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Chapter 1

Set Theory

INTRODUCTION

This chapter treats some of the elementary ideas and concepts of set theory which are
necessary for a modern introduction to probability theory.

SETS, ELEMENTS

Any well defined list or collection of objects is called a set; the objects comprising the
set are called its elements or members. We write

p € A if pisan element in theset A

If every element of A also belongs to a set B, i.e. if p € A implies p € B, then A is called a
subset of B or is said to be contained in B; this is denoted by

ACB or BDOA
Two sets are equal if each is contained in the other; that is,
A=B ifandonlyif ACB and BCA
The negations of p€ A, ACB and A =B are written p€¢ A4, AZB and A » B respectively.
We specify a particular set by either listing its elements or by stating properties which
characterize the elements of the set. For example,
A = {1,8,579)
means A is the set consisting of the numbers 1, 8, 5, 7 and 9; and
B = {x: zisaprime number, z < 15}
means that B is the set of prime numbers less than 15.

Unless otherwise stated, all sets under investigation are assumed to be subsets of some
fixed set called the universal set and denoted (in this chapter) by U. We also use @ to denote
the empty or null set, i.e. the set which contains no elements; this set is regarded as a subset
of every other set. Thus for any set A, we have @CACU.

Example 11: The sets A and B above can also be written as
A = {z: zis an odd number, 2 <10} and B = {2,8,5,7 11, 18)

Observe that 9€ 4 but 9& B, and 11€ B but 11 € A; whereas 3€ A and 3€ B, and
64 and 6 € B.
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Example 1.2: We use the following special symbols:

N = the set of positive integers: 1,2,3, ...
Z = the set of integers: ...,—2,-1,0,1,2, ...
R = the set of real numbers.

Thus we have NCZCR.

Example 1.3: Intervals on the real line, defined below, appear very often in mathematics. Here
a and b are real numbers with a < b.

Open interval from a to b = (a,b) = {z: a<z<b}
Closed interval from a to b = [a,b] = {g:a=z=b}
Open-closed interval fromatod = (a,b] = {z: a <z =b}
Closed-open interval fromato b = (e, b) = {x:a =z < b}

The open-closed and closed-open intervals are also called half-open intervals.

Example 14: In human population studies, the universal set consists of all the people in the
world.

Example 15: Let C = {x: 22 =4, zis odd}. Then C = @; that is, C is the empty set.

The following theorem applies.

Theorem 1.1: Let A, B and C be any sets. Then: (i) ACA; (ii) if ACB and BCA then
A = B; and (iii) if ACB and BCC then ACC.

We emphagize that ACB does not exclude the possibility that A = B. However, if
A CB but A + B, then we say that A is a proper subset of B. (Some authors use the symbol
C for a subset and the symbol C only for a proper subset.)

SET OPERATIONS

Let A and B be arbitrary sets. The union of A and B, denoted by AUB, is the set of
elements which belong to A or to B:

AUB = {x:x€A or x€B)
Here “or” is used in the sense of and/or.

The intersection of A and B, denoted by ANB, is the set of elements which belong to

both A and B:
ANB = ({x:2€ A and z € B}

If AnNB =@, that is, if A and B do not have any elements in common, then A and B
are said to be disjoint.

The difference of A and B or the relative complement of B with respect to A, denoted by
AN B, is the set of elements which belong to A but not to B:

ANB = {(zx:z€A4A, x&B)
Observe that A\ B and B are disjoint, i.e. (AN\B)NB = Q.

The absolute complement or, simply, complement of A, denoted by Ac, is the set of
elements which do not belong to A:

A = {z:z€U, & A}
That is, Ac is the difference of the universal set U and A.



CHAP. 1) SET THEORY 3

Example 1.6: The following diagrams, called Venn diagrams, illustrate the above set operations.
Here sets are represented by simple plane areas and U, the universal set, by
the area in the entire rectangle.

Example 1.7: Let 4 ={1,2,3,4} and B = {3,4,5,6} where U ={1,2,3,...}. Then
AUB = {1,2,3,4,5, 6} ANnB = {3,4}
AN\B = {1,2) Ac = {5,6,7,...}

Sets under the above operations satisfy various laws or identities which are listed
in the table below (Table 1). In fact, we state

Theorem 1.2: Sets satisfy the laws in Table 1.

LAWS OF THE ALGEBRA OF SETS

Idempotent Laws

la. Aud = A 1b. AnA = A
Associative Laws

2a. (AUB)UC = AU(BU(O) 2b. (ANB)NC = An{(BnOC)
Commutative Laws

3a. AuUB = BUA 3b. AnB = BnA
Distributive Laws

4a. AuU(BnC) = (AUB)N(AUC) 4. AN(BUC) = (AnNB)U(ANC(C)

Identity Laws

bfa. AU = A 5b. AnU = A

6a. AU =U 6b. AN = QO
Complement Laws

Ta. AVAc = U ™. ANAc = @

8a. (A = A g8b. Uc=9, Pc=U

De Morgan’s Laws
9a. (AUB) = AcnBc¢ 9b. (ANB)c = AcUBs¢

Table 1
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Remark: Each of the above laws follows from an analogous logical law. For example,
ANB = {z:x€A and x€B} = {g:x€B and €A} = BNA

Here we use the fact that the composite statement “p and ¢, written p A q, is logically
equivalent to the composite statement “q and p”, i.e. g A D.

The relationship between set inclusion and the above set operations follows:

Theorem 1.3: Each of the following conditions is eqguivalent to A CB:
(i) AnB=A (iii) BcCA¢ (v) BUA* =T
(iiy AUB =B (iv) ANBs =@

FINITE AND COUNTABLE SETS
Sets can be finite or infinite. A set is finite if it is empty or if it consists of exactly n
elements where » is a positive integer; otherwise it is infinite.

Example 18: Let M be the set of the days of the week; that is,
M = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday}
Then M is finite.

Example 19: Let P = {x: x is a river on the earth}. Although it may be difficult to count the
number of rivers on the earth, P is a finite set.

Example 1.10: Let Y be the set of (positive) even integers, iie. Y = {2,4,6,...}. Then Y is an
infinite set.

Example 1.11: Let I be the unit interval of real numbers, iie. I = {&£: 0=2x2=1}). Then I is
also an infinite set.

A get is countable if it is finite or if its elements can be arranged in the form of a
sequence, in which case it is said to be countably infinite; otherwise the set is uncountable.
The set in Example 1.10 is countably infinite, whereas it can be shown that the set in
Example 1.11 is uncountable.

PRODUCT SETS

Let A and B be two sets. The product set of A and B, denoted by A X B, consists of all
ordered pairs (a,b) where a € A and b € B:

AXB = {(a,b): a €A, beB)
The product of a set with itself, say A X A, is denoted by A2

Example 1.12: The reader is familiar with the cartesian plane R2 =R X R as shown below.
Here each point P represents an ordered pair (g, b) of real numbers, and vice versa.

b P
11
L, 0] .
-3 -2 -1 1 2 23

Example 1.13: Let A = {1,2,3}) and B = {a,b}. Then
AXB = {(1,a),(1,0), (2,a), (2,0), (3,a), (3,b)}
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The concept of product set is extended to any finite number of sets in a natural way.
The product set of the sets A, Az, ...,Am, written A1 X A2X -+ X Ay, is the set of all
ordered m-tuples (a;, as, . . ., am) where a; € A; for each i,

CLASSES OF SETS

Frequently the members of a set are sets themselves. For example, each line in a set
of lines is a set of points. To help clarify these situations, we usually use the word class
or family for such a set. The words subclass and subfamily have meanings analogous to
subset.

Example 1.14: The members of the class {{2, 3}, {2}, {5,6}} are the sets {2,3}, {2} and {5, 6}.

Example 1.15: Consider any set A. The power set of A, denoted by P(A), is the class of all sub-
sets of A. In particular, if A = {a, b,¢}, then

PA) = {4, {a,b}, {a,c}, {b,c}, {a}, {b}, {c}, O}

In general, if A is finite and has n elements, then P(4) will have 2» elements.

A partition of a set X is a subdivision of X into nonempty subsets which are disjoint and
whose union is X, i.e. is a class of nonempty subsets of X such that each a € X belongs to
a unique subset. The subsets in a partition are called cells.

Example 1.16: Consider the following classes of subsets of X = {1,2,...,8,9}:
(i) [{1,8,5}, {2,6}, {4,8,9}]
(ii) [{1,8,5}, {2,4,6,8}, {5,7,9})
(iii) {1, 8,5}, {2,4, 6,8}, {7,9})

Then (i) is not a partition of X since 7€ X but 7 does not belong to any of the cells.
Furthermore, (ii) is not a partition of X since 5 € X and 5 belongs to both {1, 3,5}
and {5,7,9}). On the other hand, (iii) is a partition of X since each element of X
belongs to exactly one cell.

When we speak of an indexed class of sets {A;: i €I} or simply {4}, we mean that there
is a set A, assigned to each element i € I. The set I is called the indexing set and the sets
A, are said to be indexed by I. When the indexing set is the set N of positive integers, the
indexed class {41, A», ...} is called a sequence of sets. By the union of these Ai, denoted
by Uier A: (or simply U;A;), we mean the set of elements each belonging to at least one of
the A;; and by the intersection of the A;, denoted by Nie: A: (or simply N A4;), we mean the
set of elements each belonging to every A.. We also write

Ui A; = A jUAU - - and N, A; = AiNAN---

for the union and intersection, respectively, of a sequence of sets.

Definition: A nonempty class ¢4 of subsets of U is called an algebra (o-algebra) of sets if:

(i) the complement of any set in ¢4 belongs to ¢4; and
(ii) the union of any finite (countable) number of sets in <4 belongs to o4;

that is, if ¢4 is closed under complements and finite (countable) unions.

It is simple to show (Problem 1.30) that an algebra (s-algebra) of sets contains U and
© and is also closed under finite (countable) intersections.
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Solved Problems

SETS, ELEMENTS, SUBSETS

L1

1.2.

1.3,

14.

L.5.

L.6.

1.7.

1.8.

Let A = {x:32x=6). Does A =2?

A is the set which consists of the single element 2, that is, A = {2}. The number 2 belongs
to A; it does not equal A. There is a basic difference between an element p and the singleton
set {p}.

Which of these sets are equal: {r,s,t}, {{,s,7}, {8,1,%}, {{,7,8}?

They are all equal. Order does not change a set.

Determine whether or not each set is the null set:
i) X ={x:22=9, 20 =4}, (i) Y = {w:x+2}, (i) Z = {r:x+8=8)}.

(i) There is no number which satisfies both 22 =9 and 2x = 4; hence X is empty, ie. X =0.

(ii) We interpret “=" to mean “is identical with” and so Y is also empty. In fact, some texts define
the empty set as follows: @ = {x: x % x}.

(iii) The number zero satisfies x+ 8 = 8; hence Z = {0}. Accordingly, Z is not the empty set
since it contains 0. That is, Z # Q.

Prove that A = {2,3,4,5} is not a subset of B = {z:x iseven}.

It is necessary to show that at least one element in A does not belong to B. Now 3€ A and,
since B consists of even numbers, 3 & B; hence A is not a subset of B.

let V={(d}, W= {c,d}, X={a,b,c}, Y=1{a,b) and Z = {a,b,d}. Determine
whether each statement is true or false:

G YCX, (W2, (ii)ZDV, (v VCX, W) X=W, (vii WCY.

(i) Since each element in Y is a member of X, Y C X is true.

(ii) Now a € Z but a € W; hence W * Z is true.

(iii) The only element in V is d and it also belongs to Z; hence ZD V is true.

(iv) V is not a subset of X since d € V but d € X; hence V C X is false.

(v) Now e € X but ¢ € W; hence X = W is false.
(vi) W is not a subset of Y since ¢c € W but ¢ € Y; hence W C Y is false.

Prove: If A is a subset of the empty set @, then A = @.

The null get @ is a subset of every set; in particular, @ CA. But, by hypothesis, A C@;
hence A = Q.

Prove Theorem 1.1(iii): If AC B and BC C, then ACC.

We must show that each element in A also belongs to C. Let £ € A, Now A C B implies
2 € B. But BCC; hence x € C. We have shown that x € A implies z € C, that is, that A CC.

Which of the following sets are finite?

(i) The months of the year. (iv) The set Q of rational numbers.
(i) {1,2,8,...,99,100}. (v) The set R of real numbers.
(iii) The number of people living on the earth.

The first three sets are finite; the last two are infinite. (It can be shown that Q is countable
but R is uncountable.)
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1.9.

1.10.

Consider the following sets of figures in the Euclidean plane:
A = {z: zis a quadrilateral}) C = {z: z is a rhombus}
B = {z: zis a rectangle) D = {x: zis a square)
Determine which sets are proper subsets of any of the others.

Since a square has 4 right angles it is a rectangle, since it has 4 equal sides it is a rhombus,
and since it has 4 sides it is a quadrilateral. Thus

DcA, DcB and DcC

that is, D is a subset of the other three. Also, since there are examples of rectangles, rhombuses and
quadrilaterals which are not squares, D is a proper subset of the other three.

In a similar manner we see that B is a proper subset of A and C is a proper subset of A. There
are no other relations among the sets.

Determine which of the following sets are equal: @, {0}, {@).

Each is different from the other. The set {0} contains one element, the number zero. The
set @ contains no elements; it is the empty set. The set {}} also contains one element, the null set.

SET OPERATIONS

L11.

1.12.

Let U=(1,2,...,8,9), A=(1,2,3,4), B=(2,4,6,8) and C={3,4,5,6}. Find:
(i) A, (ii) ANC, (iii) (ANC), (iv) AUB, (v) B\\C.

(i) Ac consists of the elements in U that are not in A; hence 4¢ = {5,6,7,8,9}.

(ii) ANC consists of the elements in both A and C; hence AnC = {8,4}.

(iti) (A NC)c consists of the elements in U that are not in AnC. Now by (ii), AnC = {3,4} and
so (AnC)r={1,2,5,6,7,8,9}.

(iv) A UB consists of the elements in 4 or B (or both): hence AUB = {1,2,3,4,6,8}.
(v) B\ C consists of the elements in B which are not in C; hence B\ C = {2, 8}.

Let U= {a,b,c,d, ¢}, A={a,b,d} and B={b,d,e}. Find:

(i) AUB (iii) B¢ (v) A°NB (vil) AcNBc (ix) (ANB)*

(i) BNn4 (iv) B\ A (vi) AUB* (viii) B\ A° (x) (AUB)

(i) 'The union of A and B consists of the elements in A or in B (or both); hence AUB = {a, b, d, €}.

(ii) The intersection of A and B consists of those elements which belong to both A and B; hence
AnB = {b,d}.

(iii) The complement of B consists of the letters in U but not in B; hence Bc = {a,c}.

(iv) The difference B\ A consists of the elements of B which do not belong to A; hence
BN\ A = {e}.

(v) Ac={c,e} and B = {b,d,e}; then AcnB = {e}.
(vi} A ={a,b,d} and Bc = {a,c}; then AUBc = {a,b,e¢,d}.
(vii) and (vii). A¢={c,e} and Bc= {a,c}; then
AcnBe = {¢} and BeN Ac = {a}
(ix) From (ii), AnB = {b,d}; hence (ANB) = {a,c,e}.
(x) From (i), AUB = {a,b,d, e}; hence (AUB)c = {c}.
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113. In the Venn diagram below, shade: (i) B-, (ii) (A UBY), (iii) (B \\ A)", (iv) A°NB-.

(i) B¢ consists of the elements which do not belong to B; hence shade the area outside B as follows:

Be is shaded.

(ii) TFirst shade A UB; then (A UB)c is the area outside AUB:

A UB is shaded. (A UB)c is shaded.

(iii) First shade B\\ A, the area in B which does not lie in A; then (B \ A)¢ is the area outside

B\ A:
1‘ = ‘J 4 3
. I’ A=—/H B 3
1‘ =4

B\ A is shaded. (B A)¢ is shaded.

(iv) First shade Ac, the area outside of A, with strokes slanting upward to the right (////), and
then shade B¢ with strokes slanting downward to the right (\\\\); then AcnBc is the
cross-hatched area:

Ac and Be¢ are shaded. Acn B¢ is shaded.

Observe that (AuUB)c = AcnBc, as expected by De Morgan’s law.
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1.14.

1.15.

1.16.

Prove:. B\ A4 =BnAc. Thus the set operation of difference can be written in
terms of the operations of intersection and complementation.
BNA = {z:2€B, x&A} = {x:2€B, x€ A} = BnNAc

Prove: For any sets Aand B, ANBC A C AUB.
Let x € ANB; then 2 € A and x € B. In particular, x € A. Since 2 € ANB implies s € A,

AnB C A. Furthermore if x €A, then x €A or x € B,i.e. x € AUB. Hence A C AUB. In other
words, ANBCA CAUB.

Prove Theorem 1.3(i): ACB if and only if ANB = A.

Suppose ACB. Let x € A; then by hypothesis, x € B. Hence x € A and 2z € B, i.e. z € ANB.
Accordingly, A ¢ AnB. On the other hand, it is always true (Problem 1.15) that AnB C A.
Thus ANB=A.

Now suppose that ANB = A. Then in particular, A C AnB. But it is always true that
AnBcB. Thus A C AnB C B and so, by Theorem 1.1, A C B.

PRODUCT SETS

L17.

1.18.

1.19.

let M = {Tom, Marc, Erik} and W = {Audrey, Betty}. Find M X W.
M X W consists of all ordered pairs (a,b) where a € M and b € W. Hence

M X W = {(Tom, Audrey), (Tom, Betty), (Marc, Audrey),
{Marc, Betty), (Erik, Audrey), (Erik, Betty)}

Let A=(1,2,3}, B={2,4}) and C={3,4,5}). Find AxBxC.
A convenient method of finding A X B X C is through the so-called “tree diagram” shown below:

1,2,3)
1,2,4)
1,2,5)

(1, 4,3)
(1, 4, 4)
(1, 4, 5)

(2,23
2,2,4)
(2, 2,5)

(2, 4, 8)
2,4, 4)
(2, 4, 5)

(8,2,3)
(3,2,4)
(8,2,5)
(8,4, 3)
(3,4, 4)
(3,4,6)

D-‘\
£ (-]
T 0 U W

-]

(>~
[ [ -]

AWAW
AAAAN

QU O3 Ot O Ot O Ot W

The “tree” is constructed from the left to the right. A X B X C consists of the ordered triples
listed to the right of the “tree”.

Let A= {a,b}, B=(2,8} and C = {3,4}. Find:
(i) Ax(BUQ), (ii) (AXB)U(AXC(), (iii) Ax(BNC), (iv) (AXB)N(AXC).
(i) First compute BUC = {2,8,4}. Then

AX(BUC) = {(a,2), (a,8), (a,4), (b,2), (b,3), (b,4)}
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1.20.

1.21.

1.22,

SET THEORY [CHAP. 1

(ii) First find A X B and A X C:
AXB

AXC

il

{(a, 2), (a,3), (b,2), (b,3)}
{(a,3), (@, 4}, (b,3), (b, 4)}

f

Then compute the union of the two sets:
AXB)UAXC) = {(a,2),(a,3),(b,2),(d3), (a,4), (b4}
Observe from (i) and (ii) that :
AX(BUC) = (AXBYUu(AX0()
(iii) First compute BNC = {3}. Then
AXBNC) = {(a,3),(b,3)}

(iv) Now 4 X B and A X C were computed above, The intersection of A X B and A X C consists of
those ordered pairs which belong to both sets:

AXB)n(AXC) = {(a3), (b 3)}

Observe from (iii) and (iv) that
AX(BNC) = (AXB)n{4XC(0)

Prove: AX(BNC) = (AXB) N (4%C).
AX(BNC) = {(x,y):x2x€ A4, yE€BNC}
{(z,y): x €A, yE€ B, y € C}
{(x,¥): (x,¥) EAXB, (z,y) € AXC(C}
= AXB)n{AXC0

Let S = {a,b), W = {1,2,3,4,5,6} and V = {3,5,7,9}). Find (Sx W) n (Sx V).

The product set (SX W) N (S X V) can be found by first computing SX W and S XV, and
then computing the intersection of these sets. On the other hand, by the preceding problem,
(SXW)NEXV)=SX(WnV). Now WnV = {8,5}, and so

(SXW)N(SXV) = SX(WnV) = {(a,3), (a,5), (b,3), (b,5)}

Prove: Let ACB and CCD; then (A X C) C (B x D).

Let (x,y) be any arbitrary element in A X C; then x € A and y € C. By hypothesis, ACB and
CcD; hence x€B and y € D. Accordingly (x,y) belongs to BXD., We have shown that
(z,y) € A X C implies (z,y) € B X D; hence (A XC) C (B X D).

CLASSES OF SETS

1.23.

1.24.

Consider the class A = {{2,3}, {4,5}, {6}}. Which statements are incorrect and
why? (i) {4,5}CA, (ii) (4,5} € A, (iii) {{4,5}}CA.

The members of A are the sets {2,3}, {4,656} and {6}. Therefore (ii) is correct but (i) is an
incorrect statement. Moreover, (iii) is also a correct statement since the set consisting of the single
element {4, 5} is a subclass of A.

Find the power set P(S) of the set S = {1,2,3}.

The power set P(S) of S is the class of all subsets of S; these are {1,2,3}, {1, 2}, {1, 3}, {2,3),
{1}, {2}, {8} and the empty set @. Hence

PS8y = {S,{1,3}, {2,3}, {1,2}, {1}, {2}, {3}, @}
Note that there are 23 = 8 subsets of S.
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1.25.

1.26.

1.27.

1.28.

1.29.

1.30.

Let X = {a,b,c,d, e, f, g9}, and let:

(i) Air={a,c,e}, A2= (b}, 435={d,g};

(ii) B, = {a,e,g}, B:= {¢,d}, Bs= {b,e¢,f};

(ifi) C1 = {a,b,e,9}, C2= {c}, C3={d,f};

(iv) Dy ={a,b,c,d,e,f,g}.

Which of {A,, Az, As), {By, Bs, B3}, {C), Cs, Cs), {D,)} are partitions of X?

(i) {A,,A, A3} is not a partition of X since f € X but f does not belong to either A,, 4,, or A,

(ii) {B,, B,, B3} is not a partition of X since ¢ € X belongs to both B; and Bj.

(iii) {Cy, Cy, C3} is a partition of X since each element in X belongs to exactly one cell, i.e.
X = C,UC,uC,; and the sets are pairwise disjoint.

(iv) {D,} is a partition of X.

Find all the partitions of X = {a,b,¢,d}.
Note first that each partition of X contains either 1, 2, 3, or 4 distinet sets. The partitions

are as follows:
(1)  [{a,b,c,d}]

[
(2) ({a}, {b,c.d}], [{b}, {a,c,d}], [{c}, {a,b,d}], [{d}, {a,b,c}],
[a, b}, {c,d}], [{a,e}, {b,d}], [{a,d}, {b,c}]
8) [{a}, {3}, {c,d}], {{a}, {c}, {b,d}], [{a}, {d}, {b,c}],
({8}, {c}, {a,d}], [{b}, {d}, {a,¢}], [{e}, {d}, {a,b}]
@ [a}, (B}, {o}, (@]
There are fifteen different partitions of X.

Let N be the set of positive integers and, for each n € N, let

A, = {2:zisamultipleofn} = {2, 3n, ...}
Find (i) AsNA4s, (ii) AsNAs, (iii) Uier Ai, where P is the set of prime numbers,
2,8,5,7,11, ....
(i) Those numbers which are multiples of both 3 and 5 are the multiples of 15; hence AgNAgs = A5,
(ii) The multiples of 12 and no other numbers belong to both A, and Ag; hence A;NAg= Ay,
(iii) Every positive integer except 1 is a multiple of at least one prime number; hence

vier d; = {2,8,4, ...} = N\ {1}

Prove: Let {A;:1€1I)} be an indexed class of sets and let i, €1. Then
Nier Ai C Ay C Uier A;

Let x € Njey A;; then x € A; for every i€ I. In particular, x € Aio' Hence Nije; 4;C Aio'
Now let y € A,-O. Since €I, y € Uier 4;. Hence A"o C Uier 4,

Prove (De Morgan’s law): For any indexed class {d4;:i€1), (UsA)° = NA;.
(Ujd)e = {x: 2@ UA)} = {z:x€A, foreveryid} = {x:ax€A] foreveryi} = ;4]

Let ¢4 be an algebra (o-algebra) of subsets of U. Show that: (i) U and @ belong to

ed;and (ii) ¢4 is closed under finite (countable) intersections.
Recall that o4 is closed under complements and finite (countable) unions.

(i) Since <4 is nonempty, there is a set A € c4f. Hence the complement A¢ € o4, and the union
U=AUAc E 4. Also the complement @ = Uc € cA.

(ii) Let {A,} be a finite (countable) class of sets belonging to c4. By De Morgan’s law (Problem 1.29),
(U A)e = nyAf® = n;A;. Hence n;A; belongs to oA, as required.
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Supplementary Problems

SETS, ELEMENTS, SUBSETS
1.31. Write in set notation:

{(a) R is a subset of 7. (d) M is not a subset of S.
(b) x is a member of Y. (e) z does not belong to A.
(¢) The empty set. (f) R belongs to o4,

1.32. Rewrite explicitly giving the elements in each set:
i) A ={zx:22—2—-2=0}

(iiy B = {x: «is a letter in the word “follow”}
(iii) C = {z: 22=9, z—3 =5}
(iv) D = {x: z is a vowel}

(v) E = {x: zis a digit in the number 2324}

133. Let A = {1,2,...,8,9), B = {2,4,6,8), C = {1,8,6,7,9}, D = {3,4,6} and E = {3,5}.
Which sets can equal X if we are given the following information?
(i) X and B are disjoint. (ii) XcD but X¢B. (ii)) XcA but X¢C. (iv) XCC but X¢A.

1.34. State whether each statement is true or false:
() {1,4,3) ={3,4,1} (iti) 1¢{1,2} ) {49rc{i{y
(ii) {3,1,2} C{1,2,8} (iv) {4} € {{4}} (vi) @ c{{4}}

1.35. Let A = {1,0}. State whether or not each statement is correct:
(i) {0} €A, (i) @ € A, (iii) {0} C A, (iv) 0E€ A, (v) 0CA.

1.36. State whether each set is finite or infinite:
(i) The set of lines parallel to the x axis.
(ii) The set of letters in the English alphabet.
(iii) The set of numbers which are multiples of 5.
(iv) The set of animals living on the earth.
(v) The set of numbers which are solutions of the equation «27 + 26218 — 17411 + 723 —10 = 0.
(vi) The set of circles through the origin (0, 0).

SET OPERATIONS

1.37. Let U = {a,b,¢,d,e,f, 9}, A = {a,b,¢,d, e}, B=1{a,c,e,g} and C = {b,e,f,g}. Find:
(i) AucC (iii) C\B (v) CcnA (vii) (A \ Be)c
(il) BNA (iv) BeuC (vi) (ANC)r (viii) (AnAc)e

1.38. In the Venn diagrams below, shade (i) W\ 'V, (ii) Veu W, (iii) V n We, (iv) Ve We.

(@) (b

1.39. Prove: (a) AUB = (AcnB°s; (b) AN\ B = AnBec. (Thus the union and difference operations can
be defined in terms of the operations of intersection and complement.)

1.40, Prove Theorem 1.3(ii); ACB if andonly if AUB = B,
141. Prove: If ANnB =, then A CBe.

142, Prove: A<\ B¢ = B\ A.
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1.43.

1.44.

Prove: ACB implies AU(B\ A) = B.

(i) Prove: An(B\C) = (AnB)N\(ANC).
(ii) Give an example to show that AU(B\ C) ¥ (AUB)\ (AuC().

PRODUCT SETS

1.45.

1.46.

1.47.

1.48.

1.49.

1.50.

Let W = {Mark, Eric, Paul} and let V = {Eric, David}. Find:
(1) WXV, (ii) VXW, (i) V2=V XV,

Let A ={2,3}, B={1,38,5} and C = {3,4}. Construct the “tree diagram” of A X B X C and then
find A X B X C. (See Problem 1.18.)

Let S ={a,b,¢}, T =4{b,¢,d} and W = {a,d}. Construct the tree diagram of SX T X W and
then ind SX T X W.

Suppose that the sets V, W and Z have 3, 4 and 5 elements respectively. Determine the number
of elements in (i) VXWX2Z, (ii) ZXVXW, (iii) WX Z X V.

Let A = BnC. Determine if either statement is true:
(i) AXA = BXB)Nn({CX0C), (i) AXA =BXC)n(CXB).

Prove: A X (BUC) = (A X B)U (A X C).

CLASSES OF SETS

1.51.

1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.

1.59.

Let A, = {z:x is a multiple of n} = {n,2n,3n,...}, where n € N, the positive integers. Find:
(i) Agn Ay (1) Agn Ag (i) AgUd (iv) AgNAy; (v) A,UA,, where s,t €EN; (vi) A;N4Ag,
where s,t € N. (vii) Prove: If JCN is infinite, then nN;e; 4; = 9.

Find the power set P(4) of A = {1,2,3,4} and the power set P(B) of B = {1, {2,3}, 4}.

Let W =1{1,2,3,4,5,6}. Determine whether each of the following is a partition of W:
() [{1,8,5}, {2,4}, {8,6}] (iii) [{1,5}, {2}, {4}, {8, 6}]
(i) [{1,5}, {2}, {8,6}] (iv) [{1,2,8,4,5,6}]

Find all partitions of V = {(1,2,3}.

Let [A,A,, ..., A,] and [By, By, ..., B,] be partitions of a set X. Show that the collection of sets
[4inBs:i=1,...,mj=1,...,n]
is also a partition (called the cross partition) of X.

Prove: For any indexed class {A;: {€I} and any set B,
(@ BU(N;A) = n,(BUAY, (b) BN(U4) = U;(BNA).

Prove (De Morgan’s law): (n;A)c = U‘Af.

Show that each of the following is an algebra of subsets of U:
(i) ed = {@,U}Y; (i) B ={Q,4,Ac,U)}; (iii) P(U), the power set of U.

Let o4 and B be algebras (o-algebras) of subsets of U. Prove that the intersection <4 N B is also
an algebra (o-algebra) of subsets of U.
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Answers to Supplementary Problems
131. (a) RcT, (b)) z€Y, (c) O, (d) M¢S, (e) 2€ A, (f) RE A.
1.32. (i) A ={-1,2}, (ii) B ={f,0,,w}, (iii) C= 0, (iv) D = {a,¢, f,o,u}, (v) E =1{23,4}.
1.33. (i) Cand E, (ii) D and E, (iii) A, B and D, (iv) none.
1.34. All the statements are true except (v).
1.35. (i) incorrect, (ii) incorrect, (iii) correct, (iv) correct, (v) incorrect.

1.36. (i) infinite, (ii) finite, (iii) infinite, (iv) finite, (v) finite, (vi) infinite.

137. (i) AuC=U (v) CenA ={a,e¢,d} =Cc
(i) BnA ={a,c,e} (vi) (ANC); ={b,ef, g}
(ili) C\B ={b,f} (vil) (AN Be)c = {b,d,f, g}
(iv) BeuC = {b,d,e,f, 9} (viii) (ANAc) =U

1.38. (a)

W\V Veuw VnWwe

(%)

w\V Veuw Vnwe Ve We
Observe that VeUW = U and VNWe =@ in case (b) where VCW,

145, (i) WXV
(i) Vxw
(iii) VXV

{(Mark, Eric), (Mark, David), (Eric, Eric), (Eric, David), (Paul, Eric), (Paul, David)}
{(Eric, Mark), (David, Mark), (Erie, Eric), (David, Eric), (Eric, Paul), (David, Paul)}
{(Eric, Eric), (Eric, David), (David, Eric), (David, David)}

1.46.
<<{ Gy
2 s<i{ (@34
5<% o
1<{ @19
2 <{ (34
s<1{ (54

The elements of A X B X C are the ordered triplets to the right of the tree diagram above.
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1.47.

1.48.

1.49.

151,

1.52.

1.53.

1.54.

b<:
a c<:
d<:
b<:
b c<:
d==__3

b<:
c<c<:
d<:

The elements of S X T X W are the ordered triplets listed to the right of the tree diagram.

Each has 60 elements.
Both are true: A XA = (BXB)n(CXC) = (BXC)N(CX B).
(i) Ay, (i) Agy, (ifi) Ay, (iv) Ay, (v) 4,, (i) Ay

P(B) = (B, {1, {2,8}}, {1, 4}, {{2,3}, 4}, {1}, {{2,3}}, {4}, D}-
(i) no, (ii) no, (iii) yes, (iv) yes.

[{1,2,3}], ({2}, {2, 8}], ({2}, {1, 8}], [{8}, {1, 2}] and {{1}, {2}, {3}]

(a, b, a)
(a, b, d)
(a, c, a)
(a, c, d)
(a, d, a)
(e, d, d)
(b, b, a)
(b, b, d)
(b, ¢, a)
(b, ¢, d)
(b, d, a)
(b, d, d)
(¢, b, a)
(¢, b, d)
(e, ¢, a)
(¢, ¢, d)
(e, d, a)
{c, d, d)

156



Chapter 2

Techniques of Counting

INTRODUCTION

In this chapter we develop some techniques for determining without direct enumeration
the number of possible outcomes of a particular experiment or the number of elements in
a particular set. Such techniques are sometimes referred to as combinatorial analysis.

FUNDAMENTAL PRINCIPLE OF COUNTING
We begin with the following basic principle.

Fundamental Principle of Counting: If some procedure can be performed in n: dif-
ferent ways, and if, following this procedure, a second procedure can be
performed in n, different ways, and if, following this second procedure, a
third procedure can be performed in n; different ways, and so forth; then the
number of ways the procedures can be performed in the order indicated is the
product Ni*N2*N3 ....
Example 21: Suppose a license plate contains two distinct letters followed by three digits with
the first digit not zero. How many different license plates can be printed?

The first letter can be printed in 26 different ways, the second letter in 25 dif-
ferent ways (since the letter printed first cannot be chosen for the second letter),
the first digit in 9 ways and each of the other two digits in 10 ways. Hence

26+25-9+10-10 = 585,000
different plates can be printed.

FACTORIAL NOTATION

The product of the positive integers from 1 to n inclusive occurs very often in mathe-
matics and hence is denoted by the special symbol n! (read “n factorial”):
n! = 1:2:3----+(n—2)(n—1n

It is also convenient to define 0!=1.

Example 2.2: 2! = 1.2 = 2, 3! = 1+2+3 = 6, 4! = 1234 = 24,
b! = 5+4! = 524 = 120, 6! = 6-5! = 6-120 = 720

8! 8:7-6! _ 12111091 _ 121

Example 23: E'.— - —6'— = 8+7 = 56 121110 = T = ‘9—!—

PERMUTATIONS
An arrangement of a set of » objects in a given order is called a permutation of the

objects (taken all at a time). An arrangement of any »=n of these objects in a given
order is called an r-permutation or a permutation of the n objects taken r at a time.

Example 2.4: Consider the set of letters a, b, ¢ and d. Then:
(i) bdca, dcba and acdb are permutations of the 4 letters (taken all at a time);
(ii) bad, adb, cbd and bea are permutations of the 4 letters taken 3 at a time;
(iii) ad, eb, da and bd are permutations of the 4 letters taken 2 at a time.

16
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The number of permutations of n objects taken r at a time will be denoted by
P(n, )
Before we derive the general formula for P(n, r) we consider a special case.

Example 25: Find the number of permutations of 6 objects, say a,b,¢,d, e, f, taken three at a
time. In other words, find the number of “three letter words” with distinct letters
that can be formed from the above six letters.

Let the general three letter word be represented by three boxes:

Now the first letter can be chosen in 6 different ways; following this, the second
letter can be chosen in 5 different ways; and, following this, the last letter can be
chosen in 4 different ways. Write each number in its appropriate box as follows:

Thus by the fundamental principle of counting there are 6+5+4 = 120 possible
three letter words without repetitions from the six letters, or there are 120 permu-
tations of 6 objects taken 3 at a time. That is,

P(6,3) = 120

The derivation of the formula for P(n, r) follows the procedure in the preceding example.
The first element in an r-permutation of n-objects can be chosen in » different ways; follow-
ing this, the second element in the permutation can be chosen in n—1 ways; and, following
this, the third element in the permutation can be chosen in n —2 ways. Continuing in this
manner, we have that the rth (last) element in the r-permutation can be chosen in n—(r—1) =
n—r+1 ways. Thus

n!

Theorem 2.1: P(n,7r) = n(n—1)(n—2):--(n—r+1) = m—n1

The second part of the formula follows from the fact that

nn—1)n—-2)---(n—-r+1)-(n—r)! n!

nn—1)n—2) - (n—r+1) m—1)1 (n—7)!

i

In the special case that » =n, we have

Pn,n) = n(n—1)(n—2)---3-2:1 = n!
Namely,

Corollary 2.2: There are n! permutations of n objects (taken all at a time).

Example 2.6: How many permutations are there of 3 objects, say, a, b and ¢?

By the above corollary there are 3! =1+2+3 = 6 such permutations. These
are abc, ach, bac, bea, cab, cha.

PERMUTATIONS WITH REPETITIONS

Frequently we want to know the number of permutations of objects some of which are
alike, as illustrated below. The general formula follows.

Theorem 2.3: The number of permutations of # objects of which n, are alike, n. are

alike, ..., n, are alike is .

I ne! - - n,l
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We indicate the proof of the above theorem by a particular example. Suppose we want
to form all possible 5 letter words using the letters from the word DADDY. Now there
are 5! =120 permutations of the objects D, A, D, D3, Y where the three D’s are dis-
tinguished. Observe that the following six permutations

Dy\D:D;AY, D:D\D3AY, DsD\D.AY, D\D3D;AY, D:DsD\AY, DsD.DAY

produce the same word when the subscripts are removed. The 6 comes from the fact that
there are 3! =3-:2+1 =6 different ways of placing the three D’s in the first three posi-
tions in the permutation. This is true for each of the other possible positions in which the
Dr’s appear. Accordingly there are

5! 120

31§ — 20
different 5 letter words that can be formed using the letters from the word DADDY.

Example 2.7: How many different signals, each consisting of 8 flags hung in a vertical line,
can be formed from a set of 4 indistinguishable red flags, 3 indistinguishable white
flags, and a blue flag? We seek the number of permutations of 8 objects of which
4 are alike (the red flags) and 3 are alike (the white flags). By the above theorem,
there are

81! BeT7eBebhede3e2e1

a3l = 4-3-2-1-3-2.1 280

different signals.

ORDERED SAMPLES

Many problems in combinatorial analysis and, in particular, probability are concerned
with choosing a ball from an urn containing » balls (or a card from a deck, or a person
from a population). When we choose one ball after another from the urn, say r times, we
call the choice an ordered sample of size r. We consider two cases:

(i) Sampling with replacement. Here the ball is replaced in the urn before the next ball
is chosen. Now since there are n different ways to choose each ball, there are by the
fundamental principle of counting

r times
NN ‘N = N

different ordered samples with replacement of size 7.

(ii) Sampling without replacement. Here the ball is not replaced in the urn before the next
ball is chosen. Thus there are no repetitions in the ordered sample. In other words,
an ordered sample of size r without replacement is simply an r-permutation of the
objects in the urn. Thus there are

n!
P(n,r) = n(n—l)(n—Z) . -(n—r+l) = W

different ordered samples of size » without replacement from a population of n objects.

Example 2.8: In how many ways can one choose three cards in succession from a deck of 52 cards
(i) with replacement, (ii) without replacement? If each card is replaced in the
deck before the next card is chosen, then each card can be chosen in 52 different
ways, Hence there are

b2+52+52 = 523 = 140,608

different ordered samples of size 3 with replacement,
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On the other hand if there is no replacement, then the first card can be chosen
in 52 different ways, the second card in 51 different ways, and the third and last
card in 50 different ways. Thus there are

5251560 = 132,600

different ordered samples of size 3 without replacement.

BINOMIAL COEFFICIENTS AND THEOREM

n . .
The symbol < 'r> , read “nCr”, where r and » are positive integers with r =n, is defined

as follows: <’n> _ an-1)(n-2)--(n—r+1)
r] = 1-2:3---(r—1)r

These numbers are called the binomial coefficients in view of Theorem 2.5 below.
8\ _ 8.7 _ 9\  9-8-7-6 _ 12y 12.11:10-9-8 _
Example 2.9: <2> =12 = 28 <4> = {v973.4 = 126 5/~ 1 5.3.4.5 792

Observe that (2) has exactly r factors in both the numerator and denominator. Also,

n> _ oan-1)---(n—r+1) _ nn-1-:-@m-r+ln-n! n!
<T T T 128 (r=1)r T 1:2:83--(r—Ur(n—-n!  rln—-7n)!

Using this formula and the fact that n—(»n—7) =r, we obtain the following important
relation.

n n . . _ n\ _ /n
Lemma 24: <n—'r> = (1,) or, in other words, if ¢+ b =n then <a> = <b>

10\  10-9:8:7-6-5+4 _ 10\ _ /10 _ 10-9.8 _
Example 2.10: <7> = J72 34567 120 or <7> = <3> = Jia.8 = 120

Note that the second method saves both space and time.

Remark: Motivated by the second formula for (7: and the fact that 0! =1, we define:

" n! . ] 0 0!
<0> = 5ip1 = 1 and, in particular, (0> = oro1 = 1

The Binomial Theorem, which is proved (Problem 2.18) by mathematical induction, gives
the general expression for the expansion of (a + b)".

