projectivity is hyperbolic; every elliptic and every parabolic
projectivity is direct. See Problem 5.4

HYPERBOLIC AND PARABOLIC PROJECTIVITIES
An examination of Fig.-5-5(a) reveals:

(@) The points M,N, 4, A’, B, B’ constitute the quadrangular set Q(M, A, B; N, B’, A’) deter-
mined on the line o by the complete quadrangle RSA BT

-

(b) The complete quadrangle RSA:B: assures the existence of the hyperbolic projectivity
(M,N,A;B) ~ (M,N;A’,B’y as shown in Solution '} Probltem:5.3. Conversely, the
projectivity determines thé quadrangle which, in turn, yields the quadrangular set.
We have

/ Theorem 57. If M,N,A,A’, B, B’ are any six distinct collinear points, then (M,N,A,B) <
(M,N, A’, B’y implies Q(M, A, B; N,B’, A’) and conversely.

. In Solution 1, Problem 5.3, N is located simply by the construction of a complete quad-
| §rangle having one pair of opposite sides singly on A and B’, another pair of opposite sides
% i:jisingly on A’ and B, and a fifth side on M. If now in Fig. 5-5(a) the labels M and N, K and

i A1, Sand By, p and ¢ are interchanged, there results the dual of Fig. 5-6(a). It follows then

| that the two solutions of Problem 5.3 are essentially one and the same.

In Problem 5.5, we prove

Theorem 5.8. The product of two parabolic projectivities having the same double point
M is either the identity or another parabolic projectivity having M as double
point.

and in Problem 5.6, we prove

/ Theorem5.9. The projectivity (M,A,A") = (M,A’,A””) is parabolic if and only if
 HM,A A, A7),

QUADRANGULAR SETS
In Problem 5.7, we prove the first of the three parts of
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Theorem 5.10. Six distinct collinear points X,Y,Z,X’,Y’,Z’ form the quadrangular set
QX,Y,Z; XY, 7’ if and only if

(X,Y,2,X) = (X,Y,2,X) (1)
or (X,Y,2,Y) = (X',Y",2,7) @)
or (X,Y,2,72) = (X,Y,2,7) (3)

In the next chapter it will be shown that the quadrangular set Q(X,Y,Z; X", Y’,Z’) on a
line implies the special projectivity (X,X",Y,Y",Z,Z") = (X', X,Y’,Y,Z’,Z) between two
superposed pencils on the line; in other words, any one of (1), (2), (3) of Theorem 5.10 im-
plies the others.

Solved Problems

5.1. Given the distinct points A, B,C, D; A’, B’,C’ on a line o, construct the correspondent
of D in the projectivity (4,B,C) = (A’,B’,(C").

Refer to Fig. 5-3. Project the points A’, B/, C' from any point P, not on ¢, into the points 4, B", C"
respectively on any line s, not on any of the points P, 4’, B, C’. Construct the line of Pappus p for
the triples A,B,C and A”,B",C". Let DA"+p =X, AX+s=D"; then D" is the correspondent
of D in the projectivity (4,B,C) = (A”,B”,C"). That PD" -0 =D’ is the required correspondent
of D follows from 7

/ B
o(4’,B',C",D) (% s(A",B",C",D") = o(A,B,C,D)

P

Fig.5-3
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5.2.

5.3.
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Show that the correspondence between the points of a line and their harmonic con-
jugates with respect to two distinct fixed points of the line is a projectivity having the
fixed points as doublie points.

Refer to Fig. 5-4. Let o be the line, let A and B be the fixed points, and Z, be any other point
on 0. On A take any two distinct lines » 54 0, s 5 0 and on Z, take any line, not o, meeting v in P,
and sin B. Let BP;*s=S8; and BR*r=1¢*r=@Q. Then S;Q-:0= Z; is the harmonie conjugate
of Z; with respect to A and B. (This, to be sure, is the usual construction; it is repeated here in
order to introduce more useful designations to the vertices and sides of the complete quadrangle.)
Now take any other point Z; on o and carry through the above construction using, however, the
same lines 7,8 on A and ¢ on B as before. Let ZR:r=P, BP;*s=S8; and S@Q¢0= z,.
From

il

B
O(A)B’Zi) :1‘1‘ T(A)Q,Pi) ;‘ S(A:R:Si) ~ O(AyB’Z:)

N

follows (A,B,Z) = (A,B,Z))

in which A and B are exhibited as double points.

Fig. 5-4

Prove: Every non-identity projectivity between superposed pencils having a given
double element can be constructed as the product of two perspectivities.

Consider the projectivity
oM,A,B,...) = olM,A",B',...)

in which M is a double point while A, A’; B, B’ are distinct pairs of distinet corresponding points.
With X, any other Point of the pencil o(M,A, B, ...), we are to construct its correspondent X’ in
the pivjéctivity using just two perspectivities.:

Assume the construetion made and denote by B and S the two centers of perspectivity used
so that (M,A,B) = (M',A,,B,)= (M,A",B) or (M,A,B)% (M,Ay,B;) = (M A"B). Then either
(1) M,R,S are collinear while M,A,, B, are not, (2) M,A; B; are collinear while M, R,S are
not, or (3) both M,R,S and M,A,, B, are collinear. It will be found that both (1) and (2) insure
the existence of a second double point N distinet from M while (3) obtains when M is the only
double point.

Solution for Case (1).

Refer to Fig. 5-5(a) below, On M take any line ¢+ 0 and on ¢ take distinet points B+ M
and S+ M. Project M,A, B from K and M, A’, B’ from S, locate A; = RA+SA’ and B; = RB-SPB/,
and let A,B;=p. For X, any other point on o, let RX+p =X, and SX,-0=X'. Also, let
peo=N and p+q=T. That X’ is the required correspondent of X while N =M is a second
double point, follows from :

R S .
O(M,N,A,B,X) f p(TYN’A]_!BlJXl) _',_\_ O(M’N;A,yBerl)

and o(M,N,A,B,X) =~ olM,N,A’,B’, X" b

For the case when p is also on M, that is, when {3) obtains, see Fig. 5-5(b) below.
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Fig. 5-5(a)

Fig. 5-5(b)

Solution for dual of Case (2).

For the sake of variety we treat two superposed pencils of lines. Consider, then, in Fig. 5-6(a)
below the projectivity

O(m,a,b,...) = O(m,a, ¥, .. 2

where m is a double line and ¢, a’; b, b’ are distinct pairs of distinct corresponding lines. Let x be
any other line of the pencil O(m, a, b, .. .).
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On m take any point P # O and on P take any two distinet lines a; +m, by # m. Let

ara, =4, a'ra; =4, b*b, =B, b b =B,
zrr=X, XP=u=,, #1*s=X, O0X' = x/. Then

AB=r, AB =s, r5=Q, 0Q =n, PQ=1t;

O(m, n, a, b, x) % P(m, t,ay, by, 21) % o(m,n,a’,b’,x’)

and O(m; n, a, b’ x) ~

O(m,n,a’, b, ")

Thus 2’ is the required correspondent of z and = 7 m is the second double line.

For the case when Q is also on m, ie. when (8) obtains, see Fig. 5-6(b).

Fig. 5-6(b)
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54.

5.5.

5.6.

Prove: If M,N,A,A’,B,B’ are distinct collinear 4
points such that H(M,N;A,A’) and H(M,N; B, B,
the pair A, A’ does not separate the pair B, B".

From Problem 5.2, we have that A, A’ and B, B’ are pairs
of corresponding points in the opposite hyperbolic projectivity
(M,N,A,B) = (M,N,A’,B'). Since A,A’ and B,B' are pairs B
which separate M, N harmonically, this projectivity may also
be defined as (4,B,4') = (A’,B’, A),

Suppose the pair A, A’ separates the pair B,B’ so that
the distribution of these points on the line is as indicated in B’
Fig. 5-7. Then the directions of ABA’ and A'B’'A being the
same, the projectivity (4,B,A4') = (A/,B’, A) is direct. But
this is a contradiction; hence 4, A’ do not separate B, B’ Fig.5-7

AI

Prove: The product of two parabolic projectivities having the same double point M
is either the identity or another parabolic projectivity having M as double point.

Consider the product of (M,M,A) = (M,M,A"y and (M,M,A"Y = (M,M,A"), Clearly M is a
double point of this product. Suppose B % M is a second double point. Since the first projectivity
cannot carry B into B, it must be of the form (M, M,B) = (M, M,B"y with B % B’. Now the second
projectivity must carry B’ into B, that is, must be of the form (M,M,B’) = (M,M,B). But then
the product is the identity projectivity, Thus, unless the product of the two given parabolic pro-
Jjectivities is the identity, it too is parabolic with double point M.

Prove: The projectivity (M, A,4") = (M,A’,A”) is parabolic if and only if
H(M,A"; A, A").

Consider the parabolic projectivity (M, A4,A4’) = (M,A’,A”y of Fig. 5-8. By construction, the
complete quadrangle D’D"RES has one pair of opposite sides on' M, another pair of opposite sides on
A’ and the third pair singly on A and A”; hence, H(M, A’; A,A”). Conversely, if the pairs of op-
posite sides of the quadrangle determine the points M,A’, A, A" as in the figure, then

s
(M,A,A") = M,D',D") = (M, 4,47
and (M, A,A)Y < (M,A',A")

Since the axis of projectivity is on M, this projectivity is parabolic.

72!

DII

Fig. 5-8



64

5.7.

5.8.

5.9.

5.10.

5.11.
5.12.

5.13.
5.14.

5.15.

5.16.
5.17.

5.18.

5.19.
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Prove: Q(X,Y,Z;X’,Y’,Z’) implies (X,Y,Z, X) = (X,Y,2,X) and, conversely,
(X,Y,2,X) = (X,Y",7,X) implies Q(X,Y,Z; X, Y, Z").

Let the quadrangular set be determined on o by the complete quadrangle PQRS as in Fig. 5-9
and let PQ+RS = T. Then

X, Y,2,X) % (1,P,Q.X) £ (X,2,Y,X)

Al

and (X,Y,Z2,X) = (X,Z2,Y',X")
By Theorem 2.10, page 25,
X,2,Y,X) = X,Y,2,X)
and, hence,
X,Y,2,X) = (X,Y,7,X)
For the converse, suppose
X,Y,2,X") = X,Y,2,X)
but Q(X,Y,Z; X', Y',Z").  Then, as above,
xX,v,2,X) = X,Y,2",X)
and so
x,v,z,X) = X,Y,2",X%)

But this projectivity, having three double T
points, is the identity. Hence, Z’' = Z"
and QX,Y,Z; X',Y', Z') as required. Fig. 5-9

Supplementary Problems

In Fig. 5-2, page 56, let p*r =K, p-éz S; r*s=P, asapointonrand r.s=¢ asa point
on s. Construct the correspondent of each of these points.

In the perspectivity r(4,B,C,...) ; s(A’,B’,C’,...) take any other point D on r and construct,
using the line of Pappus of the triples 4, B, C and A’, B, (', the correspondent D’ of D. What is the
essential difference between your figure and Fig. 5-2?

In Fig. 5-3 for Problem 5.1: (a) let¢ G=p-0 and locate its correspondent G’, (b) let o+s= 0,
as a point on o, and locate its correspondent 0.

State and prove the dual of Problem 5.1.

In Fig. 5-6(a) take C on r and D’ on S, both to the left of Q. Construct the correspondent c’i of
¢ = OC and the correspondent d of &' = OD".

Same ag Problem 5.12 using Fig. 5-6(b), page 62.

Given the distinct points M, N, A, A’, B on a line, construct the correspondent of B in the projectivity
(M,N,A) =~ (M,N,A’).

Given the distinct points M, A, A’, B on a line, construct the correspondent of B in the projectivity
(M'M)A) ~ (M’MyAI)'

Prove: If (M,N,A,B) = (M,N,A’,B’'), then (M, N,A,A") = (M,N,B,B").

Prove: If M,A,B,A’,B’ are any five distinct collinear points, then (M,M,A,B) = (M,M,A’,B’)
implies Q(M, A, B; M,B’, A’) and conversely.

If A,ALAY A, ..., Alm—1 A(m) AGm+1) . ig a harmonic sequence determined by the distinct
collinear points M, A, A’, verify H(M,A(™Y; Am—1 A(m+1))

Given Q(4,RB,C; D,E,F) and two other distinct points M,N on a line o, let A,B,C,D,E F'
be the harmonic conjugates with respect to M,N of A,B,C,D,E,F respectively. Show that
Q4', B/, C'; D, ', F).



Chapter 6

Involutions

DEFINITION
Consider the non-identity projectivity
(i) O(a,b,¢,d,...) = O(&,b,¢,d,...)

Think of each line on O as having two names or labels — a given name (say a) and an alias
(say d’) or an unprimed label (say ¢) and a primed label (say a’). The projectivity pairs
given names and aliases but, in general, the line with given name a and its correspondent,
the line with alias a’, are different lines.

Suppose now that (i) is expressed in terms of given names only, say,
(i O(a,b,c,d,...) = Oc,m,q,a,...)

and, in turn, each element on the right is replaced by its correspondent in the projectivity
and then is expressed in terms of given names. As the effect of the second application of
the projectivity, we would have, say,

(ii") O(a,b,¢,d,...) = O(c,m', ¢, a/,...) = O(q,7,u,¢,...)

In general, if this procedure were continued, the right member of (I”) would never again
appear.

In Problem 1.6, page 17, the existence of a special projectivity was established in which
the correspondent of @ was o/ = b and the correspondent of b was b’ = a. Moreover, it
was found in Problem 3.23, page 48, that this is also true of every pair of corresponding
lines. In such a projectivity, the pair of elements @ and a’ are said to correspond doubly
(we prefer reciprocally) and the projectivity is called an involution, An involution then is |
a projectivity among the lines on a point (the points on a line) such that the correspondence/
2 with 2’ (X with X”) is reciprocal.

Think of the right and left members of (') as distinct systems and denote them by S;
and S: respectively; also, denote the one-to-one correspondence between their elements by
7. Then (©) may be expressed by +(S1)=3S: and (i””) by +((S1)) = =(S2) = Ss, where Ss
denotes O(q,7,u,¢,...). The correspondence - is an involution if and only if 7(7(Sy)) =
72(S1) = Si. More generally, a non-identity one-to-one correspondence r between the lines
on a point (the points on a line) is an involution if and only if +2 is the identity.

In Problem 6.1, we prove
Theorem6.1. If, in a projectivity among the lines on a point, a line a and its corre-
spondent a’+ a correspond reciprocally, then any other line z and its
correspondent 2’ also correspond reciprocally.
As a consequence, we have
Theorem 6.2. An.involution is determined-by any two of its reciprocal pairs.
For a construction, see Problem 6.2.

The reciprocal pairs of an involution are sometimes called conjugate pairs. We reserve
this term for later use and so will continue to speak of reciprocal pairs.

65
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In Problem 6.3, we prove

Theorem 6.3. The three pairs of opposite sides of a complete quadrangle are sectioned by
any line o, not on a vertex, in three reciprocal pairs of an involution among
the points of o. If the line o is not on a diagonal point of the quadrangle,
each reciprocal pair consists of distinet points.

This theorem and its dual

Theorem 6.3. The three pairs of opposite vertices of a complete quadrilateral are joined
to any point O, not on a side, in three reciprocal pairs of an involution among
the lines on O. If the point O is not on a diagonal line of the quadrilateral,
each reciprocal pair consists of distinct lines.

provide alternate constructions of the involution determined by two distinct pairs‘ of
reciprocal elements.

Since the six points of Theorem 6.3 constitute a quadrangular set, we have proved the
statement made at the end of the last section in Chapter 5.

A proof of

Theorem 6.4. If a line o meets the sides PQ, PS, SQ of a triangle PQS in the points A’, B/, D’
which, together with three other points A,B,C on o, are three reciprocal
pairs of an involution among the points of o, the lines AS, BQ, DP are on a
point.

is immediate since the six points constitute the quadrangular set Q(A,B,D; A’, B, D). An
independent proof is given in Problem 6.4.

DOUBLE ELEMENTS

On a line o take three distinct points M, N, X and construct the harmonic conjugate X’
of X with respect to M and N. If M,N are kept fixed while X describes the line, the re-
sulting projectivity X = X’ is an involution having M and N as double points. This in-
volution is naturally called hyperbolic. Since the involution is uniquely determined by its
double points while (M,N,X,X’) = (M,N,X’, X) implies H(M,N; X, X’), we have proved

Theorem6.5. Every hyperbolic involution is merely the correspondence between pairs of
harmonic conjugates with respect to the double points.

There follows

Theorem 6.6. Every hyperbolic involution-is-opposite.

In Problem 6.5, we prove

Theorem 6.7. If an involution has one double element, it has a second which is (a) distinet
from the first and (b) the harmonic conjugate of the first with respect to
any reciprocal pair.

As an immediate consequence, we have
Theorem 6.8. There is no parabolic involution.

By Theorem 6.6, no two reciprocal pairs of a hyperbolic involution separate each other.
Thus the involution determined by two reciprocal pairs 4, A’ and B, B’ which separate each
other (see Problem 1.5 for an example) is elliptic. Since an involution is a special type of
projectivity, this establishes the existence of elliptic projectivities. We have also

Theorem 6.9. Every direct involution is elliptic.
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PAIRS OF INVOLUTIONS

Consider two involutions I; and I. among the points on a line. Our purpose here is to
inquire into the possibility of these involutions having a reciprocal pair A, A’ in common.

First, suppose that the involutions are hyperbolic: I; with M1, N1 as double points and
I, with M, N: as double points. Denote by I; the involution having M;, N, and M:, Nz as
reciprocal pairs. If I; is hyperbolic, there exist points Ms, Ns (the double points of I3) such
that H(Ms, Ns; My, N1) and H(Ms, Ng; Mo, Ns). Then Ms,N: = M3 are a reciprocal pair of
both I; and I,. If, however, I; is elliptic then no points Ms, Ns exist. Thus,

Theorem 6.10. Two hyperbolic involutions among the points on a line have a reciprocal pair
A, A’ in common if and only if their double points do not separate each other.

Next, suppose that I is elliptic and I» is hyperbolic. Denote by =, = I,I, the projectivity
among the points of a line which results when I, and I, are applied successively in that
order. For example, let I, carry the point X into X’ and I» carry X’ into X”’; then Iil»
carries X into X”’. If I, and I» should have a reciprocal pair 4, A’ in common, then I,
interchanges them and I. restores them to the original order. Thus A, A’ would be the
double points of the projectivity =,. The problem is then reduced to determining whether
or not =, is hyperbolic. Since I: is direct and I, is opposite, it is clear that =, is opposite.
Then the double points of =, are a common pair and we have

Theorem 6.11. If, of two involutions among the points on a line, one is elliptic and the other
is hyperbolic, they always have a reciprocal pair in common.

Finally, suppose both I; and I, are elliptic. Let the reciprocal pair 4, A’ of I; be carried
into A7, A’ by I,. These points may be assumed distributed over the line as follows: _

— TN
i AA, | , AI’A/I! X
A AI AII AIN
Fig. 6-1

As a variable point X moves over AA’ from A to A’, its correspondent under the projectivity
TN
=, = 1,1, moves over w’ in the same direction, that is, from A”” to A”. Now AA’ is

—~
included in A”A"”’; hence X and X’ must coincide in some point of AA’ which, being a double

point of =, is a point of the reciprocal pair common to I: and I». Thus,

Theorem 6.12. Two elliptic involutions among the points on a line always have a reciprocal
pair in common.

In Problem 6.6, we prove
Theorem 6.13. If the involutions
I,:(A,A’,B,B") = (B",B,A’,A) and I.:(A,A’,B,B) = (A’,A,B’,B)

have M,N as a common reciprocal pair, then I=1I;-I, is an involution
having M, N as double points.
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Solved Problems

Prove: If, in a projectivity among the lines on a point, any line a and its corre-
spondent a’/ correspond reciprocally, then any other line x and its correspondent
also correspond reciprocally.

We have given a projectivity # = % among the lines on a point O with the property
that for the corresponding pair of lines a,a’, we have (o,a/,2) = (¢/,a,2’). We are to prove
(0,0, 2, @) = (a/,a,2',x).

As in Fig. 6-2, take any line » not on O and take on a any point A distinct from O and from
a+r. Construct on A the lines af, %, #{ such that

n I '
(ai’xbxl) = (o, @, ")
Let a/+aj=A", «'*x, =V, and A’V =9 Then

’ x
T ’
(ay Cb’, &, LU') % (G'/, a‘i, X1, x{) % (a’; a’l; v, 7') = (a’” a, ’.13’, il?)

-

and ((l, a’; X, x,) ~ (Cl«’, @y CC,, W)

as required.

Zy

I ‘V "

X,

Fig. 6-2

Construct the involution on a line given two reciprocal pairs of points of that
involution.

Let the reciprocal pairs be A, A’ and B, B’ on the line o of Fig. 6-3 below and let C be any other
point on 0. We are to construct the mate C’ of C in the involution. Take any point E, not on o, and
on A take any line @ distinct from o and not on B. Locate on a the points A{, B, B}, C; such that

R

(Allr leB{: CI) = (A”ByBl: C)
Let B'B;*A'R=V, B'C;*A'R=W and B;W-+0=C'". Then (' is the required point since

’ B
(4,A7,B,,B,C)) = (A, A}, V,R,W) = (4, A,B',B,C)

k]

(4,A",B,B',C)
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@& R 2

Fig. 6-3

- r.; C' " g[\“BI

Prove: The three pairs of opposite sides of a complete quadrangle are sectioned by
any line o, not on a vertex, in three reciprocal pairs of an involution among the points

of o.
Using Fig. 6-4, we have
(A,A’,B', D) % (A", A, P,Q) ; (A,A’,D,B)
and S0 (A)A,’B,ID,) ~ (A;A’!DrB)
By Theorem 2.10, page 25, (A,A’,D,B) = (A’,A,B,D)
hence, (A’A’;B’;D’) ~ (A’,A,B:D)

Since A, A’ is a reciprocal pair, the projectivity is an involution having B,B’ and D, D’ as recipro-
eal pairs by the dual of Theorem 6.1, page 65.

Fig. 6-4
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6.4.

6.5.

6.6.
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Prove: If a line 0 meets the sides PQ, PS, SQ of a triangle PQS in the points A’, B’, I
which, together with three other points A, B, D on o, are three reciprocal pairs of an
involution on o, the lines AS, BQ, DP are on a point.

In Fig. 6-4, suppose AS+*BQ = R but RP+0 = D,. By Theorem 6.3, we have
(4,A",B',D"y = (A'"JA,B,D))
while, by hypothesis, (A,A',B', D) = (A",A,B,D)
Then, by the Fundamental Theorem, D; = D and DP is on E as required.

Prove: If an involution has one double element, it has a second which is (a) distinct
from the first and (b) the harmonic conjugate of the first with respect to any recip-
rocal pair.

We consider an involution among the points of a line. Refer to Fig. 6-5 in which the involution
on o is determined by the double point M and any reciprocal pairB;B’. On M take two distinct-lines

.r-and s each distinet from o; on r take any point P M. Let BP-s=Q, B'P*s=S, BS*'B'Q =R,
PR+s =K and PR-o=N.

P R
(a‘) Then (M»N)B’B,) = (MyK)Q:S) = (M:N:BI,B)
exhibits N ¥ M as the second double point.
R
s
Q r
K
S
P
%3 B N B ¢
Fig. 6-5

(b) On o take any point C distinct from M,N,B,B’. Let CP+*s = T and ET-0 = (" (This
construction is left for the reader.) Now, by construction, the pair C,C’ separate M,N har-
monically and, by Theorem 4.4, the pair M, N separate C,C’ harmonically. Clearly, the pair
C,C'’ is any reciprocal pair as required by the theorem.

(Note, The figure for (b) will be used in Problem 6.16.)

Prove: If the involutions
I:(A,A",B,B") = (B",B,A’,A) and I (A,A’,B,B") = (A’,A,B’,B)

have M, N as a common reciprocal pair, then I =1I;-I: is an involution having M, N
as double points.

Since I, carries A into B’ while I, carries B’ into B, I carries A into B. Similarly, we find
I:(A4,A",B,B") x (B,B’,A,A") is an involution. Since each of I; and I, interchanges M and N, I
carries M into M and N into N. Thus, M and N are double points.
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6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.

*6.14.

6.15.

6.16.

6.17.

Supplementary Problems

Prove: If in a hyperbolic projectivity there exists one pair of corresponding elements which are
harmonic conjugates with respect to the double points, the projectivity is an involution.

Construct the involution among the lines on a point, given: (a) the double lines m,n; (b) a double
line m and a reciprocal pair a,a’.

Prove: If two pairs of points on a line do not separate each other, there exists only one pair of
points which separate each of the given pairs harmonically.

Prove: If H(A,B;D,D",H(B,D;A,A", HD,A; B,B’), then Q(4',B’,D’; A, B, D).
Hint. In Fig. 4-8, page 54, consider the quadrangle CEFG.

Prove: The six collinear points 4,A’; B,B’; D,D’' are three reciprocal pairs of an involution if

and only if
(4,B,D,A") = (A’,B',D",A)

or (4,B,D,B")

3]

(4’,B’, D, B)

or (4,B,D, D"y = (A’,B',D',D)

Given the triangle of Fig. 6-6, let a’,d’, ¢’ be distinct lines lying
singly on the vertices A4,B,C respectively and let p be any line
distinct from a,b,¢;a’,b,¢’. Let ap=A’', bep=B', cp=0C}
@ p=A", ¥+p=B", ¢+p=C". Show that o/,b’,¢’ are con- b
current if and only if Q(A',B’,C"; A”,B"”,C"). ¢

Hint. Suppose a’,b’,¢’ are concurrent at P and consider the com-

plete quadrangle ABCP. Suppose o', b’, ¢’ non-concurrent; let C
b-¢’ =P, AP=a", and o’ p=A4""

State and prove the dual of Problem 6.12. Fig. 6-6

Prove: If p is the line of Pappus of the projectivity
(A, B, C, Dy, ...) = 8(Ay, By, Cy, Dy, ...)

' P
and if S(Az: Bz; 02,D2, . -) = T(A3’331 C3:D3) v )
ShOW that T(AlyBl; Cl;Dly ---) ~ ’I‘(A3,B3,C3,D3, '-')

is an involution if and only if P is on p. State and prove the dual,

Prove: Any projectivity among the points on a line (lines on a point) may be expressed as the
product of two involutions.

Hint. Let the projectivity = carry A into A’ and A’ into A”. Define I;: (A,A,A") = (A’,A", A)
and Iy =1I,+*n. Then I,*1y =

Prove; If H(M,N;B,B’) and H(M,N;C,(C’), then M,N is a reciprocal pair of the involution
(B,C,B’,C") = (C,B,C, B).
Hint. See note in Problem 6.5.

An involution (4,A4’,B) = (A’,A,B") is given on a line o. {a0) Describe the construction of the
mate C’' of any other point C on o suggested by Theorem 6.3. (b) Let D be yet another point on o
and construct its mate by the above procedure; also, by using the figure of Problem 6.2.



Chapter 7

Axioms for Plane Projective Geometry

INTRODUCTION

Plane projective geometry is concerned solely with those properties of plane figures
which remain invariant under one or more central projections and sections. Our presenta-
tion thus far, while following roughly the historical development, tends to suggest that the
content of this geometry is that which remains of Euclidean geometry when it is stripped
of all theorems which in any way have to do with measurements. One way of negating
this idea would be to establish a foundation for projective geometry, that is, set down a
system of axioms, completely independent of any notions of Euclidean geometry. This we
now propose to do using eleven axioms in all.

The construction of systems of axioms for projective geometry is a relatively new
development. For any such system it is desirable that the axioms be simple and independent,
that is, no axiom be implied by the others. It is urgent only that they be consistent, that
is, that they neither contradict each other nor imply contradictory theorems. We might
have begun in Chapter 1 with some one of the available systems. However, it seemed
better that we first obtain some idea of what we wished to prove and, since not everything
can be proved, of what we would have to assume.

It is now evident that for our plane projective geometry we need two sets of objects or
things — call them points and lines, respectively — and a relation “on” such that every two
distinct points are on one and only one line and every two lines are on one and only one point.
Also, we must assume or be able to prove the Two-Triangle Theorem of Desargues (page
382), the Theorem of Pappus (page 2), the special case of the Theorem of Pappus (page 40),
the non-collinearity of the diagonal points of a complete quadrangle and the Fundamental
Theorem (Theorem 2.8, page 25).

INITIAL AXIOMS

We begin with two non-empty sets of “things” (called respectively points and lines) and
a relation “on” such that:

Axiom 1. If A and B are distinct points, then there is at least one line on both.
Axiom 2. If A and B are distinet points, then there is at most one line on both.
Axiom 3. If p and ¢ are two distinct lines, then there is at least one point on bBEh
Axiomd4. There are at least three distinct points on any line.

Axiom 5. Not all points are on the same line.

It is to be noted here that no attempt is made to define the “things” called points and
lines nor to define the relation “on’”. Since the sets are non-empty, we know that there is
at least one point and one line. Apart from this, our only other information is that given
by the axioms and such facts (theorems) as these axioms imply.

72
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THE PRINCIPLE OF DUALITY
In Problems 7.1-7.3, we prove
Theorem7.1. If p and ¢ are distinct lines, then there is at most one point on both.
Theorem7.2. Not all lines are on the same point.
Theorem 7.3. There are at least three distinet lines on any point.

We now have eight facts which when properly paired — Axioms 1 and 3, Axiom 2 and
Theorem 7.1, Axiom 4 and Theorem 7.3, Axiom 5 and Theorem 7.2 — consist of four state-
ments and their duals. Thus far, then, the principle of duality holds in our geometry. We
must be careful to retain this property as we proceed.

THE NUMBER OF POINTS ON A LINE

By Axiom 4 and Theorem 7.3 there are at least three points on every line and at least
three lines on every point. Could there then be more points on some one line than on
another and, consequently, more lines on some one point than on another? Such a state of
anarchy is ruled out by (see Problems 7.4-7.5 for proofs): '

Theorem 74. 1If there are exactly n =8 distinet points on some line p, there are exactly
n distinet points on every line.

and

Theorem 7.5. If there are exactly n distinct points on any line, there are exactly n*—n+1
distinct points in all.

The duals of these theoréms:

Theorem 7.4’. 1f there are exactly » = 8 distinct lines on some point P, there are exactly
-n distinct lines on every point.

and

Theorem 7.5’. If there are exactly » distinct lines on any point, there are exactly n*—n+1
distinct lines in all.

are, of course, valid by the principle of duality. The reader is urged, however, to provide
an independent proof of each.

CONSISTENCY OF THE AXIOMS

It might be wise at this point to see whether or not there exists a model of our system.
To build a model, we take two non-empty sets of concrete objects, identify the elements of
one set ag points and of the other as lines, and so define the relation “on” that our axioms
become provable statements (theorems) concerning the proposed model.

Example 7.1.

Consider in Fig. 7-1 an ornament
consisting of seven beads

By, By, B3, ..., By
attached by three’s to seven wires
Wi, Wy, Wy, ..., Wy

Identify the beads as points, the wires
as lines, and let B; on w; (also, w; on B))
mean the bead B; is attached to the
wire w; There remains now the job
of proving all of the axioms or of dis-
proving at least one of them. .
Proof of Axioms 1 and 2. There
are ;Cy = 21 selections of two distinet
points — By, By By, Bs; ...; By, Byt
By, B3 By,By; ...;Bg,By: ... Bg,Bq.
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First, we check to see that B; and B, are on some line; they are on line w;. Then we check to see that By
and B, are not on some other line; they are not. Continuing in this manner with each of the selections, we
finally conclude that if X and Y are distinet points, they are on at least one and at most one line, as
required.

Proof of Awiom 4. There are seven lines on each of which are exactly three points and, hence, at least
three points, as follows:

wy : By, By, By wg: By, Bs, By ws: B, By, By

wy: By, Bg, By
Wy * BI!B4’BB Wy Bz, B4, B7 Weg - B2’BS’BG

Proof of Axiom 8. Check that every pair of lines (there are 21) has at least one point in common.

Proof of Awiom 5. This follows easily since there are seven points and only three on any lire.

Thus, we have produced a model of our system.

The importance of the existence of a model lies in the fact that had the axioms been
inconsistent no model could possibly exist. We now conclude that Axioms 1-5 constitute a
consistent system.

Similarly, it can be shown that had the wires been identified as points and the beads as
lines while “on” is defined as before, the ornament remains a model for the system of -
axioms. Can this be anticipated?

When there are exactly three points on any line, there are (Theorem 7.5) exactly
32 —3 41 =17 points in all. A geometry of seven points will be called a 7-point geometry.

Example 7.2.

Using the number system consisting of exactly two ele- ¢ a
ments — 0 and 1 — and having the following addition and ¢
multiplication tables /

B
+ 0 1 . 0 1
0 0 1 0 0 0
1 1
0 1 0 1 D F
consider the set of all possible triples (zq, %5, £3) Where each G
x is either 0 or 1. There are eight triples in all, but we
shall find no use for the triple (0,0,0). The remaining
seven triples (identify them as points) are:
A = (0,0,1) D = (0,1,1) 13
_ a7A E AN
B = (0,1,0) E =(,0,1) G =(1,11)
C = (1,0,0) F = (1,1,0) Fig.7-2

For lines take all possible equations of the form
a;%y + asxy + agrs = 0

obtained by replacing each a; by 0 or 1, excepting only 0x; + 0xy+ 0x; = 0. They are

a: x; =0 d: xy+xy =0
b: x, =0 e: x;+x3 =0 g: %, +xytoy =0
¢c: a3 =0 f: xo+a3 =0

Finally, let a point be on a line (a line be on a point) if and only if the triple satisfies the equation.
As an aid in proving the axioms, locate the points on each line, as follows: (remember 1+1 =190 here)

a: A,B,D d: AF,G

b: A,C,E e. BE,G g: DE,F
¢. B,C,F f.CDG
Proof of Axioms 1 and 2. Check that each pair of points A,B;4,C; ...: F,G is on one and only

one of the lines.
Proof of Axiom 8. Check that every two lines have a point in common.
Proof of Axioms 4 and 5. Clear.
For a diagram, see Fig. 7-2 where each line is taken as a straight line except for line g.
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The models in these two examples differ in many respects: in one there is a set of beads
and a set of wires, in the other there is a set of number triples and a set of linear equations;
Fig. 7-1 and 7-2 differ in shape, aesthetic appeal, etc. However, by properly associating
each point and line of the 7-point geometry of Example 7.1 with a point and line of Example
7.2, it is shown below that any statement derived from the one yields a valid statement in
the other. As a consequence, we say that the two geometries are isomorphic, that is, their
differences, whatever they be, have no geometric significance.

Let us associate B, with A By with D
B with E B; with G B;with F

B; with C Bs with B

and w; with b ws With g
we with a ws with f wr with ¢

ws with d ws With e

In Fig. 7-1, we find, for example, the lines w; and w- have B: in common while their corre-
spondents b and ¢ in Fig. 7-2 have C, the correspondent of Bj, in common. Also, defining

perspectivities and projectivities as in Chapter 1, we have in Fig. 7-1,
B2 B

()  ws(By,Bs,B:) = wa(B1,Bs,Bs) = ws(B1, By, B)

N

and so (B1, Bs, B7) = (B1, Bz, Bs)

When each point and line in (i) is replaced by its associate, we have
(i) d(4, G, F) = a(4, B, D) % d(AF,G)

and so (A,G,F) x (A, F,G)

It is left for the reader to verify (i) in Fig. 7-2. The two 7-point geometries are evidently
isomorphic. It is frequently said that there is just one 7-point geometry; what is meant is:
Any two 7-point geometries are isomorphic.

In Problem 7.6, we give a model of a 13-point geometry in which there are exactly 4
points on every line. At first glance it might appear that the procedure here and in Example
7.2 could be generalized to provide a model for a geometry in which on any line there are
exactly n points where n is any natural number. The finite sets {0,1} and {0,1,2} used
in building number triples have, with respect to addition and multiplication, certain proper-
ties in common with the set of all rational numbers and the set of all real numbers. It
follows from a theorem of algebra that the set {0,1,2,3,...,m—1} of remainders when
the natural numbers are divided by m has these properties (i.e. is a field) when and only when
m is a prime. The important property here is: If b =0, then a =0 or b =0 or both.
When m =4, the set {0,1,2,3} of remainders lacks this property since when a =2+ 0
and b=2+#0 we have a*b=0. It can be shown that Problem 7.6 may be generalized
to provide a model for the case of exactly »n points on a line when and only when n—1 is a
prime.

In Problem 7.10, we give a model of a geometry in which there are an infinite number of
points on each line. Our axiom system is, thus far, consistent with there being a finite
number of points as well as there being an infinite humber of points on any line.

ADDITIONAL AXIOMS

It is our purpose in this chapter to provide a set of axioms from which the theorems of
the preceding chapters may be deduced. With the projective line as defined in Chapter 1 in
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mind, we see that the points of a line must be in one-to-one correspondence with the set
of all real numbers together with the number oo.

It follows from the preceding chapters that the key theorem of plane projective
geometry is, as its name implies, the Fundamental Theorem. We have seen, for instance,
that the Fundamental Theorem implies the Theorem of Pappus which, in turn, implies the
Two-Triangle Theorem of Desargues which, in turn, implies the special case of the Theorem
of Pappus. One objection to using the Fundamental Theorem as an axiom is that it can
hardly be characterized as simple. Of these theorems, the simplest is the Two-Triangle
Theorem of Desargues. For this reason we now add

Axiom 6. If two triangles are perspective-from a point, they are perspective from a line.

For a proof of the dual, see Problem 7.11.
We shall also need

Axiom 7. The diagonal points of a complete quadrangle are never collinear.

In 7-point geometry it is found that the diagonal points of any complete quadrangle
are collinear; Axiom 7 then rules out any further consideration of this geometry. However,
both Axioms 6 and 7 are provable theorems in 18- and 31-point geometry.

Axiom 7 allows us to introduce harmonic sets and, hence, a harmonic net on a line. Let
E(A, B, C) be a harmonic net on a line p, let p’ be any other line of the plane and let p-p’ = 0.
Let P+#0 be a point on p and P’ +# 0 be a point on p’; let E, distinet from P and P’, be a
point on PP’. Points A’,B’,C’ on p’ may now be defined by means of the perspectivity
(A, B, C) 2 p(A’,B’,C’). Since this perspectivity carries any harmonic set on p into a
harmonic set on p’, it carries the harmonic net R(4,B,C) on p into the harmonic net
R(A’,B’,C’) on p’. Thus the existence of a harmonic net on one line of the plane assures
the existence of a harmonic net on every line of the plane.

When the number of points on a line is finite, the number of elements of the harmonic
net on the line is also finite. As a consequence H(S,T; U, V) cannot imply the separation,
as defined in Chapter 4, of the pair of point S, T by the pair U, V. (This is to be verified in
Problems 17.17(b) and 17.20(a) for the 13- and 31-point geometries.) Now the relation
“separation”, together with its ramifications, plays an important role in the geometry
which we are attempting to construct. Consequently, we introduce this relation by means of

Axiom 8. If H(A,B; D,E), then the pairs of points A, B and D, E separate each other.

Axiom 9. If the pairs of points A,B and D,E separate each other, then A,B,D,E are
distinct.

Axiom 10. If the pairs A,B and D, E; sepa‘i'ate each other and if the pairs A, E1 and B, E:
separate each other, then the pairs A, B and D, E, separate each other.

The effect of these axioms is to eliminate further consideration of geometries with a
finite number of points on a line, as shown in

Theorem7.6. In any projective geometry satisfying Axioms 1-10 inclusive, there are in-
finitely many points on any line. For a proof, see Problem 7.12. -

The infinitude of points obtained in the proof of Theorem 7.6 is precisely the harmonic
net, the elements of which (see Chapter 4) may be placed in one-to-one correspondence with
the set of all rational numbers. When (by assumption) the points of this harmonic net con-
stitute the totality of points on the line, we have what will be called rational projective
geometry in the plane. In this geometry a projectivity which leaves any three distinct
points A4, B,C of a line fixed also leaves fixed the harmonic conjugate of any one of these
points with respect to the other two and, hence, leaves fixed every point of R(A,B,C), that
is, every point of the line. We state this as the
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Lemma: If a projectivity leaves each of three distinet points of a line of the rational
projective plane invariant, it leaves every point of the line invariant.

In Problem 7.13 we prove a

Fundamental Theorem: Given in the rational projective plane three distinct collinear

- T T points A, B, C and another three distinct collinear points A’, B’, C’,
on the same line or on distinct lines, there is one and only one
projectivity which carries the triple 4, B, C respectively into the
second triple A’, B, C’.

In algebra, the set of rational numbers is obtained by means of the rational operations
on the unit 1 and may be extended to the set of real numbers either by a construction
(Dedekind cut) or by postulating the existence of non-repeating infinite decimals which obey
the same laws of operations as the rationals. Here, the set of rational points on a line
has been obtained from a triple of points on the line by means of harmonic sets and may
be extended to the set of all real points on a line either by a construction or by

Axiom 11. There exists a projective line the totality of whose points are in one-to-one cor-
respondence with the extended real number system and a separation relation:
A, B separates C,D if and only if (A4,B;C,D) <0 such that Axioms 1-10 are
satisfied.

Solved Problems

7.1. Prove: If p and ¢ are distinet lines, then there is at most one point on both.

By Axiom 3 there is at least one point, say B, on both p and q. Suppose there is a second point
S = R on both p and g. Then on the distinct points B and S there are two distinct lines. Since this
contradicts Axiom 2, the proof of the theorem is complete.

7.2. Prove: Not all lines are on the same point.

Let P be a point and ¢ be a line. Should P not be on g, the proof is complete. Suppose then that
Pisong. Let Q=P be another point on g (Axiom 4) and R be a point not on g (Axiom 5). Now
R # Q (why?); hence, by Axiom 1, there is'a'line p = QR on both @ and B. Since p+q=Q and

P 5 @, then p is not on P (Theorem 7.1) and the proof is complete,

7.3. Prove: There are at least three distinct lines on any point.

Let P be a point and p be a line not on P (Theorem 7.2). On p take three distinct points (Axiom
4); call them A,B,C. Since P is not on p, then P+ A, P# B, P+ C and so a = PA, b = PB,
¢ = PC are three lines on P. Consider the lines ¢ and b. Since a*p = A, bP=DB, and B* A,
then B is not on a and 4 is not on b; hence, a 7 b. By repeating the argument, we have finally
@ #* b, b+ ¢, ¢+ a which completes the proof.

74. Prove: If there are exactly n» =38 distinct points on some line, there are exactly
n distinet points on every line.

Denote by p the line on which there are exactly n distinet points 4,,4,,44,...,4,. On any of
these points, say A,, take the distinct lines ¢ and 7, where p %y, p ¥ r (Theorem 7.3). On r take
another point B # A, (Axiom 4) and consider the » joins of B and the points A;,4,, A5, ..., 4,.
As in the proof of Problem 7.3, these » lines are themselves distinct and each is distinet from p and
q. Thus g sections these =» lines in n distinet points one of which is ¢+p = A,. Thus, there are at
least n points on ¢. Suppose there are n + 1 points on q. The reader will show there are then at
least n + 1 points on p and, hence, exactly n points on ¢q.
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7.5.

7.6.

7.7.
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Prove: If there are exactly » distinct points on any line, there are exactly n*—n-+1
distinct points in all.

Let p be a line and P be a point not on p (Axiom 5). On p there are n distinct points (by hypoth-
esis) which with P determine n distinct lines (proof of Problem 7.4). On each of these lines are n

distinct points (Theorem 7.4) one of which is P. Thus, exclusive of P, there are =n(n— 1) distinet
points and, including P, there are n(n—1)+1=mn2—n+1 distinct points in all.

Construct (if possible) a model for a geometry in which there are four points on
any line.

By Theorem 7.5 there will be 42— 4+ 1 = 13 points in all. We shall proceed as in Example 2
using the set {0,1,2} with addition and multiplication tables

+|0 1 2 . 0 1 2
0 0 0 0o 0 o0
1 1 2 0 1 0 1 2
2 2 0 1 2 a 2 1

Note. The elements of the set {0,1,2) consist of the remainders when the natural numbers are
divided by 3. The natural numbers are then separated into three classes: (1) 8,6,9, ... represented
by 0, (2)1,4,7, ... represented by 1, and (3) 2,5,8, ... represented by 2. The result of any opera-
tion with these numbers is again replaced by its representative, Thus 2+2 =2:2 =4 is replaced
byland1+2=2+1=3 is replaced by 0.

The number of triples (xy, %9, 23) % (0,0,0) is 83—1 = 26. Having twice as many triples as
points, let us agree that the triples (e, b, ¢) and (2a, 2b, 2¢) be the same point. The required points
may now be given as follows:

A = (0,0,1) F = (1,1,0) J = (1,2,0)
B = (0,1,0) G = (11,1 K = (221)
c = (,0,0) H= (0,1,2) L =212
D =(0,1,1) I =(@1,0,2) M =122
E = (1,0,1)

(Note that (2,1,1) = (2:2,2+1,2-1) = (1,2,2) = M, (2,0,1) = (1,0,2) = [, ete.)
These points lie by fours on the lines, as follows:

2y =0: A,B,DH xy+x=0: A J, LM

xe = 0: A,C,E,I 2,+%3=0: B LKM

3 =0: B,C,F,J x5+2x3 =0: C,HK,L

w1 +2x =0: A F,GK x oyt =0: GHIJ
2y -+ 225 0: B,E,G L 2, +2x+xs =0: DFILL
x2+2m3 =0: C,.D,G,M x1+$2+2$3 =0: D,E,J,K

Il

2x1+x2+x3=0: E,F,H,M

The reader may try his hand at constructing a figure. None is given since it is of no appreciable
help in the study of the 13-point geometry.

Prove: The four points on any line in 13-point geometry when taken in any order
form a harmonic set.

Consider the collinear points B,E,G,L. We first establish H(B,E;G,L). The line
%y %y + 23 = 0 on G meets the lines z; =0 and %3 =0 on B in the points H and J respectively.
The line EH meets x; =0 in F and the line EJ meets «; =0 in D. The line FD is on L and so
H(B,E; G,L). By construction we also have H(B,E; L,G), H(E,B; G,L) and H(E,B; L, G).

The line 2@, +xp+ @3 =0 meets #; =0 in H and «3 =0 in F. The line GH meets 23 =10
in J and the line GF meets #; = 0 in A. Since the line AJ is on L, we have H(B, Gy E,L) and also
H(G,B; E,L), H(B,G; L, E), H(G, B; L, E).
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7.8.

7.9.

Consider the points D and J in which the line »; + 25+ 225 =0 on E meets z; =0 and 23 =0
respectively. The line LD meets #3 =0 in F and the line LJ meets #; = ¢ in A. Since AF is on
G, we have H(B, L; E, G); then also, H(L,B; E,®), H(B,L; G,E), H(L,B; G, E).

The remaining cases: H(G,E; B,L), H(E,L; B,E) and H(E,L; B,G) are left for the reader.

For a model of the 31-point geometry (6 points on any line) take as points the triples
(@1, T2, x3) # (0,0,0), where each of the z; is from the set {0,1,2,3,4} of remainders
when the natural numbers are divided by 5, and as lines the equations of the form
1%1 + Oz + asts = 0 where each of the a; is from the same set of remainders ex-
cepting only the choice ai=a,=a;=0. We also agree that (jui,jxs, jzs), where
(7 = 1,2,8,4), are the same point and that j(a.®: + asx2 + asxs) = 0 are the same
line.
(a) Show that (1,2,3) and (4, 3,2) are the same point.

Here (1,2,3) = (4+1,4+2,4-3) = (4,8,12) which, when each entry is replaced by the

remainder obtained by dividing by 5, becomes (4, 3, 2).

(b) Show that (2,4, 8) and (8, 1, 2) are the same point.
Consider the first entries 2 and 8 of the triples; 2 must be multiplied by some j such that the
product 2j, when divided by 5, has remainder 8. With § =4, we have (4+2,4+4,4+3) or
(3,1,2) as required.

(¢) Obtain the line on H - (1,2,3) and I = (3,0,2).

Let ayx; + agxy + agxg = 0 be the required line. Sinee H is on the line, we have
(1) ay + 2a; + 8a3 = 0; since I is on the line, we have (2) 8a; + 2a; = 0. Solutions of this
pair of simultaneous equations will be found by inspection. Clearly, (2) is satisfied when
@1 =1 and a3 =1. Then, substituting in (1), we have 2a,+4 =0 whence a, = 3. The
required line is 2y + 3z, + 23 = 0.

(d) Obtain the lineon J = (2,8,2) and K = (1,1, 3).

We are to solve the simultaneous system: 2a; + 30, + 2¢; — 0 and a; + ay + 3a; = 0.
Adding the two equations, we find 3a; + 4a, = 0 and take a; = 2, a, = 1. From the first
equation we obtain 2a3 +1 = 0; then a3 = 2. The required line is #, + 3z, + 225 = 0.

(¢) Obtain the lineon J = (2,8,2) and L = (1,1,2).

The equations are 2a; + 8ay+ 203 = 0 and a; + ay + 2a; = 0. To the first equation
add 3 times the second; we have a, + 3a; = 0 and take @y, = 2, a3 = 1. From the first equa-
tion we obtain 2a; + 3 = 0. Then «; = 1 and the required line is @; + 2% + x5 = 0.

(f) Find the point common to the lines 2z, + 322+ 23 = 0 and 21 + 22 + 223 = 0.
To the second equation add twice the first; we have 32y + 423 = 0 and take @, =2,
3 = 1. From the first equation 2z; +2 = 0 and #; = 4. The required point is (4,2, 1) or
(2,1,8) or (8,4,2) or (1,8,4).
(9) Find the six points on the line #: + 82+ x5 = 0.
We find easily the points (0,1, 2), (2,0,8), (2,1,0) and (1,1,1). For the remaining points,
we take (1,2,3) and (8, 2,1).
(k) Obtain the equations of the six distinct lines on J = (2,8,2) of (d) and (e).
Partial Ans. 224+ 3z, + x5 = 0.

Consider on the line x; =0 of Problem 7.8 the six points 4 = (0,0, 1), B=(0,1,0),
D = (0,1,1), E = (0,1,2), F = (0,2,1) and G = (0,2,3). Show that the selec-
tion of a pair of these points, say A and B, separates the remaining points into two
pairs D,G and E, F so that H(A, B; D, G) and H(A, B; E, F).

On A take the lines #; + #; = 0 and 2x; + 2, = 0. On D take the line 3«; + 3z, + 2253 = 0
meeting x; + 2, = 0 in P=(2,3,0) and 2%+ a2, = 0 in R=(2,1,8). Let BP:x;=10 meet
201+ 2, =0 in @=(2,1,0) and BR:ax(+%3=0 meet x +x;,=0 in S=1(23,3). Then
QS: 20y + %3+ 3 = 0 meets x; =0 in G. Thus, H(4,B; D,®).
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On E take the line @ + @+ 243 = 0 meeting x;, + 2, = 0 in P and 20, + 2, = 0 in
T=(21,1). Let BT:2xy+#3=0 meet z;+2,=0 in U=(2,3,1) and BP:x3=0 meet
2¢;+ 2, =0 in Q= (2,1,0). Then QU:2x, + xp+ 3¢, = 0 meets # =0 in F and so
H(A,B; E,F).

