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Preface

The purpose of this book is to provide an introduction to principles of
probability, random variables, and random processes and their applications.

The book is designed for students in various disciplines of engineering,
science, mathematics, and management. It may be used as a textbook and/or as
a supplement to all current comparable texts. It should also be useful to those
interested in the field for self-study. The book combines the advantages of both
the textbook and the so-called review book. It provides the textual explanations
of the textbook, and in the direct way characteristic of the review book, it gives
hundreds of completely solved problems that use essential theory and
techniques. Moreover, the solved problems are an integral part of the text. The
background required to study the book is one year of calculus, elementary
differential equations, matrix analysis, and some signal and system theory,
including Fourier transforms.

| wish to thank Dr. Gordon Silverman for his invaluable suggestions and
critical review of the manuscript. | also wish to express my appreciation to the
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Chapter 1

Probability

1.1 INTRODUCTION

The study of probability stems from the analysis of certain games of chance, and it has found
applications in most branches of science and engineering. In this chapter the basic concepts of prob-
ability theory are presented.

1.2 SAMPLE SPACE AND EVENTS
A. Random Experiments:

In the study of probability, any process of observation is referred to as an experiment. The results
of an observation are called the outcomes of the experiment. An experiment is called a random experi-
ment if its outcome cannot be predicted. Typical examples of a random experiment are the roll of a
die, the toss of a coin, drawing a card from a deck, or selecting a message signal for transmission from
several messages.

B. Sample Space:

The set of all possible outcomes of a random experiment is called the sample space (or universal
set), and it is denoted by S. An element in S is called a sample point. Each outcome of a random
experiment corresponds to a sample point.

EXAMPLE 1.1 Find the sample space for the experiment of tossing a coin (a) once and (b) twice.
(@) There are two possible outcomes, heads or tails. Thus
S={H, T}
where H and T represent head and tail, respectively.
(b) There are four possible outcomes. They are pairs of heads and tails. Thus
S={HH, HT, TH, TT)
EXAMPLE 1.2 Find the sample space for the experiment of tossing a coin repeatedly and of counting the number
of tosses required until the first head appears.
Clearly all possible outcomes for this experiment are the terms of the sequence 1, 2, 3, ... . Thus
§=1{1,2,3 ..}

Note that there are an infinite number of outcomes.

EXAMPLE 1.3 Find the sample space for the experiment of measuring (in hours) the lifetime of a transistor.
Clearly all possible outcomes are all nonnegative real numbers. That is,
S={r:0<t< o}

where 1 represents the life of a transistor in hours.

Note that any particular experiment can often have many different sample spaces depending on the observ-
ation of interest (Probs. 1.1 and 1.2). A sample space S is said to be discrete if it consists of a finite number of

1



2 PROBABILITY [CHAP 1

sample points (as in Example 1.1) or countably infinite sample points (as in Example 1.2). A set is called countable
if its elements can be placed in a one-to-one correspondence with the positive integers. A sample space § is said
to be continuous if the sample points constitute a continuum (as in Example 1.3).

C. Events:

Since we have identified a sample space S as the set of all possible outcomes of a random experi-
ment, we will review some set notations in the following.
If { is an element of S (or belongs to S), then we write

{eS
If S is not an element of S (or does not belong to S), then we write

(¢S
A set A is called a subset of B, denoted by -
AcB

if every element of A4 is also an element of B. Any subset of the sample space S is called an event. A
sample point of S is often referred to as an elementary event. Note that the sample space S is the
subset of itself, that is, S < S. Since S is the set of all possible outcomes, it is often called the certain
event.

EXAMPLE 1.4 Consider the experiment of Example 1.2. Let 4 be the event that the number of tosses required
until the first head appears is even. Let B be the event that the number of tosses required until the first head
appears is odd. Let C be the event that the number of tosses required until the first head appears is less than S.
Express events 4, B, and C.

A={24,6..)
B={l1,35 )
C=1{1,23,4}

1.3 ALGEBRA OF SETS
A. Set Operations:
1. Equality:
Two sets A and B are equal, denoted A = B, if and only if A « Band B < A.
2. Complementation:

Suppose A = S. The complement of set A, denoted A, is the set containing all elements in S but
notin A.

A={{:leSand{ ¢ A}
3. Union:

The union of sets A and B, denoted A U B, is the set containing all elements in either A or B or
both.

AuB={{:{eAor{e B}
4. Intersection:

The intersection of sets A and B, denoted 4 n B, is the set containing all elements in both A
and B.

AnB={{:{eAand{e B}
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5. Null Set:
The set containing no element is called the null set, denoted F. Note that
=5
6. Disjoint Sets:

Two sets A and B are called disjoint or mutually exclusive if they contain no common element,
thatis,if A n B = &,

The definitions of the union and intersection of two sets can be extended to any finite number of
sets as follows:

Ca

A=A VA, v U A,

i=1

={C:CEAlOrCeA20r"'CEAn}

A=A, nAyn - N A,
A

={{:leAd,and{eAd,and --- [ € 4,}

Note that these definitions can be extended to an infinite number of sets:

Ai=A, v A, A U -

S
1l

AN A, " Ay

e iCe

H

In our definition of event, we state that every subset of § is an event, including S and the null set
. Then

S = the certain event
& = the impossible event
If A and B are events in S, then

A = the event that A did not occur
A u B = the event that either 4 or B or both occurred
A n B = the event that both A and B occurred

Similarly, if Ay, A,, ..., A, are a sequence of events in §, then

A; = the event that at least one of the A; occurred;

-

1
n

() A; = the event that all of the A; occurred.

i=1

B. Venn Diagram:

A graphical representation that is very useful for illustrating set operation is the Venn diagram.
For instance, in the three Venn diagrams shown in Fig. 1-1, the shaded areas represent, respectively,
the events A U B, A n B, and A. The Venn diagram in Fig. 1-2 indicates that B = A and the event
A ~ B is shown as the shaded area.
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S S
(0 (0
A B A B
ta) Shaded repiont A U B (h) Shaded region: A N B

(¢} Shaded region: A

Fig. 1-1

BcA

Shaded region: A N B

Fig. 1-2

C. Identities:
By the above set definitions or reference to Fig. 1-1, we obtain the following identities:

S (1.1)
=35 (1.2)
A=A (1.3)
SUA=S (1.4)
SAA= (1.5)
AuA=S (1.6)
AnA=g (1.7)

The union and intersection operations also satisfy the following laws:

Commutative Laws:

AuB=BuUA (1.8)
ANB=BnA (1.9

Associative Laws:
AuBuUuQ=(AuBuC (1.10)

ANBNnO)=(AnBnC (1.1DH
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Distributive Laws:

NBUC=(AnNnBu(dn( (1.12)
AVBNnC)=(AUBNn(duUO (1.13)
De Morgan’s Laws:
AuB=A4AnB (1.14)
AnB=AUB (1.15)

These relations are verified by showing that any element that is contained in the set on the left side of
the equality sign is also contained in the set on the right side, and vice versa. One way of showing this
is by means of a Venn diagram (Prob. 1.13). The distributive laws can be extended as follows:

An(o > OAnB (1.16)
Au(ﬁ&»§hMuBJ (1.17)

(QA):ﬁZ, (1.18)

(OA)=ﬁ5: (1.19)

14 THE NOTION AND AXIOMS OF PROBABILITY

An assignment of real numbers to the events defined in a sample space S is known as the prob-
ability measure. Consider a random experiment with a sample space S, and let A be a particular event
defined in S.

A. Relative Frequency Definition:

Suppose that the random experiment is repeated n times. If event A occurs n(A) times, then the
probability of event A4, denoted P(A), is defined as

. A
P(A) = lim %) (1.20)
where n(A)/n is called the relative frequency of event A. Note that this limit may not exist, and in
addition, there are many situations in which the concepts of repeatability may not be valid. It is clear
that for any event 4, the relative frequency of A will have the following properties:

1. 0 < n(A)/n <1, where n(4)/n =0 if A occurs in none of the n repeated trials and n(A)/n=11if A
occurs in all of the n repeated trials.

2. If A and B are mutually exclusive events, then

n(A v B) = n(A) + n(B)
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and

n(AuB)=M+£@
n n n

B. Axiomatic Definition:

Let S be a finite sample space and A be an event in S. Then in the axiomatic definition, the
probability P(A4) of the event A is a real number assigned to A which satisfies the following three
axioms:

Axiom 1: P(A) =20 (1.21)
Axiom 2: P(S)=1 (1.22)
Axiom 3: P(A u B) = P(A) + P(B) fANnB= (1.23)

If the sample space S is not finite, then axiom 3 must be modified as follows:

Axiom 3': If A,, A, ... is an infinite sequence of mutually exclusive events in S (4; N A; = &
for i # j), then

P(D A,.) = i‘ P(A) (1.24)

These axioms satisfy our intuitive notion of probability measure obtained from the notion of relative
frequency.

C. Elementary Properties of Probability:

By using the above axioms, the following useful properties of probability can be obtained:

1. P(A)=1— P(A) (1.25)
2. P()=0 (1.26)
3. P(A) < P(B) ifA< B (1.27)
4. PA) <1 (1.28)
5. P(A U B)= P(A) + P(B) — P(A ~ B) (1.29)
6. IfA,A,,..., A, are n arbitrary events in S, then
P(UA,-)= YPA)— Y PA N A)+ Y PA; N A;n A
i=1 =1 [EaF) [ENESS
— (=1 PA, N Ay 0 A (1.30)
where the sum of the second term is over all distinct pairs of events, that of the third term is over
all distinct triples of events, and so forth.
7. WAy, A;, ..., A, is a finite sequence of mutually exclusive events in S (4; N A; = & for i # ),

then

P( U A.-) = Y P(A) (1.31)
i=1 i=1
and a similar equality holds for any subcollection of the events.

Note that property 4 can be easily derived from axiom 2 and property 3. Since A = S, we have
P(A) < P(S) =1
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Thus, combining with axiom 1, we obtain
0<PA <1 (1.32)
Property 5 implies that
P(A v B) < P(A) + P(B) (1.33)
since P(A n B) > 0 by axiom 1.

1.5 EQUALLY LIKELY EVENTS
A. Finite Sample Space:
Consider a finite sample space S with n finite elements
S={{{o s i}

where (s are elementary events. Let P({;) = p;. Then

1. 0<p,<1 i=12 ...,n (1.39)
2. é:lp,.=p, +py 4+ +p,=1 (1.35)
3. If A= .UIC,-, where | is a collection of subscripts, then

P(4) = (E,AP(C.-) = .-:Z‘IP‘ (1.36)

B. Equally Likely Events:

When all elementary events {; (i = 1, 2, ..., n) are equally likely, that is,

P1=P2="""=PDn
then from Eq. (1.35), we have
p,-=% i=1,2,...,n ) (1.37)
A
and P(A) = —’Kn——) (1.38)

where n(A) is the number of outcomes belonging to event A and n is the number of sample points
in §.

1.6 CONDITIONAL PROBABILITY
A. Definition:

The conditional probability of an event A given event B, denoted by P(A4] B), is defined as
P(A ~ B)

P(A|B) = ) P(B)> 0 (1.39)
where P(A n B)is the joint probability of A and B. Similarly,
B
pBla=PAB s (1.40)

P(4)



8 PROBABILITY [CHAP 1

is the conditional probability of an event B given event A. From Egs. (1.39) and (1.40), we have
P(A n B) = P(A| B)P(B) = P(B| A)P(A) (1.41)
Equation (1.41) is often quite useful in computing the joint probability of events.
B. Bayes’ Rule:

From Eq. (1.41) we can obtain the following Bayes’ rule:
P(B| A)P(4)

P(A|B) = F(B) (142)
1.7 TOTAL PROBABILITY
The events 4,, A,, ..., A, are called mutually exclusive and exhaustive if
.OIA,-=A1UA2u---uA,,=S and AAnA;=0 i#]j (1.43)
Let B be any event in S. Then
P(B) = i P(Bn A) = iP(BIA,.)P(Ai) (1.44)

i=1 i=1

which is known as the total probability of event B (Prob. 1.47). Let A = A4; in Eq. (1.42); then, using
Eq. (1.44), we obtain
P(B| A)P(A;
Pty By < ~PELAIPA)
2. P(B| A)P(A)

(1.45)
Note that the terms on the right-hand side are all conditioned on events A;, while the term on the left

is conditioned on B. Equation (1.45) is sometimes referred to as Bayes’ theorem.

1.8 INDEPENDENT EVENTS

Two events A and B are said to be (statistically) independent if and only if

P(A n B) = P(A)P(B) (1.46)
It follows immediately that if A and B are independent, then by Eqs. (1.39) and (1.40),
P(A|B) = P(A) and P(B| A) = P(B) (1.47)

If two events 4 and B are independent, then it can be shown that 4 and B are also independent; that
is (Prob. 1.53),

P(A ~ B) = P(A)P(B) (1.48)
Then P(A|B) = 5(1(—%5) = P(4) (1.49)

Thus, if A is independent of B, then the probability of A’s occurrence is unchanged by information as
to whether or not B has occurred. Three events 4, B, C are said to be independent if and only if
P(A ~ B n C) = P(A)P(B)P(C)
P(A n B) = P(A)P(B)
P(A n C) = P(A)P(C)
P(B n C) = P(B)P(C)

(1.50)
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We may also extend the definition of independence to more than three events. The events 4,, 4,, ..
A, are independent if and only if for every subset {4;,, 4
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A1

i Ay} (2 < k < n) of these events,

P(A;, n A, 0 oo Ay) = P(A)P(A) ==~ P(4,) (1.51)

Finally, we define an infinite set of events to be independent if and only if every finite subset of these
events is independent.

To distinguish between the mutual exclusiveness (or disjointness) and independence of a collec-
tion of events we summarize as follows:

1.

2.

1f{4,,i=1,2,..., n} is a sequence of mutually exclusive events, then

P( U A.-) = ; P(A) (1.52)

i=1 i

1f {4,,i=1,2,..., n} is a sequence of independent events, then

P( N A,-> = T1P4) (153
i=1

i=1

and a similar equality holds for any subcollection of the events.

Solved Problems

SAMPLE SPACE AND EVENTS

1.1.

1.2.

Consider a random experiment of tossing a coin three times.

(a)

(b)
(a)

(b)

Find the sample space S, if we wish to observe the exact sequences of heads and tails
obtained.

Find the sample space S, if we wish to observe the number of heads in the three tosses.
The sampling space S, is given by
S, ={HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}

where, for example, HTH indicates a head on the first and third throws and a tail on the second
throw. There are eight sample points in §,.
The sampling space S, is given by

S$,={0,1,2 3}

where, for example, the outcome 2 indicates that two heads were obtained in the three tosses. The
sample space S, contains four sample points.

Consider an experiment of drawing two cards at random from a bag containing four cards
marked with the integers 1 through 4.

(a)

(b)
(a)

Find the sample space S, of the experiment if the first card is replaced before the second is
drawn.
Find the sample space S, of the experiment if the first card is not replaced.

The sample space S, contains 16 ordered pairs (i, j), 1 <i<4, | <j<4, where the first number
indicates the first number drawn. Thus,
1y 1,2 1.3 (1,49
20 22 23 29
TG (3,2 (3.3) (3.4
4.1 4,2 43 4,49



10

1.3.

1.4.

1.5.

(b)
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The sample space S, contains 12 ordered pairs (i, j), i #j, | <i <4, 1<j<4, where the first number
indicates the first number drawn. Thus,

(L,2) (1,3) (1.4
20 2,3 249
2713 ) (3,2) (3.4)
@1 42 @3

An experiment consists of rolling a die until a 6 is obtained.

(a)
(b)
(a)

Find the sample space S, if we are interested in all possibilities.
Find the sample space S, if we are interested in the number of throws needed to get a 6.

The sample space S, would be

SI = {6’
16, 26, 36, 46, 56,
116, 126, 136, 146, 156, ...}
where the first line indicates that a 6 is obtained in one throw, the second line indicates that a 6 is
obtained in two throws, and so forth.

In this case, the sample space S, is
S,={ii=1}={1,23,..}

where i is an integer representing the number of throws needed to get a 6.

Find the sample space for the experiment consisting of measurement of the voltage output v from
a transducer, the maximum and minimum of which are +5 and —5 volts, respectively.

A suitable sample space for this experiment would be

S={v: —5<v<5}

An experiment consists of tossing two dice.

(&)

(d)

Find the sample space S.

Find the event A that the sum of the dots on the dice equals 7.

Find the event B that the sum of the dots on the dice is greater than 10.

Find the event C that the sum of the dots on the dice is greater than 12,

For this experiment, the sample space S consists of 36 points (Fig. 1-3):
S={(,j):ij=12345 6}

where i represents the number of dots appearing on one die and j represents the number of dots
appearing on the other die.

The event A consists of 6 points (see Fig. 1-3):
A={(1,6)(2,5),(3,4), (4 3),(52),(6 1)}
The event B consists of 3 points (see Fig. 1-3):
B ={(5,6), (6 5) (6, 6)}

The event C is an impossible event, that is, C = &.
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1.6.

1.7.

1.8.

§ ~

- (0626 3.6 (4.6 .66 66
B (1\,'5)‘~,g2:‘55\@|5) (4.5) (5."5‘)\-.\(§,5)“~—FB
- e @Y 64 64
F09 @Y B @I 6 69
Fo02 ea @2 @2 6.2 6.2

o) @n By @ s e

1 | - 1 - i (- \

Fig. 1-3

An automobile dealer offers vehicles with the following options:
(a) With or without automatic transmission

(b) With or without air-conditioning
(¢) With one of two choices of a stereo system
(d) With one of three exterior colors

If the sample space consists of the set of all possible vehicle types, what is the number of out-
comes in the sample space?

The tree diagram for the different types of vehicles 1s shown in Fig. 1-4. From Fig. 1-4 we see that the
number of sample pointsin Sis2 x 2 x 2 x 3 =24

Transmission Automatic Manual
Air-conditioning
Stereo

Color

Fig. 14

State every possible event in the sample space S = {a, b, ¢, d}.

There are 2* = 16 possible events in S. They are &F; {a}, {b}, {c}, {d}: {a, b}, {a, ¢}, {a, d}, {b, c},
{b, d}, {c, d}; {a, b, c},(a, b,d)(a,c d},{bcd};S={ab,ecd}

How many events are there in a sample space S with » elementary events?

Let S = {s,, 55, ..., 5,}. Let Q be the family of all subsets of S. {Q is sometimes referred to as the power
set of S.) Let S; be the set consisting of two statements, that is,

S; = {Yes, the s, is in; No, the s, is not in}
Then Q can be represented as the Cartesian product

Q=8 xS, x xS,
={{s, 53, ..., )i €8 fori=1,2,...,n}
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Since each subset of S can be uniquely characterized by an element in the above Cartesian product, we
obtain the number of elements in Q by

n(€d) = n(S)n(Sy) -+ n(S,) = 2"

where n(S;) = number of elements in §; = 2.
An alternative way of finding n(€2) is by the following summation:

" (n " n!
=2 (1) =L T

The proof that the last sum is equal to 2" is not easy.

ALGEBRA OF SETS
1.9. Consider the experiment of Example 1.2. We define the events
A = {k: k is odd)}
B={k:4<k<T
C=1{k:1<k<10}
where k is the number of tosses required until the first H (head) appears. Determine the events A,
BC,AuBBUCANB ANC BN C,and A N B.

A={k: kiseven} = {2,4,6,...}
B={kik=1230rk3>8)

C={kk=11}

A v B={k: kisodd or k =4, 6}
BuC=C

AnB=1{57
AnC={1,357109)
BNnC=8B

An B=1{4 6}

1.10. The sample space of an experiment is the real line expressed as
S={v: —c <v<oc}

(a) Consider the events

A ={v:0<v<i}
Ay ={v:3<v<3}

1 1
A, =40 1—2'—_151)(1—5}

Determine the events

(b) Consider the events

~——

[>~]
It
—~—
<
< o<

IA 1A
Er

-]
[N}
."
——
<

=]
Il
<
<
IA
A
——
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1.11.

Determine the events

s
&

and (B
i=1

(a) Ttis clear that
UAdi={s:0<v<1}
i=1

Noting that the A;’s are mutually exclusive, we have

(b)) Notingthat By > B, >+ 5 B;> -+, we have

C)Bi=Bl={v:vs%} and N\ B; = {v: v < 0}

i=1 i=1

Consider the switching networks shown in Fig. 1-5. Let 4,, 4,, and A, denote the events that
the switches s,, s,, and s, are closed, respectively. Let 4,, denote the event that there is a closed
path between terminals a and b. Express A4,, in terms of A,, A,, and A, for each of the networks
shown.

5 52 S5 5 o
§ o o b no—ol/-— J]:)—ob
L
(@)
(c)
r 7
e e
s "
(d)
(b)
Fig. 1-5

(a) From Fig. 1-5(a), we see that there is a closed path between a and b only if all switches s,, s,, and s,
are closed. Thus,

Ap=A; N Ay N Ay
(b) From Fig. 1-5(b), we see that there is a closed path between a and b if at least one switch is closed.
Thus,
Ay =A, VA, U A,
(¢) From Fig. 1-5(c), we see that there is a closed path between a and b if 5, and either s, or s, are closed.
Thus,
Ap =4, n(4; v 4,)
Using the distributive law (1.12), we have
Ap=(A N 4;) v (4, n 4;)
which indicates that there is a closed path between a and b if s, and s, or s, and s, are closed.

(d) From Fig. 1-5(d), we see that there is a closed path between a and b if either s; and s, are closed or s,
is closed. Thus

Agp=(4; N Ay) U 4,
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1.12.

1.13.

1.14.

1.15.

PROBABILITY [CHAP 1

Verify the distributive law (1.12).

Let se [A n (B u ()]. Then s € 4 and s € (B u C). This means either that s€ A4 and s € B or that
se Aand se C;thatis,s c (A n B)ors e (A n C). Therefore,

An(BUC A B uldn )]

Next, let se (AN B u(An ()]. Then se A and se Bor se 4 and se C. Thus s€ 4 and (s € B or
s € C). Thus,

[(AnB (AN ]cAn(Bu()
Thus, by the definition of equality, we have
AnBu)=(AnBuAn()

Using a Venn diagram, repeat Prob. 1.12.

Figure 1-6 shows the sequence of relevant Venn diagrams. Comparing Fig. 1-6(b) and 1-6(¢), we con-
clude that

ANBUCO=(ANBUAnC)

(h)

(¢) Shaded region: A N B ey Shaded region A N C

(¢) Shaded region: (A NV By VAN )

Fig. 1-6

Let A and B be arbitrary events. Show that 4 « Bifandonly if 4 n B= 4.

“If” part: We show that if A n B= A, then A < B. Let s€ A. Then s € (A n B), since A=A4 n B.
Then by the definition of intersection, s € B. Therefore, A < B.

“Only if” part: We show that if A < B, then A n B = 4. Note that from the definition of the intersec-
tion, (4 n B) < A. Suppose s € A. If A< B, thens e B. Sos e 4 and s € B; that is, s € (A ~ B). Therefore,
it follows that A < (A »n B). Hence, A = A ~ B. This completes the proof.

Let 4 be an arbitrary event in S and let ¢ be the null event. Show that
(@ Auvgg=4 (1.54)
b)) AnG=g (1.55)
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1.16.

1.17.

(@0 AvF={siscdorse &}
But, by definition, there are no s € . Thus,

AuvF={sised}=4

b)) AnF={s:sedand se I}
But, since there are no s € ¢, there cannot be an s such that s € 4 and s € . Thus,

Ang =0

Note that Eq. (I.55) shows that ¢ is mutually exclusive with every other event and including with
itself.

Show that the null (or empty) set & is a subset of every set A.
From the definition of intersection, it follows that
(ANnBc A and (AnBcB (1.56)

for any pair of events, whether they are mutually exclusive or not. If 4 and B are mutually exclusive events,
thatis, A n B = ¢, then by Eq. (I.56) we obtain

FJ<A and FcB (1.57)
Therefore, for any event A,
A (1.58)
that is, (7 is a subset of every set A.
Verify Egs. (1.18) and (1.19).
(@) Suppose first that s € ( A,.>; then s ¢ (U Al>.
i=1 i=1

That is, if s is not contained in any of the events 4;, i =1, 2, ..., n, then s is contained in 4, for all
i=12,...,n Thus

se (4

I

Next, we assume that

Then s is contained in A4, for all i = 1, 2, ..., n, which means that s is not contained in 4, for any i = 1,
2,..., n, implying that

Thus, s€ ('o A;)

This proves Eq. (1.18).
(b) Using Egs. (1.18) and (1.3), we have

(97)- 04

Taking complements of both sides of the above yields
Al)
1

D=

which is Eq. (1.19).
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PROBABILITY

THE NOTION AND AXIOMS OF PROBABILITY

1.18.

1.19.

1.20.

1.21.

Using the axioms of probability, prove Eq. (1.25).
We have
S=A4uAd and A A= G
Thus, by axioms 2 and 3, it follows that
P(§) = 1 = P(A) + P(A)

from which we oblain

P(A) =1 — P(4)
Verify Eq. (1.26).
From Eq. (1.25), we have
P(Ay=1 - P(A)
Let 4 = (. Then, by Eq. (1.2), 4 = (J = S, and by axiom 2 we obtain
P@r=1-P8=1-1=0

Verify Eq. (1.27).

Let 4 « B. Then from the Venn diagram shown in Fig. 1-7, we sce that

B=Au({An B  and An(An B =g

Hence, from axiom 3,
P(B)= P(A) + P(A ~ B)
However, by axiom 1, P(4 n B) = 0. Thus, we concludc that

PA) < P(B) ifAcB

Shaded region: A N 8

Fig. 1-7

Verily Eq. (1.29).

[CHAP |

(1.59)

From the Venn diagram of Fig. 1-8, each of the sets A w B and B can be represented, respectively, as a

union of mutually exclusive sets as follows:

AUuB=Au(An B and B=(AnBui(Adn B

Thus, by axiom 3,
P(A v B)= P(A) + P(A ~ B)
and P(B) = P{4 n B) + P(A n B)
From Eq. (1.61), we have
P(A n B)= P(B) - P(A n B)
Substiluting Eq. (1.62) into Eq. (1.60), we oblain
P(A w B} = P(A) + P(B)— P(4 n B)

(1.60%
(1.61)

(1.62)
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1.22,

1.23.

1.24.

N N
QB | |-
Shaded region: A N B Shaded region: A N B
Fig. 1-8

Let P(A) = 0.9 and P(B) = 0.8. Show that P(A n B) > 0.7.
From Eq. (1.29), we have
P(A ~ B)= P(A) + P(B) ~ P(A U B)
By Eq. (1.32),0 < P(A u B) < 1. Hence
P(A ~ B) > P(A) + P(B) — 1 (1.63)
Substituting the given values of P(A4) and P(B) in Eq. (1.63), we get
PANnB)>209+08~1=07

Equation (1.63) is known as Bonferroni's inequality.

Show that
P(A) = P(A n B) + P(A n B) (1.64)
From the Venn diagram of Fig. 1-9, we see that
A=(An B)yu(4An B and AnNBnAnB=¢g (1.65)

Thus, by axiom 3, we have

P(A) = P(A n B) + P(A ~ B)

A B
I\
ANSB ANnB

Fig. 1-9

Gi\ien that P(A) =09, P(B) = 0.8, and P(A ~ B) = 0.75, find (a) P(A v B); (b) P(A n B); and (c)
P(A n B).
(a) By Eq. (1.29), we have
P(A v B)y=P(A) + P(B)— P(A n B)=09 + 0.8 — 0.75 =095
(b) By Eq. (1.64) (Prob. 1.23), we have
P(A n B) = P(4) — P(A n B) = 09 — 0.75 = 0.15
(¢) By De Morgan’s law, Eq. (I.14), and Eq. (1.25) and using the result from part (a), we get
PAnB)y=PA UB)=1—PAuB)=1-095=005
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1.25.

1.26.

1.27.

PROBABILITY

For any threc events 4,, A,, and A,, show that
P(A, v Ay U A3) = P(A,) + P(A,) + P(A;) — P(A, n A,)
— P(A, N A3)— P(A; n A3) + P(A; n A, 0 Ay)

Let B= A, u A;. By Eq.(1.29), we have
P(A, v B)=P(A,)+ P(B) — P(A, n B)
Using distributive law (/.12), we have
A nB=A,n(A,ud)=(A, N A)u(d, " Ay
Applying Eq. (1.29) to the above event, we obtain

P(A, n By=P(A, 0 A,)+ P(4, n A3) — P[{A, N A;) n (4, N A,)]
="P(A, N Ay)+ P(A, n A;)— P(A, n A, N A;)

Applying Eq. (1.29) to the set B = A, u A;, we have
P(B) = P(4; U A3) = P(4;) + P(43) — P(4; n 4,)
Substituting Egs. (/.69) and (1.68) into Eq. (1.67), we get
P(A, U Ay U A3) = P(A,) + P(A,) + P(A;) — P(A, n A,;) — P(A, N A;)
— P(A; n A))+ P(A; n A, n Ay)

Prove that

1{0AJ$§H&)

i=1 i=1
which is known as Boole's inequality.

We will prove Eq. (1.70) by induction. Suppose Eq. (1.70) is true for n = k.

{(4)= £
G-

An) + P(A, ) [by Eq. (1.33)]
< Y P(A) + P(A,,) = ¥ P(A)

i=1 i=1

[CHAP 1

(1.66)

(1.67)

(1.68)

(1.69)

(1.70)

Thus Eq. (1.70) is also true for n = k + |. By Eq. (1.33), Eq. (1.70) is true for n = 2. Thus, Eq. (1.70) is true

forn> 2.

Verify Eq. (1.31).
Again we prove it by induction. Suppose Eq. (1.31) is true for n = k.

P(OA-): iP(A.')

= i=1

p(ng,);p[(ig’A,)uAm]

Using the distributive law (1.16), we have

(U )ﬁAku =Udin4.)=Uz =0
e i i=1
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1.28.

since 4; N A; = (F for i # j. Thus, by axiom 3, we have
K+l k K+ 1
P(UA,r)—:P(UA,-)"’P(Ak-():ZP(A:')
i=1 i=1 i=1

which indicates that Eq. (1.3]) is also true for n = k + 1. By axiom 3, Eq. (/.3]) is true for n = 2. Thus, it is
true forn > 2.

A sequence of events {A,, n > 1} is said to be an increasing sequence if [Fig. 1-10(a)]

AjcA,c - c Ay c A, - (1.71a)
whereas it is said to be a decreasing sequence if [Fig. 1-10(h)]

A DA, DA DA, D (1.71b)

{a) (h)
Fig. 1-10
If {A4,,n > 1} is an increasing sequence of events, we definc a new event A4, by
A, = limA, = |JA4, (1.72)
n- o i=1
Similarly, if {A4,, n = 1} is a decrcasing sequence of events, we define a new event 4, by
A, =limA,= (A4 (1.73)
n— i=1
Show that if {A,, n > 1} is cither an increasing or a decreasing sequence of events, then
lim P(A4,) = P(A,) (1.74)

n—
which is known as the continuity theorem of probability.

If {A4,, n > 1} is an increasing sequence of events, then by definition

Now, we define the events B,, n > 1, by

B, =4,
B,=A,n 4,
B"=A"ﬂ gn—l

Thus, B, consists of those elements in A, that are not in any of the earlier A,, k < n. From the Venn
diagram shown in Fig. 1-11, it is seen that B, are mutually exclusive events such that
n

» . b
(UB;={JAforalln=1,and {JB = {JA4, =4,

i=1 i=1 =1 i=1
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SN

Thus, using axiom 3', we have

woser{ )
lim iP(B,.) = lim P(l lB,)

= i=1 A= © i

lim P( U A,) = lim P(4,) (1.75)

n—~w i=1 n—=oo

2. P(B)
i=1

it
C:

Next, if {A,, n > 1} is a decreasing sequence, then {A,, n > 1} is an increasing sequence. Hence, by Eq.
(1.75), we have
A

Z,,) = lim P(4))

Liad:l

7=(Aa)

A,->:| = lim P(4,) (1.76)

s

From Eq. (1.19),

i
s

i

s

Thus, P[(

Using Eq. (1.25), Eq. (1.76) reduces to

1 - P(ﬁA,) = lim[1 ~ P(4,)] = 1 — lim P(4,)
Thus, P( ﬁ A,-) = P(4,) = lim P(4,) (1.77)

Combining Eqs. (/.75) and (1.77), we obtain Eq. (1.74).

EQUALLY LIKELY EVENTS

1.29. Consider a telegraph source generating two symbols, dots and dashes. We observed that the dots

were twice as likely to occur as the dashes. Find the probabilities of the dot’s occurring and the
dash’s occurring.
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1.30.

1.31.

1.32.

From the observation, we have
P(dot) = 2P(dash)
Then, by Eq. (1.35),
P(dot) + P(dash) = 3P(dash) =]
Thus, P(dash) = 4 and P(dot) =

The sample space S of a random experiment is given by

={a, b, ¢, d}
with probabilities P(a) = 0.2, P(b) = 0.3, P(c) = 0.4, and P(d) = O.1. Let 4 denote the event {a, b},
and B the event {b, ¢, d}. Determine the following probabilities: (a) P(4); (b) P(B); (c) P(A); (d)

P(A v B); and (e) P(A n B).

Using Eq. (1.36), we obtain
(@ P(A)= P(a) + P(b) = 0.2 + 0.3 = 0.5
(b) P(B) = P(b) + P(c) + P{d) =03 + 0.4 + 0.1 =038
(¢©) A={c,d}; P(A) = P(c) + P(d) =04 + 0.1 =0.5
d AuB={abcd}=5PAuB=PS=1
() An B={b}; P4 B)=P(h) =

An experiment consists of observing the sum of the dice when two fair dice are thrown (Prob.
1.5). Find (@) the probability that the sum is 7 and (b) the probability that the sum is greater than
10.

(a) Let {;; denote the elementary event (sampling point) consisting of the following outcome: {;; = (i, ),
where i represents the number appearing on one die and j represents the number appearing on the
other die. Since the dice are fair, all the outcomes are equally likely. So P({;;) = 4. Let 4 denote the
event that the sum is 7. Since the events {;;, are mutually exclusive and from Fig. 1-3 (Prob. 1.5), we
have

P(A) = P(l1s © Lo5 v {30 v Laz v Ly U ls))
= P({,6) + P((25) + P({34) + P({43) + P({sy) + P(Ls))
= 6(d5) =
(b) Let B denote the event that the sum is greater than 10. Then from Fig. 1-3, we obtain
P(B) = P({ss v {65  L66) = P({se) + P(lgs) + P(Ls6)
=3(f5) = 11

There are n persons in a room.

(@) What is the probability that at least two persons have the same birthday?
(b) Calculate this probability for n = 50.

(¢) How large need n be for this probability to be greater than 0.5?

(a) As each person can have his or her birthday on any one of 365 days (ignoring the possibility of
February 29), there are a total of (365)" possible outcomes. Let 4 be the event that no two persons
have the same birthday. Then the number of outcomes belonging to A is

n(A4) = (365)364) --- (365 —n + 1)
Assuming that each outcome is equally likely, then by Eq. (1.38),

n(A) _(365)364) --- (365 —n + 1)
n(s) (365)"

P(4) = (1.78)
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1.33.

(b)

(0

PROBABILITY [CHAP 1

Let B be the event that at least two persons have the same birthday. Then B = 4 and by Eq. (1.25),
P(B) = 1 — P(A).

Substituting n = 50 in Eq. (/.78), we have
P(4)~ 003 and  P(B)x~ 1~ 0.03 =097
From Eq. (1.78), when n = 23, we have
P(A)~ 0493 and  P(B)=1 — P(4) ~ 0.507

That is, if there are 23 persons in a room, the probability that at least two of them have the same
birthday exceeds 0.5.

A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women.

(@)
(b)
(a)

(b)

Find the probability that the committee consists of 2 men and 3 women.
Find the probability that the committee consists of all women.

15
"‘S)=<5)

It is assumed that “random selection” means that each of the outcomes is equally likely. Let 4 be the
event that the committee consists of 2 men and 3 women. Then the number of outcomes belonging to

A is given by
()(l )
(4) 2/\3
( )(l )
n(4) \2/\3 400

P(A)=m=ﬁ=mzo.4

5

The number of total outcomes is given by

Thus, by Eq. (1.38),

Let B be the event that the committee consists of all women. Then the number of outcomes belonging

to Bis
5\/ 10
o= (o)(5)
G)5)
nB) \o/\5/ 36

=l ~0.084
n(s) (15) 429
5

Thus, by Eq. (1.38),

P(B) =

1.34. Consider the switching network shown in Fig, 1-12. It is equally likely that a switch will or
will not work. Find the probability that a closed path will exist between terminals a and b.

a o-—‘ . b
.\"

Fig. 1-12
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Consider a sample space S of which a typical outcome is (1, 0, 0, 1), indicating that switches 1 and 4 are
closed and switches 2 and 3 are open. The sample space contains 2% = 16 points, and by assumption, they

are equally likely (Fig. 1-13).

Let A;, i=1, 2, 3, 4 be the event that the switch s; is closed. Let 4 be the event that there exists a

closed path between a and b. Then

A=A, U(d, 0 A) U (4, N Ay)

Applying Eq. (1.30), we have

P(A) = P[A, v (4; N Ay) v (4, N A)]

= P(4,) + P(4; n Ay) + P(4;

— P[4, n (A3 n A3)] = PLA, n (A n AT = PLA; N A3) 0 (A n Ay)]

Ay)

+ P[A, n (A, n A3) n (4, n AY)]

= P(A,) + P(A; n A3) + P(A, n

—PA, " A, N A3)—P(A; n Ay n A,) — P(A;, N A3 N Ay)

+ P4, " A; n Ay N AY)

Ay)

Now, for example, the event 4, n A, contains all elementary events with a 1 in the second and third

places. Thus, from Fig. {-13, we see that
n(4,) =28
nAd, n A, N Ay) =2
nA, n A;n A,) =2

Thus,

n(d, N A;) =4

A, N Ay) =4

A, n A, N A,)=2

A, N A, n Ay A) =1

P(A)=1s + T6+ 16 — Ts — % — 15 + 75 = 1 ~ 0,688
¢
1
0 0001
0
! 0010
—L
0 - 0011
0
1
o ! 0101
! S—
‘ 0 L 1001
1 L - 1011
0
0 1100
1 ! 1101

T

Fig. 1-13

1110
1111

1.35. Consider the experiment of tossing a fair coin repeatedly and counting the number of tosses

required until the first head appears.

(a) Find the sample space of the experiment.

(b) Find the probability that the first head appcars on the kth toss.
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(¢) Verify that P(S) = 1.
{a) The sample space of this experiment is
S={e,e;,eq,...={e: k=123 ..}

where e, is the elementary event that the first head appears on the kth toss.

{b) Since a fair coin is tossed, we assume that a head and a tail are equally likely to appear. Then P(H) =
P(T)= 1 Let

Pe,) = p, k=1,213, ...

Since there are 2* equally likely ways of tossing a fair coin k times, only one of which consists of (k — 1)
tails following a head we observe that

1
P(ek)=pk=§ k=123,.. (1.79)
(¢) Using the power series summation formula, we have
9 © 1 @ 1 k %
PO)= T Pe)= Y 5=2 |5) =727~ (1.80)
k=1 k=1 2 k=1 2 1 - T

1.36. Consider the experiment of Prob. 1.35.

(a) Find the probability that the first head appears on an even-numbered toss.
(b) Find the probability that the first head appears on an odd-numbered toss.

(a) Let A be the event “the first head appears on an even-numbered toss.” Then, by Eq. (1.36) and using
Eq.(1.79) of Prob. 1.35, we have

® L4 1 a 1 m 1 1
PA)=py+p,+ps+- = szm= Z T = Z ) ===
m=1 m=1 2 1 4 3
(b) Let B be the event “the first head appears on an odd-numbered toss.” Then it is obvious that B = 4,
Then, by Eq. (1.25), we get
PB)=PA)=1-PA)=1-4=3%
As a check, notice that
PB =p +ps+ps+ = Lhmes= L i =7 &
m=0 =

m=0

CONDITIONAL PROBABILITY
1.37. Show that P(A| B) defined by Eq. (1.39) satisfies the three axions of a probability, that is,
(@) P(AIB)=0
(b) P(SIB)=1
(c) P(A, U Ay|By=P(A,|B)+ P(A;|B)f A, n A, =
(@) From definition (1.39),

P(A n B)

P(4}B) = PB)

P(B) > 0

By axiom 1, P(A ~ B) = 0. Thus,
P(A|B) 20
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(b) ByEq.(1.5,8 n B= B Then

P(B)  P(B)
(¢) By definition {1.39),

P[(A A B
P(4, U A,|B) = [(4, v 4,) n B]
P(B)
Now by Eqs. (1.8) and (1.11), we have
(A, v A)) " B=(A, n Byu (4, n B)

and A, n A, = & implies that (4, n B) n (4, n B) = . Thus, by axiom 3 we get
P4, n B)+ P(4, n B) _P(A, n B) N P(A, n B)

P(B) ~ P(B) P(B)
= P(A,|B) + P(A,|B) fA, nA, =

P(A, v A,|B) =

1.38. Find P(A|B)if(a) A n B= &, () A < B,and (¢) B < A.
(@) IfAn B=(,then P(A n B) = P(Z) = 0. Thus,

P - PAOB _P@)

P(B)  P(B)
) If A< B,then4 ~ B= A and
p4|B) = P4 B _ P4
P(B) P(B)
(¢) UB< A, thend n B= Band
pa|py =408 _FB_,

P(BY ~ P(B)

1.39. Show that if P(4 | B) > P(A), then P(B| A) > P(B).

HHM&=5%%@>H&mmHAmm>HMHMTm&
pBlay=LANB PAPB)_ pp o PB4 > PB)

P(A) P(A)

1.40. Consider the experiment of throwing the two fair dice of Prob. 1.31 behind you; you are then
informed that the sum is not greater than 3.

(a) Find the probability of the event that two faces are the same without the information given.
(b) Find the probability of the same event with the information given.

(@) Let A be the event that two faces are the same. Then from Fig. 1-3 (Prob. 1.5) and by Eq. (1.38), we
have

A={,)i=1,2..,6}

and
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(b) Let B be the event that the sum is not greater than 3. Again from Fig. 1-3, we see that
B={ij):i+j<3}={(11,(0,2,(2 1}
and
nB) 3 1
PB)=—=—=—
(B) n(s) 36 12

Now A n B is the event that two faces are the same and also that their sum is not greater than 3.
Thus,

AnB) 1
HAnm=ﬂﬁ%J=%

Then by definition (1.39), we obtain

Note that the probability of the event that two faces are the same doubled from § to 4 with the
information given.

Alternative Solution:

There are 3 elements in B, and 1 of them belongs to A. Thus, the probability of the same event
with the information given is %.

Two manufacturing plants produce similar parts. Plant 1 produces 1,000 parts, 100 of which are
defective. Plant 2 produces 2,000 parts, 150 of which are defective. A part is selected at random
and found to be defective. What is the probability that it came from plant 1?

Let B be the event that “the part selected is defective,” and let A be the event that “the part selected
came from plant 1.” Then 4 n B is the event that the item selected is defective and came from plant 1.
Since a part is selected at random, we assume equally likely events, and using Eq. (1.38), we have

P(4 ~ B) = 9% =
Similarly, since there are 3000 parts and 250 of them are defective, we have
PB) = % =

By Eq. (1.39), the probability that the part came from plant 1 is

Alternative Solution:

There are 250 defective parts, and 100 of these are from plant 1. Thus, the probability that the

defective part came from plant 1 is 123 = 0.4,

A lot of 100 semiconductor chips contains 20 that are defective. Two chips are selected at
random, without replacement, from the lot.

(@) What is the probability that the first one selected is defective?

(b} What is the probability that the second one selected is defective given that the first one was
defective?
(c) What is the probability that both are defective?
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1.43.

1.44.

1.45.

(a) Let A denote the event that the first one selected is defective. Then, by Eq. (1.38),
P(4) = 3% = 0.2

(b) Let B denote the event that the second one selected is defective. After the first one selected is defective,
there are 99 chips left in the lot with 19 chips that are defective. Thus, the probability that the second
one selected is defective given that the first one was defective is

P(B|A) =& =0.192
(¢) By Eq.(1.41), the probability that both are defective is
P(A ~ B) = P(B| A)P(A) = (£3)(0.2) = 0.0384

A number is selected at random from {1, 2, ..., 100). Given that the number selected is divisible
by 2, find the probability that it is divisible by 3 or 5.

Let A, = event that the number is divisible by 2
A, = event that the number is divisible by 3
A5 = event that the number is divisible by 5
Then the desired probability is

Pi(A; v 45) 0 A,]

P(A AslAy) = Eq. (1.39
(A v As14,) P(A,) [(Eq. (1.39)]
Pl(A; N Ay) v (45 N 4,)]
= [Eq. (1.127]
P(A,)
P(Ay N Ay)+ P(As N Ay)) — P(A3 N As N Ay)
= Eq. (1.29
PA)) LEq. (1.29)]
Now A3 n A, = event that the number is divisible by 6
As N A, = event that the number is divisible by 10
Ay N As n A, = event that the number 1s divisible by 30
and P(A; n A,) = 25 P(As n Ay) = &% P(As N As N Ay) = 185
o+ i — 1 23
Thus, P(A, U A5|A2)=—'_“—+'5—0°—'—°‘1=—=0.46

Let A, A5, ..., A, be events in a sample space S. Show that
P(A, n Ay oo A)=P(A)P(A, | A))P(A | A, n Ay) - P(AJA, n A, noo-n A, )
(1.81)

We prove Eq. (1.81) by induction. Suppose Eq. (1.81) is true for n = k:
P(A,n A, ooy A) = PADP(A | ADPA LAy N Ay) - PAJA N Ay -0 Ayly)
Multiplying both sides by P(4,. 14, n A, n -+ 0 A4,), we have
PA A, 0 AJPA s, [A 0 Ay - A)=PA, n Ay 0o 0 Ay )
and PA, Ay 0o A ) = PADPALTADPIAS AL 0 Ay) - P(Ag  IA, N Ay 0o 0 AY)

Thus, Eq. (1.81) is also true for n = k + 1. By Eq. (1.41), Eq. (1.81) is true for n = 2. Thus Eq. (1.81) is true
forn = 2.

Two cards are drawn at random from a deck. Find the probability that both are aces.

Let A be the event that the first card is an ace, and B be the event that the second card is an ace. The
desired probability is P(B n A). Since a card is drawn at random, P(4) = s5. Now if the first card is an ace,
then there will be 3 aces left in the deck of 51 cards. Thus P(B| A) = <. By Eq. (1.41),

P(B n A) = P(B| A)P(A) = (5)¥p) = 77
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Check:

By counting technique, we have

)
2 @3 1

P(BHA)=@=W=E
2

1.46. There are two identical decks of cards, each possessing a distinct symbol so that the cards from
each deck can be identified. One deck of cards is laid out in a fixed order, and the other deck is
shuffled and the cards laid out one by one on top of the fixed deck. Whenever two cards with the
same symbol occur in the same position, we say that a match has occurred. Let the number of
cards in the deck be 10. Find the probability of getting a match at the first four positions.

Let A;,i= 1,2, 3,4, be the events that a match occurs at the ith position. The required probability is
P(A; n Ay n Ay 1 Ay)
By Eq. (1.81),
P(A, n Ay n Ay Ay) = P(A)P(A,|A)P(A3| A, N A))P(A|A, 1 A, 0 Ay)

There are 10 cards that can go into position 1, only one of which matches. Thus, P(4,) = {5. P(4,|A4,) is
the conditional probability of a match at position 2 given a match at position 1. Now there are 9 cards left
to go into position 2, only one of which matches. Thus, P(4,|A4,) = . In a similar fashion, we obtain
P(A5]A; N A,) = §and P(A41A; N Ay n A,) = 4. Thus,

P(4, 0 4, 0 Ay 0 Ag) = (16X8)3NY) = woro

TOTAL PROBABILITY
1.47. Verify Eq. (1.44).
Since B n § = B [and using Eq. (1.43)), we have
B=BnS=Bn{Ad,vA,u- - uUAd)
=BNnA)u(BnA)u---U(Bn A) (1.82)

Now the events B n A;,i =1, 2, ..., n, are mutually exclusive, as seen from the Venn diagram of Fig. 1-14,
Then by axiom 3 of probability and Eq. (1.41), we obtain

P(B)=P(B ~ S)= Y P(B A A)= Y, PBI A)P(4)

i=1
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1.48. Show that for any events A and B in S,
P(B) = P(B| A)P(A) + P(B| A)P(A) (1.83)
From Eq. (1.64) (Prob. 1.23), we have
P(B)=P(Bn A)+ P(Bn A)
Using Eq. (1.39), we obtain
P(B) = P(B| A)P(A) + P(B| A)P(A)

Note that Eq. (1.83) is the special case of Eq. (1.44).

1.49. Suppose that a laboratory test to detect a certain disease has the following statistics. Let

A = event that the tested person has the disease
B = event that the test result is positive

It is known that
P(B| A) = 0.99 and P(B| A) = 0.005

and 0.1 percent of the population actually has the disease. What is the probability that a person
has the disease given that the test result is positive?

From the given statistics, we have
P(A) = 0.001 then P(A) = 0.999
The desired probability is P(4 | B). Thus, using Eqgs. (1.42) and (1.83), we obtain

P(B| A)P(A)
P(B| AYP(A) + P(B| A)P(A)
B (0.99X0.001)
" (0.99%0.001) + (0.005%0.999)

P(A|B) =

=0.165

Note that in only 16.5 percent of the cases where the tests are positive will the person actually have the
disease even though the test is 99 percent effective in detecting the disease when it is, in fact, present.

1.50. A company producing electric relays has three manufacturing plants producing 50, 30, and 20
percent, respectively, of its product. Suppose that the probabilities that a relay manufactured by
these plants is defective are 0.02, 0.05, and 0.01, respectively.

(a) 1If arelay is selected at random from the output of the company, what is the probability that
it is defective?

(b) If a relay selected at random is found to be defective, what is the probability that it was
manufactured by plant 2?7

(a) Let B be the event that the relay is defective, and let 4; be the event that the relay is manufactured by
plant i (i = 1,2, 3). The desired probability is P(B). Using Eq. (1.44), we have

3
P(B) = }, P(B| A)P(4)
i=1

= (0.02%0.5) + (0.05)0.3) + (0.01)(0.2) = 0.027
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(b) The desired probability is P(A4, | B). Using Eq. (1.42) and the result from part (¢), we obtain

P(B| A,)P(4,) _ (0.05)(0.3)

= =0.
P(B) 0.027 556

P(4,|B) =

Two numbers are chosen at random from among the numbers 1 to 10 without replacement. Find
the probability that the second number chosen is 5.

Let A;,i=1,2, ..., 10 denote the event that the first number chosen is i. Let B be the event that the
second number chosen is 5. Then by Eq. (1.49),

10
P(B) = ). P(B| 4)P(4;)

Now P(A;,) = 15. P(B| A)) is the probability that the second number chosen is 5, given that the first is i, If
i=5,then P(B| A;) = 0.1f i # 5, then P(B| A,) = &. Hence,

10

P(B) = Z P(B| A)P(A) = 5)75) = 15

Consider the binary communication channel shown in Fig. 1-15. The channel input symbol X
may assume the state O or the state 1, and, similarly, the channel output symbol Y may assume
either the state 0 or the state 1. Because of the channel noise, an input 0 may convert to an
output 1 and vice versa. The channel is characterized by the channel transition probabilities p,,
4o, P1» and q,, defined by

Po = P(y,1xo) and Py = P(yolx))
4o = P(yo1x) and g, = Py, 1x))
where x, and x, denote the events (X = 0) and (X = 1), respectively, and y, and y, denote the
events (Y = 0) and (Y = 1), respectively. Note that p, + g, =1 = p, + q,. Let P(xy) = 0.5, py =
0.1,and p, = 0.2
(@) Find P(y,) and P(y,).
(b) If a 0 was observed at the output, what is the probability that a 0 was the input state?
{¢) Ifalwas observed at the output, what is the probability that a | was the input state?
(d) Calculate the probability of error P, .

dy

7y

)

Fig. 1-15

(a) We note that
P(x))=1—=P(xs) =1 —-05=0.5
P(yolxg) =qgo=1—py=1-0.1=09
Py ix)=¢g,=1—-p, =1-02=08
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Using Eq. (1.44), we obtain
P(yo) = Plyo| xo)P(xo) + P(yolx,)P(x,;) = 0.9(0.5) + 0.2(0.5) = 0.55
P(y,) = P(y,}xo)P(x0) + P(y, | x)P(x,) = 0.1(0.5) + 0.8(0.5) = 0.45
(b} Using Bayes’ rule (1.42), we have
P(xg)P(yo] xo) _ (0.5)(0.9)

P = = = 0.
(xo| Yo} Plyo) 0.55 0.818

(¢) Similarly,

P(x )P 0.540.8
P(x,]y,) = (Xl)P(‘(yY;'xl) _ ( 0):5 ) = 0.889
N .

(d) The probability of error is
P, = P(y,|xo)P(xo) + P(yo|x)P(x,) = 0.1(0.5) + 0.2(0.5) = 0.15.

INDEPENDENT EVENTS
1.53. Let A and B be events in a sample space S. Show that if A and B are independent, then so are (a)
A and B, (b) A and B, and (¢) 4 and B.
(@) From Eq. (1.64) (Prob. 1.23), we have
P(A)= P(A A B) + P(A N B)
Since 4 and B are independent, using Eqs. (1.46) and (1.25), we obtain
P(A ~ B) = P(A) — P(A ~ B) = P(A) — P(A)P(B)
= P(A)[1 — P(B)] = P(A)P(B) (1.84)
Thus, by definition (1.46), A and B are independent.
(b) Interchanging A and B in Eq. (/.84), we obtain
P(B n A) = P(B)P(A)
which indicates that 4 and B are independent.
(c) Wehave
P(A n B)y= P[(A u B)] [Eq. (1.14)]
1—PA vy B) [Eq. (1.25)]
| — P(A)— P(B)+ P(A n B)  [Eq.(1.29)]
1 — P(A) — P(B) + P(A)P(B) [Eq. (1.46)]
1 — P(A) — P(B)[1 — P(A)]
=[1 - P(AI[1 — P(B)]
= P(A)P(B) [Eqg. (1.25)]

It

Hence, 4 and B are independent.

1.54. Let A and B be events defined in a sample space S. Show that if both P(A4) and P(B) are nonzero,
then events A and B cannot be both mutually exclusive and independent.

Let A and B be mutually exclusive events and P(4) # 0, P(B) # 0. Then P(A n B) = P() =0 but
P(A)P(B) # 0. Since

P(A n B) # P(A)P(B)

A and B cannot be independent.

1.55. Show that if three events A, B, and C are independent, then A and (B v C) are independent.
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We have
P[ANn (BUC)Y]=P[(An B u(An ()] [Eq. (1.12)]
=PANB+PANC)—P(ANnBNC) [Eq (1.29)]
= P(A)P(B) + P{A)P(C) — P(A)P(B)P(C) [Eq. (1.50)]
= P(A)P(B) + P(A)P(C) — P(A)P(B n C) [Eq. (1.50)]
= P(A)P(B) + P(C) — P(B n ()]
= P(A)P(B U C) [Eq. (1.29)]

Thus, 4 and (B u C) are independent.

Consider the experiment of throwing two fair dice (Prob. 1.31). Let A be the event that the sum
of the dice is 7, B be the event that the sum of the dice is 6, and C be the event that the first die is
4. Show that events A and C are independent, but events B and C are not independent.

From Fig. 1-3 (Prob. 1.5), we see that
16> CZSV CJA) CAJ! CSZ‘ Cbl}

A=

B= {Cnss {245 8335 Lazs Lsi)
C= {Cu« Caz: <43, Cua <45» Ca()}
An

and C = {ls} B nC={{}
Now P(A)= £ =14 P(B) = % PCO)=x=3%
and P(A n C) = 55 = P(AP(C)

Thus, events A and C are independent. But
P(B n C) = ¥ # P(B)P(C)

Thus, events B and C are not independent.

In the experiment of throwing two fair dice, let 4 be the event that the first die is odd, B be the
event that the second die is odd, and C be the event that the sum is odd. Show that events A, B,
and C are pairwise independent, but A, B, and C are not independent.

From Fig. 1-3 (Prob. 1.5), we see that
P(A)=PB)=P(C)=3¢ =}
PANB =PANC)=PBNC)=x%=3%

Thus P(A n B) =1 = P(A)P(B)
P(A n C) =% = P(A)P(C)
P(B n C) = § = P(B)P(C)

which indicates that A, B, and C are pairwise independent. However, since the sum of two odd numbers is
even, {A n B C) = and

P4 n Bn C)=0% % = P(A)P(B)P(C)

which shows that 4, B, and C are not independent.

A system consisting of n separate components is said to be a series system if it functions when all
n components function (Fig. 1-16). Assume that the components fail independently and that the
probability of failure of component i is p;, i =1, 2, ..., n. Find the probability that the system

functions.

Fig. 1-16 Series system.
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1.59.

1.60.

1.61.

Let A; be the event that component s; functions. Then
P(A)=1—PA)=1—p,

Let A be the event that the system functions. Then, since 4;'s are independent, we obtain
=P<ﬂA;> HP(A =[100-p) (1.85)
i=1 i= =

i=1

A system consisting of n separate components is said to be a parallel system if it functions when
at least one of the components functions (Fig. 1-17). Assume that the components fail indepen-
dently and that the probability of failure of component i is p;, i = 1, 2, ..., n. Find the probabil-
ity that the system functions.

la

A

aly:

Fig. 1-17 Parallel system.

Let A, be the event that component s; functions. Then
P(A-i) =
Let 4 be the event that the system functions. Then, since A4;’s are independent, we obtain
P(A)=l—P(/T)=1—P<ﬂ/T,>=1— I1p: (1.86)
i= i=1
Using Eqs. (1.85) and (1.86), redo Prob. 1.34.

From Prob. 1.34, p, =4, i = 1, 2, 3, 4, where p; is the probability of failure of switch s,. Let A be the
event that there exists a closed path between a and b. Using Eq. (1.86), the probability of failure for the
parallel combination of switches 3 and 4 is

P3a = p3ps = (3N3) = %
Using Eq. (1.85), the probability of failure for the combination of switches 2, 3, and 4 is
Praa=1l—-(1—3l-D=1-3=3
Again, using Eq. (1.86), we obtain

PA)=1-pipyas=1-BD=1-%=1

A Bernoulli experiment is a random experiment, the outcome of which can be classified in but
one of two mutually exclusive and exhaustive ways, say success or failure. A sequence of Ber-
noulli trials occurs when a'Bernoulli experiment is performed several independent times so that
the probability of success, say p, remains the same from trial to trial. Now an infinite sequence of
Bernoulli trials is performed. Find the probability that (a) at least 1 success occurs in the first s
trials; (b) exactly k successes occur in the first n trials; (¢) all trials result in successes.

(@) In order to find the probability of at least | success in the first n trials, it is easier to first compute the
probability of the complementary event, that of no successes in the first n trials. Let 4, denote the event
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of a failure on the ith trial. Then the probability of no successes is, by independence,
P4, 0 Ay oo A) = P(A)P(Ay) - P(4,) = (1 — pYf (1.87)
Hence, the probability that at least 1 success occurs in the first n trialsis 1 — (1 — p)™.

(b) In any particular sequence of the first n outcomes, if k successes occur, where k =0, 1, 2, ..., n, then

n — k failures occur. There are <:> such sequences, and each one of these has probability p“(1 — p)" %

- . L n
Thus, the probability that exactly k successes occur in the first n trials is given by <k>p“(1 —prk

(¢) Since A; denotes the event of a success on the ith trial, the probability that all trials resulted in
successes in the first n trials is, by independence,

PA nA, -+ A)=PA)PA,) -+ PA4,)=p" (1.88)

Hence, using the continuity theorem of probability (1.74) (Prob. 1.28), the probability that all trials
result in successes is given by

P<ié z,) = P<lim ﬂ Z,) = lim P(ié ;l.> ~ limp" = {(1) p<l

n~vo i=1 = - p=1

Let S be the sample space of an experiment and S = {4, B, C}, where P(4) = p, P(B) = ¢, and
P(C) = r. The experiment is repeated infinitely, and it is assumed that the successive experiments
are independent. Find the probability of the event that A occurs before B.

Suppose that 4 occurs for the first time at the nth trial of the experiment. If A is to have occurred
before B, then C must have occurred on the first (n ~ 1) trials. Let D be the event that A occurs before B.
Then

D=1\{}D

1

T\Ca

where D, is the event that C occurs on the first (n — 1) trials and 4 occurs on the nth trial. Since D.’s are
mutually exclusive, we have

P(D)= ) P(D,)
a=q

Since the trials are independent, we have

P(D,) = [POI" ' PA) = "~ p

Thus, PD) =S P lppS ke P __P_
e ®) .Z‘lr P pkg'o l—r p+g
_ P(4)
or P(D) = A+ PB) (1.89)

sincep+qg+r=1

In a gambling game, craps, a pair of dice is rolled and the outcome of the experiment is the sum
of the dice. The player wins on the first roll if the sum is 7 or 11 and loses if the sum is 2, 3, or 12.
If the sum is 4, 5, 6, 8, 9, or 10, that number is called the player’s “point.” Once the point is
established, the rule is: If the player rolls a 7 before the point, the player loses; but if the point is
rolled before a 7, the player wins. Compute the probability of winning in the game of craps.

Let A, B, and C be the events that the player wins, the player wins on the first roll, and the player gains
point, respectively. Then P(4) = P(B) + P(C). Now from Fig. 1-3 (Prob. 1.5),

PB)=Psum=T7)+ Pum =11) =& + & =%



CHAP. 1} PROBABILITY 35

1.64.

1.65.

1.66.
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1.68.

Let A, be the event that point of k occurs before 7. Then
P(C) = D P(A,)P(point = k)

kel4,5.6,8.9,10}

By Eq. (1.89) (Prob. 1.62),

P(sum = k)
(sum = k) + P(sum = 7)

P(A}) = P (1.90)

Again from Fig. 1-3,

Plsum = 4) = &% Pisum = 5) — & P(sum = 6) — %
P(sum = 8) = & P(sum = 9) = &% P(sum = 10) = <%
Now by Eq. (1.90),
P(Ay) =5 P(As) =% P(Ag) = ¥
P(As)=l_5| P(A9)=% P(Alo)=%

Using these values, we obtain

Supplementary Problems

Consider the experiment of selecting items from a group consisting of three items {a, b, ¢}.

(@) Find the sample space S, of the experiment in which two items are selected without replacement.

(b) Find the sample space S, of the experiment in which two items are selected with replacement.
Ans. (@) S| = {ab, ac, ba, be, ca, ch}

(b) S, ={aa, ab, uc, bu, bb, b, ca, cb, ¢c}
Let A and B be arbitrary events. Then show that A =« Bifand onlyif A U B = B.

Hint: Draw a Venn diagram.

Let A and B be events in the sample space S. Show that if A = B, then B c A.

Hint: Draw a Venn diagram.

Verify Eq. (1.13).

Hint: Draw a Venn diagram.

Let A and B be any two events in §. The difference of B and A, denoted by B — A, is defined as
B-A4=BnA
The symmetric difference of A and B, denoted by A A B, is defined by
AAB=(A—-B)u(B- A)
Show that
AAB=(AuUB)n (AN B

Hint: Draw a Venn diagram,
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Let A and B be any two events in . Express the following events in terms of A and B.
(a) At least one of the events occurs.

(b) Exactly one of two events occurs.

Ans. (a) Au B;(b)AAB

Let A, B, and C be any three events in S. Express the following events in terms of these events.

(a) Either B or C occurs, but not A.
(b) Exactly one of the events occurs.
(c) Exactly two of the events occur.

Ans. (@) An(Bu Q)
) (AnBuOju{Bn{Adu O} u{Cn(4Avu B)}
(©) {(AnBnClu{{dnC)nBlu{(BnOn A}

A random experiment has sample space § = {a, b, c}. Suppose that P({a, ¢}) = 0.75 and P({b, ¢)} = 0.6.
Find the probabilities of the elementary events.
Ans. P(a) = 04, P(b) = 0.25, P(¢) = 0.35

Show that
(@ PAuB)=1—-PAnB)

(b) P4~ B 21— PA) — P(B)
(c) P(AAB)=PA v B)— P(A N B)

Hint: (a) Use Eqgs. (1.15) and (1.25).
(b) Use Eqs. (1.29), (1.25), and (1.28).
(¢) See Prob. 1.68 and use axiom 3.

Let A, B, and C be three events in S. If P(4)=P(B)=14%, P(C)=13%, PAn By=14, P(A n C) = ¢, and
P(Bn C)=0,find P(A v B u O)

Ans. 8

Verify Eq. (1.30).

Hint: Prove by induction.

Show that
PA, nAyn o nA) 2 P(A)+ P(Ay) + -+ P(A4,)—(n— 1)
Hint: Use induction to generalize Bonferroni's inequality (1.63) (Prob. 1.22).
In an experiment consisting of 10 throws of a pair of fair dice, find the probability of the event that at least
one double 6 occurs.

Ans. 0.246

Show that if P(A) > P(B), then P(4| B) > P(B| A).

Hint: Use Eqs. (1.39) and (1.40).

An urn contains 8 white balls and 4 red balls. The experiment consists of drawing 2 balls from the urn
without replacement. Find the probability that both balls drawn are white.

Ans. 0.424
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1.79.

1.80.

1.81.

1.82.

There are 100 patients in a hospital with a certain disease. Of these, 10 are selected to undergo a drug
treatment that increases the percentage cured rate from 50 percent to 75 percent. What is the probability
that the patient received a drug treatment if the patient is known to be cured?

Ans. 0.143

Two boys and two girls enter a music hall and take four seats at random in a row. What is the probability
that the girls take the two end seats?

Ans. %

Let A and B be two independent events in S. It is known that P(4 ~ B) = 0.16 and P(4 v B) = 0.64. Find
P(A) and P(B).

Ans. P(A)= P(B)=04

The relay network shown in Fig. 1-18 operates if and only if there is a closed path of relays from left to

right. Assume that relays fail independently and that the probability of failure of each relay is as shown.
What is the probability that the relay network operates?

Ans. 0.865

Jl0.2ll
o 0.4 0.4 0.1 0
7y Sy B My

Fig. 1-18



Chapter 2

Random Variables

21 INTRODUCTION

In this chapter, the concept of a random variable is introduced. The main purpose of using a
random variable is so that we can define certain probability functions that make it both convenient
and easy to compute the probabilities of various events.

22 RANDOM VARIABLES
A. Definitions:

Consider a random experiment with sample space S. A random variable X({) is a single-valued
real function that assigns a real number called the value of X({) to each sample point { of S. Often, we
use a single letter X for this function in place of X({) and use r.v. to denote the random variable.

Note that the terminology used here is traditional. Clearly a random variable is not a variable at
all in the usual sense, and it is a function.

The sample space S is termed the domain of the r.v. X, and the collection of all numbers [values
of X({)] is termed the range of the r.v. X. Thus the range of X is a certain subset of the set of all real
numbers (Fig. 2-1).

Note that two or more different sample points might give the same value of X({), but two differ-
ent numbers in the range cannot be assigned to the same sample point.

X0y R

Fig. 2-1 Random variable X as a function.

EXAMPLE 2.1 [n the experiment of tossing a coin once (Example 1.1), we might define the r.v. X as (Fig. 2-2)
XHy=1 X(T)=0

Note that we could also define another r.v,, say Y or Z, with

Y(H) =0, Y(T)=1 or Z(H)=0,Z(T)=

B. Events Defined by Random Variables:
If X isar.v.and x is a fixed real number, we can define the event (X = x) as
(X =x)={{: X()=x} (2.1)

Similarly, for fixed numbers x, x,, and x,, we can define the following events:

(X <x)=1{: X(0)) < x}
(X >x)={{: X(0) > x} (2.2)
(x; < X < xy)={{:x, < X(0) < x,}

38
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1
0 1

Yy

Fig. 2-2 One random variable associated with coin tossing.

These events have probabilities that are denoted by
P(X = x) = P{{: X(0) = x}
P(X <x)=P{{: X({) < x}
P(X > x)=P{{: X({) > x}
Px; < X < x,)=P{{:x; < X({) < x3}

2.3)

EXAMPLE 2.2 In the experiment of tossing a fair coin three times (Prob. 1.1), the sample space S, consists of
eight equally likely sample points S, = {HHH, ..., TTT}. If X is the r.v. giving the number of heads obtained, find
(a) P(X =2); (b) P(X < 2).

(a) Let A < S, be the event defined by X = 2. Then, from Prob. 1.1, we have
A=(X=2={{: X({)=2} = {HHT, HTH, THH}
Since the sample points are equally likely, we have
PX=2=PA)=3
(b) Let B <= S, be the event defined by X < 2. Then
B=(X<2)={{:X{)<2}={HTT, THT, TTH, TTT}
and PX<)=PB)=%=1

23 DISTRIBUTION FUNCTIONS
A. Definition:
The distribution function [or cumulative distribution function (cdf)] of X is the function defined by
Fy(x) = P(X < x) —0 < X < (2.4)

Most of the information about a random experiment described by the r.v. X is determined by the
behavior of Fy(x).

B. Properties of Fy(x):

Several properties of F y(x) follow directly from its definition (2.4).

1. 0< Fyx) <1 2.5)
2. Fylx;) € Fylxy) if x;, < x, (2.6)
3. lim Fy(x) = Fy(oo) =1 (2.7)
4. lim Fy(x) = Fy(—0)=0 (2.8)
5. lim Fy(x) = Fyla*) = Fya) a*= lim a+¢ (2.9)

x=at 0<e—0
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Property 1 follows because Fy(x) is a probability. Property 2 shows that Fy(x) is a nondecreasing
function (Prob. 2.5). Properties 3 and 4 follow from Eqs. (1.22) and (1.26):

lim P(X < x) = P(X < o0) = P(S) = |

X= o

lim P(X < x)=P(X < —o0) = P(Z) =0

XxX— —

Property 5 indicates that Fy(x) is continuous on the right. This is the consequence of the definition

(2.4).

Table 2.1
X (X <x) Fy(x)
1 1] 0
0 (TTT) 3
1 (TTT, TTH, THT, HTT} i=1
2 {TTT, TTH, THT, HTT, HHT, HTH, THH} %
3 h) 1
4 M 1

EXAMPLE 2.3 Consider the r.v. X defined in Example 2.2. Find and sketch the cdf Fy(x) of X.

Table 2.1 gives Fy(x) = P(X < x) for x = —1,0, 1, 2, 3, 4. Since the value of X must be an integer, the value of
Fy(x) for noninteger values of x must be the same as the value of Fy(x) for the nearest smaller integer value of x.
The Fy(x) is sketched in Fig. 2-3. Note that Fy(x) has jumps at x = 0, 1, 2, 3, and that at each jump the upper value

is the correct value for Fy(x).

F v

i+ o—
’ ]
i ':
1L i
4 |
—
1 | I |
0 | 2 3 4
Fig. 2-3

C. Determination of Probabilities from the Distribution Function:

=

From definition (2.4), we can compute other probabilities, such as Pla < X < b), P(X > a), and

P(X < b) (Prob. 2.6):

P(a < X < b) = Fy(b) — Fyla)
P(X > a) =1 — Fyla)

P(X < b) = Fy(b") b~ = lim b—¢

0<e—0

(2.10)
(2.11)
2.12)
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24 DISCRETE RANDOM VARIABLES AND PROBABILITY MASS FUNCTIONS
A. Definition:

Let X be a r.v. with cdf Fy(x). If Fy(x) changes values only in jumps (at most a countable number
of them) and is constant between jumps—that is, F y(x) is a staircase function (see Fig. 2-3}— then X
is called a discrete random variable. Alternatively, X is a discrete r.v. only if its range contains a finite
or countably infinite number of points. The r.v. X in Example 2.3 is an example of a discrete r.v.