Theorem 2.5 (Binomial Theorem):

@+b)p = 20 <’;’> b

n{in—1
= @ + na"'b + —-(sz—za"‘%z + -+ + nab"! + b*
54 bed
Example 2.11: (a+b)5 = a4+ bath + i—.'éaabz + ﬁ(lf"b3 + babt + b5

= a5 + 5ath + 10a3b? + 10a2b3 + babt + b3

6-5 6.5.4 6.5
6 = 8 4 5h + —— a4 + 308 + —— 2hd 5 4+ 6
(a+b) a 6a’b 1.2ab2 1.2.3(1-1) 1.2(1'b 6ab b

= @8 + 6aSh + 15a%h® + 2003 + 15a?bt + 6abS + b8
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The following properties of the expansion of (a + b)" should be observed:
(1) There are » + 1 terms.
(ii) The sum of the exponents of a and b in each term is n.

(iii) The exponents of a decrease term by term from n to 0; the exponents of b increase
term by term from 0 to n.

(iv) The coefficient of any term is (Z) where / is the exponent of either @ or b. (This fol-
lows from Lemma 2.4.)

(v) The coefficients of terms equidistant from the ends are equal.

We remark that the coefficients of the successive powers of a + b can be arranged in a
triangular array of numbers, called Pascal’s triangle, as follows:

(@+b)0 = 1 1
(@+b! = a + b 1 1
(a+d)2 = a2 + 2ab + b2 1 2 1
{fa+b)? = a® + 3a2b + 3ab2 + b3 1 3 3 1
fa+b) = at + 4a3b + 64202 + 4dabd® + b 1 4 6 4 1
(a+b)> = a® + Bbatdb + 10a3b2 + 10a203 + 5abd + bS5 1 b5 @ 10 6 1
(a+d)8 = a8 + 6a5b -+ 15a%b2 + 20a3b3 + 15a2b? + 6ab5 + b6 1 6 (H O 15 6 1

............................................................................................

Pascal’s triangle has the following interesting properties.
(a) The first number and the last number in each row is 1.

(b) Every other number in the array can be obtained by adding the two numbers appearing
directly above it. For example: 10 = 4+ 6, 15 = 5+ 10, 20 = 10 + 10.

We note that property (b) above is equivalent to the following theorem about binomial
coeflicients.

n+1 n n
Theorem 2.6: < r ) = <r—1> + <r>

Now let 74, 7, ..., 7. be nonnegative integers such that ni+ 724+ -+ +n, = n. Then
the expression n is defined as follows:
1, N2, y Nr
n . n!
N1, Nz, o ooy Br ny!lng! - - n,!

For example,

7 __ T 8 _ 8! _
(2,3,2) = 2rgrz; -~ 210 (4,2,2,0> = grereror - 420

These numbers are called the multinomial coefficients in view of the following theorem
which generalizes the binomial theorem.

Theorem 2.7: (ay+az+---+a;)* = n )al‘la;'?-- coa

T
nytngt -t =0 (nh N2y ooy Nir
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COMBINATIONS

Suppose we have a collection of n objects. A combination of these n objects taken r at
a time, or an r-combination, is any subset of r elements. In other words, an r-combination
is any selection of 7 of the n objects where order does not count.

Example 2.12: The combinations of the letters a,b,c,d taken 3 at a time are
{a, b, ¢}, {a,b,d}, {a,c,d}, {b,c,d} orsimply abe, abd, acd, bed
Observe that the following combinations are equal:
abe, ach, bac, bea, cab, cba
That is, each denotes the same set {a, b, ¢}.
The number of combinations of n objects taken » at a time will be denoted by
C(n, 1)
Before we give the general formula for C(n, r), we consider a special case.
Example 2.13: We determine the number of combinations of the four letters a, b, ¢, d taken 3 at a

time. Note that each combination consisting of three letters determines 3! = 6
permutations of the letters in the combination:

Combinations Permutations
abe abe, ach, bac, bea, cab, cba
abd abd, adb, bad, bda, dab, dba
acd aed, ade, cad, cda, dae, dea
bed bed, bde, cbd, edb, dbe, deb

Thus the number of combinations multiplied by 3! equals the number of permu-
tations:

C(4,8)+3! = P4, 3) or C(4, 3) = P(;; 3)

Now P(4,3) =432 =24 and 3! =6; hence C(4,3) =4 as noted above,

Since each combination of » objects taken r at a time determines ! permutations of the
objects, we can conclude that
P(n,7ry = r!1C(n, 1)
Thus we obtain

Theorem 2.8: C(n,7) = P(:&;'r) = 1*'(7;”i 7)!

Recall that the binomial coefficient <Z> was defined to be

Cln, 1) = (f)

We shall use C(n, r) and <2> interchangeably.

!
m 5 hence
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Example 2.14: How many committees of 3 can be formed from 8 people? Each committee is
essentially a combination of the 8 people taken 3 at a time. Thus

8\ _ 8:7-6 _
C@8,3) = <3> = 1:ovg = 06

different committees can be formed.

ORDERED PARTITIONS

Suppose an urn A contains seven marbles numbered 1 through 7. We compute the num-
ber of ways we can draw, first, 2 marbles from the urn, then 3 marbles from the urn, and
lastly 2 marbles from the urn. In other words, we want to compute the number of ordered

partitions
(A1, As, As)

of the set of 7 marbles into cells A, containing 2 marbles, A: containing 3 marbles and As
containing 2 marbles. We call these ordered partitions since we distinguish between

({1, 2} {3,4,5)}, {6,7}) and ({6,7}, {3, 4,5}, {1,2})
each of which yields the same partition of A.
Since we begin with 7 marbles in the urn, there are G) ways of drawing the first 2
marbles, i.e. of determining the first cell A.; following this, there are 5 marbles left in the
urn and so there are (g) ways of drawing the 3 marbles, i.e. of determining A,; finally,

there are 2 marbles left in the urn and so there are <2> ways of determining the last cell

As. Thus there are
N\ /5 76 5+4-3 2-1
(2)(3)@) = T2'T2s 1 - 210

different ordered partitions of A into cells A, containing 2 marbles, A: containing 3 marbles,
and A; containing 2 marbles.

Now observe that

7\ /5 7 5t 2 71
2/\8/\2) T 2151 8121 210! ~ 273121

since each numerator after the first is cancelled by the second term in the denominator of
the previous factor. In a similar manner we prove (Problem 2.28)

Theorem 2.9: Let A contain n elements and let n, %, ...,n. be positive integers with
M1+ nzs+ - -- +n,=n. Then there exist

n!
mlng!ng! - n,.!
different ordered partitions of A of the form (A4, As, ..., A,) where A, con-
tains n, elements, As containg %, elements, ..., and A, contains n, elements.

Example 2.15: In how many ways can 9 toys be divided between 4 children if the youngest child
is to receive 3 toys and each of the other children 2 toys?

We wish to find the number of ordered partitions of the 9 toys into 4 cells
containing 3, 2, 2 and 2 toys respectively. By the above theorem, there are
91

3T2i2rg] — 7060

such ordered partitions.
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TREE DIAGRAMS
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A tree diagram is a device used to enumerate all the possible outcomes of a sequence of

experiments where each experiment can occur in a finite number of ways.

of tree diagrams is illustrated in the following examples.

Example 2.16: Find the product set A X B X C where A =

The tree diagram follows:

=

-{1,2}, B

W o WL O O [~ ]

AAN

The construction

= {a,b,c} and C = {8,4).

1,aq,3)
1, a, 4)
1,5,3)
(1,5, 4)
(1,6, 8)
(1,¢4)
2, a,8)
2, a, 4)
2,038
2,5, 4)
2, ¢ 3)
2,0 4)

Observe that the tree is constructed from left to right, and that the number of
branches at each point corresponds to the number of possible outcomes of the next

experiment.

Example 2.17:

Mark and Eric are to play a tennis tournament. The first person to win two games

in a row or who wins a total of three games wins the tournament. The following

diagram shows the possible outcomes of the tournament.

e

Observe that there are 10 endpoints which correspond to the 10 possible out-

comes of the tournament:

MM, MEMM, MEMEM, MEMEE, MEE, EMM, EMEMM, EMEME, EMEE, EE

The path from the beginning of the tree to the endpoint indicates who won which

game in the individual tournament.
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Solved Problems
FACTORIAL
2.1. Compute 4!,5!,6!, 7! and 8!.
41 = 12+83+4 = 24 71 = 746! = 7-720 = 5040
51 = 1+2+8+4+5 = 54! = 5:24 = 120 8! = 87! = 8-5040 = 40,320
6] = 1+2:8:4+5:6 = 6:5! = 6120 = 720
oo 181 T
2.2. Compute: (1)m, (ii) 101
. 13! _ 13-12-11-10:9+8-7-6-5-4-3-2-1 _ . __ _
O 97 = ~ 11-10-9-8-7-6-5-4-3-3.1  — 13712 = 156
131 _ 13-12-11! _ . o
or 7 = T~ = 18-12 = 156
i = 71 _ 1 1
W10t T 10-9-8-77  10-9-8 _ 720
) e e m! o (m+2)!
2.3. Simplify: (1) CESIk (ii) por Rl
. n! _nn—1{n—2)--:321 . n! _ o nn—1)! _
O GO~ m-Dm—2 3-2-1 ~ " onsimply, T—5n = m-1! "
] ) —_ —_ ces3e9
) LD - (SO = Y000 s = v e
or simply, PR (EDOED ML gy gy g o

PERMUTATIONS, ORDERED SAMPLES

If repetitions are not permitted, (i) how many 3 digit numbers can be formed from
the six digits 2, 3, 5, 6, 7 and 9? (ii) How many of these are less than 400? (iii) How
many are even? (iv) How many are odd? (v) How many are multiples of 5?

24.

In each case draw three boxes D D D to represent an arbitrary number, and then

write in each box the number of digits that can be placed there.

®

(i)

(iii)

(iv)

The box on the left can be filled in 6 ways; following this, the middle box can be filled in

5 ways; and, lastly, the box on the right can be filled in 4 ways: [Z] E E Thus there
are 6+5+4 = 120 numbers.

The box on the left can be filled in only 2 ways, by 2 or 3, since each number must be less
than 400; the middle box can be filled in § ways; and, lastly, the box on the right can be filled

in 4 ways: EI EI E} Thus there are 2+5+4 = 40 numbers.

The box on the right can be filled in only 2 ways, by 2 or 6, since the numbers must be even;
the box on the left can then be filled in 5 ways; and, lastly, the middle box can be filled in

4 ways: B E] Thus there are 5+4+2 = 40 numbers.

The box on the right can be filled in only 4 ways, by 3, 5, 7 or 9, since the numbers must be
odd; the box on the left can then be filled in 5 ways; and, lastly, the box in the middle can

be filled in 4 ways: E‘ IZ} IE Thus there are 5°4+*4 = 80 numbers.
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2.5.

2.6.

2.7.

28.

2.9.

(v) The box on the right can be filled in only 1 way, by 5, since the numbers must be multiples
of 5; the box on the left can then be filled in 5 ways; and, lastly, the box in the middle can

be filled in 4 ways: [E E’ . Thus there are 5+4°+1 = 20 numbers.

In how many ways can a party of 7 persons arrange themselves (i) in a row of
7 chairs? (ii) around a circular table?

(i) The seven persons can arrange themselves in a row in 7*6¢5°4+3¢2+1 = 7! ways.
(ii) One person can sit at any place in the circular table. The other six persons can then arrange
themselves in 6+5¢4+3<2+1 = 6! ways around the table.

This is an example of a circular permutation. In general, n objects can be arranged in
acirclein (n—1)(n—2)---342+1 = (n—1)! ways.

(i) In how many ways can 3 boys and 2 girls sit in a row? (ii) In how many ways
can they sit in a row if the boys and girls are each to sit together? (iii) In how
many ways can they sit in a row if just the girls are to sit together?

(i) The five persons can sit in a rowin 5<4+3+2+1 = B! = 120 ways.

(ii) There are 2 ways to distribute them according to sex: BBBGG or GGBBB. In each case the
boys can sitin 3¢2¢1 = 3! = 6 ways, and the girls can sit in 21 = 2! = 2 ways. Thus,
altogether, there are 2¢3!¢2! = 2+6+2 = 24 ways.

(iii) There are 4 ways to distribute them according to sex: GGBBB, BGGBB, BBGGB, BBBGG.
Note that each way corresponds to the number, 0, 1, 2 or 3, of boys sitting to the left of the

girls. In each case, the boys can sit in 3! ways, and the girls in 2! ways. Thus, altogether,
there are 4+8!+2! = 4+6+2 = 48 ways.

How many different signals, each consisting of 6 flags hung in a vertical line, can
be formed from 4 identical red flags and 2 identical blue flags?

!
This problem concerns permutations with repetitions. There are Z—?—2—, = 15 signals since
there are 6 flags of which 4 are red and 2 are blue. s

How many distinct permutations can be formed from all the letters of each word:
(i) them, (ii) unusual, (iii) sociological ?

(i) 4! = 24, since there are 4 letters and no repetitions.

'
(i) % = 840, since there are 7 letters of which 3 are u,

12!

3TataTal’ since there are 12 letters of which 3 are o, 2 are ¢, 2 are ¢, and 2 are L

(iii)

(i) In how many ways can 3 Americans, 4 Frenchmen, 4 Danes and 2 Italians be
seated in a row so that those of the same nationality sit together?

(if) Solve the same problem if they sit at a round table.

(i) The 4 nationalities can be arranged in a row in 4! ways. In each case the 3 Americans can
be seated in 3! ways, the 4 Frenchmen in 4! ways, the 4 Danes in 4! ways, and the 2 Italians
in 2! ways. Thus, altogether, there are 4!3!'4!4!2! = 165,888 arrangements.

(ii) The 4 nationalities can be arranged in a cirele in 3! ways (see Problem 14.4 on circular
permutations). In each case the 3 Americans can be seated in 3! ways, the 4 Frenchmen in
4! ways, the 4 Danes in 4! ways, and the 2 Italians in 2! ways. Thus, altogether, there are
3131414!12! = 41,472 arrangements.
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2.10.

2.11.

TECHNIQUES OF COUNTING [CHAP. 2

Suppose an urn contains 8 balls. Find the number of ordered samples of size 3
(i) with replacement, (ii) without replacement.

(i} Each ball in the ordered sample can be chosen in 8 ways; hence there are 8-8+8 = 83 = 512
samples with replacement,.

(ii) The first ball in the ordered sample can be chosen in 8 ways, the next in 7 ways, and the last
in 6 ways. Thus there are 8+7+6 = 836 samples without replacement.

Find n if (i) P(n,2) = 72, (ii) P(n,4) = 42P(n, 2), (iii) 2P(n, 2) + 50 = P(2n, 2).
(i) Pn,2)=nn—1)=n2—mn; hence n2—n =72 or n2~n—72=0 or (n—9)(n+8)=0.

Since n must be positive, the only answer is = = 9.
(iiy P(n,4) = n(n—1)(n—2)(n—3) and P(n,2) = n(n—1). Hence

an—1)(n—2)(n—38) = 42n(n—1)  or,if n>*0, 1, (n—2)(n—13) = 42
or m?2—5n+6 = 42 or w2 —5n—83 =0 or (n—9n+4) =0

Since n must be positive, the only answer is n = 9.

(iti) P(n,2) =n(n—1) =n2—n and P(2n,2) = 2n(2n—1) = 4n2—~2n. Hence
2n2—n) + 50 = 4n2 —2n or 2n2—2n+ 50 = 4n2—~2n or 50 = 202 or =n? = 2§

Since n must be positive, the only answer is n = 5.

BINOMIAL COEFFICIENTS AND THEOREM

2.12,

2.13.

2.14.

commte: @) ('), @ (), ) ().

Recall that there are as many factors in the numerator as in the denominator.

@ (136> _ 161-‘125.-314 — 560 (i) <155> - 1:5-1 1.42-.133.-41.25-11 — 3003
) <142> _ 121 -.121.-31?4-9 — 495
Compute: (i) <§> (i) @) (iii) (16()).
o (§)-Bigd -
Note that 8 —5 = 3; hence we could also compute (:) as follows:
() - ) - k- v

s . 9\ _/9\ _ 9-8 _
(il) Now 9—7 = 2; hence <7> = <2> =173 = 36.

o 10\ _ /10\ _ 10-9-8-7 _
(lll) Now 10 — 6 = 4; hence <6> = ( > = 1—.2'—3'—4— = 210.

Expand and simplify: (2x + y?)°.

b 5
1 1-

= 3225 + 80x%y2 4+ BOx3y* + 40x2y% + 10xy8 + y10

@r+y25 = (205 + 2@20Y + 2@ + S @ere + JEaed + 48
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2.15. Expand and simplify: (z2 — 2y)8,

6+b
1-2

6+54
123

x2—2y)6 = (x2)6 + %(x2)5(—2y) + (22Y4(~2y)% + (22)3(—2y)3
+ 16.;2— (x2)2(—2y)* + %(12)(-2y)5 + (—2y)8

= 12 — 1210y + 60x8y2 — 1602%y3 + 2402ty — 192225 + 64y¢

e peoves 2 = 15 = (D)5 () +(3) (4 4 (4).

Expand (1 + 1) using the binomial theorem:

4 4 4 4 4
2 = (1+41p = 14 + 1311 + 1212 + 1113 14
avoe = (G (eae (Geee v (s (§)
(N (Y (D Y L (8
- 0 1 2 3 4
n+1 n n
2.17. Prove Theorem 2.6: ( > = ( ) + < .
r r—1 T
n ny n! n! . .
Now r—1 + ) = (r—1)!-(n—r+1)!+r!-(n—r)!' To obtain the same denomi-
nator in both fractions, multiply the first fraction by ; and the second fraction by ::—:i; Hence
n " n _ ren! + (n—r+1)n!
r—1 7 T ore(r—=1le(n—r+ 1) rle(n—r+1)s(n—n!
_ ren! (n—r+1)en!
T orln—r+ 1! rY(n—r+1)!
_ realt@—r+ent _ [rtm—r+]en!
- ri(n—r+1)! - rl(n—r+1)!
. mAdm (n+1)! _ (1
T orte—r+D)! T Flm—r+1)t T r

2.18. Prove the Binomial Theorem 2.5: (a +b)* = Y (”’) a="b".

r
r=0
The theorem is true for n =1, since

1
s <1>a1"b' = <;>a1b° n <;>a°b1 = a4+ b = (a+b)
r=:=0 r

We assume the theorem holds for (@ + b)* and prove it is true for (o + d)n+1.
(a+bntl = (a+b)(a+b)

(a+b) ‘:a" + <n> ar~1p + .- + < ” >an—r+1 pr-1
1 r—1
n n
+ ( >an—rbr 4+ e 4+ < >a,b"'1 + b"]
r 1

Now the term in the product which contains b” is obtained from

b[:< n )an—r+1 br—li] + a[<n> an—rbr:| < n >an~r+1 br + <n>an-r+lbr
r—1 7 r—1 7
|:< " > + <n>]an-r+l br

r—1 T

I

I
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1
But, by Theorem 2.6, (r " 1> + (:) = <'n:— > Thus the term containing b is <n+ 1>a”"+1 br,
- r
Note that (a + b)(a + b)" is a polynomial of degree n+1 in b. Consequently,
nt+1 n+1
(@+ b+l = (a+bat+br = 20 , jarTTHeT
o

which was to be proved.

2.19. Compute the following multinomial coefficients:
. 6 .. 8 10
1 111
0 (3,5, )0 0 (42,2, 0>’ ) (5,3,2,2

. 6 6! 6+5+4+3+2+1

@ (3,2, 1> = 31211~ 3ezeieaeier o O

. 8 _ 8!  8eT7+6+5:43:2+1

(1) <4, 2 2, 0> = F1gtat0l ~ 1-3-2.1-2-1-2-.1.1 20

. 10 . .

(iii) The expression <5 3 2 2) has no meaning since 5+ 342+ 2 # 10.
COMBINATIONS
2.20. In how many ways can a committee consisting of 3 men and 2 women be chosen

from 7 men and 5 women? .

The 3 men can be chosen from the 7 men in <3> ways, and the 2 women can be chosen from the
. (b . . [T\[/5\ __7+6:5 5.4

b women in <2> ways. Hence the committee can be chosen in <3><2> =12.3°1°2° 350 ways,

2.21. A delegation of 4 students is selected each year from a college to attend the National

Student Association annual meeting. (i) In how many ways can the delegation be
chosen if there are 12 eligible students? (ii) In how many ways if two of the
eligible students will not attend the meeting together? (iii) In how many ways if
two of the eligible students are married and will only attend the meeting together?

. . 12 1211109
(i) The 4 students can be chosen from the 12 students in 4 = {-2.3.2 "~ 495 ways.
(if) Let A and B denote the students who will not attend the meeting together.
Method 1. 10 10:9-8-7
If neither A nor B is included, then the delegation can be chosen in < > = T1v3-3.2 =
210 ways. If either A or B, but not both, is included, then the delegation can be chosen in

*»9.8
2. <130> = 2'119-.‘2‘? = 240 ways. Thus, altogether, the delegation can be chosen in

210 + 240 = 450 ways.

Method 2.
If A and B are both included, then the other 2 members of the delegation can be chosen in
10 .
( ) = 45 ways. Thus there are 495 — 45 = 450 ways the delegation can be chosen if

2
A and B are not both included.

(iii) Let C and D denote the married students. If C and D do not go, then the delegation can be
10
chosen in < 4> = 210 ways. If both C and D go, then the delegation can be chosen in

10
( 2> = 45 ways. Altogether, the delegation can be chosen in 210 4+ 46 = 255 ways.
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2.22,

2.23.

2.24.

A student is to answer 8 out of 10 questions on an exam. (i) How many choices
has he? (ii) How many if he must answer the first 3 questions? (iii) How many
if he must answer at least 4 of the first 5 questions?

10 10 -
2) = 10-9 = 45 ways.

(i) The 8 questions can be selected in <180> = <

(ii) If he answers the first 3 questions, then he can choose the other 5 questions from the last

. . TN _ [T\ _ 7-6 _
7 questions in <5> = <2> =1g= 21 ways.

(iii) If he answers all the first 5 questions, then he can choose the other 3 questions from the last
5
5 in < > = 10 ways. On the other hand, if he answers only 4 of the first 5 questions, then

5 5
he can choose these 4 in < 4> = <1> = b ways, and he can choose the other 4 questions

1
25 ways. Thus he has a total of 36 choices.

5
from the last 5 in < 4> = <5> = b ways; hence he can choose the 8 questions in 56 =

Find the number of subsets of a set X containing » elements.

Method 1.
The number of subsets of X with » = n elements is given by (j) . Hence, altogether, there are

n n n n n
@)+ @G r () )
subsets of X. The above sum (Problem 2.51) is equal to 2", i.e. there are 2» subsets of X.

Method 2.
There are two possibilities for each element of X: either it belongs to the subset or it doesn’t;

hence there are R
7 times

2+9¢..:09 = 9n

ways to form a subset of X, i.e. there are 2¢ different subsets of X.

In how many ways can a teacher choose one or more students from six eligible
students?
Method 1. .

By the preceding problem, there are 28 = 64 subsets of the set consisting of the six students.

However, the empty set must be deleted since one or more students are chosen. Accordingly there
are 26 —1 = 64 — 1 = 63 ways to choose the students.

Method 2.
Either 1,2,3,4,5 or 6 students are chosen. Hence the number of choices is

B @@ Q@) =ermrmrmrois s

ORDERED AND UNORDERED PARTITIONS

2.25.

In how many ways can 7 toys be divided among 3 children if the youngest gets

3 toys and each of the others gets 27?
We seek the number of ordered partitions of 7 objects into cells containing 3, 2 and 2 objects,

7! ipe
respectively. By Theorem 2.9, there are 372121 = 210 such partitions.



30

2.26.

2.27.

2.28.

TECHNIQUES OF COUNTING [CHAP. 2

There are 12 students in a class. In how many ways can the 12 students take
3 different tests if 4 students are to take each test?

Method 1.
We seek the number of ordered partitions of the 12 students into cells containing 4 students

1
L2 = 34,650 such partitions.

each. By Theorem 2.9, there are
Method 2.

There are < 4 > ways to choose 4 students to take the first test; following this, there are
8
( 4> ways to choose 4 students to take the second test. The remaining students take the third test.

2 8
Thus, altogether, there are < 4> . ( 4> = 495+ 70 = 34,650 ways for the students to take the tests.

In how many ways can 12 students be partitioned into 3 teams, A1, 42 and As, so that
each team contains 4 students?

Method 1.
Observe that each partition {4,,A4,, 45} of the students can be arranged in 3! = 6 ways
12!
as an ordered partition. Since (see the preceding problem) there are ar4ardl — 34,650 such ordered
partitions, there are 34,650/6 = 5775 (unordered) partitions. e

Method 2.
1
Let A denote one of the students. Then there are <13> ways to choose 3 other students to be

on the same team as A. Now let B denote a student who is not on the same team as A; then there
7
are <3> ways to choose 3 students of the remaining students to be on the same team as B. The

11
remaining 4 students constitute the third team. Thus, altogether, there are <3>'<7>
165+ 35 = 5775 ways to partition the students. 3

Prove Theorem 2.9: Let A contain n elements and let ny, ng, . . ., 7, be positive integers
with n1+n2+ -+ + n, = n. Then there exist
n!
nine!ng! - - n,!
different ordered partitions of A of the form (A4, 4., ..., A,) where A, contains n,
elements, A: contains n: elements, ..., and A, contains n, elements.

‘We begin with n elements in A; hence there are <:> ways of selecting the cell 4,. Following
1

this, there are n — n, elements left, i.e. in 4 \\( A;, and so there are <

l> ways of selecting
ng

n— My —  — M
A, Similarly, for 1 =3, ..., r, there are < ! n * 1) ways of selecting A;. Thus
{

there are
n\fr—m\fn—n —n\ [fn—ny— o —my *)
ny Ny ng oy

different ordered partitions of A. Now (*) is equal to

n! (n—ny! (R—my— -+ —n,_)!
. L IR I
nlm—mny)! ny! (n—mn;— ny)! nl(n—ny— - —n)!

n!
nylng! - - n,!
term in the denominator and since (n—n;— -+ —=,)! =0! =1. Thus the theorem is proved.

But this is equal to since each numerator after the first is cancelled by the second
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TREE DIAGRAMS
2.29. Construct the tree diagram for the number of permutations of {a, b, ¢}.

b———c¢ abe
a<
¢c———b ach
a ¢ bac
b<
c—————a bea
a——b cab
¢
<b a cba

The six permutations are listed on the right of the diagram.

2.30. A man has time to play roulette at most five 0 0
times. At each play he wins or loses a dollar. 1<
The man begins with one dollar and will stop ) 2
playing before the five times if he loses all his 0
money or if he wins three dollars, i.e. if he has
four dollars. Find the number of ways that the /
betting can occur. I—2

0
The tree diagram on the right describes the way the 1<
betting can occur. Each number in the diagram denotes
the number of dollars the man has at that point. Observe 3—2

that the betting can occur in 11 different ways. Note \
3<
4 4

that he will stop betting before the five times are up in
only three of the cases.

Supplementary Problems

FACTORIAL
231. Compute: (i) 9!, (i) 10!, (iii) 11!

16! 14! 81 10!
232. Compute: (i) 737, @) {37, (i) 157, @v) isT-

n—r+ 1!
n—r—11"

1 —
233, Simplity: (i) & :!1)', i) 7 f’z)!, (iif) E;’: +;;:

(iv)

PERMUTATIONS

234. (i) How many automobile license plates can be made if each plate contains 2 different letters
followed by 3 different digits? (ii) Solve the problem if the first digit cannot be 0.

2.35. There are 6 roads between 4 and B and 4 roads between B and C.
(i) In how many ways can one drive from 4 to C by way of B?
(ii) In how many ways can one drive roundtrip from A to C by way of B?

(iii) In how many ways can one drive roundtrip from A to C without using the same road more
than once?
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2.36.

2.37.

2.38.

2.39.

2.40.

241.

242.

2.43.

2.44.

2.45.

2.46.

247,

TECHNIQUES OF COUNTING [CHAP, 2

Find the number of ways in which 6 people can ride a toboggan if one of three must drive.

(i) Find the number of ways in which five persons can sit in a row.
(i) How many ways are there if two of the persons insist on sitting next to one another?

Solve the preceding problem if they sit around a circular table.

(i) Find the number of four letter words that can be formed from the letters of the word HISTORY.
(ii) How many of them contain only consonants? (iii) How many of them begin and end in a
consonant? (iv) How many of them begin with a vowel? (v) How many contain the letter Y?
(vi) How many begin with T and end in a vowel? (vii) How many begin with T and also contain S?
(viii) How many contain both vowels?

How many different signals, each consisting of 8 flags hung in a vertical line, can be formed from
4 red flags, 2 blue flags and 2 green flags?

Find the number of permutations that can be formed from all the letters of each word: (i) queue,
(il) committee, (iii) proposition, (iv) baseball.

(i) Find the number of ways in which 4 boys and 4 girls can be seated in a row if the boys and
girls are to have alternate seats.

(ii) Find the number of ways if they sit alternately and if one boy and one girl are to sit in
adjacent seats.

(iii) Find the number of ways if they sit alternately and if one boy and one girl must not sit in
adjacent seats.

Solve the preceding problem if they sit around a circular table.

An urn contains 10 balls. Find the number of ordered samples (i) of size 3 with replacement,
(ii) of size 3 without replacement, (iii) of size 4 with replacement, (iv) of size 5 without replacement.

Find the number of ways in which 5 large books, 4 medium-size books and 3 small books can be
placed on a shelf so that all books of the same size are together.

Consider all positive integers with 8 different digits. (Note that 0 cannot be the first digit.)
(i) How many are greater than 700? (ii) How many are odd? (iii) How many are even? (iv) How
many are divisible by 5?

(i) Find the number of distinct permutations that can be formed from all of the letters of the word
ELEVEN. (ii) How many of them begin and end with E? (iii) How many of them have the 3 E’s
together? (iv) How many begin with E and end with N?

BINOMIAL COEFFICIENTS AND THEOREM

2.48.

2.49.

2.50.

2.51.

252,

2.53.

2.54.

2 18
Compute: (i) <:>, (if) <;>, (iif) (124>, (iv) <j>, (v) (lg>’ (vi) <15>.
) 9 . 7 6
Compute; (i) <3’ 5, 1>, (i1) (3' 2,2, 0)’ (ii) (2,2 1,1, 0>'

Expand and simplify: (1) (2z 23, (ii) (22 —3y)%, (i) (e +2b)5, (iv) (2a2— D)%

s (5 () ()0 0+ 0) -
s (3) = () + () () v = ()

Find the term in the expangion of (222 — 13°)® which contains 8.

+

H
e

Find the term in the expansion of (3zy2— z2)7 which contains 5.
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COMBINATIONS

2.55.

2,56,

2.57.

2.58.

2.59.

2.60.

A class containsg 9 boys and 8 girls, (i) In how many ways can the teacher choose a committee of 47
(ii) How many of them will contain at least one girl? (iii) How many of them will contain exactly
one girl?

A woman has 11 close friends. (i) In how many ways can she invite 56 of them to dinner? (ii) In
how many ways if two of the friends are married and will not attend separately? (iii) In how
many ways if two of them are not on speaking terms and will not attend together?

There are 10 points 4,B,... in a plane, no three on the same line, (i) How many lines are
determined by the points? (ii) How many of these lines do not pass through A or B? (iii) How
many triangles are determined by the points? (iv) How many of these triangles contain the
point A? (v) How many of these triangles contain the side AB?

A student is to answer 10 out of 13 questions on an exam. (i) How many choices has he? (ii) How
many if he must answer the first two questions? (iii) How many if he must answer the first or
second question but not both? (iv) How many if he must answer exactly 3 of the first 5 questions?
(v) How many if he must answer at least 3 of the first 5 questions?

A man is dealt a poker hand (5 cards) from an ordinary playing deck. In how many ways can he
be dealt (i) a straight flush, (ii) four of a kind, (iii) a straight, (iv) a pair of aces, (v) two of a
kind (a pair)?

The English alphabet has 26 letters of which b are vowels.

i) How many b5 letter words containing 3 different consonants and 2 different vowels can be
formed?

(ii) How many of them contain the letter b?

(iii) How many of them contain the letters b and ¢?

(iv) How many of them begin with b and contain the letter ¢?
(v) How many of them begin with b and end with ¢?

(vi) How many of them contain the letters ¢ and b?

(vii) How many of them begin with a and contain b?

(viii) How many of them begin with b and contain a?

(ix) How many of them begin with a and end with b?

(x) How many of them contain the letters a, b and ¢?

ORDERED AND UNORDERED PARTITIONS

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

In how many ways can 9 toys be divided evenly among 3 children?
In how many ways can 9 students be evenly divided into three teams?

In how many ways can 10 students be divided into three teams, one containing 4 students and
the others 37

There are 12 balls in an urn. In how many ways can 3 balls be drawn from the urn, four times
in succession, all without replacement?

In how many ways can a club with 12 members be partitioned into three committees containing
5, 4 and 3 members respectively?

In how many ways can n students be partitioned into two teams containing at least one student?

In how many ways can 14 men be partitioned into 6 committees where 2 of the committees contain
3 men and the others 2?

TREE DIAGRAMS

2.68.

2.69.

Construct the tree diagram for the number of permutations of {a, b, ¢, d}.

Find the product set {1,2,3} X {2,4} X {2,8,4} by constructing the appropriate tree diagram.
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2.70.

271,

2.72.

2.73.

2.74.

2.31.

2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.

2.40.

2.41.

TECHNIQUES OF COUNTING [CHAP. 2

Teams A and B play in a basketball tournament. The first team that wins two games in a row or a
total of four games wins the tournament., Find the number of ways the tournament can occur.

A man has time to play roulette five times. He wins or loses a dollar at each play. The man begins
with two dollars and will stop playing before the five times if he loses all his money or wins three
dollars (i.e. has five dollars). Find the number of ways the playing can occur.

A man is at the origin on the x-axis and takes a unit step either to the left or to the right. He
stops after 5 steps or if he reaches 3 or —2. Construct the tree diagram to describe all possible
paths the man can travel.

In the following diagram let A, B, ..., F denote islands, and the lines connecting them bridges.
A man begins at A and walks from island to island. He stops for lunch when he cannot continue
to walk without crossing the same bridge twice. Find the number of ways that he can take his walk

before eating lunch.
O—O—O—0

Consider the adjacent diagram with nine points A, B,C, R, S, T, X, A—B—C
Y,Z. A man begins at X and is allowed to move horizontally or ver- l | |
tically, one step at a time. He stops when he cannot continue to walk R S 7

without reaching the same point more than once. Find the number of
ways he can take his walk, if he first moves from X to B. (By sym- l | I
metry, the total number of ways is twice this.) X—YyY—12Z

Answers to Supplementary Problems
(i) 362,880 (ii) 3,628,800 (iti) 39,916,800
(i) 240 (ii) 2184 (iii) 1/90 (iv) 1/1716
@n+1 (i) en—D=n2—n (i) Vnr+Dr+2)] () e—nr-—r+1)
(i) 26+25+10+9+8 = 468,000 (i) 26+25+9+9+8 = 421,200
(i) 6-4=24  (ii) 6+4°4+6=24-24 =576 (i) 6°43+5 = 360
3+5+4+3+2+1 =360
(i) 51 =120 (ii) 4+2!1+3! =48

(i) 41 =24 (i) 213! = 12

() T+6+5+4 =840 (ifi) 5+5+4+4 = 400 (v) 4+6+5-4 = 480 (vii) 1+3¢504 = 60

(i) 5+4+3+2 =120 (iv) 26+5+4 = 240 (vi) 1°5+4+2 = 40 (viii) 4+3+5+4 = 240
8!

iTarar - 420

. 5! .. 91! 11! . 8!
() 131 = 30 (ii) 272191 — 45,360 (iii) 5T3131 — 1,663,200 (iv) 318191 = 5040
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2.42.
2.43.
2.44.

2,45,
2.46.

2.47.

2.48.
2.49.

2.50.

2.51.
2.52,

2.55.

2.56.

2.57.

2.58.

2.59.

2.60.

(i) 2+4!+4t=1152  (ii)) 2.7-3!-3! =504  (iii) 1152 — 504 = 648
(i) 3!-4! =144 (ii) 2-3!-3! =72 (iii) 144 -T2 =172

(i) 10+10+10 = 1000 (iii) 10+10+10+10 = 10,000
(i) 10-9+8 =720 (iv) ‘109+8+7+6 = 30,240

31514!3! = 108,680

(i) 3+9-8 = 216 (ii) 8+8+<5 = 320
(iii) 9+8+1 = 72 end in 0, and 8+8-4 = 256 end in the other even digits; hence, altogether,
72+ 266 = 328 are even.

(iv) 9+8¢1 = 72 end in 0, and 8<8+1 = 64 end in 5; hence, altogether, 72 + 64 = 136 are
divisible by 5.

1 1

() g—;: 120 (i) 4! =24  (iii) 4°8!1 =24  (iv) %: 12
(i) 10 (ii) 35 (iti) 91 (iv) 15 (v) 1140 (vi) 816
(i) 504 (ii) 210 (iii) 180

(i) 8% + 12x2y? + 6xyt + B

(ii) «8 — 1228y + 54xty? — 108x2y3% + Blyt

(iii) a5/32 + 5a*b/8 + 5a3b2 + 20a2b3 + 40abt + 32b5

(iv) 64al2 — 19241%b + 240a8b2 — 160a8b% + 60atb* — 12a2b5 - b
Hint. Expand (14 1)=, 2.53. TOx8y12

Hint. Expand (1—1)". 254, 945x3y828

(i) <142> 495,  (ii) (142> - <Z> = 369, (iii) 8- <z> = 252
(i) <151> = 462, (i) <§>+<2> = 210, (iii) (2) +2-<i> = 378
i) <120> = 4B, (i) <§> = 28, (iii) <130> = 120, (iv) <:> = 36, (v) 8

oo (000 (0 -

(i) 4+10 = 40, (ii) 1348 = 624, (iii) 10+4% — 40 = 10,200. (We subtract the number of straight

4\/12 4\/12
flushes.) (iv) <2><3> * 43 = 84,480, (v) 13- <2><3> - 43 = 1,098,240

Il

P
w o
~—
i

2

o [20N\(5 ) 20
(ii) 2 o « 5! = 228,000 (vi) 4- 9 * 5!

1140 (ix) 4 - <220> + 3! = 4560

o o
~—
=
il

1,696,000 (v) 19 <5> . 31

91,200 (x) 4-19:5! = 9120

b .. 20
(iii) 19 - <2>° 6! = 22,800 (vii) 4- <2> +4! = 18,240
(iv) 19 - <Z> 4! = 4560 (viii) 18,240 (same as (vii))
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(50) -
o () - e

2.66.

280

gn-1—1

14!
31372raialal 2141

-t

2.67. = 3,153,150

12,2
1,2,8)
1,2,4)

1,4,2)
1,4,3)
1,4, 4)

2,22
2,2,8)
2,2, 4)

(2,4,2)
(2,4,3)
2, 4, 4)

3,22
3,2,3)
(3,2,4)

(3,4,2)
(8,4, 8
(8,4, 4)

nN

AAAAAD

[N

(-]

o

[
= o N O D ot W RN RN

The eighteen elements of the product set are listed to the right of the tree diagram.

36
9!

2,61, 313131 = 1680
2.62. 1680/3! = 280 or
10! 1
2.63. 473131 21 = 2100

12!
2.64. 37318731 — 369,600
12!
2.65. 514131 = 27,720
2.69.
2.70. 14 ways
2.71.

20 ways (as seen in the following diagram):

A
WA

l<§<

/\
(=T -]
= 0O

[CHAP. 2
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272. Hint. The tree is essentially the same as the tree of the preceding problem.

2.73. The appropriate tree diagram follows:

B
F c /D

There are eleven ways to take his walk. Observe that he must eat his lunch at either B, D or E.

2.,74. The appropriate tree diagram follows:

Y- z T c B

There are 10 different trips. (Note that in only 4 of them are all nine points covered.)



Chapter 3

Introduction to Probability

INTRODUCTION

Probability is the study of random or nondeterministic experiments. If a die is tossed
in the air, then it is certain that the die will come down, but it is not certain that, say,
a 6 will appear. However, suppose we repeat this experiment of tossing a die; let s be
the number of successes, i.e. the number of times a 6 appears, and let n be the number of
tosses. Then it has been empirically observed that the ratio f = s/n, called the relative
frequency, becomes stable in the long run, i.e. approaches a limit. This stability is the
basis of probability theory.

In probability theory, we define a mathematical model of the above phenomenon by
assigning “probabilities” (or: the limit values of the relative frequencies) to the “events”
connected with an experiment. Naturally, the reliability of our mathematical model for a
given experiment depends upon the closeness of the assigned probabilities to the actual
relative frequency. This then gives rise to problems of testing and reliability which form
the subject matter of statisties.

Historically, probability theory began with the study of games of chance, such as
roulette and cards. The probability p of an event A was defined as follows: if A can occur
in 8 ways out of a total of n equally likely ways, then

p = P(A) = %
For example, in tossing a die an even number can occur in 3 ways out of 6 “equally likely”
ways; hence p =2= 4. This classical definition of probability is essentially circular since
the idea of “equally likely” is the same as that of “with equal probability” which has not
been defined. The modern treatment of probability theory is purely axiomatic. This means
that the probabilities of our events can be perfectly arbitrary, except that they must satisfy

certain axioms listed below. The classical theory will correspond to the special case of
so-called equiprobable spaces.