Using known properties of Euclidean geometry, give a model for the projective plane
in which there are infinitely many points on any line.

It is to be noted that we have used in the first six chapters one such model. As points of the
projective plane we took the totality of points of the Euclidean plane together with certain addi-
tional elements called ideal points, and as lines the totality of lines of the Euclidean plane together
with an ideal line. It is easily verified that this was all done in such a manner as to satisfy our
five axioms. We give now another model.

Let O be a fixed point in ordinary space and consider the set of all lines on O and the set of all
planes on 0. Every pair of distinct lines determines a unique plane and every pair of distinet planes
determines a unique line. Thus a model having the required properties is obtained by taking the
lines on O as points of the projective plane, the planes on O as the lines of the projective plane, and
defining the relation “point on line” to mean “g line lies in a plane”.

Prove: If two triangles are perspective from a line, they are perspective from a point.

Consider in Fig. 7-3 the triangles ABC and A'B'C’ so situated that the points P = AB-A'B,
Q=BC-BC, R=CA-C'A’” areon a line 0. Now the triangles AA’'R and BB'Q are perspective
from P; hence, by Axiom 6, they are perspective from a line. On this line are the points
O =AA'*BB’, C=AR*BQ and C' = A'R-B'Q. Thus the lines AA’, BB’,CC" are on O and the
triangles ABC and A'B'C’ are perspective from this point.

AI

Fig.7-3

Prove: In any projective geometry satisfying Axioms 1-10 inclusive, there are
infinitely many points on any line.

Refer to Fig. 7-4 below in which A,B,D are distinct points on a line 0. By Axiom 7, there
exists a point F'; on the line such that H(A, B; D, Fy). By Axiom 8, the pairs A, B and D, F, separate
each other and, by Axiom 9, the points A, B, D, F, are distinct.
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D B F, F, F, A

Fig. 74

By Axiom 7, there exists a point F, on the line o such that H(,F,; B,F,). By Axiom 8, the
pairs A,F; and B,F, separate each other and, by Axiom 9, the points A,B, F,,F, are distinct.
Now A4, B and D, F; also separate each other; hence, by Axiom 10, we have that the pairs A, B and
D, Fy separate each other. Then D and Fy are distinet and so A, B, D, F,F, are distinct.

By Axiom 7, there exists a point F'5 on the line such that H(4, Fy; F,F;). Then A,Fy and Fy, Fy
separate each other and A, F'y, F,, F'; are distinct. Since 4,F, and B, F, also separate each other, we
have, by Axiom 10, that 4, F'; and B, F3 separate each other; hence, B and Fj are distinet. Similarly,
since A,B and D,F, separate each other, we have A, B and D, F'; separate each other and so D
and Fy are distinet. Thus A,B,D,F,F,, Fy are distinct.

By Axiom 7, there exists a point F, on the line such that H(A,F3; Fy,F,). By repeating the
argument above, we find that 4,B,D,F,, F,, F3, F, are distinct; and so on, without end. We have
proved (see the first paragraph of the concluding section of Chapter 4) that the points of a har-
monic sequence on a line are infinite in number.

Now, in fact, Axiom 7 assures us of more: there is a harmonic net R(A,B,D) on the line o.
Since this net contains the harmonic sequence discussed above as a subset, the points of the
harmonic net are also infinite in number.

Prove the Fundamental Theorem: Given in the rational projective plane three dis-
tinct collinear points A, B, C and another three distinet collinear points A’,B’,C’ on
the same line or on distinct lines, there is one and only one projectivity which carries
the triple 4, B, C respectively into the triple 4’, B, .

First, we establish Theorem 1.3, page 14, in the rational projective plane, validating the con-

structions by the axioms. Thus, one projectivity is assured. Now suppose there were two
projectivities

(4,B,C,D) = (4',B',C",D’) and (A,B,C,D) = (4',B',C", D™y
where D is some point collinear with, but distinet from the points of the first triple. Then
(Al' BI, Cl’ DI) = (Al’ BI, C/,D/f)

But this projectivity has three invariant points; hence, by the Lemma, D' = D” and so there
can be but one projectivity.
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Supplementary Problems

Show, using Fig. 7-1 or Fig. 7-2, that in 7-point geometry there exist projectivities which inter-
change any two of the three points on a line.

State and prove the dual of Problem 7.14.

In Fig. 7-2 verify that the diagonal points of the complete quadrangle ABCG are collinear. Is there
a complete quadrangle for which this is not true?

In the 13-point geometry of Problem 7.6 verify:

(¢) The seven points A,B,C,D,E,F,G domot constitute a 7-point geometry. (Further analysis will
show that this is also true of any 7 of the 13 points.

(b) The diagonal points of the complete quadrangle AFIM are the non-collinear points AF «IM = G,
AI-FM=E and AM-FI=L. Consider one or more other complete quadrangles; also the
dual for one or more complete quadrilaterals.

(¢} The triangles DEL and GIK, being perspective from the point C, are perspective from the line
#; = 0. Check other pairs of triangles.

(d) The Theorem of Pappus holds, but always in the form of the special case (page 40). Hint. Take
C,E,I and K,F,G and show that the line of Pappus is + %, = 0. Consider one or more
other pairs of collinear triples.

() The Fundamental Theorem holds.

Given the points K =(2,3,2), L= (3,1,1), R=1(,1,3), P =230, ¥Y=(,1,1) of the 31-
point geometry (Problem 7.8). Show: {a) The line KP is on A = (0,0,1). (b) The line KR is on L.
(c) The lines KL and PY areon Z = (2,0,1).

For the points on 2z; = 0 of Problem 7.9, show that
(A:B’DrGrE,F) ~ (A’B9G9D7F7E)

Hint. Project from P = (2,3, 0) onto % + x5 = 0 and then from V = (2,8,1) back onto z; = 0.
Thus, the selection of a pair of points (see Problem 7.9) on a line separates the remaining points

into two pairs, each of which is a reciprocal pair in the hyperbolic involution on the line having
the initial pair as double points.

(@) On the line 2y =0 of Problem 7.9, verify H(A, D; B,E) and H(B,D; E,&.

(b) Assume H(A4,B; D, @) in Problem 7.9 implies that the pair D, G separates the pair A,B, and
likewise for H(A,D; B,E) and H(B, D; E,G) of (a). Obtain a contradiction.

(¢) On the line «; + 3uy 4+ x5 = 0 of Problem 7.8(g) take any two points as diagonal points of a
complete quadrangle. Show that the third diagonal point is not on the line,

(d) Select any three lines of Problem 7.8(k). On the first line select distinet points A, A’ each dis-
tinct from J; similarly, select B, B’ on the second line and C,C’ on the third. The triangles
ABC and A'B'C’ are perspective from the point J. Show that they are also perspective from
a line.

On each of the lines xz; + %y = 0 and x4+ 2z, = 0 on the point A = (0,0,1) of Problem 7.8,
select a triple of distinet points — X,Y,Z on one and X', Y’,Z' on the other — such that XX', YY',
Z7Z' are not concurrent. Find the equation of the line of Pappus. Is this line on A?



Chapter 8

Point Conics and Line Conics

INTRODUCTION

The study of conics or conic sections, that is, of the plane sections of a right circular
cone, began quite early (perhaps, around 430 B.C.) in the history of mathematics. Among
the conic sections are included the so-called degenerate or singular conics (for example, a
single point, a pair of distinct lines, two coincident lines) as well as the non-singular conics.
In turn, the non-singular conics are classified as parabolas, hyperbolas and ellipses (includ-
ing circles).

In projective geometry the term point conic is applied to certain non-degenerate loci of
points and dually, the term line coniec is applied to certain non-degenerate envelopes of lines.
That these point and line conics are indeed the familiar non-singular conics of analytic
geometry will become apparent as we continue our study. In this chapter, for example, we
show that they have in common the properties: (a) a line (point) cannot intersect (join) a
point (line) conic in more than two points (lines) and (b) five points (lines), no three on the
same line (point), determine a unique point (line) conic. Throughout this book it is to be
understood that the terms point conic, line conic and conic refer to non-degenerate loci and
envelopes unless explicitly stated otherwise.

THE POINT CONIC
Consider in Fig. 8-1 below the non-perspective projectivity

R(a,b,¢c,...) = S(a/,b,¢,...)

between pencils of lines on distinet centers B and S. The totality of points A =a-a/,
B=b-b,C=c-¢,... common to pairs of corresponding lines of the two pencils is called

<§T6i’ﬁf conicy In analytic geometry a conic was thought of as being traced out by a moving
point; in projective geometry a point conic is constructed point by point. This consists
essentially in taking any other line x on R and constructing its correspondent 2” on S. To
do this, we use the given pairs of lines a,a’; b,b’; ¢,¢’ to locate the point of Pappus (center
of projectivity) P as the intersection of (a-¢’)(a’-¢c) and (b-¢’)(b’+¢). For any other line
(as d) on R, let the join of P and @’-d meet the line a in D’; then SD’ =d’ is the corre-
gpondent of d in the projectivity and d-d’ = D is another point on the point conic. Again,
for any other line (as e) on R, join P and b’ - e meeting b in E’; then SE’ = ¢’ is the corre-
spondent of ¢ and e- e’ is another point on the point conic; . .

Let the line of centers RS be called s when considered as a member of the pencil on R
and be called 7 when considered as a member of the pencil on S. Now s<¢'=38; let
PS-¢c=S8’. Then S§ = ¢’ is the correspondent of s and s-s’ =8 is a point on the point
conic. Similarly, R is also a point on the point conic.

83
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Fig. 8-1

Generally, on any line z of the pencil on R there are two distinct points of the point
conic — B and X = 2+ 2’ where 2’ on S is the correspondent of z in the projectivity. The
line PR = r is an exception since its correspondent is " = RS and 77 = E. We define

‘ A tangent to a point conic is any line on which there is one and only one point of
the conic.

Thus for the point conic of Fig. 8-1 both PR and PS are tangents. We have proved

Theorem 8.1. The tangent to a point conic at the center R (S) of one of the pencils of lines
generating it is the correspondent of the line of centers RS thought of as a
member of the pencil on S (R).

To show that R and S play no particular roles as points of the point conic generated by
projective pencils of which they are centers, we prove in Problem 8.1

Theorem 8.2. Any two distinct points on a point conic may be used as the centers of two
projective pencils by which it is generated.

There follow

Theorem 8.3. A point conic is uniquely determined by any five of its points.
For a proof, see Problem 8.2,

Theorem 84. Three distinct points of a point conic are never collinear.

Theorem 8.5. Five distinct points, no three of which are collinear, determine a unique
point conic.

Theorem 8.6. On any point of a point conic there is one and only one tangent to the point
conic.
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THE LINE CONIC

The dual of a point conie, that is, the totality of lines joining corresponding points of
two non-perspective projective pencils of points on distinct lines (azes) is called am ’
Consider in Fig. 8-2 the non-perspective projectivity

A,B,C,...) = s(A",B’,C",...)

on distinct axes r and s.. Then AA’, BB/, CC’,r, s are lines of the line conic generated by
the projectivity. To construct other lines, we. first locate the line of Pappus (axis of pro-
jectivity) » by joining AC’-A’C and BC’-B’C. For any other point (as D) on 7, let
A’D-p=D;; then AD;-s =D is the correspondent of D in the projectivity and DD’ is
another line of the line conic. ’

Fig. 8-2

Generally, on any point X of the pencil on 7 (also X~on 8) there are two distinct lines
of the line conic — 7 and # = XX’ where X’ on s is the correspondent of X in the projectivity.
The point p-s= 8" is an exception since its correspondent is S=7-s and S’ =s. We
define o

A\poi contact of a»ling_,#c‘ggic‘)is any point on which there is one and only one
line of the conic. - -

It is not difficult to prove

Theorem 8.I'. The point of contact of a line conic on the axis r (s) of the pencils of points
generating it is the correspondent of the point r+s thought of as a member
of the pencil on s (7).
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The duals of Theorems 8.2-8.6 follow readily. In particular, there are

Theorem 8.5’. Five distinct lines, no three of which are concurrent, determine a unique

and

line conic.

Theorem 8.6'. On any line of a line conic there is one and only one point of contact with the

8.1.

line conic.

Solved Problems

Prove: Any two distinet points on a point conic may be used as the centers of two
projective pencils by which it is generated.

Consider in Fig. 8-3 the point conic generated by the two pencils R(a,b,¢,d,...) and
S(e’,b’,¢',d’, ...) of which at least the points 4, B, C,D have been constructed as in Fig. 8-1. Let
AB=m, AC=n; mre=K, med=L; n*¥ =T, n*d =U; b’ +d=7V. Then since

((l, b, e, d) ~ (a’” b,y ¢, d,)
we have (A,B,K,L) = (A, T,C,U)

But this latter projectivity is a perspectivity; hence BT, CK, and LU are on a common point M.

Fig. 8-3

Consider now

(BA,BR,BS,BD) = (L,R,V,D) = (U,N,S,D) = (CA,CR,CS,CD)

Then (BA, BR,BS,BD) = (CA,CR,CS,CD)

and, moreover, the intersections of corresponding lines are on the point conic; hence this projectivity
also generates the point conic.
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8.2

8.3.

8.4.

Prove: A point conic is uniquely determined by any five of its points.

Let A, B,C, R, S be any five points of a given point conic. By Theorem 8.2 any two of the points
(say, B and S) may be taken as the centers of two pencils of lines which generate the point conic.
By the Fundamental Theorem the remaining points establish a unique projectivity

(RA,RB,RC) = (SA,SB,SC)

which, in turn, generates the given point conie.

For the point conic generated by R(e,d,c,...) = S(o/,b’,¢’,...) of Fig. 8-1, construct
the tangent at B.
Let the given point conic be considered (see Fig. 8-4) as generated by projective pencils with

centers at B, the point at which the tangent is to be constructed, and any other point of the conic,
say R; that is, consider the point conic as generated (see Theorem 8.2) by the projectivity

B(a",¢",b',...) = R(a,cs,...)

where BA = o/’ and BC = ¢"’. Locate the center of projectivity @ on (a’ + 8)(a+ b’) and (¢’ « s){c - d').
The required tangent is @B.

Fig. 8-4

Construct the line conic determined by four lines, no three on the same point, and the
point of contact on one of the lines.

In Fig. 8-b below, let the given lines be a,, @y, a3, @, and the given point of contact B on a,.
Take ay and any other line, say a4, as the axes of the projective pencils of points which generate
the line conic. We now establish the projectivity. Let asta;=A, az*a,=A’ ay+a3=C,
ay* a3 = C’'. By the dual of Theorem 8.1, the correspondent on a, of B on a, is the point as+a, = B'.
Thus the generating projectivity is -

as(4,B,C,...) = a44",B,C',...)
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Fig.8-5

Next, we locate the axis of this projectivity, Since B is a point of contact on a, (that is, by our
choice of generating pencils), B is on the axis of projectivity. Another point on this axis is
AC' - A’C = U; thus the axis of projectivity is BU = p.

Finally, take on a; any other point D. We are to construct its correspondent on a4. Let
A'Dep=V and AV-.a,=D'. Then D’ is the required correspondent of D and DD’ is another
line of the line conic.

Supplementary Problems

Show that the point conic generated by two perspective pencils of lines on distinct centers is
degenerate and consists of the axis of perspectivity and the line of centers, that is, the line joining
the centers of the two pencils. '

Consider the dual of Problem 8.5.
Show that if a point conic has three collinear points, it is degenerate.
In Fig. 8-1, prove R is on the conic; in Fig. 8-2 prove R =p-*r isa point of contact.
Prove: Theorem 8.4, Theorem 8.5, Theorem 8.6.
Take any five points, no three of which are collinear, and construct several additional points of the
point conic on the given points.
Hint. It will be noted that an ellipse is used in the figures; this is done in order to keep the
constructions on the page. It is suggested that for all constructions an ellipse be traced first and

then the given points and lines be taken with respect to this ellipse. Why is there no loss in gen-
erality by so doing?
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8.11.

8.12.

8.13.

8.14.

8.15.

8.16.

8.17.

8.18.

8.19.

8.20.

Take any five lines, no three concurrent, and construct additional lines of the line conic on the
given lines.

Construct the dual of Problem 8.3.

Given three lines a, b, ¢ of a line conic ' and the points of contact A and B on a and b respectiirely,
construct: (i) additional lines of (’, (ii) the point of contact on e.

Hint. Take A and B as the centers of the projective pencils generating (.

Given three points 4, B, C of a point conic  and the tangents ¢ and b at A and B respectively, con-
struct: (i) additional points of (, (ii) the tangent at C.

If A,B,C are three distinet points on a line k and if P,Q are distinct points neither of which is
on k, show that R = PA-QB, S = PA+QC, T = PB*QA, U = PB+QC, V = PC+QA,
W = PC+* QB are on a conic.

Prove: If XYZ is a variable triangle (see Fig. 8-8) whose sides s = YZ, y = XZ, 2 = XY are on
the fixed points U, E, D respectively while Y moves along the fixed line b = CB and Z moves along
the fixed line CA, the vertex X moves on a coniec.

Fig. 8-6

In Problem 8.16, show that  is on 4,B,C,D,E.
Hint. When x coincides with BE so also does ¥ and then X is at B.

Use the results of Problems 8.16 and 8.17 to devise another procedure for constructing a conic on
five given points A, B, C, D, E of which no three are collinear.

Dualize Problems 8.16, 8.17, 8.18,

Prove: If the vertices of two triangles are on a conic (, the sides of the triangles are tangent to
another conic (.
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Poles and Polar Lines

THE POLAR LINE

On the point conic (¢ of Fig. 9-1, take any three pairs of distinet points X, XA, Ay
B, B; such that each pair is collinear with a given point P, not on C. Let XA —=a, XAi= 0,
XB=b, XBi=by; XA=«, XiAi=a;, XuB=V, XiB1 = bi. Then (see Theorem 8.2,
page 84)
X(CL, b, a1, bl) = X}(G/, b’, a{, b’l)

The center T of this projectivity is on (a-b’)(a’-b) and (a- af)(& - a1). Denote by p the line
on ara,=K, ¢/~a;=L, and T. Since K,L,P are the vertices of the diagonal triangle
of the complete quadrangle XAA;X:, we have H(a,ai; p, KP) by Theorem 4.12, page 48..
Then easily H(X, X:; P1, P), where P;=XXi-p, and H(4, As; A}, P), where Al =AA-p.

Fig.9-1

Similarly, using the complete quadrangle XXB:B, we have b bi=N, b’+bi=M and
T on a line, say p’, and H(X, Xy; Pi, P), where P{=XX,-p’. But H(X,X:;P,P) and
H(X, Xy; Pi, P) imply P{=Py; hence p’=p and H(B, B:; Bi,P), where Bi= BB:'p.

90
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Now p is determined (see Theorem 8.1, page 84) by T, the common point of the tangents
to C at X and X, and by P,, the harmonic conjugate of P with respect to X and X;. Thus
for the given conic (, the line p depends at most on the collinear points P, X, X;. We will
show that p depends solely on the point P,

Let R and S be points of  on p. Then PR (also PS) is tangent to . For, suppose that
PR meets ( again in R;+ R and let R{ on PR be such that H(R, R:; Ri, P). By repeating
the argument above for the complete quadrangle XX,R:1R, we find the point Ri to be on p.
But now (see Problem 4.7, page 53) P and R coincide, contrary to the assumption that P is
not on . Thus since R and S depend solely upon P, so also does the line p = RS.

At this point we have proved a number of theorems regarding the points of the line p
which yill be listed below. First, we take one of them (our choice) as a definition:

/f P, any point not on a given point conic (, is a diagonal point of any complete

quadrangle whose vertices arepoints of (, then the other two diagonal points determine

a unique line p, called theLolar line (polar of P with respect to . If P is a point of
C, the polar line of P with respect to C is the tangent to C at P.

There follows

Theorem 9.I. On the polar line of P with respect to " are the harmonic conjugates of P
with respect to every pair of points of ( collinear with P.

Theorem 9.2. For any complete quadrangle whose vertices are points of (, the polar line
with respect to  of each vertex of the diagonal triangle is its opposite side.

Theorem 9.3. On the polar line of P with respect to C are the points of intersection of the
tangents to ( at every two of its points collinear with P.

Theorem 9.4. On the polar line of P with respect to C are the points of contact of the tan-
gents, if any, to  through P.

The insertion of “if any” in Theorem 9.4 requires an explanation. The reader is
quite aware that, in Euclidean geometry, no tangents to an ellipse can be drawn through
its center since the center is “inside” the ellipse. In projective geometry, a point conic
separates the projective plane into two regions — a region inside the conic through each
point of which every line meets the conic in two points and a region outside the conic
through each point of which some lines meet the conic and others do not. Thus through
no point inside the conic can a tangent to the conic be drawn while through every point
outside the conlc two tangents to the conic can be drawn.

I
o

\The dual of Flg 9-1 is illustrated by Fig. 9-1’ below. Here =z,x; @,a:; b,b; are three
pairs of distinct lines of the line conic C’ which are concurrent with any selected line p
not on (’ (that is, not a line of (’). Let z-a=A4, 2+a1=4:;, z-b=B, z-b= By
10 =A%, xica1= A}, 21+b=DB, x by =B Then, by definition,

z(A,B, A, B) ~ x(A’,B, A}, B))

The axis of projectivity ¢ is the line determined by AB’* BA’ and AA1+ A’A;; P is the inter-
section of AA1 =1, A’A;=Fk and t; and k,I,p are the sides of the diagonal triangle of the
complete quadrilateral zaa.x,. We leave for the reader to complete the discussion and define:

If p, any line not on a given line conic (7, is a diagonal line of any complete quad-
rilateral whose sides are lines of (’, then the other two diagonal lines determine a unique
point P, called the pole of p with respect to (. If p is a line of (/, the pole of p with
respect to (’ is the point of contact on p.
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x, k

b
Fig.9-1'

The duals of Theorems 9.1-9.4 follow readily:

;"f Theorem 9.I'’. On the pole of p with respect to (’ are the harmonic conjugates of p with
{ respect to every pair of lines of (/ concurrent with .

\\\ "\‘ Theorem 9.2’. For any complete quadrilateral whose sides are lines of (, the pole with
\,\\‘Q; _J respect to (” of each side of the diagonal triangle is its opposite vertex.
[~ i ’
| Theorem 9.3’. On the pole of p with respect to ¢’ are the joins of the points of contact of
! ¢’ on every two of its lines concurrent with p.

i

\b Theorem 9.4’. On the pole of p with respect to (’ are the tangents to ¢’ (lines of (), if any,
at the points of contact of (’ collinear with p.

RELATION BETWEEN POINT AND LINE CONIC

On the point conic  of Fig. 9-2 below, take four points X, X1, B, B: and denote by
x, 1, b, b1 respectively the tangents to C at these points. Let BX,*B:. X =M, BX:B.Xi =N,
BB, XX:=P;, z-a:=T, b-by=U, b=V, birar=W, bex1=Y, bire=Z. Now

b(U,B,V,Y) = by(U,B, W,Z) = bBy,U,Z W)

by Theorem 2.10, page 25; hence b(U,B,V, Y) = by(By, U, Z, W) with BB, as axis.
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X,

= — b

N

¥ \

Z

v

N
1%»

2\

Z
m
Fig. 9-2

Suppose PBB; is held fixed while PXX, varies; then ¥ and W move along b and b; re-
spectively, generating ( as a line conic. We have proved
Theorem9.5. The tangents to a point conic constitute a line qu‘i_c,

Its dual is
7

Theorem 9.5'. The points of contact of a lgie conic constitute a point conic.

As a consequence, we now define the term conic to apply equally to a point conic together
with its tangents or to a line conic together with its points of contact. We may then speak
of the complete quadrangle XAX A4, of Fig. 9-1 as inscribed in the conic and of the complete
quadrilateral zaz,a; of Fig. 9-1’ as circumscribed about the conic. Theorems 9.2 and 9.2’
may be restated as follows:

Theorem9.2. If a complete quadrangle is inscribed in a conic, each side of its diagonal
triangle is the polar line of the opposite vertex.

Theorem 9.2’. 1f a complete quadrilateral is circumscribed about a conic, each vertex of its
diagonal triangle is the pole of the opposite side.

since, by definition, any conic is self-dual.

In Problem 9.1 we prove

Theorem 9.6. The complete quadrangle whose vertices are any four points of a conic and
the complete quadrilateral whose sides are the tangents to the conic at these
points, have the same diagonal triangle.
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In Problem 9.2 a partial proof is given of

Theorem9.7. 1f B is any fixed point.and b; is any fixed tangent of a conic and if X is a
variable point on the conic and z is tangent there, then as X varies,

(BX,...) = (bi*z,...)

CONSTRUCTIONS OF POLES AND POLAR LINES

Consider in Fig. 9-1 the polar line p of the point P with respect to the given conic. The
tangents to this conic from the points T and U on p determine the points X, Xi; B, B1 on the
conic. In turn, the lines XX and BB, determine the point P as the third diagonal point of
the complete quadrangle XX:B:B whose other diagonal points are M and N on p. This
together with Theorem 9.6 proves '

Theorem 9.8. If a line p is the polar line of a point P with respect to a given conic, then P
is the pole of p with respect to the same conic.

The polar line of T on p is XX; on P. This suggests

Theorem 9.9. If Q is a point on the polar line p of a point P with respect to a conie, then
the polar line of @ with respect to this conic is on P.

Whenever a conic is given completely, the polar line of a given point and the pole of a
given line can be easily constructed. If the given point P is on the conic, its polar line is
the tangent there; if the given line p is tangent to the conic, its pole is the point of contact on
p. Otherwise, if the given point is P (see Fig. 9-2), take on P any two lines meeting the
conic in the distinet points B, B: and X, X:. Let BX:*B: X =M and BX+B:iX:=N,; then
P, M, N are the vertices of the diagonal triangle of the quadrangle BB:X:X and, by Theorem
9.2, the line MN is the required polar line of P. The reader will verify that the above direc-
tions will also yield the polar line of a point (as M) inside the conic.

Let m of Fig. 9-2 be the given line whose pole M is to be constructed. By Theorem 9.9
the polar line of any point on m passes through M. Thus the intersection of the polar lines
of any two points on m is the required pole. An alternate construction when the given line
meets the conic in distinct points (as n in Fig. 9-2) is as follows: At each of the points of
intersection, construct the tangent to the conic; the point of intersection of these tangents
is the required pole.

In Problem 9.3 similar constructions are considered when -the conic is not given
completely.

CONJUGATE POINTS AND LINES

The pole-polar relation of Theorem 9.8 establishes a correspondence between the points
and lines of the plane such that to each point there corresponds a unique line, its polar line
with respect to the conie, and to each line there corresponds a unique point, its pole with
respect to the conic.

In Problem 9.4 we prove

Theorem 9.10. As a point varies over a line (pencil of points) its polar line with respect to
a given conic varies over a pencil of lines projectively related to the pencil
of points. )

e

—

T ~ Two points P and Q are called conjugate with respect to a conic if each lies on the polar
i line of the other with respect to this conic. Dually, two lines p and ¢ are called conjugate
‘ / with respect to a conic if each is on the pole of the other with respect to the conic,
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In Problem 9.5 we prove

Theorem 9.11. If two pairs of opposite vertices of a complete quadrilateral are conjugate
points with respect to a conic, so also is the third pair of opposite vertices.

SELF-POLAR TRIANGLES

A triangle is said to be self-polar with respect to a conic if each vertex is the pole of the
opposite side. Clearly, each side is then the polar line of the opposite vertex.

From Theorem 9.2 follows

Theorem 9.12. The diagonal points of the complete quadrangle whose vertices are any four
distinct points on a conic are, in turn, the vertices of a self-polar triangle
with respect to the conic.

Theorem 9.12 and its dual provide simple constructions of a self-polar triangle with re-
“spect to a conic having a given point (line), not on the conic, as a vertex (side). For, if two
lines (secants) are drawn through the given point A to meet the conic in four distinct points,
the other two vertices B, C of the diagonal triangle of the complete quadrangle determined
by these four points, together with A, are the vertices of a self-polar triangle with respect
to the conic.

In Problem 9.6 we prove

Theorem 9.13. If a triangle is inscribed in a conie, any line conjugate to one of the sides
meets the other two sides in a pair of conjugate points.

and its converse

Theorem 9.14. If a triangle is inscribed in a conic, any line which meets two sides of the
triangle in a p@jr_ of conjugate points \i?’, ggvr’x"jggabe__to;t’}}_rewqt»hgr side.

PR rn

Their duals are

Theorem 9.13’. If a triangle is circumseribed about a conic, any point conjugate to one of
the vertices joins the other vertices in a pair of conjugate lines.

and its converse

Theorem 9.14'. 1f a triangle is circumscribed about a conie, any point which joins two ver-
tices of the triangle in a pair of conjugate lines is _conjugate to the other
vertex, B T

Solved Problems

9.1. Prove: The complete quadrangle whose vertices are any four points of a conic and
the complete quadrilateral whose sides are the tangents to the conic at these points
have the same diagonal triangle. o

-

Consider in Fig. 9-2 the complete quadrangle XBB;X, and the complete quadrilateral xbb;x,
meeting the conditions of the theorem. Let w+z;, = T, beby = U, b=V, b = W,
21°b=Y, «w+b; =Z. The sides of the diagonal triangle of xbbyxy are TU,VW,YZ. By Theorem
93, TU=MN, VW =PM, and YZ = PN. But these are the sides of the diagonal triangle of
XBB;X;; hence the theorem.
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9.2.

9.3.
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Prove: If B is any fixed point and b; is any fixed tangent of a conic and if X is a
variable point on the conic and z is tangent there, then as X varies,

(BX,...) = (bi-a, ...)

Refer to Fig. 9-2 where now B, by, By, b = BB, X,, Y are fixed points and lines. As X varies

on the conic, we have by definition

But

the

(BX, ...) ~ (XIXJ ...)

b Y
(XX, ...) 5 P .) =& (byewy o)

point P varying over b”. Thus (BX, ...) = (by* =, ...) as required.

This proof covers the case when b, is not the tangent at B. The case when b; is taken as the

tangent b at B is left for the reader.

Let a conic C be given by five of its points A,B,C,D,E. Construct: (a) the polar
line 2 with respect to ( of any point X, (b) the pole X with respect to C of any line z.

(@)

Take B and C as @ﬁﬁrs of the projective pencils generating (.

Refer to Fig. 9-3(a). Let XB =10 and XC = c. Suppose the polar line of X with respect to
C meets b and ¢ in the points B" and C”". Then X and B separate harmonically the two points
of the conic on b while X and C” separate harmonically the two points of the conic on ¢. The
construction then consists in (i) locating the second points B’ and C’ of C on b and ¢ respectively,
(ii) locating the harmonic conjugates B’ and C" of X with respect to B, B’ and C, C’ respectively,
(iii) joining B" and C"'.

X

(@) (b)
Fig. 9-3

Refer to Fig. 9-3(3). Let BE-x =Y and CE-x =2Z. By Theorem 9.9, the pole of x is on
the polar lines of both ¥ and Z with respect to (. The construction consists in (i) locating
B’ and ¢’ the second points of ¢ on BZ and YC respectively, (ii) locating the harmonic con-
jugates R and S of ¥ with respect to C,C’ and E, B respectively and the harmonic conjugates
T and U of Z with respect to E,C and B, B’ respectively, (iii) intersecting RS and TU. (Or
locate the point of intersection of the polar lines of any two points on x.)
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9.4.

9.5.

Prove: As a point varies over a line (pencil of points) its polar line with respect to a
given conic varies over a pencil of lines projectively related to the pencil of points.

Although the conclusion is the same, the proofs differ according as the line is or is not tangent
to the conic. Suppose, first that the point P [see Fig. 9-4(a)] varies over a non-tangent m whose pole
with respect to the conic is M. Take E as a fixed point on the conic. Let the lines PR and RM
determine the points S and 7 respectively on the conic and the line PT determine the point U.
Finally, let RU-ST = N. By construction, PMN is the diagonal triangle of the complete quad-
rangle RSTU and MN =n is the polar line of P. Now in the figure, the line m and the points
B,M,T are fixed. Clearly, as P varies on m, the line = varies on M. That

(P,...) = (MN, ...)
follows from () P,...) = (RP, ...) = (TS,...) = (MN,..)

q

(@) (6)
Fig.9-4

Next, suppose that P [see Fig. 9-4(b)] varies over the line ¢ which is tangent to the conic at
Q. Let E be the point of intersection of two fixed tangents to the conic. Let PR = s and construct
its pole S. Since P is on s, its polar line is on S by Theorem 9.9 and since P is on g, its polar line is
on @, the point of tangency. Thus QS is the polar line of P. Now as P varies on q,

(ii) P,...) = BP,...) = (S,...) = (@S, ...
and (P, ...) = (@S, ...) as required.

Prove: If two pairs of opposite vertices of a complete quadrilateral are conjugate
points with respect to a conic, so also is the third pair of opposite vertices.

In Fig, 9-5,let A and L, B and M be the two pairs of opposite vertices of the complete quad-
rilateral pgrs which are conjugates with respect to a conic C not shown. We are to prove that D
and N are also conjugates with respect to the same conic. Denote by A’,B’,D’ the respective inter-

P
q
v
M,
L
K]
D 7

A’ A D’ B B —~

Fig. 9-5
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9.6.

9.7.
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sections of the polar lines of 4, B, D with respect to ( and the side . Now the points A’, B/, D’ are
also the harmonic conjugates of the points A, B, D with respect to the two points of C on the line 7;
hence A,A’; B,B’; D,D’ are three reciprocal pairs of an involution of the points on 7.

By Theorem 6.4, page 66, the lines A'L, B'M, and D'N are on a point K. Sinece both A’ and L
are on the polar line of A with respect to (, that polar line is A’L. Similarly, B'M is the polar line
of B with respect to ¢ and, then, K is the pole of r. Also, D is on r and D’ is on its polar line with
respect to (; hence D'K is the polar line of D. Finally, since D'K is on N, the points D and N are
conjugates with respect to (.

"Prove: If a triangle PQR is inscribed in a conic, any line conjugate to one of the sides

meets the other two sides in a pair of conjugate points and conversely.

Suppose A is the pole of the given line conjugate to PQ; then (see Fig. 9-6) A is on PQ. Let AR
meet the conic again in S and construct the complete quadrangle PQRS, having ABC as diagonal
triangle. Now ABC is a self-polar triangle with respect to the conic. The line BC, having its pole
on PQ, satisfies the hypothesis of the theorem. Moreover, the points B, C are a conjugate pair with
respect to the conic and the theorem follows,

Conversely, let A’ be the pole of the given line which meets PR and QR in a pair of conjugate
points. Let A’R meet the conic again in S and construct the complete quadrangle PQRS. In this
quadrangle the points B on PR and C on QR, being vertices of the diagonal triangle, are a pair of
conjugates and thus the line BC satisfies the hypothesis of the theorem. Since the pole of BC is
unique, A’ is at A on PQ. Thus the lines BC and PQ are conjugates and the theorem follows.

Fig. 9-6 Fig. 9-7

Prove: If two triangles ABC and XYZ are circumscribed about a conic (, their six
vertices lie on another conic (.

Consider the conic ( of Fig. 9-7 as generated by the lines joining corresponding points of two
projective pencils on the lines BC and YZ. Let BC-XY =D, BC-XZ=E; YZ-AB=17,
YZ+AC = W. Then

(B,D,E,C) = (V,Y,Z, W)

Now (XB,XD,XE,XC) = (B,D,E,C) = (V,Y,Z,W) = (AV,AY,AZ, AW)

Then (XB,XD,XE,XC) =~ (AV,AY,AZ AW)

and the projectivity generates a conic on which, by definition, lie 4, X, B,Y, C,Z as required.
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9.8.

9.9.

Prove: If two triangles are self-polar with
respect to a conic, their six vertices lie on
a conic.

~ Consider in Fig. 9-8 the self-polar triangles
ABC and XYZ with respect to a conic (. Let
BC+XY =V, BC*XZ = W; YZ+AB = D,
YZ+-AC = FE. Since V lies on BC, its polar line
with respect to  is on A and, since V lies on XY,
its polar line is on Z (Theorem 9.9); thus the polar
line of V with respect to ( is AZ. Similarly, the

polar lines of W,D,E with respect to ( are y
AY,XC,XB respectively. By Theorems 9.10 and
2.10, page 25, Fig. 9-8

(B,W,V,C) = (AC,AY,AZ AB) ]—% (EB,Y,Z,D) = (XB,XZ,XY,XC) = (XC,XY,XZ,XB)

Then (AC,AY,AZ,AB) = (XC,XY,XZ XB)
and 4,B,C,X,Y,Z are on a conie.

Prove: If two tangents to a conic (C vary in such a way that the joins of their points
of contact are tangent to another conic (’, then their points of intersection are on a
third conic .

Let x be a variable tangent to (’. Then its pole X with respect to ( is the point of intersection
of the tangents to C at the two points of C on x. We are to prove that as x varies on (', X varies
on a conie (.

Denote by a and b two fixed tangents to (";let a*2 =X, and b-z = X{. Then (' may be con-
sidered as generated by the projectivity

Xy, ...) = b(Xi, ...)

Fig. 9-9
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9.10.

9.11,

9.12,

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.
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Denote the poles of a, b, 2 with respect to ( by A4, B, X respectively. Sinece o and b are considered
fixed while » varies, so also A and B are fixed while X varies. Now AX is the polar line of X, and
BX is the polar line of X; with respect to (. As X; varies on @, its polar line with respect to (
varies on 4 such that
' aXy, ...) = AX, ..)

by Theorem 9.10. Similarly,
b(X1, ...}

]
£
tal

Thus (AX, ...)

and this projectivity generates the conic .

>
™
>

Supplementary Problems

Complete the proof of Theorem 9.7, that is, prove: If B is any fixed point and X is a variable point
on a conic and if b,z are their respective tangents to the conie, then (BX,...) = (brm, ...).

With respect to a conic completely drawn, construct the polar line of P when (a) P is inside, (b) P
is on, (¢) P is outside the conic,

With respect to the conic of Problem 9.11, construct the pole of the line p when (a) p has two dis-
tinet points in common with the conie, (b) p is tangent to the conie, (¢) p has no real points in com-
mon with the conic.

Prove Theorem 9.9. There are three cases to be considered: P inside the conic, P on the conic,
P outside the conie.

A conic ( is given by four of its points and the tangent at one of them. Construct the polar line
with respect to ( of a given point and the pole with respect to ( of a given line.

Hint. Let A,B,C,D on (C and b the tangent at B be given; let X be a point not on (. Take
A and B as centers of the pencils of lines generating ¢ and construct the second points A,B',C’ in
which XA, XB, XC meet (. Consider the complete quadrangles AA'BB’ and BB'CC'.

A conic  is given by three of its points and the tangents at two of them. Construct the polar line
with respect to C of a given point and the pole with respect to C of a given line.

Construct the polar line of a given point and the pole of a given line with respect to the conic (
when (a) ( is given by four of its tangents and the point of contact on one of them, (b) ( is given
by three of its tangents and the points of contact on two of them.

Hint. Use Problem 9.15 after first locating sufficient points of contact.

Construct the conic €, given:

(¢) Three of its points and the polar line p with respect to  of a point P not on (.

(b) Onme of its points and the polar lines p, ¢ of two distinct points P, @ not on (.

(¢) Two of its points and a self-polar triangle with respect to it. Why is ¢ not always unique here?
(d) Ome of its points, the tangent at that point, and a self-polar triangle with respect to it.

If A, B, C,D are four points on a line such that H(A, B; C, D), show that the polar lines of A, B, C,D
with respect to a conic ¢ form a harmonic set.

Prove: If two vertices of a triangle are the poles of their opposite sides with respect to a given
conic, the third vertex is the pole of its opposite side.
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9.20.

9.21.

9.22,
9.23.

9.24.

9.25.

9.26,

9.27.

9.28.

9.29,

9.30.

9.31.

9.32.

9.33.

9.34.

9.35.

9.36.

Prove: If, with respect to a given conic, each of the points P, @ is conjugate to a third point R, the
polar line of B with respect to the conic is PQ.

Show that if XY Z is a self-polar triangle with respect to a conic, one and only one of its vertices
is inside the conie.

\

In Fig. 9-7, prove that A,D,E‘, X,V,W are on a conic.
In Fig. 9-8, prove that the six sides of the given triangles are on a conic.

Let XYZ be a self-polar triangle with respect to a conic (. (a) Take any point A on ( and con-
struct a complete quadrangle inscribed in ( and having XYZ as diagonal triangle. Is this quad-
rangle unique? (b) Take any line @ on ( and construct a complete quadrilateral circumscribed
about C and having XYZ as diagonal triangle. Is this quadrilateral unique?

Verify (i) and (ii) in Problem 9.4. _
Hint. (i) requires only previous definitions; (ii) requires in addition the first part of the proof.

Prove: If @, S are two points on a conic  and A, C are a pair of conjugate points on any line con-
jugate to @S with respect to , then AQ < CS and AS - CQ are on (.

Hint. Let AQ,AS meet  again in P, R respectively; then A, C are diagonal points of the quad-
rangle PQRS.

Prove: Any line meeting two sides of a triangle in conjugate points with respect to a conic C passes
through the pole of the third side.

State and prove the dual of Problem 9.9.

Prove: If A and A’ are conjugate points with respect to a conic  and if AA’ meets ( in the points
P and @, then H(P,Q; A,A").

Hint. Let A be outside (; consider any inscribed quadrangle having P,Q as vertices and A as
diagonal point.

Prove: If the lines @ and b on C are two fixed tangents to a conic ¢ and if x, X are any other tan-
gent to ¢ and its point of contact, then a+*x and b+ x are separated harmonically by X and the
intersection Y of x and the polar line of C,

Let p and ¢ be two non-conjugate lines with respect to a conic (. Prove: {(a) Every point P of p
has a conjugate point @ on ¢. (b) With @ defined as in (a), the pencils of points p(P,...) and
(@, ...) are projective, the projectivity being a perspectivity only when p+q is on (.

Prove: As X varies over a given line, the polar lines of X with respect to two given conics inter-
sect in points on a third conie.

Prove: If the tangents to a given conic meet another conic ( in pairs of points, the tangents to
at these points meet on a third conic. Hint. Use Fig. 9-9.

Prove: Two conics ( and (' having four points and four tangents in common have also a self-
polar triangle in common.

Hint. Let P,Q,R,S be the four points and A4, B,C be the vertices of the diagonal triangle of
the quadrilateral whose sides are the four tangents. Let PA meet BC in X and the conics again in
X, and X,. Then H(P,X; A, X), H(P, X,; A, X), and the points 4, P, Q are collinear. Similarly, the
points A, R, S are collinear and A is a vertex of the diagonal triangle of PQRS.

Prove: If two complete quadrangles have the same diagonal triangle, their eight vertices are
either (a) by fours on two lines or (b) on a conic.

Hint. Let the qualrangles be PQRS and P'Q'R’'S’ having A = PQ+RS = P'Q +R'S,
B=PR-QS=PR +Q'8, C=PS+QR =P'S'+QR’ as diagonal points. For (a), suppose P, Q, P’
collinear and show that P, Q, P/, @’ must be collinear. For (b), suppose no three of the eight vertices
collinear. Denote by (C the conic on P, @, R, S, P’ and apply Problem 9.29 using the conjugate points
A and D = AP’ BC.

Prove: If two conics intersect in four points, their eight tangents at these points are either (a) by
fours on two points or (b) envelope a conic.



Chapter 10

Theorems of Pascal and Brianchon

PASCAL’S THEOREM

In 1640 Pascal proved [see Fig. 10-1(a))
Theorem 10.1 (Pascal’s Theorem). If a simple hexagon A14:A434:As4s is inscribed in a
conic, the intersections
e R =A1As A5, S = ArAs- AsAs, T = AsAs-AcAy
v of the three pairs of opposite sides are collinear. 7
T : For a proof, see Problem 10.1. v

The line RST of Theorem 10.1 is called the Pascal line of the hexagon A1A:A34445As.

The converse of Pascal’s Theorem:

Theorem 10.2. If the points of intersection of the three pairs of opposite sides of a simple
hexagon are collinear, the vertices of the hexagon are on a conic.

is also valid and suggests an alternate construction of the conic determined by five given

points, no three of which are collinear. For a proof, see Problem 10.2.

For the construction, see Problem 10.3.

For a singular conic consisting of two distinct pencils of points, Pascal’s Theorem
becomes the Theorem of Pappus. For this reason the Theorem of Pappus is sometimes
called the Theorem of Pappus-Pascal.

r

7]
/ ag

,a4

as

Fig. 10-1

/ BRIANCHON’S THEOREM

In 1806 Brianchon proved [see Fig. 10-1(b)] the dual of Pascal’s Theorem

Theorem 10.1’ (Brianchon’s Theorem). If a simple hexagon 10203040505 is circumscribed
about a conic, the joins

r=(a1°az)(ts* as), 8= (a2 as)(as*as), t=(as*as){ds" )

102
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of the three pairs of opposite vertices are concurrent. /
For a proof, see Problem 10.4.

The point r:s+t of Theorem 10.1’ is called the Brianchon point of the hexagon
102030506, )
The converse of Brianchon’s Theorem:

Theorem 10.2’. If the joins of the three pairs of opposite vertices of a simple hexagon are
concurrent, the sides of the hexagon circumscribe a conic.

is also valid and suggests an alternate construction of the conic determined by five given
lines, no three of which are concurrent.

For a singular conic consisting of two distinct pencils of lines, Brianchon’s Theorem
becomes the dual of the Theorem of Pappus.

SPECIAL CASES OF PASCAL’S THEOREM

In the proof of Pascal’s Theorem use was made [see Fig. 10-1(a)] of the projectivity
between two pencils of lines on the vertices (our choice) A and A4 of the hexagon:

(i) (A2As, AsAs, AsAs, AsAs) = (AsAr AsAs, AsAs, AsAs)

In this projectivity the correspondent of AsA4, considered as a line of the pencil on A, is
the tangent £ at A4 to the conic. Thus (i) may also be given as

() (AsAy Asds, AsAs, A2de) = (AsAy, Asds,t, Asdi)

which (see Fig. 10-2) is concerned with a simple pentagon A14,A3A,A4 inscribed in the conic
and the tangent at one of the vertices. Then, as in Problem 10.1, we have
(U,S,As, As) = (A244, A2As, AsAg, AsAg) = (AdA1, AuAs t,Adde) = (A1, T,V, A
8o that (U,8,A4, A6) = (A1, T,V, Ay)
and R=UA,-VAs is on ST. We have proved

Theorem 10.3. If a simple pentagon is inseribed in a conie, the tangent at one of its ver-
tices meets the side opposite this vertex in a point collinear with the points
of intersection of the other two pairs of non-consecutive sides.

\ Fig.10-2
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For our immediate purpose it'will be more convenient to consider the pentagon and its
tangent as a degenerate hexagon obtained when two of the vertices (here, A and As) coin-
cide and to choose appropriate notation. This latter consists merely (see Fig. 10-3) in
labeling the point of coincidence A4 s and the tangent there tis. (Note that as A4 and As
approach coincidence along the conic, the side AsAs of the hexagon approaches the tangent
ts,5 as limiting position.) In accordance with the principle of continuity, first formulated by
Poncelet, we assume that any property of the figure which continues to be a property as
the figure is so varied, will be a property of the figure in its limiting position. Thus we have
AAs tys =R, AsAs-AeAys =38, AsAsus-AcA: =T with R,S,T collinear as required by
the theorem,

Fig.10-3

Similarly, we may obtain

Theorem 104. If a simple quadrangle is inscribed in a conic the tangents at a pair of op-
posite vertices intersect in a point which is collinear with the points of
intersection of the two pairs of opposite sides of the quadrangle.

and

Theorem 10.5. 1If a triangle is inscribed in a conic, the tangents at the vertices meet the
respective opposite sides in collinear points.

SPECIAL CASES OF BRIANCHON’S THEOREM
Dually or by procedures similar to those used in the section above, we obtain

Theorem 10.3’. If a simple pentagon is circumscribed about a conie, the join of the point
of contact on one of the sides and the vertex opposite this side is concurrent
with the joins of the other two pairs of non-consecutive vertices.

Theorem 10.4’. If a simple quadrilateral is circumscribed about a conic, the join of the
points of contact on a pair of opposite sides is concurrent with the lines
joining the two pairs of opposite vertices of the quadrilateral.

Theorem 10.5’. If a triangle is circumsecribed about a conic, the lines joining the vertices
to the points of contact on the respective opposite sides are concurrent.
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THE CONVERSE THEOREMS
The converses of Theorems 10.3-10.5:

Theorem 10.6. If a line through a vertex of a simple pentagon meets the opposite side in
a point collinear with the intersections of the non-consecutive sides re-
maining, the line is tangent to the conic which circumsecribes the pentagon.

Theorem 10.7. If through a pair of opposite vertices of a simple quadrangle lines are
drawn which meet on the joins of the points of intersection of the opposite
sides of the quadrangle, the two lines are tangent to a conic which circum-
scribes the quadrangle.

Theorem 10.8. If through each vertex of a triangle a line is drawn to meet the opposite
side of the triangle and if the three points of intersection so obtained are
collinear, the three lines are tangent to a conic which circumscribes the
triangle.

are valid as, also, are the converses of Theorems 10.3’-10.5” (the duals of Theorems 10.6-10.8).
Each suggests an alternate construction to those given in Chapter 8. For certain of these,
see Problems 10.5-10.7.

ASSOCIATED 7»-POINTS AND #-LINES

Call any simple #-point inscribed in a conic  (any complete n-point whose vertices are
on (0) and the simple n-line formed by the tangent to C at the vertices (the complete n-line
whose sides are the tangents to ( at the vertices of the n-point) associates.

Consider the simple hexagon A1A:435A4.A5A¢ inscribed in the conic  (see Fig. 10-4) and
its associate aigsasasasas. The Pascal line of the inscribed hexagon is p = RST. Let
a1° g = P1, Ao A3 = P2, A3 Qg = Ps, Qs A5 = P4, as° Qg = Ps, as* 1 = Pe. Since PP, is the
polar line of R, P:P; is the polar line of S and PsPs is the polar line of T with respect to C,
these lines meet in a point B, the pole of p with respect to ¢. The point B is also the
Brianchon point of the eircumscribed hexagon. Thus,

Theorem 10.9. The Pascal line of any simple hexagon inscribed in a conic ( is the polar
line of the Brianchon point of its associated hexagon with respect to (.
Conversely, the Brianchon point of any simple hexagon circumscribed about
a conic (C is the pole of the Pascal line of its associated hexagon with respect

to C.
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Consider next the complete quadrangle (see Fig. 10-5) whose vertices P,Q, R, S are on
a conic (C and its associated complete quadrilateral. Applying Theorem 10.4 to the
quadrangle

PQRS, wehave PQ-RS=A; PS‘QR =B, p*r, q*s collinear;
PRSQ, wehave PR-QS=C, PQ:-RS=A4, p*s, q-r collinear;
PSQR, wehave PS-QR =B, PR-QS=C, p-q, r+s collinear.
The vertices of the diagonal triangle of PQRS are A, B, C; the sides of the diagonal triangle

of pgrs are (p-q)(r-s), (p+s)(g-7), (v-7)(q+s) which, in turn, are the lines BC, AC, AB.
We have proved
Theorem 10.10. Any complete quadrangle whose vertices are on a conic and its associated

complete quadrilateral with respect to that conic have the same diagonal
triangle. ‘

U

Fig.10-5

Solved Problems

10.1. Prove: If a simple hexagon is inscribed in a conic, the intersections of the three
pairs of opposite sides are collinear.