B. Probability Mass Functions:

Suppose that the jumps in Fy(x) of a discrete r.v. X occur at the points x,, x,, ..., where the
sequence may be either finite or countably infinite, and we assume x; < x; if i <.
Then Fylx)) = Fx(x;- ) =PX <x)— P(X <x;-,)=P(X =x)) (2.13)
Let px(x) = P(X = x) (2.14)

The function p,(x) is called the probability mass function (pmf) of the discrete r.v. X.

Properties of px(x):
L 0<pelx) <1 k=12,... (2.15)
2. pyx)=0 fx#x,(k=12..) (2.16)
3. ; Px(x) =1 (2.17)

The cdf F(x) of a discrete r.v. X can be obtained by
Fx(x)= P(X <x)= ) px(x) (2.18)

Xk <X

2.5 CONTINUOUS RANDOM VARIABLES AND PROBABILITY DENSITY FUNCTIONS
A. Definition:

Let X be a r.v. with cdf Fy(x). If Fy(x) is continuous and also has a derivative dFy(x)/dx which
exists everywhere except at possibly a finite number of points and is piecewise continuous, then X is
called a continuous random variable. Alternatively, X is a continuous r.v. only if its range contains an
interval (either finite or infinite) of real numbers. Thus, if X is a continuous r.v., then (Prob. 2.18)

PX=x=0 (2.19)

Note that this is an example of an event with probability O that is not necessarily the impossible event
.

In most applications, the r.v. is either discrete or continuous. But if the cdf Fy(x) of a rv. X
possesses features of both discrete and continuous r.v.’s, then the r.v. X is called the mixed r.v. (Prob.

2.10).

B. Probability Density Functions:

_dFy0)

e (2.20)

Let Sx(x)

The function fy(x) is called the probability density function (pdf) of the continuous r.v. X.
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Properties of fx(x):
Sx(x)= 0
2. J‘w Sx(x)dx =1
3. fx(x) is piecewise continuous.
4 Pa<X<b= jbfx(x) dx
The cdf F4(x) of a continuous r.v. X can be obtained by

Fy(x) = P(X < x) = J._' Ix(&) d¢

By Eq. (2.19), if X is a continuous r.v., then

Pa<X<b=Pa<X<bh=Pa<X<b=Pa<X<b)

= Jb fx(x) dx = Fy(b) — Fx(a)

26 MEAN AND VARIANCE
A. Mean:

The mean (or expected value) of a r.v. X, denoted by uy or E(X), is defined by

Y X, pxlxi) X : discrete
uy = E(X) = y o
j xfy(x) dx  X:continuous

B. Moment:

The nth moment of a r.v. X is defined by

Y x"py(x) X : discrete
E(X") = k v
j x"f(x) dx X:continuous

-0

Note that the mean of X is the first moment of X.

C. Variance:
The variance of a r.v. X, denoted by a,? or Var(X), is defined by
ox? = Var(X) = E{[X — E(X)])
Thus,

Y (X — mx)?px(x) X: discrete

Oy = ©
f (x — py)? fx(x) dx X: continuous

[CHAP 2

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Note from definition (2.28) that
Var(X) = 0 (2.36)

The standard deviation of a r.v. X, denoted by gy, is the positive square root of Var(X).
Expanding the right-hand side of Eq. (2.28), we can obtain the following relation:

Var(X) = E(X% — [E(X)]? (2.31)

which is a useful formula for determining the variance.

27 SOME SPECIAL DISTRIBUTIONS

In this section we present some important special distributions.

A. Bernoulli Distribution:
A rv, X is called a Bernoulli 1.v. with parameter p il its pmf is given by
pxlk) = P(X = k)= p"1 - p)' * k=01 (2.32)
where 0 < p < 1. By Eq. (2.18), the cdf F «(x) of the Bernoulli r.v, X is given by

0 x<0
Fox)=41—p 0<x <l (2.33)
1 x21
Figure 2-4 illustrates a Bernoulli distribution.
P Fytxy

(@ (M

Fig. 24 Bernoulli distribution.

The mean and variance of the Bernoulli r.v. X are

uy=EX)=p (2.34)
oyt = Var(X) = p{l —p) (2.35)
A Bernoulli r.v. X is associated with some experiment where an oulcomc can be classified as

either a “success” or a “failure,” and the probability of a success is p and the probability of a failure is
1 — p. Such experiments are ofien called Bernoulli trials (Prob, 1.61).
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B. Binomial Distribution:

A r.v. X is called a binomial r.v. with parameters (n, p) if its pmf is given by

pulk} = PX = k) = (:)p*u ~pPY k=010 (2.36)

ny n!
k] ktin —

which is known as the binomial coeflicient. The corresponding edf of X is

where 0 < p < ] and

-Q

Fuix) = Z (:)p"(l -pt n<x<n+ |l (2.37)
k

Figure 2-5 illustrates the binomial distribution for n = 6 and p = 0.6

Fyind
I
pr ror 09531 @——
1
4+ 0xbF 0.7667 '
1
03110 i
0.3 11,2765 (b |- !
0A3ST
0.2 011866 = !
0.1382 i
04 02k w19z
0.0369 (67 nm
0xHI—--F AL - .00k | oL L. —
0 i 2 1 1 s 1 . 0 I 2 A 4 s & ¢
(1) i
Fig, 2-5 Binomial distribution with n = 6, p = 0.6.
The mean and variance of the binomial r.v. X are (Prob. 2.28)
iy = E(XYy=np (2.38)
ay? = Var(X} = np(l — p) (2.3

A binomial r.v. X is associated with some experiments in which n independent Bernoulli trials are
performed and X represents the number of successes thal occur in the » trials. Note that a Bernoulii
r.v. is just a binomial r.v. with paramcters (1, p).

C. Poisson Distribution:

A rv. X is called a Poisson r.v. with parameler 2 (>0} if its pmf is given by

t(k
prlk)=PIX =ky=¢ " =

k=0,1,... (2.40)
The corresponding cdf of X is

Fyxy=e"?

t(k
X n<x<n+l (241

n
k=0

Figurc 2-6 illustrates the Poisson distribution for i = 3.
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(a) (b)
Fig. 2-6 Poisson distribution with 4 = 3,
The mean and variance of the Poisson r.v. X are (Prob. 2.29)
Uy =EX)=12 (242)
ay? = Var(X) =1 (243

The Poisson r.v. has a tremendous range of applications in diverse areas because it may be used
as an approximation for a binomial r.v. with parameters (n, p) when n is large and p is small enough

so that np is of a moderate size (Prob. 2.40).
Some examples of Poisson r.v.’s include

The number of telephone calls arriving at a switching center during various intervals of time

The number of misprints on a page of a book

The number of customers entering a bank during various intervals of time

D. Uniform Distribution:

A r.v. X is called a uniform r.v. over (a, b) if its pdf is given by

L <x<b
a<x
Jx)=4b—a
0 otherwise
The corresponding cdf of X is
0 x<a
Fy(x) = Z:Z a<x<b
| x>bh

Figure 2-7 illustrates a uniform distribution.

The mean and variance of the uniform r.v. X are (Prob. 2.31)
_a+b
T2
(b -

12

ny = E(X)

oy = Var(x) = L=

(2.44)

(2.45)

(2.46)

(2.47)
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S Eyo

~y

el

=y

(«) (2]

Fig. 2-7 Uniform distribution over (a, b).

A uniform r.v. X is often used where we have no prior knowledge of the actual pdf and all
continuous values in some range seem equally likely (Prob. 2.69).

E. Exponential Distribution:

A r.v. X is called an exponential r.v. with parameter 4 (> 0) if its pdf is given by

de M x>0
= 2.48
Sx) {O o (248)
which is sketched in Fig. 2-8(a). The corresponding cdf of X is
| —e ™ x>0
= - 2.49
Fx(x) {0 o (249)
which is sketched in Fig. 2-8(b).
o) Fyt)
A | L --------------------------------
Ao M
| -e A
0 \: (} \;
(a) (h)
Fig, 2-8 Exponential distribution.
The mean and variance of the exponential r.v. X are (Prob. 2.32)
|
uy = E(X) = 7 (2.50)
1
6, = Var(X) = e 250

The most interesting property of the exponential distribution is its “memoryless” property. By
this we mean that if the lifetime of an item is exponentially distributed, then an item which has been
in use for some hours is as good as a new item with regard to the amount of time remaining until the

itemn fails. The exponential distribution is the only distribution which possesses this property (Prob.
2.53).
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F. Normal (or Gaussian) Distribution:
A r.v. X is called a normal (or gaussian) r.v. if its pdf is given by
1
Sx(x) = e~ (xmwzan (2.52)

The corresponding cdf of X is
1 (x—n)io
Vando
This integral cannot be evaluated in a closed form and must be evaluated numerically. It is conve-
nient to use the function ®(z), defined as

Fy(x) = ! Jx e~ - w2eY) dé =

e M2 gé 253
ono (253)

Y

1 z
O(z) = f e M2 gk (2.54)
VanJ_o,
to help us to evaluate the value of Fy(x). Then Eq. (2.53) can be written as
Fylx) = ¢<X—;’—‘) (2.55)
Note that
D(—2)=1— D) (2.56)

The function ®(z) is tabulated in Table A (Appendix A). Figure 2-9 illustrates a normal distribution.

) Fyn
I

0.5

I — B

{a) (h)

Fig. 2-9 Normal distribution.

The mean and variance of the normal r.v. X are (Prob. 2.33)

py = E(X)=p (2.57)
oxz = Var(X) = ¢* (2.58)

We shall use the notation N(g; ¢?) to denote that X is normal with mean g and variance 6% A
normal r.v. Z with zero mean and unit variance—that is, Z = N(0; 1)—is called a standard normal r.v.
Note that the cdf of the standard normal r.v. is given by Eq. (2.54). The normal r.v. is probably the
most important type of continuous r.v. It has played a significant role in the study of random pheno-
mena in nature. Many naturally occurring random phenomena are approximately normal. Another
reason for the importance of the normal r.v. is a remarkable theorem called the central limit theorem.
This theorem states that the sum of a large number of independent r.v.’s, under certain conditions,
can be approximated by a normal r.v. (see Sec. 4.8C).
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2.8 CONDITIONAL DISTRIBUTIONS
In Sec. 1.6 the conditional probability of an event 4 given event B is defined as

P(4 n B)

P(A]|B) = P(B)

P(B)> 0

The conditional cdf F(x| B) of a r.v. X given event B is defined by
P{(X < x) n B}
P(B)

The conditional cdf Fy(x]B) has the same properties as Fy(x). (See Prob. 1.37 and Sec. 2.3) In
particular,

Fy(x|B) = P(X < x|B) = (2.59)

Fy—w|B)=0 Fyloo|B) =1 (2.60)

Pla < X < b|B)y= Fyb|B) — Fxla| B) (2.61)
If X is a discrete r.v., then the conditional pmf p,(x, | B) is defined by
P{(X = x,) n B}

px(x,|B) = P(X = x| B) = P(B) (2.62)
If X is a continuous r.v., then the conditional pdf fy(x | B) is defined by
dF (x| B
fu(x|B) = —"{%—) (2.63)
X
Solved Problems

RANDOM VARIABLES

2.1.  Consider the experiment of throwing a fair die. Let X be the r.v. which assigns 1 if the number
that appears is even and O if the number that appears is odd.

(@) What is the range of X?
() Find P(X = 1)and P(X = Q).
The sample space § on which X is defined consists of 6 points which are equally likely:
§=1{1,2,34,5, 6}
(a) The range of X is Ry = {0, 1}.
(b) (X =1)={2, 4,6} Thus, P(X = 1) = % = 1. Similarly, (X =0) = {1,3,5},and P(X = 0) = 4.

2.2.  Consider the experiment of tossing a coin three times (Prob. 1.1). Let X be the r.v. giving the
number of heads obtained. We assume that the tosses are independent and the probability of a
head is p.

(a) What is the range of X?
(b) Find the probabilities P(X = 0), P(X = 1), P(X = 2), and P(X = 3).
The sample space S on which X is defined consists of eight sample points (Prob. 1.1):
S ={HHH, HHT, ..., TTT}
(a) Therange of X is Ry = {0, 1, 2, 3}.
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(b)y If P(H) = p, then P(T) = | — p. Since the tosses are independent, we have

=0)=P[{TTT}] = (1 - p)’
P(X =1)= P[{HTT}] + P[{THT)}] + P[{TTH)] = 3(1 — p)*p
P(X =2) = P[{HHT}] + P[{HTH)] + P[{THH}] = 3(1 — p)p?
P(X = 3) = P[{HHH}] = p*

23. An information source generates symbols at random from a four-letter alphabet {a, b, ¢, d} with
probabilities P(a) = 4, P(b) = 4, and P(c) = P(d) = 4. A coding scheme encodes these symbols
into binary codes as follows:

a 0

b 10
¢ 110
d 111

Let X be the r.v. denoting the length of the code, that is, the number of binary symbols (bits).

(@) What is the range of X7
(b) Assuming that the generations of symbols are independent, find the probabilities P(X = 1),
P(X = 2), P(X = 3),and P(X > 3).

(a) Therangeof X is Ry = {1,2, 3}.

(hy P(X =1)= P[{a}] = Pla) =
P(X =2)=P[{b}] =P )=
P(X = 3) = P[{c, d}] = P(c)
P(X > 3)=P(Q) =

E
1
K}
+

Pd) =73

24. Consider the experiment of throwing a dart onto a circular plate with unit radius. Let X be the
r.v. representing the distance of the point where the dart lands from the origin of the plate.
Assume that the dart always lands on the plate and that the dart is equally likely to land
anywhere on the plate.

(@) What is the range of X?
(b) Find (i) P(X < @)and (ii) Pla < X < b), wherea< b < 1.
(a) Therangeof X isRy = {x:0<x < I}.

() (i) (X < a)denotes that the point is inside the circle of radius a. Since the dart is equally likely to fall
anywhere on the plate, we have (Fig. 2-10)

~

P(){<a)="—az=a2
7l

(i) (a < X < b) denotes the event that the point is inside the annular ring with inner radius a and
outer radius b. Thus, from Fig. 2-10, we have

7r(h2 — a?)

nl? =b -

Pa<X <b) =

DISTRIBUTION FUNCTION

25.  Verify Eq. (2.6).

Let x, < x,. Then (X < x,) is a subset of (X < x,); that is, (X < x,) = (X < x,). Then, by Eq. (1.27),
we have

P(X <x,) < P(X < x3) or Fxl(x,) < Fylx,)
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Fig. 2-10

2.6. Verify (a) Eq. (2.10); (b) Eq. (2.11); (¢) Eq. (2.12).
(@ Since(X <b)=(X<a)uvlea<X <hyand(X <a)n (a< X <bh)y= ¢, we have
PX <h)y=PX <a)+Pu<X<bh)
or Fyb) = Fyla)+ Pla < X < b)
Thus, Pla < X <b) = Fyb) — Fyla)
(b) Since (X <a)u (X >a)=Sand (X <a)n (X >a) =, we have
P(X <a)+ P(X >a)=P(S) =1

Thus, PX>a)=1—-PX <d)y=1— Fyla)
{¢) Now P(X <h)=Pllim X <b—¢el=lmPX <h—¢)
=0 c—~0
>0 >0

=lim Fylb— &) = Fy(b")
=0
et

2.7. Show that

(@) Pla< X <by=P(X =a)+ Fg(b) - Fyla) (2.64)
(b) Plu< X < b)=Fyb)— Fyla) — P(X =b) (2.65)
() Pla< X <b)=PX =a)+ Fylb)— Fyla) — P(X = b) (2.66)
(@) Using Eqs. (1.23) and (2.10). we have

Pa<X<h=Pl(X=aula<X <h)]
=PX=a)+Pla< X <bh)
= P(X = a) + Fy(h) ~ Fyla)

() We have

Pla< X <bhy=Plla< X <byuw (X =5h)]

=Plu< X <h+ PX=b)
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Again using Eq. (2.10), we obtain
Pla< X <by=Pa<X <b)— PX =b)
= Fy(b) — Fyla) — P(X = b)
(¢) Similarly, Pa<X<by=Pla<X <b)u (X =0)]
=Pa<X<b)+ PX=0b

Using Eq. (2.64), we obtain

Pa<X<b=Pla<X<by—PX=Db)
= P(X =a) + Fyb) — Fyla) — P(X = b)

28. Let X be the r.v. defined in Prob. 2.3.
(@) Sketch the cdf Fy(x) of X and specify the type of X.
(b)y Find (1) P(X < 1), (1) P(1 < X < 2), (iii) P(X > 1), and (iv) P(1 € X < 2).
(a) From the result of Prob. 2.3 and Eq. (2.18), we have

0 x <1
1 1<x<?2
Fy(x)=PX <x)=12 =
x(X) = P(X < x) 2 2<x<3
1 x=3

which is sketched in Fig. 2-11. The r.v. X is a discrete r.v.
(b) (i) We see that

(i) By Eq.(2.10),

(ii) By Eq.(2.11),

(iv) By Eq. (2.64),
Pl <X <2)=P(X =1)+ Fyl2) — Fy(l) =

N~
+
Pl
|
-
I
Bl

Fylo)

|

Fig. 2-11

2.9. - Sketch the cdf Fy(x) of the r.v. X defined in Prob. 2.4 and specify the type of X.

From the result of Prob. 2.4, we have
0
Fy(x) = P(X < x)={x2 0<x<l
1

which is sketched in Fig. 2-12. The r.v. X is a continuous r.v.

~y

51
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Fon)
1 -
1 —>
0 } X
Fig. 2-12
2.10. Consider the function given by
0 x<0
Fix)=4x+4+ 0<x<}
1 x> 3

(b)

(©)
(a)

b

Sketch F(x) and show that F(x) has the properties of a cdf discussed in Sec. 2.3B,

If X is the r.v. whose cdf is given by F(x), find (i) P(X < 1), (ii) P(0 < X < 1), (iii) P(X = 0),
and (ivy PO < X < ).

Specify the type of X.

The function F(x) is sketched in Fig. 2-13. From Fig. 2-13, we see that 0 < F(x) < | and F(x) is a
nondecreasing function, F(— o) = 0, F(w) = |, F(0) = , and F(x) is continuous on the right. Thus,
F(x) satisfies all the properties [Eqgs. (2.5) to (2.9] required of a cdf.

(1) We have
PX<P=FR)=3+1=3
(i) By Eq. (2.10),
PO<X<sH=FH-FO=§-}=}
(i) By Eq.(2.12),
PX=0=PX <0) - PX <0)=FO0)— F0)=4—-0=14

(tv) By Eq.(2.64),
PO<X<})=PX=0+F)-FO=3+3-%=1%

The r.v. X is a mixed r.v.

Ftx)

P)—

el j

ST o

Fig. 2-13
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2.11. Find the values of constants a and b such that

is a valid cdf.

53

To satisfy property 1 of Fy(x) [0 < Fy(x) < 1], we must have 0 < a < | and b > 0. Since b > 0, pro-
perty 3 of Fy(x) [Fy(cc) = 1] is satisfied. It is seen that property 4 of Fy(x) [F(~— c0) = 0] is also satisfied.
For0 <a < 1andb >0, F(x) is sketched in Fig. 2-14. From Fig. 2-14, we see that F(x) is a nondecreasing
function and continuous on the right, and properties 2 and § of F'y(x) are satisfied. Hence, we conclude that
F(x) given is a valid cdf if 0 < a < | and b > 0. Note that if « = 0, then the r.v. X is a discrete r.v.; ifa = 1,

then X is a continuous r.v.; and if 0 < a < 1, then X is a mixed r.v,

Fyla)

il

DISCRETE RANDOM VARIABLES AND PMF’S
2.12, Suppose a discrete r.v. X has the following pmfs:
px(1) = % px(2) =3 px(3) =% px(4) = §
(a) Find and sketch the cdf Fy(x) of the r.v. X.
() Find ) P(X < ), (i) P(1 < X <3), (i) P(1 < X <3).
(a) By Eq.(2.18), we obtain

0 x <]

1 l<x<2
Fdx)=PX <x)=132 2<x<3

- 3<x<4

1 x>4

which is sketched in Fig. 2-15.
(b) (1) By Eq.(2.12), we see that
PX <1)=F417}y=0
(iiy By Eq. (2.10),
Pl<X<)=FO)-F)=5-%1=3
(i) By Eq. (2.64),
PA<X<)=PX=1)+F3)-F)=3+4§—-%=1%
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Fytx)
1+ >~
 ——
>r—
]
\ |
i —
;
1
— 1 1 1 S
0 1 2 3 4 X

2.13. (a) Verify that the function p(x) defined by
G x=01,2..
pox) = {0 otherwise
is a pmf of a discrete r.v. X.
(b} Find (i) P(X = 2), (ii) P(X < 2), (iil) P(X = 1).

(@) Ttisclear that 0 < p(x) < 1 and

X 3 = )i 3 1
iy == = =1
lz% 4 Z: ( 4 l_'%
Thus, p(x) satisfies all properties of the pmf [Eqs. (2.15) to (2.17)] of a discrete r.v. X.
() (1) By definition (2.14),
PX =) =pD=3d =&
(i) By Eq.(2.18),

2
PX<2)= Y pi =+ +15)=8
=0

(iii) By Eq.(1.25),
PX21)=1-PX=0=1-p0)=1-3=4

2.14. Consider the experiment of tossing an honest coin repeatedly (Prob. 1.35). Let the r.v. X denote
the number of tosses required until the first head appears.

(a) Find and sketch the pmf py(x) and the cdf F,(x) of X.
() Find (i) P(1 < X < 4), (i) P(X > 4).
(a) From the result of Prob. 1.35, the pmf of X is given by
px(x) = pylk) = PIX = k)= (3} k=1,2, ...
Then by Eq. (2.18),

msx m<x

Fyx)=PX <x)= Y pylk)= ¥ (3
k=1 k=1

or

-
0 x < 1
1 l<x<2
F(\()—‘J% 2<x <3
x\X})= .

-3 n<x<n+1
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These functions are sketched in Fig, 2-16.
() () By Eq.(2.10),

Pl<X<)=Fyd)—F()=8 -4i=5
(i) By Eq. (1.25),
PX>4)=1-PX<d)=1-Fyd)=1-H =%

pxlx) Fylay

'k ' — ——

r —

| ] i

2r I i
I
! ® ) > ] 1 1 L,
0 1 2 3 4 A 0 1 2 3 4 x
Fig. 2-16

2.15. Consider a sequence of Bernoulli trials with probability p of success. This sequence is observed
until the first success occurs. Let the r.v. X denote the trial number on which this first success
occurs. Then the pmf of X is given by

px)=PX=x)=(1—pF'p x=12 ... (2.67)

because there must be x — 1 failures before the first success occurs on trial x. The r.v. X defined
by Eq. (2.67) is called a geometric r.v. with parameter p.

(@) Show that py(x) given by Eq. (2.67) satisfies Eq. (2.17).
(b) Find the cdf Fy(x) of X.

(@) Recall that for a geometric series, the sum is given by

Sar=Yart=—%  |r<1 (2.68)
n=0 n=1 I—r
Thus,
e Sy P _P_,
‘xL:pX(x) l:LijX(l) ;( p) p l . (l _p) p
(b) Using Eq. (2.68), we obtain
& - (1 —pyp
P(X > k)= 1—pflp= = -pF 2.69
X>K= 3% (-p =g 5=0-p (2:69)
Thus, PX<k=1-PX>k=1-(-pf (2.70)
and Fix)=PX<x)=1—-(1—pF x=1,2, .. .71

Note that the r.v. X of Prob. 2.14 is the geometric r.v. with p = §.

2.16. Let X be a binomial r.v. with parameters (n, p).
(@) Show that py(x) given by Eq. (2.36) satisfies Eq. (2.17).
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() Find P(X > 1)ifn==6and p=0.1.
(@) Recall that the binomial expansion formula is given by
(a+by=73% (:)a"b"”‘ (2.72)
k=0

Thus, by Eq. (2.36),

Lok =X (Z)p"(l —prr=pHl—pr=1"=1
k=0 k

=0

() Now PX>D=1-PX=0-PX =1

1 - (g)(o.m(os)ﬁ - (?)(0.1)'(0.9)5

1 ~(0.9)° — 6(0.1X0.9)° =~ 0.114

i

2.17. Let X be a Poisson r.v. with parameter A.

(a) Show that py(x) given by Eq. (2.40) satisfies Eq. (2.17).
(b) Find P(X > 2) with 1 = 4.

(a) By Eq. (2.40),

x o }.k
Y opuk)=e*Y F=e"e‘=1
k=0 k=0
() With 1 =4, we have
L&
pxlk) = e 41‘7!
2
and PX <2)= Y pylk)=e"*(1 +4 + 8~ 0.238
k=0
Thus, P(X>2)=1-PX<2)~1-0238=0.762

CONTINUQUS RANDOM VARIABLES AND PDF’S
2.18. Verify Eq. (2.19).
From Eqs. (1.27) and (2.10), we have
PX =x) < P(x —e < X < x)=Fy{x) — Fy(x — &)

for any ¢ > 0. As Fy(x) 1s continuous, the right-hand side of the above expression approaches 0 as ¢ — 0.
Thus, P(X = x) =0.

2.19. The pdf of a continuous r.v. X is given by

i D<x <1
Sy =143 l<x<?2
0 otherwise

Find the corresponding cdf Fy(x) and sketch fy(x) and Fy(x).
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By Eq. (2.24), the cdf of X is given by

(0 x <0

J%d{:% 0<x<l
0
1 x
Fx(x)z*'[%dé+‘[§d{=§x—-§ l<x<?2
0 1

1 2
J§a+f§a=1 2<x
(] 1

.
The functions fy(x) and F(x) are sketched in Fig. 2-17,

57

fyix) Fylx)
1 lf—-------------==ou-
21 . 20
3 ) ) 3
' )
) |
) )
n | Iy
! 3
]
1
'
1 L —_—
4] | 2 x [}
(a)
Fig. 2-17

2.20. Let X be a continuous r.v. X with pdf
kx 0<x<«<l
Sy = {0 otherwise
where k is a constant.
(a) Determine the value of k and sketch fy(x).
(b) Find and sketch the corresponding cdf F,(x).
(¢) Find P(} <« X <2).
(a) By Eq.(2.2!), we must have k > 0, and by Eq. (2.22),

J;lkx dx = g =1
Thus, k = 2 and
2x 0<x<l
Iulxy = {0 otherwise
which is sketched in Fig. 2-18(a).
(b) By Eq. (2.24), the cdf of X is given by
0 x<0

Fylx)= Jx2{d{=x2 0<x<l
0

Jl25d5=1 1 <x
o

which is sketched in Fig, 2-18(b).

(b

[ Y

“y



58

2.21.

2.22.

RANDOM VARIABLES [CHAP 2

fdx Fy(x)

EREEEEEEEEE

X ;
g

(@) (h)
Fig. 2-18

(c) By Eq.(2.23),
PG<X<D=Fd) - FxH)=1-GV =%

Show that the pdf of a normal r.v. X given by Eq. (2.52) satisfies Eq. (2.22).
From Eq. (2.52),

@©
e x —u2/(2a2) gy

-0

= 1
Sdx) dx = —=
J: @

2nao
Lety =(x — u)/(ﬁ g). Then dx = \/50 dy and
1

© 1 “
P e L0 N j e dy
T j Vid-a
Let j =t

Then *= [I e ™ dxj":j e dy] = j j e gy dy

Letting x = rcos @ and y = rsin § (that 1s, using polar coordinates), we have

2n © o
12=I j e "rdr d0=21rj e rdr=n
o Jo o

Thus, 1= j e dy=/xu (2.73)

-

and fwfx(x) dx = \/L; ::e"z dy = \/L; Jr=1

Consider a function
1 (-x2+x—a)
f(x)=—Fx¢ x - <x <o
e

Find the value of a such that f(x) is a pdf of a continuous r.v. X.
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f(x)__: l e(—x2+x—a)= l e—(x1~—x+l/4¢a* 1/4)
- N

=|:l 84(1—1/2)1:]67(41—1/4)
J

If f(x) is a pdf of a continuous r.v. X, then by Eq. (2.22), we must have

o % 1
f f(~x)dx=e"‘“"/4’f — e Dy — |

- T

1
Now by Eq. (2.52), the pdf of N({; 1) is 7 e U2 Thys,
n

j — e T Yy = | and f flx)dx =" @ 14 = |

- o m x

from which we obtain a = %.

2.23. Arv. X iscalled a Rayleigh r.v. if its pdf is given by

X 2267
— e x>0

Sx(x) =4o? (2.74)
0 x<0

(a) Determine the corresponding cdf Fy(x).
(b) Sketch fy(x) and Fy(x) for o = 1.

(a) By Eq.(2.29), the cdf of X is

Fylx) = f é e N JE x>0

0

Let y = ¢2/(206%). Then dy = (1/6%)¢ d¢&, and

x2/{{2a2)
Fy(x)= f eV dy =1 ¢ 27 (2.75)
0
(b) Witho = 1, we have

xe M2 x>0
Slx) = {O x <0
| — e *%2 x2>0
and Fy(x) = {O X <0

These functions are sketched in Fig. 2-19.

2.24. A rv. X is called a gamma r.v. with parameter (e, 1) (2 > 0 and 4 > Q) if its pdf is given by

- 4x, a— ]
Ae” *(Ax) >0

A= T . (276

where I'(a) is the gamma function defined by

rm:f e ldx  a>0 2.77)
0
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Sxx) Fyl)
0.6 L— 18 od
081
04
0.6 B
04
02}
02+
0 ] 1 > 0 1 1 1 —
0 ] 2 3 X 0 1 2 3 x

@ ' ®)
Fig. 2-19 Rayleigh distribution with ¢ = 1.

(@) Show that the gamma function has the following properties:

I Te+1)=al(@ a>0 (2.78)
2. T(k+1)=k!  k(=0): integer (2.79)
3. Id)=./r (2.80)

(b) Show that the pdf given by Eq. (2.76) satisfies Eq. (2.22).
(¢) Plot fy(x) for (a, 2) = (1, 1), (2, 1), and (5, 2).
(@) Integrating Eq. (2.77) by parts (u = x* !, dv = ¢~ * dx), we obtain

®

INa) = —e™*x*"!

+-[ e ¥a — Dx*" % dx
4] 0

=@a—1) J\me"‘x““2 dx = (@ — DIN(a — 1) (281
0

Replacing a by « + 1 in Eq. (2.81), we get Eq. (2.78).
Next, by applying Eq. (2.78) repeatedly using an integral value of «, say a = k, we obtain

Tk + 1) = k[(K) = k(k — DIk — 1) = k(k — 1) -+~ (QT()
Since I = Jwe"“ dx =1
o
it follows that I'(k + 1) = k!. Finally, by Eq. (2.77),
rG) = -[:ue""x'”2 dx
Let y = x"2, Then dy = $x~"/? dx, and
rg)=2 re"‘ dy = r e dy=/n
V] — o

in view of Eq. (2.73).
b)) Now

@ le—lx(lx)u—l B A% 0 At
_mfx(x)dx—J TTw x_l'(a)J;e Axxa=1 dx

Let y = Ax. Then dy = 1 dx and

a«

J Sfulx) d J ey M dy = A I(e)=1
F(a),l“ Y= T
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S
|
08|
o a=1x=]
06}
04k L= 2.h=1
%= S.A=2
02}
0 L 1 1 T >
0 | 2 4 x
Fig. 2-20 Gamma distributions for selected values of « and 4.
(c) The pdf’s fy(x) with (a, 2) = (1, 1), (2, 1), and (5, 2) are plotted in Fig, 2-20.
Note that when « = |, the gamma r.v. becomes an exponential r.v. with parameter 1 [Eq. (2.48)].
MEAN AND VARIANCE
2.25. Consider a discrete r.v. X whose pmf is given by
1
3 X = — l, 0, 1
X) = .
Pxx) {0 otherwise
(a) Plot py(x) and find the mean and variance of X.
(b) Repeat (a) if the pmf is given by
(x) = i x=-2,02
Pxx) = 0 otherwise
(a) The pmf py(x) is plotted in Fig. 2-21(a). By Eq. (2.26), the mean of X is
Uy=EX)y=4-1+0+1)=0
By Eq. (2.29), the variance of X is
ox® = Var(X) = E[(X — py)*] = E(X?) = 3[(=1)* + (0* + (1))} = }
(b) The pmf py(x)is plotted in Fig. 2-21(b). Again by Eqs. (2.26) and (2.29), we obtain
pr=EX)=4-2+0+2=0
pAx) Px
I %0 ] I %‘ I
1 1 1 1 » 1 1 1 1 »>
-2 -1 0 | 2 x -2 -1 0 1 2 x

Fig. 2-21
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2.26.

2.27.

2.28.

RANDOM VARIABLES [CHAP 2

ay? = Var(X) = $[(=2)? + (0 + (2] =}

Note that the variance of X is a measure of the spread of a distribution about its mean.

Let a r.v. X denote the outcome of throwing a fair die. Find the mean and variance of X.
Since the die is fair, the pmf of X is
pxlx) = pylk) = § k=12..6
By Eqs. (2.26) and (2.29), the mean and variance of X are

Uy =EX)=314+24+3+4+5+6)=1=35
ol =41 = +Q -] +CB - P +@ -+ - +(6-D1=1

o

Alternatively, the variance of X can be found as follows:
E(XY) =412+ 22 +32 4 42 4 52 4 67) = %
Hence, by Eq. (2.31),
ot = EXY) - [EX)) =% - (' =4

Find the mean and variance of the geometric r.v. X defined by Eq. (2.67) (Prob. 2.15).

To find the mean and variance of a geometric r.v. X, we need the following results about the sum of a
geometric series and its first and second derivatives. Let

g = T =——  |r|<! (282)
n=0 I —r
dg(r) x _ a
Th (r) = = L - 2.
en g'(r) i nglam‘ 1= r)z (2.83)
d?g(r) & 2a
ey = — 2V — 1yt = 84
gy =—3 "}z:ltm(n ) T (2.84)
By Egs. (2.26) and (2.67), and letting g = | — p, the mean of X is given by
o e P p 1
= E(X) = x¢*Tlp= — — == =— 2.85)
Hx xé. TS Ty (

where Eq. (2.83) is used witha = pandr = g.
To find the variance of X, we first find E[ X(X — 1)]. Now,

X

E[X(X = D] = ¥ x(x = 1g""'p= ¥ pax(x — 1)g*~?

x=1 x=2
2pq 2pq _2q 2l —p)
= = (2.86)
-9 p° »p r
where Eq. (2.84) is used with a = pgand r = q.
Since E[X(X — )] = E(X? — X) = E(X?) — E(X), we have
0—p) 1 2—
E(X?) = E[X(X — 1] + E) = 0P L 2= (2.87)
p P op
Then by Eq. (2.31), the variance of X is
2- -
o* = Van(X) = E(X?) — [E(X)]? = pzp = pl” (2.88)

Let X be a binomial r.v. with parameters (n, p). Verify Egs. (2.38) and (2.39).
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By Eqgs. (2.26) and (2.36), and letting g = 1 — p, we have

E(X)= ) kpy(k) = Zk(Z)p*q B
k=0

k=0
- L
="Pzn: (n—)-'—(kl)'_l_)'pk_]q"_k
Letting i = k — 1 and using Eq. (2.72), we obtain
E(X) —npi (L) Y

(n—1— )il

=np Z <" _ >piqn—x—;
i=0 I

=np(p+ """ =np(ly” " =np

Next, ELX(X = )] = 3 Kk — Dp(k) = Z k(k = 1 <k> -

k=0

!
n ko n—k

SR D

: (n—2)! k=2 n—k
= -1
R A My TS
Similarly, letting i = k — 2 and using Eq. (2.72), we obtain
-2
K (" - 2) in— i
P

E[X(X — 1] = n(n — l)pzi;] P

n—2 n_2
=nn— 1)p*y < ‘. )pq" 2
i=0

=n(n— p*(p + q)""* = n(n — 1)p?
Thus, E(X?) = E[X(X — 1)] + E(X) =n(n — Dp* + np (2.89)
and by Eq. (2.31),
ox’ = Var(x) = n(n — 1)p*> + np — (np)* = np(1 — p)

2.29. Let X be a Poisson r.v. with parameter 1. Verify Eqs. (2.42) and (2.43).
By Eqs. (2.26) and (2.40),

A k o ,{k
D = — = -4
E(X) k; kpy(k) = Zke 0 0+ Zle o1
o ,{k ] o0 ,{l
= Je % e h e~ et = 4
RATE P
x'{k xuo '{k—z
— ] = S ktk—1e *= = 2%
Next, E[X(X = 1] k; (k 1 Z RTmE

n i
=112€4A'Z ,,{—|=/12€7191=/12

i-o !

Thus, E(XY) =E[X(X = D]+ EX) =A%+ A (2.90)
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2.30.

2.31.

2.32,

RANDOM VARIABLES

and by Eq. (2.31),
oy2 = Var(X) = EXY) — [EX)2 =2 +A—22 =12

Find the mean and variance of the r.v. X of Prob. 2.20.
From Prob. 2.20, the pdf of X is

2x O<x<l
0 otherwise

Jxx) = {

By Eq. (2.26), the mean of X is

L xJ

g = E(X) = f x(2x)dx =2 =
A 3

I
[ ¥

0

By Eq. (2.27), we have

1

1l
Nl

1 4
E(X? = f x'2x) dx =2 —
o 4

0

Thus, by Eq. (2.31), the variance of X is
oy’ = Var(X) = E(X*) — [EX0P =3 - (3 =15

Let X be a uniform r.v. over (a, b). Verify Eqs. (2.46) and (2.47).
By Egs. (2.44) and (2.26), the mean of X is

b 1 1 x?
= E(X) = = l
Hx (%) ,[Xb—adx h—a 2

b lbz_az

a

By Eq. (2.27), we have

b
E(X?) = f x?

Thus, by Eq. (2.31), the variance of X is

oy? = Var(X) = E(X?) — [E(X)]?
=3(h* + ab + a®) — 4(b + @)* = F5(b — a)®

A

Let X be an exponential r.v. X with parameter 1. Verify Eqs. (2.50) and (2.51).
By Eqs. (2.48) and (2.26), the mean of X is

uy = E(X) = J‘ xie ** dx

0

a a
+ e " dx =
O 0

E(X?) = f X ie "M dx
0

Integrating by parts (u = x, dv = de™** dx) yields

E(X)= —xe™*

S| —

Next, by Eq. (2.27),

Again integrating by parts (v = x2, dv = le ”** dx), we obtain

E(xl) — _x2e—/lx

o a0 - 2
+2 xe” Mdx = —
0 0 A

[CHAP 2

(2.91)

(2.92)
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Thus, by Eq. (2.31), the variance of X is

2 2]
oxt = E(X) = [EC0)? = 55— () L

2.33. Let X = N(u; o?). Verify Egs. (2.57) and (2.58).

Using Eqs. (2.52) and (2.26), we have

uy = E(X) =

1 au
f xe w29 gy
V2ne J

Writing x as (x — u) + u, we have

1 * 1 ©
E(X) = f (x — p)e™ txmmAH2eD gy 4y f e~ XTI Yy
V2o J_ \/ﬂa e

Letting y = x — p 1n the first integral, we obtain

l an oxL
EX)= f ye RN dy + f Sx(x) dx

ﬁa o
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The first integral is zero, since its integrand is an odd function. Thus, by the property of pdf Eq. (2.22), we

get
ux=EX)=upn
Next, by Eq. (2.29),

ox? = E[(X — 4] =

1 * P
(x — #)2(, (= uf2a2) gy

From Eqgs. (2.22) and (2.52), we have

x
f e W20 Uy = g /O
X

Differentiating with respect to o, we obtain

R )
f T__e( w2 ”dx=\/ﬂ

Multiplying both sides by a2/, /2m, we have
1

T

Thus, 6y = Var(X) = o2

o
f (X _ #)Ze S(x—u)2jt202) dx = 0.2
S

2.34. Find the mean and variance of a Rayleigh r.v. defined by Eq. (2.74) (Prob. 2.23).

Using Eqs. (2.74) and (2.26), we have

a

X l . )
X = e x2/(202) dx = — Xzé’ x2{(2a2) dx
I 6t Jy

ux=E(X)=f

(1]

Now the variance of N(0; 6?%) is given by

1 X
x2e " *H2D [y = g2

NELER
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Since the integrand is an even function, we have

1

J2ne
* n
or f x2e XM 4y — iﬁw’ =J3 a®
0

1 n n
Then uy = E(X) = p \/; o = \/; o (2.93)

ax
f xZe #1204y — Lg?
[

1 l @
Next, E(X%) = f x? iz e TR dx = — f x3e™ =200 gy
0 g " Jo
Let y = x2/(262). Then dy = x dx/a*, and so
E(X?) = 26* J ye ¥ dy = 24* (2.94)
0
Hence, by Eq. (2.31),
6,2 = E(X?) — [E(X))? = (2 - g>oz ~ 0.42902 (2.95)

2.35. Consider a continuous r.v. X with pdf fy(x). If fx(x) = O for x < 0, then show that, for any a > 0,

PX2a) < % (2.96)

where py = E(X). This is known as the Markov inequality.
From Eq. (2.23),

P(X > a) = J‘fo(x) dx

Since fx(x) = 0 for x < O,

«© Y

Xfx(x) dx = J

a

iy = E(X) = f Xfylx) dx > a rfxm dx

0

Hence, f fu(x)dx = P(X 2 a) < 2%
la a

2.36. Foranya > 0, show that

2
g
P(|X~#x|2a)sa—’; (2.97)

where py and g,? are the mean and variance of X, respectively. This is known as the Chebyshev
inequality.

From Eq. (2.23),

nx—a a:

Sx(x}dx + f

nxta

P(lX—uxiza)=f

-

Jx(x)dx = f Solx) dx

|x—puxl2a

By Eq. (2.29),

oyt = J (x — px)fx(x) dx 2 J

- Ix--uxiza

(x — ) fx(x) dx 2 a* j‘ Sx(x) dx

|x —uxlza



CHAP. 2] RANDOM VARIABLES 67

2
Hence, '[ j()¢1x<‘l2 or  PX ~—pyl2a) <X
|x —ux|za a a

Note that by setting a = ko, in Eq. (2.97), we obtain

1
P(1 X — px| 2 koy) < o (2.98)

Equation (2.9¥) says that the probability that a r.v. will fall k or more standard deviations from its mean is
< 1/k2. Notice that nothing at all is said about the distribution function of X. The Chebyshev inequality is
therefore quite a generalized statement. However, when applied to a particular case, it may be quite weak.

SPECIAL DISTRIBUTIONS

2.37.

2.38.

2.39.

A binary source generates digits 1 and 0 randomly with probabilities 0.6 and 0.4, respectively.

(@) What is the probability that two s and three Os will occur in a five-digit sequence?
(b) What is the probability that at least three Is will occur in a five-digit sequence ?

(@) Let X be the r.v. denoting the number of Is generated in a five-digit sequence. Since there are only two
possible outcomes (1 or 0), the probability of generating 1 is constant, and there are five digits, it is
clear that X 1s a binomial r.v. with parameters (n, p) = (5, 0.6). Hence, by Eq. (2.36), the probability
that two 1s and three Os will occur in a five-digit sequence is

P(X = 2) = (3)(0.6)%(0.4)° = 0.23
(b} The probability that at least three s will occur in a five-digit sequence is

P(X23)=1-PX <2)

2
where Z < )06)“04)5 k=0.317

Hence, P(X 23)=1-0317 =0.683

A fair coin is flipped 10 times. Find the probability of the occurrence of 5 or 6 heads.

Let the r.v. X denote the number of heads occurring when a fair coin is flipped 10 times. Then X is a
binomial r.v. with parameters (r, p) = (10, ). Thus, by Eq. (2.36),

6 10 l)k(])lo—k
PS< X <6)= 1= = 0.451
G X<6) k;,(k)(z 2

Let X be a binomial r.v. with parameters (n, p), where 0 < p < 1. Show that as k goes from 0 to
n, the pmf py(k) of X first increases monotonically and then decreases monotonically, reaching its
largest value when k is the largest integer less than or equal to (n + )p.

By Eq. (2.36), we have

<")p*<1 —pr *
pk)  \k Cn—k+p (299

pxlk — 1) <k i 1),;"' Wi = i k(1 — p)

Hence, py(k) > py(k — 1) if and only if (n — k + D)p = k(I — p) or k < (n + 1)p. Thus, we see that py(k)
increases monotonically and reaches its maximum when k is the largest integer less than or equal to
(n + 1)p and then decreases monotonically.
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Show that the Poisson distribution can be used as a convenient approximation to the binomial
distribution for large n and small p.

From Eg. (2.36), the pm( of the binomial r.v. with parameters (n, p) is

=2 (n=k+1
px(k)=<:)p"(l—p)""‘=n(" An ,)d n-k+ )p"(l—pl"“‘

Multiplying and dividing the right-hand side by n*, we have

e CHDD),

k!

If we let n = oo in such a way that np = A remains constant, then

6w

n n n n—oc

(R
n n n L

where we used the fact that
l n
lim <l ——) =¢7*
L nd: n

Hence, in the limit as n — co with np = A (and as p = 4/n - 0),

n ~ A
<k)Pk(1 —py* e A o np =2
Thus, in the case of large n and small p,
n _ LA
<k>p"(1 —py txe? 0 np=2 (2.100)

which indicates that the binomial distribution can be approximated by the Poisson distribution.

A noisy transmission channel has a per-digit error probability p = 0.01.
(@) Calculate the probability of more than one error in 10 received digits.
(b) Repeat (a), using the Poisson approximation Eq. (2.100).

(a) It is clear that the number of errors in 10 received digits is a binomial r.v. X with parameters (n, p) =
(10, 0.01). Then, using Eq. (2.36), we obtain

PX>1)=1-PX=0—-PX=1)

=1- < 1;’)40.01)%0.99)“’ — < 110>40.01)‘(0.99)°

= 0.0042
(b) Using Eq. (2.100) with 2 = np = 10(0.01) = 0.1, we have
PX>1)=1-PX=0-PX=1

©one 1y
or ¢ I

=1 - e—O.l

= 0.0047

The number of telephone calls arriving at a switchboard during any 10-minute period is known
to be a Poisson r.v. X with A = 2.
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2.43.

2.44.

245,

(@) Find the probability that more than three calls will arrive during any 10-minute period.
(b) Find the probability that no calls will arrive during any 10-minute period.

(a) From Eq. (2.40), the pmf of X is

k

px(k)=P(X=k)=e“2-i~' k=01,...

k

3
2
Thus, PX>3)=—-PX<3)=1-— Ze'zl?
k=0 :

=l-e X 1+2+%+3~0143
() P(X =0)=py0) =e2~0.135

Consider the experiment of throwing a pair of fair dice.

(a) Find the probability that it will take less than six tosses to throw a 7.
(b} Find the probability that it will take more than six tosses to throw a 7.

(a) From Prob. 1.31(a), we see that the probability of throwing a 7 on any toss is 3. Let X denote the
number of tosses required for the first success of throwing a 7. Then, from Prob. 2.15, it is clear that X
is a geometric r.v. with parameter p = ¢. Thus, using Eq. (2.71) of Prob. 2.15, we obtain

P(X <6)=P(X <5)=Fy{5) =1—(2)°~~0.598
(b) Similarly, we get
PX>6)=1-PX <6)=1— Fy6)
=1-[1- (3 =@°~0335

Consider the experiment of rolling a fair die. Find the average number of rolls required in order
to obtain a 6.

Let X denote the number of trials (rolls) required until the number 6 first appears. Then X is a
geometrical r.v. with parameter p = ¢. From Eq. (2.85) of Prob. 2.27, the mean of X is given by

Thus, the average number of rolls required in order to obtain a 6 is 6.

Assume that the length of a phone call in minutes is an exponential r.v. X with parameter
= 5. If someone arrives at a phone booth just before you arrive, find the probability that you
will have to wait (@) less than S minutes, and (b) between 5 and 10 minutes.

(a) From Eq. (2.48), the pdf of X is

fe 0 x>0

_ )1
fx(x)—{o x <0

Then
5
=1—e"%%20393

0

5
P(X < 5) = j Toe 10 dx = —e¥/10
0

(b) Similarly,

10
PS5 <X <10)= I fre 0 dx =e %% — "' 2 0.239
5
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All manufactured devices and machines fail to work sooner or later. Suppose that the failure rate

is constant and the time to failure (in hours) is an exponential r.v. X with parameter A.

(@) Measurements show that the probability that the time to failure for computer memory chips
in a given class exceeds 10* hours is e ' (~0.368). Calculate the value of the parameter A.

{b) Using the value of the parameter A determined in part (@), calculate the time x, such that
the probability that the time to failure is less than x, is 0.05.

(@) From Eq.(2.49), the cdf of X 1s given by

F o) = 1—e x>0
wX = 0 x <0
Now PX > 109 =1—PX < 10% = | — F,(10%

0% _ y=i108 _ =1

=]—-(1-¢ 4

from which we obtain 4 = 1074,

(b) We want
Fx(xy) = P(X < x4) = 0.05
Hence, l—e ™ =1—¢ "% =005
or e 10 %0 = (95

from which we obtain

xy = —10%*In(0.95) = 513 hours

A production line manufactures 1000-ohm (Q) resistors that have 10 percent tolerance. Let X
denote the resistance of a resistor. Assuming that X is a normal r.v. with mean 1000 and variance
2500, find the probability that a resistor picked at random will be rejected.

Let A be the event that a resistor is rejected. Then 4 = {X < 900} U {X > 1100}. Since {X < 900} n
{X > 1100} = &, we have

P(A) = P(X <900) + P(X > 1100) = F4(900) + [ — F4(1100)]
Since X is a normal r.v. with g = 1000 and ¢? = 2500 (¢ = 50), by Eq. (2.55) and Table A (Appendix A),

F(900) = <b(w> =D(=)=1-ad(2)
F (1100) = ¢(w> = ®(2)
50
Thus, P(A) = 2[1 — ®(2)] ~ 0.045

The radial miss distance [in meters (m)] of the landing point of a parachuting sky diver from the

center of the target area is known to be a Rayleigh r.v. X with parameter ¢? = 100.

(a) Find the probability that the sky diver will land within a radius of 10 m from the center of
the target area.

(b) Find the radius r such that the probability that X > ris e~ (~0.368).

(@) Using Eq. (2.75) of Prob. 2.23, we obtain
P(X £10) = Fy(10) = | — e~ 1001200 = | _ »705 + (0,393
(h) Now
PX>r=1-PX<r=1-Fy)

=] — (I — 773200 — p=r200 _ ,-1

from which we obtain r?> = 200 and r = /200 = 14.142 m.
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CONDITIONAL DISTRIBUTIONS
2.49. Let X be a Poisson r.v. with parameter 1. Find the conditional pmf of X given B = (X is even).
From Eq. (2.40), the pdf of X is

Then the probability of event B is

i A }.k
PB)=P(X=0,2,4,..)= e"F
k=cven M
Let A = {X is odd}. Then the probability of event A4 is
@ }.k
PA)=PX =135 )= } e*~
k =:odd N
Now
£ i lk oo - }.k B £ }.k ~
_Ze‘p-o- _Ze‘p=e‘z—|=e‘e‘=l (2.100)
k=even B k =odd . k=0 "=
€ lk EY) lk o0 (—l)k
-2 —,[_= -2 — -a —/l= —22 2'1 2
R TP Y TP T (2102
Hence, adding Egs. (2.10!) and (2.102), we obtain
a }.k
PB)= Y e"p=5(l +e (2.103)
k=even .
Now, by Eq. (2.62), the pmf of X given Bis
P{(X = k) n B}
k|B)= —FF —————
px(k|B) P(B)

Ifkiseven,(X =k)c Band (X =k) n B=(X =k). Ifkis odd, (X = k) n B = (. Hence,
PX =k 2e™4Q¢

PB) (I +eya  keven
pxlk}B) = P()
'P—(B—) =0 k Odd

2.50. Show that the conditional cdf and pdf of X given the event B = (a < X < b) are as follows:

0 xZLa
_ Fx(x) — Fx(a) 3
Fyxja<X <b) = —Fx(b)—Fx(a) a<x<b (2.104)
1 x>b
0 x<Za
fxxla<X b= _bix(_x)__ a<x<b (2.105)
jfx(é)dé
0 x>b
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Substituting B = (a < X < b) in Eq. (2.59), we have

Fuxla<X <h)=PX <xla<X<b=2X=00la<X<b)

Pla< X <b)
[%) x<a
Now (X<x)n(a<X<h)=4a<X<x) a<x<h

[a<X <bh) x>b

Hence, __ P&
Fx(xla<X$b)_P(a<Xsb)_ x<a
Pla< X <x) Fxx)— Fyla)
A X b= = b
Faxla < X < b = X = " Fab) = Fp “~°°
Pla< X <b)
3 X<h="r—T"—"—""=
Fyxla< X <b) Pa<X<h 1 x>b

By Eq. (2.63), the conditional pdf of X given a < X < b is obtained by differentiating Eq. (2./04) with
respect to x. Thus,

0 X<a
Fixla<X <h) =)= (b)f"ix)F i bf"(x) a<x<hb
' x J.fx(«f) dt
0 x>bh

2.51. Recall the parachuting sky diver problem (Prob. 2.48). Find the probability of the sky diver
landing within a 10-m radius from the center of the target area given that the landing is within
50 m from the center of the target area.

From Eq. (2.75) (Prob. 2.23) with 6% = 100, we have
Fylx) =1 — g~ **200

Setting x = 10 and b = 50 and a = —oc in Eq. (2.104), we obtain

F(10)
< 101X < 50) = Fi(10 0) =%
P(X < 101X < 50) = Fy{10] X < 50) F (50)
1 — o~ 1007200
2.52. Let X = N(0; ¢?). Find E(X| X > 0)and Var(X | X > 0).
From Eq. (2.52), the pdf of X = N(0; 6?) is
1
f (X = e—x‘l(Zdl)
Hx) 2no
Then by Eq. (2.105),
0 x <0
1
fulx| X >0) = mf N, eTXH x5 (2.106)
j Sy ae Vo
0
Hence, EX|X>0=2 ! J xe ™ *H2N gy
V2na J,
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2.53.

Let y = x2/(206%). Then dy = x dx/a?, and we get

® 2
EX|X>0)= e Vdy=o0 [— (2.107)

1
Next, E(X2| X>0=2 .[ 2,-x2(20%) gy
\/2 To vy

l o«
= .[ x2e~*M29) gy = Var(X) = o? (2.108)

Ve,

Then by Eq. (2.31), we obtain
Var(X|X > 0) = E(X?|X > 0) - [(E(X|X > 0)]*
2
= 02(1 - ;) = 036367 (2.109)

A r.v. X is said to be without memory, or memoryless, if
PX<x+t]X>t)=PX < x) x,t>0 (2.110)

Show that 1if X is a nonnegative continuous r.v. which is memoryless, then X must be an expo-

nential r.v.
By Eq. (1.39), the memoryless condition (2.110) is equivalent to

P(XSX+!,X>[)_ .
YY) = P(X < x)

or PX<x+X>1)=PX <x)P(X >1) (211D
If X is a nonnegative continuous r.v., then Eq. (2.111) becomes
Pi<X<x+t)=PO0< X <x)P(X >1)
or [by Eq. (2.25)],
Fylx + 1) = Fy(t) = [Fx(x) — Fx()J[! — Fx(t)]
Noting that F(0) = 0 and rearranging the above equation, we get

Fy(x + 1) — Fy(x) _ Fx(O)[1 = Fx(x)]
t t

Taking the limit as ¢ — 0, we obtain
Fiy(x) = FXO)[1 — Fy{x)] (2.112)

where F)y(x) denotes the derivative of F4(x). Let

Ry(x) = 1 — Fy(x) (2.113)
Then Eq. (2.112) becomes

Ri(x) = Rx(0)Rx(x)
The solution to this differential equation is given by

Ryl(x) = keFrO¥

where k is an integration constant. Noting that k = Ry(0) = 1 and letting R(0) = — Fy(0) = —f{0) = —
we obtain

Ry(x)=e™*
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2.56.

2.57.
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and hence by Eq. (2.113),
Fy(x) =1 —=Rylx)=1—e"* x>0

Thus, by Eq. (2.49), we conclude that X is an exponential r.v. with parameter 4 = f4(0) (> 0).
Note that the memoryless property Eq. (2.110) is also known as the Markov property (see Chap. 5), and
it may be equivalently expressed as

PX>x+t]|X>t)=PX > x) x>0,t>0 (2.114)
or PX>x+0)=PX>x)PX>1) x>01>0 (2.115)

Let X be the lifetime (in hours) of a component. Then Eq. (2.114) states that the probability that the
component will operate for at least x + ¢ hours given that it has been operational for ¢ hours is the same as
the initial probability that it will operate for at least x hours. In other words, the component “forgets” how
long it has been operating.

Note that Eq. (2.115) is satisfied when X is an exponential r.v., since P(X > x) = 1 — Fy(x) = ¢ ** and

o Mx¥N _ pmaxg =t

Supplementary Problems

Consider the experiment of tossing a coin. Heads appear about once out of every three tosses. If this
experiment is repeated, what is the probability of the event that heads appear exactly twice during the first
five tosses?

Ans. 0.329
Consider the experiment of tossing a fair coin three times (Prob. 1.1). Let X be the r.v. that counts the

number of heads in each sample point. Find the following probabilities:
(@) P(X < 1);(b) P(X > 1);and (¢) P(0 < X < 3).

Ans. (@) %, (bh) 3, ©) 2
Consider the experiment of throwing two fair dice (Prob. 1.31). Let X be the r.v. indicating the sum of the
numbers that appear.
(@) What is the range of X?
(h) Find (1)) P(X =3); (i) P(X <4);and (i) PB < X < 7).
Ans. (@) Ry=1{2,3,4,...,12}
(b) () 15; (1) §; (i) 3
Let X denote the number of heads obtained in the flipping of a fair coin twice.
(a) Find the pmf of X.

() Compute the mean and the variance of X.

Ans. (@) pxl0) =2, px(1) =4, px(2) =%
(b) E(X) =1, Var(X) =}
Consider the discrete r.v. X that has the pmf
Pylx) = (3)* x=12173 ...
Let A= {{: X({)=1,3,5,7,...}. Find P(A).

Ans. %
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2.59.

2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

Consider the function given by

— =123...
Py ={x2
0 otherwise
where k 1s a constant. Find the value of k such that p(x) can be the pmf of a discrete r.v. X.
Ans. k = 6/n?
It is known that the floppy disks produced by company A4 will be defective with probability 0.01. The
company sells the disks in packages of 10 and offers a guarantee of replacement that at most 1 of the 10
disks is defective. Find the probability that a package purchased will have to be replaced.

Ans.  0.004

Given that X is a Poisson r.v. and p,(0) = 0.0498, compute E(X) and P(X > 3).
Ans. E(X) =3, P(X = 3) = 05767

A digital transmission system has an error probability of 107 % per digit. Find the probability of three or
more errors in 10° digits by using the Poisson distribution approximation.

Ans. 0.08

Show that the pmf py(x) of a Poisson r.v. X with parameter 2 satisfies the following recursion formula:

k
Pk + 1) = P px(k) px(k — 1) =1Px(k)
Hint: Use Eq. (2.40).
The continuous r.v. X has the pdf
kix — xZ) O<x<|
Jutx) = {0 otherwise
where k is a constant. Find the value of k and the cdf of X.
0 x<0
Ans. k=6; Fx)=43x*-2x> O<xx!
| x> 1

The continuous r.v. X has the pdf

k(2x — x?) 0<x<?2
0 otherwise

Sx(x) = {

where k is a constant. Find the value of k and P(X > 1).

Ans. k=3.PX>1)=1%

A r.v. X is defined by the cdf

0 x<0
Fyx)=43x 0<x<1
k Il <x

(a) Find the value of k.
(b) Find the type of X.
(¢) Find (i) P(3 < X < 1); (1l) P(3 < X < 1); and (iii) P(X > 2).



76

267.

2.68.

2.69.

2.70.

271.

272

RANDOM VARIABLES [CHAP 2

Ans. (a) k=1,
(b) Mixed r.v.
(©) (i) 2; (i) 4; (i) 0

It is known that the time (in hours) between consecutive traffic accidents can be described by the exponen-
tial r.v. X with parameter 4 = ¢5. Find (i) P(X < 60); (i) P(X > 120); and (iii) P(10 < X < 100).

Ans. (i) 0.632; (ii) 0.135; (iii) 0.658

Binary data are transmitted over a noisy communication channel in block of 16 binary digits. The probabil-
ity that a received digit is in error as a result of channel noise is 0.01. Assume that the errors occurring in
various digit positions within a block are independent.

(@) Find the mean and the variance of the number of errors per block.
(b) Find the probability that the number of errors per block is greater than or equal to 4.
Ans. (a) E(X)=0.16, Var(X) = 0.158

(b) 0.165 x 1074

Let the continuous r.v. X denote the weight (in pounds) of a package. The range of weight of packages is
between 45 and 60 pounds.

(a) Determine the probability that a package weighs more than 50 pounds.
(b) Find the mean and the variance of the weight of packages.

Hint: Assume that X is uniformly distributed over (45, 60).
Ans. (@) %, (b) E(X)=525, Var(X) = 18.75

In the manufacturing of computer memory chips, company A produces one defective chip for every nine

good chips. Let X be time to failure (in months) of chips. It is known that X is an exponential r.v. with

parameter A = 4 for a defective chip and 1 = {5 with a good chip. Find the probability that a chip pur-

chased randomly will fail before (a) six months of use; and (b) one year of use.

Ans. (a) 0.501; (b) 0.729

The median of a continuous r.v. X is the value of x = x, such that P(X > x,) = P(X < x,). The mode of X
is the value of x = x,, at which the pdf of X achieves its maximum value.

(a) Find the median and mode of an exponential r.v. X with parameter A.
(b) Find the median and mode of a normal r.v. X = N(g, ¢2).
Ans. (@) xo=(In2)/A =0693/4, %, =0
(b) Xo = Xy = H
Let the r.v. X denote the number of defective components in a random sample of n components, chosen

without replacement from a total of N components, r of which are defective. The r.v. X is known as the
hypergeometric r.v. with parameters (N, r, n).

(@) Find the pmf of X.
(b) Find the mean and variance of X.

Hint: To find E(X), note that

(D=5C2) = (C)=50070)

To find Var(X), first find E[ X(X — 1)].
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2.73.

2.74.

2.75.

2.76.

2.77.

(3
o w0 =g won (1) =)

A lot consisting of 100 fuses is inspected by the following procedure: Five fuses are selected randomly, and
if all five “blow” at the specified amperage, the lot is accepted. Suppose that the lot contains 10 defective
fuses. Find the probability of accepting the lot.

Ans. (a) py(x) = x=0,1,2, ..., min{r, n}

Hint: Let X be a r.v. equal to the number of defective fuses in the sample of 5 and use the result of Prob.
2.72.

Ans. 0.584
Consider the experiment of observing a sequence of Bernoulli trials until exactly r successes occur. Let the

r.v. X denote the number of trials needed to observe the rth success. The r.v. X is known as the negative
binomial r.v. with parameter p, where p is the probability of a success at each tnial.

(a) Find the pmf of X.
(b) Find the mean and variance of X.

Hint: To find E(X), use Maclaunin’s series expansions of the negative binomial h(q) = (1 — ¢)™" and its
derivatives h'(g) and h"(q), and note that

_ e frtk-1y, Z S x—1)
== U%( r-1 )" ‘é(r—l)"

To find Var(X), first find E[(X — r) (X — r — 1)] using h"(q).

Ans. (a) px(x)=<::ll>p'(l—p)"" x=rr+1,..

() EX)= r<l> Var(X) = 5“—:”—)
p p

Suppose the probability that a bit transmitted through a digital communication channel and received in
error is 0.1. Assuming that the transmissions are independent events, find the probability that the third
error occurs at the 10th bit.

Ans. 0017

A r.v. X is called a Laplace r.v. if its pdf is given by
Sy(x) = ke # A>0, —oo<x<©
where k is a constant.

(a) Find the value of k.
(b) Find the cdf of X.
(¢) Find the mean and the variance of X.

Lot x<0

Ans. (a) k=1/2 b Fx(x)={]_le—/1x x>0
5 x>

() E(X) =0, Var(X) = 2/A2

A rv. X is called a Cauchy r.v. if its pdf is given by

Sx(x) == > —00 < X <00
d

+ X
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where a (>0) and k are constants.

(@) Find the value of k.
(b) Find the cdf of X.
(¢) Find the mean and the variance of X.

I 1 i fx
Ans. (a) k=a/n () Fylx)= 2 + - tan -

(¢) E(X)=0, Yar(X)does not exist.

[CHAP 2



Chapter 3

Multiple Random Variables

31 INTRODUCTION

In many applications it is important to study two or more r.v.s defined on the same sample
space. In this chapter, we first consider the case of two r.v’s, their associated distribution, and some
properties, such as independence of the r.v.’s. These concepts are then extended to the case of many
r.v.’s defined on the same sample space.

3.2. BIVARIATE RANDOM VARIABLES

A. Definition:

Let S be the sample space of a random experiment. Let X and Y be two r.v.’s. Then the pair (X,
Y) is called a bivariate r.v. (or two-dimensional random vector) if each of X and Y associates a real
number with every element of S. Thus, the bivariate r.v. (X, Y) can be considered as a function that to
each point { in S assigns a point (x, y) in the plane (Fig. 3-1). The range space of the bivariate r.v. (X,
Y)is denoted by R,, and defined by

R,, ={(x, y);{e Sand X({) =x, Y({) =y}

If the r.v’s X and Y are each, by themselves, discrete r.v.’s, then (X, Y) is called a discrete
bivariate r.v. Similarly, if X and Y are each, by themselves, continuous r.v.’s, then (X, Y) is called a
continuous bivariate r.v. If one of X and Y is discrete while the other is continuous, then (X, Y) is
called a mixed bivariate r.v.

Fig. 3-1 (X, Y)as a function from S to the plane.

79
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3.3 JOINT DISTRIBUTION FUNCTIONS
A. Definition:

The joint cumulative distribution function (or joint cdf) of X and Y, denoted by F,(x, y), is the

function defincd by
Fylx, ) = P(X <x, Y <)

3.0

The event (X < x, Y < y) in Eq. (3.1) 1s equivalent to the event A n B, where 4 and B are events of S

defined by

A={{eS; X)) <x} and B={{eS; Y <y}
and P(A) = Fy(x) P(B) = Fy(y)
Thus, Fyy(x, y) = P(A n B)

If, for particular values of x and y, A and B were independent events of S, then by Eq. (1.46),
Fxy(x, y) = P(4 0 B) = P(A)P(B) = Fx(x)F(y)

B. Independent Random Variables:

Two r.v.’s X and Y will be called independent if
Fyy(x, y) = Fx(x)Fy(y)

for every value of x and y.

C. Properties of Fyy(x, y):

The joint cdf of two r.v.’s has many properties analogous to those of the cdf of a single r.v.

L 0<Fylx p) <1

2. Ifx, <x,,and y, <y,,then
Fyrlx1, 1) < Fyylxa. y1) < Fyy(x,, 2)
Fyy(xi, y1) < Fxylxy, y2) < Fyylxy, y2)
lim Fyy(x, y) = Fyy(o0, o©) =1

xX= a0
yrx

(S}

4. lim Fyy(x, y) = Fy(—cc, y) =0

X~

lim Fyy(x, y) = Fyy(x, —cc)=0

y= —o

5. lim Fyy(x, ¥) = Fyy(@a®, y) = Fxyla, y)
lim Fyy(x, ) = Fyy(x, bT) = Fyy(x, b)
yobt

6. P(x; <X <x;,Y < y)=Fyylxz, y) — Fylxy1, ¥)
PX <x,y, <Y < y)) = Fyylx, ¥2) — Fxylx, y1)

7. Ifx, <x,and y, <y,,then
Fyy(x2, y2) = Fyy(xy, p2) = Fyy(x3, y1) + Fxylx, y) 2 0

(3.2)

(3.3)

(3.4)

(3.5)

(3.6a)
(3.6b)

(3.7

(3.8a)
(3.8b)

(3.9a)

(3.9b)

(3.10)
G3.11

(3.12)

Note that the left-hand side of Eq. (3.12) is equal to P(x; < X < x,,y, < Y < y,) (Prob. 3.5).
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D. Marginal Distribution Functions:

Now ImX <x, Y<py=X<x,Y<ox)=(X <x)

¥y

since the condition y < oo i1s always satisfied. Then

lim Fyy(x, p) = Fxy(x, 00) = F(x) 3.13)
y—= %
Similarly, lim Fyy(x, y) = Fyy(oo, y) = Fy(y) 3.19)

The cdf’s Fy(x) and Fy(y), when obtained by Eqs. (3.13) and (3.14), are referred to as the marginal
cdf’s of X and Y, respectively.

3.4 DISCRETE RANDOM VARIABLES—JOINT PROBABILITY MASS FUNCTIONS
A. Joint Probability Mass Functions:

Let (X, Y) be a discrete bivariate r.v.,, and let (X, Y) take on the values (x;, y;) for a certain
allowable set of integers i and j. Let

Pxv(xi, y)=P(X =x;, Y = y) (3.15)
The function pyy(x;, y;) is called the joint probability mass function (joint pmf) of (X, Y).

B. Properties of pyy(x,, y,):

L0 < pyylxi, y) <1 (3.16)
2. ) Y palxi vy =1 (3.17)
Xi yj
3. PIX, VVedl= Y3 pxdxi,y) (3.18)
(xiv yj) e R4

where the summation is over the points (x,, y;) in the range space R, corresponding to the event A.
The joint cdf of a discrete bivariate r.v. (X, Y) is given by

Fyylx, y) = Z Z Pxy(X;, ,Vj) (3.19)
Xj<x yj<y
C. Marginal Probability Mass Functions:

Suppose that for a fixed value X = x;, the r.v. Y can take on only the possible values y; (j = 1, 2,
..., n) Then

P(X = x) = pxlx)) = Z Pxyixi, ¥)) (3.20)

Yi

where the summation is taken over all possible pairs (x;, y,) with x; fixed. Similarly,
P(Y =Yj):pY(yj)=szY(xi,yj) (3.21)

where the summation is taken over all possible pairs {x,, y;) with y; fixed. The pm{’s px(x;) and p,(y;),
when obtained by Eqs. (3.20) and (3.21), are referred to as the marginal pm{’s of X and Y, respectively.