SAMPLE SPACE AND EVENTS

The set S of all possible outcomes of some given experiment is called the sample space.
A particular outcome, i.e. an element in S, is called a sample point or sample. An event A
is a set of outcomes or, in other words, a subset of the sample space S. The event {a} con-
sisting of a single sample a € § is called an elementary event. The empty set @ and S
itself are events; () is sometimes called the impossible event, and S the certain or sure event.

We can combine events to form new events using the various set operations:
(i) AUB is the event that occurs iff A occurs or B occurs (or both);
(ii) ANB is the event that occurs iff A occurs and B occurs;
(iii) A€, the complement of A4, is the event that occurs iff A does not occur.

38
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Two events A and B are called mutually exclusive if they are disjoint, i.e. if ANB = Q.
In other words, A and B are mutually exclusive if they cannot occur simultaneously.

Example 3.1:

Example 3.2:

Example 3.3:

Example 3.4:

Experiment: Toss a die and observe the number that appears on top. Then the
sample space consists of the six possible numbers:

S = {1,2,8,4,5, 6}

Let A be the event that an even number occurs, B that an odd number occurs and
C that a prime number occurs:

A = {246}, B = {35}, C = {235}

£
C
Q
Il

{2, 8,4, 5, 6} is the event that an even or a prime number occurs;
BnC = {8,5} is the event that an odd prime number occurs;

Cc = {1, 4, 6} is the event that a prime number does not occur.

Note that A and B are mutually exclusive: ANB = ; in other words, an even
number and an odd number cannot occur simultaneously.

Experiment: Toss a coin 3 times and observe the sequence of heads (H) and
tails (T) that appears. The sample space S consists of eight elements:

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Let A be the event that two or more heads appear consecutively, and B that all
the tosses are the same:

A = {HHH, HHT, THH} and B = {HHH, TTT}

Then ANB = {HHH} is the elementary event in which only heads appear. The
event that 5 heads appear is the empty set .

Experiment: Toss a coin until a head appears and then count the number of times
the coin was tossed. The sample space of this experiment is § = {1,2,3,...,=}.
Here » refers to the case when a head never appears and so the coin is tossed an
infinite number of times. This is an example of a sample space which is countably
nfinite.

Experiment: Let a pencil drop, head first, into a
rectangular box and note the point on the bottom
of the box that the pencil first touches. Here S
consists of all the points on the bottom of the box.
Let the rectangular area on the right represent
these points. Let A and B be the events that the
pencil drops into the corresponding areas illus-
trated on the right. This is an example of a sam-
ple space which is not finite nor even countably
infinite, i.e. which is uncountable,

Remark: If the sample space S is finite or countably infinite, then every subset of S is
an event. On the other hand, if S is uncountable, as in Example 3.4, then for
technical reasons (which lie beyond the scope of this text) some subsets of S
cannot be events. However, in all cases the events shall form a e¢-algebra £ of
subsets of S.
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AXIOMS OF PROBABILITY

Let S be a sample space, let € be the class of events, and let P be a real-valued function
defined on €. Then P is called a probability function, and P(A) is called the probability of
the event A if the following axioms hold:

[P:] For every event A, 0 = P(4A)=1.
[Pz] P(S)=1.
[Ps] If A and B are mutually exclusive events, then
P(AUB) = P(A) + P(B)
[Ps] If Ay, A, ... is a sequence of mutually exclusive events, then
P(AJUA,U---) = P(A)) + P(42) + -

The following remarks concerning the axioms [P;] and [P4] are in order. First of all,

using [Ps;] and mathematical induction we can prove that for any mutually exclusive events
Al, AZ, ey An,
P(A1UAU -+ UA,) = P(Ay) + P(A2) + -+ - + P(A,) *)

We emphasize that [P4] does not follow from [Ps] even though (*) holds for every positive
integer n. However, if the sample space S is finite, then clearly the axiom [P4] is superfluous.

We now prove a number of theorems which follow directly from our axioms.
Theorem 3.1: If @ is the empty set, then P(®) = 0.
Proof: Let A be any set; then A and @ are disjoint and AUQ = A. By [Ps),
P(A) = P(AUQ) = P(A) + P(D)
Subtracting P(4) from both sides gives our result.
Theorem 3.2: If Ac is the complement of an event A, then P(A¢) = 1 — P(A).

Proof: The sample space S can be decomposed into the mutually exclusive events A and
Ac; that is, S=AUA°. By [P:] and [Ps] we obtain

1 = P(S) = P(AUA®) = P(4) + P(A°)

from which our result follows.

Theorem 3.3: If ACB, then P(A)= P(B).

Proof. If ACB, then B can be decomposed into the mutually
exclusive events A and B\ A (as illustrated on the right).

Thus
P(B) = P(A)+ P(B\ A)
The result now follows from the fact that P(B\ 4) = 0.

Theorem 3.4: If A and B are any two events, then
P(AN B) = P(A)— P(ANnB)
Proof. Now A can be decomposed into the mutually ex-
clusive events AN\ B and ANB; that is, 4 = (AN B)U(ANB).

Thus by [Ps],
us by (¥4 P(A) = P(AN\ B) + P(ANB)

from which our result follows.
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Theorem 3.5: If A and B are any two events, then

P(AUB) = P(A) + P(B) — P(ANB)

Proof. Note that AUB can be decomposed into the mutually
exclusive events A\ B and B; that is, AUB = (A\ B)UB. Thus
by [P3] and Theorem 3.4,

P(AUB)

P(A\ B) + P(B)
P(A) — P(ANB) + P(B)
P(A) + P(B) — P(ANB)

which is the desired result.

Applying the above theorem twice (Problem 3.23) we obtain

Corollary 3.6: For any events A, B and C,
P(AUBUC) = P(A)+ P(B)+ P(C) — P(ANB) - P(ANC) — P(BNC) + P(ANBNC)

FINITE PROBABILITY SPACES

Let S be a finite sample space; say, S = {61, a2, ...,a:}. A finite probability space is
obtained by assigning to each point a; € S a real number p;, called the probability of a;
satisfying the following properties:

(i) each p: is nonnegative, p; =0
(ii) the sum of the piisone, P1+p2+ -+ +pn = 1.

The probability P(A) of any event A, is then defined to be the sum of the probabilities of
the points in A. For notational convenience we write P(a;) for P({a:}).

Example 3.5:

Example 3.6:

Let three coins be tossed and the number of heads observed; then the sample space
is §=1{0,1,2,3}. We obtain a probability space by the following assignment

P(O) = 4, PQ) =4 PR =% and P@®) = }

gsince each probability is nonnegative and the sum of the probabilities is 1. Let A
be the event that at least one head appears and let B be the event that all heads

or all tails appear:
A =1{,2,8 and B = {0,383}

Then, by definition,
PA) = PO+ P2)+P3) = §+8%+% = %
and PB) = PO)+P@) = t+4 = %

Three horses A, B and C are in a race; A is twice as likely to win as B and B is
twice as likely to win as C. What are their respective probabilities of winning,
i.e. P(A4), P(B) and P(C)?

Let P(C) = p; since B is twice as likely to win as C, P(B) = 2p; and since
A is twice as likely to win as B, P(A) = 2P(B) = 2(2p) = 4p. Now the sum of the
probabilities must be 1; hence

p+2p+4p =1 or Tp

i
fun
Q
s
b~
Il
aqj

Accordingly,
PA4) =4p =% PB =32 =3 PO =p=3%
Question: What is the probability that B or C wins, i.e. P({B,C})? By definition

P({B,C}) = PB)+P(C) = 3+1% = 3
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FINITE EQUIPROBABLE SPACES

Frequently, the physical characteristics of an experiment suggest that the various
outcomes of the sample space be assigned equal probabilities. Such a finite probability
space S, where each sample point has the same probability, will be called an equiprobable
or uniform space. In particular, if S contains n points then the probability of each point

is 1/n. Furthermore, if an event A contains r points then its probability is r- % = In

other words,

3%

P4) = number of elements in A
number of elements in S

or P4) = number of ways that the event A can occur
" number of ways that the sample space S can occur

We emphasize that the above formula for P(A) can only be used with respect to an
equiprobable space, and cannot be used in general.

The expression “at random” will be used only with respect to an equiprobable space;
formally, the statement “choose a point at random from a set S shall mean that S is an
equiprobable space, i.e. that each sample point in S has the same probability.

Example 3.7: Let a card be selected at random from an ordinary deck of 52 cards. Let
A = {the card is a spade}
and B = ({the card is a face card, i.e. a jack, queen or king}

We compute P(A), P(B) and P{ANB). Since we have an equiprobable space,

_ number of spades _ 13 _ 1 _ number of face cards _ 12 _ 3
P(4) = number of cards ~ 52 4 P(B) = number of cards ~ 52 13
_ number of spade face cards _ 3
P(ANB) = number of cards 52
Example 3.8: Let 2 items be chosen at random from a lot containing 12 items of which 4 are

defective. Let
A = {both items are defective} and B = ({both items are non-defective}
Find P(A) and P(B). Now

S can occur in (122) = 66 ways, the number of ways that 2 items can be
chosen from 12 items;

A ecan occur in (;) = 6 ways, the number of ways that 2 defective items
can be chosen from 4 defective items;

B can occur in (g) = 28 ways, the number of ways that 2 non-defective
items can be chosen from 8 non-defective items.

Accordingly, P(A) =g =1 and P(B) =2 =14,

Question: What is the probability that at least one item is defective? Now
C = {at least one item is defective}

is the complement of B; that is, C = Bc. Thus by Theorem 3.2,

P(C) = P(B) = 1-P(B) = 1—4 =18
The odds that an event with probability p occurs is defined to be the ratio p: (1 — ).
Thus the odds that at least one item is defective is ;—2 : % or 19:14 which is read
“19 to 14”.
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Example 39: (Classical Birthday Problem.) We seek the probability p that n people have dis-
tinet birthdays. In solving this problem, we ignore leap years and assume that a
person’s birthday can fall on any day with the same probability.

Since there are n people and 365 different days, there are 365" ways in which
the n people can have their birthdays. On the other hand, if the = persons are to
have distinct birthdays, then the first person can be born on any of the 365 days,
the second person can be born on the remaining 364 days, the third person can be
born on the remaining 363 days, etc. Thus there are 365+364+363 - (365 —n+1)
ways the n persons can have distinct birthdays. Accordingly,

_ 365-864-363---(865—n+1) _ 365 364 363 ~ 365-—n+t1

3667 ~ 365 365 365 365

It can be shown that for n =23, p < 1; in other words, amongst 23 or more
people it is more likely that at least two of them have the same birthday than
that they all have distinet birthdays.

INFINITE SAMPLE SPACES

Now suppose S is a countably infinite sample space; say S = {ai,@s, ...}. As in the
finite case, we obtain a probability space by assigning to each a; € S a real number p;, called
its probability, such that

i) p» =0 and (i) P+p+--- = X =1
=1

The probability P(A) of any event A is then the sum of the probabilities of its points.

Example 3.10: Consider the sample space S =1{1,2,8,...,=} of the experiment of tossing a
coin till a head appears; here n denotes the number of times the coin is tossed.
A probability space is obtained by setting

p) = 4, p@ =4 ..., pm) = /2" ..., p(®) =0
The only uncountable sample spaces S which we will consider here are those with some
finite geometrical measurement m(S) such as length, area or volume, and in which a point

is selected at random. The probability of an event A, i.e. that the selected point belongs
to A, is then the ratio of m(A) to m(S); that is,

length of A areaof A volume of A
length of S °F PA) = teaofs O P@A) = lumeof S

Such a probability space is said to be uniform.

P(A) =

Example 3.11: On the real line R, points ¢ and & are selected at random such that —2=b=0
and 0 = a = 3, as shown below. Find the probability p that the distance d be-
tween a and b is greater than 3.

The sample space S consists of the or-
dered pairs (a, b) and so forms the rectangu-
lar region shown in the adjacent diagram.
On the other hand, the set A of points (a, b)
for which d =a—b > 8 consists of those
points of S which lie below the line x —y = 3,
and hence forms the shaded area in the
diagram. Thus

p = PA) =

areaof A _ 2
areaof S ~ 6

o=

Remark: A finite or countably infinite probability space is said to be discrete, and an
uncountable space is said to be nondiscrete.
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Solved Problems

SAMPLE SPACES AND EVENTS

3.1. Let A and B be events. Find an expression and exhibit the Venn diagram for the
event that: (i) A but not B occurs, i.e. only A occurs; (ii) either A or B, but not
both, occurs, i.e. exactly one of the two events occurs.

(i} Since A but not B occurs, shade the area of A outside of B as in Figure (a) below. Note

that Be, the complement of B, occurs since B does not occur; hence A and B¢ occurs. In other
words, the event is 4 N Be,

(ii) Since A or B but not both occurs, shade the area of A and B except where they intersect as
in Figure (b) above. The event is equivalent to A but not B occurs or B but not A occurs.
Now, as in (i), A but not B is the event ANB¢c, and B but not A is the event BNAc. Thus
the given event is (ANnBc) U (BNA¢<).

32. Let A, B and C be events. Find an expression and exhibit the Venn diagram for
the event that (i) A and B but not C occurs, (ii) only A occurs.

(i) Since A and B but not C occurs, shade the intersection of A and B which lies outside of C,
as in Figure (a) below. The event is ANBNCe.

(ii) Since only A is to occur, shade the area of A which lies outside of B and of C, as in Figure (b)
above. The event is AnBcnCe,

3.3. Let a coin and a die be tossed; let the sample space S consist of the twelve elements:
S = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

(i) Express explicitly the following events: A = {heads and an even number ap-
pear}, B = {a prime number appears}, C = {tails and an odd number appear}.

(ii) Express explicitly the event that: (¢) A or B occurs, (b) B and C occurs,
(¢) only B occurs.

(iii) Which of the events A, B and C are mutually exclusive?
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(i) To obtain A, choose those elements of S consisting of an H and an even number; A =
{H2, H4, H6}.

To obtain B, choose those points in S consisting of a prime number: B = {H2, H3, Hb, T2, T3, T5}.

To obtain C, choose those points in S consisting of a T and an odd number: C = {T1, T3, T5}.
(i) (@) A or B=AUB = {H2, H4, H6, H3, H5, T2, T3, T5}

(b)) B and C =BnC = {T3,T5}

(¢) Choose those elements of B which do not liein A or C: BnAenCc = {H3, H5, T2}.

(iii) A and C are mutually exclusive since AnC = @,

FINITE PROBABILITY SPACES

34.

3.5.

3.6.

Suppose a sample space S consists of 4 elements: S = {ai,as @3, 2:s}. Which func-
tion defines a probability space on S?

(i) Pla) =4, Plag) =4, Plas) = &, Plasg) = 4.

(ii) P(a1) = 4, Plaz) = 4§, Plas) = —}, P(as) = 4.

(iif) P(as) = 4, P(as) = L, P(as) = §, Plas) = 4.

(iv) P(a:) = 4, P(az) = §, P(aa) = 1, Plas) = 0.

(i) Since the sum of the values on the sample points is greater than one, 4 +4+1+4 = 37%,
the function does not define a probability space on S.

(ii) Since P(ag) = —1, a negative number, the function does not define a probability space on S.

(iii) Since each value is nonnegative, and the sum of the values is one, 4 +4+3+§ =1, the
function does define a probability space on S.

(iv) The values are nonnegative and add up to one; hence the function does define a probability
space on S.

Let S = {a1,az a3 a4}, and let P be a probability function on S.

(i) Find P(a.) if P(a:) =34, P(as) =%, P(ad) = 3.

(ii) Find P(a:) and P(as) if P(as) = P(as) = 1 and P(a:) = 2P(az).

(iii) Find P(ay) if P({as, as}) = %, P({as, as}) =4 and P(az) = $.

(i) Let P(a;) = p. Then for P to be a probability function, the sum of the probabilities on the
sample points must be one: p+4+4+L=1 or p=45.

(ii) Let P(a;) = p, then P(a,) = 2p. Hence 2p+p+1+1=1 or p=} Thus P(a) =} and
P(a,y) = %

(iii) Let P(a,) = p. P(aj)
P(ay)

I

P({ay, ag}) — P(ay) =
P({ay, a4}) — P(ay)
Then p+§+4+3 =1 or p=}, thatis, Play) =}.

li
il

=1
3

%-
1-4 =1

A coin is weighted so that heads is twice as likely to appear as tails. Find P(T)
and P(H).

Let P(T) = p; then P(H) = 2p. Now set the sum of the probabilities equal to one: p+2p =1
or p=13. Thus P(T)y=p=1}% and PH)=2p=%.
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3.7.

3.8,
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Two men, m, and m:, and three women, w,, w2 and ws, are in a chess tournament.
Those of the same sex have equal probabilities of winning, but each man is twice
as likely to win as any woman. (i) Find the probability that a woman wins the
tournament. (ii) If m; and w, are married, find the probability that one of them
wins the tournament.

Set P(w;) = p; then P(wy) = P(wz) =p and P(m;) = P(my) = 2p. Next set the sum of the
probabilities of the five sample points equal to one: p+p+p+2p+2p=1 or p=1.

We seek (i) P({w, wy, wz}) and (ii) P({m,,w,}). Then by definition,
P({wy, wo, wa}) = P(wy) + Plwy) + Plwg) = 1 +1+1 =

ki 7
P({my,w}) = Plm) + Plw) = 2+1 = %

3%

Let a die be weighted so that the probability of a number appearing when the die
is tossed is proportional to the given number (e.g. 6 has twice the probability of
appearing as 3). Let A = {even number}, B = {prime number}, C = {odd number}.

(i) Describe the probability space, i.e. find the probability of each sample point.
(ii) Find P(4), P(B) and P(C).
(iii) Find the probability that: (a¢) an even or prime number occurs; (b) an odd

prime number occurs; (¢) 4 but not B occurs.

(i) Let P(1) = p. Then P(2) = 2p, P(3) = 3p, P(4) = 4p, P(b) = 5p and P(6) = 6p. Since the sum
of the probabilities must be one, we obtain p+2p+3p+4p+5p+6p =1 or p = 1/21. Thus

PO)=%, P@ =% PR =1} Pa=4% PG =45 P6=2

(i) P(A) = P({2,4,6)) = %, P(B) = P({2,3,6}) = 3}, P(C) = P({1,3,5}) = 3.

(iii) (@) The event that an even or prime number occurs is AUB = {2,4,6,3,5}, or that 1 does
not occur. Thus P(AUB) = 1 — P(1) = 5.

(b) The event that an odd prime number occurs is BNC = {8,5}. Thus P(BNnC) =
P({8,5}) = .

(¢) The event that A but not B occurs is AnBc = {4,6}. Hence P(ANB¢) = P({4,6}) :;-‘l’.

FINITE EQUIPROBABLE SPACES

3.9.

Determine the probability p of each event:

(i) an even number appears in the toss of a fair die;

(ii) a king appears in drawing a single card from an ordinary deck of 52 cards;
(iii) at least one tail appears in the toss of three fair coins;

(iv) a white marble appears in drawing a single marble from an urn containing
4 white, 3 red and 5 blue marbles.

(i) The event can occur in three ways (a 2,4 or 6) out of 6 equally likely cases; hence p = % = %

1

(ii) There are 4 kings among the 52 cards; hence p = % = 13-

(iii) If we consider the coins distinguished, then there are 8 equally likely cases: HHH,HHT,
HTH, HTT,7THH, THT, TTH, TTT. Only the first case is not favorable to the given event;
hence p = 3.

(iv) There are 4+ 3+ 5 = 12 marbles, of which 4 are white; hence p = 112 = %
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3.10.

3.11.

3.12.

3.13.

Two cards are drawn at random from an ordinary deck of 52 cards. Find the proba-
bility p that (i) both are spades, (ii) one is a spade and one is a heart.

There are (522) = 1326 ways to draw 2 cards from 52 cards.

(i) There are (l,f) = 78 ways to draw 2 spades from 13 spades; hence

number of ways 2 spades can be drawn _ 8 _ 1
P = Lumber of ways 2 cards can be drawn 1326 17

(ii) Since there are 13 spades and 13 hearts, there are 1313 = 169 ways to draw a spade and a

heart; hence p = % = 1%35.

Three light bulbs are chosen at random from 15 bulbs of which 5 are defective.
Find the probability p that (i) none is defective, (ii) exactly one is defective, (iii) at
least one is defective.

There are ( 15) = 455 ways to choose 3 bulbs from the 15 bulbs.

(i} Since there are 15 — b = 10 nondefective bulbs, there are ( ) = 120 ways to choose 3 non-

defective bulbs. Thus p = 1?5) Z'T

(ii) There are b defective bulbs and (10) = 45 different pairs of nondefective bulbs; hence there

are 5+ 45 = 225 ways to choose 3 bulbs of which one is defective. Thus p = fgg ;?

(ili) The event that at least one is defective is the complement of the event that none are defective

which has, by (i), probability 9%. Hence p=1 ——92’% = %.

Two cards are selected at random from 10 cards numbered 1 to 10. Find the proba-
bility p that the sum is odd if (i) the two cards are drawn together, (ii) the two
cards are drawn one after the other without replacement, (iii) the two cards are
drawn one after the other with replacement.

(i) There are (120) = 45 ways to select 2 cards out of 10. The sum is odd if one number is odd

and the other is even. There are 5 even numbers and 5 odd numbers, hence there are

+5 = 25 ways of choosing an even and an odd number. Thus p = f—: 9

(ii) There are 10-9 = 90 ways to draw two cards one after the other without replacement.
There are 5+5 = 25 ways to draw an even number and then an odd number, and 55 = 25
ways to draw an odd number and then an even number; hence p = 25;)25 = g—g = g.

(iii) There are 10+10 = 100 ways to draw two cards one after the other with replacement. As

in (ii), there are 5-5 = 25 ways to draw an even number and then an odd number, and
5+5 = 25 ways to draw an odd number and then an even number; hence p = 2513025 = 1%% = §.

Six married couples are standing in a room.

(i) If 2 people are chosen at random, find the probability p that (a) they are
married, (b) one is male and one is female.

(ii) If 4 people are chosen at random, find the probability » that (e¢) 2 married
couples are chosen, (b) no married couple is among the 4, (¢) exactly one
married couple is among the 4.

(iii) If the 12 people are divided into six pairs, find the probability » that (a) each
pair is married, (b) each pair contains a male and a female.
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(1)

(ii)

(iii)

INTRODUCTION TO PROBABILITY [CHAP. 3

There are (122) = 66 ways to choose 2 people from the 12 people.
(@) There are 6 married couples; hence p = B%: ﬁ

(b) There are 6 ways to choose a male and 6 ways to choose a female; hence p = %,9 = %.

There are (142) = 495 ways to choose 4 people from the 12 people.
(a) There are (g) = 15 ways to choose 2 couples from the 6 couples; hence p = ;19% = %
(b) The 4 persons come from 4 different couples. There are (2) = 15 ways to choose 4 couples

from the 6 couples, and there are 2 ways to choose one person from each couple. Hence
_ 2.2.2.2.15 _ 18
P="395 ~ 3%
(¢) This event is mutually disjoint from the preceding two events (which are also mutually
disjoint) and at least one of these events must occur. Hence p+§-13+ % =1 or p =13—g.

There are ﬁ%‘ﬁ = 12—23' ways to partition the 12 people into 6 ordered cells with 2 people
in each.

(@) The 6 couples can be placed into the 6 ordered cells in 6! ways. Hence p = ;2(.,%;= Tlags-

(b) The six men can be placed one each into the 6 cells in 6! ways, and the 6 women can be
8! 6! 16

placed one each into the 6 cells in 6! ways. Hence p = ;558 = 33;-

3.14. A class contains 10 men and 20 women of which half the men and half the women
have brown eyes. Find the probability » that a person chosen at random is a man
or has brown eyes.

Let A = {person is a man} and B = {person has brown eyes}. We seek P(4UB).
Then P(A)=3=3, PB)=3 =% PANB)=2 =% Thus by Theorem 3.5,
p = PAUB) = P(A)+ PB)—P(ANnB) = 1 +4-3} = %

UNCOUNTABLE UNIFORM SPACES

3.15. A point is selected at random inside a circle. Find the
probability p that the point is closer to the center of the
circle than to its circumference.

3.16.

are

Let S denote the set of points inside the circle with radius 7,

and let A denote the set of points inside the concentric circle of
radius 4. (Thus A consists precisely of those points of S which

closer to its center than to its circumference.) Accordingly,

_ _ areaofd _ 7(37? _ 1
p = PA) = areaof S =~ grz 4

Consider the Cartesian plane R2, and let X denote the subset of points for which
both coordinates are integers. A coin of diameter 4 is tossed randomly onto the
plane. Find the probability p that the coin covers a point of X.

Let S denote the set of points inside a square with corners
(m,n), (mn+1), (m+1l,n), m+l,n+1) € X

Let A denote the set of points in S with distance less than } from
any corner point. (Observe that the area of A is equal to the area
inside a circle of radius 1.) Thus a coin whose center falls in S will
cover a point of X if and only if its center falls in a point of A.

Accordingly, @
_ _ areaof A __ 7 _ T
p = P) = areaof S ~ 1 ~ 16 2

Note. We cannot take S to be all of R2 because the latter has
infinite area.
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3.17. Three points a, b and ¢ are selected at random from the
circumference of a circle. Find the probability p that the
points lie on a semicircle.

Suppose the length of the circumference is 2s. Let x denote
the clockwise arc length from a to b, and let ¥ denote the clockwise
are length from a to ¢. Thus

0<z<2 and 0<y<2s *

Let S denote the set of points in R? for which condition (*) holds.
Let A denote the subset of S for which any of the following condi-
tions holds:

(i) =»y<s (iili) x <8 and y—x > s

(ii) z,y > s (iv) y<8 and x—y > s
Then A consists of those points for which a, b and ¢ lie on a semi-

ircle.
circle. Thus _ areaof A _ 38 3
T areaof § =~ 4s?

MISCELLANEOUS PROBLEMS
3.18. Let A and B be events with P(A4) = i, P(B) =4 and P(ANB)=4}. Find (i) P(AUB),
(ii) P(A°) and P(B?), (iii) P(A°NB°), (iv) P(A°UB°), (v) P(ANB°), (vi) P(BNA).
(i) P(AuUB) = P(A)+ P(B)— P(AnB) = §+3 -1t =%
(ii)y P(A9) = 1-PA) =1—-8 =% and PB)=1—-PB) =1—-% =1}
(iii) Using De Morgan’s Law, (AUB)c = Acn B¢, we have
P(AcnB¢) = P(AUB)) = 1—-P(AUB) = 1—§% = §
(iv) Using De Morgan’s Law, (ANB)c = AcUBe¢, we have

P(AcUBc) = P((AnBY) = 1—PAnB) = 1—-1%1 = §
Equivalently,
P(AcUB¢) = P(A¢) + P(B¢) — P(AcnB?) = §+4—8 = &

(v) P(ANBr) P(ANB) = PA)—P(AnB) = §—%1 = }

P(B)—P@ANB) = $—1 = }

(vi) P(BnArc)

3.19. Let A and B be events with P(AUB) = §, P(A°) = 4 and P(ANB) = }. Find
(i) P(A), (i) P(B), (iii) P(ANB").
(i) PA) =1—PA)=1—% = }
(ii) Substitute in P(AUB) = P(4) + P(B) — P(ANB) toobtain 8 = } + P(B) —} or P(B) = 3.
(iii) P(AnBc) = P(A)—P(ANB) = } -1 =}

12

3.20. Find the probability p of an event if the odds that it will occur are a:b, that is,

(‘a to b’)
The odds that an event with probability p occurs is the ratio p: (1 —p). Hence
p a _ _a
i—p =% O bp = a—ap or apt+tbp = a or P = TT%

3.21. Find the probability p of an event if the odds that it will occur are “3 to 2”.

lf—p :g from which p = % We can also use the formula of the preceding problem to obtain
-3

the answer direetly: p = 355 353 = g
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3.22. A die is tossed 100 times. The following table lists the six numbers and frequency

3.23.

3.24.

with which each number appeared:

Number 1 2 3 4 5 6

Frequency 14 17 20 18 15 16

Find the relative frequency f of the event (i) a 3 appears, (ii) a 5 appears, (iii) an
even number appears, (iv) a prime appears.

number of successes
total number of trials °

The relative frequency f =

() f=mp=-20 (i) f=1e=.15 (i) f="THg =51 (iv) f= LRI 5

Prove Corollary 3.6: For any events A, B and C,
P(AUBUC) = P(A)+ P(B) + P(C) - P(ANB) — P(ANC) — P(BNC) + P(ANBNC)
Let D = BuC. Then AnD = AnBUC) = (AnB)u(AnC) and
P(AND) = P(ANnB)+ P(ANnC) — PANBNANC) = PANB) + P(AnC) — PANBNC)
Thus
P(AUBUC) = P(AuD) = P(A) + P(D) — P(AnD)
= P(A) + P(B) + P(C) — P(BNC) — [P(ANB) + P(ANC) — P(ANBNC)]
= P(4) + P(B) + P(C) — P(BNnC) — P(AnB) — P(AnC) + PANEBNC)
Let § = {ai,as,...,a;} and T = {by, bs, ..., b} Dbe finite probability spaces.

Let the number »;; = P(a:) P(b;) be assigned to the ordered pair (a;, b;) in the product
set SXT = {(s,{):s€ S, t & T}. Show that the p; define a probability space on
S x T, i.e. that the p; are nonnegative and add up to one. (This is called the product
probability space. We emphasize that this is not the only probability function that
can be defined on the product set S X T.)
Since P(a;), P(b;) =0, for each i and each j, p;; = P(a;) P(b;) = 0. Furthermore,
PR STRLRE R ST IR I N - R SRl 7 N S

= P(a;) P(b,) + --- + P(ay) P(b) + -+ + P(ay) P(b)) + -+ + Play) P(b,)

= P(ap}[P(by) + -+ + P(b)] + -+ + P(a)[P(b)) + -+ + P(by)]

= Play))+*1 + -+ + Plag)-1

= Pay) + - + P(ay)

=1
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Supplementary Problems

SAMPLE SPACES AND EVENTS

3.25. Let A and B be events. Find an expression and exhibit the Venn diagram for the event that
(i) A or not B occurs, (ii) neither 4 nor B occurs.

3.26. Let A, B and C be events, Find an expression and exhibit the Venn diagram for the event that
(i) exactly one of the three events occurs, (ii) at least two of the events occurs, (iii) none of
the events occurs, (iv) 4 or B, but not C, occurs.

3.27. Let a penny, a dime and a die be tossed.
(i) Describe a suitable sample space S.

(ii) Express explicitly the following events: A = {two heads and an even number appear}
B = {a 2 appears}, C = {exactly one head and a prime number appear}.

b4

(iii) Express explicitly the event that (a) A and B occur, (b) only B occurs, (¢) B or C occurs.

FINITE PROBABILITY SPACES

3.28. Which function defines a probability space on S = {a, as, a3}?
(i) Play) =1, Plag) =3, Pleg) =} (i) Play) =%, Play) =4, Plag) = 4
(i) Pay) = %, Plag) = —}, Plag) = % (iv) P(ay) =0, P(ag) = %, Pla;) = %

3.29. Let P be a probability function on S = {a;, ay, a3}. Find P(a,) if (i) P(ag) = 4 and P(ag) = 4,
(i) Ple) = 2P(ay) and Plag) = }, (i) P({asa3)) = 2P(ay), (iv) Plag) = 2P(a;) and
P(ay) = 3 P(ay).

3.30. A coin is weighted so that heads is three times as likely to appear as tails. Find P(H) and P(T).

3.31. Three students 4, B and C are in a swimming race. A and B have the same probability of winning
and each is twice as likely to win as C. Find the probability that B or C wins.

3.32. A die is weighted so that the even numbers have the same chance of appearing, the odd numbers
have the same chance of appearing, and each even number is twice as likely to appear as any
odd number. Find the probability that (i) an even number appears, (ii) a prime number appears,
(iii) an odd number appears, (iv) an odd prime number appears.

3.33. Find the probability of an event if the odds that it will occur are (i) 2 to 1, (ii) 6 to 11.

3.34. In a swimming race, the odds that A will win are 2 to 3 and the odds that B will win are 1 to 4.
Find the probability p and the odds that A or B wins the race.

FINITE EQUIPROBABLE SPACES

3.35. A class contains 5 freshmen, 4 sophomores, 8 juniors and 3 seniors. A student is chosen at random
to represent the class. Find the probability that the student is (i) a sophomore, (ii) a senior,
(iii) a junior or senior.

3.36. One card is selected at random from 50 cards numbered 1 to 50. Find the probability that the
number on the card is (i) divisible by b, (ii) prime, (iii) ends in the digit 2.

3.37. Of 10 girls in a class, 3 have blue eyes. If two of the girls are chosen at random, what is the
probability that (i) both have blue eyes, (ii) neither has blue eyes, (iii) at least one has blue eyes?

3.38. Three bolts and three nuts are put in a box. If two parts are chosen at random, find the
probability that one is a bolt and one a nut.
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3.39.

3.40.

3.41.

3.42.

3.43.

INTRODUCTION TO PROBABILITY [CHAP. 3

Ten students, A, B, ..., are in a class. If a committee of 3 is chosen at random from the class,
find the probability that (i) A belongs to the committee, (ii) B belongs to the committee,
(iii) A and B belong to the committee, (iv) A or B belongs to the committee.

A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class,
find the probability that (i) 8 boys are selected, (ii) exactly 2 boys are selected, (iii) at least one
boy is selected, (iv) exactly 2 girls are selected.

A pair of fair dice is tossed. Find the probability that the maximum of the two numbers is
greater than 4,

Of 120 students, 60 are studying French, 60 are studying Spanish, and 20 are studying French
and Spanish. If a student is chosen at random, find the probability that the student (i) is studying
French or Spanish, (ii) is studying neither French nor Spanish.

Three boys and 3 girls sit in a row. Find the probability that (i) the 3 girls sit together,
(ii) the boys and girls sit in alternate seats.

NONCOUNTABLE UNIFORM SPACES

3.44.

3.45.

3.46.

A point is selected at random inside an equilateral triangle whose side length is 3. Find the
probability that its distance to any corner is greater than 1.

A coin of diameter { is tossed randomly onto the Cartesian plane R2, Find the probability that the
coin does not intersect any line whose equation is of the form (a) x =%, (b)) z+y=%k, (¢) z=kFk
or ¥y =k. (Here k is an integer.)

A point X is selected at random from a line segment AB with midpoint O. Find the probability that
the line segments AX, XB and AO can form a triangle.

MISCELLANEOUS PROBLEMS

3.47.

3.48.

3.49.

3.50.

Let A and B be events with P(AUB) = §, P(ANB) = } and P(4<) = §. Find P(4), P(B) and
P(ANB).

Let A and B be events with P(A) = 4, P(AUB) = § and P(B¢) = §. Find P(AnB), P(AcnB¢),
P(AcuBc) and P(BnArc).

A die is tossed 50 times. The following table gives the six numbers and their frequency of
occurrence:

Number 1 2 3 4 5 6

Frequency 7 9 8 7 9 10

Find the relative frequency of the event (i) a 4 appears, (ii) an odd number appears, (iii) a prime
number appears.

Prove: For any events A, 4,, ..., 4,,
PAu---UA)) = EP(Ai) = ‘EjP(AiﬂA,) + . 12 kP(A‘r’lAjﬂAk) — -+ * P(AiNn---NA,)
i < <j<

(Remark: This result generalizes Theorem 3.5 and Corollary 3.6.)
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3.25.

3.26.

3.27.

3.28.

3.29,

3.30.

3.31.

3.32.

3.33.

3.34.

3.35.

3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

3.42.

3.43.

3.4,

3.45,

3.46.

3.47.

3.48.

3.49.

Answers to Supplementary Problems
(i) AUBe, (i) (AUB)*

(i) (AnBenCe)u (BNnAcnCe) L (CNACNBC) (iii) (AUBUC)
(iiy (ANnBYU(ANnC)u(BNC) (iv) (AuB)NnCe

(i) § = {HH1, HHZ2, HH3, HH4, HH5, HH6, HT1, HT2, HT3, HT4, HT5, HTs,
TH1, TH2, TH3, TH4, TH5, TH6, TT1, TT2, TT3, TT4, TT5, TTE}

(i) A = {HH2, HH4, HH6}, B = {HH2, HT2, TH2, TT2}, C = {HT2, TH2, HT3, TH3, HT5, TH6&}
(iii) (@) AnB = {HH2}
(b)) B\ (AuC) = {TT2}
(¢) BuC = {HH2, HT2, THZ, TT2, HT3, TH3, HT5, TH5}
(i) no, (ii) no, (iii) yes, (iv) yes
() &, Gi) §, (i) &, (iv) &
P(H) =3, P(T) =}
2
(i) 3, (i) &, (i) §, (iv) 3
() 3 (i) &
p = &; the odds are 3 to 2.
(i) 3, () 5, (i) 55
() 4, (i) 3, (i)
@&, (i) &, GiD) %
2
a3, (i) g, ()5 (v E

s 3 ooy 27 eany 27 . 15
(i) 7, () g5, GGiD) &, (V) 55

<l

() 8, (ii) 3

@ 3, ) 75

1 — 27/(9V3)

(i) 4, G 1 — V2, (i) §

%

P(4)=$, P(B)=1}, P(AnB?) =}

P(ANB) =}, P(A°nBc) =1, P(A°UB?) =}, P(BnA‘) = 1

oW 7 sey 24 crsy 26
(i) g5 (ii) 5, (iid) &



Chapter 4

Conditional Probability
and Independence

CONDITIONAL PROBABILITY

Let E be an arbitrary event in a sample space S with P(E) > 0. The probability that
an event A occurs once E has occurred or, in other words, the conditional probability of
A given E, written P(A|E), is defined as follows:

P(ANE)

P(E)
As seen in the adjoining Venn diagram, P(A |E) in a
certain sense measures the relative probability of 4
with respect to the reduced space E.

In particular, if S is a finite equiprobable space and |A| denotes the number of elements
in an event A, then

P(ANE) = L%g#,
That is,
Theorem 4.1: Let S be a finite equiprobable space with events A and E. Then

P(A|E) =

PE) = % andso P(A|E) = P(;(E')EI‘) - IA|2'|E[

PA|E) = number of elements in ANKE

number of elements in F

or
number of ways A and E can occur

P(A|E) = number of ways E can occur

Example 41: Let a pair of fair dice be tossed. If the sum is 6, find the probability that one of
the dice is a 2, In other words, if

E = {sumis 6} = {(1,5), (2,4), (3,8), (4,2), (,1)}
and A = {a 2 appears on at least one die}
find P(4 | E).
Now E consists of five elements and two of them, (2,4) and (4, 2), belong to A:
ANE = {(2,4), (4,2)}. Then P(A|E) =2,
On the other hand, since A consists of eleven elements,
A = {(2,1),(2,2), (23),(24), (2,5), (26), (1,2), (3,2), (4,2), (5,2), (6,2)}

and S consists of 36 elements, P(A) = %.

Example 4.2: A couple has two children. Find the probability p that both children are boys if (i) we are
given that the younger child is a boy, (ii) we are given that (at least) one of the children
is a boy.

The sample space for the sex of two children is S = {bb, bg, gb,gg} with
probability 4 for each point. (Here the sequence of each point corresponds to the
sequence of births.)

(i} The reduced sample space consists of two elements, {bb, gb}; hence p = }.
(ii) The reduced sample space consists of three elements, {bb, bg, gb}; hence p = §.

b4
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MULTIPLICATION THEOREM FOR CONDITIONAL PROBABILITY

If we cross multiply the above equation defining conditional probability and use the
fact that ANE = ENA, we obtain the following useful formula.

Theorem 4.2: P(ENA) = P(E)P(A|E)
This theorem can be extended by induction as follows:

Corollary 4.3: For any events 4,, 4., ..., 4.,
P(AiNA4:N---NA,)
= P(A:) P(A2| A1) P(A3| A1NAy) - - - P(A. | A1NA2N - - - NAq)

We now apply the above theorem which is called, appropriately, the multiplication
theorem.
Example 43: A lot contains 12 items of which 4 are defective. Three items are drawn at ran-

dom from the lot one after the other. Find the probability p that all three are

nondefective.

The probability that the first item is nondefective is % since 8 of 12 items are
nondefective. If the first item is nondefective, then the probability that the next
item is nondefective is % since only 7 of the remaining 11 items are nondefective.
If the first two items are nondefective, then the probability that the last item is
nondefective is 1—86 since only 6 of the remaining 10 items are now nondefective.
Thus by the multiplication theorem,

8 7 6 _ 14

P=132"11"10 ~ 55

FINITE STOCHASTIC PROCESSES AND TREE DIAGRAMS

A (finite) sequence of experiments in which each experiment has a finite number of
outcomes with given probabilities is called a (finite) stochastic process. A convenient
way of describing such a process and computing the probability of any event is by a tree
diagram as illustrated below; the multiplication theorem of the previous section is used to
compute the probability that the result represented by any given path of the tree does occur.

Example 44: We are given three boxes as follows:
Box I has 10 light bulbs of which 4 are defective.
Box II has 6 light bulbs of which 1 is defective.
Box III has 8 light bulbs of which 3 are defective.

We select a box at random and then draw a bulb at random. What is the proba-
bility p that the bulb is defective?

Here we perform a sequence of two experiments:
(i) select one of the three boxes;
(ii) select a bulb which is either defective (D) or nondefective (N).