Consider in Fig. 10-6 below the six points A, A,, A3, Ay, A5, Ag of the conic  as vertieces of the
simple hexagon A A,A;AA4q Let AjAycAAs =R, AyA3z-A;Ag =S, AzA;-AgA; = T; we are
to prove R, S, T collinear.

Let AjA;+AsAg=U and A 445-AA;=V. From

(U,S,A5,A¢) = (AxA, ApAs, AgAyg AvAy) = (AA A AL AA5 Ady) = (A4, T,V, Ag)

there follows
(U,S,4546) = (A, T, V,Ag)

But this is a perspectivity; hence A,U,ST,AsV are concurrent at R and so R, S, T are collinear, as
required.
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10.2.

10.3.

10.4.

Fig. 10-6

Prove: If the points of intersection of the three pairs of opposite sides of a simple
hexagon are collinear, the vertices of the hexagon are on a conic.

Consider in Fig. 10-6 the simple hexagon AA,4;4,4;4; with R = AA,+A A,
S=A,A3°A5As T = AzA °AgA; collinear. Let U=A4,4,°A;Aq and V = A4,44+4,4; Since

(U,S, 45,49 = (41, T,V,Ag)

”~

there follows the projectivity

(AgA 1, AgAg, AsAs Avde) ~ (A4 AJA AJA5 A A

This projectivity generates a conic on which are by definition the points A4, 4y, A3, 4,, A;, 4.

Given five distinct points on a conic (, use Theorem 10.2 to construct another point
on (. .
Let the given points be labeled Ay, Ay, Ay, Ay, A5 as in Fig. 10-6. On A, take any line, distinet
from the joins of A; and the other given points, Our problem can be made more specific, namely,
locate on this line its second intersection 44 with C. For this reason, label the line as lg ;. Now
AAy-AAs=R; AzA -l =1T; RT=p, the Pascal line of the proposed hexagon; and
S =AyAz*p. But §=AyA4;+A;A, hence Agis on AyS. Thus Ag = Az81l4 ;.

Note 1. It is possible that the line selected is, in reality, the tangent to ( at A;. In this case,
another line on A, is selected as I ; and the above construction is repeated.

Note 2. The particular labels of the set of six attached to the given points are immaterial.
It is suggested that the reader relabel the given points as A4, Ay, A3, A5, Ag and, choosing on A,
some line as I3 4, locate A, on it.

Prove: If a simple hexagon is circumscribed about a conic, the joins of the three
pairs of opposite vertices are concurrent.

Consider in Fig. 10-7 below the six tangents ay, @y, a3, a4, a5, a5 of the conic ( as sides of the
simple hexagon a0,a3040505. Let (aq°as)(as*as) =7, {ag*ag)(as ag) =s, (a3°ay)(ag=a) =t We
are to prove 7, s,t concurrent.
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10.5.

10.6.
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Fig.10-7

Let (ay*ag)(as°ag) = and (a;°aglay*as) =v. From
(1,8, @5, Gg) = (Golly, Golla, Gols, Ao@g) ~ (Gally, Gallg, G4ls, 040g) = (@1, 1,7V, ag)
there follows (u, s, a5, ag) = (ay, ¢, v,0g)

But this is a perspectivity; hence a; * u, s* %, a5 * v are collinear on r and so 7, s,t are concurrent, as
required.

Note. The problem — Given five distinct lines on a conic (, i.e. five distinct tangents of a conic

C, construct another line of (. — is the dual of Problem 10.3. It is left for the reader to provide a
construction.

Given four points on a conic (
and the tangent at one of them,
locate another point on (.

Let the given points be A;, A3, A4, 45
and the tangent be on 4,. For our pur-
pose, relabel A, as A, and the tangent
as t;,, (see Fig. 10-8). On Aj take any
line, distinct from the joins of A5 and
the other given points, and label it 5 ¢.
‘We are to construct the point Ag in which
l5 ¢ again meets (. Now ty,°Ad5=
R, AyAg+ls =S, p = ES is the Pas-
cal line, and T=A A, p=A;AAA,.
Then AG = TAl * ls) [ Fig. 10-8

Given three lines (tangents) on a conic ( and the points of contact of two of them,
construct another line on (.

Refer to Fig. 10-9 below in which the given parts are: the line a5 with point of contact T, o,
the line ag 4 with point of contact T3 4, and the line as. On aj take a point, distinet from any known
point, and label it P5g We are to construct on P;¢ the line a5 on C. Now =T, (ay*as),
s = (ay*az)Ps g B = res is the Brianchon point, and t = BTs4 = Tj3a(ag*ays)- Then
ag = Ps (01,2* t)-
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as,3

ag Q3,4

Fig. 10-9 Fig. 10-10

10.7. Given five lines on a conie (, locate the point of contact on one of them.

7

Refer to Fig. 10-10 in which the given lines are labeled ay,as 3, a4, 05, 0g; We are then to con-
struct the point of contact Ty 3 on a5 3. Now 7 = (a1°ag g)(ay* as), 8= (agg°a)(ag*ay), B=1r*s
is the Brianchon point, and ¢ = B(as*ag). Then T, ;= t*ay ;.

se the Theorem of Pappus to prove Desargues’ Two-Triangle Theorem.

Consider in Fig. 10-11 the triangles A;A,A; and B,B,B; perspective from the point P. We are
to prove AA,*BBy, =L, A;A3*ByB; =M and AzA,;*B;B{ =N collinear. In order to use the
Theorem of Pappus, we must have additional triples of collinear points to work with, As a minimum,
we locate A1A3 ‘B2B3 - S, Ale 'A3B3 - T, AlAz'PS = U, BIB2'PS = V.

Using the triples of collinear points P,By, A, and A ,A5 S we have PAz-AB, = T,
PS+AA, = U, AyAz3*ByS =M collinear by the Theorem of Pappus.

Similarly, using the collinear triples P, A, B; and By, B3, S we find T, V, N collinear. Finally,
using the collinear triples 4,,B,, T and V, U, S we have L, M, N collinear, as required.

The proof of the converse of the Desargues Theorem is left as an exercise.

Fig.10-11
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10.9.

10.10.

10.11.

10.12.

10.13.

10.14,
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Supplementary Problems

Take five distinet points, no three of which are collinear, and locate several points on the conic
determined by them,

Take five distinct lines, no three of which are concurrent, and locate several lines on the conic
determined by them.

Using Fig. 10-12 and Fig. 10-12/, prove the Theorems of Pascal and Brianchon for singular conics.
Hint. Follow the arguments in Problems 10.1 and 10.4.

Fig. 10-12
8
ay 71
as
a3 B ) 5
v
t as
dy a4
Fig.10-12'

Given five distinct points on a conic (, construct the tangents to ( at any two of these points,

Given four distinct points on a conic  and the tangent at one of them, construct the tangent to
C at any one of the other points. Also, construct another point on C and the tangent at this point.

Given three distinet points on a conic ¢ and the tangents at two of them, construct: (e) the tangent
to ( at the third given point, (b) another point of (, (¢) the tangent at the point located in (b).
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10.15,

10.16.

10.17.

10.18.

10.19.

10.20.

10.21.

10.22,

10.23.

10.24.

10.25.

10.26.

10.27.

10.28.

10.29.

10.30.

10.31,

10.32.

10.33.

10.34.

State and construct the dual of Problem 10.12.
State and construct the dual of Problem 10.183.
State and construct the dual of Problem 10.14.

Prove: If a triangle is inscribed in a conic (, the tangents to C at the vertices form a triangle
perspective with the given one.

State and prove the dual of Problem 10.18.

Prove: If two triangles are perspective, the points of intersection of the sides of one with the
non-corresponding sides of the other are on a conic.

Hint. In Fig. 10-4, let the sides of the given triangles be A;4,, A4, A;As and Ay,A;, 4,45 AgA,
with p the axis of perspectivity.

Prove: If a simple quadrangle 44,434, is inscribed in a conic, the tangent at A, and the side
AzA,, the tangent at 4, and the side A;4,, and the sides A;4, and 4,4, intersect in collinear
points.

State and prove the dual of Problem 10.21.

Prove: If a simple quadrangle is inscribed in a conie, the intersections of the tangents at the two
pairs of opposite vertices and the intersections of the two pairs of opposite sides are four collinear
points.

State and prove the dual of Problem 10.23.

Prove: If the vertices of a complete quadrangle are on a conie, the intersection of the tangents to
the conic at a pair of vertices is collinear with the diagonal points of the quadrangle which are not
on the join of the pair of vertices.

State and prove the dual of Problem 10.25.

If a simple hexagon a,@,030.050¢ is circumscribed about a conic, prove that the points
Gy a3, G3° G5, @5 ° Gy, On * Oy, Gy * A6, G * Gz 8Te ON & conic,

Prove: If a triangle is inscribed in a conie, the sides on any vertex are separated harmonically by
the tangent on that vertex and the join of that vertex and the intersection of tangents at the other
two vertices.

State and prove the dual of Problem 10.28.
Complete the proof in Problem 10.8.

Given four tangents p, g, 7, s to a conic and the point of contact P of p, construct the points of con-
tact of the other tangents.

Two triangles ABC and A'B’'C' are perspective from P and p. If p*PA =A", p-PB=DPB",
p*PC=C" and H(4,A'; P,A"), prove: (a) H(B,B’; P,B"”) and H(C,(C’; P,C"), (b) the vertices of
the two triangles are on a conic.

Prove: A simple quadrangle inscribed in a conic and its associated simple quadrilateral with respect
to the conic have the properties: (i) the diagonals of the two form a harmonic set, (ii) the points of
intersection of the pairs of opposite sides of the two form a harmonic set, (iii) the diagonals of the
quadrilateral pass through the points of intersection of the pairs of opposite sides of the quadrangle.

Use Pascal’s Theorem to show that each of the following sets of points in Fig. 4-7 is on a conie:
(@) P,S,D,E,F,G (¢) P,R,F,G,I,J (e) P,Q,C,G,J,L
(b) Q,E,D,E,F,G @ S,Q,F,GIJ (f) B,S,C,F,J,N



Chapter 11

Desargues’ Involution Theorem

INTRODUCTION

In Chapter 6 involutions on a given line were established by means of complete quad-
rangles having no vertex on the line. The involution was

(a) elliptie if no diagonal point of the quadrangle was on the line,
(b) hyperbolic, with double pomt A, if just one diagonal point A was on the line,

(¢) hyperbolic, with double points A and B, if two diagonal points A and B were on
the line.

The three reciprocal pairs of an involution determined by the complete quadrangle PQRS
on any line, not on a vertex, may be thought of (see Fig. 6-4) as determined by the three
degenerate conics PQ, RS; PR, QS; PS,QR determined by the vertices. In 1639 Desargues
proved that the intersections, if any, of the line and a (non-degenerate) conic on the vertices
P,Q,R,S are a reciprocal pair in the involution. ~In this chapter we consider involutions
on a line or point established by one or more conics.

INVOLUTIONS DETERMINED BY A CONIC

Consider a conic  and a line k not tangent to . Take any point X on k, construct its
polar line z with respect to (¢, and let z+%k = X’. By definition, X and X" are conjugates
with respect to the conic. Moreover, had we started with X’, we would have obtained X.
Thus the correspondence between X and X’ is an involution and we have

Theorem 11.1. A given conic determines on.every non-tangent line of the plane an involu-
tlon whose rec1procal palrs consist of conjugate pomts Wlth respect “to the
_conie. T
When the line intersects the conic, each point of intersection is on its own polar; hence these
points are the doub]&pmmw_o_utmn of conjugate points (see also Problerg/SLZQ
page 101) and the involution is hyperbolic. When the line does not meet the conic, the in-
volution of conjugate points is elliptic.

Dually, we have

Theorem 11.1’. A given conic determines on every point, not on it, an 1nvolujc_m whose
reciprocal pairs are conJugate hnes Wlth respect to the conie.

The involution is elliptic if the point is an interior pomt of the conic and is hyperbolic, with
the tangents on the point as double lines, if the point is amn exterior point.

112



GHAP. 11] DESARGUES’ INVOLUTION THEOREM 1138

DESARGUES’ THEOREM

Consider in Fig. 11-1(¢) the simple
quadrangle PQRS and any line k which is
not on a vertex of the quadrangle. By
Theorems 6.3 and 6.2, page 65, the two
pairs of opposite sides of the quadrangle
determine on the line an involution of
which the intersections of k£ and the diago-

nals of the quadrangle are a reciprocal
pair. In Problem 11.1, we prove Fig. 11-1(a)

Theorem 11.2 (Desargues’ Theorem). If a simple quadrangle is inscribed in a conic (
and if a line k, not on a vertex of the quadrangle, is such that it meets (
in two points, these points are a reciprocal pair in the involution on & deter-
mined by the pairs of opposite sides of the quadrangle.

This theorem provides an alternate construction of the conic determined by any five
of its points. For, if P, @, R, S, K are the given points and % is any line on X but not on any
of the other given points, the opposite sides of the simple quadrangle PQRES are met by &
in two pairs of points which determine an involution. The mate K’ of K in this involution,
constructed as in Problem 6.2, page 68, is another point on the conic.

Dually, we have [see Fig. 11-1(b)]

Theorem 11.2’. If a simple quadrilateral is circumseribed about a conic (¢ and if a point
K, not on a side of the quadrilateral, is such that from it two tangents can
be drawn.to (, these tangents are a reciprocal pair in the involution on K
determined by the pairs of opposite vertices of the quadrilateral.

P
I

Fig. 11-1(b)

SPECIAL CASES OF DESARGUES’ THEOREM

Either by considering a given triangle and a tangent on one vertex as a degenerate
case of a simple quadrangle inscribed in a conic or by an independent proof, we have
(see Fig. 11-2)
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Fig.11-2

Theorem 11.3. If a triangle is inscribed in a conic ¢ and if a line k, not on a vertex, is
such that it meets ( in two points, these points are a reciprocal pair in the
involution on k determined by the pair of intersections with two sides of the
triangle and the pair consisting of the intersection with the third side and
with the tangent to ( at the opposite vertex.

and its dual

Theorem 11.3'. If a triangle is circumscribed about a conic C and if a point K, not on any
side, is such that from it two tangents to ( can be drawn, these tangents
are a reciprocal pair in the involution on K determined by the pair of lines
joining K to two of the vertices and the pair consisting of the joins of K
to the third vertex and to the point of contact of the opposite side.

For an independent proof of Theorem 11.3’, see Problem 11.2.

Theorem 11.3 provides an alternate construction of the tangent to a conic, determined
by any five of its points, at any one of them. For, suppose K,K’, P,Q, R are the given points
and it is required to construct the tangent at P. Let KK’-PQ = A, KK'-PR = A/,
KK’ -RQ = B and construct B’ the mate of B in the involution determined by K, K’ and
A,A’. Then PP’ is the required tangent.

Finally, considering two tangents to a conic and the join of their points of contact
counted twice as a degenerate case of an inscribed quadrangle, we have [see Fig. 11-3(a)]

Theorem 114. 1f a line k meets a conic in K and K’, two tangents {o the conie in B and B,
and the chord of contact of the two tangents in M, then M is a double point
of the involution on k determined by the reciprocal pairs K, K’ and B, B’

and its dual [see Fig. 11-3(b)]

Theorem 11.4'. If from a point K the two tangents to a conic are k and K, the joins of K
- and two points P and @ of the conic are b and ¥/, and the join of K and the

intersection of the tangents at P and @ is m, then m is a double line of the

involution on K determined by the reciprocal pairs k, k' and b, b’.

(a) ' ()
Fig.11-3
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QUADRANGULAR PENCILS OF CONICS

Five distinct points, no three of which are collinear, determine uniquely a conic.
(Recall that, as used here, the term conic always implies a non-degenerate conic.) When a
complete quadrangle is given, a conic on the vertices of this quadrangle is determined by
selecting an additional point not on any side of the quadrangle. The totality of all such
conies is called a quadrangular pencil of conics. By Theorem 11.2 we have

Theorem 11.5. Those conics of a given quadrangular pencil which meet a given line k, not
on a vertex of the defining quadrangle, do so in reciprocal pairs of the in-
volution determined on k& by the quadrangle.

It is clear from Fig. 11-1(a) that if K, K’ is any reciprocal pair of the involution on %
distinct from the pairs A, A4’; B,B’; C,C’ then K and K’ are on a conic of the quadrangular
pencil. On the contrary, if K, K’ is one of the excluded pairs, then P,Q,R,S,K, K’ deter-
mine a pair of lines, that is, a degenerate conic. Thus the converse of Theorem 11.5, namely,

Theorem 11.6. Any reciprocal pair of the involution on % determined by the quadrangle
PQRS is on a conic through the vertices of the quadrangle.

holds provided the degenerate conics PQ, RS; PS,QR;PR,QS are included in the quad-
rangular pencil.

If the involution of Theorem 11.5 has a double point, it will be the point of contact of
k and some conic of the quadrangular pencil. Since an involution has either no double points
or two distinct double points, we have

Theorem11.7. 1If P,Q, R, S are distinct points, no three collinear, and if % is any line not
on any of these points, there exists either two conics or no conic on the
four points P, @, R, S and tangent to the line %.

THE NINE-POINT CONIC

Let C, and (, be any distinct conics of the quadrangu-
lar pencil determined by the quadrangle PQRS and let o
be any line not on a vertex of the quadrangle or of its
diagonal triangle ABC. Denote by O, the pole of o with
respect to C, and by O, the pole of o with respect to C,.
As Z varies over o, (see Fig. 11-4), its polar line with
respect to (, rotates about O, while its polar line with
respect to (, rotates about 0,. By Theorem 9.10, page 94,
each of the pencils of lines O,(2)) and O,(z,) are projec-
tively related to the pencil of points o(Z). Hence,
0,(2,)) = O,(z,) and, as Z varies over o, Z’' = z,'z, de-
scribes a conic C on O, and O, We now show that this 7
conic is independent of our choice of conics (, and (,
by identifying nine well-defined points on it. Fig.11-4

Ny

21 %2

First, let AB-0=(C". With respect to any conic of the pencil, the pole of AB is C.
When Z =C’ then 2, =0,C, 2,=0,C and Z’'=C is on . Similarly, A and B are on (,
that is, C is on the vertices of the diagonal triangle. Now, let PQro=T. When Z =T
then, by Theorem 9.1, z: = O.U and %= 0.U where H(P,Q;T,U). We now have six
additional points on (", namely, the harmonic conjugate, with respect to each pair of ver-
tices of the quadrangle, of the point of intersection of the line on these vertices and o. The
conic ( is called the nine-point conic of the quadrangle with respect to the line o.
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11.1.

11.2.

-

DESARGUES’ INVOLUTION THEOREM [CHAP. 11

Solved Problems

Prove: If a simple quddrangle is inscribed in a conic  and if a line k&, not on a vertex,
is such that it meets C in two points, these points are a reciprocal pair in the involu-
tion on k determined by the pairs of opposite sides of the quadrangle.

Consider in Fig. 11-1(a) the simple quadrangle PQRS inscribed in the conic  and the line k

meeting  in K, K’ and the opposite sides of the quadrangle in A, A’ and B, B’. Think of ( as gen-
erated by the projectivity

(PK,PK’,PQ,PS) = (RK,RK',RQ,RS)
Then (K,K',A,B) = (PK,PK',PQ,PS) = (RK,RK’,RQ,RS) = (K,K',B’,A"

and (K,K',A,B) = (K,K',B",A") x (K',K,A",B')

by Theorem 2.10, page 25. From (K,K',A,B) = (K’, K,A',B") it follows that K,K'; A,A’; B, B’
are three reciprocal pairs in an invelution on k. Since this involution is determined by the pairs
A,A’; B,B’, we have the theorem,

Prove: If a triangle is circumscribed about a conic (C and if a point K, not on any side,
is such that from it two tangents to C can be drawn, these tangents are a reciprocal
pair in the involution on K determined by the pair of lines joining K to two of the
vertices and the pair consisting of the joins of K to the third vertex and to the point of
contact of the opposite side.

Refer to Fig. 11-5 in which pgr is the circumscribed triangle and k, k' are the tangents to (
drawn from K. Think of C as generated by a projectivity between pencils of points on p and 7.
Recalling that the correspondent of p e, thought of as a member of the pencil on p, is the point of
contact B of r, we have

@ kpk,pqp7) = (v krk,rqR)

Then (k, kl; a, b) ~ (k; k’y b,: a,) ~ (k’; k: a’; b,)

and the theorem follows.

Fig.11-5
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11.3.

11.4.

11.5.

11.6.

11.7.

11.8.

11.9.

11.10.

11.11.

11,12,

11.13.

11.14.

11.15.

1116,

11.17.

11.18.

11.19.

Supplementary Problems

Prove: A simple quadrangle inscribed in a given conic determines, on any tangent to the conic not
on a vertex, an involution having the point of tangency as a double point.

State and prove the dual of Problem 11.3,
Consider the case when the line & of Theorem 11.3 is tangent to the conic.

Given five distinct points, no three of which are collinear, construct (a) another point on the conic
C determined by the given points, (b) the tangent to C at any one of the points.

Construct the dual of Problem 11.6.

Given four distinet points, no three of which are collinear, and a line on one of the points, construct
at any other of the points the tangent to the conic on the four given points and having the given
line as a tangent.

Construct the dual of Problem 11.8.

Prove: If a triangle PQR is inscribed in a conic (, then any two sides of the friangle are separated
harmonically by the tangent to  at the common vertex and the line joining this vertex to the point
of intersection of the tangents to  at the other two vertices.

State and prove the dual of Problem 11.10.

Given four distinct points, no three of which are collinear, and a line on one of them, construct
the conic on the given points and tangent to the given line.
Hint. Consider Fig. 11-2 in which P, K, @, B and the tangent at P are given.

State and prove the dual of Problem 11.12.
Prove Theorem 11.4.

Construct the conic given two of its tangents, their points of contact, and one other of its points.
Hint. Consider the involution on any line on the latter point.

State and prove the dual of Problem 11.15.
Prove Theorem 11.6 assuming the quadrangular pencil enlarged to include the degenerate conies.

Given a triangle ABC, a line x not on a vertex, and a point X on x but not on a side. Construct the
conic C tangent to # at X and having ABC as a self-polar triangle.

Let  be the nine-point conic of a given quadrangular pencil of conics with respect to a given line
0. Show that, if o is tangent to two conics of the pencil (see Theorem 11.7), the points of contact
are on (.



Chapter 12

Pencils of Points and Lines on a Conic

DEFINITIONS
Consider a pencil of points 2(41, B1,Cy, .. .) and a point O not on . Project the points
of z from O by OA;=a, OB;=b, OCi=¢, ... and cut the pencil O(a,b,¢,...) by any

conic (" on 0. The set of points A, B, C, ... thus determined on ( by O(a,b, ¢, . ..) is called
a pencil of points on ( and will be denoted by C(4,B,C,...). In an earlier chapter, the
correspondence between the pencil of points on z and the pencil of lines on O was called an
elementary perspectivity. Similarly, the correspondence between the pencil of points
C(4,B,C,...) and the pencil of lines obtained by projecting these points from any point O
of C will be called an elementary perspectivity and denoted by C,B,C,...)=0(,b,c,...)
while the correspondence between ((4,B,C,...) and the pencil x(A44, By, Cy, .. .) will be
called a perspectivity and denoted by )

i) C(4,B,C,...) = x(A,By,Cy,...)
Thus,
A pencil C(4,B,C, ...) on a conic and a pencil 2(41, By, Cy,...) on a line are per-
spective provided there is a point O on the conic, but not on the line, such that
AA,, BB, CCy, ... are on O.

It is clear from Fig. 12-1(a) that the perspectivity (i) is completely determined when
two pairs of corresponding points are known as was the case for a perspectivity between
two pencils of points on distinct lines. On the other hand, the perspectivity (i) will have
0, 1, 2 self-corresponding points according as z and  have no points in common [Fig. 12-1(a)],
# is tangent to , # and ( have two distinct points in common.

0 a, bl [

(a) (b)
Fig.12-1
Dually, see Fig. 12-1(d), the set of. all lines @,b,¢, ... on a conic ( is called a pencil of
lines on C and denoted by ((a,b,¢,...). The pencil ((a,b,¢c,...) and a pencil of lines

X(as, by, ¢1, . . .) are called perspective provided there is a line o on (, but not on X, such that
a+ai, beby, ¢*c1, ... are on o.

118
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Consider next two pencils of points #(41, By, Cy, ...) and 2’(Az, Bz, Cs, . . .) on distinct
lines # and 2’ which are projectively, but not perspectively, related. Project the points of
#’ from any point O’ on C, but not on «’, and obtain the pencil C(4,B,C,...). Now

C4,B,C,...) %’ x'(As, B3, Cs, ...) = ®(A1,B1,Cy,...)
We define

A pencil C(4, B, C, ...) and a pencil x(A1, B;,Cy, ...) are projective, C(4,B,C,...) =
%(A1,B1,Cy, ...), provided there exists a pencil 2’(As, Bs, Cs, .. .) such that

2(A1,B1,Cy, . ..) = %'(A2,Bs, Cs, ...)
and C(4,B,C,...) = /(As,Bs,Cs, .. .)
with O’ on C but not on 2’

The projectivity ((4,B,C,...) = #(A1,B1,Cy,...) is completely determined when three
pairs of corresponding points are known.,

Consider next (see Fig. 12-2) two pencils of points «’(As, B2, Cs, .. .) and 2”’(4s, B3, Cs, .. .)
each projectively, but not perspectively, related to the pencil 2(4:, By, Cy, ...) and obtain as
in the paragraph immediately above

()  CABC, ...) = #/(As,B5,Cs, ...) = #(A1,B1,Cy, ...)

and (i)  CA,B,C,...) % 2(As,Bs,Cs,...) = (A1, By, Cy,...)

with 0’ on C but not on 2’ and O” on ( but not on ””. Combining (ii) and (iii), we have
CA,BC,..) = a(...) = 2(...) = 2(...) = C(4",B,C,...)

and define

Two pencils ((4,B,C,...) and (C(4’,B’,C’,...) on the same conic are projective
provided there exists a pencil ®(A1, By, C4, . . .) to which each is projective.

A, B, C, A, ¢ B, Ay €, B
Fig.12-2 Fig.12-3

Finally, consider in Fig. 12-8 two projectively related superposed pencils of points
#(A1, By, Cy, . ..) and (A%, B1,Cy, . . .). Join the points of each pencil to any point O, not on
z, to obtain the pencils of lines O(a,b,¢,...) and O(a’,¥’,¢’, ...). Clearly, O(a,b,e¢, .. D)=
O(w,b’,¢’,...). If now these pencils of lines are cut by any conic C on O, two pencils of
points C(4,B,C, ...) and C(4’,B’,C",...) respectively are obtained. In turn, these pencils
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are projectively related, i.e. C(4,B,C,...) = (4, B,C,.. .), since
C(4,B,C,...) = O,b,c,...) = O@,b,¢,...) CA,B,C,...)

For the dual, consider two projectively related superposed pencils of lines X(ay, by, e, ...)
and X(ai,bi,¢i, ...). Section the two pencils by any line o not on X to obtain

O(A1, B1, Cl, - ) = O(A{,Bi, Cll, v )
Let C be any conic tangent to o and from each of the points A, By, Cy,...; A, B, C,.

draw the second tangent a,b,¢,...;a/,b, ¢, ... respectively to C. Then
Cla,b,c,...) = o(A,B1,Cy,...) = o(41,By,C1,...) = C@,b,¢,.. )
and Cla,b,e, ...) = Cla,b,¢,...) '

TWO PROJECTIVE PENCILS ON A CONIC
Let
C4,B,C,D,...)
and c(A,B,C' D', ...)

be two projective pencils of points on a
conic C. When these pencils are projected
respectively from two points O and O” on ,
C, we have Fig.12-4
(OA,0B,0C,0D, ...) = C(4,B,C,D,...)
= CA,B,C,D,...) = (04, 0B, 0'C", 0D, ...)

and so (0A,0B,0C,0D, ...) = (0’4, O'B’,0'C’,0'D’, ...)

In particular, when O = A’ and O’ = A, we have the perspectivity
(A’A,A’B,A’C,A'D,...) = (AA",AB,AC',AD, .. )

Then A’B+AB’, A’C+-AC’, A’D+AD’, ... areon a line p. Now p is the Pascal line of the
inseribed hexagon AB’CA’B(C’ and so B’C-B(’ is also on p. By considering the insecribed
hexagons AB’DA’BD’ and AC’DA’CD’, we conclude that two points X, X’ of ( are corre-
spondents in the two given pencils provided AX’ +A’X is on p. Moreover, by considering
the inseribed hexagon BC’DB’CD’, we conclude that » would have been obtained if any pair
of correspondents other than A, A’ had been used originally. The line p is called the axis
of the projectivity on the conic. We have proved

Theorem 12.1. If C(A,B,C,D,...) and C(4’, B, C',D,...) are two projective pencils of
points on a conic (, there exists a line p, the axis of the projectivity, such
that if X,X’;Y,Y’ are two pairs of corresponding points then XY’ X'Y
is on p.

Dually, we have

Theorem 12.I'. 1f (’(a,b,c,d,...) and (C'(¢/,b, ¢, d’,...) are two projective pencils of
lines on a conic (’, there exists a point P, the center of the projectivity,
such that if z,2’; ¥,y are two pairs of corresponding lines then (- y")(x"* )

ison P.
If, in Theorems 12.1 and 12.1’, the conics are assumed to be the same while the
lines a,b,¢,...;0,b',¢/,... are the tangents to this conic at the respective points

A,B,C,...; A, B, C,..., then the center P of the projectivity
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Cla,b,c,...) = Cla,b,¢,...)
is the pole of the axis p of the projectivity (C(4,B,C, .. )= CA,B,C, .. .).

A projectivity on a conic ( is called hyperbolic, parabolic, or elliptic according as it has
two, one, or no double elements. We leave for the reader to show: (a) a projectivity between
two pencils of points on ( is hyperbolic, parabolic, or elliptic according as the axis p meets
C in distinct points, is tangent to C, or does not meet ; (b) a projectivity between two

pencils of lines on ( is hyperbolic, parabolic, or elliptic according as the center P is outside,
on, or inside (.

By definition a projectivity
C4,B,C,D,...) x ©(A1,B1,Cy, Dy, ...)
implies C(A,B,C,D,...) % «'(A3,B5,Cs,Ds, ...) = (A1, B1,Ci, Dy, ...)
where O’ is on ( but not on 2. By Theorem 2.10, page 25, there always exists a projectivity
x(A1, B1,Cy, D1) = x(B1, Ay, Dy, Cy)
There follows easily

Theorem12.2. ((A,B,C,D)x (C(B,A,D,C) for any four distinct points 4,B,C,D on a
conic (.

(_—STEINER’S CONSTRUCTION
Theorem 12.1 provides a method, given first by Steiner, for constructing the double
points, if any, of a superposed projectivity xz(A1, By, Cy, .. ) = z(A1, By, ci, .. .). In Fig.
12-5, O is any point not on # and ( is any conic on O. From O project the points
Ay, By, Cy; AS, By, C] into A, B, C; A’,B’, (" respectively on (. Construct the Pascal line p
for the inscribed hexagon AB’CA’BC’ and mark its intersections M,N with C. Then
M, =0OM-x and N, =ON-z are the required double points. To show this, consider

) #(As, By, C1, M, Ny) 2 C(4,B,C,M,N) % o(T,U,V,M,N)
Z (A, B,C,M,N) 2 w(A}, Bi,Ci, Ms, Ny)

which exhibits My, N, as the double points of the given superposed projectivity on x.

B, N, A, C, A; Ci M, B

Fig.12-5

The above construction is for a superposed projectivity having two double points.
For any given projectivity the number of double points is not known until p has been con-
structed. Should the reader care for an example of a projectivity with one or with no
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double point, it is best to begin with a line #, a point O not on z, and a conic C on 0. For
one double point, take for p any tangent to C except that at O, and for no double point, take
for p any line, not «, which has no point in common with (. Of course, we have now turned
the problem around; we are constructing the projectivity having prescribed double points.
Choose points A,B,C; A’,B’,C’ on ( such that the Pascal line of AB’CA’BC’ is p and
project these points from O onto z to determine the projectivity

x(Al,BI, Cl, . ) =~ x(A’l, B;, C;, .. )

The construction for the double points, if any, of an involution on a line is, of course,
quite similar to that given above. Let Aj, A%; By, Bi be two reciprocal pairs of the given
involution on a line z and let their projections on the conic from any point O of the conic
be A,A’;B B’ respectively. Since x(A:, A1, By, Bi) = 2(A}, Ay, Bi,By), it follows that
C(A,A,B,B") = C(A’,A,B’,B) and we have only to comstruct the axis of involution p
determined by the points AB’+ BA’ and AB- A’B’. Note that Steiner’s construction consists
in transferring a given projectivity on a line onto a conic to take advantage of the sim-
plicity of certain constructions when projectivities on a conic are involved. This, in turn,
has led to a thorough investigation of just what constructions are possible when, in addition
to a straight edge, a fixed conic is provided.

INVOLUTIONS ON A CONIC

A projectivity between two pencils of points (lines) on a conic, having a pair of corre-
sponding elements which correspond reciprocally, is called an involution on the conic. In
Problem 12.1 we prove

Theorem 12.3. In an involution on a conic, every pair of corresponding elements correspond
reciprocally. -

Consider in Fig. 12-6 two reciprocal pairs
A,A’; B,B’ in an involution of points on the
conic C. From (4,4’,B) = (A’, A, B’), the axis
of projectivity (called the axis of involution) p is
on the points AB’+A’B and AB-A’B’. Note
that p is a side of the diagonal triangle of the
complete quadrangle AA’BB’ inscribed in (.
Denote the third diagonal point AA’+ BB’ by P
and let Ay =AA’-p and B:1= BB’ -p. Then
H(A,A’; Ay, P) and H(B,B’; By, P).

Take C as any other point on . If ¢’ isits
mate in the involution, then CB’-C’'B is on p;
thus C” is easily found. (Compare this with the
procedure for locating mates in an involution
on a line.) Since (B,B’,C)= (B’,B,(’), p is
also on BC-B’C’. Suppose BB’ -CC’ =F and
let CC’*p = C.. Now H(C,C’;Cy, P) and
H(B,B'; B,,P’). But H(B,B’;B:1,P); hence
P =P, H(C,C’; C, P), and AA’, BB, CC’" are
on P. We have proved Fig.12-6

Theorem 124. In any involution among the points on a conic, the j,gmsM@Ecal pairs

are concurrent. . \
The point of concurrency P of Theorem 12.4 is called thel center of the involution. JNote
that it is the pole of the axis of involution. —

M
An involution on a conic , being a special type of projectivity on (, is called hyperbolic,
parabolic, or elliptic according as there are two, one, or no double elements.
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Fig. 12-6 illustrates the case of a hyperbolic involution on . Here the axis of involu-
tion p meets ( in two distinct points M and N, the double points of the involution. The
center of involution P is then outside the conie.

In a parabolic involution, the axis of involution is tangent to the conic; hence the center
of involution P is on the axis and, in particular, is on the conic. As a consequence P is a
member of each reciprocal pair in the involution. Parabolic involutions on a conic are of no
particular importance and will not be considered here.

In an elliptic involution on a conic the axis does not meet the conic and the center of
involution is therefore inside the conic.

In Problem 12.2 we prove

Theorem 12.5. 1If the involution of conjugate points determined by a conic ( on a line z is
projected onto  from any of its points, the resulting involution on ( has
x as its axis.

HARMONIC SETS ON A CONIC

On any point O take four lines a, b, ¢, d such that H(a, b; ¢,d). Let these lines be cut by
any conic ¢ on O in the respective points 4,B,C,D. Now project these points from any
other point 0’ on ( by the lines a’,b’, ¢/, d’ respectively. By the definition of a conic

O(a,b,c,d) = O, b, ¢, d")
and hence H(a’,b’; ¢’,d’). We define

Four distinct points on a conic form a harmonic set (or, are harmonic) provided they
are projected from any point of the conic by a harmonic set of lines.

Dually,

Four distinct lines on a conic form a harmonic set (or, are harmonic) provided they
are sectioned by any line of the conic in a harmonic set of points.

Note that (Fig. 12-7) when 4,B,C,D on a conic
C are projected from some one of them, say D, the
projectors are DA,DB,DC, and the tangent to (
at D. Dually, if a,b,¢,d on a conic are sectioned
by some one of them, say d, the intersections are
d-a,d-b, d- ¢, and the point of contact of d.

There follows from Theorem 9.7, page 94,

Theorem 12.6. If four points on a conic ( are har-
monic, the tangents to ( at these
points are harmoniec.

For a proof, see Problem 12.3.
The dual of Theorem 12.6, Fig.12-7
Theorem 12.6’. If four lines of a conic are harmonic, their points of contact are harmonie.
is also its converse.

In Problem 12.4 we prove

Theorem12.7. If A,B,C,D are four harmonic points on a conic (, that is, if H(4, B; C, D),
then the lines AB and CD are conjugates with respect to (.
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The converse

Theorem 12.8. If two conjugate lines with respect to a conic have in common with it the
pairs of points 4, B and C, D respectively, then H(A, B; C, D).
is also valid.

In Problem 12.5 we prove the dual of Theorem 12.8,

Theorem 12.8’, 1f two conjugate points with respect to a conic have in common with it
the pairs of lines a, b and ¢, d respectively, then H(a, b; ¢, d).

Asg a consequence of Theorem 12.8, we have

Theorem 12.9. In a hyperbolic involution on a
conie, the double elements form
with each reciprocal pair a har-
monic set.

Finally, using Fig. 12-8, it is seen that for a
given reciprocal pair A, A’ of an elliptic involu-
tion on a conic, only the line PO on the center of
involution P and the pole O of the line AA’ is
conjugate to AA’. Hence,

Theorem 12.10. In an elliptic involution on a conic
there is one and only one recipro-
cal pair which forms with a given
reciprocal pair a harmonic set. . Fig.12-8

Solved Problems

12.1. Prove: In an involution on a conic, every pair of corresponding elements correspond
reciprocally.

Consider the projectivity between two pencils of points on a conic in which: (1) A and B are
a reciprocally corresponding pair; (2) the correspondent of C + A4,B in the first pencil is D in
the second pencil; (8) the correspondent of D in the first pencil is E in the second pencil. Then

C(A:B;C:D) ~ C(ByArD)E)

By Theorem 12.2, C4,B,C,D) = (C(B,A,D,C)

Since C(B,A,D,C) = (C(A,B,C,D) = (C(B,A,D,E)

requires E = C, the pair of correspondents C, D and, thus, every pair of correspondents, correspond
reciprocally.

12.2. Prove: If the involution of conjugate points determined by a conic  on a line x is
projected onto ¢ from any of its points, the resulting involution on ( has x as axis.

In Fig. 12-9, let A4, A}; By, B{ be two reciprocal pairs of the involution
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12.3.

124.

W(AI,A;, BI’ . ) = x(A’l, Al,Bi, .. .)

of conjugate points with respect to C. Let the
projection of this involution onto ¢ from the

point O on it be the involution

CA,A",B,...) = C(AA,B,...)

The sides OA, OA’ of the triangle OAA’ are

met by « in the pair of conjugates 4,, A].

Theorem 9.14, page 95, x and AA’ are conjugate.
Then AA’ is on the pole of 2 and « is the axis

of the involution on ( as required.
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Fig.12-9

Prove: If four points on a conic (C are harmonic, the tangents to C at these points are

also harmonic.

Let the four points be A4,B,C,D and let X be any fifth point on (; then, by hypothesis,
(X4,XB, XC,XD) is a harmonic set. Denote the tangents to C at 4,B,C, D as a, b, ¢, d respectively.

By Theorem 9.7, page 94, with y any tangent to (,

(XA, XB,XC,XD) = (y*a,y*b,y*c,yd)

Hence (y*a, y b, y ¢, ¢y -d) is a harmonic set and, by definition, (a, b, ¢, d) is also.

Prove: If A,B,C,D are four har-
monic points on a conic (, that is,
if H(A,B; C,D), then the lines AB
and CD are conjugates with respect

to (.

By definition, the lines projecting
A,B,C,D from any point of ( are har-
monie; in particular, we have

H(DA,DB; DC, DV)

where DV is the tangent to C at D. Let
AB*DC=W and AB-DV =YV, then
H(A,B; V,W) and the polar line of V is
DW = CD. Thus AB is on the pole of CD
and the two lines are conjugates with re-
spect to (.

Fig.12-11
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Prove: If two conjugate points with
respect to a conic have in common
with it the pairs of lines a, b and ¢,d
respectively, then H(a, b;c,d).

Since R=a*b and S=c+*d are
conjugate points with respect to the conic,
R is on the polar line s of S and S is on the
polar line » of E. Now r and s are conju-
gate lines having in common with C the
pairs of points 4, B and C,D. By Theorem
12.8, page 124, H(A, B; C, D) and by Theo-
rem 12.6, H(a, b; ¢, d). Fig.12-12

Supplementary Problems

Construct the double lines, if any, of the projectivity
O(a,b,c,...y = O@,b,¢,...)

Hint. Cut by any conic ¢ on O and obtain C(A,B,C,...) = Cl4,B,C, ...). Construct the
axis of this projectivity and join its intersections, if any, with ( to O.

Investigate the alternate construction for the double points, if any, of the projectivity
x(4,, B, Cy, - ..) = #(A], B, Cy, .. .). Take any conic ( touching « and draw from the given points
the tangents a,b,c,...;a,,b'¢,... to C. Obtain the center B of the projectivity

Cla,b,¢,...) = Cla’,b,¢,...) and construct the tangents, if any, to ¢ from B meeting x in the
required double points.

On 2 line take two pairs of points which do not separate each other and construct the pair which
separate harmonically each of the given pairs.

Prove Theorem 12.4 by considering the triangles ABC and A'B'C’ where A,A’;B,B';C,C’ are
three reciprocal pairs of the involution.

Let a conic ( be given by (a) five of its points, or (b) four of its points and the tangent at one of
them, or (c) three of its points and the tangents at two of them, or (o) five of its tangents, or
(b") four of its tangents and the point of contact on one of them, or (c¢’) three of its tangents and
the points of contact on two of them; and let p be a line neither on any of the given points of
(@), (b), (¢) nor coincident with any of the given tangents of (a'), (b'), (¢'). Construct the intersections,
if any, of p and (.
Hint. For (a), take two of the given points as centers of projection and project the remaining
points from each of them onto p. In turn, project these points on p onto any conic (' from any point
O on it. Construct the double points, if any, of the projectivity on (' and project them through
O onto p.

For (b), take the given point of contact as one of the centers of projection.

For (¢), take the given points of contact as the centers of projection.

For (o), (b), (¢"), first find the points of contact of all tangents and proceed as before.

Let ¢ be given by (@), (), ("), (a), (b), (€) of Problem 12.10 and let P be a point not on any of the
given lines. Construct the tangents, if any, to  from P.

Prove the converse of Theorem 12.4: The pairs of points in which a c_onic is cut by the lines of a
pencil whose center is not on the conic form an involution. What are its double points?
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12.13.

12.14.

12.15.

12.16.

12.17.

12.18.

12.19.

12.20.

12.21.

12.22.

12.23.

12.24.

12.25.

12.26.

12.27.

Prove: In an involution among the points on a conic, the tangents to the conic at reciprocal pairs
intersect on the axis of the involution.

Given five points A,B,C,D,E on a conic ( and a point R, construct the tangents, if any, to
from R.

Hint. Use the results of Problems 10.3 and 12.10. First, find the second points of intersection
A’,B’ of RA,RB and (; then construct p the axis of the involution C(A,A",B) = C(A’,A,B’) and
the points of intersection, if any, of p and C.

Given five tangents of a conic ( and a line r, construct the points of intersection, if any, of r and (.

Given four points P, Q, R, S, no three of which are collinear, and a line x not on any of the given
points, construct a conic on the four points and tangent to the line.

Hint. Use Theorem 11,1, Obtain on x the involution determined by the simple quadrangle
PQRS and construct its double points, if any. Each double point, together with the given points,
determines a conic satisfying the conditions. Discuss the number of conics possible.

Given four lines p, q,7,s, no three of which are concurrent, and a point X, not on any of the given
lines, construct a conic on X and having the four lines as tangents.

Given three non-collinear points P,Q,R and two lines x and y, neither of which is on any of the
given points, construct a conic on the given points and tangent to the given lines,

Hint., Use Theorem 11.5. Let PQ-x =B, PQ+y = B’ and construct the double points, if any,
of the involution (P,Q,B) = (Q,P,B’). Let PR+x=C, PR+y = (' and repeat. Discuss the
number of conies possible.

Given three non-concurrent lines p, ¢, and two points X and Y, neither of which is on any of the
given lines, construct a conic on the given points and tangent to the given lines.

Let P, @ be any distinet points on a conic . Locate on ( another pair of points A, B such that
H(A,B; P,Q@). Are the points 4, B unique?

Let A, P,Q be any three distinct points on a conic C. Locate on C a point B such that H(4, B; P, Q).
Is the point B unique?

Let P,Q,R,S be any distinct points on a conic . Under what conditions will there exist points
A, B on ( such that H(4,B; P,Q) and H(A,B; R, S)?

Take P, @, R, S on ( meeting the conditions of Problem 12.22 and construct the pair A, B.
State and solve the duals of Problems 12.20-12,23,

Prove: Reciprocal pairs of a hyperbolic involution on a line are conjugate pairs with respect to
every conic which meets the line in the double points of the involution.

State and prove the converse of Theorem 12.8’,

Five points on a conic ( are given. Construct on any line & an involution of conjugate points with
respect to (.



Chapter 13

Plane Affine Geometry

INTRODUCTION

The preceding chapters contain the more basic propositions of plane projective geometry.
In the earlier of these chapters the elementary geometry of high school was taken as the
fundamental geometry. The projective plane was then obtained by modifying the ordinary
plane as follows: (a) to the ordinary plane was adjoined an ideal line of ideal points,
(b) the identity of the ideal points and the ideal line, as such, was then erased, that is,
the ideal points were treated thereafter as ordinary points and the ideal line as an ordinary
line of the projective plane.

In this chapter we reverse the procedure, that is, we take plane projective geometry
as the fundamental geometry and, by properly modifying the projective plane, obfain
other geometries. We begin by selecting a (any) line of the projective plane and call it the
ideal line or line at infinity l.. When this line is removed from the plane, the points and
lines remaining are said to constitute the affine plane. The geometry of this plane is called
plane affine geometry. In developing this geometry, we propose to work in the projective
plane with one of its lines (always on the page) labeled I,. A number of familiar theorems
of elementary geometry will be “rediscovered” but the accompanying figures will for a
time appear strange. (Should the reader insist on working with familiar figures, he has
only to redraw them with I, off the page and “at an infinite distance”.)

Two distinet points 4 and B of the projective plane separate the unique line p = AB
into two segments (see Chapter 1) AB and AB. Suppose we pass to the affine plane by

choosing for I, any line which is neither on A nor B. In the process, the line p loses one
of its points, namely the point P, in which it meets 1, and so becomes an open line. On
thig, the affine line p, the points A and B determine one and only one segment, namely

that segment/A?? or AB of the projective line which does not contain P.. This segment
will be labeled simply as AB.

No changes in labels have been made in the above paragraph to indicate a change from
the projective plane to the affine plane. We could of course label a projective point, not on
l,, as A* and the corresponding affine point as A with similar changes in labels for a
projective line, distinct from I, and the corresponding affine line. This is not done here
since all theorems of this chapter will be stated, of course, in terms of points and lines of
the affine plane and, elsewhere, it will always be tolerably clear from the context whether
the line p, for example, is being thought of as a projective line or as an affine line.

PARALLEL LINES

In the projective plane any two distinct lines p and ¢ intersect. When this point of
intersection is not on I, the affine lines p and ¢ intersect; when this point of intersection is
a point of 1., the affine lines p and ¢ do not intersect. We define:

Two lines of the affine plane which do not intersect are called parallel.

128
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Here we have borrowed a familiar term of elementary geometry to cover the familiar
situation of two lines which never meet. Now projective geometry is non-metric; hence
the reader must be careful not to give to the term parallel (or to any of the other familiar
terms to be introduced as we proceed) a metric interpretation. Thus it must not be as-
sumed that parallel lines in the affine plane are everywhere equidistant.

~ From the above definition of parallel lines, there follow:
Theorem 13.1. All lines parallel to a given line are parallel to one another.
and

Theorem13.2. Through a given point, not on a given line, one and only one line can be
drawn parallel to the given line.

Refer to Fig. 13-1 in which each of the lines
. b,e,d is, by definition, parallel to the line a.
Clearly, b is parallel to ¢ and, in fact, the lines
a,b,c,d are parallel to one another. Again, the
line x, on X and parallel to the line a, is unique
since, by definition, the projective line 2 must
also be on P,, the ideal point of a.

We leave for the reader the proof of

Theorem13.3. 1If a line intersects one of two
parallel lines, it intersects the
other also.

CONGRUENT SEGMENTS

Consider in Fig. 13-2 the complete
quadrangle PQRS having [, as a side of
its diagonal triangle. Since each pair of
affine lines PQ, RS and PS, QR consists of
distinet parallel lines, the simple quad-
rangle PQRS is called a parallelogram.
By definition, the sides of this parallelo-
gram are the segments PQ,QR, RS, SP.
On the remaining sides of the quadrangle
are the diagonals (the segments PR and QS)
of the parallelogram.

Two segments AB and CD are said
to be congruent by translation provided
ABCD is a parallelogram. For example,
the segments PQ and RS (also, PS and QR)
of Fig. 13-2 are congruent. We now have
a means of comparing segments on distinct
parallel lines in that, of two such segments,
we can determine whether they are con-
gruent or not congruent. There is no diffi-
culty in extending this to the case of two
segments on the same line. Consider in
Fig. 13-3 the parallelograms PP’R’R and
QQ'R’'R whose sides PP’ and QQ’ are seg-
ments on the same line 0. The segment PP’ Fig.13-2
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is congruent to RR’ which, in turn, is congruent to QQ’. It would seem natural then to
define the segments PP’ and QQ’ to be congruent, i.e.,

Two segments AA’ and BB’ of the same line are said to be congruent by translation
provided there exists a segment CC’ such that AA’C’C and BB’C’C are parallelograms.