D. Independent Random Variables:
If X and Y arc indcpendent r.v.’s, then (Prob. 3.10)

Pxv(Xi, ¥5) = px(x)pr(y;) (3.22)
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3.5 CONTINUOUS RANDOM VARIABLES—JOINT PROBABILITY DENSITY
FUNCTIONS

A. Joint Probability Density Functions:
Let (X, Y) be a continuous bivariate r.v. with cdf Fy,(x, y) and let

aZny(xv )
Ox Oy

The function fyy(x, y) is called the joint probability density function (joint pdf) of (X, Y). By
integrating Eq. (3.23), we have

Jxy(x, y) = (3.23)

x y
Fyylx, y) = j f Sxv(&, n) dn d§ (3.24)
B. Properties of f5y(x, y):
1. fyfx, ) =0 (3.25)
2. J f Jxyx, y)dx dy =1 (3.26)
3. fx#(x, y)is continuous for all values of x or y except possibly a finite set.
4. P[(X,Y)e A] = JI Sxy(x, y) dx dy (3.27)
Ra
d b
5. Pla<X<bhc<Y<d)= .[ J Sxylx, y)y dx dy (3.28)

Since P(X =a) =0 = P(Y = ¢)[by Eq. (2.19)], it follows that
Pa<X £bhc<Y<d)=Pa<sX<bhc¢<Y<dy=Pa<X<bc<Y<d

d b
=P(a<X<b,c<Y<d)=J. ffxy(x,y)dxdy (3.29)

C. Marginal Probability Density Functions:
By Eq. (3.13),

Fy(x) = Fyylx, ) = J_ J_ Jxy(& n) dn d

dF ©
Hence fy) = % - f Siexloe ) din
X -
or Sx(x) = j_ Sxy(x, y) dy (3.30)
Similarly, ) = r Fey(%, ) dx (3.31)

The pdf’s fy(x) and fy{y), when obtained by Eqs. (3.30) and (3.31), are referred to as the marginal pdf’s
of X and Y, respectively.
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D. Independent Random Variables:
If X and Y are independent r.v.’s, by Eq. (3.4),

Fyy(x, y) = Fx(x)Fy(y)

azny(x» y) _ i i
Then “oxdy " ox Fy(x) 2 Fy(y)
or Sxv(x, ¥) = fx(x) fely) (3.32)

analogous with Eq. (3.22) for the discrete case. Thus, we say that the continuous r.v.'s X and Y are
independent r.v.’s if and only if Eq. (3.32) is satisfied.

3.6 CONDITIONAL DISTRIBUTIONS
A. Conditional Probability Mass Functions:
If (X, Y) is a discrete bivariate r.v. with joint pmf pyy(x;, y;), then the conditional pmf of Y, given
that X = x,, is defined by

3 )
Pyl x) = 3—;% px(x) > 0 (3.33)

Similarly, we can define py y(x;|y,) as

p xi i) j
bl ) = I (5 (339)
PY(Yj)
B. Properties of py | x(y; | x)):
L. 0 < pyxly;lx) <1 (3.35
2. ) prxyilxp =1 (3.36)
Yi

Notice that if X and Y are independent, then by Eq. (3.22),
PY[x(Y,‘| x;) = PY(Yj) and Px|y(x.'|}’j) = pxlx;) (3.37)

C. Conditional Probability Density Functions:

If (X, Y) is a continuous bvivariate r.v. with joint pdf fyy(x, y), then the conditional pdf of Y, given
that X = x, is defined by

fratyi ) =2 > 0 (3.38
Similarly, we can define fyy(x | y) as
fartxly = 228D 50 3.39

D. Properties of fy | x(y|x):
L fyydylx)20 (3.40)

2. f Srxy1x)dy =1 (341)



84 MULTIPLE RANDOM VARIABLES [CHAP 3

As in the discrete case, if X and Y are independent, then by Eq. (3.32),
fy|x()’|x) = fy(y) and fx|y(x|)’) = fx(x) (3.42)

3.7 COVARIANCE AND CORRELATION COEFFICIENT
The (k, n)th moment of a bivariate r.v. (X, Y) is defined by

XY Xty xydxi, ) (discrete case)
My, = E(X*Y") =% " (3.43)

x*y"fyy(x, y) dx dy  (continuous case)

If n = 0, we obtain the kth moment of X, and if k = 0, we obtain the nth moment of Y. Thus,

myo = E(X) = ux and moy = E(Y) = uy (3.44)
If (X, Y) is a discrete bivariate r.v., then using Egs. (3.43), (3.20), and (3.21), we obtain

px = E(X) = Z Z X; pxy(x:, Yj)

v =
= XZ X.-[yZ} Pxy(x;, y,-)] = § X; Px(X;) (3.450)
py = E(Y) = XZ( yZ} i PxdXss ¥))
= yZ y,-[§ Pxlx;, yj)] = yZ ¥;PAy)) (3.45b)
Similarly, we have
E(Xx?) = yZ} ;xfszy(x‘-, y) = § X2 px(x) (3.460)
E(Y?) = % Z yipxy(xi, y) = yZ ¥ pely) (3.46b)

If (X, Y)is a continuous bivariate r.v., then using Eqs. (3.43), (3.30), and (3.31), we obtain

foo o

by = E(X) = Xfxy(x, y) dx dy

JT W JT

* o M o ©
=1 j_ Jxr(x, y) dy:l dx = J xfy(x) dx (3.47a)

fo o

uy = E(Y) = Vxy(x, y) dx dy

VT JT X

= y f Sxr(x, y) dx:l dy=j yily) dy (3.47b)

v @ -

=

Similarly, we have

EXYH) = jw fw Xyylx, y) dx dy = Jloo X2 y(x) dx (3.48a)

—® - -

E(Y?) = j_ J_ Y fxr(x, y) dx dy =J Vfy) dy (3.48b)
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The variances of X and Y are easily obtained by using Eq. (2.31). The (1, 1)th joint moment of (X, Y),
m;, = E(XY) (3.49)

is called the correlation of X and Y. If E(XY) =0, then we say that X and Y are orthogonal. The
covariance of X and Y, denoted by Cov(X, Y) or a4y, is defined by

Cov(X, ¥) = 6xy = E[(X — )Y — ty)] (3.50)
Expanding Eq. (3.50), we obtain
Cov(X, Y) = E(XY) — E(X)E(Y) 3.5

If Cov(X, Y) =0, then we say that X and Y are uncorrelated. From Eq. (3.51), we see that X and Y
are uncorrelated if

E(XY) = E(X)E(Y) (3.52)

Note that if X and Y are independent, then it can be shown that they are uncorrelated (Prob.
3.32), but the converse is not true in general; that is, the fact that X and Y are uncorrelated does not,
in general, imply that they are independent (Probs. 3.33, 3.34, and 3.38). The correlation coefficient,
denoted by p(X, Y) or pyy, is defined by

Cov(X, Y)  oxy

Ox 0y Ox Oy

PX, Y) = pyy = (3.53)

It can be shown that (Prob. 3.36)
|pxy' <l or —-1< Pxy < 1 (354)

Note that the correlation coefficient of X and Y is a measure of linear dependence between X and Y
(see Prob. 4.40).

3.8 CONDITIONAL MEANS AND CONDITIONAL VARIANCES

If (X, Y) is a discrete bivariate r.v. with joint pmf pyy(x;, y;), then the conditional mean (or condi-
tional expectation) of Y, given that X = x;, is defined by
Ky = E(Y|x) = Z prYIX(yjlxi) (3.55)
Y)

The conditional variance of Y, given that X = x,, is defined by

0§|x. = Var(Y|x;) = E[(Y - lly|x,)2 [x]= Z (v;— ﬂy|x.~)zpy|x()’j| x;) (3.56)
¥

which can be reduced to
Var(Y | x;) = E(Y?|x) — [E(Y|x)]? 3.57)

The conditional mean of X, given that Y = y;, and the conditional variance of X, given that Y = y,,
are given by similar expressions. Note that the conditional mean of Y, given that X = x;, is a func-
tion of x; alone. Similarly, the conditional mean of X, given that Y = y;, is a function of y; alone.

If (X, Y) is a continuous bivariate r.v. with joint pdf fyy(x, y), the conditional mean of Y, given
that X = x, is defined by

a

Hyix = E(Y[x) = f yfux(y1x) dy (3.58)

The conditional variance of Y, given that X = x, is defined by

a0

of)e = Var(Y | x) = E[(Y — py)* [ x] = f - ) frx(v] x) dy (3.59)

- X
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which can be reduced to
Var(Y | x) = E(Y?|x) — [E(Y | x)]? (3.60)

The conditional mean of X, given that Y = y, and the conditional variance of X, given that Y =y,
are given by similar expressions. Note that the conditional mean of Y, given that X = x, is a function
of x alone. Similarly, the conditional mean of X, given that Y = y, is a function of y alone (Prob.
3.40).

3.9 N-VARIATE RANDOM VARIABLES

In previous sections, the extension from one r.v. to two r.v.'s has been made. The concepts can be
extended easily to any number of r.v.’s defined on the same sample space. In this section we briefly
describe some of the extensions.

A. Definitions:

Given an experiment, the n-tuple of r.v.’s (X,, X,, ..., X,) is called an n-variate r.v. (or n-
dimensional random vector) if each X;, i=1, 2, ..., n, associates a real number with every sample
point { € S. Thus, an n-variate r.v. is simply a rule associating an n-tuple of real numbers with every
{eSd.

Let (X4, ..., X,) be an n-variate r.v. on S. Then its joint cdf is defined as

Fy, ooxfxp .o x)=PX, <x,...,X,<x,) (3.61)
Note that
Fy x{0,...,0)=1 (3.62)

The marginal joint cdf’s are obtained by setting the appropriate X;s to +co in Eq. (3.61). For
example,

Fyiixyo Xy ooy X)) = Fypoxos xX 1 oo os Xpo gy @) (3.63)
Fyix (1, X3} = Fy oy x.%1, X3, 00, ..., 00) (3.64)

A discrete n-variate r.v. will be described by a joint pmf defined by
Pxy e xXps oy X)) =PX =x,..., X, =x,) (3.65)

The probability of any n-dimensional event A is found by summing Eq. (3.65) over the points in the
n-dimensional range space R, corresponding to the event A:

PUX\, ... X)eAl= Y =) PyyoxfXps oy Xp) (3.66)

(X1, ... Xn) € Rg

Properties of px, ... x,(Xg5 -+5 X,):

L0 < pyyo x 0y ooer %) < (3.67)
20 Y Y Py k(K e X = (3.68)
X1 Xn

The marginal pmf’s of one or more of the r.v.’s are obtained by summing Eq. (3.65) appropriately.
For example,

Pxi o xorX1s ooy Xy ) =Y Py xolX1 <5 Xp) (3.69)

Pr(x0) =2 - Y Py, xX1s -5 X,) (3.70)



CHAP. 3] MULTIPLE RANDOM VARIABLES

Conditional pmf’s are defined similarly. For example,

Pxy o x(X1s o oes %)

Pxaix,y "'X.,—](xnlxh ooy Xpoy) =

A continuous n-variate r.v. will be described by a joint pdf defined by

— a"FX1 "'X,,(xl’ sty xn)

Sxy e (X ooy X)

3%, - %,

Then Fxl...x"(xl,...,xn)=£‘" j FrroxErs e E) dE -

and PIX,, .., X,) e A] = 'ff Fv o xlCrs ey &) dE, -
(x5, ... xn) € Ry

Properties of fx, ... x (X1 +++s X,):
L. le'--X,,(xl) (ERE} xn) 2 0

2. J‘ f fxl.__x_(xl,...,x,,)dxl -..dx"=1

Px, - x._,(xp P Y

dé,

dé,

87

(3.71)

(3.72)

(3.73)

(3.74)

(3.79)

(3.76)

The marginal pdf’s of one or more of the r.v.’s are obtained by integrating Eq. (3.72) appropriately.

For example,

.
Fri oot or %) =j S eondin s %) dx,
- o0

fn(xn)=f_ J Ty X oeor %) dX; - dx,

Conditional pdf’s are defined similarly. For example,

le ~--X,.(xp R xn)
le"'Xn—l(xl’ Te xn—l)

The r.vs X4, ..., X, are said to be mutually independent if

qulz\’l -"X,.ax(xnlxb [ERRY xn-l) =

pX[ X,,(xl’ sy xn) = l_l px..(xi)
i=1
for the discrete case, and
le X,(xl’ rere xn) = l_l fX((xi)
i=1

for the continuous case.
The mean (or expectation) of X, in (X |, ..., X,) is defined as

Yot Y XiPxy e x (X1 oo X,) (discrete case)

M = EX) = x"w © .
J. J. X Sfxy o x(X1s oons X,) dxy - dx, (continuous case)

The variance of X is defined as
o = Var(X)) = E[(X; — u)*]

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)
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The covariance of X; and X is defined as

0;; = Cov(X;, X)) = E[(X; — u}X; — )] (3.84)
The correlation coefficient of X; and X is defined as
C o X y
= Cov(X;, X) _ oy (3.85)
g,0; 0,0;

3.10 SPECIAL DISTRIBUTIONS
A. Multinomial Distribution:

The multinomial distribution is an extension of the binomial distribution. An experiment is

termed a multinomial trial with parameters p,, p,, ..., Py, if it has the following conditions:
1. The experiment has k possible outcomes that are mutually exclusive and exhaustive, say A,, 4,,
ey Ay
k
2. P(A)=p; i=1,...,k and Y pi=1 (3.86)
i=1

Consider an experiment which consists of n repeated, independent, multinomial trials with param-
eters py, p,, ..., P Let X; be the r.v. denoting the number of trials which result in 4;. Then (X,, X,
..., X}) is called the multinomial r.v. with parameters (n, p,, p,, --., p,) and its pmf is given by (Prob.
3.46)

!

n.
Pxixy - xlX1s X255 Xg) = FATARE A V2SN (3.87)

k
forx;=0,1,...,ni=1,...,ksuch that ) x;,=n.
i=1

Note that when k = 2, the multinomial distribution reduces to the binomial distribution.

B. Bivariate Normal Distribution:
A bivariate r.v. (X, Y) is said to be a bivariate normal (or gaussian) r.v. if its joint pdf is given by

1 \
frrlx, y) = 3no.o (1= pP exp( —z4(x, y)] (3.88)

— 2 _ _ _ 2
where a9 =1 _1p2 [(i_a_/‘_) _ 2p<x = m)(y - m) . (y - uy> ] (3.89)

and pu,, p,, 0., 6, are the means and variances of X and Y, respectively. It can be shown that p is
the correlation coefficient of X and Y (Prob. 3.50) and that X and Y are independent when p = 0
(Prob. 3.49).

C. N-variate Normal Distribution:

Let (X,, ..., X,) be an n-variate r.v. defined on a sample space S. Let X be an n-dimensional
random vector expressed as an n x 1 matrix:

x=|: (3.90)
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Let x be an n-dimensional vector (n x 1 matrix) defined by

Xy
x=|: (3.91)
x’l
The n-variate r.v. (X, ..., X,) is called an n-variate normal r.v. if its joint pdf is given by
1 1 T -1
Sdx) = e [det K[ cXPI:— 2x—m) K™ (x —p) 3.92)
where T denotes the “transpose,” p is the vector mean, K is the covariance matrix given by
Hy E(X,)
=Ex1=|:|=]| :
r = E[X] : . (3.93)
| E(X,)
Jy1 ' Opn
K=|: " o;; = Cov(X;, X)) (3.94)
onl e onn_
and det K is the determinant of the matrix K. Note that fy(x) stands for fy ... x (x;, ..., X,).
Solved Problems

BIVARIATE RANDOM VARIABLES AND JOINT DISTRIBUTION FUNCTIONS

3.1. Consider an experiment of tossing a fair coin twice. Let (X, Y) be a bivariate r.v., where X is the
number of heads that occurs in the two tosses and Y is the number of tails that occurs in the two
tosses.

(a) What is the range Ry of X?

(b) What is the range Ry of Y?

(¢) Find and sketch the range Ry, of (X, Y).

(d FindP(X=2Y=0,PX=0,Y=2),and P X=1Y=1)

The sample space S of the experiment is
S={HH, HT, TH, TT}

(@ Ry=1{0,1,2}

(b)) Ry=1{0,1,2}

() Ryy=1{(2,0),(1, 1), (0, 2)} which is sketched in Fig. 3-2.

(d) Since the coin is fair, we have
PX=2Y=0)=P{HH} =3
P(X=0Y=2=P{TT} =4
P(X=1,Y=1)=P{HT, TH} = 4

3.2. Consider a bivariate r.v. (X, Y). Find the region of the xy plane corresponding to the events
A={X+Y<2} B={X*+Y*<4}
C = {min(X, Y) < 2} D = {max(X, Y) < 2}
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33.

34,

35.

The region corresponding to event A4 is expressed by x + y < 2, which is shown in Fig. 3-3(a), that is,
the region below and including the straight line x + y = 2.

The region corresponding to event B is expressed by x? + y? < 22, which is shown in Fig, 3-3(b), that
is, the region within the circle with its center at the origin and radius 2.

The region corresponding to event C is shown in Fig. 3-3(c), which is found by noting that

(min(X, Y) <2} =(X <2 u (Y £2)
The region corresponding to event D is shown in Fig. 3-3(), which is found by noting that

(max(X, ¥) <2} = (X <2) A (Y £2)

Verify Eqgs. (3.7), (3.8a), and (3.8b).
Since {X < o0, Y < o0} = § and by Eq. (1.22),
P(X < o0, Y < o) = Fyylo0, 00) = P(S) = 1
Next, as we know, from Eq. (2.8),
PX=—-x)=PY = —0)=0
Since (X=—-0,YV<pyc(X=—x) and (X<x, V< —-—w)c(Y=~—wx)

and by Eq. (1.27), we have
P(X=—00, Y <y)=Fyl—00,)=0

PX <x, Y= —00) = Fyylx, —00) =0

Verify Eqs. (3.10) and (3.11).
Clearly (X<x,, V<)) =(X<x,, V<)) u(x; < X<x,, Y <y
The two events on the right-hand side are disjoint; hence by Eq. (1.23),
PX<x, Y<y)=PX<x,Y<))+Px <X<x,, Y=<y
or Px, <X <x,,Y<y)=PX<x,, V<)) -PX<x,Y<y)
= Fyy(x2, ¥) = Fy(x1, ))
Similarly,
(X<, V<y)=(X<x, Y<y)uX<x,y, <V <y,)
Again the two events on the right-hand side are disjoint, hence
PX <x, Y<y)=PX<x, Y<y)+PX<x,y, <Y<y,

or PX<x,y, <Y<y)=PX<x,Y<y,)—-PX<x,Y<y)
= FxylX, y2) — Fxv(x, yy)

Verify Eq. (3.12).
Clearly
(X, <X <x,, Y<y)=(x; < X<x,, Y <y )ulx, <X <x,,y, <Y <y,)
The two events on the right-hand side are disjoint; hence
Px; < X<x,, Yy, )=Plx; < X<x,, Y <y)+Plx; <X <x5, 5y <Y < yy)
Then using Eq. (3.10), we obtain

Plxy < X <%,y <Y <y))=Plx; <X <x,, Y <y)) = Plx; < X<x,,Y2y))
= Fyylxy, ¥3) = Fylxy, ¥2) — [Fxrdx2, ¥1) — Fyylxy, ¥1)]
= Fyy(xy, y2) = Fxy(xy, y2) ~ Fxy(xy, y1) + Fyylxp, ¥,) (3.95)
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Since the probability must be nonnegative, we conclude that
Fyylxy, y2) — Fxylxy, y2) = Fyy(x2, ) + Fyylxy, y)) 20

ifx, > x,and y, 2 y,.

Consider a function
l—e " 0<x<w,0<y<w
F(x, y) = .
0 otherwise
Can this function be a joint cdf of a bivariate r.v. (X, Y)?

It is clear that F(x, y) satisfies properties 1 to 5 of a cdf [Egs. (3.5) to (3.9)]. But substituting F(x, y) in

Eq. (3.12) and setting x, = y, =2 and x, = y, = 1, we get
FQ,)—F1,)-F )+ FlL,h)=(1—-eH—(1l—-eHN-(1—-eHN+(1l—-e?
=—e%+2 e ?=—(e72—e" ) <0

Thus, property 7 [Eq. (3.12)] is not satisfied. Hence F(x, y) cannot be a joint cdf.

Consider a bivariate r.v. (X, Y). Show that if X and Y are independent, then every event of the
form (a < X < b) is independent of every event of the form (c < Y < d).

By definition (3.4), if X and Y are independent, we have
Fyy(x, y) = Fx(x)Fy(y)
Setting x, = a, x, = b, y; = ¢, and y, = d in Eq. (3.95) (Prob. 3.5), we obtain
Pla<X <bc<Y <d)=Fydb, d)— Fyla, d) — Fy (b, ¢) + Fxya, ¢)

= Fx(b)F Ad) — Fxda)F (d) — F(b)F y(c) + Fila)F fc)
= [Fx(b) — Fx(@)J[F(d) — Fy(c)]
=Pla< X <bPc<Y <d

which indicates that event (¢ < X < b) and event (¢ < Y < d) are independent [Eq. (1.46)].

The joint cdf of a bivariate r.v. (X, Y)is given by
Q—e™1—-e? x20,y20,a, >0
Fyy(x, y) = .
x(% 7) {0 otherwise

(a) Find the marginal cdf’s of X and Y.
(b) Show that X and Y are independent.
() FindP(X<LY<I),PX<1),PY>1),and P(X > x, Y > y)
(@) By Eqgs. (3.13) and (3.14), the marginal cdf’s of X and Y are
1 —e™ ¥ x20
0 x<0
l—e™®  y>0
0 y<0
(b) Since Fyy(x, y) = Fy(x)Fyy), X and Y are independent.
© PX<LY<D=Fdl,)=(1—e Yl —e¥

PX <) =Fyl)y=(1l—-¢79

PY>D)=1—-PY<l)=1~F(l)=e"*

Fx(x) = Fxylx, 00)={

Fy(y) = Fxy(0, y) = {
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By De Morgan’s law (1.15), we have

X>x)n(Y>y=X>x)u(Y>p=(X<x)u(Y <y
Then by Eq. (1.29),
PX>x)n(Y>N)=PX<x)+PlYS)—PX<x, Y=<y
= Fy(x) + Fly) — Fxylx, y)
=(l—e™M+(1—e)—(1—-e" —e™»)
=1 —e P H
Finally, by Eq. (1.25), we obtain
PX>xY>)=1-P(X>x)n (Y >y]=e %P

3.9. The joint cdf of a bivariate r.v. (X, Y) is given by
0 x<0 or y<0
I 0<x<a 0<y<b
Fylx,y)=19p, x=za, 0<y<b
D3 0<x<a y=2b
1 x>a, y=b

(a) Find the marginal cdf’s of X and Y.
(b) Find the conditions on p,, p,, and p; for which X and Y are independent.

(@) By Eq. (3.13), the marginal cdf of X is given by

0 x <0
Fux)=Fyylx, 0)=4p; O<x<a
1 x>a
By Eq. (3.14), the marginal cdf of Y is given by
y<O0
Fy) = Fyylco, y)=9p, O0<y<b
1 yzb

(b) For X and Y to be independent, by Eq. (3.4), we must have Fy(x, y) = Fy(x)F/(y). Thus, for 0 < x < q,
0 < y < b, we must have p, = p, p, for X and Y to be independent.

DISCRETE BIVARIATE RANDOM VARJABLES—JOINT PROBABILITY MASS
FUNCTIONS

3.10. Verify Eq. (3.22).
If X and Y are independent, then by Eq. (1.46),
Pxrlxi, y) = PX = x;,Y = }’j) = P(X = x)P(Y = }’_;) = Px(xi)PY(}’;)

3.11. Two fair dice are thrown, Consider a bivariate r.v. (X, Y). Let X = 0 or 1 according to whether
the first die shows an even number or an odd number of dots. Similarly, let ¥ = 0 or 1 according

to the second die.
(a) Find the range Ry, of (X, Y).
(b) Find the joint pmf’s of (X, Y).
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(a) The range of (X, Y)is
RXY = {(0, 0)7 (0, l)v (1’ O)y (1’ 1)}

(b) Itisclear that X and Y are independent and

PX=0)=PX=1)=2=3%
P(Y=0)=PY=1)=}=1}
Thus Pxdi )=PX =i Y=)=PX=)P(Y=j)=% ij=01

[CHAP 3

3.12. Consider the binary communication channel shown in Fig. 3-4 (Prob. 1.52). Let (X, Y) be a
bivariate r.v.,, where X is the input to the channel and Y is the output of the channel. Let

PX =0)=05P(Y =1|X =0)=0.,and P(Y =0| X = 1) = 0.2,

(@) Find the joint pmf’s of (X, Y).
(b) Find the marginal pmf{’s of X and Y.
(¢) Are X and Y independent?

(a) From the results of Prob. 1.52, we found that

PX=1)=1~PX=0)=05
P(Y =0]X =0)=09 PY=1]X=1)=08

Then by Eq. (1.41), we obtain
P(X=0,Y=0)=PY =0}X =0)P(X =0) =0.9(0.5) = 045
PX =0,Y=1)=P(Y =1]|X =0)P(X = 0) =0.1(0.5) = 005
PX=1Y=0)=PY=0{X=1PX =1)=0.20.5) = 0.1
PX=1,Y=1)=PY=1]X=1PX =1)=08(0.5 =04
Hence, the joint pmf’s of (X, Y) are
Pxy{0, 0) = 0.45 pxy(0, 1) = 0.05
Pxy(1,0) = 0.1 pxy(l, 1) =04
(b) By Eq. (3.20), the marginal pmf’s of X are
px(0) = Y pxlO, y) =0454+005=05
b3

px(l) =Y pxy(l, y) =01+ 04 =05

¥
By Eq. (3.21), the marginal pmf’s of Y are
PH0) =Y pxy(x;, 0) = 0.45 + 0.1 = 0.55

pr(1) = Y pyy(xi, 1) = 0.05 + 0.4 = 0.45

x{

P(Y=01X=0)

PY=t'X=">n

Fig. 3-4 Binary communication channel.
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Now

Pr0)py(0) = 0.5(0.55) = 0.275 # pyy(0, 0) = 0.45

Hence X and Y are not independent.

95

Consider an experiment of drawing randomly three balls from an urn containing two red, three

white, and four blue balls. Let (X, Y) be a bivariate r.v. where X and Y denote, respectively, the

number of red and white balls chosen.

(@

(b) Find the joint pmf’s of (X, Y).

(c)
(@

(@)

(b)

(e)

Find the range of (X, Y).

Find the marginal pmf’s of X and Y.

Are X and Y independent?

The range of (X, Y) is given by

RXY = {(0) 0)’ (Ov l)v (0! 2)v (0) 3)! (lv 0)| (lv 1)! (l’ 2)! (2y 0)! (2' l)}

The joint pmf’s of (X, Y)

Pyl )=PX =i, Y =))

are given as follows:

P20 =3

)

4
84

9\ 12
3)‘&
9) 12
3)“@
9\ 6
3>=8_4
9)_4
3 84

=012

Pxy(0, 1) = <

pxy(0, 3)

pxy(l, 1)

which are expressed in tabular form as in Table 3.1.

j=0,1,23

)
-()/C)-s
()

The marginal pmf’s of X are obtained from Table 3.1 by computing the row sums, and the marginal
pmf’s of Y are obtained by computing the column sums. Thus

px(0) = %‘3
py(0) = 12!%

pxll) = 8 (=5
pll) =% ) =# py(3) = 5a
Table 3.1 pxy(i, j)
J

i 0 1 2 3
o [ & [w 8|
AR AR
2 = = 0 0
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(d) Since
Pxr(0, 0) = g3 # px(O)py(0) = 33 (3D)

X and Y are not independent.

3.14. The joint pmf of a bivariate r.v. (X, Y) is given by
k(2x; + y;) x=12;y;,=12
Pxr(x;, ¥) = {0 ! !

otherwise

where k is a constant.
(a) Find the value of k.
(b) Find the marginal pmf’s of X and Y.
(¢) Are X and Y independent?
(a) By Eq.(3.17),
2 2
Z Z pxylxi, y) = Z Z k(2x; + )’j)

xi yj xi=1 yj=1
=k2+D+2+2)+@+D)+@d+2)]=k18)=1
Thus, k = 5.
(b) By Eq.(3.20), the marginal pmf’s of X are
2
Px(x.') = Z Pxyv(x;, )’j) = Z Tls(zx.' + )’j)
17 ¥y~

=3502x;, + )+ 52x, +2) = H6dx,+3) x;=1,2
By Eq. (3.21), the marginal pmf’s of Y are

2
Pry) =2 pxrxis y) = X 15(2x + y))
xp xi=1
=ﬁ(2+)’j)+TlK(4+)’j)=ﬁ(2)’j+6) y=12
() Now py(x)py(y,) # pxy(x;, ¥,); hence X and Y are not independent.

3.15. The joint pmf of a bivariate r.v. (X, Y) is given by

kx;?y; i =1,2y;=123
Pxr(Xi, yj) = {0 otherwise

where k is a constant.
(a) Find the value of k.
(b) Find the marginal pmf{’s of X and Y.
(¢) Are X and Y independent?
(@) By Eq.(3.17)
2 3
Z Z Pxr(xis ¥) = Z Z kxlzyj

Xi ¥y xi=1 y;=1

=k(1+2+3+4+8+12)=k(30)=1

Thus, k = 3.
(b) By Eq. (3.20), the marginal pmf’s of X are
3
pxlx) = Z Pxy(x;, }’1) = Z 3lﬁxi2yj = %x.'z x, =12

Vi =1
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By Eq. (3.21), the marginal pmf’s of Y are

2
prly) = Z Pxylx;, y) = Z 3'16)‘.'2)’,' = %Yj ;=123

xi xi=1
(¢) Now
Pxlx)puly)) = 35x7y; = pxylxis y)

Hence X and Y are independent.

3.16. Consider an experiment of tossing two coins three times. Coin A is fair, but coin B is not fair,
with P(H) = } and P(T) = 3. Consider a bivariate r.v. (X, Y), where X denotes the number of
heads resulting from coin A and Y denotes the number of heads resulting from coin B.

(@) Find the range of (X, Y).
(b) Find the joint pmf’s of (X, Y).
(¢) FindP(X=Y),PX>Ys,and PX+Y <4).
) The range of (X, Y)is given by
Ry ={(i,):i.j=0,1,2 3}

(b) It is clear that the r.v.’s X and Y are independent, and they are both binomial r.v.’s with parameters (n,
p) = (3, 3)and (n, p) = (3, §), respectively. Thus, by Eq. (2.36), we have

3 i 3 1 3 1 3
pomnsea (UL oY

8
3
px(2) = P(X =2) = ( ( 3 pui3) = P(X =3) =

0 o)
s
1) O

(G
Pr2) = P ( ( () Py3) =AY =3)=

Since X and Y are independent, the joint pmf{’s of (X, Y) are
pxvli, ) = pxlilpdy)  4,j=0,1,23
which are tabulated in Table 3.2,
(¢) From Table 3.2, we have

3
PX = Y)= Y paylis i) = 50527 + 81 + 27 + 1) = 88
i=0

3
PX > Y) =3 pyyli, ) = Pyy(1, 0) + Pyy(2, 0) 4 Pyy(3. 0) + pyy(2, 1) + pxe(3, 1) + pxe(3, 2)

i>j

= 515(81 + 81 + 27 + 81 + 27 + 9) = 398

Table 32 peyl, /)

J
i 0 1 2 3
0 27 27 9 1
312 312 512 312
I 81 81 27 3
312 512 312 312
2 81 81 27 3
312 512 712 312
3 27 27 9 1
312 31z 312 312
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PX+Y>4) =} pxyli,))=Py2 3) + Pyy(3, 2) + Pyy(3, 3)

i+j>4
=B +9+ 1) =2%
Thus, PX+y<d)=1—PX+y>d)=1— 4% =42

CONTINUOUS BIVARIATE RANDOM VARIABLES—PROBABILITY DENSITY
FUNCTIONS

3.17. The joint pdf of a bivariate r.v. (X, Y) is given by
Forl, y) = kix + ) 0<x<20<y<?2
xS V=19 otherwise
where k is a constant.

(a) Find the value of k.
(b) Find the marginal pdf’s of X and Y.
(¢) Are X and Y independent?

(a) By Eq. (3.26),
o e 2 2
f f .fxy(x»Y)dXdY=kf ~]‘(x+y)dxdv
2

2 x x=2
=k —+xy dy
o 2 x=0

2
=kf(2+2y)dy=8k=l
0

Thus &k = §.
(b) By Eq. (3.30), the marginal pdf of X is

o

l 2
Sx) = ) Jxvlx, y) dy = 3 J. (x+ y) dy

1 y?
‘§<"y+ 2)

Since fyy(x, y) is symmetric with respect to x and y, the marginal pdf of Y is

0 otherwise

"=2_{%(x+1) 0<x<2

y=0

1
_ sy + 1) 0<y<?2
Sy = {0 otherwise

(€)  Since fyylx, y) # fx(x)f/{y), X and Y are not independent.

3.18. The joint pdf of a bivariate r.v. (X, Y) is given by
Sirxiy) = {(I;xy 2;;:“:5: s
where k is a constant.
(a) Find the value of k.
{b) Are X and Y independent?
{¢) FindP(X +Y<1)

[CHAP 3
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<\§\‘\_\%

T
o

(a) (b}
Fig. 3-5
(7) The range space Ryy is shown in Fig. 3-5(a). By Eq. (3.26),

x (o 1 (It
'f 'f f"{x.y)dxdy=k'f J‘xydxd)'=kj.y(——l)dy
cw d-w o Jo o N2 o

Thus k = 4.
() To determine whether X and Y are independent, we must find the marginal pdf's of X and Y. By Eq.
(3.300,
1
4xy dy = 2x D<cx<li
Sxlx) = .[)
0 otherwise
By symmetry,
2y O0<y«<l
vy = {0 otherwise

Since fyylx, ¥) = f{x)fi{y), X and Y are independent.
(c) The region in the xy plane corresponding to the event (X + Y < 1) is shown in Fig. 3-5(b) as a shaded

area, Then
1 1-y 1 xl 1—y
P(X+Y<1)=.f J. 4xydxdy=J‘4y(— )dy
o 0 (] 2 o

1
= I Y3 -y 1dy =2
0
3.19. The joint pdf of a bivariate r.v. (X, Y)is given by

kxy D<x<y<]
Tadx ) = {0 otherwise
where k is a constant.

(@) Find the value of k.
(b Are X and Y independent?

(@) The range space Ry is shown in Fig. 3-6. By Eq. (3.26),

o a 1 v 1 xz
J. J. fxr(x‘J’)dxd)’=kJ. J.xyd_rdy=kj~y(_
T T (] o 2

¥
o
0
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Fig. 3-6

Thus k = 8.
(5) By Eq.(3.30), the marginal pdf of X is
1
8xy dy = 4x(1 — x?) O<x<1
Se(x) = 4[:
0 otherwise

By Eq. (3.31), the marginal pdf of Y is

s
J‘Sxydx=4y3 O<y<l
o

0 otherwise

S =

Since fyy(x, ¥) # fx(x) fy(¥), X and Y are not independent.
Note that if the range space Ry, depends functionally on x or y, then X and Y cannot be indepen-
dent r.v.’s.

3.20. The joint pdf of a bivariate r.v. (X, Y) is given by

k O<y<x<l1
Jorx, ) = {0 otherwise

where k is a constant.

(@) Determine the value of k.

(b) Find the marginal pdf’s of X and Y.

(¢ FindPO<X<4,0<Y <)

(@) The range space Ry, is shown in Fig. 3-7. By Eq. (3.26),

J‘ J‘ Serlx, Yy dx dy = k J‘J‘ dx dy = k x area(Ryy) = k(1) = 1
* Rxr

Thus k = 2.
(b) By Eq.(3.30), the marginal pdf of X is

2 dy =2x O<x<l
fx) = J;

0 otherwise
By Eq. (3.31), the marginal pdf of Y is

1
) = J;de=2(l—y) O<y<l

0 otherwise
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Fig. 3-7
() The region in the xy plane corresponding to the event (0 < X < 4,0 < Y < 1) is shown in Fig. 3-7 as
the shaded area R,. Then
PO<X <4 0<Y<$H=P0<X<}0<Y<X)
= JJ Syylx, y) dx dy =2 JJ dxdy =2 x area(R) = 2§) =}
R, Ry

Note that the bivariate r.v. (X, Y) is said to be uniformly distributed over the region Ry, if its pdf is

k (x, y) € Ryy

Sxr(x, y) = {0 (3.96)

otherwise

where k is a constant. Then by Eq. (3.26), the contant k must be k = 1/(area of Ryy).

3.21. Suppose we select one point at random from within the circle with radius R. If we let the center
of the circle denote the origin and define X and Y to be the coordinates of the point chosen (Fig.
3-8), then (X, Y) is a uniform bivarnate r.v. with joint pdf given by
k x? + y2 < RZ
fXY(xs _V) = {0 xz + y2 > RZ

where k is a constant.
(a) Determine the value of k.
(b) Find the marginal pdf’s of X and Y.

(¢) Find the probability that the distance from the origin of the point selected is not greater
than a.

-

R (x, y)

Fig. 3-8
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(a) By Eq.(3.26),

J.i Jw Syrlx, y) dx dy =k J.J. dx dy = k(nR*) =1

x2+yl<R2
Thus k = 1/aR2.
(b) By Eq. (3.30), the marginal pdf of X is
\/m )
- dy = —— RZ — x? 2 < R2
ST s AR 7
2

— JR? — x? <R
Hence fo(0) = {=R? < Ixls

0 Ix}>R
By symmetry, the marginal pdf of Y is

— JR?—y? [<R

= RE VR T
0 lyl>R

(¢) For0<a<R,

PX*+Yi<a) = j Sxy(x, y) dx dy

x2+ylgal

1 na?t  a?
- dx dy = — = =
nR? ” YYEIRITR?

x?1y2<a?

3.22. The joint pdf of a bivariate r.v. (X, Y) is given by
ke ~tax+bon x>0,y>0

Jxx(x, y) = {0

otherwise
where a and b are positive constants and & is a constant.

(a) Determine the value of .
(b) Arc X and Y independent?

J J fxy(x!y)dXdy=kJ Jg““x+by)dxdy
SR A

A el k
=kj e"""dxj e dy=—=1
o o ab

(a) By Eq. (3.26),

Thus k = ab.
(b) By Eq. (3.30), the marginal pdf of X is

S

e ™dy =ae ™ x>0

fx(x) = abe™ j

Q

By Eq. (3.31), the marginal pdf of Y is

fy(}’)=abe"”"[ e % dx = be ¥ y>0

Q

Since fyy(x. ¥) = fx(x)}fy(¥), X and Y are independent.

[CHAP 3
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3.23. A manufacturer has been using two different manufacturing processes to make computer
memory chips. Let (X, Y) be a bivariate r.v., where X denotes the time to failure of chips made
by process A and Y denotes the time to failure of chips made by process B. Assuming that the
joint pdf of (X, Y) is

abe—(ax+by) x>0, y>0
Jxrlx, y) = {0 otherwise

where a = 107 % and b = 1.2(10™%), determine P(X > Y).

The region in the xy plane corresponding to the event (X > Y) is shown in Fig. 3-9 as the shaded area.
Then

4] X
P(X > Y) =ab f f e~(@x+bn gy gy
0 0

=ab J. e > [J. i dy:l dx=a J. e (1 — e b) dx
o o o

b 1.2(107%)

= = = 0,545

a+b (1+12(107%
Yy
4

y=x
X

0

Fig. 3-9

3.24. A smooth-surface table is ruled with equidistant parallel lines a distance D apart. A needle of
length L, where L < D, is randomly dropped onto this table. What is the probability that the
needle will intersect one of the lines? (This is known as Buffon's needle problem.)

We can determine the needle’s position by specifying a bivariate r.v. (X, @), where X is the distance
from the middle point of the needle to the nearest parallel line and @ is the angle from the vertical to the
needle (Fig. 3-10). We interpret the statement “the needle is randomly dropped” to mean that both X and ©
have uniform distributions and that X and © are independent. The possible values of X are between 0 and

}j{/

Fig. 3-10 Buffon’s needle problem.

l—— O ——»fe—— 5 —»]
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D/2, and the possible values of © are between 0 and n/2. Thus, the joint pdf of (X, ®) is

05x52,0<655

4
Frolx, 6) = f(x) fo(6) = { 7D 277772
0 otherwise

From Fig. 3-10, we see that the condition for the needle to intersect a line is X < L/2 cos 6. Thus, the
probability that the needle will intersect a line is

L nf2 (L/2)cos 6
P<x <3 cos e> = j j frolx, 8) dx d6
0

0

4 2 (L{2)cos 0
S ]
4 (™2 2L
= ;ZB J; ECOS 8 do = ;ZB
CONDITIONAL DISTRIBUTIONS
3.25. Verify Eqgs. (3.36) and (3.41).
(a) By Eqgs. (3.33) and (3.20),
Z pyx(x;, Yj)
Z Py|x(yj|x.') =24 = Palx) =1
i px(x) px(x)

(b) Similarly, by Eqs. (3.38) and (3.30),

f Jyx(x, y) dy
J. fy|x)’|x =fX(X)=
x(X) Jx(x)

3.26. Consider the bivariate r.v. (X, Y) of Prob. 3.14.
(a) Find the conditional pmf’s pyx(y;|x;) and pxy(x;|y;)-
() Find (Y =2|X =2)and P(X =2]Y =2).
(a) From the results of Prob. 3.14, we have
1 .
ParlXis y)) = {gg B zth:rlwée nehe
palx) = fhldx; +3)  x=1,2
prly) = 1s2y; +6)  y;=1,2
Thus, by Eqgs. (3.33) and (3.34),

2x; + y;
Py|x()’j|xi)= 4x-+31 ,Vj=1:2§ x;i=1,2
2x; + y;
yy=— =12y, =1,2
PX|y(x.|)’,) 2yj 16 X Vi

(b) Using the results of part (a), we obtain

_ o _29+2 6
P(Y—2|X—2)"pY|x(2|2)_4(2)+3_11

_ 220 +2 3
P(X =2]Y =2)=pyy(212) = 2165
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3.27. Find the conditional pmf’s pyx(y;| x;) and px,y(x;| y;) for the bivariate r.v. (X, Y) of Prob. 3.15.

From the results of Prob. 3.15, we have

12 .
Cfdxty; x=1,2y,=1,23
Purxi> ¥) {0 otherwise
px(x) = 'l5xi2 x=12
Py()’j)=%)’j ;=123
Thus, by Egs. (3.33) and (3.34),
1.2
36%i )
Prix(y;l x) = Ix, J=%)’j y; =123, x,=12
36X; 2y1 ix?
Pxn'(x |}’, =X X = 1,2§y1= 1, 2,3

3}’,
Note that Pyjx{y;]x;) = pyly;) and py¢(x;|y;) = px(x,), as must be the case since X and Y are independent,
as shown in Prob. 3.15.

3.28. Consider the bivariate r.v. (X, Y) of Prob. 3.17.
(a) Find the conditional pdf’s fy;x(y | x) and fyy(x| y).
(b) Find PO<Y <%|X =1).

(a) From the results of Prob. 3.17, we have

o) {{;(x+y) 0<x<2,0<y<?2
XY\Y
0

otherwise
Wx)=3(x+1) 0<x<2
f()=%(y+l) O<y<2

Thus, by Egs. (3.38) and (3.39),

fy'X(y[x)—:‘{(—x+—l)_§x+1 O<x<2,0<y<?2
x+y

y lx+y
Sax1y) = 1 =

= 0<x<2,0<y<?2
Iy+ 1) 2y+1 x y

(b) Using the results of part (a), we obtain

1/2 1 1 y 5
PO<Y lX——l——j _—1_—-J < )d -
0 <Y < ) A Srxyx ) 2, 5 32

3.29. Find the conditional pdf’s fyx(y | x) and fy)y(x | y) for the bivariate r.v. (X, Y) of Prob. 3.18.
From the results of Prob. 3.18, we have
Foylts y) = 4xy 0<x<l,0<yx<l
X% V=1, otherwise
Jx(x) = 2x O0<x<l
Hy =2y O<y<l

Thus, by Eqgs. (3.38) and (3.39),

4xy
fy|x()’|x)=‘27=2y O<y<l,0<x<l

4
fx|y(X|Y)=ziyy=2x O<x<1l,0<y<l
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Again note that fy;x(y|x) = fy(y) and fy,y(x|y) = fx(x), as must be the case since X and Y are independent,
as shown in Prob. 3.18.

3.30. Find the conditional pdf’s fy x(y | x) and fyy{(x| y) for the bivariate r.v. (X, Y) of Prob. 3.20.
From the results of Prob. 3.20, we have

2 O<y<x<l
Sl ) = {0 otherwise
Sfx(x) = 2x D<x<1

Hn=21-y O0<y<li
Thus, by Egs. (3.38) and (3.39),

1
fy|x(,V|X)=; y<x<1,0<x <1

|
fony):I-——y y<sx<l,0<x<l

3.31. The joint pdf of a bivariate r.v. (X, Y) is given by

1
—e ey x>0,y>0
Serx, ») =4y Y
0 otherwise
(a) Show that fy(x, y) satisfies Eq. (3.26).
(b) Find P(X > 1|Y =y).
(a) We have

(b) First we must find the marginal pdf on Y. By Eq. (3.31),

©

@ |
fy()’)=J Sxr(x, y) dx=;e*yj e~ dx

0

xX=
= )
x=0

1
S y) _J-e x>0,y>0

1 _I: .
=—¢7Y —ye xfy
y

By Eq. (3.39), the conditional pdf of X is

fxﬂ(xl,\’) =
A 0 otherwise
Then PX>1]Y=y= J Sxp(x, y) dx = J ; e X7 dx
1 1
= —e Xy o =
x=1
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COVARIANCE AND CORRELATION COEFFICIENTS
3.32. Let (X, Y)be a bivanate r.v. If X and Y are independent, show that X and Y are uncorrelated.

If (X, Y)is a discrete bivariate r.v., then by Eqs. (3.43) and (3.22),
EXY)= Z Z xi)’/PxY(xn )’j) = Z Z xiyjpx(xl)p}’(yj)

¥ X ¥i %

= [Z x.~m<x.~)][2 yjpy(.vj)] = E(X)E(Y)
X ¥4

If (X, Y)is a continuous bivariate r.v,, then by Egs. (3.43) and (3.32),

EXXY)= j ' j ' xy fxy(x, y) dx dy = j j J xyJx(x) fy(y) dx dy

- f () dx j Y1) dy = EXE(Y)

x -

Thus, X and Y are uncorrelated by Eq. (3.52).

3.33. Suppose the joint pmf of a bivariate r.v. (X, Y) is given by

( )= 3 0 0,(1,0,21
PxrXi Y9 =9 otherwise
(@) Are X and Y independent?

(b) Are X and Y uncorrelated?

(a) By Eq. (3.20), the marginal pm{’s of X are
px(0) = Z Pxy(0, y)= pxy(0, 1) = 3

¥y

px(l) = Z Pxy(l, ¥} = pxy(l, 0) = 3

»)

px(2) = Z Pxv(2, V) =pxy(2, D= %

Yy

By Eq. (3.21), the marginal pm{’s of Y are
py(0) = Z Pxy(x;. 0) = pyy(1,0) =3

Xi

pel(1) =3 pxylxis 1) = pyyl0, 1) + pyy(2, 1) = z

and pxy(0, 1) = § # px(O)py(1) = §
Thus X and Y are not independent.
(b) By Eq.s(3.45a), (3.45b), and (3.43), we have

E(X) =Y x;px(x) = (0} + (DI + QAP =1

X{

E(Y)=3 y;py) = O3 + (1)) = %
)

E(XY) = Z Z X; YiPxr(Xis ¥;)

¥y X
= (OXD(}) + (NONF) + 2X1¥$) = 3
Now by Eq. (3.51),
Cov(X, Y)= E(XY)— EX)E(Y)=%—(1)3) =0
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Thus, X and Y are uncorrelated.

Let (X, Y) be a bivariate r.v. with the joint pdf

2 2
x_i e~ (X212

—<Xx <o, —0<y<w
4r

Sxr(x, y) =

Show that X and Y are not independent but are uncorrelated.
By Eq. (3.30), the marginal pdf of X is

] xX
Sl) = o f (67 4 yP)e™ =22 dy

e—xl/Z x l ot 1
=——<x" —— e dy+f — yle ¥? dy)

2/2n J2r w27

Noting that the integrand of the first integral in the above expression is the pdf of N(0; 1) and the second
integral in the above expression is the variance of N(0; 1), we have

I
2/2n

Since fyy(x, y) is symmetric in x and y, we have

(x? 4 1y~ *? —0 <X <©

Sx(x) =

1
) =—= 1+ D7  —w<y<w
2/ 2n

Now fyy(x, ) # fx(x) fy(y), and hence X and Y are not independent. Next, by Eqs. (3.47a) and (3.47b),

E(X) = r Xfi(x) dx =0

-

E(Y)= f We(y)dy =0

since for each integral the integrand is an odd function. By Eq. (3.43),

E(XY)= f f xy¥fxy(x, y) dx dy =0

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of the
first and the third. Thus, E(XY) = E(X)E(Y), and so X and Y are uncorrelated.

Let (X, Y) be a bivariate r.v. Show that
[E(XY)]* < E(X®)E(Y?) (3.97)
This is known as the Cauchy-Schwarz inequality.

Consider the expression E[(X — «Y)?] for any two r.v.’s X and Y and a real variable a. This expres-
sion, when viewed as a quadratic in «, is greater than or equal to zero; that is,

E[(X —aY)* 120
for any value of «. Expanding this, we obtain
E(X?) — 2aE(XY) + «*E(Y?) > 0
Choose a value of a for which the left-hand side of this inequality is minimum,

_E(XY)
*=EYD
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3.36.

3.37.

3.38. Suppose that a bivariate r.v. (X, Y) 1s uniformly distributed over a unit circle (Prob. 3.21).

which results in the inequality

> 2
—————[E;fy};;] >0 or [EXY)]? < E(X})E(Y?)

E(X?) —
Verify Eq. (3.54).
From the Cauchy-Schwarz inequality [Eq. (3.97)], we have
{ELX — )Y — py)]}? < ELX — px)’JEL(Y = py)*]

or oxy’ < 0ylay’
2
Oxy
Then Pyt =—5—<1
Ox" 0y

Since pyy is a real number, this implies

loxyl <1 or —1<pyy <1

Let (X, Y) be the bivariate r.v. of Prob. 3.12.

(a) Find the mean and the variance of X.

—

b) Find the mean and the variance of Y.
(¢) Find the covariance of X and Y.
(d) Find the correlation coefficient of X and Y.

(@) From the results of Prob. 3.12, the mean and the variance of X are evaluated as follows:

E(X) =Y x;pylx) = (0X0.5) + (1)(0.5) = 0.5
E(x?) = i x;px(x)) = (0)%(0.5) + (1)*0.5) = 0.5
oyt = E(XZ) —[E(X))* =05 - (0.5 =0.25
(b) Similarly, the mean and the variance of Y are

E(Y) =Y y;pyy)) = (0X0.55) + (1X0.45) = 0.45

Y,

E(Y) =3 y/py(y) = (0%(0.55) + (1)*(0.45) = 0.45
¥

ay? = E(Y?¥) — [E(Y)]? = 045 — (0.45)* = 0.2475
(¢) By Eq.(3.43),
E(XY) = Z Z xn,Vijy(xh ,Vj)

Yy X
= (0X0)0.45) + (0)(1)(0.05) + (1)(0)0.1) + (1)(1)(0.4)
=04

By Eq. (3.51), the covariance of X and Y is
Cov(X, Y)= E(XY) — E(X)E(Y) = 0.4 — (0.5X0.45) = 0.175
(d) By Eq.(3.53), the correlation coefficient of X and Y is
Cov(X, Y) _ 0.175

ey = - =0.704
M evey  /(025)02475)

109
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(a) Are X and Y independent?
(b) Are X and Y correlated?

(a) Setting R = 1 in the results of Prob. 3.21, we obtain

x?+yt <l
Sxy(x, y) =

S Aal—

x4+ y? > 1

fx(x)=%./l X xl<1
2

Sy =— 1 -y lyl<i

Since fyy(x, ¥) # fx(x)fy(y), X and Y are not independent.
(b) By Egs. (3.47a) and (3.47h), the means of X and Y are

1

E(X)=%J x /1l —=xdx=0
-1
1

E(Y):EJ y /1 -y dy=0
-1

since each integrand is an odd function.

Next, by Eq. (3.43),

E(XY)=£ J]. xydxdy=0

x2+y2<]

The integral vanishes because the contributions of the second and the fourth quadrants cancel those of
the first and the third. Hence, E(XY) = E(X)E(Y) = 0 and X and Y are uncorrelated.

CONDITIONAL MEANS AND CONDITIONAL VARIANCES

3.39. Consider the bivariate r.v. (X, Y) of Prob. 3.14 (or Prob. 3.26). Compute the conditional mean
and the conditional variance of Y given x; = 2,

From Prob. 3.26, the conditional pmf py x(y;| x,) is

2x; + y;
Py|x(y1'|xi)=r+3] yi= 1,2;x,=1,2
4+ y;
Thus, Prix(y;12) = —= y;=12

11

and by Egs. (3.55) and (3.56), the conditional mean and the conditional variance of Y given x; = 2 are

4+ y;
By = E(Y|x;=2)= Z )’ij|x()’j|2) = Z )’j( 1 J)
14} ¥

(7)) G
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3.40. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional means
E(Y|x)and E(X | y).

From Prob. 3.30,
|
SayI¥) == y<x<L0<x<l
1
fx|y(x|}’)='l—_'; y<x<],0<x<1

By Eq. (3.58), the conditional mean of Y, given X = x, is

* * (1 v2 PTF x
E(YIX)=J. ny|x(yIX)dy=J.y(-)dy=;— == O0<x«<l
—% o \X 2x =0 2
Similarly, the conditional mean of X, given Y = y, is
@ 1 { 2 x=1 1 +y
EXly)= J.—mexu’(XU) dx =J; x(—l _y) dx = ] O<y<l

Note that E{Y | x) is a function of x only and E(X | y} is a function of y only.

341. Let (X, Y) be the bivariate r.v. of Prob. 3.20 (or Prob. 3.30). Compute the conditional variances
Var(Y | x) and Var(X | y).

Using the results of Prob. 3.40 and Eq. (3.59), the conditional variance of Y, given X = x, is
o X 2
Var(Y|x) = E{[Y ~ E(Y|x))*|x} = J. <y - 5) Inxlylx) dy

-

L OB esl-)

Similarly, the conditional variance of X, given ¥ = y, is

r=x 2

=0 12

5 ®© 1+y 2
Var(X |y} = E{[X — E(X|y)]*|y} = x === furx|y) dx

=£I <"_l;y)2<11 ):’:=3<ll—y)<""];y)3

N-DIMENSIONAL RANDOM VECTORS

342. Let(X,, X,, X4, X,) be a four-dimensional random vector, where X, (k = 1, 2, 3, 4) are inde-
pendent Poisson r.v.’s with parameter 2.

(@ FindPX,=1,X,=3,X;=2,X,=1).
(b) Find the probability that exactly one of the X,;’s equals zero.
(a) By Eq.(2.40), the pmf of X, is

U1y

12

x=y

2:'
p,(,‘(i)=P(X,‘=i)=e'2}—l i=01,... (3.98)
Since the X,'s are independent, by Eq. (3.80),
PX,=1,X,=3,X,=2X,=1)= Px.(l)sz(:;)Px,(z)Px‘(l)

e 22\/e 22Y\/e " 22\[e" 22 e 827 s
_< 0] )< 31 )( 2 )( I )' 3981079
(b) First, we find the probability that X, =0, k = 1, 2, 3, 4. From Eq. (3.98),
P(X,=0)=¢"2 k=1,2,34
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Next, we treat zero as “success.” If Y denotes the number of successes, then Y is a binomial r.v. with
parameters (n, p) = (4, ¢ 2). Thus, the probability that exactly one of the X,’s equals zero is given by [Eq.
(2.36)1

PY =1 = (T)(e’z)(l —e¢ %3035

Let (X, Y, Z) be a trivariate r.v,, where X, Y, and Z are independent uniform r.v.’s over (0, 1).
Compute P(Z > XY).

Since X, Y, Z are independent and uniformly distributed over (0, 1), we have

Sxvzlx, ¥, 2) = fx() fy) fz) = 1 O<x<lL0<y<],0<z<1

1 1 1
Then PZ>XY)= JT SxyAx, y, 2) dx dy dz = J J J dz dy dx
0 0 Xy

z> Xy

1 1 1 x 3
= (lfx)dydx=J. (1——>¢1x=—
Lf g , U 72/

Let (X, Y, Z) be a trivariate r.v. with joint pdf

ke tax*br¥cz) x>0y>0,2z>0

Jxydx, ¥, 2) = {0

otherwise

where a, b, ¢ > 0 and k are constants.

(@) Determine the value of k.

(h) Find the marginal joint pdf of X and Y.
(¢) Find the marginal pdf of X.

(d) Are X, 7, and Z independent?

(@) By Eq.(3.76),

J. J J ‘ fxyz(X, Y Z) dx (Iy dz =k J J J. 4e-(ux+h)'+rz) dx dy dz
(VN SV S o Jo Jo
x Cux a o O _ k
=k | e¥dx | edy| e Fdz=—=1
o o o abe
Thus k = abe.

(b) By Eq. (3.77), the marginal joint pdf of X and Y is

0

Sxyx, y) = J FxyX, v, 2) dz = abc J e laxtbyTen 4y

= ahce ' j. e % dz = abe TN x>0,y>0
0
(c) By Eq.(3.78), the margmnal pdf of X is

f,((x)=J~ J j',wz(.vc,y.z)dydz=ach~ Je"‘”“””“’dydz
e Jox o

0
=abce'“"J~ e dyJ~ ¢ Fdz=ae * x>0
o o
(d) Similarly, we obtain

Sy = J J Sxvzlx, y, 2y dx dz = be ™ y>0
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SAz) = J. J. Sxvzlx, y, 2) dx dy = ce”* z>0

Since fyyz(x, ¥, 2) = fx(x)fy(1)/(2), X. Y, and Z are independent.

3.45. Show that

Sxvz(%, ¥, 2) =fzp(. Wzl x, ,V)fnx()’ | X) fx(x) (3.99)
By definition (3.79),
_ Sxyzlx, ¥, 2)
Sax vzl x, ) —_fxy(X. )
Hence SxvzX, ¥, 2) = fgix fz2]1 % 9) Sxylx, ) (3.100)

Now, by Eq. (3.38),
Sirx, y) :fy|x(Y|-\”),/‘x(»\')
Substituting this expression into Eq. (3.700), we obtain

Sxvz(x. ¥, 2) =fzu. z]x, Y)fy|x(}’|»‘)fx(-‘)

SPECIAL DISTRIBUTIONS
346. Derive Eq.(3.87).

Consider a sequence of n independent multinomial trials. Let A, (i = 1, 2, ..., k) be the outcome of a
single trial. The r.v. X; is equal to the number of times A; occurs in the n trials. If x,, x,, ..., x, are
nonnegative integers such that their sum equals n, then for such a sequence the probability that A; occurs x;
times,i= 1,2, ..., k—that is, P(X, = x, X; = x,...., X, = x,}—-can be obtained by counting the number
of sequences containing exactly x, 4,'s, x, A,%, ..., x, A’s and multiplying by p,"'p,** - -+ p,**. The total
number of such sequences is given by the number of ways we could lay out in a row »n things, of which x,
are of one kind, x, are of a second kind, ..., x, are of a kth kind. The number of ways we could choose x,

positions for the A,’s is ( ) ); after having put the A,’s in their position, the number of ways we could

Xy

. , . (=X . .
choose positions for the A,’s is ( '), and so on. Thus, the total number of sequences with x; A,’s, x,
2

Ay's, ..., x, A’s is given by
n\(n=x)\(n—xi—xp\  (nexy o Xy Xy
X, X, X5 X
n! n—x)! mM=x, —x;— " =x-)!
x M= x)x e — x — x,)! X, 10!
n!
X, Ixyl e x !
Thus, we obtain
n!
x x . X
Pxixy - xlXns Xz os Xg) \_, PP

BORD SYERRI

3.47. Suppose that a fair die is rolled seven times. Find the probability that 1 and 2 dots appear twice
each; 3, 4, and S dots once each; and 6 dots not at all.

Let (X, Xy oo, X ) be a six-dimensional random vector, where X, denotes the number of times i dots
appear in seven rolls of a fair die. Then (X, X5, ..., X,) is a multinomial r.v. with parameters (7, p,, p,, ...,
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pe) Where p, = $ (i = 1,2, ..., 6). Hence, by Eq. (3.87),

7! VOOV VY V1
PX =2 X =2 Xy =L Xo =L Xs =1 Xe =0 = 5o a) a)(a)(a) a) 6

7t (17 35
=—— (-} ==~ 00045
2!2!(6) 6°

Show that the pmf of a multinomial r.v. given by Eq. (3.87) satisfies the condition (3.68); that is,
LV L Praxa - xndXn Xzs s Xi) = 1 (3.101)

where the summation is over the set of all nonnegative integers x,, x,, ..., x, whose sum is n.

The multinomial theorem (which is an extension of the binomial theorem) states that
n
(ag+a,+ - +a)y=>% ( )a,"‘az"z R A (3.102)
XXyt X,
where x, + x, + -+ + x, = nand

< n ) n!
- cox !
XX, X x,Ix,! X!

is calted the multinomial coefficient, and the summation is over the set of all nonnegative integers x,, x,, ...,
x, whose sum is n.
Thus, setting a; = p, in Eq. (3./02), we obtain

ZZ ZPX,X;-nx.(Xp Xpy e X)) =(p;+py+ - +p)=(1)y=1

Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq. (3.88).

(a) Find the marginal pdf’s of X and Y.
(b) Show that X and Y are independent when p = 0.
(@) By Eq. (3.30), the marginal pdf of X is

J(x) = J: Sxylx, y) dy

From Egs. (3.88) and (3.89), we have

1 1
Sxylx, y) = Tnap oyl = ph)2 exp[— 3 qlx, y)]

1 x — py )2 x —px (¥ — by y = by \
q(x,y)—.l_l’z[< Oy )—2[)( Oy )< Oy )+< Oy )]

Rewriting ¢(x, y),
1 —u x=m\ |, (%= )
qlx y) =17 [(y Y) - p< x)] * < ]
—-p Oy Ox Ix
1 Oy : x = pr )’

€xp *l . le)z
2 Oy « 1

1
expl — - . d
J2noy Cw S 2moy(l — pHli2 pl: 5 q.(x }’)] y

Then Sx(x) =

1 ¢ 2
wh Y=————y—pu, —p L
ere q,(x, y) 1= 70,2 [y wrep o (x #x):‘
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Comparing the integrand with Eq. (2.52), we see that the integrand is a normal pdf with mean

Uy + ploy/oxXx ~ uy) and variance (1 — p?)a,2 Thus, the integral must be unity and we obtain
1 —(x — py)?
f(0) = exp[ ( £x ] (3.103)
V2noy 204
In a similar manner, the marginal pdf of Y is
1 —(y — uy)?
Sy = exp[ — (3.104)
V2noy 20y

(b) When p =0, Eq. (3.88) reduces to

el (5 () ]
= expy — = +
210y 0y 2 Oy ay

v el v el
\/on P 2 Ox \/an P 2 Oy
=/x(X)r(y)

Hence, X and Y are independent.

Jirlx, y)

3.50. Show that p in Eq. (3.88) is the correlation coefficient of X and Y.
By Eqs. (3.50) and (3.53), the correlation coefficient of X and Y is

oo = | (ZEN5)]
f f [(x—ux)G;Tuy)]f”(x, Y)dx dy (3.105)

where fyy(x, y) is given by Eq. (3.88). By making a change in variables v = (x — uy)/oy and w = (y — py)/oy,
we can write Eq. (3.105) as

1
f_wf_m i = 2)”2 XPI:_ZU——;;_Z)(vz_zva+W2)] dv dw

{ expl:— (l) - PW)Z] dv}e—wﬂz dw
\/E . fu 21— )

The term in the curly braces is identified as the mean of ¥ = N(pw; | — p?), and so

e 2 dw

(pwle ™2 dw=p J. w?

2w 1
””‘Lﬁ .

The last integral is the variance of W = N(0; 1), and so it is equal to 1 and we obtain pyy = p.

3.51. Let (X, Y) be a bivariate normal r.v. with its pdf given by Eq. (3.88). Determine E(Y | x).

By Eq. (3.38),
E(YIX)=J.W Ynx(ylx) dy (3.106)
where fy|x(}’| x) = fxfy(fx)}’) (3.107)
X

Substituting Eqgs. (3.88) and (3.103) into Eq. (3.107), and after some cancellation and rearranging, we obtain

1 1 oy 2
Srx(y1x) = Tomonl g P T =Y T oy (x = Hx) = py
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which is equal to the pdf of a normal r.v. with mean gy + p(oy/0,}{x — ttyx) and variance (1 — p?)sy2 Thus,
we get

E(Y[x) = y +p?<x—ux) (3.108)
X

Note that when X and Y are independent, then p = 0 and E(Y | x) = uy = E(Y).

The joint pdf of a bivariate r.v. (X, Y) is given by

1
Serlx, ) = ex I:—l(xz—xy+y2+x—2y+l):| —0C <X, Y <X
Xy 2\/57: P 3

(a) Find the means of X and Y.
(b) Find the variances of X and Y.
(¢) Find the correfation coefficient of X and Y.

We note that the term in the bracket of the exponential is a quadratic function of x and y, and hence
Sxy(x, ¥) could be a pdf of a bivariate normal r.v. If so, then it is simpler to solve equations for the various
parameters. Now, the given joint pdf of (X, Y) can be expressed as

1
fXY(x! Y) = 2\/—3-11: Cxp[_ %q(x! y)]
where gx, ) =3x2—xy+y* +x -2y +1)
=4[ —x(y - D+ (y — )*]

Comparing the above expressions with Eqgs. (3.88) and (3.89), we see that fxy(x, y) is the pdf of a bivariate
normal r.v. with g, =0, gy = 1, and the following equations:

2mogoy/1— p*=2./3n

(1 = pYoy’ =(1 = phoy’ = §

2p 2
oyoy(l —p?) 3
Solving for a2, 6,2, and p, we get
oyt=06,2=2 and p=1

Hence
{a) The mean of X is zero, and the mean of Y is 1.

(b) The variance of both X and Y is 2.
{¢) The correlation coefficient of X and Y is 1.

Consider a bivariate r.v. (X, Y), where X and Y denote the horizontal and vertical miss dis-
tances, respectively, from a target when a bullet is fired. Assume that X and Y are independent
and that the probability of the bullet landing on any point of the xy plane depends only on the
distance of the point from the target. Show that (X, Y) is a bivariate normal r.v.

From the assumption, we have

Sxvlx, ) = fx() () = gix? + y?) {3.109)
for some function g. Differentiating Eq. (3.109) with respect to x, we have
T fe(y) = 2xg'(x* + y?) (3.110)

Dividing Eq. (3.110) by Eq. (3.109) and rearranging, we get
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S50 _ g6+ y)
22fx(x) g7 + )

Note that the left-hand side of Eq. (3.111) depends only on x, whereas the right-hand side depends only on
x2 4+ y?; thus

G.111)

x(X)
xff_X(x) —c (3.112)
X
where ¢ is a constant. Rewriting Eq. (3.112) as
; d
% =X or M [In fyx)]} = ¢x (3.113)
Y ;

and integrating both sides, we get

In fi(x) = g xT4+a  or  fylx) = ke*?

where a and k are constants. By the properties of a pdf, the constant ¢ must be negative, and setting ¢ =
—1/0?, we have
) = ke 0290

Thus, by Eq. (2.52), X = N(0; ¢?) and

1 2
fy(x) = o~ X207
Vo
In a similar way, we can obtain the pdf of Y as
Sily) = o 7

2no

Since X and Y are independent, the joint pdf of (X, Y)is

e~ X2+ y2)/(2a2)

Jxrlx, y) = fr(x) f(y) =

1
2n0?

which indicates that (X, Y) is a bivariate normal r.v.

Let (X,, X,, ..., X,) be an n-variate normal r.v. with its joint pdf given by Eq. (3.92). Show that
if the covariance of X, and X is zero for i # j, that is,

Cov(X,, X)) of i=j (3.114)
vV is ] = o'i. = . . .
v R (0] i3]
then X, X;, ..., X, are independent.
From Eq. (3.94) with Eq. (3.114), the covariance matrix K becomes
o 0 - 0
0 a2 - 0
K=| . T . (3.115)
0 0 ¢’
It therefore follows that
|det K|V2=06,6,-0,=[]0 (3.116)

and
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— 1 —
— 0 0
Gy
_ 1
K1t'= 0 — -+ 0 3.117)
()
1
0 0 - —
| o _|
Then we can write
n — . 2
x—wW'K'x—p=3 (x—‘o—“—) (3.118)
i=1 i

Substituting Eqs. (3.116) and (3.118) into Eq. (3.92), we obtain

n 2
fe ,.,x(x,,...,x")=—l—exp[fl y (X""”‘)] (3.119)
T (27:)"’2( ) 2isi\ @

o

=

L

Now Eq. (3.119) can be rewritten as

Sy xdXp oo xa) = [ fxfx) (3.120)
i=1
where
fx«(xi) _ e~ (XiTH2/(2a:2)
' 2no;
Thus we conclude that X |, X5, ..., X, are independent.

Supplementary Problems

Consider an experiment of tossing a fair coin three times. Let (X, Y) be a bivariate r.v., where X denotes the
number of heads on the first two tosses and Y denotes the number of heads on the third toss.
(a) Find the range of X.
(b) Find the rangeof Y.
(¢) Find the range of (X, Y).
@ Find())P(X <2,Y <1);(} P(X <1,Y <1);and (ii)) A(X <0, Y <0).
Ans. (@) Ry =1{0, 1,2}
() Ry={0, 1}

(€) Ryy=1{(0, 0),(0, 1), (1, 0) (1, 1), (2, 0),
=1; (i 1

1 (2
(d HPX<2,Y<) DPX <1, Y<!)=3%:and (i) P(X <0,Y <0) =%

Let Fyy(x, y) be a joint cdf of a bivariate r.v. (X, Y). Show that
PX>a, Y >c)=1—Fya) — Fylc) + Fyyla, c)
where Fy(x) and Fy(y) are marginal cdf’s of X and Y, respectively.

Hint: Setx, =a, y, = ¢ and x, = y, = cc in Eq. (3.95) and use Eqs. (3.13) and (3.14).
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3.57.

3.58.

3.59.

3.60.

3.61.

Let the joint pmf of (X, Y) be given by

kix, + y) ;=123 y;=12
0 otherwise

Pxyix;, _VJ) = {

where k is a constant.
(@) Find the value of k.
(b) Find the marginal pmf’s of X and Y.
Ans. (@) k=4t
(b) px(x) = 25(2x; + 3) x;=1273

I
—_
()

py) =6 +3y)

The joint pdf of (X, Y) is given by

ke 2y x>0,y>0

fXY(x’ }’) = {0

otherwise
where k is a constant.

(a) Find the value of k.
(b) Find (X >1,Y < 1), (X < Y),and P(X < 2).

Ans. (@) k=2

b PX>1L,Y<)=e'-e 20318, PX<Y)=4PX<2)=1—e"%20865

119

Let (X, Y) be a bivariate r.v,, where X is a uniform r.v. over (0, 0.2) and Y is an exponential r.v. with

parameter 5, and X and Y are independent.
(@) Find the joint pdf of (X, Y).
(b) Find P(Y < X).

25759 0<x<02,y>0
Ans. (@) furx, ) = {0 otherwise

() PlY < X)=e"' 20368

Let the joint pdf of (X, Y) be given by

Txrh >0,y>0
Serlx, y) = {” ooy
0 otherwise

(a) Show that fy (x, y) satisfies Eq. (3.26).
(b) Find the marginal pdf’s of X and Y.

Ans. (b) fyx)=e€* x>0

1
fy()’)=(y+—1)z y>0

The joint pdf of (X, Y)is given by

kx2d—y)  x<y<2x,0<x<2
0 otherwise

fXY(x’ y) = {

where k is a constant,

(a) Find the value of k.
(b) Find the marginal pdf’s of X and Y.