The following tree diagram describes this process and gives the probability of each
branch of the tree:

2 D
I<
} ! Y
3 II<D
N
4 &
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Example 45:

CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4

The probability that any particular path of the tree occurs is, by the multiplica-
tion theorem, the product of the probabilities of each branch of the path, e.g.,

the probability of selecting box I and then a defective bulb is %-% 15

Now since there are three mutually exclusive paths which lead to a defective
bulh, the sum of the probabilities of these paths is the required probability:
_1,2,1.1.1.3 _ 13
P = 35736738 = 360
A coin, weighted so that P(H) =% and P(T) =}, is tossed. If heads appears,
then a number is selected at random from the numbers 1 through 9; if tails ap-
pears, then a number is selected at random from the numbers 1 through 5. Find
the probability p that an even number is selected.

The tree diagram with respective probabilities is

Note that the probability of selecting an even number from the numbers 1
through 9 is 4 since there are 4 even numbers out of the @ numbers, whereas the
probability of selecting an even number from the numbers 1 through § is % since
there are 2 even numbers out of the 5 numbers. Two of the paths lead to an
even number: HE and TE. Thus

p = PE) =

. 2 _ B8
£ =

+

wlbo
|

1
3

PARTITIONS AND BAYES’ THEOREM
Suppose the events A4,, As, ..., A, form a partition

of a sample space S;

that is, the events A; are mutually

exclusive and their union is S. Now let B be any other

event. Then

B =8nNnB =

(A1UAU---UA)NB

= (AiNB)U (A2NB)U - -- U (4.NB)

where the A;:NB are also mutually exclusive. Ac-

cordingly,

P(B) = P(AiNB) + P(A:NB) + --- + P(A.NB)

Thus by the multiplication theorem,

P(B)

P(A))P(B|Ay) + P(A:) P(B|A2) + -+ + P(A:)P(B|Ay) (1)
On the other hand, for any i, the conditional probability of A: given B is defined by
P(A;NB)
P4|B) = =pg

In this equation we

use (1) to replace P(B) and use P(AiNB) = P(A)P(B|A;) to replace

P(AinB), thus obtaining

Bayes’ Theorem 4.4:

Ai| B)

Suppose A1, Az, ..., A, 1s a partition of S and B is any event. Then
for any 1,

P(A)P(B|A)
P(A:) P(B| A1) + P(A3)P(B|Az) + --- + P(As) P(B|As)
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Example 4.6: Three machines 4, B and C produce respectively 50%, 30% and 20% of the total
number of items of a factory. The percentages of defective output of these ma-
chines are 3%, 4% and 5%. If an item is selected at random, find the probability
that the item is defective.

Let X be the event that an item is defective.

Then by (1) above, 4 {D
P(X) = PAYP(X|A) + P(B)P(X|B) 50 N
+ P(C)P(X|0O) o D
= (.50)(.03) + (.30)(.04) + (.20)(.05) 30 B<
= .037 N
Observe that we can also consider this problem as 20 0 D
a stochastic process having the adjoining tree C

A

diagram.

Example 4.7: Consider the factory in the preceding example. Suppose an item is selected at
random and is found to be defective. Find the probability that the item was pro-
duced by machine A; that is, find P(4 ] X).

By Bayes’ theorem,

_ P{A) P(X | A)
PAalx) = PA)P(X[A) + PB)P(X[B) + PCO)PX|0)
(.50)(.03) _ 15
(.50)(.03) + (.30)(.04) + (.20)(.06) 37

In other words, we divide the probability of the required path by the probability
of the reduced sample space, i.e. those paths which lead to a defective item.

INDEPENDENCE

An event B is said to be independent of an event A if the probability that B occurs is
not influenced by whether A has or has not occurred. In other words, if the probability
of B equals the conditional probility of B given A: P(B)= P(B|A). Now substituting
P(B) for P(B|A) in the multiplications theorem P(ANB) = P(A) P(B|A), we obtain

P(ANnB) = P(A)P(B)
We use the above equation as our formal definition of independence.

Definition: Events A and B are independent if P(ANB) = P(A)P(B); otherwise they
are dependent.

Example 48: Let a fair coin be tossed three times; we obtain the equiprobable space
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT)}
Consider the events
A = {first toss is heads}, B = {second toss is heads}

C = {exactly two heads are tossed in a row}

Clearly A and B are independent events; this fact is verified below. On the other
hand, the relationship between 4 and C or B and C is not obvious. We claim
that A and C are independent, but that B and C are dependent. We have

P(A) = P({HHH, HHT, HTH, HTT}) = % = %
P(B) = P({HHH, HHT, THH, THT)) = § = :
P(C) = P({HHT, THH}) = % = %
Then
P(ANB) = P({HHH, HHT}) = % P(ANC) = PHHHET}) = % ,

P(BNC) = P({(HHT, THH)) = 3
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Accordingly,
PA)P(B) = % . -;— = % = P(ANnB), andso A and B are independent;
PA)P(C) = é -% = % = P(ANnC), andso A and C are independent,;
PBYP(C) = % ‘lz = % # P(BNC), andso B and C are dependent.

Frequently, we will postulate that two events are independent, or it will be clear from
the nature of the experiment that two events are independent.

Example 49:

The probability that A hits a target is 1 and the probability that B hits it is 2.
What is the probability that the target will be hit if A and B each shoot at the

target?

We are given that P(4) = 1 and P(B) = £, and we seek P(AUB). Further-
more, the probability that A or B hits the target is not influenced by what the
other does; that is, the event that A hits the target is independent of the event
that B hits the target: P(ANB) = P(A) P(B). Thus

P(AUB) = P(A) + P(B) — P(AnB) = P(4) + P(B) — P(A) P(B)
- 1,2 12 _ 1
T 4TE 1’5 T 20

Three events A, B and C are independent if:

(iy P(ANnB) = P(A)P(B), P(ANC) = P(A)P(C) and P(BNC) = P(B)P(C)
i.e, if the events are pairwise independent, and

(iiy P(ANBNC) = P(A)P(B) P(C).

The next example shows that condition (ii) does not follow from condition (i); in other
words, three events may be pairwise independent but not independent themselves.

Example 4.10:

Let a pair of fair coins be tossed; here S = {HH, HT, TH, TT} is an equiprobable
space. Consider the events
A = {heads on the first coin} {HH, HT)
B = {heads on the second coin} = {HH, TH}
C = {heads on exactly one coin} = {HT, TH}
Then P(4) = P(B) = P(C) =%=} and
P(ANB) = PHHY =1, PUAn0o) = PqHT) =1, P(BNO) = (1) =1

Il

!

Thus condition (i) is satisfied, i.e., the events are pairwise independent. However,
ANBNC =@ and so

P(ANBNC) = P(P) = 0 # P(A) P(B) P(C)

In other words, condition (ii) is not satisfied and so the three events are not inde-
pendent.

INDEPENDENT OR REPEATED TRIALS

We have previously discussed probability spaces which were associated with an experi-
ment repeated a finite number of times, as the tossing of a coin three times. This concept
of repetition is formalized as follows:

Definition: Let S be a finite probability space. By n independent or repeated trials, we
mean the probability space T consisting of ordered n-tuples of elements of S
with the probability of an n-tuple defined to be the product of the probabilities
of its components:

P((Sl, 82, ..., Sn)) = P(Sl) P(Sz) A ‘P(Sn)
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Example 4.11: Whenever three horses a, b and ¢ race together, their respective probabilities of
winning are 4, 4 and }. In other words, S = {a,b,c} with P(a) =}, P(b) =1}
and P(¢) = L. If the horses race twice, then the sample space of the 2 repeated
trials is

T = {aa, ab, ac, ba, bb, be, ca, ¢b, cc}
For notational convenience, we have written ac for the ordered pair (@,¢). The
probability of each point in T is

_ _1,1_1 _1 _ 1
P(aa) = Pla)Pla) = 5-5 = 3 P(ba) = ¢ Plea) = {5
_ - 1,1 _1 -1 = 1
P(ab) = P@)P(b) = 5°3 = § Pb) = g P(eb) = 1o
_ 1 1 1 1 1
P = P P = e = = . = — = -
(ac) (a) Pfe) 5% i2 P(bc) 18 P(ece) 3
Thus the probability of ¢ winning the first race and ¢ winning the second race is

P(ca) = ;4.

From another point of view, a repeated
trials process is a stochastic process whose /a
tree diagram has the following properties: 3 b

a
(i) every branch point has the same outcomes; %\
1 ¢

(ii) the probability is the same for each

branch leading to the same outcome. For a
example, the tree diagram of the repeated i 4/’}/?/
trials process of the preceding experiment b b
is as shown in the adjoining figure. %\ c
Observe that every branch point has the 3 3 e
outcomes @, b and ¢, and each branch lead- ////%/
ing to outcome a has probability 4, each e b
branch leading to b has probability %, and %\c

each leading to ¢ has probability 3.

Solved Problems

CONDITIONAL PROBABILITY IN FINITE EQUIPROBABLE SPACES

4.1. A pair of fair dice is thrown. Find the probability p that the sum is 10 or greater if
(i) 2 5 appears on the first die, (ii) a 5 appears on at least one of the dice.

(i) If a b appears on the first die, then the reduced sample space is
A = {(5,1), 5,2), (5,3), (5,4), (5,5), (5,6)}
The sum is 10 or greater on two of the six outcomes: (5,5), (5,6). Hence p = % = %
(i) If a 5 appears on at least one of the dice, then the reduced sample space has eleven elements:
B = {(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5), (3,5), (4,6), (6,5)}

The sum is 10 or greater on three of the eleven outcomes: (5,5), (5,6), (6,5). Hence p = 111
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4.2,

43.

44.

4.5.

4.6.

CONDITIONAL PROBABILITY AND INDEPENDENCE [CHAP. 4

Three fair coins are tossed. Find the probability p that they are all heads if (i) the
first coin is heads, (ii) one of the coins is heads.

The sample space has eight elements: S = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

(1) If the first coin is heads, the reduced sample space is 4 = {HHH,HHT, HTH, HTT}. Since
the coins are all heads in 1 of 4 cases, p = 1.

(ii) If one of the coins is heads, the reduced sample space is B = {HHH,HHT,HTH, HTT, THH,
THT, TTH}. Since the coins are all heads in 1 of 7 cases, p =1

A pair of fair dice is thrown. If the two numbers appearing are different, find the
probability p that (i) the sum is six, (ii) an ace appears, (iii) the sum is 4 or less.
Of the 36 ways the pair of dice can be thrown, 6 will contain the same numbers: (1,1), (2,2),
.. (6,8). Thus the reduced sample space will consist of 36 —6 = 30 elements.
(i) The sum 6 can appear in 4 ways: (1,5), (2, 4), (4,2), (6,1). (We cannot include (38,3) since
the numbers are the same.) Hence p = 4 = 15

(ii) An age can appear in 10 ways: (1,2}, (1,3), ..., (1,8) and (2,1), (3,1), ..., (6,1). Hence
1 1

P=3=3

(iii) The sum of 4 or less can ocecur in 4 ways: (3,1), (1,3), (2,1), (1,2). Thus p = 310 = 1—25

Two digits are selected at random from the digits 1 through 9. If the sum is even,
find the probability » that both numbers are odd.

The sum is even if both numbers are even or if both numbers are odd. There are 4 even
numbers (2, 4, 6, 8); hence there are (;) = 6 ways to choose two even numbers. There are 5 odd
numbers (1, 3,5,7,9); hence there are (:) = 10 ways to choose two odd numbers. Thus there are
6 + 10 = 16 ways to choose two numbers such that their sum is even; since 10 of these ways occur

when both numbers are odd, p = 10 = %.

A man is dealt 4 spade cards from an ordinary deck of 52 cards. If he is given
three more cards, find the probability p that at least one of the additional cards is
also a spade.

Since he is dealt 4 spades, there are 52 — 4 = 48 cards remaining of which 13 — 4 = 9 are
spades. There are (4: ) = 17,296 ways in which he can be dealt three more cards. Since there are
48 — 9 = 39 cards which are not spades, there are (39) = 9139 ways he can be dealt three cards
which are not spades. Thus the probability ¢ that he is not dealt another spade is ¢ = 1?, 596 5

— __ 8157
hence p =1—¢ = 755.

Four people, called North, South, East and West, are each dealt 18 cards from an
ordinary deck of 52 cards.

(i) If South has no aces, find the probability p that his partner North has exactly
two aces.

(ii) If North and South together have nine hearts, find the probability » that East
and West each has two hearts.

i) There are 39 cards, including 4 aces, divided among North, East and West. There are
( ) ways that North can be dealt 13 of the 39 cards. There are (2) ways he can be dealt 2 of
the four aces, and ( ) ways he can be dealt 11 cards from the 39 —4 = 35 cards which are

not aces. Thus
(2)(,1) _ 6:12+13+25°+26 _ 650

39, 7 36+37-38-39 2109
G3)
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(ii) There are 26 cards, including 4 hearts, divided among East and West. There are (fg) ways
that, say, East can be dealt 13 cards. (We need only analyze East’s 13 cards since West must
have the remaining cards.) There are ( ) ways East can be dealt 2 hearts from 4 hearts,
and (11) ways he can be dealt 11 non-hearts from the 26 —4 = 22 non-hearts. Thus

QD) _ 6-12-13-12-13 234
® T Tz-24-2-26 515

MULTIPLICATION THEOREM

4.7.

48.

4.9.

4.10.

A class has 12 boys and 4 girls. If three students are selected at random from the
class, what is the probability » that they are all boys?

The probability that the first student selected is a boy is 12/16 since there are 12 boys out of
16 students. If the first student is a boy, then the probability that the second is a boy is 11/15
since there are 11 boys left out of 15 students. Finally, if the first two students selected were boys,
then the probability that the third student is a boy is 10/14 since there are 10 boys left out of
14 students. Thus, by the multiplication theorem, the probability that all three are boys is

_ 12 11 10 _ 11
T 16°15 14 T 28

Another Method. There are (16) 560 ways to select 3 students of the 16 students, and

( ) = 220 ways to select 3 boys out of 12 boys; hence p = % = ;s

A Third Method. If the students are selected one after the other, then there are 16 15 * 14 ways
1

to select three students, and 12«11 10 ways to select three boys; hence p = i—:‘;'—lg—ﬁ = g.

A man is dealt 5 cards one after the other from an ordinary deck of 52 cards. What
is the probability p that they are all spades?

The probability that the first card is a spade is 13/52, the second is a spade is 12/51, the third

is a spade is 11/50, the fourth is a spade is 10/49, and the last is a spade is 9/48. (We assumed in

13,12 11,10 9 33
each case that the previous cards were spades.) Thus p = 5557 5° 5% = swadw-

An urn contains 7 red marbles and 3 white marbles. Three marbles are drawn from
the urn one after the other. Find the probability » that the first two are red and
the third is white.

The probability that the first marble is red is 7/10 since there are 7 red marbles out of 10
marbles. If the first marble is red, then the probability that the second marble is red is 6/9 since
there are 6 red marbles remaining out of the 9 marbles. If the first two marbles are red, then
the probability that the third marble is white is 3/8 since there are 3 white marbles out of the
8 marbles in the urn. Hence by the multiplication theorem,

7.6.3 _ 1

T 10°9°8 T 10

The students in a class are selected at random, one after the other, for an examina-
tion. Find the probability p that the boys and girls in the class alternate if (i) the
class consists of 4 boys and 3 girls, (ii) the class consists of 3 boys and 3 girls.

(i) If the boys and girls are to alternate, then the first student examined must be a boy. The
probability that the first is a boy is 4/7. If the first is a boy, then the probability that the
second is a girl is 3/6 since there are 3 girls out of 6 students left. Continuing in this manner,
we obtain the probability that the third is a boy is 3/5, the fourth is a girl is 2/4, the fifth is a
boy is 2/3, the sixth is a girl is 1/2, and the last is a boy is 1/1. Thus

4,832 211 1
P=7°6"5"4°3'2°17 35
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(ii) There are two mutually exclusive cases: the first pupil is a boy, and the first is a girl. If the
first student is a boy, then by the multiplication theorem the probability p, that the students

alternate is
~ 33 2 211 1

PLT 55717321 T 0
If the first student is a girl, then by the multiplication theorem the probability p, that
the students alternate is

Thus p = p; +ps = _+% = &

MISCELLANEOUS PROBLEMS ON CONDITIONAL PROBABILITY

4.11.

4.12,

4.13.

In a cerfain college, 25% of the students failed mathematics, 15% of the students
failed chemistry, and 10% of the students failed both mathematics and chemistry.
A student is selected at random.
(i) If he failed chemistry, what is the probability that he failed mathematics?
(ii) If he failed mathematics, what is the probability that he failed chemistry?
(iii) What is the probability that he failed mathematics or chemistry?
Let M = {students who failed mathematics} and C = {students who failed chemistry}; then
PM) = .25, P(C) = .15, PMnC) = .10
(i) The probability that a student failed mathematics, given that he has failed chemistry is
_ PMnCy _ 10 _ 2
PM|O) = “piey T 15 3
(i) The probability that a student failed chemistry, given that he has failed mathematics is
_ P(CnM) _ 10 _ 2
PCIM) = ~pary = 25~ 5
(i) P(MUC) = PO + P(C) — PMNC) = 25+ .15—.10 = .30 = i36
Let A and B be events with P(4) =4, P(B)=% and P(ANB)=14. Find (i) P(A|B),
(ii) P(B|4), (il) P(AUB), (iv) P(4°|B), (v) P(B*| A°).
P(ANnB "
W PaIB = Tpg = % =3 ) P@la) = EEOA - % -1
_ _ 1,1 1 _ 17
(iii) P(AUB) = P(A) + P(B) — P(AnB) = §+ 371~ 12
(iv) First compute P(B¢) and P(A¢nB¢). P(BY) = 1—P(B) = 1~} = % By De Morgan’s
law, (AUB)c = AcnBc; hence P(AcNBc) = P((AUB)) =1~ PAUB) =1— 115 = 151-
c1gey = PA°0BY) _ 5 _ 5
Thus P(4¢|BY) = “pps— = 7 =5
G =1—PA)=1—4= clde) = PBNAY _ 5 _ 5
(v) P(A9=1-P@)=1—}=4 Then P(B*|A) = —pro— =P =&
Let A and B be events with P(4)=§, P(B)=% and P(AUB)=4%. Find P(4|B)
and P(B|A).
First compute P(4A N B) using the formula P(4 uB) = P(A) + P(B) — P(ANB):
$ =342-PuUnB) or PUnB) =3
_PAnB) _}_2 _PBn4_$_2
Then P(A|B) = “p5m— = £ 5 and P(B|4) = —prp= = 1=
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4.14. Find P(B|A) if (i) A is a subset of B, (ii) A and B are mutually exclusive.

(i) If A is a subset of B, then whenever A occurs B must occur; hence P(B|A) = 1. Alternately,
if A is a subset of B then ANB = A; hence

PANnB)y _ PA) _
P(A) — P@A)

O) O,

(@) (i1)

P(B|A4) = 1

(ii) If A and B are mutually exclusive, i.e. digjoint, then whenever A occurs B cannot occur; hence
P(B|A) = 0. Alternately, if A and B are mutually exclusive then ANB = @; hence

PANBY _ P@) _ 0 _
PA) — PA) ~ PA)

P(B|A) = 0

4.15. Three machines A, B and C produce respectively 60%, 30% and 10% of the total
number of items of a factory. The percentages of defective output of these machines
are respectively 2%, 3% and 4%. An item is selected at random and is found defective.
Find the probability that the item was produced by machine C.

Let X = {defective items}. We seek P(C | X), the probability that an item is produced by machine
C given that the item is defective. By Bayes’ theorem,

_ P(C) P(X | C)
P(CIX) = pAYPXT4A) ¥ P(B)PX B) * PO PX]|C)
(10)(.04) 4

{:60)(.02) + (.30)(.03) + (.10)(.04) 25

4.16. In a certain college, 4% of the men and 1% of the women are taller than 6 feet.
Furthermore, 60% of the students are women. Now if a student is selected at
random and is taller than 6 feet, what is the probability that the student is a woman?

Let A = {students taller than 6 feet}. We seek P(W | A), the probability that a student is a
woman given that the student is taller than 6 feet. By Bayes’ theorem,

PW)PA|W) (.60)(.01) _ 3

PW)P(A|W) + PMPA[M) — (60)(.01) + (.40)(.04) ~ 11

P(W|A) =

4.17. Let E be an event for which P(E) > 0. Show that the conditional probability function
P(* | E) satisfies the axioms of a probability space; that is,

[P} For any event A, 0 =P(A|E)=1.

[P;] For the certain event S, P(S|E) =1.

[Ps] If A and B are mutually exclusive, then P(AUB|E) = P(A|E) + P(B|E).
[P If A, Ag, ... is a sequence of mutually exclusive events, then

P(A1UA;U - - |E) = P(A;|E) + P(Az|E) + - - -

() We have ANE CE; hence P(ANE) = P(E). Thus P(4 |E) = ﬂ}‘;‘(—g)@'—)é 1 and is also non-
negative. Thatis, 0 = P(A|E) =1 and so [P,] holds.
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P(SNE) _ P(E) _

(i) We have SNE = E; hence P(S|E) = PE) — PE) - 1. Thus [P,] holds.

(ii) If A and B are mutually exclusive events, then so are ANE and BNE. Furthermore,
(AUB)NE = (ANE)U(BNE). Thus

P((AuB)NnE) = P(ANE)u(BNE)) = P(ANE)+ P(BNnE)
and therefore

_ P(AUB)nE) _ P(ANnE)+ P(BNnE)
P(AUB|E) = PE) = )
P(ANE) P(BNE) _
P(E) + P(E) = P(A|E) + PB|E)
Hence [P;] holds.
(iv) Similarly if A,,A,, ... are mutually exclusive, then so are A,NE, A,nE,.... Thus

P(A(UA,U---)NE) = P((A,NE) U(4,nE)U ---) = PA,NE)+ P(A,nE) + - -
and therefore

P((A,UA,U--)NE) P(A,NE) + P(A,nE) + ---
PUuaw- | B) = = = —rm
P(A,NE) P(A;nE) _ N
P(E) FE t T PAE) + PA4|E) +

That is, {P;] holds.

FINITE STOCHASTIC PROCESSES

4.18. A box contains three coins; one coin is fair, one coin is two-headed, and one coin is
weighted so that the probability of heads appearing is 4. A coin is selected at
random and tossed. Find the probability p that heads appears.

Construet the tree diagram as shown in Figure (a) below. Note that I refers to the fair coin,

II to the two-headed coin, and III to the weighted coin. Now heads appears along three of the
paths; hence

p = %é+%1+%!§ _ i_é

t R

4 _H " :
‘&% I%<T 3 §W
—1 H ¥ 5 %R
% III§<H ) ?W
R

T
§ qu
(a) ®)

4.19. We are given three urns as follows:

Urn A contains 3 red and 5 white marbles.
Urn B eontains 2 red and 1 white marble.
Urn C contains 2 red and 8 white marbles.

An urn is selected at random and a marble is drawn from the urn. If the marble
is red, what is the probability that it came from urn A?
Construct the tree diagram as shown in Figure (b) above.

We seck the probability that A was selected, given that the marble is red; that is, P(4 | R).
In order to find P(A | R), it is necessary first to compute P(ANR) and P(R).

The probability that urn A is selected and a red marble drawn is

P(ANR) = %. Since there are three paths leading to a red marble, P(R) =
Thus
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4.20.

4.21.

4.22.

1
pAR) = PAOR) _ 5 _ 45

PRy m = 173
Alternately, by Bayes’ theorem,
P(A)P(R| A)
P4 |R) PAPER|A) + PBPRIE) + POPE[O)
L 45

SRR EE R L

Box A contains nine cards numbered 1 through 9, and box B contains five cards
numbered 1 through 5. A box is chosen at random and a card drawn. If the number
is even, find the probability that the card came from box A.

The tree diagram of the process is shown in Figure (a) below,

We seek P(A4 | E), the probability that A was selected, given that the number is even. The

probability that box A and an even number is drawn is %'%=%; that is, P(ANE) =§. Since

there are two paths which lead to an even number, P(E) =%-%+é . f = ;—9. Thus

2
PANE) _ 5 _ 10
9

PAIE) = =pg - =15 = 1

An urn contains 3 red marbles and 7 white marbles. A marble is drawn from the
urn and a marble of the other color is then put into the urn. A second marble is
drawn from the urn.

(i) Find the probability p that the second marble is red.

(ii) If both marbles were of the same color, what is the probability p that they were
both white?

Construct the tree diagram as shown in Figure (b) above.
(i) Two paths of the tree lead to a red marble: p = %- %4— 110'14‘0 = ;—z.
8

(i) The probability that both marbles were white is 15° 5 =2. The probability that both

marbles were of the same color, i.e. the probability of the reduced sample space, is

3,217,868 _12 she . 21,12 1
16°30T 1610 —35- IHence the conditional probability » = 35/ = 3.

We are given two urns as follows:

Urn A containg 3 red and 2 white marbles.
Urn B contains 2 red and 5 white marbles,

An urn is selected at random; a marble is drawn and put into the other urn; then
a marble is drawn from the second urn. Find the probability » that both marbles
drawn are of the same color.

Construct the following tree diagram:
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Note that if urn A is selected and a red marble drawn and put into urn B, then urn B has
3 red marbles and 5 white marbles.

Since there are four paths which lead to two marbles of the same color,
1.2.2 151 901

2 3 _
572 7273 et T

1
2 2 7 3 "2 7 2 1680

INDEPENDENCE

4.23. Let A = event that a family has children of both sexes, and let B = event that a
family has at most one boy. (i) Show that A and B are independent events if a
family has three children. (ii) Show that A and B are dependent events if a family
has two children.

(i) We have the equiprobable space S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}. Here

A = {bbg, bgb, bgg, gbb, gbg, ggb}  and so P(A) = g = %

4 1

B = {bgyg, 9by, 99b, 999} and so PB) = g =3
ANB = {bgg, gbg, ggb} andso P(ANB) = %

Since P(A)P(B) = 2-% = % = P(AnB), A and B are independent.

(ii) We have the equiprobable space S = {bbd, by, gb, gg}. Here

A = {bg, gb} and so PA) = %
B = {bg, gb, g9} andso P(B) = %
ANB = {bg, gb} andso P(ANB) = %

Since P(A)P(B) # P(AnB), A and B are dependent.

4.24. Prove: If A and B are independent events, then Ac and B° are independent events.
P(Acn Br) P((AuB)?) = 1—PAUB) = 1~ P(A) — P(B) + P(AnB)
= 1— P(A) — P(B) + P(A) P(B) = [1 — P(A)][1 — P(B)] = P(A)P(B°)

4.25. The probability that a man will live 10 more years is }, and the probability that his
wife will live 10 more years is 4. Find the probability that (i) both will be alive in
10 years, (ii) at least one will be alive in 10 years, (iii) neither will be alive in
10 years, (iv) only the wife will be alive in 10 years.
Let A = event that the man is alive in 10 years, and B = event that his wife is alive in
10 years; then P(A) =41 and P(B) = }.
(i) We seek P(ANB). Since A and B are independent, P(ANB) = P(A)P(B) =1} =&

12°
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4.26.

4.27.

(ii) We seek P(AUB). P(AUB) = P(A)+ P(B)—P(AnB) = 1 +4— & = 1.
(ili) We seek P(AcnBc). Now P(A¢)=1—-PA)=1—}=31 and P(B)=1—-PB)=1-}=3%.
Furthermore, since A¢ and B¢ are independent, P(AcnB¢) = P(A9)P(Bc) = §-% = L.
Alternately, since (AUB)c = AcnB¢, P(AcnBc) = P((AUB)) =1— P(AUB)=1-1=1.

(iv) We seek P(A°nB). Since P(4c) =1—P(A) =% and Ac and B are independent (see Problem
4.56), P(A¢NB) = P(A°) P(B) = {.

Box A contains 8 items of which 3 are defective, and box B contains 5 items of which
2 are defective. An item is drawn at random from each box.

(i) What is the probability p that both items are nondefective?
(ii) What is the probability p that one item is defective and one not?

(iii) If one item is defective and one is not, what is the probability p that the defec-
tive item came from box A?

(i) The probability of choosing a nondefectlve item from A is 5 and from B is % Since the
events are independent, p = 5-% —_—-8-,

(ii) Method 1. The probability of choosing two defective items is g_%:;_o_ From (i) the
probability that both are nondefective is a. Hence p=1—%— 23—0 = :—.
Method 2. The probablhty p; of choosing a defective item from A and a nondefective item

from B is ’;-3 40 The probability p, of choosing a nondefectlve item from A and a

defective item from B is %% = 7:. Hence p=p,+py;= + 1 —9

(iii) Consider the events X = {defective item from A} and Y = {one item is defective and one
nondefective}. We seek P(X|Y). By (ii), P(XnY)=p, = 40 and P(Y) = 13 Hence

40

9

P(XnY 20 9

p = P(X|Y) = —_(P(Y)) =8==
40

The probabilities that three men hit a target are respectively 4, 1 and 4. Each
shoots once at the target. (i) Find the probability p that exactly one of them hits
the target. (ii) If only one hit the target, what is the probability that it was the
first man?

Consider the events A = {first man hits the target}, B = {second man hits the target}, and

= {third man hits the target}; then P(4) = %, P(B) = 1 and P(C) = 4. The three events are
independent, and P(Ac) = §, P(Bc) =2, P(C) = }.

(i) Let = {exactly one man hits the target}. Then
= (ANBcNC) U (AcNBNC) U (AcnBenC)

In other words, if only one hit the target, then it was either only the first man, ANBenCs,
or only the second man, AcNBNC¢, or only the third man, AcnBecNC. Since the three events
are mutually exclusive, we obtain (using Problem 4.62)

p = PE) = PAnBnCt) + P(AcnBNCY) + P(AcnBcn(C)
= P(A)P(BY) P(C?) + P(A) P(B) P(C7) + P(A?) P(B<) P(C)
-~ 132 512,531 _ 1 5 _ 5 _ 31
= §'4°376'1°3%76'1'3 T 127372 T w2

(ii) We seek P(A | E), the probability that the first man hit the target given that only one man
hit the target. Now ANE = AﬁBCr'\Cc is the event that only the first man hit the target.

By (i), P(ANE) = P(ANBenCe) = L and P(E) = 3}; hence

P(ANE) _
P(E)

il

P(A|E) =

Sigle-
W
trg
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INDEPENDENT TRIALS

4.28.

4.30.

A certain type of missile hits its target with probability .3. How many missiles
should be fired so that there is at least an 80% probability of hitting a target?
The probability of a missile missing its target is .7; hence the probability that » missiles miss a
target is (.7)*. Thus we seek the smallest n for which
1— (7" > .8 orequivalently (. 7)» < .2

Compute: () = .7, (\7)2 = .49, (.7)3 =.343, (.74 =.2401, (./7)5 =.16807. Thus at least 5 missiles
should be fired.

A certain soccer team wins (W) with probability .6, loses (L) with probability .3
and ties (T) with probability .1. The team plays three games over the weekend.
(i) Determine the elements of the event A that the team wins at least twice and doesn’t
lose; and find P(A). (ii) Determine the elements of the event B that the team wins,
loses and ties; and find P(B).

(i) A consists of all ordered triples with at least 2 W’s and no L’s. Thus
A = {WWW, WWT, WTW, TWW}

I

P(WWW) + POWWT) + P(WTW) + P(TWW)
(.6)(.6)(.6) + (.6)(.6)(.1) + (.6)(.1)(.6) + (.1)(.6)(.6)
= .216 + .036 + .036 + .036 = .324

Furthermore, P(A)

I

(ii) Here B = {WLT, WTL, LWT, LTW, TWL, TLW}. Since each element of B has probability
(.6)(:3)(.1) = .018, P(B) = 6(.018) = .108.

Let S be a finite probability space and let T be the probability space of »n independent
trials in S. Show that T is well defined; that is, show (i) the probability of each
element of 7 is nonnegative and (ii) the sum of their probabilities is 1.
If S={ay...,a), then T can be represented by
T = {a,-‘---ain gy .,y =1, .., 7)

Since P(a;) = 0, we have
P(a; - ey ) = Plag)-Play) = 0

for a typical element a e in T, which proves (i)

We prove (i) by induction on n. It is obviously true for » = 1. Therefore we consider n>1
and assume (ii) has been proved for » — 1. Then

r T r r
{1, B .,Ein -1 P(all a‘n) il, N -.Ein -1 P(a"ll) P(ai") "1: B -:izn_ = " (a‘l) (a"n-—l) iﬂ§ " (a‘n)
r T
= il,”',§~l=l P(ail)...P(a{n_l) = {l,.u,g_l:] P(ail.“a"n——l) = 1

by the inductive hypothesis, which proves (ii) for =.
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Supplementary Problems

CONDITIONAL PROBABILITY

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

437,

4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

A die is tossed. If the number is odd, what is the probability that it is prime?

Three fair coins are tossed. If both heads and tails appear, determine the probability that exactly
one head appears.

A pair of dice is tossed. If the numbers appearing are different, find the probability that the sum
is even.

A man is dealt 5 red cards from an ordinary deck of 52 cards. What is the probability that they
are all of the same suit, i.e. hearts or diamonds?

A man is dealt 3 spade cards from an ordinary deck of 52 cards. If he is given four more cards,
determine the probability that at least two of the additional cards are also spades.

Two different digits are selected at random from the digits 1 through 9.
(i) If the sum is odd, what is the probability that 2 is one of the numbers selected?
(ii) If 2 is one of the digits selected, what is the probability that the sum is odd?

Four persons, called North, South, East and West, are each dealt 13 cards from an ordinary deck

of 52 cards.

(i) If South has exactly one ace, what is the probability that his partner North has the other
three aces?

(ii) If North and South together have 10 hearts, what is the probability that either East or
West has the other 3 hearts?

A class has 10 boys and 6 girls. Three students are selected from the class at random, one after
the other. Find the probability that (i) the first two are boys and the third is a girl, (ii) the first
and third are boys and the second is a girl, (iii) the first and third are of the same sex, and the
second is of the opposite sex,

In the preceding problem, if the first and third students selected are of the same sex and the second
student is of the opposite sex, what is the probability that the second student is a girl?

In a certain town, 40% of the people have brown hair, 26% have brown eyes, and 15% have both
brown hair and brown eyes. A person is selected at random from the town.

(i) If he has brown hair, what is the probability that he also has brown eyes?
(ii) If he has brown eyes, what is the probability that he does not have brown hair?
(iii) What is the probability that he has neither brown hair nor brown eyes?

Let A and B be events with P(4) = §, P(B) = } and P(AUB) = }. Find (i) P(A|B),
(if) P(B | A), (iii) P(ANBe), (iv) P(4 | Be).

Let S = {a,b,c,d,e.f} with P(a) = &, P(b) = &, P() = 4, P(d) = #, Pl) = } and
P(f) = 5. Let A = {a,c,¢}, B = {e,d,e,f} and C = {b,c,f}. Find (i) P(A|B), (i) P(B|C),
(iii) P(C | A¢), (iv) P(A°|C).

In a certain college, 25% of the boys and 10% of the girls are studying mathematics. The girls
constitute 60% of the student body. If a student is selected at random and is studying mathematics,

determine the probability that the student is a girl.
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FINITE STOCHASTIC PROCESSES
444. We are given two urns as follows:

4.45.

4.46.

4.47.

4.48.

4.49.

4.50.

4.51.

4.52.

4.53.

Urn A contains 5 red marbles, 3 white marbles and 8 blue marbles.
Urn B contains 3 red marbles and 5 white marbles.

A fair die is tossed; if 3 or 6 appears, a marble is chosen from B, otherwise a marble is chosen
from A. Find the probability that (i) a red marble is chosen, (ii) a white marble is chosen,
(iii} a blue marble is chosen.

Refer to the preceding problem. (i) If a red marble is chosen, what is the probability that it came
from urn A? (ii) If a white marble is chosen, what is the probability that a 5 appeared on the die?

An urn contains 5 red marbles and 3 white marbles. A marble is selected at random from the urn,
discarded, and two marbles of the other color are put into the urn. A second marble is then selected
from the urn. Find the probability that (i) the second marble is red, (ii) both marbles are of the
same color.

Refer to the preceding problem. (i) If the second marble is red, what is the probability that the
first marble is red? (ii) If both marbles are of the same color, what is the probability that they
are both white?

A box contains three coins, two of them fair and ohe two-headed. A coin is selected at random
and tossed twice. If heads appears both times, what is the probability that the coin is two-headed?

We are given two urns as follows:

Urn A contains 5 red marbles and 3 white marbles.

Urn B contains 1 red marble and 2 white marbles.
A fair die is tossed; if a 3 or 6 appears, a marble is drawn from B and put into A and then a marble
is drawn from A; otherwise, a marble is drawn from A and put into B and then a marble is drawn
from B.
(i) 'What is the probability that both marbles are red?

(ii) 'What is the probability that both marbles are white?

Box A contains nine cards numbered 1 through 9, and box B contains five cards numbered 1
through 5. A box is chosen at random and a card drawn; if the card shows an even number,
another card is drawn from the same box; if the card shows an odd number, a card is drawn from
the other box.

(i) 'What is the probability that both cards show even numbers?

(ii) If both cards show even numbers, what is the probability that they come from box A?

(iii) What is the probability that both cards show odd numbers?

A box containg a fair coin and a two-headed coin. A coin is selected at random and tossed. If
heads appears, the other coin is tossed; if tails appears, the same coin is tossed.

(i) Find the probability that heads appears on the second toss.

(ii) If heads appeared on the second toss, find the probability that it also appeared on the first toss.

A box contains three coins, two of them fair and one two-headed. A coin is selected at random
and tossed. If heads appears the coin is tossed again; if tails appears, then another coin is selected
from the two remaining coins and tossed.

(i) Find the probability that heads appears twice.

(ii) If the same coin is tossed twice, find the probability that it is the two-headed coin.

(iii) Find the probability that tails appears twice.

Urn A contains « red marbles and y white marbles, and urn B contains z red marbles and v white

marbles.

(i) If an urn is selected at random and a marble drawn, what is the probability that the marble
is red?

(ii) If a marble is drawn from urn A and put into urn B and then a marble is drawn from urn B,
what is the probability that the second marble is red?
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4.54.

4.55.

A box contains 5 radio tubes of which 2 are defective. The tubes are tested one after the other
until the 2 defective tubes are discovered. What is the probability that the process stopped on the
(i} second test, (ii) third test?

Refer to the preceding problem. If the process stopped on the third test, what is the probability
that the first tube is nondefective?

INDEPENDENCE

4.56.

457,

4.58.

4.59.

4.60.

4.61.

4.62.

Prove: If A and B are independent, then A and B¢ are independent and A¢ and B are independent.

Let A and B be events with P(A) = }, P(AUB) = 4 and P(B) = p. (i) Find p if A and B are
mutually exclusive. (ii) Find p if A and B are independent. (iii) Find p if 4 is a subset of B.

Urn A contains 5 red marbles and 3 white marbles, and urn B contains 2 red marbles and
6 white marbles.

(i) If a marble is drawn from each urn, what is the probability that they are both of the same
color?

(ii) If two marbles are drawn from each urn, what is the probability that all four marbles are
of the same color?

Let three fair coins be tossed. Let A = {all heads or all tails}, B = {at least two heads} and
C = {at most two heads}. Of the pairs (4,B), (4,C) and (B,C), which are independent and
which are dependent?

The probability that A hits a target is 1} and the probability that B hits a target is }.
(i) If each fires twice, what is the probability that the target will be hit at least once?
(ii) If each fires once and the target is hit only once, what is the probability that A hit the target?

(iii) If A can fire only twice, how many times must B fire so that there is at least a 90% proba-
bility that the target will be hit?

Let A and B be independent events with P(A) = } and P(AUB) = §. Find (i) P(B), (ii) P(A|B),
(iii) P(Be| A).

Suppose 4, B, C are independent events. Show that any of the combinations
A¢, B,C;, A, B, C; ...; A¢,Be,C; ..., A¢, Be, Ce
are also independent. Furthermore, show that A and BUC are independent; and so forth.

INDEPENDENT TRIALS

4.63.

4.64.

4.65.

A rifleman hits (H) his target with probability .4, and hence misses (M) with probability .6. He
fires four times. (i) Determine the elements of the event A that the man hits the target exactly
twice; and find P(4). (ii) Find the probability that the man hits the target at least once.

A team wins (W) with probability .5, loses (L) with probability .3 and ties (T) with probability .2.
The team plays twice. (i) Determine the sample space S and the probabilities of the elementary
events. (ii) Find the probability that the team wins at least once.

Consider a countably infinite probability space S = {ay,a,,...}. Let
T = 8r = {(8y,8,...,8,) : &S}
and let P(sy, 8y, ..., 8, = P(3)) P(gy) - -+ P(s,)

Show that 7 is also a countably infinite probability space. (This generalizes the definition (page 58)
of independent trials to a countably infinite space.)
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452, (i) L +H+4 =4 () 4 (i)
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454. (i) {4, (i) :%; we must include the case where the three nondefective tubes appear first, since
the last two tubes must then be the defective ones.

455. 3

457, () 5 Gi) 3, GiD) }

458. (i) 76, (i) 23

459. Only A and B are independent.
460. (i) 3, (i) 3, (i) 5

46l ()}, Gi) 3, (i) 3

463. () A = {HHMM, HMHM, HMMH, MHHM, MHMH, MMHH}, P(4) = .3456
(i) 1—(6)% = .8704

464. (i) S = {WW,WL,WT, LW, LL, LT, TW, TL, TT}
(i) .6



Chapter 5

Random Variables

INTRODUCTION

We recall the concept of a function. Let S and T be arbitrary sets. Suppose to each
s € S there is assigned a unique element of T'; the collection f of such assignments is called
a function (or: mepping or map) from S into T, and is written f: S—>T. We write f(s) for
the element of T that f assigns to s € S, and call it the image of s under f or the value of f
at s. The image f(A) of any subset A of S, and the preimage f~!(B) of any subset B of T

are defined by
f(A) = {f(s): s€ A} and [ '(B) = {s: f(s) € B}

In words, f(A) consists of the images of points of 4 and f~! (B) consists of those points whose
images belong to B. In particular, the set f(S) of all the image points is called the image set
(or: tmage or range) of f.