Fig.13-3

MIDPOINT OF A SEGMENT

Suppose that the points P’ and @ of Fig. 13-3 coincide at M as in Fig. 13-4. Then the
segments PM and M@’ are congruent and we call M the midpoint of the segment PQ’. Let
PR’-l,=D,. The—complete—giiadrangle PMR’R defines on I, the harmonic set
H(C.,A; Dy, B,) and, since ) .
(CarAur Dy B) 5 (Coy M, P, Q)

then H(C,,M;P,Q’). We have proved

Theorem 134. 'The midpoint of a line segment AB is the harmonic conjugate with i'espect
to the points 4, B of the ideal point on the line AB.

QI

Fig. 13-4
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Returning now to Fig. 13-2, let PR-QS =C. Since H(A.,, B,,; C., D.,), it follows from
(R,P,C.,C) % (Au,B..,C., D.) % (5,Q,C,D.)

that H(R, P; C,, C) and H(S,Q; D.,,C). By Theorem 13.4, C is the midpoint of each of the
segments PR and @S. We have proved

Theorem 13.5. The point of intersection of the diagonals of a parallelogram is the midpoint
of each.

Note 1. The above proof consists of two parts. In the first part, the results
H(R,P;C,,C) and H(S,Q;D,,C) are obtained in the projective plane, that is, without
giving any special significance to 1, and its points; in the second part, an affine interpreta-
tion of these results in the light of certain definitions previously introduced is made.

Note 2. An alternate proof is as follows: In the projective plane Fig. 13-2 exhibits a
complete quadrangle PQRS with C, A.,, B,, its diagonal points and with C., D, two of its
associated harmonic points. Then, by Theorem 4.11, page 48, H(R, P; C.,,C) and H(S, Q; D.,, )
and the proof continues as before.

Two familiar theorems concerning triangles now follow. In Problem 13.1, we prove

Theorem 13.6. The line on the midpoints of two sides of a triangle is parallel to the third
side.

It seems natural to call QC, joining one vertex of the triangle PQR to the midpoint of
the segment determined by the other two vertices, a median of the triangle. Denote by
PB and RA the other medians of this triangle and let PB:QC =G. We leave for the
reader to prove

Theorem 13.7. The medians of a triangle are concurrent. The point G of concurrency is
called the centroid or median point of the triangle.

Consider now in Fig. 13-5 the simple parallelograms PP’R’R and QQ'R’R of Fig. 13-3. 7
Let PR-Q'R' =S8, PR\-QR=T, m=8T, p=RR’, m-p=C, m-o=M, and m-l,=M..
Since C is the midpoint of the diagonal RR’ of the simple parallelogram RSR’T, we have
H(R,R’; C,,C). By projecting these four points first from S and then from 7, we have
HP,Q;C.,M) and H(Q,P’; C.,,M). Then M is the midpoint of each of the segments PQ’
and P’Q. We have proved

Theorem 13.8. If two segments PP’ and QQ’ on the same line are congruent, then the seg-
ments PQ’ and P’Q have a common midpoint.

Fig.13-5
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Referring to the same figure, let it be given that M is the common midpoint of the seg-
ments PQ’ and P’Q on the line 0 and let o-1, =C,. On M take any line m +# 0 and let
m-l,=M.,. On l, take another point A, and construct its harmonic conjugate B, with
respect to Co, M. Let PA.*QB,=R, PA,-QB,=3S, PPA,-QB,= T, PPA, @B, =FR".
Now RSR’T is a complete parallelogram having C = RR’*ST as a diagonal point. Suppose
the perspectivity (P, @, C.) % (Ay, Bw, C.) carries M into M. Since H(P,Q’; Cn, M), then
H(A.,B.,; C., M.). But by construction, H(A,, B; C., M.); then M., =M, and S is on m.
Similarly, we prove T on m and so C is on m. Now let pl,=Cl. Since (R, R,C) %
(Aw, B, M) carries Cy into Co, (why?), C;,=C, and p is on C.. Then p is parallel to o;
PP'R'R and QQ'R’R are parallelograms; and thus PP’ and QQ’ are congruent. We have
proved

Theorem 13.9. If the segments PQ’ and P’Q on the same line have a common midpoint,
then the segments PP’ and QQ’ are congruent.

LENGTH
A construction of the parabolic projectivity
(A,B,C,F1,Fs,...) = (A,C,F1,Fo,Fs, ...)
is illustrated in Fig. 4-4, page 49. We now study this diagram in the affine plane (see Fig.
13-6) taking the line ¢ as I, and making certain helpful changes in notation, particularly for
the points on o. By construction, A¢A: and A4, are congruent, A4, and A»A3 are con-

gruent, ... AA;4: and A;+14ise are congruent, .. .. Then for any positive integer n, the
segment 404, on o consists of n non-overlapping congruent segments. We say

The distance AoA, is n times that of A.A..

To construct A.A. when AoA; is given, we have only to note that H(M,, A1; Ao, Az),
H(Mw,Az; Al, As), Ce ey H(MW, An—l; An—Z, An)»

Fig.13-6

Consider next the problem of separating a given segment AoAif (see Fig. 13-7 helow) into
n congruent segments when n is any given positive integer. On Ao take any line p # o and
on p take any point Bi. Then locate on p the point B, such that BoBa is n times BoBi. Join
A, and B, meeting I, in P,. Let BiP,-0= Aim, (=1, 2,8, ...,n—1). Then AoA; is n times
AoA1/m, as required.

We are now in a position (see Chapter 7) to construct on o a point A4 such that AcAqis ¢
times AoA; for g any rational number. The existence of a point A, on o such that A4, is r
times AoA;, for r any real number, is assured by Axiom 11, page 77.
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Ay Ain Ay Az Ay 4,

Fig. 13-7

A()Ar

The length of a segment AyA, may now be defined as =|r|, where |r] indicates

AOAI
the numerical value of ». Consider a segment A.X on line 0 and a segment 4,Y on another
line p meeting o at 4,. The length of 40X may be found by choosing arbitrarily a point A4,
on the segment. Similarly, the length of 4,Y may be found by choosing arbitrarily a point
B; on the segment. However, these lengths are of little significance since it is impossible
to determine whether the unit of measure A,A;o0n o is or is not congruent to the unit of
measure A¢B; on p. In affine geometry, then, segments on non-parallel lines cannot be
compared.

CONICS

/ In the projective plane all conics are equivalent; hence all conics have been diagrammed
in Chapters 8-12 as curves which in analytic geometry are called ellipses. Let ( be a conic
in the projective plane. When we pass to the affine plane, either

| (@) C does not meet [, and is called an ellipse,

or

fij (b) C is tangent to [, and is called a parabola,
‘\ (¢) C meets L, in two distinct points and is called a hyperbola.

~ CENTER AND DIAMETERS

The pole, with respect to a given conie (, of I, is called the center of C. The center C
of an ellipse (see Fig. 13-8 below) is an interior point; the center C of a hyperbola is an ex-
terior point; the pole, with respect to a parabola, of I, is its point of contact.C ,/ with the
curve. Strictly speaking, a parabola has no center but we often find it convenient to speak
of C, as if it were the center. Ellipses and hyperbolas are called central eonies—

When the conic is given completely, the center is constructed as the interseetion of the
polar lines of any two points on [, (see Chapter 9); when the conic is not given completely,
the simplest construction [see Problem 9.3(b), page 96] requires that three of its points be
known.
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hyperbola

ellipse

Fig.13-8

For a central conic, any line through its center C is called a diameter of the conic. It
follows easily that each diameter of a central conic is the polar line, with respect to the
conic, of some point on l,. Since the center of an ellipse is an interior point, every diameter
meets the ellipse in two distinct points, i.e., is a secant. Since the center of a hyperbola
is an exterior point, a diameter may be a secant, may not meet the hyperbola at all, or may
be tangent to the conic at one of its intersections with l,. These two tangents a led
’a_gmto_tes_aﬁ_thﬂ,hxperhola. Although the asymptotes are diameters, they have certain
unique properties. As an example, the asymptotes separate those diameters which do not
meet the hyperbola from those which are secants. For a parabola, the polar line of any
point on I, is a line on C.,. Thus we may say that every line on the center of a conic is a
diameter. Only in the case of a parabola are the diameters parallel to one another.

CONSTRUCTIONS

All constructions of Chapters 8-10 remain valid in affine geometry since it is possible to
choose I, s0 as neither to be on any given point nor to fall along any given tangent. On the
other hand, from a projective construction a variety of affine constructions follow by
choosing I, properly.

Example 13.1.
Consider Problem 10.5, page 108: Given the points Ay, A5 A4 As and the tangent ¢;,, construct
another point on the conic. By choosing 1, as indicated, the following affine constructions result:

(1) Given the center and three points of a parabola, construct another point of the conic.
Take I, along t,.
(2) Given three points on a hyperbola, the tangent at one of these points, and the ideal point on one
asymptote, construct another point on the conic.
Take I, on Aj.
(8) Given two points on a hyperbola, the tangent at one of these points and the ideal points on both
" asymptotes, construct another point on the conic.
Take I, on Az and A4

(4) Given three points and an asymptote of a hyperbola, construct another point on the conic.
Take loo = t1’2 on A1,2‘
(5) Given two points, an asymptote, and the ideal point on the other asymptote of a hyperbola, construct
another point on the conie.
Take I, on A, and As.
(6) Given three points on a hyperbola, the tangent at one of these points, and the ideal point on one
asymptote, construct the ideal point on the other asymptote.
Take [, on A along I
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CONJUGATE DIAMETERS

Let P and @ be distinct points on a conic and call the segment PQ a chord of the conic.
Consider now a system of parallel chords of a given conic. The projective lines on which
these chords lie are on a common point, say A, and the polar line of A, with respect to the
conic is on the midpoint of each chord. Thus, we have

Theorem 13.10. The midpoihts of a system of parallel chords of a conie (C are on a diameter
of C.

As a consequence, the construction of a diameter of a given conic reduces to joining the
midpoints of any two distinet parallel chords of the conic while the construction of the
center reduces to intersecting any two distinet diameters of the conic.

Consider in Fig. 13-9 the central conic  and any one of its diameters d. Let d-1, = D.,.
Now the polar line of D, with respect to ( is generally another diameter d’ of C. (The reader
should verify that this is true except
when d is an asymptote of a hyperbola.
To avoid the listing of such exceptions,
we will work hereafter under the fol-
lowing convention: Whenever an ar-
bitrary tangent or diameter of a cen-
tral conic is given, the tangent or di-
ameter is not to be taken as an asymp-
tote of a hyperbola.) Let d’:l, = D_.
Then, with respect to (, the line d is
conjugate to d’. (Why?) As a con-
sequence, d and d’ are called a pair of
conjugate diameters of . Continuing
in this manner, the diameters of " may
be separafed into conjugate pairs.
Suppose now that we begin with the

diameter d’. It is left for the reader d
to show that its conjugate is d and,
thus, to establish Fig.13-9

Theorem 13.11, The pairs of conjugate diameters of a central conic  are reciprocal pairs
of an involution-on €, the center of (.

When ( is an ellipse, the4involut\ion of Theorem 18.11 is without double elements and is
called elliptic. When ( is a hyperbola, the involution has two distinct double elements
(the asymptotes) and is called hyperbolic.

We leave for the reader the proof of

Theorem 13.12. Any parallelogram inseribed in a conie has two diameters of the conic as
diagonals and lines parallel to a pair of conjugate diameters as sides.

HYPERBOLAS

In this section we consider theorems concerned with the asymptotes of a hyperbola.
Many of these arise simply as affine interpretations of projective theorems. For example,
Theorem 9.13 yields

Theorem 13.13. 1If a tangent to a hyperbola meets the asymptotes in A and 4’, then any two
parallel lines on A and A’ constitute a conjugate pair.

since the center of the hyperbola and any point on [, constitute a conjugate pair.
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Again, the theorem of Problem 9.30, page 101, yields

Theorem 13.14. Any pair of conjugate diameters of a hyperbola separate harmonically the
asymptotes.

In Problem 13.8, we prove

Theorem 13.15. If the tangent to a hyperbola at M meets the asymptotes a and o’ in A and
A’ respectively and if X is any point of the line on M and parallel to a’,
then the polar line & of X is on A’ and parallel to AX.

Consider now in Fig. 18-10 the hyperbola ¢ with asymptotes a and a”. Let d and d’ be a
pair of conjugate diameters meeting I, in D, and D. respectively. On D, take any line o
meeting ( in P, Q@ and the asymptotes in A, A’. Then M =o0-d is the midpoint of the chord
PQ and, by Theorem 13.14, is also the midpoint of the segment AA’. By Theorem 13.9 the
segments AP and QA’ are congruent. We have proved

Theorem 13.16. If a chord PQ of a hyperbola meets the asymptotes in A and A’, then AP
and QA’ are congruent.

Fig.13-10

As a special case of Theorem 138.16 or by an independent proof, we have

Theorem 13.17. The point of contact is the midpoint of the segment of a tangent to a hyper-
bola intercepted by the asymptotes.

Solved Problems

13.1. Prove: The line on the midpoints of two
sides of a triangle is parallel to the third
side.

Consider in Fig. 13-11 the triangle PQR and
let PQ-l,=A, QR-I =B, RP:l ,=C,.
Denote by K the midpoint of PQ and by L
the midpoint of RP. Since H(P,Q; A, K) and
H(P,R; C_, L), it follows that K and L are cor-
responding points in the perspectivity

P,QA,,...) ¥ (B,RC,...) Fig. 13-11
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13.2.

13.3.

Then K, L, B, are collinear and, hence, KL is parallel to QR.

This (affine) theorem may also be obtained from the projective theorem stated in the note to
Problem 4.2, page 51, by taking as I, the line cutting the sides of the triangle. For, then, the har-
monic conjugates of the intersections are midpoints of the sides and the join of any two midpoints,
being collinear with the ideal point on the third side of the triangle, is parallel to that side.

Given a triangle PQR and a line o not on any vertex. Let PQ-o=A4, QR-0 = B,
RP-0o=C, 0+l,=0, and let T be any other point on 0. If A’,B’,(" are points on
o such that each of the segments AA’, BB/,CC’ has T as midpoint, show that the
lines PB’,QC’, RA’ are concurrent.

Fig.13-12

Refer to Fig. 13-12. Let PB’-RA’ = S and consider the complete quadrangle PQRS. Its pairs
of opposite sides meet o in three reciprocal pairs of an involution on o of which A,A’ and B,B’ are
two of the pairs. Since this involution has T, O, as double points, the third pair is C,C’. Then
QS = €’ and QC’ is on S as required.

This affine theorem is a byproduct of the problem of constructing in the projective plane the
companions of A, B, C in the hyperbolic involution on o having T and U as double points, the theorem
resulting when U is taken as the ideal point on o.

If the midpoints of the sides of a

triangle PQR are P’,Q’, R’ respec- \B
tively, show that 2 C
00
H(P'P,P’'R; P'Q’,P'R")
Refer to Fig. 13-13 in which PR+, = o K, 4
C,. By Theorem 13.6, P'R’ is parallel to i ~2
PR and, hence, is also on C,. Now / ly
(P'P,P'R,P'Q",P'R) %= (P,R,Q,C,)

and, by construction, @' is the midpoint of P
the segment PR. Then H(P,R; Q',C,) and
so H(P'P,P'R; P’Q',P'R') as required. Fig.13-13

[N
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134. Prove: If a diameter d of a conic  meets it in distinct points, the tangents drawn to
(C at these points are parallel.

Let d meet  in the points P and R. Since d = PR is on C, the center of (, its pole with re-
spect to ( is some point, say A, onl, By Theorem 9.9, page 94, the tangents to ( at P and @Q
are on 4 and, hence, are parallel.

When ( is a parabola, one of its tangents on any point of I is I, itself; hence two tangents to
a parabola are never parallel.

18.5. Prove: If AA’is any chord of a conic whose midpoint is on a diameter d of (,
the tangents to  at A and A’ intersect on d.

Let AA'-d=A" and AA’'+l_ = A_; then H(A, A A, A" and d is the polar line of A
with respect to . (Why?) Denote by T the point of intersection of the tangents to  at A and A'.
Now T is the pole with respect to C of AA’ and, by the dual of Theorem 9.9, page 94, is on d.

13.6. Let ( be a conic and P be a fixed point, not on an asymptote when ( is a hyperbola.
Show that the midpoints of the chords of C on P lie on another conic.

£,

Suppose ( is a central conic with center C. Let any chord is% on i" meet C in Q,Q’ and let
z+l,=X,. (Wedonot exclude P on ( and, hence, @ = P.) The polar line x’ of X, with respect
to C is on the midpoint of the segment Q@' and is also on C. Now let = vary on P; then by Theorem
9.10, page 94,

P@x) = 1,(X,) = C@&)

and so P(x) = C(z'). Since P is never on an asymptote in case C is a hyperbola, PC is never self-cor-
responding and this projectivity is never a perspectivity. Hence by definition, % *«’ is on a conic
which is also on P and C.

We leave for the reader consideration of the case when ( is a parabola,

13.7. Given the center C of a conic ¢ and three of its tangents, no two of which are
parallel. Construct as many additional tangents as desired.

Denote the given tangents as ay, a3, a5 (see Fig. 13-14). Let a;*l = A_,; and CA_ ;= ¢
(i=1,8,5). On A_ 4 thereis a second tangent to (; call it a,. Now the polar line of A 4 is on
C and also on the points of contact Ay, A, of the tangents a;, as. Let A4,+I, =B, . Then since
H(C,B,; A1, Ay) also Hley, 1, ar, ay), and @, can be constructed. Similarly, the tangent a, parallel
to a; can be constructed and then additional tangents may be obtained using Brianchon’s theorem.

Fig. 13-14
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13.8.

13.9.

13.10.

13.11.

13.12.

Prove: If the tangent to a hyperbola at M meets the asymptotes a and o’ at A and A’
respectively and if X is any point of the line on M and parallel to a’, then the polar
line z of X is on A’ and parallel to AX.

Refer to Fig. 13-15 in which m is the tangent at M and X is any point on MA;. Let
AX+] =B, . We are to prove that « = A'B_.

With respect to the hyperbola the lines AB_ and A’B_ are a conjugate pair by Theorem 13.13,
while the lines A'B_ and MA’ are a conjugate pair since A’ is the pole of MA4A’,. Then the pole of
A'B_ is AB_+MA’ = X or, what is the same, the polar line « of X is 4'B,_,.

Fig.13-15

Supplementary Problems

In the projective plane having one of its lines labeled [, let there be given a line p meeting I in

P, four distinct points A, B,C,D on p, and a point E on neither line.

(a) Construct the line g on E and parallel to p.

(b) Construct the point F' such that ABEF is a parallelogram.

(¢) Construct the point G such that AEGB is a parallelogram.

(d) Give two proofs that E is the midpoint of the segment FG.

(¢) Give a procedure for proving the segments AB and CD either congruent or not congruent.

Prove: If PQRS is a parallelogram, then the complete quadrangle PQRS has two of its diagonal
points on [, and conversely.

Prove: The harmonic conjugate of the median on a vertex of a triangle, with respect to the two
gides on that vertex, is parallel to the third side.

Prove: The midpoints of the segments intercepted on two given parallel lines » and s by all non-
parallels to these lines are on a line parallel to the given lines.

Hint. On any non-parallel p let v p =R, s*p=3S, BS-l,=L,, and let T be the midpoint of
the segment RS. Examine the projections from r+s of these points on other non-parallels.
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13.13.

13.14,

13.15.

13.16.

13.17.

13.18.

13.19.

13.20.

13.21.

13.22.

PLANE AFFINE GEOMETRY [CHAP. 13

In Fig. 13-11 let LA _+QR =M and prove: The length of the segment joining the midpoints of
two sides of a triangle is one-half the length of the third side.

Prove: If three distinet points A, A, A; on line x and three distinct points A}, 47, Aj on line y
are such that A;A5, AjA, are parallel and A,Aj; A;A, are parallel, so also are A;45, A14,.

Prove: Theorem 13.7, page 131.

In Fig. 9-1, page 90, take

() PT =1, and verify ( is an ellipse, P, is its center, p and XX, are diameters.
(b) PK =1, and locate the center of (.

(¢ KT =1, and verify C is a hyperbola. Locate its center and asymptotes.

(d) 1, so that C is a parabola.

For ( any central conic and P_ any point on [_, obtain as the affine interpretation of

(@) The definition of polar line: — If a diameter d is on the midpoints of each of two parallel chords
AA’ and BB’ of (, then AB-A'B’ and AB’+* A’B are on d.

(b) Theorem 9.1, page 91: — The polar line of any point on I, with respect to  is a diameter of (.

(¢} Theorem 9.3: — If, from a point on any diameter d of , two tangents ¢ and a’ can be drawn to
C, then the harmonic conjugate of d with respect to a,a’ is parallel to the system of chords
whose midpoints are on d.

(d) Theorem 9.4: — If, from a point on any diameter d of C, two tangents to C ean be drawn, then
d meets the chord of contact of these tangents in its midpoint.

Prove: The points of contact of two parallel tangents to a conic are on a diameter,

In each of Problem 13.16(a), (¢), (d) name a pair of conjugate diameters when such exist.
Partial Ans. (¢) PM and PN; name two other pairs.

Prove: If a conic is met by two of its diameters in P,R and @, S respectively, then PQRS is a
parallelogram. '

Prove: Theorem 13.12, page 135.

Prove: If, from each of two points on a diameter of a conic, two tangents (¢ and a’, b and b’) can be
drawn, then the lines (¢« b){a’ + b’) and (a* b’)(a’ * b) are each parallel to the system of chords whose
midpoints are on d.

In Problems 13.23-13.28, ( is a central conic.

13.23.

13.24,

13.25.

13.26.

13.27.

Prove: If P is any point on a diameter d of (, then the polar line of P is parallel to the conjugate
diameter d’.
Hint. Let d+l, =D, and d'+l,=D); then D, is the pole of d.

Prove: If d and d' are a pair of conjugate diameters of (, then d’ (d) is parallel to the system of |
parallel chords whose midpoints are on d (d').

Let d, any diameter of C, meet C in D and D’ and let e and ¢’ be any pair of conjugate diameters of
C. Show that lines on D and D’ parallel to each of ¢ and ¢’ meet in F and G on C and that FG

is a diameter of (.

Let the points of contact of parallel tangents a and &’ to C be 4 and A’ respectively and let B be the
point of contact of any third tangent b to (. Show that a- b is on the diameter parallel to A’'B and
@’ + b is on the diameter parallel to AB.

Let the points of contact of parallel tangents a and &’ to C be A and A’ respectively, let b be any
other tangent to (, and let d be the diameter of  on a+b. Locate the point of contact B of b.
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13.28.

13.29.

13.30.

13.31.

13.32.

13.33.

13.34.

13.85.

13.36.

13.37.

13.38.

If the conjugate diameters d and d' of C meet C in A, B and D, E respectively, if P is any other
point on  and ¢ is any line parallel to d’, show that R=AP-¢q and S =BP-+q are conjugate
points with respect to (.

If M is the midpoint of a chord PQ of a parabola and if O is the pole of PQ, show that the parabola
meets the segment OM in its midpoint.

Given four tangents of a parabola (, construct the diameter which is conjugate to one of the given
tangents.
Hint, A fifth tangent is .

Given a diameter d of a parabola and (a) three of its points or (b) three of its tangents, construct
the parabola.

Prove: If d and d’ are a pair of conjugate diameters of a hyperbola, one intersects the hyperbola
and the other does not.

A parallelogram has its sides parallel to the asymptotes of a hyperbola (. If one of its diagonals
is a chord of (, show that the other diagonal is a diameter of (.

Hint. See Problem 10.25, page 111.

Prove: ' The point of contact is the midpoint of the segment of a tangent to a hyperbola intercepted
by the asymptotes.

The line p on any given point A and parallel to an asymptote meets the hyperbola in P and the polar
line of A in B. Show that P is the midpoint of the segment AB.

Given two tangents, the point of contact of one of them, and an asymptote of a hyperbola, construct:
(a) the point of contact of the second tangent,

(b) the tangent from any point on the asymptote,

{c) the ideal point on the other asymptote,

(d} the center of the hyperbola,

(e) the other asymptote.

Prove: The nine-point conic of a quadrangle with respect to I, is on the vertices of the diagonal
triangle and the midpoints of the six segments determined by the vertices of the quadrangle, i.e.,
the midpoints of the sides of the complete quadrangle.

Show that the joins of the midpoints of the opposite sides of the complete quadrangle of Problem
13.37 are diameters of the nine-point conic.



Chapter 14

Plane Euclidean Geometry

INTRODUCTION

Affine geometry has been derived from real projective geometry by (1) selecting in the
projective plane an arbitrary line, denoted thereafter as l,, and (2) defining as parallel
any two affine lines x and y provided the projective lines x and ¥ intersect on l,. In this
geometry, two segments may be compared if and only if they are on the same line or on
parallel lines.

Affine geometry becomes Euclidean geometry as soon as we have a means for com-
paring two segments on non-parallel lines. In turn, this will be provided as soon as we
state when two lines are perpendicular. For, then, ellipses can be separated into two
classes — circles and non-circles — and two non-parallel segments OA and OB can be defined
as congruent by rotation provided A and B are on a circle whose center is O.

PERPENDICULAR LINES

The following properties of perpendicular lines in elementary metric geometry indicate
how they may be defined:

If line ¢ is perpendicular to line ¢/, then a’ is perpendicular to a.
No line is perpendicular to itself.

The first property suggests a connection between a pair of perpendicular lines and a
reciprocal pair of an involution; the second property requires that this involution be elliptic.

We begin once more with the projective plane, having one of its lines labeled [, and
_parallel lines defined as in Chapter 13, On [, select an arbitrary elliptic involution to be
denoted hereafter as c4. Call this involution the Wnal mvolutzon fand de-
note its reciprocal pairs as A, A.; B.,, BL; C..,C4; ... . (In every diagram of Chapter 13,
the line I, appeared; in this chapter, the line lw appears with at least two reciprocal pairs of
the absolute involution located on it.)

Two affine lines x and 2’ are said to he perpendicular provided the projective lines
2 and 2’ are on a reciprocal palr of the _absolute involufioh-~Tn Fig. 14-1, the line ¢ on 4,
and the line o’ on A, are perpendicular; similarly, b: and b (also, b: and b’) are

perpendicular.

Fig.14-1

142
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There follow easily
Theorem 14.1. On any point there is one and only one line perpendicular to a given line.
Theorem 14.2. 'Two lines perpendicular to the same line are parallel.

Theorem 14.3. Any line perpendicular to one of two parallel lines is perpendicular to
the other.

Theorem 144. 1In any pencil of lines, with center P, the pairs of perpendicular lines are
reciprocal pairs of an involution on P.

The involution defined in Theorem 14.4, whose reciprocal pairs join P with reciprocal pairs
of the absolute involution c4, is called the circular involution on P.

We now list the following definitions:
Any angle formed by a pair of perpendicular lines is called a right angle.

If PQ is a segment of a line 0 with midpoint M, the line on M and perpendicular to
o is called the perpendicular bisector (right bisector) of the segment.

If two sides of a triangle are segments of perpendicular lines, the triangle is called
a right triangle; otherwise, the triangle is called obligque.

The line on a vertex of a triangle and perpendicular to the opposite side is called
an altitude of the triangle.

The intersection of an altitude, on any vertex, and the opposite side is called the
foot of the altitude. o

The feet of the altitudes of any oblique triangle are the vertices of the pedal triangle
of the oblique triangle. T

A parallelogram whose adjacent sides are perpendicular is called a rectangle.
In Problem 14.1, we prove
Theorem 14.5. 'The altitudes of any triangle are concurrent.

The point of concurrency in Theorem 14.5 is ealled the orthocenter of the triangle.

CIRCLES

Let P and @ be any two distinct ordinary points (see Fig. 14-2), let PQ-l, = P, and
denote as P, the mate of P, in 4. Since
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we have
(PA.,PA.,PB,,PB,,...,PP,PP,,...) = (Ay,A,, BBy, ..., P, P,,...)
~ (A%, A0, Boy By .. ., Poy Py .. .) = (QAL,QA,,QBL,QB,, ...,QP,,QP,, . ..)
and, hence, (PA,,PA,,PB,,PB,, ... PP,PP,,...)
=~ (Q4.,Q4.,QB.,QB.,...,QP.,QP,, ...)

The conic defined by this projectivity is an ellipse (Why?) on the points P and Q. In the
projectivity, the correspondent of PQ, as a member of the pencil on P, is the tangent QP.
while the correspondent, as a member of the pencil on @, is the tangent PP.. Since PP,
and QP., are a pair of parallel tangents, PQ is a diameter of the ellipse and C, the midpoint
of PQ, is its center.

Let R.,, R, be any other reciprocal pair of c4. Let PR.-QR, =R and PR.-CR,, =PR".
From - . E. _

(P,Q,C,P,) = (P,R, R, R.)

*we have H(P,R; R’, R.)) so that R’ is the midpoint of the chord PR. Then the polar line
of R, with respect to the ellipse is CR’ = CR,, and so the polar line of R is CR.. Thus
CR,, and CR., are a pair of conjugate diameters. Now R., R, was any reciprocal pair of
oA ; hence the joins to C of every reciprocal pair of <4 constitute the involution of conjugate
diameters of this ellipse. Hereafter, an ellipse whose pairs of conjugate diameters cut
out on I, the absolute involution or, what is the same, whose involution of econjugate
diameters is a circular involution, will be called a circle. The term ellipse will now be
restricted to any central conic which does not meet l, and whose involution of conjugate
diameters is not a circular involution.

From the above discussion, we obtain easily
Theorem 14.6. Any angle inscribed in a semicircle is a right angle.

Theorem 14.7. The perpendicular bisector of any chord of a circle is on its center.

Theorem 14.8. The tangent to a circle at an extremity of a diameter is perpendicular to
the diameter.

Theorem 14.9. The diameter conjugate to a given chord of a circle is its perpendicular
bisector.

Theorem 14.10. The points of intersection of every pair of perpendicular lines on two dis-
tinct fixed points are on a circle having the join of the two points as a
diameter,

Thus the circle having the segment PP’ as diameter is the locus of all points X such that
PX and P’X are perpendicular.

Theorem 13.12, page 135, and Theorem 14.6 imply
Theorem 14.11. Every parallelogram inscribed in a circle is a rectangle whose diagonals

are diameters and whose sides are parallel to a pair of conjugate diameters
of the circle.

CONGRUENT SEGMENTS

Any segment CX, where C is the center and X is a point on a circle, is called a radius
of the circle. For example, CP,CQ and CR are radii of the circle in Fig. 14-2. Now CP
and CQ are congruent since C is the midpoint of PQ. We extend the notion of congruent
segments to (a) all radii of a given circle by defining
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Two segments CX and CY are said to be congruent by rotation provided they are
radii of the same circle.

and (b) two segments on non-parallel lines by defining

Two segments PQ and RS are said to be congruent provided there exist segments
CX, congruent to PQ by translation, and CY, congruent to RS by translation, such that
CX and CY are congruent by rotation.

A unit of measure selected for a given line may now be transferred to any other line of
the plane. Thus any two segments may be compared since their lengths can be expressed
in terms of a common unit of measure.

Let A, B, C be any three non-collinear points and let O be the point of intersection of
the perpendicular bisectors of the segments AB and BC. Denote by ( the circle having O
as center and AB as a chord and denote by (’ the circle having O as center and BC as a
chord. (See Problem 14.2.) Since OB is a radius of both  and (, it follows that they are
one and the same circle. We have proved

Theorem 14.12. Any three non-collinear points determine a unique cirele.

ANGLES
In elementary geometry the angle at C in Fig. 14-3(¢) is variously designated as
£C, LACB, LBCA. We shall use instead the directed angle, defined as follows:

The directed angle from AC to CB is that angle through which the line ¢ = AC
must be rotated about C in the counterclockwise direction or sense to bring it into
coincidence with b = CB.

b\ /9 e
\ ’
\
A B
\/ C
A
B //\C
S
FE
\
(@) . (b)
Fig.14-3
This directed angle, always positive and less than 180°, will C
be denoted by (ab) or (ACB). It is important to note that
the directed angle (ACB) is independent of the location of D

A+#Conaandof B+#C on b. For example, (ab)=(ACB) =
£ACB in Fig. 14-3(a) but (ab) = (ACB) is the supplement of
LACB in Fig. 14-3(b). Also, in Fig. 14-4, /ACB and £ADB
are equal when C and D are on the same side of AB while

LACB and £ADB are supplementary when C and D are A B
on opposite sides of AB. In either case, however, the di-
rected angles (ACB) and (ADB) are equal. Thus, we have

If four distinct points A,B,C,D are on a circle, D
then (ACB) and (ADB) are equal. Fig. 14-4

We wish now to examine these angles in a projective setting. To motivate the defini-
tion which will be made later, the following problem is suggested: Given on the origin O
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four lines a,b,a’,b’ with o’ perpendicular y o« 4y b
to @ and b’ perpendicular to b. Let the

equation of @ be ¥ = mz, m =tan¢, and .
denote by 6 the directed angle (ab). Obtain 0 )
the equations of b,a’,b’ and verify that
(a,b;a’,0") is a function of ¢ alone.

Fig. 14-6 consists of a circle with four
distinet points A,B,C,D marked on it.
Consider on C the lines: a = AC, b = CB, Fig.14-5
o’ perpendicular to o and meeting the circle again in A’, and b’ perpendicular to b and meet-
ing the circle again in B’. (Note that A4’ and BB’ are diameters of the circle.} Then join
Dto A, B, A’, B’ to obtain the respective lines @, b, @, b’ of which @ and &, also b and b’, are
perpendicular. By Theorem 8.2, page 84, we have

(i) (a,b,a,b") = (@,b,a,b")

Fig. 14-6

Thus, (ab) = (D) implies (i). The converse, however, is generally not true. For, using
Theorem 2.10, page 25, we also have

) (@b, b) = (5,6b,)
But this cannot imply (ab) = (bd@) since then (ab) would be equal to (ba) whereas they are
supplementary. Note that in (i) we have the sense &f(a,b,a/,b") =d(4,b, @, b’), that is,
both are counterclockwise, whereas in (ii) we have o&f(a,b,a/,b) # J(b,d, b’,a@). Now
(ba) = (ba) and, clearly, we have
b,a,b,a) = (5,@,b,d)

and J(b,a’, b, a)

Il
<
[
i=11
‘\
[
“\
=]
g

Thus, we define:
If two lines a,b and their respective perpendiculars a’,b” are on point P and two
lines ¢,d and their respective perpendiculars ¢’,d’ are on point @, then (ab) = (cd)
provided
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ol

(a,b,a’, ) (c,d,c’,d)
and : Jd(a,b,a,b) = J(c,d,c,d)
obtains. |

Example 14.1.

In Fig. 14-7 the lines a, b,0’, b’ on O are, in order, two lines and their respective perpendiculars. Since
these lines meet [ in two reciprocal pairs of the absolute involution ¢4, we have

@b, b) 2 (A, B,,ALB) = (A,BLA,B) = @V, ab
Then (a,b,a/,b) = (a/,b,a,b)
G)‘(a: b; a/l, b’) - @J‘(a,, b’, a, b)

and so angles (ab) and (a’'b’) are equal.

Fig.14-7

Example 14.2,

Suppose @, ¢ and b,d with a,b on a point O and ¢,d on another point O’ are pairs of parallel lines.
Then since

@b, b) = (A, B, A4,B) Z (cdd,d)
(a: b! alr b/) ~ (C, d: c’)d,)
Also (@, b,a,b) = ofe,d, ¢, d)

since each agrees with of(4 w0 Bw, fi:o, B;) on l,. Thus (ab) and (cd) are equal.
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BISECTORS OF ANGLES

If three concurrent lines @, b, m are such that (em) and (mb) are equal, the line m is said
to bisect the angle (ab). Suppose m bisects (ab). Then (see Fig. 14-9) we are given

(@) (a,m,a’,n) = (m,b,n,b)

and () Ja,m,a’,n) = J(m,b,n,b’)

Fig.14-9

From (a) and the dual of Theorem 2.10, page 25, we obtain
(b,n,b’,m) = (m,a’,n,a) = (n,a,m,a’)
or (b,n,b’,m) = (n,a,m,a’)
Since J(b,n, b, m) = J(n,a;m,a’)
it follows that (bn) and (na) are equal.
Again, by the dual of Theorem 2.10,
(@,m,a’,m) = (m,b,n,b") < (b’,n,b,m)

which exhibits m,n as a reciprocal pair of the involution (e,a’,b,b’) =< (b’,b,0’,a). But
m,n is also a reciprocal pair in the circular involution (¢,¢’,b,b’) = (¢/,a,b,b). By
the dual of Theorem 6.13, page 67, the lines m, n are the double lines of the involution
(¢,b,a/,b") % (b,a,b’,a’); hence, H(m,n;a,b). We have proved

Theorem 14.13. If a line m bisects the angle (ab), then (1) the line n, perpendicular to m,
bisects (ba) and (2) H(m,n; e, b).

The converse of Theorem 14.13 is also valid, that is,

Theorem 14.14. 1f H(m,n; a,b) and m is perpendicular to n, then m bisects one of (ab), (ba)
and n bisects the other.

When m bisects (ab) and n bisects (ba), we call m and n the internal and external bi-
sectors of (ab). We leave for the reader to prove

Theorem 14.15. The altitudes and sides of an oblique triangle bisect the angles of its pedal
triangle.
and

Theorem 14.16. The bisectors of the angles of any triangle concur in sets of three to form a
quadrangle.
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THE AXES OF A CONIC
Consider a conic ¢ with center €. On C are two involutions of lines of part1cular in-

terest — the involution of conjugafe diamefers of (“and the circular involution. Since the
latter is always elliptic, these two involutions (see Theorems 6.11 and 6.12, page 67) will
have at least one reciprocal pair in common. (Should they have two reciprocal pairs in
common, the involutions are identical. This is the case when the conic is a circle.) Every
ellipse (not a circle) and every hyperbola has, then, just one pair of perpendicular conjugate

diameters. We define

The axes of a central conic are the perpendicular conjugate diameters of the conic
or, what is the same, an axis is a diameter which is perpendicular to the system of
parallel chords which it bisects.

Each axis of an ellipse meets it in two points, called vertices. The length of an axis is the
length of the segment joining these vertices. The lengths of the axes of an ellipse are
unequal since, otherwise, we have a circle; the axis of greater length is called the transverse
(major) axis while the other is called the conjugate (minor) axis. Only one axis of a hyper-
bola meets the curve (see Problem 13.32, page 141). This axis is called the transverse awis;
the other is called the conjugate axis. The axis of a parabola is that diameter which is per-
pendicular to the system of chords which it bisects. (Why is there only one?) The vertex
of a parabola is the ordinary point of intersection of the parabola and its axis.

To construct the axes of a central conic (, take any diameter d meeting ( in the points
A and B. The circle on AB as diameter either (@) has common tangents with C at A and B
r (b) meets ¢ in two additional points, say D and E. When (a) obtains, the line AB is
perpendicular and conjugate to these tangents and, hence, to any chords parallel to them.
Thus AB is an axis of (C and its perpendicular bisector is the other. When (b) obtains, the
points A,B,D,E are the vertices of a rectangle. By Theorem 14.10, the sides of the
rectangle are parallel to a pair of conjugate diameters of the conic. These conjugate di-
ameters, being perpendicular, are the required axes.

When the conie is a parabola meeting [, in C,, take any diameter d and any chord AB
perpendicular to d. Let M be the midpoint of AB; then the diameter on M is the required
axis.

THE FOCI AND DIRECTRICES OF A CONIC

At any point M@.ﬂf conjugate lines with respect to a glven conic C con-
tains one rec1proca1 palr of perpendlcnlar hnes We define:

A focus of a conic is a point at which the 1nvolnt10n of conJugate hnes w1th respect
to the conic comc1des Wlth tﬁe circular invoelution. :

The center of a circle is a focus but it is not 1mmedlately clear that such a point exists for
any other type of conic.

o

Assume for the moment that the point F is a focus of a conic ¢ which is not a circle.
Any tangent to C on F would be self-conJ ugate and hence, self-perpendmular Thus,

P,

Theorem 14 17. A focus of a conic is always an interior pomt
T

Let C be the center of C, Where C = C, in case ( is a parabola. The chord on F, perpendic-
ular to CF would be ¢onj ugate fo CF and, hence, would be bisected by CF. Thus CF would
be an axis of C and we have proved

Theorem 14.18. Any focus of a conic is on an axis.
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Finally, suppose there were two foci F and F’. Then the perpendiculars to F# at F and
F’ are conjugate to FF’. Since they are parallel, their intersection is, say F, on le.
Thus FF” is a diameter and, hence, is an axis. We have proved

Theorem 14.19. If a conic has two foci F and F’, then FF”’ is an axis.

Since no conic, except a circle, has more than two axes while a circle has but one
focus, (see Problem 14.14), we conclude

Theorem 14.20. A conic can have no more than two foci.

There remains the problem of proving the exist-
ence of foci for conics other than circles. For this
purpose, we make use of Theorem 9.13’, page 95, in
connection with Fig. 14-10.

(a) Parabola. Take l, as u. Then ( is a parabola with
vertex V, v is the tangent at V, and t is any other
tangent to . The pole of the axis UV is K = v l.;
hence any point X on the axis together with K are
a pair of conjugate points. Then, by Theorem 9.13’,
the lines XL = X(t-v) and XM = X(t-l.) are a
conjugate pair. When XL is perpendicular to {,
XM is perpendicular to XL and X is a focus. In
addition to establishing the existence of a focus,
we have proved

Theorem 14.21. 1If &, an;r_’_c_@gg,e,nj;w&ai)_o_la, meets the tangent at the vertex in L,

then the join of L and the focus F' is perpendicular to .

Suppose there were a second focus X’. By Theorem 14.19 X’ would be on the axis
and then LX’ would be perpendicular to t, contrary to Theorem 14.1. Thus the parab-
ola has but one focus.

(b) Hyperbola. Take t as an asymptote and u, v tangents at the vertices U, V respectively.
(Note that KW =1,.) Now any point ¥ on the axis UV and K are a conjugate pair and
Y will be a focus provided LY and MY are perpendicular. Reverting to the familiar
sketch of a hyperbola in Plane Analytic Geometry, it is clear that the circle having LM
as diameter meets UV in two points, say, ¥y and Y. By Theorem 14.6, LY and M Y,
also LY: and MY, are perpendicula\r; thus Y and Y: are foci.

(¢) Ellipse. Take u and v as tangents at the extremities U and V of the major axis and
t the tangent at an extremity of the minor axis. The argument now follows closely
that in (b), namely, the circle with diameter LM meets UV in points X1 and X, which
are the required foci.

The polar line of a focus 6f a conic is called a directriz of the conic associated with the

focus. The directrix of a parabola is, then, perpendicular to the axis of the parabola; the
directrices of a central conic, not a circle, are perpendicular to the transverse axis of the
conic. :

We conclude this brief study of the conics by stating a number of theorems, some of

which may be new to the reader.

Theorem 14.22. Perpendicular tangents to a parabola meet on the directrix.

For a proof, see Problem 14.3.
IS

Theorem 14.23. 1f two tangents to a parabola are perpendicular, the join of their points of
contact is on the focus.
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Theorem 14.24. The segment AP of a tangent to a parabola between the directrix and the
point of tangency subtends a right angle at the focus.

Theorem 14.25. The orthocenter of a triangle circumscribed about a parabola is on the

directrix. For a proof, see Problem 14.4.

Theorem 14.26. The line joining a focus of a conic to the points of intersection of any two
tangents makes equal angles with the lines joining the focus and the points
of contact of the tangents.

Solved Problems

14.1. Prove: The altitudes of a triangle are concurrent.
The theorem is trivial if the triangle is a right triangle; suppose, then, the triangle PQR (see
Fig. 14-11) is oblique. .
Let ITDQ)- l, = fiw, QR = Bw, kP el, = (:'w. Then the perpendicular on P to QR and the
perpendicular on R to PQ meet I in B/, and A’ respectively. Let PB +RA, =S. By Theorem

6.3, page 66, the sides of the complete quadrangle PQRS meet I in three reciprocal pairs of an
involution; call this involution 4. By construction, two of these pairs are reciprocal pairs of the

involution <4 whence, by Theorem 6.2, page 65, J = 4. Then S@, being on C-’;J, is perpendicular
to PR and we have the theorem.

Fig. 14-11
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14.2

14.3.

14.4.
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Let P, R be distinet points and let O be any point on the perpendicular bisector p of
PR. Show that there is a unique circle having O as center and PR as a chord.

Let p+*PR = C. The problem is trivial if O = C; suppose O is not on PR as in Fig. 14-12.
Denote by ( the unique circle on P and having O as center. (To construct this circle, let
OP+1l = P,_, construct @ such that H(O,P,; P, @), and proceed as in the section: Circles.) "If C
is on R, the problem is solved. Suppose, instead, that ¢ meets PR again in R’ R. By Theorem
147, O (onp) is also on the perpendicular bisector of PR’. But then H(RE,P;C,A ) and
H(R',P;C,A_). Hence, R =R and ( has PR as a chord.

Fig.14-12

Prove: Perpendicular tangents to a parabola meet on the directrix.

Let the pair of perpendicular tangents a and o’ to the parabola meet in A and meet the tangent
at the vertex in B and B’ respectively. If F is the focus of the parabola then, by Theorem @_2\ ~F'B
is perpendicular to a and FB’ is perpendicular to a’. Thus, the quadrangle ABFB’ is a T¢ igle;
FB,FB' are a pair of perpendicular lines on F' and, hence, are a pair of conjugate lines with respect
to the parabola. Then, by Theorem 9.14’, page 95, the point A}is conjugate to F' and hence is on
the directrix. o

Prove: The orthocenter of a triangle circumscribed about a parabola is on the
directrix.

Let p, g, be the sides of the circumscribed triangle and let p’,q¢’,r’ be the tangents to the
parabola perpendicular to p,q,r respectively. Consider the hexagon pgrr’l p’; by Brianchon’s
Theorem \

@@ =ly), (g, p), (-7 D)
are concurrent. The first two of these lines,.being altitudes of the triangle, establish the point of
concurrency as S, the orthocenter of the triangle. The third line is the directrix of the parabola;
hence S is on the directrix as required.
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14.5,

14.6.

14.7.

14.8.

14.9.

14.10.

14.11.

14.12.

14.13.

Supplementary Problems

Prove: The lines joining the orthocenter of a given oblique triangle to one of its vertices and to the
ideal point on the side opposite that vertex are a reciprocal pair in the circular involution on the
orthocenter.

Given an oblique triangle PQR with orthocenter S, prove:
(¢) The points P, @, B are respectively the orthocenters of the triangles @RS, PES, P@S.

(b) The pedal triangle of each of the triangles PQRE, QRS, PRS, PQS is the diagonal triangle of the
quadrangle PQRS.

Prove: The perpendicular bisectors of the sides of a triangle are concurrent. The point of con-
currency O is called the circumecenter of the triangle.

Hint. Let the midpoints of the sides PQ, QR, RP of the triangle be D, E, F' respectively. The per-
pendicular bisectors of the triangle PQR are the altitudes of its medial triangle DEF,

Prove: Theorems 14.6, ..., 14.11.

Given in Fig. 14-13 a cirele with center O, an inscribed triangle ABC, and the tangent ¢t at A.
Show that (bt) and (ac) are equal.

Fig.14-13

Prove: The polar line with respect to a circle of any point P is perpendicular to the diameter on P.

Prove: The orthocenter of any self-polar triangle with respect to a circle coincides with the center
of the circle.

Prove Theorems 14.14, 14.15, 14.16.

In Fig. 14-11 locate the midpoints D and F of PQ and QR respectively. Verify that the triangles
RDA ; and PEE:O are perspective from a point. Conclude that the centroid G, the circumcenter O,
and the orthocenter S of the triangle PQR are on a line. This line is known as the Euler line of
the triangle,
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14.14.

14.15.

14.16.

14.17.

14.18.

14.19,

14.20.

14.21.
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Let ( be a circle, C be its center, and A be any other interior point; let p be any line on A and P
be its pole with respect to . Show that, generally, the pair of conjugate lines p and AP are not
perpendicular; hence A is never a focus of (. .

Given two circles C, with center C, and (/, with center ', intersecting in P and Q. Prove:
(a) The tangents to C (C') at P and @ meet on the line of centers ¢ = CC'.

(b) If the two tangents at P are perpendicular, they are singly on the centers C and €’ as also are
the tangents at Q.

Two intersecting circles whose tangents at each of their common points are perpendicular are
called orthogonal. If the circles of Problem 14.15 are orthogonal, prove: Any diameter DD’ of C
(C’') meets ¢’ (C) in B, S such that H(D,D’; R, S).

Prove: If C and (' are two circles meeting in P and @, if a line d on the center of C meets C in
D,D’ and (' in R,S and if H(D,D'; R,S), then ( and (’ are orthogonal.

Prove: If § iz the orthocenter of the triangle PQR, then the circle ¢ on the segment joining two
vertices as diameter and the circle (' on the segment joining S and the third vertex as diameter are
orthogonal.

Prove: Theorems 14.23, 14.24, 14.26,

Hint. For Theorem 14.26. Let F be the focus and d the associated directrix; ¢, be the tangents
intersecting in U; T, T’ be the respective points of contact; T7'+d = K. Then K is the pole of FU.

Any hyperbola whose asymptotes meet [, in a reciprocal pair of the absolute involution is called a

rectangular hyperbola. Every pair of perpendicular lines may be considered as a degenerate

rectangular hyperbola. Prove:

(¢} The pencil of conics on four general points contains one rectangular hyperbola.

(b) If the pencil of conics on four given points contains two rectangular hyperbolas (including
degenerate cases), every conic of the pencil is a rectangular hyperbola.

(¢) Every conic on the four points of intersection of two rectangular hyperbolas is a rectangular
hyperbola.

(d) Every conic on the vertices and orthocenter of an oblique triangle is a rectangular hyperbola.

(¢) If a rectangular hyperbola is on the vertices of a triangle PQR, it is also on the orthocenter °
S of the triangle.
Hint. Let the perpendicular on P to QR meet the hyperkola in T.

() Show that the nine-point conic of the quadrangle with respect to 1, (see Problem 13.37, page
141), whose vertices are the vertices of the oblique triangle PQR and its orthocenter S, is on
the midpoints of the sides of the triangle, the feet of the altitudes of the triangle, and the
midpoints of the segments joining the orthocenter and the vertices of the triangle.

(b) Show that this conic is a circle. The cirele is known as the mine-point or Feuerbach circle of
the triangle PQR.

Hint. 1£ D,E,F, T, U,V are the respective midpoints of PQ, QR, RP,PS, QS, RS then DUVF and
TDEYV are rectangles having DV as common diagonal.