Ans, (@) k=%
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(b) fx(x)=&x*4 — 3x)
()% — yy°
S0 = GEH @ — yX8 — 3¥?)
0

The joint pdf of (X, Y) is given by
fXY(xl y) =

(@) Find the marginal pdf’s of X and Y.
(b) Are X and Y independent?

Ans. (@) fy(x) = xe %2 x>0
Sy =ype  y>0
(b) Yes

The joint pdf of (X, Y) is given by

fXY(x’ y)

(@) Are X and Y independent?
{b) Find the conditional pdf’s of X and Y.

Ans. (a) Yes

by Sfyylxty)=e™" x>0
Soxdylx)=e"” y>0

The joint pdf of (X, Y) is given by

Sxr(x,

O<x<?2

O<y<2
2<y<4
otherwise

0

PR
0

e’)’
y= {0

(@) Find the conditional pdf’s of Y, given that X = x.
(b) Find the conditional cdf’s of Y, given that X = x.

Ans. (@) fyxlylx)=e"Y y>x
0
(b) Fyxlylx) = {1 ysx

y=>x

— Y

Consider the bivariate r.v. (X, Y) of Prob. 3.
(a) Find the mean and the variance of X.
(b) Find the mean and the variance of Y.
(¢} Find the covariance of X and Y,

14,

(d) Find the correlation coeflicient of X and Y.

Ans. (@) E(X)= %3, Var(X) = %%
(b) E(Y)=4%,Var(Y)=§
() Cov(X, Y)= —1&
) p=—0025

Consider a bivariate r.v. (X, Y) with joint pdf

1
fXY(xv y) =

Find P{(X, Y)|x? + y* < a?].

e
2no?

{xye““ +yy2

~(x2+y2))(242)

x>0,y>0
otherwise

x>0,y>0
otherwise

O<x<y
otherwise

—W <X, y< o

[CHAP 3
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3.67.

3.68.

3.69.

Ans. 1 — g7 2M2en

Let (X, Y) be a bivariate normal r.v., where X and Y each have zero mean and variance ¢2, and the
correlation coefficient of X and Y is p. Find the joint pdf of (X, Y).
1 1 x2 — 2pxy + y?
Ans. Y =—————F—exp| ~ 1 —————
ns fXY(x .V) 27'!0'2(1 _ pz)”z p[ 2 02(1 _ pz)

The joint pdf of a bivariate r.v. (X, Y) is given by
1
Sarlx, ) = \/——3 CXP[— 302 —xy + yz)]
n

(a) Find the means and variances of X and Y.
(b) Find the correlation coefficient of X and Y.

Ans. (@) py=py=0 o =gy’ =1

b po=1%

Let (X, Y, Z) be a trivariate r.v.,, where X, Y, and Z are independent and each has a uniform distribution
over (0, 1). Compute P(X > Y > Z).

Ans. %



Chapter 4

Functions of Random Variables, Expectation,
Limit Theorems

4.1 INTRODUCTION

In this chapter we study a few basic concepts of functions of random variables and investigate the
expected value of a certain function of a random variable. The techniques of moment generating
functions and characteristic functions, which are very useful in some applications, are presented.
Finally, the laws of large numbers and the central limit theorem, which is one of the most remarkable
results in probability theory, are discussed.

42 FUNCTIONS OF ONE RANDOM VARIABLE
A. Random Variable g(X):
Given a r.v. X and a function g(x), the expression
Y =4(X) (4.1)

defines a new r.v. Y. With y a given number, we denote D, the subset of Ry (range of X) such that
g(x) < y. Then

(Y <y =[g(X)<y] =(X € Dy) (4.2)
where (X € Dy) is the event consisting of all outcomes { such that the point X({) € Dy. Hence
Fy(y)=P(Y < y) = P[g(X) < y] = P(X € Dy) (4.3)

If X is a continuous r.v. with pdf fy(x), then

Fy) = f Jx(x) dx (4.4)
Dy

B. Determination of f,(y) from fy(x):

Let X be a continuous r.v. with pdf fy(x). If the transformation y = g(x) is one-to-one and has the
inverse transformation

x =g~ '(y) = h(y) (4.5
then the pdf of Y is given by (Prob. 4.2)
dh(y)
dy
Note that if g(x) is a continuous monotonic increasing or decreasing function, then the transfor-

mation y = g(x) is one-to-one. If the transformation y = g(x) is not one-to-one, f{y) is obtained as
follows: Denoting the real roots of y = g(x) by x,, that is,

JAy) = fx(x) =fx[h(y)] (4.6)

dx
dy

y=gx)) =" =glx)="" (4.7)
122
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then Sy =Y B

where g'(x) is the derivative of g(x).

43. FUNCTIONS OF TWO RANDOM VARIABLES
A. One Function of Two Random Variables:
Given two r.v.’s X and Y and a function g(x, y), the expression

Z=g(X,Y)

123

(4.8)

(4.9)

defines a new r.v. Z. With z a given number, we denote D, the subset of Ry, [range of (X, Y)] such

that g(x, y) < z. Then
(Z<z2)=[g(X, Y)<z]={(X, Y) € Dz}

(4.10)

where {(X, Y) € D} is the event consisting of all outcomes { such that the point {X({), Y({)} € D,.

Hence
Fiz)=P(Z <z)= P[g(X, Y) < z] = P{(X, Y) € D}

If X and Y are continuous r.v.’s with joint pdf f;,(x, y), then

Fy2) = J:[ Sx(x, y) dx dy
Dz

B. Two Functions of Two Random Variables:
Given two r.v.’s X and Y and two functions g(x, y} and h(x, y), the expression

Z=g(X, Y) W = h(X, Y)

(4.11)

(4.12)

(4.13)

defines two new r.v.’s Z and W. With z and w two given numbers, we denote D, the subset of Ryy

[range of (X, Y)] such that g(x, y) < z and h(x, y) < w. Then
(Z<z, W<w=[gX,Y)<z, WX, Y)<w]={(X, Y)e Dy}

(4.14)

where {(X, Y) € Dy} is the event consisting of all outcomes { such that the point {X({), Y({)} € Dy .

Hence
Foulz,w)=P(Z <z, W <w)=Plg(X, Y) <z, (X, Y) < w]
= P{(X, Y) € Dzy}

In the continuous case, we have

Faw(z, w) = J Sxr(x, y) dx dy

Dzw

Determination of f,4(z, w) from fy(x, y):
Let X and Y be two continuous r.v.’s with joint pdf fyy(x, ). If the transformation

z=g(x, y) w = h(x, y)
is one-to-one and has the inverse transformation

x = q(z, w) y =1z, )

(4.15)

(4.16)

(4.17)

(4.18)
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then the joint pdf of Z and W is given by

Sz, w) = fydx, YIJ0x, )71 (4.19)
where x = g(z, w), y = r(z, w), and
o dg| |z
ox Oy ox Oy
= = 4.
J(x, y) oh oh W ow (4.20)
Ox Oy ox dy
which is the jacobian of the transformation (4.17). If we define
2 2g| |ox ox
0z ow 0z Ow

J(z, w) = o o = oy dy 4.21)
0z Ow 0z 0w
then | J(z, w)| = J(x, p)| ™" (4.22)
and Eq. (4.19) can be expressed as
Sonlz, w) = frvla(z, w), iz, w)l| J(z, w)| (4.23)

44 FUNCTIONS OF » RANDOM VARIABLES

A. One Function of n Random Variables:

Givennr.v’s X,,..., X, and a function ¢g(x,, ..., x,), the expression
Y=g(X,, ..., X)) 4.24)
defines a new r.v. Y. Then

Y<y=[X, .., X)<y]=[X,, ..., X)) € Dy] (4.25)
and Fy(y) = Plg(X,, ..., X) <yl =P[(X,, ..., X,) € Dy] (4.26)
where Dy is the subset of the range of (X, ..., X,) such that g{x,, ..., x,) <y If X, ..., X, are

continuous r.v.’s with joint pdf fy, ... x (x,, ..., X,), then
Fyly) = Ly J‘fx1 e (X1 s Xy dxy o dx, 4.27)

B. n Functions of n Random Variables:

When the joint pdf of n r.v’s X, ..., X, is given and we want to determine the joint pdf of n r.v.’s
Y, ..., Y,, where

Y, = (X4, .o X))

: (4.28)
Y;I =gn(xl’ ters Xn)
the approach is the same as for two r.v.’s. We shall assume that the transformation
Vi =gixy, ..., x,)
: (4.29)

yn = gn(xlv L] xn)
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is one-to-one and has the inverse transformation
Xy =hy(yis ey Vo)
: (4.30)
xn = hn(yl’ rery yn)
Then the joint pdf of Yy, ..., Y, is given by
le Y,.(yl’ AR ] yn) zfX1 X,.(xla AR ] xn)"](xli LARE xn”_l (431)
%9, .. 94
dx, ox,
where Joog o x) = 1 e (4.32)
ax, 0x,
which is the jacobian of the transformation (4.29).
45 EXPECTATION
A. Expectation of a Function of One Random Variable:
The expectation of Y = ¢(X) is given by
Y glx)px(x,) (discrete case)
E(Y) = E[9(X)] = (4.33)
9(x) f(x) dx (continuous case)
B. Expectation of a Function of More than One Random Variable:
Let X,,..., X,benrv’s,and let Y = g(X,,..., X,). Then
Z Z glxys ooy X)Pxy o x(X1s oo ey X) (discrete case)
E(Y) = E[g(X)
J '[ gy, ooy X fxy e x (X055 X)) dxy -o - dx, (continuous case)
(4.34)
C. Linearity Property of Expectation:
Note that the expectation operation is linear (Prob. 4.39), and we have
E( Y a,~X,-> = Y aE(X) (4.35)
i=1 i=1
where as are constants. If r.v’s X and Y are independent, then we have (Prob. 4.41)
E[g(X)h(Y)] = E[g(X)]E[A(Y)] (4.36)
The relation (4.36) can be generalized to a mutually independent set of nr.v’s X, ..., X,
El:n gi(Xi):| = n E[g{X)] (4.37)
i=1 i=1
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D. Conditional Expectation as a Random Variable:

In Sec. 3.8 we defined the conditional expectation of Y given X = x, E(Y | x) [Eq. (3.58)], which is,
in general, a function of x, say H(x). Now H(X) is a function of the r.v. X; that is,

H(X)=EY|X) (4.38)
Thus, E(Y | X) is a function of the r.v. X. Note that E(Y | X) has the following property (Prob. 4.38):
E[E(Y | X)] = E(Y) 4.39)

4.6 MOMENT GENERATING FUNCTIONS
A. Definition:
The moment generating function of a r.v. X is defined by
Y eipy(x) (discrete case)
M (t) = E(e¥) = i (4.40)

o
e*fy(x) dx (continuous case)
o

where t is a real variable. Note that M,(f) may not exist for all r.v.’s X. In general, M(¢) will exist
only for those values of ¢ for which the sum or integral of Eq. (4.40) converges absolutely. Suppose
that M (t) exists. If we express ¢'* formally and take expectation, then
1 1
My(t) = E(e) = E[l X+ o X + - + il Xy + :I

2 k

t t
=1+tE(X)+5E(X2)+---+EE(X")+--- (441)
and the kth moment of X is given by
my, = E(X*) = M4*%(0) k=1,2,... 4.42)
dk
where M%) = I M (1) (4.43)
t

=0

B. Joint Moment Generating Function:

The joint moment generating function M ,,(t,, t,) of two r.v.’s X and Y is defined by

M1y, ty) = E[e1X7121] (4.44)
where ¢, and t, are real variables. Proceeding as we did in Eq. (4.4]), we can establish that
w© © ¢ k[ n
Mty 15) = B[ 0] = 31y =% E(X*Y") (4.45)
k=0 n=0 k' '
and the (k, n) joint moment of X and Y is given by
my, = E(X*Y™) = My,*™0, 0) (4.46)
ak+n
where My y*™0, 0) = o—— Mydty, t,) 4.47)
a tla"tz 11=12=0

In a similar fashion, we can define the joint moment generating function of nr.v.’s X, ..., X, by

My, ox{bis oo 1) = E[eX3 7400 (4.48)



CHAP. 4] FUNCTIONS OF RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS 127

from which the various moments can be computed. If X, ..., X, are independent, then
MX; ,\’,,(tl‘ s t") - E[e(uX; +-~-+r,.X,,)] — E(ellz\’x e (?'"x")
= E(e"*1y ... E(e™*) = My (t) - - My (t,) (4.49)

C. Lemmas for Moment Generating Functions:
Two important lemmas concerning moment generating functions are stated in the following:

Lemma 4.1: If two r.v's have the same moment generating functions, then they must have the same
distribution.

Lemma 4.2: Given cdf's F(x), F (x), F,(x), ... with corresponding moment generating functions M(t), M (1),
M,(t), ..., then F (x) — F(x)if M (t) > M(t).

4.7 CHARACTERISTIC FUNCTIONS
A. Definition:
The characteristic function of a r.v. X 1s defined by

Y eTip(x;) (discrete case)
V(o) = E@%) = | (4.50)

el

&9* [ (x) dx (continuous case)
where w is a real variable and j = ./ — 1. Note that W (w) is obtained by replacing ¢ in M(t) by jw if
M (t) exists. Thus, the characteristic function has all the properties of the moment generating func-
tion. Now

¥ )| = ’ Y epy(x)| < T leupy(x)| = ¥ palx) = 1 < 0
for the discrete case and

| rw)| =

< J‘w | e/ fi(x) dx | = J.w fxx)dx=1<

-

J.w % fi(x) dx

for the continuous case. Thus, the characteristic function W (w) is always defined even if the moment
function M (1) is not (Prob. 4.58). Note that ¥ ,(w) of Eq. (4.50) for the continuous case is the Fourier
transform (with the sign of j reversed) of fy(x). Because of this fact, if Wy(w) is known, fy(x) can be
found from the inverse Fourier transform; that is,

a0

1 )
Sxx) = - f‘ Y (w)e 9% dw (4.51)

B. Joint Characteristic Functions:
The joint characteristic function ¥ yy(w,, ®,) of two r.v.'s X and Y is defined by

Yoylw,, w,) = E[ei'@X +wain)

Y N efersitomnp, (x;, vi) (discrete case)
i k

4.52)

f Jl eilorxtwm)f (x, y)dx dy  (continuous case)

where w, and w, are real variables.
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The expression of Eq. (4.52) for the continuous case is recognized as the two-dimensional Fourier
transform (with the sign of j reversed) of fyy(x, ¥). Thus, from the inverse Fourier transform, we have

Jer(x, y) (21) J‘w J:q;lyx)’(wh w,)e HTTOW doy daw, (4.53)
From Egs. (4.50) and (4.52), we see that
Y x(w) = Yxy(w, 0) Yy(w) = ¥ xy(0, w) (4.54)
which are called marginal characteristic functions.
Similarly, we can define the joint characteristic function of n r.v.’s X, ..., X, by
Wy, xf0), ..., @) = E[eloX1 7+ onXn)] (4.55)

As in the case of the moment generating function, if X ,, ..., X, are independent, then

ly,\’l X,.(wh EEE ) (U") = \le(wl) U \PX,,(wn) (456)

C. Lemmas for Characteristic Functions:
As with the moment generating function, we have the following two lemmas:
Lemma 4.3: A distribution function is uniquely determined by its characteristic function.

Lemma 44: Given cdfs F(x), F (x), F,(x), ... with corresponding characteristic functions ‘P(w), ¥ ,(w), ¥,{w),
.., then F(x) - F(x) at points of continuity of F(x) if and only if ¥ (w) > W(w) for every w.

48 THE LAWS OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM
A. The Weak Law of Large Numbers:

Let X, ..., X, be a sequence of independent, identically distributed r.v.s each with a finite mean
E(X;) = p. Let

—_—

%}: = (X + o+ X,) (4.57)

3

Then, for any ¢ > 0,
IimP(| X, — pul>e=0 (4.58)

n—+x

Equation (4.58) is known as the weak law of large numbers, and X, is known as the sample mean.

B. The Strong Law of Large Numbers:

Let X,, ..., X, be a sequence of independent, identically distributed r.v.’s each with a finite mean
E(X;) = u. Then, forany ¢ > 0,
P(lim|X’,,—u|>e)=O 4.59)

where X, is the sample mean defined by Eq. (4.57). Equation (4.59) is known as the strong law of large
numbers.
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Notice the important difference between Eqs. (4.58) and (4.59). Equation (4.58) tells us how a
sequence of probabilities converges, and Eq. (4.59) tells us how the sequence of r.v.’s behaves in the
limit. The strong law of large numbers tells us that the sequence (X ,) is converging to the contant .

C. The Central Limit Theorem:

The central limit theorem is one of the most remarkable results in probability theory. There are
many versions of this theorem. In its simplest form, the central limit theorem is stated as follows:

Let X4, ..., X, be a sequence of independent, identically distributed r.v.’s each with mean u and
variance 2. Let

2 :X1+---+X,,—n/4=}_{,,—y
! a\/; a/\/;

where X, is defined by Eq. (4.57). Then the distribution of Z, tends to the standard normal as n —» «;
that is,

(4.60)

limZ, = N(O; 1) (4.61)
or
limF,(z) = lim P(Z, < 2) = D(2) (4.62)

where @(z) is the cdf of a standard normal r.v. [Eq. (2.54)]. Thus, the central limit theorem tells us
that for large n, the distribution of the sum S, = X, + --- + X,, is approximately normal regardless of
the form of the distribution of the individual X;'s. Notice how much stronger this theorem is than the
laws of large numbers. In practice, whenever an observed r.v. is known to be a sum of a large number
of r.v.’s, then the central limit theorem gives us some justification for assuming that this sum is
normally distributed.

Solved Problems

FUNCTIONS OF ONE RANDOM VARIABLE
4.1. If X is N(u; 0?), then show that Z = (X — )/ is a standard normal r.v.; that is, N(0Q; 1).
The cdf of Z is

X —
Fz(z)=P(ZSZ)=P< #Sz>=P(XSza+u)
- JHG»M ! o T(xTmIN2e) gy
- x. \/—2;U

By the change of variable y = (x — u)/o (that is, x = gy + ), we obtain

: 1
FZ(Z)=P(ZSZ)=J~ __e—yle dy
- % 21‘!
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4.2.

4.3.
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dF4(z)
dz

—z2/2

and S2) =

E

which indicates that Z = N(0:; 1).

Verify Eq. (4.6).

Assume that y = g(x) is a continuous monotonically increasing function [Fig. 4-1(a)]. Since y = g(x) is
monotonically increasing, it has an inverse that we denote by x = g~ '(y) = h(y). Then

Fyly) = P(Y < y) = P[X < h(y)] = Fx[h(y)] (4.63)
d d
and Hy) = E Fyly) = E; {Fy[A(]}

Applying the chain rule of differentiation to this expression yields

d
Jy) = fx[Ky)] m h(y)

which can be written as

d
N =H0 T x=h) (4.649)
y
If y = g(x) is monotonically decreasing [Fig. 4.1(b)]. then
Fy(y) = P(Y < y) = P[X > h(y)] = | — Fx[h(y)] (4.65)
d d
Thus, M= B = hW o x=h) (4.66)

In Eq. (4.66), since y = g(x) is monotonically decreasing, dy/dx (and dx/dy) is negative. Combining Eqs.
(4.64) and (4.66), we obtain

dhiy)
dy

M) = fx(x)

d
d—; ( = f[H)]

which is valid for any continuous monotonic (increasing or decreasing) function y = g(x).

Let X be a r.v. with cdf Fy(x) and pdf fy(x). Let Y = aX + b, where a and b are real constants
and a # 0.

(@) Find the cdf of Y in terms of Fy(x).

v v
4 4

0 x,=hiy) ’ 0 X, = hly)

(a) (b)
Fig. 4-1
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v
>
>
]
e
[
>
=]
y
>

a<0
(@) b
Fig. 4-2
(b) Find the pdf of Y in terms of fi(x).
(@) Ifa>0,then [Fig. 4-2(a)]
Fly=PY <y)=PaX +b<y = P(X < yT_b) = F,,(y ; b) (4.67)

If a < 0, then [Fig. 4-2(b)]

FAy)=P(Y < y)=PaX +b<y)=PaX <y—b)
y— b> (since a < 0, note the change
a in the inequality sign)

a

=1-P<Xsu>+1><x=y—b>

a a

=1 —F,,(y _b)+P<X=—_—b> (4.68)
a a

Note that if X is continuous, then P[X = (y — b)/a] =0, and

=P<X2

Fly)=1-F x(y—;—b) a<0 (4.69)

(b)) From Fig. 4-2, we see that y = g(x) = ax + b is a continuous monotonically increasing (a > 0) or
decreasing (a < 0) function. Its inverse is x = g~ '(y) = h(y) = (y — b)/a, and dx/dy = 1/a. Thus, by Eq.
4.6),

1 —b
Sy =— A(L—) (4.70)

lal a

Note that Eq. (4.70) can also be obtained by differentiating Egs. (4.67) and (4.69) with respect to y.

44. Let Y =aX + b. Determine the pdf of Y, if X is a uniform r.v. over (0, 1).

The pdf of X is [Eq. (2.44)]
1 O<x<l
Jxlx) = {0 otherwise
Then by Eq. (4.70), we get

1
) —_— R

F0) = —— fx(y—> ={Ta; PE7 (“.71)
a 0

a .
lal otherwise
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4.5.

4.6.
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”+bt ————————— v=ax+b \
R
’ b y=ax+h

?
b :' Ry{
L R avb | T N
>\ Ll ¢
0 ———1 Of——~—"1 \
Ry Ry
a>0 a<()
(a) (b)
Fig. 4-3

The range Ry is found as follows: From Fig. 4-3, we see that
For a > 0: Ry={y:b<y<a+b}
Fora < 0: Ry={y:a+hb<y<b}

Let Y = aX + b. Show that if X = N(u; ¢?), then Y = N(au + b; a®¢?), and find the values of a

and b so that Y = N(O; [).
Since X = N(u; ¢?), by Eq. (2.52),

- LN
fX(x) = ﬁo’ exp[ 202 (x ”) ]

= e ()]}

Hence, by Eq. (4.70),

{ 52353 Ly —lan+ b)]z} (4.72)
‘/ n|a|o

which is the pdf of N(au + b; a®s?). Hence, Y = N {au + b; a®a?). Next, let au + b = 0 and a®s? = |, from
which we get a = 1/6 and b = —pu/o. Thus, Y = — p)/a 1s N(0; 1) (see Prob. 4.1).

Let X be a r.v. with pdf fy(x). Let Y = X2, Find the pdf of Y.

The event A =(Y < y) in R, is equivalent to the event B =(—\/; <X< \/;) in Ry (Fig. 4-4). If
y <0, then

Fyp)=PY <y)=0
and f{y) = 0. If y > 0, then

Fyy)=P(Y <y} = P(—J} <X <y = FdSy) = F=/») (4.73)

d d
and 70 = 5 B = P9 = - P =) = fwf D)+ (=]
1
= LD =
Thus, Sy = 2\/; \/; \/; y>0 (4.74)

0 y<90
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—_
g

Fig. 4-4

Alternative Solution:

4.7.

48

133

If y < 0, then the equation y = x? has no real solutions; hence f;(y) = 0. If y > 0, then y = x? has two

solutions, x, = \/; and x, = —\/;. Now, y = g(x) = x? and ¢'(x) = 2x. Hence, by Eq. (4.8),

1 .
L S + =S
A0) =427y AN THD >0

0 y<0

Let Y = X2 Find the pdfof Y if X = N(0; 1).
Since X = N(0; 1)

—_

Sulx) = —= g~ 2

»

Since fy(x) is an even function, by Eq. (4.74), we obtain

1 1
= N == 0
=4S .
0 y <0

Let Y = X2 Find and sketch the pdf of Y if X is a uniform r.v. over (—1, 2).
The pdf of X is [Eq. (2.44)] [Fig. 4-5(a)]

~l<x<?2
otherwise

1
Slx) = {3

(4.75)

In this case, the range of Y is (0, 4), and we must be careful in applying Eq. (4.74). When 0 < y < 1, both

\/; and —\/;/ are in Ry = (—1, 2), and by Eq. (4.74),
111 1
f@=——(+)=——
Y 2/y\373) 73y
When [ < y <4, /yisin Ry = (—1, 2) but —,/y < —1, and by Eq. (4.74),

1 1 1
= {4 0)= ——
A 2\/; (3 " ) 6\/;

1
—_— O0<y<i
3/
Thus, fy=4_1 l<y<4
6./
0 otherwise

which is sketched in Fig. 4-5(b).
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1
3
i ' 1
) ) 6
> — y
-1 0 2
(a) )]
Fig. 4-5
49. Let Y = ¢* Find the pdf of Y if X is a uniform r.v. over (0, 1).
The pdf of X is
1 0<x<l
Jxlx) = {0 otherwise
Thecdfof Y is
FAy)=P(Y < y)= P(e* < y)= P(X < lny)
Iny Iny
= fx(x)dx=j dx=Iny I<y<e
] 0
Thus f()—iF,,(y)—iln _1 I<y<e (4.76)
N 1482 dy dy y y y .

Alternative Solution:

The function y=g(x)=e¢" is a continuous monotonically increasing function. Its inverse is
x =g~ '(y) = h(y) = Iny. Thus, by Eq. (4.6), we obtain

1
. d 1 - O<lny<li
Jry) = fxlln y) - Iny|==filny)=9y
4 4 0 otherwise
l l<y<e
or S ) =9y
0 otherwise

4.10. Let Y = ¢*. Find the pdfof Y if X = N(u; o).
The pdf of X is [Eq. (2.52)]

1 1
fx(x)=\/2_1;6exp[—56—z(x—p)2:l —<X<®

Thus, using the technique shown in the alternative solution of Prob. 4.9, we obtain

1
W 2no

1
F) =~ fyllny) = exp[— Loy - u)2] 0<y<o .77
y 20

Note that X = InY is the normal r.v.; hence, the r.v. Y is called the log-normal r.v.
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4.11.

4.12.

4.13.

Let Y = tan X. Find the pdf of Y if X is a uniform r.v. over (—n/2, n/2).

The cdf of X is [Eq. (2.45)]

0 x < —n/2
Fylx) = ;l!'(x + 7/2) —n2 < x <72

l x> m2

Now Fy))=PY <y =PtanX < y)=P(X <tan"'y)
=Fx(tan“y)=%<tan"y+g)=%+%tan"y —c<y< o
Then the pdf of Y is given by
d
fy(}’)=a;Fy(Y)=m -0 <y <®

Note that the r.v. Y is a Cauchy r.v. with parameter 1.

Let X be a continuous r.v. with the cdf Fy(x). Let Y = F,(X). Show that Y is a uniform r.v. over
(0, 1).

Notice from the properties of a cdf that y = Fy(x) is a monotonically nondecreasing function. Since
0 < Fy(x) <1 for all real x, y takes on values only on the interval (0, 1). Using Eq. (4.64) (Prob. 4.2), we
have

|
b A

TFds~ fo -1 O=yst

1
S = fx(%) Iy

Hence, Y is a uniform r.v. over (0, 1).

Let Y be a uniform r.v. over (0, 1). Let F(x) be a function which has the properties of the cdf of a
continuous r.v. with F(a) = 0, F(b) = 1, and F(x) strictly increasing for a < x < b, where a and b
could be — oo and oo, respectively. Let X = F~!(Y). Show that the cdf of X is F(x).

Fx(x) = P(X < x)=P[F YY) < x]
Since F(x) is strictly increasing, F~'(Y) < x is equivalent to Y < F(x), and hence
Fy(x) = P(X < x)= P[Y £ F(x)]
Now Y is a uniform r.v. over (0, 1), and by Eq. (2.45),
Fin=PY¥=<y=y O<y<l
and accordingly,
Fx(x)=P(X < x)= P[Y < F(x)] = F(x) O0< Flx)<

Note that this problem is the converse of Prob. 4.12.
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4.14, Let X be a continuous r.v. with the pdf

o x>0
x<0

Jilx) = {g

Find the transformation Y = g(X) such that the pdf of Y is

1
— 0 1
=42y 7F

0 otherwise
The cdf of X is

fe“'dg’ {l—e”r x>0
b =

Fy(x) =f & de = 0 v <0
cw 0

Then from the result of Prob. 4.12, the r.v. Z = | — ¢~ ¥ is uniformly distributed over (0, 1). Similarly, the
cdfof Y is

L |
——dy 0
Fely) = J:)z\/;l ={\/; <yl

0 0 otherwise

and the r.v. W = /Y is uniformly distributed over (0, 1). Thus, by setting Z = W, the required transfor-
mation is Y = (1 — e ¥)2,

FUNCTIONS OF TWO RANDOM VARIABLES

4.15. Consider Z = X + Y. Show that if X and Y are independent Poisson r.v.’s with parameters 4,
and 1, respectively, then Z is also a Poisson r.v. with parameter 4, + 4, .

We can write the event
(X+Y=m={J{X=i,Y=n—1)
i=0

where events (X =i, Y =n—1i),i=0, 1,..., n, are disjoint. Since X and Y are independent, by Egs. (1.46)
and (2.40), we have

PZ=n=PX+Y=n= Z PX=iY=n—i= Z PX =)P(Y =n—1i)
i=0

i=0

n i n—i n in—i
= Z e*hi'_e‘lli_ze—(h*/lz) _}'_1_)'2_
i=o il (n— 0! o itn—in
“{Artiz) n 1
=e n 'J'li}';_i
n! o il(n—i)!
e~ Aitin
p— JT
IS,

which indicates that Z = X + Y is a Poisson r.v. with 4, + 4,.

4.16. Consider two r.v.’s X and Y with joint pdf fyy(x, y). Let Z=X + Y.

(a) Determine the pdf of Z.
(b) Detcrmine the pdf of Z if X and Y are independent.
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T~

/%

Fig. 4-6

\\\\

(@) The range R, of Z corresponding to the event (Z < z) = (X + Y < z) is the set of points (x, y) which lie
on and to the left of the line z = x + y (Fig. 4-6). Thus, we have

Fiz)= PX 4 Y <2) = fw U”f”(x, » dy] dx (4.78)
d » [d [
Then JAz) = ;1; Fz) = J. [“ f fx}’(x’ y) dY:l dx
= f Fey(x, 2 = x) dx (4.79)

(b) I X and Y are independent, then Eq. (4.79) reduces to
fz2) = J. Jx(x) fkz — x) dx (4.80a)

The integral on the right-hand side of Eq. (4.80a) is known as a convolution of f,(z) and fi{z). Since the
convolution is commutative, Eq. (4.80a) can also be written as

140 = [ ot = @ (4.800)

4.17. Using Egs. (4.19) and (3.30), redo Prob. 4.16(a); that is, find the pdfof Z = X + Y.

Let Z=X + Y and W = X. The transformation z = x + y, w = x has the inverse transformation
xX=w,y=2z—w,and

0z é’_z

ox  dy 11
TN = o _ll ol__l

ox 0Oy

By Eq. (4.19), we obtain
S2wdz, W) = fyrlw, 2 - w)
Hence, by Eq. (3.30), we get

fAz) = J.w Sowl(z, w) dw = J.w Sxrw, z — w) dw = J. Sxrx, z — x) dx

4.18. Suppose that X and Y are independent standard normal r.v.’s. Find the pdfof Z = X + Y.
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The pdf’s of X and Y are

1 ; 1
hi¥) == e fly) = e

2n 2n
Then, by Eq. (4.80a), we have

® 1

fAd) = fﬂnﬁu X dx = L v ﬁ e~ 2 gy

1 X

_ e—(zZ—sz+ 2x2){2 dx
2n J_ o

Now, z2 — 2zx + 2x? = (ﬁx -~ z/\/E)2 + z%/2, and we have

1 o 1 ® s )
o 24 e~ W2x—zV2R2 4y

V2n N2 -
1 1 (>~ 1
\/5 e 2m
with the change of variables u = ﬁx - z/ﬁ. Since the integrand is the pdf of N(0; 1), the integral is

equal to unity, and we get

fdl2) =

~z2/4 e—uZ)Z du

= 4

E

=__l__ —z2/4 1
NN NN

which is the pdf of N(O; 2). Thus, Z is a normal r.v. with zero mean and variance 2.

¢ 2H2AY2R

J42)

4.19. Let X and Y be independent uniform r.v.’s over (0, 1). Find and sketch the pdf of Z = X + Y.

Since X and Y are independent, we have

O0<x<1,0<y<|1
otherwise

1
Jxr(x, ¥) = fx(x) fy(¥) = {0

The range of Z is (0, 2), and
F2)=P(X+Y<z)= J~J~ Syrx, yydx dy = J~J~ dx dy

x+y<z x+ysz

If 0 <z < 1[Fig 4-7(a)],

2

FAz) = J.J. dx dy = shaded area =%
x+yp<z

d

and fA2) = i

Ffp2) =z

If 1 <z < 2[Fig. 4-7(b)],

Y
Fu(2) = Jj dx dy = shaded area =1 — @ 5 2)
x+y<z
d
and fA2)=—Fyz2)=2—:2
dz
z O<z<l
Hence, fA5)=42—= l<z<2

0 otherwise
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(b

which is sketched in Fig. 4-7(c). Note that the same result can be obtained by the convolution of fy(z) and

H(2).

4.20. Let X and Y be independent gamma r.v.’s with respective parameters («, 1) and (8, A). Show that
Z = X + Y is also a gamma r.v. with parameters (« + B, ).

From Eq. (2.76) (Prob. 2.24),
le—lx(lx)a- 1

) = @ x>0
0 x<0
Ae™M(ayP!

A o £ 0
=" T r=
0 y<0

The range of Z is (0, ), and using Eq. (4.80a), we have

SA2) = m lee—“(lx)“" e 279Uz — x))P 7 dx
o

Jats I B
“Trd L" e - xP™ dx

By the change of variable w = x/z, we have
a+f

D = tarm

— ke—/lzza+ﬂ—l

1
e Azmth1 f w L —wfP ! dw
o
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4.21.

4.22.
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where k is a constant which does not depend on 2. The value of k is determined as follows: Using Eq. (2.22)

and definition (2.77) of the gamma function, we have

j fAz) dz =k j e A0l gy
- % 0

k ©
A8 Jo
= W F(a + B) =1
Hence, k = A**%/T(a + ) and
,{1+ﬂ . ch-1 Ae—iz(lz)awﬂ—l
— -4z 4 -v V7 0
G T ey

which indicates that Z is a gamma r.v. with parameters (¢ + 5, A).

Consider two r.v.’s X and Y with joint pdf fyy(x, y). Determine the pdf of Z = X'Y.

Let Z=XY and W = X. The transformation z = xp, w = x has the inverse transformation x = w,

y = z/w, and

dx Ox

Py 0 1

0z ow {
Taw=1a, ol =L _z[=7%

9 ow w w?

Thus, by Eq. (4.23), we obtain

1
fZW(zv W) = l -
w

and the marginal pdf of Z is

1
w

fo) = J )

-

f”<w, i) dw
w

Let X and Y be independent uniform r.v.’s over (0, 1). Find the pdf of Z = X'Y.

We have

1 0<x<,0<y<l
0 otherwise

Sxilx, y) = {
The range of Z is (0, 1). Then

f( z) 1 O<w<l,0<z/w<l
w, = | = .
*r w 0 otherwise

1 O<zawxl

or 1, (W z _{
"\ w/  ]0  otherwise
By Eq. (4.82),

(4.81)

(4.82)
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4.23.

4.24.

4.25.

Thus,

f2(2) = {0

—Inz

141

O0<z<]
otherwise

Consider two r.v.'s X and Y with joint pdf fyy(x, y). Determine the pdf of Z = X/Y.

Let Z = X/Y and W = Y. The transformation z = x/y, w = y has the inverse transformation x = zw,

y=w, and

o o

- dz dw w oz

Nz w) = dy Qy “lo 1 =Y
2z ow

Thus, by Eq. (4.23), we obtain

Sawlz, w) = |w| fyy(zw, w) (4.83)

and the marginal pdf of Z is

fAz) = j‘ ) [ wi fyilzw, w) dw (4.84)

—a

Let X and Y be independent standard normal r.v.’s. Find the pdf of Z = X/Y.

Since X and Y are independent, using Eq. (4.84), we have

fo(z) = J‘L [w| flzw) f{w) dw = J‘L fw| El; o HIEIL g

—a.
X

] 1 [°
== | wewrIFINZ 4 we ™ WHLTIL g
2n Jo m Jo

|
=— —w<z< O
(1l + z%)

which is the pdf of a Cauchy r.v. with parameter 1.

Let X and Y be two r.v.’s with joint pdf fxy(x, y) and joint cdf Fy(x, y). Let Z = max(X, Y).

(2) Find the cdf of Z.
(b) Find the pdf of Z if X and Y are independent.

(a) The region in the xy plane corresponding to the event {max(X, Y) < z} is shown as the shaded area in
Fig. 4-8. Then

F2)=P(Z<z)=P(X <z. Y <2)= Feylz. 2) (4.85)
(b) If X and Y are independent, then
Flz) = Fy(2)Fy(2)
and differentiating with respect to z gives
1A42) = [x(2DF 2) + Fyl2) fy(2) (4.86)
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<

)

%
o

Flg. 4-8

\\

4.26. Let X and Y be two r.v.’s with joint pdf fy(x, y) and joint cdf Fyy(x, y). Let W = min(X, Y).
(@) Find the cdf of W.
(b) Find the pdf of W if X and Y are independent.

(a) The region in the xy plane corresponding to the event {min(X, Y) < w} is shown as the shaded area in
Fig. 4-9. Then

P(W <w)=P{(X <w)u (Y <w)}
=PX <w)+ P(Y <w) — P{(X <w) n (Y < w)}

Thus, F(w) = Fy(w) + Fy(w) — Fyydw, w) 4.87)
(b) U X and Y are independent, then
Fy(w) = Fx(w) + Fy(w) — Fx(W)Fy(w)
and differentiating with respect to w gives

Sw(W) = fx(W) + fy(w) — Sx(W)F () — Fx(w)fr(w)
=SxW)[1 — Fy(W)] + ffw)[1 — Fx(w)] (4.88)

X

4.27. Let X and Y be two r.v.’s with joint pdf fy4(x, y). Let

/FAV o=y (4.89)

Find frelr, 0) in terms of fy(x, y).
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4.28.

We assume that r > 0 and 0 < 0 < 2z. With this assumption, the transformation

x2+yt=r tan ' L =g
x
has the inverse transformation
x=rcos b y=rsin 6
Since
ox  0x
- or 06 cos @ -—rsiné
J X, = = . =
() dy dy sin 6 reosd| "
ar a6

by Eq. (4.23) we obtain
Jrelr. 8) = rfyylr cos 6, r sin 8)

A voltage V is a function of time t and is given by

V(t)y= X cos ot + Y sin wt

143

(4.90}

(4.91)

in which @ is a constant angular frequency and X = Y = N(0; ¢?) and they are independent.

(a) Show that V(f) may be written as
V(t) = R cos (0t — ©)
(b)) Find the pdf’s of r.v.’s R and ® and show that R and ® are independent.

(a) We have
V(t) = X cos wt + Y sin wt

- /XY (__X— — L in m)
/X2 + Y2 lx2 + YZ

=./X*+ Y%(cos ® cos wt + sin O sin wt)

= R cos(wt — ©)

cos wt +

Y
where R=/X>+Y? and © = tan™! X

which is the transformation (4.89).
(b) Since X = Y = N(0; ¢?) and they are independent, we have

|
X = —— o~ x2Fyhi202)
Sxy(x, ¥) no?

Thus, using Eq. (4.90), we get

r
2no?

—~r2j(2a2)

Sre(rs 0) = rfyylr cos 8, r sin ) =

e

2n 2n
Now Slr) = f Jrelr, 6) d6 = =—— ¢ 77D f df = =5 ¢ ~H0D
o 2no a

0

= ” = ! _ ” —r2/2a2) = .l_
Ja(0) —J; Srelr, 8) dr = Inal f re dr = 3

0 4

and fre(r, 6) = fx(r) fo(0); hence, R and © are independent.
Note that R is a Rayleigh r.v. (Prob. 2.23), and © is a uniform r.v. over (0, 2n).

(4.92)

(4.93)

(4.94)

(4.95)



144 FUNCTIONS OF RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS [CHAP. 4

FUNCTIONS OF ¥ RANDOM VARIABLES
429. Let X, Y, and Z be independent standard normal r.v.’s. Let W = (X2 4+ Y2 + Z%)V2, Find the

pdf of W,
We have
1 —(x2+y2+72
Sxva(x. ys 2) = [x(x) fe(p) f2(2) = 2 ¢ w2yt EA
and Fyw)=P(W <w)=P(X? + Y2 + 7% <w

ij 2m) Pz € e XTI ix dy dz
)

where Ry, = {(x, y, 2): x2 + y? + z* < w?). Using spherical coordinates (Fig. 4-10), we have
P+ yrtzi=p2
dx dy dz = r? sin 0 dr dO do

and Fylw) = G j j j e "2 sin 0 dr dB do
=G ]MJ d(pj sin OdOJ S22 g
n
= (2m)(2) J rle”m dr (4.96)
(2 )3/2 o

Thus, the pdf of W is

2
d \/:wze"“l’z w>0
Swlw) == Fy(w) =N 7 (4.97)
w
0 w<(
A
N C A
"/
o !
0 ) ¥
Z ; ~ > v
ret N
AT . SN
X

Fig. 4-10 Spherical coordinates.

430. Let X,,..., X, be nindependent r.v.’s each with the identical pdf f(x). Let Z = max(X,, ..., X,).
Find the pdf of Z.

The probability P(z < Z < z + dz) is equal to the probability that one of the r.v.’s falls in (z, z + dz)
and all others are less than z. The probability that one of X, (i=1, ..., n) falls in (z, z + dz) and all others
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4.31.

4.32.

are all less than z is

f(2) dz(jz f{x) dx)k l

Since there are n ways of choosing the variables to be maximum, we have

b4 n—1
JAz) = nf(Z)('[ S(x) dX) =nf@[F)1"! (4.98)

When n = 2, Eq. (4.98) reduces to

JAz) =2 (2) '[ S(x) dx = Y (2)F(2) 4.99)

4

which is the same as Eq. (4.86) (Prob. 4.25) with fy(z) = fy(z) = f(z) and F4(z) = F(z) = F(2).

Let Xy, ..., X, be n independent r.v.’s each with the identical pdf f(x). Let W = min(X 4, ..., X,).
Find the pdf of W.

The probability P(w < W < w + dw) is equal to the probability that one of the r.v.’s falls in (w, w + dw)
and all others are greater than w. The probability that one of X; (i = |, ..., n) falls in (w, w + dw) and all

others are greater than w is
x n—1
f(w) dw(f f(x) dx)

Since there are n ways of choosing the variables to be minimum, we have

EY n=1
fw<w)=nf<w)(f S) dx) = @[ - F2)" (4.100)

w

When n = 2, Eq. (4.100) reduces to

o

Jw(w) = 2f(w) '[ S(x) dx =2 (W[l — F(w)] (4.101)

w

which is the same as Eq. (4.88) (Prob. 4.26) with f(w) = fy(w) = f(w) and Fy(w) = Fy(w) = F(w).

Let X;,i=1,..., n, be n independent gamma r.v.’s with respective parameters (a;, 1), i =1, ...,
n. Let

Y=X,4++X,=) X,

i=1
Show that Y is also a gamma r.v. with parameters (3.7_| a;, 4).

We prove this proposition by induction. Let us assume that the proposition is true for n = k; that is,

k
Z=X,++X, =Y X,
=1

k
is a gamma r.v. with parameters (8, 1) = (Y a;, ).

i=1
k+1

Let W=Z+X,.,=7Y X,
i=)

Then, by the result of Prob. 4.20, we see that W is a gamma r.v. with parameters (f + o, ., 4) =
(3% ! «;, A). Hence, the proposition is true for n = k + 1. Next, by the result of Prob. 4.20, the proposition

is true for n = 2. Thus, we conclude that the proposition is true for any n > 2.



146

4.33.

4.34.

4.35.
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Let X, ..., X, be n independent exponential r.v.’s each with parameter A. Let
Y=X++X,=) X,
i=1
Show that Y is a gamma r.v. with parameters (n, 4).

We note that an exponential r.v. with parameter 4 i1s a gamma r.v. with parameters (1, A) (Prob. 2.24).
Thus, from the result of Prob. 4.32 and setting «; = 1, we conclude that Y is a gamma r.v. with parameters
(n, A).

Let Z,,..., Z, be n independent standard normal r.v.’s. Let
Y=Z°+--+2' =) Z}
Find the pdf of Y.
Let Y; = Z;2, Then by Eq. (4.75) (Prob. 4.7), the pdf of Y, is
! e Y2

0
fe) = {21y v

0 y<0

Now, using Eq. (2.80). we can rewrite
L gy eyt
vy Jr ()

and we recognize the above as the pdf of a gamma r.v. with parameters (4, 4) [Eq. (2.76)]. Thus, by the
result of Prob. 4.32, we conclude that Y is the gamma r.v. with parameters (n/2, ¥} and

%e—ylz(y/z)nlz—l e—ylzynlz—l
= 0
Sy = T(n/2) 7wy 07 4.102)
0 y<0

When n is an even integer, I'(n/2) = [(n/2) — 1]!, whereas when n is odd, T'(n/2) can be obtained from
T(x) = (@ — D@ — 1) [Eq. (2.78)] and ['($) = \/; [Eq. (2.80)].

Note that Equation (4.102) is referred to as the chi-square (x*) density function with n degrees of
freedom, and Y is known as the chi-square (x?) r.v. with n degrees of freedom. It is important to recognize
that the sum of the squares of n independent standard normal r.v.’s is a chi-square r.v. with n degrees of
freedom. The chi-square distribution plays an important role in statistical analysis.

Let X, X,,and X, be independent standard normal r.v.’s. Let

=X+ X,+ X,

=X -X;
;=X,-X;
Determine the joint pdf of Y,, Y,, and Y,.
Let =X +Xx;+ x5
Y2 =X — X, (4.103)

Y3 = X2 — X3
By Eq. (4.32), the jacobian of transformation (4.103) is
1 1 1

Jx, x5, x5) =1 ~1 0[=3
0 1 -1
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Thus, solving the system (4.103), we get
X, =3(yy + 2y, + y3)
X, =30 —ya+yy)
xy =4y —y2 — 2y3)
Then by Eq. (4.31), we obtain

Vit 2n+ys v=ya+ys Bi—ya—2y
fyly;y,(}’n}’z, .V3)=§fxlx,x,<l 32 3, ! 32 3, ! ; 2

Since X, X,, and X ; are independent,
1

3
Sevxax(X1, X2, X3) = il:[) Jx(x) = W €

—(x32+x22+x32)/2

e 41 y2. 73)2

1
(27!)3/2

+ 2, 41, \2 -yt ) —n2 =25\
where q(yl’yz,ya)z(yl :};2 y;) +(y1 };2 y;) +(y1 & }’3>

= ‘15}’12 + %)’22 + §}’32 + ‘.2!}’2}’3

Hence, f)',yz)’,(}’p Y2,y = 3

EXPECTATION

4.36. Let X be a uniformr.v. over (0, 1) and Y = ¢*.
(@) Find E(Y) by using fy(y).
(b) Find E(Y) by using fy(x).
(@) From Eq. (4.76) (Prob. 4.9),

1
- l<y<e
Ky =9y
0 otherwise
Hence, E(Y)=I iy dy=f dy=e—1
- 1

(b) The pdfof X is
1 O0<x<l
Sxx9 = {0 otherwise

Then, by Eq. (4.33),

© 1
E(Y)=I e’ff,\r(X)dx=Je"dx=e—1
x 0

4.37. Let Y = aX + b, where a and b are constants. Show that
(@) E(Y)= E(@aX + b)=aE(X)+ b
(b) Var(Y) = Var(aX + b) = a® Var(X)
We verify for the continuous case. The proof for the discrete case is similar.

(a) ByEq.(4.33),

E(Y)=E(aX + b) = j (ax + b) fy(x) dx

-

=a Jw xfy(x) dx + b Jw fy(x) dx = aE(X) + b

-«
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(4.104)

(4.105)
(4.106)
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(b) Using Eq. (4.105), we have

Var(Y) = Var(aX + b) = E{(aX + b — [aE(X) + b})?}
= E{a?[X — E(X)]*} = a*E{[X — E(X)]*} = a* Var(X)

4.38. Verify Eq. (4.39).
Using Egs. (3.58) and (3.38), we have

ELE(Y] X)) =f E(Y 1 x)fyx) dx = r Uw\yfmynx) dy]fxm dx

f f'ymfxmdx dy=f'yU fxy(x»)’)dx:ldy
B T e fX(x) - —x

f, Wfy) dy = E(Y]

“

4.39. Let Z =aX + bY, where a and b are constants. Show that
E(Z) = E(uX + bY) = aE(X) + bE(Y) (4.107)

We verify for the continuous case. The proof for the discrete case is similar,
E(Z) = E(aX + bY) = f f (ax + by)fyylx. y) dx dy

=a f f xfyy(x, y)dx dy + b f f Wxvlx, y) dx dy

=a f XU Sxvlx, ) dy:l dx + b f , yU Sxrlx, ) dx:l dy

=a f xfx(x)dx + b f ' yfy(y) dy = aE(X) + bE(Y)

- - %

Note that Eq. (4.107) (the linearity of E) can be easily extended to nr.v.’s;

E( Z a, X.») = iai E(X) (4.108)
=1 i=1

440, Let Y =aX +b.

(a) Find the covariance of X and Y.
(b) Find the correlation coefficient of X and Y.
(a) By Eq.(4.107), we have
E(XY)=E[X(aX + b)] = aE(X?) + bE(X)
E(Y) = E(aX + b)=aE(X) + b
Thus, the covariance of X and Y is [Eq. (3.51)]
Cov(X, Y) =04y = E(XY) — E(X)E(Y)
= aE(X?) + bE(X) — E(X)[aE(X) + b]
= a{E(X?) — [E(X))?} = ao > (4.109)

(b) By Eq. (4.106), we have g, = | a| gy . Thus, the correlation coeflicient of X and Y is [Eq. (3.53)]}

Oxy acy a 1 a>0
= = = = 4.11
{—l a<0 (4.110)
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441. Verify Eq. (4.36).

Since X and Y are independent, we have
E[g(X)A(Y)] = f f g fxy(x, ) dx dy
- f ‘ f GO f(3) fyly) dx dy

=f g(x) fx(x) de h(y) f1(y) dy

= E[g(X)]E[K(Y)]

The proof for the discrete case is similar.

442. Let X and Y be defined by
X =cos ® Y =sin ®
where @ is a random variable uniformly distributed over (0, 2x).

(a) Show that X and Y are uncorrelated.
(b) Show that X and Y are not independent.

(a) We have
— 0<f<2n
Jo(0) =2n
0 otherwise
o« 2n 1 2r
Then E(X)= j xfy(x) dx = f cos 8 fo(0) d6 = I f cos 6df =0
- Q0 0
1 2n
Similarly, EY)=— j sin 8 d6 =0
2 Jo

I 2n l 2n
E(XY):E—J‘ cos @ sin 0d0=—f sin 28 d6 = 0 = E(X)E(Y)
T Jo 4 Jo

Thus, by Eq. (3.52), X and Y are uncorrelated.

1 2n ] 2n 1
(b) E(XX%) =— cos? 8df=— | (14 cos26)df=-
2n Jo 4n ), 2
E(Y?) = L™ sin? 8 d6 = L 2“(1 — cos 26) df = !
T2 ), Tan T2
1 2n . l 2n 1
E(X2Y?) = — cos? Bsin20d8=— | (] —cosdb) df =—-
2n Jy 167 Jo 8

Hence
E(X?YY) =} # § = E(X?)E(Y?)
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If X and Y were independent, then by Eq. (4.36), we would have E(X?Y?) = E(X?)E(Y?). Therefore, X

and Y are not independent.

443. Let X, ..., X, benrv’s. Show that

Var(i“i&') = i iaiaj Cov(X;, X))

i=1 i=1 j=1

(“.111)
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IfX,,..., X, are pairwise independent, then

Var( X": a; X,-) = ia.-z Var(X)
i=1

Let Y = Zaixi

i=1

Then by Eq. (4.108), we have

Var(Y) = E{[Y — E(Y)]*} = E{( Y afX; - E<X.-)1>2}

i=1

Z Z aa[X; — E(X.')][Xj - E(Xj)]}

\.

M’C_A_.ﬁ

ca; E{[X: — E(X)I0X; — E(X )]}

=

a;a; Cov(X;, X))

||M=EM= -

I
[UN

n
—-
~.

If X,, ..., X, are pairwise independent, then {Prob. 3.22)

Var(X)) i=j

Cov(X,-,Xj)={0 Iy

and Eq. (4.111) reduces to

Var(i a, X,-) = i a? Var(X;)

MOMENT GENERATING FUNCTIONS
4.44. Let the moment of a discrete r.v. X be given by
E(X% =08 k=12, ...
(@) Find the moment generating function of X.
(b) Find P(X =0)and P(X = 1).

(a) By Eq.(4.41), the moment generating function of X is
k

2
M) = 1+ B + 22 ECY) + oo B + -+

[Z k £ [k
=I+0.8(t+2—+ +—+ )=l+0.8 —

k! E k!

o k
=02+08 Z k_ 0.2 + 0.8¢
(b) By definition {4.40),

Mx(t) = E(e™) =} e™px(x))

i
Thus, equating Egs. (4.113) and (4.114), we obtain
px(0)=PX =0)=0.2 px()=P(X=1)=08

(4.112)

(4.113)

(4.114)
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4.45.

4.46.

447.

Let X be a Bernoulli r.v.
(a) Find the moment generating function of X.
(b) Find the mean and variance of X.
(a) By definition (4.40) and Eq. (2.32),
M) = E(e) = Z €'px(x;)
= ¢Vpx(0) ¥ eVpy(1) = (1 — p) + pé'
(b)) By Eq.(4.42),

E(X)=My0) =pe'| =p
t=0
E(X?) = M(0) = pe' =p
t=0
Hence, Var(X) = E(X*) — [E(X)]* = p — p* = p(1 - p)

Let X be a binomial r.v. with parameters (n, p).

(@) Find the moment generating function of X.

(b) Find the mean and variance of X.

(a) By definition (4.40) and Eq. (2.36), and letting ¢ = 1 — p, we get

Myt = Be®) = ¥, e'*(")p‘q"‘*
K=o \k

2 (n
=2 (k)(‘-"p)"q""" =(q +pey
k=0
(b) The first two derivatives of M(t) are

M(t) = n(q + pe'y'~ 'pe’
M) = n(q + pe'y'~'pe’ + nin — 1)(q + pe')"~*(pe')?

Thus, by Eq. (4.42),
px = E(X) = My(0) = np
E(X?) = M}{(0) = np + n(n — 1)p?
Hence, ax* = E(X?) = [E(X))* = np(l — p)

Let X be a Poisson r.v. with parameter 4.

(a) Find the moment generating function of X.
(b) Find the mean and variance of X.

(@) By definition (4.40) and Eq. (2.40),

O
=e—1z = ¢ tehtt — ge-1)

(b) The first two derivatives of M 4(t) are
My(t) = iete?e ™D
Mt) = (Ae')2ee = 4 Jeteier— )
Thus, by Eq. (4.42),
E(X)=My0) =1 E(X?) = My0) = A* + 1

151

@.115)

(4.116)

(4.117)
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Hence, Var(X) = E(XY) - [EX)]* =4 +1-4*=1

4.48. Let X be an exponential r.v. with parameter 4.

(@) Find the moment generating function of X.
(b) Find the mean and variance of X.
(a) By definition (4.40) and Eq. (2.48),

M (1) = E(¢") = J. de™ e dx

(1]

A ® A
— (r—A)x —
— v A>t (4.118)
(b) The first two derivatives of M,(t) are
A 22
M) = —2— vy A
W=g—y M=
Thus, by Eq. (4.42),
1 2
E(X)=M}((0)=7 E(X2)=M')'((0)=A—2
5 oz 2 2 1
Hence, Var(X) = E(X*) — [E(X)]* = 2\1) =%

4.49. Find the moment generating function of the standard normal r.v. X = N(0; 1) and calculate the
first three moments of X.
By definition (4.40) and Eq. (2.52),

K
~x2
e /2€'x dx

M (1) = E(e") = J.

o 2n

Combining the exponents and completing the square, that is,

x? . (x—1? ¢
D itx =~ _
2 2 2
we obtain
M (t) = e'*i? J. e (XTOU2 gy = 1?2 (4.119)
- 27Z

since the integrand is the pdf of N(t; 1).
Differentiating M ,(t) with respect to ¢ three times, we have

Mi(t) = te'*'? M (1) = (2 + 1)e™? M3 = (13 + 30)e'™?
Thus, by Eq. (4.42),
E(X)=Mx0)=0 E(X*)=My0) =1 E(X3) =M,>0)=0

450. Let Y =aX + b. Let M(t) be the moment generating function of X. Show that the moment
generating function of Y is given by

My(t) = "M 4(ar) (4.120)
By Egs. (4.40) and (4.105),

MY(I) — E(en') — E[el(ax+b)]
= e E(e") = ¢ M {ar)
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4.51.

4.52.

4.53.

4.54.

4.55.

4.56.

Find the moment generating function of a normal r.v. N(u; ¢?).

If X is N(Q; 1), then from Prob. 4.1 (or Prob. 4.37), we see that Y = ¢X + uis N(u; o2). Then by setting
a = o and b = uin Eq. (4.120) (Prob. 4.50) and using Eq. (4.119), we get

My(t) = e"M,y(gt) = e’'e!V2 = gut+atiti2 .12

Let X, ..., X, be n independent r.v.’s and let the moment generating function of X; be My (t).
Let Y = X, + -+ + X,,. Find the moment generating function of Y.

By definition {4.40),
My(t) = E(e'") = E[e"X 7" X0] = E(e'"t ... ¢'¥)
= E(e'*1) .- E(e'*"  (independence)
=My (t) -+ My(t) (4.122)

Show that if Xy, ..., X, are independent Bernoulli r.v.’s with the parameter p, then Y = X, +
+«+ + X, is a binomial r.v. with the parameters (n, p).

Using Eqs. (4.122) and (4.115), the moment generating function of Y is
My(t) = [](q + pe') = (q + pe'y’ q=1-p
i=1

which is the moment generating function of a binomial r.v. with parameters (n, p) [Eq. (4.116)]. Hence, Y is
a binomial r.v, with parameters (n, p).

Show that if X, ..., X, are independent Poisson r.v.’s X; having parameter 4;, then Y = X, +
-+ + X, is also a Poisson r.v. with parameter A =4, +-+- + 4,.

Using Eqs. (4.122) and (4.117), the moment generating function of Y is

n
My(t) = 1—[ MO 1) . JEANE = 1) _ e 1)

i=1
which is the moment generating function of a Poisson r.v. with parameter 1. Hence, Y is a Poisson r.v. with

parameter A = X1, =4, + -+ 4,.
Note that Prob. 4.15 is a special case for n = 2.

Show that if X,, ..., X, are independent normal r.v.’s and X; = N(y;; 6;%), then Y = X, +
.-+ 4+ X, is also a normal r.v. with mean u = p, + -+ + u, and variance 6* = ¢,* + -+ + g,%

Using Eqs. (4.122) and (4.121), the moment generating function of Y is

My(t) = 1"[ it +a22[2) . H(Em) +(Zoi2)22 _ pui+ o2

i=1

which is the moment generating function of a normal r.v. with mean p and variance ¢% Hence, Y is a
normal r.v. with mean u = u, + -+ + u, and variance 62 = 6,2 + - - - + g,%.
Note that Prob. 4.18 is a special case for n = 2 with y; = 0 and 62 = 1.

Find the moment generating function of a gamma r.v. Y with parameters (n, 4).

From Prob. 4.33, we see that if X, ..., X, are independent exponential r.v.’s, each with parameter 1,
then Y = X, +---+ X, is a gamma r.v. with parameters (n, A). Thus, by Eqs. (4.122) and (4.118), the

moment generating function of Y is
n l l n
Myt = — )=\ 4.123
" E(A—) <1—r> 4.123)
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CHARACTERISTIC FUNCTIONS

4.57. The rv. X can take on the values x, = —1 and x, = +1 with pmf’s p,(x,) = px(x,) = 0.5.
Determine the characteristic function of X.

By definition (4.50), the characteristic function of X is

Y, (@) = 0.5¢ 75 + 0.5¢/ = L(e/* + ¢ ) = cos w

4.58. Find the characteristic function of a Cauchy r.v. X with parameter a and pdf given by

a

=3 — X <XxX<X
n(x? + a?)

Jx(x)

By direct integration (or from the Table of Fourier transforms in Appendix B), we have the following
Fourier transform pair:

2a
w? + a*

e—alxl —

Now, by the duality property of the Fourier transform, we have the following Fourier transform pair:

2a
x*+a

o 2peolmel = oo alwl
)

or (by the linearity property of the Fourier transform)

a - e—al(ul
n(x? + a?)
Thus, the characteristic function of X is
Y () = e alol (4.124)

Note that the moment generating function of the Cauchy r.v. X does not exist, since E(X") —» oo forn > 2.

4.59. The characteristic function of a r.v. X is given by

-] lw] <1
\P"(“’)"{o lo]> 1

Find the pdf of X.

From formula {4.51), we obtain the pdf of X as

O

—_ ! \*I = jwx d
Sx(x) = I xlwe w

-«

0 1
=—l—|:J (1 + w)e = dw+.[ (1 — w)e™Jox dw]
2n ), 0

1

) ; 1
2—e*—e ) =— (1 - cos x)

T 2nx? mx?
_ 1 [sin(x/2) ] o < x<
T 2n x/2 X

4.60. Find the characteristic function of a normal r.v. X = N(u; ¢?).

The moment generating function of N(u; ¢2) is [Eq. (4.121)]

M(1) = et * 7012
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Thus the characteristic function of N(u; o?) is obtained by setting ¢t = jw in M ,(¢); that is,

\{;X(w) = euﬁ-azﬂlz — ejwu—aZmZ/Z (4125)

= jw

461. Let Y =aX + b. Show that if W,(w) is the characteristic function of X, then the characteristic
function of Y is given by

¥ (w) = P (aw) (4.126)
By definition (4.50),

W (0) = E(e/Y) = E[e/oeX +o]
= ejwbE(ejam,\’) - ej‘”"‘{lx(aw)

4.62. Using the characteristic equation technique, redo part (b) of Prob. 4.16.
Let Z = X + Y, where X and Y are independent. Then
¥ ) = E(e?) = E(ei*** 1) = B ¥)E(e™")
= ¥ (0)¥,(w) (4.127)
Applying the convolution theorem of the Fourier transform (Appendix B}, we obtain

fl2) = F 7 [Yyw)] = F [ w)¥o)]
=fX(z) *fY(z) = Ji fx(x)fy(z - X) dx

THE LAWS OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM
4.63. Verify the weak law of large numbers (4.58); that is,
lim P(| X, - pul>e =0  foranye

n—+oe

S |-

where X, =~ (X, + -+ + X,) and E(X,) = u, Var(X,) = o2,

Using Eqs. (4.108) and (4.112), we have

2
EX)=u and Var¥,) = ”7 (4.128)
Then it follows from Chebyshev’s inequality [Eq. (2.97)] (Prob. 2.36) that
o o?
PUX, —pl> 8 < (4.129)

Since lim,_, , o*/(ne?) = 0, we get

L=l

lim P(| X, —uj>¢e)=0

n—x

4.64. Let X be ar.v. with pdf fy(x) and let X, ..., X, be a set of independent r.v’s each with pdf fi(x).
Then the set of r.v.’s X, ..., X, is called a random sample of size n of X. The sample mean is
defined by

1
Xn:;(Xl+“.+Xn):

™=

1
-y X, (4.130)
n.

1
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4.65.
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Let X,, ..., X, be a random sample of X with mean g and variance ¢°. How many
samples of X should be taken if the probability that the sample mean will not deviate from the
true mean p by more than ¢/10 is at least 0.95?

Setting ¢ = ¢/10 in Eq. (4.129), we have

o) a? 100

— ag -
Pl —p>Z)=1-p(1% ~nj<Z)< _ 10
<' " “'>1o) <' Ty T,

_ 1
or P<|X,—ulsl)zl——0—0
10 n

Thus if we want this probability to be at least 0.95, we must have 100/n < 0.05 or n > 100/0.05 = 2000.

Verify the central limit theorem (4.61).

Let X,, ..., X, be a sequence of independent, identically distributed r.vs with E(X)=p and
Var(X,) = o2 Consider the sum S, = X, + - -+ + X,. Then by Eqs. (4.108) and (4.112), we have E(S,) = nu
and Var(S,) = ne?. Let

S, — 1 & (X -

zZ, =" "“=—Z< i ”) (4.131)
\/;o \/; i=1 o

Then by Eqs. (4.105) and (4.106), we have E(Z,) = 0 and Var(Z) = |. Let M(t) be the moment generating

function of the standardized r.v. Y, = (X; — u)/o. Since E(Y) = 0 and E(Y;%) = Var(Y) = 1, by Eq. (4.42), we

have

M(0) =1 M©) = E(Y)=0 M"(0) = E(Y) =1

Given that M'(t) and M"(t) are continuous functions of ¢, a Taylor (or Maclaurin) expansion of M(t) about
t = 0 can be expressed as

t? 2

M(t) = M(©0) + M'(0) + M"(z)) 7 =1+ M"t,) 5 <, <
By adding and subtracting t2/2, we have

M(t) =1 + 42 + 4[M"(t,) — 12 (4.132)

Now, by Eqs. (4.120) and (4.122), the moment generating function of Z, is

M) = [M(\/L;)] (4.133)

Using Eq. (4.132), Eq. (4.133) can be written as

wego=[1+3(Z2) 3w - o ) T
z{t) = + 2 \/'; + 2 (t)) ~ 7;

where now ¢, is between 0 and I/\/r;. Since M"(t) is continuous at t = 0 and ¢, — 0 as n — <o, we have

Hm [M7(t)—1]=M@©0)—1=1-1=0

Thus, from elementary calculus, lim, _, ,, (1 + x/n)" = ¢*, and we obtain

2 n
lim M, (1) = lim {1 g 'n (M"(t;) — 1]!’}

no P 2n 2

2 2\"
lim (1 + t—/—) = ¢'?

n=w n

The right-hand side is the moment generating function of the standard normal r.v. Z = N(0; 1) [Eq.
(4.119)]. Hence, by Lemma 4.2 of the moment generating function,

lim Z, = N(0; 1)

n—w
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4.66. Let X, ..., X, be nindependent Cauchy r.v.’s with identical pdf shown in Prob. 4.58. Let

2 X
n=1

‘/"=

S i

Syt X)) =
(a) Find the characteristic function of Y, .
(b) Find the pdf of ¥,.
(¢) Does the central limit theorem hold?
(@) From Eq. (4.124), the characteristic function of X is
W) = el
Let Y = X + --- + X,. Then the characteristic function of Y is
W) = E(Y) = B[P+ 5] =[] Wyfe) = ¢~ (4.134)
i=1

Now Y, = (1/n)Y. Thus, by Eq. (4.126), the characteristic function of Y, is
w
Wy, (@) = w,(—) = e raloml = el (4.135)
n

(b) Equation (4.135) indicates that Y, is also a Cauchy r.v. with parameter g, and its pdf is the same as that
of X;.

(c) Since the characteristic function of Y, is independent of n and so is its pdf, Y, does not tend to a normal
r.v. as n — oc, and so the central limit theorem does not hold in this case.

4.67. let Y be a binomial r.v. with parameters (n, p). Using the central limit theorem, derive the
approximation formula

PY <y = ¢<ﬂ> (4.136)

/np(1 - p)
where ®(z) is the cdf of a standard normal r.v. [Eq. (2.54)].

We saw in Prob. 4.53 that if X, ..., X, are independent Bernoulli r.v.'s, each with parameter p, then
Y =X, + -+ X, is a binomial r.v. with parameters (n, p). Since X;'s are independent, we can apply the
central limit theorem to the r.v. Z defined by

12 X,-—E(X,-)) 1 "<X,-—p
Z,=— <— =— — (4.137)
\/; i;l Var(X,) \/; igl pll ~ p)
Thus, for large n, Z_ is normally distributed and
P(Z, < x) ~ D) (4.138)

Substituting Eq. (4.137) into Eq. (4.138) gives

s (Emn) s ey
Pl ———— (X;—p )< x|=PLY < x/np(]l —p)+ np] ~ P(x)
I: np(l — p) -';

—n
or PY <))~ m(y—l:)
Vel —p)
Because we are approximating a discrete distribution by a continuous one, a slightly better approx-

imation is given by

l p—
PY<y= ¢<M> (4.139)

Vv np(l — p)

Formula (4.139) is referred to as a continuity correction of Eq. (4.136).
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4.68.

4.69.

4.70.

4.71.

FUNCTIONS OF RANDOM VARIABLES, EXPECTATION, LIMIT THEOREMS [CHAP. 4

Let Y be a Poisson r.v. with parameter 1. Using the central limit theorem, derive approximation
formula:

—A
PY <y~ m(%) (4.140)
We saw in Prob. 4.54 that if X, ..., X, are independent Poisson r.v.’s X; having parameter 4;, then
Y =X, + -+ X, is also a Poisson r.v. with parameter A = 4, + -+ + 4,. Using this fact, we can view a
Poisson r.v. Y with parameter 4 as a sum of independent Poisson r.v.'s X;, i = 1,..., n, each with parameter

A/n; that is,

Y=X++X,
A
n

E(X) == = Var(X)

The central limit theorem then implies that the r.v. Z defined by
Y—-EY) Y-24
7Y E¥) _Y-4

- (4.141)
JVary) /i
is approximately normal and
P(Z < z) = O(2) (4.142)
Substituting Eq. (4.141) into Eq. (4.142) gives
Y—-4
P( \/I 52>=P(Y5 Az + A) = W(2)
-4
or P(Y <y~ d‘)(%)
Again, using a continuity correction, a slightly better approximation is given by
1 — 1
P(Y < )~ ¢<%) (4.143)

Supplementary Problems

Let Y =2X + 3. Find the pdf of Y if X is a uniform r.v. over (— 1, 2).

. l<y<?
Ans. fy(y) = {‘ Y

0 otherwise

Let X be a r.v. with pdf fy(x). Let Y = X|. Find the pdf of Y in terms of fy(x).

KO+ (= y>0

Ans, f,(y)={0 ) <0

Let Y = sin X, where X is uniformly distributed over (0, 2z). Find the pdfof Y.
1

Ans. fl(y)={n/1 —y?
0 otherwise

—l<y<l1
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4.72. Let X and Y be independent r.v.’s, each uniformly distributed over (0, 1). Let Z=X+Y, W =X -7,
Find the marginal pdf’s of Z and W,

z O<z<l w+ | —l<w<O0
Ans. fA5)=4\—z+2 l<z<?2 fww)=9¢—w+1 O<wx |
0 otherwise 0 otherwise

473. Let X and Y be independent exponential r.v.’s with parameters « and B, respectively. Find the pdf of
@Z=X-Y;(byZ=X/Y;(c) Z=max(X, Y);(d) Z=min(X, Y).

aB -2z

a+Be z>0 _ap -0
s (@ Sl =1" B) foh)=SGz+
a+Be‘” z2<0 0 z<0

—azl_ - Bz —le__ —az 0
(©) fz(z)={;e (1 =™+ pe™™1 — 7™ jZO

(@ + Pe~te*pr z>0

4.74. Let X denote the number of heads obtained when three independent tossings of a fair coin are made. Let
Y = X2 Find E(Y).