Now suppose S is the sample space of some experiment. As noted previously, the
outcomes of the experiment, i.e. the sample points of S, need not be numbers. However,
we frequently wish to assign a specific number to each outcome, e.g. the sum of the points
on a pair of dice, the number of aces in a bridge hand, or the time (in hours) it takes for a
lightbulb to burn out. Such an assignment is called a random variable; more precisely,

Definition: A random variable X on a sample space S is a function from S into the set R
of real numbers such that the preimage of every interval of R is an event of S.

We emphasize that if S is a discrete space in which every subset is an event, then every
real-valued function on S is a random variable. On the other hand, it can be shown that if
S is uncountable then certain real-valued functions on S are not random variables.

If X and Y are random variables on the same sample space S, then X+ Y, X+ %, kX and
XY (where k is a real number) are the functions on S defined by

(X +Y)s) = X(s) + Y(s) (kX)(s8) = kX(s)
(X + k)s) = X(s) + K (XY)s) = X(s) Y(s)

for every s € S. It can be shown that these are also random variables. (This is trivial in
the case that every subset of S is an event.)

We use the short notation P(X =a) and P(a = X = b) for the probability of the events
“X maps into a” and “X maps into the interval [a,b].” That is,

PX =a) = P({s€S: X(s) = a))
and Pla=X=b) = P{s€8: a=X(s)=b})

Analogous meanings are given to P(X =a), P(X=a, Y =b), P@=X=D, ¢c=Y =d), ete.

74



CHAP. 5] RANDOM VARIABLES 5

DISTRIBUTION AND EXPECTATION OF A FINITE RANDOM VARIABLE

Let X be a random variable on a sample space S with a finite image set; say,
X(S) = {x1, 22, ..., %n). We make X(S) into a probability space by defining the probability
of #; to be P(X =) which we write f(x:). This function f on X(S), i.e. defined by
f(z)) = P(X = z:), is called the distribution or probability function of X and is usually given
in the form of a table:

x Xy PN %,

fla) | gy | oooe | =)

The distribution f satisfies the conditions
(i) f(z) = 0 and (i) zf(xi) =1

Now if X is a random variable with the above distribution, then the mean or expectation
(or: expected value) of X, denoted by E(X) or u,, or simply E or , is defined by

EX) = a@f() + z2f(@) + - + wnfl@) = ig ()

That is, E(X) is the weighted average of the possible values of X, each value weighted by its
probability.

Example 5.1: A pair of fair dice is tossed. We obtain the finite equiprobable space S consisting
of the 36 ordered pairs of numbers between 1 and 6:

S = {(1,1),(1,2), ..., (6,6)}

Let X assign to each point (a,b) in S the maximum of its numbers, i.e. X(a,b) =
max (@, b). Then X is a random variable with image set

X(S) = {1,2,8,4,5,6}
We compute the distribution f of X:
f1y = PX=1) = P({, 1)) = &

11

f2) = PX=2) = P({(2,1), 2,2), (1,2)}) = 5

f8) = P(X=3) = P({(3,1),(3,2), (3,3), (2,3), (1,3)}) =

flay = PX=4) = P({(4,1),(4,2), (4,3), (4,4, 3,9, 2,9, (1,9) = &
Similarly,

f6) = P(X=5) = = and f(6) = P(X=6) = 1L

This information is put in the form of a table as follows:

x 1| 23| 4|5 |6
1 3 5 7 9 1
Flx) | 36 | 36 | 3 (38 | % |
We next compute the mean of X:
EX) = Saftx) = 1ok+2.2+3-2+4-Z+5.2+ 63
= 2 = 447

38

Now let Y assign to each point (a, b) in S the sum of its numbers, i.e. Y{(a, d) =
a + b. Then Y is also a random variable on S with image set

Y(S) = {2,3,4,5,6,17,8,9,10,11, 12}
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The distribution g of Y follows:

Y 2 3 4 5 6 7 8 9 10 ] 11 | 12
1 2 3 4 5 6 5 4 3 2 1
9w) | 3 | 36 | 36 | 36 [ 36 | 36 | 36 | % | 3 | W | @
We obtain, for example, g(4) = % from the fact that (1, 3), (2,2), and (8,1) are

those points of S for which the sum of the components is 4; hence
g@) = P(Y=4) = P({(1,3),(2,2), 3,1)}) = %
The mean of Y is computed as follows:
EY) = ZBygy) = 25+ 32+ - +12:5 = 7

The charts which follow graphically describe the above distributions:

51
5] 36
36 4.1
38
21
i B | ]
1 1 | l
1 2 3 4 5 8 2 3 4 5 6 7 8 9 10 11 12
Distribution of X Distribution of Y

Observe that the vertical lines drawn above the numbers on the horizontal axis are
proportional to their probabilities.

A coin weighted so that P(H) =% and P(T) =4 is tossed three times. The
probabilities of the points in the sample space S = {HHH, HHT, HTH, HTT,
THH, THT, TTH, TTT} are as follows:

P(HHH) = §-3-3 =5 P(THH) = }+3-% = 5
P(HHT) = 3$+3°4 =3 P(THT) = }-3-4 = &
PHTH) = §-43 =5 P(ITH) = }-}-3 = %
PHTT) = §-4-4 = 2 P(TTT) = }+4°4 = &

Let X be the random variable which assigns to each point in S the largest
number of successive heads which occurs. Thus,

X(TTT) =0
X(HTH) = 1, X(HTT)
X(HHT) = 2, X(THH)
X(HHH) = 3

1, X(THT) =1, X(TTH) =1
2

i

The image set of X is X(S) = {0,1,2,3}. We compute the distribution f of X:

f0) = P(TTT) = z

f(1) = PCHTH, HTT, THT, TTH}) = £ +2+Z+% = &
f@ = P{HHT,THH}) = £+ 4 = 2
f(3) = P(HHH) = £
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This information is put in the form of a table as follows:

x; 0 1 2 3

1 10 8 8
ey | 5| %5 | 55 | =7

The mean of X is computed as follows:

EX) = Saflz) = 0o+ 1k +2. 2432 =5 =18

Example 53: A sample of 3 items is selected at random from a box containing 12 items of which
3 are defective. Find the expected number E of defective items.

lb
The sample space S consists of the < > = 220 distinct equally likely sam-
ples of size 3. We note that there are:

()

84 samples with no defective items;

108 samples with 1 defective item;

[
TN
[ R~
S
Il

27 samples with 2 defective items;

N
[\
~—
©
I

3
<3> = 1 sample with 3 defective items.

Thus the probability of getting 0, 1, 2 and 3 defective items is respectively 84/220,

108/220, 27/220 and 1/220. Thus the expected number E of defective items is
84 108 27 1 165
E = 055 + o555+ 2555+ 8555 = 3559 = .75

Remark: Implicitly we have obtained the expectation of the random variable X
which assigns to each sample the number of defective items in the sample.

In a gambling game, the expected value E of the game is considered to be the value of
the game to the player. The game is said to be favorable to the player if E is positive, and
unfavorable if E is negative. If E =0, the game is fair.

Example 54: A player tosses a fair die. If a prime number occurs he wins that number of
dollars, but if a non-prime number occurs he loses that number of dollars. The
possible outcomes x; of the game with their respective probabilities f(x;) are as
follows:

z, | 2|38 |5 |-1]|-4]-6

fe) R LR |||}

The negative numbers —1, —4 and —6 correspond to the fact that the player loses
if a non-prime number occurs., The expected value of the game is

E = 2:4+38:}+5:}F -1} -4} 64 = -1
Thus the game is unfavorable to the player since the expected value is negative.

QOur first theorems relate the notion of expectation to operations on random variables.

Theorem 5.1: Let X be a random variable and k a real number. Then (i) E(kX) = kE(X)
and (ii) E(X +k) = E(X) + k.

Theorem 5.2: Let X and Y be random variables on the same sample space S. Then
EX+Y) = EX) + E(Y).
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A simple induction argument yields
Corollary 5.3: Let X, X,, ...,X, be random variables on S. Then
EXi+ - +X.) = EX)+ - +E(X))

VARIANCE AND STANDARD DEVIATION

The mean of a random variable X measures, in a certain sense, the “average” value of
X. The next concept, that of the variance of X, measures the “spread” or “dispersion” of X.

Let X be a random variable with the following distribution:

x, 2 e £,

flaey) flza) o flzy)

Then the variance of X, denoted by Var (X), is defined by

Var(X) = 3 (s— wif@) = B(X - 0
where p is the mean of X. The standard deviation of X, denoted by o,, is the (nonnegative)
square root of Var (X): o = VYA

The next theorem gives us an alternate and sometimes more useful formula for cal-
culating the variance of the random variable X.

Theorem 54: Var(X) = 2 22 (@) — p2 = E(XY) — 2
Proof. Using Y x:if(x) = w and 3, f(z) = 1, we have
S @—plfl@) = X (@ — 2w+ p) f(x)
= Yaif(e) — 2u X mif(@) + p2 2 flz)
= Yalf(x) — 22 + 2 = X alf@) — p

which proves the theorem.

Example 55: Consider the random variable X of Example 5.1 (which assigns the maximum of
the numbers showing on a pair of dice). The distribution of X is
Z; 1 2 3 4 5 6
1 3 5 7 9 11
flz) | 36 | 3 | 3 | 3 [ 36 | 3

and its mean is uy = 4.47. We compute the variance and standard deviation of X.
First we compute E(X2):

E(X?) = Saifle) = 125+ 2008 + 3202 + 4200+ Begg + 6203
— 79t __

= & = 2197

Hence

Var(X) = E(X2) —uf = 2197 — 1998 = 199 and ox = V1.99 = 14

Now consider the random variable ¥ of Example 5.1 (which assigns the sum
of the numbers showing on a pair of dice). The distribution of Y is



CHAP. 5) RANDOM VARIABLES 79

” 2 | 8|46 e 7] 8| 91| 1]i1
1 2 3 4 5 ] 5 4 3 2 1
9w) | 3 |3 |3 | 3% |36 | 36 | % | 3w | % | % | 3w

and its mean is uy = 7. We compute the variance and standard deviation of Y.
First we compute E(Y?2):

E¥?) = Syfgw) = 2oL +32F+ o 4122k = 8 o 53
Hence
Var(Y) = E(Y?) —p? = 548—49 = 58 and oy = V6.8 = 24

We establish some properties of the variance in

Theorem 5.5: Let X be a random variable and k a real number. Then (i) Var (X +k)=
Var(X) and (ii) Var (kX) = k*Var (X). Hence oy, =0, and o, = |k|o,.

Remark 1. There is a physical interpretation of mean and variance. Suppose at each
point z; on the x axis there is placed a unit with mass f(z)). Then the mean is
the center of gravity of the system, and the variance is the moment of inertia
of the system.

Remark 2. Many random variables give rise to the same distribution; hence we frequently
speak of the mean, variance and standard deviation of a distribution instead
of the underlying random variable.

Remark 3. Let X be a random variable with mean p. and standard deviation ¢ > 0. The
standardized random variable X* corresponding to X is defined by

_X—-»
- a

We show (Problem 5.23) that E(X*) =0 and Var(X*)=1.

X*

JOINT DISTRIBUTION
Let X and Y be random variables on a sample space S with respective image sets

X(S) = {x1, 22, ..., %n} and Y(S) = {(yu ¥z - .- Ym}
We make the product set

X(S) X Y(S) = {(xlr yl): (xlv'y2), ey (xm ym)}

into a probability space by defining the probability of the ordered pair (zi, y;) to be
P(X =, Y = y;) which we write h(zi, ;). This function 2 on X(S) X Y(S), i.e. defined by
h(z,, y;) = P(X =z, Y = y,), is called the joint distribution or joint probability function of
X and Y and is usually given in the form of a table:

X Y Yy Y2 tee Ym Sum
zy h(zy, v1) h(zy, o) R h(zy, Ysn) f(xy)
X2 h(xZ; 1[1) h(x2v y2) e h(xz» ym) f(x2)
Ty h(zm yl) h(a’m yz) et h(xm ym) f(xn)

Sum 9(w1) 9(y2) e IYm)
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The above functions f and g are defined by

flz) = é hizi,y;) and g(y;) = 2 (i, ¥3)

i.e. f(z:) is the sum of the entries in the ith row and g(y;) is the sum of the entries in the jth
column; they are called the marginal distributions and are, in fact, the (individual) distribu-
tions of X and Y respectively (Problem 5.12). The joint distribution & satisfies the
conditions

M:
M3

G) h(x,y) =0 and (i) 1h(acf. y) = 1

i

il
—-

i

Now if X and Y are random variables with the above joint distribution (and respective
means p, and u,), then the covariance of X and Y, denoted by Cov (X, Y), is defined by

Cov(X,Y) = g (xi - :U'X)(yj - P‘Y) h(xp yj) = E[(X - I"x)(Y - P‘y)]
or equivalently (see Problem 5.18) by
Cov(X,Y) = g Y (@, y) — pypy = BXY) — pepy
The correlation of X and Y, denoted by p(X, Y), is defined by
Cov(X,Y)
p(X, Y) Tagoy

The correlation p is dimensionless and has the following properties:
() X, YV)=p(Y,X) (i) po(X,X)=1, o(X,~X)=~1
(i) -1=p=1 (iv) p(aX +Db,cY +d) = p(X,Y), if a,c+0
We show below (Example 5.7) that pairs of random variables with identical (individual)

distributions can have distinct covariances and correlations. Thus Cov(X, Y) and p(X, Y)
are measurements of the way that X and Y are interrelated.

Example 5.6: A pair of fair dice is tossed. We obtain the finite equiprobable space S consisting
of the 36 ordered pairs of numbers between 1 and 6:

§ = {(1,1),1,2),...,(6,6}}

Let X and Y be the random variables on S in Example 5.1, i.e. X assigns the maxi-
mum of the numbers and Y the sum of the numbers to each point of S. The joint
distribution of X and Y follows:

Y
X

s ool & & |&]0o]ofojofo |of5
¢ foj oo & &% |w|O0]|0|0 0]
slololofjolzl2al2z]ifo]ofz
6 fofo|o ool % % |x |% | |%n

1 2 3 4 S 8 4 3 2 1
Sum | 35 36 36 38 ET 36 26 36 36 36 36
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The above entry h(3,5) = 523 comes from the fact that (3,2) and (2,3) are the
only points in S whose maximum number is 8 and whose sum is 5; hence

k3,5 = P(X=3,Y=5) = P({(3,2),23)) = &
The other entries are obtained in a similar manner.

We compute the covariance and correlation of X and ¥. First we compute E(XY):
= 1'2'$+2'3'%+2'4"31?+"'+6'12°§1§

1232 _
22 = 342

By Example 5.1, ux =4.47 and uy =7, and by Example 55, ox =14 and
oy = 2.4; hence

Cov(X,Y) = E(XY) — uxuy = 34.2 — (447)(T) = 2.9

Cov(X,¥) _ _29 _ o
axoy - (1.4)(2.4) o

and p(X,Y) =

Example 5.7: Let X and Y, and X’ and Y’ be random variables with the following joint dis-

tributions:
Y y’
4 1
X 0 Sum X 4 10 Sum
1 1 1 3 1 0 3 3
3 1 3 b 8 3 0 3
Sum 3 3 Sum % 3
QObserve that X and X’, and Y and Y’ have identical distributions:
x; 1| 3 v 4 | 10
flay) 3 3 g(yy) 3 3
Distribution of X and X’ Distribution of Y and ¥’

We show that Cov (X,Y) # Cov (X’,Y’) and hence p(X,Y) # p(X’,Y’). We first
compute E(XY) and E(X'Y"):

E(XY) = 1+4+}1 + 1:10+% + 3+4-1 + 3:10-} = 14
E(X'Y') = 1440 + 1+10+} + 3+4+3 + 3-:10:0 = 11

Since px = px =2 and py = py- =1,

Cov(X,Y) = E(XY) — uxpy = 0 and Cov(X',Y) = EX'Y') — uypy = —3

Remark: The notion of a joint distribution & is extended to any finite number of random
variables X, Y, ...,Z in the obvious way; that is, h is a function on the product
set X(S) X Y(S) X - -+ X Z(S) defined by

h(xi,y,-,...,zk) = P(szi, Y*_—yjy ceey Z:zk)

INDEPENDENT RANDOM VARIABLES

A finite number of random variables X,Y,...,Z on a sample space S are said to be
independent if

PX=z,Y=vy, .., Z=2) = PX=2)P(Y=y) - P(Z=2)
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for any values zi,¥9j, ..., 2. In particular, X and Y are independent if
P(X: xi, Y:yj) = P(X:x,)P(Y:y,)
Now if X and Y have respective distributions f and ¢, and joint distribution %, then the above

equation can be written as
h(zy, y5) = F(2) 9(y))

In other words, X and Y are independent if each entry A(x, ¥;) is the product of its marginal
entries.

Example 58: Let X and Y be random variables with the following joint distribution:

Y 2 3 4 Sum
X
1 .06 .15 .09 .30
2 14 .35 .21 .70
Sum .20 .50 .30

Thus the distributions of X and Y are as follows:

x 1 2 Y 2 3 4
F(x) .30 .70 9(y) .20 .50 .30
Distribution of X Distribution of Y

X and Y are independent random variables since each entry of the joint distribu-
tion can be obtained by multiplying its marginal entries; that is,

P(X=z,Y=y) = PX=u)P(Y =y)

for each 7 and each j.

We establish some important properties of independent random variables which do not
hold in general; namely,

Theorem 5.6: Let X and Y be independent random variables. Then:
(i) E(XY) = E(X)E(Y),
(ii) Var(X+Y) = Var(X) + Var (Y),
(iii) Cov (X,Y) = 0.
Part (ii) in the above theorem generalizes to the very important

Theorem 5.7: Let X, X,, ..., X, be independent random variables. Then
Var(X; + -+ + X;) = Var(Xy) + --- + Var(X,)

FUNCTIONS OF A RANDOM VARIABLE

Let X and Y be random variables on the same sample space S. Then Y is said to be a
function of X if Y can be represented Y = ®(X) for some real-valued function @ of a real
variable; that is, if Y(s) = ®[X(s)] for every s € S. For example, kX, X%, X + k and (X + k)*
are all functions of X with &(z) = kx, 2%, x+k and (x + k) respectively. We have the
fundamental
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Theorem 5.8: Let X and Y be random variables on the same sample space S with
Y = 'I’(X). Then n

E(Y) = g () fl)
of X

where f is the distribution function

Similarly, a random variable Z is said to be a function of X and Y if Z can be represented
Z =9o(X,Y) where @ is a real-valued function of two real variables; that is, if

Z(s) = o[X(s), Y(s)]
for every s € S. Corresponding to the above theorem, we have

Theorem 5.9: Let X, ¥ and Z be random variables on the same sample space S with
Z =%(X,Y). Then
EZ) = 2 o,y k@, ¥5)

i.d

where h is the joint distribution of X and Y.

We remark that the above two theorems have been used implicitly in the preceding dis-
cussion and theorems. We also remark that the proof of Theorem 5.9 is given as a supple-
mentary problem, and that the theorem generalizes to a function of n random variables in
the obvious way.

DISCRETE RANDOM VARIABLES IN GENERAL

Now suppose X is a random variable on S with a countably infinite image set; say
X(S) = {®1, %2, ...}. Such random variables together with those with finite image sets
(considered above) are called discrete random variables. As in the finite case, we make
X(S) into a probability space by defining the probability of z: to be f(x:) = P(X=z:) and
call f the distribution of X:

Xy o X3

fley) flxy) f(23)

The expectation E(X) and variance Var (X) are defined by

EX) = zif(z:) + 2f@@) + - = 3 zf(z)

i

Var(X) = (21— p?f(®) + (22— p)?flax2) + - 2 (@ — p)? f(zy)

i=1

when the relevant series converge absolutely. It can be shown that Var (X) exists if and
only if n = E(X) and E(X?) both exist and that in this case the formula

Var (X) = B(X?) — 2
is valid just as in the finite case. When Var (X) exists, the standard deviation o, is defined

as in the finite case by
= yVar (X)

The notions of joint distribution, independent random variables and functions of random
variables carry over directly to the general case. It can be shown that if X and Y are
defined on the same sample space S and if Var (X) and Var(Y) both exist, then the series
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Cov (Xy Y) = g (xi - /"x)(yj - Fy) h(xi’ y;,)
converges absolutely and the relation
Cov (X: Y) = g Y, h(xir yj) — Pxpy = E(XY) T Pxky

holds just as in the finite case.

Remark: To avoid technicalities we will establish many theorems in this chapter only for
finite random variables.

CONTINUOUS RANDOM VARIABLES

Suppose that X is a random variable whose
image set X(S) is a continuum of numbers
such as an interval. Recall from the definition
of random variables that the set {a =X = b}
is an event in S and therefore the probability
P{a =X =1b) is well defined. We assume that
there is a piecewise continuous function
f: R-R such that P(a=X=1») is equal to the
area under the graph of f between # = a and
x=0b (as shown on the right). In the lan-
guage of calculus,

b
Pla=X=0>) = f f(x) d=
In this case X is said to be a continuous random variable. The function f is called the

distribution or the continuous probability function (or: demsity function) of X; it satisfies
the conditions

@) f@)=0 and (i) f fz)dz = 1

That is, f is nonnegative and the total area under its graph is 1.

The ezpectation E(X) is defined by

EX) = fn 2 f(z) dz

when it exists. Functions of random variables are defined just as in the discrete case; and
it can be shown that if ¥ = &(X), then

BY) = [ o) fe)ds
when the right side exists. The vartance Var (X) is defined by
Var(X) = E(X-p) = [ (z-uf@)de
R

when it exists. Just as in the discrete case, it can be shown that Var (X) exists if and only
if u=FE(X) and E(X? both exist and then

Var(X) = EX?) — @ = J; 2 flz)dr — w2
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The standard deviation oy is defined by o, =1/Var(X) when Var (X) exists.

We have already remarked that we will establish many results for finite random
variables and take them for granted in the general discrete case and in the continuous case.

Example 59: Let X be a continuous random variable
with the following distribution:

x if0=x=2
flx) = {%

0 elsewhere
Then

P(1=X=1.5) = area of shaded
region in diagram

= D = &

We next compute the expectation, variance and standard deviation of X:

2 2
Ex) = { zjwdx = IR [%3}0 =4
R 0

2 2
S = s - 2], =

16 2 2 1
Var(X) = EX?) — 4 = 2-°¢ = ¢ and Ux:\/;zg\/é

E(X?)

A finite number of continuous random variables, say X,Y,...,Z, are said to be inde-
pendent if for any intervals [a,a’], [b,0'],...,[c, ¢],

Po=X=a,b=Y=V,...,c=Z2=c¢) = Pa=X=a"Pb=Y=V) --Plc=Z=¢)

Observe that intervals play the same role in the continuous case as points did in the
discrete case.

CUMULATIVE DISTRIBUTION FUNCTION

Let X be a random variable (discrete or continuous). The cumulative distribution func-
tion F of X is the function F': R~ R defined by

F@g) = P(X=a)
If X is a discrete random variable with distribution f, then F is the “step function”

defined b
cmet Fz) = 3 (&)

n=<zx

On the other hand, if X is a continuous random variable with distribution f, then

Fiz) = | foat
In either case, F' is monotonic increasing, i.e.
F(a)=F(b) whenever a=b
and the limit of F' to the left is 0 and to the right is 1:
Lim F(z) = 0 and Lim F(z) = 1

T+ — EE
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Example 5.10: Let X be a discrete random variable with the following distribution:

o |-21 1) 214

fa) 1 31 8} 3 %

The graph of the cumulative distribution function F' of X follows:

14 — e
]
T
- !
|
I
1+ I
J
-
I
|
T T T T L T L) 1
-3 -2 -1 0 1 2 3 4 5
Graph of F

Observe that F is a “step function” with a step at the z; with height f(z;).

Example 5.11: Let X be a continuous random vari-
able with the following distribution:

x if0=z=2
flx) = {1} !

0 elsewhere

-1 of 11

Graph of f

Y™ [Ep——

The cumulative distribution function
F and its graph follows:

0 if <0 1
Fl@) = {12 if0=z=2 /

1 if x>2 T Y
-1 0| 1 2 3

Graph of F

Here we use the fact that for 0 =2z = 2,

Fx) = f x‘,}tdt = ja?
0

TCHEBYCHEFF’S INEQUALITY. LAW OF LARGE NUMBERS

The intuitive idea of probability is the so-called “law of averages”, i.e. if an event A
occurs with probability p then the “average number of occurrences of A” approaches p as
the number of (independent) trials increases. This concept is made precise by the Law of
Large Numbers stated below. The proof of this theorem uses the well-known Tchebycheff’s
inequality which follows:

Theorem 5.10 (Tchebycheff’s inequality): Let X be a random variable with mean n and
standard deviation ¢«. Then for every «> 0,

0,2
P(X—y =9 =35
Proof. We begin with the definition of variance:

¢ = Var(X) = Z(-’Ct—u)zf(xl)
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We delete all the terms in the above series for which |2; — p| <e This does not increase the
value of the series, since all its terms are nonnegative; that is,

ot = Z*(xi'_}l.)zf(xi)

where the asterisk indicates that the summation extends only over those i for which
|#i — n| =e. Thus this new summation does not increase in value if we replace each |x;— p|

by ¢; that is,
o = D*efr) = & 2*flx)
But Z* f(x:) is equal to the probability that |[X — pu| = ¢; hence
= GP(X 4=
Dividing by & we get the desired inequality.

Theorem 5.11 (Law of Large Numbers): Let Xi,Xs ... be a sequence of independent
random variables with the same distribution with mean p and variance o>
Let —
S = X1+ X+ - + X0)/n
(called the sample mean). Then for any ¢ > 0

lim P(\gn— p|=¢ = 0 orequivalently lim P(Su—p|<e =1

Proof. Note first that

E(gn) — E(X,) +E(X2)n+ <o+ E(XL) _ % —_—
Since X,, ..., X, are independent, it follows from Theorem 5.7 that

Va’r(Xl + +Xn) = Var(Xl) + -+ Var(Xn) = ng®
Therefore by Theorem 5.5(ii),

(X1+--

Var(S.) = Var n. +X">

1 1 o’
= sVar(Xi+ - +X) = —5(ne?) = o

Thus by Tchebycheff’s inequality, .2

ne
The theorem now follows from the fact that the limit of the right side is 0 as n = .

P(Sn—p|=¢ =

The following remarks are in order.

Remark 1. We proved Tchebycheff’s inequality only for the discrete case. The con-
tinuous case follows from an analogous proof which uses integrals instead

of summations.

Remark 2. We proved the Law of Large Numbers only in the case that the variance of the
X, exists, i.e. does not diverge. We note that the theorem is true whenever E(X;)
exists.

Remark 3. The above Law of Large Numbers is also called the Weak Law of Large
Numbers because of a similar, but stronger, theorem called the Strong Law

of Large Numbers.
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Solved Problems

RANDOM VARIABLES AND EXPECTATION

5.1. Find the expectation u, variance ¢ and standard deviation o of each of the following
distributions:

s |2 |3 |n Z |-5|—4| 1 |2
@ (ii)
f) 3| 4| % fed 1 3| 8| 4| %

z |1 |38 |4]s

(iif)

fla;) 4 1 2 3

() » = Zafl@) = 2-4+ 3.4 +11:}3 = 4

Sziflw) = 224 + 321 + 112-f = 26
o2 = Zaifl@) — 42 = 26—16 = 10
o = V10 = 32

() s = Zaofl@) = —b}— 4.} +14+24 = —1
Saiflx) = 251 + 164 + 11 +4-4 = 925
o2 = Szifw) — 42 = 925 —1 = 825
o = V825 = 29

(i) ¢ = Daflxz) = 1(4) + 3(1) + 4(2) + 5(.3) = 3
Selfe) = 1(4) + 9(1) + 16(.2) + 25(.3) = 12
o2 = Salfle) — 2 = 12-9 = 3
e = V3 = 17

5.2. A fair die is tossed. Let X denote twice the number appearing, and let Y denote 1 or 3
according as an odd or an even number appears. Find the distribution, expectation,
variance and standard deviation of (i) X, (ii) ¥, (iii) X+7Y, (iv) XY.

The sample space is S = {1,2,8,4,5,6}, and each number appears with probability }.

i) X(1)=2, X(2) =4, X(8) =6, X(4) =8, X(b) =10, X(6) =12. Thus X(S) = {2,4,6,8,10,12}
and each number has probability }. Thus the distribution of X is as follows:

x |2 |4 |6 |8 1012

fed 13 2 34|}

Accordingly,

wx = EX) = Exif(xi)
= 2:3+4:3+6-3+83+10-}4 +12:% = £ = 7

EX?) = 3o flx)
4°3 +16+% + 36-3 + 643 + 100-} + 144-3 = B = 607

ox = Var(X) = E(X? — a2 = 607 — (N2 = 117

ox = VIIT = 34
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(ii)

(i)

(iv)
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Y1) =1,Y2)=8,Y8 =1,Y4)=38,Y(6) =1, Y(6) =3. Hence Y(S)=1{1,8} and
g(1) = P(Y=1) = P({1,3,6)) = § =} and g@B) = P(Y=3) = P({2,4,6}) = 5 = }

Thus the distribution of Y is as follows:

U(le) ‘4‘ %
Accordingly,
sy = EY) = 211]9(1/1) = 1'%-{-3'% = 2

EY) = Syiely) = 1°§+9:4 = 5

o2 = Var(Y) = E(¥Y) — 2 = 5—- (22 = 1

oy = ﬁ = 1
Using (X + Y)(s) = X(s) + Y(s), we obtain
X+Y)1) =241 =3 X+Y)3) =6+1=17 X+Y)b) =10+1 =11
X+Y)2) =4+3=17 X+Y)4) =8+3 =11 (X+Y)6) =12+ 3 = 15

Hence the image set is (X + Y)(S) = {8,7,11,16} and 3 and 15 occur with probability %, and
7 and 11 with probability %. That is, the distribution of X + Y is as follows:

2 3 |7 |11 |15

pe) | 5 |5 | & |
Thus
EX+Y) = 8.3+ 72+m-2+15:1 = 8 =9
E(X+Y)?) = 9.2+ 49-2+121.2 +225-5 = % = 957

Var(X+Y) = E(X+Y)) — 42 = 957 — 92 = 147
oxX+yY — V14-7 = 38

Obgerve that EX)+E(Y) = 7+2 = 9 = E(X+Y), but Var(X)+ Var(¥Y) =
11.7+1 = 127 = Var(X + Y).

Using (XY)(s) = X(8) Y(8), we obtain

Xy)1) =2-1 =2 (XY)(3) = 6+1 =6 (XY)(5) = 10-1 = 10
(XY)2) = 4+3 =12 (XY)4) = 88 = 24 (XY)(6) = 123 = 36
Hence the distribution of XY is as follows:
wy 2 6 10 12 | 24 | 36
pw) [ (& | 3 |4 %[}
Thus
E(XY) = 2+3 +6-} +10°% +12:4 + 243 +86-% = F = 15
E(XY)) = 4+} + 36+} + 100+} + 144-} + 576} + 1296-}
= B2 = 3593
Var (XY) = E(XY)2) — p2 = 3859.3 — 162 = 1343

oxy = V1343 = 116
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5.3.

5.4.
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A coin weighted so that P(H) =3 and P(T) =1 is tossed three times. Let X be the
random variable which denotes the longest string of heads which occurs. Find the
distribution, expectation, variance and standard deviation of X.

The random variable X is defined on the sample space
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

The points in S have the following respective probabilities:

PHHH) = §-4+§ = §]  P(THH) = }-3-] = &
PHHT) = §+3-3 = &  POHD = §-34 =
PHTH) = §-4+1 = &  PAOTH) = {43 = &
PHTT) = §:1+1 = & P(TTT) = 4+1+} = &

Since X denotes the longest string of heads,
X(TTT) =0; X(HTT)=1, X(HTH)=1, X(THT) =1, X(TTH) = 1;
XHHT) =2, X{(THH)=2; XHHH)=3

Thus the image set of X is X(S) = {0,1,2,3}. The probability f(z;,) of each number z, in X(S) is
obtained by summing the probabilities of the points in S whose image is z;:

f0) = KTTT) = &

f(y = P(HTT) + P(HTH) + P(THT) + P(TTH) = 18
f8) = P(HHT) + P(THH) = 18
f(8) = P(HHH) = 21
Accordingly, the distribution of X is as follows:
x; 0 1 2 3
f(x) w5 8 18 21
Thus
W= EX) = 0l ety = R o= 2
BOT = 0ot 1t aiogl = B o= oo
o2 = Var(X) = EX?) — 4 = 52— (212 = 38
o = V8 = 9

A fair coin is tossed until a head or five tails occurs. Find the expected number F
of tosses of the coin.

Only one toss occurs if heads occurs the first time, i.e. the event H. Two tosses occur if the first
is tails and the second is heads, i.e. the event TH. Three tosses occur if the first two are tails and
the third is heads, i.e. the event TTH. Four tosses occur if TTTH occurs, and five tosses occur if
either TTTTH or TTTTT occurs. Hence

f1) = P(H) = §
f@) = P(TH) = }
/@ = P(ITH) =

f4) = P(TTTH) =
f(8) = P(TTTTH) + P(TTTTT) = L +4 = &%
Accordingly, E = 1«3 +2:3 +3 3 +434 +5 34 = %—1 = 1.9
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5.5.

5.6.

5.7.

Concentric circles of radius 1 and 3 inches are drawn
on a circular target of radius 5 inches. A man re-
ceives 10, 5 or 3 points according if he hits the target
ingide the smaller circle, inside the middle annular
region or inside the outer annular region respectively.
Suppose the man hits the target with probability 4
and then is just as likely to hit one point of the target
as the other. Find the expected number E of points
he scores each time he fires.
The probability of scoring 10, 5, 3 or 0 points follows:

f10) = 1, areaof 10 points _ 1 =1)2 _ 1
T 2 areaof target 2 #(5)2 50

£5) = 1, areaof 5 points _ 1, (32— 712 8
T 2 area of target 2 =(6)? 50

f3) = 1 areaof 3points _ 1, 7(B)2 — x(3)2 - 16
T 2 area of target 2 (5)2 50
_1

foy = 2

Thus E = 10+ 5+ 5+ 5+3+2+0-1 = & = 196

A player tosses two fair coins. He wins $1 or $2 according as 1 or 2 heads appear.
On the other hand, he loses $5 if no heads appear. Determine the expected value E
of the game and if it is favorable to the player.

The probability that 2 heads appear is }, that 2 tails (no heads) appear is 1 and that 1 head
appears is 4. Thus the probability of winning $2 is }, of winning $1 is 4, and of losing $5 is §.
Hence E = 2+1 +1+3 —6+4 = —1 = —0.25. That is, the expected value of the game is minus
26¢, and so is unfavorable to the player.

A player tosses two fair coins. He wins $5 if 2 heads occur, $2 if 1 head occurs and

$1 if no heads occur. (i) Find his expected winnings. (ii) How much should he pay

to play the game if it is to be fair?

(i) The probability of winning $5 is 4, of winning $2 is }, and of winning $1 is }; hence
E =65-}+2-4+1-} = 250, that is, the expected winnings are $2.50.

(ii) If he pays $2.50 to play the game, then the game is fair.

JOINT DISTRIBUTIONS, INDEPENDENT RANDOM VARIABLES

5.8.

Suppose X and Y have the following joint distribution:

x Y -3 2 4 Sum
1 a1 2 2 b
3 3 .1 .1 b
Sum 4 3 .3

(i) Find the distributions of X and Y.

(i) Find Cov(X,Y), i.e. the covariance of X and Y.
(ili) Find p(X, Y), i.e. the correlation of X and Y.
(iv) Are X and Y independent random variables?



92

5.9.

RANDOM VARIABLES [CHAP. 5

(i) The marginal distribution on the right is the distribution of X, and the marginal distribution
on the bottom is the distribution of Y. Namely,

x 1 3 Yj -3 2 4
fz) | 5| 5 9(yy) 4 | 3| .3
Distribution of X Distribution of ¥

(ii) First compute uxy and uy:

px = Zafl@) = ()5 + @5 = 2

by = Zy;00) = (=3)(4) + (2(3) + (N3 = 6
Next compute E(XY);
E(XY) = 3 ay;hlz,y)
= (D3 + M2 + (A2 + B)(=3)(3) + BN + @41 = 0
Then Cov(X,Y) = E(XY) — uxuy = 0 — (2)(.6) = —1.2
(iii) First compute ox and oy:

EX?) = Iaifl@) = (B + 95 = b

of = Var(X) = E(X®) -l = 65— (22 = 1

ox = VI =1
and

E(Y) = Zyiey) = (94 + @)3) + (16)(3) = 9.6

o2 = Var(Y) = E(¥Y?) — i = 96 — (6?2 = 924

oy = V924 = 30
Then oX,Y) = C"‘;ify’ LA (1_)(15%) = -4

(iv) X and Y are not independent, since P(X =1, ¥ = --3) #* P(X = 1) P(Y = —8), i.e. the entry
h(1,—3) = .1 is not equal to f(1) g(—38) = (.5)(.4) = .2, the product of its marginal entries.

Let X and Y be independent random variables with the following distributions:

z; 1 2 Y; 5 10 15
flz) | 6| 4 gyp) | 2 | B | .8
Distribution of X Distribution of ¥

Find the joint distribution A of X and Y.

Since X and Y are independent, the joint distribution A can be obtained from the marginal
distributions f and g. First construct the joint distribution table with only the marginal distributions
as shown below on the left, and then multiply the marginal entries to obtain the other entries, i.e.
set h(x;, y;) = f(x;) g(y;), as shown below on the right.

X Y b 10 15 Sum x Y 5 10 15 Sum
1 6 1 12 .30 18 6
2 4 2 .08 20 12 4
Sum 2 b 3 Sum 2 .5 3
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5.10. A fair coin is tossed three times. Let X denote 0 or 1 according as a head or a tail
occurs on the first toss, and let Y denote the number of heads which occur. Determine
(i) the distributions of X and Y, (ii) the joint distribution & of X and Y, (iii) Cov (X, Y).

(i) The sample space S consists of the following eight points, each with probability }:
S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
We have X(HHH) = 0, X(HHT) = 0, X(HTH) =0, X(HTT) =0
X(THH) =1, X(THT) =1, X(TTH) =1, X(TTT) =1

and Y(HHH) = 3
Y(HHT) = 2, Y(HTH) =2, Y(THH) =2
Y(HTT) =1, Y(THT) =1, ¥(TTH) =1
Y(TTT) =0

Thus the distributions of X and Y are as follows:

z, | 0 |1 ¥y 0|1 |2]|3
fe) | 3| 3 o) | 4 | B | % | %
Distribution of X Distribution of Y

(ii) The joint distribution k of X and Y follows:

Y
0 1 2 3 S
X um

0 o &1 8| % 3
1 P80 3
Sum | § | 3| % |}

We obtain, for example, the entry #(0,2) = P(X=0, ¥=2) = P({HTH, HHT}) = 3.

I

Sefle) = 043 +1-3 = 3
Syioly) = 0o} +1-3 +2-3+33 = §

(iti) ix

ry =
E(XY) = Iazyhz,y) = 1e1+% + 1+2+} + terms with a factor 0 = }
Cov(X,¥) = BXY) — muy = 4 — 4% = —}

5.11. Let X be a random variable with the following distribution and let ¥ = X3

fe) 3133 |3

Determine (i) the distribution g of Y, (ii) the joint distribution 2 of X and Y,
(iii) Cov (X, Y) and p(X, Y).
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" (i) Since ¥ = X2, the random variable ¥ can only take on the values 4 and 1. Furthermore,

gd) = P(Y=4) = PX=20rX=-2) = PX=2+PX=-2) = }+1 = 3}
and, similarly, g(1) = 4. Hence the distribution g of Y is as follows:
Y; 1 4
gy | 41 3

(ii) The joint distribution k of X and Y appears below. Note that if X = —2, then Y = 4; hence
h(—2,1) =0 and h(—2,4) = f(—2) = 1. The other entries are obtained in a similar way.

x Y 1 4 Sum
-2 0 3 3
-1 1]o 1
1 1] o0 1
2 0 1 1
Sum | 4 | 3
(ii) px = EX) = Zfle) = —2¢3 -1} +1}3+2F =0
py = EY) = Zygl) = 14 +4-4 = 3§
EXY) = Saxyhz,y) = —8-3 —1+1+1-1+83 = 0
Cov(X,Y) = E(XY) — uxpy = 0 — 0§ = 0 andso p(X,Y)=0

Remark: This example shows that although Y is a function of X it is still possible for the

covariance and correlation of X and Y to be 0, as in the case when X and Y are inde-
pendent (Theorem 6.6). Notice, however, that X and Y are not independent in this
example.

PROOFS OF THEOREMS
Remark: In all the proofs, X and Y are random variables with distributions f and g

5.12.

5.13.

respectively and joint distribution A.