Chapter 15

Analytic Projective Geometry

INTRODUCTION

In Chapter 1 attention was called to the fact that the Greeks interpreted arithmetic and
algebra in terr-: of geometry. It is interesting to note that we have now come a full half
turn, the tendency today being to solve any problem in geometry by algebraic means. In
this and the next two chapters, we investigate some of the uses of algebraic methods in
plane projective geometry.

In Chapter 7 we saw that a model of certain finite projective geometries could be built
by defining an ordered triple of numbers to be a point, and a linear equation in three
variables to be a line. In each case, the components of the triples and the coefficients in the
equations were elements of a certain finite set. We shall proceed in a similar fashion except
that the set of numbers with which we work is the set of all real numbers.

DEFINITIONS

We begin by defining in algebraic terms the basic ingredients of any plane geometry,
namely, point, line, and the “on” relation. In so doing, it is essential we keep in mind that
in our geometry point and line are to be dual elements.

A point is an ordered triple of real numbers, (21, 22, 25) + (0,0,0), with the conven-
tion that (x1, 22, x3) and (Ax1, A2, Azs), where A # 0, are the same point.

A line is an ordered triple of real numbers, [Xi, X, X3] + [0,0,0], with the conven-
tion that [X,, X,, X5] and [AX1, A X, AX;5], where A+ 0, is the same line.

Thus (1,2, 8), i.e., “parentheses 1,2,3” is a point while [1,2,8], i.e., “brackets 1,2,3”
is a line.

The point X: (x1, #2, x5) is said to be on the line x:[Xy, X5, Xs] and, dually, the line
[X1, X5, X5] is said to be or the point (x1, 22, x3) provided

{Xa} = {2X} = 21 Xi + 2 Xo+2:Xs = 0 (1)
Example 15.1.
(@) (6,8,—10), (3,4, —5), (—1,—4/3,5/3) are one and the same point.
(b [2,1,2], [6,8,6], [—1,—%, —1] are one and the same line.
{¢) The point P: (8,4, —5) is on the line p:{2,1,2] since
2, X, + 2, Xy + 2,X; = 3°2+ 41+ (=5)2 = 0
The numbers 21,22, 25 are called the coordinates of the point (x4, 23, #3); the numbers

X1, X, X3 are called the coordinates of the line [Xy, X5, Xs5]. When (z1, 23, x3) is a variable
point on the fixed line [X1, X3, X3, (Z) may be written as

Xixy + Xoxo + X2z = 0

165
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and is called the equation of the line. When [Xi, X5, X;] is a variable line on the fixed
point (ﬁh, X2, .’113),
21 X1 + 22X + x3Xs = 0

is called the equation of the point.

Example 15.2.

{(a) The equation of the line [1,2,3] is #; + 2xy+ 323 = 0; the coordinates of the line 2xy —4ay+ Bxz =0
are [2,—4,5].

(b) The equation of the point (2,—1,0) is 2X;— X, = 0; the coordinates of the point X, —X3 =10 are
(17 0: —1)

Clearly, the dual of any discussion is obtained essentially by the simultaneous inter-
change of

(i) small and capital letters,
(ii) parentheses and brackets.

In the familiar Cartesian coordinate system each number pair (z,y) defines a unique
point of the plane and, conversely, each point is defined by a unique number pair. On the
contrary, each linear equation ax + by + ¢ = 0, where not both ¢ and b are zero, defines
a unique line while this same line is represented by a class of linear equations
rxax +Aby +rc = 0, A0, of which ax +by+c¢ = 0 is one representation. In the
analytic geometry under discussion in this chapter, both points and lines have multiple
representations. However, in the interest of brevity we shall continue, as in Example 15.2,
to write “the coordinates” and “the equation”, meaning thereby some one of the class
of representations of the point and line.

Tt should be expected, of course, that the analytic geometry of point and line triples will
provide a model of the real synthetic geometry studied in the earlier chapters. Verifications
of a number of the axioms of Chapter 7 will be made in the Examples and Solved Problems
of this chapter; verification of the remaining axioms are left for the reader to supply.

COLLINEAR POINTS AND CONCURRENT LINES

Let two points ¥ and Z be given by Y:(y) = (1,2, ¥s) and Z:. (2) = (#1, 22, 23) respec-
tively. By definition, ¥ has an infinitude of representations a(y) = (ay1, a¥2, e¥f3), Where o
is any non-zero real number, and similarly for Z. Suppose, among these representations,
we find

oY) = (ayy, a¥z, els) = (B21, B2, f25) = B(2) ()

Then Y and Z are coincident points; moreover, writing A =« and = —8, we have as a
condition for coincidence the existence of non-zero real numbers A, u such that

AMy) + p(2) = (0,0,0) = 0 (3)

If, on the other hand, no relation (3) exists, the points Y and Z are distinet.

Consider, next, three distinct points Y:(y), Z:(z), W:(w). Suppose, among their rep-
resentation, we find o(y), 8(2), y(w) such that

a(y) + B(2) + y(w) = (0,0,0) = 0 (4)
that is, a1+ Bz +ywi1 = 0
als + e+ yws = 0 (5)

alys + Bzs +yws = 0
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Although (5) always has the trivial solution « = 8=y =0, it is a theorem of algebra that

the system will have a non-trivial solution if and only if the determinant

Y1 21 Wy
Yz 22 W2 = 0
Ys Z3 Ws
Now (6) implies
Y1 Y2 Y2
21 % 23 = 0

W1 Ws Ws

which, in turn, assures the existence of numbers Xi, Xz, X3, not all zero, such that
Xiyr + Xoys + Xsys = 0
X1zt +Xoz2 +Xs23 = 0
Xiw: + Xows + Xsws = 0

(6)

?)

But these are simply the conditions that the points (¥), (z), (w) be on the line [X), X5, X3].

Thus, we have

Theorem 15.1. A necessary and sufficient condition that the distinct points (y), (2), (w) be

collinear is
Y1 Y2 Y3
21 R 23 = 0
w1 W2 W3
There follows

Theorem 15.2. The line determined by the distinct points () and (2) has equation

X1 X2 X3 Yo ¥ y
2 Ys Ys Y1 Y1 Y2
Y1 Y2 Y3 = r + T2 + s = 0
%2 23 23 21 21 22
21 R Z3
. Y2 Ys Ys Y Y1 Yz
and coordinates , s .
22 Z3 23 21 Z1 22

Example 15.3.
(2} The points P: (2,1, -3), @: (4, —2,4), R: (10,—1, 0) are distinct (check this) and are collinear since

2 1 -3 12 1 -3

4 -2 4 = |—-16 —2 4 = 0

10 —1 0 0 -1 0

(b) The line joining P and @ has equation
9;1“2”3_ 1o-3) (=82 |2 1
S e 4 4T g |8
4 -2 4
= —2901 - 20502 — 8503 = 0

Another representation is z; + 10z, + 423 = 0.
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If, on the contrary, no relation (4) exists for the points Y, Z, W, they are non-collinear.

Finally, consider any four points Y:(y), Z:(2), U:(u), W:(w) of the plane. We show
there always exist real numbers «, 8, v, 8, not all zero, such that

oY) + B(R) + yw) + 3w) = (0,0,0) = 0 (8)

Suppose some two of the points, say ¥ and Z, are coincident; then (8) holds for ¢+ 0, B+ 0,
y =38 =0. Suppose, next, that no two of the points are coincident but Y,Z, U are collinear;
then (8) holds for a0, B+#0, y+0, §=0. Lastly, suppose no three of the points are

collinear; then, since
Y By U
o %2 W\ + O
Yz 23 Us

the system of equations

ofs + B2 + yur = —dW
ofs + Bza + yuz = —dwe
aYs + Bzs + yus = —3ws

has a unique solution a, 8,y for any 8 +#0, and (8) holds.

Dually, two lines y: [Y] and 2: [Z] are coincident provided there exist non-zero real num-
bers A, u such that
AY) +uiZ] = [0,0,00 =0 ()

while three distinet lines y:[Y], #: [Z], w: [W] are concurrent provided there exist non-zero
real numbers a, 8,y such that

ofY] + B[Z] ++[W] = 0 #)
It is left for the reader to obtain

Theorem 15.I'. A necessary and sufficient condition that the distinct lines [Y], [Z], [W] be
concurrent is

Y. Y, Y,
Zy Zy Zy| = 0
W, W W,

and

Theorem 15.2’, The point determined by the distinct lines [Y] and [Z] has equation

X, X, X;
Yy Y2 Y| = 22§3X1+§3§‘X2+§‘1Z’2X3=0
Z1 Z2 Z3 2 3 3 i 1 2
. Y, ¥s Y: Y Y: Y2
and coordinates ( Zy Zs|’ |20 2.0 |21 Zo >

See Problem 15.1.

PENCILS OF POINTS AND LINES

In Problem 15.2, we prove

Theorem 15.3. If (y) and (z) are distinct points, then AMy) + p(2) = (\y + p2), where X, are
any non-zero real numbers, is another point on the line determined by

(%) and (2).
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Let (), (2), (\y + p2) be three distinct collinear points. Since A - 0,
(M +u2) and <y +%z> = (y + v2)
are the same point. Consider (y+v2) = (y) + v(z) with (y) and (z) fixed and v a real param-
eter. When v =0, (y+ v2) is the point (y); when » - 0, (¥ + v#) is a point distinct from
(v) and from (z); when v, > v, and v;* v, # 0, the points (y), (2), (¥ +v.2), (¥ +v,2) are four
distinct collinear points. Moreover, if W +Z is on the line YZ it follows from (6) that

(w) = (y) + v(2) for some real value of v. Let us accept the convention: (y +v2) = (2) when
v =, We have
Theorem 154. 1If (y) and (2) are distinct points then, as v varies over the extended real

number system (the set of all real numbers together with ®), (y+v2) de-
fines the pencil of points on the line determined by (y) and (2).

Dually, we have

Theorem 15.3'. 1If [Y] and [Z] are distinct lines, then AY + uZ, where A, u are any non-zero
real numbers, is another line on the point determined by [Y] and [Z].

and

Theorem 154'. 1f [Y] and [Z] are distinct lines then, as v varies over the extended real
number system, [Y +Z] defines the pencil of lines on the point determined
by [Y] and [Z].

Example 154,

(a) Locate the point of intersection T of the line 7, joining the points (3,1, —2) and (1, —5, 8), and the
line s: 22y — 3%, — 43 = 0. (b) Find the equation of the line p on the point R: (1,2, —2) and the point of
intersection of the lines 2a; — 8w+ 723 = 0 and 54 + 22, = 0.

{a) Since T is on r, we have T: 8+, 1 -5, —2+43)\) for some value of A. Sinee T is also on s, then
28+2) —31—5N) —4(—2+3N) =11+ 5L = 0 and A= —11/5. Thus,
T: (3—11/6,1+ 11, —2 — 83/5) = (4/5, 12, —43/5)
or T: (4,60, —43).
The problem can also be solved by writing the equation of » and solving simultaneously with the
equation of s.
(b) The equation of any line concurrent with the two given lines is of the form (2 + B\, + (—8 + 2Nz, +
Txs = 0. Since R is on the required line,
24501+ (=8+20)+2+7(—2) = ~18+92A =0 and A = 2
Then (2+5-2)ay + (—8+2+2)xy + Txg = 122, + 2, + Tz = 0 is the equation of p.
See also Problem 15.3.

ANALYTIC PROOFS

Suppose we are concerned with distinct points on a line. By Theorem 15.3, we may
take (¥), (2), M(») +p(2) to be three arbitrary points of the line. When more than three
points are needed, it is simpler to take them as (y), (2), W) + al2), (¥) +B(R), ..., () +06(z).
When only three points are needed, a further simplification is possible. Consider the set
P:(y), Q:(2), R: (w) = My) + u(2). Now )= (\y) 1is just another representation of the
point P and p(2) is just another representation of the point Q. Thus it is always possible
to choose new representations (y*) = (\y) for P and (z*) = (u2) for @ so that

(w) = (¥*) + (2%)
or, with (y*), (2*) as before and (w*) = (—w) so that

(¥*) + (z*) + (w*) = (0,0,0) = 0
as best suits our purpose.
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Example 155.

Given the collinear points P: (¥) = (2,1,-8), @: (2) = 4,—2,4), R:(w)=(10,—1,0) of Example 15.3,
choose representations (y*) and (¢*) for P and Q such that R: (y®) + (#%).

2 4+ 4p = 10
Set A(y) + p(2) = (w) and solve A—2 = —1 for =2, p=3/2. Then w*) = 2y) = 4,2,—6)
—3n 44 = 0

and (z%) = (82/2) = (6,—3,6) are the regquired representations.

We may, then, begin a demonstration by assaming P:(4), Q: (@), R:(w) taree distimet
collinear Points whose coordinates sausty

(1) (w) = @)+ = W+2
or satisfy (ii) () + () + (w) = (0,0,0) = 0

Similarly, if P,Q, R, S are four points, no three of which are collinear, it follows from
(8) that representations (¥), (2), (u), (w) respectively may be chosen so that

(i) (@) + (@) + @) + @) = 0,0, 0) =0
or such that (iv) (w) = (y) + () + (w)
With respect to lines, the dual of each of (i)-(iv) obtains.
Example 15.6.

Given a triangle ABC and a point P not on any side. Let AP-BC=A', BP*CA=PH, CP* AB =C';
BC-B'C’=A", CA-C'A'=B", AB*A'B'=C". Show that A", B”,C" are collinear.

AII

CII

B’ c Iz

Fig. 15-1

Take A:(a), B: (b), C: (¢} so that P: (@+b+¢c); then A':(b+e¢), B" (¢+a), C:(a+b). Since A" is
on BC, its coordinates are of the form D) + ulc); since A is also on B’C’, we can only have A'": (b—¢).
Similarly, B”: (¢—@) and C':{a—2d). Collinearity follows from

14

A bl'—cl b2"‘02 b3—03

B = 6i—@a, C—@ay czg—azl = 0
i _ —

C ay — bl as b2 ¢ 23 b3

or AV+B'+C" = (b-e)tle—a)t (@b =0
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In Problem 15.4 we verify Axiom 6, page 76, (Descartes’ Two-Triangle Theorem). In
Problem 15.5 we give another proof and in Problem 15.6 investigate multiply perspective
triangles (see Problem 3.34, page 44).

Axiom 7, page 76, is verified in Problem 15.7. In Problem 15.8 we prove
Theorem 15.5. The harmonic conjugate of D: {(a) + A(b) with respect to A4:(a) and B: (b) is
E: (@) — MD).
Dually, we have
Theorem 15.5’. The harmonic conjugate of d:[A]+A[B] with respect to a: [A] and
b:[B] is e: [A] — \[B].

Example 15.7.

Given the collinear points A:(a) = (1,2,8), B: (b)) =(2,—-1,—-2), C:(c) =(8,1,0), locate the harmonic
conjugate D of C with respect to A and B.

If C is given by the representation (a) + A(b) then, by Theorem 15.5, a representation of D is

e+ 28 = 8
(@) — A(b). Set (c) = ala)+ B(b) and solve {2« — B =1 for a=2, B=3; then C: (a)+ g(b) =
B3 —28 =0

(@) + 3(b) and D:(a)—2(®) = (—2,7/2,6). Another representation is D: (—4,7,12).

CROSS RATIO

On the line determined by A:(a) and B: (b), take four points P: (a) + «(b), Q: (a)+ B(b),
R: (a) +y(b), S: (a)+8(b). We define the cross ratio of these points in terms of the param-
eters o, 8,7, 8, as

BQRS) = @ppy = o0 9)

Now there is no essential difference in form between (9) above and (5), page 20, of Chapter
2. For, if A,B,C,D are at distances a, b, ¢, d respectively from-a fixed point O on the line,
then (5) becomes

' _ AC-BD _  (c—a)d—D)
@B CD) = ApiBc = @—a)ye=D)

As a consequence, Theorems 2.2-2.5 hold here without change. Moreover, when the points
P,Q, R are held fixed while S~ B (i.e. 8 » »), we obtain

. - &7
(P)QyRyB) - B___Y

Finally, if R=4, S=B, P:(a)+a(b), Q:(a)—a(b), (i.e. H(P,Q; A, B) by Problem 15.8),
then (P,Q;A,B)= 1.

PROJECTIVITIES
The Fundamental Theorem, page 77, is equivalent to

A projectivity between two pencils of points is completely determined by three dis-
tinet pairs of corresponding points.

and it is this form which we now verify.

We begin with the most primitive projectivity — the elementary perspectivity between
a pencil of lines on a point P and the pencil of points obtained when the pencil of lines is
cut by any line p, not on P. By the dual of (i), page 160, we may select any three lines



162 ANALYTIC PROJECTIVE GEOMETRY [CHAP. 15

q,7,8 on P and choose representations so that ¢:[Y], r:[Z], s [Y+Z]. Let p-q= Q,
pr=R, p-s=8. Since @Q,R,S are collinear, we may choose representations [see (i)] so
that Q: (¥), R: (2), S: (y +2). We have then

Qongsothat {Yy} = 0,

Ronrsothat {Zz} = 0,

S on s sothat {(Y +2Z)(y+2)} = {Yy} + {Zz} + {¥Yz} + {Zy}
| = (Yz} + (Zy} = 0

Let t: [Y +AZ] be any other line on P. We are required to show that p+t=T: (y +A2).
This follows since

(Y +2Z)y+22)} = {Yy) + M{Y2) +{Zy}) +A*{Z=z} = 0

Now join the points Q, R, S to any point W = P and not on p, and cut by any line w
not on W in the points (¥), (z'), (¥’ + #’) respectively. We leave for the reader to show that
the join of any other point (y+ A2) on p and W is met by w in the point (¥’ +xz’). Thus,

@), (@), W+2), w+re) = @) @), @ +2), @ +12)
Moreover, it is clear that another projection and section would result in
W), (), W+2), @+ = @) @), W +27), W +3)
and so W), @) 0 +2), W +32) = @), (@), (0 +27), 7 +12)
It is clear from the above discussion that in a projectivity between two pencils of points
(4,B,C,D,...) = (A,B,C",D’,...)

on distinct lines or on the same line, matters can always be arranged so that the parameter
defining any point, say P, in terms of A and B is the same as that defining P’, the corre-
spondent of P, in terms of A’ and B’; in brief, a projectivity preserves parameters. It fol-
lows, then, that projectivities preserve cross ratios; that is,

(P,Q,R,S) (P, Q, RS
implies (P,Q;R,S) = (P,Q; R, S

il

Conversely, suppose (P,Q;R,S) = (P’,Q; R’,S"). We may always choose representations
R:(r), S:(s) so that Q: (r+s); and R”:(r"), 8:(s') so that Q": (» +s’). Suppose P: (r+2s).
Since (P,Q;R,S)=(1,1;0,%) =21, then (P’,Q; R, Sy=xr and P’ (r'+Ars’). Thus the
correspondence between P,Q,R,S and P, Q’,R’,5’ is a projectivity and we have

(P,Q;R,S) = (P,Q; R, S
implies (P,Q,R,S) = (P, Q,R,S)

SEPARATION
Let A: (a), B: (b), D: (a+Ab), E:(a+pb) be four distinct points on a line. We define:
—_ The pair of points D, E is said to separate the pair A4, B if and only if A/u <O0.

The verification of Axioms 8 and 9, page 76, are now immediate.

For Axiom 10, page 76, consider the distinct collinear points A: (@), B: (b), D: (a+2d),
Ei: (@ + ub), Ez (a+vb). We are given:

(i) D,E: separate 4,B so that A/p <0,
(ii) B,E: separate A,E:.
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For (ii) it is necessary to express the coordinates of B, E: as linear combinations of those of

A and Ei. We find
B: (a — 1(a + ub))

Eo: <a + i (a+,ub)>
and so (v—pu)/v <0. o

We are required to show that D, E. separate A, B; that is, that A/v < 0. Since AMu <0,
either A>0, £u<0 or <0, xn>0. Suppose A >0, x<0; then (v—pu)/v <0 implies
v<0, |v/<|p] and so A/v < 0. Suppose <0, p>0; then (v—p)/v <0 implies v >0,
v<p and so Av < 0. Thus, Axiom 10 is verified.

Solved Problems

15.1. Given the lines p: 821 —8x2—x3 =0, ¢: 721 —112s~52: =0, 7 1021 — 11laxs—4x3 =0,
() show they are concurrent, (b) locate the point of concurrency.

3 -3 -1 0 0 -1
(a) The lines are coneurrent since 7 —-11 -5} = |—8 4 =5 = 0.
10 —11 -4 -2 1 —4
X, X X3
(b) First Solution. | 3 -3 —1| = 4X, +8X,—12X; = 0. The point of concurrency Iis
7T —-11 -5

(4,8,—12) or (1,2, —3).

Second Solution.  Eliminating the term in x, between the equations of ¢ and », we have
8y + 23 =0. Take x;=1, x3=—3; then %, =2 and the required point is (1,2, —3) as before.

15.2. Prove: If (y) and (2) are distinct points, then A(y) + u(2), where A+ p -0, is another
point on the line determined by (y) and (z).
Suppose A(y) + u(2) = »(y). Then
p@) = v(y) —My) = (—N)
and so u{z) and (» —\)(y) are representations of the same point, contrary to the assumption that
() and (z) are distinct points. Similarly, A(y) + u(2) # »(z). Thus (y), (2) and My) + u(z) are distinct

points. Since
Y1 Yo Y3

%1 ) 23
Ayt ouzy Motz Y3t ez

these points are collinear.

15.3. Show that the point P: () and the point of intersection @ of the lines 7: [Z] and s: [W]
are on the line ¢: [{(Wy}Z — {Zy}W].

The problem is trivial if either » or s is on P. Suppose neither r nor s is on P; then ¢ is a third

line on r+s. Take & [Z] + A[W] = [Z+AW], A +# 0. Now ¢t will be on P provided {[Z+ W]y} =

{Zy} +A{Wy} = 0 or A= — {{Iff—yy?; Then ¢: [Z - {i—ZWZ?% W} or {Wy}Z — {Zy}W] as required.
Note. The equation of ¢ has the form

{Wy {Ze} — Zy}{Wa} = 0 or {Wy}{Zz} = {Zy} {Wx}
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Verify Axiom 6, page 76: If two triangles are perspective from a point, they are
perspective from a line.

Consider in Fig. 15-2 the triangles ABC and A'B’C’ perspective from the point P. Take P:{p),
A:(a), B:(b), C:(c); then A’ (p)+Aa), B:(p)+pd), C- (p)+r(c). Let R =AB-A'B,
S =BC-B'C', T=CA-C'A’. Since R is on the line AB, the coordinates of R are, by Theorem 15.3,
page 158, some linear combination of () and (b); since R is also on A’B’, this linear combination
must be A(2) — «(b). Then R: A(e)— u(b) and similarly S: p(b) —»(c) and T »(¢) —Aa). Now

’e) = Ma) = ~1(u(®) = () + (~D(Ma) — x(b))

that is, the coordinates of T can be written as a linear combination of those of R and S. Thus
R, S, T are collinear and the triangles are perspective from the line RST.

15.5.

Fig. 15-2
Prove: Desargues’ Two-Triangle Theorem.

Using Fig. 15-2, take A:(a), B: (b), C:(¢); ¢ = A’B":{Wa} = Wixs + Wazg+ Wars =0, o =
B'C:{Yx} =0, b’ = (C'A": {Zx} = 0. The equation of an arbitrary line on the point A’ is given by
{Wz}+r{Zx} = 0 and, by Problem 15.3, it will be on A provided

| (Za) (We} = (Wa) {Za}
Similarly, the equations of the lines BB’ and CC’ are
{Wb} {Ya} = {Yb} {(Wa} \
and {Ye} {Zo} = {Ze} (Y}

respectively. The condition that these equations have a common solution is found by eliminating
X, ¥g, 3. Forming the product

(Za} (W} + (Wb} {¥x} » {Ye} {2z} = {Wa}{Za} - {Yb}{Wx} - {Ze} (Y7}
and removing the common factors, we have as the condition that A,B,C = 4',B,C
@ {Za} (WY {Ye} = {Wa}{Yb}{Zc}

Now take A:{aU}= aq,U;+aUs+asUs=0, B:{bU} =0, C:{cUy=0; ¢ =A'B:[W],
o = B'C":[Y], b' = C’'A":[Z]. The equation of an arbitrary point on the line a = BC is given by
{bU}+{cU} =0 and, by the dual of Problem 15.2, will be on &, that is, will be the point S,
provided
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15.6.

15.7.

{cY} (U} = {bY} {cU}
Similarly, the equations of the points R and T are

(w3 {aU} = {aW] {pU}
and {aZ} {cU} {cZ} {aU}

{l

4

respectively. The condition that these points be collinear, that is, that a,b,¢ X @/,b’,¢’ is found by

eliminating U, Uy, Uy to be
i) {eY} (8W} {aZ} = {(bY}{aW} {cZ}

Since (i) and (i') are identical, we have: If two triangles are perspective from a point (line), they
are perspective from a line (point).

Show that the triangles ABC and A’B’C’ of Problem 15.5 are perspective: (1) in the
order A,B,C = B’,C’,A’ provided

{Wa} (Yb} (Zcy = {Ya} {Zb} (We}
and (2) in the order A,B,C = C’,A’, B’ provided
{(Ya) {Zb} (We} = {Za) {Wb} {Yc)}
(1) The equation of an arbitrary line on B’ is given by {Y«}+ MWx} =0 and it will be on A
provided
{Wa}{Ya} = {Ya}{Wax}
Similarly, the equations of the lines BC' and CA’ are
{Yb}{Zx} = {Zb}{Y«}
and {Zey (Wa} = {Wec}{Zx}
respectively. Thus A,B,C = B/,(C’, A’ provided
{Wa} {Yb}{Ze} = {Ya}{Zb}{Wc}
It will be left for the reader to show this is also the condition that a,b,c = b’,¢’,0'.
(2) The equation of an arbitrary line on C’ is given by {Yx}+r{Zs} =0 and it will be on 4
provided
{Za} {Yo} = {Ya}{Zx}
Similarly, the equations of the lines BA’ and CB; are
(Wb} {Zx} = {Zb} {Wa}
and {Ye} {Wx} = {We}{Yx}
respectively. Thus 4,B,C = C',A’, B’ provided
{Za} {Wb}{Ye} = {Ya}{Zb}{We}

It will be left for the reader to show this is also the condition that a,b,¢ = ¢’,a/,b".

Verify Axiom 7: The diagonal points of a
complete quadrangle are never collinear.

Consider in Fig. 15-3 the complete quad- s C
rangle PQRS with diagonal points A, B,C. Let \
representations P:(p), Q:(q), R:{(r), S:(s) be Q
chosen so that [see (iii), page 160] \

@+ @+t =

From
(@) + (@) = —((n+(s) Fig.15-3
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15.8.

15.9,

15.10.

15.11.

15.12.

15.13.

15.14.
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it follows that the points (p)+(¢) = (p+¢q) and (r)+ () = (r+s) are identical. Since this point
is on both the line PQ and the line RS, it must be the diagonal point A. Similarly, (p+s) and
(g + ) define the diagonal point B while (p-++) and (s g¢) define the diagonal point C.

Suppose 4, B, C are collinear. Then there exist numbers 1, g, », not all zero, such that

AMr+s)+ulgtry+ovis+q) =0
and, hence, such that
g+ 2)@) + AN+ @)+ @+ = 0

Since not all of A, u, » are zero, it follows that not all of (u+7v), (A + ), (# + 1) are zero; hence the
points @, R,S must be collinear. But this is impossible and, so, the diagonal points are never
collinear.

Prove: The harmonic conjugate of D: (¢)+ A(b) with respect to A:(e) and B:(b) is
E: (a) — (D).

Refer to Fig. 15-3 in which H(A,B; D,E) is established by the complete quadrangle PQRS.
Take @:1g) and P:(a) + u(qg). Since B is on BQ it has coordinates of the form a(b) + B(q); since

R is also on DP, we have R: A(b) — p(q). Since S is on both BP and AR, we have S: (a) — (b} + u(g).
Finally, since E is on both @S and AB, then E: (a)—A(b) as required.

Supplementary Problems

Determine which of the following
1 (@,0,—-1), 1,-2,1), (3,—2,-1) 3) (1,2,1),(8,5,2), (3,4,1)
2y 1,1,1),(1,2,0), (3,4,1) 4) (1,0,1),(1,1,0), (0,1,1)
are collinear triples of points. If collinear, obtain an equation of their common line; if non-col-
linear, obtain equations of the three lines determined by them.
Ans. (1) 2y +oyt+ax3 = 0
(2) 2¢y—wy—2x3 = 0, 30y — 2y —xy = 0, 20y —wo— 223 =0

Determine which of the following
(1) [1,3,-2],[2,—2,1], [11,1,—2] (3) [1,8,1},[2,1,3], [0,1,0]
@) [3,2,—1}, {1,0,—2], [4,1, 3] @) [1,1,—1}, [1,-1,1], [1,—1,—1]
are concurrent triples of lines. If concurrent, obtain coordinates of their commeon point; if non-
concurrent, obtain coordinates of the three points determined by them.
Ans. (1) (1,5,8); (8) (8,—1,~-5),(1,0,—1), (3,0, —2)

Given the points A:(1,2,8), B:(2,4,8), C:(1,2,—2),
(i) Show that A, B, C are collinear.
(if) Take other representations (a), (b), (é) of A,B,C so that (a)+(b)+(c) =0.
(iii) Take other representations so that (a)+ (b) = (¢).
Ans. (i) () = (7,14,21), (b) = (—10,—20,—15), (¢) = (3,6,—6)
(iii) (&) = (—7/8,—14/3,—7), (b) = (10/3,20/3,5)

Obtain other representations [P] and [Q] for the lines p:[1,8,—2] and ¢:[2,—2,1] so that »: [R] =
[11,1,-2] is given by [R] = [P] + [@]. Ans. [P] = [8,9,—6], [Q] = [8,—8,4]

Given the points A:(l,2,3), B:(2,5,—6), C: (6,—17,2), D: (4,4, —1).

(i) Show that no three are collinear;

(i) Take other representations (), (b), (¢), (d) respectively so that (a) 4+ (b) + (¢) + (d) = 0.
Ans. (@) = (4,8,12), (b) = (6,15,—18), (¢) (6,—7,2), (d) = (—16,—16, 4)

Express the coordinates [1,1,1] of the line u as a linear combination of those of the non-concurrent
lines [1,1,0], [1,0,1], [0,1,1].
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15.15.

15.16.

15.17.

15.18.

15.19.

15.20.

15.21.

15.22.

15.23.

15.24.

15.25.

15.26.

15.27.

15.28.

15.29.

Show that the lines x;+2xy+ 823 =0, 4a;+3w,— 23 =10, 3x;—Bwy+4wg =0 form a triangle.
Write an equation of the line joining each vertex of this triangle to the point 1,1,1).
Ans. 3%1 + Xy — 4%3 = 0, 511:'1 - 18502 + 139’/‘3 = O, 8%1 - 175!72 + 9&73 =90

In Fig. 15-1, take A:(1,0,0), B:(0,1,0), C: (0,0,1), P: (1,1,1); obtain coordinates of all other points
and equations of all lines of the figure.

Partial Ans. €:(1,1,0), C":(1,—1,0), p=A"B"’C": w1+ %5+ 23 = 0

Note. The line p is the polar line (see Problem 3.11, page 43) of P with respect to the triangle 4ABC.

Given the distinct points A;:(1,0,0), 4,:(0,1,0), Az (1,1,1), A : (1, a2, a), A5 (1,02, b), Ag: (1, €2, ¢).

(i) Obtain A;A,+A;A;=R: (1,—ab,0), AyAz+As;45 =85:(1,b+e—bc,1) and RS: abxy+ x5—
(b+c—~bec+ab)x; = 0.

(ii) Show that R,S and T = Aj4,°Az4, are collinear.

Prove the special case of the Theorem of Pappus (see Problem 8.4, page 40).
Hint. Take Ay (a), By: (D), P:(c), O: (a+b+¢). Then Cs: (a—b), Co: (a+¢—b), Cy:(a+2¢—b).

In Fig. 4-3, page 48, take P:(1,0,0), Q:(0,1,0), R:(0,0,1), S: (1,1,1). (a) Obtain coordinates of all
other points and equations of all lines of the figure. (b) Show that the diagonal triangle is per-
spective with each of the four triangles determined by P,@,R,S. For each perspective pair locate
the center and axis of perspectivity.
Partial Ans. (@) C:(1,0,1), E:(1,2,1), F:(1,-1,0), AC: 2y — x5 — 24 = 0.

(b) The four points P,Q, R, S and the four lines defined in Theorem 4.14, page 48.

Prove the Theorem of Pappus.
Hint. In Fig. 2-9', take A;:(a), By: (b), A5 (¢), Ca: (@) + (b) + (¢); Ay (@) +ple), By: (@) + (b) + ale).
Then Cp:e(b)+ (0 —p)(c) and Cg: (o — o)(a) + o(b).

Show that the lines a: 2y —2y— 23 =0, b:3x;—x,+23 =0 and e¢: x,+ 223 =0 are concurrent.
Obtain the harmonic conjugate d of the line ¢ with respect to @ and b. Ans, 3z —2x5— 23 =0

In Problem 15.21, let @ =a-b. If C+* @ is any point on ¢, call the line d the polar line of the
point C with respect to @ and b. Find the polar line of P: (1,1, 2) with respeect to @ and b.

Ans. x;+xy+8x3 =0
In Problem 15.18 show that p is the polar line of O with respect to » and s.

Using the results of Problems 15.56 and 15.6, show that if the triangles are perspective in any two
th d
of the oxders ABC = A'B'C’, ABC = B'C'A’, ABC=CA'B

they are also perspective in the third order,

Find the conditions that the triangles of Problem 15.5 be perspective in the orders (i) ABC = A'C'F’,
(ii) ABC = B’A'C’, (iii) ABC = C'B'A’.
Partial Ans. (i) {Za}-{Yb}-{Wec} = {Wa} - {Zb}+{Yc}

Verify that if the triangles of Problem 15.5 are perspective in any five orders, they are fully per-
spective, that is, are perspective in the six possible orders.

Write out in full the dual of the last three sections of this chapter.

Given A:(a), B:(b), D: (a +Ab) and E: (a+ ub), obtain (4,B; D,E) = A/u. Thus, separation has
been defined in terms of cross ratio.

In each of the following

i A:(1,1,0), B:(1,0,1), D:(2,1,1), E: (0,1,—1)

(i) A:(1,1,0), B:(1,0,1), D:(2,1,1), E:(3,2,1)

(iii) A:(2,1,4), B:(8,5,—1), D:(1,1,1), E: (20,31, —2)

(iv) A:(1,-2,8), B:(—2,8,1), D:(5,—7,—6), E: (2,—5,13)
determine whether D, E separates A, B. Ans. Separates: (i).



Chapter 16

Coordinate Systems
and Projective Transformations

INTRODUCTION

In the preceding chapter a geometry of number triples, identified as points, was intro-
duced as a model of plane projective geometry. Although it was found convenient to speak
of the number triples as coordinates of the points, it must be recognized that there is, at
least at the moment, a difference between these number triples and the familiar coordinates
of a point. In our geometry, the number triple is the point; in Plane Analytic Geometry, the
coordinates of a point are assigned relative to a previously established coordinate system.
We propose now to set up suitable coordinate systems on the projective line and in the
projective plane. For the purpose of clarity, let us think of the resulting coordinate(s) of
-a point as its relative coordinate(s). We shall later discover that a coordinate system can be
established in the plane so that the number triples of Chapter 15 — call them absolute co-
ordinates — are, themselves, relative coordinates.

The first step in constructing a geometry is to choose a fundamental element. The
reader’s knowledge of geometry is probably limited to point geometry, i.e., geometries in
which the point is the fundamental element. In this geometry, the line is said to be one-
dimensional, the plane is two-dimensional and ordinary space is three-dimensional. In our
geometry of number triples, we recognize, in view of the duality principle, both the point
and line as fundamental elements. We saw in Chapter 15 that the points on a line can be
given by means of a single parameter; thus, point geometry on a line is one-dimensional.
Dually, the lines on a point can be given by means of a single parameter; thus, line geometry
on a point is also one-dimensional. Later we shall see that both point and line geometry
on the plane are two dimensional.

The nature of the geometry under consideration is determined by the selection of a set
of transformations on the coordinates of the fundamental element. In metric plane geome-
try, we deal with the set of transformations known as rigid motions — translations and ro-
tations — since under these transformations both lengths of segments and measures of
angles are invariant. In our geometry we deal with the set of transformations, called
projective transformations, under which cross ratio is invariant.

PROJECTIVE COORDINATES ON A LINE (POINT)

Consider in Fig. 16-1 the line o of the metric plane. The familiar coordinate system on
the line is established by selecting on o a point O from which all measurements along the
line are to be made, a unit of measure, and a sense of (positive) direction along o. Essen-
tially, this consists in selecting two points O and U on o to which coordinates 0 and 1
respectively are assigned. The non-homogeneous coordinate x of any third point X on o is

0] U X —_—
0 1 z
0,1) (1,1 (xy, =)
Fig. 16-1

168



CHAP. 16] COORDINATE SYSTEMS AND PROJECTIVE TRANSFORMATIONS 169

then the directed distance of X from O. In turn, a homogeneous coordinate system on o may
be established by assigning coordinates (0,1) to O, (1,1) to U, and, to any other point X
with non-homogeneous coordinate #, any pair of coordinates (1, 22) satisfying ./, = z.

A B C X 0
(a) 7] (@ +b) (A + ub)
(1,0 (0,1) 1,1 (&)
*® 0 1 = Npu
Fig. 16-2

Consider next (see Fig. 16-2) the line o in the projective plane. On o take two distinct
points A: (a) = (a4, a2, as) and B: (b) = (by, b, bs). With the understanding that these rep-
resentations shall remain fixed, any choice of non-zero numbers A, . defines a unique point
X: (x) = (Aa+pub) on o. Conversely, for the representation () of X, we recover the pair
A, p. Now suppose another representation, say (ax), of X be used. Then, from
(ax) = (aha + apb), we obtain a new pair o), ep. However, since one pair is a constant mul-
tiple of the other, this causes no concern. The above calculations have been made subject
to the restriction that the representations of A and B remain fixed. To show the necessity
of this restriction, we need only take new representations 4: («a) and B: (8b) and see, for the
particular choice A, x above, that while (eAa+ Bub) is a point on o, it is not the point X.
In practice, the fixing of the representations of the base points A and B is effected by select-
ing a third point C: (¢) on o and choosing representations (a*) and (b*) for A and B so that
(a*)+ (b*) = (¢). We now define:

With respect to a coordinate system on a line o consisting of the distinct points

A:(a), B:(b), C:(c) subject to (a)+(b) = (¢), the relative homogeneous projective co-

ordinates of any point X: () on o are (A, u) where (x) = A(a)+ u(b) and the abscissa or

relative non-homogeneous projective coordinate of the same point X is x = A/p.

Essentially, a system of homogeneous projective coordinates on a line is established by
(1) selecting three distinct points (reference points) on the line, (ii) assigning coordinates
(1,0) and (0,1) in that order to two of the points (base points) A and B, (iii) assigning co-
ordinates (1,1) to the remaining point (unit point) C. These same points establish a non-
homogeneous coordinate system on the line in which A, B, C have the respective coordinates
©,0, 1.

Example 16.1.

If A:(2,1,-3), B: (4,—2,4), C: (10, —1,0) are taken as reference points on the line o, find the homoge-
neous projective coordinates and the non-homogeneous projective coordinate of D: (8,2,—7) on o.

First, choose new representations (see Example 15.5, page 160} A:(a) = (4,2,—6) and B: (b) = (6, —3,6)

4\ +6p = 8
so that C: (a+b). Now set A(a)+ u(d) = (8,2,—7) and solve { 2 —38p = 2 for A=3/2, p=1/3.
—6A + 6p = —T
Then, in relative homogeneous coordinates, we have D: (3/2,1/3); another representation is D:(9,2). In

either case, the non-homogeneous coordinate is % = i’;—z = g

In Problem 16.1 we prove

Theorem 16.1. The cross ratio of any four points on a line is independent of the coordinate
system established on the line.

Dually, a system of homogeneous projective coordinates on a point O is established by
assigning coordinates [1,0] and [0,1] to two base lines @ and b on O and the coordinates
[1,1] to a third line ¢ on O. These same lines also establish a non-homogeneous system in
which a, b, ¢ have the respective coordinates «,0,1, For an example, the reader has only to
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write out the dual of Example 16.1 in which A4: (2, 1, —8) becomes a: [2,1, —3], ete. In view of
this, we shall restrict attention in the next three sections to coordinate systems on lines.
The task of writing the dual of these sections together with all examples and problems
will be left as an exercise for the reader.

ONE-DIMENSIONAL PROJECTIVE TRANSFORMATIONS

In the projective plane take any two distinct lines. On one of them select three distinct
points P, Q, R and suppose, relative to a coordinate system previously established on the
line, the non-homogeneous coordinates are found to be P:p, Q:q,R:r. Likewise, on the
other line suppose three distinct points P’/,Q’, R’ selected whose non-homogeneous €o-
ordinates relative to a previously established coordinate system are found to be P:p’,
Q:¢,R”:7. Let X:x and X”:#’ be any other pair of corresponding points in the pro-
jectivity (P,@Q,R) =< (P’,Q’,R’). Then,

(P,Q; R, X)

(P, Q' B, X) (1)

(p-ng—z) _ @@ %) 2)
(p—x)g—7) ~ @ —a) g —1)

and so

4 7,./

. N -7 -
We now solve (2) for 2’ in terms of z. Putling P="_5 and “———=2g", we have
q—x ql — q—-r q T
— SI

p—z- Sy whence

S

s(x'x— qu’ —p'x+pq) = §(@%—pr’—qr+p)

[(s—s)x+ps’ —gsla’ = (sp’—8'q")x +pq’s’ — p'qs

, _ ax+b
and X — cx + d (3)
where a =sp’—s'q’, b =pq’s’ —p’qs, c=8—8, d =ps’ —qs.

In terms of homogeneous coordinates, we have, by setting « = i/, and 2’ = @}/},

i axy + bas
(—EZ T exy + dae (’4’)
px, = ax, + bx
or 1 1 2 00 (5)

»
f A—
pT, = Cx, + dzx,

Equations (3), (4), (5) are variously said to define a mapping of one pencil of points
upon another, or a projective transformation which carries the points on one line into the
points on another, or a projectivity between two distinct pencils of points. Dually, we have

. AX+B )
X = Cx+D (3)
X; . AX1+BX2 (41)

b’ CX: + DX,

2
oX, = AX:+ BX»
, p*0 (5"
oX; = CX:+ DX;

as equations of the projective transformation in non-homogeneous and homogeneous co-
ordinates which carries the lines on one point O into the lines on another point O’.
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Equation (3) is also of the form generally called a linear transformation. Is then every
linear transformation = ar + b .
Y T +d ()

with not all a, b, ¢,d equal to zero, a projective transformation, that is, a transformation
having an inverse and preserving cross ratios? We show that (3””) is projective provided

it carries distinet points into distinct points.
ap + b

cp+d
be their respective correspondents on another line o’ or on the same line 0. From
p/ _ q/ — (ad — bC)(p _ q)
(cp + d)(cq +d)
it follows, since p —q % 0, that p’— ¢’ - 0 if and only if ad—bc+ 0.
Now consider (8”’) with the added restriction ad—be+# 0. Then it may be solved for
dzx’ —
—cx’ +a
Finally, let P:p, P":p’;Q:q, Q:¢’; R:r, R:7";S:5,8":s’ be any four distinct pairs of correspond-
ing points. From

Let P:p and Q: ¢ be any two distinct points on line o and P:p" = and Q¢ =
ag+b

cp +d

x = which, by replacement in (3”), is easily shown to be the inverse of (3”).

_ (ad—b)p—1) (ad — be)(p—3)

V-t = i dersd P % T p+des+d)
, o = (ed=Dbo)(g—7) ¢ = (ad — be)(g —s)
¢ = (eq Fd)(cr +d)’ (cq + d)(cs + d)
there follows by a simple calculation
s pr oy . W)@ —s) _ (—7)g—s) _ .
e s M e e B

We have proved

Theorem 16.2. Every linear transformation

, _ar+b _
Y= where ad—bc # 0

is a projective transformation.

Example 16.2.

Given the points P:2, @:3, R:4 on the line o and the points P”:3, Q":4, R":2 on another line o’. {a) Deter-
mine the linear transformation which carries P, @, R into P’,Q’, R’ respectively. (b) Locate the point S’
on o’ into which S: —1 is carried. (c) Locate the point 7 on o which is carried into 7”:0 on o’. (d) Is the
transformation projective?

(a) Since x =2 is carried into «” = 3, we have using (3")
2a + b

3:2¢:+d or 2¢ +b—6¢c—3d = 0 (i)
Similarly, we obtain 30 +b—12¢—4d = 0 (it)
and 4a+b—-8—2d = 0 (iii)

By subtracting (i) from (ii) and (iii), we obtain
a—6c—d =0 and 2¢~—-2¢+d =0

which, when added, yields 3¢ —8¢ = 0. Take ¢ =8, ¢=3; then d = —10 and b = —28. The re-

8x — 28
. .. ,
quired transformation is &' = 37 — 10"

—8 — 28 36
(b) When 2=-1, ' = —3—77 = 13
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(¢) When ' =0, 82 —28=0 and » =

N~
.

(d) Since ad —bc =4 ## 0, the transformation is projective.
In Problem 16.2 we prove

Theorem 16.3. If the joins of three pairs of corresponding points of two projective pencils
are concurrent, the pencils are perspective.

PROJECTIVITIES ON A LINE. NON-HOMOGENEOUS COORDINATES

Suppose now that the two lines 0 and o’ of the above section coincide. There are then two
interpretations of the projective transformation
, _ax+b

T ex+d’

In the first, we have a pencil of points on the line o referred to two distinct coordinate
systems. Each point X on o has two coordinates — x when referred to one system and a2’
when referred to the other — and (6) merely changes each « into its proper a’. Under this
interpretation, (6) is called a passive or alias transformation or a transformation of
coordinates.

ad —bec #+ 0 6)

Te

In the second, we have two superposed pencils of points on o referred to the same
coordinate system. Then (6) carries a point X: 2 on o into, generally, another point X”: 2’
on o. Under this interpretation, (6) is called an active or alibi transformation.

As an alibi transformation, (6) is the analytic definition of a projectivity on a line; fre-
quently, it is called a collineation on a line.

We now investigate the possibility that the collineation (6) between two superposed pen-
cils carries some point M into itself. Such a point M, if one exists, is called a double (fixed,
self-corresponding, or invariant) point of the projectivity. The double points, if any, are
obtained by setting 2z’ = z in (6) and solving the resulting quadratic equation in z.

Tirst, we consider the special cases which arise when ¢ = 0. The quadratic equation
is then in reality a linear equation so that z = « is always a root and M: « is always a
double point.

(i) When ¢=0, b+0, and a+=d, we have (d—a)z =b; there are two distinet double

b
d—a’
(ii) When ¢=0, b0, and ¢ =d, the double points M and N of (i) coincide. There is
a single double point M: .

points: M: o and N:

(iii) When ¢=b=0 and a>d, then (d—a)x=0. There are two double points M:
and N: 0.

(iv) When ¢=b=0 and a=d, every point of the line is a double point. This projec-
tivity is known as the identity.

Otherwise, when 2’ =z, (6) may be written as

¢+ (d—a)xr—b =0, ¢+0

—d +V({@—ap ¥ abe —d - J{d—aF +4b
a—d + (;ic a)® + 4bc and @y = a—d (d—a) c

2¢

whose roots are

ry =
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There are three cases:

Casel. (d—a)?+4bc > 0. The roots are real and distinct. There are two distinct
double points; 7 is called a hyperbolic projectivity.

Case2. (d—a)*+4bc = 0. The roots are real and coincident. There is one double
point; = is called a parabolic projectivity.

Case3. (d—a)?+4bc < 0. The roots are complex numbers. There is no real double
point; = is called an elliptic projectivity.
Thus, aside from the identity transformation, r is either hyperbolic, parabolic, or elliptic.

See Problem 16.3.
In Problem 16.4, we prove

Theorem 164. The cross ratio K of the two double elements of a hyperbolic projectivity
and a pair of corresponding elements is independent of the pair of corre-
sponding elements used.

The real constant K is called the characteristic invariant of the hyperbolic projectivity.
It follows that any hyperbolic projectivity can be written in the canonical form

X — X2 X — o

X — X1 - xr— 2
where 1, &2 are the double points and K is the characteristic invariant.

In Problem 16.5, canonical forms for parabolic projectivities

2 =x+p, p = bla, when ¢=0

1 1 —C
F: = = ———, when ¢
and ' — 1 .x—x1+p’ P cx1—a’ © 0
are obtained.
Example 16.3.
—bx + 6 3x — 8
1 . e | —
Reduce to canonical form: (a) &' = 90 — 4 ) = = g

{(¢) The projectivity is hyperbolic with double points M:8/2, N = —2. Using the pair of corresponding
points P: 1; P': —1/2, we find

K = (M,N; P, Py = (8/2,—2;1,-1/2) = 1/8

o +2 1 x+2
« —8/2  8xz—3/2

The canonical form is

. 1
(b) The projectivity is parabolic with double point M:2. The canonical form is % — z—3 2.

INVOLUTIONS ON A LINE

Let  be a projective transformation of a line onto itself whose inverse is 7' =1r. (See
Problem 16.13(f) for an example.) Then -+~ !'=:"1-7=:=/, the identity, and the
projectivity - is called a quadratic involution. More often, it is called, simply, an involu-
tion. If p,p’ is a pair of corresponding points in an involution, so also is p’, p; we will there-
fore speak of p,p’ as a reciprocal pair of the involution. (See Chapter 6.) In Problem 16.6
we prove

Theorem 16.5. The projective transformation
ar +b

x = (3)

cx+d
is an involution if and only if a +d = 0.
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The equation of an involution may be written in the form
fex' +g(x+2Y+h =0, ¢g*—fh + 0 )
and, hence, is completely determined by giving any two reciprocal pairs of its points.

Example 164.
Obtain the equation of the involution having x4, #{; %, ®} as two reciproecal pairs.
Substituting each pair in (?) yields
el + g, +e) +h =0
fooxh + gxe+wd) +h = 0

Eliminating the coefficients between (7) and the above equations, the required equation in determinant
form is

o' x+x 1
e ©, +of 1

= 0 (8)

Xaxy Xy + x5 1

The double points of an involution are found by writing «’ =« in (7) and solving the
resulting equation. There will be either two distinct real roots (the involution is hyperbolic),
two coincident real roots (the involution is parabolic) or two imaginary roots (the involution
is elliptic). Parabolic involutions are generally ignored (see Problem 16.26). A hyper-
bolic involution is completely determined when its double points or one double point and
another reciprocal pair are known.