Ans. 3

4.75. Let X be a uniformr.v. over (—1,1). Let Y = X"

(a) Calculate the covariance of X and Y.
(») Calculate the correlation coeflicient of X and Y.
V32n+ 1)
—_— = odd S = odd
dns. (@) CovX,Vy={nt2 "°° B py={ n+2 n=o
0 n = even 0 n = even

4.76. Let the moment generating function of a discrete r.v. X be given by
M (1) = 0.25¢' + 0.35¢> + 0.40¢>
Find P(X = 3).
Ans. 035

4.77. Let X be a geometric r.v. with parameter p.

(a) Determine the moment generating function of X.
(b) Find the mean of X forp = 3.

f

Ans. (a) M,ﬁ):% t<—Ingg=1-p (b) EX)=3

4.78. Let X be a uniform r.v. over (a, b).

(a) Determine the moment generating function of X.

(b) Using the result of (a), find E(X), E(X?), and E(X?).
erb _ ela

Ans. (@) My(t)= =3

(b) E(X)=1L4b+ a), EX?Y = L(b* + ab + a?) E(X?) = }(b* + b%a + ba® + a®)
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4.79.

4.80.

4.81.

4.82.

4.83.

4.84.

4.8s5.

4.86.

4.87.
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Consider a r.v. X with pdf

|
v 32r

~(x+7)2/32

Sxlx) = —w <X <@

4

Find the moment generating function of X.

Ans. My(t) = e~ 778"

Let X = N(0; 1). Using the moment generating function of X, determine E(X”).

0 n=1,3.5 ...

Ans. E(X")={l~3-----(n—l) n=2406...

Let X and Y be independent binomial r.v.’s with parameters (n, p) and (m, p), respectively. Let Z = X + Y.
What is the distribution of Z?

Hint: Use the moment generating functions.

Ans.  Z is a binomial r.v. with parameters (n + m, p).

Let (X, Y) be a continuous bivariate r.v. with joint pdf

e ' x>0,y>0

Sxvlx, ¥) = {

0 otherwise

(@) Find the joint moment function of X and Y.

(h) Find the joint moments m,,, Mgy, and m, .

1
Ans. () Mxy(fnfz)=m (M) me=1my =1m =1

Let (X, Y) be a bivariate normal r.v. defined by Eq. (3.88). Find the joint moment generating function of X
and Y.

Ans. M yy(1,, 1) = eltar =y =(i2ox2 + 2izaxayp ~ 1220y 2)2

Let X,,..., X, be nindependent r.v.s and X; > 0. Let
Y=X,--—-X,= l_[ X,

Show that for large n, the pdf of Y is approximately log-normal.

Hint: Take the natural logarithm of Y and use the central limit theorem and the resuit of Prob. 4.10.

Let Y =(X — A)/\/Z. where X is a Poisson r.v. with parameter A. Show that Y ~ N(0; 1) when 4 is suffi-
ciently large.

Hint:  Find the moment generating function of Y and let 2 — oc.

Consider an experiment of tossing a fair coin 1000 times. Find the probability of obtaining more that 520
heads («) by using formula (4.136), and () by formula (4.139).

Ans. (@) 0.1038 (h) 0.0974

The number of cars entering a parking lot is Poisson distributed with a rate of 100 cars per hour. Find the

time required for more than 200 cars to have entered the parking lot with probability 0.90 (4) by using
formula (4.140), and (b) by formula (4.143).

Ans. (a) 2.189h (h) 2.1946 h



Chapter b

Random Processes

51 INTRODUCTION

In this chapter, we introduce the concept of a random (or stochastic) process. The theory of
random processes was first developed in connection with the study of fluctuations and noise in physi-
cal systems. A random process is the mathematical model of an empirical process whose development
is governed by probability laws. Random processes provides useful models for the studies of such
diverse fields as statistical physics, communication and control, time series analysis, population
growth, and management sciences.

52 RANDOM PROCESSES
1. Defintion:

A random process is a family of r.v.’s {X(1), t € T} defined on a given probability space, indexed
by the parameter (, where t varies over an index set T.

Recall that a random variable is a function defined on the sample space S (Sec. 2.2). Thus, a
random process {X(t), t € T} is really a function of two arguments {X(t,{). t € T, { € S}. For a fixed
t(=t), X(t,, ) = X,({) is a r.v. denoted by X(t,), as { varies over the sample space S. On the other
hand, for a fixed sample point {; € S, X(t, {;) = X,(2) is a single function of time ¢, called a sample
Sfunction or a realization of the process. The totality of all sample functions is called an ensemble.

Of course if both { and ¢ are fixed, X(t,, {;) is simply a real number. In the following we use the
notation X(t) to represent X(z, {).

B. Description of a Random Process:

In a random process {X(t), t € T}, the index set T is called the parameter set of the random
process. The values assumed by X(t) are called states, and the set of all possible values forms the state
space E of the random process. If the index set T of a random process is discrete, then the process is
called a discrete-parameter (or discrete-time) process. A discrete-parameter process is also called a
random sequence and is denoted by {X,, n=1,2,...}. If T is continuous, then we have a continuous-
parameter (or continuous-time) process. If the state space E of a random process is discrete, then the
process Is called a discrete-state process, often referred to as a chain. In this case, the state space E 1s
often assumed to be {0, 1, 2, ...}. If the state space E is continuous, then we have a continuous-state
process.

A complex random process X (1) is defined by

X() = X,(t)+jX,(1)

where X (1) and X ,(t) are (real) random processes and j = \/_—_1 Throughout this book, all random
processes are real random processes unless specified otherwise.

53 CHARACTERIZATION OF RANDOM PROCESSES
A. Probabilistic Descriptions:

Consider a random process X(t). For a fixed time t,, X(t,) = X, is a r.v, and its cdf Fy(x,; ¢,) is
defined as

Fylxy;t) = P{X(t)) < x,} (5.1)

161
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Fy(x,; t,) is known as the first-order distribution of X(t). Similarly, given ¢, and ¢,, X(¢t,) = X; and
X(t,) = X, represent two r.v.’s. Their joint distribution is known as the second-order distribution of
X(t) and is given by

Fylxy, xa5 £, ) = P{X(t)) < x;, X(t5) < x,} (5.2)
In general, we define the nth-order distribution of X(t) by
Fylxqy ooy Xps by ooy ) = P{X(t) < %y, ..., X(t,) € X,} (5.3
If X(¢) is a discrete-time process, then X(t) is specified by a collection of pmf’s:
Prl(Xis ooy X3 by ooy £y = P{X(t)) = x\, ..., X(t,) = x,,} (5.4)
If X(¢) is a continuous-time process, then X(¢) is specified by a collection of pdf’s:
FaXgy ooy Xi Ly oy ) = a"F"(x‘(’%'c'l"_ xa;‘ 2o ) (5.5)

The complete characterization of X(t) requires knowledge of all the distributions as n — co. Fortu-
nately, often much less is sufficient.
B. Mean, Correlation, and Covariance Functions:

As in the case of r.v.’s, random processes are often described by using statistical averages.
The mean of X(t) 1s defined by

ux(t) = E[X(1)] (5.6)

where X(t) is treated as a random variable for a fixed value of ¢. In general, ux(?) is a function of time,
and it is often called the ensemble average of X(t). A measure of dependence among the r.v.’s of X(t) is
provided by its autocorrelation function, defined by

Ry(t, s) = E[X(1)X(s)] (5.7)

Note that
Rylt, s) = Ryls, 1) (5.8
and Ry(t, t) = E[X*(1)] (5.9)

The autocovariance function of X(t) is defined by
Kx(t, s) = Cov[X(1), X(5)] = E{[X(t) — ux()I[X(s) — px(s)]}
= Rylt, s) — px(Dux(s) (5.10)

It is clear that if the mean of X(t) is zero, then K(t, ) = Ry(t, s). Note that the variance of X(t) is
given by

ax’(t) = Var[X(0)] = E{[X(1) — ux(1*} = Kx(t, 1) (3.11)

If X(¢) is a complex random process, then its autocorrelation function R,(¢, s) and autocovariance
function K(t, s) are defined, respectively, by

Ry(t, 5) = E[X()X*(s)] (5.12)
and Kx(t, s) = E{[X(1) — px()I[X(5) — px(s)T*} (5.13)

where * denotes the complex conjugate.

54 CLASSIFICATION OF RANDOM PROCESSES

If a random process X(t) possesses some special probabilistic structure, we can specify less to
characterize X(t) completely. Some simple random processes are characterized completely by only the
first- and second-order distributions.
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A. Stationary Processes:

A random process {X(t), t € T} is said to be stationary or strict-sense stationary if, for all n and
for every set of time instants (¢, e T, i=1,2,...,n},

FolXyy ooy Xp3 by een b)) = FolXy, oy Xp3 by + T, oy £, + 1) (5.14)

for any 7. Hence, the distribution of a stationary process will be unaffected by a shift in the time
origin, and X(t) and X(t + t) will have the same distributions for any . Thus, for the first-order
distribution,

Fy(x; 1) =Fy(x; t + 1) = Fy(x) (5.15)
and Slx; ) = f(x) (5.16)
Then ux(t) = E[X()] =p (5.17)
Var[X(1)] = ¢* (5.18)

where u and 62 are contants. Similarly, for the second-order distribution,
Fylxy, x5 by, t2) = Fylxy, X35t — £) (5.19)
and Sx(x 1, X35 by, £3) = felxy, X35 83 — 1)) (5.20)

Nonstationary processes are characterized by distributions depending on the points ¢,, t,, ..., t,.

B. Wide-Sense Stationary Processes:

If stationary condition (5.14) of a random process X(¢) does not hold for all n but holds for n < k,
then we say that the process X(t) is stationary to order k. If X(¢) is stationary to order 2, then X(¢f) is
said to be wide-sense stationary (WSS) or weak stationary. If X(t) is a WSS random process, then we
have

1. E[X(¢)] = pu (constant) (5.21)
2. Ry(t, 5) = E[LX(1)X(s)] = Rx(|s —t|) (5.22)

Note that a strict-sense stationary process is also a WSS process, but, in general, the converse is not
true.

C. Independent Processes:

In a random process X(t), if X(t;)fori=1,2,..., n are independent r.v.’s, so that forn = 2,3, ...,

Fy(Xyy ooy Xps tyyoen b)) = lllFx(x,-; L) (5.23)
i=1

then we call X(¢t) an independent random process. Thus, a first-order distribution is sufficient to charac-
terize an independent random process X(t).

D. Processes with Stationary Independent Increments:

A random process {X(t), ¢ = 0) is said to have independent increments if whenever 0 <t; < t, <
< L,

X(0), X(t,) — X(0), X(22) — X(ty), ..., X(t,) — X(t,-1)
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are independent. If {X(¢), ¢ > 0) has independent increments and X(t) — X(s) has the same distribu-
tion as X(¢t + h) — X(s + h) for all s, ¢, h > 0, s < ¢, then the process X(t) is said to have stationary
independent increments.

Let {X(t), t > 0} be a random process with stationary independent increments and assume that
X(0) = 0. Then (Probs, 5.21 and 5.22)

E(X(t)] = u,t (5.24)

where u, = E[X(1)] and
Var[X()] = 7,2t (5.25)

where ¢,2 = Var[X(1)].
From Eq. (5.24), we see that processes with stationary independent increments are nonstationary.

Examples of processes with stationary independent increments are Poisson processes and Wiener
processes, which are discussed in later sections.

E. Markov Processes:
A random process {X(¢), t € T} is said to be a Markov process if
P{X(tn+l) < xn+l |X(tl) = xl’ X(tl) = xl’ ey X(tn) = xn} = P{X(tn+ l) < xn+l IX(tn) = xn} (526)

whenevert; <t, < -+ <t, <t,:,.
A discrete-state Markov process is called a Markov chain. For a discrete-parameter Markov
chain {X,, n > 0} (see Sec. 5.5), we have for every n

P(Xn+1 =le0=i0)Xi=ily--~1Xn=i)= P(Xn+l =.]IXn=l) (527)

Equation (5.26) or Eq. (5.27) is referred to as the Markov property (which is also known as the
memoryless property). This property of a Markov process states that the future state of the process
depends only on the present state and not on the past history. Clearly, any process with independent
increments is a Markov process.

Using the Markov property, the nth-order distribution of a Markov process X(t) can be
expressed as (Prob. 5.25)

Fu(Xq, ooy Xy tya oo b)) = Fx(Xy5 8)) n P{X(t) < X} | X(8- ) = Xi— 1) (5.28)
k=2

Thus, all finite-order distributions of a Markov process can be expressed in terms of the second-order
distributions.

F. Normal Processes:

A random process {X(t), t € T} is said to be a normal (or gaussian) process if for any integer n
and any subset {¢,...,t,} of T, the n r.v’s X(t;), ..., X(t,) are jointly normally distributed in the
sense that their joint characteristic function is given by

¥xin - xup@1s -+ @) = E{exp jlo, X(¢)) + -+ + @, X(¢,)]}
. n 1 n n .
= exp{J Y o EIXW)] -5 Y, Y w0, Cov[X() x(zk)J} (5.29)
i=1 i=1 k=1
where w,, ..., w, are any real numbers (see Probs, 559 and 5.60). Equation (5.29) shows that a
normal process is completely characterized by the second-order distributions. Thus, if a normal
process is wide-sense stationary, then it is also strictly stationary.
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G. Ergodic Processes:

Consider a random process {X(f), —o0 <t < oo} with a typical sample function x(t). The time
average of x(t) is defined as

1 Ti2
{x(t)y = lim ?j x(t) dt (5.30)

T—- ® -T2

Similarly, the time autocorrelation function R,(z) of x(t) is defined as

_ ) 1 Ti2

Ry(t) = (x()x(t + 7)) = lim — J x(£)x(t + T) dt (5.3
T T -T/2

A random process is said to be ergodic if it has the property that the time averages of sample

functions of the process are equal to the corresponding statistical or ensemble averages. The subject

of ergodicity is extremely complicated. However, in most physical applications, it is assumed that

stationary processes are ergodic.

55 DISCRETE-PARAMETER MARKOV CHAINS

In this section we treat a discrete-parameter Markov chain {X,, n > 0} with a discrete state
space E = {0, 1, 2, ...}, where this set may be finite or infinite. If X, =i, then the Markov chain is
said to be in state i at time n (or the nth step). A discrete-parameter Markov chain {X,, n > 0} is
characterized by [Eq. (5.27)]

PXppy=jlXo=1p, X;=1i, ..., Xo=0=PX, 1, =j| X,=1) (5.32)

where P{x,., =j|X, =1} are known as one-step transition probabilities. If P{x,,, =j| X, =i} is
independent of n, then the Markov chain is said to possess stationary transition probabilities and the
process is referred to as a homogeneous Markov chain. Otherwise the process is known as a nonhomo-
geneous Markov chain. Note that the concepts of a Markov chain’s having stationary transition
probabilities and being a stationary random process should not be confused. The Markov process, in
general, is not stationary. We shall consider only homogeneous Markov chains in this section.

A. Transition Probability Matrix:

Let {X,, n> 0} be a homogeneous Markov chain with a discrete infinite state space E = {0, 1,
2,...}. Then

pu=P{Xn+l=]|Xn=l} 120’}20 (533)

regardless of the value of n. A transition probability matrix of { X, n > 0} is defined by

Poo Por Po2
P= [pU] | Pro Pu P2
P20 P21 P22
where the elements satisfy
p,'j_>_0 ZPU=1 l=0, 1, 2, (534)
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In the case where the state space E is finite and equal to {1, 2, ..., m}, P is m x m dimensional; that is,
Puy Pz ' Pim
P=[p)=|P2 Pz 1 P
m1 P.;.z o Pum
m
where p; =0 Y opy=1 i=1,2..,m (5.35)

A square matrix whose elements satisfy Eq. (5.34) or (5.35) is called a Markov matrix or stochastic
matrix.

B. Higher-Order Transition Probabilities—Chapman-Kolmogorov Equation:

Tractability of Markov chain models is based on the fact that the probability distribution of
{X,, n > 0} can be computed by matrix manipulations.

Let P = [p;;] be the transition probability matrix of a Markov chain {X,, n > 0}. Matrix powers
of P are defined by

P?=PP
with the (i, j)th element given by
Pijm = Z Dix Dij
k

Note that when the state space E is infinite, the series above converges, since by Eq. (5.34),
PRIV SEDW I
k k
Similarly, P* = PP? has the (i, j)th element
pi® = ; P Puf?

and in general, P"*! = PP" has the (i, j)th element
PN =3 pupi™ (5.36)
k

Finally, we define P® = I, where [ is the identity matrix.
The n-step transition probabilities for the homogeneous Markov chain {X,, n > 0} are defined
by

PX,=jlXo=1)
Then we can show that (Prob. 5.70)
pij(")=P(Xn=j|X0= i) (5.37)

We compute p;” by taking matrix powers.
The matrix identity

pr+m = prpm n,m>=0
when written in terms of elements

patm =Y p,mp, ™ (5.38)
k



CHAP. 5] RANDOM PROCESSES 167

is known as the Chapman-Kolmogorov equation. It expresses the fact that a transition from i to j in
n + m steps can be achieved by moving from i to an intermediate k in n steps (with probability p,,™),
and then proceeding to j from k in m steps (with probability p, ™). Furthermore, the events “go from i
to k in n steps” and “go from k to j in m steps” are independent. Hence the probability of the
transition from i to j in n + m steps via i, k, j is p™p, ™. Finally, the probability of the transition
from i to j is obtained by summing over the intermediate state k.

C. The Probability Distribution of {X,, n > 0}:
Let p(n) = P(X, = i) and

p(n) = [po(n) pi(n) py(n) ---]

where Y pn) =1
%

Then p0) = P(X, = i) are the initial-state probabilities,

PO) = [po(0) py(0) po(®) ---]
is called the initial-state probability vector, and p(n) is called the state probability vector after n tran-
sitions or the probability distribution of X,,. Now it can be shown that (Prob. 5.29)
p(n) = p(O)P" (5.39)

which indicates that the probability distribution of a homogeneous Markov chain is completely
determined by the one-step transition probability matrix P and the initial-state probability vector

p(0).
D. Classification of States:
1. Accessible States:

State j is said to be accessible from state i if for some n > 0, p;; > 0, and we write i - j. Two
states i and j accessible to each other are said to communicate, and we write i . If all states commu-
nicate with each other, then we say that the Markov chain is irreducible.

2. Recurrent States:

Let T; be the time (or the number of steps) of the first visit to state j after time zero, unless state j

is never visited, in which case we set T; = co. Then T; is a discrete r.v. taking values in {1, 2, ..., co}.
Let
[ =PTi=m|Xo=10)=PXp=Jy Xy #j k=1,2,...,m—1]X, =) (5.40)
and f;#® = O since 7, > 1. Then
S =PT=11Xo=i)=P(X, =j| Xo=10) = p; (5.41)
and S = g pu SO m=2,3,... (5.42)
K+ j

The probability of visiting j in finite time, starting from i, is given by
fi= LS =P <o Xe=1) (5.43)
n=0

Now state j is said to be recurrent if
Ji=PT<x|Xo=)=1 (5.44)
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That is, starting from j, the probability of eventual return to j is one. A recurrent state j is said to be
positive recurrent if

E(T;|Xo=j)< (5.45)
and state j is said to be null recurrent if
ETj|Xo=)) =0 (5.46)
Note that
E(T)| Xo=))= Z nfjj(") (5.47)
n=0

3. Transient States:
State j is said to be transient (or nonrecurrent) if
fi=P(T<cx|Xe=j)<1 (5.48)
In this case there is positive probability of never returning to state j.
4. Periodic and Aperiodic States:
We define the period of state j to be
d(j) = ged{n = 1: p,;* > 0}

where ged stands for greatest common divisor.

If d(j) > 1, then state j is called periodic with period d(j). If d(j) = 1, then state j is called aperiodic.
Note that whenever p;; > 0, j is aperiodic.

5. Absorbing States:

State j is said to be an absorbing state if p;; = 1; that is, once state j is reached, it is never left.

E. Absorption Probabilities:

Consider a Markov chain X(n) = {X,,, n > 0} with finite state space E = {1, 2, ..., N} and tran-
sition probability matrix P. Let A = {1, ..., m} be the set of absorbing states and B={m + 1,..., N}
be a set of nonabsorbing states. Then the transition probability matrix P can be expressed as

1 o - 0 0 0 ]
: SRR : : o5 : I o
P = 0 Coeen 1 0 0 =|:R Q:| (549(1)
pm+l.l ' e pm+l,m pm+l.m+l pm+l.N
L~ Pn. " PNom DPN.m+1 Pn. N _
where 1 is an m x m identity matrix, O is an m x (N — m) zero matrix, and
pm+l.l pm+l,m pm+l,m+l e pm+l.N
R = : 3 : Q= 5 s : (5.49b)
Pn. 1 "t DPN.m PN, m+1 "t DN

Note that the elements of R are the one-step transition probabilities from nonabsorbing to absorbing
states, and the elements of Q are the one-step transition probabilities among the nonabsorbing states.
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Let U = [u,;], where
w; = P{X, = jle A)| X, = k(e B)}

It i1s seen that U is an (N — m) x m matrix and its elements are the absorption probabilities for the
various absorbing states. Then it can be shown that (Prob. 5.40)

U=(—-0Q) 'R=0R (5.50)

The matrix ® = (] — Q)™ ! is known as the fundamental matrix of the Markov chain X(n). Let T,
denote the total time units (or steps) to absorption from state k. Let

T=[Tos1 Tus2 -+ Tyl
Then it can be shown that (Prob. 5.74)
N
ET)= ) ¢u k=m+1,..,N (5.51)

i=m+1

where ¢,; is the (k, i)th element of the fundamental matrix ®.

F. Stationary Distributions:

Let P be the transition probability matrix of a homogeneous Markov chain {X,, n > 0}. If there
exists a probability vector p such that

pP=9p (5.52)
then p is called a stationary distribution for the Markov chain. Equation (5.52) indicates that a sta-
tionary distribution p is a (left) eigenvector of P with eigenvalue 1. Note that any nonzero multiple of p

is also an eigenvector of P. But the stationary distribution f is fixed by being a probability vector;
that is, its components sum to unity.

G. Limiting Distributions:

A Markov chain is called regular if there is a finite positive integer m such that after m time-steps,
every state has a nonzero chance of being occupied, no matter what the initial state, Let A > O
denote that every element a;; of A satisfies the condition a;; > 0. Then, for a regular Markov chain
with transition probability matrix P, there exists an m > 0 such that P™ > 0. For a regular homoge-
neous Markov chain we have the following theorem:

THEOREM 5.5.1

Let {X,, n >0} be a regular homogeneous finite-state Markov chain with transition matrix P.
Then

lim P"= P (5.53)

n= o

where P is a matrix whose rows are identical and equal to the stationary distribution p for the
Markov chain defined by Eq. (5.52).

5.6 POISSON PROCESSES
A. Definitions:

Let ¢ represent a time variable. Suppose an experiment begins at ¢t = 0. Events of a particular
kind occur randomly, the first at T;, the second at T, and so on. The r.v. T; denotes the time at which
the ith event occurs, and the values ¢; of T; (i = 1, 2, ...) are called points of occurrence (Fig. 5-1).
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H—Zl—bk-—-—lz—-»H—Z}—H H——A"—H
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0 f t, {4 Lo t, ‘
Fig. 5-1
Let Z,=T,—-T,_, (5.54)

and T, =0. Then Z, denotes the time between the (n — l)st and the nth events (Fig. 5-1). The
sequence of ordered r.v.s {Z,, n = 1} is sometimes called an interarrival process. If all r.v.’s Z, are
independent and identically distributed, then {Z,, n > 1} is called a renewal process or a recurrent
process. From Eq. (5.54), we see that

7:I=ZI+ZZ++Zn

where 7, denotes the time from the beginning until the occurrence of the nth event. Thus, {T,, » > 0}
is sometimes called an arrival process.

B. Counting Processes:

A random process {X(t), t = 0} is said to be a counting process if X(t) represents the total number
of “events” that have occurred in the interval (0, t). From its definition, we see that for a counting
process, X(t) must satisfy the following conditions:

1. X(¢)=0and X(0)=0.

2. X(r) is integer valued.

3 XE)<X(ifs<t

4. X(t) — X(s) equals the number of events that have occurred on the interval (s, t).

A typical sample function (or realization) of X(t) is shown in Fig. 5-2.

A counting process X(t) is said to possess independent increments if the numbers of events which
occur in disjoint time intervals are independent. A counting process X(t) is said to possess stationary
increments if the number of events in the interval (s + h, t + h)}—that is, X(t + h) — X(s + h)}—has the
same distribution as the number of events in the interval (s, t)—that is, X(¢) — X(s)—for all s <t and
h> 0.

x(1)
4 (r—
:
3 1
2 —_—
1
i —_—

=

Fig. 5-2 A sample function of a counting process.

C. Poisson Processes:

One of the most important types of counting processes is the Poisson process (or Poisson counting
process), which is defined as follows:
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DEFINITION 5.6.1
A counting process X(t) is said to be a Poisson process with rate (or intensity) A(>0) if
1. X(0)=0.
2. X(t) has independent increments.

3. The number of events in any interval of length ¢ is Poisson distributed with mean At; that is, for
alls,t > 0,

P[X(t +5) — X(s) = n] =e_“(i¥ n=01,2... (5.55)

It follows from condition 3 of Def. 5.6.1 that a Poisson process has stationary increments and that
E[X(1)] = it (5.56)
Then by Eq. (2.43) (Sec. 2.7C), we have
Var[X(1)] = At (5.57)

Thus, the expected number of events in the unit interval (0, 1), or any other interval of unit length, is
just A (hence the name of the rate or intensity).
An alternative definition of a Poisson process is given as follows:

DEFINITION 5.6.2
A counting process X(¢) is said to be a Poisson process with rate (or intensity) A(> 0) if

1. X(0)=0.

2. X(¢) has independent and stationary increments.
3. PLX(+AN—X(t)=1]= 1 At + o(Al)

4. PLX(t + At — X(t) = 2] = o(A1)

where o(At) is a function of At which goes to zero faster than does At; that is,

28D _ o (5.58)

Note: Since addition or multiplication by a scalar does not change the property of approaching zero,
even when divided by At, o(At) satisfies useful identities such as o(At) + o(At) = o(At) and
ao(At) = o(At) for all constant a.

It can be shown that Def. 5.6.1 and Def. 5.6.2 are equivalent (Prob. 5.49). Note that from condi-
tions 3 and 4 of Def. 5.6.2, we have (Prob. 5.50)

PLX(t + At) — X(1) = 0] = | — 4 At + o(A?) (5.59)

Equation (5.59) states that the probability that no event occurs in any short interval approaches unity
as the duration of the interval approaches zero. It can be shown that in the Poisson process, the
intervals between successive events are independent and identically distributed exponential r.v.’s
(Prob. 5.53). Thus, we also identify the Poisson process as a renewal process with exponentially
distributed intervals.

The autocorrelation function R,(t, s) and the autocovariance function K,(t, s) of a Poisson
process X(t) with rate A are given by (Prob. 5.52)

Ry(t, s) = A min(t, s) + A%ts (5.60)
K,(t, s) = 4 min(t, s) (5.61)
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5.7 WIENER PROCESSES
Another example of random processes with independent stationary increments is a Wiener process.

DEFINITION 5.7.1

A random process {X(t), t > 0} is called a Wiener process if

1. X(t) has stationary independent increments.

2. Theincrement X(t) — X(s) (¢ > s) is normally distributed.
3. E[X(t)]=0.

4. X(0)=0.

The Wiener process is also known as the Brownian motion process, since it originates as a model for
Brownian motion, the motion of particles suspended in a fluid. From Def. 5.7.1, we can verify that a
Wiener process is a normal process (Prob. 5.61) and

E[X()] =0 (5.62)
Var[ X ()] = o2t (5.63)

where o2 is a parameter of the Wiener process which must be determined from observations. When
% =1, X(t) is called a standard Wiener (or standard Brownian motion) process.

The autocorrelation function Ry(t, s) and the autocovariance function Ky(t,s) of a Wiener
process X(t) are given by (see Prob. 5.23)

Rylt, 8) = Ky(t, 8) = ¢* min(t, s) 5620 (5.64)
DEFINITION 5.7.2
A random process {X(t), t > 0} is called a Wiener process with drift coefficient p if

1. X(t) has stationary independent increments.
2. X(t) is normally distributed with mean ut.
3. X(0=0

From condition 2, the pdf of a standard Wiener process with drift coefficient u is given by

Sxo(X) = e~ (xTuHED (5.65)

< 2nt

Solved Problems

RANDOM PROCESSES

S.1. Let X,, X,, ... be independent Bernoulli r.v’s (Sec. 2.7A) with P(X,=1)=p and P(X,=0) =
g =1 —p for all n. The collection of r.v.’s {X,, n > 1} is a random process, and it is called a
Bernoulli process.

(a) Describe the Bernoulli process.
(b) Construct a typical sample sequence of the Bernoulli process.

(@) The Bernoulli process {X,, n > 1} is a discrete-parameter, discrete-state process. The state space is
E = {0, 1},and the index setis T = {1, 2, ...}.
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(6) A sample sequence of the Bernoulli process can be obtained by tossing a coin consecutively. If a head
appears, we assign 1, and if a tail appears, we assign 0. Thus, for instance,

n 1 2 3 4 5 6 7 8 9 10
Coin tossing H T T H H H T H H T
X, 1 0 0 1 | | 0 1 1 0

The sample sequence {x,} obtained above is plotted in Fig. 5-3.

"

1 [ ] [ ] [ ] [ J [ J [ J
1 ‘ P 1 | 1 ‘ | 1 PN 1 1 >
0 2 4 6 8 10 n

Fig. 5-3 A sample function of a Bernoulli process.

52. Let Z,, Z,, ... be independent identically distributed r.v.s with P(Z,=1)=p and
P(Z,=—-1)=q=1—pforall n Let

X,=Y2z n=12.. (5.66)

i=1

and X, = 0. The collection of r.v.’s {X,, n > 0} is a random process, and it is called the simple

random walk X (n) in one dimension.

(a) Describe the simple random walk X(n).

(b) Construct a typical sample sequence (or realization) of X(n).

(@) The simple random walk X(n) is a discrete-parameter (or time), discrete-state random process. The
state spaceis E={..., —2, —1,0, 1, 2,.. .}, and the index parameter setis T = {0, 1,2,...}.

(5) A sample sequence x(n) of a simple random walk X(»n) can be produced by tossing a coin every second
and letting x(n) increase by unity if a head appears and decrease by unity if a tail appears. Thus, for

instance,
n 0 i 2 3 4 5 6 7 8 9 10
Coin tossing H T T H H H T H H T
x(n) 0 1 0 -1 0 1 2 1 2 3 2

The sample sequence x(n) obtained above is plotted in Fig. 5-4. The simple random walk X{(n) specified

in this problem is said to be unrestricted because there are no bounds on the possible values of X, .

The simple random walk process is often used in the following primitive gambling model:
Toss a coin. If a head appears, you win one dollar; if a tail appears, you lose one dollar (see
Prob. 5.38).

53. Let {X,, n>0} be a simple random walk of Prob. 5.2. Now let the random process X(t) be
defined by

X=X n<t<n+1

(@) Describe X(t).
(b) Construct a typical sample function of X(¢).

(@) The random process X(¢) is a continuous-parameter (or time), discrete-state random process. The state
spaceis E = {..., —2, —1,0, 1, 2,...}, and the index parameter set is T = {t, t > 0}.

(b) A sample function x(t) of X(t) corresponding to Fig. 5-4 is shown in Fig. 5-5.
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Fig. 54 A sample function of a random walk.
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Consider a random process X(t) defined by
X(t) =Y cos wt t>0
where w is a constant and Y is a uniform r.v. over (0, 1).
(a) Describe X(t).
(b) Sketch a few typical sample functions of X(¢).

(@) The random process X(t) is a continuous-parameter (or time), continuous-state random process. The
state space is E = {x: —1 < x < 1} and the index parameter setis T = {r: 1 > 0}.

(b Three sample functions of X(t) are sketched in Fig. 5-6.

Consider patients coming to a doctor’s office at random points in time. Let X, denote the time
(in hours) that the nth patient has to wait in the office before being admitted to see the doctor.

(a) Describe the random process X(n) = {X,,n > 1}.

(b) Construct a typical sample function of X(n).

(a) The random process X(n) is a discrete-parameter, continuous-state random process. The state space is
E = {x:x 2 0), and the index parameter setis T = {1,2,...}.

(b) A sample function x(n) of X(n) is shown in Fig. 5-7.

CHARACTERIZATION OF RANDOM PROCESSES

5.6.

Consider the Bernoulli process of Prob. 5.1. Determine the probability of occurrence of the
sample sequence obtained in part (b) of Prob. 5.1,
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Fig. 5-6

Since X,’s are independent, we have
PXy=x,, X;=x3, ..., X, =x,) = P(X, =x)P(X; =x;) -+ P(X,=x,) (5.67)
Thus, for the sample sequence of Fig. 5-3,

P(X1=]‘X2=0’X3=0’X4=1’X5=1'X6=l’X7=0‘X8=1yX9=1,X10=0)=p6q‘

x(n)

ot L]
2 4 6 8 10 12 n
Fig. 5-7
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Consider the random process X(t) of Prob. 5.4. Determine the pdf’s of X(t) at t = 0, n/dw, n/2w,
/.

Fort =0, X(0) =Y cos 0 = Y. Thus,
1 0<x<t

fxw)(x) = {

0 otherwise
For t = n/dw, X(n/dw) = Y cos /4 = 1//2 Y. Thus,

20 1//2
fx(mm)(x) = {V =X /\/—

0 otherwise

For t = n/2w, X(n/2w) = Y cos n/2 = 0, that is, X(n/2w) = O irrespective of the value of Y. Thus, the
pmf of X(w/2w) is

wazm)(x) =PX=0=1
For ¢t = njw, X(n/w) = Y cos n = — Y. Thus,

| —-l<x<0

fxwm)(x) = {0

otherwise

Derive the first-order probability distribution of the simple random walk X(n) of Prob. 5.2.

The first-order probability distribution of the simple random walk X(n) is given by
pk)y = P(X,=k)

where k is an integer. Note that P(X, = 0) = 1. We note that p,(k) = 0 if n < | k| because the simple random
walk cannot get to level k in less than | k| steps. Thus, n > | k|.

Let N," and N,~ be the r.v.’s denoting the numbers of + Is and — Is, respectively, in the first n steps.
Then

n=N,* +N,~ (5.68)
X,=N," =N,” (5.69)

Adding Egs. (5.68) and (5.69), we get
N,' =%n+X,) (5.70)

Thus, X, = k if and only if N,* = 4(n + k). From Eq. (5.70), we note that 2N,* = n+ X, must be even.
Thus, X, must be even if n is even, and X, must be odd if n is odd. We note that N,* is a binomial r.v. with
parameters (n, p). Thus, by Eq. (2.36), we obtain

P = ((n +nk)/z>”'"““q‘"’*"2 g=1-p (5.71)

where n > | k|, and » and k are either both even or both odd.

Consider the simple random walk X(n) of Prob. 5.2.

(@) Find the probability that X(n) = —2 after four steps.
(b} Verily the result of part (a) by enumerating all possible sample sequences that lead to the
value X(n) = —2 after four steps.

(@) Setting k = —2and n = 4 in Eq. (5.71), we obtain

4 R) R)
PXy==2)=p,(-2) = e =4pq g=1l—-p
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Fig. 5-8
(b) All possible sample functions that lead to the value X, = —2 after 4 steps are shown in Fig. 5-8. For
each sample sequence, P(X, = —2) = pq>. There are only four sample functions that lead to the value
X, = -2 after four steps. Thus P(X, = —2) = 4pg>.
5.10 Find the mean and variance of the simple random walk X(») of Prob. 5.2.
From Eq. (5.66), we have
X, =X,_,+ 2, n=12... (5.72)
and X, =0and Z,(n =1, 2,...) are independent and identically distributed (iid) r.v.'s with
PZ,=+D)=p PZ,=-)=q=1-p
From Eq. (5.72), we observe that
X =X+ Zl =Z,
XzfX,-+-Zz=Zl+Z2 (5.73)
X, =2, +Z,+ - +2Z,
Then, because the Z, are iid r.v.’s and X, = 0, by Eqs. (4.1/08) and (4.1{2), we have
E(X,) = E( ) zk) = nE(Z,)
k=1
Var(X,) = Var( Y Zk) =n Var(Z,)
k=1
Now EZ)=MWp+(-g=p—q (5.74)
EZYH=(1)p+(-Dg=p+q=1 (5.75)
Thus Var(Z,) = E(Z,*) - [E(Z)]* = L —(p - @)* = 4pq (5.76)
Hence, E(X,)=n(p—4q) q=1-p (5.77)
Var(X,) = 4npg q=1—-p (5.78)
Note that if p = q = 4, then
EX)=0 (5.79)
Var(X,)=n (5.80)

S.a11.

Find the autocorrelation function Ry(n, m) of the simple random walk X(n) of Prob. 5.2.
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From Eq. (5.73), we can express X, as

where Z, = X, =0and Z, (i > 1) are iid r.v.’s with
PZ,=+1)=p PZ,=—-1)=q=1-p
By Eq. (5.7),
Ry(n, m) = E[X(mX(m)] = E(X, X )
Then by Eq. (5.81),

min(n, m)

Rimm= Y YEZZ)= Y EZ)+ Y, T EZ)EZ)

i=0 k=0
itk

i=0 k=0

Using Egs. (5.74) and (5.75), we obtain
Ry(n, m) = min(n, m) + [nm — min(n, m)}(p — q)*

m+(mm—mip—qg? m<n

Ry(n, m) =
or xn, m) {n + (nm — n)p — q)* n<m
Note that if p = g = 4, then

Ry(n, m) = min(n, m) n,m>0

Consider the random process X(t) of Prob. 5.4; that is,
X(t)=Y cos wt t>0
where w is a constant and Y is a uniform r.v. over (0, 1).
(@ Find E[X()]).
(b) Find the autocorrelation function R,(¢, s) of X(¢).
(¢) Find the autocovariance function K(t, s) of X(¢).
(a) From Egs. (2.46) and (2.91), we have E(Y) = 4 and E(Y?) = §. Thus
E{X(1)] = E(Y cos wt) = E(Y) cos wt = % cos wt
(b) By Eq.(5.7), we have
Ry(t, s) = E[X()X(s)] = E(Y? cos wt cos ws)
= E(Y?) cos wt cos ws = ,} CcOSs wt cOs ws
(¢) By Eq.(5.10), we have

Ky(t, 5) = Rylt, s) — E[X()]E[X(5)]
= § cos wt Cos ws — 3 €OSs Wt cOS ws
= 1 cos wt cos ws

[CHAP 5

(5.81)

(5.82)

(5.83)

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)

Consider a discrete-parameter random process X(n) = {X,, n > 1} where the X,’s are iid r.v.’s

with common cdf F(x), mean g, and variance ¢2.

(@) Find the joint cdf of X(n).

(b) Find the mean of X(n).

(¢) Find the autocorrelation function Ry(n, m) of X(n).
(d) Find the autocovariance function K y(n, m) of X(n).
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(@) Since the X,’s are iid r.v.’s with common cdf F,(x), the joint cdf of X(n) is given by
Fy(xy, ooy xp) = [ Fylx) = [Fy(x)]" (5.89)
i=1

(b) The mean of X(n)is
ux(n)=EX,)=u for all n (5.90)
(¢} Ifn s m, byEgs.(5.7)and (5.90),
Ry(n, m) = E(X, X,) = E(X,)E(X,,) = u*
If n = m, then by Eq. (2.37),
E(X,?) = Var(X,) + [E(X)]* = o® + 2

2

u n#m
Hence, Ry(n, my= {02 b nem (5.91)
(d) By Eq.(5.10),
0 *
Kx(n, m) = Ry(n, m) — py(npy(m) = { 2 e (5.92)
a n=m

CLASSIFICATION OF RANDOM PROCESSES

5.14. Show that a random process which is stationary to order n is also stationary to all orders lower
than n.

Assume that Eq. (5.14) holds for some particular n; that is,
P{X(t)<x, ..., X(@t)<x} =P{X(t, + 1)< x,, ..., X(1, + ©) < x,}
for any t. Letting x, — oo, we have [see Eq. (3.63)]
P{X(t)<xy, oo, X(ty_y) <%, ) =P{X(ty + D < xpy oo, X(tyoy + 1) < x4}

and the process is stationary to order n — 1. Continuing the same procedure, we see that the process is
stationary to all orders lower than n.

5.15. Show that if {X(t), t € T} is a strict-sense stationary random process, then it is also WSS.

Since X(t) is strict-sense stationary, the first- and second-order distributions are invariant through time
translation for all 7 € T. Then we have

i) = ELX()] = E[X(t + 0] = ux(t + 2)
and hence the mean function pi{t) must be constant; that is,
E[X(t)] = u (constant)
Similarly, we have
EfX(s)X(0)] = E[X(s + 0)X(t + 7)]

so that the autocorrelation function would depend on the time points s and t only through the difference
|t — s|. Thus, X(t) is WSS.

5.6. Let {X,, n > 0} be a sequence of iid r.v.’s with mean 0 and variance 1. Show that {X,, n > 0} is
a WSS process.

By Eq. (5.90),
E(X,) = 0 (constant) for all n
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and by Eq. (5.91),
E(Xn)E(Xer)=O k¢0

Rx<n,n+k):E<x,xn+o={E(X e vatae | koo

which depends only on k. Thus, {X,} is a WSS process.

5.17. Show that if a random process X(¢) is WSS, then it must also be covariance stationary.

If X(t) is WSS, then

E[X(6)] = u (constant) for all 1
Ry(t, t + 1)) = Ryl7) for all ¢
Now Kylt, t + 1) = Cov[X()X(t + )] = Rylt, t + 1) — E[X(O)]E[X(t + )]
= Ry(t) — 4*

which indicates that K,{t, t + t) depends only on z; thus, X(t) is covariance stationary.

5.18. Consider a random process X(¢) defined by
X(ty=U cos wt + V sin ot —o <t<w (5.93)
where w is constant and U and V are r.v.’s.
{a) Show that the condition
EUYy=EYV)=0 (5.94)
is necessary for X(f) to be stationary.
(b) Show that X(t)is WSS if and only if U and V are uncorrelated with equal variance; that is,
EUV)=0 E(UY = E(V? = ¢* (5.95)
(a) Now
pxlty = E[X(0] = E(U) cos wt + E(V) sin wt

must be independent of t for X(t) to be stationary. This is possible only if u,(t) =0, that is,
EWV)= E(V)=0.
b)Y If X(r) is WSS, then

i1

ELX*(0) = E[x2<%)] = Ryx(0) = 0,

But X(0) = U and X(n/2w) = V; thus
E(U?) = E(V?) = 04% = ¢?
Using the above result, we obtain

Rylt, t + 1) = E[X(OX(t + 7]
= E{{U cos wt + V sin wt)[U cos w(t + 1) + V sin w(t + 1)]}
=62 cos wt + E(UV) sinQwt + wr) (5.96)

which will be a function of © only if E(UV) = 0. Conversely, if E(UV) =0 and E(U?) = E(V?) = ¢?,
then from the result of part (a) and Eq. (5.96), we have

px(t) =0
Rylt, t + 1) = 62 cos wr = Ry(t)

Hence, X(t) 1s WSS,
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5.19.

5.20.

5.21.

Consider a random process X(t) defined by
X(t)=Ucost+ Vsint -0 <t < W

where U and V are independent r.v.’s, each of which assumes the values —2 and 1 with the
probabilities 4 and %, respectively. Show that X(r) is WSS but not strict-sense stationary.

We have

EU)=EV)=4-2+31)=0
EU%) =E(VY) =§-2"+3(1) =2

Since U and V are independent,
EWUV)=EUEWV)=0
Thus, by the results of Prob. 5.18, X(¢) is WSS. To see if X(¢) is strict-sense stationary, we consider E[X3(¢)].

E[X3(t)] = E[(U cos t + V sin ¢)*]
= E(U% cos® t + 3E(U*V) cos? t sin t + 3E(UV?) cos t sin? t + E(V3) sin® t

Now EWU) =EV)=4%-2*+3(1)}=-2
E(U*V) = E(U*E(V)=0 E(UVY = E(U)E(V¥ =0
Thus E[X31)] = —2(cos® t + sin3 1)

which is a function of t. From Eq. (5.16), we see that all the moments of a strict-sense stationary process
must be independent of time. Thus X(t) is not strict-sense stationary.

Consider a random process X(t) defined by
X(1) = A cos(wt + ©O) —W<t<®
where A and @ are constants and @ is a uniform r.v. over ( — =, n). Show that X(t) is WSS.
From Eq. (2.44), we have

! n<B<n
fo®) =92n
0 otherwise
A n
Then py(t) = 7 '[ cos(wt + 0) d6 =0 (5.97)

Setting s = t + 7 in Eq. (5.7), we have

AZ n
Ryx(t, t + 1) = E '[ cos(wt + 8) cos[w(t + 1) + 6)] dé

AZ n 1
w2 [cos wt + cos(Rwt + 28 + wr)] df
T J-n

AZ

=7 cos wt (5.98)

Since the mean of X(f) is a constant and the autocorrelation of X(t) is a function of time difference only, we
conclude that X(t) is WSS.

Let {X(r), t = 0} be a random process with stationary independent increments, and assume that
X{(0) = 0. Show that

E[X(@)] = pyt (5.99)
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where u, = E[X(1)].

Let f(6) = ELX(1)] = E[X(1) — X(0)]

Then, for any ¢ and s and using Eq. (4.108) and the property of the stationary independent increments, we
have

St + s)= E[X(t + 5) — X(0)]
= E[X(t + 5) — X(s) + X(s) — X(0)]
= E[X(t + s) — X(s)] + E[X(s) — X(0)]
= E[X() — X(0)] + E[X(s) — X(0)]
=f(B) +/09) (5.100)

The only solution to the above functional equation is f(t) = ct, where ¢ is a constant. Since ¢ = f(1) =
E[X(1)], we obtain

E[X(1)] = pt s = E[X(1)]

Let {X(2), t > 0} be a random process with stationary independent increments, and assume that
X(0) = 0. Show that

(@) Var[X(0)] = 0,2 (5.101)
(b) Var[X(t) — X(s)] = 0,%(t — 5) t>s (5.102)
where 6% = Var[X(1)].

(@) Let g(t) = Var[X(t)] = Var[X(t) — X(0)]

Then, for any ¢ and s and using Eq. (4.112) and the property of the stationary independent increments,
we get

g(t + s) = Var[X(¢t + 5) — X(0)]
= Var[X(t + 5) — X(s) + X(s) — X(0)]
= Var(X(t + 5) — X(s)] + Var[X(s) — X(0)]
= Var(X(t) — X(0)] + Var[X(s) — X(0)]
= g(1) + g(s)

which is the same functional equation as Eq. (5.100). Thus, g(t) = kt, where k is a constant. Since
k = g(1) = Var[X(1)], we obtain

Var[X(1)] = a,%t a,% = Var[X(1)]
(b) Lett>s. Then

Var[X(1)] = Var[X(t) — X(s) + X(s) — X(0)]
= Var[X(t) — X(s)] + Var[X(s) — X(0)]
= Var[X(t) — X(s)] + Var[X(s)]

Thus, using Eq. (5./01), we obtain
Var[X(t) — X(s)] = Var[X()] — Var[X(s)] = a,%(t — 5)

Let {X(1), t > 0} be a random process with stationary independent increments, and assume that
X(0) = 0. Show that

Cov[X(2), X(s)] = Kx(t, ) = o, min(t, s) (5.103)
where 6,2 = Var[X(1)].
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5.24,

5.25.

By definition (2.28),
Var[X(1) — X(s)] = E({X (1) ~ X(s) ~ E[X(t) = X(5)]}?)
= E[({X(1) — E[X(0)]} — {X(s) — E[X(5)]})*]
= E({X(1) — E[X()]}* — 2{X(1) — E[X()]}{ X(s) — E[X(9)]} + {X(s) — E[X(5)]}?)
= Var[X(t)] — 2 Cov[X(r), X(s)] + Var[ X(s)]
Thus, Cov[X(1), X(s)] = 4{Var[X(1)] + Var[X(s)] — Var[X(¢) — X(s)]}
Using Eqs. (5.101) and (5.102), we obtain

o [t+s—(t—s)] =0 (>
o t+s—(s—n]l=a,2t s>t

K, s) = {

or K1, s) = ¢, min(t, s)

where 6,2 = Var[X(1)].

(@) Show that a simple random walk X(n) of Prob. 5.2 is a Markov chain.
(b) Find its one-step transition probabilities.
(@) From Eq.(5.73)(Prob. 5.10), X(n) = {X,, n = 0} can be expressed as

Xo=0 X,=3Z n>1

where Z, (n = 1, 2,...) are iid r.v.’s with
P(Z,=k)=aq, k=1, —1) and a, =p a_,=q=1—p
Then X(n) = {X,, n = 0} is a Markov chain, since

PXpyy =i |1 Xo=0X,=1i),..., X, =1)
=PZ,  +in=0p | Xe=0,X=1i,,...,X,=1)
=PZ, | =ipsy— o) =4 i = PX,, =iy | X, =10)
since Z, ., is independent of X, Xy, ..., X,.
(b) The one-step transition probabilities are given by

p k=j+1
pp=PX,=klX, ,=j)=4q9=1-p k=j-1
0 otherwise

which do not depend on n. Thus, a simple random walk X(n) is a homogeneous Markov chain.

Show that for a Markov process X(t), the second-order distribution is sufficient to characterize
X(@).
Let X(t) be a Markov process with the nth-order distribution
FolXgy Xasooey Xp3 by by ooy 1) = P{X(1) < x|, X(13) < x5, ..., X(1,) < x,
Then, using the Markov property (5.26), we have

FylXpy Xgu ooy X5 Ly, by ooy 1) = PLX(2) < x| X()) € Xy, X(85) € x5, 00, X(t,2 1) € %24}
x P{X(t)) < xy, X(t) < X35 ey X(ty_ 1) < Xp_ 1}
= P{X(tn) < xnlx(ln—l) S xn—l}FX(xli ey xn—l; tl’ [RRE] tn-l)

Applying the above relation repeatedly for lower-order distribution, we can write

Fy(X(y Xay ooy Xps by B2, 000, B) = Fylxy, ty) H P{X(6) < x| X(1, ) < X421} (5.104)
k=2
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Hence, all finite-order distributions of a Markov process can be completely determined by the second-order
distribution.

Show that if a normal process is WSS, then it is also strict-sense stationary.

By Eq. (5.29), a normal random process X(t) is completely characterized by the specification of the
mean E[X(:)] and the covariance function K(t, s) of the process. Suppose that X(¢) is WSS. Then, by Egs.
(5.21) and (5.22), Eq. (5.29) becomes

1
Y xin - x@l@1s - or @) = exp{j Y po, — = Z Z Kyt — t o, wk} (5.105)
i=1 k=1
Now we translate all of the time nstants ¢, ¢,, ..., t, by the same amount z. The joint characteristic
function of the new r.v.'s X(¢; + 7),i =1, 2, ..., n, is then

Wiy 0 Xitp+ @15 -2 @) = exp{j Y uw, — Kyt + 7 — (e + 1)]o; wk}

i=1 2 i=1 k=1
n 1 n
= exP{j > Hw; — 5 > Kx(‘ ~ tJw; wk}
i=1 i=1 k=1
= ‘*IX(ll)mX(v,.)(wp AR wn) (5106)

which indicates that the joint characteristic function (and hence the corresponding joint pdf) is unaffected by
a shift in the time origin. Since this result holds for any n and any set of time instants(¢; € T, i=1,2,..., n),
it follows that if a normal process is WSS, then it 1s also strict-sense stationary.

Let {X(t), —oc <t < o} be a zero-mean, stationary, normal process with the autocorrelation
function

[7]
-2 T<i<T
Ry(1) = T == (5.107)

0 otherwise

Let {X(t,),i=1,2,..., n} be a sequence of n samples of the process taken at the time instants

T
t,=i7 i=12...,n
Find the mean and the variance of the sample mean
] n
i, = 0 z X(t) (5.108)
Since X(¢) is zero-mean and stationary, we have
E[X(¢)]=0
T

and Ry(t;, t) = E[X(£)X(t)] = Ryl — t) = Rx|:(k — i) E:|
Thus E(g,) = |: Z X(t )} % S E[X(t)] =0 (5.109)

= i=1
and Var(a,) = E{[ft, — E(i,)]*} = E(f,%)

- E{B izix«g][% élxm)]}

1 s n 1 L n
5% Sexox-5 5 Srle-01]

i=1 k=1 =1 k=
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By Eq. (5.107),

t k=i
Ryllk =0T/21 =43  |k~il=1
0 |k—il>2
Thus Var(i,) = % [n(1) + 2(n — 1)) + 0] = ;’5 @ -1 (5.110)

DISCRETE-PARAMETER MARKOV CHAINS

5.28. Show that if P is a Markov matrix, then P" is also a Markov matrix for any positive integer n.

Puy P2 0 Pim
Let P={pl= I:’nz p:" P?m
Pmi Pm2 pmm

Piy Pr2 Pim | ! 1

P12 P22 Pam || ¢ _ 1

Py P,;.z P |1 1
or Pa=a (5.111)
where a’ =1 1 .- 1]

Premultiplying both sides of Eq. (5.711) by P, we obtain
Pla=Pa=a
which indicates that P? is also a Markov matrix. Repeated premultiplication by P yields
Pla=a

which shows that P” is also a Markov matrix,

5.29. Verify Eq. (5.39); that is,
p(n) = p(O)P"

We verify Eq. (5.39) by induction. If the state of X, is i, state X, will be j only if a transition is made
from i to j. The events {X, =i, i = 1, 2, ...} are mutually exclusive, and one of them must occur. Hence, by
the law of total probability [Eq. (1.44)],

P(X, =j)=ZP(Xo=i)P(X1 =j1Xo=1)
or pAl) = Zp,{O)p,.j j=12 .. (5.112)

In terms of vectors and matrices, Eq. (5.112) can be expressed as

p(1) = p(O)P (5.113)
Thus, Eq. (5.39) is true for n = 1. Assume now that Eq. (5.39) is true for n = k; that is,

p(k) = p(O)P*
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Again, by the law of total probability,
P(Xyiy=)) =) PXy = DP(Xyy, = jI Xy =1)
or plk+1)= z pllp;,  J=12 .. (5.114)

In terms of vectors and matrices, Eq. (5.114) can be expressed as
plk + 1) = p(k)P = p(0)P*P = p(0)P**! (5.115)
which indicates that Eq. (5.39) is true for k + 1. Hence, we conclude that Eq. (5.39) is true foralln > 1.

5.30. Consider a two-state Markov chain with the transition probability matrix
1—a a
P =] 0 .
[ b I—b] <a<l,0<b<1 (5.116)

(a) Show that the n-step transition probability matrix P" is given by

.1 b a J a —a
et Teaman] o ) i1

(b) Find P" when n — 0.

(a) From matrix analysis, the characteristic equation of P is

A—(1—a) —a
—b A—(1-0)

=A~1A—-14+a+b)=0

)=l = P|=

Thus, the eigenvalues of P are 4, =1 and 1, =1 —a — b. Then, using the spectral decomposition
method, P" can be expressed as

P =A"E, + A,"E, (5.118)

where E, and E, are constituent matrices of P, given by

E, [P"'lzlj E,=

[P —A4d] (5.119)

='l)_'lz 'lz_'ll

Substituting A, = 1 and 4, = 1 — a — b in the above expressions, we obtain

| b a 1 a —a
E, = E,=——
! a+b[b a] : a+b[—b b]

Thus, by Eq. (5.118), we obtain
P"=E, +(1 —a—byE,

—L{[b “] 1 b ¢ "“} 5.120
“aap e o|TETET o, (5.120)

) f0<a<l,0<b<lthenO<l—a<land|l—a—-b|<]l Solim,, (1 —a—5b)"=0and

lim P" = —— [b “] (5.121)

ne a+bib a

Note that a limiting matrix exists and has the same rows (see Prob. 5.47).

5.31. An example of a two-state Markov chain is provided by a communication network consisting of
the sequence (or cascade) of stages of binary communication channels shown in Fig. 5-9. Here X,
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X =0 | —a X =0

L 4 —> - -

=1 1-56 X |

nol "

Fig. 5-9 Binary communication network.

denotes the digit leaving the nth stage of the channel and X, denotes the digit entering the first
stage. The transition probability matrix of this communication network is often called the
channel matrix and is given by Eq. (5.116); that is,

l—a a
P—[ b l—b:l 0D<a<l,0<b<l

Assume that a = 0.1 and b = 0.2, and the initial distribution is P(X, = 0) = P(X, = 1) =0.5.

(a) Find the distribution of X,.
(b) Find the distribution of X, when n — 0.

(a) The channel matrix of the communication network is
9 0.
P 0.9 0.1
02 038
and the initial distribution is

p(0) =[0.5 0.5]

By Eq. (5.39), the distribution of X, is given by

09 017
pn) = pO)P" = [0.5 0.5][0.2 0.8]

Letting a = 0.1 and b = 0.2 in Eq. (5.117), we get

09 01 1 02 0.1 +(0.7)" 0.1 —01
02 08 _0 02 01 03 | -02 02
07)" 1 — (0.7
3
2~ 2(0 w1+ 207
3
Thus, the distribution of X, is
+07" 1—=(07)
3
) =105 05N _hoap 14207y
3 3

_|2_©n 1 o
"[3 6 3+6:|
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5.33.

5.34.
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that is,
2 07y 1 07y
PX,=0)==— d PX,=1)==
(X, =0) 3 5 an (Xp=1) 3t 7%

(b) Since lim,, ,(0.7)" = 0, the distribution of X, when n — oo is

PX,=0=% and PX_,=1)=4%

Verify the transitivity property of the Markov chain; that is, if i » j and j — &, then i - &.

By definition, the relations i — j and j — k imply that there exist integers n and m such that p;}” > 0
and p,™ > 0. Then, by the Chapman-Kolmogorov equation (5.38), we have

pET™ =3 p."pu™ 2 pi"put™ > 0 (5.122)

Therefore i — k.

Verify Eq. (5.42).

If the Markov chain {X,} goes from state i to state j in m steps, the first step must take the chain from i
to some state k, where k # j. Now after that first step to k, we have m — 1 steps left, and the chain must get
to state j, from state k, on the last of those steps. That is, the first visit to state j must occur on the (m — 1)st
step, starting now in state k. Thus we must have

fl‘j"")=zpik L’;"_“ m=213 ..

k#j

Show that in a finite-state Markov chain, not all states can be transient.

Suppose that the states are 0, 1, ..., m, and suppose that they are all transient. Then by definition, after
a finite amount of time (say 7y,), state 0 will never be visited; after a finite amount of time (say 7)), state 1
will never be visited; and so on. Thus, after a finite time 7 = max{T,, T,, ..., T,,}, no state will be visited.
But as the process must be in some state after time T, we have a contradiction. Thus, we conclude that not
all states can be transient and at least one of the states must be recurrent.

A state transition diagram of a finite-state Markov chain is a line diagram with a vertex corre-
sponding to each state and a directed line between two vertices i and j if p;; > 0. In such a
diagram, if one can move from i and j by a path following the arrows, then i — j. The diagram is
useful to determine whether a finite-state Markov chain is irreducible or not, or to check for
periodicities. Draw the state transition diagrams and classify the states of the Markov chains
with the following transition probability matrices:

0 05 05 (1’ g 0(')5 0(')5
(@ P=|05 0 05 (b) P=
05 05 0 0 1 00
- 01 0 0
[03 04 0 0 03
0 1 0 0 0
¢ P=0 0 0 06 04
0 0 0 0 1
o 0 1 0 0
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{a) (h) {c)

Fig. 5-10 State transition diagram.

(@) The state transition diagram of the Markov chain with P of part (a) is shown in Fig. 5-10(a). From Fig.
5-10(a), it is seen that the Markov chain is irreducible and aperiodic. For instance, one can get back to
state 0 in two steps by going from 0 to | to 0. However, one can also get back to state 0 in three steps
by going from 0 to 1 to 2 to 0. Hence 0 is aperiodic. Similarly, we can see that states 1 and 2 are also
aperiodic.

(b) The state transition diagram of the Markov chain with P of part (b) is shown in Fig. 5-10(h). From Fig.
5-10(b), it is seen that the Markov chain is irreducible and periodic with period 3.

(c) The state transition diagram of the Markov chain with P of part (¢) is shown in Fig. 5-10(c). From Fig.
5-10(c), it is seen that the Markov chain is not irreducible, since states 0 and 4 do not communicate,
and state 1 is absorbing.

5.36. Consider a Markov chain with state space {0, 1} and transition probability matrix

S

Np—
o

(a) Show that state 0 is recurrent.
(b) Show that state 1 is transient.
(@) By Egs. (5.41) and (5.42), we have
So0" =Poo =1 S =P0o=1

foom = Do flo(” =(0)3 =0
foo™ =0 nx>2

Then, by Eqgs. (5.43),
Joo=PTh<w|X,=0)= Zfoo(")"—l‘*'()‘*()‘*"”:l
n=0

Thus, by definition (5.44), state O is recurrent.
(b) Similarly, we have
fum=Pu=‘} forM=ppy =0
fu(z) =Pio fonm = (5')0 =0
Su"=0 n>2
and f11=P(T1<°0|X0=1)=qu(")=‘ll+0+0+"'='%<l
n=0

Thus, by definition (5.48), state 1 is transient.
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5.37. Consider a Markov chain with state space {0, 1, 2} and transition probability matrix

0 % 3
P=j1 0 O
1 0 0
Show that state 0 is periodic with period 2.
The characteristic equation of P is given by
A =3 -3
A=A —-P|=| -1 A 0|=4*-21=0
—1 0 A

Thus, by the Cayley-Hamilton theorem (in matrix analysis), we have P* = P. Thus, forn > 1,

0 3 $ll0 3+ 3% 1 0 0
pem—pr=|1 0 ofl1 o of=|o 4 3
1 o oLt o of o & 3
[0 4 4]
Pe*v_p=|1 0 0
[1 0 o]
Therefore d(0) = ged{n = 1: poo'™ > 0} = ged{2, 5,6,...} =2

Thus, state 0 is periodic with period 2.
Note that the state transition diagram corresponding to the given P is shown in Fig. 5-11. From Fig,

5-11, it is clear that state 0 is periodic with period 2.

0=
ol —

Fig. 5-11

5.38. Let two gamblers, A and B, initially have k dollars and m dollars, respectively. Suppose that at
each round of their game, A wins one dollar from B with probability p and loses one dollar to B
with probability g = 1 — p. Assume that A and B play until one of them has no money left. (This
is known as the Gambler's Ruin problem.) Let X, be A’s capital after round n, where n =0, |,

2,...and X, = k.

(@) Show that X(n) = {X,, n > 0} is a Markov chain with absorbing states.
(b) Find its transition probability matrix P.
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5.39.

(@) The total capital of the two players at all times is
k+m=N

Let Z, (n = 1) be independent r.v.’s with P(Z,=1)=p and P(Z,= —1)=¢qg=1—p for all n.
Then

X,=X,_,+Z, n=12..

and X, = k. The game ends when X, = 0 or X, = N. Thus, by Probs. 5.2 and 5.24, X(n) = {X,, n > 0}
is a Markov chain with state space E = {0, 1, 2, ..., N}, where states 0 and N are absorbing states. The
Markov chain X(n) is also known as a simple random walk with absorbing barriers.

(b) Since

Piisa=PX,, =i+ 1{X,=0)=p

Pii-a=PX,.,=i—-1|{X,=0=¢q
Pii=PX,i =ilX,=0)=0 i#0 N
Po.o=PX,.1 =0]|X,=0)=1
pxn=PX,., =NIX,=N)=1

the transition probability matrix P is

10 0 07]
g 0 p 0 v o o0
0 g 0 p -+ == --- 0
p=|: : (5.123)
0 0 0 0 a 0 »p
00 0 0 -~ 0 0 1

For example, when p = g = s and N = 4,

1 0 0 0 0
10 1 0 0
P=|0 4 0 L o
0 0 L 0 4
00 0 0 |

Consider a homogeneous Markov chain X(n) = {X,, n > 0} with a finite state space E = {0, I,
..., N}, of which 4 = {0, 1, ..., m}, m = 1, is a sct of absorbing states and B={m + 1,..., N} is
a set of nonabsorbing states. It is assumed that at least one of the absorbing states in A is
accessible from any nonabsorbing states in B. Show that absorption of X(n) in one or another of
the absorbing states is certain.

If X, € A4, then there is nothing to prove, since X(n} is already absorbed. Let X, € B. By assumption,
there is at least one state in 4 which is accessible from any state in B. Now assume that state k € A4 is
accessible from j € B. Let n;, (< cc) be the smallest number n such that p,k‘"’ > 0. For a given state j, let n;
be the largest of n;, as k varies and n’ be the largest of n; as j varies. After n’ steps, no matter what the initial
state of X(n), there is a probability p > 0 that X(n) is in an absorbing state. Therefore

P{X”'GB}=1—17
and 0 < 1 — p < 1. It follows by homogeneity and the Markov property that
P{Xysne B} =(1 —p} k=12
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Now since lim, _, (1 — p)* = 0, we have

lim P{X,e B} =0 or limP{X,e B=A} =1

a=uw n= o

which shows that absorption of X(n) in one or another of the absorption states is certain.

Verify Eq. (5.50).

Let X(n) = {X,, n > 0} be a homogeneous Markov chain with a finite state space E = {0, 1, ..., N}, of
which 4 = {0, 1,..., m}, m > 1, is a set of absorbing states and B = {m + 1, ..., N} is a set of nonabsorbing
states. Let state k € B at the first step go to i € E with probability p,,. Then

u,; = P{X, =jle A)| X, = k(e B)}

]

N
= ) pi P{X, = jle A1 X, =i} (5.124)
i=1
1 i=j
Now P{X,=jle A), X, =i} =40 e A i#j
u;; ieBi=m+1,...,N
Then Eq. (5.124) becomes
N
Uy =P+ 2. Puldy k=m+1,...,N:;j=1...,m (5.125)
i=m+1

Butp,;, k=m+1,...,N;j=1,...,m, are the elements of R, whereas p,;, k=m + I, ..., N;ji=m+1,...,
N are the elements of Q [see Eq. (5.49a)]. Hence, in matrix notation, Eq. (5.125) can be expressed as

U=R+QU or (I-QU=R (5.126)
Premultiplying both sides of the second equation of Eq. (5.126) with (I — Q)™ !, we obtain
U=(-Q 'R=3®R

Consider a simple random walk X(n) with absorbing barriers at state 0 and state N =3 (see
Prob. 5.38).

{a) Find the transition probability matrix P.
(b) Find the probabilities of absorption into states 0 and 3.

(@) The transition probability matrix P is [Eq. (5.123)]

0 1 2 3

0]t 0 0 O
P=l g 0 p O
210 g 0 p
310 0 0 1

(b) Rearranging the transition probability matrix P as [Eq. (5.49a)],

0 3 1 2
o]t 0 0 0
310 1 0 0
)
llg 0 0 p
210 p ¢ O
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and by Eq. (5.49b), the matrices Q and R are given by

R=|:Zlo P13:|=|:q 0:| Q=|:P11 P12:|=|:0 P:|
20 Pa3 0 p P2y Pa: q9 0

1 —
Then 1—Q=[ ”}

and O=(1-Q7 =+ _'pq [; ﬂ (5.127)

By Eq. (5.50),

11 0 :
U [“10 “13] — OR = [ P] [‘1 ] ! ["2 p ] (5.128)
Uyo Uz l—pglg 1[0 p I—pqlq p

Thus, the probabilities of absorption into state O from states | and 2 are given, respectively, by

2

Uyo = and Uzg =

1 — pq

and the probabilities of absorption into state 3 from states 1 and 2 are given, respectively, by

Ll —pq

2

p
Uy = and Uy =
1 — pgq 1 — pg
Note that
DU b A et . S
TR T —pg 1 —p(l —p)
PP . . el ) O
TTB T —pg 1—(1—g)y

which confirm the proposition of Prob. 5.39.

5.42. Consider the simple random walk X(n) with absorbing barriers at 0 and 3 (Prob. 5.41). Find the
expected time (or steps) to absorption when X, = 1 and when X, = 2.

The fundamental matrix ® of X{(n) is [Eq. (5.127)]

_ b1 12 _ ] [l P:|
® |:¢zn ¢zz] l—pglgqg 1

Let T; be the time to absorption when X, = i. Then by Eq. (5.51), we get

1
E(T) = T=ra {1+ p) ET,) = g+ (5.129)

1 —pgq

5.43. Consider the gambler’s game described in Prob. 5.38. What is the probability of A’s losing all his
money?

Let Pk), k=0, 1,2,..., N, denote the probability that A loses all his money when his initial capital is
k dollars. Equivalently, P(k) is the probability of absorption at state 0 when X, = k in the simple random
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walk X(n) with absorbing barriers at states 0 and N. Now if 0 < k < N, then
Pk)=pPk+ )+ qPk—1) k=1,2,...,N—1 (5.130)

where pP(k + 1) is the probability that A wins the first round and subsequently loses all his money and
qP(k — 1) is the probability that A loses the first round and subsequently loses all his money. Rewriting Eq.
(5.130), we have

1
P(k+l)—;P(k)+%P(k—l)=0 k=1,2..,N-1 (5.131)

which is a second-order homogeneous linear constant-coeflicient difference equation. Next, we have
PO) =1 and P(N)=0 (5.132)

since if k = 0, absorption at 0 is a sure event, and il k = N, absorption at N has occurred and absorption at
0 is impossible. Thus, finding P(k) reduces to solving Eq. (5.131) subject to the boundary conditions given
by Eq. (5.132). Let P(k) = r*. Then Eq. (5.131) becomes

1
S IR, QT R p+qg=1
p p
Setting k = | (and noting that p + q = 1), we get

1
r2——r+€=(r— 1)<r—2>=0
p p P
from which we get r = 1 and r = ¢/p. Thus,
q k
Pk)y=c¢, + (12<;> qFp (5.133)

where ¢, and ¢, are arbitrary constants. Now, by Eq. (5.132),

PO)=1-c,+c;=1
q N
PIN)=0-c¢, +c2<;> =0

Solving for ¢, and c,, we obtain

__—lp)"” oo
Tl —(/p)" P =/
K N
Hence P(k) = M q#p (5.134)
1 —(q/p)
Note thatif N » k,
1 q>p
P(k) = (q)* (5.135)
- p>q
p
Setting r = q/p in Eq. (5.134), we have
k= k
P(k) = -—
® 1= N
Thus, when p = g = 4,
P(k)=1 k (5.136
= N . )

5.44. Show that Eq. (5.134) is consistent with Eq. (5.128).
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548S.

Substituting k = 1 and N = 3 in Eq. (5.134), and noting that p + g = |, we have

(@/p) — /Y’ _ 4p* — 4
-/ (-9
qp+49) q __ 4

T P+pa+qt p+a)P—pg l—pg

P(1) =

Now from Eq. (5.128), we have

q
=—2 _ _p1
Uyo 1-pq (1)

Consider the simple random walk X(n) with state space E = {0, 1, 2, ..., N}, where 0 and N are
absorbing states (Prob. 5.38). Let r.v. 7; denote the time (or number of steps) to absorption of
X(n)when X, =k, k=0,1,..., N. Find E(T}).