Show that f(z) = X h(z, ) and g(y) = 3 h(x;, ), i.e. that the marginal distribu-
§ i

tions are the (individual) distributions of X and Y.
Let A;={X=2;} and B;={Y =y;); thatis,let A;=X"1(x;) and B; =Y 1(y). Thus the
B; are disjoint and S = U;B;. Hence
A, = AinS = A;n(Y;B) = U;(A;NBy)
where the 4,n B, are also disjoint. Accordingly,
fla) = PX=z) = P4) = ?P(AtnBj) = ; PX=uz,Y=y) = ’E kzi, ;)
The proof for g is similar.

Prove Theorem 5.8: Let X and Y be random variables on the same sample space S
with ¥ = ®(X). Then E(Y) = Y &(x)f(x) where f is the distribution of X.

1
(Proof is given for the case X is discrete and finite.)
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5.14.

5.15.

5.16.

5.17.

Suppose that X takes on the values x,, ...,%, and that &(x,) takes on the values y,,...,¥,, a8
i runs from 1 to n. Then clearly the possible values of Y = #(X) are y,,...,¥,, and the distribu-
tion g of Y is given by

oly) = 3 fl=)
{i: ®(z))=wy}
Therefore
m m
E(Y = =
(Y) l§1 Y 0(11;) = Y o 0(§)=”) f(=)

]
M=

1) = 3 flm) ¥

i=1 {(: 0(:20=m}y’

which proves the theorem.

Prove Theorem 5.1: Let X be a random variable and k¥ a real number. Then
(i) E(kX) =k E(X) and (ii) E(X+k) = E(X) + L.

(Proof is given for the general discrete case with the assumption that E(X) exists.)
(i) Now kX = &(X) where &(x) = kx. Therefore by Theorem 5.8 (Problem 5.13),
EkX) = ; kx,fiz) = k ; z flz) = kEX)

(ii) Here X+ k = &(X) where &#(x) = z+ k. Therefore
EX+k = ?(xﬁ-k)f(:c‘) = ?:qf(x‘) + ?kf(x,) = EX)+ k

Prove Theorem 5§5.2: Let X and Y be random variables on the same sample space S.
Then E(X+Y) = E(X) + E(Y).

(Proof is given for the general discrete case with the assumption that E(X) and E(Y) both
exist.)

Now X+Y =¢(X,Y) where &(x,¥) = =+ y. Therefore by Theorem 5.9,
EX+Y) = ? ? (mi+y) My y) = ‘2 ; z; iz, vy +§ ? ¥ ki v)

Applying Problem 5.12, we get
EX+Y) = ‘2 zflz) + ? v;9yy) = EX) + E(Y)

Prove Corollary 5.3: Let X, X,,...,X, be random variables on S. Then
EXi+ ---+X,) = EX))+ --- + E(X,)
(Proof is given for the general discrete case with the assumption that E(X,),...,E(X,) all
exist.)

We prove this by induction on n. The case n = 1 is trivial and the case n = 2 is just Theorem
6.2 (Problem 5.15). For the case n > 2 we apply the case n =2 to obtain

E(xl+ A +X"_1+Xn) = E(Xx + e+ X"-l) + E(X“)
and by the inductive hypothesis thia becomes E(X,) + - -- + BE(X,_{) + E(X,).

Prove Theorem 5.5: (i) Var(X + k) = Var (X) and (ii) Var (kX) = k¥* Var (X). Hence

ox sk = 0x 80d o,y = |K|oy.

By Theorem 5.1, pux.r = px+k and px = kax. Also 3 z,f(x) = ux and 2= f(z) = 1. Hence
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Var (X+k) = 3 (x+k2f(x) — sxex
= Sl fl@) + 2k 2 aflz) + k232 flz) — (ux + k)2
= Salf(xr) + 2kux + k2 — (uE+ 2kux + k?)
= D flz) — py = Var(X)

|

D Rz fle) — mex = k232l flz) — (eux)?
= B3 fe) — k2l = (S alfz) — 4k) = kVar(X)

and Var (kX)

5.18. Show that

[

Cov(X,Y) g (xg - l-‘x)(yj - .“'y) h(m{’ yj) = g ryY, h(xp yj) = Byxby

(Proof is given for the case when X and Y are discrete and finite.)
Since
LE‘%' hz;, y;) = ;yj 9(y) = ay, ‘.E’xi h(x,, y) = iE“f'i flz) = px and 12‘ h(z,y) = 1
we obtain

{2’ (s — nx)(y; — uy) Rz, y)

;E, (x¥; — ox¥; — sy®; + pxpy) h(x,, v;)
= 42; XY h(x;, ¥j) — ex ‘E’ﬂj h(z,, ¥) — nuy ‘2’9«':' h(zy, y;) + expy § h(z,, le)
= Ej w2y, y;) ~ pxuy — wxuy + opxay

1

- = ; T hxL ¥) — pxey
37

5.19. Prove Theorem 5.6: Let X and Y be independent random variables. Then

(i) B(XY) = E(X)E(Y), (ii) Var(X+Y) = Var(X) + Var(¥), (iii) Cov(X,¥) = 0.
(Proof is given for the case when X and Y are discrete and finite.)

Since X and ¥ are independent, h(z,y)) = f(&) g(y;). Thus
EXY) = ‘.Ej.ijh(xi,y,-) = “ijiyjf(xi)y(yj)
= ?zif(xi)jEyjy(yj) = E(X)E(®Y)
and Cov(X,Y) = E(XY) — uxuy = BEXE®Y) — aguy = 0

In order to prove (ii) we also need
vy = pxtay ek = Zaif@),  Buikey) = 2ujew)
Hence
Var(X+Y) = g @+ ) b yy) — sRay
= § 27? h(x;, yj) + 2 iEj Ty h(z;, yy) + g y? h(z;, le) — (ux + py)?
= 2o f@) + 2 Zafl@) Do) + Zujolwy) — bk — ey — u}

= §xff(xi) -+ jzyfg(y’) — #2 = Var(X) + Var(¥)
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5.20. Prove Theorem 5.7: Let X, X, ..., X, be independent random variables. Then
Var(Xi+ -+ +X5) = Var(Xy) + -+ + Var (X,)
(Proof is given for the case when X, ..., X, are all discrete and finite.)

We take for granted the analogs of Problem 5.12 and Theorem 5.9 for » random variables. Then
Var (X, +---+X,) = E(X;+ - +X,— X+ +xn)2)
= E (xg+ - +x, — BX 4 +xn)2h(1'1x o @)
= B(xy+-te, — ux, — g PR )
_ s {? Seey + 33 wer, — 23 Jz,‘xix,.} hog - er o)
where h is the joint distribution of X4, ...,X,, and BX 4 - +X, T X + e+ #x, (Corollary 5.3).

Since the X; are pairwise independent, X zz;h(zy,...,z,) = XX, for i+ j. Hence

n

Var(X;+ - +X) = 3 pxpx, + 8 E(X?) + 3 Suxux, — 22 = ux ex.
Py B i=1 i § v i § v

n n n
.21 E(Xiz) - i§l (#xi)2 = igl Var (X))
as required. ¢ =

MISCELLANEOUS PROBLEMS
5.21. Let X be a continuous random variable with distribution

tx+k if 0=g¢=3
fl®) =
0 elsewhere

(i) Evaluate k. (ii) Find P(1=X =2),

(i) The graph of f is drawn below. Since f is a continuous probability function, the shaded
region A4 must have area 1. Note A forms a trapezoid with parallel bases of lengths k and k& + 4,
and altitude 3. Hence the area of A = §(k+k+3)+3=1 or k=L,

(ii) P(1=X=2) is equal to the area of B which is under the graph of f and between z =1 and
# =2 as shown above on the right. Note f(1)=3}+{ =% f(@)= 4+ & =+ . Hence
P1=X=2) = areaof B = §{&+5)*1 =1

5.22. Let X be a continuous random variable whose distribution f is constant on an interval,
say I ={a=x=0}, and O elsewhere:

flz) =

E ifa=x=b
0 elsewhere

(Such a random variable is said to be uniformly distributed on I.) (i) Determine k.
(ii) Find the mean x of X. (iii) Determine the cumulative distribution function F of X.
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(i) The graph of f appears on the right. The region
A must have area 1; hence

kb—a) = 1 or k =

(ii) If we view probability as weight or mass, and
the mean as the center of gravity, then it is
intuitively clear that
a+b
2
the point midway between a and b. We verify this mathematically using calculus:

_ by _ 2 b
fnmf(x)dx = J; T-ad® = [m:la
a?

S _a+tbd
26—a) 20-a 2

r = EX)

(iii) Recall that the cumulative distribution function _
F is defined by F(k) = P(X=k). Hence F(k) F=1
gives the area under the graph of f to the left
of x =k. Since X is uniformly distributed on
the interval I = {¢ =x =0}, it is intuitive that
the graph of F' should be as shown on the right, F=0
i.e. F =0 before the point a, F =1 after the
point &, and F' is linear between a¢ and b. We
verify this mathematically using calculus: Graph of F

F(z) = f_: fidt = f 0dt = 0

—

(a) for z < a,

(b) for a =z = b,

F@) = f_wf(t)dt = J; ﬁdt = [bfa]a = §=2

(¢) for x >b, F(2) = PX=2)=P(X=b) = F(b) =1 and also 1=PX=g) = F(zx);
hence F(zx) = 1.

5.23. Let X be a random variable with mean n and standard deviation ¢ > 0; and let X* be
the standardized random variable corresponding to X, ie. X* = (X—pu)/o. Show
that E(X*)=0 and Var(X*)=1. (Hence oy. =1.)

By Theorem 5.1 and Theorem 5.5,

E(X*) = E(%) = 5E’(X—p) = %(E(X)—#) =0
and Var (X*) = Var <X¢7_#>: %Var(X—p) = %Var(X) - :_: =1

5.24. Let X be a random variable with distribution f. The rth moment M, of X is defined by
M, = EX) = X @ f(x)
Find the first five moments of X if X has the following distribution:

e |-2]1 13
flzy) 1 1 1

(Note that M, is the mean of X, and M; is used in computing the variance and standard
deviation of X.)




CHAP. 5] RANDOM VARIABLES 99

5.25.

M, = Zzfla) = —~2+}%+ 1.4 +3-1 = 0,
My, = Salfz) = 44+ 13+ 9.1 = 45,
My = Salf@) = ~8-4 +1-1 + 27} = 3,
M, = ZBaiflz) = 16+} + 11 +81+} = 285,
My = 3z f(x) = —32+4 + 1-1 + 243-1 = 45,

Let % be the joint distribution of the random variables X and Y. (i) Show that the
distribution f of the sum Z = X + Y can be obtained by summing the probabilities
along the diagonal lines z +y = z, i.e.

flze) = ) =,2+,, ha, ) = IE h(z:, zx — x4)

(ii) Apply (i) to obtain the distribution f of the sum Z = X + Y where X and Y have
the following joint distribution:

x Y -2 ~1 0 1 2 3 Sum
0 .05 .05 .10 0 .05 .05 .30
1 10 .05 .05 .10 0 .05 .35
2 .03 12 07 .06 .03 .04 .35
Sum 18 22 22 .16 .08 14

(i) The events {X=u;, Y=y, : 2, +y; =2} are disjoint; hence

fm) = PZ=z) = 3 PX=gz,Y=y)
nytyy =2
= 2 h(z;, Ilj) = E h(x;, 2, — ®)
Tty =z E
(ii)
\ —2 -1 0 1 2 3
X

0 05 05 .10 0 05 05

1 .10 .05 .05 10 0 .05

2 .03 12 07 .06 .03 .04

Adding along the diagonal lines in the above table, we obtain

f(—2) = .05 £(2) = .06+ .10 + .07 = .22
f(-1) = 064 .10 = .15 £(8) = .05+ 0+ .06 = .11
f0) = .10+ .05+.03 = .18 f(4) = .06+ .03 = .08

f1) = 0+4.05+.12 = 17 f(5) = .04

In other words, the distribution of Z=X+Y is as follows:

2% 2| -1 | o 1 2 3 4 5

f(z) .05 .15 .18 17 22 11 .08 04
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Supplementary Problems

RANDOM VARIABLES

5.26. Find the mean g, variance ¢2 and standard deviation o of each distribution:
(® (ii)
fe) t 4] 4 f) 3 LR
xz, |-1| o] 1 |2] s
(iii)
fz) | 3] 2| 1 | 3] .2

5.27. A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the
two numbers which appear. Find the distribution, mean, variance and standard deviation of X.

5.28. A fair coin is tossed four times. Let X denote the number of heads occurring. Find the distribution,
mean, variance and standard deviation of X.

5.29. A fair coin is tossed four times. Let Y denote the longest string of heads occurring. Find the
distribution, mean, variance and standard deviation of Y.

5.30. Find the mean x, variance o2 and standard deviation ¢ of the two-point distribution

z; a b
fle) | » | ¢
where p+q=1.

5.31. Two cards are selected at random from a box which contains five eards numbered 1, 1, 2, 2 and 3.
Let X denote the sum and Y the maximum of the two numbers drawn. Find the distribution, mean,
variance and standard deviation of (i) X, (ii) Y, (ili) X+ Y, (iv) XY.

EXPECTATION

5.32. A fair coin is tossed until a head or four tails occur. Find the expected number of tosses of the coin.

5.33. A coin weighted so that P(H) =} and P(T) = § is tossed until a head or five tails occur. Find
the expected number of tosses of the coin.

5.34. A box contains 8 items of which 2 are defective. A man selects 3 items from the box. Find the
expected number of defective items he has drawn.

5.35. A box contains 10 transistors of which 2 are defective. A transistor is selected from the box and
tested until a nondefective one is chosen. Find the expected number of transistors to be chosen.

5.36. Solve the preceding problem in the case that 3 of the 10 items are defective.

5.37. The probability of team A winning any game is §. A plays team B in a tournament. The first team
to win 2 games in a row or a total of three games wins the tournament. Find the expected number
of games in the tournament.

5.38. A player tosses three fair coins. He wins $5 if 3 heads occur, $3 if 2 heads occur, and $1 if only
1 head occurs. On the other hand, he loses $15 if 3 tails occur. Find the value of the game to the
player.

5.39. A player tosses three fair coins. He wins $8 if 3 heads occur, $3 if 2 heads occur, and $1 if only 1

head occurs. If the game is to be fair, how much should he lose if no heads occur?
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5.40. A player tosses three fair coins. He wins $10 if 3 heads occur, $5 if 2 heads occur, $3 if 1 head
occurs and $2 if no heads occur. If the game is to be fair, how much should he pay to play the game?

JOINT DISTRIBUTION, INDEPENDENT RANDOM VARIABLES
5.41. Consider the following joint distribution of X and Y:

x ¥ —4| 2 7 Sum

1 LB T 3
5 18] 4 3
Sum 3 3 3

Find (i) E(X) and E(Y), (ii) Cov(X,Y), (iii) ox, oy and p(X,Y).

542. Consider the following joint distribution of X and Y:

x ¥ 2| - 4 3 Sum
1 1 2 0 .3 .6
2 2 1 1 0 4
Sum .3 3 1 3

Find (i) E(X) and E(Y), (ii) Cov (X,Y), (iii} ox,0y and p(X,Y).

5.43. Suppose X and Y are independent random variables with the following respective distributiona:

x; 1 2 Y; —2 b 8

fz) | 7| .3 o) | 3 | 5 | 2

Find the joint distribution of X and Y, and verify that Cov(X,Y) = 0.

5.44. A fair coin is tossed four times. Let X denote the number of heads occurring and let Y denote the
longest string of heads occurring (see Problems 5.28 and 5.29). (i) Determine the joint distribution
of X and Y. (ii) Find Cov (X,Y) and p(X,Y).

5.45. Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2 and 3.
Let X denote the sum and ¥ the maximum of the two numbers drawn (see Problem 5.31). (i) Deter-
mine the joint distribution of X and Y. (ii) Find Cov (X, Y) and o(X, Y).

MISCELLANEOUS PROBLEMS
546. Let X be a continuous random variable with distribution
3 ifo=z=<8g
flw) = {0 elsewhere

(i) Find: P2=X=5), PB=X=T7T) and P(X =6).
(ii) Determine and plot the graph of the cumulative distribution function ¥ of X.

5.47. Let X be a continuous random variable with distribution
kx if0=z=<5
0 elsewhere

f(x)

(i) Evaluate k. (ii) Find P(1 =X =38), P@= X =4) and P(X = 3).
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5.48.

5.49.

5.50.

5.51.

5.26.

5.27.

5.28.

5.29.

5.30.

§.31.

RANDOM VARIABLES [CHAP. b6

Plot the graph of the cumulative distribution function F' of the random variable X with distribution

z |-3| 2|68
fed) {31 4| %

Show that ox = 0 if and only if X is a constant function, ie. X(8) =k for every # € S, or simply
X=k

If ox # 0, show that p(X,X) =1 and o(X,—X)=-1.

Prove Theorem 5.9: Let X, Y and Z be random variables on S with Z = #(X,Y). Then

E(Z) = ‘E, Dz, ¥y) hlzi, yy)

where h is the joint distribution of X and Y.

Answers to Supplementary Problems

() u=4,02=550=23; (i) p=0,02=10, 0 =3.2; (iii) p=1, 02 =24, o = L.5.

% 1] 2 | 3|4 ]5 e
—— - - - - E(X) =25, Var(X) =21, ox =14
f@) | 5% | % | 3% | % | % | =
x; 0 1 2 4
EX)=2 Var(X) =1, ox =1
@) | f | | & | 5| T
E(Y) = 1.7, Var(Y) = 0.9, oy = 0.95
o) | 5| Te| 5| fu| Te
#=ap+bq, o = pgla—b)2 o = |a—b|Vpg
% 2 | 31 4 5
@) E(X) =36, Var(X) = .84, ox = .9
) 1 4 .3 2
Y; 1 2 3
(i) E(Y) = 2.3, Var(¥) = .41, oy = .64
gy) | 1 5| 4
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i [k 12181718 mxty)=69 var (X+Y)=23, oxey =15
p(zy) 41017 22
(iv) |k Sy 8|12 18 E(XY) = 8.8, Var(XY) =176, oxy = 4.2
a(wy) A4 1 2 2
532, 15/8
5.33. 211/81
534. 3/4
535. 11/9
536 11/8
5.37. 23/8
5.38. 25¢ in favor of the player
539. $20
5.40.  $4.50
541. (i) B(X) =3, B(Y) =1; (i) Cov(X,Y) = 1.5; (iii) ox = 2, oy = 4.3, p(X, ¥) = .17
542. (i) E(X) =14, B(Y) =1; (ii) Cov(X,¥) = —5; (iii) ox = 49, oy = 8.1, p(X,¥) = —3
5.43. "
X -2 | s 8 | Sum
1 21| 3 |14 | 7
2 0 | 15 | 06 | .3
Sum 3 B 2
0 Y1To 1|23 |4 | sum
X
0 & 1o o [o |o A&
1 o | A | o | o |o A
2 o | & | & | o |o &
3 o | o | & | & |o &
4 o {o |0 | o |& | &
Sum | {5 | f% |5 | % | T

(ii) Cov(X,Y) = .85, p(X,Y) = .B9

103
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5.45. (i) v (ii) Cov(X,Y) = B2, p(X,¥Y)=.9
1 2 3 Sum

X
2 1 0 0 1
3 0 4 0 4
4 0 1 2 3
5 0 0 2 2

Sum .1 .5 4

546. () P@2=X=5)=§, P@=X=T7=}, P(X=6)=1}

0 if <0
(ii) F(x) = e if0=zx=8§
1 ifx>8 e :
Graph of F
. _ 2 . —v—m _ 8 ey 12 oy 9
547. (i) k=g, (i) PA=X=3) =5, PR=X=4)=4z, P(X=38) =5
5.48.
14
|
|
- :
)
l
F —18 1 T 0 L T 5 T T ef T

Graph of F



Chapter 6

Binomial, Normal and
Poisson Distributions

BINOMIAL DISTRIBUTION

We consider repeated and independent trials of an experiment with two outcomes; we
call one of the outcomes success and the other outcome failure. Let p be the probability of
success, so that ¢ =1 —p is the probability of failure. If we are interested in the number
of successes and not in the order in which they occur, then the following theorem applies.

Theorem 6.1: The probability of exactly k successes in n repeated trials is denoted and

given by n
b(k;n,p) = () pkg~*

Here (3) is the binomial coefficient (see page 19). Observe that the probability of no sue-
cesses is ¢, and therefore the probability of at least one success is 1 — q™.

Example 6.1: A fair coin is tossed 6 times or, equivalently, six fair coins are tossed; call heads
a success. Then n=6 and p=g¢=14.

(i) The probability that exactly two heads occur (i.e. k= 2) is
526, = QEP@* = i
(ii) The probability of getting at least four heads (i.e. k¥ = 4, b or 6) is
b(4:6,3) + b(5: 6,1 + b6:6,3) = OB @2+ OGP + @
HtE&E T T B

(iii) The probability of no heads (i.e. all failures) is ¢% = (})® = g, and so the
=83
64"

probability of at least one head is 1-—-¢8=1—;

Example 6.2: A fair die is tossed 7 times; call a toss a success if a b or a 6 appears. Then n =717,
p = P({5, 8}) =% and q=1—p=§_

(i) The probability that a 5 or a 6 occurs exactly 3 times (i.e. ¥k = 3) is
b(3: 7,4 = Q@R = &

(ii) The probability that a & or a 6 never occurs (i.e. all failures) is ¢7=(3)"= 2—11281.,;
2058

hence the probability that a § or a 6 occurs at least once is 1—¢7 = 3.

106



106 BINOMIAL, NORMAL AND POISSON DISTRIBUTIONS [CHAP. 6

If we regard » and p as constant, then the above function P(k) = b(k;n,p) is a dis-
crete probability distribution:

k 0 1 2 n

P(k) q Dar-1p (3)gn2p? po

It is called the binomial distribution since for £k =0,1,2,...,n it corresponds to the suc-
cessive terms of the binomial expansion

(q+p)n = q" + ('ll)qn—lp + (;)qﬂ—2p2 + - A4 p*

This distribution is also called the Bernoulli distribution, and independent trials with two
outcomes are called Bernoulli trials.

Properties of this distribution follow:

Theorem 6.2:

Binomial distribution

Mean p=np
Variance a2 = npq
Standard deviation o = Vnpq

Example 63: A fair die is tossed 180 times. The expected number of sixes is u=np =

180-3 = 30. The standard deviation is ¢ = Vnpg = V180-%-§ = 5.

NORMAL DISTRIBUTION
The normal (or: Gaussian) distribution or curve is defined as follows:
1 2.2
f(x) — e~ z—wio
o/ 2x

where « and o > 0 are arbitrary constants. This function is certainly one of the most
important examples of a continuous probability distribution. The two diagrams below
show the changes in f as p varies and as ¢ varies. In particular, observe that these bell-
shaped curves are symmetric about « = p.

I
R R e ]
oY

—T
-2

1
0
Normal distributions with ¢ fixed (¢ =1) Normal distributions with p fixed (x=0)
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Properties of the normal distribution follow:

Theorem 6.3:
Normal distribution
Mean ’
Variance a?
Standard deviation 14

We denote the above normal distribution with mean p and variance o2 by
N(u, o)

If we make the substitution ¢ = (z —u)/¢ in the above formula for N(u,o?) we obtain the
standard normal distribution or curve

o) = e

Ver

which has mean =0 and variance ¢* = 1. The graph of this distribution appears below.
We note that for —1=¢t=1 we obtain 68.2% of the area under the curve, and for
—2=1t=2 we obtain 95.4% of the area under the curve.

A table on page 111 gives the area under the standard normal curve between ¢ =0 and
any positive value of . The symmetry of the curve about ¢ = 0 permits us to obtain the area
between any two values of ¢ (see Problem 6.14).

Now let X be a continuous random variable with a normal distribution; we frequently
say that X is normally distributed. We compute the probability that X lies between a and b,
denoted by P(a=X=1b), as follows. First we change a and b into standard units

¢ = (e—w)fe and b = (b—p)fo
respectively. Then
Pa=X=b) = Ple=X*=1D)
= area under the standard normal curve between ¢’ and b’

Here X* is the standardized random variable (see page 79) corresponding to X, and hence
X* has the standard normal distribution N(0,1).
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NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION.
CENTRAL LIMIT THEOREM

The binomial distribution P(k) = b(k;n,p) is closely approximated by the normal
distribution providing n is large and neither p nor ¢ is close to zero. This property is
indicated in the following diagram where we have chosen the binomial distribution corre-
sponding to n =8 and p=g¢q¢=34.

i o | 1| 2| 3| 4| s 6 | 7 | 8
1 8 28 56 70 56 28 8 1
PK) | 55 | 255 | 56 | 956 | 256 | 56 | 256 | 8 | %

Binomial distribution with » =8 and p=¢ =4

The above property of the normal distribution is generalized in the Central Limit
Theorem which follows. The proof of this theorem lies beyond the scope of this text.

Central Limit Theorem 6.4: Let X,, X;, ... be a sequence of independent random variables
with the same distribution with mean p and variance o2
Let

X1+ Xo+ - -+ Xn—np
\/?—?Ta
Then for any interval {e=z=0b},
limPla=Z,=b) = Pla=¢=b)

n~ o

where ¢ ig the standard normal distribution.

Z, =

Recall that we called S, = (X1+X:+ - - - + X,)/n the sample mean of the random vari-
ables X4, ...,X. Thus Z, in the above theorem is the standardized sample mean. Roughly
speaking, the central limit theorem says that in any sequence of repeated trials the standard-
ized sample mean approaches the standard normal curve as the number of trials increase.

POISSON DISTRIBUTION
The Poisson distribution is defined as follows:
/\ke—)\
p(k,/\)=—k-!—, k=0,1,2,...
where A > 0 is some constant. This countably infinite distribution appears in many natural
phenomena, such as the number of telephone calls per minute at some switchboard, the
number of misprints per page in a large text, and the number of « particles emitted by a
radioactive substance. Diagrams of the Poisson distribution for various values of A follow.
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04

0.3

T r T ]

0.2

I

0.1~

8 10 0 2 4 6 8 10 12 14 16

6 6 2 4 6 8 0 2 4 6
A=5 A=10

Poisson distribution for selected values of A

Properties of the Poisson distribution follow:

Theorem 6.5:

Poisson distribution

Mean L= A
Variance 02 =
Standard deviation =V

Although the Poisson distribution is of independent interest, it also provides us with a
close approximation of the binomial distribution for small % provided that p is small and
A =np (see Problem 6.27). This is indicated in the following table.

k 0 1 2 3 4 5
Binomial .366 .370 .185 .0610 0149 .0029
Poisson .368 .368 .184 0613 0153 .00307

Comparison of Binomial and Poisson distributions
with n =100, p=1/100 and A=np =1

MULTINOMIAL DISTRIBUTION

The binomial distribution is generalized as follows. Suppose the sample space of an
experiment is partitioned into, say, s mutually exclusive events A4,, A., .. ., A, with respective
probabilities 1, P2, ...,ps. (Hence pi+pz+---+p.=1.) Then:

Theorem 6.6: In n repeated trials, the probability that A, occurs k; times, A; occurs ke
times, ..., and A, occurs k, times is equal to

n! .k )
s e e AR P
where kl+k2+-..+k’:n.

The above numbers form the so-called multinomial distribution since they are precisely
the terms in the expansion of (p: +p2+ - -+ +ps)* Observe that if s =2 then we obtain
the binomial distribution, discussed at the beginning of the chapter.

Example 64: A fair die is tossed 8 times. The probability of obtaining the faces 5 and 6 twice
and each of the others once is

srarer A2 @2 EABDD) = 535 ~ 006



110

BINOMIAL, NORMAL AND POISSON DISTRIBUTIONS

[CHAP. 6

STANDARD NORMAL CURVE ORDINATES

This table gives values ¢(f) of the

standard normal distribution ¢ at =0
in steps of 0.01,

t 0 1 2 3 4 5 6 7 3 9
0.0 .3989 .3989 .3989 .3988 .3986 .3984 .3982 .3980 3977 3973
0.1 .3970 .3965 3961 .3956 3951 .3945 .3939 .3932 .3925 .3918
0.2 .3910 .3902 .3894 .3885 .3876 .3867 .3857 3847 .3836 .3825
0.3 .3814 .3802 3790 3778 .3765 37562 .3739 3725 3712 .3697
0.4 3683 .3668 .3653 .3637 .3621 .3605 .3589 .3572 .3566 .3538
0.5 .3521 .3503 .3485 .3467 .3448 .3429 .3410 .3391 3372 .3352
0.6 .3332 3312 3202 3271 .3251 .3230 .3209 .3187 .3166 .3144
0.7 3123 3101 .3079 .3056 .3034 3011 .2989 .2966 .2943 .2920
0.8 .2897 2874 .2850 .2827 .2803 2780 .2756 2732 2709 .2685
0.9 .2661 2637 .2613 .2589 .2665 2541 2516 .2492 .2468 2444
1.0 2420 2396 2371 2347 2323 .2299 2275 2251 2227 .2203
1.1 2179 2155 2131 2107 .2083 .2069 .2036 .2012 .1989 .1966
1.2 1942 1919 1895 1872 1849 .1826 1804 .1781 .1758 .1736
1.3 1714 1691 .1669 .1647 .1626 .1604 .1582 .1561 1539 .1518
1.4 1497 .1476 .1456 .1435 .1415 .1394 .1374 .1354 .1334 .1315
1.5 1295 1276 1257 .1238 1219 .1200 1182 .1163 1145 A127
1.6 1109 1092 1074 1057 .1040 1023 1006 0989 0973 L0957
1.7 .0940 0925 .0909 .0893 0878 .0863 .0848 .0833 .0818 .0804
1.8 0790 .0775 0761 0748 0734 0721 0707 .0694 .0681 .0669
1.9 0656 .0644 0632 .0620 .0608 0696 .0684 .0573 0562 .0551
2.0 .0540 0529 .0519 .0508 .0498 .0488 0478 .0468 .0459 0449
2.1 0440 0431 0422 .0413 0404 .0396 .0387 .0379 0371 0363
2.2 .0355 0347 .0339 0332 .0325 0317 0310 .0303 0297 0290
2.3 0283 0277 0270 .0264 .0258 0252 .0246 0241 0235 0229
2.4 0224 0219 .0213 .0208 0203 .0198 0194 .0189 .0184 .0180
2.5 .0175 0171 .0167 0163 0158 .0154 0151 .0147 0143 .0139
2.6 .0136 .0132 .0129 .0126 .0122 0119 0116 0113 .0110 0107
2.7 .0104 0101 .0099 .0096 0093 .0091 .0088 .0086 0084 .0081
2.8 0079 0077 0075 0073 0071 .0069 0067 0065 0063 .0061
2.9 .0060 0058 0056 .0055 .0053 .0051 0050 0048 0047 .0046
3.0 .0044 .0043 .0042 .0040 .0039 .0038 0037 .0036 0035 0034
3.1 0033 .0032 0031 .0030 .0029 .0028 0027 .0026 0025 .0025
3.2 0024 .0023 .0022 0022 .0021 .0020 .0020 .0019 .0018 .0018
3.3 L0017 0017 .0016 .0016 .0015 0015 .0014 0014 .0013 0013
34 0012 .0012 0012 0011 .0011 0010 .0010 0010 .0009 0009
3.5 .0009 .0008 .0008 .0008 .0008 .0007 0007 0007 .0007 .0006
3.6 .0006 .0006 .0006 .0005 .0005 .0005 0005 .0005 .0005 0004
3.7 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 0003
3.8 .0003 .0003 0003 .0003 0003 .0002 .0002 .0002 .0002 0002
3.9 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001

Table 6.1
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STANDARD NORMAL CURVE AREAS
This table gives areas under the stand-
ard normal distribution ¢ between 0 and
t=0 in steps of 0.01.

t 0 1 2 3 4 5 6 7 8 9
0.0 .0000 0040 .0080 .0120 .0160 .0199 .0239 0279 .0319 .0369
0.1 0398 .0438 .0478 0517 .0557 .0596 .0636 0675 0714 0754
0.2 0793 .0832 0871 L0910 0948 .0987 1026 1064 1103 1141
0.3 1179 1217 12565 1293 1331 1368 .1406 1443 .1480 1517
0.4 .1564 1591 1628 .1664 1700 1736 1972 .1808 .1844 1879
0.6 1915 1960 1985 2019 2054 .2088 .2123 2157 2190 2224
0.6 2258 2291 2324 2357 2389 2422 2454 .2486 2518 2549
0.7 2580 2612 2642 2673 2704 2734 2764 2794 .2823 .2852
0.8 2881 2910 .2939 2967 .2996 3023 .3051 3078 .3106 .3133
0.9 3159 .3186 3212 .3238 3264 .3289 3316 3340 .336b6 .3389
1.0 3413 .3438 .3461 .3485 .3508 .3531 3554 3577 .3599 3621
1.1 .3643 .3665 .3686 .3708 3729 .3749 3770 3790 .3810 .3830
1.2 .3849 .3869 3888 .3907 .3925 .3944 3962 .3980 .3997 4015
1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177
1.4 4192 4207 .4222 4236 4251 4265 4279 4292 4306 4319
1.5 4332 4345 4357 4370 4382 4394 4406 4418 .4429 4441
1.6 4452 4463 4474 4484 4495 45056 4515 4525 .4535 4545
1.7 4554 4564 4673 4682 4591 4599 4608 4616 4625 4633
1.8 4641 .4649 .4656 4664 4671 4678 .4686 4693 4699 4706
1.9 4713 4719 4726 4732 4738 4744 4750 .4756 4761 4767
2.0 A772 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 4821 4826 4830 4834 .4838 4842 4846 4850 4854 4857
2.2 4861 4864 .4868 4871 4875 4878 .4881 4884 4887 .4890
2.3 4893 4896 4898 4901 .4904 4906 4909 4911 4913 4916
2.4 .4918 4920 4922 4925 4929 4929 4931 4932 4934 4936
2.6 .4938 .4940 4941 4943 4945 4946 .4948 4949 4951 4952
2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8 4974 4975 4976 4977 4977 4978 .4979 .4979 .4980 .4981
2.9 4981 4982 4982 .4983 4984 .4984 4985 49856 4986 4986
3.0 4987 4987 4987 L4988 4988 4989 4989 .4989 .4990 4990
3.1 4990 4991 4991 4991 4992 4992 4992 4992 .4993 4993
3.2 .4993 .4993 4994 .4994 4994 4994 4994 49956 4995 4995
3.3 4995 .4995 .4995 .4996 .4996 4996 4996 .4996 .4996 4997
3.4 4997 4997 4997 4997 4997 4997 4997 4997 4997 4998
3.5 4998 .4998 4998 4998 4998 4998 .4998 4998 .4998 4998
3.6 4998 .4998 4999 .4999 .4999 4999 4999 .4999 .4999 4999
3.7 4999 4999 .4999 4999 .4999 .4999 4999 .4999 .4999 4999
3.8 .4999 4999 4999 4999 4999 4999 4999 .4999 .4999 .4999
3.9 .5000 6000 .5000 .5000 .5000 .5000 5000 .5000 .5000 .5000

Table 6.2
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VALUES OF ¢
A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
e~A 1.000 905 819 741 670 607 .549 497 449 407
A 1 2 3 4 5 6 7 8 9 10
e~ X .368 .135 .0498 0183 00674 .00248 .000912 .000335 .000123 000045
Table 6.3

Solved Problems
BINOMIAL DISTRIBUTION
6.1. Find (i) b(2;5,%), (i) b(3;6,3), (iii) b(3; 4, 1).
Here b(k;n,p) = (3)p*g"* where p+q = 1.
@ 251 = QAPG? = HEPE® = 5.
() 536,4) = (H@PEP = B332@? = &
i) 53:4,1) = QARG = DE*G =1dP® = &

H

6.2. A fair coin is tossed three times. Find the probability P that there will appear
(i) three heads, (ii) two heads, (iii) one head, (iv) no heads.

Methed 1. We obtain the following equiprobable space of eight elements:
= {HHH,HHT,HTH, HTT, THH, THT, TTH, TTT}
(i)  Three heads (HHH) occurs only once among the eight sample points; hence P = }.
(ii) Two heads occurs 3 times (HHT, HTH, and THH); hence P = §.
(iii) Onme head occurs 3 times (HTT, THT and TTH); hence P = §.

(iv) No heads, i.e. three tails (TTT), occurs only once; hence P = }.

Method 2. Use Theorem 6.1 with n =3 and p=q=1.
() Here k=8 and P = 5(3;3,§) = FBPF)° =1-4-1 =}
]

(i) Here k=2 and P = b(2;3,4) = () @)2Q}) = 3-1+} =
(iii) Here k=1 and P = b(1;3,4) = @1 @)2 = 8-4-1 = &
(iv) Here k=0 and P = b(0;3,3) = @O R)?® = 1:1+4 = .

6.3. Team A has probability § of winning whenever it plays. If A plays 4 games, find
the probability that A wins (i) exactly 2 games, (ii) at least 1 game, (iii) more than
half of the games.

Here n =4, p=% and ¢=1—p=14.
(i) P@wins) = (24,3 = (E2G)2 = L.



CHAP. 6} BINOMIAL, NORMAL AND POISSON DISTRIBUTIONS 113

6.4.

6.5.

6.6.

6.7.

(ii) Here ¢* = ()t = 81—1 is the probability that A loses all four games. Then 1— gt = % is the

probability of winning at least one game.
(ili) A wins more than half the games if A wins 38 or 4 games. Hence the required probability is

P(Bwins) + PAwins) = (D@P@) + (D@ = 248 = 18

A family has 6 children. Find the probability P that there are (i) 3 boys and 3 girls,
(ii) fewer boys than girls. Assume that the probability of any particular child being
a boy is .

Here n =6 and p=gq=}.
(i) P =P(3boys) = () AP =2} = 3.

(ii) There are fewer boys than girls if there are 0, 1 or 2 boys. Hence

P = P(0boys) + P(1boy) + P(2boys) = (1) + (DM@ + (H@2@)yr = 1

32

How many dice must be thrown so that there is a better than even chance of obtaining
a six?

The probability of not obtaining a six on n dice is (§)*. Hence we seek the smallest »n for
which (2)» is less than :

G =85 (92 = B (3P = 5 but (@0 = g% < )

Thus 4 dice must be thrown.

The probability of a man hitting a target is 1. (i) If he fires 7 times, what is the
probability P of his hitting the target at least twice? (ii) How many times must he
fire so that the probability of his hitting the target at least once is greater than £7?

(i) We seek the sum of the probabilities for k = 2, 3, 4, 5, 6 and 7. It is simpler in this case to
find the sum of the probabilities for &k = 0 and 1, i.e. no hits or 1 hit, and then subtract it from 1.

Piohits) = (3)7 = 28T panit) = (D) (e = 2o
— 2187 5103 4547
Then P = 1— 55— fom1 = aioz

(ii) 'The probability of not hitting the target is g®. Thus we seek the smallest n for which ¢" is
less than 1 — § = 1, where ¢ =1—-p=1—-1 = —;j‘;. Hence compute successive powers of
q until ¢® < § is obtained:

@ =f€d; @r=g Sl @GPl bue (=<

In other words, he must fire 4 times.

Prove Theorem 6.1: The probability of exactly k successes in n repeated trials is
bl 0,p) = () * 0.

The sample space of the n repeated trials consists of all ordered n-tuples whose components
are either s (success) or f (failure). The event A of k successes consists of all ordered n-tuples of

which k components are s and the other n — k components are f. The number of n-tuples in the
event A is equal to the number of ways that k letters s can be distributed among the n components

of an n-tuple; hence A consists of (;) sample points. Since the probability of each point in A is
pk g%, we have P(4) = () pkqrF
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6.8.

6.9.

6.10.
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Prove Theorem 6.2: Let X be a random variable with the binomial distribution
b(k;n,p). Then (i) E(X)=mnp and (ii) Var(X) =npq. Hence o, = Vnpq.

(i) Using b(k;n,p) = () p*q"—*, we obtain

n n '
Xy = « bk; m, = — M kgn—k
E(X) =, o bk, p) kgokk'( Thak

fn—k
% (n—1)!

—_— " 7  mk—1gn—k
" k=D m—R1P 9

(we drop the term %k = 0 since its value is zero, and we factor out np from each term). We let
s = k—1 in the above sum. As k runs through the values 1 to %, s runs through the values
0 ton — 1. Thus

= ______(n_l)’ s —1-s5s = S T - =
E(X) = nPE s oy v § ol = npsgob(s,n 1L,p) = =np

since, by the binomial theorem,

n—1

20 bs;n—1,p) = (p+on! = 1n-1 = 1
o=

(i) We first compute E(X2):

I

n n '

2 — . A n—k

EX?) = 3 Kblsnp) = I Kotk
n

= =Dk
= npkglk(k—l)!(n——k)!p a

Again we let 8 = k—1 and obtain

n—1
E(X?) = np 2 (s+1)s'(n 1)!3)! psqrl-s = npsgo (8 + 1) b(s; »—1, p)
n—1 n—1 n—1
But 20 (s+1)b(sin—1,p) = §o seb(s;n—1,p) + §0 b(s; n—1,p)

= —-1p+1 = np+1—p = np + ¢q
where we use (i) to obtain (n —1)p. Accordingly,
E(X?) = npnp+q) = (np)* + npq
and Var (X) = E(X?) — 45 = (np)? + npg — (np)? = npq

Thus the theorem is proved.

Determine the expected number of boys in a family with 8 children, assuming the
sex distribution to be equally probable. What is the probability that the expected
number of boys does occur?

The expected number of boys is E = np = 8+4 = 4. The probability that the family has four

boys is
b4: 8,31 = O @@y = E32ge = B = 21

The probability is 0.02 that an item produced by a factory is defective. A shipment
of 10,000 items is sent to its warehouse. Find the expected number E of defective
items and the standard deviation o.