Finally, an involution is completely determined when the quadratic equation giving its
double points is known. For, suppose this equation is

ax? +2br+¢ =0, b>*—ac # 0 9
Now consider the involution axz’ +b(x+2)+c = 0 (20)

which is hyperbolic or elliptic according as the roots of (9) are real or complex. Equation
(10) can be derived from (9) by the simple rule:

Replace x? by xx’ and 2x by x +a’.
Equation (10) is called the polarized form of (9).

Example 16.5.
Derive the equation of the involution from the equation 3x2+5x—6 =0 giving its double points.
By polarizing the given equation, we have

Bva +o(@+w)—6 = 0 or 6xa’ +5@r+a)—12 = 0
It is not difficult to prove

Theorem 16.6. The pairs of points «, 2’ harmonic to two given points 21, 22 are reciprocal
pairs of an involution having zi, x> as double points.

PROJECTIVITIES ON A LINE. HOMOGENEOUS COORDINATES

The study of projectivities on a line and in the projective plane (also, in projective
spaces of higher dimensions) is greatly simplified by the use of homogeneous coordinates.
In this section we restudy projectivities on a line using

{px; = azx, + bz,

, (ad—bc+ 0 5
px; = cx, +dz, ( ) %)

Again, looking ahead to future work, we propose a change of notation and rewrite (5) as
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, (a,0,—a.a, +#0) (11)

f A—
pT, = @&, + a1,
11722 127721

[ A—
pEy = Wy By F AT,

To investigate the possible double points, we replace xi by 1, 25 by 22 in (1) and con-
sider the resulting equations

(@11 —p)1 + 19 =0
(12)
a1+ (a—p)re = 0
Now (12) will have non-trivial solutions if and only if
aQir — p (/3]
= 0 (13)
Qg1 Aoz — p

or p? — (@11 + A22)p + (G11022 — A12021) = O

Equation (13) is called the characteristic equation of the projectivity, and its roots p,, p, are
called the characteristic roots. A non-identity projectivity (5) is hyperbolic, parabolic, or
elliptic according as the roots p, p, are real and distinct, real and coincident or imaginary.

Example 16.6.

xy = 2y + 5wy
Examine the projectivity , for double points.
Lo = 2&71 — ¥y
. .. 12— 5 e
The characteristic equation is 9 1 = p2—p—12 = 0; the characteristic roots are
—L=p

p1 =4, ps = —3. The double points of the projectivity are given when p is replaced by p; =4 and
0o = —38 in either of the equations
(2 - P)xl + 5%2 =0
2%1 -+ (“1"‘[))%2 = 0
Using the first equation, we find:
(2—4)x, + bxy = ~2x; + bx, = 0; the double point is (5, 2},

2+ 3)xy + 5xy = b(x;+=) = 0 the double point is (1, —1).

The reader will verify that the same results obtain when the second equation is used. Thus the projectivity
is hyperbolic.

By Theorem 16.5 any involution on a line has the form

y —
PPy = Ay, t a7, o
, a,+a,a, + 0
r— o 12%21

piy Goy g — @y

with invariant points satisfying

a,®: — 20,2 %, — 0,2 = 0

21 117172 12772

The involution is hyperbolic or elliptic according as a, +a,,0,, >0 or af +a,a, <O.

HOMOGENEOUS POINT COORDINATES IN THE PLANE

In establishing a coordinate system on a line, use was made of any three of its points
A:(a), B: (b), C: (¢ + D). Relative to this coordinate system, the homogeneous coordinates of
any fourth point P:(p) on the line were obtained as the ordered pair of numbers (pi, p2)
satisfying (p) = p«(a) +p2(b). The basic points of this coordinate system were the points
A and B; the role of the third point C was solely that of determining for all time fixed rep-
resentations (absolute coordinates) for A and B. A simple extension of the above will be
used to establish a coordinate system in the projective plane.
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In the plane, take any four points A1, Az, As, A4, no three of which are collinear. Choose
representations of the first three points so that we have A:: (a), A2 (D), 4s: (¢), A« (@+b+0).
Note that the role of A4 is simply to fix representations for Ai, As, As. These three points
are vertices of a triangle, called the triangle of reference; the point A4 is called the unil
point. The coordinate system, thus defined, will be indicated by Ai, As, As; As. In terms
of this coordinate system, we define the relative coordinates as Ai:(1,0,0), A2(0,1,0),
As:(0,0,1), A (1,1,1) and Y:(a,8,7) for any point Y:(y), where (y) = ofa)+ B(D)+ v(c).
Example 16.7.

Take four points with absolute coordinates 4: (1,2, 3), Ay (2,-3,4), Az (4,5,—6), Ay (11,9,—5). (The
reader will verify that no three of these points are collinear.) Set up the coordinate system A, 4, 45 A,
and find:

(1) The relative coordinates of P with absolute coordinates (2,2, 1).
(2) The absolute coordinates of @ with relative coordinates (4, —2,1).

(8) The relations existing between the absolute coordinates (27, ,«%) and the relative coordinates
(4, %q, 23) of an arbitrary point X.

First, we fix the representations A;: (a), Az (b), A3 (c) so that Ay {a+ b+ ¢). Set
A1,2,8) + u(2,—38,4) + »(4,5,—6) = (11,9,—5)
A+ 244 = 11
and solve the system 2\ —38u+br = 9
SN+ 4y — 6y = —5

to obtain A=1, p=1, »=2 Then A;:(1,2,83), Ay (2,—3,4), A3 (8,10,—12); A, (11,9,-5) satisfy all
requirements for triangle of reference and unit point.

(1) Set «(1,2,3) + B(2,—3,4) + y(8,10,—12) = (2,2,1) and solve the system
«+28+ 8y = 2
2¢ — 33+ 10y = 2
3at+4p—12y = 1

to obtain « = 37/60, 8 =7/40, y = 31/240. Then, in relative coordinates, we have P:(37/60, 7/40,31/240);
another representation is P: (148, 42, 31).

(2) The relative coordinates of @ are: « =4, 8 = —2, y = 1; the absolute coordinates were
4(1,2,3) — 2(2,—3,4) + 1(8,10,—12) = (8,24,-8)
Another representation is @: (1,3, —1).

(3) Identifying (x,, %, #3) with (4,—2,1) of (2), we have a representation Q: (px{’, p%y’, pxy’) given by

lewy + 22y + 8rog = puf
2oy — 8exy + 10023 = pxf
Bexy + 4rwy — 127w = oy

in which the multipliers of x,,#,, 5 in the first, second, third equality are respectively the first, second,
third (absolute) coordinates of the vertices of the reference triangle.

As in metric geometry, an analytic proof may be simplified by a proper choice of the
coordinate system.

Example 16.8.

(¢) For a proof of Desargues’ Two-Triangle Theorem (Problem 15.4), take one of the triangles (see Fig.
16-3 below) as reference triangle and the center of perspectivity as unit point.

(b) For a proof of the Theorem of Pappus, take A;:(1,0,0), By:(0,1,0), A3 (0,0,1) and Cy:(1,1,1) in
Fig. 2-9', page 28,

(¢) In the study of a complete quadrangle, the vertices may be taken as the vertices of the reference triangle

and the unit point or (see Problem 16.41) the diagonal triangle may be taken as the reference triangle
and the unit point as any one of the vertices of the quadrangle.
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P:(1,1,1)

Fig.16-3

RELATION BETWEEN ABSOLUTE AND RELATIVE COORDINATES

In what is to follow it is assumed that the reader is acquainted with the algebra of
matrices; the minimum required in this book is treated briefly in the Appendix. In order
to use matrix algebra most efficiently, a change of notation for the vertices of the reference
triangle is necessary. For the reference triangle defined above, we write Ai: (@1, Qa1, @a1),
As: (@12, @ss, as2), As: (@13, a2s, ass) where the second subscript indicates the point and the first
subscript indicates the particular coordinate of that point. Then the absolute coordinates
(x7, 27, z7) and relative coordinates (z1, 2, #3) of an arbitrary point X satisfy [see Example
16.7(c)]

4 A—
Py = Q%+ a,T, + %,

I 7 J—
pEy = Ay, T Q%) + @, T,

V7 S
Py = Oy + G, + Qg T,

which, in matrix notation, is

x’’ a1 Q12 Qi3 %1 L1
1
ply | = |Qu Gea Q3 || X2 = A‘'| 2 (14)
xy Q31 O3z dss T3 T3

where A =[ay], (1,7=1,2,8), and p+ 0 is a proportionality factor. By means of (14)
we pass from relative coordinates to absolute coordinates.

Since A1, Az, As are non-collinear, [A|=0; hence A~! exists. Multiplying (14) on the
left by A~?, we have

Fi 21
pA_1 . .’17'2’ = X2
x's’ &3
&1 xy
or ol X2 = A7l zf (15)
T3 xy

by which we pass from absolute coordinates to relative coordinates.

Equations (14) may be written down as soon as a coordinate system has been established.
Note that the elements of the columns of A are the absolute coordinates of the wvertices
Ay, As, As of the reference triangle in that order.
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Example 16.9.
For the coordinate system of Example 16.7, (14) and (15) become respectively

2| 1 2 8| [m @
p a;é' = 2 -3 10 |- Xo = A )
oy | 3 4 12 | m @
and oy 4 56 44| [y ] &y %y
. 1 _ 1 .
(i) ol 2o = -24—0 54 —36 6 |- xé’ = A-1 xé’ - m (adj A) mé’
%3 | 17 2 -7 xy wy wy

By letting o absorb |A], the latter assumes the form

% xy
(ii) al| % = (adjA)] x5
2g xf

COORDINATES RELATIVE TO TWO COORDINATE SYSTEMS

Consider in the projective plane, a second coordinate system with reference triangle
BiB2B; and unit point Bs. From the section above, it follows that the absolute coordinates
(x’, x, x}’) and relative coordinates (x/, ], #;) with respect to this system of the point X
satisfy

’ 4
zy bn bxz bas Ty 1
4
p| @y = b21 bzz bza A = B| % (16)
4 4
xy b31 b32 b33 T3 | 28
and x; w;/““
ol @ | = B @ \ (17)
2 7y |

Combining (14) and (16), we obtain the relation

x; >
“B| % = Al 7%
74 z,
from which follow %] ry z,
Z| % | = B1-A|%| = C|% (18)
2y x, x,

giving the coordinates (z, #}, «}) of X relative to the coordinate system B, B:, Bs; By when

the coordinates (21, %z, #3) relative to the coordinate system A, As, As; Ay are known and

’ ’
CEI wl xl
’
| = A-l.B| % = D} % (19)
’ ’
xs x3 x?»

giving the coordinates (1, %2, #3) of the point X relative to the coordinate system A, 4., As; Ay

when the coordinates (), ], #;) relative to the coordinate system Bj, B;, Bs; B+ are known.
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Consider in (18) the matrix C =B"'+A. The columns of A are the absolute coordinates
of the vertices of the reference triangle A14:4; and the columns of C are, then, the co-
ordinates of the vertices of this same triangle relative to the coordinate system Bi, Bs, Bs; Ba.
A similar interpretation of D =A"!-B in (19) may be given. We conclude:

When the coordinates of a point relative to a coordinate system o, are known, the co-
ordinates of the same point relative to another coordinate system of, are found by multiply-
ing the known coordinates on the left by the matrix whose columns are the coordinates of
the vertices of the reference triangle of o, relative to the coordinate system o,

PROJECTIVE TRANSFORMATIONS IN THE PLANE
The equations

@1 €1 €2 f’ﬂ
[ 2 = €y G € |v| P2, |E| = les] = O (20)
s €3 €3 €3 x"_
and x, A
ol %y = E ! % (21)
Ty {_xg

may be interpreted either (i) as a means of passing from the relative coordinates
(1, 22, 13) of a point X, with respect to a coordinate system of,, to its absolute coordinates
(¢}, %}, x;) and vice versa or (ii) as a means of passing from the relative coordinates
(%1, 22, #3) of a point X, referred to a coordinate system of,, to the relative coordinates
(], 2}, x5) of the same point, referred to a coordinate system &f,, and vice versa. These two
interpretations become the same by noting that there exists a coordinate system — call it the
natural coordinate system — with respect to which the absolute coordinates of a point are
themselves relative coordinates. This coordinate system is defined by A:: (1, 0,0), 4.: (0,1, 0),
A3 (0,0,1); A (1,1,1) in absolute coordinates. Any point X:(x1, s, %s) in absolute co-
ordinates may be written as (1,0, 0) 3 25(0, 1, 0) + 25(0,0,1) and, hence, referred to this
(the natural) coordinate system has relative coordinates (i, z2, #s).

The effect then of (20) and (21) is simply to change the name (coordinates) of each point
in the plane. In view of this, they are called passive or alias transformations.

As with its counterpart (5), a second interpretation of (20) is possible. In this inter-
pretation, we have distinct points X: (x,z,,#,) and X: (x}, x,, #}) whose coordinates are
relative to the same coordinate system. The effect of (20) is to carry the point X into the
point X’; the effect of (21) is to carry the point X’ back into X. With this interpretation,
(20) and (21) are called active transformations, or alibi transformations. We may now
write (20) and (21) more briefly as

pX’T = EXT and oXT = ET1X7
This cumbersome notation could have been avoided by adopting from the beginning vector
X1
notation in which the coordinates of X are given as | 22 | rather than by the familiar
s
(1, %2, ¥3). Instead, we shall agree to drop the transpose signs, recalling always that in the
equations of a transformation written in matrix notation, the coordinates of a point enter

naturally as a 8 X 1 matrix or as a column of a 3-square matrix. With this understanding

we write
pX' = EX (20)

and X = E1X/ (21)
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There can be no misunderstanding by so doing; literally, EX = [e;]+ [1, €2, #5] is mean-
ingless.

In Problem 16.7 we prove
Theorem 16.7. The transformation (20) preserves collinearity.

In Problem 16.46 the reader is asked to prove
Theorem 16.8. The transformation (20) preserves cross ratio.

Example 16.10.

Relative to a coordinate system of ,» take Ay, 821, Az1), Aot (G2, Gao, Ag0), Aal (@43, Ao, @s3) as reference

triangle and A, <2 Ayjr D lgjy X a3j> as unit point of a new system of,. When referred to of, let A have
i 3 3

coordinates (1,0,0), A, have coordinates (0,1,0) and A; have coordinates (0,0,1). Also, let an arbitrary

point X: (x4, g, x3), referred to of 1 have coordinates (m;, x’z, :vg) when referred to of o (a) Obtain equations

(20) and (21) effecting the change from one system to the other. (5) Show that the effect of a second trans-
a 00

formation of the form -X” =| 0 b 0 (X’ = DX’, [D|+ 0, on (20) is to retain the reference triangle
00 ¢

while changing the unit point.'

{a) Since the effect of (21) is to earry (1,0, 0) into (a1, @1, @31), (0,1,0) into (@9, Gag, @30) and (0,1,0) into
(@13, @3, 033), we find for (21)

a1 Qiz Gg3
(i) O’X = Aoy Qge Qog X = AX’ = E_IX’
@3y Qdgg Qgg
and obtain for (20)

(if) pX' = A-1X = EX

(b) Applying the inverse 7’X’' = D~1X" to (i), we find
a /o agp/b aggfe
(ill) eX = E-1D-1X" = azlla a22/b a23/6 X"

a31/a a32/b a33/6‘

Call this new coordinate system of o Now (iii) carries the vertices of the reference triangle of of s back
into (ay1/a, as)/a, az;/e), (a;5/b, azs/b, ase/b), (ais/e, dagfe, ags/c) respectively which are merely different
representations of the vertices of the reference triangle relative to of R Thus, X" = DX’ is a trans-

formation which leaves unchanged the vertices of the reference triangle but, since it changes their
representations, selects a new unit point.

In summary, (20) is a point transformation having an inverse and preserving both
collinearity and cross ratio; as such, it belongs to the class called projective transformations.
Dually, there is a line transformation having an inverse and preserving both concurrency
and cross ratio. We now show that this latter transformation is induced by (20) and is, in
effect, identical with it.

Consider the line z: X2 + Xox + X323 = 0 which in matrix notation is
[XI, Xz, Xs] o T2 = 0 (22)

The effect of (20) is to carry  into the line & whose equation is
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(X, X, X,]*pE"!: 4 = [X;,X;,X;]- @} = 0
x; X

The induced line transformation is given by

(X, X, X)) = [X,X,, X,] E™!

3

which, by taking the transpose of both sides, assumes the more familiar form

X X,
AX] = @y X (29)
4
X, X,
or, more briefly, -2’ = (E"!)Tx. Its inverse is given, in turn, by
x = ETa/ (24)
Example 16.11,
The projective transformation 1 3
X’ = EX = 1 -2 3 | X
2 4 -3
carries the line I: 4wy + 3%, — 5x3 = 0 onto
—6 29 19 || # @y
Vi [4,3,~5 +E-1X’ = [4,3,-5+| 9 —13 2| = | = [-37,67,107] %2
8 2 =5 || %4 x4
= —87x) + 67, + 107z, = O

or, dropping the primes since we are thinking of this as an alibi transformation, 37x, —67xy— 10723 = 0.

By (28) the induced line transformation becomes

X1 —6 9 8 || X; |
o| X5 | = 29 —13 2 || X,
X} 19 2 b || X,

which, of course, yields the same line ['.

Projective transformations of the type (20) and (23) are called collineations. Later we
shall consider other projective transformations, called correlations, which carry points into
lires and lines into points.

In Problem 16.49 the reader is asked to verify

Theorem 16.9. A projective transformation [collineation of the form (20)] is uniquely deter-
mined when four pairs of corresponding points, no three points of either
set being collinear, are given.

CANONICAL FORM OF A COLLINEATION

Consider the collineation
pX’ = EX, [E| # 0 (20)
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If E =1, the effect of the transformation is to carry each point of the plane and also each
line of the plane into itself. The transformation is known as the identity. Suppose E = I.
We raise the question: Are there individual points and lines of the plane which remain
fixed under the transformation? Such points and lines, if any, are called double (self-cor-
responding, invariant, fized) points and lines of the transformation. The double points of
(20) are those points for which X’ = X; hence they are fhose points satisfying pX =EX or

€11 — p €12 €13 21
(E—-phX = €21 €z —p €23 Xz | = 0
€31 €32 €33 — p Ts

The system of equations
(e11 — p)x1 + €192 -+ €13%3 = 0

€121 + (622— p)xz + exs = 0 (25)

€311 + €322 + (ess—p)23s = 0

will have a non-trivial solution if and only if

€11 —p €12 €13
olp) = €21 €m—p €z =0 (26)
€31 €32 €33 — p

This is the so-called characteristic equation of the matrix E which will also be called the
characteristic equation of the collineation (20). The equation has either three real roots or
one real and a pair of conjugate imaginary roots. We shall be concerned with collineations
having real characteristic roots. Let p, be one of the roots. The matrix E — pd 1is then
singular and the system of equations (25) with p replaced by p, will have a non-trivial solu-
tion, say, X% (z,, %, «,,) which is a double point of the transformation associated with the

characteristic root p..

In Problem 16.8, we prove

Theorem 16.10. If p ,X';p,, X% p,, X® are the characteristic roots and associated double
points of (20), then p, + p,  p, implies X*, X2, X? non-collinear.

Corresponding to each double point X* of a collineation (20) there is a double line whose
existence follows when the argument above is applied to the induced collineation (23). In
this connection, recall that if p, is a characteristic root of (20), then 1/, is a characteristic
root of (23).

Suppose X! is a double point of (20) and take it as the point Ai: (1,0, 0) of a new triangle
of reference. The condition that A; be fixed requires that the first equation of (20) reduce
to px{=e, x, ie. e,=e,=0. Thus when the.characteristic roots of (20) are real and
distinet and the associated double points are taken as vertices of a new reference triangle,
(20) reduces to

(i) PLL = €Ty, PTG = Oply  pTE = €%,y
The transformation which effects this reduction is +X = RY, in which the columns of R
are the coordinates of X!, X2, X3. Applying this alias transformation to (20), we obtain

pRY’ = ERY

or, reverting to the notation in (i),
pX’ = RT'ERX
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The matrices E and R7!ER, being similar, have the same characteristic roots; hence,
€117 P15 €39 = Pys €33 Py
Then (i) becomes pr! = p T,y pXL = L, Ry = p, (27)

called a canonical form of (20).

Example 16.12. 1 0 -1
Show that the collineation pX’ =| 1 2 1 {X has distinet double points and obtain the canonical
form. 2 9 3
The characteristic equation is
1—0» 0 -1
o(p) = 1 2—p 1 = 6 — 1lp + 62 — p3 = 0
2 2 3—0p
and the characteristic roots are p; =1, 05 =2, p3 = 3. When p = p; =1, (25) becomes

— 23 = 0
2+ %+ x3 = 0
20y + 2005 + 225 = 0
and X1 (1,—1,0) is the associate double point. When p = p; = 2, (25) becomes

- —x3 = 0
2 +x3 = 0
20, + 25 + 23 = 0

and X2 (2,—1, —2) is the associate double point. When p = p3 = 8, (25) becomes

_le - ¥z = 0
ry— %o + X3 = 0
22, + 21, =0

and X3: (1,—1,—2) is the associate double point.
The double lines are #!=X2X3: 22,—2;=0; 22=X3XL:my+2,=0 and «%=X1X2 20,+22,+2;=0.

1 2 1 0 -2 1
1
Take R = | ~1 -1 -1 |; then R-1 = 3 2 2 0| and

0 -2 -2 _ -2 -2 -1

0 -2 1 1 0 —1 1 2 1 1 0
X' = RICRX = 2| 2 2 0|1 tl-l-1t—1-1|x={0 2 o|x
-2 —2 -1 2 3 0 —2 -2 0 3
and the canonical form is px] = x4, pxs = 25, pxi; = 3ws. See also Problem 16.9.

PLANAR HOMOLOGIES AND ELATIONS

Suppose the characteristic equation (26) of (20) has a simple root p, and a root p, of
multiplicity two. Two cases arise, each leading to a distinct canonical form, according as
‘the rank of the coefficient matrix of (25) with p replaced by p, is two or one. The case when
the rank is two is illustrated in Problem 16.10. When the rank is one, the collineation is
called a planar homology. An illustration is given in

Example 16.13.

[CRVCE X
[ RS
B

2
Obtain the canonical form of the collineation X' = | 1
1
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The characteristic equation is
2—p 2 1
¢lp) = 1 3—0p 1 = G-pl—p2 = 0
1 2 2—p
and the characteristic roots are p; =5, pp =1, pg = 1.
When p = p; =5, (25) becomes
=32, + 229 + X3 =
2y — 229 + 23 =
@y + 225 — 323 = 0
and X’:(1,1,1) is the associate double point.
When p = po = 1, (25) becomes
xy + 20y +23 = 0
(i) @y + 2wy + g = 0
2y + 209 + 23 = 0

-

1 21
with coefficient matrix | 1 2 1 | of rank r = 1. Then every point on the line u«l: #; + 2z, -+ 23 =0 is a
1 21

double point; also #! and the pencil of lines joining X! (not on 1) to the points of x! are double lines.
There is a difference in these double lines, however; x! is also a line of double points.

As vertices of a new reference triangle (see Fig. 16-4) take X1 and ahy two distinet points as
X2 (1,0,—1) and X3:(1,—1,1) on xt. Then

101 1 1 2 1 0
R = |1 o0 -1/, R—1=:11—2 o —2 |, ,X = RERX = |0 1 0|X
1 -1 1 1 -2 1 0 1

and the required canonical form is

LA Y — ! —
p¥y = ;%y,  p¥y = pp¥y PY3 T P2¥3

Xt (1,1,1) 2.

Fig.16-4

A planar homology, then, is a collineation (not the identity) which has a double line k
consisting entirely of double points and a pencil of double lines on a double point K, not on
k. The line k is called the axis and the point K is called the center of the homology.
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Next, suppose the characteristic equation (26) of (20) has a root p, of multiplicity three.
Again, two cases arise according as the rank of the coefficient matrix of (25), with p re-
placed by p,, is two or one. The case when the rank is two is illustrated in Problem 16.11.
When the rank is one, the collineation is called an elation. An illustration is given in

Example 16.14.

2 2 38
Obtain a canonical form of the collineation X' = | —2 —3 —6 | X.
1 2 4
The characteristic equation is
2—p 2 3
glp) = -2 —3-p -6 = @=p® = 0
1 2 4—p

and the characteristic roots are p; = py = pg = 1.

When p =p; =1, (25) becomes
2y + 22, + 323 = 0
—2x; — 4wy — 623 = 0
%+ 229+ 323 = 0

of rank # = 1. There is then a line of double points #3: 2, 4 22, + 823 = 0. From the induced collineation

0 2 -1
o' = | —2 B —2 |x, or following the note to Problem 16.9, it is found that there is a pencil of double
-3 6 —2

lines on X1: (1,—2,1).

X3:(0,0,1)

X2:(2,~-1,0) x3: xy+2x9+ 803 =0

Fig.16-5

As vertices of a new triangle of reference take X1, any other point as X2:(2,—1,0) on 3, and any
other point of the plane as X3:(0,0,1) such that X!, X2, X3 are non-collinear. Then

1 2 0 ~-1 -2 0
R = -2 -1 0 |, R-1 = % 2 1 0
1 0 1 1 2 3
and we obtain the canonical form
pxy = =y + 8xg, pXy = ®y, pX; = g

An elation, then, is a collineation (not the identity) which has a line & of double points
called its axis and a pencil of double lines on K (a point on k) called its center.
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CORRELATIONS
The equations
X r1
p X | = ¢l 2|, C = [ei), (1,7=1,2,8), |C]|#0 (28)
X3 X3

define a one-to-one correspondence, between the points X = (x1,%2,25) and the lines
x: [X1, Xs, Xs] of the plane, called a correlation. We may regard (28) then as a transforma-
tion which carries the point X of the projective plane into the line « of this plane. Its
inverse, which carries z back into X, is given by

1 Xl
ol 2| = €71 Xo (29)
] Xs

Let P: (y) and Q: (2) be distinct points and denote their respective correspondents under
(28) as p:[Y] and ¢:[Z]. It follows easily that the correspondent of E: (y+Az), another
point on the line PQ is 7: [Y +\Z], another line on the point p-¢q. The correlation (28)
then carries a line s of points into a point S of lines. (We leave for the reader to verify that
under (28) cross ratio is also preserved and, thus, correlations are projective transforma-
tions.) In general, see Problem 16.54, the point S and the line s are not correspondents.
Hence, paralleling our study of collineations, the correlation (28) induces another trans-
formation (correlation), generally distinct from (28), which carries the lines of the plane
into points of the plane.

To find the equation of this induced correlation, suppose it carries the line {X’'z} =0
into the point {Xz’} =0. (Here, the primes denote fixed coordinates.) Under (28),
{X’2} = 0 is carried into

1 Xl
X, X,X)]| 22| = [X,X,X]-C1-| Xa| = 0
X3 X,
Taking the transposes
X X:
o,z | Xi| = [X,X,X] ()| X | = o
4 X:;
3
we see that o ~ X
ol %, = (CYT Xa
I | Xi
or, upon dropping the primes,
Fx1 _XI_
ol T2 | = (CHT Xa ’ (30)
| ¥a | X5 |

defines the induced transformation. Its inverse is
X, 1
T X2 = CT T2
X3 s

(37)
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A correlation (28) whose matrix C is symmetric is called a polar correlation or polarity.
Since for a polarity (29) and (80) are identical, the polarity not only carries a point P into
a line p but also carries the lines z of the pencil on P into the points X of the pencil on p.

The importance of a polarity as

X T X1 X
[ X2 = C| X2 , o| 2z | = C! X (32)
X3 X3 23 X3

where C = [c¢y], ¢;; = ¢35, |C| # 0, is due to the fact that, whereas a point P does not gen-
erally lie on its correspondent, the locus of all points X which do lie on their correspondents
is a curve of order two, called a point conic. In other words, every point to line polarity
defines a point conic and, dually, every line to point polarity defines a line conic. For an
example, see Problem 16.12,

Conics will be considered in some detail in the next chapter. There we shall use defini-
tions in keeping with their introduction in Chapter 8.

Solved Problems

16.1. Prove: The cross ratio of any four points on a line o is independent of the coordinate
system established on the line.

Let P,Q,R,S be the four points and suppose, relative to the coordinate system consisting of
A:{a), B:(b); C: (a+b) on o, we find P:p, Q:q, R:7r, S:s while, relative to another coordinate sys-
tem on o consisting of A’,B’;C’ we have P:p’,Q:¢', R:7/, S:s'. Suppose, relative to the first co-
ordinate system, A”: 4 and B”:v. Then for the point P we have

P:(pa+b) and  P:(p'(ua+b)+@atd) = (p'“+”a+b>

1+p
_putw . _qdutw _rutw _sutw
Thus, p = Sy and, similarly, ¢ = i+q° r = 1+’ § = 1+s " Then
o, = Putv_ ruto _ (@—0)@ —7)
P Tvp” 147 © @+p)+r)
and, similarly,
_ (u—)(p’ — 8" _ u—=v)g' —¢) _ (w—v)g — 1)

PTs = d+Nd+sy 1T T drparsy’ T T d+a+o

Finally,

. — (p - 7‘)(9 — S) — (P’ _ ’r,)(q, — 8') — 1ot oad ol
(p,q; 7,8) 0 =8)g=7) =) g =) (p',q'; 7', 8")
as required.

16.2. Prove: If the joins of three pairs of corresponding points of two projective pencils
are concurrent, the pencils are perspective.

Tet P:p,P:p'; Q:q,Q":¢; R:r, BR: v be three pairs of corresponding points whose joins
a=PP', b=QQ", ¢=RR' are on the point O. Let S:s, S:s’ be any other pair of corresponding
points of the projectivity and let OS =d, 08’ = d'. Since

(a,b;¢,d) = (p,qs7,8) = @,¢;7,8) = (a,b;¢,d)

it follows that d = d’ and, hence, S and S’ are perspective from O.
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16.3.

16.4.

16.5.
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Obtain the equation of the projectivity which carries the points 1, 3, « into the points
5,4, -« respectively.

The required equation has the form &’ = %g%g. When # =, &’ =afc=® and ¢=0.
The equation has the form do’—ax—b =0. Since 2’ =5 when =1 and ' =4 when « = 3,
we have

Bd—a—b =0 and 4d—8a—b =0

By subtraction, d+2¢ = 0; take d = —2, e =1. Then b =5d—a=-11 and the required equa-

tion i x'—x_ll
on is =" -

Prove: The cross ratio K of the two double points of a hyperbolic projectivity and
a pair of corresponding points is independent of the pair of corresponding points

selected.
Consider the hyperbolic projectivity
¥ = (3

whose double points are given by
a—d+ 8 a—d—8

M.z = e and N: 2z, = %

where ¢ = V(d— )2 + 4be. Let P:p and P’:p’ be a pair of corresponding points. Then

#—p %—p pp’ — 2’ — ToP + F1%y
K = (M,N;P,P) = (11,%950) = . _ 7
( ) (@1, %23 2,2) g~ p Ty— P pp’ — @1 — wgp’ + %12y
— ’
From (3), we obtain pp’ = @-——%@—:—*——b while %29 = —b/c. Then
ap—dp'+b  ,a—d+e _ ae—d—6 b
X = ¢ P P ¢ _ (-p)atd+e) _ at+dts
- ap—dp’+b a—d+8 _ ,a—d—6 b (p—p'Na+d—8) at+d—¢
¢ p 2¢ 2¢ c

Clearly, the value of K depends solely upon the parameters «, b,e,d defining (2); in particular, it
is independent of the pair P, P’ of corresponding points used in obtaining it.

Derive the canonical forms
= 2x+0p, p = b/a when ¢ =0,
1 1 —c

= -+ —_
T — 21 T — X1 p, P cxri— a when ¢+ 0,

for parabolic projectivities.
When ¢=0, then 5+ 0 and a = d. The equation of the projectivity is #' =« +b/a or

14

2 =x+p p = bl

When ¢ = 0, we have Case 2, page 178. The double point is #; = a_2_6_¢_7l_; hence, a—d = 2¢zx4.
Since (d—a)2+4be =0, we have b = —cx? Then

, ar+b _ ax — W?
cx+d = ex+a— 20wy
ww' + Lot — 20w, — o+ a3 = 0
¢ c
(& —a)x;—afe) — (@ —a)z—x) = 0
—x 1

(o —x e —w)  w© —ale
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16.6.

1 1 . -1 _
and o —w; w—w  zmo—ale P
. 1 — 1 = —¢
Thus, as required, Y —w,  x—u t o P = i "a
ar + b

Prove: The projective transformation 12’ = of a line onto itself is an

. . . cx+d
involution if and only if ¢+d = 0.
7
Suppose 7 is an involution which carries P. p into P’:p’, where P’ % P. Then r~ % a = (Z;f, I 3

carries P’ back into P and we have

epp’ +dp’ —ap—b = 0

and cpp’ —ap’ +dp—b = 0
By subtraction, (¢ +d)(p'—p) =0. Now p’'—p 0 since P’'+# P; hence, a+d = 0 as required.
Conversely, suppose a+d =10 so that =12 = %——i—g. We leave for the reader to show

that 72 is the identity and, hence, = is an involution.

PROJECTIVE COORDINATES IN THE PLANE

16.7.

16.8.

Prove: The transformation pX’ = EX, [E|> 0, preserves collinearity.

Let (y), (), (y + A2) be distinct collinear points. Under the transformation they are carried
respectively into

Y1+ Az Y1 2
EY, EZ, E|y,+)s | = E|[y, |+ \E 2, | = EY + \EZ
Y3 -+ )\23 Ys 3

which, in turn, are clearly collinear points.

Prove: If p,, X'; p,, X% p,, X* are the characteristic roots and associated double
points of pX’=EX, then p, +#p, #p, implies X?, X2, X® non-collinear.
Suppose p; # py # p3 but Xy, X,, X3 collinear. Then there exist constants «y, ay, @3 not all zero
such that
- (l) (xle + a2X2 + a3X3 =0
Multiplying (i) on the left by E and using EX; = p,X;, (1 =1,2,3), we have
(ii) aEX; + aEX, + 03EX3 = 191X + 00X + agpsX3 = 0
Multiplying (ii) on the left by E, we obtain
(iil) a1p§X1 + a2p§X2 + a3p§X3 =0

Write (i), (ii), (iii) in matrix notation as

1 1 1 a Xy a Xy
(iv) PL P2 P3 |- a2X2 = B azX2 = 0
o2 o2 py | | @sXs a3X3

Now [B| = (p; — pa)lpa — p3)pg —p1) > 0 and, hence B~1 exists. Multiplying (iv) on the left by
B—1, we have )

arXy r“IXl a1 Xy
B-1B - a2X2 == I- d2X2 = 02X2 = 0
a3X3 a3X3 a3X3

But this requires a; = ap = @3 =0, contrary to our assumption. Hence, X;,X,,X; are non-
collinear.
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16.9. Examine the line transformation induced by the point transformation pX’ = EX =

1 0 -1
1 2 1|X of Example 16.12 for double elements.
2 2 3
: 43
Here E-1 = -1 4 —1|; the induced line transformation is
-+ 5 3
2 -1 1
3 [ 3
o' = (E-NTax = —% % —% i
1 -1 1
3 3 3
The system of equations corresponding to (25), page 182, is
E-—aX; — 1X, — 1X; = 0
(i) =X, + G—o)Xs — 3Xs = 0
11X, - 1X, + (3—9X3 = 0
which will have a non-trivial solution if and only if
g0 b b
o) = -1 £—0 -3 = 0
S N

The roots of ¢'(c) — 0 are the reciprocals oy =1, 03 = 3, o3 = 1 of the roots of the characteristic
equation ¢(p) = 0 of E. '

For o = ¢y =1, (i) becomes —2X,— X, — 2X3 = 0
—2X;, — X, —2X; = 0
X, —X,—-2X; = 0
and «%:[0,2,—1] or «l: 22, —x3 = 0 is the associate double line.
Similarly, for 6 =0, =} and o =0y =4, we find 2% x;+ w0y =0 and a3 20+ 20, +x3=0
as respective double lines.
Note. From pX = EX, where p and X are characteristic root and associated double point of
E, we obtain —‘I;X = E—1X; the converse is also true. Hence X is an associated double point of

E-! if and only if X is an associated double point of E. Dually, « is an associated double line of
(ET)~1 if and only if « is an associated double line of ET. Since the characteristic roots of
ET are those of E, the double lines obtained above may be found more easily from (ET—plz =0

1—p 1 2 X,
for the characteristic roots of E. For example, from (ET —ol)z = 0 2—p 2 X, =0
-1 1 3—p X,
for the characteristic root p = py = 3, we find «3: [2,2,1] as before.

2 1 -1
16.10. Obtain the canonical form of pX’ = 0 2 -1 X.
-3 -2 3
The characteristic equation is
2—p 1 -1
o) = 0 2—p -1 = (B—pl—-pz = 0
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16.11.

and the characteristic roots are p; =5, py = p3 = 1.
When p = p; = 5, (25), page 182, becomes

—3x1+ ¥y — X3 = 0

- 3(1?2 — &g
_3371 — 2%2 - 2%3 =0
and X1:(—4,—3,9) is the associate double point.
When p = p, =1, (25) becomes
y+ ®y— 23 = 0
29 — X3 = 0
""3%1 — 2392 + 2%3 =
of rank r =2 and X2:(0,1,1) is the associate double point.
For this transformation there are two double points X1 and X2 with X2 counted twice. Dually,
there are two double lines — 3 = X1X2: 3%, —wp+ a3 = 0 and «!: ¢+ %5 — x5 = 0 — the latter being
identified by the use of the induced line transformation

4 3 6 2 0 -3
o' = | -1 3 1 |=x or from ez’ = ETax = 1 2 -2 |x
1 2 4 -1 -1 3

As vertices of a new reference triangle take X1, X2 and any other point, say, X3: (1, —2,—1)
on z1. Then

—4 0 1 ~1 -1 1
R = -3 1 -2, R-1 = % 21 5 11
9 1 -1 12 —4 4
and we obtain the canonical form
pxi = bxy, pwh = @y — kg, pxh = X3
0 1 0
Obtain the canonical formof pX’ =0 0 1 X
1-3 3
The characteristic equation is —p 1 0
() = 0 —» 1 = (1-—p)08

1 -3 3—p
and the characteristic roots are p; = py = p3 = 1.
When p = p; =1, (25), page 182, becomes
—xy + x4 =0
— 23+ %3 = 0
21— 8%y + 223 = 0
of rank » =2 and X: (1,1, 1) is the associate double point.
Thus there is a single double point counted three times and a single double line
282y — 215 + 23 — 0 counted three times. Since X1 is on 3, take as vertices of a new triangle of

reference X!, another point as X2:(2,1,0) on «3, and any other point as X3:(0,0,1) such that
X1 X2 X3 are non-collinear. Then

1 2 0 -1 2
R = |1 1 o1, Rt = 1 -1 0
1 0 1 1 -2 1

and the canonical form is
pry = Xy — Xy + 225, pxh = %y — T3, p¥3 = T
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16.12. Derive the equations of (a) the point conic and (b) the line conic defined by the

polarity
X 1 X1 X1
p| Xa | = C| %2 and its inverse  o| 2 | = €1 Xz
X xs x3 X3

(@) The Poinit Conic.

The polarity carries the point (x;,#,,#3) into the line [X1, X5, X3]. Since we require the
point to be on the line, we must have X,x;+ Xpwy + X525 = 0. Now, under the polarity,

X, g
[#1, %9, @3]| X5 | = 0  is carried into [, g, 23] *C 2 2o | = 0
X, T3
which, when expanded, becomes
€11 Gz Ci3 (51 011%1 T C1o%y T C13%3
[Ty, To, @3] *| €12 C2z Caz |*| %2 = [@y, @ %3] | €12%1 F Con¥a + Cos¥s
€13 Co3 Cag *3 13%1 T €33%; T C33%3
= eyt + Cop®s + C35a2 -+ 2019%1%g + 2e9%,@y T Z2egg¥owy = 0

This is the equation of the point conic defined by the polarity.

(b) The Line Conic.

The inverse of the polarity carries the line [X,, X, X;] into the point (x4, %3, x3). Since the
line is to be on the point, we must again have Xz, + Xpwy+ X253 = 0. Under the inverse of
the polarity

&y Xl
[Xy, X5, Xs)| @5 | = 0 iscarried into  [Xy, X5, X3] €7 Xo | =0
5 Xs

the equation of the line conie.
Note that the line equation of a given point conic

Ty X;
[wg, @, 23] C| @3 | = 0 s (X, X5, X3) CE| X | = 0
X3 X3
and the point equation of a given line conic
X, L3
[X, X5, Xg) C| X | = 0 is [%g, %5 wg] €71 @ | = 0
X3 Zg

Supplementary Problems

16.13. Determine the equation of the transformation which carries

(@) 0,1,2 into 0,4,3 respectively. (d) 0,1, into 1, «,0 respectively.
() 0,1,2 into 2,1,3 respectively. (e) 2,8,4 into 2,8,5 respectively.
(¢) 0,2,5 into 9,1,4 respectively. (f) 1,2, into —1,—5,3 respectively.
, . 12x , 1
Ans. ((1,)9(:—506_2 (d)x_l—m
, T —8 , . x+6
) & =31 @ = ="3+%
Bx — 9 3x—1

li

@ =222 o=
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16.14,

16.15.

16.16.

16.17.

16.18.

16.19.

16.20.

16.21,

16.22.

16.23.

16.24.

16.25.

16.26.

16.27,

16.28,

Obtain the real double points for the transformations of Problem 16.13 and thus show: (a), (B}, (&), ()
are hyperbolic; (c) is parabolic; (d) is elliptie.

The transformation in Problem 16.13(¢) has M:2 and N:3 as double points and carries P:4 into
P":5. Find two other pairs of corresponding @, Q’; R, R’ and show that

(M,N;P,P') = (M,N;Q,Q') = (M,N; R,R')

Obtain canonical forms for the hyperbolic and parabolic projectivities of Problem 16.13.

z’ - @ #—2 _3x—2
Ans. @ =i = o1y @ w3 T i3
o —1 e—1 © — 3+ 2/2 x—3+2/2
@ —8—2/2 € —3—2/2
1 1 1
(e) =3 x—-3+2
Given the projective transformation =: 2’ = :: j-_abl’ obtain the inverse transformation r—1 and

verify that 7+7—1 = r—1e; is the identity transformation.

Write the inverse of each transformation of Problem 16.13.

2’ 4o’ — 8 8z —1
w—1z0 O 7= gg—y N ==

Partial Ans. (a) o =

ax + b ex + f
cx +d gx +h’
a projective transformation. (8) r; -7, is a projective transformation, (¢) generally, TI Ty F Ty Ty

ar + b ex' + f . e _ G+ Y
ox +d g + h and obtain ryerpi gz’ = P

Recall that this is a projective transformation if and only if a/d’ — b’¢’ + 0.

Given the projective transformations =: 2’ = and 7o' = show: (@) r9°7; is

Hint. For (a) write -¢ 2’ = and 7z’ =

Show that for 75+ 7; in Problem 16.19, a’d’ — b'c’ = (ad — be)(eh — fg).

Suppose 7; and 7y are hyperbolic projectivities having the same double points M, N and with char-
acteristic invariants K; and K, respectively. Show, using the canonieal forms, that To0 Ty i8
hyperbolic with double points M, N and characteristic invariant K,+K;. Hence, r;*7y = o7y,

Consider the products of two parabolic projectivities r; and 75 having the same double point M and
parameters p; and p, respectively.

Determine the involution having 1,—1; —2,8 as two of its reciprocal pairs.
Ans. zx'+5(@+2)+1=0.

Suppose two reciprocal pairs of an involution are given by the roots of the quadratic equations

() e@®+bix+e; =0 and (ii) a2+ bywr+cy =0. Denote by w;,#] the roots of (i); then
xx’ x4+ 2 1

2141 = ¢;/a, and x; + ] = —b;/a,. Obtain the equation of the involution as | ¢; —by @] = 0.
S Co —by @y

Obtain the equation of the involution determined by the reciprocal pairs given by 2x2—x—1 =0
and %2+ 3x+2=0. Ans. Txx’ + 5(x+2)+1 = 0.

What happens if the quadratic equations in Problem 16.24 have a root in common?
Determine the involution whose double points are 1,—2. Ans. 2xx’+(x+x')—4=0.

Prove Theorem 16.6, page 174.
Hint. Show that H{x;, #,; x,2') implies 22’ — (2, + xp)(x + &) + 2220 = 0.
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16.29.

16.30.

16.31.
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Given two pairs of points p,p’; ¢,¢ on a line, prove that there exists a unique pair x;,2, on the
line which separate harmonically each of the given pairs.

Given the pairs 3,18;—4,—2/3 on a line, locate the pair whose existence is established in Prob-
lem 16.29, Ans. —2,6,

By means of Problem 16.24, show that in the involution determined by g;: ax?+ bz +cy =0 and
gg; G922 + bot + ¢ = 0 any other reciprocal pair is given by g¢; + Agy for some unique value of A.

PROJECTIVE COORDINATES IN THE PLANE

16.32.

16.33.

16.34.

16.35.

16.36.

16.37.

16.38.

16.39.

16.40.

16.41.

16.42.

16.43.

Prove Desargues’ Two-Triangle Theorem using Fig. 16-3.
Prove the Theorem of Pappus when the coordinate system is chosen as in Example 16.8(b), page 176.

In Fig. 3-1(a), page 30, take A:(1,0,0), B:(0,1,0), C:(0,0,1) and P:{1,1,1). Find relative coordi-
nates of @, R,S and the equations of all sides of the complete quadrangle.

Prove: If three distinct collinear points, one on each side of the diagonal triangle of a complete
quadrilateral, are marked, their harmonic conjugates with respect to the vertices of the quadrilateral
are collinear.

Hint. Using Fig. 3-1(b), page 31, take ¢:[1,0,0], 5:[0,1, 0], ¢:[0,0,1] and »:[1,1,1].

Given a triangle ABC and two points A’ and B’, locate C’ such that AA’, BC', B'C are concurrent
and also AC’, BB’, CA' are concurrent. (a) Show that AB’, BA’, CC’ are then concurrent. (b) What
additional condition insures AB’, BC', CA’ concurrent?

Hint. In Fig. 16-3, page 177, interchange the labels ¢’ and B’ so that AA’, B(’, CB’ are concurrent
in P and AC’, BB’, CA’ are concurrent provided abe=1. Ans. (b) a=c¢.

P and @ are distinct points on a fixed line r while A and B are distinct points not on r. Let
R=AP+BQ and S=AQ+BP. Show that T = AB+RS is a fixed point, i.e. is independent of
the choice of P and Q.

Hint. Take 7 #;— %, =0, P:(1,1,0), Q:(1,1,b); A:(1,0, 0), B: (0,1, 0).
State and prove the dual of Problem 16.37.

Prove: If X is any point on the side PR and Y is any point on the side @S of a quadrangle PQRS,
then T=QX PY, U=SX+RY and B =PS+QR are also collinear.

(¢) Show that p: @i/a; + xs/as+ xs/ag =0 is the equation of the polar line of the point P:(a)
with respect to the reference triangle.

(b) Show that the polar lines of P:{a) with respect to the pairs of sides of the reference triangle
form a second triangle.

(¢) Show that the two triangles in (b) are perspective from P and p.

Prove the theorem Of Problem 4.2, page 51; also the theorem in the note.
Hint. Take the reference triangle as ABC and take A’, B’,C’ on the line ax, + bxy + cxg = 0.

If H(A,B; C,D) and H(A’,B’; €', D) on distinet lines, then AA’, BB’,CC’ are concurrent.

Prove: A projective transformation of the form (20), page 179, is uniquely determined when four
pairs of corresponding points, no three points of either set being collinear, are given,

Hint. Equations (20) have eight essential constants since the equations may be divided by any one
of the e;. One of the coordinates of any point may be taken as 1; hence, transforming a point A
into its correspondent A’ gives two independent relations among the eight essential constants in
(20). Of course, it may happen that the given pairs of points are such that the e;; selected above
must be zero. In this case, we eventually reach contradictory relations and must begin anew with
some other ¢;. (Why can we be sure of a solution?)
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16.44.

16.45.

16.46.

16.47.

16.48.

Take By:(1,1,2), By:(3,—2,4), Bs: (5,8, —3); B,:(9,2,8) in absolute coordinates and write the equa-
tions of the transformations (16) and (7). Combine these equations with those of Example 16.7,
page 176, to obtain

A 109 —23 14 || @y 2
J ey = ~11 65 —82 || % | = C| % (19)

x5 —-3 10 144 || =3 %3

and 2y 140 52 16 |[ o}
| % | = 30 258 144 || %3 | = D| @5 (20)

3 5 19 112 || @3 *3

Verify that the columns of C are the coordinates of the reference triangle A;4,4, relative to the
coordinate system By, B,, By; B,.

Find the projective transformation which carries A;, Ay, A3; A, of Example 16.7, page 176, into
B4, By, Bg; B, respectively of Problem 16.43. Prove that the diagonal points of the complete quad-
rangle A 4,434, are carried into the diagonal points of B,B,B;B,, without ecomputations.

243 —42 27
Ans. pX' = | —61 134 11 |X

157 —38 133

x} 1 3 5 *q
For the transformation p| %3 | = | 2 —1 8 |¢| @ |, show that

(a) Itis singular, ie. |C| = 0.

(8) The point P: (—2,—1,1) has no image, i.e. is transformed into (0,0, 0).

(¢) Every other point of the plane is carried into a point on the line I x; + 25— w3 = 0.

(d) The points of the line I @) —x,+ #3 =0, excepting P, are carried into the point (4,1,5) on .

(¢) Every other line in the plane is carried into the line .

Prove: The transformation pX’ = EX, |E|+ 0, preserves cross ratio.

For each of the following collineations

1 1 -2 6 6 —2 |
@ oX' =|~1 2 1|X (0 oX =[-2-1 1]|X
0 1 -1 |-1 -2 3 2 2 1
- - - () pX' =|-10 7 2 X
0 1 1 2 2 3] g 4
® pX' =| -1 2 1|X (d pX =|-3 -8 —5 |X
-2 2 3 1 2 4

obtain all double elements and a canonical form.
Ans. (e) D.P. (3,2,1),(1,3,1),(1,0,1).
DL. 2y—%3—23 =0, x;y—%3 = 0, w1+ 20, — Txg = 0.
1 0 0
CF. pXl =10 2 0 |X
0 0 -1
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() D.P. All points on @ —xy— 23 = 0; (1,1,2). D.L. All lines on (1,1,2); x;—xg+ w3 = 0.

3 0 0
CF. oX =0 1 0|X
0o o0 1

(¢) D.P. (2,—-1,0),(1,—1,-1). D.L. x;+ 22, = 0, 21+ 2%y — %3 = 0.

2 0 0
CF. X =|0 38 —1X
o o0 3
1 2 2
@ DP. (1,-2,1). DL ¢~z3=0. CF. X =0 1 11X
o 0 1

(¢) D.P. All points on 5y — 2z — %3 = 0. D.L. All lines on (1,2,1).