Let Y(k) = E(T,). Clearly, if k = 0 or k = N, then absorption is immediate, and we have

Y0)=YN)=0 (5.137)
Let the probability that absorption takes m steps when X, = k be defined by
P(k, m) = P(T, = m) m=1,2,... (5.138)
Then, we have (Fig. 5-12)
Pk,mj=pPtk +1,m—-1)+qPk —1,m—-1) (5.139)
and YK =ET) =Y mPlom)=pY mPk + 1, m~1)+q3 mPk—1, m~1)
m=1 m= 1 m=1

Setting m — 1 = i, we get C,J\ﬁ

Y(k):pi(iﬁ- DPk+ 1L, +g) (i+ DPk—1,1)

i=0 i=0

fiP(k— 1, i)+p§P(k+ 1,i)+q§1>(k— 1, i)
i i=0

i=0 i= =0

=pYiPk+1,i)+q
=0

i

x(n) r— k-1 =1
m -0~ —
[ J [ J [ J
[ J [ J [ J
[ J [ J
a+lp [ J [ ]
14
air
q
a—lr— [ J [ ] [ J
[ J [ ] [ J
[ J [ J
[ J [ J
Y 1 1 1 I U N | | 1 ) 1 ¢ >
0 1 2 3 k n

Fig. 5-12 Simple random walk with absorbing barriers.
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Now by the result of Prob. 5.39, we see that absorption is certain; therefore

iP(k+1,i)= iP(k—l,z’)=l

i=0 i=0
Thus Yk)=pYk+ 1)+ qYk— D+ p+g
or Yky=pYk + 1)+ qY(k - 1)+ 1 k=1,2....N—1 (5.140)
Rewriting Eq. (5.140), we have
1 q 1
Yhk+1)—-Yk)+-Yk—-1)= —~ (5.141)
P P P

Thus, finding P(k) reduces to solving Eq. (5.141) subject to the boundary conditions given by Eq. (5.137).
Let the general solution of Eq. (5.141) be

Y(k) = Yi(k) + Yj(k)

where Y,(k) is the homogeneous solution satisfying
1
Wk + )~ k) +% Yk~ 1)=0 (5.142)
and Y, (k) is the particular solution satisfying
1 q 1
Y+ 1) ==Yk +=-Yk-1)=—- (5.143)
p P p
Let Y,(k) = ak, where a is a constant. Then Eq. (5.143) becomes
| 1
k+ Da—-ka+Th—Da=—-
P p P

from which we get a = 1/(q — p) and

k
Y (k) = p#q (5.149)
q—7p
Since Eq. (5.142) is the same as Eq. (5.131), by Eq. (5.133), we obtain
q k
Yk)=c¢, + CZ(E) q#p (5.145)
where ¢; and ¢, are arbitrary constants. Hence, the general solution of Eq. (5.141) is
qy |k
Y(k) = ¢, + c2<—) +——  q#p {3.146)
P q—7p

Now, by Eq. (5.137),

Y0)=0-c¢, +¢,=0
NN
Y(N)=0-¢, +c2<€) S S
p) Ta-p

Solving for ¢, and ¢,, we obtain
e = ZNg=p) _Na-»p
Y- 20— g/p)t
Substituting these values in Eq. (5.7146), we obtain (for p # q)
I L - (g/p)*
Y(k) = K(T)) = —— <k - N{— 5.147
e 1—(g/p)" G147)
When p = g = %, we have

Y(k) = E(T,) = k(N — k) p (5.148)

1
£

1
[ g
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5.46. Consider a Markov chain with two states and transition probability matrix

0 1
P =
o)
(a) Find the stationary distribution jp of the chain.

(b) Find lim,., P".

(a) By definition (5.52),

pP=p
01
or lpy pil =[p, p.]
1 0
which yields p, = p, . Since p, + p, = 1, we obtain
p=[2 %I
0 1
l:l Ojl n=1315...
(by Now P = | o
=2,4,6,...
[0 1] e

and lim, . . P" does not exist.

5.47. Consider a Markov chain with two states and transition probability matrix

]

(S

(a) Find the stationary distribution p of the chain.
(b Find lim,_,  P"
(¢) Find lim,_, , P" by first evaluating P".

(a) By definition (5.52), we have
P=p

-

[l =
Bl i

or (py P2]|: :|=[Pn p2]

which yields
%Pl +1p, =p,
P+ 1P =P

Each of these equations is equivalent to p, = 2p,. Since p, + p, = 1, we obtain

]

wh—

p=[3%

(b) Since the Markov chain is regular, by Eq. (5.53), we obtain

N B

—
i}
| —
=h
| I— ]
i
I
LI Wi
[OF
| I—

lim P" = lim l:

n—a Ll d)
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(c) Settinga = % and b = § in Eq. (5.120) (Prob. 5.30), we get

t oy :
P"=[z 1]“(%)"[ 2
3 3 -3

|
Wity
| S

Since lim ()" = 0, we obtain

n— oo

[V
| —

POISSON PROCESSES

5.48. Let T, denote the arrival time of the nth customer at a service station. Let Z, denote the time

interval between the arrival of the nth customer and the (n — 1)st customer; that is,
Z,=T,—-T,_, nxl (5.149)

and T, = 0. Let {X(t), t > 0} be the counting process associated with {T,, n > 0}. Show that if
X(t) has stationary increments, then Z,, n =1, 2, ..., are identically distributed r.v.’s.

We have
PZ,>z2y=1~PZ,<z)=1—F,(2)
By Eq. (5.149), PZ,>2)=PT,—T,_,>2)=PT,>T,_, +2)
Suppose that the observed value of T, _, ist,_,. The event (T, > T,_, + z| T,_, =t,_,) occurs if and only if

X(t) does not change count during the time interval (t,_, t,_, + z) (Fig. 5-13). Thus,

P(Zn>z|7:|—l =ln—l)=P(Tn>7:|—l +z|7:v—l =tn—1)
= P[X(t,_, +2)— X(t,-4) = 0]

or P(Z,<z|T,_,=t,_) =1 —P[X(t,, +2)— X(t,_,) = 0] (5.150)

Since X(¢) has stationary increments, the probability on the right-hand side of Eq. (5.150) is a function only
of the time difference z. Thus

PZ,<z|T- =1, )=1- P[X(z)=0] (5.151)

which shows that the conditional distribution function on the left-hand side of Eq. (5.151) is independent of
the particular value of n in this case, and hence we have

Fo(z2)= P(Z, < z) =1 — P[X(z) = 0] (5.152)

which shows that the cdf of Z, is independent of n. Thus we conclude that the Z,’s are identically distrib-
uted r.v.’s.

~y

Fig. 5-13

5.49. Show that Definition 5.6.2 implies Definition 5.6.1.

Let p,(t) = P[X(t) = n]. Then, by condition 2 of Definition 5.6.2, we have

Polt + Al) = P[X(t + A1) = 0] = P[X(1) = 0, X(t + At) — X(0) = 0]
= P[X(t) = O]P[X(t + At) — X(1) = 0]
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Now, by Eq. (5.59), we have
P[X(t+ At)— X()=0] =1 — 4 At + o(Ar)

Thus, Polt + A1) = po(O[1 — A At + o(At)]
Pt + A1) — pglt) olAr)
or M = ) +

Letting At = 0, and by Eq. (5.58), we obtain

Po(t) = —Apo(t) (5.153)
Solving the above differential equation, we get
Polt) = ke
where k is an integration constant. Since py(0) = P[X(0) = 0] = 1, we obtain
polt) = e~ (5.154)

Similarly, for n > 0,

pot + Aty = P[X(t + At) = n]

= P[X(t)=n, X(t + A1) — X(0) = 0]
+ P[X(t)=n—1,X(t+A)—X(O) =11+ Y P[X(t)y=n—k X(t + At) ~ X(0) = k]
k=2
Now, by condition 4 of Definition 5.6.2, the last term in the above expression is o(At). Thus, by conditions 2
and 3 of Detinition 5.6.2, we have
pt + At = p()[1 — A At + o(A)] + p,— (D[ At + 0(A)] + o(Ar)

—T— = Apn(l) + 'lpn- l(t) + At

Thus

and letting Ar — 0 yields
Pit) + Ap,(t) = Ap, (1) (5.155)

Multiplying both sides by e*, we get

e“Iplt) + Ap, ()] = Ae¥'p,_ (1)
d _ .
Hence 7 [e*'p(t1)] = Ae*'p,_ (1) (5.156)
Then by Eq. (5.154), we have
d _
FAGIOEY:

or palt) = (A + c)e ¥
where ¢ is an integration constant. Since p,(0) = P[X(0) = 1] = 0, we obtain

pilt) = Ate™ ¥ (5.157)
To show that

_p Ay
pt)=e* T

we use mathematical induction. Assume that it is true for n — 1; that is,

o (lt)"—‘

P,,_l(l)=€ n—1)
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Substituting the above expression into Eq. (5.156), we have

d At —_
m [e¥p.(0] = "

Integrating, we get

A Aty

eMpn(t) = u‘ + ¢y
n!
Since p,(0) = 0, ¢, = 0, and we obtain
(A"
pat)y=e€"" o (5.158)
n!

which is Eq. (5.55) of Definition 5.6.1. Thus we conclude that Definition 5.6.2 implies Definition 5.6.1.

Verify Eq. (5.59).

We note first that X(z) can assume only nonnegative integer values; therefore, the same is true for the
counting increment X(¢ + At) — X(t). Thus, summing over all possible values of the increment, we get

i P[X(t + At) — X (1) = k] = P[X(t + At) — X(1) = 0]
k=0

+ P[X(¢ + At) — X(1) = 11+ P[X(t + Ap) — X(0) = 2]
=1
Substituting conditions 3 and 4 of Definition 5.6.2 into the above equation, we obtain

PLX(t + At — X(1) = 0] = 1 — 4 At + o(Ar)

(@) Using the Poison probability distribution in Eq. (5.158), obtain an analytical expression for
the correction term o(At) in the expression (condition 3 of Definition 5.6.2)

PLX(t + At) — X(0) = 1] = X At + o(Ar) (5.159)
(b) Show that this correction term does have the property of Eq. (5.58); that is,
. o(AY)
lim
a—o At
(@) Since the Poisson process X(¢) has stationary increments, Eq. (5.159) can be rewritten as
P[X(At) = 1] = p (A1) = 4 At + o(A1) (5.160)
Using Eq. (5.158) [or Eq. (5.157)], we have

py(AD) = A At e * 2 = A Ar(l + ¢4 — )
=AAt+ A Ae A — 1)

Equating the above expression with Eq. (5.1/60), we get
AAL+ oA = A At + 1 Atle™ 2 — 1)

=0

from which we obtain

o(Af) = A At(e™ 2 —~ 1) (5.161)
(b)) From Eq.(5.161), we have
At AAe A — |
lim 280 _ gy AR =D a1y = 0
ar—o Al ar-0 At at-0

5.52. Find the autocorrelation function Ry(t, s) and the autocovariance function K(t, s) of a Poisson

process X(f) with rate A.
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5.53.

5.54.

5.55.

From Egs. (5.56) and (5.57),
E[X()] =& Var[X(1)] = &t

Now, the Poisson process X(t) is a random process with stationary independent increments and X(0) = 0.
Thus, by Eq. (5.103) (Prob. 5.23), we obtain

K1, s) = 6, min(¢, s) = A min(t, s) (5.162)
since 6,2 = Var[ X(1)] = A. Next, since E[X(t)]E[ X(s)] = 1%ts, by Eq. (5.10), we obtain
Ry{t, s) = A min(t, s) + A%ts (5.163)

Show that the time intervals between successive events (or interarrival times) in a Poisson
process X(t) with rate A are independent and identically distributed exponential r.v.'s with
parameter 4.

Let Z,, Z,, ... be the r.v.’s representing the lengths of interarrival times in the Poisson process X(t).
First, notice that {Z, > t} takes place if and only if no event of the Poisson process occur in the interval
(0, t), and thus by Eq. (5.154),

P(Z,>0=P{X(t)=0} =e™*
or Fo)=PZ, <ty=1-e¥
Hence Z, is an exponential r.v. with parameter A [Eq. (2.49)]. Let f,(t) be the pdf of Z,. Then we have

P(Z,> 1) = J.P(Z2 >t Z, =1)fi(r) dr
= f PLX(t + 1) — X(v) = 0] f,(z) dr

=e M Ij'l(t) dr=¢ % (5.164)

which indicates that Z, is also an exponential r.v. with parameter A and is independent of Z,. Repeating the
same argument, we conclude that Z,, Z,, ... are iid exponential r.v.’s with parameter A.

Let T, denote the time of the nth event of a Poisson process X(t) with rate A. Show that 7, is a
gamma r.v. with parameters (n, 4).

Clearly,
L=2,+Z+  +2,

where Z,, n =1, 2, ..., are the interarrival times defined by Eq. (5./49). From Prob. 5.53, we know that Z,
are iid exponential r.v.’s with parameter 1. Now, using the result of Prob. 4.33, we see that T, is a gamma
r.v. with parameters (n, 1), and its pdf is given by [Eq. (2.76)]:

o B
Jr(O= (n —1)! (5.165)
0 t<0

The random process {T,, n > 1} is often called an arrival process.

Suppose t is not a point at which an event occurs in a Poisson process X(¢) with rate A. Let W(1)
be the r.v. representing the time until the next occurrence of an event. Show that the distribution
of W(t) is independent of ¢t and W(¢) is an exponential r.v. with parameter A.

Let s (0 < s < 1) be the point at which the last event [say the (n — 1)st event] occurred (Fig. 5-14). The
event {W(t) > t} is equivalent to the event

{(Z,>t1—s+t|Z,>t—s}
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I 4

Fig. 5-14
Thus, using Eq. (5.164), we have
PIWit)>t]=PZ,>t—s+t|Z,>t—5)
P(Z,>t—s+7) et
= =e

P(Z,>t—5) e Mo T

and PW(H) <t]=1—¢* (5.166)

which indicates that W(t) is an exponential r.v. with parameter 1 and is independent of t. Note that W(t) is
often called a waiting time.

Patients arrive at the doctor’s office according to a Poisson process with rate 4 = {5 minute. The
doctor will not see a patient until at least three patients are in the waiting room.

(@) Find the expected waiting time until the first patient is admitted to see the doctor.
(b) What is the probability that nobody is admitted to see the doctor in the first hour?
(a) Let T, denote the arrival time of the nth patient at the doctor’s office. Then
T,=Z,+Z,+ - +2,
where Z,,n = 1,2,..., are iid exponential r.v.’s with parameter 1 = {. By Egs. (4.108) and (2.50),
n n l
E(T) = E<Z Z.) =L EZ)=n- (5.167)
The expected waiting time until the first patient is admitted to see the doctor is
E(T3) = 3(10) = 30 minutes

(b) Let X(¢) be the Poisson process with parameter A = 1. The probability that nobody is admitted to see
the doctor in the first hour is the same as the probability that at most two patients arrive in the first 60
minutes. Thus, by Eq. (5.55),

PLX(60) — X(0) < 2] = P[X(60) — X(0) = 0] + P[X(60) — X(0) = 1] + P[X{(60) — X(0) = 2]

e—60/l0 + e—ﬁO,’lO( + e—60/10_i_(_?_g)2

60
o)
e %1 + 6 + 18) =~ 0.062

Let T, denote the time of the nth event of a Poisson process X{(¢) with rate 4. Suppose that one
event has occurred in the interval (0, t). Show that the conditional distribution of arrival time T;
is uniform over (0, ¢t).

Forz <,
P[T, <1, X(t)=1]

P[X()=1]
_ P[X(z) =1, X(t) — X(7) =0]
- P[X(1) = 1]
_ P[X(x) = 1JP[X(1) — X(r) = 0]
- PLX(t) = 1]

Ate~ A=A

Ate &

PIT, <<|X(n=1]=

(5.168)

~la

which indicates that T, is uniform over (0, t) [see Eq. (2.45)].
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5.58.

Consider a Poisson process X(t) with rate A, and suppose that each time an event occurs, it is
classified as either a type 1 or a type 2 event. Suppose further that the event is classified as a type
1 event with probability p and a type 2 event with probability 1 — p. Let X (t) and X,(¢) denote
the number of type | and type 2 events, respectively, occurring in (0, t). Show that {X,(¢), ¢ > 0}
and {X,(1), t > 0} are both Poisson processes with rates Ap and A(1 — p), respectively. Further-
more, the two processes are independent.
We have
X(0) = X,(1) + X, (1)

First we calculate the joint probability P[ X ,(t) = k, X ,(t) = m].

PLX \(8) = k, X,(1) = m] = Z PLX (1) = k, X,(t) = m| X(r) = n]P[X(¢) = n]

n=0
Note that
PIX,0)=k X,t) =m|X(t)=n]=0 whenn#k+m
Thus, using Eq. (5.158), we obtain
PLX,(1) = k, X,(t) = m] = P[X (1) = k, X,(t) = m) X() = k + m]P[X() = k + m]
(lt)k"'m
(k + m)!

Now, given that k 4+ m events occurred, since each event has probability p of being a type 1 event and
probability 1 — p of being a type 2 event, it follows that

= PLX,(0) = k, X,(t) = m| X()) = k + m]e™™

PLXy(6) =k, Xo() =m| X(t) =k + m] = (k : m)p"(l -y

k+m _,, (ARrm
P = — = k(1 _ pym,—At 2077
Thus, [X,(0) = k X)) = m] ( k )p(l e
_(k+m)! e AT
= Term PO
= e-Ap:“_P‘Xe—m—pnM (5.169)
k! m!
Then PIX\()=Kl= Y P[X,(t) =k X,(t) =m]
m=1
—ipt (}*Pt)k - M1 - d [}'(1 - p)t]m
= ¢ AP __k!__e (1 pnmgl ..m_!
-Al(lpt)h —A(L - pi,A(1 —pp
=e p_k!__e (1= pgi(l - p)
l k
_ o-m AP (5.170)
k!
which indicates that X (¢) is a Poisson process with rate ip. Similarly, we can obtain
P[Xy(ty=m) =} P[X,(t) =k X,(t) = m]
k=1
- e—A(lwnM (5.171)

m!

and so X,(r) is a Poisson process with rate A(1 — p). Finally, from Eqs. (5.770), (5.171), and (5.169), we see
that

P[X (1) = k, X(t) = m] = P[X () = K]P[X ;(t) = m]

Hence, X (1) and X ,(¢) are independent.
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5.59.

5.60.

Let X4, ..., X, be jointly normal r.v.’s. Show that the joint characteristic function of X, ..., X,
is given by

n

. 1 n n
Wy, x @y, .o, @) = eXP(J Z W; Yy —3 Z Z wiwkaik) (5.172)
= =1

i=1 i=1 k
where u; = E(X,) and g, = Cov(X;, X,).
Let Y=aX +a4;X;+- - +4a,X,
By definition (4.50), the characteristic function of Y is
Wy(w) = E[o@FiraXo) = @, (way, ..., wa,) (5.173)

Now, by the results of Prob. 4.55, we see that Y is a normal r.v. with mean and variance given by [Egs.
(4.108) and (4.111)]

uy=EY)= Y g, E(X)= 3 a;p; (5.174)
i=1 i=1

ayt = Var(Y) = 2": Y aa, Cov(X;, X,) = i ia,-ak Ty (5.175)

i=1 k=1 i=1 k=1
Thus, by Eq. (4.125),

¥ y(w) = expl jouy — 3o,°0?]
= exp(jw Yoap— 0ty ) aa ‘Tik) (5.176)
i=1 i=1 k=1
Equating Egs. (5.176) and (5.173) and setting @ = 1, we get

n 1 n
Wy, xlan ..., a)= CXp(jZ a; ;i — 7 Y 24 "'ik)
i=1

i=1 k=1
By replacing a;’s with w,’s, we obtain Eq. (5.172); that is,

l n n
¥y o x @ ..0 @) = CxP(f 2 Wil — 3 Y Yoy aik)
i=1

i=1 k=1

Uy @, Ty 0t Oq,
Let p=\| o= K=1{o])= .
l‘n wn D’nl T onn
Then we can write
Z i =o'y Y 2 ww 0y =0'Ko

i=1 i=1 k=1

and Eq. (5.172) can be expressed more compactly as

¥y, o, ..., @) = exp(jo’p — o’ Kw) (5.177)

Let X, ..., X, be jointly normal r.v.s Let
Y] =£111X1 + +a1"X"
: (5.178)
szamlxl +'”+aman

where a; (i=1,...,m;j=1, ..., n) are constants. Show that ¥, ..., Y, are also jointly normal
r.v.’s.
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5.61.

5.62.

X, 4 ay 4y
Let X=|: Y=|: A=[az] =

n

mn,

Then Eq. (5.178) can be expressed as
Y = 4AX (5.179)

Hy W, LS R X'
Let px = EX) = : @=|: Kx =[o4] = :

Ha Dpy, O e Tpn

Then the characteristic function for Y can be written as
Y@y, ..., ©,) = E(@®7Y) = E(e/*TX)
= E[eMT@X] = W (47 0)
Since X is a normal random vector, by Eq. (5.177) we can write
Wx(4"w) = exp[j(AT0) Ty — $(AT@) Ky(4 0]
=exp[jo’Apy — $0TAKy A7T0]

Thus Y@, ..., ©,) = exp(jo py — 10Ky o) (5.180)
where By = Apy Ky = AKy AT (5.181)

Comparing Egs. (5.177) and (5.180), we see that Eq. (5.180) is the characteristic function of a random vector
Y. Hence, we conclude that Y}, ..., Y, are also jointly normal r.v.'s

Note that on the basis of the above result, we can say that a random process {X(t), t € T} is a normal
process if every finite linear combination of the r.v.’s X(t)), ¢, € T is normally distributed.

Show that a Wiener process X(t) is a normal process.

Consider an arbitrary linear combination
Y a, X(t) = a, X(t,) + ay X(t) + -+ + a, X(t,) (5.182)

i=1

where 0 < t, < -+ < t,and a; are real constants. Now we write
2 aX(E)=(ay + -+ a)[X(t) — XO] + (@ + -+ + a)[X(2) — X(t))]
i=1
o 4 @+ @)X () — X(6,- )] + a,[X(2,) — X(t,-,)] (5.183)

Now from conditions 1 and 2 of Definition 5.7.1, the right-hand side of Eq. (5.183) is a linear combination
of independent normal r.v.’s. Thus, based on the result of Prob. 5.60, the left-hand side of Eq. (5.183) is also
a normal r.v.; that is, every finite linear combination of the r.v.’s X(¢,) is a normal r.v. Thus we conclude that
the Wiener process X(t) is a normal process.

A random process {X(t), t € T} is said to be continuous in probability if for everye > 0andt € T,
lim P{| X(t+ h)— X()| >¢} =0 (5.184)

h—0
Show that a Wiener process X(¢) is continuous in probability.
From Chebyshev inequality (2.97), we have

PUIX(t + by — X(0)] > ¢} < 2rLXC *;zh) —x@l
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Since X(r) has stationary increments, we have
Var[X(t + h) — X(t)] = Var[X(h)] = o%h

in view of Eq. (5.63). Hence,

2
IimP{lX(t+h)-X(t)|>8}=limU_zh=0

A0 n~o0 €

Thus the Wiener process X(t) is continuous in probability.

Supplementary Problems

Consider a random process X(n) = {X,, n > 1}, where
X, =Z,+2Z,+ +2,
and Z, are iid r.v.’s with zero mean and variance o2. Is X(n) stationary?

Ans. No.

Consider a random process X(t) defined by

X(t) = Y cos(wt + Q)

[CHAP 5

where Y and O are independent r.v.’s and are uniformly distributed over (— A4, A) and (—=, =), respectively.

(a) Find the mean of X(t).
(h) Find the autocorrelation function R,(t, s) of X(t).

Ans. (@) E[X(1)]=0; (B) Rylt, s) = $A? cos w(t — 5)

Suppose that a random process X(t) is wide-sense stationary with autocorrelation

Ry(t, 1 + 1) = g7 IW2

(a) Find the second moment of the r.v. X(5).
(h) Find the second moment of the r.v. X(5) — X(3).

Ans. (@) E[X*5]=1; (b)) E{[X(5)— X3} =21 —e"?

Consider a random process X(t) defined by

X(t)=Ucost+(V+ 1)sint — <t < w

where U and V are independent r.v.’s for which
EU)=EWV)=0 EU»=EVH=1
(a) Find the autocovariance function K(t, s) of X(t).
(h) TIs X(1) WSS?
Ans. (a) K,(t, s) = cos(s — 1); () No.

Consider the random processes

X(1) = Ag cos(wgt + O) Y(t) = A, cos(w,t + D)

where 4,, A, w,, and w, are constants, and r.v.’s © and ® are independent and uniformly distributed over

(—m, 7).
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5.68.

5.69.

5.70.

5.71.

5.72.

5.73.

5.74.

(@) Find the cross-correlation function of Ryy(t, t + 7) of X(¢) and Y(¢).
(b) Repeat (a)if © = ¢.
Ans. (@) Ry, t+7)]=0

Ay, A
) Ryylt, t + 1) =2

cosf(@w; — we)t + w,1)

Given a Markov chain {X,, n > 0}, find the joint pmf
P(Xo=ig, X, =iy ... X, = 1)
Hint: Use Eq. (5.32).
Ans. piOPigiPisiy " P iy
Let {X,, n > 0} be a homogeneous Markov chain. Show that
PXpe =kyy oo Xpsm =kl Xo=1ig, ..., X, =0)=P(X, =k, ..., X, =k, | X, =1)
Hint: Use the Markov property (5.27) and the homogeneity property.

Verify Eq. (5.37).

Hint: Write Eq. (5.39) in terms of components.

Find P” for the following transition probability matrices:

Lo 1 0 0 10 0
(@) P=[05 05} ¢ P={0 1 O (© P=[0 1 0
o 0 0 1 03 02 05

1 0 0
Ans. () P"=[’ °]+<0.5>"[_? ?] ® P=|o 1 o
0 0 |1

10
1 0 0 0 0 0
@ P={0o 1t o|l+@©s] o 0 0
06 04 0 —06 —04 1

A certain product is made by two companies, A and B, that control the entire market. Currently, A and B
have 60 percent and 40 percent, respectively, of the total market. Each year, A loses 4 of its market share to
B, while B loses § of its share to A. Find the relative proportion of the market that each hold after 2 years.

Ans. A has 43.3 percent and B has 56.7 percent.

Consider a Markov chain with state {0, 1, 2} and transition probability matrix

0 § %
P=]} 0 %
1 0 O

Is state O periodic?
Hint: Draw the state transition diagram.

Ans. No.

Verify Eq. (5.51).
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Hint: Let N = [N], where N, is the number of times the state k(e B) is occupied until absorption takes
place when X(n) starts in state j(e B). Then T, =) ¥_ .| N; calculate E(N,).

Consider a Markov chain with transition probability matrix

06 02 02
P=[(04 05 0l
06 0 04

Find the steady-state probabilities.

Ans. p=[3 3§ 3]

Let X(¢) be a Poisson process with rate 1. Find E[ X *(1)].
Ans. At + AP

Let X(r) be a Poisson process with rate 4. Find E{[X(t) — X(5)]?} for ¢ > s.
Hint: Use the independent stationary increments condition and the result of Prob. 5.76.

Ans. At — 5) + A3t — 5)?

Let X(z) be a Poisson process with rate 4. Find

PIX( —d)=k|X(t)=j] d>0
- (Y
oG-\ J\

Let T, denote the time of the nth event of a Poisson process with rate 4. Find the variance of T,.

Ans. n/i?

Assume that customers arrive at a bank in accordance with a Poisson process with rate A = 6 per hour, and
suppose that each customer is a man with probability 4 and a woman with probability 4. Now suppose
that 10 men arrived in the first 2 hours. How many woman would you expect to have arrived in the first 2
hours?

Ans. 4
Let X, .... X, be jointly normal r.v.’s. Let

Y =X, + ¢ i=1,..,n
where ¢; are constants. Show that Y, ..., Y, are also jointly normal r.v.’s.

Hint: See Prob. 5.60.

Derive Eq. (5.63).
Hint: Use condition (1) of a Wiener process and Eq. (5.102) of Prob. 5.22,



Chapter 6

Analysis and Processing of Random Processes

6.1 INTRODUCTION

In this chapter, we introduce the methods for analysis and processing of random processes. First,
we introduce the definitions of stochastic continuity, stochastic derivatives, and stochastic integrals of
random processes. Next, the notion of power spectral density is introduced. This concept enables us
to study wide-sense stationary processes in the frequency domain and define a white noise process.
The response of linear systems to random processes is then studied. Finally, orthogonal and spectral
representations of random processes are presented.

6.2 CONTINUITY, DIFFERENTIATION, INTEGRATION

In this section, we shall consider only the continuous-time random jrocesses.

A. Stochastic Continuity:
A random process X(¢t) is said to be continuous in mean square or mean square (m.s.) continuous if

imE{[X(t + &) — X()]*} =0 6.1
£e—~0
The random process X(t) is m.s. continuous if and only if its autocorrelation function is continuous
(Prob. 6.1). If X(¢t) is WSS, then it is m.s. continuous if and only if its autocorrelation function Ry(1) is
continuous at t = 0. If X(¢) is m.s. continuous, then its mean is continuous; that is,

lim py(t + ) = px(t) (6.2)
=0
which can be written as
Im E[X(¢t + ¢)] = E[lim X(¢ + &)] (6.3)
e—0 r—0

Hence, if X(¢) is m.s. continuous, then we may interchange the ordering of the operations of expecta-
tion and limiting. Note that m.s. continuity of X(t) does not imply that the sample functions of X(t)
are continuous. For instance, the Poisson process is m.s. continuous (Prob. 6.46), but sample func-
tions of the Poisson process have a countably infinite number of discontinuities (see Fig. 5-2).

B. Stochastic Derivatives:

A random process X(¢) is said to have a m.s. derivative X'(¢) if

— X
Lim, X ZXO 4 (6.4)
=0 £
where l.i.m. denotes [imit in the mean (square); that is,
X - X(t z
lim E{I:(t_+£2—() — X’(t):| } -0 (6.5)
=0

209
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The m.s. derivative of X(1) exists if 62Ry(t, s)/0t s exists (Prob. 6.6). If X(¢) has the m.s. derivative
X'(¢), then its mean and autocorrelation function are given by

d
E[X'()] = o E[X(1)] = px(t) (6.6)
asz(t, S)
Rydt, 5) = “Gios (6.7)

Equation (6.6) indicates that the operations of differentiation and expectation may be interchanged. If
X(t) is a normal random process for which the m.s. derivative X'(¢) exists, then X'(¢) is also a normal
random process (Prob. 6.10).

C. Stochastic Integrals:

A m.s. integral of a random process X(t) is defined by

t
Y(t) = JX(a) do = lim. Y X(t) At (6.8)
o Ay—0 i
wherety <t; <---<tand Ay;=1¢;,, — t;.
The m.s. integral of X(t) exists if the following integral exists (Prob. 6.11):

f' J' Ryla, B) da dB (6.9)

0

This implies that if X(¢) is m.s. continuous, then its m.s. integral Y(¢) exists (sece Prob. 6.1). The mean
and the autocorrelation function of Y(t) are given by

Ly(t) = E[J.IX(a) da] = JIE[X(a)] da = J‘ux(a) do (6.10)
Ry(t, s) = E[J'X(a) da ISX(ﬂ) dﬂ]
= J‘r -rE[X(a)X(ﬂ)] dp da = J’ rRx(a, B) dp do 6.11)

Equation (6.10) indicates that the operations of integration and expectation may be interchanged. If
X(t) is 2 normal random process, then its integral Y(¢) is also a normal random process. This follows
from the fact that Z, X(t;) At; is a linear combination of the jointly normal r.v.’s. (see Prob. 5.60).

6.3 POWER SPECTRAL DENSITIES

In this section we assume that all random processes are WSS.

A. Autocorrelation Functions:

The autocorrelation function of a continuous-time random process X(t) is defined as [Eq. (5.7)]

Ry(t) = E[X(0X(t + 1)] (6.12)

Properties of Ry(t):
1. Ry(—1) = Ry(1) 6.13)
2. | Rx(1)| < Rx(0) (6.19)

3. R4(0)=E[X* ()] =0 (6.15)
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Property 3 [Eq. (6.15)] is easily obtained by setting t = 0 in Eq. (6.12). If we assume that X(t) is a
voltage waveform across a 1-Q resistor, then E[X?(¢)] is the average value of power delivered to the
1-Q resistor by X(t). Thus, E[X?(t)] is often called the average power of X(t). Properties 1 and 2 are
verified in Prob. 6.13.

In case of a discrete-time random process X(n), the autocorrelation function of X(n) is defined by

Ry(k) = E[X(WX(n + k)] (6.16)

Various properties of Ry(k) similar to those of Ry{t) can be obtained by replacing 7 by k in Eqgs. (6.13)
to (6.15).

B. Cross-Correlation Functions

The cross-correlation function of two continuous-time jointly WSS random processes X(t) and
Y(¢) is defined by

Ryy(t) = E[X()Y(t + 7)] (6.17)

Properties of Ryy(7):
L Ryy(—1) = Ryx(7) (6.18)
2. |Ryd7)| £ /Rx(O)RA0) (6.19)
3. |Ryy{0)] < 3[Rx(0) + Ry(0)] (6.20)

These properties are verified in Prob. 6.14. Two processes X(t) and Y(t) are called (mutually) orthog-
onal if

Ry (1) =0 forall = (6.21

Similarly, the cross-correlation function of two discrete-time jointly WSS random processes X(n) and
Y(n) is defined by

Ryy(k) = ELX(m)Y(n + k)] (6.22)

and various properties of Ry(k) similar to those of Ry(t) can be obtained by replacing 7 by k in Eqgs.
(6.18) to (6.20).

C. Power Spectral Density:

The power spectral density (or power spectrum) Sy(w) of a continuous-time random process X(t) is
defined as the Fourier transform of Ry(7):

Sy(w) = f Ry(t)e ™ dt (6.23)
Thus, taking the inverse Fourier transform of Sy(w), we obtain
1 (= .
Ry(1) = 7 J Sy(w)e’™* dw (6.24)

Equations (6.23) and (6.24) are known as the Wiener-Khinchin relations.

Properties of Sy(w):
1. Sy(w) is real and Sy(w) > 0. (6.25)
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2. Sy(—w) = Sy(w) (6.26)
l el

3. E[X*1)] = Ry0) = 7 J‘ Sxlw) do (6.27)

Similarly, the power spectral density S,(Q) of a discrete-time random process X(n) is defined as the

Fourier transform of R (k).

SHQ) = f Riy(k)e ~ 1 (6.28)

k=—o

Thus, taking the inverse Fourier transform of S(€2), we obtain

Ry(k) = Z_In fﬂ Sx(Q)e™ dQ 6.29)

Properties of Sy(2):
. SxQ + 27m) = S4(QY) 6.30)
2. Sx(Q) is real and S4(2) = 0. (6.31)
3. S5x(—Q) = S;(Q) (6.32)
4. E[X*(n)] = Ry(0) = Zl_n J.n Sx(Q) dQ (6.33)

Note that property 1 [Eq. (6.30)] follows from the fact that e "/ is periodic with period 2x. Hence it
is sufficient to define S,(Q) only in the range (—=, n).

D. Cross Power Spectral Densities:

The cross power spectral density (or cross power spectrum) S yy(w) of two continuous-time random
processes X(t) and Y(t) is defined as the Fourier transform of Ryy(1):

Syylw) = J.w Ryy(t)e™ 7t dt (6.34)

Thus, taking the inverse Fourier transform of Sy y(w), we get

o0

Ryy(1) = % j_ Serl@)e doo (6.35)

Properties of Sy (w):

Unlike Sx(w), which is a real-valued function of w, Syy{w), In general, is a complex-valued func-
tion.

L Sxy(w) = Syx(—w) (6.36)
2. Syf(—w) = Siy() (6.37)

Similarly, the cross power spectral density Sy{(Q) of two discrete-time random processes X(n) and
Y(n) is defined as the Fourier transform of Ry y(k):

Sel@ = 3 Ryylke (6.38)

k=-o
Thus, taking the inverse Fourier transform of S,,(Q), we get

n

Ryy(k) = 2—17! ﬁ Sy y( Q) dO (6.39)
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Properties of Sxy(S2):

Unlike Sy(€?), which is a real-valued function of w, Syy(€), in general, is a complex-valued func-
tion.

1. Sxy(Q + 27) = S,(Q) (6.40)
2. Sxy() = Syx(—Y) (6.41)
3. Syy(—9) = SEAQ) (6.42)

6.4 WHITE NOISE

A continuous-time white noise process, W(t), is a WSS zero-mean continuous-time random
process whose autocorrelation function is given by

Ry(t) = 628(z) 6.43)

where (1) is a unit impulse function (or Dirac é function) defined by

f:é(rw(r) dr = ¢0) (6.44)
where ¢(z) is any function continuous at = = (. Taking the Fourier transform of Eq. (6.43), we obtain
Swlw) = a? J‘oo e it dr = g2 (6.45)
which indicates that X(f) has a constant power spectral density (hence the name white noise). Note
that the average power of W(t) is not finite.

Similarly, a WSS zero-mean discrete-time random process W(n) is called a discrete-time white noise
if its autocorrelation function is given by

Ry (k) = a2d(k) (6.46)
where d(k) is a unit impulse sequence (or unit sample sequence) defined by
1 k=0
k) = .
o(k) {O k+0 6.47)
Taking the Fourier transform of Eq. (6.46), we obtain
SaAQ) = 0* Y S(kjeTI* = g2 —n<Q<m (6.48)
k=—ow

Again the power spectral density of W(n) is a constant. Note that S,(Q + 2n) = S(Q2) and the
average power of W(n) is 62 = Var[W(n)], which is finite.

6.5 RESPONSE OF LINEAR SYSTEMS TO RANDOM INPUTS
A. Linear Systems:

A system is a mathematical model of a physical process that relates the input (or excitation)
signal x to the output (or response) signal y. Then the system is viewed as a transformation (or
mapping) of x into y. This transformation is represented by the operator T as (Fig. 6-1)

y=Tx (6.49)

If x and y are continuous-time signals, then the system is called a continuous-time system, and if x
and y are discrete-time signals, then the system is called a discrete-time system. If the operator T is a
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X y
> Syfll‘em >
Fig. 6-1

linear operator satisfying
T{x, + x,} =Tx, + Tx, =y, + y, (Additivity)
T{ax} = aTx = ay (Homogeneity)

where « is a scalar number, then the system represented by T is called a linear system. A system is
called time-invariant if a time shift in the input signal causes the same time shift in the output signal.
Thus, for a continuous-time system,

T{x(t — to)} = y(t — to)
for any value of t, and for a discrete-time system,
T{x(n — ng)} = y(n — ny)

for any integer n,. For a continuous-time linear time-invariant (LTI) system, Eq. (6.49) can be
expressed as

W) = j h(A)x(t — A) dA (6.50)
where h(t) = T{4(s)} (6.51)
is known as the impulse response of a continuous-time LTI system. The right-hand side of Eq. (6.50) is
commonly called the convolution integral of h(t) and x(t), denoted by h(t) x x(t). For a discrete-time
LTI system, Eq. (6.49) can be expressed as

yin)= Y h(i)x(n — i) (6.52)

where h(n) = T{é(n)} (6.53)

is known as the impulse response (or unit sample response) of a discrete-time LTI system. The right-
hand side of Eq. (6.52) is commonly called the convolution sum of h(n) and x(n), denoted by h(n) x x(n).

B. Response of a Continuous-Time Linear System to Random Input:

When the input to a continuous-time linear system represented by Eq. (6.49) is a random process
{X(t), t € T.}, then the output will also be a random process {Y(¢), t € T,}; that is,

T{X(t),te T,} ={Y(t), te T} (6.59)
For any input sample function x(t), the corresponding output sample function is
yi{t) = T{x{0)} (6.55)

If the system is LTI, then by Eq. (6.50), we can write

Y(t) = f " WXt — ) dA (6.56)

Note that Eq. (6.56) is a stochastic integral. Then

E[Y(t)] = f * RAELX( — 4] dA (6.57)

-
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The autocorrelation function of Y(¢) is given by (Prob. 6.24)

Ry(t, 5) = Jw ‘[oo h(a)h(B)Ry(t — a, s — B) da df (6.58)
If the input X(¢) is WSS, then from Eq. (6.57),

ECY(0)] = px jw W) dA = puy H(O) (6.59)

-0

where H(0) = H(w)|,-o, and H(w) is the frequency response of the system defined by the Fourier
transform of h(z); that is,

H(w) = J‘w h(t)e 3 dt (6.60)
The autocorrelation function of Y(¢) is, from Eq. (6.58),
Ry(t, 5) = j: wah(a)h(ﬂ)RX(s —t+oa—p)dadp (6.61)
Setting s = ¢ + 1, we get
RAt, L +7) = r r h@h(B)R(t + o — B) da dB = Ry(z) (6.62)

From Eqs. (6.59) and (6.62), we see that the output Y(¢) is also WSS. Taking the Fourier transform of
Eq. (6.62), the power spectral density of Y(¢) is given by (Prob. 6.25)

Sy(w) = fw Ry(t)e " dt = | H(w) |2Sx(w) (6.63)

Thus, we obtain the important result that the power spectral density of the output is the product of the
power spectral density of the input and the magnitude squared of the frequency response of the system.

When the autocorrelation function of the output Ry(t) is desired, it is easier to determine the power
spectral density Sy(w) and then evaluate the inverse Fourier transform (Prob. 6.26). Thus,

Ry(1) = % r Syw)e" do = i f | H(0) |*S (w)e™* de (6.64)

By Eq. (6.15), the average power in the output Y(t) is

©

E[Y*1)] = Ry(0) = % j | H) |*S (o) do (6.65)

C. Response of a Discrete-Time Linear System to Random Input:

When the input to a discrete-time LTI system is a discrete-time random process X(n), then by Eq.
(6.52), the output Y(n) is

Y(n) = i h(i)X(n — i) (6.66)

i=—w

The autocorrelation function of Y(n) is given by

Ry(n, m) = f i h(ih(DR y(n — i, m — 1) (6.67)

i=—w l=—x
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When X(n) is WSS, then from Eq. (6.66),

ELY(n)] = ux ). hii) = px H(0) (6.68)

i==o0

where H(0) = H(Q)ig-o and H(Q) is the frequency response of the system defined by the Fourier
transform of h(n):

H(Q) = i h(n)e ~ 0 (6.69)
The autocorrelation function of Y{(n) is, from Eq. (6.67),
Ry(n, m) = ._i :—i hh(DRx(m —n + i~ 1) (6.70)
Setting m = n + k, we get

O

Rimn+k= 3 5 hh(DRx(k +i— D = Ry(k) 671)

i=-® I=-w

From Eqgs. (6.68) and (6.71), we see that the output Y(n) is also WSS. Taking the Fourier transform of
Eq. (6.71), the power spectral density of Y(n) is given by (Prob. 6.28)

SHQ) = [HQ)12Sx(Q) (6.72)
which is the same as Eq. (6.63).

6.6 FOURIER SERIES AND KARHUNEN-LOEVE EXPANSIONS
A. Stochastic Periodicity:
A continuous-time random process X(t) is said to be m.s. periodic with period T if
E{[Xt+T)— X(H]*} =0 (6.73)

If X(t) is WSS, then X(¢) is m.s. periodic if and only if its autocorrelation function is periodic with
period T'; that is,

Ryt + T) = Ry(1) (6.74)

B. Fourier Series:

Let X(t) be a WSS random process with periodic Ry(t) having period T. Expanding Ry(z) into a
Fourier series, we obtain

Ryt)= ) c,em wo =2n/T (6.75)
1 (7 )
where &= J Ry(t)e ™ /moot dg (6.76)
0
Let X(t) be expressed as
Xty= Y X,em wo = 2n1/T (6.77)

n= -0
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where X, are r.v.’s given by

1T .

X, == J. X(t)e ot dr (6.78)
T Jo

Note that, in general, X, are complex-valued r.v.’s. For complex-valued r.v.’s, the correlation between

two r.v.’s X and Y is defined by E(X Y*). Then X(¢) is called the m.s. Fourier series of X(¢) such that

(Prob. 6.34)

E{|X(t)— X()|?} =0 (6.79)
Furthermore, we have (Prob. 6.33)
Hx n=20
E X = = R
(X 1) = py é(n) {0 "0 (6.80)
C n=m
EX,X¥)=c,d(n—m=<¢" .
(X, Xm) = ¢, 0(n—m) {0 " m (6.81)
C. Karhunen-Loéve Expansion
Consider a random process X(t) which is not periodic. Let X(¢) be expressed as
X0=3Y X, ¢) 0<t<T (6.82)
n=1
where a set of functions {¢,(t)} is orthonormal on an interval (0, T) such that
T
J S)Pm(t) dt = 6(n — m) (6.83)
0
and X, are r.v.’s given by
T
X, = f X(t)px(t) di (6.84)
0

Then X(t) is called the Karhunen-Loéve expansion of X(t) such that (Prob. 6.38)
E{1X(t) - X(®)1*} =0 (6.85)

Let Ry(t, s) be the autocorrelation function of X(t), and consider the following integral equation:

j TRX(t, Ns)ds =4, ¢,() 0<t<T (6.86)

where 4, and ¢,(t) are called the eigenvalues and the corresponding eigenfunctions of the integral
equation (6.86). It is known from the theory of integral equations that if Ry{t, s) is continuous, then
¢.(1) of Eq. (6.86) are orthonormal as in Eq. (6.83), and they satisfy the following identity:

Rult, )= 3 dn 06209 (687)

which is known as Mercer’s theorem.
With the above results, we can show that Eq. (6.85) is satisfied and the coefficient X, are orthog-
onal r.v.’s (Prob. 6.37); that is,

E(X, X*) = 4,80 — m) = {l" (6.88)

0 n#m
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6.7 FOURIER TRANSFORM OF RANDOM PROCESSES
A. Continuous-Time Random Processes:
The Fourier transform of a continuous-time random process X(t) is a random process X(w) given

by

X = J ) X(te 4 dt (6.89)

-

which is the stochastic integral, and the integral is interpreted as an m.s. limit; that is,

Eﬂfr(w) — J ) X(t)e 7 di 2} =0 (6.90)

- o

Note that X(w) is a complex random process. Similarly, the inverse Fourier transform
1 [ 5 .
X(t) = — J X(w)e!" do (6.91)
2n J_ .

is also a stochastic integral and should also be interpreted in the m.s. sense. The properties of
continuous-time Fourier transforms (Appendix B) also hold for random processes (or random
signals). For instance, if Y(¢) is the output of a continuous-time LTI system with input X(t), then

7(60) = ).((w)H(w) (6.92)

where H(w) is the frequency response of the system.
Let Ry(w,, ®,) be the two-dimensional Fourier transform of R({t, 5); that is,

Ry(w,, w;) = fm fw Ryl(t, s)e " fort+ o gy dg (6.93)
Then the autocorrelation function of X(w) is given by (Prob. 6.41)
Ri(w,, w,) = E[X(w,)X*,)] = Rylw,, —w,) (6.94)
If X(¢) is real, then
E[X ()X (w,)] = Ry(w,, w;) (6.95)
X(—w) = ¥*w) (6.96)
Ry(—w,, —w;) = R¥w,, ©;) (6.97)

If X(t) is a WSS random process with autocorrelation function Ry(t, s) = Ry{t — s) = Ry(1) and power
spectral density S,(w), then (Prob. 6.42)

Ry(w,, w,) = 218 y(w)d(w, + w,) (6.98)
Riz(w,, w3) = 2aSy(w )0 (w, — w,) (6.99)

Equation (6.99) shows that the Fourier transform of a WSS random process is nonstationary white
noise.

B. Discrete-Time Random Processes:
The Fourier transform of a discrete-time random process X(n) is a random process X(Q) given by
(in m.s. sense)

X = i X(n)e (6.100)

n
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Similarly, the inverse Fourier transform
I ("4 .
X(n) = o J X( Qe dQ (6.101)

should also be interpreted in the m.s. sense. Note that X(Q + 27) = X(Q) and the properties of
discrete-time Fourier transforms (Appendix B) also hold for discrete-time random signals. For
instance, if Y(n) is the output of a discrete-time LTI system with input X(n), then

() = X(QH(Q) (6.102)

where H(Q) is the frequency response of the system.
Let Ry(Q,, Q,) be the two-dimensional Fourier transform of Ry(n, m):

Ry(Q,, Q,) = i i Ry (n, m)e ~in+szm) (6.103)
Then the autocorrelation function of X(Q) is given by (Prob. 6.44)
Rx(Qy, Q) = ELX(Q)X*Q,)] = Ry(Q,, —Q)) (6.104)
If X(n)is a WSS random process with autocorrelation function Ry(n, m) = Ry(n — m) = R,(k) and
power spectral density Sy(Q), then
Ry(Qy, Q) = 21S4(Q,)8(Q, + Q) (6.105)
R#(Q,, Q,) = 2uS4(Q,)6(Q2, — Q,) (6.106)

Equation (6.106) shows that the Fourier transform of a discrete-time WSS random process is nonsta-
tionary white noise.

Solved Problems

CONTINUITY, DIFFERENTIATION, INTEGRATION

6.1. Show that the random process X(t) is m.s. continuous if and only if its autocorrelation function
Rydt, s) is continuous.

We can write
E{[X(t + &) — X(1]%} = E[X3(t + &) — 2X(¢ + o)X (1) + X¥1)]
=Rylt +et+6) —2Rx(t +¢ 1)+ Rylt, 1) (6.107)
Thus, if Ry(t, s) is continuous, then
lim E{[X(t + &) — X()]?} =lim {Ry(t + &t + &) — 2R,(t + & 1)+ Ry(t, 1)} =0

c=0 =0
and X(1) is m.s. continuous. Next, consider

Ryt + &y, 1 + &5) — Ry(t, 0) = E{[X(t + &) — X(I[X(t + &) — X ()]}

+ E{[X(t + &) — X(01X ()} + E{[X(t + &;) — X(D]X(1)}
Applying Cauchy-Schwarz inequality (3.97) (Prob. 3.35), we obtain
Rylt + &4, 1 + £)) — Rylt, 1) < (E{[X(t + &,) — X(OPFE{[X(t + ;) — X(]*})'/?
+UE{[X(t + &) — X(OPPJELX2 (D' + (E{[X(t + &3) — X(D*}E[X *©)]/*
Thus if X(t) is m.s. continuous, then by Eq. (6.1) we have
lim Ry(t+e,t+¢6)— Rxlt, 1) =0

.20

that is, Ry(¢, s) is continuous. This completes the proof.
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6.2.

6.3.

6.4.

6.5.

6.6.
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Show that a WSS random process X(t) 1s m.s. continuous if and only if its autocorrelation
function Ry(r) is continous at 7 = 0.

If X(1) is WSS, then Eq. (6.107) becomes
E{LX(t + &) — X(1]*} = 2[Ry(0) — Ry(e)] (6.108)
Thus if Ry(1) is continuous at T = 0, that is,

lim [Ry(e) — Rx(0)] =0

=0

then lim E{[X(t + &) — X(1)]?} =0

=0

that is, X(¢) is m.s. continuous. Similarly, we can show that if X{¢) is m.s. continuous, then by Eq. (6.108),
Ry(7) is continuous at 7 = 0.

Show that if X () is m.s. continuous, then its mean is continuous; that is,

lim py(t + &) = px()

c=0
We have
Var[X(t + &) — X(1)] = E{[X(t + &) — X(1)]*} — {E[X(t + &) — X(0]}* =0
Thus E{[X(t + &) — X()]*} = {E[X(t + &) — X()]}? = [uxlt + &) — pyp(0)]?

If X(¢) is m.s. continuous, then as ¢ — 0, the left-hand side of the above expression approaches zero. Thus
lirr; [ux(t + &) —u(] =0 or ling Lux(t + &) = pgt)
Show that the Wiener process X(t) is m.s. continuous.
From Eq. (5.64), the autocorrelation function of the Wiener process X(¢) is given by
Ri{t, s) = 62 min(t, s)
Thus, we have
IRy(t + €, t + &) — Ry(t. t)| = 6| min(t + ¢, £ + ;) — L] < 62 max(e,, &,)

Since lim max(e,, &) =0
£y, L2 0

Ry, 5) is continuous. Hence the Wiener process X(¢) is m.s. continuous.

Show that every m.s. continuous random process is continuous in probability.
A random process X(t) is continuous in probability if, for every ¢t and a > 0 (see Prob. 5.62),

imP{|X(t +¢)— X(t)]| >a} =0
=0
Applying Chebyshev inequality (2.97) (Prob. 2.37), we have
L EL X+ — X))

= a2

P{IX(t + &) — X(1)| > a}

Now, if X(t) is m.s. continuous, then the right-hand side goes to 0 as ¢ — 0, which implies that the left-hand
side must also go to 0 as ¢ —»0. Thus, we have proved that if X{t) is m.s. continuous, then it is also
continuous in probability.

Show that a random process X(t) has a m.s. derivative X'(t) if *Ry(t, s)/0t 8s exists at s = 1.
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 X(e+6) = X(t)

Let Y(t; €) . (6.109)
By the Cauchy criterion (see the note at the end of this solution), the m.s. derivative X'(t) exists if
lim E{[Y(t:e;) — Y(t;6,)]*} =0 (6.110)
£1.62—0
Now E{[Y(t; &) — Y(1; &)1} = E[Y(t; &) — 2Y(t; &) Y(t; ) + Yt ¢)]
= E[Y(t; €2)] — 2E[Y(t; &) Y(t; €,)) + E[ Y11 ¢,)] (6.111)
1
and E[Y(t; &)Y (58] = P E{[X(t + &) — X(OI[X(t + &) — X(0)]}
192
[
= [Rylt + &5, 1+ &) — Rylt + &5, 1) — Ry(t, t + &,) + Rylt, 1)]
192
1 {Rx(t +ey, 4 6) — Ryt + 65, 1) Rylt, t + &) — Rylt, 1)}
h £y & &
GIR, (L, s
Thus lim ELY(; e)¥(t; 6] = o2 g, (6.112)
£1.62—0 ctos s=1
provided 2R ,(t, s)/dt s exists at s = . Setting ¢, = ¢, in Eq. (6.112), we get
lim E[Y(t; £,)] = lim E[Y2(t; ¢,)] = R,
6 —0 -0
and by Eq. (6.111), we obtain
lim E{[Y(f; &) — Y(t; ¢)]*) =R, — 2R, + R, =0 (6.113)
£, 82— 0

Thus, we conclude that X (1) has a m.s. derivative X'(t) if 92R,(t, s)/dt ds exists at s = t. If X(t) is WSS, then
the above conclusion is equivalent to the existence of 9?Ry(1)/?*t at 1 = 0.

Note: In real analysis, a function gle) of some parameter ¢ converges to a finite value if

lim [g(e;) — gle))] =0

&y, 8270

This is known as the Cauchy criterion.

6.7. Suppose a random process X(t) has a m.s. derivative X'(t).

(a) Find E[X'(1)].
(b) Find the cross-correlation function of X(t) and X'(¢).
(¢) Find the autocorrelation function of X'(z).

(¢) We have

E[X'(0] = E[l.i.m_ M]

=0 €
=lim E
=0
i Hx(t + &) — ux(t)
=lim--—
€

=0

[X(t + &) — X(t):l

&

= (1) (6.114)
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(b) From Eq. (6.17), the cross-correlation function of X(¢) and X'(t) is

Ryelt, ) = E[X(OX(s)] = El:X(t) Lim, &ii—_&]

=0
. E[X()X(s + €)] — E[X()X(s)]
= lim
=0 €
— lim Ry(t, s + &) — Rylt, s) _ OR(t, s) 6.115)
g0 € Os
(¢) Using Eq. (6.115), the autocorrelation function of X'(t) is
Ry{t, s) = E[X'()X'(s)] = E{l:l.i.m. MJX’(S)}
£ 0
. E[X(t + 9X'(s)] — E[X(1)X"(s)]
= lim
0 €
— lim Ryxdt + & ) = Ryxdt, 5)
=0 €
_ ORxx(t,5) _ 3*Rx(t, 3)
Tt bt os (6.116)
If X(t) is a WSS random process and has a m.s. derivative X'(t), then show that
d
(@ Ryx(r) =7 Ry(1) (6.117)
T
42
(b) Ry(r) = — P Ry(7) (6.118)

(@) For a WSS process X(t), Ry(t, s) = Ry(s — t). Thus, setting s — ¢t = 7 in Eq. (6.115) of Prob. 6.7, we
obtain dRy(s — 1)/0s = dRy(t)/dt and

dR
Ryx(t, 1 +7) = Ryplt) = ARy(@)
dt
() Now JRy(s — t)/0t = —dR,(t)/dr. Thus, 02Ry(s — t)/dt 0s = — d*R,(t)/dt?, and by Eq. (6.116) of Prob.
6.7, we have
2
Rylt, £+ 1) = Ry(e) = = -5 Ry(o)

Show that the Wiener process X(t) does not have a m.s. derivative.

From Eq. (5.64), the autocorrelation function of the Wiener process X(¢) is given by

2

. a’s t>s
Ry(t, s) = ¢* min({, s) = {azt s
9 a? t>s
T —R = g2ult — ) = :
hus LR =i —9=4" " 6.119)

where u(t — s) is a unit step function defined by

1 t>s
ME=9= <

and it is not continuous at s =t (Fig. 6-2). Thus 3*R (1, s)/dt ds does not exist at s = t, and the Wiener
process X(t) does not have a m.s. derivative.
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6.10.

6.11.

u(t—-s)

>
‘o

0 s i
Fig. 6-2 Shifted unit step function.

Note that although a m.s. derivative does not exist for the Wiener process, we can define a generalized
derivative of the Wiener process (see Prob. 6.20).

Show that if X(¢) is a normal random process for which the m.s. derivative X’(¢) exists, then X'(¢)
is also a normal random process.

Let X(¢) be a normal random process. Now consider

X(t+¢e)— X(0)
€

Y()=

Then, n r.v.’s Y(t,), Y(t,), ..., Y(t,) are given by a linear transformation of the jointly normal r.v.’s X(t,),
X(ty, + &), X(t,), X(t5 + &), ..., X(t,), X(¢, + ¢€). It then follows by the result of Prob. 5.60 that Y(t,), Y(t,),
..., Y(t,) are jointly normal r.v.’s, and hence Y(t) is a normal random process. Thus, we conclude that the
m.s. derivative X'(¢), which is the limit of Y(r) as ¢ » 0, is also a normal random process, since m.s. con-
vergence implies convergence in probability (see Prob. 6.5).

Show that the m.s. integral of a random process X(t) exists if the following integral exists:

f ' f'Rx(a, B) du dp

A ms. integral of X() is defined by [Eq. (6.8)]
1
Y1) = jX(a) do=1lim. Y X(t) At
fo AL=0 |
Again using the Cauchy criterion, the m.s. integral Y{¢) of X () exists if
2
lim E{[Z Xy A=Y X)) At,‘] } =0 (6.120)
Aty, A= 0 i k

As in the case of the m.s. derivative [Eq. (6.111)], expanding the square, we obtain
2
E{[Z X(t) At — Y X(t) Az,] }
i k

= E|:Z Y X(e)X(0) At A+ Y Y X(e)X(4) At A — 23 Y X(1)X(1) At At,]
[ 1 ik ik

=Y Y Ryt ) Aty Aty + 3 % Ryt 1) At Ay, — 2% % Rylty, 1)) At Ag,
i ok i i

k Pk

and Eq. (6.120) holds if
lim Y Y Rylt;, 1) At Ay,

At A—0 i@k
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exists, or, equivalently,

f J'Rxw. B) doc df

6.12. Let X(t) be the Wiener process with parameter . Let

Y(t) = j‘X(a) da

0

exists.

(@) Find the mean and the variance of Y(¢).
(b) Find the autocorrelation function of Y(¢).

(a) By assumption 3 of the Wiener process (Sec. 5.7), that is, E[X(1)] = 0, we have

E[Y()] = EU'X(a) da] = jIE[X(a)] do =0
0 0

Then Var[Y(1)] = E[Y(1)] = j' le[X(a)X(ﬁ)] do df
o Jo

- j ka(a, By da dp
0 JO

By Eq. (5.64), Ry(, 8) = 0% min(a, f); thus, referring to Fig. 6-3, we obtain

Var[Y(t)] = o? f j’ min(a, B) do df
0

J.dﬂj.adoﬂ-o jdajﬂdﬂ——

Y1) = J.SX(a) dot + J’[X(a) — X(5)] do + (t — $)X(s)

(b) Lett> s> 0and write

= Y(s) + j‘[X(a) —~ X(s)] da + (t — )X(5)

Then, fort > s> 0,
Ry(t, s) = ETY(D)Y(s)]
= E[Y¥(s)] + j E{[X(@) — X(]Y(s)} da + (1 — YELX(s) ¥(s5)]

a>f

[CHAP 6

(6.121)

(6.122)

(6.123)
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Now by Eq. (6.122),

2.3

g°s
ELY*(s)] = Var[Y(s]] = =

Using assumptions 1, 3, and 4 of the Wiener process (Sec. 5.7), and since s < o < ¢, we have

jE{[X(a) — X(s)1Y(s)} da = E{[X(a) - X(¥] j:X(ﬂ) dﬂ} da
s 0

Vs

Js JO

Js JO

Finally, for0 < f < s,

(t — SE[X()Y(s)] = (t — ) j E[X(s)X(p)] dp
0

=(t—59) J.I‘Rx(s‘ Bydp=(t—s) J.soz min(s, ) df
0 0

s s2
= a’¥(} —s)[ﬂdﬂ:az(t—s)—
o 2
Substituting these results into Eq. (6.123), we get
2.3 2
Ry, s) = ”Ts + ¥t — s) % = 2 o%i(3 - )

Since R,(t, s) = Ryls, ¢), we obtain

Lo%s¥3t—s5) t>s20
or*3s—1) s>t20

Rylt, s) = {

POWER SPECTRAL DENSITY
6.13. Verify Egs. (6.13) and (6.14).
From Eq. (6.12),
Ry(7) = E[X(0)X(t + 7)]
Setting ¢ + 7 = s, we get
Ry(r) = E[X(s — 9)X(s)] = E[X(s)X(s — 7)] = Ry(—7)
Next, we have
E{[X(t)+ X(t +0]*} 20
Expanding the square, we have
E[X¥ )+ 2X()X(t +1) + X¥(r+7)] 20

or E[X?()) + 2E[X()X(t + ©)] + E[X*(t + ©)] = 0

Thus 2R4(0) £ 2Rx(1) = 0

from which we obtain Eq. (6.14); that is,

Rx(0) = | Ry(1)|

6.14. Verify Eqgs. (6.18) to (6.20).

[ j "E{[X(2) ~ X()[X(B) — X(0)]} df da

= l j:E[X(a) — X(S)JE[X(s) — X(0)] df da =0

225

(6.124)
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By Eq. (6.17),
Ryy(—7) = E[X(DY(t — )]
Setting t — t = s, we get
Ryy(—1) = E[X(s + 1)Y(s)] = E[Y(s)X(s + 1)] = Ryx(7)
Next, from the Cauchy-Schwarz inequality, Eq. (3.97) (Prob. 3.35), it follows that
{E[X(OY( + 01}* < E[X*OIE[Y?(¢ + 7)]
or [Ry(T? < Ry(O)R,(0)
from which we obtain Eq. (6.19); that is,
| R0 < \/RAOR(0)
Now E{[X() - Y +1)]*} =0
Expanding the square, we have
E[XY) - 2X()Y(t + ) + Y3t + )] 2 0
or E[X2()] - 2E[X()Y(t + 0] + E[Y(t + )] =20
Thus Rx(0) — 2Rxyl1) + Ry(0) 2 0
from which we obtain Eq. (6.20); that is,
Ryy(1) < 4[R4(0) + Ry(0)]

6.15. Two random processes X(t) and Y(t) are given by
X(t) = A cos(wt + O) Y(t) = A sin{fwt + ©)
where A and w are constants and ® is a uniform r.v. over (0, 2n). Find the cross-correlation
function of X(t) and Y(t) and verify Eq. (6.18).
From Eq. (6.17), the cross-correlation function of X(t) and Y(¢) is
Ryt t + 7) = E[X(1)Y{t + 1)]
= E{A? cos(wt + O) sin[a(t + 1) + O}
Al
=5 Efsin(2wt + ot + 20) — sin{ — o1)]
AZ
= = sin 01 = Ryy(1) (6.125)
Similarly,

Ryx(t, t + 1) = E[Y()X(t + 1)}

= E{A? sin(wt + ©) cos{afit + 1) + O}
2
= %— E[sin(2wt + w1 + 20) + sin{—w71)]

2

=~ sin w1 = Ryy(7) (6.126)
From Eqgs. (6.125) and (6.126), we see that
A? A?
Ryl —1) = > sin w(—1) = — 5 sin @t = Ry (1)

which verifies Eq. (6.18).

6.16. Show that the power spectrum of a (real) random process X(¢) is real and verify Eq. (6.26).
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6.17.

From Eq. (6.23) and expanding the exponential, we have

Sy(w) = J‘w Ry(t)e " dr

-

I

J. Ry(t)}cos wt — j sin wr) dt

-

fl

J. Ry(t) cos wr dt —j J. Ry(7) sin w1 dt (6.127)

— @ ~

Since Ry(—1) = Ry(1), Ry(1) cos wrt is an even function of © and Ry(z) sin wr is an odd function of z, and
hence the imaginary term in Eq. (6.127) vanishes and we obtain

Sylw) = J.w Ry(t) cos wr dt (6.128)

which indicates that S,(w) is real. Since cos(— w1) = cos(wr), it follows that
Sx(—@) = Sx(@)

which indicates that the power spectrum of a real random process X(f) is an even function of frequency.

Consider the random process
Y() = (— )

where X(t) is a Poisson process with rate 4. Thus Y(z) starts at Y(0) = 1 and switches back and
forth from +1 to —1 at random Poisson times T;, as shown in Fig. 6-4. The process Y(¢) is
known as the semirandom telegraph signal because its initial value Y(0) = 1 is not random.

(a) Find the mean of Y(t).
(b) Find the autocorrelation function of Y(t).
(@) We have

Y() = 1 ff X() is even
-1 if X(¢) is odd

Thus, using Eq. (5.55), we have
PLY(¢) = 1] = P[X(t) = even integer]

2 2
=e—}.t[l+%+---]=e_“ cosh At

P{Y(t) = —1] = P[X(t) = odd integer]

)
_ e—“[ﬂ.t + % + :' = ¢~ sinh &

$L0)

~ v

_1F L _—

Fig. 64 Semirandom telegraph signal.
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Hence w0 = E[Y(t)] = (DP[Y()= 1]+ (- DP[Y()= —1]
= ¢ *cosh At — sinh ) = e 2¥ (6.129)
(b) Similarly, since Y(1)Y(t + ) =1 if there are an even number of events in (¢, t + 7} for 7> 0 and
Y(1)Y(¢t + ©) = —1 if there are an odd number of events, then for¢t >0and t + 7 > 0,
Ry(t,t + 1) = E[Y(O)Y(t + 1)]
iz AD)" ()"
— 1 Av V7 _'1 v
T e N
) _/1» Ul . . .
- e—lrngo( n!r) = e—ue—u = e—Zu
which indicates that Ry(t, t + 1) = Ry(t), and by Eq. (6.13),
Ry{t) = ¢~ 24111 (6.130)

Note that since E[ Y(¢)] is not a constant, Y(¢) is not WSS.

Consider the random process
Z(ty=AY()
where Y(t) is the semirandom telegraph signal of Prob. 6.17 and A is a r.v. independent of Y(t)
and takes on the values 41 with equal probability. The process Z(t) is known as the random
telegraph signal.
(a) Show that Z(r) is WSS.
(b) Find the power spectral density of Z(t).
(a) Since E(A) = 0 and E(4?) = 1, the mean of Z(:) is
pAt) = E[Z(1)] = E(AE[Y()] =0 (6.131)
and the autocorrelation of Z(1) is
RAt t+7) = E[A2Y(O)Y(t + 1)] = EMADE[YO)Y(t + 0] = Rt t + 1)
Thus, using Eq. (6.130), we obtain
Ry{t, 1 + 1) = Ry(t) = e~ ¥ (6.132)
Thus, we see that Z(t) is WSS.
(b) Taking the Fourier transform of Eq. (6.132) (see Appendix B), we see that the power spectrum of Z(t) is
given by
42

A= e

(6.133)

Let X(t) and Y(r) be both zero-mean and WSS random processes. Consider the random process
Z(t) defined by

Z() = X() + YQ)
(a) Determine the autocorrelation function and the power spectral density of Z(¢), (i) if X(¢) and
Y(2) are jointly WSS; (ii) if X(z) and Y(t) are orthogonal.
(b) Show that if X(t) and Y(¢) are orthogonal, then the mean square of Z(¢) is equal to the sum
of the mean squares of X(t) and Y().
(@) The autocorrelation of Z(t) is given by
Rylt, 5) = E[Z(NZ(s)] = E{[X() + Y(OI[X(s) + Y(s)]}
= E[X()X(s)] + E[X())Y(s)] + E[Y()X(s)] + E[Y(1)Y(5)]
= Rylt, s) + Ryylt, 5) + Ryx(t, s) + Rylt, s)
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(i) If X(¢) and Y(¢) are jointly WSS, then we have
Ry(1) = Ry(t) + Ryy(t) + Ryxl1) + Ry(7)
where t = s — t. Taking the Fourier transform of the above expression, we obtain
Szlw) = Sxtw) + Sxylw) + Syxw) + Sy(w)
(i) If X(t) and Y(t) are orthogonal [Eq. (6.21)],
Ryy(t) = Ryx(1) =0
Then Rz(1) = Ry(t) + Ry(?) (6.134a)
Sz(w) = Sy(w) + Sylw) (6.134b)

(b) Setting r = 0in Eq. (6.134a), and using Eq. (6.15), we get

E[Z2*(t)] = E[X*(1] + E[Y*(1)]

which indicates that the mean square of Z(t) is equal to the sum of the mean squares of X(t) and Y(t).

WHITE NOISE

6.20.

6.21.

Using the notion of generalized derivative, show that the generalized derivative X'(t) of the
Wiener process X(¢) is a white noise.

From Eq. (5.64),
R,(t, s) = o2 min(t, 5)

and from Eq. (6.119) (Prob. 6.9), we have

,
< Ryt 5) = o2ult — 3) (6.135)
ds

Now, using the & function, the generalized derivative of a unit step function u(r) is given by
d
— u(ty = ot
o ) = 0()

Applying the above relation to Eq. (6.135), we obtain

2

i)
—_— = 2 —_— ) 2 —_
FhE Rylt,s)=0¢ Py u(t — s) = a°8(t — s) (6.136)

which is, by Eq. (6.116) (Prob. 6.7), the autocorrelation function of the generalized derivative X'(t) of the
Wiener process X(t); that is,
Rydt, 5) = a28(t — s) = ¢28(z) (6.137)

where © =t — s. Thus, by definition (6.43), we see that the generalized derivative X'(t) of the Wiener process
X(1) is a white noise.

Recall that the Wiener process is a normal process and its derivative is also normal (see Prob. 6.10).
Hence, the generalized derivative X'(¢) of the Wiener process is called white normal (or white gaussian) noise.

Let X(¢) be a Poisson process with rate 4. Let
Y(t) = X(t) — Mt
Show that the generalized derivative Y’(t) of Y(¢) is a white noise.
Since Y(t) = X(t) — At, we have formally
Y = X'(t) — A (6.138)
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Then E[Y'()] = E[X'() —A) = E[X'(n] — A (6.139)

Ry(t, ) = E[Y'()Y'(s)] = E{[X'(t) — AJ[X'(5) — 4]}
= E[X'(0X'(s) — AX'(s) — AX'(1) + A1]
= E[X'()X'(s)] — AE[X'(s)] — AE[X'(0)] + A2 (6.140)
Now, from Eqs. (5.56) and (5.60), we have

E[X()] = At
Ry(t, 5) = A min(t, s) + A%ts
Thus E[X'(n]) =1 and E[X'(s)] =4 6.141)
and from Egs. (6.7) and (6.137),

E[X'(0X'(s)] = Ryt. 5) = Lﬁ"% = A8(t — 5) + A2 (6.142)
Substituting Eq. (6.141) into Eq. (6.139). we obtain
E[Y(t)] =0 (6.143)
Substituting Eqs. (6.141) and (6.142) into Eq. (6.140), we get
Ry (t, s) = Ad(t — s) (6.144)

Hence we see that Y'(t) is a zero-mean WSS random process, and by definition (6.43), Y'(t) is a white noise
with a2 = L. The process Y'(t) is known as the Poisson white noise.