E = np = (10,000)(0.02) = 200.
= Vnpq = V(10,000)(0.02){0.98) = V196 = 14.
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NORMAL DISTRIBUTION

6.11. The mean and standard deviation on an examination are 74 and 12 respectively.
Find the scores in standard units of students receiving grades (i) 65, (ii) 74, (iii) 86,

(iv) 92.
. _ X _66—T74 _ x—p _ 86 —T4 _
i t = - = 12 = —0.75 (ii1) ¢ 5 = iz = 1.0

.. _r—s _ T4-74 _ - _x—er _92-T74
(i) t = - = iz =0 (iv) ¢ p 12

= 15

6.12. Referring to the preceding problem, find the grades corresponding to standard scores
(i) -1, (ii) 0.5, (iii) 1.25, (iv) 1.75.

() « = ot+p = (12)(=1)+ 74 = 62 (i) # = ot+ 4
() = ot+pu = (12)(0.5) + T4 = 80 (iv) = = ot+ 4

(12)(1.25) + 74
(12)(1.75) + 74

89
95

Il
Il
Il

6.13. Let ¢ be the standard normal distribution. Find ¢(tf) at (i) ¢ = 1.63, (ii) { = —0.75,
(iii) ¢ = —2.08.

(i) In Table 6.1, page 110, look down the first column unti! the entry 1.6 is reached. Then con-
tinue right to column 3. The entry is .1057. Hence ¢(1.63) = .1057.
(ii) By symmetry, ¢(—0.75) = ¢(0.95) = .3011.

(iii) ¢(—2.08) = ¢(2.08) = .0459.

6.14. Let X be a random variable with the standard normal distribution ¢. Find:

(i) P(0=X=142) (v) P(-1.79 =X = —0.54)
(i) P(~0.73 =X = 0) (vi) P(X=1.3)
(ili) P(—1.37 = X = 2.01) (vii) P(X|= 0.5)

(iv) P(0.65= X = 1.26)

(i) PO=X=142) is equal to the area under the
standard normal curve between 0 and 1.42. Thus
in Table 6.2, page 111, look down the first column
until 1.4 is reached, and then continue right
to column 2. The entry is .4222, Hence
P(0=X=142) = 4222,

(ii) By symmetry,
P(—0.73=X=0)
= P(0=X=10.73) = .2673

(iii) P(—1.37 =X = 2.01)
= P(—1.37=X =0) + P(0 = X = 2.01)
= 4147 + 4778 = .8925
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6.15.
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(iv) P(0.65= X =1.26)
= P(0 =X =1.26) — P(0 = X = 0.65)
= .3962 — .2422 = .1540

v) P(~1.79 =X = —0.54)

P(0.54 = X = 1.79)
P(0=X=179) — P(0 =X = 0.54)
= .4633 — .2054 = .2579

(vi) P(X=1.13)
=PX=0)-PO0=X=1.13)
= .5000 — .3708 = .1292

(vii) P(X]=0.5)
= P(—0.5=X = 0.5)
= 2P(0 =X = 0.5)
2(.1915) = .3830

[CHAP. 6

Let X be a random variable with the standard normal distribution ¢. Determine the
value of £ if (i) P(0=X=t) = .4236, (i) P(X=t)=.7967, (iii) P(t=X=2) = .1000.

(i) In Table 6.2, page 111, the entry .4236 appears
to the right of row 1.4 and under column 3.

Hence t = 1.43.

(ii) Note first that ¢ must be positive since the

probability is greater than 4. We have
PO=X=¢) = PX=t)—}

= .7967 — .b000 = .2967

Thus from Table 6.2 we obtain ¢ = .83.

(iii) PO=X=1¢)

= 4772 — 1000 = .3772

Thus from Table 6.2 we obtain ¢ = 1.161

linear interpolation) or simply ¢ = 1.16.

PO=X=2)—-Pt=X=2)
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6.16. Suppose the temperature T during June is normally distributed with mean 68° and
standard deviation 6°. Find the probability p that the temperature is between 70°

and 80°.
70° in standard units = (70 —68)/6 = .33.
80° in standard units = (80 —68)/6 = 2.00.

Then
p = P(T0=T=80) = P(33=T*=2)
= P(0=T*=2)— P(0=T*=.33)
= 4772 - .1293 = .3479
Here T* is the standardized random wvariable

corresponding to T, and so T* has the standard normal
distribution ¢.

6.17. Suppose the heights H of 800 students are normally distributed with mean 66 inches
and standard deviation 5 inches. Find the number N of students with heights
(1) between 65 and 70 inches, (ii) greater than or equal to 6 feet (72 inches).

(i) 65 inches in standard units = (65 — 66)/5 —.20.

.80.

70 inches in standard units = (70 — 66)/5
Hence
P(65=H =170) = P(—.20 = H* = 80)
= .0793 + .2881 = .3674
Thus N = 800(.3674) = 294.

(ii) 72 inches in standard units = (72 — 66)/5 = 1.20.
Hence
PH=172) = PH*=1.2)
= .5000 — .3849 = .1151
Thus N = 800(.1151) = 92,

Here H* is the standardized random variable
corresponding to H and so H* has the standard
normal distribution ¢.

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6.18. A fair coin is tossed 12 times. Determine the probability P that the number of heads
occurring is between 4 and 7 inclusive by using (i) the binomial distribution, (ii) the
normal approximation to the binomial distribution.

(i) By Theorem 6.1 with » =12 and p=¢ =14,

P(4heads) = (H(r@r = 2

P(5 heads) = (D)7 = 22

P(6 heads) = (2)(H*(})P® = =

P(Theads) = (P) 37y = 22

_ 495 , 792 , 924 , 792 _ 3008 __
Hence P = 3555 + 5006 + 056 T 2006 — 098 — -1992.
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(ii)

Here p=np=12+1=6 and o= Vnpg = \/12-%-% = 1.73. Let X denote the number
of heads occurring. We seek P(4 =X =7). But if we assume the data is continuous, in order
to apply the normal approximation, we must find P(3.6 = X =17.6) as indicated in the above
diagram. Now

3.5 in standard units = (3.6 —6)/1.73 —1.45.
7.5 in standard units = (7.5 —6)/1.73 = .87.
Then P P{3.6 =X =1.5)
P(—1.45 = X* = .87)
= .4265 + .3078 = .7343

2

6.19. A fair die is tossed 180 times. Find the probability P that the face 6 will appear
(i) between 29 and 32 times inclusive, (ii) between 31 and 35 times inclusive.

Here x=np=180+1 =30 and o= Vnpg =V180+}1+§ =5. Let X denote the number of
times the face 6 appears.

(i) We seek P(29 =X = 32) or, assuming the data is con-
tinuous, P(28.5 = X = 32.5). Now

28.5 in standard units = (28.5 — 30)/5

32,6 in standard units = (32.5 — 30)/6

—.3
b

Hence
P ~ P(285=X=325) = P(—.3=X*=.5)

= P(—3=X*=0)+ P(0=X*=.5)
1179 + 1915 = .3094

(ii) We seek P(31 = X = 35) or, assuming the data is continuous, P(30.5 = X = 35.5). Now
30.5 in standard units = (30.6—30)/6 = .1
85,5 in standard units = (35.5—30)/6 = 1.1
Then
P = P@B0.6b=X=865) = P(1=X*=11)
= P0=X*=11)—-P0=X*=.1)
= .3643 — .0398 = .3245

6.20. Among 10,000 random digits, find the probability P that the digit 3 appears at most
950 times.
Here u = np = 10,000+ 1 = 1000 and o= ynpg = V10,000 1+ % = 30. Let X denote the

10
number of times the digit 3 appears. We seek P(X = 950). Now
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950 in standard units = (950 —1000)/30
= —1.67

P(X =950) = P(X*=-1.67)

P(X*=0) — P(—1.67=X*=()

5000 — 4525 = .0475

Thus P

A

POISSON DISTRIBUTION
6.21. Find: (i) e7'?, (ii) e~2%

By Table 6.3, page 112, and the law of exponents:

(i) e713 = (e~ 1)(e~03) = (.368)(.741) = .273.
(il) e"25 = (e~2)(e~%5) = (.135)(.607) = .0819.
k p—
6.22. For the Poisson distribution p(k;A) = )\kL!’ find (i) p(2; 1), (i) p(3;4), (iil) p(2;.7).
(Use Table 6.3, page 112, to obtain e~}
12¢—1 -t
@ P&l = 5 =5 = % = .184.
(1)3e—-5 _5
(i) P34 = %3—, =~ = %‘;l = 013.

(i) p(z 1) = LT = (AT

o1 12.

6.23. Suppose 300 misprints are distributed randomly throughout a book of 500 pages.

Find the probability P that a given page contains (i) exactly 2 misprints, (ii) 2 or
more misprints.

We view the number of misprints on one page as the number of successes in a sequence of
Bernoulli trials. Here n = 300 since there are 300 misprints, and p = 1/500, the probability that

a misprint appears on the given page. Since p is small, we use the Poisson approximation to the
binomial distribution with A = np = 0.6.

. (.6)2¢—08
() P = p(206) = 20— = (36)(549)/2 = 0988 ~ 1.
(ii) P(0 misprints) = ('—Qf;,_i = ¢~ 06 = 549

P(1 misprint) = (—s)l"fﬁ = (6)(.549) = .329

Then P = 1 — P(0 or 1 misprint) = 1 — (.549 +.329) = .122.

6.24. Suppose 2% of the items made by a factory are defective. Find the probability P
that there are 3 defective items in a sample of 100 items.

The binomial distribution with = = 100 and p = .02 applies. However, since p is small, we
use the Poisson approximation with A = np = 2. Thus
23¢—2

P = p(3;2) = 31

= 8(.135)/6 = .180
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6.25. Show that the Poisson distribution p(k; A) is a probability distribution, i.e.

L

>Sok;y) = 1

k=0

By known results of analysis, e = 3 A%/k!. Hence
K=0

~ 2 ake—A &,
S opten = S XET o o0 I Akl = emrer = 1
k=0 x=o K! k=0

6.26. Prove Theorem 6.5: Let X be a random variable with the Poisson distribution
p(k; 2). Then (i) E(X)=x and (ii) Var(X) =A. Hence o, =VX.

(i) Using p(k; A} = xke—Mk!, we obtain

o0 o0 Ake—A x Ak—1lg—A
EX) = keplk;n) = k = A A Sat
) k§0 Pl N k§0 k! kgl (k- 1)!
(we drop the term k = 0 since its value is zero, and we factor out A from each term). Let
&8 = k—1 in the above sum. As %k runs through the values 1 to «, 8 runs through the values
0 to w. Thus

EX) = 3 = 23S sy = A
. §=0

o
since ¥ p(8;A) = 1 by the preceding problem.
s=0

(ii) We first compute E(X2):

oo o Ake—A ®  Ak—lg—A
E(X2) = k2plk, ) = k2 A k
( ) kgo p( ’ ) kgo k! kgl (k - 1)'
Again we let 8 = k—1 and obtain
0 —X oo
EX) = A3 e+ = A 3 (s+1)pls )
$=0 8: s=0
el o0 o0
But Eo (s+Dop(s; N = Eo sp(s; A) + Eo pe;N) = a+1
8= B= 5=

where we use (i) to obtain A and the preceding problem to obtain 1. Accordingly,
E(X?2) = Ax+1) = 2242
and Var(X) = E(X?) — 42 = B2+ 2 —22 = A

Thus the theorem is proved.

6.27. Show that if p is small and n is large, then the binomial distribution is approximated
by the Poisson distribution; that is, b(k; n,p) ~ p(k; A) where A = np.

We have b(0;n,p) = (1—p)* = (1 —A/n)*. Taking the natural logarithm of both sides,
Inb(0;n,p) = nln(l—2xr/n)
The Taylor expansion of the natural logarithm is

In(l+z) = = —2+% — -«

Ay A A2 A3
and so In <1 - ;> = " e 33
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Therefore if n is large,

_ T U GO
Inb{(0;n,p) = nln <l—n> = A o v A

and hence b(0; n,p) = e~
Furthermore if p is very small and hence ¢ =~ 1, we have

blk;n,p) _ (m—k+1)p _ A—(k—1)p
bk—1;n,p) — kq - kq

&>

That is, b(k;n,p) =~ %b(k—l;n, p). Thus using b(0;n,p) = e~ we obtain b(l;n,p) =~ re~ 3,

kg—Xx
b(2;%,p) ~ Me~M2 and, by induction, b(k; %,p) ~ *r— = p(k; ).

MISCELLANEOUS PROBLEMS

6.28. The painted light bulbs produced by a company are 50% red, 30% green and 20% blue.
In a sample of 5 bulbs, find the probability P that 2 are red, 1 is green and 2 are blue.

By Theorem 6.6 on the multinomial distribution,
51

P = s

(5)2(.3)(.2)2 = .09

6.29. Show that the normal distribution
f(=z)

e~ Yelz—wo?

1
oV 2r
is a continuous probability distribution, i.e. f fx)dx = 1.

Substituting ¢ = (x — x)/o in f f(x) dx, we obtain the integral

7 = 1L fx 2 gt
Ver

— o0

It suffices to show that I2 = 1. We have

B = —éLf etz dtfm s = o fm fw et T2 dg gt
7 ™ -0 —«

— 0

We introduce polar coordinates in the above double integral. Let 8 = rcos¢ and ¢t = rsine.
Then dsdt = rdrds, and 0=¢=2r and 0=r= o, That is,

1 21T © .
r = 2 I‘ j re~ /2 drds
T Jy Sy
But f re~"i2 dr = [—6”72/2] =1
0 0
1 27
Hence I? = o f d¢ = 1 and the theorem is proved,
T

6.30. Prove Theorem 6.3: Let X be a random variable with the normal distribution

1
S —(x—p1?/o?
f(z) /2 €
Then (i) E(X) =y and (ii) Var(X) =¢°. Hence o, = 0.
1

oV 27

(i) By definition, E(X) = f ge~%r—w'e gr  Setting t = (x — u)/e, we obtain
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EX) = ﬁf ((734',1.;)6‘132/2 dt temt72 dt + p—— f e tV2 gt
T o0

=

But g(t) = te—*"/2 is an odd function, i.e. g(—t) = —g(t); hence f te~t/2 d¢ = 0. Further-

more, f e~t%/2 dt = 1 by the preceding problem. Accordingly, E(X) = .0+ prl=

Vor V-a ’ Ver
as claimed.

(ii) By definition, E(X2) = 1 f xle—¥z—w"0 dr  Again setting t = (x — u)/o, we obtain
oV 27 vV -
EX) = — f (ot + u)2e=t*/2 dt
Var v —w
= g2 fw t2e=t"/2 dt + 20 1 fw te=t*/2 dt + u2 fw e 82 dt
2r ¥~ V27 VY - 27 vV —»

which reduces as above to E(X2) = o2 L f t2¢—t4/2 dt + u2

We integrate the above integral by parts. Let u =t and dv = te—t*/2 dt. Then v = —e~t'/2
and du = dt. Thus

1 fm 42 1 [ 2 :| -tz/2 d = =
—_ e—t2 gt = ——| —te—ti2 ¢ 0+1 1
V2r ¥ -w V2r Vz"

Consequently, E(X2) = o2<1+ 42 = o2+ 42 and
Var (X) = E(X?) —ﬂi = o2+ 42— p2 = of

Thus the theorem is proved.

Supplementary Problems

BINOMIAL DISTRIBUTION

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

Find (i) b(1;5,4), (i) b(2;7,4), (iii) b(2; 4,1).

A card is drawn and replaced three times from an ordinary deck of 52 cards. Find the probability
that (i) two hearts are drawn, (ii} three hearts are drawn, (iii) at least one heart is drawn.

A baseball player’s batting average is .300. If he comes to bat 4 times, what is the probability
that he will get (i) two hits, (ii) at least one hit?

A box contains 8 red marbles and 2 white marbles. A marble is drawn and replaced three times
from the box. Find the probability that (i) 1 red marble was drawn, (ii) 2 red marbles were
drawn, (iii) at least one red marble was drawn.

Team A has probability 2 of winning whenever it plays. If A plays 4 games, find the probability
that A wins (i) 2 games, (ii) at least 1 game, (iii) more than half of the games.

A card is drawn and replaced in an ordinary deck of 52 cards. How many times must a card be
drawn so that (i)} there is at least an even chance of drawing a heart, (ii) the probability of
drawing a heart is greater than 27
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6.37.

6.38.

6.39.

6.40.

6.41.

6.42.

The probability of a man hitting a target is 4. (i) If he fires 5 times, what is the probability of
hitting the target at least twice? (ii) How many times must he fire so that the probability of
hitting the target at least once is more than 90%.

The mathematics department has 8 graduate assistants who are assigned to the same office. Each
assistant is just as likely to study at home as in the office. How many desks must there be in the
office so that each assistant has a desk at least 90% of the time?

Of the bolts produced by a factory, 2% are defective. In a shipment of 3600 bolts from the factory,
find the expected number of defective bolts and the standard deviation.

A fair die is tossed 1620 times. Find the expected number of times the face 6 occurs and the
standard deviation.

Let X be a binomially distributed random variable with E(X) =2 and Var (X) = 4/3. Find the
distribution of X.

Consider the binomial distribution P(k) = b(k; n,p). Show that:
) P(k) _ b(k; n, p) _ n—k+1p
Pk —1) blk—1;n,p) kq
(ii) P(k) > P(k—1) for k< (m+1)p and P(k) < P(k—1) for k> (n+ 1)p.

NORMAL DISTRIBUTION

6.43.

6.44.

6.45.

6.46.

6.47.

6.48.

Let ¢ be the standard normal distribution.
() Find ¢(3), $(}) and s(—2).
(i) Tind ¢ such that (a) ¢(t) = .100, (b) ¢(t) = .2500, (c) ¢(t) = .4500.

Let X be a random variable with the standard normal distribution ¢. Find:
(i) P(—81=X =1.13), (ii) P(.53 < X = 2.03), (iii) P(X =.73), (iv) P(X|=}).

Let X be normally distributed with mean 8 and standard deviation 4. Find:
(i) P(6=X=10), (i) P(10 =X =15), (iii) P(X=15), (iv) P(X =5).

Suppose the weights of 2000 male students are normally distributed with mean 1556 pounds and
standard deviation 20 pounds. Find the number of students with weights (i) less than or equal to
100 pounds, (ii) between 120 and 130 pounds, (iii) between 150 and 175 pounds, (iv) greater than
or equal to 200 pounds.

Suppose the diameters of bolts manufactured by a company are normally distributed with mean
.25 inches and standard deviation .02 inches, A bolt is considered defective if its diameter is
= 20 inches or = .28 inches. Find the percentage of defective bolts manufactured by the company.

Suppose the scores on an examination are normally distributed with mean 76 and standard deviation
15. The top 15% of the students receive A’s and the bottom 10% receive F’s. Find (i) the minimum
score to receive an A and (ii) the minimum score to pass (not to receive an F).

NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

6.49.

6.50.

6.51.

6.52.

A fair coin is tossed 10 times. Find the probability of obtaining between 4 and 7 heads inclusive
by using (i) the binomial distribution, (ii) the normal approximation to the binomial distribution.

A fair coin is tossed 400 times. Find the probability that the number of heads which occur differs
from 200 by (i) more than 10, (ii) more than 25.

A fair die is tossed 720 times. Find the probability that the face 6 will occur (i) between 100 and
125 times inclusive, (ii) more than 150 times.

Among 625 random digits, find the probability that the digit 7 appears (i) between 50 and 60 times
inclusive, (ii) between 60 and 70 times inclusive.
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POISSON DISTRIBUTION

6.53.

6.54.

6.55.

6.56.

6.57.

6.58.

Find (i) e~ 18, (ii) e—238,

For the Poisson distribution p(k; A), find (i) p(2; 1.5), (ii) »(3; 1), (iii) p(2; .6).

Suppose 220 misprints are distributed randomly throughout a book of 200 pages. Find the probability
that a given page contains (i) no misprints, (ii) 1 misprint, (iii) 2 misprints, (iv) 2 or more

misprints.

Suppose 1% of the items made by a machine are defective. Find the probability that 8 or more items
are defective in a sample of 100 items.

Suppose 2% of the people on the average are left-handed. Find the probability of 3 or more left-
handed among 100 people.

Suppose there is an average of 2 suicides per year per 50,000 population. In a city of 100,000 find
the probability that in a given year there are (i) 0, (ii) 1, (iii) 2, (iv) 2 or more suicides.

MULTINOMIAL DISTRIBUTION

6.59.

6.60.

6.31.

6.32.

6.33.

6.34.

6.35.

6.36.

6.37.

6.38.

6.39.

6.40.

6.41.

A die is “loaded” so that the face 6 appears .3 of the time, the opposite face 1 appears .1 of the
time, and each of the other faces appears .15 of the time. The die is tossed 6 times. Find the
probability that (i) each face appears once, (ii) the faces 4, 6 and 6 each appears twice.

A box contains 5 red, 3 white and 2 blue marbles. A sample of six marbles is drawn with replace-
ment, i.e. each marble is replaced before the next one is drawn. Find the probability that: (i) 3 are
red, 2 are white and 1 is blue; (ii) 2 are red, 3 are white and 1 is blue; (iii) 2 of each color appears.

Answers to Supplementary Problems
() o, (i) 25, (i) 35
() & () g (i) 31
(i) 0.2646, (ii) 0.7599
(1) =, (i) 2, (iii) 37
(i) 22, (ii) 555, (iii) g5r
(i3, (i) &
(i) 32, (ii) 6
6
=12, o=284

w=270, ¢ =15

x; 0 1 2 3 4 5 6

f(zx;) 64/729 192/729 240/729 160/729 60/729 12/729 1/729

Distribution of X with n =6 and » = 1/3
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643. (i) o(}) =.3867, ¢(F) = .8521, #(—§) = .3011.
(ii) (a) t = =1.66, (b) t = *=.97, (¢) there is no value of ¢t.

6.44. (i) .2910 + .3708 = .6618, (ii) .4788 — .2019 = .2769, (iii) .5000 + .2673 = .7678, (iv) 2(.0987) = .1974.
6.45. (i) .4649, (ii) .2684, (iii) .0401, (iv).2266
6.46. (i) 6, (ii) 131, (iii) 880, (iv) 24

647. 7.3%

6.48. (i) 92, (ii) 57

6.49. (i) .7734, (ii) .7718

6.50. (i) .2938, (ii) .0108

651, (i) .6886, (ii).0011

652. (i) .3518, (ii).5131

653. (i) .202, (ii).100

654. (i) .251, (ii).0613, (iii) .0988

655. (i) .333, (ii).366, (iii).201, (iv).301
6.56. 0.080

6.57. 0.325

6.58. (i) .0183, (ii).0732, (iii).1464, (iv).909
659. (i) .0109, (ii).00103

6.60. (i) .135, (ii) .0810, (iii) .0810



Chapter 7

Markov Chains

INTRODUCTION

We review the definitions and elementary properties of vectors and matrices which are
required for this chapter.

By a vector v we simply mean an n-tuple of numbers:
U = (U1, Uz, ..., Un)
The u; are called the components of u. If all the u; = 0, then u is called the zero vector. By

a scalar multiple ku of u (where k is a real number), we mean the vector obtained from u
by multiplying its components by k:

ku = (kwy, kue, .. ., kun)
We note that two vectors are equal if and only if their corresponding components are
equal.

By a matriz A we mean a rectangular array of numbers:

au 250 Q1n
A = agn [12] Qon
am Ame Amn
The m horizontal n-tuples
(a’lh @12, ...y aln); (a21, aze, ..., aan), ey (aﬂnl, Am2, . . .y amn)

are called the rows of A, and the n vertical m-tuples

an a2 Q1n

Q21 Qa2 Aan
’ ’ ’

Ami Am2 Amn

its columns. Note that the element ¢, called the ij-entry, appears in the ith row and the
7th column. We frequently denote such a matrix simply by A = (ay).

A matrix with m rows and n columns is said to be an m by n matrix, written m X n
matrix; if m =n, then it is called a square matrix (or: n-square matrix). We also note
that a matrix with only one row may be viewed as a vector, and vice versa.

Now suppose A and B are two matrices such that the number of columns of A is equal
to the number of rows of B, say A is an m X p matrix and B is a p X n matrix. Then the
product of A and B, written AB, is the m X n matrix whose ¢j-entry is obtained by multiply-
ing the elements of the ith row of A by the corresponding elements of the jth column of B
and then adding:

126
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P
where Ci = Qubyj + @by + -+ + apby = E QicDrj
k=1

If the number of columns of A is not equal to the number of rows of B, say A is mXp
and B is ¢ X » where p # ¢, then the product AB is not defined.

There are special cases of matrix multiplication which are of special interest. If A
is an n-square matrix, then we can form all the powers of A:

A2=AA, A®=AA?2 A‘= AA3 ...
In addition, if « is a vector with n components, then we can form the product
uA

which is again a vector with n components. We call u 0 a fixed vector (or: fixred point)
of A, if u is “left fixed”, i.e. is not changed, when multiplied by A:

UA = u
In this case, for any scalar & =0, we have

kA = kEuA) = k
That is, (k) () *

Theorem 7.1: If u is a fixed vector of a matrix A, then every nonzero scalar multiple ku
of u is also a fixed vector of A.

E le 71: T 8\/fay ay ag _ ra, + 8b; ra, + 8by raz + 8b,
xampte 11 t w/\by by b3/ T \ta;+ ub, tay+ ub, tag-+ ubs
1 2
Example 7.2: If A = <3 4> , then
A2 = 1 2\/1 2 _ 146 2+8 _ 7 10
T \8 4/\3 4/ T \3+12 6+16/ = \15 22
1 2 3
Example 73: (1,2,3)|{4 5 6 = (1+8+21,24+10+24,3+124+27) = (30, 36, 42)
7 8 9
. . 2 1 . .
Example 74: Consider the matrix A = < 9 3) . Then the vector » = (2,—1) is a fixed point
of A. For,
21
uA = (2,-1) 9 3 = (22—-1+2,2°1—-1+3) = ((2,-1) = u
Thus by the above theorem, the vector 2u = (4,—2) is also a fixed point of A:
2 1
4, —2) <2 3> = (4°2-—2+2,4:1—23) = (4,-2)

PROBABILITY VECTORS, STOCHASTIC MATRICES

A vector u = (Ui, U, ...,%n) i called a probability vector if the components are non-
negative and their sum is 1.
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Example 7.5: Consider the following vectors:
vu=1(0-1%, v=(13401 and w=(,101%
Then:
# is not a probability vector since its third component is negative;
v is not a probability vector since the sum of its components is greater than 1;

w is a probability vector.

Example 7.6: The nonzero vector v = (2,83,5,0,1) is not a probability vector since the sum of
its components is 2+ 3+54+0+1 =11, However, since the components of v
are nonnegative, v has a unique scalar multiple Av which is a probability vector;
it can be obtained from v by multiplying each component of v by the reciprocal

: 1
of the sum of the components of v: ll—lv = (%, %, ;5;, 0, 77)-

A square matrix P = (pi;) is called a stochastic matriz if each of its rows is a probability
vector, i.e. if each entry of P is nonnegative and the sum of the entries in each row is 1.

Example 7.7: Consider the following matrices:
+ 0 3 0 1 0
s 1 - i 3 1
toio () I
IR ' 1 % 0

(i) (i) (iii)
(i) is not a stochastic matrix since the entry in the second row and third column
is negative;

(ii) is not a stochastic matrix since the sum of the entries in the second row is
not 1;

(iii) is a stochastic matrix since each row is a probability vector.
We shall prove (see Problem 7.10)

Theorem 7.2: If A and B are stochastic matrices, then the product AB is a stochastic
matrix. Therefore, in particular, all powers A" are stochastic matrices.

REGULAR STOCHASTIC MATRICES

We now define an important class of stochastic matrices whose properties shall be
investigated subsequently.

Definition: A stochastic matrix P is said to be regular if all the entries of some power

Pr are positive.

3

“ = Gy)is) = ()

is positive in every entry.

Example 7.8: The stochastic matrix 4 = <0 ;) is regular since

33

G G e )

In fact every power A™ will have 1 and 0 in the first row; hence A is not regular.

1 0
Example 7.9: Consider the stochastic matrix 4 = < > Here
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FIXED POINTS AND REGULAR STOCHASTIC MATRICES

The fundamental property of regular stochastic matrices is contained in the following
theorem whose proof lies beyond the scope of this text.

Theorem 7.3: Let P be a regular stochastic matrix. Then:

(i) P has a unique fixed probability vector ¢, and the components of ¢
are all positive;

(i) the sequence P,P% P3, .., of powers of P approaches the matrix T
whose rows are each the fixed point ¢;

(iii) if p is any probability vector, then the sequence of vectors
pP,pP?, pP3, ... approaches the fixed point ¢.

Note: P* approaches T means that each entry of P" approaches the corresponding
entry of T, and pP" approaches ¢ means that each component of pP" approaches the cor-
responding component of t.

0 1
Example 7.10: Consider the regular stochastic matrix P = ( 3 %> We seek a probability

vector with two components, which we can denote by ¢ = (x,1—x), such that

tP = t:
(=, 1 )<0 1> (2, 1—2x)
z,1—=x = z, 1~
34 ?

Maultiplying the left side of the above matrix equation, we obtain

A—3z, 3+ 4x) = (@, 1—2) or {i;iz : :_m or x=14%

Thus t=(4,1—4%)=(4, 4) is the unique fixed probability vector of P. By
Theorem 7.3, the sequence P, P2, P8, .. approaches the matrix T whose rows are

each the vector t: s
r - () 7 (@ o)

We exhibit some of the powers of P to indicate the above result:
3
P2:%1}:.50.50;P3:i4:.25.75>
i 3 25 .76 $ % 37 .63
pe = <% %) _ (.37 .63>; ps — (f—e %—é) _ <.31 .69>
= U 31 .69 i 21 34 .66

Example 7.11: Find the unique fixed probability vector of the regular stochastic matrix

01 0
P = 0 ¢ 1

1 30

Method 1. We seek a probability vector with three components, which we can
represent by ¢t = (z,y,1—x—y), such that tP =t:

01 0
(z,y,1—xz—y)|[0 0 1 = (v,y,1—z—y)

3 30
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Multiplying the left side of the above matrix equation and then setting correspond-
ing components equal to each other, we obtain the system

I—lx—13y = = 3x+y =1 _
e+3—4x—3y =y or x—8 = —1 or g
y=1—z—y x+2y =1

Thus t = (L, %, 2) is the unique fixed probability vector of P.

53

Method 2. We first seek any fixed vector u = (x,¥,2) of the matrix P:

01 0 1z =«
(,y,2) [0 0 1] = (2,92 or x+ 4z =
P30 ¥y =z

We know that the system has a nonzero solution; hence we can arbitrarily assign
a value to one of the unknowns. Set z =2. Then by the first equation = =1,
and by the third equation y = 2. Thus » = (1,2,2) is a fixed point of P. But
every multiple of u is a fixed point of P; hence multiply » by % to obtain the re-
quired fixed probability vector t = lu =(},%,3).

MARKOV CHAINS

We now consider a sequence of trials whose outcomes, say, X, X, ..., satisfy the
following two properties:

(i) Each outcome belongs to a finite set of outcomes {a;, as, ...,an} called the state space
of the system; if the outcome on the nth trial is a;, then we say that the system is in
state a; at time n or at the nth step.

(ii) The outcome of any trial depends at most upon the outcome of the immediately pre-
ceding trial and not upon any other previous outcome; with each pair of states (a;, a;)
there is given the probability p;; that a; occurs immediately after a; occurs.

Such a stochastic process is called a (finite) Markov chain. The numbers pi;, called the
transition probabilities, can be arranged in a matrix

Pt Pr2 DPim
P = P21 P22 Dom
Pmt Pm2 Pmm

called the transition matriz.

Thus with each state a: there corresponds the ith row (pu, pie, . . ., Pim) of the transition
matrix P; if the system is in state a;, then this row vector represents the probabilities of
all the possible outcomes of the next trial and so it is a probability vector. Accordingly,

Theorem 7.4: The transition matrix P of a Markov chain is a stochastic matrix.

Example 7.12: A man either drives his car or takes a train to work each day. Suppose he never
takes the train two days in a row; but if he drives to work, then the next day
he is just as likely to drive again as he is to take the train.

The state space of the system is {¢ (train), d (drive)}. This stochastic process
is a Markov chain since the outcome on any day depends only on what happened
the preceding day. The transition matrix of the Markov chain is

t d

(1)



CHAP. 7]

Example 7.13:

Example 7.14:

Example 7.15:
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The first row of the matrix corresponds to the fact that he never takes the
train two days in a row and so he definitely will drive the day after he takes the
train. The second row of the matrix corresponds to the fact that the day after
he drives he will drive or take the train with equal probability.

Three boys A, B and C are throwing a ball to each other. A always throws the ball
to B and B always throws the ball to C; but C is just as likely to throw the ball
to B as to A. Let X, denote the nth person to be thrown the ball. The state space
of the system is {A, B,C}. This is a Markov chain since the person throwing the
ball is not influenced by those who previously had the ball. The transition matrix
of the Markov chain is

A B C
A /0 1 0
B |0 0 1
c\4 4 o

The first row of the matrix corresponds to the fact that A always throws the
ball to B. The second row corresponds to the fact that B always throws the ball
to C. The last row corresponds to the fact that C throws the ball to A or B with
equal probability (and does not throw it to himself).

A school contains 200 boys and 150 girls. One student is selected after another
to take an eye examination. Let X, denote the sex of the nth student who takes
the examination. The state space of the stochastic process is {m (male), f (female)}.
However, this process is not a Markov chain since, for example, the probability
that the third person is a girl depends not only on the outcome of the second trial
but on both the first and second trials.

(Random walk with reflecting barriers.) A man is at an integral point on the
z-axis between the origin O and, say, the point 5. He takes a unit step to the
right with probability p or to the left with probability ¢ =1 — p, unless he is at
the origin where he takes a step to the right to 1 or at the point 6 where he takes
a step to the left to 4. Let X, denote his position after n steps. This is a Markov
chain with state space {a,, a, as, a3, ,, a5} where a; means that the man is at the
point 7. The transition matrix is

Qg @ az daz a4 Qg

ay o 1 0 0 0 O
a, qg 0 pp 0 0 O
p _ ay 0 ¢qg O p 0 O
ag 0 0 q 0 P 0
ey 0o 0 0 g O op
as 6 ¢ O 0 1 0

Each row of the matrix, except the first and last, corresponds to the fact that
the man moves from state a, to state a;,; with probability p or back to state a;_;
with probability ¢ = 1—p. The first row corresponds to the fact that the man
must move from state a, to state a,, and the last row that the man must move
from state a5 to state ay.

HIGHER TRANSITION PROBABILITIES

The entry p; in the transition matrix P of a Markov chain is the probability that the
system changes from the state a: to the state a; in one step: « > a;. Question: What is
the probability, denoted by pg)."’, that the system changes from the state a; to the state a; in

exactly n steps:

a'i—)akleakz—)...—)ak -> a;

n—1
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The next theorem answers this question; here the p‘.‘j"’ are arranged in a matrix P called
the n-step transition matriz:

Theorem 7.5: Let P be the transition matrix of a Markov chain process. Then the n-step
transition matrix is equal to the nth power of P; that is, P™ = Pr,

Now suppose that, at some arbitrary time, the probability that the system is in state
a; is pi;; we denote these probabilities by the probability vector p = (p1, ps, ..., =) Which
is called the probability distribution of the system at that time. In particular, we shall let

p(O) — (p(O) pm) .. (0))

denote the initial probability distribution, i.e. the distribution when the process begins,

and we shall let
p(n) — (pl('n)’ p;n), ce e p(n)

denote the nth step probability distribution, i.e. the distribution after the first n steps.
The following theorem applies.

Theorem 7.6: Let P be the transition matrix of a Markov chain process. If p = (p) is
the probability distribution of the system at some arbitrary time, then
pP is the probability distribution of the system one step later and pP* is
the probability distribution of the system = steps later. In particular,

p(l) — p(O)P} p(Z) P p(l)P, p(3) — p(2)P’ ceny p(n) = p(O)Pn

Example 7.16: Consider the Markov chain of Example 7.12 whose transition matrix is

t d
P (00

Here t is the state of taking a train to work and d of driving to work. By Ex-

ample 7.8,
R H RN

Thus the probability that the system changes from, say, state ¢ to state d in exactly
4 steps is §, i.e. p“) §. Similarly, pg*) 3 p(” ¥ and pﬁ) =4.

Now suppose that on the first day of work, the man tossed a fair die and drove
to work if and only if a 6 appeared. In other words, »® = (§,}) is the initial
probability distribution. Then

pw = pOPt = (&, %)<§ i) = &2

16 186

is the probability distribution after 4 days, i.e. p(t4) = %56 and p;‘” = %.

Example 7.17: Consider the Markov chain of Example 7.13 whose transition matrix is

A B

!

I
S o
o = o O

0o 1
0 o0
LI
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Suppose C was the first person with the ball, i.e. suppose p = (0,0,1) is the
initial probability distribution. Then

<

p» = pOP = (0,0,1)

-
i

4. 4,0

o O O
o O =
o

(=]

PP = pP = (44,0

o
Il

© 44

M O O
Mo O
[~

(=1

1 0
01

1 0

Thus, after three throws, the probability that A has the ball is 4, that B has the
ball is 1 and that C has the ball is 4 p‘:‘” =1, pg” =1 and pg’) = 3.

i
Il

p@® pPP = (0,4, 3) (O N )]

o ©

Example 7.18: Consider the random walk problem of Example 7.15. Suppose the man began at the
point 2; find the probability distribution after 3 steps and after 4 steps, i.e. p'®
and p¥),

Now »p® =(0,0,1,0,0,0) is the initial probability distribution. Then
p® = p®P = (0,q,0,p,0,0)
p'? = pWP = (¢ 0, 2pq, 0, P, 0)

(0, g2+ 2pg?, 0, 3p3q, 0, Pp3)

p) = pB®P = (¢34 2pg3, 0, pa? + 5p2¢?, 0, 3p3q + p3, 0)

p(s) = p(z)P

i

Thus after 4 steps he is at, say, the origin with probability ¢3 + 2pg3.

STATIONARY DISTRIBUTION OF REGULAR MARKOV CHAINS

Suppose that a Markov chain is regular, i.e. that its transition matrix P is regular.
By Theorem 7.3 the sequence of n-step transition matrices P* approaches the matrix T
whose rows are each the unique fixed probability vector ¢ of P; hence the probability plf;"
that a; occurs for sufficiently large n is independent of the original state a; and it approaches
the component ¢; of {. In other words,

Theorem 7.7: Let the transition matrix P of a Markov chain be regular. Then, in the
long run, the probability that any state e; occurs is approximately equal
to the component ¢; of the unique fixed probability vector ¢ of P.

Thus we see that the effect of the initial state or the initial probability distribution of
the process wears off ag the number of steps of the process increase. Furthermore, every
sequence of probability distributions approaches the fixed probability vector ¢ of P, called
the stationary distribution of the Markov chain.

Example 7.19: Consider the Markov chain process of Example 7.12 whose transition matrix is

t d

-G
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Example 7.20:
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By Example 7.10, the unique fixed probability vector of the above matrix is (}, §).
Thus, in the long run, the man will take the train to work 4 of the time, and drive
to work the other £ of the time.

Consider the Markov chain process of Example 7.13 whose transition matrix is

A B C
Afo 1 0
P = Blo o 1
c\3 3 0

By Example 7.11, the unique fixed probability vector of the above matrix is
(3, §, ). Thus, in the long run, 4 will be thrown the ball 20% of the time, and
B and C 40% of the time.

ABSORBING STATES
A state a; of a Markov chain is called absorbing if the system remains in the state a

once it enters there.

Thus a state a; is absorbing if and only if the ith row of the transition

matrix P has a 1 on the main diagonal and zeros everywhere else. (The main diagonal of
an n-square matrix A =(ay) consists of the entries ai, @2, . . ., Gun.)

Example 7.21:

Example 7.22:

Example 7.23:

Suppose the following matrix is the transition matrix of a Markov chain:

@1 az az a4 Oag

o /3 0 1 1 %
e [0 1 0 0 0
P = as ‘&- 0 '} i 0
ag \0 1 0 0 0
as \0 0 0 o0 1

The states a, and ay are each absorbing, since each of the second and fifth rows
has a 1 on the main diagonal.

(Random walk with absorbing barriers.) Consider the random walk problem of
Example 7.15, except now we assume that the man remains at either endpoint when-
ever he reaches there. This is also a Markov chain and the transition matrix is
given by

G @ az a3 ay a5

a, i1 0 0 0 0 O
ay g 0 p»p 0 0 O
p = @ 0 ¢ 0 p»p 0 O
ez | 0 0 g 0 p O
@, 6 0 0 ¢g 0 »p
as 0 0 0 0 0 1

We call this process a random walk with absorbing barriers, since the a; and
ay are absorbing states. In this case, pg"’ denotes the probability that the man
reaches the state a;, on or before the nth step. Similarly, pé") denotes the proba-
bility that he reaches the state as on or before the nth step.