3 0 1
CF. pX =0 3 o0]|X
o o0 3

16.49. Obtain the collineation which carries:
(@) A:(1,0,0) into P:(—1,1,1), B: (0,1, 0) into Q:(1,—1,1), C:(0,0,1) into R:(1,1,-1), D:(1,1,1)
into S: (1,2, 3).
(b) A into T:(—3,1,1), Binto U:(1,-2,1), C into B and leaves D fixed.
{¢) AintoP, Binto @, Cinto E and leaves D fixed.
(d) A into B, P into @, F:(1,0,—1) into G:(0,1,—1) and leaves E:(1,—1,0) fixed.
(¢) Binto P, G into @, E into H:(2,0, —1) and leaves R fixed.

Ans. 5 4 3] -1 1 1
(@) X = 5 —4 3 |X (¢) pX' = 1 -1 1 |X
| 5 4 -3 |1 11 3 -1 0
(6) X' = 1 1 o |X
—9 4 6| 0 1 o -1 1 2
@ oX =| 3 -8 6|X @ px =1 0 0|X
L 3 4 —6 | [0 0 1

1650. In each of Problem 16.49(b)-(e), the two triangles are perspective from the fixed point (for example,
in (d) the triangles APF and BQG are perspective from E). The collineations are called perspective
collineations. Show that the double elements consist of a pencil of double lines on the double (fixed)
point and a line of double points of equation (b) 8% +4wy+6xs =0, (6) v taz+x3=0,
(d) &4 — x5 =0, {€) &; —xy = 0. Verify that each line of double points is the axis of the correspond-
ing pair of perspective triangles.

16.51. (In Problem 16.49(b)-(d), verify that the fixed point is not on the line of double points, i.e. that the
collineations are homologies.

In (b) take any two distinct points V, W on the axis of homology. On the double line p = DV
take another point Y, and on the double line g = DW take another point Z. Locate the correspond-
ents Y/, 2’ of Y, Z in the homology and verify: D, V;Y,Y)=(D,W;Z2,2".

Repeat for the homologies of (¢) and (d). In (d), each set of four points is a harmonic set. The
collineation is called a harmonic homology.
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16.52.

16.53.

16.54.

In Problem 16.49(e), verify that the collineation is an elation.
wi xl—
Let S:p|l @y | = Al xy |3 A=[ay], ,i=1,2,8); |A]#*0
4
X3 (23

be a collineation which carries P:(xy, %y, x5} into P':(x}, x5, x5) and

& a4 |
T:o| @y | = B| x |; B=[by, (,i=1,23); [B|#0
be a collineation which carries P’ into P”:(x),x},2%). Then
xi’ xy Ty
TS: 7|« |=B+A|2, | =C| 2, |, B-A=C
xél 3 x3

is a collineation which carries P into P, TS is called the resultant or product of S and T.
We have established:

The product of two collineations is a collineation.

(a) Rewrite the initial collineations so that T carries Q: (x4, zy, #3) into Q': (2], xh, #}) and S carries
Q' into Q' (x{’, 24, #{) and obtain

¥y %4
ST: v | «y = A+'B| 2
4 L3
(b) Verify that when P = @, P” # Q" generally.
Consider the correlation (i):
Xl Xy 1 3 5 &y
ol X2 | = C|l 2| = |1 -2 3| x
X3 %3 2 4 -3 || 3

(a) Show that (i) carries the points P: (1,2,1), Q: (8,—1,2), B: (4,1, 8) on the line s: 5wy + x5 — Twrg = 0
into the lines p: 123+ Twy = 0, q: 10xy + 11wy —dag = 0, 7: 222, + 11x, - 33 = 0 respectively
on the point S: (77, —118, —132).

(b) Verify that S and s are not correspondents under (i).

(¢) Verify that S is the correspondent of s under the induced transformation (ii):

N X,
| x, = (CHT:| X,
®g X3

(d) Infer that if a correlation of matrix C carries the points on a line s into the lines on a point
S, then it will carry s into S if and only if
(C-1HT = ¢-1
that is, if and only if C is symmetric.



Chapter 17

The Conic

THE POINT CONIC

Consider in Fig. 17-1 the pencils of

lines
{Az} +A{Bx} = 0 (1)

and {Dx} + MEx} = 0 (2)

on distinet centers B and S. The cor-
respondence which associates the line of
pencil (1) determined by a given value
of A with the line of (2) determined by
the same value of ) is clearly one-to-one.
Moreover, since the cross ratio of any
four lines of (1) is then equal to the cross
ratio of their correspondents of (2), this
correspondence is a projectivity. The
locus of intersections of corresponding
lines of the two pencils has the equation Fig.17-1

(Ax}+-{Ez} — {Dx}-{Bz} = 0 (3)

{Ax} + AM{Bx} =0

obtained by eliminating A between (1) and (2). Multiplying out in (3) and collecting terms,
we obtain '

cds + Coals + Ca3x3 + 2C19@ 12 + 2¢31%5%1 + 2023%2%5 = 0 (4)
where cu = A.E, —D1Bl, Cie = %(A1E2 + A.Ey — D1Bs— DzB1), ete. By deﬁning C21 = Ci2,
€13 = €31, C33 = C23, (4) may be written as

3 3
2 CijXid; — 2 2 Cijik; = 0, Cij = Cji (5)
i=1j=1
and, in matrix notation,
€11 Ci2 C13 21
[{Ih, X2, 223] el C21 Co2 Ca3 || X2 = 0, Cij = Cy (6)
Ca1 Cs2 (33 2s

Tt is easy to verify that the locus (5) is on each of R and S. In Problem 17.1, we prove

Theorem 17.1. When the projectivity generating (5) is in reality a perspectivity, the left
member of (5) is the product of two linear factors.

In the case of the theorem, the locus (5) is called a degenerate point conic; otherwise, the
locus is called a proper point conic.

198
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Let P: (p) and Q: (¢) be two distinct points of the plane; then a point X: (p + «g) on PQ
is also on (5) provided « is a root of

2 Pt aq)(pi+ag) = X epp; + (X eupigs + X euqpy) + 2 2ewqqs = 0 (7)
which since Z cyipig; = E CiiqiP; (8)
becomes > cup; + 2e X epig; + 2 X Cuqig; = O (9)
Suppose now that PQ is contained in (5), that is, (9) holds for every value of «; then

Doepn; = X e = X Cudd; = 2 Cudiq; = O
Take A:(a) where a1 = cup:+ cizp2 + cisps = 2 Cilj, A2 = Z Coij, Gs = ;: CaiDj

i i
and B: (b) where by = 2 C1;9;, b = 2 C2;q;, ba = !2 Csid ;. Since 2 CifPiP; = E CiyQiP; = 0,
i i

both A and B are on the line
P11 + Poke + Psxs = 0 (104)

and since Y, ¢yqip; = X ¢y0:¢; = 0, both A and B are on the line
Q121 + @222 + @323 = 0 (2102)

But these are distinct lines; hence there exists g 0 such that
a1+ Bbr = cu(p1 + Ba1) + c12(v2 + Bes) + c1a(ws+ Bgs) = 0
@z + Bbz = ca(p1+ Bq1) + Cox(D2 + Bq2) + Cos(Ps + Bgs) = 0 (17)
as + Bbs = ca(p1+ Bq1) + Cao(P2 + BQs) + cas(ps+ Bas) =

|
=

From (11), we conclude [¢;] = 0. We have proved
Theorem 17.2. If the locus (5) is degenerate, then ([c;] = 0.

Returning to Fig. 17-1, let us assume T, U, V, W are four fixed points on a given conic
and R,S two positions of a variable point on the same conic. By definition, RT,RU,
RV,RW and ST,8U,SV,SW are four pairs of corresponding lines of two projective pencils
(1) and (2). Taking RT and ST as given by A=, RU and SU by A =0, RV and SV by
A=1, then

(RT,RU; RV,RW) = (ST,SU;SV,SW) = (»,0;1,A) = A

and we have

Theorem 17.3. If four fixed points on a
conic are joined to a
variable fifth point, the
cross ratio of the four
lines is constant.

As a consequence, the points on a conic
may be given by a single coordinate
(parameter) as are the points on a line.
Moreover, it is possible to establish a
one-to-one correspondence between the
points of a conie and the points of any
line of the plane (see Fig. 17-2).
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POINT CONICS AND THEIR TANGENT LINES

Consider the point conic
Yewid; = 0, oy = ci, e # 0 (12)

Let P:(p) and Q:(q) be distinet points, neither of which is on (12), and X: (p +«q) be a
variable point on the line PQ. It follows from (9) that PQ either
(i) meets (12) in two distinct points (P + «,9), (P +,9) and is a secant,

(ii) meets (22) in two coincident points and is a tangent,

or (iii) does not meet (12) and is a non-secant.

Suppose PQ is a tangent; then (9) is a perfect square and we have

Theorem 174. A necessary and sufficient condition that the line joining two fixed points
P: (p) and @Q: (¢) be tangent to the point conic (12) is

(2 copins) (X csma)) — (2 euwma)? = 0 (18)

Consider again the point conic (12). Let P:(p) be a fixed point, not on (72), and Q:(9)
be a variable point in the plane. If (18) can be written as the product of two linear factors
in the ¢’s with real coefficients, these factors equated to zero are the equations of the two
lines on P tangent to the conic; if (18) cannot be so factored, no tangents on P can be drawn
to the conic. In the first case, P is said to be outside the conic; in the second case, P is
said to be inside the conic.

Finally, suppose P: (p) is a fixed point on the conic (12) and Q:(qg) is a variable point of

the plane. Then (13) reduces to (2 Cijpin)2 = 0. Upon replacing @ by the more familiar
X: (x), we have

S cipw; = 2 eupm® = 0 (24)
as the equation of the tangent to (12) at (with point of contact) P.

Suppose the line [X1, Xz, X3] is tangent to (12), the point of contact being P: (p). Equating
these with the line coordinates from (14), we have

Seupi = X1, eup; = Xz, 2 cp = Xa
7 7 7

or, more compactly,

Ci1 Ciz Ci3 D1 D1 X1
Cat €2 Cos|o|P2| = C|DP2| = |Xe
Cs1 C32 C33 Ps Ps Xs
Then n X,
po| = €1 Xp (15)
Ds X5

and, by taking the transpose (see Appendix, page 237),
[D1, P2, 05] = [X1, X2, X5] C71 (26)
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Upon substituting from (15) and (16) into

D1
[Py, 02,05]*C+| P2 | = 0
Ds
the condition that P be on (12), we obtain
X1
(X1, X5, X5)+C1+) X2 | = 0 (17)
Xs

the equation of the point conic in line coordinates.

Example 17.1.
Given the projective pencils of lines

£y — &g — X3 + )\(2x1+x2+4x3) =0
and 2y + 209 — @3 + Ny — 4wy +25) = 0
(a) Obtain the equation of the locus generated by them.

Eliminating A, we have ‘
{2y — wo — xg)(wy — dovy + 23) — (7 + 225 — 23) 2y + 2+ 4gg) = 0
The equation of the locus is
(@) Deyww; = a% — 202 — 8a2 + 10my%, + 2053, + dagwg = 0
1 5 1 2y

or (ii) [xl, Loy $3] o 5 =2 2 e [ = 0
1 2 =8| | a

(b) Show that the locus is a point conie,

1 5 1 1 0 0
[Cl = [b —2 2} = (5 —27 —3| # 0; the locus is a point conic.
1 2 -3 1 -3 —4

(¢} Find the intersections, if any, of (i) and the line joining P:(2,0,—1) and Q: (0, —4,1).
X:(2,0,—1)+ a(0,—4,1) = (2,—4a,—1+4a) is an arbitrary point on PQ. If it is also on (i) then
4 — 38202 — 3+ 6ax— 8a® —80a — 4+ 4a+ 16a — 1602 = —5la?2 — 54— 3 = 0
and « = —1,—1/17. There are two distinet points of intersection:
X (2,0,—1) — (0,—4,1) = (2,4,-2) or (1,2,-1)
and X, (2,0,—1) — —117(0, —4,1) = (2,4/17,-18/17) or (17,2,—9)

(d) Show that T:(3,0,—1) is on (i) and write the equation of the tangent there.

1 5 1 3 2
[8,0,—1]| & —2 2 0| = [s0-1[18} = 0
1 2 -3 -1 6

and T is on the conic. The equation of the tangent is
1 5 1 3
[9:1, Lo, W3} 5 -2 2 0 = 2%1 + 13502 + 61’3 = 0
1 2 —3 -1
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(¢) Write the equation of the point conic in line coordinates.

1 5 1 2 17 12
C =5 -2 2 and C 1 = 515 17 —4 3
1 2 -8 12 3 =27

The required equation is
2 17 12 || Xy
(i) (X1, X0, X5] | 17 —4 3| Xe| = 0
12 3 —27 || Xs

Note. Most authors give the line equation of a conic whose point equation is (12) as

bu b bz | Xi
[X1, X, X3] b bz bas | X2 | = 0, by = by, 1by| = 0 (18)
bsi bsx bas || Xs

where b;; is the cofactor C;; of ¢i; in C. This is equivalent to replacing C~1 in (17) by adj C,
a natural reduction [see Example 17.1(¢)] in numerical problems.

THE LINE CONIC
Consider in Fig. 17-3 the pencils of points

(@X} +AcX} = 0 (1)
and {dX} +2r{eX} = 0 (2)

on respective lines r and s. The correspondence which associates the point of pencil (1),
determined by a given value of A, with the point of (2’), determined by the same value of A,
is a projectivity. The envelope of joins of corresponding points has the equation

{aX}-{eX} — {dX}-{cX} = 0 (3
which may be written as > biXX; = 0 (5

where bu = aer — dici, bz = by = I(aie2 + aze; — dics — dscy), ete., and in matrix no-
tation as

bll b12 b13 Xl

[X1, X2, Xg]| b21 bas bas || X2 | = 0, by = by (67)
ba1 b bss || Xs
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The dual of Problem 17.1 shows that when the projectivity is, in reality, a perspectivity,
(8”) is the product of two real factors and the locus degenerates into a pair of points, distinet
or coincident. Otherwise, the locus is called a line conic. We leave for the reader to com-
plete the dual of the sections above. Having done so, it will be noted that for each point
conic (12) there corresponds a line conic (18) and, dually, for each line conic there corre-
sponds a point conic. In other words, a point conic (12) together with its tangents and the
corresponding line conic together with its points of contact are identical configurations.
Each pair of identical configurations will be called a non-singular conic or, simply, a conie.
A conic, then, has two equations: (12) in point coordinates and (18) in line coordinates.

POLAR LINES AND POLES. POINT CONICS
Denote by ( the conic whose equation is (2) in point coordinates and take P: (p) an

yJ 0
arbitrary point of the plane. Since C=[¢;] is non-singular, C-| P2 | = |0 and so
Ds 0
D1
> eupi; = [@,@,m] C+| P2 = 0 (19)
Ds

defines a unique line p of the plane. Call this line the polar line of P with respect to (.
We now proceed to show that the polar line as here defined is identical with that defined in
Chapter 9.

First, note that (14) and (19) have the same form; thus when P is on C, (19) is the equa-
tion of the tangent to  at P. Next, let Q: (2) be an arbitrary point on (19); then

2 cabiti = Xeuqp; = 0 (20)

Now the polar line of Q with respect to ( is > ¢iiqix; = 0 and, by (20) P is on this line.
We have proved

Theorem 17.5. 1If Q is on the polar line of P with respect to C, then P is on the polar line
of @ with respect to (.

There follows

Theorem 17.6. As Q varies over the polar line p of P with respect to C, its polar line ¢
with respect to (" varies over the pencil of lines on P.

Call the point P, whose polar line with respect to C is p, the pole of p with respect to (.
Now let » be any line of the plane. It follows from Theorem 17.6 that the pole of p with
respect to ( is uniquely determined as the point of intersection of the polar lines with
respect to C of any two distinet points on p. (Where is the pole if p is tangent to C at P

The points P and Q of Theorem 17.5 are said to be conjugate to one another with respect
to C or to constitute a pair of conjugate points with respect to C. When P is on (, (19)
becomes (74); thus all points @ conjugate to P are on the tangent to C at P. When P is not
on (, its polar line p is either a secant or non-secant of . Suppose p is a secant and that
it meets ( in the points R and S. Now the polar line of R (S) with respect to ( is tangent
to C at R (S) and, by Theorem 17.5, is on P. Thus if P is outside (, the points of contact
of the two tangents to  from P lie on the polar line of P. Finally, if P is inside (, the polar
line of P, i.e., the locus of points conjugate to P, is a non-secant.
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Let P:(p) be any point not on  and p be its polar line with respect to C. If P is
outside (, take Q: (¢) on p such that PQ meets ( in distinct points R and S; if P is inside
take Q: (¢) on p and again denote the intersections of PQ and C as K and S. In either case,
R: (p +Aq) and S: (p + q) where A, u are the roots of (9). Since P and Q are conjugate
points, E ¢;piq; = 0 and so A+ p=0. We have proved

Theorem 17.7. Let P, @ be a pair of conjugate points with respect to C. If one of the points
is on (, the other is on the tangent to ( at that point. If neither of the
points is on ( but the line PQ is a secant meeting ¢ in B and S, then
H(P,Q;R,8).

There follows

Theorem 17.8. The pairs of conjugate points on a secant p of ¢ form an involution whose
double points are the intersections of p and (.

A triangle is said to be self-polar with respect to a conic ( if each vertex and opposite
side are pole and polar line with respect to . Since, then, each vertex is conjugate to the
other two vertices and, dually, each side is conjugate to the other two sides, we have

Theorem 17.9. A triangle is self-polar with respect to a conic provided each two vertices
are conjugate points and each two sides are conjugate lines with respect
to the conic.

POLES AND POLAR LINES, LINE CONICS
Denote by ( the conic whose equation in line coordinates is (18) and take p:[P] an

Py 0
arbitrary line of the plane. Since B = [by] is non-singular, B:| P2 |= | 0| and so
Ps 0
Py
> buPiX; = [X1,X,Xs]-B- Pal = o (199
P;

defines a unique point P of the plane. Call this point the pole of p with respect to C. Also
define:

The poles with respect to ¢ of any two distinet lines on a point P determine a line
p, called the polar line of P with respect to (.

Two lines p and ¢ are said to be conjugate with respect to C provided one is on the
pole of the other,

We leave for the reader to demonstrate the duals of Theorems 17.5-17.9. The dual of
Theorem 17.7 is

Theorem 17.7'. Let p, ¢ be a pair of conjugate lines with respect to C. If one of the lines
is on (, the other is on the point of contact of that line. If neither of the
lines is on ( while two of the lines 7, s of ( are on p- ¢, then H(p, q; 1,8).

From this and the previous section it follows that a fixed conic (: > cyxiz; = 0 or
> b;X:X; = 0 establishes a one-to-one correspondence between the points (%1, %2, ¥3) and
the lines [Xi, X,, Xs] of the plane given by
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X1 Xy &1 X1
p X2 e C . T2 and o L2 — B . X2
X 3 T3 Xs

The correspondence preserves cross ratio (show this) and, hence, is a polar correlation or
polarity (see Chapter 16).

EQUATIONS OF A CONIC
Up to now the conic

C: 2eze, = 0 (12)

under consideration has been assumed in general position with the coordinate system in
the plane. We now obtain the equation of this conic when referred to a triangle of reference
whose vertices and sides are intimately connected with it.

Suppose we take Ai: (a), Aa: (b), As: (¢) on ( as the vertices of a new triangle of reference
and suppose the equation of the conic when referred to the new triangle is

(i) > cyaw) = 0

Since A1:(1,0,0), A2:(0,1,0), A3 (0,0,1) are on (i), ¢/, =cj,=c;,, =0, and the equation
(i) has the form

’ Iop? v Fp? ’ V.Y —
612x1xz + 031w3x1 + C23“;2333 =0 (21)
14 ’ ’
0 ¢, cf Zy
YRRV IYS B 4 0 ¢, |.| x — 7 ep? op?
or [, 25, 2] + | Cor 23 2| = 0, Cly s o # 0
4 4 ’
€1 Ca 0 Zg

If the unit point A4 (1,1,1) is also taken on (21), we have the further condition
cj, +c;, + ¢, =0 on the coeflicients.

Next, let Ai: (a), A2 (D), As: (c) be the vertices of a self-polar triangle with respect to
(12). Let the equation of the conic, when referred to this triangle as reference triangle, be
(if) X eqwx] = 0
Now the polar line of Ai: (1,0, 0) with respect to (ii), ¢}, 2/ + ¢j,x, + ¢, = 0, is =0 so
that ¢}, = ¢, = 0. Similarly, since the polar line of A4,:(0,1,0) is 27 =0, we have ¢}, =0
and, so, the polar line of A,:(0,0,1) is #, =0 as required. Thus the equation of the conic

has the form

s et 2 ’ pr2 ot —
¢+ ewlt+ el = 0 (22)
’ 4
¢, 0 0 x]
4 4
or [, wp,a)-| O € O |2 = 0
4 4
0 0 ¢ 4

where no one of the coefficients is zero and, since the conic is real, not all have the same sign.

By renaming the vertices of the self-polar triangle, if necessary, we can always obtain
(22) with ¢, >0, ¢}, >0, ¢}, <0. The transformation
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Ve, 0 0
(iii) pX” = 0 Vves, 0 X
0
then reduces (22) to @’ + el — 2l = 0 (23)
Thus all (real, proper) conics are projectively equivalent.

The transformation pX” = BX which carries (22) directly into (23) preserves the
triangle of reference but generally associates with it another unit point. (See Chapter 16.)

DEGENERATE CONICS
A degenerate point conic  having as equation

>z = 0, ey = ¢, ey = 0 (24)

consists (see Fig. 17-4) either of two distinct

lines or of one line counted twice. A point S: (s)

is called a singular point of  provided every

line determined by it and any other point Y: (¥) S

on ( is contained in C. Thus, when ( consists

of a pair of distinct lines a,b it has just one

singular point S =a-b; when ( consists of a ()
line a counted twice, every point of a is a singu-

lar point. When S is a singular point and Y is S ..
any other point of the plane, a point (s) + AMy) o)
on SY is also on (¢ provided A is a root [see (9)]
of Fig.17-4

2 Cij(Si + /\yi)(s,- + Ay,-) = z CiiSis; + 2A E CiSiY; + A2 2 ey = 0 (25)

The line SY is contained in ¢ when Y is on (, and so all coefficients in (25) vanish; the line
SY meets ( only in S when Y is not on (, and then 2 cisis; = >eysy; = 0 in (25). Then
2 ci;s®; = 0 when Y is any point of the plane; hence,

2 causi = 0, 2 csi = 0, 2 ¢issi = 0 (26)

Conversely, if S: (s) is a point on ( for which (26) holds, then, for every value of )\, the point
(8) + My) is on . We have proved

Theorem 17.10. The point S: (s) is a singular point of the degenerate conic C: X cy@iw; = 0
if and only if (26) holds.
Suppose (24) consists of the pair of distinet lines
a: @11+ biws Fews = 0 and b @@y + bawz + Cots = 0
on the point S:(s). Let P:(p) be any point of the plane distinet from S; then
(@11 + bipe + €c1ps) (@1 + Dotz + C2%3) + (@2p1 + bapz + C203) (@1 + D12 + 2123)
= 2> eypix; = O (27)
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the polar line of P with respect to C is on S. If P is on (, i.e. if P is on either the line
¢ or b, the polar line of P is that line. In keeping with the case of a non-degenerate conie,
we shall call (27) the tangent line to ¢ at P. If P is not on (, then (27) and

(a17)1 +bip2 + 01103)(&2901 + bare + szs) — (a2p1 + bape + Czpa)(a1x1 + bixe + Clw:’,) =0 (28)
the line PS, separate the lines ¢ and b harmonically.

Two points P and @, neither of which is on ( =a,b, are conjugate with respect to
provided H(a, b; PS,QS) where S=a-b. If, however, P+ S is on (, then Q and P are
conjugate if and only if @ is also on ¢ or on b.

When ( =a,b the polar line of S=a-b is undefined. We may then define the lines
a, b as the tangent lines to ¢ at S. Moreover, since (26) assures , c;;s:%; identically zero
for any triple (x4, %2, x3), every point of the plane is conjugate to S.

A triangle, each two of whose vertices are a pair of conjugate points with respect to (,
is a self-polar triangle of . Every self-polar triangle of ¢ must have S as one of its ver-
tices while the sides joining S to the other two vertices must separate harmonically the
two lines which constitute (.

Dually, a degenerate line conic  having as equation
2 binin - 0, bi,j - bji, lbi,‘| =0 (29)

congsists (see Fig. 17-5) either of two distinet

points or of a point counted twice. A line s: [S]

is a singular line of a line conic if every point

determined by it and any other line on ( be- (a) (b)
longs to . We leave for the reader to complete %

the study of degenerate line conics.

Earlier in this chapter it was found that
a non-degenerate conic has two equations, one
in point coordinates and one in line coordinates. A degenerate point (line) conic, on the
other hand, has no equation in line (point) coordinates.

Fig.17-5

PAIRS OF CONICS

From our experience in the metric plane,
we conclude that two distinct conics inter-
sect in four points, not all of which are
necessarily real. To settle the matter in the
projective plane, let ¢ and (’ be two distinet
point conics of the plane and suppose the
reference triangle and unit point be chosen
so that (see Problem 17.24)

C:a—zz, =0 (30)

while

C: Y cex, =0, ¢, 0 (31) Fig.17-6
The restriction in (81) merely requires that the vertex B:(0,1,0) of the reference triangle
not be a point of intersection of ¢ and (’. Since the side x:=0 of the reference triang.le
is tangent to (, it cannot be on any of the intersections of the two conics. Hence there will
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be no loss in intersections if we take x5+ 0 in (30) and solve to obtain z, = z}/x,. Sub-
stituting this value for z» in (31), we obtain

cs, 1t + 20,70 + (¢} +2¢i)r* + 2e,r +¢;, = 0 (32)

where, for convenience, we have written zi/xs=r. Now (32) has four roots 71,7, 73, 74;
hence ( and ( have four points of intersection: (r,7%1), (r,,7%1), (1, 7%1), (r, 75 1).

We now restrict attention exclusively to pairs of conics for which (32) has four real
roots. Consider, first, the case in which the four roots are distinct. Then [see Fig. 17-7(a)]
C and (” intersect in the distinct points P, @, R,S. Denote by p the tangent line to C and
by p’ the tangent line to ( at their intersection P. Since there is just one conic on four
general points and tangent to a given line at one of them, the lines p and p’ are distinct.
Call any point of intersection of two distinct conics simple if the tangent lines to the
conics at the point are distinct. Thus if two conics have four distinet points of inter-
section, each is simple.

(@) (®) (¢)

P=Q=R=S
(@) ()
Fig.17-7

Suppose next that the roots of (82) are 7,71, 73,75 so that the two conics intersect in
three distinct points, one of which is counted twice. Think of the conic C of Fig. 17-7(a)
held fixed while (’ varies so that three of the intersections P,Q,R with  remain fixed
while the fourth S approaches P as a limit. Since S approaches P along both conics, the
limit of PS is the tangent line to both at P. The conics [see Fig. 17-7(b)] have two-point
contact at P while Q and R are simple points of intersection.

When the roots of (32) are 71, 71, 73, 72, the conics have two-point contact at both P and
Q =R as in Fig. 17-7(c).

Next, suppose that the roots of (22) are r1,71,71,72. Keep C in Fig. 17-7(b) fixed and
vary (7 so that, while remaining on @ and maintaining two-point contact at P, the inter-
section R approaches P as a limit. Then Q remains a simple point of intersection [see
Fig. 17-7(d)] while the conics have three-point contact at P.

Finally, when the roots of (32) are ri, r1, 71, 71, the four intersections of ¢ and (’ coincide
[see Fig. 17-7(¢)] and the conics have four-point contact at P.
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The dual of the above paragraphs will again be left largely for the reader. Two sides
b, ¢ of the reference triangle and the unit line are chosen among the lines of (, with b
not also a line of (/, and the remaining side of the reference triangle is the line joining
the points of contact of b and ¢. Restricting attention exclusively to pairs of conics for
which (82’) has only real roots, we obtain the five cases illustrated in Fig. 17-8 (a), (b), (¢), (d), (e}.
In Fig. 17-8(a), the two conics have p,q,r,s as simple common lines; in Fig. 17-8(b), the
conies have two-line contact on » and have ¢ and r as simple common lines; ete.

N\
o

(a) (b) (e)

(d) ) (e)
Fig. 17-8

QUADRANGULAR PENCIL OF CONICS

.In Chapter 11 a quadrangular pencil of point conics was defined to be the set of all
conics (proper or degenerate) on four distinct points, no three of which are collinear.
Denote these points as P, Q, R, S and let

C: ez, =0, e #0 and ¢ Yejaw, =0, |ef #0

LV ] vl

be two distinct conics on them. We show that the totality of conics (including degenerate
conics) represented by

2w, + A Xema, = (e, Az, = 0, (33)

when ) varies over the extended real number system, is a quadrangular pencil. First, note
that every locus given by (23) is on the four points. Conversely, let (” be a conic (proper
or degenerate) on the base points P, Q, R, S and let 7 (¢) be any fifth point on 7. Now

2 Cl] i 2 c‘!.] i J E C’U 173 zcl] i = 0 (34)

is a conic on the five points and, since a unique conic is determined by these points, must be
C”. Finally, C” is a member of the pencil (33), obtained when
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A= —Xett ] Yeltt

Clearly, the pairs of lines PQ, RS; PR,QS; PS,QR are three degenerate conics of the
pencil. The degenerate conics of this pencil are given by those values and only those
values of A for which

|[C+xC| = [leg] +alef]] = 0

Thus there can be no more than three degenerate conics. The existence of three distinet
degenerate conics implies that the roots of |[C+AC’| =0 are real and distinct. That the
roots are always real may be verified analytically by considering |C+AC’| instead of
|A — M| and repeating the argument made on page 239 of the Appendix.

In (33) it was assumed that ¢ and (’ were proper conics on the four points. In Problem
17.10 we show that any two distinct conics (proper or degenerate) may be used to define
this pencil. The use of degenerate conics yields a simple procedure for obtaining an equa-
tion of the conic on five general points.

Example 17.2.
Find the equation of the conic on P:(1,0,-1), @:(1,0,1), R:(1,2,1), S: (1,2,—1), T: (1, 3, 0).

First, we write an equation of the pencil on P,Q,R,S. Two of the degenerate conics are (' = PQ,RS
and (" = PR,QS. Then

C: 220y —29) = 0, (7 (@g— g+ )@y —wy—%3) = 0
and (i) C' + A" 20,3y — 2%+ M@+ 25— 25— 2a,%) = O
is an equation of the pencil.

Substituting in (i) the coordinates of T, we find the required conie, given by A = 3/4, has as equation
822 — x2 — 83+ 2x,%, = 0. (Compare with Problem 17.14.)

Dually, let C: 3, b, X, X, =0 and (" > b;X,X,=0 be two line conics [see Fig. 17-8(a)]
having in common four distinct lines p: [P], ¢: [@], : [R], s: [S] and consider the pencil
2 XX, + 22D XX, = 0 (35)

The degenerate conics of the pencil consist of the pairs of opposite vertices of the complete
quadrilateral pgrs. It is easily shown that the equation of the pencil (35) may be replaced by

DX X, + A2 XX, = 0

where X b/X.X, = 0 and 2 b X, X, = 0 are any two of the degenerate conics.

PENCILS OF CONICS
Let ¢: Se.xx, =0 and (: 2 ¢/x,x, = 0 be two distinct (proper) conics whose points

YR ity
of intersection are all real, and consider the pencil

> v, + A cimx, = 0 (86)
We will be concerned here with those cases which arise when the points of intersection
of C and (’ are not distinct.

First, suppose ( and ¢’ have two-point contact at P and simple intersections at the dis-
tinct points @ and R. Denote the tangent to ¢ at P by p. Then p is tangent to both ¢ and
¢’ and, hence, to every conic of the pencil at P. The degenerate conics of this pencil are
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C” =0QR: XY clwe, =0 and (7 = PQ,PR: X c/x,x, = 0, the latter counted twice.

ol

The pencil may then be defined by
Ycjuw, + Ay ax, = 0
We have
Theorem 17.11. There is a unique conic having two-point contact with a given conic ( at
a given point P, simple intersections at two other points, and on any given

point T, neither on ( nor on its tangent at P.
See Problem 17.12.

Next, suppose that ¢ and (¢’ have two-point contact at P and also at @ +# P, the com-
mon tangents being p and ¢ respectively. The pencil determined by C and (’ contains two
distinct degenerate conics (” =p,q and (= PQ, PQ, the latter counted twice. Hence,

Theorem 17.12. There is a unique conic having two-point contact with a given conic ( at
the distinet points P and @, and on any other point T, neither on (" nor on
its tangents at P and Q.

When ( and (’ have three-point contact at P and a simple intersection at €, the pencil
of conics determined by these conies has just one degenerate conic

144 — . r? P
c’ = »9,PQ Y cea, = 0
counted three times. Suppose
’ — ’7, .
Yeixx, + adcma, = X cmm;
’ — ’” _
then i, = elTE, — oY C .,

and we have

Theorem 17.13. There is a unique conic (¢’ having three-point contact with a given conic
at P, a simple intersection at @ = P, and on any other point 7, neither on
C nor on its tangent p at P. This conic is a member of the pencil deter-
mined by  and the degenerate conic (" = p, PQ.

We leave for the reader to prove

Theorem 17.14. There is a unique conic (’ having four-point contact with a given conic (
at P and on any point, neither on ( nor its tangent p at P. This conic is a
member of the pencil determined by ( and the degenerate conic (” = p,p.

See Problem 17.18.

Solved Problems

17.1. Obtain the locus generated by the perspective pencils of lines (1) and (2) of page 198.

Since the two pencils are perspective, the line RS joining their centers is self-corresponding.
Assume this line to be given by A = 0; then {Axz} = {Dx} and equation (3) becomes

{Ax}« [{Ex} —{Bx}] = 0
The locus consists of the line of centers {Ax} = 0 and the axis of perspectivity {Exz}— {Bx} =0.
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17.2.

173.

17.4.

17.5.

THE CONIC [CHAP. 17

For the (non-perspective) projective pencils of lines (1) and (2), page 198, show that
the correspondent in pencil (2) of the line RS of pencil (Z) is tangent to the conic
(8) at S.

Generally, a line of either pencil meets the conic (8), page 198, in distinct points — the center of
the pencil, B or S, and the point of intersection T with its correspondent in the other pencil. Consider
the line p; = RS with equation {Ax}+ \;{Bx} =0 and its correspondent ¢, in pencil (2) with
equation {Da}+ M\{F«} =0. Now T =p,°¢; =8 and so ¢ is tangent to (3) at S.

Similarly, the tangent to (3) at R is the correspondent of RS considered as a line of the pencil (2).

Obtain the equations of the tangents, if any, to the conic of Example 17.1, page 201,
on the point P: (—29, 1, 24).

The polar line p of P is

[wg, 00, 25]| 5 —2 2 1| = =99, — 9923 = 0 or 29+ 23 = 0
1 2 -3 24
We may use either of two procedures: (i) Select two distinet points as (0,1,-1), (1,1,-1) on »

and proceed as in Example 17.1(¢) or (ii) Eliminate x; between the equations of p and the conic.
Using (ii), we obtain

x} — 2u% — 3uw) + 10w,%5 — 2wywy — 432 = o} + 8wywy — 92 = (2, + 9wo)(wy — ) = 0

Then (9, —1,1) and (1,1, —1) are the points of intersection of p and the conic. At (9,—1,1) the equa-
tion of the tangent is

[y, %5,25)] 5 —2 2 || -1 | = 0 or bxy + 492, + 4wy = 0

At (1,1,—1) the equation of the tangent is 5xy + 5 + 623 = 0.

Prove: If the four tangents to ¢ drawn from the points P: (p) and Q: () are distinct,
then P, Q and the four points of contact of the tangents are on a conie (.

Let (¥ ¢;o;2; = 0; then two of the points of contact are on ) c;p;%; =0 and the other two
areon 3 e;q;%; = 0. Now

C'I Eci,-x,-xj . ECijpiqj - 2 CiiPi%; ° Ecijqio:j - 0

is on each of the six points.

Prove: If a triangle is inscribed in a conic (, any line conjugate to one of the sides
meets the other two sides in a pair of conjugate points. (See Problem 9.6, page 98.)

Take the inscribed triangle to be the reference triangle ABC with A:(1,0,0), B: (0,1, 0), C: (0,0, 1);
then ( has equation of the form (21). Consider the side ¢ = AB: 23 = 0. The polar line of A has

equation e9;%5+ €323 =0 and the polar line of B has equation e¢;9%; + €323 = 0; hence the pole
of ¢ is C": (g3, €13, —¢19). Take P:(1,p,0) on ¢; then

C'P: peigwy — o9y + (peaz— €1g)g = 0
is conjugate to c.
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17.6.

17.7.

The intersections of C'P with a: 2, =0 and b: 2, =0 are respectively @Q: (0, peos — €13, ¢12)
and R: (pcys — ¢43, 0, —peys). The polar line of @ with respect to ¢ has equation

0 C1a Ci3 0
[Z1, 25,25 *| €a1 0 Cag {* PCag— Cy3 = 0 or PCyo%y + C1a%y T+ (PCag— Cyglz = 0
e C3 0 Ci2

and is clearly on B. Thus, Q and B are conjugate with respect to { as required.

Prove: The six vertices of two self-polar triangles with respect to a conic  are on
another conic (’.

Take the reference triangle ABC as one of the two triangles; then (: ¢y + ¢2) + 63922 = 0.
Let P:(p), Q:(q), R: (r) be the vertices of the second triangle. (The reader will show that the pro-
posed theorem collapses if any coordinate of P, @, R is zero.)

Now the polar line of P, ¢;;01®; + CoaPa®s + C33ps3 = 0, is on @ and R provided
() 119191 T C29P202 T €33P3¢3 = 0
@ii) C11P171 + CopPoly + Cgap3Ty = 0
Thus PQR is a self polar triangle with respect to  provided (i), (i} and
(iii) e11qa7y T G202 T C35q513 = O

hold. = These equations imply
Ur1 QT2 373

Py Pere D3T3 = 0
191 DP2q2 Ps3d3

or dividing the first column by pyg.7y, the second by psgsrs, and the third by pzqsrs,

11 1
P1 P2 D3
1

(iv) 1 L1 =y
g: d2 43
11
r Tz 73

In turn (iv) insures the existence of constants a, b, ¢ not all zero, such that
1 1 1

a9 — — — =

—_— = = a 0
Py P2 Ds
1
") L LLIhy = |o
q1 92 43
111 c 0
LTt o T3 3 L _| L

Clearly, (': axyxg+ bagxy + cxy2y = 0 is the required conic since by (v) it is on P, Q, R and by (21),
page 205, it is on A, B, C.

Prove: If two pairs of opposite vertices of a complete quadrilateral are pairs of con-
jugate points with respect to a conic (, then the third pair is also a conjugate pair.

Let the sides of the quadrilateral be @:{1,0,0], 5:[0,1,0],¢:[0,0,1],e:[1,1,1] and
c: > ci%i; = 0. Suppose C=a*5:(0,0,1), F=c¢+e:(1,—1,0) are a pair of conjugate points
with respect to C; then F on the polar line of C requires c¢y3 = €35. Similarly, if B =¢+a:(0,1,0)
and E =bve: (1,0,—1) are a pair of conjugate points, then ¢y, = c3. Now the polar line of
A=0b+¢:(1,0,0) is ¢4+ coy(xa+x3) =0 and is on D =a+e:(0,1,—1) and so A and D are
conjugates, as required.
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17.8.

17.9.

17.10.

17.11.
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Prove: If Q,S are two points on a conic ( and A, C are a pair of conjugate points on
any line conjugate to QS with regard to (, then AQ-CS and AS:CQ are on (. (See
Problems 9.26 and 17.24.)

Take (: xf = wow3 with @:(0,1,0), S:(0,0,1), E:(1,1,1) on ¢ and R:(1,0,0) the pole of QS.
Any line as riay—axy =0 on B is conjugate to QS. Take C:(b,a,1) on r; its polar line
2bxy — ¥y — @xz3 = 0 meets r in A:(a, ab, b).

Then AQ: bxy; — awg = 0 and CS: awy — by = 0 intersect in U: (ab, a2, b2) while AS: bx; —x; = 0
and CQ: xy— bxg = 0 intersect in V:(b,2,1). Clearly, U and V are on (.

Prove: If a point moves on a given line, its polar lines with respect to two given
conics intersect on a third conie.

Let the given line be determined by the points P:(p) and @:(g) and let Eaijwixj =0 and
> bj;z;x; = 0 be the given conics. The polar line of the point (p+\g) with respect to the given

conics are X a;p;%; + A Da;q%; = 0 and 2 by;pw; + A 2 by;q;0; = 0 respectively. Eliminating
A, we have

Eaijpixj . Ebij(hmj — Ea’ijQixj * Ebijpixj = 0

as the equation of the third conie.

Show that the quadrangular pencil (33), page 209, is given by

e, +Aayceax, = 0
where X e, =0 and Y ¢zx, =0 are any two distinet conics (proper or
degenerate) on the base points.

Suppose Ecl’]’xlx] = 0 and Ec{;’xixj = 0 are given by (33) when A =2X; and M=2y5# X\
respectively. Consider

(i) Scffxm; + Al mw;
= (Deymem; + M DBepmay) + Moo + re ejuiay)

or (ii) 2 cij ©; W] + F 3 E C:J &3 mJ = 0

A1+ A . Lo
i when A# —1 and pu= o when A= —1. Since (1+A)g =X +A\; is linear

in both A and g, it follows that (ii) and (88) are equations of the same pencil.

where p =

Find the equation of the conic on the points @Q:¢1,0,1), R:(1,1,0), 7:(1,1,1) and
tangent to p: x1 +x2+ @3 =0 at P:(—1,0,1).

In the pencil of conics on @, R and tangent to p at P, there are two degenerate conics — p, QR
and PQ, PR. An equation of the pencil is then

(xl + X9 + 7/'3)(%1 — %9 — oc3) + )\xz(wl — Xy + 963) = 0
The equation of the conic of the pencil on T, given by N =3, is

%% — 4ol — af + 8x,%y + @pwy = 0
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17.12.

17.13.

17.14.

17.15.

17.16,

17.17,

17.18.

Find the equation of the conic having two-point contact with (: 2%+ 22 — 422 — 22125 +
3zixs = 0 at P:(1,1,0), simple intersections with  at @:(1,0,1) and R:(1,2,1), and
on T:(1,1,2).

The tangent to ¢ at P is p: 3 = 0. The required conic is a member of the pencil having

C" =p,QR: z3(x; —xg) and (" = PQ,PR: (xy — x5 — %3)(x; — %3+ *;) as degenerate conics. The
pencil is given by

2g(®y — ®g) T Moy — 2y —®g){y — a2+ xg) = 0
and the equation of the required conic, given when N = —4, is
©2 + ol + xf — 222y — 2wy5 = O

Find the equation of the conic on T:(0,1,0) and having four-point contact with
C: 2+ 25— 23+ 22102 + 2225 = 0 at P:(1,0,1).

The tangent to  at P is p: ®; + 205 — x5 = 0. Each conic of the pencil, having four-point con-
tact with C at P, has p as tangent at P. The only degenerate conic of this pencil is the line p
counted twice. An equation of the pencil is then

a2 + xf — @i + 2w4wq + 200p@3 + Mawy + 205 — )2 = 0
The equation of the required conic, obtained when A = —1, is

822 — buZ + dwjwy + 2aq; + 120505 = 0

Supplementary Problems
Find the equation of the coniec  on the points RE:(1,0,—1), S:(1,0,1), T:(1,2,1), U:(1,2,-1),
V:(1,8,0).
Hint. Take R and S as the centers of the projective pencils

{Az} +{Bx} = 0 and {Dz}+r{Ex} = 0

by which (C is generated. Let the points T,U,V be given when \ = «,0,1 respectively. Now
RU: 2y +23=0, RT: 2¢y—ap+23=0 and RV:3z;—x,+ 8253 =0, hence, {Ax} =2x;+20;=20
and {Bz} =2y — 2y + %3 = 0. Similarly, {Dz} =% — 23— 23 =0 and {Fz} =2z, —2x3=0.
Ans. 8u}+ 2wywy — %2 — 8a3 =

Find the equation of the conic tangent at S:(0,8,1) to x5— 823 =0 and on the points R:(1,2,1),
T:(—1,2,1), U:(2,0,1).

Hint. Choose representations {Az} = 0 and {Bx} = 0 of RU and RT so that RS: {Ax}+ {Bx} =0,
and representations {Dx} =0 and {Fz} =0 of SU and ST so that {Dzx}+ {Ex} = 25— 813 = 0.

Amns. 6x? — o3+ 1lwgwy — 2423 = 0

Find the equation of the conic on the lines 7 [0,1,1}, s:{1,0,1], £:[1,1,1], »: [1,1, 0], v: [2, 6, 5].
Ans. 8X34+ X2 —4X3—4X X, + X, X3+ 8X,X5=0

Find the equation of the conic tangent to 2%, +ay,+23=0 at (—1,1,1), tangent to
2 — Xy — 203 = 0 at (1,0,1), and tangent to xy +2x3 = 0.

Ans. 5X2—38X,X,+ 24X, X, + 108X5 — 146X,X; + 46X; = 0

Show that 10x; — x,+ 8x3 = 0 is tangent to the conic of Example 17.1, page 201, first by eliminating
x5 between the equation of the line and (i) and second by showing that it is a line of (ii).
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17.19.

17.20.

17.21.

17.22.

17.23,

17.24,

17.25.

17.26,

17.27.

17.28.

17.29.

17.30.

THE CONIC [CHAP. 17

Find the intersections, if any, of the coniec

1 3 2[e
[Wl, o, x3] <13 -1 1 e} 29 = 0
2 1 3 3

and the line joining the points
(a/) (2: 1: 0) and (L 2; 1-), (b) (0: 3’ 2) and (4, 1; _4), (C) (2) 1: 0) and (1’ _11 —1)
Ans. (a') (3: 0, _1): (1’ —4, _3)’ (b) (2; -1, —3)

(a) Write the equation of the conic of Problem 17.19 in line coordinates.
(6) Obtain the lines of this conic on the point (2, —1,2).
Hint. An arbitrary line on (2, —1, 2) has equation ax; + 2(a+ c)z, + cxs = 0.
4 17 b || X
Ans. (@) [Xp XX, 7 1 -5 (| Xy = 0 (b) 2y —2xy— 223 =0, x; + 8wy + 823 =0
—5 -5 10 || X;

Find the equation of the conic, five of whose lines are: p:[1,0,—1], ¢:[1,2,1], 7:[1,2,—1], s:[1,0,1],
t:[1,1,2]. Ans. X2 —38X:—X:46X,X, =0

(¢) Show that P: (p) is outside the conic %2+ x5 —3 =0 provided p}-+pi—n;>0.
() Show that if P:(p) is inside the conic of (a), every line on P meets the conic in two distinet points.

Show that every self-polar triangle with respect to a conie has just one vertex inside the conie.

Show that the equation of any conic ( may be reduced to 2 — 2,25 = 0.
Hint. Take as reference triangle A;A,A, with A,:(0,1,0), A5:(0,0,1) on ¢ and A, the pole of
AyAg; also take E:(1,1,1) on (.

Obtain the equation of a conic inscribed in the reference triangle.

Hint. If #, =0 is tangent to 3 c;%;2; =0, then 33 = c5* s
Ans. Cllx% + 622503 -+ 03337% + 2 V €11 ° Cog £1%9 + 2 V C33° €11 3%y + 2 Y Cgg ° €33 ¥9%3 — 0

Let P be a point not on (, p its polar line with respect to , and @ an arbitrary point on . Show
that p« PQ and p * ¢, where ¢ is the tangent to  at @, are conjugate points,

Let 4, B, P be distinct points on a conic. Show that PA and PB are separated harmonically by p,
the tangent at P, and the join of P and the pole of AB.

Let A and B be conjugate points with respect to (. On A take a line » meeting C in P and Q. Let
BP and BQ meet (" again in R and S respectively. Show that 4, R, S are collinear.

Prove: If a complete quadrangle is inscribed in a conie C, its diagonal triangle is self-polar with
respect to (.
Hint. Take the vertices of the quadrangle as the vertices of the reference triangle and the unit point.

() Show that the triangle with vertices 4:(1,0,1), B:(1,—1,0), C:(1,1,—1) is self-polar with re-

spect to the conic
C: 4x% + 16w + Tws — 16w 2y — 2wg%; + 222025 = 0

(b) Obtain the equation of ( as 9w'12+ 36x§2—9x§2= 0 when referred to the self-polar triangle
as triangle of reference.

1 1 1
Hint. Use X =|0 -1 1 |X = A-1X’,
1 0 -1

(c) Obtain X’ = AX and verify that it renames the self-polar triangle as reference triangle.
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17.31,

17.32.

17.33.

17.34.

17.35.

17.36.

17.37.

17.38.

17.39.

17.40.

1/3 0 0
(@) Introduce in (b) the transformation X' = | 0 1/6 0 |X” = B-1X” and verify that
0 0 1/3

) 2 2 2 -
X =A"1B"1X" yields =y +x) —=2{ =0 as the equation of (.

(¢) Show that X" = BAX preserves the triangle of reference and associates with it the unit
point E: (5,1, 0).

(z) Show that the triangle whose vertices are A:(1,—1,0), B: (7,—8,—4), C: (1,8,4) is inscribed in
the conic
C: #5 + o2 — 4a2 + 2my%, + dogwg = 0

(b) Show that the equation of ( is «fw)— xjw]+ 4whwi =0 when referred to this triangle as
triangle of reference.

(¢) Show that the transformation: «) = 4ay, x5 =y, x5 = x] reduces the equation of (C to
x£/xél — mélwil + xéfxll e

(d) -Obtain the equation of transformation X" = AX which effects the reduction; show that the
unit point associated with triangle ABC is E: (8,—1,0).

Show that there is just one conic on the points (1,0,0), (0,1,0),(0,0,1) and tangent to
axy +bry—(a+b)xg =0 at (1,1,1).

Prove: If PQR is not self-polar with respect to (, the polar lines of its vertices meet the opposite
sides in collinear points.

If the vertices of one triangle are the poles with respect to ( of the sides of another triangle, show
that the vertices of the second triangle are the poles of the sides of the first, Call either triangle
the polar triangle of the other. What is the polar triangle of an inscribed triangle of (?

Show that polar triangles are perspective, the center and axis of perspectivity being pole and
polar line.

C and F are conjugate points with respect to a conic , and D is a point on . If DC and DF
meet the conic again in F and G respectively, show (¢) CE and F'G are conjugate lines with respect
to ¢, (b) CG and EF meet on (.

Hint. Take the reference triangle ABC as in Problem 17.5, page 212, and D:(1,1,1) on {. Then
E:(1,®,0) on AB is conjugate to C.