Let X(1) be a white normal noise. Let
Y(t) = fX(a) do
0
(a) Find the autocorrelation function of Y(t).
(b) Show that Y(t) is the Wiener process.
(¢) From Eq. (6.137) of Prob. 6.20,
R,(t. s) = a2d(t — 3)

Thus, by Eq. (6.11), the autocorrelation function of Y(¢) is

Ryt 5) = f stx(a, B) dB do
0 JO

= f\' flazé(a — B da df
o Jo

=g? fsu(t — B dg
0
min(t. s)

= g? f df = ¢ min(t, 5) (6.145)
0

(b) Comparing Eq. (6.145) and Eq. (5.64), we see that Y(r) has the same autocorrelation function as the
Wiener process. In addition, Y(r) is normal, since X(¢) is a normal process and Y(0) = 0. Thus, we conclude
that Y(r) is the Wiener process.

Let Y(n) = X(n) + W(n), where X(n) = A (for all n) and A is a r.v. with zero mean and variance
6%, and W(n) is a discrete-time white noise with average power o2, It is also assumed that X(n)
and W(n) are independent.

(a) Show that Y(n)is WSS,
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Find the power spectral density SH{Q) of Y(n).
The mean of Y(n) is

E[Y(n)] = E[X(n] + E[W(n)] = E(4) + E[W(n)] =
The autocorrelation function of Y(n) is

Ry(n, n + k) = E{[X(n) + Wm]I[X(n + k) + W(n + k)]}
= E[X X + k)] + E[X( VIE[W(n + k] + ETWMIELX(n + K)] + EQWmW(n + k)]
(A%) + Ry(k) = 6> + 0%5(k) = Ry(k) (6.146)

Thus Y(n) is WSS,
Taking the Fourier transform of Eq. (6.146), we obtain

5,(Q) = 276 ,25(Q) + o? —n<Qd<n 6.147)

RESPONSE OF LINEAR SYSTEMS TO RANDOM INPUTS
6.24. Derive Eq. (6.58).

Using Eq. (6.56), we have
Ry(t, s) = E[Y(1)Y(s)]

= E[J‘% h(a)X(t — o) da Jw hBX(s— p) dﬂ]

" HHBELX( — )X (s — B)] do dB

'['[h JHBIR(t — a, s — B) do dB

6.25. Derive Eq. (6.63).

From Eq. (6.62), we have
= '[x '[w ha)h(B)Ry(t + o — B) da df

Taking the Fourier transform of Ry(t), we obtain

Sylw) = '[I y(t)e i dr = '[ '[ '[ h(a)h(B)Ry(t + o — B)e™#** do dB dr

Letting t + « — f = 4, we get

Sy{w) = J\m '[w '[x h()h(B)R x(A)e =~ 2B do dB dA

= '[ " hoer da '[ h(B)e =8 dp '[ Ry(A)e ™% dj

= H(—w)H(w)Sy(w)
= H¥w)H(0)Sx(w) = | Hw)]* Sy(w)

6.26. A WSS random process X () with autocorrelation function

Ry(t) = e~
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where a is a real positive constant, is applied to the input of an LTI system with impulse
response

h(t) = e "u(r)

where b is a real positive constant. Find the autocorrelation function of the output Y(¢) of the
system.

The frequency response H(w) of the system is

H(w) = #[h(t)] = Py

The power spectral density of X(¢) is

2a

Sylw) = F[Ry(1)] = i1 al

By Eq. (6.63), the power spectral density of Y(¢) is
1 2a
= | H(w)|? = — ) =
Sylw) = | H(w)|“Sx(w) <m2+b2><w2+a2>

_ a 2b b 2a
T (@ — b)b \w? + b2} (a* - b})b \@? + a?

Taking the inverse Fourier transform of both sides of the above equation, we obtain

1
(@® - bHb

Ry(7) = (ae™ b1l — pealr))

Verify Eq. (6.25), that is, the power spectral density of any WSS process X(¢) is real and S,(w) > 0.

The realness of Sy(w) was shown in Prob. 6.16. Consider an ideal bandpass filter with frequency
response (Fig. 6-5)
1 o <|lo| <o,
H(w) = !
@ {0 otherwise
with a random process X(¢) as its input.
From Eq. (6.63), it follows that the power spectral density Sy(w) of the output Y{¢) equals

Sx(w) w; <|o| <,

Sylw) = {

0 otherwise

Hence, from Eq. (6.27), we have

@© w2

1
Syw) do =2 — J. Sy(w) do = 0
2n

w1

1
E[Y*(1)] = 7 J.

-

which indicates that the area of Sy(w) in any interval of @ is nonnegative. This is possible only if Sy(w) > 0
for every w.

H(w)

Fig. 6-5
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6.28. Verify Eq. (6.72).
From Eq. (6.71), we have

Ryky = i i hh(DR otk + i — 1)

i=—ax l=-w
Taking the Fourier transform of R,(k), we obtain

o @ oL

S@= Y Reke ™= Y Y 5 iRk + i — e

k=—o A=—ow i=—-w l=—o

Letting k + i — I = n, we get

5= Y ¥ i Hi)h()R y(n)e ~10n=i+b

a=-w i=—x l=-m

i K™ Y hDe Y Ryfme

ll;(_— QH (Q)gx‘(Q) o
= HHQH(Q)S(Q) = | HQ)* S

6.29. The discrete-time system shown in Fig. 6-6 consists of one unit delay element and one scalar
multiplier (a < 1). The input X(n) is discrete-time white noise with average power ¢2. Find the
spectral density and average power of the output Y(n).

X0r) Y(n)
»( .
+
+
Unit ¢
Yn - 1y delay
Fig. 6-6
From Fig. 6-6, Y(n) and X(n) are related by
Yn)=a¥(n - 1)+ X(n) (6.148)
The impulse response h(n) of the system is defined by
h(ny = ah(n — 1) + §(n) 6.149)
Solving Eq. (6.149), we obtain
h(n) = a"u(n) 6.150)
where u(n) is the unit step sequence defined by
1 n>0
ulr) = {o n<0

Taking the Fourier transform of Eq. (6.150), we obtain

i . 1
HQ) = Y ae =

T <-a a<l,|Ql<n
"o 1 —ae 9 12|
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Now, by Eq. (6.48),
$,Q) = o 1Q) < n
and by Eq. (6.72), the power spectral density of Y(n) is
Sy(€) = | HIQ) *S(Q) = HQH(—Q)S,()

0.2

(I — ae™ @Y1 — ae’™)
o2

T 1+a’—2acosQ

10 <n (6.151)

Taking the inverse Fourier transform of Eq. (6.151), we obtain

0_2

1k}
a
1 —a?

Rylk) =

Thus, by Eq. (6.33), the average power of Y(n) is

E[Y?(n)] = Ry(0) = 1

Let Y(¢) be the output of an LTI system with impulse response A(t), when X(¢) is applied as input.
Show that

(a) Ruylt, 5) = J‘ " HBR(, s — B) dB (6.152)

—

(b) Ryl(t, s) = J Mo)Ryy(t — o, 5) da (6.153)
(a) Using Eq. (6.56), we have

Y

Rty 5) = ELX(DY(s)] = E[X(!) J. h(B)X(s — ) dﬁ]

-

= J._ RHPELX()X(s —~ Bl df = J R(BIRx(t, s — ) dfs
() Similarly,

£y

Ry(t, ) = E[Y(1)Y(s)] = E[ J W) X(t — o) da Y(s):|

—w
X

= J.m Ma)E[X(t — a)Y(s)] da = J. A(a)Ryy(t — @, s) da

- @ -«

Let Y(¢) be the output of an LTI system with impulse response h(t) when a WSS random process
X(1) is applied as input. Show that
(@) Sxy(w) = H(w)Sx(w) (6.154)
{b) Sylw) = H¥w)Sxy(w) (6.155)
(@) If X(t) is WSS, then Eq. (6.152) of Prob. 6.30 becomes

Ryylt, 5) = J. h(B)Rx(s —t — f) df (6.156)

which indicates that Ry({t, s) is a function of the time difference © = s — ¢ only. Hence

Rof®) = f " WBR( — B dB (6.157)



CHAP. 6] ANALYSIS AND PROCESSING OF RANDOM PROCESSES

Taking the Fourier transform of Eq. (6.157), we obtain
Sydw) = J Ryy(v)e 4 dv = J J h(BRy(z — fe™ 7" df dt

- J ) J " MBRx(De™ 4P df di

= Jm h(Be™ ¢ dp Jm Ry(Xe™4* d) = H(w)Sy(w)

(b) Similarly, if X(r) is WSS, then by Eq. (6.156), Eq. (6.153) becomes
Rylt, s) = J‘m h(@)Ryy(s — t + a) da
which indicates that R{t, s) is a function of the time difference t = s — ¢ only. Hence
Ry0) = J " HORylt + ) da

Taking the Fourier transform Ry(t), we obtain

Sy(@) = Jw Ry(t)e 4" d7 = Jm Jm MRyt + a)e " do dt

= J J h(@)Ryy(De ™54~ do d)

= Jm h(@)e! da J*w Ryy(A)e ™50 d)

-o -—®

= H(—w)Syyw) = H*(w)Sxy(w)
Note that from Egs. (6.154) and (6.155), we obtain Eq. (6.63); that is,
Sy(@) = H¥(@)Syy(w) = H*(w)H(w)Sx(w) = | H(w)|*Sx(w)

235

(6.158)

6.32. Consider a WSS process X(t) with autocorrelation function Ry(r) and power spectral density

Sy(). Let X'(t) = dX(t)/dt. Show that

d
(@) Ryx(t)= o Ry(1)

d2
(b) Ryfr) = = 55 Rylr)

(©) Sy(w) = 0?Sw)

(6.159)

(6.160)

(6.161)

(@) If X(2) is the input to a differentiator, then its output is Y(r) = X'(¢). The frequency response of a

differentiator is known as H(w) = jw. Then from Eq. (6.154),
Sxx(w) = Hw)Sx(w) = joSy(w)

Taking the inverse Fourier transform of both sides, we obtain

d
Ryx(t) = E Ry(7)

(b) From Eq. (6.155),
Sydw) = H¥@)Syx(w) = —joSyyx(®)
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Again taking the inverse Fourier transform of both sides and using the result of part (a), we have

Rof) = d R - d*
xl(t) = _d1 xxAT) = dit

Rx(‘f)
(¢) From Eq. (6.63),
Sx(w) = { H{w)|*Sy(w) = | jw |*Sylw) = w*Sx(w)

Note that Eqgs. (6.759) and (6.160) were proved in Prob. 6.8 by a different method.

FOURIER SERIES AND KARHUNEN-LOEVE EXPANSIONS
6.33. Verify Eqgs. (6.80) and (6.81).
From Eq. (6.78),
X, = % J;Txu)e‘f"'"ﬂ' dt  w,=2u/T
Since X (1) is WSS, E{X(1)] = gy, and we have

;
E(X,) = '[ E[X(t)]e o dt

0

~l=

|
=y 'f eIt g = iy 8(n)
Again using Eq. (6.78), we have

7

1 .
E(X, X% = E[X,, = j X ¥(s)eimuos ds]
T )y

1 (7 _
T * mugs
TJ; E[X, X*(s)]e’™s ds
N
Now E[X, X¥5)] = E[iT j X(t)e ™ innt dy X”(s)]
0
1 ("
== j E[X(D)X¥(s)]e™ ™o dy
T Jo

1 (" .
= T '[) Rylt — s)e™ "0 4y

Letting t — s = 71, and using Eq. (6.76), we obtain

[T .
E(X, X*6)] = 7 f Ry(x)e™ onte 9 g

0

(" . : .
. —_ - jawot = Jnw — - 5
= {T Ry(1)e dr e 0¥ = ¢, e M0
0

1 (7 . .
Thus E(Xn X:‘ — ? j (."e* jnwos pimeos 1o
0

| O
j‘ e Hnmmwes s = ¢ §(n — m)

=C(p
0

T

6.34. Let X(t) be the Fourier series representation of X(f) shown in Eq. (6.77). Verify Eq. (6.79).

(6.162)
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From Eq. (6.77), we have

E{'X(l)_/?([ﬂz}:E{‘X“}_ i X"ejnmol

)
= E{[X({) — i X" ejnmof}[x-t“) _ i X:te—jnwol}}

=E[|X0)PF]1— Y E[X¥X(1)]e o

n=—a

— z E[X"X*(l)]ej"'”°'+ z z E[X"X:']()j(n—m)wol

n= - = -0 m=—w

Now, by Egs. (6.81) and (6.162), we have

n=-a

E[X2X()] = creimo
E[X, X*(1)] = c,e” /o'
E(X, X7) = ¢, 8(n — m)

Using these results, finally we obtain

x X %

E{XO - XOP =Ry — ¥ ct— 3 e+ ¥ ¢, =0

n= -0 n= - n=— o

since each sum above equals Ry(0) [see Eq. (6.75)].

6.35. Let X(t) be m.s. periodic and represented by the Fourier series [Eq. (6.77)]

X= Y X, & w,=2mT,

n= -

Show that
E[IXW1*]= Y E(X,% (6.163)
From Eq. (6.81), we have
E(1X, 1) = EX, X} =c, (6.164)
Setting © = 0 in Eq. (6.75), we obtain
E[IXP1=R0) = ) ¢,= ) E(X, 9

Equation (6.163) is known as Parseval's theorem for the Fourier series.

6.36. If a random process X(t) is represented by a Karhunen-Loéve expansion [Eq. (6.82)]
X(0y= Y X,0,) O<t<T
n=1
and X,’s are orthogonal, show that ¢,(t) must satisfy integral equation (6.86); that is,

T
J Ry(t, s)p(s) ds = 4,¢,(¢) O0<t<T
0

Consider

XXy = Z X X3 0a(1)

m=1
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Then E[X(0X7] = X B(X, X30én(t) = E(1 X, 1,0

since X ,’s are orthogonal; that is, E(X,, X¥) = 0 if m # n. But by Eq. (6.84),

E[X()X71 = E[X(t) j.TX*(Sllﬁ..(S) dS]
0

T
= J. E[X()X*(s)1¢4(s) ds
V]
= '[IRx(l, S)Pa(s) ds
0
Thus, equating Egs. (6.165) and (6.166), we obtain

T
'[ Ry(t, )p,(s) ds = E(1 X,1))$,(t) = A, ,(t)
0

where 4, = E(| X, |%).

Let X(t) be the Karhunen-Loéve expansion of X(t) shown in Eq. (6.82). Verify Eq. (6.88).

From Egs. (6.166) and (6.86), we have

T
E[X()X¥] = f Ry(t, $)n(s) ds = A,,¢,(1)
0

Now by Egs. (6.83), (6.84), and (6.167) we obtain

T

T
E(X,X}) = E[J. X(t)py(r) dt X.’.‘.] =j. E[X(0X71px(1) dt
0 0

T T
= J. A OO (1) dt = 4, J. ¢ (x(1) dt
o o
= A,0(m —n)y=4,6(n —m)

Let X(r) be the Karhunen-Loéve expansion of X(t) shown in Eq. (6.82). Verify Eq. (6.85).

From Eq. (6.82), we have

E[1X(6) — X(0)1*] = E{\X(z) - f X, du(t)

)i

_ E{[X(z) -y x,aw)] [X*(z) -y X:M(t)]}
n=1 n=1

= ELIXQP) - § EDXOX3I650

~ Y EIXOXJ6,0+ Y . EX, XD, 0650

n=1 m=1

Using Egs. (6.167) and (6.168), we have

E[1X(0) = XO T = Ryt, 0 = X 460830 ~ T A, 0020) + T 2, 6,0)0}(0)

=0
since by Mercer’s theorem [Eq. (6.87)]

Rit, 0 = 3 4,6,0630)

[CHAP 6

{(6.165)

(6.166)

(6.167)

(6.168)
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6.39.

and A= E(X, 15 =4}

Find the Karhunen-Loéve expansion of the Wiener process X(t).

From Eq. (5.64),

o3s s<t

R,(t, 5) = 62 min(t, s) =
alts 3) & s) 6t s>t

Substituting the above expression into Eq. (6.86), we obtain

T
o? J min(t, s)d,(s) ds = 4, $,(1) 0<t1<T (6.169)
o

i T
or ol J s (s) ds + a2t J @,(s) ds = 4, ,(1) (6.170)
0 t

Differentiating Eq. (6.170) with respect to ¢, we get

o? J $uls) ds = 4, ¢(1) 6170

Differentiating Eq. (6.171) with respect to t again, we obtain

2

930 + 5 9,00 = 0 (6.172)
A general solution of Eq. (6.172) is
¢{t) =a, sin w,t + b, cos w, ¢ w, = o/\/T,,

In order to determine the values of a,, b,, and A, (or w,), we need appropriate boundary conditions, From
Eq. (6.170), we see that ¢,(0) = 0. This implies that b, = 0. From Eq. (6.171), we see that ¢,(T) = 0. This
implies that

6 (2n—mn (n—4n

=—= =12,..
T mT T T "
Therefore the eigenvalues are given by
eT?
=——— =1,2... 6.173
TR 6173
The normalization requirement [ Eq. (6.83)] implies that
T a:T 2
i )ydi=—"—=1 = [=
J; (a, sin w,t) 3 >a, T

Thus, the eigenfunctions are given by

b.(0) = \/% Sin(n - %) % t O0<t<T (6.174)

and the Karhunen-Loéve expansion of the Wiener process X(t) is

22 I\ =
- (= ] 1= 6.175
X \/;FE:X" sm(n 2)7,{ 0<t<T ( )

X, = \/,:zr J:cX(z) sin(n - %) % t

and they are uncorrelated with variance 4,,.

where X, are given by
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6.40. Find the Karhunen-Loéve expansion of the white normal (or white gaussian) noise W(t).
From Eq. (6.43),
Rylt, 5) = a28(t — 5)

Substituting the above expression into Eq. (6.86), we obtain
-
a? J Bt — S)pa(s) ds = A, P () 0<t<T
(1]

or [by Eq. (6.44)]
o2 ¢,(1) = A, p,lt) (6.176)

and ¢,(1) are arbitrary. Thus, any complete orthogonal set {¢,(1)} with
2 can be used 1n the Karhunen-Loéve expansion of the white gaussian

which indicates that all 4, = o*

corresponding eigenvalues 4, = o
noise.

FOURIER TRANSFORM OF RANDOM PROCESSES
6.41. Derive Eq. (6.94).
From Eq. {(6.89),

X(w)) = J‘” X(t)e ™5 di Koy = J‘m X(s)e— 15 ds
Then Ri(w,, ;) = E[X(w )X *w,)] = E[ J f X(OX*(s)e~Ht-o39 gy ds}

=f f E[X(1)X*(s)]e M=o dr ds
B .[ ,[ Rylt, s)e™ i+ i=edsl gy ds = Ry(w,, —w,)

in view of Eq. (6.93).

6.42. Derive Egs. (6.98) and (6.99).

Since X(t) is WSS, by Eq. (6.93), and letting t — s = 7, we have

o o
Rylw,, w)) = J J Rylt — s)e~Hnt¥was) gy g

@
= f Ry(r)e ™" dt J gilovtwds g
e

= Sy(w,) f o Tl Tws g
From the Fourier transform pair (Appendix B) | < 27é(w), we have

J e dt = 2nd(w)
Hence Rylw,, w;) = 2a8y(w)dlw, + w,)
Next, from Eq. (6.94) and the above result, we obtain

Rylw,, w,) = ﬁx(wl» —w,) = 2nSy(w,)d{w, — w,)
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6.43.

6.44.

6.45.

Let X(w) be the Fourier transform of a random process X(t). If X(w) is a white noise with zero
mean and autocorrelation function g(w,)é(w, — w,), then show that X(1) is WSS with power
spectral density g(w)/2x.

By Eq. (6.91),

X(t) = 2—17! J X(w)e do

| I .
Then E[X()] = 7 .[ E[ X(w)]e’” dw =0 (6.177)
Assuming that X(¢) is a complex random process, we have
Rylt, s) = E[X()X*9)] = [ .[ .[ X)X Hw)e ™ doy, dwz:l

1
=— J .[ E[X ()X *w)]e ™ dw, dw,

J:-i J:-
[

f .[ (@), — @,)e@" ) doy| dw,

I
= —J (©,)e"" ™ do, (6.178)

J:.

which depends only on ¢t — s = 7. Hence, we conclude that X(t) is WSS. Setting t — s = 7 and w, = w in Eq.
(6.178), we have

1 ke ) 1 (" 1 .
RX(T) = ﬁ .[ qw)e™ dow = Z I:Zn glw )]ejmr do
] LN

=— Sx( )¢ daw

2n
in view of Eq. (6.24). Thus, we obtain Sy(w) = g(w)/2n.
Verify Eq. (6.104).
By Eq. (6.100),
XQ)= Y X(ne i XXQy) = Y X*m)eSm
Then RQ,, Q,) = E[X(Q)X*Q,)] = 2 2 E[X ()X *(m)]e Jn—t2m

A= —w m= -

= Z Z Ry(n, mle Bhnti-aml o R(Q - —Q,)

in view of Eq. (6.103).

Derive Egs. (6.105) and (6.106).
If X(n)is WSS, then Ry(n, m) = Ry(n — m). By Eq. (6.103), and letting n — m = k, we have

o
Z n _ m)e - jSntQym

«
RQ, Q)= Y
—ﬂ: ) - ) +£

—Jﬂlk e ~J tym
Z m=z-;tx-

=Sx(Ql) Z e~ Jan + Qam

m=-x
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6.46.

6.47.

6.48.

6.49.

6.50.
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From the Fourier transform pair (Appendix B) x(n) = 1 < 275(Q2), we have

S e imrd) 2 Ip5(Q, + Q)

Hence RyQ,, Q) = 2185,(0,)8(Q, + Q)
Next, from Eq. (6.104) and the above result, we obtain
Rz, ;) = ﬁx(va =) = 2nSx(Q,)5(Q2, — ;)

Supplementary Problems

Is the Poisson process X(¢) m.s. continuous?
Hint: Use Eq. (5.60) and proceed as in Prob. 6.4.
Ans. Yes.

Let X(t) be defined by (Prob. 5.4)
X(t)=Y cos wt t>0

where Y is a uniform r.v. over (0, 1) and @ is a constant.

(a) Is X(¢) m.s. continuous?
(b) Does X(t) have a m.s. derivative?

Hint: Use Eq. (5.87) of Prob. 5.12.
Ans. (a) Yes; (b) yes.

Let Z(¢) be the random telegraph signal of Prob. 6.18.

(@) Is Z(t) m.s. continuous?
(b) Does Z(t) have a m.s. derivative?

Hint: Use Eq. (6.132) of Prob. 6.18.
Ans. (a) Yes; (b) no.

Let X(t) be a WSS random process, and let X'(¢) be its m.s. derivative. Show that E[ X(1)X'(t)] = 0.

Hint: Use Eqgs. (6.13) [or (6.14)]) and (6.117).

2 t+7T/2
Let Z(t) = T J X(a) da

where X(t) is given by Prob. 6.47 with w = 2n/T.

(@) Find the mean of Z(t).
(b) Find the autocorrelation function of Z(t).

|
Ans. (@) ——sinwt
n

4
(B)  Ry(t, 5) = - sin wt sin ws
In

[CHAP 6
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6.51.

6.52.

6.53.

6.54.

6.55.

6.56.

Consider a WSS random process X(t) with E[X(t)] = u,. Let

T/2

1
<X(t)>r=7J‘ X(1) dt

-Ti2

The process X(¢) is said to be ergodic in the mean if

Lim. (X (1)) = E[X(1)] = py

T=x
Find E[<X (1)) +].
Ans. uy

243

Let X(t) = A cos(wy t + ®), where A and w, are constants, @ is a uniform r.v. over (—=, =) (Prob. 5.20).

Find the power spectral density of X(t).

A*n
Ans. Sy(w) = = [6(w — wgy) + 8w + wy)]

A random process Y(r) is defined by
Y(t) = AX(¢) cos(w, t + O)

where A and w, are constants, ® is a uniform r.v. over (—=, n), and X(¢) is a zero-mean WSS random
process with the autocorrelation function Ry(r) and the power spectral density S (w). Furthermore, X(r)

and O are independent. Show that Y(t) is WSS, and find the power spectral density of Y(¢).

2
Ans. Syw) = AT [Sxlw — @) + Sy(w + @,)]

Consider a discrete-time random process defined by
X(n)= Y a; cos(@;n + @)
i=1
where a; and Q; are real constants and ©, are independent uniform r.v.’s over (—7, 7).

(@) Find the mean of X(n).
(b) Find the autocorrelation function of X(n).

Ans. (a) E[X(n)] =0

(b) Ry(n,n+k)= % i a? cos(Q; k)

Consider a discrete-time WSS random process X(#n) with the autocorrelation function
Ry(k) = 10e 051K
Find the power spectral density of X(n).

6.32
Ans. S = s " @<

Let X(t) and Y(r) be defined by
X(t)=U cos wyt + V sin wyt
Y(t) = V cos wyt — U sin wy ¢

where w, is constant and U and V are independent r.v.’s both having zero mean and variance 2.

(@) Find the cross-correlation function of X(¢) and Y(z).
(b) Find the cross power spectral density of X(¢) and Y(z).
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Ans. (@) Ryylt,t + 1) = ~ 6?2 sin wyt
(b) Sxylw) — jo*a[dw — wg) — 8w + wy)]

6.57. Verify Egs. (6.36) and (6.37).
Hint: Substitute Eq. (6./8) into Eq. (6.34).

6.58. Let Y(1) = X(1) + W(r), where X(t) and W(r) are orthogonal and W(t) is a white noise specified by Eq. (6.43)
or (6.45). Find the autocorrelation function of Y(t).

Ans. Ryt 5) = Ry(t, s) + a28(t — 5)

6.59. A zero-mean WSS random process X(¢) is called band-limited white noise if its spectral density is given by

{NO/Z |w) < wg

S =
o) =1, (@] > wy
Find the autocorrelation function of X {(z).

Nywg sin wgt
Ans. RX(1)=—u—B—
2n Wyt

6.60. A WSS random process X(¢) is applied to the input of an LTI system with impulse response A(t) = 3¢~ 2'u(t).
Find the mean value of Y(¢) of the system if E[X(¢)] = 2.
Hint: Use Eq. (6.59).
Ans. 3

6.61. The input X(s) to the RC filter shown in Fig. 6-7 is a white noise specified by Eq. (6.45). Find the mean-
square value of Y(t).
Hint: Use Eqs. (6.64) and (6.65).
Ans. 6*/(2RC)

N

1]
||

Fig. 67 RC filter.

6.62. The input X(¢2) to a differentiator is the random telegraph signal of Prob. 6.18.

(a) Determine the power spectral density of the differentiator output.
(b) Find the mean-square value of the differentiator output.
4iw?
w* + 422
() E[Y¥1)) =0

Ans. (a) Syw) =

6.63.  Suppose that the input to the filter shown in Fig. 6-8 is a white noise specified by Eq. (6.45). Find the power
spectral density of Y{¢).

Ans. Sy(w) = X1 + a® + 2a cos wT)
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6.64.

6.65.

6.66.

6.67.

6.68.

X

Verify Eq. (6.67).

Hint: Proceed asin Prob. 6.24.

Suppose that the input to the discrete-time filter shown in Fig. 6-9 is a discrete-time white noise with
average power a2, Find the power spectral density of Y(n).

Ans.  S4Q) = 6*(1 + «* + 2a cos Q)

X(m) ¥(n)
.
> Unit
delay
Fig. 6-9

Using the Karhunen-Loéve expansion of the Wiener process, obtain the Karhunen-Loéve expansion of the
white normal noise.

Hint: Take the derivative of Eq. (6.175) of Prob. 6.39.

2 & 1
Ans. \/%HE:IVV,.COS<H—§)%[ O<t<T

where W, are independent normal r.v.’s with the same variance ¢°.
Let Y(t) = X(t) + W(t), where X(t) and W(t) are orthogonal and W(t) is a white noise specified by Eq. (6.43)
or (6.45). Let ¢,(t) be the eigenfunctions of the integral equation (6.86) and 4, the corresponding eigenvalues.

(a) Show that ¢ (1) are also the eigenfunctions of the integral equation for the Karhunen-Loéve expansion
of Y(1) with Ry(t, s).

(b) Find the corresponding eigenvalues.
Hint: Use the result of Prob. 6.58.
Ans. (b) A, + ¢?

Suppose that
X =Y X,ere

where X, are r.v.’s and w, is a constant. Find the Fourier transform of X(¢).

Ans. X(w)=Y 2nX, 8w — nwy)
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6.69. Let X(w) be the Fourier transform of a continuous-time random process X(¢). Find the mean of X(w).

0

Ans. Flp )] = J‘ uxlt)e it dt  where py(t) = E[X(1)]

-~ ™

6.70. Let
X = Y Xne ™
where E[X(n)] =0 and E[X(n)X(k)] = 0,2 8(n — k). Find the mean and the autocorrelation function of
X(Q).

Ans. E[X(Q)] =0 RyQ, Q)= ¥ o2 /@ -0vn

= —a



Chapter 7

Estimation Theory

7.1 INTRODUCTION

In this chapter, we present a classical estimation theory. There are two basic types of estimation
problems. In the first type, we are interested in estimating the parameters of one or more r.v.’s, and in
the second type, we are interested in estimating the value of an inaccessible r.v. Y in terms of the
observation of an accessible r.v. X.

72 PARAMETER ESTIMATION

Let X be a r.v. with pdf f(x) and X, ..., X, a set of n independent r.v.’s each with pdf f(x). The
set of r.v’s (X4, ..., X,) is called a random sample (or sample vector) of size n of X. Any real-valued
function of a random sample s(X,, ..., X,) is called a statistic.

Let X be a r.v. with pdf f(x; 6) which depends on an unknown parameter 6. Let (X,, ..., X,) be a
random sample of X. In this case, the joint pdf of X, ..., X, is given by

S50)=fxy, s %05 0) = [] f(x;5 0) (7.1)
i=1
where x,, ..., x, are the values of the observed data taken from the random sample.
An estimator of 8 is any statistic s(X,, ..., X,), denoted as
®=S(X1"-'1Xn) (7‘2)
For a particular set of observations X | = x;, ..., X, = x,, the value of the estimator s(x,, ..., x,) will

be called an estimate of § and denoted by 8. Thus an estimator is a r.v. and an estimate is a particular
realization of it. It is not necessary that an estimate of a parameter be one single value; instead, the
estimate could be a range of values. Estimates which specify a single value are called point estimates,
and estimates which specify a range of values are called interval estimates.

7.3 PROPERTIES OF POINT ESTIMATORS
A. Unbiased Estimators:
An estimator ©® = s(X,, ..., X,) is said to be an unbiased estimator of the parameter 6 if
E®)=40 (7.3)
for all possible values of 6. If © is an unbiased estimator, then its mean square error is given by
E[(® - 6)’] = E{[© - E(©)]*} = Var(0) (7.4)

That is, its mean square error equals its variance.

B. Efficient Estimators:

An estimator @, is said to be a more efficient estimator of the parameter 8 than the estimator ©,
if
1. ®, and ©, are both unbiased estimators of 6.

247



248 ESTIMATION THEORY [CHAP 7

2. Var(®,) < Var(®,).

The estimator ®,,, = s(X, ..., X,) is said to be a most efficient (or minimum variance) unbiased
estimator of the parameter 6 if

1. Itis an unbiased estimator of 6.
2. Var(®,,,) < Var(0) for all ©.

C. Consistent Estimators:

The estimator ®, of 8 based on a random sample of size n is said to be consistent if for any small
£>0,

lim P(]®, -0 <¢g=1 (7.5)
or equivalently,
lim P(|®,—-08|>¢=0 (7.6)

The following two conditions are sufficient to define consistency (Prob. 7.5):

1. lim E@®,) =6 (7.7)
2. lim Var(®,) =0 (7.8)

74 MAXIMUM-LIKELIHOOD ESTIMATION

Let f(x; 6) = f(x,, ..., x,,; 0) denote the joint pmf of the r.v’s X, ..., X, when they are discrete,
and let it be their joint pdf when they are continuous. Let

L) = f(x; 0) = f(xy, ..., X,3 6) (7.9)

Now L(6) represents the likelihood that the values x,, ..., x, will be observed when 8 is the true value
of the parameter. Thus L(6) is often referred to as the likelihood function of the random sample. Let
Oy = s(xy, ..., x,) be the maximizing value of L(8); that is,

L(0,,) = max L(0) (7.10)
[}

Then the maximum-likelihood estimator of 8 is
O =5(Xy, ..., X)) (7.11)

and 60, is the maximum-likelihood estimate of 6.

Since L() is a product of either pmf’s or pdf’s, it will always be positive (for the range of possible
value of 6). Thus In L(f) can always be defined, and in determining the maximizing value of 6, it is
often useful to use the fact that L(8) and In L(f) have their maximum at the same value of . Hence,
we may also obtain 8,,, by maximizing In L(6).

7.5 BAYES’ ESTIMATION

Suppose that the unknown parameter 8 is considered to be a r.v. having some fixed distribution
or prior pdf f(8). Then f(x; 8) is now viewed as a conditional pdf and written as f(x|#8), and we can
express the joint pdf of the random sample (X, ..., X,) and 0 as

S0 os X, 0) = f(x,, ..., x,16) f(6) (7.12)
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and the marginal pdf of the sample is given by

f(xl,...,x")=ff(xl,...,x,,,O)dO (7.13)
Rg

where R, is the range of the possible value of 8. The other conditional pdf,

S0 s %00 0) _ Sy, %0 f(0)
f(xl)"'»xn) f(xl:-"»xn)

1s referred to as the posterior pdf of 6. Thus the prior pdf f(6) represents our information about &
prior to the observation of the outcomes of X, ..., X, and the posterior pdf f(8|x,, ..., x,) rep-
resents our information about 8 after having observed the sample.

The conditional mean of 8, defined by

f(0|x1’ EEEE) xn)=

(7.14)

0, = E@|x,, ..., x,) =f 0f(61x,, ..., x,) db (7.15)
Ro

is called the Bayes’ estimate of 8, and
®p=E@0|X,,..., X,) (7.16)

is called the Bayes’ estimator of 0.

7.6 MEAN SQUARE ESTIMATION

In this section, we deal with the second type of estimation problem—that is, estimating the value
of an inaccessible r.v. Y in terms of the observation of an accessible r.v. X. In general, the estimator ¥
of Y is given by a function of X, g(X). Then Y — ¥ = Y — g(X) is called the estimation error, and
there is a cost associated with this error, C[Y — g(X)]. We are interested in finding the function g(X)
that minimizes this cost. When X and Y are continuous r.v.’s, the mean square (m.s.) error is often
used as the cost function,

CLY — g(X)] = E{[Y — 9(X)]1?} (7.17)
It can be shown that the estimator of Y given by (Prob. 7.17),
Y=9g(X)=EY|X) (7.18)

is the best estimator in the sense that the m.s. error defined by Eq. (7.17) is a minimum.

7.7 LINEAR MEAN SQUARE ESTIMATION

Now consider the estimator ¥ of Y given by

Y=gX)=aX +b (7.19)
We would like to find the values of a and b such that the m.s. error defined by
e=E[(Y — V)] = E{[Y — (aX + b)]%} (7.20)
is minimum. We maintain that a and b must be such that (Prob. 7.20)
E{[Y — (@X + b)]X} =0 (7.21)
and a and b are given by
o=y b=py—apy (7.22
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and the minimum m.s. error e,, is (Prob. 7.22)
en = 0y (1 — pxy?) (7.23)

where oy, = Cov(X, Y) and pyy is the correlation coefficient of X and Y. Note that Eq. (7.2]) states
that the optimum linear ms. estimator ¥ = aX + b of Y is such that the estimation error Y — ¥ = ¥ —
(aX + b) is orthogonal to the observation X. This is known as the orthogonality principle. The line
y = ax + b is often called a regression line.

Next, we consider the estimator ¥ of Y with a linear combination of the random sample
Xy, ... X,) by

Y=3%ax, (7.24)
i=1

Again, we maintain that in order to produce the linear estimator with the minimum m.s. error, the
coefficients ¢; must be such that the following orthogonality conditions are satisfied (Prob. 7.35):

E[(Y— iaix,.)xj]=0 j=1,...,n (7.25)
i=1

Solving Eq. (7.25) for a,, we obtain

a=R"'b (7.26)
where
a; b, Ry, Ry,
a=|: b=|: b= E(YX) R=|: Ry =EX;X)
an bn Rnl Rnn
and R™!is the inverse of R.
Solved Problems

PROPERTIES OF POINT ESTIMATORS

71. Let(X,,..., X,) be a random sample of X having unknown mean g Show that the estimator of
u defined by

M=

= =

Z X=X (7.27)

is an unbiased estimator of . Note that X is known as the sample mean (Prob. 4.64).
By Eq. (4.108),

1 1 LA
E(M)=E<; i;Xi>=;;£=ZIE(X|)=;._;#=;(H#)=#

Thus, M is an unbiased estimator of u.

7.2.  Let(X,, ..., X,) be a random sample of X having unknown mean yu and variance o2. Show that
the estimator of ¢? defined by

§2 = Z (X, ~ X)? (7.28)

I | =
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7.3.

74.

where X is the sample mean, is a biased estimator of g2

By definition, we have

o = E[(X; — w’]

= | —

Now E(S?) = E[ (X, - X)Z] - E{% 50X~ ) — (% — u)]z}
1 =1

T Ns TP«

= | =

I
m
—A—

(X, — w0 —2X, — )X — )+ (X — u)z]}

= | —

Il

m
—A—
..
i

(X — w* — n(X — u)z]}

[(X; — ] — E[(X — »?] = 6% - 03°

= | o—

Il
gkl
oo

By Eqs. (4.112) and (7.27), we have

- 21 l
ot =Var(X)= 3 S gl=-g¢2
i=1

n n
2 2 L, _n—1,
Thus E(§*)=0* — - ot = c (7.29)
which shows that §? is a biased estimator of o2
Let (X,, ..., X,) be a random sample of a Poisson r.v. X with unknown parameter 1.

(a) Show that

X, and Ar=3HX, + X,)

M=

A=

S |-

i=1

are both unbiased estimators of 4.
(b) Which estimator is more efficient?

(a) By Eqgs.(2.42) and (4.108), we have

1 2 1
E(A) =~ 3 E(X) = (nd) = 4
i=1

E(Aj) = ;[E(X ) + E(X})] = 3(24) = 4

Thus, both estimators are unbiased estimators of 4.
(b) By Egs.(2.43)and (4.112),

i i
Var(X) == (nd) = ;

I & !
Var(A,) == ¥ Var(X) = —
al'( l) nz 2 al'( |) nzl ! n

IS

A
Var(Ay) = 3(24) = 3
Thus, if n > 2, A, is a more efficient estimator of 4 than A,, since A/n < 4/2.
Let (X,, ..., X,) be a random sample of X with mean u and variance o2. A linear estimator of y

is defined to be a linear function of X,, ..., X,,, {X,, ..., X,). Show that the linear estimator
defined by [Eq. (7.27)],
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is the most efficient linear unbiased estimator of p.

Assume that
M =IX,,..X)= Za,-X,-
i=1

is a linear unbiased estimator of u with lower variance than M. Since M, is unbiased, we must have

EM)) = Z 4 E(X;) = ani =H
i=1 i=1
which implies that Y7, a;, = 1. By Eq. (4.112),
Var(M) = ! o2 and  Var(M,) =¢?) a?
n

By assumption,

" 1 " 1
6ty at<-d* or Yal<- (7.30)
i=1 h i=1 h
Consider the sum
0<i<a—12— (a2 2ﬂ+—l—)
SN on) s n o ont
]

3
=

RS
~
!
|— =

=

1
i T2 1=
2
|
|
™
R
+
|

which, by assumption (7.30), is less than 0. This is impossible unless a; = 1/n, implying that M is the most
efficient linear unbiased estimator of u.

7.5. Show that if
limE@®,) =0 and lim Var(®,) =0
n—o n—oo
then the estimator @, is consistent.
Using Chebyshev’s inequality (2.97), we can write

P(|®"—9|Ze)sw=iz

& € E{[Qn - E(Gn) + E(@n) - 9]2}

1
2

I

E{[®, — E©,]* + [E©®,) — 6]* + 2[0, — E©,)]][E®,) — 61}

™

Il

Elz (Var(®,) + E{[E(®,) — 61°} + 2E{[®, — E(©,)]][E(®,) - 61})

Thus, if
lim E(©,) =8 and limVar(®,) =0
then limP(|1©,—-8|2¢=0

that is, @, is consistent [see Eq. (7.6)].

7.6. Let(X,, ..., X,) be a random sample of a uniform r.v. X over (0, a), where a is unknown. Show
that

A =max(X,, X5, ..., X,) (7.31)

is a consistent estimator of the parameter a.
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If X is uniformly distributed over (0, a), then from Eqgs. (2.44), (2.45), and (4.98) of Prob. 4.30, the pdf of
Z =max(X,, ..., X,)is

n{z n-1
S22y = nf(D[F ()] ' = 2 (;) 0<z<a (7.32)
a n {° n
Thus E(A4) = J‘ 2fy(z) dz = — J‘ "dz = a
o a Jo n+1
and limE(Ad) =a
Next, E(4%) = fazzfz(z) PR (N L
o a J, n+2
na? nla? n
Var(A) = E(A%) — [E(4))? = — = 2
ar(4) = E(47) ~ [E4)] n+2 (n+1)y? (n+2)(n+l)2a
and lim Var(4) =0
Thus, by Eqs. (7.7) and (7.8), A is a consistent estimator of parameter a.
MAXIMUM-LIKELIHOOD ESTIMATION
77. Let (X,, ..., X,) be a random sample of a binomial r.v. X with parameters (m, p), where m is
assumed to be known and p unknown. Determine the maximum-likelihood estimator of p.
The likelihood function is given by [Eq. (2.36)]
m m
L(p) = f(xy, ..., X»; P) =< )p’"(l —pmTE ( )p"(l - p)m™
X1 Xn
= (m) R (m)p):i'-l ()~ p)(mn*):fﬂ xi)
X1 Xn
Taking the natural logarithm of the above expression, we get
In L(p)=In ¢ +<2xi) lnp+<mn — Zx,.) In(1 ~ p)
i=1 i=1
where c=1]] (m)
i=1 \Xi
d 12 1 i
and —InLp)=- ) x;———{mn— ) x
dp ?) Pi=1 l“‘P( iz:l ()
Setting d[In L(p)}/dp = 0, the maximume-likelihood estimate p,,, of p is obtained as
12 1 ( " )
- X, = -~ mn — X;
Pur i=21 1 — by .‘gn
. 12
or Pur = — i;x,- (7.33)
Hence, the maximum-likelihood estimator of p is given by
| - 1
=— Y X =— .
Pyr o (; = X (7.39)
78. Let(X,,..., X,) be arandom sample of a Poisson r.v. with unknown parameter i. Determine the

maximum-likelihood estimator of A.
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The likelihood function is given by [Eq. (2.40)]

e"l/lx" e‘""l):7=l"‘

LAY = f(xyy oy x5 A =[] =

=y X! X b x,!
Thus, InLA)=—nl+Indy x,—Inc
i=1
where e=]] =9
i=1
d d In L(2) = +l i
an A WP

Setting d[In L{1))/dA = 0, the maximum-likelihood estimate 1,,, of 2 is obtained as

ixi (7.35)

Hence, the maximum-likelihood estimator of 4 is given by

. >
A =Xy, -0 Xp) =~ X, =X (7.36)
i=1
79. Let (X,, ..., X,) be a random sample of an exponential r.v. X with unknown parameter A.
Determine the maximum-likelihood estimator of 4.
The likelihood function is given by [Eq. (2.48)]
LAY =f(xy, ..., x,5 A) = [[Ae™ % = jre™AEl=1x
i=1
Thus, InLA)=nrlnA—21Y x
i=1
d n "
d —InLl)=-— Y x
an 7 In L{) 1 .';x'
Setting d[In L{4)]/dA = 0, the maximum-likelihood estimate 1,,, of A is obtained as
a n
Iy =~ (7.37)
X
i=1
Hence, the maximum-likelihood estimator of A is given by
n ]
M =sXp 0 X)=——=% (7.38)
X
i=1
7.10. Let (X, ..., X,) be a random sample of a normal random r.v. X with unknown mean u and

unknown variance ¢2. Determine the maximum-likelihood estimators of x and 62

The likelihood function is given by [Eq. (2.52)]

. 1 1
L(y, o) =.’(xl' oy Xy O) = H \/——2— CXp[— F (x; '_/‘)2]
no

: <L>n/2 l 1 n )
“\ 7 pr exp| — 352 i;l(xi ~H)
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Thus, In L{y, 6) = — E In2z) —ning —— Z x; — p)?
In order to find the values of p and ¢ maximizing the above, we compute

0
é—lnL/‘l7a’) 2 Z(xl

a n 1 5
aln Lip, 0) = —;+;—3i§l(Xi_#)

Equating these equations to zero, we get

and —5 20X — Ayt =

i X; (7.39)
=1

Z (xi — .&ML)Z (7.40)

[ _

My,=~ ) Xi=X (7.41)
12 _

SuLl =~ Y (X, — X)? (7.42)

BAYES’ ESTIMATION
711, Let(X,,..., X,) be the random sample of a Bernoulli r.v. X" with pmf given by [Eq. (2.32)]
S, py=p(t—-pyY - x=0,1 (7.43)

where p, 0 € p £ 1, is unknown. Assume that p is a uniform r.v. over (0, 1). Find the Bayes’
estimator of p.

The prior pdf of p is the uniform pdf; that is,

Sip)y=1 0<p<l
The posterior pdf of p is given by
f(xl) sy Xpo p)
X1y 0ney Xp) = ——
LA A T

Then, by Eq. (7.12),

Sl ees Xas D= [0y X, P P)
= pHeel — pyHx = pr(l — py "

where m = Y7_, x,, and by Eq. (7.13),

1
x)_fo,,.A, dp—Jp'"(l—p)"""dp
0

Now, from calculus, for integers m and k, we have

1 tk!
My Nk _ m! o
_Lp (1 —pitdp (m+k+ 1! (7.44)
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Thus, by Eq. (7.14), the posterior pdf of p is

f( Ix x)_f(x,,...,x,,,p)_(n+l)!p"'(l—p)""’"
P11 s %)= [l o0 X)) m!(n — m)!

and by Eqs. (7.15) and (7.44),
|
E(p)x,, ... x,) = f pfplxy, ....x,)dp
0

+ 1) !
SR f prTIL - py T dp
0

ml(n — m)!
_ {n+ D)l (m+ )n—m)!
T mi(n — m)! (n+2)!

l n
_mtl (Zx;+l)

nt+2 n+2\4

Hence, by Eq. (7.16), the Bayes’ estimator of p is
1

P,,=E(p|X,,...,X,,)=m(iX,-+l) (7.45)
i=1

7.12. Let (X,, ..., X,) be a random sample of an exponential r.v. X with unknown parameter i.
Assume that A is itself to be an exponential r.v. with parameter a. Find the Bayes’ estimator of 4.

The assumed prior pdf of 4 is [Eq. (2.48)]

ae™ a4, >0
A) = ’
) {0 otherwise
Now S aenr %, 4) = l‘[,{e—,&x:=lneﬂlE:'Jn___lne—mx

i=1

where m = Y. x,. Then, by Eqs. (7.12) and (7.13),

S(xy, ---.xn)=f Sxis s %, [ A) f(A) dA
0

= f A"e “miqe”* 4]
0

* n!

=a '[) Arglarmi ) = o P

By Eq. (7.14), the posterior pdf of 4 is given by

S X D) (o m)tT ATe e
Sxi e X,) n!

Thus, by Eq. (7.15), the Bayes’ estimate of 4 is

SAl X ey X,)

Ag=EQAx,, ..., x)= rif(ux,, X)) dA
0

(e myt!

LA
; J‘ ln-*le—(a+m),l di
n! o

e mytt (n4 1y
B n! (@ 4+ myt?

+1 +1
L S (7.46)
a+m
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7.13.

and the Bayes’ estimator of 4 is

As = n+1 _n+l 7 47
5= d T a+nX (7.47)
e+ Y X,

i=1

Let (X, ..., X,) be a random sample of a normal r.v. X with unknown mean u and variance 1.
Assume that u is itself to be a normal r.v. with mean 0 and variance 1. Find the Bayes’ estimator
of u.

The assumed prior pdf of u is

Then by Eq. (7.12),
f(xl’ vy Xps “) =f(xlv crry xnl“)f(“)

1 - (x'__u)l 1 —u2
= 2ny exp[_,-; 2 ]\/_z_ne ’

n xl_Z
_exp<_i§1 -2—> (n+ 1)( 2 2u &
=g S T W g B

R e PO ST

2 Xi
(2myin+ 12 2 n+1,5

Then, by Eq. (7.14), the posterior pdf of u is given by
Sy, ooon Xg 1)
SRIxp oy X)) = 7
S(xgy oy x,, 1) du

- W

n 2
—c exp[_ (n -ZF ) (ﬂ - J‘r 1 .-;x‘) } (7.48)
where C = C(x,, ..., x,) is independent of u. However, Eq. (7.48) is just the pdf of a normal r.v. with mean
i "
n+l (iEIXi)
and variance
[
n+1

Hence, the conditional distribution of u given x,, ..., x, is the normal distribution with mean

" -l+ 1 (.-;x‘)

and variance

Thus, the Bayes’ estimate of u is given by

ﬁH'__E(#IXD e xn)z Z X (749)
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and the Bayes’ estimator of u is

(7.50)

n+1 n+1

7.14. Let (X,, ..., X,) be a random sample of a r.v. X with pdf f(x; 6), where 6 is an unknown
parameter. The statistics L and U determine a 100(1 — «) percent confidence interval (L, U) for
the parameter 6 if

PL<O8<U)>=1-a O<ax< 1 (7.5hH
and 1 — o is called the confidence coefficient. Find L and U if X is a normal r.v. with known
variance ¢ and mean g is an unknown parameter.

If X = N(u; ¢?), then

X —

a/\/_

is a standard normal r.v., and hence for a given x we can find a number z,,, from Table A (Appendix A)
such that

- 12
Z= where X =~ Y X
=)

X —p
Pl —zp < ——=<zp|=1—a (7.52)

a/\/;

For example, if 1 —a = 0.95, then z,,, = 25 4,5 = 1.96, and if | —a = 0.9, then z,, =z, ;5 = 1.645. Now,
recalling that ¢ > 0, we have the following equivalent inequality relationships;

X -
TZy2 < I/—;
_ZaIZ(G/\/'_') <X-p< 2112(0/\/;)
-X- Za/Z(G/\/;) <-—pu<—-X+ Za/Z(a/\/;)
and X + 2,500/ /) > p> X — z,5(0/\/n)

Thus, we have

< Zyz

PLX — z,5(0//m) < 1 < X + 2,500/ /M)l = | — « (7.53)

and so

L=2X—z,6//n) and  U=2ZX+z,(c/./n (7.54)

7.15. Consider a normal r.v. with variance 1.66 and unknown mean u. Find the 95 percent confidence
interval for the mean based on a random sample of size 10.

As shown in Prob. 7.14, for 1 — o = 0.95, we have z,,, = 7, 4,5 = 1.96 and
2u72l0/3/m) = 1.96(/1.66/,/10) =
Thus, by Eq. (7.54), the 95 percent confidence interval for u is
(X — 08, X +0.8)

MEAN SQUARE ESTIMATION

7.16. Find the m.s. estimate of a r.v. Y by a constant c.

By Eq. (7.17), the m.s. error is

%X

e=E[Y -¢c)]= j (v — f(y) dy (7.55)
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7.17.

7.18.

Clearly the m.s. error e depends on ¢, and it is minimum if

de _ 2J.fc dy=0
7l _w(y—c')f(y) y =

or c J. Sfydy=c =J. i) dy

Thus, we conclude that the m.s. estimate ¢ of Y is given by

y=c= J. yf(y) dy = E(Y) (7.56)
Find the m.s. estimator of a r.v. Y by a function g(X) of the r.v. X.

By Eq. (7.17), the m.s. error is
e=E{[Y —g(X))*} = J._ J._ [y — g0 (x, y) dx dy

Since f(x, y) = f(y] x)f(x), we can write

e= f f(x){ f [y — 4003 (71 ) dy} dx (7.57)

Since the integrands above are positive, the m.s. error ¢ is minimum if the inner integrand,

D= g(x)1*f(y1x) dy (7.58)

is minimum for every x. Comparing Eq. (7.58) with Eq. (7.55) (Prob. 7.16), we see that they are the same
form if ¢ is changed to g(x) and f(y) is changed to f(y|x). Thus, by the result of Prob. 7.16 [Eq. (7.56)], we
conclude that the m.s. estimate of Y is given by

ﬁ=g(XJ=J. :yf(ylx) dy = E(Y|x) (7.59)

— a0
Hence, the m.s. estimator of Y is

¥ =g(X)=E(Y|X) (7.60)

Find the ms. error if g(x) = E(Y | x) is the m.s. estimate of Y.

As we see from Eq. (3.58), the conditional mean E(Y |x) of Y, given that X = x, is a function of x, and
by Eq. (4.39),

E[E(Y|X)] = E(Y) (7.61)

Similarly, the conditional mean E[g(X, Y}|x] of g(X, Y), given that X = x, is a function of x. It defines,
therefore, the function E[g(X, Y)| X] of the r.v. X. Then

E{E[¢(X, V)| X]} = J i [ J " s N1 dy]f(x) dx

— ~-

B J w J 905, DS (Y1 0f(x) dx dy

= J. Ji g(x, ) f(x, y) dx dy = E[g(X, Y)] (7.62)

Note that Eq. (7.62) is the generalization of Eq. (7.61). Next, we note that
E[g,(X)gx(Y)|x] = E[g,(x)g,(Y)I x] = g,(x)E[g,(Y) | x] (7.63)
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Then by Eqgs. (7.62) and (7.63), we have
E(g,(X)g2(Y)] = E{E[g,(X)g,(Y}| X1} = E{g\(X)E(g,(Y)| X1} (7.64)
Now, setting g,(X) = g(X) and g,(Y) = Y in Eq. (7.64), and using Eq. (7.18), we obtain
E[g(X)Y] = E[g(X)E(Y | X)] = E[4*(X)]
Thus, the m.s. error is given by

e = E{[Y — g(X))*} = E(Y?) - 2E[¢(X)Y] + E[g*(X)]
= E(Y?) - E[¢%(X)) (7.65)

Let Y = X? and X be a uniform r.v. over (— 1, 1). Find the m.s. estimator of Y in terms of X and
its m.s. error.

By Eq. (7.18), the m.s. estimate of Y is given by
g(x) = E(Y]x) = E(X?*| X = x) = x?
Hence, the m.s. estimator of Y is
Y=x? (7.66)
The ms. error is

e = E{[Y — g(X))*) = E{[X* — X?]%) =0 (7.67)

LINEAR MEAN SQUARE ESTIMATION

7.20.

7.21.

Derive the orthogonality principle (7.21) and Eq. (7.22).
By Eq. (7.20), the m.s. error is
ea, by=E{[Y — (aX + b)1?}

Clearly, the m.s. error e is a function of « and b, and it is minimum if de/da = 0 and de/db = 0. Now

Z—:—= E{Q2[Y — (aX + B)J(- X)} = —2E{[Y — (aX + b)]X}
Z—Z = E{2[Y — (aX + b)J(— 1)} = =2E{[Y — (aX + b)]}
Setting de/da = 0 and Je/0b = 0, we obtain
E{[Y — (aX + b)]X} =0 (7.68)
E[Y —(aX +b)]=0 (7.69)

Note that Eq. (7.68) is the orthogonality principle (7.21).
Rearranging Eqs. (7.68) and (7.69), we get

E(X?)a + E(X)b = E(XY)
E(X)a + b = E(Y)
Solving for a and b, we obtain Eq. (7.22); that is,
_EXY)— EX)E(Y) _oxy _ 0y

TTEX)[EXE o ey X
b= E(Y) — aE(X) = py — apiy

where we have used Eqgs. (2.31), (3.51), and (3.53).

Show that m.s. error defined by Eq. (7.20) is minimum when Eqs. (7.68) and (7.69) are satisfied.
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7.22,

7.23.

7.24.

Assume that ¥ = cX + d, where ¢ and d are arbitrary constants. Then
elc, d)= E{[Y — (cX + d)]*} = E{[Y —(aX + b) + (a — o)X + (b — d)]?}
= E{[Y — (aX + b)]*} + E{[(a — o)X + (b — d)]*}
+ 2a — Q)E{[Y — (aX + b)]X} + 2(b — D)E{[Y — (aX + b)]}
= ela, b) + E{[(a — o)X + (b — d)]*}
+ 2a — )E{[Y — (aX + b)1X} + 2(b — )E{[Y — (aX + b)]}

The last two terms on the right-hand side are zero when Egs. (7.68) and (7.69) are satisfied, and the second
term on the right-hand side is positive if a 2 ¢ and b 5 d. Thus, e(c, d) > e(a, b) for any ¢ and d. Hence,
e(a, b) is mimmum.

Derive Eq. (7.23).
By Egs. (7.68) and (7.69), we have
R{[Y — (aX + b)JaX} = 0 = E{[Y —~ (aX + b)}b}

Then en = ela, b) = E{[Y — (aX + b)]2} = E{[Y — (aX + b)][Y — (aX + b)]}
= E{[Y — (aX + b)]Y} = E(Y?) — aE(XY) — bE(Y)

Using Egs. (2.31), (3.51), and (3.53), and substituting the values of a and b [Eq. (7.22)] in the above expres-
sion, the minimum m.s. error is

en =0y + puy? —aloyy + px py) — (y — Gpxity

v’ P
— a2 — g 2 XY _ 2 XY — g2 2
=0y —aoyy =0y ——7 =0\l ——F— | =0, — pxy)
ay ay“ay

which is Eq. (7.23).

Let Y = X2, and let X be a uniform r.v. over (—1, 1) (see Prob. 7.19). Find the linear m.s.
estimator of Y in terms of X and its m.s. error.

The linear m.s. estimator of Y in terms of X is

Y=aX+b
where a and b are given by [Eq. (7.22)]
a= :—’;I b=y, —auy
Now, by Egs. (2.46) and (2.44),
py = E(X)=0

EXY)=EXX)=EXY)= % J._IIXJ dx =0
By Eq. (3.51),
ayy = Cov(XY)=EXY)— E(X)E(Y)=0
Thus, a = 0 and b = E(Y), and the linear m.s. estimator of Y is
Y=b=EY) (7.70)
and the m.s. error is

e = E{[Y — E(Y)]?} = 0,2 (7.71)

Find the minimum m.s. error estimator of Y in terms of X when X and Y are jointly normal
I.V.s.
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7.26.

7.27.

7.28.

7.29.

ESTIMATION THEORY [CHAP 7

By Eq. (7.18), the minimum m.s. error estimator of Y in terms of X is
Y =EY|X)
Now, when X and Y are jointly normal, by Eq. (3.108) (Prob. 3.51), we have
g g
E(Y[x) = pyxy — X + py — pxy = ix
Ox Ox
Hence, the minimum m.s. error estimator of Y is
- g g
V= E(Y|X)=pxy =X X + pty — pxy — ix (7.72)
Ox Ox

Comparing Eq. (7.72) with Eqs. (7.19) and (7.22), we see that for jointly normal r.v.’s the linear m.s. estima-
tor is the minimum m.s. error estimator.

Supplementary Problems

Let (X,, ..., X,) be a random sample of X having unknown mean p and variance ¢?. Show that the
estimator of o% defined by

n—1;

S|2= (X."‘X)z

I

where X is the sample mean, is an unbiased estimator of a2, Note that S,? is often called the sample
variance.

Hint: Show that §,% = —

i §2, and use Eq. (7.29).
n—

Let (X, ..., X,) be a random sample of X having known mean g and unknown variance ¢2. Show that the
estimator of 62 defined by

l n
So2 =- Z(Xi - #)2
U
is an unbiased estimator of a2
Hint: Proceed as in Prob. 7.2.
Let (X, ..., X,) be a random sample of a binomial r.v. X with parameter (m, p), where p is unknown. Show

that the maximume-likelihood estimator of p given by Eq. (7.34) is unbiased.
Hint: Use Eq. (2.38).

Let (X,,..., X,) be a random sample of a Bernoulli r.v. X with pmf f(x; p) = p*(1 —p)' ™%, x = 0, 1, where
p. 0 < p < 1, is unknown. Find the maximum-likelihood estimator of p.

X=X

Ans. Py =

™

1
ni<y

The values of a random sample, 2.9, 0.5, 1.7, 4.3, and 3.2, are obtained from a r.v. X that is uniformly
distributed over the unknown interval (a, b). Find the maximum-likelihood estimates of @ and b.

Ans.  Gp; = min x; = 0.5, byL = max x; = 4.3



CHAP. 7] ESTIMATION THEORY 263

7.30.

7.31.

7.32.

7.33.

7.34.

7.35.

In analyzing the flow of traffic through a drive-in bank, the times (in minutes) between arrivals of 10
customers are recorded as 3.2, 2.1, 5.3,4.2, 1.2, 2.8, 6.4, 1.5, 1.9, and 3.0. Assuming that the interarrival time
is an exponential r.v. with parameter 4, find the maximum likelihood estimate of 4.

I
Ay = —
Ans. A= 37g

Let (X,, ..., X,) be a random sample of a normal r.v. X with known mean u and unknown variance 2.
Find the maximum likelihood estimator of o2,

™M=

!
Ans. Syt = - (X, — pn?
i=1

Let (X,, ..., X,) be the random sample of a normal r.v. X with mean g and variance ¢%, where u is
unknown. Assume that g is itself to be a normal r.v. with mean g, and variance o,2. Find the Bayes’
estimate of u.

. "y nx 1 n N
Ans. fa = («Tz * ?)/ (37 * ?) PR

Let(X,, ..., X,) be the random sample of a normal r.v. X with variance 100 and unknown u. What sample
size n is required such that the width of 95 percent confidence interval is 5?

Ans. n=62

Find a constant a such that if Y is estimated by aX, the m.s. error 1s minimum, and also find the minimum
m.s. error e,, .

Ans. a = E(XYVE(X? en = E(Y?) = [E(XV/E(X))?

Derive Egs. (7.25) and (7.26).
Hint: Proceed as in Prob. 7.20.



Chapter 8

Decision Theory

8.1 INTRODUCTION

There are many situations in which we have to make decisions based on observations or data
that are random variables. The theory behind the solutions for these situations is known as decision
theory or hypothesis testing. In communication or radar technology, decision theory or hypothesis
testing is known as (signal) detection theory. In this chapter we present a brief review of the binary
decision theory and various decision tests.

8.2 HYPOTHESIS TESTING
A. Definitions:

A statistical hypothesis is an assumption about the probability law of r.v.’s. Suppose we observe a
random sample (X, ..., X,) of a r.v. X whose pdff(x; 0) = f(x,, ..., x,; 8) depends on a parameter 6.
We wish to test the assumption 8 = 8, against the assumption 8 = 6,. The assumption 0 = 6, is
denoted by H, and is called the null hypothesis. The assumption 8 = 8, is denoted by H, and is called
the alternative hypothesis.

Hy,: 0=06, (Null hypothesis)
H,: 6=20, (Alternative hypothesis)

A hypothesis is called simple if all parameters are specified exactly. Otherwise it is called compos-
ite. Thus, suppose H,: 8 = 0, and H,: 8 # 6,; then H, is simple and H, is composite.

B. Hypothesis Testing and Types of Errors:

Hypothesis testing is a decision process establishing the validity of a hypothesis. We can think of
the decision process as dividing the observation space R" (Euclidean n-space) into two regions R, and
R,. Let x ={(x,, ..., x,) be the observed vector. Then if x € R,, we will decide on H; if x € R,, we
decide on H,. The region R, is known as the acceptance region and the region R, as the rejection (or
critical) region (since the null hypothesis is rejected). Thus, with the observation vector (or data), one
of the following four actions can happen:

H, true; accept Hy
H, true; reject H, (or accept H,)
H, true; accept H,

bl o S

H, true; reject H, (or accept H,)

The first and third actions correspond to correct decisions, and the second and fourth actions corre-
spond to errors. The errors are classified as

1. Typelerror: Reject H, (or accept H,) when Hj is true.
2. Typell error: Reject H, (or accept H,) when H, is true.

Let P and Py denote, respectively, the probabilities of Type I and Type 1I errors:
P,=PD,|H,) = P(x € R,; Hy) 8.1
Py=P(Dy|H,) =P(xeRy; H) (8.2)

264
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where D, (i = 0, 1) denotes the event that the decision is made to accept H;. P; is often denoted by a
and is known as the level of significance, and Py is denoted by § and (1 — ) is known as the power of
the test. Note that since « and f represent probabilities of events from the same decision problem,
they are not independent of each other or of the sample size n. It would be desirable to have a
decision process such that both « and f will be small. However, in general, a decrease in one type of
error leads to an increase in the other type for a fixed sample size (Prob. 8.4). The only way to
simultaneously reduce both type of errors is to increase the sample size (Prob. 8.5). One might also
attach some relative importance (or cost) to the four possible courses of action and minimize the total
cost of the decision (see Sec. 8.3D).
The probabilities of correct decisions (actions 1 and 3) may be expressed as

P(Dy|Ho) = P(x € Ro; Ho) 8.3)
P(D,|H,)= P(x€ Ry; H,) 8.4
In radar signal detection, the two hypotheses are
Hy: No target exists
H,: Target is present

In this case, the probability of a Type 1 error P, = P(D,|H,) is often referred to as the false-alarm
probability (denoted by Pg), the probability of a Type II error Py = P(D,| H,) as the miss probability
(denoted by P,), and P(D|H,) as the detection probability (denoted by Pp). The cost of failing to
detect a target cannot be easily determined. In general we set a value of P, which is acceptable and
seek a decision test that constrains P to this value while maximizing P, (or equivalently minimizing
P,,). This test is known as the Neyman-Pearson test (see Sec. 8.3C).

8.3 DECISION TESTS
A. Maximum-Likelihood Test:

Let x be the observation vector and P(x| H}), i = 0.1, denote the probability of observing x given
that H; was true. In the maximum-likelihood test, the decision regions R, and R are selected as

R, = {x: P(x|Ho) > P(x|H )}

(8.5)
R, = {x: P(x|H,) < P(x|H,)}
Thus, the maximum-likelihood test can be expressed as
H if P(x|Hy) > P(x|H,)
dx)=4.° . 8.6
™ {Hl if P(x| Ho) < P(x| Hy) ¢
The above decision test can be rewritten as
P(x| Hy)™
YR 8.7)
P(x| Ho) 5,
If we define the likelihood ratio A(x) as
P(x|H,)
A(x) = (8.8)
® = P H,)
then the maximum-likelihood test (8.7) can be expressed as
Hy
Ax) 21 (8.9)

Ho
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which is called the likelihood ratio test, and 1 is called the threshold value of the test.
Note that the likelihood ratio A(x) is also often expressed as

_f(lel)

A = Ho)

(8.10)

B. MAP Test:

Let P(H;|x), i = 0, 1, denote the probability that H; was true given a particular value of x. The
conditional probability P(H;|x) is called a posteriori (or posterior) probability, that is, a probability
that is computed after an observation has been made. The probability P(H), i = 0, 1, is called a priori
(or prior) probability. In the maximum a posteriori (MAP) test, the decision regions R, and R, are
selected as

R, = {x: P(Ho|%) > P(H, |x)}

8.11
R1={XZP(H0|X)<P(H1|X)} ( )
Thus, the MAP test is given by
H if P(Hy|x) > P(H,|x)
dix)=4° 12
™ {Hl if P(Ho|%) < P(H, 1% 8.12)
which can be rewritten as
P(H, |x) ™
—_— 21 8.13
P(Ho 1% 613
Using Bayes’ rule [Eq. (1.42)], Eq. (8.13) reduces to
P(lel)P(Hl)’;l (8.14)

P(x|Ho)P(Ho) s,

Using the likelihood ratio A(x) defined in Eq. (8.8), the MAP test can be expressed in the following
likelihood ratio test as

% P(H,)
>y = —"2
A(x) 2 "=, (8.15)

where § = P(H,)/P(H,) is the threshold value for the MAP test. Note that when P(H,) = P(H,), the
maximume-likelihood test is also the MAP test.

C. Neyman-Pearson Test:

As we mentioned before, it is not possible to simultaneously minimize both «(=P;) and B(= Py).
The Neyman-Pearson test provides a workable solution to this problem in that the test minimizes f
for a given level of a. Hence, the Neyman-Pearson test is the test which maximizes the power of the
test 1 — B for a given level of significance . In the Neyman-Pearson test, the critical (or rejection)
region R, is selected such that 1 — 8 =1— P(Dy|H,) = P(D,|H,) is maximum subject to the con-
straint & = P(D, | H,) = a,. This is a classical problem in optimization: maximizing a function subject
to a constraint, which can be solved by the use of Lagrange multiplier method. We thus construct the
objective function

J=(1-PB) = M — ap) (8.16)

where A > 0 is a Lagrange multiplier. Then the critical region R, is chosen to maximize J. It can be
shown that the Neyman-Pearson test can be expressed in terms of the likelihood ratio test as
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(Prob. 8.8)

Hy
Ax)2n=24 8.17)

Ho

where the threshold value n of the test is equal to the Lagrange multiplier 4, which is chosen to satisfy
the contraint ¢ = «,.

D. Bayes’ Test:

Let C;; be the cost associated with (D;, H)), which denotes the event that we accept H; when H, is
true. Then the average cost, which is known as the Bayes’ risk, can be written as

C = Coo P(Do, Ho) + Cyo P(Dy, Ho) + Co,P(Dy, H,) + C,P(Dy, H,) (8.18)
where P(D;, H)) denotes the probability that we accept H; when H; is true. By Bayes’ rule (1.42), we
have

C = Coo P(Do| Ho)P(Ho) + C o P(Dy | Ho)P(Ho) + Coy P(Do | Hy)P(H,) + C,\P(D,|H,)P(H,) (8.19)
In general, we assume that

Cio>Coo and  Co; > Cy, (8.20)

since it is reasonable to assume that the cost of making an incorrect decision is higher than the cost of

making a correct decision. The test that minimizes the average cost C is called the Bayes’ test, and it

can be expressed in terms of the likelihood ratio test as (Prob. 8.10)
B (Cro— Coo)P(Hy)

AN ==, —C\)PH,)

Note that when C,, — Cyo = Cy, — C;y, the Bayes’ test (8.21) and the MAP test (8.15) are identical.

(8.21)

E. Minimum Probability of Error Test:
If we set Coo = C,; =0and C,, = C,, = 1in Eq. (8.18), we have
C=P(0Dy, Hy) + P(Dy, H)) =P, (8.22)

which is just the probability of making an incorrect decision. Thus, in this case, the Bayes’ test yields
the minimum probability of error, and Eq. (8.21) becomes

o P(Hy)

AX) 2 n=——%

m P(H)

We see that the minimum probability of error test is the same as the MAP test.