A player has, say, z dollars. He bets one dollar at a time and wins with probability
p and loses with probability ¢ =1—p. The game ends when he loses all his
money, i.e, has 0 dollars, or when he wins N — z dollars, i.e. has N dollars. This
game is identical to the random walk of the preceding example except that here
the absorbing barriers are at 0 and N.
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Example 7.24: A man tosses a fair coin until 3 heads occur in a row. Let X, =k if, at the nth
trial, the last tail occurred at the (n — k)-th trial, i.e. X, denotes the longest string
of heads ending at the nth trial. This is a Markov chain process with state space
{ay, a;, as, a3}, where a; means the string of heads has length 7. The transition
matrix is

Each row, except the last, corresponds to the fact that a string of heads is
either broken if a tail occurs or is extended by one if a head occurs. The last
line corresponds to the fact that the game ends if three heads are tossed in a row.
Note that a3 is an absorbing state.

Let a; be an absorbing state of a Markov chain with transition matrix P. Then, for
7 # 1, the n-step transition probability p“j’" =0 for every n. Accordingly, every power of
P has a zero entry and so P is not regular. Thus:

Theorem 7.8: If a stochastic matrix P has a 1 on the main diagonal, then P is not regular
(unless P is a 1 X 1 matrix).

Solved Problems

MATRIX MULTIPLICATION

1 3 -1
71. let u=(1,-2,4) and A = (0 2 5). Find u4.
4 1 6

The product of the vector u with 3 components by the 3 X 3 matrix A is again a vector with 3
components. To obtain the first component of A, multiply the elements of u by the corresponding
elements of the first column of A and then add:

To obtain the second component of zA, multiply the elements of u by the corresponding elements of
the second column of A and then add:

To obtain the third component of uA, multiply the elements of « by the corresponding elements of
the third column of A and then add:
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2 -1 8 -2

(i) Since A is 2 X 2 and B is 2 X 8, the product AB is a 2 X 3 matrix. To obtain the first row of
AB, multiply the elements of the first row (1, 3) of A by the corresponding elements of each of

2 -
the columns (3> , (-2) and < §> of B and then add:

72. Let A = <1 3) and B = <2 0 ‘3). Find (i) 4B, (ii) BA.

To obtain the second row of AB, multiply the elements of the second row (2,—1) of A by the
corresponding elements of each of the columns of B and then add:

(ii) Note B is 2 X 3 and A is 2 X 2. Since the “inner numbers” 3 and 2 are not equal, i.e. the num-
ber of columns of B is not equal to the number of rows of A, the product BA is not defined.

73. Let A = (i _§> Find (i) A% (i) A3

R
1.1+2-4 1.2 4 2+(—3) B 9 —4
4°1+(—3)+4 4.2+ (=3)-(=3)/ =~ \~-8 17
i) 4% = A42 = (1 2>(9 ‘4>
4 —-3/\-8 17

19 + 2+ (—8) 1e(—4)+ 217 [T 3o>
449+ (—8)+(—8) 4-(—4)+ (-3)-17/ ~ \ 60 —67

PROBABILITY VECTORS AND STOCHASTIC MATRICES
74. Which vectors are probability vectors?

Hw=%0-4L44), ()v=03013%4%4, (i) w=(>004%7).
A vector is a probability vector if its components are nonnegative and their sum ia 1.
(i) = is not a probability vector since its third component is negative,
(ii) v is not a probability vector since the sum of the components is greater than 1.
(iii) w is a probability vector since the components are nonnegative and their sum is 1.

7.5. Multiply each vector by the appropriate scalar to form a probability vector:
() (2,1,0,2,8), (i) (4,0,1,2,0,5), (iii) (3,0, -2,1), (iv) (0,0,0,0,0).

(i The sum of the components is 2+ 1+ 04 8+ 2 = 8; hence multiply the vector, i.e. each
component, by } to obtain the probability vector 44054 d
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7.6.

7.7.

7.8.

7.9.

(ii) The sum of the componentsis 4 + 0+ 1+ 2+ 0+ 6 = 12; hence multiply the vector, i.e. each
component, by sl to obtain the probability vector (},0, 5 3 0,5%).

(iii) The first component is positive and the third is negative; hence it is impossible to multiply the
vector by a scalar to form a vector with nonnegative components. Thus no scalar multiple
of the vector is a probability vector.

(iv) Every scalar multiple of the zero vector is the zero vector whose components add to 0. Thus
no multiple of the zero vector is a probability vector.

Find a multiple of each vector which is a probability vector:
(i) 3, %0,2, 8, (i) (0,4, 1, & §).
In each case, first multiply each vector by a scalar so that the fractions are eliminated.
(i) First multiply the vector by 6 to obtain (3,4,0,12,5). Then multiply by 1/(3+4+0+12+5) =
3l to obtain (},%,0,4,5%) which is a probability vector.
(ii) First multiply the vector by 30 to obtain (0, 20, 30,18, 25). Then multiply by 1/(0+ 20+ 30+
20 30 18 25

18 +25) = & to obtain (0,23, 5, 53, 53) Which is a probability vector.

Which of the following matrices are stochastic matrices?

(i) A = @ f) i) Qi) B = <1—; ‘;> (i) C = G :) (iv) D = C _%>.

(i) A is not a stochastic matrix since it is not a square matrix.

(ii) B is not a stochastic matrix since the sum of the components in the last row is greater than 1.
(iii) C is a stochastic matrix.

(iv) D is not a stochastic matrix since the entry in the first row, second column is negative.

aa b o
Let A = [a: b2 c2| be a stochastic matrix and let u = (ui, 42, 4s) be a proba-
Qs b3 Ca

bility vector. Show that u#A is also a probability vector.

a; b ¢
uA = (upugug) | @as by ¢o | = (uay + ugay + ugag, u b, + ugby + ugbyz, u e; + ugcs + uses)
az by ¢

Since the u;, a;, b; and ¢; are nonnegative and since the products and sums of nonnegative
numbers are nonnegative, the components of A are nonnegative as required. Thus we only need
to show that the sum of the components of uA is 1. Here we use the fact that u; + u, + us,
e, + b, + ¢, ay + by + ¢5 and az + by + c3 are each 1:

w0y + ugdy + ugag + u by + usbs + ugby + uyeq + uxcs + ugey
= uy(a;+by+e)) + uglag+ by+ o) + uszlag+ by + ca)
= u1°1+u2'1+u3-1 = u1+u2+u3 = 1

Prove: If A = (ay) is a stochastic matrix of order n and % = (u1, %, ..., %s) is a
probability vector, then uA is also a probability vector.

The proof is similar to that of the preceding problem for the case n = 3:
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ay; Qo Ay
wd = G| 0T
On1 Apo Qpn

= (wg@qq + Ugloy + 1 F UnBy, Uglyg t Ugllge 0ttt Uplpa, .y Uy, T Usloy T F URGyy)

Since the u; and a;; are nonnegative, the components of uA are also nonnegative. Thus we
only need to show that the sum of the components of uA is 1:

WiGgy + Uglgy F * 0 F Upyy + Uiyg F Uglgy + 0t UG o wgay, F Usly, o+ U,
= wylaptapt ot a,) + uglagy tag+ - Fag,) + o0+ Ul Fant o tFay)
= wyrltugelt oo tugel = uytug+ - +u, = 1

7.10. Prove Theorem 7.2: If A and B are stochastic matrices, then the product AB is a
stochastic matrix. Therefore, in particular, all powers A" are stochastic matrices.

The ith-row s; of the product matrix AB is obtained by multiplying the ith-row r; of A by
the matrix B: s; = r,B. Since each r; is a probability vector and B is a stochastic matrix, by
the preceding problem, s; is also a probability vector. Hence AB is a stochastic matrix.

711. Prove: Let p = (D1, P2 ...,Pmn) be a probability vector, and let 7 be a matrix
whose rows are each the same vector ¢ = ({),¢s, ...,tn). Then pT =1t.

Using the fact that p, +py+ -+ +p,, =1, we have

ty t tm

t ot £

PT = @ups--opad| L7 "
t ty tm

(D18 + Doty + oo F Pty Pata+ Potat -0+ Dty oL, Dyt T+ Dol Pty)
Pyt Dt -+ Py, Pyt Pzt o FPp)a, .o, (Pt D2+ - + DP)b)
(Lot Loty ooyloty) = (bpty oty = ¢

I

]

REGULAR STOCHASTIC MATRICES AND FIXED PROBABILITY VECTORS
3
7.12. Find the unique fixed probability vector of the regular stochastic matrix 4 =<4 i> .
What matrix does A" approach? i3
We seek a probability vector ¢t = (z, 1 —x) such that t4A = ¢

(x,l—x)(i i> = (2, 1—=x)

Multiply the left side of the above matrix equation and then set corresponding components equal
to each other to obtain the two equations

Sr+1—3x = =z, r+i—de = 1-2

Solve either equation to obtain # = 4. Thus ¢t = (%,4) is the required probability vector.
Check the answer by computing the product tA:

@&o(t = g+ravn = @b
<%%> FHh A+ 3.3

The answer checks since t4 = ¢t.

The matrix A* approaches the matrix T whose rows are each the fixed point t: T = (% %> .

t 3
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7.13.

7.14.

(i) Show that the vector u = (b,a) is a fixed point of the general 2 x 2 stochastic

1—-a a
x P = .
matrix ( b 1— b)

(i) Use the result of (i) to find the unique fixed probability vector of each of the
following matrices:

(o) 2=(ri) e=(3 3)

() wP = (b,a)(l;a lfb> = (b—ab+ab, ab+a—ab) = (b, a)

(ii) By (i), »=(1,%) is a fixed point of A. Multiply u by 3 to obtain the fixed point (3,2) of A
which has no fractions. Then multiply (3,2) by 1/(3+2) = § to obtain the required unique
fixed probability vector (£, £).

By (i), u = (§,4) is a fixed point of B. Multiply u by 6 to obtain the fixed point (4, 8),
and then multiply by 1/(4+3) =1 to obtain the required unique fixed probability vector
(2,3).

By (i), » = (.8,.3) i3 a fixed point of C. Hence (8,3) and the probability vector (18—1, %)
are also fixed points of C.

u.

Find the unique fixed probability vector of the regular stochastic matrix

¥ 1 %
P = |4 0 3
0 1 0
Method 1. We seek a probability vector ¢t = (x,y,1—2x —y) such that tP =t
+ 14
(w,y,1—xc—y}4 0 L[| = (@y,l—x—y)
01 0

Multiply the left side of the above matrix equation and then set corresponding components equal
to each other to obtain the system of three equations

x+dy = « zx—y = 0
le+l—x—y =y or 3x+8y = 4
jx+tdy = 1—-xz—y br + 6y = 4

Choose any two of the equations and solve for # and y to obtain x = % and y = ;. Check the

solution by substituting for x and y into the third equation. Since 1 —x — y 17> the required

fixed probability vector is ¢ = (14_1’ 14—1, %).

Method 2. We seek any fixed vector u = (x,%,2) of the matrix P:
P14

(x,9.2) |4 0 3| = (x,94,2
01 0

Multiply the left side of the above matrix equation and set corresponding components equal to each
other to obtain the system of three equations

dx+dy =« z—~y =0
jrxr+z =y or x — 4y + 4z
ix—]-%y:z z+ 2y — 4z =

|
=)
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7.15.

7.16.

7.17.

MARKOV CHAINS [CHAP. 7

We know that the system has a nonzero solution; hence we can arbitrarily assign a value to one
of the unknowns. Set y = 4. Then by the first equation z = 4, and by the third equation z = 3.
Thus » = (4,4,8) 1is a fixed point of P. Multiply « by 1/(4+4+3) = -11—1 to obtain t = lllu =

(14_1, igi’ %) which is a probability vector and is also a fixed point of P.

Find the unique fixed probability vector of the regular stochastic matrix

0 1 0
P = (¢ 3 %
0 % 3

What matrix does P" approach?
We first seek any fixed vector u = (2,¥,2) of the matrix P:
0 1 0
(x, ¥, 2) P4t = @y
0% %

Multiply the left side of the above matrix equation and set corresponding components equal to
each other to obtain the system of three equations

== y = 6z ¥y = 6z
z+dy+§z =y or 6x + 3y + 4z = 6y or 6x + 42 = 3y
Wtz =2 y+z = 3z y = 22

We know that the system has a nonzero solution; hence we can arbitrarily assign a value to one
of the unknowns. Set x = 1. Then by the first equation y = 6, and by the last equation z = 3. Thus
v = (1,6,8) is a fixed point of P. Since 1+ 6+ 38 = 10, the vector ¢t = (g, %, %) is the
required unique fixed probability vector of P,

1o

2
10

1
10

Pn approaches the matrix T whose rows are each the fixed point &: T = T"U

1
10

e S S

3
10

=
=

If t=(4,0,4,1,0) is a fixed point of a stochastic matrix P, why is P not regular?

If P is regular then, by Theorem 7.3, P has a unique fixed probability vector, and the
components of the vector are positive. Since the components of the given fixed probability vector
are not all positive, P cannot be regular.

Which of the following stochastic matrices are regular?

PO ¥ 1 1 0 0 1
(i)A=<O 1) (ii)B=<(1) ;) gi)c ={0 1 o) (ivyD =% % %
1 3+ 0 0 1 0

Recall that a stochastic matrix is regular if a power of the matrix has only positive entries.

(i) A is not regular since there is a 1 on the main diagonal (in the second row).

0 1\ /0 1 1 0
ii 2 = =
@) B (1 o><1 o) <o 1>
1 0\/0 1 01
B3 = = = B
G G0 =C )
Thus every even power of B is the identity matrix I and every odd power of B is the matrix B.
Accordingly every power of B has zero entries, and so B is not regular.

the identity matrix I
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(iii) C is not regular since it has a 1 on the main diagonal.

0 1 o 1+ 3
(ivy D2 = | & 5 76| and D3 = (g & &
F 1 3 P S o

Since all the entries of D3 are positive, D is regular.

MARKOV CHAINS

7.18.

7.19.

A student’s study habits are as follows. If he studies one night, he is 70% sure not
to study the next night. On the other hand, if he does not study one night, he is 60%
sure not to study the next night as well. In the long run, how often does he study?

The states of the system are S (studying) and T (not studying). The transition matrix is
S T

P - s<.3 .7>
T \4 6

To discover what happens in the long run, we must find the unique fixed probability vector ¢ of P.
By Problem 713, » = (4,.7) is a fixed point of P and so t = (%,%) is the required proba-

bility vector. Thus in the long run the student studies 1‘—1 of the time.

A psychologist makes the following assumptions concerning the behavior of mice
subjected to a particular feeding schedule. For any particular trial 80% of the mice
that went right on the previous experiment will go right on this trial, and 60% of
those mice that went left on the previous experiment will go right on this trial. If
50% went right on the first trial, what would he predict for (i) the second trial,
(ii) the third trial, (iii) the thousandth trial?

The states of the system are R (right) and L (left). The transition matrix is
R L

R /8 2
Po= L<.6 .4)

The probability distribution for the first trial is p = (.5,.5). To compute the probability
distribution for the next step, i.e. the second trial, multiply p by the transition matrix P:

8 2\ _
(.5, .5) <.6 .4> = (17,.3)

Thus on the second trial he predicts that 70% of the mice will go right and 30% will go left. To
compute the probability distribution for the third trial, multiply that of the second trial by P:

8 .2\
(7, .3) <.s _4) = (74, .26)

Thus on the third trial he predicts that 74% of the mice will go right and 26% will go left.

We assume that the probability distribution for the thousandth trial is essentially the
stationary probability distribution of the Markov chain, i.e. the unique fixed probability vector ¢
of the transition matrix P. By Problem 7.13, « = (6,2) is a fixed point of P and so
¢t = (§,]) = (.75,.25). Thus he predicts that, on the thousandth trial, 76% of the mice will go to
the right and 25% will go to the left,
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7.20.

7.21.
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Given the transition matrix P = 10 with initial probability distribution

3
p® = (},3). Define and find: (i) p®, (i) p®, (iii) p®.

21

(i) pfﬁ) is the probability of moving from state a, to state a, in 3 steps. It can be obtained from
the 3-step transition matrix P3; hence first compute P3;

P = <1 o>’ ps = <1 o>
: 1 i 3
Then p(;:) is the entry in the second row first column of P3: pg) =%

(ii) p® is the probability distribution of the system after three steps. It can be obtained by
successively computing p(1), p(2> and then p3:

p = pOP = (3,3 (i j‘D = &d
PP = pP = (3, %) <; ;> = &3
pP» = p®P = (},}) <; ;> = 3.

However, since the 3-step transition matrix P8 has already been computed in (i), p¢3’ can also
be obtained as follows:

PO = pOPT = (4,9 @ :) = b

(iii) p<23’ is the probability that the process is in the state a, after 3 steps; it is the second com-
ponent of the 3-step probability distribution p¢S: p(23) = 15

0 4 3
Given the transition matrix P = |4 4 0] and the initial probability distribution
0 1 0

p® = (4,0,4). Find: (i) p® and p{?, (ii) p*¥ and p{’, (iii) the vector that p@p»
approaches, (iv) the matrix that P~ approaches.

(i) First compute the 2-step transition matrix P2:

0 3 $\/o § & {1 30
PPo= |} 4 of{d o = (1 4}
0 1 0/\0 1 0 3} 3 0

Then pg) =4 and p(lg) = 0, since these numbers refer to the entries in P2,

(ii) To compute p‘9, use the 2-step transition matrix P2 and the initial probability distribution
pO;
p® = p®Pt = (},3,0) and p® = p®PL = (}, 1, §)

Since p(;) is the third component of p¥, p(;) =%

(iii) By Theorem 7.3, p(®P» approaches the unique fixed probability vector ¢ of P. To obtain ¢,
first find any fixed vector « = (#,y,2):
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7.22.

7.23.

0 1 4 v ==
z.w2t 3 0 = (x,9,2) or zt+dy+z =y
01 0 dr = 2z

Find any nonzero solution of the above system of equations. Set z = 1; then by the third
equation ¥ = 2, and by the first equation y = 4. Thus » = (2,4,1) is a fixed point of P and so
t =(%,% 4). In other words, p(®P» approaches (%,4,}).

(iv) Pn approaches the matrix T whose rows are each the fixed probability vector of P; hence

L

Pn approaches (2 % 1 |.

L

A salesman’s territory consists of three cities, A, B and C. He never sells in the
same city on successive days. If he sells in city A, then the next day he sells in
city B. However, if he sells in either B or C, then the next day he is twice as likely
to sell in city A as in the other city. In the long run, how often does he sell in each
of the cities?

The transition matrix of the problem is as follows:

A B C
4 fo 1 o
P = B |3 o }
c\$ % o

We seek the unique fixed probability vector ¢ of the matrix P. First find any fixed vector
u = (xl yl z):

01 0 W+3e ==
@v2|3 0 3| = (xy2 or zt+ gz =y
P40 W=

Set, say, z =1. Then by the third equation y =3, and by the first equation =z = Thus
u=(£38,1). Also 3u = (8,9,3) is a fixed vector of P. Multiply 3« by 1/(8+9+3) = & to
obtain the required fixed probability vector ¢t = (%,%,%) = (.40, .45, .15). Thus in the long

run he sells 40% of the time in city A, 45% of the time in B and 156% of the time in C.

)
3

There are 2 white marbles in urn A and 3 red marbles in urn B. At each step of
the process a marble is selected from each urn and the two marbles selected are
interchanged. Let the state a: of the system be the number 7 of red marbles in urn A.
(i) Find the transition matrix P. (ii) What is the probability that there are 2 red
marbles in urn A after 3 steps? (iii) In the long run, what is the probability that
there are 2 red marbles in urn A?

(i) There are three states, a,, @, and a, described by the following diagrams:
2 W 3R 1w 1w 2R 2 W
| %] |2z 7
A B A B A B
Qg ay Qg

If the system is in state a,, then a white marble must be selected from urn A and a red
marble from urn B, so the system must move to state a,. Accordingly, the first row of the
transition matrix is (0,1, 0).
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Suppose the system is in state a,. It can move to state a; if and only if a red marble is
selected from urn A and a white marble from urn B; the probability of that happening is
1<3 =% Thus p;,=}. The system can move from state a, to a, if and only if a white
marble is selected from urn A and a red marble from urn B; the probability of that happening
is 1}-% = 4. Thus p, = % Accordingly, the probability that the system remains in state
a;is pyy=1—3—4 =14 Thus the second row of the transition matrix is (},4,4). (Note
that p,; can also be obtained from the fact that the system remains in the state a, if either
a white marble is drawn from each urn, probability 4*4 = 3, or a red marble is drawn
from each urn, probability 4-% =4; thus py=3%+3=14)

Now suppose the system is in state a,. A red marble must be drawn from urn 4. If a
red marble is selected from urn B, probability §, then the system remains in state ap; and if
a white marble is selected from urn B, probability £, then the system moves to state a,. Note
that the system can never move from state a, to the state a,. Thus the third row of the transi-
tion matrix is (0, %, ). That is,

@ a; &
a /0 1 0

P = o |t } %
a; \0 % }

The system began in state a4, i.e. p(® = (1,0,0). Thus:
— — _ — _ _ (1 23 5
PO = pOP = (0,1,0), p® = pWP = (},4,4), »® = p@P = (5,25
Accordingly, the probability that there are 2 red marbles in urn 4 after 3 steps is 15—8.
We seek the unique fixed probability vector ¢ of the transition matrix P. First find any fixed
vector u = (x,y,z):

01 0 by = =
@wa|t 3 L) = @y or x+dy+ 3z =y
0 % % btz = 2

Set, say, z = 1. Then by the first equation y = 6, and by the third equation 2z = 3. Hence
% =(1,6,3). Multiply « by 1/(1+6+3)=4; to obtain the required unique fixed proba-
bility vector ¢ = (.1,.6,.3). Thus, in the long run, 30% of the time there will be 2 red marbles
in urn A.

Note that the long run probability distribution is the same as if the five marbles were
placed in an urn and 2 were selected at random to put into urn A.

7.24. A player has $2. He bets $1 at a time and wins §1 with probability 4. He stops play-
ing if he loses the $2 or wins $4. (i) What is the probability that he has lost his money
at the end of, at most, 5 plays? (ii) What is the probability that the game lasts

more than 7 plays?

This is a random walk with absorbing barriers at 0 and 6 (see Examples 7.22 and 7.28). The

transition matrix is

g @3 @ az ay as ag

ag 1 0 0 o0 0 0 0

a, o + 0 0 0 O

ay 0o 3 0 4 0 0 0O

P = oa 0o o % o & o0 o
a, 6o 0o o 1 o0 % O

ag o 0 0 o0 o0 o 1

with initial probability distribution p® = (0,0,1,0,0,0,0) since he began with $2.
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7.25.

7.26.

(i) We seek pf;"), the probability that the system is in state a, after five steps. Compute the
bth step probability distribution p¢:

P(l) = P(O)P = (Ox é‘: 0: ‘;’: 0; 0’ 0) p(4) = P(a)P = (‘3’) o’ T%’ 0’ il Oy j‘%)
p®» = pOP = (},0,3,0,4,0,0) p® = pWP = (§ 80,50, % &%)

p® = p®»P = (4,4,0,4,0,4,0
Thus p!;”, the probability that he has no money after 5 plays, is §.

ii (7)- 8) = H® = — — ¢29
(i) Compute p™: p POP = (23,0, 7,0,43,0,4). p™ = p®P = (5, 1,0,75,0,%,7)

The probability that the game lasts more than 7 plays, i.e. that the system is not in state

. 7 27 13 _ 27
a T4 020 4 13 _ 27
ay or ag after 7 steps, is st st ins 'y

Considgr r‘epeated tosses of a fair die. Let X, be the maximum of the numbers
occurring in the first n trials.
(i) Find the transition matrix P of the Markov chain. Is the matrix regular?
(ii) Find p‘", the probability distribution after the first toss.
(iii) Find p® and p®.
(i) The state space of the Markov chain is {1,2,3, 4,5,6}. The transition matrix is
1 2 3 4 5 6
1 /3 3+ % 3%
2 /0 % % % % 3
p - 3|00 83 44
4 0 0 0 % % 1}
5 6 0 0 0 % %
6 0 0 0 0 0 1
We obtain, for example, the third row of the matrix as follows. Suppose the system is in
state 3, i.e. the maximum of the numbers occurring on the first »n trials is 3. Then the
system remains in state 3 if a 1, 2, or 3 occurs on the (n-+1)-st trial; hence pg; = £. On the other
hand, the system moves to state 4, 5 or 6, respectively, if a 4, b or 6 occurs on the {n -+ 1)-st trial;
hence P34 = P35 = Pss = 4. The system can never move to state 1 or 2 since a 3 has accurred
on one of the trials; hence py = D3 = 0. Thus the third row of the transition matrix is
(0,0,%, % 3, 3). The other rows are obtained similarly.
The matrix is not regular since state 6 is absorbing, i.e. there is a 1 on the main diagonal
in row 6.
{(ii) On the first toss of the die, the state of the system X, is the number occurring; hence
V=443
- —_ (1 3 5 7 8 11 _ = (L .7 18 37 6L 91
(i) p® = pOP = (3,36 3 5 56 36 PO = PP P = (55 516" 516" 516" 316’ 216)°
Two boys b: and b, and two girls g and g» are throwing a ball from one to the other.

Each boy throws the ball to the other boy with probability 4 and to each girl with
probability . On the other hand, each girl throws the ball to each boy with
probability 4 and never to the other girl. In the long run, how often does each
receive the ball?

This is a Markov chain with state space {b;, b,, g,,92} and transition matrix

by by g1 92

b /0 &+ § 1

b, [ 4 0 1 %

P= 513 3 0 o
g2 1} % 0 0
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We seek a fixed vector u = (z,¥,2,w) of P: (2,y,z,w)P = (z,¥,7 w). Set the corresponding
components of wP equal to u# to obtain the system

W+ idz+dw = z
4z + 4z + 4w = y
Ixr+ 1y = =2
e+ 1y = w

We seek any nonzero solution. Set,say, 2 =1; then w =1, 2=2 and ¥y = 2. Thus «=(2,2,1,1)
and so the unique fixed probability of P is ¢ = (4,4,3,4).- Thus, in the long run, each boy
receives the ball } of the time and each girl } of the time.

7.27. Prove Theorem 7.6: Let P = (py) be the transition matrix of a Markov chain.
If p=(p:) is the probability distribution of the system at some arbitrary time Fk,
then pP is the probability distribution of the system one step later, i.e. at time & + 1;
hence pP" is the probability distribution of the system n steps later, i.e. at time

k +n. In particular, pV =p®P, p@ =pWP, ... and also p™ = p@Pn,
Suppose the state space is {a,, @,...,a,}. The probability that the system is in state a; at

time k and then in state ¢; at time k£ + 1 is the product p;p;. Thus the probability that the system
is in state a; at time k + 1 is the sum

m
P1Pi t PePo * ot PPy = J_El PPy
Thus the probability distribution at time k& 4+ 1 is

m m m
p* = <E P;iPj1 2 DjDjgs -+« 2 pjpjm>
i=1 i=1 i=1

However, this vector is precisely the product of the vector p = (p;) by the matrix P = (p;;): p* = pP.

7.28. Prove Theorem 7.5: Let P be the transition matrix of a Markov chain. Then the
n-step transition matrix is equal to the nth power of P: P®™ = pPn,

Suppose the system is in state a; at, say, time k. We seek the probability pi(j") that the system

is in state a; at time k+n. Now the probability distribution of the system at time k, since the
system is in state a;, is the vector e¢;=1(0,...,0,1,0,...,0) which has a 1 at the ith position
and zeros everywhere else. By the preceding problem, the probability distribution at time k+n
is the product ¢;Pn. But ¢;Pm is the ith row of the matrix P». Thus Pi(j") is the jth component
of the ith row of P», and so P = Pr,

MISCELLANEOUS PROBLEMS

7.29. The transition probabilities of a Markov chain can be represented by a diagram,
called a transition diagram, where a positive probability pi; is denoted by an arrow
from the state a; to the state a;, Find the transition matrix of each of the following
transition diagrams:

a 3 /)
i 3
3 1 3
3
3
/ \\ A
2\1’/"’33%

{1 (ii)
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7.30.

7.31.
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(i) Note first that the state space is {a,,a; a3} and so the transition matrix is of the form

a; az ag

ag

The ith row of the matrix is obtained by finding those arrows which emanate from q; in the
diagram; the number attached to the arrow from g; to a; is the jth component of the ith row.
Thus the transition matrix is

a; az; aj

a [0 0 1
P = a3 0
a3 \4 0 3}

(ii) The state space is {a,, a5, a3, a4}. The transition matrix is
a; a; az a4
a, 0 ‘.} 0 %
a o 4 0 1
poo w0 b0
a3 i 0 0 4
ay 0O 0 1 0

Suppose the transition matrix of a Markov chain is as follows:
ay dz a3 Q4
ar /3 4+ 0 0
ez |+ 3 0 O
P = A
a3 i: 1 i i
a \} 1+ 1 1
Is the Markov chain regular?

Note that once the system enters the state a@; or the state a, then it can never move to
state ag or state a,, i.e. the system remains in the state subspace {e;,a,}. Thus, in particular,
p‘l;) =0 for every mn and so every power P will contain a zero entry. Hence P is not regular.
Suppose m points on a circle are numbered respectively 1,2, ...,m in a counterclock-
wise direction. A particle performs a “random walk” on the circle; it moves one
step counterclockwise with probability » or one step clockwise with probability
q =1—7p. Find the transition matrix of this Markov chain.

The state space is {1,2,...,m}. The diagram to the right below can be used to obtain the
transition matrix which appears to the left below.

1 2 3 4 ae m—2 m—1 m
1 0 P 0 0 0 q
2 q 0 D 0 0 .
3 0 0 0 0 0 .
p = ° q P
.................................................... s
m—1 0 0 0 P

3
3
)
)
)
)
<
)
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Supplementary Problems

MATRIX MULTIPLICATION

1 -2 3
7.32. Given A = <4 1 —1>. Find ud if (i) w=(1,-3,2), (i) u=(3,0,—2), (ifi) « = (4,—1,—1).

5 2 3
1 -1 4 £ 1

733. Given A = and B=(6 —3 |. Pind AB and BA.
3 1 5 1 _»

2

2
i 2 3
3 __1>. Find A2 and A3,

734. Given A =<

1

2). Find Ar,
0 1

7.35. Given A = (

PROBABILITY VECTORS AND STOCHASTIC MATRICES
7.36.  Which vectors are probability vectors?

O &G4 -3 @ GHoddd ) (Fi 40D

7.37. Find a scalar multiple of each vector which is a probability vector:

(@ 3,0,2,538) (i) (2,4,0,1,8,0,1) (ii) (4,2, 4,01, %).
7.38. Which matrices are stochastic?
o (] , y) @ (0 0) a (3 1) ( H (v)< * )
1114 01 31 3 -1 %

REGULAR STOCHASTIC MATRICES AND FIXED PROBABILITY VECTORS
7.39. Find the unique fixed probability vector of each matrix;

oG @G @@ @

0 £ 1
740. (i) Find the unique fixed probability vector tof P = |1 4 0
01 0

(ii) What matrix does P" approach? (iii) What vector does (4, 1, )P* approach?

7.41. Find the unique fixed probability vector ¢ of each matrix:

0 4 4 01 0
GA=1{} %0 GhB=1_[4 0}
01 0 O G

7.42. (i) PFind the unique fixed probability vector t of P =
(ii) What matrix does P™ approach?
(iii) What vector does (1,0, 4, })P" approach?
(iv) What vector does (4,0, 0, 4)P» approach?

S o v o
e O b e
S O O M

S Ll o
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7.43.

7.44.

7.45.

(i) Given that ¢t = (,0,1,}) is a fixed point of a stochastic matrix P, is P regular?
(i) Given that ¢ = (},4,4.41) is a fixed point of a stochastic matrix P, is P regular?

Which of the stochastic matrices are regular?

LI P 40 0 0 1
o 1 0 G){F 4 of i) (§ 0
$ o4 14 010

Show that (¢f +ce+ de, af + bf + ae, ad + bd + be) is a fixed point of the matrix

1—a—0b a b
P = c 1—c—d d
e f 1—e—¥f

MARKOV CHAINS

7.46.

747,

7.48.

7.49.

7.50.

7.51.

7.52.

A man’s smoking habits are as follows. If he smokes filter cigarettes one week, he switches to
nonfilter cigarettes the next week with probability .2. On the other hand, if he smokes nonfilter
cigarettes one week, there is a probability of .7 that he will smoke nonfilter cigarettes the next week
as well. In the long run, how often does he smoke filter cigarettes?

A gambler’s luck follows a pattern. If he wins a game, the probability of winning the next game
is .6. However, if he loses a game, the probability of losing the next game is .7. There is an
even chance that the gambler wins the first game.

(i) What is the probability that he wins the second game?

(i) What is the probability that he wins the third game?

(iii) In the long run, how often will he win?

14

For a Markov chain, the transition matrix is P = <% i> with initial probability distribution

p@ = (1,4). Find: (i) p(221); (if) pg); (iii) »®; (iv) p(12’; (v) the vector p®Pr approaches;
(vi) the matrix P» approaches,

3 0 3
For a Markov chain, the transition matrix is P = (1 0 0| and the initial probability dis-

i i1

ibution i 0) = i D) P (i) 2. (iil) p®. G )
tribution is p (3,3,0). Find (i) 2, (i) P2, (iii) p®, (iv) p®.

Each year a man trades his car for a new car. If he has a Buick, he trades it for a Plymouth.

If he has a Plymouth, he trades it for a Ford. However, if he has a Ford, he is just as likely to

trade it for a new Ford as to trade it for a Buick or a Plymouth. In 1955 he bought his first car

which was a Ford.

(i) Find the probability that he has a (a) 1957 Ford, (b) 19567 Buick, (¢) 1958 Plymouth,
(d) 1958 Ford.

(ii) In the long run, how often will he have a Ford?

There are 2 white marbles in urn 4 and 4 red marbles in urn B, At each step of the process a
marble is selected from each urn, and the two marbles selected are interchanged. Let X, be the
number of red marbles in urn A after »n interchanges. (i) Find the transition matrix P. (ii) What
is the probability that there are 2 red marbles in urn A after 3 steps? (iii) In the long run, what
is the probability that there are 2 red marbles in urn A?

Solve the preceding problem in the case that there are 3 white marbles in urn A and 3 red marbles
in urn B.
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7.53. A fair coin is tossed until 3 heads occur in a row. Let X, be the length of the sequence of heads
ending at the nth trial. (See Example 7.24.) What is the probability that there are at least
8 tosses of the coin?

7.54. A player has 3 dollars. At each play of a game, he loses one u
doilar with probability § but wins two dollars with probability }.
He stops playing if he has lost his 3 dollars or he has won at
least 3 dollars. 2 ﬂ 1
(i) Find the transition matrix of the Markov chain.
(ii) What is the probability that there are at least 4 plays to
the game?

7.55. The diagram on the right shows four compartments with doors
leading from one to another. A mouse in any compartment is 3
equally likely to pass through each of the doors of the compart-
ment. Find the transition matrix of the Markov chain,

P =0

MISCELLANEOUS PROBLEMS
7.56. Find the transition matrix corresponding to each transition diagram:

Qi (O ari\ag))

N/ %

(i) (if)

757. Draw a transition diagram for each transition matrix:
a; dp 03

o1 % a 0 ‘& %
© P = ‘: (i i) M P = aeli } %
2 ag 0 % é‘

7.58. Consider the vector ¢; = (0,...,0,1,0,...,0) which has a 1 at the ith position and zeros elsewhere.
Show that ¢;4 is the ith row of the matrix A (whenever the product is defined).

Answers to Supplementary Problems

732, (i) (—1,-1,12), (ii) (—7,—10,8), (iii) (—5,—11,10)

o 4 5 -1 13

733. AB :( ) BA = (-3 -9 9
17 —10

5 —3 —6

734 A2 = 10 2 . A3 = 26 18
3 17 27 -1
1 2z

35, Arn =

7.35 <O 1)

7.36.  Only (iii).
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7.37. (i) (3/13,0, 2/13, 5/13, 3/13)
(ii) (8/18, 2/18, 0, 1/18, 3/18, 0, 4/18)
(iii) (4/45, 24/45, 6/45, 0, 3/45, 8/45)

7.38. Only (ii) and (iv).

7.39. (i) (6/11, b/11), (ii) (10/19, 9/19), (iii) (5/13, 8/13), (iv) (§, §)
7.40. (i) t = (4/18, 8/13,1/13), (iii) ¢ = (4/13, 8/13, 1/13)

741 (i) t = (2/9,6/9,1/9), (i) ¢t = (5/156, 6/15, 4/15)

742. (1) t = (2/11, 4/11, 1/11, 4/11), (iii) ¢, (iv) ¢

10 00
0100
43, . . (if) not ily, e.g. _
7.43. (i) No, (ii) not necessarily, e.g. P 0010
7.44. Only (iii) 00 0 1

7.46. 60% of the time

747. (i) 9/20, (ii) 87/200, (iii) 8/7 of the time

748. (i) 9/16, (ii) 3/8, (iii) (37/64, 27/64), (iv) 37/64, (v) (.6, .4), (vi) <: '4>
7.49. (i) 3/8, (ii) 1/2, (iii) (7/16, 2/16, 7/16), (iv) 7/16

750. (i) (e) 4/9, (b) 1/9, (e) 7/27, (d) 16/27. (ii) 50% of the time

01 0
151. (i) P = (ﬁ it g) (i) 8/8 (iii) 2/6
0 4 3
01 0 0
1 0
752. (i) P = gzg ; (i) 32/81  (iii) 9/20
0 0 1 0
7.53. 81/128
1000 00 0
320031000
0 34 0031 00
75, (@) P=| 0 0 % 0 0 1 O (if) 27/64
000 3% 00 1
0000 3% 01}
0 00 0 0 0 1
0 3 0 % 0 0 1 0
Fy 30
_|3 0 %0 . R L
7.55. P = 01 0 3% 756. (1) {0 % 3 (it) 100 %
§ 03 0 LEE 4400
157. (i) % (i) a;
ir( a4y b 1
3 %
3
(S



Absorbing state, 134
Algebra of sets, b

Bayes’ theorem, 56
Bernoulli distribution, 106
Binomial

coefficients, 19

theorem, 19, 27
Binomial distribution, 105
Birthday problem, 43

C(n,r), 21

Cells, 5

Central limit theorem, 108

Certain event, 38

Chain (Markov), 130

Class of sets, 5

Column of a matrix, 126

Combinations, 21

Combinatorial analysis, 16

Complement of a set, 2

Component of a vector, 126

Conditional probability, 54
function, 63

Contained, 1

Continuous random variable, 84

Correlation, 80

Countable sets, 4

Countably infinite, 4

Counting, 16

Covariance, 80

Cumulative distribution function, 85

De Morgan’s laws, 3
Density function, 84
Dependent events, 57
Diagonal, 134
Diagram,

transition, 146

tree, 9, 23, 55
Difference of sets, 2
Discrete

probability space, 43

random variable, 83
Disjoint sets, 2
Distribution (of a random variable), 75, 83
Distribution,

binomial, 105

Gaussian, 106

joint, 79

multinomial, 109

normal, 106

Poisson, 108

standard normal, 107

Element, 1
Elementary event, 38

INDEX
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Empty set, 1
Equiprobable space, 42
Event, 38
independent, 57
Expectation, 75, 83, 84
Expected value, 756

Factorial notation, 16
Failure (binomial distribution), 105
Family of sets, 5
Finite
equiprobable space, 42
probability space, 41
gets, 4
stochastic process, 55
Fixed vector, 127, 129
Function, 74
cumulative distribution, 85
density, 84
of random variables, 82
probability, 756

Gaussian distribution, 106

Image, 74
Impossible event, 38
Independent
events, 57
random variables, 81, 85
trials, 58, 68
Indexed sets, 5
Infinite
sample spaces, 43
sets, 4
Initial probability distribution, 132
Integers, 2
Intersection of sets, 25
Interval, 2

Joint
distribution, 79
probability function, 79

Large numbers (law of), 86

Main diagonal, 134
Mapping, 74
Marginal distribution, 80
Markov chain, 130
Matrix, 126
stochastic, 127
Mean, 75
Member, 1
Multinomial
coefficients, 20
distribution, 109
Multiplication theorem, 65



Mutually exclusive events, 39

N (positive integers), 2
N{g, o?), 107

Normal distribution, 106
Null set, 1

Odds, 42

Ordered
partitions, 22
samples, 18

p(k; 1), 108
P(n,7), 17
Partitions, 5, 22, 56
Pascal’s triangle, 20
Permutations, 16
with repetitions, 17
Poisson distribution, 108
Positive integers, 2
Power set, b
Preimage, 74
Probability, 38, 40
conditional, 54
function, 40, 76
product, 50
vector, 127
Process (stochastic), 65
Product
probability space, 50
set, 4

R (real numbers), 2
Random events, 42
Random variables, 74
continuous, 84
discrete, 83
function of, 82
independent, 81, 85
Range, 74
Real numbers, 2
Regular stochastic matrix, 128
Relative
complement, 2
frequency, 38

INDEX

Repeated trials, 58
Row of a matrix, 126

Sample
mean, 87
point, 38
space, 38
Sampling, 18
Scalar multiplication, 126
Set, 1
Square matrix, 126
Standard deviation, 78, 83, 85
Standard
normal distribution, 107
units, 107

Standardized random variable, 79

State space, 130
Stationary distribution, 133
Stochastic
matrix, 128
process, 5b
Subset, 1

Success {(binomial distribution), 1056

Tchebycheff’s inequality, 86
Techniques of counting, 16
Transition

diagram, 146

matrix, 130
Tree diagram, 9, 23, 556
Trials, independent, 58, 68

Uncountable sets, 4
Uniform space, 42, 43
Union of sets, 2
Universal set, 1

Variance, 78, 83, 84

Vector, 126
probability, 127

Venn diagrams, 3

Weighted average, 76

Z (integers), 2
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