Prove the theorem of Problem 17.5, page 212, taking the inscribed triangle as ABD, where A:(1,0,0),
B:(0,1,0), D: (1,1,1), and C:(0,0,1) as the pole of the side AB,

Let the distinet points Y: (y) and Z: (2) be distinct from the base points of the pencil of conics (33),

page 209. Prove:

(a) The polar lines of ¥ with respect to the conics of (32) constitute a pencil of lines.

() The center of the pencil of lines and Y are a conjugate pair with respect to every conic of
the pencil.

(¢) The poles of the line YZ with respect to the conics of (33) are on

Ecijyixj . Ecijzlx] - Ec”zlﬂb‘:’ * EC{inxj = 0

Prove: The diagonal triangle of the complete quadrangle PQRS is a self-polar triangle of every
conic of the quadrangular pencil defined by P, Q, R, S.
Hint. Take as vertices of the quadrangle (1, +1,*1) and (1, *1,=1).

Prove: Any conic ( circumscribing the quadrangle PQRS of Problem 17.39 and any conic inscribed
in the quadrilateral pgrs, where p,q,r,s are the tangents to C at P,Q,R,S respectively, have a
common self-polar triangle.
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17.41.

17.42.

17.43.

17.44.

17.45.

17.46.

17.47.

17.48.

17.49.

17.50.

17.51.

17.52.

17.53.

17.54.
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Prove: Of the conics of a quadrangular pencil, those which meet a given line p, not on a vertex,
do so in reciprocal pairs of the involution on p determined by its intersections with pairs of opposite
sides of the quadrangle.

When will the involution of Problem 17.41 be hyperbolic? elliptic?

Let Y: (y) be a point from which two tangents can be drawn to (: Ecijwiwj = 0. Show that the

equations of these tangents are given by Z ey * ez — (E cijyixj)z = 0.

Find the equation of the conic tangent to @ —w%;+23 =0 at P:(1,2,1), tangent to 2+ 23— 23 =90
at R:(1,0,1), and on T:(1,1,—1). Ans. To?— dxl— x2— 61125 + 8waw3 = 0

Tind the equation of the conic on T:(1,—1,1) and having two-point contact with
©? + ol + 8] — 2wymy — dwgwy T 6wgws = 0

at P:(1,1,0) and at R: (1,0,1). Ans. 223+ 22+ 322 — du; 2y — brgwy + 62573 = 0

Find the equation of the conic having three-point contact with x% - 2x§ + @y — Ta®; — Towg atb
P:(1,0,1) and on the points @: (1,1,0) and T:(1,0,0).

Ans. 223+ a2 — 2wy — waw; + 2023 = 0

Prove: If ¢ and (' are distinct conies on four distinet points and Y is any point of the plane, then
the polar lines of Y, with respect to the conics of the pencils determined by ( and (', (@) are
identical when Y is a singular point of a degenerate conic of the pencil, (b) constitute a pencil of
lines otherwise.

Identify the center of the pencil in (b). (There are two cases to be considered.)

Prove: The conies of a quadrangular pencil have a unique common self-polar triangle.

Prove: If C and (' are distinet conics having two-point contact at the distinet points P and R, the
conics of the pencil determined by them have an infinite number of common self-polar triangles.

Hint. Begin with A = p-r, the intersection of the common tangents at P and E.
State and prove the duals of Problems 17.47-17.49.

Call Y’ conjugate to Y with respect to a pencil of conics provided Y’ is conjugate to Y with respect
to every conic of the pencil. For a quadrangular pencil show (a) the points not on the common self-
polar triangle are conjugate in pairs, (b) each point on a side of the self-polar triangle is conjugate
to the opposite vertex, (¢) a vertex is conjugate to every point on the opposite side except the vertices
on that side.

Prove Pascal’s Theorem: If a simple hexagon A;A,A34,A5Aq is inscribed in a conie, the intersec-
tions R =AAg*Asds, S=AyA3°As4¢ T = AzA e+ AgA, of the three pairs of opposite sides
are collinear.

Hint. Let the tangents to (: S c;%i%; =0 at A; and Ap meet at B. Take A;:(1,90,0), 45 (0,1,0),
B:(0,0,1) and Ag (1,1,1); then (: aZ = x2y. Take Ag(1,02,0), A5 (1,02,b) and A (1, e, ¢).

Prove Pascal’s Theorem taking three of the vertices of the hexagon as vertices of the reference
triangle and (ay, @3, ¢3), (by, by, bg), (€1, €2, ¢;) as the remaining vertices.

Using the conic and inscribed hexagon of Problem 17.52, show that the Brianchon point of the cir-
cumscribed hexagon whose sides are the tangents aj, as, @3, 44, @5 G5 to C at Ay, As Ag Ay As Ag
respectively is the pole of the Pascal line RST.



Chapter 18

Projective, Affine and Euclidean Geometry

THE PROJECTIVE GROUP

The set ¢ of all non-singular n-square matrices is said to form a group with respect to
multiplication since, when A, B, C are any matrices in q,

(i) AB and BA are in G, (the closure property)
(ii) A(BC) = (AB)C, (the associative law)
(iii) there exists a matrix I (the identity) in G such that IA = Al = A,
(iv) for each matrix A in G there exists a matrix A (the inverse of A) in G such that
AA1=A"1A=1.
A group G is called commutative or Abelian if the further property
(v) AB =BA forevery A,Bin ¢ (the commutative law)

holds. The group G of non-singular n-square matrices is non-Abelian.

When expressed in homogeneous coordinates a projective transformation of a line onto
-itself is essentially a non-singular 2-square matrix and a projective transformation of the
plane onto itself is essentially a non-singular 3-square matrix. Interpreting the product of
two matrices as the resultant of one transformation followed by another (see Problem 16.43),
we have

Theorem 18.1. The set of all projective transformations of a line onto itself forms a non-
Abelian group.
and
Theorem 18.2. The set of all projective transformations (collineations) of the form
pX’ = EX, [E| # 0 (1)

of the plane onto itself forms a non-Abelian group, called the general pro-
jective group T.

The content of projective geometry on a line consists of those properties of sets of points
which remain unchanged (invariant) under the group of Theorem 18.1. The content of plane
projective geometry consists of those properties of configurations in the plane which re-
main unchanged under the group 7 of Theorem 18.2. It will be noted that the study of
projective geometry on a line may be made without considering the plane or may be ob-
tained as a byproduct of a study of all collineations of the plane having the line as
double line.

SUBGROUPS OF THE PROJECTIVE GROUP

Any non-empty subset G’ of the elements of a group G, which in itself satisfies the
properties of a group, is called a subgroup of G. For example, the subset consisting of all
matrices of G of determinant =1 form a subgroup of G. In turn, this subgroup (and hence

219
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the group G) has a subgroup consisting of all matrices of G of determinant +1. The essen-
tial conditions that a subset G’ of G be a subgroup are: (i) G’ contain the inverse of each of
its elements, (ii) G’ contain AB for every pair A, B of G’. Thus the subset of all matrices
of G of determinant —1 is not a subgroup. An exhaustive study of the subgroups of T
will not be attempted here. Certain subgroups of interest in later sections will be con-
sidered next.

Select in the plane any line ! and choose a coordinate system having this line as the
side zz =0 of the reference triangle. A collineation of the form

px1 = end: + ez + €13¥s
€11 €12

pZh = en¥1+ exn¥s + ewts, |B] = es #= 0 (2)

€21 €22
pxé = €3323

has z3=0 as a double (fixed) line. We leave for the reader to verify that the set of all
collineation of the form (2) constitutes a subgroup 7. of T.
Consider an element of T, having the form

prI = eut: + €13%s
pith = €1z + €233, €€ 7~ 0 )
prs = €333

Now (3) induces on x: =0 the identity transformation (show that (1,0,0), (0,1,0) and
(1,1, 0) are fixed points) and hence has ;=0 as a line of double points. Moreover, the
subset of all elements of T, having the form (3) constitute a subgroup of T, (verify this)
and, hence, of 7. This subgroup consists of homologies (when eu # es;s) and elations
(when e11 = ess).

AFFINE GEOMETRY

In Chapter 13 the affine plane was obtained either by singling out a line ! of the pro-
jective plane to be endowed with special properties and called the ideal line or by removing
this line from the projective plane. Taking ! to be the side z3=0 of a triangle of ref-
erence, it follows that the collineations of the form (2) may be interpreted as those leaving
the ideal line unchanged or as those carrying the affine plane (the totality of points (21, 22, %)
with 23 += 0) onto itself.

In homogeneous coordinates each point of the affine plane may be given with coordinates
of the form (%1, %2, 1); in non-homogeneous coordinates each point may be given as (21, 22)
or, by a change of notation, as (z,%). In homogeneous coordinates, (2) may be replaced by

X1 = Q1181 + A2 + A3
a1y Qi

Xz = G211 + Q22% + C2sds Al = # 0 (2a)

Qa1 o2
T3 = rs3

where each coefficient in (2a) is the corresponding coefficient in (2) divided by ess = 0, and
in non-homogeneous coordinates by

2 = au® + dy + Qs Q11 Qg

= 0
Aa1 Qa2

r
Y = Q% + QY + do2s

The content of plane affine geometry consists of the properties of configurations in the
affine plane which are unchanged under the group of affine transformations (2a).
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COORDINATE SYSTEM

In passing from the projective plane to the affine plane, a triangle of reference (of the
projective plane) may be made to lose the side 23 =10. The remaining sides z: = 0 and
z1 = 0 are then taken as coordinate axes — 2z = 0, along which x, varies, as the z: axis (in
non-homogeneous coordinates the « azis) and z; = 0, along which z. varies as the . azis
(in non-homogeneous coordinates the y axis). The point of intersection (0,0,1) or (0,0) of
the axes is called the origin. The ideal points on the z and y axes are (1,0, 0) and (0,1, 0)
respectively.

(0,0,1) (21, 0,1) =0 (1,0,0)
(0,0) (z, 0)

Fig.18-1

In what is to follow, non-homogeneous coordinates will be used whenever more con-
venient. Homogeneous coordinates are necessary, however, in order to give an affine inter-
pretation of a projective theorem. In such instances, the particular set of affine coordinates
for which 23 =1 will be used.

THE AFFINE TRANSFORMATIONS

The affine transformations (2a) carry points into points and lines into lines; they also
preserve collinearity and concurrency. Two affine lines are called parallel provided they
do not intersect (their meet is on the ideal line). Since the affine transformations leave the
ideal line unchanged, they carry parallel affine lines into parallel affine lines; thus the
affine transformations preserve parallelism.

Consider next the distinct points P:p, @:q, R:r and S:s on a projective line. Since
(see Chapter 16), the cross ratio (P,Q; R, S) is unchanged under a projective transforma-
tion, the same is then true under an affine transformation when these points are affine
points. Suppose P, Q, R are affine points but S =P, is the ideal point on the line I. A
general affine transformation carries these points into P/, Q’,R’,P) respectively on a

line I". Now
(P,QR,P) = =0 = (P,Q;R.P)

Hence the ratio of the segments into which R divides the segment PQ is an affine invariant.
Finally, let A:(ai,az, 1), B:(by, bs, 1), C: (¢, ¢2,1) be three non-collinear points of the
ar az 1
affine plane and define the measure . of the triangle ABC as p = {b1 by 1]. (The
¢t ¢ 1

reader will recognize this as twice the area, apart from possibly the sign, of the triangle
in terms of a unit square. He will also recall that the sign of the measure depends upon



222 PROJECTIVE, AFFINE AND EUCLIDEAN GEOMETRY [CHAP. 18

the order in which the coordinates of the vertices are set down in the determinant, that is,
by the sense in which the triangle is traversed.) As unit of measure, we take [see Fig.
18.2(a)] the triangle OHJ with vertices 0:(0,0,1), H:(1,0,1),J:(0,1,1) and measure

0O 0 1
1 0 1| = +1. Note that as we move around the triangle OHJ — from O to H to J and
0 1 1

back to O — the triangle, considered as a portion of the plane bounded by straight line seg-
ments, lies always on our left. The triangle ABC of Fig. 18-2(b) has positive measure while
the triangle A’B’C’ of Fig. 18-2(c) has negative measure. An affine transformation (2a)
carries the unit triangle into a triangle of measure |A| and a triangle of measure u into one
of measure p/A|. Thus affine transformations preserve the ratio of measures of triangles.

¢ o
¥ N 7 N\
0 - , - ,
©,0,1) T,0,1) A B B A
“ ®) ©
Fig.18-2

An affine transformation for which [A|= +1, preserves then both the measure and
sense of a triangle; an affine transformation for which |A]= —1 preserves the measure
except for sign, that is, preserves the measure but changes the sense. The set of all affine
transformations for which |A| = +1 form a group whose elements are called equi-affine or
special affine transformations. The set of all affine transformations for which |A|=—1 do
not form a group since the product of two such transformations is an equi-affine trans-
formation. Thus the set of all affine transformations for which [A| = =1 form a group,
each element of which is called an equiareal transformation.

An affine transformation, having the form

.’,U{ = a1 + Q13%s
x5 = auxs + d23%s , an 7 0 ~ (30)
x5 = X3

in homogeneous coordinates and
2 = ax + b1

s a = 0
y = ay—t—bz

in non-homogeneous coordinates, is called a homothetic transformation. The set of all
homothetic transformations form a group T (verify this), a subgroup of T.. Aside from
the identity transformation, each element of T, has a double line (axis) consisting entirely
of double points — the ideal line s =0 — and a unique double point (center) given by
(@13, 023, 1 — au1).

Two affine lines p and p’ which correspond under a homothetic transformation are
parallel. In other words, any homothetic transformation carries any affine line p into an
affine line p’ parallel to p. Thus under a homothetic transformation a triangle is carried
into another such that corresponding sides are parallel. The two triangles, being per-
spective from the ideal line, axis of the transformation, are perspective from a point.
This point is the center of the transformation.
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The homothetic transformations may be separated into two sets — dilations, having an
affine point as center (i.e., a1 1) and translations, having an ideal point as center
(i.e., @1=1). The set of all translations form a group (verify); the set of all dilations
do not.

Two triangles which correspond under a homothetic transformation are called homo-
thetic; in more familiar terms, they are said to be similar and similarly placed.

EUCLIDEAN PLANE GEOMETRY

It will be recalled that Euclid’s geometry (high school plane geometry) was concerned
both with similar triangles and with congruent triangles, that is, was concerned both
with affine and metric properties of configurations. In order to test for congruency,
that is, to compare the lengths of the respective sides of two triangles ABC and A’B’C’, it
is necessary to have a unit of measure which operates equally on all lines of the plane.
This, in turn, requires (see Chapter 14) the definition of perpendicular lines. We are thus
led to define a Euclidean transformation as an equiareal transformation which preserves
perpendicularity.

Consider on the ideal line z; =0 an elliptic involution

1 = en®i + c1ax

2
R ’ c11 + C13621 < 0 (.&)
Ty = Ca¥1 — Cule

The effect of the projective transformation (alias)
X1 = Carl1 — Cuid%2
X2 = —Cu%1 — Ci12%2
x5 = (¢t + c1aCa1)s

is to reduce (4) to
X1 = X2, X = —i1 (%)

in homogeneous coordinates or to
¥ = —1/x (6)

in non-homogeneous coordinates of the points on zs = 0. Hereafter, we assume always on
zs =0 the elliptic involution (5) and call it the absolute involution.

Let any line p of the affine plane meet x5 =0 in P,: (@1, 2,0). Under the absolute in-
volution, the points P., and PZ: (x5, —21,0) correspond, that is, P, and P, are a reciprocal
pair of the involution. We define any affine line p’ on P, to be perpendicular to p. Under
any projective transformation which leaves the absolute involution unchanged, any re-
ciprocal pair P,, P/, of the absolute involution is carried into a reciprocal pair Q., @, and,
accordingly, any pair of perpendicular lines p,p’ is carried into a pair of perpendicular
lines q, ¢’.

The equiareal transformation

a1 Q12 Qs
pX’ = Qo1 Q22 Q23 | X,
0 0 1

a a
11 12 — (7)
Q21 Qo2

being an affine transformation, leaves the ideal line ;=0 unchanged. If (7) also leaves
unchanged the absolute involution on #; = 0, it must carry any reciprocal pair P..: (21, 2, 0)
and P (2, —#1, 0) into a reciprocal pair
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(@111 + Q1als, Gy + Aoas, 0)  and  (@udz — G12%1, G21%2 — Gaslks, 0)
of the absolute involution. Thus there must exist a non-zero number & such that
Qi1 + G2z = K(G2172 — 02271)
A21®1 + Qo2 = —k(Qu%2 — Q121)
or (@1 + kaz)z: + (@12 — kaz)x: = O
(@21 — kasz)s + (@22 + kau)ss = 0

In order that these relations be independent of the choice of reciprocal pair, each coefficient
must vanish. Thus

p o= o Om _ On O
Q22 ain a21 a2
2 2 2 2
or a3 = O, Q12 = 031, 11021 + Aoz = O

Then (7) has either the form

¥ = ax—by+ec
, a*+b* =1 (?a)
y =br+tay+d

or x’ ex+fy+yg

, 2+ =1 7b
¥ = fx—eyt+h ) (70)

The totality of transformations (7a) and (7b) constitute the group of Euclidean trans-
formations.

LENGTHS

Let A: (1, 1) and B: (2, ¥2) be two distinct points. Any definition of the distance AB
between the two points must satisfy the conditions:

(i) AB=0 ifandonlyif 4 =B.
(iiy AB=BA. (We are defining distance, not directed distance.)
(iii) For any three points A, B,C then AB +BC = AC (the triangle property).

We leave for the reader to verify that
AB = (H)V(we—x1)* + (¥2 — 91)* 8
meets the above requirements. :

We now show that (8) is invariant under the group of Euclidean transformations. Con-
sider the transformation (7a) which carries

(x1,y1) into (#1,9%) = (axi—byi+e, b tay+ d)
and (z2,92) into (24,98 = (ax2—by2+c, bratay2+ d)
Then zh— 21 = a(zz—x1) — b(y2—1)
yb—yi = b(wz—®1) + a{y2— )
and (25— 20 + (Y —y1)® = (@®+b%) (w2 — 21)2+ (Y2 — 1)) = (X2—21)* + (Y2 — W)?

The verification for (7b) follows in a similar manner.
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ANGLES
Consider in Fig. 18-3 two half-lines (rays) issuing from
a point P. Assume for the moment the existence of a 7y

transformation which keeps P fixed and carries one ray

point by point onto the other, that is, a transformation

which rotates one ray onto the other. The inverse of such

a transformation would then rotate the second ray back: r
onto the first. We now restriet our attention to such trans-

formations (rotations) whose sense is counterclockwise.

Thus if the transformation - carries 7 counterclockwise

onto 72 then 7! carries r» counterclockwise onto r1. Fig.18-3

To simplify matters, let the rays OA and OB (see Fig.‘ 18-4) be such that their common
point O is the origin, OA is the positive x axis, and OB is such that
z = ax — by

s a®+b?2 =1 (@)
¥y = bx +ay

carries OA counterclockwise onto OB. Call the figure consisting of the two rays together
with the associated rotation (9) the angle (AOB). As here defined, (AOB) is a directed angle
and is always positive. While it differs from the directed angle of Chapter 14 in certain
respects, the essential difference (as we shall see later) is that there is no restriction as to
its size. Note that (9) carries A: (1, 0) into B: (a, ).

lyx3=0

Fig.18-4
Under a translation ¥ = x+e
(10)
Yy =y+d

angle (AOB) is carried into angle (F'GH) for which the image of 0:(0,0) is the vertex
G: (¢, d), the image of A:(1,0) is F: (1+¢, d) and the image of B:(a,b) is H: (e +¢, b+d).
Associated with (FGH) is the rotation

—c = afr—c)—dy—d)

) a*+5b2 = 1 (11)
y—d = bxz—c)+ay—d)

The two rotations (9) and (171) have the same coefficients and are called equivalent; the two
associated angles (AOB) and (FGH) have equivalent rotations and are called equal.
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Conversely, given an angle (FGH) with associated rotation (11), we can always obtain
an equal angle with vertex at the origin, initial side along the positive z axis and equivalent
associated rotation (9).

Consider again the angle (AOB) with associated rotation (9). Under an equiareal
transformation (7), the points 4, O, B correspond respectively to Q: (e + @i, 021 + @23),
R: (a13, (lza), S: (aau+ ba12+a13, as + ba22+a23). If (AOB) and (QRS) are to be equal, the
rotation associated with (QRS) must have the form

2 — iz = (X — G13) — D(Y — a23)
Y — G2z = b(x — ais) + a(y — A2a)
Now this rotation carries Q into Q’: (a1 — baer + @13, b1 + @@z + ¢25) and @’ will be on the

side RS if and only if @iz = —@2 and au = @2». Thus any transformation (7) carries an
angle into an equal angle if and only if it has the form (7a).

MEASURE OF AN ANGLE

Let it be assumed for the moment that an angle (AOB) with associated rotation (9) has
a measure. Denote by « the measure of the angle with associated rotation

=y Y == (12)
. 0 -1 . . :
of matrix A = L ol Here, (12) is (9) with a =0, b =1. The effect of (12) is to ro-

tate counterclockwise any ray OR on O into the ray OS perpendicular to OR. Set « equal
to one right angle. Now

-1 0 0 1 1 0
A7 = y A3 = = A7} and At = =
0 -1 -1 0 0 1
Thus one revolution about O is equal to four right angles. However, since I"=1,
(n=0,1,2,...), the measure of the angle associated with the identity transformation may

be taken as any one of 0 right angles, 4 right angles, 8 right angles, .

Denote by g the measure of the angle with associated rotation

v = $/3z— W3 -3
and matrix A; = N )
v = iz + 3/8y 1 13
1 —3v/3 0 —1
Now A% = [ 2 2\/—il , A = = A and Al? =1 Hence, 8 = § right angle,
EAVE RN 1 0
B pight angles, ¥ right angles, ... . From these examples the reader may also examine
o = —4x — /3y V2 = —x+y
(i) y : and (ii) we conclude that the measure in
v =33z -4y V2y =~z -y

right angles of an angle has one value y satisfying 0 =1y <4 (call this the principal value
of the measure) from which all other values may be obtained by adding positive multiples
of 4 right angles. In practice, of course, the principal value, § degrees, is obtained from
a suitable table of natural trigonometric functions by the use of any two of cosf =a,
sing = b, tanég = b/a.
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RESUME
In this chapter, we began with the general projective group T, that is, all collineations

pX’ = EX, [E| # 0 (1)

of the projective plane onto ifself. These collineations carry collinear points (concurrent
lines) into collinear points (concurrent lines) and preserve cross ratios.

Then, selecting a (any) line of the plane and a coordinate system having this line as the
side 23=0 of the reference triangle, we obtained a subgroup 7. of T whose elements
(collineations) left z; =0 invariant, that is, all collineations having 23 =0 as a double
(fixed) line. The group 7. — called the general affine group — preserves in the affine plane
parallelism of lines, the ratio of the segments into which a point R divides a segment P@Q,
and the ratio of the measures of two triangles. The subgroup of T, for which [A| = *1,
called the equiareal group, preserves the measure of a triangle but not necessarily its sense;
the subgroup of the equiareal group for which. |[A| = +1, called the equi-affine group, pre-
serves both the measure and the sense of a triangle.

The subgroup T+ of T, each element of which has the form (3a), has the line xs=0 as a
line of double points. The elements of this group carry lines into parallel lines and, hence,
triangles into similar triangles.

Finally, taking the affine plane as the Euclidean plane and establishing on xz3=0 an
elliptic involution as absolute involution, two lines p and »” which meet 'z; = 0 in a reciprocal
pair of the absolute involution were defined as mutually perpendicular. All equiareal
transformations which preserve the absolute involution were defined to be Euclidean
transformations. These transformations preserve distances and angles but, again, not
always the sense of the angle.

Consider a Euclidean transformation of the type

¥ = ax—by+e
, @+ b2 =1 (7a)
y =brt+ay+d

If a=1, b=c¢=d=0, (7a) is the identity transformation; if e=1, b=0 but not
¥ =x+c
, . Yy = y+d i )
v=9 c.os 6= ysind ; otherwise, (7a) effects a rotation gf = c?s f—ysinb
y’=:_vs1n0+ycos0 Yy = xsinf +y cosd
 =Z+ec
=g+d’
forms a group, a subgroup of the Euclidean group.

both ¢ and d are zero, (7a) is a translation ; if e=d=0, (7a) is a rotation

followed

by a translation Clearly, the set of all transformations of the type (7a)

Consider next a Euclidean transformation of the type

¥ =er+fytyg
s e+ =1 (7b)
Y = fx—ey+h

The double points are given by
(e—1x+fy = —g

Ja—(e+1)y = —h (19)

e—1 f
f —(e+1)
line or distinct parallel lines.

Now = 0; hence the two equations in (73) represent either the same
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In the first case, (7b) has the form
2 =ex+fyt+yg
¥ = fr—ey+fgle—1)

Its double elements consist of a line of double points p: (e—1)x +fy +g9 = 0 and a double
point P.:(e—1, f,0) not on p. Since the ideal point P,:(—f,e—1,0) on p and P, are a
reciprocal pair in the absolute involution, every line on P is perpendicular to p. Let
R: (r1,72) be an arbitrary point in the plane and denote by E’ its correspondent under the
transformation (7b:). Now E,R’, P, are collinear and the midpoint of the segment RR’
is on p. (The reader will verify this.) Thus (7b4) is an orthogonal reflection in the line p.
(See Fig. 18-5 where the joins AA’, BB’,CC’, ... of corresponding points are perpendicular
to p and the segments AA’, BB’,CC/, ... are bisected by p.)

e+ =1 (701)

r =

2 cosd +ysind
In the second case, (7b) is an orthogonal reflection in the line
o = E+g z8ind — y cosd
y =4+h

It is customary to interpret the Euclidean transformations as rigid motions whereby,
for example, a triangle on the plane is moved as a rigid entity into another position on the
plane. Two triangles which correspond under a rigid motion are said to be congruent.
Any transformation of the type (7b), considered as a rigid motion, is wholly or in part a
displacement in ordinary three-space. For, an orthogonal reflection in a line is equivalent
to (has the same effect as) a rotation about the line; that is, since the reflection changes the
sense of a triangle, its effect (see Fig. 18-5) is simply to turn the triangle over and place
it in a precisely defined position on the plane. On the contrary, any transformation of the
type (7a) when considered as a rigid motijon is a displacement entirely on the plane. These
transformations of the type (7a) are, then, the transformations of Plane Analytic Geometry
by which, for example, the equation of a conic is reduced to standard form. It is merely
o matter of convenience that such transformations are given in the inverse form

<
i

y = xtano followed by a translation

x = x’ cosp— Y sing + ¢

y = &’'sing +¥ cosé + d’
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Matrix Algebra

DEFINITIONS
A rectangular array of numbers enclosed by a pair of brackets, such as
. 1 3 1 2 3 -1 4 1
@ [L238], ®|2 1 4|, (9 38 -1 2 10}, @ 2
4 7T 6 -5 8 38 1 -3

and subject to certain operations given below is called a matriz. A matrix consisting of m
rows and 7 columns is said to be of order m Xn. When m =n, the matrix is called a
- square matrix of order = or an n-square matrix. For example, (a) is of order 1X3,
(b) is 3-square, (d) is of order 3 X 1.

Gin Q12 Q13 Que
In the matrix A = | @1 @22 @25 @z |, the numbers ay are called its elements. In
(31 A3z (33 QA34
the double subscript notation adopted here, the first subseript indicates the row and the
second subscript indicates the ecolumn in which the element stands. Thus, as4 is the element
standing in the second row and fourth column; all elements in the third row have 3 as

first subseript; all elements in the first column have 1 as second subscript. The matrix
of this paragraph may also be given by writing

A= o], (=1,23;7=123,4)

When the order has been established, we shall write “A = [ay;}” or “the matrix A”.

A matrix A, all of whose elements are real numbers, is called a real matriz. It is to
be understood that all matrices considered here are real matrices.

ADDITION OF MATRICES

Two matrices A = [ay] and B = [by], of the same order, are said to be conformable for
addition or subtraction. The sum (difference) of two m X n matrices is an m X » matrix
whose elements are the sums (differences) of the correspondingly positioned elements of the
given matrices. Thus, A+ B = [ay+by] = B+ A; A—B = [a;—by]; B— A = [b;—ay).

1 3 1 0 -2 3
Example 1. When A =1 2 1 4 and B =11 1 1,
4 7 6 4 0 2
140 3—2 1-+3 1 1
A+ B = 2+4+1 1+1 441 = 8 2 b = B+ A
4+4 740 6+2 8

229
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1—0 3+2 1—38 1 —2
A-B = |2—-11—-14—-1| = (1
[4—4 T-0 6-2 0
fo—-1 —2—-8 3-—1 -1 -5 2
B—-A = |1—-2 1—-1 1—4]| = |-1 0 -3
4—4 0-7 2—6 0 —7 —4
b
3 9 3
A+ A+ A = 6 8 12| = 3A
12 21 18

We define: pA = [pay], for p any real number. In particular, (—1)A = [—ay] = —[ay)].
Thus, in Example 1, B— A = —(A—B).

MULTIPLICATION OF MATRICES

Two matrices A and B are said to be conformable for multiplication in the order A-B
provided the number of columns of A is equal to the number of rows of B, and in order
B- A provided the number of columns of B is equal to the number of rows of A. Two
n-square matrices A and B are conformable for multiplication in both the order A-B and
B-A. In general, however, A-B+=B-A.

bll
When A = [au ais as] and B = | bzt |, we define
b31
A*B = aubun + awpbs + awban = 2 @1 bt
11 Q12 O13 bir bz Dbis
Let A = | @21 Qg2 aos| and B = | bay bes bas |. To obtain A-B, think of each
(31 Oaz Qss bs: bss Das
row of A as a 1Xx38 matrix and think of each column of B as a 3 X1 matrix, ie.,
A,
A =|As| and B = [B: B: B;]. Then
As
_ a1;b; a1;b; a1;b;
Al‘B1 A1'B2 A1'Bs ; ahd 52 e 52 v
A'B = |Ax»B: AsB: AsBs| = | > ayba jzam’bjz D assbs
J 2

Ag'B1 A3‘B2 A3’Bs
- z as;bj ; as;bje 2 [127] bja (1)
i F)
Cai1b1t + @i2bay + @isbsr @bz + @ioboe + @isbsr  G11b1s + @i2bas + a13bss
= 021D11 + @2sbar + Qosbsy  G21b1s + Gosbos + Gosbse  azbiz + A22bag + a2sbss
La31b11 + @s2b2r + Assbar  Gsibiz + @aebas + Qasbas  ambis -+ Ggebes + as3bss

To obtain B- A, interchange the roles of A and B above.

Example 2. For the matrices of Example 1,
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1 8 1 0 —2 3 (140 + 31+ 124 1+(—2) + 31+ 10 13+ 31+ 1+2
AB = |2 1 4|1 1 1| = [20+11+44 2:(=2)+1°1+40 2:3+1+1+4:2
4 7 6 0 2 40+ 7+1+6°4 4+(—=2)+ 71460 4°34+7-1+6-2
7 1 8
= |17 -8 15
31 —1 31
L
and
0 —2 3 1 3 1
B-A = |1 1 1 1 4
4 0 2 4 7 8
0°1+ (—2)2 + 34 003+ (—2)+1 + 87 0°1+ (—2)+4 + 36 8 19 10
= [ 1+14+ 1:241+4 1.8+ 1+1+4+1+7 114 1ea4+16| = 7 11 11
414+ 02+ 2+4 434+ 0°14 27 414+ 04+ 26 12 26 16
1 2 3 6 —2 —3
Example 3. When A =[1 38 3 and B =|-1 1 0|, show
2 4 -1 0 1
A*B = B:A
1 2 3 6 —2 —3 | 6 —-2—8 —24+24+0 —3+0+3 1 0
A‘B =11 8 38||-1 1 0| =16-8-8 —2+83+0 —3+0+3] =10 1 o
1 2 4 -1 0 1 6—2—4 —24+2+0 —34+0+4 6 0 1
6 —2 -3 1 3] T 6—2—3 12—6—-6 18—6—12 1 0 0
B'A=/{-1 1 0/|]1 8 8| = |—-1+1+0 —2+8+0 —3+3+ 0| = {0 1 0
-1 0 1 1 2 4| |~1+0+1 —2+0+2 —3+0+ 4 0 0 1

Suppose A, B, C are matrices conformable for multiplication in the order A-B:-C. We
shall assume (the verification for 3-square matrices is not difficult but somewhat tedious)

that
A-B-C = (A'B):C = A-(B:C)
that is, matrix multiplication is associative.
Let A = [a;] and B = [by] be matrices conformable for addition. If A,B,C
) €=

conformable for multiplication in the orders A-C and B-C, then (A+B
For, the element standing in the ith row and jth column of (A+B):C

(@1 + bis)eyy + (@2 + bis)eyy + « - + (Ain + Din)Cy;
= (a,;lcl,- +ai262j + oo amcnj) + (bi101j + bizozj + -4 bmcm-)

is the sum of the elements standing in the ith row and 7th column of A:C and B:C. Thus
multiplication of matrices is distributive with respect to addition.

SOME TYPES OF MATRICES

In any square matrix, the elements i1, @2s, a3, ... are said to lie in the principal
diagonal of A. If all the elements below the principal diagonal are zeros, A is said to be
upper triangular; if all of the elements above the principal diagonal are zeros, A is said
to be lower triangular. If A is both upper triangular and lower triangular, A is called a
diagonal matrix. If the diagonal elements of a diagonal matrix are all equal, A is called a
sealar matrix. If the diagonal elements of a scalar matrix are all equal to 1, A is called
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the identity matrix and is denoted by I. For example, is upper triangular,

O O M
S N W
O I

1 0 O 1 0 0 3 0 0
0 2 0 |is lower triangular,| 0 2 0 |is a diagonal matrix, | 0 3 0 |is a scalar
3 1 0 0 0 -3 0 0 3

1 0 0
matrix and | 0 1 O |is the 3-square identity matrix 1.
0 0 1

In matrix multiplication, I plays the role of 1 in ordinary multiplication, that is,
I'‘A=A and B:I=B. In any product of two or more matrices, I may be inserted as
a factor or dropped as a factor at will.

DETERMINANT OF A SQUARE MATRIX

The determinant of a square matrix A is denoted by |[A]. When A= [a], |A| = a;
a b

when A= { c d} , |Al=ad—bc. When A is m-square, n =3, there are a number of

procedures for evaluating |A|. We consider two of these for the 3-square matrix
. Gi11 QA2 13
A = | a2 0« dz23
31 Q32 @33

. oz A2 o1 Q23 az1 Qa2
i [A] = an* — O12° + ass-
(32 Q33 031 (ss Q31 ds2
_ a1z Q13 din Qi3 a1 G2
= —Ua"* + 22 — Qg3 *
32 (33 31 033 as1 O3z
_ Q12 O3 11 Qs Q11 Q12
= asy * — Q32° + dss-
. Q2s Q23 Q21 Q23 Qa1 (a2
_ Qs COos a1z 13 A1z Qs
= 11 — Qo1° + Qar*
a3z 033 32 Qa3 M2 (23
_ Qo1 Q23 A1 Qs ai1 Qs
= —Qz* + Qo2 — Qa2°
az1 Qa3 031 dss 21 Q23
_ 021 Q22 a1 Q12 (151
= ais* — O23°* + ds3
Qa1 (a2 31 ds2 Qa1 Qo2

Each of the above expansions is the sum of three terms; in turn, each term is the
gigned product of an element of A and the determinant of a 2-square matrix.
In any expansion the elements are those of a row or column of A; the 2-square
matrix whose determinant multiplies the element a,q is the matrix M,, which
remains when the row and column in which a,, stands is removed from A; the
sign associated with the product ayq* [Mpq| is (—1)p+e.  |Mpg| is called the minor of
pq; (—1)P*9 M| is called the cofactor of apq and is denoted by Apq.
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Example 4.
1 3 1 1 4
@) 12 1 4 =1°| 8—3-2 +1'2 i':—20+0+10:—10
4 7 8 7
Here, the elements are from the first row.
1 -1
1 -1 2 -1 2 1
(b) |4 3 0y = —4- + 3 — 0~ = —20 + 21 = 1
9 2 3 1 3

Here, to take advantage of the element 0, the elements are from the second row. It is sug-
gested that the reader write the expansion taking the elements from the third column.

2 38 b 1 2
¢ {0 -1 2 = 2. = &
0 —3
0 0 -3

(i) In any text on Determinants it is proved that the following operations on a deter-

minant |A| have the stated effects.

Oi;:  The interchange of the ith and jth rows (columns) changes the sign

of [A].
Opw»:  The multiplication of the elements of the ith row (column) by the
non-zero constant p multiplies |A| by p.
Ow+pin: The addition to the elements of the ith row (column) of p times the

corresponding elements of the jth row (column) does not change the
value of |A|.

Example 4(c) suggests that these operations be used initially to reduce A to
triangular form.

Example 5.
(a) Using row operations O(s,_sc1ys Ocsy—sc1y; Ocay—cay:

1 3 1 1 3 1 1 3 1
2 1 4y = |J0-56 2] = 10 -5 2| = -10
4 7 8 0 -5 4 0 0

(b) Using column operations 0(2)_3(1), 0(3)_(1); 0(3) + %(2):

1 3 1 1 0 O 1 0
2 1 4| = (2 -5 2| = |2 -5 0| = 10
4 7 8 4 -5 4 4 —5

(e) Using row operations Oy (2); O¢2)+313 Oar+51)5 O -2yt

We state, without proof,
If A,B,...,S are n-square matrices, then |A*B-----§| = |A|*|B

LIRS )

s|.
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ELEMENTARY TRANSFORMATIONS ON A MATRIX

The elementary transformations on a matrix are precisely the operations on deter-
minants listed above. Of these, we will make use of only two:

the row operation O, which will hereafter be indicated by writing simply »(7),
the row operation O« +p;y which will hereafter be indicated by writing (%) + p(j).

The effect of one or more applications of these transformations on a matrix A is to replace
it by another A’ which is said to be equivalent to A. The equivalence of two matrices
A and A’ will be indicated by writing A~ A’,

SYSTEMS OF LINEAR EQUATIONS
Consider the system of three non-homogeneous equations in three unknowns
20 +3y— 2z = —4
3z— y+22 = 10
—bx+3y+3z = 1

The usual procedure for solving this system consists in combining the equations so as to
replace the given system by a simpler one. The same result will be obtained by the use of
the transformation (¢) + p(j) on the rows of

2 3 -1 —4
3 -1 2 10| = [AH
-5 3 38 1

where A is the square matrix of the coefficients and H is the 3 X 1 matrix of constant
terms, to reduce A to triangular form. We find

2 3 -1 —4 -1 4 -3 —14 @) + 3) -1 4 -3 —-14
1) — (@ (3) —51)
3 -1 2 10 ~ 3 -1 2 10 ~ 0 11 -7 -32
—5 3 3 1 -5 3 3 1 0-—-17 18 71
3 + 5@ -1 4 -3 —14
~ 0 11 —q —32

0 0 79/11 237/11

Then 2z=%" and z=38. Next, 1ly=72—32=21-82=-11 and y=-1 Finally,
x=4y—82+14=-4—9+14=1. The required solution is =1, y=-1, z=3.

SINGULAR AND NON-SINGULAR SQUARE MATRICES

A square matrix C is called singular when |C|=0 and is called non-singular when
|C| = 0. A well-known theorem of algebra may now be restated as follows:

The system of homogeneous linear equations
C11%1 + Ci12%2 + Ci3%3 = 0
Co1%1 + C2oX2 + Costs = 0

€31%1 + C32%2 + Csazs = O

will have non-trivial solutions if and only if the matrix of coefficients C = [¢;] is singular.
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Suppose the 3-square matrix B = [by] is singular so that there exist constants p,q,r,
not all zero, such that

bup + bieqg + bisr = 0

» 0

borp + bagq + basr = 0 or Big| =0

bsip + bseq + bagr = 0 r 0
P 0 0 D 0
Let A be any 8-square matrix; then A-B+| ¢ {(= A*| 0 |={ 0 |. Thus [A*B]|¢q (=] 0
r 0 0 r 0

and we have proved

If A and B are 3-square matrices and if B is singular, so also is A+B.

INVERSE OF A SQUARE MATRIX

If A and B are square matrices such that A-B=B-A =1 (see Example 3), then B
ig called the inverse of A and we write B= A1 Similarly, A is called the inverse of B
and we write A=B.

Suppose B is the inverse of A. Since A-B=1 and |A*B|=[I|=10, it follows
from the result proved in the preceding section that B = A~! is non-singular. Similarly,
from B-A =1, it follows that A is non-singular. Thus

If the square matrix A has an inverse, then A is non-singular.
A proof of the converse ‘
If A is non-singular, then A~? exists.
will not be given. The interested reader is referred to any book on matrices.

The inverse of any non-gingular matrix A may be computed as follows:
(i) Write the matrix [A I].

(ii) By means of a suitable sequence of the two elementary transformations reduce
[A I] to [I B]. Clearly, this reduction is always possible unless somewhere along
the way a row of A’ ~ A consists entirely of zeros, in which case |A’|=0. But
this can never happen. For, since A is non-singular, |A|+# 0 and the elementary
transformations are such that [A’| = p|A|, p # 0.

1 2 3
Example 6. Obtain the inverse of A =} 1 8 8§
1 2 4

Writing out the matrix [A I], we proceed to reduce it to

p—

I B]. We have

[
1 2 3 0 0 2y — (D 1 2 3 1 0
(3) — (1)
AT = 1 3 3 1 0 ~ o 1 0 -1 1
1 2 4 0 1 o 0 1 -1 0
3 -2 0 0 6 —2 -3
(1) — 2(2) (1) — 8(3)
~ 0 1 ¢ -1 1 0 ~ 0 -1 1 0
0 1 -1 o0 1 6 0 1 -1 0 1

= [ B
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6 —2 -3
That B = A-1 =| —1 1 0 | was verified in Example 3.
-1 0 1
2 3 -1
Example 7. Obtain the inverse of A = 3 -1 2
-5 3 3
2 38 -1 1 0 -1 4 -3
W — @)
A1 = 3-1 2 o0 1 ~ 3 -1 2
-5 3 3 0o o0 1 -5 8 3
1 -4 8 -1 1 2) — 3D 1 —4
-1 (3) + 5(1)
~ 3 -1 2 0o 1 0 ~ 11
L—s 3 3 o0 0 1 0 —17
1 B — —
ko [10-4 3 1 1 0] gy
~ 0 1 -7/11 8/11 —2/11 0 ~
LO —-17 18 -5 5 1
U, [1 0 s&m /11 811 0
~ 01 —7/11 3/11 —2/11 0
\—_0 0 1 —4/79 21/79 11/79
EOE R E)
@+g® |10 0 9/79 12/79 —5/79
~ 010 19/79 —1/79 /79
0 0 1 —4/79 21/79 11/79
= I B]
9 12 -5 2 3 -1 0
Now B+*A = 79 19 -1 7l.] 38 —1 2 | =
-4 21 11 -5 3 0
9 12
B = A1 = —L|19 —1
—4 21
Example 8. Show that the inverse of a non-singular matrix is un
Suppose the contrary,
are found. Then
A'BI =1
(By*A)*B;, = By'I = B;
1'B, = B,
and B, = B,

Thus the assumption is false; the inverse is unique.

From A-1-A =1, it follows that |[A~1] = 1/|A[

1 -1 0
0 1 o
0o 0 1
3 -1 1
-7 3 —2
18 -5 5
0 5/11
1 —7/11
0 79/11
= I;
-5
7
11
ique.

(B =AY

(By = A7}

[APPENDIX

0
0
/11 3/11 0
3/11 —2/11 0
—4/11 21/11 1

hence,

that is, suppose for the non-singular matrix A, two distinet inverses B; and By
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Example 9. The system of linear equations on page 234 when written in matrix notation is

2 3 -1 x —4
3 —1 2 || ¥ = 10
-5 3 3 Lz 1
Multiplying this relation on the left by the inverse of the matrix A of coefficients (see Example 7), we have
. 9 12 -5 2 3 -1 [« 9 12 -5 |[ —4
1
79 19 -1 7| 3 -1 2 1y = 79 19 -1 7 10
—4 21 11 -5 8 3 z —4 2t 11 1
1 0 0 x ® 1
0o 1 0| ¥ = Y = -1
0 0 1 2z z 3
and x =1, y=—1, 2= 3 is the solution of the system.

THE TRANSPOSE OF A MATRIX

Let A be a matrix. By the transpose AT or A’ of A is meant the matrix obtained by
writing in the same order the rows of A as columns. For example, if A = [a1, 12, 1],

a11 Ay Q12 A3 ann 021 ds1
then AT = |@w|; if A =|0Qu Q2 aun |, then AT = | a2z G2 az
a13 a31 O3z (ds3 013 d2s Q33

Concerning the transpose of a matrix, we state:
(i) If A is a square matrix, then |AT| = |A].

(ii) If A and B are conformable for multiplication in the order A-B, then (A*B)T =
BT-AT. In general, the transpose of the product of two or more matrices is the
product of their transposes in reverse order. For example, (A*B-C)" = C7-BT-A".

The proof of (ii) is somewhat tedious. We shall need (ii) for the special cases when

C11

A = [0, 015,015), B = [by], (5,7=1,2,8), C = |cu|. We leave the verifications for
C31

the reader.

Example 10. Prove: (A—1)T = (AT)—1,
From A-1+A =1 follows
(A~1-A)T = AT-(A")T = IT =1
Then (AT)~1+ AT+ (A—HT = (AT)"1.1 = (AT)~!
and so I-(A—1)T = (A~})T = (AT)"!

as required.

RANK OF A MATRIX
air 12 Qs
Consider the matrix A = | @21 Q22 Q23 | =+ The matrix which remains

O31 (32 (dss

[T~ I ]
o O O
[ Qe =
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after any one row and any one column of A have been erased is called a 2-rowed submatrix of
A; the determinant of this submatrix is called a 2-rowed minor of A. Similarly, when any
two rows and any two columns of A are erased, the matrix which remains is called a 1-rowed
submatrix of A and the determinant of this submatrix is called a 1-rowed minor of A.
11 Q12 12 i3 Q21 Q23
Qa1 Qa2 Q22 Q23
There are nine 1-rowed minors of A — the nine elements of A.

When |A| <0, we say that the rank r of A is 3. When |A]| =0, but not every 2-rowed
minor is 0, we say that the rank of A is 7 =2. When |[A|=0 and all 2-rowed minors are
0, but not every element is 0, we say that the rank of A is r=1. For example, the rank of

There are nine 2-rowed minors of A; for example, s , y .

31 As3

1 2 3 9 1 2 3
A=|2 8 4]|is r=2 gince |[A|=0 but #0; therank of A =2 4 6| is
2 3
3 5 7 3 6 9
r=1 since [A|=0, every 2-rowed minor is 0 (check this completely) but |4] =4+ 0.
0 0 0
The matrix A =| 0 0 0 | isof rank r=0.
0 0 0

It can be shown that the elementary transformations on a matrix preserve its rank.

THE ADJOINT OF A SQUARE MATRIX
Let A = [ay] be a 3-square matrix and denote by Ay the cofactor of a;; in A. We define

All A2] A31
adjointA = adjA = |Auz Az Asx
Az Ax Ag

(Note carefully that the cofactors of the elements of the ith row (column) of A are the
elements of the 7th column (row) of adj A.)

We state, without proof,
If A is non-singular, then [A|-A~! = adj A.

Example 11. From Example 7, the inverse of

2 3 —1 9 12 -5
1
= — i -1 = ——- 19 -1
A 3 —1 2 is A 79 7
—5 3 -4 21 11
Now [A]| = —79; hence
-9 —12 b
4 —21 —11

We leave for the reader to verify that this agrees with the definition of adj A.

CHARACTERISTIC EQUATIONS AND ROOTS
Associated with any 3-square matrix A = [a] is an equation

di1—p Q2 a13
olp) = (1231 Q22— p Q23 = 0
31 32 O3z — p
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called the characteristic equation of A. When |A|>0, the only case which concerns us
here, ¢(p) =0 is of degree three and has three roots p.» Po» p; Called the characteristic roots
of A, no one of which is zero. Since the a;; are real numbers, ¢(p) has real coefficients and
#(p) = 0 has either three real roots or one real and two imaginary roots.

Clearly, the characteristic equations of A and AT are identical and, hence, have the
same roots. We state without proof:

If p, is a characteristic root of the non-singular matrix A, then 1/p, is a characteristic
root of A~! and, hence, of (A~1)7.

If p, is a characteristic root of the non-singular matrix A, then |A|/p, is a character-
istic root of adj A.

SYMMETRIC MATRICES
A square matrix A is called symmetric provided AT = A.
Suppose A is a non-singular symmetric matrix. Then (AT)~!= A-! and, by Example
10, (A-)T=(AT)"*= A~ Thus,
The inverse of a non-singular symmetric matrix is symmetric; also, the adjoint of
a symmetric matrix is symmetric.
We prove
The characteristic roots of a (real) symmetric matrix A are all real.

Suppose the contrary, that is, suppose that h +ik, i=1VvV-1, k%0, is a root of
[A—AIl = 0. Then, by a theorem of algebra, h—ik is also a root. Consider

C=[A—(h+ik)]*[A—(h—ik)I] = (A—PRI)?+KI
a 0
Since |C| =0, there exists a non-zero 8 X 1 matrix X = | p | suchthat CX = | 0 |. Then
. e 0
XTCX = XT[A—-RIPX + k*°X"™X = [(A—hDX]"-[(A—hDX] + *X"X = 0. Now (A—RDX
is real and so [(A —RDX]"+[(A~RIX]=0 while X7X >0. Thus, k=0 and |]A— M =0
has only real roots.

SIMILAR MATRICES

Two n-square matrices A and B are called similar provided there exists an n-square non-

singular matrix R such that
B = R AR

Let A and B be similar. Then
B— M = RTIAR — Al = RT'TAR— R WIR = R }{(A—- AR
and B—A| = |[R-Y(A—A)R| = |[R-Y+|A—AIl*|R| = |[A—Al|
Thus,

Two similar matrices have the same characteristic equation and the same char-
acteristic roots.

The converse of the above theorem is not true.
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of a line, 156
of a point, 1566
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on a line, 65, 173

Length, 133, 224
Line,
augmented, 4
ideal, 5
projective, 5
Line conice, 85
point of contact of a, 85

Matrix algebra, 229
Median, 131
Midpoint, 130

Net of rationality, 49
Nine-point conic, 115
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tangent to a, 84
Point of contact, 85
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Projective geometry, 2, 155
Projectivity, 12
axis of a, 56, 120
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direct, 58
on a conie, 120
on a line, 13, 172, 174
on a point, 13
opposite, 58
relating two pencils, 12, 119
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diagonal triangle of a, 81
perspective, 37
Quadrangular involution, 66
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Ratio of division, 19

Rational projective geometry, 76
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of projective line, 7
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projective, 170, 177, 179, 219
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