(8.23)

F. Minimax Test:

We have seen that the Bayes’ test requires the a priori probabilities P(H,) and P(H,). Frequently,
these probabilities are not known. In such a case, the Bayes’ test cannot be applied, and the following
minimax (min-max) test may be used. In the minimax test, we use the Bayes’ test which corresponds
to the least favorable P(H,) (Prob. 8.12). In the minimax test, the critical region R¥Y is defined by

max C[P(H,), R¥] = min max C[P(H,), R,] < max C[P(H,), R,] (8.24)

P(Ho) Ry P(Ho) P(Ho)
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for all R, # R*. In other words, RY is the critical region which yields the minimum Bayes’ risk for the
least favorable P(H,). Assuming that the minimization and maximization operations are interchange-
able, then we have
min max C[P(H,), R,] = max min C[P(H,), R,] (8.25)
Ry P(Ho) P(Ho) Ry
The minimization of C[P(H,), R,] with respect to R, is simply the Bayes’ test, so that
min C[P(H,), R,] = C*[P(H,)] (8.26)
Ry

where C*[P(H,)] is the minimum Bayes’ risk associated with the a priori probability P(H,). Thus, Eq.
(8.25) states that we may find the minimax test by finding the Bayes’ test for the least favorable P(H,),
that is, the P(H,) which maximizes C[ P(H,)].

Solved Problems

HYPOTHESIS TESTING

8.1. Suppose a manufacturer of memory chips observes that the probability of chip failure is p = 0.05.
A new procedure is introduced to improve the design of chips. To test this new procedure, 200
chips could be produced using this new procedure and tested. Let r.v. X denote the number of
these 200 chips that fail. We set the test rule that we would accept the new procedure if X < 5.
Let

Hy,: p=0.05 (No change hypothesis)
H,: p<005 (Improvement hypothesis)

Find the probability of a Type I error.

If we assume that these tests using the new procedure are independent and have the same probability
of failure on each test, then X is a binomial r.v. with parameters (n, p) = (200, p). We make a Type I error if
X < 5 when in fact p = 0.05. Thus, using Eq. (2.37), we have

Py=P(D,|Hy) = P(X <5, p=005)
5

-y (220)(0.05)"(0.95)200"k

k=0

Since n is rather large and p is small, these binomial probabilities can be approximated by Poisson prob-
abilities with 4 = np = 200(0.05) = 10 (see Prob. 2.40). Thus, using Eq. (2.100), we obtain
5 B lok
Px Ye “’k—!=0.067

k=0

Note that H, is a simple hypothesis but H, is a composite hypothesis.

8.2. Consider again the memory chip manufacturing problem of Prob. 8.1. Now let

Hy: p=0.05 (No change hypothesis)
H,: p=002 (Improvement hypothesis)

Again our rule is, we would reject the new procedure if X > 5. Find the probability of a Type 11
error.
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Now both hypotheses are simple. We make a Type II error if X > 5 when in fact p = 0.02. Hence, by

Eq. (2.37),

Py=P(Dy|H,) = P(X > 5; p = 0.02)
© (200 )
=y ( )(0.02)"(0.98)20" K

k=6 \ K

Again using the Poisson approximation with 4 = np = 200(0.02) = 4, we obtain

5 k
Pum 1= Y e~ =021

k=0

Let (X, ..., X,) be a random sample of a normal r.v. X with mean px and variance 100. Let

Hy: =50
Hy: p=p, (>50)

and sample size n = 25. As a decision procedure, we use the rule to reject H, if X > 52, where X is
the value of the sample mean X defined by Eq. (7.27).

(@) Find the probability of rejecting Hy: u = 50 as a function of g (> 50).

(b) Find the probability of a Type 1 error «.

(c)
(@)

Find the probability of a Type 11 error § (i) when g, = 53 and (ii) when g, = SS.

Since the test calls for the rejection of Hy: u = 50 when X > 52, the probability of rejecting Hy, is given
by

glw) = P(X = 52; p) (8.27)
Now, by Eqgs. (4.112) and (7.27), we have
1 100
VarX) =gl = —g? = — = 4
ar(X) = o4 ; o S
Thus, X is N(u; 4), and using Eq. (2.55), we obtain
X - 52 — 52 —
g(u)=P< 2#2 2“;u>=l—-¢< 2“) p=50 (8.28)

The function g(u) is known as the power function of the test, and the value of g(u) at u = u,, g(u,), is
called the power at u,.

Note that the power at u = 50, g(50), is the probability of rejecting Hy: 4 = 50 when H,, is true—that
is, a Type I error. Thus, using Table A (Appendix A), we obtain

52 -50
2

a=P,=g(50)=1—CD< >=l-(b(l)=0.1587

Note that the power at u = u,, g(u,), is the probability of rejecting Hy: u = SO when u = p;. Thus,
I — g(u,) is the probability of accepting H, when u = p,—that is, the probability of a Type II error .

(1) Setting u = u, = 53 in Eq. (8.28) and using Table A (Appendix A), we obtain

B=Py=1-g(53) = ¢<52 ; 53) =0(— 4 =1 — @) = 03085

(i) Similarly, for u = u, = 55 we obtain

52 -55
2

ﬂ=P,,=l—g(55)=(D< >=q>(— 3 =1 — &) = 0.0668

Notice that clearly, the probability of a Type II error depends on the value of y,.
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84. Consider the binary decision problem of Prob. 8.3. We modify the decision rule such that we
reject Hy if x > ¢.

(@) Find the value of ¢ such that the probability of a Type I error « = 0.05.
(b) Find the probability of a Type II error § when i, = 55 with the modified decision rule.
(@) Using the result of part (b) in Prob. 8.3, c is selected such that [see Eq. (8.27)]
a=g(50)= P(X > ¢, u = 50) = 0.05
However, when u = 50, X = N(50; 4), and [see Eq. (8.28)]

X -5 c—50 — 50
g(50)=P< , 29—2—;u=5o)=1—¢<62 )=o.05

From Table A (Appendix A), we have ®(1.645) = 0.95. Thus

¢ —50

= 1.645 and ¢ =50+ 2(1.645) = 53.29

(b) The power function g(u) with the modified decision rule is
- X - 5329 — 53.29 —
glu) = P(X > 53.29; p) = P(T" > ~—2———" ; u) =1- Q(TM)

Setting u = u, = 55 and using Table A (Appendix A), we obtain

B=Py=1—g(s5= ¢<-5i%‘—5—5) — B(—0.855)

=1— $(0.855) = 0.1963

Comparing with the results of Prob. 8.3, we notice that with the change of the decision rule, a is
reduced from 0.1587 to 0.05, but fis increased from 0.0668 to 0.1963.

8.5. Redo Prob. 8.4 for the case where the sample size n = 100.

(@) With n = 100, we have
, 100

Var()?):ax2=:—1a =T_=1
As in part (a) of Prob. 8.4, ¢ is selected so that

a=g(50) = P(X > c; u = 50) = 0.05
Since X = N(50; 1), we have

X —50 - 50
g(50)=P( 1 >¢ 15 ;u=5o)=1—q>(c—50)=0.05

Thus ¢ — 50 = 1.645 and ¢ =51.645
(b) The power function is
g(y) = P(X = 51.645; p)

:P<Xl—u251.64]5—;1

; u) =1 — O(51.645 — y)

Setting 4 = p, = 55 and using Table A (Appendix A), we obtain
f=P;=1—g(55) = D(51.645 — 55) = &(—3.355) ~ 0.0004
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Notice that with sample size n = 100, both @ and $ have decreased from their respective original values
of 0.1587 and 0.0668 when n = 25.

DECISION TESTS

8.6.

In a simple binary communication system, during every T seconds, one of two possible signals
so(t) and s,(¢) is transmitted. Our two hypotheses are

Hy:  so(t) was transmitted.
H,:. s,(t) was transmitted.

We assume that
s)=0 and s(ti=1 O0<t<T

The communication channel adds noise n(z), which is a zero-mean normal random process with
variance 1. Let x(¢) represent the received signal:

x(t) = si2) + n(?) i=01

We observe the received signal x(t) at some instant during each signaling interval. Suppose that
we received an observation x = 0.6.

(a) Using the maximum likelihood test, determine which signal is transmitted.
(b) Find P;and Py,.

(@) The received signal under each hypothesis can be written as

Hy: x=n
H: x=1+n

Then the pdf of x under each hypothesis is given by

S(x1 Ho) = —= o2
2n
1
SIXIH ) = — o702
2n

The likelthood ratio is then given by
_ f{x{H,) = P12

Alx) =
Sf(x|Hy)
By Eq. (8.9), the maximum likelihood test is
Hy
e(x— 1/2) 2 1

Ho

Taking the natural logarithm of the above expression, we get

Hy H,
x—-%20 or x23
Ho Ho

Since x = 0.6 > 1, we determine that signal s,(¢) was transmitted.
(h) The decision regions are given by

Ry={x:x<t}=(-oo,3) Ry ={x:x >4} = (4 o)
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Then by Eqgs. (8.1) and (8.2) and using Table A (Appendix A), we obtain

1 (* e

P, = P(D,|Hy) = f f(x| Hy) dx = ¢™™2 dx = 1 — d(L) = 0.3085
Ry

2n Jy)y

172

-5

SO I gy

e

S w

Pll=P(DO|H1):J. S(x|H,)dx =
Ro 2n J

f-1/2

- %

¢ dy = (- }) = 0.3085
2n J

&‘

-«

8.7. In the binary communication system of Prob. 8.6, suppose that P(H,) = % and P(H,) = 3.

(a) Using the MAP test, determine which signal is transmitted when x = 0.6.
(b) Find P;and P,.

(a) Using the result of Prob. 8.6 and Eq. (8.15), the MAP test is given by

" P(H
ey PHY
no P(HY)
Taking the natural logarithm of the above expression, we gel
H,y Hy
x—%2n2 or x2z4++In2=1193
Hy Ho

Since x = 0.6 < 1.193, we determine that signal s(t) was transmitted.
(b) The decision regions are given by
Ry = {x: x < 1.193} = (— a0, 1.193)
R, = {x: x> 1.193} = (1.193, o)

Thus, by Egs. (8.1) and (8.2) and using Table A (Appendix A), we obtain

1 (=

Pr=PD,|Hy = J. f(x|Hy) dx = e *dx =1 — d{1.193) = 0.1164
R, BV, 2n )y 195
1 (193
Py = P(Dy|H,) = f flxlHydx = —= | o702 gy
Ro 27 Jo o
| (o193 ,
=— e Y2 dy = ®(0.193) = 0.5765
N

8.8. Derive the Neyman-Pearson test, Eq. (8.17).

From Eq. (8.16), the objective function is
J=(1 =B — U — o) = P(D | H,} — A[P(D, [ Ho) — ] (8.29)

where 4 is an undetermined Lagrange multiplier which is chosen to satisfy the constraint « = a;. Now, we
wish to choose the critical region R, to maximize J. Using Egs. (8.1) and (8.2), we have

J =J f(X|Hl)dx—iU f(x|H0)dx—a0:|
Ry Ry

= J [f(xIH\} = A (x| Ho)] dx + Aaq (8.30)
Ry
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8.9.

8.10.

To maximize J by selecting the critical region R,, we select x € R, such that the integrand in Eq. (8.30) is
positive. Thus R is given by

Ry ={x:[f(x|H)) = Af(x|Hp)] > 0}

and the Neyman-Pearson test is given by

ALAES

Alx) =
M=y 2

and A is determined such that the constraint
a=P = P(Dx|Ho)=J Sx[Hy)dx = a,
R,

is satisfied.

Consider the binary communication system of Prob. 8.6 and suppose that we require that o =
P, = 0.25.
{a) Using the Neyman-Pearson test, determine which signal is transmitted when x = 0.6.
(b) Find Py.
(a) Using the result of Prob. 8.6 and Eq. (8.17), the Neyman-Pearson test is given by

H

elx - 1) 2 1
Ho

Taking the natural logarithm of the above expression, we get

Hy "
x—-32mhi or x23+lni
Ho Ha

The critical region R is thus
R, ={x:x>4+In4i}
Now we must determine 4 such that « = P, = P(D, | Hy) = 0.25. By Eq. (8.1), we have
1 * 1
Py = P(D,|H,) =J~ f(x|Hy) dx = /_.J. e M dx =1 — (D<— +In A)
Ry v T vy 2

/2+Ina

Thus 1 —®F +1ni)=025 or &(f +In 2)=075
From Table A (Appendix A), we find that ®(0.674) = 0.75. Thus
J+IniA=0674-41=119

Then the Neyman-Pearson test is

Hy
x 2 0674

Ho
Since x = 0.6 < 0.674, we determine that signal so(t) was transmitted.

(b) By Eq.(8.2), we have
0.674
J‘ e*(,\'*l)zll dx

-

P||=P(D0|H1)=J fix1Hy) dx=—/:
Ro NP

i
N

~0.326
J e dy = P(—0.326) = 0.3722

Denive Eq. (8.21).
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By Eq. (8.19), the Bayes’ risk is
C = Coo P(Do| Ho)P(Hy) + C o P(D\ | Ho)P(Ho) + Co  P(Do | Hy)P(H,) + C,(P(D|H )P(H,)

Now we can express
P(D;|H) = | f(x|H)) dx i=0,1;j=01 8.31)
Ry
Then C can be expressed as

C= COOP(HO)J~ S{x|Hy) dx + Clop(Ho)J~ Sf(x|H,y) dx
fo f (8.32)

+ C<>1P(H1)J~ S(x[Hy)ax + CllP(Hl)f S(x]Hy)dx

Since R, v R, = Sand R; n R, = ¢, we can write

J S(x|H) dx = ff(x)Hj) dx — J SIx|Hpydx =1 —J S(x|H)dx
Ro s Ry Ry
Then Eq. (8.32) becomes
C=CooP(Hp) + Co, P(H ) + J {[(Cio ~ Coo)P(Ho) f(x|Hp)] — [(Co, — Cy1)P(H,)f(x| H\)}} dx

R

The only variable in the above expression is the critical region R,. By the assumptions [Eq. (8.20)] C,, >
Coo and Cyy > C,, the two terms inside the brackets in the integral are both positive. Thus, C is mini-
mized if R, is chosen such that

(Cor — CL)PH)f(x)H ) > (Cyo — Coo)P(Ho) f(x] Hy)
for all x € R,. That is, we decide to accept H | if

(Coy — CL)PH)f(x|H,) > (C o — Coo)P(Ho) f(x) Ho)
In terms of the likelihood ratio, we obtain

- f(lex) ’;‘ (Clo - Cog)P(Ho)
S(XIHo) 1y (Coy — C,1)P(H )

A(x)

which is Eq. (8.21).

Consider a binary decision problem with the following conditional pdf’s:

S(x|Ho) = ye™

Sx|Hy = e
The Bayes’ costs are given by

Coo=Cy, =0 Cor =2 Cio=1
(a) Determine the Bayes’ test if P(H,) =  and the associated Bayes’ risk.
(b) Repeat (a) with P(H,) = 3.
(a) The likelihood ratio is
Ao = T 2 e .33
By Eq. (8.21), the Bayes’ test is given by

Ta-03 o

2e 1" 2 =
i (2~ 01 o
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Taking the natural logarithm of both sides of the last expression yields
H,

|x] $ — In(}) = 0.693
Ho
Thus, the decision regions are given by

Ry = {x:|x| > 0.693} R,
0,693 0.693
Then P,=P(D,|H0]=f fem M dx =2j te*dx =05
-0.693 o
-0.693
Py =P(Do|H1)=f

e“dx+f e”l"dx=2JA‘
- 0.693 o
and by Eq. (8.19), the Bayes’ risk is

693

{x: x| < 0.693}

e 2 dx =025

(b) The Bayes’ test is

C = P(D,| Hp)P(Ho) + 2P(Do | H\)P(H,) = (0.5(3) + 2(0.25(4) = 0.5

Hy
=1 or eIl z 1
m(2-03 ° o
Again, taking the natural logarithm of both sides of the last expression yields
H,

[x] S —In(3) = 1.386
Ho
Thus, the decision regions are given by

Ry = {x:|x| > 1.386}
Then

R, = {x:|x]| < 1.386}

1.386
P,=P(D,|H) =2 f le™* dx =075
0

Py=P(Dy|H,) =2 f ¢” 2% dx = 0.0625
1.386
and by Eq. (8.19), the Bayes’ risk is

C =(0.75)(3) + 2(0.0625)%) = 0.4375

8.12. Consider the binary decision problem of Prob. 8.11 with the same Bayes’ costs. Determine the
minimax test.

From Eq. (8.33), the likelihood ratio is

Sf(x|H,) -
Alx) = ———1 =2¢ ™
8= FerHo)

In terms of P(H,), the Bayes’ test [Eq. (8.21)] becomes

2e_|x|’;l l P(HO)

w1 P(H)
or e 2z -

Ho 2 1 — P(Hy) Ho 41 — P(Hy)
Taking the natural logarithm of both sides of the last expression yields

B 4Ll - P(H
Ix]'S In [ (Ho)] _ 5

Ho P(HO)

(8.34)
For P(H,) > 0.8, § becomes negative, and we always decide H,,. For P(H,) < 0.8, the decision regions are
Ro = {x:|x]> 8}

R, ={x:|x| < 8}
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Then, by setting Coo = C,, =0, Co; =2, and C,, = 1 in Eq. (8.19), the minimum Bayes’ risk C* can be
expressed as a function of P(H) as

3

-4 @
te™dx +2[1 — P(Ho)][:J. e dx + J. e 2 dx]
5 s

—w

C*[P(H,)] = P(H,) J.

s 0
= P(H,) J. e dx +4[1 — P(H,))] J. e~ 2 dx
s

0
= P(Ho)(1 —e %) +2[1 — P(Ho)le™ ™ (8.35)
From the definition of é [Eq. (8.34)], we have

s _ 401 — P(HY)]
P(H)

P(H,)

_ s PHHY
401 = P(HY)]

L _ PHHY)
Thos ‘ ~ 1601 = P(HT®

and

Substituting these values into Eq. (8.35), we obtain

. _ 8PUH,) — 9PH(H,)
AR =501 —pt,)]

Now the value of P(H,) which maximizes C* can be obtained by setting dC*[ P(H,)]/d P(H,) equal to zero
and solving for P(H,). The result yields P(H,) = . Substituting this value into Eq. (8.34), we obtain the
following minimax test:

Hy 1 — 2
x| S lnu=ln2=0.69
Ho 3
Suppose that we have n observations X;, i = 1, ..., n, of radar signals, and X; are normal iid

r.v.’s under each hypothesis. Under H,, X; have mean y, and variance ¢2, while under H,, X,
have mean 4, and variance ¢2, and p, > y,. Determine the maximum likelihood test.

By Eq. (2.52) for each X, we have

1 1
f(inHo)=ﬁUCXP[_Z7 x.'_l‘o)z]
1 1
JIno "“’[‘ 27 0 u,)z]

Sflx;1Hy) =

Since the X; are independent, we have

" 1 1
f(x|Hg) = U Sx;) Ho) = ‘\/T—;; CXP[_ 552 Z (i — po)?

n 1 n T
f(le,)=nf(X,~lH,)= CXP[—_ Z(x.‘—#l)z
=1 =1

207,

1
Jano
With u, — py > 0, the likelihood ratio is then given by

H, 1 [ 7
A = 2 expl L | 520 = o= o~ o) |}

Hence, the maximum likelihood test is given by

H;

1 n
exp{ﬁ l:_;lz(l‘l ~ Bo)x; — n(p? — l‘oz):l} 21

Ho
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8.14.

8.15.

Taking the natural logarithm of both sides of the above expression yields

- l‘o Z": ">1 alp,? — 1o?)
Ho T 2e7
L& S mits
or = (8.36)
n -; Hy 2

Equation (8.36) indicates that the statistic

S(X,...,X")=% ZX' =:X

i=1

provides enough information about the observations to enable us to make a decision. Thus, it is called the
sufficient statistic for the maximum likelihood test.

Consider the same observations X;, i = 1, ..., n, of radar signals as in Prob. 8.13, but now, under
H,, X; have zero mean and variance g4%, while under H,, X, have zero mean and variance ¢,2,
and ¢,? > ¢,% Determine the maximum likelihood test.

In a similar manner as in Prob. 8.13, we obtain

| 1
f(x1H0)=WCXP( 202
|

)
)

_Sx|Hy) (oY 612—%2) :
A = X (Ho) ~ (al) e"p[( 20at) BX

and the maximum likelihood test is
Hy
x,.z:l 21

(2] ool (7
22) expl{ 2—-2%
g, 26,0, /| Ho

Taking the natural logarithm of both sides of the above expression yields

a, 204202 )
x;? — (8.37)
1 Ho [ (”o):l(anz —ao’

Xy ..., X)= Y X?

Y x
f(le1)=meXP( ;x

20,2
With a,2 — g, > 0, the likelihood ratio is

™=

1

uM;

Note that in this case,

1s the sufficient statistic for the maximum likelihood test.

In the binary communication system of Prob. 8.6, suppose that we have n independent obser-
vations X; = X(t,),i=1,...,n,where0 < t; <--- <1, < T.

(@) Determine the maximum likelihood test.
(b} Find P, and Py for n = 5and n = 10.

(a) Setting gy = 0 and g, = 1 in Eq. (8.36), the maximum likelithood test is

i=1

31—
°=AV._
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1
(b) Let Y =- 2 X;
i=1
Then by Eqgs. (4.108) and (4.112), and the result of Prob. 5.60, we see that Y is a normal r.v. with zero
mean and variance 1/n under H,, and is a normal r.v. with mean 1 and variance 1/n under H,. Thus
L
P,= P(D,|Hy) = LlfymHo) dy = % f e~ gy

/2

l J.w -z2/2
= e 2 gz = | — ®(,/n/2)
\/2_7’ 2
Jn

P, = P(Dy|H =I Sy H) dy = j e~ MBB= D gy,
I olHy) e Wy Hy) ).

-2
=\/lz—j e dz = ®(—/n/2) = | — O(/n/2)
1 -—@

Note that P, = P,,. Using Table A {Appendix A), we have
Py=P;=1-®1.118) =0.1318 forn=S5
P, =Py, =1—®(1.581) = 0.057 for n=10

8.16. In the binary communication system of Prob. 8.6, suppose that sy(t) and s,(t) are arbitrary
signals and that n observations of the received signal x(t) are made. Let n samples of st} and
5,(t) be represented, respectively, by

$o = [So1> So25 s Somd” and $1=[511 812, - $1)"
where T denotes “transpose of.” Determine the MAP test.

For each X, we can write

1
S| Hp) = \—/_2—; CXP[— %(xi - SOi)2:|
O HY = ﬁ exp[- 3~ s,.-)2]

Since the noise components are independent, we have
fxVH) =[] f(x|H) j=0,1
i=1

and the likelihood ratio is given by

n ~ N
A < LELHD _ e [ 30— 1) ]
0= fx|Hy)
' I:[ [_ 3(x; — 500 ]
i=l
Thus, by Eq. (8.15), the MAP test is given by
" " P(Hg)

Taking the natural logarithm of both sides of the above expression yields

T (o1 = 5o, 2 xn[ L H;] + 360 = 5o (8.38)
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8.17.

8.18.

8.19.

8.20.

8.21.

Supplementary Problems

Let (X,,..., X,) be a random sample of a Bernoulli r.v. X with pmf
fsp=p=p' x=01
where it is known that 0 < p < 4. Let
Hy: p=1%
Hy: p=p (<}
and n = 20. As a decision test, we use the rule to reject Hoif Y '_; x; < 6.
(@) Find the power function g(p) of the test.
() Find the probability of a Type | error «.
(¢) Find the probability of a Type Il error 8 (i) when p, = £ and (ii) when p, = .

6

Ans. (@) g(p)= Y (2)(0)1)"(1 —pPot O<p<i

k=0

(b) «=00577; () (i) B=02142, (i) § = 0.0024

Let (X, ..., X,) be a random sample of a normal r.v. X with mean g and variance 36. Let
Hy: p=50
H: p=S55

As a decision test, we use the rule to accept H, if X < 53, where x is the value of the sample mean.

(@) Find the expression for the critical region R,.
(b) Find o and g for n = 16.

] n
Ans. (@) R, ={(x,, ..., xy); X =53} where x =- ) x;
noa=
(b) «=0.0228, § =0.0913
Let (X,,..., X,) be a random sample of a normal r.v. X with mean g and variance 100. Let
Hy: p=50
H;: u=55

279

As a decision test, we use the rule that we reject Hy if X > ¢. Find the value of ¢ and sample size n such that

o = 0.025 and § = 0.05.
Ans. ¢=52718, n=52

Let X be a normal r.v. with zero mean and variance o?. Let

Hy: a2=1
H: o2=4

Determine the maximum likelihood test.

H,
Ans. |x| 2 1.36
Hp

Consider the binary decision problem of Prob. 8.20. Let P(H,) == ¢ and P(H,) = §. Determine the MAP

test.

H,
Ans. |x] z 1.923

Ho
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822. Consider the binary communication system of Prob. 8.6.

(a) Construct a Neyman-Pearson test for the case where « = 0.1.
(b) Find B.

H,
Ans. (a) |x| 2 1282; (b)) B=06111

Ho
8.23. Consider the binary decision problem of Prob. 8.11. Determine the Bayes' test if P(H,) = 0.25 and the
Bayes’ costs are

Coo=C;, =0 Co =1 Cio=2

1.1}
Ans. |x| £ 1.10
Ho



Chapter 9

Queueing Theory

9.1 INTRODUCTION

Queueing theory deals with the study of queues (waiting lines). Queues abound in practical situ-
ations. The earliest use of queueing theory was in the design of a telephone system. Applications of
queueing theory are found in fields as seemingly diverse as traffic control, hospital management, and
time-shared computer system design. In this chapter, we present an elementary queueing theory.

92 QUEUEING SYSTEMS
A. Description:

A simple queueing system is shown in Fig. 9-1. Customers arrive randomly at an average rate of
A,. Upon arrival, they are served without delay if there arc available servers; otherwise, they are
made to wait in the queue until it is their turn to be served. Once served, they are assumed to leave
the system. We will be interested in determining such quantities as the average number of customers
in the system, the average time a customer spends in the system, the average time spent waiting in the
queue, etc.

Arrivals Departures
Queue Service

Fig. 9-1 A simple queueing system.

The description of any queueing system requires the specification of three parts:

The arrival process
The service mechanism, such as the number of servers and service-time distribution

The queue discipline (for example, first-come, first-served)

B. Classification:

The notation 4/B/s/K is used to classify a queueing system, where 4 specifies the type of arrival
process, B denotes the service-time distribution, s specifies the number of servers, and K denotes the
capacity of the system, that is, the maximum number of customers that can be accommodated. If K is
not specified, it is assumed that the capacity of the system is unlimited. For example, an M/M/2
queueing system (M stands for Markov) is one with Poisson arrivals (or exponential interarrival time
distribution), exponential service-time distribution, and 2 servers. An M/G/1 queueing system has
Poisson arrivals, general service-time distribution, and a single server. A special case is the M/D/1
queueing system, where D stands for constant (deterministic) service time. Examples of queueing
systems with limited capacity are telephone systems with limited trunks, hospital emergency rooms
with limited beds, and airline terminals with limited space in which to park aircraft for loading and
unloading. In each case, customers who arrive when the system is saturated are denied entrance and
are lost.

C. Useful Formulas

Some basic quantities of queueing systems are

281
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the average number of customers in the system

the average number of customers waiting in the queue

the average number of customers in service

the average amount of time that a customer spends in the system

the average amount of time that a customer spends waiting in the queue
the average amount of time that a customer spends in service

SIS

Many useful relationships between the above and other quantities of interest can be obtained by
using the following basic cost identity:

Assume that entering customers are required to pay an entrance fee (according to some rule) to
the system. Then we have

Average rate at which the system earns = A, x average amount an entering customer  (9.1)
pays where A, is the average arrival rate of entering customers

X0)
t

A, = lim

a
1= x

and X(t) denotes the number of customer arrivals by time ¢.
If we assume that each customer pays $1 per unit time while in the system, Eq. (9.1) yields
L=iW (9.2
Equation (9.2) is sometimes known as Little’s formula.

Similarly, if we assume that each customer pays $1 per unit time while in the queue, Eq. (9.1)
yields

L,=i,W, 9.3)
If we assume that each customer pays $1 per unit time while in service, Eq. (9.1) yields
L, =1, (9.4)

Note that Egs. (9.2) to (9.4) are valid for almost all queueing systems, regardless of the arrival process,
the number of servers, or queueing discipline.

9.3 BIRTH-DEATH PROCESS

We say that the queueing system is in state S, if there are n customers in the system, including
those being served. Let N(t) be the Markov process that takes on the value n when the queueing
system is in state S, with the following assumptions:

1. If the system is in state S, it can make transitions only to S, |, or S,.,, n > 1; that is, either a
customer completes service and leaves the system or, while the present customer is still being
serviced, another customer arrives at the system; from S, the next state can only be S, .

2. If the system is in state S, at time ¢, the probability of a transition to S,,, in the time interval
(t,t + At)is a, At. We refer to a, as the arrival parameter (or the birth parameter).

3. If the system is in state S, at time ¢, the probability of a transition to S,_, in the time interval
(t,t + At)is d, At. We refer to d,, as the departure parameter (or the death parameter).

The process N(t) is sometimes referred to as the birth-death process.
Let p,(t) be the probability that the queueing system is in state S, at time ¢; that is,

pAt) = P{N(t) = n} 9.5)
Then we have the following fundamental recursive equations for N(¢) (Prob. 9.2):
p;r(t) = - (an + dn)pn(t) + an—lpn- l(t) + dn+ 1Pn+ l(t) nz= 1 (9 6)

Po(t) = — (ag + do)po(t) + dyp,(t)
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Assume that in the steady state we have

lim p,(t) = p, (9.7)

t— oo
and setting py(t) and py(t) = 0 in Egs. (9.6), we obtain the following steady-state recursive equation:
(an + dn)pn = au—lpu—l + dn+1pn+l nz 1 (98)
and for the special case with d, = 0,

Qo Po =dy py (9.9)

Equations (9.8) and (9.9) are also known as the steady-state equilibrium equations. The state transition
diagram for the birth-death process is shown in Fig. 9-2.

4 4 L a,
d, d, d, d,,,

Fig. 9-2 State transition diagram for the birth-death process.

Solving Egs. (9.8) and (9.9) in terms of p,, we obtain

pr = Z Po
aga
Py = ﬁ 0
172 9.10)
_Qo4y -Gy,
n dldz . d" Po
where p, can be determined from the fact that
< p | 404
=1+ _+...> =1 9.11
R ( d " ad, TN :

provided that the summation in parentheses converges to a finite value.

94 THE M/M/1 QUEUEING SYSTEM

In the M/M/1 queueing system, the arrival process is the Poisson process with rate A (the mean
arrival rate) and the service time is exponentially distributed with parameter u (the mean service rate).
Then the process N(t) describing the state of the M/M/1 queueing system at time ¢ is a birth-death
process with the following state independent parameters:

a, =21 n>0 d,=u n=1 (9.12)
Then from Eqgs. (9.10) and (9.11), we obtain (Prob. 9.3)

m=1—§=1—p 9.13)

l n
(1 —i><—) = (1= p)p" (9.14)
u/\u

where p = A/u < 1, which implies that the server, on the average, must process the customers faster
than their average arrival rate; otherwise the queue length (the number of customers waiting in the
queue) tends to infinity. The ratio p = A/u is sometimes referred to as the traffic intensity of the

Py
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system. The traffic intensity of the system is defined as

mean service time mean arrival rate
mean interarrival time  mean service rate

Traffic intensity =

The average number of customers in the system is given by (Prob. 9.4)

S 9.15
=5 u_i (9.15)
Then, setting A, = 1 in Eqgs. (9.2) to (9.4), we obtain (Prob. 9.5)
| 1
_ - (9.16)
p—24 ull—p)
4 P
W, = = (9.17)
fopp =2 w(l-p)
2 2
L=t _F 9.18)

9.5 THE M/M/s QUEUEING SYSTEM

In the M/M/s queueing system, the arrival process is the Poisson process with rate 1 and each of
the s servers has an exponential service time with parameter u. In this case, the process N(t) describ-
ing the state of the M/M/s queueing system at time ¢t is a birth-death process with the following
parameters:

ny O<n<s

a,=1 n>0 d={
Su nxs

(9.19)

Note that the departure parameter 4, is state dependent. Then, from Eqs. (9.10) and (9.11), we obtain
(Prob. 9.10)

s—1 ( RV -1

Po™ [Zo i—? * s!((:pl p):[ (9.20)
(%')" Po n<s

P= g 9.21)
£ Po nx=s
s!

where p = A/(su) < 1. Note that the ratio p = A/(sp) is the traffic intensity of the M/M/s queueing
system. The average number of customers in the system and the average number of customers in the
queue are given, respectively, by (Prob. 9.12)

A p(sp)y*
PRI PE Do (9.22)
___plspy’ _ 4
”~———s!(l—p)2p°_L p (9.23)
By Eqgs. (9.2) and (9.3), the quantities W and W, are given by
_L (9.24
- .24)
L 1
= —1 = W _—
W, 2 p (9.25)
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9.6 THE M/M/1/K QUEUEING SYSTEM

In the M/M/1/K queueing system, the capacity of the system is limited to K customers. When the
system reaches its capacity, the effect is to reduce the arrival rate to zero until such time as a cus-
tomer is served to again make queue space available. Thus, the M/M/1/K queueing system can be
modeled as a birth-death process with the following parameters:

A 0<n<K d > (9.26)
a = = .
n 0 n> K n = H nz2
Then, from Eqs. (9.10) and (9.11), we obtain (Prob. 9.14)
_ V=@ 1-p
po_l_(l/#)x+1—1_px+1 p7&l (927)
AY (1 —p)p”
p,,=<;)po=l—;F n=1,...,K (9.28)

where p = A/p. It is important to note that it is no longer necessary that the traffic intensity p = A/u
be less than 1. Customers are denied service when the system is in state K. Since the fraction of
arrivals that actually enter the system is 1 — p,, the effective arrival rate is given by

Ae = A1 — py) (9.29)

The average number of customers in the system is given by (Prob. 9.15)

1 — (K + DpX + Kpk*! i
L= == 9.30
(1—p)(1—px+l) P u ( )
Then, setting 4, = 4, in Egs. (9.2) to (9.4), we obtain
L L
W=—=o—— (9.31)
Ae A1 — pg)
1
Wy=W—~ 9.32)
u
Ly =AW, = Al — p)W, (9.33)

9.7 THE M/M/s/K QUEUEING SYSTEM

Similarly, the M/M/s/K queueing system can be modeled as a birth-death process with the fol-
lowing parameters:

A 0<n<K ny O<n<s
= d,= 9.
@ {0 n>K " {S# n>s ©.349)
Then, from Egs. (9.10) and (9.11), we obtain (Prob. 9.17)
s=1 (Sp)" (Sp)‘ 1 ___pl(—s+l -1
= —_— 9.35
Po [,.Zo n! * s! 1—p (9:33)
(S:') Do n<s
Pa=1 s (9.36)
P Po s<n<K

where p = A/(su). Note that the expression for p, is identical in form to that for the M/M/s system,
Eq. (9.21). They differ only in the p, term. Again, it is not necessary that p = A/(su) be less than 1. The
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average number of customers in the queue is given by (Prob. 9.18)

L = plpsy’
=P — )

The average number of customers in the system is

{1 =1+ (1 - p}K — 5)]p* %}

i i
L=L,+—"=L,+—(1—pg
K K

The quantities W and W, are given by

L
W:—:L —

A "+#

L L
W=——q= L]
T4 Ml—pg)

Solved Problems

9.1. Deduce the basic cost identity (9.1).

[CHAP. 9

(9.37)

(9.38)

(9.39)

(9.40)

Let T be a fixed large number. The amount of money earned by the system by time T can be com-
puted by multiplying the average rate at which the system earns by the length of time 7. On the other
hand, it can also be computed by multiplying the average amount paid by an entering customer by the
average number of customers entering by time T, which is equal to A, T, where 1, is the average arrival rate

of entering customers. Thus, we have

Average rate at which the system earns x T = average amount paid by an entering customer x (4,T)

Dividing both sides by T (and letting 7" - cc), we obtain Eq. (9.1).

9.2, Derive Eq. (9.6).

From properties 1 to 3 of the birth-death process N(t), we see that at time ¢ + At, the system can be in

state S, in three ways:

1. By being in state S, at time ¢ and no transition occurring in the time interval (¢, t + At). This happens
with probability (1 —a,At)f(1 —d,At)= 1 —(a, + d,) At [by neglecting the second-order effect

a,d,(A)?].

2. By being in state S, _, at time ¢ and a transition to S, occurring in the time interval (¢, ¢t + At). This

happens with probability a,_ | At.

3. By being in state S,,, at time t and a transition to S, occurring in the time interval (¢, ¢t + At). This

happens with probability d,, .., At.
Let pdt) = P[N(t) = i}
Then, using the Markov property of N(t), we obtain

pot +A) =[1—(a, +4d,)Atlp,(t) + a,., Bt p,_,(t) + d, ., Bt p,. (1)

polt + At) =T[1 —(ay + do) Atdpo(t) + d, At p,(0)
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Rearranging the above relations

(t + A1) — plt
DAL F AD = P o d o) + @y pe )+ s par) 2L

At
1+ Al — !
P2 L2260~ (ag + dopoft) + dip )

Letting At - 0, we obtain
pl) = — (@, + dJp0) + Gy Py () + dpsypyn(t) n2 1
Polt) = — (ag + do)polt) + d\p\(1)

9.3.  Derive Eqgs. (9.13) and (9.14).
Setting a, = 4, d, = 0, and d, = u in Eq. (9.10), we get

A
Pr =~ Po = PPo
U

= AV _ 2
P2—<_>P0—PPO
I

where p, is determined by equating
Y Pa=po )P =pp—— =1 lpl <1
n=0

from which we obtain

A
Po=1l-p=1--
u

Ay AN AN
Pn= <—> po=(1~p)p" = <1 - —)(—)
H AN
94. Derive Eq. (9.15).

Since p, is the steady-state probability that the system contains exactly n customers, using Eq. (9.14),
the average number of customers in the M/M/!| queueing system is given by

© o«

L= np,= Y n(l—pp"=(1 —p)Zonp" (941

n=0 n=0 n=

where p = A/u < 1. Using the algebraic identity

Ta=g _xx)z [x| <1 (0.42)

we obtain
p Au A

L= = =
l—p 1= p—2

9.5. Derive Egs. (9.16) to (9.18).
Since A, = 4, by Egs. (9.2) and (9.15), we get
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which is Eq. (9.16). Next, by definition,
W,=Ww—W, (9.43)
where W, = 1/, that is, the average service time. Thus,

1 ] A p

Cu—dop pp—i) pl-p)
which is Eq. (9.17). Finally, by Eq. (9.3),

4q

1{2 2
L, = AW, = P
P R

which is Eq. (9.18).

Let W, denote the amount of time an arbitrary customer spends in the M/M/1 queueing system.
Find the distribution of W, .

We have

A
P{W, <a} = ) P{W, <a|nin the system when the customer arrives}
n=0

x P{n in the system when the customer arrives} (9.44)

where n is the number of customers in the system. Now consider the amount of time W, that this customer
will spend in the system when there are already n customers when he or she arrives. When n =0, then
W, = W,,,, that is, the service time. When n > I, there will be one customer in service and n — 1 customers
waiting in line ahead of this customer’s arrival. The customer in service might have been in service {or some
time, but because of the memoryless property of the exponential distribution of the service time, it follows
that {see Prob. 2.57) the arriving customer would have to wait an exponential amount of time with param-
eter u for this customer to complete service. In addition, the customer also would have to wait an exponen-
tial amount of time for each of the other n — 1 customers in line. Thus, adding his or her own service time,
the amount of time W, that the customer will spend in the system when there are already n customers when
he or she arrives is the sum of n + 1 iid exponential r.v.’s with parameter p. Then by Prob. 4.33, we see that
this r.v. is a gamma r.v. with parameters (n + 1, z). Thus, by Eq. (2.83),

«
P{W, < a|nin the system when customer arrives} = j pe #
0

g’ﬂd[
n!

From Eq. (9.14),
. . ANAY
P{n in the system when customer arrives} = p, = (I - —)(—)

u/\u
Hence, by Eq. (9.44),

> a - (#t)"( A‘.)(l)" ]
Fy,= P{W, < a} = W W EYAY
w.= Pl ) ,go Un ST w/\p
_ an(# _ Hen i (lt')n i
0 n=0 M.
= f (p—Ae W V=1 g -ha (9.45)
o

Thus, by Eq. (2.79), W, is an exponential r.v. with parameter u — A. Note that from Eq. (2.99), E(W,) =
1/(z — A), which agrees with Eq. (9.16), since W = E(W,).

Customers arrive at a watch repair shop according to a Poisson process at a rate of one per
every 10 minutes, and the service time is an exponential r.v. with mean 8 minutes.

{a) Find the average number of customers L, the average time a customer spends in the shop
W, and the average time a customer spends in waiting for service W,.
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9.8.

9.9.

(b) Suppose that the arrival rate of the customers increases 10 percent. Find the corresponding
changes in L, W, and W,

(a) The watch repair shop service can be modeled as an M/M/1 queueing system with 2 = 5, u = §. Thus,
from Egs. (9.15), (9.16), and (9.43), we have

W,=W — W, =40 — 8 = 32 minutes
(b)) Now A =4, u =% Then
A 1
L=—r=22--3
n—4i g-—3
| l .
W=u—_—'{‘='§—_—;=72 minutes

W, =W — W =72 — 8 = 64 minutes

It can be seen that an increase of 10 percent in the customer arrival rate doubles the average number
of customers in the system. The average time a customer spends in queue is also doubled.

A drive-in banking service is modeled as an M/M/1 queueing system with customer arrival rate
of 2 per minute. 1t is desired to have fewer than 5 customers line up 99 percent of the time. How

fast should the service rate be?

From Eq. (9.19),

A

P{5 or more customers in the system} = Y p, = Y (I = p)p"=p° p=-
n=5 n=5 4

In order to have fewer than 5 customers line up 99 percent of the time, we require that this probability be

less than 0.01. Thus,
)‘. 5
s = (—) < 0.0l
u

25
oo = 3200 or uz 5024

from which we obtain

Bz =

,{5
001 0.

Thus, to meet the requirements, the average service rate must be at least 5.024 customers per minute.

People arrive at a telephone booth according to a Poisson process at an average rate of 12 per
hour, and the average time for each call is an exponential r.v. with mean 2 minutes.
(a) What is the probability that an arriving customer will find the telephone booth occupied?

(b) It is the policy of the telephone company to install additional booths if customers wait an
average of 3 or more minutes for the phone. Find the average arrival rate needed to justify a
second booth.

(@) The telephone service can be modeled as an M/M/] queueing system with A =4, p=4, and p =

A/u = %. The probability that an arriving customer will find the telephone occupied is P(L > 0), where
L is the average number of customers in the system. Thus, from Eq. (9.13),

PL>0=1—-py=1—-(1—p)=p=%=04
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(b) From Eq. (9.17),
A A
W, = = >3
T opp—2) 0505-1"

from which we obtain A > 0.3 per minute. Thus, the required average arrival rate to justify the second
booth is 18 per hour.

Derive Eqgs. (9.20) and (9.21).
From Eqs. (9.19) and (9.10), we have

"[Z]' : <A)" ! n< (9.46)
= TV -1 = s .
Pn P0k=0 k + L Po w)
s pl LIt | </1)" 1
n = T = - T nzs 9.47
P pok[]o(k+l)u,£lxsu pou sts"™s (0-47)
Let p = A/(su). Then Egs. (9.46) and (9.47) can be rewritten as
(sp) by n<s
n!
pll =
"s*
d Po n>s

st
which is Eq. (9.21). From Eq. (9.11), p, is obtained by equating

x, s—1 n © ngs
$p=nf T 2 £ 2]

n=0 n! s!

n=s

Using the summation formula

Y X" = [x] <1 (9.48)
we obtain Eq. (9.20); that is,

s—1 (oo} 5w -1 s— 1 v s -1
Po=[z(‘\p)+izp"] =[Z(ip)—+ (sp) )]

n=0 n! 5!n=s n=0 n! S'(] - P

provided p = Af(sp) < 1.

Consider an M/M/s queueing system. Find the probability that an arriving customer is forced to
join the queue.

An arriving customer is forced to join the queue when all servers are busy—that is, when the number
of customers in the system is equal to or greater than s. Thus, using Eqs. (9.20) and (9.21), we get

) : 'Y $ ® (sp)s
P(a customer is forced to join queue) = ¥ p, = po S Y "= p, '(1—)
famsp stz st(l—p
(sp)’
sl —p)

- o o7 (9.49)

nzo N sl —p)
Equation (9.49) is sometimes referred to as Erlang's delay (or C) formula and denoted by C(s, A/u). Equation

(9.49) is widely used in telephone systems and gives the probability that no trunk (server) is available for an
incoming call (arriving customer) in a system of s trunks.

Derive Egs. (9.22) and (9.23).
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Equation (9.21) can be rewritten as

(sp)” -
! Po n S
Pn=
s
P Po n>s

s!

Then the average number of customers in the system is

L =EN)= an,—po[zn(°p)+ y ""SS]

n = : n=s+1 ‘51

0
p)n 1 sx % .
[ 5.5

S '(p)" S_!<,Z"""_ inpn)]

=1 n=0

Using the summation formulas,

ann=“_"x)2 (x| <1 (9.50)

x[ho ! — (k + )x* + 1]
(1 - x)?

n

nx' =

M= i

Ix} < 951

n=0

and Eq. (9.20), we obtain

(SP)" p plsp™! —(s+ p° + 1]
B ”°<s” 2, {u —r 0 —pr })
{ l: ! oy _(sor |, _elosy }
n! s!(l—p) si(l - p)?

= Po3S
[ plspy’ ]
Po S'(l p)

_ plspy’ 4 plsp)
T a = T T s g P

Next, using Egs. (9.21) and (9.50), the average number of customers in the queue is

= Xin—9p = X

_ (sp)’ Z(" 9 = p (sp)
_ p(w)’ _, 4
RRTTI L

9.13. A corporate computing center has two computers of the same capacity. The jobs arriving at the
center are of two types, internal jobs and external jobs. These jobs have Poisson arrival times
with rates 18 and 15 per hour, respectively. The service time for a job is an exponential r.v, with
mean 3 minutes.

(a) Find the average waiting time per job when one computer is used exclusively for internal
jobs and the other for external jobs.
(b) Find the average waiting time per job when two computers handle both types of jobs.

(a) When the computers are used separately, we treat them as two M/M/1 queueing systems. Let W, and
W,, be the average waiting time per internal job and per external job, respectively. For internal jobs,
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A, = 8 = 5 and p, = §. Then, from Eq. (9.16),

a
Wy =15 =27 min
3(3 — 7o)

For external jobs, 4, = 43 = L and y, = 4, and

N

W,, = =9 min

)

(b)) When two computers handle both types of jobs, we model the computing service as an M/M/2
queueing system with

b=

141
33 —

18+ 15 11 1 A 33
;» = =-, # EE p = —_—= —
60 20 3 24 40
Now, substituting s = 2 in Eqs. (9.20), (9.22), (9.24), and (9.25), we get
(2p) ]“ I —p
=142+ = 9.52
Po [ P 21 = p) I+ p (9.52)
4p° (1 - p) 2p
L =2 = 9.53
”+2<1—p)2<1+p - p? 039
L 1 1 2 1
W= —= P - (9.59)

Thus, from Eq. (9.54), the average waiting time per job when both computers handle both types of jobs
is given by

__ @
"R -

From these results, we see that it is more efficient for both computers to handle both types of jobs.

= 6.39 min

9.14. Derive Egs. (9.27) and (9.28).

From Egs. (9.26) and (9.10), we have

j'n
Pa=\—]pPo=p"P0o 0<n<K (9.55)
M

From Eq. (9.11), p, is obtained by equating

n=0 n=0
Using the summation formula
K ] K+l
X - (9.56)
n=0 I —x
we obtain
1—p (1 —=p)p"
p0=1_px+1 and ":1_pk+l

Note that in this case, there is no need to impose the condition that p = /u < 1.

9.15. Derive Eq. (9.30).
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Using Eqs. (9.28) and (9.51), the average number of customers in the system is given by

K 1—p K
L = E(N)= ann':—lﬁf > np"
n=0 P =0
L—p [p[Kp**' — (K + 1)p* + 1]
’l—p"“{ (1-p) }

1 — (K + 1)p* + Kp**!
(1= pX1 = p**Y

9.16. Consider the M/M/1/K queueing system. Show that

L,=L—(1-pg) (9.57)
W, = L L (9.58)

u

1
=—(L+1 (9.59)

u

In the M/M/1/K queueing system, the average number of customers in the system is

K K
L=E(N)= Y np, and Y p,=1
n=0

n=0
The average number of customers in the queue is

X K X
Lq=E(Nq)= Z(n_ l)pnz ann_ zpnzl‘_(l _pO)
n=1 n=0 n=1
A customer arriving with the queue in state S, has a wait time T, that is the sum of n independent exponen-
tial r.v.’s, each with parameter u. The expected value of this sum is n/u [Eq. (4.108)]). Thus, the average
amount of time that a customer spends waiting in the queue is

X n 1 X 1
W,=ET)= ) —p,=- 2np,=—L
n=0 Hoa=n 14
Simililarly, the amount of time that a customer spends in the system is
K K K
(n+1) 1 1
W=ET) =} == X+ Tp)==(L+1)

n=1 # l|=0 l|=0 #

Note that Eqs. (9.57) to (9.59) are equivalent to Eqs. (9.37) to (9.33) (Prob. 9.27).

9.17. Derive Egs. (9.35) and (9.36).
As in Prob. 9.10, from Egs. (9.34) and (9.10), we have

"]:Il 4 ('l)" ! n< (9.60)
= = -] — s R
Pr=bol L tk+ u P\
s=1 /1 n—1 /1 ()')n 1
Pn = —_— —_—= = === s<n<K (9.61)
p°ka (k + N Es st PO\ sts
Let p = A/(sp). Then Eqgs. (9.60) and (9.61) can be rewritten as
(sp) Po n<s
n!
pn - p"f
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which is Eq. (9.36). From Eq. (9.11), p, is obtained by equating

K s—1 n K n.s

(sp) p"s
A P
n=0 n=s

neo h! s!

Using the summation formula (9.56), we obtain

Ms-1 (Sp)" 5§ K ) -1
Pl TR
3 51 (Sp)" s\( K . s—1 ,,) -1
a _ngo n! s! ngop - ngop
B [s-1 M (Sp)s(l _ pl\' s+l)j|~l
—_,,g‘o n! * sl = p)

which is Eq. (9.35).

9.18. Derive Eq. (9.37).

Using Eq. (9.36) and (9.51), the average number of customers in the queue is given by

K s.s K
L,= Z(n—S)pn=po; Y (n—s)y
5 K . (Sp): K-s
Y(n—9p" = p, o Y mp”

nes C m=0

_ (sp)
= Po !

(sp) pl(K — 5)p* **! — (K ~s+ Dp*™* + 1]
s! (1 —p)?
plsp)*

=Po Tl = o {1 =11+ (1 — pXK — 9"}

= Po

9.19. Consider an M/M/s/s queueing system. Find the probability that all servers are busy.

Setting K = s in Egs. (9.60) and (9.61), we get

and p, is obtained by equating

Thus

The probability that all servers are busy is given by

AV (s
Py = Po l—l a0
2 (Au)/n!
n=0

[CHAP. 9

(9.62)

(9.63)

(9.64)

Note that in an M/M/s/s queueing system, if an arriving customer finds that all servers are busy, the
customer will turn away and is lost. In a telephone system with s trunks, p, is the portion of incoming calls
which will receive a busy signal. Equation (9.64) is often referred to as Erlang’s loss (or B) formula and is

commonly denoted as B(s, i/u).

9.20.

An air freight terminal has four loading docks on the main concourse. Any aircraft which arrive

when all docks are full are diverted to docks on the back concourse. The average aircraft arrival
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9.21.

9.22.

rate is 3 aircraft per hour. The average service time per aircraft is 2 hours on the main concourse
and 3 hours on the back concourse.

(a) Find the percentage of the arriving aircraft that are diverted to the back concourse.

(b) If a holding area which can accommodate up to 8 aircraft is added to the main concourse,
find the percentage of the arriving aircraft that are diverted to the back concourse and the
expected delay time awaiting service,

(@) The service system at the main concourse can be modeled as an M/M/s/s queueing system with s = 4,
A =3, u=4, and A/u = 6. The percentage of the arriving aircraft that are diverted to the back con-
course is

100 x P(all docks on the main concourse are full)

From Eq. (9.64),

6%/4! 54
P(all docks on the main concourse are full) = p, = —4—/— =
¥ (67/n)
n=0
Thus, the percentage of the arriving aircraft that are diverted to the back concourse is about 47
percent.

(b) With the addition of a holding area for 8 aircraft, the service system at the main concourse can now be
modeled as an M/M/s/K queueing system with s =4, K = 12, and p = 4/(sp) = 1.5. Now, from Eqs.

(9.35) and (9.36),
3 6" 64 1_]59) -1
= 4 —= ~ 0.00024
Po [,;(,n!+4!<l — 15,
1.5124%
P12 = T Po =~ 0.332
Thus, about 33.2 percent of the arriving aircraft will still be diverted to the back concourse.
Next, from Eq. (9.37), the average number of aircraft in the queue is

1.5(6%)

L, = 0.00024

Then, from Eq. (9.40), the expected delay time waiting for service is

6.0
Ly 563 ~ 3.022 hours

W = =
T Ml=p,y) 31-0332

Note that when the 2-hour service time is added, the total expected processing time at the main
concourse will be 5.022 hours compared to the 3-hour service time at the back concourse.

Supplementary Problems

Customers arrive at the express checkout lane in a supermarket in a Poisson process with a rate of 15 per
hour. The time to check out a customer is an exponential r.v. with mean of 2 minutes.

(@) Find the average number of customers present.
(b) What is the expected idle delay time experienced by a customer?
{¢) What is the expected time for a customer to clear a system?

Ans. (a) 1; () 2 min; (¢) 4min

Consider an M/M/1 queueing system. Find the probability of finding at least k customers in the system.
Ans. pF = (Ap).
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9.23.

9.24.

9.25.

9.26.

9.27.

9.28.

9.29.

9.30.

QUEUEING THEORY [CHAP. 9

In a university computer center, 80 jobs an hour are submitted on the average. Assuming that the computer
service is modeled as an M/M/1 queueing system, what should the service rate be if the average turnaround
time (time at submission to time of getting job back) is to be less than 10 minutes”?

Ans.  1.43 jobs per minute

The capacity of a communication line is 2000 bits per second. The line is used to transmit 8-bit characters,
and the total volume of expected calls for transmission from many devices to be sent on the line is 12,000
characters per minute. Find (a) the traffic intensity, (b) the average number of characters waiting to be
transmitted, and (c) the average transmission (including queueing delay) time per character.

Ans. (a) 0.8; (h) 3.2; (¢) 20 ms

A bank counter is currently served by two tellers. Customers entering the bank join a single queue and go
to the next available teller when they reach the head of the line. On the average, the service time for a
customer is 3 minutes, and 15 customers enter the bank per hour. Assuming that the arrivals process is
Poisson and the service time is an exponential r.v., find the probability that a customer entering the bank
will have to wait for service.

Ans.  0.205

A post office has three clerks serving at the counter. Customers arrive on the average at the rate of 30 per
hour, and arriving customers are asked to form a single queue. The average service time for each customer
is 3 minutes. Assuming that the arrivals process is Poisson and the service time is an exponential r.v,, find
(a) the probability that all the clerks will be busy, (b) the average number of customers in the queue, and (¢)
the average length of time customers have to spend in the post office.

Ans. (a) 0.237; (hy 0.237; (¢) 3.947 min

Show that Eqs. (9.57) to (9.59) and Egs. (9.31) to {9.33) are equivalent,
Hint: Use Eq. (9.29).

Find the average number of customers L in the M/M/1/K queueing system when 4 = u.
Ans. K2

A gas station has one diesel fuel pump for trucks only and has room for three trucks (including one at the
pump). On the average trucks arrive at the rate of 4 per hour, and each truck takes 10 minutes to service.
Assume that the arrivals process is Poisson and the service time is an exponential r.v.

(¢) What is the average time for a truck from entering to leaving the station?

(b) What is the average time for a truck to wait for service?

(¢) What percentage of the truck traffic is being turned away?

Ans. (a) 20.15 min; {h) 10.14 min; (¢) 12.3 percent
Consider the air freight terminal service of Prob. 9.20. How many additional docks are needed so that at

least 80 percent of the arriving aircraft can be served in the main concourse with the addition of holding
area”?

Ans. 4
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Normal Distribution

1
D(z) = ——
&=

z

e ¢

O(—z) =1 — B)

“af2
(a) (b)
Fig. A
Table A Normal Distribution ®(z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5399 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
03 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
09 0.8159 0.8186 0.8212 0.8238 0.8364 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 09115 0.9131 0.9147 0.9162 09177
1.4 09192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 09332 09345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 09515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 09649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 09719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 09778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 09826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
23 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 09913 0.9916
24 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
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Table A—Continued
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9078 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9085 0.9985 0.9986 0.9986
30 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
33 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
34 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 0.9998
35 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
The material below refers to Fig. A.
o 0.2 0.1 0.05 0.025 0.01 0.005
Zy2 1.282 1.645 1.960 2.240 2.576 2.807
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Fourier Transform

B.1 CONTINUOUS-TIME FOURIER TRANSFORM

Definition:
* 1 [* .
X(w) = J x(t)e ™ dt x(t) = — J X(w)e' dw
—w 2n J_,,
Table B-1 Properties of the Continuous-Time Fourier Transform
Property Signal Fourier Transform
x(1) X(w)
xy(t) X ()
x(1) Xy(w)
Linearity a,x, (1) + a, x,(t) a,X () + a, X, ()
Time shifting x(t = tq) e 1o X ()
Frequency shifting eloorx(r) X(o — wy)
1
Time scaling x(at) — X (9)
la| a
Time reversal x(—1) X(—w)
Duality X(1) 2nx(—w)
d
Time differentiation —Zit—) joX(w)
dX
Frequency differentiation (—jt)x(z) %

Integration

Convolution

Multiplication

Real signal

Even component
Odd component

Parseval’s theorem

J" x(7) dt

©

x (1) * x,(t) = J‘ x(0)x,(t — 1) dr

— 0

x,(D)x,(2)

x(t) = x,(¢) + x,(1)

x(t)
x,(t)

-

J‘oo | x(2) |2 dt=iJ‘ac | X (w)|? do
21 J_ o

1X(0)é(w) + L X(w)
jo
X (0)X y(w)

1
o X (@) * X, ()
P4

17 X x e — 1 da
P72 N
X(w) = A(w) + jB(w)
X(—w) = X*w)
Re{X(w)} = A(w)
Jj Im{X(0)} = jB(w)

299




300 FOURIER TRANSFORM [APP. B

Table B-2 Common Continuous-Time Fourier Transform Pairs

x(t) X(w)
1. 8(2) 1
2. 8t —1g) ¢ dwto
3. 1 2nd(w)
4, eiwot 2n8(w — wg)
5. cos wqt n[d(w — we) + dw + wy)]
6. sin wq ! —jr[d(w — wy) — dw + w)]
1 t>0 1
. = ] —_
7 u(t) {0 <0 n(w)+jw
1
8. e~ "'u(t) a>0 -
Jo+a
|
X —al 0 -
9 te ut) a> ot ay
10 e o a>0 2a
’ a? + w?
1
—ajw)
11. pEgn ¢
12 e a>0 T owtiaa
a
1 [t] <a sin wa
. = 2
13 Palt) {0 [t]|>a 4 a
sin at 1 jw| <a
4, =
1 nt Pal®) {o lw| > a
s . 1 >0 2
’ R P t<0 jow
16. > 8t —kT) wy Y o — kwg), we = -
k=~m k=~
B.2 DISCRETE-TIME FOURIER TRANSFORM
Definition:
ad . O .
X(Q) = Z x(n)e 7" x(n) = o J‘ X(Q)e’ ™ dQ
Table B-3 Properties of the Discrete-Time Fourier Transform
Property Sequence Fourier Transform
x(n) X(Q)
X,(n) X(Q)
x4(n) X,(Q)
Periodicity x(n) X(Q + 2m) = X(Q)
Linearity a,x,(n) + a; x,(n) a, X, (Q) + a, X (Q)
Time shifting x(n — ng) e~ x(Q)
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Table B-3—Continued
Property Sequence Fourier Transform
Frequency shifting &0 x(p) X(Q - Q)
Time reversal x(—n) X(—Q)
Frequency differentiation nx(n)  4XQ)
aQ
Accumulation Y x(k) nX(0)5(Q) + = X(Q)
k=-—=x -
Convolution x,(n) * xy(m) =Y x,(k)xy(n — k) X ()X ,(Q)
k= -
e 1
Multiplication X (m)x 5(n) o X (@ X,()
i

Real sequence

Even component
Odd component

Parseval’s theorem

x(n) = x,(n) + x,(n)

x(n)
X,(n)

= —1— JK X (D)X ,(Q— 2)dA
2n

XY = AQ) + jB(QY)
X(—) = X*Q)
Re{X(Q)} = AQ)

j Im{X(Q)} =jB(Q)

T

= -

T xmr== | 1x@f a0
2r

Table B-4 Common Discrete-Time Fourier Transform Pairs

x[n] X(Q)
i n=0
. &(n) = 1
! (") {o n#0
2. &(n — ng) g~ 9o
3. x(n) =1 2r6(92)
4. /fton 276(Q - Q)
5. cos Qo n [8(Q — Qo) + 4(Q + Q)]
6. sin Qyn —jnld(Q — Qg) — (2 + Q)]
1 n=>0 1
. = - 0] _—
7 u(n) {0 1<0 e (Q)+1—e”“
1
8. a’u(n) jal <t I
t
9. (n+ I)H u(n) '(I|< 1 m
10 Inl ja| <1 __L_
' “ 1 — 2a cos Q + a?
1 nl <N, sin[Q(N, + 4)]
11 x(n) = pun b S 11
0 [n]> N, sin(Q/2)
sin Wn 1 0<|Q<W
12. _= O<W<n X(Q)-—{0 W<|Q|<n
w X0 2
13. Y 8(n —kNo) Q Y HQ-kQ) Qo =—r
k=-w k=-= N







| ndex

A
apriori probability, 266
a posteriori probability, 266
Absorbing states, 168
Absorption, 168
probability, 168
Acceptance region, 264
Accessible states, 167
Algebra of sets, 2-5, 12
Alternative hypothesis, 264
Aperiodic states, 168
Arrival parameter, 282
Arrival process, 170, 201
Autocorrelation, 162, 210
Autocovariance, 162
Axioms of probability, 5-6

B
Bayes
estimator, 249
estimation, 248, 255
rule, 8
test, 267
theorem, 8
Bernoulli

distribution, 43
experiment, 33
process, 172
rv., 43
trials, 33
Best estimator, 249
Biased estimator, 251
Binomial
distribution, 44
coefficient, 44
rv., 44
Birth-death process, 282
Bivariate
normal distribution, 88
rv., 79, 89
Bonferroni's inequality, 17
Bool€e'sinequality, 18
Brownian motion process (see Wiener process)
Buffon's needle, 103

C

Cauchy
criterion, 221
r.v., 77-78, 135

Cauchy-Schwarz inequality, 108

Central limit theorem, 47, 128-129, 155-156
Chapman-K olomogorov eguation, 166
Characteristic function, 127-128, 154
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Chebyshev inequality, 66
Chi-square (c2) r.v., 146
Complement of set, 2
Complex random process, 161-162, 218
Composite hypothesis, 264
Conditional
distribution, 48, 71, 83, 104
expectation, 85, 126
mean, 85, 110
probability, 7, 24
probability density function (pdf), 83
probability mass function (pmf), 83
variance, 85, 110
Confidence
coefficient, 258
interval, 258
Consistent estimator, 248
Continuity theorem of probability, 19
Convolution, 137, 214
integral, 214
sum, 214
Correlation, 85
coefficient, 84-85, 107
Counting process, 170
Covariance, 84-85, 107
matrix, 89
Craps, 34
Critical region, 264
Cross-correlation, 211
Cross power spectral density (or spectrum), 212
Cumulative distribution function (cdf), 37

D
Decision test, 265, 271
Bayes, 267, 274
likelihood ratio, 266
MAP (maximum a posteriori), 266
maximum-likelihood, 265
minimax (min-max), 267
minimum probablity of error, 267
Neyman-Pearson, 266, 272
Decision theory, 264
De Morgan's laws, 5
Dirac d function, 213
Digjoint sets, 3
Distribution
Bernoulli,, 43
binomial, 44
conditional, 48, 71, 83, 104
exponential, 46
first-order, 162
limiting, 169
normal (or gaussian), 47
nth-order, 162
Poisson, 44, 68

Index
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Distribution (continued)
second-order, 162
stationary, 169
uniform, 45

Distribution function, 37, 39, 49
cumulative (cdf), 37

Domain, 38

E
Efficient estimator, 247
Ensemble, 161
average, 162
Equally likely events, 7, 20
Ergodic, in the mean, 243
process, 165
Erlang's, delay (or C) formula, 290
loss (or B) formula, 294
Estimates, point, 247
interval, 247
Estimation, 247
Bayes, 255
error, 249
linear, 249
mean square, 249
maximum likelihood, 253
mean square, 249
parameter, 247
Estimator, Bayes 249
best, 249
biased, 251
consistent, 248
efficient, 247
maximum-likelihood, 248
minimum mean sgquare error, 249
point, 247, 250
unbiased, 247
Events, 2,9
certain, 3
elementary, 2
equally likely, 7, 20
impossible, 3
independent, 8
mutually exclusive, 6
and exhaustive, 8
null, 3
Expectation, 42, 125
conditional, 85, 126
Expected value (see Mean)
Experiment, Bernoulli, 33
random, 1
Exponential, distribution, 46
rv., 46

F
Fourier series, 216, 236
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Fourier series (continued)

Perseval's theorem for, 237
Fourier transform, 218, 240, 299
Functions of r.v.'s, 122-124, 129, 136, 144

G
Gambler's ruin, 190
Gamma, function, 59
r.v., 59, 145
Gaussian distribution (see Normal distribution)
Geometricr.v., 55, 62

H
Hypergeometricr.v., 76
Hypothesis
alternative, 264
composite, 264
null, 264
simple, 264
Hypothesis testing, 264-275, 268
level of significance, 265
power of, 265

I
Impulse response, 214
Independent (statistically)
events, 8
increments, 163
process, 163
r.v.'s, 80-81, 83
Interarrival process, 170
Intersection of sets, 2
Interval estimate, 247

J

Jacobian, 125

Joint
characteristic function, 127
distribution function, 80, 89
moment-generating function, 126
probability density function (pdf), 82
probability mass function (pmf), 82

K
Karhunen-Loeve expansion, 217, 231

L
Lagrange multiplier, 266
Laplacer.v., 77
Law of large numbers, 128, 155
Level of significance, 265
Likelihood

function, 248

ratio, 265

test, 260
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Limiting distribution, 169
Linear mean-square estimation, 249
Linear system, 213, 231
impul se response of, 214
response to random inputs, 213-215, 231
Little's formula, 282
Log-normal r.v., 134

M
MAP (maximum a posteriori) test, 266
Marginal
distribution function, 81
cumulative distribution function (cdf), 81
probability density function (pdf), 82
probability mass function (pmf), 81
Markov
chains, 164
discrete-parameter, 165-169, 185
homogeneous, 165
irreducible, 167
nonhomogeneous, 165
regular, 169
inequality, 66
matrix, 166
process, 164, 183
property, 74, 164
Maximum likelihood estimator, 248
Mean, 42
Mean square
continuity, 209
derivative, 209
error, 249
minimum, 250
estimation, 249
linear, 249
integral, 210
periodicity, 216
Median, 76
Memoryless property (see Markov property)
Mercer's theorem, 217
Minimax (min-max) test, 267
Minimum probability of error test, 267
Minimum variance estimator, 248
Mixedr.v., 41
Mode, 76
Moment, 42, 84
Moment generating function, 126
Most efficient estimator, 248
Multinomial
coefficient, 114
distribution, 88
theorem, 114
trial, 88
Multipler.v., 79
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Mutually exclusive
events, 3, 6,9
and exhaustive events, 8
sets, 3

N
Negative binomial r.v., 77
Neyman-Pearson test, 266, 272
Normal
distribution, 47, 297
bivariate, 88
n-variate, 88
process, 164, 184
rv., 47
standard, 47
Null
event (set), 3
hypothesis, 264
recurrent state, 168

@)

Orthogonal r.v., 85
Orthogonality principle, 250
Outcomes, 1

P
Parameter estimation, 247
Parameter set, 161
Parseval's theorem, 237
Periodic states, 168
Point estimators, 247, 250
Point of occurrence, 169
Poisson, distribution, 44, 68
process, 169-171

rv., 44

white noise, 230
Positive recurrent states, 168
Posterior probability, 266
Power

function, 269

of test, 265
Power spectral density (or spectrum), 210-213, 225
Prior probability, 266
Probability, 1

density function (pdf), 41

mass function (pmf), 41

measure, 5
Q
Queueing

system, 281

theory, 281
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R
Random
experiment, 1
process, 161
complex, 161-162, 218
independent, 163
real, 161
sample, 155, 247
telegraph signal, 228
semi, 227
variable (r.v.), 38
continuous, 41, 76, 82
discrete, 41
function of, 122
mixed, 41
vector, 79, 86
walk, 173
simple, 173, 183, 195
Range, 38

Rayleighr.v., 59, 143
Real random process, 161
Recurrent states, 167

null, 168

positive, 168
Regression line, 250
Rejection region, 264
Relative frequency, 5
Renewal process, 170

S
Sample
function, 161
mean, 128, 155
point, 1
space, 1
variance, 262
vector (see Random sample)
Sets, 1
algebra of, 2-5, 12
digoint, 3
intersection of, 2
mutually exclusive, 3
union of, 2
Simple
hypothesis, 264
random walk, 173, 183, 195
Standard
deviation, 43
normal r.v., 47
State space, 161
States
absorbing, 168
accessible, 167
aperiodic, 168
periodic, 168
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States (continued)
recurrent, 167
null, 168
positive, 168
transient, 168
Stationary
distributions, 169
independent increments, 163
processes, 163
strict sense, 163
wide sense (WSS), 163
transition probability, 165
Statistic, 247
sufficient, 277
Stochastic, continuity, 209
derivative, 209
integral, 210
matrix, (see Markov matrix)
periodicity, 216
process, (see Random process)
System, linear, 213
linear time invariance (LTI), 213-216
response to random inputs, 213-216
paralel, 33
series, 12

T
Threshold value, 266
Time-average, 165
Time autocorrelation function, 165
Total probability, 8
Traffic intensity, 283-284
Transient states, 168
Transition probability, 165

matrix, 165

stationary, 165
Type error, 264
Typell error, 264

U

Unbiased estimator, 247

Uncorrelated r.v.'s, 85

Uniform, distribution, 45
rv., 45

Union of sets, 2

Unit, impulse function (see Dirac d function)
impul se sequence, 213
sample response, 214
sample sequence, 213

Universal set, 1

\Y

Variance, 42
conditional, 85

Vector mean, 89

Index



Index
Venn diagram, 3

W
Waiting time, 202
White noise, 213, 229
normal (or gaussian), 229
Poisson, 230
Wiener-Khinchin relations, 211
Wiener process, 172, 204
standard, 172
with drift coefficient, 172
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